xref: /openbmc/linux/fs/btrfs/ordered-data.c (revision 2d6f107e)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/slab.h>
7 #include <linux/blkdev.h>
8 #include <linux/writeback.h>
9 #include <linux/sched/mm.h>
10 #include "messages.h"
11 #include "misc.h"
12 #include "ctree.h"
13 #include "transaction.h"
14 #include "btrfs_inode.h"
15 #include "extent_io.h"
16 #include "disk-io.h"
17 #include "compression.h"
18 #include "delalloc-space.h"
19 #include "qgroup.h"
20 #include "subpage.h"
21 #include "file.h"
22 #include "super.h"
23 
24 static struct kmem_cache *btrfs_ordered_extent_cache;
25 
26 static u64 entry_end(struct btrfs_ordered_extent *entry)
27 {
28 	if (entry->file_offset + entry->num_bytes < entry->file_offset)
29 		return (u64)-1;
30 	return entry->file_offset + entry->num_bytes;
31 }
32 
33 /* returns NULL if the insertion worked, or it returns the node it did find
34  * in the tree
35  */
36 static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
37 				   struct rb_node *node)
38 {
39 	struct rb_node **p = &root->rb_node;
40 	struct rb_node *parent = NULL;
41 	struct btrfs_ordered_extent *entry;
42 
43 	while (*p) {
44 		parent = *p;
45 		entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
46 
47 		if (file_offset < entry->file_offset)
48 			p = &(*p)->rb_left;
49 		else if (file_offset >= entry_end(entry))
50 			p = &(*p)->rb_right;
51 		else
52 			return parent;
53 	}
54 
55 	rb_link_node(node, parent, p);
56 	rb_insert_color(node, root);
57 	return NULL;
58 }
59 
60 /*
61  * look for a given offset in the tree, and if it can't be found return the
62  * first lesser offset
63  */
64 static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
65 				     struct rb_node **prev_ret)
66 {
67 	struct rb_node *n = root->rb_node;
68 	struct rb_node *prev = NULL;
69 	struct rb_node *test;
70 	struct btrfs_ordered_extent *entry;
71 	struct btrfs_ordered_extent *prev_entry = NULL;
72 
73 	while (n) {
74 		entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
75 		prev = n;
76 		prev_entry = entry;
77 
78 		if (file_offset < entry->file_offset)
79 			n = n->rb_left;
80 		else if (file_offset >= entry_end(entry))
81 			n = n->rb_right;
82 		else
83 			return n;
84 	}
85 	if (!prev_ret)
86 		return NULL;
87 
88 	while (prev && file_offset >= entry_end(prev_entry)) {
89 		test = rb_next(prev);
90 		if (!test)
91 			break;
92 		prev_entry = rb_entry(test, struct btrfs_ordered_extent,
93 				      rb_node);
94 		if (file_offset < entry_end(prev_entry))
95 			break;
96 
97 		prev = test;
98 	}
99 	if (prev)
100 		prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
101 				      rb_node);
102 	while (prev && file_offset < entry_end(prev_entry)) {
103 		test = rb_prev(prev);
104 		if (!test)
105 			break;
106 		prev_entry = rb_entry(test, struct btrfs_ordered_extent,
107 				      rb_node);
108 		prev = test;
109 	}
110 	*prev_ret = prev;
111 	return NULL;
112 }
113 
114 static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset,
115 			  u64 len)
116 {
117 	if (file_offset + len <= entry->file_offset ||
118 	    entry->file_offset + entry->num_bytes <= file_offset)
119 		return 0;
120 	return 1;
121 }
122 
123 /*
124  * look find the first ordered struct that has this offset, otherwise
125  * the first one less than this offset
126  */
127 static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree,
128 					  u64 file_offset)
129 {
130 	struct rb_root *root = &tree->tree;
131 	struct rb_node *prev = NULL;
132 	struct rb_node *ret;
133 	struct btrfs_ordered_extent *entry;
134 
135 	if (tree->last) {
136 		entry = rb_entry(tree->last, struct btrfs_ordered_extent,
137 				 rb_node);
138 		if (in_range(file_offset, entry->file_offset, entry->num_bytes))
139 			return tree->last;
140 	}
141 	ret = __tree_search(root, file_offset, &prev);
142 	if (!ret)
143 		ret = prev;
144 	if (ret)
145 		tree->last = ret;
146 	return ret;
147 }
148 
149 static struct btrfs_ordered_extent *alloc_ordered_extent(
150 			struct btrfs_inode *inode, u64 file_offset, u64 num_bytes,
151 			u64 ram_bytes, u64 disk_bytenr, u64 disk_num_bytes,
152 			u64 offset, unsigned long flags, int compress_type)
153 {
154 	struct btrfs_ordered_extent *entry;
155 	int ret;
156 
157 	if (flags &
158 	    ((1 << BTRFS_ORDERED_NOCOW) | (1 << BTRFS_ORDERED_PREALLOC))) {
159 		/* For nocow write, we can release the qgroup rsv right now */
160 		ret = btrfs_qgroup_free_data(inode, NULL, file_offset, num_bytes);
161 		if (ret < 0)
162 			return ERR_PTR(ret);
163 	} else {
164 		/*
165 		 * The ordered extent has reserved qgroup space, release now
166 		 * and pass the reserved number for qgroup_record to free.
