1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2008 Oracle. All rights reserved. 4 */ 5 6 #include <linux/kernel.h> 7 #include <linux/slab.h> 8 #include <linux/mm.h> 9 #include <linux/init.h> 10 #include <linux/err.h> 11 #include <linux/sched.h> 12 #include <linux/pagemap.h> 13 #include <linux/bio.h> 14 #include <linux/lzo.h> 15 #include <linux/refcount.h> 16 #include "compression.h" 17 #include "ctree.h" 18 19 #define LZO_LEN 4 20 21 /* 22 * Btrfs LZO compression format 23 * 24 * Regular and inlined LZO compressed data extents consist of: 25 * 26 * 1. Header 27 * Fixed size. LZO_LEN (4) bytes long, LE32. 28 * Records the total size (including the header) of compressed data. 29 * 30 * 2. Segment(s) 31 * Variable size. Each segment includes one segment header, followed by data 32 * payload. 33 * One regular LZO compressed extent can have one or more segments. 34 * For inlined LZO compressed extent, only one segment is allowed. 35 * One segment represents at most one sector of uncompressed data. 36 * 37 * 2.1 Segment header 38 * Fixed size. LZO_LEN (4) bytes long, LE32. 39 * Records the total size of the segment (not including the header). 40 * Segment header never crosses sector boundary, thus it's possible to 41 * have at most 3 padding zeros at the end of the sector. 42 * 43 * 2.2 Data Payload 44 * Variable size. Size up limit should be lzo1x_worst_compress(sectorsize) 45 * which is 4419 for a 4KiB sectorsize. 46 * 47 * Example with 4K sectorsize: 48 * Page 1: 49 * 0 0x2 0x4 0x6 0x8 0xa 0xc 0xe 0x10 50 * 0x0000 | Header | SegHdr 01 | Data payload 01 ... | 51 * ... 52 * 0x0ff0 | SegHdr N | Data payload N ... |00| 53 * ^^ padding zeros 54 * Page 2: 55 * 0x1000 | SegHdr N+1| Data payload N+1 ... | 56 */ 57 58 struct workspace { 59 void *mem; 60 void *buf; /* where decompressed data goes */ 61 void *cbuf; /* where compressed data goes */ 62 struct list_head list; 63 }; 64 65 static struct workspace_manager wsm; 66 67 void lzo_free_workspace(struct list_head *ws) 68 { 69 struct workspace *workspace = list_entry(ws, struct workspace, list); 70 71 kvfree(workspace->buf); 72 kvfree(workspace->cbuf); 73 kvfree(workspace->mem); 74 kfree(workspace); 75 } 76 77 struct list_head *lzo_alloc_workspace(unsigned int level) 78 { 79 struct workspace *workspace; 80 81 workspace = kzalloc(sizeof(*workspace), GFP_KERNEL); 82 if (!workspace) 83 return ERR_PTR(-ENOMEM); 84 85 workspace->mem = kvmalloc(LZO1X_MEM_COMPRESS, GFP_KERNEL); 86 workspace->buf = kvmalloc(lzo1x_worst_compress(PAGE_SIZE), GFP_KERNEL); 87 workspace->cbuf = kvmalloc(lzo1x_worst_compress(PAGE_SIZE), GFP_KERNEL); 88 if (!workspace->mem || !workspace->buf || !workspace->cbuf) 89 goto fail; 90 91 INIT_LIST_HEAD(&workspace->list); 92 93 return &workspace->list; 94 fail: 95 lzo_free_workspace(&workspace->list); 96 return ERR_PTR(-ENOMEM); 97 } 98 99 static inline void write_compress_length(char *buf, size_t len) 100 { 101 __le32 dlen; 102 103 dlen = cpu_to_le32(len); 104 memcpy(buf, &dlen, LZO_LEN); 105 } 106 107 static inline size_t read_compress_length(const char *buf) 108 { 109 __le32 dlen; 110 111 memcpy(&dlen, buf, LZO_LEN); 112 return le32_to_cpu(dlen); 113 } 114 115 /* 116 * Will do: 117 * 118 * - Write a segment header into the destination 119 * - Copy the compressed buffer into the destination 120 * - Make sure we have enough space in the last sector to fit a segment header 121 * If not, we will pad at most (LZO_LEN (4)) - 1 bytes of zeros. 