1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/slab.h> 7 #include <linux/blkdev.h> 8 #include <linux/writeback.h> 9 #include <linux/sched/mm.h> 10 #include "misc.h" 11 #include "ctree.h" 12 #include "transaction.h" 13 #include "btrfs_inode.h" 14 #include "extent_io.h" 15 #include "disk-io.h" 16 #include "compression.h" 17 #include "delalloc-space.h" 18 #include "qgroup.h" 19 #include "subpage.h" 20 21 static struct kmem_cache *btrfs_ordered_extent_cache; 22 23 static u64 entry_end(struct btrfs_ordered_extent *entry) 24 { 25 if (entry->file_offset + entry->num_bytes < entry->file_offset) 26 return (u64)-1; 27 return entry->file_offset + entry->num_bytes; 28 } 29 30 /* returns NULL if the insertion worked, or it returns the node it did find 31 * in the tree 32 */ 33 static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset, 34 struct rb_node *node) 35 { 36 struct rb_node **p = &root->rb_node; 37 struct rb_node *parent = NULL; 38 struct btrfs_ordered_extent *entry; 39 40 while (*p) { 41 parent = *p; 42 entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node); 43 44 if (file_offset < entry->file_offset) 45 p = &(*p)->rb_left; 46 else if (file_offset >= entry_end(entry)) 47 p = &(*p)->rb_right; 48 else 49 return parent; 50 } 51 52 rb_link_node(node, parent, p); 53 rb_insert_color(node, root); 54 return NULL; 55 } 56 57 /* 58 * look for a given offset in the tree, and if it can't be found return the 59 * first lesser offset 60 */ 61 static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset, 62 struct rb_node **prev_ret) 63 { 64 struct rb_node *n = root->rb_node; 65 struct rb_node *prev = NULL; 66 struct rb_node *test; 67 struct btrfs_ordered_extent *entry; 68 struct btrfs_ordered_extent *prev_entry = NULL; 69 70 while (n) { 71 entry = rb_entry(n, struct btrfs_ordered_extent, rb_node); 72 prev = n; 73 prev_entry = entry; 74 75 if (file_offset < entry->file_offset) 76 n = n->rb_left; 77 else if (file_offset >= entry_end(entry)) 78 n = n->rb_right; 79 else 80 return n; 81 } 82 if (!prev_ret) 83 return NULL; 84 85 while (prev && file_offset >= entry_end(prev_entry)) { 86 test = rb_next(prev); 87 if (!test) 88 break; 89 prev_entry = rb_entry(test, struct btrfs_ordered_extent, 90 rb_node); 91 if (file_offset < entry_end(prev_entry)) 92 break; 93 94 prev = test; 95 } 96 if (prev) 97 prev_entry = rb_entry(prev, struct btrfs_ordered_extent, 98 rb_node); 99 while (prev && file_offset < entry_end(prev_entry)) { 100 test = rb_prev(prev); 101 if (!test) 102 break; 103 prev_entry = rb_entry(test, struct btrfs_ordered_extent, 104 rb_node); 105 prev = test; 106 } 107 *prev_ret = prev; 108 return NULL; 109 } 110 111 static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset, 112 u64 len) 113 { 114 if (file_offset + len <= entry->file_offset || 115 entry->file_offset + entry->num_bytes <= file_offset) 116 return 0; 117 return 1; 118 } 119 120 /* 121 * look find the first ordered struct that has this offset, otherwise 122 * the first one less than this offset 123 */ 124 static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree, 125 u64 file_offset) 126 { 127 struct rb_root *root = &tree->tree; 128 struct rb_node *prev = NULL; 129 struct rb_node *ret; 130 struct btrfs_ordered_extent *entry; 131 132 if (tree->last) { 133 entry = rb_entry(tree->last, struct btrfs_ordered_extent, 134 rb_node); 135 if (in_range(file_offset, entry->file_offset, entry->num_bytes)) 136 return tree->last; 137 } 138 ret = __tree_search(root, file_offset, &prev); 139 if (!ret) 140 ret = prev; 141 if (ret) 142 tree->last = ret; 143 return ret; 144 } 145 146 /* 147 * Allocate and add a new ordered_extent into the per-inode tree. 148 * 149 * The tree is given a single reference on the ordered extent that was 150 * inserted. 