1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/slab.h> 7 #include <linux/blkdev.h> 8 #include <linux/writeback.h> 9 #include <linux/sched/mm.h> 10 #include "misc.h" 11 #include "ctree.h" 12 #include "transaction.h" 13 #include "btrfs_inode.h" 14 #include "extent_io.h" 15 #include "disk-io.h" 16 #include "compression.h" 17 #include "delalloc-space.h" 18 #include "qgroup.h" 19 20 static struct kmem_cache *btrfs_ordered_extent_cache; 21 22 static u64 entry_end(struct btrfs_ordered_extent *entry) 23 { 24 if (entry->file_offset + entry->num_bytes < entry->file_offset) 25 return (u64)-1; 26 return entry->file_offset + entry->num_bytes; 27 } 28 29 /* returns NULL if the insertion worked, or it returns the node it did find 30 * in the tree 31 */ 32 static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset, 33 struct rb_node *node) 34 { 35 struct rb_node **p = &root->rb_node; 36 struct rb_node *parent = NULL; 37 struct btrfs_ordered_extent *entry; 38 39 while (*p) { 40 parent = *p; 41 entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node); 42 43 if (file_offset < entry->file_offset) 44 p = &(*p)->rb_left; 45 else if (file_offset >= entry_end(entry)) 46 p = &(*p)->rb_right; 47 else 48 return parent; 49 } 50 51 rb_link_node(node, parent, p); 52 rb_insert_color(node, root); 53 return NULL; 54 } 55 56 /* 57 * look for a given offset in the tree, and if it can't be found return the 58 * first lesser offset 59 */ 60 static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset, 61 struct rb_node **prev_ret) 62 { 63 struct rb_node *n = root->rb_node; 64 struct rb_node *prev = NULL; 65 struct rb_node *test; 66 struct btrfs_ordered_extent *entry; 67 struct btrfs_ordered_extent *prev_entry = NULL; 68 69 while (n) { 70 entry = rb_entry(n, struct btrfs_ordered_extent, rb_node); 71 prev = n; 72 prev_entry = entry; 73 74 if (file_offset < entry->file_offset) 75 n = n->rb_left; 76 else if (file_offset >= entry_end(entry)) 77 n = n->rb_right; 78 else 79 return n; 80 } 81 if (!prev_ret) 82 return NULL; 83 84 while (prev && file_offset >= entry_end(prev_entry)) { 85 test = rb_next(prev); 86 if (!test) 87 break; 88 prev_entry = rb_entry(test, struct btrfs_ordered_extent, 89 rb_node); 90 if (file_offset < entry_end(prev_entry)) 91 break; 92 93 prev = test; 94 } 95 if (prev) 96 prev_entry = rb_entry(prev, struct btrfs_ordered_extent, 97 rb_node); 98 while (prev && file_offset < entry_end(prev_entry)) { 99 test = rb_prev(prev); 100 if (!test) 101 break; 102 prev_entry = rb_entry(test, struct btrfs_ordered_extent, 103 rb_node); 104 prev = test; 105 } 106 *prev_ret = prev; 107 return NULL; 108 } 109 110 /* 111 * helper to check if a given offset is inside a given entry 112 */ 113 static int offset_in_entry(struct btrfs_ordered_extent *entry, u64 file_offset) 114 { 115 if (file_offset < entry->file_offset || 116 entry->file_offset + entry->num_bytes <= file_offset) 117 return 0; 118 return 1; 119 } 120 121 static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset, 122 u64 len) 123 { 124 if (file_offset + len <= entry->file_offset || 125 entry->file_offset + entry->num_bytes <= file_offset) 126 return 0; 127 return 1; 128 } 129 130 /* 131 * look find the first ordered struct that has this offset, otherwise 132 * the first one less than this offset 133 */ 134 static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree, 135 u64 file_offset) 136 { 137 struct rb_root *root = &tree->tree; 138 struct rb_node *prev = NULL; 139 struct rb_node *ret; 140 struct btrfs_ordered_extent *entry; 141 142 if (tree->last) { 143 entry = rb_entry(tree->last, struct btrfs_ordered_extent, 144 rb_node); 145 if (offset_in_entry(entry, file_offset)) 146 return tree->last; 147 } 148 ret = __tree_search(root, file_offset, &prev); 149 if (!ret) 150 ret = prev; 151 if (ret) 152 tree->last = ret; 153 return ret; 154 } 155 156 /* 157 * Allocate and add a new ordered_extent into the per-inode tree. 158 * 159 * The tree is given a single reference on the ordered extent that was 160 * inserted. 