1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/slab.h> 20 #include <linux/blkdev.h> 21 #include <linux/writeback.h> 22 #include <linux/pagevec.h> 23 #include "ctree.h" 24 #include "transaction.h" 25 #include "btrfs_inode.h" 26 #include "extent_io.h" 27 28 static struct kmem_cache *btrfs_ordered_extent_cache; 29 30 static u64 entry_end(struct btrfs_ordered_extent *entry) 31 { 32 if (entry->file_offset + entry->len < entry->file_offset) 33 return (u64)-1; 34 return entry->file_offset + entry->len; 35 } 36 37 /* returns NULL if the insertion worked, or it returns the node it did find 38 * in the tree 39 */ 40 static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset, 41 struct rb_node *node) 42 { 43 struct rb_node **p = &root->rb_node; 44 struct rb_node *parent = NULL; 45 struct btrfs_ordered_extent *entry; 46 47 while (*p) { 48 parent = *p; 49 entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node); 50 51 if (file_offset < entry->file_offset) 52 p = &(*p)->rb_left; 53 else if (file_offset >= entry_end(entry)) 54 p = &(*p)->rb_right; 55 else 56 return parent; 57 } 58 59 rb_link_node(node, parent, p); 60 rb_insert_color(node, root); 61 return NULL; 62 } 63 64 static void ordered_data_tree_panic(struct inode *inode, int errno, 65 u64 offset) 66 { 67 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 68 btrfs_panic(fs_info, errno, "Inconsistency in ordered tree at offset " 69 "%llu\n", (unsigned long long)offset); 70 } 71 72 /* 73 * look for a given offset in the tree, and if it can't be found return the 74 * first lesser offset 75 */ 76 static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset, 77 struct rb_node **prev_ret) 78 { 79 struct rb_node *n = root->rb_node; 80 struct rb_node *prev = NULL; 81 struct rb_node *test; 82 struct btrfs_ordered_extent *entry; 83 struct btrfs_ordered_extent *prev_entry = NULL; 84 85 while (n) { 86 entry = rb_entry(n, struct btrfs_ordered_extent, rb_node); 87 prev = n; 88 prev_entry = entry; 89 90 if (file_offset < entry->file_offset) 91 n = n->rb_left; 92 else if (file_offset >= entry_end(entry)) 93 n = n->rb_right; 94 else 95 return n; 96 } 97 if (!prev_ret) 98 return NULL; 99 100 while (prev && file_offset >= entry_end(prev_entry)) { 101 test = rb_next(prev); 102 if (!test) 103 break; 104 prev_entry = rb_entry(test, struct btrfs_ordered_extent, 105 rb_node); 106 if (file_offset < entry_end(prev_entry)) 107 break; 108 109 prev = test; 110 } 111 if (prev) 112 prev_entry = rb_entry(prev, struct btrfs_ordered_extent, 113 rb_node); 114 while (prev && file_offset < entry_end(prev_entry)) { 115 test = rb_prev(prev); 116 if (!test) 117 break; 118 prev_entry = rb_entry(test, struct btrfs_ordered_extent, 119 rb_node); 120 prev = test; 121 } 122 *prev_ret = prev; 123 return NULL; 124 } 125 126 /* 127 * helper to check if a given offset is inside a given entry 128 */ 129 static int offset_in_entry(struct btrfs_ordered_extent *entry, u64 file_offset) 130 { 131 if (file_offset < entry->file_offset || 132 entry->file_offset + entry->len <= file_offset) 133 return 0; 134 return 1; 135 } 136 137 static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset, 138 u64 len) 139 { 140 if (file_offset + len <= entry->file_offset || 141 entry->file_offset + entry->len <= file_offset) 142 return 0; 143 return 1; 144 } 145 146 /* 147 * look find the first ordered struct that has this offset, otherwise 148 * the first one less than this offset 149 */ 150 static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree, 151 u64 file_offset) 