1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/slab.h> 7 #include <linux/blkdev.h> 8 #include <linux/writeback.h> 9 #include <linux/sched/mm.h> 10 #include "misc.h" 11 #include "ctree.h" 12 #include "transaction.h" 13 #include "btrfs_inode.h" 14 #include "extent_io.h" 15 #include "disk-io.h" 16 #include "compression.h" 17 #include "delalloc-space.h" 18 #include "qgroup.h" 19 20 static struct kmem_cache *btrfs_ordered_extent_cache; 21 22 static u64 entry_end(struct btrfs_ordered_extent *entry) 23 { 24 if (entry->file_offset + entry->num_bytes < entry->file_offset) 25 return (u64)-1; 26 return entry->file_offset + entry->num_bytes; 27 } 28 29 /* returns NULL if the insertion worked, or it returns the node it did find 30 * in the tree 31 */ 32 static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset, 33 struct rb_node *node) 34 { 35 struct rb_node **p = &root->rb_node; 36 struct rb_node *parent = NULL; 37 struct btrfs_ordered_extent *entry; 38 39 while (*p) { 40 parent = *p; 41 entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node); 42 43 if (file_offset < entry->file_offset) 44 p = &(*p)->rb_left; 45 else if (file_offset >= entry_end(entry)) 46 p = &(*p)->rb_right; 47 else 48 return parent; 49 } 50 51 rb_link_node(node, parent, p); 52 rb_insert_color(node, root); 53 return NULL; 54 } 55 56 /* 57 * look for a given offset in the tree, and if it can't be found return the 58 * first lesser offset 59 */ 60 static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset, 61 struct rb_node **prev_ret) 62 { 63 struct rb_node *n = root->rb_node; 64 struct rb_node *prev = NULL; 65 struct rb_node *test; 66 struct btrfs_ordered_extent *entry; 67 struct btrfs_ordered_extent *prev_entry = NULL; 68 69 while (n) { 70 entry = rb_entry(n, struct btrfs_ordered_extent, rb_node); 71 prev = n; 72 prev_entry = entry; 73 74 if (file_offset < entry->file_offset) 75 n = n->rb_left; 76 else if (file_offset >= entry_end(entry)) 77 n = n->rb_right; 78 else 79 return n; 80 } 81 if (!prev_ret) 82 return NULL; 83 84 while (prev && file_offset >= entry_end(prev_entry)) { 85 test = rb_next(prev); 86 if (!test) 87 break; 88 prev_entry = rb_entry(test, struct btrfs_ordered_extent, 89 rb_node); 90 if (file_offset < entry_end(prev_entry)) 91 break; 92 93 prev = test; 94 } 95 if (prev) 96 prev_entry = rb_entry(prev, struct btrfs_ordered_extent, 97 rb_node); 98 while (prev && file_offset < entry_end(prev_entry)) { 99 test = rb_prev(prev); 100 if (!test) 101 break; 102 prev_entry = rb_entry(test, struct btrfs_ordered_extent, 103 rb_node); 104 prev = test; 105 } 106 *prev_ret = prev; 107 return NULL; 108 } 109 110 /* 111 * helper to check if a given offset is inside a given entry 112 */ 113 static int offset_in_entry(struct btrfs_ordered_extent *entry, u64 file_offset) 114 { 115 if (file_offset < entry->file_offset || 116 entry->file_offset + entry->num_bytes <= file_offset) 117 return 0; 118 return 1; 119 } 120 121 static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset, 122 u64 len) 123 { 124 if (file_offset + len <= entry->file_offset || 125 entry->file_offset + entry->num_bytes <= file_offset) 126 return 0; 127 return 1; 128 } 129 130 /* 131 * look find the first ordered struct that has this offset, otherwise 132 * the first one less than this offset 133 */ 134 static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree, 135 u64 file_offset) 136 { 137 