xref: /openbmc/linux/fs/btrfs/ioctl.c (revision fbb6b31a)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/kernel.h>
7 #include <linux/bio.h>
8 #include <linux/file.h>
9 #include <linux/fs.h>
10 #include <linux/fsnotify.h>
11 #include <linux/pagemap.h>
12 #include <linux/highmem.h>
13 #include <linux/time.h>
14 #include <linux/string.h>
15 #include <linux/backing-dev.h>
16 #include <linux/mount.h>
17 #include <linux/namei.h>
18 #include <linux/writeback.h>
19 #include <linux/compat.h>
20 #include <linux/security.h>
21 #include <linux/xattr.h>
22 #include <linux/mm.h>
23 #include <linux/slab.h>
24 #include <linux/blkdev.h>
25 #include <linux/uuid.h>
26 #include <linux/btrfs.h>
27 #include <linux/uaccess.h>
28 #include <linux/iversion.h>
29 #include <linux/fileattr.h>
30 #include <linux/fsverity.h>
31 #include <linux/sched/xacct.h>
32 #include "ctree.h"
33 #include "disk-io.h"
34 #include "export.h"
35 #include "transaction.h"
36 #include "btrfs_inode.h"
37 #include "print-tree.h"
38 #include "volumes.h"
39 #include "locking.h"
40 #include "backref.h"
41 #include "rcu-string.h"
42 #include "send.h"
43 #include "dev-replace.h"
44 #include "props.h"
45 #include "sysfs.h"
46 #include "qgroup.h"
47 #include "tree-log.h"
48 #include "compression.h"
49 #include "space-info.h"
50 #include "delalloc-space.h"
51 #include "block-group.h"
52 #include "subpage.h"
53 
54 #ifdef CONFIG_64BIT
55 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI
56  * structures are incorrect, as the timespec structure from userspace
57  * is 4 bytes too small. We define these alternatives here to teach
58  * the kernel about the 32-bit struct packing.
59  */
60 struct btrfs_ioctl_timespec_32 {
61 	__u64 sec;
62 	__u32 nsec;
63 } __attribute__ ((__packed__));
64 
65 struct btrfs_ioctl_received_subvol_args_32 {
66 	char	uuid[BTRFS_UUID_SIZE];	/* in */
67 	__u64	stransid;		/* in */
68 	__u64	rtransid;		/* out */
69 	struct btrfs_ioctl_timespec_32 stime; /* in */
70 	struct btrfs_ioctl_timespec_32 rtime; /* out */
71 	__u64	flags;			/* in */
72 	__u64	reserved[16];		/* in */
73 } __attribute__ ((__packed__));
74 
75 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \
76 				struct btrfs_ioctl_received_subvol_args_32)
77 #endif
78 
79 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
80 struct btrfs_ioctl_send_args_32 {
81 	__s64 send_fd;			/* in */
82 	__u64 clone_sources_count;	/* in */
83 	compat_uptr_t clone_sources;	/* in */
84 	__u64 parent_root;		/* in */
85 	__u64 flags;			/* in */
86 	__u32 version;			/* in */
87 	__u8  reserved[28];		/* in */
88 } __attribute__ ((__packed__));
89 
90 #define BTRFS_IOC_SEND_32 _IOW(BTRFS_IOCTL_MAGIC, 38, \
91 			       struct btrfs_ioctl_send_args_32)
92 
93 struct btrfs_ioctl_encoded_io_args_32 {
94 	compat_uptr_t iov;
95 	compat_ulong_t iovcnt;
96 	__s64 offset;
97 	__u64 flags;
98 	__u64 len;
99 	__u64 unencoded_len;
100 	__u64 unencoded_offset;
101 	__u32 compression;
102 	__u32 encryption;
103 	__u8 reserved[64];
104 };
105 
106 #define BTRFS_IOC_ENCODED_READ_32 _IOR(BTRFS_IOCTL_MAGIC, 64, \
107 				       struct btrfs_ioctl_encoded_io_args_32)
108 #define BTRFS_IOC_ENCODED_WRITE_32 _IOW(BTRFS_IOCTL_MAGIC, 64, \
109 					struct btrfs_ioctl_encoded_io_args_32)
110 #endif
111 
112 /* Mask out flags that are inappropriate for the given type of inode. */
113 static unsigned int btrfs_mask_fsflags_for_type(struct inode *inode,
114 		unsigned int flags)
115 {
116 	if (S_ISDIR(inode->i_mode))
117 		return flags;
118 	else if (S_ISREG(inode->i_mode))
119 		return flags & ~FS_DIRSYNC_FL;
120 	else
121 		return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
122 }
123 
124 /*
125  * Export internal inode flags to the format expected by the FS_IOC_GETFLAGS
126  * ioctl.
127  */
128 static unsigned int btrfs_inode_flags_to_fsflags(struct btrfs_inode *binode)
129 {
130 	unsigned int iflags = 0;
131 	u32 flags = binode->flags;
132 	u32 ro_flags = binode->ro_flags;
133 
134 	if (flags & BTRFS_INODE_SYNC)
135 		iflags |= FS_SYNC_FL;
136 	if (flags & BTRFS_INODE_IMMUTABLE)
137 		iflags |= FS_IMMUTABLE_FL;
138 	if (flags & BTRFS_INODE_APPEND)
139 		iflags |= FS_APPEND_FL;
140 	if (flags & BTRFS_INODE_NODUMP)
141 		iflags |= FS_NODUMP_FL;
142 	if (flags & BTRFS_INODE_NOATIME)
143 		iflags |= FS_NOATIME_FL;
144 	if (flags & BTRFS_INODE_DIRSYNC)
145 		iflags |= FS_DIRSYNC_FL;
146 	if (flags & BTRFS_INODE_NODATACOW)
147 		iflags |= FS_NOCOW_FL;
148 	if (ro_flags & BTRFS_INODE_RO_VERITY)
149 		iflags |= FS_VERITY_FL;
150 
151 	if (flags & BTRFS_INODE_NOCOMPRESS)
152 		iflags |= FS_NOCOMP_FL;
153 	else if (flags & BTRFS_INODE_COMPRESS)
154 		iflags |= FS_COMPR_FL;
155 
156 	return iflags;
157 }
158 
159 /*
160  * Update inode->i_flags based on the btrfs internal flags.
161  */
162 void btrfs_sync_inode_flags_to_i_flags(struct inode *inode)
163 {
164 	struct btrfs_inode *binode = BTRFS_I(inode);
165 	unsigned int new_fl = 0;
166 
167 	if (binode->flags & BTRFS_INODE_SYNC)
168 		new_fl |= S_SYNC;
169 	if (binode->flags & BTRFS_INODE_IMMUTABLE)
170 		new_fl |= S_IMMUTABLE;
171 	if (binode->flags & BTRFS_INODE_APPEND)
172 		new_fl |= S_APPEND;
173 	if (binode->flags & BTRFS_INODE_NOATIME)
174 		new_fl |= S_NOATIME;
175 	if (binode->flags & BTRFS_INODE_DIRSYNC)
176 		new_fl |= S_DIRSYNC;
177 	if (binode->ro_flags & BTRFS_INODE_RO_VERITY)
178 		new_fl |= S_VERITY;
179 
180 	set_mask_bits(&inode->i_flags,
181 		      S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC |
182 		      S_VERITY, new_fl);
183 }
184 
185 /*
186  * Check if @flags are a supported and valid set of FS_*_FL flags and that
187  * the old and new flags are not conflicting
188  */
189 static int check_fsflags(unsigned int old_flags, unsigned int flags)
190 {
191 	if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
192 		      FS_NOATIME_FL | FS_NODUMP_FL | \
193 		      FS_SYNC_FL | FS_DIRSYNC_FL | \
194 		      FS_NOCOMP_FL | FS_COMPR_FL |
195 		      FS_NOCOW_FL))
196 		return -EOPNOTSUPP;
197 
198 	/* COMPR and NOCOMP on new/old are valid */
199 	if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL))
200 		return -EINVAL;
201 
202 	if ((flags & FS_COMPR_FL) && (flags & FS_NOCOW_FL))
203 		return -EINVAL;
204 
205 	/* NOCOW and compression options are mutually exclusive */
206 	if ((old_flags & FS_NOCOW_FL) && (flags & (FS_COMPR_FL | FS_NOCOMP_FL)))
207 		return -EINVAL;
208 	if ((flags & FS_NOCOW_FL) && (old_flags & (FS_COMPR_FL | FS_NOCOMP_FL)))
209 		return -EINVAL;
210 
211 	return 0;
212 }
213 
214 static int check_fsflags_compatible(struct btrfs_fs_info *fs_info,
215 				    unsigned int flags)
216 {
217 	if (btrfs_is_zoned(fs_info) && (flags & FS_NOCOW_FL))
218 		return -EPERM;
219 
220 	return 0;
221 }
222 
223 /*
224  * Set flags/xflags from the internal inode flags. The remaining items of
225  * fsxattr are zeroed.
226  */
227 int btrfs_fileattr_get(struct dentry *dentry, struct fileattr *fa)
228 {
229 	struct btrfs_inode *binode = BTRFS_I(d_inode(dentry));
230 
231 	fileattr_fill_flags(fa, btrfs_inode_flags_to_fsflags(binode));
232 	return 0;
233 }
234 
235 int btrfs_fileattr_set(struct user_namespace *mnt_userns,
236 		       struct dentry *dentry, struct fileattr *fa)
237 {
238 	struct inode *inode = d_inode(dentry);
239 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
240 	struct btrfs_inode *binode = BTRFS_I(inode);
241 	struct btrfs_root *root = binode->root;
242 	struct btrfs_trans_handle *trans;
243 	unsigned int fsflags, old_fsflags;
244 	int ret;
245 	const char *comp = NULL;
246 	u32 binode_flags;
247 
248 	if (btrfs_root_readonly(root))
249 		return -EROFS;
250 
251 	if (fileattr_has_fsx(fa))
252 		return -EOPNOTSUPP;
253 
254 	fsflags = btrfs_mask_fsflags_for_type(inode, fa->flags);
255 	old_fsflags = btrfs_inode_flags_to_fsflags(binode);
256 	ret = check_fsflags(old_fsflags, fsflags);
257 	if (ret)
258 		return ret;
259 
260 	ret = check_fsflags_compatible(fs_info, fsflags);
261 	if (ret)
262 		return ret;
263 
264 	binode_flags = binode->flags;
265 	if (fsflags & FS_SYNC_FL)
266 		binode_flags |= BTRFS_INODE_SYNC;
267 	else
268 		binode_flags &= ~BTRFS_INODE_SYNC;
269 	if (fsflags & FS_IMMUTABLE_FL)
270 		binode_flags |= BTRFS_INODE_IMMUTABLE;
271 	else
272 		binode_flags &= ~BTRFS_INODE_IMMUTABLE;
273 	if (fsflags & FS_APPEND_FL)
274 		binode_flags |= BTRFS_INODE_APPEND;
275 	else
276 		binode_flags &= ~BTRFS_INODE_APPEND;
277 	if (fsflags & FS_NODUMP_FL)
278 		binode_flags |= BTRFS_INODE_NODUMP;
279 	else
280 		binode_flags &= ~BTRFS_INODE_NODUMP;
281 	if (fsflags & FS_NOATIME_FL)
282 		binode_flags |= BTRFS_INODE_NOATIME;
283 	else
284 		binode_flags &= ~BTRFS_INODE_NOATIME;
285 
286 	/* If coming from FS_IOC_FSSETXATTR then skip unconverted flags */
287 	if (!fa->flags_valid) {
288 		/* 1 item for the inode */
289 		trans = btrfs_start_transaction(root, 1);
290 		if (IS_ERR(trans))
291 			return PTR_ERR(trans);
292 		goto update_flags;
293 	}
294 
295 	if (fsflags & FS_DIRSYNC_FL)
296 		binode_flags |= BTRFS_INODE_DIRSYNC;
297 	else
298 		binode_flags &= ~BTRFS_INODE_DIRSYNC;
299 	if (fsflags & FS_NOCOW_FL) {
300 		if (S_ISREG(inode->i_mode)) {
301 			/*
302 			 * It's safe to turn csums off here, no extents exist.
303 			 * Otherwise we want the flag to reflect the real COW
304 			 * status of the file and will not set it.
305 			 */
306 			if (inode->i_size == 0)
307 				binode_flags |= BTRFS_INODE_NODATACOW |
308 						BTRFS_INODE_NODATASUM;
309 		} else {
310 			binode_flags |= BTRFS_INODE_NODATACOW;
311 		}
312 	} else {
313 		/*
314 		 * Revert back under same assumptions as above
315 		 */
316 		if (S_ISREG(inode->i_mode)) {
317 			if (inode->i_size == 0)
318 				binode_flags &= ~(BTRFS_INODE_NODATACOW |
319 						  BTRFS_INODE_NODATASUM);
320 		} else {
321 			binode_flags &= ~BTRFS_INODE_NODATACOW;
322 		}
323 	}
324 
325 	/*
326 	 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
327 	 * flag may be changed automatically if compression code won't make
328 	 * things smaller.
329 	 */
330 	if (fsflags & FS_NOCOMP_FL) {
331 		binode_flags &= ~BTRFS_INODE_COMPRESS;
332 		binode_flags |= BTRFS_INODE_NOCOMPRESS;
333 	} else if (fsflags & FS_COMPR_FL) {
334 
335 		if (IS_SWAPFILE(inode))
336 			return -ETXTBSY;
337 
338 		binode_flags |= BTRFS_INODE_COMPRESS;
339 		binode_flags &= ~BTRFS_INODE_NOCOMPRESS;
340 
341 		comp = btrfs_compress_type2str(fs_info->compress_type);
342 		if (!comp || comp[0] == 0)
343 			comp = btrfs_compress_type2str(BTRFS_COMPRESS_ZLIB);
344 	} else {
345 		binode_flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS);
346 	}
347 
348 	/*
349 	 * 1 for inode item
350 	 * 2 for properties
351 	 */
352 	trans = btrfs_start_transaction(root, 3);
353 	if (IS_ERR(trans))
354 		return PTR_ERR(trans);
355 
356 	if (comp) {
357 		ret = btrfs_set_prop(trans, inode, "btrfs.compression", comp,
358 				     strlen(comp), 0);
359 		if (ret) {
360 			btrfs_abort_transaction(trans, ret);
361 			goto out_end_trans;
362 		}
363 	} else {
364 		ret = btrfs_set_prop(trans, inode, "btrfs.compression", NULL,
365 				     0, 0);
366 		if (ret && ret != -ENODATA) {
367 			btrfs_abort_transaction(trans, ret);
368 			goto out_end_trans;
369 		}
370 	}
371 
372 update_flags:
373 	binode->flags = binode_flags;
374 	btrfs_sync_inode_flags_to_i_flags(inode);
375 	inode_inc_iversion(inode);
376 	inode->i_ctime = current_time(inode);
377 	ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
378 
379  out_end_trans:
380 	btrfs_end_transaction(trans);
381 	return ret;
382 }
383 
384 /*
385  * Start exclusive operation @type, return true on success
386  */
387 bool btrfs_exclop_start(struct btrfs_fs_info *fs_info,
388 			enum btrfs_exclusive_operation type)
389 {
390 	bool ret = false;
391 
392 	spin_lock(&fs_info->super_lock);
393 	if (fs_info->exclusive_operation == BTRFS_EXCLOP_NONE) {
394 		fs_info->exclusive_operation = type;
395 		ret = true;
396 	}
397 	spin_unlock(&fs_info->super_lock);
398 
399 	return ret;
400 }
401 
402 /*
403  * Conditionally allow to enter the exclusive operation in case it's compatible
404  * with the running one.  This must be paired with btrfs_exclop_start_unlock and
405  * btrfs_exclop_finish.
406  *
407  * Compatibility:
408  * - the same type is already running
409  * - when trying to add a device and balance has been paused
410  * - not BTRFS_EXCLOP_NONE - this is intentionally incompatible and the caller
411  *   must check the condition first that would allow none -> @type
412  */
413 bool btrfs_exclop_start_try_lock(struct btrfs_fs_info *fs_info,
414 				 enum btrfs_exclusive_operation type)
415 {
416 	spin_lock(&fs_info->super_lock);
417 	if (fs_info->exclusive_operation == type ||
418 	    (fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED &&
419 	     type == BTRFS_EXCLOP_DEV_ADD))
420 		return true;
421 
422 	spin_unlock(&fs_info->super_lock);
423 	return false;
424 }
425 
426 void btrfs_exclop_start_unlock(struct btrfs_fs_info *fs_info)
427 {
428 	spin_unlock(&fs_info->super_lock);
429 }
430 
431 void btrfs_exclop_finish(struct btrfs_fs_info *fs_info)
432 {
433 	spin_lock(&fs_info->super_lock);
434 	WRITE_ONCE(fs_info->exclusive_operation, BTRFS_EXCLOP_NONE);
435 	spin_unlock(&fs_info->super_lock);
436 	sysfs_notify(&fs_info->fs_devices->fsid_kobj, NULL, "exclusive_operation");
437 }
438 
439 void btrfs_exclop_balance(struct btrfs_fs_info *fs_info,
440 			  enum btrfs_exclusive_operation op)
441 {
442 	switch (op) {
443 	case BTRFS_EXCLOP_BALANCE_PAUSED:
444 		spin_lock(&fs_info->super_lock);
445 		ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE ||
446 		       fs_info->exclusive_operation == BTRFS_EXCLOP_DEV_ADD);
447 		fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE_PAUSED;
448 		spin_unlock(&fs_info->super_lock);
449 		break;
450 	case BTRFS_EXCLOP_BALANCE:
451 		spin_lock(&fs_info->super_lock);
452 		ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED);
453 		fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE;
454 		spin_unlock(&fs_info->super_lock);
455 		break;
456 	default:
457 		btrfs_warn(fs_info,
458 			"invalid exclop balance operation %d requested", op);
459 	}
460 }
461 
462 static int btrfs_ioctl_getversion(struct inode *inode, int __user *arg)
463 {
464 	return put_user(inode->i_generation, arg);
465 }
466 
467 static noinline int btrfs_ioctl_fitrim(struct btrfs_fs_info *fs_info,
468 					void __user *arg)
469 {
470 	struct btrfs_device *device;
471 	struct request_queue *q;
472 	struct fstrim_range range;
473 	u64 minlen = ULLONG_MAX;
474 	u64 num_devices = 0;
475 	int ret;
476 
477 	if (!capable(CAP_SYS_ADMIN))
478 		return -EPERM;
479 
480 	/*
481 	 * btrfs_trim_block_group() depends on space cache, which is not
482 	 * available in zoned filesystem. So, disallow fitrim on a zoned
483 	 * filesystem for now.
484 	 */
485 	if (btrfs_is_zoned(fs_info))
486 		return -EOPNOTSUPP;
487 
488 	/*
489 	 * If the fs is mounted with nologreplay, which requires it to be
490 	 * mounted in RO mode as well, we can not allow discard on free space
491 	 * inside block groups, because log trees refer to extents that are not
492 	 * pinned in a block group's free space cache (pinning the extents is
493 	 * precisely the first phase of replaying a log tree).
494 	 */
495 	if (btrfs_test_opt(fs_info, NOLOGREPLAY))
496 		return -EROFS;
497 
498 	rcu_read_lock();
499 	list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
500 				dev_list) {
501 		if (!device->bdev)
502 			continue;
503 		q = bdev_get_queue(device->bdev);
504 		if (blk_queue_discard(q)) {
505 			num_devices++;
506 			minlen = min_t(u64, q->limits.discard_granularity,
507 				     minlen);
508 		}
509 	}
510 	rcu_read_unlock();
511 
512 	if (!num_devices)
513 		return -EOPNOTSUPP;
514 	if (copy_from_user(&range, arg, sizeof(range)))
515 		return -EFAULT;
516 
517 	/*
518 	 * NOTE: Don't truncate the range using super->total_bytes.  Bytenr of
519 	 * block group is in the logical address space, which can be any
520 	 * sectorsize aligned bytenr in  the range [0, U64_MAX].
521 	 */
522 	if (range.len < fs_info->sb->s_blocksize)
523 		return -EINVAL;
524 
525 	range.minlen = max(range.minlen, minlen);
526 	ret = btrfs_trim_fs(fs_info, &range);
527 	if (ret < 0)
528 		return ret;
529 
530 	if (copy_to_user(arg, &range, sizeof(range)))
531 		return -EFAULT;
532 
533 	return 0;
534 }
535 
536 int __pure btrfs_is_empty_uuid(u8 *uuid)
537 {
538 	int i;
539 
540 	for (i = 0; i < BTRFS_UUID_SIZE; i++) {
541 		if (uuid[i])
542 			return 0;
543 	}
544 	return 1;
545 }
546 
547 static noinline int create_subvol(struct user_namespace *mnt_userns,
548 				  struct inode *dir, struct dentry *dentry,
549 				  const char *name, int namelen,
550 				  struct btrfs_qgroup_inherit *inherit)
551 {
552 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
553 	struct btrfs_trans_handle *trans;
554 	struct btrfs_key key;
555 	struct btrfs_root_item *root_item;
556 	struct btrfs_inode_item *inode_item;
557 	struct extent_buffer *leaf;
558 	struct btrfs_root *root = BTRFS_I(dir)->root;
559 	struct btrfs_root *new_root;
560 	struct btrfs_block_rsv block_rsv;
561 	struct timespec64 cur_time = current_time(dir);
562 	struct inode *inode;
563 	int ret;
564 	dev_t anon_dev = 0;
565 	u64 objectid;
566 	u64 index = 0;
567 
568 	root_item = kzalloc(sizeof(*root_item), GFP_KERNEL);
569 	if (!root_item)
570 		return -ENOMEM;
571 
572 	ret = btrfs_get_free_objectid(fs_info->tree_root, &objectid);
573 	if (ret)
574 		goto fail_free;
575 
576 	ret = get_anon_bdev(&anon_dev);
577 	if (ret < 0)
578 		goto fail_free;
579 
580 	/*
581 	 * Don't create subvolume whose level is not zero. Or qgroup will be
582 	 * screwed up since it assumes subvolume qgroup's level to be 0.
583 	 */
584 	if (btrfs_qgroup_level(objectid)) {
585 		ret = -ENOSPC;
586 		goto fail_free;
587 	}
588 
589 	btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
590 	/*
591 	 * The same as the snapshot creation, please see the comment
592 	 * of create_snapshot().
593 	 */
594 	ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 8, false);
595 	if (ret)
596 		goto fail_free;
597 
598 	trans = btrfs_start_transaction(root, 0);
599 	if (IS_ERR(trans)) {
600 		ret = PTR_ERR(trans);
601 		btrfs_subvolume_release_metadata(root, &block_rsv);
602 		goto fail_free;
603 	}
604 	trans->block_rsv = &block_rsv;
605 	trans->bytes_reserved = block_rsv.size;
606 
607 	ret = btrfs_qgroup_inherit(trans, 0, objectid, inherit);
608 	if (ret)
609 		goto fail;
610 
611 	leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
612 				      BTRFS_NESTING_NORMAL);
613 	if (IS_ERR(leaf)) {
614 		ret = PTR_ERR(leaf);
615 		goto fail;
616 	}
617 
618 	btrfs_mark_buffer_dirty(leaf);
619 
620 	inode_item = &root_item->inode;
621 	btrfs_set_stack_inode_generation(inode_item, 1);
622 	btrfs_set_stack_inode_size(inode_item, 3);
623 	btrfs_set_stack_inode_nlink(inode_item, 1);
624 	btrfs_set_stack_inode_nbytes(inode_item,
625 				     fs_info->nodesize);
626 	btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
627 
628 	btrfs_set_root_flags(root_item, 0);
629 	btrfs_set_root_limit(root_item, 0);
630 	btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT);
631 
632 	btrfs_set_root_bytenr(root_item, leaf->start);
633 	btrfs_set_root_generation(root_item, trans->transid);
634 	btrfs_set_root_level(root_item, 0);
635 	btrfs_set_root_refs(root_item, 1);
636 	btrfs_set_root_used(root_item, leaf->len);
637 	btrfs_set_root_last_snapshot(root_item, 0);
638 
639 	btrfs_set_root_generation_v2(root_item,
640 			btrfs_root_generation(root_item));
641 	generate_random_guid(root_item->uuid);
642 	btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec);
643 	btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec);
644 	root_item->ctime = root_item->otime;
645 	btrfs_set_root_ctransid(root_item, trans->transid);
646 	btrfs_set_root_otransid(root_item, trans->transid);
647 
648 	btrfs_tree_unlock(leaf);
649 
650 	btrfs_set_root_dirid(root_item, BTRFS_FIRST_FREE_OBJECTID);
651 
652 	key.objectid = objectid;
653 	key.offset = 0;
654 	key.type = BTRFS_ROOT_ITEM_KEY;
655 	ret = btrfs_insert_root(trans, fs_info->tree_root, &key,
656 				root_item);
657 	if (ret) {
658 		/*
659 		 * Since we don't abort the transaction in this case, free the
660 		 * tree block so that we don't leak space and leave the
661 		 * filesystem in an inconsistent state (an extent item in the
662 		 * extent tree with a backreference for a root that does not
663 		 * exists).
