1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/slab.h> 20 #include <linux/blkdev.h> 21 #include <linux/writeback.h> 22 #include <linux/pagevec.h> 23 #include "ctree.h" 24 #include "transaction.h" 25 #include "btrfs_inode.h" 26 #include "extent_io.h" 27 #include "disk-io.h" 28 29 static struct kmem_cache *btrfs_ordered_extent_cache; 30 31 static u64 entry_end(struct btrfs_ordered_extent *entry) 32 { 33 if (entry->file_offset + entry->len < entry->file_offset) 34 return (u64)-1; 35 return entry->file_offset + entry->len; 36 } 37 38 /* returns NULL if the insertion worked, or it returns the node it did find 39 * in the tree 40 */ 41 static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset, 42 struct rb_node *node) 43 { 44 struct rb_node **p = &root->rb_node; 45 struct rb_node *parent = NULL; 46 struct btrfs_ordered_extent *entry; 47 48 while (*p) { 49 parent = *p; 50 entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node); 51 52 if (file_offset < entry->file_offset) 53 p = &(*p)->rb_left; 54 else if (file_offset >= entry_end(entry)) 55 p = &(*p)->rb_right; 56 else 57 return parent; 58 } 59 60 rb_link_node(node, parent, p); 61 rb_insert_color(node, root); 62 return NULL; 63 } 64 65 static void ordered_data_tree_panic(struct inode *inode, int errno, 66 u64 offset) 67 { 68 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 69 btrfs_panic(fs_info, errno, "Inconsistency in ordered tree at offset " 70 "%llu", offset); 71 } 72 73 /* 74 * look for a given offset in the tree, and if it can't be found return the 75 * first lesser offset 76 */ 77 static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset, 78 struct rb_node **prev_ret) 79 { 80 struct rb_node *n = root->rb_node; 81 struct rb_node *prev = NULL; 82 struct rb_node *test; 83 struct btrfs_ordered_extent *entry; 84 struct btrfs_ordered_extent *prev_entry = NULL; 85 86 while (n) { 87 entry = rb_entry(n, struct btrfs_ordered_extent, rb_node); 88 prev = n; 89 prev_entry = entry; 90 91 if (file_offset < entry->file_offset) 92 n = n->rb_left; 93 else if (file_offset >= entry_end(entry)) 94 n = n->rb_right; 95 else 96 return n; 97 } 98 if (!prev_ret) 99 return NULL; 100 101 while (prev && file_offset >= entry_end(prev_entry)) { 102 test = rb_next(prev); 103 if (!test) 104 break; 105 prev_entry = rb_entry(test, struct btrfs_ordered_extent, 106 rb_node); 107 if (file_offset < entry_end(prev_entry)) 108 break; 109 110 prev = test; 111 } 112 if (prev) 113 prev_entry = rb_entry(prev, struct btrfs_ordered_extent, 114 rb_node); 115 while (prev && file_offset < entry_end(prev_entry)) { 116 test = rb_prev(prev); 117 if (!test) 118 break; 119 prev_entry = rb_entry(test, struct btrfs_ordered_extent, 120 rb_node); 121 prev = test; 122 } 123 *prev_ret = prev; 124 return NULL; 125 } 126 127 /* 128 * helper to check if a given offset is inside a given entry 129 */ 130 static int offset_in_entry(struct btrfs_ordered_extent *entry, u64 file_offset) 131 { 132 if (file_offset < entry->file_offset || 133 entry->file_offset + entry->len <= file_offset) 134 return 0; 135 return 1; 136 } 137 138 static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset, 139 u64 len) 140 { 141 if (file_offset + len <= entry->file_offset || 142 entry->file_offset + entry->len <= file_offset) 143 return 0; 144 return 1; 145 } 146 147 /* 148 * look find the first ordered struct that has this offset, otherwise 149 * the first one less than this offset 150 */ 151 static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree, 152 u64 file_offset) 153 { 154 struct rb_root *root = &tree->tree; 155 struct rb_node *prev = NULL; 156 struct rb_node *ret; 157 struct btrfs_ordered_extent *entry; 158 159 if (tree->last) { 160 entry = rb_entry(tree->last, struct btrfs_ordered_extent, 161 rb_node); 162 if (offset_in_entry(entry, file_offset)) 163 return tree->last; 164 } 165 ret = __tree_search(root, file_offset, &prev); 166 if (!ret) 167 ret = prev; 168 if (ret) 169 tree->last = ret; 170 return ret; 171 } 172 173 /* allocate and add a new ordered_extent into the per-inode tree. 174 * file_offset is the logical offset in the file 175 * 176 * start is the disk block number of an extent already reserved in the 177 * extent allocation tree 178 * 179 * len is the length of the extent 180 * 181 * The tree is given a single reference on the ordered extent that was 182 * inserted. 