xref: /openbmc/linux/fs/btrfs/inode.c (revision f5b06569)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/statfs.h>
34 #include <linux/compat.h>
35 #include <linux/bit_spinlock.h>
36 #include <linux/xattr.h>
37 #include <linux/posix_acl.h>
38 #include <linux/falloc.h>
39 #include <linux/slab.h>
40 #include <linux/ratelimit.h>
41 #include <linux/mount.h>
42 #include <linux/btrfs.h>
43 #include <linux/blkdev.h>
44 #include <linux/posix_acl_xattr.h>
45 #include <linux/uio.h>
46 #include "ctree.h"
47 #include "disk-io.h"
48 #include "transaction.h"
49 #include "btrfs_inode.h"
50 #include "print-tree.h"
51 #include "ordered-data.h"
52 #include "xattr.h"
53 #include "tree-log.h"
54 #include "volumes.h"
55 #include "compression.h"
56 #include "locking.h"
57 #include "free-space-cache.h"
58 #include "inode-map.h"
59 #include "backref.h"
60 #include "hash.h"
61 #include "props.h"
62 #include "qgroup.h"
63 #include "dedupe.h"
64 
65 struct btrfs_iget_args {
66 	struct btrfs_key *location;
67 	struct btrfs_root *root;
68 };
69 
70 struct btrfs_dio_data {
71 	u64 outstanding_extents;
72 	u64 reserve;
73 	u64 unsubmitted_oe_range_start;
74 	u64 unsubmitted_oe_range_end;
75 };
76 
77 static const struct inode_operations btrfs_dir_inode_operations;
78 static const struct inode_operations btrfs_symlink_inode_operations;
79 static const struct inode_operations btrfs_dir_ro_inode_operations;
80 static const struct inode_operations btrfs_special_inode_operations;
81 static const struct inode_operations btrfs_file_inode_operations;
82 static const struct address_space_operations btrfs_aops;
83 static const struct address_space_operations btrfs_symlink_aops;
84 static const struct file_operations btrfs_dir_file_operations;
85 static const struct extent_io_ops btrfs_extent_io_ops;
86 
87 static struct kmem_cache *btrfs_inode_cachep;
88 struct kmem_cache *btrfs_trans_handle_cachep;
89 struct kmem_cache *btrfs_transaction_cachep;
90 struct kmem_cache *btrfs_path_cachep;
91 struct kmem_cache *btrfs_free_space_cachep;
92 
93 #define S_SHIFT 12
94 static const unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
95 	[S_IFREG >> S_SHIFT]	= BTRFS_FT_REG_FILE,
96 	[S_IFDIR >> S_SHIFT]	= BTRFS_FT_DIR,
97 	[S_IFCHR >> S_SHIFT]	= BTRFS_FT_CHRDEV,
98 	[S_IFBLK >> S_SHIFT]	= BTRFS_FT_BLKDEV,
99 	[S_IFIFO >> S_SHIFT]	= BTRFS_FT_FIFO,
100 	[S_IFSOCK >> S_SHIFT]	= BTRFS_FT_SOCK,
101 	[S_IFLNK >> S_SHIFT]	= BTRFS_FT_SYMLINK,
102 };
103 
104 static int btrfs_setsize(struct inode *inode, struct iattr *attr);
105 static int btrfs_truncate(struct inode *inode);
106 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
107 static noinline int cow_file_range(struct inode *inode,
108 				   struct page *locked_page,
109 				   u64 start, u64 end, u64 delalloc_end,
110 				   int *page_started, unsigned long *nr_written,
111 				   int unlock, struct btrfs_dedupe_hash *hash);
112 static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
113 					   u64 len, u64 orig_start,
114 					   u64 block_start, u64 block_len,
115 					   u64 orig_block_len, u64 ram_bytes,
116 					   int type);
117 
118 static int btrfs_dirty_inode(struct inode *inode);
119 
120 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
121 void btrfs_test_inode_set_ops(struct inode *inode)
122 {
123 	BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
124 }
125 #endif
126 
127 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
128 				     struct inode *inode,  struct inode *dir,
129 				     const struct qstr *qstr)
130 {
131 	int err;
132 
133 	err = btrfs_init_acl(trans, inode, dir);
134 	if (!err)
135 		err = btrfs_xattr_security_init(trans, inode, dir, qstr);
136 	return err;
137 }
138 
139 /*
140  * this does all the hard work for inserting an inline extent into
141  * the btree.  The caller should have done a btrfs_drop_extents so that
142  * no overlapping inline items exist in the btree
143  */
144 static int insert_inline_extent(struct btrfs_trans_handle *trans,
145 				struct btrfs_path *path, int extent_inserted,
146 				struct btrfs_root *root, struct inode *inode,
147 				u64 start, size_t size, size_t compressed_size,
148 				int compress_type,
149 				struct page **compressed_pages)
150 {
151 	struct extent_buffer *leaf;
152 	struct page *page = NULL;
153 	char *kaddr;
154 	unsigned long ptr;
155 	struct btrfs_file_extent_item *ei;
156 	int err = 0;
157 	int ret;
158 	size_t cur_size = size;
159 	unsigned long offset;
160 
161 	if (compressed_size && compressed_pages)
162 		cur_size = compressed_size;
163 
164 	inode_add_bytes(inode, size);
165 
166 	if (!extent_inserted) {
167 		struct btrfs_key key;
168 		size_t datasize;
169 
170 		key.objectid = btrfs_ino(inode);
171 		key.offset = start;
172 		key.type = BTRFS_EXTENT_DATA_KEY;
173 
174 		datasize = btrfs_file_extent_calc_inline_size(cur_size);
175 		path->leave_spinning = 1;
176 		ret = btrfs_insert_empty_item(trans, root, path, &key,
177 					      datasize);
178 		if (ret) {
179 			err = ret;
180 			goto fail;
181 		}
182 	}
183 	leaf = path->nodes[0];
184 	ei = btrfs_item_ptr(leaf, path->slots[0],
185 			    struct btrfs_file_extent_item);
186 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
187 	btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
188 	btrfs_set_file_extent_encryption(leaf, ei, 0);
189 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
190 	btrfs_set_file_extent_ram_bytes(leaf, ei, size);
191 	ptr = btrfs_file_extent_inline_start(ei);
192 
193 	if (compress_type != BTRFS_COMPRESS_NONE) {
194 		struct page *cpage;
195 		int i = 0;
196 		while (compressed_size > 0) {
197 			cpage = compressed_pages[i];
198 			cur_size = min_t(unsigned long, compressed_size,
199 				       PAGE_SIZE);
200 
201 			kaddr = kmap_atomic(cpage);
202 			write_extent_buffer(leaf, kaddr, ptr, cur_size);
203 			kunmap_atomic(kaddr);
204 
205 			i++;
206 			ptr += cur_size;
207 			compressed_size -= cur_size;
208 		}
209 		btrfs_set_file_extent_compression(leaf, ei,
210 						  compress_type);
211 	} else {
212 		page = find_get_page(inode->i_mapping,
213 				     start >> PAGE_SHIFT);
214 		btrfs_set_file_extent_compression(leaf, ei, 0);
215 		kaddr = kmap_atomic(page);
216 		offset = start & (PAGE_SIZE - 1);
217 		write_extent_buffer(leaf, kaddr + offset, ptr, size);
218 		kunmap_atomic(kaddr);
219 		put_page(page);
220 	}
221 	btrfs_mark_buffer_dirty(leaf);
222 	btrfs_release_path(path);
223 
224 	/*
225 	 * we're an inline extent, so nobody can
226 	 * extend the file past i_size without locking
227 	 * a page we already have locked.
228 	 *
229 	 * We must do any isize and inode updates
230 	 * before we unlock the pages.  Otherwise we
231 	 * could end up racing with unlink.
