xref: /openbmc/linux/fs/btrfs/ordered-data.c (revision 5104d265)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/slab.h>
20 #include <linux/blkdev.h>
21 #include <linux/writeback.h>
22 #include <linux/pagevec.h>
23 #include "ctree.h"
24 #include "transaction.h"
25 #include "btrfs_inode.h"
26 #include "extent_io.h"
27 #include "disk-io.h"
28 
29 static struct kmem_cache *btrfs_ordered_extent_cache;
30 
31 static u64 entry_end(struct btrfs_ordered_extent *entry)
32 {
33 	if (entry->file_offset + entry->len < entry->file_offset)
34 		return (u64)-1;
35 	return entry->file_offset + entry->len;
36 }
37 
38 /* returns NULL if the insertion worked, or it returns the node it did find
39  * in the tree
40  */
41 static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
42 				   struct rb_node *node)
43 {
44 	struct rb_node **p = &root->rb_node;
45 	struct rb_node *parent = NULL;
46 	struct btrfs_ordered_extent *entry;
47 
48 	while (*p) {
49 		parent = *p;
50 		entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
51 
52 		if (file_offset < entry->file_offset)
53 			p = &(*p)->rb_left;
54 		else if (file_offset >= entry_end(entry))
55 			p = &(*p)->rb_right;
56 		else
57 			return parent;
58 	}
59 
60 	rb_link_node(node, parent, p);
61 	rb_insert_color(node, root);
62 	return NULL;
63 }
64 
65 static void ordered_data_tree_panic(struct inode *inode, int errno,
66 					       u64 offset)
67 {
68 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
69 	btrfs_panic(fs_info, errno, "Inconsistency in ordered tree at offset "
70 		    "%llu\n", (unsigned long long)offset);
71 }
72 
73 /*
74  * look for a given offset in the tree, and if it can't be found return the
75  * first lesser offset
76  */
77 static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
78 				     struct rb_node **prev_ret)
79 {
80 	struct rb_node *n = root->rb_node;
81 	struct rb_node *prev = NULL;
82 	struct rb_node *test;
83 	struct btrfs_ordered_extent *entry;
84 	struct btrfs_ordered_extent *prev_entry = NULL;
85 
86 	while (n) {
87 		entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
88 		prev = n;
89 		prev_entry = entry;
90 
91 		if (file_offset < entry->file_offset)
92 			n = n->rb_left;
93 		else if (file_offset >= entry_end(entry))
94 			n = n->rb_right;
95 		else
96 			return n;
97 	}
98 	if (!prev_ret)
99 		return NULL;
100 
101 	while (prev && file_offset >= entry_end(prev_entry)) {
102 		test = rb_next(prev);
103 		if (!test)
104 			break;
105 		prev_entry = rb_entry(test, struct btrfs_ordered_extent,
106 				      rb_node);
107 		if (file_offset < entry_end(prev_entry))
108 			break;
109 
110 		prev = test;
111 	}
112 	if (prev)
113 		prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
114 				      rb_node);
115 	while (prev && file_offset < entry_end(prev_entry)) {
116 		test = rb_prev(prev);
117 		if (!test)
118 			break;
119 		prev_entry = rb_entry(test, struct btrfs_ordered_extent,
120 				      rb_node);
121 		prev = test;
122 	}
123 	*prev_ret = prev;
124 	return NULL;
125 }
126 
127 /*
128  * helper to check if a given offset is inside a given entry
129  */
130 static int offset_in_entry(struct btrfs_ordered_extent *entry, u64 file_offset)
131 {
132 	if (file_offset < entry->file_offset ||
133 	    entry->file_offset + entry->len <= file_offset)
134 		return 0;
135 	return 1;
136 }
137 
138 static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset,
139 			  u64 len)
140 {
141 	if (file_offset + len <= entry->file_offset ||
142 	    entry->file_offset + entry->len <= file_offset)
143 		return 0;
144 	return 1;
145 }
146 
147 /*
148  * look find the first ordered struct that has this offset, otherwise
149  * the first one less than this offset
150  */
151 static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree,
152 					  u64 file_offset)
153 {
154 	struct rb_root *root = &tree->tree;
155 	struct rb_node *prev = NULL;
156 	struct rb_node *ret;
157 	struct btrfs_ordered_extent *entry;
158 
159 	if (tree->last) {
160 		entry = rb_entry(tree->last, struct btrfs_ordered_extent,
161 				 rb_node);
162 		if (offset_in_entry(entry, file_offset))
163 			return tree->last;
164 	}
165 	ret = __tree_search(root, file_offset, &prev);
166 	if (!ret)
167 		ret = prev;
168 	if (ret)
169 		tree->last = ret;
170 	return ret;
171 }
172 
173 /* allocate and add a new ordered_extent into the per-inode tree.
174  * file_offset is the logical offset in the file
175  *
176  * start is the disk block number of an extent already reserved in the
177  * extent allocation tree
178  *
179  * len is the length of the extent
180  *
181  * The tree is given a single reference on the ordered extent that was
182  * inserted.