struct rb_root *root = &tree->tree; 138 struct rb_node *prev = NULL; 139 struct rb_node *ret; 140 struct btrfs_ordered_extent *entry; 141 142 if (tree->last) { 143 entry = rb_entry(tree->last, struct btrfs_ordered_extent, 144 rb_node); 145 if (offset_in_entry(entry, file_offset)) 146 return tree->last; 147 } 148 ret = __tree_search(root, file_offset, &prev); 149 if (!ret) 150 ret = prev; 151 if (ret) 152 tree->last = ret; 153 return ret; 154 } 155 156 /* 157 * Allocate and add a new ordered_extent into the per-inode tree. 158 * 159 * The tree is given a single reference on the ordered extent that was 160 * inserted. 161 */ 162 static int __btrfs_add_ordered_extent(struct btrfs_inode *inode, u64 file_offset, 163 u64 disk_bytenr, u64 num_bytes, 164 u64 disk_num_bytes, int type, int dio, 165 int compress_type) 166 { 167 struct btrfs_root *root = inode->root; 168 struct btrfs_fs_info *fs_info = root->fs_info; 169 struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree; 170 struct rb_node *node; 171 struct btrfs_ordered_extent *entry; 172 int ret; 173 174 if (type == BTRFS_ORDERED_NOCOW || type == BTRFS_ORDERED_PREALLOC) { 175 /* For nocow write, we can release the qgroup rsv right now */ 176 ret = btrfs_qgroup_free_data(inode, NULL, file_offset, num_bytes); 177 if (ret < 0) 178 return ret; 179 ret = 0; 180 } else { 181 /* 182 * The ordered extent has reserved qgroup space, release now 183 * and pass the reserved number for qgroup_record to free. 184 */ 185 ret = btrfs_qgroup_release_data(inode, file_offset, num_bytes); 186 if (ret < 0) 187 return ret; 188 } 189 entry = kmem_cache_zalloc(btrfs_ordered_extent_cache, GFP_NOFS); 190 if (!entry) 191 return -ENOMEM; 192 193 entry->file_offset = file_offset; 194 entry->disk_bytenr = disk_bytenr; 195 entry->num_bytes = num_bytes; 196 entry->disk_num_bytes = disk_num_bytes; 197 entry->bytes_left = num_bytes; 198 entry->inode = igrab(&inode->vfs_inode); 199 entry->compress_type = compress_type; 200 entry->truncated_len = (u64)-1; 201 entry->qgroup_rsv = ret; 202 if (type != BTRFS_ORDERED_IO_DONE && type != BTRFS_ORDERED_COMPLETE) 203 set_bit(type, &entry->flags); 204 205 if (dio) { 206 percpu_counter_add_batch(&fs_info->dio_bytes, num_bytes, 207 fs_info->delalloc_batch); 208 set_bit(BTRFS_ORDERED_DIRECT, &entry->flags); 209 } 210 211 /* one ref for the tree */ 212 refcount_set(&entry->refs, 1); 213 init_waitqueue_head(&entry->wait); 214 INIT_LIST_HEAD(&entry->list); 215 INIT_LIST_HEAD(&entry->root_extent_list); 216 INIT_LIST_HEAD(&entry->work_list); 217 init_completion(&entry->completion); 218 219 trace_btrfs_ordered_extent_add(&inode->vfs_inode, entry); 220 221 spin_lock_irq(&tree->lock); 222 node = tree_insert(&tree->tree, file_offset, 223 &entry->rb_node); 224 if (node) 225 btrfs_panic(fs_info, -EEXIST, 226 "inconsistency in ordered tree at offset %llu", 227 file_offset); 228 spin_unlock_irq(&tree->lock); 229 230 spin_lock(&root->ordered_extent_lock); 231 list_add_tail(&entry->root_extent_list, 232 &root->ordered_extents); 233 root->nr_ordered_extents++; 234 if (root->nr_ordered_extents == 1) { 235 spin_lock(&fs_info->ordered_root_lock); 236 BUG_ON(!list_empty(&root->ordered_root)); 237 list_add_tail(&root->ordered_root, &fs_info->ordered_roots); 238 spin_unlock(&fs_info->ordered_root_lock); 239 } 240 spin_unlock(&root->ordered_extent_lock); 241 242 /* 243 * We don't need the count_max_extents here, we