xref: /openbmc/linux/fs/btrfs/ordered-data.c (revision 05bcf503)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/slab.h>
20 #include <linux/blkdev.h>
21 #include <linux/writeback.h>
22 #include <linux/pagevec.h>
23 #include "ctree.h"
24 #include "transaction.h"
25 #include "btrfs_inode.h"
26 #include "extent_io.h"
27 
28 static struct kmem_cache *btrfs_ordered_extent_cache;
29 
30 static u64 entry_end(struct btrfs_ordered_extent *entry)
31 {
32 	if (entry->file_offset + entry->len < entry->file_offset)
33 		return (u64)-1;
34 	return entry->file_offset + entry->len;
35 }
36 
37 /* returns NULL if the insertion worked, or it returns the node it did find
38  * in the tree
39  */
40 static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
41 				   struct rb_node *node)
42 {
43 	struct rb_node **p = &root->rb_node;
44 	struct rb_node *parent = NULL;
45 	struct btrfs_ordered_extent *entry;
46 
47 	while (*p) {
48 		parent = *p;
49 		entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
50 
51 		if (file_offset < entry->file_offset)
52 			p = &(*p)->rb_left;
53 		else if (file_offset >= entry_end(entry))
54 			p = &(*p)->rb_right;
55 		else
56 			return parent;
57 	}
58 
59 	rb_link_node(node, parent, p);
60 	rb_insert_color(node, root);
61 	return NULL;
62 }
63 
64 static void ordered_data_tree_panic(struct inode *inode, int errno,
65 					       u64 offset)
66 {
67 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
68 	btrfs_panic(fs_info, errno, "Inconsistency in ordered tree at offset "
69 		    "%llu\n", (unsigned long long)offset);
70 }
71 
72 /*
73  * look for a given offset in the tree, and if it can't be found return the
74  * first lesser offset
75  */
76 static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
77 				     struct rb_node **prev_ret)
78 {
79 	struct rb_node *n = root->rb_node;
80 	struct rb_node *prev = NULL;
81 	struct rb_node *test;
82 	struct btrfs_ordered_extent *entry;
83 	struct btrfs_ordered_extent *prev_entry = NULL;
84 
85 	while (n) {
86 		entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
87 		prev = n;
88 		prev_entry = entry;
89 
90 		if (file_offset < entry->file_offset)
91 			n = n->rb_left;
92 		else if (file_offset >= entry_end(entry))
93 			n = n->rb_right;
94 		else
95 			return n;
96 	}
97 	if (!prev_ret)
98 		return NULL;
99 
100 	while (prev && file_offset >= entry_end(prev_entry)) {
101 		test = rb_next(prev);
102 		if (!test)
103 			break;
104 		prev_entry = rb_entry(test, struct btrfs_ordered_extent,
105 				      rb_node);
106 		if (file_offset < entry_end(prev_entry))
107 			break;
108 
109 		prev = test;
110 	}
111 	if (prev)
112 		prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
113 				      rb_node);
114 	while (prev && file_offset < entry_end(prev_entry)) {
115 		test = rb_prev(prev);
116 		if (!test)
117 			break;
118 		prev_entry = rb_entry(test, struct btrfs_ordered_extent,
119 				      rb_node);
120 		prev = test;
121 	}
122 	*prev_ret = prev;
123 	return NULL;
124 }
125 
126 /*
127  * helper to check if a given offset is inside a given entry
128  */
129 static int offset_in_entry(struct btrfs_ordered_extent *entry, u64 file_offset)
130 {
131 	if (file_offset < entry->file_offset ||
132 	    entry->file_offset + entry->len <= file_offset)
133 		return 0;
134 	return 1;
135 }
136 
137 static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset,
138 			  u64 len)
139 {
140 	if (file_offset + len <= entry->file_offset ||
141 	    entry->file_offset + entry->len <= file_offset)
142 		return 0;
143 	return 1;
144 }
145 
146 /*
147  * look find the first ordered struct that has this offset, otherwise
148  * the first one less than this offset
149  */
150 static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree,
151 					  u64 file_offset)
152 {
153 	struct rb_root *root = &tree->tree;
154 	struct rb_node *prev = NULL;
155 	struct rb_node *ret;
156 	struct btrfs_ordered_extent *entry;
157 
158 	if (tree->last) {
159 		entry = rb_entry(tree->last, struct btrfs_ordered_extent,
160 				 rb_node);
161 		if (offset_in_entry(entry, file_offset))
162 			return tree->last;
163 	}
164 	ret = __tree_search(root, file_offset, &prev);
165 	if (!ret)
166 		ret = prev;
167 	if (ret)
168 		tree->last = ret;
169 	return ret;
170 }
171 
172 /* allocate and add a new ordered_extent into the per-inode tree.