183 */ 184 static int __btrfs_add_ordered_extent(struct inode *inode, u64 file_offset, 185 u64 start, u64 len, u64 disk_len, 186 int type, int dio, int compress_type) 187 { 188 struct btrfs_root *root = BTRFS_I(inode)->root; 189 struct btrfs_ordered_inode_tree *tree; 190 struct rb_node *node; 191 struct btrfs_ordered_extent *entry; 192 193 tree = &BTRFS_I(inode)->ordered_tree; 194 entry = kmem_cache_zalloc(btrfs_ordered_extent_cache, GFP_NOFS); 195 if (!entry) 196 return -ENOMEM; 197 198 entry->file_offset = file_offset; 199 entry->start = start; 200 entry->len = len; 201 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) && 202 !(type == BTRFS_ORDERED_NOCOW)) 203 entry->csum_bytes_left = disk_len; 204 entry->disk_len = disk_len; 205 entry->bytes_left = len; 206 entry->inode = igrab(inode); 207 entry->compress_type = compress_type; 208 entry->truncated_len = (u64)-1; 209 if (type != BTRFS_ORDERED_IO_DONE && type != BTRFS_ORDERED_COMPLETE) 210 set_bit(type, &entry->flags); 211 212 if (dio) 213 set_bit(BTRFS_ORDERED_DIRECT, &entry->flags); 214 215 /* one ref for the tree */ 216 atomic_set(&entry->refs, 1); 217 init_waitqueue_head(&entry->wait); 218 INIT_LIST_HEAD(&entry->list); 219 INIT_LIST_HEAD(&entry->root_extent_list); 220 INIT_LIST_HEAD(&entry->work_list); 221 init_completion(&entry->completion); 222 INIT_LIST_HEAD(&entry->log_list); 223 INIT_LIST_HEAD(&entry->trans_list); 224 225 trace_btrfs_ordered_extent_add(inode, entry); 226 227 spin_lock_irq(&tree->lock); 228 node = tree_insert(&tree->tree, file_offset, 229 &entry->rb_node); 230 if (node) 231 ordered_data_tree_panic(inode, -EEXIST, file_offset); 232 spin_unlock_irq(&tree->lock); 233 234 spin_lock(&root->ordered_extent_lock); 235 list_add_tail(&entry->root_extent_list, 236 &root->ordered_extents); 237 root->nr_ordered_extents++; 238 if (root->nr_ordered_extents == 1) { 239 spin_lock(&root->fs_info->ordered_root_lock); 240 BUG_ON(!list_empty(&root->ordered_root)); 241 list_add_tail(&root->ordered_root, 242 &root->fs_info->ordered_roots); 243 spin_unlock(&root->fs_info->ordered_root_lock); 244 } 245 spin_unlock(&root->ordered_extent_lock); 246 247 return 0; 248 } 249 250 int btrfs_add_ordered_extent(struct inode *inode, u64 file_offset, 251 u64 start, u64 len, u64 disk_len, int type) 252 { 253 return __btrfs_add_ordered_extent(inode, file_offset, start, len, 254 disk_len, type, 0, 255 BTRFS_COMPRESS_NONE); 256 } 257 258 int btrfs_add_ordered_extent_dio(struct inode *inode, u64 file_offset, 259 u64 start, u64 len, u64 disk_len, int type) 260 { 261 return __btrfs_add_ordered_extent(inode, file_offset, start, len, 262 disk_len, type, 1, 263 BTRFS_COMPRESS_NONE); 264 } 265 266 int btrfs_add_ordered_extent_compress(struct inode *inode, u64 file_offset, 267 u64 start, u64 len, u64 disk_len, 268 int type, int compress_type) 269 { 270 return __btrfs_add_ordered_extent(inode, file_offset, start, len, 271 disk_len, type, 0, 272 compress_type); 273 } 274 275 /* 276 * Add a struct btrfs_ordered_sum into the list of checksums to be inserted 277 * when an ordered extent is finished. If the list covers more than one 278 * ordered extent, it is split across multiples. 