xref: /openbmc/linux/fs/btrfs/ordered-data.c (revision 511a32b5)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/slab.h>
7 #include <linux/blkdev.h>
8 #include <linux/writeback.h>
9 #include <linux/sched/mm.h>
10 #include "misc.h"
11 #include "ctree.h"
12 #include "transaction.h"
13 #include "btrfs_inode.h"
14 #include "extent_io.h"
15 #include "disk-io.h"
16 #include "compression.h"
17 #include "delalloc-space.h"
18 
19 static struct kmem_cache *btrfs_ordered_extent_cache;
20 
21 static u64 entry_end(struct btrfs_ordered_extent *entry)
22 {
23 	if (entry->file_offset + entry->len < entry->file_offset)
24 		return (u64)-1;
25 	return entry->file_offset + entry->len;
26 }
27 
28 /* returns NULL if the insertion worked, or it returns the node it did find
29  * in the tree
30  */
31 static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
32 				   struct rb_node *node)
33 {
34 	struct rb_node **p = &root->rb_node;
35 	struct rb_node *parent = NULL;
36 	struct btrfs_ordered_extent *entry;
37 
38 	while (*p) {
39 		parent = *p;
40 		entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
41 
42 		if (file_offset < entry->file_offset)
43 			p = &(*p)->rb_left;
44 		else if (file_offset >= entry_end(entry))
45 			p = &(*p)->rb_right;
46 		else
47 			return parent;
48 	}
49 
50 	rb_link_node(node, parent, p);
51 	rb_insert_color(node, root);
52 	return NULL;
53 }
54 
55 /*
56  * look for a given offset in the tree, and if it can't be found return the
57  * first lesser offset
58  */
59 static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
60 				     struct rb_node **prev_ret)
61 {
62 	struct rb_node *n = root->rb_node;
63 	struct rb_node *prev = NULL;
64 	struct rb_node *test;
65 	struct btrfs_ordered_extent *entry;
66 	struct btrfs_ordered_extent *prev_entry = NULL;
67 
68 	while (n) {
69 		entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
70 		prev = n;
71 		prev_entry = entry;
72 
73 		if (file_offset < entry->file_offset)
74 			n = n->rb_left;
75 		else if (file_offset >= entry_end(entry))
76 			n = n->rb_right;
77 		else
78 			return n;
79 	}
80 	if (!prev_ret)
81 		return NULL;
82 
83 	while (prev && file_offset >= entry_end(prev_entry)) {
84 		test = rb_next(prev);
85 		if (!test)
86 			break;
87 		prev_entry = rb_entry(test, struct btrfs_ordered_extent,
88 				      rb_node);
89 		if (file_offset < entry_end(prev_entry))
90 			break;
91 
92 		prev = test;
93 	}
94 	if (prev)
95 		prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
96 				      rb_node);
97 	while (prev && file_offset < entry_end(prev_entry)) {
98 		test = rb_prev(prev);
99 		if (!test)
100 			break;
101 		prev_entry = rb_entry(test, struct btrfs_ordered_extent,
102 				      rb_node);
103 		prev = test;
104 	}
105 	*prev_ret = prev;
106 	return NULL;
107 }
108 
109 /*
110  * helper to check if a given offset is inside a given entry
111  */
112 static int offset_in_entry(struct btrfs_ordered_extent *entry, u64 file_offset)
113 {
114 	if (file_offset < entry->file_offset ||
115 	    entry->file_offset + entry->len <= file_offset)
116 		return 0;
117 	return 1;
118 }
119 
120 static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset,
121 			  u64 len)
122 {
123 	if (file_offset + len <= entry->file_offset ||
124 	    entry->file_offset + entry->len <= file_offset)
125 		return 0;
126 	return 1;
127 }
128 
129 /*
130  * look find the first ordered struct that has this offset, otherwise
131  * the first one less than this offset
132  */
133 static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree,
134 					  u64 file_offset)
135 {
136 	struct rb_root *root = &tree->tree;
137 	struct rb_node *prev = NULL;
138 	struct rb_node *ret;
139 	struct btrfs_ordered_extent *entry;
140 
141 	if (tree->last) {
142 		entry = rb_entry(tree->last, struct btrfs_ordered_extent,
143 				 rb_node);
144 		if (offset_in_entry(entry, file_offset))
145 			return tree->last;
146 	}
147 	ret = __tree_search(root, file_offset, &prev);
148 	if (!ret)
149 		ret = prev;
150 	if (ret)
151 		tree->last = ret;
152 	return ret;
153 }
154 
155 /* allocate and add a new ordered_extent into the per-inode tree.
