1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/slab.h> 20 #include <linux/blkdev.h> 21 #include <linux/writeback.h> 22 #include <linux/pagevec.h> 23 #include "ctree.h" 24 #include "transaction.h" 25 #include "btrfs_inode.h" 26 #include "extent_io.h" 27 #include "disk-io.h" 28 29 static struct kmem_cache *btrfs_ordered_extent_cache; 30 31 static u64 entry_end(struct btrfs_ordered_extent *entry) 32 { 33 if (entry->file_offset + entry->len < entry->file_offset) 34 return (u64)-1; 35 return entry->file_offset + entry->len; 36 } 37 38 /* returns NULL if the insertion worked, or it returns the node it did find 39 * in the tree 40 */ 41 static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset, 42 struct rb_node *node) 43 { 44 struct rb_node **p = &root->rb_node; 45 struct rb_node *parent = NULL; 46 struct btrfs_ordered_extent *entry; 47 48 while (*p) { 49 parent = *p; 50 entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node); 51 52 if (file_offset < entry->file_offset) 53 p = &(*p)->rb_left; 54 else if (file_offset >= entry_end(entry)) 55 p = &(*p)->rb_right; 56 else 57 return parent; 58 } 59 60 rb_link_node(node, parent, p); 61 rb_insert_color(node, root); 62 return NULL; 63 } 64 65 static void ordered_data_tree_panic(struct inode *inode, int errno, 66 u64 offset) 67 { 68 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 69 btrfs_panic(fs_info, errno, "Inconsistency in ordered tree at offset " 70 "%llu\n", offset); 71 } 72 73 /* 74 * look for a given offset in the tree, and if it can't be found return the 75 * first lesser offset 76 */ 77 static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset, 78 struct rb_node **prev_ret) 79 { 80 struct rb_node *n = root->rb_node; 81 struct rb_node *prev = NULL; 82 struct rb_node *test; 83 struct btrfs_ordered_extent *entry; 84 struct btrfs_ordered_extent *prev_entry = NULL; 85 86 while (n) { 87 entry = rb_entry(n, struct btrfs_ordered_extent, rb_node); 88 prev = n; 89 prev_entry = entry; 90 91 if (file_offset < entry->file_offset) 92 n = n->rb_left; 93 else if (file_offset >= entry_end(entry)) 94 n = n->rb_right; 95 else 96 return n; 97 } 98 if (!prev_ret) 99 return NULL; 100 101 while (prev && file_offset >= entry_end(prev_entry)) { 102 test = rb_next(prev); 103 if (!test) 104 break; 105 prev_entry = rb_entry(test, struct btrfs_ordered_extent, 106 rb_node); 107 if (file_offset < entry_end(prev_entry)) 108 break; 109 110 prev = test; 111 } 112 if (prev) 113 prev_entry = rb_entry(prev, struct btrfs_ordered_extent, 114 rb_node); 115 while (prev && file_offset < entry_end(prev_entry)) { 116 test = rb_prev(prev); 117 if (!test) 118 break; 119 prev_entry = rb_entry(test, struct btrfs_ordered_extent, 120 rb_node); 121 prev = test; 122 } 123 *prev_ret = prev; 124 return NULL; 125 } 126 127 /* 128 * helper to check if a given offset is inside a given entry 129 */ 130 static int offset_in_entry(struct btrfs_ordered_extent *entry, u64 file_offset) 131 { 132 if (file_offset < entry->file_offset || 133 entry->file_offset + entry->len <= file_offset) 134 return 0; 135 return 1; 136 } 137 138 static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset, 139 u64 len) 140 { 141 if (file_offset + len <= entry->file_offset || 142 entry->file_offset + entry->len <= file_offset) 143 return 0; 144 return 1; 145 } 146 147 /* 148 * look find the first ordered struct that has this offset, otherwise 149 * the first one less than this offset 150 */ 151 static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree, 152 u64 file_offset) 153 { 154 struct rb_root *root = &tree->tree; 155 struct rb_node *prev = NULL; 156 struct rb_node *ret; 157 struct btrfs_ordered_extent *entry; 158 159 if (tree->last) { 160 entry = rb_entry(tree->last, struct btrfs_ordered_extent, 161 rb_node); 162 if (offset_in_entry(entry, file_offset)) 163 return tree->last; 164 } 165 ret = __tree_search(root, file_offset, &prev); 166 if (!ret) 167 ret = prev; 168 if (ret) 169 tree->last = ret; 170 return ret; 171 } 172 173 /* allocate and add a new ordered_extent into the per-inode tree. 174 * file_offset is the logical offset in the file 175 * 176 * start is the disk block number of an extent already reserved in the 177 * extent allocation tree 178 * 179 * len is the length of the extent 180 * 181 * The tree is given a single reference on the ordered extent that was 182 * inserted. 