xref: /openbmc/linux/fs/btrfs/ordered-data.c (revision 14570dfa)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/slab.h>
7 #include <linux/blkdev.h>
8 #include <linux/writeback.h>
9 #include <linux/sched/mm.h>
10 #include "messages.h"
11 #include "misc.h"
12 #include "ctree.h"
13 #include "transaction.h"
14 #include "btrfs_inode.h"
15 #include "extent_io.h"
16 #include "disk-io.h"
17 #include "compression.h"
18 #include "delalloc-space.h"
19 #include "qgroup.h"
20 #include "subpage.h"
21 #include "file.h"
22 #include "super.h"
23 
24 static struct kmem_cache *btrfs_ordered_extent_cache;
25 
26 static u64 entry_end(struct btrfs_ordered_extent *entry)
27 {
28 	if (entry->file_offset + entry->num_bytes < entry->file_offset)
29 		return (u64)-1;
30 	return entry->file_offset + entry->num_bytes;
31 }
32 
33 /* returns NULL if the insertion worked, or it returns the node it did find
34  * in the tree
35  */
36 static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
37 				   struct rb_node *node)
38 {
39 	struct rb_node **p = &root->rb_node;
40 	struct rb_node *parent = NULL;
41 	struct btrfs_ordered_extent *entry;
42 
43 	while (*p) {
44 		parent = *p;
45 		entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
46 
47 		if (file_offset < entry->file_offset)
48 			p = &(*p)->rb_left;
49 		else if (file_offset >= entry_end(entry))
50 			p = &(*p)->rb_right;
51 		else
52 			return parent;
53 	}
54 
55 	rb_link_node(node, parent, p);
56 	rb_insert_color(node, root);
57 	return NULL;
58 }
59 
60 /*
61  * look for a given offset in the tree, and if it can't be found return the
62  * first lesser offset
63  */
64 static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
65 				     struct rb_node **prev_ret)
66 {
67 	struct rb_node *n = root->rb_node;
68 	struct rb_node *prev = NULL;
69 	struct rb_node *test;
70 	struct btrfs_ordered_extent *entry;
71 	struct btrfs_ordered_extent *prev_entry = NULL;
72 
73 	while (n) {
74 		entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
75 		prev = n;
76 		prev_entry = entry;
77 
78 		if (file_offset < entry->file_offset)
79 			n = n->rb_left;
80 		else if (file_offset >= entry_end(entry))
81 			n = n->rb_right;
82 		else
83 			return n;
84 	}
85 	if (!prev_ret)
86 		return NULL;
87 
88 	while (prev && file_offset >= entry_end(prev_entry)) {
89 		test = rb_next(prev);
90 		if (!test)
91 			break;
92 		prev_entry = rb_entry(test, struct btrfs_ordered_extent,
93 				      rb_node);
94 		if (file_offset < entry_end(prev_entry))
95 			break;
96 
97 		prev = test;
98 	}
99 	if (prev)
100 		prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
101 				      rb_node);
102 	while (prev && file_offset < entry_end(prev_entry)) {
103 		test = rb_prev(prev);
104 		if (!test)
105 			break;
106 		prev_entry = rb_entry(test, struct btrfs_ordered_extent,
107 				      rb_node);
108 		prev = test;
109 	}
110 	*prev_ret = prev;
111 	return NULL;
112 }
113 
114 static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset,
115 			  u64 len)
116 {
117 	if (file_offset + len <= entry->file_offset ||
118 	    entry->file_offset + entry->num_bytes <= file_offset)
119 		return 0;
120 	return 1;
121 }
122 
123 /*
124  * look find the first ordered struct that has this offset, otherwise
125  * the first one less than this offset
126  */
127 static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree,
128 					  u64 file_offset)
129 {
130 	struct rb_root *root = &tree->tree;
131 	struct rb_node *prev = NULL;
132 	struct rb_node *ret;
133 	struct btrfs_ordered_extent *entry;
134 
135 	if (tree->last) {
136 		entry = rb_entry(tree->last, struct btrfs_ordered_extent,
137 				 rb_node);
138 		if (in_range(file_offset, entry->file_offset, entry->num_bytes))
139 			return tree->last;
140 	}
141 	ret = __tree_search(root, file_offset, &prev);
142 	if (!ret)
143 		ret = prev;
144 	if (ret)
145 		tree->last = ret;
146 	return ret;
147 }
148 
149 static struct btrfs_ordered_extent *alloc_ordered_extent(
150 			struct btrfs_inode *inode, u64 file_offset, u64 num_bytes,
151 			u64 ram_bytes, u64 disk_bytenr, u64 disk_num_bytes,
152 			u64 offset, unsigned long flags, int compress_type)
153 {
154 	struct btrfs_ordered_extent *entry;
155 	int ret;
156 
157 	if (flags &
158 	    ((1 << BTRFS_ORDERED_NOCOW) | (1 << BTRFS_ORDERED_PREALLOC))) {
159 		/* For nocow write, we can release the qgroup rsv right now */
160 		ret = btrfs_qgroup_free_data(inode, NULL, file_offset, num_bytes);
161 		if (ret < 0)
162 			return ERR_PTR(ret);
163 	} else {
164 		/*
165 		 * The ordered extent has reserved qgroup space, release now
166 		 * and pass the reserved number for qgroup_record to free.