173  * file_offset is the logical offset in the file
174  *
175  * start is the disk block number of an extent already reserved in the
176  * extent allocation tree
177  *
178  * len is the length of the extent
179  *
180  * The tree is given a single reference on the ordered extent that was
181  * inserted.
182  */
183 static int __btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
184 				      u64 start, u64 len, u64 disk_len,
185 				      int type, int dio, int compress_type)
186 {
187 	struct btrfs_ordered_inode_tree *tree;
188 	struct rb_node *node;
189 	struct btrfs_ordered_extent *entry;
190 
191 	tree = &BTRFS_I(inode)->ordered_tree;
192 	entry = kmem_cache_zalloc(btrfs_ordered_extent_cache, GFP_NOFS);
193 	if (!entry)
194 		return -ENOMEM;
195 
196 	entry->file_offset = file_offset;
197 	entry->start = start;
198 	entry->len = len;
199 	entry->disk_len = disk_len;
200 	entry->bytes_left = len;
201 	entry->inode = igrab(inode);
202 	entry->compress_type = compress_type;
203 	if (type != BTRFS_ORDERED_IO_DONE && type != BTRFS_ORDERED_COMPLETE)
204 		set_bit(type, &entry->flags);
205 
206 	if (dio)
207 		set_bit(BTRFS_ORDERED_DIRECT, &entry->flags);
208 
209 	/* one ref for the tree */
210 	atomic_set(&entry->refs, 1);
211 	init_waitqueue_head(&entry->wait);
212 	INIT_LIST_HEAD(&entry->list);
213 	INIT_LIST_HEAD(&entry->root_extent_list);
214 
215 	trace_btrfs_ordered_extent_add(inode, entry);
216 
217 	spin_lock_irq(&tree->lock);
218 	node = tree_insert(&tree->tree, file_offset,
219 			   &entry->rb_node);
220 	if (node)
221 		ordered_data_tree_panic(inode, -EEXIST, file_offset);
222 	spin_unlock_irq(&tree->lock);
223 
224 	spin_lock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock);
225 	list_add_tail(&entry->root_extent_list,
226 		      &BTRFS_I(inode)->root->fs_info->ordered_extents);
227 	spin_unlock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock);
228 
229 	return 0;
230 }
231 
232 int btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
233 			     u64 start, u64 len, u64 disk_len, int type)
234 {
235 	return __btrfs_add_ordered_extent(inode, file_offset, start, len,
236 					  disk_len, type, 0,
237 					  BTRFS_COMPRESS_NONE);
238 }
239 
240 int btrfs_add_ordered_extent_dio(struct inode *inode, u64 file_offset,
241 				 u64 start, u64 len, u64 disk_len, int type)
242 {
243 	return __btrfs_add_ordered_extent(inode, file_offset, start, len,
244 					  disk_len, type, 1,
245 					  BTRFS_COMPRESS_NONE);
246 }
247 
248 int btrfs_add_ordered_extent_compress(struct inode *inode, u64 file_offset,
249 				      u64 start, u64 len, u64 disk_len,
250 				      int type, int compress_type)
251 {
252 	return __btrfs_add_ordered_extent(inode, file_offset, start, len,
253 					  disk_len, type, 0,
254 					  compress_type);
255 }
256 
257 /*
258  * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
259  * when an ordered extent is finished.  If the list covers more than one
260  * ordered extent, it is split across multiples.
