xref: /openbmc/linux/fs/btrfs/ordered-data.c (revision 565d76cb)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/slab.h>
20 #include <linux/blkdev.h>
21 #include <linux/writeback.h>
22 #include <linux/pagevec.h>
23 #include "ctree.h"
24 #include "transaction.h"
25 #include "btrfs_inode.h"
26 #include "extent_io.h"
27 
28 static u64 entry_end(struct btrfs_ordered_extent *entry)
29 {
30 	if (entry->file_offset + entry->len < entry->file_offset)
31 		return (u64)-1;
32 	return entry->file_offset + entry->len;
33 }
34 
35 /* returns NULL if the insertion worked, or it returns the node it did find
36  * in the tree
37  */
38 static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
39 				   struct rb_node *node)
40 {
41 	struct rb_node **p = &root->rb_node;
42 	struct rb_node *parent = NULL;
43 	struct btrfs_ordered_extent *entry;
44 
45 	while (*p) {
46 		parent = *p;
47 		entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
48 
49 		if (file_offset < entry->file_offset)
50 			p = &(*p)->rb_left;
51 		else if (file_offset >= entry_end(entry))
52 			p = &(*p)->rb_right;
53 		else
54 			return parent;
55 	}
56 
57 	rb_link_node(node, parent, p);
58 	rb_insert_color(node, root);
59 	return NULL;
60 }
61 
62 /*
63  * look for a given offset in the tree, and if it can't be found return the
64  * first lesser offset
65  */
66 static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
67 				     struct rb_node **prev_ret)
68 {
69 	struct rb_node *n = root->rb_node;
70 	struct rb_node *prev = NULL;
71 	struct rb_node *test;
72 	struct btrfs_ordered_extent *entry;
73 	struct btrfs_ordered_extent *prev_entry = NULL;
74 
75 	while (n) {
76 		entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
77 		prev = n;
78 		prev_entry = entry;
79 
80 		if (file_offset < entry->file_offset)
81 			n = n->rb_left;
82 		else if (file_offset >= entry_end(entry))
83 			n = n->rb_right;
84 		else
85 			return n;
86 	}
87 	if (!prev_ret)
88 		return NULL;
89 
90 	while (prev && file_offset >= entry_end(prev_entry)) {
91 		test = rb_next(prev);
92 		if (!test)
93 			break;
94 		prev_entry = rb_entry(test, struct btrfs_ordered_extent,
95 				      rb_node);
96 		if (file_offset < entry_end(prev_entry))
97 			break;
98 
99 		prev = test;
100 	}
101 	if (prev)
102 		prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
103 				      rb_node);
104 	while (prev && file_offset < entry_end(prev_entry)) {
105 		test = rb_prev(prev);
106 		if (!test)
107 			break;
108 		prev_entry = rb_entry(test, struct btrfs_ordered_extent,
109 				      rb_node);
110 		prev = test;
111 	}
112 	*prev_ret = prev;
113 	return NULL;
114 }
115 
116 /*
117  * helper to check if a given offset is inside a given entry
118  */
119 static int offset_in_entry(struct btrfs_ordered_extent *entry, u64 file_offset)
120 {
121 	if (file_offset < entry->file_offset ||
122 	    entry->file_offset + entry->len <= file_offset)
123 		return 0;
124 	return 1;
125 }
126 
127 static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset,
128 			  u64 len)
129 {
130 	if (file_offset + len <= entry->file_offset ||
131 	    entry->file_offset + entry->len <= file_offset)
132 		return 0;
133 	return 1;
134 }
135 
136 /*
137  * look find the first ordered struct that has this offset, otherwise
138  * the first one less than this offset
139  */
140 static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree,
141 					  u64 file_offset)
142 {
143 	struct rb_root *root = &tree->tree;
144 	struct rb_node *prev = NULL;
145 	struct rb_node *ret;
146 	struct btrfs_ordered_extent *entry;
147 
148 	if (tree->last) {
149 		entry = rb_entry(tree->last, struct btrfs_ordered_extent,
150 				 rb_node);
151 		if (offset_in_entry(entry, file_offset))
152 			return tree->last;
153 	}
154 	ret = __tree_search(root, file_offset, &prev);
155 	if (!ret)
156 		ret = prev;
157 	if (ret)
158 		tree->last = ret;
159 	return ret;
160 }
161 
162 /* allocate and add a new ordered_extent into the per-inode tree.
