xref: /openbmc/linux/fs/btrfs/locking.c (revision 2cc39179)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2008 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/pagemap.h>
8 #include <linux/spinlock.h>
9 #include <linux/page-flags.h>
10 #include <asm/bug.h>
11 #include "misc.h"
12 #include "ctree.h"
13 #include "extent_io.h"
14 #include "locking.h"
15 
16 /*
17  * Extent buffer locking
18  * =====================
19  *
20  * We use a rw_semaphore for tree locking, and the semantics are exactly the
21  * same:
22  *
23  * - reader/writer exclusion
24  * - writer/writer exclusion
25  * - reader/reader sharing
26  * - try-lock semantics for readers and writers
27  *
28  * The rwsem implementation does opportunistic spinning which reduces number of
29  * times the locking task needs to sleep.
30  */
31 
32 /*
33  * __btrfs_tree_read_lock - lock extent buffer for read
34  * @eb:		the eb to be locked
35  * @nest:	the nesting level to be used for lockdep
36  *
37  * This takes the read lock on the extent buffer, using the specified nesting
38  * level for lockdep purposes.
39  */
40 void __btrfs_tree_read_lock(struct extent_buffer *eb, enum btrfs_lock_nesting nest)
41 {
42 	u64 start_ns = 0;
43 
44 	if (trace_btrfs_tree_read_lock_enabled())
45 		start_ns = ktime_get_ns();
46 
47 	down_read_nested(&eb->lock, nest);
48 	trace_btrfs_tree_read_lock(eb, start_ns);
49 }
50 
51 void btrfs_tree_read_lock(struct extent_buffer *eb)
52 {
53 	__btrfs_tree_read_lock(eb, BTRFS_NESTING_NORMAL);
54 }
55 
56 /*
57  * Try-lock for read.
58  *
59  * Return 1 if the rwlock has been taken, 0 otherwise
60  */
61 int btrfs_try_tree_read_lock(struct extent_buffer *eb)
62 {
63 	if (down_read_trylock(&eb->lock)) {
64 		trace_btrfs_try_tree_read_lock(eb);
65 		return 1;
66 	}
67 	return 0;
68 }
69 
70 /*
71  * Try-lock for write.
72  *
73  * Return 1 if the rwlock has been taken, 0 otherwise
74  */
75 int btrfs_try_tree_write_lock(struct extent_buffer *eb)
76 {
77 	if (down_write_trylock(&eb->lock)) {
78 		eb->lock_owner = current->pid;
79 		trace_btrfs_try_tree_write_lock(eb);
80 		return 1;
81 	}
82 	return 0;
83 }
84 
85 /*
86  * Release read lock.
87  */
88 void btrfs_tree_read_unlock(struct extent_buffer *eb)
89 {
90 	trace_btrfs_tree_read_unlock(eb);
91 	up_read(&eb->lock);
92 }
93 
94 /*
95  * __btrfs_tree_lock - lock eb for write
96  * @eb:		the eb to lock
97  * @nest:	the nesting to use for the lock
98  *
99  * Returns with the eb->lock write locked.
100  */
101 void __btrfs_tree_lock(struct extent_buffer *eb, enum btrfs_lock_nesting nest)
102 	__acquires(&eb->lock)
103 {
104 	u64 start_ns = 0;
105 
106 	if (trace_btrfs_tree_lock_enabled())
107 		start_ns = ktime_get_ns();
108 
109 	down_write_nested(&eb->lock, nest);
110 	eb->lock_owner = current->pid;
111 	trace_btrfs_tree_lock(eb, start_ns);
112 }
113 
114 void btrfs_tree_lock(struct extent_buffer *eb)
115 {
116 	__btrfs_tree_lock(eb, BTRFS_NESTING_NORMAL);
117 }
118 
119 /*
120  * Release the write lock.
121  */
122 void btrfs_tree_unlock(struct extent_buffer *eb)
123 {
124 	trace_btrfs_tree_unlock(eb);
125 	eb->lock_owner = 0;
126 	up_write(&eb->lock);
127 }
128 
129 /*
130  * This releases any locks held in the path starting at level and going all the
131  * way up to the root.
132  *
133  * btrfs_search_slot will keep the lock held on higher nodes in a few corner
134  * cases, such as COW of the block at slot zero in the node.  This ignores
135  * those rules, and it should only be called when there are no more updates to
136  * be done higher up in the tree.