183 */ 184 static int __btrfs_add_ordered_extent(struct inode *inode, u64 file_offset, 185 u64 start, u64 len, u64 disk_len, 186 int type, int dio, int compress_type) 187 { 188 struct btrfs_root *root = BTRFS_I(inode)->root; 189 struct btrfs_ordered_inode_tree *tree; 190 struct rb_node *node; 191 struct btrfs_ordered_extent *entry; 192 193 tree = &BTRFS_I(inode)->ordered_tree; 194 entry = kmem_cache_zalloc(btrfs_ordered_extent_cache, GFP_NOFS); 195 if (!entry) 196 return -ENOMEM; 197 198 entry->file_offset = file_offset; 199 entry->start = start; 200 entry->len = len; 201 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) && 202 !(type == BTRFS_ORDERED_NOCOW)) 203 entry->csum_bytes_left = disk_len; 204 entry->disk_len = disk_len; 205 entry->bytes_left = len; 206 entry->inode = igrab(inode); 207 entry->compress_type = compress_type; 208 entry->truncated_len = (u64)-1; 209 if (type != BTRFS_ORDERED_IO_DONE && type != BTRFS_ORDERED_COMPLETE) 210 set_bit(type, &entry->flags); 211 212 if (dio) 213 set_bit(BTRFS_ORDERED_DIRECT, &entry->flags); 214 215 /* one ref for the tree */ 216 atomic_set(&entry->refs, 1); 217 init_waitqueue_head(&entry->wait); 218 INIT_LIST_HEAD(&entry->list); 219 INIT_LIST_HEAD(&entry->root_extent_list); 220 INIT_LIST_HEAD(&entry->work_list); 221 init_completion(&entry->completion); 222 INIT_LIST_HEAD(&entry->log_list); 223 224 trace_btrfs_ordered_extent_add(inode, entry); 225 226 spin_lock_irq(&tree->lock); 227 node = tree_insert(&tree->tree, file_offset, 228 &entry->rb_node); 229 if (node) 230 ordered_data_tree_panic(inode, -EEXIST, file_offset); 231 spin_unlock_irq(&tree->lock); 232 233 spin_lock(&root->ordered_extent_lock); 234 list_add_tail(&entry->root_extent_list, 235 &root->ordered_extents); 236 root->nr_ordered_extents++; 237 if (root->nr_ordered_extents == 1) { 238 spin_lock(&root->fs_info->ordered_root_lock); 239 BUG_ON(!list_empty(&root->ordered_root)); 240 list_add_tail(&root->ordered_root, 241 &root->fs_info->ordered_roots); 242 spin_unlock(&root->fs_info->ordered_root_lock); 243 } 244 spin_unlock(&root->ordered_extent_lock); 245 246 return 0; 247 } 248 249 int btrfs_add_ordered_extent(struct inode *inode, u64 file_offset, 250 u64 start, u64 len, u64 disk_len, int type) 251 { 252 return __btrfs_add_ordered_extent(inode, file_offset, start, len, 253 disk_len, type, 0, 254 BTRFS_COMPRESS_NONE); 255 } 256 257 int btrfs_add_ordered_extent_dio(struct inode *inode, u64 file_offset, 258 u64 start, u64 len, u64 disk_len, int type) 259 { 260 return __btrfs_add_ordered_extent(inode, file_offset, start, len, 261 disk_len, type, 1, 262 BTRFS_COMPRESS_NONE); 263 } 264 265 int btrfs_add_ordered_extent_compress(struct inode *inode, u64 file_offset, 266 u64 start, u64 len, u64 disk_len, 267 int type, int compress_type) 268 { 269 return __btrfs_add_ordered_extent(inode, file_offset, start, len, 270 disk_len, type, 0, 271 compress_type); 272 } 273 274 /* 275 * Add a struct btrfs_ordered_sum into the list of checksums to be inserted 276 * when an ordered extent is finished. If the list covers more than one 277 * ordered extent, it is split across multiples. 278 */ 279 void btrfs_add_ordered_sum(struct inode *inode, 280 struct btrfs_ordered_extent *entry, 281 struct btrfs_ordered_sum *sum) 282 { 283 struct btrfs_ordered_inode_tree *tree; 284 285 tree = &BTRFS_I(inode)->ordered_tree; 286 spin_lock_irq(&tree->lock); 287 list_add_tail(&sum->list, &entry->list); 288 WARN_ON(entry->csum_bytes_left < sum->len); 289 entry->csum_bytes_left -= sum->len; 290 if (entry->csum_bytes_left == 0) 291 wake_up(&entry->wait); 292 spin_unlock_irq(&tree->lock); 293 } 294 295 /* 296 * this is used to account for finished IO across a given range 297 * of the file. The IO may span ordered extents. If 298 * a given ordered_extent is completely done, 1 is returned, otherwise 299 * 0. 300 * 301 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used 302 * to make sure this function only returns 1 once for a given ordered extent. 