151 */ 152 static int __btrfs_add_ordered_extent(struct btrfs_inode *inode, u64 file_offset, 153 u64 disk_bytenr, u64 num_bytes, 154 u64 disk_num_bytes, int type, int dio, 155 int compress_type) 156 { 157 struct btrfs_root *root = inode->root; 158 struct btrfs_fs_info *fs_info = root->fs_info; 159 struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree; 160 struct rb_node *node; 161 struct btrfs_ordered_extent *entry; 162 int ret; 163 164 if (type == BTRFS_ORDERED_NOCOW || type == BTRFS_ORDERED_PREALLOC) { 165 /* For nocow write, we can release the qgroup rsv right now */ 166 ret = btrfs_qgroup_free_data(inode, NULL, file_offset, num_bytes); 167 if (ret < 0) 168 return ret; 169 ret = 0; 170 } else { 171 /* 172 * The ordered extent has reserved qgroup space, release now 173 * and pass the reserved number for qgroup_record to free. 174 */ 175 ret = btrfs_qgroup_release_data(inode, file_offset, num_bytes); 176 if (ret < 0) 177 return ret; 178 } 179 entry = kmem_cache_zalloc(btrfs_ordered_extent_cache, GFP_NOFS); 180 if (!entry) 181 return -ENOMEM; 182 183 entry->file_offset = file_offset; 184 entry->disk_bytenr = disk_bytenr; 185 entry->num_bytes = num_bytes; 186 entry->disk_num_bytes = disk_num_bytes; 187 entry->bytes_left = num_bytes; 188 entry->inode = igrab(&inode->vfs_inode); 189 entry->compress_type = compress_type; 190 entry->truncated_len = (u64)-1; 191 entry->qgroup_rsv = ret; 192 entry->physical = (u64)-1; 193 194 ASSERT(type == BTRFS_ORDERED_REGULAR || 195 type == BTRFS_ORDERED_NOCOW || 196 type == BTRFS_ORDERED_PREALLOC || 197 type == BTRFS_ORDERED_COMPRESSED); 198 set_bit(type, &entry->flags); 199 200 percpu_counter_add_batch(&fs_info->ordered_bytes, num_bytes, 201 fs_info->delalloc_batch); 202 203 if (dio) 204 set_bit(BTRFS_ORDERED_DIRECT, &entry->flags); 205 206 /* one ref for the tree */ 207 refcount_set(&entry->refs, 1); 208 init_waitqueue_head(&entry->wait); 209 INIT_LIST_HEAD(&entry->list); 210 INIT_LIST_HEAD(&entry->log_list); 211 INIT_LIST_HEAD(&entry->root_extent_list); 212 INIT_LIST_HEAD(&entry->work_list); 213 init_completion(&entry->completion); 214 215 trace_btrfs_ordered_extent_add(inode, entry); 216 217 spin_lock_irq(&tree->lock); 218 node = tree_insert(&tree->tree, file_offset, 219 &entry->rb_node); 220 if (node) 221 btrfs_panic(fs_info, -EEXIST, 222 "inconsistency in ordered tree at offset %llu", 223 file_offset); 224 spin_unlock_irq(&tree->lock); 225 226 spin_lock(&root->ordered_extent_lock); 227 list_add_tail(&entry->root_extent_list, 228 &root->ordered_extents); 229 root->nr_ordered_extents++; 230 if (root->nr_ordered_extents == 1) { 231 spin_lock(&fs_info->ordered_root_lock); 232 BUG_ON(!list_empty(&root->ordered_root)); 233 list_add_tail(&root->ordered_root, &fs_info->ordered_roots); 234 spin_unlock(&fs_info->ordered_root_lock); 235 } 236 spin_unlock(&root->ordered_extent_lock); 237 238 /* 239 * We don't need the count_max_extents here, we can assume that all of 240 * that work has been done at higher layers, so this is truly the 241 * smallest the extent is going to get. 242 */ 243 spin_lock(&inode->lock); 244 btrfs_mod_outstanding_extents(inode, 1); 245 spin_unlock(&inode->lock); 246 247 return 0; 248 } 249 250 int btrfs_add_ordered_extent(struct btrfs_inode *inode, u64 file_offset, 251 u64 disk_bytenr, u64 num_bytes, u64 disk_num_bytes, 252 int type) 253 { 254 ASSERT(type == BTRFS_ORDERED_REGULAR || 255 type == BTRFS_ORDERED_NOCOW || 256 type == BTRFS_ORDERED_PREALLOC); 257 return __btrfs_add_ordered_extent(inode, file_offset, disk_bytenr, 258 num_bytes, disk_num_bytes, type, 0, 259 BTRFS_COMPRESS_NONE); 260 } 261 262 int btrfs_add_ordered_extent_dio(struct btrfs_inode *inode, u64 file_offset, 263 u64 disk_bytenr, u64 num_bytes, 264 u64 disk_num_bytes, int type) 265 { 266 ASSERT(type == BTRFS_ORDERED_REGULAR || 267 type == BTRFS_ORDERED_NOCOW || 268 type == BTRFS_ORDERED_PREALLOC); 269 return __btrfs_add_ordered_extent(inode, file_offset, disk_bytenr, 270 num_bytes, disk_num_bytes, type, 1, 271 BTRFS_COMPRESS_NONE); 272 } 273 274 int btrfs_add_ordered_extent_compress(struct btrfs_inode *inode, u64 file_offset, 275 u64 disk_bytenr, u64 num_bytes, 276 u64 disk_num_bytes, int compress_type) 277 { 278 ASSERT(compress_type != BTRFS_COMPRESS_NONE); 279 return __btrfs_add_ordered_extent(inode, file_offset, disk_bytenr, 280 num_bytes, disk_num_bytes, 281 BTRFS_ORDERED_COMPRESSED, 0, 282 compress_type); 283 } 284 285 /* 286 * Add a struct btrfs_ordered_sum into the list of checksums to be inserted 287 * when an ordered extent is finished. If the list covers more than one 288 * ordered extent, it is split across multiples. 289 */ 290 void btrfs_add_ordered_sum(struct btrfs_ordered_extent *entry, 291 struct btrfs_ordered_sum *sum) 292 { 293 struct btrfs_ordered_inode_tree *tree; 294 295 tree = &BTRFS_I(entry->inode)->ordered_tree; 296 spin_lock_irq(&tree->lock); 297 list_add_tail(&sum->list, &entry->list); 298 spin_unlock_irq(&tree->lock); 299 } 300 301 /* 302 * Mark all ordered extents io inside the specified range finished. 