167 		 */
168 		ret = btrfs_qgroup_release_data(inode, file_offset, num_bytes);
169 		if (ret < 0)
170 			return ERR_PTR(ret);
171 	}
172 	entry = kmem_cache_zalloc(btrfs_ordered_extent_cache, GFP_NOFS);
173 	if (!entry)
174 		return ERR_PTR(-ENOMEM);
175 
176 	entry->file_offset = file_offset;
177 	entry->num_bytes = num_bytes;
178 	entry->ram_bytes = ram_bytes;
179 	entry->disk_bytenr = disk_bytenr;
180 	entry->disk_num_bytes = disk_num_bytes;
181 	entry->offset = offset;
182 	entry->bytes_left = num_bytes;
183 	entry->inode = igrab(&inode->vfs_inode);
184 	entry->compress_type = compress_type;
185 	entry->truncated_len = (u64)-1;
186 	entry->qgroup_rsv = ret;
187 	entry->flags = flags;
188 	refcount_set(&entry->refs, 1);
189 	init_waitqueue_head(&entry->wait);
190 	INIT_LIST_HEAD(&entry->list);
191 	INIT_LIST_HEAD(&entry->log_list);
192 	INIT_LIST_HEAD(&entry->root_extent_list);
193 	INIT_LIST_HEAD(&entry->work_list);
194 	init_completion(&entry->completion);
195 
196 	/*
197 	 * We don't need the count_max_extents here, we can assume that all of
198 	 * that work has been done at higher layers, so this is truly the
199 	 * smallest the extent is going to get.
200 	 */
201 	spin_lock(&inode->lock);
202 	btrfs_mod_outstanding_extents(inode, 1);
203 	spin_unlock(&inode->lock);
204 
205 	return entry;
206 }
207 
208 static void insert_ordered_extent(struct btrfs_ordered_extent *entry)
209 {
210 	struct btrfs_inode *inode = BTRFS_I(entry->inode);
211 	struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
212 	struct btrfs_root *root = inode->root;
213 	struct btrfs_fs_info *fs_info = root->fs_info;
214 	struct rb_node *node;
215 
216 	trace_btrfs_ordered_extent_add(inode, entry);
217 
218 	percpu_counter_add_batch(&fs_info->ordered_bytes, entry->num_bytes,
219 				 fs_info->delalloc_batch);
220 
221 	/* One ref for the tree. */
222 	refcount_inc(&entry->refs);
223 
224 	spin_lock_irq(&tree->lock);
225 	node = tree_insert(&tree->tree, entry->file_offset, &entry->rb_node);
226 	if (node)
227 		btrfs_panic(fs_info, -EEXIST,
228 				"inconsistency in ordered tree at offset %llu",
229 				entry->file_offset);
230 	spin_unlock_irq(&tree->lock);
231 
232 	spin_lock(&root->ordered_extent_lock);
233 	list_add_tail(&entry->root_extent_list,
234 		      &root->ordered_extents);
235 	root->nr_ordered_extents++;
236 	if (root->nr_ordered_extents == 1) {
237 		spin_lock(&fs_info->ordered_root_lock);
238 		BUG_ON(!list_empty(&root->ordered_root));
239 		list_add_tail(&root->ordered_root, &fs_info->ordered_roots);
240 		spin_unlock(&fs_info->ordered_root_lock);
241 	}
242 	spin_unlock(&root->ordered_extent_lock);
243 }
244 
245 /*
246  * Add an ordered extent to the per-inode tree.
247  *
248  * @inode:           Inode that this extent is for.
249  * @file_offset:     Logical offset in file where the extent starts.
250  * @num_bytes:       Logical length of extent in file.
251  * @ram_bytes:       Full length of unencoded data.
252  * @disk_bytenr:     Offset of extent on disk.
253  * @disk_num_bytes:  Size of extent on disk.
254  * @offset:          Offset into unencoded data where file data starts.
255  * @flags:           Flags specifying type of extent (1 << BTRFS_ORDERED_*).
256  * @compress_type:   Compression algorithm used for data.
257  *
258  * Most of these parameters correspond to &struct btrfs_file_extent_item. The
259  * tree is given a single reference on the ordered extent that was inserted, and
260  * the returned pointer is given a second reference.
261  *
262  * Return: the new ordered extent or error pointer.
263  */
264 struct btrfs_ordered_extent *btrfs_alloc_ordered_extent(
265 			struct btrfs_inode *inode, u64 file_offset,
266 			u64 num_bytes, u64 ram_bytes, u64 disk_bytenr,
267 			u64 disk_num_bytes, u64 offset, unsigned long flags,
268 			int compress_type)
269 {
270 	struct btrfs_ordered_extent *entry;
271 
272 	ASSERT((flags & ~BTRFS_ORDERED_TYPE_FLAGS) == 0);
273 
274 	entry = alloc_ordered_extent(inode, file_offset, num_bytes, ram_bytes,
275 				     disk_bytenr, disk_num_bytes, offset, flags,
276 				     compress_type);
277 	if (!IS_ERR(entry))
278 		insert_ordered_extent(entry);
279 	return entry;
280 }
281 
282 /*
283  * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
284  * when an ordered extent is finished.  If the list covers more than one
285  * ordered extent, it is split across multiples.
286  */
287 void btrfs_add_ordered_sum(struct btrfs_ordered_extent *entry,
288 			   struct btrfs_ordered_sum *sum)
289 {
290 	struct btrfs_ordered_inode_tree *tree;
291 
292 	tree = &BTRFS_I(entry->inode)->ordered_tree;
293 	spin_lock_irq(&tree->lock);
294 	list_add_tail(&sum->list, &entry->list);
295 	spin_unlock_irq(&tree->lock);
296 }
297 
298 static void finish_ordered_fn(struct btrfs_work *work)
299 {
300 	struct btrfs_ordered_extent *ordered_extent;
301 
302 	ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
303 	btrfs_finish_ordered_io(ordered_extent);
304 }
305 
306 static bool can_finish_ordered_extent(struct btrfs_ordered_extent *ordered,
307 				      struct page *page, u64 file_offset,
308 				      u64 len, bool uptodate)
309 {
310 	struct btrfs_inode *inode = BTRFS_I(ordered->inode);
311 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
312 
313 	lockdep_assert_held(&inode->ordered_tree.lock);
314 
315 	if (page) {
316 		ASSERT(page->mapping);
317 		ASSERT(page_offset(page) <= file_offset);
318 		ASSERT(file_offset + len <= page_offset(page) + PAGE_SIZE);
319 
320 		/*
321 		 * Ordered (Private2) bit indicates whether we still have
322 		 * pending io unfinished for the ordered extent.