303 * 304 * file_offset is updated to one byte past the range that is recorded as 305 * complete. This allows you to walk forward in the file. 306 */ 307 int btrfs_dec_test_first_ordered_pending(struct inode *inode, 308 struct btrfs_ordered_extent **cached, 309 u64 *file_offset, u64 io_size, int uptodate) 310 { 311 struct btrfs_ordered_inode_tree *tree; 312 struct rb_node *node; 313 struct btrfs_ordered_extent *entry = NULL; 314 int ret; 315 unsigned long flags; 316 u64 dec_end; 317 u64 dec_start; 318 u64 to_dec; 319 320 tree = &BTRFS_I(inode)->ordered_tree; 321 spin_lock_irqsave(&tree->lock, flags); 322 node = tree_search(tree, *file_offset); 323 if (!node) { 324 ret = 1; 325 goto out; 326 } 327 328 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); 329 if (!offset_in_entry(entry, *file_offset)) { 330 ret = 1; 331 goto out; 332 } 333 334 dec_start = max(*file_offset, entry->file_offset); 335 dec_end = min(*file_offset + io_size, entry->file_offset + 336 entry->len); 337 *file_offset = dec_end; 338 if (dec_start > dec_end) { 339 btrfs_crit(BTRFS_I(inode)->root->fs_info, 340 "bad ordering dec_start %llu end %llu", dec_start, dec_end); 341 } 342 to_dec = dec_end - dec_start; 343 if (to_dec > entry->bytes_left) { 344 btrfs_crit(BTRFS_I(inode)->root->fs_info, 345 "bad ordered accounting left %llu size %llu", 346 entry->bytes_left, to_dec); 347 } 348 entry->bytes_left -= to_dec; 349 if (!uptodate) 350 set_bit(BTRFS_ORDERED_IOERR, &entry->flags); 351 352 if (entry->bytes_left == 0) 353 ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags); 354 else 355 ret = 1; 356 out: 357 if (!ret && cached && entry) { 358 *cached = entry; 359 atomic_inc(&entry->refs); 360 } 361 spin_unlock_irqrestore(&tree->lock, flags); 362 return ret == 0; 363 } 364 365 /* 366 * this is used to account for finished IO across a given range 367 * of the file. The IO should not span ordered extents. If 368 * a given ordered_extent is completely done, 1 is returned, otherwise 369 * 0. 370 * 371 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used 372 * to make sure this function only returns 1 once for a given ordered extent. 373 */ 374 int btrfs_dec_test_ordered_pending(struct inode *inode, 375 struct btrfs_ordered_extent **cached, 376 u64 file_offset, u64 io_size, int uptodate) 377 { 378 struct btrfs_ordered_inode_tree *tree; 379 struct rb_node *node; 380 struct btrfs_ordered_extent *entry = NULL; 381 unsigned long flags; 382 int ret; 383 384 tree = &BTRFS_I(inode)->ordered_tree; 385 spin_lock_irqsave(&tree->lock, flags); 386 if (cached && *cached) { 387 entry = *cached; 388 goto have_entry; 389 } 390 391 node = tree_search(tree, file_offset); 392 if (!node) { 393 ret = 1; 394 goto out; 395 } 396 397 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); 398 have_entry: 399 if (!offset_in_entry(entry, file_offset)) { 400 ret = 1; 401 goto out; 402 } 403 404 if (io_size > entry->bytes_left) { 405 btrfs_crit(BTRFS_I(inode)->root->fs_info, 406 "bad ordered accounting left %llu size %llu", 407 entry->bytes_left, io_size); 408 } 409 entry->bytes_left -= io_size; 410 if (!uptodate) 411 set_bit(BTRFS_ORDERED_IOERR, &entry->flags); 412 413 if (entry->bytes_left == 0) 414 ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags); 415 else 416 ret = 1; 417 out: 418 if (!ret && cached && entry) { 419 *cached = entry; 420 atomic_inc(&entry->refs); 421 } 422 spin_unlock_irqrestore(&tree->lock, flags); 423 return ret == 0; 424 } 425 426 /* Needs to either be called under a log transaction or the log_mutex */ 427 void btrfs_get_logged_extents(struct btrfs_root *log, struct inode *inode) 428 { 429 struct btrfs_ordered_inode_tree *tree; 430 struct btrfs_ordered_extent *ordered; 431 struct rb_node *n; 432 int index = log->log_transid % 2; 433 434 tree = &BTRFS_I(inode)->ordered_tree; 435 spin_lock_irq(&tree->lock); 436 for (n = rb_first(&tree->tree); n; n = rb_next(n)) { 437 ordered = rb_entry(n, struct btrfs_ordered_extent, rb_node); 438 spin_lock(&log->log_extents_lock[index]); 439 if (list_empty(&ordered->log_list)) { 440 list_add_tail(&ordered->log_list, &log->logged_list[index]); 441 atomic_inc(&ordered->refs); 442 } 443 spin_unlock(&log->log_extents_lock[index]); 444 } 445 spin_unlock_irq(&tree->lock); 446 } 447 448 void btrfs_wait_logged_extents(struct btrfs_root *log, u64 transid) 449 { 450 struct btrfs_ordered_extent *ordered; 451 int index = transid % 2; 452 453 spin_lock_irq(&log->log_extents_lock[index]); 