156  * file_offset is the logical offset in the file
157  *
158  * start is the disk block number of an extent already reserved in the
159  * extent allocation tree
160  *
161  * len is the length of the extent
162  *
163  * The tree is given a single reference on the ordered extent that was
164  * inserted.
165  */
166 static int __btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
167 				      u64 start, u64 len, u64 disk_len,
168 				      int type, int dio, int compress_type)
169 {
170 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
171 	struct btrfs_root *root = BTRFS_I(inode)->root;
172 	struct btrfs_ordered_inode_tree *tree;
173 	struct rb_node *node;
174 	struct btrfs_ordered_extent *entry;
175 
176 	tree = &BTRFS_I(inode)->ordered_tree;
177 	entry = kmem_cache_zalloc(btrfs_ordered_extent_cache, GFP_NOFS);
178 	if (!entry)
179 		return -ENOMEM;
180 
181 	entry->file_offset = file_offset;
182 	entry->start = start;
183 	entry->len = len;
184 	entry->disk_len = disk_len;
185 	entry->bytes_left = len;
186 	entry->inode = igrab(inode);
187 	entry->compress_type = compress_type;
188 	entry->truncated_len = (u64)-1;
189 	if (type != BTRFS_ORDERED_IO_DONE && type != BTRFS_ORDERED_COMPLETE)
190 		set_bit(type, &entry->flags);
191 
192 	if (dio) {
193 		percpu_counter_add_batch(&fs_info->dio_bytes, len,
194 					 fs_info->delalloc_batch);
195 		set_bit(BTRFS_ORDERED_DIRECT, &entry->flags);
196 	}
197 
198 	/* one ref for the tree */
199 	refcount_set(&entry->refs, 1);
200 	init_waitqueue_head(&entry->wait);
201 	INIT_LIST_HEAD(&entry->list);
202 	INIT_LIST_HEAD(&entry->root_extent_list);
203 	INIT_LIST_HEAD(&entry->work_list);
204 	init_completion(&entry->completion);
205 	INIT_LIST_HEAD(&entry->log_list);
206 	INIT_LIST_HEAD(&entry->trans_list);
207 
208 	trace_btrfs_ordered_extent_add(inode, entry);
209 
210 	spin_lock_irq(&tree->lock);
211 	node = tree_insert(&tree->tree, file_offset,
212 			   &entry->rb_node);
213 	if (node)
214 		btrfs_panic(fs_info, -EEXIST,
215 				"inconsistency in ordered tree at offset %llu",
216 				file_offset);
217 	spin_unlock_irq(&tree->lock);
218 
219 	spin_lock(&root->ordered_extent_lock);
220 	list_add_tail(&entry->root_extent_list,
221 		      &root->ordered_extents);
222 	root->nr_ordered_extents++;
223 	if (root->nr_ordered_extents == 1) {
224 		spin_lock(&fs_info->ordered_root_lock);
225 		BUG_ON(!list_empty(&root->ordered_root));
226 		list_add_tail(&root->ordered_root, &fs_info->ordered_roots);
227 		spin_unlock(&fs_info->ordered_root_lock);
228 	}
229 	spin_unlock(&root->ordered_extent_lock);
230 
231 	/*
232 	 * We don't need the count_max_extents here, we can assume that all of
233 	 * that work has been done at higher layers, so this is truly the
234 	 * smallest the extent is going to get.
235 	 */
236 	spin_lock(&BTRFS_I(inode)->lock);
237 	btrfs_mod_outstanding_extents(BTRFS_I(inode), 1);
238 	spin_unlock(&BTRFS_I(inode)->lock);
239 
240 	return 0;
241 }
242 
243 int btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
244 			     u64 start, u64 len, u64 disk_len, int type)
245 {
246 	return __btrfs_add_ordered_extent(inode, file_offset, start, len,
247 					  disk_len, type, 0,
248 					  BTRFS_COMPRESS_NONE);
249 }
250 
251 int btrfs_add_ordered_extent_dio(struct inode *inode, u64 file_offset,
252 				 u64 start, u64 len, u64 disk_len, int type)
253 {
254 	return __btrfs_add_ordered_extent(inode, file_offset, start, len,
255 					  disk_len, type, 1,
256 					  BTRFS_COMPRESS_NONE);
257 }
258 
259 int btrfs_add_ordered_extent_compress(struct inode *inode, u64 file_offset,
260 				      u64 start, u64 len, u64 disk_len,
261 				      int type, int compress_type)
262 {
263 	return __btrfs_add_ordered_extent(inode, file_offset, start, len,
264 					  disk_len, type, 0,
265 					  compress_type);
266 }
267 
268 /*
269  * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
270  * when an ordered extent is finished.  If the list covers more than one
271  * ordered extent, it is split across multiples.
