1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/kernel.h> 20 #include <linux/bio.h> 21 #include <linux/buffer_head.h> 22 #include <linux/file.h> 23 #include <linux/fs.h> 24 #include <linux/pagemap.h> 25 #include <linux/highmem.h> 26 #include <linux/time.h> 27 #include <linux/init.h> 28 #include <linux/string.h> 29 #include <linux/backing-dev.h> 30 #include <linux/mpage.h> 31 #include <linux/swap.h> 32 #include <linux/writeback.h> 33 #include <linux/statfs.h> 34 #include <linux/compat.h> 35 #include <linux/bit_spinlock.h> 36 #include <linux/xattr.h> 37 #include <linux/posix_acl.h> 38 #include <linux/falloc.h> 39 #include <linux/slab.h> 40 #include <linux/ratelimit.h> 41 #include <linux/mount.h> 42 #include <linux/btrfs.h> 43 #include <linux/blkdev.h> 44 #include <linux/posix_acl_xattr.h> 45 #include <linux/uio.h> 46 #include "ctree.h" 47 #include "disk-io.h" 48 #include "transaction.h" 49 #include "btrfs_inode.h" 50 #include "print-tree.h" 51 #include "ordered-data.h" 52 #include "xattr.h" 53 #include "tree-log.h" 54 #include "volumes.h" 55 #include "compression.h" 56 #include "locking.h" 57 #include "free-space-cache.h" 58 #include "inode-map.h" 59 #include "backref.h" 60 #include "hash.h" 61 #include "props.h" 62 #include "qgroup.h" 63 #include "dedupe.h" 64 65 struct btrfs_iget_args { 66 struct btrfs_key *location; 67 struct btrfs_root *root; 68 }; 69 70 struct btrfs_dio_data { 71 u64 outstanding_extents; 72 u64 reserve; 73 u64 unsubmitted_oe_range_start; 74 u64 unsubmitted_oe_range_end; 75 }; 76 77 static const struct inode_operations btrfs_dir_inode_operations; 78 static const struct inode_operations btrfs_symlink_inode_operations; 79 static const struct inode_operations btrfs_dir_ro_inode_operations; 80 static const struct inode_operations btrfs_special_inode_operations; 81 static const struct inode_operations btrfs_file_inode_operations; 82 static const struct address_space_operations btrfs_aops; 83 static const struct address_space_operations btrfs_symlink_aops; 84 static const struct file_operations btrfs_dir_file_operations; 85 static const struct extent_io_ops btrfs_extent_io_ops; 86 87 static struct kmem_cache *btrfs_inode_cachep; 88 struct kmem_cache *btrfs_trans_handle_cachep; 89 struct kmem_cache *btrfs_transaction_cachep; 90 struct kmem_cache *btrfs_path_cachep; 91 struct kmem_cache *btrfs_free_space_cachep; 92 93 #define S_SHIFT 12 94 static const unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = { 95 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE, 96 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR, 97 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV, 98 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV, 99 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO, 100 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK, 101 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK, 102 }; 103 104 static int btrfs_setsize(struct inode *inode, struct iattr *attr); 105 static int btrfs_truncate(struct inode *inode); 106 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent); 107 static noinline int cow_file_range(struct inode *inode, 108 struct page *locked_page, 109 u64 start, u64 end, u64 delalloc_end, 110 int *page_started, unsigned long *nr_written, 111 int unlock, struct btrfs_dedupe_hash *hash); 112 static struct extent_map *create_pinned_em(struct inode *inode, u64 start, 113 u64 len, u64 orig_start, 114 u64 block_start, u64 block_len, 115 u64 orig_block_len, u64 ram_bytes, 116 int type); 117 118 static int btrfs_dirty_inode(struct inode *inode); 119 120 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 121 void btrfs_test_inode_set_ops(struct inode *inode) 122 { 123 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 124 } 125 #endif 126 127 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans, 128 struct inode *inode, struct inode *dir, 129 const struct qstr *qstr) 130 { 131 int err; 132 133 err = btrfs_init_acl(trans, inode, dir); 134 if (!err) 135 err = btrfs_xattr_security_init(trans, inode, dir, qstr); 136 return err; 137 } 138 139 /* 140 * this does all the hard work for inserting an inline extent into 141 * the btree. The caller should have done a btrfs_drop_extents so that 142 * no overlapping inline items exist in the btree 143 */ 144 static int insert_inline_extent(struct btrfs_trans_handle *trans, 145 struct btrfs_path *path, int extent_inserted, 146 struct btrfs_root *root, struct inode *inode, 147 u64 start, size_t size, size_t compressed_size, 148 int compress_type, 149 struct page **compressed_pages) 150 { 151 struct extent_buffer *leaf; 152 struct page *page = NULL; 153 char *kaddr; 154 unsigned long ptr; 155 struct btrfs_file_extent_item *ei; 156 int err = 0; 157 int ret; 158 size_t cur_size = size; 159 unsigned long offset; 160 161 if (compressed_size && compressed_pages) 162 cur_size = compressed_size; 163 164 inode_add_bytes(inode, size); 165 166 if (!extent_inserted) { 167 struct btrfs_key key; 168 size_t datasize; 169 170 key.objectid = btrfs_ino(inode); 171 key.offset = start; 172 key.type = BTRFS_EXTENT_DATA_KEY; 173 174 datasize = btrfs_file_extent_calc_inline_size(cur_size); 175 path->leave_spinning = 1; 176 ret = btrfs_insert_empty_item(trans, root, path, &key, 177 datasize); 178 if (ret) { 179 err = ret; 180 goto fail; 181 } 182 } 183 leaf = path->nodes[0]; 184 ei = btrfs_item_ptr(leaf, path->slots[0], 185 struct btrfs_file_extent_item); 186 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 187 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE); 188 btrfs_set_file_extent_encryption(leaf, ei, 0); 189 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 190 btrfs_set_file_extent_ram_bytes(leaf, ei, size); 191 ptr = btrfs_file_extent_inline_start(ei); 192 193 if (compress_type != BTRFS_COMPRESS_NONE) { 194 struct page *cpage; 195 int i = 0; 196 while (compressed_size > 0) { 197 cpage = compressed_pages[i]; 198 cur_size = min_t(unsigned long, compressed_size, 199 PAGE_SIZE); 200 201 kaddr = kmap_atomic(cpage); 202 write_extent_buffer(leaf, kaddr, ptr, cur_size); 203 kunmap_atomic(kaddr); 204 205 i++; 206 ptr += cur_size; 207 compressed_size -= cur_size; 208 } 209 btrfs_set_file_extent_compression(leaf, ei, 210 compress_type); 211 } else { 212 page = find_get_page(inode->i_mapping, 213 start >> PAGE_SHIFT); 214 btrfs_set_file_extent_compression(leaf, ei, 0); 215 kaddr = kmap_atomic(page); 216 offset = start & (PAGE_SIZE - 1); 217 write_extent_buffer(leaf, kaddr + offset, ptr, size); 218 kunmap_atomic(kaddr); 219 put_page(page); 220 } 221 btrfs_mark_buffer_dirty(leaf); 222 btrfs_release_path(path); 223 224 /* 225 * we're an inline extent, so nobody can 226 * extend the file past i_size without locking 227 * a page we already have locked. 228 * 229 * We must do any isize and inode updates 230 * before we unlock the pages. Otherwise we 231 * could end up racing with unlink. 232 */ 233 BTRFS_I(inode)->disk_i_size = inode->i_size; 234 ret = btrfs_update_inode(trans, root, inode); 235 236 return ret; 237 fail: 238 return err; 239 } 240 241 242 /* 243 * conditionally insert an inline extent into the file. This 244 * does the checks required to make sure the data is small enough 245 * to fit as an inline extent. 246 */ 247 static noinline int cow_file_range_inline(struct btrfs_root *root, 248 struct inode *inode, u64 start, 249 u64 end, size_t compressed_size, 250 int compress_type, 251 struct page **compressed_pages) 252 { 253 struct btrfs_trans_handle *trans; 254 u64 isize = i_size_read(inode); 255 u64 actual_end = min(end + 1, isize); 256 u64 inline_len = actual_end - start; 257 u64 aligned_end = ALIGN(end, root->sectorsize); 258 u64 data_len = inline_len; 259 int ret; 260 struct btrfs_path *path; 261 int extent_inserted = 0; 262 u32 extent_item_size; 263 264 if (compressed_size) 265 data_len = compressed_size; 266 267 if (start > 0 || 268 actual_end > root->sectorsize || 269 data_len > BTRFS_MAX_INLINE_DATA_SIZE(root) || 270 (!compressed_size && 271 (actual_end & (root->sectorsize - 1)) == 0) || 272 end + 1 < isize || 273 data_len > root->fs_info->max_inline) { 274 return 1; 275 } 276 277 path = btrfs_alloc_path(); 278 if (!path) 279 return -ENOMEM; 280 281 trans = btrfs_join_transaction(root); 282 if (IS_ERR(trans)) { 283 btrfs_free_path(path); 284 return PTR_ERR(trans); 285 } 286 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 287 288 if (compressed_size && compressed_pages) 289 extent_item_size = btrfs_file_extent_calc_inline_size( 290 compressed_size); 291 else 292 extent_item_size = btrfs_file_extent_calc_inline_size( 293 inline_len); 294 295 ret = __btrfs_drop_extents(trans, root, inode, path, 296 start, aligned_end, NULL, 297 1, 1, extent_item_size, &extent_inserted); 298 if (ret) { 299 btrfs_abort_transaction(trans, ret); 300 goto out; 301 } 302 303 if (isize > actual_end) 304 inline_len = min_t(u64, isize, actual_end); 305 ret = insert_inline_extent(trans, path, extent_inserted, 306 root, inode, start, 307 inline_len, compressed_size, 308 compress_type, compressed_pages); 309 if (ret && ret != -ENOSPC) { 310 btrfs_abort_transaction(trans, ret); 311 goto out; 312 } else if (ret == -ENOSPC) { 313 ret = 1; 314 goto out; 315 } 316 317 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 318 btrfs_delalloc_release_metadata(inode, end + 1 - start); 319 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0); 320 out: 321 /* 322 * Don't forget to free the reserved space, as for inlined extent 323 * it won't count as data extent, free them directly here. 324 * And at reserve time, it's always aligned to page size, so 325 * just free one page here. 326 */ 327 btrfs_qgroup_free_data(inode, 0, PAGE_SIZE); 328 btrfs_free_path(path); 329 btrfs_end_transaction(trans, root); 330 return ret; 331 } 332 333 struct async_extent { 334 u64 start; 335 u64 ram_size; 336 u64 compressed_size; 337 struct page **pages; 338 unsigned long nr_pages; 339 int compress_type; 340 struct list_head list; 341 }; 342 343 struct async_cow { 344 struct inode *inode; 345 struct btrfs_root *root; 346 struct page *locked_page; 347 u64 start; 348 u64 end; 349 struct list_head extents; 350 struct btrfs_work work; 351 }; 352 353 static noinline int add_async_extent(struct async_cow *cow, 354 u64 start, u64 ram_size, 355 u64 compressed_size, 356 struct page **pages, 357 unsigned long nr_pages, 358 int compress_type) 359 { 360 struct async_extent *async_extent; 361 362 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS); 363 BUG_ON(!async_extent); /* -ENOMEM */ 364 async_extent->start = start; 365 async_extent->ram_size = ram_size; 366 async_extent->compressed_size = compressed_size; 367 async_extent->pages = pages; 368 async_extent->nr_pages = nr_pages; 369 async_extent->compress_type = compress_type; 370 list_add_tail(&async_extent->list, &cow->extents); 371 return 0; 372 } 373 374 static inline int inode_need_compress(struct inode *inode) 375 { 376 struct btrfs_root *root = BTRFS_I(inode)->root; 377 378 /* force compress */ 379 if (btrfs_test_opt(root->fs_info, FORCE_COMPRESS)) 380 return 1; 381 /* bad compression ratios */ 382 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) 383 return 0; 384 if (btrfs_test_opt(root->fs_info, COMPRESS) || 385 BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS || 386 BTRFS_I(inode)->force_compress) 387 return 1; 388 return 0; 389 } 390 391 /* 392 * we create compressed extents in two phases. The first 393 * phase compresses a range of pages that have already been 394 * locked (both pages and state bits are locked). 395 * 396 * This is done inside an ordered work queue, and the compression 397 * is spread across many cpus. The actual IO submission is step 398 * two, and the ordered work queue takes care of making sure that 399 * happens in the same order things were put onto the queue by 400 * writepages and friends. 401 * 402 * If this code finds it can't get good compression, it puts an 403 * entry onto the work queue to write the uncompressed bytes. This 404 * makes sure that both compressed inodes and uncompressed inodes 405 * are written in the same order that the flusher thread sent them 406 * down. 407 */ 408 static noinline void compress_file_range(struct inode *inode, 409 struct page *locked_page, 410 u64 start, u64 end, 411 struct async_cow *async_cow, 412 int *num_added) 413 { 414 struct btrfs_root *root = BTRFS_I(inode)->root; 415 u64 num_bytes; 416 u64 blocksize = root->sectorsize; 417 u64 actual_end; 418 u64 isize = i_size_read(inode); 419 int ret = 0; 420 struct page **pages = NULL; 421 unsigned long nr_pages; 422 unsigned long nr_pages_ret = 0; 423 unsigned long total_compressed = 0; 424 unsigned long total_in = 0; 425 unsigned long max_compressed = SZ_128K; 426 unsigned long max_uncompressed = SZ_128K; 427 int i; 428 int will_compress; 429 int compress_type = root->fs_info->compress_type; 430 int redirty = 0; 431 432 /* if this is a small write inside eof, kick off a defrag */ 433 if ((end - start + 1) < SZ_16K && 434 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size)) 435 btrfs_add_inode_defrag(NULL, inode); 436 437 actual_end = min_t(u64, isize, end + 1); 438 again: 439 will_compress = 0; 440 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1; 441 nr_pages = min_t(unsigned long, nr_pages, SZ_128K / PAGE_SIZE); 442 443 /* 444 * we don't want to send crud past the end of i_size through 445 * compression, that's just a waste of CPU time. So, if the 446 * end of the file is before the start of our current 447 * requested range of bytes, we bail out to the uncompressed 448 * cleanup code that can deal with all of this. 449 * 450 * It isn't really the fastest way to fix things, but this is a 451 * very uncommon corner. 452 */ 453 if (actual_end <= start) 454 goto cleanup_and_bail_uncompressed; 455 456 total_compressed = actual_end - start; 457 458 /* 459 * skip compression for a small file range(<=blocksize) that 460 * isn't an inline extent, since it doesn't save disk space at all. 461 */ 462 if (total_compressed <= blocksize && 463 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size)) 464 goto cleanup_and_bail_uncompressed; 465 466 /* we want to make sure that amount of ram required to uncompress 467 * an extent is reasonable, so we limit the total size in ram 468 * of a compressed extent to 128k. This is a crucial number 469 * because it also controls how easily we can spread reads across 470 * cpus for decompression. 471 * 472 * We also want to make sure the amount of IO required to do 473 * a random read is reasonably small, so we limit the size of 474 * a compressed extent to 128k. 475 */ 476 total_compressed = min(total_compressed, max_uncompressed); 477 num_bytes = ALIGN(end - start + 1, blocksize); 478 num_bytes = max(blocksize, num_bytes); 479 total_in = 0; 480 ret = 0; 481 482 /* 483 * we do compression for mount -o compress and when the 484 * inode has not been flagged as nocompress. This flag can 485 * change at any time if we discover bad compression ratios. 486 */ 487 if (inode_need_compress(inode)) { 488 WARN_ON(pages); 489 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS); 490 if (!pages) { 491 /* just bail out to the uncompressed code */ 492 goto cont; 493 } 494 495 if (BTRFS_I(inode)->force_compress) 496 compress_type = BTRFS_I(inode)->force_compress; 497 498 /* 499 * we need to call clear_page_dirty_for_io on each 500 * page in the range. Otherwise applications with the file 501 * mmap'd can wander in and change the page contents while 502 * we are compressing them. 503 * 504 * If the compression fails for any reason, we set the pages 505 * dirty again later on. 506 */ 507 extent_range_clear_dirty_for_io(inode, start, end); 508 redirty = 1; 509 ret = btrfs_compress_pages(compress_type, 510 inode->i_mapping, start, 511 total_compressed, pages, 512 nr_pages, &nr_pages_ret, 513 &total_in, 514 &total_compressed, 515 max_compressed); 516 517 if (!ret) { 518 unsigned long offset = total_compressed & 519 (PAGE_SIZE - 1); 520 struct page *page = pages[nr_pages_ret - 1]; 521 char *kaddr; 522 523 /* zero the tail end of the last page, we might be 524 * sending it down to disk 525 */ 526 if (offset) { 527 kaddr = kmap_atomic(page); 528 memset(kaddr + offset, 0, 529 PAGE_SIZE - offset); 530 kunmap_atomic(kaddr); 531 } 532 will_compress = 1; 533 } 534 } 535 cont: 536 if (start == 0) { 537 /* lets try to make an inline extent */ 538 if (ret || total_in < (actual_end - start)) { 539 /* we didn't compress the entire range, try 540 * to make an uncompressed inline extent. 541 */ 542 ret = cow_file_range_inline(root, inode, start, end, 543 0, 0, NULL); 544 } else { 545 /* try making a compressed inline extent */ 546 ret = cow_file_range_inline(root, inode, start, end, 547 total_compressed, 548 compress_type, pages); 549 } 550 if (ret <= 0) { 551 unsigned long clear_flags = EXTENT_DELALLOC | 552 EXTENT_DEFRAG; 553 unsigned long page_error_op; 554 555 clear_flags |= (ret < 0) ? EXTENT_DO_ACCOUNTING : 0; 556 page_error_op = ret < 0 ? PAGE_SET_ERROR : 0; 557 558 /* 559 * inline extent creation worked or returned error, 560 * we don't need to create any more async work items. 561 * Unlock and free up our temp pages. 562 */ 563 extent_clear_unlock_delalloc(inode, start, end, NULL, 564 clear_flags, PAGE_UNLOCK | 565 PAGE_CLEAR_DIRTY | 566 PAGE_SET_WRITEBACK | 567 page_error_op | 568 PAGE_END_WRITEBACK); 569 btrfs_free_reserved_data_space_noquota(inode, start, 570 end - start + 1); 571 goto free_pages_out; 572 } 573 } 574 575 if (will_compress) { 576 /* 577 * we aren't doing an inline extent round the compressed size 578 * up to a block size boundary so the allocator does sane 579 * things 580 */ 581 total_compressed = ALIGN(total_compressed, blocksize); 582 583 /* 584 * one last check to make sure the compression is really a 585 * win, compare the page count read with the blocks on disk 586 */ 587 total_in = ALIGN(total_in, PAGE_SIZE); 588 if (total_compressed >= total_in) { 589 will_compress = 0; 590 } else { 591 num_bytes = total_in; 592 *num_added += 1; 593 594 /* 595 * The async work queues will take care of doing actual 596 * allocation on disk for these compressed pages, and 597 * will submit them to the elevator. 598 */ 599 add_async_extent(async_cow, start, num_bytes, 600 total_compressed, pages, nr_pages_ret, 601 compress_type); 602 603 if (start + num_bytes < end) { 604 start += num_bytes; 605 pages = NULL; 606 cond_resched(); 607 goto again; 608 } 609 return; 610 } 611 } 612 if (pages) { 613 /* 614 * the compression code ran but failed to make things smaller, 615 * free any pages it allocated and our page pointer array 616 */ 617 for (i = 0; i < nr_pages_ret; i++) { 618 WARN_ON(pages[i]->mapping); 619 put_page(pages[i]); 620 } 621 kfree(pages); 622 pages = NULL; 623 total_compressed = 0; 624 nr_pages_ret = 0; 625 626 /* flag the file so we don't compress in the future */ 627 if (!btrfs_test_opt(root->fs_info, FORCE_COMPRESS) && 628 !(BTRFS_I(inode)->force_compress)) { 629 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS; 630 } 631 } 632 cleanup_and_bail_uncompressed: 633 /* 634 * No compression, but we still need to write the pages in the file 635 * we've been given so far. redirty the locked page if it corresponds 636 * to our extent and set things up for the async work queue to run 637 * cow_file_range to do the normal delalloc dance. 638 */ 639 if (page_offset(locked_page) >= start && 640 page_offset(locked_page) <= end) 641 __set_page_dirty_nobuffers(locked_page); 642 /* unlocked later on in the async handlers */ 643 644 if (redirty) 645 extent_range_redirty_for_io(inode, start, end); 646 add_async_extent(async_cow, start, end - start + 1, 0, NULL, 0, 647 BTRFS_COMPRESS_NONE); 648 *num_added += 1; 649 650 return; 651 652 free_pages_out: 653 for (i = 0; i < nr_pages_ret; i++) { 654 WARN_ON(pages[i]->mapping); 655 put_page(pages[i]); 656 } 657 kfree(pages); 658 } 659 660 static void free_async_extent_pages(struct async_extent *async_extent) 661 { 662 int i; 663 664 if (!async_extent->pages) 665 return; 666 667 for (i = 0; i < async_extent->nr_pages; i++) { 668 WARN_ON(async_extent->pages[i]->mapping); 669 put_page(async_extent->pages[i]); 670 } 671 kfree(async_extent->pages); 672 async_extent->nr_pages = 0; 673 async_extent->pages = NULL; 674 } 675 676 /* 677 * phase two of compressed writeback. This is the ordered portion 678 * of the code, which only gets called in the order the work was 679 * queued. We walk all the async extents created by compress_file_range 680 * and send them down to the disk. 681 */ 682 static noinline void submit_compressed_extents(struct inode *inode, 683 struct async_cow *async_cow) 684 { 685 struct async_extent *async_extent; 686 u64 alloc_hint = 0; 687 struct btrfs_key ins; 688 struct extent_map *em; 689 struct btrfs_root *root = BTRFS_I(inode)->root; 690 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 691 struct extent_io_tree *io_tree; 692 int ret = 0; 693 694 again: 695 while (!list_empty(&async_cow->extents)) { 696 async_extent = list_entry(async_cow->extents.next, 697 struct async_extent, list); 698 list_del(&async_extent->list); 699 700 io_tree = &BTRFS_I(inode)->io_tree; 701 702 retry: 703 /* did the compression code fall back to uncompressed IO? */ 704 if (!async_extent->pages) { 705 int page_started = 0; 706 unsigned long nr_written = 0; 707 708 lock_extent(io_tree, async_extent->start, 709 async_extent->start + 710 async_extent->ram_size - 1); 711 712 /* allocate blocks */ 713 ret = cow_file_range(inode, async_cow->locked_page, 714 async_extent->start, 715 async_extent->start + 716 async_extent->ram_size - 1, 717 async_extent->start + 718 async_extent->ram_size - 1, 719 &page_started, &nr_written, 0, 720 NULL); 721 722 /* JDM XXX */ 723 724 /* 725 * if page_started, cow_file_range inserted an 726 * inline extent and took care of all the unlocking 727 * and IO for us. Otherwise, we need to submit 728 * all those pages down to the drive. 729 */ 730 if (!page_started && !ret) 731 extent_write_locked_range(io_tree, 732 inode, async_extent->start, 733 async_extent->start + 734 async_extent->ram_size - 1, 735 btrfs_get_extent, 736 WB_SYNC_ALL); 737 else if (ret) 738 unlock_page(async_cow->locked_page); 739 kfree(async_extent); 740 cond_resched(); 741 continue; 742 } 743 744 lock_extent(io_tree, async_extent->start, 745 async_extent->start + async_extent->ram_size - 1); 746 747 ret = btrfs_reserve_extent(root, async_extent->ram_size, 748 async_extent->compressed_size, 749 async_extent->compressed_size, 750 0, alloc_hint, &ins, 1, 1); 751 if (ret) { 752 free_async_extent_pages(async_extent); 753 754 if (ret == -ENOSPC) { 755 unlock_extent(io_tree, async_extent->start, 756 async_extent->start + 757 async_extent->ram_size - 1); 758 759 /* 760 * we need to redirty the pages if we decide to 761 * fallback to uncompressed IO, otherwise we 762 * will not submit these pages down to lower 763 * layers. 764 */ 765 extent_range_redirty_for_io(inode, 766 async_extent->start, 767 async_extent->start + 768 async_extent->ram_size - 1); 769 770 goto retry; 771 } 772 goto out_free; 773 } 774 /* 775 * here we're doing allocation and writeback of the 776 * compressed pages 777 */ 778 btrfs_drop_extent_cache(inode, async_extent->start, 779 async_extent->start + 780 async_extent->ram_size - 1, 0); 781 782 em = alloc_extent_map(); 783 if (!em) { 784 ret = -ENOMEM; 785 goto out_free_reserve; 786 } 787 em->start = async_extent->start; 788 em->len = async_extent->ram_size; 789 em->orig_start = em->start; 790 em->mod_start = em->start; 791 em->mod_len = em->len; 792 793 em->block_start = ins.objectid; 794 em->block_len = ins.offset; 795 em->orig_block_len = ins.offset; 796 em->ram_bytes = async_extent->ram_size; 797 em->bdev = root->fs_info->fs_devices->latest_bdev; 798 em->compress_type = async_extent->compress_type; 799 set_bit(EXTENT_FLAG_PINNED, &em->flags); 800 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 801 em->generation = -1; 802 803 while (1) { 804 write_lock(&em_tree->lock); 805 ret = add_extent_mapping(em_tree, em, 1); 806 write_unlock(&em_tree->lock); 807 if (ret != -EEXIST) { 808 free_extent_map(em); 809 break; 810 } 811 btrfs_drop_extent_cache(inode, async_extent->start, 812 async_extent->start + 813 async_extent->ram_size - 1, 0); 814 } 815 816 if (ret) 817 goto out_free_reserve; 818 819 ret = btrfs_add_ordered_extent_compress(inode, 820 async_extent->start, 821 ins.objectid, 822 async_extent->ram_size, 823 ins.offset, 824 BTRFS_ORDERED_COMPRESSED, 825 async_extent->compress_type); 826 if (ret) { 827 btrfs_drop_extent_cache(inode, async_extent->start, 828 async_extent->start + 829 async_extent->ram_size - 1, 0); 830 goto out_free_reserve; 831 } 832 btrfs_dec_block_group_reservations(root->fs_info, ins.objectid); 833 834 /* 835 * clear dirty, set writeback and unlock the pages. 836 */ 837 extent_clear_unlock_delalloc(inode, async_extent->start, 838 async_extent->start + 839 async_extent->ram_size - 1, 840 NULL, EXTENT_LOCKED | EXTENT_DELALLOC, 841 PAGE_UNLOCK | PAGE_CLEAR_DIRTY | 842 PAGE_SET_WRITEBACK); 843 ret = btrfs_submit_compressed_write(inode, 844 async_extent->start, 845 async_extent->ram_size, 846 ins.objectid, 847 ins.offset, async_extent->pages, 848 async_extent->nr_pages); 849 if (ret) { 850 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 851 struct page *p = async_extent->pages[0]; 852 const u64 start = async_extent->start; 853 const u64 end = start + async_extent->ram_size - 1; 854 855 p->mapping = inode->i_mapping; 856 tree->ops->writepage_end_io_hook(p, start, end, 857 NULL, 0); 858 p->mapping = NULL; 859 extent_clear_unlock_delalloc(inode, start, end, NULL, 0, 860 PAGE_END_WRITEBACK | 861 PAGE_SET_ERROR); 862 free_async_extent_pages(async_extent); 863 } 864 alloc_hint = ins.objectid + ins.offset; 865 kfree(async_extent); 866 cond_resched(); 867 } 868 return; 869 out_free_reserve: 870 btrfs_dec_block_group_reservations(root->fs_info, ins.objectid); 871 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1); 872 out_free: 873 extent_clear_unlock_delalloc(inode, async_extent->start, 874 async_extent->start + 875 async_extent->ram_size - 1, 876 NULL, EXTENT_LOCKED | EXTENT_DELALLOC | 877 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING, 878 PAGE_UNLOCK | PAGE_CLEAR_DIRTY | 879 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK | 880 PAGE_SET_ERROR); 881 free_async_extent_pages(async_extent); 882 kfree(async_extent); 883 goto again; 884 } 885 886 static u64 get_extent_allocation_hint(struct inode *inode, u64 start, 887 u64 num_bytes) 888 { 889 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 890 struct extent_map *em; 891 u64 alloc_hint = 0; 892 893 read_lock(&em_tree->lock); 894 em = search_extent_mapping(em_tree, start, num_bytes); 895 if (em) { 896 /* 897 * if block start isn't an actual block number then find the 898 * first block in this inode and use that as a hint. If that 899 * block is also bogus then just don't worry about it. 900 */ 901 if (em->block_start >= EXTENT_MAP_LAST_BYTE) { 902 free_extent_map(em); 903 em = search_extent_mapping(em_tree, 0, 0); 904 if (em && em->block_start < EXTENT_MAP_LAST_BYTE) 905 alloc_hint = em->block_start; 906 if (em) 907 free_extent_map(em); 908 } else { 909 alloc_hint = em->block_start; 910 free_extent_map(em); 911 } 912 } 913 read_unlock(&em_tree->lock); 914 915 return alloc_hint; 916 } 917 918 /* 919 * when extent_io.c finds a delayed allocation range in the file, 920 * the call backs end up in this code. The basic idea is to 921 * allocate extents on disk for the range, and create ordered data structs 922 * in ram to track those extents. 923 * 924 * locked_page is the page that writepage had locked already. We use 925 * it to make sure we don't do extra locks or unlocks. 926 * 927 * *page_started is set to one if we unlock locked_page and do everything 928 * required to start IO on it. It may be clean and already done with 929 * IO when we return. 930 */ 931 static noinline int cow_file_range(struct inode *inode, 932 struct page *locked_page, 933 u64 start, u64 end, u64 delalloc_end, 934 int *page_started, unsigned long *nr_written, 935 int unlock, struct btrfs_dedupe_hash *hash) 936 { 937 struct btrfs_root *root = BTRFS_I(inode)->root; 938 u64 alloc_hint = 0; 939 u64 num_bytes; 940 unsigned long ram_size; 941 u64 disk_num_bytes; 942 u64 cur_alloc_size; 943 u64 blocksize = root->sectorsize; 944 struct btrfs_key ins; 945 struct extent_map *em; 946 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 947 int ret = 0; 948 949 if (btrfs_is_free_space_inode(inode)) { 950 WARN_ON_ONCE(1); 951 ret = -EINVAL; 952 goto out_unlock; 953 } 954 955 num_bytes = ALIGN(end - start + 1, blocksize); 956 num_bytes = max(blocksize, num_bytes); 957 disk_num_bytes = num_bytes; 958 959 /* if this is a small write inside eof, kick off defrag */ 960 if (num_bytes < SZ_64K && 961 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size)) 962 btrfs_add_inode_defrag(NULL, inode); 963 964 if (start == 0) { 965 /* lets try to make an inline extent */ 966 ret = cow_file_range_inline(root, inode, start, end, 0, 0, 967 NULL); 968 if (ret == 0) { 969 extent_clear_unlock_delalloc(inode, start, end, NULL, 970 EXTENT_LOCKED | EXTENT_DELALLOC | 971 EXTENT_DEFRAG, PAGE_UNLOCK | 972 PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK | 973 PAGE_END_WRITEBACK); 974 btrfs_free_reserved_data_space_noquota(inode, start, 975 end - start + 1); 976 *nr_written = *nr_written + 977 (end - start + PAGE_SIZE) / PAGE_SIZE; 978 *page_started = 1; 979 goto out; 980 } else if (ret < 0) { 981 goto out_unlock; 982 } 983 } 984 985 BUG_ON(disk_num_bytes > 986 btrfs_super_total_bytes(root->fs_info->super_copy)); 987 988 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes); 989 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0); 990 991 while (disk_num_bytes > 0) { 992 unsigned long op; 993 994 cur_alloc_size = disk_num_bytes; 995 ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size, 996 root->sectorsize, 0, alloc_hint, 997 &ins, 1, 1); 998 if (ret < 0) 999 goto out_unlock; 1000 1001 em = alloc_extent_map(); 1002 if (!em) { 1003 ret = -ENOMEM; 1004 goto out_reserve; 1005 } 1006 em->start = start; 1007 em->orig_start = em->start; 1008 ram_size = ins.offset; 1009 em->len = ins.offset; 1010 em->mod_start = em->start; 1011 em->mod_len = em->len; 1012 1013 em->block_start = ins.objectid; 1014 em->block_len = ins.offset; 1015 em->orig_block_len = ins.offset; 1016 em->ram_bytes = ram_size; 1017 em->bdev = root->fs_info->fs_devices->latest_bdev; 1018 set_bit(EXTENT_FLAG_PINNED, &em->flags); 1019 em->generation = -1; 1020 1021 while (1) { 1022 write_lock(&em_tree->lock); 1023 ret = add_extent_mapping(em_tree, em, 1); 1024 write_unlock(&em_tree->lock); 1025 if (ret != -EEXIST) { 1026 free_extent_map(em); 1027 break; 1028 } 1029 btrfs_drop_extent_cache(inode, start, 1030 start + ram_size - 1, 0); 1031 } 1032 if (ret) 1033 goto out_reserve; 1034 1035 cur_alloc_size = ins.offset; 1036 ret = btrfs_add_ordered_extent(inode, start, ins.objectid, 1037 ram_size, cur_alloc_size, 0); 1038 if (ret) 1039 goto out_drop_extent_cache; 1040 1041 if (root->root_key.objectid == 1042 BTRFS_DATA_RELOC_TREE_OBJECTID) { 1043 ret = btrfs_reloc_clone_csums(inode, start, 1044 cur_alloc_size); 1045 if (ret) 1046 goto out_drop_extent_cache; 1047 } 1048 1049 btrfs_dec_block_group_reservations(root->fs_info, ins.objectid); 1050 1051 if (disk_num_bytes < cur_alloc_size) 1052 break; 1053 1054 /* we're not doing compressed IO, don't unlock the first 1055 * page (which the caller expects to stay locked), don't 1056 * clear any dirty bits and don't set any writeback bits 1057 * 1058 * Do set the Private2 bit so we know this page was properly 1059 * setup for writepage 1060 */ 1061 op = unlock ? PAGE_UNLOCK : 0; 1062 op |= PAGE_SET_PRIVATE2; 1063 1064 extent_clear_unlock_delalloc(inode, start, 1065 start + ram_size - 1, locked_page, 1066 EXTENT_LOCKED | EXTENT_DELALLOC, 1067 op); 1068 disk_num_bytes -= cur_alloc_size; 1069 num_bytes -= cur_alloc_size; 1070 alloc_hint = ins.objectid + ins.offset; 1071 start += cur_alloc_size; 1072 } 1073 out: 1074 return ret; 1075 1076 out_drop_extent_cache: 1077 btrfs_drop_extent_cache(inode, start, start + ram_size - 1, 0); 1078 out_reserve: 1079 btrfs_dec_block_group_reservations(root->fs_info, ins.objectid); 1080 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1); 1081 out_unlock: 1082 extent_clear_unlock_delalloc(inode, start, end, locked_page, 1083 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING | 1084 EXTENT_DELALLOC | EXTENT_DEFRAG, 1085 PAGE_UNLOCK | PAGE_CLEAR_DIRTY | 1086 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK); 1087 goto out; 1088 } 1089 1090 /* 1091 * work queue call back to started compression on a file and pages 1092 */ 1093 static noinline void async_cow_start(struct btrfs_work *work) 1094 { 1095 struct async_cow *async_cow; 1096 int num_added = 0; 1097 async_cow = container_of(work, struct async_cow, work); 1098 1099 compress_file_range(async_cow->inode, async_cow->locked_page, 1100 async_cow->start, async_cow->end, async_cow, 1101 &num_added); 1102 if (num_added == 0) { 1103 btrfs_add_delayed_iput(async_cow->inode); 1104 async_cow->inode = NULL; 1105 } 1106 } 1107 1108 /* 1109 * work queue call back to submit previously compressed pages 1110 */ 1111 static noinline void async_cow_submit(struct btrfs_work *work) 1112 { 1113 struct async_cow *async_cow; 1114 struct btrfs_root *root; 1115 unsigned long nr_pages; 1116 1117 async_cow = container_of(work, struct async_cow, work); 1118 1119 root = async_cow->root; 1120 nr_pages = (async_cow->end - async_cow->start + PAGE_SIZE) >> 1121 PAGE_SHIFT; 1122 1123 /* 1124 * atomic_sub_return implies a barrier for waitqueue_active 1125 */ 1126 if (atomic_sub_return(nr_pages, &root->fs_info->async_delalloc_pages) < 1127 5 * SZ_1M && 1128 waitqueue_active(&root->fs_info->async_submit_wait)) 1129 wake_up(&root->fs_info->async_submit_wait); 1130 1131 if (async_cow->inode) 1132 submit_compressed_extents(async_cow->inode, async_cow); 1133 } 1134 1135 static noinline void async_cow_free(struct btrfs_work *work) 1136 { 1137 struct async_cow *async_cow; 1138 async_cow = container_of(work, struct async_cow, work); 1139 if (async_cow->inode) 1140 btrfs_add_delayed_iput(async_cow->inode); 1141 kfree(async_cow); 1142 } 1143 1144 static int cow_file_range_async(struct inode *inode, struct page *locked_page, 1145 u64 start, u64 end, int *page_started, 1146 unsigned long *nr_written) 1147 { 1148 struct async_cow *async_cow; 1149 struct btrfs_root *root = BTRFS_I(inode)->root; 1150 unsigned long nr_pages; 1151 u64 cur_end; 1152 int limit = 10 * SZ_1M; 1153 1154 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED, 1155 1, 0, NULL, GFP_NOFS); 1156 while (start < end) { 1157 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS); 1158 BUG_ON(!async_cow); /* -ENOMEM */ 1159 async_cow->inode = igrab(inode); 1160 async_cow->root = root; 1161 async_cow->locked_page = locked_page; 1162 async_cow->start = start; 1163 1164 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS && 1165 !btrfs_test_opt(root->fs_info, FORCE_COMPRESS)) 1166 cur_end = end; 1167 else 1168 cur_end = min(end, start + SZ_512K - 1); 1169 1170 async_cow->end = cur_end; 1171 INIT_LIST_HEAD(&async_cow->extents); 1172 1173 btrfs_init_work(&async_cow->work, 1174 btrfs_delalloc_helper, 1175 async_cow_start, async_cow_submit, 1176 async_cow_free); 1177 1178 nr_pages = (cur_end - start + PAGE_SIZE) >> 1179 PAGE_SHIFT; 1180 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages); 1181 1182 btrfs_queue_work(root->fs_info->delalloc_workers, 1183 &async_cow->work); 1184 1185 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) { 1186 wait_event(root->fs_info->async_submit_wait, 1187 (atomic_read(&root->fs_info->async_delalloc_pages) < 1188 limit)); 1189 } 1190 1191 while (atomic_read(&root->fs_info->async_submit_draining) && 1192 atomic_read(&root->fs_info->async_delalloc_pages)) { 1193 wait_event(root->fs_info->async_submit_wait, 1194 (atomic_read(&root->fs_info->async_delalloc_pages) == 1195 0)); 1196 } 1197 1198 *nr_written += nr_pages; 1199 start = cur_end + 1; 1200 } 1201 *page_started = 1; 1202 return 0; 1203 } 1204 1205 static noinline int csum_exist_in_range(struct btrfs_root *root, 1206 u64 bytenr, u64 num_bytes) 1207 { 1208 int ret; 1209 struct btrfs_ordered_sum *sums; 1210 LIST_HEAD(list); 1211 1212 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr, 1213 bytenr + num_bytes - 1, &list, 0); 1214 if (ret == 0 && list_empty(&list)) 1215 return 0; 1216 1217 while (!list_empty(&list)) { 1218 sums = list_entry(list.next, struct btrfs_ordered_sum, list); 1219 list_del(&sums->list); 1220 kfree(sums); 1221 } 1222 return 1; 1223 } 1224 1225 /* 1226 * when nowcow writeback call back. This checks for snapshots or COW copies 1227 * of the extents that exist in the file, and COWs the file as required. 1228 * 1229 * If no cow copies or snapshots exist, we write directly to the existing 1230 * blocks on disk 1231 */ 1232 static noinline int run_delalloc_nocow(struct inode *inode, 1233 struct page *locked_page, 1234 u64 start, u64 end, int *page_started, int force, 1235 unsigned long *nr_written) 1236 { 1237 struct btrfs_root *root = BTRFS_I(inode)->root; 1238 struct btrfs_trans_handle *trans; 1239 struct extent_buffer *leaf; 1240 struct btrfs_path *path; 1241 struct btrfs_file_extent_item *fi; 1242 struct btrfs_key found_key; 1243 u64 cow_start; 1244 u64 cur_offset; 1245 u64 extent_end; 1246 u64 extent_offset; 1247 u64 disk_bytenr; 1248 u64 num_bytes; 1249 u64 disk_num_bytes; 1250 u64 ram_bytes; 1251 int extent_type; 1252 int ret, err; 1253 int type; 1254 int nocow; 1255 int check_prev = 1; 1256 bool nolock; 1257 u64 ino = btrfs_ino(inode); 1258 1259 path = btrfs_alloc_path(); 1260 if (!path) { 1261 extent_clear_unlock_delalloc(inode, start, end, locked_page, 1262 EXTENT_LOCKED | EXTENT_DELALLOC | 1263 EXTENT_DO_ACCOUNTING | 1264 EXTENT_DEFRAG, PAGE_UNLOCK | 1265 PAGE_CLEAR_DIRTY | 1266 PAGE_SET_WRITEBACK | 1267 PAGE_END_WRITEBACK); 1268 return -ENOMEM; 1269 } 1270 1271 nolock = btrfs_is_free_space_inode(inode); 1272 1273 if (nolock) 1274 trans = btrfs_join_transaction_nolock(root); 1275 else 1276 trans = btrfs_join_transaction(root); 1277 1278 if (IS_ERR(trans)) { 1279 extent_clear_unlock_delalloc(inode, start, end, locked_page, 1280 EXTENT_LOCKED | EXTENT_DELALLOC | 1281 EXTENT_DO_ACCOUNTING | 1282 EXTENT_DEFRAG, PAGE_UNLOCK | 1283 PAGE_CLEAR_DIRTY | 1284 PAGE_SET_WRITEBACK | 1285 PAGE_END_WRITEBACK); 1286 btrfs_free_path(path); 1287 return PTR_ERR(trans); 1288 } 1289 1290 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 1291 1292 cow_start = (u64)-1; 1293 cur_offset = start; 1294 while (1) { 1295 ret = btrfs_lookup_file_extent(trans, root, path, ino, 1296 cur_offset, 0); 1297 if (ret < 0) 1298 goto error; 1299 if (ret > 0 && path->slots[0] > 0 && check_prev) { 1300 leaf = path->nodes[0]; 1301 btrfs_item_key_to_cpu(leaf, &found_key, 1302 path->slots[0] - 1); 1303 if (found_key.objectid == ino && 1304 found_key.type == BTRFS_EXTENT_DATA_KEY) 1305 path->slots[0]--; 1306 } 1307 check_prev = 0; 1308 next_slot: 1309 leaf = path->nodes[0]; 1310 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 1311 ret = btrfs_next_leaf(root, path); 1312 if (ret < 0) 1313 goto error; 1314 if (ret > 0) 1315 break; 1316 leaf = path->nodes[0]; 1317 } 1318 1319 nocow = 0; 1320 disk_bytenr = 0; 1321 num_bytes = 0; 1322 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1323 1324 if (found_key.objectid > ino) 1325 break; 1326 if (WARN_ON_ONCE(found_key.objectid < ino) || 1327 found_key.type < BTRFS_EXTENT_DATA_KEY) { 1328 path->slots[0]++; 1329 goto next_slot; 1330 } 1331 if (found_key.type > BTRFS_EXTENT_DATA_KEY || 1332 found_key.offset > end) 1333 break; 1334 1335 if (found_key.offset > cur_offset) { 1336 extent_end = found_key.offset; 1337 extent_type = 0; 1338 goto out_check; 1339 } 1340 1341 fi = btrfs_item_ptr(leaf, path->slots[0], 1342 struct btrfs_file_extent_item); 1343 extent_type = btrfs_file_extent_type(leaf, fi); 1344 1345 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 1346 if (extent_type == BTRFS_FILE_EXTENT_REG || 1347 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1348 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1349 extent_offset = btrfs_file_extent_offset(leaf, fi); 1350 extent_end = found_key.offset + 1351 btrfs_file_extent_num_bytes(leaf, fi); 1352 disk_num_bytes = 1353 btrfs_file_extent_disk_num_bytes(leaf, fi); 1354 if (extent_end <= start) { 1355 path->slots[0]++; 1356 goto next_slot; 1357 } 1358 if (disk_bytenr == 0) 1359 goto out_check; 1360 if (btrfs_file_extent_compression(leaf, fi) || 1361 btrfs_file_extent_encryption(leaf, fi) || 1362 btrfs_file_extent_other_encoding(leaf, fi)) 1363 goto out_check; 1364 if (extent_type == BTRFS_FILE_EXTENT_REG && !force) 1365 goto out_check; 1366 if (btrfs_extent_readonly(root, disk_bytenr)) 1367 goto out_check; 1368 if (btrfs_cross_ref_exist(trans, root, ino, 1369 found_key.offset - 1370 extent_offset, disk_bytenr)) 1371 goto out_check; 1372 disk_bytenr += extent_offset; 1373 disk_bytenr += cur_offset - found_key.offset; 1374 num_bytes = min(end + 1, extent_end) - cur_offset; 1375 /* 1376 * if there are pending snapshots for this root, 1377 * we fall into common COW way. 1378 */ 1379 if (!nolock) { 1380 err = btrfs_start_write_no_snapshoting(root); 1381 if (!err) 1382 goto out_check; 1383 } 1384 /* 1385 * force cow if csum exists in the range. 