xref: /openbmc/linux/fs/btrfs/ordered-data.c (revision 414772b8f7d7a9ccbfb5f0f3fd51bbfb8d54501a)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/slab.h>
7 #include <linux/blkdev.h>
8 #include <linux/writeback.h>
9 #include <linux/sched/mm.h>
10 #include "messages.h"
11 #include "misc.h"
12 #include "ctree.h"
13 #include "transaction.h"
14 #include "btrfs_inode.h"
15 #include "extent_io.h"
16 #include "disk-io.h"
17 #include "compression.h"
18 #include "delalloc-space.h"
19 #include "qgroup.h"
20 #include "subpage.h"
21 #include "file.h"
22 #include "super.h"
23 
24 static struct kmem_cache *btrfs_ordered_extent_cache;
25 
26 static u64 entry_end(struct btrfs_ordered_extent *entry)
27 {
28 	if (entry->file_offset + entry->num_bytes < entry->file_offset)
29 		return (u64)-1;
30 	return entry->file_offset + entry->num_bytes;
31 }
32 
33 /* returns NULL if the insertion worked, or it returns the node it did find
34  * in the tree
35  */
36 static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
37 				   struct rb_node *node)
38 {
39 	struct rb_node **p = &root->rb_node;
40 	struct rb_node *parent = NULL;
41 	struct btrfs_ordered_extent *entry;
42 
43 	while (*p) {
44 		parent = *p;
45 		entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
46 
47 		if (file_offset < entry->file_offset)
48 			p = &(*p)->rb_left;
49 		else if (file_offset >= entry_end(entry))
50 			p = &(*p)->rb_right;
51 		else
52 			return parent;
53 	}
54 
55 	rb_link_node(node, parent, p);
56 	rb_insert_color(node, root);
57 	return NULL;
58 }
59 
60 /*
61  * look for a given offset in the tree, and if it can't be found return the
62  * first lesser offset
63  */
64 static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
65 				     struct rb_node **prev_ret)
66 {
67 	struct rb_node *n = root->rb_node;
68 	struct rb_node *prev = NULL;
69 	struct rb_node *test;
70 	struct btrfs_ordered_extent *entry;
71 	struct btrfs_ordered_extent *prev_entry = NULL;
72 
73 	while (n) {
74 		entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
75 		prev = n;
76 		prev_entry = entry;
77 
78 		if (file_offset < entry->file_offset)
79 			n = n->rb_left;
80 		else if (file_offset >= entry_end(entry))
81 			n = n->rb_right;
82 		else
83 			return n;
84 	}
85 	if (!prev_ret)
86 		return NULL;
87 
88 	while (prev && file_offset >= entry_end(prev_entry)) {
89 		test = rb_next(prev);
90 		if (!test)
91 			break;
92 		prev_entry = rb_entry(test, struct btrfs_ordered_extent,
93 				      rb_node);
94 		if (file_offset < entry_end(prev_entry))
95 			break;
96 
97 		prev = test;
98 	}
99 	if (prev)
100 		prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
101 				      rb_node);
102 	while (prev && file_offset < entry_end(prev_entry)) {
103 		test = rb_prev(prev);
104 		if (!test)
105 			break;
106 		prev_entry = rb_entry(test, struct btrfs_ordered_extent,
107 				      rb_node);
108 		prev = test;
109 	}
110 	*prev_ret = prev;
111 	return NULL;
112 }
113 
114 static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset,
115 			  u64 len)
116 {
117 	if (file_offset + len <= entry->file_offset ||
118 	    entry->file_offset + entry->num_bytes <= file_offset)
119 		return 0;
120 	return 1;
121 }
122 
123 /*
124  * look find the first ordered struct that has this offset, otherwise
125  * the first one less than this offset
126  */
127 static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree,
128 					  u64 file_offset)
129 {
130 	struct rb_root *root = &tree->tree;
131 	struct rb_node *prev = NULL;
132 	struct rb_node *ret;
133 	struct btrfs_ordered_extent *entry;
134 
135 	if (tree->last) {
136 		entry = rb_entry(tree->last, struct btrfs_ordered_extent,
137 				 rb_node);
138 		if (in_range(file_offset, entry->file_offset, entry->num_bytes))
139 			return tree->last;
140 	}
141 	ret = __tree_search(root, file_offset, &prev);
142 	if (!ret)
143 		ret = prev;
144 	if (ret)
145 		tree->last = ret;
146 	return ret;
147 }
148 
149 static struct btrfs_ordered_extent *alloc_ordered_extent(
150 			struct btrfs_inode *inode, u64 file_offset, u64 num_bytes,
151 			u64 ram_bytes, u64 disk_bytenr, u64 disk_num_bytes,
152 			u64 offset, unsigned long flags, int compress_type)
153 {
154 	struct btrfs_ordered_extent *entry;
155 	int ret;
156 
157 	if (flags &
158 	    ((1 << BTRFS_ORDERED_NOCOW) | (1 << BTRFS_ORDERED_PREALLOC))) {
159 		/* For nocow write, we can release the qgroup rsv right now */
160 		ret = btrfs_qgroup_free_data(inode, NULL, file_offset, num_bytes);
161 		if (ret < 0)
162 			return ERR_PTR(ret);
163 	} else {
164 		/*
165 		 * The ordered extent has reserved qgroup space, release now
166 		 * and pass the reserved number for qgroup_record to free.