183  */
184 static int __btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
185 				      u64 start, u64 len, u64 disk_len,
186 				      int type, int dio, int compress_type)
187 {
188 	struct btrfs_root *root = BTRFS_I(inode)->root;
189 	struct btrfs_ordered_inode_tree *tree;
190 	struct rb_node *node;
191 	struct btrfs_ordered_extent *entry;
192 
193 	tree = &BTRFS_I(inode)->ordered_tree;
194 	entry = kmem_cache_zalloc(btrfs_ordered_extent_cache, GFP_NOFS);
195 	if (!entry)
196 		return -ENOMEM;
197 
198 	entry->file_offset = file_offset;
199 	entry->start = start;
200 	entry->len = len;
201 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) &&
202 	    !(type == BTRFS_ORDERED_NOCOW))
203 		entry->csum_bytes_left = disk_len;
204 	entry->disk_len = disk_len;
205 	entry->bytes_left = len;
206 	entry->inode = igrab(inode);
207 	entry->compress_type = compress_type;
208 	if (type != BTRFS_ORDERED_IO_DONE && type != BTRFS_ORDERED_COMPLETE)
209 		set_bit(type, &entry->flags);
210 
211 	if (dio)
212 		set_bit(BTRFS_ORDERED_DIRECT, &entry->flags);
213 
214 	/* one ref for the tree */
215 	atomic_set(&entry->refs, 1);
216 	init_waitqueue_head(&entry->wait);
217 	INIT_LIST_HEAD(&entry->list);
218 	INIT_LIST_HEAD(&entry->root_extent_list);
219 	INIT_LIST_HEAD(&entry->work_list);
220 	init_completion(&entry->completion);
221 	INIT_LIST_HEAD(&entry->log_list);
222 
223 	trace_btrfs_ordered_extent_add(inode, entry);
224 
225 	spin_lock_irq(&tree->lock);
226 	node = tree_insert(&tree->tree, file_offset,
227 			   &entry->rb_node);
228 	if (node)
229 		ordered_data_tree_panic(inode, -EEXIST, file_offset);
230 	spin_unlock_irq(&tree->lock);
231 
232 	spin_lock(&root->ordered_extent_lock);
233 	list_add_tail(&entry->root_extent_list,
234 		      &root->ordered_extents);
235 	root->nr_ordered_extents++;
236 	if (root->nr_ordered_extents == 1) {
237 		spin_lock(&root->fs_info->ordered_root_lock);
238 		BUG_ON(!list_empty(&root->ordered_root));
239 		list_add_tail(&root->ordered_root,
240 			      &root->fs_info->ordered_roots);
241 		spin_unlock(&root->fs_info->ordered_root_lock);
242 	}
243 	spin_unlock(&root->ordered_extent_lock);
244 
245 	return 0;
246 }
247 
248 int btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
249 			     u64 start, u64 len, u64 disk_len, int type)
250 {
251 	return __btrfs_add_ordered_extent(inode, file_offset, start, len,
252 					  disk_len, type, 0,
253 					  BTRFS_COMPRESS_NONE);
254 }
255 
256 int btrfs_add_ordered_extent_dio(struct inode *inode, u64 file_offset,
257 				 u64 start, u64 len, u64 disk_len, int type)
258 {
259 	return __btrfs_add_ordered_extent(inode, file_offset, start, len,
260 					  disk_len, type, 1,
261 					  BTRFS_COMPRESS_NONE);
262 }
263 
264 int btrfs_add_ordered_extent_compress(struct inode *inode, u64 file_offset,
265 				      u64 start, u64 len, u64 disk_len,
266 				      int type, int compress_type)
267 {
268 	return __btrfs_add_ordered_extent(inode, file_offset, start, len,
269 					  disk_len, type, 0,
270 					  compress_type);
271 }
272 
273 /*
274  * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
275  * when an ordered extent is finished.  If the list covers more than one
276  * ordered extent, it is split across multiples.
277  */
278 void btrfs_add_ordered_sum(struct inode *inode,
279 			   struct btrfs_ordered_extent *entry,
280 			   struct btrfs_ordered_sum *sum)
281 {
282 	struct btrfs_ordered_inode_tree *tree;
283 
284 	tree = &BTRFS_I(inode)->ordered_tree;
285 	spin_lock_irq(&tree->lock);
286 	list_add_tail(&sum->list, &entry->list);
287 	WARN_ON(entry->csum_bytes_left < sum->len);
288 	entry->csum_bytes_left -= sum->len;
289 	if (entry->csum_bytes_left == 0)
290 		wake_up(&entry->wait);
291 	spin_unlock_irq(&tree->lock);
292 }
293 
294 /*
295  * this is used to account for finished IO across a given range
296  * of the file.  The IO may span ordered extents.  If
297  * a given ordered_extent is completely done, 1 is returned, otherwise
298  * 0.
299  *
300  * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
301  * to make sure this function only returns 1 once for a given ordered extent.
302  *
303  * file_offset is updated to one byte past the range that is recorded as
304  * complete.  This allows you to walk forward in the file.