161 */ 162 static int __btrfs_add_ordered_extent(struct btrfs_inode *inode, u64 file_offset, 163 u64 disk_bytenr, u64 num_bytes, 164 u64 disk_num_bytes, int type, int dio, 165 int compress_type) 166 { 167 struct btrfs_root *root = inode->root; 168 struct btrfs_fs_info *fs_info = root->fs_info; 169 struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree; 170 struct rb_node *node; 171 struct btrfs_ordered_extent *entry; 172 int ret; 173 174 if (type == BTRFS_ORDERED_NOCOW || type == BTRFS_ORDERED_PREALLOC) { 175 /* For nocow write, we can release the qgroup rsv right now */ 176 ret = btrfs_qgroup_free_data(inode, NULL, file_offset, num_bytes); 177 if (ret < 0) 178 return ret; 179 ret = 0; 180 } else { 181 /* 182 * The ordered extent has reserved qgroup space, release now 183 * and pass the reserved number for qgroup_record to free. 184 */ 185 ret = btrfs_qgroup_release_data(inode, file_offset, num_bytes); 186 if (ret < 0) 187 return ret; 188 } 189 entry = kmem_cache_zalloc(btrfs_ordered_extent_cache, GFP_NOFS); 190 if (!entry) 191 return -ENOMEM; 192 193 entry->file_offset = file_offset; 194 entry->disk_bytenr = disk_bytenr; 195 entry->num_bytes = num_bytes; 196 entry->disk_num_bytes = disk_num_bytes; 197 entry->bytes_left = num_bytes; 198 entry->inode = igrab(&inode->vfs_inode); 199 entry->compress_type = compress_type; 200 entry->truncated_len = (u64)-1; 201 entry->qgroup_rsv = ret; 202 entry->physical = (u64)-1; 203 entry->disk = NULL; 204 entry->partno = (u8)-1; 205 206 ASSERT(type == BTRFS_ORDERED_REGULAR || 207 type == BTRFS_ORDERED_NOCOW || 208 type == BTRFS_ORDERED_PREALLOC || 209 type == BTRFS_ORDERED_COMPRESSED); 210 set_bit(type, &entry->flags); 211 212 percpu_counter_add_batch(&fs_info->ordered_bytes, num_bytes, 213 fs_info->delalloc_batch); 214 215 if (dio) 216 set_bit(BTRFS_ORDERED_DIRECT, &entry->flags); 217 218 /* one ref for the tree */ 219 refcount_set(&entry->refs, 1); 220 init_waitqueue_head(&entry->wait); 221 INIT_LIST_HEAD(&entry->list); 222 INIT_LIST_HEAD(&entry->log_list); 223 INIT_LIST_HEAD(&entry->root_extent_list); 224 INIT_LIST_HEAD(&entry->work_list); 225 init_completion(&entry->completion); 226 227 trace_btrfs_ordered_extent_add(inode, entry); 228 229 spin_lock_irq(&tree->lock); 230 node = tree_insert(&tree->tree, file_offset, 231 &entry->rb_node); 232 if (node) 233 btrfs_panic(fs_info, -EEXIST, 234 "inconsistency in ordered tree at offset %llu", 235 file_offset); 236 spin_unlock_irq(&tree->lock); 237 238 spin_lock(&root->ordered_extent_lock); 239 list_add_tail(&entry->root_extent_list, 240 &root->ordered_extents); 241 root->nr_ordered_extents++; 242 if (root->nr_ordered_extents == 1) { 243 spin_lock(&fs_info->ordered_root_lock); 244 BUG_ON(!list_empty(&root->ordered_root)); 245 list_add_tail(&root->ordered_root, &fs_info->ordered_roots); 246 spin_unlock(&fs_info->ordered_root_lock); 247 } 248 spin_unlock(&root->ordered_extent_lock); 249 250 /* 251 * We don't need the count_max_extents here, we can assume that all of 252 * that work has been done at higher layers, so this is truly the 253 * smallest the extent is going to get. 254 */ 255 spin_lock(&inode->lock); 256 btrfs_mod_outstanding_extents(inode, 1); 257 spin_unlock(&inode->lock); 258 259 return 0; 260 } 261 262 int btrfs_add_ordered_extent(struct btrfs_inode *inode, u64 file_offset, 263 u64 disk_bytenr, u64 num_bytes, u64 disk_num_bytes, 264 int type) 265 { 266 ASSERT(type == BTRFS_ORDERED_REGULAR || 267 type == BTRFS_ORDERED_NOCOW || 268 type == BTRFS_ORDERED_PREALLOC); 269 return __btrfs_add_ordered_extent(inode, file_offset, disk_bytenr, 270 num_bytes, disk_num_bytes, type, 0, 271 BTRFS_COMPRESS_NONE); 272 } 273 274 int btrfs_add_ordered_extent_dio(struct btrfs_inode *inode, u64 file_offset, 