1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/slab.h> 20 #include <linux/blkdev.h> 21 #include <linux/writeback.h> 22 #include <linux/pagevec.h> 23 #include "ctree.h" 24 #include "transaction.h" 25 #include "btrfs_inode.h" 26 #include "extent_io.h" 27 28 static u64 entry_end(struct btrfs_ordered_extent *entry) 29 { 30 if (entry->file_offset + entry->len < entry->file_offset) 31 return (u64)-1; 32 return entry->file_offset + entry->len; 33 } 34 35 /* returns NULL if the insertion worked, or it returns the node it did find 36 * in the tree 37 */ 38 static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset, 39 struct rb_node *node) 40 { 41 struct rb_node **p = &root->rb_node; 42 struct rb_node *parent = NULL; 43 struct btrfs_ordered_extent *entry; 44 45 while (*p) { 46 parent = *p; 47 entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node); 48 49 if (file_offset < entry->file_offset) 50 p = &(*p)->rb_left; 51 else if (file_offset >= entry_end(entry)) 52 p = &(*p)->rb_right; 53 else 54 return parent; 55 } 56 57 rb_link_node(node, parent, p); 58 rb_insert_color(node, root); 59 return NULL; 60 } 61 62 /* 63 * look for a given offset in the tree, and if it can't be found return the 64 * first lesser offset 65 */ 66 static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset, 67 struct rb_node **prev_ret) 68 { 69 struct rb_node *n = root->rb_node; 70 struct rb_node *prev = NULL; 71 struct rb_node *test; 72 struct btrfs_ordered_extent *entry; 73 struct btrfs_ordered_extent *prev_entry = NULL; 74 75 while (n) { 76 entry = rb_entry(n, struct btrfs_ordered_extent, rb_node); 77 prev = n; 78 prev_entry = entry; 79 80 if (file_offset < entry->file_offset) 81 n = n->rb_left; 82 else if (file_offset >= entry_end(entry)) 83 n = n->rb_right; 84 else 85 return n; 86 } 87 if (!prev_ret) 88 return NULL; 89 90 while (prev && file_offset >= entry_end(prev_entry)) { 91 test = rb_next(prev); 92 if (!test) 93 break; 94 prev_entry = rb_entry(test, struct btrfs_ordered_extent, 95 rb_node); 96 if (file_offset < entry_end(prev_entry)) 97 break; 98 99 prev = test; 100 } 101 if (prev) 102 prev_entry = rb_entry(prev, struct btrfs_ordered_extent, 103 rb_node); 104 while (prev && file_offset < entry_end(prev_entry)) { 105 test = rb_prev(prev); 106 if (!test) 107 break; 108 prev_entry = rb_entry(test, struct btrfs_ordered_extent, 109 rb_node); 110 prev = test; 111 } 112 *prev_ret = prev; 113 return NULL; 114 } 115 116 /* 117 * helper to check if a given offset is inside a given entry 118 */ 119 static int offset_in_entry(struct btrfs_ordered_extent *entry, u64 file_offset) 120 { 121 if (file_offset < entry->file_offset || 122 entry->file_offset + entry->len <= file_offset) 123 return 0; 124 return 1; 125 } 126 127 static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset, 128 u64 len) 129 { 130 if (file_offset + len <= entry->file_offset || 131 entry->file_offset + entry->len <= file_offset) 132 return 0; 133 return 1; 134 } 135 136 /* 137 * look find the first ordered struct that has this offset, otherwise 138 * the first one less than this offset 139 */ 140 static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree, 141 u64 file_offset) 142 { 143 struct rb_root *root = &tree->tree; 144 struct rb_node *prev = NULL; 145 struct rb_node *ret; 146 struct btrfs_ordered_extent *entry; 147 148 if (tree->last) { 149 entry = rb_entry(tree->last, struct btrfs_ordered_extent, 150 rb_node); 151 if (offset_in_entry(entry, file_offset)) 152 return tree->last; 153 } 154 ret = __tree_search(root, file_offset, &prev); 155 if (!ret) 156 ret = prev; 157 if (ret) 158 tree->last = ret; 159 return ret; 160 } 161 162 /* allocate and add a new ordered_extent into the per-inode tree. 163 * file_offset is the logical offset in the file 164 * 165 * start is the disk block number of an extent already reserved in the 166 * extent allocation tree 167 * 168 * len is the length of the extent 169 * 170 * The tree is given a single reference on the ordered extent that was 171 * inserted. 172 */ 173 static int __btrfs_add_ordered_extent(struct inode *inode, u64 file_offset, 174 u64 start, u64 len, u64 disk_len, 175 int type, int dio, int compress_type) 176 { 177 struct btrfs_ordered_inode_tree *tree; 178 struct rb_node *node; 179 struct btrfs_ordered_extent *entry; 180 181 tree = &BTRFS_I(inode)->ordered_tree; 182 entry = kzalloc(sizeof(*entry), GFP_NOFS); 183 if (!entry) 184 return -ENOMEM; 185 186 entry->file_offset = file_offset; 187 entry->start = start; 188 entry->len = len; 189 entry->disk_len = disk_len; 190 entry->bytes_left = len; 191 entry->inode = inode; 192 entry->compress_type = compress_type; 193 if (type != BTRFS_ORDERED_IO_DONE && type != BTRFS_ORDERED_COMPLETE) 194 set_bit(type, &entry->flags); 195 196 if (dio) 197 set_bit(BTRFS_ORDERED_DIRECT, &entry->flags); 198 199 /* one ref for the tree */ 200 atomic_set(&entry->refs, 1); 201 init_waitqueue_head(&entry->wait); 202 INIT_LIST_HEAD(&entry->list); 203 INIT_LIST_HEAD(&entry->root_extent_list); 204 205 spin_lock(&tree->lock); 206 node = tree_insert(&tree->tree, file_offset, 207 &entry->rb_node); 208 BUG_ON(node); 209 spin_unlock(&tree->lock); 210 211 spin_lock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock); 212 list_add_tail(&entry->root_extent_list, 213 &BTRFS_I(inode)->root->fs_info->ordered_extents); 214 spin_unlock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock); 215 216 BUG_ON(node); 217 return 0; 218 } 219 220 int btrfs_add_ordered_extent(struct inode *inode, u64 file_offset, 221 u64 start, u64 len, u64 disk_len, int type) 222 { 223 return __btrfs_add_ordered_extent(inode, file_offset, start, len, 224 disk_len, type, 0, 225 BTRFS_COMPRESS_NONE); 226 } 227 228 int btrfs_add_ordered_extent_dio(struct inode *inode, u64 file_offset, 229 u64 start, u64 len, u64 disk_len, int type) 230 { 231 return __btrfs_add_ordered_extent(inode, file_offset, start, len, 232 disk_len, type, 1, 233 BTRFS_COMPRESS_NONE); 234 } 235 236 int btrfs_add_ordered_extent_compress(struct inode *inode, u64 file_offset, 237 u64 start, u64 len, u64 disk_len, 238 int type, int compress_type) 239 { 240 return __btrfs_add_ordered_extent(inode, file_offset, start, len, 241 disk_len, type, 0, 242 compress_type); 243 } 244 245 /* 246 * Add a struct btrfs_ordered_sum into the list of checksums to be inserted 247 * when an ordered extent is finished. If the list covers more than one 248 * ordered extent, it is split across multiples. 249 */ 250 int btrfs_add_ordered_sum(struct inode *inode, 251 struct btrfs_ordered_extent *entry, 252 struct btrfs_ordered_sum *sum) 253 { 254 struct btrfs_ordered_inode_tree *tree; 255 256 tree = &BTRFS_I(inode)->ordered_tree; 257 spin_lock(&tree->lock); 258 list_add_tail(&sum->list, &entry->list); 259 spin_unlock(&tree->lock); 260 return 0; 261 } 262 263 /* 264 * this is used to account for finished IO across a given range 265 * of the file. The IO may span ordered extents. If 266 * a given ordered_extent is completely done, 1 is returned, otherwise 267 * 0. 