303 * 304 * @page: The invovled page for the opeartion. 305 * For uncompressed buffered IO, the page status also needs to be 306 * updated to indicate whether the pending ordered io is finished. 307 * Can be NULL for direct IO and compressed write. 308 * For these cases, callers are ensured they won't execute the 309 * endio function twice. 310 * @finish_func: The function to be executed when all the IO of an ordered 311 * extent are finished. 312 * 313 * This function is called for endio, thus the range must have ordered 314 * extent(s) coveri it. 315 */ 316 void btrfs_mark_ordered_io_finished(struct btrfs_inode *inode, 317 struct page *page, u64 file_offset, 318 u64 num_bytes, btrfs_func_t finish_func, 319 bool uptodate) 320 { 321 struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree; 322 struct btrfs_fs_info *fs_info = inode->root->fs_info; 323 struct btrfs_workqueue *wq; 324 struct rb_node *node; 325 struct btrfs_ordered_extent *entry = NULL; 326 unsigned long flags; 327 u64 cur = file_offset; 328 329 if (btrfs_is_free_space_inode(inode)) 330 wq = fs_info->endio_freespace_worker; 331 else 332 wq = fs_info->endio_write_workers; 333 334 if (page) 335 ASSERT(page->mapping && page_offset(page) <= file_offset && 336 file_offset + num_bytes <= page_offset(page) + PAGE_SIZE); 337 338 spin_lock_irqsave(&tree->lock, flags); 339 while (cur < file_offset + num_bytes) { 340 u64 entry_end; 341 u64 end; 342 u32 len; 343 344 node = tree_search(tree, cur); 345 /* No ordered extents at all */ 346 if (!node) 347 break; 348 349 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); 350 entry_end = entry->file_offset + entry->num_bytes; 351 /* 352 * |<-- OE --->| | 353 * cur 354 * Go to next OE. 355 */ 356 if (cur >= entry_end) { 357 node = rb_next(node); 358 /* No more ordered extents, exit */ 359 if (!node) 360 break; 361 entry = rb_entry(node, struct btrfs_ordered_extent, 362 rb_node); 363 364 /* Go to next ordered extent and continue */ 365 cur = entry->file_offset; 366 continue; 367 } 368 /* 369 * | |<--- OE --->| 370 * cur 371 * Go to the start of OE. 372 */ 373 if (cur < entry->file_offset) { 374 cur = entry->file_offset; 375 continue; 376 } 377 378 /* 379 * Now we are definitely inside one ordered extent. 380 * 381 * |<--- OE --->| 382 * | 383 * cur 384 */ 385 end = min(entry->file_offset + entry->num_bytes, 386 file_offset + num_bytes) - 1; 387 ASSERT(end + 1 - cur < U32_MAX); 388 len = end + 1 - cur; 389 390 if (page) { 391 /* 392 * Ordered (Private2) bit indicates whether we still 393 * have pending io unfinished for the ordered extent. 394 * 395 * If there's no such bit, we need to skip to next range. 396 */ 397 if (!btrfs_page_test_ordered(fs_info, page, cur, len)) { 398 cur += len; 399 continue; 400 } 401 btrfs_page_clear_ordered(fs_info, page, cur, len); 402 } 403 404 /* Now we're fine to update the accounting */ 405 if (unlikely(len > entry->bytes_left)) { 406 WARN_ON(1); 407 btrfs_crit(fs_info, 408 "bad ordered extent accounting, root=%llu ino=%llu OE offset=%llu OE len=%llu to_dec=%u left=%llu", 409 inode->root->root_key.objectid, 410 btrfs_ino(inode), 411 entry->file_offset, 412 entry->num_bytes, 413 len, entry->bytes_left); 414 entry->bytes_left = 0; 415 } else { 416 entry->bytes_left -= len; 417 } 418 419 if (!uptodate) 420 set_bit(BTRFS_ORDERED_IOERR, &entry->flags); 421 422 /* 423 * All the IO of the ordered extent is finished, we need to queue 424 * the finish_func to be executed. 425 */ 426 if (entry->bytes_left == 0) { 427 set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags); 428 cond_wake_up(&entry->wait); 429 refcount_inc(&entry->refs); 430 spin_unlock_irqrestore(&tree->lock, flags); 431 btrfs_init_work(&entry->work, finish_func, NULL, NULL); 432 btrfs_queue_work(wq, &entry->work); 433 spin_lock_irqsave(&tree->lock, flags); 434 } 435 cur += len; 436 } 437 spin_unlock_irqrestore(&tree->lock, flags); 438 } 439 440 /* 441 * Finish IO for one ordered extent across a given range. The range can only 442 * contain one ordered extent. 443 * 444 * @cached: The cached ordered extent. If not NULL, we can skip the tree 445 * search and use the ordered extent directly. 446 * Will be also used to store the finished ordered extent. 