xref: /openbmc/linux/fs/btrfs/ordered-data.c (revision 2f828fb2)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/slab.h>
20 #include <linux/blkdev.h>
21 #include <linux/writeback.h>
22 #include <linux/pagevec.h>
23 #include "ctree.h"
24 #include "transaction.h"
25 #include "btrfs_inode.h"
26 #include "extent_io.h"
27 #include "disk-io.h"
28 #include "compression.h"
29 
30 static struct kmem_cache *btrfs_ordered_extent_cache;
31 
32 static u64 entry_end(struct btrfs_ordered_extent *entry)
33 {
34 	if (entry->file_offset + entry->len < entry->file_offset)
35 		return (u64)-1;
36 	return entry->file_offset + entry->len;
37 }
38 
39 /* returns NULL if the insertion worked, or it returns the node it did find
40  * in the tree
41  */
42 static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
43 				   struct rb_node *node)
44 {
45 	struct rb_node **p = &root->rb_node;
46 	struct rb_node *parent = NULL;
47 	struct btrfs_ordered_extent *entry;
48 
49 	while (*p) {
50 		parent = *p;
51 		entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
52 
53 		if (file_offset < entry->file_offset)
54 			p = &(*p)->rb_left;
55 		else if (file_offset >= entry_end(entry))
56 			p = &(*p)->rb_right;
57 		else
58 			return parent;
59 	}
60 
61 	rb_link_node(node, parent, p);
62 	rb_insert_color(node, root);
63 	return NULL;
64 }
65 
66 static void ordered_data_tree_panic(struct inode *inode, int errno,
67 					       u64 offset)
68 {
69 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
70 	btrfs_panic(fs_info, errno,
71 		    "Inconsistency in ordered tree at offset %llu", offset);
72 }
73 
74 /*
75  * look for a given offset in the tree, and if it can't be found return the
76  * first lesser offset
77  */
78 static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
79 				     struct rb_node **prev_ret)
80 {
81 	struct rb_node *n = root->rb_node;
82 	struct rb_node *prev = NULL;
83 	struct rb_node *test;
84 	struct btrfs_ordered_extent *entry;
85 	struct btrfs_ordered_extent *prev_entry = NULL;
86 
87 	while (n) {
88 		entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
89 		prev = n;
90 		prev_entry = entry;
91 
92 		if (file_offset < entry->file_offset)
93 			n = n->rb_left;
94 		else if (file_offset >= entry_end(entry))
95 			n = n->rb_right;
96 		else
97 			return n;
98 	}
99 	if (!prev_ret)
100 		return NULL;
101 
102 	while (prev && file_offset >= entry_end(prev_entry)) {
103 		test = rb_next(prev);
104 		if (!test)
105 			break;
106 		prev_entry = rb_entry(test, struct btrfs_ordered_extent,
107 				      rb_node);
108 		if (file_offset < entry_end(prev_entry))
109 			break;
110 
111 		prev = test;
112 	}
113 	if (prev)
114 		prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
115 				      rb_node);
116 	while (prev && file_offset < entry_end(prev_entry)) {
117 		test = rb_prev(prev);
118 		if (!test)
119 			break;
120 		prev_entry = rb_entry(test, struct btrfs_ordered_extent,
121 				      rb_node);
122 		prev = test;
123 	}
124 	*prev_ret = prev;
125 	return NULL;
126 }
127 
128 /*
129  * helper to check if a given offset is inside a given entry
130  */
131 static int offset_in_entry(struct btrfs_ordered_extent *entry, u64 file_offset)
132 {
133 	if (file_offset < entry->file_offset ||
134 	    entry->file_offset + entry->len <= file_offset)
135 		return 0;
136 	return 1;
137 }
138 
139 static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset,
140 			  u64 len)
141 {
142 	if (file_offset + len <= entry->file_offset ||
143 	    entry->file_offset + entry->len <= file_offset)
144 		return 0;
145 	return 1;
146 }
147 
148 /*
149  * look find the first ordered struct that has this offset, otherwise
150  * the first one less than this offset
151  */
152 static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree,
153 					  u64 file_offset)
154 {
155 	struct rb_root *root = &tree->tree;
156 	struct rb_node *prev = NULL;
157 	struct rb_node *ret;
158 	struct btrfs_ordered_extent *entry;
159 
160 	if (tree->last) {
161 		entry = rb_entry(tree->last, struct btrfs_ordered_extent,
162 				 rb_node);
163 		if (offset_in_entry(entry, file_offset))
164 			return tree->last;
165 	}
166 	ret = __tree_search(root, file_offset, &prev);
167 	if (!ret)
168 		ret = prev;
169 	if (ret)
170 		tree->last = ret;
171 	return ret;
172 }
173 
174 /* allocate and add a new ordered_extent into the per-inode tree.
175  * file_offset is the logical offset in the file
176  *
177  * start is the disk block number of an extent already reserved in the
178  * extent allocation tree
179  *
180  * len is the length of the extent
181  *
182  * The tree is given a single reference on the ordered extent that was
183  * inserted.
