1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/kernel.h> 7 #include <linux/bio.h> 8 #include <linux/file.h> 9 #include <linux/fs.h> 10 #include <linux/fsnotify.h> 11 #include <linux/pagemap.h> 12 #include <linux/highmem.h> 13 #include <linux/time.h> 14 #include <linux/string.h> 15 #include <linux/backing-dev.h> 16 #include <linux/mount.h> 17 #include <linux/namei.h> 18 #include <linux/writeback.h> 19 #include <linux/compat.h> 20 #include <linux/security.h> 21 #include <linux/xattr.h> 22 #include <linux/mm.h> 23 #include <linux/slab.h> 24 #include <linux/blkdev.h> 25 #include <linux/uuid.h> 26 #include <linux/btrfs.h> 27 #include <linux/uaccess.h> 28 #include <linux/iversion.h> 29 #include <linux/fileattr.h> 30 #include <linux/fsverity.h> 31 #include "ctree.h" 32 #include "disk-io.h" 33 #include "export.h" 34 #include "transaction.h" 35 #include "btrfs_inode.h" 36 #include "print-tree.h" 37 #include "volumes.h" 38 #include "locking.h" 39 #include "backref.h" 40 #include "rcu-string.h" 41 #include "send.h" 42 #include "dev-replace.h" 43 #include "props.h" 44 #include "sysfs.h" 45 #include "qgroup.h" 46 #include "tree-log.h" 47 #include "compression.h" 48 #include "space-info.h" 49 #include "delalloc-space.h" 50 #include "block-group.h" 51 #include "subpage.h" 52 53 #ifdef CONFIG_64BIT 54 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI 55 * structures are incorrect, as the timespec structure from userspace 56 * is 4 bytes too small. We define these alternatives here to teach 57 * the kernel about the 32-bit struct packing. 58 */ 59 struct btrfs_ioctl_timespec_32 { 60 __u64 sec; 61 __u32 nsec; 62 } __attribute__ ((__packed__)); 63 64 struct btrfs_ioctl_received_subvol_args_32 { 65 char uuid[BTRFS_UUID_SIZE]; /* in */ 66 __u64 stransid; /* in */ 67 __u64 rtransid; /* out */ 68 struct btrfs_ioctl_timespec_32 stime; /* in */ 69 struct btrfs_ioctl_timespec_32 rtime; /* out */ 70 __u64 flags; /* in */ 71 __u64 reserved[16]; /* in */ 72 } __attribute__ ((__packed__)); 73 74 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \ 75 struct btrfs_ioctl_received_subvol_args_32) 76 #endif 77 78 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 79 struct btrfs_ioctl_send_args_32 { 80 __s64 send_fd; /* in */ 81 __u64 clone_sources_count; /* in */ 82 compat_uptr_t clone_sources; /* in */ 83 __u64 parent_root; /* in */ 84 __u64 flags; /* in */ 85 __u32 version; /* in */ 86 __u8 reserved[28]; /* in */ 87 } __attribute__ ((__packed__)); 88 89 #define BTRFS_IOC_SEND_32 _IOW(BTRFS_IOCTL_MAGIC, 38, \ 90 struct btrfs_ioctl_send_args_32) 91 #endif 92 93 /* Mask out flags that are inappropriate for the given type of inode. */ 94 static unsigned int btrfs_mask_fsflags_for_type(struct inode *inode, 95 unsigned int flags) 96 { 97 if (S_ISDIR(inode->i_mode)) 98 return flags; 99 else if (S_ISREG(inode->i_mode)) 100 return flags & ~FS_DIRSYNC_FL; 101 else 102 return flags & (FS_NODUMP_FL | FS_NOATIME_FL); 103 } 104 105 /* 106 * Export internal inode flags to the format expected by the FS_IOC_GETFLAGS 107 * ioctl. 108 */ 109 static unsigned int btrfs_inode_flags_to_fsflags(struct btrfs_inode *binode) 110 { 111 unsigned int iflags = 0; 112 u32 flags = binode->flags; 113 u32 ro_flags = binode->ro_flags; 114 115 if (flags & BTRFS_INODE_SYNC) 116 iflags |= FS_SYNC_FL; 117 if (flags & BTRFS_INODE_IMMUTABLE) 118 iflags |= FS_IMMUTABLE_FL; 119 if (flags & BTRFS_INODE_APPEND) 120 iflags |= FS_APPEND_FL; 121 if (flags & BTRFS_INODE_NODUMP) 122 iflags |= FS_NODUMP_FL; 123 if (flags & BTRFS_INODE_NOATIME) 124 iflags |= FS_NOATIME_FL; 125 if (flags & BTRFS_INODE_DIRSYNC) 126 iflags |= FS_DIRSYNC_FL; 127 if (flags & BTRFS_INODE_NODATACOW) 128 iflags |= FS_NOCOW_FL; 129 if (ro_flags & BTRFS_INODE_RO_VERITY) 130 iflags |= FS_VERITY_FL; 131 132 if (flags & BTRFS_INODE_NOCOMPRESS) 133 iflags |= FS_NOCOMP_FL; 134 else if (flags & BTRFS_INODE_COMPRESS) 135 iflags |= FS_COMPR_FL; 136 137 return iflags; 138 } 139 140 /* 141 * Update inode->i_flags based on the btrfs internal flags. 142 */ 143 void btrfs_sync_inode_flags_to_i_flags(struct inode *inode) 144 { 145 struct btrfs_inode *binode = BTRFS_I(inode); 146 unsigned int new_fl = 0; 147 148 if (binode->flags & BTRFS_INODE_SYNC) 149 new_fl |= S_SYNC; 150 if (binode->flags & BTRFS_INODE_IMMUTABLE) 151 new_fl |= S_IMMUTABLE; 152 if (binode->flags & BTRFS_INODE_APPEND) 153 new_fl |= S_APPEND; 154 if (binode->flags & BTRFS_INODE_NOATIME) 155 new_fl |= S_NOATIME; 156 if (binode->flags & BTRFS_INODE_DIRSYNC) 157 new_fl |= S_DIRSYNC; 158 if (binode->ro_flags & BTRFS_INODE_RO_VERITY) 159 new_fl |= S_VERITY; 160 161 set_mask_bits(&inode->i_flags, 162 S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC | 163 S_VERITY, new_fl); 164 } 165 166 /* 167 * Check if @flags are a supported and valid set of FS_*_FL flags and that 168 * the old and new flags are not conflicting 169 */ 170 static int check_fsflags(unsigned int old_flags, unsigned int flags) 171 { 172 if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \ 173 FS_NOATIME_FL | FS_NODUMP_FL | \ 174 FS_SYNC_FL | FS_DIRSYNC_FL | \ 175 FS_NOCOMP_FL | FS_COMPR_FL | 176 FS_NOCOW_FL)) 177 return -EOPNOTSUPP; 178 179 /* COMPR and NOCOMP on new/old are valid */ 180 if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL)) 181 return -EINVAL; 182 183 if ((flags & FS_COMPR_FL) && (flags & FS_NOCOW_FL)) 184 return -EINVAL; 185 186 /* NOCOW and compression options are mutually exclusive */ 187 if ((old_flags & FS_NOCOW_FL) && (flags & (FS_COMPR_FL | FS_NOCOMP_FL))) 188 return -EINVAL; 189 if ((flags & FS_NOCOW_FL) && (old_flags & (FS_COMPR_FL | FS_NOCOMP_FL))) 190 return -EINVAL; 191 192 return 0; 193 } 194 195 static int check_fsflags_compatible(struct btrfs_fs_info *fs_info, 196 unsigned int flags) 197 { 198 if (btrfs_is_zoned(fs_info) && (flags & FS_NOCOW_FL)) 199 return -EPERM; 200 201 return 0; 202 } 203 204 /* 205 * Set flags/xflags from the internal inode flags. The remaining items of 206 * fsxattr are zeroed. 207 */ 208 int btrfs_fileattr_get(struct dentry *dentry, struct fileattr *fa) 209 { 210 struct btrfs_inode *binode = BTRFS_I(d_inode(dentry)); 211 212 fileattr_fill_flags(fa, btrfs_inode_flags_to_fsflags(binode)); 213 return 0; 214 } 215 216 int btrfs_fileattr_set(struct user_namespace *mnt_userns, 217 struct dentry *dentry, struct fileattr *fa) 218 { 219 struct inode *inode = d_inode(dentry); 220 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 221 struct btrfs_inode *binode = BTRFS_I(inode); 222 struct btrfs_root *root = binode->root; 223 struct btrfs_trans_handle *trans; 224 unsigned int fsflags, old_fsflags; 225 int ret; 226 const char *comp = NULL; 227 u32 binode_flags; 228 229 if (btrfs_root_readonly(root)) 230 return -EROFS; 231 232 if (fileattr_has_fsx(fa)) 233 return -EOPNOTSUPP; 234 235 fsflags = btrfs_mask_fsflags_for_type(inode, fa->flags); 236 old_fsflags = btrfs_inode_flags_to_fsflags(binode); 237 ret = check_fsflags(old_fsflags, fsflags); 238 if (ret) 239 return ret; 240 241 ret = check_fsflags_compatible(fs_info, fsflags); 242 if (ret) 243 return ret; 244 245 binode_flags = binode->flags; 246 if (fsflags & FS_SYNC_FL) 247 binode_flags |= BTRFS_INODE_SYNC; 248 else 249 binode_flags &= ~BTRFS_INODE_SYNC; 250 if (fsflags & FS_IMMUTABLE_FL) 251 binode_flags |= BTRFS_INODE_IMMUTABLE; 252 else 253 binode_flags &= ~BTRFS_INODE_IMMUTABLE; 254 if (fsflags & FS_APPEND_FL) 255 binode_flags |= BTRFS_INODE_APPEND; 256 else 257 binode_flags &= ~BTRFS_INODE_APPEND; 258 if (fsflags & FS_NODUMP_FL) 259 binode_flags |= BTRFS_INODE_NODUMP; 260 else 261 binode_flags &= ~BTRFS_INODE_NODUMP; 262 if (fsflags & FS_NOATIME_FL) 263 binode_flags |= BTRFS_INODE_NOATIME; 264 else 265 binode_flags &= ~BTRFS_INODE_NOATIME; 266 267 /* If coming from FS_IOC_FSSETXATTR then skip unconverted flags */ 268 if (!fa->flags_valid) { 269 /* 1 item for the inode */ 270 trans = btrfs_start_transaction(root, 1); 271 if (IS_ERR(trans)) 272 return PTR_ERR(trans); 273 goto update_flags; 274 } 275 276 if (fsflags & FS_DIRSYNC_FL) 277 binode_flags |= BTRFS_INODE_DIRSYNC; 278 else 279 binode_flags &= ~BTRFS_INODE_DIRSYNC; 280 if (fsflags & FS_NOCOW_FL) { 281 if (S_ISREG(inode->i_mode)) { 282 /* 283 * It's safe to turn csums off here, no extents exist. 284 * Otherwise we want the flag to reflect the real COW 285 * status of the file and will not set it. 286 */ 287 if (inode->i_size == 0) 288 binode_flags |= BTRFS_INODE_NODATACOW | 289 BTRFS_INODE_NODATASUM; 290 } else { 291 binode_flags |= BTRFS_INODE_NODATACOW; 292 } 293 } else { 294 /* 295 * Revert back under same assumptions as above 296 */ 297 if (S_ISREG(inode->i_mode)) { 298 if (inode->i_size == 0) 299 binode_flags &= ~(BTRFS_INODE_NODATACOW | 300 BTRFS_INODE_NODATASUM); 301 } else { 302 binode_flags &= ~BTRFS_INODE_NODATACOW; 303 } 304 } 305 306 /* 307 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS 308 * flag may be changed automatically if compression code won't make 309 * things smaller. 310 */ 311 if (fsflags & FS_NOCOMP_FL) { 312 binode_flags &= ~BTRFS_INODE_COMPRESS; 313 binode_flags |= BTRFS_INODE_NOCOMPRESS; 314 } else if (fsflags & FS_COMPR_FL) { 315 316 if (IS_SWAPFILE(inode)) 317 return -ETXTBSY; 318 319 binode_flags |= BTRFS_INODE_COMPRESS; 320 binode_flags &= ~BTRFS_INODE_NOCOMPRESS; 321 322 comp = btrfs_compress_type2str(fs_info->compress_type); 323 if (!comp || comp[0] == 0) 324 comp = btrfs_compress_type2str(BTRFS_COMPRESS_ZLIB); 325 } else { 326 binode_flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS); 327 } 328 329 /* 330 * 1 for inode item 331 * 2 for properties 332 */ 333 trans = btrfs_start_transaction(root, 3); 334 if (IS_ERR(trans)) 335 return PTR_ERR(trans); 336 337 if (comp) { 338 ret = btrfs_set_prop(trans, inode, "btrfs.compression", comp, 339 strlen(comp), 0); 340 if (ret) { 341 btrfs_abort_transaction(trans, ret); 342 goto out_end_trans; 343 } 344 } else { 345 ret = btrfs_set_prop(trans, inode, "btrfs.compression", NULL, 346 0, 0); 347 if (ret && ret != -ENODATA) { 348 btrfs_abort_transaction(trans, ret); 349 goto out_end_trans; 350 } 351 } 352 353 update_flags: 354 binode->flags = binode_flags; 355 btrfs_sync_inode_flags_to_i_flags(inode); 356 inode_inc_iversion(inode); 357 inode->i_ctime = current_time(inode); 358 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 359 360 out_end_trans: 361 btrfs_end_transaction(trans); 362 return ret; 363 } 364 365 /* 366 * Start exclusive operation @type, return true on success 367 */ 368 bool btrfs_exclop_start(struct btrfs_fs_info *fs_info, 369 enum btrfs_exclusive_operation type) 370 { 371 bool ret = false; 372 373 spin_lock(&fs_info->super_lock); 374 if (fs_info->exclusive_operation == BTRFS_EXCLOP_NONE) { 375 fs_info->exclusive_operation = type; 376 ret = true; 377 } 378 spin_unlock(&fs_info->super_lock); 379 380 return ret; 381 } 382 383 /* 384 * Conditionally allow to enter the exclusive operation in case it's compatible 385 * with the running one. This must be paired with btrfs_exclop_start_unlock and 386 * btrfs_exclop_finish. 387 * 388 * Compatibility: 389 * - the same type is already running 390 * - when trying to add a device and balance has been paused 391 * - not BTRFS_EXCLOP_NONE - this is intentionally incompatible and the caller 392 * must check the condition first that would allow none -> @type 393 */ 394 bool btrfs_exclop_start_try_lock(struct btrfs_fs_info *fs_info, 395 enum btrfs_exclusive_operation type) 396 { 397 spin_lock(&fs_info->super_lock); 398 if (fs_info->exclusive_operation == type || 399 (fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED && 400 type == BTRFS_EXCLOP_DEV_ADD)) 401 return true; 402 403 spin_unlock(&fs_info->super_lock); 404 return false; 405 } 406 407 void btrfs_exclop_start_unlock(struct btrfs_fs_info *fs_info) 408 { 409 spin_unlock(&fs_info->super_lock); 410 } 411 412 void btrfs_exclop_finish(struct btrfs_fs_info *fs_info) 413 { 414 spin_lock(&fs_info->super_lock); 415 WRITE_ONCE(fs_info->exclusive_operation, BTRFS_EXCLOP_NONE); 416 spin_unlock(&fs_info->super_lock); 417 sysfs_notify(&fs_info->fs_devices->fsid_kobj, NULL, "exclusive_operation"); 418 } 419 420 void btrfs_exclop_balance(struct btrfs_fs_info *fs_info, 421 enum btrfs_exclusive_operation op) 422 { 423 switch (op) { 424 case BTRFS_EXCLOP_BALANCE_PAUSED: 425 spin_lock(&fs_info->super_lock); 426 ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE || 427 fs_info->exclusive_operation == BTRFS_EXCLOP_DEV_ADD); 428 fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE_PAUSED; 429 spin_unlock(&fs_info->super_lock); 430 break; 431 case BTRFS_EXCLOP_BALANCE: 432 spin_lock(&fs_info->super_lock); 433 ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED); 434 fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE; 435 spin_unlock(&fs_info->super_lock); 436 break; 437 default: 438 btrfs_warn(fs_info, 439 "invalid exclop balance operation %d requested", op); 440 } 441 } 442 443 static int btrfs_ioctl_getversion(struct file *file, int __user *arg) 444 { 445 struct inode *inode = file_inode(file); 446 447 return put_user(inode->i_generation, arg); 448 } 449 450 static noinline int btrfs_ioctl_fitrim(struct btrfs_fs_info *fs_info, 451 void __user *arg) 452 { 453 struct btrfs_device *device; 454 struct request_queue *q; 455 struct fstrim_range range; 456 u64 minlen = ULLONG_MAX; 457 u64 num_devices = 0; 458 int ret; 459 460 if (!capable(CAP_SYS_ADMIN)) 461 return -EPERM; 462 463 /* 464 * btrfs_trim_block_group() depends on space cache, which is not 465 * available in zoned filesystem. So, disallow fitrim on a zoned 466 * filesystem for now. 467 */ 468 if (btrfs_is_zoned(fs_info)) 469 return -EOPNOTSUPP; 470 471 /* 472 * If the fs is mounted with nologreplay, which requires it to be 473 * mounted in RO mode as well, we can not allow discard on free space 474 * inside block groups, because log trees refer to extents that are not 475 * pinned in a block group's free space cache (pinning the extents is 476 * precisely the first phase of replaying a log tree). 477 */ 478 if (btrfs_test_opt(fs_info, NOLOGREPLAY)) 479 return -EROFS; 480 481 rcu_read_lock(); 482 list_for_each_entry_rcu(device, &fs_info->fs_devices->devices, 483 dev_list) { 484 if (!device->bdev) 485 continue; 486 q = bdev_get_queue(device->bdev); 487 if (blk_queue_discard(q)) { 488 num_devices++; 489 minlen = min_t(u64, q->limits.discard_granularity, 490 minlen); 491 } 492 } 493 rcu_read_unlock(); 494 495 if (!num_devices) 496 return -EOPNOTSUPP; 497 if (copy_from_user(&range, arg, sizeof(range))) 498 return -EFAULT; 499 500 /* 501 * NOTE: Don't truncate the range using super->total_bytes. Bytenr of 502 * block group is in the logical address space, which can be any 503 * sectorsize aligned bytenr in the range [0, U64_MAX]. 504 */ 505 if (range.len < fs_info->sb->s_blocksize) 506 return -EINVAL; 507 508 range.minlen = max(range.minlen, minlen); 509 ret = btrfs_trim_fs(fs_info, &range); 510 if (ret < 0) 511 return ret; 512 513 if (copy_to_user(arg, &range, sizeof(range))) 514 return -EFAULT; 515 516 return 0; 517 } 518 519 int __pure btrfs_is_empty_uuid(u8 *uuid) 520 { 521 int i; 522 523 for (i = 0; i < BTRFS_UUID_SIZE; i++) { 524 if (uuid[i]) 525 return 0; 526 } 527 return 1; 528 } 529 530 static noinline int create_subvol(struct user_namespace *mnt_userns, 531 struct inode *dir, struct dentry *dentry, 532 const char *name, int namelen, 533 struct btrfs_qgroup_inherit *inherit) 534 { 535 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 536 struct btrfs_trans_handle *trans; 537 struct btrfs_key key; 538 struct btrfs_root_item *root_item; 539 struct btrfs_inode_item *inode_item; 540 struct extent_buffer *leaf; 541 struct btrfs_root *root = BTRFS_I(dir)->root; 542 struct btrfs_root *new_root; 543 struct btrfs_block_rsv block_rsv; 544 struct timespec64 cur_time = current_time(dir); 545 struct inode *inode; 546 int ret; 547 dev_t anon_dev = 0; 548 u64 objectid; 549 u64 index = 0; 550 551 root_item = kzalloc(sizeof(*root_item), GFP_KERNEL); 552 if (!root_item) 553 return -ENOMEM; 554 555 ret = btrfs_get_free_objectid(fs_info->tree_root, &objectid); 556 if (ret) 557 goto fail_free; 558 559 ret = get_anon_bdev(&anon_dev); 560 if (ret < 0) 561 goto fail_free; 562 563 /* 564 * Don't create subvolume whose level is not zero. Or qgroup will be 565 * screwed up since it assumes subvolume qgroup's level to be 0. 566 */ 567 if (btrfs_qgroup_level(objectid)) { 568 ret = -ENOSPC; 569 goto fail_free; 570 } 571 572 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP); 573 /* 574 * The same as the snapshot creation, please see the comment 575 * of create_snapshot(). 576 */ 577 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 8, false); 578 if (ret) 579 goto fail_free; 580 581 trans = btrfs_start_transaction(root, 0); 582 if (IS_ERR(trans)) { 583 ret = PTR_ERR(trans); 584 btrfs_subvolume_release_metadata(root, &block_rsv); 585 goto fail_free; 586 } 587 trans->block_rsv = &block_rsv; 588 trans->bytes_reserved = block_rsv.size; 589 590 ret = btrfs_qgroup_inherit(trans, 0, objectid, inherit); 591 if (ret) 592 goto fail; 593 594 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0, 595 BTRFS_NESTING_NORMAL); 596 if (IS_ERR(leaf)) { 597 ret = PTR_ERR(leaf); 598 goto fail; 599 } 600 601 btrfs_mark_buffer_dirty(leaf); 602 603 inode_item = &root_item->inode; 604 btrfs_set_stack_inode_generation(inode_item, 1); 605 btrfs_set_stack_inode_size(inode_item, 3); 606 btrfs_set_stack_inode_nlink(inode_item, 1); 607 btrfs_set_stack_inode_nbytes(inode_item, 608 fs_info->nodesize); 609 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755); 610 611 btrfs_set_root_flags(root_item, 0); 612 btrfs_set_root_limit(root_item, 0); 613 btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT); 614 615 btrfs_set_root_bytenr(root_item, leaf->start); 616 btrfs_set_root_generation(root_item, trans->transid); 617 btrfs_set_root_level(root_item, 0); 618 btrfs_set_root_refs(root_item, 1); 619 btrfs_set_root_used(root_item, leaf->len); 620 btrfs_set_root_last_snapshot(root_item, 0); 621 622 btrfs_set_root_generation_v2(root_item, 623 btrfs_root_generation(root_item)); 624 generate_random_guid(root_item->uuid); 625 btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec); 626 btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec); 627 root_item->ctime = root_item->otime; 628 btrfs_set_root_ctransid(root_item, trans->transid); 629 btrfs_set_root_otransid(root_item, trans->transid); 630 631 btrfs_tree_unlock(leaf); 632 633 btrfs_set_root_dirid(root_item, BTRFS_FIRST_FREE_OBJECTID); 634 635 key.objectid = objectid; 636 key.offset = 0; 637 key.type = BTRFS_ROOT_ITEM_KEY; 638 ret = btrfs_insert_root(trans, fs_info->tree_root, &key, 639 root_item); 640 if (ret) { 641 /* 642 * Since we don't abort the transaction in this case, free the 643 * tree block so that we don't leak space and leave the 644 * filesystem in an inconsistent state (an extent item in the 645 * extent tree with a backreference for a root that does not 646 * exists). 