268 * 269 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used 270 * to make sure this function only returns 1 once for a given ordered extent. 271 * 272 * file_offset is updated to one byte past the range that is recorded as 273 * complete. This allows you to walk forward in the file. 274 */ 275 int btrfs_dec_test_first_ordered_pending(struct inode *inode, 276 struct btrfs_ordered_extent **cached, 277 u64 *file_offset, u64 io_size) 278 { 279 struct btrfs_ordered_inode_tree *tree; 280 struct rb_node *node; 281 struct btrfs_ordered_extent *entry = NULL; 282 int ret; 283 u64 dec_end; 284 u64 dec_start; 285 u64 to_dec; 286 287 tree = &BTRFS_I(inode)->ordered_tree; 288 spin_lock(&tree->lock); 289 node = tree_search(tree, *file_offset); 290 if (!node) { 291 ret = 1; 292 goto out; 293 } 294 295 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); 296 if (!offset_in_entry(entry, *file_offset)) { 297 ret = 1; 298 goto out; 299 } 300 301 dec_start = max(*file_offset, entry->file_offset); 302 dec_end = min(*file_offset + io_size, entry->file_offset + 303 entry->len); 304 *file_offset = dec_end; 305 if (dec_start > dec_end) { 306 printk(KERN_CRIT "bad ordering dec_start %llu end %llu\n", 307 (unsigned long long)dec_start, 308 (unsigned long long)dec_end); 309 } 310 to_dec = dec_end - dec_start; 311 if (to_dec > entry->bytes_left) { 312 printk(KERN_CRIT "bad ordered accounting left %llu size %llu\n", 313 (unsigned long long)entry->bytes_left, 314 (unsigned long long)to_dec); 315 } 316 entry->bytes_left -= to_dec; 317 if (entry->bytes_left == 0) 318 ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags); 319 else 320 ret = 1; 321 out: 322 if (!ret && cached && entry) { 323 *cached = entry; 324 atomic_inc(&entry->refs); 325 } 326 spin_unlock(&tree->lock); 327 return ret == 0; 328 } 329 330 /* 331 * this is used to account for finished IO across a given range 332 * of the file. The IO should not span ordered extents. If 333 * a given ordered_extent is completely done, 1 is returned, otherwise 334 * 0. 335 * 336 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used 337 * to make sure this function only returns 1 once for a given ordered extent. 338 */ 339 int btrfs_dec_test_ordered_pending(struct inode *inode, 340 struct btrfs_ordered_extent **cached, 341 u64 file_offset, u64 io_size) 342 { 343 struct btrfs_ordered_inode_tree *tree; 344 struct rb_node *node; 345 struct btrfs_ordered_extent *entry = NULL; 346 int ret; 347 348 tree = &BTRFS_I(inode)->ordered_tree; 349 spin_lock(&tree->lock); 350 node = tree_search(tree, file_offset); 351 if (!node) { 352 ret = 1; 353 goto out; 354 } 355 356 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); 357 if (!offset_in_entry(entry, file_offset)) { 358 ret = 1; 359 goto out; 360 } 361 362 if (io_size > entry->bytes_left) { 363 printk(KERN_CRIT "bad ordered accounting left %llu size %llu\n", 364 (unsigned long long)entry->bytes_left, 365 (unsigned long long)io_size); 366 } 367 entry->bytes_left -= io_size; 368 if (entry->bytes_left == 0) 369 ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags); 370 else 371 ret = 1; 372 out: 373 if (!ret && cached && entry) { 374 *cached = entry; 375 atomic_inc(&entry->refs); 376 } 377 spin_unlock(&tree->lock); 378 return ret == 0; 379 } 380 381 /* 382 * used to drop a reference on