275 u64 disk_bytenr, u64 num_bytes, 276 u64 disk_num_bytes, int type) 277 { 278 ASSERT(type == BTRFS_ORDERED_REGULAR || 279 type == BTRFS_ORDERED_NOCOW || 280 type == BTRFS_ORDERED_PREALLOC); 281 return __btrfs_add_ordered_extent(inode, file_offset, disk_bytenr, 282 num_bytes, disk_num_bytes, type, 1, 283 BTRFS_COMPRESS_NONE); 284 } 285 286 int btrfs_add_ordered_extent_compress(struct btrfs_inode *inode, u64 file_offset, 287 u64 disk_bytenr, u64 num_bytes, 288 u64 disk_num_bytes, int compress_type) 289 { 290 ASSERT(compress_type != BTRFS_COMPRESS_NONE); 291 return __btrfs_add_ordered_extent(inode, file_offset, disk_bytenr, 292 num_bytes, disk_num_bytes, 293 BTRFS_ORDERED_COMPRESSED, 0, 294 compress_type); 295 } 296 297 /* 298 * Add a struct btrfs_ordered_sum into the list of checksums to be inserted 299 * when an ordered extent is finished. If the list covers more than one 300 * ordered extent, it is split across multiples. 301 */ 302 void btrfs_add_ordered_sum(struct btrfs_ordered_extent *entry, 303 struct btrfs_ordered_sum *sum) 304 { 305 struct btrfs_ordered_inode_tree *tree; 306 307 tree = &BTRFS_I(entry->inode)->ordered_tree; 308 spin_lock_irq(&tree->lock); 309 list_add_tail(&sum->list, &entry->list); 310 spin_unlock_irq(&tree->lock); 311 } 312 313 /* 314 * Finish IO for one ordered extent across a given range. The range can 315 * contain several ordered extents. 316 * 317 * @found_ret: Return the finished ordered extent 318 * @file_offset: File offset for the finished IO 319 * Will also be updated to one byte past the range that is 320 * recordered as finished. This allows caller to walk forward. 321 * @io_size: Length of the finish IO range 322 * @uptodate: If the IO finished without problem 323 * 324 * Return true if any ordered extent is finished in the range, and update 325 * @found_ret and @file_offset. 326 * Return false otherwise. 327 * 328 * NOTE: Although The range can cross multiple ordered extents, only one 329 * ordered extent will be updated during one call. The caller is responsible to 330 * iterate all ordered extents in the range. 331 */ 332 bool btrfs_dec_test_first_ordered_pending(struct btrfs_inode *inode, 333 struct btrfs_ordered_extent **finished_ret, 334 u64 *file_offset, u64 io_size, int uptodate) 335 { 336 struct btrfs_fs_info *fs_info = inode->root->fs_info; 337 struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree; 338 struct rb_node *node; 339 struct btrfs_ordered_extent *entry = NULL; 340 bool finished = false; 341 unsigned long flags; 342 u64 dec_end; 343 u64 dec_start; 344 u64 to_dec; 345 346 spin_lock_irqsave(&tree->lock, flags); 347 node = tree_search(tree, *file_offset); 348 if (!node) 349 goto out; 350 351 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); 352 if (!offset_in_entry(entry, *file_offset)) 353 goto out; 354 355 dec_start = max(*file_offset, entry->file_offset); 356 dec_end = min(*file_offset + io_size, 357 entry->file_offset + entry->num_bytes); 358 *file_offset = dec_end; 359 if (dec_start > dec_end) { 360 btrfs_crit(fs_info, "bad ordering dec_start %llu end %llu", 361 dec_start, dec_end); 362 } 363 to_dec = dec_end - dec_start; 364 if (to_dec > entry->bytes_left) { 365 btrfs_crit(fs_info, 366 "bad ordered accounting left %llu size %llu", 367 entry->bytes_left, to_dec); 368 } 369 entry->bytes_left -= to_dec; 370 if (!uptodate) 371 set_bit(BTRFS_ORDERED_IOERR, &entry->flags); 372 373 if (entry->bytes_left == 0) { 374 /* 375 * Ensure only one caller can set the flag and finished_ret 376 * accordingly 377 */ 378 finished = !test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags); 379 /* test_and_set_bit implies a barrier */ 380 cond_wake_up_nomb(&entry->wait); 381 } 382 out: 383 if (finished && finished_ret && entry) { 384 *finished_ret = entry; 385 refcount_inc(&entry->refs); 386 } 387 spin_unlock_irqrestore(&tree->lock, flags); 388 return finished; 389 } 390 391 /* 392 * Finish IO for one ordered extent across a given range. The range can only 393 * contain one ordered extent. 