152 { 153 struct rb_root *root = &tree->tree; 154 struct rb_node *prev = NULL; 155 struct rb_node *ret; 156 struct btrfs_ordered_extent *entry; 157 158 if (tree->last) { 159 entry = rb_entry(tree->last, struct btrfs_ordered_extent, 160 rb_node); 161 if (offset_in_entry(entry, file_offset)) 162 return tree->last; 163 } 164 ret = __tree_search(root, file_offset, &prev); 165 if (!ret) 166 ret = prev; 167 if (ret) 168 tree->last = ret; 169 return ret; 170 } 171 172 /* allocate and add a new ordered_extent into the per-inode tree. 173 * file_offset is the logical offset in the file 174 * 175 * start is the disk block number of an extent already reserved in the 176 * extent allocation tree 177 * 178 * len is the length of the extent 179 * 180 * The tree is given a single reference on the ordered extent that was 181 * inserted. 182 */ 183 static int __btrfs_add_ordered_extent(struct inode *inode, u64 file_offset, 184 u64 start, u64 len, u64 disk_len, 185 int type, int dio, int compress_type) 186 { 187 struct btrfs_ordered_inode_tree *tree; 188 struct rb_node *node; 189 struct btrfs_ordered_extent *entry; 190 191 tree = &BTRFS_I(inode)->ordered_tree; 192 entry = kmem_cache_zalloc(btrfs_ordered_extent_cache, GFP_NOFS); 193 if (!entry) 194 return -ENOMEM; 195 196 entry->file_offset = file_offset; 197 entry->start = start; 198 entry->len = len; 199 entry->disk_len = disk_len; 200 entry->bytes_left = len; 201 entry->inode = igrab(inode); 202 entry->compress_type = compress_type; 203 if (type != BTRFS_ORDERED_IO_DONE && type != BTRFS_ORDERED_COMPLETE) 204 set_bit(type, &entry->flags); 205 206 if (dio) 207 set_bit(BTRFS_ORDERED_DIRECT, &entry->flags); 208 209 /* one ref for the tree */ 210 atomic_set(&entry->refs, 1); 211 init_waitqueue_head(&entry->wait); 212 INIT_LIST_HEAD(&entry->list); 213 INIT_LIST_HEAD(&entry->root_extent_list); 214 215 trace_btrfs_ordered_extent_add(inode, entry); 216 217 spin_lock_irq(&tree->lock); 218 node = tree_insert(&tree->tree, file_offset, 219 &entry->rb_node); 220 if (node) 221 ordered_data_tree_panic(inode, -EEXIST, file_offset); 222 spin_unlock_irq(&tree->lock); 223 224 spin_lock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock); 225 list_add_tail(&entry->root_extent_list, 226 &BTRFS_I(inode)->root->fs_info->ordered_extents); 227 spin_unlock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock); 228 229 return 0; 230 } 231 232 int btrfs_add_ordered_extent(struct inode *inode, u64 file_offset, 233 u64 start, u64 len, u64 disk_len, int type) 234 { 235 return __btrfs_add_ordered_extent(inode, file_offset, start, len, 236 disk_len, type, 0, 237 BTRFS_COMPRESS_NONE); 238 } 239 240 int btrfs_add_ordered_extent_dio(struct inode *inode, u64 file_offset, 241 u64 start, u64 len, u64 disk_len, int type) 242 { 243 return __btrfs_add_ordered_extent(inode, file_offset, start, len, 244 disk_len, type, 1, 245 BTRFS_COMPRESS_NONE); 246 } 247 248 int btrfs_add_ordered_extent_compress(struct inode *inode, u64 file_offset, 249 u64 start, u64 len, u64 disk_len, 250 int type, int compress_type) 251 { 252 return __btrfs_add_ordered_extent(inode, file_offset, start, len, 253 disk_len, type, 0, 254 compress_type); 255 } 256 257 /* 258 * Add a struct btrfs_ordered_sum into the list of checksums to be inserted 259 * when an ordered extent is finished. If the list covers more than one 260 * ordered extent, it is split across multiples. 