232 	 */
233 	BTRFS_I(inode)->disk_i_size = inode->i_size;
234 	ret = btrfs_update_inode(trans, root, inode);
235 
236 	return ret;
237 fail:
238 	return err;
239 }
240 
241 
242 /*
243  * conditionally insert an inline extent into the file.  This
244  * does the checks required to make sure the data is small enough
245  * to fit as an inline extent.
246  */
247 static noinline int cow_file_range_inline(struct btrfs_root *root,
248 					  struct inode *inode, u64 start,
249 					  u64 end, size_t compressed_size,
250 					  int compress_type,
251 					  struct page **compressed_pages)
252 {
253 	struct btrfs_trans_handle *trans;
254 	u64 isize = i_size_read(inode);
255 	u64 actual_end = min(end + 1, isize);
256 	u64 inline_len = actual_end - start;
257 	u64 aligned_end = ALIGN(end, root->sectorsize);
258 	u64 data_len = inline_len;
259 	int ret;
260 	struct btrfs_path *path;
261 	int extent_inserted = 0;
262 	u32 extent_item_size;
263 
264 	if (compressed_size)
265 		data_len = compressed_size;
266 
267 	if (start > 0 ||
268 	    actual_end > root->sectorsize ||
269 	    data_len > BTRFS_MAX_INLINE_DATA_SIZE(root) ||
270 	    (!compressed_size &&
271 	    (actual_end & (root->sectorsize - 1)) == 0) ||
272 	    end + 1 < isize ||
273 	    data_len > root->fs_info->max_inline) {
274 		return 1;
275 	}
276 
277 	path = btrfs_alloc_path();
278 	if (!path)
279 		return -ENOMEM;
280 
281 	trans = btrfs_join_transaction(root);
282 	if (IS_ERR(trans)) {
283 		btrfs_free_path(path);
284 		return PTR_ERR(trans);
285 	}
286 	trans->block_rsv = &root->fs_info->delalloc_block_rsv;
287 
288 	if (compressed_size && compressed_pages)
289 		extent_item_size = btrfs_file_extent_calc_inline_size(
290 		   compressed_size);
291 	else
292 		extent_item_size = btrfs_file_extent_calc_inline_size(
293 		    inline_len);
294 
295 	ret = __btrfs_drop_extents(trans, root, inode, path,
296 				   start, aligned_end, NULL,
297 				   1, 1, extent_item_size, &extent_inserted);
298 	if (ret) {
299 		btrfs_abort_transaction(trans, ret);
300 		goto out;
301 	}
302 
303 	if (isize > actual_end)
304 		inline_len = min_t(u64, isize, actual_end);
305 	ret = insert_inline_extent(trans, path, extent_inserted,
306 				   root, inode, start,
307 				   inline_len, compressed_size,
308 				   compress_type, compressed_pages);
309 	if (ret && ret != -ENOSPC) {
310 		btrfs_abort_transaction(trans, ret);
311 		goto out;
312 	} else if (ret == -ENOSPC) {
313 		ret = 1;
314 		goto out;
315 	}
316 
317 	set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
318 	btrfs_delalloc_release_metadata(inode, end + 1 - start);
319 	btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
320 out:
321 	/*
322 	 * Don't forget to free the reserved space, as for inlined extent
323 	 * it won't count as data extent, free them directly here.
324 	 * And at reserve time, it's always aligned to page size, so
325 	 * just free one page here.
326 	 */
327 	btrfs_qgroup_free_data(inode, 0, PAGE_SIZE);
328 	btrfs_free_path(path);
329 	btrfs_end_transaction(trans, root);
330 	return ret;
331 }
332 
333 struct async_extent {
334 	u64 start;
335 	u64 ram_size;
336 	u64 compressed_size;
337 	struct page **pages;
338 	unsigned long nr_pages;
339 	int compress_type;
340 	struct list_head list;
341 };
342 
343 struct async_cow {
344 	struct inode *inode;
345 	struct btrfs_root *root;
346 	struct page *locked_page;
347 	u64 start;
348 	u64 end;
349 	struct list_head extents;
350 	struct btrfs_work work;
351 };
352 
353 static noinline int add_async_extent(struct async_cow *cow,
354 				     u64 start, u64 ram_size,
355 				     u64 compressed_size,
356 				     struct page **pages,
357 				     unsigned long nr_pages,
358 				     int compress_type)
359 {
360 	struct async_extent *async_extent;
361 
362 	async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
363 	BUG_ON(!async_extent); /* -ENOMEM */
364 	async_extent->start = start;
365 	async_extent->ram_size = ram_size;
366 	async_extent->compressed_size = compressed_size;
367 	async_extent->pages = pages;
368 	async_extent->nr_pages = nr_pages;
369 	async_extent->compress_type = compress_type;
370 	list_add_tail(&async_extent->list, &cow->extents);
371 	return 0;
372 }
373 
374 static inline int inode_need_compress(struct inode *inode)
375 {
376 	struct btrfs_root *root = BTRFS_I(inode)->root;
377 
378 	/* force compress */
379 	if (btrfs_test_opt(root->fs_info, FORCE_COMPRESS))
380 		return 1;
381 	/* bad compression ratios */
382 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
383 		return 0;
384 	if (btrfs_test_opt(root->fs_info, COMPRESS) ||
385 	    BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS ||
386 	    BTRFS_I(inode)->force_compress)
387 		return 1;
388 	return 0;
389 }
390 
391 /*
392  * we create compressed extents in two phases.  The first
393  * phase compresses a range of pages that have already been
394  * locked (both pages and state bits are locked).
395  *
396  * This is done inside an ordered work queue, and the compression
397  * is spread across many cpus.  The actual IO submission is step
398  * two, and the ordered work queue takes care of making sure that
399  * happens in the same order things were put onto the queue by
400  * writepages and friends.
401  *
402  * If this code finds it can't get good compression, it puts an
403  * entry onto the work queue to write the uncompressed bytes.  This
404  * makes sure that both compressed inodes and uncompressed inodes
405  * are written in the same order that the flusher thread sent them
406  * down.
407  */
408 static noinline void compress_file_range(struct inode *inode,
409 					struct page *locked_page,
410 					u64 start, u64 end,
411 					struct async_cow *async_cow,
412 					int *num_added)
413 {
414 	struct btrfs_root *root = BTRFS_I(inode)->root;
415 	u64 num_bytes;
416 	u64 blocksize = root->sectorsize;
417 	u64 actual_end;
418 	u64 isize = i_size_read(inode);
419 	int ret = 0;
420 	struct page **pages = NULL;
421 	unsigned long nr_pages;
422 	unsigned long nr_pages_ret = 0;
423 	unsigned long total_compressed = 0;
424 	unsigned long total_in = 0;
425 	unsigned long max_compressed = SZ_128K;
426 	unsigned long max_uncompressed = SZ_128K;
427 	int i;
428 	int will_compress;
429 	int compress_type = root->fs_info->compress_type;
430 	int redirty = 0;
431 
432 	/* if this is a small write inside eof, kick off a defrag */
433 	if ((end - start + 1) < SZ_16K &&
434 	    (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
435 		btrfs_add_inode_defrag(NULL, inode);
436 
437 	actual_end = min_t(u64, isize, end + 1);
438 again:
439 	will_compress = 0;
440 	nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
441 	nr_pages = min_t(unsigned long, nr_pages, SZ_128K / PAGE_SIZE);
442 
443 	/*
444 	 * we don't want to send crud past the end of i_size through
445 	 * compression, that's just a waste of CPU time.  So, if the
446 	 * end of the file is before the start of our current
447 	 * requested range of bytes, we bail out to the uncompressed
448 	 * cleanup code that can deal with all of this.