163  * file_offset is the logical offset in the file
164  *
165  * start is the disk block number of an extent already reserved in the
166  * extent allocation tree
167  *
168  * len is the length of the extent
169  *
170  * The tree is given a single reference on the ordered extent that was
171  * inserted.
172  */
173 static int __btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
174 				      u64 start, u64 len, u64 disk_len,
175 				      int type, int dio, int compress_type)
176 {
177 	struct btrfs_ordered_inode_tree *tree;
178 	struct rb_node *node;
179 	struct btrfs_ordered_extent *entry;
180 
181 	tree = &BTRFS_I(inode)->ordered_tree;
182 	entry = kzalloc(sizeof(*entry), GFP_NOFS);
183 	if (!entry)
184 		return -ENOMEM;
185 
186 	entry->file_offset = file_offset;
187 	entry->start = start;
188 	entry->len = len;
189 	entry->disk_len = disk_len;
190 	entry->bytes_left = len;
191 	entry->inode = inode;
192 	entry->compress_type = compress_type;
193 	if (type != BTRFS_ORDERED_IO_DONE && type != BTRFS_ORDERED_COMPLETE)
194 		set_bit(type, &entry->flags);
195 
196 	if (dio)
197 		set_bit(BTRFS_ORDERED_DIRECT, &entry->flags);
198 
199 	/* one ref for the tree */
200 	atomic_set(&entry->refs, 1);
201 	init_waitqueue_head(&entry->wait);
202 	INIT_LIST_HEAD(&entry->list);
203 	INIT_LIST_HEAD(&entry->root_extent_list);
204 
205 	spin_lock(&tree->lock);
206 	node = tree_insert(&tree->tree, file_offset,
207 			   &entry->rb_node);
208 	BUG_ON(node);
209 	spin_unlock(&tree->lock);
210 
211 	spin_lock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock);
212 	list_add_tail(&entry->root_extent_list,
213 		      &BTRFS_I(inode)->root->fs_info->ordered_extents);
214 	spin_unlock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock);
215 
216 	BUG_ON(node);
217 	return 0;
218 }
219 
220 int btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
221 			     u64 start, u64 len, u64 disk_len, int type)
222 {
223 	return __btrfs_add_ordered_extent(inode, file_offset, start, len,
224 					  disk_len, type, 0,
225 					  BTRFS_COMPRESS_NONE);
226 }
227 
228 int btrfs_add_ordered_extent_dio(struct inode *inode, u64 file_offset,
229 				 u64 start, u64 len, u64 disk_len, int type)
230 {
231 	return __btrfs_add_ordered_extent(inode, file_offset, start, len,
232 					  disk_len, type, 1,
233 					  BTRFS_COMPRESS_NONE);
234 }
235 
236 int btrfs_add_ordered_extent_compress(struct inode *inode, u64 file_offset,
237 				      u64 start, u64 len, u64 disk_len,
238 				      int type, int compress_type)
239 {
240 	return __btrfs_add_ordered_extent(inode, file_offset, start, len,
241 					  disk_len, type, 0,
242 					  compress_type);
243 }
244 
245 /*
246  * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
247  * when an ordered extent is finished.  If the list covers more than one
248  * ordered extent, it is split across multiples.
249  */
250 int btrfs_add_ordered_sum(struct inode *inode,
251 			  struct btrfs_ordered_extent *entry,
252 			  struct btrfs_ordered_sum *sum)
253 {
254 	struct btrfs_ordered_inode_tree *tree;
255 
256 	tree = &BTRFS_I(inode)->ordered_tree;
257 	spin_lock(&tree->lock);
258 	list_add_tail(&sum->list, &entry->list);
259 	spin_unlock(&tree->lock);
260 	return 0;
261 }
262 
263 /*
264  * this is used to account for finished IO across a given range
265  * of the file.  The IO may span ordered extents.  If
266  * a given ordered_extent is completely done, 1 is returned, otherwise
267  * 0.