647 */ 648 btrfs_tree_lock(leaf); 649 btrfs_clean_tree_block(leaf); 650 btrfs_tree_unlock(leaf); 651 btrfs_free_tree_block(trans, objectid, leaf, 0, 1); 652 free_extent_buffer(leaf); 653 goto fail; 654 } 655 656 free_extent_buffer(leaf); 657 leaf = NULL; 658 659 key.offset = (u64)-1; 660 new_root = btrfs_get_new_fs_root(fs_info, objectid, anon_dev); 661 if (IS_ERR(new_root)) { 662 free_anon_bdev(anon_dev); 663 ret = PTR_ERR(new_root); 664 btrfs_abort_transaction(trans, ret); 665 goto fail; 666 } 667 /* Freeing will be done in btrfs_put_root() of new_root */ 668 anon_dev = 0; 669 670 ret = btrfs_record_root_in_trans(trans, new_root); 671 if (ret) { 672 btrfs_put_root(new_root); 673 btrfs_abort_transaction(trans, ret); 674 goto fail; 675 } 676 677 ret = btrfs_create_subvol_root(trans, new_root, root, mnt_userns); 678 btrfs_put_root(new_root); 679 if (ret) { 680 /* We potentially lose an unused inode item here */ 681 btrfs_abort_transaction(trans, ret); 682 goto fail; 683 } 684 685 /* 686 * insert the directory item 687 */ 688 ret = btrfs_set_inode_index(BTRFS_I(dir), &index); 689 if (ret) { 690 btrfs_abort_transaction(trans, ret); 691 goto fail; 692 } 693 694 ret = btrfs_insert_dir_item(trans, name, namelen, BTRFS_I(dir), &key, 695 BTRFS_FT_DIR, index); 696 if (ret) { 697 btrfs_abort_transaction(trans, ret); 698 goto fail; 699 } 700 701 btrfs_i_size_write(BTRFS_I(dir), dir->i_size + namelen * 2); 702 ret = btrfs_update_inode(trans, root, BTRFS_I(dir)); 703 if (ret) { 704 btrfs_abort_transaction(trans, ret); 705 goto fail; 706 } 707 708 ret = btrfs_add_root_ref(trans, objectid, root->root_key.objectid, 709 btrfs_ino(BTRFS_I(dir)), index, name, namelen); 710 if (ret) { 711 btrfs_abort_transaction(trans, ret); 712 goto fail; 713 } 714 715 ret = btrfs_uuid_tree_add(trans, root_item->uuid, 716 BTRFS_UUID_KEY_SUBVOL, objectid); 717 if (ret) 718 btrfs_abort_transaction(trans, ret); 719 720 fail: 721 kfree(root_item); 722 trans->block_rsv = NULL; 723 trans->bytes_reserved = 0; 724 btrfs_subvolume_release_metadata(root, &block_rsv); 725 726 if (ret) 727 btrfs_end_transaction(trans); 728 else 729 ret = btrfs_commit_transaction(trans); 730 731 if (!ret) { 732 inode = btrfs_lookup_dentry(dir, dentry); 733 if (IS_ERR(inode)) 734 return PTR_ERR(inode); 735 d_instantiate(dentry, inode); 736 } 737 return ret; 738 739 fail_free: 740 if (anon_dev) 741 free_anon_bdev(anon_dev); 742 kfree(root_item); 743 return ret; 744 } 745 746 static int create_snapshot(struct btrfs_root *root, struct inode *dir, 747 struct dentry *dentry, bool readonly, 748 struct btrfs_qgroup_inherit *inherit) 749 { 750 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 751 struct inode *inode; 752 struct btrfs_pending_snapshot *pending_snapshot; 753 struct btrfs_trans_handle *trans; 754 int ret; 755 756 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) 757 return -EINVAL; 758 759 if (atomic_read(&root->nr_swapfiles)) { 760 btrfs_warn(fs_info, 761 "cannot snapshot subvolume with active swapfile"); 762 return -ETXTBSY; 763 } 764 765 pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_KERNEL); 766 if (!pending_snapshot) 767 return -ENOMEM; 768 769 ret = get_anon_bdev(&pending_snapshot->anon_dev); 770 if (ret < 0) 771 goto free_pending; 772 pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item), 773 GFP_KERNEL); 774 pending_snapshot->path = btrfs_alloc_path(); 775 if (!pending_snapshot->root_item || !pending_snapshot->path) { 776 ret = -ENOMEM; 777 goto free_pending; 778 } 779 780 btrfs_init_block_rsv(&pending_snapshot->block_rsv, 781 BTRFS_BLOCK_RSV_TEMP); 782 /* 783 * 1 - parent dir inode 784 * 2 - dir entries 785 * 1 - root item 786 * 2 - root ref/backref 787 * 1 - root of snapshot 788 * 1 - UUID item 789 */ 790 ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root, 791 &pending_snapshot->block_rsv, 8, 792 false); 793 if (ret) 794 goto free_pending; 795 796 pending_snapshot->dentry = dentry; 797 pending_snapshot->root = root; 798 pending_snapshot->readonly = readonly; 799 pending_snapshot->dir = dir; 800 pending_snapshot->inherit = inherit; 801 802 trans = btrfs_start_transaction(root, 0); 803 if (IS_ERR(trans)) { 804 ret = PTR_ERR(trans); 805 goto fail; 806 } 807 808 spin_lock(&fs_info->trans_lock); 809 list_add(&pending_snapshot->list, 810 &trans->transaction->pending_snapshots); 811 spin_unlock(&fs_info->trans_lock); 812 813 ret = btrfs_commit_transaction(trans); 814 if (ret) 815 goto fail; 816 817 ret = pending_snapshot->error; 818 if (ret) 819 goto fail; 820 821 ret = btrfs_orphan_cleanup(pending_snapshot->snap); 822 if (ret) 823 goto fail; 824 825 inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry); 826 if (IS_ERR(inode)) { 827 ret = PTR_ERR(inode); 828 goto fail; 829 } 830 831 d_instantiate(dentry, inode); 832 ret = 0; 833 pending_snapshot->anon_dev = 0; 834 fail: 835 /* Prevent double freeing of anon_dev */ 836 if (ret && pending_snapshot->snap) 837 pending_snapshot->snap->anon_dev = 0; 838 btrfs_put_root(pending_snapshot->snap); 839 btrfs_subvolume_release_metadata(root, &pending_snapshot->block_rsv); 840 free_pending: 841 if (pending_snapshot->anon_dev) 842 free_anon_bdev(pending_snapshot->anon_dev); 843 kfree(pending_snapshot->root_item); 844 btrfs_free_path(pending_snapshot->path); 845 kfree(pending_snapshot); 846 847 return ret; 848 } 849 850 /* copy of may_delete in fs/namei.c() 851 * Check whether we can remove a link victim from directory dir, check 852 * whether the type of victim is right. 853 * 1. We can't do it if dir is read-only (done in permission()) 854 * 2. We should have write and exec permissions on dir 855 * 3. We can't remove anything from append-only dir 856 * 4. We can't do anything with immutable dir (done in permission()) 857 * 5. If the sticky bit on dir is set we should either 858 * a. be owner of dir, or 859 * b. be owner of victim, or 860 * c. have CAP_FOWNER capability 861 * 6. If the victim is append-only or immutable we can't do anything with 862 * links pointing to it. 863 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR. 864 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR. 865 * 9. We can't remove a root or mountpoint. 866 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by 867 * nfs_async_unlink(). 868 */ 869 870 static int btrfs_may_delete(struct user_namespace *mnt_userns, 871 struct inode *dir, struct dentry *victim, int isdir) 872 { 873 int error; 874 875 if (d_really_is_negative(victim)) 876 return -ENOENT; 877 878 BUG_ON(d_inode(victim->d_parent) != dir); 879 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE); 880 881 error = inode_permission(mnt_userns, dir, MAY_WRITE | MAY_EXEC); 882 if (error) 883 return error; 884 if (IS_APPEND(dir)) 885 return -EPERM; 886 if (check_sticky(mnt_userns, dir, d_inode(victim)) || 887 IS_APPEND(d_inode(victim)) || IS_IMMUTABLE(d_inode(victim)) || 888 IS_SWAPFILE(d_inode(victim))) 889 return -EPERM; 890 if (isdir) { 891 if (!d_is_dir(victim)) 892 return -ENOTDIR; 893 if (IS_ROOT(victim)) 894 return -EBUSY; 895 } else if (d_is_dir(victim)) 896 return -EISDIR; 897 if (IS_DEADDIR(dir)) 898 return -ENOENT; 899 if (victim->d_flags & DCACHE_NFSFS_RENAMED) 900 return -EBUSY; 901 return 0; 902 } 903 904 /* copy of may_create in fs/namei.c() */ 905 static inline int btrfs_may_create(struct user_namespace *mnt_userns, 906 struct inode *dir, struct dentry *child) 907 { 908 if (d_really_is_positive(child)) 909 return -EEXIST; 910 if (IS_DEADDIR(dir)) 911 return -ENOENT; 912 if (!fsuidgid_has_mapping(dir->i_sb, mnt_userns)) 913 return -EOVERFLOW; 914 return inode_permission(mnt_userns, dir, MAY_WRITE | MAY_EXEC); 915 } 916 917 /* 918 * Create a new subvolume below @parent. This is largely modeled after 919 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup 920 * inside this filesystem so it's quite a bit simpler. 921 */ 922 static noinline int btrfs_mksubvol(const struct path *parent, 923 struct user_namespace *mnt_userns, 924 const char *name, int namelen, 925 struct btrfs_root *snap_src, 926 bool readonly, 927 struct btrfs_qgroup_inherit *inherit) 928 { 929 struct inode *dir = d_inode(parent->dentry); 930 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 931 struct dentry *dentry; 932 int error; 933 934 error = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT); 935 if (error == -EINTR) 936 return error; 937 938 dentry = lookup_one(mnt_userns, name, parent->dentry, namelen); 939 error = PTR_ERR(dentry); 940 if (IS_ERR(dentry)) 941 goto out_unlock; 942 943 error = btrfs_may_create(mnt_userns, dir, dentry); 944 if (error) 945 goto out_dput; 946 947 /* 948 * even if this name doesn't exist, we may get hash collisions. 949 * check for them now when we can safely fail 950 */ 951 error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root, 952 dir->i_ino, name, 953 namelen); 954 if (error) 955 goto out_dput; 956 957 down_read(&fs_info->subvol_sem); 958 959 if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0) 960 goto out_up_read; 961 962 if (snap_src) 963 error = create_snapshot(snap_src, dir, dentry, readonly, inherit); 964 else 965 error = create_subvol(mnt_userns, dir, dentry, name, namelen, inherit); 966 967 if (!error) 968 fsnotify_mkdir(dir, dentry); 969 out_up_read: 970 up_read(&fs_info->subvol_sem); 971 out_dput: 972 dput(dentry); 973 out_unlock: 974 btrfs_inode_unlock(dir, 0); 975 return error; 976 } 977 978 static noinline int btrfs_mksnapshot(const struct path *parent, 979 struct user_namespace *mnt_userns, 980 const char *name, int namelen, 981 struct btrfs_root *root, 982 bool readonly, 983 struct btrfs_qgroup_inherit *inherit) 984 { 985 int ret; 986 bool snapshot_force_cow = false; 987 988 /* 989 * Force new buffered writes to reserve space even when NOCOW is 990 * possible. This is to avoid later writeback (running dealloc) to 991 * fallback to COW mode and unexpectedly fail with ENOSPC. 992 */ 993 btrfs_drew_read_lock(&root->snapshot_lock); 994 995 ret = btrfs_start_delalloc_snapshot(root, false); 996 if (ret) 997 goto out; 998 999 /* 1000 * All previous writes have started writeback in NOCOW mode, so now 1001 * we force future writes to fallback to COW mode during snapshot 1002 * creation. 1003 */ 1004 atomic_inc(&root->snapshot_force_cow); 1005 snapshot_force_cow = true; 1006 1007 btrfs_wait_ordered_extents(root, U64_MAX, 0, (u64)-1); 1008 1009 ret = btrfs_mksubvol(parent, mnt_userns, name, namelen, 1010 root, readonly, inherit); 1011 out: 1012 if (snapshot_force_cow) 1013 atomic_dec(&root->snapshot_force_cow); 1014 btrfs_drew_read_unlock(&root->snapshot_lock); 1015 return ret; 1016 } 1017 1018 static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start, 1019 bool locked) 1020 { 1021 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 1022 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 1023 struct extent_map *em; 1024 const u32 sectorsize = BTRFS_I(inode)->root->fs_info->sectorsize; 1025 1026 /* 1027 * hopefully we have this extent in the tree already, try without 1028 * the full extent lock 1029 */ 1030 read_lock(&em_tree->lock); 1031 em = lookup_extent_mapping(em_tree, start, sectorsize); 1032 read_unlock(&em_tree->lock); 1033 1034 if (!em) { 1035 struct extent_state *cached = NULL; 1036 u64 end = start + sectorsize - 1; 1037 1038 /* get the big lock and read metadata off disk */ 1039 if (!locked) 1040 lock_extent_bits(io_tree, start, end, &cached); 1041 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, sectorsize); 1042 if (!locked) 1043 unlock_extent_cached(io_tree, start, end, &cached); 1044 1045 if (IS_ERR(em)) 1046 return NULL; 1047 } 1048 1049 return em; 1050 } 1051 1052 static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em, 1053 bool locked) 1054 { 1055 struct extent_map *next; 1056 bool ret = true; 1057 1058 /* this is the last extent */ 1059 if (em->start + em->len >= i_size_read(inode)) 1060 return false; 1061 1062 next = defrag_lookup_extent(inode, em->start + em->len, locked); 1063 if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE) 1064 ret = false; 1065 else if ((em->block_start + em->block_len == next->block_start) && 1066 (em->block_len > SZ_128K && next->block_len > SZ_128K)) 1067 ret = false; 1068 1069 free_extent_map(next); 1070 return ret; 1071 } 1072 1073 /* 1074 * Prepare one page to be defragged. 1075 * 1076 * This will ensure: 1077 * 1078 * - Returned page is locked and has been set up properly. 1079 * - No ordered extent exists in the page. 1080 * - The page is uptodate. 1081 * 1082 * NOTE: Caller should also wait for page writeback after the cluster is 1083 * prepared, here we don't do writeback wait for each page. 1084 */ 1085 static struct page *defrag_prepare_one_page(struct btrfs_inode *inode, 1086 pgoff_t index) 1087 { 1088 struct address_space *mapping = inode->vfs_inode.i_mapping; 1089 gfp_t mask = btrfs_alloc_write_mask(mapping); 1090 u64 page_start = (u64)index << PAGE_SHIFT; 1091 u64 page_end = page_start + PAGE_SIZE - 1; 1092 struct extent_state *cached_state = NULL; 1093 struct page *page; 1094 int ret; 1095 1096 again: 1097 page = find_or_create_page(mapping, index, mask); 1098 if (!page) 1099 return ERR_PTR(-ENOMEM); 1100 1101 /* 1102 * Since we can defragment files opened read-only, we can encounter 1103 * transparent huge pages here (see CONFIG_READ_ONLY_THP_FOR_FS). We 1104 * can't do I/O using huge pages yet, so return an error for now. 1105 * Filesystem transparent huge pages are typically only used for 1106 * executables that explicitly enable them, so this isn't very 1107 * restrictive. 1108 */ 1109 if (PageCompound(page)) { 1110 unlock_page(page); 1111 put_page(page); 1112 return ERR_PTR(-ETXTBSY); 1113 } 1114 1115 ret = set_page_extent_mapped(page); 1116 if (ret < 0) { 1117 unlock_page(page); 1118 put_page(page); 1119 return ERR_PTR(ret); 1120 } 1121 1122 /* Wait for any existing ordered extent in the range */ 1123 while (1) { 1124 struct btrfs_ordered_extent *ordered; 1125 1126 lock_extent_bits(&inode->io_tree, page_start, page_end, &cached_state); 1127 ordered = btrfs_lookup_ordered_range(inode, page_start, PAGE_SIZE); 1128 unlock_extent_cached(&inode->io_tree, page_start, page_end, 1129 &cached_state); 1130 if (!ordered) 1131 break; 1132 1133 unlock_page(page); 1134 btrfs_start_ordered_extent(ordered, 1); 1135 btrfs_put_ordered_extent(ordered); 1136 lock_page(page); 1137 /* 1138 * We unlocked the page above, so we need check if it was 1139 * released or not. 1140 */ 1141 if (page->mapping != mapping || !PagePrivate(page)) { 1142 unlock_page(page); 1143 put_page(page); 1144 goto again; 1145 } 1146 } 1147 1148 /* 1149 * Now the page range has no ordered extent any more. Read the page to 1150 * make it uptodate. 1151 */ 1152 if (!PageUptodate(page)) { 1153 btrfs_readpage(NULL, page); 1154 lock_page(page); 1155 if (page->mapping != mapping || !PagePrivate(page)) { 1156 unlock_page(page); 1157 put_page(page); 1158 goto again; 1159 } 1160 if (!PageUptodate(page)) { 1161 unlock_page(page); 1162 put_page(page); 1163 return ERR_PTR(-EIO); 1164 } 1165 } 1166 return page; 1167 } 1168 1169 struct defrag_target_range { 1170 struct list_head list; 1171 u64 start; 1172 u64 len; 1173 }; 1174 1175 /* 1176 * Collect all valid target extents. 1177 * 1178 * @start: file offset to lookup 1179 * @len: length to lookup 1180 * @extent_thresh: file extent size threshold, any extent size >= this value 1181 * will be ignored 1182 * @newer_than: only defrag extents newer than this value 1183 * @do_compress: whether the defrag is doing compression 1184 * if true, @extent_thresh will be ignored and all regular 1185 * file extents meeting @newer_than will be targets. 1186 * @locked: if the range has already held extent lock 1187 * @target_list: list of targets file extents 1188 */ 1189 static int defrag_collect_targets(struct btrfs_inode *inode, 1190 u64 start, u64 len, u32 extent_thresh, 1191 u64 newer_than, bool do_compress, 1192 bool locked, struct list_head *target_list) 1193 { 1194 u64 cur = start; 1195 int ret = 0; 1196 1197 while (cur < start + len) { 1198 struct extent_map *em; 1199 struct defrag_target_range *new; 1200 bool next_mergeable = true; 1201 u64 range_len; 1202 1203 em = defrag_lookup_extent(&inode->vfs_inode, cur, locked); 1204 if (!em) 1205 break; 1206 1207 /* Skip hole/inline/preallocated extents */ 1208 if (em->block_start >= EXTENT_MAP_LAST_BYTE || 1209 test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 1210 goto next; 1211 1212 /* Skip older extent */ 1213 if (em->generation < newer_than) 1214 goto next; 1215 1216 /* 1217 * For do_compress case, we want to compress all valid file 1218 * extents, thus no @extent_thresh or mergeable check. 