184  */
185 static int __btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
186 				      u64 start, u64 len, u64 disk_len,
187 				      int type, int dio, int compress_type)
188 {
189 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
190 	struct btrfs_root *root = BTRFS_I(inode)->root;
191 	struct btrfs_ordered_inode_tree *tree;
192 	struct rb_node *node;
193 	struct btrfs_ordered_extent *entry;
194 
195 	tree = &BTRFS_I(inode)->ordered_tree;
196 	entry = kmem_cache_zalloc(btrfs_ordered_extent_cache, GFP_NOFS);
197 	if (!entry)
198 		return -ENOMEM;
199 
200 	entry->file_offset = file_offset;
201 	entry->start = start;
202 	entry->len = len;
203 	entry->disk_len = disk_len;
204 	entry->bytes_left = len;
205 	entry->inode = igrab(inode);
206 	entry->compress_type = compress_type;
207 	entry->truncated_len = (u64)-1;
208 	if (type != BTRFS_ORDERED_IO_DONE && type != BTRFS_ORDERED_COMPLETE)
209 		set_bit(type, &entry->flags);
210 
211 	if (dio)
212 		set_bit(BTRFS_ORDERED_DIRECT, &entry->flags);
213 
214 	/* one ref for the tree */
215 	refcount_set(&entry->refs, 1);
216 	init_waitqueue_head(&entry->wait);
217 	INIT_LIST_HEAD(&entry->list);
218 	INIT_LIST_HEAD(&entry->root_extent_list);
219 	INIT_LIST_HEAD(&entry->work_list);
220 	init_completion(&entry->completion);
221 	INIT_LIST_HEAD(&entry->log_list);
222 	INIT_LIST_HEAD(&entry->trans_list);
223 
224 	trace_btrfs_ordered_extent_add(inode, entry);
225 
226 	spin_lock_irq(&tree->lock);
227 	node = tree_insert(&tree->tree, file_offset,
228 			   &entry->rb_node);
229 	if (node)
230 		ordered_data_tree_panic(inode, -EEXIST, file_offset);
231 	spin_unlock_irq(&tree->lock);
232 
233 	spin_lock(&root->ordered_extent_lock);
234 	list_add_tail(&entry->root_extent_list,
235 		      &root->ordered_extents);
236 	root->nr_ordered_extents++;
237 	if (root->nr_ordered_extents == 1) {
238 		spin_lock(&fs_info->ordered_root_lock);
239 		BUG_ON(!list_empty(&root->ordered_root));
240 		list_add_tail(&root->ordered_root, &fs_info->ordered_roots);
241 		spin_unlock(&fs_info->ordered_root_lock);
242 	}
243 	spin_unlock(&root->ordered_extent_lock);
244 
245 	/*
246 	 * We don't need the count_max_extents here, we can assume that all of
247 	 * that work has been done at higher layers, so this is truly the
248 	 * smallest the extent is going to get.
249 	 */
250 	spin_lock(&BTRFS_I(inode)->lock);
251 	btrfs_mod_outstanding_extents(BTRFS_I(inode), 1);
252 	spin_unlock(&BTRFS_I(inode)->lock);
253 
254 	return 0;
255 }
256 
257 int btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
258 			     u64 start, u64 len, u64 disk_len, int type)
259 {
260 	return __btrfs_add_ordered_extent(inode, file_offset, start, len,
261 					  disk_len, type, 0,
262 					  BTRFS_COMPRESS_NONE);
263 }
264 
265 int btrfs_add_ordered_extent_dio(struct inode *inode, u64 file_offset,
266 				 u64 start, u64 len, u64 disk_len, int type)
267 {
268 	return __btrfs_add_ordered_extent(inode, file_offset, start, len,
269 					  disk_len, type, 1,
270 					  BTRFS_COMPRESS_NONE);
271 }
272 
273 int btrfs_add_ordered_extent_compress(struct inode *inode, u64 file_offset,
274 				      u64 start, u64 len, u64 disk_len,
275 				      int type, int compress_type)
276 {
277 	return __btrfs_add_ordered_extent(inode, file_offset, start, len,
278 					  disk_len, type, 0,
279 					  compress_type);
280 }
281 
282 /*
283  * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
284  * when an ordered extent is finished.  If the list covers more than one
285  * ordered extent, it is split across multiples.
286  */
287 void btrfs_add_ordered_sum(struct inode *inode,
288 			   struct btrfs_ordered_extent *entry,
289 			   struct btrfs_ordered_sum *sum)
290 {
291 	struct btrfs_ordered_inode_tree *tree;
292 
293 	tree = &BTRFS_I(inode)->ordered_tree;
294 	spin_lock_irq(&tree->lock);
295 	list_add_tail(&sum->list, &entry->list);
296 	spin_unlock_irq(&tree->lock);
297 }
298 
299 /*
300  * this is used to account for finished IO across a given range
301  * of the file.  The IO may span ordered extents.  If
302  * a given ordered_extent is completely done, 1 is returned, otherwise
303  * 0.
304  *
305  * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
306  * to make sure this function only returns 1 once for a given ordered extent.
307  *
308  * file_offset is updated to one byte past the range that is recorded as
309  * complete.  This allows you to walk forward in the file.