272  */
273 void btrfs_add_ordered_sum(struct btrfs_ordered_extent *entry,
274 			   struct btrfs_ordered_sum *sum)
275 {
276 	struct btrfs_ordered_inode_tree *tree;
277 
278 	tree = &BTRFS_I(entry->inode)->ordered_tree;
279 	spin_lock_irq(&tree->lock);
280 	list_add_tail(&sum->list, &entry->list);
281 	spin_unlock_irq(&tree->lock);
282 }
283 
284 /*
285  * this is used to account for finished IO across a given range
286  * of the file.  The IO may span ordered extents.  If
287  * a given ordered_extent is completely done, 1 is returned, otherwise
288  * 0.
289  *
290  * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
291  * to make sure this function only returns 1 once for a given ordered extent.
292  *
293  * file_offset is updated to one byte past the range that is recorded as
294  * complete.  This allows you to walk forward in the file.
295  */
296 int btrfs_dec_test_first_ordered_pending(struct inode *inode,
297 				   struct btrfs_ordered_extent **cached,
298 				   u64 *file_offset, u64 io_size, int uptodate)
299 {
300 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
301 	struct btrfs_ordered_inode_tree *tree;
302 	struct rb_node *node;
303 	struct btrfs_ordered_extent *entry = NULL;
304 	int ret;
305 	unsigned long flags;
306 	u64 dec_end;
307 	u64 dec_start;
308 	u64 to_dec;
309 
310 	tree = &BTRFS_I(inode)->ordered_tree;
311 	spin_lock_irqsave(&tree->lock, flags);
312 	node = tree_search(tree, *file_offset);
313 	if (!node) {
314 		ret = 1;
315 		goto out;
316 	}
317 
318 	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
319 	if (!offset_in_entry(entry, *file_offset)) {
320 		ret = 1;
321 		goto out;
322 	}
323 
324 	dec_start = max(*file_offset, entry->file_offset);
325 	dec_end = min(*file_offset + io_size, entry->file_offset +
326 		      entry->len);
327 	*file_offset = dec_end;
328 	if (dec_start > dec_end) {
329 		btrfs_crit(fs_info, "bad ordering dec_start %llu end %llu",
330 			   dec_start, dec_end);
331 	}
332 	to_dec = dec_end - dec_start;
333 	if (to_dec > entry->bytes_left) {
334 		btrfs_crit(fs_info,
335 			   "bad ordered accounting left %llu size %llu",
336 			   entry->bytes_left, to_dec);
337 	}
338 	entry->bytes_left -= to_dec;
339 	if (!uptodate)
340 		set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
341 
342 	if (entry->bytes_left == 0) {
343 		ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
344 		/* test_and_set_bit implies a barrier */
345 		cond_wake_up_nomb(&entry->wait);
346 	} else {
347 		ret = 1;
348 	}
349 out:
350 	if (!ret && cached && entry) {
351 		*cached = entry;
352 		refcount_inc(&entry->refs);
353 	}
354 	spin_unlock_irqrestore(&tree->lock, flags);
355 	return ret == 0;
356 }
357 
358 /*
359  * this is used to account for finished IO across a given range
360  * of the file.  The IO should not span ordered extents.  If
361  * a given ordered_extent is completely done, 1 is returned, otherwise
362  * 0.
363  *
364  * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
365  * to make sure this function only returns 1 once for a given ordered extent.