305  */
306 int btrfs_dec_test_first_ordered_pending(struct inode *inode,
307 				   struct btrfs_ordered_extent **cached,
308 				   u64 *file_offset, u64 io_size, int uptodate)
309 {
310 	struct btrfs_ordered_inode_tree *tree;
311 	struct rb_node *node;
312 	struct btrfs_ordered_extent *entry = NULL;
313 	int ret;
314 	unsigned long flags;
315 	u64 dec_end;
316 	u64 dec_start;
317 	u64 to_dec;
318 
319 	tree = &BTRFS_I(inode)->ordered_tree;
320 	spin_lock_irqsave(&tree->lock, flags);
321 	node = tree_search(tree, *file_offset);
322 	if (!node) {
323 		ret = 1;
324 		goto out;
325 	}
326 
327 	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
328 	if (!offset_in_entry(entry, *file_offset)) {
329 		ret = 1;
330 		goto out;
331 	}
332 
333 	dec_start = max(*file_offset, entry->file_offset);
334 	dec_end = min(*file_offset + io_size, entry->file_offset +
335 		      entry->len);
336 	*file_offset = dec_end;
337 	if (dec_start > dec_end) {
338 		printk(KERN_CRIT "bad ordering dec_start %llu end %llu\n",
339 		       (unsigned long long)dec_start,
340 		       (unsigned long long)dec_end);
341 	}
342 	to_dec = dec_end - dec_start;
343 	if (to_dec > entry->bytes_left) {
344 		printk(KERN_CRIT "bad ordered accounting left %llu size %llu\n",
345 		       (unsigned long long)entry->bytes_left,
346 		       (unsigned long long)to_dec);
347 	}
348 	entry->bytes_left -= to_dec;
349 	if (!uptodate)
350 		set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
351 
352 	if (entry->bytes_left == 0)
353 		ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
354 	else
355 		ret = 1;
356 out:
357 	if (!ret && cached && entry) {
358 		*cached = entry;
359 		atomic_inc(&entry->refs);
360 	}
361 	spin_unlock_irqrestore(&tree->lock, flags);
362 	return ret == 0;
363 }
364 
365 /*
366  * this is used to account for finished IO across a given range
367  * of the file.  The IO should not span ordered extents.  If
368  * a given ordered_extent is completely done, 1 is returned, otherwise
369  * 0.
370  *
371  * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
372  * to make sure this function only returns 1 once for a given ordered extent.
373  */
374 int btrfs_dec_test_ordered_pending(struct inode *inode,
375 				   struct btrfs_ordered_extent **cached,
376 				   u64 file_offset, u64 io_size, int uptodate)
377 {
378 	struct btrfs_ordered_inode_tree *tree;
379 	struct rb_node *node;
380 	struct btrfs_ordered_extent *entry = NULL;
381 	unsigned long flags;
382 	int ret;
383 
384 	tree = &BTRFS_I(inode)->ordered_tree;
385 	spin_lock_irqsave(&tree->lock, flags);
386 	if (cached && *cached) {
387 		entry = *cached;
388 		goto have_entry;
389 	}
390 
391 	node = tree_search(tree, file_offset);
392 	if (!node) {
393 		ret = 1;
394 		goto out;
395 	}
396 
397 	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
398 have_entry:
399 	if (!offset_in_entry(entry, file_offset)) {
400 		ret = 1;
401 		goto out;
402 	}
403 
404 	if (io_size > entry->bytes_left) {
405 		printk(KERN_CRIT "bad ordered accounting left %llu size %llu\n",
406 		       (unsigned long long)entry->bytes_left,
407 		       (unsigned long long)io_size);
408 	}
409 	entry->bytes_left -= io_size;
410 	if (!uptodate)
411 		set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
412 
413 	if (entry->bytes_left == 0)
414 		ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
415 	else
416 		ret = 1;
417 out:
418 	if (!ret && cached && entry) {
419 		*cached = entry;
420 		atomic_inc(&entry->refs);
421 	}
422 	spin_unlock_irqrestore(&tree->lock, flags);
423 	return ret == 0;
424 }
425 
426 /* Needs to either be called under a log transaction or the log_mutex */
427 void btrfs_get_logged_extents(struct btrfs_root *log, struct inode *inode)
428 {
429 	struct btrfs_ordered_inode_tree *tree;
430 	struct btrfs_ordered_extent *ordered;
431 	struct rb_node *n;
432 	int index = log->log_transid % 2;
433 
434 	tree = &BTRFS_I(inode)->ordered_tree;
435 	spin_lock_irq(&tree->lock);
436 	for (n = rb_first(&tree->tree); n; n = rb_next(n)) {
437 		ordered = rb_entry(n, struct btrfs_ordered_extent, rb_node);
438 		spin_lock(&log->log_extents_lock[index]);
439 		if (list_empty(&ordered->log_list)) {
440 			list_add_tail(&ordered->log_list, &log->logged_list[index]);
441 			atomic_inc(&ordered->refs);
442 		}
443 		spin_unlock(&log->log_extents_lock[index]);
444 	}
445 	spin_unlock_irq(&tree->lock);
446 }
447 
448 void btrfs_wait_logged_extents(struct btrfs_root *log, u64 transid)
449 {
450 	struct btrfs_ordered_extent *ordered;
451 	int index = transid % 2;
452 