261  */
262 void btrfs_add_ordered_sum(struct inode *inode,
263 			   struct btrfs_ordered_extent *entry,
264 			   struct btrfs_ordered_sum *sum)
265 {
266 	struct btrfs_ordered_inode_tree *tree;
267 
268 	tree = &BTRFS_I(inode)->ordered_tree;
269 	spin_lock_irq(&tree->lock);
270 	list_add_tail(&sum->list, &entry->list);
271 	spin_unlock_irq(&tree->lock);
272 }
273 
274 /*
275  * this is used to account for finished IO across a given range
276  * of the file.  The IO may span ordered extents.  If
277  * a given ordered_extent is completely done, 1 is returned, otherwise
278  * 0.
279  *
280  * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
281  * to make sure this function only returns 1 once for a given ordered extent.
282  *
283  * file_offset is updated to one byte past the range that is recorded as
284  * complete.  This allows you to walk forward in the file.
285  */
286 int btrfs_dec_test_first_ordered_pending(struct inode *inode,
287 				   struct btrfs_ordered_extent **cached,
288 				   u64 *file_offset, u64 io_size, int uptodate)
289 {
290 	struct btrfs_ordered_inode_tree *tree;
291 	struct rb_node *node;
292 	struct btrfs_ordered_extent *entry = NULL;
293 	int ret;
294 	unsigned long flags;
295 	u64 dec_end;
296 	u64 dec_start;
297 	u64 to_dec;
298 
299 	tree = &BTRFS_I(inode)->ordered_tree;
300 	spin_lock_irqsave(&tree->lock, flags);
301 	node = tree_search(tree, *file_offset);
302 	if (!node) {
303 		ret = 1;
304 		goto out;
305 	}
306 
307 	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
308 	if (!offset_in_entry(entry, *file_offset)) {
309 		ret = 1;
310 		goto out;
311 	}
312 
313 	dec_start = max(*file_offset, entry->file_offset);
314 	dec_end = min(*file_offset + io_size, entry->file_offset +
315 		      entry->len);
316 	*file_offset = dec_end;
317 	if (dec_start > dec_end) {
318 		printk(KERN_CRIT "bad ordering dec_start %llu end %llu\n",
319 		       (unsigned long long)dec_start,
320 		       (unsigned long long)dec_end);
321 	}
322 	to_dec = dec_end - dec_start;
323 	if (to_dec > entry->bytes_left) {
324 		printk(KERN_CRIT "bad ordered accounting left %llu size %llu\n",
325 		       (unsigned long long)entry->bytes_left,
326 		       (unsigned long long)to_dec);
327 	}
328 	entry->bytes_left -= to_dec;
329 	if (!uptodate)
330 		set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
331 
332 	if (entry->bytes_left == 0)
333 		ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
334 	else
335 		ret = 1;
336 out:
337 	if (!ret && cached && entry) {
338 		*cached = entry;
339 		atomic_inc(&entry->refs);
340 	}
341 	spin_unlock_irqrestore(&tree->lock, flags);
342 	return ret == 0;
343 }
344 
345 /*
346  * this is used to account for finished IO across a given range
347  * of the file.  The IO should not span ordered extents.  If
348  * a given ordered_extent is completely done, 1 is returned, otherwise
349  * 0.
350  *
351  * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
352  * to make sure this function only returns 1 once for a given ordered extent.