366  */
367 int btrfs_dec_test_ordered_pending(struct inode *inode,
368 				   struct btrfs_ordered_extent **cached,
369 				   u64 file_offset, u64 io_size, int uptodate)
370 {
371 	struct btrfs_ordered_inode_tree *tree;
372 	struct rb_node *node;
373 	struct btrfs_ordered_extent *entry = NULL;
374 	unsigned long flags;
375 	int ret;
376 
377 	tree = &BTRFS_I(inode)->ordered_tree;
378 	spin_lock_irqsave(&tree->lock, flags);
379 	if (cached && *cached) {
380 		entry = *cached;
381 		goto have_entry;
382 	}
383 
384 	node = tree_search(tree, file_offset);
385 	if (!node) {
386 		ret = 1;
387 		goto out;
388 	}
389 
390 	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
391 have_entry:
392 	if (!offset_in_entry(entry, file_offset)) {
393 		ret = 1;
394 		goto out;
395 	}
396 
397 	if (io_size > entry->bytes_left) {
398 		btrfs_crit(BTRFS_I(inode)->root->fs_info,
399 			   "bad ordered accounting left %llu size %llu",
400 		       entry->bytes_left, io_size);
401 	}
402 	entry->bytes_left -= io_size;
403 	if (!uptodate)
404 		set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
405 
406 	if (entry->bytes_left == 0) {
407 		ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
408 		/* test_and_set_bit implies a barrier */
409 		cond_wake_up_nomb(&entry->wait);
410 	} else {
411 		ret = 1;
412 	}
413 out:
414 	if (!ret && cached && entry) {
415 		*cached = entry;
416 		refcount_inc(&entry->refs);
417 	}
418 	spin_unlock_irqrestore(&tree->lock, flags);
419 	return ret == 0;
420 }
421 
422 /*
423  * used to drop a reference on an ordered extent.  This will free
424  * the extent if the last reference is dropped
425  */
426 void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
427 {
428 	struct list_head *cur;
429 	struct btrfs_ordered_sum *sum;
430 
431 	trace_btrfs_ordered_extent_put(entry->inode, entry);
432 
433 	if (refcount_dec_and_test(&entry->refs)) {
434 		ASSERT(list_empty(&entry->log_list));
435 		ASSERT(list_empty(&entry->trans_list));
436 		ASSERT(list_empty(&entry->root_extent_list));
437 		ASSERT(RB_EMPTY_NODE(&entry->rb_node));
438 		if (entry->inode)
439 			btrfs_add_delayed_iput(entry->inode);
440 		while (!list_empty(&entry->list)) {
441 			cur = entry->list.next;
442 			sum = list_entry(cur, struct btrfs_ordered_sum, list);
443 			list_del(&sum->list);
444 			kvfree(sum);
445 		}
446 		kmem_cache_free(btrfs_ordered_extent_cache, entry);
447 	}
448 }
449 
450 /*
451  * remove an ordered extent from the tree.  No references are dropped
452  * and waiters are woken up.
453  */
454 void btrfs_remove_ordered_extent(struct inode *inode,
455 				 struct btrfs_ordered_extent *entry)
456 {
457 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
458 	struct btrfs_ordered_inode_tree *tree;
459 	struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
460 	struct btrfs_root *root = btrfs_inode->root;
461 	struct rb_node *node;
462 
463 	/* This is paired with btrfs_add_ordered_extent. */
464 	spin_lock(&btrfs_inode->lock);
465 	btrfs_mod_outstanding_extents(btrfs_inode, -1);
466 	spin_unlock(&btrfs_inode->lock);
467 	if (root != fs_info->tree_root)
468 		btrfs_delalloc_release_metadata(btrfs_inode, entry->len, false);
469 
470 	if (test_bit(BTRFS_ORDERED_DIRECT, &entry->flags))
471 		percpu_counter_add_batch(&fs_info->dio_bytes, -entry->len,
472 					 fs_info->delalloc_batch);
473 
474 	tree = &btrfs_inode->ordered_tree;
475 	spin_lock_irq(&tree->lock);
476 	node = &entry->rb_node;
477 	rb_erase(node, &tree->tree);
478 	RB_CLEAR_NODE(node);
479 	if (tree->last == node)
480 		tree->last = NULL;
481 	set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
482 	spin_unlock_irq(&tree->lock);
483 
484 	spin_lock(&root->ordered_extent_lock);
485 	list_del_init(&entry->root_extent_list);
486 	root->nr_ordered_extents--;
487 
488 	trace_btrfs_ordered_extent_remove(inode, entry);
489 
490 	if (!root->nr_ordered_extents) {
491 		spin_lock(&fs_info->ordered_root_lock);
492 		BUG_ON(list_empty(&root->ordered_root));
493 		list_del_init(&root->ordered_root);
494 		spin_unlock(&fs_info->ordered_root_lock);
495 	}
496 	spin_unlock(&root->ordered_extent_lock);
497 	wake_up(&entry->wait);
498 }
499 
500 static void btrfs_run_ordered_extent_work(struct btrfs_work *work)
501 {
502 	struct btrfs_ordered_extent *ordered;
503 
504 	ordered = container_of(work, struct btrfs_ordered_extent, flush_work);
505 	btrfs_start_ordered_extent(ordered->inode, ordered, 1);
506 	complete(&ordered->completion);
507 }
508 
509 /*
510  * wait for all the ordered extents in a root.  This is done when balancing
511  * space between drives.