an ordered extent. This will free 383 * the extent if the last reference is dropped 384 */ 385 int btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry) 386 { 387 struct list_head *cur; 388 struct btrfs_ordered_sum *sum; 389 390 if (atomic_dec_and_test(&entry->refs)) { 391 while (!list_empty(&entry->list)) { 392 cur = entry->list.next; 393 sum = list_entry(cur, struct btrfs_ordered_sum, list); 394 list_del(&sum->list); 395 kfree(sum); 396 } 397 kfree(entry); 398 } 399 return 0; 400 } 401 402 /* 403 * remove an ordered extent from the tree. No references are dropped 404 * and you must wake_up entry->wait. You must hold the tree lock 405 * while you call this function. 406 */ 407 static int __btrfs_remove_ordered_extent(struct inode *inode, 408 struct btrfs_ordered_extent *entry) 409 { 410 struct btrfs_ordered_inode_tree *tree; 411 struct btrfs_root *root = BTRFS_I(inode)->root; 412 struct rb_node *node; 413 414 tree = &BTRFS_I(inode)->ordered_tree; 415 node = &entry->rb_node; 416 rb_erase(node, &tree->tree); 417 tree->last = NULL; 418 set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags); 419 420 spin_lock(&root->fs_info->ordered_extent_lock); 421 list_del_init(&entry->root_extent_list); 422 423 /* 424 * we have no more ordered extents for this inode and 425 * no dirty pages. We can safely remove it from the 426 * list of ordered extents 427 */ 428 if (RB_EMPTY_ROOT(&tree->tree) && 429 !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) { 430 list_del_init(&BTRFS_I(inode)->ordered_operations); 431 } 432 spin_unlock(&root->fs_info->ordered_extent_lock); 433 434 return 0; 435 } 436 437 /* 438 * remove an ordered extent from the tree. No references are dropped 439 * but any waiters are woken. 440 */ 441 int btrfs_remove_ordered_extent(struct inode *inode, 442 struct btrfs_ordered_extent *entry) 443 { 444 struct btrfs_ordered_inode_tree *tree; 445 int ret; 446 447 tree = &BTRFS_I(inode)->ordered_tree; 448 spin_lock(&tree->lock); 449 ret = __btrfs_remove_ordered_extent(inode, entry); 450 spin_unlock(&tree->lock); 451 wake_up(&entry->wait); 452 453 return ret; 454 } 455 456 /* 457 * wait for all the ordered extents in a root. This is done when balancing 458 * space between drives. 459 */ 460 int btrfs_wait_ordered_extents(struct btrfs_root *root, 461 int nocow_only, int delay_iput) 462 { 463 struct list_head splice; 464 struct list_head *cur; 465 struct btrfs_ordered_extent *ordered; 466 struct inode *inode; 467 468 INIT_LIST_HEAD(&splice); 469 470 spin_lock(&root->fs_info->ordered_extent_lock); 471 list_splice_init(&root->fs_info->ordered_extents, &splice); 472 while (!list_empty(&splice)) { 473 cur = splice.next; 474 ordered = list_entry(cur, struct btrfs_ordered_extent, 475 root_extent_list); 476 if (nocow_only && 477 !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags) && 478 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags)) { 479 list_move(&ordered->root_extent_list, 480 &root->fs_info->ordered_extents); 481 cond_resched_lock(&root->fs_info->ordered_extent_lock); 482 continue; 483 } 484 485 list_del_init(&ordered->root_extent_list); 486 atomic_inc(&ordered->refs); 487 488 /* 489 * the inode may be getting freed (in sys_unlink path). 