454 while (!list_empty(&log->logged_list[index])) { 455 ordered = list_first_entry(&log->logged_list[index], 456 struct btrfs_ordered_extent, 457 log_list); 458 list_del_init(&ordered->log_list); 459 spin_unlock_irq(&log->log_extents_lock[index]); 460 wait_event(ordered->wait, test_bit(BTRFS_ORDERED_IO_DONE, 461 &ordered->flags)); 462 btrfs_put_ordered_extent(ordered); 463 spin_lock_irq(&log->log_extents_lock[index]); 464 } 465 spin_unlock_irq(&log->log_extents_lock[index]); 466 } 467 468 void btrfs_free_logged_extents(struct btrfs_root *log, u64 transid) 469 { 470 struct btrfs_ordered_extent *ordered; 471 int index = transid % 2; 472 473 spin_lock_irq(&log->log_extents_lock[index]); 474 while (!list_empty(&log->logged_list[index])) { 475 ordered = list_first_entry(&log->logged_list[index], 476 struct btrfs_ordered_extent, 477 log_list); 478 list_del_init(&ordered->log_list); 479 spin_unlock_irq(&log->log_extents_lock[index]); 480 btrfs_put_ordered_extent(ordered); 481 spin_lock_irq(&log->log_extents_lock[index]); 482 } 483 spin_unlock_irq(&log->log_extents_lock[index]); 484 } 485 486 /* 487 * used to drop a reference on an ordered extent. This will free 488 * the extent if the last reference is dropped 489 */ 490 void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry) 491 { 492 struct list_head *cur; 493 struct btrfs_ordered_sum *sum; 494 495 trace_btrfs_ordered_extent_put(entry->inode, entry); 496 497 if (atomic_dec_and_test(&entry->refs)) { 498 if (entry->inode) 499 btrfs_add_delayed_iput(entry->inode); 500 while (!list_empty(&entry->list)) { 501 cur = entry->list.next; 502 sum = list_entry(cur, struct btrfs_ordered_sum, list); 503 list_del(&sum->list); 504 kfree(sum); 505 } 506 kmem_cache_free(btrfs_ordered_extent_cache, entry); 507 } 508 } 509 510 /* 511 * remove an ordered extent from the tree. No references are dropped 512 * and waiters are woken up. 513 */ 514 void btrfs_remove_ordered_extent(struct inode *inode, 515 struct btrfs_ordered_extent *entry) 516 { 517 struct btrfs_ordered_inode_tree *tree; 518 struct btrfs_root *root = BTRFS_I(inode)->root; 519 struct rb_node *node; 520 521 tree = &BTRFS_I(inode)->ordered_tree; 522 spin_lock_irq(&tree->lock); 523 node = &entry->rb_node; 524 rb_erase(node, &tree->tree); 525 if (tree->last == node) 526 tree->last = NULL; 527 set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags); 528 spin_unlock_irq(&tree->lock); 529 530 spin_lock(&root->ordered_extent_lock); 531 list_del_init(&entry->root_extent_list); 532 root->nr_ordered_extents--; 533 534 trace_btrfs_ordered_extent_remove(inode, entry); 535 536 /* 537 * we have no more ordered extents for this inode and 538 * no dirty pages. We can safely remove it from the 539 * list of ordered extents 540 */ 541 if (RB_EMPTY_ROOT(&tree->tree) && 542 !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) { 543 spin_lock(&root->fs_info->ordered_root_lock); 544 list_del_init(&BTRFS_I(inode)->ordered_operations); 545 spin_unlock(&root->fs_info->ordered_root_lock); 546 } 547 548 if (!root->nr_ordered_extents) { 549 spin_lock(&root->fs_info->ordered_root_lock); 550 BUG_ON(list_empty(&root->ordered_root)); 551 list_del_init(&root->ordered_root); 552 spin_unlock(&root->fs_info->ordered_root_lock); 553 } 554 spin_unlock(&root->ordered_extent_lock); 555 wake_up(&entry->wait); 556 } 557 558 static void btrfs_run_ordered_extent_work(struct btrfs_work *work) 559 { 560 struct btrfs_ordered_extent *ordered; 561 562 ordered = container_of(work, struct btrfs_ordered_extent, flush_work); 563 btrfs_start_ordered_extent(ordered->inode, ordered, 1); 564 complete(&ordered->completion); 565 } 566 567 /* 568 * wait for all the ordered extents in a root. This is done when balancing 569 * space between drives. 