1219 */ 1220 if (do_compress) 1221 goto add; 1222 1223 /* Skip too large extent */ 1224 if (em->len >= extent_thresh) 1225 goto next; 1226 1227 next_mergeable = defrag_check_next_extent(&inode->vfs_inode, em, 1228 locked); 1229 if (!next_mergeable) { 1230 struct defrag_target_range *last; 1231 1232 /* Empty target list, no way to merge with last entry */ 1233 if (list_empty(target_list)) 1234 goto next; 1235 last = list_entry(target_list->prev, 1236 struct defrag_target_range, list); 1237 /* Not mergeable with last entry */ 1238 if (last->start + last->len != cur) 1239 goto next; 1240 1241 /* Mergeable, fall through to add it to @target_list. */ 1242 } 1243 1244 add: 1245 range_len = min(extent_map_end(em), start + len) - cur; 1246 /* 1247 * This one is a good target, check if it can be merged into 1248 * last range of the target list. 1249 */ 1250 if (!list_empty(target_list)) { 1251 struct defrag_target_range *last; 1252 1253 last = list_entry(target_list->prev, 1254 struct defrag_target_range, list); 1255 ASSERT(last->start + last->len <= cur); 1256 if (last->start + last->len == cur) { 1257 /* Mergeable, enlarge the last entry */ 1258 last->len += range_len; 1259 goto next; 1260 } 1261 /* Fall through to allocate a new entry */ 1262 } 1263 1264 /* Allocate new defrag_target_range */ 1265 new = kmalloc(sizeof(*new), GFP_NOFS); 1266 if (!new) { 1267 free_extent_map(em); 1268 ret = -ENOMEM; 1269 break; 1270 } 1271 new->start = cur; 1272 new->len = range_len; 1273 list_add_tail(&new->list, target_list); 1274 1275 next: 1276 cur = extent_map_end(em); 1277 free_extent_map(em); 1278 } 1279 if (ret < 0) { 1280 struct defrag_target_range *entry; 1281 struct defrag_target_range *tmp; 1282 1283 list_for_each_entry_safe(entry, tmp, target_list, list) { 1284 list_del_init(&entry->list); 1285 kfree(entry); 1286 } 1287 } 1288 return ret; 1289 } 1290 1291 #define CLUSTER_SIZE (SZ_256K) 1292 1293 /* 1294 * Defrag one contiguous target range. 1295 * 1296 * @inode: target inode 1297 * @target: target range to defrag 1298 * @pages: locked pages covering the defrag range 1299 * @nr_pages: number of locked pages 1300 * 1301 * Caller should ensure: 1302 * 1303 * - Pages are prepared 1304 * Pages should be locked, no ordered extent in the pages range, 1305 * no writeback. 1306 * 1307 * - Extent bits are locked 1308 */ 1309 static int defrag_one_locked_target(struct btrfs_inode *inode, 1310 struct defrag_target_range *target, 1311 struct page **pages, int nr_pages, 1312 struct extent_state **cached_state) 1313 { 1314 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1315 struct extent_changeset *data_reserved = NULL; 1316 const u64 start = target->start; 1317 const u64 len = target->len; 1318 unsigned long last_index = (start + len - 1) >> PAGE_SHIFT; 1319 unsigned long start_index = start >> PAGE_SHIFT; 1320 unsigned long first_index = page_index(pages[0]); 1321 int ret = 0; 1322 int i; 1323 1324 ASSERT(last_index - first_index + 1 <= nr_pages); 1325 1326 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, start, len); 1327 if (ret < 0) 1328 return ret; 1329 clear_extent_bit(&inode->io_tree, start, start + len - 1, 1330 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | 1331 EXTENT_DEFRAG, 0, 0, cached_state); 1332 set_extent_defrag(&inode->io_tree, start, start + len - 1, cached_state); 1333 1334 /* Update the page status */ 1335 for (i = start_index - first_index; i <= last_index - first_index; i++) { 1336 ClearPageChecked(pages[i]); 1337 btrfs_page_clamp_set_dirty(fs_info, pages[i], start, len); 1338 } 1339 btrfs_delalloc_release_extents(inode, len); 1340 extent_changeset_free(data_reserved); 1341 1342 return ret; 1343 } 1344 1345 static int defrag_one_range(struct btrfs_inode *inode, u64 start, u32 len, 1346 u32 extent_thresh, u64 newer_than, bool do_compress) 1347 { 1348 struct extent_state *cached_state = NULL; 1349 struct defrag_target_range *entry; 1350 struct defrag_target_range *tmp; 1351 LIST_HEAD(target_list); 1352 struct page **pages; 1353 const u32 sectorsize = inode->root->fs_info->sectorsize; 1354 u64 last_index = (start + len - 1) >> PAGE_SHIFT; 1355 u64 start_index = start >> PAGE_SHIFT; 1356 unsigned int nr_pages = last_index - start_index + 1; 1357 int ret = 0; 1358 int i; 1359 1360 ASSERT(nr_pages <= CLUSTER_SIZE / PAGE_SIZE); 1361 ASSERT(IS_ALIGNED(start, sectorsize) && IS_ALIGNED(len, sectorsize)); 1362 1363 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS); 1364 if (!pages) 1365 return -ENOMEM; 1366 1367 /* Prepare all pages */ 1368 for (i = 0; i < nr_pages; i++) { 1369 pages[i] = defrag_prepare_one_page(inode, start_index + i); 1370 if (IS_ERR(pages[i])) { 1371 ret = PTR_ERR(pages[i]); 1372 pages[i] = NULL; 1373 goto free_pages; 1374 } 1375 } 1376 for (i = 0; i < nr_pages; i++) 1377 wait_on_page_writeback(pages[i]); 1378 1379 /* Lock the pages range */ 1380 lock_extent_bits(&inode->io_tree, start_index << PAGE_SHIFT, 1381 (last_index << PAGE_SHIFT) + PAGE_SIZE - 1, 1382 &cached_state); 1383 /* 1384 * Now we have a consistent view about the extent map, re-check 1385 * which range really needs to be defragged. 1386 * 1387 * And this time we have extent locked already, pass @locked = true 1388 * so that we won't relock the extent range and cause deadlock. 1389 */ 1390 ret = defrag_collect_targets(inode, start, len, extent_thresh, 1391 newer_than, do_compress, true, 1392 &target_list); 1393 if (ret < 0) 1394 goto unlock_extent; 1395 1396 list_for_each_entry(entry, &target_list, list) { 1397 ret = defrag_one_locked_target(inode, entry, pages, nr_pages, 1398 &cached_state); 1399 if (ret < 0) 1400 break; 1401 } 1402 1403 list_for_each_entry_safe(entry, tmp, &target_list, list) { 1404 list_del_init(&entry->list); 1405 kfree(entry); 1406 } 1407 unlock_extent: 1408 unlock_extent_cached(&inode->io_tree, start_index << PAGE_SHIFT, 1409 (last_index << PAGE_SHIFT) + PAGE_SIZE - 1, 1410 &cached_state); 1411 free_pages: 1412 for (i = 0; i < nr_pages; i++) { 1413 if (pages[i]) { 1414 unlock_page(pages[i]); 1415 put_page(pages[i]); 1416 } 1417 } 1418 kfree(pages); 1419 return ret; 1420 } 1421 1422 static int defrag_one_cluster(struct btrfs_inode *inode, 1423 struct file_ra_state *ra, 1424 u64 start, u32 len, u32 extent_thresh, 1425 u64 newer_than, bool do_compress, 1426 unsigned long *sectors_defragged, 1427 unsigned long max_sectors) 1428 { 1429 const u32 sectorsize = inode->root->fs_info->sectorsize; 1430 struct defrag_target_range *entry; 1431 struct defrag_target_range *tmp; 1432 LIST_HEAD(target_list); 1433 int ret; 1434 1435 BUILD_BUG_ON(!IS_ALIGNED(CLUSTER_SIZE, PAGE_SIZE)); 1436 ret = defrag_collect_targets(inode, start, len, extent_thresh, 1437 newer_than, do_compress, false, 1438 &target_list); 1439 if (ret < 0) 1440 goto out; 1441 1442 list_for_each_entry(entry, &target_list, list) { 1443 u32 range_len = entry->len; 1444 1445 /* Reached the limit */ 1446 if (max_sectors && max_sectors == *sectors_defragged) 1447 break; 1448 1449 if (max_sectors) 1450 range_len = min_t(u32, range_len, 1451 (max_sectors - *sectors_defragged) * sectorsize); 1452 1453 if (ra) 1454 page_cache_sync_readahead(inode->vfs_inode.i_mapping, 1455 ra, NULL, entry->start >> PAGE_SHIFT, 1456 ((entry->start + range_len - 1) >> PAGE_SHIFT) - 1457 (entry->start >> PAGE_SHIFT) + 1); 1458 /* 1459 * Here we may not defrag any range if holes are punched before 1460 * we locked the pages. 1461 * But that's fine, it only affects the @sectors_defragged 1462 * accounting. 1463 */ 1464 ret = defrag_one_range(inode, entry->start, range_len, 1465 extent_thresh, newer_than, do_compress); 1466 if (ret < 0) 1467 break; 1468 *sectors_defragged += range_len; 1469 } 1470 out: 1471 list_for_each_entry_safe(entry, tmp, &target_list, list) { 1472 list_del_init(&entry->list); 1473 kfree(entry); 1474 } 1475 return ret; 1476 } 1477 1478 /* 1479 * Entry point to file defragmentation. 1480 * 1481 * @inode: inode to be defragged 1482 * @ra: readahead state (can be NUL) 1483 * @range: defrag options including range and flags 1484 * @newer_than: minimum transid to defrag 1485 * @max_to_defrag: max number of sectors to be defragged, if 0, the whole inode 1486 * will be defragged. 1487 */ 1488 int btrfs_defrag_file(struct inode *inode, struct file_ra_state *ra, 1489 struct btrfs_ioctl_defrag_range_args *range, 1490 u64 newer_than, unsigned long max_to_defrag) 1491 { 1492 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1493 unsigned long sectors_defragged = 0; 1494 u64 isize = i_size_read(inode); 1495 u64 cur; 1496 u64 last_byte; 1497 bool do_compress = range->flags & BTRFS_DEFRAG_RANGE_COMPRESS; 1498 bool ra_allocated = false; 1499 int compress_type = BTRFS_COMPRESS_ZLIB; 1500 int ret = 0; 1501 u32 extent_thresh = range->extent_thresh; 1502 1503 if (isize == 0) 1504 return 0; 1505 1506 if (range->start >= isize) 1507 return -EINVAL; 1508 1509 if (do_compress) { 1510 if (range->compress_type >= BTRFS_NR_COMPRESS_TYPES) 1511 return -EINVAL; 1512 if (range->compress_type) 1513 compress_type = range->compress_type; 1514 } 1515 1516 if (extent_thresh == 0) 1517 extent_thresh = SZ_256K; 1518 1519 if (range->start + range->len > range->start) { 1520 /* Got a specific range */ 1521 last_byte = min(isize, range->start + range->len) - 1; 1522 } else { 1523 /* Defrag until file end */ 1524 last_byte = isize - 1; 1525 } 1526 1527 /* 1528 * If we were not given a ra, allocate a readahead context. As 1529 * readahead is just an optimization, defrag will work without it so 1530 * we don't error out. 1531 */ 1532 if (!ra) { 1533 ra_allocated = true; 1534 ra = kzalloc(sizeof(*ra), GFP_KERNEL); 1535 if (ra) 1536 file_ra_state_init(ra, inode->i_mapping); 1537 } 1538 1539 /* Align the range */ 1540 cur = round_down(range->start, fs_info->sectorsize); 1541 last_byte = round_up(last_byte, fs_info->sectorsize) - 1; 1542 1543 while (cur < last_byte) { 1544 u64 cluster_end; 1545 1546 /* The cluster size 256K should always be page aligned */ 1547 BUILD_BUG_ON(!IS_ALIGNED(CLUSTER_SIZE, PAGE_SIZE)); 1548 1549 /* We want the cluster end at page boundary when possible */ 1550 cluster_end = (((cur >> PAGE_SHIFT) + 1551 (SZ_256K >> PAGE_SHIFT)) << PAGE_SHIFT) - 1; 1552 cluster_end = min(cluster_end, last_byte); 1553 1554 btrfs_inode_lock(inode, 0); 1555 if (IS_SWAPFILE(inode)) { 1556 ret = -ETXTBSY; 1557 btrfs_inode_unlock(inode, 0); 1558 break; 1559 } 1560 if (!(inode->i_sb->s_flags & SB_ACTIVE)) { 1561 btrfs_inode_unlock(inode, 0); 1562 break; 1563 } 1564 if (do_compress) 1565 BTRFS_I(inode)->defrag_compress = compress_type; 1566 ret = defrag_one_cluster(BTRFS_I(inode), ra, cur, 1567 cluster_end + 1 - cur, extent_thresh, 1568 newer_than, do_compress, 1569 §ors_defragged, max_to_defrag); 1570 btrfs_inode_unlock(inode, 0); 1571 if (ret < 0) 1572 break; 1573 cur = cluster_end + 1; 1574 } 1575 1576 if (ra_allocated) 1577 kfree(ra); 1578 if (sectors_defragged) { 1579 /* 1580 * We have defragged some sectors, for compression case they 1581 * need to be written back immediately. 1582 */ 1583 if (range->flags & BTRFS_DEFRAG_RANGE_START_IO) { 1584 filemap_flush(inode->i_mapping); 1585 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 1586 &BTRFS_I(inode)->runtime_flags)) 1587 filemap_flush(inode->i_mapping); 1588 } 1589 if (range->compress_type == BTRFS_COMPRESS_LZO) 1590 btrfs_set_fs_incompat(fs_info, COMPRESS_LZO); 1591 else if (range->compress_type == BTRFS_COMPRESS_ZSTD) 1592 btrfs_set_fs_incompat(fs_info, COMPRESS_ZSTD); 1593 ret = sectors_defragged; 1594 } 1595 if (do_compress) { 1596 btrfs_inode_lock(inode, 0); 1597 BTRFS_I(inode)->defrag_compress = BTRFS_COMPRESS_NONE; 1598 btrfs_inode_unlock(inode, 0); 1599 } 1600 return ret; 1601 } 1602 1603 /* 1604 * Try to start exclusive operation @type or cancel it if it's running. 1605 * 1606 * Return: 1607 * 0 - normal mode, newly claimed op started 1608 * >0 - normal mode, something else is running, 1609 * return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS to user space 1610 * ECANCELED - cancel mode, successful cancel 1611 * ENOTCONN - cancel mode, operation not running anymore 1612 */ 1613 static int exclop_start_or_cancel_reloc(struct btrfs_fs_info *fs_info, 1614 enum btrfs_exclusive_operation type, bool cancel) 1615 { 1616 if (!cancel) { 1617 /* Start normal op */ 1618 if (!btrfs_exclop_start(fs_info, type)) 1619 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 1620 /* Exclusive operation is now claimed */ 1621 return 0; 1622 } 1623 1624 /* Cancel running op */ 1625 if (btrfs_exclop_start_try_lock(fs_info, type)) { 1626 /* 1627 * This blocks any exclop finish from setting it to NONE, so we 1628 * request cancellation. Either it runs and we will wait for it, 1629 * or it has finished and no waiting will happen. 1630 */ 1631 atomic_inc(&fs_info->reloc_cancel_req); 1632 btrfs_exclop_start_unlock(fs_info); 1633 1634 if (test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags)) 1635 wait_on_bit(&fs_info->flags, BTRFS_FS_RELOC_RUNNING, 1636 TASK_INTERRUPTIBLE); 1637 1638 return -ECANCELED; 1639 } 1640 1641 /* Something else is running or none */ 1642 return -ENOTCONN; 1643 } 1644 1645 static noinline int btrfs_ioctl_resize(struct file *file, 1646 void __user *arg) 1647 { 1648 BTRFS_DEV_LOOKUP_ARGS(args); 1649 struct inode *inode = file_inode(file); 1650 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1651 u64 new_size; 1652 u64 old_size; 1653 u64 devid = 1; 1654 struct btrfs_root *root = BTRFS_I(inode)->root; 1655 struct btrfs_ioctl_vol_args *vol_args; 1656 struct btrfs_trans_handle *trans; 1657 struct btrfs_device *device = NULL; 1658 char *sizestr; 1659 char *retptr; 1660 char *devstr = NULL; 1661 int ret = 0; 1662 int mod = 0; 1663 bool cancel; 1664 1665 if (!capable(CAP_SYS_ADMIN)) 1666 return -EPERM; 1667 1668 ret = mnt_want_write_file(file); 1669 if (ret) 1670 return ret; 1671 1672 /* 1673 * Read the arguments before checking exclusivity to be able to 1674 * distinguish regular resize and cancel 1675 */ 1676 vol_args = memdup_user(arg, sizeof(*vol_args)); 1677 if (IS_ERR(vol_args)) { 1678 ret = PTR_ERR(vol_args); 1679 goto out_drop; 1680 } 1681 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 1682 sizestr = vol_args->name; 1683 cancel = (strcmp("cancel", sizestr) == 0); 1684 ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_RESIZE, cancel); 1685 if (ret) 1686 goto out_free; 1687 /* Exclusive operation is now claimed */ 1688 1689 devstr = strchr(sizestr, ':'); 1690 if (devstr) { 1691 sizestr = devstr + 1; 1692 *devstr = '\0'; 1693 devstr = vol_args->name; 1694 ret = kstrtoull(devstr, 10, &devid); 1695 if (ret) 1696 goto out_finish; 1697 if (!devid) { 1698 ret = -EINVAL; 1699 goto out_finish; 1700 } 1701 btrfs_info(fs_info, "resizing devid %llu", devid); 1702 } 1703 1704 args.devid = devid; 1705 device = btrfs_find_device(fs_info->fs_devices, &args); 1706 if (!device) { 1707 btrfs_info(fs_info, "resizer unable to find device %llu", 1708 devid); 1709 ret = -ENODEV; 1710 goto out_finish; 1711 } 1712 1713 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 1714 btrfs_info(fs_info, 1715 "resizer unable to apply on readonly device %llu", 1716 devid); 1717 ret = -EPERM; 1718 goto out_finish; 1719 } 1720 1721 if (!strcmp(sizestr, "max")) 1722 new_size = bdev_nr_bytes(device->bdev); 1723 else { 1724 if (sizestr[0] == '-') { 1725 mod = -1; 1726 sizestr++; 1727 } else if (sizestr[0] == '+') { 1728 mod = 1; 1729 sizestr++; 1730 } 1731 new_size = memparse(sizestr, &retptr); 1732 if (*retptr != '\0' || new_size == 0) { 1733 ret = -EINVAL; 1734 goto out_finish; 1735 } 1736 } 1737 1738 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 1739 ret = -EPERM; 1740 goto out_finish; 1741 } 1742 1743 old_size = btrfs_device_get_total_bytes(device); 1744 1745 if (mod < 0) { 1746 if (new_size > old_size) { 1747 ret = -EINVAL; 1748 goto out_finish; 1749 } 1750 new_size = old_size - new_size; 1751 } else if (mod > 0) { 1752 if (new_size > ULLONG_MAX - old_size) { 1753 ret = -ERANGE; 1754 goto out_finish; 1755 } 1756 new_size = old_size + new_size; 1757 } 1758 1759 if (new_size < SZ_256M) { 1760 ret = -EINVAL; 1761 goto out_finish; 1762 } 1763 if (new_size > bdev_nr_bytes(device->bdev)) { 1764 ret = -EFBIG; 1765 goto out_finish; 1766 } 1767 1768 new_size = round_down(new_size, fs_info->sectorsize); 1769 1770 if (new_size > old_size) { 1771 trans = btrfs_start_transaction(root, 0); 1772 if (IS_ERR(trans)) { 1773 ret = PTR_ERR(trans); 1774 goto out_finish; 1775 } 1776 ret = btrfs_grow_device(trans, device, new_size); 1777 btrfs_commit_transaction(trans); 1778 } else if (new_size < old_size) { 1779 ret = btrfs_shrink_device(device, new_size); 1780 } /* equal, nothing need to do */ 1781 1782 if (ret == 0 && new_size != old_size) 1783 btrfs_info_in_rcu(fs_info, 1784 "resize device %s (devid %llu) from %llu to %llu", 1785 rcu_str_deref(device->name), device->devid, 1786 old_size, new_size); 1787 out_finish: 1788 btrfs_exclop_finish(fs_info); 1789 out_free: 1790 kfree(vol_args); 1791 out_drop: 1792 mnt_drop_write_file(file); 1793 return ret; 1794 } 1795 1796 static noinline int __btrfs_ioctl_snap_create(struct file *file, 1797 struct user_namespace *mnt_userns, 1798 const char *name, unsigned long fd, int subvol, 1799 bool readonly, 1800 struct btrfs_qgroup_inherit *inherit) 1801 { 1802 int namelen; 1803 int ret = 0; 1804 1805 if (!S_ISDIR(file_inode(file)->i_mode)) 1806 return -ENOTDIR; 1807 1808 ret = mnt_want_write_file(file); 1809 if (ret) 1810 goto out; 1811 1812 namelen = strlen(name); 1813 if (strchr(name, '/')) { 1814 ret = -EINVAL; 1815 goto out_drop_write; 1816 } 1817 1818 if (name[0] == '.' && 1819 (namelen == 1 || (name[1] == '.' && namelen == 2))) { 1820 ret = -EEXIST; 1821 goto out_drop_write; 1822 } 1823 1824 if (subvol) { 1825 ret = btrfs_mksubvol(&file->f_path, mnt_userns, name, 1826 namelen, NULL, readonly, inherit); 1827 } else { 1828 struct fd src = fdget(fd); 1829 struct inode *src_inode; 1830 if (!src.file) { 1831 ret = -EINVAL; 1832 goto out_drop_write; 1833 } 1834 1835 src_inode = file_inode(src.file); 1836 if (src_inode->i_sb != file_inode(file)->i_sb) { 1837 btrfs_info(BTRFS_I(file_inode(file))->root->fs_info, 1838 "Snapshot src from another FS"); 1839 ret = -EXDEV; 1840 } else if (!inode_owner_or_capable(mnt_userns, src_inode)) { 1841 /* 1842 * Subvolume creation is not restricted, but snapshots 1843 * are limited to own subvolumes only 1844 */ 1845 ret = -EPERM; 1846 } else { 1847 ret = btrfs_mksnapshot(&file->f_path, mnt_userns, 1848 name, namelen, 1849 BTRFS_I(src_inode)->root, 1850 readonly, inherit); 1851 } 1852 fdput(src); 1853 } 1854 out_drop_write: 1855 mnt_drop_write_file(file); 1856 out: 1857 return ret; 1858 } 1859 1860 static noinline int btrfs_ioctl_snap_create(struct file *file, 1861 void __user *arg, int subvol) 1862 { 1863 struct btrfs_ioctl_vol_args *vol_args; 1864 int ret; 1865 1866 if (!S_ISDIR(file_inode(file)->i_mode)) 1867 return -ENOTDIR; 1868 1869 vol_args = memdup_user(arg, sizeof(*vol_args)); 1870 if (IS_ERR(vol_args)) 1871 return PTR_ERR(vol_args); 1872 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 1873 1874 ret = __btrfs_ioctl_snap_create(file, file_mnt_user_ns(file), 1875 vol_args->name, vol_args->fd, subvol, 1876 false, NULL); 1877 1878 kfree(vol_args); 1879 return ret; 1880 } 1881 1882 static noinline int btrfs_ioctl_snap_create_v2(struct file *file, 1883 void __user *arg, int subvol) 1884 { 1885 struct btrfs_ioctl_vol_args_v2 *vol_args; 1886 int ret; 1887 bool readonly = false; 1888 struct btrfs_qgroup_inherit *inherit = NULL; 1889 1890 if (!S_ISDIR(file_inode(file)->i_mode)) 1891 return -ENOTDIR; 1892 1893 vol_args = memdup_user(arg, sizeof(*vol_args)); 1894 if (IS_ERR(vol_args)) 1895 return PTR_ERR(vol_args); 1896 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0'; 1897 1898 if (vol_args->flags & ~BTRFS_SUBVOL_CREATE_ARGS_MASK) { 1899 ret = -EOPNOTSUPP; 1900 goto free_args; 1901 } 1902 1903 if (vol_args->flags & BTRFS_SUBVOL_RDONLY) 1904 readonly = true; 1905 if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) { 1906 u64 nums; 1907 1908 if (vol_args->size < sizeof(*inherit) || 1909 vol_args->size > PAGE_SIZE) { 1910 ret = -EINVAL; 1911 goto free_args; 1912 } 1913 inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size); 1914 if (IS_ERR(inherit)) { 1915 ret = PTR_ERR(inherit); 1916 goto free_args; 1917 } 1918 1919 if (inherit->num_qgroups > PAGE_SIZE || 1920 inherit->num_ref_copies > PAGE_SIZE || 1921 inherit->num_excl_copies > PAGE_SIZE) { 1922 ret = -EINVAL; 1923 goto free_inherit; 1924 } 1925 1926 nums = inherit->num_qgroups + 2 * inherit->num_ref_copies + 1927 2 * inherit->num_excl_copies; 1928 if (vol_args->size != struct_size(inherit, qgroups, nums)) { 1929 ret = -EINVAL; 1930 goto free_inherit; 1931 } 1932 } 1933 1934 ret = __btrfs_ioctl_snap_create(file, file_mnt_user_ns(file), 1935 vol_args->name, vol_args->fd, subvol, 1936 readonly, inherit); 1937 if (ret) 1938 goto free_inherit; 1939 free_inherit: 1940 kfree(inherit); 1941 free_args: 1942 kfree(vol_args); 1943 return ret; 1944 } 1945 1946 static noinline int btrfs_ioctl_subvol_getflags(struct file *file, 1947 void __user *arg) 1948 { 1949 struct inode *inode = file_inode(file); 1950 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1951 struct btrfs_root *root = BTRFS_I(inode)->root; 1952 int ret = 0; 1953 u64 flags = 0; 1954 1955 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) 1956 return -EINVAL; 1957 1958 down_read(&fs_info->subvol_sem); 1959 if (btrfs_root_readonly(root)) 1960 flags |= BTRFS_SUBVOL_RDONLY; 1961 up_read(&fs_info->subvol_sem); 1962 1963 if (copy_to_user(arg, &flags, sizeof(flags))) 1964 ret = -EFAULT; 1965 1966 return ret; 1967 } 1968 1969 static noinline int btrfs_ioctl_subvol_setflags(struct file *file, 1970 void __user *arg) 1971 { 1972 struct inode *inode = file_inode(file); 1973 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1974 struct btrfs_root *root = BTRFS_I(inode)->root; 1975 struct btrfs_trans_handle *trans; 1976 u64 root_flags; 1977 u64 flags; 1978 int ret = 0; 1979 1980 if (!inode_owner_or_capable(file_mnt_user_ns(file), inode)) 1981 return -EPERM; 1982 1983 ret = mnt_want_write_file(file); 1984 if (ret) 1985 goto out; 1986 1987 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) { 1988 ret = -EINVAL; 1989 goto out_drop_write; 1990 } 1991 1992 if (copy_from_user(&flags, arg, sizeof(flags))) { 1993 ret = -EFAULT; 1994 goto out_drop_write; 1995 } 1996 1997 if (flags & ~BTRFS_SUBVOL_RDONLY) { 1998 ret = -EOPNOTSUPP; 1999 goto out_drop_write; 2000 } 2001 2002 down_write(&fs_info->subvol_sem); 2003 2004 /* nothing to do */ 2005 if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root)) 2006 goto out_drop_sem; 2007 2008 root_flags = btrfs_root_flags(&root->root_item); 2009 if (flags & BTRFS_SUBVOL_RDONLY) { 2010 btrfs_set_root_flags(&root->root_item, 2011 root_flags | BTRFS_ROOT_SUBVOL_RDONLY); 2012 } else { 2013 /* 2014 * Block RO -> RW transition if this subvolume is involved in 2015 * send 2016 */ 2017 spin_lock(&root->root_item_lock); 2018 if (root->send_in_progress == 0) { 2019 btrfs_set_root_flags(&root->root_item, 2020 root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY); 2021 spin_unlock(&root->root_item_lock); 2022 } else { 2023 spin_unlock(&root->root_item_lock); 2024 btrfs_warn(fs_info, 2025 "Attempt to set subvolume %llu read-write during send", 2026 root->root_key.objectid); 2027 ret = -EPERM; 2028 goto out_drop_sem; 2029 } 2030 } 2031 2032 trans = btrfs_start_transaction(root, 1); 2033 if (IS_ERR(trans)) { 2034 ret = PTR_ERR(trans); 2035 goto out_reset; 2036 } 2037 2038 ret = btrfs_update_root(trans, fs_info->tree_root, 2039 &root->root_key, &root->root_item); 2040 if (ret < 0) { 2041 btrfs_end_transaction(trans); 2042 goto out_reset; 2043 } 2044 2045 ret = btrfs_commit_transaction(trans); 2046 2047 out_reset: 2048 if (ret) 2049 btrfs_set_root_flags(&root->root_item, root_flags); 2050 out_drop_sem: 2051 up_write(&fs_info->subvol_sem); 2052 out_drop_write: 2053 mnt_drop_write_file(file); 2054 out: 2055 return ret; 2056 } 2057 2058 static noinline int key_in_sk(struct btrfs_key *key, 2059 struct btrfs_ioctl_search_key *sk) 2060 { 2061 struct btrfs_key test; 2062 int ret; 2063 2064 test.objectid = sk->min_objectid; 2065 test.type = sk->min_type; 2066 test.offset = sk->min_offset; 2067 2068 ret = btrfs_comp_cpu_keys(key, &test); 2069 if (ret < 0) 2070 return 0; 2071 2072 test.objectid = sk->max_objectid; 2073 test.type = sk->max_type; 2074 test.offset = sk->max_offset; 2075 2076 ret = btrfs_comp_cpu_keys(key, &test); 2077 if (ret > 0) 2078 return 0; 2079 return 1; 2080 } 2081 2082 static noinline int copy_to_sk(struct btrfs_path *path, 2083 struct btrfs_key *key, 2084 struct btrfs_ioctl_search_key *sk, 2085 size_t *buf_size, 2086 char __user *ubuf, 2087 unsigned long *sk_offset, 2088 int *num_found) 2089 { 2090 u64 found_transid; 2091 struct extent_buffer *leaf; 2092 struct btrfs_ioctl_search_header sh; 2093 struct btrfs_key test; 2094 unsigned long item_off; 2095 unsigned long item_len; 2096 int nritems; 2097 int i; 2098 int slot; 2099 int ret = 0; 2100 2101 leaf = path->nodes[0]; 2102 slot = path->slots[0]; 2103 nritems = btrfs_header_nritems(leaf); 2104 2105 if (btrfs_header_generation(leaf) > sk->max_transid) { 2106 i = nritems; 2107 goto advance_key; 2108 } 2109 found_transid = btrfs_header_generation(leaf); 2110 2111 for (i = slot; i < nritems; i++) { 2112 item_off = btrfs_item_ptr_offset(leaf, i); 2113 item_len = btrfs_item_size(leaf, i); 2114 2115 btrfs_item_key_to_cpu(leaf, key, i); 2116 if (!key_in_sk(key, sk)) 2117 continue; 2118 2119 if (sizeof(sh) + item_len > *buf_size) { 2120 if (*num_found) { 2121 ret = 1; 2122 goto out; 2123 } 2124 2125 /* 2126 * return one empty item back for v1, which does not 2127 * handle -EOVERFLOW 2128 */ 2129 2130 *buf_size = sizeof(sh) + item_len; 2131 item_len = 0; 2132 ret = -EOVERFLOW; 2133 } 2134 2135 if (sizeof(sh) + item_len + *sk_offset > *buf_size) { 2136 ret = 1; 2137 goto out; 2138 } 2139 2140 sh.objectid = key->objectid; 2141 sh.offset = key->offset; 2142 sh.type = key->type; 2143 sh.len = item_len; 2144 sh.transid = found_transid; 2145 2146 /* 2147 * Copy search result header. If we fault then loop again so we 2148 * can fault in the pages and -EFAULT there if there's a 2149 * problem. Otherwise we'll fault and then copy the buffer in 2150 * properly this next time through 2151 */ 2152 if (copy_to_user_nofault(ubuf + *sk_offset, &sh, sizeof(sh))) { 2153 ret = 0; 2154 goto out; 2155 } 2156 2157 *sk_offset += sizeof(sh); 2158 2159 if (item_len) { 2160 char __user *up = ubuf + *sk_offset; 2161 /* 2162 * Copy the item, same behavior as above, but reset the 2163 * * sk_offset so we copy the full thing again. 2164 */ 2165 if (read_extent_buffer_to_user_nofault(leaf, up, 2166 item_off, item_len)) { 2167 ret = 0; 2168 *sk_offset -= sizeof(sh); 2169 goto out; 2170 } 2171 2172 *sk_offset += item_len; 2173 } 2174 (*num_found)++; 2175 2176 if (ret) /* -EOVERFLOW from above */ 2177 goto out; 2178 2179 if (*num_found >= sk->nr_items) { 2180 ret = 1; 2181 goto out; 2182 } 2183 } 2184 advance_key: 2185 ret = 0; 2186 test.objectid = sk->max_objectid; 2187 test.type = sk->max_type; 2188 test.offset = sk->max_offset; 2189 if (btrfs_comp_cpu_keys(key, &test) >= 0) 2190 ret = 1; 2191 else if (key->offset < (u64)-1) 2192 key->offset++; 2193 else if (key->type < (u8)-1) { 2194 key->offset = 0; 2195 key->type++; 2196 } else if (key->objectid < (u64)-1) { 2197 key->offset = 0; 2198 key->type = 0; 2199 key->objectid++; 2200 } else 2201 ret = 1; 2202 out: 2203 /* 2204 * 0: all items from this leaf copied, continue with next 2205 * 1: * more items can be copied, but unused buffer is too small 2206 * * all items were found 2207 * Either way, it will stops the loop which iterates to the next 2208 * leaf 2209 * -EOVERFLOW: item was to large for buffer 2210 * -EFAULT: could not copy extent buffer back to userspace 2211 */ 2212 return ret; 2213 } 2214 2215 static noinline int search_ioctl(struct inode *inode, 2216 struct btrfs_ioctl_search_key *sk, 2217 size_t *buf_size, 2218 char __user *ubuf) 2219 { 2220 struct btrfs_fs_info *info = btrfs_sb(inode->i_sb); 2221 struct btrfs_root *root; 2222 struct btrfs_key key; 2223 struct btrfs_path *path; 2224 int ret; 2225 int num_found = 0; 2226 unsigned long sk_offset = 0; 2227 2228 if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) { 2229 *buf_size = sizeof(struct btrfs_ioctl_search_header); 2230 return -EOVERFLOW; 2231 } 2232 2233 path = btrfs_alloc_path(); 2234 if (!path) 2235 return -ENOMEM; 2236 2237 if (sk->tree_id == 0) { 2238 /* search the root of the inode that was passed */ 2239 root = btrfs_grab_root(BTRFS_I(inode)->root); 2240 } else { 2241 root = btrfs_get_fs_root(info, sk->tree_id, true); 2242 if (IS_ERR(root)) { 2243 btrfs_free_path(path); 2244 return PTR_ERR(root); 2245 } 2246 } 2247 2248 key.objectid = sk->min_objectid; 2249 key.type = sk->min_type; 2250 key.offset = sk->min_offset; 2251 2252 while (1) { 2253 ret = -EFAULT; 2254 if (fault_in_writeable(ubuf + sk_offset, *buf_size - sk_offset)) 2255 break; 2256 2257 ret = btrfs_search_forward(root, &key, path, sk->min_transid); 2258 if (ret != 0) { 2259 if (ret > 0) 2260 ret = 0; 2261 goto err; 2262 } 2263 ret = copy_to_sk(path, &key, sk, buf_size, ubuf, 2264 &sk_offset, &num_found); 2265 btrfs_release_path(path); 2266 if (ret) 2267 break; 2268 2269 } 2270 if (ret > 0) 2271 ret = 0; 2272 err: 2273 sk->nr_items = num_found; 2274 btrfs_put_root(root); 2275 btrfs_free_path(path); 2276 return ret; 2277 } 2278 2279 static noinline int btrfs_ioctl_tree_search(struct file *file, 2280 void __user *argp) 2281 { 2282 struct btrfs_ioctl_search_args __user *uargs; 2283 struct btrfs_ioctl_search_key sk; 2284 struct inode *inode; 2285 int ret; 2286 size_t buf_size; 2287 2288 if (!capable(CAP_SYS_ADMIN)) 2289 return -EPERM; 2290 2291 uargs = (struct btrfs_ioctl_search_args __user *)argp; 2292 2293 if (copy_from_user(&sk, &uargs->key, sizeof(sk))) 2294 return -EFAULT; 2295 2296 buf_size = sizeof(uargs->buf); 2297 2298 inode = file_inode(file); 2299 ret = search_ioctl(inode, &sk, &buf_size, uargs->buf); 2300 2301 /* 2302 * In the origin implementation an overflow is handled by returning a 2303 * search header with a len of zero, so reset ret. 2304 */ 2305 if (ret == -EOVERFLOW) 2306 ret = 0; 2307 2308 if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk))) 2309 ret = -EFAULT; 2310 return ret; 2311 } 2312 2313 static noinline int btrfs_ioctl_tree_search_v2(struct file *file, 2314 void __user *argp) 2315 { 2316 struct btrfs_ioctl_search_args_v2 __user *uarg; 2317 struct btrfs_ioctl_search_args_v2 args; 2318 struct inode *inode; 2319 int ret; 2320 size_t buf_size; 2321 const size_t buf_limit = SZ_16M; 2322 2323 if (!capable(CAP_SYS_ADMIN)) 2324 return -EPERM; 2325 2326 /* copy search header and buffer size */ 2327 uarg = (struct btrfs_ioctl_search_args_v2 __user *)argp; 2328 if (copy_from_user(&args, uarg, sizeof(args))) 2329 return -EFAULT; 2330 2331 buf_size = args.buf_size; 2332 2333 /* limit result size to 16MB */ 2334 if (buf_size > buf_limit) 2335 buf_size = buf_limit; 2336 2337 inode = file_inode(file); 2338 ret = search_ioctl(inode, &args.key, &buf_size, 2339 (char __user *)(&uarg->buf[0])); 2340 if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key))) 2341 ret = -EFAULT; 2342 else if (ret == -EOVERFLOW && 2343 copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size))) 2344 ret = -EFAULT; 2345 2346 return ret; 2347 } 2348 2349 /* 2350 * Search INODE_REFs to identify path name of 'dirid' directory 2351 * in a 'tree_id' tree. and sets path name to 'name'. 2352 */ 2353 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info, 2354 u64 tree_id, u64 dirid, char *name) 2355 { 2356 struct btrfs_root *root; 2357 struct btrfs_key key; 2358 char *ptr; 2359 int ret = -1; 2360 int slot; 2361 int len; 2362 int total_len = 0; 2363 struct btrfs_inode_ref *iref; 2364 struct extent_buffer *l; 2365 struct btrfs_path *path; 2366 2367 if (dirid == BTRFS_FIRST_FREE_OBJECTID) { 2368 name[0]='\0'; 2369 return 0; 2370 } 2371 2372 path = btrfs_alloc_path(); 2373 if (!path) 2374 return -ENOMEM; 2375 2376 ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX - 1]; 2377 2378 root = btrfs_get_fs_root(info, tree_id, true); 2379 if (IS_ERR(root)) { 2380 ret = PTR_ERR(root); 2381 root = NULL; 2382 goto out; 2383 } 2384 2385 key.objectid = dirid; 2386 key.type = BTRFS_INODE_REF_KEY; 2387 key.offset = (u64)-1; 2388 2389 while (1) { 2390 ret = btrfs_search_backwards(root, &key, path); 2391 if (ret < 0) 2392 goto out; 2393 else if (ret > 0) { 2394 ret = -ENOENT; 2395 goto out; 2396 } 2397 2398 l = path->nodes[0]; 2399 slot = path->slots[0]; 2400 2401 iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref); 2402 len = btrfs_inode_ref_name_len(l, iref); 2403 ptr -= len + 1; 2404 total_len += len + 1; 2405 if (ptr < name) { 2406 ret = -ENAMETOOLONG; 2407 goto out; 2408 } 2409 2410 *(ptr + len) = '/'; 2411 read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len); 2412 2413 if (key.offset == BTRFS_FIRST_FREE_OBJECTID) 2414 break; 2415 2416 btrfs_release_path(path); 2417 key.objectid = key.offset; 2418 key.offset = (u64)-1; 2419 dirid = key.objectid; 2420 } 2421 memmove(name, ptr, total_len); 2422 name[total_len] = '\0'; 2423 ret = 0; 2424 out: 2425 btrfs_put_root(root); 2426 btrfs_free_path(path); 2427 return ret; 2428 } 2429 2430 static int btrfs_search_path_in_tree_user(struct user_namespace *mnt_userns, 2431 struct inode *inode, 2432 struct btrfs_ioctl_ino_lookup_user_args *args) 2433 { 2434 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 2435 struct super_block *sb = inode->i_sb; 2436 struct btrfs_key upper_limit = BTRFS_I(inode)->location; 2437 u64 treeid = BTRFS_I(inode)->root->root_key.objectid; 2438 u64 dirid = args->dirid; 2439 unsigned long item_off; 2440 unsigned long item_len; 2441 struct btrfs_inode_ref *iref; 2442 struct btrfs_root_ref *rref; 2443 struct btrfs_root *root = NULL; 2444 struct btrfs_path *path; 2445 struct btrfs_key key, key2; 2446 struct extent_buffer *leaf; 2447 struct inode *temp_inode; 2448 char *ptr; 2449 int slot; 2450 int len; 2451 int total_len = 0; 2452 int ret; 2453 2454 path = btrfs_alloc_path(); 2455 if (!path) 2456 return -ENOMEM; 2457 2458 /* 2459 * If the bottom subvolume does not exist directly under upper_limit, 2460 * construct the path in from the bottom up. 2461 */ 2462 if (dirid != upper_limit.objectid) { 2463 ptr = &args->path[BTRFS_INO_LOOKUP_USER_PATH_MAX - 1]; 2464 2465 root = btrfs_get_fs_root(fs_info, treeid, true); 2466 if (IS_ERR(root)) { 2467 ret = PTR_ERR(root); 2468 goto out; 2469 } 2470 2471 key.objectid = dirid; 2472 key.type = BTRFS_INODE_REF_KEY; 2473 key.offset = (u64)-1; 2474 while (1) { 2475 ret = btrfs_search_backwards(root, &key, path); 2476 if (ret < 0) 2477 goto out_put; 2478 else if (ret > 0) { 2479 ret = -ENOENT; 2480 goto out_put; 2481 } 2482 2483 leaf = path->nodes[0]; 2484 slot = path->slots[0]; 2485 2486 iref = btrfs_item_ptr(leaf, slot, struct btrfs_inode_ref); 2487 len = btrfs_inode_ref_name_len(leaf, iref); 2488 ptr -= len + 1; 2489 total_len += len + 1; 2490 if (ptr < args->path) { 2491 ret = -ENAMETOOLONG; 2492 goto out_put; 2493 } 2494 2495 *(ptr + len) = '/'; 2496 read_extent_buffer(leaf, ptr, 2497 (unsigned long)(iref + 1), len); 2498 2499 /* Check the read+exec permission of this directory */ 2500 ret = btrfs_previous_item(root, path, dirid, 2501 BTRFS_INODE_ITEM_KEY); 2502 if (ret < 0) { 2503 goto out_put; 2504 } else if (ret > 0) { 2505 ret = -ENOENT; 2506 goto out_put; 2507 } 2508 2509 leaf = path->nodes[0]; 2510 slot = path->slots[0]; 2511 btrfs_item_key_to_cpu(leaf, &key2, slot); 2512 if (key2.objectid != dirid) { 2513 ret = -ENOENT; 2514 goto out_put; 2515 } 2516 2517 temp_inode = btrfs_iget(sb, key2.objectid, root); 2518 if (IS_ERR(temp_inode)) { 2519 ret = PTR_ERR(temp_inode); 2520 goto out_put; 2521 } 2522 ret = inode_permission(mnt_userns, temp_inode, 2523 MAY_READ | MAY_EXEC); 2524 iput(temp_inode); 2525 if (ret) { 2526 ret = -EACCES; 2527 goto out_put; 2528 } 2529 2530 if (key.offset == upper_limit.objectid) 2531 break; 2532 if (key.objectid == BTRFS_FIRST_FREE_OBJECTID) { 2533 ret = -EACCES; 2534 goto out_put; 2535 } 2536 2537 btrfs_release_path(path); 2538 key.objectid = key.offset; 2539 key.offset = (u64)-1; 2540 dirid = key.objectid; 2541 } 2542 2543 memmove(args->path, ptr, total_len); 2544 args->path[total_len] = '\0'; 2545 btrfs_put_root(root); 2546 root = NULL; 2547 btrfs_release_path(path); 2548 } 2549 2550 /* Get the bottom subvolume's name from ROOT_REF */ 2551 key.objectid = treeid; 2552 key.type = BTRFS_ROOT_REF_KEY; 2553 key.offset = args->treeid; 2554 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 2555 if (ret < 0) { 2556 goto out; 2557 } else if (ret > 0) { 2558 ret = -ENOENT; 2559 goto out; 2560 } 2561 2562 leaf = path->nodes[0]; 2563 slot = path->slots[0]; 2564 btrfs_item_key_to_cpu(leaf, &key, slot); 2565 2566 item_off = btrfs_item_ptr_offset(leaf, slot); 2567 item_len = btrfs_item_size(leaf, slot); 2568 /* Check if dirid in ROOT_REF corresponds to passed dirid */ 2569 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref); 2570 if (args->dirid != btrfs_root_ref_dirid(leaf, rref)) { 2571 ret = -EINVAL; 2572 goto out; 2573 } 2574 2575 /* Copy subvolume's name */ 2576 item_off += sizeof(struct btrfs_root_ref); 2577 item_len -= sizeof(struct btrfs_root_ref); 2578 read_extent_buffer(leaf, args->name, item_off, item_len); 2579 args->name[item_len] = 0; 2580 2581 out_put: 2582 btrfs_put_root(root); 2583 out: 2584 btrfs_free_path(path); 2585 return ret; 2586 } 2587 2588 static noinline int btrfs_ioctl_ino_lookup(struct file *file, 2589 void __user *argp) 2590 { 2591 struct btrfs_ioctl_ino_lookup_args *args; 2592 struct inode *inode; 2593 int ret = 0; 2594 2595 args = memdup_user(argp, sizeof(*args)); 2596 if (IS_ERR(args)) 2597 return PTR_ERR(args); 2598 2599 inode = file_inode(file); 2600 2601 /* 2602 * Unprivileged query to obtain the containing subvolume root id. The 2603 * path is reset so it's consistent with btrfs_search_path_in_tree. 2604 */ 2605 if (args->treeid == 0) 2606 args->treeid = BTRFS_I(inode)->root->root_key.objectid; 2607 2608 if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) { 2609 args->name[0] = 0; 2610 goto out; 2611 } 2612 2613 if (!capable(CAP_SYS_ADMIN)) { 2614 ret = -EPERM; 2615 goto out; 2616 } 2617 2618 ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info, 2619 args->treeid, args->objectid, 2620 args->name); 2621 2622 out: 2623 if (ret == 0 && copy_to_user(argp, args, sizeof(*args))) 2624 ret = -EFAULT; 2625 2626 kfree(args); 2627 return ret; 2628 } 2629 2630 /* 2631 * Version of ino_lookup ioctl (unprivileged) 2632 * 2633 * The main differences from ino_lookup ioctl are: 2634 * 2635 * 1. Read + Exec permission will be checked using inode_permission() during 2636 * path construction. -EACCES will be returned in case of failure. 2637 * 2. Path construction will be stopped at the inode number which corresponds 2638 * to the fd with which this ioctl is called. If constructed path does not 2639 * exist under fd's inode, -EACCES will be returned. 2640 * 3. The name of bottom subvolume is also searched and filled. 2641 */ 2642 static int btrfs_ioctl_ino_lookup_user(struct file *file, void __user *argp) 2643 { 2644 struct btrfs_ioctl_ino_lookup_user_args *args; 2645 struct inode *inode; 2646 int ret; 2647 2648 args = memdup_user(argp, sizeof(*args)); 2649 if (IS_ERR(args)) 2650 return PTR_ERR(args); 2651 2652 inode = file_inode(file); 2653 2654 if (args->dirid == BTRFS_FIRST_FREE_OBJECTID && 2655 BTRFS_I(inode)->location.objectid != BTRFS_FIRST_FREE_OBJECTID) { 2656 /* 2657 * The subvolume does not exist under fd with which this is 2658 * called 2659 */ 2660 kfree(args); 2661 return -EACCES; 2662 } 2663 2664 ret = btrfs_search_path_in_tree_user(file_mnt_user_ns(file), inode, args); 2665 2666 if (ret == 0 && copy_to_user(argp, args, sizeof(*args))) 2667 ret = -EFAULT; 2668 2669 kfree(args); 2670 return ret; 2671 } 2672 2673 /* Get the subvolume information in BTRFS_ROOT_ITEM and BTRFS_ROOT_BACKREF */ 2674 static int btrfs_ioctl_get_subvol_info(struct file *file, void __user *argp) 2675 { 2676 struct btrfs_ioctl_get_subvol_info_args *subvol_info; 2677 struct btrfs_fs_info *fs_info; 2678 struct btrfs_root *root; 2679 struct btrfs_path *path; 2680 struct btrfs_key key; 2681 struct btrfs_root_item *root_item; 2682 struct btrfs_root_ref *rref; 2683 struct extent_buffer *leaf; 2684 unsigned long item_off; 2685 unsigned long item_len; 2686 struct inode *inode; 2687 int slot; 2688 int ret = 0; 2689 2690 path = btrfs_alloc_path(); 2691 if (!path) 2692 return -ENOMEM; 2693 2694 subvol_info = kzalloc(sizeof(*subvol_info), GFP_KERNEL); 2695 if (!subvol_info) { 2696 btrfs_free_path(path); 2697 return -ENOMEM; 2698 } 2699 2700 inode = file_inode(file); 2701 fs_info = BTRFS_I(inode)->root->fs_info; 2702 2703 /* Get root_item of inode's subvolume */ 2704 key.objectid = BTRFS_I(inode)->root->root_key.objectid; 2705 root = btrfs_get_fs_root(fs_info, key.objectid, true); 2706 if (IS_ERR(root)) { 2707 ret = PTR_ERR(root); 2708 goto out_free; 2709 } 2710 root_item = &root->root_item; 2711 2712 subvol_info->treeid = key.objectid; 2713 2714 subvol_info->generation = btrfs_root_generation(root_item); 2715 subvol_info->flags = btrfs_root_flags(root_item); 2716 2717 memcpy(subvol_info->uuid, root_item->uuid, BTRFS_UUID_SIZE); 2718 memcpy(subvol_info->parent_uuid, root_item->parent_uuid, 2719 BTRFS_UUID_SIZE); 2720 memcpy(subvol_info->received_uuid, root_item->received_uuid, 2721 BTRFS_UUID_SIZE); 2722 2723 subvol_info->ctransid = btrfs_root_ctransid(root_item); 2724 subvol_info->ctime.sec = btrfs_stack_timespec_sec(&root_item->ctime); 2725 subvol_info->ctime.nsec = btrfs_stack_timespec_nsec(&root_item->ctime); 2726 2727 subvol_info->otransid = btrfs_root_otransid(root_item); 2728 subvol_info->otime.sec = btrfs_stack_timespec_sec(&root_item->otime); 2729 subvol_info->otime.nsec = btrfs_stack_timespec_nsec(&root_item->otime); 2730 2731 subvol_info->stransid = btrfs_root_stransid(root_item); 2732 subvol_info->stime.sec = btrfs_stack_timespec_sec(&root_item->stime); 2733 subvol_info->stime.nsec = btrfs_stack_timespec_nsec(&root_item->stime); 2734 2735 subvol_info->rtransid = btrfs_root_rtransid(root_item); 2736 subvol_info->rtime.sec = btrfs_stack_timespec_sec(&root_item->rtime); 2737 subvol_info->rtime.nsec = btrfs_stack_timespec_nsec(&root_item->rtime); 2738 2739 if (key.objectid != BTRFS_FS_TREE_OBJECTID) { 2740 /* Search root tree for ROOT_BACKREF of this subvolume */ 2741 key.type = BTRFS_ROOT_BACKREF_KEY; 2742 key.offset = 0; 2743 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 2744 if (ret < 0) { 2745 goto out; 2746 } else if (path->slots[0] >= 2747 btrfs_header_nritems(path->nodes[0])) { 2748 ret = btrfs_next_leaf(fs_info->tree_root, path); 2749 if (ret < 0) { 2750 goto out; 2751 } else if (ret > 0) { 2752 ret = -EUCLEAN; 2753 goto out; 2754 } 2755 } 2756 2757 leaf = path->nodes[0]; 2758 slot = path->slots[0]; 2759 btrfs_item_key_to_cpu(leaf, &key, slot); 2760 if (key.objectid == subvol_info->treeid && 2761 key.type == BTRFS_ROOT_BACKREF_KEY) { 2762 subvol_info->parent_id = key.offset; 2763 2764 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref); 2765 subvol_info->dirid = btrfs_root_ref_dirid(leaf, rref); 2766 2767 item_off = btrfs_item_ptr_offset(leaf, slot) 2768 + sizeof(struct btrfs_root_ref); 2769 item_len = btrfs_item_size(leaf, slot) 2770 - sizeof(struct btrfs_root_ref); 2771 read_extent_buffer(leaf, subvol_info->name, 2772 item_off, item_len); 2773 } else { 2774 ret = -ENOENT; 2775 goto out; 2776 } 2777 } 2778 2779 if (copy_to_user(argp, subvol_info, sizeof(*subvol_info))) 2780 ret = -EFAULT; 2781 2782 out: 2783 btrfs_put_root(root); 2784 out_free: 2785 btrfs_free_path(path); 2786 kfree(subvol_info); 2787 return ret; 2788 } 2789 2790 /* 2791 * Return ROOT_REF information of the subvolume containing this inode 2792 * except the subvolume name. 2793 */ 2794 static int btrfs_ioctl_get_subvol_rootref(struct file *file, void __user *argp) 2795 { 2796 struct btrfs_ioctl_get_subvol_rootref_args *rootrefs; 2797 struct btrfs_root_ref *rref; 2798 struct btrfs_root *root; 2799 struct btrfs_path *path; 2800 struct btrfs_key key; 2801 struct extent_buffer *leaf; 2802 struct inode *inode; 2803 u64 objectid; 2804 int slot; 2805 int ret; 2806 u8 found; 2807 2808 path = btrfs_alloc_path(); 2809 if (!path) 2810 return -ENOMEM; 2811 2812 rootrefs = memdup_user(argp, sizeof(*rootrefs)); 2813 if (IS_ERR(rootrefs)) { 2814 btrfs_free_path(path); 2815 return PTR_ERR(rootrefs); 2816 } 2817 2818 inode = file_inode(file); 2819 root = BTRFS_I(inode)->root->fs_info->tree_root; 2820 objectid = BTRFS_I(inode)->root->root_key.objectid; 2821 2822 key.objectid = objectid; 2823 key.type = BTRFS_ROOT_REF_KEY; 2824 key.offset = rootrefs->min_treeid; 2825 found = 0; 2826 2827 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2828 if (ret < 0) { 2829 goto out; 2830 } else if (path->slots[0] >= 2831 btrfs_header_nritems(path->nodes[0])) { 2832 ret = btrfs_next_leaf(root, path); 2833 if (ret < 0) { 2834 goto out; 2835 } else if (ret > 0) { 2836 ret = -EUCLEAN; 2837 goto out; 2838 } 2839 } 2840 while (1) { 2841 leaf = path->nodes[0]; 2842 slot = path->slots[0]; 2843 2844 btrfs_item_key_to_cpu(leaf, &key, slot); 2845 if (key.objectid != objectid || key.type != BTRFS_ROOT_REF_KEY) { 2846 ret = 0; 2847 goto out; 2848 } 2849 2850 if (found == BTRFS_MAX_ROOTREF_BUFFER_NUM) { 2851 ret = -EOVERFLOW; 2852 goto out; 2853 } 2854 2855 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref); 2856 rootrefs->rootref[found].treeid = key.offset; 2857 rootrefs->rootref[found].dirid = 2858 btrfs_root_ref_dirid(leaf, rref); 2859 found++; 2860 2861 ret = btrfs_next_item(root, path); 2862 if (ret < 0) { 2863 goto out; 2864 } else if (ret > 0) { 2865 ret = -EUCLEAN; 2866 goto out; 2867 } 2868 } 2869 2870 out: 2871 if (!ret || ret == -EOVERFLOW) { 2872 rootrefs->num_items = found; 2873 /* update min_treeid for next search */ 2874 if (found) 2875 rootrefs->min_treeid = 2876 rootrefs->rootref[found - 1].treeid + 1; 2877 if (copy_to_user(argp, rootrefs, sizeof(*rootrefs))) 2878 ret = -EFAULT; 2879 } 2880 2881 kfree(rootrefs); 2882 btrfs_free_path(path); 2883 2884 return ret; 2885 } 2886 2887 static noinline int btrfs_ioctl_snap_destroy(struct file *file, 2888 void __user *arg, 2889 bool destroy_v2) 2890 { 2891 struct dentry *parent = file->f_path.dentry; 2892 struct btrfs_fs_info *fs_info = btrfs_sb(parent->d_sb); 2893 struct dentry *dentry; 2894 struct inode *dir = d_inode(parent); 2895 struct inode *inode; 2896 struct btrfs_root *root = BTRFS_I(dir)->root; 2897 struct btrfs_root *dest = NULL; 2898 struct btrfs_ioctl_vol_args *vol_args = NULL; 2899 struct btrfs_ioctl_vol_args_v2 *vol_args2 = NULL; 2900 struct user_namespace *mnt_userns = file_mnt_user_ns(file); 2901 char *subvol_name, *subvol_name_ptr = NULL; 2902 int subvol_namelen; 2903 int err = 0; 2904 bool destroy_parent = false; 2905 2906 if (destroy_v2) { 2907 vol_args2 = memdup_user(arg, sizeof(*vol_args2)); 2908 if (IS_ERR(vol_args2)) 2909 return PTR_ERR(vol_args2); 2910 2911 if (vol_args2->flags & ~BTRFS_SUBVOL_DELETE_ARGS_MASK) { 2912 err = -EOPNOTSUPP; 2913 goto out; 2914 } 2915 2916 /* 2917 * If SPEC_BY_ID is not set, we are looking for the subvolume by 2918 * name, same as v1 currently does. 2919 */ 2920 if (!(vol_args2->flags & BTRFS_SUBVOL_SPEC_BY_ID)) { 2921 vol_args2->name[BTRFS_SUBVOL_NAME_MAX] = 0; 2922 subvol_name = vol_args2->name; 2923 2924 err = mnt_want_write_file(file); 2925 if (err) 2926 goto out; 2927 } else { 2928 struct inode *old_dir; 2929 2930 if (vol_args2->subvolid < BTRFS_FIRST_FREE_OBJECTID) { 2931 err = -EINVAL; 2932 goto out; 2933 } 2934 2935 err = mnt_want_write_file(file); 2936 if (err) 2937 goto out; 2938 2939 dentry = btrfs_get_dentry(fs_info->sb, 2940 BTRFS_FIRST_FREE_OBJECTID, 2941 vol_args2->subvolid, 0, 0); 2942 if (IS_ERR(dentry)) { 2943 err = PTR_ERR(dentry); 2944 goto out_drop_write; 2945 } 2946 2947 /* 2948 * Change the default parent since the subvolume being 2949 * deleted can be outside of the current mount point. 2950 */ 2951 parent = btrfs_get_parent(dentry); 2952 2953 /* 2954 * At this point dentry->d_name can point to '/' if the 2955 * subvolume we want to destroy is outsite of the 2956 * current mount point, so we need to release the 2957 * current dentry and execute the lookup to return a new 2958 * one with ->d_name pointing to the 2959 * <mount point>/subvol_name. 2960 */ 2961 dput(dentry); 2962 if (IS_ERR(parent)) { 2963 err = PTR_ERR(parent); 2964 goto out_drop_write; 2965 } 2966 old_dir = dir; 2967 dir = d_inode(parent); 2968 2969 /* 2970 * If v2 was used with SPEC_BY_ID, a new parent was 2971 * allocated since the subvolume can be outside of the 2972 * current mount point. Later on we need to release this 2973 * new parent dentry. 2974 */ 2975 destroy_parent = true; 2976 2977 /* 2978 * On idmapped mounts, deletion via subvolid is 2979 * restricted to subvolumes that are immediate 2980 * ancestors of the inode referenced by the file 2981 * descriptor in the ioctl. Otherwise the idmapping 2982 * could potentially be abused to delete subvolumes 2983 * anywhere in the filesystem the user wouldn't be able 2984 * to delete without an idmapped mount. 2985 */ 2986 if (old_dir != dir && mnt_userns != &init_user_ns) { 2987 err = -EOPNOTSUPP; 2988 goto free_parent; 2989 } 2990 2991 subvol_name_ptr = btrfs_get_subvol_name_from_objectid( 2992 fs_info, vol_args2->subvolid); 2993 if (IS_ERR(subvol_name_ptr)) { 2994 err = PTR_ERR(subvol_name_ptr); 2995 goto free_parent; 2996 } 2997 /* subvol_name_ptr is already nul terminated */ 2998 subvol_name = (char *)kbasename(subvol_name_ptr); 2999 } 3000 } else { 3001 vol_args = memdup_user(arg, sizeof(*vol_args)); 3002 if (IS_ERR(vol_args)) 3003 return PTR_ERR(vol_args); 3004 3005 vol_args->name[BTRFS_PATH_NAME_MAX] = 0; 3006 subvol_name = vol_args->name; 3007 3008 err = mnt_want_write_file(file); 3009 if (err) 3010 goto out; 3011 } 3012 3013 subvol_namelen = strlen(subvol_name); 3014 3015 if (strchr(subvol_name, '/') || 3016 strncmp(subvol_name, "..", subvol_namelen) == 0) { 3017 err = -EINVAL; 3018 goto free_subvol_name; 3019 } 3020 3021 if (!S_ISDIR(dir->i_mode)) { 3022 err = -ENOTDIR; 3023 goto free_subvol_name; 3024 } 3025 3026 err = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT); 3027 if (err == -EINTR) 3028 goto free_subvol_name; 3029 dentry = lookup_one(mnt_userns, subvol_name, parent, subvol_namelen); 3030 if (IS_ERR(dentry)) { 3031 err = PTR_ERR(dentry); 3032 goto out_unlock_dir; 3033 } 3034 3035 if (d_really_is_negative(dentry)) { 3036 err = -ENOENT; 3037 goto out_dput; 3038 } 3039 3040 inode = d_inode(dentry); 3041 dest = BTRFS_I(inode)->root; 3042 if (!capable(CAP_SYS_ADMIN)) { 3043 /* 3044 * Regular user. Only allow this with a special mount 3045 * option, when the user has write+exec access to the 3046 * subvol root, and when rmdir(2) would have been 3047 * allowed. 3048 * 3049 * Note that this is _not_ check that the subvol is 3050 * empty or doesn't contain data that we wouldn't 3051 * otherwise be able to delete. 3052 * 3053 * Users who want to delete empty subvols should try 3054 * rmdir(2). 