353  */
354 int btrfs_dec_test_ordered_pending(struct inode *inode,
355 				   struct btrfs_ordered_extent **cached,
356 				   u64 file_offset, u64 io_size, int uptodate)
357 {
358 	struct btrfs_ordered_inode_tree *tree;
359 	struct rb_node *node;
360 	struct btrfs_ordered_extent *entry = NULL;
361 	unsigned long flags;
362 	int ret;
363 
364 	tree = &BTRFS_I(inode)->ordered_tree;
365 	spin_lock_irqsave(&tree->lock, flags);
366 	if (cached && *cached) {
367 		entry = *cached;
368 		goto have_entry;
369 	}
370 
371 	node = tree_search(tree, file_offset);
372 	if (!node) {
373 		ret = 1;
374 		goto out;
375 	}
376 
377 	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
378 have_entry:
379 	if (!offset_in_entry(entry, file_offset)) {
380 		ret = 1;
381 		goto out;
382 	}
383 
384 	if (io_size > entry->bytes_left) {
385 		printk(KERN_CRIT "bad ordered accounting left %llu size %llu\n",
386 		       (unsigned long long)entry->bytes_left,
387 		       (unsigned long long)io_size);
388 	}
389 	entry->bytes_left -= io_size;
390 	if (!uptodate)
391 		set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
392 
393 	if (entry->bytes_left == 0)
394 		ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
395 	else
396 		ret = 1;
397 out:
398 	if (!ret && cached && entry) {
399 		*cached = entry;
400 		atomic_inc(&entry->refs);
401 	}
402 	spin_unlock_irqrestore(&tree->lock, flags);
403 	return ret == 0;
404 }
405 
406 /*
407  * used to drop a reference on an ordered extent.  This will free
408  * the extent if the last reference is dropped
409  */
410 void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
411 {
412 	struct list_head *cur;
413 	struct btrfs_ordered_sum *sum;
414 
415 	trace_btrfs_ordered_extent_put(entry->inode, entry);
416 
417 	if (atomic_dec_and_test(&entry->refs)) {
418 		if (entry->inode)
419 			btrfs_add_delayed_iput(entry->inode);
420 		while (!list_empty(&entry->list)) {
421 			cur = entry->list.next;
422 			sum = list_entry(cur, struct btrfs_ordered_sum, list);
423 			list_del(&sum->list);
424 			kfree(sum);
425 		}
426 		kmem_cache_free(btrfs_ordered_extent_cache, entry);
427 	}
428 }
429 
430 /*
431  * remove an ordered extent from the tree.  No references are dropped
432  * and waiters are woken up.
433  */
434 void btrfs_remove_ordered_extent(struct inode *inode,
435 				 struct btrfs_ordered_extent *entry)
436 {
437 	struct btrfs_ordered_inode_tree *tree;
438 	struct btrfs_root *root = BTRFS_I(inode)->root;
439 	struct rb_node *node;
440 
441 	tree = &BTRFS_I(inode)->ordered_tree;
442 	spin_lock_irq(&tree->lock);
443 	node = &entry->rb_node;
444 	rb_erase(node, &tree->tree);
445 	tree->last = NULL;
446 	set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
447 	spin_unlock_irq(&tree->lock);
448 
449 	spin_lock(&root->fs_info->ordered_extent_lock);
450 	list_del_init(&entry->root_extent_list);
451 
452 	trace_btrfs_ordered_extent_remove(inode, entry);
453 
454 	/*
455 	 * we have no more ordered extents for this inode and
456 	 * no dirty pages.  We can safely remove it from the
457 	 * list of ordered extents
458 	 */
459 	if (RB_EMPTY_ROOT(&tree->tree) &&
460 	    !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
461 		list_del_init(&BTRFS_I(inode)->ordered_operations);
462 	}
463 	spin_unlock(&root->fs_info->ordered_extent_lock);
464 	wake_up(&entry->wait);
465 }
466 
467 /*
468  * wait for all the ordered extents in a root.  This is done when balancing
469  * space between drives.
470  */
471 void btrfs_wait_ordered_extents(struct btrfs_root *root, int delay_iput)
472 {
473 	struct list_head splice;
474 	struct list_head *cur;
475 	struct btrfs_ordered_extent *ordered;
476 	struct inode *inode;
477 
478 	INIT_LIST_HEAD(&splice);
479 
480 	spin_lock(&root->fs_info->ordered_extent_lock);
481 	list_splice_init(&root->fs_info->ordered_extents, &splice);
482 	while (!list_empty(&splice)) {
483 		cur = splice.next;
484 		ordered = list_entry(cur, struct btrfs_ordered_extent,
485 				     root_extent_list);
486 		list_del_init(&ordered->root_extent_list);
487 		atomic_inc(&ordered->refs);
488 
489 		/*
490 		 * the inode may be getting freed (in sys_unlink path).
491 		 */
492 		inode = igrab(ordered->inode);
493 
494 		spin_unlock(&root->fs_info->ordered_extent_lock);
495 
496 		if (inode) {
497 			btrfs_start_ordered_extent(inode, ordered, 1);
498 			btrfs_put_ordered_extent(ordered);
499 			if (delay_iput)
500 				btrfs_add_delayed_iput(inode);
501 			else
502 				iput(inode);
503 		} else {
504 			btrfs_put_ordered_extent(ordered);
505 		}
506 
507 		spin_lock(&root->fs_info->ordered_extent_lock);
508 	}
509 	spin_unlock(&root->fs_info->ordered_extent_lock);
510 }
511 
512 /*
513  * this is used during transaction commit to write all the inodes
514  * added to the ordered operation list.  These files must be fully on
515  * disk before the transaction commits.