167 		 */
168 		ret = btrfs_qgroup_release_data(inode, file_offset, num_bytes);
169 		if (ret < 0)
170 			return ERR_PTR(ret);
171 	}
172 	entry = kmem_cache_zalloc(btrfs_ordered_extent_cache, GFP_NOFS);
173 	if (!entry)
174 		return ERR_PTR(-ENOMEM);
175 
176 	entry->file_offset = file_offset;
177 	entry->num_bytes = num_bytes;
178 	entry->ram_bytes = ram_bytes;
179 	entry->disk_bytenr = disk_bytenr;
180 	entry->disk_num_bytes = disk_num_bytes;
181 	entry->offset = offset;
182 	entry->bytes_left = num_bytes;
183 	entry->inode = igrab(&inode->vfs_inode);
184 	entry->compress_type = compress_type;
185 	entry->truncated_len = (u64)-1;
186 	entry->qgroup_rsv = ret;
187 	entry->flags = flags;
188 	refcount_set(&entry->refs, 1);
189 	init_waitqueue_head(&entry->wait);
190 	INIT_LIST_HEAD(&entry->list);
191 	INIT_LIST_HEAD(&entry->log_list);
192 	INIT_LIST_HEAD(&entry->root_extent_list);
193 	INIT_LIST_HEAD(&entry->work_list);
194 	init_completion(&entry->completion);
195 
196 	/*
197 	 * We don't need the count_max_extents here, we can assume that all of
198 	 * that work has been done at higher layers, so this is truly the
199 	 * smallest the extent is going to get.
200 	 */
201 	spin_lock(&inode->lock);
202 	btrfs_mod_outstanding_extents(inode, 1);
203 	spin_unlock(&inode->lock);
204 
205 	return entry;
206 }
207 
208 static void insert_ordered_extent(struct btrfs_ordered_extent *entry)
209 {
210 	struct btrfs_inode *inode = BTRFS_I(entry->inode);
211 	struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
212 	struct btrfs_root *root = inode->root;
213 	struct btrfs_fs_info *fs_info = root->fs_info;
214 	struct rb_node *node;
215 
216 	trace_btrfs_ordered_extent_add(inode, entry);
217 
218 	percpu_counter_add_batch(&fs_info->ordered_bytes, entry->num_bytes,
219 				 fs_info->delalloc_batch);
220 
221 	/* One ref for the tree. */
222 	refcount_inc(&entry->refs);
223 
224 	spin_lock_irq(&tree->lock);
225 	node = tree_insert(&tree->tree, entry->file_offset, &entry->rb_node);
226 	if (node)
227 		btrfs_panic(fs_info, -EEXIST,
228 				"inconsistency in ordered tree at offset %llu",
229 				entry->file_offset);
230 	spin_unlock_irq(&tree->lock);
231 
232 	spin_lock(&root->ordered_extent_lock);
233 	list_add_tail(&entry->root_extent_list,
234 		      &root->ordered_extents);
235 	root->nr_ordered_extents++;
236 	if (root->nr_ordered_extents == 1) {
237 		spin_lock(&fs_info->ordered_root_lock);
238 		BUG_ON(!list_empty(&root->ordered_root));
239 		list_add_tail(&root->ordered_root, &fs_info->ordered_roots);
240 		spin_unlock(&fs_info->ordered_root_lock);
241 	}
242 	spin_unlock(&root->ordered_extent_lock);
243 }
244 
245 /*
246  * Add an ordered extent to the per-inode tree.
247  *
248  * @inode:           Inode that this extent is for.
249  * @file_offset:     Logical offset in file where the extent starts.
250  * @num_bytes:       Logical length of extent in file.
251  * @ram_bytes:       Full length of unencoded data.
252  * @disk_bytenr:     Offset of extent on disk.
253  * @disk_num_bytes:  Size of extent on disk.
254  * @offset:          Offset into unencoded data where file data starts.
255  * @flags:           Flags specifying type of extent (1 << BTRFS_ORDERED_*).
256  * @compress_type:   Compression algorithm used for data.
257  *
258  * Most of these parameters correspond to &struct btrfs_file_extent_item. The
259  * tree is given a single reference on the ordered extent that was inserted, and
260  * the returned pointer is given a second reference.
261  *
262  * Return: the new ordered extent or error pointer.
263  */
264 struct btrfs_ordered_extent *btrfs_alloc_ordered_extent(
265 			struct btrfs_inode *inode, u64 file_offset,
266 			u64 num_bytes, u64 ram_bytes, u64 disk_bytenr,
267 			u64 disk_num_bytes, u64 offset, unsigned long flags,
268 			int compress_type)
269 {
270 	struct btrfs_ordered_extent *entry;
271 
272 	ASSERT((flags & ~BTRFS_ORDERED_TYPE_FLAGS) == 0);
273 
274 	entry = alloc_ordered_extent(inode, file_offset, num_bytes, ram_bytes,
275 				     disk_bytenr, disk_num_bytes, offset, flags,
276 				     compress_type);
277 	if (!IS_ERR(entry))
278 		insert_ordered_extent(entry);
279 	return entry;
280 }
281 
282 /*
283  * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
284  * when an ordered extent is finished.  If the list covers more than one
285  * ordered extent, it is split across multiples.
286  */
287 void btrfs_add_ordered_sum(struct btrfs_ordered_extent *entry,
288 			   struct btrfs_ordered_sum *sum)
289 {
290 	struct btrfs_ordered_inode_tree *tree;
291 
292 	tree = &BTRFS_I(entry->inode)->ordered_tree;
293 	spin_lock_irq(&tree->lock);
294 	list_add_tail(&sum->list, &entry->list);
295 	spin_unlock_irq(&tree->lock);
296 }
297 
298 static void finish_ordered_fn(struct btrfs_work *work)
299 {
300 	struct btrfs_ordered_extent *ordered_extent;
301 
302 	ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
303 	btrfs_finish_ordered_io(ordered_extent);
304 }
305 
306 static bool can_finish_ordered_extent(struct btrfs_ordered_extent *ordered,
307 				      struct page *page, u64 file_offset,
308 				      u64 len, bool uptodate)
309 {
310 	struct btrfs_inode *inode = BTRFS_I(ordered->inode);
311 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
312 
313 	lockdep_assert_held(&inode->ordered_tree.lock);
314 
315 	if (page) {
316 		ASSERT(page->mapping);
317 		ASSERT(page_offset(page) <= file_offset);
318 		ASSERT(file_offset + len <= page_offset(page) + PAGE_SIZE);
319 
320 		/*
321 		 * Ordered (Private2) bit indicates whether we still have
322 		 * pending io unfinished for the ordered extent.
323 		 *
324 		 * If there's no such bit, we need to skip to next range.