490 */ 491 inode = igrab(ordered->inode); 492 493 spin_unlock(&root->fs_info->ordered_extent_lock); 494 495 if (inode) { 496 btrfs_start_ordered_extent(inode, ordered, 1); 497 btrfs_put_ordered_extent(ordered); 498 if (delay_iput) 499 btrfs_add_delayed_iput(inode); 500 else 501 iput(inode); 502 } else { 503 btrfs_put_ordered_extent(ordered); 504 } 505 506 spin_lock(&root->fs_info->ordered_extent_lock); 507 } 508 spin_unlock(&root->fs_info->ordered_extent_lock); 509 return 0; 510 } 511 512 /* 513 * this is used during transaction commit to write all the inodes 514 * added to the ordered operation list. These files must be fully on 515 * disk before the transaction commits. 516 * 517 * we have two modes here, one is to just start the IO via filemap_flush 518 * and the other is to wait for all the io. When we wait, we have an 519 * extra check to make sure the ordered operation list really is empty 520 * before we return 521 */ 522 int btrfs_run_ordered_operations(struct btrfs_root *root, int wait) 523 { 524 struct btrfs_inode *btrfs_inode; 525 struct inode *inode; 526 struct list_head splice; 527 528 INIT_LIST_HEAD(&splice); 529 530 mutex_lock(&root->fs_info->ordered_operations_mutex); 531 spin_lock(&root->fs_info->ordered_extent_lock); 532 again: 533 list_splice_init(&root->fs_info->ordered_operations, &splice); 534 535 while (!list_empty(&splice)) { 536 btrfs_inode = list_entry(splice.next, struct btrfs_inode, 537 ordered_operations); 538 539 inode = &btrfs_inode->vfs_inode; 540 541 list_del_init(&btrfs_inode->ordered_operations); 542 543 /* 544 * the inode may be getting freed (in sys_unlink path). 545 */ 546 inode = igrab(inode); 547 548 if (!wait && inode) { 549 list_add_tail(&BTRFS_I(inode)->ordered_operations, 550 &root->fs_info->ordered_operations); 551 } 552 spin_unlock(&root->fs_info->ordered_extent_lock); 553 554 if (inode) { 555 if (wait) 556 btrfs_wait_ordered_range(inode, 0, (u64)-1); 557 else 558 filemap_flush(inode->i_mapping); 559 btrfs_add_delayed_iput(inode); 560 } 561 562 cond_resched(); 563 spin_lock(&root->fs_info->ordered_extent_lock); 564 } 565 if (wait && !list_empty(&root->fs_info->ordered_operations)) 566 goto again; 567 568 spin_unlock(&root->fs_info->ordered_extent_lock); 569 mutex_unlock(&root->fs_info->ordered_operations_mutex); 570 571 return 0; 572 } 573 574 /* 575 * Used to start IO or wait for a given ordered extent to finish. 576 * 577 * If wait is one, this effectively waits on page writeback for all the pages 578 * in the extent, and it waits on the io completion code to insert 579 * metadata into the btree corresponding to the extent 580 */ 581 void btrfs_start_ordered_extent(struct inode *inode, 582 struct btrfs_ordered_extent *entry, 583 int wait) 584 { 585 u64 start = entry->file_offset; 586 u64 end = start + entry->len - 1; 587 588 /* 589 * pages in the range can be dirty, clean or writeback. We 590 * start IO on any dirty ones so the wait doesn't stall waiting 591 * for pdflush to find them 592 */ 593 if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags)) 594 filemap_fdatawrite_range(inode->i_mapping, start, end); 595 if (wait) { 596 wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE, 597 &entry->flags)); 598 } 599 } 600 601 /* 602 * Used to wait on ordered extents across a large range of bytes. 603 */ 604 int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len) 605 { 606 u64 end; 607 u64 orig_end; 608 struct btrfs_ordered_extent *ordered; 609 int found; 610 611 if (start + len < start) { 612 orig_end = INT_LIMIT(loff_t); 613 } else { 614 orig_end = start + len - 1; 615 if (orig_end > INT_LIMIT(loff_t)) 616 orig_end = INT_LIMIT(loff_t); 617 } 618 again: 619 /* start IO across the range first to instantiate any delalloc 620 * extents 621 */ 622 filemap_fdatawrite_range(inode->i_mapping, start, orig_end); 623 624 /* The compression code will leave pages locked but return from 625 * writepage without setting the page writeback. Starting again 626 * with WB_SYNC_ALL will end up waiting for the IO to actually start. 