516  *
517  * we have two modes here, one is to just start the IO via filemap_flush
518  * and the other is to wait for all the io.  When we wait, we have an
519  * extra check to make sure the ordered operation list really is empty
520  * before we return
521  */
522 void btrfs_run_ordered_operations(struct btrfs_root *root, int wait)
523 {
524 	struct btrfs_inode *btrfs_inode;
525 	struct inode *inode;
526 	struct list_head splice;
527 
528 	INIT_LIST_HEAD(&splice);
529 
530 	mutex_lock(&root->fs_info->ordered_operations_mutex);
531 	spin_lock(&root->fs_info->ordered_extent_lock);
532 again:
533 	list_splice_init(&root->fs_info->ordered_operations, &splice);
534 
535 	while (!list_empty(&splice)) {
536 		btrfs_inode = list_entry(splice.next, struct btrfs_inode,
537 				   ordered_operations);
538 
539 		inode = &btrfs_inode->vfs_inode;
540 
541 		list_del_init(&btrfs_inode->ordered_operations);
542 
543 		/*
544 		 * the inode may be getting freed (in sys_unlink path).
545 		 */
546 		inode = igrab(inode);
547 
548 		if (!wait && inode) {
549 			list_add_tail(&BTRFS_I(inode)->ordered_operations,
550 			      &root->fs_info->ordered_operations);
551 		}
552 		spin_unlock(&root->fs_info->ordered_extent_lock);
553 
554 		if (inode) {
555 			if (wait)
556 				btrfs_wait_ordered_range(inode, 0, (u64)-1);
557 			else
558 				filemap_flush(inode->i_mapping);
559 			btrfs_add_delayed_iput(inode);
560 		}
561 
562 		cond_resched();
563 		spin_lock(&root->fs_info->ordered_extent_lock);
564 	}
565 	if (wait && !list_empty(&root->fs_info->ordered_operations))
566 		goto again;
567 
568 	spin_unlock(&root->fs_info->ordered_extent_lock);
569 	mutex_unlock(&root->fs_info->ordered_operations_mutex);
570 }
571 
572 /*
573  * Used to start IO or wait for a given ordered extent to finish.
574  *
575  * If wait is one, this effectively waits on page writeback for all the pages
576  * in the extent, and it waits on the io completion code to insert
577  * metadata into the btree corresponding to the extent
578  */
579 void btrfs_start_ordered_extent(struct inode *inode,
580 				       struct btrfs_ordered_extent *entry,
581 				       int wait)
582 {
583 	u64 start = entry->file_offset;
584 	u64 end = start + entry->len - 1;
585 
586 	trace_btrfs_ordered_extent_start(inode, entry);
587 
588 	/*
589 	 * pages in the range can be dirty, clean or writeback.  We
590 	 * start IO on any dirty ones so the wait doesn't stall waiting
591 	 * for the flusher thread to find them
592 	 */
593 	if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags))
594 		filemap_fdatawrite_range(inode->i_mapping, start, end);
595 	if (wait) {
596 		wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE,
597 						 &entry->flags));
598 	}
599 }
600 
601 /*
602  * Used to wait on ordered extents across a large range of bytes.
603  */
604 void btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
605 {
606 	u64 end;
607 	u64 orig_end;
608 	struct btrfs_ordered_extent *ordered;
609 	int found;
610 
611 	if (start + len < start) {
612 		orig_end = INT_LIMIT(loff_t);
613 	} else {
614 		orig_end = start + len - 1;
615 		if (orig_end > INT_LIMIT(loff_t))
616 			orig_end = INT_LIMIT(loff_t);
617 	}
618 
619 	/* start IO across the range first to instantiate any delalloc
620 	 * extents
621 	 */
622 	filemap_fdatawrite_range(inode->i_mapping, start, orig_end);
623 
624 	/*
625 	 * So with compression we will find and lock a dirty page and clear the
626 	 * first one as dirty, setup an async extent, and immediately return
627 	 * with the entire range locked but with nobody actually marked with
628 	 * writeback.  So we can't just filemap_write_and_wait_range() and
629 	 * expect it to work since it will just kick off a thread to do the
630 	 * actual work.  So we need to call filemap_fdatawrite_range _again_
631 	 * since it will wait on the page lock, which won't be unlocked until
632 	 * after the pages have been marked as writeback and so we're good to go
633 	 * from there.  We have to do this otherwise we'll miss the ordered
634 	 * extents and that results in badness.  Please Josef, do not think you
635 	 * know better and pull this out at some point in the future, it is
636 	 * right and you are wrong.