167 		 */
168 		ret = btrfs_qgroup_release_data(inode, file_offset, num_bytes);
169 		if (ret < 0)
170 			return ERR_PTR(ret);
171 	}
172 	entry = kmem_cache_zalloc(btrfs_ordered_extent_cache, GFP_NOFS);
173 	if (!entry)
174 		return ERR_PTR(-ENOMEM);
175 
176 	entry->file_offset = file_offset;
177 	entry->num_bytes = num_bytes;
178 	entry->ram_bytes = ram_bytes;
179 	entry->disk_bytenr = disk_bytenr;
180 	entry->disk_num_bytes = disk_num_bytes;
181 	entry->offset = offset;
182 	entry->bytes_left = num_bytes;
183 	entry->inode = igrab(&inode->vfs_inode);
184 	entry->compress_type = compress_type;
185 	entry->truncated_len = (u64)-1;
186 	entry->qgroup_rsv = ret;
187 	entry->flags = flags;
188 	refcount_set(&entry->refs, 1);
189 	init_waitqueue_head(&entry->wait);
190 	INIT_LIST_HEAD(&entry->list);
191 	INIT_LIST_HEAD(&entry->log_list);
192 	INIT_LIST_HEAD(&entry->root_extent_list);
193 	INIT_LIST_HEAD(&entry->work_list);
194 	init_completion(&entry->completion);
195 
196 	/*
197 	 * We don't need the count_max_extents here, we can assume that all of
198 	 * that work has been done at higher layers, so this is truly the
199 	 * smallest the extent is going to get.
200 	 */
201 	spin_lock(&inode->lock);
202 	btrfs_mod_outstanding_extents(inode, 1);
203 	spin_unlock(&inode->lock);
204 
205 	return entry;
206 }
207 
208 static void insert_ordered_extent(struct btrfs_ordered_extent *entry)
209 {
210 	struct btrfs_inode *inode = BTRFS_I(entry->inode);
211 	struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
212 	struct btrfs_root *root = inode->root;
213 	struct btrfs_fs_info *fs_info = root->fs_info;
214 	struct rb_node *node;
215 
216 	trace_btrfs_ordered_extent_add(inode, entry);
217 
218 	percpu_counter_add_batch(&fs_info->ordered_bytes, entry->num_bytes,
219 				 fs_info->delalloc_batch);
220 
221 	/* One ref for the tree. */
222 	refcount_inc(&entry->refs);
223 
224 	spin_lock_irq(&tree->lock);
225 	node = tree_insert(&tree->tree, entry->file_offset, &entry->rb_node);
226 	if (node)
227 		btrfs_panic(fs_info, -EEXIST,
228 				"inconsistency in ordered tree at offset %llu",
229 				entry->file_offset);
230 	spin_unlock_irq(&tree->lock);
231 
232 	spin_lock(&root->ordered_extent_lock);
233 	list_add_tail(&entry->root_extent_list,
234 		      &root->ordered_extents);
235 	root->nr_ordered_extents++;
236 	if (root->nr_ordered_extents == 1) {
237 		spin_lock(&fs_info->ordered_root_lock);
238 		BUG_ON(!list_empty(&root->ordered_root));
239 		list_add_tail(&root->ordered_root, &fs_info->ordered_roots);
240 		spin_unlock(&fs_info->ordered_root_lock);
241 	}
242 	spin_unlock(&root->ordered_extent_lock);
243 }
244 
245 /*
246  * Add an ordered extent to the per-inode tree.
247  *
248  * @inode:           Inode that this extent is for.
249  * @file_offset:     Logical offset in file where the extent starts.
250  * @num_bytes:       Logical length of extent in file.
251  * @ram_bytes:       Full length of unencoded data.
252  * @disk_bytenr:     Offset of extent on disk.
253  * @disk_num_bytes:  Size of extent on disk.
254  * @offset:          Offset into unencoded data where file data starts.
255  * @flags:           Flags specifying type of extent (1 << BTRFS_ORDERED_*).
256  * @compress_type:   Compression algorithm used for data.
257  *
258  * Most of these parameters correspond to &struct btrfs_file_extent_item. The
259  * tree is given a single reference on the ordered extent that was inserted, and
260  * the returned pointer is given a second reference.
261  *
262  * Return: the new ordered extent or error pointer.
263  */
264 struct btrfs_ordered_extent *btrfs_alloc_ordered_extent(
265 			struct btrfs_inode *inode, u64 file_offset,
266 			u64 num_bytes, u64 ram_bytes, u64 disk_bytenr,
267 			u64 disk_num_bytes, u64 offset, unsigned long flags,
268 			int compress_type)
269 {
270 	struct btrfs_ordered_extent *entry;
271 
272 	ASSERT((flags & ~BTRFS_ORDERED_TYPE_FLAGS) == 0);
273 
274 	entry = alloc_ordered_extent(inode, file_offset, num_bytes, ram_bytes,
275 				     disk_bytenr, disk_num_bytes, offset, flags,
276 				     compress_type);
277 	if (!IS_ERR(entry))
278 		insert_ordered_extent(entry);
279 	return entry;
280 }
281 
282 /*
283  * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
284  * when an ordered extent is finished.  If the list covers more than one
285  * ordered extent, it is split across multiples.
286  */
287 void btrfs_add_ordered_sum(struct btrfs_ordered_extent *entry,
288 			   struct btrfs_ordered_sum *sum)
289 {
290 	struct btrfs_ordered_inode_tree *tree;
291 
292 	tree = &BTRFS_I(entry->inode)->ordered_tree;
293 	spin_lock_irq(&tree->lock);
294 	list_add_tail(&sum->list, &entry->list);
295 	spin_unlock_irq(&tree->lock);
296 }
297 
298 static void finish_ordered_fn(struct btrfs_work *work)
299 {
300 	struct btrfs_ordered_extent *ordered_extent;
301 
302 	ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
303 	btrfs_finish_ordered_io(ordered_extent);
304 }
305 
306 static bool can_finish_ordered_extent(struct btrfs_ordered_extent *ordered,
307 				      struct page *page, u64 file_offset,
308 				      u64 len, bool uptodate)
309 {
310 	struct btrfs_inode *inode = BTRFS_I(ordered->inode);
311 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
312 
313 	lockdep_assert_held(&inode->ordered_tree.lock);
314 
315 	if (page) {
316 		ASSERT(page->mapping);
317 		ASSERT(page_offset(page) <= file_offset);
318 		ASSERT(file_offset + len <= page_offset(page) + PAGE_SIZE);
319 
320 		/*
321 		 * Ordered (Private2) bit indicates whether we still have
322 		 * pending io unfinished for the ordered extent.
