1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/slab.h> 20 #include <linux/blkdev.h> 21 #include <linux/writeback.h> 22 #include <linux/pagevec.h> 23 #include "ctree.h" 24 #include "transaction.h" 25 #include "btrfs_inode.h" 26 #include "extent_io.h" 27 #include "disk-io.h" 28 29 static struct kmem_cache *btrfs_ordered_extent_cache; 30 31 static u64 entry_end(struct btrfs_ordered_extent *entry) 32 { 33 if (entry->file_offset + entry->len < entry->file_offset) 34 return (u64)-1; 35 return entry->file_offset + entry->len; 36 } 37 38 /* returns NULL if the insertion worked, or it returns the node it did find 39 * in the tree 40 */ 41 static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset, 42 struct rb_node *node) 43 { 44 struct rb_node **p = &root->rb_node; 45 struct rb_node *parent = NULL; 46 struct btrfs_ordered_extent *entry; 47 48 while (*p) { 49 parent = *p; 50 entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node); 51 52 if (file_offset < entry->file_offset) 53 p = &(*p)->rb_left; 54 else if (file_offset >= entry_end(entry)) 55 p = &(*p)->rb_right; 56 else 57 return parent; 58 } 59 60 rb_link_node(node, parent, p); 61 rb_insert_color(node, root); 62 return NULL; 63 } 64 65 static void ordered_data_tree_panic(struct inode *inode, int errno, 66 u64 offset) 67 { 68 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 69 btrfs_panic(fs_info, errno, "Inconsistency in ordered tree at offset " 70 "%llu\n", (unsigned long long)offset); 71 } 72 73 /* 74 * look for a given offset in the tree, and if it can't be found return the 75 * first lesser offset 76 */ 77 static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset, 78 struct rb_node **prev_ret) 79 { 80 struct rb_node *n = root->rb_node; 81 struct rb_node *prev = NULL; 82 struct rb_node *test; 83 struct btrfs_ordered_extent *entry; 84 struct btrfs_ordered_extent *prev_entry = NULL; 85 86 while (n) { 87 entry = rb_entry(n, struct btrfs_ordered_extent, rb_node); 88 prev = n; 89 prev_entry = entry; 90 91 if (file_offset < entry->file_offset) 92 n = n->rb_left; 93 else if (file_offset >= entry_end(entry)) 94 n = n->rb_right; 95 else 96 return n; 97 } 98 if (!prev_ret) 99 return NULL; 100 101 while (prev && file_offset >= entry_end(prev_entry)) { 102 test = rb_next(prev); 103 if (!test) 104 break; 105 prev_entry = rb_entry(test, struct btrfs_ordered_extent, 106 rb_node); 107 if (file_offset < entry_end(prev_entry)) 108 break; 109 110 prev = test; 111 } 112 if (prev) 113 prev_entry = rb_entry(prev, struct btrfs_ordered_extent, 114 rb_node); 115 while (prev && file_offset < entry_end(prev_entry)) { 116 test = rb_prev(prev); 117 if (!test) 118 break; 119 prev_entry = rb_entry(test, struct btrfs_ordered_extent, 120 rb_node); 121 prev = test; 122 } 123 *prev_ret = prev; 124 return NULL; 125 } 126 127 /* 128 * helper to check if a given offset is inside a given entry 129 */ 130 static int offset_in_entry(struct btrfs_ordered_extent *entry, u64 file_offset) 131 { 132 if (file_offset < entry->file_offset || 133 entry->file_offset + entry->len <= file_offset) 134 return 0; 135 return 1; 136 } 137 138 static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset, 139 u64 len) 140 { 141 if (file_offset + len <= entry->file_offset || 142 entry->file_offset + entry->len <= file_offset) 143 return 0; 144 return 1; 145 } 146 147 /* 148 * look find the first ordered struct that has this offset, otherwise 149 * the first one less than this offset 150 */ 151 static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree, 152 u64 file_offset) 153 { 154 struct rb_root *root = &tree->tree; 155 struct rb_node *prev = NULL; 156 struct rb_node *ret; 157 struct btrfs_ordered_extent *entry; 158 159 if (tree->last) { 160 entry = rb_entry(tree->last, struct btrfs_ordered_extent, 161 rb_node); 162 if (offset_in_entry(entry, file_offset)) 163 return tree->last; 164 } 165 ret = __tree_search(root, file_offset, &prev); 166 if (!ret) 167 ret = prev; 168 if (ret) 169 tree->last = ret; 170 return ret; 171 } 172 173 /* allocate and add a new ordered_extent into the per-inode tree. 174 * file_offset is the logical offset in the file 175 * 176 * start is the disk block number of an extent already reserved in the 177 * extent allocation tree 178 * 179 * len is the length of the extent 180 * 181 * The tree is given a single reference on the ordered extent that was 182 * inserted. 