1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/slab.h> 7 #include <linux/blkdev.h> 8 #include <linux/writeback.h> 9 #include <linux/sched/mm.h> 10 #include "misc.h" 11 #include "ctree.h" 12 #include "transaction.h" 13 #include "btrfs_inode.h" 14 #include "extent_io.h" 15 #include "disk-io.h" 16 #include "compression.h" 17 #include "delalloc-space.h" 18 #include "qgroup.h" 19 #include "subpage.h" 20 21 static struct kmem_cache *btrfs_ordered_extent_cache; 22 23 static u64 entry_end(struct btrfs_ordered_extent *entry) 24 { 25 if (entry->file_offset + entry->num_bytes < entry->file_offset) 26 return (u64)-1; 27 return entry->file_offset + entry->num_bytes; 28 } 29 30 /* returns NULL if the insertion worked, or it returns the node it did find 31 * in the tree 32 */ 33 static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset, 34 struct rb_node *node) 35 { 36 struct rb_node **p = &root->rb_node; 37 struct rb_node *parent = NULL; 38 struct btrfs_ordered_extent *entry; 39 40 while (*p) { 41 parent = *p; 42 entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node); 43 44 if (file_offset < entry->file_offset) 45 p = &(*p)->rb_left; 46 else if (file_offset >= entry_end(entry)) 47 p = &(*p)->rb_right; 48 else 49 return parent; 50 } 51 52 rb_link_node(node, parent, p); 53 rb_insert_color(node, root); 54 return NULL; 55 } 56 57 /* 58 * look for a given offset in the tree, and if it can't be found return the 59 * first lesser offset 60 */ 61 static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset, 62 struct rb_node **prev_ret) 63 { 64 struct rb_node *n = root->rb_node; 65 struct rb_node *prev = NULL; 66 struct rb_node *test; 67 struct btrfs_ordered_extent *entry; 68 struct btrfs_ordered_extent *prev_entry = NULL; 69 70 while (n) { 71 entry = rb_entry(n, struct btrfs_ordered_extent, rb_node); 72 prev = n; 73 prev_entry = entry; 74 75 if (file_offset < entry->file_offset) 76 n = n->rb_left; 77 else if (file_offset >= entry_end(entry)) 78 n = n->rb_right; 79 else 80 return n; 81 } 82 if (!prev_ret) 83 return NULL; 84 85 while (prev && file_offset >= entry_end(prev_entry)) { 86 test = rb_next(prev); 87 if (!test) 88 break; 89 prev_entry = rb_entry(test, struct btrfs_ordered_extent, 90 rb_node); 91 if (file_offset < entry_end(prev_entry)) 92 break; 93 94 prev = test; 95 } 96 if (prev) 97 prev_entry = rb_entry(prev, struct btrfs_ordered_extent, 98 rb_node); 99 while (prev && file_offset < entry_end(prev_entry)) { 100 test = rb_prev(prev); 101 if (!test) 102 break; 103 prev_entry = rb_entry(test, struct btrfs_ordered_extent, 104 rb_node); 105 prev = test; 106 } 107 *prev_ret = prev; 108 return NULL; 109 } 110 111 static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset, 112 u64 len) 113 { 114 if (file_offset + len <= entry->file_offset || 115 entry->file_offset + entry->num_bytes <= file_offset) 116 return 0; 117 return 1; 118 } 119 120 /* 121 * look find the first ordered struct that has this offset, otherwise 122 * the first one less than this offset 123 */ 124 static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree, 125 u64 file_offset) 126 { 127 struct rb_root *root = &tree->tree; 128 struct rb_node *prev = NULL; 129 struct rb_node *ret; 130 struct btrfs_ordered_extent *entry; 131 132 if (tree->last) { 133 entry = rb_entry(tree->last, struct btrfs_ordered_extent, 134 rb_node); 135 if (in_range(file_offset, entry->file_offset, entry->num_bytes)) 136 return tree->last; 137 } 138 ret = __tree_search(root, file_offset, &prev); 139 if (!ret) 140 ret = prev; 141 if (ret) 142 tree->last = ret; 143 return ret; 144 } 145 146 /** 147 * Add an ordered extent to the per-inode tree. 148 * 149 * @inode: Inode that this extent is for. 150 * @file_offset: Logical offset in file where the extent starts. 151 * @num_bytes: Logical length of extent in file. 152 * @ram_bytes: Full length of unencoded data. 153 * @disk_bytenr: Offset of extent on disk. 154 * @disk_num_bytes: Size of extent on disk. 155 * @offset: Offset into unencoded data where file data starts. 156 * @flags: Flags specifying type of extent (1 << BTRFS_ORDERED_*). 157 * @compress_type: Compression algorithm used for data. 158 * 159 * Most of these parameters correspond to &struct btrfs_file_extent_item. The 160 * tree is given a single reference on the ordered extent that was inserted. 161 * 162 * Return: 0 or -ENOMEM. 