449 	 *
450 	 * It isn't really the fastest way to fix things, but this is a
451 	 * very uncommon corner.
452 	 */
453 	if (actual_end <= start)
454 		goto cleanup_and_bail_uncompressed;
455 
456 	total_compressed = actual_end - start;
457 
458 	/*
459 	 * skip compression for a small file range(<=blocksize) that
460 	 * isn't an inline extent, since it doesn't save disk space at all.
461 	 */
462 	if (total_compressed <= blocksize &&
463 	   (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
464 		goto cleanup_and_bail_uncompressed;
465 
466 	/* we want to make sure that amount of ram required to uncompress
467 	 * an extent is reasonable, so we limit the total size in ram
468 	 * of a compressed extent to 128k.  This is a crucial number
469 	 * because it also controls how easily we can spread reads across
470 	 * cpus for decompression.
471 	 *
472 	 * We also want to make sure the amount of IO required to do
473 	 * a random read is reasonably small, so we limit the size of
474 	 * a compressed extent to 128k.
475 	 */
476 	total_compressed = min(total_compressed, max_uncompressed);
477 	num_bytes = ALIGN(end - start + 1, blocksize);
478 	num_bytes = max(blocksize,  num_bytes);
479 	total_in = 0;
480 	ret = 0;
481 
482 	/*
483 	 * we do compression for mount -o compress and when the
484 	 * inode has not been flagged as nocompress.  This flag can
485 	 * change at any time if we discover bad compression ratios.
486 	 */
487 	if (inode_need_compress(inode)) {
488 		WARN_ON(pages);
489 		pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
490 		if (!pages) {
491 			/* just bail out to the uncompressed code */
492 			goto cont;
493 		}
494 
495 		if (BTRFS_I(inode)->force_compress)
496 			compress_type = BTRFS_I(inode)->force_compress;
497 
498 		/*
499 		 * we need to call clear_page_dirty_for_io on each
500 		 * page in the range.  Otherwise applications with the file
501 		 * mmap'd can wander in and change the page contents while
502 		 * we are compressing them.
503 		 *
504 		 * If the compression fails for any reason, we set the pages
505 		 * dirty again later on.
506 		 */
507 		extent_range_clear_dirty_for_io(inode, start, end);
508 		redirty = 1;
509 		ret = btrfs_compress_pages(compress_type,
510 					   inode->i_mapping, start,
511 					   total_compressed, pages,
512 					   nr_pages, &nr_pages_ret,
513 					   &total_in,
514 					   &total_compressed,
515 					   max_compressed);
516 
517 		if (!ret) {
518 			unsigned long offset = total_compressed &
519 				(PAGE_SIZE - 1);
520 			struct page *page = pages[nr_pages_ret - 1];
521 			char *kaddr;
522 
523 			/* zero the tail end of the last page, we might be
524 			 * sending it down to disk
525 			 */
526 			if (offset) {
527 				kaddr = kmap_atomic(page);
528 				memset(kaddr + offset, 0,
529 				       PAGE_SIZE - offset);
530 				kunmap_atomic(kaddr);
531 			}
532 			will_compress = 1;
533 		}
534 	}
535 cont:
536 	if (start == 0) {
537 		/* lets try to make an inline extent */
538 		if (ret || total_in < (actual_end - start)) {
539 			/* we didn't compress the entire range, try
540 			 * to make an uncompressed inline extent.
541 			 */
542 			ret = cow_file_range_inline(root, inode, start, end,
543 						    0, 0, NULL);
544 		} else {
545 			/* try making a compressed inline extent */
546 			ret = cow_file_range_inline(root, inode, start, end,
547 						    total_compressed,
548 						    compress_type, pages);
549 		}
550 		if (ret <= 0) {
551 			unsigned long clear_flags = EXTENT_DELALLOC |
552 				EXTENT_DEFRAG;
553 			unsigned long page_error_op;
554 
555 			clear_flags |= (ret < 0) ? EXTENT_DO_ACCOUNTING : 0;
556 			page_error_op = ret < 0 ? PAGE_SET_ERROR : 0;
557 
558 			/*
559 			 * inline extent creation worked or returned error,
560 			 * we don't need to create any more async work items.
561 			 * Unlock and free up our temp pages.
562 			 */
563 			extent_clear_unlock_delalloc(inode, start, end, NULL,
564 						     clear_flags, PAGE_UNLOCK |
565 						     PAGE_CLEAR_DIRTY |
566 						     PAGE_SET_WRITEBACK |
567 						     page_error_op |
568 						     PAGE_END_WRITEBACK);
569 			btrfs_free_reserved_data_space_noquota(inode, start,
570 						end - start + 1);
571 			goto free_pages_out;
572 		}
573 	}
574 
575 	if (will_compress) {
576 		/*
577 		 * we aren't doing an inline extent round the compressed size
578 		 * up to a block size boundary so the allocator does sane
579 		 * things
580 		 */
581 		total_compressed = ALIGN(total_compressed, blocksize);
582 
583 		/*
584 		 * one last check to make sure the compression is really a
585 		 * win, compare the page count read with the blocks on disk
586 		 */
587 		total_in = ALIGN(total_in, PAGE_SIZE);
588 		if (total_compressed >= total_in) {
589 			will_compress = 0;
590 		} else {
591 			num_bytes = total_in;
592 			*num_added += 1;
593 
594 			/*
595 			 * The async work queues will take care of doing actual
596 			 * allocation on disk for these compressed pages, and
597 			 * will submit them to the elevator.
598 			 */
599 			add_async_extent(async_cow, start, num_bytes,
600 					total_compressed, pages, nr_pages_ret,
601 					compress_type);
602 
603 			if (start + num_bytes < end) {
604 				start += num_bytes;
605 				pages = NULL;
606 				cond_resched();
607 				goto again;
608 			}
609 			return;
610 		}
611 	}
612 	if (pages) {
613 		/*
614 		 * the compression code ran but failed to make things smaller,
615 		 * free any pages it allocated and our page pointer array
616 		 */
617 		for (i = 0; i < nr_pages_ret; i++) {
618 			WARN_ON(pages[i]->mapping);
619 			put_page(pages[i]);
620 		}
621 		kfree(pages);
622 		pages = NULL;
623 		total_compressed = 0;
624 		nr_pages_ret = 0;
625 
626 		/* flag the file so we don't compress in the future */
627 		if (!btrfs_test_opt(root->fs_info, FORCE_COMPRESS) &&
628 		    !(BTRFS_I(inode)->force_compress)) {
629 			BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
630 		}
631 	}
632 cleanup_and_bail_uncompressed:
633 	/*
634 	 * No compression, but we still need to write the pages in the file
635 	 * we've been given so far.  redirty the locked page if it corresponds
636 	 * to our extent and set things up for the async work queue to run
637 	 * cow_file_range to do the normal delalloc dance.
638 	 */
639 	if (page_offset(locked_page) >= start &&
640 	    page_offset(locked_page) <= end)
641 		__set_page_dirty_nobuffers(locked_page);
642 		/* unlocked later on in the async handlers */
643 
644 	if (redirty)
645 		extent_range_redirty_for_io(inode, start, end);
646 	add_async_extent(async_cow, start, end - start + 1, 0, NULL, 0,
647 			 BTRFS_COMPRESS_NONE);
648 	*num_added += 1;
649 
650 	return;
651 
652 free_pages_out:
653 	for (i = 0; i < nr_pages_ret; i++) {
654 		WARN_ON(pages[i]->mapping);
655 		put_page(pages[i]);
656 	}
657 	kfree(pages);
658 }
659 
660 static void free_async_extent_pages(struct async_extent *async_extent)
661 {
662 	int i;
663 
664 	if (!async_extent->pages)
665 		return;
666 
667 	for (i = 0; i < async_extent->nr_pages; i++) {
668 		WARN_ON(async_extent->pages[i]->mapping);
669 		put_page(async_extent->pages[i]);
670 	}
671 	kfree(async_extent->pages);
672 	async_extent->nr_pages = 0;
673 	async_extent->pages = NULL;
674 }
675 
676 /*
677  * phase two of compressed writeback.  This is the ordered portion
678  * of the code, which only gets called in the order the work was
679  * queued.  We walk all the async extents created by compress_file_range
680  * and send them down to the disk.