261 */ 262 void btrfs_add_ordered_sum(struct inode *inode, 263 struct btrfs_ordered_extent *entry, 264 struct btrfs_ordered_sum *sum) 265 { 266 struct btrfs_ordered_inode_tree *tree; 267 268 tree = &BTRFS_I(inode)->ordered_tree; 269 spin_lock_irq(&tree->lock); 270 list_add_tail(&sum->list, &entry->list); 271 spin_unlock_irq(&tree->lock); 272 } 273 274 /* 275 * this is used to account for finished IO across a given range 276 * of the file. The IO may span ordered extents. If 277 * a given ordered_extent is completely done, 1 is returned, otherwise 278 * 0. 279 * 280 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used 281 * to make sure this function only returns 1 once for a given ordered extent. 282 * 283 * file_offset is updated to one byte past the range that is recorded as 284 * complete. This allows you to walk forward in the file. 285 */ 286 int btrfs_dec_test_first_ordered_pending(struct inode *inode, 287 struct btrfs_ordered_extent **cached, 288 u64 *file_offset, u64 io_size, int uptodate) 289 { 290 struct btrfs_ordered_inode_tree *tree; 291 struct rb_node *node; 292 struct btrfs_ordered_extent *entry = NULL; 293 int ret; 294 unsigned long flags; 295 u64 dec_end; 296 u64 dec_start; 297 u64 to_dec; 298 299 tree = &BTRFS_I(inode)->ordered_tree; 300 spin_lock_irqsave(&tree->lock, flags); 301 node = tree_search(tree, *file_offset); 302 if (!node) { 303 ret = 1; 304 goto out; 305 } 306 307 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); 308 if (!offset_in_entry(entry, *file_offset)) { 309 ret = 1; 310 goto out; 311 } 312 313 dec_start = max(*file_offset, entry->file_offset); 314 dec_end = min(*file_offset + io_size, entry->file_offset + 315 entry->len); 316 *file_offset = dec_end; 317 if (dec_start > dec_end) { 318 printk(KERN_CRIT "bad ordering dec_start %llu end %llu\n", 319 (unsigned long long)dec_start, 320 (unsigned long long)dec_end); 321 } 322 to_dec = dec_end - dec_start; 323 if (to_dec > entry->bytes_left) { 324 printk(KERN_CRIT "bad ordered accounting left %llu size %llu\n", 325 (unsigned long long)entry->bytes_left, 326 (unsigned long long)to_dec); 327 } 328 entry->bytes_left -= to_dec; 329 if (!uptodate) 330 set_bit(BTRFS_ORDERED_IOERR, &entry->flags); 331 332 if (entry->bytes_left == 0) 333 ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags); 334 else 335 ret = 1; 336 out: 337 if (!ret && cached && entry) { 338 *cached = entry; 339 atomic_inc(&entry->refs); 340 } 341 spin_unlock_irqrestore(&tree->lock, flags); 342 return ret == 0; 343 } 344 345 /* 346 * this is used to account for finished IO across a given range 347 * of the file. The IO should not span ordered extents. If 348 * a given ordered_extent is completely done, 1 is returned, otherwise 349 * 0. 350 * 351 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used 352 * to make sure this function only returns 1 once for a given ordered extent. 353 */ 354 int btrfs_dec_test_ordered_pending(struct inode *inode, 355 struct btrfs_ordered_extent **cached, 356 u64 file_offset, u64 io_size, int uptodate) 357 { 358 struct btrfs_ordered_inode_tree *tree; 359 struct rb_node *node; 360 struct btrfs_ordered_extent *entry = NULL; 361 unsigned long flags; 362 int ret; 363 364 tree = &BTRFS_I(inode)->ordered_tree; 365 spin_lock_irqsave(&tree->lock, flags); 366 if (cached && *cached) { 367 entry = *cached; 368 goto have_entry; 369 } 370 371 node = tree_search(tree, file_offset); 372 if (!node) { 373 ret = 1; 374 goto out; 375 } 376 377 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); 378 have_entry: 379 if (!offset_in_entry(entry, file_offset)) { 380 ret = 1; 381 goto out; 382 } 383 384 if (io_size > entry->bytes_left) { 