637 	 */
638 	if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
639 		     &BTRFS_I(inode)->runtime_flags))
640 		filemap_fdatawrite_range(inode->i_mapping, start, orig_end);
641 
642 	filemap_fdatawait_range(inode->i_mapping, start, orig_end);
643 
644 	end = orig_end;
645 	found = 0;
646 	while (1) {
647 		ordered = btrfs_lookup_first_ordered_extent(inode, end);
648 		if (!ordered)
649 			break;
650 		if (ordered->file_offset > orig_end) {
651 			btrfs_put_ordered_extent(ordered);
652 			break;
653 		}
654 		if (ordered->file_offset + ordered->len < start) {
655 			btrfs_put_ordered_extent(ordered);
656 			break;
657 		}
658 		found++;
659 		btrfs_start_ordered_extent(inode, ordered, 1);
660 		end = ordered->file_offset;
661 		btrfs_put_ordered_extent(ordered);
662 		if (end == 0 || end == start)
663 			break;
664 		end--;
665 	}
666 }
667 
668 /*
669  * find an ordered extent corresponding to file_offset.  return NULL if
670  * nothing is found, otherwise take a reference on the extent and return it
671  */
672 struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct inode *inode,
673 							 u64 file_offset)
674 {
675 	struct btrfs_ordered_inode_tree *tree;
676 	struct rb_node *node;
677 	struct btrfs_ordered_extent *entry = NULL;
678 
679 	tree = &BTRFS_I(inode)->ordered_tree;
680 	spin_lock_irq(&tree->lock);
681 	node = tree_search(tree, file_offset);
682 	if (!node)
683 		goto out;
684 
685 	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
686 	if (!offset_in_entry(entry, file_offset))
687 		entry = NULL;
688 	if (entry)
689 		atomic_inc(&entry->refs);
690 out:
691 	spin_unlock_irq(&tree->lock);
692 	return entry;
693 }
694 
695 /* Since the DIO code tries to lock a wide area we need to look for any ordered
696  * extents that exist in the range, rather than just the start of the range.
697  */
698 struct btrfs_ordered_extent *btrfs_lookup_ordered_range(struct inode *inode,
699 							u64 file_offset,
700 							u64 len)
701 {
702 	struct btrfs_ordered_inode_tree *tree;
703 	struct rb_node *node;
704 	struct btrfs_ordered_extent *entry = NULL;
705 
706 	tree = &BTRFS_I(inode)->ordered_tree;
707 	spin_lock_irq(&tree->lock);
708 	node = tree_search(tree, file_offset);
709 	if (!node) {
710 		node = tree_search(tree, file_offset + len);
711 		if (!node)
712 			goto out;
713 	}
714 
715 	while (1) {
716 		entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
717 		if (range_overlaps(entry, file_offset, len))
718 			break;
719 
720 		if (entry->file_offset >= file_offset + len) {
721 			entry = NULL;
722 			break;
723 		}
724 		entry = NULL;
725 		node = rb_next(node);
726 		if (!node)
727 			break;
728 	}
729 out:
730 	if (entry)
731 		atomic_inc(&entry->refs);
732 	spin_unlock_irq(&tree->lock);
733 	return entry;
734 }
735 
736 /*
737  * lookup and return any extent before 'file_offset'.  NULL is returned
738  * if none is found
739  */
740 struct btrfs_ordered_extent *
741 btrfs_lookup_first_ordered_extent(struct inode *inode, u64 file_offset)
742 {
743 	struct btrfs_ordered_inode_tree *tree;
744 	struct rb_node *node;
745 	struct btrfs_ordered_extent *entry = NULL;
746 
747 	tree = &BTRFS_I(inode)->ordered_tree;
748 	spin_lock_irq(&tree->lock);
749 	node = tree_search(tree, file_offset);
750 	if (!node)
751 		goto out;
752 
753 	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
754 	atomic_inc(&entry->refs);
755 out:
756 	spin_unlock_irq(&tree->lock);
757 	return entry;
758 }
759 
760 /*
761  * After an extent is done, call this to conditionally update the on disk
762  * i_size.  i_size is updated to cover any fully written part of the file.