279 */ 280 void btrfs_add_ordered_sum(struct inode *inode, 281 struct btrfs_ordered_extent *entry, 282 struct btrfs_ordered_sum *sum) 283 { 284 struct btrfs_ordered_inode_tree *tree; 285 286 tree = &BTRFS_I(inode)->ordered_tree; 287 spin_lock_irq(&tree->lock); 288 list_add_tail(&sum->list, &entry->list); 289 WARN_ON(entry->csum_bytes_left < sum->len); 290 entry->csum_bytes_left -= sum->len; 291 if (entry->csum_bytes_left == 0) 292 wake_up(&entry->wait); 293 spin_unlock_irq(&tree->lock); 294 } 295 296 /* 297 * this is used to account for finished IO across a given range 298 * of the file. The IO may span ordered extents. If 299 * a given ordered_extent is completely done, 1 is returned, otherwise 300 * 0. 301 * 302 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used 303 * to make sure this function only returns 1 once for a given ordered extent. 304 * 305 * file_offset is updated to one byte past the range that is recorded as 306 * complete. This allows you to walk forward in the file. 307 */ 308 int btrfs_dec_test_first_ordered_pending(struct inode *inode, 309 struct btrfs_ordered_extent **cached, 310 u64 *file_offset, u64 io_size, int uptodate) 311 { 312 struct btrfs_ordered_inode_tree *tree; 313 struct rb_node *node; 314 struct btrfs_ordered_extent *entry = NULL; 315 int ret; 316 unsigned long flags; 317 u64 dec_end; 318 u64 dec_start; 319 u64 to_dec; 320 321 tree = &BTRFS_I(inode)->ordered_tree; 322 spin_lock_irqsave(&tree->lock, flags); 323 node = tree_search(tree, *file_offset); 324 if (!node) { 325 ret = 1; 326 goto out; 327 } 328 329 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); 330 if (!offset_in_entry(entry, *file_offset)) { 331 ret = 1; 332 goto out; 333 } 334 335 dec_start = max(*file_offset, entry->file_offset); 336 dec_end = min(*file_offset + io_size, entry->file_offset + 337 entry->len); 338 *file_offset = dec_end; 339 if (dec_start > dec_end) { 340 btrfs_crit(BTRFS_I(inode)->root->fs_info, 341 "bad ordering dec_start %llu end %llu", dec_start, dec_end); 342 } 343 to_dec = dec_end - dec_start; 344 if (to_dec > entry->bytes_left) { 345 btrfs_crit(BTRFS_I(inode)->root->fs_info, 346 "bad ordered accounting left %llu size %llu", 347 entry->bytes_left, to_dec); 348 } 349 entry->bytes_left -= to_dec; 350 if (!uptodate) 351 set_bit(BTRFS_ORDERED_IOERR, &entry->flags); 352 353 if (entry->bytes_left == 0) { 354 ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags); 355 if (waitqueue_active(&entry->wait)) 356 wake_up(&entry->wait); 357 } else { 358 ret = 1; 359 } 360 out: 361 if (!ret && cached && entry) { 362 *cached = entry; 363 atomic_inc(&entry->refs); 364 } 365 spin_unlock_irqrestore(&tree->lock, flags); 366 return ret == 0; 367 } 368 369 /* 370 * this is used to account for finished IO across a given range 371 * of the file. The IO should not span ordered extents. If 372 * a given ordered_extent is completely done, 1 is returned, otherwise 373 * 0. 374 * 375 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used 376 * to make sure this function only returns 1 once for a given ordered extent. 377 */ 378 int btrfs_dec_test_ordered_pending(struct inode *inode, 379 struct btrfs_ordered_extent **cached, 380 u64 file_offset, u64 io_size, int uptodate) 381 { 382 struct btrfs_ordered_inode_tree *tree; 383 struct rb_node *node; 384 struct btrfs_ordered_extent *entry = NULL; 385 unsigned long flags; 386 int ret; 387 388 tree = &BTRFS_I(inode)->ordered_tree; 389 spin_lock_irqsave(&tree->lock, flags); 390 if (cached && *cached) { 391 entry = *cached; 392 goto have_entry; 393 } 394 395 node = tree_search(tree, file_offset); 396 if (!node) { 397 ret = 1; 398 goto out; 399 } 400 401 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); 402 have_entry: 403 if (!offset_in_entry(entry, file_offset)) { 404 ret = 1; 405 goto out; 406 } 407 408 if (io_size > entry->bytes_left) { 