1386 * this ensure that csum for a given extent are 1387 * either valid or do not exist. 1388 */ 1389 if (csum_exist_in_range(root, disk_bytenr, num_bytes)) 1390 goto out_check; 1391 if (!btrfs_inc_nocow_writers(root->fs_info, 1392 disk_bytenr)) 1393 goto out_check; 1394 nocow = 1; 1395 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 1396 extent_end = found_key.offset + 1397 btrfs_file_extent_inline_len(leaf, 1398 path->slots[0], fi); 1399 extent_end = ALIGN(extent_end, root->sectorsize); 1400 } else { 1401 BUG_ON(1); 1402 } 1403 out_check: 1404 if (extent_end <= start) { 1405 path->slots[0]++; 1406 if (!nolock && nocow) 1407 btrfs_end_write_no_snapshoting(root); 1408 if (nocow) 1409 btrfs_dec_nocow_writers(root->fs_info, 1410 disk_bytenr); 1411 goto next_slot; 1412 } 1413 if (!nocow) { 1414 if (cow_start == (u64)-1) 1415 cow_start = cur_offset; 1416 cur_offset = extent_end; 1417 if (cur_offset > end) 1418 break; 1419 path->slots[0]++; 1420 goto next_slot; 1421 } 1422 1423 btrfs_release_path(path); 1424 if (cow_start != (u64)-1) { 1425 ret = cow_file_range(inode, locked_page, 1426 cow_start, found_key.offset - 1, 1427 end, page_started, nr_written, 1, 1428 NULL); 1429 if (ret) { 1430 if (!nolock && nocow) 1431 btrfs_end_write_no_snapshoting(root); 1432 if (nocow) 1433 btrfs_dec_nocow_writers(root->fs_info, 1434 disk_bytenr); 1435 goto error; 1436 } 1437 cow_start = (u64)-1; 1438 } 1439 1440 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1441 struct extent_map *em; 1442 struct extent_map_tree *em_tree; 1443 em_tree = &BTRFS_I(inode)->extent_tree; 1444 em = alloc_extent_map(); 1445 BUG_ON(!em); /* -ENOMEM */ 1446 em->start = cur_offset; 1447 em->orig_start = found_key.offset - extent_offset; 1448 em->len = num_bytes; 1449 em->block_len = num_bytes; 1450 em->block_start = disk_bytenr; 1451 em->orig_block_len = disk_num_bytes; 1452 em->ram_bytes = ram_bytes; 1453 em->bdev = root->fs_info->fs_devices->latest_bdev; 1454 em->mod_start = em->start; 1455 em->mod_len = em->len; 1456 set_bit(EXTENT_FLAG_PINNED, &em->flags); 1457 set_bit(EXTENT_FLAG_FILLING, &em->flags); 1458 em->generation = -1; 1459 while (1) { 1460 write_lock(&em_tree->lock); 1461 ret = add_extent_mapping(em_tree, em, 1); 1462 write_unlock(&em_tree->lock); 1463 if (ret != -EEXIST) { 1464 free_extent_map(em); 1465 break; 1466 } 1467 btrfs_drop_extent_cache(inode, em->start, 1468 em->start + em->len - 1, 0); 1469 } 1470 type = BTRFS_ORDERED_PREALLOC; 1471 } else { 1472 type = BTRFS_ORDERED_NOCOW; 1473 } 1474 1475 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr, 1476 num_bytes, num_bytes, type); 1477 if (nocow) 1478 btrfs_dec_nocow_writers(root->fs_info, disk_bytenr); 1479 BUG_ON(ret); /* -ENOMEM */ 1480 1481 if (root->root_key.objectid == 1482 BTRFS_DATA_RELOC_TREE_OBJECTID) { 1483 ret = btrfs_reloc_clone_csums(inode, cur_offset, 1484 num_bytes); 1485 if (ret) { 1486 if (!nolock && nocow) 1487 btrfs_end_write_no_snapshoting(root); 1488 goto error; 1489 } 1490 } 1491 1492 extent_clear_unlock_delalloc(inode, cur_offset, 1493 cur_offset + num_bytes - 1, 1494 locked_page, EXTENT_LOCKED | 1495 EXTENT_DELALLOC | 1496 EXTENT_CLEAR_DATA_RESV, 1497 PAGE_UNLOCK | PAGE_SET_PRIVATE2); 1498 1499 if (!nolock && nocow) 1500 btrfs_end_write_no_snapshoting(root); 1501 cur_offset = extent_end; 1502 if (cur_offset > end) 1503 break; 1504 } 1505 btrfs_release_path(path); 1506 1507 if (cur_offset <= end && cow_start == (u64)-1) { 1508 cow_start = cur_offset; 1509 cur_offset = end; 1510 } 1511 1512 if (cow_start != (u64)-1) { 1513 ret = cow_file_range(inode, locked_page, cow_start, end, end, 1514 page_started, nr_written, 1, NULL); 1515 if (ret) 1516 goto error; 1517 } 1518 1519 error: 1520 err = btrfs_end_transaction(trans, root); 1521 if (!ret) 1522 ret = err; 1523 1524 if (ret && cur_offset < end) 1525 extent_clear_unlock_delalloc(inode, cur_offset, end, 1526 locked_page, EXTENT_LOCKED | 1527 EXTENT_DELALLOC | EXTENT_DEFRAG | 1528 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK | 1529 PAGE_CLEAR_DIRTY | 1530 PAGE_SET_WRITEBACK | 1531 PAGE_END_WRITEBACK); 1532 btrfs_free_path(path); 1533 return ret; 1534 } 1535 1536 static inline int need_force_cow(struct inode *inode, u64 start, u64 end) 1537 { 1538 1539 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) && 1540 !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)) 1541 return 0; 1542 1543 /* 1544 * @defrag_bytes is a hint value, no spinlock held here, 1545 * if is not zero, it means the file is defragging. 1546 * Force cow if given extent needs to be defragged. 1547 */ 1548 if (BTRFS_I(inode)->defrag_bytes && 1549 test_range_bit(&BTRFS_I(inode)->io_tree, start, end, 1550 EXTENT_DEFRAG, 0, NULL)) 1551 return 1; 1552 1553 return 0; 1554 } 1555 1556 /* 1557 * extent_io.c call back to do delayed allocation processing 1558 */ 1559 static int run_delalloc_range(struct inode *inode, struct page *locked_page, 1560 u64 start, u64 end, int *page_started, 1561 unsigned long *nr_written) 1562 { 1563 int ret; 1564 int force_cow = need_force_cow(inode, start, end); 1565 1566 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) { 1567 ret = run_delalloc_nocow(inode, locked_page, start, end, 1568 page_started, 1, nr_written); 1569 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) { 1570 ret = run_delalloc_nocow(inode, locked_page, start, end, 1571 page_started, 0, nr_written); 1572 } else if (!inode_need_compress(inode)) { 1573 ret = cow_file_range(inode, locked_page, start, end, end, 1574 page_started, nr_written, 1, NULL); 1575 } else { 1576 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 1577 &BTRFS_I(inode)->runtime_flags); 1578 ret = cow_file_range_async(inode, locked_page, start, end, 1579 page_started, nr_written); 1580 } 1581 return ret; 1582 } 1583 1584 static void btrfs_split_extent_hook(struct inode *inode, 1585 struct extent_state *orig, u64 split) 1586 { 1587 u64 size; 1588 1589 /* not delalloc, ignore it */ 1590 if (!(orig->state & EXTENT_DELALLOC)) 1591 return; 1592 1593 size = orig->end - orig->start + 1; 1594 if (size > BTRFS_MAX_EXTENT_SIZE) { 1595 u64 num_extents; 1596 u64 new_size; 1597 1598 /* 1599 * See the explanation in btrfs_merge_extent_hook, the same 1600 * applies here, just in reverse. 1601 */ 1602 new_size = orig->end - split + 1; 1603 num_extents = div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1, 1604 BTRFS_MAX_EXTENT_SIZE); 1605 new_size = split - orig->start; 1606 num_extents += div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1, 1607 BTRFS_MAX_EXTENT_SIZE); 1608 if (div64_u64(size + BTRFS_MAX_EXTENT_SIZE - 1, 1609 BTRFS_MAX_EXTENT_SIZE) >= num_extents) 1610 return; 1611 } 1612 1613 spin_lock(&BTRFS_I(inode)->lock); 1614 BTRFS_I(inode)->outstanding_extents++; 1615 spin_unlock(&BTRFS_I(inode)->lock); 1616 } 1617 1618 /* 1619 * extent_io.c merge_extent_hook, used to track merged delayed allocation 1620 * extents so we can keep track of new extents that are just merged onto old 1621 * extents, such as when we are doing sequential writes, so we can properly 1622 * account for the metadata space we'll need. 1623 */ 1624 static void btrfs_merge_extent_hook(struct inode *inode, 1625 struct extent_state *new, 1626 struct extent_state *other) 1627 { 1628 u64 new_size, old_size; 1629 u64 num_extents; 1630 1631 /* not delalloc, ignore it */ 1632 if (!(other->state & EXTENT_DELALLOC)) 1633 return; 1634 1635 if (new->start > other->start) 1636 new_size = new->end - other->start + 1; 1637 else 1638 new_size = other->end - new->start + 1; 1639 1640 /* we're not bigger than the max, unreserve the space and go */ 1641 if (new_size <= BTRFS_MAX_EXTENT_SIZE) { 1642 spin_lock(&BTRFS_I(inode)->lock); 1643 BTRFS_I(inode)->outstanding_extents--; 1644 spin_unlock(&BTRFS_I(inode)->lock); 1645 return; 1646 } 1647 1648 /* 1649 * We have to add up either side to figure out how many extents were 1650 * accounted for before we merged into one big extent. If the number of 1651 * extents we accounted for is <= the amount we need for the new range 1652 * then we can return, otherwise drop. Think of it like this 1653 * 1654 * [ 4k][MAX_SIZE] 1655 * 1656 * So we've grown the extent by a MAX_SIZE extent, this would mean we 1657 * need 2 outstanding extents, on one side we have 1 and the other side 1658 * we have 1 so they are == and we can return. But in this case 1659 * 1660 * [MAX_SIZE+4k][MAX_SIZE+4k] 1661 * 1662 * Each range on their own accounts for 2 extents, but merged together 1663 * they are only 3 extents worth of accounting, so we need to drop in 1664 * this case. 1665 */ 1666 old_size = other->end - other->start + 1; 1667 num_extents = div64_u64(old_size + BTRFS_MAX_EXTENT_SIZE - 1, 1668 BTRFS_MAX_EXTENT_SIZE); 1669 old_size = new->end - new->start + 1; 1670 num_extents += div64_u64(old_size + BTRFS_MAX_EXTENT_SIZE - 1, 1671 BTRFS_MAX_EXTENT_SIZE); 1672 1673 if (div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1, 1674 BTRFS_MAX_EXTENT_SIZE) >= num_extents) 1675 return; 1676 1677 spin_lock(&BTRFS_I(inode)->lock); 1678 BTRFS_I(inode)->outstanding_extents--; 1679 spin_unlock(&BTRFS_I(inode)->lock); 1680 } 1681 1682 static void btrfs_add_delalloc_inodes(struct btrfs_root *root, 1683 struct inode *inode) 1684 { 1685 spin_lock(&root->delalloc_lock); 1686 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) { 1687 list_add_tail(&BTRFS_I(inode)->delalloc_inodes, 1688 &root->delalloc_inodes); 1689 set_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1690 &BTRFS_I(inode)->runtime_flags); 1691 root->nr_delalloc_inodes++; 1692 if (root->nr_delalloc_inodes == 1) { 1693 spin_lock(&root->fs_info->delalloc_root_lock); 1694 BUG_ON(!list_empty(&root->delalloc_root)); 1695 list_add_tail(&root->delalloc_root, 1696 &root->fs_info->delalloc_roots); 1697 spin_unlock(&root->fs_info->delalloc_root_lock); 1698 } 1699 } 1700 spin_unlock(&root->delalloc_lock); 1701 } 1702 1703 static void btrfs_del_delalloc_inode(struct btrfs_root *root, 1704 struct inode *inode) 1705 { 1706 spin_lock(&root->delalloc_lock); 1707 if (!list_empty(&BTRFS_I(inode)->delalloc_inodes)) { 1708 list_del_init(&BTRFS_I(inode)->delalloc_inodes); 1709 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1710 &BTRFS_I(inode)->runtime_flags); 1711 root->nr_delalloc_inodes--; 1712 if (!root->nr_delalloc_inodes) { 1713 spin_lock(&root->fs_info->delalloc_root_lock); 1714 BUG_ON(list_empty(&root->delalloc_root)); 1715 list_del_init(&root->delalloc_root); 1716 spin_unlock(&root->fs_info->delalloc_root_lock); 1717 } 1718 } 1719 spin_unlock(&root->delalloc_lock); 1720 } 1721 1722 /* 1723 * extent_io.c set_bit_hook, used to track delayed allocation 1724 * bytes in this file, and to maintain the list of inodes that 1725 * have pending delalloc work to be done. 1726 */ 1727 static void btrfs_set_bit_hook(struct inode *inode, 1728 struct extent_state *state, unsigned *bits) 1729 { 1730 1731 if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC)) 1732 WARN_ON(1); 1733 /* 1734 * set_bit and clear bit hooks normally require _irqsave/restore 1735 * but in this case, we are only testing for the DELALLOC 1736 * bit, which is only set or cleared with irqs on 1737 */ 1738 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) { 1739 struct btrfs_root *root = BTRFS_I(inode)->root; 1740 u64 len = state->end + 1 - state->start; 1741 bool do_list = !btrfs_is_free_space_inode(inode); 1742 1743 if (*bits & EXTENT_FIRST_DELALLOC) { 1744 *bits &= ~EXTENT_FIRST_DELALLOC; 1745 } else { 1746 spin_lock(&BTRFS_I(inode)->lock); 1747 BTRFS_I(inode)->outstanding_extents++; 1748 spin_unlock(&BTRFS_I(inode)->lock); 1749 } 1750 1751 /* For sanity tests */ 1752 if (btrfs_is_testing(root->fs_info)) 1753 return; 1754 1755 __percpu_counter_add(&root->fs_info->delalloc_bytes, len, 1756 root->fs_info->delalloc_batch); 1757 spin_lock(&BTRFS_I(inode)->lock); 1758 BTRFS_I(inode)->delalloc_bytes += len; 1759 if (*bits & EXTENT_DEFRAG) 1760 BTRFS_I(inode)->defrag_bytes += len; 1761 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1762 &BTRFS_I(inode)->runtime_flags)) 1763 btrfs_add_delalloc_inodes(root, inode); 1764 spin_unlock(&BTRFS_I(inode)->lock); 1765 } 1766 } 1767 1768 /* 1769 * extent_io.c clear_bit_hook, see set_bit_hook for why 1770 */ 1771 static void btrfs_clear_bit_hook(struct inode *inode, 1772 struct extent_state *state, 1773 unsigned *bits) 1774 { 1775 u64 len = state->end + 1 - state->start; 1776 u64 num_extents = div64_u64(len + BTRFS_MAX_EXTENT_SIZE -1, 1777 BTRFS_MAX_EXTENT_SIZE); 1778 1779 spin_lock(&BTRFS_I(inode)->lock); 1780 if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG)) 1781 BTRFS_I(inode)->defrag_bytes -= len; 1782 spin_unlock(&BTRFS_I(inode)->lock); 1783 1784 /* 1785 * set_bit and clear bit hooks normally require _irqsave/restore 1786 * but in this case, we are only testing for the DELALLOC 1787 * bit, which is only set or cleared with irqs on 1788 */ 1789 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) { 1790 struct btrfs_root *root = BTRFS_I(inode)->root; 1791 bool do_list = !btrfs_is_free_space_inode(inode); 1792 1793 if (*bits & EXTENT_FIRST_DELALLOC) { 1794 *bits &= ~EXTENT_FIRST_DELALLOC; 1795 } else if (!(*bits & EXTENT_DO_ACCOUNTING)) { 1796 spin_lock(&BTRFS_I(inode)->lock); 1797 BTRFS_I(inode)->outstanding_extents -= num_extents; 1798 spin_unlock(&BTRFS_I(inode)->lock); 1799 } 1800 1801 /* 1802 * We don't reserve metadata space for space cache inodes so we 1803 * don't need to call dellalloc_release_metadata if there is an 1804 * error. 1805 */ 1806 if (*bits & EXTENT_DO_ACCOUNTING && 1807 root != root->fs_info->tree_root) 1808 btrfs_delalloc_release_metadata(inode, len); 1809 1810 /* For sanity tests. */ 1811 if (btrfs_is_testing(root->fs_info)) 1812 return; 1813 1814 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID 1815 && do_list && !(state->state & EXTENT_NORESERVE) 1816 && (*bits & (EXTENT_DO_ACCOUNTING | 1817 EXTENT_CLEAR_DATA_RESV))) 1818 btrfs_free_reserved_data_space_noquota(inode, 1819 state->start, len); 1820 1821 __percpu_counter_add(&root->fs_info->delalloc_bytes, -len, 1822 root->fs_info->delalloc_batch); 1823 spin_lock(&BTRFS_I(inode)->lock); 1824 BTRFS_I(inode)->delalloc_bytes -= len; 1825 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 && 1826 test_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1827 &BTRFS_I(inode)->runtime_flags)) 1828 btrfs_del_delalloc_inode(root, inode); 1829 spin_unlock(&BTRFS_I(inode)->lock); 1830 } 1831 } 1832 1833 /* 1834 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure 1835 * we don't create bios that span stripes or chunks 1836 * 1837 * return 1 if page cannot be merged to bio 1838 * return 0 if page can be merged to bio 1839 * return error otherwise 1840 */ 1841 int btrfs_merge_bio_hook(struct page *page, unsigned long offset, 1842 size_t size, struct bio *bio, 1843 unsigned long bio_flags) 1844 { 1845 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; 1846 u64 logical = (u64)bio->bi_iter.bi_sector << 9; 1847 u64 length = 0; 1848 u64 map_length; 1849 int ret; 1850 1851 if (bio_flags & EXTENT_BIO_COMPRESSED) 1852 return 0; 1853 1854 length = bio->bi_iter.bi_size; 1855 map_length = length; 1856 ret = btrfs_map_block(root->fs_info, bio_op(bio), logical, 1857 &map_length, NULL, 0); 1858 if (ret < 0) 1859 return ret; 1860 if (map_length < length + size) 1861 return 1; 1862 return 0; 1863 } 1864 1865 /* 1866 * in order to insert checksums into the metadata in large chunks, 1867 * we wait until bio submission time. All the pages in the bio are 1868 * checksummed and sums are attached onto the ordered extent record. 1869 * 1870 * At IO completion time the cums attached on the ordered extent record 1871 * are inserted into the btree 1872 */ 1873 static int __btrfs_submit_bio_start(struct inode *inode, struct bio *bio, 1874 int mirror_num, unsigned long bio_flags, 1875 u64 bio_offset) 1876 { 1877 struct btrfs_root *root = BTRFS_I(inode)->root; 1878 int ret = 0; 1879 1880 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0); 1881 BUG_ON(ret); /* -ENOMEM */ 1882 return 0; 1883 } 1884 1885 /* 1886 * in order to insert checksums into the metadata in large chunks, 1887 * we wait until bio submission time. All the pages in the bio are 1888 * checksummed and sums are attached onto the ordered extent record. 1889 * 1890 * At IO completion time the cums attached on the ordered extent record 1891 * are inserted into the btree 1892 */ 1893 static int __btrfs_submit_bio_done(struct inode *inode, struct bio *bio, 1894 int mirror_num, unsigned long bio_flags, 1895 u64 bio_offset) 1896 { 1897 struct btrfs_root *root = BTRFS_I(inode)->root; 1898 int ret; 1899 1900 ret = btrfs_map_bio(root, bio, mirror_num, 1); 1901 if (ret) { 1902 bio->bi_error = ret; 1903 bio_endio(bio); 1904 } 1905 return ret; 1906 } 1907 1908 /* 1909 * extent_io.c submission hook. This does the right thing for csum calculation 1910 * on write, or reading the csums from the tree before a read 1911 */ 1912 static int btrfs_submit_bio_hook(struct inode *inode, struct bio *bio, 1913 int mirror_num, unsigned long bio_flags, 1914 u64 bio_offset) 1915 { 1916 struct btrfs_root *root = BTRFS_I(inode)->root; 1917 enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA; 1918 int ret = 0; 1919 int skip_sum; 1920 int async = !atomic_read(&BTRFS_I(inode)->sync_writers); 1921 1922 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 1923 1924 if (btrfs_is_free_space_inode(inode)) 1925 metadata = BTRFS_WQ_ENDIO_FREE_SPACE; 1926 1927 if (bio_op(bio) != REQ_OP_WRITE) { 1928 ret = btrfs_bio_wq_end_io(root->fs_info, bio, metadata); 1929 if (ret) 1930 goto out; 1931 1932 if (bio_flags & EXTENT_BIO_COMPRESSED) { 1933 ret = btrfs_submit_compressed_read(inode, bio, 1934 mirror_num, 1935 bio_flags); 1936 goto out; 1937 } else if (!skip_sum) { 1938 ret = btrfs_lookup_bio_sums(root, inode, bio, NULL); 1939 if (ret) 1940 goto out; 1941 } 1942 goto mapit; 1943 } else if (async && !skip_sum) { 1944 /* csum items have already been cloned */ 1945 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) 1946 goto mapit; 1947 /* we're doing a write, do the async checksumming */ 1948 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info, 1949 inode, bio, mirror_num, 1950 bio_flags, bio_offset, 1951 __btrfs_submit_bio_start, 1952 __btrfs_submit_bio_done); 1953 goto out; 1954 } else if (!skip_sum) { 1955 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0); 1956 if (ret) 1957 goto out; 1958 } 1959 1960 mapit: 1961 ret = btrfs_map_bio(root, bio, mirror_num, 0); 1962 1963 out: 1964 if (ret < 0) { 1965 bio->bi_error = ret; 1966 bio_endio(bio); 1967 } 1968 return ret; 1969 } 1970 1971 /* 1972 * given a list of ordered sums record them in the inode. This happens 1973 * at IO completion time based on sums calculated at bio submission time. 1974 */ 1975 static noinline int add_pending_csums(struct btrfs_trans_handle *trans, 1976 struct inode *inode, u64 file_offset, 1977 struct list_head *list) 1978 { 1979 struct btrfs_ordered_sum *sum; 1980 1981 list_for_each_entry(sum, list, list) { 1982 trans->adding_csums = 1; 1983 btrfs_csum_file_blocks(trans, 1984 BTRFS_I(inode)->root->fs_info->csum_root, sum); 1985 trans->adding_csums = 0; 1986 } 1987 return 0; 1988 } 1989 1990 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end, 1991 struct extent_state **cached_state) 1992 { 1993 WARN_ON((end & (PAGE_SIZE - 1)) == 0); 1994 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end, 1995 cached_state); 1996 } 1997 1998 /* see btrfs_writepage_start_hook for details on why this is required */ 1999 struct btrfs_writepage_fixup { 2000 struct page *page; 2001 struct btrfs_work work; 2002 }; 2003 2004 static void btrfs_writepage_fixup_worker(struct btrfs_work *work) 2005 { 2006 struct btrfs_writepage_fixup *fixup; 2007 struct btrfs_ordered_extent *ordered; 2008 struct extent_state *cached_state = NULL; 2009 struct page *page; 2010 struct inode *inode; 2011 u64 page_start; 2012 u64 page_end; 2013 int ret; 2014 2015 fixup = container_of(work, struct btrfs_writepage_fixup, work); 2016 page = fixup->page; 2017 again: 2018 lock_page(page); 2019 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) { 2020 ClearPageChecked(page); 2021 goto out_page; 2022 } 2023 2024 inode = page->mapping->host; 2025 page_start = page_offset(page); 2026 page_end = page_offset(page) + PAGE_SIZE - 1; 2027 2028 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 2029 &cached_state); 2030 2031 /* already ordered? We're done */ 2032 if (PagePrivate2(page)) 2033 goto out; 2034 2035 ordered = btrfs_lookup_ordered_range(inode, page_start, 2036 PAGE_SIZE); 2037 if (ordered) { 2038 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, 2039 page_end, &cached_state, GFP_NOFS); 2040 unlock_page(page); 2041 btrfs_start_ordered_extent(inode, ordered, 1); 2042 btrfs_put_ordered_extent(ordered); 2043 goto again; 2044 } 2045 2046 ret = btrfs_delalloc_reserve_space(inode, page_start, 2047 PAGE_SIZE); 2048 if (ret) { 2049 mapping_set_error(page->mapping, ret); 2050 end_extent_writepage(page, ret, page_start, page_end); 2051 ClearPageChecked(page); 2052 goto out; 2053 } 2054 2055 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state); 2056 ClearPageChecked(page); 2057 set_page_dirty(page); 2058 out: 2059 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end, 2060 &cached_state, GFP_NOFS); 2061 out_page: 2062 unlock_page(page); 2063 put_page(page); 2064 kfree(fixup); 2065 } 2066 2067 /* 2068 * There are a few paths in the higher layers of the kernel that directly 2069 * set the page dirty bit without asking the filesystem if it is a 2070 * good idea. This causes problems because we want to make sure COW 2071 * properly happens and the data=ordered rules are followed. 2072 * 2073 * In our case any range that doesn't have the ORDERED bit set 2074 * hasn't been properly setup for IO. We kick off an async process 2075 * to fix it up. The async helper will wait for ordered extents, set 2076 * the delalloc bit and make it safe to write the page. 2077 */ 2078 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end) 2079 { 2080 struct inode *inode = page->mapping->host; 2081 struct btrfs_writepage_fixup *fixup; 2082 struct btrfs_root *root = BTRFS_I(inode)->root; 2083 2084 /* this page is properly in the ordered list */ 2085 if (TestClearPagePrivate2(page)) 2086 return 0; 2087 2088 if (PageChecked(page)) 2089 return -EAGAIN; 2090 2091 fixup = kzalloc(sizeof(*fixup), GFP_NOFS); 2092 if (!fixup) 2093 return -EAGAIN; 2094 2095 SetPageChecked(page); 2096 get_page(page); 2097 btrfs_init_work(&fixup->work, btrfs_fixup_helper, 2098 btrfs_writepage_fixup_worker, NULL, NULL); 2099 fixup->page = page; 2100 btrfs_queue_work(root->fs_info->fixup_workers, &fixup->work); 2101 return -EBUSY; 2102 } 2103 2104 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans, 2105 struct inode *inode, u64 file_pos, 2106 u64 disk_bytenr, u64 disk_num_bytes, 2107 u64 num_bytes, u64 ram_bytes, 2108 u8 compression, u8 encryption, 2109 u16 other_encoding, int extent_type) 2110 { 2111 struct btrfs_root *root = BTRFS_I(inode)->root; 2112 struct btrfs_file_extent_item *fi; 2113 struct btrfs_path *path; 2114 struct extent_buffer *leaf; 2115 struct btrfs_key ins; 2116 int extent_inserted = 0; 2117 int ret; 2118 2119 path = btrfs_alloc_path(); 2120 if (!path) 2121 return -ENOMEM; 2122 2123 /* 2124 * we may be replacing one extent in the tree with another. 2125 * The new extent is pinned in the extent map, and we don't want 2126 * to drop it from the cache until it is completely in the btree. 2127 * 2128 * So, tell btrfs_drop_extents to leave this extent in the cache. 2129 * the caller is expected to unpin it and allow it to be merged 2130 * with the others. 2131 */ 2132 ret = __btrfs_drop_extents(trans, root, inode, path, file_pos, 2133 file_pos + num_bytes, NULL, 0, 2134 1, sizeof(*fi), &extent_inserted); 2135 if (ret) 2136 goto out; 2137 2138 if (!extent_inserted) { 2139 ins.objectid = btrfs_ino(inode); 2140 ins.offset = file_pos; 2141 ins.type = BTRFS_EXTENT_DATA_KEY; 2142 2143 path->leave_spinning = 1; 2144 ret = btrfs_insert_empty_item(trans, root, path, &ins, 2145 sizeof(*fi)); 2146 if (ret) 2147 goto out; 2148 } 2149 leaf = path->nodes[0]; 2150 fi = btrfs_item_ptr(leaf, path->slots[0], 2151 struct btrfs_file_extent_item); 2152 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 2153 btrfs_set_file_extent_type(leaf, fi, extent_type); 2154 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr); 2155 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes); 2156 btrfs_set_file_extent_offset(leaf, fi, 0); 2157 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 2158 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes); 2159 btrfs_set_file_extent_compression(leaf, fi, compression); 2160 btrfs_set_file_extent_encryption(leaf, fi, encryption); 2161 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding); 2162 2163 btrfs_mark_buffer_dirty(leaf); 2164 btrfs_release_path(path); 2165 2166 inode_add_bytes(inode, num_bytes); 2167 2168 ins.objectid = disk_bytenr; 2169 ins.offset = disk_num_bytes; 2170 ins.type = BTRFS_EXTENT_ITEM_KEY; 2171 ret = btrfs_alloc_reserved_file_extent(trans, root, 2172 root->root_key.objectid, 2173 btrfs_ino(inode), file_pos, 2174 ram_bytes, &ins); 2175 /* 2176 * Release the reserved range from inode dirty range map, as it is 2177 * already moved into delayed_ref_head 2178 */ 2179 btrfs_qgroup_release_data(inode, file_pos, ram_bytes); 2180 out: 2181 btrfs_free_path(path); 2182 2183 return ret; 2184 } 2185 2186 /* snapshot-aware defrag */ 2187 struct sa_defrag_extent_backref { 2188 struct rb_node node; 2189 struct old_sa_defrag_extent *old; 2190 u64 root_id; 2191 u64 inum; 2192 u64 file_pos; 2193 u64 extent_offset; 2194 u64 num_bytes; 2195 u64 generation; 2196 }; 2197 2198 struct old_sa_defrag_extent { 2199 struct list_head list; 2200 struct new_sa_defrag_extent *new; 2201 2202 u64 extent_offset; 2203 u64 bytenr; 2204 u64 offset; 2205 u64 len; 2206 int count; 2207 }; 2208 2209 struct new_sa_defrag_extent { 2210 struct rb_root root; 2211 struct list_head head; 2212 struct btrfs_path *path; 2213 struct inode *inode; 2214 u64 file_pos; 2215 u64 len; 2216 u64 bytenr; 2217 u64 disk_len; 2218 u8 compress_type; 2219 }; 2220 2221 static int backref_comp(struct sa_defrag_extent_backref *b1, 2222 struct sa_defrag_extent_backref *b2) 2223 { 2224 if (b1->root_id < b2->root_id) 2225 return -1; 2226 else if (b1->root_id > b2->root_id) 2227 return 1; 2228 2229 if (b1->inum < b2->inum) 2230 return -1; 2231 else if (b1->inum > b2->inum) 2232 return 1; 2233 2234 if (b1->file_pos < b2->file_pos) 2235 return -1; 2236 else if (b1->file_pos > b2->file_pos) 2237 return 1; 2238 2239 /* 2240 * [------------------------------] ===> (a range of space) 2241 * |<--->| |<---->| =============> (fs/file tree A) 2242 * |<---------------------------->| ===> (fs/file tree B) 2243 * 2244 * A range of space can refer to two file extents in one tree while 2245 * refer to only one file extent in another tree. 2246 * 2247 * So we may process a disk offset more than one time(two extents in A) 2248 * and locate at the same extent(one extent in B), then insert two same 2249 * backrefs(both refer to the extent in B). 2250 */ 2251 return 0; 2252 } 2253 2254 static void backref_insert(struct rb_root *root, 2255 struct sa_defrag_extent_backref *backref) 2256 { 2257 struct rb_node **p = &root->rb_node; 2258 struct rb_node *parent = NULL; 2259 struct sa_defrag_extent_backref *entry; 2260 int ret; 2261 2262 while (*p) { 2263 parent = *p; 2264 entry = rb_entry(parent, struct sa_defrag_extent_backref, node); 2265 2266 ret = backref_comp(backref, entry); 2267 if (ret < 0) 2268 p = &(*p)->rb_left; 2269 else 2270 p = &(*p)->rb_right; 2271 } 2272 2273 rb_link_node(&backref->node, parent, p); 2274 rb_insert_color(&backref->node, root); 2275 } 2276 2277 /* 2278 * Note the backref might has changed, and in this case we just return 0. 2279 */ 2280 static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id, 2281 void *ctx) 2282 { 2283 struct btrfs_file_extent_item *extent; 2284 struct btrfs_fs_info *fs_info; 2285 struct old_sa_defrag_extent *old = ctx; 2286 struct new_sa_defrag_extent *new = old->new; 2287 struct btrfs_path *path = new->path; 2288 struct btrfs_key key; 2289 struct btrfs_root *root; 2290 struct sa_defrag_extent_backref *backref; 2291 struct extent_buffer *leaf; 2292 struct inode *inode = new->inode; 2293 int slot; 2294 int ret; 2295 u64 extent_offset; 2296 u64 num_bytes; 2297 2298 if (BTRFS_I(inode)->root->root_key.objectid == root_id && 2299 inum == btrfs_ino(inode)) 2300 return 0; 2301 2302 key.objectid = root_id; 2303 key.type = BTRFS_ROOT_ITEM_KEY; 2304 key.offset = (u64)-1; 2305 2306 fs_info = BTRFS_I(inode)->root->fs_info; 2307 root = btrfs_read_fs_root_no_name(fs_info, &key); 2308 if (IS_ERR(root)) { 2309 if (PTR_ERR(root) == -ENOENT) 2310 return 0; 2311 WARN_ON(1); 2312 pr_debug("inum=%llu, offset=%llu, root_id=%llu\n", 2313 inum, offset, root_id); 2314 return PTR_ERR(root); 2315 } 2316 2317 key.objectid = inum; 2318 key.type = BTRFS_EXTENT_DATA_KEY; 2319 if (offset > (u64)-1 << 32) 2320 key.offset = 0; 2321 else 2322 key.offset = offset; 2323 2324 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2325 if (WARN_ON(ret < 0)) 2326 return ret; 2327 ret = 0; 2328 2329 while (1) { 2330 cond_resched(); 2331 2332 leaf = path->nodes[0]; 2333 slot = path->slots[0]; 2334 2335 if (slot >= btrfs_header_nritems(leaf)) { 2336 ret = btrfs_next_leaf(root, path); 2337 if (ret < 0) { 2338 goto out; 2339 } else if (ret > 0) { 2340 ret = 0; 2341 goto out; 2342 } 2343 continue; 2344 } 2345 2346 path->slots[0]++; 2347 2348 btrfs_item_key_to_cpu(leaf, &key, slot); 2349 2350 if (key.objectid > inum) 2351 goto out; 2352 2353 if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY) 2354 continue; 2355 2356 extent = btrfs_item_ptr(leaf, slot, 2357 struct btrfs_file_extent_item); 2358 2359 if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr) 2360 continue; 2361 2362 /* 2363 * 'offset' refers to the exact key.offset, 2364 * NOT the 'offset' field in btrfs_extent_data_ref, ie. 2365 * (key.offset - extent_offset). 2366 */ 2367 if (key.offset != offset) 2368 continue; 2369 2370 extent_offset = btrfs_file_extent_offset(leaf, extent); 2371 num_bytes = btrfs_file_extent_num_bytes(leaf, extent); 2372 2373 if (extent_offset >= old->extent_offset + old->offset + 2374 old->len || extent_offset + num_bytes <= 2375 old->extent_offset + old->offset) 2376 continue; 2377 break; 2378 } 2379 2380 backref = kmalloc(sizeof(*backref), GFP_NOFS); 2381 if (!backref) { 2382 ret = -ENOENT; 2383 goto out; 2384 } 2385 2386 backref->root_id = root_id; 2387 backref->inum = inum; 2388 backref->file_pos = offset; 2389 backref->num_bytes = num_bytes; 2390 backref->extent_offset = extent_offset; 2391 backref->generation = btrfs_file_extent_generation(leaf, extent); 2392 backref->old = old; 2393 backref_insert(&new->root, backref); 2394 old->count++; 2395 out: 2396 btrfs_release_path(path); 2397 WARN_ON(ret); 2398 return ret; 2399 } 2400 2401 static noinline bool record_extent_backrefs(struct btrfs_path *path, 2402 struct new_sa_defrag_extent *new) 2403 { 2404 struct btrfs_fs_info *fs_info = BTRFS_I(new->inode)->root->fs_info; 2405 struct old_sa_defrag_extent *old, *tmp; 2406 int ret; 2407 2408 new->path = path; 2409 2410 list_for_each_entry_safe(old, tmp, &new->head, list) { 2411 ret = iterate_inodes_from_logical(old->bytenr + 2412 old->extent_offset, fs_info, 2413 path, record_one_backref, 2414 old); 2415 if (ret < 0 && ret != -ENOENT) 2416 return false; 2417 2418 /* no backref to be processed for this extent */ 2419 if (!old->count) { 2420 list_del(&old->list); 2421 kfree(old); 2422 } 2423 } 2424 2425 if (list_empty(&new->head)) 2426 return false; 2427 2428 return true; 2429 } 2430 2431 static int relink_is_mergable(struct extent_buffer *leaf, 2432 struct btrfs_file_extent_item *fi, 2433 struct new_sa_defrag_extent *new) 2434 { 2435 if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr) 2436 return 0; 2437 2438 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG) 2439 return 0; 2440 2441 if (btrfs_file_extent_compression(leaf, fi) != new->compress_type) 2442 return 0; 2443 2444 if (btrfs_file_extent_encryption(leaf, fi) || 2445 btrfs_file_extent_other_encoding(leaf, fi)) 2446 return 0; 2447 2448 return 1; 2449 } 2450 2451 /* 2452 * Note the backref might has changed, and in this case we just return 0. 2453 */ 2454 static noinline int relink_extent_backref(struct btrfs_path *path, 2455 struct sa_defrag_extent_backref *prev, 2456 struct sa_defrag_extent_backref *backref) 2457 { 2458 struct btrfs_file_extent_item *extent; 2459 struct btrfs_file_extent_item *item; 2460 struct btrfs_ordered_extent *ordered; 2461 struct btrfs_trans_handle *trans; 2462 struct btrfs_fs_info *fs_info; 2463 struct btrfs_root *root; 2464 struct btrfs_key key; 2465 struct extent_buffer *leaf; 2466 struct old_sa_defrag_extent *old = backref->old; 2467 struct new_sa_defrag_extent *new = old->new; 2468 struct inode *src_inode = new->inode; 2469 struct inode *inode; 2470 struct extent_state *cached = NULL; 2471 int ret = 0; 2472 u64 start; 2473 u64 len; 2474 u64 lock_start; 2475 u64 lock_end; 2476 bool merge = false; 2477 int index; 2478 2479 if (prev && prev->root_id == backref->root_id && 2480 prev->inum == backref->inum && 2481 prev->file_pos + prev->num_bytes == backref->file_pos) 2482 merge = true; 2483 2484 /* step 1: get root */ 2485 key.objectid = backref->root_id; 2486 key.type = BTRFS_ROOT_ITEM_KEY; 2487 key.offset = (u64)-1; 2488 2489 fs_info = BTRFS_I(src_inode)->root->fs_info; 2490 index = srcu_read_lock(&fs_info->subvol_srcu); 2491 2492 root = btrfs_read_fs_root_no_name(fs_info, &key); 2493 if (IS_ERR(root)) { 2494 srcu_read_unlock(&fs_info->subvol_srcu, index); 2495 if (PTR_ERR(root) == -ENOENT) 2496 return 0; 2497 return PTR_ERR(root); 2498 } 2499 2500 if (btrfs_root_readonly(root)) { 2501 srcu_read_unlock(&fs_info->subvol_srcu, index); 2502 return 0; 2503 } 2504 2505 /* step 2: get inode */ 2506 key.objectid = backref->inum; 2507 key.type = BTRFS_INODE_ITEM_KEY; 2508 key.offset = 0; 2509 2510 inode = btrfs_iget(fs_info->sb, &key, root, NULL); 2511 if (IS_ERR(inode)) { 2512 srcu_read_unlock(&fs_info->subvol_srcu, index); 2513 return 0; 2514 } 2515 2516 srcu_read_unlock(&fs_info->subvol_srcu, index); 2517 2518 /* step 3: relink backref */ 2519 lock_start = backref->file_pos; 2520 lock_end = backref->file_pos + backref->num_bytes - 1; 2521 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end, 2522 &cached); 2523 2524 ordered = btrfs_lookup_first_ordered_extent(inode, lock_end); 2525 if (ordered) { 2526 btrfs_put_ordered_extent(ordered); 2527 goto out_unlock; 2528 } 2529 2530 trans = btrfs_join_transaction(root); 2531 if (IS_ERR(trans)) { 2532 ret = PTR_ERR(trans); 2533 goto out_unlock; 2534 } 2535 2536 key.objectid = backref->inum; 2537 key.type = BTRFS_EXTENT_DATA_KEY; 2538 key.offset = backref->file_pos; 2539 2540 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2541 if (ret < 0) { 2542 goto out_free_path; 2543 } else if (ret > 0) { 2544 ret = 0; 2545 goto out_free_path; 2546 } 2547 2548 extent = btrfs_item_ptr(path->nodes[0], path->slots[0], 2549 struct btrfs_file_extent_item); 2550 2551 if (btrfs_file_extent_generation(path->nodes[0], extent) != 2552 backref->generation) 2553 goto out_free_path; 2554 2555 btrfs_release_path(path); 2556 2557 start = backref->file_pos; 2558 if (backref->extent_offset < old->extent_offset + old->offset) 2559 start += old->extent_offset + old->offset - 2560 backref->extent_offset; 2561 2562 len = min(backref->extent_offset + backref->num_bytes, 2563 old->extent_offset + old->offset + old->len); 2564 len -= max(backref->extent_offset, old->extent_offset + old->offset); 2565 2566 ret = btrfs_drop_extents(trans, root, inode, start, 2567 start + len, 1); 2568 if (ret) 2569 goto out_free_path; 2570 again: 2571 key.objectid = btrfs_ino(inode); 2572 key.type = BTRFS_EXTENT_DATA_KEY; 2573 key.offset = start; 2574 2575 path->leave_spinning = 1; 2576 if (merge) { 2577 struct btrfs_file_extent_item *fi; 2578 u64 extent_len; 2579 struct btrfs_key found_key; 2580 2581 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2582 if (ret < 0) 2583 goto out_free_path; 2584 2585 path->slots[0]--; 2586 leaf = path->nodes[0]; 2587 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 2588 2589 fi = btrfs_item_ptr(leaf, path->slots[0], 2590 struct btrfs_file_extent_item); 2591 extent_len = btrfs_file_extent_num_bytes(leaf, fi); 2592 2593 if (extent_len + found_key.offset == start && 2594 relink_is_mergable(leaf, fi, new)) { 2595 btrfs_set_file_extent_num_bytes(leaf, fi, 2596 extent_len + len); 2597 btrfs_mark_buffer_dirty(leaf); 2598 inode_add_bytes(inode, len); 2599 2600 ret = 1; 2601 goto out_free_path; 2602 } else { 2603 merge = false; 2604 btrfs_release_path(path); 2605 goto again; 2606 } 2607 } 2608 2609 ret = btrfs_insert_empty_item(trans, root, path, &key, 2610 sizeof(*extent)); 2611 if (ret) { 2612 btrfs_abort_transaction(trans, ret); 2613 goto out_free_path; 2614 } 2615 2616 leaf = path->nodes[0]; 2617 item = btrfs_item_ptr(leaf, path->slots[0], 2618 struct btrfs_file_extent_item); 2619 btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr); 2620 btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len); 2621 btrfs_set_file_extent_offset(leaf, item, start - new->file_pos); 2622 btrfs_set_file_extent_num_bytes(leaf, item, len); 2623 btrfs_set_file_extent_ram_bytes(leaf, item, new->len); 2624 btrfs_set_file_extent_generation(leaf, item, trans->transid); 2625 btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG); 2626 btrfs_set_file_extent_compression(leaf, item, new->compress_type); 2627 btrfs_set_file_extent_encryption(leaf, item, 0); 2628 btrfs_set_file_extent_other_encoding(leaf, item, 0); 2629 2630 btrfs_mark_buffer_dirty(leaf); 2631 inode_add_bytes(inode, len); 2632 btrfs_release_path(path); 2633 2634 ret = btrfs_inc_extent_ref(trans, root, new->bytenr, 2635 new->disk_len, 0, 2636 backref->root_id, backref->inum, 2637 new->file_pos); /* start - extent_offset */ 2638 if (ret) { 2639 btrfs_abort_transaction(trans, ret); 2640 goto out_free_path; 2641 } 2642 2643 ret = 1; 2644 out_free_path: 2645 btrfs_release_path(path); 2646 path->leave_spinning = 0; 2647 btrfs_end_transaction(trans, root); 2648 out_unlock: 2649 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end, 2650 &cached, GFP_NOFS); 2651 iput(inode); 2652 return ret; 2653 } 2654 2655 static void free_sa_defrag_extent(struct new_sa_defrag_extent *new) 2656 { 2657 struct old_sa_defrag_extent *old, *tmp; 2658 2659 if (!new) 2660 return; 2661 2662 list_for_each_entry_safe(old, tmp, &new->head, list) { 2663 kfree(old); 2664 } 2665 kfree(new); 2666 } 2667 2668 static void relink_file_extents(struct new_sa_defrag_extent *new) 2669 { 2670 struct btrfs_path *path; 2671 struct sa_defrag_extent_backref *backref; 2672 struct sa_defrag_extent_backref *prev = NULL; 2673 struct inode *inode; 2674 struct btrfs_root *root; 2675 struct rb_node *node; 2676 int ret; 2677 2678 inode = new->inode; 2679 root = BTRFS_I(inode)->root; 2680 2681 path = btrfs_alloc_path(); 2682 if (!path) 2683 return; 2684 2685 if (!record_extent_backrefs(path, new)) { 2686 btrfs_free_path(path); 2687 goto out; 2688 } 2689 btrfs_release_path(path); 2690 2691 while (1) { 2692 node = rb_first(&new->root); 2693 if (!node) 2694 break; 2695 rb_erase(node, &new->root); 2696 2697 backref = rb_entry(node, struct sa_defrag_extent_backref, node); 2698 2699 ret = relink_extent_backref(path, prev, backref); 2700 WARN_ON(ret < 0); 2701 2702 kfree(prev); 2703 2704 if (ret == 1) 2705 prev = backref; 2706 else 2707 prev = NULL; 2708 cond_resched(); 2709 } 2710 kfree(prev); 2711 2712 btrfs_free_path(path); 2713 out: 2714 free_sa_defrag_extent(new); 2715 2716 atomic_dec(&root->fs_info->defrag_running); 2717 wake_up(&root->fs_info->transaction_wait); 2718 } 2719 2720 static struct new_sa_defrag_extent * 2721 record_old_file_extents(struct inode *inode, 2722 struct btrfs_ordered_extent *ordered) 2723 { 2724 struct btrfs_root *root = BTRFS_I(inode)->root; 2725 struct btrfs_path *path; 2726 struct btrfs_key key; 2727 struct old_sa_defrag_extent *old; 2728 struct new_sa_defrag_extent *new; 2729 int ret; 2730 2731 new = kmalloc(sizeof(*new), GFP_NOFS); 2732 if (!new) 2733 return NULL; 2734 2735 new->inode = inode; 2736 new->file_pos = ordered->file_offset; 2737 new->len = ordered->len; 2738 new->bytenr = ordered->start; 2739 new->disk_len = ordered->disk_len; 2740 new->compress_type = ordered->compress_type; 2741 new->root = RB_ROOT; 2742 INIT_LIST_HEAD(&new->head); 2743 2744 path = btrfs_alloc_path(); 2745 if (!path) 2746 goto out_kfree; 2747 2748 key.objectid = btrfs_ino(inode); 2749 key.type = BTRFS_EXTENT_DATA_KEY; 2750 key.offset = new->file_pos; 2751 2752 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2753 if (ret < 0) 2754 goto out_free_path; 2755 if (ret > 0 && path->slots[0] > 0) 2756 path->slots[0]--; 2757 2758 /* find out all the old extents for the file range */ 2759 while (1) { 2760 struct btrfs_file_extent_item *extent; 2761 struct extent_buffer *l; 2762 int slot; 2763 u64 num_bytes; 2764 u64 offset; 2765 u64 end; 2766 u64 disk_bytenr; 2767 u64 extent_offset; 2768 2769 l = path->nodes[0]; 2770 slot = path->slots[0]; 2771 2772 if (slot >= btrfs_header_nritems(l)) { 2773 ret = btrfs_next_leaf(root, path); 2774 if (ret < 0) 2775 goto out_free_path; 2776 else if (ret > 0) 2777 break; 2778 continue; 2779 } 2780 2781 btrfs_item_key_to_cpu(l, &key, slot); 2782 2783 if (key.objectid != btrfs_ino(inode)) 2784 break; 2785 if (key.type != BTRFS_EXTENT_DATA_KEY) 2786 break; 2787 if (key.offset >= new->file_pos + new->len) 2788 break; 2789 2790 extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item); 2791 2792 num_bytes = btrfs_file_extent_num_bytes(l, extent); 2793 if (key.offset + num_bytes < new->file_pos) 2794 goto next; 2795 2796 disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent); 2797 if (!disk_bytenr) 2798 goto next; 2799 2800 extent_offset = btrfs_file_extent_offset(l, extent); 2801 2802 old = kmalloc(sizeof(*old), GFP_NOFS); 2803 if (!old) 2804 goto out_free_path; 2805 2806 offset = max(new->file_pos, key.offset); 2807 end = min(new->file_pos + new->len, key.offset + num_bytes); 2808 2809 old->bytenr = disk_bytenr; 2810 old->extent_offset = extent_offset; 2811 old->offset = offset - key.offset; 2812 old->len = end - offset; 2813 old->new = new; 2814 old->count = 0; 2815 list_add_tail(&old->list, &new->head); 2816 next: 2817 path->slots[0]++; 2818 cond_resched(); 2819 } 2820 2821 btrfs_free_path(path); 2822 atomic_inc(&root->fs_info->defrag_running); 2823 2824 return new; 2825 2826 out_free_path: 2827 btrfs_free_path(path); 2828 out_kfree: 2829 free_sa_defrag_extent(new); 2830 return NULL; 2831 } 2832 2833 static void btrfs_release_delalloc_bytes(struct btrfs_root *root, 2834 u64 start, u64 len) 2835 { 2836 struct btrfs_block_group_cache *cache; 2837 2838 cache = btrfs_lookup_block_group(root->fs_info, start); 2839 ASSERT(cache); 2840 2841 spin_lock(&cache->lock); 2842 cache->delalloc_bytes -= len; 2843 spin_unlock(&cache->lock); 2844 2845 btrfs_put_block_group(cache); 2846 } 2847 2848 /* as ordered data IO finishes, this gets called so we can finish 2849 * an ordered extent if the range of bytes in the file it covers are 2850 * fully written. 