325 		 */
326 		if (!btrfs_page_test_ordered(fs_info, page, file_offset, len))
327 			return false;
328 		btrfs_page_clear_ordered(fs_info, page, file_offset, len);
329 	}
330 
331 	/* Now we're fine to update the accounting. */
332 	if (WARN_ON_ONCE(len > ordered->bytes_left)) {
333 		btrfs_crit(fs_info,
334 "bad ordered extent accounting, root=%llu ino=%llu OE offset=%llu OE len=%llu to_dec=%llu left=%llu",
335 			   inode->root->root_key.objectid, btrfs_ino(inode),
336 			   ordered->file_offset, ordered->num_bytes,
337 			   len, ordered->bytes_left);
338 		ordered->bytes_left = 0;
339 	} else {
340 		ordered->bytes_left -= len;
341 	}
342 
343 	if (!uptodate)
344 		set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
345 
346 	if (ordered->bytes_left)
347 		return false;
348 
349 	/*
350 	 * All the IO of the ordered extent is finished, we need to queue
351 	 * the finish_func to be executed.
352 	 */
353 	set_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags);
354 	cond_wake_up(&ordered->wait);
355 	refcount_inc(&ordered->refs);
356 	trace_btrfs_ordered_extent_mark_finished(inode, ordered);
357 	return true;
358 }
359 
360 static void btrfs_queue_ordered_fn(struct btrfs_ordered_extent *ordered)
361 {
362 	struct btrfs_inode *inode = BTRFS_I(ordered->inode);
363 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
364 	struct btrfs_workqueue *wq = btrfs_is_free_space_inode(inode) ?
365 		fs_info->endio_freespace_worker : fs_info->endio_write_workers;
366 
367 	btrfs_init_work(&ordered->work, finish_ordered_fn, NULL, NULL);
368 	btrfs_queue_work(wq, &ordered->work);
369 }
370 
371 bool btrfs_finish_ordered_extent(struct btrfs_ordered_extent *ordered,
372 				 struct page *page, u64 file_offset, u64 len,
373 				 bool uptodate)
374 {
375 	struct btrfs_inode *inode = BTRFS_I(ordered->inode);
376 	unsigned long flags;
377 	bool ret;
378 
379 	trace_btrfs_finish_ordered_extent(inode, file_offset, len, uptodate);
380 
381 	spin_lock_irqsave(&inode->ordered_tree.lock, flags);
382 	ret = can_finish_ordered_extent(ordered, page, file_offset, len, uptodate);
383 	spin_unlock_irqrestore(&inode->ordered_tree.lock, flags);
384 
385 	if (ret)
386 		btrfs_queue_ordered_fn(ordered);
387 	return ret;
388 }
389 
390 /*
391  * Mark all ordered extents io inside the specified range finished.
392  *
393  * @page:	 The involved page for the operation.
394  *		 For uncompressed buffered IO, the page status also needs to be
395  *		 updated to indicate whether the pending ordered io is finished.
396  *		 Can be NULL for direct IO and compressed write.
397  *		 For these cases, callers are ensured they won't execute the
398  *		 endio function twice.
399  *
400  * This function is called for endio, thus the range must have ordered
401  * extent(s) covering it.
402  */
403 void btrfs_mark_ordered_io_finished(struct btrfs_inode *inode,
404 				    struct page *page, u64 file_offset,
405 				    u64 num_bytes, bool uptodate)
406 {
407 	struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
408 	struct rb_node *node;
409 	struct btrfs_ordered_extent *entry = NULL;
410 	unsigned long flags;
411 	u64 cur = file_offset;
412 
413 	trace_btrfs_writepage_end_io_hook(inode, file_offset,
414 					  file_offset + num_bytes - 1,
415 					  uptodate);
416 
417 	spin_lock_irqsave(&tree->lock, flags);
418 	while (cur < file_offset + num_bytes) {
419 		u64 entry_end;
420 		u64 end;
421 		u32 len;
422 
423 		node = tree_search(tree, cur);
424 		/* No ordered extents at all */
425 		if (!node)
426 			break;
427 
428 		entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
429 		entry_end = entry->file_offset + entry->num_bytes;
430 		/*
431 		 * |<-- OE --->|  |
432 		 *		  cur
433 		 * Go to next OE.
434 		 */
435 		if (cur >= entry_end) {
436 			node = rb_next(node);
437 			/* No more ordered extents, exit */
438 			if (!node)
439 				break;
440 			entry = rb_entry(node, struct btrfs_ordered_extent,
441 					 rb_node);
442 
443 			/* Go to next ordered extent and continue */
444 			cur = entry->file_offset;
445 			continue;
446 		}
447 		/*
448 		 * |	|<--- OE --->|
449 		 * cur
450 		 * Go to the start of OE.
451 		 */
452 		if (cur < entry->file_offset) {
453 			cur = entry->file_offset;
454 			continue;
455 		}
456 
457 		/*
458 		 * Now we are definitely inside one ordered extent.
459 		 *
460 		 * |<--- OE --->|
461 		 *	|
462 		 *	cur
463 		 */
464 		end = min(entry->file_offset + entry->num_bytes,
465 			  file_offset + num_bytes) - 1;
466 		ASSERT(end + 1 - cur < U32_MAX);
467 		len = end + 1 - cur;
468 
469 		if (can_finish_ordered_extent(entry, page, cur, len, uptodate)) {
470 			spin_unlock_irqrestore(&tree->lock, flags);
471 			btrfs_queue_ordered_fn(entry);
472 			spin_lock_irqsave(&tree->lock, flags);
473 		}
474 		cur += len;
475 	}
476 	spin_unlock_irqrestore(&tree->lock, flags);
477 }
478 
479 /*
480  * Finish IO for one ordered extent across a given range.  The range can only
481  * contain one ordered extent.
482  *
483  * @cached:	 The cached ordered extent. If not NULL, we can skip the tree
484  *               search and use the ordered extent directly.
485  * 		 Will be also used to store the finished ordered extent.