763  */
764 int btrfs_ordered_update_i_size(struct inode *inode, u64 offset,
765 				struct btrfs_ordered_extent *ordered)
766 {
767 	struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
768 	u64 disk_i_size;
769 	u64 new_i_size;
770 	u64 i_size = i_size_read(inode);
771 	struct rb_node *node;
772 	struct rb_node *prev = NULL;
773 	struct btrfs_ordered_extent *test;
774 	int ret = 1;
775 
776 	if (ordered)
777 		offset = entry_end(ordered);
778 	else
779 		offset = ALIGN(offset, BTRFS_I(inode)->root->sectorsize);
780 
781 	spin_lock_irq(&tree->lock);
782 	disk_i_size = BTRFS_I(inode)->disk_i_size;
783 
784 	/* truncate file */
785 	if (disk_i_size > i_size) {
786 		BTRFS_I(inode)->disk_i_size = i_size;
787 		ret = 0;
788 		goto out;
789 	}
790 
791 	/*
792 	 * if the disk i_size is already at the inode->i_size, or
793 	 * this ordered extent is inside the disk i_size, we're done
794 	 */
795 	if (disk_i_size == i_size || offset <= disk_i_size) {
796 		goto out;
797 	}
798 
799 	/*
800 	 * walk backward from this ordered extent to disk_i_size.
801 	 * if we find an ordered extent then we can't update disk i_size
802 	 * yet
803 	 */
804 	if (ordered) {
805 		node = rb_prev(&ordered->rb_node);
806 	} else {
807 		prev = tree_search(tree, offset);
808 		/*
809 		 * we insert file extents without involving ordered struct,
810 		 * so there should be no ordered struct cover this offset
811 		 */
812 		if (prev) {
813 			test = rb_entry(prev, struct btrfs_ordered_extent,
814 					rb_node);
815 			BUG_ON(offset_in_entry(test, offset));
816 		}
817 		node = prev;
818 	}
819 	for (; node; node = rb_prev(node)) {
820 		test = rb_entry(node, struct btrfs_ordered_extent, rb_node);
821 
822 		/* We treat this entry as if it doesnt exist */
823 		if (test_bit(BTRFS_ORDERED_UPDATED_ISIZE, &test->flags))
824 			continue;
825 		if (test->file_offset + test->len <= disk_i_size)
826 			break;
827 		if (test->file_offset >= i_size)
828 			break;
829 		if (test->file_offset >= disk_i_size) {
830 			/*
831 			 * we don't update disk_i_size now, so record this
832 			 * undealt i_size. Or we will not know the real
833 			 * i_size.
834 			 */
835 			if (test->outstanding_isize < offset)
836 				test->outstanding_isize = offset;
837 			if (ordered &&
838 			    ordered->outstanding_isize >
839 			    test->outstanding_isize)
840 				test->outstanding_isize =
841 						ordered->outstanding_isize;
842 			goto out;
843 		}
844 	}
845 	new_i_size = min_t(u64, offset, i_size);
846 
847 	/*
848 	 * Some ordered extents may completed before the current one, and
849 	 * we hold the real i_size in ->outstanding_isize.
850 	 */
851 	if (ordered && ordered->outstanding_isize > new_i_size)
852 		new_i_size = min_t(u64, ordered->outstanding_isize, i_size);
853 	BTRFS_I(inode)->disk_i_size = new_i_size;
854 	ret = 0;
855 out:
856 	/*
857 	 * We need to do this because we can't remove ordered extents until
858 	 * after the i_disk_size has been updated and then the inode has been
859 	 * updated to reflect the change, so we need to tell anybody who finds
860 	 * this ordered extent that we've already done all the real work, we
861 	 * just haven't completed all the other work.