137  */
138 void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
139 {
140 	int i;
141 
142 	if (path->keep_locks)
143 		return;
144 
145 	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
146 		if (!path->nodes[i])
147 			continue;
148 		if (!path->locks[i])
149 			continue;
150 		btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
151 		path->locks[i] = 0;
152 	}
153 }
154 
155 /*
156  * Loop around taking references on and locking the root node of the tree until
157  * we end up with a lock on the root node.
158  *
159  * Return: root extent buffer with write lock held
160  */
161 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
162 {
163 	struct extent_buffer *eb;
164 
165 	while (1) {
166 		eb = btrfs_root_node(root);
167 		btrfs_tree_lock(eb);
168 		if (eb == root->node)
169 			break;
170 		btrfs_tree_unlock(eb);
171 		free_extent_buffer(eb);
172 	}
173 	return eb;
174 }
175 
176 /*
177  * Loop around taking references on and locking the root node of the tree until
178  * we end up with a lock on the root node.
179  *
180  * Return: root extent buffer with read lock held
181  */
182 struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
183 {
184 	struct extent_buffer *eb;
185 
186 	while (1) {
187 		eb = btrfs_root_node(root);
188 		btrfs_tree_read_lock(eb);
189 		if (eb == root->node)
190 			break;
191 		btrfs_tree_read_unlock(eb);
192 		free_extent_buffer(eb);
193 	}
194 	return eb;
195 }
196 
197 /*
198  * DREW locks
199  * ==========
200  *
201  * DREW stands for double-reader-writer-exclusion lock. It's used in situation
202  * where you want to provide A-B exclusion but not AA or BB.
203  *
204  * Currently implementation gives more priority to reader. If a reader and a
205  * writer both race to acquire their respective sides of the lock the writer
206  * would yield its lock as soon as it detects a concurrent reader. Additionally
207  * if there are pending readers no new writers would be allowed to come in and
208  * acquire the lock.
209  */
210 
211 int btrfs_drew_lock_init(struct btrfs_drew_lock *lock)
212 {
213 	int ret;
214 
215 	ret = percpu_counter_init(&lock->writers, 0, GFP_KERNEL);
216 	if (ret)
217 		return ret;
218 
219 	atomic_set(&lock->readers, 0);
220 	init_waitqueue_head(&lock->pending_readers);
221 	init_waitqueue_head(&lock->pending_writers);
222 
223 	return 0;
224 }
225 
226 void btrfs_drew_lock_destroy(struct btrfs_drew_lock *lock)
227 {
228 	percpu_counter_destroy(&lock->writers);
229 }
230 
231 /* Return true if acquisition is successful, false otherwise */
232 bool btrfs_drew_try_write_lock(struct btrfs_drew_lock *lock)
233 {
234 	if (atomic_read(&lock->readers))
235 		return false;
236 
237 	percpu_counter_inc(&lock->writers);
238 
239 	/* Ensure writers count is updated before we check for pending readers */
240 	smp_mb();
241 	if (atomic_read(&lock->readers)) {
242 		btrfs_drew_write_unlock(lock);
243 		return false;
244 	}
245 
246 	return true;
247 }
248 
249 void btrfs_drew_write_lock(struct btrfs_drew_lock *lock)
250 {
251 	while (true) {
252 		if (btrfs_drew_try_write_lock(lock))
253 			return;
254 		wait_event(lock->pending_writers, !atomic_read(&lock->readers));
255 	}
256 }
257 
258 void btrfs_drew_write_unlock(struct btrfs_drew_lock *lock)
259 {
260 	percpu_counter_dec(&lock->writers);
261 	cond_wake_up(&lock->pending_readers);
262 }
263 
264 void btrfs_drew_read_lock(struct btrfs_drew_lock *lock)
265 {
266 	atomic_inc(&lock->readers);
267 
268 	/*
269 	 * Ensure the pending reader count is perceieved BEFORE this reader
270 	 * goes to sleep in case of active writers. This guarantees new writers
271 	 * won't be allowed and that the current reader will be woken up when
272 	 * the last active writer finishes its jobs.
273 	 */
274 	smp_mb__after_atomic();
275 
276 	wait_event(lock->pending_readers,
277 		   percpu_counter_sum(&lock->writers) == 0);
278 }
279 
280 void btrfs_drew_read_unlock(struct btrfs_drew_lock *lock)
281 {
282 	/*
283 	 * atomic_dec_and_test implies a full barrier, so woken up writers
284 	 * are guaranteed to see the decrement
285 	 */
286 	if (atomic_dec_and_test(&lock->readers))
287 		wake_up(&lock->pending_writers);
288 }
289