486  * @file_offset: File offset for the finished IO
487  * @io_size:	 Length of the finish IO range
488  *
489  * Return true if the ordered extent is finished in the range, and update
490  * @cached.
491  * Return false otherwise.
492  *
493  * NOTE: The range can NOT cross multiple ordered extents.
494  * Thus caller should ensure the range doesn't cross ordered extents.
495  */
496 bool btrfs_dec_test_ordered_pending(struct btrfs_inode *inode,
497 				    struct btrfs_ordered_extent **cached,
498 				    u64 file_offset, u64 io_size)
499 {
500 	struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
501 	struct rb_node *node;
502 	struct btrfs_ordered_extent *entry = NULL;
503 	unsigned long flags;
504 	bool finished = false;
505 
506 	spin_lock_irqsave(&tree->lock, flags);
507 	if (cached && *cached) {
508 		entry = *cached;
509 		goto have_entry;
510 	}
511 
512 	node = tree_search(tree, file_offset);
513 	if (!node)
514 		goto out;
515 
516 	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
517 have_entry:
518 	if (!in_range(file_offset, entry->file_offset, entry->num_bytes))
519 		goto out;
520 
521 	if (io_size > entry->bytes_left)
522 		btrfs_crit(inode->root->fs_info,
523 			   "bad ordered accounting left %llu size %llu",
524 		       entry->bytes_left, io_size);
525 
526 	entry->bytes_left -= io_size;
527 
528 	if (entry->bytes_left == 0) {
529 		/*
530 		 * Ensure only one caller can set the flag and finished_ret
531 		 * accordingly
532 		 */
533 		finished = !test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
534 		/* test_and_set_bit implies a barrier */
535 		cond_wake_up_nomb(&entry->wait);
536 	}
537 out:
538 	if (finished && cached && entry) {
539 		*cached = entry;
540 		refcount_inc(&entry->refs);
541 		trace_btrfs_ordered_extent_dec_test_pending(inode, entry);
542 	}
543 	spin_unlock_irqrestore(&tree->lock, flags);
544 	return finished;
545 }
546 
547 /*
548  * used to drop a reference on an ordered extent.  This will free
549  * the extent if the last reference is dropped
550  */
551 void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
552 {
553 	struct list_head *cur;
554 	struct btrfs_ordered_sum *sum;
555 
556 	trace_btrfs_ordered_extent_put(BTRFS_I(entry->inode), entry);
557 
558 	if (refcount_dec_and_test(&entry->refs)) {
559 		ASSERT(list_empty(&entry->root_extent_list));
560 		ASSERT(list_empty(&entry->log_list));
561 		ASSERT(RB_EMPTY_NODE(&entry->rb_node));
562 		if (entry->inode)
563 			btrfs_add_delayed_iput(BTRFS_I(entry->inode));
564 		while (!list_empty(&entry->list)) {
565 			cur = entry->list.next;
566 			sum = list_entry(cur, struct btrfs_ordered_sum, list);
567 			list_del(&sum->list);
568 			kvfree(sum);
569 		}
570 		kmem_cache_free(btrfs_ordered_extent_cache, entry);
571 	}
572 }
573 
574 /*
575  * remove an ordered extent from the tree.  No references are dropped
576  * and waiters are woken up.
577  */
578 void btrfs_remove_ordered_extent(struct btrfs_inode *btrfs_inode,
579 				 struct btrfs_ordered_extent *entry)
580 {
581 	struct btrfs_ordered_inode_tree *tree;
582 	struct btrfs_root *root = btrfs_inode->root;
583 	struct btrfs_fs_info *fs_info = root->fs_info;
584 	struct rb_node *node;
585 	bool pending;
586 	bool freespace_inode;
587 
588 	/*
589 	 * If this is a free space inode the thread has not acquired the ordered
590 	 * extents lockdep map.
591 	 */
592 	freespace_inode = btrfs_is_free_space_inode(btrfs_inode);
593 
594 	btrfs_lockdep_acquire(fs_info, btrfs_trans_pending_ordered);
595 	/* This is paired with btrfs_alloc_ordered_extent. */
596 	spin_lock(&btrfs_inode->lock);
597 	btrfs_mod_outstanding_extents(btrfs_inode, -1);
598 	spin_unlock(&btrfs_inode->lock);
599 	if (root != fs_info->tree_root) {
600 		u64 release;
601 
602 		if (test_bit(BTRFS_ORDERED_ENCODED, &entry->flags))
603 			release = entry->disk_num_bytes;
604 		else
605 			release = entry->num_bytes;
606 		btrfs_delalloc_release_metadata(btrfs_inode, release,
607 						test_bit(BTRFS_ORDERED_IOERR,
608 							 &entry->flags));
609 	}
610 
611 	percpu_counter_add_batch(&fs_info->ordered_bytes, -entry->num_bytes,
612 				 fs_info->delalloc_batch);
613 
614 	tree = &btrfs_inode->ordered_tree;
615 	spin_lock_irq(&tree->lock);
616 	node = &entry->rb_node;
617 	rb_erase(node, &tree->tree);
618 	RB_CLEAR_NODE(node);
619 	if (tree->last == node)
620 		tree->last = NULL;
621 	set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
622 	pending = test_and_clear_bit(BTRFS_ORDERED_PENDING, &entry->flags);
623 	spin_unlock_irq(&tree->lock);
624 
625 	/*
626 	 * The current running transaction is waiting on us, we need to let it
627 	 * know that we're complete and wake it up.
628 	 */
629 	if (pending) {
630 		struct btrfs_transaction *trans;
631 
632 		/*
633 		 * The checks for trans are just a formality, it should be set,
634 		 * but if it isn't we don't want to deref/assert under the spin
635 		 * lock, so be nice and check if trans is set, but ASSERT() so
636 		 * if it isn't set a developer will notice.