268  *
269  * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
270  * to make sure this function only returns 1 once for a given ordered extent.
271  *
272  * file_offset is updated to one byte past the range that is recorded as
273  * complete.  This allows you to walk forward in the file.
274  */
275 int btrfs_dec_test_first_ordered_pending(struct inode *inode,
276 				   struct btrfs_ordered_extent **cached,
277 				   u64 *file_offset, u64 io_size)
278 {
279 	struct btrfs_ordered_inode_tree *tree;
280 	struct rb_node *node;
281 	struct btrfs_ordered_extent *entry = NULL;
282 	int ret;
283 	u64 dec_end;
284 	u64 dec_start;
285 	u64 to_dec;
286 
287 	tree = &BTRFS_I(inode)->ordered_tree;
288 	spin_lock(&tree->lock);
289 	node = tree_search(tree, *file_offset);
290 	if (!node) {
291 		ret = 1;
292 		goto out;
293 	}
294 
295 	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
296 	if (!offset_in_entry(entry, *file_offset)) {
297 		ret = 1;
298 		goto out;
299 	}
300 
301 	dec_start = max(*file_offset, entry->file_offset);
302 	dec_end = min(*file_offset + io_size, entry->file_offset +
303 		      entry->len);
304 	*file_offset = dec_end;
305 	if (dec_start > dec_end) {
306 		printk(KERN_CRIT "bad ordering dec_start %llu end %llu\n",
307 		       (unsigned long long)dec_start,
308 		       (unsigned long long)dec_end);
309 	}
310 	to_dec = dec_end - dec_start;
311 	if (to_dec > entry->bytes_left) {
312 		printk(KERN_CRIT "bad ordered accounting left %llu size %llu\n",
313 		       (unsigned long long)entry->bytes_left,
314 		       (unsigned long long)to_dec);
315 	}
316 	entry->bytes_left -= to_dec;
317 	if (entry->bytes_left == 0)
318 		ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
319 	else
320 		ret = 1;
321 out:
322 	if (!ret && cached && entry) {
323 		*cached = entry;
324 		atomic_inc(&entry->refs);
325 	}
326 	spin_unlock(&tree->lock);
327 	return ret == 0;
328 }
329 
330 /*
331  * this is used to account for finished IO across a given range
332  * of the file.  The IO should not span ordered extents.  If
333  * a given ordered_extent is completely done, 1 is returned, otherwise
334  * 0.
335  *
336  * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
337  * to make sure this function only returns 1 once for a given ordered extent.
338  */
339 int btrfs_dec_test_ordered_pending(struct inode *inode,
340 				   struct btrfs_ordered_extent **cached,
341 				   u64 file_offset, u64 io_size)
342 {
343 	struct btrfs_ordered_inode_tree *tree;
344 	struct rb_node *node;
345 	struct btrfs_ordered_extent *entry = NULL;
346 	int ret;
347 
348 	tree = &BTRFS_I(inode)->ordered_tree;
349 	spin_lock(&tree->lock);
350 	node = tree_search(tree, file_offset);
351 	if (!node) {
352 		ret = 1;
353 		goto out;
354 	}
355 
356 	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
357 	if (!offset_in_entry(entry, file_offset)) {
358 		ret = 1;
359 		goto out;
360 	}
361 
362 	if (io_size > entry->bytes_left) {
363 		printk(KERN_CRIT "bad ordered accounting left %llu size %llu\n",
364 		       (unsigned long long)entry->bytes_left,
365 		       (unsigned long long)io_size);
366 	}
367 	entry->bytes_left -= io_size;
368 	if (entry->bytes_left == 0)
369 		ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
370 	else
371 		ret = 1;
372 out:
373 	if (!ret && cached && entry) {
374 		*cached = entry;
375 		atomic_inc(&entry->refs);
376 	}
377 	spin_unlock(&tree->lock);
378 	return ret == 0;
379 }
380 
381 /*
382  * used to drop a reference on an ordered extent.  This will free
383  * the extent if the last reference is dropped
384  */
385 int btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
386 {
387 	struct list_head *cur;
388 	struct btrfs_ordered_sum *sum;
389 
390 	if (atomic_dec_and_test(&entry->refs)) {
391 		while (!list_empty(&entry->list)) {
392 			cur = entry->list.next;
393 			sum = list_entry(cur, struct btrfs_ordered_sum, list);
394 			list_del(&sum->list);
395 			kfree(sum);
396 		}
397 		kfree(entry);
398 	}
399 	return 0;
400 }
401 
402 /*
403  * remove an ordered extent from the tree.  No references are dropped
404  * and you must wake_up entry->wait.  You must hold the tree lock
405  * while you call this function.