163 */ 164 int btrfs_add_ordered_extent(struct btrfs_inode *inode, u64 file_offset, 165 u64 num_bytes, u64 ram_bytes, u64 disk_bytenr, 166 u64 disk_num_bytes, u64 offset, unsigned flags, 167 int compress_type) 168 { 169 struct btrfs_root *root = inode->root; 170 struct btrfs_fs_info *fs_info = root->fs_info; 171 struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree; 172 struct rb_node *node; 173 struct btrfs_ordered_extent *entry; 174 int ret; 175 176 if (flags & 177 ((1 << BTRFS_ORDERED_NOCOW) | (1 << BTRFS_ORDERED_PREALLOC))) { 178 /* For nocow write, we can release the qgroup rsv right now */ 179 ret = btrfs_qgroup_free_data(inode, NULL, file_offset, num_bytes); 180 if (ret < 0) 181 return ret; 182 ret = 0; 183 } else { 184 /* 185 * The ordered extent has reserved qgroup space, release now 186 * and pass the reserved number for qgroup_record to free. 187 */ 188 ret = btrfs_qgroup_release_data(inode, file_offset, num_bytes); 189 if (ret < 0) 190 return ret; 191 } 192 entry = kmem_cache_zalloc(btrfs_ordered_extent_cache, GFP_NOFS); 193 if (!entry) 194 return -ENOMEM; 195 196 entry->file_offset = file_offset; 197 entry->num_bytes = num_bytes; 198 entry->ram_bytes = ram_bytes; 199 entry->disk_bytenr = disk_bytenr; 200 entry->disk_num_bytes = disk_num_bytes; 201 entry->offset = offset; 202 entry->bytes_left = num_bytes; 203 entry->inode = igrab(&inode->vfs_inode); 204 entry->compress_type = compress_type; 205 entry->truncated_len = (u64)-1; 206 entry->qgroup_rsv = ret; 207 entry->physical = (u64)-1; 208 209 ASSERT((flags & ~BTRFS_ORDERED_TYPE_FLAGS) == 0); 210 entry->flags = flags; 211 212 percpu_counter_add_batch(&fs_info->ordered_bytes, num_bytes, 213 fs_info->delalloc_batch); 214 215 /* one ref for the tree */ 216 refcount_set(&entry->refs, 1); 217 init_waitqueue_head(&entry->wait); 218 INIT_LIST_HEAD(&entry->list); 219 INIT_LIST_HEAD(&entry->log_list); 220 INIT_LIST_HEAD(&entry->root_extent_list); 221 INIT_LIST_HEAD(&entry->work_list); 222 init_completion(&entry->completion); 223 224 trace_btrfs_ordered_extent_add(inode, entry); 225 226 spin_lock_irq(&tree->lock); 227 node = tree_insert(&tree->tree, file_offset, 228 &entry->rb_node); 229 if (node) 230 btrfs_panic(fs_info, -EEXIST, 231 "inconsistency in ordered tree at offset %llu", 232 file_offset); 233 spin_unlock_irq(&tree->lock); 234 235 spin_lock(&root->ordered_extent_lock); 236 list_add_tail(&entry->root_extent_list, 237 &root->ordered_extents); 238 root->nr_ordered_extents++; 239 if (root->nr_ordered_extents == 1) { 240 spin_lock(&fs_info->ordered_root_lock); 241 BUG_ON(!list_empty(&root->ordered_root)); 242 list_add_tail(&root->ordered_root, &fs_info->ordered_roots); 243 spin_unlock(&fs_info->ordered_root_lock); 244 } 245 spin_unlock(&root->ordered_extent_lock); 246 247 /* 248 * We don't need the count_max_extents here, we can assume that all of 249 * that work has been done at higher layers, so this is truly the 250 * smallest the extent is going to get. 251 */ 252 spin_lock(&inode->lock); 253 btrfs_mod_outstanding_extents(inode, 1); 254 spin_unlock(&inode->lock); 255 256 return 0; 257 } 258 259 /* 260 * Add a struct btrfs_ordered_sum into the list of checksums to be inserted 261 * when an ordered extent is finished. If the list covers more than one 262 * ordered extent, it is split across multiples. 263 */ 264 void btrfs_add_ordered_sum(struct btrfs_ordered_extent *entry, 265 struct btrfs_ordered_sum *sum) 266 { 267 struct btrfs_ordered_inode_tree *tree; 268 269 tree = &BTRFS_I(entry->inode)->ordered_tree; 270 spin_lock_irq(&tree->lock); 271 list_add_tail(&sum->list, &entry->list); 272 spin_unlock_irq(&tree->lock); 273 } 274 275 static void finish_ordered_fn(struct btrfs_work *work) 276 { 277 struct btrfs_ordered_extent *ordered_extent; 278 279 ordered_extent = container_of(work, struct btrfs_ordered_extent, work); 280 btrfs_finish_ordered_io(ordered_extent); 281 } 282 283 /* 284 * Mark all ordered extents io inside the specified range finished. 285 * 286 * @page: The involved page for the operation. 287 * For uncompressed buffered IO, the page status also needs to be 288 * updated to indicate whether the pending ordered io is finished. 289 * Can be NULL for direct IO and compressed write. 290 * For these cases, callers are ensured they won't execute the 291 * endio function twice. 