122 * 123 * Will allocate new pages when needed. 124 */ 125 static int copy_compressed_data_to_page(char *compressed_data, 126 size_t compressed_size, 127 struct page **out_pages, 128 unsigned long max_nr_page, 129 u32 *cur_out, 130 const u32 sectorsize) 131 { 132 u32 sector_bytes_left; 133 u32 orig_out; 134 struct page *cur_page; 135 char *kaddr; 136 137 if ((*cur_out / PAGE_SIZE) >= max_nr_page) 138 return -E2BIG; 139 140 /* 141 * We never allow a segment header crossing sector boundary, previous 142 * run should ensure we have enough space left inside the sector. 143 */ 144 ASSERT((*cur_out / sectorsize) == (*cur_out + LZO_LEN - 1) / sectorsize); 145 146 cur_page = out_pages[*cur_out / PAGE_SIZE]; 147 /* Allocate a new page */ 148 if (!cur_page) { 149 cur_page = alloc_page(GFP_NOFS); 150 if (!cur_page) 151 return -ENOMEM; 152 out_pages[*cur_out / PAGE_SIZE] = cur_page; 153 } 154 155 kaddr = kmap(cur_page); 156 write_compress_length(kaddr + offset_in_page(*cur_out), 157 compressed_size); 158 *cur_out += LZO_LEN; 159 160 orig_out = *cur_out; 161 162 /* Copy compressed data */ 163 while (*cur_out - orig_out < compressed_size) { 164 u32 copy_len = min_t(u32, sectorsize - *cur_out % sectorsize, 165 orig_out + compressed_size - *cur_out); 166 167 kunmap(cur_page); 168 169 if ((*cur_out / PAGE_SIZE) >= max_nr_page) 170 return -E2BIG; 171 172 cur_page = out_pages[*cur_out / PAGE_SIZE]; 173 /* Allocate a new page */ 174 if (!cur_page) { 175 cur_page = alloc_page(GFP_NOFS); 176 if (!cur_page) 177 return -ENOMEM; 178 out_pages[*cur_out / PAGE_SIZE] = cur_page; 179 } 180 kaddr = kmap(cur_page); 181 182 memcpy(kaddr + offset_in_page(*cur_out), 183 compressed_data + *cur_out - orig_out, copy_len); 184 185 *cur_out += copy_len; 186 } 187 188 /* 189 * Check if we can fit the next segment header into the remaining space 190 * of the sector. 191 */ 192 sector_bytes_left = round_up(*cur_out, sectorsize) - *cur_out; 193 if (sector_bytes_left >= LZO_LEN || sector_bytes_left == 0) 194 goto out; 195 196 /* The remaining size is not enough, pad it with zeros */ 197 memset(kaddr + offset_in_page(*cur_out), 0, 198 sector_bytes_left); 199 *cur_out += sector_bytes_left; 200 201 out: 202 kunmap(cur_page); 203 return 0; 204 } 205 206 int lzo_compress_pages(struct list_head *ws, struct address_space *mapping, 207 u64 start, struct page **pages, unsigned long *out_pages, 208 unsigned long *total_in, unsigned long *total_out) 209 { 210 struct workspace *workspace = list_entry(ws, struct workspace, list); 211 const u32 sectorsize = btrfs_sb(mapping->host->i_sb)->sectorsize; 212 struct page *page_in = NULL; 213 char *sizes_ptr; 214 const unsigned long max_nr_page = *out_pages; 215 int ret = 0; 216 /* Points to the file offset of input data */ 217 u64 cur_in = start; 218 /* Points to the current output byte */ 219 u32 cur_out = 0; 220 u32 len = *total_out; 221 222 ASSERT(max_nr_page > 0); 223 *out_pages = 0; 224 *total_out = 0; 225 *total_in = 0; 226 227 /* 228 * Skip the header for now, we will later come back and write the total 229 * compressed size 230 */ 231 cur_out += LZO_LEN; 232 while (cur_in < start + len) { 233 char *data_in; 234 const u32 sectorsize_mask = sectorsize - 1; 235 u32 sector_off = (cur_in - start) & sectorsize_mask; 236 u32 in_len; 237 size_t out_len; 