406  */
407 static int __btrfs_remove_ordered_extent(struct inode *inode,
408 				struct btrfs_ordered_extent *entry)
409 {
410 	struct btrfs_ordered_inode_tree *tree;
411 	struct btrfs_root *root = BTRFS_I(inode)->root;
412 	struct rb_node *node;
413 
414 	tree = &BTRFS_I(inode)->ordered_tree;
415 	node = &entry->rb_node;
416 	rb_erase(node, &tree->tree);
417 	tree->last = NULL;
418 	set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
419 
420 	spin_lock(&root->fs_info->ordered_extent_lock);
421 	list_del_init(&entry->root_extent_list);
422 
423 	/*
424 	 * we have no more ordered extents for this inode and
425 	 * no dirty pages.  We can safely remove it from the
426 	 * list of ordered extents
427 	 */
428 	if (RB_EMPTY_ROOT(&tree->tree) &&
429 	    !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
430 		list_del_init(&BTRFS_I(inode)->ordered_operations);
431 	}
432 	spin_unlock(&root->fs_info->ordered_extent_lock);
433 
434 	return 0;
435 }
436 
437 /*
438  * remove an ordered extent from the tree.  No references are dropped
439  * but any waiters are woken.
440  */
441 int btrfs_remove_ordered_extent(struct inode *inode,
442 				struct btrfs_ordered_extent *entry)
443 {
444 	struct btrfs_ordered_inode_tree *tree;
445 	int ret;
446 
447 	tree = &BTRFS_I(inode)->ordered_tree;
448 	spin_lock(&tree->lock);
449 	ret = __btrfs_remove_ordered_extent(inode, entry);
450 	spin_unlock(&tree->lock);
451 	wake_up(&entry->wait);
452 
453 	return ret;
454 }
455 
456 /*
457  * wait for all the ordered extents in a root.  This is done when balancing
458  * space between drives.
459  */
460 int btrfs_wait_ordered_extents(struct btrfs_root *root,
461 			       int nocow_only, int delay_iput)
462 {
463 	struct list_head splice;
464 	struct list_head *cur;
465 	struct btrfs_ordered_extent *ordered;
466 	struct inode *inode;
467 
468 	INIT_LIST_HEAD(&splice);
469 
470 	spin_lock(&root->fs_info->ordered_extent_lock);
471 	list_splice_init(&root->fs_info->ordered_extents, &splice);
472 	while (!list_empty(&splice)) {
473 		cur = splice.next;
474 		ordered = list_entry(cur, struct btrfs_ordered_extent,
475 				     root_extent_list);
476 		if (nocow_only &&
477 		    !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags) &&
478 		    !test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags)) {
479 			list_move(&ordered->root_extent_list,
480 				  &root->fs_info->ordered_extents);
481 			cond_resched_lock(&root->fs_info->ordered_extent_lock);
482 			continue;
483 		}
484 
485 		list_del_init(&ordered->root_extent_list);
486 		atomic_inc(&ordered->refs);
487 
488 		/*
489 		 * the inode may be getting freed (in sys_unlink path).
490 		 */
491 		inode = igrab(ordered->inode);
492 
493 		spin_unlock(&root->fs_info->ordered_extent_lock);
494 
495 		if (inode) {
496 			btrfs_start_ordered_extent(inode, ordered, 1);
497 			btrfs_put_ordered_extent(ordered);
498 			if (delay_iput)
499 				btrfs_add_delayed_iput(inode);
500 			else
501 				iput(inode);
502 		} else {
503 			btrfs_put_ordered_extent(ordered);
504 		}
505 
506 		spin_lock(&root->fs_info->ordered_extent_lock);
507 	}
508 	spin_unlock(&root->fs_info->ordered_extent_lock);
509 	return 0;
510 }
511 
512 /*
513  * this is used during transaction commit to write all the inodes
514  * added to the ordered operation list.  These files must be fully on
515  * disk before the transaction commits.