681  */
682 static noinline void submit_compressed_extents(struct inode *inode,
683 					      struct async_cow *async_cow)
684 {
685 	struct async_extent *async_extent;
686 	u64 alloc_hint = 0;
687 	struct btrfs_key ins;
688 	struct extent_map *em;
689 	struct btrfs_root *root = BTRFS_I(inode)->root;
690 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
691 	struct extent_io_tree *io_tree;
692 	int ret = 0;
693 
694 again:
695 	while (!list_empty(&async_cow->extents)) {
696 		async_extent = list_entry(async_cow->extents.next,
697 					  struct async_extent, list);
698 		list_del(&async_extent->list);
699 
700 		io_tree = &BTRFS_I(inode)->io_tree;
701 
702 retry:
703 		/* did the compression code fall back to uncompressed IO? */
704 		if (!async_extent->pages) {
705 			int page_started = 0;
706 			unsigned long nr_written = 0;
707 
708 			lock_extent(io_tree, async_extent->start,
709 					 async_extent->start +
710 					 async_extent->ram_size - 1);
711 
712 			/* allocate blocks */
713 			ret = cow_file_range(inode, async_cow->locked_page,
714 					     async_extent->start,
715 					     async_extent->start +
716 					     async_extent->ram_size - 1,
717 					     async_extent->start +
718 					     async_extent->ram_size - 1,
719 					     &page_started, &nr_written, 0,
720 					     NULL);
721 
722 			/* JDM XXX */
723 
724 			/*
725 			 * if page_started, cow_file_range inserted an
726 			 * inline extent and took care of all the unlocking
727 			 * and IO for us.  Otherwise, we need to submit
728 			 * all those pages down to the drive.
729 			 */
730 			if (!page_started && !ret)
731 				extent_write_locked_range(io_tree,
732 						  inode, async_extent->start,
733 						  async_extent->start +
734 						  async_extent->ram_size - 1,
735 						  btrfs_get_extent,
736 						  WB_SYNC_ALL);
737 			else if (ret)
738 				unlock_page(async_cow->locked_page);
739 			kfree(async_extent);
740 			cond_resched();
741 			continue;
742 		}
743 
744 		lock_extent(io_tree, async_extent->start,
745 			    async_extent->start + async_extent->ram_size - 1);
746 
747 		ret = btrfs_reserve_extent(root, async_extent->ram_size,
748 					   async_extent->compressed_size,
749 					   async_extent->compressed_size,
750 					   0, alloc_hint, &ins, 1, 1);
751 		if (ret) {
752 			free_async_extent_pages(async_extent);
753 
754 			if (ret == -ENOSPC) {
755 				unlock_extent(io_tree, async_extent->start,
756 					      async_extent->start +
757 					      async_extent->ram_size - 1);
758 
759 				/*
760 				 * we need to redirty the pages if we decide to
761 				 * fallback to uncompressed IO, otherwise we
762 				 * will not submit these pages down to lower
763 				 * layers.
764 				 */
765 				extent_range_redirty_for_io(inode,
766 						async_extent->start,
767 						async_extent->start +
768 						async_extent->ram_size - 1);
769 
770 				goto retry;
771 			}
772 			goto out_free;
773 		}
774 		/*
775 		 * here we're doing allocation and writeback of the
776 		 * compressed pages
777 		 */
778 		btrfs_drop_extent_cache(inode, async_extent->start,
779 					async_extent->start +
780 					async_extent->ram_size - 1, 0);
781 
782 		em = alloc_extent_map();
783 		if (!em) {
784 			ret = -ENOMEM;
785 			goto out_free_reserve;
786 		}
787 		em->start = async_extent->start;
788 		em->len = async_extent->ram_size;
789 		em->orig_start = em->start;
790 		em->mod_start = em->start;
791 		em->mod_len = em->len;
792 
793 		em->block_start = ins.objectid;
794 		em->block_len = ins.offset;
795 		em->orig_block_len = ins.offset;
796 		em->ram_bytes = async_extent->ram_size;
797 		em->bdev = root->fs_info->fs_devices->latest_bdev;
798 		em->compress_type = async_extent->compress_type;
799 		set_bit(EXTENT_FLAG_PINNED, &em->flags);
800 		set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
801 		em->generation = -1;
802 
803 		while (1) {
804 			write_lock(&em_tree->lock);
805 			ret = add_extent_mapping(em_tree, em, 1);
806 			write_unlock(&em_tree->lock);
807 			if (ret != -EEXIST) {
808 				free_extent_map(em);
809 				break;
810 			}
811 			btrfs_drop_extent_cache(inode, async_extent->start,
812 						async_extent->start +
813 						async_extent->ram_size - 1, 0);
814 		}
815 
816 		if (ret)
817 			goto out_free_reserve;
818 
819 		ret = btrfs_add_ordered_extent_compress(inode,
820 						async_extent->start,
821 						ins.objectid,
822 						async_extent->ram_size,
823 						ins.offset,
824 						BTRFS_ORDERED_COMPRESSED,
825 						async_extent->compress_type);
826 		if (ret) {
827 			btrfs_drop_extent_cache(inode, async_extent->start,
828 						async_extent->start +
829 						async_extent->ram_size - 1, 0);
830 			goto out_free_reserve;
831 		}
832 		btrfs_dec_block_group_reservations(root->fs_info, ins.objectid);
833 
834 		/*
835 		 * clear dirty, set writeback and unlock the pages.
836 		 */
837 		extent_clear_unlock_delalloc(inode, async_extent->start,
838 				async_extent->start +
839 				async_extent->ram_size - 1,
840 				NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
841 				PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
842 				PAGE_SET_WRITEBACK);
843 		ret = btrfs_submit_compressed_write(inode,
844 				    async_extent->start,
845 				    async_extent->ram_size,
846 				    ins.objectid,
847 				    ins.offset, async_extent->pages,
848 				    async_extent->nr_pages);
849 		if (ret) {
850 			struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
851 			struct page *p = async_extent->pages[0];
852 			const u64 start = async_extent->start;
853 			const u64 end = start + async_extent->ram_size - 1;
854 
855 			p->mapping = inode->i_mapping;
856 			tree->ops->writepage_end_io_hook(p, start, end,
857 							 NULL, 0);
858 			p->mapping = NULL;
859 			extent_clear_unlock_delalloc(inode, start, end, NULL, 0,
860 						     PAGE_END_WRITEBACK |
861 						     PAGE_SET_ERROR);
862 			free_async_extent_pages(async_extent);
863 		}
864 		alloc_hint = ins.objectid + ins.offset;
865 		kfree(async_extent);
866 		cond_resched();
867 	}
868 	return;
869 out_free_reserve:
870 	btrfs_dec_block_group_reservations(root->fs_info, ins.objectid);
871 	btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
872 out_free:
873 	extent_clear_unlock_delalloc(inode, async_extent->start,
874 				     async_extent->start +
875 				     async_extent->ram_size - 1,
876 				     NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
877 				     EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
878 				     PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
879 				     PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
880 				     PAGE_SET_ERROR);
881 	free_async_extent_pages(async_extent);
882 	kfree(async_extent);
883 	goto again;
884 }
885 
886 static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
887 				      u64 num_bytes)
888 {
889 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
890 	struct extent_map *em;
891 	u64 alloc_hint = 0;
892 
893 	read_lock(&em_tree->lock);
894 	em = search_extent_mapping(em_tree, start, num_bytes);
895 	if (em) {
896 		/*
897 		 * if block start isn't an actual block number then find the
898 		 * first block in this inode and use that as a hint.  If that
899 		 * block is also bogus then just don't worry about it.