238 239 /* Get the input page first */ 240 if (!page_in) { 241 page_in = find_get_page(mapping, cur_in >> PAGE_SHIFT); 242 ASSERT(page_in); 243 } 244 245 /* Compress at most one sector of data each time */ 246 in_len = min_t(u32, start + len - cur_in, sectorsize - sector_off); 247 ASSERT(in_len); 248 data_in = kmap(page_in); 249 ret = lzo1x_1_compress(data_in + 250 offset_in_page(cur_in), in_len, 251 workspace->cbuf, &out_len, 252 workspace->mem); 253 kunmap(page_in); 254 if (ret < 0) { 255 pr_debug("BTRFS: lzo in loop returned %d\n", ret); 256 ret = -EIO; 257 goto out; 258 } 259 260 ret = copy_compressed_data_to_page(workspace->cbuf, out_len, 261 pages, max_nr_page, 262 &cur_out, sectorsize); 263 if (ret < 0) 264 goto out; 265 266 cur_in += in_len; 267 268 /* 269 * Check if we're making it bigger after two sectors. And if 270 * it is so, give up. 271 */ 272 if (cur_in - start > sectorsize * 2 && cur_in - start < cur_out) { 273 ret = -E2BIG; 274 goto out; 275 } 276 277 /* Check if we have reached page boundary */ 278 if (IS_ALIGNED(cur_in, PAGE_SIZE)) { 279 put_page(page_in); 280 page_in = NULL; 281 } 282 } 283 284 /* Store the size of all chunks of compressed data */ 285 sizes_ptr = kmap_local_page(pages[0]); 286 write_compress_length(sizes_ptr, cur_out); 287 kunmap_local(sizes_ptr); 288 289 ret = 0; 290 *total_out = cur_out; 291 *total_in = cur_in - start; 292 out: 293 *out_pages = DIV_ROUND_UP(cur_out, PAGE_SIZE); 294 return ret; 295 } 296 297 /* 298 * Copy the compressed segment payload into @dest. 299 * 300 * For the payload there will be no padding, just need to do page switching. 301 */ 302 static void copy_compressed_segment(struct compressed_bio *cb, 303 char *dest, u32 len, u32 *cur_in) 304 { 305 u32 orig_in = *cur_in; 306 307 while (*cur_in < orig_in + len) { 308 char *kaddr; 309 struct page *cur_page; 310 u32 copy_len = min_t(u32, PAGE_SIZE - offset_in_page(*cur_in), 311 orig_in + len - *cur_in); 312 313 ASSERT(copy_len); 314 cur_page = cb->compressed_pages[*cur_in / PAGE_SIZE]; 315 316 kaddr = kmap(cur_page); 317 memcpy(dest + *cur_in - orig_in, 318 kaddr + offset_in_page(*cur_in), 319 copy_len); 320 kunmap(cur_page); 321 322 *cur_in += copy_len; 323 } 324 } 325 326 int lzo_decompress_bio(struct list_head *ws, struct compressed_bio *cb) 327 { 328 struct workspace *workspace = list_entry(ws, struct workspace, list); 329 const struct btrfs_fs_info *fs_info = btrfs_sb(cb->inode->i_sb); 330 const u32 sectorsize = fs_info->sectorsize; 331 char *kaddr; 332 int ret; 333 /* Compressed data length, can be unaligned */ 334 u32 len_in; 335 /* Offset inside the compressed data */ 336 u32 cur_in = 0; 337 /* Bytes decompressed so far */ 338 u32 cur_out = 0; 339 340 kaddr = kmap(cb->compressed_pages[0]); 341 len_in = read_compress_length(kaddr); 342 kunmap(cb->compressed_pages[0]); 343 cur_in += LZO_LEN; 344 345 /* 346 * LZO header length check 347 * 348 * The total length should not exceed the maximum extent length, 349 * and all sectors should be used. 350 * If this happens, it means the compressed extent is corrupted. 