385 printk(KERN_CRIT "bad ordered accounting left %llu size %llu\n", 386 (unsigned long long)entry->bytes_left, 387 (unsigned long long)io_size); 388 } 389 entry->bytes_left -= io_size; 390 if (!uptodate) 391 set_bit(BTRFS_ORDERED_IOERR, &entry->flags); 392 393 if (entry->bytes_left == 0) 394 ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags); 395 else 396 ret = 1; 397 out: 398 if (!ret && cached && entry) { 399 *cached = entry; 400 atomic_inc(&entry->refs); 401 } 402 spin_unlock_irqrestore(&tree->lock, flags); 403 return ret == 0; 404 } 405 406 /* 407 * used to drop a reference on an ordered extent. This will free 408 * the extent if the last reference is dropped 409 */ 410 void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry) 411 { 412 struct list_head *cur; 413 struct btrfs_ordered_sum *sum; 414 415 trace_btrfs_ordered_extent_put(entry->inode, entry); 416 417 if (atomic_dec_and_test(&entry->refs)) { 418 if (entry->inode) 419 btrfs_add_delayed_iput(entry->inode); 420 while (!list_empty(&entry->list)) { 421 cur = entry->list.next; 422 sum = list_entry(cur, struct btrfs_ordered_sum, list); 423 list_del(&sum->list); 424 kfree(sum); 425 } 426 kmem_cache_free(btrfs_ordered_extent_cache, entry); 427 } 428 } 429 430 /* 431 * remove an ordered extent from the tree. No references are dropped 432 * and waiters are woken up. 433 */ 434 void btrfs_remove_ordered_extent(struct inode *inode, 435 struct btrfs_ordered_extent *entry) 436 { 437 struct btrfs_ordered_inode_tree *tree; 438 struct btrfs_root *root = BTRFS_I(inode)->root; 439 struct rb_node *node; 440 441 tree = &BTRFS_I(inode)->ordered_tree; 442 spin_lock_irq(&tree->lock); 443 node = &entry->rb_node; 444 rb_erase(node, &tree->tree); 445 tree->last = NULL; 446 set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags); 447 spin_unlock_irq(&tree->lock); 448 449 spin_lock(&root->fs_info->ordered_extent_lock); 450 list_del_init(&entry->root_extent_list); 451 452 trace_btrfs_ordered_extent_remove(inode, entry); 453 454 /* 455 * we have no more ordered extents for this inode and 456 * no dirty pages. We can safely remove it from the 457 * list of ordered extents 458 */ 459 if (RB_EMPTY_ROOT(&tree->tree) && 460 !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) { 461 list_del_init(&BTRFS_I(inode)->ordered_operations); 462 } 463 spin_unlock(&root->fs_info->ordered_extent_lock); 464 wake_up(&entry->wait); 465 } 466 467 /* 468 * wait for all the ordered extents in a root. This is done when balancing 469 * space between drives. 470 */ 471 void btrfs_wait_ordered_extents(struct btrfs_root *root, int delay_iput) 472 { 473 struct list_head splice; 474 struct list_head *cur; 475 struct btrfs_ordered_extent *ordered; 476 struct inode *inode; 477 478 INIT_LIST_HEAD(&splice); 479 480 spin_lock(&root->fs_info->ordered_extent_lock); 481 list_splice_init(&root->fs_info->ordered_extents, &splice); 482 while (!list_empty(&splice)) { 483 cur = splice.next; 484 ordered = list_entry(cur, struct btrfs_ordered_extent, 485 root_extent_list); 486 list_del_init(&ordered->root_extent_list); 487 atomic_inc(&ordered->refs); 488 489 /* 490 * the inode may be getting freed (in sys_unlink path). 491 */ 492 inode = igrab(ordered->inode); 493 494 spin_unlock(&root->fs_info->ordered_extent_lock); 495 496 if (inode) { 497 btrfs_start_ordered_extent(inode, ordered, 1); 498 btrfs_put_ordered_extent(ordered); 499 if (delay_iput) 500 btrfs_add_delayed_iput(inode); 501 else 502 iput(inode); 503 } else { 504 btrfs_put_ordered_extent(ordered); 505 } 506 507 spin_lock(&root->fs_info->ordered_extent_lock); 508 } 509 spin_unlock(&root->fs_info->ordered_extent_lock); 510 } 511 512 /* 513 * this is used during transaction commit to write all the inodes 514 * added to the ordered operation list. These files must be fully on 515 * disk before the transaction commits. 