2851 */ 2852 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent) 2853 { 2854 struct inode *inode = ordered_extent->inode; 2855 struct btrfs_root *root = BTRFS_I(inode)->root; 2856 struct btrfs_trans_handle *trans = NULL; 2857 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 2858 struct extent_state *cached_state = NULL; 2859 struct new_sa_defrag_extent *new = NULL; 2860 int compress_type = 0; 2861 int ret = 0; 2862 u64 logical_len = ordered_extent->len; 2863 bool nolock; 2864 bool truncated = false; 2865 2866 nolock = btrfs_is_free_space_inode(inode); 2867 2868 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) { 2869 ret = -EIO; 2870 goto out; 2871 } 2872 2873 btrfs_free_io_failure_record(inode, ordered_extent->file_offset, 2874 ordered_extent->file_offset + 2875 ordered_extent->len - 1); 2876 2877 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) { 2878 truncated = true; 2879 logical_len = ordered_extent->truncated_len; 2880 /* Truncated the entire extent, don't bother adding */ 2881 if (!logical_len) 2882 goto out; 2883 } 2884 2885 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) { 2886 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */ 2887 2888 /* 2889 * For mwrite(mmap + memset to write) case, we still reserve 2890 * space for NOCOW range. 2891 * As NOCOW won't cause a new delayed ref, just free the space 2892 */ 2893 btrfs_qgroup_free_data(inode, ordered_extent->file_offset, 2894 ordered_extent->len); 2895 btrfs_ordered_update_i_size(inode, 0, ordered_extent); 2896 if (nolock) 2897 trans = btrfs_join_transaction_nolock(root); 2898 else 2899 trans = btrfs_join_transaction(root); 2900 if (IS_ERR(trans)) { 2901 ret = PTR_ERR(trans); 2902 trans = NULL; 2903 goto out; 2904 } 2905 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 2906 ret = btrfs_update_inode_fallback(trans, root, inode); 2907 if (ret) /* -ENOMEM or corruption */ 2908 btrfs_abort_transaction(trans, ret); 2909 goto out; 2910 } 2911 2912 lock_extent_bits(io_tree, ordered_extent->file_offset, 2913 ordered_extent->file_offset + ordered_extent->len - 1, 2914 &cached_state); 2915 2916 ret = test_range_bit(io_tree, ordered_extent->file_offset, 2917 ordered_extent->file_offset + ordered_extent->len - 1, 2918 EXTENT_DEFRAG, 1, cached_state); 2919 if (ret) { 2920 u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item); 2921 if (0 && last_snapshot >= BTRFS_I(inode)->generation) 2922 /* the inode is shared */ 2923 new = record_old_file_extents(inode, ordered_extent); 2924 2925 clear_extent_bit(io_tree, ordered_extent->file_offset, 2926 ordered_extent->file_offset + ordered_extent->len - 1, 2927 EXTENT_DEFRAG, 0, 0, &cached_state, GFP_NOFS); 2928 } 2929 2930 if (nolock) 2931 trans = btrfs_join_transaction_nolock(root); 2932 else 2933 trans = btrfs_join_transaction(root); 2934 if (IS_ERR(trans)) { 2935 ret = PTR_ERR(trans); 2936 trans = NULL; 2937 goto out_unlock; 2938 } 2939 2940 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 2941 2942 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags)) 2943 compress_type = ordered_extent->compress_type; 2944 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 2945 BUG_ON(compress_type); 2946 ret = btrfs_mark_extent_written(trans, inode, 2947 ordered_extent->file_offset, 2948 ordered_extent->file_offset + 2949 logical_len); 2950 } else { 2951 BUG_ON(root == root->fs_info->tree_root); 2952 ret = insert_reserved_file_extent(trans, inode, 2953 ordered_extent->file_offset, 2954 ordered_extent->start, 2955 ordered_extent->disk_len, 2956 logical_len, logical_len, 2957 compress_type, 0, 0, 2958 BTRFS_FILE_EXTENT_REG); 2959 if (!ret) 2960 btrfs_release_delalloc_bytes(root, 2961 ordered_extent->start, 2962 ordered_extent->disk_len); 2963 } 2964 unpin_extent_cache(&BTRFS_I(inode)->extent_tree, 2965 ordered_extent->file_offset, ordered_extent->len, 2966 trans->transid); 2967 if (ret < 0) { 2968 btrfs_abort_transaction(trans, ret); 2969 goto out_unlock; 2970 } 2971 2972 add_pending_csums(trans, inode, ordered_extent->file_offset, 2973 &ordered_extent->list); 2974 2975 btrfs_ordered_update_i_size(inode, 0, ordered_extent); 2976 ret = btrfs_update_inode_fallback(trans, root, inode); 2977 if (ret) { /* -ENOMEM or corruption */ 2978 btrfs_abort_transaction(trans, ret); 2979 goto out_unlock; 2980 } 2981 ret = 0; 2982 out_unlock: 2983 unlock_extent_cached(io_tree, ordered_extent->file_offset, 2984 ordered_extent->file_offset + 2985 ordered_extent->len - 1, &cached_state, GFP_NOFS); 2986 out: 2987 if (root != root->fs_info->tree_root) 2988 btrfs_delalloc_release_metadata(inode, ordered_extent->len); 2989 if (trans) 2990 btrfs_end_transaction(trans, root); 2991 2992 if (ret || truncated) { 2993 u64 start, end; 2994 2995 if (truncated) 2996 start = ordered_extent->file_offset + logical_len; 2997 else 2998 start = ordered_extent->file_offset; 2999 end = ordered_extent->file_offset + ordered_extent->len - 1; 3000 clear_extent_uptodate(io_tree, start, end, NULL, GFP_NOFS); 3001 3002 /* Drop the cache for the part of the extent we didn't write. */ 3003 btrfs_drop_extent_cache(inode, start, end, 0); 3004 3005 /* 3006 * If the ordered extent had an IOERR or something else went 3007 * wrong we need to return the space for this ordered extent 3008 * back to the allocator. We only free the extent in the 3009 * truncated case if we didn't write out the extent at all. 3010 */ 3011 if ((ret || !logical_len) && 3012 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) && 3013 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) 3014 btrfs_free_reserved_extent(root, ordered_extent->start, 3015 ordered_extent->disk_len, 1); 3016 } 3017 3018 3019 /* 3020 * This needs to be done to make sure anybody waiting knows we are done 3021 * updating everything for this ordered extent. 3022 */ 3023 btrfs_remove_ordered_extent(inode, ordered_extent); 3024 3025 /* for snapshot-aware defrag */ 3026 if (new) { 3027 if (ret) { 3028 free_sa_defrag_extent(new); 3029 atomic_dec(&root->fs_info->defrag_running); 3030 } else { 3031 relink_file_extents(new); 3032 } 3033 } 3034 3035 /* once for us */ 3036 btrfs_put_ordered_extent(ordered_extent); 3037 /* once for the tree */ 3038 btrfs_put_ordered_extent(ordered_extent); 3039 3040 return ret; 3041 } 3042 3043 static void finish_ordered_fn(struct btrfs_work *work) 3044 { 3045 struct btrfs_ordered_extent *ordered_extent; 3046 ordered_extent = container_of(work, struct btrfs_ordered_extent, work); 3047 btrfs_finish_ordered_io(ordered_extent); 3048 } 3049 3050 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end, 3051 struct extent_state *state, int uptodate) 3052 { 3053 struct inode *inode = page->mapping->host; 3054 struct btrfs_root *root = BTRFS_I(inode)->root; 3055 struct btrfs_ordered_extent *ordered_extent = NULL; 3056 struct btrfs_workqueue *wq; 3057 btrfs_work_func_t func; 3058 3059 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate); 3060 3061 ClearPagePrivate2(page); 3062 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start, 3063 end - start + 1, uptodate)) 3064 return 0; 3065 3066 if (btrfs_is_free_space_inode(inode)) { 3067 wq = root->fs_info->endio_freespace_worker; 3068 func = btrfs_freespace_write_helper; 3069 } else { 3070 wq = root->fs_info->endio_write_workers; 3071 func = btrfs_endio_write_helper; 3072 } 3073 3074 btrfs_init_work(&ordered_extent->work, func, finish_ordered_fn, NULL, 3075 NULL); 3076 btrfs_queue_work(wq, &ordered_extent->work); 3077 3078 return 0; 3079 } 3080 3081 static int __readpage_endio_check(struct inode *inode, 3082 struct btrfs_io_bio *io_bio, 3083 int icsum, struct page *page, 3084 int pgoff, u64 start, size_t len) 3085 { 3086 char *kaddr; 3087 u32 csum_expected; 3088 u32 csum = ~(u32)0; 3089 3090 csum_expected = *(((u32 *)io_bio->csum) + icsum); 3091 3092 kaddr = kmap_atomic(page); 3093 csum = btrfs_csum_data(kaddr + pgoff, csum, len); 3094 btrfs_csum_final(csum, (char *)&csum); 3095 if (csum != csum_expected) 3096 goto zeroit; 3097 3098 kunmap_atomic(kaddr); 3099 return 0; 3100 zeroit: 3101 btrfs_warn_rl(BTRFS_I(inode)->root->fs_info, 3102 "csum failed ino %llu off %llu csum %u expected csum %u", 3103 btrfs_ino(inode), start, csum, csum_expected); 3104 memset(kaddr + pgoff, 1, len); 3105 flush_dcache_page(page); 3106 kunmap_atomic(kaddr); 3107 if (csum_expected == 0) 3108 return 0; 3109 return -EIO; 3110 } 3111 3112 /* 3113 * when reads are done, we need to check csums to verify the data is correct 3114 * if there's a match, we allow the bio to finish. If not, the code in 3115 * extent_io.c will try to find good copies for us. 3116 */ 3117 static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio, 3118 u64 phy_offset, struct page *page, 3119 u64 start, u64 end, int mirror) 3120 { 3121 size_t offset = start - page_offset(page); 3122 struct inode *inode = page->mapping->host; 3123 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 3124 struct btrfs_root *root = BTRFS_I(inode)->root; 3125 3126 if (PageChecked(page)) { 3127 ClearPageChecked(page); 3128 return 0; 3129 } 3130 3131 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) 3132 return 0; 3133 3134 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID && 3135 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) { 3136 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM); 3137 return 0; 3138 } 3139 3140 phy_offset >>= inode->i_sb->s_blocksize_bits; 3141 return __readpage_endio_check(inode, io_bio, phy_offset, page, offset, 3142 start, (size_t)(end - start + 1)); 3143 } 3144 3145 void btrfs_add_delayed_iput(struct inode *inode) 3146 { 3147 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 3148 struct btrfs_inode *binode = BTRFS_I(inode); 3149 3150 if (atomic_add_unless(&inode->i_count, -1, 1)) 3151 return; 3152 3153 spin_lock(&fs_info->delayed_iput_lock); 3154 if (binode->delayed_iput_count == 0) { 3155 ASSERT(list_empty(&binode->delayed_iput)); 3156 list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs); 3157 } else { 3158 binode->delayed_iput_count++; 3159 } 3160 spin_unlock(&fs_info->delayed_iput_lock); 3161 } 3162 3163 void btrfs_run_delayed_iputs(struct btrfs_root *root) 3164 { 3165 struct btrfs_fs_info *fs_info = root->fs_info; 3166 3167 spin_lock(&fs_info->delayed_iput_lock); 3168 while (!list_empty(&fs_info->delayed_iputs)) { 3169 struct btrfs_inode *inode; 3170 3171 inode = list_first_entry(&fs_info->delayed_iputs, 3172 struct btrfs_inode, delayed_iput); 3173 if (inode->delayed_iput_count) { 3174 inode->delayed_iput_count--; 3175 list_move_tail(&inode->delayed_iput, 3176 &fs_info->delayed_iputs); 3177 } else { 3178 list_del_init(&inode->delayed_iput); 3179 } 3180 spin_unlock(&fs_info->delayed_iput_lock); 3181 iput(&inode->vfs_inode); 3182 spin_lock(&fs_info->delayed_iput_lock); 3183 } 3184 spin_unlock(&fs_info->delayed_iput_lock); 3185 } 3186 3187 /* 3188 * This is called in transaction commit time. If there are no orphan 3189 * files in the subvolume, it removes orphan item and frees block_rsv 3190 * structure. 3191 */ 3192 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans, 3193 struct btrfs_root *root) 3194 { 3195 struct btrfs_block_rsv *block_rsv; 3196 int ret; 3197 3198 if (atomic_read(&root->orphan_inodes) || 3199 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) 3200 return; 3201 3202 spin_lock(&root->orphan_lock); 3203 if (atomic_read(&root->orphan_inodes)) { 3204 spin_unlock(&root->orphan_lock); 3205 return; 3206 } 3207 3208 if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) { 3209 spin_unlock(&root->orphan_lock); 3210 return; 3211 } 3212 3213 block_rsv = root->orphan_block_rsv; 3214 root->orphan_block_rsv = NULL; 3215 spin_unlock(&root->orphan_lock); 3216 3217 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state) && 3218 btrfs_root_refs(&root->root_item) > 0) { 3219 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root, 3220 root->root_key.objectid); 3221 if (ret) 3222 btrfs_abort_transaction(trans, ret); 3223 else 3224 clear_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, 3225 &root->state); 3226 } 3227 3228 if (block_rsv) { 3229 WARN_ON(block_rsv->size > 0); 3230 btrfs_free_block_rsv(root, block_rsv); 3231 } 3232 } 3233 3234 /* 3235 * This creates an orphan entry for the given inode in case something goes 3236 * wrong in the middle of an unlink/truncate. 3237 * 3238 * NOTE: caller of this function should reserve 5 units of metadata for 3239 * this function. 3240 */ 3241 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode) 3242 { 3243 struct btrfs_root *root = BTRFS_I(inode)->root; 3244 struct btrfs_block_rsv *block_rsv = NULL; 3245 int reserve = 0; 3246 int insert = 0; 3247 int ret; 3248 3249 if (!root->orphan_block_rsv) { 3250 block_rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP); 3251 if (!block_rsv) 3252 return -ENOMEM; 3253 } 3254 3255 spin_lock(&root->orphan_lock); 3256 if (!root->orphan_block_rsv) { 3257 root->orphan_block_rsv = block_rsv; 3258 } else if (block_rsv) { 3259 btrfs_free_block_rsv(root, block_rsv); 3260 block_rsv = NULL; 3261 } 3262 3263 if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 3264 &BTRFS_I(inode)->runtime_flags)) { 3265 #if 0 3266 /* 3267 * For proper ENOSPC handling, we should do orphan 3268 * cleanup when mounting. But this introduces backward 3269 * compatibility issue. 3270 */ 3271 if (!xchg(&root->orphan_item_inserted, 1)) 3272 insert = 2; 3273 else 3274 insert = 1; 3275 #endif 3276 insert = 1; 3277 atomic_inc(&root->orphan_inodes); 3278 } 3279 3280 if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED, 3281 &BTRFS_I(inode)->runtime_flags)) 3282 reserve = 1; 3283 spin_unlock(&root->orphan_lock); 3284 3285 /* grab metadata reservation from transaction handle */ 3286 if (reserve) { 3287 ret = btrfs_orphan_reserve_metadata(trans, inode); 3288 ASSERT(!ret); 3289 if (ret) { 3290 atomic_dec(&root->orphan_inodes); 3291 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED, 3292 &BTRFS_I(inode)->runtime_flags); 3293 if (insert) 3294 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 3295 &BTRFS_I(inode)->runtime_flags); 3296 return ret; 3297 } 3298 } 3299 3300 /* insert an orphan item to track this unlinked/truncated file */ 3301 if (insert >= 1) { 3302 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode)); 3303 if (ret) { 3304 atomic_dec(&root->orphan_inodes); 3305 if (reserve) { 3306 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED, 3307 &BTRFS_I(inode)->runtime_flags); 3308 btrfs_orphan_release_metadata(inode); 3309 } 3310 if (ret != -EEXIST) { 3311 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 3312 &BTRFS_I(inode)->runtime_flags); 3313 btrfs_abort_transaction(trans, ret); 3314 return ret; 3315 } 3316 } 3317 ret = 0; 3318 } 3319 3320 /* insert an orphan item to track subvolume contains orphan files */ 3321 if (insert >= 2) { 3322 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root, 3323 root->root_key.objectid); 3324 if (ret && ret != -EEXIST) { 3325 btrfs_abort_transaction(trans, ret); 3326 return ret; 3327 } 3328 } 3329 return 0; 3330 } 3331 3332 /* 3333 * We have done the truncate/delete so we can go ahead and remove the orphan 3334 * item for this particular inode. 3335 */ 3336 static int btrfs_orphan_del(struct btrfs_trans_handle *trans, 3337 struct inode *inode) 3338 { 3339 struct btrfs_root *root = BTRFS_I(inode)->root; 3340 int delete_item = 0; 3341 int release_rsv = 0; 3342 int ret = 0; 3343 3344 spin_lock(&root->orphan_lock); 3345 if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 3346 &BTRFS_I(inode)->runtime_flags)) 3347 delete_item = 1; 3348 3349 if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED, 3350 &BTRFS_I(inode)->runtime_flags)) 3351 release_rsv = 1; 3352 spin_unlock(&root->orphan_lock); 3353 3354 if (delete_item) { 3355 atomic_dec(&root->orphan_inodes); 3356 if (trans) 3357 ret = btrfs_del_orphan_item(trans, root, 3358 btrfs_ino(inode)); 3359 } 3360 3361 if (release_rsv) 3362 btrfs_orphan_release_metadata(inode); 3363 3364 return ret; 3365 } 3366 3367 /* 3368 * this cleans up any orphans that may be left on the list from the last use 3369 * of this root. 3370 */ 3371 int btrfs_orphan_cleanup(struct btrfs_root *root) 3372 { 3373 struct btrfs_path *path; 3374 struct extent_buffer *leaf; 3375 struct btrfs_key key, found_key; 3376 struct btrfs_trans_handle *trans; 3377 struct inode *inode; 3378 u64 last_objectid = 0; 3379 int ret = 0, nr_unlink = 0, nr_truncate = 0; 3380 3381 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED)) 3382 return 0; 3383 3384 path = btrfs_alloc_path(); 3385 if (!path) { 3386 ret = -ENOMEM; 3387 goto out; 3388 } 3389 path->reada = READA_BACK; 3390 3391 key.objectid = BTRFS_ORPHAN_OBJECTID; 3392 key.type = BTRFS_ORPHAN_ITEM_KEY; 3393 key.offset = (u64)-1; 3394 3395 while (1) { 3396 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3397 if (ret < 0) 3398 goto out; 3399 3400 /* 3401 * if ret == 0 means we found what we were searching for, which 3402 * is weird, but possible, so only screw with path if we didn't 3403 * find the key and see if we have stuff that matches 3404 */ 3405 if (ret > 0) { 3406 ret = 0; 3407 if (path->slots[0] == 0) 3408 break; 3409 path->slots[0]--; 3410 } 3411 3412 /* pull out the item */ 3413 leaf = path->nodes[0]; 3414 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 3415 3416 /* make sure the item matches what we want */ 3417 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID) 3418 break; 3419 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY) 3420 break; 3421 3422 /* release the path since we're done with it */ 3423 btrfs_release_path(path); 3424 3425 /* 3426 * this is where we are basically btrfs_lookup, without the 3427 * crossing root thing. we store the inode number in the 3428 * offset of the orphan item. 3429 */ 3430 3431 if (found_key.offset == last_objectid) { 3432 btrfs_err(root->fs_info, 3433 "Error removing orphan entry, stopping orphan cleanup"); 3434 ret = -EINVAL; 3435 goto out; 3436 } 3437 3438 last_objectid = found_key.offset; 3439 3440 found_key.objectid = found_key.offset; 3441 found_key.type = BTRFS_INODE_ITEM_KEY; 3442 found_key.offset = 0; 3443 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL); 3444 ret = PTR_ERR_OR_ZERO(inode); 3445 if (ret && ret != -ENOENT) 3446 goto out; 3447 3448 if (ret == -ENOENT && root == root->fs_info->tree_root) { 3449 struct btrfs_root *dead_root; 3450 struct btrfs_fs_info *fs_info = root->fs_info; 3451 int is_dead_root = 0; 3452 3453 /* 3454 * this is an orphan in the tree root. Currently these 3455 * could come from 2 sources: 3456 * a) a snapshot deletion in progress 3457 * b) a free space cache inode 3458 * We need to distinguish those two, as the snapshot 3459 * orphan must not get deleted. 3460 * find_dead_roots already ran before us, so if this 3461 * is a snapshot deletion, we should find the root 3462 * in the dead_roots list 3463 */ 3464 spin_lock(&fs_info->trans_lock); 3465 list_for_each_entry(dead_root, &fs_info->dead_roots, 3466 root_list) { 3467 if (dead_root->root_key.objectid == 3468 found_key.objectid) { 3469 is_dead_root = 1; 3470 break; 3471 } 3472 } 3473 spin_unlock(&fs_info->trans_lock); 3474 if (is_dead_root) { 3475 /* prevent this orphan from being found again */ 3476 key.offset = found_key.objectid - 1; 3477 continue; 3478 } 3479 } 3480 /* 3481 * Inode is already gone but the orphan item is still there, 3482 * kill the orphan item. 3483 */ 3484 if (ret == -ENOENT) { 3485 trans = btrfs_start_transaction(root, 1); 3486 if (IS_ERR(trans)) { 3487 ret = PTR_ERR(trans); 3488 goto out; 3489 } 3490 btrfs_debug(root->fs_info, "auto deleting %Lu", 3491 found_key.objectid); 3492 ret = btrfs_del_orphan_item(trans, root, 3493 found_key.objectid); 3494 btrfs_end_transaction(trans, root); 3495 if (ret) 3496 goto out; 3497 continue; 3498 } 3499 3500 /* 3501 * add this inode to the orphan list so btrfs_orphan_del does 3502 * the proper thing when we hit it 3503 */ 3504 set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 3505 &BTRFS_I(inode)->runtime_flags); 3506 atomic_inc(&root->orphan_inodes); 3507 3508 /* if we have links, this was a truncate, lets do that */ 3509 if (inode->i_nlink) { 3510 if (WARN_ON(!S_ISREG(inode->i_mode))) { 3511 iput(inode); 3512 continue; 3513 } 3514 nr_truncate++; 3515 3516 /* 1 for the orphan item deletion. */ 3517 trans = btrfs_start_transaction(root, 1); 3518 if (IS_ERR(trans)) { 3519 iput(inode); 3520 ret = PTR_ERR(trans); 3521 goto out; 3522 } 3523 ret = btrfs_orphan_add(trans, inode); 3524 btrfs_end_transaction(trans, root); 3525 if (ret) { 3526 iput(inode); 3527 goto out; 3528 } 3529 3530 ret = btrfs_truncate(inode); 3531 if (ret) 3532 btrfs_orphan_del(NULL, inode); 3533 } else { 3534 nr_unlink++; 3535 } 3536 3537 /* this will do delete_inode and everything for us */ 3538 iput(inode); 3539 if (ret) 3540 goto out; 3541 } 3542 /* release the path since we're done with it */ 3543 btrfs_release_path(path); 3544 3545 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE; 3546 3547 if (root->orphan_block_rsv) 3548 btrfs_block_rsv_release(root, root->orphan_block_rsv, 3549 (u64)-1); 3550 3551 if (root->orphan_block_rsv || 3552 test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) { 3553 trans = btrfs_join_transaction(root); 3554 if (!IS_ERR(trans)) 3555 btrfs_end_transaction(trans, root); 3556 } 3557 3558 if (nr_unlink) 3559 btrfs_debug(root->fs_info, "unlinked %d orphans", nr_unlink); 3560 if (nr_truncate) 3561 btrfs_debug(root->fs_info, "truncated %d orphans", nr_truncate); 3562 3563 out: 3564 if (ret) 3565 btrfs_err(root->fs_info, 3566 "could not do orphan cleanup %d", ret); 3567 btrfs_free_path(path); 3568 return ret; 3569 } 3570 3571 /* 3572 * very simple check to peek ahead in the leaf looking for xattrs. If we 3573 * don't find any xattrs, we know there can't be any acls. 3574 * 3575 * slot is the slot the inode is in, objectid is the objectid of the inode 3576 */ 3577 static noinline int acls_after_inode_item(struct extent_buffer *leaf, 3578 int slot, u64 objectid, 3579 int *first_xattr_slot) 3580 { 3581 u32 nritems = btrfs_header_nritems(leaf); 3582 struct btrfs_key found_key; 3583 static u64 xattr_access = 0; 3584 static u64 xattr_default = 0; 3585 int scanned = 0; 3586 3587 if (!xattr_access) { 3588 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS, 3589 strlen(XATTR_NAME_POSIX_ACL_ACCESS)); 3590 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT, 3591 strlen(XATTR_NAME_POSIX_ACL_DEFAULT)); 3592 } 3593 3594 slot++; 3595 *first_xattr_slot = -1; 3596 while (slot < nritems) { 3597 btrfs_item_key_to_cpu(leaf, &found_key, slot); 3598 3599 /* we found a different objectid, there must not be acls */ 3600 if (found_key.objectid != objectid) 3601 return 0; 3602 3603 /* we found an xattr, assume we've got an acl */ 3604 if (found_key.type == BTRFS_XATTR_ITEM_KEY) { 3605 if (*first_xattr_slot == -1) 3606 *first_xattr_slot = slot; 3607 if (found_key.offset == xattr_access || 3608 found_key.offset == xattr_default) 3609 return 1; 3610 } 3611 3612 /* 3613 * we found a key greater than an xattr key, there can't 3614 * be any acls later on 3615 */ 3616 if (found_key.type > BTRFS_XATTR_ITEM_KEY) 3617 return 0; 3618 3619 slot++; 3620 scanned++; 3621 3622 /* 3623 * it goes inode, inode backrefs, xattrs, extents, 3624 * so if there are a ton of hard links to an inode there can 3625 * be a lot of backrefs. Don't waste time searching too hard, 3626 * this is just an optimization 3627 */ 3628 if (scanned >= 8) 3629 break; 3630 } 3631 /* we hit the end of the leaf before we found an xattr or 3632 * something larger than an xattr. We have to assume the inode 3633 * has acls 3634 */ 3635 if (*first_xattr_slot == -1) 3636 *first_xattr_slot = slot; 3637 return 1; 3638 } 3639 3640 /* 3641 * read an inode from the btree into the in-memory inode 3642 */ 3643 static int btrfs_read_locked_inode(struct inode *inode) 3644 { 3645 struct btrfs_path *path; 3646 struct extent_buffer *leaf; 3647 struct btrfs_inode_item *inode_item; 3648 struct btrfs_root *root = BTRFS_I(inode)->root; 3649 struct btrfs_key location; 3650 unsigned long ptr; 3651 int maybe_acls; 3652 u32 rdev; 3653 int ret; 3654 bool filled = false; 3655 int first_xattr_slot; 3656 3657 ret = btrfs_fill_inode(inode, &rdev); 3658 if (!ret) 3659 filled = true; 3660 3661 path = btrfs_alloc_path(); 3662 if (!path) { 3663 ret = -ENOMEM; 3664 goto make_bad; 3665 } 3666 3667 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location)); 3668 3669 ret = btrfs_lookup_inode(NULL, root, path, &location, 0); 3670 if (ret) { 3671 if (ret > 0) 3672 ret = -ENOENT; 3673 goto make_bad; 3674 } 3675 3676 leaf = path->nodes[0]; 3677 3678 if (filled) 3679 goto cache_index; 3680 3681 inode_item = btrfs_item_ptr(leaf, path->slots[0], 3682 struct btrfs_inode_item); 3683 inode->i_mode = btrfs_inode_mode(leaf, inode_item); 3684 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item)); 3685 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item)); 3686 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item)); 3687 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item)); 3688 3689 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime); 3690 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime); 3691 3692 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime); 3693 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime); 3694 3695 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime); 3696 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime); 3697 3698 BTRFS_I(inode)->i_otime.tv_sec = 3699 btrfs_timespec_sec(leaf, &inode_item->otime); 3700 BTRFS_I(inode)->i_otime.tv_nsec = 3701 btrfs_timespec_nsec(leaf, &inode_item->otime); 3702 3703 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item)); 3704 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item); 3705 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item); 3706 3707 inode->i_version = btrfs_inode_sequence(leaf, inode_item); 3708 inode->i_generation = BTRFS_I(inode)->generation; 3709 inode->i_rdev = 0; 3710 rdev = btrfs_inode_rdev(leaf, inode_item); 3711 3712 BTRFS_I(inode)->index_cnt = (u64)-1; 3713 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item); 3714 3715 cache_index: 3716 /* 3717 * If we were modified in the current generation and evicted from memory 3718 * and then re-read we need to do a full sync since we don't have any 3719 * idea about which extents were modified before we were evicted from 3720 * cache. 3721 * 3722 * This is required for both inode re-read from disk and delayed inode 3723 * in delayed_nodes_tree. 3724 */ 3725 if (BTRFS_I(inode)->last_trans == root->fs_info->generation) 3726 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 3727 &BTRFS_I(inode)->runtime_flags); 3728 3729 /* 3730 * We don't persist the id of the transaction where an unlink operation 3731 * against the inode was last made. So here we assume the inode might 3732 * have been evicted, and therefore the exact value of last_unlink_trans 3733 * lost, and set it to last_trans to avoid metadata inconsistencies 3734 * between the inode and its parent if the inode is fsync'ed and the log 3735 * replayed. For example, in the scenario: 3736 * 3737 * touch mydir/foo 3738 * ln mydir/foo mydir/bar 3739 * sync 3740 * unlink mydir/bar 3741 * echo 2 > /proc/sys/vm/drop_caches # evicts inode 3742 * xfs_io -c fsync mydir/foo 3743 * <power failure> 3744 * mount fs, triggers fsync log replay 3745 * 3746 * We must make sure that when we fsync our inode foo we also log its 3747 * parent inode, otherwise after log replay the parent still has the 3748 * dentry with the "bar" name but our inode foo has a link count of 1 3749 * and doesn't have an inode ref with the name "bar" anymore. 3750 * 3751 * Setting last_unlink_trans to last_trans is a pessimistic approach, 3752 * but it guarantees correctness at the expense of occasional full 3753 * transaction commits on fsync if our inode is a directory, or if our 3754 * inode is not a directory, logging its parent unnecessarily. 3755 */ 3756 BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans; 3757 3758 path->slots[0]++; 3759 if (inode->i_nlink != 1 || 3760 path->slots[0] >= btrfs_header_nritems(leaf)) 3761 goto cache_acl; 3762 3763 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]); 3764 if (location.objectid != btrfs_ino(inode)) 3765 goto cache_acl; 3766 3767 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 3768 if (location.type == BTRFS_INODE_REF_KEY) { 3769 struct btrfs_inode_ref *ref; 3770 3771 ref = (struct btrfs_inode_ref *)ptr; 3772 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref); 3773 } else if (location.type == BTRFS_INODE_EXTREF_KEY) { 3774 struct btrfs_inode_extref *extref; 3775 3776 extref = (struct btrfs_inode_extref *)ptr; 3777 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf, 3778 extref); 3779 } 3780 cache_acl: 3781 /* 3782 * try to precache a NULL acl entry for files that don't have 3783 * any xattrs or acls 3784 */ 3785 maybe_acls = acls_after_inode_item(leaf, path->slots[0], 3786 btrfs_ino(inode), &first_xattr_slot); 3787 if (first_xattr_slot != -1) { 3788 path->slots[0] = first_xattr_slot; 3789 ret = btrfs_load_inode_props(inode, path); 3790 if (ret) 3791 btrfs_err(root->fs_info, 3792 "error loading props for ino %llu (root %llu): %d", 3793 btrfs_ino(inode), 3794 root->root_key.objectid, ret); 3795 } 3796 btrfs_free_path(path); 3797 3798 if (!maybe_acls) 3799 cache_no_acl(inode); 3800 3801 switch (inode->i_mode & S_IFMT) { 3802 case S_IFREG: 3803 inode->i_mapping->a_ops = &btrfs_aops; 3804 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 3805 inode->i_fop = &btrfs_file_operations; 3806 inode->i_op = &btrfs_file_inode_operations; 3807 break; 3808 case S_IFDIR: 3809 inode->i_fop = &btrfs_dir_file_operations; 3810 if (root == root->fs_info->tree_root) 3811 inode->i_op = &btrfs_dir_ro_inode_operations; 3812 else 3813 inode->i_op = &btrfs_dir_inode_operations; 3814 break; 3815 case S_IFLNK: 3816 inode->i_op = &btrfs_symlink_inode_operations; 3817 inode_nohighmem(inode); 3818 inode->i_mapping->a_ops = &btrfs_symlink_aops; 3819 break; 3820 default: 3821 inode->i_op = &btrfs_special_inode_operations; 3822 init_special_inode(inode, inode->i_mode, rdev); 3823 break; 3824 } 3825 3826 btrfs_update_iflags(inode); 3827 return 0; 3828 3829 make_bad: 3830 btrfs_free_path(path); 3831 make_bad_inode(inode); 3832 return ret; 3833 } 3834 3835 /* 3836 * given a leaf and an inode, copy the inode fields into the leaf 3837 */ 3838 static void fill_inode_item(struct btrfs_trans_handle *trans, 3839 struct extent_buffer *leaf, 3840 struct btrfs_inode_item *item, 3841 struct inode *inode) 3842 { 3843 struct btrfs_map_token token; 3844 3845 btrfs_init_map_token(&token); 3846 3847 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token); 3848 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token); 3849 btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size, 3850 &token); 3851 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token); 3852 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token); 3853 3854 btrfs_set_token_timespec_sec(leaf, &item->atime, 3855 inode->i_atime.tv_sec, &token); 3856 btrfs_set_token_timespec_nsec(leaf, &item->atime, 3857 inode->i_atime.tv_nsec, &token); 3858 3859 btrfs_set_token_timespec_sec(leaf, &item->mtime, 3860 inode->i_mtime.tv_sec, &token); 3861 btrfs_set_token_timespec_nsec(leaf, &item->mtime, 3862 inode->i_mtime.tv_nsec, &token); 3863 3864 btrfs_set_token_timespec_sec(leaf, &item->ctime, 3865 inode->i_ctime.tv_sec, &token); 3866 btrfs_set_token_timespec_nsec(leaf, &item->ctime, 3867 inode->i_ctime.tv_nsec, &token); 3868 3869 btrfs_set_token_timespec_sec(leaf, &item->otime, 3870 BTRFS_I(inode)->i_otime.tv_sec, &token); 3871 btrfs_set_token_timespec_nsec(leaf, &item->otime, 3872 BTRFS_I(inode)->i_otime.tv_nsec, &token); 3873 3874 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode), 3875 &token); 3876 btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation, 3877 &token); 3878 btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token); 3879 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token); 3880 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token); 3881 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token); 3882 btrfs_set_token_inode_block_group(leaf, item, 0, &token); 3883 } 3884 3885 /* 3886 * copy everything in the in-memory inode into the btree. 3887 */ 3888 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans, 3889 struct btrfs_root *root, struct inode *inode) 3890 { 3891 struct btrfs_inode_item *inode_item; 3892 struct btrfs_path *path; 3893 struct extent_buffer *leaf; 3894 int ret; 3895 3896 path = btrfs_alloc_path(); 3897 if (!path) 3898 return -ENOMEM; 3899 3900 path->leave_spinning = 1; 3901 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location, 3902 1); 3903 if (ret) { 3904 if (ret > 0) 3905 ret = -ENOENT; 3906 goto failed; 3907 } 3908 3909 leaf = path->nodes[0]; 3910 inode_item = btrfs_item_ptr(leaf, path->slots[0], 3911 struct btrfs_inode_item); 3912 3913 fill_inode_item(trans, leaf, inode_item, inode); 3914 btrfs_mark_buffer_dirty(leaf); 3915 btrfs_set_inode_last_trans(trans, inode); 3916 ret = 0; 3917 failed: 3918 btrfs_free_path(path); 3919 return ret; 3920 } 3921 3922 /* 3923 * copy everything in the in-memory inode into the btree. 3924 */ 3925 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans, 3926 struct btrfs_root *root, struct inode *inode) 3927 { 3928 int ret; 3929 3930 /* 3931 * If the inode is a free space inode, we can deadlock during commit 3932 * if we put it into the delayed code. 3933 * 3934 * The data relocation inode should also be directly updated 3935 * without delay 3936 */ 3937 if (!btrfs_is_free_space_inode(inode) 3938 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID 3939 && !root->fs_info->log_root_recovering) { 3940 btrfs_update_root_times(trans, root); 3941 3942 ret = btrfs_delayed_update_inode(trans, root, inode); 3943 if (!ret) 3944 btrfs_set_inode_last_trans(trans, inode); 3945 return ret; 3946 } 3947 3948 return btrfs_update_inode_item(trans, root, inode); 3949 } 3950 3951 noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans, 3952 struct btrfs_root *root, 3953 struct inode *inode) 3954 { 3955 int ret; 3956 3957 ret = btrfs_update_inode(trans, root, inode); 3958 if (ret == -ENOSPC) 3959 return btrfs_update_inode_item(trans, root, inode); 3960 return ret; 3961 } 3962 3963 /* 3964 * unlink helper that gets used here in inode.c and in the tree logging 3965 * recovery code. It remove a link in a directory with a given name, and 3966 * also drops the back refs in the inode to the directory 3967 */ 3968 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans, 3969 struct btrfs_root *root, 3970 struct inode *dir, struct inode *inode, 3971 const char *name, int name_len) 3972 { 3973 struct btrfs_path *path; 3974 int ret = 0; 3975 struct extent_buffer *leaf; 3976 struct btrfs_dir_item *di; 3977 struct btrfs_key key; 3978 u64 index; 3979 u64 ino = btrfs_ino(inode); 3980 u64 dir_ino = btrfs_ino(dir); 3981 3982 path = btrfs_alloc_path(); 3983 if (!path) { 3984 ret = -ENOMEM; 3985 goto out; 3986 } 3987 3988 path->leave_spinning = 1; 3989 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 3990 name, name_len, -1); 3991 if (IS_ERR(di)) { 3992 ret = PTR_ERR(di); 3993 goto err; 3994 } 3995 if (!di) { 3996 ret = -ENOENT; 3997 goto err; 3998 } 3999 leaf = path->nodes[0]; 4000 btrfs_dir_item_key_to_cpu(leaf, di, &key); 4001 ret = btrfs_delete_one_dir_name(trans, root, path, di); 4002 if (ret) 4003 goto err; 4004 btrfs_release_path(path); 4005 4006 /* 4007 * If we don't have dir index, we have to get it by looking up 4008 * the inode ref, since we get the inode ref, remove it directly, 4009 * it is unnecessary to do delayed deletion. 