512  */
513 u64 btrfs_wait_ordered_extents(struct btrfs_root *root, u64 nr,
514 			       const u64 range_start, const u64 range_len)
515 {
516 	struct btrfs_fs_info *fs_info = root->fs_info;
517 	LIST_HEAD(splice);
518 	LIST_HEAD(skipped);
519 	LIST_HEAD(works);
520 	struct btrfs_ordered_extent *ordered, *next;
521 	u64 count = 0;
522 	const u64 range_end = range_start + range_len;
523 
524 	mutex_lock(&root->ordered_extent_mutex);
525 	spin_lock(&root->ordered_extent_lock);
526 	list_splice_init(&root->ordered_extents, &splice);
527 	while (!list_empty(&splice) && nr) {
528 		ordered = list_first_entry(&splice, struct btrfs_ordered_extent,
529 					   root_extent_list);
530 
531 		if (range_end <= ordered->start ||
532 		    ordered->start + ordered->disk_len <= range_start) {
533 			list_move_tail(&ordered->root_extent_list, &skipped);
534 			cond_resched_lock(&root->ordered_extent_lock);
535 			continue;
536 		}
537 
538 		list_move_tail(&ordered->root_extent_list,
539 			       &root->ordered_extents);
540 		refcount_inc(&ordered->refs);
541 		spin_unlock(&root->ordered_extent_lock);
542 
543 		btrfs_init_work(&ordered->flush_work,
544 				btrfs_run_ordered_extent_work, NULL, NULL);
545 		list_add_tail(&ordered->work_list, &works);
546 		btrfs_queue_work(fs_info->flush_workers, &ordered->flush_work);
547 
548 		cond_resched();
549 		spin_lock(&root->ordered_extent_lock);
550 		if (nr != U64_MAX)
551 			nr--;
552 		count++;
553 	}
554 	list_splice_tail(&skipped, &root->ordered_extents);
555 	list_splice_tail(&splice, &root->ordered_extents);
556 	spin_unlock(&root->ordered_extent_lock);
557 
558 	list_for_each_entry_safe(ordered, next, &works, work_list) {
559 		list_del_init(&ordered->work_list);
560 		wait_for_completion(&ordered->completion);
561 		btrfs_put_ordered_extent(ordered);
562 		cond_resched();
563 	}
564 	mutex_unlock(&root->ordered_extent_mutex);
565 
566 	return count;
567 }
568 
569 void btrfs_wait_ordered_roots(struct btrfs_fs_info *fs_info, u64 nr,
570 			     const u64 range_start, const u64 range_len)
571 {
572 	struct btrfs_root *root;
573 	struct list_head splice;
574 	u64 done;
575 
576 	INIT_LIST_HEAD(&splice);
577 
578 	mutex_lock(&fs_info->ordered_operations_mutex);
579 	spin_lock(&fs_info->ordered_root_lock);
580 	list_splice_init(&fs_info->ordered_roots, &splice);
581 	while (!list_empty(&splice) && nr) {
582 		root = list_first_entry(&splice, struct btrfs_root,
583 					ordered_root);
584 		root = btrfs_grab_fs_root(root);
585 		BUG_ON(!root);
586 		list_move_tail(&root->ordered_root,
587 			       &fs_info->ordered_roots);
588 		spin_unlock(&fs_info->ordered_root_lock);
589 
590 		done = btrfs_wait_ordered_extents(root, nr,
591 						  range_start, range_len);
592 		btrfs_put_fs_root(root);
593 
594 		spin_lock(&fs_info->ordered_root_lock);
595 		if (nr != U64_MAX) {
596 			nr -= done;
597 		}
598 	}
599 	list_splice_tail(&splice, &fs_info->ordered_roots);
600 	spin_unlock(&fs_info->ordered_root_lock);
601 	mutex_unlock(&fs_info->ordered_operations_mutex);
602 }
603 
604 /*
605  * Used to start IO or wait for a given ordered extent to finish.
606  *
607  * If wait is one, this effectively waits on page writeback for all the pages
608  * in the extent, and it waits on the io completion code to insert
609  * metadata into the btree corresponding to the extent
610  */
611 void btrfs_start_ordered_extent(struct inode *inode,
612 				       struct btrfs_ordered_extent *entry,
613 				       int wait)
614 {
615 	u64 start = entry->file_offset;
616 	u64 end = start + entry->len - 1;
617 
618 	trace_btrfs_ordered_extent_start(inode, entry);
619 
620 	/*
621 	 * pages in the range can be dirty, clean or writeback.  We
622 	 * start IO on any dirty ones so the wait doesn't stall waiting
623 	 * for the flusher thread to find them
624 	 */
625 	if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags))
626 		filemap_fdatawrite_range(inode->i_mapping, start, end);
627 	if (wait) {
628 		wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE,
629 						 &entry->flags));
630 	}
631 }
632 
633 /*
634  * Used to wait on ordered extents across a large range of bytes.