516 * 517 * we have two modes here, one is to just start the IO via filemap_flush 518 * and the other is to wait for all the io. When we wait, we have an 519 * extra check to make sure the ordered operation list really is empty 520 * before we return 521 */ 522 void btrfs_run_ordered_operations(struct btrfs_root *root, int wait) 523 { 524 struct btrfs_inode *btrfs_inode; 525 struct inode *inode; 526 struct list_head splice; 527 528 INIT_LIST_HEAD(&splice); 529 530 mutex_lock(&root->fs_info->ordered_operations_mutex); 531 spin_lock(&root->fs_info->ordered_extent_lock); 532 again: 533 list_splice_init(&root->fs_info->ordered_operations, &splice); 534 535 while (!list_empty(&splice)) { 536 btrfs_inode = list_entry(splice.next, struct btrfs_inode, 537 ordered_operations); 538 539 inode = &btrfs_inode->vfs_inode; 540 541 list_del_init(&btrfs_inode->ordered_operations); 542 543 /* 544 * the inode may be getting freed (in sys_unlink path). 545 */ 546 inode = igrab(inode); 547 548 if (!wait && inode) { 549 list_add_tail(&BTRFS_I(inode)->ordered_operations, 550 &root->fs_info->ordered_operations); 551 } 552 spin_unlock(&root->fs_info->ordered_extent_lock); 553 554 if (inode) { 555 if (wait) 556 btrfs_wait_ordered_range(inode, 0, (u64)-1); 557 else 558 filemap_flush(inode->i_mapping); 559 btrfs_add_delayed_iput(inode); 560 } 561 562 cond_resched(); 563 spin_lock(&root->fs_info->ordered_extent_lock); 564 } 565 if (wait && !list_empty(&root->fs_info->ordered_operations)) 566 goto again; 567 568 spin_unlock(&root->fs_info->ordered_extent_lock); 569 mutex_unlock(&root->fs_info->ordered_operations_mutex); 570 } 571 572 /* 573 * Used to start IO or wait for a given ordered extent to finish. 574 * 575 * If wait is one, this effectively waits on page writeback for all the pages 576 * in the extent, and it waits on the io completion code to insert 577 * metadata into the btree corresponding to the extent 578 */ 579 void btrfs_start_ordered_extent(struct inode *inode, 580 struct btrfs_ordered_extent *entry, 581 int wait) 582 { 583 u64 start = entry->file_offset; 584 u64 end = start + entry->len - 1; 585 586 trace_btrfs_ordered_extent_start(inode, entry); 587 588 /* 589 * pages in the range can be dirty, clean or writeback. We 590 * start IO on any dirty ones so the wait doesn't stall waiting 591 * for the flusher thread to find them 592 */ 593 if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags)) 594 filemap_fdatawrite_range(inode->i_mapping, start, end); 595 if (wait) { 596 wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE, 597 &entry->flags)); 598 } 599 } 600 601 /* 602 * Used to wait on ordered extents across a large range of bytes. 603 */ 604 void btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len) 605 { 606 u64 end; 607 u64 orig_end; 608 struct btrfs_ordered_extent *ordered; 609 int found; 610 611 if (start + len < start) { 612 orig_end = INT_LIMIT(loff_t); 613 } else { 614 orig_end = start + len - 1; 615 if (orig_end > INT_LIMIT(loff_t)) 616 orig_end = INT_LIMIT(loff_t); 617 } 618 619 /* start IO across the range first to instantiate any delalloc 620 * extents 621 */ 622 filemap_fdatawrite_range(inode->i_mapping, start, orig_end); 623 624 /* 625 * So with compression we will find and lock a dirty page and clear the 626 * first one as dirty, setup an async extent, and immediately return 627 * with the entire range locked but with nobody actually marked with 628 * writeback. So we can't just filemap_write_and_wait_range() and 629 * expect it to work since it will just kick off a thread to do the 630 * actual work. So we need to call filemap_fdatawrite_range _again_ 631 * since it will wait on the page lock, which won't be unlocked until 632 * after the pages have been marked as writeback and so we're good to go 633 * from there. We have to do this otherwise we'll miss the ordered 634 * extents and that results in badness. Please Josef, do not think you 635 * know better and pull this out at some point in the future, it is 636 * right and you are wrong. 637 */ 638 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 639 &BTRFS_I(inode)->runtime_flags)) 640 filemap_fdatawrite_range(inode->i_mapping, start, orig_end); 641 642 filemap_fdatawait_range(inode->i_mapping, start, orig_end); 643 644 end = orig_end; 645 found = 0; 646 while (1) { 647 ordered = btrfs_lookup_first_ordered_extent(inode, end); 648 if (!ordered) 649 break; 650 if (ordered->file_offset > orig_end) { 651 btrfs_put_ordered_extent(ordered); 652 break; 653 } 654 if (ordered->file_offset + ordered->len < start) { 655 btrfs_put_ordered_extent(ordered); 656 break; 657 } 658 found++; 659 btrfs_start_ordered_extent(inode, ordered, 1); 660 end = ordered->file_offset; 661 btrfs_put_ordered_extent(ordered); 662 if (end == 0 || end == start) 663 break; 664 end--; 665 } 666 } 667 668 /* 669 * find an ordered extent corresponding to file_offset. return NULL if 670 * nothing is found, otherwise take a reference on the extent and return it 671 */ 672 struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct inode *inode, 673 u64 file_offset) 674 { 675 struct btrfs_ordered_inode_tree *tree; 676 struct rb_node *node; 677 struct btrfs_ordered_extent *entry = NULL; 678 679 tree = &BTRFS_I(inode)->ordered_tree; 680 spin_lock_irq(&tree->lock); 681 node = tree_search(tree, file_offset); 682 if (!node) 683 goto out; 684 685 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); 686 if (!offset_in_entry(entry, file_offset)) 687 entry = NULL; 688 if (entry) 689 atomic_inc(&entry->refs); 690 out: 691 spin_unlock_irq(&tree->lock); 692 return entry; 693 } 694 695 /* Since the DIO code tries to lock a wide area we need to look for any ordered 696 * extents that exist in the range, rather than just the start of the range. 697 */ 698 struct btrfs_ordered_extent *btrfs_lookup_ordered_range(struct inode *inode, 699 u64 file_offset, 700 u64 len) 701 { 702 struct btrfs_ordered_inode_tree *tree; 703 struct rb_node *node; 704 struct btrfs_ordered_extent *entry = NULL; 705 706 tree = &BTRFS_I(inode)->ordered_tree; 707 spin_lock_irq(&tree->lock); 708 node = tree_search(tree, file_offset); 709 if (!node) { 710 node = tree_search(tree, file_offset + len); 711 if (!node) 712 goto out; 713 } 714 715 while (1) { 716 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); 717 if (range_overlaps(entry, file_offset, len)) 718 break; 719 720 if (entry->file_offset >= file_offset + len) { 721 entry = NULL; 722 break; 723 } 724 entry = NULL; 725 node = rb_next(node); 726 if (!node) 727 break; 728 } 729 out: 730 if (entry) 731 atomic_inc(&entry->refs); 732 spin_unlock_irq(&tree->lock); 733 return entry; 734 } 735 736 /* 737 * lookup and return any extent before 'file_offset'. NULL is returned 