447 * @file_offset: File offset for the finished IO 448 * @io_size: Length of the finish IO range 449 * 450 * Return true if the ordered extent is finished in the range, and update 451 * @cached. 452 * Return false otherwise. 453 * 454 * NOTE: The range can NOT cross multiple ordered extents. 455 * Thus caller should ensure the range doesn't cross ordered extents. 456 */ 457 bool btrfs_dec_test_ordered_pending(struct btrfs_inode *inode, 458 struct btrfs_ordered_extent **cached, 459 u64 file_offset, u64 io_size) 460 { 461 struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree; 462 struct rb_node *node; 463 struct btrfs_ordered_extent *entry = NULL; 464 unsigned long flags; 465 bool finished = false; 466 467 spin_lock_irqsave(&tree->lock, flags); 468 if (cached && *cached) { 469 entry = *cached; 470 goto have_entry; 471 } 472 473 node = tree_search(tree, file_offset); 474 if (!node) 475 goto out; 476 477 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); 478 have_entry: 479 if (!in_range(file_offset, entry->file_offset, entry->num_bytes)) 480 goto out; 481 482 if (io_size > entry->bytes_left) 483 btrfs_crit(inode->root->fs_info, 484 "bad ordered accounting left %llu size %llu", 485 entry->bytes_left, io_size); 486 487 entry->bytes_left -= io_size; 488 489 if (entry->bytes_left == 0) { 490 /* 491 * Ensure only one caller can set the flag and finished_ret 492 * accordingly 493 */ 494 finished = !test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags); 495 /* test_and_set_bit implies a barrier */ 496 cond_wake_up_nomb(&entry->wait); 497 } 498 out: 499 if (finished && cached && entry) { 500 *cached = entry; 501 refcount_inc(&entry->refs); 502 } 503 spin_unlock_irqrestore(&tree->lock, flags); 504 return finished; 505 } 506 507 /* 508 * used to drop a reference on an ordered extent. This will free 509 * the extent if the last reference is dropped 510 */ 511 void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry) 512 { 513 struct list_head *cur; 514 struct btrfs_ordered_sum *sum; 515 516 trace_btrfs_ordered_extent_put(BTRFS_I(entry->inode), entry); 517 518 if (refcount_dec_and_test(&entry->refs)) { 519 ASSERT(list_empty(&entry->root_extent_list)); 520 ASSERT(list_empty(&entry->log_list)); 521 ASSERT(RB_EMPTY_NODE(&entry->rb_node)); 522 if (entry->inode) 523 btrfs_add_delayed_iput(entry->inode); 524 while (!list_empty(&entry->list)) { 525 cur = entry->list.next; 526 sum = list_entry(cur, struct btrfs_ordered_sum, list); 527 list_del(&sum->list); 528 kvfree(sum); 529 } 530 kmem_cache_free(btrfs_ordered_extent_cache, entry); 531 } 532 } 533 534 /* 535 * remove an ordered extent from the tree. No references are dropped 536 * and waiters are woken up. 537 */ 538 void btrfs_remove_ordered_extent(struct btrfs_inode *btrfs_inode, 539 struct btrfs_ordered_extent *entry) 540 { 541 struct btrfs_ordered_inode_tree *tree; 542 struct btrfs_root *root = btrfs_inode->root; 543 struct btrfs_fs_info *fs_info = root->fs_info; 544 struct rb_node *node; 545 bool pending; 546 547 /* This is paired with btrfs_add_ordered_extent. */ 548 spin_lock(&btrfs_inode->lock); 549 btrfs_mod_outstanding_extents(btrfs_inode, -1); 550 spin_unlock(&btrfs_inode->lock); 551 if (root != fs_info->tree_root) 552 btrfs_delalloc_release_metadata(btrfs_inode, entry->num_bytes, 553 false); 554 555 percpu_counter_add_batch(&fs_info->ordered_bytes, -entry->num_bytes, 556 fs_info->delalloc_batch); 557 558 tree = &btrfs_inode->ordered_tree; 559 spin_lock_irq(&tree->lock); 560 node = &entry->rb_node; 561 rb_erase(node, &tree->tree); 562 RB_CLEAR_NODE(node); 563 if (tree->last == node) 564 tree->last = NULL; 565 set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags); 566 pending = test_and_clear_bit(BTRFS_ORDERED_PENDING, &entry->flags); 567 spin_unlock_irq(&tree->lock); 568 569 /* 570 * The current running transaction is waiting on us, we need to let it 571 * know that we're complete and wake it up. 572 */ 573 if (pending) { 574 struct btrfs_transaction *trans; 575 576 /* 577 * The checks for trans are just a formality, it should be set, 578 * but if it isn't we don't want to deref/assert under the spin 579 * lock, so be nice and check if trans is set, but ASSERT() so 580 * if it isn't set a developer will notice. 