627 */ 628 filemap_fdatawrite_range(inode->i_mapping, start, orig_end); 629 630 filemap_fdatawait_range(inode->i_mapping, start, orig_end); 631 632 end = orig_end; 633 found = 0; 634 while (1) { 635 ordered = btrfs_lookup_first_ordered_extent(inode, end); 636 if (!ordered) 637 break; 638 if (ordered->file_offset > orig_end) { 639 btrfs_put_ordered_extent(ordered); 640 break; 641 } 642 if (ordered->file_offset + ordered->len < start) { 643 btrfs_put_ordered_extent(ordered); 644 break; 645 } 646 found++; 647 btrfs_start_ordered_extent(inode, ordered, 1); 648 end = ordered->file_offset; 649 btrfs_put_ordered_extent(ordered); 650 if (end == 0 || end == start) 651 break; 652 end--; 653 } 654 if (found || test_range_bit(&BTRFS_I(inode)->io_tree, start, orig_end, 655 EXTENT_DELALLOC, 0, NULL)) { 656 schedule_timeout(1); 657 goto again; 658 } 659 return 0; 660 } 661 662 /* 663 * find an ordered extent corresponding to file_offset. return NULL if 664 * nothing is found, otherwise take a reference on the extent and return it 665 */ 666 struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct inode *inode, 667 u64 file_offset) 668 { 669 struct btrfs_ordered_inode_tree *tree; 670 struct rb_node *node; 671 struct btrfs_ordered_extent *entry = NULL; 672 673 tree = &BTRFS_I(inode)->ordered_tree; 674 spin_lock(&tree->lock); 675 node = tree_search(tree, file_offset); 676 if (!node) 677 goto out; 678 679 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); 680 if (!offset_in_entry(entry, file_offset)) 681 entry = NULL; 682 if (entry) 683 atomic_inc(&entry->refs); 684 out: 685 spin_unlock(&tree->lock); 686 return entry; 687 } 688 689 /* Since the DIO code tries to lock a wide area we need to look for any ordered 690 * extents that exist in the range, rather than just the start of the range. 691 */ 692 struct btrfs_ordered_extent *btrfs_lookup_ordered_range(struct inode *inode, 693 u64 file_offset, 694 u64 len) 695 { 696 struct btrfs_ordered_inode_tree *tree; 697 struct rb_node *node; 698 struct btrfs_ordered_extent *entry = NULL; 699 700 tree = &BTRFS_I(inode)->ordered_tree; 701 spin_lock(&tree->lock); 702 node = tree_search(tree, file_offset); 703 if (!node) { 704 node = tree_search(tree, file_offset + len); 705 if (!node) 706 goto out; 707 } 708 709 while (1) { 710 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); 711 if (range_overlaps(entry, file_offset, len)) 712 break; 713 714 if (entry->file_offset >= file_offset + len) { 715 entry = NULL; 716 break; 717 } 718 entry = NULL; 719 node = rb_next(node); 720 if (!node) 721 break; 722 } 723 out: 724 if (entry) 725 atomic_inc(&entry->refs); 726 spin_unlock(&tree->lock); 727 return entry; 728 } 729 730 /* 731 * lookup and return any extent before 'file_offset'. NULL is returned 732 * if none is found 733 */ 734 struct btrfs_ordered_extent * 735 btrfs_lookup_first_ordered_extent(struct inode *inode, u64 file_offset) 736 { 737 struct btrfs_ordered_inode_tree *tree; 738 struct rb_node *node; 739 struct btrfs_ordered_extent *entry = NULL; 740 741 tree = &BTRFS_I(inode)->ordered_tree; 742 