394 * 395 * @cached: The cached ordered extent. If not NULL, we can skip the tree 396 * search and use the ordered extent directly. 397 * Will be also used to store the finished ordered extent. 398 * @file_offset: File offset for the finished IO 399 * @io_size: Length of the finish IO range 400 * @uptodate: If the IO finishes without problem 401 * 402 * Return true if the ordered extent is finished in the range, and update 403 * @cached. 404 * Return false otherwise. 405 * 406 * NOTE: The range can NOT cross multiple ordered extents. 407 * Thus caller should ensure the range doesn't cross ordered extents. 408 */ 409 bool btrfs_dec_test_ordered_pending(struct btrfs_inode *inode, 410 struct btrfs_ordered_extent **cached, 411 u64 file_offset, u64 io_size, int uptodate) 412 { 413 struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree; 414 struct rb_node *node; 415 struct btrfs_ordered_extent *entry = NULL; 416 unsigned long flags; 417 bool finished = false; 418 419 spin_lock_irqsave(&tree->lock, flags); 420 if (cached && *cached) { 421 entry = *cached; 422 goto have_entry; 423 } 424 425 node = tree_search(tree, file_offset); 426 if (!node) 427 goto out; 428 429 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); 430 have_entry: 431 if (!offset_in_entry(entry, file_offset)) 432 goto out; 433 434 if (io_size > entry->bytes_left) 435 btrfs_crit(inode->root->fs_info, 436 "bad ordered accounting left %llu size %llu", 437 entry->bytes_left, io_size); 438 439 entry->bytes_left -= io_size; 440 if (!uptodate) 441 set_bit(BTRFS_ORDERED_IOERR, &entry->flags); 442 443 if (entry->bytes_left == 0) { 444 /* 445 * Ensure only one caller can set the flag and finished_ret 446 * accordingly 447 */ 448 finished = !test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags); 449 /* test_and_set_bit implies a barrier */ 450 cond_wake_up_nomb(&entry->wait); 451 } 452 out: 453 if (finished && cached && entry) { 454 *cached = entry; 455 refcount_inc(&entry->refs); 456 } 457 spin_unlock_irqrestore(&tree->lock, flags); 458 return finished; 459 } 460 461 /* 462 * used to drop a reference on an ordered extent. This will free 463 * the extent if the last reference is dropped 464 */ 465 void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry) 466 { 467 struct list_head *cur; 468 struct btrfs_ordered_sum *sum; 469 470 trace_btrfs_ordered_extent_put(BTRFS_I(entry->inode), entry); 471 472 if (refcount_dec_and_test(&entry->refs)) { 473 ASSERT(list_empty(&entry->root_extent_list)); 474 ASSERT(list_empty(&entry->log_list)); 475 ASSERT(RB_EMPTY_NODE(&entry->rb_node)); 476 if (entry->inode) 477 btrfs_add_delayed_iput(entry->inode); 478 while (!list_empty(&entry->list)) { 479 cur = entry->list.next; 480 sum = list_entry(cur, struct btrfs_ordered_sum, list); 481 list_del(&sum->list); 482 kvfree(sum); 483 } 484 kmem_cache_free(btrfs_ordered_extent_cache, entry); 485 } 486 } 487 488 /* 489 * remove an ordered extent from the tree. No references are dropped 490 * and waiters are woken up. 491 */ 492 void btrfs_remove_ordered_extent(struct btrfs_inode *btrfs_inode, 493 struct btrfs_ordered_extent *entry) 494 { 495 struct btrfs_ordered_inode_tree *tree; 496 struct btrfs_root *root = btrfs_inode->root; 497 struct btrfs_fs_info *fs_info = root->fs_info; 498 struct rb_node *node; 499 bool pending; 500 501 /* This is paired with btrfs_add_ordered_extent. */ 502 spin_lock(&btrfs_inode->lock); 503 btrfs_mod_outstanding_extents(btrfs_inode, -1); 504 spin_unlock(&btrfs_inode->lock); 505 if (root != fs_info->tree_root) 506 btrfs_delalloc_release_metadata(btrfs_inode, entry->num_bytes, 507 false); 508 509 percpu_counter_add_batch(&fs_info->ordered_bytes, -entry->num_bytes, 510 fs_info->delalloc_batch); 511 512 tree = &btrfs_inode->ordered_tree; 513 spin_lock_irq(&tree->lock); 514 node = &entry->rb_node; 515 rb_erase(node, &tree->tree); 516 RB_CLEAR_NODE(node); 517 if (tree->last == node) 518 tree->last = NULL; 519 set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags); 520 pending = test_and_clear_bit(BTRFS_ORDERED_PENDING, &entry->flags); 521 spin_unlock_irq(&tree->lock); 522 523 /* 524 * The current running transaction is waiting on us, we need to let it 525 * know that we're complete and wake it up. 526 */ 527 if (pending) { 528 struct btrfs_transaction *trans; 529 530 /* 531 * The checks for trans are just a formality, it should be set, 532 * but if it isn't we don't want to deref/assert under the spin 533 * lock, so be nice and check if trans is set, but ASSERT() so 534 * if it isn't set a developer will notice. 535 */ 536 spin_lock(&fs_info->trans_lock); 537 trans = fs_info->running_transaction; 538 if (trans) 539 refcount_inc(&trans->use_count); 540 spin_unlock(&fs_info->trans_lock); 541 542 ASSERT(trans); 543 if (trans) { 544 if (atomic_dec_and_test(&trans->pending_ordered)) 545 wake_up(&trans->pending_wait); 546 btrfs_put_transaction(trans); 547 } 548 } 549 550 spin_lock(&root->ordered_extent_lock); 551 list_del_init(&entry->root_extent_list); 552 root->nr_ordered_extents--; 553 554 trace_btrfs_ordered_extent_remove(btrfs_inode, entry); 555 556 if (!root->nr_ordered_extents) { 557 spin_lock(&fs_info->ordered_root_lock); 558 BUG_ON(list_empty(&root->ordered_root)); 559 list_del_init(&root->ordered_root); 560 spin_unlock(&fs_info->ordered_root_lock); 561 } 562 spin_unlock(&root->ordered_extent_lock); 563 wake_up(&entry->wait); 564 } 565 566 static void btrfs_run_ordered_extent_work(struct btrfs_work *work) 567 { 568 struct btrfs_ordered_extent *ordered; 569 570 ordered = container_of(work, struct btrfs_ordered_extent, flush_work); 571 btrfs_start_ordered_extent(ordered, 1); 572 complete(&ordered->completion); 573 } 574 575 /* 576 * wait for all the ordered extents in a root. This is done when balancing 577 * space between drives. 578 */ 579 u64 btrfs_wait_ordered_extents(struct btrfs_root *root, u64 nr, 580 const u64 range_start, const u64 range_len) 581 { 582 struct btrfs_fs_info *fs_info = root->fs_info; 583 LIST_HEAD(splice); 584 LIST_HEAD(skipped); 585 LIST_HEAD(works); 586 struct btrfs_ordered_extent *ordered, *next; 587 u64 count = 0; 588 const u64 range_end = range_start + range_len; 589 590 mutex_lock(&root->ordered_extent_mutex); 591 spin_lock(&root->ordered_extent_lock); 592 list_splice_init(&root->ordered_extents, &splice); 593 while (!list_empty(&splice) && nr) { 594 ordered = list_first_entry(&splice, struct btrfs_ordered_extent, 595 root_extent_list); 596 597 if (range_end <= ordered->disk_bytenr || 598 ordered->disk_bytenr + ordered->disk_num_bytes <= range_start) { 599 list_move_tail(&ordered->root_extent_list, &skipped); 600 cond_resched_lock(&root->ordered_extent_lock); 601 continue; 602 } 603 604 list_move_tail(&ordered->root_extent_list, 605 &root->ordered_extents); 606 refcount_inc(&ordered->refs); 607 spin_unlock(&root->ordered_extent_lock); 608 609 btrfs_init_work(&ordered->flush_work, 610 btrfs_run_ordered_extent_work, NULL, NULL); 611 list_add_tail(&ordered->work_list, &works); 612 btrfs_queue_work(fs_info->flush_workers, &ordered->flush_work); 613 614 cond_resched(); 615 spin_lock(&root->ordered_extent_lock); 616 if (nr != U64_MAX) 617 nr--; 618 count++; 619 } 620 list_splice_tail(&skipped, &root->ordered_extents); 621 list_splice_tail(&splice, &root->ordered_extents); 622 spin_unlock(&root->ordered_extent_lock); 623 624 list_for_each_entry_safe(ordered, next, &works, work_list) { 625 list_del_init(&ordered->work_list); 626 wait_for_completion(&ordered->completion); 627 btrfs_put_ordered_extent(ordered); 628 cond_resched(); 629 } 630 mutex_unlock(&root->ordered_extent_mutex); 631 632 return count; 633 } 