581 */ 582 spin_lock(&fs_info->trans_lock); 583 trans = fs_info->running_transaction; 584 if (trans) 585 refcount_inc(&trans->use_count); 586 spin_unlock(&fs_info->trans_lock); 587 588 ASSERT(trans); 589 if (trans) { 590 if (atomic_dec_and_test(&trans->pending_ordered)) 591 wake_up(&trans->pending_wait); 592 btrfs_put_transaction(trans); 593 } 594 } 595 596 spin_lock(&root->ordered_extent_lock); 597 list_del_init(&entry->root_extent_list); 598 root->nr_ordered_extents--; 599 600 trace_btrfs_ordered_extent_remove(btrfs_inode, entry); 601 602 if (!root->nr_ordered_extents) { 603 spin_lock(&fs_info->ordered_root_lock); 604 BUG_ON(list_empty(&root->ordered_root)); 605 list_del_init(&root->ordered_root); 606 spin_unlock(&fs_info->ordered_root_lock); 607 } 608 spin_unlock(&root->ordered_extent_lock); 609 wake_up(&entry->wait); 610 } 611 612 static void btrfs_run_ordered_extent_work(struct btrfs_work *work) 613 { 614 struct btrfs_ordered_extent *ordered; 615 616 ordered = container_of(work, struct btrfs_ordered_extent, flush_work); 617 btrfs_start_ordered_extent(ordered, 1); 618 complete(&ordered->completion); 619 } 620 621 /* 622 * wait for all the ordered extents in a root. This is done when balancing 623 * space between drives. 624 */ 625 u64 btrfs_wait_ordered_extents(struct btrfs_root *root, u64 nr, 626 const u64 range_start, const u64 range_len) 627 { 628 struct btrfs_fs_info *fs_info = root->fs_info; 629 LIST_HEAD(splice); 630 LIST_HEAD(skipped); 631 LIST_HEAD(works); 632 struct btrfs_ordered_extent *ordered, *next; 633 u64 count = 0; 634 const u64 range_end = range_start + range_len; 635 636 mutex_lock(&root->ordered_extent_mutex); 637 spin_lock(&root->ordered_extent_lock); 638 list_splice_init(&root->ordered_extents, &splice); 639 while (!list_empty(&splice) && nr) { 640 ordered = list_first_entry(&splice, struct btrfs_ordered_extent, 641 root_extent_list); 642 643 if (range_end <= ordered->disk_bytenr || 644 ordered->disk_bytenr + ordered->disk_num_bytes <= range_start) { 645 list_move_tail(&ordered->root_extent_list, &skipped); 646 cond_resched_lock(&root->ordered_extent_lock); 647 continue; 648 } 649 650 list_move_tail(&ordered->root_extent_list, 651 &root->ordered_extents); 652 refcount_inc(&ordered->refs); 653 spin_unlock(&root->ordered_extent_lock); 654 655 btrfs_init_work(&ordered->flush_work, 656 btrfs_run_ordered_extent_work, NULL, NULL); 657 list_add_tail(&ordered->work_list, &works); 658 btrfs_queue_work(fs_info->flush_workers, &ordered->flush_work); 659 660 cond_resched(); 661 spin_lock(&root->ordered_extent_lock); 662 if (nr != U64_MAX) 663 nr--; 664 count++; 665 } 666 list_splice_tail(&skipped, &root->ordered_extents); 667 list_splice_tail(&splice, &root->ordered_extents); 668 spin_unlock(&root->ordered_extent_lock); 669 670 list_for_each_entry_safe(ordered, next, &works, work_list) { 671 list_del_init(&ordered->work_list); 672 wait_for_completion(&ordered->completion); 673 btrfs_put_ordered_extent(ordered); 674 cond_resched(); 675 } 676 mutex_unlock(&root->ordered_extent_mutex); 677 678 return count; 679 } 680 681 void btrfs_wait_ordered_roots(struct btrfs_fs_info *fs_info, u64 nr, 682 const u64 range_start, const u64 range_len) 683 { 684 struct btrfs_root *root; 685 struct list_head splice; 686 u64 done; 687 688 INIT_LIST_HEAD(&splice); 689 690 mutex_lock(&fs_info->ordered_operations_mutex); 691 spin_lock(&fs_info->ordered_root_lock); 692 list_splice_init(&fs_info->ordered_roots, &splice); 693 while (!list_empty(&splice) && nr) { 694 root = list_first_entry(&splice, struct btrfs_root, 695 ordered_root); 696 root = btrfs_grab_root(root); 697 BUG_ON(!root); 698 list_move_tail(&root->ordered_root, 699 &fs_info->ordered_roots); 700 spin_unlock(&fs_info->ordered_root_lock); 701 702 done = btrfs_wait_ordered_extents(root, nr, 703 range_start, range_len); 704 btrfs_put_root(root); 705 706 spin_lock(&fs_info->ordered_root_lock); 707 if (nr != U64_MAX) { 708 nr -= done; 709 } 710 } 711 list_splice_tail(&splice, &fs_info->ordered_roots); 712 spin_unlock(&fs_info->ordered_root_lock); 713 mutex_unlock(&fs_info->ordered_operations_mutex); 714 } 715 716 /* 717 * Used to start IO or wait for a given ordered extent to finish. 