292 * 293 * This function is called for endio, thus the range must have ordered 294 * extent(s) covering it. 295 */ 296 void btrfs_mark_ordered_io_finished(struct btrfs_inode *inode, 297 struct page *page, u64 file_offset, 298 u64 num_bytes, bool uptodate) 299 { 300 struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree; 301 struct btrfs_fs_info *fs_info = inode->root->fs_info; 302 struct btrfs_workqueue *wq; 303 struct rb_node *node; 304 struct btrfs_ordered_extent *entry = NULL; 305 unsigned long flags; 306 u64 cur = file_offset; 307 308 if (btrfs_is_free_space_inode(inode)) 309 wq = fs_info->endio_freespace_worker; 310 else 311 wq = fs_info->endio_write_workers; 312 313 if (page) 314 ASSERT(page->mapping && page_offset(page) <= file_offset && 315 file_offset + num_bytes <= page_offset(page) + PAGE_SIZE); 316 317 spin_lock_irqsave(&tree->lock, flags); 318 while (cur < file_offset + num_bytes) { 319 u64 entry_end; 320 u64 end; 321 u32 len; 322 323 node = tree_search(tree, cur); 324 /* No ordered extents at all */ 325 if (!node) 326 break; 327 328 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); 329 entry_end = entry->file_offset + entry->num_bytes; 330 /* 331 * |<-- OE --->| | 332 * cur 333 * Go to next OE. 334 */ 335 if (cur >= entry_end) { 336 node = rb_next(node); 337 /* No more ordered extents, exit */ 338 if (!node) 339 break; 340 entry = rb_entry(node, struct btrfs_ordered_extent, 341 rb_node); 342 343 /* Go to next ordered extent and continue */ 344 cur = entry->file_offset; 345 continue; 346 } 347 /* 348 * | |<--- OE --->| 349 * cur 350 * Go to the start of OE. 351 */ 352 if (cur < entry->file_offset) { 353 cur = entry->file_offset; 354 continue; 355 } 356 357 /* 358 * Now we are definitely inside one ordered extent. 359 * 360 * |<--- OE --->| 361 * | 362 * cur 363 */ 364 end = min(entry->file_offset + entry->num_bytes, 365 file_offset + num_bytes) - 1; 366 ASSERT(end + 1 - cur < U32_MAX); 367 len = end + 1 - cur; 368 369 if (page) { 370 /* 371 * Ordered (Private2) bit indicates whether we still 372 * have pending io unfinished for the ordered extent. 373 * 374 * If there's no such bit, we need to skip to next range. 375 */ 376 if (!btrfs_page_test_ordered(fs_info, page, cur, len)) { 377 cur += len; 378 continue; 379 } 380 btrfs_page_clear_ordered(fs_info, page, cur, len); 381 } 382 383 /* Now we're fine to update the accounting */ 384 if (unlikely(len > entry->bytes_left)) { 385 WARN_ON(1); 386 btrfs_crit(fs_info, 387 "bad ordered extent accounting, root=%llu ino=%llu OE offset=%llu OE len=%llu to_dec=%u left=%llu", 388 inode->root->root_key.objectid, 389 btrfs_ino(inode), 390 entry->file_offset, 391 entry->num_bytes, 392 len, entry->bytes_left); 393 entry->bytes_left = 0; 394 } else { 395 entry->bytes_left -= len; 396 } 397 398 if (!uptodate) 399 set_bit(BTRFS_ORDERED_IOERR, &entry->flags); 400 401 /* 402 * All the IO of the ordered extent is finished, we need to queue 403 * the finish_func to be executed. 404 */ 405 if (entry->bytes_left == 0) { 406 set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags); 407 cond_wake_up(&entry->wait); 408 refcount_inc(&entry->refs); 409 trace_btrfs_ordered_extent_mark_finished(inode, entry); 410 spin_unlock_irqrestore(&tree->lock, flags); 411 btrfs_init_work(&entry->work, finish_ordered_fn, NULL, NULL); 412 btrfs_queue_work(wq, &entry->work); 413 spin_lock_irqsave(&tree->lock, flags); 414 } 415 cur += len; 416 } 417 spin_unlock_irqrestore(&tree->lock, flags); 418 } 419 420 /* 421 * Finish IO for one ordered extent across a given range. The range can only 422 * contain one ordered extent. 423 * 424 * @cached: The cached ordered extent. If not NULL, we can skip the tree 425 * search and use the ordered extent directly. 426 * Will be also used to store the finished ordered extent. 427 * @file_offset: File offset for the finished IO 428 * @io_size: Length of the finish IO range 429 * 430 * Return true if the ordered extent is finished in the range, and update 431 * @cached. 432 * Return false otherwise. 433 * 434 * NOTE: The range can NOT cross multiple ordered extents. 435 * Thus caller should ensure the range doesn't cross ordered extents. 