183 */ 184 static int __btrfs_add_ordered_extent(struct inode *inode, u64 file_offset, 185 u64 start, u64 len, u64 disk_len, 186 int type, int dio, int compress_type) 187 { 188 struct btrfs_root *root = BTRFS_I(inode)->root; 189 struct btrfs_ordered_inode_tree *tree; 190 struct rb_node *node; 191 struct btrfs_ordered_extent *entry; 192 193 tree = &BTRFS_I(inode)->ordered_tree; 194 entry = kmem_cache_zalloc(btrfs_ordered_extent_cache, GFP_NOFS); 195 if (!entry) 196 return -ENOMEM; 197 198 entry->file_offset = file_offset; 199 entry->start = start; 200 entry->len = len; 201 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) && 202 !(type == BTRFS_ORDERED_NOCOW)) 203 entry->csum_bytes_left = disk_len; 204 entry->disk_len = disk_len; 205 entry->bytes_left = len; 206 entry->inode = igrab(inode); 207 entry->compress_type = compress_type; 208 if (type != BTRFS_ORDERED_IO_DONE && type != BTRFS_ORDERED_COMPLETE) 209 set_bit(type, &entry->flags); 210 211 if (dio) 212 set_bit(BTRFS_ORDERED_DIRECT, &entry->flags); 213 214 /* one ref for the tree */ 215 atomic_set(&entry->refs, 1); 216 init_waitqueue_head(&entry->wait); 217 INIT_LIST_HEAD(&entry->list); 218 INIT_LIST_HEAD(&entry->root_extent_list); 219 INIT_LIST_HEAD(&entry->work_list); 220 init_completion(&entry->completion); 221 INIT_LIST_HEAD(&entry->log_list); 222 223 trace_btrfs_ordered_extent_add(inode, entry); 224 225 spin_lock_irq(&tree->lock); 226 node = tree_insert(&tree->tree, file_offset, 227 &entry->rb_node); 228 if (node) 229 ordered_data_tree_panic(inode, -EEXIST, file_offset); 230 spin_unlock_irq(&tree->lock); 231 232 spin_lock(&root->ordered_extent_lock); 233 list_add_tail(&entry->root_extent_list, 234 &root->ordered_extents); 235 root->nr_ordered_extents++; 236 if (root->nr_ordered_extents == 1) { 237 spin_lock(&root->fs_info->ordered_root_lock); 238 BUG_ON(!list_empty(&root->ordered_root)); 239 list_add_tail(&root->ordered_root, 240 &root->fs_info->ordered_roots); 241 spin_unlock(&root->fs_info->ordered_root_lock); 242 } 243 spin_unlock(&root->ordered_extent_lock); 244 245 return 0; 246 } 247 248 int btrfs_add_ordered_extent(struct inode *inode, u64 file_offset, 249 u64 start, u64 len, u64 disk_len, int type) 250 { 251 return __btrfs_add_ordered_extent(inode, file_offset, start, len, 252 disk_len, type, 0, 253 BTRFS_COMPRESS_NONE); 254 } 255 256 int btrfs_add_ordered_extent_dio(struct inode *inode, u64 file_offset, 257 u64 start, u64 len, u64 disk_len, int type) 258 { 259 return __btrfs_add_ordered_extent(inode, file_offset, start, len, 260 disk_len, type, 1, 261 BTRFS_COMPRESS_NONE); 262 } 263 264 int btrfs_add_ordered_extent_compress(struct inode *inode, u64 file_offset, 265 u64 start, u64 len, u64 disk_len, 266 int type, int compress_type) 267 { 268 return __btrfs_add_ordered_extent(inode, file_offset, start, len, 269 disk_len, type, 0, 270 compress_type); 271 } 272 273 /* 274 * Add a struct btrfs_ordered_sum into the list of checksums to be inserted 275 * when an ordered extent is finished. If the list covers more than one 276 * ordered extent, it is split across multiples. 277 */ 278 void btrfs_add_ordered_sum(struct inode *inode, 279 struct btrfs_ordered_extent *entry, 280 struct btrfs_ordered_sum *sum) 281 { 282 struct btrfs_ordered_inode_tree *tree; 283 284 tree = &BTRFS_I(inode)->ordered_tree; 285 spin_lock_irq(&tree->lock); 286 list_add_tail(&sum->list, &entry->list); 287 WARN_ON(entry->csum_bytes_left < sum->len); 288 entry->csum_bytes_left -= sum->len; 289 if (entry->csum_bytes_left == 0) 290 wake_up(&entry->wait); 291 spin_unlock_irq(&tree->lock); 292 } 293 294 /* 295 * this is used to account for finished IO across a given range 296 * of the file. The IO may span ordered extents. If 297 * a given ordered_extent is completely done, 1 is returned, otherwise 298 * 0. 299 * 300 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used 301 * to make sure this function only returns 1 once for a given ordered extent. 