718 * 719 * If wait is one, this effectively waits on page writeback for all the pages 720 * in the extent, and it waits on the io completion code to insert 721 * metadata into the btree corresponding to the extent 722 */ 723 void btrfs_start_ordered_extent(struct btrfs_ordered_extent *entry, int wait) 724 { 725 u64 start = entry->file_offset; 726 u64 end = start + entry->num_bytes - 1; 727 struct btrfs_inode *inode = BTRFS_I(entry->inode); 728 729 trace_btrfs_ordered_extent_start(inode, entry); 730 731 /* 732 * pages in the range can be dirty, clean or writeback. We 733 * start IO on any dirty ones so the wait doesn't stall waiting 734 * for the flusher thread to find them 735 */ 736 if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags)) 737 filemap_fdatawrite_range(inode->vfs_inode.i_mapping, start, end); 738 if (wait) { 739 wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE, 740 &entry->flags)); 741 } 742 } 743 744 /* 745 * Used to wait on ordered extents across a large range of bytes. 746 */ 747 int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len) 748 { 749 int ret = 0; 750 int ret_wb = 0; 751 u64 end; 752 u64 orig_end; 753 struct btrfs_ordered_extent *ordered; 754 755 if (start + len < start) { 756 orig_end = INT_LIMIT(loff_t); 757 } else { 758 orig_end = start + len - 1; 759 if (orig_end > INT_LIMIT(loff_t)) 760 orig_end = INT_LIMIT(loff_t); 761 } 762 763 /* start IO across the range first to instantiate any delalloc 764 * extents 765 */ 766 ret = btrfs_fdatawrite_range(inode, start, orig_end); 767 if (ret) 768 return ret; 769 770 /* 771 * If we have a writeback error don't return immediately. Wait first 772 * for any ordered extents that haven't completed yet. This is to make 773 * sure no one can dirty the same page ranges and call writepages() 774 * before the ordered extents complete - to avoid failures (-EEXIST) 775 * when adding the new ordered extents to the ordered tree. 776 */ 777 ret_wb = filemap_fdatawait_range(inode->i_mapping, start, orig_end); 778 779 end = orig_end; 780 while (1) { 781 ordered = btrfs_lookup_first_ordered_extent(BTRFS_I(inode), end); 782 if (!ordered) 783 break; 784 if (ordered->file_offset > orig_end) { 785 btrfs_put_ordered_extent(ordered); 786 break; 787 } 788 if (ordered->file_offset + ordered->num_bytes <= start) { 789 btrfs_put_ordered_extent(ordered); 790 break; 791 } 792 btrfs_start_ordered_extent(ordered, 1); 793 end = ordered->file_offset; 794 /* 795 * If the ordered extent had an error save the error but don't 796 * exit without waiting first for all other ordered extents in 797 * the range to complete. 798 */ 799 if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags)) 800 ret = -EIO; 801 btrfs_put_ordered_extent(ordered); 802 if (end == 0 || end == start) 803 break; 804 end--; 805 } 806 return ret_wb ? ret_wb : ret; 807 } 808 809 /* 810 * find an ordered extent corresponding to file_offset. return NULL if 811 * nothing is found, otherwise take a reference on the extent and return it 812 */ 813 struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct btrfs_inode *inode, 814 u64 file_offset) 815 { 816 struct btrfs_ordered_inode_tree *tree; 817 struct rb_node *node; 818 struct btrfs_ordered_extent *entry = NULL; 819 unsigned long flags; 820 821 tree = &inode->ordered_tree; 822 spin_lock_irqsave(&tree->lock, flags); 823 node = tree_search(tree, file_offset); 824 if (!node) 825 goto out; 826 827 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); 828 if (!in_range(file_offset, entry->file_offset, entry->num_bytes)) 829 entry = NULL; 830 if (entry) 831 refcount_inc(&entry->refs); 832 out: 833 spin_unlock_irqrestore(&tree->lock, flags); 834 return entry; 835 } 836 837 /* Since the DIO code tries to lock a wide area we need to look for any ordered 838 * extents that exist in the range, rather than just the start of the range. 839 */ 840 struct btrfs_ordered_extent *btrfs_lookup_ordered_range( 841 struct btrfs_inode *inode, u64 file_offset, u64 len) 842 { 843 struct btrfs_ordered_inode_tree *tree; 844 struct rb_node *node; 845 struct btrfs_ordered_extent *entry = NULL; 846 847 tree = &inode->ordered_tree; 848 spin_lock_irq(&tree->lock); 849 node = tree_search(tree, file_offset); 850 if (!node) { 851 node = tree_search(tree, file_offset + len); 852 if (!node) 853 goto out; 854 } 855 856 while (1) { 857 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); 858 if (range_overlaps(entry, file_offset, len)) 859 break; 860 861 if (entry->file_offset >= file_offset + len) { 862 entry = NULL; 863 break; 864 } 865 entry = NULL; 866 node = rb_next(node); 867 if (!node) 868 break; 869 } 870 out: 871 if (entry) 872 refcount_inc(&entry->refs); 873 spin_unlock_irq(&tree->lock); 874 return entry; 875 } 876 877 /* 878 * Adds all ordered extents to the given list. The list ends up sorted by the 879 * file_offset of the ordered extents. 