323 		 *
324 		 * If there's no such bit, we need to skip to next range.
325 		 */
326 		if (!btrfs_page_test_ordered(fs_info, page, file_offset, len))
327 			return false;
328 		btrfs_page_clear_ordered(fs_info, page, file_offset, len);
329 	}
330 
331 	/* Now we're fine to update the accounting. */
332 	if (WARN_ON_ONCE(len > ordered->bytes_left)) {
333 		btrfs_crit(fs_info,
334 "bad ordered extent accounting, root=%llu ino=%llu OE offset=%llu OE len=%llu to_dec=%llu left=%llu",
335 			   inode->root->root_key.objectid, btrfs_ino(inode),
336 			   ordered->file_offset, ordered->num_bytes,
337 			   len, ordered->bytes_left);
338 		ordered->bytes_left = 0;
339 	} else {
340 		ordered->bytes_left -= len;
341 	}
342 
343 	if (!uptodate)
344 		set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
345 
346 	if (ordered->bytes_left)
347 		return false;
348 
349 	/*
350 	 * All the IO of the ordered extent is finished, we need to queue
351 	 * the finish_func to be executed.
352 	 */
353 	set_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags);
354 	cond_wake_up(&ordered->wait);
355 	refcount_inc(&ordered->refs);
356 	trace_btrfs_ordered_extent_mark_finished(inode, ordered);
357 	return true;
358 }
359 
360 static void btrfs_queue_ordered_fn(struct btrfs_ordered_extent *ordered)
361 {
362 	struct btrfs_inode *inode = BTRFS_I(ordered->inode);
363 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
364 	struct btrfs_workqueue *wq = btrfs_is_free_space_inode(inode) ?
365 		fs_info->endio_freespace_worker : fs_info->endio_write_workers;
366 
367 	btrfs_init_work(&ordered->work, finish_ordered_fn, NULL, NULL);
368 	btrfs_queue_work(wq, &ordered->work);
369 }
370 
371 bool btrfs_finish_ordered_extent(struct btrfs_ordered_extent *ordered,
372 				 struct page *page, u64 file_offset, u64 len,
373 				 bool uptodate)
374 {
375 	struct btrfs_inode *inode = BTRFS_I(ordered->inode);
376 	unsigned long flags;
377 	bool ret;
378 
379 	trace_btrfs_finish_ordered_extent(inode, file_offset, len, uptodate);
380 
381 	spin_lock_irqsave(&inode->ordered_tree.lock, flags);
382 	ret = can_finish_ordered_extent(ordered, page, file_offset, len, uptodate);
383 	spin_unlock_irqrestore(&inode->ordered_tree.lock, flags);
384 
385 	if (ret)
386 		btrfs_queue_ordered_fn(ordered);
387 	return ret;
388 }
389 
390 /*
391  * Mark all ordered extents io inside the specified range finished.
392  *
393  * @page:	 The involved page for the operation.
394  *		 For uncompressed buffered IO, the page status also needs to be
395  *		 updated to indicate whether the pending ordered io is finished.
396  *		 Can be NULL for direct IO and compressed write.
397  *		 For these cases, callers are ensured they won't execute the
398  *		 endio function twice.
399  *
400  * This function is called for endio, thus the range must have ordered
401  * extent(s) covering it.
402  */
403 void btrfs_mark_ordered_io_finished(struct btrfs_inode *inode,
404 				    struct page *page, u64 file_offset,
405 				    u64 num_bytes, bool uptodate)
406 {
407 	struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
408 	struct rb_node *node;
409 	struct btrfs_ordered_extent *entry = NULL;
410 	unsigned long flags;
411 	u64 cur = file_offset;
412 
413 	spin_lock_irqsave(&tree->lock, flags);
414 	while (cur < file_offset + num_bytes) {
415 		u64 entry_end;
416 		u64 end;
417 		u32 len;
418 
419 		node = tree_search(tree, cur);
420 		/* No ordered extents at all */
421 		if (!node)
422 			break;
423 
424 		entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
425 		entry_end = entry->file_offset + entry->num_bytes;
426 		/*
427 		 * |<-- OE --->|  |
428 		 *		  cur
429 		 * Go to next OE.
430 		 */
431 		if (cur >= entry_end) {
432 			node = rb_next(node);
433 			/* No more ordered extents, exit */
434 			if (!node)
435 				break;
436 			entry = rb_entry(node, struct btrfs_ordered_extent,
437 					 rb_node);
438 
439 			/* Go to next ordered extent and continue */
440 			cur = entry->file_offset;
441 			continue;
442 		}
443 		/*
444 		 * |	|<--- OE --->|
445 		 * cur
446 		 * Go to the start of OE.
447 		 */
448 		if (cur < entry->file_offset) {
449 			cur = entry->file_offset;
450 			continue;
451 		}
452 
453 		/*
454 		 * Now we are definitely inside one ordered extent.
455 		 *
456 		 * |<--- OE --->|
457 		 *	|
458 		 *	cur
459 		 */
460 		end = min(entry->file_offset + entry->num_bytes,
461 			  file_offset + num_bytes) - 1;
462 		ASSERT(end + 1 - cur < U32_MAX);
463 		len = end + 1 - cur;
464 
465 		if (can_finish_ordered_extent(entry, page, cur, len, uptodate)) {
466 			spin_unlock_irqrestore(&tree->lock, flags);
467 			btrfs_queue_ordered_fn(entry);
468 			spin_lock_irqsave(&tree->lock, flags);
469 		}
470 		cur += len;
471 	}
472 	spin_unlock_irqrestore(&tree->lock, flags);
473 }
474 
475 /*
476  * Finish IO for one ordered extent across a given range.  The range can only
477  * contain one ordered extent.
478  *
479  * @cached:	 The cached ordered extent. If not NULL, we can skip the tree
480  *               search and use the ordered extent directly.
481  * 		 Will be also used to store the finished ordered extent.