can assume that all of 244 * that work has been done at higher layers, so this is truly the 245 * smallest the extent is going to get. 246 */ 247 spin_lock(&inode->lock); 248 btrfs_mod_outstanding_extents(inode, 1); 249 spin_unlock(&inode->lock); 250 251 return 0; 252 } 253 254 int btrfs_add_ordered_extent(struct btrfs_inode *inode, u64 file_offset, 255 u64 disk_bytenr, u64 num_bytes, u64 disk_num_bytes, 256 int type) 257 { 258 return __btrfs_add_ordered_extent(inode, file_offset, disk_bytenr, 259 num_bytes, disk_num_bytes, type, 0, 260 BTRFS_COMPRESS_NONE); 261 } 262 263 int btrfs_add_ordered_extent_dio(struct btrfs_inode *inode, u64 file_offset, 264 u64 disk_bytenr, u64 num_bytes, 265 u64 disk_num_bytes, int type) 266 { 267 return __btrfs_add_ordered_extent(inode, file_offset, disk_bytenr, 268 num_bytes, disk_num_bytes, type, 1, 269 BTRFS_COMPRESS_NONE); 270 } 271 272 int btrfs_add_ordered_extent_compress(struct btrfs_inode *inode, u64 file_offset, 273 u64 disk_bytenr, u64 num_bytes, 274 u64 disk_num_bytes, int type, 275 int compress_type) 276 { 277 return __btrfs_add_ordered_extent(inode, file_offset, disk_bytenr, 278 num_bytes, disk_num_bytes, type, 0, 279 compress_type); 280 } 281 282 /* 283 * Add a struct btrfs_ordered_sum into the list of checksums to be inserted 284 * when an ordered extent is finished. If the list covers more than one 285 * ordered extent, it is split across multiples. 286 */ 287 void btrfs_add_ordered_sum(struct btrfs_ordered_extent *entry, 288 struct btrfs_ordered_sum *sum) 289 { 290 struct btrfs_ordered_inode_tree *tree; 291 292 tree = &BTRFS_I(entry->inode)->ordered_tree; 293 spin_lock_irq(&tree->lock); 294 list_add_tail(&sum->list, &entry->list); 295 spin_unlock_irq(&tree->lock); 296 } 297 298 /* 299 * this is used to account for finished IO across a given range 300 * of the file. The IO may span ordered extents. If 301 * a given ordered_extent is completely done, 1 is returned, otherwise 302 * 0. 303 * 304 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used 305 * to make sure this function only returns 1 once for a given ordered extent. 306 * 307 * file_offset is updated to one byte past the range that is recorded as 308 * complete. This allows you to walk forward in the file. 309 */ 310 int btrfs_dec_test_first_ordered_pending(struct btrfs_inode *inode, 311 struct btrfs_ordered_extent **cached, 312 u64 *file_offset, u64 io_size, int uptodate) 313 { 314 struct btrfs_fs_info *fs_info = inode->root->fs_info; 315 struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree; 316 struct rb_node *node; 317 struct btrfs_ordered_extent *entry = NULL; 318 int ret; 319 unsigned long flags; 320 u64 dec_end; 321 u64 dec_start; 322 u64 to_dec; 323 324 spin_lock_irqsave(&tree->lock, flags); 325 node = tree_search(tree, *file_offset); 326 if (!node) { 327 ret = 1; 328 goto out; 329 } 330 331 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); 332 if (!offset_in_entry(entry, *file_offset)) { 333 ret = 1; 334 goto out; 335 } 336 337 dec_start = max(*file_offset, entry->file_offset); 338 dec_end = min(*file_offset + io_size, 339 entry->file_offset + entry->num_bytes); 340 *file_offset = dec_end; 341 if (dec_start > dec_end) { 342 btrfs_crit(fs_info, "bad ordering dec_start %llu end %llu", 343 dec_start, dec_end); 344 } 345 to_dec = dec_end - dec_start; 346 if (to_dec > entry->bytes_left) { 347 btrfs_crit(fs_info, 348 "bad