570 */ 571 int btrfs_wait_ordered_extents(struct btrfs_root *root, int nr) 572 { 573 struct list_head splice, works; 574 struct btrfs_ordered_extent *ordered, *next; 575 int count = 0; 576 577 INIT_LIST_HEAD(&splice); 578 INIT_LIST_HEAD(&works); 579 580 mutex_lock(&root->fs_info->ordered_operations_mutex); 581 spin_lock(&root->ordered_extent_lock); 582 list_splice_init(&root->ordered_extents, &splice); 583 while (!list_empty(&splice) && nr) { 584 ordered = list_first_entry(&splice, struct btrfs_ordered_extent, 585 root_extent_list); 586 list_move_tail(&ordered->root_extent_list, 587 &root->ordered_extents); 588 atomic_inc(&ordered->refs); 589 spin_unlock(&root->ordered_extent_lock); 590 591 ordered->flush_work.func = btrfs_run_ordered_extent_work; 592 list_add_tail(&ordered->work_list, &works); 593 btrfs_queue_worker(&root->fs_info->flush_workers, 594 &ordered->flush_work); 595 596 cond_resched(); 597 spin_lock(&root->ordered_extent_lock); 598 if (nr != -1) 599 nr--; 600 count++; 601 } 602 list_splice_tail(&splice, &root->ordered_extents); 603 spin_unlock(&root->ordered_extent_lock); 604 605 list_for_each_entry_safe(ordered, next, &works, work_list) { 606 list_del_init(&ordered->work_list); 607 wait_for_completion(&ordered->completion); 608 btrfs_put_ordered_extent(ordered); 609 cond_resched(); 610 } 611 mutex_unlock(&root->fs_info->ordered_operations_mutex); 612 613 return count; 614 } 615 616 void btrfs_wait_ordered_roots(struct btrfs_fs_info *fs_info, int nr) 617 { 618 struct btrfs_root *root; 619 struct list_head splice; 620 int done; 621 622 INIT_LIST_HEAD(&splice); 623 624 spin_lock(&fs_info->ordered_root_lock); 625 list_splice_init(&fs_info->ordered_roots, &splice); 626 while (!list_empty(&splice) && nr) { 627 root = list_first_entry(&splice, struct btrfs_root, 628 ordered_root); 629 root = btrfs_grab_fs_root(root); 630 BUG_ON(!root); 631 list_move_tail(&root->ordered_root, 632 &fs_info->ordered_roots); 633 spin_unlock(&fs_info->ordered_root_lock); 634 635 done = btrfs_wait_ordered_extents(root, nr); 636 btrfs_put_fs_root(root); 637 638 spin_lock(&fs_info->ordered_root_lock); 639 if (nr != -1) { 640 nr -= done; 641 WARN_ON(nr < 0); 642 } 643 } 644 list_splice_tail(&splice, &fs_info->ordered_roots); 645 spin_unlock(&fs_info->ordered_root_lock); 646 } 647 648 /* 649 * this is used during transaction commit to write all the inodes 650 * added to the ordered operation list. These files must be fully on 651 * disk before the transaction commits. 652 * 653 * we have two modes here, one is to just start the IO via filemap_flush 654 * and the other is to wait for all the io. When we wait, we have an 655 * extra check to make sure the ordered operation list really is empty 656 * before we return 657 */ 658 int btrfs_run_ordered_operations(struct btrfs_trans_handle *trans, 659 struct btrfs_root *root, int wait) 660 { 661 struct btrfs_inode *btrfs_inode; 662 struct inode *inode; 663 struct btrfs_transaction *cur_trans = trans->transaction; 664 struct list_head splice; 665 struct list_head works; 666 struct btrfs_delalloc_work *work, *next; 667 int ret = 0; 668 669 INIT_LIST_HEAD(&splice); 670 INIT_LIST_HEAD(&works); 671 672 mutex_lock(&root->fs_info->ordered_extent_flush_mutex); 673 spin_lock(&root->fs_info->ordered_root_lock); 674 list_splice_init(&cur_trans->ordered_operations, &splice); 675 while (!list_empty(&splice)) { 676 btrfs_inode = list_entry(splice.next, struct btrfs_inode, 677 ordered_operations); 678 inode = &btrfs_inode->vfs_inode; 679 680 list_del_init(&btrfs_inode->ordered_operations); 681 682 /* 683 * the inode may be getting freed (in sys_unlink path). 684 */ 685 inode = igrab(inode); 686 if (!inode) 687 continue; 688 689 if (!wait) 690 list_add_tail(&BTRFS_I(inode)->ordered_operations, 691 &cur_trans->ordered_operations); 692 spin_unlock(&root->fs_info->ordered_root_lock); 693 694 work = btrfs_alloc_delalloc_work(inode, wait, 1); 695 if (!work) { 696 spin_lock(&root->fs_info->ordered_root_lock); 697 if (list_empty(&BTRFS_I(inode)->ordered_operations)) 698 list_add_tail(&btrfs_inode->ordered_operations, 699 &splice); 700 list_splice_tail(&splice, 701 &cur_trans->ordered_operations); 702 spin_unlock(&root->fs_info->ordered_root_lock); 703 ret = -ENOMEM; 704 goto out; 705 } 706 list_add_tail(&work->list, &works); 707 btrfs_queue_worker(&root->fs_info->flush_workers, 708 &work->work); 709 710 cond_resched(); 711 spin_lock(&root->fs_info->ordered_root_lock); 712 } 713 spin_unlock(&root->fs_info->ordered_root_lock); 714 out: 715 list_for_each_entry_safe(work, next, &works, list) { 716 list_del_init(&work->list); 717 btrfs_wait_and_free_delalloc_work(work); 718 } 719 mutex_unlock(&root->fs_info->ordered_extent_flush_mutex); 720 return ret; 721 } 722 723 /* 724 * Used to start IO or wait for a given ordered extent to finish. 