738 * if none is found 739 */ 740 struct btrfs_ordered_extent * 741 btrfs_lookup_first_ordered_extent(struct inode *inode, u64 file_offset) 742 { 743 struct btrfs_ordered_inode_tree *tree; 744 struct rb_node *node; 745 struct btrfs_ordered_extent *entry = NULL; 746 747 tree = &BTRFS_I(inode)->ordered_tree; 748 spin_lock_irq(&tree->lock); 749 node = tree_search(tree, file_offset); 750 if (!node) 751 goto out; 752 753 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); 754 atomic_inc(&entry->refs); 755 out: 756 spin_unlock_irq(&tree->lock); 757 return entry; 758 } 759 760 /* 761 * After an extent is done, call this to conditionally update the on disk 762 * i_size. i_size is updated to cover any fully written part of the file. 763 */ 764 int btrfs_ordered_update_i_size(struct inode *inode, u64 offset, 765 struct btrfs_ordered_extent *ordered) 766 { 767 struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree; 768 u64 disk_i_size; 769 u64 new_i_size; 770 u64 i_size = i_size_read(inode); 771 struct rb_node *node; 772 struct rb_node *prev = NULL; 773 struct btrfs_ordered_extent *test; 774 int ret = 1; 775 776 if (ordered) 777 offset = entry_end(ordered); 778 else 779 offset = ALIGN(offset, BTRFS_I(inode)->root->sectorsize); 780 781 spin_lock_irq(&tree->lock); 782 disk_i_size = BTRFS_I(inode)->disk_i_size; 783 784 /* truncate file */ 785 if (disk_i_size > i_size) { 786 BTRFS_I(inode)->disk_i_size = i_size; 787 ret = 0; 788 goto out; 789 } 790 791 /* 792 * if the disk i_size is already at the inode->i_size, or 793 * this ordered extent is inside the disk i_size, we're done 794 */ 795 if (disk_i_size == i_size || offset <= disk_i_size) { 796 goto out; 797 } 798 799 /* 800 * walk backward from this ordered extent to disk_i_size. 801 * if we find an ordered extent then we can't update disk i_size 802 * yet 803 */ 804 if (ordered) { 805 node = rb_prev(&ordered->rb_node); 806 } else { 807 prev = tree_search(tree, offset); 808 /* 809 * we insert file extents without involving ordered struct, 810 * so there should be no ordered struct cover this offset 811 */ 812 if (prev) { 813 test = rb_entry(prev, struct btrfs_ordered_extent, 814 rb_node); 815 BUG_ON(offset_in_entry(test, offset)); 816 } 817 node = prev; 818 } 819 for (; node; node = rb_prev(node)) { 820 test = rb_entry(node, struct btrfs_ordered_extent, rb_node); 821 822 /* We treat this entry as if it doesnt exist */ 823 if (test_bit(BTRFS_ORDERED_UPDATED_ISIZE, &test->flags)) 824 continue; 825 if (test->file_offset + test->len <= disk_i_size) 826 break; 827 if (test->file_offset >= i_size) 828 break; 829 if (test->file_offset >= disk_i_size) { 830 /* 831 * we don't update disk_i_size now, so record this 832 * undealt i_size. Or we will not know the real 833 * i_size. 834 */ 835 if (test->outstanding_isize < offset) 836 test->outstanding_isize = offset; 837 if (ordered && 838 ordered->outstanding_isize > 839 test->outstanding_isize) 840 test->outstanding_isize = 841 ordered->outstanding_isize; 842 goto out; 843 } 844 } 845 new_i_size = min_t(u64, offset, i_size); 846 847 /* 848 * Some ordered extents may completed before the current one, and 849 * we hold the real i_size in ->outstanding_isize. 