482  * @file_offset: File offset for the finished IO
483  * @io_size:	 Length of the finish IO range
484  *
485  * Return true if the ordered extent is finished in the range, and update
486  * @cached.
487  * Return false otherwise.
488  *
489  * NOTE: The range can NOT cross multiple ordered extents.
490  * Thus caller should ensure the range doesn't cross ordered extents.
491  */
492 bool btrfs_dec_test_ordered_pending(struct btrfs_inode *inode,
493 				    struct btrfs_ordered_extent **cached,
494 				    u64 file_offset, u64 io_size)
495 {
496 	struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
497 	struct rb_node *node;
498 	struct btrfs_ordered_extent *entry = NULL;
499 	unsigned long flags;
500 	bool finished = false;
501 
502 	spin_lock_irqsave(&tree->lock, flags);
503 	if (cached && *cached) {
504 		entry = *cached;
505 		goto have_entry;
506 	}
507 
508 	node = tree_search(tree, file_offset);
509 	if (!node)
510 		goto out;
511 
512 	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
513 have_entry:
514 	if (!in_range(file_offset, entry->file_offset, entry->num_bytes))
515 		goto out;
516 
517 	if (io_size > entry->bytes_left)
518 		btrfs_crit(inode->root->fs_info,
519 			   "bad ordered accounting left %llu size %llu",
520 		       entry->bytes_left, io_size);
521 
522 	entry->bytes_left -= io_size;
523 
524 	if (entry->bytes_left == 0) {
525 		/*
526 		 * Ensure only one caller can set the flag and finished_ret
527 		 * accordingly
528 		 */
529 		finished = !test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
530 		/* test_and_set_bit implies a barrier */
531 		cond_wake_up_nomb(&entry->wait);
532 	}
533 out:
534 	if (finished && cached && entry) {
535 		*cached = entry;
536 		refcount_inc(&entry->refs);
537 		trace_btrfs_ordered_extent_dec_test_pending(inode, entry);
538 	}
539 	spin_unlock_irqrestore(&tree->lock, flags);
540 	return finished;
541 }
542 
543 /*
544  * used to drop a reference on an ordered extent.  This will free
545  * the extent if the last reference is dropped
546  */
547 void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
548 {
549 	struct list_head *cur;
550 	struct btrfs_ordered_sum *sum;
551 
552 	trace_btrfs_ordered_extent_put(BTRFS_I(entry->inode), entry);
553 
554 	if (refcount_dec_and_test(&entry->refs)) {
555 		ASSERT(list_empty(&entry->root_extent_list));
556 		ASSERT(list_empty(&entry->log_list));
557 		ASSERT(RB_EMPTY_NODE(&entry->rb_node));
558 		if (entry->inode)
559 			btrfs_add_delayed_iput(BTRFS_I(entry->inode));
560 		while (!list_empty(&entry->list)) {
561 			cur = entry->list.next;
562 			sum = list_entry(cur, struct btrfs_ordered_sum, list);
563 			list_del(&sum->list);
564 			kvfree(sum);
565 		}
566 		kmem_cache_free(btrfs_ordered_extent_cache, entry);
567 	}
568 }
569 
570 /*
571  * remove an ordered extent from the tree.  No references are dropped
572  * and waiters are woken up.
573  */
574 void btrfs_remove_ordered_extent(struct btrfs_inode *btrfs_inode,
575 				 struct btrfs_ordered_extent *entry)
576 {
577 	struct btrfs_ordered_inode_tree *tree;
578 	struct btrfs_root *root = btrfs_inode->root;
579 	struct btrfs_fs_info *fs_info = root->fs_info;
580 	struct rb_node *node;
581 	bool pending;
582 	bool freespace_inode;
583 
584 	/*
585 	 * If this is a free space inode the thread has not acquired the ordered
586 	 * extents lockdep map.
587 	 */
588 	freespace_inode = btrfs_is_free_space_inode(btrfs_inode);
589 
590 	btrfs_lockdep_acquire(fs_info, btrfs_trans_pending_ordered);
591 	/* This is paired with btrfs_alloc_ordered_extent. */
592 	spin_lock(&btrfs_inode->lock);
593 	btrfs_mod_outstanding_extents(btrfs_inode, -1);
594 	spin_unlock(&btrfs_inode->lock);
595 	if (root != fs_info->tree_root) {
596 		u64 release;
597 
598 		if (test_bit(BTRFS_ORDERED_ENCODED, &entry->flags))
599 			release = entry->disk_num_bytes;
600 		else
601 			release = entry->num_bytes;
602 		btrfs_delalloc_release_metadata(btrfs_inode, release, false);
603 	}
604 
605 	percpu_counter_add_batch(&fs_info->ordered_bytes, -entry->num_bytes,
606 				 fs_info->delalloc_batch);
607 
608 	tree = &btrfs_inode->ordered_tree;
609 	spin_lock_irq(&tree->lock);
610 	node = &entry->rb_node;
611 	rb_erase(node, &tree->tree);
612 	RB_CLEAR_NODE(node);
613 	if (tree->last == node)
614 		tree->last = NULL;
615 	set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
616 	pending = test_and_clear_bit(BTRFS_ORDERED_PENDING, &entry->flags);
617 	spin_unlock_irq(&tree->lock);
618 
619 	/*
620 	 * The current running transaction is waiting on us, we need to let it
621 	 * know that we're complete and wake it up.
622 	 */
623 	if (pending) {
624 		struct btrfs_transaction *trans;
625 
626 		/*
627 		 * The checks for trans are just a formality, it should be set,
628 		 * but if it isn't we don't want to deref/assert under the spin
629 		 * lock, so be nice and check if trans is set, but ASSERT() so
630 		 * if it isn't set a developer will notice.