3055 */ 3056 err = -EPERM; 3057 if (!btrfs_test_opt(fs_info, USER_SUBVOL_RM_ALLOWED)) 3058 goto out_dput; 3059 3060 /* 3061 * Do not allow deletion if the parent dir is the same 3062 * as the dir to be deleted. That means the ioctl 3063 * must be called on the dentry referencing the root 3064 * of the subvol, not a random directory contained 3065 * within it. 3066 */ 3067 err = -EINVAL; 3068 if (root == dest) 3069 goto out_dput; 3070 3071 err = inode_permission(mnt_userns, inode, MAY_WRITE | MAY_EXEC); 3072 if (err) 3073 goto out_dput; 3074 } 3075 3076 /* check if subvolume may be deleted by a user */ 3077 err = btrfs_may_delete(mnt_userns, dir, dentry, 1); 3078 if (err) 3079 goto out_dput; 3080 3081 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) { 3082 err = -EINVAL; 3083 goto out_dput; 3084 } 3085 3086 btrfs_inode_lock(inode, 0); 3087 err = btrfs_delete_subvolume(dir, dentry); 3088 btrfs_inode_unlock(inode, 0); 3089 if (!err) { 3090 fsnotify_rmdir(dir, dentry); 3091 d_delete(dentry); 3092 } 3093 3094 out_dput: 3095 dput(dentry); 3096 out_unlock_dir: 3097 btrfs_inode_unlock(dir, 0); 3098 free_subvol_name: 3099 kfree(subvol_name_ptr); 3100 free_parent: 3101 if (destroy_parent) 3102 dput(parent); 3103 out_drop_write: 3104 mnt_drop_write_file(file); 3105 out: 3106 kfree(vol_args2); 3107 kfree(vol_args); 3108 return err; 3109 } 3110 3111 static int btrfs_ioctl_defrag(struct file *file, void __user *argp) 3112 { 3113 struct inode *inode = file_inode(file); 3114 struct btrfs_root *root = BTRFS_I(inode)->root; 3115 struct btrfs_ioctl_defrag_range_args range = {0}; 3116 int ret; 3117 3118 ret = mnt_want_write_file(file); 3119 if (ret) 3120 return ret; 3121 3122 if (btrfs_root_readonly(root)) { 3123 ret = -EROFS; 3124 goto out; 3125 } 3126 3127 switch (inode->i_mode & S_IFMT) { 3128 case S_IFDIR: 3129 if (!capable(CAP_SYS_ADMIN)) { 3130 ret = -EPERM; 3131 goto out; 3132 } 3133 ret = btrfs_defrag_root(root); 3134 break; 3135 case S_IFREG: 3136 /* 3137 * Note that this does not check the file descriptor for write 3138 * access. This prevents defragmenting executables that are 3139 * running and allows defrag on files open in read-only mode. 3140 */ 3141 if (!capable(CAP_SYS_ADMIN) && 3142 inode_permission(&init_user_ns, inode, MAY_WRITE)) { 3143 ret = -EPERM; 3144 goto out; 3145 } 3146 3147 if (argp) { 3148 if (copy_from_user(&range, argp, sizeof(range))) { 3149 ret = -EFAULT; 3150 goto out; 3151 } 3152 /* compression requires us to start the IO */ 3153 if ((range.flags & BTRFS_DEFRAG_RANGE_COMPRESS)) { 3154 range.flags |= BTRFS_DEFRAG_RANGE_START_IO; 3155 range.extent_thresh = (u32)-1; 3156 } 3157 } else { 3158 /* the rest are all set to zero by kzalloc */ 3159 range.len = (u64)-1; 3160 } 3161 ret = btrfs_defrag_file(file_inode(file), &file->f_ra, 3162 &range, BTRFS_OLDEST_GENERATION, 0); 3163 if (ret > 0) 3164 ret = 0; 3165 break; 3166 default: 3167 ret = -EINVAL; 3168 } 3169 out: 3170 mnt_drop_write_file(file); 3171 return ret; 3172 } 3173 3174 static long btrfs_ioctl_add_dev(struct btrfs_fs_info *fs_info, void __user *arg) 3175 { 3176 struct btrfs_ioctl_vol_args *vol_args; 3177 bool restore_op = false; 3178 int ret; 3179 3180 if (!capable(CAP_SYS_ADMIN)) 3181 return -EPERM; 3182 3183 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_ADD)) { 3184 if (!btrfs_exclop_start_try_lock(fs_info, BTRFS_EXCLOP_DEV_ADD)) 3185 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 3186 3187 /* 3188 * We can do the device add because we have a paused balanced, 3189 * change the exclusive op type and remember we should bring 3190 * back the paused balance 3191 */ 3192 fs_info->exclusive_operation = BTRFS_EXCLOP_DEV_ADD; 3193 btrfs_exclop_start_unlock(fs_info); 3194 restore_op = true; 3195 } 3196 3197 vol_args = memdup_user(arg, sizeof(*vol_args)); 3198 if (IS_ERR(vol_args)) { 3199 ret = PTR_ERR(vol_args); 3200 goto out; 3201 } 3202 3203 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 3204 ret = btrfs_init_new_device(fs_info, vol_args->name); 3205 3206 if (!ret) 3207 btrfs_info(fs_info, "disk added %s", vol_args->name); 3208 3209 kfree(vol_args); 3210 out: 3211 if (restore_op) 3212 btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED); 3213 else 3214 btrfs_exclop_finish(fs_info); 3215 return ret; 3216 } 3217 3218 static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg) 3219 { 3220 BTRFS_DEV_LOOKUP_ARGS(args); 3221 struct inode *inode = file_inode(file); 3222 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3223 struct btrfs_ioctl_vol_args_v2 *vol_args; 3224 struct block_device *bdev = NULL; 3225 fmode_t mode; 3226 int ret; 3227 bool cancel = false; 3228 3229 if (!capable(CAP_SYS_ADMIN)) 3230 return -EPERM; 3231 3232 vol_args = memdup_user(arg, sizeof(*vol_args)); 3233 if (IS_ERR(vol_args)) 3234 return PTR_ERR(vol_args); 3235 3236 if (vol_args->flags & ~BTRFS_DEVICE_REMOVE_ARGS_MASK) { 3237 ret = -EOPNOTSUPP; 3238 goto out; 3239 } 3240 3241 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0'; 3242 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) { 3243 args.devid = vol_args->devid; 3244 } else if (!strcmp("cancel", vol_args->name)) { 3245 cancel = true; 3246 } else { 3247 ret = btrfs_get_dev_args_from_path(fs_info, &args, vol_args->name); 3248 if (ret) 3249 goto out; 3250 } 3251 3252 ret = mnt_want_write_file(file); 3253 if (ret) 3254 goto out; 3255 3256 ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE, 3257 cancel); 3258 if (ret) 3259 goto err_drop; 3260 3261 /* Exclusive operation is now claimed */ 3262 ret = btrfs_rm_device(fs_info, &args, &bdev, &mode); 3263 3264 btrfs_exclop_finish(fs_info); 3265 3266 if (!ret) { 3267 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) 3268 btrfs_info(fs_info, "device deleted: id %llu", 3269 vol_args->devid); 3270 else 3271 btrfs_info(fs_info, "device deleted: %s", 3272 vol_args->name); 3273 } 3274 err_drop: 3275 mnt_drop_write_file(file); 3276 if (bdev) 3277 blkdev_put(bdev, mode); 3278 out: 3279 btrfs_put_dev_args_from_path(&args); 3280 kfree(vol_args); 3281 return ret; 3282 } 3283 3284 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg) 3285 { 3286 BTRFS_DEV_LOOKUP_ARGS(args); 3287 struct inode *inode = file_inode(file); 3288 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3289 struct btrfs_ioctl_vol_args *vol_args; 3290 struct block_device *bdev = NULL; 3291 fmode_t mode; 3292 int ret; 3293 bool cancel; 3294 3295 if (!capable(CAP_SYS_ADMIN)) 3296 return -EPERM; 3297 3298 vol_args = memdup_user(arg, sizeof(*vol_args)); 3299 if (IS_ERR(vol_args)) 3300 return PTR_ERR(vol_args); 3301 3302 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 3303 if (!strcmp("cancel", vol_args->name)) { 3304 cancel = true; 3305 } else { 3306 ret = btrfs_get_dev_args_from_path(fs_info, &args, vol_args->name); 3307 if (ret) 3308 goto out; 3309 } 3310 3311 ret = mnt_want_write_file(file); 3312 if (ret) 3313 goto out; 3314 3315 ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE, 3316 cancel); 3317 if (ret == 0) { 3318 ret = btrfs_rm_device(fs_info, &args, &bdev, &mode); 3319 if (!ret) 3320 btrfs_info(fs_info, "disk deleted %s", vol_args->name); 3321 btrfs_exclop_finish(fs_info); 3322 } 3323 3324 mnt_drop_write_file(file); 3325 if (bdev) 3326 blkdev_put(bdev, mode); 3327 out: 3328 btrfs_put_dev_args_from_path(&args); 3329 kfree(vol_args); 3330 return ret; 3331 } 3332 3333 static long btrfs_ioctl_fs_info(struct btrfs_fs_info *fs_info, 3334 void __user *arg) 3335 { 3336 struct btrfs_ioctl_fs_info_args *fi_args; 3337 struct btrfs_device *device; 3338 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 3339 u64 flags_in; 3340 int ret = 0; 3341 3342 fi_args = memdup_user(arg, sizeof(*fi_args)); 3343 if (IS_ERR(fi_args)) 3344 return PTR_ERR(fi_args); 3345 3346 flags_in = fi_args->flags; 3347 memset(fi_args, 0, sizeof(*fi_args)); 3348 3349 rcu_read_lock(); 3350 fi_args->num_devices = fs_devices->num_devices; 3351 3352 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) { 3353 if (device->devid > fi_args->max_id) 3354 fi_args->max_id = device->devid; 3355 } 3356 rcu_read_unlock(); 3357 3358 memcpy(&fi_args->fsid, fs_devices->fsid, sizeof(fi_args->fsid)); 3359 fi_args->nodesize = fs_info->nodesize; 3360 fi_args->sectorsize = fs_info->sectorsize; 3361 fi_args->clone_alignment = fs_info->sectorsize; 3362 3363 if (flags_in & BTRFS_FS_INFO_FLAG_CSUM_INFO) { 3364 fi_args->csum_type = btrfs_super_csum_type(fs_info->super_copy); 3365 fi_args->csum_size = btrfs_super_csum_size(fs_info->super_copy); 3366 fi_args->flags |= BTRFS_FS_INFO_FLAG_CSUM_INFO; 3367 } 3368 3369 if (flags_in & BTRFS_FS_INFO_FLAG_GENERATION) { 3370 fi_args->generation = fs_info->generation; 3371 fi_args->flags |= BTRFS_FS_INFO_FLAG_GENERATION; 3372 } 3373 3374 if (flags_in & BTRFS_FS_INFO_FLAG_METADATA_UUID) { 3375 memcpy(&fi_args->metadata_uuid, fs_devices->metadata_uuid, 3376 sizeof(fi_args->metadata_uuid)); 3377 fi_args->flags |= BTRFS_FS_INFO_FLAG_METADATA_UUID; 3378 } 3379 3380 if (copy_to_user(arg, fi_args, sizeof(*fi_args))) 3381 ret = -EFAULT; 3382 3383 kfree(fi_args); 3384 return ret; 3385 } 3386 3387 static long btrfs_ioctl_dev_info(struct btrfs_fs_info *fs_info, 3388 void __user *arg) 3389 { 3390 BTRFS_DEV_LOOKUP_ARGS(args); 3391 struct btrfs_ioctl_dev_info_args *di_args; 3392 struct btrfs_device *dev; 3393 int ret = 0; 3394 3395 di_args = memdup_user(arg, sizeof(*di_args)); 3396 if (IS_ERR(di_args)) 3397 return PTR_ERR(di_args); 3398 3399 args.devid = di_args->devid; 3400 if (!btrfs_is_empty_uuid(di_args->uuid)) 3401 args.uuid = di_args->uuid; 3402 3403 rcu_read_lock(); 3404 dev = btrfs_find_device(fs_info->fs_devices, &args); 3405 if (!dev) { 3406 ret = -ENODEV; 3407 goto out; 3408 } 3409 3410 di_args->devid = dev->devid; 3411 di_args->bytes_used = btrfs_device_get_bytes_used(dev); 3412 di_args->total_bytes = btrfs_device_get_total_bytes(dev); 3413 memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid)); 3414 if (dev->name) { 3415 strncpy(di_args->path, rcu_str_deref(dev->name), 3416 sizeof(di_args->path) - 1); 3417 di_args->path[sizeof(di_args->path) - 1] = 0; 3418 } else { 3419 di_args->path[0] = '\0'; 3420 } 3421 3422 out: 3423 rcu_read_unlock(); 3424 if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args))) 3425 ret = -EFAULT; 3426 3427 kfree(di_args); 3428 return ret; 3429 } 3430 3431 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp) 3432 { 3433 struct inode *inode = file_inode(file); 3434 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3435 struct btrfs_root *root = BTRFS_I(inode)->root; 3436 struct btrfs_root *new_root; 3437 struct btrfs_dir_item *di; 3438 struct btrfs_trans_handle *trans; 3439 struct btrfs_path *path = NULL; 3440 struct btrfs_disk_key disk_key; 3441 u64 objectid = 0; 3442 u64 dir_id; 3443 int ret; 3444 3445 if (!capable(CAP_SYS_ADMIN)) 3446 return -EPERM; 3447 3448 ret = mnt_want_write_file(file); 3449 if (ret) 3450 return ret; 3451 3452 if (copy_from_user(&objectid, argp, sizeof(objectid))) { 3453 ret = -EFAULT; 3454 goto out; 3455 } 3456 3457 if (!objectid) 3458 objectid = BTRFS_FS_TREE_OBJECTID; 3459 3460 new_root = btrfs_get_fs_root(fs_info, objectid, true); 3461 if (IS_ERR(new_root)) { 3462 ret = PTR_ERR(new_root); 3463 goto out; 3464 } 3465 if (!is_fstree(new_root->root_key.objectid)) { 3466 ret = -ENOENT; 3467 goto out_free; 3468 } 3469 3470 path = btrfs_alloc_path(); 3471 if (!path) { 3472 ret = -ENOMEM; 3473 goto out_free; 3474 } 3475 3476 trans = btrfs_start_transaction(root, 1); 3477 if (IS_ERR(trans)) { 3478 ret = PTR_ERR(trans); 3479 goto out_free; 3480 } 3481 3482 dir_id = btrfs_super_root_dir(fs_info->super_copy); 3483 di = btrfs_lookup_dir_item(trans, fs_info->tree_root, path, 3484 dir_id, "default", 7, 1); 3485 if (IS_ERR_OR_NULL(di)) { 3486 btrfs_release_path(path); 3487 btrfs_end_transaction(trans); 3488 btrfs_err(fs_info, 3489 "Umm, you don't have the default diritem, this isn't going to work"); 3490 ret = -ENOENT; 3491 goto out_free; 3492 } 3493 3494 btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key); 3495 btrfs_set_dir_item_key(path->nodes[0], di, &disk_key); 3496 btrfs_mark_buffer_dirty(path->nodes[0]); 3497 btrfs_release_path(path); 3498 3499 btrfs_set_fs_incompat(fs_info, DEFAULT_SUBVOL); 3500 btrfs_end_transaction(trans); 3501 out_free: 3502 btrfs_put_root(new_root); 3503 btrfs_free_path(path); 3504 out: 3505 mnt_drop_write_file(file); 3506 return ret; 3507 } 3508 3509 static void get_block_group_info(struct list_head *groups_list, 3510 struct btrfs_ioctl_space_info *space) 3511 { 3512 struct btrfs_block_group *block_group; 3513 3514 space->total_bytes = 0; 3515 space->used_bytes = 0; 3516 space->flags = 0; 3517 list_for_each_entry(block_group, groups_list, list) { 3518 space->flags = block_group->flags; 3519 space->total_bytes += block_group->length; 3520 space->used_bytes += block_group->used; 3521 } 3522 } 3523 3524 static long btrfs_ioctl_space_info(struct btrfs_fs_info *fs_info, 3525 void __user *arg) 3526 { 3527 struct btrfs_ioctl_space_args space_args; 3528 struct btrfs_ioctl_space_info space; 3529 struct btrfs_ioctl_space_info *dest; 3530 struct btrfs_ioctl_space_info *dest_orig; 3531 struct btrfs_ioctl_space_info __user *user_dest; 3532 struct btrfs_space_info *info; 3533 static const u64 types[] = { 3534 BTRFS_BLOCK_GROUP_DATA, 3535 BTRFS_BLOCK_GROUP_SYSTEM, 3536 BTRFS_BLOCK_GROUP_METADATA, 3537 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA 3538 }; 3539 int num_types = 4; 3540 int alloc_size; 3541 int ret = 0; 3542 u64 slot_count = 0; 3543 int i, c; 3544 3545 if (copy_from_user(&space_args, 3546 (struct btrfs_ioctl_space_args __user *)arg, 3547 sizeof(space_args))) 3548 return -EFAULT; 3549 3550 for (i = 0; i < num_types; i++) { 3551 struct btrfs_space_info *tmp; 3552 3553 info = NULL; 3554 list_for_each_entry(tmp, &fs_info->space_info, list) { 3555 if (tmp->flags == types[i]) { 3556 info = tmp; 3557 break; 3558 } 3559 } 3560 3561 if (!info) 3562 continue; 3563 3564 down_read(&info->groups_sem); 3565 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 3566 if (!list_empty(&info->block_groups[c])) 3567 slot_count++; 3568 } 3569 up_read(&info->groups_sem); 3570 } 3571 3572 /* 3573 * Global block reserve, exported as a space_info 3574 */ 3575 slot_count++; 3576 3577 /* space_slots == 0 means they are asking for a count */ 3578 if (space_args.space_slots == 0) { 3579 space_args.total_spaces = slot_count; 3580 goto out; 3581 } 3582 3583 slot_count = min_t(u64, space_args.space_slots, slot_count); 3584 3585 alloc_size = sizeof(*dest) * slot_count; 3586 3587 /* we generally have at most 6 or so space infos, one for each raid 3588 * level. So, a whole page should be more than enough for everyone 3589 */ 3590 if (alloc_size > PAGE_SIZE) 3591 return -ENOMEM; 3592 3593 space_args.total_spaces = 0; 3594 dest = kmalloc(alloc_size, GFP_KERNEL); 3595 if (!dest) 3596 return -ENOMEM; 3597 dest_orig = dest; 3598 3599 /* now we have a buffer to copy into */ 3600 for (i = 0; i < num_types; i++) { 3601 struct btrfs_space_info *tmp; 3602 3603 if (!slot_count) 3604 break; 3605 3606 info = NULL; 3607 list_for_each_entry(tmp, &fs_info->space_info, list) { 3608 if (tmp->flags == types[i]) { 3609 info = tmp; 3610 break; 3611 } 3612 } 3613 3614 if (!info) 3615 continue; 3616 down_read(&info->groups_sem); 3617 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 3618 if (!list_empty(&info->block_groups[c])) { 3619 get_block_group_info(&info->block_groups[c], 3620 &space); 3621 memcpy(dest, &space, sizeof(space)); 3622 dest++; 3623 space_args.total_spaces++; 3624 slot_count--; 3625 } 3626 if (!slot_count) 3627 break; 3628 } 3629 up_read(&info->groups_sem); 3630 } 3631 3632 /* 3633 * Add global block reserve 3634 */ 3635 if (slot_count) { 3636 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv; 3637 3638 spin_lock(&block_rsv->lock); 3639 space.total_bytes = block_rsv->size; 3640 space.used_bytes = block_rsv->size - block_rsv->reserved; 3641 spin_unlock(&block_rsv->lock); 3642 space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV; 3643 memcpy(dest, &space, sizeof(space)); 3644 space_args.total_spaces++; 3645 } 3646 3647 user_dest = (struct btrfs_ioctl_space_info __user *) 3648 (arg + sizeof(struct btrfs_ioctl_space_args)); 3649 3650 if (copy_to_user(user_dest, dest_orig, alloc_size)) 3651 ret = -EFAULT; 3652 3653 kfree(dest_orig); 3654 out: 3655 if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args))) 3656 ret = -EFAULT; 3657 3658 return ret; 3659 } 3660 3661 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root, 3662 void __user *argp) 3663 { 3664 struct btrfs_trans_handle *trans; 3665 u64 transid; 3666 3667 trans = btrfs_attach_transaction_barrier(root); 3668 if (IS_ERR(trans)) { 3669 if (PTR_ERR(trans) != -ENOENT) 3670 return PTR_ERR(trans); 3671 3672 /* No running transaction, don't bother */ 3673 transid = root->fs_info->last_trans_committed; 3674 goto out; 3675 } 3676 transid = trans->transid; 3677 btrfs_commit_transaction_async(trans); 3678 out: 3679 if (argp) 3680 if (copy_to_user(argp, &transid, sizeof(transid))) 3681 return -EFAULT; 3682 return 0; 3683 } 3684 3685 static noinline long btrfs_ioctl_wait_sync(struct btrfs_fs_info *fs_info, 3686 void __user *argp) 3687 { 3688 u64 transid; 3689 3690 if (argp) { 3691 if (copy_from_user(&transid, argp, sizeof(transid))) 3692 return -EFAULT; 3693 } else { 3694 transid = 0; /* current trans */ 3695 } 3696 return btrfs_wait_for_commit(fs_info, transid); 3697 } 3698 3699 static long btrfs_ioctl_scrub(struct file *file, void __user *arg) 3700 { 3701 struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb); 3702 struct btrfs_ioctl_scrub_args *sa; 3703 int ret; 3704 3705 if (!capable(CAP_SYS_ADMIN)) 3706 return -EPERM; 3707 3708 sa = memdup_user(arg, sizeof(*sa)); 3709 if (IS_ERR(sa)) 3710 return PTR_ERR(sa); 3711 3712 if (!(sa->flags & BTRFS_SCRUB_READONLY)) { 3713 ret = mnt_want_write_file(file); 3714 if (ret) 3715 goto out; 3716 } 3717 3718 ret = btrfs_scrub_dev(fs_info, sa->devid, sa->start, sa->end, 3719 &sa->progress, sa->flags & BTRFS_SCRUB_READONLY, 3720 0); 3721 3722 /* 3723 * Copy scrub args to user space even if btrfs_scrub_dev() returned an 3724 * error. This is important as it allows user space to know how much 3725 * progress scrub has done. For example, if scrub is canceled we get 3726 * -ECANCELED from btrfs_scrub_dev() and return that error back to user 3727 * space. Later user space can inspect the progress from the structure 3728 * btrfs_ioctl_scrub_args and resume scrub from where it left off 3729 * previously (btrfs-progs does this). 3730 * If we fail to copy the btrfs_ioctl_scrub_args structure to user space 3731 * then return -EFAULT to signal the structure was not copied or it may 3732 * be corrupt and unreliable due to a partial copy. 3733 */ 3734 if (copy_to_user(arg, sa, sizeof(*sa))) 3735 ret = -EFAULT; 3736 3737 if (!