880 */ 881 void btrfs_get_ordered_extents_for_logging(struct btrfs_inode *inode, 882 struct list_head *list) 883 { 884 struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree; 885 struct rb_node *n; 886 887 ASSERT(inode_is_locked(&inode->vfs_inode)); 888 889 spin_lock_irq(&tree->lock); 890 for (n = rb_first(&tree->tree); n; n = rb_next(n)) { 891 struct btrfs_ordered_extent *ordered; 892 893 ordered = rb_entry(n, struct btrfs_ordered_extent, rb_node); 894 895 if (test_bit(BTRFS_ORDERED_LOGGED, &ordered->flags)) 896 continue; 897 898 ASSERT(list_empty(&ordered->log_list)); 899 list_add_tail(&ordered->log_list, list); 900 refcount_inc(&ordered->refs); 901 } 902 spin_unlock_irq(&tree->lock); 903 } 904 905 /* 906 * lookup and return any extent before 'file_offset'. NULL is returned 907 * if none is found 908 */ 909 struct btrfs_ordered_extent * 910 btrfs_lookup_first_ordered_extent(struct btrfs_inode *inode, u64 file_offset) 911 { 912 struct btrfs_ordered_inode_tree *tree; 913 struct rb_node *node; 914 struct btrfs_ordered_extent *entry = NULL; 915 916 tree = &inode->ordered_tree; 917 spin_lock_irq(&tree->lock); 918 node = tree_search(tree, file_offset); 919 if (!node) 920 goto out; 921 922 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); 923 refcount_inc(&entry->refs); 924 out: 925 spin_unlock_irq(&tree->lock); 926 return entry; 927 } 928 929 /* 930 * Lookup the first ordered extent that overlaps the range 931 * [@file_offset, @file_offset + @len). 932 * 933 * The difference between this and btrfs_lookup_first_ordered_extent() is 934 * that this one won't return any ordered extent that does not overlap the range. 935 * And the difference against btrfs_lookup_ordered_extent() is, this function 936 * ensures the first ordered extent gets returned. 937 */ 938 struct btrfs_ordered_extent *btrfs_lookup_first_ordered_range( 939 struct btrfs_inode *inode, u64 file_offset, u64 len) 940 { 941 struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree; 942 struct rb_node *node; 943 struct rb_node *cur; 944 struct rb_node *prev; 945 struct rb_node *next; 946 struct btrfs_ordered_extent *entry = NULL; 947 948 spin_lock_irq(&tree->lock); 949 node = tree->tree.rb_node; 950 /* 951 * Here we don't want to use tree_search() which will use tree->last 952 * and screw up the search order. 953 * And __tree_search() can't return the adjacent ordered extents 954 * either, thus here we do our own search. 955 */ 956 while (node) { 957 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); 958 959 if (file_offset < entry->file_offset) { 960 node = node->rb_left; 961 } else if (file_offset >= entry_end(entry)) { 962 node = node->rb_right; 963 } else { 964 /* 965 * Direct hit, got an ordered extent that starts at 966 * @file_offset 967 */ 968 goto out; 969 } 970 } 971 if (!entry) { 972 /* Empty tree */ 973 goto out; 974 } 975 976 cur = &entry->rb_node; 977 /* We got an entry around @file_offset, check adjacent entries */ 978 if (entry->file_offset < file_offset) { 979 prev = cur; 980 next = rb_next(cur); 981 } else { 982 prev = rb_prev(cur); 983 next = cur; 984 } 985 if (prev) { 986 entry = rb_entry(prev, struct btrfs_ordered_extent, rb_node); 987 if (range_overlaps(entry, file_offset, len)) 988 goto out; 989 } 990 if (next) { 991 entry = rb_entry(next, struct btrfs_ordered_extent, rb_node); 992 if (range_overlaps(entry, file_offset, len)) 993 goto out; 994 } 995 /* No ordered extent in the range */ 996 entry = NULL; 997 out: 998 if (entry) 999 refcount_inc(&entry->refs); 1000 spin_unlock_irq(&tree->lock); 1001 return entry; 1002 } 1003 1004 /* 1005 * btrfs_flush_ordered_range - Lock the passed range and ensures all pending 1006 * ordered extents in it are run to completion. 1007 * 1008 * @inode: Inode whose ordered tree is to be searched 1009 * @start: Beginning of range to flush 1010 * @end: Last byte of range to lock 1011 * @cached_state: If passed, will return the extent state responsible for the 1012 * locked range. It's the caller's responsibility to free the cached state. 