323 		 *
324 		 * If there's no such bit, we need to skip to next range.
325 		 */
326 		if (!btrfs_page_test_ordered(fs_info, page, file_offset, len))
327 			return false;
328 		btrfs_page_clear_ordered(fs_info, page, file_offset, len);
329 	}
330 
331 	/* Now we're fine to update the accounting. */
332 	if (WARN_ON_ONCE(len > ordered->bytes_left)) {
333 		btrfs_crit(fs_info,
334 "bad ordered extent accounting, root=%llu ino=%llu OE offset=%llu OE len=%llu to_dec=%llu left=%llu",
335 			   inode->root->root_key.objectid, btrfs_ino(inode),
336 			   ordered->file_offset, ordered->num_bytes,
337 			   len, ordered->bytes_left);
338 		ordered->bytes_left = 0;
339 	} else {
340 		ordered->bytes_left -= len;
341 	}
342 
343 	if (!uptodate)
344 		set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
345 
346 	if (ordered->bytes_left)
347 		return false;
348 
349 	/*
350 	 * All the IO of the ordered extent is finished, we need to queue
351 	 * the finish_func to be executed.
352 	 */
353 	set_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags);
354 	cond_wake_up(&ordered->wait);
355 	refcount_inc(&ordered->refs);
356 	trace_btrfs_ordered_extent_mark_finished(inode, ordered);
357 	return true;
358 }
359 
360 static void btrfs_queue_ordered_fn(struct btrfs_ordered_extent *ordered)
361 {
362 	struct btrfs_inode *inode = BTRFS_I(ordered->inode);
363 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
364 	struct btrfs_workqueue *wq = btrfs_is_free_space_inode(inode) ?
365 		fs_info->endio_freespace_worker : fs_info->endio_write_workers;
366 
367 	btrfs_init_work(&ordered->work, finish_ordered_fn, NULL, NULL);
368 	btrfs_queue_work(wq, &ordered->work);
369 }
370 
371 /*
372  * Mark all ordered extents io inside the specified range finished.
373  *
374  * @page:	 The involved page for the operation.
375  *		 For uncompressed buffered IO, the page status also needs to be
376  *		 updated to indicate whether the pending ordered io is finished.
377  *		 Can be NULL for direct IO and compressed write.
378  *		 For these cases, callers are ensured they won't execute the
379  *		 endio function twice.
380  *
381  * This function is called for endio, thus the range must have ordered
382  * extent(s) covering it.
383  */
384 void btrfs_mark_ordered_io_finished(struct btrfs_inode *inode,
385 				    struct page *page, u64 file_offset,
386 				    u64 num_bytes, bool uptodate)
387 {
388 	struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
389 	struct rb_node *node;
390 	struct btrfs_ordered_extent *entry = NULL;
391 	unsigned long flags;
392 	u64 cur = file_offset;
393 
394 	spin_lock_irqsave(&tree->lock, flags);
395 	while (cur < file_offset + num_bytes) {
396 		u64 entry_end;
397 		u64 end;
398 		u32 len;
399 
400 		node = tree_search(tree, cur);
401 		/* No ordered extents at all */
402 		if (!node)
403 			break;
404 
405 		entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
406 		entry_end = entry->file_offset + entry->num_bytes;
407 		/*
408 		 * |<-- OE --->|  |
409 		 *		  cur
410 		 * Go to next OE.
411 		 */
412 		if (cur >= entry_end) {
413 			node = rb_next(node);
414 			/* No more ordered extents, exit */
415 			if (!node)
416 				break;
417 			entry = rb_entry(node, struct btrfs_ordered_extent,
418 					 rb_node);
419 
420 			/* Go to next ordered extent and continue */
421 			cur = entry->file_offset;
422 			continue;
423 		}
424 		/*
425 		 * |	|<--- OE --->|
426 		 * cur
427 		 * Go to the start of OE.
428 		 */
429 		if (cur < entry->file_offset) {
430 			cur = entry->file_offset;
431 			continue;
432 		}
433 
434 		/*
435 		 * Now we are definitely inside one ordered extent.
436 		 *
437 		 * |<--- OE --->|
438 		 *	|
439 		 *	cur
440 		 */
441 		end = min(entry->file_offset + entry->num_bytes,
442 			  file_offset + num_bytes) - 1;
443 		ASSERT(end + 1 - cur < U32_MAX);
444 		len = end + 1 - cur;
445 
446 		if (can_finish_ordered_extent(entry, page, cur, len, uptodate)) {
447 			spin_unlock_irqrestore(&tree->lock, flags);
448 			btrfs_queue_ordered_fn(entry);
449 			spin_lock_irqsave(&tree->lock, flags);
450 		}
451 		cur += len;
452 	}
453 	spin_unlock_irqrestore(&tree->lock, flags);
454 }
455 
456 /*
457  * Finish IO for one ordered extent across a given range.  The range can only
458  * contain one ordered extent.
459  *
460  * @cached:	 The cached ordered extent. If not NULL, we can skip the tree
461  *               search and use the ordered extent directly.
462  * 		 Will be also used to store the finished ordered extent.
463  * @file_offset: File offset for the finished IO
464  * @io_size:	 Length of the finish IO range
465  *
466  * Return true if the ordered extent is finished in the range, and update
467  * @cached.
468  * Return false otherwise.
469  *
470  * NOTE: The range can NOT cross multiple ordered extents.
471  * Thus caller should ensure the range doesn't cross ordered extents.