631 		 */
632 		spin_lock(&fs_info->trans_lock);
633 		trans = fs_info->running_transaction;
634 		if (trans)
635 			refcount_inc(&trans->use_count);
636 		spin_unlock(&fs_info->trans_lock);
637 
638 		ASSERT(trans);
639 		if (trans) {
640 			if (atomic_dec_and_test(&trans->pending_ordered))
641 				wake_up(&trans->pending_wait);
642 			btrfs_put_transaction(trans);
643 		}
644 	}
645 
646 	btrfs_lockdep_release(fs_info, btrfs_trans_pending_ordered);
647 
648 	spin_lock(&root->ordered_extent_lock);
649 	list_del_init(&entry->root_extent_list);
650 	root->nr_ordered_extents--;
651 
652 	trace_btrfs_ordered_extent_remove(btrfs_inode, entry);
653 
654 	if (!root->nr_ordered_extents) {
655 		spin_lock(&fs_info->ordered_root_lock);
656 		BUG_ON(list_empty(&root->ordered_root));
657 		list_del_init(&root->ordered_root);
658 		spin_unlock(&fs_info->ordered_root_lock);
659 	}
660 	spin_unlock(&root->ordered_extent_lock);
661 	wake_up(&entry->wait);
662 	if (!freespace_inode)
663 		btrfs_lockdep_release(fs_info, btrfs_ordered_extent);
664 }
665 
666 static void btrfs_run_ordered_extent_work(struct btrfs_work *work)
667 {
668 	struct btrfs_ordered_extent *ordered;
669 
670 	ordered = container_of(work, struct btrfs_ordered_extent, flush_work);
671 	btrfs_start_ordered_extent(ordered);
672 	complete(&ordered->completion);
673 }
674 
675 /*
676  * wait for all the ordered extents in a root.  This is done when balancing
677  * space between drives.
678  */
679 u64 btrfs_wait_ordered_extents(struct btrfs_root *root, u64 nr,
680 			       const u64 range_start, const u64 range_len)
681 {
682 	struct btrfs_fs_info *fs_info = root->fs_info;
683 	LIST_HEAD(splice);
684 	LIST_HEAD(skipped);
685 	LIST_HEAD(works);
686 	struct btrfs_ordered_extent *ordered, *next;
687 	u64 count = 0;
688 	const u64 range_end = range_start + range_len;
689 
690 	mutex_lock(&root->ordered_extent_mutex);
691 	spin_lock(&root->ordered_extent_lock);
692 	list_splice_init(&root->ordered_extents, &splice);
693 	while (!list_empty(&splice) && nr) {
694 		ordered = list_first_entry(&splice, struct btrfs_ordered_extent,
695 					   root_extent_list);
696 
697 		if (range_end <= ordered->disk_bytenr ||
698 		    ordered->disk_bytenr + ordered->disk_num_bytes <= range_start) {
699 			list_move_tail(&ordered->root_extent_list, &skipped);
700 			cond_resched_lock(&root->ordered_extent_lock);
701 			continue;
702 		}
703 
704 		list_move_tail(&ordered->root_extent_list,
705 			       &root->ordered_extents);
706 		refcount_inc(&ordered->refs);
707 		spin_unlock(&root->ordered_extent_lock);
708 
709 		btrfs_init_work(&ordered->flush_work,
710 				btrfs_run_ordered_extent_work, NULL, NULL);
711 		list_add_tail(&ordered->work_list, &works);
712 		btrfs_queue_work(fs_info->flush_workers, &ordered->flush_work);
713 
714 		cond_resched();
715 		spin_lock(&root->ordered_extent_lock);
716 		if (nr != U64_MAX)
717 			nr--;
718 		count++;
719 	}
720 	list_splice_tail(&skipped, &root->ordered_extents);
721 	list_splice_tail(&splice, &root->ordered_extents);
722 	spin_unlock(&root->ordered_extent_lock);
723 
724 	list_for_each_entry_safe(ordered, next, &works, work_list) {
725 		list_del_init(&ordered->work_list);
726 		wait_for_completion(&ordered->completion);
727 		btrfs_put_ordered_extent(ordered);
728 		cond_resched();
729 	}
730 	mutex_unlock(&root->ordered_extent_mutex);
731 
732 	return count;
733 }
734 
735 void btrfs_wait_ordered_roots(struct btrfs_fs_info *fs_info, u64 nr,
736 			     const u64 range_start, const u64 range_len)
737 {
738 	struct btrfs_root *root;
739 	struct list_head splice;
740 	u64 done;
741 
742 	INIT_LIST_HEAD(&splice);
743 
744 	mutex_lock(&fs_info->ordered_operations_mutex);
745 	spin_lock(&fs_info->ordered_root_lock);
746 	list_splice_init(&fs_info->ordered_roots, &splice);
747 	while (!list_empty(&splice) && nr) {
748 		root = list_first_entry(&splice, struct btrfs_root,
749 					ordered_root);
750 		root = btrfs_grab_root(root);
751 		BUG_ON(!root);
752 		list_move_tail(&root->ordered_root,
753 			       &fs_info->ordered_roots);
754 		spin_unlock(&fs_info->ordered_root_lock);
755 
756 		done = btrfs_wait_ordered_extents(root, nr,
757 						  range_start, range_len);
758 		btrfs_put_root(root);
759 
760 		spin_lock(&fs_info->ordered_root_lock);
761 		if (nr != U64_MAX) {
762 			nr -= done;
763 		}
764 	}
765 	list_splice_tail(&splice, &fs_info->ordered_roots);
766 	spin_unlock(&fs_info->ordered_root_lock);
767 	mutex_unlock(&fs_info->ordered_operations_mutex);
768 }
769 
770 /*
771  * Start IO and wait for a given ordered extent to finish.
772  *
773  * Wait on page writeback for all the pages in the extent and the IO completion
774  * code to insert metadata into the btree corresponding to the extent.
775  */
776 void btrfs_start_ordered_extent(struct btrfs_ordered_extent *entry)
777 {
778 	u64 start = entry->file_offset;
779 	u64 end = start + entry->num_bytes - 1;
780 	struct btrfs_inode *inode = BTRFS_I(entry->inode);
781 	bool freespace_inode;
782 
783 	trace_btrfs_ordered_extent_start(inode, entry);
784 
785 	/*
786 	 * If this is a free space inode do not take the ordered extents lockdep
787 	 * map.