409 btrfs_crit(BTRFS_I(inode)->root->fs_info, 410 "bad ordered accounting left %llu size %llu", 411 entry->bytes_left, io_size); 412 } 413 entry->bytes_left -= io_size; 414 if (!uptodate) 415 set_bit(BTRFS_ORDERED_IOERR, &entry->flags); 416 417 if (entry->bytes_left == 0) { 418 ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags); 419 if (waitqueue_active(&entry->wait)) 420 wake_up(&entry->wait); 421 } else { 422 ret = 1; 423 } 424 out: 425 if (!ret && cached && entry) { 426 *cached = entry; 427 atomic_inc(&entry->refs); 428 } 429 spin_unlock_irqrestore(&tree->lock, flags); 430 return ret == 0; 431 } 432 433 /* Needs to either be called under a log transaction or the log_mutex */ 434 void btrfs_get_logged_extents(struct inode *inode, 435 struct list_head *logged_list, 436 const loff_t start, 437 const loff_t end) 438 { 439 struct btrfs_ordered_inode_tree *tree; 440 struct btrfs_ordered_extent *ordered; 441 struct rb_node *n; 442 struct rb_node *prev; 443 444 tree = &BTRFS_I(inode)->ordered_tree; 445 spin_lock_irq(&tree->lock); 446 n = __tree_search(&tree->tree, end, &prev); 447 if (!n) 448 n = prev; 449 for (; n; n = rb_prev(n)) { 450 ordered = rb_entry(n, struct btrfs_ordered_extent, rb_node); 451 if (ordered->file_offset > end) 452 continue; 453 if (entry_end(ordered) <= start) 454 break; 455 if (test_and_set_bit(BTRFS_ORDERED_LOGGED, &ordered->flags)) 456 continue; 457 list_add(&ordered->log_list, logged_list); 458 atomic_inc(&ordered->refs); 459 } 460 spin_unlock_irq(&tree->lock); 461 } 462 463 void btrfs_put_logged_extents(struct list_head *logged_list) 464 { 465 struct btrfs_ordered_extent *ordered; 466 467 while (!list_empty(logged_list)) { 468 ordered = list_first_entry(logged_list, 469 struct btrfs_ordered_extent, 470 log_list); 471 list_del_init(&ordered->log_list); 472 btrfs_put_ordered_extent(ordered); 473 } 474 } 475 476 void btrfs_submit_logged_extents(struct list_head *logged_list, 477 struct btrfs_root *log) 478 { 479 int index = log->log_transid % 2; 480 481 spin_lock_irq(&log->log_extents_lock[index]); 482 list_splice_tail(logged_list, &log->logged_list[index]); 483 spin_unlock_irq(&log->log_extents_lock[index]); 484 } 485 486 void btrfs_wait_logged_extents(struct btrfs_trans_handle *trans, 487 struct btrfs_root *log, u64 transid) 488 { 489 struct btrfs_ordered_extent *ordered; 490 int index = transid % 2; 491 492 spin_lock_irq(&log->log_extents_lock[index]); 493 while (!list_empty(&log->logged_list[index])) { 494 ordered = list_first_entry(&log->logged_list[index], 495 struct btrfs_ordered_extent, 496 log_list); 497 list_del_init(&ordered->log_list); 498 spin_unlock_irq(&log->log_extents_lock[index]); 499 500 if (!test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags) && 501 !test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) { 502 struct inode *inode = ordered->inode; 503 u64 start = ordered->file_offset; 504 u64 end = ordered->file_offset + ordered->len - 1; 505 506 WARN_ON(!inode); 507 filemap_fdatawrite_range(inode->i_mapping, start, end); 508 } 509 wait_event(ordered->wait, test_bit(BTRFS_ORDERED_IO_DONE, 510 &ordered->flags)); 511 512 list_add_tail(&ordered->trans_list, &trans->ordered); 513 spin_lock_irq(&log->log_extents_lock[index]); 514 } 515 spin_unlock_irq(&log->log_extents_lock[index]); 516 } 517 518 void btrfs_free_logged_extents(struct btrfs_root *log, u64 transid) 519 { 520 struct btrfs_ordered_extent *ordered; 521 int index = transid % 2; 522 523 spin_lock_irq(&log->log_extents_lock[index]); 524 while (!list_empty(&log->logged_list[index])) { 525 ordered = list_first_entry(&log->logged_list[index], 526 struct btrfs_ordered_extent, 527 log_list); 528 list_del_init(&ordered->log_list); 529 spin_unlock_irq(&log->log_extents_lock[index]); 530 btrfs_put_ordered_extent(ordered); 