725 * 726 * If wait is one, this effectively waits on page writeback for all the pages 727 * in the extent, and it waits on the io completion code to insert 728 * metadata into the btree corresponding to the extent 729 */ 730 void btrfs_start_ordered_extent(struct inode *inode, 731 struct btrfs_ordered_extent *entry, 732 int wait) 733 { 734 u64 start = entry->file_offset; 735 u64 end = start + entry->len - 1; 736 737 trace_btrfs_ordered_extent_start(inode, entry); 738 739 /* 740 * pages in the range can be dirty, clean or writeback. We 741 * start IO on any dirty ones so the wait doesn't stall waiting 742 * for the flusher thread to find them 743 */ 744 if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags)) 745 filemap_fdatawrite_range(inode->i_mapping, start, end); 746 if (wait) { 747 wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE, 748 &entry->flags)); 749 } 750 } 751 752 /* 753 * Used to wait on ordered extents across a large range of bytes. 754 */ 755 int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len) 756 { 757 int ret = 0; 758 u64 end; 759 u64 orig_end; 760 struct btrfs_ordered_extent *ordered; 761 762 if (start + len < start) { 763 orig_end = INT_LIMIT(loff_t); 764 } else { 765 orig_end = start + len - 1; 766 if (orig_end > INT_LIMIT(loff_t)) 767 orig_end = INT_LIMIT(loff_t); 768 } 769 770 /* start IO across the range first to instantiate any delalloc 771 * extents 772 */ 773 ret = filemap_fdatawrite_range(inode->i_mapping, start, orig_end); 774 if (ret) 775 return ret; 776 /* 777 * So with compression we will find and lock a dirty page and clear the 778 * first one as dirty, setup an async extent, and immediately return 779 * with the entire range locked but with nobody actually marked with 780 * writeback. So we can't just filemap_write_and_wait_range() and 781 * expect it to work since it will just kick off a thread to do the 782 * actual work. So we need to call filemap_fdatawrite_range _again_ 783 * since it will wait on the page lock, which won't be unlocked until 784 * after the pages have been marked as writeback and so we're good to go 785 * from there. We have to do this otherwise we'll miss the ordered 786 * extents and that results in badness. Please Josef, do not think you 787 * know better and pull this out at some point in the future, it is 788 * right and you are wrong. 789 */ 790 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 791 &BTRFS_I(inode)->runtime_flags)) { 792 ret = filemap_fdatawrite_range(inode->i_mapping, start, 793 orig_end); 794 if (ret) 795 return ret; 796 } 797 ret = filemap_fdatawait_range(inode->i_mapping, start, orig_end); 798 if (ret) 799 return ret; 800 801 end = orig_end; 802 while (1) { 803 ordered = btrfs_lookup_first_ordered_extent(inode, end); 804 if (!ordered) 805 break; 806 if (ordered->file_offset > orig_end) { 807 btrfs_put_ordered_extent(ordered); 808 break; 809 } 810 if (ordered->file_offset + ordered->len <= start) { 811 btrfs_put_ordered_extent(ordered); 812 break; 813 } 814 btrfs_start_ordered_extent(inode, ordered, 1); 815 end = ordered->file_offset; 816 if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags)) 817 ret = -EIO; 818 btrfs_put_ordered_extent(ordered); 819 if (ret || end == 0 || end == start) 820 break; 821 end--; 822 } 823 return ret; 824 } 825 826 /* 827 * find an ordered extent corresponding to file_offset. return NULL if 828 * nothing is found, otherwise take a reference on the extent and return it 829 */ 830 struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct inode *inode, 831 u64 file_offset) 832 { 833 struct btrfs_ordered_inode_tree *tree; 834 struct rb_node *node; 835 struct btrfs_ordered_extent *entry = NULL; 836 837 tree = &BTRFS_I(inode)->ordered_tree; 838 spin_lock_irq(&tree->lock); 839 node = tree_search(tree, file_offset); 840 if (!node) 841 goto out; 842 843 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); 844 if (!offset_in_entry(entry, file_offset)) 845 entry = NULL; 846 if (entry) 847 atomic_inc(&entry->refs); 848 out: 849 spin_unlock_irq(&tree->lock); 850 return entry; 851 } 852 853 /* Since the DIO code tries to lock a wide area we need to look for any ordered 854 * extents that exist in the range, rather than just the start of the range. 