664 		 */
665 		btrfs_tree_lock(leaf);
666 		btrfs_clean_tree_block(leaf);
667 		btrfs_tree_unlock(leaf);
668 		btrfs_free_tree_block(trans, objectid, leaf, 0, 1);
669 		free_extent_buffer(leaf);
670 		goto fail;
671 	}
672 
673 	free_extent_buffer(leaf);
674 	leaf = NULL;
675 
676 	key.offset = (u64)-1;
677 	new_root = btrfs_get_new_fs_root(fs_info, objectid, anon_dev);
678 	if (IS_ERR(new_root)) {
679 		free_anon_bdev(anon_dev);
680 		ret = PTR_ERR(new_root);
681 		btrfs_abort_transaction(trans, ret);
682 		goto fail;
683 	}
684 	/* Freeing will be done in btrfs_put_root() of new_root */
685 	anon_dev = 0;
686 
687 	ret = btrfs_record_root_in_trans(trans, new_root);
688 	if (ret) {
689 		btrfs_put_root(new_root);
690 		btrfs_abort_transaction(trans, ret);
691 		goto fail;
692 	}
693 
694 	ret = btrfs_create_subvol_root(trans, new_root, root, mnt_userns);
695 	btrfs_put_root(new_root);
696 	if (ret) {
697 		/* We potentially lose an unused inode item here */
698 		btrfs_abort_transaction(trans, ret);
699 		goto fail;
700 	}
701 
702 	/*
703 	 * insert the directory item
704 	 */
705 	ret = btrfs_set_inode_index(BTRFS_I(dir), &index);
706 	if (ret) {
707 		btrfs_abort_transaction(trans, ret);
708 		goto fail;
709 	}
710 
711 	ret = btrfs_insert_dir_item(trans, name, namelen, BTRFS_I(dir), &key,
712 				    BTRFS_FT_DIR, index);
713 	if (ret) {
714 		btrfs_abort_transaction(trans, ret);
715 		goto fail;
716 	}
717 
718 	btrfs_i_size_write(BTRFS_I(dir), dir->i_size + namelen * 2);
719 	ret = btrfs_update_inode(trans, root, BTRFS_I(dir));
720 	if (ret) {
721 		btrfs_abort_transaction(trans, ret);
722 		goto fail;
723 	}
724 
725 	ret = btrfs_add_root_ref(trans, objectid, root->root_key.objectid,
726 				 btrfs_ino(BTRFS_I(dir)), index, name, namelen);
727 	if (ret) {
728 		btrfs_abort_transaction(trans, ret);
729 		goto fail;
730 	}
731 
732 	ret = btrfs_uuid_tree_add(trans, root_item->uuid,
733 				  BTRFS_UUID_KEY_SUBVOL, objectid);
734 	if (ret)
735 		btrfs_abort_transaction(trans, ret);
736 
737 fail:
738 	kfree(root_item);
739 	trans->block_rsv = NULL;
740 	trans->bytes_reserved = 0;
741 	btrfs_subvolume_release_metadata(root, &block_rsv);
742 
743 	if (ret)
744 		btrfs_end_transaction(trans);
745 	else
746 		ret = btrfs_commit_transaction(trans);
747 
748 	if (!ret) {
749 		inode = btrfs_lookup_dentry(dir, dentry);
750 		if (IS_ERR(inode))
751 			return PTR_ERR(inode);
752 		d_instantiate(dentry, inode);
753 	}
754 	return ret;
755 
756 fail_free:
757 	if (anon_dev)
758 		free_anon_bdev(anon_dev);
759 	kfree(root_item);
760 	return ret;
761 }
762 
763 static int create_snapshot(struct btrfs_root *root, struct inode *dir,
764 			   struct dentry *dentry, bool readonly,
765 			   struct btrfs_qgroup_inherit *inherit)
766 {
767 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
768 	struct inode *inode;
769 	struct btrfs_pending_snapshot *pending_snapshot;
770 	struct btrfs_trans_handle *trans;
771 	int ret;
772 
773 	/* We do not support snapshotting right now. */
774 	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
775 		btrfs_warn(fs_info,
776 			   "extent tree v2 doesn't support snapshotting yet");
777 		return -EOPNOTSUPP;
778 	}
779 
780 	if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
781 		return -EINVAL;
782 
783 	if (atomic_read(&root->nr_swapfiles)) {
784 		btrfs_warn(fs_info,
785 			   "cannot snapshot subvolume with active swapfile");
786 		return -ETXTBSY;
787 	}
788 
789 	pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_KERNEL);
790 	if (!pending_snapshot)
791 		return -ENOMEM;
792 
793 	ret = get_anon_bdev(&pending_snapshot->anon_dev);
794 	if (ret < 0)
795 		goto free_pending;
796 	pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item),
797 			GFP_KERNEL);
798 	pending_snapshot->path = btrfs_alloc_path();
799 	if (!pending_snapshot->root_item || !pending_snapshot->path) {
800 		ret = -ENOMEM;
801 		goto free_pending;
802 	}
803 
804 	btrfs_init_block_rsv(&pending_snapshot->block_rsv,
805 			     BTRFS_BLOCK_RSV_TEMP);
806 	/*
807 	 * 1 - parent dir inode
808 	 * 2 - dir entries
809 	 * 1 - root item
810 	 * 2 - root ref/backref
811 	 * 1 - root of snapshot
812 	 * 1 - UUID item
813 	 */
814 	ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root,
815 					&pending_snapshot->block_rsv, 8,
816 					false);
817 	if (ret)
818 		goto free_pending;
819 
820 	pending_snapshot->dentry = dentry;
821 	pending_snapshot->root = root;
822 	pending_snapshot->readonly = readonly;
823 	pending_snapshot->dir = dir;
824 	pending_snapshot->inherit = inherit;
825 
826 	trans = btrfs_start_transaction(root, 0);
827 	if (IS_ERR(trans)) {
828 		ret = PTR_ERR(trans);
829 		goto fail;
830 	}
831 
832 	trans->pending_snapshot = pending_snapshot;
833 
834 	ret = btrfs_commit_transaction(trans);
835 	if (ret)
836 		goto fail;
837 
838 	ret = pending_snapshot->error;
839 	if (ret)
840 		goto fail;
841 
842 	ret = btrfs_orphan_cleanup(pending_snapshot->snap);
843 	if (ret)
844 		goto fail;
845 
846 	inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry);
847 	if (IS_ERR(inode)) {
848 		ret = PTR_ERR(inode);
849 		goto fail;
850 	}
851 
852 	d_instantiate(dentry, inode);
853 	ret = 0;
854 	pending_snapshot->anon_dev = 0;
855 fail:
856 	/* Prevent double freeing of anon_dev */
857 	if (ret && pending_snapshot->snap)
858 		pending_snapshot->snap->anon_dev = 0;
859 	btrfs_put_root(pending_snapshot->snap);
860 	btrfs_subvolume_release_metadata(root, &pending_snapshot->block_rsv);
861 free_pending:
862 	if (pending_snapshot->anon_dev)
863 		free_anon_bdev(pending_snapshot->anon_dev);
864 	kfree(pending_snapshot->root_item);
865 	btrfs_free_path(pending_snapshot->path);
866 	kfree(pending_snapshot);
867 
868 	return ret;
869 }
870 
871 /*  copy of may_delete in fs/namei.c()
872  *	Check whether we can remove a link victim from directory dir, check
873  *  whether the type of victim is right.
874  *  1. We can't do it if dir is read-only (done in permission())
875  *  2. We should have write and exec permissions on dir
876  *  3. We can't remove anything from append-only dir
877  *  4. We can't do anything with immutable dir (done in permission())
878  *  5. If the sticky bit on dir is set we should either
879  *	a. be owner of dir, or
880  *	b. be owner of victim, or
881  *	c. have CAP_FOWNER capability
882  *  6. If the victim is append-only or immutable we can't do anything with
883  *     links pointing to it.
884  *  7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
885  *  8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
886  *  9. We can't remove a root or mountpoint.
887  * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
888  *     nfs_async_unlink().
889  */
890 
891 static int btrfs_may_delete(struct user_namespace *mnt_userns,
892 			    struct inode *dir, struct dentry *victim, int isdir)
893 {
894 	int error;
895 
896 	if (d_really_is_negative(victim))
897 		return -ENOENT;
898 
899 	BUG_ON(d_inode(victim->d_parent) != dir);
900 	audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
901 
902 	error = inode_permission(mnt_userns, dir, MAY_WRITE | MAY_EXEC);
903 	if (error)
904 		return error;
905 	if (IS_APPEND(dir))
906 		return -EPERM;
907 	if (check_sticky(mnt_userns, dir, d_inode(victim)) ||
908 	    IS_APPEND(d_inode(victim)) || IS_IMMUTABLE(d_inode(victim)) ||
909 	    IS_SWAPFILE(d_inode(victim)))
910 		return -EPERM;
911 	if (isdir) {
912 		if (!d_is_dir(victim))
913 			return -ENOTDIR;
914 		if (IS_ROOT(victim))
915 			return -EBUSY;
916 	} else if (d_is_dir(victim))
917 		return -EISDIR;
918 	if (IS_DEADDIR(dir))
919 		return -ENOENT;
920 	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
921 		return -EBUSY;
922 	return 0;
923 }
924 
925 /* copy of may_create in fs/namei.c() */
926 static inline int btrfs_may_create(struct user_namespace *mnt_userns,
927 				   struct inode *dir, struct dentry *child)
928 {
929 	if (d_really_is_positive(child))
930 		return -EEXIST;
931 	if (IS_DEADDIR(dir))
932 		return -ENOENT;
933 	if (!fsuidgid_has_mapping(dir->i_sb, mnt_userns))
934 		return -EOVERFLOW;
935 	return inode_permission(mnt_userns, dir, MAY_WRITE | MAY_EXEC);
936 }
937 
938 /*
939  * Create a new subvolume below @parent.  This is largely modeled after
940  * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
941  * inside this filesystem so it's quite a bit simpler.
942  */
943 static noinline int btrfs_mksubvol(const struct path *parent,
944 				   struct user_namespace *mnt_userns,
945 				   const char *name, int namelen,
946 				   struct btrfs_root *snap_src,
947 				   bool readonly,
948 				   struct btrfs_qgroup_inherit *inherit)
949 {
950 	struct inode *dir = d_inode(parent->dentry);
951 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
952 	struct dentry *dentry;
953 	int error;
954 
955 	error = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
956 	if (error == -EINTR)
957 		return error;
958 
959 	dentry = lookup_one(mnt_userns, name, parent->dentry, namelen);
960 	error = PTR_ERR(dentry);
961 	if (IS_ERR(dentry))
962 		goto out_unlock;
963 
964 	error = btrfs_may_create(mnt_userns, dir, dentry);
965 	if (error)
966 		goto out_dput;
967 
968 	/*
969 	 * even if this name doesn't exist, we may get hash collisions.
970 	 * check for them now when we can safely fail
971 	 */
972 	error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root,
973 					       dir->i_ino, name,
974 					       namelen);
975 	if (error)
976 		goto out_dput;
977 
978 	down_read(&fs_info->subvol_sem);
979 
980 	if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
981 		goto out_up_read;
982 
983 	if (snap_src)
984 		error = create_snapshot(snap_src, dir, dentry, readonly, inherit);
985 	else
986 		error = create_subvol(mnt_userns, dir, dentry, name, namelen, inherit);
987 
988 	if (!error)
989 		fsnotify_mkdir(dir, dentry);
990 out_up_read:
991 	up_read(&fs_info->subvol_sem);
992 out_dput:
993 	dput(dentry);
994 out_unlock:
995 	btrfs_inode_unlock(dir, 0);
996 	return error;
997 }
998 
999 static noinline int btrfs_mksnapshot(const struct path *parent,
1000 				   struct user_namespace *mnt_userns,
1001 				   const char *name, int namelen,
1002 				   struct btrfs_root *root,
1003 				   bool readonly,
1004 				   struct btrfs_qgroup_inherit *inherit)
1005 {
1006 	int ret;
1007 	bool snapshot_force_cow = false;
1008 
1009 	/*
1010 	 * Force new buffered writes to reserve space even when NOCOW is
1011 	 * possible. This is to avoid later writeback (running dealloc) to
1012 	 * fallback to COW mode and unexpectedly fail with ENOSPC.
1013 	 */
1014 	btrfs_drew_read_lock(&root->snapshot_lock);
1015 
1016 	ret = btrfs_start_delalloc_snapshot(root, false);
1017 	if (ret)
1018 		goto out;
1019 
1020 	/*
1021 	 * All previous writes have started writeback in NOCOW mode, so now
1022 	 * we force future writes to fallback to COW mode during snapshot
1023 	 * creation.
1024 	 */
1025 	atomic_inc(&root->snapshot_force_cow);
1026 	snapshot_force_cow = true;
1027 
1028 	btrfs_wait_ordered_extents(root, U64_MAX, 0, (u64)-1);
1029 
1030 	ret = btrfs_mksubvol(parent, mnt_userns, name, namelen,
1031 			     root, readonly, inherit);
1032 out:
1033 	if (snapshot_force_cow)
1034 		atomic_dec(&root->snapshot_force_cow);
1035 	btrfs_drew_read_unlock(&root->snapshot_lock);
1036 	return ret;
1037 }
1038 
1039 /*
1040  * Defrag specific helper to get an extent map.
1041  *
1042  * Differences between this and btrfs_get_extent() are:
1043  *
1044  * - No extent_map will be added to inode->extent_tree
1045  *   To reduce memory usage in the long run.
1046  *
1047  * - Extra optimization to skip file extents older than @newer_than
1048  *   By using btrfs_search_forward() we can skip entire file ranges that
1049  *   have extents created in past transactions, because btrfs_search_forward()
1050  *   will not visit leaves and nodes with a generation smaller than given
1051  *   minimal generation threshold (@newer_than).
1052  *
1053  * Return valid em if we find a file extent matching the requirement.
1054  * Return NULL if we can not find a file extent matching the requirement.
1055  *
1056  * Return ERR_PTR() for error.
1057  */
1058 static struct extent_map *defrag_get_extent(struct btrfs_inode *inode,
1059 					    u64 start, u64 newer_than)
1060 {
1061 	struct btrfs_root *root = inode->root;
1062 	struct btrfs_file_extent_item *fi;
1063 	struct btrfs_path path = { 0 };
1064 	struct extent_map *em;
1065 	struct btrfs_key key;
1066 	u64 ino = btrfs_ino(inode);
1067 	int ret;
1068 
1069 	em = alloc_extent_map();
1070 	if (!em) {
1071 		ret = -ENOMEM;
1072 		goto err;
1073 	}
1074 
1075 	key.objectid = ino;
1076 	key.type = BTRFS_EXTENT_DATA_KEY;
1077 	key.offset = start;
1078 
1079 	if (newer_than) {
1080 		ret = btrfs_search_forward(root, &key, &path, newer_than);
1081 		if (ret < 0)
1082 			goto err;
1083 		/* Can't find anything newer */
1084 		if (ret > 0)
1085 			goto not_found;
1086 	} else {
1087 		ret = btrfs_search_slot(NULL, root, &key, &path, 0, 0);
1088 		if (ret < 0)
1089 			goto err;
1090 	}
1091 	if (path.slots[0] >= btrfs_header_nritems(path.nodes[0])) {
1092 		/*
1093 		 * If btrfs_search_slot() makes path to point beyond nritems,
1094 		 * we should not have an empty leaf, as this inode must at
1095 		 * least have its INODE_ITEM.
1096 		 */
1097 		ASSERT(btrfs_header_nritems(path.nodes[0]));
1098 		path.slots[0] = btrfs_header_nritems(path.nodes[0]) - 1;
1099 	}
1100 	btrfs_item_key_to_cpu(path.nodes[0], &key, path.slots[0]);
1101 	/* Perfect match, no need to go one slot back */
1102 	if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY &&
1103 	    key.offset == start)
1104 		goto iterate;
1105 
1106 	/* We didn't find a perfect match, needs to go one slot back */
1107 	if (path.slots[0] > 0) {
1108 		btrfs_item_key_to_cpu(path.nodes[0], &key, path.slots[0]);
1109 		if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY)
1110 			path.slots[0]--;
1111 	}
1112 
1113 iterate:
1114 	/* Iterate through the path to find a file extent covering @start */
1115 	while (true) {
1116 		u64 extent_end;
1117 
1118 		if (path.slots[0] >= btrfs_header_nritems(path.nodes[0]))
1119 			goto next;
1120 
1121 		btrfs_item_key_to_cpu(path.nodes[0], &key, path.slots[0]);
1122 
1123 		/*
1124 		 * We may go one slot back to INODE_REF/XATTR item, then
1125 		 * need to go forward until we reach an EXTENT_DATA.
1126 		 * But we should still has the correct ino as key.objectid.
1127 		 */
1128 		if (WARN_ON(key.objectid < ino) || key.type < BTRFS_EXTENT_DATA_KEY)
1129 			goto next;
1130 
1131 		/* It's beyond our target range, definitely not extent found */
1132 		if (key.objectid > ino || key.type > BTRFS_EXTENT_DATA_KEY)
1133 			goto not_found;
1134 
1135 		/*
1136 		 *	|	|<- File extent ->|
1137 		 *	\- start
1138 		 *
1139 		 * This means there is a hole between start and key.offset.
1140 		 */
1141 		if (key.offset > start) {
1142 			em->start = start;
1143 			em->orig_start = start;
1144 			em->block_start = EXTENT_MAP_HOLE;
1145 			em->len = key.offset - start;
1146 			break;
1147 		}
1148 
1149 		fi = btrfs_item_ptr(path.nodes[0], path.slots[0],
1150 				    struct btrfs_file_extent_item);
1151 		extent_end = btrfs_file_extent_end(&path);
1152 
1153 		/*
1154 		 *	|<- file extent ->|	|
1155 		 *				\- start
1156 		 *
1157 		 * We haven't reached start, search next slot.
1158 		 */
1159 		if (extent_end <= start)
1160 			goto next;
1161 
1162 		/* Now this extent covers @start, convert it to em */
1163 		btrfs_extent_item_to_extent_map(inode, &path, fi, false, em);
1164 		break;
1165 next:
1166 		ret = btrfs_next_item(root, &path);
1167 		if (ret < 0)
1168 			goto err;
1169 		if (ret > 0)
1170 			goto not_found;
1171 	}
1172 	btrfs_release_path(&path);
1173 	return em;
1174 
1175 not_found:
1176 	btrfs_release_path(&path);
1177 	free_extent_map(em);
1178 	return NULL;
1179 
1180 err:
1181 	btrfs_release_path(&path);
1182 	free_extent_map(em);
1183 	return ERR_PTR(ret);
1184 }
1185 
1186 static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start,
1187 					       u64 newer_than, bool locked)
1188 {
1189 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1190 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1191 	struct extent_map *em;
1192 	const u32 sectorsize = BTRFS_I(inode)->root->fs_info->sectorsize;
1193 
1194 	/*
1195 	 * hopefully we have this extent in the tree already, try without
1196 	 * the full extent lock
1197 	 */
1198 	read_lock(&em_tree->lock);
1199 	em = lookup_extent_mapping(em_tree, start, sectorsize);
1200 	read_unlock(&em_tree->lock);
1201 
1202 	/*
1203 	 * We can get a merged extent, in that case, we need to re-search
1204 	 * tree to get the original em for defrag.
1205 	 *
1206 	 * If @newer_than is 0 or em::generation < newer_than, we can trust
1207 	 * this em, as either we don't care about the generation, or the
1208 	 * merged extent map will be rejected anyway.
1209 	 */
1210 	if (em && test_bit(EXTENT_FLAG_MERGED, &em->flags) &&
1211 	    newer_than && em->generation >= newer_than) {
1212 		free_extent_map(em);
1213 		em = NULL;
1214 	}
1215 
1216 	if (!em) {
1217 		struct extent_state *cached = NULL;
1218 		u64 end = start + sectorsize - 1;
1219 
1220 		/* get the big lock and read metadata off disk */
1221 		if (!locked)
1222 			lock_extent_bits(io_tree, start, end, &cached);
1223 		em = defrag_get_extent(BTRFS_I(inode), start, newer_than);
1224 		if (!locked)
1225 			unlock_extent_cached(io_tree, start, end, &cached);
1226 
1227 		if (IS_ERR(em))
1228 			return NULL;
1229 	}
1230 
1231 	return em;
1232 }
1233 
1234 static u32 get_extent_max_capacity(const struct extent_map *em)
1235 {
1236 	if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
1237 		return BTRFS_MAX_COMPRESSED;
1238 	return BTRFS_MAX_EXTENT_SIZE;
1239 }
1240 
1241 static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em,
1242 				     u32 extent_thresh, u64 newer_than, bool locked)
1243 {
1244 	struct extent_map *next;
1245 	bool ret = false;
1246 
1247 	/* this is the last extent */
1248 	if (em->start + em->len >= i_size_read(inode))
1249 		return false;
1250 
1251 	/*
1252 	 * Here we need to pass @newer_then when checking the next extent, or
1253 	 * we will hit a case we mark current extent for defrag, but the next
1254 	 * one will not be a target.
1255 	 * This will just cause extra IO without really reducing the fragments.
1256 	 */
1257 	next = defrag_lookup_extent(inode, em->start + em->len, newer_than, locked);
1258 	/* No more em or hole */
1259 	if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE)
1260 		goto out;
1261 	if (test_bit(EXTENT_FLAG_PREALLOC, &next->flags))
1262 		goto out;
1263 	/*
1264 	 * If the next extent is at its max capacity, defragging current extent
1265 	 * makes no sense, as the total number of extents won't change.
1266 	 */
1267 	if (next->len >= get_extent_max_capacity(em))
1268 		goto out;
1269 	/* Skip older extent */
1270 	if (next->generation < newer_than)
1271 		goto out;
1272 	/* Also check extent size */
1273 	if (next->len >= extent_thresh)
1274 		goto out;
1275 
1276 	ret = true;
1277 out:
1278 	free_extent_map(next);
1279 	return ret;
1280 }
1281 
1282 /*
1283  * Prepare one page to be defragged.
1284  *
1285  * This will ensure:
1286  *
1287  * - Returned page is locked and has been set up properly.
1288  * - No ordered extent exists in the page.
1289  * - The page is uptodate.
1290  *
1291  * NOTE: Caller should also wait for page writeback after the cluster is
1292  * prepared, here we don't do writeback wait for each page.
1293  */
1294 static struct page *defrag_prepare_one_page(struct btrfs_inode *inode,
1295 					    pgoff_t index)
1296 {
1297 	struct address_space *mapping = inode->vfs_inode.i_mapping;
1298 	gfp_t mask = btrfs_alloc_write_mask(mapping);
1299 	u64 page_start = (u64)index << PAGE_SHIFT;
1300 	u64 page_end = page_start + PAGE_SIZE - 1;
1301 	struct extent_state *cached_state = NULL;
1302 	struct page *page;
1303 	int ret;
1304 
1305 again:
1306 	page = find_or_create_page(mapping, index, mask);
1307 	if (!page)
1308 		return ERR_PTR(-ENOMEM);
1309 
1310 	/*
1311 	 * Since we can defragment files opened read-only, we can encounter
1312 	 * transparent huge pages here (see CONFIG_READ_ONLY_THP_FOR_FS). We
1313 	 * can't do I/O using huge pages yet, so return an error for now.
1314 	 * Filesystem transparent huge pages are typically only used for
1315 	 * executables that explicitly enable them, so this isn't very
1316 	 * restrictive.
1317 	 */
1318 	if (PageCompound(page)) {
1319 		unlock_page(page);
1320 		put_page(page);
1321 		return ERR_PTR(-ETXTBSY);
1322 	}
1323 
1324 	ret = set_page_extent_mapped(page);
1325 	if (ret < 0) {
1326 		unlock_page(page);
1327 		put_page(page);
1328 		return ERR_PTR(ret);
1329 	}
1330 
1331 	/* Wait for any existing ordered extent in the range */
1332 	while (1) {
1333 		struct btrfs_ordered_extent *ordered;
1334 
1335 		lock_extent_bits(&inode->io_tree, page_start, page_end, &cached_state);
1336 		ordered = btrfs_lookup_ordered_range(inode, page_start, PAGE_SIZE);
1337 		unlock_extent_cached(&inode->io_tree, page_start, page_end,
1338 				     &cached_state);
1339 		if (!ordered)
1340 			break;
1341 
1342 		unlock_page(page);
1343 		btrfs_start_ordered_extent(ordered, 1);
1344 		btrfs_put_ordered_extent(ordered);
1345 		lock_page(page);
1346 		/*
1347 		 * We unlocked the page above, so we need check if it was
1348 		 * released or not.
1349 		 */
1350 		if (page->mapping != mapping || !PagePrivate(page)) {
1351 			unlock_page(page);
1352 			put_page(page);
1353 			goto again;
1354 		}
1355 	}
1356 
1357 	/*
1358 	 * Now the page range has no ordered extent any more.  Read the page to
1359 	 * make it uptodate.
1360 	 */
1361 	if (!PageUptodate(page)) {
1362 		btrfs_readpage(NULL, page);
1363 		lock_page(page);
1364 		if (page->mapping != mapping || !PagePrivate(page)) {
1365 			unlock_page(page);
1366 			put_page(page);
1367 			goto again;
1368 		}
1369 		if (!PageUptodate(page)) {
1370 			unlock_page(page);
1371 			put_page(page);
1372 			return ERR_PTR(-EIO);
1373 		}
1374 	}
1375 	return page;
1376 }
1377 
1378 struct defrag_target_range {
1379 	struct list_head list;
1380 	u64 start;
1381 	u64 len;
1382 };
1383 
1384 /*
1385  * Collect all valid target extents.
1386  *
1387  * @start:	   file offset to lookup
1388  * @len:	   length to lookup
1389  * @extent_thresh: file extent size threshold, any extent size >= this value
1390  *		   will be ignored
1391  * @newer_than:    only defrag extents newer than this value
1392  * @do_compress:   whether the defrag is doing compression
1393  *		   if true, @extent_thresh will be ignored and all regular
1394  *		   file extents meeting @newer_than will be targets.