4010 * 4011 * But if we have dir index, needn't search inode ref to get it. 4012 * Since the inode ref is close to the inode item, it is better 4013 * that we delay to delete it, and just do this deletion when 4014 * we update the inode item. 4015 */ 4016 if (BTRFS_I(inode)->dir_index) { 4017 ret = btrfs_delayed_delete_inode_ref(inode); 4018 if (!ret) { 4019 index = BTRFS_I(inode)->dir_index; 4020 goto skip_backref; 4021 } 4022 } 4023 4024 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino, 4025 dir_ino, &index); 4026 if (ret) { 4027 btrfs_info(root->fs_info, 4028 "failed to delete reference to %.*s, inode %llu parent %llu", 4029 name_len, name, ino, dir_ino); 4030 btrfs_abort_transaction(trans, ret); 4031 goto err; 4032 } 4033 skip_backref: 4034 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index); 4035 if (ret) { 4036 btrfs_abort_transaction(trans, ret); 4037 goto err; 4038 } 4039 4040 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, 4041 inode, dir_ino); 4042 if (ret != 0 && ret != -ENOENT) { 4043 btrfs_abort_transaction(trans, ret); 4044 goto err; 4045 } 4046 4047 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, 4048 dir, index); 4049 if (ret == -ENOENT) 4050 ret = 0; 4051 else if (ret) 4052 btrfs_abort_transaction(trans, ret); 4053 err: 4054 btrfs_free_path(path); 4055 if (ret) 4056 goto out; 4057 4058 btrfs_i_size_write(dir, dir->i_size - name_len * 2); 4059 inode_inc_iversion(inode); 4060 inode_inc_iversion(dir); 4061 inode->i_ctime = dir->i_mtime = 4062 dir->i_ctime = current_fs_time(inode->i_sb); 4063 ret = btrfs_update_inode(trans, root, dir); 4064 out: 4065 return ret; 4066 } 4067 4068 int btrfs_unlink_inode(struct btrfs_trans_handle *trans, 4069 struct btrfs_root *root, 4070 struct inode *dir, struct inode *inode, 4071 const char *name, int name_len) 4072 { 4073 int ret; 4074 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len); 4075 if (!ret) { 4076 drop_nlink(inode); 4077 ret = btrfs_update_inode(trans, root, inode); 4078 } 4079 return ret; 4080 } 4081 4082 /* 4083 * helper to start transaction for unlink and rmdir. 4084 * 4085 * unlink and rmdir are special in btrfs, they do not always free space, so 4086 * if we cannot make our reservations the normal way try and see if there is 4087 * plenty of slack room in the global reserve to migrate, otherwise we cannot 4088 * allow the unlink to occur. 4089 */ 4090 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir) 4091 { 4092 struct btrfs_root *root = BTRFS_I(dir)->root; 4093 4094 /* 4095 * 1 for the possible orphan item 4096 * 1 for the dir item 4097 * 1 for the dir index 4098 * 1 for the inode ref 4099 * 1 for the inode 4100 */ 4101 return btrfs_start_transaction_fallback_global_rsv(root, 5, 5); 4102 } 4103 4104 static int btrfs_unlink(struct inode *dir, struct dentry *dentry) 4105 { 4106 struct btrfs_root *root = BTRFS_I(dir)->root; 4107 struct btrfs_trans_handle *trans; 4108 struct inode *inode = d_inode(dentry); 4109 int ret; 4110 4111 trans = __unlink_start_trans(dir); 4112 if (IS_ERR(trans)) 4113 return PTR_ERR(trans); 4114 4115 btrfs_record_unlink_dir(trans, dir, d_inode(dentry), 0); 4116 4117 ret = btrfs_unlink_inode(trans, root, dir, d_inode(dentry), 4118 dentry->d_name.name, dentry->d_name.len); 4119 if (ret) 4120 goto out; 4121 4122 if (inode->i_nlink == 0) { 4123 ret = btrfs_orphan_add(trans, inode); 4124 if (ret) 4125 goto out; 4126 } 4127 4128 out: 4129 btrfs_end_transaction(trans, root); 4130 btrfs_btree_balance_dirty(root); 4131 return ret; 4132 } 4133 4134 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans, 4135 struct btrfs_root *root, 4136 struct inode *dir, u64 objectid, 4137 const char *name, int name_len) 4138 { 4139 struct btrfs_path *path; 4140 struct extent_buffer *leaf; 4141 struct btrfs_dir_item *di; 4142 struct btrfs_key key; 4143 u64 index; 4144 int ret; 4145 u64 dir_ino = btrfs_ino(dir); 4146 4147 path = btrfs_alloc_path(); 4148 if (!path) 4149 return -ENOMEM; 4150 4151 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 4152 name, name_len, -1); 4153 if (IS_ERR_OR_NULL(di)) { 4154 if (!di) 4155 ret = -ENOENT; 4156 else 4157 ret = PTR_ERR(di); 4158 goto out; 4159 } 4160 4161 leaf = path->nodes[0]; 4162 btrfs_dir_item_key_to_cpu(leaf, di, &key); 4163 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid); 4164 ret = btrfs_delete_one_dir_name(trans, root, path, di); 4165 if (ret) { 4166 btrfs_abort_transaction(trans, ret); 4167 goto out; 4168 } 4169 btrfs_release_path(path); 4170 4171 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root, 4172 objectid, root->root_key.objectid, 4173 dir_ino, &index, name, name_len); 4174 if (ret < 0) { 4175 if (ret != -ENOENT) { 4176 btrfs_abort_transaction(trans, ret); 4177 goto out; 4178 } 4179 di = btrfs_search_dir_index_item(root, path, dir_ino, 4180 name, name_len); 4181 if (IS_ERR_OR_NULL(di)) { 4182 if (!di) 4183 ret = -ENOENT; 4184 else 4185 ret = PTR_ERR(di); 4186 btrfs_abort_transaction(trans, ret); 4187 goto out; 4188 } 4189 4190 leaf = path->nodes[0]; 4191 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 4192 btrfs_release_path(path); 4193 index = key.offset; 4194 } 4195 btrfs_release_path(path); 4196 4197 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index); 4198 if (ret) { 4199 btrfs_abort_transaction(trans, ret); 4200 goto out; 4201 } 4202 4203 btrfs_i_size_write(dir, dir->i_size - name_len * 2); 4204 inode_inc_iversion(dir); 4205 dir->i_mtime = dir->i_ctime = current_fs_time(dir->i_sb); 4206 ret = btrfs_update_inode_fallback(trans, root, dir); 4207 if (ret) 4208 btrfs_abort_transaction(trans, ret); 4209 out: 4210 btrfs_free_path(path); 4211 return ret; 4212 } 4213 4214 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry) 4215 { 4216 struct inode *inode = d_inode(dentry); 4217 int err = 0; 4218 struct btrfs_root *root = BTRFS_I(dir)->root; 4219 struct btrfs_trans_handle *trans; 4220 u64 last_unlink_trans; 4221 4222 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE) 4223 return -ENOTEMPTY; 4224 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) 4225 return -EPERM; 4226 4227 trans = __unlink_start_trans(dir); 4228 if (IS_ERR(trans)) 4229 return PTR_ERR(trans); 4230 4231 if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 4232 err = btrfs_unlink_subvol(trans, root, dir, 4233 BTRFS_I(inode)->location.objectid, 4234 dentry->d_name.name, 4235 dentry->d_name.len); 4236 goto out; 4237 } 4238 4239 err = btrfs_orphan_add(trans, inode); 4240 if (err) 4241 goto out; 4242 4243 last_unlink_trans = BTRFS_I(inode)->last_unlink_trans; 4244 4245 /* now the directory is empty */ 4246 err = btrfs_unlink_inode(trans, root, dir, d_inode(dentry), 4247 dentry->d_name.name, dentry->d_name.len); 4248 if (!err) { 4249 btrfs_i_size_write(inode, 0); 4250 /* 4251 * Propagate the last_unlink_trans value of the deleted dir to 4252 * its parent directory. This is to prevent an unrecoverable 4253 * log tree in the case we do something like this: 4254 * 1) create dir foo 4255 * 2) create snapshot under dir foo 4256 * 3) delete the snapshot 4257 * 4) rmdir foo 4258 * 5) mkdir foo 4259 * 6) fsync foo or some file inside foo 4260 */ 4261 if (last_unlink_trans >= trans->transid) 4262 BTRFS_I(dir)->last_unlink_trans = last_unlink_trans; 4263 } 4264 out: 4265 btrfs_end_transaction(trans, root); 4266 btrfs_btree_balance_dirty(root); 4267 4268 return err; 4269 } 4270 4271 static int truncate_space_check(struct btrfs_trans_handle *trans, 4272 struct btrfs_root *root, 4273 u64 bytes_deleted) 4274 { 4275 int ret; 4276 4277 /* 4278 * This is only used to apply pressure to the enospc system, we don't 4279 * intend to use this reservation at all. 4280 */ 4281 bytes_deleted = btrfs_csum_bytes_to_leaves(root, bytes_deleted); 4282 bytes_deleted *= root->nodesize; 4283 ret = btrfs_block_rsv_add(root, &root->fs_info->trans_block_rsv, 4284 bytes_deleted, BTRFS_RESERVE_NO_FLUSH); 4285 if (!ret) { 4286 trace_btrfs_space_reservation(root->fs_info, "transaction", 4287 trans->transid, 4288 bytes_deleted, 1); 4289 trans->bytes_reserved += bytes_deleted; 4290 } 4291 return ret; 4292 4293 } 4294 4295 static int truncate_inline_extent(struct inode *inode, 4296 struct btrfs_path *path, 4297 struct btrfs_key *found_key, 4298 const u64 item_end, 4299 const u64 new_size) 4300 { 4301 struct extent_buffer *leaf = path->nodes[0]; 4302 int slot = path->slots[0]; 4303 struct btrfs_file_extent_item *fi; 4304 u32 size = (u32)(new_size - found_key->offset); 4305 struct btrfs_root *root = BTRFS_I(inode)->root; 4306 4307 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 4308 4309 if (btrfs_file_extent_compression(leaf, fi) != BTRFS_COMPRESS_NONE) { 4310 loff_t offset = new_size; 4311 loff_t page_end = ALIGN(offset, PAGE_SIZE); 4312 4313 /* 4314 * Zero out the remaining of the last page of our inline extent, 4315 * instead of directly truncating our inline extent here - that 4316 * would be much more complex (decompressing all the data, then 4317 * compressing the truncated data, which might be bigger than 4318 * the size of the inline extent, resize the extent, etc). 4319 * We release the path because to get the page we might need to 4320 * read the extent item from disk (data not in the page cache). 4321 */ 4322 btrfs_release_path(path); 4323 return btrfs_truncate_block(inode, offset, page_end - offset, 4324 0); 4325 } 4326 4327 btrfs_set_file_extent_ram_bytes(leaf, fi, size); 4328 size = btrfs_file_extent_calc_inline_size(size); 4329 btrfs_truncate_item(root, path, size, 1); 4330 4331 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 4332 inode_sub_bytes(inode, item_end + 1 - new_size); 4333 4334 return 0; 4335 } 4336 4337 /* 4338 * this can truncate away extent items, csum items and directory items. 4339 * It starts at a high offset and removes keys until it can't find 4340 * any higher than new_size 4341 * 4342 * csum items that cross the new i_size are truncated to the new size 4343 * as well. 4344 * 4345 * min_type is the minimum key type to truncate down to. If set to 0, this 4346 * will kill all the items on this inode, including the INODE_ITEM_KEY. 4347 */ 4348 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans, 4349 struct btrfs_root *root, 4350 struct inode *inode, 4351 u64 new_size, u32 min_type) 4352 { 4353 struct btrfs_path *path; 4354 struct extent_buffer *leaf; 4355 struct btrfs_file_extent_item *fi; 4356 struct btrfs_key key; 4357 struct btrfs_key found_key; 4358 u64 extent_start = 0; 4359 u64 extent_num_bytes = 0; 4360 u64 extent_offset = 0; 4361 u64 item_end = 0; 4362 u64 last_size = new_size; 4363 u32 found_type = (u8)-1; 4364 int found_extent; 4365 int del_item; 4366 int pending_del_nr = 0; 4367 int pending_del_slot = 0; 4368 int extent_type = -1; 4369 int ret; 4370 int err = 0; 4371 u64 ino = btrfs_ino(inode); 4372 u64 bytes_deleted = 0; 4373 bool be_nice = 0; 4374 bool should_throttle = 0; 4375 bool should_end = 0; 4376 4377 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY); 4378 4379 /* 4380 * for non-free space inodes and ref cows, we want to back off from 4381 * time to time 4382 */ 4383 if (!btrfs_is_free_space_inode(inode) && 4384 test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 4385 be_nice = 1; 4386 4387 path = btrfs_alloc_path(); 4388 if (!path) 4389 return -ENOMEM; 4390 path->reada = READA_BACK; 4391 4392 /* 4393 * We want to drop from the next block forward in case this new size is 4394 * not block aligned since we will be keeping the last block of the 4395 * extent just the way it is. 4396 */ 4397 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) || 4398 root == root->fs_info->tree_root) 4399 btrfs_drop_extent_cache(inode, ALIGN(new_size, 4400 root->sectorsize), (u64)-1, 0); 4401 4402 /* 4403 * This function is also used to drop the items in the log tree before 4404 * we relog the inode, so if root != BTRFS_I(inode)->root, it means 4405 * it is used to drop the loged items. So we shouldn't kill the delayed 4406 * items. 4407 */ 4408 if (min_type == 0 && root == BTRFS_I(inode)->root) 4409 btrfs_kill_delayed_inode_items(inode); 4410 4411 key.objectid = ino; 4412 key.offset = (u64)-1; 4413 key.type = (u8)-1; 4414 4415 search_again: 4416 /* 4417 * with a 16K leaf size and 128MB extents, you can actually queue 4418 * up a huge file in a single leaf. Most of the time that 4419 * bytes_deleted is > 0, it will be huge by the time we get here 4420 */ 4421 if (be_nice && bytes_deleted > SZ_32M) { 4422 if (btrfs_should_end_transaction(trans, root)) { 4423 err = -EAGAIN; 4424 goto error; 4425 } 4426 } 4427 4428 4429 path->leave_spinning = 1; 4430 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 4431 if (ret < 0) { 4432 err = ret; 4433 goto out; 4434 } 4435 4436 if (ret > 0) { 4437 /* there are no items in the tree for us to truncate, we're 4438 * done 4439 */ 4440 if (path->slots[0] == 0) 4441 goto out; 4442 path->slots[0]--; 4443 } 4444 4445 while (1) { 4446 fi = NULL; 4447 leaf = path->nodes[0]; 4448 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 4449 found_type = found_key.type; 4450 4451 if (found_key.objectid != ino) 4452 break; 4453 4454 if (found_type < min_type) 4455 break; 4456 4457 item_end = found_key.offset; 4458 if (found_type == BTRFS_EXTENT_DATA_KEY) { 4459 fi = btrfs_item_ptr(leaf, path->slots[0], 4460 struct btrfs_file_extent_item); 4461 extent_type = btrfs_file_extent_type(leaf, fi); 4462 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 4463 item_end += 4464 btrfs_file_extent_num_bytes(leaf, fi); 4465 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 4466 item_end += btrfs_file_extent_inline_len(leaf, 4467 path->slots[0], fi); 4468 } 4469 item_end--; 4470 } 4471 if (found_type > min_type) { 4472 del_item = 1; 4473 } else { 4474 if (item_end < new_size) 4475 break; 4476 if (found_key.offset >= new_size) 4477 del_item = 1; 4478 else 4479 del_item = 0; 4480 } 4481 found_extent = 0; 4482 /* FIXME, shrink the extent if the ref count is only 1 */ 4483 if (found_type != BTRFS_EXTENT_DATA_KEY) 4484 goto delete; 4485 4486 if (del_item) 4487 last_size = found_key.offset; 4488 else 4489 last_size = new_size; 4490 4491 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 4492 u64 num_dec; 4493 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi); 4494 if (!del_item) { 4495 u64 orig_num_bytes = 4496 btrfs_file_extent_num_bytes(leaf, fi); 4497 extent_num_bytes = ALIGN(new_size - 4498 found_key.offset, 4499 root->sectorsize); 4500 btrfs_set_file_extent_num_bytes(leaf, fi, 4501 extent_num_bytes); 4502 num_dec = (orig_num_bytes - 4503 extent_num_bytes); 4504 if (test_bit(BTRFS_ROOT_REF_COWS, 4505 &root->state) && 4506 extent_start != 0) 4507 inode_sub_bytes(inode, num_dec); 4508 btrfs_mark_buffer_dirty(leaf); 4509 } else { 4510 extent_num_bytes = 4511 btrfs_file_extent_disk_num_bytes(leaf, 4512 fi); 4513 extent_offset = found_key.offset - 4514 btrfs_file_extent_offset(leaf, fi); 4515 4516 /* FIXME blocksize != 4096 */ 4517 num_dec = btrfs_file_extent_num_bytes(leaf, fi); 4518 if (extent_start != 0) { 4519 found_extent = 1; 4520 if (test_bit(BTRFS_ROOT_REF_COWS, 4521 &root->state)) 4522 inode_sub_bytes(inode, num_dec); 4523 } 4524 } 4525 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 4526 /* 4527 * we can't truncate inline items that have had 4528 * special encodings 4529 */ 4530 if (!del_item && 4531 btrfs_file_extent_encryption(leaf, fi) == 0 && 4532 btrfs_file_extent_other_encoding(leaf, fi) == 0) { 4533 4534 /* 4535 * Need to release path in order to truncate a 4536 * compressed extent. So delete any accumulated 4537 * extent items so far. 4538 */ 4539 if (btrfs_file_extent_compression(leaf, fi) != 4540 BTRFS_COMPRESS_NONE && pending_del_nr) { 4541 err = btrfs_del_items(trans, root, path, 4542 pending_del_slot, 4543 pending_del_nr); 4544 if (err) { 4545 btrfs_abort_transaction(trans, 4546 err); 4547 goto error; 4548 } 4549 pending_del_nr = 0; 4550 } 4551 4552 err = truncate_inline_extent(inode, path, 4553 &found_key, 4554 item_end, 4555 new_size); 4556 if (err) { 4557 btrfs_abort_transaction(trans, err); 4558 goto error; 4559 } 4560 } else if (test_bit(BTRFS_ROOT_REF_COWS, 4561 &root->state)) { 4562 inode_sub_bytes(inode, item_end + 1 - new_size); 4563 } 4564 } 4565 delete: 4566 if (del_item) { 4567 if (!pending_del_nr) { 4568 /* no pending yet, add ourselves */ 4569 pending_del_slot = path->slots[0]; 4570 pending_del_nr = 1; 4571 } else if (pending_del_nr && 4572 path->slots[0] + 1 == pending_del_slot) { 4573 /* hop on the pending chunk */ 4574 pending_del_nr++; 4575 pending_del_slot = path->slots[0]; 4576 } else { 4577 BUG(); 4578 } 4579 } else { 4580 break; 4581 } 4582 should_throttle = 0; 4583 4584 if (found_extent && 4585 (test_bit(BTRFS_ROOT_REF_COWS, &root->state) || 4586 root == root->fs_info->tree_root)) { 4587 btrfs_set_path_blocking(path); 4588 bytes_deleted += extent_num_bytes; 4589 ret = btrfs_free_extent(trans, root, extent_start, 4590 extent_num_bytes, 0, 4591 btrfs_header_owner(leaf), 4592 ino, extent_offset); 4593 BUG_ON(ret); 4594 if (btrfs_should_throttle_delayed_refs(trans, root)) 4595 btrfs_async_run_delayed_refs(root, 4596 trans->transid, 4597 trans->delayed_ref_updates * 2, 0); 4598 if (be_nice) { 4599 if (truncate_space_check(trans, root, 4600 extent_num_bytes)) { 4601 should_end = 1; 4602 } 4603 if (btrfs_should_throttle_delayed_refs(trans, 4604 root)) { 4605 should_throttle = 1; 4606 } 4607 } 4608 } 4609 4610 if (found_type == BTRFS_INODE_ITEM_KEY) 4611 break; 4612 4613 if (path->slots[0] == 0 || 4614 path->slots[0] != pending_del_slot || 4615 should_throttle || should_end) { 4616 if (pending_del_nr) { 4617 ret = btrfs_del_items(trans, root, path, 4618 pending_del_slot, 4619 pending_del_nr); 4620 if (ret) { 4621 btrfs_abort_transaction(trans, ret); 4622 goto error; 4623 } 4624 pending_del_nr = 0; 4625 } 4626 btrfs_release_path(path); 4627 if (should_throttle) { 4628 unsigned long updates = trans->delayed_ref_updates; 4629 if (updates) { 4630 trans->delayed_ref_updates = 0; 4631 ret = btrfs_run_delayed_refs(trans, root, updates * 2); 4632 if (ret && !err) 4633 err = ret; 4634 } 4635 } 4636 /* 4637 * if we failed to refill our space rsv, bail out 4638 * and let the transaction restart 4639 */ 4640 if (should_end) { 4641 err = -EAGAIN; 4642 goto error; 4643 } 4644 goto search_again; 4645 } else { 4646 path->slots[0]--; 4647 } 4648 } 4649 out: 4650 if (pending_del_nr) { 4651 ret = btrfs_del_items(trans, root, path, pending_del_slot, 4652 pending_del_nr); 4653 if (ret) 4654 btrfs_abort_transaction(trans, ret); 4655 } 4656 error: 4657 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) 4658 btrfs_ordered_update_i_size(inode, last_size, NULL); 4659 4660 btrfs_free_path(path); 4661 4662 if (be_nice && bytes_deleted > SZ_32M) { 4663 unsigned long updates = trans->delayed_ref_updates; 4664 if (updates) { 4665 trans->delayed_ref_updates = 0; 4666 ret = btrfs_run_delayed_refs(trans, root, updates * 2); 4667 if (ret && !err) 4668 err = ret; 4669 } 4670 } 4671 return err; 4672 } 4673 4674 /* 4675 * btrfs_truncate_block - read, zero a chunk and write a block 4676 * @inode - inode that we're zeroing 4677 * @from - the offset to start zeroing 4678 * @len - the length to zero, 0 to zero the entire range respective to the 4679 * offset 4680 * @front - zero up to the offset instead of from the offset on 4681 * 4682 * This will find the block for the "from" offset and cow the block and zero the 4683 * part we want to zero. This is used with truncate and hole punching. 4684 */ 4685 int btrfs_truncate_block(struct inode *inode, loff_t from, loff_t len, 4686 int front) 4687 { 4688 struct address_space *mapping = inode->i_mapping; 4689 struct btrfs_root *root = BTRFS_I(inode)->root; 4690 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 4691 struct btrfs_ordered_extent *ordered; 4692 struct extent_state *cached_state = NULL; 4693 char *kaddr; 4694 u32 blocksize = root->sectorsize; 4695 pgoff_t index = from >> PAGE_SHIFT; 4696 unsigned offset = from & (blocksize - 1); 4697 struct page *page; 4698 gfp_t mask = btrfs_alloc_write_mask(mapping); 4699 int ret = 0; 4700 u64 block_start; 4701 u64 block_end; 4702 4703 if ((offset & (blocksize - 1)) == 0 && 4704 (!len || ((len & (blocksize - 1)) == 0))) 4705 goto out; 4706 4707 ret = btrfs_delalloc_reserve_space(inode, 4708 round_down(from, blocksize), blocksize); 4709 if (ret) 4710 goto out; 4711 4712 again: 4713 page = find_or_create_page(mapping, index, mask); 4714 if (!page) { 4715 btrfs_delalloc_release_space(inode, 4716 round_down(from, blocksize), 4717 blocksize); 4718 ret = -ENOMEM; 4719 goto out; 4720 } 4721 4722 block_start = round_down(from, blocksize); 4723 block_end = block_start + blocksize - 1; 4724 4725 if (!PageUptodate(page)) { 4726 ret = btrfs_readpage(NULL, page); 4727 lock_page(page); 4728 if (page->mapping != mapping) { 4729 unlock_page(page); 4730 put_page(page); 4731 goto again; 4732 } 4733 if (!PageUptodate(page)) { 4734 ret = -EIO; 4735 goto out_unlock; 4736 } 4737 } 4738 wait_on_page_writeback(page); 4739 4740 lock_extent_bits(io_tree, block_start, block_end, &cached_state); 4741 set_page_extent_mapped(page); 4742 4743 ordered = btrfs_lookup_ordered_extent(inode, block_start); 4744 if (ordered) { 4745 unlock_extent_cached(io_tree, block_start, block_end, 4746 &cached_state, GFP_NOFS); 4747 unlock_page(page); 4748 put_page(page); 4749 btrfs_start_ordered_extent(inode, ordered, 1); 4750 btrfs_put_ordered_extent(ordered); 4751 goto again; 4752 } 4753 4754 clear_extent_bit(&BTRFS_I(inode)->io_tree, block_start, block_end, 4755 EXTENT_DIRTY | EXTENT_DELALLOC | 4756 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 4757 0, 0, &cached_state, GFP_NOFS); 4758 4759 ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 4760 &cached_state); 4761 if (ret) { 4762 unlock_extent_cached(io_tree, block_start, block_end, 4763 &cached_state, GFP_NOFS); 4764 goto out_unlock; 4765 } 4766 4767 if (offset != blocksize) { 4768 if (!len) 4769 len = blocksize - offset; 4770 kaddr = kmap(page); 4771 if (front) 4772 memset(kaddr + (block_start - page_offset(page)), 4773 0, offset); 4774 else 4775 memset(kaddr + (block_start - page_offset(page)) + offset, 4776 0, len); 4777 flush_dcache_page(page); 4778 kunmap(page); 4779 } 4780 ClearPageChecked(page); 4781 set_page_dirty(page); 4782 unlock_extent_cached(io_tree, block_start, block_end, &cached_state, 4783 GFP_NOFS); 4784 4785 out_unlock: 4786 if (ret) 4787 btrfs_delalloc_release_space(inode, block_start, 4788 blocksize); 4789 unlock_page(page); 4790 put_page(page); 4791 out: 4792 return ret; 4793 } 4794 4795 static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode, 4796 u64 offset, u64 len) 4797 { 4798 struct btrfs_trans_handle *trans; 4799 int ret; 4800 4801 /* 4802 * Still need to make sure the inode looks like it's been updated so 4803 * that any holes get logged if we fsync. 4804 */ 4805 if (btrfs_fs_incompat(root->fs_info, NO_HOLES)) { 4806 BTRFS_I(inode)->last_trans = root->fs_info->generation; 4807 BTRFS_I(inode)->last_sub_trans = root->log_transid; 4808 BTRFS_I(inode)->last_log_commit = root->last_log_commit; 4809 return 0; 4810 } 4811 4812 /* 4813 * 1 - for the one we're dropping 4814 * 1 - for the one we're adding 4815 * 1 - for updating the inode. 4816 */ 4817 trans = btrfs_start_transaction(root, 3); 4818 if (IS_ERR(trans)) 4819 return PTR_ERR(trans); 4820 4821 ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1); 4822 if (ret) { 4823 btrfs_abort_transaction(trans, ret); 4824 btrfs_end_transaction(trans, root); 4825 return ret; 4826 } 4827 4828 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset, 4829 0, 0, len, 0, len, 0, 0, 0); 4830 if (ret) 4831 btrfs_abort_transaction(trans, ret); 4832 else 4833 btrfs_update_inode(trans, root, inode); 4834 btrfs_end_transaction(trans, root); 4835 return ret; 4836 } 4837 4838 /* 4839 * This function puts in dummy file extents for the area we're creating a hole 4840 * for. So if we are truncating this file to a larger size we need to insert 4841 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for 4842 * the range between oldsize and size 4843 */ 4844 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size) 4845 { 4846 struct btrfs_root *root = BTRFS_I(inode)->root; 4847 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 4848 struct extent_map *em = NULL; 4849 struct extent_state *cached_state = NULL; 4850 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 4851 u64 hole_start = ALIGN(oldsize, root->sectorsize); 4852 u64 block_end = ALIGN(size, root->sectorsize); 4853 u64 last_byte; 4854 u64 cur_offset; 4855 u64 hole_size; 4856 int err = 0; 4857 4858 /* 4859 * If our size started in the middle of a block we need to zero out the 4860 * rest of the block before we expand the i_size, otherwise we could 4861 * expose stale data. 4862 */ 4863 err = btrfs_truncate_block(inode, oldsize, 0, 0); 4864 if (err) 4865 return err; 4866 4867 if (size <= hole_start) 4868 return 0; 4869 4870 while (1) { 4871 struct btrfs_ordered_extent *ordered; 4872 4873 lock_extent_bits(io_tree, hole_start, block_end - 1, 4874 &cached_state); 4875 ordered = btrfs_lookup_ordered_range(inode, hole_start, 4876 block_end - hole_start); 4877 if (!ordered) 4878 break; 4879 unlock_extent_cached(io_tree, hole_start, block_end - 1, 4880 &cached_state, GFP_NOFS); 4881 btrfs_start_ordered_extent(inode, ordered, 1); 4882 btrfs_put_ordered_extent(ordered); 4883 } 4884 4885 cur_offset = hole_start; 4886 while (1) { 4887 em = btrfs_get_extent(inode, NULL, 0, cur_offset, 4888 block_end - cur_offset, 0); 4889 if (IS_ERR(em)) { 4890 err = PTR_ERR(em); 4891 em = NULL; 4892 break; 4893 } 4894 last_byte = min(extent_map_end(em), block_end); 4895 last_byte = ALIGN(last_byte , root->sectorsize); 4896 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) { 4897 struct extent_map *hole_em; 4898 hole_size = last_byte - cur_offset; 4899 4900 err = maybe_insert_hole(root, inode, cur_offset, 4901 hole_size); 4902 if (err) 4903 break; 4904 btrfs_drop_extent_cache(inode, cur_offset, 4905 cur_offset + hole_size - 1, 0); 4906 hole_em = alloc_extent_map(); 4907 if (!hole_em) { 4908 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 4909 &BTRFS_I(inode)->runtime_flags); 4910 goto next; 4911 } 4912 hole_em->start = cur_offset; 4913 hole_em->len = hole_size; 4914 hole_em->orig_start = cur_offset; 4915 4916 hole_em->block_start = EXTENT_MAP_HOLE; 4917 hole_em->block_len = 0; 4918 hole_em->orig_block_len = 0; 4919 hole_em->ram_bytes = hole_size; 4920 hole_em->bdev = root->fs_info->fs_devices->latest_bdev; 4921 hole_em->compress_type = BTRFS_COMPRESS_NONE; 4922 hole_em->generation = root->fs_info->generation; 4923 4924 while (1) { 4925 write_lock(&em_tree->lock); 4926 err = add_extent_mapping(em_tree, hole_em, 1); 4927 write_unlock(&em_tree->lock); 4928 if (err != -EEXIST) 4929 break; 4930 btrfs_drop_extent_cache(inode, cur_offset, 4931 cur_offset + 4932 hole_size - 1, 0); 4933 } 4934 free_extent_map(hole_em); 4935 } 4936 next: 4937 free_extent_map(em); 4938 em = NULL; 4939 cur_offset = last_byte; 4940 if (cur_offset >= block_end) 4941 break; 4942 } 4943 free_extent_map(em); 4944 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state, 4945 GFP_NOFS); 4946 return err; 4947 } 4948 4949 static int btrfs_setsize(struct inode *inode, struct iattr *attr) 4950 { 4951 struct btrfs_root *root = BTRFS_I(inode)->root; 4952 struct btrfs_trans_handle *trans; 4953 loff_t oldsize = i_size_read(inode); 4954 loff_t newsize = attr->ia_size; 4955 int mask = attr->ia_valid; 4956 int ret; 4957 4958 /* 4959 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a 4960 * special case where we need to update the times despite not having 4961 * these flags set. For all other operations the VFS set these flags 4962 * explicitly if it wants a timestamp update. 4963 */ 4964 if (newsize != oldsize) { 4965 inode_inc_iversion(inode); 4966 if (!(mask & (ATTR_CTIME | ATTR_MTIME))) 4967 inode->i_ctime = inode->i_mtime = 4968 current_fs_time(inode->i_sb); 4969 } 4970 4971 if (newsize > oldsize) { 4972 /* 4973 * Don't do an expanding truncate while snapshoting is ongoing. 4974 * This is to ensure the snapshot captures a fully consistent 4975 * state of this file - if the snapshot captures this expanding 4976 * truncation, it must capture all writes that happened before 4977 * this truncation. 4978 */ 4979 btrfs_wait_for_snapshot_creation(root); 4980 ret = btrfs_cont_expand(inode, oldsize, newsize); 4981 if (ret) { 4982 btrfs_end_write_no_snapshoting(root); 4983 return ret; 4984 } 4985 4986 trans = btrfs_start_transaction(root, 1); 4987 if (IS_ERR(trans)) { 4988 btrfs_end_write_no_snapshoting(root); 4989 return PTR_ERR(trans); 4990 } 4991 4992 i_size_write(inode, newsize); 4993 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL); 4994 pagecache_isize_extended(inode, oldsize, newsize); 4995 ret = btrfs_update_inode(trans, root, inode); 4996 btrfs_end_write_no_snapshoting(root); 4997 btrfs_end_transaction(trans, root); 4998 } else { 4999 5000 /* 5001 * We're truncating a file that used to have good data down to 5002 * zero. Make sure it gets into the ordered flush list so that 5003 * any new writes get down to disk quickly. 5004 */ 5005 if (newsize == 0) 5006 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE, 5007 &BTRFS_I(inode)->runtime_flags); 5008 5009 /* 5010 * 1 for the orphan item we're going to add 5011 * 1 for the orphan item deletion. 5012 */ 5013 trans = btrfs_start_transaction(root, 2); 5014 if (IS_ERR(trans)) 5015 return PTR_ERR(trans); 5016 5017 /* 5018 * We need to do this in case we fail at _any_ point during the 5019 * actual truncate. Once we do the truncate_setsize we could 5020 * invalidate pages which forces any outstanding ordered io to 5021 * be instantly completed which will give us extents that need 5022 * to be truncated. If we fail to get an orphan inode down we 5023 * could have left over extents that were never meant to live, 5024 * so we need to guarantee from this point on that everything 5025 * will be consistent. 5026 */ 5027 ret = btrfs_orphan_add(trans, inode); 5028 btrfs_end_transaction(trans, root); 5029 if (ret) 5030 return ret; 5031 5032 /* we don't support swapfiles, so vmtruncate shouldn't fail */ 5033 truncate_setsize(inode, newsize); 5034 5035 /* Disable nonlocked read DIO to avoid the end less truncate */ 5036 btrfs_inode_block_unlocked_dio(inode); 5037 inode_dio_wait(inode); 5038 btrfs_inode_resume_unlocked_dio(inode); 5039 5040 ret = btrfs_truncate(inode); 5041 if (ret && inode->i_nlink) { 5042 int err; 5043 5044 /* 5045 * failed to truncate, disk_i_size is only adjusted down 5046 * as we remove extents, so it should represent the true 5047 * size of the inode, so reset the in memory size and 5048 * delete our orphan entry. 5049 */ 5050 trans = btrfs_join_transaction(root); 5051 if (IS_ERR(trans)) { 5052 btrfs_orphan_del(NULL, inode); 5053 return ret; 5054 } 5055 i_size_write(inode, BTRFS_I(inode)->disk_i_size); 5056 err = btrfs_orphan_del(trans, inode); 5057 if (err) 5058 btrfs_abort_transaction(trans, err); 5059 btrfs_end_transaction(trans, root); 5060 } 5061 } 5062 5063 return ret; 5064 } 5065 5066 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr) 5067 { 5068 struct inode *inode = d_inode(dentry); 5069 struct btrfs_root *root = BTRFS_I(inode)->root; 5070 int err; 5071 5072 if (btrfs_root_readonly(root)) 5073 return -EROFS; 5074 5075 err = inode_change_ok(inode, attr); 5076 if (err) 5077 return err; 5078 5079 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 5080 err = btrfs_setsize(inode, attr); 5081 if (err) 5082 return err; 5083 } 5084 5085 if (attr->ia_valid) { 5086 setattr_copy(inode, attr); 5087 inode_inc_iversion(inode); 5088 err = btrfs_dirty_inode(inode); 5089 5090 if (!err && attr->ia_valid & ATTR_MODE) 5091 err = posix_acl_chmod(inode, inode->i_mode); 5092 } 5093 5094 return err; 5095 } 5096 5097 /* 5098 * While truncating the inode pages during eviction, we get the VFS calling 5099 * btrfs_invalidatepage() against each page of the inode. This is slow because 5100 * the calls to btrfs_invalidatepage() result in a huge amount of calls to 5101 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting 5102 * extent_state structures over and over, wasting lots of time. 5103 * 5104 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all 5105 * those expensive operations on a per page basis and do only the ordered io 5106 * finishing, while we release here the extent_map and extent_state structures, 5107 * without the excessive merging and splitting. 5108 */ 5109 static void evict_inode_truncate_pages(struct inode *inode) 5110 { 5111 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 5112 struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree; 5113 struct rb_node *node; 5114 5115 ASSERT(inode->i_state & I_FREEING); 5116 truncate_inode_pages_final(&inode->i_data); 5117 5118 write_lock(&map_tree->lock); 5119 while (!RB_EMPTY_ROOT(&map_tree->map)) { 5120 struct extent_map *em; 5121 5122 node = rb_first(&map_tree->map); 5123 em = rb_entry(node, struct extent_map, rb_node); 5124 clear_bit(EXTENT_FLAG_PINNED, &em->flags); 5125 clear_bit(EXTENT_FLAG_LOGGING, &em->flags); 5126 remove_extent_mapping(map_tree, em); 5127 free_extent_map(em); 5128 if (need_resched()) { 5129 write_unlock(&map_tree->lock); 5130 cond_resched(); 5131 write_lock(&map_tree->lock); 5132 } 5133 } 5134 write_unlock(&map_tree->lock); 5135 5136 /* 5137 * Keep looping until we have no more ranges in the io tree. 5138 * We can have ongoing bios started by readpages (called from readahead) 5139 * that have their endio callback (extent_io.c:end_bio_extent_readpage) 5140 * still in progress (unlocked the pages in the bio but did not yet 5141 * unlocked the ranges in the io tree). Therefore this means some 5142 * ranges can still be locked and eviction started because before 5143 * submitting those bios, which are executed by a separate task (work 5144 * queue kthread), inode references (inode->i_count) were not taken 5145 * (which would be dropped in the end io callback of each bio). 5146 * Therefore here we effectively end up waiting for those bios and 5147 * anyone else holding locked ranges without having bumped the inode's 5148 * reference count - if we don't do it, when they access the inode's 5149 * io_tree to unlock a range it may be too late, leading to an 5150 * use-after-free issue. 5151 */ 5152 spin_lock(&io_tree->lock); 5153 while (!RB_EMPTY_ROOT(&io_tree->state)) { 5154 struct extent_state *state; 5155 struct extent_state *cached_state = NULL; 5156 u64 start; 5157 u64 end; 5158 5159 node = rb_first(&io_tree->state); 5160 state = rb_entry(node, struct extent_state, rb_node); 5161 start = state->start; 5162 end = state->end; 5163 spin_unlock(&io_tree->lock); 5164 5165 lock_extent_bits(io_tree, start, end, &cached_state); 5166 5167 /* 5168 * If still has DELALLOC flag, the extent didn't reach disk, 5169 * and its reserved space won't be freed by delayed_ref. 5170 * So we need to free its reserved space here. 5171 * (Refer to comment in btrfs_invalidatepage, case 2) 5172 * 5173 * Note, end is the bytenr of last byte, so we need + 1 here. 5174 */ 5175 if (state->state & EXTENT_DELALLOC) 5176 btrfs_qgroup_free_data(inode, start, end - start + 1); 5177 5178 clear_extent_bit(io_tree, start, end, 5179 EXTENT_LOCKED | EXTENT_DIRTY | 5180 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | 5181 EXTENT_DEFRAG, 1, 1, 5182 &cached_state, GFP_NOFS); 5183 5184 cond_resched(); 5185 spin_lock(&io_tree->lock); 5186 } 5187 spin_unlock(&io_tree->lock); 5188 } 5189 5190 void btrfs_evict_inode(struct inode *inode) 5191 { 5192 struct btrfs_trans_handle *trans; 5193 struct btrfs_root *root = BTRFS_I(inode)->root; 5194 struct btrfs_block_rsv *rsv, *global_rsv; 5195 int steal_from_global = 0; 5196 u64 min_size; 5197 int ret; 5198 5199 trace_btrfs_inode_evict(inode); 5200 5201 if (!root) { 5202 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 5203 return; 5204 } 5205 5206 min_size = btrfs_calc_trunc_metadata_size(root, 1); 5207 5208 evict_inode_truncate_pages(inode); 5209 5210 if (inode->i_nlink && 5211 ((btrfs_root_refs(&root->root_item) != 0 && 5212 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) || 5213 btrfs_is_free_space_inode(inode))) 5214 goto no_delete; 5215 5216 if (is_bad_inode(inode)) { 5217 btrfs_orphan_del(NULL, inode); 5218 goto no_delete; 5219 } 5220 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */ 5221 if (!special_file(inode->i_mode)) 5222 btrfs_wait_ordered_range(inode, 0, (u64)-1); 5223 5224 btrfs_free_io_failure_record(inode, 0, (u64)-1); 5225 5226 if (root->fs_info->log_root_recovering) { 5227 BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 5228 &BTRFS_I(inode)->runtime_flags)); 5229 goto no_delete; 5230 } 5231 5232 if (inode->i_nlink > 0) { 5233 BUG_ON(btrfs_root_refs(&root->root_item) != 0 && 5234 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID); 5235 goto no_delete; 5236 } 5237 5238 ret = btrfs_commit_inode_delayed_inode(inode); 5239 if (ret) { 5240 btrfs_orphan_del(NULL, inode); 5241 goto no_delete; 5242 } 5243 5244 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP); 5245 if (!rsv) { 5246 btrfs_orphan_del(NULL, inode); 5247 goto no_delete; 5248 } 5249 rsv->size = min_size; 5250 rsv->failfast = 1; 5251 global_rsv = &root->fs_info->global_block_rsv; 5252 5253 btrfs_i_size_write(inode, 0); 5254 5255 /* 5256 * This is a bit simpler than btrfs_truncate since we've already 5257 * reserved our space for our orphan item in the unlink, so we just 5258 * need to reserve some slack space in case we add bytes and update 5259 * inode item when doing the truncate. 5260 */ 5261 while (1) { 5262 ret = btrfs_block_rsv_refill(root, rsv, min_size, 5263 BTRFS_RESERVE_FLUSH_LIMIT); 5264 5265 /* 5266 * Try and steal from the global reserve since we will 5267 * likely not use this space anyway, we want to try as 5268 * hard as possible to get this to work. 5269 */ 5270 if (ret) 5271 steal_from_global++; 5272 else 5273 steal_from_global = 0; 5274 ret = 0; 5275 5276 /* 5277 * steal_from_global == 0: we reserved stuff, hooray! 5278 * steal_from_global == 1: we didn't reserve stuff, boo! 5279 * steal_from_global == 2: we've committed, still not a lot of 5280 * room but maybe we'll have room in the global reserve this 5281 * time. 5282 * steal_from_global == 3: abandon all hope! 5283 */ 5284 if (steal_from_global > 2) { 5285 btrfs_warn(root->fs_info, 5286 "Could not get space for a delete, will truncate on mount %d", 5287 ret); 5288 btrfs_orphan_del(NULL, inode); 5289 btrfs_free_block_rsv(root, rsv); 5290 goto no_delete; 5291 } 5292 5293 trans = btrfs_join_transaction(root); 5294 if (IS_ERR(trans)) { 5295 btrfs_orphan_del(NULL, inode); 5296 btrfs_free_block_rsv(root, rsv); 5297 goto no_delete; 5298 } 5299 5300 /* 5301 * We can't just steal from the global reserve, we need to make 5302 * sure there is room to do it, if not we need to commit and try 5303 * again. 