310  */
311 int btrfs_dec_test_first_ordered_pending(struct inode *inode,
312 				   struct btrfs_ordered_extent **cached,
313 				   u64 *file_offset, u64 io_size, int uptodate)
314 {
315 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
316 	struct btrfs_ordered_inode_tree *tree;
317 	struct rb_node *node;
318 	struct btrfs_ordered_extent *entry = NULL;
319 	int ret;
320 	unsigned long flags;
321 	u64 dec_end;
322 	u64 dec_start;
323 	u64 to_dec;
324 
325 	tree = &BTRFS_I(inode)->ordered_tree;
326 	spin_lock_irqsave(&tree->lock, flags);
327 	node = tree_search(tree, *file_offset);
328 	if (!node) {
329 		ret = 1;
330 		goto out;
331 	}
332 
333 	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
334 	if (!offset_in_entry(entry, *file_offset)) {
335 		ret = 1;
336 		goto out;
337 	}
338 
339 	dec_start = max(*file_offset, entry->file_offset);
340 	dec_end = min(*file_offset + io_size, entry->file_offset +
341 		      entry->len);
342 	*file_offset = dec_end;
343 	if (dec_start > dec_end) {
344 		btrfs_crit(fs_info, "bad ordering dec_start %llu end %llu",
345 			   dec_start, dec_end);
346 	}
347 	to_dec = dec_end - dec_start;
348 	if (to_dec > entry->bytes_left) {
349 		btrfs_crit(fs_info,
350 			   "bad ordered accounting left %llu size %llu",
351 			   entry->bytes_left, to_dec);
352 	}
353 	entry->bytes_left -= to_dec;
354 	if (!uptodate)
355 		set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
356 
357 	if (entry->bytes_left == 0) {
358 		ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
359 		/*
360 		 * Implicit memory barrier after test_and_set_bit
361 		 */
362 		if (waitqueue_active(&entry->wait))
363 			wake_up(&entry->wait);
364 	} else {
365 		ret = 1;
366 	}
367 out:
368 	if (!ret && cached && entry) {
369 		*cached = entry;
370 		refcount_inc(&entry->refs);
371 	}
372 	spin_unlock_irqrestore(&tree->lock, flags);
373 	return ret == 0;
374 }
375 
376 /*
377  * this is used to account for finished IO across a given range
378  * of the file.  The IO should not span ordered extents.  If
379  * a given ordered_extent is completely done, 1 is returned, otherwise
380  * 0.
381  *
382  * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
383  * to make sure this function only returns 1 once for a given ordered extent.
384  */
385 int btrfs_dec_test_ordered_pending(struct inode *inode,
386 				   struct btrfs_ordered_extent **cached,
387 				   u64 file_offset, u64 io_size, int uptodate)
388 {
389 	struct btrfs_ordered_inode_tree *tree;
390 	struct rb_node *node;
391 	struct btrfs_ordered_extent *entry = NULL;
392 	unsigned long flags;
393 	int ret;
394 
395 	tree = &BTRFS_I(inode)->ordered_tree;
396 	spin_lock_irqsave(&tree->lock, flags);
397 	if (cached && *cached) {
398 		entry = *cached;
399 		goto have_entry;
400 	}
401 
402 	node = tree_search(tree, file_offset);
403 	if (!node) {
404 		ret = 1;
405 		goto out;
406 	}
407 
408 	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
409 have_entry:
410 	if (!offset_in_entry(entry, file_offset)) {
411 		ret = 1;
412 		goto out;
413 	}
414 
415 	if (io_size > entry->bytes_left) {
416 		btrfs_crit(BTRFS_I(inode)->root->fs_info,
417 			   "bad ordered accounting left %llu size %llu",
418 		       entry->bytes_left, io_size);
419 	}
420 	entry->bytes_left -= io_size;
421 	if (!uptodate)
422 		set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
423 
424 	if (entry->bytes_left == 0) {
425 		ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
426 		/*
427 		 * Implicit memory barrier after test_and_set_bit
428 		 */
429 		if (waitqueue_active(&entry->wait))
430 			wake_up(&entry->wait);
431 	} else {
432 		ret = 1;
433 	}
434 out:
435 	if (!ret && cached && entry) {
436 		*cached = entry;
437 		refcount_inc(&entry->refs);
438 	}
439 	spin_unlock_irqrestore(&tree->lock, flags);
440 	return ret == 0;
441 }
442 
443 /* Needs to either be called under a log transaction or the log_mutex */
444 void btrfs_get_logged_extents(struct btrfs_inode *inode,
445 			      struct list_head *logged_list,
446 			      const loff_t start,
447 			      const loff_t end)
448 {
449 	struct btrfs_ordered_inode_tree *tree;
450 	struct btrfs_ordered_extent *ordered;
451 	struct rb_node *n;
452 	struct rb_node *prev;
453 
454 	tree = &inode->ordered_tree;
455 	spin_lock_irq(&tree->lock);
456 	n = __tree_search(&tree->tree, end, &prev);
457 	if (!n)
458 		n = prev;
459 	for (; n; n = rb_prev(n)) {
460 		ordered = rb_entry(n, struct btrfs_ordered_extent, rb_node);
461 		if (ordered->file_offset > end)
462 			continue;
463 		if (entry_end(ordered) <= start)
464 			break;