453 	spin_lock_irq(&log->log_extents_lock[index]);
454 	while (!list_empty(&log->logged_list[index])) {
455 		ordered = list_first_entry(&log->logged_list[index],
456 					   struct btrfs_ordered_extent,
457 					   log_list);
458 		list_del_init(&ordered->log_list);
459 		spin_unlock_irq(&log->log_extents_lock[index]);
460 		wait_event(ordered->wait, test_bit(BTRFS_ORDERED_IO_DONE,
461 						   &ordered->flags));
462 		btrfs_put_ordered_extent(ordered);
463 		spin_lock_irq(&log->log_extents_lock[index]);
464 	}
465 	spin_unlock_irq(&log->log_extents_lock[index]);
466 }
467 
468 void btrfs_free_logged_extents(struct btrfs_root *log, u64 transid)
469 {
470 	struct btrfs_ordered_extent *ordered;
471 	int index = transid % 2;
472 
473 	spin_lock_irq(&log->log_extents_lock[index]);
474 	while (!list_empty(&log->logged_list[index])) {
475 		ordered = list_first_entry(&log->logged_list[index],
476 					   struct btrfs_ordered_extent,
477 					   log_list);
478 		list_del_init(&ordered->log_list);
479 		spin_unlock_irq(&log->log_extents_lock[index]);
480 		btrfs_put_ordered_extent(ordered);
481 		spin_lock_irq(&log->log_extents_lock[index]);
482 	}
483 	spin_unlock_irq(&log->log_extents_lock[index]);
484 }
485 
486 /*
487  * used to drop a reference on an ordered extent.  This will free
488  * the extent if the last reference is dropped
489  */
490 void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
491 {
492 	struct list_head *cur;
493 	struct btrfs_ordered_sum *sum;
494 
495 	trace_btrfs_ordered_extent_put(entry->inode, entry);
496 
497 	if (atomic_dec_and_test(&entry->refs)) {
498 		if (entry->inode)
499 			btrfs_add_delayed_iput(entry->inode);
500 		while (!list_empty(&entry->list)) {
501 			cur = entry->list.next;
502 			sum = list_entry(cur, struct btrfs_ordered_sum, list);
503 			list_del(&sum->list);
504 			kfree(sum);
505 		}
506 		kmem_cache_free(btrfs_ordered_extent_cache, entry);
507 	}
508 }
509 
510 /*
511  * remove an ordered extent from the tree.  No references are dropped
512  * and waiters are woken up.
513  */
514 void btrfs_remove_ordered_extent(struct inode *inode,
515 				 struct btrfs_ordered_extent *entry)
516 {
517 	struct btrfs_ordered_inode_tree *tree;
518 	struct btrfs_root *root = BTRFS_I(inode)->root;
519 	struct rb_node *node;
520 
521 	tree = &BTRFS_I(inode)->ordered_tree;
522 	spin_lock_irq(&tree->lock);
523 	node = &entry->rb_node;
524 	rb_erase(node, &tree->tree);
525 	tree->last = NULL;
526 	set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
527 	spin_unlock_irq(&tree->lock);
528 
529 	spin_lock(&root->ordered_extent_lock);
530 	list_del_init(&entry->root_extent_list);
531 	root->nr_ordered_extents--;
532 
533 	trace_btrfs_ordered_extent_remove(inode, entry);
534 
535 	/*
536 	 * we have no more ordered extents for this inode and
537 	 * no dirty pages.  We can safely remove it from the
538 	 * list of ordered extents
539 	 */
540 	if (RB_EMPTY_ROOT(&tree->tree) &&
541 	    !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
542 		list_del_init(&BTRFS_I(inode)->ordered_operations);
543 	}
544 
545 	if (!root->nr_ordered_extents) {
546 		spin_lock(&root->fs_info->ordered_root_lock);
547 		BUG_ON(list_empty(&root->ordered_root));
548 		list_del_init(&root->ordered_root);
549 		spin_unlock(&root->fs_info->ordered_root_lock);
550 	}
551 	spin_unlock(&root->ordered_extent_lock);
552 	wake_up(&entry->wait);
553 }
554 
555 static void btrfs_run_ordered_extent_work(struct btrfs_work *work)
556 {
557 	struct btrfs_ordered_extent *ordered;
558 
559 	ordered = container_of(work, struct btrfs_ordered_extent, flush_work);
560 	btrfs_start_ordered_extent(ordered->inode, ordered, 1);
561 	complete(&ordered->completion);
562 }
563 
564 /*
565  * wait for all the ordered extents in a root.  This is done when balancing
566  * space between drives.
567  */
568 void btrfs_wait_ordered_extents(struct btrfs_root *root, int delay_iput)
569 {
570 	struct list_head splice, works;
571 	struct btrfs_ordered_extent *ordered, *next;
572 	struct inode *inode;
573 
574 	INIT_LIST_HEAD(&splice);
575 	INIT_LIST_HEAD(&works);
576 
577 	mutex_lock(&root->fs_info->ordered_operations_mutex);
578 	spin_lock(&root->ordered_extent_lock);
579 	list_splice_init(&root->ordered_extents, &splice);
580 	while (!list_empty(&splice)) {
581 		ordered = list_first_entry(&splice, struct btrfs_ordered_extent,
582 					   root_extent_list);
583 		list_move_tail(&ordered->root_extent_list,
584 			       &root->ordered_extents);
585 		/*
586 		 * the inode may be getting freed (in sys_unlink path).