5304 */ 5305 if (steal_from_global) { 5306 if (!btrfs_check_space_for_delayed_refs(trans, root)) 5307 ret = btrfs_block_rsv_migrate(global_rsv, rsv, 5308 min_size, 0); 5309 else 5310 ret = -ENOSPC; 5311 } 5312 5313 /* 5314 * Couldn't steal from the global reserve, we have too much 5315 * pending stuff built up, commit the transaction and try it 5316 * again. 5317 */ 5318 if (ret) { 5319 ret = btrfs_commit_transaction(trans, root); 5320 if (ret) { 5321 btrfs_orphan_del(NULL, inode); 5322 btrfs_free_block_rsv(root, rsv); 5323 goto no_delete; 5324 } 5325 continue; 5326 } else { 5327 steal_from_global = 0; 5328 } 5329 5330 trans->block_rsv = rsv; 5331 5332 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0); 5333 if (ret != -ENOSPC && ret != -EAGAIN) 5334 break; 5335 5336 trans->block_rsv = &root->fs_info->trans_block_rsv; 5337 btrfs_end_transaction(trans, root); 5338 trans = NULL; 5339 btrfs_btree_balance_dirty(root); 5340 } 5341 5342 btrfs_free_block_rsv(root, rsv); 5343 5344 /* 5345 * Errors here aren't a big deal, it just means we leave orphan items 5346 * in the tree. They will be cleaned up on the next mount. 5347 */ 5348 if (ret == 0) { 5349 trans->block_rsv = root->orphan_block_rsv; 5350 btrfs_orphan_del(trans, inode); 5351 } else { 5352 btrfs_orphan_del(NULL, inode); 5353 } 5354 5355 trans->block_rsv = &root->fs_info->trans_block_rsv; 5356 if (!(root == root->fs_info->tree_root || 5357 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)) 5358 btrfs_return_ino(root, btrfs_ino(inode)); 5359 5360 btrfs_end_transaction(trans, root); 5361 btrfs_btree_balance_dirty(root); 5362 no_delete: 5363 btrfs_remove_delayed_node(inode); 5364 clear_inode(inode); 5365 } 5366 5367 /* 5368 * this returns the key found in the dir entry in the location pointer. 5369 * If no dir entries were found, location->objectid is 0. 5370 */ 5371 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry, 5372 struct btrfs_key *location) 5373 { 5374 const char *name = dentry->d_name.name; 5375 int namelen = dentry->d_name.len; 5376 struct btrfs_dir_item *di; 5377 struct btrfs_path *path; 5378 struct btrfs_root *root = BTRFS_I(dir)->root; 5379 int ret = 0; 5380 5381 path = btrfs_alloc_path(); 5382 if (!path) 5383 return -ENOMEM; 5384 5385 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name, 5386 namelen, 0); 5387 if (IS_ERR(di)) 5388 ret = PTR_ERR(di); 5389 5390 if (IS_ERR_OR_NULL(di)) 5391 goto out_err; 5392 5393 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location); 5394 out: 5395 btrfs_free_path(path); 5396 return ret; 5397 out_err: 5398 location->objectid = 0; 5399 goto out; 5400 } 5401 5402 /* 5403 * when we hit a tree root in a directory, the btrfs part of the inode 5404 * needs to be changed to reflect the root directory of the tree root. This 5405 * is kind of like crossing a mount point. 5406 */ 5407 static int fixup_tree_root_location(struct btrfs_root *root, 5408 struct inode *dir, 5409 struct dentry *dentry, 5410 struct btrfs_key *location, 5411 struct btrfs_root **sub_root) 5412 { 5413 struct btrfs_path *path; 5414 struct btrfs_root *new_root; 5415 struct btrfs_root_ref *ref; 5416 struct extent_buffer *leaf; 5417 struct btrfs_key key; 5418 int ret; 5419 int err = 0; 5420 5421 path = btrfs_alloc_path(); 5422 if (!path) { 5423 err = -ENOMEM; 5424 goto out; 5425 } 5426 5427 err = -ENOENT; 5428 key.objectid = BTRFS_I(dir)->root->root_key.objectid; 5429 key.type = BTRFS_ROOT_REF_KEY; 5430 key.offset = location->objectid; 5431 5432 ret = btrfs_search_slot(NULL, root->fs_info->tree_root, &key, path, 5433 0, 0); 5434 if (ret) { 5435 if (ret < 0) 5436 err = ret; 5437 goto out; 5438 } 5439 5440 leaf = path->nodes[0]; 5441 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); 5442 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) || 5443 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len) 5444 goto out; 5445 5446 ret = memcmp_extent_buffer(leaf, dentry->d_name.name, 5447 (unsigned long)(ref + 1), 5448 dentry->d_name.len); 5449 if (ret) 5450 goto out; 5451 5452 btrfs_release_path(path); 5453 5454 new_root = btrfs_read_fs_root_no_name(root->fs_info, location); 5455 if (IS_ERR(new_root)) { 5456 err = PTR_ERR(new_root); 5457 goto out; 5458 } 5459 5460 *sub_root = new_root; 5461 location->objectid = btrfs_root_dirid(&new_root->root_item); 5462 location->type = BTRFS_INODE_ITEM_KEY; 5463 location->offset = 0; 5464 err = 0; 5465 out: 5466 btrfs_free_path(path); 5467 return err; 5468 } 5469 5470 static void inode_tree_add(struct inode *inode) 5471 { 5472 struct btrfs_root *root = BTRFS_I(inode)->root; 5473 struct btrfs_inode *entry; 5474 struct rb_node **p; 5475 struct rb_node *parent; 5476 struct rb_node *new = &BTRFS_I(inode)->rb_node; 5477 u64 ino = btrfs_ino(inode); 5478 5479 if (inode_unhashed(inode)) 5480 return; 5481 parent = NULL; 5482 spin_lock(&root->inode_lock); 5483 p = &root->inode_tree.rb_node; 5484 while (*p) { 5485 parent = *p; 5486 entry = rb_entry(parent, struct btrfs_inode, rb_node); 5487 5488 if (ino < btrfs_ino(&entry->vfs_inode)) 5489 p = &parent->rb_left; 5490 else if (ino > btrfs_ino(&entry->vfs_inode)) 5491 p = &parent->rb_right; 5492 else { 5493 WARN_ON(!(entry->vfs_inode.i_state & 5494 (I_WILL_FREE | I_FREEING))); 5495 rb_replace_node(parent, new, &root->inode_tree); 5496 RB_CLEAR_NODE(parent); 5497 spin_unlock(&root->inode_lock); 5498 return; 5499 } 5500 } 5501 rb_link_node(new, parent, p); 5502 rb_insert_color(new, &root->inode_tree); 5503 spin_unlock(&root->inode_lock); 5504 } 5505 5506 static void inode_tree_del(struct inode *inode) 5507 { 5508 struct btrfs_root *root = BTRFS_I(inode)->root; 5509 int empty = 0; 5510 5511 spin_lock(&root->inode_lock); 5512 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) { 5513 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree); 5514 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node); 5515 empty = RB_EMPTY_ROOT(&root->inode_tree); 5516 } 5517 spin_unlock(&root->inode_lock); 5518 5519 if (empty && btrfs_root_refs(&root->root_item) == 0) { 5520 synchronize_srcu(&root->fs_info->subvol_srcu); 5521 spin_lock(&root->inode_lock); 5522 empty = RB_EMPTY_ROOT(&root->inode_tree); 5523 spin_unlock(&root->inode_lock); 5524 if (empty) 5525 btrfs_add_dead_root(root); 5526 } 5527 } 5528 5529 void btrfs_invalidate_inodes(struct btrfs_root *root) 5530 { 5531 struct rb_node *node; 5532 struct rb_node *prev; 5533 struct btrfs_inode *entry; 5534 struct inode *inode; 5535 u64 objectid = 0; 5536 5537 if (!test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) 5538 WARN_ON(btrfs_root_refs(&root->root_item) != 0); 5539 5540 spin_lock(&root->inode_lock); 5541 again: 5542 node = root->inode_tree.rb_node; 5543 prev = NULL; 5544 while (node) { 5545 prev = node; 5546 entry = rb_entry(node, struct btrfs_inode, rb_node); 5547 5548 if (objectid < btrfs_ino(&entry->vfs_inode)) 5549 node = node->rb_left; 5550 else if (objectid > btrfs_ino(&entry->vfs_inode)) 5551 node = node->rb_right; 5552 else 5553 break; 5554 } 5555 if (!node) { 5556 while (prev) { 5557 entry = rb_entry(prev, struct btrfs_inode, rb_node); 5558 if (objectid <= btrfs_ino(&entry->vfs_inode)) { 5559 node = prev; 5560 break; 5561 } 5562 prev = rb_next(prev); 5563 } 5564 } 5565 while (node) { 5566 entry = rb_entry(node, struct btrfs_inode, rb_node); 5567 objectid = btrfs_ino(&entry->vfs_inode) + 1; 5568 inode = igrab(&entry->vfs_inode); 5569 if (inode) { 5570 spin_unlock(&root->inode_lock); 5571 if (atomic_read(&inode->i_count) > 1) 5572 d_prune_aliases(inode); 5573 /* 5574 * btrfs_drop_inode will have it removed from 5575 * the inode cache when its usage count 5576 * hits zero. 5577 */ 5578 iput(inode); 5579 cond_resched(); 5580 spin_lock(&root->inode_lock); 5581 goto again; 5582 } 5583 5584 if (cond_resched_lock(&root->inode_lock)) 5585 goto again; 5586 5587 node = rb_next(node); 5588 } 5589 spin_unlock(&root->inode_lock); 5590 } 5591 5592 static int btrfs_init_locked_inode(struct inode *inode, void *p) 5593 { 5594 struct btrfs_iget_args *args = p; 5595 inode->i_ino = args->location->objectid; 5596 memcpy(&BTRFS_I(inode)->location, args->location, 5597 sizeof(*args->location)); 5598 BTRFS_I(inode)->root = args->root; 5599 return 0; 5600 } 5601 5602 static int btrfs_find_actor(struct inode *inode, void *opaque) 5603 { 5604 struct btrfs_iget_args *args = opaque; 5605 return args->location->objectid == BTRFS_I(inode)->location.objectid && 5606 args->root == BTRFS_I(inode)->root; 5607 } 5608 5609 static struct inode *btrfs_iget_locked(struct super_block *s, 5610 struct btrfs_key *location, 5611 struct btrfs_root *root) 5612 { 5613 struct inode *inode; 5614 struct btrfs_iget_args args; 5615 unsigned long hashval = btrfs_inode_hash(location->objectid, root); 5616 5617 args.location = location; 5618 args.root = root; 5619 5620 inode = iget5_locked(s, hashval, btrfs_find_actor, 5621 btrfs_init_locked_inode, 5622 (void *)&args); 5623 return inode; 5624 } 5625 5626 /* Get an inode object given its location and corresponding root. 5627 * Returns in *is_new if the inode was read from disk 5628 */ 5629 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location, 5630 struct btrfs_root *root, int *new) 5631 { 5632 struct inode *inode; 5633 5634 inode = btrfs_iget_locked(s, location, root); 5635 if (!inode) 5636 return ERR_PTR(-ENOMEM); 5637 5638 if (inode->i_state & I_NEW) { 5639 int ret; 5640 5641 ret = btrfs_read_locked_inode(inode); 5642 if (!is_bad_inode(inode)) { 5643 inode_tree_add(inode); 5644 unlock_new_inode(inode); 5645 if (new) 5646 *new = 1; 5647 } else { 5648 unlock_new_inode(inode); 5649 iput(inode); 5650 ASSERT(ret < 0); 5651 inode = ERR_PTR(ret < 0 ? ret : -ESTALE); 5652 } 5653 } 5654 5655 return inode; 5656 } 5657 5658 static struct inode *new_simple_dir(struct super_block *s, 5659 struct btrfs_key *key, 5660 struct btrfs_root *root) 5661 { 5662 struct inode *inode = new_inode(s); 5663 5664 if (!inode) 5665 return ERR_PTR(-ENOMEM); 5666 5667 BTRFS_I(inode)->root = root; 5668 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key)); 5669 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags); 5670 5671 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID; 5672 inode->i_op = &btrfs_dir_ro_inode_operations; 5673 inode->i_fop = &simple_dir_operations; 5674 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO; 5675 inode->i_mtime = current_fs_time(inode->i_sb); 5676 inode->i_atime = inode->i_mtime; 5677 inode->i_ctime = inode->i_mtime; 5678 BTRFS_I(inode)->i_otime = inode->i_mtime; 5679 5680 return inode; 5681 } 5682 5683 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry) 5684 { 5685 struct inode *inode; 5686 struct btrfs_root *root = BTRFS_I(dir)->root; 5687 struct btrfs_root *sub_root = root; 5688 struct btrfs_key location; 5689 int index; 5690 int ret = 0; 5691 5692 if (dentry->d_name.len > BTRFS_NAME_LEN) 5693 return ERR_PTR(-ENAMETOOLONG); 5694 5695 ret = btrfs_inode_by_name(dir, dentry, &location); 5696 if (ret < 0) 5697 return ERR_PTR(ret); 5698 5699 if (location.objectid == 0) 5700 return ERR_PTR(-ENOENT); 5701 5702 if (location.type == BTRFS_INODE_ITEM_KEY) { 5703 inode = btrfs_iget(dir->i_sb, &location, root, NULL); 5704 return inode; 5705 } 5706 5707 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY); 5708 5709 index = srcu_read_lock(&root->fs_info->subvol_srcu); 5710 ret = fixup_tree_root_location(root, dir, dentry, 5711 &location, &sub_root); 5712 if (ret < 0) { 5713 if (ret != -ENOENT) 5714 inode = ERR_PTR(ret); 5715 else 5716 inode = new_simple_dir(dir->i_sb, &location, sub_root); 5717 } else { 5718 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL); 5719 } 5720 srcu_read_unlock(&root->fs_info->subvol_srcu, index); 5721 5722 if (!IS_ERR(inode) && root != sub_root) { 5723 down_read(&root->fs_info->cleanup_work_sem); 5724 if (!(inode->i_sb->s_flags & MS_RDONLY)) 5725 ret = btrfs_orphan_cleanup(sub_root); 5726 up_read(&root->fs_info->cleanup_work_sem); 5727 if (ret) { 5728 iput(inode); 5729 inode = ERR_PTR(ret); 5730 } 5731 } 5732 5733 return inode; 5734 } 5735 5736 static int btrfs_dentry_delete(const struct dentry *dentry) 5737 { 5738 struct btrfs_root *root; 5739 struct inode *inode = d_inode(dentry); 5740 5741 if (!inode && !IS_ROOT(dentry)) 5742 inode = d_inode(dentry->d_parent); 5743 5744 if (inode) { 5745 root = BTRFS_I(inode)->root; 5746 if (btrfs_root_refs(&root->root_item) == 0) 5747 return 1; 5748 5749 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 5750 return 1; 5751 } 5752 return 0; 5753 } 5754 5755 static void btrfs_dentry_release(struct dentry *dentry) 5756 { 5757 kfree(dentry->d_fsdata); 5758 } 5759 5760 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry, 5761 unsigned int flags) 5762 { 5763 struct inode *inode; 5764 5765 inode = btrfs_lookup_dentry(dir, dentry); 5766 if (IS_ERR(inode)) { 5767 if (PTR_ERR(inode) == -ENOENT) 5768 inode = NULL; 5769 else 5770 return ERR_CAST(inode); 5771 } 5772 5773 return d_splice_alias(inode, dentry); 5774 } 5775 5776 unsigned char btrfs_filetype_table[] = { 5777 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK 5778 }; 5779 5780 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx) 5781 { 5782 struct inode *inode = file_inode(file); 5783 struct btrfs_root *root = BTRFS_I(inode)->root; 5784 struct btrfs_item *item; 5785 struct btrfs_dir_item *di; 5786 struct btrfs_key key; 5787 struct btrfs_key found_key; 5788 struct btrfs_path *path; 5789 struct list_head ins_list; 5790 struct list_head del_list; 5791 int ret; 5792 struct extent_buffer *leaf; 5793 int slot; 5794 unsigned char d_type; 5795 int over = 0; 5796 u32 di_cur; 5797 u32 di_total; 5798 u32 di_len; 5799 int key_type = BTRFS_DIR_INDEX_KEY; 5800 char tmp_name[32]; 5801 char *name_ptr; 5802 int name_len; 5803 int is_curr = 0; /* ctx->pos points to the current index? */ 5804 bool emitted; 5805 bool put = false; 5806 5807 /* FIXME, use a real flag for deciding about the key type */ 5808 if (root->fs_info->tree_root == root) 5809 key_type = BTRFS_DIR_ITEM_KEY; 5810 5811 if (!dir_emit_dots(file, ctx)) 5812 return 0; 5813 5814 path = btrfs_alloc_path(); 5815 if (!path) 5816 return -ENOMEM; 5817 5818 path->reada = READA_FORWARD; 5819 5820 if (key_type == BTRFS_DIR_INDEX_KEY) { 5821 INIT_LIST_HEAD(&ins_list); 5822 INIT_LIST_HEAD(&del_list); 5823 put = btrfs_readdir_get_delayed_items(inode, &ins_list, 5824 &del_list); 5825 } 5826 5827 key.type = key_type; 5828 key.offset = ctx->pos; 5829 key.objectid = btrfs_ino(inode); 5830 5831 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5832 if (ret < 0) 5833 goto err; 5834 5835 emitted = false; 5836 while (1) { 5837 leaf = path->nodes[0]; 5838 slot = path->slots[0]; 5839 if (slot >= btrfs_header_nritems(leaf)) { 5840 ret = btrfs_next_leaf(root, path); 5841 if (ret < 0) 5842 goto err; 5843 else if (ret > 0) 5844 break; 5845 continue; 5846 } 5847 5848 item = btrfs_item_nr(slot); 5849 btrfs_item_key_to_cpu(leaf, &found_key, slot); 5850 5851 if (found_key.objectid != key.objectid) 5852 break; 5853 if (found_key.type != key_type) 5854 break; 5855 if (found_key.offset < ctx->pos) 5856 goto next; 5857 if (key_type == BTRFS_DIR_INDEX_KEY && 5858 btrfs_should_delete_dir_index(&del_list, 5859 found_key.offset)) 5860 goto next; 5861 5862 ctx->pos = found_key.offset; 5863 is_curr = 1; 5864 5865 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item); 5866 di_cur = 0; 5867 di_total = btrfs_item_size(leaf, item); 5868 5869 while (di_cur < di_total) { 5870 struct btrfs_key location; 5871 5872 if (verify_dir_item(root, leaf, di)) 5873 break; 5874 5875 name_len = btrfs_dir_name_len(leaf, di); 5876 if (name_len <= sizeof(tmp_name)) { 5877 name_ptr = tmp_name; 5878 } else { 5879 name_ptr = kmalloc(name_len, GFP_KERNEL); 5880 if (!name_ptr) { 5881 ret = -ENOMEM; 5882 goto err; 5883 } 5884 } 5885 read_extent_buffer(leaf, name_ptr, 5886 (unsigned long)(di + 1), name_len); 5887 5888 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)]; 5889 btrfs_dir_item_key_to_cpu(leaf, di, &location); 5890 5891 5892 /* is this a reference to our own snapshot? If so 5893 * skip it. 5894 * 5895 * In contrast to old kernels, we insert the snapshot's 5896 * dir item and dir index after it has been created, so 5897 * we won't find a reference to our own snapshot. We 5898 * still keep the following code for backward 5899 * compatibility. 5900 */ 5901 if (location.type == BTRFS_ROOT_ITEM_KEY && 5902 location.objectid == root->root_key.objectid) { 5903 over = 0; 5904 goto skip; 5905 } 5906 over = !dir_emit(ctx, name_ptr, name_len, 5907 location.objectid, d_type); 5908 5909 skip: 5910 if (name_ptr != tmp_name) 5911 kfree(name_ptr); 5912 5913 if (over) 5914 goto nopos; 5915 emitted = true; 5916 di_len = btrfs_dir_name_len(leaf, di) + 5917 btrfs_dir_data_len(leaf, di) + sizeof(*di); 5918 di_cur += di_len; 5919 di = (struct btrfs_dir_item *)((char *)di + di_len); 5920 } 5921 next: 5922 path->slots[0]++; 5923 } 5924 5925 if (key_type == BTRFS_DIR_INDEX_KEY) { 5926 if (is_curr) 5927 ctx->pos++; 5928 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list, &emitted); 5929 if (ret) 5930 goto nopos; 5931 } 5932 5933 /* 5934 * If we haven't emitted any dir entry, we must not touch ctx->pos as 5935 * it was was set to the termination value in previous call. We assume 5936 * that "." and ".." were emitted if we reach this point and set the 5937 * termination value as well for an empty directory. 5938 */ 5939 if (ctx->pos > 2 && !emitted) 5940 goto nopos; 5941 5942 /* Reached end of directory/root. Bump pos past the last item. */ 5943 ctx->pos++; 5944 5945 /* 5946 * Stop new entries from being returned after we return the last 5947 * entry. 5948 * 5949 * New directory entries are assigned a strictly increasing 5950 * offset. This means that new entries created during readdir 5951 * are *guaranteed* to be seen in the future by that readdir. 5952 * This has broken buggy programs which operate on names as 5953 * they're returned by readdir. Until we re-use freed offsets 5954 * we have this hack to stop new entries from being returned 5955 * under the assumption that they'll never reach this huge 5956 * offset. 5957 * 5958 * This is being careful not to overflow 32bit loff_t unless the 5959 * last entry requires it because doing so has broken 32bit apps 5960 * in the past. 5961 */ 5962 if (key_type == BTRFS_DIR_INDEX_KEY) { 5963 if (ctx->pos >= INT_MAX) 5964 ctx->pos = LLONG_MAX; 5965 else 5966 ctx->pos = INT_MAX; 5967 } 5968 nopos: 5969 ret = 0; 5970 err: 5971 if (put) 5972 btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list); 5973 btrfs_free_path(path); 5974 return ret; 5975 } 5976 5977 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc) 5978 { 5979 struct btrfs_root *root = BTRFS_I(inode)->root; 5980 struct btrfs_trans_handle *trans; 5981 int ret = 0; 5982 bool nolock = false; 5983 5984 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags)) 5985 return 0; 5986 5987 if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(inode)) 5988 nolock = true; 5989 5990 if (wbc->sync_mode == WB_SYNC_ALL) { 5991 if (nolock) 5992 trans = btrfs_join_transaction_nolock(root); 5993 else 5994 trans = btrfs_join_transaction(root); 5995 if (IS_ERR(trans)) 5996 return PTR_ERR(trans); 5997 ret = btrfs_commit_transaction(trans, root); 5998 } 5999 return ret; 6000 } 6001 6002 /* 6003 * This is somewhat expensive, updating the tree every time the 6004 * inode changes. But, it is most likely to find the inode in cache. 6005 * FIXME, needs more benchmarking...there are no reasons other than performance 6006 * to keep or drop this code. 6007 */ 6008 static int btrfs_dirty_inode(struct inode *inode) 6009 { 6010 struct btrfs_root *root = BTRFS_I(inode)->root; 6011 struct btrfs_trans_handle *trans; 6012 int ret; 6013 6014 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags)) 6015 return 0; 6016 6017 trans = btrfs_join_transaction(root); 6018 if (IS_ERR(trans)) 6019 return PTR_ERR(trans); 6020 6021 ret = btrfs_update_inode(trans, root, inode); 6022 if (ret && ret == -ENOSPC) { 6023 /* whoops, lets try again with the full transaction */ 6024 btrfs_end_transaction(trans, root); 6025 trans = btrfs_start_transaction(root, 1); 6026 if (IS_ERR(trans)) 6027 return PTR_ERR(trans); 6028 6029 ret = btrfs_update_inode(trans, root, inode); 6030 } 6031 btrfs_end_transaction(trans, root); 6032 if (BTRFS_I(inode)->delayed_node) 6033 btrfs_balance_delayed_items(root); 6034 6035 return ret; 6036 } 6037 6038 /* 6039 * This is a copy of file_update_time. We need this so we can return error on 6040 * ENOSPC for updating the inode in the case of file write and mmap writes. 6041 */ 6042 static int btrfs_update_time(struct inode *inode, struct timespec *now, 6043 int flags) 6044 { 6045 struct btrfs_root *root = BTRFS_I(inode)->root; 6046 6047 if (btrfs_root_readonly(root)) 6048 return -EROFS; 6049 6050 if (flags & S_VERSION) 6051 inode_inc_iversion(inode); 6052 if (flags & S_CTIME) 6053 inode->i_ctime = *now; 6054 if (flags & S_MTIME) 6055 inode->i_mtime = *now; 6056 if (flags & S_ATIME) 6057 inode->i_atime = *now; 6058 return btrfs_dirty_inode(inode); 6059 } 6060 6061 /* 6062 * find the highest existing sequence number in a directory 6063 * and then set the in-memory index_cnt variable to reflect 6064 * free sequence numbers 6065 */ 6066 static int btrfs_set_inode_index_count(struct inode *inode) 6067 { 6068 struct btrfs_root *root = BTRFS_I(inode)->root; 6069 struct btrfs_key key, found_key; 6070 struct btrfs_path *path; 6071 struct extent_buffer *leaf; 6072 int ret; 6073 6074 key.objectid = btrfs_ino(inode); 6075 key.type = BTRFS_DIR_INDEX_KEY; 6076 key.offset = (u64)-1; 6077 6078 path = btrfs_alloc_path(); 6079 if (!path) 6080 return -ENOMEM; 6081 6082 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 6083 if (ret < 0) 6084 goto out; 6085 /* FIXME: we should be able to handle this */ 6086 if (ret == 0) 6087 goto out; 6088 ret = 0; 6089 6090 /* 6091 * MAGIC NUMBER EXPLANATION: 6092 * since we search a directory based on f_pos we have to start at 2 6093 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody 6094 * else has to start at 2 6095 */ 6096 if (path->slots[0] == 0) { 6097 BTRFS_I(inode)->index_cnt = 2; 6098 goto out; 6099 } 6100 6101 path->slots[0]--; 6102 6103 leaf = path->nodes[0]; 6104 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6105 6106 if (found_key.objectid != btrfs_ino(inode) || 6107 found_key.type != BTRFS_DIR_INDEX_KEY) { 6108 BTRFS_I(inode)->index_cnt = 2; 6109 goto out; 6110 } 6111 6112 BTRFS_I(inode)->index_cnt = found_key.offset + 1; 6113 out: 6114 btrfs_free_path(path); 6115 return ret; 6116 } 6117 6118 /* 6119 * helper to find a free sequence number in a given directory. This current 6120 * code is very simple, later versions will do smarter things in the btree 6121 */ 6122 int btrfs_set_inode_index(struct inode *dir, u64 *index) 6123 { 6124 int ret = 0; 6125 6126 if (BTRFS_I(dir)->index_cnt == (u64)-1) { 6127 ret = btrfs_inode_delayed_dir_index_count(dir); 6128 if (ret) { 6129 ret = btrfs_set_inode_index_count(dir); 6130 if (ret) 6131 return ret; 6132 } 6133 } 6134 6135 *index = BTRFS_I(dir)->index_cnt; 6136 BTRFS_I(dir)->index_cnt++; 6137 6138 return ret; 6139 } 6140 6141 static int btrfs_insert_inode_locked(struct inode *inode) 6142 { 6143 struct btrfs_iget_args args; 6144 args.location = &BTRFS_I(inode)->location; 6145 args.root = BTRFS_I(inode)->root; 6146 6147 return insert_inode_locked4(inode, 6148 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root), 6149 btrfs_find_actor, &args); 6150 } 6151 6152 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans, 6153 struct btrfs_root *root, 6154 struct inode *dir, 6155 const char *name, int name_len, 6156 u64 ref_objectid, u64 objectid, 6157 umode_t mode, u64 *index) 6158 { 6159 struct inode *inode; 6160 struct btrfs_inode_item *inode_item; 6161 struct btrfs_key *location; 6162 struct btrfs_path *path; 6163 struct btrfs_inode_ref *ref; 6164 struct btrfs_key key[2]; 6165 u32 sizes[2]; 6166 int nitems = name ? 2 : 1; 6167 unsigned long ptr; 6168 int ret; 6169 6170 path = btrfs_alloc_path(); 6171 if (!path) 6172 return ERR_PTR(-ENOMEM); 6173 6174 inode = new_inode(root->fs_info->sb); 6175 if (!inode) { 6176 btrfs_free_path(path); 6177 return ERR_PTR(-ENOMEM); 6178 } 6179 6180 /* 6181 * O_TMPFILE, set link count to 0, so that after this point, 6182 * we fill in an inode item with the correct link count. 6183 */ 6184 if (!name) 6185 set_nlink(inode, 0); 6186 6187 /* 6188 * we have to initialize this early, so we can reclaim the inode 6189 * number if we fail afterwards in this function. 6190 */ 6191 inode->i_ino = objectid; 6192 6193 if (dir && name) { 6194 trace_btrfs_inode_request(dir); 6195 6196 ret = btrfs_set_inode_index(dir, index); 6197 if (ret) { 6198 btrfs_free_path(path); 6199 iput(inode); 6200 return ERR_PTR(ret); 6201 } 6202 } else if (dir) { 6203 *index = 0; 6204 } 6205 /* 6206 * index_cnt is ignored for everything but a dir, 6207 * btrfs_get_inode_index_count has an explanation for the magic 6208 * number 6209 */ 6210 BTRFS_I(inode)->index_cnt = 2; 6211 BTRFS_I(inode)->dir_index = *index; 6212 BTRFS_I(inode)->root = root; 6213 BTRFS_I(inode)->generation = trans->transid; 6214 inode->i_generation = BTRFS_I(inode)->generation; 6215 6216 /* 6217 * We could have gotten an inode number from somebody who was fsynced 6218 * and then removed in this same transaction, so let's just set full 6219 * sync since it will be a full sync anyway and this will blow away the 6220 * old info in the log. 6221 */ 6222 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 6223 6224 key[0].objectid = objectid; 6225 key[0].type = BTRFS_INODE_ITEM_KEY; 6226 key[0].offset = 0; 6227 6228 sizes[0] = sizeof(struct btrfs_inode_item); 6229 6230 if (name) { 6231 /* 6232 * Start new inodes with an inode_ref. This is slightly more 6233 * efficient for small numbers of hard links since they will 6234 * be packed into one item. Extended refs will kick in if we 6235 * add more hard links than can fit in the ref item. 6236 */ 6237 key[1].objectid = objectid; 6238 key[1].type = BTRFS_INODE_REF_KEY; 6239 key[1].offset = ref_objectid; 6240 6241 sizes[1] = name_len + sizeof(*ref); 6242 } 6243 6244 location = &BTRFS_I(inode)->location; 6245 location->objectid = objectid; 6246 location->offset = 0; 6247 location->type = BTRFS_INODE_ITEM_KEY; 6248 6249 ret = btrfs_insert_inode_locked(inode); 6250 if (ret < 0) 6251 goto fail; 6252 6253 path->leave_spinning = 1; 6254 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems); 6255 if (ret != 0) 6256 goto fail_unlock; 6257 6258 inode_init_owner(inode, dir, mode); 6259 inode_set_bytes(inode, 0); 6260 6261 inode->i_mtime = current_fs_time(inode->i_sb); 6262 inode->i_atime = inode->i_mtime; 6263 inode->i_ctime = inode->i_mtime; 6264 BTRFS_I(inode)->i_otime = inode->i_mtime; 6265 6266 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0], 6267 struct btrfs_inode_item); 6268 memset_extent_buffer(path->nodes[0], 0, (unsigned long)inode_item, 6269 sizeof(*inode_item)); 6270 fill_inode_item(trans, path->nodes[0], inode_item, inode); 6271 6272 if (name) { 6273 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1, 6274 struct btrfs_inode_ref); 6275 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len); 6276 btrfs_set_inode_ref_index(path->nodes[0], ref, *index); 6277 ptr = (unsigned long)(ref + 1); 6278 write_extent_buffer(path->nodes[0], name, ptr, name_len); 6279 } 6280 6281 btrfs_mark_buffer_dirty(path->nodes[0]); 6282 btrfs_free_path(path); 6283 6284 btrfs_inherit_iflags(inode, dir); 6285 6286 if (S_ISREG(mode)) { 6287 if (btrfs_test_opt(root->fs_info, NODATASUM)) 6288 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; 6289 if (btrfs_test_opt(root->fs_info, NODATACOW)) 6290 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW | 6291 BTRFS_INODE_NODATASUM; 6292 } 6293 6294 inode_tree_add(inode); 6295 6296 trace_btrfs_inode_new(inode); 6297 btrfs_set_inode_last_trans(trans, inode); 6298 6299 btrfs_update_root_times(trans, root); 6300 6301 ret = btrfs_inode_inherit_props(trans, inode, dir); 6302 if (ret) 6303 btrfs_err(root->fs_info, 6304 "error inheriting props for ino %llu (root %llu): %d", 6305 btrfs_ino(inode), root->root_key.objectid, ret); 6306 6307 return inode; 6308 6309 fail_unlock: 6310 unlock_new_inode(inode); 6311 fail: 6312 if (dir && name) 6313 BTRFS_I(dir)->index_cnt--; 6314 btrfs_free_path(path); 6315 iput(inode); 6316 return ERR_PTR(ret); 6317 } 6318 6319 static inline u8 btrfs_inode_type(struct inode *inode) 6320 { 6321 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT]; 6322 } 6323 6324 /* 6325 * utility function to add 'inode' into 'parent_inode' with 6326 * a give name and a given sequence number. 6327 * if 'add_backref' is true, also insert a backref from the 6328 * inode to the parent directory. 6329 */ 6330 int btrfs_add_link(struct btrfs_trans_handle *trans, 6331 struct inode *parent_inode, struct inode *inode, 6332 const char *name, int name_len, int add_backref, u64 index) 6333 { 6334 int ret = 0; 6335 struct btrfs_key key; 6336 struct btrfs_root *root = BTRFS_I(parent_inode)->root; 6337 u64 ino = btrfs_ino(inode); 6338 u64 parent_ino = btrfs_ino(parent_inode); 6339 6340 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6341 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key)); 6342 } else { 6343 key.objectid = ino; 6344 key.type = BTRFS_INODE_ITEM_KEY; 6345 key.offset = 0; 6346 } 6347 6348 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6349 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root, 6350 key.objectid, root->root_key.objectid, 6351 parent_ino, index, name, name_len); 6352 } else if (add_backref) { 6353 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino, 6354 parent_ino, index); 6355 } 6356 6357 /* Nothing to clean up yet */ 6358 if (ret) 6359 return ret; 6360 6361 ret = btrfs_insert_dir_item(trans, root, name, name_len, 6362 parent_inode, &key, 6363 btrfs_inode_type(inode), index); 6364 if (ret == -EEXIST || ret == -EOVERFLOW) 6365 goto fail_dir_item; 6366 else if (ret) { 6367 btrfs_abort_transaction(trans, ret); 6368 return ret; 6369 } 6370 6371 btrfs_i_size_write(parent_inode, parent_inode->i_size + 6372 name_len * 2); 6373 inode_inc_iversion(parent_inode); 6374 parent_inode->i_mtime = parent_inode->i_ctime = 6375 current_fs_time(parent_inode->i_sb); 6376 ret = btrfs_update_inode(trans, root, parent_inode); 6377 if (ret) 6378 btrfs_abort_transaction(trans, ret); 6379 return ret; 6380 6381 fail_dir_item: 6382 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6383 u64 local_index; 6384 int err; 6385 err = btrfs_del_root_ref(trans, root->fs_info->tree_root, 6386 key.objectid, root->root_key.objectid, 6387 parent_ino, &local_index, name, name_len); 6388 6389 } else if (add_backref) { 6390 u64 local_index; 6391 int err; 6392 6393 err = btrfs_del_inode_ref(trans, root, name, name_len, 6394 ino, parent_ino, &local_index); 6395 } 6396 return ret; 6397 } 6398 6399 static int btrfs_add_nondir(struct btrfs_trans_handle *trans, 6400 struct inode *dir, struct dentry *dentry, 6401 struct inode *inode, int backref, u64 index) 6402 { 6403 int err = btrfs_add_link(trans, dir, inode, 6404 dentry->d_name.name, dentry->d_name.len, 6405 backref, index); 6406 if (err > 0) 6407 err = -EEXIST; 6408 return err; 6409 } 6410 6411 static int btrfs_mknod(struct inode *dir, struct dentry *dentry, 6412 umode_t mode, dev_t rdev) 6413 { 6414 struct btrfs_trans_handle *trans; 6415 struct btrfs_root *root = BTRFS_I(dir)->root; 6416 struct inode *inode = NULL; 6417 int err; 6418 int drop_inode = 0; 6419 u64 objectid; 6420 u64 index = 0; 6421 6422 /* 6423 * 2 for inode item and ref 6424 * 2 for dir items 6425 * 1 for xattr if selinux is on 6426 */ 6427 trans = btrfs_start_transaction(root, 5); 6428 if (IS_ERR(trans)) 6429 return PTR_ERR(trans); 6430 6431 err = btrfs_find_free_ino(root, &objectid); 6432 if (err) 6433 goto out_unlock; 6434 6435 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 6436 dentry->d_name.len, btrfs_ino(dir), objectid, 6437 mode, &index); 6438 if (IS_ERR(inode)) { 6439 err = PTR_ERR(inode); 6440 goto out_unlock; 6441 } 6442 6443 /* 6444 * If the active LSM wants to access the inode during 6445 * d_instantiate it needs these. Smack checks to see 6446 * if the filesystem supports xattrs by looking at the 6447 * ops vector. 6448 */ 6449 inode->i_op = &btrfs_special_inode_operations; 6450 init_special_inode(inode, inode->i_mode, rdev); 6451 6452 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 6453 if (err) 6454 goto out_unlock_inode; 6455 6456 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index); 6457 if (err) { 6458 goto out_unlock_inode; 6459 } else { 6460 btrfs_update_inode(trans, root, inode); 6461 unlock_new_inode(inode); 6462 d_instantiate(dentry, inode); 6463 } 6464 6465 out_unlock: 6466 btrfs_end_transaction(trans, root); 6467 btrfs_balance_delayed_items(root); 6468 btrfs_btree_balance_dirty(root); 6469 if (drop_inode) { 6470 inode_dec_link_count(inode); 6471 iput(inode); 6472 } 6473 return err; 6474 6475 out_unlock_inode: 6476 drop_inode = 1; 6477 unlock_new_inode(inode); 6478 goto out_unlock; 6479 6480 } 6481 6482 static int btrfs_create(struct inode *dir, struct dentry *dentry, 6483 umode_t mode, bool excl) 6484 { 6485 struct btrfs_trans_handle *trans; 6486 struct btrfs_root *root = BTRFS_I(dir)->root; 6487 struct inode *inode = NULL; 6488 int drop_inode_on_err = 0; 6489 int err; 6490 u64 objectid; 6491 u64 index = 0; 6492 6493 /* 6494 * 2 for inode item and ref 6495 * 2 for dir items 6496 * 1 for xattr if selinux is on 6497 */ 6498 trans = btrfs_start_transaction(root, 5); 6499 if (IS_ERR(trans)) 6500 return PTR_ERR(trans); 6501 6502 err = btrfs_find_free_ino(root, &objectid); 6503 if (err) 6504 goto out_unlock; 6505 6506 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 6507 dentry->d_name.len, btrfs_ino(dir), objectid, 6508 mode, &index); 6509 if (IS_ERR(inode)) { 6510 err = PTR_ERR(inode); 6511 goto out_unlock; 6512 } 6513 drop_inode_on_err = 1; 6514 /* 6515 * If the active LSM wants to access the inode during 6516 * d_instantiate it needs these. Smack checks to see 6517 * if the filesystem supports xattrs by looking at the 6518 * ops vector. 6519 */ 6520 inode->i_fop = &btrfs_file_operations; 6521 inode->i_op = &btrfs_file_inode_operations; 6522 inode->i_mapping->a_ops = &btrfs_aops; 6523 6524 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 6525 if (err) 6526 goto out_unlock_inode; 6527 6528 err = btrfs_update_inode(trans, root, inode); 6529 if (err) 6530 goto out_unlock_inode; 6531 6532 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index); 6533 if (err) 6534 goto out_unlock_inode; 6535 6536 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 6537 unlock_new_inode(inode); 6538 d_instantiate(dentry, inode); 6539 6540 out_unlock: 6541 btrfs_end_transaction(trans, root); 6542 if (err && drop_inode_on_err) { 6543 inode_dec_link_count(inode); 6544 iput(inode); 6545 } 6546 btrfs_balance_delayed_items(root); 6547 btrfs_btree_balance_dirty(root); 6548 return err; 6549 6550 out_unlock_inode: 6551 unlock_new_inode(inode); 6552 goto out_unlock; 6553 6554 } 6555 6556 static int btrfs_link(struct dentry *old_dentry, struct inode *dir, 6557 struct dentry *dentry) 6558 { 6559 struct btrfs_trans_handle *trans = NULL; 6560 struct btrfs_root *root = BTRFS_I(dir)->root; 6561 struct inode *inode = d_inode(old_dentry); 6562 u64 index; 6563 int err; 6564 int drop_inode = 0; 6565 6566 /* do not allow sys_link's with other subvols of the same device */ 6567 if (root->objectid != BTRFS_I(inode)->root->objectid) 6568 return -EXDEV; 6569 6570 if (inode->i_nlink >= BTRFS_LINK_MAX) 6571 return -EMLINK; 6572 6573 err = btrfs_set_inode_index(dir, &index); 6574 if (err) 6575 goto fail; 6576 6577 /* 6578 * 2 items for inode and inode ref 6579 * 2 items for dir items 6580 * 1 item for parent inode 6581 */ 6582 trans = btrfs_start_transaction(root, 5); 6583 if (IS_ERR(trans)) { 6584 err = PTR_ERR(trans); 6585 trans = NULL; 6586 goto fail; 6587 } 6588 6589 /* There are several dir indexes for this inode, clear the cache. */ 6590 BTRFS_I(inode)->dir_index = 0ULL; 6591 inc_nlink(inode); 6592 inode_inc_iversion(inode); 6593 inode->i_ctime = current_fs_time(inode->i_sb); 6594 ihold(inode); 6595 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags); 6596 6597 err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index); 6598 6599 if (err) { 6600 drop_inode = 1; 6601 } else { 6602 struct dentry *parent = dentry->d_parent; 6603 err = btrfs_update_inode(trans, root, inode); 6604 if (err) 6605 goto fail; 6606 if (inode->i_nlink == 1) { 6607 /* 6608 * If new hard link count is 1, it's a file created 6609 * with open(2) O_TMPFILE flag. 6610 */ 6611 err = btrfs_orphan_del(trans, inode); 6612 if (err) 6613 goto fail; 6614 } 6615 d_instantiate(dentry, inode); 6616 btrfs_log_new_name(trans, inode, NULL, parent); 6617 } 6618 6619 btrfs_balance_delayed_items(root); 6620 fail: 6621 if (trans) 6622 btrfs_end_transaction(trans, root); 6623 if (drop_inode) { 6624 inode_dec_link_count(inode); 6625 iput(inode); 6626 } 6627 btrfs_btree_balance_dirty(root); 6628 return err; 6629 } 6630 6631 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 6632 { 6633 struct inode *inode = NULL; 6634 struct btrfs_trans_handle *trans; 6635 struct btrfs_root *root = BTRFS_I(dir)->root; 6636 int err = 0; 6637 int drop_on_err = 0; 6638 u64 objectid = 0; 6639 u64 index = 0; 6640 6641 /* 6642 * 2 items for inode and ref 6643 * 2 items for dir items 6644 * 1 for xattr if selinux is on 6645 */ 6646 trans = btrfs_start_transaction(root, 5); 6647 if (IS_ERR(trans)) 6648 return PTR_ERR(trans); 6649 6650 err = btrfs_find_free_ino(root, &objectid); 6651 if (err) 6652 goto out_fail; 6653 6654 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 6655 dentry->d_name.len, btrfs_ino(dir), objectid, 6656 S_IFDIR | mode, &index); 6657 if (IS_ERR(inode)) { 6658 err = PTR_ERR(inode); 6659 goto out_fail; 6660 } 6661 6662 drop_on_err = 1; 6663 /* these must be set before we unlock the inode */ 6664 inode->i_op = &btrfs_dir_inode_operations; 6665 inode->i_fop = &btrfs_dir_file_operations; 6666 6667 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 6668 if (err) 6669 goto out_fail_inode; 6670 6671 btrfs_i_size_write(inode, 0); 6672 err = btrfs_update_inode(trans, root, inode); 6673 if (err) 6674 goto out_fail_inode; 6675 6676 err = btrfs_add_link(trans, dir, inode, dentry->d_name.name, 6677 dentry->d_name.len, 0, index); 6678 if (err) 6679 goto out_fail_inode; 6680 6681 d_instantiate(dentry, inode); 6682 /* 6683 * mkdir is special. We're unlocking after we call d_instantiate 6684 * to avoid a race with nfsd calling d_instantiate. 