spin_lock(&tree->lock); 743 node = tree_search(tree, file_offset); 744 if (!node) 745 goto out; 746 747 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); 748 atomic_inc(&entry->refs); 749 out: 750 spin_unlock(&tree->lock); 751 return entry; 752 } 753 754 /* 755 * After an extent is done, call this to conditionally update the on disk 756 * i_size. i_size is updated to cover any fully written part of the file. 757 */ 758 int btrfs_ordered_update_i_size(struct inode *inode, u64 offset, 759 struct btrfs_ordered_extent *ordered) 760 { 761 struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree; 762 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 763 u64 disk_i_size; 764 u64 new_i_size; 765 u64 i_size_test; 766 u64 i_size = i_size_read(inode); 767 struct rb_node *node; 768 struct rb_node *prev = NULL; 769 struct btrfs_ordered_extent *test; 770 int ret = 1; 771 772 if (ordered) 773 offset = entry_end(ordered); 774 else 775 offset = ALIGN(offset, BTRFS_I(inode)->root->sectorsize); 776 777 spin_lock(&tree->lock); 778 disk_i_size = BTRFS_I(inode)->disk_i_size; 779 780 /* truncate file */ 781 if (disk_i_size > i_size) { 782 BTRFS_I(inode)->disk_i_size = i_size; 783 ret = 0; 784 goto out; 785 } 786 787 /* 788 * if the disk i_size is already at the inode->i_size, or 789 * this ordered extent is inside the disk i_size, we're done 790 */ 791 if (disk_i_size == i_size || offset <= disk_i_size) { 792 goto out; 793 } 794 795 /* 796 * we can't update the disk_isize if there are delalloc bytes 797 * between disk_i_size and this ordered extent 798 */ 799 if (test_range_bit(io_tree, disk_i_size, offset - 1, 800 EXTENT_DELALLOC, 0, NULL)) { 801 goto out; 802 } 803 /* 804 * walk backward from this ordered extent to disk_i_size. 805 * if we find an ordered extent then we can't update disk i_size 806 * yet 807 */ 808 if (ordered) { 809 node = rb_prev(&ordered->rb_node); 810 } else { 811 prev = tree_search(tree, offset); 812 /* 813 * we insert file extents without involving ordered struct, 814 * so there should be no ordered struct cover this offset 815 */ 816 if (prev) { 817 test = rb_entry(prev, struct btrfs_ordered_extent, 818 rb_node); 819 BUG_ON(offset_in_entry(test, offset)); 820 } 821 node = prev; 822 } 823 while (node) { 824 test = rb_entry(node, struct btrfs_ordered_extent, rb_node); 825 if (test->file_offset + test->len <= disk_i_size) 826 break; 827 if (test->file_offset >= i_size) 828 break; 829 if (test->file_offset >= disk_i_size) 830 goto out; 831 node = rb_prev(node); 832 } 833 new_i_size = min_t(u64, offset, i_size); 834 835 /* 836 * at this point, we know we can safely update i_size to at least 837 * the offset from this ordered extent. But, we need to 838 * walk forward and see if ios from higher up in the file have 839 * finished. 840 */ 841 if (ordered) { 842 node = rb_next(&ordered->rb_node); 843 } else { 844 if (prev) 845 node = rb_next(prev); 846 else 847 node = rb_first(&tree->tree); 848 } 849 i_size_test = 0; 850 if (node) { 851 /* 852 * do we have an area where IO might have finished 853 * between our ordered extent and the next one. 854 */ 855 test = rb_entry(node, struct btrfs_ordered_extent, rb_node); 856 if (test->file_offset > offset) 857 i_size_test = test->file_offset; 858 } else { 859 i_size_test = i_size; 860 } 861 862 /* 863 * i_size_test is the end of a region after this ordered 864 * extent where there are no ordered extents. As long as there 865 * are no delalloc bytes in this area, it is safe to update 866 * disk_i_size to the end of the region. 