516  *
517  * we have two modes here, one is to just start the IO via filemap_flush
518  * and the other is to wait for all the io.  When we wait, we have an
519  * extra check to make sure the ordered operation list really is empty
520  * before we return
521  */
522 int btrfs_run_ordered_operations(struct btrfs_root *root, int wait)
523 {
524 	struct btrfs_inode *btrfs_inode;
525 	struct inode *inode;
526 	struct list_head splice;
527 
528 	INIT_LIST_HEAD(&splice);
529 
530 	mutex_lock(&root->fs_info->ordered_operations_mutex);
531 	spin_lock(&root->fs_info->ordered_extent_lock);
532 again:
533 	list_splice_init(&root->fs_info->ordered_operations, &splice);
534 
535 	while (!list_empty(&splice)) {
536 		btrfs_inode = list_entry(splice.next, struct btrfs_inode,
537 				   ordered_operations);
538 
539 		inode = &btrfs_inode->vfs_inode;
540 
541 		list_del_init(&btrfs_inode->ordered_operations);
542 
543 		/*
544 		 * the inode may be getting freed (in sys_unlink path).
545 		 */
546 		inode = igrab(inode);
547 
548 		if (!wait && inode) {
549 			list_add_tail(&BTRFS_I(inode)->ordered_operations,
550 			      &root->fs_info->ordered_operations);
551 		}
552 		spin_unlock(&root->fs_info->ordered_extent_lock);
553 
554 		if (inode) {
555 			if (wait)
556 				btrfs_wait_ordered_range(inode, 0, (u64)-1);
557 			else
558 				filemap_flush(inode->i_mapping);
559 			btrfs_add_delayed_iput(inode);
560 		}
561 
562 		cond_resched();
563 		spin_lock(&root->fs_info->ordered_extent_lock);
564 	}
565 	if (wait && !list_empty(&root->fs_info->ordered_operations))
566 		goto again;
567 
568 	spin_unlock(&root->fs_info->ordered_extent_lock);
569 	mutex_unlock(&root->fs_info->ordered_operations_mutex);
570 
571 	return 0;
572 }
573 
574 /*
575  * Used to start IO or wait for a given ordered extent to finish.
576  *
577  * If wait is one, this effectively waits on page writeback for all the pages
578  * in the extent, and it waits on the io completion code to insert
579  * metadata into the btree corresponding to the extent
580  */
581 void btrfs_start_ordered_extent(struct inode *inode,
582 				       struct btrfs_ordered_extent *entry,
583 				       int wait)
584 {
585 	u64 start = entry->file_offset;
586 	u64 end = start + entry->len - 1;
587 
588 	/*
589 	 * pages in the range can be dirty, clean or writeback.  We
590 	 * start IO on any dirty ones so the wait doesn't stall waiting
591 	 * for pdflush to find them
592 	 */
593 	if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags))
594 		filemap_fdatawrite_range(inode->i_mapping, start, end);
595 	if (wait) {
596 		wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE,
597 						 &entry->flags));
598 	}
599 }
600 
601 /*
602  * Used to wait on ordered extents across a large range of bytes.
603  */
604 int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
605 {
606 	u64 end;
607 	u64 orig_end;
608 	struct btrfs_ordered_extent *ordered;
609 	int found;
610 
611 	if (start + len < start) {
612 		orig_end = INT_LIMIT(loff_t);
613 	} else {
614 		orig_end = start + len - 1;
615 		if (orig_end > INT_LIMIT(loff_t))
616 			orig_end = INT_LIMIT(loff_t);
617 	}
618 again:
619 	/* start IO across the range first to instantiate any delalloc
620 	 * extents
621 	 */
622 	filemap_fdatawrite_range(inode->i_mapping, start, orig_end);
623 
624 	/* The compression code will leave pages locked but return from
625 	 * writepage without setting the page writeback.  Starting again
626 	 * with WB_SYNC_ALL will end up waiting for the IO to actually start.