850 */ 851 if (ordered && ordered->outstanding_isize > new_i_size) 852 new_i_size = min_t(u64, ordered->outstanding_isize, i_size); 853 BTRFS_I(inode)->disk_i_size = new_i_size; 854 ret = 0; 855 out: 856 /* 857 * We need to do this because we can't remove ordered extents until 858 * after the i_disk_size has been updated and then the inode has been 859 * updated to reflect the change, so we need to tell anybody who finds 860 * this ordered extent that we've already done all the real work, we 861 * just haven't completed all the other work. 862 */ 863 if (ordered) 864 set_bit(BTRFS_ORDERED_UPDATED_ISIZE, &ordered->flags); 865 spin_unlock_irq(&tree->lock); 866 return ret; 867 } 868 869 /* 870 * search the ordered extents for one corresponding to 'offset' and 871 * try to find a checksum. This is used because we allow pages to 872 * be reclaimed before their checksum is actually put into the btree 873 */ 874 int btrfs_find_ordered_sum(struct inode *inode, u64 offset, u64 disk_bytenr, 875 u32 *sum) 876 { 877 struct btrfs_ordered_sum *ordered_sum; 878 struct btrfs_sector_sum *sector_sums; 879 struct btrfs_ordered_extent *ordered; 880 struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree; 881 unsigned long num_sectors; 882 unsigned long i; 883 u32 sectorsize = BTRFS_I(inode)->root->sectorsize; 884 int ret = 1; 885 886 ordered = btrfs_lookup_ordered_extent(inode, offset); 887 if (!ordered) 888 return 1; 889 890 spin_lock_irq(&tree->lock); 891 list_for_each_entry_reverse(ordered_sum, &ordered->list, list) { 892 if (disk_bytenr >= ordered_sum->bytenr) { 893 num_sectors = ordered_sum->len / sectorsize; 894 sector_sums = ordered_sum->sums; 895 for (i = 0; i < num_sectors; i++) { 896 if (sector_sums[i].bytenr == disk_bytenr) { 897 *sum = sector_sums[i].sum; 898 ret = 0; 899 goto out; 900 } 901 } 902 } 903 } 904 out: 905 spin_unlock_irq(&tree->lock); 906 btrfs_put_ordered_extent(ordered); 907 return ret; 908 } 909 910 911 /* 912 * add a given inode to the list of inodes that must be fully on 913 * disk before a transaction commit finishes. 914 * 915 * This basically gives us the ext3 style data=ordered mode, and it is mostly 916 * used to make sure renamed files are fully on disk. 917 * 918 * It is a noop if the inode is already fully on disk. 919 * 920 * If trans is not null, we'll do a friendly check for a transaction that 921 * is already flushing things and force the IO down ourselves. 922 */ 923 void btrfs_add_ordered_operation(struct btrfs_trans_handle *trans, 924 struct btrfs_root *root, struct inode *inode) 925 { 926 u64 last_mod; 927 928 last_mod = max(BTRFS_I(inode)->generation, BTRFS_I(inode)->last_trans); 929 930 /* 931 * if this file hasn't been changed since the last transaction 932 * commit, we can safely return without doing anything 933 */ 934 if (last_mod < root->fs_info->last_trans_committed) 935 return; 936 937 /* 938 * the transaction is already committing. Just start the IO and 939 * don't bother with all of this list nonsense 940 */ 941 if (trans && root->fs_info->running_transaction->blocked) { 942 btrfs_wait_ordered_range(inode, 0, (u64)-1); 943 return; 944 } 945 946 spin_lock(&root->fs_info->ordered_extent_lock); 947 if (list_empty(&BTRFS_I(inode)->ordered_operations)) { 948 list_add_tail(&BTRFS_I(inode)->ordered_operations, 949 &root->fs_info->ordered_operations); 950 } 951 spin_unlock(&root->fs_info->ordered_extent_lock); 952 } 953 954 int __init ordered_data_init(void) 955 { 956 btrfs_ordered_extent_cache = kmem_cache_create("btrfs_ordered_extent", 957 sizeof(struct btrfs_ordered_extent), 0, 958 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, 959 NULL); 960 if (!btrfs_ordered_extent_cache) 961 return -ENOMEM; 962 return 0; 963 } 964 965 void ordered_data_exit(void) 966 { 967 if (btrfs_ordered_extent_cache) 968 kmem_cache_destroy(btrfs_ordered_extent_cache); 969 } 970