637 		 */
638 		spin_lock(&fs_info->trans_lock);
639 		trans = fs_info->running_transaction;
640 		if (trans)
641 			refcount_inc(&trans->use_count);
642 		spin_unlock(&fs_info->trans_lock);
643 
644 		ASSERT(trans || BTRFS_FS_ERROR(fs_info));
645 		if (trans) {
646 			if (atomic_dec_and_test(&trans->pending_ordered))
647 				wake_up(&trans->pending_wait);
648 			btrfs_put_transaction(trans);
649 		}
650 	}
651 
652 	btrfs_lockdep_release(fs_info, btrfs_trans_pending_ordered);
653 
654 	spin_lock(&root->ordered_extent_lock);
655 	list_del_init(&entry->root_extent_list);
656 	root->nr_ordered_extents--;
657 
658 	trace_btrfs_ordered_extent_remove(btrfs_inode, entry);
659 
660 	if (!root->nr_ordered_extents) {
661 		spin_lock(&fs_info->ordered_root_lock);
662 		BUG_ON(list_empty(&root->ordered_root));
663 		list_del_init(&root->ordered_root);
664 		spin_unlock(&fs_info->ordered_root_lock);
665 	}
666 	spin_unlock(&root->ordered_extent_lock);
667 	wake_up(&entry->wait);
668 	if (!freespace_inode)
669 		btrfs_lockdep_release(fs_info, btrfs_ordered_extent);
670 }
671 
672 static void btrfs_run_ordered_extent_work(struct btrfs_work *work)
673 {
674 	struct btrfs_ordered_extent *ordered;
675 
676 	ordered = container_of(work, struct btrfs_ordered_extent, flush_work);
677 	btrfs_start_ordered_extent(ordered);
678 	complete(&ordered->completion);
679 }
680 
681 /*
682  * wait for all the ordered extents in a root.  This is done when balancing
683  * space between drives.
684  */
685 u64 btrfs_wait_ordered_extents(struct btrfs_root *root, u64 nr,
686 			       const u64 range_start, const u64 range_len)
687 {
688 	struct btrfs_fs_info *fs_info = root->fs_info;
689 	LIST_HEAD(splice);
690 	LIST_HEAD(skipped);
691 	LIST_HEAD(works);
692 	struct btrfs_ordered_extent *ordered, *next;
693 	u64 count = 0;
694 	const u64 range_end = range_start + range_len;
695 
696 	mutex_lock(&root->ordered_extent_mutex);
697 	spin_lock(&root->ordered_extent_lock);
698 	list_splice_init(&root->ordered_extents, &splice);
699 	while (!list_empty(&splice) && nr) {
700 		ordered = list_first_entry(&splice, struct btrfs_ordered_extent,
701 					   root_extent_list);
702 
703 		if (range_end <= ordered->disk_bytenr ||
704 		    ordered->disk_bytenr + ordered->disk_num_bytes <= range_start) {
705 			list_move_tail(&ordered->root_extent_list, &skipped);
706 			cond_resched_lock(&root->ordered_extent_lock);
707 			continue;
708 		}
709 
710 		list_move_tail(&ordered->root_extent_list,
711 			       &root->ordered_extents);
712 		refcount_inc(&ordered->refs);
713 		spin_unlock(&root->ordered_extent_lock);
714 
715 		btrfs_init_work(&ordered->flush_work,
716 				btrfs_run_ordered_extent_work, NULL, NULL);
717 		list_add_tail(&ordered->work_list, &works);
718 		btrfs_queue_work(fs_info->flush_workers, &ordered->flush_work);
719 
720 		cond_resched();
721 		spin_lock(&root->ordered_extent_lock);
722 		if (nr != U64_MAX)
723 			nr--;
724 		count++;
725 	}
726 	list_splice_tail(&skipped, &root->ordered_extents);
727 	list_splice_tail(&splice, &root->ordered_extents);
728 	spin_unlock(&root->ordered_extent_lock);
729 
730 	list_for_each_entry_safe(ordered, next, &works, work_list) {
731 		list_del_init(&ordered->work_list);
732 		wait_for_completion(&ordered->completion);
733 		btrfs_put_ordered_extent(ordered);
734 		cond_resched();
735 	}
736 	mutex_unlock(&root->ordered_extent_mutex);
737 
738 	return count;
739 }
740 
741 void btrfs_wait_ordered_roots(struct btrfs_fs_info *fs_info, u64 nr,
742 			     const u64 range_start, const u64 range_len)
743 {
744 	struct btrfs_root *root;
745 	LIST_HEAD(splice);
746 	u64 done;
747 
748 	mutex_lock(&fs_info->ordered_operations_mutex);
749 	spin_lock(&fs_info->ordered_root_lock);
750 	list_splice_init(&fs_info->ordered_roots, &splice);
751 	while (!list_empty(&splice) && nr) {
752 		root = list_first_entry(&splice, struct btrfs_root,
753 					ordered_root);
754 		root = btrfs_grab_root(root);
755 		BUG_ON(!root);
756 		list_move_tail(&root->ordered_root,
757 			       &fs_info->ordered_roots);
758 		spin_unlock(&fs_info->ordered_root_lock);
759 
760 		done = btrfs_wait_ordered_extents(root, nr,
761 						  range_start, range_len);
762 		btrfs_put_root(root);
763 
764 		spin_lock(&fs_info->ordered_root_lock);
765 		if (nr != U64_MAX) {
766 			nr -= done;
767 		}
768 	}
769 	list_splice_tail(&splice, &fs_info->ordered_roots);
770 	spin_unlock(&fs_info->ordered_root_lock);
771 	mutex_unlock(&fs_info->ordered_operations_mutex);
772 }
773 
774 /*
775  * Start IO and wait for a given ordered extent to finish.
776  *
777  * Wait on page writeback for all the pages in the extent and the IO completion
778  * code to insert metadata into the btree corresponding to the extent.
779  */
780 void btrfs_start_ordered_extent(struct btrfs_ordered_extent *entry)
781 {
782 	u64 start = entry->file_offset;
783 	u64 end = start + entry->num_bytes - 1;
784 	struct btrfs_inode *inode = BTRFS_I(entry->inode);
785 	bool freespace_inode;
786 
787 	trace_btrfs_ordered_extent_start(inode, entry);
788 
789 	/*
790 	 * If this is a free space inode do not take the ordered extents lockdep
791 	 * map.