627 	 */
628 	filemap_fdatawrite_range(inode->i_mapping, start, orig_end);
629 
630 	filemap_fdatawait_range(inode->i_mapping, start, orig_end);
631 
632 	end = orig_end;
633 	found = 0;
634 	while (1) {
635 		ordered = btrfs_lookup_first_ordered_extent(inode, end);
636 		if (!ordered)
637 			break;
638 		if (ordered->file_offset > orig_end) {
639 			btrfs_put_ordered_extent(ordered);
640 			break;
641 		}
642 		if (ordered->file_offset + ordered->len < start) {
643 			btrfs_put_ordered_extent(ordered);
644 			break;
645 		}
646 		found++;
647 		btrfs_start_ordered_extent(inode, ordered, 1);
648 		end = ordered->file_offset;
649 		btrfs_put_ordered_extent(ordered);
650 		if (end == 0 || end == start)
651 			break;
652 		end--;
653 	}
654 	if (found || test_range_bit(&BTRFS_I(inode)->io_tree, start, orig_end,
655 			   EXTENT_DELALLOC, 0, NULL)) {
656 		schedule_timeout(1);
657 		goto again;
658 	}
659 	return 0;
660 }
661 
662 /*
663  * find an ordered extent corresponding to file_offset.  return NULL if
664  * nothing is found, otherwise take a reference on the extent and return it
665  */
666 struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct inode *inode,
667 							 u64 file_offset)
668 {
669 	struct btrfs_ordered_inode_tree *tree;
670 	struct rb_node *node;
671 	struct btrfs_ordered_extent *entry = NULL;
672 
673 	tree = &BTRFS_I(inode)->ordered_tree;
674 	spin_lock(&tree->lock);
675 	node = tree_search(tree, file_offset);
676 	if (!node)
677 		goto out;
678 
679 	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
680 	if (!offset_in_entry(entry, file_offset))
681 		entry = NULL;
682 	if (entry)
683 		atomic_inc(&entry->refs);
684 out:
685 	spin_unlock(&tree->lock);
686 	return entry;
687 }
688 
689 /* Since the DIO code tries to lock a wide area we need to look for any ordered
690  * extents that exist in the range, rather than just the start of the range.
691  */
692 struct btrfs_ordered_extent *btrfs_lookup_ordered_range(struct inode *inode,
693 							u64 file_offset,
694 							u64 len)
695 {
696 	struct btrfs_ordered_inode_tree *tree;
697 	struct rb_node *node;
698 	struct btrfs_ordered_extent *entry = NULL;
699 
700 	tree = &BTRFS_I(inode)->ordered_tree;
701 	spin_lock(&tree->lock);
702 	node = tree_search(tree, file_offset);
703 	if (!node) {
704 		node = tree_search(tree, file_offset + len);
705 		if (!node)
706 			goto out;
707 	}
708 
709 	while (1) {
710 		entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
711 		if (range_overlaps(entry, file_offset, len))
712 			break;
713 
714 		if (entry->file_offset >= file_offset + len) {
715 			entry = NULL;
716 			break;
717 		}
718 		entry = NULL;
719 		node = rb_next(node);
720 		if (!node)
721 			break;
722 	}
723 out:
724 	if (entry)
725 		atomic_inc(&entry->refs);
726 	spin_unlock(&tree->lock);
727 	return entry;
728 }
729 
730 /*
731  * lookup and return any extent before 'file_offset'.  NULL is returned
732  * if none is found
733  */
734 struct btrfs_ordered_extent *
735 btrfs_lookup_first_ordered_extent(struct inode *inode, u64 file_offset)
736 {
737 	struct btrfs_ordered_inode_tree *tree;
738 	struct rb_node *node;
739 	struct btrfs_ordered_extent *entry = NULL;
740 
741 	tree = &BTRFS_I(inode)->ordered_tree;
742 	spin_lock(&tree->lock);
743 	node = tree_search(tree, file_offset);
744 	if (!node)
745 		goto out;
746 
747 	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
748 	atomic_inc(&entry->refs);
749 out:
750 	spin_unlock(&tree->lock);
751 	return entry;
752 }
753 
754 /*
755  * After an extent is done, call this to conditionally update the on disk
756  * i_size.  i_size is updated to cover any fully written part of the file.