1013 * 1014 * This function always returns with the given range locked, ensuring after it's 1015 * called no order extent can be pending. 1016 */ 1017 void btrfs_lock_and_flush_ordered_range(struct btrfs_inode *inode, u64 start, 1018 u64 end, 1019 struct extent_state **cached_state) 1020 { 1021 struct btrfs_ordered_extent *ordered; 1022 struct extent_state *cache = NULL; 1023 struct extent_state **cachedp = &cache; 1024 1025 if (cached_state) 1026 cachedp = cached_state; 1027 1028 while (1) { 1029 lock_extent_bits(&inode->io_tree, start, end, cachedp); 1030 ordered = btrfs_lookup_ordered_range(inode, start, 1031 end - start + 1); 1032 if (!ordered) { 1033 /* 1034 * If no external cached_state has been passed then 1035 * decrement the extra ref taken for cachedp since we 1036 * aren't exposing it outside of this function 1037 */ 1038 if (!cached_state) 1039 refcount_dec(&cache->refs); 1040 break; 1041 } 1042 unlock_extent_cached(&inode->io_tree, start, end, cachedp); 1043 btrfs_start_ordered_extent(ordered, 1); 1044 btrfs_put_ordered_extent(ordered); 1045 } 1046 } 1047 1048 static int clone_ordered_extent(struct btrfs_ordered_extent *ordered, u64 pos, 1049 u64 len) 1050 { 1051 struct inode *inode = ordered->inode; 1052 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 1053 u64 file_offset = ordered->file_offset + pos; 1054 u64 disk_bytenr = ordered->disk_bytenr + pos; 1055 u64 num_bytes = len; 1056 u64 disk_num_bytes = len; 1057 int type; 1058 unsigned long flags_masked = ordered->flags & ~(1 << BTRFS_ORDERED_DIRECT); 1059 int compress_type = ordered->compress_type; 1060 unsigned long weight; 1061 int ret; 1062 1063 weight = hweight_long(flags_masked); 1064 WARN_ON_ONCE(weight > 1); 1065 if (!weight) 1066 type = 0; 1067 else 1068 type = __ffs(flags_masked); 1069 1070 /* 1071 * The splitting extent is already counted and will be added again 1072 * in btrfs_add_ordered_extent_*(). Subtract num_bytes to avoid 1073 * double counting. 1074 */ 1075 percpu_counter_add_batch(&fs_info->ordered_bytes, -num_bytes, 1076 fs_info->delalloc_batch); 1077 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered->flags)) { 1078 WARN_ON_ONCE(1); 1079 ret = btrfs_add_ordered_extent_compress(BTRFS_I(inode), 1080 file_offset, disk_bytenr, num_bytes, 1081 disk_num_bytes, compress_type); 1082 } else if (test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) { 1083 ret = btrfs_add_ordered_extent_dio(BTRFS_I(inode), file_offset, 1084 disk_bytenr, num_bytes, disk_num_bytes, type); 1085 } else { 1086 ret = btrfs_add_ordered_extent(BTRFS_I(inode), file_offset, 1087 disk_bytenr, num_bytes, disk_num_bytes, type); 1088 } 1089 1090 return ret; 1091 } 1092 1093 int btrfs_split_ordered_extent(struct btrfs_ordered_extent *ordered, u64 pre, 1094 u64 post) 1095 { 1096 struct inode *inode = ordered->inode; 1097 struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree; 1098 struct rb_node *node; 1099 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1100 int ret = 0; 1101 1102 spin_lock_irq(&tree->lock); 1103 /* Remove from tree once */ 1104 node = &ordered->rb_node; 1105 rb_erase(node, &tree->tree); 1106 RB_CLEAR_NODE(node); 1107 if (tree->last == node) 1108 tree->last = NULL; 1109 1110 ordered->file_offset += pre; 1111 ordered->disk_bytenr += pre; 1112 ordered->num_bytes -= (pre + post); 1113 ordered->disk_num_bytes -= (pre + post); 1114 ordered->bytes_left -= (pre + post); 1115 1116 /* Re-insert the node */ 1117 node = tree_insert(&tree->tree, ordered->file_offset, &ordered->rb_node); 1118 if (node) 1119 btrfs_panic(fs_info, -EEXIST, 1120 "zoned: inconsistency in ordered tree at offset %llu", 1121 ordered->file_offset); 1122 1123 spin_unlock_irq(&tree->lock); 1124 1125 if (pre) 1126 ret = clone_ordered_extent(ordered, 0, pre); 1127 if (ret == 0 && post) 1128 ret = clone_ordered_extent(ordered, pre + ordered->disk_num_bytes, 1129 post); 1130 1131 return ret; 1132 } 1133 1134 int __init ordered_data_init(void) 1135 { 1136 btrfs_ordered_extent_cache = kmem_cache_create("btrfs_ordered_extent", 1137 sizeof(struct btrfs_ordered_extent), 0, 1138 SLAB_MEM_SPREAD, 1139 NULL); 1140 if (!btrfs_ordered_extent_cache) 1141 return -ENOMEM; 1142 1143 return 0; 1144 } 1145 1146 void __cold ordered_data_exit(void) 1147 { 1148 kmem_cache_destroy(btrfs_ordered_extent_cache); 1149 } 1150