ordered accounting left %llu size %llu", 349 entry->bytes_left, to_dec); 350 } 351 entry->bytes_left -= to_dec; 352 if (!uptodate) 353 set_bit(BTRFS_ORDERED_IOERR, &entry->flags); 354 355 if (entry->bytes_left == 0) { 356 ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags); 357 /* test_and_set_bit implies a barrier */ 358 cond_wake_up_nomb(&entry->wait); 359 } else { 360 ret = 1; 361 } 362 out: 363 if (!ret && cached && entry) { 364 *cached = entry; 365 refcount_inc(&entry->refs); 366 } 367 spin_unlock_irqrestore(&tree->lock, flags); 368 return ret == 0; 369 } 370 371 /* 372 * this is used to account for finished IO across a given range 373 * of the file. The IO should not span ordered extents. If 374 * a given ordered_extent is completely done, 1 is returned, otherwise 375 * 0. 376 * 377 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used 378 * to make sure this function only returns 1 once for a given ordered extent. 379 */ 380 int btrfs_dec_test_ordered_pending(struct inode *inode, 381 struct btrfs_ordered_extent **cached, 382 u64 file_offset, u64 io_size, int uptodate) 383 { 384 struct btrfs_ordered_inode_tree *tree; 385 struct rb_node *node; 386 struct btrfs_ordered_extent *entry = NULL; 387 unsigned long flags; 388 int ret; 389 390 tree = &BTRFS_I(inode)->ordered_tree; 391 spin_lock_irqsave(&tree->lock, flags); 392 if (cached && *cached) { 393 entry = *cached; 394 goto have_entry; 395 } 396 397 node = tree_search(tree, file_offset); 398 if (!node) { 399 ret = 1; 400 goto out; 401 } 402 403 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); 404 have_entry: 405 if (!offset_in_entry(entry, file_offset)) { 406 ret = 1; 407 goto out; 408 } 409 410 if (io_size > entry->bytes_left) { 411 btrfs_crit(BTRFS_I(inode)->root->fs_info, 412 "bad ordered accounting left %llu size %llu", 413 entry->bytes_left, io_size); 414 } 415 entry->bytes_left -= io_size; 416 if (!uptodate) 417 set_bit(BTRFS_ORDERED_IOERR, &entry->flags); 418 419 if (entry->bytes_left == 0) { 420 ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags); 421 /* test_and_set_bit implies a barrier */ 422 cond_wake_up_nomb(&entry->wait); 423 } else { 424 ret = 1; 425 } 426 out: 427 if (!ret && cached && entry) { 428 *cached = entry; 429 refcount_inc(&entry->refs); 430 } 431 spin_unlock_irqrestore(&tree->lock, flags); 432 return ret == 0; 433 } 434 435 /* 436 * used to drop a reference on an ordered extent. This will free 437 * the extent if the last reference is dropped 438 */ 439 void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry) 440 { 441 struct list_head *cur; 442 struct btrfs_ordered_sum *sum; 443 444 trace_btrfs_ordered_extent_put(entry->inode, entry); 445 446 if (refcount_dec_and_test(&entry->refs)) { 447 ASSERT(list_empty(&entry->root_extent_list)); 448 ASSERT(RB_EMPTY_NODE(&entry->rb_node)); 449 if (entry->inode) 450 btrfs_add_delayed_iput(entry->inode); 451 while (!list_empty(&entry->list)) { 452 cur = entry->list.next; 453 sum = list_entry(cur, struct btrfs_ordered_sum, list); 454 list_del(&sum->list); 455 kvfree(sum); 456 } 457 kmem_cache_free(btrfs_ordered_extent_cache, entry); 458 } 459 } 460 461 /* 462 * remove an ordered extent from the tree. No references are dropped 463 * and waiters are woken up. 464 */ 465 void btrfs_remove_ordered_extent(struct inode *inode, 466 struct btrfs_ordered_extent *entry) 467 { 468 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 