587 		 */
588 		inode = igrab(ordered->inode);
589 		if (!inode) {
590 			cond_resched_lock(&root->ordered_extent_lock);
591 			continue;
592 		}
593 
594 		atomic_inc(&ordered->refs);
595 		spin_unlock(&root->ordered_extent_lock);
596 
597 		ordered->flush_work.func = btrfs_run_ordered_extent_work;
598 		list_add_tail(&ordered->work_list, &works);
599 		btrfs_queue_worker(&root->fs_info->flush_workers,
600 				   &ordered->flush_work);
601 
602 		cond_resched();
603 		spin_lock(&root->ordered_extent_lock);
604 	}
605 	spin_unlock(&root->ordered_extent_lock);
606 
607 	list_for_each_entry_safe(ordered, next, &works, work_list) {
608 		list_del_init(&ordered->work_list);
609 		wait_for_completion(&ordered->completion);
610 
611 		inode = ordered->inode;
612 		btrfs_put_ordered_extent(ordered);
613 		if (delay_iput)
614 			btrfs_add_delayed_iput(inode);
615 		else
616 			iput(inode);
617 
618 		cond_resched();
619 	}
620 	mutex_unlock(&root->fs_info->ordered_operations_mutex);
621 }
622 
623 void btrfs_wait_all_ordered_extents(struct btrfs_fs_info *fs_info,
624 				    int delay_iput)
625 {
626 	struct btrfs_root *root;
627 	struct list_head splice;
628 
629 	INIT_LIST_HEAD(&splice);
630 
631 	spin_lock(&fs_info->ordered_root_lock);
632 	list_splice_init(&fs_info->ordered_roots, &splice);
633 	while (!list_empty(&splice)) {
634 		root = list_first_entry(&splice, struct btrfs_root,
635 					ordered_root);
636 		root = btrfs_grab_fs_root(root);
637 		BUG_ON(!root);
638 		list_move_tail(&root->ordered_root,
639 			       &fs_info->ordered_roots);
640 		spin_unlock(&fs_info->ordered_root_lock);
641 
642 		btrfs_wait_ordered_extents(root, delay_iput);
643 		btrfs_put_fs_root(root);
644 
645 		spin_lock(&fs_info->ordered_root_lock);
646 	}
647 	spin_unlock(&fs_info->ordered_root_lock);
648 }
649 
650 /*
651  * this is used during transaction commit to write all the inodes
652  * added to the ordered operation list.  These files must be fully on
653  * disk before the transaction commits.
654  *
655  * we have two modes here, one is to just start the IO via filemap_flush
656  * and the other is to wait for all the io.  When we wait, we have an
657  * extra check to make sure the ordered operation list really is empty
658  * before we return
659  */
660 int btrfs_run_ordered_operations(struct btrfs_trans_handle *trans,
661 				 struct btrfs_root *root, int wait)
662 {
663 	struct btrfs_inode *btrfs_inode;
664 	struct inode *inode;
665 	struct btrfs_transaction *cur_trans = trans->transaction;
666 	struct list_head splice;
667 	struct list_head works;
668 	struct btrfs_delalloc_work *work, *next;
669 	int ret = 0;
670 
671 	INIT_LIST_HEAD(&splice);
672 	INIT_LIST_HEAD(&works);
673 
674 	mutex_lock(&root->fs_info->ordered_operations_mutex);
675 	spin_lock(&root->fs_info->ordered_root_lock);
676 	list_splice_init(&cur_trans->ordered_operations, &splice);
677 	while (!list_empty(&splice)) {
678 		btrfs_inode = list_entry(splice.next, struct btrfs_inode,
679 				   ordered_operations);
680 		inode = &btrfs_inode->vfs_inode;
681 
682 		list_del_init(&btrfs_inode->ordered_operations);
683 
684 		/*
685 		 * the inode may be getting freed (in sys_unlink path).
686 		 */
687 		inode = igrab(inode);
688 		if (!inode)
689 			continue;
690 
691 		if (!wait)
692 			list_add_tail(&BTRFS_I(inode)->ordered_operations,
693 				      &cur_trans->ordered_operations);
694 		spin_unlock(&root->fs_info->ordered_root_lock);
695 
696 		work = btrfs_alloc_delalloc_work(inode, wait, 1);
697 		if (!work) {
698 			spin_lock(&root->fs_info->ordered_root_lock);
699 			if (list_empty(&BTRFS_I(inode)->ordered_operations))
700 				list_add_tail(&btrfs_inode->ordered_operations,
701 					      &splice);
702 			list_splice_tail(&splice,
703 					 &cur_trans->ordered_operations);
704 			spin_unlock(&root->fs_info->ordered_root_lock);
705 			ret = -ENOMEM;
706 			goto out;
707 		}
708 		list_add_tail(&work->list, &works);
709 		btrfs_queue_worker(&root->fs_info->flush_workers,
710 				   &work->work);
711 
712 		cond_resched();
713 		spin_lock(&root->fs_info->ordered_root_lock);
714 	}
715 	spin_unlock(&root->fs_info->ordered_root_lock);
716 out:
717 	list_for_each_entry_safe(work, next, &works, list) {
718 		list_del_init(&work->list);
719 		btrfs_wait_and_free_delalloc_work(work);
720 	}
721 	mutex_unlock(&root->fs_info->ordered_operations_mutex);
722 	return ret;
723 }
724 
725 /*
726  * Used to start IO or wait for a given ordered extent to finish.