862 	 */
863 	if (ordered)
864 		set_bit(BTRFS_ORDERED_UPDATED_ISIZE, &ordered->flags);
865 	spin_unlock_irq(&tree->lock);
866 	return ret;
867 }
868 
869 /*
870  * search the ordered extents for one corresponding to 'offset' and
871  * try to find a checksum.  This is used because we allow pages to
872  * be reclaimed before their checksum is actually put into the btree
873  */
874 int btrfs_find_ordered_sum(struct inode *inode, u64 offset, u64 disk_bytenr,
875 			   u32 *sum)
876 {
877 	struct btrfs_ordered_sum *ordered_sum;
878 	struct btrfs_sector_sum *sector_sums;
879 	struct btrfs_ordered_extent *ordered;
880 	struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
881 	unsigned long num_sectors;
882 	unsigned long i;
883 	u32 sectorsize = BTRFS_I(inode)->root->sectorsize;
884 	int ret = 1;
885 
886 	ordered = btrfs_lookup_ordered_extent(inode, offset);
887 	if (!ordered)
888 		return 1;
889 
890 	spin_lock_irq(&tree->lock);
891 	list_for_each_entry_reverse(ordered_sum, &ordered->list, list) {
892 		if (disk_bytenr >= ordered_sum->bytenr) {
893 			num_sectors = ordered_sum->len / sectorsize;
894 			sector_sums = ordered_sum->sums;
895 			for (i = 0; i < num_sectors; i++) {
896 				if (sector_sums[i].bytenr == disk_bytenr) {
897 					*sum = sector_sums[i].sum;
898 					ret = 0;
899 					goto out;
900 				}
901 			}
902 		}
903 	}
904 out:
905 	spin_unlock_irq(&tree->lock);
906 	btrfs_put_ordered_extent(ordered);
907 	return ret;
908 }
909 
910 
911 /*
912  * add a given inode to the list of inodes that must be fully on
913  * disk before a transaction commit finishes.
914  *
915  * This basically gives us the ext3 style data=ordered mode, and it is mostly
916  * used to make sure renamed files are fully on disk.
917  *
918  * It is a noop if the inode is already fully on disk.
919  *
920  * If trans is not null, we'll do a friendly check for a transaction that
921  * is already flushing things and force the IO down ourselves.
922  */
923 void btrfs_add_ordered_operation(struct btrfs_trans_handle *trans,
924 				 struct btrfs_root *root, struct inode *inode)
925 {
926 	u64 last_mod;
927 
928 	last_mod = max(BTRFS_I(inode)->generation, BTRFS_I(inode)->last_trans);
929 
930 	/*
931 	 * if this file hasn't been changed since the last transaction
932 	 * commit, we can safely return without doing anything
933 	 */
934 	if (last_mod < root->fs_info->last_trans_committed)
935 		return;
936 
937 	/*
938 	 * the transaction is already committing.  Just start the IO and
939 	 * don't bother with all of this list nonsense
940 	 */
941 	if (trans && root->fs_info->running_transaction->blocked) {
942 		btrfs_wait_ordered_range(inode, 0, (u64)-1);
943 		return;
944 	}
945 
946 	spin_lock(&root->fs_info->ordered_extent_lock);
947 	if (list_empty(&BTRFS_I(inode)->ordered_operations)) {
948 		list_add_tail(&BTRFS_I(inode)->ordered_operations,
949 			      &root->fs_info->ordered_operations);
950 	}
951 	spin_unlock(&root->fs_info->ordered_extent_lock);
952 }
953 
954 int __init ordered_data_init(void)
955 {
956 	btrfs_ordered_extent_cache = kmem_cache_create("btrfs_ordered_extent",
957 				     sizeof(struct btrfs_ordered_extent), 0,
958 				     SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
959 				     NULL);
960 	if (!btrfs_ordered_extent_cache)
961 		return -ENOMEM;
962 	return 0;
963 }
964 
965 void ordered_data_exit(void)
966 {
967 	if (btrfs_ordered_extent_cache)
968 		kmem_cache_destroy(btrfs_ordered_extent_cache);
969 }
970