6685 */ 6686 unlock_new_inode(inode); 6687 drop_on_err = 0; 6688 6689 out_fail: 6690 btrfs_end_transaction(trans, root); 6691 if (drop_on_err) { 6692 inode_dec_link_count(inode); 6693 iput(inode); 6694 } 6695 btrfs_balance_delayed_items(root); 6696 btrfs_btree_balance_dirty(root); 6697 return err; 6698 6699 out_fail_inode: 6700 unlock_new_inode(inode); 6701 goto out_fail; 6702 } 6703 6704 /* Find next extent map of a given extent map, caller needs to ensure locks */ 6705 static struct extent_map *next_extent_map(struct extent_map *em) 6706 { 6707 struct rb_node *next; 6708 6709 next = rb_next(&em->rb_node); 6710 if (!next) 6711 return NULL; 6712 return container_of(next, struct extent_map, rb_node); 6713 } 6714 6715 static struct extent_map *prev_extent_map(struct extent_map *em) 6716 { 6717 struct rb_node *prev; 6718 6719 prev = rb_prev(&em->rb_node); 6720 if (!prev) 6721 return NULL; 6722 return container_of(prev, struct extent_map, rb_node); 6723 } 6724 6725 /* helper for btfs_get_extent. Given an existing extent in the tree, 6726 * the existing extent is the nearest extent to map_start, 6727 * and an extent that you want to insert, deal with overlap and insert 6728 * the best fitted new extent into the tree. 6729 */ 6730 static int merge_extent_mapping(struct extent_map_tree *em_tree, 6731 struct extent_map *existing, 6732 struct extent_map *em, 6733 u64 map_start) 6734 { 6735 struct extent_map *prev; 6736 struct extent_map *next; 6737 u64 start; 6738 u64 end; 6739 u64 start_diff; 6740 6741 BUG_ON(map_start < em->start || map_start >= extent_map_end(em)); 6742 6743 if (existing->start > map_start) { 6744 next = existing; 6745 prev = prev_extent_map(next); 6746 } else { 6747 prev = existing; 6748 next = next_extent_map(prev); 6749 } 6750 6751 start = prev ? extent_map_end(prev) : em->start; 6752 start = max_t(u64, start, em->start); 6753 end = next ? next->start : extent_map_end(em); 6754 end = min_t(u64, end, extent_map_end(em)); 6755 start_diff = start - em->start; 6756 em->start = start; 6757 em->len = end - start; 6758 if (em->block_start < EXTENT_MAP_LAST_BYTE && 6759 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 6760 em->block_start += start_diff; 6761 em->block_len -= start_diff; 6762 } 6763 return add_extent_mapping(em_tree, em, 0); 6764 } 6765 6766 static noinline int uncompress_inline(struct btrfs_path *path, 6767 struct page *page, 6768 size_t pg_offset, u64 extent_offset, 6769 struct btrfs_file_extent_item *item) 6770 { 6771 int ret; 6772 struct extent_buffer *leaf = path->nodes[0]; 6773 char *tmp; 6774 size_t max_size; 6775 unsigned long inline_size; 6776 unsigned long ptr; 6777 int compress_type; 6778 6779 WARN_ON(pg_offset != 0); 6780 compress_type = btrfs_file_extent_compression(leaf, item); 6781 max_size = btrfs_file_extent_ram_bytes(leaf, item); 6782 inline_size = btrfs_file_extent_inline_item_len(leaf, 6783 btrfs_item_nr(path->slots[0])); 6784 tmp = kmalloc(inline_size, GFP_NOFS); 6785 if (!tmp) 6786 return -ENOMEM; 6787 ptr = btrfs_file_extent_inline_start(item); 6788 6789 read_extent_buffer(leaf, tmp, ptr, inline_size); 6790 6791 max_size = min_t(unsigned long, PAGE_SIZE, max_size); 6792 ret = btrfs_decompress(compress_type, tmp, page, 6793 extent_offset, inline_size, max_size); 6794 kfree(tmp); 6795 return ret; 6796 } 6797 6798 /* 6799 * a bit scary, this does extent mapping from logical file offset to the disk. 6800 * the ugly parts come from merging extents from the disk with the in-ram 6801 * representation. This gets more complex because of the data=ordered code, 6802 * where the in-ram extents might be locked pending data=ordered completion. 6803 * 6804 * This also copies inline extents directly into the page. 6805 */ 6806 6807 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page, 6808 size_t pg_offset, u64 start, u64 len, 6809 int create) 6810 { 6811 int ret; 6812 int err = 0; 6813 u64 extent_start = 0; 6814 u64 extent_end = 0; 6815 u64 objectid = btrfs_ino(inode); 6816 u32 found_type; 6817 struct btrfs_path *path = NULL; 6818 struct btrfs_root *root = BTRFS_I(inode)->root; 6819 struct btrfs_file_extent_item *item; 6820 struct extent_buffer *leaf; 6821 struct btrfs_key found_key; 6822 struct extent_map *em = NULL; 6823 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 6824 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 6825 struct btrfs_trans_handle *trans = NULL; 6826 const bool new_inline = !page || create; 6827 6828 again: 6829 read_lock(&em_tree->lock); 6830 em = lookup_extent_mapping(em_tree, start, len); 6831 if (em) 6832 em->bdev = root->fs_info->fs_devices->latest_bdev; 6833 read_unlock(&em_tree->lock); 6834 6835 if (em) { 6836 if (em->start > start || em->start + em->len <= start) 6837 free_extent_map(em); 6838 else if (em->block_start == EXTENT_MAP_INLINE && page) 6839 free_extent_map(em); 6840 else 6841 goto out; 6842 } 6843 em = alloc_extent_map(); 6844 if (!em) { 6845 err = -ENOMEM; 6846 goto out; 6847 } 6848 em->bdev = root->fs_info->fs_devices->latest_bdev; 6849 em->start = EXTENT_MAP_HOLE; 6850 em->orig_start = EXTENT_MAP_HOLE; 6851 em->len = (u64)-1; 6852 em->block_len = (u64)-1; 6853 6854 if (!path) { 6855 path = btrfs_alloc_path(); 6856 if (!path) { 6857 err = -ENOMEM; 6858 goto out; 6859 } 6860 /* 6861 * Chances are we'll be called again, so go ahead and do 6862 * readahead 6863 */ 6864 path->reada = READA_FORWARD; 6865 } 6866 6867 ret = btrfs_lookup_file_extent(trans, root, path, 6868 objectid, start, trans != NULL); 6869 if (ret < 0) { 6870 err = ret; 6871 goto out; 6872 } 6873 6874 if (ret != 0) { 6875 if (path->slots[0] == 0) 6876 goto not_found; 6877 path->slots[0]--; 6878 } 6879 6880 leaf = path->nodes[0]; 6881 item = btrfs_item_ptr(leaf, path->slots[0], 6882 struct btrfs_file_extent_item); 6883 /* are we inside the extent that was found? */ 6884 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6885 found_type = found_key.type; 6886 if (found_key.objectid != objectid || 6887 found_type != BTRFS_EXTENT_DATA_KEY) { 6888 /* 6889 * If we backup past the first extent we want to move forward 6890 * and see if there is an extent in front of us, otherwise we'll 6891 * say there is a hole for our whole search range which can 6892 * cause problems. 6893 */ 6894 extent_end = start; 6895 goto next; 6896 } 6897 6898 found_type = btrfs_file_extent_type(leaf, item); 6899 extent_start = found_key.offset; 6900 if (found_type == BTRFS_FILE_EXTENT_REG || 6901 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 6902 extent_end = extent_start + 6903 btrfs_file_extent_num_bytes(leaf, item); 6904 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 6905 size_t size; 6906 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item); 6907 extent_end = ALIGN(extent_start + size, root->sectorsize); 6908 } 6909 next: 6910 if (start >= extent_end) { 6911 path->slots[0]++; 6912 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 6913 ret = btrfs_next_leaf(root, path); 6914 if (ret < 0) { 6915 err = ret; 6916 goto out; 6917 } 6918 if (ret > 0) 6919 goto not_found; 6920 leaf = path->nodes[0]; 6921 } 6922 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6923 if (found_key.objectid != objectid || 6924 found_key.type != BTRFS_EXTENT_DATA_KEY) 6925 goto not_found; 6926 if (start + len <= found_key.offset) 6927 goto not_found; 6928 if (start > found_key.offset) 6929 goto next; 6930 em->start = start; 6931 em->orig_start = start; 6932 em->len = found_key.offset - start; 6933 goto not_found_em; 6934 } 6935 6936 btrfs_extent_item_to_extent_map(inode, path, item, new_inline, em); 6937 6938 if (found_type == BTRFS_FILE_EXTENT_REG || 6939 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 6940 goto insert; 6941 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 6942 unsigned long ptr; 6943 char *map; 6944 size_t size; 6945 size_t extent_offset; 6946 size_t copy_size; 6947 6948 if (new_inline) 6949 goto out; 6950 6951 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item); 6952 extent_offset = page_offset(page) + pg_offset - extent_start; 6953 copy_size = min_t(u64, PAGE_SIZE - pg_offset, 6954 size - extent_offset); 6955 em->start = extent_start + extent_offset; 6956 em->len = ALIGN(copy_size, root->sectorsize); 6957 em->orig_block_len = em->len; 6958 em->orig_start = em->start; 6959 ptr = btrfs_file_extent_inline_start(item) + extent_offset; 6960 if (create == 0 && !PageUptodate(page)) { 6961 if (btrfs_file_extent_compression(leaf, item) != 6962 BTRFS_COMPRESS_NONE) { 6963 ret = uncompress_inline(path, page, pg_offset, 6964 extent_offset, item); 6965 if (ret) { 6966 err = ret; 6967 goto out; 6968 } 6969 } else { 6970 map = kmap(page); 6971 read_extent_buffer(leaf, map + pg_offset, ptr, 6972 copy_size); 6973 if (pg_offset + copy_size < PAGE_SIZE) { 6974 memset(map + pg_offset + copy_size, 0, 6975 PAGE_SIZE - pg_offset - 6976 copy_size); 6977 } 6978 kunmap(page); 6979 } 6980 flush_dcache_page(page); 6981 } else if (create && PageUptodate(page)) { 6982 BUG(); 6983 if (!trans) { 6984 kunmap(page); 6985 free_extent_map(em); 6986 em = NULL; 6987 6988 btrfs_release_path(path); 6989 trans = btrfs_join_transaction(root); 6990 6991 if (IS_ERR(trans)) 6992 return ERR_CAST(trans); 6993 goto again; 6994 } 6995 map = kmap(page); 6996 write_extent_buffer(leaf, map + pg_offset, ptr, 6997 copy_size); 6998 kunmap(page); 6999 btrfs_mark_buffer_dirty(leaf); 7000 } 7001 set_extent_uptodate(io_tree, em->start, 7002 extent_map_end(em) - 1, NULL, GFP_NOFS); 7003 goto insert; 7004 } 7005 not_found: 7006 em->start = start; 7007 em->orig_start = start; 7008 em->len = len; 7009 not_found_em: 7010 em->block_start = EXTENT_MAP_HOLE; 7011 set_bit(EXTENT_FLAG_VACANCY, &em->flags); 7012 insert: 7013 btrfs_release_path(path); 7014 if (em->start > start || extent_map_end(em) <= start) { 7015 btrfs_err(root->fs_info, "bad extent! em: [%llu %llu] passed [%llu %llu]", 7016 em->start, em->len, start, len); 7017 err = -EIO; 7018 goto out; 7019 } 7020 7021 err = 0; 7022 write_lock(&em_tree->lock); 7023 ret = add_extent_mapping(em_tree, em, 0); 7024 /* it is possible that someone inserted the extent into the tree 7025 * while we had the lock dropped. It is also possible that 7026 * an overlapping map exists in the tree 7027 */ 7028 if (ret == -EEXIST) { 7029 struct extent_map *existing; 7030 7031 ret = 0; 7032 7033 existing = search_extent_mapping(em_tree, start, len); 7034 /* 7035 * existing will always be non-NULL, since there must be 7036 * extent causing the -EEXIST. 7037 */ 7038 if (existing->start == em->start && 7039 extent_map_end(existing) == extent_map_end(em) && 7040 em->block_start == existing->block_start) { 7041 /* 7042 * these two extents are the same, it happens 7043 * with inlines especially 7044 */ 7045 free_extent_map(em); 7046 em = existing; 7047 err = 0; 7048 7049 } else if (start >= extent_map_end(existing) || 7050 start <= existing->start) { 7051 /* 7052 * The existing extent map is the one nearest to 7053 * the [start, start + len) range which overlaps 7054 */ 7055 err = merge_extent_mapping(em_tree, existing, 7056 em, start); 7057 free_extent_map(existing); 7058 if (err) { 7059 free_extent_map(em); 7060 em = NULL; 7061 } 7062 } else { 7063 free_extent_map(em); 7064 em = existing; 7065 err = 0; 7066 } 7067 } 7068 write_unlock(&em_tree->lock); 7069 out: 7070 7071 trace_btrfs_get_extent(root, em); 7072 7073 btrfs_free_path(path); 7074 if (trans) { 7075 ret = btrfs_end_transaction(trans, root); 7076 if (!err) 7077 err = ret; 7078 } 7079 if (err) { 7080 free_extent_map(em); 7081 return ERR_PTR(err); 7082 } 7083 BUG_ON(!em); /* Error is always set */ 7084 return em; 7085 } 7086 7087 struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page, 7088 size_t pg_offset, u64 start, u64 len, 7089 int create) 7090 { 7091 struct extent_map *em; 7092 struct extent_map *hole_em = NULL; 7093 u64 range_start = start; 7094 u64 end; 7095 u64 found; 7096 u64 found_end; 7097 int err = 0; 7098 7099 em = btrfs_get_extent(inode, page, pg_offset, start, len, create); 7100 if (IS_ERR(em)) 7101 return em; 7102 if (em) { 7103 /* 7104 * if our em maps to 7105 * - a hole or 7106 * - a pre-alloc extent, 7107 * there might actually be delalloc bytes behind it. 7108 */ 7109 if (em->block_start != EXTENT_MAP_HOLE && 7110 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 7111 return em; 7112 else 7113 hole_em = em; 7114 } 7115 7116 /* check to see if we've wrapped (len == -1 or similar) */ 7117 end = start + len; 7118 if (end < start) 7119 end = (u64)-1; 7120 else 7121 end -= 1; 7122 7123 em = NULL; 7124 7125 /* ok, we didn't find anything, lets look for delalloc */ 7126 found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start, 7127 end, len, EXTENT_DELALLOC, 1); 7128 found_end = range_start + found; 7129 if (found_end < range_start) 7130 found_end = (u64)-1; 7131 7132 /* 7133 * we didn't find anything useful, return 7134 * the original results from get_extent() 7135 */ 7136 if (range_start > end || found_end <= start) { 7137 em = hole_em; 7138 hole_em = NULL; 7139 goto out; 7140 } 7141 7142 /* adjust the range_start to make sure it doesn't 7143 * go backwards from the start they passed in 7144 */ 7145 range_start = max(start, range_start); 7146 found = found_end - range_start; 7147 7148 if (found > 0) { 7149 u64 hole_start = start; 7150 u64 hole_len = len; 7151 7152 em = alloc_extent_map(); 7153 if (!em) { 7154 err = -ENOMEM; 7155 goto out; 7156 } 7157 /* 7158 * when btrfs_get_extent can't find anything it 7159 * returns one huge hole 7160 * 7161 * make sure what it found really fits our range, and 7162 * adjust to make sure it is based on the start from 7163 * the caller 7164 */ 7165 if (hole_em) { 7166 u64 calc_end = extent_map_end(hole_em); 7167 7168 if (calc_end <= start || (hole_em->start > end)) { 7169 free_extent_map(hole_em); 7170 hole_em = NULL; 7171 } else { 7172 hole_start = max(hole_em->start, start); 7173 hole_len = calc_end - hole_start; 7174 } 7175 } 7176 em->bdev = NULL; 7177 if (hole_em && range_start > hole_start) { 7178 /* our hole starts before our delalloc, so we 7179 * have to return just the parts of the hole 7180 * that go until the delalloc starts 7181 */ 7182 em->len = min(hole_len, 7183 range_start - hole_start); 7184 em->start = hole_start; 7185 em->orig_start = hole_start; 7186 /* 7187 * don't adjust block start at all, 7188 * it is fixed at EXTENT_MAP_HOLE 7189 */ 7190 em->block_start = hole_em->block_start; 7191 em->block_len = hole_len; 7192 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags)) 7193 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 7194 } else { 7195 em->start = range_start; 7196 em->len = found; 7197 em->orig_start = range_start; 7198 em->block_start = EXTENT_MAP_DELALLOC; 7199 em->block_len = found; 7200 } 7201 } else if (hole_em) { 7202 return hole_em; 7203 } 7204 out: 7205 7206 free_extent_map(hole_em); 7207 if (err) { 7208 free_extent_map(em); 7209 return ERR_PTR(err); 7210 } 7211 return em; 7212 } 7213 7214 static struct extent_map *btrfs_create_dio_extent(struct inode *inode, 7215 const u64 start, 7216 const u64 len, 7217 const u64 orig_start, 7218 const u64 block_start, 7219 const u64 block_len, 7220 const u64 orig_block_len, 7221 const u64 ram_bytes, 7222 const int type) 7223 { 7224 struct extent_map *em = NULL; 7225 int ret; 7226 7227 down_read(&BTRFS_I(inode)->dio_sem); 7228 if (type != BTRFS_ORDERED_NOCOW) { 7229 em = create_pinned_em(inode, start, len, orig_start, 7230 block_start, block_len, orig_block_len, 7231 ram_bytes, type); 7232 if (IS_ERR(em)) 7233 goto out; 7234 } 7235 ret = btrfs_add_ordered_extent_dio(inode, start, block_start, 7236 len, block_len, type); 7237 if (ret) { 7238 if (em) { 7239 free_extent_map(em); 7240 btrfs_drop_extent_cache(inode, start, 7241 start + len - 1, 0); 7242 } 7243 em = ERR_PTR(ret); 7244 } 7245 out: 7246 up_read(&BTRFS_I(inode)->dio_sem); 7247 7248 return em; 7249 } 7250 7251 static struct extent_map *btrfs_new_extent_direct(struct inode *inode, 7252 u64 start, u64 len) 7253 { 7254 struct btrfs_root *root = BTRFS_I(inode)->root; 7255 struct extent_map *em; 7256 struct btrfs_key ins; 7257 u64 alloc_hint; 7258 int ret; 7259 7260 alloc_hint = get_extent_allocation_hint(inode, start, len); 7261 ret = btrfs_reserve_extent(root, len, len, root->sectorsize, 0, 7262 alloc_hint, &ins, 1, 1); 7263 if (ret) 7264 return ERR_PTR(ret); 7265 7266 em = btrfs_create_dio_extent(inode, start, ins.offset, start, 7267 ins.objectid, ins.offset, ins.offset, 7268 ins.offset, 0); 7269 btrfs_dec_block_group_reservations(root->fs_info, ins.objectid); 7270 if (IS_ERR(em)) 7271 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1); 7272 7273 return em; 7274 } 7275 7276 /* 7277 * returns 1 when the nocow is safe, < 1 on error, 0 if the 7278 * block must be cow'd 7279 */ 7280 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len, 7281 u64 *orig_start, u64 *orig_block_len, 7282 u64 *ram_bytes) 7283 { 7284 struct btrfs_trans_handle *trans; 7285 struct btrfs_path *path; 7286 int ret; 7287 struct extent_buffer *leaf; 7288 struct btrfs_root *root = BTRFS_I(inode)->root; 7289 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 7290 struct btrfs_file_extent_item *fi; 7291 struct btrfs_key key; 7292 u64 disk_bytenr; 7293 u64 backref_offset; 7294 u64 extent_end; 7295 u64 num_bytes; 7296 int slot; 7297 int found_type; 7298 bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW); 7299 7300 path = btrfs_alloc_path(); 7301 if (!path) 7302 return -ENOMEM; 7303 7304 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), 7305 offset, 0); 7306 if (ret < 0) 7307 goto out; 7308 7309 slot = path->slots[0]; 7310 if (ret == 1) { 7311 if (slot == 0) { 7312 /* can't find the item, must cow */ 7313 ret = 0; 7314 goto out; 7315 } 7316 slot--; 7317 } 7318 ret = 0; 7319 leaf = path->nodes[0]; 7320 btrfs_item_key_to_cpu(leaf, &key, slot); 7321 if (key.objectid != btrfs_ino(inode) || 7322 key.type != BTRFS_EXTENT_DATA_KEY) { 7323 /* not our file or wrong item type, must cow */ 7324 goto out; 7325 } 7326 7327 if (key.offset > offset) { 7328 /* Wrong offset, must cow */ 7329 goto out; 7330 } 7331 7332 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 7333 found_type = btrfs_file_extent_type(leaf, fi); 7334 if (found_type != BTRFS_FILE_EXTENT_REG && 7335 found_type != BTRFS_FILE_EXTENT_PREALLOC) { 7336 /* not a regular extent, must cow */ 7337 goto out; 7338 } 7339 7340 if (!nocow && found_type == BTRFS_FILE_EXTENT_REG) 7341 goto out; 7342 7343 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 7344 if (extent_end <= offset) 7345 goto out; 7346 7347 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 7348 if (disk_bytenr == 0) 7349 goto out; 7350 7351 if (btrfs_file_extent_compression(leaf, fi) || 7352 btrfs_file_extent_encryption(leaf, fi) || 7353 btrfs_file_extent_other_encoding(leaf, fi)) 7354 goto out; 7355 7356 backref_offset = btrfs_file_extent_offset(leaf, fi); 7357 7358 if (orig_start) { 7359 *orig_start = key.offset - backref_offset; 7360 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi); 7361 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 7362 } 7363 7364 if (btrfs_extent_readonly(root, disk_bytenr)) 7365 goto out; 7366 7367 num_bytes = min(offset + *len, extent_end) - offset; 7368 if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) { 7369 u64 range_end; 7370 7371 range_end = round_up(offset + num_bytes, root->sectorsize) - 1; 7372 ret = test_range_bit(io_tree, offset, range_end, 7373 EXTENT_DELALLOC, 0, NULL); 7374 if (ret) { 7375 ret = -EAGAIN; 7376 goto out; 7377 } 7378 } 7379 7380 btrfs_release_path(path); 7381 7382 /* 7383 * look for other files referencing this extent, if we 7384 * find any we must cow 7385 */ 7386 trans = btrfs_join_transaction(root); 7387 if (IS_ERR(trans)) { 7388 ret = 0; 7389 goto out; 7390 } 7391 7392 ret = btrfs_cross_ref_exist(trans, root, btrfs_ino(inode), 7393 key.offset - backref_offset, disk_bytenr); 7394 btrfs_end_transaction(trans, root); 7395 if (ret) { 7396 ret = 0; 7397 goto out; 7398 } 7399 7400 /* 7401 * adjust disk_bytenr and num_bytes to cover just the bytes 7402 * in this extent we are about to write. If there 7403 * are any csums in that range we have to cow in order 7404 * to keep the csums correct 7405 */ 7406 disk_bytenr += backref_offset; 7407 disk_bytenr += offset - key.offset; 7408 if (csum_exist_in_range(root, disk_bytenr, num_bytes)) 7409 goto out; 7410 /* 7411 * all of the above have passed, it is safe to overwrite this extent 7412 * without cow 7413 */ 7414 *len = num_bytes; 7415 ret = 1; 7416 out: 7417 btrfs_free_path(path); 7418 return ret; 7419 } 7420 7421 bool btrfs_page_exists_in_range(struct inode *inode, loff_t start, loff_t end) 7422 { 7423 struct radix_tree_root *root = &inode->i_mapping->page_tree; 7424 int found = false; 7425 void **pagep = NULL; 7426 struct page *page = NULL; 7427 int start_idx; 7428 int end_idx; 7429 7430 start_idx = start >> PAGE_SHIFT; 7431 7432 /* 7433 * end is the last byte in the last page. end == start is legal 7434 */ 7435 end_idx = end >> PAGE_SHIFT; 7436 7437 rcu_read_lock(); 7438 7439 /* Most of the code in this while loop is lifted from 7440 * find_get_page. It's been modified to begin searching from a 7441 * page and return just the first page found in that range. If the 7442 * found idx is less than or equal to the end idx then we know that 7443 * a page exists. If no pages are found or if those pages are 7444 * outside of the range then we're fine (yay!) */ 7445 while (page == NULL && 7446 radix_tree_gang_lookup_slot(root, &pagep, NULL, start_idx, 1)) { 7447 page = radix_tree_deref_slot(pagep); 7448 if (unlikely(!page)) 7449 break; 7450 7451 if (radix_tree_exception(page)) { 7452 if (radix_tree_deref_retry(page)) { 7453 page = NULL; 7454 continue; 7455 } 7456 /* 7457 * Otherwise, shmem/tmpfs must be storing a swap entry 7458 * here as an exceptional entry: so return it without 7459 * attempting to raise page count. 7460 */ 7461 page = NULL; 7462 break; /* TODO: Is this relevant for this use case? */ 7463 } 7464 7465 if (!page_cache_get_speculative(page)) { 7466 page = NULL; 7467 continue; 7468 } 7469 7470 /* 7471 * Has the page moved? 7472 * This is part of the lockless pagecache protocol. See 7473 * include/linux/pagemap.h for details. 7474 */ 7475 if (unlikely(page != *pagep)) { 7476 put_page(page); 7477 page = NULL; 7478 } 7479 } 7480 7481 if (page) { 7482 if (page->index <= end_idx) 7483 found = true; 7484 put_page(page); 7485 } 7486 7487 rcu_read_unlock(); 7488 return found; 7489 } 7490 7491 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend, 7492 struct extent_state **cached_state, int writing) 7493 { 7494 struct btrfs_ordered_extent *ordered; 7495 int ret = 0; 7496 7497 while (1) { 7498 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7499 cached_state); 7500 /* 7501 * We're concerned with the entire range that we're going to be 7502 * doing DIO to, so we need to make sure there's no ordered 7503 * extents in this range. 7504 */ 7505 ordered = btrfs_lookup_ordered_range(inode, lockstart, 7506 lockend - lockstart + 1); 7507 7508 /* 7509 * We need to make sure there are no buffered pages in this 7510 * range either, we could have raced between the invalidate in 7511 * generic_file_direct_write and locking the extent. The 7512 * invalidate needs to happen so that reads after a write do not 7513 * get stale data. 7514 */ 7515 if (!ordered && 7516 (!writing || 7517 !btrfs_page_exists_in_range(inode, lockstart, lockend))) 7518 break; 7519 7520 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7521 cached_state, GFP_NOFS); 7522 7523 if (ordered) { 7524 /* 7525 * If we are doing a DIO read and the ordered extent we 7526 * found is for a buffered write, we can not wait for it 7527 * to complete and retry, because if we do so we can 7528 * deadlock with concurrent buffered writes on page 7529 * locks. This happens only if our DIO read covers more 7530 * than one extent map, if at this point has already 7531 * created an ordered extent for a previous extent map 7532 * and locked its range in the inode's io tree, and a 7533 * concurrent write against that previous extent map's 7534 * range and this range started (we unlock the ranges 7535 * in the io tree only when the bios complete and 7536 * buffered writes always lock pages before attempting 7537 * to lock range in the io tree). 7538 */ 7539 if (writing || 7540 test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) 7541 btrfs_start_ordered_extent(inode, ordered, 1); 7542 else 7543 ret = -ENOTBLK; 7544 btrfs_put_ordered_extent(ordered); 7545 } else { 7546 /* 7547 * We could trigger writeback for this range (and wait 7548 * for it to complete) and then invalidate the pages for 7549 * this range (through invalidate_inode_pages2_range()), 7550 * but that can lead us to a deadlock with a concurrent 7551 * call to readpages() (a buffered read or a defrag call 7552 * triggered a readahead) on a page lock due to an 7553 * ordered dio extent we created before but did not have 7554 * yet a corresponding bio submitted (whence it can not 7555 * complete), which makes readpages() wait for that 7556 * ordered extent to complete while holding a lock on 7557 * that page. 7558 */ 7559 ret = -ENOTBLK; 7560 } 7561 7562 if (ret) 7563 break; 7564 7565 cond_resched(); 7566 } 7567 7568 return ret; 7569 } 7570 7571 static struct extent_map *create_pinned_em(struct inode *inode, u64 start, 7572 u64 len, u64 orig_start, 7573 u64 block_start, u64 block_len, 7574 u64 orig_block_len, u64 ram_bytes, 7575 int type) 7576 { 7577 struct extent_map_tree *em_tree; 7578 struct extent_map *em; 7579 struct btrfs_root *root = BTRFS_I(inode)->root; 7580 int ret; 7581 7582 em_tree = &BTRFS_I(inode)->extent_tree; 7583 em = alloc_extent_map(); 7584 if (!em) 7585 return ERR_PTR(-ENOMEM); 7586 7587 em->start = start; 7588 em->orig_start = orig_start; 7589 em->mod_start = start; 7590 em->mod_len = len; 7591 em->len = len; 7592 em->block_len = block_len; 7593 em->block_start = block_start; 7594 em->bdev = root->fs_info->fs_devices->latest_bdev; 7595 em->orig_block_len = orig_block_len; 7596 em->ram_bytes = ram_bytes; 7597 em->generation = -1; 7598 set_bit(EXTENT_FLAG_PINNED, &em->flags); 7599 if (type == BTRFS_ORDERED_PREALLOC) 7600 set_bit(EXTENT_FLAG_FILLING, &em->flags); 7601 7602 do { 7603 btrfs_drop_extent_cache(inode, em->start, 7604 em->start + em->len - 1, 0); 7605 write_lock(&em_tree->lock); 7606 ret = add_extent_mapping(em_tree, em, 1); 7607 write_unlock(&em_tree->lock); 7608 } while (ret == -EEXIST); 7609 7610 if (ret) { 7611 free_extent_map(em); 7612 return ERR_PTR(ret); 7613 } 7614 7615 return em; 7616 } 7617 7618 static void adjust_dio_outstanding_extents(struct inode *inode, 7619 struct btrfs_dio_data *dio_data, 7620 const u64 len) 7621 { 7622 unsigned num_extents; 7623 7624 num_extents = (unsigned) div64_u64(len + BTRFS_MAX_EXTENT_SIZE - 1, 7625 BTRFS_MAX_EXTENT_SIZE); 7626 /* 7627 * If we have an outstanding_extents count still set then we're 7628 * within our reservation, otherwise we need to adjust our inode 7629 * counter appropriately. 7630 */ 7631 if (dio_data->outstanding_extents) { 7632 dio_data->outstanding_extents -= num_extents; 7633 } else { 7634 spin_lock(&BTRFS_I(inode)->lock); 7635 BTRFS_I(inode)->outstanding_extents += num_extents; 7636 spin_unlock(&BTRFS_I(inode)->lock); 7637 } 7638 } 7639 7640 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock, 7641 struct buffer_head *bh_result, int create) 7642 { 7643 struct extent_map *em; 7644 struct btrfs_root *root = BTRFS_I(inode)->root; 7645 struct extent_state *cached_state = NULL; 7646 struct btrfs_dio_data *dio_data = NULL; 7647 u64 start = iblock << inode->i_blkbits; 7648 u64 lockstart, lockend; 7649 u64 len = bh_result->b_size; 7650 int unlock_bits = EXTENT_LOCKED; 7651 int ret = 0; 7652 7653 if (create) 7654 unlock_bits |= EXTENT_DIRTY; 7655 else 7656 len = min_t(u64, len, root->sectorsize); 7657 7658 lockstart = start; 7659 lockend = start + len - 1; 7660 7661 if (current->journal_info) { 7662 /* 7663 * Need to pull our outstanding extents and set journal_info to NULL so 7664 * that anything that needs to check if there's a transaction doesn't get 7665 * confused. 7666 */ 7667 dio_data = current->journal_info; 7668 current->journal_info = NULL; 7669 } 7670 7671 /* 7672 * If this errors out it's because we couldn't invalidate pagecache for 7673 * this range and we need to fallback to buffered. 7674 */ 7675 if (lock_extent_direct(inode, lockstart, lockend, &cached_state, 7676 create)) { 7677 ret = -ENOTBLK; 7678 goto err; 7679 } 7680 7681 em = btrfs_get_extent(inode, NULL, 0, start, len, 0); 7682 if (IS_ERR(em)) { 7683 ret = PTR_ERR(em); 7684 goto unlock_err; 7685 } 7686 7687 /* 7688 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered 7689 * io. INLINE is special, and we could probably kludge it in here, but 7690 * it's still buffered so for safety lets just fall back to the generic 7691 * buffered path. 7692 * 7693 * For COMPRESSED we _have_ to read the entire extent in so we can 7694 * decompress it, so there will be buffering required no matter what we 7695 * do, so go ahead and fallback to buffered. 7696 * 7697 * We return -ENOTBLK because that's what makes DIO go ahead and go back 7698 * to buffered IO. Don't blame me, this is the price we pay for using 7699 * the generic code. 7700 */ 7701 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) || 7702 em->block_start == EXTENT_MAP_INLINE) { 7703 free_extent_map(em); 7704 ret = -ENOTBLK; 7705 goto unlock_err; 7706 } 7707 7708 /* Just a good old fashioned hole, return */ 7709 if (!create && (em->block_start == EXTENT_MAP_HOLE || 7710 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) { 7711 free_extent_map(em); 7712 goto unlock_err; 7713 } 7714 7715 /* 7716 * We don't allocate a new extent in the following cases 7717 * 7718 * 1) The inode is marked as NODATACOW. In this case we'll just use the 7719 * existing extent. 7720 * 2) The extent is marked as PREALLOC. We're good to go here and can 7721 * just use the extent. 7722 * 7723 */ 7724 if (!create) { 7725 len = min(len, em->len - (start - em->start)); 7726 lockstart = start + len; 7727 goto unlock; 7728 } 7729 7730 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) || 7731 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) && 7732 em->block_start != EXTENT_MAP_HOLE)) { 7733 int type; 7734 u64 block_start, orig_start, orig_block_len, ram_bytes; 7735 7736 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 7737 type = BTRFS_ORDERED_PREALLOC; 7738 else 7739 type = BTRFS_ORDERED_NOCOW; 7740 len = min(len, em->len - (start - em->start)); 7741 block_start = em->block_start + (start - em->start); 7742 7743 if (can_nocow_extent(inode, start, &len, &orig_start, 7744 &orig_block_len, &ram_bytes) == 1 && 7745 btrfs_inc_nocow_writers(root->fs_info, block_start)) { 7746 struct extent_map *em2; 7747 7748 em2 = btrfs_create_dio_extent(inode, start, len, 7749 orig_start, block_start, 7750 len, orig_block_len, 7751 ram_bytes, type); 7752 btrfs_dec_nocow_writers(root->fs_info, block_start); 7753 if (type == BTRFS_ORDERED_PREALLOC) { 7754 free_extent_map(em); 7755 em = em2; 7756 } 7757 if (em2 && IS_ERR(em2)) { 7758 ret = PTR_ERR(em2); 7759 goto unlock_err; 7760 } 7761 /* 7762 * For inode marked NODATACOW or extent marked PREALLOC, 7763 * use the existing or preallocated extent, so does not 7764 * need to adjust btrfs_space_info's bytes_may_use. 7765 */ 7766 btrfs_free_reserved_data_space_noquota(inode, 7767 start, len); 7768 goto unlock; 7769 } 7770 } 7771 7772 /* 7773 * this will cow the extent, reset the len in case we changed 7774 * it above 7775 */ 7776 len = bh_result->b_size; 7777 free_extent_map(em); 7778 em = btrfs_new_extent_direct(inode, start, len); 7779 if (IS_ERR(em)) { 7780 ret = PTR_ERR(em); 7781 goto unlock_err; 7782 } 7783 len = min(len, em->len - (start - em->start)); 7784 unlock: 7785 bh_result->b_blocknr = (em->block_start + (start - em->start)) >> 7786 inode->i_blkbits; 7787 bh_result->b_size = len; 7788 bh_result->b_bdev = em->bdev; 7789 set_buffer_mapped(bh_result); 7790 if (create) { 7791 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 7792 set_buffer_new(bh_result); 7793 7794 /* 7795 * Need to update the i_size under the extent lock so buffered 7796 * readers will get the updated i_size when we unlock. 7797 */ 7798 if (start + len > i_size_read(inode)) 7799 i_size_write(inode, start + len); 7800 7801 adjust_dio_outstanding_extents(inode, dio_data, len); 7802 WARN_ON(dio_data->reserve < len); 7803 dio_data->reserve -= len; 7804 dio_data->unsubmitted_oe_range_end = start + len; 7805 current->journal_info = dio_data; 7806 } 7807 7808 /* 7809 * In the case of write we need to clear and unlock the entire range, 7810 * in the case of read we need to unlock only the end area that we 7811 * aren't using if there is any left over space. 7812 */ 7813 if (lockstart < lockend) { 7814 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, 7815 lockend, unlock_bits, 1, 0, 7816 &cached_state, GFP_NOFS); 7817 } else { 7818 free_extent_state(cached_state); 7819 } 7820 7821 free_extent_map(em); 7822 7823 return 0; 7824 7825 unlock_err: 7826 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7827 unlock_bits, 1, 0, &cached_state, GFP_NOFS); 7828 err: 7829 if (dio_data) 7830 current->journal_info = dio_data; 7831 /* 7832 * Compensate the delalloc release we do in btrfs_direct_IO() when we 7833 * write less data then expected, so that we don't underflow our inode's 7834 * outstanding extents counter. 7835 */ 7836 if (create && dio_data) 7837 adjust_dio_outstanding_extents(inode, dio_data, len); 7838 7839 return ret; 7840 } 7841 7842 static inline int submit_dio_repair_bio(struct inode *inode, struct bio *bio, 7843 int mirror_num) 7844 { 7845 struct btrfs_root *root = BTRFS_I(inode)->root; 7846 int ret; 7847 7848 BUG_ON(bio_op(bio) == REQ_OP_WRITE); 7849 7850 bio_get(bio); 7851 7852 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 7853 BTRFS_WQ_ENDIO_DIO_REPAIR); 7854 if (ret) 7855 goto err; 7856 7857 ret = btrfs_map_bio(root, bio, mirror_num, 0); 7858 err: 7859 bio_put(bio); 7860 return ret; 7861 } 7862 7863 static int btrfs_check_dio_repairable(struct inode *inode, 7864 struct bio *failed_bio, 7865 struct io_failure_record *failrec, 7866 int failed_mirror) 7867 { 7868 int num_copies; 7869 7870 num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info, 7871 failrec->logical, failrec->len); 7872 if (num_copies == 1) { 7873 /* 7874 * we only have a single copy of the data, so don't bother with 7875 * all the retry and error correction code that follows. no 7876 * matter what the error is, it is very likely to persist. 7877 */ 7878 pr_debug("Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n", 7879 num_copies, failrec->this_mirror, failed_mirror); 7880 return 0; 7881 } 7882 7883 failrec->failed_mirror = failed_mirror; 7884 failrec->this_mirror++; 7885 if (failrec->this_mirror == failed_mirror) 7886 failrec->this_mirror++; 7887 7888 if (failrec->this_mirror > num_copies) { 7889 pr_debug("Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n", 7890 num_copies, failrec->this_mirror, failed_mirror); 7891 return 0; 7892 } 7893 7894 return 1; 7895 } 7896 7897 static int dio_read_error(struct inode *inode, struct bio *failed_bio, 7898 struct page *page, unsigned int pgoff, 7899 u64 start, u64 end, int failed_mirror, 7900 bio_end_io_t *repair_endio, void *repair_arg) 7901 { 7902 struct io_failure_record *failrec; 7903 struct bio *bio; 7904 int isector; 7905 int read_mode; 7906 int ret; 7907 7908 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE); 7909 7910 ret = btrfs_get_io_failure_record(inode, start, end, &failrec); 7911 if (ret) 7912 return ret; 7913 7914 ret = btrfs_check_dio_repairable(inode, failed_bio, failrec, 7915 failed_mirror); 7916 if (!ret) { 7917 free_io_failure(inode, failrec); 7918 return -EIO; 7919 } 7920 7921 if ((failed_bio->bi_vcnt > 1) 7922 || (failed_bio->bi_io_vec->bv_len 7923 > BTRFS_I(inode)->root->sectorsize)) 7924 read_mode = READ_SYNC | REQ_FAILFAST_DEV; 7925 else 7926 read_mode = READ_SYNC; 7927 7928 isector = start - btrfs_io_bio(failed_bio)->logical; 7929 isector >>= inode->i_sb->s_blocksize_bits; 7930 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page, 7931 pgoff, isector, repair_endio, repair_arg); 7932 if (!bio) { 7933 free_io_failure(inode, failrec); 7934 return -EIO; 7935 } 7936 bio_set_op_attrs(bio, REQ_OP_READ, read_mode); 7937 7938 btrfs_debug(BTRFS_I(inode)->root->fs_info, 7939 "Repair DIO Read Error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d\n", 7940 read_mode, failrec->this_mirror, failrec->in_validation); 7941 7942 ret = submit_dio_repair_bio(inode, bio, failrec->this_mirror); 7943 if (ret) { 7944 free_io_failure(inode, failrec); 7945 bio_put(bio); 7946 } 7947 7948 return ret; 7949 } 7950 7951 struct btrfs_retry_complete { 7952 struct completion done; 7953 struct inode *inode; 7954 u64 start; 7955 int uptodate; 7956 }; 7957 7958 static void btrfs_retry_endio_nocsum(struct bio *bio) 7959 { 7960 struct btrfs_retry_complete *done = bio->bi_private; 7961 struct inode *inode; 7962 struct bio_vec *bvec; 7963 int i; 7964 7965 if (bio->bi_error) 7966 goto end; 7967 7968 ASSERT(bio->bi_vcnt == 1); 7969 inode = bio->bi_io_vec->bv_page->mapping->host; 7970 ASSERT(bio->bi_io_vec->bv_len == BTRFS_I(inode)->root->sectorsize); 7971 7972 done->uptodate = 1; 7973 bio_for_each_segment_all(bvec, bio, i) 7974 clean_io_failure(done->inode, done->start, bvec->bv_page, 0); 7975 end: 7976 complete(&done->done); 7977 bio_put(bio); 7978 } 7979 7980 static int __btrfs_correct_data_nocsum(struct inode *inode, 7981 struct btrfs_io_bio *io_bio) 7982 { 7983 struct btrfs_fs_info *fs_info; 7984 struct bio_vec *bvec; 7985 struct btrfs_retry_complete done; 7986 u64 start; 7987 unsigned int pgoff; 7988 u32 sectorsize; 7989 int nr_sectors; 7990 int i; 7991 int ret; 7992 7993 fs_info = BTRFS_I(inode)->root->fs_info; 7994 sectorsize = BTRFS_I(inode)->root->sectorsize; 7995 7996 start = io_bio->logical; 7997 done.inode = inode; 7998 7999 bio_for_each_segment_all(bvec, &io_bio->bio, i) { 8000 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec->bv_len); 8001 pgoff = bvec->bv_offset; 8002 8003 next_block_or_try_again: 8004 done.uptodate = 0; 8005 done.start = start; 8006 init_completion(&done.done); 8007 8008 ret = dio_read_error(inode, &io_bio->bio, bvec->bv_page, 8009 pgoff, start, start + sectorsize - 1, 8010 io_bio->mirror_num, 8011 btrfs_retry_endio_nocsum, &done); 8012 if (ret) 8013 return ret; 8014 8015 wait_for_completion(&done.done); 8016 8017 if (!done.uptodate) { 8018 /* We might have another mirror, so try again */ 8019 goto next_block_or_try_again; 8020 } 8021 8022 start += sectorsize; 8023 8024 if (nr_sectors--) { 8025 pgoff += sectorsize; 8026 goto next_block_or_try_again; 8027 } 8028 } 8029 8030 return 0; 8031 } 8032 8033 static void btrfs_retry_endio(struct bio *bio) 8034 { 8035 struct btrfs_retry_complete *done = bio->bi_private; 8036 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio); 8037 struct inode *inode; 8038 struct bio_vec *bvec; 8039 u64 start; 8040 int uptodate; 8041 int ret; 8042 int i; 8043 8044 if (bio->bi_error) 8045 goto end; 8046 8047 uptodate = 1; 8048 8049 start = done->start; 8050 8051 ASSERT(bio->bi_vcnt == 1); 8052 inode = bio->bi_io_vec->bv_page->mapping->host; 8053 ASSERT(bio->bi_io_vec->bv_len == BTRFS_I(inode)->root->sectorsize); 8054 8055 bio_for_each_segment_all(bvec, bio, i) { 8056 ret = __readpage_endio_check(done->inode, io_bio, i, 8057 bvec->bv_page, bvec->bv_offset, 8058 done->start, bvec->bv_len); 8059 if (!ret) 8060 clean_io_failure(done->inode, done->start, 8061 bvec->bv_page, bvec->bv_offset); 8062 else 8063 uptodate = 0; 8064 } 8065 8066 done->uptodate = uptodate; 8067 end: 8068 complete(&done->done); 8069 bio_put(bio); 8070 } 8071 8072 static int __btrfs_subio_endio_read(struct inode *inode, 8073 struct btrfs_io_bio *io_bio, int err) 8074 { 8075 struct btrfs_fs_info *fs_info; 8076 struct bio_vec *bvec; 8077 struct btrfs_retry_complete done; 8078 u64 start; 8079 u64 offset = 0; 8080 u32 sectorsize; 8081 int nr_sectors; 8082 unsigned int pgoff; 8083 int csum_pos; 8084 int i; 8085 int ret; 8086 8087 fs_info = BTRFS_I(inode)->root->fs_info; 8088 sectorsize = BTRFS_I(inode)->root->sectorsize; 8089 8090 err = 0; 8091 start = io_bio->logical; 8092 done.inode = inode; 8093 8094 bio_for_each_segment_all(bvec, &io_bio->bio, i) { 8095 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec->bv_len); 8096 8097 pgoff = bvec->bv_offset; 8098 next_block: 8099 csum_pos = BTRFS_BYTES_TO_BLKS(fs_info, offset); 8100 ret = __readpage_endio_check(inode, io_bio, csum_pos, 8101 bvec->bv_page, pgoff, start, 8102 sectorsize); 8103 if (likely(!ret)) 8104 goto next; 8105 try_again: 8106 done.uptodate = 0; 8107 done.start = start; 8108 init_completion(&done.done); 8109 8110 ret = dio_read_error(inode, &io_bio->bio, bvec->bv_page, 8111 pgoff, start, start + sectorsize - 1, 8112 io_bio->mirror_num, 8113 btrfs_retry_endio, &done); 8114 if (ret) { 8115 err = ret; 8116 goto next; 8117 } 8118 8119 wait_for_completion(&done.done); 8120 8121 if (!done.uptodate) { 8122 /* We might have another mirror, so try again */ 8123 goto try_again; 8124 } 8125 next: 8126 offset += sectorsize; 8127 start += sectorsize; 8128 8129 ASSERT(nr_sectors); 8130 8131 if (--nr_sectors) { 8132 pgoff += sectorsize; 8133 goto next_block; 8134 } 8135 } 8136 8137 return err; 8138 } 8139 8140 static int btrfs_subio_endio_read(struct inode *inode, 8141 struct btrfs_io_bio *io_bio, int err) 8142 { 8143 bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 8144 8145 if (skip_csum) { 8146 if (unlikely(err)) 8147 return __btrfs_correct_data_nocsum(inode, io_bio); 8148 else 8149 return 0; 8150 } else { 8151 return __btrfs_subio_endio_read(inode, io_bio, err); 8152 } 8153 } 8154 8155 static void btrfs_endio_direct_read(struct bio *bio) 8156 { 8157 struct btrfs_dio_private *dip = bio->bi_private; 8158 struct inode *inode = dip->inode; 8159 struct bio *dio_bio; 8160 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio); 8161 int err = bio->bi_error; 8162 8163 if (dip->flags & BTRFS_DIO_ORIG_BIO_SUBMITTED) 8164 err = btrfs_subio_endio_read(inode, io_bio, err); 8165 8166 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset, 8167 dip->logical_offset + dip->bytes - 1); 8168 dio_bio = dip->dio_bio; 8169 8170 kfree(dip); 8171 8172 dio_bio->bi_error = bio->bi_error; 8173 dio_end_io(dio_bio, bio->bi_error); 8174 8175 if (io_bio->end_io) 8176 io_bio->end_io(io_bio, err); 8177 bio_put(bio); 8178 } 8179 8180 static void btrfs_endio_direct_write_update_ordered(struct inode *inode, 8181 const u64 offset, 8182 const u64 bytes, 8183 const int uptodate) 8184 { 8185 struct btrfs_root *root = BTRFS_I(inode)->root; 8186 struct btrfs_ordered_extent *ordered = NULL; 8187 u64 ordered_offset = offset; 8188 u64 ordered_bytes = bytes; 8189 int ret; 8190 8191 again: 8192 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered, 8193 &ordered_offset, 8194 ordered_bytes, 8195 uptodate); 8196 if (!ret) 8197 goto out_test; 8198 8199 btrfs_init_work(&ordered->work, btrfs_endio_write_helper, 8200 finish_ordered_fn, NULL, NULL); 8201 btrfs_queue_work(root->fs_info->endio_write_workers, 8202 &ordered->work); 8203 out_test: 8204 /* 8205 * our bio might span multiple ordered extents. If we haven't 8206 * completed the accounting for the whole dio, go back and try again 8207 */ 8208 if (ordered_offset < offset + bytes) { 8209 ordered_bytes = offset + bytes - ordered_offset; 8210 ordered = NULL; 8211 goto again; 8212 } 8213 } 8214 8215 static void btrfs_endio_direct_write(struct bio *bio) 8216 { 8217 struct btrfs_dio_private *dip = bio->bi_private; 8218 struct bio *dio_bio = dip->dio_bio; 8219 8220 btrfs_endio_direct_write_update_ordered(dip->inode, 8221 dip->logical_offset, 8222 dip->bytes, 8223 !bio->bi_error); 8224 8225 kfree(dip); 8226 8227 dio_bio->bi_error = bio->bi_error; 8228 dio_end_io(dio_bio, bio->bi_error); 8229 bio_put(bio); 8230 } 8231 8232 static int __btrfs_submit_bio_start_direct_io(struct inode *inode, 8233 struct bio *bio, int mirror_num, 8234 unsigned long bio_flags, u64 offset) 8235 { 8236 int ret; 8237 struct btrfs_root *root = BTRFS_I(inode)->root; 8238 ret = btrfs_csum_one_bio(root, inode, bio, offset, 1); 8239 BUG_ON(ret); /* -ENOMEM */ 8240 return 0; 8241 } 8242 8243 static void btrfs_end_dio_bio(struct bio *bio) 8244 { 8245 struct btrfs_dio_private *dip = bio->bi_private; 8246 int err = bio->bi_error; 8247 8248 if (err) 8249 btrfs_warn(BTRFS_I(dip->inode)->root->fs_info, 8250 "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d", 8251 btrfs_ino(dip->inode), bio_op(bio), bio->bi_opf, 8252 (unsigned long long)bio->bi_iter.bi_sector, 8253 bio->bi_iter.bi_size, err); 8254 8255 if (dip->subio_endio) 8256 err = dip->subio_endio(dip->inode, btrfs_io_bio(bio), err); 8257 8258 if (err) { 8259 dip->errors = 1; 8260 8261 /* 8262 * before atomic variable goto zero, we must make sure 8263 * dip->errors is perceived to be set. 8264 */ 8265 smp_mb__before_atomic(); 8266 } 8267 8268 /* if there are more bios still pending for this dio, just exit */ 8269 if (!atomic_dec_and_test(&dip->pending_bios)) 8270 goto out; 8271 8272 if (dip->errors) { 8273 bio_io_error(dip->orig_bio); 8274 } else { 8275 dip->dio_bio->bi_error = 0; 8276 bio_endio(dip->orig_bio); 8277 } 8278 out: 8279 bio_put(bio); 8280 } 8281 8282 static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev, 8283 u64 first_sector, gfp_t gfp_flags) 8284 { 8285 struct bio *bio; 8286 bio = btrfs_bio_alloc(bdev, first_sector, BIO_MAX_PAGES, gfp_flags); 8287 if (bio) 8288 bio_associate_current(bio); 8289 return bio; 8290 } 8291 8292 static inline int btrfs_lookup_and_bind_dio_csum(struct btrfs_root *root, 8293 struct inode *inode, 8294 struct btrfs_dio_private *dip, 8295 struct bio *bio, 8296 u64 file_offset) 8297 { 8298 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio); 8299 struct btrfs_io_bio *orig_io_bio = btrfs_io_bio(dip->orig_bio); 8300 int ret; 8301 8302 /* 8303 * We load all the csum data we need when we submit 8304 * the first bio to reduce the csum tree search and 8305 * contention. 