531 spin_lock_irq(&log->log_extents_lock[index]); 532 } 533 spin_unlock_irq(&log->log_extents_lock[index]); 534 } 535 536 /* 537 * used to drop a reference on an ordered extent. This will free 538 * the extent if the last reference is dropped 539 */ 540 void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry) 541 { 542 struct list_head *cur; 543 struct btrfs_ordered_sum *sum; 544 545 trace_btrfs_ordered_extent_put(entry->inode, entry); 546 547 if (atomic_dec_and_test(&entry->refs)) { 548 if (entry->inode) 549 btrfs_add_delayed_iput(entry->inode); 550 while (!list_empty(&entry->list)) { 551 cur = entry->list.next; 552 sum = list_entry(cur, struct btrfs_ordered_sum, list); 553 list_del(&sum->list); 554 kfree(sum); 555 } 556 kmem_cache_free(btrfs_ordered_extent_cache, entry); 557 } 558 } 559 560 /* 561 * remove an ordered extent from the tree. No references are dropped 562 * and waiters are woken up. 563 */ 564 void btrfs_remove_ordered_extent(struct inode *inode, 565 struct btrfs_ordered_extent *entry) 566 { 567 struct btrfs_ordered_inode_tree *tree; 568 struct btrfs_root *root = BTRFS_I(inode)->root; 569 struct rb_node *node; 570 571 tree = &BTRFS_I(inode)->ordered_tree; 572 spin_lock_irq(&tree->lock); 573 node = &entry->rb_node; 574 rb_erase(node, &tree->tree); 575 if (tree->last == node) 576 tree->last = NULL; 577 set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags); 578 spin_unlock_irq(&tree->lock); 579 580 spin_lock(&root->ordered_extent_lock); 581 list_del_init(&entry->root_extent_list); 582 root->nr_ordered_extents--; 583 584 trace_btrfs_ordered_extent_remove(inode, entry); 585 586 if (!root->nr_ordered_extents) { 587 spin_lock(&root->fs_info->ordered_root_lock); 588 BUG_ON(list_empty(&root->ordered_root)); 589 list_del_init(&root->ordered_root); 590 spin_unlock(&root->fs_info->ordered_root_lock); 591 } 592 spin_unlock(&root->ordered_extent_lock); 593 wake_up(&entry->wait); 594 } 595 596 static void btrfs_run_ordered_extent_work(struct btrfs_work *work) 597 { 598 struct btrfs_ordered_extent *ordered; 599 600 ordered = container_of(work, struct btrfs_ordered_extent, flush_work); 601 btrfs_start_ordered_extent(ordered->inode, ordered, 1); 602 complete(&ordered->completion); 603 } 604 605 /* 606 * wait for all the ordered extents in a root. This is done when balancing 607 * space between drives. 608 */ 609 int btrfs_wait_ordered_extents(struct btrfs_root *root, int nr) 610 { 611 struct list_head splice, works; 612 struct btrfs_ordered_extent *ordered, *next; 613 int count = 0; 614 615 INIT_LIST_HEAD(&splice); 616 INIT_LIST_HEAD(&works); 617 618 mutex_lock(&root->ordered_extent_mutex); 619 spin_lock(&root->ordered_extent_lock); 620 list_splice_init(&root->ordered_extents, &splice); 621 while (!list_empty(&splice) && nr) { 622 ordered = list_first_entry(&splice, struct btrfs_ordered_extent, 623 root_extent_list); 624 list_move_tail(&ordered->root_extent_list, 625 &root->ordered_extents); 626 atomic_inc(&ordered->refs); 627 spin_unlock(&root->ordered_extent_lock); 628 629 btrfs_init_work(&ordered->flush_work, 630 btrfs_flush_delalloc_helper, 631 btrfs_run_ordered_extent_work, NULL, NULL); 632 list_add_tail(&ordered->work_list, &works); 633 btrfs_queue_work(root->fs_info->flush_workers, 634 &ordered->flush_work); 635 636 cond_resched(); 637 spin_lock(&root->ordered_extent_lock); 638 if (nr != -1) 639 nr--; 640 count++; 641 } 642 list_splice_tail(&splice, &root->ordered_extents); 643 spin_unlock(&root->ordered_extent_lock); 644 645 list_for_each_entry_safe(ordered, next, &works, work_list) { 646 list_del_init(&ordered->work_list); 647 wait_for_completion(&ordered->completion); 648 btrfs_put_ordered_extent(ordered); 649 cond_resched(); 650 } 651 mutex_unlock(&root->ordered_extent_mutex); 652 653 return count; 654 } 655 656 