900 		 */
901 		if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
902 			free_extent_map(em);
903 			em = search_extent_mapping(em_tree, 0, 0);
904 			if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
905 				alloc_hint = em->block_start;
906 			if (em)
907 				free_extent_map(em);
908 		} else {
909 			alloc_hint = em->block_start;
910 			free_extent_map(em);
911 		}
912 	}
913 	read_unlock(&em_tree->lock);
914 
915 	return alloc_hint;
916 }
917 
918 /*
919  * when extent_io.c finds a delayed allocation range in the file,
920  * the call backs end up in this code.  The basic idea is to
921  * allocate extents on disk for the range, and create ordered data structs
922  * in ram to track those extents.
923  *
924  * locked_page is the page that writepage had locked already.  We use
925  * it to make sure we don't do extra locks or unlocks.
926  *
927  * *page_started is set to one if we unlock locked_page and do everything
928  * required to start IO on it.  It may be clean and already done with
929  * IO when we return.
930  */
931 static noinline int cow_file_range(struct inode *inode,
932 				   struct page *locked_page,
933 				   u64 start, u64 end, u64 delalloc_end,
934 				   int *page_started, unsigned long *nr_written,
935 				   int unlock, struct btrfs_dedupe_hash *hash)
936 {
937 	struct btrfs_root *root = BTRFS_I(inode)->root;
938 	u64 alloc_hint = 0;
939 	u64 num_bytes;
940 	unsigned long ram_size;
941 	u64 disk_num_bytes;
942 	u64 cur_alloc_size;
943 	u64 blocksize = root->sectorsize;
944 	struct btrfs_key ins;
945 	struct extent_map *em;
946 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
947 	int ret = 0;
948 
949 	if (btrfs_is_free_space_inode(inode)) {
950 		WARN_ON_ONCE(1);
951 		ret = -EINVAL;
952 		goto out_unlock;
953 	}
954 
955 	num_bytes = ALIGN(end - start + 1, blocksize);
956 	num_bytes = max(blocksize,  num_bytes);
957 	disk_num_bytes = num_bytes;
958 
959 	/* if this is a small write inside eof, kick off defrag */
960 	if (num_bytes < SZ_64K &&
961 	    (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
962 		btrfs_add_inode_defrag(NULL, inode);
963 
964 	if (start == 0) {
965 		/* lets try to make an inline extent */
966 		ret = cow_file_range_inline(root, inode, start, end, 0, 0,
967 					    NULL);
968 		if (ret == 0) {
969 			extent_clear_unlock_delalloc(inode, start, end, NULL,
970 				     EXTENT_LOCKED | EXTENT_DELALLOC |
971 				     EXTENT_DEFRAG, PAGE_UNLOCK |
972 				     PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
973 				     PAGE_END_WRITEBACK);
974 			btrfs_free_reserved_data_space_noquota(inode, start,
975 						end - start + 1);
976 			*nr_written = *nr_written +
977 			     (end - start + PAGE_SIZE) / PAGE_SIZE;
978 			*page_started = 1;
979 			goto out;
980 		} else if (ret < 0) {
981 			goto out_unlock;
982 		}
983 	}
984 
985 	BUG_ON(disk_num_bytes >
986 	       btrfs_super_total_bytes(root->fs_info->super_copy));
987 
988 	alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
989 	btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
990 
991 	while (disk_num_bytes > 0) {
992 		unsigned long op;
993 
994 		cur_alloc_size = disk_num_bytes;
995 		ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size,
996 					   root->sectorsize, 0, alloc_hint,
997 					   &ins, 1, 1);
998 		if (ret < 0)
999 			goto out_unlock;
1000 
1001 		em = alloc_extent_map();
1002 		if (!em) {
1003 			ret = -ENOMEM;
1004 			goto out_reserve;
1005 		}
1006 		em->start = start;
1007 		em->orig_start = em->start;
1008 		ram_size = ins.offset;
1009 		em->len = ins.offset;
1010 		em->mod_start = em->start;
1011 		em->mod_len = em->len;
1012 
1013 		em->block_start = ins.objectid;
1014 		em->block_len = ins.offset;
1015 		em->orig_block_len = ins.offset;
1016 		em->ram_bytes = ram_size;
1017 		em->bdev = root->fs_info->fs_devices->latest_bdev;
1018 		set_bit(EXTENT_FLAG_PINNED, &em->flags);
1019 		em->generation = -1;
1020 
1021 		while (1) {
1022 			write_lock(&em_tree->lock);
1023 			ret = add_extent_mapping(em_tree, em, 1);
1024 			write_unlock(&em_tree->lock);
1025 			if (ret != -EEXIST) {
1026 				free_extent_map(em);
1027 				break;
1028 			}
1029 			btrfs_drop_extent_cache(inode, start,
1030 						start + ram_size - 1, 0);
1031 		}
1032 		if (ret)
1033 			goto out_reserve;
1034 
1035 		cur_alloc_size = ins.offset;
1036 		ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
1037 					       ram_size, cur_alloc_size, 0);
1038 		if (ret)
1039 			goto out_drop_extent_cache;
1040 
1041 		if (root->root_key.objectid ==
1042 		    BTRFS_DATA_RELOC_TREE_OBJECTID) {
1043 			ret = btrfs_reloc_clone_csums(inode, start,
1044 						      cur_alloc_size);
1045 			if (ret)
1046 				goto out_drop_extent_cache;
1047 		}
1048 
1049 		btrfs_dec_block_group_reservations(root->fs_info, ins.objectid);
1050 
1051 		if (disk_num_bytes < cur_alloc_size)
1052 			break;
1053 
1054 		/* we're not doing compressed IO, don't unlock the first
1055 		 * page (which the caller expects to stay locked), don't
1056 		 * clear any dirty bits and don't set any writeback bits
1057 		 *
1058 		 * Do set the Private2 bit so we know this page was properly
1059 		 * setup for writepage
1060 		 */
1061 		op = unlock ? PAGE_UNLOCK : 0;
1062 		op |= PAGE_SET_PRIVATE2;
1063 
1064 		extent_clear_unlock_delalloc(inode, start,
1065 					     start + ram_size - 1, locked_page,
1066 					     EXTENT_LOCKED | EXTENT_DELALLOC,
1067 					     op);
1068 		disk_num_bytes -= cur_alloc_size;
1069 		num_bytes -= cur_alloc_size;
1070 		alloc_hint = ins.objectid + ins.offset;
1071 		start += cur_alloc_size;
1072 	}
1073 out:
1074 	return ret;
1075 
1076 out_drop_extent_cache:
1077 	btrfs_drop_extent_cache(inode, start, start + ram_size - 1, 0);
1078 out_reserve:
1079 	btrfs_dec_block_group_reservations(root->fs_info, ins.objectid);
1080 	btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
1081 out_unlock:
1082 	extent_clear_unlock_delalloc(inode, start, end, locked_page,
1083 				     EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
1084 				     EXTENT_DELALLOC | EXTENT_DEFRAG,
1085 				     PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
1086 				     PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK);
1087 	goto out;
1088 }
1089 
1090 /*
1091  * work queue call back to started compression on a file and pages
1092  */
1093 static noinline void async_cow_start(struct btrfs_work *work)
1094 {
1095 	struct async_cow *async_cow;
1096 	int num_added = 0;
1097 	async_cow = container_of(work, struct async_cow, work);
1098 
1099 	compress_file_range(async_cow->inode, async_cow->locked_page,
1100 			    async_cow->start, async_cow->end, async_cow,
1101 			    &num_added);
1102 	if (num_added == 0) {
1103 		btrfs_add_delayed_iput(async_cow->inode);
1104 		async_cow->inode = NULL;
1105 	}
1106 }
1107 
1108 /*
1109  * work queue call back to submit previously compressed pages
1110  */
1111 static noinline void async_cow_submit(struct btrfs_work *work)