472  */
473 bool btrfs_dec_test_ordered_pending(struct btrfs_inode *inode,
474 				    struct btrfs_ordered_extent **cached,
475 				    u64 file_offset, u64 io_size)
476 {
477 	struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
478 	struct rb_node *node;
479 	struct btrfs_ordered_extent *entry = NULL;
480 	unsigned long flags;
481 	bool finished = false;
482 
483 	spin_lock_irqsave(&tree->lock, flags);
484 	if (cached && *cached) {
485 		entry = *cached;
486 		goto have_entry;
487 	}
488 
489 	node = tree_search(tree, file_offset);
490 	if (!node)
491 		goto out;
492 
493 	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
494 have_entry:
495 	if (!in_range(file_offset, entry->file_offset, entry->num_bytes))
496 		goto out;
497 
498 	if (io_size > entry->bytes_left)
499 		btrfs_crit(inode->root->fs_info,
500 			   "bad ordered accounting left %llu size %llu",
501 		       entry->bytes_left, io_size);
502 
503 	entry->bytes_left -= io_size;
504 
505 	if (entry->bytes_left == 0) {
506 		/*
507 		 * Ensure only one caller can set the flag and finished_ret
508 		 * accordingly
509 		 */
510 		finished = !test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
511 		/* test_and_set_bit implies a barrier */
512 		cond_wake_up_nomb(&entry->wait);
513 	}
514 out:
515 	if (finished && cached && entry) {
516 		*cached = entry;
517 		refcount_inc(&entry->refs);
518 		trace_btrfs_ordered_extent_dec_test_pending(inode, entry);
519 	}
520 	spin_unlock_irqrestore(&tree->lock, flags);
521 	return finished;
522 }
523 
524 /*
525  * used to drop a reference on an ordered extent.  This will free
526  * the extent if the last reference is dropped
527  */
528 void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
529 {
530 	struct list_head *cur;
531 	struct btrfs_ordered_sum *sum;
532 
533 	trace_btrfs_ordered_extent_put(BTRFS_I(entry->inode), entry);
534 
535 	if (refcount_dec_and_test(&entry->refs)) {
536 		ASSERT(list_empty(&entry->root_extent_list));
537 		ASSERT(list_empty(&entry->log_list));
538 		ASSERT(RB_EMPTY_NODE(&entry->rb_node));
539 		if (entry->inode)
540 			btrfs_add_delayed_iput(BTRFS_I(entry->inode));
541 		while (!list_empty(&entry->list)) {
542 			cur = entry->list.next;
543 			sum = list_entry(cur, struct btrfs_ordered_sum, list);
544 			list_del(&sum->list);
545 			kvfree(sum);
546 		}
547 		kmem_cache_free(btrfs_ordered_extent_cache, entry);
548 	}
549 }
550 
551 /*
552  * remove an ordered extent from the tree.  No references are dropped
553  * and waiters are woken up.
554  */
555 void btrfs_remove_ordered_extent(struct btrfs_inode *btrfs_inode,
556 				 struct btrfs_ordered_extent *entry)
557 {
558 	struct btrfs_ordered_inode_tree *tree;
559 	struct btrfs_root *root = btrfs_inode->root;
560 	struct btrfs_fs_info *fs_info = root->fs_info;
561 	struct rb_node *node;
562 	bool pending;
563 	bool freespace_inode;
564 
565 	/*
566 	 * If this is a free space inode the thread has not acquired the ordered
567 	 * extents lockdep map.
568 	 */
569 	freespace_inode = btrfs_is_free_space_inode(btrfs_inode);
570 
571 	btrfs_lockdep_acquire(fs_info, btrfs_trans_pending_ordered);
572 	/* This is paired with btrfs_alloc_ordered_extent. */
573 	spin_lock(&btrfs_inode->lock);
574 	btrfs_mod_outstanding_extents(btrfs_inode, -1);
575 	spin_unlock(&btrfs_inode->lock);
576 	if (root != fs_info->tree_root) {
577 		u64 release;
578 
579 		if (test_bit(BTRFS_ORDERED_ENCODED, &entry->flags))
580 			release = entry->disk_num_bytes;
581 		else
582 			release = entry->num_bytes;
583 		btrfs_delalloc_release_metadata(btrfs_inode, release, false);
584 	}
585 
586 	percpu_counter_add_batch(&fs_info->ordered_bytes, -entry->num_bytes,
587 				 fs_info->delalloc_batch);
588 
589 	tree = &btrfs_inode->ordered_tree;
590 	spin_lock_irq(&tree->lock);
591 	node = &entry->rb_node;
592 	rb_erase(node, &tree->tree);
593 	RB_CLEAR_NODE(node);
594 	if (tree->last == node)
595 		tree->last = NULL;
596 	set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
597 	pending = test_and_clear_bit(BTRFS_ORDERED_PENDING, &entry->flags);
598 	spin_unlock_irq(&tree->lock);
599 
600 	/*
601 	 * The current running transaction is waiting on us, we need to let it
602 	 * know that we're complete and wake it up.
603 	 */
604 	if (pending) {
605 		struct btrfs_transaction *trans;
606 
607 		/*
608 		 * The checks for trans are just a formality, it should be set,
609 		 * but if it isn't we don't want to deref/assert under the spin
610 		 * lock, so be nice and check if trans is set, but ASSERT() so
611 		 * if it isn't set a developer will notice.