1395  * @locked:	   if the range has already held extent lock
1396  * @target_list:   list of targets file extents
1397  */
1398 static int defrag_collect_targets(struct btrfs_inode *inode,
1399 				  u64 start, u64 len, u32 extent_thresh,
1400 				  u64 newer_than, bool do_compress,
1401 				  bool locked, struct list_head *target_list,
1402 				  u64 *last_scanned_ret)
1403 {
1404 	bool last_is_target = false;
1405 	u64 cur = start;
1406 	int ret = 0;
1407 
1408 	while (cur < start + len) {
1409 		struct extent_map *em;
1410 		struct defrag_target_range *new;
1411 		bool next_mergeable = true;
1412 		u64 range_len;
1413 
1414 		last_is_target = false;
1415 		em = defrag_lookup_extent(&inode->vfs_inode, cur,
1416 					  newer_than, locked);
1417 		if (!em)
1418 			break;
1419 
1420 		/* Skip hole/inline/preallocated extents */
1421 		if (em->block_start >= EXTENT_MAP_LAST_BYTE ||
1422 		    test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
1423 			goto next;
1424 
1425 		/* Skip older extent */
1426 		if (em->generation < newer_than)
1427 			goto next;
1428 
1429 		/* This em is under writeback, no need to defrag */
1430 		if (em->generation == (u64)-1)
1431 			goto next;
1432 
1433 		/*
1434 		 * Our start offset might be in the middle of an existing extent
1435 		 * map, so take that into account.
1436 		 */
1437 		range_len = em->len - (cur - em->start);
1438 		/*
1439 		 * If this range of the extent map is already flagged for delalloc,
1440 		 * skip it, because:
1441 		 *
1442 		 * 1) We could deadlock later, when trying to reserve space for
1443 		 *    delalloc, because in case we can't immediately reserve space
1444 		 *    the flusher can start delalloc and wait for the respective
1445 		 *    ordered extents to complete. The deadlock would happen
1446 		 *    because we do the space reservation while holding the range
1447 		 *    locked, and starting writeback, or finishing an ordered
1448 		 *    extent, requires locking the range;
1449 		 *
1450 		 * 2) If there's delalloc there, it means there's dirty pages for
1451 		 *    which writeback has not started yet (we clean the delalloc
1452 		 *    flag when starting writeback and after creating an ordered
1453 		 *    extent). If we mark pages in an adjacent range for defrag,
1454 		 *    then we will have a larger contiguous range for delalloc,
1455 		 *    very likely resulting in a larger extent after writeback is
1456 		 *    triggered (except in a case of free space fragmentation).
1457 		 */
1458 		if (test_range_bit(&inode->io_tree, cur, cur + range_len - 1,
1459 				   EXTENT_DELALLOC, 0, NULL))
1460 			goto next;
1461 
1462 		/*
1463 		 * For do_compress case, we want to compress all valid file
1464 		 * extents, thus no @extent_thresh or mergeable check.
1465 		 */
1466 		if (do_compress)
1467 			goto add;
1468 
1469 		/* Skip too large extent */
1470 		if (range_len >= extent_thresh)
1471 			goto next;
1472 
1473 		/*
1474 		 * Skip extents already at its max capacity, this is mostly for
1475 		 * compressed extents, which max cap is only 128K.
1476 		 */
1477 		if (em->len >= get_extent_max_capacity(em))
1478 			goto next;
1479 
1480 		next_mergeable = defrag_check_next_extent(&inode->vfs_inode, em,
1481 						extent_thresh, newer_than, locked);
1482 		if (!next_mergeable) {
1483 			struct defrag_target_range *last;
1484 
1485 			/* Empty target list, no way to merge with last entry */
1486 			if (list_empty(target_list))
1487 				goto next;
1488 			last = list_entry(target_list->prev,
1489 					  struct defrag_target_range, list);
1490 			/* Not mergeable with last entry */
1491 			if (last->start + last->len != cur)
1492 				goto next;
1493 
1494 			/* Mergeable, fall through to add it to @target_list. */
1495 		}
1496 
1497 add:
1498 		last_is_target = true;
1499 		range_len = min(extent_map_end(em), start + len) - cur;
1500 		/*
1501 		 * This one is a good target, check if it can be merged into
1502 		 * last range of the target list.
1503 		 */
1504 		if (!list_empty(target_list)) {
1505 			struct defrag_target_range *last;
1506 
1507 			last = list_entry(target_list->prev,
1508 					  struct defrag_target_range, list);
1509 			ASSERT(last->start + last->len <= cur);
1510 			if (last->start + last->len == cur) {
1511 				/* Mergeable, enlarge the last entry */
1512 				last->len += range_len;
1513 				goto next;
1514 			}
1515 			/* Fall through to allocate a new entry */
1516 		}
1517 
1518 		/* Allocate new defrag_target_range */
1519 		new = kmalloc(sizeof(*new), GFP_NOFS);
1520 		if (!new) {
1521 			free_extent_map(em);
1522 			ret = -ENOMEM;
1523 			break;
1524 		}
1525 		new->start = cur;
1526 		new->len = range_len;
1527 		list_add_tail(&new->list, target_list);
1528 
1529 next:
1530 		cur = extent_map_end(em);
1531 		free_extent_map(em);
1532 	}
1533 	if (ret < 0) {
1534 		struct defrag_target_range *entry;
1535 		struct defrag_target_range *tmp;
1536 
1537 		list_for_each_entry_safe(entry, tmp, target_list, list) {
1538 			list_del_init(&entry->list);
1539 			kfree(entry);
1540 		}
1541 	}
1542 	if (!ret && last_scanned_ret) {
1543 		/*
1544 		 * If the last extent is not a target, the caller can skip to
1545 		 * the end of that extent.
1546 		 * Otherwise, we can only go the end of the specified range.
1547 		 */
1548 		if (!last_is_target)
1549 			*last_scanned_ret = max(cur, *last_scanned_ret);
1550 		else
1551 			*last_scanned_ret = max(start + len, *last_scanned_ret);
1552 	}
1553 	return ret;
1554 }
1555 
1556 #define CLUSTER_SIZE	(SZ_256K)
1557 static_assert(IS_ALIGNED(CLUSTER_SIZE, PAGE_SIZE));
1558 
1559 /*
1560  * Defrag one contiguous target range.
1561  *
1562  * @inode:	target inode
1563  * @target:	target range to defrag
1564  * @pages:	locked pages covering the defrag range
1565  * @nr_pages:	number of locked pages
1566  *
1567  * Caller should ensure:
1568  *
1569  * - Pages are prepared
1570  *   Pages should be locked, no ordered extent in the pages range,
1571  *   no writeback.
1572  *
1573  * - Extent bits are locked
1574  */
1575 static int defrag_one_locked_target(struct btrfs_inode *inode,
1576 				    struct defrag_target_range *target,
1577 				    struct page **pages, int nr_pages,
1578 				    struct extent_state **cached_state)
1579 {
1580 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1581 	struct extent_changeset *data_reserved = NULL;
1582 	const u64 start = target->start;
1583 	const u64 len = target->len;
1584 	unsigned long last_index = (start + len - 1) >> PAGE_SHIFT;
1585 	unsigned long start_index = start >> PAGE_SHIFT;
1586 	unsigned long first_index = page_index(pages[0]);
1587 	int ret = 0;
1588 	int i;
1589 
1590 	ASSERT(last_index - first_index + 1 <= nr_pages);
1591 
1592 	ret = btrfs_delalloc_reserve_space(inode, &data_reserved, start, len);
1593 	if (ret < 0)
1594 		return ret;
1595 	clear_extent_bit(&inode->io_tree, start, start + len - 1,
1596 			 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
1597 			 EXTENT_DEFRAG, 0, 0, cached_state);
1598 	set_extent_defrag(&inode->io_tree, start, start + len - 1, cached_state);
1599 
1600 	/* Update the page status */
1601 	for (i = start_index - first_index; i <= last_index - first_index; i++) {
1602 		ClearPageChecked(pages[i]);
1603 		btrfs_page_clamp_set_dirty(fs_info, pages[i], start, len);
1604 	}
1605 	btrfs_delalloc_release_extents(inode, len);
1606 	extent_changeset_free(data_reserved);
1607 
1608 	return ret;
1609 }
1610 
1611 static int defrag_one_range(struct btrfs_inode *inode, u64 start, u32 len,
1612 			    u32 extent_thresh, u64 newer_than, bool do_compress,
1613 			    u64 *last_scanned_ret)
1614 {
1615 	struct extent_state *cached_state = NULL;
1616 	struct defrag_target_range *entry;
1617 	struct defrag_target_range *tmp;
1618 	LIST_HEAD(target_list);
1619 	struct page **pages;
1620 	const u32 sectorsize = inode->root->fs_info->sectorsize;
1621 	u64 last_index = (start + len - 1) >> PAGE_SHIFT;
1622 	u64 start_index = start >> PAGE_SHIFT;
1623 	unsigned int nr_pages = last_index - start_index + 1;
1624 	int ret = 0;
1625 	int i;
1626 
1627 	ASSERT(nr_pages <= CLUSTER_SIZE / PAGE_SIZE);
1628 	ASSERT(IS_ALIGNED(start, sectorsize) && IS_ALIGNED(len, sectorsize));
1629 
1630 	pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
1631 	if (!pages)
1632 		return -ENOMEM;
1633 
1634 	/* Prepare all pages */
1635 	for (i = 0; i < nr_pages; i++) {
1636 		pages[i] = defrag_prepare_one_page(inode, start_index + i);
1637 		if (IS_ERR(pages[i])) {
1638 			ret = PTR_ERR(pages[i]);
1639 			pages[i] = NULL;
1640 			goto free_pages;
1641 		}
1642 	}
1643 	for (i = 0; i < nr_pages; i++)
1644 		wait_on_page_writeback(pages[i]);
1645 
1646 	/* Lock the pages range */
1647 	lock_extent_bits(&inode->io_tree, start_index << PAGE_SHIFT,
1648 			 (last_index << PAGE_SHIFT) + PAGE_SIZE - 1,
1649 			 &cached_state);
1650 	/*
1651 	 * Now we have a consistent view about the extent map, re-check
1652 	 * which range really needs to be defragged.
1653 	 *
1654 	 * And this time we have extent locked already, pass @locked = true
1655 	 * so that we won't relock the extent range and cause deadlock.
1656 	 */
1657 	ret = defrag_collect_targets(inode, start, len, extent_thresh,
1658 				     newer_than, do_compress, true,
1659 				     &target_list, last_scanned_ret);
1660 	if (ret < 0)
1661 		goto unlock_extent;
1662 
1663 	list_for_each_entry(entry, &target_list, list) {
1664 		ret = defrag_one_locked_target(inode, entry, pages, nr_pages,
1665 					       &cached_state);
1666 		if (ret < 0)
1667 			break;
1668 	}
1669 
1670 	list_for_each_entry_safe(entry, tmp, &target_list, list) {
1671 		list_del_init(&entry->list);
1672 		kfree(entry);
1673 	}
1674 unlock_extent:
1675 	unlock_extent_cached(&inode->io_tree, start_index << PAGE_SHIFT,
1676 			     (last_index << PAGE_SHIFT) + PAGE_SIZE - 1,
1677 			     &cached_state);
1678 free_pages:
1679 	for (i = 0; i < nr_pages; i++) {
1680 		if (pages[i]) {
1681 			unlock_page(pages[i]);
1682 			put_page(pages[i]);
1683 		}
1684 	}
1685 	kfree(pages);
1686 	return ret;
1687 }
1688 
1689 static int defrag_one_cluster(struct btrfs_inode *inode,
1690 			      struct file_ra_state *ra,
1691 			      u64 start, u32 len, u32 extent_thresh,
1692 			      u64 newer_than, bool do_compress,
1693 			      unsigned long *sectors_defragged,
1694 			      unsigned long max_sectors,
1695 			      u64 *last_scanned_ret)
1696 {
1697 	const u32 sectorsize = inode->root->fs_info->sectorsize;
1698 	struct defrag_target_range *entry;
1699 	struct defrag_target_range *tmp;
1700 	LIST_HEAD(target_list);
1701 	int ret;
1702 
1703 	ret = defrag_collect_targets(inode, start, len, extent_thresh,
1704 				     newer_than, do_compress, false,
1705 				     &target_list, NULL);
1706 	if (ret < 0)
1707 		goto out;
1708 
1709 	list_for_each_entry(entry, &target_list, list) {
1710 		u32 range_len = entry->len;
1711 
1712 		/* Reached or beyond the limit */
1713 		if (max_sectors && *sectors_defragged >= max_sectors) {
1714 			ret = 1;
1715 			break;
1716 		}
1717 
1718 		if (max_sectors)
1719 			range_len = min_t(u32, range_len,
1720 				(max_sectors - *sectors_defragged) * sectorsize);
1721 
1722 		/*
1723 		 * If defrag_one_range() has updated last_scanned_ret,
1724 		 * our range may already be invalid (e.g. hole punched).
1725 		 * Skip if our range is before last_scanned_ret, as there is
1726 		 * no need to defrag the range anymore.
1727 		 */
1728 		if (entry->start + range_len <= *last_scanned_ret)
1729 			continue;
1730 
1731 		if (ra)
1732 			page_cache_sync_readahead(inode->vfs_inode.i_mapping,
1733 				ra, NULL, entry->start >> PAGE_SHIFT,
1734 				((entry->start + range_len - 1) >> PAGE_SHIFT) -
1735 				(entry->start >> PAGE_SHIFT) + 1);
1736 		/*
1737 		 * Here we may not defrag any range if holes are punched before
1738 		 * we locked the pages.
1739 		 * But that's fine, it only affects the @sectors_defragged
1740 		 * accounting.
1741 		 */
1742 		ret = defrag_one_range(inode, entry->start, range_len,
1743 				       extent_thresh, newer_than, do_compress,
1744 				       last_scanned_ret);
1745 		if (ret < 0)
1746 			break;
1747 		*sectors_defragged += range_len >>
1748 				      inode->root->fs_info->sectorsize_bits;
1749 	}
1750 out:
1751 	list_for_each_entry_safe(entry, tmp, &target_list, list) {
1752 		list_del_init(&entry->list);
1753 		kfree(entry);
1754 	}
1755 	if (ret >= 0)
1756 		*last_scanned_ret = max(*last_scanned_ret, start + len);
1757 	return ret;
1758 }
1759 
1760 /*
1761  * Entry point to file defragmentation.
1762  *
1763  * @inode:	   inode to be defragged
1764  * @ra:		   readahead state (can be NUL)
1765  * @range:	   defrag options including range and flags
1766  * @newer_than:	   minimum transid to defrag
1767  * @max_to_defrag: max number of sectors to be defragged, if 0, the whole inode
1768  *		   will be defragged.
1769  *
1770  * Return <0 for error.
1771  * Return >=0 for the number of sectors defragged, and range->start will be updated
1772  * to indicate the file offset where next defrag should be started at.
1773  * (Mostly for autodefrag, which sets @max_to_defrag thus we may exit early without
1774  *  defragging all the range).
1775  */
1776 int btrfs_defrag_file(struct inode *inode, struct file_ra_state *ra,
1777 		      struct btrfs_ioctl_defrag_range_args *range,
1778 		      u64 newer_than, unsigned long max_to_defrag)
1779 {
1780 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1781 	unsigned long sectors_defragged = 0;
1782 	u64 isize = i_size_read(inode);
1783 	u64 cur;
1784 	u64 last_byte;
1785 	bool do_compress = range->flags & BTRFS_DEFRAG_RANGE_COMPRESS;
1786 	bool ra_allocated = false;
1787 	int compress_type = BTRFS_COMPRESS_ZLIB;
1788 	int ret = 0;
1789 	u32 extent_thresh = range->extent_thresh;
1790 	pgoff_t start_index;
1791 
1792 	if (isize == 0)
1793 		return 0;
1794 
1795 	if (range->start >= isize)
1796 		return -EINVAL;
1797 
1798 	if (do_compress) {
1799 		if (range->compress_type >= BTRFS_NR_COMPRESS_TYPES)
1800 			return -EINVAL;
1801 		if (range->compress_type)
1802 			compress_type = range->compress_type;
1803 	}
1804 
1805 	if (extent_thresh == 0)
1806 		extent_thresh = SZ_256K;
1807 
1808 	if (range->start + range->len > range->start) {
1809 		/* Got a specific range */
1810 		last_byte = min(isize, range->start + range->len);
1811 	} else {
1812 		/* Defrag until file end */
1813 		last_byte = isize;
1814 	}
1815 
1816 	/* Align the range */
1817 	cur = round_down(range->start, fs_info->sectorsize);
1818 	last_byte = round_up(last_byte, fs_info->sectorsize) - 1;
1819 
1820 	/*
1821 	 * If we were not given a ra, allocate a readahead context. As
1822 	 * readahead is just an optimization, defrag will work without it so
1823 	 * we don't error out.
1824 	 */
1825 	if (!ra) {
1826 		ra_allocated = true;
1827 		ra = kzalloc(sizeof(*ra), GFP_KERNEL);
1828 		if (ra)
1829 			file_ra_state_init(ra, inode->i_mapping);
1830 	}
1831 
1832 	/*
1833 	 * Make writeback start from the beginning of the range, so that the
1834 	 * defrag range can be written sequentially.
1835 	 */
1836 	start_index = cur >> PAGE_SHIFT;
1837 	if (start_index < inode->i_mapping->writeback_index)
1838 		inode->i_mapping->writeback_index = start_index;
1839 
1840 	while (cur < last_byte) {
1841 		const unsigned long prev_sectors_defragged = sectors_defragged;
1842 		u64 last_scanned = cur;
1843 		u64 cluster_end;
1844 
1845 		if (btrfs_defrag_cancelled(fs_info)) {
1846 			ret = -EAGAIN;
1847 			break;
1848 		}
1849 
1850 		/* We want the cluster end at page boundary when possible */
1851 		cluster_end = (((cur >> PAGE_SHIFT) +
1852 			       (SZ_256K >> PAGE_SHIFT)) << PAGE_SHIFT) - 1;
1853 		cluster_end = min(cluster_end, last_byte);
1854 
1855 		btrfs_inode_lock(inode, 0);
1856 		if (IS_SWAPFILE(inode)) {
1857 			ret = -ETXTBSY;
1858 			btrfs_inode_unlock(inode, 0);
1859 			break;
1860 		}
1861 		if (!(inode->i_sb->s_flags & SB_ACTIVE)) {
1862 			btrfs_inode_unlock(inode, 0);
1863 			break;
1864 		}
1865 		if (do_compress)
1866 			BTRFS_I(inode)->defrag_compress = compress_type;
1867 		ret = defrag_one_cluster(BTRFS_I(inode), ra, cur,
1868 				cluster_end + 1 - cur, extent_thresh,
1869 				newer_than, do_compress, &sectors_defragged,
1870 				max_to_defrag, &last_scanned);
1871 
1872 		if (sectors_defragged > prev_sectors_defragged)
1873 			balance_dirty_pages_ratelimited(inode->i_mapping);
1874 
1875 		btrfs_inode_unlock(inode, 0);
1876 		if (ret < 0)
1877 			break;
1878 		cur = max(cluster_end + 1, last_scanned);
1879 		if (ret > 0) {
1880 			ret = 0;
1881 			break;
1882 		}
1883 		cond_resched();
1884 	}
1885 
1886 	if (ra_allocated)
1887 		kfree(ra);
1888 	/*
1889 	 * Update range.start for autodefrag, this will indicate where to start
1890 	 * in next run.
1891 	 */
1892 	range->start = cur;
1893 	if (sectors_defragged) {
1894 		/*
1895 		 * We have defragged some sectors, for compression case they
1896 		 * need to be written back immediately.
1897 		 */
1898 		if (range->flags & BTRFS_DEFRAG_RANGE_START_IO) {
1899 			filemap_flush(inode->i_mapping);
1900 			if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1901 				     &BTRFS_I(inode)->runtime_flags))
1902 				filemap_flush(inode->i_mapping);
1903 		}
1904 		if (range->compress_type == BTRFS_COMPRESS_LZO)
1905 			btrfs_set_fs_incompat(fs_info, COMPRESS_LZO);
1906 		else if (range->compress_type == BTRFS_COMPRESS_ZSTD)
1907 			btrfs_set_fs_incompat(fs_info, COMPRESS_ZSTD);
1908 		ret = sectors_defragged;
1909 	}
1910 	if (do_compress) {
1911 		btrfs_inode_lock(inode, 0);
1912 		BTRFS_I(inode)->defrag_compress = BTRFS_COMPRESS_NONE;
1913 		btrfs_inode_unlock(inode, 0);
1914 	}
1915 	return ret;
1916 }
1917 
1918 /*
1919  * Try to start exclusive operation @type or cancel it if it's running.
1920  *
1921  * Return:
1922  *   0        - normal mode, newly claimed op started
1923  *  >0        - normal mode, something else is running,
1924  *              return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS to user space
1925  * ECANCELED  - cancel mode, successful cancel
1926  * ENOTCONN   - cancel mode, operation not running anymore
1927  */
1928 static int exclop_start_or_cancel_reloc(struct btrfs_fs_info *fs_info,
1929 			enum btrfs_exclusive_operation type, bool cancel)
1930 {
1931 	if (!cancel) {
1932 		/* Start normal op */
1933 		if (!btrfs_exclop_start(fs_info, type))
1934 			return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
1935 		/* Exclusive operation is now claimed */
1936 		return 0;
1937 	}
1938 
1939 	/* Cancel running op */
1940 	if (btrfs_exclop_start_try_lock(fs_info, type)) {
1941 		/*
1942 		 * This blocks any exclop finish from setting it to NONE, so we
1943 		 * request cancellation. Either it runs and we will wait for it,
1944 		 * or it has finished and no waiting will happen.