351 */ 352 if (len_in > min_t(size_t, BTRFS_MAX_COMPRESSED, cb->compressed_len) || 353 round_up(len_in, sectorsize) < cb->compressed_len) { 354 btrfs_err(fs_info, 355 "invalid lzo header, lzo len %u compressed len %u", 356 len_in, cb->compressed_len); 357 return -EUCLEAN; 358 } 359 360 /* Go through each lzo segment */ 361 while (cur_in < len_in) { 362 struct page *cur_page; 363 /* Length of the compressed segment */ 364 u32 seg_len; 365 u32 sector_bytes_left; 366 size_t out_len = lzo1x_worst_compress(sectorsize); 367 368 /* 369 * We should always have enough space for one segment header 370 * inside current sector. 371 */ 372 ASSERT(cur_in / sectorsize == 373 (cur_in + LZO_LEN - 1) / sectorsize); 374 cur_page = cb->compressed_pages[cur_in / PAGE_SIZE]; 375 ASSERT(cur_page); 376 kaddr = kmap(cur_page); 377 seg_len = read_compress_length(kaddr + offset_in_page(cur_in)); 378 kunmap(cur_page); 379 cur_in += LZO_LEN; 380 381 /* Copy the compressed segment payload into workspace */ 382 copy_compressed_segment(cb, workspace->cbuf, seg_len, &cur_in); 383 384 /* Decompress the data */ 385 ret = lzo1x_decompress_safe(workspace->cbuf, seg_len, 386 workspace->buf, &out_len); 387 if (ret != LZO_E_OK) { 388 btrfs_err(fs_info, "failed to decompress"); 389 ret = -EIO; 390 goto out; 391 } 392 393 /* Copy the data into inode pages */ 394 ret = btrfs_decompress_buf2page(workspace->buf, out_len, cb, cur_out); 395 cur_out += out_len; 396 397 /* All data read, exit */ 398 if (ret == 0) 399 goto out; 400 ret = 0; 401 402 /* Check if the sector has enough space for a segment header */ 403 sector_bytes_left = sectorsize - (cur_in % sectorsize); 404 if (sector_bytes_left >= LZO_LEN) 405 continue; 406 407 /* Skip the padding zeros */ 408 cur_in += sector_bytes_left; 409 } 410 out: 411 if (!ret) 412 zero_fill_bio(cb->orig_bio); 413 return ret; 414 } 415 416 int lzo_decompress(struct list_head *ws, unsigned char *data_in, 417 struct page *dest_page, unsigned long start_byte, size_t srclen, 418 size_t destlen) 419 { 420 struct workspace *workspace = list_entry(ws, struct workspace, list); 421 size_t in_len; 422 size_t out_len; 423 size_t max_segment_len = lzo1x_worst_compress(PAGE_SIZE); 424 int ret = 0; 425 char *kaddr; 426 unsigned long bytes; 427 428 if (srclen < LZO_LEN || srclen > max_segment_len + LZO_LEN * 2) 429 return -EUCLEAN; 430 431 in_len = read_compress_length(data_in); 432 if (in_len != srclen) 433 return -EUCLEAN; 434 data_in += LZO_LEN; 435 436 in_len = read_compress_length(data_in); 437 if (in_len != srclen - LZO_LEN * 2) { 438 ret = -EUCLEAN; 439 goto out; 440 } 441 data_in += LZO_LEN; 442 443 out_len = PAGE_SIZE; 444 ret = lzo1x_decompress_safe(data_in, in_len, workspace->buf, &out_len); 445 if (ret != LZO_E_OK) { 446 pr_warn("BTRFS: decompress failed!\n"); 447 ret = -EIO; 448 goto out; 449 } 450 451 if (out_len < start_byte) { 452 ret = -EIO; 453 goto out; 454 } 455 456 /* 457 * the caller is already checking against PAGE_SIZE, but lets 458 * move this check closer to the memcpy/memset 459 */ 460 destlen = min_t(unsigned long, destlen, PAGE_SIZE); 461 bytes = min_t(unsigned long, destlen, out_len - start_byte); 462 463 kaddr = kmap_local_page(dest_page); 464 memcpy(kaddr, workspace->buf + start_byte, bytes); 465 466 /* 467 * btrfs_getblock is doing a zero on the tail of the page too, 468 * but this will cover anything missing from the decompressed 469 * data. 470 */ 471 if (bytes < destlen) 472 memset(kaddr+bytes, 0, destlen-bytes); 473 kunmap_local(kaddr); 474 out: 475 return ret; 476 } 477 478 const struct btrfs_compress_op btrfs_lzo_compress = { 479 .workspace_manager = &wsm, 480 .max_level = 1, 481 .default_level = 1, 482 }; 483