635  */
636 int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
637 {
638 	int ret = 0;
639 	int ret_wb = 0;
640 	u64 end;
641 	u64 orig_end;
642 	struct btrfs_ordered_extent *ordered;
643 
644 	if (start + len < start) {
645 		orig_end = INT_LIMIT(loff_t);
646 	} else {
647 		orig_end = start + len - 1;
648 		if (orig_end > INT_LIMIT(loff_t))
649 			orig_end = INT_LIMIT(loff_t);
650 	}
651 
652 	/* start IO across the range first to instantiate any delalloc
653 	 * extents
654 	 */
655 	ret = btrfs_fdatawrite_range(inode, start, orig_end);
656 	if (ret)
657 		return ret;
658 
659 	/*
660 	 * If we have a writeback error don't return immediately. Wait first
661 	 * for any ordered extents that haven't completed yet. This is to make
662 	 * sure no one can dirty the same page ranges and call writepages()
663 	 * before the ordered extents complete - to avoid failures (-EEXIST)
664 	 * when adding the new ordered extents to the ordered tree.
665 	 */
666 	ret_wb = filemap_fdatawait_range(inode->i_mapping, start, orig_end);
667 
668 	end = orig_end;
669 	while (1) {
670 		ordered = btrfs_lookup_first_ordered_extent(inode, end);
671 		if (!ordered)
672 			break;
673 		if (ordered->file_offset > orig_end) {
674 			btrfs_put_ordered_extent(ordered);
675 			break;
676 		}
677 		if (ordered->file_offset + ordered->len <= start) {
678 			btrfs_put_ordered_extent(ordered);
679 			break;
680 		}
681 		btrfs_start_ordered_extent(inode, ordered, 1);
682 		end = ordered->file_offset;
683 		if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags))
684 			ret = -EIO;
685 		btrfs_put_ordered_extent(ordered);
686 		if (ret || end == 0 || end == start)
687 			break;
688 		end--;
689 	}
690 	return ret_wb ? ret_wb : ret;
691 }
692 
693 /*
694  * find an ordered extent corresponding to file_offset.  return NULL if
695  * nothing is found, otherwise take a reference on the extent and return it
696  */
697 struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct inode *inode,
698 							 u64 file_offset)
699 {
700 	struct btrfs_ordered_inode_tree *tree;
701 	struct rb_node *node;
702 	struct btrfs_ordered_extent *entry = NULL;
703 
704 	tree = &BTRFS_I(inode)->ordered_tree;
705 	spin_lock_irq(&tree->lock);
706 	node = tree_search(tree, file_offset);
707 	if (!node)
708 		goto out;
709 
710 	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
711 	if (!offset_in_entry(entry, file_offset))
712 		entry = NULL;
713 	if (entry)
714 		refcount_inc(&entry->refs);
715 out:
716 	spin_unlock_irq(&tree->lock);
717 	return entry;
718 }
719 
720 /* Since the DIO code tries to lock a wide area we need to look for any ordered
721  * extents that exist in the range, rather than just the start of the range.
722  */
723 struct btrfs_ordered_extent *btrfs_lookup_ordered_range(
724 		struct btrfs_inode *inode, u64 file_offset, u64 len)
725 {
726 	struct btrfs_ordered_inode_tree *tree;
727 	struct rb_node *node;
728 	struct btrfs_ordered_extent *entry = NULL;
729 
730 	tree = &inode->ordered_tree;
731 	spin_lock_irq(&tree->lock);
732 	node = tree_search(tree, file_offset);
733 	if (!node) {
734 		node = tree_search(tree, file_offset + len);
735 		if (!node)
736 			goto out;
737 	}
738 
739 	while (1) {
740 		entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
741 		if (range_overlaps(entry, file_offset, len))
742 			break;
743 
744 		if (entry->file_offset >= file_offset + len) {
745 			entry = NULL;
746 			break;
747 		}
748 		entry = NULL;
749 		node = rb_next(node);
750 		if (!node)
751 			break;
752 	}
753 out:
754 	if (entry)
755 		refcount_inc(&entry->refs);
756 	spin_unlock_irq(&tree->lock);
757 	return entry;
758 }
759 
760 /*
761  * lookup and return any extent before 'file_offset'.  NULL is returned
762  * if none is found
763  */
764 struct btrfs_ordered_extent *
765 btrfs_lookup_first_ordered_extent(struct inode *inode, u64 file_offset)
766 {
767 	struct btrfs_ordered_inode_tree *tree;
768 	struct rb_node *node;
769 	struct btrfs_ordered_extent *entry = NULL;
770 
771 	tree = &BTRFS_I(inode)->ordered_tree;
772 	spin_lock_irq(&tree->lock);
773 	node = tree_search(tree, file_offset);
774 	if (!node)
775 		goto out;
776 
777 	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
778 	refcount_inc(&entry->refs);
779 out:
780 	spin_unlock_irq(&tree->lock);
781 	return entry;
782 }
783 
784 /*
785  * After an extent is done, call this to conditionally update the on disk
786  * i_size.  i_size is updated to cover any fully written part of the file.