void btrfs_wait_ordered_roots(struct btrfs_fs_info *fs_info, int nr) 657 { 658 struct btrfs_root *root; 659 struct list_head splice; 660 int done; 661 662 INIT_LIST_HEAD(&splice); 663 664 mutex_lock(&fs_info->ordered_operations_mutex); 665 spin_lock(&fs_info->ordered_root_lock); 666 list_splice_init(&fs_info->ordered_roots, &splice); 667 while (!list_empty(&splice) && nr) { 668 root = list_first_entry(&splice, struct btrfs_root, 669 ordered_root); 670 root = btrfs_grab_fs_root(root); 671 BUG_ON(!root); 672 list_move_tail(&root->ordered_root, 673 &fs_info->ordered_roots); 674 spin_unlock(&fs_info->ordered_root_lock); 675 676 done = btrfs_wait_ordered_extents(root, nr); 677 btrfs_put_fs_root(root); 678 679 spin_lock(&fs_info->ordered_root_lock); 680 if (nr != -1) { 681 nr -= done; 682 WARN_ON(nr < 0); 683 } 684 } 685 list_splice_tail(&splice, &fs_info->ordered_roots); 686 spin_unlock(&fs_info->ordered_root_lock); 687 mutex_unlock(&fs_info->ordered_operations_mutex); 688 } 689 690 /* 691 * Used to start IO or wait for a given ordered extent to finish. 692 * 693 * If wait is one, this effectively waits on page writeback for all the pages 694 * in the extent, and it waits on the io completion code to insert 695 * metadata into the btree corresponding to the extent 696 */ 697 void btrfs_start_ordered_extent(struct inode *inode, 698 struct btrfs_ordered_extent *entry, 699 int wait) 700 { 701 u64 start = entry->file_offset; 702 u64 end = start + entry->len - 1; 703 704 trace_btrfs_ordered_extent_start(inode, entry); 705 706 /* 707 * pages in the range can be dirty, clean or writeback. We 708 * start IO on any dirty ones so the wait doesn't stall waiting 709 * for the flusher thread to find them 710 */ 711 if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags)) 712 filemap_fdatawrite_range(inode->i_mapping, start, end); 713 if (wait) { 714 wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE, 715 &entry->flags)); 716 } 717 } 718 719 /* 720 * Used to wait on ordered extents across a large range of bytes. 721 */ 722 int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len) 723 { 724 int ret = 0; 725 u64 end; 726 u64 orig_end; 727 struct btrfs_ordered_extent *ordered; 728 729 if (start + len < start) { 730 orig_end = INT_LIMIT(loff_t); 731 } else { 732 orig_end = start + len - 1; 733 if (orig_end > INT_LIMIT(loff_t)) 734 orig_end = INT_LIMIT(loff_t); 735 } 736 737 /* start IO across the range first to instantiate any delalloc 738 * extents 739 */ 740 ret = btrfs_fdatawrite_range(inode, start, orig_end); 741 if (ret) 742 return ret; 743 744 ret = filemap_fdatawait_range(inode->i_mapping, start, orig_end); 745 if (ret) 746 return ret; 747 748 end = orig_end; 749 while (1) { 750 ordered = btrfs_lookup_first_ordered_extent(inode, end); 751 if (!ordered) 752 break; 753 if (ordered->file_offset > orig_end) { 754 btrfs_put_ordered_extent(ordered); 755 break; 756 } 757 if (ordered->file_offset + ordered->len <= start) { 758 btrfs_put_ordered_extent(ordered); 759 break; 760 } 761 btrfs_start_ordered_extent(inode, ordered, 1); 762 end = ordered->file_offset; 763 if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags)) 764 ret = -EIO; 765 btrfs_put_ordered_extent(ordered); 766 if (ret || end == 0 || end == start) 767 break; 768 end--; 769 } 770 return ret; 771 } 772 773 /* 774 * find an ordered extent corresponding to file_offset. return NULL if 775 * nothing is found, otherwise take a reference on the extent and return it 776 */ 777 struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct inode *inode, 778 u64 file_offset) 779 { 780 struct btrfs_ordered_inode_tree *tree; 781 struct rb_node *node; 782 struct btrfs_ordered_extent *entry = NULL; 783 784 tree = &BTRFS_I(inode)->ordered_tree; 785 spin_lock_irq(&tree->lock); 786 node = tree_search(tree, file_offset); 787 if (!node) 788 goto out; 789 790 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); 791 if (!offset_in_entry(entry, file_offset)) 792 entry = NULL; 793 if (entry) 794 atomic_inc(&entry->refs); 795 out: 796 spin_unlock_irq(&tree->lock); 797 return entry; 798 } 799 800 /* Since the DIO code tries to lock a wide area we need to look for any ordered 801 * extents that exist in the range, rather than just the start of the range. 