1945 		 */
1946 		atomic_inc(&fs_info->reloc_cancel_req);
1947 		btrfs_exclop_start_unlock(fs_info);
1948 
1949 		if (test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags))
1950 			wait_on_bit(&fs_info->flags, BTRFS_FS_RELOC_RUNNING,
1951 				    TASK_INTERRUPTIBLE);
1952 
1953 		return -ECANCELED;
1954 	}
1955 
1956 	/* Something else is running or none */
1957 	return -ENOTCONN;
1958 }
1959 
1960 static noinline int btrfs_ioctl_resize(struct file *file,
1961 					void __user *arg)
1962 {
1963 	BTRFS_DEV_LOOKUP_ARGS(args);
1964 	struct inode *inode = file_inode(file);
1965 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1966 	u64 new_size;
1967 	u64 old_size;
1968 	u64 devid = 1;
1969 	struct btrfs_root *root = BTRFS_I(inode)->root;
1970 	struct btrfs_ioctl_vol_args *vol_args;
1971 	struct btrfs_trans_handle *trans;
1972 	struct btrfs_device *device = NULL;
1973 	char *sizestr;
1974 	char *retptr;
1975 	char *devstr = NULL;
1976 	int ret = 0;
1977 	int mod = 0;
1978 	bool cancel;
1979 
1980 	if (!capable(CAP_SYS_ADMIN))
1981 		return -EPERM;
1982 
1983 	ret = mnt_want_write_file(file);
1984 	if (ret)
1985 		return ret;
1986 
1987 	/*
1988 	 * Read the arguments before checking exclusivity to be able to
1989 	 * distinguish regular resize and cancel
1990 	 */
1991 	vol_args = memdup_user(arg, sizeof(*vol_args));
1992 	if (IS_ERR(vol_args)) {
1993 		ret = PTR_ERR(vol_args);
1994 		goto out_drop;
1995 	}
1996 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1997 	sizestr = vol_args->name;
1998 	cancel = (strcmp("cancel", sizestr) == 0);
1999 	ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_RESIZE, cancel);
2000 	if (ret)
2001 		goto out_free;
2002 	/* Exclusive operation is now claimed */
2003 
2004 	devstr = strchr(sizestr, ':');
2005 	if (devstr) {
2006 		sizestr = devstr + 1;
2007 		*devstr = '\0';
2008 		devstr = vol_args->name;
2009 		ret = kstrtoull(devstr, 10, &devid);
2010 		if (ret)
2011 			goto out_finish;
2012 		if (!devid) {
2013 			ret = -EINVAL;
2014 			goto out_finish;
2015 		}
2016 		btrfs_info(fs_info, "resizing devid %llu", devid);
2017 	}
2018 
2019 	args.devid = devid;
2020 	device = btrfs_find_device(fs_info->fs_devices, &args);
2021 	if (!device) {
2022 		btrfs_info(fs_info, "resizer unable to find device %llu",
2023 			   devid);
2024 		ret = -ENODEV;
2025 		goto out_finish;
2026 	}
2027 
2028 	if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2029 		btrfs_info(fs_info,
2030 			   "resizer unable to apply on readonly device %llu",
2031 		       devid);
2032 		ret = -EPERM;
2033 		goto out_finish;
2034 	}
2035 
2036 	if (!strcmp(sizestr, "max"))
2037 		new_size = bdev_nr_bytes(device->bdev);
2038 	else {
2039 		if (sizestr[0] == '-') {
2040 			mod = -1;
2041 			sizestr++;
2042 		} else if (sizestr[0] == '+') {
2043 			mod = 1;
2044 			sizestr++;
2045 		}
2046 		new_size = memparse(sizestr, &retptr);
2047 		if (*retptr != '\0' || new_size == 0) {
2048 			ret = -EINVAL;
2049 			goto out_finish;
2050 		}
2051 	}
2052 
2053 	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2054 		ret = -EPERM;
2055 		goto out_finish;
2056 	}
2057 
2058 	old_size = btrfs_device_get_total_bytes(device);
2059 
2060 	if (mod < 0) {
2061 		if (new_size > old_size) {
2062 			ret = -EINVAL;
2063 			goto out_finish;
2064 		}
2065 		new_size = old_size - new_size;
2066 	} else if (mod > 0) {
2067 		if (new_size > ULLONG_MAX - old_size) {
2068 			ret = -ERANGE;
2069 			goto out_finish;
2070 		}
2071 		new_size = old_size + new_size;
2072 	}
2073 
2074 	if (new_size < SZ_256M) {
2075 		ret = -EINVAL;
2076 		goto out_finish;
2077 	}
2078 	if (new_size > bdev_nr_bytes(device->bdev)) {
2079 		ret = -EFBIG;
2080 		goto out_finish;
2081 	}
2082 
2083 	new_size = round_down(new_size, fs_info->sectorsize);
2084 
2085 	if (new_size > old_size) {
2086 		trans = btrfs_start_transaction(root, 0);
2087 		if (IS_ERR(trans)) {
2088 			ret = PTR_ERR(trans);
2089 			goto out_finish;
2090 		}
2091 		ret = btrfs_grow_device(trans, device, new_size);
2092 		btrfs_commit_transaction(trans);
2093 	} else if (new_size < old_size) {
2094 		ret = btrfs_shrink_device(device, new_size);
2095 	} /* equal, nothing need to do */
2096 
2097 	if (ret == 0 && new_size != old_size)
2098 		btrfs_info_in_rcu(fs_info,
2099 			"resize device %s (devid %llu) from %llu to %llu",
2100 			rcu_str_deref(device->name), device->devid,
2101 			old_size, new_size);
2102 out_finish:
2103 	btrfs_exclop_finish(fs_info);
2104 out_free:
2105 	kfree(vol_args);
2106 out_drop:
2107 	mnt_drop_write_file(file);
2108 	return ret;
2109 }
2110 
2111 static noinline int __btrfs_ioctl_snap_create(struct file *file,
2112 				struct user_namespace *mnt_userns,
2113 				const char *name, unsigned long fd, int subvol,
2114 				bool readonly,
2115 				struct btrfs_qgroup_inherit *inherit)
2116 {
2117 	int namelen;
2118 	int ret = 0;
2119 
2120 	if (!S_ISDIR(file_inode(file)->i_mode))
2121 		return -ENOTDIR;
2122 
2123 	ret = mnt_want_write_file(file);
2124 	if (ret)
2125 		goto out;
2126 
2127 	namelen = strlen(name);
2128 	if (strchr(name, '/')) {
2129 		ret = -EINVAL;
2130 		goto out_drop_write;
2131 	}
2132 
2133 	if (name[0] == '.' &&
2134 	   (namelen == 1 || (name[1] == '.' && namelen == 2))) {
2135 		ret = -EEXIST;
2136 		goto out_drop_write;
2137 	}
2138 
2139 	if (subvol) {
2140 		ret = btrfs_mksubvol(&file->f_path, mnt_userns, name,
2141 				     namelen, NULL, readonly, inherit);
2142 	} else {
2143 		struct fd src = fdget(fd);
2144 		struct inode *src_inode;
2145 		if (!src.file) {
2146 			ret = -EINVAL;
2147 			goto out_drop_write;
2148 		}
2149 
2150 		src_inode = file_inode(src.file);
2151 		if (src_inode->i_sb != file_inode(file)->i_sb) {
2152 			btrfs_info(BTRFS_I(file_inode(file))->root->fs_info,
2153 				   "Snapshot src from another FS");
2154 			ret = -EXDEV;
2155 		} else if (!inode_owner_or_capable(mnt_userns, src_inode)) {
2156 			/*
2157 			 * Subvolume creation is not restricted, but snapshots
2158 			 * are limited to own subvolumes only
2159 			 */
2160 			ret = -EPERM;
2161 		} else {
2162 			ret = btrfs_mksnapshot(&file->f_path, mnt_userns,
2163 					       name, namelen,
2164 					       BTRFS_I(src_inode)->root,
2165 					       readonly, inherit);
2166 		}
2167 		fdput(src);
2168 	}
2169 out_drop_write:
2170 	mnt_drop_write_file(file);
2171 out:
2172 	return ret;
2173 }
2174 
2175 static noinline int btrfs_ioctl_snap_create(struct file *file,
2176 					    void __user *arg, int subvol)
2177 {
2178 	struct btrfs_ioctl_vol_args *vol_args;
2179 	int ret;
2180 
2181 	if (!S_ISDIR(file_inode(file)->i_mode))
2182 		return -ENOTDIR;
2183 
2184 	vol_args = memdup_user(arg, sizeof(*vol_args));
2185 	if (IS_ERR(vol_args))
2186 		return PTR_ERR(vol_args);
2187 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2188 
2189 	ret = __btrfs_ioctl_snap_create(file, file_mnt_user_ns(file),
2190 					vol_args->name, vol_args->fd, subvol,
2191 					false, NULL);
2192 
2193 	kfree(vol_args);
2194 	return ret;
2195 }
2196 
2197 static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
2198 					       void __user *arg, int subvol)
2199 {
2200 	struct btrfs_ioctl_vol_args_v2 *vol_args;
2201 	int ret;
2202 	bool readonly = false;
2203 	struct btrfs_qgroup_inherit *inherit = NULL;
2204 
2205 	if (!S_ISDIR(file_inode(file)->i_mode))
2206 		return -ENOTDIR;
2207 
2208 	vol_args = memdup_user(arg, sizeof(*vol_args));
2209 	if (IS_ERR(vol_args))
2210 		return PTR_ERR(vol_args);
2211 	vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
2212 
2213 	if (vol_args->flags & ~BTRFS_SUBVOL_CREATE_ARGS_MASK) {
2214 		ret = -EOPNOTSUPP;
2215 		goto free_args;
2216 	}
2217 
2218 	if (vol_args->flags & BTRFS_SUBVOL_RDONLY)
2219 		readonly = true;
2220 	if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) {
2221 		u64 nums;
2222 
2223 		if (vol_args->size < sizeof(*inherit) ||
2224 		    vol_args->size > PAGE_SIZE) {
2225 			ret = -EINVAL;
2226 			goto free_args;
2227 		}
2228 		inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size);
2229 		if (IS_ERR(inherit)) {
2230 			ret = PTR_ERR(inherit);
2231 			goto free_args;
2232 		}
2233 
2234 		if (inherit->num_qgroups > PAGE_SIZE ||
2235 		    inherit->num_ref_copies > PAGE_SIZE ||
2236 		    inherit->num_excl_copies > PAGE_SIZE) {
2237 			ret = -EINVAL;
2238 			goto free_inherit;
2239 		}
2240 
2241 		nums = inherit->num_qgroups + 2 * inherit->num_ref_copies +
2242 		       2 * inherit->num_excl_copies;
2243 		if (vol_args->size != struct_size(inherit, qgroups, nums)) {
2244 			ret = -EINVAL;
2245 			goto free_inherit;
2246 		}
2247 	}
2248 
2249 	ret = __btrfs_ioctl_snap_create(file, file_mnt_user_ns(file),
2250 					vol_args->name, vol_args->fd, subvol,
2251 					readonly, inherit);
2252 	if (ret)
2253 		goto free_inherit;
2254 free_inherit:
2255 	kfree(inherit);
2256 free_args:
2257 	kfree(vol_args);
2258 	return ret;
2259 }
2260 
2261 static noinline int btrfs_ioctl_subvol_getflags(struct inode *inode,
2262 						void __user *arg)
2263 {
2264 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2265 	struct btrfs_root *root = BTRFS_I(inode)->root;
2266 	int ret = 0;
2267 	u64 flags = 0;
2268 
2269 	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID)
2270 		return -EINVAL;
2271 
2272 	down_read(&fs_info->subvol_sem);
2273 	if (btrfs_root_readonly(root))
2274 		flags |= BTRFS_SUBVOL_RDONLY;
2275 	up_read(&fs_info->subvol_sem);
2276 
2277 	if (copy_to_user(arg, &flags, sizeof(flags)))
2278 		ret = -EFAULT;
2279 
2280 	return ret;
2281 }
2282 
2283 static noinline int btrfs_ioctl_subvol_setflags(struct file *file,
2284 					      void __user *arg)
2285 {
2286 	struct inode *inode = file_inode(file);
2287 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2288 	struct btrfs_root *root = BTRFS_I(inode)->root;
2289 	struct btrfs_trans_handle *trans;
2290 	u64 root_flags;
2291 	u64 flags;
2292 	int ret = 0;
2293 
2294 	if (!inode_owner_or_capable(file_mnt_user_ns(file), inode))
2295 		return -EPERM;
2296 
2297 	ret = mnt_want_write_file(file);
2298 	if (ret)
2299 		goto out;
2300 
2301 	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
2302 		ret = -EINVAL;
2303 		goto out_drop_write;
2304 	}
2305 
2306 	if (copy_from_user(&flags, arg, sizeof(flags))) {
2307 		ret = -EFAULT;
2308 		goto out_drop_write;
2309 	}
2310 
2311 	if (flags & ~BTRFS_SUBVOL_RDONLY) {
2312 		ret = -EOPNOTSUPP;
2313 		goto out_drop_write;
2314 	}
2315 
2316 	down_write(&fs_info->subvol_sem);
2317 
2318 	/* nothing to do */
2319 	if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root))
2320 		goto out_drop_sem;
2321 
2322 	root_flags = btrfs_root_flags(&root->root_item);
2323 	if (flags & BTRFS_SUBVOL_RDONLY) {
2324 		btrfs_set_root_flags(&root->root_item,
2325 				     root_flags | BTRFS_ROOT_SUBVOL_RDONLY);
2326 	} else {
2327 		/*
2328 		 * Block RO -> RW transition if this subvolume is involved in
2329 		 * send
2330 		 */
2331 		spin_lock(&root->root_item_lock);
2332 		if (root->send_in_progress == 0) {
2333 			btrfs_set_root_flags(&root->root_item,
2334 				     root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY);
2335 			spin_unlock(&root->root_item_lock);
2336 		} else {
2337 			spin_unlock(&root->root_item_lock);
2338 			btrfs_warn(fs_info,
2339 				   "Attempt to set subvolume %llu read-write during send",
2340 				   root->root_key.objectid);
2341 			ret = -EPERM;
2342 			goto out_drop_sem;
2343 		}
2344 	}
2345 
2346 	trans = btrfs_start_transaction(root, 1);
2347 	if (IS_ERR(trans)) {
2348 		ret = PTR_ERR(trans);
2349 		goto out_reset;
2350 	}
2351 
2352 	ret = btrfs_update_root(trans, fs_info->tree_root,
2353 				&root->root_key, &root->root_item);
2354 	if (ret < 0) {
2355 		btrfs_end_transaction(trans);
2356 		goto out_reset;
2357 	}
2358 
2359 	ret = btrfs_commit_transaction(trans);
2360 
2361 out_reset:
2362 	if (ret)
2363 		btrfs_set_root_flags(&root->root_item, root_flags);
2364 out_drop_sem:
2365 	up_write(&fs_info->subvol_sem);
2366 out_drop_write:
2367 	mnt_drop_write_file(file);
2368 out:
2369 	return ret;
2370 }
2371 
2372 static noinline int key_in_sk(struct btrfs_key *key,
2373 			      struct btrfs_ioctl_search_key *sk)
2374 {
2375 	struct btrfs_key test;
2376 	int ret;
2377 
2378 	test.objectid = sk->min_objectid;
2379 	test.type = sk->min_type;
2380 	test.offset = sk->min_offset;
2381 
2382 	ret = btrfs_comp_cpu_keys(key, &test);
2383 	if (ret < 0)
2384 		return 0;
2385 
2386 	test.objectid = sk->max_objectid;
2387 	test.type = sk->max_type;
2388 	test.offset = sk->max_offset;
2389 
2390 	ret = btrfs_comp_cpu_keys(key, &test);
2391 	if (ret > 0)
2392 		return 0;
2393 	return 1;
2394 }
2395 
2396 static noinline int copy_to_sk(struct btrfs_path *path,
2397 			       struct btrfs_key *key,
2398 			       struct btrfs_ioctl_search_key *sk,
2399 			       size_t *buf_size,
2400 			       char __user *ubuf,
2401 			       unsigned long *sk_offset,
2402 			       int *num_found)
2403 {
2404 	u64 found_transid;
2405 	struct extent_buffer *leaf;
2406 	struct btrfs_ioctl_search_header sh;
2407 	struct btrfs_key test;
2408 	unsigned long item_off;
2409 	unsigned long item_len;
2410 	int nritems;
2411 	int i;
2412 	int slot;
2413 	int ret = 0;
2414 
2415 	leaf = path->nodes[0];
2416 	slot = path->slots[0];
2417 	nritems = btrfs_header_nritems(leaf);
2418 
2419 	if (btrfs_header_generation(leaf) > sk->max_transid) {
2420 		i = nritems;
2421 		goto advance_key;
2422 	}
2423 	found_transid = btrfs_header_generation(leaf);
2424 
2425 	for (i = slot; i < nritems; i++) {
2426 		item_off = btrfs_item_ptr_offset(leaf, i);
2427 		item_len = btrfs_item_size(leaf, i);
2428 
2429 		btrfs_item_key_to_cpu(leaf, key, i);
2430 		if (!key_in_sk(key, sk))
2431 			continue;
2432 
2433 		if (sizeof(sh) + item_len > *buf_size) {
2434 			if (*num_found) {
2435 				ret = 1;
2436 				goto out;
2437 			}
2438 
2439 			/*
2440 			 * return one empty item back for v1, which does not
2441 			 * handle -EOVERFLOW
2442 			 */
2443 
2444 			*buf_size = sizeof(sh) + item_len;
2445 			item_len = 0;
2446 			ret = -EOVERFLOW;
2447 		}
2448 
2449 		if (sizeof(sh) + item_len + *sk_offset > *buf_size) {
2450 			ret = 1;
2451 			goto out;
2452 		}
2453 
2454 		sh.objectid = key->objectid;
2455 		sh.offset = key->offset;
2456 		sh.type = key->type;
2457 		sh.len = item_len;
2458 		sh.transid = found_transid;
2459 
2460 		/*
2461 		 * Copy search result header. If we fault then loop again so we
2462 		 * can fault in the pages and -EFAULT there if there's a
2463 		 * problem. Otherwise we'll fault and then copy the buffer in
2464 		 * properly this next time through
2465 		 */
2466 		if (copy_to_user_nofault(ubuf + *sk_offset, &sh, sizeof(sh))) {
2467 			ret = 0;
2468 			goto out;
2469 		}
2470 
2471 		*sk_offset += sizeof(sh);
2472 
2473 		if (item_len) {
2474 			char __user *up = ubuf + *sk_offset;
2475 			/*
2476 			 * Copy the item, same behavior as above, but reset the
2477 			 * * sk_offset so we copy the full thing again.
2478 			 */
2479 			if (read_extent_buffer_to_user_nofault(leaf, up,
2480 						item_off, item_len)) {
2481 				ret = 0;
2482 				*sk_offset -= sizeof(sh);
2483 				goto out;
2484 			}
2485 
2486 			*sk_offset += item_len;
2487 		}
2488 		(*num_found)++;
2489 
2490 		if (ret) /* -EOVERFLOW from above */
2491 			goto out;
2492 
2493 		if (*num_found >= sk->nr_items) {
2494 			ret = 1;
2495 			goto out;
2496 		}
2497 	}
2498 advance_key:
2499 	ret = 0;
2500 	test.objectid = sk->max_objectid;
2501 	test.type = sk->max_type;
2502 	test.offset = sk->max_offset;
2503 	if (btrfs_comp_cpu_keys(key, &test) >= 0)
2504 		ret = 1;
2505 	else if (key->offset < (u64)-1)
2506 		key->offset++;
2507 	else if (key->type < (u8)-1) {
2508 		key->offset = 0;
2509 		key->type++;
2510 	} else if (key->objectid < (u64)-1) {
2511 		key->offset = 0;
2512 		key->type = 0;
2513 		key->objectid++;
2514 	} else
2515 		ret = 1;
2516 out:
2517 	/*
2518 	 *  0: all items from this leaf copied, continue with next
2519 	 *  1: * more items can be copied, but unused buffer is too small
2520 	 *     * all items were found
2521 	 *     Either way, it will stops the loop which iterates to the next
2522 	 *     leaf
2523 	 *  -EOVERFLOW: item was to large for buffer
2524 	 *  -EFAULT: could not copy extent buffer back to userspace
2525 	 */
2526 	return ret;
2527 }
2528 
2529 static noinline int search_ioctl(struct inode *inode,
2530 				 struct btrfs_ioctl_search_key *sk,
2531 				 size_t *buf_size,
2532 				 char __user *ubuf)
2533 {
2534 	struct btrfs_fs_info *info = btrfs_sb(inode->i_sb);
2535 	struct btrfs_root *root;
2536 	struct btrfs_key key;
2537 	struct btrfs_path *path;
2538 	int ret;
2539 	int num_found = 0;
2540 	unsigned long sk_offset = 0;
2541 
2542 	if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) {
2543 		*buf_size = sizeof(struct btrfs_ioctl_search_header);
2544 		return -EOVERFLOW;
2545 	}
2546 
2547 	path = btrfs_alloc_path();
2548 	if (!path)
2549 		return -ENOMEM;
2550 
2551 	if (sk->tree_id == 0) {
2552 		/* search the root of the inode that was passed */
2553 		root = btrfs_grab_root(BTRFS_I(inode)->root);
2554 	} else {
2555 		root = btrfs_get_fs_root(info, sk->tree_id, true);
2556 		if (IS_ERR(root)) {
2557 			btrfs_free_path(path);
2558 			return PTR_ERR(root);
2559 		}
2560 	}
2561 
2562 	key.objectid = sk->min_objectid;
2563 	key.type = sk->min_type;
2564 	key.offset = sk->min_offset;
2565 
2566 	while (1) {
2567 		ret = -EFAULT;
2568 		if (fault_in_writeable(ubuf + sk_offset, *buf_size - sk_offset))
2569 			break;
2570 
2571 		ret = btrfs_search_forward(root, &key, path, sk->min_transid);
2572 		if (ret != 0) {
2573 			if (ret > 0)
2574 				ret = 0;
2575 			goto err;
2576 		}
2577 		ret = copy_to_sk(path, &key, sk, buf_size, ubuf,
2578 				 &sk_offset, &num_found);
2579 		btrfs_release_path(path);
2580 		if (ret)
2581 			break;
2582 
2583 	}
2584 	if (ret > 0)
2585 		ret = 0;
2586 err:
2587 	sk->nr_items = num_found;
2588 	btrfs_put_root(root);
2589 	btrfs_free_path(path);
2590 	return ret;
2591 }
2592 
2593 static noinline int btrfs_ioctl_tree_search(struct inode *inode,
2594 					    void __user *argp)
2595 {
2596 	struct btrfs_ioctl_search_args __user *uargs;
2597 	struct btrfs_ioctl_search_key sk;
2598 	int ret;
2599 	size_t buf_size;
2600 
2601 	if (!capable(CAP_SYS_ADMIN))
2602 		return -EPERM;
2603 
2604 	uargs = (struct btrfs_ioctl_search_args __user *)argp;
2605 
2606 	if (copy_from_user(&sk, &uargs->key, sizeof(sk)))
2607 		return -EFAULT;
2608 
2609 	buf_size = sizeof(uargs->buf);
2610 
2611 	ret = search_ioctl(inode, &sk, &buf_size, uargs->buf);
2612 
2613 	/*
2614 	 * In the origin implementation an overflow is handled by returning a
2615 	 * search header with a len of zero, so reset ret.
2616 	 */
2617 	if (ret == -EOVERFLOW)
2618 		ret = 0;
2619 
2620 	if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk)))
2621 		ret = -EFAULT;
2622 	return ret;
2623 }
2624 
2625 static noinline int btrfs_ioctl_tree_search_v2(struct inode *inode,
2626 					       void __user *argp)
2627 {
2628 	struct btrfs_ioctl_search_args_v2 __user *uarg;
2629 	struct btrfs_ioctl_search_args_v2 args;
2630 	int ret;
2631 	size_t buf_size;
2632 	const size_t buf_limit = SZ_16M;
2633 
2634 	if (!capable(CAP_SYS_ADMIN))
2635 		return -EPERM;
2636 
2637 	/* copy search header and buffer size */
2638 	uarg = (struct btrfs_ioctl_search_args_v2 __user *)argp;
2639 	if (copy_from_user(&args, uarg, sizeof(args)))
2640 		return -EFAULT;
2641 
2642 	buf_size = args.buf_size;
2643 
2644 	/* limit result size to 16MB */
2645 	if (buf_size > buf_limit)
2646 		buf_size = buf_limit;
2647 
2648 	ret = search_ioctl(inode, &args.key, &buf_size,
2649 			   (char __user *)(&uarg->buf[0]));
2650 	if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key)))
2651 		ret = -EFAULT;
2652 	else if (ret == -EOVERFLOW &&
2653 		copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size)))
2654 		ret = -EFAULT;
2655 
2656 	return ret;
2657 }
2658 
2659 /*
2660  * Search INODE_REFs to identify path name of 'dirid' directory
2661  * in a 'tree_id' tree. and sets path name to 'name'.
2662  */
2663 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
2664 				u64 tree_id, u64 dirid, char *name)
2665 {
2666 	struct btrfs_root *root;
2667 	struct btrfs_key key;
2668 	char *ptr;
2669 	int ret = -1;
2670 	int slot;
2671 	int len;
2672 	int total_len = 0;
2673 	struct btrfs_inode_ref *iref;
2674 	struct extent_buffer *l;
2675 	struct btrfs_path *path;
2676 
2677 	if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
2678 		name[0]='\0';
2679 		return 0;
2680 	}
2681 
2682 	path = btrfs_alloc_path();
2683 	if (!path)
2684 		return -ENOMEM;
2685 
2686 	ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX - 1];
2687 
2688 	root = btrfs_get_fs_root(info, tree_id, true);
2689 	if (IS_ERR(root)) {
2690 		ret = PTR_ERR(root);
2691 		root = NULL;
2692 		goto out;
2693 	}
2694 
2695 	key.objectid = dirid;
2696 	key.type = BTRFS_INODE_REF_KEY;
2697 	key.offset = (u64)-1;
2698 
2699 	while (1) {
2700 		ret = btrfs_search_backwards(root, &key, path);
2701 		if (ret < 0)
2702 			goto out;
2703 		else if (ret > 0) {
2704 			ret = -ENOENT;
2705 			goto out;
2706 		}
2707 
2708 		l = path->nodes[0];
2709 		slot = path->slots[0];
2710 
2711 		iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
2712 		len = btrfs_inode_ref_name_len(l, iref);
2713 		ptr -= len + 1;
2714 		total_len += len + 1;
2715 		if (ptr < name) {
2716 			ret = -ENAMETOOLONG;
2717 			goto out;
2718 		}
2719 
2720 		*(ptr + len) = '/';
2721 		read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len);
2722 
2723 		if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
2724 			break;
2725 
2726 		btrfs_release_path(path);
2727 		key.objectid = key.offset;
2728 		key.offset = (u64)-1;
2729 		dirid = key.objectid;
2730 	}
2731 	memmove(name, ptr, total_len);
2732 	name[total_len] = '\0';
2733 	ret = 0;
2734 out:
2735 	btrfs_put_root(root);
2736 	btrfs_free_path(path);
2737 	return ret;
2738 }
2739 
2740 static int btrfs_search_path_in_tree_user(struct user_namespace *mnt_userns,
2741 				struct inode *inode,
2742 				struct btrfs_ioctl_ino_lookup_user_args *args)
2743 {
2744 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2745 	struct super_block *sb = inode->i_sb;
2746 	struct btrfs_key upper_limit = BTRFS_I(inode)->location;
2747 	u64 treeid = BTRFS_I(inode)->root->root_key.objectid;
2748 	u64 dirid = args->dirid;
2749 	unsigned long item_off;
2750 	unsigned long item_len;
2751 	struct btrfs_inode_ref *iref;
2752 	struct btrfs_root_ref *rref;
2753 	struct btrfs_root *root = NULL;
2754 	struct btrfs_path *path;
2755 	struct btrfs_key key, key2;
2756 	struct extent_buffer *leaf;
2757 	struct inode *temp_inode;
2758 	char *ptr;
2759 	int slot;
2760 	int len;
2761 	int total_len = 0;
2762 	int ret;
2763 
2764 	path = btrfs_alloc_path();
2765 	if (!path)
2766 		return -ENOMEM;
2767 
2768 	/*
2769 	 * If the bottom subvolume does not exist directly under upper_limit,
2770 	 * construct the path in from the bottom up.