1112 {
1113 	struct async_cow *async_cow;
1114 	struct btrfs_root *root;
1115 	unsigned long nr_pages;
1116 
1117 	async_cow = container_of(work, struct async_cow, work);
1118 
1119 	root = async_cow->root;
1120 	nr_pages = (async_cow->end - async_cow->start + PAGE_SIZE) >>
1121 		PAGE_SHIFT;
1122 
1123 	/*
1124 	 * atomic_sub_return implies a barrier for waitqueue_active
1125 	 */
1126 	if (atomic_sub_return(nr_pages, &root->fs_info->async_delalloc_pages) <
1127 	    5 * SZ_1M &&
1128 	    waitqueue_active(&root->fs_info->async_submit_wait))
1129 		wake_up(&root->fs_info->async_submit_wait);
1130 
1131 	if (async_cow->inode)
1132 		submit_compressed_extents(async_cow->inode, async_cow);
1133 }
1134 
1135 static noinline void async_cow_free(struct btrfs_work *work)
1136 {
1137 	struct async_cow *async_cow;
1138 	async_cow = container_of(work, struct async_cow, work);
1139 	if (async_cow->inode)
1140 		btrfs_add_delayed_iput(async_cow->inode);
1141 	kfree(async_cow);
1142 }
1143 
1144 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1145 				u64 start, u64 end, int *page_started,
1146 				unsigned long *nr_written)
1147 {
1148 	struct async_cow *async_cow;
1149 	struct btrfs_root *root = BTRFS_I(inode)->root;
1150 	unsigned long nr_pages;
1151 	u64 cur_end;
1152 	int limit = 10 * SZ_1M;
1153 
1154 	clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
1155 			 1, 0, NULL, GFP_NOFS);
1156 	while (start < end) {
1157 		async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
1158 		BUG_ON(!async_cow); /* -ENOMEM */
1159 		async_cow->inode = igrab(inode);
1160 		async_cow->root = root;
1161 		async_cow->locked_page = locked_page;
1162 		async_cow->start = start;
1163 
1164 		if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS &&
1165 		    !btrfs_test_opt(root->fs_info, FORCE_COMPRESS))
1166 			cur_end = end;
1167 		else
1168 			cur_end = min(end, start + SZ_512K - 1);
1169 
1170 		async_cow->end = cur_end;
1171 		INIT_LIST_HEAD(&async_cow->extents);
1172 
1173 		btrfs_init_work(&async_cow->work,
1174 				btrfs_delalloc_helper,
1175 				async_cow_start, async_cow_submit,
1176 				async_cow_free);
1177 
1178 		nr_pages = (cur_end - start + PAGE_SIZE) >>
1179 			PAGE_SHIFT;
1180 		atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
1181 
1182 		btrfs_queue_work(root->fs_info->delalloc_workers,
1183 				 &async_cow->work);
1184 
1185 		if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
1186 			wait_event(root->fs_info->async_submit_wait,
1187 			   (atomic_read(&root->fs_info->async_delalloc_pages) <
1188 			    limit));
1189 		}
1190 
1191 		while (atomic_read(&root->fs_info->async_submit_draining) &&
1192 		      atomic_read(&root->fs_info->async_delalloc_pages)) {
1193 			wait_event(root->fs_info->async_submit_wait,
1194 			  (atomic_read(&root->fs_info->async_delalloc_pages) ==
1195 			   0));
1196 		}
1197 
1198 		*nr_written += nr_pages;
1199 		start = cur_end + 1;
1200 	}
1201 	*page_started = 1;
1202 	return 0;
1203 }
1204 
1205 static noinline int csum_exist_in_range(struct btrfs_root *root,
1206 					u64 bytenr, u64 num_bytes)
1207 {
1208 	int ret;
1209 	struct btrfs_ordered_sum *sums;
1210 	LIST_HEAD(list);
1211 
1212 	ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
1213 				       bytenr + num_bytes - 1, &list, 0);
1214 	if (ret == 0 && list_empty(&list))
1215 		return 0;
1216 
1217 	while (!list_empty(&list)) {
1218 		sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1219 		list_del(&sums->list);
1220 		kfree(sums);
1221 	}
1222 	return 1;
1223 }
1224 
1225 /*
1226  * when nowcow writeback call back.  This checks for snapshots or COW copies
1227  * of the extents that exist in the file, and COWs the file as required.
1228  *
1229  * If no cow copies or snapshots exist, we write directly to the existing
1230  * blocks on disk
1231  */
1232 static noinline int run_delalloc_nocow(struct inode *inode,
1233 				       struct page *locked_page,
1234 			      u64 start, u64 end, int *page_started, int force,
1235 			      unsigned long *nr_written)
1236 {
1237 	struct btrfs_root *root = BTRFS_I(inode)->root;
1238 	struct btrfs_trans_handle *trans;
1239 	struct extent_buffer *leaf;
1240 	struct btrfs_path *path;
1241 	struct btrfs_file_extent_item *fi;
1242 	struct btrfs_key found_key;
1243 	u64 cow_start;
1244 	u64 cur_offset;
1245 	u64 extent_end;
1246 	u64 extent_offset;
1247 	u64 disk_bytenr;
1248 	u64 num_bytes;
1249 	u64 disk_num_bytes;
1250 	u64 ram_bytes;
1251 	int extent_type;
1252 	int ret, err;
1253 	int type;
1254 	int nocow;
1255 	int check_prev = 1;
1256 	bool nolock;
1257 	u64 ino = btrfs_ino(inode);
1258 
1259 	path = btrfs_alloc_path();
1260 	if (!path) {
1261 		extent_clear_unlock_delalloc(inode, start, end, locked_page,
1262 					     EXTENT_LOCKED | EXTENT_DELALLOC |
1263 					     EXTENT_DO_ACCOUNTING |
1264 					     EXTENT_DEFRAG, PAGE_UNLOCK |
1265 					     PAGE_CLEAR_DIRTY |
1266 					     PAGE_SET_WRITEBACK |
1267 					     PAGE_END_WRITEBACK);
1268 		return -ENOMEM;
1269 	}
1270 
1271 	nolock = btrfs_is_free_space_inode(inode);
1272 
1273 	if (nolock)
1274 		trans = btrfs_join_transaction_nolock(root);
1275 	else
1276 		trans = btrfs_join_transaction(root);
1277 
1278 	if (IS_ERR(trans)) {
1279 		extent_clear_unlock_delalloc(inode, start, end, locked_page,
1280 					     EXTENT_LOCKED | EXTENT_DELALLOC |
1281 					     EXTENT_DO_ACCOUNTING |
1282 					     EXTENT_DEFRAG, PAGE_UNLOCK |
1283 					     PAGE_CLEAR_DIRTY |
1284 					     PAGE_SET_WRITEBACK |
1285 					     PAGE_END_WRITEBACK);
1286 		btrfs_free_path(path);
1287 		return PTR_ERR(trans);
1288 	}
1289 
1290 	trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1291 
1292 	cow_start = (u64)-1;
1293 	cur_offset = start;
1294 	while (1) {
1295 		ret = btrfs_lookup_file_extent(trans, root, path, ino,
1296 					       cur_offset, 0);
1297 		if (ret < 0)
1298 			goto error;
1299 		if (ret > 0 && path->slots[0] > 0 && check_prev) {
1300 			leaf = path->nodes[0];
1301 			btrfs_item_key_to_cpu(leaf, &found_key,
1302 					      path->slots[0] - 1);
1303 			if (found_key.objectid == ino &&
1304 			    found_key.type == BTRFS_EXTENT_DATA_KEY)
1305 				path->slots[0]--;
1306 		}
1307 		check_prev = 0;
1308 next_slot:
1309 		leaf = path->nodes[0];
1310 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1311 			ret = btrfs_next_leaf(root, path);
1312 			if (ret < 0)
1313 				goto error;
1314 			if (ret > 0)
1315 				break;
1316 			leaf = path->nodes[0];
1317 		}
1318 
1319 		nocow = 0;
1320 		disk_bytenr = 0;
1321 		num_bytes = 0;
1322 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1323 
1324 		if (found_key.objectid > ino)
1325 			break;
1326 		if (WARN_ON_ONCE(found_key.objectid < ino) ||
1327 		    found_key.type < BTRFS_EXTENT_DATA_KEY) {
1328 			path->slots[0]++;
1329 			goto next_slot;
1330 		}
1331 		if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
1332 		    found_key.offset > end)
1333 			break;