802 */ 803 struct btrfs_ordered_extent *btrfs_lookup_ordered_range(struct inode *inode, 804 u64 file_offset, 805 u64 len) 806 { 807 struct btrfs_ordered_inode_tree *tree; 808 struct rb_node *node; 809 struct btrfs_ordered_extent *entry = NULL; 810 811 tree = &BTRFS_I(inode)->ordered_tree; 812 spin_lock_irq(&tree->lock); 813 node = tree_search(tree, file_offset); 814 if (!node) { 815 node = tree_search(tree, file_offset + len); 816 if (!node) 817 goto out; 818 } 819 820 while (1) { 821 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); 822 if (range_overlaps(entry, file_offset, len)) 823 break; 824 825 if (entry->file_offset >= file_offset + len) { 826 entry = NULL; 827 break; 828 } 829 entry = NULL; 830 node = rb_next(node); 831 if (!node) 832 break; 833 } 834 out: 835 if (entry) 836 atomic_inc(&entry->refs); 837 spin_unlock_irq(&tree->lock); 838 return entry; 839 } 840 841 /* 842 * lookup and return any extent before 'file_offset'. NULL is returned 843 * if none is found 844 */ 845 struct btrfs_ordered_extent * 846 btrfs_lookup_first_ordered_extent(struct inode *inode, u64 file_offset) 847 { 848 struct btrfs_ordered_inode_tree *tree; 849 struct rb_node *node; 850 struct btrfs_ordered_extent *entry = NULL; 851 852 tree = &BTRFS_I(inode)->ordered_tree; 853 spin_lock_irq(&tree->lock); 854 node = tree_search(tree, file_offset); 855 if (!node) 856 goto out; 857 858 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); 859 atomic_inc(&entry->refs); 860 out: 861 spin_unlock_irq(&tree->lock); 862 return entry; 863 } 864 865 /* 866 * After an extent is done, call this to conditionally update the on disk 867 * i_size. i_size is updated to cover any fully written part of the file. 868 */ 869 int btrfs_ordered_update_i_size(struct inode *inode, u64 offset, 870 struct btrfs_ordered_extent *ordered) 871 { 872 struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree; 873 u64 disk_i_size; 874 u64 new_i_size; 875 u64 i_size = i_size_read(inode); 876 struct rb_node *node; 877 struct rb_node *prev = NULL; 878 struct btrfs_ordered_extent *test; 879 int ret = 1; 880 881 spin_lock_irq(&tree->lock); 882 if (ordered) { 883 offset = entry_end(ordered); 884 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags)) 885 offset = min(offset, 886 ordered->file_offset + 887 ordered->truncated_len); 888 } else { 889 offset = ALIGN(offset, BTRFS_I(inode)->root->sectorsize); 890 } 891 disk_i_size = BTRFS_I(inode)->disk_i_size; 892 893 /* truncate file */ 894 if (disk_i_size > i_size) { 895 BTRFS_I(inode)->disk_i_size = i_size; 896 ret = 0; 897 goto out; 898 } 899 900 /* 901 * if the disk i_size is already at the inode->i_size, or 902 * this ordered extent is inside the disk i_size, we're done 903 */ 904 if (disk_i_size == i_size) 905 goto out; 906 907 /* 908 * We still need to update disk_i_size if outstanding_isize is greater 909 * than disk_i_size. 910 */ 911 if (offset <= disk_i_size && 912 (!ordered || ordered->outstanding_isize <= disk_i_size)) 913 goto out; 914 915 /* 916 * walk backward from this ordered extent to disk_i_size. 917 * if we find an ordered extent then we can't update disk i_size 918 * yet 919 */ 920 if (ordered) { 921 node = rb_prev(&ordered->rb_node); 922 } else { 923 prev = tree_search(tree, offset); 924 /* 925 * we insert file extents without involving ordered struct, 926 * so there should be no ordered struct cover this offset 927 */ 928 if (prev) { 929 test = rb_entry(prev, struct btrfs_ordered_extent, 930 rb_node); 931 BUG_ON(offset_in_entry(test, offset)); 932 } 933 node = prev; 934 } 935 for (; node; node = rb_prev(node)) { 936 test = rb_entry(node, struct btrfs_ordered_extent, rb_node); 937 938 /* We treat this entry as if it doesnt exist */ 939 if (test_bit(BTRFS_ORDERED_UPDATED_ISIZE, &test->flags)) 940 continue; 941 if (test->file_offset + test->len <= disk_i_size) 942 break; 943 if (test->file_offset >= i_size) 944 break; 945 if (entry_end(test) > disk_i_size) { 946 /* 947 * we don't update disk_i_size now, so record this 948 * undealt i_size. Or we will not know the real 949 * i_size. 950 */ 951 if (test->outstanding_isize < offset) 952 test->outstanding_isize = offset; 953 if (ordered && 954 ordered->outstanding_isize > 955 test->outstanding_isize) 956 test->outstanding_isize = 957 ordered->outstanding_isize; 958 goto out; 959 } 960 } 961 new_i_size = min_t(u64, offset, i_size); 962 963 /* 964 * Some ordered extents may completed before the current one, and 965 * we hold the real i_size in ->outstanding_isize. 966 */ 967 if (ordered && ordered->outstanding_isize > new_i_size) 968 new_i_size = min_t(u64, ordered->outstanding_isize, i_size); 969 BTRFS_I(inode)->disk_i_size = new_i_size; 970 ret = 0; 971 out: 972 /* 973 * We need to do this because we can't remove ordered extents until 974 * after the i_disk_size has been updated and then the inode has been 975 * updated to reflect the change, so we need to tell anybody who finds 976 * this ordered extent that we've already done all the real work, we 977 * just haven't completed all the other work. 978 */ 979 if (ordered) 980 set_bit(BTRFS_ORDERED_UPDATED_ISIZE, &ordered->flags); 981 spin_unlock_irq(&tree->lock); 982 return ret; 983 } 984 985 /* 986 * search the ordered extents for one corresponding to 'offset' and 987 * try to find a checksum. This is used because we allow pages to 988 * be reclaimed before their checksum is actually put into the btree 989 */ 990 int btrfs_find_ordered_sum(struct inode *inode, u64 offset, u64 disk_bytenr, 991 u32 *sum, int len) 992 { 993 struct btrfs_ordered_sum *ordered_sum; 994 struct btrfs_ordered_extent *ordered; 995 struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree; 996 unsigned long num_sectors; 997 unsigned long i; 998 u32 sectorsize = BTRFS_I(inode)->root->sectorsize; 999 int index = 0; 1000 1001 ordered = btrfs_lookup_ordered_extent(inode, offset); 1002 if (!ordered) 1003 return 0; 1004 1005 spin_lock_irq(&tree->lock); 1006 list_for_each_entry_reverse(ordered_sum, &ordered->list, list) { 1007 if (disk_bytenr >= ordered_sum->bytenr && 1008 disk_bytenr < ordered_sum->bytenr + ordered_sum->len) { 1009 i = (disk_bytenr - ordered_sum->bytenr) >> 1010 inode->i_sb->s_blocksize_bits; 1011 num_sectors = ordered_sum->len >> 1012 inode->i_sb->s_blocksize_bits; 1013 num_sectors = min_t(int, len - index, num_sectors - i); 1014 memcpy(sum + index, ordered_sum->sums + i, 1015 num_sectors); 1016 1017 index += (int)num_sectors; 1018 if (index == len) 1019 goto out; 1020 disk_bytenr += num_sectors * sectorsize; 1021 } 1022 } 1023 out: 1024 spin_unlock_irq(&tree->lock); 1025 btrfs_put_ordered_extent(ordered); 1026 return index; 1027 } 1028 1029 int __init ordered_data_init(void) 1030 { 1031 btrfs_ordered_extent_cache = kmem_cache_create("btrfs_ordered_extent", 1032 sizeof(struct btrfs_ordered_extent), 0, 1033 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, 1034 NULL); 1035 if (!btrfs_ordered_extent_cache) 1036 return -ENOMEM; 1037 1038 return 0; 1039 } 1040 1041 void ordered_data_exit(void) 1042 { 1043 if (btrfs_ordered_extent_cache) 1044 kmem_cache_destroy(btrfs_ordered_extent_cache); 1045 } 1046