757  */
758 int btrfs_ordered_update_i_size(struct inode *inode, u64 offset,
759 				struct btrfs_ordered_extent *ordered)
760 {
761 	struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
762 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
763 	u64 disk_i_size;
764 	u64 new_i_size;
765 	u64 i_size_test;
766 	u64 i_size = i_size_read(inode);
767 	struct rb_node *node;
768 	struct rb_node *prev = NULL;
769 	struct btrfs_ordered_extent *test;
770 	int ret = 1;
771 
772 	if (ordered)
773 		offset = entry_end(ordered);
774 	else
775 		offset = ALIGN(offset, BTRFS_I(inode)->root->sectorsize);
776 
777 	spin_lock(&tree->lock);
778 	disk_i_size = BTRFS_I(inode)->disk_i_size;
779 
780 	/* truncate file */
781 	if (disk_i_size > i_size) {
782 		BTRFS_I(inode)->disk_i_size = i_size;
783 		ret = 0;
784 		goto out;
785 	}
786 
787 	/*
788 	 * if the disk i_size is already at the inode->i_size, or
789 	 * this ordered extent is inside the disk i_size, we're done
790 	 */
791 	if (disk_i_size == i_size || offset <= disk_i_size) {
792 		goto out;
793 	}
794 
795 	/*
796 	 * we can't update the disk_isize if there are delalloc bytes
797 	 * between disk_i_size and  this ordered extent
798 	 */
799 	if (test_range_bit(io_tree, disk_i_size, offset - 1,
800 			   EXTENT_DELALLOC, 0, NULL)) {
801 		goto out;
802 	}
803 	/*
804 	 * walk backward from this ordered extent to disk_i_size.
805 	 * if we find an ordered extent then we can't update disk i_size
806 	 * yet
807 	 */
808 	if (ordered) {
809 		node = rb_prev(&ordered->rb_node);
810 	} else {
811 		prev = tree_search(tree, offset);
812 		/*
813 		 * we insert file extents without involving ordered struct,
814 		 * so there should be no ordered struct cover this offset
815 		 */
816 		if (prev) {
817 			test = rb_entry(prev, struct btrfs_ordered_extent,
818 					rb_node);
819 			BUG_ON(offset_in_entry(test, offset));
820 		}
821 		node = prev;
822 	}
823 	while (node) {
824 		test = rb_entry(node, struct btrfs_ordered_extent, rb_node);
825 		if (test->file_offset + test->len <= disk_i_size)
826 			break;
827 		if (test->file_offset >= i_size)
828 			break;
829 		if (test->file_offset >= disk_i_size)
830 			goto out;
831 		node = rb_prev(node);
832 	}
833 	new_i_size = min_t(u64, offset, i_size);
834 
835 	/*
836 	 * at this point, we know we can safely update i_size to at least
837 	 * the offset from this ordered extent.  But, we need to
838 	 * walk forward and see if ios from higher up in the file have
839 	 * finished.
840 	 */
841 	if (ordered) {
842 		node = rb_next(&ordered->rb_node);
843 	} else {
844 		if (prev)
845 			node = rb_next(prev);
846 		else
847 			node = rb_first(&tree->tree);
848 	}
849 	i_size_test = 0;
850 	if (node) {
851 		/*
852 		 * do we have an area where IO might have finished
853 		 * between our ordered extent and the next one.
854 		 */
855 		test = rb_entry(node, struct btrfs_ordered_extent, rb_node);
856 		if (test->file_offset > offset)
857 			i_size_test = test->file_offset;
858 	} else {
859 		i_size_test = i_size;
860 	}
861 
862 	/*
863 	 * i_size_test is the end of a region after this ordered
864 	 * extent where there are no ordered extents.  As long as there
865 	 * are no delalloc bytes in this area, it is safe to update
866 	 * disk_i_size to the end of the region.