727  *
728  * If wait is one, this effectively waits on page writeback for all the pages
729  * in the extent, and it waits on the io completion code to insert
730  * metadata into the btree corresponding to the extent
731  */
732 void btrfs_start_ordered_extent(struct inode *inode,
733 				       struct btrfs_ordered_extent *entry,
734 				       int wait)
735 {
736 	u64 start = entry->file_offset;
737 	u64 end = start + entry->len - 1;
738 
739 	trace_btrfs_ordered_extent_start(inode, entry);
740 
741 	/*
742 	 * pages in the range can be dirty, clean or writeback.  We
743 	 * start IO on any dirty ones so the wait doesn't stall waiting
744 	 * for the flusher thread to find them
745 	 */
746 	if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags))
747 		filemap_fdatawrite_range(inode->i_mapping, start, end);
748 	if (wait) {
749 		wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE,
750 						 &entry->flags));
751 	}
752 }
753 
754 /*
755  * Used to wait on ordered extents across a large range of bytes.
756  */
757 void btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
758 {
759 	u64 end;
760 	u64 orig_end;
761 	struct btrfs_ordered_extent *ordered;
762 
763 	if (start + len < start) {
764 		orig_end = INT_LIMIT(loff_t);
765 	} else {
766 		orig_end = start + len - 1;
767 		if (orig_end > INT_LIMIT(loff_t))
768 			orig_end = INT_LIMIT(loff_t);
769 	}
770 
771 	/* start IO across the range first to instantiate any delalloc
772 	 * extents
773 	 */
774 	filemap_fdatawrite_range(inode->i_mapping, start, orig_end);
775 
776 	/*
777 	 * So with compression we will find and lock a dirty page and clear the
778 	 * first one as dirty, setup an async extent, and immediately return
779 	 * with the entire range locked but with nobody actually marked with
780 	 * writeback.  So we can't just filemap_write_and_wait_range() and
781 	 * expect it to work since it will just kick off a thread to do the
782 	 * actual work.  So we need to call filemap_fdatawrite_range _again_
783 	 * since it will wait on the page lock, which won't be unlocked until
784 	 * after the pages have been marked as writeback and so we're good to go
785 	 * from there.  We have to do this otherwise we'll miss the ordered
786 	 * extents and that results in badness.  Please Josef, do not think you
787 	 * know better and pull this out at some point in the future, it is
788 	 * right and you are wrong.
789 	 */
790 	if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
791 		     &BTRFS_I(inode)->runtime_flags))
792 		filemap_fdatawrite_range(inode->i_mapping, start, orig_end);
793 
794 	filemap_fdatawait_range(inode->i_mapping, start, orig_end);
795 
796 	end = orig_end;
797 	while (1) {
798 		ordered = btrfs_lookup_first_ordered_extent(inode, end);
799 		if (!ordered)
800 			break;
801 		if (ordered->file_offset > orig_end) {
802 			btrfs_put_ordered_extent(ordered);
803 			break;
804 		}
805 		if (ordered->file_offset + ordered->len < start) {
806 			btrfs_put_ordered_extent(ordered);
807 			break;
808 		}
809 		btrfs_start_ordered_extent(inode, ordered, 1);
810 		end = ordered->file_offset;
811 		btrfs_put_ordered_extent(ordered);
812 		if (end == 0 || end == start)
813 			break;
814 		end--;
815 	}
816 }
817 
818 /*
819  * find an ordered extent corresponding to file_offset.  return NULL if
820  * nothing is found, otherwise take a reference on the extent and return it
821  */
822 struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct inode *inode,
823 							 u64 file_offset)
824 {
825 	struct btrfs_ordered_inode_tree *tree;
826 	struct rb_node *node;
827 	struct btrfs_ordered_extent *entry = NULL;
828 
829 	tree = &BTRFS_I(inode)->ordered_tree;
830 	spin_lock_irq(&tree->lock);
831 	node = tree_search(tree, file_offset);
832 	if (!node)
833 		goto out;
834 
835 	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
836 	if (!offset_in_entry(entry, file_offset))
837 		entry = NULL;
838 	if (entry)
839 		atomic_inc(&entry->refs);
840 out:
841 	spin_unlock_irq(&tree->lock);
842 	return entry;
843 }
844 
845 /* Since the DIO code tries to lock a wide area we need to look for any ordered
846  * extents that exist in the range, rather than just the start of the range.