436 */ 437 bool btrfs_dec_test_ordered_pending(struct btrfs_inode *inode, 438 struct btrfs_ordered_extent **cached, 439 u64 file_offset, u64 io_size) 440 { 441 struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree; 442 struct rb_node *node; 443 struct btrfs_ordered_extent *entry = NULL; 444 unsigned long flags; 445 bool finished = false; 446 447 spin_lock_irqsave(&tree->lock, flags); 448 if (cached && *cached) { 449 entry = *cached; 450 goto have_entry; 451 } 452 453 node = tree_search(tree, file_offset); 454 if (!node) 455 goto out; 456 457 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); 458 have_entry: 459 if (!in_range(file_offset, entry->file_offset, entry->num_bytes)) 460 goto out; 461 462 if (io_size > entry->bytes_left) 463 btrfs_crit(inode->root->fs_info, 464 "bad ordered accounting left %llu size %llu", 465 entry->bytes_left, io_size); 466 467 entry->bytes_left -= io_size; 468 469 if (entry->bytes_left == 0) { 470 /* 471 * Ensure only one caller can set the flag and finished_ret 472 * accordingly 473 */ 474 finished = !test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags); 475 /* test_and_set_bit implies a barrier */ 476 cond_wake_up_nomb(&entry->wait); 477 } 478 out: 479 if (finished && cached && entry) { 480 *cached = entry; 481 refcount_inc(&entry->refs); 482 trace_btrfs_ordered_extent_dec_test_pending(inode, entry); 483 } 484 spin_unlock_irqrestore(&tree->lock, flags); 485 return finished; 486 } 487 488 /* 489 * used to drop a reference on an ordered extent. This will free 490 * the extent if the last reference is dropped 491 */ 492 void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry) 493 { 494 struct list_head *cur; 495 struct btrfs_ordered_sum *sum; 496 497 trace_btrfs_ordered_extent_put(BTRFS_I(entry->inode), entry); 498 499 if (refcount_dec_and_test(&entry->refs)) { 500 ASSERT(list_empty(&entry->root_extent_list)); 501 ASSERT(list_empty(&entry->log_list)); 502 ASSERT(RB_EMPTY_NODE(&entry->rb_node)); 503 if (entry->inode) 504 btrfs_add_delayed_iput(entry->inode); 505 while (!list_empty(&entry->list)) { 506 cur = entry->list.next; 507 sum = list_entry(cur, struct btrfs_ordered_sum, list); 508 list_del(&sum->list); 509 kvfree(sum); 510 } 511 kmem_cache_free(btrfs_ordered_extent_cache, entry); 512 } 513 } 514 515 /* 516 * remove an ordered extent from the tree. No references are dropped 517 * and waiters are woken up. 518 */ 519 void btrfs_remove_ordered_extent(struct btrfs_inode *btrfs_inode, 520 struct btrfs_ordered_extent *entry) 521 { 522 struct btrfs_ordered_inode_tree *tree; 523 struct btrfs_root *root = btrfs_inode->root; 524 struct btrfs_fs_info *fs_info = root->fs_info; 525 struct rb_node *node; 526 bool pending; 527 bool freespace_inode; 528 529 /* 530 * If this is a free space inode the thread has not acquired the ordered 531 * extents lockdep map. 532 */ 533 freespace_inode = btrfs_is_free_space_inode(btrfs_inode); 534 535 btrfs_lockdep_acquire(fs_info, btrfs_trans_pending_ordered); 536 /* This is paired with btrfs_add_ordered_extent. */ 537 spin_lock(&btrfs_inode->lock); 538 btrfs_mod_outstanding_extents(btrfs_inode, -1); 539 spin_unlock(&btrfs_inode->lock); 540 if (root != fs_info->tree_root) { 541 u64 release; 542 543 if (test_bit(BTRFS_ORDERED_ENCODED, &entry->flags)) 544 release = entry->disk_num_bytes; 545 else 546 release = entry->num_bytes; 547 btrfs_delalloc_release_metadata(btrfs_inode, release, false); 548 } 549 550 percpu_counter_add_batch(&fs_info->ordered_bytes, -entry->num_bytes, 551 fs_info->delalloc_batch); 552 553 tree = &btrfs_inode->ordered_tree; 554 spin_lock_irq(&tree->lock); 555 node = &entry->rb_node; 556 rb_erase(node, &tree->tree); 557 RB_CLEAR_NODE(node); 558 if (tree->last == node) 559 tree->last = NULL; 560 set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags); 561 pending = test_and_clear_bit(BTRFS_ORDERED_PENDING, &entry->flags); 562 spin_unlock_irq(&tree->lock); 563 564 /* 565 * The current running transaction is waiting on us, we need to let it 566 * know that we're complete and wake it up. 567 */ 568 if (pending) { 569 struct btrfs_transaction *trans; 570 571 /* 572 * The checks for trans are just a formality, it should be set, 573 * but if it isn't we don't want to deref/assert under the spin 574 * lock, so be nice and check if trans is set, but ASSERT() so 575 * if it isn't set a developer will notice. 