2771 	 */
2772 	if (dirid != upper_limit.objectid) {
2773 		ptr = &args->path[BTRFS_INO_LOOKUP_USER_PATH_MAX - 1];
2774 
2775 		root = btrfs_get_fs_root(fs_info, treeid, true);
2776 		if (IS_ERR(root)) {
2777 			ret = PTR_ERR(root);
2778 			goto out;
2779 		}
2780 
2781 		key.objectid = dirid;
2782 		key.type = BTRFS_INODE_REF_KEY;
2783 		key.offset = (u64)-1;
2784 		while (1) {
2785 			ret = btrfs_search_backwards(root, &key, path);
2786 			if (ret < 0)
2787 				goto out_put;
2788 			else if (ret > 0) {
2789 				ret = -ENOENT;
2790 				goto out_put;
2791 			}
2792 
2793 			leaf = path->nodes[0];
2794 			slot = path->slots[0];
2795 
2796 			iref = btrfs_item_ptr(leaf, slot, struct btrfs_inode_ref);
2797 			len = btrfs_inode_ref_name_len(leaf, iref);
2798 			ptr -= len + 1;
2799 			total_len += len + 1;
2800 			if (ptr < args->path) {
2801 				ret = -ENAMETOOLONG;
2802 				goto out_put;
2803 			}
2804 
2805 			*(ptr + len) = '/';
2806 			read_extent_buffer(leaf, ptr,
2807 					(unsigned long)(iref + 1), len);
2808 
2809 			/* Check the read+exec permission of this directory */
2810 			ret = btrfs_previous_item(root, path, dirid,
2811 						  BTRFS_INODE_ITEM_KEY);
2812 			if (ret < 0) {
2813 				goto out_put;
2814 			} else if (ret > 0) {
2815 				ret = -ENOENT;
2816 				goto out_put;
2817 			}
2818 
2819 			leaf = path->nodes[0];
2820 			slot = path->slots[0];
2821 			btrfs_item_key_to_cpu(leaf, &key2, slot);
2822 			if (key2.objectid != dirid) {
2823 				ret = -ENOENT;
2824 				goto out_put;
2825 			}
2826 
2827 			temp_inode = btrfs_iget(sb, key2.objectid, root);
2828 			if (IS_ERR(temp_inode)) {
2829 				ret = PTR_ERR(temp_inode);
2830 				goto out_put;
2831 			}
2832 			ret = inode_permission(mnt_userns, temp_inode,
2833 					       MAY_READ | MAY_EXEC);
2834 			iput(temp_inode);
2835 			if (ret) {
2836 				ret = -EACCES;
2837 				goto out_put;
2838 			}
2839 
2840 			if (key.offset == upper_limit.objectid)
2841 				break;
2842 			if (key.objectid == BTRFS_FIRST_FREE_OBJECTID) {
2843 				ret = -EACCES;
2844 				goto out_put;
2845 			}
2846 
2847 			btrfs_release_path(path);
2848 			key.objectid = key.offset;
2849 			key.offset = (u64)-1;
2850 			dirid = key.objectid;
2851 		}
2852 
2853 		memmove(args->path, ptr, total_len);
2854 		args->path[total_len] = '\0';
2855 		btrfs_put_root(root);
2856 		root = NULL;
2857 		btrfs_release_path(path);
2858 	}
2859 
2860 	/* Get the bottom subvolume's name from ROOT_REF */
2861 	key.objectid = treeid;
2862 	key.type = BTRFS_ROOT_REF_KEY;
2863 	key.offset = args->treeid;
2864 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
2865 	if (ret < 0) {
2866 		goto out;
2867 	} else if (ret > 0) {
2868 		ret = -ENOENT;
2869 		goto out;
2870 	}
2871 
2872 	leaf = path->nodes[0];
2873 	slot = path->slots[0];
2874 	btrfs_item_key_to_cpu(leaf, &key, slot);
2875 
2876 	item_off = btrfs_item_ptr_offset(leaf, slot);
2877 	item_len = btrfs_item_size(leaf, slot);
2878 	/* Check if dirid in ROOT_REF corresponds to passed dirid */
2879 	rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2880 	if (args->dirid != btrfs_root_ref_dirid(leaf, rref)) {
2881 		ret = -EINVAL;
2882 		goto out;
2883 	}
2884 
2885 	/* Copy subvolume's name */
2886 	item_off += sizeof(struct btrfs_root_ref);
2887 	item_len -= sizeof(struct btrfs_root_ref);
2888 	read_extent_buffer(leaf, args->name, item_off, item_len);
2889 	args->name[item_len] = 0;
2890 
2891 out_put:
2892 	btrfs_put_root(root);
2893 out:
2894 	btrfs_free_path(path);
2895 	return ret;
2896 }
2897 
2898 static noinline int btrfs_ioctl_ino_lookup(struct btrfs_root *root,
2899 					   void __user *argp)
2900 {
2901 	struct btrfs_ioctl_ino_lookup_args *args;
2902 	int ret = 0;
2903 
2904 	args = memdup_user(argp, sizeof(*args));
2905 	if (IS_ERR(args))
2906 		return PTR_ERR(args);
2907 
2908 	/*
2909 	 * Unprivileged query to obtain the containing subvolume root id. The
2910 	 * path is reset so it's consistent with btrfs_search_path_in_tree.
2911 	 */
2912 	if (args->treeid == 0)
2913 		args->treeid = root->root_key.objectid;
2914 
2915 	if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) {
2916 		args->name[0] = 0;
2917 		goto out;
2918 	}
2919 
2920 	if (!capable(CAP_SYS_ADMIN)) {
2921 		ret = -EPERM;
2922 		goto out;
2923 	}
2924 
2925 	ret = btrfs_search_path_in_tree(root->fs_info,
2926 					args->treeid, args->objectid,
2927 					args->name);
2928 
2929 out:
2930 	if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2931 		ret = -EFAULT;
2932 
2933 	kfree(args);
2934 	return ret;
2935 }
2936 
2937 /*
2938  * Version of ino_lookup ioctl (unprivileged)
2939  *
2940  * The main differences from ino_lookup ioctl are:
2941  *
2942  *   1. Read + Exec permission will be checked using inode_permission() during
2943  *      path construction. -EACCES will be returned in case of failure.
2944  *   2. Path construction will be stopped at the inode number which corresponds
2945  *      to the fd with which this ioctl is called. If constructed path does not
2946  *      exist under fd's inode, -EACCES will be returned.
2947  *   3. The name of bottom subvolume is also searched and filled.
2948  */
2949 static int btrfs_ioctl_ino_lookup_user(struct file *file, void __user *argp)
2950 {
2951 	struct btrfs_ioctl_ino_lookup_user_args *args;
2952 	struct inode *inode;
2953 	int ret;
2954 
2955 	args = memdup_user(argp, sizeof(*args));
2956 	if (IS_ERR(args))
2957 		return PTR_ERR(args);
2958 
2959 	inode = file_inode(file);
2960 
2961 	if (args->dirid == BTRFS_FIRST_FREE_OBJECTID &&
2962 	    BTRFS_I(inode)->location.objectid != BTRFS_FIRST_FREE_OBJECTID) {
2963 		/*
2964 		 * The subvolume does not exist under fd with which this is
2965 		 * called
2966 		 */
2967 		kfree(args);
2968 		return -EACCES;
2969 	}
2970 
2971 	ret = btrfs_search_path_in_tree_user(file_mnt_user_ns(file), inode, args);
2972 
2973 	if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2974 		ret = -EFAULT;
2975 
2976 	kfree(args);
2977 	return ret;
2978 }
2979 
2980 /* Get the subvolume information in BTRFS_ROOT_ITEM and BTRFS_ROOT_BACKREF */
2981 static int btrfs_ioctl_get_subvol_info(struct inode *inode, void __user *argp)
2982 {
2983 	struct btrfs_ioctl_get_subvol_info_args *subvol_info;
2984 	struct btrfs_fs_info *fs_info;
2985 	struct btrfs_root *root;
2986 	struct btrfs_path *path;
2987 	struct btrfs_key key;
2988 	struct btrfs_root_item *root_item;
2989 	struct btrfs_root_ref *rref;
2990 	struct extent_buffer *leaf;
2991 	unsigned long item_off;
2992 	unsigned long item_len;
2993 	int slot;
2994 	int ret = 0;
2995 
2996 	path = btrfs_alloc_path();
2997 	if (!path)
2998 		return -ENOMEM;
2999 
3000 	subvol_info = kzalloc(sizeof(*subvol_info), GFP_KERNEL);
3001 	if (!subvol_info) {
3002 		btrfs_free_path(path);
3003 		return -ENOMEM;
3004 	}
3005 
3006 	fs_info = BTRFS_I(inode)->root->fs_info;
3007 
3008 	/* Get root_item of inode's subvolume */
3009 	key.objectid = BTRFS_I(inode)->root->root_key.objectid;
3010 	root = btrfs_get_fs_root(fs_info, key.objectid, true);
3011 	if (IS_ERR(root)) {
3012 		ret = PTR_ERR(root);
3013 		goto out_free;
3014 	}
3015 	root_item = &root->root_item;
3016 
3017 	subvol_info->treeid = key.objectid;
3018 
3019 	subvol_info->generation = btrfs_root_generation(root_item);
3020 	subvol_info->flags = btrfs_root_flags(root_item);
3021 
3022 	memcpy(subvol_info->uuid, root_item->uuid, BTRFS_UUID_SIZE);
3023 	memcpy(subvol_info->parent_uuid, root_item->parent_uuid,
3024 						    BTRFS_UUID_SIZE);
3025 	memcpy(subvol_info->received_uuid, root_item->received_uuid,
3026 						    BTRFS_UUID_SIZE);
3027 
3028 	subvol_info->ctransid = btrfs_root_ctransid(root_item);
3029 	subvol_info->ctime.sec = btrfs_stack_timespec_sec(&root_item->ctime);
3030 	subvol_info->ctime.nsec = btrfs_stack_timespec_nsec(&root_item->ctime);
3031 
3032 	subvol_info->otransid = btrfs_root_otransid(root_item);
3033 	subvol_info->otime.sec = btrfs_stack_timespec_sec(&root_item->otime);
3034 	subvol_info->otime.nsec = btrfs_stack_timespec_nsec(&root_item->otime);
3035 
3036 	subvol_info->stransid = btrfs_root_stransid(root_item);
3037 	subvol_info->stime.sec = btrfs_stack_timespec_sec(&root_item->stime);
3038 	subvol_info->stime.nsec = btrfs_stack_timespec_nsec(&root_item->stime);
3039 
3040 	subvol_info->rtransid = btrfs_root_rtransid(root_item);
3041 	subvol_info->rtime.sec = btrfs_stack_timespec_sec(&root_item->rtime);
3042 	subvol_info->rtime.nsec = btrfs_stack_timespec_nsec(&root_item->rtime);
3043 
3044 	if (key.objectid != BTRFS_FS_TREE_OBJECTID) {
3045 		/* Search root tree for ROOT_BACKREF of this subvolume */
3046 		key.type = BTRFS_ROOT_BACKREF_KEY;
3047 		key.offset = 0;
3048 		ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
3049 		if (ret < 0) {
3050 			goto out;
3051 		} else if (path->slots[0] >=
3052 			   btrfs_header_nritems(path->nodes[0])) {
3053 			ret = btrfs_next_leaf(fs_info->tree_root, path);
3054 			if (ret < 0) {
3055 				goto out;
3056 			} else if (ret > 0) {
3057 				ret = -EUCLEAN;
3058 				goto out;
3059 			}
3060 		}
3061 
3062 		leaf = path->nodes[0];
3063 		slot = path->slots[0];
3064 		btrfs_item_key_to_cpu(leaf, &key, slot);
3065 		if (key.objectid == subvol_info->treeid &&
3066 		    key.type == BTRFS_ROOT_BACKREF_KEY) {
3067 			subvol_info->parent_id = key.offset;
3068 
3069 			rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
3070 			subvol_info->dirid = btrfs_root_ref_dirid(leaf, rref);
3071 
3072 			item_off = btrfs_item_ptr_offset(leaf, slot)
3073 					+ sizeof(struct btrfs_root_ref);
3074 			item_len = btrfs_item_size(leaf, slot)
3075 					- sizeof(struct btrfs_root_ref);
3076 			read_extent_buffer(leaf, subvol_info->name,
3077 					   item_off, item_len);
3078 		} else {
3079 			ret = -ENOENT;
3080 			goto out;
3081 		}
3082 	}
3083 
3084 	if (copy_to_user(argp, subvol_info, sizeof(*subvol_info)))
3085 		ret = -EFAULT;
3086 
3087 out:
3088 	btrfs_put_root(root);
3089 out_free:
3090 	btrfs_free_path(path);
3091 	kfree(subvol_info);
3092 	return ret;
3093 }
3094 
3095 /*
3096  * Return ROOT_REF information of the subvolume containing this inode
3097  * except the subvolume name.
3098  */
3099 static int btrfs_ioctl_get_subvol_rootref(struct btrfs_root *root,
3100 					  void __user *argp)
3101 {
3102 	struct btrfs_ioctl_get_subvol_rootref_args *rootrefs;
3103 	struct btrfs_root_ref *rref;
3104 	struct btrfs_path *path;
3105 	struct btrfs_key key;
3106 	struct extent_buffer *leaf;
3107 	u64 objectid;
3108 	int slot;
3109 	int ret;
3110 	u8 found;
3111 
3112 	path = btrfs_alloc_path();
3113 	if (!path)
3114 		return -ENOMEM;
3115 
3116 	rootrefs = memdup_user(argp, sizeof(*rootrefs));
3117 	if (IS_ERR(rootrefs)) {
3118 		btrfs_free_path(path);
3119 		return PTR_ERR(rootrefs);
3120 	}
3121 
3122 	objectid = root->root_key.objectid;
3123 	key.objectid = objectid;
3124 	key.type = BTRFS_ROOT_REF_KEY;
3125 	key.offset = rootrefs->min_treeid;
3126 	found = 0;
3127 
3128 	root = root->fs_info->tree_root;
3129 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3130 	if (ret < 0) {
3131 		goto out;
3132 	} else if (path->slots[0] >=
3133 		   btrfs_header_nritems(path->nodes[0])) {
3134 		ret = btrfs_next_leaf(root, path);
3135 		if (ret < 0) {
3136 			goto out;
3137 		} else if (ret > 0) {
3138 			ret = -EUCLEAN;
3139 			goto out;
3140 		}
3141 	}
3142 	while (1) {
3143 		leaf = path->nodes[0];
3144 		slot = path->slots[0];
3145 
3146 		btrfs_item_key_to_cpu(leaf, &key, slot);
3147 		if (key.objectid != objectid || key.type != BTRFS_ROOT_REF_KEY) {
3148 			ret = 0;
3149 			goto out;
3150 		}
3151 
3152 		if (found == BTRFS_MAX_ROOTREF_BUFFER_NUM) {
3153 			ret = -EOVERFLOW;
3154 			goto out;
3155 		}
3156 
3157 		rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
3158 		rootrefs->rootref[found].treeid = key.offset;
3159 		rootrefs->rootref[found].dirid =
3160 				  btrfs_root_ref_dirid(leaf, rref);
3161 		found++;
3162 
3163 		ret = btrfs_next_item(root, path);
3164 		if (ret < 0) {
3165 			goto out;
3166 		} else if (ret > 0) {
3167 			ret = -EUCLEAN;
3168 			goto out;
3169 		}
3170 	}
3171 
3172 out:
3173 	if (!ret || ret == -EOVERFLOW) {
3174 		rootrefs->num_items = found;
3175 		/* update min_treeid for next search */
3176 		if (found)
3177 			rootrefs->min_treeid =
3178 				rootrefs->rootref[found - 1].treeid + 1;
3179 		if (copy_to_user(argp, rootrefs, sizeof(*rootrefs)))
3180 			ret = -EFAULT;
3181 	}
3182 
3183 	kfree(rootrefs);
3184 	btrfs_free_path(path);
3185 
3186 	return ret;
3187 }
3188 
3189 static noinline int btrfs_ioctl_snap_destroy(struct file *file,
3190 					     void __user *arg,
3191 					     bool destroy_v2)
3192 {
3193 	struct dentry *parent = file->f_path.dentry;
3194 	struct btrfs_fs_info *fs_info = btrfs_sb(parent->d_sb);
3195 	struct dentry *dentry;
3196 	struct inode *dir = d_inode(parent);
3197 	struct inode *inode;
3198 	struct btrfs_root *root = BTRFS_I(dir)->root;
3199 	struct btrfs_root *dest = NULL;
3200 	struct btrfs_ioctl_vol_args *vol_args = NULL;
3201 	struct btrfs_ioctl_vol_args_v2 *vol_args2 = NULL;
3202 	struct user_namespace *mnt_userns = file_mnt_user_ns(file);
3203 	char *subvol_name, *subvol_name_ptr = NULL;
3204 	int subvol_namelen;
3205 	int err = 0;
3206 	bool destroy_parent = false;
3207 
3208 	/* We don't support snapshots with extent tree v2 yet. */
3209 	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
3210 		btrfs_err(fs_info,
3211 			  "extent tree v2 doesn't support snapshot deletion yet");
3212 		return -EOPNOTSUPP;
3213 	}
3214 
3215 	if (destroy_v2) {
3216 		vol_args2 = memdup_user(arg, sizeof(*vol_args2));
3217 		if (IS_ERR(vol_args2))
3218 			return PTR_ERR(vol_args2);
3219 
3220 		if (vol_args2->flags & ~BTRFS_SUBVOL_DELETE_ARGS_MASK) {
3221 			err = -EOPNOTSUPP;
3222 			goto out;
3223 		}
3224 
3225 		/*
3226 		 * If SPEC_BY_ID is not set, we are looking for the subvolume by
3227 		 * name, same as v1 currently does.
3228 		 */
3229 		if (!(vol_args2->flags & BTRFS_SUBVOL_SPEC_BY_ID)) {
3230 			vol_args2->name[BTRFS_SUBVOL_NAME_MAX] = 0;
3231 			subvol_name = vol_args2->name;
3232 
3233 			err = mnt_want_write_file(file);
3234 			if (err)
3235 				goto out;
3236 		} else {
3237 			struct inode *old_dir;
3238 
3239 			if (vol_args2->subvolid < BTRFS_FIRST_FREE_OBJECTID) {
3240 				err = -EINVAL;
3241 				goto out;
3242 			}
3243 
3244 			err = mnt_want_write_file(file);
3245 			if (err)
3246 				goto out;
3247 
3248 			dentry = btrfs_get_dentry(fs_info->sb,
3249 					BTRFS_FIRST_FREE_OBJECTID,
3250 					vol_args2->subvolid, 0, 0);
3251 			if (IS_ERR(dentry)) {
3252 				err = PTR_ERR(dentry);
3253 				goto out_drop_write;
3254 			}
3255 
3256 			/*
3257 			 * Change the default parent since the subvolume being
3258 			 * deleted can be outside of the current mount point.
3259 			 */
3260 			parent = btrfs_get_parent(dentry);
3261 
3262 			/*
3263 			 * At this point dentry->d_name can point to '/' if the
3264 			 * subvolume we want to destroy is outsite of the
3265 			 * current mount point, so we need to release the
3266 			 * current dentry and execute the lookup to return a new
3267 			 * one with ->d_name pointing to the
3268 			 * <mount point>/subvol_name.
3269 			 */
3270 			dput(dentry);
3271 			if (IS_ERR(parent)) {
3272 				err = PTR_ERR(parent);
3273 				goto out_drop_write;
3274 			}
3275 			old_dir = dir;
3276 			dir = d_inode(parent);
3277 
3278 			/*
3279 			 * If v2 was used with SPEC_BY_ID, a new parent was
3280 			 * allocated since the subvolume can be outside of the
3281 			 * current mount point. Later on we need to release this
3282 			 * new parent dentry.
3283 			 */
3284 			destroy_parent = true;
3285 
3286 			/*
3287 			 * On idmapped mounts, deletion via subvolid is
3288 			 * restricted to subvolumes that are immediate
3289 			 * ancestors of the inode referenced by the file
3290 			 * descriptor in the ioctl. Otherwise the idmapping
3291 			 * could potentially be abused to delete subvolumes
3292 			 * anywhere in the filesystem the user wouldn't be able
3293 			 * to delete without an idmapped mount.
3294 			 */
3295 			if (old_dir != dir && mnt_userns != &init_user_ns) {
3296 				err = -EOPNOTSUPP;
3297 				goto free_parent;
3298 			}
3299 
3300 			subvol_name_ptr = btrfs_get_subvol_name_from_objectid(
3301 						fs_info, vol_args2->subvolid);
3302 			if (IS_ERR(subvol_name_ptr)) {
3303 				err = PTR_ERR(subvol_name_ptr);
3304 				goto free_parent;
3305 			}
3306 			/* subvol_name_ptr is already nul terminated */
3307 			subvol_name = (char *)kbasename(subvol_name_ptr);
3308 		}
3309 	} else {
3310 		vol_args = memdup_user(arg, sizeof(*vol_args));
3311 		if (IS_ERR(vol_args))
3312 			return PTR_ERR(vol_args);
3313 
3314 		vol_args->name[BTRFS_PATH_NAME_MAX] = 0;
3315 		subvol_name = vol_args->name;
3316 
3317 		err = mnt_want_write_file(file);
3318 		if (err)
3319 			goto out;
3320 	}
3321 
3322 	subvol_namelen = strlen(subvol_name);
3323 
3324 	if (strchr(subvol_name, '/') ||
3325 	    strncmp(subvol_name, "..", subvol_namelen) == 0) {
3326 		err = -EINVAL;
3327 		goto free_subvol_name;
3328 	}
3329 
3330 	if (!S_ISDIR(dir->i_mode)) {
3331 		err = -ENOTDIR;
3332 		goto free_subvol_name;
3333 	}
3334 
3335 	err = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
3336 	if (err == -EINTR)
3337 		goto free_subvol_name;
3338 	dentry = lookup_one(mnt_userns, subvol_name, parent, subvol_namelen);
3339 	if (IS_ERR(dentry)) {
3340 		err = PTR_ERR(dentry);
3341 		goto out_unlock_dir;
3342 	}
3343 
3344 	if (d_really_is_negative(dentry)) {
3345 		err = -ENOENT;
3346 		goto out_dput;
3347 	}
3348 
3349 	inode = d_inode(dentry);
3350 	dest = BTRFS_I(inode)->root;
3351 	if (!capable(CAP_SYS_ADMIN)) {
3352 		/*
3353 		 * Regular user.  Only allow this with a special mount
3354 		 * option, when the user has write+exec access to the
3355 		 * subvol root, and when rmdir(2) would have been
3356 		 * allowed.
3357 		 *
3358 		 * Note that this is _not_ check that the subvol is
3359 		 * empty or doesn't contain data that we wouldn't
3360 		 * otherwise be able to delete.
3361 		 *
3362 		 * Users who want to delete empty subvols should try
3363 		 * rmdir(2).
3364 		 */
3365 		err = -EPERM;
3366 		if (!btrfs_test_opt(fs_info, USER_SUBVOL_RM_ALLOWED))
3367 			goto out_dput;
3368 
3369 		/*
3370 		 * Do not allow deletion if the parent dir is the same
3371 		 * as the dir to be deleted.  That means the ioctl
3372 		 * must be called on the dentry referencing the root
3373 		 * of the subvol, not a random directory contained
3374 		 * within it.
3375 		 */
3376 		err = -EINVAL;
3377 		if (root == dest)
3378 			goto out_dput;
3379 
3380 		err = inode_permission(mnt_userns, inode, MAY_WRITE | MAY_EXEC);
3381 		if (err)
3382 			goto out_dput;
3383 	}
3384 
3385 	/* check if subvolume may be deleted by a user */
3386 	err = btrfs_may_delete(mnt_userns, dir, dentry, 1);
3387 	if (err)
3388 		goto out_dput;
3389 
3390 	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
3391 		err = -EINVAL;
3392 		goto out_dput;
3393 	}
3394 
3395 	btrfs_inode_lock(inode, 0);
3396 	err = btrfs_delete_subvolume(dir, dentry);
3397 	btrfs_inode_unlock(inode, 0);
3398 	if (!err)
3399 		d_delete_notify(dir, dentry);
3400 
3401 out_dput:
3402 	dput(dentry);
3403 out_unlock_dir:
3404 	btrfs_inode_unlock(dir, 0);
3405 free_subvol_name:
3406 	kfree(subvol_name_ptr);
3407 free_parent:
3408 	if (destroy_parent)
3409 		dput(parent);
3410 out_drop_write:
3411 	mnt_drop_write_file(file);
3412 out:
3413 	kfree(vol_args2);
3414 	kfree(vol_args);
3415 	return err;
3416 }
3417 
3418 static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
3419 {
3420 	struct inode *inode = file_inode(file);
3421 	struct btrfs_root *root = BTRFS_I(inode)->root;
3422 	struct btrfs_ioctl_defrag_range_args range = {0};
3423 	int ret;
3424 
3425 	ret = mnt_want_write_file(file);
3426 	if (ret)
3427 		return ret;
3428 
3429 	if (btrfs_root_readonly(root)) {
3430 		ret = -EROFS;
3431 		goto out;
3432 	}
3433 
3434 	switch (inode->i_mode & S_IFMT) {
3435 	case S_IFDIR:
3436 		if (!capable(CAP_SYS_ADMIN)) {
3437 			ret = -EPERM;
3438 			goto out;
3439 		}
3440 		ret = btrfs_defrag_root(root);
3441 		break;
3442 	case S_IFREG:
3443 		/*
3444 		 * Note that this does not check the file descriptor for write
3445 		 * access. This prevents defragmenting executables that are
3446 		 * running and allows defrag on files open in read-only mode.