634 635 void btrfs_wait_ordered_roots(struct btrfs_fs_info *fs_info, u64 nr, 636 const u64 range_start, const u64 range_len) 637 { 638 struct btrfs_root *root; 639 struct list_head splice; 640 u64 done; 641 642 INIT_LIST_HEAD(&splice); 643 644 mutex_lock(&fs_info->ordered_operations_mutex); 645 spin_lock(&fs_info->ordered_root_lock); 646 list_splice_init(&fs_info->ordered_roots, &splice); 647 while (!list_empty(&splice) && nr) { 648 root = list_first_entry(&splice, struct btrfs_root, 649 ordered_root); 650 root = btrfs_grab_root(root); 651 BUG_ON(!root); 652 list_move_tail(&root->ordered_root, 653 &fs_info->ordered_roots); 654 spin_unlock(&fs_info->ordered_root_lock); 655 656 done = btrfs_wait_ordered_extents(root, nr, 657 range_start, range_len); 658 btrfs_put_root(root); 659 660 spin_lock(&fs_info->ordered_root_lock); 661 if (nr != U64_MAX) { 662 nr -= done; 663 } 664 } 665 list_splice_tail(&splice, &fs_info->ordered_roots); 666 spin_unlock(&fs_info->ordered_root_lock); 667 mutex_unlock(&fs_info->ordered_operations_mutex); 668 } 669 670 /* 671 * Used to start IO or wait for a given ordered extent to finish. 672 * 673 * If wait is one, this effectively waits on page writeback for all the pages 674 * in the extent, and it waits on the io completion code to insert 675 * metadata into the btree corresponding to the extent 676 */ 677 void btrfs_start_ordered_extent(struct btrfs_ordered_extent *entry, int wait) 678 { 679 u64 start = entry->file_offset; 680 u64 end = start + entry->num_bytes - 1; 681 struct btrfs_inode *inode = BTRFS_I(entry->inode); 682 683 trace_btrfs_ordered_extent_start(inode, entry); 684 685 /* 686 * pages in the range can be dirty, clean or writeback. We 687 * start IO on any dirty ones so the wait doesn't stall waiting 688 * for the flusher thread to find them 689 */ 690 if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags)) 691 filemap_fdatawrite_range(inode->vfs_inode.i_mapping, start, end); 692 if (wait) { 693 wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE, 694 &entry->flags)); 695 } 696 } 697 698 /* 699 * Used to wait on ordered extents across a large range of bytes. 700 */ 701 int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len) 702 { 703 int ret = 0; 704 int ret_wb = 0; 705 u64 end; 706 u64 orig_end; 707 struct btrfs_ordered_extent *ordered; 708 709 if (start + len < start) { 710 orig_end = INT_LIMIT(loff_t); 711 } else { 712 orig_end = start + len - 1; 713 if (orig_end > INT_LIMIT(loff_t)) 714 orig_end = INT_LIMIT(loff_t); 715 } 716 717 /* start IO across the range first to instantiate any delalloc 718 * extents 719 */ 720 ret = btrfs_fdatawrite_range(inode, start, orig_end); 721 if (ret) 722 return ret; 723 724 /* 725 * If we have a writeback error don't return immediately. Wait first 726 * for any ordered extents that haven't completed yet. This is to make 727 * sure no one can dirty the same page ranges and call writepages() 728 * before the ordered extents complete - to avoid failures (-EEXIST) 729 * when adding the new ordered extents to the ordered tree. 730 */ 731 ret_wb = filemap_fdatawait_range(inode->i_mapping, start, orig_end); 732 733 end = orig_end; 734 while (1) { 735 ordered = btrfs_lookup_first_ordered_extent(BTRFS_I(inode), end); 736 if (!ordered) 737 break; 738 if (ordered->file_offset > orig_end) { 739 btrfs_put_ordered_extent(ordered); 740 break; 741 } 742 if (ordered->file_offset + ordered->num_bytes <= start) { 743 btrfs_put_ordered_extent(ordered); 744 break; 745 } 746 btrfs_start_ordered_extent(ordered, 1); 747 end = ordered->file_offset; 748 /* 749 * If the ordered extent had an error save the error but don't 750 * exit without waiting first for all other ordered extents in 751 * the range to complete. 