465 		if (test_and_set_bit(BTRFS_ORDERED_LOGGED, &ordered->flags))
466 			continue;
467 		list_add(&ordered->log_list, logged_list);
468 		refcount_inc(&ordered->refs);
469 	}
470 	spin_unlock_irq(&tree->lock);
471 }
472 
473 void btrfs_put_logged_extents(struct list_head *logged_list)
474 {
475 	struct btrfs_ordered_extent *ordered;
476 
477 	while (!list_empty(logged_list)) {
478 		ordered = list_first_entry(logged_list,
479 					   struct btrfs_ordered_extent,
480 					   log_list);
481 		list_del_init(&ordered->log_list);
482 		btrfs_put_ordered_extent(ordered);
483 	}
484 }
485 
486 void btrfs_submit_logged_extents(struct list_head *logged_list,
487 				 struct btrfs_root *log)
488 {
489 	int index = log->log_transid % 2;
490 
491 	spin_lock_irq(&log->log_extents_lock[index]);
492 	list_splice_tail(logged_list, &log->logged_list[index]);
493 	spin_unlock_irq(&log->log_extents_lock[index]);
494 }
495 
496 void btrfs_wait_logged_extents(struct btrfs_trans_handle *trans,
497 			       struct btrfs_root *log, u64 transid)
498 {
499 	struct btrfs_ordered_extent *ordered;
500 	int index = transid % 2;
501 
502 	spin_lock_irq(&log->log_extents_lock[index]);
503 	while (!list_empty(&log->logged_list[index])) {
504 		struct inode *inode;
505 		ordered = list_first_entry(&log->logged_list[index],
506 					   struct btrfs_ordered_extent,
507 					   log_list);
508 		list_del_init(&ordered->log_list);
509 		inode = ordered->inode;
510 		spin_unlock_irq(&log->log_extents_lock[index]);
511 
512 		if (!test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags) &&
513 		    !test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) {
514 			u64 start = ordered->file_offset;
515 			u64 end = ordered->file_offset + ordered->len - 1;
516 
517 			WARN_ON(!inode);
518 			filemap_fdatawrite_range(inode->i_mapping, start, end);
519 		}
520 		wait_event(ordered->wait, test_bit(BTRFS_ORDERED_IO_DONE,
521 						   &ordered->flags));
522 
523 		/*
524 		 * In order to keep us from losing our ordered extent
525 		 * information when committing the transaction we have to make
526 		 * sure that any logged extents are completed when we go to
527 		 * commit the transaction.  To do this we simply increase the
528 		 * current transactions pending_ordered counter and decrement it
529 		 * when the ordered extent completes.
530 		 */
531 		if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) {
532 			struct btrfs_ordered_inode_tree *tree;
533 
534 			tree = &BTRFS_I(inode)->ordered_tree;
535 			spin_lock_irq(&tree->lock);
536 			if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) {
537 				set_bit(BTRFS_ORDERED_PENDING, &ordered->flags);
538 				atomic_inc(&trans->transaction->pending_ordered);
539 			}
540 			spin_unlock_irq(&tree->lock);
541 		}
542 		btrfs_put_ordered_extent(ordered);
543 		spin_lock_irq(&log->log_extents_lock[index]);
544 	}
545 	spin_unlock_irq(&log->log_extents_lock[index]);
546 }
547 
548 void btrfs_free_logged_extents(struct btrfs_root *log, u64 transid)
549 {
550 	struct btrfs_ordered_extent *ordered;
551 	int index = transid % 2;
552 
553 	spin_lock_irq(&log->log_extents_lock[index]);
554 	while (!list_empty(&log->logged_list[index])) {
555 		ordered = list_first_entry(&log->logged_list[index],
556 					   struct btrfs_ordered_extent,
557 					   log_list);
558 		list_del_init(&ordered->log_list);
559 		spin_unlock_irq(&log->log_extents_lock[index]);
560 		btrfs_put_ordered_extent(ordered);
561 		spin_lock_irq(&log->log_extents_lock[index]);
562 	}
563 	spin_unlock_irq(&log->log_extents_lock[index]);
564 }
565 
566 /*
567  * used to drop a reference on an ordered extent.  This will free
568  * the extent if the last reference is dropped
569  */
570 void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
571 {
572 	struct list_head *cur;
573 	struct btrfs_ordered_sum *sum;
574 
575 	trace_btrfs_ordered_extent_put(entry->inode, entry);
576 
577 	if (refcount_dec_and_test(&entry->refs)) {
578 		ASSERT(list_empty(&entry->log_list));
579 		ASSERT(list_empty(&entry->trans_list));
580 		ASSERT(list_empty(&entry->root_extent_list));
581 		ASSERT(RB_EMPTY_NODE(&entry->rb_node));
582 		if (entry->inode)
583 			btrfs_add_delayed_iput(entry->inode);
584 		while (!list_empty(&entry->list)) {
585 			cur = entry->list.next;
586 			sum = list_entry(cur, struct btrfs_ordered_sum, list);
587 			list_del(&sum->list);
588 			kfree(sum);
589 		}
590 		kmem_cache_free(btrfs_ordered_extent_cache, entry);
591 	}
592 }
593 
594 /*
595  * remove an ordered extent from the tree.  No references are dropped
596  * and waiters are woken up.