612 		 */
613 		spin_lock(&fs_info->trans_lock);
614 		trans = fs_info->running_transaction;
615 		if (trans)
616 			refcount_inc(&trans->use_count);
617 		spin_unlock(&fs_info->trans_lock);
618 
619 		ASSERT(trans);
620 		if (trans) {
621 			if (atomic_dec_and_test(&trans->pending_ordered))
622 				wake_up(&trans->pending_wait);
623 			btrfs_put_transaction(trans);
624 		}
625 	}
626 
627 	btrfs_lockdep_release(fs_info, btrfs_trans_pending_ordered);
628 
629 	spin_lock(&root->ordered_extent_lock);
630 	list_del_init(&entry->root_extent_list);
631 	root->nr_ordered_extents--;
632 
633 	trace_btrfs_ordered_extent_remove(btrfs_inode, entry);
634 
635 	if (!root->nr_ordered_extents) {
636 		spin_lock(&fs_info->ordered_root_lock);
637 		BUG_ON(list_empty(&root->ordered_root));
638 		list_del_init(&root->ordered_root);
639 		spin_unlock(&fs_info->ordered_root_lock);
640 	}
641 	spin_unlock(&root->ordered_extent_lock);
642 	wake_up(&entry->wait);
643 	if (!freespace_inode)
644 		btrfs_lockdep_release(fs_info, btrfs_ordered_extent);
645 }
646 
647 static void btrfs_run_ordered_extent_work(struct btrfs_work *work)
648 {
649 	struct btrfs_ordered_extent *ordered;
650 
651 	ordered = container_of(work, struct btrfs_ordered_extent, flush_work);
652 	btrfs_start_ordered_extent(ordered);
653 	complete(&ordered->completion);
654 }
655 
656 /*
657  * wait for all the ordered extents in a root.  This is done when balancing
658  * space between drives.
659  */
660 u64 btrfs_wait_ordered_extents(struct btrfs_root *root, u64 nr,
661 			       const u64 range_start, const u64 range_len)
662 {
663 	struct btrfs_fs_info *fs_info = root->fs_info;
664 	LIST_HEAD(splice);
665 	LIST_HEAD(skipped);
666 	LIST_HEAD(works);
667 	struct btrfs_ordered_extent *ordered, *next;
668 	u64 count = 0;
669 	const u64 range_end = range_start + range_len;
670 
671 	mutex_lock(&root->ordered_extent_mutex);
672 	spin_lock(&root->ordered_extent_lock);
673 	list_splice_init(&root->ordered_extents, &splice);
674 	while (!list_empty(&splice) && nr) {
675 		ordered = list_first_entry(&splice, struct btrfs_ordered_extent,
676 					   root_extent_list);
677 
678 		if (range_end <= ordered->disk_bytenr ||
679 		    ordered->disk_bytenr + ordered->disk_num_bytes <= range_start) {
680 			list_move_tail(&ordered->root_extent_list, &skipped);
681 			cond_resched_lock(&root->ordered_extent_lock);
682 			continue;
683 		}
684 
685 		list_move_tail(&ordered->root_extent_list,
686 			       &root->ordered_extents);
687 		refcount_inc(&ordered->refs);
688 		spin_unlock(&root->ordered_extent_lock);
689 
690 		btrfs_init_work(&ordered->flush_work,
691 				btrfs_run_ordered_extent_work, NULL, NULL);
692 		list_add_tail(&ordered->work_list, &works);
693 		btrfs_queue_work(fs_info->flush_workers, &ordered->flush_work);
694 
695 		cond_resched();
696 		spin_lock(&root->ordered_extent_lock);
697 		if (nr != U64_MAX)
698 			nr--;
699 		count++;
700 	}
701 	list_splice_tail(&skipped, &root->ordered_extents);
702 	list_splice_tail(&splice, &root->ordered_extents);
703 	spin_unlock(&root->ordered_extent_lock);
704 
705 	list_for_each_entry_safe(ordered, next, &works, work_list) {
706 		list_del_init(&ordered->work_list);
707 		wait_for_completion(&ordered->completion);
708 		btrfs_put_ordered_extent(ordered);
709 		cond_resched();
710 	}
711 	mutex_unlock(&root->ordered_extent_mutex);
712 
713 	return count;
714 }
715 
716 void btrfs_wait_ordered_roots(struct btrfs_fs_info *fs_info, u64 nr,
717 			     const u64 range_start, const u64 range_len)
718 {
719 	struct btrfs_root *root;
720 	struct list_head splice;
721 	u64 done;
722 
723 	INIT_LIST_HEAD(&splice);
724 
725 	mutex_lock(&fs_info->ordered_operations_mutex);
726 	spin_lock(&fs_info->ordered_root_lock);
727 	list_splice_init(&fs_info->ordered_roots, &splice);
728 	while (!list_empty(&splice) && nr) {
729 		root = list_first_entry(&splice, struct btrfs_root,
730 					ordered_root);
731 		root = btrfs_grab_root(root);
732 		BUG_ON(!root);
733 		list_move_tail(&root->ordered_root,
734 			       &fs_info->ordered_roots);
735 		spin_unlock(&fs_info->ordered_root_lock);
736 
737 		done = btrfs_wait_ordered_extents(root, nr,
738 						  range_start, range_len);
739 		btrfs_put_root(root);
740 
741 		spin_lock(&fs_info->ordered_root_lock);
742 		if (nr != U64_MAX) {
743 			nr -= done;
744 		}
745 	}
746 	list_splice_tail(&splice, &fs_info->ordered_roots);
747 	spin_unlock(&fs_info->ordered_root_lock);
748 	mutex_unlock(&fs_info->ordered_operations_mutex);
749 }
750 
751 /*
752  * Start IO and wait for a given ordered extent to finish.
753  *
754  * Wait on page writeback for all the pages in the extent and the IO completion
755  * code to insert metadata into the btree corresponding to the extent.
756  */
757 void btrfs_start_ordered_extent(struct btrfs_ordered_extent *entry)
758 {
759 	u64 start = entry->file_offset;
760 	u64 end = start + entry->num_bytes - 1;
761 	struct btrfs_inode *inode = BTRFS_I(entry->inode);
762 	bool freespace_inode;
763 
764 	trace_btrfs_ordered_extent_start(inode, entry);
765 
766 	/*
767 	 * If this is a free space inode do not take the ordered extents lockdep
768 	 * map.