8306 */ 8307 if (dip->logical_offset == file_offset) { 8308 ret = btrfs_lookup_bio_sums_dio(root, inode, dip->orig_bio, 8309 file_offset); 8310 if (ret) 8311 return ret; 8312 } 8313 8314 if (bio == dip->orig_bio) 8315 return 0; 8316 8317 file_offset -= dip->logical_offset; 8318 file_offset >>= inode->i_sb->s_blocksize_bits; 8319 io_bio->csum = (u8 *)(((u32 *)orig_io_bio->csum) + file_offset); 8320 8321 return 0; 8322 } 8323 8324 static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode, 8325 u64 file_offset, int skip_sum, 8326 int async_submit) 8327 { 8328 struct btrfs_dio_private *dip = bio->bi_private; 8329 bool write = bio_op(bio) == REQ_OP_WRITE; 8330 struct btrfs_root *root = BTRFS_I(inode)->root; 8331 int ret; 8332 8333 if (async_submit) 8334 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers); 8335 8336 bio_get(bio); 8337 8338 if (!write) { 8339 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 8340 BTRFS_WQ_ENDIO_DATA); 8341 if (ret) 8342 goto err; 8343 } 8344 8345 if (skip_sum) 8346 goto map; 8347 8348 if (write && async_submit) { 8349 ret = btrfs_wq_submit_bio(root->fs_info, 8350 inode, bio, 0, 0, file_offset, 8351 __btrfs_submit_bio_start_direct_io, 8352 __btrfs_submit_bio_done); 8353 goto err; 8354 } else if (write) { 8355 /* 8356 * If we aren't doing async submit, calculate the csum of the 8357 * bio now. 8358 */ 8359 ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1); 8360 if (ret) 8361 goto err; 8362 } else { 8363 ret = btrfs_lookup_and_bind_dio_csum(root, inode, dip, bio, 8364 file_offset); 8365 if (ret) 8366 goto err; 8367 } 8368 map: 8369 ret = btrfs_map_bio(root, bio, 0, async_submit); 8370 err: 8371 bio_put(bio); 8372 return ret; 8373 } 8374 8375 static int btrfs_submit_direct_hook(struct btrfs_dio_private *dip, 8376 int skip_sum) 8377 { 8378 struct inode *inode = dip->inode; 8379 struct btrfs_root *root = BTRFS_I(inode)->root; 8380 struct bio *bio; 8381 struct bio *orig_bio = dip->orig_bio; 8382 struct bio_vec *bvec = orig_bio->bi_io_vec; 8383 u64 start_sector = orig_bio->bi_iter.bi_sector; 8384 u64 file_offset = dip->logical_offset; 8385 u64 submit_len = 0; 8386 u64 map_length; 8387 u32 blocksize = root->sectorsize; 8388 int async_submit = 0; 8389 int nr_sectors; 8390 int ret; 8391 int i; 8392 8393 map_length = orig_bio->bi_iter.bi_size; 8394 ret = btrfs_map_block(root->fs_info, bio_op(orig_bio), 8395 start_sector << 9, &map_length, NULL, 0); 8396 if (ret) 8397 return -EIO; 8398 8399 if (map_length >= orig_bio->bi_iter.bi_size) { 8400 bio = orig_bio; 8401 dip->flags |= BTRFS_DIO_ORIG_BIO_SUBMITTED; 8402 goto submit; 8403 } 8404 8405 /* async crcs make it difficult to collect full stripe writes. */ 8406 if (btrfs_get_alloc_profile(root, 1) & BTRFS_BLOCK_GROUP_RAID56_MASK) 8407 async_submit = 0; 8408 else 8409 async_submit = 1; 8410 8411 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS); 8412 if (!bio) 8413 return -ENOMEM; 8414 8415 bio_set_op_attrs(bio, bio_op(orig_bio), orig_bio->bi_opf); 8416 bio->bi_private = dip; 8417 bio->bi_end_io = btrfs_end_dio_bio; 8418 btrfs_io_bio(bio)->logical = file_offset; 8419 atomic_inc(&dip->pending_bios); 8420 8421 while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) { 8422 nr_sectors = BTRFS_BYTES_TO_BLKS(root->fs_info, bvec->bv_len); 8423 i = 0; 8424 next_block: 8425 if (unlikely(map_length < submit_len + blocksize || 8426 bio_add_page(bio, bvec->bv_page, blocksize, 8427 bvec->bv_offset + (i * blocksize)) < blocksize)) { 8428 /* 8429 * inc the count before we submit the bio so 8430 * we know the end IO handler won't happen before 8431 * we inc the count. Otherwise, the dip might get freed 8432 * before we're done setting it up 8433 */ 8434 atomic_inc(&dip->pending_bios); 8435 ret = __btrfs_submit_dio_bio(bio, inode, 8436 file_offset, skip_sum, 8437 async_submit); 8438 if (ret) { 8439 bio_put(bio); 8440 atomic_dec(&dip->pending_bios); 8441 goto out_err; 8442 } 8443 8444 start_sector += submit_len >> 9; 8445 file_offset += submit_len; 8446 8447 submit_len = 0; 8448 8449 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, 8450 start_sector, GFP_NOFS); 8451 if (!bio) 8452 goto out_err; 8453 bio_set_op_attrs(bio, bio_op(orig_bio), orig_bio->bi_opf); 8454 bio->bi_private = dip; 8455 bio->bi_end_io = btrfs_end_dio_bio; 8456 btrfs_io_bio(bio)->logical = file_offset; 8457 8458 map_length = orig_bio->bi_iter.bi_size; 8459 ret = btrfs_map_block(root->fs_info, bio_op(orig_bio), 8460 start_sector << 9, 8461 &map_length, NULL, 0); 8462 if (ret) { 8463 bio_put(bio); 8464 goto out_err; 8465 } 8466 8467 goto next_block; 8468 } else { 8469 submit_len += blocksize; 8470 if (--nr_sectors) { 8471 i++; 8472 goto next_block; 8473 } 8474 bvec++; 8475 } 8476 } 8477 8478 submit: 8479 ret = __btrfs_submit_dio_bio(bio, inode, file_offset, skip_sum, 8480 async_submit); 8481 if (!ret) 8482 return 0; 8483 8484 bio_put(bio); 8485 out_err: 8486 dip->errors = 1; 8487 /* 8488 * before atomic variable goto zero, we must 8489 * make sure dip->errors is perceived to be set. 8490 */ 8491 smp_mb__before_atomic(); 8492 if (atomic_dec_and_test(&dip->pending_bios)) 8493 bio_io_error(dip->orig_bio); 8494 8495 /* bio_end_io() will handle error, so we needn't return it */ 8496 return 0; 8497 } 8498 8499 static void btrfs_submit_direct(struct bio *dio_bio, struct inode *inode, 8500 loff_t file_offset) 8501 { 8502 struct btrfs_dio_private *dip = NULL; 8503 struct bio *io_bio = NULL; 8504 struct btrfs_io_bio *btrfs_bio; 8505 int skip_sum; 8506 bool write = (bio_op(dio_bio) == REQ_OP_WRITE); 8507 int ret = 0; 8508 8509 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 8510 8511 io_bio = btrfs_bio_clone(dio_bio, GFP_NOFS); 8512 if (!io_bio) { 8513 ret = -ENOMEM; 8514 goto free_ordered; 8515 } 8516 8517 dip = kzalloc(sizeof(*dip), GFP_NOFS); 8518 if (!dip) { 8519 ret = -ENOMEM; 8520 goto free_ordered; 8521 } 8522 8523 dip->private = dio_bio->bi_private; 8524 dip->inode = inode; 8525 dip->logical_offset = file_offset; 8526 dip->bytes = dio_bio->bi_iter.bi_size; 8527 dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9; 8528 io_bio->bi_private = dip; 8529 dip->orig_bio = io_bio; 8530 dip->dio_bio = dio_bio; 8531 atomic_set(&dip->pending_bios, 0); 8532 btrfs_bio = btrfs_io_bio(io_bio); 8533 btrfs_bio->logical = file_offset; 8534 8535 if (write) { 8536 io_bio->bi_end_io = btrfs_endio_direct_write; 8537 } else { 8538 io_bio->bi_end_io = btrfs_endio_direct_read; 8539 dip->subio_endio = btrfs_subio_endio_read; 8540 } 8541 8542 /* 8543 * Reset the range for unsubmitted ordered extents (to a 0 length range) 8544 * even if we fail to submit a bio, because in such case we do the 8545 * corresponding error handling below and it must not be done a second 8546 * time by btrfs_direct_IO(). 8547 */ 8548 if (write) { 8549 struct btrfs_dio_data *dio_data = current->journal_info; 8550 8551 dio_data->unsubmitted_oe_range_end = dip->logical_offset + 8552 dip->bytes; 8553 dio_data->unsubmitted_oe_range_start = 8554 dio_data->unsubmitted_oe_range_end; 8555 } 8556 8557 ret = btrfs_submit_direct_hook(dip, skip_sum); 8558 if (!ret) 8559 return; 8560 8561 if (btrfs_bio->end_io) 8562 btrfs_bio->end_io(btrfs_bio, ret); 8563 8564 free_ordered: 8565 /* 8566 * If we arrived here it means either we failed to submit the dip 8567 * or we either failed to clone the dio_bio or failed to allocate the 8568 * dip. If we cloned the dio_bio and allocated the dip, we can just 8569 * call bio_endio against our io_bio so that we get proper resource 8570 * cleanup if we fail to submit the dip, otherwise, we must do the 8571 * same as btrfs_endio_direct_[write|read] because we can't call these 8572 * callbacks - they require an allocated dip and a clone of dio_bio. 8573 */ 8574 if (io_bio && dip) { 8575 io_bio->bi_error = -EIO; 8576 bio_endio(io_bio); 8577 /* 8578 * The end io callbacks free our dip, do the final put on io_bio 8579 * and all the cleanup and final put for dio_bio (through 8580 * dio_end_io()). 8581 */ 8582 dip = NULL; 8583 io_bio = NULL; 8584 } else { 8585 if (write) 8586 btrfs_endio_direct_write_update_ordered(inode, 8587 file_offset, 8588 dio_bio->bi_iter.bi_size, 8589 0); 8590 else 8591 unlock_extent(&BTRFS_I(inode)->io_tree, file_offset, 8592 file_offset + dio_bio->bi_iter.bi_size - 1); 8593 8594 dio_bio->bi_error = -EIO; 8595 /* 8596 * Releases and cleans up our dio_bio, no need to bio_put() 8597 * nor bio_endio()/bio_io_error() against dio_bio. 8598 */ 8599 dio_end_io(dio_bio, ret); 8600 } 8601 if (io_bio) 8602 bio_put(io_bio); 8603 kfree(dip); 8604 } 8605 8606 static ssize_t check_direct_IO(struct btrfs_root *root, struct kiocb *iocb, 8607 const struct iov_iter *iter, loff_t offset) 8608 { 8609 int seg; 8610 int i; 8611 unsigned blocksize_mask = root->sectorsize - 1; 8612 ssize_t retval = -EINVAL; 8613 8614 if (offset & blocksize_mask) 8615 goto out; 8616 8617 if (iov_iter_alignment(iter) & blocksize_mask) 8618 goto out; 8619 8620 /* If this is a write we don't need to check anymore */ 8621 if (iov_iter_rw(iter) == WRITE) 8622 return 0; 8623 /* 8624 * Check to make sure we don't have duplicate iov_base's in this 8625 * iovec, if so return EINVAL, otherwise we'll get csum errors 8626 * when reading back. 8627 */ 8628 for (seg = 0; seg < iter->nr_segs; seg++) { 8629 for (i = seg + 1; i < iter->nr_segs; i++) { 8630 if (iter->iov[seg].iov_base == iter->iov[i].iov_base) 8631 goto out; 8632 } 8633 } 8634 retval = 0; 8635 out: 8636 return retval; 8637 } 8638 8639 static ssize_t btrfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 8640 { 8641 struct file *file = iocb->ki_filp; 8642 struct inode *inode = file->f_mapping->host; 8643 struct btrfs_root *root = BTRFS_I(inode)->root; 8644 struct btrfs_dio_data dio_data = { 0 }; 8645 loff_t offset = iocb->ki_pos; 8646 size_t count = 0; 8647 int flags = 0; 8648 bool wakeup = true; 8649 bool relock = false; 8650 ssize_t ret; 8651 8652 if (check_direct_IO(BTRFS_I(inode)->root, iocb, iter, offset)) 8653 return 0; 8654 8655 inode_dio_begin(inode); 8656 smp_mb__after_atomic(); 8657 8658 /* 8659 * The generic stuff only does filemap_write_and_wait_range, which 8660 * isn't enough if we've written compressed pages to this area, so 8661 * we need to flush the dirty pages again to make absolutely sure 8662 * that any outstanding dirty pages are on disk. 8663 */ 8664 count = iov_iter_count(iter); 8665 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 8666 &BTRFS_I(inode)->runtime_flags)) 8667 filemap_fdatawrite_range(inode->i_mapping, offset, 8668 offset + count - 1); 8669 8670 if (iov_iter_rw(iter) == WRITE) { 8671 /* 8672 * If the write DIO is beyond the EOF, we need update 8673 * the isize, but it is protected by i_mutex. So we can 8674 * not unlock the i_mutex at this case. 8675 */ 8676 if (offset + count <= inode->i_size) { 8677 inode_unlock(inode); 8678 relock = true; 8679 } 8680 ret = btrfs_delalloc_reserve_space(inode, offset, count); 8681 if (ret) 8682 goto out; 8683 dio_data.outstanding_extents = div64_u64(count + 8684 BTRFS_MAX_EXTENT_SIZE - 1, 8685 BTRFS_MAX_EXTENT_SIZE); 8686 8687 /* 8688 * We need to know how many extents we reserved so that we can 8689 * do the accounting properly if we go over the number we 8690 * originally calculated. Abuse current->journal_info for this. 8691 */ 8692 dio_data.reserve = round_up(count, root->sectorsize); 8693 dio_data.unsubmitted_oe_range_start = (u64)offset; 8694 dio_data.unsubmitted_oe_range_end = (u64)offset; 8695 current->journal_info = &dio_data; 8696 } else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK, 8697 &BTRFS_I(inode)->runtime_flags)) { 8698 inode_dio_end(inode); 8699 flags = DIO_LOCKING | DIO_SKIP_HOLES; 8700 wakeup = false; 8701 } 8702 8703 ret = __blockdev_direct_IO(iocb, inode, 8704 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev, 8705 iter, btrfs_get_blocks_direct, NULL, 8706 btrfs_submit_direct, flags); 8707 if (iov_iter_rw(iter) == WRITE) { 8708 current->journal_info = NULL; 8709 if (ret < 0 && ret != -EIOCBQUEUED) { 8710 if (dio_data.reserve) 8711 btrfs_delalloc_release_space(inode, offset, 8712 dio_data.reserve); 8713 /* 8714 * On error we might have left some ordered extents 8715 * without submitting corresponding bios for them, so 8716 * cleanup them up to avoid other tasks getting them 8717 * and waiting for them to complete forever. 8718 */ 8719 if (dio_data.unsubmitted_oe_range_start < 8720 dio_data.unsubmitted_oe_range_end) 8721 btrfs_endio_direct_write_update_ordered(inode, 8722 dio_data.unsubmitted_oe_range_start, 8723 dio_data.unsubmitted_oe_range_end - 8724 dio_data.unsubmitted_oe_range_start, 8725 0); 8726 } else if (ret >= 0 && (size_t)ret < count) 8727 btrfs_delalloc_release_space(inode, offset, 8728 count - (size_t)ret); 8729 } 8730 out: 8731 if (wakeup) 8732 inode_dio_end(inode); 8733 if (relock) 8734 inode_lock(inode); 8735 8736 return ret; 8737 } 8738 8739 #define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC) 8740 8741 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 8742 __u64 start, __u64 len) 8743 { 8744 int ret; 8745 8746 ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS); 8747 if (ret) 8748 return ret; 8749 8750 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap); 8751 } 8752 8753 int btrfs_readpage(struct file *file, struct page *page) 8754 { 8755 struct extent_io_tree *tree; 8756 tree = &BTRFS_I(page->mapping->host)->io_tree; 8757 return extent_read_full_page(tree, page, btrfs_get_extent, 0); 8758 } 8759 8760 static int btrfs_writepage(struct page *page, struct writeback_control *wbc) 8761 { 8762 struct extent_io_tree *tree; 8763 struct inode *inode = page->mapping->host; 8764 int ret; 8765 8766 if (current->flags & PF_MEMALLOC) { 8767 redirty_page_for_writepage(wbc, page); 8768 unlock_page(page); 8769 return 0; 8770 } 8771 8772 /* 8773 * If we are under memory pressure we will call this directly from the 8774 * VM, we need to make sure we have the inode referenced for the ordered 8775 * extent. If not just return like we didn't do anything. 8776 */ 8777 if (!igrab(inode)) { 8778 redirty_page_for_writepage(wbc, page); 8779 return AOP_WRITEPAGE_ACTIVATE; 8780 } 8781 tree = &BTRFS_I(page->mapping->host)->io_tree; 8782 ret = extent_write_full_page(tree, page, btrfs_get_extent, wbc); 8783 btrfs_add_delayed_iput(inode); 8784 return ret; 8785 } 8786 8787 static int btrfs_writepages(struct address_space *mapping, 8788 struct writeback_control *wbc) 8789 { 8790 struct extent_io_tree *tree; 8791 8792 tree = &BTRFS_I(mapping->host)->io_tree; 8793 return extent_writepages(tree, mapping, btrfs_get_extent, wbc); 8794 } 8795 8796 static int 8797 btrfs_readpages(struct file *file, struct address_space *mapping, 8798 struct list_head *pages, unsigned nr_pages) 8799 { 8800 struct extent_io_tree *tree; 8801 tree = &BTRFS_I(mapping->host)->io_tree; 8802 return extent_readpages(tree, mapping, pages, nr_pages, 8803 btrfs_get_extent); 8804 } 8805 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags) 8806 { 8807 struct extent_io_tree *tree; 8808 struct extent_map_tree *map; 8809 int ret; 8810 8811 tree = &BTRFS_I(page->mapping->host)->io_tree; 8812 map = &BTRFS_I(page->mapping->host)->extent_tree; 8813 ret = try_release_extent_mapping(map, tree, page, gfp_flags); 8814 if (ret == 1) { 8815 ClearPagePrivate(page); 8816 set_page_private(page, 0); 8817 put_page(page); 8818 } 8819 return ret; 8820 } 8821 8822 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags) 8823 { 8824 if (PageWriteback(page) || PageDirty(page)) 8825 return 0; 8826 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS); 8827 } 8828 8829 static void btrfs_invalidatepage(struct page *page, unsigned int offset, 8830 unsigned int length) 8831 { 8832 struct inode *inode = page->mapping->host; 8833 struct extent_io_tree *tree; 8834 struct btrfs_ordered_extent *ordered; 8835 struct extent_state *cached_state = NULL; 8836 u64 page_start = page_offset(page); 8837 u64 page_end = page_start + PAGE_SIZE - 1; 8838 u64 start; 8839 u64 end; 8840 int inode_evicting = inode->i_state & I_FREEING; 8841 8842 /* 8843 * we have the page locked, so new writeback can't start, 8844 * and the dirty bit won't be cleared while we are here. 8845 * 8846 * Wait for IO on this page so that we can safely clear 8847 * the PagePrivate2 bit and do ordered accounting 8848 */ 8849 wait_on_page_writeback(page); 8850 8851 tree = &BTRFS_I(inode)->io_tree; 8852 if (offset) { 8853 btrfs_releasepage(page, GFP_NOFS); 8854 return; 8855 } 8856 8857 if (!inode_evicting) 8858 lock_extent_bits(tree, page_start, page_end, &cached_state); 8859 again: 8860 start = page_start; 8861 ordered = btrfs_lookup_ordered_range(inode, start, 8862 page_end - start + 1); 8863 if (ordered) { 8864 end = min(page_end, ordered->file_offset + ordered->len - 1); 8865 /* 8866 * IO on this page will never be started, so we need 8867 * to account for any ordered extents now 8868 */ 8869 if (!inode_evicting) 8870 clear_extent_bit(tree, start, end, 8871 EXTENT_DIRTY | EXTENT_DELALLOC | 8872 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING | 8873 EXTENT_DEFRAG, 1, 0, &cached_state, 8874 GFP_NOFS); 8875 /* 8876 * whoever cleared the private bit is responsible 8877 * for the finish_ordered_io 8878 */ 8879 if (TestClearPagePrivate2(page)) { 8880 struct btrfs_ordered_inode_tree *tree; 8881 u64 new_len; 8882 8883 tree = &BTRFS_I(inode)->ordered_tree; 8884 8885 spin_lock_irq(&tree->lock); 8886 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags); 8887 new_len = start - ordered->file_offset; 8888 if (new_len < ordered->truncated_len) 8889 ordered->truncated_len = new_len; 8890 spin_unlock_irq(&tree->lock); 8891 8892 if (btrfs_dec_test_ordered_pending(inode, &ordered, 8893 start, 8894 end - start + 1, 1)) 8895 btrfs_finish_ordered_io(ordered); 8896 } 8897 btrfs_put_ordered_extent(ordered); 8898 if (!inode_evicting) { 8899 cached_state = NULL; 8900 lock_extent_bits(tree, start, end, 8901 &cached_state); 8902 } 8903 8904 start = end + 1; 8905 if (start < page_end) 8906 goto again; 8907 } 8908 8909 /* 8910 * Qgroup reserved space handler 8911 * Page here will be either 8912 * 1) Already written to disk 8913 * In this case, its reserved space is released from data rsv map 8914 * and will be freed by delayed_ref handler finally. 8915 * So even we call qgroup_free_data(), it won't decrease reserved 8916 * space. 8917 * 2) Not written to disk 8918 * This means the reserved space should be freed here. 8919 */ 8920 btrfs_qgroup_free_data(inode, page_start, PAGE_SIZE); 8921 if (!inode_evicting) { 8922 clear_extent_bit(tree, page_start, page_end, 8923 EXTENT_LOCKED | EXTENT_DIRTY | 8924 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | 8925 EXTENT_DEFRAG, 1, 1, 8926 &cached_state, GFP_NOFS); 8927 8928 __btrfs_releasepage(page, GFP_NOFS); 8929 } 8930 8931 ClearPageChecked(page); 8932 if (PagePrivate(page)) { 8933 ClearPagePrivate(page); 8934 set_page_private(page, 0); 8935 put_page(page); 8936 } 8937 } 8938 8939 /* 8940 * btrfs_page_mkwrite() is not allowed to change the file size as it gets 8941 * called from a page fault handler when a page is first dirtied. Hence we must 8942 * be careful to check for EOF conditions here. We set the page up correctly 8943 * for a written page which means we get ENOSPC checking when writing into 8944 * holes and correct delalloc and unwritten extent mapping on filesystems that 8945 * support these features. 8946 * 8947 * We are not allowed to take the i_mutex here so we have to play games to 8948 * protect against truncate races as the page could now be beyond EOF. Because 8949 * vmtruncate() writes the inode size before removing pages, once we have the 8950 * page lock we can determine safely if the page is beyond EOF. If it is not 8951 * beyond EOF, then the page is guaranteed safe against truncation until we 8952 * unlock the page. 8953 */ 8954 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf) 8955 { 8956 struct page *page = vmf->page; 8957 struct inode *inode = file_inode(vma->vm_file); 8958 struct btrfs_root *root = BTRFS_I(inode)->root; 8959 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 8960 struct btrfs_ordered_extent *ordered; 8961 struct extent_state *cached_state = NULL; 8962 char *kaddr; 8963 unsigned long zero_start; 8964 loff_t size; 8965 int ret; 8966 int reserved = 0; 8967 u64 reserved_space; 8968 u64 page_start; 8969 u64 page_end; 8970 u64 end; 8971 8972 reserved_space = PAGE_SIZE; 8973 8974 sb_start_pagefault(inode->i_sb); 8975 page_start = page_offset(page); 8976 page_end = page_start + PAGE_SIZE - 1; 8977 end = page_end; 8978 8979 /* 8980 * Reserving delalloc space after obtaining the page lock can lead to 8981 * deadlock. For example, if a dirty page is locked by this function 8982 * and the call to btrfs_delalloc_reserve_space() ends up triggering 8983 * dirty page write out, then the btrfs_writepage() function could 8984 * end up waiting indefinitely to get a lock on the page currently 8985 * being processed by btrfs_page_mkwrite() function. 8986 */ 8987 ret = btrfs_delalloc_reserve_space(inode, page_start, 8988 reserved_space); 8989 if (!ret) { 8990 ret = file_update_time(vma->vm_file); 8991 reserved = 1; 8992 } 8993 if (ret) { 8994 if (ret == -ENOMEM) 8995 ret = VM_FAULT_OOM; 8996 else /* -ENOSPC, -EIO, etc */ 8997 ret = VM_FAULT_SIGBUS; 8998 if (reserved) 8999 goto out; 9000 goto out_noreserve; 9001 } 9002 9003 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */ 9004 again: 9005 lock_page(page); 9006 size = i_size_read(inode); 9007 9008 if ((page->mapping != inode->i_mapping) || 9009 (page_start >= size)) { 9010 /* page got truncated out from underneath us */ 9011 goto out_unlock; 9012 } 9013 wait_on_page_writeback(page); 9014 9015 lock_extent_bits(io_tree, page_start, page_end, &cached_state); 9016 set_page_extent_mapped(page); 9017 9018 /* 9019 * we can't set the delalloc bits if there are pending ordered 9020 * extents. Drop our locks and wait for them to finish 9021 */ 9022 ordered = btrfs_lookup_ordered_range(inode, page_start, page_end); 9023 if (ordered) { 9024 unlock_extent_cached(io_tree, page_start, page_end, 9025 &cached_state, GFP_NOFS); 9026 unlock_page(page); 9027 btrfs_start_ordered_extent(inode, ordered, 1); 9028 btrfs_put_ordered_extent(ordered); 9029 goto again; 9030 } 9031 9032 if (page->index == ((size - 1) >> PAGE_SHIFT)) { 9033 reserved_space = round_up(size - page_start, root->sectorsize); 9034 if (reserved_space < PAGE_SIZE) { 9035 end = page_start + reserved_space - 1; 9036 spin_lock(&BTRFS_I(inode)->lock); 9037 BTRFS_I(inode)->outstanding_extents++; 9038 spin_unlock(&BTRFS_I(inode)->lock); 9039 btrfs_delalloc_release_space(inode, page_start, 9040 PAGE_SIZE - reserved_space); 9041 } 9042 } 9043 9044 /* 9045 * XXX - page_mkwrite gets called every time the page is dirtied, even 9046 * if it was already dirty, so for space accounting reasons we need to 9047 * clear any delalloc bits for the range we are fixing to save. There 9048 * is probably a better way to do this, but for now keep consistent with 9049 * prepare_pages in the normal write path. 9050 */ 9051 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end, 9052 EXTENT_DIRTY | EXTENT_DELALLOC | 9053 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 9054 0, 0, &cached_state, GFP_NOFS); 9055 9056 ret = btrfs_set_extent_delalloc(inode, page_start, end, 9057 &cached_state); 9058 if (ret) { 9059 unlock_extent_cached(io_tree, page_start, page_end, 9060 &cached_state, GFP_NOFS); 9061 ret = VM_FAULT_SIGBUS; 9062 goto out_unlock; 9063 } 9064 ret = 0; 9065 9066 /* page is wholly or partially inside EOF */ 9067 if (page_start + PAGE_SIZE > size) 9068 zero_start = size & ~PAGE_MASK; 9069 else 9070 zero_start = PAGE_SIZE; 9071 9072 if (zero_start != PAGE_SIZE) { 9073 kaddr = kmap(page); 9074 memset(kaddr + zero_start, 0, PAGE_SIZE - zero_start); 9075 flush_dcache_page(page); 9076 kunmap(page); 9077 } 9078 ClearPageChecked(page); 9079 set_page_dirty(page); 9080 SetPageUptodate(page); 9081 9082 BTRFS_I(inode)->last_trans = root->fs_info->generation; 9083 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid; 9084 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit; 9085 9086 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS); 9087 9088 out_unlock: 9089 if (!ret) { 9090 sb_end_pagefault(inode->i_sb); 9091 return VM_FAULT_LOCKED; 9092 } 9093 unlock_page(page); 9094 out: 9095 btrfs_delalloc_release_space(inode, page_start, reserved_space); 9096 out_noreserve: 9097 sb_end_pagefault(inode->i_sb); 9098 return ret; 9099 } 9100 9101 static int btrfs_truncate(struct inode *inode) 9102 { 9103 struct btrfs_root *root = BTRFS_I(inode)->root; 9104 struct btrfs_block_rsv *rsv; 9105 int ret = 0; 9106 int err = 0; 9107 struct btrfs_trans_handle *trans; 9108 u64 mask = root->sectorsize - 1; 9109 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1); 9110 9111 ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask), 9112 (u64)-1); 9113 if (ret) 9114 return ret; 9115 9116 /* 9117 * Yes ladies and gentlemen, this is indeed ugly. The fact is we have 9118 * 3 things going on here 9119 * 9120 * 1) We need to reserve space for our orphan item and the space to 9121 * delete our orphan item. Lord knows we don't want to have a dangling 9122 * orphan item because we didn't reserve space to remove it. 9123 * 9124 * 2) We need to reserve space to update our inode. 9125 * 9126 * 3) We need to have something to cache all the space that is going to 9127 * be free'd up by the truncate operation, but also have some slack 9128 * space reserved in case it uses space during the truncate (thank you 9129 * very much snapshotting). 9130 * 9131 * And we need these to all be separate. The fact is we can use a lot of 9132 * space doing the truncate, and we have no earthly idea how much space 9133 * we will use, so we need the truncate reservation to be separate so it 9134 * doesn't end up using space reserved for updating the inode or 9135 * removing the orphan item. We also need to be able to stop the 9136 * transaction and start a new one, which means we need to be able to 9137 * update the inode several times, and we have no idea of knowing how 9138 * many times that will be, so we can't just reserve 1 item for the 9139 * entirety of the operation, so that has to be done separately as well. 9140 * Then there is the orphan item, which does indeed need to be held on 9141 * to for the whole operation, and we need nobody to touch this reserved 9142 * space except the orphan code. 9143 * 9144 * So that leaves us with 9145 * 9146 * 1) root->orphan_block_rsv - for the orphan deletion. 9147 * 2) rsv - for the truncate reservation, which we will steal from the 9148 * transaction reservation. 9149 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for 9150 * updating the inode. 9151 */ 9152 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP); 9153 if (!rsv) 9154 return -ENOMEM; 9155 rsv->size = min_size; 9156 rsv->failfast = 1; 9157 9158 /* 9159 * 1 for the truncate slack space 9160 * 1 for updating the inode. 9161 */ 9162 trans = btrfs_start_transaction(root, 2); 9163 if (IS_ERR(trans)) { 9164 err = PTR_ERR(trans); 9165 goto out; 9166 } 9167 9168 /* Migrate the slack space for the truncate to our reserve */ 9169 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv, 9170 min_size, 0); 9171 BUG_ON(ret); 9172 9173 /* 9174 * So if we truncate and then write and fsync we normally would just 9175 * write the extents that changed, which is a problem if we need to 9176 * first truncate that entire inode. So set this flag so we write out 9177 * all of the extents in the inode to the sync log so we're completely 9178 * safe. 9179 */ 9180 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 9181 trans->block_rsv = rsv; 9182 9183 while (1) { 9184 ret = btrfs_truncate_inode_items(trans, root, inode, 9185 inode->i_size, 9186 BTRFS_EXTENT_DATA_KEY); 9187 if (ret != -ENOSPC && ret != -EAGAIN) { 9188 err = ret; 9189 break; 9190 } 9191 9192 trans->block_rsv = &root->fs_info->trans_block_rsv; 9193 ret = btrfs_update_inode(trans, root, inode); 9194 if (ret) { 9195 err = ret; 9196 break; 9197 } 9198 9199 btrfs_end_transaction(trans, root); 9200 btrfs_btree_balance_dirty(root); 9201 9202 trans = btrfs_start_transaction(root, 2); 9203 if (IS_ERR(trans)) { 9204 ret = err = PTR_ERR(trans); 9205 trans = NULL; 9206 break; 9207 } 9208 9209 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, 9210 rsv, min_size, 0); 9211 BUG_ON(ret); /* shouldn't happen */ 9212 trans->block_rsv = rsv; 9213 } 9214 9215 if (ret == 0 && inode->i_nlink > 0) { 9216 trans->block_rsv = root->orphan_block_rsv; 9217 ret = btrfs_orphan_del(trans, inode); 9218 if (ret) 9219 err = ret; 9220 } 9221 9222 if (trans) { 9223 trans->block_rsv = &root->fs_info->trans_block_rsv; 9224 ret = btrfs_update_inode(trans, root, inode); 9225 if (ret && !err) 9226 err = ret; 9227 9228 ret = btrfs_end_transaction(trans, root); 9229 btrfs_btree_balance_dirty(root); 9230 } 9231 out: 9232 btrfs_free_block_rsv(root, rsv); 9233 9234 if (ret && !err) 9235 err = ret; 9236 9237 return err; 9238 } 9239 9240 /* 9241 * create a new subvolume directory/inode (helper for the ioctl). 9242 */ 9243 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans, 9244 struct btrfs_root *new_root, 9245 struct btrfs_root *parent_root, 9246 u64 new_dirid) 9247 { 9248 struct inode *inode; 9249 int err; 9250 u64 index = 0; 9251 9252 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, 9253 new_dirid, new_dirid, 9254 S_IFDIR | (~current_umask() & S_IRWXUGO), 9255 &index); 9256 if (IS_ERR(inode)) 9257 return PTR_ERR(inode); 9258 inode->i_op = &btrfs_dir_inode_operations; 9259 inode->i_fop = &btrfs_dir_file_operations; 9260 9261 set_nlink(inode, 1); 9262 btrfs_i_size_write(inode, 0); 9263 unlock_new_inode(inode); 9264 9265 err = btrfs_subvol_inherit_props(trans, new_root, parent_root); 9266 if (err) 9267 btrfs_err(new_root->fs_info, 9268 "error inheriting subvolume %llu properties: %d", 9269 new_root->root_key.objectid, err); 9270 9271 err = btrfs_update_inode(trans, new_root, inode); 9272 9273 iput(inode); 9274 return err; 9275 } 9276 9277 struct inode *btrfs_alloc_inode(struct super_block *sb) 9278 { 9279 struct btrfs_inode *ei; 9280 struct inode *inode; 9281 9282 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS); 9283 if (!ei) 9284 return NULL; 9285 9286 ei->root = NULL; 9287 ei->generation = 0; 9288 ei->last_trans = 0; 9289 ei->last_sub_trans = 0; 9290 ei->logged_trans = 0; 9291 ei->delalloc_bytes = 0; 9292 ei->defrag_bytes = 0; 9293 ei->disk_i_size = 0; 9294 ei->flags = 0; 9295 ei->csum_bytes = 0; 9296 ei->index_cnt = (u64)-1; 9297 ei->dir_index = 0; 9298 ei->last_unlink_trans = 0; 9299 ei->last_log_commit = 0; 9300 ei->delayed_iput_count = 0; 9301 9302 spin_lock_init(&ei->lock); 9303 ei->outstanding_extents = 0; 9304 ei->reserved_extents = 0; 9305 9306 ei->runtime_flags = 0; 9307 ei->force_compress = BTRFS_COMPRESS_NONE; 9308 9309 ei->delayed_node = NULL; 9310 9311 ei->i_otime.tv_sec = 0; 9312 ei->i_otime.tv_nsec = 0; 9313 9314 inode = &ei->vfs_inode; 9315 extent_map_tree_init(&ei->extent_tree); 9316 extent_io_tree_init(&ei->io_tree, &inode->i_data); 9317 extent_io_tree_init(&ei->io_failure_tree, &inode->i_data); 9318 ei->io_tree.track_uptodate = 1; 9319 ei->io_failure_tree.track_uptodate = 1; 9320 atomic_set(&ei->sync_writers, 0); 9321 mutex_init(&ei->log_mutex); 9322 mutex_init(&ei->delalloc_mutex); 9323 btrfs_ordered_inode_tree_init(&ei->ordered_tree); 9324 INIT_LIST_HEAD(&ei->delalloc_inodes); 9325 INIT_LIST_HEAD(&ei->delayed_iput); 9326 RB_CLEAR_NODE(&ei->rb_node); 9327 init_rwsem(&ei->dio_sem); 9328 9329 return inode; 9330 } 9331 9332 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 9333 void btrfs_test_destroy_inode(struct inode *inode) 9334 { 9335 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0); 9336 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 9337 } 9338 #endif 9339 9340 static void btrfs_i_callback(struct rcu_head *head) 9341 { 9342 struct inode *inode = container_of(head, struct inode, i_rcu); 9343 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 9344 } 9345 9346 void btrfs_destroy_inode(struct inode *inode) 9347 { 9348 struct btrfs_ordered_extent *ordered; 9349 struct btrfs_root *root = BTRFS_I(inode)->root; 9350 9351 WARN_ON(!hlist_empty(&inode->i_dentry)); 9352 WARN_ON(inode->i_data.nrpages); 9353 WARN_ON(BTRFS_I(inode)->outstanding_extents); 9354 WARN_ON(BTRFS_I(inode)->reserved_extents); 9355 WARN_ON(BTRFS_I(inode)->delalloc_bytes); 9356 WARN_ON(BTRFS_I(inode)->csum_bytes); 9357 WARN_ON(BTRFS_I(inode)->defrag_bytes); 9358 9359 /* 9360 * This can happen where we create an inode, but somebody else also 9361 * created the same inode and we need to destroy the one we already 9362 * created. 9363 */ 9364 if (!root) 9365 goto free; 9366 9367 if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 9368 &BTRFS_I(inode)->runtime_flags)) { 9369 btrfs_info(root->fs_info, "inode %llu still on the orphan list", 9370 btrfs_ino(inode)); 9371 atomic_dec(&root->orphan_inodes); 9372 } 9373 9374 while (1) { 9375 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1); 9376 if (!ordered) 9377 break; 9378 else { 9379 btrfs_err(root->fs_info, "found ordered extent %llu %llu on inode cleanup", 9380 ordered->file_offset, ordered->len); 9381 btrfs_remove_ordered_extent(inode, ordered); 9382 btrfs_put_ordered_extent(ordered); 9383 btrfs_put_ordered_extent(ordered); 9384 } 9385 } 9386 btrfs_qgroup_check_reserved_leak(inode); 9387 inode_tree_del(inode); 9388 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0); 9389 free: 9390 call_rcu(&inode->i_rcu, btrfs_i_callback); 9391 } 9392 9393 int btrfs_drop_inode(struct inode *inode) 9394 { 9395 struct btrfs_root *root = BTRFS_I(inode)->root; 9396 9397 if (root == NULL) 9398 return 1; 9399 9400 /* the snap/subvol tree is on deleting */ 9401 if (btrfs_root_refs(&root->root_item) == 0) 9402 return 1; 9403 else 9404 return generic_drop_inode(inode); 9405 } 9406 9407 static void init_once(void *foo) 9408 { 9409 struct btrfs_inode *ei = (struct btrfs_inode *) foo; 9410 9411 inode_init_once(&ei->vfs_inode); 9412 } 9413 9414 void btrfs_destroy_cachep(void) 9415 { 9416 /* 9417 * Make sure all delayed rcu free inodes are flushed before we 9418 * destroy cache. 