787  */
788 int btrfs_ordered_update_i_size(struct inode *inode, u64 offset,
789 				struct btrfs_ordered_extent *ordered)
790 {
791 	struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
792 	u64 disk_i_size;
793 	u64 new_i_size;
794 	u64 i_size = i_size_read(inode);
795 	struct rb_node *node;
796 	struct rb_node *prev = NULL;
797 	struct btrfs_ordered_extent *test;
798 	int ret = 1;
799 	u64 orig_offset = offset;
800 
801 	spin_lock_irq(&tree->lock);
802 	if (ordered) {
803 		offset = entry_end(ordered);
804 		if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags))
805 			offset = min(offset,
806 				     ordered->file_offset +
807 				     ordered->truncated_len);
808 	} else {
809 		offset = ALIGN(offset, btrfs_inode_sectorsize(inode));
810 	}
811 	disk_i_size = BTRFS_I(inode)->disk_i_size;
812 
813 	/*
814 	 * truncate file.
815 	 * If ordered is not NULL, then this is called from endio and
816 	 * disk_i_size will be updated by either truncate itself or any
817 	 * in-flight IOs which are inside the disk_i_size.
818 	 *
819 	 * Because btrfs_setsize() may set i_size with disk_i_size if truncate
820 	 * fails somehow, we need to make sure we have a precise disk_i_size by
821 	 * updating it as usual.
822 	 *
823 	 */
824 	if (!ordered && disk_i_size > i_size) {
825 		BTRFS_I(inode)->disk_i_size = orig_offset;
826 		ret = 0;
827 		goto out;
828 	}
829 
830 	/*
831 	 * if the disk i_size is already at the inode->i_size, or
832 	 * this ordered extent is inside the disk i_size, we're done
833 	 */
834 	if (disk_i_size == i_size)
835 		goto out;
836 
837 	/*
838 	 * We still need to update disk_i_size if outstanding_isize is greater
839 	 * than disk_i_size.
840 	 */
841 	if (offset <= disk_i_size &&
842 	    (!ordered || ordered->outstanding_isize <= disk_i_size))
843 		goto out;
844 
845 	/*
846 	 * walk backward from this ordered extent to disk_i_size.
847 	 * if we find an ordered extent then we can't update disk i_size
848 	 * yet
849 	 */
850 	if (ordered) {
851 		node = rb_prev(&ordered->rb_node);
852 	} else {
853 		prev = tree_search(tree, offset);
854 		/*
855 		 * we insert file extents without involving ordered struct,
856 		 * so there should be no ordered struct cover this offset
857 		 */
858 		if (prev) {
859 			test = rb_entry(prev, struct btrfs_ordered_extent,
860 					rb_node);
861 			BUG_ON(offset_in_entry(test, offset));
862 		}
863 		node = prev;
864 	}
865 	for (; node; node = rb_prev(node)) {
866 		test = rb_entry(node, struct btrfs_ordered_extent, rb_node);
867 
868 		/* We treat this entry as if it doesn't exist */
869 		if (test_bit(BTRFS_ORDERED_UPDATED_ISIZE, &test->flags))
870 			continue;
871 
872 		if (entry_end(test) <= disk_i_size)
873 			break;
874 		if (test->file_offset >= i_size)
875 			break;
876 
877 		/*
878 		 * We don't update disk_i_size now, so record this undealt
879 		 * i_size. Or we will not know the real i_size.
880 		 */
881 		if (test->outstanding_isize < offset)
882 			test->outstanding_isize = offset;
883 		if (ordered &&
884 		    ordered->outstanding_isize > test->outstanding_isize)
885 			test->outstanding_isize = ordered->outstanding_isize;
886 		goto out;
887 	}
888 	new_i_size = min_t(u64, offset, i_size);
889 
890 	/*
891 	 * Some ordered extents may completed before the current one, and
892 	 * we hold the real i_size in ->outstanding_isize.
893 	 */
894 	if (ordered && ordered->outstanding_isize > new_i_size)
895 		new_i_size = min_t(u64, ordered->outstanding_isize, i_size);
896 	BTRFS_I(inode)->disk_i_size = new_i_size;
897 	ret = 0;
898 out:
899 	/*
900 	 * We need to do this because we can't remove ordered extents until
901 	 * after the i_disk_size has been updated and then the inode has been
902 	 * updated to reflect the change, so we need to tell anybody who finds
903 	 * this ordered extent that we've already done all the real work, we
904 	 * just haven't completed all the other work.