769 	 */
770 	freespace_inode = btrfs_is_free_space_inode(inode);
771 
772 	/*
773 	 * pages in the range can be dirty, clean or writeback.  We
774 	 * start IO on any dirty ones so the wait doesn't stall waiting
775 	 * for the flusher thread to find them
776 	 */
777 	if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags))
778 		filemap_fdatawrite_range(inode->vfs_inode.i_mapping, start, end);
779 
780 	if (!freespace_inode)
781 		btrfs_might_wait_for_event(inode->root->fs_info, btrfs_ordered_extent);
782 	wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE, &entry->flags));
783 }
784 
785 /*
786  * Used to wait on ordered extents across a large range of bytes.
787  */
788 int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
789 {
790 	int ret = 0;
791 	int ret_wb = 0;
792 	u64 end;
793 	u64 orig_end;
794 	struct btrfs_ordered_extent *ordered;
795 
796 	if (start + len < start) {
797 		orig_end = OFFSET_MAX;
798 	} else {
799 		orig_end = start + len - 1;
800 		if (orig_end > OFFSET_MAX)
801 			orig_end = OFFSET_MAX;
802 	}
803 
804 	/* start IO across the range first to instantiate any delalloc
805 	 * extents
806 	 */
807 	ret = btrfs_fdatawrite_range(inode, start, orig_end);
808 	if (ret)
809 		return ret;
810 
811 	/*
812 	 * If we have a writeback error don't return immediately. Wait first
813 	 * for any ordered extents that haven't completed yet. This is to make
814 	 * sure no one can dirty the same page ranges and call writepages()
815 	 * before the ordered extents complete - to avoid failures (-EEXIST)
816 	 * when adding the new ordered extents to the ordered tree.
817 	 */
818 	ret_wb = filemap_fdatawait_range(inode->i_mapping, start, orig_end);
819 
820 	end = orig_end;
821 	while (1) {
822 		ordered = btrfs_lookup_first_ordered_extent(BTRFS_I(inode), end);
823 		if (!ordered)
824 			break;
825 		if (ordered->file_offset > orig_end) {
826 			btrfs_put_ordered_extent(ordered);
827 			break;
828 		}
829 		if (ordered->file_offset + ordered->num_bytes <= start) {
830 			btrfs_put_ordered_extent(ordered);
831 			break;
832 		}
833 		btrfs_start_ordered_extent(ordered);
834 		end = ordered->file_offset;
835 		/*
836 		 * If the ordered extent had an error save the error but don't
837 		 * exit without waiting first for all other ordered extents in
838 		 * the range to complete.
839 		 */
840 		if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags))
841 			ret = -EIO;
842 		btrfs_put_ordered_extent(ordered);
843 		if (end == 0 || end == start)
844 			break;
845 		end--;
846 	}
847 	return ret_wb ? ret_wb : ret;
848 }
849 
850 /*
851  * find an ordered extent corresponding to file_offset.  return NULL if
852  * nothing is found, otherwise take a reference on the extent and return it
853  */
854 struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct btrfs_inode *inode,
855 							 u64 file_offset)
856 {
857 	struct btrfs_ordered_inode_tree *tree;
858 	struct rb_node *node;
859 	struct btrfs_ordered_extent *entry = NULL;
860 	unsigned long flags;
861 
862 	tree = &inode->ordered_tree;
863 	spin_lock_irqsave(&tree->lock, flags);
864 	node = tree_search(tree, file_offset);
865 	if (!node)
866 		goto out;
867 
868 	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
869 	if (!in_range(file_offset, entry->file_offset, entry->num_bytes))
870 		entry = NULL;
871 	if (entry) {
872 		refcount_inc(&entry->refs);
873 		trace_btrfs_ordered_extent_lookup(inode, entry);
874 	}
875 out:
876 	spin_unlock_irqrestore(&tree->lock, flags);
877 	return entry;
878 }
879 
880 /* Since the DIO code tries to lock a wide area we need to look for any ordered
881  * extents that exist in the range, rather than just the start of the range.
882  */
883 struct btrfs_ordered_extent *btrfs_lookup_ordered_range(
884 		struct btrfs_inode *inode, u64 file_offset, u64 len)
885 {
886 	struct btrfs_ordered_inode_tree *tree;
887 	struct rb_node *node;
888 	struct btrfs_ordered_extent *entry = NULL;
889 
890 	tree = &inode->ordered_tree;
891 	spin_lock_irq(&tree->lock);
892 	node = tree_search(tree, file_offset);
893 	if (!node) {
894 		node = tree_search(tree, file_offset + len);
895 		if (!node)
896 			goto out;
897 	}
898 
899 	while (1) {
900 		entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
901 		if (range_overlaps(entry, file_offset, len))
902 			break;
903 
904 		if (entry->file_offset >= file_offset + len) {
905 			entry = NULL;
906 			break;
907 		}
908 		entry = NULL;
909 		node = rb_next(node);
910 		if (!node)
911 			break;
912 	}
913 out:
914 	if (entry) {
915 		refcount_inc(&entry->refs);
916 		trace_btrfs_ordered_extent_lookup_range(inode, entry);
917 	}
918 	spin_unlock_irq(&tree->lock);
919 	return entry;
920 }
921 
922 /*
923  * Adds all ordered extents to the given list. The list ends up sorted by the
924  * file_offset of the ordered extents.