3447 		 */
3448 		if (!capable(CAP_SYS_ADMIN) &&
3449 		    inode_permission(&init_user_ns, inode, MAY_WRITE)) {
3450 			ret = -EPERM;
3451 			goto out;
3452 		}
3453 
3454 		if (argp) {
3455 			if (copy_from_user(&range, argp, sizeof(range))) {
3456 				ret = -EFAULT;
3457 				goto out;
3458 			}
3459 			/* compression requires us to start the IO */
3460 			if ((range.flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
3461 				range.flags |= BTRFS_DEFRAG_RANGE_START_IO;
3462 				range.extent_thresh = (u32)-1;
3463 			}
3464 		} else {
3465 			/* the rest are all set to zero by kzalloc */
3466 			range.len = (u64)-1;
3467 		}
3468 		ret = btrfs_defrag_file(file_inode(file), &file->f_ra,
3469 					&range, BTRFS_OLDEST_GENERATION, 0);
3470 		if (ret > 0)
3471 			ret = 0;
3472 		break;
3473 	default:
3474 		ret = -EINVAL;
3475 	}
3476 out:
3477 	mnt_drop_write_file(file);
3478 	return ret;
3479 }
3480 
3481 static long btrfs_ioctl_add_dev(struct btrfs_fs_info *fs_info, void __user *arg)
3482 {
3483 	struct btrfs_ioctl_vol_args *vol_args;
3484 	bool restore_op = false;
3485 	int ret;
3486 
3487 	if (!capable(CAP_SYS_ADMIN))
3488 		return -EPERM;
3489 
3490 	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
3491 		btrfs_err(fs_info, "device add not supported on extent tree v2 yet");
3492 		return -EINVAL;
3493 	}
3494 
3495 	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_ADD)) {
3496 		if (!btrfs_exclop_start_try_lock(fs_info, BTRFS_EXCLOP_DEV_ADD))
3497 			return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3498 
3499 		/*
3500 		 * We can do the device add because we have a paused balanced,
3501 		 * change the exclusive op type and remember we should bring
3502 		 * back the paused balance
3503 		 */
3504 		fs_info->exclusive_operation = BTRFS_EXCLOP_DEV_ADD;
3505 		btrfs_exclop_start_unlock(fs_info);
3506 		restore_op = true;
3507 	}
3508 
3509 	vol_args = memdup_user(arg, sizeof(*vol_args));
3510 	if (IS_ERR(vol_args)) {
3511 		ret = PTR_ERR(vol_args);
3512 		goto out;
3513 	}
3514 
3515 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
3516 	ret = btrfs_init_new_device(fs_info, vol_args->name);
3517 
3518 	if (!ret)
3519 		btrfs_info(fs_info, "disk added %s", vol_args->name);
3520 
3521 	kfree(vol_args);
3522 out:
3523 	if (restore_op)
3524 		btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED);
3525 	else
3526 		btrfs_exclop_finish(fs_info);
3527 	return ret;
3528 }
3529 
3530 static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg)
3531 {
3532 	BTRFS_DEV_LOOKUP_ARGS(args);
3533 	struct inode *inode = file_inode(file);
3534 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3535 	struct btrfs_ioctl_vol_args_v2 *vol_args;
3536 	struct block_device *bdev = NULL;
3537 	fmode_t mode;
3538 	int ret;
3539 	bool cancel = false;
3540 
3541 	if (!capable(CAP_SYS_ADMIN))
3542 		return -EPERM;
3543 
3544 	vol_args = memdup_user(arg, sizeof(*vol_args));
3545 	if (IS_ERR(vol_args))
3546 		return PTR_ERR(vol_args);
3547 
3548 	if (vol_args->flags & ~BTRFS_DEVICE_REMOVE_ARGS_MASK) {
3549 		ret = -EOPNOTSUPP;
3550 		goto out;
3551 	}
3552 
3553 	vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
3554 	if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) {
3555 		args.devid = vol_args->devid;
3556 	} else if (!strcmp("cancel", vol_args->name)) {
3557 		cancel = true;
3558 	} else {
3559 		ret = btrfs_get_dev_args_from_path(fs_info, &args, vol_args->name);
3560 		if (ret)
3561 			goto out;
3562 	}
3563 
3564 	ret = mnt_want_write_file(file);
3565 	if (ret)
3566 		goto out;
3567 
3568 	ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE,
3569 					   cancel);
3570 	if (ret)
3571 		goto err_drop;
3572 
3573 	/* Exclusive operation is now claimed */
3574 	ret = btrfs_rm_device(fs_info, &args, &bdev, &mode);
3575 
3576 	btrfs_exclop_finish(fs_info);
3577 
3578 	if (!ret) {
3579 		if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID)
3580 			btrfs_info(fs_info, "device deleted: id %llu",
3581 					vol_args->devid);
3582 		else
3583 			btrfs_info(fs_info, "device deleted: %s",
3584 					vol_args->name);
3585 	}
3586 err_drop:
3587 	mnt_drop_write_file(file);
3588 	if (bdev)
3589 		blkdev_put(bdev, mode);
3590 out:
3591 	btrfs_put_dev_args_from_path(&args);
3592 	kfree(vol_args);
3593 	return ret;
3594 }
3595 
3596 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg)
3597 {
3598 	BTRFS_DEV_LOOKUP_ARGS(args);
3599 	struct inode *inode = file_inode(file);
3600 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3601 	struct btrfs_ioctl_vol_args *vol_args;
3602 	struct block_device *bdev = NULL;
3603 	fmode_t mode;
3604 	int ret;
3605 	bool cancel = false;
3606 
3607 	if (!capable(CAP_SYS_ADMIN))
3608 		return -EPERM;
3609 
3610 	vol_args = memdup_user(arg, sizeof(*vol_args));
3611 	if (IS_ERR(vol_args))
3612 		return PTR_ERR(vol_args);
3613 
3614 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
3615 	if (!strcmp("cancel", vol_args->name)) {
3616 		cancel = true;
3617 	} else {
3618 		ret = btrfs_get_dev_args_from_path(fs_info, &args, vol_args->name);
3619 		if (ret)
3620 			goto out;
3621 	}
3622 
3623 	ret = mnt_want_write_file(file);
3624 	if (ret)
3625 		goto out;
3626 
3627 	ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE,
3628 					   cancel);
3629 	if (ret == 0) {
3630 		ret = btrfs_rm_device(fs_info, &args, &bdev, &mode);
3631 		if (!ret)
3632 			btrfs_info(fs_info, "disk deleted %s", vol_args->name);
3633 		btrfs_exclop_finish(fs_info);
3634 	}
3635 
3636 	mnt_drop_write_file(file);
3637 	if (bdev)
3638 		blkdev_put(bdev, mode);
3639 out:
3640 	btrfs_put_dev_args_from_path(&args);
3641 	kfree(vol_args);
3642 	return ret;
3643 }
3644 
3645 static long btrfs_ioctl_fs_info(struct btrfs_fs_info *fs_info,
3646 				void __user *arg)
3647 {
3648 	struct btrfs_ioctl_fs_info_args *fi_args;
3649 	struct btrfs_device *device;
3650 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
3651 	u64 flags_in;
3652 	int ret = 0;
3653 
3654 	fi_args = memdup_user(arg, sizeof(*fi_args));
3655 	if (IS_ERR(fi_args))
3656 		return PTR_ERR(fi_args);
3657 
3658 	flags_in = fi_args->flags;
3659 	memset(fi_args, 0, sizeof(*fi_args));
3660 
3661 	rcu_read_lock();
3662 	fi_args->num_devices = fs_devices->num_devices;
3663 
3664 	list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
3665 		if (device->devid > fi_args->max_id)
3666 			fi_args->max_id = device->devid;
3667 	}
3668 	rcu_read_unlock();
3669 
3670 	memcpy(&fi_args->fsid, fs_devices->fsid, sizeof(fi_args->fsid));
3671 	fi_args->nodesize = fs_info->nodesize;
3672 	fi_args->sectorsize = fs_info->sectorsize;
3673 	fi_args->clone_alignment = fs_info->sectorsize;
3674 
3675 	if (flags_in & BTRFS_FS_INFO_FLAG_CSUM_INFO) {
3676 		fi_args->csum_type = btrfs_super_csum_type(fs_info->super_copy);
3677 		fi_args->csum_size = btrfs_super_csum_size(fs_info->super_copy);
3678 		fi_args->flags |= BTRFS_FS_INFO_FLAG_CSUM_INFO;
3679 	}
3680 
3681 	if (flags_in & BTRFS_FS_INFO_FLAG_GENERATION) {
3682 		fi_args->generation = fs_info->generation;
3683 		fi_args->flags |= BTRFS_FS_INFO_FLAG_GENERATION;
3684 	}
3685 
3686 	if (flags_in & BTRFS_FS_INFO_FLAG_METADATA_UUID) {
3687 		memcpy(&fi_args->metadata_uuid, fs_devices->metadata_uuid,
3688 		       sizeof(fi_args->metadata_uuid));
3689 		fi_args->flags |= BTRFS_FS_INFO_FLAG_METADATA_UUID;
3690 	}
3691 
3692 	if (copy_to_user(arg, fi_args, sizeof(*fi_args)))
3693 		ret = -EFAULT;
3694 
3695 	kfree(fi_args);
3696 	return ret;
3697 }
3698 
3699 static long btrfs_ioctl_dev_info(struct btrfs_fs_info *fs_info,
3700 				 void __user *arg)
3701 {
3702 	BTRFS_DEV_LOOKUP_ARGS(args);
3703 	struct btrfs_ioctl_dev_info_args *di_args;
3704 	struct btrfs_device *dev;
3705 	int ret = 0;
3706 
3707 	di_args = memdup_user(arg, sizeof(*di_args));
3708 	if (IS_ERR(di_args))
3709 		return PTR_ERR(di_args);
3710 
3711 	args.devid = di_args->devid;
3712 	if (!btrfs_is_empty_uuid(di_args->uuid))
3713 		args.uuid = di_args->uuid;
3714 
3715 	rcu_read_lock();
3716 	dev = btrfs_find_device(fs_info->fs_devices, &args);
3717 	if (!dev) {
3718 		ret = -ENODEV;
3719 		goto out;
3720 	}
3721 
3722 	di_args->devid = dev->devid;
3723 	di_args->bytes_used = btrfs_device_get_bytes_used(dev);
3724 	di_args->total_bytes = btrfs_device_get_total_bytes(dev);
3725 	memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid));
3726 	if (dev->name) {
3727 		strncpy(di_args->path, rcu_str_deref(dev->name),
3728 				sizeof(di_args->path) - 1);
3729 		di_args->path[sizeof(di_args->path) - 1] = 0;
3730 	} else {
3731 		di_args->path[0] = '\0';
3732 	}
3733 
3734 out:
3735 	rcu_read_unlock();
3736 	if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args)))
3737 		ret = -EFAULT;
3738 
3739 	kfree(di_args);
3740 	return ret;
3741 }
3742 
3743 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
3744 {
3745 	struct inode *inode = file_inode(file);
3746 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3747 	struct btrfs_root *root = BTRFS_I(inode)->root;
3748 	struct btrfs_root *new_root;
3749 	struct btrfs_dir_item *di;
3750 	struct btrfs_trans_handle *trans;
3751 	struct btrfs_path *path = NULL;
3752 	struct btrfs_disk_key disk_key;
3753 	u64 objectid = 0;
3754 	u64 dir_id;
3755 	int ret;
3756 
3757 	if (!capable(CAP_SYS_ADMIN))
3758 		return -EPERM;
3759 
3760 	ret = mnt_want_write_file(file);
3761 	if (ret)
3762 		return ret;
3763 
3764 	if (copy_from_user(&objectid, argp, sizeof(objectid))) {
3765 		ret = -EFAULT;
3766 		goto out;
3767 	}
3768 
3769 	if (!objectid)
3770 		objectid = BTRFS_FS_TREE_OBJECTID;
3771 
3772 	new_root = btrfs_get_fs_root(fs_info, objectid, true);
3773 	if (IS_ERR(new_root)) {
3774 		ret = PTR_ERR(new_root);
3775 		goto out;
3776 	}
3777 	if (!is_fstree(new_root->root_key.objectid)) {
3778 		ret = -ENOENT;
3779 		goto out_free;
3780 	}
3781 
3782 	path = btrfs_alloc_path();
3783 	if (!path) {
3784 		ret = -ENOMEM;
3785 		goto out_free;
3786 	}
3787 
3788 	trans = btrfs_start_transaction(root, 1);
3789 	if (IS_ERR(trans)) {
3790 		ret = PTR_ERR(trans);
3791 		goto out_free;
3792 	}
3793 
3794 	dir_id = btrfs_super_root_dir(fs_info->super_copy);
3795 	di = btrfs_lookup_dir_item(trans, fs_info->tree_root, path,
3796 				   dir_id, "default", 7, 1);
3797 	if (IS_ERR_OR_NULL(di)) {
3798 		btrfs_release_path(path);
3799 		btrfs_end_transaction(trans);
3800 		btrfs_err(fs_info,
3801 			  "Umm, you don't have the default diritem, this isn't going to work");
3802 		ret = -ENOENT;
3803 		goto out_free;
3804 	}
3805 
3806 	btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
3807 	btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
3808 	btrfs_mark_buffer_dirty(path->nodes[0]);
3809 	btrfs_release_path(path);
3810 
3811 	btrfs_set_fs_incompat(fs_info, DEFAULT_SUBVOL);
3812 	btrfs_end_transaction(trans);
3813 out_free:
3814 	btrfs_put_root(new_root);
3815 	btrfs_free_path(path);
3816 out:
3817 	mnt_drop_write_file(file);
3818 	return ret;
3819 }
3820 
3821 static void get_block_group_info(struct list_head *groups_list,
3822 				 struct btrfs_ioctl_space_info *space)
3823 {
3824 	struct btrfs_block_group *block_group;
3825 
3826 	space->total_bytes = 0;
3827 	space->used_bytes = 0;
3828 	space->flags = 0;
3829 	list_for_each_entry(block_group, groups_list, list) {
3830 		space->flags = block_group->flags;
3831 		space->total_bytes += block_group->length;
3832 		space->used_bytes += block_group->used;
3833 	}
3834 }
3835 
3836 static long btrfs_ioctl_space_info(struct btrfs_fs_info *fs_info,
3837 				   void __user *arg)
3838 {
3839 	struct btrfs_ioctl_space_args space_args;
3840 	struct btrfs_ioctl_space_info space;
3841 	struct btrfs_ioctl_space_info *dest;
3842 	struct btrfs_ioctl_space_info *dest_orig;
3843 	struct btrfs_ioctl_space_info __user *user_dest;
3844 	struct btrfs_space_info *info;
3845 	static const u64 types[] = {
3846 		BTRFS_BLOCK_GROUP_DATA,
3847 		BTRFS_BLOCK_GROUP_SYSTEM,
3848 		BTRFS_BLOCK_GROUP_METADATA,
3849 		BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA
3850 	};
3851 	int num_types = 4;
3852 	int alloc_size;
3853 	int ret = 0;
3854 	u64 slot_count = 0;
3855 	int i, c;
3856 
3857 	if (copy_from_user(&space_args,
3858 			   (struct btrfs_ioctl_space_args __user *)arg,
3859 			   sizeof(space_args)))
3860 		return -EFAULT;
3861 
3862 	for (i = 0; i < num_types; i++) {
3863 		struct btrfs_space_info *tmp;
3864 
3865 		info = NULL;
3866 		list_for_each_entry(tmp, &fs_info->space_info, list) {
3867 			if (tmp->flags == types[i]) {
3868 				info = tmp;
3869 				break;
3870 			}
3871 		}
3872 
3873 		if (!info)
3874 			continue;
3875 
3876 		down_read(&info->groups_sem);
3877 		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3878 			if (!list_empty(&info->block_groups[c]))
3879 				slot_count++;
3880 		}
3881 		up_read(&info->groups_sem);
3882 	}
3883 
3884 	/*
3885 	 * Global block reserve, exported as a space_info
3886 	 */
3887 	slot_count++;
3888 
3889 	/* space_slots == 0 means they are asking for a count */
3890 	if (space_args.space_slots == 0) {
3891 		space_args.total_spaces = slot_count;
3892 		goto out;
3893 	}
3894 
3895 	slot_count = min_t(u64, space_args.space_slots, slot_count);
3896 
3897 	alloc_size = sizeof(*dest) * slot_count;
3898 
3899 	/* we generally have at most 6 or so space infos, one for each raid
3900 	 * level.  So, a whole page should be more than enough for everyone
3901 	 */
3902 	if (alloc_size > PAGE_SIZE)
3903 		return -ENOMEM;
3904 
3905 	space_args.total_spaces = 0;
3906 	dest = kmalloc(alloc_size, GFP_KERNEL);
3907 	if (!dest)
3908 		return -ENOMEM;
3909 	dest_orig = dest;
3910 
3911 	/* now we have a buffer to copy into */
3912 	for (i = 0; i < num_types; i++) {
3913 		struct btrfs_space_info *tmp;
3914 
3915 		if (!slot_count)
3916 			break;
3917 
3918 		info = NULL;
3919 		list_for_each_entry(tmp, &fs_info->space_info, list) {
3920 			if (tmp->flags == types[i]) {
3921 				info = tmp;
3922 				break;
3923 			}
3924 		}
3925 
3926 		if (!info)
3927 			continue;
3928 		down_read(&info->groups_sem);
3929 		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3930 			if (!list_empty(&info->block_groups[c])) {
3931 				get_block_group_info(&info->block_groups[c],
3932 						     &space);
3933 				memcpy(dest, &space, sizeof(space));
3934 				dest++;
3935 				space_args.total_spaces++;
3936 				slot_count--;
3937 			}
3938 			if (!slot_count)
3939 				break;
3940 		}
3941 		up_read(&info->groups_sem);
3942 	}
3943 
3944 	/*
3945 	 * Add global block reserve
3946 	 */
3947 	if (slot_count) {
3948 		struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
3949 
3950 		spin_lock(&block_rsv->lock);
3951 		space.total_bytes = block_rsv->size;
3952 		space.used_bytes = block_rsv->size - block_rsv->reserved;
3953 		spin_unlock(&block_rsv->lock);
3954 		space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV;
3955 		memcpy(dest, &space, sizeof(space));
3956 		space_args.total_spaces++;
3957 	}
3958 
3959 	user_dest = (struct btrfs_ioctl_space_info __user *)
3960 		(arg + sizeof(struct btrfs_ioctl_space_args));
3961 
3962 	if (copy_to_user(user_dest, dest_orig, alloc_size))
3963 		ret = -EFAULT;
3964 
3965 	kfree(dest_orig);
3966 out:
3967 	if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args)))
3968 		ret = -EFAULT;
3969 
3970 	return ret;
3971 }
3972 
3973 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root,
3974 					    void __user *argp)
3975 {
3976 	struct btrfs_trans_handle *trans;
3977 	u64 transid;
3978 
3979 	trans = btrfs_attach_transaction_barrier(root);
3980 	if (IS_ERR(trans)) {
3981 		if (PTR_ERR(trans) != -ENOENT)
3982 			return PTR_ERR(trans);
3983 
3984 		/* No running transaction, don't bother */
3985 		transid = root->fs_info->last_trans_committed;
3986 		goto out;
3987 	}
3988 	transid = trans->transid;
3989 	btrfs_commit_transaction_async(trans);
3990 out:
3991 	if (argp)
3992 		if (copy_to_user(argp, &transid, sizeof(transid)))
3993 			return -EFAULT;
3994 	return 0;
3995 }
3996 
3997 static noinline long btrfs_ioctl_wait_sync(struct btrfs_fs_info *fs_info,
3998 					   void __user *argp)
3999 {
4000 	u64 transid;
4001 
4002 	if (argp) {
4003 		if (copy_from_user(&transid, argp, sizeof(transid)))
4004 			return -EFAULT;
4005 	} else {
4006 		transid = 0;  /* current trans */
4007 	}
4008 	return btrfs_wait_for_commit(fs_info, transid);
4009 }
4010 
4011 static long btrfs_ioctl_scrub(struct file *file, void __user *arg)
4012 {
4013 	struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb);
4014 	struct btrfs_ioctl_scrub_args *sa;
4015 	int ret;
4016 
4017 	if (!capable(CAP_SYS_ADMIN))
4018 		return -EPERM;
4019 
4020 	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
4021 		btrfs_err(fs_info, "scrub is not supported on extent tree v2 yet");
4022 		return -EINVAL;
4023 	}
4024 
4025 	sa = memdup_user(arg, sizeof(*sa));
4026 	if (IS_ERR(sa))
4027 		return PTR_ERR(sa);
4028 
4029 	if (!(sa->flags & BTRFS_SCRUB_READONLY)) {
4030 		ret = mnt_want_write_file(file);
4031 		if (ret)
4032 			goto out;
4033 	}
4034 
4035 	ret = btrfs_scrub_dev(fs_info, sa->devid, sa->start, sa->end,
4036 			      &sa->progress, sa->flags & BTRFS_SCRUB_READONLY,
4037 			      0);
4038 
4039 	/*
4040 	 * Copy scrub args to user space even if btrfs_scrub_dev() returned an
4041 	 * error. This is important as it allows user space to know how much
4042 	 * progress scrub has done. For example, if scrub is canceled we get
4043 	 * -ECANCELED from btrfs_scrub_dev() and return that error back to user
4044 	 * space. Later user space can inspect the progress from the structure
4045 	 * btrfs_ioctl_scrub_args and resume scrub from where it left off
4046 	 * previously (btrfs-progs does this).
4047 	 * If we fail to copy the btrfs_ioctl_scrub_args structure to user space
4048 	 * then return -EFAULT to signal the structure was not copied or it may
4049 	 * be corrupt and unreliable due to a partial copy.
4050 	 */
4051 	if (copy_to_user(arg, sa, sizeof(*sa)))
4052 		ret = -EFAULT;
4053 
4054 	if (!(sa->flags & BTRFS_SCRUB_READONLY))
4055 		mnt_drop_write_file(file);
4056 out:
4057 	kfree(sa);
4058 	return ret;
4059 }
4060 
4061 static long btrfs_ioctl_scrub_cancel(struct btrfs_fs_info *fs_info)
4062 {
4063 	if (!capable(CAP_SYS_ADMIN))
4064 		return -EPERM;
4065 
4066 	return btrfs_scrub_cancel(fs_info);
4067 }
4068 
4069 static long btrfs_ioctl_scrub_progress(struct btrfs_fs_info *fs_info,
4070 				       void __user *arg)
4071 {
4072 	struct btrfs_ioctl_scrub_args *sa;
4073 	int ret;
4074 
4075 	if (!capable(CAP_SYS_ADMIN))
4076 		return -EPERM;
4077 
4078 	sa = memdup_user(arg, sizeof(*sa));
4079 	if (IS_ERR(sa))
4080 		return PTR_ERR(sa);
4081 
4082 	ret = btrfs_scrub_progress(fs_info, sa->devid, &sa->progress);
4083 
4084 	if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa)))
4085 		ret = -EFAULT;
4086 
4087 	kfree(sa);
4088 	return ret;
4089 }
4090 
4091 static long btrfs_ioctl_get_dev_stats(struct btrfs_fs_info *fs_info,
4092 				      void __user *arg)
4093 {
4094 	struct btrfs_ioctl_get_dev_stats *sa;
4095 	int ret;
4096 
4097 	sa = memdup_user(arg, sizeof(*sa));
4098 	if (IS_ERR(sa))
4099 		return PTR_ERR(sa);
4100 
4101 	if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) {
4102 		kfree(sa);
4103 		return -EPERM;
4104 	}
4105 
4106 	ret = btrfs_get_dev_stats(fs_info, sa);
4107 
4108 	if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa)))
4109 		ret = -EFAULT;
4110 
4111 	kfree(sa);
4112 	return ret;
4113 }
4114 
4115 static long btrfs_ioctl_dev_replace(struct btrfs_fs_info *fs_info,
4116 				    void __user *arg)
4117 {
4118 	struct btrfs_ioctl_dev_replace_args *p;
4119 	int ret;
4120 
4121 	if (!capable(CAP_SYS_ADMIN))
4122 		return -EPERM;
4123 
4124 	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
4125 		btrfs_err(fs_info, "device replace not supported on extent tree v2 yet");
4126 		return -EINVAL;
4127 	}
4128 
4129 	p = memdup_user(arg, sizeof(*p));
4130 	if (IS_ERR(p))
4131 		return PTR_ERR(p);
4132 
4133 	switch (p->cmd) {
4134 	case BTRFS_IOCTL_DEV_REPLACE_CMD_START:
4135 		if (sb_rdonly(fs_info->sb)) {
4136 			ret = -EROFS;
4137 			goto out;
4138 		}
4139 		if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_REPLACE)) {
4140 			ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
4141 		} else {
4142 			ret = btrfs_dev_replace_by_ioctl(fs_info, p);
4143 			btrfs_exclop_finish(fs_info);
4144 		}
4145 		break;
4146 	case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS:
4147 		btrfs_dev_replace_status(fs_info, p);
4148 		ret = 0;
4149 		break;
4150 	case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL:
4151 		p->result = btrfs_dev_replace_cancel(fs_info);
4152 		ret = 0;
4153 		break;
4154 	default:
4155 		ret = -EINVAL;
4156 		break;
4157 	}
4158 
4159 	if ((ret == 0 || ret == -ECANCELED) && copy_to_user(arg, p, sizeof(*p)))
4160 		ret = -EFAULT;
4161 out:
4162 	kfree(p);
4163 	return ret;
4164 }
4165 
4166 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg)
4167 {
4168 	int ret = 0;
4169 	int i;
4170 	u64 rel_ptr;
4171 	int size;
4172 	struct btrfs_ioctl_ino_path_args *ipa = NULL;
4173 	struct inode_fs_paths *ipath = NULL;
4174 	struct btrfs_path *path;
4175 
4176 	if (!capable(CAP_DAC_READ_SEARCH))
4177 		return -EPERM;
4178 
4179 	path = btrfs_alloc_path();
4180 	if (!path) {
4181 		ret = -ENOMEM;
4182 		goto out;
4183 	}
4184 
4185 	ipa = memdup_user(arg, sizeof(*ipa));
4186 	if (IS_ERR(ipa)) {
4187 		ret = PTR_ERR(ipa);
4188 		ipa = NULL;
4189 		goto out;
4190 	}
4191 
4192 	size = min_t(u32, ipa->size, 4096);
4193 	ipath = init_ipath(size, root, path);
4194 	if (IS_ERR(ipath)) {
4195 		ret = PTR_ERR(ipath);
4196 		ipath = NULL;
4197 		goto out;
4198 	}
4199 
4200 	ret = paths_from_inode(ipa->inum, ipath);
4201 	if (ret < 0)
4202 		goto out;
4203 
4204 	for (i = 0; i < ipath->fspath->elem_cnt; ++i) {
4205 		rel_ptr = ipath->fspath->val[i] -
4206 			  (u64)(unsigned long)ipath->fspath->val;
4207 		ipath->fspath->val[i] = rel_ptr;
4208 	}
4209 
4210 	ret = copy_to_user((void __user *)(unsigned long)ipa->fspath,
4211 			   ipath->fspath, size);
4212 	if (ret) {
4213 		ret = -EFAULT;
4214 		goto out;
4215 	}
4216 
4217 out:
4218 	btrfs_free_path(path);
4219 	free_ipath(ipath);
4220 	kfree(ipa);
4221 
4222 	return ret;
4223 }
4224 
4225 static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx)
4226 {
4227 	struct btrfs_data_container *inodes = ctx;
4228 	const size_t c = 3 * sizeof(u64);
4229 
4230 	if (inodes->bytes_left >= c) {
4231 		inodes->bytes_left -= c;
4232 		inodes->val[inodes->elem_cnt] = inum;
4233 		inodes->val[inodes->elem_cnt + 1] = offset;
4234 		inodes->val[inodes->elem_cnt + 2] = root;
4235 		inodes->elem_cnt += 3;
4236 	} else {
4237 		inodes->bytes_missing += c - inodes->bytes_left;
4238 		inodes->bytes_left = 0;
4239 		inodes->elem_missed += 3;
4240 	}
4241 
4242 	return 0;
4243 }
4244 
4245 static long btrfs_ioctl_logical_to_ino(struct btrfs_fs_info *fs_info,
4246 					void __user *arg, int version)
4247 {
4248 	int ret = 0;
4249 	int size;
4250 	struct btrfs_ioctl_logical_ino_args *loi;
4251 	struct btrfs_data_container *inodes = NULL;
4252 	struct btrfs_path *path = NULL;
4253 	bool ignore_offset;
4254 
4255 	if (!capable(CAP_SYS_ADMIN))
4256 		return -EPERM;
4257 
4258 	loi = memdup_user(arg, sizeof(*loi));
4259 	if (IS_ERR(loi))
4260 		return PTR_ERR(loi);
4261 
4262 	if (version == 1) {
4263 		ignore_offset = false;
4264 		size = min_t(u32, loi->size, SZ_64K);
4265 	} else {
4266 		/* All reserved bits must be 0 for now */
4267 		if (memchr_inv(loi->reserved, 0, sizeof(loi->reserved))) {
4268 			ret = -EINVAL;
4269 			goto out_loi;
4270 		}
4271 		/* Only accept flags we have defined so far */
4272 		if (loi->flags & ~(BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET)) {
4273 			ret = -EINVAL;
4274 			goto out_loi;
4275 		}
4276 		ignore_offset = loi->flags & BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET;
4277 		size = min_t(u32, loi->size, SZ_16M);
4278 	}
4279 
4280 	path = btrfs_alloc_path();
4281 	if (!path) {
4282 		ret = -ENOMEM;
4283 		goto out;
4284 	}
4285 
4286 	inodes = init_data_container(size);
4287 	if (IS_ERR(inodes)) {
4288 		ret = PTR_ERR(inodes);
4289 		inodes = NULL;
4290 		goto out;
4291 	}
4292 
4293 	ret = iterate_inodes_from_logical(loi->logical, fs_info, path,
4294 					  build_ino_list, inodes, ignore_offset);
4295 	if (ret == -EINVAL)
4296 		ret = -ENOENT;
4297 	if (ret < 0)
4298 		goto out;
4299 
4300 	ret = copy_to_user((void __user *)(unsigned long)loi->inodes, inodes,
4301 			   size);
4302 	if (ret)
4303 		ret = -EFAULT;
4304 
4305 out:
4306 	btrfs_free_path(path);
4307 	kvfree(inodes);
4308 out_loi:
4309 	kfree(loi);
4310 
4311 	return ret;
4312 }
4313 
4314 void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info,
4315 			       struct btrfs_ioctl_balance_args *bargs)
4316 {
4317 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4318 
4319 	bargs->flags = bctl->flags;
4320 
4321 	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags))
4322 		bargs->state |= BTRFS_BALANCE_STATE_RUNNING;
4323 	if (atomic_read(&fs_info->balance_pause_req))
4324 		bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ;
4325 	if (atomic_read(&fs_info->balance_cancel_req))
4326 		bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ;
4327 
4328 	memcpy(&bargs->data, &bctl->data, sizeof(bargs->data));
4329 	memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta));
4330 	memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys));
4331 
4332 	spin_lock(&fs_info->balance_lock);
4333 	memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
4334 	spin_unlock(&fs_info->balance_lock);
4335 }
4336 
4337 static long btrfs_ioctl_balance(struct file *file, void __user *arg)
4338 {
4339 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4340 	struct btrfs_fs_info *fs_info = root->fs_info;
4341 	struct btrfs_ioctl_balance_args *bargs;
4342 	struct btrfs_balance_control *bctl;
4343 	bool need_unlock; /* for mut. excl. ops lock */
4344 	int ret;
4345 
4346 	if (!arg)
4347 		btrfs_warn(fs_info,
4348 	"IOC_BALANCE ioctl (v1) is deprecated and will be removed in kernel 5.18");
4349 
4350 	if (!capable(CAP_SYS_ADMIN))
4351 		return -EPERM;
4352 
4353 	ret = mnt_want_write_file(file);
4354 	if (ret)
4355 		return ret;
4356 
4357 again:
4358 	if (btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
4359 		mutex_lock(&fs_info->balance_mutex);
4360 		need_unlock = true;
4361 		goto locked;
4362 	}
4363 
4364 	/*
4365 	 * mut. excl. ops lock is locked.  Three possibilities:
4366 	 *   (1) some other op is running
4367 	 *   (2) balance is running
4368 	 *   (3) balance is paused -- special case (think resume)
4369 	 */
4370 	mutex_lock(&fs_info->balance_mutex);
4371 	if (fs_info->balance_ctl) {
4372 		/* this is either (2) or (3) */
4373 		if (!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4374 			mutex_unlock(&fs_info->balance_mutex);
4375 			/*
4376 			 * Lock released to allow other waiters to continue,
4377 			 * we'll reexamine the status again.