469 struct btrfs_ordered_inode_tree *tree; 470 struct btrfs_inode *btrfs_inode = BTRFS_I(inode); 471 struct btrfs_root *root = btrfs_inode->root; 472 struct rb_node *node; 473 474 /* This is paired with btrfs_add_ordered_extent. */ 475 spin_lock(&btrfs_inode->lock); 476 btrfs_mod_outstanding_extents(btrfs_inode, -1); 477 spin_unlock(&btrfs_inode->lock); 478 if (root != fs_info->tree_root) 479 btrfs_delalloc_release_metadata(btrfs_inode, entry->num_bytes, 480 false); 481 482 if (test_bit(BTRFS_ORDERED_DIRECT, &entry->flags)) 483 percpu_counter_add_batch(&fs_info->dio_bytes, -entry->num_bytes, 484 fs_info->delalloc_batch); 485 486 tree = &btrfs_inode->ordered_tree; 487 spin_lock_irq(&tree->lock); 488 node = &entry->rb_node; 489 rb_erase(node, &tree->tree); 490 RB_CLEAR_NODE(node); 491 if (tree->last == node) 492 tree->last = NULL; 493 set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags); 494 spin_unlock_irq(&tree->lock); 495 496 spin_lock(&root->ordered_extent_lock); 497 list_del_init(&entry->root_extent_list); 498 root->nr_ordered_extents--; 499 500 trace_btrfs_ordered_extent_remove(inode, entry); 501 502 if (!root->nr_ordered_extents) { 503 spin_lock(&fs_info->ordered_root_lock); 504 BUG_ON(list_empty(&root->ordered_root)); 505 list_del_init(&root->ordered_root); 506 spin_unlock(&fs_info->ordered_root_lock); 507 } 508 spin_unlock(&root->ordered_extent_lock); 509 wake_up(&entry->wait); 510 } 511 512 static void btrfs_run_ordered_extent_work(struct btrfs_work *work) 513 { 514 struct btrfs_ordered_extent *ordered; 515 516 ordered = container_of(work, struct btrfs_ordered_extent, flush_work); 517 btrfs_start_ordered_extent(ordered->inode, ordered, 1); 518 complete(&ordered->completion); 519 } 520 521 /* 522 * wait for all the ordered extents in a root. This is done when balancing 523 * space between drives. 524 */ 525 u64 btrfs_wait_ordered_extents(struct btrfs_root *root, u64 nr, 526 const u64 range_start, const u64 range_len) 527 { 528 struct btrfs_fs_info *fs_info = root->fs_info; 529 LIST_HEAD(splice); 530 LIST_HEAD(skipped); 531 LIST_HEAD(works); 532 struct btrfs_ordered_extent *ordered, *next; 533 u64 count = 0; 534 const u64 range_end = range_start + range_len; 535 536 mutex_lock(&root->ordered_extent_mutex); 537 spin_lock(&root->ordered_extent_lock); 538 list_splice_init(&root->ordered_extents, &splice); 539 while (!list_empty(&splice) && nr) { 540 ordered = list_first_entry(&splice, struct btrfs_ordered_extent, 541 root_extent_list); 542 543 if (range_end <= ordered->disk_bytenr || 544 ordered->disk_bytenr + ordered->disk_num_bytes <= range_start) { 545 list_move_tail(&ordered->root_extent_list, &skipped); 546 cond_resched_lock(&root->ordered_extent_lock); 547 continue; 548 } 549 550 list_move_tail(&ordered->root_extent_list, 551 &root->ordered_extents); 552 refcount_inc(&ordered->refs); 553 spin_unlock(&root->ordered_extent_lock); 554 555 btrfs_init_work(&ordered->flush_work, 556 btrfs_run_ordered_extent_work, NULL, NULL); 557 list_add_tail(&ordered->work_list, &works); 558 btrfs_queue_work(fs_info->flush_workers, &ordered->flush_work); 559 560 cond_resched(); 561 spin_lock(&root->ordered_extent_lock); 562 if (nr != U64_MAX) 563 nr--; 564 count++; 565 } 566 list_splice_tail(&skipped, &root->ordered_extents); 567 list_splice_tail(&splice, &root->ordered_extents); 568 spin_unlock(&root->ordered_extent_lock); 569 570 