788 	 */
789 	freespace_inode = btrfs_is_free_space_inode(inode);
790 
791 	/*
792 	 * pages in the range can be dirty, clean or writeback.  We
793 	 * start IO on any dirty ones so the wait doesn't stall waiting
794 	 * for the flusher thread to find them
795 	 */
796 	if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags))
797 		filemap_fdatawrite_range(inode->vfs_inode.i_mapping, start, end);
798 
799 	if (!freespace_inode)
800 		btrfs_might_wait_for_event(inode->root->fs_info, btrfs_ordered_extent);
801 	wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE, &entry->flags));
802 }
803 
804 /*
805  * Used to wait on ordered extents across a large range of bytes.
806  */
807 int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
808 {
809 	int ret = 0;
810 	int ret_wb = 0;
811 	u64 end;
812 	u64 orig_end;
813 	struct btrfs_ordered_extent *ordered;
814 
815 	if (start + len < start) {
816 		orig_end = OFFSET_MAX;
817 	} else {
818 		orig_end = start + len - 1;
819 		if (orig_end > OFFSET_MAX)
820 			orig_end = OFFSET_MAX;
821 	}
822 
823 	/* start IO across the range first to instantiate any delalloc
824 	 * extents
825 	 */
826 	ret = btrfs_fdatawrite_range(inode, start, orig_end);
827 	if (ret)
828 		return ret;
829 
830 	/*
831 	 * If we have a writeback error don't return immediately. Wait first
832 	 * for any ordered extents that haven't completed yet. This is to make
833 	 * sure no one can dirty the same page ranges and call writepages()
834 	 * before the ordered extents complete - to avoid failures (-EEXIST)
835 	 * when adding the new ordered extents to the ordered tree.
836 	 */
837 	ret_wb = filemap_fdatawait_range(inode->i_mapping, start, orig_end);
838 
839 	end = orig_end;
840 	while (1) {
841 		ordered = btrfs_lookup_first_ordered_extent(BTRFS_I(inode), end);
842 		if (!ordered)
843 			break;
844 		if (ordered->file_offset > orig_end) {
845 			btrfs_put_ordered_extent(ordered);
846 			break;
847 		}
848 		if (ordered->file_offset + ordered->num_bytes <= start) {
849 			btrfs_put_ordered_extent(ordered);
850 			break;
851 		}
852 		btrfs_start_ordered_extent(ordered);
853 		end = ordered->file_offset;
854 		/*
855 		 * If the ordered extent had an error save the error but don't
856 		 * exit without waiting first for all other ordered extents in
857 		 * the range to complete.
858 		 */
859 		if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags))
860 			ret = -EIO;
861 		btrfs_put_ordered_extent(ordered);
862 		if (end == 0 || end == start)
863 			break;
864 		end--;
865 	}
866 	return ret_wb ? ret_wb : ret;
867 }
868 
869 /*
870  * find an ordered extent corresponding to file_offset.  return NULL if
871  * nothing is found, otherwise take a reference on the extent and return it
872  */
873 struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct btrfs_inode *inode,
874 							 u64 file_offset)
875 {
876 	struct btrfs_ordered_inode_tree *tree;
877 	struct rb_node *node;
878 	struct btrfs_ordered_extent *entry = NULL;
879 	unsigned long flags;
880 
881 	tree = &inode->ordered_tree;
882 	spin_lock_irqsave(&tree->lock, flags);
883 	node = tree_search(tree, file_offset);
884 	if (!node)
885 		goto out;
886 
887 	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
888 	if (!in_range(file_offset, entry->file_offset, entry->num_bytes))
889 		entry = NULL;
890 	if (entry) {
891 		refcount_inc(&entry->refs);
892 		trace_btrfs_ordered_extent_lookup(inode, entry);
893 	}
894 out:
895 	spin_unlock_irqrestore(&tree->lock, flags);
896 	return entry;
897 }
898 
899 /* Since the DIO code tries to lock a wide area we need to look for any ordered
900  * extents that exist in the range, rather than just the start of the range.
901  */
902 struct btrfs_ordered_extent *btrfs_lookup_ordered_range(
903 		struct btrfs_inode *inode, u64 file_offset, u64 len)
904 {
905 	struct btrfs_ordered_inode_tree *tree;
906 	struct rb_node *node;
907 	struct btrfs_ordered_extent *entry = NULL;
908 
909 	tree = &inode->ordered_tree;
910 	spin_lock_irq(&tree->lock);
911 	node = tree_search(tree, file_offset);
912 	if (!node) {
913 		node = tree_search(tree, file_offset + len);
914 		if (!node)
915 			goto out;
916 	}
917 
918 	while (1) {
919 		entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
920 		if (range_overlaps(entry, file_offset, len))
921 			break;
922 
923 		if (entry->file_offset >= file_offset + len) {
924 			entry = NULL;
925 			break;
926 		}
927 		entry = NULL;
928 		node = rb_next(node);
929 		if (!node)
930 			break;
931 	}
932 out:
933 	if (entry) {
934 		refcount_inc(&entry->refs);
935 		trace_btrfs_ordered_extent_lookup_range(inode, entry);
936 	}
937 	spin_unlock_irq(&tree->lock);
938 	return entry;
939 }
940 
941 /*
942  * Adds all ordered extents to the given list. The list ends up sorted by the
943  * file_offset of the ordered extents.