792 	 */
793 	freespace_inode = btrfs_is_free_space_inode(inode);
794 
795 	/*
796 	 * pages in the range can be dirty, clean or writeback.  We
797 	 * start IO on any dirty ones so the wait doesn't stall waiting
798 	 * for the flusher thread to find them
799 	 */
800 	if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags))
801 		filemap_fdatawrite_range(inode->vfs_inode.i_mapping, start, end);
802 
803 	if (!freespace_inode)
804 		btrfs_might_wait_for_event(inode->root->fs_info, btrfs_ordered_extent);
805 	wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE, &entry->flags));
806 }
807 
808 /*
809  * Used to wait on ordered extents across a large range of bytes.
810  */
811 int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
812 {
813 	int ret = 0;
814 	int ret_wb = 0;
815 	u64 end;
816 	u64 orig_end;
817 	struct btrfs_ordered_extent *ordered;
818 
819 	if (start + len < start) {
820 		orig_end = OFFSET_MAX;
821 	} else {
822 		orig_end = start + len - 1;
823 		if (orig_end > OFFSET_MAX)
824 			orig_end = OFFSET_MAX;
825 	}
826 
827 	/* start IO across the range first to instantiate any delalloc
828 	 * extents
829 	 */
830 	ret = btrfs_fdatawrite_range(inode, start, orig_end);
831 	if (ret)
832 		return ret;
833 
834 	/*
835 	 * If we have a writeback error don't return immediately. Wait first
836 	 * for any ordered extents that haven't completed yet. This is to make
837 	 * sure no one can dirty the same page ranges and call writepages()
838 	 * before the ordered extents complete - to avoid failures (-EEXIST)
839 	 * when adding the new ordered extents to the ordered tree.
840 	 */
841 	ret_wb = filemap_fdatawait_range(inode->i_mapping, start, orig_end);
842 
843 	end = orig_end;
844 	while (1) {
845 		ordered = btrfs_lookup_first_ordered_extent(BTRFS_I(inode), end);
846 		if (!ordered)
847 			break;
848 		if (ordered->file_offset > orig_end) {
849 			btrfs_put_ordered_extent(ordered);
850 			break;
851 		}
852 		if (ordered->file_offset + ordered->num_bytes <= start) {
853 			btrfs_put_ordered_extent(ordered);
854 			break;
855 		}
856 		btrfs_start_ordered_extent(ordered);
857 		end = ordered->file_offset;
858 		/*
859 		 * If the ordered extent had an error save the error but don't
860 		 * exit without waiting first for all other ordered extents in
861 		 * the range to complete.
862 		 */
863 		if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags))
864 			ret = -EIO;
865 		btrfs_put_ordered_extent(ordered);
866 		if (end == 0 || end == start)
867 			break;
868 		end--;
869 	}
870 	return ret_wb ? ret_wb : ret;
871 }
872 
873 /*
874  * find an ordered extent corresponding to file_offset.  return NULL if
875  * nothing is found, otherwise take a reference on the extent and return it
876  */
877 struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct btrfs_inode *inode,
878 							 u64 file_offset)
879 {
880 	struct btrfs_ordered_inode_tree *tree;
881 	struct rb_node *node;
882 	struct btrfs_ordered_extent *entry = NULL;
883 	unsigned long flags;
884 
885 	tree = &inode->ordered_tree;
886 	spin_lock_irqsave(&tree->lock, flags);
887 	node = tree_search(tree, file_offset);
888 	if (!node)
889 		goto out;
890 
891 	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
892 	if (!in_range(file_offset, entry->file_offset, entry->num_bytes))
893 		entry = NULL;
894 	if (entry) {
895 		refcount_inc(&entry->refs);
896 		trace_btrfs_ordered_extent_lookup(inode, entry);
897 	}
898 out:
899 	spin_unlock_irqrestore(&tree->lock, flags);
900 	return entry;
901 }
902 
903 /* Since the DIO code tries to lock a wide area we need to look for any ordered
904  * extents that exist in the range, rather than just the start of the range.
905  */
906 struct btrfs_ordered_extent *btrfs_lookup_ordered_range(
907 		struct btrfs_inode *inode, u64 file_offset, u64 len)
908 {
909 	struct btrfs_ordered_inode_tree *tree;
910 	struct rb_node *node;
911 	struct btrfs_ordered_extent *entry = NULL;
912 
913 	tree = &inode->ordered_tree;
914 	spin_lock_irq(&tree->lock);
915 	node = tree_search(tree, file_offset);
916 	if (!node) {
917 		node = tree_search(tree, file_offset + len);
918 		if (!node)
919 			goto out;
920 	}
921 
922 	while (1) {
923 		entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
924 		if (range_overlaps(entry, file_offset, len))
925 			break;
926 
927 		if (entry->file_offset >= file_offset + len) {
928 			entry = NULL;
929 			break;
930 		}
931 		entry = NULL;
932 		node = rb_next(node);
933 		if (!node)
934 			break;
935 	}
936 out:
937 	if (entry) {
938 		refcount_inc(&entry->refs);
939 		trace_btrfs_ordered_extent_lookup_range(inode, entry);
940 	}
941 	spin_unlock_irq(&tree->lock);
942 	return entry;
943 }
944 
945 /*
946  * Adds all ordered extents to the given list. The list ends up sorted by the
947  * file_offset of the ordered extents.