302 * 303 * file_offset is updated to one byte past the range that is recorded as 304 * complete. This allows you to walk forward in the file. 305 */ 306 int btrfs_dec_test_first_ordered_pending(struct inode *inode, 307 struct btrfs_ordered_extent **cached, 308 u64 *file_offset, u64 io_size, int uptodate) 309 { 310 struct btrfs_ordered_inode_tree *tree; 311 struct rb_node *node; 312 struct btrfs_ordered_extent *entry = NULL; 313 int ret; 314 unsigned long flags; 315 u64 dec_end; 316 u64 dec_start; 317 u64 to_dec; 318 319 tree = &BTRFS_I(inode)->ordered_tree; 320 spin_lock_irqsave(&tree->lock, flags); 321 node = tree_search(tree, *file_offset); 322 if (!node) { 323 ret = 1; 324 goto out; 325 } 326 327 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); 328 if (!offset_in_entry(entry, *file_offset)) { 329 ret = 1; 330 goto out; 331 } 332 333 dec_start = max(*file_offset, entry->file_offset); 334 dec_end = min(*file_offset + io_size, entry->file_offset + 335 entry->len); 336 *file_offset = dec_end; 337 if (dec_start > dec_end) { 338 printk(KERN_CRIT "bad ordering dec_start %llu end %llu\n", 339 (unsigned long long)dec_start, 340 (unsigned long long)dec_end); 341 } 342 to_dec = dec_end - dec_start; 343 if (to_dec > entry->bytes_left) { 344 printk(KERN_CRIT "bad ordered accounting left %llu size %llu\n", 345 (unsigned long long)entry->bytes_left, 346 (unsigned long long)to_dec); 347 } 348 entry->bytes_left -= to_dec; 349 if (!uptodate) 350 set_bit(BTRFS_ORDERED_IOERR, &entry->flags); 351 352 if (entry->bytes_left == 0) 353 ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags); 354 else 355 ret = 1; 356 out: 357 if (!ret && cached && entry) { 358 *cached = entry; 359 atomic_inc(&entry->refs); 360 } 361 spin_unlock_irqrestore(&tree->lock, flags); 362 return ret == 0; 363 } 364 365 /* 366 * this is used to account for finished IO across a given range 367 * of the file. The IO should not span ordered extents. If 368 * a given ordered_extent is completely done, 1 is returned, otherwise 369 * 0. 370 * 371 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used 372 * to make sure this function only returns 1 once for a given ordered extent. 373 */ 374 int btrfs_dec_test_ordered_pending(struct inode *inode, 375 struct btrfs_ordered_extent **cached, 376 u64 file_offset, u64 io_size, int uptodate) 377 { 378 struct btrfs_ordered_inode_tree *tree; 379 struct rb_node *node; 380 struct btrfs_ordered_extent *entry = NULL; 381 unsigned long flags; 382 int ret; 383 384 tree = &BTRFS_I(inode)->ordered_tree; 385 spin_lock_irqsave(&tree->lock, flags); 386 if (cached && *cached) { 387 entry = *cached; 388 goto have_entry; 389 } 390 391 node = tree_search(tree, file_offset); 392 if (!node) { 393 ret = 1; 394 goto out; 395 } 396 397 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); 398 have_entry: 399 if (!offset_in_entry(entry, file_offset)) { 400 ret = 1; 401 goto out; 402 } 403 404 if (io_size > entry->bytes_left) { 405 printk(KERN_CRIT "bad ordered accounting left %llu size %llu\n", 406 (unsigned long long)entry->bytes_left, 407 (unsigned long long)io_size); 408 } 409 entry->bytes_left -= io_size; 410 if (!uptodate) 411 set_bit(BTRFS_ORDERED_IOERR, &entry->flags); 412 413 if (entry->bytes_left == 0) 414 ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags); 415 else 416 ret = 1; 417 out: 418 if (!ret && cached && entry) { 419 *cached = entry; 420 atomic_inc(&entry->refs); 421 } 422 spin_unlock_irqrestore(&tree->lock, flags); 423 return ret == 0; 424 } 425 426 /* Needs to either be called under a log transaction or the log_mutex */ 427 void btrfs_get_logged_extents(struct btrfs_root *log, struct inode *inode) 428 { 429 struct btrfs_ordered_inode_tree *tree; 430 struct btrfs_ordered_extent *ordered; 431 struct rb_node *n; 432 int index = log->log_transid % 2; 433 434 tree = &BTRFS_I(inode)->ordered_tree; 435 spin_lock_irq(&tree->lock); 436 for (n = rb_first(&tree->tree); n; n = rb_next(n)) { 437 ordered = rb_entry(n, struct btrfs_ordered_extent, rb_node); 438 spin_lock(&log->log_extents_lock[index]); 439 if (list_empty(&ordered->log_list)) { 440 list_add_tail(&ordered->log_list, &log->logged_list[index]); 441 atomic_inc(&ordered->refs); 442 } 443 spin_unlock(&log->log_extents_lock[index]); 444 } 445 spin_unlock_irq(&tree->lock); 446 } 447 448 void btrfs_wait_logged_extents(struct btrfs_root *log, u64 transid) 449 { 450 struct btrfs_ordered_extent *ordered; 451 int index = transid % 2; 452 453 spin_lock_irq(&log->log_extents_lock[index]); 454 while (!list_empty(&log->logged_list[index])) { 455 ordered = list_first_entry(&log->logged_list[index], 456 struct btrfs_ordered_extent, 457 log_list); 458 list_del_init(&ordered->log_list); 459 spin_unlock_irq(&log->log_extents_lock[index]); 460 wait_event(ordered->wait, test_bit(BTRFS_ORDERED_IO_DONE, 461 &ordered->flags)); 462 btrfs_put_ordered_extent(ordered); 463 spin_lock_irq(&log->log_extents_lock[index]); 464 } 465 spin_unlock_irq(&log->log_extents_lock[index]); 466 } 467 468 void btrfs_free_logged_extents(struct btrfs_root *log, u64 transid) 469 { 470 struct btrfs_ordered_extent *ordered; 471 int index = transid % 2; 472 473 spin_lock_irq(&log->log_extents_lock[index]); 474 while (!list_empty(&log->logged_list[index])) { 475 ordered = list_first_entry(&log->logged_list[index], 476 struct btrfs_ordered_extent, 477 log_list); 478 list_del_init(&ordered->log_list); 479 spin_unlock_irq(&log->log_extents_lock[index]); 480 btrfs_put_ordered_extent(ordered); 481 spin_lock_irq(&log->log_extents_lock[index]); 482 } 483 spin_unlock_irq(&log->log_extents_lock[index]); 484 } 485 486 /* 487 * used to drop a reference on an ordered extent. This will free 488 * the extent if the last reference is dropped 489 */ 490 void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry) 491 { 492 struct list_head *cur; 493 struct btrfs_ordered_sum *sum; 494 495 trace_btrfs_ordered_extent_put(entry->inode, entry); 496 497 if (atomic_dec_and_test(&entry->refs)) { 498 if (entry->inode) 499 btrfs_add_delayed_iput(entry->inode); 500 while (!list_empty(&entry->list)) { 501 cur = entry->list.next; 502 sum = list_entry(cur, struct btrfs_ordered_sum, list); 503 list_del(&sum->list); 504 kfree(sum); 505 } 506 kmem_cache_free(btrfs_ordered_extent_cache, entry); 507 } 508 } 509 510 /* 511 * remove an ordered extent from the tree. No references are dropped 512 * and waiters are woken up. 513 */ 514 void btrfs_remove_ordered_extent(struct inode *inode, 515 struct btrfs_ordered_extent *entry) 516 { 517 struct btrfs_ordered_inode_tree *tree; 518 struct btrfs_root *root = BTRFS_I(inode)->root; 519 struct rb_node *node; 520 521 tree = &BTRFS_I(inode)->ordered_tree; 522 spin_lock_irq(&tree->lock); 523 node = &entry->rb_node; 524 rb_erase(node, &tree->tree); 525 tree->last = NULL; 526 set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags); 527 spin_unlock_irq(&tree->lock); 528 529 spin_lock(&root->ordered_extent_lock); 530 list_del_init(&entry->root_extent_list); 531 root->nr_ordered_extents--; 532 533 trace_btrfs_ordered_extent_remove(inode, entry); 534 535 /* 536 * we have no more ordered extents for this inode and 537 * no dirty pages. We can safely remove it from the 538 * list of ordered extents 539 */ 540 if (RB_EMPTY_ROOT(&tree->tree) && 541 !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) { 542 list_del_init(&BTRFS_I(inode)->ordered_operations); 543 } 544 545 if (!root->nr_ordered_extents) { 546 spin_lock(&root->fs_info->ordered_root_lock); 547 BUG_ON(list_empty(&root->ordered_root)); 548 list_del_init(&root->ordered_root); 549 spin_unlock(&root->fs_info->ordered_root_lock); 550 } 551 spin_unlock(&root->ordered_extent_lock); 552 wake_up(&entry->wait); 553 } 554 555 static void btrfs_run_ordered_extent_work(struct btrfs_work *work) 556 { 557 struct btrfs_ordered_extent *ordered; 558 559 ordered = container_of(work, struct btrfs_ordered_extent, flush_work); 560 btrfs_start_ordered_extent(ordered->inode, ordered, 1); 561 complete(&ordered->completion); 562 } 563 564 /* 565 * wait for all the ordered extents in a root. This is done when balancing 566 * space between drives. 567 */ 568 void btrfs_wait_ordered_extents(struct btrfs_root *root, int delay_iput) 569 { 570 struct list_head splice, works; 571 struct btrfs_ordered_extent *ordered, *next; 572 struct inode *inode; 573 574 INIT_LIST_HEAD(&splice); 575 INIT_LIST_HEAD(&works); 576 577 mutex_lock(&root->fs_info->ordered_operations_mutex); 578 spin_lock(&root->ordered_extent_lock); 579 list_splice_init(&root->ordered_extents, &splice); 580 while (!list_empty(&splice)) { 581 ordered = list_first_entry(&splice, struct btrfs_ordered_extent, 582 root_extent_list); 583 list_move_tail(&ordered->root_extent_list, 584 &root->ordered_extents); 585 /* 586 * the inode may be getting freed (in sys_unlink path). 