4378 			 */
4379 			mutex_lock(&fs_info->balance_mutex);
4380 
4381 			if (fs_info->balance_ctl &&
4382 			    !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4383 				/* this is (3) */
4384 				need_unlock = false;
4385 				goto locked;
4386 			}
4387 
4388 			mutex_unlock(&fs_info->balance_mutex);
4389 			goto again;
4390 		} else {
4391 			/* this is (2) */
4392 			mutex_unlock(&fs_info->balance_mutex);
4393 			ret = -EINPROGRESS;
4394 			goto out;
4395 		}
4396 	} else {
4397 		/* this is (1) */
4398 		mutex_unlock(&fs_info->balance_mutex);
4399 		ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
4400 		goto out;
4401 	}
4402 
4403 locked:
4404 
4405 	if (arg) {
4406 		bargs = memdup_user(arg, sizeof(*bargs));
4407 		if (IS_ERR(bargs)) {
4408 			ret = PTR_ERR(bargs);
4409 			goto out_unlock;
4410 		}
4411 
4412 		if (bargs->flags & BTRFS_BALANCE_RESUME) {
4413 			if (!fs_info->balance_ctl) {
4414 				ret = -ENOTCONN;
4415 				goto out_bargs;
4416 			}
4417 
4418 			bctl = fs_info->balance_ctl;
4419 			spin_lock(&fs_info->balance_lock);
4420 			bctl->flags |= BTRFS_BALANCE_RESUME;
4421 			spin_unlock(&fs_info->balance_lock);
4422 			btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE);
4423 
4424 			goto do_balance;
4425 		}
4426 	} else {
4427 		bargs = NULL;
4428 	}
4429 
4430 	if (fs_info->balance_ctl) {
4431 		ret = -EINPROGRESS;
4432 		goto out_bargs;
4433 	}
4434 
4435 	bctl = kzalloc(sizeof(*bctl), GFP_KERNEL);
4436 	if (!bctl) {
4437 		ret = -ENOMEM;
4438 		goto out_bargs;
4439 	}
4440 
4441 	if (arg) {
4442 		memcpy(&bctl->data, &bargs->data, sizeof(bctl->data));
4443 		memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta));
4444 		memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys));
4445 
4446 		bctl->flags = bargs->flags;
4447 	} else {
4448 		/* balance everything - no filters */
4449 		bctl->flags |= BTRFS_BALANCE_TYPE_MASK;
4450 	}
4451 
4452 	if (bctl->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) {
4453 		ret = -EINVAL;
4454 		goto out_bctl;
4455 	}
4456 
4457 do_balance:
4458 	/*
4459 	 * Ownership of bctl and exclusive operation goes to btrfs_balance.
4460 	 * bctl is freed in reset_balance_state, or, if restriper was paused
4461 	 * all the way until unmount, in free_fs_info.  The flag should be
4462 	 * cleared after reset_balance_state.
4463 	 */
4464 	need_unlock = false;
4465 
4466 	ret = btrfs_balance(fs_info, bctl, bargs);
4467 	bctl = NULL;
4468 
4469 	if ((ret == 0 || ret == -ECANCELED) && arg) {
4470 		if (copy_to_user(arg, bargs, sizeof(*bargs)))
4471 			ret = -EFAULT;
4472 	}
4473 
4474 out_bctl:
4475 	kfree(bctl);
4476 out_bargs:
4477 	kfree(bargs);
4478 out_unlock:
4479 	mutex_unlock(&fs_info->balance_mutex);
4480 	if (need_unlock)
4481 		btrfs_exclop_finish(fs_info);
4482 out:
4483 	mnt_drop_write_file(file);
4484 	return ret;
4485 }
4486 
4487 static long btrfs_ioctl_balance_ctl(struct btrfs_fs_info *fs_info, int cmd)
4488 {
4489 	if (!capable(CAP_SYS_ADMIN))
4490 		return -EPERM;
4491 
4492 	switch (cmd) {
4493 	case BTRFS_BALANCE_CTL_PAUSE:
4494 		return btrfs_pause_balance(fs_info);
4495 	case BTRFS_BALANCE_CTL_CANCEL:
4496 		return btrfs_cancel_balance(fs_info);
4497 	}
4498 
4499 	return -EINVAL;
4500 }
4501 
4502 static long btrfs_ioctl_balance_progress(struct btrfs_fs_info *fs_info,
4503 					 void __user *arg)
4504 {
4505 	struct btrfs_ioctl_balance_args *bargs;
4506 	int ret = 0;
4507 
4508 	if (!capable(CAP_SYS_ADMIN))
4509 		return -EPERM;
4510 
4511 	mutex_lock(&fs_info->balance_mutex);
4512 	if (!fs_info->balance_ctl) {
4513 		ret = -ENOTCONN;
4514 		goto out;
4515 	}
4516 
4517 	bargs = kzalloc(sizeof(*bargs), GFP_KERNEL);
4518 	if (!bargs) {
4519 		ret = -ENOMEM;
4520 		goto out;
4521 	}
4522 
4523 	btrfs_update_ioctl_balance_args(fs_info, bargs);
4524 
4525 	if (copy_to_user(arg, bargs, sizeof(*bargs)))
4526 		ret = -EFAULT;
4527 
4528 	kfree(bargs);
4529 out:
4530 	mutex_unlock(&fs_info->balance_mutex);
4531 	return ret;
4532 }
4533 
4534 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg)
4535 {
4536 	struct inode *inode = file_inode(file);
4537 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4538 	struct btrfs_ioctl_quota_ctl_args *sa;
4539 	int ret;
4540 
4541 	if (!capable(CAP_SYS_ADMIN))
4542 		return -EPERM;
4543 
4544 	ret = mnt_want_write_file(file);
4545 	if (ret)
4546 		return ret;
4547 
4548 	sa = memdup_user(arg, sizeof(*sa));
4549 	if (IS_ERR(sa)) {
4550 		ret = PTR_ERR(sa);
4551 		goto drop_write;
4552 	}
4553 
4554 	down_write(&fs_info->subvol_sem);
4555 
4556 	switch (sa->cmd) {
4557 	case BTRFS_QUOTA_CTL_ENABLE:
4558 		ret = btrfs_quota_enable(fs_info);
4559 		break;
4560 	case BTRFS_QUOTA_CTL_DISABLE:
4561 		ret = btrfs_quota_disable(fs_info);
4562 		break;
4563 	default:
4564 		ret = -EINVAL;
4565 		break;
4566 	}
4567 
4568 	kfree(sa);
4569 	up_write(&fs_info->subvol_sem);
4570 drop_write:
4571 	mnt_drop_write_file(file);
4572 	return ret;
4573 }
4574 
4575 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg)
4576 {
4577 	struct inode *inode = file_inode(file);
4578 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4579 	struct btrfs_root *root = BTRFS_I(inode)->root;
4580 	struct btrfs_ioctl_qgroup_assign_args *sa;
4581 	struct btrfs_trans_handle *trans;
4582 	int ret;
4583 	int err;
4584 
4585 	if (!capable(CAP_SYS_ADMIN))
4586 		return -EPERM;
4587 
4588 	ret = mnt_want_write_file(file);
4589 	if (ret)
4590 		return ret;
4591 
4592 	sa = memdup_user(arg, sizeof(*sa));
4593 	if (IS_ERR(sa)) {
4594 		ret = PTR_ERR(sa);
4595 		goto drop_write;
4596 	}
4597 
4598 	trans = btrfs_join_transaction(root);
4599 	if (IS_ERR(trans)) {
4600 		ret = PTR_ERR(trans);
4601 		goto out;
4602 	}
4603 
4604 	if (sa->assign) {
4605 		ret = btrfs_add_qgroup_relation(trans, sa->src, sa->dst);
4606 	} else {
4607 		ret = btrfs_del_qgroup_relation(trans, sa->src, sa->dst);
4608 	}
4609 
4610 	/* update qgroup status and info */
4611 	err = btrfs_run_qgroups(trans);
4612 	if (err < 0)
4613 		btrfs_handle_fs_error(fs_info, err,
4614 				      "failed to update qgroup status and info");
4615 	err = btrfs_end_transaction(trans);
4616 	if (err && !ret)
4617 		ret = err;
4618 
4619 out:
4620 	kfree(sa);
4621 drop_write:
4622 	mnt_drop_write_file(file);
4623 	return ret;
4624 }
4625 
4626 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg)
4627 {
4628 	struct inode *inode = file_inode(file);
4629 	struct btrfs_root *root = BTRFS_I(inode)->root;
4630 	struct btrfs_ioctl_qgroup_create_args *sa;
4631 	struct btrfs_trans_handle *trans;
4632 	int ret;
4633 	int err;
4634 
4635 	if (!capable(CAP_SYS_ADMIN))
4636 		return -EPERM;
4637 
4638 	ret = mnt_want_write_file(file);
4639 	if (ret)
4640 		return ret;
4641 
4642 	sa = memdup_user(arg, sizeof(*sa));
4643 	if (IS_ERR(sa)) {
4644 		ret = PTR_ERR(sa);
4645 		goto drop_write;
4646 	}
4647 
4648 	if (!sa->qgroupid) {
4649 		ret = -EINVAL;
4650 		goto out;
4651 	}
4652 
4653 	trans = btrfs_join_transaction(root);
4654 	if (IS_ERR(trans)) {
4655 		ret = PTR_ERR(trans);
4656 		goto out;
4657 	}
4658 
4659 	if (sa->create) {
4660 		ret = btrfs_create_qgroup(trans, sa->qgroupid);
4661 	} else {
4662 		ret = btrfs_remove_qgroup(trans, sa->qgroupid);
4663 	}
4664 
4665 	err = btrfs_end_transaction(trans);
4666 	if (err && !ret)
4667 		ret = err;
4668 
4669 out:
4670 	kfree(sa);
4671 drop_write:
4672 	mnt_drop_write_file(file);
4673 	return ret;
4674 }
4675 
4676 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg)
4677 {
4678 	struct inode *inode = file_inode(file);
4679 	struct btrfs_root *root = BTRFS_I(inode)->root;
4680 	struct btrfs_ioctl_qgroup_limit_args *sa;
4681 	struct btrfs_trans_handle *trans;
4682 	int ret;
4683 	int err;
4684 	u64 qgroupid;
4685 
4686 	if (!capable(CAP_SYS_ADMIN))
4687 		return -EPERM;
4688 
4689 	ret = mnt_want_write_file(file);
4690 	if (ret)
4691 		return ret;
4692 
4693 	sa = memdup_user(arg, sizeof(*sa));
4694 	if (IS_ERR(sa)) {
4695 		ret = PTR_ERR(sa);
4696 		goto drop_write;
4697 	}
4698 
4699 	trans = btrfs_join_transaction(root);
4700 	if (IS_ERR(trans)) {
4701 		ret = PTR_ERR(trans);
4702 		goto out;
4703 	}
4704 
4705 	qgroupid = sa->qgroupid;
4706 	if (!qgroupid) {
4707 		/* take the current subvol as qgroup */
4708 		qgroupid = root->root_key.objectid;
4709 	}
4710 
4711 	ret = btrfs_limit_qgroup(trans, qgroupid, &sa->lim);
4712 
4713 	err = btrfs_end_transaction(trans);
4714 	if (err && !ret)
4715 		ret = err;
4716 
4717 out:
4718 	kfree(sa);
4719 drop_write:
4720 	mnt_drop_write_file(file);
4721 	return ret;
4722 }
4723 
4724 static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg)
4725 {
4726 	struct inode *inode = file_inode(file);
4727 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4728 	struct btrfs_ioctl_quota_rescan_args *qsa;
4729 	int ret;
4730 
4731 	if (!capable(CAP_SYS_ADMIN))
4732 		return -EPERM;
4733 
4734 	ret = mnt_want_write_file(file);
4735 	if (ret)
4736 		return ret;
4737 
4738 	qsa = memdup_user(arg, sizeof(*qsa));
4739 	if (IS_ERR(qsa)) {
4740 		ret = PTR_ERR(qsa);
4741 		goto drop_write;
4742 	}
4743 
4744 	if (qsa->flags) {
4745 		ret = -EINVAL;
4746 		goto out;
4747 	}
4748 
4749 	ret = btrfs_qgroup_rescan(fs_info);
4750 
4751 out:
4752 	kfree(qsa);
4753 drop_write:
4754 	mnt_drop_write_file(file);
4755 	return ret;
4756 }
4757 
4758 static long btrfs_ioctl_quota_rescan_status(struct btrfs_fs_info *fs_info,
4759 						void __user *arg)
4760 {
4761 	struct btrfs_ioctl_quota_rescan_args qsa = {0};
4762 
4763 	if (!capable(CAP_SYS_ADMIN))
4764 		return -EPERM;
4765 
4766 	if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) {
4767 		qsa.flags = 1;
4768 		qsa.progress = fs_info->qgroup_rescan_progress.objectid;
4769 	}
4770 
4771 	if (copy_to_user(arg, &qsa, sizeof(qsa)))
4772 		return -EFAULT;
4773 
4774 	return 0;
4775 }
4776 
4777 static long btrfs_ioctl_quota_rescan_wait(struct btrfs_fs_info *fs_info,
4778 						void __user *arg)
4779 {
4780 	if (!capable(CAP_SYS_ADMIN))
4781 		return -EPERM;
4782 
4783 	return btrfs_qgroup_wait_for_completion(fs_info, true);
4784 }
4785 
4786 static long _btrfs_ioctl_set_received_subvol(struct file *file,
4787 					    struct user_namespace *mnt_userns,
4788 					    struct btrfs_ioctl_received_subvol_args *sa)
4789 {
4790 	struct inode *inode = file_inode(file);
4791 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4792 	struct btrfs_root *root = BTRFS_I(inode)->root;
4793 	struct btrfs_root_item *root_item = &root->root_item;
4794 	struct btrfs_trans_handle *trans;
4795 	struct timespec64 ct = current_time(inode);
4796 	int ret = 0;
4797 	int received_uuid_changed;
4798 
4799 	if (!inode_owner_or_capable(mnt_userns, inode))
4800 		return -EPERM;
4801 
4802 	ret = mnt_want_write_file(file);
4803 	if (ret < 0)
4804 		return ret;
4805 
4806 	down_write(&fs_info->subvol_sem);
4807 
4808 	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
4809 		ret = -EINVAL;
4810 		goto out;
4811 	}
4812 
4813 	if (btrfs_root_readonly(root)) {
4814 		ret = -EROFS;
4815 		goto out;
4816 	}
4817 
4818 	/*
4819 	 * 1 - root item
4820 	 * 2 - uuid items (received uuid + subvol uuid)
4821 	 */
4822 	trans = btrfs_start_transaction(root, 3);
4823 	if (IS_ERR(trans)) {
4824 		ret = PTR_ERR(trans);
4825 		trans = NULL;
4826 		goto out;
4827 	}
4828 
4829 	sa->rtransid = trans->transid;
4830 	sa->rtime.sec = ct.tv_sec;
4831 	sa->rtime.nsec = ct.tv_nsec;
4832 
4833 	received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid,
4834 				       BTRFS_UUID_SIZE);
4835 	if (received_uuid_changed &&
4836 	    !btrfs_is_empty_uuid(root_item->received_uuid)) {
4837 		ret = btrfs_uuid_tree_remove(trans, root_item->received_uuid,
4838 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4839 					  root->root_key.objectid);
4840 		if (ret && ret != -ENOENT) {
4841 		        btrfs_abort_transaction(trans, ret);
4842 		        btrfs_end_transaction(trans);
4843 		        goto out;
4844 		}
4845 	}
4846 	memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE);
4847 	btrfs_set_root_stransid(root_item, sa->stransid);
4848 	btrfs_set_root_rtransid(root_item, sa->rtransid);
4849 	btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec);
4850 	btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec);
4851 	btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec);
4852 	btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec);
4853 
4854 	ret = btrfs_update_root(trans, fs_info->tree_root,
4855 				&root->root_key, &root->root_item);
4856 	if (ret < 0) {
4857 		btrfs_end_transaction(trans);
4858 		goto out;
4859 	}
4860 	if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) {
4861 		ret = btrfs_uuid_tree_add(trans, sa->uuid,
4862 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4863 					  root->root_key.objectid);
4864 		if (ret < 0 && ret != -EEXIST) {
4865 			btrfs_abort_transaction(trans, ret);
4866 			btrfs_end_transaction(trans);
4867 			goto out;
4868 		}
4869 	}
4870 	ret = btrfs_commit_transaction(trans);
4871 out:
4872 	up_write(&fs_info->subvol_sem);
4873 	mnt_drop_write_file(file);
4874 	return ret;
4875 }
4876 
4877 #ifdef CONFIG_64BIT
4878 static long btrfs_ioctl_set_received_subvol_32(struct file *file,
4879 						void __user *arg)
4880 {
4881 	struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL;
4882 	struct btrfs_ioctl_received_subvol_args *args64 = NULL;
4883 	int ret = 0;
4884 
4885 	args32 = memdup_user(arg, sizeof(*args32));
4886 	if (IS_ERR(args32))
4887 		return PTR_ERR(args32);
4888 
4889 	args64 = kmalloc(sizeof(*args64), GFP_KERNEL);
4890 	if (!args64) {
4891 		ret = -ENOMEM;
4892 		goto out;
4893 	}
4894 
4895 	memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE);
4896 	args64->stransid = args32->stransid;
4897 	args64->rtransid = args32->rtransid;
4898 	args64->stime.sec = args32->stime.sec;
4899 	args64->stime.nsec = args32->stime.nsec;
4900 	args64->rtime.sec = args32->rtime.sec;
4901 	args64->rtime.nsec = args32->rtime.nsec;
4902 	args64->flags = args32->flags;
4903 
4904 	ret = _btrfs_ioctl_set_received_subvol(file, file_mnt_user_ns(file), args64);
4905 	if (ret)
4906 		goto out;
4907 
4908 	memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE);
4909 	args32->stransid = args64->stransid;
4910 	args32->rtransid = args64->rtransid;
4911 	args32->stime.sec = args64->stime.sec;
4912 	args32->stime.nsec = args64->stime.nsec;
4913 	args32->rtime.sec = args64->rtime.sec;
4914 	args32->rtime.nsec = args64->rtime.nsec;
4915 	args32->flags = args64->flags;
4916 
4917 	ret = copy_to_user(arg, args32, sizeof(*args32));
4918 	if (ret)
4919 		ret = -EFAULT;
4920 
4921 out:
4922 	kfree(args32);
4923 	kfree(args64);
4924 	return ret;
4925 }
4926 #endif
4927 
4928 static long btrfs_ioctl_set_received_subvol(struct file *file,
4929 					    void __user *arg)
4930 {
4931 	struct btrfs_ioctl_received_subvol_args *sa = NULL;
4932 	int ret = 0;
4933 
4934 	sa = memdup_user(arg, sizeof(*sa));
4935 	if (IS_ERR(sa))
4936 		return PTR_ERR(sa);
4937 
4938 	ret = _btrfs_ioctl_set_received_subvol(file, file_mnt_user_ns(file), sa);
4939 
4940 	if (ret)
4941 		goto out;
4942 
4943 	ret = copy_to_user(arg, sa, sizeof(*sa));
4944 	if (ret)
4945 		ret = -EFAULT;
4946 
4947 out:
4948 	kfree(sa);
4949 	return ret;
4950 }
4951 
4952 static int btrfs_ioctl_get_fslabel(struct btrfs_fs_info *fs_info,
4953 					void __user *arg)
4954 {
4955 	size_t len;
4956 	int ret;
4957 	char label[BTRFS_LABEL_SIZE];
4958 
4959 	spin_lock(&fs_info->super_lock);
4960 	memcpy(label, fs_info->super_copy->label, BTRFS_LABEL_SIZE);
4961 	spin_unlock(&fs_info->super_lock);
4962 
4963 	len = strnlen(label, BTRFS_LABEL_SIZE);
4964 
4965 	if (len == BTRFS_LABEL_SIZE) {
4966 		btrfs_warn(fs_info,
4967 			   "label is too long, return the first %zu bytes",
4968 			   --len);
4969 	}
4970 
4971 	ret = copy_to_user(arg, label, len);
4972 
4973 	return ret ? -EFAULT : 0;
4974 }
4975 
4976 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg)
4977 {
4978 	struct inode *inode = file_inode(file);
4979 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4980 	struct btrfs_root *root = BTRFS_I(inode)->root;
4981 	struct btrfs_super_block *super_block = fs_info->super_copy;
4982 	struct btrfs_trans_handle *trans;
4983 	char label[BTRFS_LABEL_SIZE];
4984 	int ret;
4985 
4986 	if (!capable(CAP_SYS_ADMIN))
4987 		return -EPERM;
4988 
4989 	if (copy_from_user(label, arg, sizeof(label)))
4990 		return -EFAULT;
4991 
4992 	if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) {
4993 		btrfs_err(fs_info,
4994 			  "unable to set label with more than %d bytes",
4995 			  BTRFS_LABEL_SIZE - 1);
4996 		return -EINVAL;
4997 	}
4998 
4999 	ret = mnt_want_write_file(file);
5000 	if (ret)
5001 		return ret;
5002 
5003 	trans = btrfs_start_transaction(root, 0);
5004 	if (IS_ERR(trans)) {
5005 		ret = PTR_ERR(trans);
5006 		goto out_unlock;
5007 	}
5008 
5009 	spin_lock(&fs_info->super_lock);
5010 	strcpy(super_block->label, label);
5011 	spin_unlock(&fs_info->super_lock);
5012 	ret = btrfs_commit_transaction(trans);
5013 
5014 out_unlock:
5015 	mnt_drop_write_file(file);
5016 	return ret;
5017 }
5018 
5019 #define INIT_FEATURE_FLAGS(suffix) \
5020 	{ .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \
5021 	  .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \
5022 	  .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix }
5023 
5024 int btrfs_ioctl_get_supported_features(void __user *arg)
5025 {
5026 	static const struct btrfs_ioctl_feature_flags features[3] = {
5027 		INIT_FEATURE_FLAGS(SUPP),
5028 		INIT_FEATURE_FLAGS(SAFE_SET),
5029 		INIT_FEATURE_FLAGS(SAFE_CLEAR)
5030 	};
5031 
5032 	if (copy_to_user(arg, &features, sizeof(features)))
5033 		return -EFAULT;
5034 
5035 	return 0;
5036 }
5037 
5038 static int btrfs_ioctl_get_features(struct btrfs_fs_info *fs_info,
5039 					void __user *arg)
5040 {
5041 	struct btrfs_super_block *super_block = fs_info->super_copy;