944  */
945 void btrfs_get_ordered_extents_for_logging(struct btrfs_inode *inode,
946 					   struct list_head *list)
947 {
948 	struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
949 	struct rb_node *n;
950 
951 	ASSERT(inode_is_locked(&inode->vfs_inode));
952 
953 	spin_lock_irq(&tree->lock);
954 	for (n = rb_first(&tree->tree); n; n = rb_next(n)) {
955 		struct btrfs_ordered_extent *ordered;
956 
957 		ordered = rb_entry(n, struct btrfs_ordered_extent, rb_node);
958 
959 		if (test_bit(BTRFS_ORDERED_LOGGED, &ordered->flags))
960 			continue;
961 
962 		ASSERT(list_empty(&ordered->log_list));
963 		list_add_tail(&ordered->log_list, list);
964 		refcount_inc(&ordered->refs);
965 		trace_btrfs_ordered_extent_lookup_for_logging(inode, ordered);
966 	}
967 	spin_unlock_irq(&tree->lock);
968 }
969 
970 /*
971  * lookup and return any extent before 'file_offset'.  NULL is returned
972  * if none is found
973  */
974 struct btrfs_ordered_extent *
975 btrfs_lookup_first_ordered_extent(struct btrfs_inode *inode, u64 file_offset)
976 {
977 	struct btrfs_ordered_inode_tree *tree;
978 	struct rb_node *node;
979 	struct btrfs_ordered_extent *entry = NULL;
980 
981 	tree = &inode->ordered_tree;
982 	spin_lock_irq(&tree->lock);
983 	node = tree_search(tree, file_offset);
984 	if (!node)
985 		goto out;
986 
987 	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
988 	refcount_inc(&entry->refs);
989 	trace_btrfs_ordered_extent_lookup_first(inode, entry);
990 out:
991 	spin_unlock_irq(&tree->lock);
992 	return entry;
993 }
994 
995 /*
996  * Lookup the first ordered extent that overlaps the range
997  * [@file_offset, @file_offset + @len).
998  *
999  * The difference between this and btrfs_lookup_first_ordered_extent() is
1000  * that this one won't return any ordered extent that does not overlap the range.
1001  * And the difference against btrfs_lookup_ordered_extent() is, this function
1002  * ensures the first ordered extent gets returned.
1003  */
1004 struct btrfs_ordered_extent *btrfs_lookup_first_ordered_range(
1005 			struct btrfs_inode *inode, u64 file_offset, u64 len)
1006 {
1007 	struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
1008 	struct rb_node *node;
1009 	struct rb_node *cur;
1010 	struct rb_node *prev;
1011 	struct rb_node *next;
1012 	struct btrfs_ordered_extent *entry = NULL;
1013 
1014 	spin_lock_irq(&tree->lock);
1015 	node = tree->tree.rb_node;
1016 	/*
1017 	 * Here we don't want to use tree_search() which will use tree->last
1018 	 * and screw up the search order.
1019 	 * And __tree_search() can't return the adjacent ordered extents
1020 	 * either, thus here we do our own search.
1021 	 */
1022 	while (node) {
1023 		entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
1024 
1025 		if (file_offset < entry->file_offset) {
1026 			node = node->rb_left;
1027 		} else if (file_offset >= entry_end(entry)) {
1028 			node = node->rb_right;
1029 		} else {
1030 			/*
1031 			 * Direct hit, got an ordered extent that starts at
1032 			 * @file_offset
1033 			 */
1034 			goto out;
1035 		}
1036 	}
1037 	if (!entry) {
1038 		/* Empty tree */
1039 		goto out;
1040 	}
1041 
1042 	cur = &entry->rb_node;
1043 	/* We got an entry around @file_offset, check adjacent entries */
1044 	if (entry->file_offset < file_offset) {
1045 		prev = cur;
1046 		next = rb_next(cur);
1047 	} else {
1048 		prev = rb_prev(cur);
1049 		next = cur;
1050 	}
1051 	if (prev) {
1052 		entry = rb_entry(prev, struct btrfs_ordered_extent, rb_node);
1053 		if (range_overlaps(entry, file_offset, len))
1054 			goto out;
1055 	}
1056 	if (next) {
1057 		entry = rb_entry(next, struct btrfs_ordered_extent, rb_node);
1058 		if (range_overlaps(entry, file_offset, len))
1059 			goto out;
1060 	}
1061 	/* No ordered extent in the range */
1062 	entry = NULL;
1063 out:
1064 	if (entry) {
1065 		refcount_inc(&entry->refs);
1066 		trace_btrfs_ordered_extent_lookup_first_range(inode, entry);
1067 	}
1068 
1069 	spin_unlock_irq(&tree->lock);
1070 	return entry;
1071 }
1072 
1073 /*
1074  * Lock the passed range and ensures all pending ordered extents in it are run
1075  * to completion.
1076  *
1077  * @inode:        Inode whose ordered tree is to be searched
1078  * @start:        Beginning of range to flush
1079  * @end:          Last byte of range to lock
1080  * @cached_state: If passed, will return the extent state responsible for the
1081  *                locked range. It's the caller's responsibility to free the
1082  *                cached state.
1083  *
1084  * Always return with the given range locked, ensuring after it's called no
1085  * order extent can be pending.
1086  */
1087 void btrfs_lock_and_flush_ordered_range(struct btrfs_inode *inode, u64 start,
1088 					u64 end,
1089 					struct extent_state **cached_state)
1090 {
1091 	struct btrfs_ordered_extent *ordered;
1092 	struct extent_state *cache = NULL;
1093 	struct extent_state **cachedp = &cache;
1094 
1095 	if (cached_state)
1096 		cachedp = cached_state;
1097 
1098 	while (1) {
1099 		lock_extent(&inode->io_tree, start, end, cachedp);
1100 		ordered = btrfs_lookup_ordered_range(inode, start,
1101 						     end - start + 1);
1102 		if (!ordered) {
1103 			/*
1104 			 * If no external cached_state has been passed then
1105 			 * decrement the extra ref taken for cachedp since we
1106 			 * aren't exposing it outside of this function
1107 			 */
1108 			if (!cached_state)
1109 				refcount_dec(&cache->refs);
1110 			break;
1111 		}
1112 		unlock_extent(&inode->io_tree, start, end, cachedp);
1113 		btrfs_start_ordered_extent(ordered);
1114 		btrfs_put_ordered_extent(ordered);
1115 	}
1116 }
1117 
1118 /*
1119  * Lock the passed range and ensure all pending ordered extents in it are run
1120  * to completion in nowait mode.