list_for_each_entry_safe(ordered, next, &works, work_list) { 571 list_del_init(&ordered->work_list); 572 wait_for_completion(&ordered->completion); 573 btrfs_put_ordered_extent(ordered); 574 cond_resched(); 575 } 576 mutex_unlock(&root->ordered_extent_mutex); 577 578 return count; 579 } 580 581 void btrfs_wait_ordered_roots(struct btrfs_fs_info *fs_info, u64 nr, 582 const u64 range_start, const u64 range_len) 583 { 584 struct btrfs_root *root; 585 struct list_head splice; 586 u64 done; 587 588 INIT_LIST_HEAD(&splice); 589 590 mutex_lock(&fs_info->ordered_operations_mutex); 591 spin_lock(&fs_info->ordered_root_lock); 592 list_splice_init(&fs_info->ordered_roots, &splice); 593 while (!list_empty(&splice) && nr) { 594 root = list_first_entry(&splice, struct btrfs_root, 595 ordered_root); 596 root = btrfs_grab_root(root); 597 BUG_ON(!root); 598 list_move_tail(&root->ordered_root, 599 &fs_info->ordered_roots); 600 spin_unlock(&fs_info->ordered_root_lock); 601 602 done = btrfs_wait_ordered_extents(root, nr, 603 range_start, range_len); 604 btrfs_put_root(root); 605 606 spin_lock(&fs_info->ordered_root_lock); 607 if (nr != U64_MAX) { 608 nr -= done; 609 } 610 } 611 list_splice_tail(&splice, &fs_info->ordered_roots); 612 spin_unlock(&fs_info->ordered_root_lock); 613 mutex_unlock(&fs_info->ordered_operations_mutex); 614 } 615 616 /* 617 * Used to start IO or wait for a given ordered extent to finish. 618 * 619 * If wait is one, this effectively waits on page writeback for all the pages 620 * in the extent, and it waits on the io completion code to insert 621 * metadata into the btree corresponding to the extent 622 */ 623 void btrfs_start_ordered_extent(struct inode *inode, 624 struct btrfs_ordered_extent *entry, 625 int wait) 626 { 627 u64 start = entry->file_offset; 628 u64 end = start + entry->num_bytes - 1; 629 630 trace_btrfs_ordered_extent_start(inode, entry); 631 632 /* 633 * pages in the range can be dirty, clean or writeback. We 634 * start IO on any dirty ones so the wait doesn't stall waiting 635 * for the flusher thread to find them 636 */ 637 if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags)) 638 filemap_fdatawrite_range(inode->i_mapping, start, end); 639 if (wait) { 640 wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE, 641 &entry->flags)); 642 } 643 } 644 645 /* 646 * Used to wait on ordered extents across a large range of bytes. 647 */ 648 int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len) 649 { 650 int ret = 0; 651 int ret_wb = 0; 652 u64 end; 653 u64 orig_end; 654 struct btrfs_ordered_extent *ordered; 655 656 if (start + len < start) { 657 orig_end = INT_LIMIT(loff_t); 658 } else { 659 orig_end = start + len - 1; 660 if (orig_end > INT_LIMIT(loff_t)) 661 orig_end = INT_LIMIT(loff_t); 662 } 663 664 /* start IO across the range first to instantiate any delalloc 665 * extents 666 */ 667 ret = btrfs_fdatawrite_range(inode, start, orig_end); 668 if (ret) 669 return ret; 670 671 /* 672 * If we have a writeback error don't return immediately. Wait first 673 * for any ordered extents that haven't completed yet. This is to make 674 * sure no one can dirty the same page ranges and call writepages() 675 * before the ordered extents complete - to avoid failures (-EEXIST) 676 * when adding the new ordered extents to the ordered tree. 677 */ 678 ret_wb = filemap_fdatawait_range(inode->i_mapping, start, orig_end); 679 680 