9419 */ 9420 rcu_barrier(); 9421 kmem_cache_destroy(btrfs_inode_cachep); 9422 kmem_cache_destroy(btrfs_trans_handle_cachep); 9423 kmem_cache_destroy(btrfs_transaction_cachep); 9424 kmem_cache_destroy(btrfs_path_cachep); 9425 kmem_cache_destroy(btrfs_free_space_cachep); 9426 } 9427 9428 int btrfs_init_cachep(void) 9429 { 9430 btrfs_inode_cachep = kmem_cache_create("btrfs_inode", 9431 sizeof(struct btrfs_inode), 0, 9432 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT, 9433 init_once); 9434 if (!btrfs_inode_cachep) 9435 goto fail; 9436 9437 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle", 9438 sizeof(struct btrfs_trans_handle), 0, 9439 SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL); 9440 if (!btrfs_trans_handle_cachep) 9441 goto fail; 9442 9443 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction", 9444 sizeof(struct btrfs_transaction), 0, 9445 SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL); 9446 if (!btrfs_transaction_cachep) 9447 goto fail; 9448 9449 btrfs_path_cachep = kmem_cache_create("btrfs_path", 9450 sizeof(struct btrfs_path), 0, 9451 SLAB_MEM_SPREAD, NULL); 9452 if (!btrfs_path_cachep) 9453 goto fail; 9454 9455 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space", 9456 sizeof(struct btrfs_free_space), 0, 9457 SLAB_MEM_SPREAD, NULL); 9458 if (!btrfs_free_space_cachep) 9459 goto fail; 9460 9461 return 0; 9462 fail: 9463 btrfs_destroy_cachep(); 9464 return -ENOMEM; 9465 } 9466 9467 static int btrfs_getattr(struct vfsmount *mnt, 9468 struct dentry *dentry, struct kstat *stat) 9469 { 9470 u64 delalloc_bytes; 9471 struct inode *inode = d_inode(dentry); 9472 u32 blocksize = inode->i_sb->s_blocksize; 9473 9474 generic_fillattr(inode, stat); 9475 stat->dev = BTRFS_I(inode)->root->anon_dev; 9476 9477 spin_lock(&BTRFS_I(inode)->lock); 9478 delalloc_bytes = BTRFS_I(inode)->delalloc_bytes; 9479 spin_unlock(&BTRFS_I(inode)->lock); 9480 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) + 9481 ALIGN(delalloc_bytes, blocksize)) >> 9; 9482 return 0; 9483 } 9484 9485 static int btrfs_rename_exchange(struct inode *old_dir, 9486 struct dentry *old_dentry, 9487 struct inode *new_dir, 9488 struct dentry *new_dentry) 9489 { 9490 struct btrfs_trans_handle *trans; 9491 struct btrfs_root *root = BTRFS_I(old_dir)->root; 9492 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 9493 struct inode *new_inode = new_dentry->d_inode; 9494 struct inode *old_inode = old_dentry->d_inode; 9495 struct timespec ctime = CURRENT_TIME; 9496 struct dentry *parent; 9497 u64 old_ino = btrfs_ino(old_inode); 9498 u64 new_ino = btrfs_ino(new_inode); 9499 u64 old_idx = 0; 9500 u64 new_idx = 0; 9501 u64 root_objectid; 9502 int ret; 9503 bool root_log_pinned = false; 9504 bool dest_log_pinned = false; 9505 9506 /* we only allow rename subvolume link between subvolumes */ 9507 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest) 9508 return -EXDEV; 9509 9510 /* close the race window with snapshot create/destroy ioctl */ 9511 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 9512 down_read(&root->fs_info->subvol_sem); 9513 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) 9514 down_read(&dest->fs_info->subvol_sem); 9515 9516 /* 9517 * We want to reserve the absolute worst case amount of items. So if 9518 * both inodes are subvols and we need to unlink them then that would 9519 * require 4 item modifications, but if they are both normal inodes it 9520 * would require 5 item modifications, so we'll assume their normal 9521 * inodes. So 5 * 2 is 10, plus 2 for the new links, so 12 total items 9522 * should cover the worst case number of items we'll modify. 9523 */ 9524 trans = btrfs_start_transaction(root, 12); 9525 if (IS_ERR(trans)) { 9526 ret = PTR_ERR(trans); 9527 goto out_notrans; 9528 } 9529 9530 /* 9531 * We need to find a free sequence number both in the source and 9532 * in the destination directory for the exchange. 9533 */ 9534 ret = btrfs_set_inode_index(new_dir, &old_idx); 9535 if (ret) 9536 goto out_fail; 9537 ret = btrfs_set_inode_index(old_dir, &new_idx); 9538 if (ret) 9539 goto out_fail; 9540 9541 BTRFS_I(old_inode)->dir_index = 0ULL; 9542 BTRFS_I(new_inode)->dir_index = 0ULL; 9543 9544 /* Reference for the source. */ 9545 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 9546 /* force full log commit if subvolume involved. */ 9547 btrfs_set_log_full_commit(root->fs_info, trans); 9548 } else { 9549 btrfs_pin_log_trans(root); 9550 root_log_pinned = true; 9551 ret = btrfs_insert_inode_ref(trans, dest, 9552 new_dentry->d_name.name, 9553 new_dentry->d_name.len, 9554 old_ino, 9555 btrfs_ino(new_dir), old_idx); 9556 if (ret) 9557 goto out_fail; 9558 } 9559 9560 /* And now for the dest. */ 9561 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) { 9562 /* force full log commit if subvolume involved. */ 9563 btrfs_set_log_full_commit(dest->fs_info, trans); 9564 } else { 9565 btrfs_pin_log_trans(dest); 9566 dest_log_pinned = true; 9567 ret = btrfs_insert_inode_ref(trans, root, 9568 old_dentry->d_name.name, 9569 old_dentry->d_name.len, 9570 new_ino, 9571 btrfs_ino(old_dir), new_idx); 9572 if (ret) 9573 goto out_fail; 9574 } 9575 9576 /* Update inode version and ctime/mtime. */ 9577 inode_inc_iversion(old_dir); 9578 inode_inc_iversion(new_dir); 9579 inode_inc_iversion(old_inode); 9580 inode_inc_iversion(new_inode); 9581 old_dir->i_ctime = old_dir->i_mtime = ctime; 9582 new_dir->i_ctime = new_dir->i_mtime = ctime; 9583 old_inode->i_ctime = ctime; 9584 new_inode->i_ctime = ctime; 9585 9586 if (old_dentry->d_parent != new_dentry->d_parent) { 9587 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1); 9588 btrfs_record_unlink_dir(trans, new_dir, new_inode, 1); 9589 } 9590 9591 /* src is a subvolume */ 9592 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 9593 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid; 9594 ret = btrfs_unlink_subvol(trans, root, old_dir, 9595 root_objectid, 9596 old_dentry->d_name.name, 9597 old_dentry->d_name.len); 9598 } else { /* src is an inode */ 9599 ret = __btrfs_unlink_inode(trans, root, old_dir, 9600 old_dentry->d_inode, 9601 old_dentry->d_name.name, 9602 old_dentry->d_name.len); 9603 if (!ret) 9604 ret = btrfs_update_inode(trans, root, old_inode); 9605 } 9606 if (ret) { 9607 btrfs_abort_transaction(trans, ret); 9608 goto out_fail; 9609 } 9610 9611 /* dest is a subvolume */ 9612 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) { 9613 root_objectid = BTRFS_I(new_inode)->root->root_key.objectid; 9614 ret = btrfs_unlink_subvol(trans, dest, new_dir, 9615 root_objectid, 9616 new_dentry->d_name.name, 9617 new_dentry->d_name.len); 9618 } else { /* dest is an inode */ 9619 ret = __btrfs_unlink_inode(trans, dest, new_dir, 9620 new_dentry->d_inode, 9621 new_dentry->d_name.name, 9622 new_dentry->d_name.len); 9623 if (!ret) 9624 ret = btrfs_update_inode(trans, dest, new_inode); 9625 } 9626 if (ret) { 9627 btrfs_abort_transaction(trans, ret); 9628 goto out_fail; 9629 } 9630 9631 ret = btrfs_add_link(trans, new_dir, old_inode, 9632 new_dentry->d_name.name, 9633 new_dentry->d_name.len, 0, old_idx); 9634 if (ret) { 9635 btrfs_abort_transaction(trans, ret); 9636 goto out_fail; 9637 } 9638 9639 ret = btrfs_add_link(trans, old_dir, new_inode, 9640 old_dentry->d_name.name, 9641 old_dentry->d_name.len, 0, new_idx); 9642 if (ret) { 9643 btrfs_abort_transaction(trans, ret); 9644 goto out_fail; 9645 } 9646 9647 if (old_inode->i_nlink == 1) 9648 BTRFS_I(old_inode)->dir_index = old_idx; 9649 if (new_inode->i_nlink == 1) 9650 BTRFS_I(new_inode)->dir_index = new_idx; 9651 9652 if (root_log_pinned) { 9653 parent = new_dentry->d_parent; 9654 btrfs_log_new_name(trans, old_inode, old_dir, parent); 9655 btrfs_end_log_trans(root); 9656 root_log_pinned = false; 9657 } 9658 if (dest_log_pinned) { 9659 parent = old_dentry->d_parent; 9660 btrfs_log_new_name(trans, new_inode, new_dir, parent); 9661 btrfs_end_log_trans(dest); 9662 dest_log_pinned = false; 9663 } 9664 out_fail: 9665 /* 9666 * If we have pinned a log and an error happened, we unpin tasks 9667 * trying to sync the log and force them to fallback to a transaction 9668 * commit if the log currently contains any of the inodes involved in 9669 * this rename operation (to ensure we do not persist a log with an 9670 * inconsistent state for any of these inodes or leading to any 9671 * inconsistencies when replayed). If the transaction was aborted, the 9672 * abortion reason is propagated to userspace when attempting to commit 9673 * the transaction. If the log does not contain any of these inodes, we 9674 * allow the tasks to sync it. 9675 */ 9676 if (ret && (root_log_pinned || dest_log_pinned)) { 9677 if (btrfs_inode_in_log(old_dir, root->fs_info->generation) || 9678 btrfs_inode_in_log(new_dir, root->fs_info->generation) || 9679 btrfs_inode_in_log(old_inode, root->fs_info->generation) || 9680 (new_inode && 9681 btrfs_inode_in_log(new_inode, root->fs_info->generation))) 9682 btrfs_set_log_full_commit(root->fs_info, trans); 9683 9684 if (root_log_pinned) { 9685 btrfs_end_log_trans(root); 9686 root_log_pinned = false; 9687 } 9688 if (dest_log_pinned) { 9689 btrfs_end_log_trans(dest); 9690 dest_log_pinned = false; 9691 } 9692 } 9693 ret = btrfs_end_transaction(trans, root); 9694 out_notrans: 9695 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) 9696 up_read(&dest->fs_info->subvol_sem); 9697 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 9698 up_read(&root->fs_info->subvol_sem); 9699 9700 return ret; 9701 } 9702 9703 static int btrfs_whiteout_for_rename(struct btrfs_trans_handle *trans, 9704 struct btrfs_root *root, 9705 struct inode *dir, 9706 struct dentry *dentry) 9707 { 9708 int ret; 9709 struct inode *inode; 9710 u64 objectid; 9711 u64 index; 9712 9713 ret = btrfs_find_free_ino(root, &objectid); 9714 if (ret) 9715 return ret; 9716 9717 inode = btrfs_new_inode(trans, root, dir, 9718 dentry->d_name.name, 9719 dentry->d_name.len, 9720 btrfs_ino(dir), 9721 objectid, 9722 S_IFCHR | WHITEOUT_MODE, 9723 &index); 9724 9725 if (IS_ERR(inode)) { 9726 ret = PTR_ERR(inode); 9727 return ret; 9728 } 9729 9730 inode->i_op = &btrfs_special_inode_operations; 9731 init_special_inode(inode, inode->i_mode, 9732 WHITEOUT_DEV); 9733 9734 ret = btrfs_init_inode_security(trans, inode, dir, 9735 &dentry->d_name); 9736 if (ret) 9737 goto out; 9738 9739 ret = btrfs_add_nondir(trans, dir, dentry, 9740 inode, 0, index); 9741 if (ret) 9742 goto out; 9743 9744 ret = btrfs_update_inode(trans, root, inode); 9745 out: 9746 unlock_new_inode(inode); 9747 if (ret) 9748 inode_dec_link_count(inode); 9749 iput(inode); 9750 9751 return ret; 9752 } 9753 9754 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry, 9755 struct inode *new_dir, struct dentry *new_dentry, 9756 unsigned int flags) 9757 { 9758 struct btrfs_trans_handle *trans; 9759 unsigned int trans_num_items; 9760 struct btrfs_root *root = BTRFS_I(old_dir)->root; 9761 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 9762 struct inode *new_inode = d_inode(new_dentry); 9763 struct inode *old_inode = d_inode(old_dentry); 9764 u64 index = 0; 9765 u64 root_objectid; 9766 int ret; 9767 u64 old_ino = btrfs_ino(old_inode); 9768 bool log_pinned = false; 9769 9770 if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 9771 return -EPERM; 9772 9773 /* we only allow rename subvolume link between subvolumes */ 9774 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest) 9775 return -EXDEV; 9776 9777 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID || 9778 (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID)) 9779 return -ENOTEMPTY; 9780 9781 if (S_ISDIR(old_inode->i_mode) && new_inode && 9782 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) 9783 return -ENOTEMPTY; 9784 9785 9786 /* check for collisions, even if the name isn't there */ 9787 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino, 9788 new_dentry->d_name.name, 9789 new_dentry->d_name.len); 9790 9791 if (ret) { 9792 if (ret == -EEXIST) { 9793 /* we shouldn't get 9794 * eexist without a new_inode */ 9795 if (WARN_ON(!new_inode)) { 9796 return ret; 9797 } 9798 } else { 9799 /* maybe -EOVERFLOW */ 9800 return ret; 9801 } 9802 } 9803 ret = 0; 9804 9805 /* 9806 * we're using rename to replace one file with another. Start IO on it 9807 * now so we don't add too much work to the end of the transaction 9808 */ 9809 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size) 9810 filemap_flush(old_inode->i_mapping); 9811 9812 /* close the racy window with snapshot create/destroy ioctl */ 9813 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 9814 down_read(&root->fs_info->subvol_sem); 9815 /* 9816 * We want to reserve the absolute worst case amount of items. So if 9817 * both inodes are subvols and we need to unlink them then that would 9818 * require 4 item modifications, but if they are both normal inodes it 9819 * would require 5 item modifications, so we'll assume they are normal 9820 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items 9821 * should cover the worst case number of items we'll modify. 9822 * If our rename has the whiteout flag, we need more 5 units for the 9823 * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item 9824 * when selinux is enabled). 9825 */ 9826 trans_num_items = 11; 9827 if (flags & RENAME_WHITEOUT) 9828 trans_num_items += 5; 9829 trans = btrfs_start_transaction(root, trans_num_items); 9830 if (IS_ERR(trans)) { 9831 ret = PTR_ERR(trans); 9832 goto out_notrans; 9833 } 9834 9835 if (dest != root) 9836 btrfs_record_root_in_trans(trans, dest); 9837 9838 ret = btrfs_set_inode_index(new_dir, &index); 9839 if (ret) 9840 goto out_fail; 9841 9842 BTRFS_I(old_inode)->dir_index = 0ULL; 9843 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 9844 /* force full log commit if subvolume involved. */ 9845 btrfs_set_log_full_commit(root->fs_info, trans); 9846 } else { 9847 btrfs_pin_log_trans(root); 9848 log_pinned = true; 9849 ret = btrfs_insert_inode_ref(trans, dest, 9850 new_dentry->d_name.name, 9851 new_dentry->d_name.len, 9852 old_ino, 9853 btrfs_ino(new_dir), index); 9854 if (ret) 9855 goto out_fail; 9856 } 9857 9858 inode_inc_iversion(old_dir); 9859 inode_inc_iversion(new_dir); 9860 inode_inc_iversion(old_inode); 9861 old_dir->i_ctime = old_dir->i_mtime = 9862 new_dir->i_ctime = new_dir->i_mtime = 9863 old_inode->i_ctime = current_fs_time(old_dir->i_sb); 9864 9865 if (old_dentry->d_parent != new_dentry->d_parent) 9866 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1); 9867 9868 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 9869 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid; 9870 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid, 9871 old_dentry->d_name.name, 9872 old_dentry->d_name.len); 9873 } else { 9874 ret = __btrfs_unlink_inode(trans, root, old_dir, 9875 d_inode(old_dentry), 9876 old_dentry->d_name.name, 9877 old_dentry->d_name.len); 9878 if (!ret) 9879 ret = btrfs_update_inode(trans, root, old_inode); 9880 } 9881 if (ret) { 9882 btrfs_abort_transaction(trans, ret); 9883 goto out_fail; 9884 } 9885 9886 if (new_inode) { 9887 inode_inc_iversion(new_inode); 9888 new_inode->i_ctime = current_fs_time(new_inode->i_sb); 9889 if (unlikely(btrfs_ino(new_inode) == 9890 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 9891 root_objectid = BTRFS_I(new_inode)->location.objectid; 9892 ret = btrfs_unlink_subvol(trans, dest, new_dir, 9893 root_objectid, 9894 new_dentry->d_name.name, 9895 new_dentry->d_name.len); 9896 BUG_ON(new_inode->i_nlink == 0); 9897 } else { 9898 ret = btrfs_unlink_inode(trans, dest, new_dir, 9899 d_inode(new_dentry), 9900 new_dentry->d_name.name, 9901 new_dentry->d_name.len); 9902 } 9903 if (!ret && new_inode->i_nlink == 0) 9904 ret = btrfs_orphan_add(trans, d_inode(new_dentry)); 9905 if (ret) { 9906 btrfs_abort_transaction(trans, ret); 9907 goto out_fail; 9908 } 9909 } 9910 9911 ret = btrfs_add_link(trans, new_dir, old_inode, 9912 new_dentry->d_name.name, 9913 new_dentry->d_name.len, 0, index); 9914 if (ret) { 9915 btrfs_abort_transaction(trans, ret); 9916 goto out_fail; 9917 } 9918 9919 if (old_inode->i_nlink == 1) 9920 BTRFS_I(old_inode)->dir_index = index; 9921 9922 if (log_pinned) { 9923 struct dentry *parent = new_dentry->d_parent; 9924 9925 btrfs_log_new_name(trans, old_inode, old_dir, parent); 9926 btrfs_end_log_trans(root); 9927 log_pinned = false; 9928 } 9929 9930 if (flags & RENAME_WHITEOUT) { 9931 ret = btrfs_whiteout_for_rename(trans, root, old_dir, 9932 old_dentry); 9933 9934 if (ret) { 9935 btrfs_abort_transaction(trans, ret); 9936 goto out_fail; 9937 } 9938 } 9939 out_fail: 9940 /* 9941 * If we have pinned the log and an error happened, we unpin tasks 9942 * trying to sync the log and force them to fallback to a transaction 9943 * commit if the log currently contains any of the inodes involved in 9944 * this rename operation (to ensure we do not persist a log with an 9945 * inconsistent state for any of these inodes or leading to any 9946 * inconsistencies when replayed). If the transaction was aborted, the 9947 * abortion reason is propagated to userspace when attempting to commit 9948 * the transaction. If the log does not contain any of these inodes, we 9949 * allow the tasks to sync it. 9950 */ 9951 if (ret && log_pinned) { 9952 if (btrfs_inode_in_log(old_dir, root->fs_info->generation) || 9953 btrfs_inode_in_log(new_dir, root->fs_info->generation) || 9954 btrfs_inode_in_log(old_inode, root->fs_info->generation) || 9955 (new_inode && 9956 btrfs_inode_in_log(new_inode, root->fs_info->generation))) 9957 btrfs_set_log_full_commit(root->fs_info, trans); 9958 9959 btrfs_end_log_trans(root); 9960 log_pinned = false; 9961 } 9962 btrfs_end_transaction(trans, root); 9963 out_notrans: 9964 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 9965 up_read(&root->fs_info->subvol_sem); 9966 9967 return ret; 9968 } 9969 9970 static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry, 9971 struct inode *new_dir, struct dentry *new_dentry, 9972 unsigned int flags) 9973 { 9974 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 9975 return -EINVAL; 9976 9977 if (flags & RENAME_EXCHANGE) 9978 return btrfs_rename_exchange(old_dir, old_dentry, new_dir, 9979 new_dentry); 9980 9981 return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry, flags); 9982 } 9983 9984 static void btrfs_run_delalloc_work(struct btrfs_work *work) 9985 { 9986 struct btrfs_delalloc_work *delalloc_work; 9987 struct inode *inode; 9988 9989 delalloc_work = container_of(work, struct btrfs_delalloc_work, 9990 work); 9991 inode = delalloc_work->inode; 9992 filemap_flush(inode->i_mapping); 9993 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 9994 &BTRFS_I(inode)->runtime_flags)) 9995 filemap_flush(inode->i_mapping); 9996 9997 if (delalloc_work->delay_iput) 9998 btrfs_add_delayed_iput(inode); 9999 else 10000 iput(inode); 10001 complete(&delalloc_work->completion); 10002 } 10003 10004 struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode, 10005 int delay_iput) 10006 { 10007 struct btrfs_delalloc_work *work; 10008 10009 work = kmalloc(sizeof(*work), GFP_NOFS); 10010 if (!work) 10011 return NULL; 10012 10013 init_completion(&work->completion); 10014 INIT_LIST_HEAD(&work->list); 10015 work->inode = inode; 10016 work->delay_iput = delay_iput; 10017 WARN_ON_ONCE(!inode); 10018 btrfs_init_work(&work->work, btrfs_flush_delalloc_helper, 10019 btrfs_run_delalloc_work, NULL, NULL); 10020 10021 return work; 10022 } 10023 10024 void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work) 10025 { 10026 wait_for_completion(&work->completion); 10027 kfree(work); 10028 } 10029 10030 /* 10031 * some fairly slow code that needs optimization. This walks the list 10032 * of all the inodes with pending delalloc and forces them to disk. 10033 */ 10034 static int __start_delalloc_inodes(struct btrfs_root *root, int delay_iput, 10035 int nr) 10036 { 10037 struct btrfs_inode *binode; 10038 struct inode *inode; 10039 struct btrfs_delalloc_work *work, *next; 10040 struct list_head works; 10041 struct list_head splice; 10042 int ret = 0; 10043 10044 INIT_LIST_HEAD(&works); 10045 INIT_LIST_HEAD(&splice); 10046 10047 mutex_lock(&root->delalloc_mutex); 10048 spin_lock(&root->delalloc_lock); 10049 list_splice_init(&root->delalloc_inodes, &splice); 10050 while (!list_empty(&splice)) { 10051 binode = list_entry(splice.next, struct btrfs_inode, 10052 delalloc_inodes); 10053 10054 list_move_tail(&binode->delalloc_inodes, 10055 &root->delalloc_inodes); 10056 inode = igrab(&binode->vfs_inode); 10057 if (!inode) { 10058 cond_resched_lock(&root->delalloc_lock); 10059 continue; 10060 } 10061 spin_unlock(&root->delalloc_lock); 10062 10063 work = btrfs_alloc_delalloc_work(inode, delay_iput); 10064 if (!work) { 10065 if (delay_iput) 10066 btrfs_add_delayed_iput(inode); 10067 else 10068 iput(inode); 10069 ret = -ENOMEM; 10070 goto out; 10071 } 10072 list_add_tail(&work->list, &works); 10073 btrfs_queue_work(root->fs_info->flush_workers, 10074 &work->work); 10075 ret++; 10076 if (nr != -1 && ret >= nr) 10077 goto out; 10078 cond_resched(); 10079 spin_lock(&root->delalloc_lock); 10080 } 10081 spin_unlock(&root->delalloc_lock); 10082 10083 out: 10084 list_for_each_entry_safe(work, next, &works, list) { 10085 list_del_init(&work->list); 10086 btrfs_wait_and_free_delalloc_work(work); 10087 } 10088 10089 if (!list_empty_careful(&splice)) { 10090 spin_lock(&root->delalloc_lock); 10091 list_splice_tail(&splice, &root->delalloc_inodes); 10092 spin_unlock(&root->delalloc_lock); 10093 } 10094 mutex_unlock(&root->delalloc_mutex); 10095 return ret; 10096 } 10097 10098 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput) 10099 { 10100 int ret; 10101 10102 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) 10103 return -EROFS; 10104 10105 ret = __start_delalloc_inodes(root, delay_iput, -1); 10106 if (ret > 0) 10107 ret = 0; 10108 /* 10109 * the filemap_flush will queue IO into the worker threads, but 10110 * we have to make sure the IO is actually started and that 10111 * ordered extents get created before we return 10112 */ 10113 atomic_inc(&root->fs_info->async_submit_draining); 10114 while (atomic_read(&root->fs_info->nr_async_submits) || 10115 atomic_read(&root->fs_info->async_delalloc_pages)) { 10116 wait_event(root->fs_info->async_submit_wait, 10117 (atomic_read(&root->fs_info->nr_async_submits) == 0 && 10118 atomic_read(&root->fs_info->async_delalloc_pages) == 0)); 10119 } 10120 atomic_dec(&root->fs_info->async_submit_draining); 10121 return ret; 10122 } 10123 10124 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int delay_iput, 10125 int nr) 10126 { 10127 struct btrfs_root *root; 10128 struct list_head splice; 10129 int ret; 10130 10131 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 10132 return -EROFS; 10133 10134 INIT_LIST_HEAD(&splice); 10135 10136 mutex_lock(&fs_info->delalloc_root_mutex); 10137 spin_lock(&fs_info->delalloc_root_lock); 10138 list_splice_init(&fs_info->delalloc_roots, &splice); 10139 while (!list_empty(&splice) && nr) { 10140 root = list_first_entry(&splice, struct btrfs_root, 10141 delalloc_root); 10142 root = btrfs_grab_fs_root(root); 10143 BUG_ON(!root); 10144 list_move_tail(&root->delalloc_root, 10145 &fs_info->delalloc_roots); 10146 spin_unlock(&fs_info->delalloc_root_lock); 10147 10148 ret = __start_delalloc_inodes(root, delay_iput, nr); 10149 btrfs_put_fs_root(root); 10150 if (ret < 0) 10151 goto out; 10152 10153 if (nr != -1) { 10154 nr -= ret; 10155 WARN_ON(nr < 0); 10156 } 10157 spin_lock(&fs_info->delalloc_root_lock); 10158 } 10159 spin_unlock(&fs_info->delalloc_root_lock); 10160 10161 ret = 0; 10162 atomic_inc(&fs_info->async_submit_draining); 10163 while (atomic_read(&fs_info->nr_async_submits) || 10164 atomic_read(&fs_info->async_delalloc_pages)) { 10165 wait_event(fs_info->async_submit_wait, 10166 (atomic_read(&fs_info->nr_async_submits) == 0 && 10167 atomic_read(&fs_info->async_delalloc_pages) == 0)); 10168 } 10169 atomic_dec(&fs_info->async_submit_draining); 10170 out: 10171 if (!list_empty_careful(&splice)) { 10172 spin_lock(&fs_info->delalloc_root_lock); 10173 list_splice_tail(&splice, &fs_info->delalloc_roots); 10174 spin_unlock(&fs_info->delalloc_root_lock); 10175 } 10176 mutex_unlock(&fs_info->delalloc_root_mutex); 10177 return ret; 10178 } 10179 10180 static int btrfs_symlink(struct inode *dir, struct dentry *dentry, 10181 const char *symname) 10182 { 10183 struct btrfs_trans_handle *trans; 10184 struct btrfs_root *root = BTRFS_I(dir)->root; 10185 struct btrfs_path *path; 10186 struct btrfs_key key; 10187 struct inode *inode = NULL; 10188 int err; 10189 int drop_inode = 0; 10190 u64 objectid; 10191 u64 index = 0; 10192 int name_len; 10193 int datasize; 10194 unsigned long ptr; 10195 struct btrfs_file_extent_item *ei; 10196 struct extent_buffer *leaf; 10197 10198 name_len = strlen(symname); 10199 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root)) 10200 return -ENAMETOOLONG; 10201 10202 /* 10203 * 2 items for inode item and ref 10204 * 2 items for dir items 10205 * 1 item for updating parent inode item 10206 * 1 item for the inline extent item 10207 * 1 item for xattr if selinux is on 10208 */ 10209 trans = btrfs_start_transaction(root, 7); 10210 if (IS_ERR(trans)) 10211 return PTR_ERR(trans); 10212 10213 err = btrfs_find_free_ino(root, &objectid); 10214 if (err) 10215 goto out_unlock; 10216 10217 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 10218 dentry->d_name.len, btrfs_ino(dir), objectid, 10219 S_IFLNK|S_IRWXUGO, &index); 10220 if (IS_ERR(inode)) { 10221 err = PTR_ERR(inode); 10222 goto out_unlock; 10223 } 10224 10225 /* 10226 * If the active LSM wants to access the inode during 10227 * d_instantiate it needs these. Smack checks to see 10228 * if the filesystem supports xattrs by looking at the 10229 * ops vector. 10230 */ 10231 inode->i_fop = &btrfs_file_operations; 10232 inode->i_op = &btrfs_file_inode_operations; 10233 inode->i_mapping->a_ops = &btrfs_aops; 10234 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 10235 10236 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 10237 if (err) 10238 goto out_unlock_inode; 10239 10240 path = btrfs_alloc_path(); 10241 if (!path) { 10242 err = -ENOMEM; 10243 goto out_unlock_inode; 10244 } 10245 key.objectid = btrfs_ino(inode); 10246 key.offset = 0; 10247 key.type = BTRFS_EXTENT_DATA_KEY; 10248 datasize = btrfs_file_extent_calc_inline_size(name_len); 10249 err = btrfs_insert_empty_item(trans, root, path, &key, 10250 datasize); 10251 if (err) { 10252 btrfs_free_path(path); 10253 goto out_unlock_inode; 10254 } 10255 leaf = path->nodes[0]; 10256 ei = btrfs_item_ptr(leaf, path->slots[0], 10257 struct btrfs_file_extent_item); 10258 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 10259 btrfs_set_file_extent_type(leaf, ei, 10260 BTRFS_FILE_EXTENT_INLINE); 10261 btrfs_set_file_extent_encryption(leaf, ei, 0); 10262 btrfs_set_file_extent_compression(leaf, ei, 0); 10263 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 10264 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len); 10265 10266 ptr = btrfs_file_extent_inline_start(ei); 10267 write_extent_buffer(leaf, symname, ptr, name_len); 10268 btrfs_mark_buffer_dirty(leaf); 10269 btrfs_free_path(path); 10270 10271 inode->i_op = &btrfs_symlink_inode_operations; 10272 inode_nohighmem(inode); 10273 inode->i_mapping->a_ops = &btrfs_symlink_aops; 10274 inode_set_bytes(inode, name_len); 10275 btrfs_i_size_write(inode, name_len); 10276 err = btrfs_update_inode(trans, root, inode); 10277 /* 10278 * Last step, add directory indexes for our symlink inode. This is the 10279 * last step to avoid extra cleanup of these indexes if an error happens 10280 * elsewhere above. 10281 */ 10282 if (!err) 10283 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index); 10284 if (err) { 10285 drop_inode = 1; 10286 goto out_unlock_inode; 10287 } 10288 10289 unlock_new_inode(inode); 10290 d_instantiate(dentry, inode); 10291 10292 out_unlock: 10293 btrfs_end_transaction(trans, root); 10294 if (drop_inode) { 10295 inode_dec_link_count(inode); 10296 iput(inode); 10297 } 10298 btrfs_btree_balance_dirty(root); 10299 return err; 10300 10301 out_unlock_inode: 10302 drop_inode = 1; 10303 unlock_new_inode(inode); 10304 goto out_unlock; 10305 } 10306 10307 static int __btrfs_prealloc_file_range(struct inode *inode, int mode, 10308 u64 start, u64 num_bytes, u64 min_size, 10309 loff_t actual_len, u64 *alloc_hint, 10310 struct btrfs_trans_handle *trans) 10311 { 10312 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 10313 struct extent_map *em; 10314 struct btrfs_root *root = BTRFS_I(inode)->root; 10315 struct btrfs_key ins; 10316 u64 cur_offset = start; 10317 u64 i_size; 10318 u64 cur_bytes; 10319 u64 last_alloc = (u64)-1; 10320 int ret = 0; 10321 bool own_trans = true; 10322 u64 end = start + num_bytes - 1; 10323 10324 if (trans) 10325 own_trans = false; 10326 while (num_bytes > 0) { 10327 if (own_trans) { 10328 trans = btrfs_start_transaction(root, 3); 10329 if (IS_ERR(trans)) { 10330 ret = PTR_ERR(trans); 10331 break; 10332 } 10333 } 10334 10335 cur_bytes = min_t(u64, num_bytes, SZ_256M); 10336 cur_bytes = max(cur_bytes, min_size); 10337 /* 10338 * If we are severely fragmented we could end up with really 10339 * small allocations, so if the allocator is returning small 10340 * chunks lets make its job easier by only searching for those 10341 * sized chunks. 10342 */ 10343 cur_bytes = min(cur_bytes, last_alloc); 10344 ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes, 10345 min_size, 0, *alloc_hint, &ins, 1, 0); 10346 if (ret) { 10347 if (own_trans) 10348 btrfs_end_transaction(trans, root); 10349 break; 10350 } 10351 btrfs_dec_block_group_reservations(root->fs_info, ins.objectid); 10352 10353 last_alloc = ins.offset; 10354 ret = insert_reserved_file_extent(trans, inode, 10355 cur_offset, ins.objectid, 10356 ins.offset, ins.offset, 10357 ins.offset, 0, 0, 0, 10358 BTRFS_FILE_EXTENT_PREALLOC); 10359 if (ret) { 10360 btrfs_free_reserved_extent(root, ins.objectid, 10361 ins.offset, 0); 10362 btrfs_abort_transaction(trans, ret); 10363 if (own_trans) 10364 btrfs_end_transaction(trans, root); 10365 break; 10366 } 10367 10368 btrfs_drop_extent_cache(inode, cur_offset, 10369 cur_offset + ins.offset -1, 0); 10370 10371 em = alloc_extent_map(); 10372 if (!em) { 10373 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 10374 &BTRFS_I(inode)->runtime_flags); 10375 goto next; 10376 } 10377 10378 em->start = cur_offset; 10379 em->orig_start = cur_offset; 10380 em->len = ins.offset; 10381 em->block_start = ins.objectid; 10382 em->block_len = ins.offset; 10383 em->orig_block_len = ins.offset; 10384 em->ram_bytes = ins.offset; 10385 em->bdev = root->fs_info->fs_devices->latest_bdev; 10386 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 10387 em->generation = trans->transid; 10388 10389 while (1) { 10390 write_lock(&em_tree->lock); 10391 ret = add_extent_mapping(em_tree, em, 1); 10392 write_unlock(&em_tree->lock); 10393 if (ret != -EEXIST) 10394 break; 10395 btrfs_drop_extent_cache(inode, cur_offset, 10396 cur_offset + ins.offset - 1, 10397 0); 10398 } 10399 free_extent_map(em); 10400 next: 10401 num_bytes -= ins.offset; 10402 cur_offset += ins.offset; 10403 *alloc_hint = ins.objectid + ins.offset; 10404 10405 inode_inc_iversion(inode); 10406 inode->i_ctime = current_fs_time(inode->i_sb); 10407 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC; 10408 if (!(mode & FALLOC_FL_KEEP_SIZE) && 10409 (actual_len > inode->i_size) && 10410 (cur_offset > inode->i_size)) { 10411 if (cur_offset > actual_len) 10412 i_size = actual_len; 10413 else 10414 i_size = cur_offset; 10415 i_size_write(inode, i_size); 10416 btrfs_ordered_update_i_size(inode, i_size, NULL); 10417 } 10418 10419 ret = btrfs_update_inode(trans, root, inode); 10420 10421 if (ret) { 10422 btrfs_abort_transaction(trans, ret); 10423 if (own_trans) 10424 btrfs_end_transaction(trans, root); 10425 break; 10426 } 10427 10428 if (own_trans) 10429 btrfs_end_transaction(trans, root); 10430 } 10431 if (cur_offset < end) 10432 btrfs_free_reserved_data_space(inode, cur_offset, 10433 end - cur_offset + 1); 10434 return ret; 10435 } 10436 10437 int btrfs_prealloc_file_range(struct inode *inode, int mode, 10438 u64 start, u64 num_bytes, u64 min_size, 10439 loff_t actual_len, u64 *alloc_hint) 10440 { 10441 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 10442 min_size, actual_len, alloc_hint, 10443 NULL); 10444 } 10445 10446 int btrfs_prealloc_file_range_trans(struct inode *inode, 10447 struct btrfs_trans_handle *trans, int mode, 10448 u64 start, u64 num_bytes, u64 min_size, 10449 loff_t actual_len, u64 *alloc_hint) 10450 { 10451 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 10452 min_size, actual_len, alloc_hint, trans); 10453 } 10454 10455 static int btrfs_set_page_dirty(struct page *page) 10456 { 10457 return __set_page_dirty_nobuffers(page); 10458 } 10459 10460 static int btrfs_permission(struct inode *inode, int mask) 10461 { 10462 struct btrfs_root *root = BTRFS_I(inode)->root; 10463 umode_t mode = inode->i_mode; 10464 10465 if (mask & MAY_WRITE && 10466 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) { 10467 if (btrfs_root_readonly(root)) 10468 return -EROFS; 10469 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) 10470 return -EACCES; 10471 } 10472 return generic_permission(inode, mask); 10473 } 10474 10475 static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode) 10476 { 10477 struct btrfs_trans_handle *trans; 10478 struct btrfs_root *root = BTRFS_I(dir)->root; 10479 struct inode *inode = NULL; 10480 u64 objectid; 10481 u64 index; 10482 int ret = 0; 10483 10484 /* 10485 * 5 units required for adding orphan entry 10486 */ 10487 trans = btrfs_start_transaction(root, 5); 10488 if (IS_ERR(trans)) 10489 return PTR_ERR(trans); 10490 10491 ret = btrfs_find_free_ino(root, &objectid); 10492 if (ret) 10493 goto out; 10494 10495 inode = btrfs_new_inode(trans, root, dir, NULL, 0, 10496 btrfs_ino(dir), objectid, mode, &index); 10497 if (IS_ERR(inode)) { 10498 ret = PTR_ERR(inode); 10499 inode = NULL; 10500 goto out; 10501 } 10502 10503 inode->i_fop = &btrfs_file_operations; 10504 inode->i_op = &btrfs_file_inode_operations; 10505 10506 inode->i_mapping->a_ops = &btrfs_aops; 10507 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 10508 10509 ret = btrfs_init_inode_security(trans, inode, dir, NULL); 10510 if (ret) 10511 goto out_inode; 10512 10513 ret = btrfs_update_inode(trans, root, inode); 10514 if (ret) 10515 goto out_inode; 10516 ret = btrfs_orphan_add(trans, inode); 10517 if (ret) 10518 goto out_inode; 10519 10520 /* 10521 * We set number of links to 0 in btrfs_new_inode(), and here we set 10522 * it to 1 because d_tmpfile() will issue a warning if the count is 0, 10523 * through: 10524 * 10525 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink() 10526 */ 10527 set_nlink(inode, 1); 10528 unlock_new_inode(inode); 10529 d_tmpfile(dentry, inode); 10530 mark_inode_dirty(inode); 10531 10532 out: 10533 btrfs_end_transaction(trans, root); 10534 if (ret) 10535 iput(inode); 10536 btrfs_balance_delayed_items(root); 10537 btrfs_btree_balance_dirty(root); 10538 return ret; 10539 10540 out_inode: 10541 unlock_new_inode(inode); 10542 goto out; 10543 10544 } 10545 10546 /* Inspired by filemap_check_errors() */ 10547 int btrfs_inode_check_errors(struct inode *inode) 10548 { 10549 int ret = 0; 10550 10551 if (test_bit(AS_ENOSPC, &inode->i_mapping->flags) && 10552 test_and_clear_bit(AS_ENOSPC, &inode->i_mapping->flags)) 10553 ret = -ENOSPC; 10554 if (test_bit(AS_EIO, &inode->i_mapping->flags) && 10555 test_and_clear_bit(AS_EIO, &inode->i_mapping->flags)) 10556 ret = -EIO; 10557 10558 return ret; 10559 } 10560 10561 static const struct inode_operations btrfs_dir_inode_operations = { 10562 .getattr = btrfs_getattr, 10563 .lookup = btrfs_lookup, 10564 .create = btrfs_create, 10565 .unlink = btrfs_unlink, 10566 .link = btrfs_link, 10567 .mkdir = btrfs_mkdir, 10568 .rmdir = btrfs_rmdir, 10569 .rename2 = btrfs_rename2, 10570 .symlink = btrfs_symlink, 10571 .setattr = btrfs_setattr, 10572 .mknod = btrfs_mknod, 10573 .setxattr = generic_setxattr, 10574 .getxattr = generic_getxattr, 10575 .listxattr = btrfs_listxattr, 10576 .removexattr = generic_removexattr, 10577 .permission = btrfs_permission, 10578 .get_acl = btrfs_get_acl, 10579 .set_acl = btrfs_set_acl, 10580 .update_time = btrfs_update_time, 10581 .tmpfile = btrfs_tmpfile, 10582 }; 10583 static const struct inode_operations btrfs_dir_ro_inode_operations = { 10584 .lookup = btrfs_lookup, 10585 .permission = btrfs_permission, 10586 .get_acl = btrfs_get_acl, 10587 .set_acl = btrfs_set_acl, 10588 .update_time = btrfs_update_time, 10589 }; 10590 10591 static const struct file_operations btrfs_dir_file_operations = { 10592 .llseek = generic_file_llseek, 10593 .read = generic_read_dir, 10594 .iterate_shared = btrfs_real_readdir, 10595 .unlocked_ioctl = btrfs_ioctl, 10596 #ifdef CONFIG_COMPAT 10597 .compat_ioctl = btrfs_compat_ioctl, 10598 #endif 10599 .release = btrfs_release_file, 10600 .fsync = btrfs_sync_file, 10601 }; 10602 10603 static const struct extent_io_ops btrfs_extent_io_ops = { 10604 .fill_delalloc = run_delalloc_range, 10605 .submit_bio_hook = btrfs_submit_bio_hook, 10606 .merge_bio_hook = btrfs_merge_bio_hook, 10607 .readpage_end_io_hook = btrfs_readpage_end_io_hook, 10608 .writepage_end_io_hook = btrfs_writepage_end_io_hook, 10609 .writepage_start_hook = btrfs_writepage_start_hook, 10610 .set_bit_hook = btrfs_set_bit_hook, 10611 .clear_bit_hook = btrfs_clear_bit_hook, 10612 .merge_extent_hook = btrfs_merge_extent_hook, 10613 .split_extent_hook = btrfs_split_extent_hook, 10614 }; 10615 10616 /* 10617 * btrfs doesn't support the bmap operation because swapfiles 10618 * use bmap to make a mapping of extents in the file. They assume 10619 * these extents won't change over the life of the file and they 10620 * use the bmap result to do IO directly to the drive. 10621 * 10622 * the btrfs bmap call would return logical addresses that aren't 10623 * suitable for IO and they also will change frequently as COW 10624 * operations happen. So, swapfile + btrfs == corruption. 10625 * 10626 * For now we're avoiding this by dropping bmap. 10627 */ 10628 static const struct address_space_operations btrfs_aops = { 10629 .readpage = btrfs_readpage, 10630 .writepage = btrfs_writepage, 10631 .writepages = btrfs_writepages, 10632 .readpages = btrfs_readpages, 10633 .direct_IO = btrfs_direct_IO, 10634 .invalidatepage = btrfs_invalidatepage, 10635 .releasepage = btrfs_releasepage, 10636 .set_page_dirty = btrfs_set_page_dirty, 10637 .error_remove_page = generic_error_remove_page, 10638 }; 10639 10640 static const struct address_space_operations btrfs_symlink_aops = { 10641 .readpage = btrfs_readpage, 10642 .writepage = btrfs_writepage, 10643 .invalidatepage = btrfs_invalidatepage, 10644 .releasepage = btrfs_releasepage, 10645 }; 10646 10647 static const struct inode_operations btrfs_file_inode_operations = { 10648 .getattr = btrfs_getattr, 10649 .setattr = btrfs_setattr, 10650 .setxattr = generic_setxattr, 10651 .getxattr = generic_getxattr, 10652 .listxattr = btrfs_listxattr, 10653 .removexattr = generic_removexattr, 10654 .permission = btrfs_permission, 10655 .fiemap = btrfs_fiemap, 10656 .get_acl = btrfs_get_acl, 10657 .set_acl = btrfs_set_acl, 10658 .update_time = btrfs_update_time, 10659 }; 10660 static const struct inode_operations btrfs_special_inode_operations = { 10661 .getattr = btrfs_getattr, 10662 .setattr = btrfs_setattr, 10663 .permission = btrfs_permission, 10664 .setxattr = generic_setxattr, 10665 .getxattr = generic_getxattr, 10666 .listxattr = btrfs_listxattr, 10667 .removexattr = generic_removexattr, 10668 .get_acl = btrfs_get_acl, 10669 .set_acl = btrfs_set_acl, 10670 .update_time = btrfs_update_time, 10671 }; 10672 static const struct inode_operations btrfs_symlink_inode_operations = { 10673 .readlink = generic_readlink, 10674 .get_link = page_get_link, 10675 .getattr = btrfs_getattr, 10676 .setattr = btrfs_setattr, 10677 .permission = btrfs_permission, 10678 .setxattr = generic_setxattr, 10679 .getxattr = generic_getxattr, 10680 .listxattr = btrfs_listxattr, 10681 .removexattr = generic_removexattr, 10682 .update_time = btrfs_update_time, 10683 }; 10684 10685 const struct dentry_operations btrfs_dentry_operations = { 10686 .d_delete = btrfs_dentry_delete, 10687 .d_release = btrfs_dentry_release, 10688 }; 10689