5042 	struct btrfs_ioctl_feature_flags features;
5043 
5044 	features.compat_flags = btrfs_super_compat_flags(super_block);
5045 	features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block);
5046 	features.incompat_flags = btrfs_super_incompat_flags(super_block);
5047 
5048 	if (copy_to_user(arg, &features, sizeof(features)))
5049 		return -EFAULT;
5050 
5051 	return 0;
5052 }
5053 
5054 static int check_feature_bits(struct btrfs_fs_info *fs_info,
5055 			      enum btrfs_feature_set set,
5056 			      u64 change_mask, u64 flags, u64 supported_flags,
5057 			      u64 safe_set, u64 safe_clear)
5058 {
5059 	const char *type = btrfs_feature_set_name(set);
5060 	char *names;
5061 	u64 disallowed, unsupported;
5062 	u64 set_mask = flags & change_mask;
5063 	u64 clear_mask = ~flags & change_mask;
5064 
5065 	unsupported = set_mask & ~supported_flags;
5066 	if (unsupported) {
5067 		names = btrfs_printable_features(set, unsupported);
5068 		if (names) {
5069 			btrfs_warn(fs_info,
5070 				   "this kernel does not support the %s feature bit%s",
5071 				   names, strchr(names, ',') ? "s" : "");
5072 			kfree(names);
5073 		} else
5074 			btrfs_warn(fs_info,
5075 				   "this kernel does not support %s bits 0x%llx",
5076 				   type, unsupported);
5077 		return -EOPNOTSUPP;
5078 	}
5079 
5080 	disallowed = set_mask & ~safe_set;
5081 	if (disallowed) {
5082 		names = btrfs_printable_features(set, disallowed);
5083 		if (names) {
5084 			btrfs_warn(fs_info,
5085 				   "can't set the %s feature bit%s while mounted",
5086 				   names, strchr(names, ',') ? "s" : "");
5087 			kfree(names);
5088 		} else
5089 			btrfs_warn(fs_info,
5090 				   "can't set %s bits 0x%llx while mounted",
5091 				   type, disallowed);
5092 		return -EPERM;
5093 	}
5094 
5095 	disallowed = clear_mask & ~safe_clear;
5096 	if (disallowed) {
5097 		names = btrfs_printable_features(set, disallowed);
5098 		if (names) {
5099 			btrfs_warn(fs_info,
5100 				   "can't clear the %s feature bit%s while mounted",
5101 				   names, strchr(names, ',') ? "s" : "");
5102 			kfree(names);
5103 		} else
5104 			btrfs_warn(fs_info,
5105 				   "can't clear %s bits 0x%llx while mounted",
5106 				   type, disallowed);
5107 		return -EPERM;
5108 	}
5109 
5110 	return 0;
5111 }
5112 
5113 #define check_feature(fs_info, change_mask, flags, mask_base)	\
5114 check_feature_bits(fs_info, FEAT_##mask_base, change_mask, flags,	\
5115 		   BTRFS_FEATURE_ ## mask_base ## _SUPP,	\
5116 		   BTRFS_FEATURE_ ## mask_base ## _SAFE_SET,	\
5117 		   BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR)
5118 
5119 static int btrfs_ioctl_set_features(struct file *file, void __user *arg)
5120 {
5121 	struct inode *inode = file_inode(file);
5122 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5123 	struct btrfs_root *root = BTRFS_I(inode)->root;
5124 	struct btrfs_super_block *super_block = fs_info->super_copy;
5125 	struct btrfs_ioctl_feature_flags flags[2];
5126 	struct btrfs_trans_handle *trans;
5127 	u64 newflags;
5128 	int ret;
5129 
5130 	if (!capable(CAP_SYS_ADMIN))
5131 		return -EPERM;
5132 
5133 	if (copy_from_user(flags, arg, sizeof(flags)))
5134 		return -EFAULT;
5135 
5136 	/* Nothing to do */
5137 	if (!flags[0].compat_flags && !flags[0].compat_ro_flags &&
5138 	    !flags[0].incompat_flags)
5139 		return 0;
5140 
5141 	ret = check_feature(fs_info, flags[0].compat_flags,
5142 			    flags[1].compat_flags, COMPAT);
5143 	if (ret)
5144 		return ret;
5145 
5146 	ret = check_feature(fs_info, flags[0].compat_ro_flags,
5147 			    flags[1].compat_ro_flags, COMPAT_RO);
5148 	if (ret)
5149 		return ret;
5150 
5151 	ret = check_feature(fs_info, flags[0].incompat_flags,
5152 			    flags[1].incompat_flags, INCOMPAT);
5153 	if (ret)
5154 		return ret;
5155 
5156 	ret = mnt_want_write_file(file);
5157 	if (ret)
5158 		return ret;
5159 
5160 	trans = btrfs_start_transaction(root, 0);
5161 	if (IS_ERR(trans)) {
5162 		ret = PTR_ERR(trans);
5163 		goto out_drop_write;
5164 	}
5165 
5166 	spin_lock(&fs_info->super_lock);
5167 	newflags = btrfs_super_compat_flags(super_block);
5168 	newflags |= flags[0].compat_flags & flags[1].compat_flags;
5169 	newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags);
5170 	btrfs_set_super_compat_flags(super_block, newflags);
5171 
5172 	newflags = btrfs_super_compat_ro_flags(super_block);
5173 	newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags;
5174 	newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags);
5175 	btrfs_set_super_compat_ro_flags(super_block, newflags);
5176 
5177 	newflags = btrfs_super_incompat_flags(super_block);
5178 	newflags |= flags[0].incompat_flags & flags[1].incompat_flags;
5179 	newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags);
5180 	btrfs_set_super_incompat_flags(super_block, newflags);
5181 	spin_unlock(&fs_info->super_lock);
5182 
5183 	ret = btrfs_commit_transaction(trans);
5184 out_drop_write:
5185 	mnt_drop_write_file(file);
5186 
5187 	return ret;
5188 }
5189 
5190 static int _btrfs_ioctl_send(struct inode *inode, void __user *argp, bool compat)
5191 {
5192 	struct btrfs_ioctl_send_args *arg;
5193 	int ret;
5194 
5195 	if (compat) {
5196 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
5197 		struct btrfs_ioctl_send_args_32 args32;
5198 
5199 		ret = copy_from_user(&args32, argp, sizeof(args32));
5200 		if (ret)
5201 			return -EFAULT;
5202 		arg = kzalloc(sizeof(*arg), GFP_KERNEL);
5203 		if (!arg)
5204 			return -ENOMEM;
5205 		arg->send_fd = args32.send_fd;
5206 		arg->clone_sources_count = args32.clone_sources_count;
5207 		arg->clone_sources = compat_ptr(args32.clone_sources);
5208 		arg->parent_root = args32.parent_root;
5209 		arg->flags = args32.flags;
5210 		memcpy(arg->reserved, args32.reserved,
5211 		       sizeof(args32.reserved));
5212 #else
5213 		return -ENOTTY;
5214 #endif
5215 	} else {
5216 		arg = memdup_user(argp, sizeof(*arg));
5217 		if (IS_ERR(arg))
5218 			return PTR_ERR(arg);
5219 	}
5220 	ret = btrfs_ioctl_send(inode, arg);
5221 	kfree(arg);
5222 	return ret;
5223 }
5224 
5225 static int btrfs_ioctl_encoded_read(struct file *file, void __user *argp,
5226 				    bool compat)
5227 {
5228 	struct btrfs_ioctl_encoded_io_args args = { 0 };
5229 	size_t copy_end_kernel = offsetofend(struct btrfs_ioctl_encoded_io_args,
5230 					     flags);
5231 	size_t copy_end;
5232 	struct iovec iovstack[UIO_FASTIOV];
5233 	struct iovec *iov = iovstack;
5234 	struct iov_iter iter;
5235 	loff_t pos;
5236 	struct kiocb kiocb;
5237 	ssize_t ret;
5238 
5239 	if (!capable(CAP_SYS_ADMIN)) {
5240 		ret = -EPERM;
5241 		goto out_acct;
5242 	}
5243 
5244 	if (compat) {
5245 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
5246 		struct btrfs_ioctl_encoded_io_args_32 args32;
5247 
5248 		copy_end = offsetofend(struct btrfs_ioctl_encoded_io_args_32,
5249 				       flags);
5250 		if (copy_from_user(&args32, argp, copy_end)) {
5251 			ret = -EFAULT;
5252 			goto out_acct;
5253 		}
5254 		args.iov = compat_ptr(args32.iov);
5255 		args.iovcnt = args32.iovcnt;
5256 		args.offset = args32.offset;
5257 		args.flags = args32.flags;
5258 #else
5259 		return -ENOTTY;
5260 #endif
5261 	} else {
5262 		copy_end = copy_end_kernel;
5263 		if (copy_from_user(&args, argp, copy_end)) {
5264 			ret = -EFAULT;
5265 			goto out_acct;
5266 		}
5267 	}
5268 	if (args.flags != 0) {
5269 		ret = -EINVAL;
5270 		goto out_acct;
5271 	}
5272 
5273 	ret = import_iovec(READ, args.iov, args.iovcnt, ARRAY_SIZE(iovstack),
5274 			   &iov, &iter);
5275 	if (ret < 0)
5276 		goto out_acct;
5277 
5278 	if (iov_iter_count(&iter) == 0) {
5279 		ret = 0;
5280 		goto out_iov;
5281 	}
5282 	pos = args.offset;
5283 	ret = rw_verify_area(READ, file, &pos, args.len);
5284 	if (ret < 0)
5285 		goto out_iov;
5286 
5287 	init_sync_kiocb(&kiocb, file);
5288 	kiocb.ki_pos = pos;
5289 
5290 	ret = btrfs_encoded_read(&kiocb, &iter, &args);
5291 	if (ret >= 0) {
5292 		fsnotify_access(file);
5293 		if (copy_to_user(argp + copy_end,
5294 				 (char *)&args + copy_end_kernel,
5295 				 sizeof(args) - copy_end_kernel))
5296 			ret = -EFAULT;
5297 	}
5298 
5299 out_iov:
5300 	kfree(iov);
5301 out_acct:
5302 	if (ret > 0)
5303 		add_rchar(current, ret);
5304 	inc_syscr(current);
5305 	return ret;
5306 }
5307 
5308 static int btrfs_ioctl_encoded_write(struct file *file, void __user *argp, bool compat)
5309 {
5310 	struct btrfs_ioctl_encoded_io_args args;
5311 	struct iovec iovstack[UIO_FASTIOV];
5312 	struct iovec *iov = iovstack;
5313 	struct iov_iter iter;
5314 	loff_t pos;
5315 	struct kiocb kiocb;
5316 	ssize_t ret;
5317 
5318 	if (!capable(CAP_SYS_ADMIN)) {
5319 		ret = -EPERM;
5320 		goto out_acct;
5321 	}
5322 
5323 	if (!(file->f_mode & FMODE_WRITE)) {
5324 		ret = -EBADF;
5325 		goto out_acct;
5326 	}
5327 
5328 	if (compat) {
5329 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
5330 		struct btrfs_ioctl_encoded_io_args_32 args32;
5331 
5332 		if (copy_from_user(&args32, argp, sizeof(args32))) {
5333 			ret = -EFAULT;
5334 			goto out_acct;
5335 		}
5336 		args.iov = compat_ptr(args32.iov);
5337 		args.iovcnt = args32.iovcnt;
5338 		args.offset = args32.offset;
5339 		args.flags = args32.flags;
5340 		args.len = args32.len;
5341 		args.unencoded_len = args32.unencoded_len;
5342 		args.unencoded_offset = args32.unencoded_offset;
5343 		args.compression = args32.compression;
5344 		args.encryption = args32.encryption;
5345 		memcpy(args.reserved, args32.reserved, sizeof(args.reserved));
5346 #else
5347 		return -ENOTTY;
5348 #endif
5349 	} else {
5350 		if (copy_from_user(&args, argp, sizeof(args))) {
5351 			ret = -EFAULT;
5352 			goto out_acct;
5353 		}
5354 	}
5355 
5356 	ret = -EINVAL;
5357 	if (args.flags != 0)
5358 		goto out_acct;
5359 	if (memchr_inv(args.reserved, 0, sizeof(args.reserved)))
5360 		goto out_acct;
5361 	if (args.compression == BTRFS_ENCODED_IO_COMPRESSION_NONE &&
5362 	    args.encryption == BTRFS_ENCODED_IO_ENCRYPTION_NONE)
5363 		goto out_acct;
5364 	if (args.compression >= BTRFS_ENCODED_IO_COMPRESSION_TYPES ||
5365 	    args.encryption >= BTRFS_ENCODED_IO_ENCRYPTION_TYPES)
5366 		goto out_acct;
5367 	if (args.unencoded_offset > args.unencoded_len)
5368 		goto out_acct;
5369 	if (args.len > args.unencoded_len - args.unencoded_offset)
5370 		goto out_acct;
5371 
5372 	ret = import_iovec(WRITE, args.iov, args.iovcnt, ARRAY_SIZE(iovstack),
5373 			   &iov, &iter);
5374 	if (ret < 0)
5375 		goto out_acct;
5376 
5377 	file_start_write(file);
5378 
5379 	if (iov_iter_count(&iter) == 0) {
5380 		ret = 0;
5381 		goto out_end_write;
5382 	}
5383 	pos = args.offset;
5384 	ret = rw_verify_area(WRITE, file, &pos, args.len);
5385 	if (ret < 0)
5386 		goto out_end_write;
5387 
5388 	init_sync_kiocb(&kiocb, file);
5389 	ret = kiocb_set_rw_flags(&kiocb, 0);
5390 	if (ret)
5391 		goto out_end_write;
5392 	kiocb.ki_pos = pos;
5393 
5394 	ret = btrfs_do_write_iter(&kiocb, &iter, &args);
5395 	if (ret > 0)
5396 		fsnotify_modify(file);
5397 
5398 out_end_write:
5399 	file_end_write(file);
5400 	kfree(iov);
5401 out_acct:
5402 	if (ret > 0)
5403 		add_wchar(current, ret);
5404 	inc_syscw(current);
5405 	return ret;
5406 }
5407 
5408 long btrfs_ioctl(struct file *file, unsigned int
5409 		cmd, unsigned long arg)
5410 {
5411 	struct inode *inode = file_inode(file);
5412 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5413 	struct btrfs_root *root = BTRFS_I(inode)->root;
5414 	void __user *argp = (void __user *)arg;
5415 
5416 	switch (cmd) {
5417 	case FS_IOC_GETVERSION:
5418 		return btrfs_ioctl_getversion(inode, argp);
5419 	case FS_IOC_GETFSLABEL:
5420 		return btrfs_ioctl_get_fslabel(fs_info, argp);
5421 	case FS_IOC_SETFSLABEL:
5422 		return btrfs_ioctl_set_fslabel(file, argp);
5423 	case FITRIM:
5424 		return btrfs_ioctl_fitrim(fs_info, argp);
5425 	case BTRFS_IOC_SNAP_CREATE:
5426 		return btrfs_ioctl_snap_create(file, argp, 0);
5427 	case BTRFS_IOC_SNAP_CREATE_V2:
5428 		return btrfs_ioctl_snap_create_v2(file, argp, 0);
5429 	case BTRFS_IOC_SUBVOL_CREATE:
5430 		return btrfs_ioctl_snap_create(file, argp, 1);
5431 	case BTRFS_IOC_SUBVOL_CREATE_V2:
5432 		return btrfs_ioctl_snap_create_v2(file, argp, 1);
5433 	case BTRFS_IOC_SNAP_DESTROY:
5434 		return btrfs_ioctl_snap_destroy(file, argp, false);
5435 	case BTRFS_IOC_SNAP_DESTROY_V2:
5436 		return btrfs_ioctl_snap_destroy(file, argp, true);
5437 	case BTRFS_IOC_SUBVOL_GETFLAGS:
5438 		return btrfs_ioctl_subvol_getflags(inode, argp);
5439 	case BTRFS_IOC_SUBVOL_SETFLAGS:
5440 		return btrfs_ioctl_subvol_setflags(file, argp);
5441 	case BTRFS_IOC_DEFAULT_SUBVOL:
5442 		return btrfs_ioctl_default_subvol(file, argp);
5443 	case BTRFS_IOC_DEFRAG:
5444 		return btrfs_ioctl_defrag(file, NULL);
5445 	case BTRFS_IOC_DEFRAG_RANGE:
5446 		return btrfs_ioctl_defrag(file, argp);
5447 	case BTRFS_IOC_RESIZE:
5448 		return btrfs_ioctl_resize(file, argp);
5449 	case BTRFS_IOC_ADD_DEV:
5450 		return btrfs_ioctl_add_dev(fs_info, argp);
5451 	case BTRFS_IOC_RM_DEV:
5452 		return btrfs_ioctl_rm_dev(file, argp);
5453 	case BTRFS_IOC_RM_DEV_V2:
5454 		return btrfs_ioctl_rm_dev_v2(file, argp);
5455 	case BTRFS_IOC_FS_INFO:
5456 		return btrfs_ioctl_fs_info(fs_info, argp);
5457 	case BTRFS_IOC_DEV_INFO:
5458 		return btrfs_ioctl_dev_info(fs_info, argp);
5459 	case BTRFS_IOC_TREE_SEARCH:
5460 		return btrfs_ioctl_tree_search(inode, argp);
5461 	case BTRFS_IOC_TREE_SEARCH_V2:
5462 		return btrfs_ioctl_tree_search_v2(inode, argp);
5463 	case BTRFS_IOC_INO_LOOKUP:
5464 		return btrfs_ioctl_ino_lookup(root, argp);
5465 	case BTRFS_IOC_INO_PATHS:
5466 		return btrfs_ioctl_ino_to_path(root, argp);
5467 	case BTRFS_IOC_LOGICAL_INO:
5468 		return btrfs_ioctl_logical_to_ino(fs_info, argp, 1);
5469 	case BTRFS_IOC_LOGICAL_INO_V2:
5470 		return btrfs_ioctl_logical_to_ino(fs_info, argp, 2);
5471 	case BTRFS_IOC_SPACE_INFO:
5472 		return btrfs_ioctl_space_info(fs_info, argp);
5473 	case BTRFS_IOC_SYNC: {
5474 		int ret;
5475 
5476 		ret = btrfs_start_delalloc_roots(fs_info, LONG_MAX, false);
5477 		if (ret)
5478 			return ret;
5479 		ret = btrfs_sync_fs(inode->i_sb, 1);
5480 		/*
5481 		 * The transaction thread may want to do more work,
5482 		 * namely it pokes the cleaner kthread that will start
5483 		 * processing uncleaned subvols.
5484 		 */
5485 		wake_up_process(fs_info->transaction_kthread);
5486 		return ret;
5487 	}
5488 	case BTRFS_IOC_START_SYNC:
5489 		return btrfs_ioctl_start_sync(root, argp);
5490 	case BTRFS_IOC_WAIT_SYNC:
5491 		return btrfs_ioctl_wait_sync(fs_info, argp);
5492 	case BTRFS_IOC_SCRUB:
5493 		return btrfs_ioctl_scrub(file, argp);
5494 	case BTRFS_IOC_SCRUB_CANCEL:
5495 		return btrfs_ioctl_scrub_cancel(fs_info);
5496 	case BTRFS_IOC_SCRUB_PROGRESS:
5497 		return btrfs_ioctl_scrub_progress(fs_info, argp);
5498 	case BTRFS_IOC_BALANCE_V2:
5499 		return btrfs_ioctl_balance(file, argp);
5500 	case BTRFS_IOC_BALANCE_CTL:
5501 		return btrfs_ioctl_balance_ctl(fs_info, arg);
5502 	case BTRFS_IOC_BALANCE_PROGRESS:
5503 		return btrfs_ioctl_balance_progress(fs_info, argp);
5504 	case BTRFS_IOC_SET_RECEIVED_SUBVOL:
5505 		return btrfs_ioctl_set_received_subvol(file, argp);
5506 #ifdef CONFIG_64BIT
5507 	case BTRFS_IOC_SET_RECEIVED_SUBVOL_32:
5508 		return btrfs_ioctl_set_received_subvol_32(file, argp);
5509 #endif
5510 	case BTRFS_IOC_SEND:
5511 		return _btrfs_ioctl_send(inode, argp, false);
5512 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
5513 	case BTRFS_IOC_SEND_32:
5514 		return _btrfs_ioctl_send(inode, argp, true);
5515 #endif
5516 	case BTRFS_IOC_GET_DEV_STATS:
5517 		return btrfs_ioctl_get_dev_stats(fs_info, argp);
5518 	case BTRFS_IOC_QUOTA_CTL:
5519 		return btrfs_ioctl_quota_ctl(file, argp);
5520 	case BTRFS_IOC_QGROUP_ASSIGN:
5521 		return btrfs_ioctl_qgroup_assign(file, argp);
5522 	case BTRFS_IOC_QGROUP_CREATE:
5523 		return btrfs_ioctl_qgroup_create(file, argp);
5524 	case BTRFS_IOC_QGROUP_LIMIT:
5525 		return btrfs_ioctl_qgroup_limit(file, argp);
5526 	case BTRFS_IOC_QUOTA_RESCAN:
5527 		return btrfs_ioctl_quota_rescan(file, argp);
5528 	case BTRFS_IOC_QUOTA_RESCAN_STATUS:
5529 		return btrfs_ioctl_quota_rescan_status(fs_info, argp);
5530 	case BTRFS_IOC_QUOTA_RESCAN_WAIT:
5531 		return btrfs_ioctl_quota_rescan_wait(fs_info, argp);
5532 	case BTRFS_IOC_DEV_REPLACE:
5533 		return btrfs_ioctl_dev_replace(fs_info, argp);
5534 	case BTRFS_IOC_GET_SUPPORTED_FEATURES:
5535 		return btrfs_ioctl_get_supported_features(argp);
5536 	case BTRFS_IOC_GET_FEATURES:
5537 		return btrfs_ioctl_get_features(fs_info, argp);
5538 	case BTRFS_IOC_SET_FEATURES:
5539 		return btrfs_ioctl_set_features(file, argp);
5540 	case BTRFS_IOC_GET_SUBVOL_INFO:
5541 		return btrfs_ioctl_get_subvol_info(inode, argp);
5542 	case BTRFS_IOC_GET_SUBVOL_ROOTREF:
5543 		return btrfs_ioctl_get_subvol_rootref(root, argp);
5544 	case BTRFS_IOC_INO_LOOKUP_USER:
5545 		return btrfs_ioctl_ino_lookup_user(file, argp);
5546 	case FS_IOC_ENABLE_VERITY:
5547 		return fsverity_ioctl_enable(file, (const void __user *)argp);
5548 	case FS_IOC_MEASURE_VERITY:
5549 		return fsverity_ioctl_measure(file, argp);
5550 	case BTRFS_IOC_ENCODED_READ:
5551 		return btrfs_ioctl_encoded_read(file, argp, false);
5552 	case BTRFS_IOC_ENCODED_WRITE:
5553 		return btrfs_ioctl_encoded_write(file, argp, false);
5554 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
5555 	case BTRFS_IOC_ENCODED_READ_32:
5556 		return btrfs_ioctl_encoded_read(file, argp, true);
5557 	case BTRFS_IOC_ENCODED_WRITE_32:
5558 		return btrfs_ioctl_encoded_write(file, argp, true);
5559 #endif
5560 	}
5561 
5562 	return -ENOTTY;
5563 }
5564 
5565 #ifdef CONFIG_COMPAT
5566 long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5567 {
5568 	/*
5569 	 * These all access 32-bit values anyway so no further
5570 	 * handling is necessary.
5571 	 */
5572 	switch (cmd) {
5573 	case FS_IOC32_GETVERSION:
5574 		cmd = FS_IOC_GETVERSION;
5575 		break;
5576 	}
5577 
5578 	return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
5579 }
5580 #endif
5581