867 	 */
868 	if (i_size_test > offset &&
869 	    !test_range_bit(io_tree, offset, i_size_test - 1,
870 			    EXTENT_DELALLOC, 0, NULL)) {
871 		new_i_size = min_t(u64, i_size_test, i_size);
872 	}
873 	BTRFS_I(inode)->disk_i_size = new_i_size;
874 	ret = 0;
875 out:
876 	/*
877 	 * we need to remove the ordered extent with the tree lock held
878 	 * so that other people calling this function don't find our fully
879 	 * processed ordered entry and skip updating the i_size
880 	 */
881 	if (ordered)
882 		__btrfs_remove_ordered_extent(inode, ordered);
883 	spin_unlock(&tree->lock);
884 	if (ordered)
885 		wake_up(&ordered->wait);
886 	return ret;
887 }
888 
889 /*
890  * search the ordered extents for one corresponding to 'offset' and
891  * try to find a checksum.  This is used because we allow pages to
892  * be reclaimed before their checksum is actually put into the btree
893  */
894 int btrfs_find_ordered_sum(struct inode *inode, u64 offset, u64 disk_bytenr,
895 			   u32 *sum)
896 {
897 	struct btrfs_ordered_sum *ordered_sum;
898 	struct btrfs_sector_sum *sector_sums;
899 	struct btrfs_ordered_extent *ordered;
900 	struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
901 	unsigned long num_sectors;
902 	unsigned long i;
903 	u32 sectorsize = BTRFS_I(inode)->root->sectorsize;
904 	int ret = 1;
905 
906 	ordered = btrfs_lookup_ordered_extent(inode, offset);
907 	if (!ordered)
908 		return 1;
909 
910 	spin_lock(&tree->lock);
911 	list_for_each_entry_reverse(ordered_sum, &ordered->list, list) {
912 		if (disk_bytenr >= ordered_sum->bytenr) {
913 			num_sectors = ordered_sum->len / sectorsize;
914 			sector_sums = ordered_sum->sums;
915 			for (i = 0; i < num_sectors; i++) {
916 				if (sector_sums[i].bytenr == disk_bytenr) {
917 					*sum = sector_sums[i].sum;
918 					ret = 0;
919 					goto out;
920 				}
921 			}
922 		}
923 	}
924 out:
925 	spin_unlock(&tree->lock);
926 	btrfs_put_ordered_extent(ordered);
927 	return ret;
928 }
929 
930 
931 /*
932  * add a given inode to the list of inodes that must be fully on
933  * disk before a transaction commit finishes.
934  *
935  * This basically gives us the ext3 style data=ordered mode, and it is mostly
936  * used to make sure renamed files are fully on disk.
937  *
938  * It is a noop if the inode is already fully on disk.
939  *
940  * If trans is not null, we'll do a friendly check for a transaction that
941  * is already flushing things and force the IO down ourselves.
942  */
943 int btrfs_add_ordered_operation(struct btrfs_trans_handle *trans,
944 				struct btrfs_root *root,
945 				struct inode *inode)
946 {
947 	u64 last_mod;
948 
949 	last_mod = max(BTRFS_I(inode)->generation, BTRFS_I(inode)->last_trans);
950 
951 	/*
952 	 * if this file hasn't been changed since the last transaction
953 	 * commit, we can safely return without doing anything
954 	 */
955 	if (last_mod < root->fs_info->last_trans_committed)
956 		return 0;
957 
958 	/*
959 	 * the transaction is already committing.  Just start the IO and
960 	 * don't bother with all of this list nonsense
961 	 */
962 	if (trans && root->fs_info->running_transaction->blocked) {
963 		btrfs_wait_ordered_range(inode, 0, (u64)-1);
964 		return 0;
965 	}
966 
967 	spin_lock(&root->fs_info->ordered_extent_lock);
968 	if (list_empty(&BTRFS_I(inode)->ordered_operations)) {
969 		list_add_tail(&BTRFS_I(inode)->ordered_operations,
970 			      &root->fs_info->ordered_operations);
971 	}
972 	spin_unlock(&root->fs_info->ordered_extent_lock);
973 
974 	return 0;
975 }
976