925  */
926 void btrfs_get_ordered_extents_for_logging(struct btrfs_inode *inode,
927 					   struct list_head *list)
928 {
929 	struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
930 	struct rb_node *n;
931 
932 	ASSERT(inode_is_locked(&inode->vfs_inode));
933 
934 	spin_lock_irq(&tree->lock);
935 	for (n = rb_first(&tree->tree); n; n = rb_next(n)) {
936 		struct btrfs_ordered_extent *ordered;
937 
938 		ordered = rb_entry(n, struct btrfs_ordered_extent, rb_node);
939 
940 		if (test_bit(BTRFS_ORDERED_LOGGED, &ordered->flags))
941 			continue;
942 
943 		ASSERT(list_empty(&ordered->log_list));
944 		list_add_tail(&ordered->log_list, list);
945 		refcount_inc(&ordered->refs);
946 		trace_btrfs_ordered_extent_lookup_for_logging(inode, ordered);
947 	}
948 	spin_unlock_irq(&tree->lock);
949 }
950 
951 /*
952  * lookup and return any extent before 'file_offset'.  NULL is returned
953  * if none is found
954  */
955 struct btrfs_ordered_extent *
956 btrfs_lookup_first_ordered_extent(struct btrfs_inode *inode, u64 file_offset)
957 {
958 	struct btrfs_ordered_inode_tree *tree;
959 	struct rb_node *node;
960 	struct btrfs_ordered_extent *entry = NULL;
961 
962 	tree = &inode->ordered_tree;
963 	spin_lock_irq(&tree->lock);
964 	node = tree_search(tree, file_offset);
965 	if (!node)
966 		goto out;
967 
968 	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
969 	refcount_inc(&entry->refs);
970 	trace_btrfs_ordered_extent_lookup_first(inode, entry);
971 out:
972 	spin_unlock_irq(&tree->lock);
973 	return entry;
974 }
975 
976 /*
977  * Lookup the first ordered extent that overlaps the range
978  * [@file_offset, @file_offset + @len).
979  *
980  * The difference between this and btrfs_lookup_first_ordered_extent() is
981  * that this one won't return any ordered extent that does not overlap the range.
982  * And the difference against btrfs_lookup_ordered_extent() is, this function
983  * ensures the first ordered extent gets returned.
984  */
985 struct btrfs_ordered_extent *btrfs_lookup_first_ordered_range(
986 			struct btrfs_inode *inode, u64 file_offset, u64 len)
987 {
988 	struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
989 	struct rb_node *node;
990 	struct rb_node *cur;
991 	struct rb_node *prev;
992 	struct rb_node *next;
993 	struct btrfs_ordered_extent *entry = NULL;
994 
995 	spin_lock_irq(&tree->lock);
996 	node = tree->tree.rb_node;
997 	/*
998 	 * Here we don't want to use tree_search() which will use tree->last
999 	 * and screw up the search order.
1000 	 * And __tree_search() can't return the adjacent ordered extents
1001 	 * either, thus here we do our own search.
1002 	 */
1003 	while (node) {
1004 		entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
1005 
1006 		if (file_offset < entry->file_offset) {
1007 			node = node->rb_left;
1008 		} else if (file_offset >= entry_end(entry)) {
1009 			node = node->rb_right;
1010 		} else {
1011 			/*
1012 			 * Direct hit, got an ordered extent that starts at
1013 			 * @file_offset
1014 			 */
1015 			goto out;
1016 		}
1017 	}
1018 	if (!entry) {
1019 		/* Empty tree */
1020 		goto out;
1021 	}
1022 
1023 	cur = &entry->rb_node;
1024 	/* We got an entry around @file_offset, check adjacent entries */
1025 	if (entry->file_offset < file_offset) {
1026 		prev = cur;
1027 		next = rb_next(cur);
1028 	} else {
1029 		prev = rb_prev(cur);
1030 		next = cur;
1031 	}
1032 	if (prev) {
1033 		entry = rb_entry(prev, struct btrfs_ordered_extent, rb_node);
1034 		if (range_overlaps(entry, file_offset, len))
1035 			goto out;
1036 	}
1037 	if (next) {
1038 		entry = rb_entry(next, struct btrfs_ordered_extent, rb_node);
1039 		if (range_overlaps(entry, file_offset, len))
1040 			goto out;
1041 	}
1042 	/* No ordered extent in the range */
1043 	entry = NULL;
1044 out:
1045 	if (entry) {
1046 		refcount_inc(&entry->refs);
1047 		trace_btrfs_ordered_extent_lookup_first_range(inode, entry);
1048 	}
1049 
1050 	spin_unlock_irq(&tree->lock);
1051 	return entry;
1052 }
1053 
1054 /*
1055  * Lock the passed range and ensures all pending ordered extents in it are run
1056  * to completion.
1057  *
1058  * @inode:        Inode whose ordered tree is to be searched
1059  * @start:        Beginning of range to flush
1060  * @end:          Last byte of range to lock
1061  * @cached_state: If passed, will return the extent state responsible for the
1062  *                locked range. It's the caller's responsibility to free the
1063  *                cached state.
1064  *
1065  * Always return with the given range locked, ensuring after it's called no
1066  * order extent can be pending.
1067  */
1068 void btrfs_lock_and_flush_ordered_range(struct btrfs_inode *inode, u64 start,
1069 					u64 end,
1070 					struct extent_state **cached_state)
1071 {
1072 	struct btrfs_ordered_extent *ordered;
1073 	struct extent_state *cache = NULL;
1074 	struct extent_state **cachedp = &cache;
1075 
1076 	if (cached_state)
1077 		cachedp = cached_state;
1078 
1079 	while (1) {
1080 		lock_extent(&inode->io_tree, start, end, cachedp);
1081 		ordered = btrfs_lookup_ordered_range(inode, start,
1082 						     end - start + 1);
1083 		if (!ordered) {
1084 			/*
1085 			 * If no external cached_state has been passed then
1086 			 * decrement the extra ref taken for cachedp since we
1087 			 * aren't exposing it outside of this function
1088 			 */
1089 			if (!cached_state)
1090 				refcount_dec(&cache->refs);
1091 			break;
1092 		}
1093 		unlock_extent(&inode->io_tree, start, end, cachedp);
1094 		btrfs_start_ordered_extent(ordered);
1095 		btrfs_put_ordered_extent(ordered);
1096 	}
1097 }
1098 
1099 /*
1100  * Lock the passed range and ensure all pending ordered extents in it are run
1101  * to completion in nowait mode.