948  */
949 void btrfs_get_ordered_extents_for_logging(struct btrfs_inode *inode,
950 					   struct list_head *list)
951 {
952 	struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
953 	struct rb_node *n;
954 
955 	ASSERT(inode_is_locked(&inode->vfs_inode));
956 
957 	spin_lock_irq(&tree->lock);
958 	for (n = rb_first(&tree->tree); n; n = rb_next(n)) {
959 		struct btrfs_ordered_extent *ordered;
960 
961 		ordered = rb_entry(n, struct btrfs_ordered_extent, rb_node);
962 
963 		if (test_bit(BTRFS_ORDERED_LOGGED, &ordered->flags))
964 			continue;
965 
966 		ASSERT(list_empty(&ordered->log_list));
967 		list_add_tail(&ordered->log_list, list);
968 		refcount_inc(&ordered->refs);
969 		trace_btrfs_ordered_extent_lookup_for_logging(inode, ordered);
970 	}
971 	spin_unlock_irq(&tree->lock);
972 }
973 
974 /*
975  * lookup and return any extent before 'file_offset'.  NULL is returned
976  * if none is found
977  */
978 struct btrfs_ordered_extent *
979 btrfs_lookup_first_ordered_extent(struct btrfs_inode *inode, u64 file_offset)
980 {
981 	struct btrfs_ordered_inode_tree *tree;
982 	struct rb_node *node;
983 	struct btrfs_ordered_extent *entry = NULL;
984 
985 	tree = &inode->ordered_tree;
986 	spin_lock_irq(&tree->lock);
987 	node = tree_search(tree, file_offset);
988 	if (!node)
989 		goto out;
990 
991 	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
992 	refcount_inc(&entry->refs);
993 	trace_btrfs_ordered_extent_lookup_first(inode, entry);
994 out:
995 	spin_unlock_irq(&tree->lock);
996 	return entry;
997 }
998 
999 /*
1000  * Lookup the first ordered extent that overlaps the range
1001  * [@file_offset, @file_offset + @len).
1002  *
1003  * The difference between this and btrfs_lookup_first_ordered_extent() is
1004  * that this one won't return any ordered extent that does not overlap the range.
1005  * And the difference against btrfs_lookup_ordered_extent() is, this function
1006  * ensures the first ordered extent gets returned.
1007  */
1008 struct btrfs_ordered_extent *btrfs_lookup_first_ordered_range(
1009 			struct btrfs_inode *inode, u64 file_offset, u64 len)
1010 {
1011 	struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
1012 	struct rb_node *node;
1013 	struct rb_node *cur;
1014 	struct rb_node *prev;
1015 	struct rb_node *next;
1016 	struct btrfs_ordered_extent *entry = NULL;
1017 
1018 	spin_lock_irq(&tree->lock);
1019 	node = tree->tree.rb_node;
1020 	/*
1021 	 * Here we don't want to use tree_search() which will use tree->last
1022 	 * and screw up the search order.
1023 	 * And __tree_search() can't return the adjacent ordered extents
1024 	 * either, thus here we do our own search.
1025 	 */
1026 	while (node) {
1027 		entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
1028 
1029 		if (file_offset < entry->file_offset) {
1030 			node = node->rb_left;
1031 		} else if (file_offset >= entry_end(entry)) {
1032 			node = node->rb_right;
1033 		} else {
1034 			/*
1035 			 * Direct hit, got an ordered extent that starts at
1036 			 * @file_offset
1037 			 */
1038 			goto out;
1039 		}
1040 	}
1041 	if (!entry) {
1042 		/* Empty tree */
1043 		goto out;
1044 	}
1045 
1046 	cur = &entry->rb_node;
1047 	/* We got an entry around @file_offset, check adjacent entries */
1048 	if (entry->file_offset < file_offset) {
1049 		prev = cur;
1050 		next = rb_next(cur);
1051 	} else {
1052 		prev = rb_prev(cur);
1053 		next = cur;
1054 	}
1055 	if (prev) {
1056 		entry = rb_entry(prev, struct btrfs_ordered_extent, rb_node);
1057 		if (range_overlaps(entry, file_offset, len))
1058 			goto out;
1059 	}
1060 	if (next) {
1061 		entry = rb_entry(next, struct btrfs_ordered_extent, rb_node);
1062 		if (range_overlaps(entry, file_offset, len))
1063 			goto out;
1064 	}
1065 	/* No ordered extent in the range */
1066 	entry = NULL;
1067 out:
1068 	if (entry) {
1069 		refcount_inc(&entry->refs);
1070 		trace_btrfs_ordered_extent_lookup_first_range(inode, entry);
1071 	}
1072 
1073 	spin_unlock_irq(&tree->lock);
1074 	return entry;
1075 }
1076 
1077 /*
1078  * Lock the passed range and ensures all pending ordered extents in it are run
1079  * to completion.
1080  *
1081  * @inode:        Inode whose ordered tree is to be searched
1082  * @start:        Beginning of range to flush
1083  * @end:          Last byte of range to lock
1084  * @cached_state: If passed, will return the extent state responsible for the
1085  *                locked range. It's the caller's responsibility to free the
1086  *                cached state.
1087  *
1088  * Always return with the given range locked, ensuring after it's called no
1089  * order extent can be pending.
1090  */
1091 void btrfs_lock_and_flush_ordered_range(struct btrfs_inode *inode, u64 start,
1092 					u64 end,
1093 					struct extent_state **cached_state)
1094 {
1095 	struct btrfs_ordered_extent *ordered;
1096 	struct extent_state *cache = NULL;
1097 	struct extent_state **cachedp = &cache;
1098 
1099 	if (cached_state)
1100 		cachedp = cached_state;
1101 
1102 	while (1) {
1103 		lock_extent(&inode->io_tree, start, end, cachedp);
1104 		ordered = btrfs_lookup_ordered_range(inode, start,
1105 						     end - start + 1);
1106 		if (!ordered) {
1107 			/*
1108 			 * If no external cached_state has been passed then
1109 			 * decrement the extra ref taken for cachedp since we
1110 			 * aren't exposing it outside of this function
1111 			 */
1112 			if (!cached_state)
1113 				refcount_dec(&cache->refs);
1114 			break;
1115 		}
1116 		unlock_extent(&inode->io_tree, start, end, cachedp);
1117 		btrfs_start_ordered_extent(ordered);
1118 		btrfs_put_ordered_extent(ordered);
1119 	}
1120 }
1121 
1122 /*
1123  * Lock the passed range and ensure all pending ordered extents in it are run
1124  * to completion in nowait mode.