587 */ 588 inode = igrab(ordered->inode); 589 if (!inode) { 590 cond_resched_lock(&root->ordered_extent_lock); 591 continue; 592 } 593 594 atomic_inc(&ordered->refs); 595 spin_unlock(&root->ordered_extent_lock); 596 597 ordered->flush_work.func = btrfs_run_ordered_extent_work; 598 list_add_tail(&ordered->work_list, &works); 599 btrfs_queue_worker(&root->fs_info->flush_workers, 600 &ordered->flush_work); 601 602 cond_resched(); 603 spin_lock(&root->ordered_extent_lock); 604 } 605 spin_unlock(&root->ordered_extent_lock); 606 607 list_for_each_entry_safe(ordered, next, &works, work_list) { 608 list_del_init(&ordered->work_list); 609 wait_for_completion(&ordered->completion); 610 611 inode = ordered->inode; 612 btrfs_put_ordered_extent(ordered); 613 if (delay_iput) 614 btrfs_add_delayed_iput(inode); 615 else 616 iput(inode); 617 618 cond_resched(); 619 } 620 mutex_unlock(&root->fs_info->ordered_operations_mutex); 621 } 622 623 void btrfs_wait_all_ordered_extents(struct btrfs_fs_info *fs_info, 624 int delay_iput) 625 { 626 struct btrfs_root *root; 627 struct list_head splice; 628 629 INIT_LIST_HEAD(&splice); 630 631 spin_lock(&fs_info->ordered_root_lock); 632 list_splice_init(&fs_info->ordered_roots, &splice); 633 while (!list_empty(&splice)) { 634 root = list_first_entry(&splice, struct btrfs_root, 635 ordered_root); 636 root = btrfs_grab_fs_root(root); 637 BUG_ON(!root); 638 list_move_tail(&root->ordered_root, 639 &fs_info->ordered_roots); 640 spin_unlock(&fs_info->ordered_root_lock); 641 642 btrfs_wait_ordered_extents(root, delay_iput); 643 btrfs_put_fs_root(root); 644 645 spin_lock(&fs_info->ordered_root_lock); 646 } 647 spin_unlock(&fs_info->ordered_root_lock); 648 } 649 650 /* 651 * this is used during transaction commit to write all the inodes 652 * added to the ordered operation list. These files must be fully on 653 * disk before the transaction commits. 654 * 655 * we have two modes here, one is to just start the IO via filemap_flush 656 * and the other is to wait for all the io. When we wait, we have an 657 * extra check to make sure the ordered operation list really is empty 658 * before we return 659 */ 660 int btrfs_run_ordered_operations(struct btrfs_trans_handle *trans, 661 struct btrfs_root *root, int wait) 662 { 663 struct btrfs_inode *btrfs_inode; 664 struct inode *inode; 665 struct btrfs_transaction *cur_trans = trans->transaction; 666 struct list_head splice; 667 struct list_head works; 668 struct btrfs_delalloc_work *work, *next; 669 int ret = 0; 670 671 INIT_LIST_HEAD(&splice); 672 INIT_LIST_HEAD(&works); 673 674 mutex_lock(&root->fs_info->ordered_operations_mutex); 675 spin_lock(&root->fs_info->ordered_root_lock); 676 list_splice_init(&cur_trans->ordered_operations, &splice); 677 while (!list_empty(&splice)) { 678 btrfs_inode = list_entry(splice.next, struct btrfs_inode, 679 ordered_operations); 680 inode = &btrfs_inode->vfs_inode; 681 682 list_del_init(&btrfs_inode->ordered_operations); 683 684 /* 685 * the inode may be getting freed (in sys_unlink path). 686 */ 687 inode = igrab(inode); 688 if (!inode) 689 continue; 690 691 if (!wait) 692 list_add_tail(&BTRFS_I(inode)->ordered_operations, 693 &cur_trans->ordered_operations); 694 spin_unlock(&root->fs_info->ordered_root_lock); 695 696 work = btrfs_alloc_delalloc_work(inode, wait, 1); 697 if (!work) { 698 spin_lock(&root->fs_info->ordered_root_lock); 699 if (list_empty(&BTRFS_I(inode)->ordered_operations)) 700 list_add_tail(&btrfs_inode->ordered_operations, 701 &splice); 702 list_splice_tail(&splice, 703 &cur_trans->ordered_operations); 704 spin_unlock(&root->fs_info->ordered_root_lock); 705 ret = -ENOMEM; 706 goto out; 707 } 708 list_add_tail(&work->list, &works); 709 btrfs_queue_worker(&root->fs_info->flush_workers, 710 &work->work); 711 712 cond_resched(); 713 spin_lock(&root->fs_info->ordered_root_lock); 714 } 715 spin_unlock(&root->fs_info->ordered_root_lock); 716 out: 717 list_for_each_entry_safe(work, next, &works, list) { 718 list_del_init(&work->list); 719 btrfs_wait_and_free_delalloc_work(work); 720 } 721 mutex_unlock(&root->fs_info->ordered_operations_mutex); 722 return ret; 723 } 724 725 /* 726 * Used to start IO or wait for a given ordered extent to finish. 