576 */ 577 spin_lock(&fs_info->trans_lock); 578 trans = fs_info->running_transaction; 579 if (trans) 580 refcount_inc(&trans->use_count); 581 spin_unlock(&fs_info->trans_lock); 582 583 ASSERT(trans); 584 if (trans) { 585 if (atomic_dec_and_test(&trans->pending_ordered)) 586 wake_up(&trans->pending_wait); 587 btrfs_put_transaction(trans); 588 } 589 } 590 591 btrfs_lockdep_release(fs_info, btrfs_trans_pending_ordered); 592 593 spin_lock(&root->ordered_extent_lock); 594 list_del_init(&entry->root_extent_list); 595 root->nr_ordered_extents--; 596 597 trace_btrfs_ordered_extent_remove(btrfs_inode, entry); 598 599 if (!root->nr_ordered_extents) { 600 spin_lock(&fs_info->ordered_root_lock); 601 BUG_ON(list_empty(&root->ordered_root)); 602 list_del_init(&root->ordered_root); 603 spin_unlock(&fs_info->ordered_root_lock); 604 } 605 spin_unlock(&root->ordered_extent_lock); 606 wake_up(&entry->wait); 607 if (!freespace_inode) 608 btrfs_lockdep_release(fs_info, btrfs_ordered_extent); 609 } 610 611 static void btrfs_run_ordered_extent_work(struct btrfs_work *work) 612 { 613 struct btrfs_ordered_extent *ordered; 614 615 ordered = container_of(work, struct btrfs_ordered_extent, flush_work); 616 btrfs_start_ordered_extent(ordered, 1); 617 complete(&ordered->completion); 618 } 619 620 /* 621 * wait for all the ordered extents in a root. This is done when balancing 622 * space between drives. 623 */ 624 u64 btrfs_wait_ordered_extents(struct btrfs_root *root, u64 nr, 625 const u64 range_start, const u64 range_len) 626 { 627 struct btrfs_fs_info *fs_info = root->fs_info; 628 LIST_HEAD(splice); 629 LIST_HEAD(skipped); 630 LIST_HEAD(works); 631 struct btrfs_ordered_extent *ordered, *next; 632 u64 count = 0; 633 const u64 range_end = range_start + range_len; 634 635 mutex_lock(&root->ordered_extent_mutex); 636 spin_lock(&root->ordered_extent_lock); 637 list_splice_init(&root->ordered_extents, &splice); 638 while (!list_empty(&splice) && nr) { 639 ordered = list_first_entry(&splice, struct btrfs_ordered_extent, 640 root_extent_list); 641 642 if (range_end <= ordered->disk_bytenr || 643 ordered->disk_bytenr + ordered->disk_num_bytes <= range_start) { 644 list_move_tail(&ordered->root_extent_list, &skipped); 645 cond_resched_lock(&root->ordered_extent_lock); 646 continue; 647 } 648 649 list_move_tail(&ordered->root_extent_list, 650 &root->ordered_extents); 651 refcount_inc(&ordered->refs); 652 spin_unlock(&root->ordered_extent_lock); 653 654 btrfs_init_work(&ordered->flush_work, 655 btrfs_run_ordered_extent_work, NULL, NULL); 656 list_add_tail(&ordered->work_list, &works); 657 btrfs_queue_work(fs_info->flush_workers, &ordered->flush_work); 658 659 cond_resched(); 660 spin_lock(&root->ordered_extent_lock); 661 if (nr != U64_MAX) 662 nr--; 663 count++; 664 } 665 list_splice_tail(&skipped, &root->ordered_extents); 666 list_splice_tail(&splice, &root->ordered_extents); 667 spin_unlock(&root->ordered_extent_lock); 668 669 list_for_each_entry_safe(ordered, next, &works, work_list) { 670 list_del_init(&ordered->work_list); 671 wait_for_completion(&ordered->completion); 672 btrfs_put_ordered_extent(ordered); 673 cond_resched(); 674 } 675 mutex_unlock(&root->ordered_extent_mutex); 676 677 return count; 678 } 679 680 void btrfs_wait_ordered_roots(struct btrfs_fs_info *fs_info, u64 nr, 681 const u64 range_start, const u64 range_len) 682 { 683 struct btrfs_root *root; 684 struct list_head splice; 685 u64 done; 686 687 INIT_LIST_HEAD(&splice); 688 689 mutex_lock(&fs_info->ordered_operations_mutex); 690 spin_lock(&fs_info->ordered_root_lock); 691 list_splice_init(&fs_info->ordered_roots, &splice); 692 while (!list_empty(&splice) && nr) { 693 root = list_first_entry(&splice, struct btrfs_root, 694 ordered_root); 695 root = btrfs_grab_root(root); 696 BUG_ON(!root); 697 list_move_tail(&root->ordered_root, 698 &fs_info->ordered_roots); 699 spin_unlock(&fs_info->ordered_root_lock); 700 701 done = btrfs_wait_ordered_extents(root, nr, 702 range_start, range_len); 703 btrfs_put_root(root); 704 705 spin_lock(&fs_info->ordered_root_lock); 706 if (nr != U64_MAX) { 707 nr -= done; 708 } 709 } 710 list_splice_tail(&splice, &fs_info->ordered_roots); 711 spin_unlock(&fs_info->ordered_root_lock); 712 mutex_unlock(&fs_info->ordered_operations_mutex); 713 } 714 715 /* 716 * Used to start IO or wait for a given ordered extent to finish. 