end = orig_end; 681 while (1) { 682 ordered = btrfs_lookup_first_ordered_extent(inode, end); 683 if (!ordered) 684 break; 685 if (ordered->file_offset > orig_end) { 686 btrfs_put_ordered_extent(ordered); 687 break; 688 } 689 if (ordered->file_offset + ordered->num_bytes <= start) { 690 btrfs_put_ordered_extent(ordered); 691 break; 692 } 693 btrfs_start_ordered_extent(inode, ordered, 1); 694 end = ordered->file_offset; 695 /* 696 * If the ordered extent had an error save the error but don't 697 * exit without waiting first for all other ordered extents in 698 * the range to complete. 699 */ 700 if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags)) 701 ret = -EIO; 702 btrfs_put_ordered_extent(ordered); 703 if (end == 0 || end == start) 704 break; 705 end--; 706 } 707 return ret_wb ? ret_wb : ret; 708 } 709 710 /* 711 * find an ordered extent corresponding to file_offset. return NULL if 712 * nothing is found, otherwise take a reference on the extent and return it 713 */ 714 struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct btrfs_inode *inode, 715 u64 file_offset) 716 { 717 struct btrfs_ordered_inode_tree *tree; 718 struct rb_node *node; 719 struct btrfs_ordered_extent *entry = NULL; 720 721 tree = &inode->ordered_tree; 722 spin_lock_irq(&tree->lock); 723 node = tree_search(tree, file_offset); 724 if (!node) 725 goto out; 726 727 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); 728 if (!offset_in_entry(entry, file_offset)) 729 entry = NULL; 730 if (entry) 731 refcount_inc(&entry->refs); 732 out: 733 spin_unlock_irq(&tree->lock); 734 return entry; 735 } 736 737 /* Since the DIO code tries to lock a wide area we need to look for any ordered 738 * extents that exist in the range, rather than just the start of the range. 739 */ 740 struct btrfs_ordered_extent *btrfs_lookup_ordered_range( 741 struct btrfs_inode *inode, u64 file_offset, u64 len) 742 { 743 struct btrfs_ordered_inode_tree *tree; 744 struct rb_node *node; 745 struct btrfs_ordered_extent *entry = NULL; 746 747 tree = &inode->ordered_tree; 748 spin_lock_irq(&tree->lock); 749 node = tree_search(tree, file_offset); 750 if (!node) { 751 node = tree_search(tree, file_offset + len); 752 if (!node) 753 goto out; 754 } 755 756 while (1) { 757 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); 758 if (range_overlaps(entry, file_offset, len)) 759 break; 760 761 if (entry->file_offset >= file_offset + len) { 762 entry = NULL; 763 break; 764 } 765 entry = NULL; 766 node = rb_next(node); 767 if (!node) 768 break; 769 } 770 out: 771 if (entry) 772 refcount_inc(&entry->refs); 773 spin_unlock_irq(&tree->lock); 774 return entry; 775 } 776 777 /* 778 * lookup and return any extent before 'file_offset'. NULL is returned 779 * if none is found 780 */ 781 struct btrfs_ordered_extent * 782 btrfs_lookup_first_ordered_extent(struct inode *inode, u64 file_offset) 783 { 784 struct btrfs_ordered_inode_tree *tree; 785 struct rb_node *node; 786 struct btrfs_ordered_extent *entry = NULL; 787 788 tree = &BTRFS_I(inode)->ordered_tree; 789 spin_lock_irq(&tree->lock); 790 node = tree_search(tree, file_offset); 791 if (!node) 792 goto out; 793 794 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); 795 refcount_inc(&entry->refs); 796 out: 797 spin_unlock_irq(&tree->lock); 798 return entry; 799 } 800 801 /* 802 * search the ordered extents for one corresponding to 'offset' and 803 * try to find