727 * 728 * If wait is one, this effectively waits on page writeback for all the pages 729 * in the extent, and it waits on the io completion code to insert 730 * metadata into the btree corresponding to the extent 731 */ 732 void btrfs_start_ordered_extent(struct inode *inode, 733 struct btrfs_ordered_extent *entry, 734 int wait) 735 { 736 u64 start = entry->file_offset; 737 u64 end = start + entry->len - 1; 738 739 trace_btrfs_ordered_extent_start(inode, entry); 740 741 /* 742 * pages in the range can be dirty, clean or writeback. We 743 * start IO on any dirty ones so the wait doesn't stall waiting 744 * for the flusher thread to find them 745 */ 746 if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags)) 747 filemap_fdatawrite_range(inode->i_mapping, start, end); 748 if (wait) { 749 wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE, 750 &entry->flags)); 751 } 752 } 753 754 /* 755 * Used to wait on ordered extents across a large range of bytes. 756 */ 757 void btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len) 758 { 759 u64 end; 760 u64 orig_end; 761 struct btrfs_ordered_extent *ordered; 762 763 if (start + len < start) { 764 orig_end = INT_LIMIT(loff_t); 765 } else { 766 orig_end = start + len - 1; 767 if (orig_end > INT_LIMIT(loff_t)) 768 orig_end = INT_LIMIT(loff_t); 769 } 770 771 /* start IO across the range first to instantiate any delalloc 772 * extents 773 */ 774 filemap_fdatawrite_range(inode->i_mapping, start, orig_end); 775 776 /* 777 * So with compression we will find and lock a dirty page and clear the 778 * first one as dirty, setup an async extent, and immediately return 779 * with the entire range locked but with nobody actually marked with 780 * writeback. So we can't just filemap_write_and_wait_range() and 781 * expect it to work since it will just kick off a thread to do the 782 * actual work. So we need to call filemap_fdatawrite_range _again_ 783 * since it will wait on the page lock, which won't be unlocked until 784 * after the pages have been marked as writeback and so we're good to go 785 * from there. We have to do this otherwise we'll miss the ordered 786 * extents and that results in badness. Please Josef, do not think you 787 * know better and pull this out at some point in the future, it is 788 * right and you are wrong. 789 */ 790 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 791 &BTRFS_I(inode)->runtime_flags)) 792 filemap_fdatawrite_range(inode->i_mapping, start, orig_end); 793 794 filemap_fdatawait_range(inode->i_mapping, start, orig_end); 795 796 end = orig_end; 797 while (1) { 798 ordered = btrfs_lookup_first_ordered_extent(inode, end); 799 if (!ordered) 800 break; 801 if (ordered->file_offset > orig_end) { 802 btrfs_put_ordered_extent(ordered); 803 break; 804 } 805 if (ordered->file_offset + ordered->len < start) { 806 btrfs_put_ordered_extent(ordered); 807 break; 808 } 809 btrfs_start_ordered_extent(inode, ordered, 1); 810 end = ordered->file_offset; 811 btrfs_put_ordered_extent(ordered); 812 if (end == 0 || end == start) 813 break; 814 end--; 815 } 816 } 817 818 /* 819 * find an ordered extent corresponding to file_offset. return NULL if 820 * nothing is found, otherwise take a reference on the extent and return it 821 */ 822 struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct inode *inode, 823 u64 file_offset) 824 { 825 struct btrfs_ordered_inode_tree *tree; 826 struct rb_node *node; 827 struct btrfs_ordered_extent *entry = NULL; 828 829 tree = &BTRFS_I(inode)->ordered_tree; 830 spin_lock_irq(&tree->lock); 831 node = tree_search(tree, file_offset); 832 if (!node) 833 goto out; 834 835 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); 836 if (!offset_in_entry(entry, file_offset)) 837 entry = NULL; 838 if (entry) 839 atomic_inc(&entry->refs); 840 out: 841 spin_unlock_irq(&tree->lock); 842 return entry; 843 } 844 845 /* Since the DIO code tries to lock a wide area we need to look for any ordered 846 * extents that exist in the range, rather than just the start of the range. 