717 * 718 * If wait is one, this effectively waits on page writeback for all the pages 719 * in the extent, and it waits on the io completion code to insert 720 * metadata into the btree corresponding to the extent 721 */ 722 void btrfs_start_ordered_extent(struct btrfs_ordered_extent *entry, int wait) 723 { 724 u64 start = entry->file_offset; 725 u64 end = start + entry->num_bytes - 1; 726 struct btrfs_inode *inode = BTRFS_I(entry->inode); 727 bool freespace_inode; 728 729 trace_btrfs_ordered_extent_start(inode, entry); 730 731 /* 732 * If this is a free space inode do not take the ordered extents lockdep 733 * map. 734 */ 735 freespace_inode = btrfs_is_free_space_inode(inode); 736 737 /* 738 * pages in the range can be dirty, clean or writeback. We 739 * start IO on any dirty ones so the wait doesn't stall waiting 740 * for the flusher thread to find them 741 */ 742 if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags)) 743 filemap_fdatawrite_range(inode->vfs_inode.i_mapping, start, end); 744 if (wait) { 745 if (!freespace_inode) 746 btrfs_might_wait_for_event(inode->root->fs_info, btrfs_ordered_extent); 747 wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE, 748 &entry->flags)); 749 } 750 } 751 752 /* 753 * Used to wait on ordered extents across a large range of bytes. 754 */ 755 int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len) 756 { 757 int ret = 0; 758 int ret_wb = 0; 759 u64 end; 760 u64 orig_end; 761 struct btrfs_ordered_extent *ordered; 762 763 if (start + len < start) { 764 orig_end = INT_LIMIT(loff_t); 765 } else { 766 orig_end = start + len - 1; 767 if (orig_end > INT_LIMIT(loff_t)) 768 orig_end = INT_LIMIT(loff_t); 769 } 770 771 /* start IO across the range first to instantiate any delalloc 772 * extents 773 */ 774 ret = btrfs_fdatawrite_range(inode, start, orig_end); 775 if (ret) 776 return ret; 777 778 /* 779 * If we have a writeback error don't return immediately. Wait first 780 * for any ordered extents that haven't completed yet. This is to make 781 * sure no one can dirty the same page ranges and call writepages() 782 * before the ordered extents complete - to avoid failures (-EEXIST) 783 * when adding the new ordered extents to the ordered tree. 784 */ 785 ret_wb = filemap_fdatawait_range(inode->i_mapping, start, orig_end); 786 787 end = orig_end; 788 while (1) { 789 ordered = btrfs_lookup_first_ordered_extent(BTRFS_I(inode), end); 790 if (!ordered) 791 break; 792 if (ordered->file_offset > orig_end) { 793 btrfs_put_ordered_extent(ordered); 794 break; 795 } 796 if (ordered->file_offset + ordered->num_bytes <= start) { 797 btrfs_put_ordered_extent(ordered); 798 break; 799 } 800 btrfs_start_ordered_extent(ordered, 1); 801 end = ordered->file_offset; 802 /* 803 * If the ordered extent had an error save the error but don't 804 * exit without waiting first for all other ordered extents in 805 * the range to complete. 806 */ 807 if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags)) 808 ret = -EIO; 809 btrfs_put_ordered_extent(ordered); 810 if (end == 0 || end == start) 811 break; 812 end--; 813 } 814 return ret_wb ? ret_wb : ret; 815 } 816 817 /* 818 * find an ordered extent corresponding to file_offset. return NULL if 819 * nothing is found, otherwise take a reference on the extent and return it 820 */ 821 struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct btrfs_inode *inode, 822 u64 file_offset) 823 { 824 struct btrfs_ordered_inode_tree *tree; 825 struct rb_node *node; 826 struct btrfs_ordered_extent *entry = NULL; 827 unsigned long flags; 828 829 tree = &inode->ordered_tree; 830 spin_lock_irqsave(&tree->lock, flags); 831 node = tree_search(tree, file_offset); 832 if (!node) 833 goto out; 834 835 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); 836 if (!in_range(file_offset, entry->file_offset, entry->num_bytes)) 837 entry = NULL; 838 if (entry) { 839 refcount_inc(&entry->refs); 840 trace_btrfs_ordered_extent_lookup(inode, entry); 841 } 842 out: 843 spin_unlock_irqrestore(&tree->lock, flags); 844 return entry; 845 } 846 847 /* Since the DIO code tries to lock a wide area we need to look for any ordered 848 * extents that exist in the range, rather than just the start of the range. 849 */ 850 struct btrfs_ordered_extent *btrfs_lookup_ordered_range( 851 struct btrfs_inode *inode, u64 file_offset, u64 len) 852 { 853 struct btrfs_ordered_inode_tree *tree; 854 struct rb_node *node; 855 struct btrfs_ordered_extent *entry = NULL; 856 857 tree = &inode->ordered_tree; 858 spin_lock_irq(&tree->lock); 859 node = tree_search(tree, file_offset); 860 if (!node) { 861 node = tree_search(tree, file_offset + len); 862 if (!node) 863 goto out; 864 } 865 866 while (1) { 867 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); 868 if (range_overlaps(entry, file_offset, len)) 869 break; 870 871 if (entry->file_offset >= file_offset + len) { 872 entry = NULL; 873 break; 874 } 875 entry = NULL; 876 node = rb_next(node); 877 if (!node) 878 break; 879 } 880 out: 881 if (entry) { 882 refcount_inc(&entry->refs); 883 trace_btrfs_ordered_extent_lookup_range(inode, entry); 884 } 885 spin_unlock_irq(&tree->lock); 886 return entry; 887 } 888 889 /* 890 * Adds all ordered extents to the given list. The list ends up sorted by the 891 * file_offset of the ordered extents. 