752 */ 753 if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags)) 754 ret = -EIO; 755 btrfs_put_ordered_extent(ordered); 756 if (end == 0 || end == start) 757 break; 758 end--; 759 } 760 return ret_wb ? ret_wb : ret; 761 } 762 763 /* 764 * find an ordered extent corresponding to file_offset. return NULL if 765 * nothing is found, otherwise take a reference on the extent and return it 766 */ 767 struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct btrfs_inode *inode, 768 u64 file_offset) 769 { 770 struct btrfs_ordered_inode_tree *tree; 771 struct rb_node *node; 772 struct btrfs_ordered_extent *entry = NULL; 773 unsigned long flags; 774 775 tree = &inode->ordered_tree; 776 spin_lock_irqsave(&tree->lock, flags); 777 node = tree_search(tree, file_offset); 778 if (!node) 779 goto out; 780 781 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); 782 if (!offset_in_entry(entry, file_offset)) 783 entry = NULL; 784 if (entry) 785 refcount_inc(&entry->refs); 786 out: 787 spin_unlock_irqrestore(&tree->lock, flags); 788 return entry; 789 } 790 791 /* Since the DIO code tries to lock a wide area we need to look for any ordered 792 * extents that exist in the range, rather than just the start of the range. 793 */ 794 struct btrfs_ordered_extent *btrfs_lookup_ordered_range( 795 struct btrfs_inode *inode, u64 file_offset, u64 len) 796 { 797 struct btrfs_ordered_inode_tree *tree; 798 struct rb_node *node; 799 struct btrfs_ordered_extent *entry = NULL; 800 801 tree = &inode->ordered_tree; 802 spin_lock_irq(&tree->lock); 803 node = tree_search(tree, file_offset); 804 if (!node) { 805 node = tree_search(tree, file_offset + len); 806 if (!node) 807 goto out; 808 } 809 810 while (1) { 811 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); 812 if (range_overlaps(entry, file_offset, len)) 813 break; 814 815 if (entry->file_offset >= file_offset + len) { 816 entry = NULL; 817 break; 818 } 819 entry = NULL; 820 node = rb_next(node); 821 if (!node) 822 break; 823 } 824 out: 825 if (entry) 826 refcount_inc(&entry->refs); 827 spin_unlock_irq(&tree->lock); 828 return entry; 829 } 830 831 /* 832 * Adds all ordered extents to the given list. The list ends up sorted by the 833 * file_offset of the ordered extents. 834 */ 835 void btrfs_get_ordered_extents_for_logging(struct btrfs_inode *inode, 836 struct list_head *list) 837 { 838 struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree; 839 struct rb_node *n; 840 841 ASSERT(inode_is_locked(&inode->vfs_inode)); 842 843 spin_lock_irq(&tree->lock); 844 for (n = rb_first(&tree->tree); n; n = rb_next(n)) { 845 struct btrfs_ordered_extent *ordered; 846 847 ordered = rb_entry(n, struct btrfs_ordered_extent, rb_node); 848 849 if (test_bit(BTRFS_ORDERED_LOGGED, &ordered->flags)) 850 continue; 851 852 ASSERT(list_empty(&ordered->log_list)); 853 list_add_tail(&ordered->log_list, list); 854 refcount_inc(&ordered->refs); 855 } 856 spin_unlock_irq(&tree->lock); 857 } 858 859 /* 860 * lookup and return any extent before 'file_offset'. NULL is returned 861 * if none is found 862 */ 863 struct btrfs_ordered_extent * 864 btrfs_lookup_first_ordered_extent(struct btrfs_inode *inode, u64 file_offset) 865 { 866 struct btrfs_ordered_inode_tree *tree; 867 struct rb_node *node; 868 struct btrfs_ordered_extent *entry = NULL; 869 870 tree = &inode->ordered_tree; 871 spin_lock_irq(&tree->lock); 872 node = tree_search(tree, file_offset); 873 if (!node) 874 goto out; 875 876 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); 877 refcount_inc(&entry->refs); 878 out: 879 spin_unlock_irq(&tree->lock); 880 return entry; 881 } 882 883 /* 884 * btrfs_flush_ordered_range - Lock the passed range and ensures all pending 885 * ordered extents in it are run to completion. 886 * 887 * @inode: Inode whose ordered tree is to be searched 888 * @start: Beginning of range to flush 889 * @end: Last byte of range to lock 890 * @cached_state: If passed, will return the extent state responsible for the 891 * locked range. It's the caller's responsibility to free the cached state. 