855 */ 856 struct btrfs_ordered_extent *btrfs_lookup_ordered_range(struct inode *inode, 857 u64 file_offset, 858 u64 len) 859 { 860 struct btrfs_ordered_inode_tree *tree; 861 struct rb_node *node; 862 struct btrfs_ordered_extent *entry = NULL; 863 864 tree = &BTRFS_I(inode)->ordered_tree; 865 spin_lock_irq(&tree->lock); 866 node = tree_search(tree, file_offset); 867 if (!node) { 868 node = tree_search(tree, file_offset + len); 869 if (!node) 870 goto out; 871 } 872 873 while (1) { 874 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); 875 if (range_overlaps(entry, file_offset, len)) 876 break; 877 878 if (entry->file_offset >= file_offset + len) { 879 entry = NULL; 880 break; 881 } 882 entry = NULL; 883 node = rb_next(node); 884 if (!node) 885 break; 886 } 887 out: 888 if (entry) 889 atomic_inc(&entry->refs); 890 spin_unlock_irq(&tree->lock); 891 return entry; 892 } 893 894 /* 895 * lookup and return any extent before 'file_offset'. NULL is returned 896 * if none is found 897 */ 898 struct btrfs_ordered_extent * 899 btrfs_lookup_first_ordered_extent(struct inode *inode, u64 file_offset) 900 { 901 struct btrfs_ordered_inode_tree *tree; 902 struct rb_node *node; 903 struct btrfs_ordered_extent *entry = NULL; 904 905 tree = &BTRFS_I(inode)->ordered_tree; 906 spin_lock_irq(&tree->lock); 907 node = tree_search(tree, file_offset); 908 if (!node) 909 goto out; 910 911 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); 912 atomic_inc(&entry->refs); 913 out: 914 spin_unlock_irq(&tree->lock); 915 return entry; 916 } 917 918 /* 919 * After an extent is done, call this to conditionally update the on disk 920 * i_size. i_size is updated to cover any fully written part of the file. 921 */ 922 int btrfs_ordered_update_i_size(struct inode *inode, u64 offset, 923 struct btrfs_ordered_extent *ordered) 924 { 925 struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree; 926 u64 disk_i_size; 927 u64 new_i_size; 928 u64 i_size = i_size_read(inode); 929 struct rb_node *node; 930 struct rb_node *prev = NULL; 931 struct btrfs_ordered_extent *test; 932 int ret = 1; 933 934 spin_lock_irq(&tree->lock); 935 if (ordered) { 936 offset = entry_end(ordered); 937 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags)) 938 offset = min(offset, 939 ordered->file_offset + 940 ordered->truncated_len); 941 } else { 942 offset = ALIGN(offset, BTRFS_I(inode)->root->sectorsize); 943 } 944 disk_i_size = BTRFS_I(inode)->disk_i_size; 945 946 /* truncate file */ 947 if (disk_i_size > i_size) { 948 BTRFS_I(inode)->disk_i_size = i_size; 949 ret = 0; 950 goto out; 951 } 952 953 /* 954 * if the disk i_size is already at the inode->i_size, or 955 * this ordered extent is inside the disk i_size, we're done 956 */ 957 if (disk_i_size == i_size) 958 goto out; 959 960 /* 961 * We still need to update disk_i_size if outstanding_isize is greater 962 * than disk_i_size. 963 */ 964 if (offset <= disk_i_size && 965 (!ordered || ordered->outstanding_isize <= disk_i_size)) 966 goto out; 967 968 /* 969 * walk backward from this ordered extent to disk_i_size. 970 * if we find an ordered extent then we can't update disk i_size 971 * yet 972 */ 973 if (ordered) { 974 node = rb_prev(&ordered->rb_node); 975 } else { 976 prev = tree_search(tree, offset); 977 /* 978 * we insert file extents without involving ordered struct, 979 * so there should be no ordered struct cover this offset 980 */ 981 if (prev) { 982 test = rb_entry(prev, struct btrfs_ordered_extent, 983 rb_node); 984 BUG_ON(offset_in_entry(test, offset)); 985 } 986 node = prev; 987 } 988 for (; node; node = rb_prev(node)) { 989 test = rb_entry(node, struct btrfs_ordered_extent, rb_node); 990 991 /* We treat this entry as if it doesnt exist */ 992 if (test_bit(BTRFS_ORDERED_UPDATED_ISIZE, &test->flags)) 993 continue; 994 if (test->file_offset + test->len <= disk_i_size) 995 break; 996 if (test->file_offset >= i_size) 997 break; 998 if (entry_end(test) > disk_i_size) { 999 /* 1000 * we don't update disk_i_size now, so record this 1001 * undealt i_size. Or we will not know the real 1002 * i_size. 1003 */ 1004 if (test->outstanding_isize < offset) 1005 test->outstanding_isize = offset; 1006 if (ordered && 1007 ordered->outstanding_isize > 1008 test->outstanding_isize) 1009 test->outstanding_isize = 1010 ordered->outstanding_isize; 1011 goto out; 1012 } 1013 } 1014 new_i_size = min_t(u64, offset, i_size); 1015 1016 /* 1017 * Some ordered extents may completed before the current one, and 1018 * we hold the real i_size in ->outstanding_isize. 