892 */ 893 void btrfs_get_ordered_extents_for_logging(struct btrfs_inode *inode, 894 struct list_head *list) 895 { 896 struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree; 897 struct rb_node *n; 898 899 ASSERT(inode_is_locked(&inode->vfs_inode)); 900 901 spin_lock_irq(&tree->lock); 902 for (n = rb_first(&tree->tree); n; n = rb_next(n)) { 903 struct btrfs_ordered_extent *ordered; 904 905 ordered = rb_entry(n, struct btrfs_ordered_extent, rb_node); 906 907 if (test_bit(BTRFS_ORDERED_LOGGED, &ordered->flags)) 908 continue; 909 910 ASSERT(list_empty(&ordered->log_list)); 911 list_add_tail(&ordered->log_list, list); 912 refcount_inc(&ordered->refs); 913 trace_btrfs_ordered_extent_lookup_for_logging(inode, ordered); 914 } 915 spin_unlock_irq(&tree->lock); 916 } 917 918 /* 919 * lookup and return any extent before 'file_offset'. NULL is returned 920 * if none is found 921 */ 922 struct btrfs_ordered_extent * 923 btrfs_lookup_first_ordered_extent(struct btrfs_inode *inode, u64 file_offset) 924 { 925 struct btrfs_ordered_inode_tree *tree; 926 struct rb_node *node; 927 struct btrfs_ordered_extent *entry = NULL; 928 929 tree = &inode->ordered_tree; 930 spin_lock_irq(&tree->lock); 931 node = tree_search(tree, file_offset); 932 if (!node) 933 goto out; 934 935 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); 936 refcount_inc(&entry->refs); 937 trace_btrfs_ordered_extent_lookup_first(inode, entry); 938 out: 939 spin_unlock_irq(&tree->lock); 940 return entry; 941 } 942 943 /* 944 * Lookup the first ordered extent that overlaps the range 945 * [@file_offset, @file_offset + @len). 946 * 947 * The difference between this and btrfs_lookup_first_ordered_extent() is 948 * that this one won't return any ordered extent that does not overlap the range. 949 * And the difference against btrfs_lookup_ordered_extent() is, this function 950 * ensures the first ordered extent gets returned. 951 */ 952 struct btrfs_ordered_extent *btrfs_lookup_first_ordered_range( 953 struct btrfs_inode *inode, u64 file_offset, u64 len) 954 { 955 struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree; 956 struct rb_node *node; 957 struct rb_node *cur; 958 struct rb_node *prev; 959 struct rb_node *next; 960 struct btrfs_ordered_extent *entry = NULL; 961 962 spin_lock_irq(&tree->lock); 963 node = tree->tree.rb_node; 964 /* 965 * Here we don't want to use tree_search() which will use tree->last 966 * and screw up the search order. 967 * And __tree_search() can't return the adjacent ordered extents 968 * either, thus here we do our own search. 969 */ 970 while (node) { 971 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); 972 973 if (file_offset < entry->file_offset) { 974 node = node->rb_left; 975 } else if (file_offset >= entry_end(entry)) { 976 node = node->rb_right; 977 } else { 978 /* 979 * Direct hit, got an ordered extent that starts at 980 * @file_offset 981 */ 982 goto out; 983 } 984 } 985 if (!entry) { 986 /* Empty tree */ 987 goto out; 988 } 989 990 cur = &entry->rb_node; 991 /* We got an entry around @file_offset, check adjacent entries */ 992 if (entry->file_offset < file_offset) { 993 prev = cur; 994 next = rb_next(cur); 995 } else { 996 prev = rb_prev(cur); 997 next = cur; 998 } 999 if (prev) { 1000 entry = rb_entry(prev, struct btrfs_ordered_extent, rb_node); 1001 if (range_overlaps(entry, file_offset, len)) 1002 goto out; 1003 } 1004 if (next) { 1005 entry = rb_entry(next, struct btrfs_ordered_extent, rb_node); 1006 if (range_overlaps(entry, file_offset, len)) 1007 goto out; 1008 } 1009 /* No ordered extent in the range */ 1010 entry = NULL; 1011 out: 1012 if (entry) { 1013 refcount_inc(&entry->refs); 1014 trace_btrfs_ordered_extent_lookup_first_range(inode, entry); 1015 } 1016 1017 spin_unlock_irq(&tree->lock); 1018 return entry; 1019 } 1020 1021 /* 1022 * btrfs_flush_ordered_range - Lock the passed range and ensures all pending 1023 * ordered extents in it are run to completion. 1024 * 1025 * @inode: Inode whose ordered tree is to be searched 1026 * @start: Beginning of range to flush 1027 * @end: Last byte of range to lock 1028 * @cached_state: If passed, will return the extent state responsible for the 1029 * locked range. It's the caller's responsibility to free the cached state. 