1121  *
1122  * Return true if btrfs_lock_ordered_range does not return any extents,
1123  * otherwise false.
1124  */
1125 bool btrfs_try_lock_ordered_range(struct btrfs_inode *inode, u64 start, u64 end,
1126 				  struct extent_state **cached_state)
1127 {
1128 	struct btrfs_ordered_extent *ordered;
1129 
1130 	if (!try_lock_extent(&inode->io_tree, start, end, cached_state))
1131 		return false;
1132 
1133 	ordered = btrfs_lookup_ordered_range(inode, start, end - start + 1);
1134 	if (!ordered)
1135 		return true;
1136 
1137 	btrfs_put_ordered_extent(ordered);
1138 	unlock_extent(&inode->io_tree, start, end, cached_state);
1139 
1140 	return false;
1141 }
1142 
1143 /* Split out a new ordered extent for this first @len bytes of @ordered. */
1144 struct btrfs_ordered_extent *btrfs_split_ordered_extent(
1145 			struct btrfs_ordered_extent *ordered, u64 len)
1146 {
1147 	struct btrfs_inode *inode = BTRFS_I(ordered->inode);
1148 	struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
1149 	struct btrfs_root *root = inode->root;
1150 	struct btrfs_fs_info *fs_info = root->fs_info;
1151 	u64 file_offset = ordered->file_offset;
1152 	u64 disk_bytenr = ordered->disk_bytenr;
1153 	unsigned long flags = ordered->flags;
1154 	struct btrfs_ordered_sum *sum, *tmpsum;
1155 	struct btrfs_ordered_extent *new;
1156 	struct rb_node *node;
1157 	u64 offset = 0;
1158 
1159 	trace_btrfs_ordered_extent_split(inode, ordered);
1160 
1161 	ASSERT(!(flags & (1U << BTRFS_ORDERED_COMPRESSED)));
1162 
1163 	/*
1164 	 * The entire bio must be covered by the ordered extent, but we can't
1165 	 * reduce the original extent to a zero length either.
1166 	 */
1167 	if (WARN_ON_ONCE(len >= ordered->num_bytes))
1168 		return ERR_PTR(-EINVAL);
1169 	/* We cannot split partially completed ordered extents. */
1170 	if (ordered->bytes_left) {
1171 		ASSERT(!(flags & ~BTRFS_ORDERED_TYPE_FLAGS));
1172 		if (WARN_ON_ONCE(ordered->bytes_left != ordered->disk_num_bytes))
1173 			return ERR_PTR(-EINVAL);
1174 	}
1175 	/* We cannot split a compressed ordered extent. */
1176 	if (WARN_ON_ONCE(ordered->disk_num_bytes != ordered->num_bytes))
1177 		return ERR_PTR(-EINVAL);
1178 
1179 	new = alloc_ordered_extent(inode, file_offset, len, len, disk_bytenr,
1180 				   len, 0, flags, ordered->compress_type);
1181 	if (IS_ERR(new))
1182 		return new;
1183 
1184 	/* One ref for the tree. */
1185 	refcount_inc(&new->refs);
1186 
1187 	spin_lock_irq(&root->ordered_extent_lock);
1188 	spin_lock(&tree->lock);
1189 	/* Remove from tree once */
1190 	node = &ordered->rb_node;
1191 	rb_erase(node, &tree->tree);
1192 	RB_CLEAR_NODE(node);
1193 	if (tree->last == node)
1194 		tree->last = NULL;
1195 
1196 	ordered->file_offset += len;
1197 	ordered->disk_bytenr += len;
1198 	ordered->num_bytes -= len;
1199 	ordered->disk_num_bytes -= len;
1200 
1201 	if (test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags)) {
1202 		ASSERT(ordered->bytes_left == 0);
1203 		new->bytes_left = 0;
1204 	} else {
1205 		ordered->bytes_left -= len;
1206 	}
1207 
1208 	if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags)) {
1209 		if (ordered->truncated_len > len) {
1210 			ordered->truncated_len -= len;
1211 		} else {
1212 			new->truncated_len = ordered->truncated_len;
1213 			ordered->truncated_len = 0;
1214 		}
1215 	}
1216 
1217 	list_for_each_entry_safe(sum, tmpsum, &ordered->list, list) {
1218 		if (offset == len)
1219 			break;
1220 		list_move_tail(&sum->list, &new->list);
1221 		offset += sum->len;
1222 	}
1223 
1224 	/* Re-insert the node */
1225 	node = tree_insert(&tree->tree, ordered->file_offset, &ordered->rb_node);
1226 	if (node)
1227 		btrfs_panic(fs_info, -EEXIST,
1228 			"zoned: inconsistency in ordered tree at offset %llu",
1229 			ordered->file_offset);
1230 
1231 	node = tree_insert(&tree->tree, new->file_offset, &new->rb_node);
1232 	if (node)
1233 		btrfs_panic(fs_info, -EEXIST,
1234 			"zoned: inconsistency in ordered tree at offset %llu",
1235 			new->file_offset);
1236 	spin_unlock(&tree->lock);
1237 
1238 	list_add_tail(&new->root_extent_list, &root->ordered_extents);
1239 	root->nr_ordered_extents++;
1240 	spin_unlock_irq(&root->ordered_extent_lock);
1241 	return new;
1242 }
1243 
1244 int __init ordered_data_init(void)
1245 {
1246 	btrfs_ordered_extent_cache = kmem_cache_create("btrfs_ordered_extent",
1247 				     sizeof(struct btrfs_ordered_extent), 0,
1248 				     SLAB_MEM_SPREAD,
1249 				     NULL);
1250 	if (!btrfs_ordered_extent_cache)
1251 		return -ENOMEM;
1252 
1253 	return 0;
1254 }
1255 
1256 void __cold ordered_data_exit(void)
1257 {
1258 	kmem_cache_destroy(btrfs_ordered_extent_cache);
1259 }
1260