892 * 893 * This function always returns with the given range locked, ensuring after it's 894 * called no order extent can be pending. 895 */ 896 void btrfs_lock_and_flush_ordered_range(struct btrfs_inode *inode, u64 start, 897 u64 end, 898 struct extent_state **cached_state) 899 { 900 struct btrfs_ordered_extent *ordered; 901 struct extent_state *cache = NULL; 902 struct extent_state **cachedp = &cache; 903 904 if (cached_state) 905 cachedp = cached_state; 906 907 while (1) { 908 lock_extent_bits(&inode->io_tree, start, end, cachedp); 909 ordered = btrfs_lookup_ordered_range(inode, start, 910 end - start + 1); 911 if (!ordered) { 912 /* 913 * If no external cached_state has been passed then 914 * decrement the extra ref taken for cachedp since we 915 * aren't exposing it outside of this function 916 */ 917 if (!cached_state) 918 refcount_dec(&cache->refs); 919 break; 920 } 921 unlock_extent_cached(&inode->io_tree, start, end, cachedp); 922 btrfs_start_ordered_extent(ordered, 1); 923 btrfs_put_ordered_extent(ordered); 924 } 925 } 926 927 static int clone_ordered_extent(struct btrfs_ordered_extent *ordered, u64 pos, 928 u64 len) 929 { 930 struct inode *inode = ordered->inode; 931 u64 file_offset = ordered->file_offset + pos; 932 u64 disk_bytenr = ordered->disk_bytenr + pos; 933 u64 num_bytes = len; 934 u64 disk_num_bytes = len; 935 int type; 936 unsigned long flags_masked = ordered->flags & ~(1 << BTRFS_ORDERED_DIRECT); 937 int compress_type = ordered->compress_type; 938 unsigned long weight; 939 int ret; 940 941 weight = hweight_long(flags_masked); 942 WARN_ON_ONCE(weight > 1); 943 if (!weight) 944 type = 0; 945 else 946 type = __ffs(flags_masked); 947 948 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered->flags)) { 949 WARN_ON_ONCE(1); 950 ret = btrfs_add_ordered_extent_compress(BTRFS_I(inode), 951 file_offset, disk_bytenr, num_bytes, 952 disk_num_bytes, compress_type); 953 } else if (test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) { 954 ret = btrfs_add_ordered_extent_dio(BTRFS_I(inode), file_offset, 955 disk_bytenr, num_bytes, disk_num_bytes, type); 956 } else { 957 ret = btrfs_add_ordered_extent(BTRFS_I(inode), file_offset, 958 disk_bytenr, num_bytes, disk_num_bytes, type); 959 } 960 961 return ret; 962 } 963 964 int btrfs_split_ordered_extent(struct btrfs_ordered_extent *ordered, u64 pre, 965 u64 post) 966 { 967 struct inode *inode = ordered->inode; 968 struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree; 969 struct rb_node *node; 970 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 971 int ret = 0; 972 973 spin_lock_irq(&tree->lock); 974 /* Remove from tree once */ 975 node = &ordered->rb_node; 976 rb_erase(node, &tree->tree); 977 RB_CLEAR_NODE(node); 978 if (tree->last == node) 979 tree->last = NULL; 980 981 ordered->file_offset += pre; 982 ordered->disk_bytenr += pre; 983 ordered->num_bytes -= (pre + post); 984 ordered->disk_num_bytes -= (pre + post); 985 ordered->bytes_left -= (pre + post); 986 987 /* Re-insert the node */ 988 node = tree_insert(&tree->tree, ordered->file_offset, &ordered->rb_node); 989 if (node) 990 btrfs_panic(fs_info, -EEXIST, 991 "zoned: inconsistency in ordered tree at offset %llu", 992 ordered->file_offset); 993 994 spin_unlock_irq(&tree->lock); 995 996 if (pre) 997 ret = clone_ordered_extent(ordered, 0, pre); 998 if (post) 999 ret = clone_ordered_extent(ordered, pre + ordered->disk_num_bytes, 1000 post); 1001 1002 return ret; 1003 } 1004 1005 int __init ordered_data_init(void) 1006 { 1007 btrfs_ordered_extent_cache = kmem_cache_create("btrfs_ordered_extent", 1008 sizeof(struct btrfs_ordered_extent), 0, 1009 SLAB_MEM_SPREAD, 1010 NULL); 1011 if (!btrfs_ordered_extent_cache) 1012 return -ENOMEM; 1013 1014 return 0; 1015 } 1016 1017 void __cold ordered_data_exit(void) 1018 { 1019 kmem_cache_destroy(btrfs_ordered_extent_cache); 1020 } 1021