847 */ 848 struct btrfs_ordered_extent *btrfs_lookup_ordered_range(struct inode *inode, 849 u64 file_offset, 850 u64 len) 851 { 852 struct btrfs_ordered_inode_tree *tree; 853 struct rb_node *node; 854 struct btrfs_ordered_extent *entry = NULL; 855 856 tree = &BTRFS_I(inode)->ordered_tree; 857 spin_lock_irq(&tree->lock); 858 node = tree_search(tree, file_offset); 859 if (!node) { 860 node = tree_search(tree, file_offset + len); 861 if (!node) 862 goto out; 863 } 864 865 while (1) { 866 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); 867 if (range_overlaps(entry, file_offset, len)) 868 break; 869 870 if (entry->file_offset >= file_offset + len) { 871 entry = NULL; 872 break; 873 } 874 entry = NULL; 875 node = rb_next(node); 876 if (!node) 877 break; 878 } 879 out: 880 if (entry) 881 atomic_inc(&entry->refs); 882 spin_unlock_irq(&tree->lock); 883 return entry; 884 } 885 886 /* 887 * lookup and return any extent before 'file_offset'. NULL is returned 888 * if none is found 889 */ 890 struct btrfs_ordered_extent * 891 btrfs_lookup_first_ordered_extent(struct inode *inode, u64 file_offset) 892 { 893 struct btrfs_ordered_inode_tree *tree; 894 struct rb_node *node; 895 struct btrfs_ordered_extent *entry = NULL; 896 897 tree = &BTRFS_I(inode)->ordered_tree; 898 spin_lock_irq(&tree->lock); 899 node = tree_search(tree, file_offset); 900 if (!node) 901 goto out; 902 903 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); 904 atomic_inc(&entry->refs); 905 out: 906 spin_unlock_irq(&tree->lock); 907 return entry; 908 } 909 910 /* 911 * After an extent is done, call this to conditionally update the on disk 912 * i_size. i_size is updated to cover any fully written part of the file. 913 */ 914 int btrfs_ordered_update_i_size(struct inode *inode, u64 offset, 915 struct btrfs_ordered_extent *ordered) 916 { 917 struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree; 918 u64 disk_i_size; 919 u64 new_i_size; 920 u64 i_size = i_size_read(inode); 921 struct rb_node *node; 922 struct rb_node *prev = NULL; 923 struct btrfs_ordered_extent *test; 924 int ret = 1; 925 926 if (ordered) 927 offset = entry_end(ordered); 928 else 929 offset = ALIGN(offset, BTRFS_I(inode)->root->sectorsize); 930 931 spin_lock_irq(&tree->lock); 932 disk_i_size = BTRFS_I(inode)->disk_i_size; 933 934 /* truncate file */ 935 if (disk_i_size > i_size) { 936 BTRFS_I(inode)->disk_i_size = i_size; 937 ret = 0; 938 goto out; 939 } 940 941 /* 942 * if the disk i_size is already at the inode->i_size, or 943 * this ordered extent is inside the disk i_size, we're done 944 */ 945 if (disk_i_size == i_size) 946 goto out; 947 948 /* 949 * We still need to update disk_i_size if outstanding_isize is greater 950 * than disk_i_size. 951 */ 952 if (offset <= disk_i_size && 953 (!ordered || ordered->outstanding_isize <= disk_i_size)) 954 goto out; 955 956 /* 957 * walk backward from this ordered extent to disk_i_size. 958 * if we find an ordered extent then we can't update disk i_size 959 * yet 960 */ 961 if (ordered) { 962 node = rb_prev(&ordered->rb_node); 963 } else { 964 prev = tree_search(tree, offset); 965 /* 966 * we insert file extents without involving ordered struct, 967 * so there should be no ordered struct cover this offset 968 */ 969 if (prev) { 970 test = rb_entry(prev, struct btrfs_ordered_extent, 971 rb_node); 972 BUG_ON(offset_in_entry(test, offset)); 973 } 974 node = prev; 975 } 976 for (; node; node = rb_prev(node)) { 977 test = rb_entry(node, struct btrfs_ordered_extent, rb_node); 978 979 /* We treat this entry as if it doesnt exist */ 980 if (test_bit(BTRFS_ORDERED_UPDATED_ISIZE, &test->flags)) 981 continue; 982 if (test->file_offset + test->len <= disk_i_size) 983 break; 984 if (test->file_offset >= i_size) 985 break; 986 if (entry_end(test) > disk_i_size) { 987 /* 988 * we don't update disk_i_size now, so record this 989 * undealt i_size. Or we will not know the real 990 * i_size. 991 */ 992 if (test->outstanding_isize < offset) 993 test->outstanding_isize = offset; 994 if (ordered && 995 ordered->outstanding_isize > 996 test->outstanding_isize) 997 test->outstanding_isize = 998 ordered->outstanding_isize; 999 goto out; 1000 } 1001 } 1002 new_i_size = min_t(u64, offset, i_size); 1003 1004 /* 1005 * Some ordered extents may completed before the current one, and 1006 * we hold the real i_size in ->outstanding_isize. 