1019 */ 1020 if (ordered && ordered->outstanding_isize > new_i_size) 1021 new_i_size = min_t(u64, ordered->outstanding_isize, i_size); 1022 BTRFS_I(inode)->disk_i_size = new_i_size; 1023 ret = 0; 1024 out: 1025 /* 1026 * We need to do this because we can't remove ordered extents until 1027 * after the i_disk_size has been updated and then the inode has been 1028 * updated to reflect the change, so we need to tell anybody who finds 1029 * this ordered extent that we've already done all the real work, we 1030 * just haven't completed all the other work. 1031 */ 1032 if (ordered) 1033 set_bit(BTRFS_ORDERED_UPDATED_ISIZE, &ordered->flags); 1034 spin_unlock_irq(&tree->lock); 1035 return ret; 1036 } 1037 1038 /* 1039 * search the ordered extents for one corresponding to 'offset' and 1040 * try to find a checksum. This is used because we allow pages to 1041 * be reclaimed before their checksum is actually put into the btree 1042 */ 1043 int btrfs_find_ordered_sum(struct inode *inode, u64 offset, u64 disk_bytenr, 1044 u32 *sum, int len) 1045 { 1046 struct btrfs_ordered_sum *ordered_sum; 1047 struct btrfs_ordered_extent *ordered; 1048 struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree; 1049 unsigned long num_sectors; 1050 unsigned long i; 1051 u32 sectorsize = BTRFS_I(inode)->root->sectorsize; 1052 int index = 0; 1053 1054 ordered = btrfs_lookup_ordered_extent(inode, offset); 1055 if (!ordered) 1056 return 0; 1057 1058 spin_lock_irq(&tree->lock); 1059 list_for_each_entry_reverse(ordered_sum, &ordered->list, list) { 1060 if (disk_bytenr >= ordered_sum->bytenr && 1061 disk_bytenr < ordered_sum->bytenr + ordered_sum->len) { 1062 i = (disk_bytenr - ordered_sum->bytenr) >> 1063 inode->i_sb->s_blocksize_bits; 1064 num_sectors = ordered_sum->len >> 1065 inode->i_sb->s_blocksize_bits; 1066 num_sectors = min_t(int, len - index, num_sectors - i); 1067 memcpy(sum + index, ordered_sum->sums + i, 1068 num_sectors); 1069 1070 index += (int)num_sectors; 1071 if (index == len) 1072 goto out; 1073 disk_bytenr += num_sectors * sectorsize; 1074 } 1075 } 1076 out: 1077 spin_unlock_irq(&tree->lock); 1078 btrfs_put_ordered_extent(ordered); 1079 return index; 1080 } 1081 1082 1083 /* 1084 * add a given inode to the list of inodes that must be fully on 1085 * disk before a transaction commit finishes. 1086 * 1087 * This basically gives us the ext3 style data=ordered mode, and it is mostly 1088 * used to make sure renamed files are fully on disk. 1089 * 1090 * It is a noop if the inode is already fully on disk. 1091 * 1092 * If trans is not null, we'll do a friendly check for a transaction that 1093 * is already flushing things and force the IO down ourselves. 1094 */ 1095 void btrfs_add_ordered_operation(struct btrfs_trans_handle *trans, 1096 struct btrfs_root *root, struct inode *inode) 1097 { 1098 struct btrfs_transaction *cur_trans = trans->transaction; 1099 u64 last_mod; 1100 1101 last_mod = max(BTRFS_I(inode)->generation, BTRFS_I(inode)->last_trans); 1102 1103 /* 1104 * if this file hasn't been changed since the last transaction 1105 * commit, we can safely return without doing anything 1106 */ 1107 if (last_mod <= root->fs_info->last_trans_committed) 1108 return; 1109 1110 spin_lock(&root->fs_info->ordered_root_lock); 1111 if (list_empty(&BTRFS_I(inode)->ordered_operations)) { 1112 list_add_tail(&BTRFS_I(inode)->ordered_operations, 1113 &cur_trans->ordered_operations); 1114 } 1115 spin_unlock(&root->fs_info->ordered_root_lock); 1116 } 1117 1118 int __init ordered_data_init(void) 1119 { 1120 btrfs_ordered_extent_cache = kmem_cache_create("btrfs_ordered_extent", 1121 sizeof(struct btrfs_ordered_extent), 0, 1122 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, 1123 NULL); 1124 if (!btrfs_ordered_extent_cache) 1125 return -ENOMEM; 1126 1127 return 0; 1128 } 1129 1130 void ordered_data_exit(void) 1131 { 1132 if (btrfs_ordered_extent_cache) 1133 kmem_cache_destroy(btrfs_ordered_extent_cache); 1134 } 1135