597  */
598 void btrfs_remove_ordered_extent(struct inode *inode,
599 				 struct btrfs_ordered_extent *entry)
600 {
601 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
602 	struct btrfs_ordered_inode_tree *tree;
603 	struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
604 	struct btrfs_root *root = btrfs_inode->root;
605 	struct rb_node *node;
606 	bool dec_pending_ordered = false;
607 
608 	/* This is paired with btrfs_add_ordered_extent. */
609 	spin_lock(&btrfs_inode->lock);
610 	btrfs_mod_outstanding_extents(btrfs_inode, -1);
611 	spin_unlock(&btrfs_inode->lock);
612 	if (root != fs_info->tree_root)
613 		btrfs_delalloc_release_metadata(btrfs_inode, entry->len);
614 
615 	tree = &btrfs_inode->ordered_tree;
616 	spin_lock_irq(&tree->lock);
617 	node = &entry->rb_node;
618 	rb_erase(node, &tree->tree);
619 	RB_CLEAR_NODE(node);
620 	if (tree->last == node)
621 		tree->last = NULL;
622 	set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
623 	if (test_and_clear_bit(BTRFS_ORDERED_PENDING, &entry->flags))
624 		dec_pending_ordered = true;
625 	spin_unlock_irq(&tree->lock);
626 
627 	/*
628 	 * The current running transaction is waiting on us, we need to let it
629 	 * know that we're complete and wake it up.
630 	 */
631 	if (dec_pending_ordered) {
632 		struct btrfs_transaction *trans;
633 
634 		/*
635 		 * The checks for trans are just a formality, it should be set,
636 		 * but if it isn't we don't want to deref/assert under the spin
637 		 * lock, so be nice and check if trans is set, but ASSERT() so
638 		 * if it isn't set a developer will notice.
639 		 */
640 		spin_lock(&fs_info->trans_lock);
641 		trans = fs_info->running_transaction;
642 		if (trans)
643 			refcount_inc(&trans->use_count);
644 		spin_unlock(&fs_info->trans_lock);
645 
646 		ASSERT(trans);
647 		if (trans) {
648 			if (atomic_dec_and_test(&trans->pending_ordered))
649 				wake_up(&trans->pending_wait);
650 			btrfs_put_transaction(trans);
651 		}
652 	}
653 
654 	spin_lock(&root->ordered_extent_lock);
655 	list_del_init(&entry->root_extent_list);
656 	root->nr_ordered_extents--;
657 
658 	trace_btrfs_ordered_extent_remove(inode, entry);
659 
660 	if (!root->nr_ordered_extents) {
661 		spin_lock(&fs_info->ordered_root_lock);
662 		BUG_ON(list_empty(&root->ordered_root));
663 		list_del_init(&root->ordered_root);
664 		spin_unlock(&fs_info->ordered_root_lock);
665 	}
666 	spin_unlock(&root->ordered_extent_lock);
667 	wake_up(&entry->wait);
668 }
669 
670 static void btrfs_run_ordered_extent_work(struct btrfs_work *work)
671 {
672 	struct btrfs_ordered_extent *ordered;
673 
674 	ordered = container_of(work, struct btrfs_ordered_extent, flush_work);
675 	btrfs_start_ordered_extent(ordered->inode, ordered, 1);
676 	complete(&ordered->completion);
677 }
678 
679 /*
680  * wait for all the ordered extents in a root.  This is done when balancing
681  * space between drives.
682  */
683 u64 btrfs_wait_ordered_extents(struct btrfs_root *root, u64 nr,
684 			       const u64 range_start, const u64 range_len)
685 {
686 	struct btrfs_fs_info *fs_info = root->fs_info;
687 	LIST_HEAD(splice);
688 	LIST_HEAD(skipped);
689 	LIST_HEAD(works);
690 	struct btrfs_ordered_extent *ordered, *next;
691 	u64 count = 0;
692 	const u64 range_end = range_start + range_len;
693 
694 	mutex_lock(&root->ordered_extent_mutex);
695 	spin_lock(&root->ordered_extent_lock);
696 	list_splice_init(&root->ordered_extents, &splice);
697 	while (!list_empty(&splice) && nr) {
698 		ordered = list_first_entry(&splice, struct btrfs_ordered_extent,
699 					   root_extent_list);
700 
701 		if (range_end <= ordered->start ||
702 		    ordered->start + ordered->disk_len <= range_start) {
703 			list_move_tail(&ordered->root_extent_list, &skipped);
704 			cond_resched_lock(&root->ordered_extent_lock);
705 			continue;
706 		}
707 
708 		list_move_tail(&ordered->root_extent_list,
709 			       &root->ordered_extents);
710 		refcount_inc(&ordered->refs);
711 		spin_unlock(&root->ordered_extent_lock);
712 
713 		btrfs_init_work(&ordered->flush_work,
714 				btrfs_flush_delalloc_helper,
715 				btrfs_run_ordered_extent_work, NULL, NULL);
716 		list_add_tail(&ordered->work_list, &works);
717 		btrfs_queue_work(fs_info->flush_workers, &ordered->flush_work);
718 
719 		cond_resched();
720 		spin_lock(&root->ordered_extent_lock);
721 		if (nr != U64_MAX)
722 			nr--;
723 		count++;
724 	}
725 	list_splice_tail(&skipped, &root->ordered_extents);
726 	list_splice_tail(&splice, &root->ordered_extents);
727 	spin_unlock(&root->ordered_extent_lock);
728 
729 	list_for_each_entry_safe(ordered, next, &works, work_list) {
730 		list_del_init(&ordered->work_list);
731 		wait_for_completion(&ordered->completion);
732 		btrfs_put_ordered_extent(ordered);
733 		cond_resched();
734 	}
735 	mutex_unlock(&root->ordered_extent_mutex);
736 
737 	return count;
738 }
739 
740 u64 btrfs_wait_ordered_roots(struct btrfs_fs_info *fs_info, u64 nr,