1334 
1335 		if (found_key.offset > cur_offset) {
1336 			extent_end = found_key.offset;
1337 			extent_type = 0;
1338 			goto out_check;
1339 		}
1340 
1341 		fi = btrfs_item_ptr(leaf, path->slots[0],
1342 				    struct btrfs_file_extent_item);
1343 		extent_type = btrfs_file_extent_type(leaf, fi);
1344 
1345 		ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1346 		if (extent_type == BTRFS_FILE_EXTENT_REG ||
1347 		    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1348 			disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1349 			extent_offset = btrfs_file_extent_offset(leaf, fi);
1350 			extent_end = found_key.offset +
1351 				btrfs_file_extent_num_bytes(leaf, fi);
1352 			disk_num_bytes =
1353 				btrfs_file_extent_disk_num_bytes(leaf, fi);
1354 			if (extent_end <= start) {
1355 				path->slots[0]++;
1356 				goto next_slot;
1357 			}
1358 			if (disk_bytenr == 0)
1359 				goto out_check;
1360 			if (btrfs_file_extent_compression(leaf, fi) ||
1361 			    btrfs_file_extent_encryption(leaf, fi) ||
1362 			    btrfs_file_extent_other_encoding(leaf, fi))
1363 				goto out_check;
1364 			if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1365 				goto out_check;
1366 			if (btrfs_extent_readonly(root, disk_bytenr))
1367 				goto out_check;
1368 			if (btrfs_cross_ref_exist(trans, root, ino,
1369 						  found_key.offset -
1370 						  extent_offset, disk_bytenr))
1371 				goto out_check;
1372 			disk_bytenr += extent_offset;
1373 			disk_bytenr += cur_offset - found_key.offset;
1374 			num_bytes = min(end + 1, extent_end) - cur_offset;
1375 			/*
1376 			 * if there are pending snapshots for this root,
1377 			 * we fall into common COW way.
1378 			 */
1379 			if (!nolock) {
1380 				err = btrfs_start_write_no_snapshoting(root);
1381 				if (!err)
1382 					goto out_check;
1383 			}
1384 			/*
1385 			 * force cow if csum exists in the range.
1386 			 * this ensure that csum for a given extent are
1387 			 * either valid or do not exist.
1388 			 */
1389 			if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1390 				goto out_check;
1391 			if (!btrfs_inc_nocow_writers(root->fs_info,
1392 						     disk_bytenr))
1393 				goto out_check;
1394 			nocow = 1;
1395 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1396 			extent_end = found_key.offset +
1397 				btrfs_file_extent_inline_len(leaf,
1398 						     path->slots[0], fi);
1399 			extent_end = ALIGN(extent_end, root->sectorsize);
1400 		} else {
1401 			BUG_ON(1);
1402 		}
1403 out_check:
1404 		if (extent_end <= start) {
1405 			path->slots[0]++;
1406 			if (!nolock && nocow)
1407 				btrfs_end_write_no_snapshoting(root);
1408 			if (nocow)
1409 				btrfs_dec_nocow_writers(root->fs_info,
1410 							disk_bytenr);
1411 			goto next_slot;
1412 		}
1413 		if (!nocow) {
1414 			if (cow_start == (u64)-1)
1415 				cow_start = cur_offset;
1416 			cur_offset = extent_end;
1417 			if (cur_offset > end)
1418 				break;
1419 			path->slots[0]++;
1420 			goto next_slot;
1421 		}
1422 
1423 		btrfs_release_path(path);
1424 		if (cow_start != (u64)-1) {
1425 			ret = cow_file_range(inode, locked_page,
1426 					     cow_start, found_key.offset - 1,
1427 					     end, page_started, nr_written, 1,
1428 					     NULL);
1429 			if (ret) {
1430 				if (!nolock && nocow)
1431 					btrfs_end_write_no_snapshoting(root);
1432 				if (nocow)
1433 					btrfs_dec_nocow_writers(root->fs_info,
1434 								disk_bytenr);
1435 				goto error;
1436 			}
1437 			cow_start = (u64)-1;
1438 		}
1439 
1440 		if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1441 			struct extent_map *em;
1442 			struct extent_map_tree *em_tree;
1443 			em_tree = &BTRFS_I(inode)->extent_tree;
1444 			em = alloc_extent_map();
1445 			BUG_ON(!em); /* -ENOMEM */
1446 			em->start = cur_offset;
1447 			em->orig_start = found_key.offset - extent_offset;
1448 			em->len = num_bytes;
1449 			em->block_len = num_bytes;
1450 			em->block_start = disk_bytenr;
1451 			em->orig_block_len = disk_num_bytes;
1452 			em->ram_bytes = ram_bytes;
1453 			em->bdev = root->fs_info->fs_devices->latest_bdev;
1454 			em->mod_start = em->start;
1455 			em->mod_len = em->len;
1456 			set_bit(EXTENT_FLAG_PINNED, &em->flags);
1457 			set_bit(EXTENT_FLAG_FILLING, &em->flags);
1458 			em->generation = -1;
1459 			while (1) {
1460 				write_lock(&em_tree->lock);
1461 				ret = add_extent_mapping(em_tree, em, 1);
1462 				write_unlock(&em_tree->lock);
1463 				if (ret != -EEXIST) {
1464 					free_extent_map(em);
1465 					break;
1466 				}
1467 				btrfs_drop_extent_cache(inode, em->start,
1468 						em->start + em->len - 1, 0);
1469 			}
1470 			type = BTRFS_ORDERED_PREALLOC;
1471 		} else {
1472 			type = BTRFS_ORDERED_NOCOW;
1473 		}
1474 
1475 		ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1476 					       num_bytes, num_bytes, type);
1477 		if (nocow)
1478 			btrfs_dec_nocow_writers(root->fs_info, disk_bytenr);
1479 		BUG_ON(ret); /* -ENOMEM */
1480 
1481 		if (root->root_key.objectid ==
1482 		    BTRFS_DATA_RELOC_TREE_OBJECTID) {
1483 			ret = btrfs_reloc_clone_csums(inode, cur_offset,
1484 						      num_bytes);
1485 			if (ret) {
1486 				if (!nolock && nocow)
1487 					btrfs_end_write_no_snapshoting(root);
1488 				goto error;
1489 			}
1490 		}
1491 
1492 		extent_clear_unlock_delalloc(inode, cur_offset,
1493 					     cur_offset + num_bytes - 1,
1494 					     locked_page, EXTENT_LOCKED |
1495 					     EXTENT_DELALLOC |
1496 					     EXTENT_CLEAR_DATA_RESV,
1497 					     PAGE_UNLOCK | PAGE_SET_PRIVATE2);
1498 
1499 		if (!nolock && nocow)
1500 			btrfs_end_write_no_snapshoting(root);
1501 		cur_offset = extent_end;
1502 		if (cur_offset > end)
1503 			break;
1504 	}
1505 	btrfs_release_path(path);
1506 
1507 	if (cur_offset <= end && cow_start == (u64)-1) {
1508 		cow_start = cur_offset;
1509 		cur_offset = end;
1510 	}
1511 
1512 	if (cow_start != (u64)-1) {
1513 		ret = cow_file_range(inode, locked_page, cow_start, end, end,
1514 				     page_started, nr_written, 1, NULL);
1515 		if (ret)
1516 			goto error;
1517 	}
1518 
1519 error:
1520 	err = btrfs_end_transaction(trans, root);
1521 	if (!ret)
1522 		ret = err;
1523 
1524 	if (ret && cur_offset < end)
1525 		extent_clear_unlock_delalloc(inode, cur_offset, end,
1526 					     locked_page, EXTENT_LOCKED |
1527 					     EXTENT_DELALLOC | EXTENT_DEFRAG |
1528 					     EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1529 					     PAGE_CLEAR_DIRTY |
1530 					     PAGE_SET_WRITEBACK |
1531 					     PAGE_END_WRITEBACK);
1532 	btrfs_free_path(path);
1533 	return ret;
1534 }
1535 
1536 static inline int need_force_cow(struct inode *inode, u64 start, u64 end)
1537 {
1538 
1539 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
1540 	    !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC))
1541 		return 0;
1542 
1543 	/*
1544 	 * @defrag_bytes is a hint value, no spinlock held here,
1545 	 * if is not zero, it means the file is defragging.