1125  *
1126  * Return true if btrfs_lock_ordered_range does not return any extents,
1127  * otherwise false.
1128  */
1129 bool btrfs_try_lock_ordered_range(struct btrfs_inode *inode, u64 start, u64 end,
1130 				  struct extent_state **cached_state)
1131 {
1132 	struct btrfs_ordered_extent *ordered;
1133 
1134 	if (!try_lock_extent(&inode->io_tree, start, end, cached_state))
1135 		return false;
1136 
1137 	ordered = btrfs_lookup_ordered_range(inode, start, end - start + 1);
1138 	if (!ordered)
1139 		return true;
1140 
1141 	btrfs_put_ordered_extent(ordered);
1142 	unlock_extent(&inode->io_tree, start, end, cached_state);
1143 
1144 	return false;
1145 }
1146 
1147 /* Split out a new ordered extent for this first @len bytes of @ordered. */
1148 struct btrfs_ordered_extent *btrfs_split_ordered_extent(
1149 			struct btrfs_ordered_extent *ordered, u64 len)
1150 {
1151 	struct btrfs_inode *inode = BTRFS_I(ordered->inode);
1152 	struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
1153 	struct btrfs_root *root = inode->root;
1154 	struct btrfs_fs_info *fs_info = root->fs_info;
1155 	u64 file_offset = ordered->file_offset;
1156 	u64 disk_bytenr = ordered->disk_bytenr;
1157 	unsigned long flags = ordered->flags;
1158 	struct btrfs_ordered_sum *sum, *tmpsum;
1159 	struct btrfs_ordered_extent *new;
1160 	struct rb_node *node;
1161 	u64 offset = 0;
1162 
1163 	trace_btrfs_ordered_extent_split(inode, ordered);
1164 
1165 	ASSERT(!(flags & (1U << BTRFS_ORDERED_COMPRESSED)));
1166 
1167 	/*
1168 	 * The entire bio must be covered by the ordered extent, but we can't
1169 	 * reduce the original extent to a zero length either.
1170 	 */
1171 	if (WARN_ON_ONCE(len >= ordered->num_bytes))
1172 		return ERR_PTR(-EINVAL);
1173 	/* We cannot split partially completed ordered extents. */
1174 	if (ordered->bytes_left) {
1175 		ASSERT(!(flags & ~BTRFS_ORDERED_TYPE_FLAGS));
1176 		if (WARN_ON_ONCE(ordered->bytes_left != ordered->disk_num_bytes))
1177 			return ERR_PTR(-EINVAL);
1178 	}
1179 	/* We cannot split a compressed ordered extent. */
1180 	if (WARN_ON_ONCE(ordered->disk_num_bytes != ordered->num_bytes))
1181 		return ERR_PTR(-EINVAL);
1182 
1183 	new = alloc_ordered_extent(inode, file_offset, len, len, disk_bytenr,
1184 				   len, 0, flags, ordered->compress_type);
1185 	if (IS_ERR(new))
1186 		return new;
1187 
1188 	/* One ref for the tree. */
1189 	refcount_inc(&new->refs);
1190 
1191 	spin_lock_irq(&root->ordered_extent_lock);
1192 	spin_lock(&tree->lock);
1193 	/* Remove from tree once */
1194 	node = &ordered->rb_node;
1195 	rb_erase(node, &tree->tree);
1196 	RB_CLEAR_NODE(node);
1197 	if (tree->last == node)
1198 		tree->last = NULL;
1199 
1200 	ordered->file_offset += len;
1201 	ordered->disk_bytenr += len;
1202 	ordered->num_bytes -= len;
1203 	ordered->disk_num_bytes -= len;
1204 
1205 	if (test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags)) {
1206 		ASSERT(ordered->bytes_left == 0);
1207 		new->bytes_left = 0;
1208 	} else {
1209 		ordered->bytes_left -= len;
1210 	}
1211 
1212 	if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags)) {
1213 		if (ordered->truncated_len > len) {
1214 			ordered->truncated_len -= len;
1215 		} else {
1216 			new->truncated_len = ordered->truncated_len;
1217 			ordered->truncated_len = 0;
1218 		}
1219 	}
1220 
1221 	list_for_each_entry_safe(sum, tmpsum, &ordered->list, list) {
1222 		if (offset == len)
1223 			break;
1224 		list_move_tail(&sum->list, &new->list);
1225 		offset += sum->len;
1226 	}
1227 
1228 	/* Re-insert the node */
1229 	node = tree_insert(&tree->tree, ordered->file_offset, &ordered->rb_node);
1230 	if (node)
1231 		btrfs_panic(fs_info, -EEXIST,
1232 			"zoned: inconsistency in ordered tree at offset %llu",
1233 			ordered->file_offset);
1234 
1235 	node = tree_insert(&tree->tree, new->file_offset, &new->rb_node);
1236 	if (node)
1237 		btrfs_panic(fs_info, -EEXIST,
1238 			"zoned: inconsistency in ordered tree at offset %llu",
1239 			new->file_offset);
1240 	spin_unlock(&tree->lock);
1241 
1242 	list_add_tail(&new->root_extent_list, &root->ordered_extents);
1243 	root->nr_ordered_extents++;
1244 	spin_unlock_irq(&root->ordered_extent_lock);
1245 	return new;
1246 }
1247 
1248 int __init ordered_data_init(void)
1249 {
1250 	btrfs_ordered_extent_cache = kmem_cache_create("btrfs_ordered_extent",
1251 				     sizeof(struct btrfs_ordered_extent), 0,
1252 				     SLAB_MEM_SPREAD,
1253 				     NULL);
1254 	if (!btrfs_ordered_extent_cache)
1255 		return -ENOMEM;
1256 
1257 	return 0;
1258 }
1259 
1260 void __cold ordered_data_exit(void)
1261 {
1262 	kmem_cache_destroy(btrfs_ordered_extent_cache);
1263 }
1264