741 			     const u64 range_start, const u64 range_len)
742 {
743 	struct btrfs_root *root;
744 	struct list_head splice;
745 	u64 total_done = 0;
746 	u64 done;
747 
748 	INIT_LIST_HEAD(&splice);
749 
750 	mutex_lock(&fs_info->ordered_operations_mutex);
751 	spin_lock(&fs_info->ordered_root_lock);
752 	list_splice_init(&fs_info->ordered_roots, &splice);
753 	while (!list_empty(&splice) && nr) {
754 		root = list_first_entry(&splice, struct btrfs_root,
755 					ordered_root);
756 		root = btrfs_grab_fs_root(root);
757 		BUG_ON(!root);
758 		list_move_tail(&root->ordered_root,
759 			       &fs_info->ordered_roots);
760 		spin_unlock(&fs_info->ordered_root_lock);
761 
762 		done = btrfs_wait_ordered_extents(root, nr,
763 						  range_start, range_len);
764 		btrfs_put_fs_root(root);
765 		total_done += done;
766 
767 		spin_lock(&fs_info->ordered_root_lock);
768 		if (nr != U64_MAX) {
769 			nr -= done;
770 		}
771 	}
772 	list_splice_tail(&splice, &fs_info->ordered_roots);
773 	spin_unlock(&fs_info->ordered_root_lock);
774 	mutex_unlock(&fs_info->ordered_operations_mutex);
775 
776 	return total_done;
777 }
778 
779 /*
780  * Used to start IO or wait for a given ordered extent to finish.
781  *
782  * If wait is one, this effectively waits on page writeback for all the pages
783  * in the extent, and it waits on the io completion code to insert
784  * metadata into the btree corresponding to the extent
785  */
786 void btrfs_start_ordered_extent(struct inode *inode,
787 				       struct btrfs_ordered_extent *entry,
788 				       int wait)
789 {
790 	u64 start = entry->file_offset;
791 	u64 end = start + entry->len - 1;
792 
793 	trace_btrfs_ordered_extent_start(inode, entry);
794 
795 	/*
796 	 * pages in the range can be dirty, clean or writeback.  We
797 	 * start IO on any dirty ones so the wait doesn't stall waiting
798 	 * for the flusher thread to find them
799 	 */
800 	if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags))
801 		filemap_fdatawrite_range(inode->i_mapping, start, end);
802 	if (wait) {
803 		wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE,
804 						 &entry->flags));
805 	}
806 }
807 
808 /*
809  * Used to wait on ordered extents across a large range of bytes.
810  */
811 int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
812 {
813 	int ret = 0;
814 	int ret_wb = 0;
815 	u64 end;
816 	u64 orig_end;
817 	struct btrfs_ordered_extent *ordered;
818 
819 	if (start + len < start) {
820 		orig_end = INT_LIMIT(loff_t);
821 	} else {
822 		orig_end = start + len - 1;
823 		if (orig_end > INT_LIMIT(loff_t))
824 			orig_end = INT_LIMIT(loff_t);
825 	}
826 
827 	/* start IO across the range first to instantiate any delalloc
828 	 * extents
829 	 */
830 	ret = btrfs_fdatawrite_range(inode, start, orig_end);
831 	if (ret)
832 		return ret;
833 
834 	/*
835 	 * If we have a writeback error don't return immediately. Wait first
836 	 * for any ordered extents that haven't completed yet. This is to make
837 	 * sure no one can dirty the same page ranges and call writepages()
838 	 * before the ordered extents complete - to avoid failures (-EEXIST)
839 	 * when adding the new ordered extents to the ordered tree.
840 	 */
841 	ret_wb = filemap_fdatawait_range(inode->i_mapping, start, orig_end);
842 
843 	end = orig_end;
844 	while (1) {
845 		ordered = btrfs_lookup_first_ordered_extent(inode, end);
846 		if (!ordered)
847 			break;
848 		if (ordered->file_offset > orig_end) {
849 			btrfs_put_ordered_extent(ordered);
850 			break;
851 		}
852 		if (ordered->file_offset + ordered->len <= start) {
853 			btrfs_put_ordered_extent(ordered);
854 			break;
855 		}
856 		btrfs_start_ordered_extent(inode, ordered, 1);
857 		end = ordered->file_offset;
858 		if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags))
859 			ret = -EIO;
860 		btrfs_put_ordered_extent(ordered);
861 		if (ret || end == 0 || end == start)
862 			break;
863 		end--;
864 	}
865 	return ret_wb ? ret_wb : ret;
866 }
867 
868 /*
869  * find an ordered extent corresponding to file_offset.  return NULL if
870  * nothing is found, otherwise take a reference on the extent and return it
871  */
872 struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct inode *inode,
873 							 u64 file_offset)
874 {
875 	struct btrfs_ordered_inode_tree *tree;
876 	struct rb_node *node;
877 	struct btrfs_ordered_extent *entry = NULL;
878 
879 	tree = &BTRFS_I(inode)->ordered_tree;
880 	spin_lock_irq(&tree->lock);
881 	node = tree_search(tree, file_offset);
882 	if (!node)
883 		goto out;
884 
885 	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
886 	if (!offset_in_entry(entry, file_offset))
887 		entry = NULL;
888 	if (entry)
889 		refcount_inc(&entry->refs);
890 out:
891 	spin_unlock_irq(&tree->lock);
892 	return entry;
893 }
894 
895 /* Since the DIO code tries to lock a wide area we need to look for any ordered
896  * extents that exist in the range, rather than just the start of the range.