867 */ 868 if (i_size_test > offset && 869 !test_range_bit(io_tree, offset, i_size_test - 1, 870 EXTENT_DELALLOC, 0, NULL)) { 871 new_i_size = min_t(u64, i_size_test, i_size); 872 } 873 BTRFS_I(inode)->disk_i_size = new_i_size; 874 ret = 0; 875 out: 876 /* 877 * we need to remove the ordered extent with the tree lock held 878 * so that other people calling this function don't find our fully 879 * processed ordered entry and skip updating the i_size 880 */ 881 if (ordered) 882 __btrfs_remove_ordered_extent(inode, ordered); 883 spin_unlock(&tree->lock); 884 if (ordered) 885 wake_up(&ordered->wait); 886 return ret; 887 } 888 889 /* 890 * search the ordered extents for one corresponding to 'offset' and 891 * try to find a checksum. This is used because we allow pages to 892 * be reclaimed before their checksum is actually put into the btree 893 */ 894 int btrfs_find_ordered_sum(struct inode *inode, u64 offset, u64 disk_bytenr, 895 u32 *sum) 896 { 897 struct btrfs_ordered_sum *ordered_sum; 898 struct btrfs_sector_sum *sector_sums; 899 struct btrfs_ordered_extent *ordered; 900 struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree; 901 unsigned long num_sectors; 902 unsigned long i; 903 u32 sectorsize = BTRFS_I(inode)->root->sectorsize; 904 int ret = 1; 905 906 ordered = btrfs_lookup_ordered_extent(inode, offset); 907 if (!ordered) 908 return 1; 909 910 spin_lock(&tree->lock); 911 list_for_each_entry_reverse(ordered_sum, &ordered->list, list) { 912 if (disk_bytenr >= ordered_sum->bytenr) { 913 num_sectors = ordered_sum->len / sectorsize; 914 sector_sums = ordered_sum->sums; 915 for (i = 0; i < num_sectors; i++) { 916 if (sector_sums[i].bytenr == disk_bytenr) { 917 *sum = sector_sums[i].sum; 918 ret = 0; 919 goto out; 920 } 921 } 922 } 923 } 924 out: 925 spin_unlock(&tree->lock); 926 btrfs_put_ordered_extent(ordered); 927 return ret; 928 } 929 930 931 /* 932 * add a given inode to the list of inodes that must be fully on 933 * disk before a transaction commit finishes. 934 * 935 * This basically gives us the ext3 style data=ordered mode, and it is mostly 936 * used to make sure renamed files are fully on disk. 937 * 938 * It is a noop if the inode is already fully on disk. 939 * 940 * If trans is not null, we'll do a friendly check for a transaction that 941 * is already flushing things and force the IO down ourselves. 942 */ 943 int btrfs_add_ordered_operation(struct btrfs_trans_handle *trans, 944 struct btrfs_root *root, 945 struct inode *inode) 946 { 947 u64 last_mod; 948 949 last_mod = max(BTRFS_I(inode)->generation, BTRFS_I(inode)->last_trans); 950 951 /* 952 * if this file hasn't been changed since the last transaction 953 * commit, we can safely return without doing anything 954 */ 955 if (last_mod < root->fs_info->last_trans_committed) 956 return 0; 957 958 /* 959 * the transaction is already committing. Just start the IO and 960 * don't bother with all of this list nonsense 961 */ 962 if (trans && root->fs_info->running_transaction->blocked) { 963 btrfs_wait_ordered_range(inode, 0, (u64)-1); 964 return 0; 965 } 966 967 spin_lock(&root->fs_info->ordered_extent_lock); 968 if (list_empty(&BTRFS_I(inode)->ordered_operations)) { 969 list_add_tail(&BTRFS_I(inode)->ordered_operations, 970 &root->fs_info->ordered_operations); 971 } 972 spin_unlock(&root->fs_info->ordered_extent_lock); 973 974 return 0; 975 } 976