a checksum. This is used because we allow pages to 804 * be reclaimed before their checksum is actually put into the btree 805 */ 806 int btrfs_find_ordered_sum(struct inode *inode, u64 offset, u64 disk_bytenr, 807 u8 *sum, int len) 808 { 809 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 810 struct btrfs_ordered_sum *ordered_sum; 811 struct btrfs_ordered_extent *ordered; 812 struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree; 813 unsigned long num_sectors; 814 unsigned long i; 815 u32 sectorsize = btrfs_inode_sectorsize(inode); 816 const u16 csum_size = btrfs_super_csum_size(fs_info->super_copy); 817 int index = 0; 818 819 ordered = btrfs_lookup_ordered_extent(BTRFS_I(inode), offset); 820 if (!ordered) 821 return 0; 822 823 spin_lock_irq(&tree->lock); 824 list_for_each_entry_reverse(ordered_sum, &ordered->list, list) { 825 if (disk_bytenr >= ordered_sum->bytenr && 826 disk_bytenr < ordered_sum->bytenr + ordered_sum->len) { 827 i = (disk_bytenr - ordered_sum->bytenr) >> 828 inode->i_sb->s_blocksize_bits; 829 num_sectors = ordered_sum->len >> 830 inode->i_sb->s_blocksize_bits; 831 num_sectors = min_t(int, len - index, num_sectors - i); 832 memcpy(sum + index, ordered_sum->sums + i * csum_size, 833 num_sectors * csum_size); 834 835 index += (int)num_sectors * csum_size; 836 if (index == len) 837 goto out; 838 disk_bytenr += num_sectors * sectorsize; 839 } 840 } 841 out: 842 spin_unlock_irq(&tree->lock); 843 btrfs_put_ordered_extent(ordered); 844 return index; 845 } 846 847 /* 848 * btrfs_flush_ordered_range - Lock the passed range and ensures all pending 849 * ordered extents in it are run to completion. 850 * 851 * @inode: Inode whose ordered tree is to be searched 852 * @start: Beginning of range to flush 853 * @end: Last byte of range to lock 854 * @cached_state: If passed, will return the extent state responsible for the 855 * locked range. It's the caller's responsibility to free the cached state. 856 * 857 * This function always returns with the given range locked, ensuring after it's 858 * called no order extent can be pending. 859 */ 860 void btrfs_lock_and_flush_ordered_range(struct btrfs_inode *inode, u64 start, 861 u64 end, 862 struct extent_state **cached_state) 863 { 864 struct btrfs_ordered_extent *ordered; 865 struct extent_state *cache = NULL; 866 struct extent_state **cachedp = &cache; 867 868 if (cached_state) 869 cachedp = cached_state; 870 871 while (1) { 872 lock_extent_bits(&inode->io_tree, start, end, cachedp); 873 ordered = btrfs_lookup_ordered_range(inode, start, 874 end - start + 1); 875 if (!ordered) { 876 /* 877 * If no external cached_state has been passed then 878 * decrement the extra ref taken for cachedp since we 879 * aren't exposing it outside of this function 880 */ 881 if (!cached_state) 882 refcount_dec(&cache->refs); 883 break; 884 } 885 unlock_extent_cached(&inode->io_tree, start, end, cachedp); 886 btrfs_start_ordered_extent(&inode->vfs_inode, ordered, 1); 887 btrfs_put_ordered_extent(ordered); 888 } 889 } 890 891 int __init ordered_data_init(void) 892 { 893 btrfs_ordered_extent_cache = kmem_cache_create("btrfs_ordered_extent", 894 sizeof(struct btrfs_ordered_extent), 0, 895 SLAB_MEM_SPREAD, 896 NULL); 897 if (!btrfs_ordered_extent_cache) 898 return -ENOMEM; 899 900 return 0; 901 } 902 903 void __cold ordered_data_exit(void) 904 { 905 kmem_cache_destroy(btrfs_ordered_extent_cache); 906 } 907