897  */
898 struct btrfs_ordered_extent *btrfs_lookup_ordered_range(
899 		struct btrfs_inode *inode, u64 file_offset, u64 len)
900 {
901 	struct btrfs_ordered_inode_tree *tree;
902 	struct rb_node *node;
903 	struct btrfs_ordered_extent *entry = NULL;
904 
905 	tree = &inode->ordered_tree;
906 	spin_lock_irq(&tree->lock);
907 	node = tree_search(tree, file_offset);
908 	if (!node) {
909 		node = tree_search(tree, file_offset + len);
910 		if (!node)
911 			goto out;
912 	}
913 
914 	while (1) {
915 		entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
916 		if (range_overlaps(entry, file_offset, len))
917 			break;
918 
919 		if (entry->file_offset >= file_offset + len) {
920 			entry = NULL;
921 			break;
922 		}
923 		entry = NULL;
924 		node = rb_next(node);
925 		if (!node)
926 			break;
927 	}
928 out:
929 	if (entry)
930 		refcount_inc(&entry->refs);
931 	spin_unlock_irq(&tree->lock);
932 	return entry;
933 }
934 
935 bool btrfs_have_ordered_extents_in_range(struct inode *inode,
936 					 u64 file_offset,
937 					 u64 len)
938 {
939 	struct btrfs_ordered_extent *oe;
940 
941 	oe = btrfs_lookup_ordered_range(BTRFS_I(inode), file_offset, len);
942 	if (oe) {
943 		btrfs_put_ordered_extent(oe);
944 		return true;
945 	}
946 	return false;
947 }
948 
949 /*
950  * lookup and return any extent before 'file_offset'.  NULL is returned
951  * if none is found
952  */
953 struct btrfs_ordered_extent *
954 btrfs_lookup_first_ordered_extent(struct inode *inode, u64 file_offset)
955 {
956 	struct btrfs_ordered_inode_tree *tree;
957 	struct rb_node *node;
958 	struct btrfs_ordered_extent *entry = NULL;
959 
960 	tree = &BTRFS_I(inode)->ordered_tree;
961 	spin_lock_irq(&tree->lock);
962 	node = tree_search(tree, file_offset);
963 	if (!node)
964 		goto out;
965 
966 	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
967 	refcount_inc(&entry->refs);
968 out:
969 	spin_unlock_irq(&tree->lock);
970 	return entry;
971 }
972 
973 /*
974  * After an extent is done, call this to conditionally update the on disk
975  * i_size.  i_size is updated to cover any fully written part of the file.
976  */
977 int btrfs_ordered_update_i_size(struct inode *inode, u64 offset,
978 				struct btrfs_ordered_extent *ordered)
979 {
980 	struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
981 	u64 disk_i_size;
982 	u64 new_i_size;
983 	u64 i_size = i_size_read(inode);
984 	struct rb_node *node;
985 	struct rb_node *prev = NULL;
986 	struct btrfs_ordered_extent *test;
987 	int ret = 1;
988 	u64 orig_offset = offset;
989 
990 	spin_lock_irq(&tree->lock);
991 	if (ordered) {
992 		offset = entry_end(ordered);
993 		if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags))
994 			offset = min(offset,
995 				     ordered->file_offset +
996 				     ordered->truncated_len);
997 	} else {
998 		offset = ALIGN(offset, btrfs_inode_sectorsize(inode));
999 	}
1000 	disk_i_size = BTRFS_I(inode)->disk_i_size;
1001 
1002 	/*
1003 	 * truncate file.
1004 	 * If ordered is not NULL, then this is called from endio and
1005 	 * disk_i_size will be updated by either truncate itself or any
1006 	 * in-flight IOs which are inside the disk_i_size.
1007 	 *
1008 	 * Because btrfs_setsize() may set i_size with disk_i_size if truncate
1009 	 * fails somehow, we need to make sure we have a precise disk_i_size by
1010 	 * updating it as usual.
1011 	 *
1012 	 */
1013 	if (!ordered && disk_i_size > i_size) {
1014 		BTRFS_I(inode)->disk_i_size = orig_offset;
1015 		ret = 0;
1016 		goto out;
1017 	}
1018 
1019 	/*
1020 	 * if the disk i_size is already at the inode->i_size, or
1021 	 * this ordered extent is inside the disk i_size, we're done
1022 	 */
1023 	if (disk_i_size == i_size)
1024 		goto out;
1025 
1026 	/*
1027 	 * We still need to update disk_i_size if outstanding_isize is greater
1028 	 * than disk_i_size.
1029 	 */
1030 	if (offset <= disk_i_size &&
1031 	    (!ordered || ordered->outstanding_isize <= disk_i_size))
1032 		goto out;
1033 
1034 	/*
1035 	 * walk backward from this ordered extent to disk_i_size.