905 	 */
906 	if (ordered)
907 		set_bit(BTRFS_ORDERED_UPDATED_ISIZE, &ordered->flags);
908 	spin_unlock_irq(&tree->lock);
909 	return ret;
910 }
911 
912 /*
913  * search the ordered extents for one corresponding to 'offset' and
914  * try to find a checksum.  This is used because we allow pages to
915  * be reclaimed before their checksum is actually put into the btree
916  */
917 int btrfs_find_ordered_sum(struct inode *inode, u64 offset, u64 disk_bytenr,
918 			   u8 *sum, int len)
919 {
920 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
921 	struct btrfs_ordered_sum *ordered_sum;
922 	struct btrfs_ordered_extent *ordered;
923 	struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
924 	unsigned long num_sectors;
925 	unsigned long i;
926 	u32 sectorsize = btrfs_inode_sectorsize(inode);
927 	const u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
928 	int index = 0;
929 
930 	ordered = btrfs_lookup_ordered_extent(inode, offset);
931 	if (!ordered)
932 		return 0;
933 
934 	spin_lock_irq(&tree->lock);
935 	list_for_each_entry_reverse(ordered_sum, &ordered->list, list) {
936 		if (disk_bytenr >= ordered_sum->bytenr &&
937 		    disk_bytenr < ordered_sum->bytenr + ordered_sum->len) {
938 			i = (disk_bytenr - ordered_sum->bytenr) >>
939 			    inode->i_sb->s_blocksize_bits;
940 			num_sectors = ordered_sum->len >>
941 				      inode->i_sb->s_blocksize_bits;
942 			num_sectors = min_t(int, len - index, num_sectors - i);
943 			memcpy(sum + index, ordered_sum->sums + i * csum_size,
944 			       num_sectors * csum_size);
945 
946 			index += (int)num_sectors * csum_size;
947 			if (index == len)
948 				goto out;
949 			disk_bytenr += num_sectors * sectorsize;
950 		}
951 	}
952 out:
953 	spin_unlock_irq(&tree->lock);
954 	btrfs_put_ordered_extent(ordered);
955 	return index;
956 }
957 
958 /*
959  * btrfs_flush_ordered_range - Lock the passed range and ensures all pending
960  * ordered extents in it are run to completion.
961  *
962  * @tree:         IO tree used for locking out other users of the range
963  * @inode:        Inode whose ordered tree is to be searched
964  * @start:        Beginning of range to flush
965  * @end:          Last byte of range to lock
966  * @cached_state: If passed, will return the extent state responsible for the
967  * locked range. It's the caller's responsibility to free the cached state.
968  *
969  * This function always returns with the given range locked, ensuring after it's
970  * called no order extent can be pending.
971  */
972 void btrfs_lock_and_flush_ordered_range(struct extent_io_tree *tree,
973 					struct btrfs_inode *inode, u64 start,
974 					u64 end,
975 					struct extent_state **cached_state)
976 {
977 	struct btrfs_ordered_extent *ordered;
978 	struct extent_state *cache = NULL;
979 	struct extent_state **cachedp = &cache;
980 
981 	if (cached_state)
982 		cachedp = cached_state;
983 
984 	while (1) {
985 		lock_extent_bits(tree, start, end, cachedp);
986 		ordered = btrfs_lookup_ordered_range(inode, start,
987 						     end - start + 1);
988 		if (!ordered) {
989 			/*
990 			 * If no external cached_state has been passed then
991 			 * decrement the extra ref taken for cachedp since we
992 			 * aren't exposing it outside of this function
993 			 */
994 			if (!cached_state)
995 				refcount_dec(&cache->refs);
996 			break;
997 		}
998 		unlock_extent_cached(tree, start, end, cachedp);
999 		btrfs_start_ordered_extent(&inode->vfs_inode, ordered, 1);
1000 		btrfs_put_ordered_extent(ordered);
1001 	}
1002 }
1003 
1004 int __init ordered_data_init(void)
1005 {
1006 	btrfs_ordered_extent_cache = kmem_cache_create("btrfs_ordered_extent",
1007 				     sizeof(struct btrfs_ordered_extent), 0,
1008 				     SLAB_MEM_SPREAD,
1009 				     NULL);
1010 	if (!btrfs_ordered_extent_cache)
1011 		return -ENOMEM;
1012 
1013 	return 0;
1014 }
1015 
1016 void __cold ordered_data_exit(void)
1017 {
1018 	kmem_cache_destroy(btrfs_ordered_extent_cache);
1019 }
1020