847  */
848 struct btrfs_ordered_extent *btrfs_lookup_ordered_range(struct inode *inode,
849 							u64 file_offset,
850 							u64 len)
851 {
852 	struct btrfs_ordered_inode_tree *tree;
853 	struct rb_node *node;
854 	struct btrfs_ordered_extent *entry = NULL;
855 
856 	tree = &BTRFS_I(inode)->ordered_tree;
857 	spin_lock_irq(&tree->lock);
858 	node = tree_search(tree, file_offset);
859 	if (!node) {
860 		node = tree_search(tree, file_offset + len);
861 		if (!node)
862 			goto out;
863 	}
864 
865 	while (1) {
866 		entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
867 		if (range_overlaps(entry, file_offset, len))
868 			break;
869 
870 		if (entry->file_offset >= file_offset + len) {
871 			entry = NULL;
872 			break;
873 		}
874 		entry = NULL;
875 		node = rb_next(node);
876 		if (!node)
877 			break;
878 	}
879 out:
880 	if (entry)
881 		atomic_inc(&entry->refs);
882 	spin_unlock_irq(&tree->lock);
883 	return entry;
884 }
885 
886 /*
887  * lookup and return any extent before 'file_offset'.  NULL is returned
888  * if none is found
889  */
890 struct btrfs_ordered_extent *
891 btrfs_lookup_first_ordered_extent(struct inode *inode, u64 file_offset)
892 {
893 	struct btrfs_ordered_inode_tree *tree;
894 	struct rb_node *node;
895 	struct btrfs_ordered_extent *entry = NULL;
896 
897 	tree = &BTRFS_I(inode)->ordered_tree;
898 	spin_lock_irq(&tree->lock);
899 	node = tree_search(tree, file_offset);
900 	if (!node)
901 		goto out;
902 
903 	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
904 	atomic_inc(&entry->refs);
905 out:
906 	spin_unlock_irq(&tree->lock);
907 	return entry;
908 }
909 
910 /*
911  * After an extent is done, call this to conditionally update the on disk
912  * i_size.  i_size is updated to cover any fully written part of the file.
913  */
914 int btrfs_ordered_update_i_size(struct inode *inode, u64 offset,
915 				struct btrfs_ordered_extent *ordered)
916 {
917 	struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
918 	u64 disk_i_size;
919 	u64 new_i_size;
920 	u64 i_size = i_size_read(inode);
921 	struct rb_node *node;
922 	struct rb_node *prev = NULL;
923 	struct btrfs_ordered_extent *test;
924 	int ret = 1;
925 
926 	if (ordered)
927 		offset = entry_end(ordered);
928 	else
929 		offset = ALIGN(offset, BTRFS_I(inode)->root->sectorsize);
930 
931 	spin_lock_irq(&tree->lock);
932 	disk_i_size = BTRFS_I(inode)->disk_i_size;
933 
934 	/* truncate file */
935 	if (disk_i_size > i_size) {
936 		BTRFS_I(inode)->disk_i_size = i_size;
937 		ret = 0;
938 		goto out;
939 	}
940 
941 	/*
942 	 * if the disk i_size is already at the inode->i_size, or
943 	 * this ordered extent is inside the disk i_size, we're done
944 	 */
945 	if (disk_i_size == i_size)
946 		goto out;
947 
948 	/*
949 	 * We still need to update disk_i_size if outstanding_isize is greater
950 	 * than disk_i_size.
951 	 */
952 	if (offset <= disk_i_size &&
953 	    (!ordered || ordered->outstanding_isize <= disk_i_size))
954 		goto out;
955 
956 	/*
957 	 * walk backward from this ordered extent to disk_i_size.
958 	 * if we find an ordered extent then we can't update disk i_size
959 	 * yet
960 	 */
961 	if (ordered) {
962 		node = rb_prev(&ordered->rb_node);
963 	} else {
964 		prev = tree_search(tree, offset);
965 		/*
966 		 * we insert file extents without involving ordered struct,
967 		 * so there should be no ordered struct cover this offset
968 		 */
969 		if (prev) {
970 			test = rb_entry(prev, struct btrfs_ordered_extent,
971 					rb_node);
972 			BUG_ON(offset_in_entry(test, offset));
973 		}
974 		node = prev;
975 	}
976 	for (; node; node = rb_prev(node)) {
977 		test = rb_entry(node, struct btrfs_ordered_extent, rb_node);
978 
979 		/* We treat this entry as if it doesnt exist */
980 		if (test_bit(BTRFS_ORDERED_UPDATED_ISIZE, &test->flags))
981 			continue;
982 		if (test->file_offset + test->len <= disk_i_size)
983 			break;
984 		if (test->file_offset >= i_size)
985 			break;
986 		if (entry_end(test) > disk_i_size) {
987 			/*
988 			 * we don't update disk_i_size now, so record this
989 			 * undealt i_size. Or we will not know the real
990 			 * i_size.
991 			 */
992 			if (test->outstanding_isize < offset)
993 				test->outstanding_isize = offset;
994 			if (ordered &&
995 			    ordered->outstanding_isize >
996 			    test->outstanding_isize)
997 				test->outstanding_isize =
998 						ordered->outstanding_isize;
999 			goto out;
1000 		}
1001 	}
1002 	new_i_size = min_t(u64, offset, i_size);
1003 
1004 	/*
1005 	 * Some ordered extents may completed before the current one, and
1006 	 * we hold the real i_size in ->outstanding_isize.