1007 */ 1008 if (ordered && ordered->outstanding_isize > new_i_size) 1009 new_i_size = min_t(u64, ordered->outstanding_isize, i_size); 1010 BTRFS_I(inode)->disk_i_size = new_i_size; 1011 ret = 0; 1012 out: 1013 /* 1014 * We need to do this because we can't remove ordered extents until 1015 * after the i_disk_size has been updated and then the inode has been 1016 * updated to reflect the change, so we need to tell anybody who finds 1017 * this ordered extent that we've already done all the real work, we 1018 * just haven't completed all the other work. 1019 */ 1020 if (ordered) 1021 set_bit(BTRFS_ORDERED_UPDATED_ISIZE, &ordered->flags); 1022 spin_unlock_irq(&tree->lock); 1023 return ret; 1024 } 1025 1026 /* 1027 * search the ordered extents for one corresponding to 'offset' and 1028 * try to find a checksum. This is used because we allow pages to 1029 * be reclaimed before their checksum is actually put into the btree 1030 */ 1031 int btrfs_find_ordered_sum(struct inode *inode, u64 offset, u64 disk_bytenr, 1032 u32 *sum, int len) 1033 { 1034 struct btrfs_ordered_sum *ordered_sum; 1035 struct btrfs_ordered_extent *ordered; 1036 struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree; 1037 unsigned long num_sectors; 1038 unsigned long i; 1039 u32 sectorsize = BTRFS_I(inode)->root->sectorsize; 1040 int index = 0; 1041 1042 ordered = btrfs_lookup_ordered_extent(inode, offset); 1043 if (!ordered) 1044 return 0; 1045 1046 spin_lock_irq(&tree->lock); 1047 list_for_each_entry_reverse(ordered_sum, &ordered->list, list) { 1048 if (disk_bytenr >= ordered_sum->bytenr && 1049 disk_bytenr < ordered_sum->bytenr + ordered_sum->len) { 1050 i = (disk_bytenr - ordered_sum->bytenr) >> 1051 inode->i_sb->s_blocksize_bits; 1052 num_sectors = ordered_sum->len >> 1053 inode->i_sb->s_blocksize_bits; 1054 num_sectors = min_t(int, len - index, num_sectors - i); 1055 memcpy(sum + index, ordered_sum->sums + i, 1056 num_sectors); 1057 1058 index += (int)num_sectors; 1059 if (index == len) 1060 goto out; 1061 disk_bytenr += num_sectors * sectorsize; 1062 } 1063 } 1064 out: 1065 spin_unlock_irq(&tree->lock); 1066 btrfs_put_ordered_extent(ordered); 1067 return index; 1068 } 1069 1070 1071 /* 1072 * add a given inode to the list of inodes that must be fully on 1073 * disk before a transaction commit finishes. 1074 * 1075 * This basically gives us the ext3 style data=ordered mode, and it is mostly 1076 * used to make sure renamed files are fully on disk. 1077 * 1078 * It is a noop if the inode is already fully on disk. 1079 * 1080 * If trans is not null, we'll do a friendly check for a transaction that 1081 * is already flushing things and force the IO down ourselves. 1082 */ 1083 void btrfs_add_ordered_operation(struct btrfs_trans_handle *trans, 1084 struct btrfs_root *root, struct inode *inode) 1085 { 1086 struct btrfs_transaction *cur_trans = trans->transaction; 1087 u64 last_mod; 1088 1089 last_mod = max(BTRFS_I(inode)->generation, BTRFS_I(inode)->last_trans); 1090 1091 /* 1092 * if this file hasn't been changed since the last transaction 1093 * commit, we can safely return without doing anything 1094 */ 1095 if (last_mod < root->fs_info->last_trans_committed) 1096 return; 1097 1098 spin_lock(&root->fs_info->ordered_root_lock); 1099 if (list_empty(&BTRFS_I(inode)->ordered_operations)) { 1100 list_add_tail(&BTRFS_I(inode)->ordered_operations, 1101 &cur_trans->ordered_operations); 1102 } 1103 spin_unlock(&root->fs_info->ordered_root_lock); 1104 } 1105 1106 int __init ordered_data_init(void) 1107 { 1108 btrfs_ordered_extent_cache = kmem_cache_create("btrfs_ordered_extent", 1109 sizeof(struct btrfs_ordered_extent), 0, 1110 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, 1111 NULL); 1112 if (!btrfs_ordered_extent_cache) 1113 return -ENOMEM; 1114 1115 return 0; 1116 } 1117 1118 void ordered_data_exit(void) 1119 { 1120 if (btrfs_ordered_extent_cache) 1121 kmem_cache_destroy(btrfs_ordered_extent_cache); 1122 } 1123