1030 * 1031 * This function always returns with the given range locked, ensuring after it's 1032 * called no order extent can be pending. 1033 */ 1034 void btrfs_lock_and_flush_ordered_range(struct btrfs_inode *inode, u64 start, 1035 u64 end, 1036 struct extent_state **cached_state) 1037 { 1038 struct btrfs_ordered_extent *ordered; 1039 struct extent_state *cache = NULL; 1040 struct extent_state **cachedp = &cache; 1041 1042 if (cached_state) 1043 cachedp = cached_state; 1044 1045 while (1) { 1046 lock_extent(&inode->io_tree, start, end, cachedp); 1047 ordered = btrfs_lookup_ordered_range(inode, start, 1048 end - start + 1); 1049 if (!ordered) { 1050 /* 1051 * If no external cached_state has been passed then 1052 * decrement the extra ref taken for cachedp since we 1053 * aren't exposing it outside of this function 1054 */ 1055 if (!cached_state) 1056 refcount_dec(&cache->refs); 1057 break; 1058 } 1059 unlock_extent(&inode->io_tree, start, end, cachedp); 1060 btrfs_start_ordered_extent(ordered, 1); 1061 btrfs_put_ordered_extent(ordered); 1062 } 1063 } 1064 1065 /* 1066 * Lock the passed range and ensure all pending ordered extents in it are run 1067 * to completion in nowait mode. 1068 * 1069 * Return true if btrfs_lock_ordered_range does not return any extents, 1070 * otherwise false. 1071 */ 1072 bool btrfs_try_lock_ordered_range(struct btrfs_inode *inode, u64 start, u64 end) 1073 { 1074 struct btrfs_ordered_extent *ordered; 1075 1076 if (!try_lock_extent(&inode->io_tree, start, end)) 1077 return false; 1078 1079 ordered = btrfs_lookup_ordered_range(inode, start, end - start + 1); 1080 if (!ordered) 1081 return true; 1082 1083 btrfs_put_ordered_extent(ordered); 1084 unlock_extent(&inode->io_tree, start, end, NULL); 1085 1086 return false; 1087 } 1088 1089 1090 static int clone_ordered_extent(struct btrfs_ordered_extent *ordered, u64 pos, 1091 u64 len) 1092 { 1093 struct inode *inode = ordered->inode; 1094 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 1095 u64 file_offset = ordered->file_offset + pos; 1096 u64 disk_bytenr = ordered->disk_bytenr + pos; 1097 unsigned long flags = ordered->flags & BTRFS_ORDERED_TYPE_FLAGS; 1098 1099 /* 1100 * The splitting extent is already counted and will be added again in 1101 * btrfs_add_ordered_extent_*(). Subtract len to avoid double counting. 1102 */ 1103 percpu_counter_add_batch(&fs_info->ordered_bytes, -len, 1104 fs_info->delalloc_batch); 1105 WARN_ON_ONCE(flags & (1 << BTRFS_ORDERED_COMPRESSED)); 1106 return btrfs_add_ordered_extent(BTRFS_I(inode), file_offset, len, len, 1107 disk_bytenr, len, 0, flags, 1108 ordered->compress_type); 1109 } 1110 1111 int btrfs_split_ordered_extent(struct btrfs_ordered_extent *ordered, u64 pre, 1112 u64 post) 1113 { 1114 struct inode *inode = ordered->inode; 1115 struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree; 1116 struct rb_node *node; 1117 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1118 int ret = 0; 1119 1120 trace_btrfs_ordered_extent_split(BTRFS_I(inode), ordered); 1121 1122 spin_lock_irq(&tree->lock); 1123 /* Remove from tree once */ 1124 node = &ordered->rb_node; 1125 rb_erase(node, &tree->tree); 1126 RB_CLEAR_NODE(node); 1127 if (tree->last == node) 1128 tree->last = NULL; 1129 1130 ordered->file_offset += pre; 1131 ordered->disk_bytenr += pre; 1132 ordered->num_bytes -= (pre + post); 1133 ordered->disk_num_bytes -= (pre + post); 1134 ordered->bytes_left -= (pre + post); 1135 1136 /* Re-insert the node */ 1137 node = tree_insert(&tree->tree, ordered->file_offset, &ordered->rb_node); 1138 if (node) 1139 btrfs_panic(fs_info, -EEXIST, 1140 "zoned: inconsistency in ordered tree at offset %llu", 1141 ordered->file_offset); 1142 1143 spin_unlock_irq(&tree->lock); 1144 1145 if (pre) 1146 ret = clone_ordered_extent(ordered, 0, pre); 1147 if (ret == 0 && post) 1148 ret = clone_ordered_extent(ordered, pre + ordered->disk_num_bytes, 1149 post); 1150 1151 return ret; 1152 } 1153 1154 int __init ordered_data_init(void) 1155 { 1156 btrfs_ordered_extent_cache = kmem_cache_create("btrfs_ordered_extent", 1157 sizeof(struct btrfs_ordered_extent), 0, 1158 SLAB_MEM_SPREAD, 1159 NULL); 1160 if (!btrfs_ordered_extent_cache) 1161 return -ENOMEM; 1162 1163 return 0; 1164 } 1165 1166 void __cold ordered_data_exit(void) 1167 { 1168 kmem_cache_destroy(btrfs_ordered_extent_cache); 1169 } 1170