(sa->flags & BTRFS_SCRUB_READONLY)) 3738 mnt_drop_write_file(file); 3739 out: 3740 kfree(sa); 3741 return ret; 3742 } 3743 3744 static long btrfs_ioctl_scrub_cancel(struct btrfs_fs_info *fs_info) 3745 { 3746 if (!capable(CAP_SYS_ADMIN)) 3747 return -EPERM; 3748 3749 return btrfs_scrub_cancel(fs_info); 3750 } 3751 3752 static long btrfs_ioctl_scrub_progress(struct btrfs_fs_info *fs_info, 3753 void __user *arg) 3754 { 3755 struct btrfs_ioctl_scrub_args *sa; 3756 int ret; 3757 3758 if (!capable(CAP_SYS_ADMIN)) 3759 return -EPERM; 3760 3761 sa = memdup_user(arg, sizeof(*sa)); 3762 if (IS_ERR(sa)) 3763 return PTR_ERR(sa); 3764 3765 ret = btrfs_scrub_progress(fs_info, sa->devid, &sa->progress); 3766 3767 if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa))) 3768 ret = -EFAULT; 3769 3770 kfree(sa); 3771 return ret; 3772 } 3773 3774 static long btrfs_ioctl_get_dev_stats(struct btrfs_fs_info *fs_info, 3775 void __user *arg) 3776 { 3777 struct btrfs_ioctl_get_dev_stats *sa; 3778 int ret; 3779 3780 sa = memdup_user(arg, sizeof(*sa)); 3781 if (IS_ERR(sa)) 3782 return PTR_ERR(sa); 3783 3784 if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) { 3785 kfree(sa); 3786 return -EPERM; 3787 } 3788 3789 ret = btrfs_get_dev_stats(fs_info, sa); 3790 3791 if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa))) 3792 ret = -EFAULT; 3793 3794 kfree(sa); 3795 return ret; 3796 } 3797 3798 static long btrfs_ioctl_dev_replace(struct btrfs_fs_info *fs_info, 3799 void __user *arg) 3800 { 3801 struct btrfs_ioctl_dev_replace_args *p; 3802 int ret; 3803 3804 if (!capable(CAP_SYS_ADMIN)) 3805 return -EPERM; 3806 3807 p = memdup_user(arg, sizeof(*p)); 3808 if (IS_ERR(p)) 3809 return PTR_ERR(p); 3810 3811 switch (p->cmd) { 3812 case BTRFS_IOCTL_DEV_REPLACE_CMD_START: 3813 if (sb_rdonly(fs_info->sb)) { 3814 ret = -EROFS; 3815 goto out; 3816 } 3817 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_REPLACE)) { 3818 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 3819 } else { 3820 ret = btrfs_dev_replace_by_ioctl(fs_info, p); 3821 btrfs_exclop_finish(fs_info); 3822 } 3823 break; 3824 case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS: 3825 btrfs_dev_replace_status(fs_info, p); 3826 ret = 0; 3827 break; 3828 case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL: 3829 p->result = btrfs_dev_replace_cancel(fs_info); 3830 ret = 0; 3831 break; 3832 default: 3833 ret = -EINVAL; 3834 break; 3835 } 3836 3837 if ((ret == 0 || ret == -ECANCELED) && copy_to_user(arg, p, sizeof(*p))) 3838 ret = -EFAULT; 3839 out: 3840 kfree(p); 3841 return ret; 3842 } 3843 3844 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg) 3845 { 3846 int ret = 0; 3847 int i; 3848 u64 rel_ptr; 3849 int size; 3850 struct btrfs_ioctl_ino_path_args *ipa = NULL; 3851 struct inode_fs_paths *ipath = NULL; 3852 struct btrfs_path *path; 3853 3854 if (!capable(CAP_DAC_READ_SEARCH)) 3855 return -EPERM; 3856 3857 path = btrfs_alloc_path(); 3858 if (!path) { 3859 ret = -ENOMEM; 3860 goto out; 3861 } 3862 3863 ipa = memdup_user(arg, sizeof(*ipa)); 3864 if (IS_ERR(ipa)) { 3865 ret = PTR_ERR(ipa); 3866 ipa = NULL; 3867 goto out; 3868 } 3869 3870 size = min_t(u32, ipa->size, 4096); 3871 ipath = init_ipath(size, root, path); 3872 if (IS_ERR(ipath)) { 3873 ret = PTR_ERR(ipath); 3874 ipath = NULL; 3875 goto out; 3876 } 3877 3878 ret = paths_from_inode(ipa->inum, ipath); 3879 if (ret < 0) 3880 goto out; 3881 3882 for (i = 0; i < ipath->fspath->elem_cnt; ++i) { 3883 rel_ptr = ipath->fspath->val[i] - 3884 (u64)(unsigned long)ipath->fspath->val; 3885 ipath->fspath->val[i] = rel_ptr; 3886 } 3887 3888 ret = copy_to_user((void __user *)(unsigned long)ipa->fspath, 3889 ipath->fspath, size); 3890 if (ret) { 3891 ret = -EFAULT; 3892 goto out; 3893 } 3894 3895 out: 3896 btrfs_free_path(path); 3897 free_ipath(ipath); 3898 kfree(ipa); 3899 3900 return ret; 3901 } 3902 3903 static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx) 3904 { 3905 struct btrfs_data_container *inodes = ctx; 3906 const size_t c = 3 * sizeof(u64); 3907 3908 if (inodes->bytes_left >= c) { 3909 inodes->bytes_left -= c; 3910 inodes->val[inodes->elem_cnt] = inum; 3911 inodes->val[inodes->elem_cnt + 1] = offset; 3912 inodes->val[inodes->elem_cnt + 2] = root; 3913 inodes->elem_cnt += 3; 3914 } else { 3915 inodes->bytes_missing += c - inodes->bytes_left; 3916 inodes->bytes_left = 0; 3917 inodes->elem_missed += 3; 3918 } 3919 3920 return 0; 3921 } 3922 3923 static long btrfs_ioctl_logical_to_ino(struct btrfs_fs_info *fs_info, 3924 void __user *arg, int version) 3925 { 3926 int ret = 0; 3927 int size; 3928 struct btrfs_ioctl_logical_ino_args *loi; 3929 struct btrfs_data_container *inodes = NULL; 3930 struct btrfs_path *path = NULL; 3931 bool ignore_offset; 3932 3933 if (!capable(CAP_SYS_ADMIN)) 3934 return -EPERM; 3935 3936 loi = memdup_user(arg, sizeof(*loi)); 3937 if (IS_ERR(loi)) 3938 return PTR_ERR(loi); 3939 3940 if (version == 1) { 3941 ignore_offset = false; 3942 size = min_t(u32, loi->size, SZ_64K); 3943 } else { 3944 /* All reserved bits must be 0 for now */ 3945 if (memchr_inv(loi->reserved, 0, sizeof(loi->reserved))) { 3946 ret = -EINVAL; 3947 goto out_loi; 3948 } 3949 /* Only accept flags we have defined so far */ 3950 if (loi->flags & ~(BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET)) { 3951 ret = -EINVAL; 3952 goto out_loi; 3953 } 3954 ignore_offset = loi->flags & BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET; 3955 size = min_t(u32, loi->size, SZ_16M); 3956 } 3957 3958 path = btrfs_alloc_path(); 3959 if (!path) { 3960 ret = -ENOMEM; 3961 goto out; 3962 } 3963 3964 inodes = init_data_container(size); 3965 if (IS_ERR(inodes)) { 3966 ret = PTR_ERR(inodes); 3967 inodes = NULL; 3968 goto out; 3969 } 3970 3971 ret = iterate_inodes_from_logical(loi->logical, fs_info, path, 3972 build_ino_list, inodes, ignore_offset); 3973 if (ret == -EINVAL) 3974 ret = -ENOENT; 3975 if (ret < 0) 3976 goto out; 3977 3978 ret = copy_to_user((void __user *)(unsigned long)loi->inodes, inodes, 3979 size); 3980 if (ret) 3981 ret = -EFAULT; 3982 3983 out: 3984 btrfs_free_path(path); 3985 kvfree(inodes); 3986 out_loi: 3987 kfree(loi); 3988 3989 return ret; 3990 } 3991 3992 void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info, 3993 struct btrfs_ioctl_balance_args *bargs) 3994 { 3995 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3996 3997 bargs->flags = bctl->flags; 3998 3999 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) 4000 bargs->state |= BTRFS_BALANCE_STATE_RUNNING; 4001 if (atomic_read(&fs_info->balance_pause_req)) 4002 bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ; 4003 if (atomic_read(&fs_info->balance_cancel_req)) 4004 bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ; 4005 4006 memcpy(&bargs->data, &bctl->data, sizeof(bargs->data)); 4007 memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta)); 4008 memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys)); 4009 4010 spin_lock(&fs_info->balance_lock); 4011 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat)); 4012 spin_unlock(&fs_info->balance_lock); 4013 } 4014 4015 static long btrfs_ioctl_balance(struct file *file, void __user *arg) 4016 { 4017 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 4018 struct btrfs_fs_info *fs_info = root->fs_info; 4019 struct btrfs_ioctl_balance_args *bargs; 4020 struct btrfs_balance_control *bctl; 4021 bool need_unlock; /* for mut. excl. ops lock */ 4022 int ret; 4023 4024 if (!arg) 4025 btrfs_warn(fs_info, 4026 "IOC_BALANCE ioctl (v1) is deprecated and will be removed in kernel 5.18"); 4027 4028 if (!capable(CAP_SYS_ADMIN)) 4029 return -EPERM; 4030 4031 ret = mnt_want_write_file(file); 4032 if (ret) 4033 return ret; 4034 4035 again: 4036 if (btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) { 4037 mutex_lock(&fs_info->balance_mutex); 4038 need_unlock = true; 4039 goto locked; 4040 } 4041 4042 /* 4043 * mut. excl. ops lock is locked. Three possibilities: 4044 * (1) some other op is running 4045 * (2) balance is running 4046 * (3) balance is paused -- special case (think resume) 4047 */ 4048 mutex_lock(&fs_info->balance_mutex); 4049 if (fs_info->balance_ctl) { 4050 /* this is either (2) or (3) */ 4051 if (!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 4052 mutex_unlock(&fs_info->balance_mutex); 4053 /* 4054 * Lock released to allow other waiters to continue, 4055 * we'll reexamine the status again. 4056 */ 4057 mutex_lock(&fs_info->balance_mutex); 4058 4059 if (fs_info->balance_ctl && 4060 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 4061 /* this is (3) */ 4062 need_unlock = false; 4063 goto locked; 4064 } 4065 4066 mutex_unlock(&fs_info->balance_mutex); 4067 goto again; 4068 } else { 4069 /* this is (2) */ 4070 mutex_unlock(&fs_info->balance_mutex); 4071 ret = -EINPROGRESS; 4072 goto out; 4073 } 4074 } else { 4075 /* this is (1) */ 4076 mutex_unlock(&fs_info->balance_mutex); 4077 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 4078 goto out; 4079 } 4080 4081 locked: 4082 4083 if (arg) { 4084 bargs = memdup_user(arg, sizeof(*bargs)); 4085 if (IS_ERR(bargs)) { 4086 ret = PTR_ERR(bargs); 4087 goto out_unlock; 4088 } 4089 4090 if (bargs->flags & BTRFS_BALANCE_RESUME) { 4091 if (!fs_info->balance_ctl) { 4092 ret = -ENOTCONN; 4093 goto out_bargs; 4094 } 4095 4096 bctl = fs_info->balance_ctl; 4097 spin_lock(&fs_info->balance_lock); 4098 bctl->flags |= BTRFS_BALANCE_RESUME; 4099 spin_unlock(&fs_info->balance_lock); 4100 btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE); 4101 4102 goto do_balance; 4103 } 4104 } else { 4105 bargs = NULL; 4106 } 4107 4108 if (fs_info->balance_ctl) { 4109 ret = -EINPROGRESS; 4110 goto out_bargs; 4111 } 4112 4113 bctl = kzalloc(sizeof(*bctl), GFP_KERNEL); 4114 if (!bctl) { 4115 ret = -ENOMEM; 4116 goto out_bargs; 4117 } 4118 4119 if (arg) { 4120 memcpy(&bctl->data, &bargs->data, sizeof(bctl->data)); 4121 memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta)); 4122 memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys)); 4123 4124 bctl->flags = bargs->flags; 4125 } else { 4126 /* balance everything - no filters */ 4127 bctl->flags |= BTRFS_BALANCE_TYPE_MASK; 4128 } 4129 4130 if (bctl->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) { 4131 ret = -EINVAL; 4132 goto out_bctl; 4133 } 4134 4135 do_balance: 4136 /* 4137 * Ownership of bctl and exclusive operation goes to btrfs_balance. 4138 * bctl is freed in reset_balance_state, or, if restriper was paused 4139 * all the way until unmount, in free_fs_info. The flag should be 4140 * cleared after reset_balance_state. 4141 */ 4142 need_unlock = false; 4143 4144 ret = btrfs_balance(fs_info, bctl, bargs); 4145 bctl = NULL; 4146 4147 if ((ret == 0 || ret == -ECANCELED) && arg) { 4148 if (copy_to_user(arg, bargs, sizeof(*bargs))) 4149 ret = -EFAULT; 4150 } 4151 4152 out_bctl: 4153 kfree(bctl); 4154 out_bargs: 4155 kfree(bargs); 4156 out_unlock: 4157 mutex_unlock(&fs_info->balance_mutex); 4158 if (need_unlock) 4159 btrfs_exclop_finish(fs_info); 4160 out: 4161 mnt_drop_write_file(file); 4162 return ret; 4163 } 4164 4165 static long btrfs_ioctl_balance_ctl(struct btrfs_fs_info *fs_info, int cmd) 4166 { 4167 if (!capable(CAP_SYS_ADMIN)) 4168 return -EPERM; 4169 4170 switch (cmd) { 4171 case BTRFS_BALANCE_CTL_PAUSE: 4172 return btrfs_pause_balance(fs_info); 4173 case BTRFS_BALANCE_CTL_CANCEL: 4174 return btrfs_cancel_balance(fs_info); 4175 } 4176 4177 return -EINVAL; 4178 } 4179 4180 static long btrfs_ioctl_balance_progress(struct btrfs_fs_info *fs_info, 4181 void __user *arg) 4182 { 4183 struct btrfs_ioctl_balance_args *bargs; 4184 int ret = 0; 4185 4186 if (!capable(CAP_SYS_ADMIN)) 4187 return -EPERM; 4188 4189 mutex_lock(&fs_info->balance_mutex); 4190 if (!fs_info->balance_ctl) { 4191 ret = -ENOTCONN; 4192 goto out; 4193 } 4194 4195 bargs = kzalloc(sizeof(*bargs), GFP_KERNEL); 4196 if (!bargs) { 4197 ret = -ENOMEM; 4198 goto out; 4199 } 4200 4201 btrfs_update_ioctl_balance_args(fs_info, bargs); 4202 4203 if (copy_to_user(arg, bargs, sizeof(*bargs))) 4204 ret = -EFAULT; 4205 4206 kfree(bargs); 4207 out: 4208 mutex_unlock(&fs_info->balance_mutex); 4209 return ret; 4210 } 4211 4212 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg) 4213 { 4214 struct inode *inode = file_inode(file); 4215 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4216 struct btrfs_ioctl_quota_ctl_args *sa; 4217 int ret; 4218 4219 if (!capable(CAP_SYS_ADMIN)) 4220 return -EPERM; 4221 4222 ret = mnt_want_write_file(file); 4223 if (ret) 4224 return ret; 4225 4226 sa = memdup_user(arg, sizeof(*sa)); 4227 if (IS_ERR(sa)) { 4228 ret = PTR_ERR(sa); 4229 goto drop_write; 4230 } 4231 4232 down_write(&fs_info->subvol_sem); 4233 4234 switch (sa->cmd) { 4235 case BTRFS_QUOTA_CTL_ENABLE: 4236 ret = btrfs_quota_enable(fs_info); 4237 break; 4238 case BTRFS_QUOTA_CTL_DISABLE: 4239 ret = btrfs_quota_disable(fs_info); 4240 break; 4241 default: 4242 ret = -EINVAL; 4243 break; 4244 } 4245 4246 kfree(sa); 4247 up_write(&fs_info->subvol_sem); 4248 drop_write: 4249 mnt_drop_write_file(file); 4250 return ret; 4251 } 4252 4253 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg) 4254 { 4255 struct inode *inode = file_inode(file); 4256 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4257 struct btrfs_root *root = BTRFS_I(inode)->root; 4258 struct btrfs_ioctl_qgroup_assign_args *sa; 4259 struct btrfs_trans_handle *trans; 4260 int ret; 4261 int err; 4262 4263 if (!capable(CAP_SYS_ADMIN)) 4264 return -EPERM; 4265 4266 ret = mnt_want_write_file(file); 4267 if (ret) 4268 return ret; 4269 4270 sa = memdup_user(arg, sizeof(*sa)); 4271 if (IS_ERR(sa)) { 4272 ret = PTR_ERR(sa); 4273 goto drop_write; 4274 } 4275 4276 trans = btrfs_join_transaction(root); 4277 if (IS_ERR(trans)) { 4278 ret = PTR_ERR(trans); 4279 goto out; 4280 } 4281 4282 if (sa->assign) { 4283 ret = btrfs_add_qgroup_relation(trans, sa->src, sa->dst); 4284 } else { 4285 ret = btrfs_del_qgroup_relation(trans, sa->src, sa->dst); 4286 } 4287 4288 /* update qgroup status and info */ 4289 err = btrfs_run_qgroups(trans); 4290 if (err < 0) 4291 btrfs_handle_fs_error(fs_info, err, 4292 "failed to update qgroup status and info"); 4293 err = btrfs_end_transaction(trans); 4294 if (err && !ret) 4295 ret = err; 4296 4297 out: 4298 kfree(sa); 4299 drop_write: 4300 mnt_drop_write_file(file); 4301 return ret; 4302 } 4303 4304 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg) 4305 { 4306 struct inode *inode = file_inode(file); 4307 struct btrfs_root *root = BTRFS_I(inode)->root; 4308 struct btrfs_ioctl_qgroup_create_args *sa; 4309 struct btrfs_trans_handle *trans; 4310 int ret; 4311 int err; 4312 4313 if (!capable(CAP_SYS_ADMIN)) 4314 return -EPERM; 4315 4316 ret = mnt_want_write_file(file); 4317 if (ret) 4318 return ret; 4319 4320 sa = memdup_user(arg, sizeof(*sa)); 4321 if (IS_ERR(sa)) { 4322 ret = PTR_ERR(sa); 4323 goto drop_write; 4324 } 4325 4326 if (!sa->qgroupid) { 4327 ret = -EINVAL; 4328 goto out; 4329 } 4330 4331 trans = btrfs_join_transaction(root); 4332 if (IS_ERR(trans)) { 4333 ret = PTR_ERR(trans); 4334 goto out; 4335 } 4336 4337 if (sa->create) { 4338 ret = btrfs_create_qgroup(trans, sa->qgroupid); 4339 } else { 4340 ret = btrfs_remove_qgroup(trans, sa->qgroupid); 4341 } 4342 4343 err = btrfs_end_transaction(trans); 4344 if (err && !ret) 4345 ret = err; 4346 4347 out: 4348 kfree(sa); 4349 drop_write: 4350 mnt_drop_write_file(file); 4351 return ret; 4352 } 4353 4354 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg) 4355 { 4356 struct inode *inode = file_inode(file); 4357 struct btrfs_root *root = BTRFS_I(inode)->root; 4358 struct btrfs_ioctl_qgroup_limit_args *sa; 4359 struct btrfs_trans_handle *trans; 4360 int ret; 4361 int err; 4362 u64 qgroupid; 4363 4364 if (!capable(CAP_SYS_ADMIN)) 4365 return -EPERM; 4366 4367 ret = mnt_want_write_file(file); 4368 if (ret) 4369 return ret; 4370 4371 sa = memdup_user(arg, sizeof(*sa)); 4372 if (IS_ERR(sa)) { 4373 ret = PTR_ERR(sa); 4374 goto drop_write; 4375 } 4376 4377 trans = btrfs_join_transaction(root); 4378 if (IS_ERR(trans)) { 4379 ret = PTR_ERR(trans); 4380 goto out; 4381 } 4382 4383 qgroupid = sa->qgroupid; 4384 if (!qgroupid) { 4385 /* take the current subvol as qgroup */ 4386 qgroupid = root->root_key.objectid; 4387 } 4388 4389 ret = btrfs_limit_qgroup(trans, qgroupid, &sa->lim); 4390 4391 err = btrfs_end_transaction(trans); 4392 if (err && !ret) 4393 ret = err; 4394 4395 out: 4396 kfree(sa); 4397 drop_write: 4398 mnt_drop_write_file(file); 4399 return ret; 4400 } 4401 4402 static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg) 4403 { 4404 struct inode *inode = file_inode(file); 4405 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4406 struct btrfs_ioctl_quota_rescan_args *qsa; 4407 int ret; 4408 4409 if (!capable(CAP_SYS_ADMIN)) 4410 return -EPERM; 4411 4412 ret = mnt_want_write_file(file); 4413 if (ret) 4414 return ret; 4415 4416 qsa = memdup_user(arg, sizeof(*qsa)); 4417 if (IS_ERR(qsa)) { 4418 ret = PTR_ERR(qsa); 4419 goto drop_write; 4420 } 4421 4422 if (qsa->flags) { 4423 ret = -EINVAL; 4424 goto out; 4425 } 4426 4427 ret = btrfs_qgroup_rescan(fs_info); 4428 4429 out: 4430 kfree(qsa); 4431 drop_write: 4432 mnt_drop_write_file(file); 4433 return ret; 4434 } 4435 4436 static long btrfs_ioctl_quota_rescan_status(struct btrfs_fs_info *fs_info, 4437 void __user *arg) 4438 { 4439 struct btrfs_ioctl_quota_rescan_args qsa = {0}; 4440 4441 if (!capable(CAP_SYS_ADMIN)) 4442 return -EPERM; 4443 4444 if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) { 4445 qsa.flags = 1; 4446 qsa.progress = fs_info->qgroup_rescan_progress.objectid; 4447 } 4448 4449 if (copy_to_user(arg, &qsa, sizeof(qsa))) 4450 return -EFAULT; 4451 4452 return 0; 4453 } 4454 4455 static long btrfs_ioctl_quota_rescan_wait(struct btrfs_fs_info *fs_info, 4456 void __user *arg) 4457 { 4458 if (!capable(CAP_SYS_ADMIN)) 4459 return -EPERM; 4460 4461 return btrfs_qgroup_wait_for_completion(fs_info, true); 4462 } 4463 4464 static long _btrfs_ioctl_set_received_subvol(struct file *file, 4465 struct user_namespace *mnt_userns, 4466 struct btrfs_ioctl_received_subvol_args *sa) 4467 { 4468 struct inode *inode = file_inode(file); 4469 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4470 struct btrfs_root *root = BTRFS_I(inode)->root; 4471 struct btrfs_root_item *root_item = &root->root_item; 4472 struct btrfs_trans_handle *trans; 4473 struct timespec64 ct = current_time(inode); 4474 int ret = 0; 4475 int received_uuid_changed; 4476 4477 if (!inode_owner_or_capable(mnt_userns, inode)) 4478 return -EPERM; 4479 4480 ret = mnt_want_write_file(file); 4481 if (ret < 0) 4482 return ret; 4483 4484 down_write(&fs_info->subvol_sem); 4485 4486 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) { 4487 ret = -EINVAL; 4488 goto out; 4489 } 4490 4491 if (btrfs_root_readonly(root)) { 4492 ret = -EROFS; 4493 goto out; 4494 } 4495 4496 /* 4497 * 1 - root item 4498 * 2 - uuid items (received uuid + subvol uuid) 4499 */ 4500 trans = btrfs_start_transaction(root, 3); 4501 if (IS_ERR(trans)) { 4502 ret = PTR_ERR(trans); 4503 trans = NULL; 4504 goto out; 4505 } 4506 4507 sa->rtransid = trans->transid; 4508 sa->rtime.sec = ct.tv_sec; 4509 sa->rtime.nsec = ct.tv_nsec; 4510 4511 received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid, 4512 BTRFS_UUID_SIZE); 4513 if (received_uuid_changed && 4514 !btrfs_is_empty_uuid(root_item->received_uuid)) { 4515 ret = btrfs_uuid_tree_remove(trans, root_item->received_uuid, 4516 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 4517 root->root_key.objectid); 4518 if (ret && ret != -ENOENT) { 4519 btrfs_abort_transaction(trans, ret); 4520 btrfs_end_transaction(trans); 4521 goto out; 4522 } 4523 } 4524 memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE); 4525 btrfs_set_root_stransid(root_item, sa->stransid); 4526 btrfs_set_root_rtransid(root_item, sa->rtransid); 4527 btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec); 4528 btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec); 4529 btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec); 4530 btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec); 4531 4532 ret = btrfs_update_root(trans, fs_info->tree_root, 4533 &root->root_key, &root->root_item); 4534 if (ret < 0) { 4535 btrfs_end_transaction(trans); 4536 goto out; 4537 } 4538 if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) { 4539 ret = btrfs_uuid_tree_add(trans, sa->uuid, 4540 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 4541 root->root_key.objectid); 4542 if (ret < 0 && ret != -EEXIST) { 4543 btrfs_abort_transaction(trans, ret); 4544 btrfs_end_transaction(trans); 4545 goto out; 4546 } 4547 } 4548 ret = btrfs_commit_transaction(trans); 4549 out: 4550 up_write(&fs_info->subvol_sem); 4551 mnt_drop_write_file(file); 4552 return ret; 4553 } 4554 4555 #ifdef CONFIG_64BIT 4556 static long btrfs_ioctl_set_received_subvol_32(struct file *file, 4557 void __user *arg) 4558 { 4559 struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL; 4560 struct btrfs_ioctl_received_subvol_args *args64 = NULL; 4561 int ret = 0; 4562 4563 args32 = memdup_user(arg, sizeof(*args32)); 4564 if (IS_ERR(args32)) 4565 return PTR_ERR(args32); 4566 4567 args64 = kmalloc(sizeof(*args64), GFP_KERNEL); 4568 if (!args64) { 4569 ret = -ENOMEM; 4570 goto out; 4571 } 4572 4573 memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE); 4574 args64->stransid = args32->stransid; 4575 args64->rtransid = args32->rtransid; 4576 args64->stime.sec = args32->stime.sec; 4577 args64->stime.nsec = args32->stime.nsec; 4578 args64->rtime.sec = args32->rtime.sec; 4579 args64->rtime.nsec = args32->rtime.nsec; 4580 args64->flags = args32->flags; 4581 4582 ret = _btrfs_ioctl_set_received_subvol(file, file_mnt_user_ns(file), args64); 4583 if (ret) 4584 goto out; 4585 4586 memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE); 4587 args32->stransid = args64->stransid; 4588 args32->rtransid = args64->rtransid; 4589 args32->stime.sec = args64->stime.sec; 4590 args32->stime.nsec = args64->stime.nsec; 4591 args32->rtime.sec = args64->rtime.sec; 4592 args32->rtime.nsec = args64->rtime.nsec; 4593 args32->flags = args64->flags; 4594 4595 ret = copy_to_user(arg, args32, sizeof(*args32)); 4596 if (ret) 4597 ret = -EFAULT; 4598 4599 out: 4600 kfree(args32); 4601 kfree(args64); 4602 return ret; 4603 } 4604 #endif 4605 4606 static long btrfs_ioctl_set_received_subvol(struct file *file, 4607 void __user *arg) 4608 { 4609 struct btrfs_ioctl_received_subvol_args *sa = NULL; 4610 int ret = 0; 4611 4612 sa = memdup_user(arg, sizeof(*sa)); 4613 if (IS_ERR(sa)) 4614 return PTR_ERR(sa); 4615 4616 ret = _btrfs_ioctl_set_received_subvol(file, file_mnt_user_ns(file), sa); 4617 4618 if (ret) 4619 goto out; 4620 4621 ret = copy_to_user(arg, sa, sizeof(*sa)); 4622 if (ret) 4623 ret = -EFAULT; 4624 4625 out: 4626 kfree(sa); 4627 return ret; 4628 } 4629 4630 static int btrfs_ioctl_get_fslabel(struct btrfs_fs_info *fs_info, 4631 void __user *arg) 4632 { 4633 size_t len; 4634 int ret; 4635 char label[BTRFS_LABEL_SIZE]; 4636 4637 spin_lock(&fs_info->super_lock); 4638 memcpy(label, fs_info->super_copy->label, BTRFS_LABEL_SIZE); 4639 spin_unlock(&fs_info->super_lock); 4640 4641 len = strnlen(label, BTRFS_LABEL_SIZE); 4642 4643 if (len == BTRFS_LABEL_SIZE) { 4644 btrfs_warn(fs_info, 4645 "label is too long, return the first %zu bytes", 4646 --len); 4647 } 4648 4649 ret = copy_to_user(arg, label, len); 4650 4651 return ret ? -EFAULT : 0; 4652 } 4653 4654 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg) 4655 { 4656 struct inode *inode = file_inode(file); 4657 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4658 struct btrfs_root *root = BTRFS_I(inode)->root; 4659 struct btrfs_super_block *super_block = fs_info->super_copy; 4660 struct btrfs_trans_handle *trans; 4661 char label[BTRFS_LABEL_SIZE]; 4662 int ret; 4663 4664 if (!capable(CAP_SYS_ADMIN)) 4665 return -EPERM; 4666 4667 if (copy_from_user(label, arg, sizeof(label))) 4668 return -EFAULT; 4669 4670 if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) { 4671 btrfs_err(fs_info, 4672 "unable to set label with more than %d bytes", 4673 BTRFS_LABEL_SIZE - 1); 4674 return -EINVAL; 4675 } 4676 4677 ret = mnt_want_write_file(file); 4678 if (ret) 4679 return ret; 4680 4681 trans = btrfs_start_transaction(root, 0); 4682 if (IS_ERR(trans)) { 4683 ret = PTR_ERR(trans); 4684 goto out_unlock; 4685 } 4686 4687 spin_lock(&fs_info->super_lock); 4688 strcpy(super_block->label, label); 4689 spin_unlock(&fs_info->super_lock); 4690 ret = btrfs_commit_transaction(trans); 4691 4692 out_unlock: 4693 mnt_drop_write_file(file); 4694 return ret; 4695 } 4696 4697 #define INIT_FEATURE_FLAGS(suffix) \ 4698 { .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \ 4699 .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \ 4700 .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix } 4701 4702 int btrfs_ioctl_get_supported_features(void __user *arg) 4703 { 4704 static const struct btrfs_ioctl_feature_flags features[3] = { 4705 INIT_FEATURE_FLAGS(SUPP), 4706 INIT_FEATURE_FLAGS(SAFE_SET), 4707 INIT_FEATURE_FLAGS(SAFE_CLEAR) 4708 }; 4709 4710 if (copy_to_user(arg, &features, sizeof(features))) 4711 return -EFAULT; 4712 4713 return 0; 4714 } 4715 4716 static int btrfs_ioctl_get_features(struct btrfs_fs_info *fs_info, 4717 void __user *arg) 4718 { 4719 struct btrfs_super_block *super_block = fs_info->super_copy; 4720 struct btrfs_ioctl_feature_flags features; 4721 4722 features.compat_flags = btrfs_super_compat_flags(super_block); 4723 features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block); 4724 features.incompat_flags = btrfs_super_incompat_flags(super_block); 4725 4726 if (copy_to_user(arg, &features, sizeof(features))) 4727 return -EFAULT; 4728 4729 return 0; 4730 } 4731 4732 static int check_feature_bits(struct btrfs_fs_info *fs_info, 4733 enum btrfs_feature_set set, 4734 u64 change_mask, u64 flags, u64 supported_flags, 4735 u64 safe_set, u64 safe_clear) 4736 { 4737 const char *type = btrfs_feature_set_name(set); 4738 char *names; 4739 u64 disallowed, unsupported; 4740 u64 set_mask = flags & change_mask; 4741 u64 clear_mask = ~flags & change_mask; 4742 4743 unsupported = set_mask & ~supported_flags; 4744 if (unsupported) { 4745 names = btrfs_printable_features(set, unsupported); 4746 if (names) { 4747 btrfs_warn(fs_info, 4748 "this kernel does not support the %s feature bit%s", 4749 names, strchr(names, ',') ? "s" : ""); 4750 kfree(names); 4751 } else 4752 btrfs_warn(fs_info, 4753 "this kernel does not support %s bits 0x%llx", 4754 type, unsupported); 4755 return -EOPNOTSUPP; 4756 } 4757 4758 disallowed = set_mask & ~safe_set; 4759 if (disallowed) { 4760 names = btrfs_printable_features(set, disallowed); 4761 if (names) { 4762 btrfs_warn(fs_info, 4763 "can't set the %s feature bit%s while mounted", 4764 names, strchr(names, ',') ? "s" : ""); 4765 kfree(names); 4766 } else 4767 btrfs_warn(fs_info, 4768 "can't set %s bits 0x%llx while mounted", 4769 type, disallowed); 4770 return -EPERM; 4771 } 4772 4773 disallowed = clear_mask & ~safe_clear; 4774 if (disallowed) { 4775 names = btrfs_printable_features(set, disallowed); 4776 if (names) { 4777 btrfs_warn(fs_info, 4778 "can't clear the %s feature bit%s while mounted", 4779 names, strchr(names, ',') ? "s" : ""); 4780 kfree(names); 4781 } else 4782 btrfs_warn(fs_info, 4783 "can't clear %s bits 0x%llx while mounted", 4784 type, disallowed); 4785 return -EPERM; 4786 } 4787 4788 return 0; 4789 } 4790 4791 #define check_feature(fs_info, change_mask, flags, mask_base) \ 4792 check_feature_bits(fs_info, FEAT_##mask_base, change_mask, flags, \ 4793 BTRFS_FEATURE_ ## mask_base ## _SUPP, \ 4794 BTRFS_FEATURE_ ## mask_base ## _SAFE_SET, \ 4795 BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR) 4796 4797 static int btrfs_ioctl_set_features(struct file *file, void __user *arg) 4798 { 4799 struct inode *inode = file_inode(file); 4800 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4801 struct btrfs_root *root = BTRFS_I(inode)->root; 4802 struct btrfs_super_block *super_block = fs_info->super_copy; 4803 struct btrfs_ioctl_feature_flags flags[2]; 4804 struct btrfs_trans_handle *trans; 4805 u64 newflags; 4806 int ret; 4807 4808 if (!capable(CAP_SYS_ADMIN)) 4809 return -EPERM; 4810 4811 if (copy_from_user(flags, arg, sizeof(flags))) 4812 return -EFAULT; 4813 4814 /* Nothing to do */ 4815 if (!flags[0].compat_flags && !flags[0].compat_ro_flags && 4816 !flags[0].incompat_flags) 4817 return 0; 4818 4819 ret = check_feature(fs_info, flags[0].compat_flags, 4820 flags[1].compat_flags, COMPAT); 4821 if (ret) 4822 return ret; 4823 4824 ret = check_feature(fs_info, flags[0].compat_ro_flags, 4825 flags[1].compat_ro_flags, COMPAT_RO); 4826 if (ret) 4827 return ret; 4828 4829 ret = check_feature(fs_info, flags[0].incompat_flags, 4830 flags[1].incompat_flags, INCOMPAT); 4831 if (ret) 4832 return ret; 4833 4834 ret = mnt_want_write_file(file); 4835 if (ret) 4836 return ret; 4837 4838 trans = btrfs_start_transaction(root, 0); 4839 if (IS_ERR(trans)) { 4840 ret = PTR_ERR(trans); 4841 goto out_drop_write; 4842 } 4843 4844 spin_lock(&fs_info->super_lock); 4845 newflags = btrfs_super_compat_flags(super_block); 4846 newflags |= flags[0].compat_flags & flags[1].compat_flags; 4847 newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags); 4848 btrfs_set_super_compat_flags(super_block, newflags); 4849 4850 newflags = btrfs_super_compat_ro_flags(super_block); 4851 newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags; 4852 newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags); 4853 btrfs_set_super_compat_ro_flags(super_block, newflags); 4854 4855 newflags = btrfs_super_incompat_flags(super_block); 4856 newflags |= flags[0].incompat_flags & flags[1].incompat_flags; 4857 newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags); 4858 btrfs_set_super_incompat_flags(super_block, newflags); 4859 spin_unlock(&fs_info->super_lock); 4860 4861 ret = btrfs_commit_transaction(trans); 4862 out_drop_write: 4863 mnt_drop_write_file(file); 4864 4865 return ret; 4866 } 4867 4868 static int _btrfs_ioctl_send(struct file *file, void __user *argp, bool compat) 4869 { 4870 struct btrfs_ioctl_send_args *arg; 4871 int ret; 4872 4873 if (compat) { 4874 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 4875 struct btrfs_ioctl_send_args_32 args32; 4876 4877 ret = copy_from_user(&args32, argp, sizeof(args32)); 4878 if (ret) 4879 return -EFAULT; 4880 arg = kzalloc(sizeof(*arg), GFP_KERNEL); 4881 if (!arg) 4882 return -ENOMEM; 4883 arg->send_fd = args32.send_fd; 4884 arg->clone_sources_count = args32.clone_sources_count; 4885 arg->clone_sources = compat_ptr(args32.clone_sources); 4886 arg->parent_root = args32.parent_root; 4887 arg->flags = args32.flags; 4888 memcpy(arg->reserved, args32.reserved, 4889 sizeof(args32.reserved)); 4890 #else 4891 return -ENOTTY; 4892 #endif 4893 } else { 4894 arg = memdup_user(argp, sizeof(*arg)); 4895 if (IS_ERR(arg)) 4896 return PTR_ERR(arg); 4897 } 4898 ret = btrfs_ioctl_send(file, arg); 4899 kfree(arg); 4900 return ret; 4901 } 4902 4903 long btrfs_ioctl(struct file *file, unsigned int 4904 cmd, unsigned long arg) 4905 { 4906 struct inode *inode = file_inode(file); 4907 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4908 struct btrfs_root *root = BTRFS_I(inode)->root; 4909 void __user *argp = (void __user *)arg; 4910 4911 switch (cmd) { 4912 case FS_IOC_GETVERSION: 4913 return btrfs_ioctl_getversion(file, argp); 4914 case FS_IOC_GETFSLABEL: 4915 return btrfs_ioctl_get_fslabel(fs_info, argp); 4916 case FS_IOC_SETFSLABEL: 4917 return btrfs_ioctl_set_fslabel(file, argp); 4918 case FITRIM: 4919 return btrfs_ioctl_fitrim(fs_info, argp); 4920 case BTRFS_IOC_SNAP_CREATE: 4921 return btrfs_ioctl_snap_create(file, argp, 0); 4922 case BTRFS_IOC_SNAP_CREATE_V2: 4923 return btrfs_ioctl_snap_create_v2(file, argp, 0); 4924 case BTRFS_IOC_SUBVOL_CREATE: 4925 return btrfs_ioctl_snap_create(file, argp, 1); 4926 case BTRFS_IOC_SUBVOL_CREATE_V2: 4927 return btrfs_ioctl_snap_create_v2(file, argp, 1); 4928 case BTRFS_IOC_SNAP_DESTROY: 4929 return btrfs_ioctl_snap_destroy(file, argp, false); 4930 case BTRFS_IOC_SNAP_DESTROY_V2: 4931 return btrfs_ioctl_snap_destroy(file, argp, true); 4932 case BTRFS_IOC_SUBVOL_GETFLAGS: 4933 return btrfs_ioctl_subvol_getflags(file, argp); 4934 case BTRFS_IOC_SUBVOL_SETFLAGS: 4935 return btrfs_ioctl_subvol_setflags(file, argp); 4936 case BTRFS_IOC_DEFAULT_SUBVOL: 4937 return btrfs_ioctl_default_subvol(file, argp); 4938 case BTRFS_IOC_DEFRAG: 4939 return btrfs_ioctl_defrag(file, NULL); 4940 case BTRFS_IOC_DEFRAG_RANGE: 4941 return btrfs_ioctl_defrag(file, argp); 4942 case BTRFS_IOC_RESIZE: 4943 return btrfs_ioctl_resize(file, argp); 4944 case BTRFS_IOC_ADD_DEV: 4945 return btrfs_ioctl_add_dev(fs_info, argp); 4946 case BTRFS_IOC_RM_DEV: 4947 return btrfs_ioctl_rm_dev(file, argp); 4948 case BTRFS_IOC_RM_DEV_V2: 4949 return btrfs_ioctl_rm_dev_v2(file, argp); 4950 case BTRFS_IOC_FS_INFO: 4951 return btrfs_ioctl_fs_info(fs_info, argp); 4952 case BTRFS_IOC_DEV_INFO: 4953 return btrfs_ioctl_dev_info(fs_info, argp); 4954 case BTRFS_IOC_BALANCE: 4955 return btrfs_ioctl_balance(file, NULL); 4956 case BTRFS_IOC_TREE_SEARCH: 4957 return btrfs_ioctl_tree_search(file, argp); 4958 case BTRFS_IOC_TREE_SEARCH_V2: 4959 return btrfs_ioctl_tree_search_v2(file, argp); 4960 case BTRFS_IOC_INO_LOOKUP: 4961 return btrfs_ioctl_ino_lookup(file, argp); 4962 case BTRFS_IOC_INO_PATHS: 4963 return btrfs_ioctl_ino_to_path(root, argp); 4964 case BTRFS_IOC_LOGICAL_INO: 4965 return btrfs_ioctl_logical_to_ino(fs_info, argp, 1); 4966 case BTRFS_IOC_LOGICAL_INO_V2: 4967 return btrfs_ioctl_logical_to_ino(fs_info, argp, 2); 4968 case BTRFS_IOC_SPACE_INFO: 4969 return btrfs_ioctl_space_info(fs_info, argp); 4970 case BTRFS_IOC_SYNC: { 4971 int ret; 4972 4973 ret = btrfs_start_delalloc_roots(fs_info, LONG_MAX, false); 4974 if (ret) 4975 return ret; 4976 ret = btrfs_sync_fs(inode->i_sb, 1); 4977 /* 4978 * The transaction thread may want to do more work, 4979 * namely it pokes the cleaner kthread that will start 4980 * processing uncleaned subvols. 4981 */ 4982 wake_up_process(fs_info->transaction_kthread); 4983 return ret; 4984 } 4985 case BTRFS_IOC_START_SYNC: 4986 return btrfs_ioctl_start_sync(root, argp); 4987 case BTRFS_IOC_WAIT_SYNC: 4988 return btrfs_ioctl_wait_sync(fs_info, argp); 4989 case BTRFS_IOC_SCRUB: 4990 return btrfs_ioctl_scrub(file, argp); 4991 case BTRFS_IOC_SCRUB_CANCEL: 4992 return btrfs_ioctl_scrub_cancel(fs_info); 4993 case BTRFS_IOC_SCRUB_PROGRESS: 4994 return btrfs_ioctl_scrub_progress(fs_info, argp); 4995 case BTRFS_IOC_BALANCE_V2: 4996 return btrfs_ioctl_balance(file, argp); 4997 case BTRFS_IOC_BALANCE_CTL: 4998 return btrfs_ioctl_balance_ctl(fs_info, arg); 4999 case BTRFS_IOC_BALANCE_PROGRESS: 5000 return btrfs_ioctl_balance_progress(fs_info, argp); 5001 case BTRFS_IOC_SET_RECEIVED_SUBVOL: 5002 return btrfs_ioctl_set_received_subvol(file, argp); 5003 #ifdef CONFIG_64BIT 5004 case BTRFS_IOC_SET_RECEIVED_SUBVOL_32: 5005 return btrfs_ioctl_set_received_subvol_32(file, argp); 5006 #endif 5007 case BTRFS_IOC_SEND: 5008 return _btrfs_ioctl_send(file, argp, false); 5009 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 5010 case BTRFS_IOC_SEND_32: 5011 return _btrfs_ioctl_send(file, argp, true); 5012 #endif 5013 case BTRFS_IOC_GET_DEV_STATS: 5014 return btrfs_ioctl_get_dev_stats(fs_info, argp); 5015 case BTRFS_IOC_QUOTA_CTL: 5016 return btrfs_ioctl_quota_ctl(file, argp); 5017 case BTRFS_IOC_QGROUP_ASSIGN: 5018 return btrfs_ioctl_qgroup_assign(file, argp); 5019 case BTRFS_IOC_QGROUP_CREATE: 5020 return btrfs_ioctl_qgroup_create(file, argp); 5021 case BTRFS_IOC_QGROUP_LIMIT: 5022 return btrfs_ioctl_qgroup_limit(file, argp); 5023 case BTRFS_IOC_QUOTA_RESCAN: 5024 return btrfs_ioctl_quota_rescan(file, argp); 5025 case BTRFS_IOC_QUOTA_RESCAN_STATUS: 5026 return btrfs_ioctl_quota_rescan_status(fs_info, argp); 5027 case BTRFS_IOC_QUOTA_RESCAN_WAIT: 5028 return btrfs_ioctl_quota_rescan_wait(fs_info, argp); 5029 case BTRFS_IOC_DEV_REPLACE: 5030 return btrfs_ioctl_dev_replace(fs_info, argp); 5031 case BTRFS_IOC_GET_SUPPORTED_FEATURES: 5032 return btrfs_ioctl_get_supported_features(argp); 5033 case BTRFS_IOC_GET_FEATURES: 5034 return btrfs_ioctl_get_features(fs_info, argp); 5035 case BTRFS_IOC_SET_FEATURES: 5036 return btrfs_ioctl_set_features(file, argp); 5037 case BTRFS_IOC_GET_SUBVOL_INFO: 5038 return btrfs_ioctl_get_subvol_info(file, argp); 5039 case BTRFS_IOC_GET_SUBVOL_ROOTREF: 5040 return btrfs_ioctl_get_subvol_rootref(file, argp); 5041 case BTRFS_IOC_INO_LOOKUP_USER: 5042 return btrfs_ioctl_ino_lookup_user(file, argp); 5043 case FS_IOC_ENABLE_VERITY: 5044 return fsverity_ioctl_enable(file, (const void __user *)argp); 5045 case FS_IOC_MEASURE_VERITY: 5046 return fsverity_ioctl_measure(file, argp); 5047 } 5048 5049 return -ENOTTY; 5050 } 5051 5052 #ifdef CONFIG_COMPAT 5053 long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 5054 { 5055 /* 5056 * These all access 32-bit values anyway so no further 5057 * handling is necessary. 5058 */ 5059 switch (cmd) { 5060 case FS_IOC32_GETVERSION: 5061 cmd = FS_IOC_GETVERSION; 5062 break; 5063 } 5064 5065 return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg)); 5066 } 5067 #endif 5068