1036 	 * if we find an ordered extent then we can't update disk i_size
1037 	 * yet
1038 	 */
1039 	if (ordered) {
1040 		node = rb_prev(&ordered->rb_node);
1041 	} else {
1042 		prev = tree_search(tree, offset);
1043 		/*
1044 		 * we insert file extents without involving ordered struct,
1045 		 * so there should be no ordered struct cover this offset
1046 		 */
1047 		if (prev) {
1048 			test = rb_entry(prev, struct btrfs_ordered_extent,
1049 					rb_node);
1050 			BUG_ON(offset_in_entry(test, offset));
1051 		}
1052 		node = prev;
1053 	}
1054 	for (; node; node = rb_prev(node)) {
1055 		test = rb_entry(node, struct btrfs_ordered_extent, rb_node);
1056 
1057 		/* We treat this entry as if it doesn't exist */
1058 		if (test_bit(BTRFS_ORDERED_UPDATED_ISIZE, &test->flags))
1059 			continue;
1060 
1061 		if (entry_end(test) <= disk_i_size)
1062 			break;
1063 		if (test->file_offset >= i_size)
1064 			break;
1065 
1066 		/*
1067 		 * We don't update disk_i_size now, so record this undealt
1068 		 * i_size. Or we will not know the real i_size.
1069 		 */
1070 		if (test->outstanding_isize < offset)
1071 			test->outstanding_isize = offset;
1072 		if (ordered &&
1073 		    ordered->outstanding_isize > test->outstanding_isize)
1074 			test->outstanding_isize = ordered->outstanding_isize;
1075 		goto out;
1076 	}
1077 	new_i_size = min_t(u64, offset, i_size);
1078 
1079 	/*
1080 	 * Some ordered extents may completed before the current one, and
1081 	 * we hold the real i_size in ->outstanding_isize.
1082 	 */
1083 	if (ordered && ordered->outstanding_isize > new_i_size)
1084 		new_i_size = min_t(u64, ordered->outstanding_isize, i_size);
1085 	BTRFS_I(inode)->disk_i_size = new_i_size;
1086 	ret = 0;
1087 out:
1088 	/*
1089 	 * We need to do this because we can't remove ordered extents until
1090 	 * after the i_disk_size has been updated and then the inode has been
1091 	 * updated to reflect the change, so we need to tell anybody who finds
1092 	 * this ordered extent that we've already done all the real work, we
1093 	 * just haven't completed all the other work.
1094 	 */
1095 	if (ordered)
1096 		set_bit(BTRFS_ORDERED_UPDATED_ISIZE, &ordered->flags);
1097 	spin_unlock_irq(&tree->lock);
1098 	return ret;
1099 }
1100 
1101 /*
1102  * search the ordered extents for one corresponding to 'offset' and
1103  * try to find a checksum.  This is used because we allow pages to
1104  * be reclaimed before their checksum is actually put into the btree
1105  */
1106 int btrfs_find_ordered_sum(struct inode *inode, u64 offset, u64 disk_bytenr,
1107 			   u32 *sum, int len)
1108 {
1109 	struct btrfs_ordered_sum *ordered_sum;
1110 	struct btrfs_ordered_extent *ordered;
1111 	struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
1112 	unsigned long num_sectors;
1113 	unsigned long i;
1114 	u32 sectorsize = btrfs_inode_sectorsize(inode);
1115 	int index = 0;
1116 
1117 	ordered = btrfs_lookup_ordered_extent(inode, offset);
1118 	if (!ordered)
1119 		return 0;
1120 
1121 	spin_lock_irq(&tree->lock);
1122 	list_for_each_entry_reverse(ordered_sum, &ordered->list, list) {
1123 		if (disk_bytenr >= ordered_sum->bytenr &&
1124 		    disk_bytenr < ordered_sum->bytenr + ordered_sum->len) {
1125 			i = (disk_bytenr - ordered_sum->bytenr) >>
1126 			    inode->i_sb->s_blocksize_bits;
1127 			num_sectors = ordered_sum->len >>
1128 				      inode->i_sb->s_blocksize_bits;
1129 			num_sectors = min_t(int, len - index, num_sectors - i);
1130 			memcpy(sum + index, ordered_sum->sums + i,
1131 			       num_sectors);
1132 
1133 			index += (int)num_sectors;
1134 			if (index == len)
1135 				goto out;
1136 			disk_bytenr += num_sectors * sectorsize;
1137 		}
1138 	}
1139 out:
1140 	spin_unlock_irq(&tree->lock);
1141 	btrfs_put_ordered_extent(ordered);
1142 	return index;
1143 }
1144 
1145 int __init ordered_data_init(void)
1146 {
1147 	btrfs_ordered_extent_cache = kmem_cache_create("btrfs_ordered_extent",
1148 				     sizeof(struct btrfs_ordered_extent), 0,
1149 				     SLAB_MEM_SPREAD,
1150 				     NULL);
1151 	if (!btrfs_ordered_extent_cache)
1152 		return -ENOMEM;
1153 
1154 	return 0;
1155 }
1156 
1157 void ordered_data_exit(void)
1158 {
1159 	kmem_cache_destroy(btrfs_ordered_extent_cache);
1160 }
1161