1007 	 */
1008 	if (ordered && ordered->outstanding_isize > new_i_size)
1009 		new_i_size = min_t(u64, ordered->outstanding_isize, i_size);
1010 	BTRFS_I(inode)->disk_i_size = new_i_size;
1011 	ret = 0;
1012 out:
1013 	/*
1014 	 * We need to do this because we can't remove ordered extents until
1015 	 * after the i_disk_size has been updated and then the inode has been
1016 	 * updated to reflect the change, so we need to tell anybody who finds
1017 	 * this ordered extent that we've already done all the real work, we
1018 	 * just haven't completed all the other work.
1019 	 */
1020 	if (ordered)
1021 		set_bit(BTRFS_ORDERED_UPDATED_ISIZE, &ordered->flags);
1022 	spin_unlock_irq(&tree->lock);
1023 	return ret;
1024 }
1025 
1026 /*
1027  * search the ordered extents for one corresponding to 'offset' and
1028  * try to find a checksum.  This is used because we allow pages to
1029  * be reclaimed before their checksum is actually put into the btree
1030  */
1031 int btrfs_find_ordered_sum(struct inode *inode, u64 offset, u64 disk_bytenr,
1032 			   u32 *sum, int len)
1033 {
1034 	struct btrfs_ordered_sum *ordered_sum;
1035 	struct btrfs_ordered_extent *ordered;
1036 	struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
1037 	unsigned long num_sectors;
1038 	unsigned long i;
1039 	u32 sectorsize = BTRFS_I(inode)->root->sectorsize;
1040 	int index = 0;
1041 
1042 	ordered = btrfs_lookup_ordered_extent(inode, offset);
1043 	if (!ordered)
1044 		return 0;
1045 
1046 	spin_lock_irq(&tree->lock);
1047 	list_for_each_entry_reverse(ordered_sum, &ordered->list, list) {
1048 		if (disk_bytenr >= ordered_sum->bytenr &&
1049 		    disk_bytenr < ordered_sum->bytenr + ordered_sum->len) {
1050 			i = (disk_bytenr - ordered_sum->bytenr) >>
1051 			    inode->i_sb->s_blocksize_bits;
1052 			num_sectors = ordered_sum->len >>
1053 				      inode->i_sb->s_blocksize_bits;
1054 			num_sectors = min_t(int, len - index, num_sectors - i);
1055 			memcpy(sum + index, ordered_sum->sums + i,
1056 			       num_sectors);
1057 
1058 			index += (int)num_sectors;
1059 			if (index == len)
1060 				goto out;
1061 			disk_bytenr += num_sectors * sectorsize;
1062 		}
1063 	}
1064 out:
1065 	spin_unlock_irq(&tree->lock);
1066 	btrfs_put_ordered_extent(ordered);
1067 	return index;
1068 }
1069 
1070 
1071 /*
1072  * add a given inode to the list of inodes that must be fully on
1073  * disk before a transaction commit finishes.
1074  *
1075  * This basically gives us the ext3 style data=ordered mode, and it is mostly
1076  * used to make sure renamed files are fully on disk.
1077  *
1078  * It is a noop if the inode is already fully on disk.
1079  *
1080  * If trans is not null, we'll do a friendly check for a transaction that
1081  * is already flushing things and force the IO down ourselves.
1082  */
1083 void btrfs_add_ordered_operation(struct btrfs_trans_handle *trans,
1084 				 struct btrfs_root *root, struct inode *inode)
1085 {
1086 	struct btrfs_transaction *cur_trans = trans->transaction;
1087 	u64 last_mod;
1088 
1089 	last_mod = max(BTRFS_I(inode)->generation, BTRFS_I(inode)->last_trans);
1090 
1091 	/*
1092 	 * if this file hasn't been changed since the last transaction
1093 	 * commit, we can safely return without doing anything
1094 	 */
1095 	if (last_mod < root->fs_info->last_trans_committed)
1096 		return;
1097 
1098 	spin_lock(&root->fs_info->ordered_root_lock);
1099 	if (list_empty(&BTRFS_I(inode)->ordered_operations)) {
1100 		list_add_tail(&BTRFS_I(inode)->ordered_operations,
1101 			      &cur_trans->ordered_operations);
1102 	}
1103 	spin_unlock(&root->fs_info->ordered_root_lock);
1104 }
1105 
1106 int __init ordered_data_init(void)
1107 {
1108 	btrfs_ordered_extent_cache = kmem_cache_create("btrfs_ordered_extent",
1109 				     sizeof(struct btrfs_ordered_extent), 0,
1110 				     SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
1111 				     NULL);
1112 	if (!btrfs_ordered_extent_cache)
1113 		return -ENOMEM;
1114 
1115 	return 0;
1116 }
1117 
1118 void ordered_data_exit(void)
1119 {
1120 	if (btrfs_ordered_extent_cache)
1121 		kmem_cache_destroy(btrfs_ordered_extent_cache);
1122 }
1123