1102  *
1103  * Return true if btrfs_lock_ordered_range does not return any extents,
1104  * otherwise false.
1105  */
1106 bool btrfs_try_lock_ordered_range(struct btrfs_inode *inode, u64 start, u64 end,
1107 				  struct extent_state **cached_state)
1108 {
1109 	struct btrfs_ordered_extent *ordered;
1110 
1111 	if (!try_lock_extent(&inode->io_tree, start, end, cached_state))
1112 		return false;
1113 
1114 	ordered = btrfs_lookup_ordered_range(inode, start, end - start + 1);
1115 	if (!ordered)
1116 		return true;
1117 
1118 	btrfs_put_ordered_extent(ordered);
1119 	unlock_extent(&inode->io_tree, start, end, cached_state);
1120 
1121 	return false;
1122 }
1123 
1124 /* Split out a new ordered extent for this first @len bytes of @ordered. */
1125 struct btrfs_ordered_extent *btrfs_split_ordered_extent(
1126 			struct btrfs_ordered_extent *ordered, u64 len)
1127 {
1128 	struct btrfs_inode *inode = BTRFS_I(ordered->inode);
1129 	struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
1130 	struct btrfs_root *root = inode->root;
1131 	struct btrfs_fs_info *fs_info = root->fs_info;
1132 	u64 file_offset = ordered->file_offset;
1133 	u64 disk_bytenr = ordered->disk_bytenr;
1134 	unsigned long flags = ordered->flags;
1135 	struct btrfs_ordered_sum *sum, *tmpsum;
1136 	struct btrfs_ordered_extent *new;
1137 	struct rb_node *node;
1138 	u64 offset = 0;
1139 
1140 	trace_btrfs_ordered_extent_split(inode, ordered);
1141 
1142 	ASSERT(!(flags & (1U << BTRFS_ORDERED_COMPRESSED)));
1143 
1144 	/*
1145 	 * The entire bio must be covered by the ordered extent, but we can't
1146 	 * reduce the original extent to a zero length either.
1147 	 */
1148 	if (WARN_ON_ONCE(len >= ordered->num_bytes))
1149 		return ERR_PTR(-EINVAL);
1150 	/* We cannot split partially completed ordered extents. */
1151 	if (ordered->bytes_left) {
1152 		ASSERT(!(flags & ~BTRFS_ORDERED_TYPE_FLAGS));
1153 		if (WARN_ON_ONCE(ordered->bytes_left != ordered->disk_num_bytes))
1154 			return ERR_PTR(-EINVAL);
1155 	}
1156 	/* We cannot split a compressed ordered extent. */
1157 	if (WARN_ON_ONCE(ordered->disk_num_bytes != ordered->num_bytes))
1158 		return ERR_PTR(-EINVAL);
1159 
1160 	new = alloc_ordered_extent(inode, file_offset, len, len, disk_bytenr,
1161 				   len, 0, flags, ordered->compress_type);
1162 	if (IS_ERR(new))
1163 		return new;
1164 
1165 	/* One ref for the tree. */
1166 	refcount_inc(&new->refs);
1167 
1168 	spin_lock_irq(&root->ordered_extent_lock);
1169 	spin_lock(&tree->lock);
1170 	/* Remove from tree once */
1171 	node = &ordered->rb_node;
1172 	rb_erase(node, &tree->tree);
1173 	RB_CLEAR_NODE(node);
1174 	if (tree->last == node)
1175 		tree->last = NULL;
1176 
1177 	ordered->file_offset += len;
1178 	ordered->disk_bytenr += len;
1179 	ordered->num_bytes -= len;
1180 	ordered->disk_num_bytes -= len;
1181 
1182 	if (test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags)) {
1183 		ASSERT(ordered->bytes_left == 0);
1184 		new->bytes_left = 0;
1185 	} else {
1186 		ordered->bytes_left -= len;
1187 	}
1188 
1189 	if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags)) {
1190 		if (ordered->truncated_len > len) {
1191 			ordered->truncated_len -= len;
1192 		} else {
1193 			new->truncated_len = ordered->truncated_len;
1194 			ordered->truncated_len = 0;
1195 		}
1196 	}
1197 
1198 	list_for_each_entry_safe(sum, tmpsum, &ordered->list, list) {
1199 		if (offset == len)
1200 			break;
1201 		list_move_tail(&sum->list, &new->list);
1202 		offset += sum->len;
1203 	}
1204 
1205 	/* Re-insert the node */
1206 	node = tree_insert(&tree->tree, ordered->file_offset, &ordered->rb_node);
1207 	if (node)
1208 		btrfs_panic(fs_info, -EEXIST,
1209 			"zoned: inconsistency in ordered tree at offset %llu",
1210 			ordered->file_offset);
1211 
1212 	node = tree_insert(&tree->tree, new->file_offset, &new->rb_node);
1213 	if (node)
1214 		btrfs_panic(fs_info, -EEXIST,
1215 			"zoned: inconsistency in ordered tree at offset %llu",
1216 			new->file_offset);
1217 	spin_unlock(&tree->lock);
1218 
1219 	list_add_tail(&new->root_extent_list, &root->ordered_extents);
1220 	root->nr_ordered_extents++;
1221 	spin_unlock_irq(&root->ordered_extent_lock);
1222 	return new;
1223 }
1224 
1225 int __init ordered_data_init(void)
1226 {
1227 	btrfs_ordered_extent_cache = kmem_cache_create("btrfs_ordered_extent",
1228 				     sizeof(struct btrfs_ordered_extent), 0,
1229 				     SLAB_MEM_SPREAD,
1230 				     NULL);
1231 	if (!btrfs_ordered_extent_cache)
1232 		return -ENOMEM;
1233 
1234 	return 0;
1235 }
1236 
1237 void __cold ordered_data_exit(void)
1238 {
1239 	kmem_cache_destroy(btrfs_ordered_extent_cache);
1240 }
1241