1546 	 * Force cow if given extent needs to be defragged.
1547 	 */
1548 	if (BTRFS_I(inode)->defrag_bytes &&
1549 	    test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
1550 			   EXTENT_DEFRAG, 0, NULL))
1551 		return 1;
1552 
1553 	return 0;
1554 }
1555 
1556 /*
1557  * extent_io.c call back to do delayed allocation processing
1558  */
1559 static int run_delalloc_range(struct inode *inode, struct page *locked_page,
1560 			      u64 start, u64 end, int *page_started,
1561 			      unsigned long *nr_written)
1562 {
1563 	int ret;
1564 	int force_cow = need_force_cow(inode, start, end);
1565 
1566 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) {
1567 		ret = run_delalloc_nocow(inode, locked_page, start, end,
1568 					 page_started, 1, nr_written);
1569 	} else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) {
1570 		ret = run_delalloc_nocow(inode, locked_page, start, end,
1571 					 page_started, 0, nr_written);
1572 	} else if (!inode_need_compress(inode)) {
1573 		ret = cow_file_range(inode, locked_page, start, end, end,
1574 				      page_started, nr_written, 1, NULL);
1575 	} else {
1576 		set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1577 			&BTRFS_I(inode)->runtime_flags);
1578 		ret = cow_file_range_async(inode, locked_page, start, end,
1579 					   page_started, nr_written);
1580 	}
1581 	return ret;
1582 }
1583 
1584 static void btrfs_split_extent_hook(struct inode *inode,
1585 				    struct extent_state *orig, u64 split)
1586 {
1587 	u64 size;
1588 
1589 	/* not delalloc, ignore it */
1590 	if (!(orig->state & EXTENT_DELALLOC))
1591 		return;
1592 
1593 	size = orig->end - orig->start + 1;
1594 	if (size > BTRFS_MAX_EXTENT_SIZE) {
1595 		u64 num_extents;
1596 		u64 new_size;
1597 
1598 		/*
1599 		 * See the explanation in btrfs_merge_extent_hook, the same
1600 		 * applies here, just in reverse.
1601 		 */
1602 		new_size = orig->end - split + 1;
1603 		num_extents = div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1,
1604 					BTRFS_MAX_EXTENT_SIZE);
1605 		new_size = split - orig->start;
1606 		num_extents += div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1,
1607 					BTRFS_MAX_EXTENT_SIZE);
1608 		if (div64_u64(size + BTRFS_MAX_EXTENT_SIZE - 1,
1609 			      BTRFS_MAX_EXTENT_SIZE) >= num_extents)
1610 			return;
1611 	}
1612 
1613 	spin_lock(&BTRFS_I(inode)->lock);
1614 	BTRFS_I(inode)->outstanding_extents++;
1615 	spin_unlock(&BTRFS_I(inode)->lock);
1616 }
1617 
1618 /*
1619  * extent_io.c merge_extent_hook, used to track merged delayed allocation
1620  * extents so we can keep track of new extents that are just merged onto old
1621  * extents, such as when we are doing sequential writes, so we can properly
1622  * account for the metadata space we'll need.
1623  */
1624 static void btrfs_merge_extent_hook(struct inode *inode,
1625 				    struct extent_state *new,
1626 				    struct extent_state *other)
1627 {
1628 	u64 new_size, old_size;
1629 	u64 num_extents;
1630 
1631 	/* not delalloc, ignore it */
1632 	if (!(other->state & EXTENT_DELALLOC))
1633 		return;
1634 
1635 	if (new->start > other->start)
1636 		new_size = new->end - other->start + 1;
1637 	else
1638 		new_size = other->end - new->start + 1;
1639 
1640 	/* we're not bigger than the max, unreserve the space and go */
1641 	if (new_size <= BTRFS_MAX_EXTENT_SIZE) {
1642 		spin_lock(&BTRFS_I(inode)->lock);
1643 		BTRFS_I(inode)->outstanding_extents--;
1644 		spin_unlock(&BTRFS_I(inode)->lock);
1645 		return;
1646 	}
1647 
1648 	/*
1649 	 * We have to add up either side to figure out how many extents were
1650 	 * accounted for before we merged into one big extent.  If the number of
1651 	 * extents we accounted for is <= the amount we need for the new range
1652 	 * then we can return, otherwise drop.  Think of it like this
1653 	 *
1654 	 * [ 4k][MAX_SIZE]
1655 	 *
1656 	 * So we've grown the extent by a MAX_SIZE extent, this would mean we
1657 	 * need 2 outstanding extents, on one side we have 1 and the other side
1658 	 * we have 1 so they are == and we can return.  But in this case
1659 	 *
1660 	 * [MAX_SIZE+4k][MAX_SIZE+4k]
1661 	 *
1662 	 * Each range on their own accounts for 2 extents, but merged together
1663 	 * they are only 3 extents worth of accounting, so we need to drop in
1664 	 * this case.
1665 	 */
1666 	old_size = other->end - other->start + 1;
1667 	num_extents = div64_u64(old_size + BTRFS_MAX_EXTENT_SIZE - 1,
1668 				BTRFS_MAX_EXTENT_SIZE);
1669 	old_size = new->end - new->start + 1;
1670 	num_extents += div64_u64(old_size + BTRFS_MAX_EXTENT_SIZE - 1,
1671 				 BTRFS_MAX_EXTENT_SIZE);
1672 
1673 	if (div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1,
1674 		      BTRFS_MAX_EXTENT_SIZE) >= num_extents)
1675 		return;
1676 
1677 	spin_lock(&BTRFS_I(inode)->lock);
1678 	BTRFS_I(inode)->outstanding_extents--;
1679 	spin_unlock(&BTRFS_I(inode)->lock);
1680 }
1681 
1682 static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1683 				      struct inode *inode)
1684 {
1685 	spin_lock(&root->delalloc_lock);
1686 	if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1687 		list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1688 			      &root->delalloc_inodes);
1689 		set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1690 			&BTRFS_I(inode)->runtime_flags);
1691 		root->nr_delalloc_inodes++;
1692 		if (root->nr_delalloc_inodes == 1) {
1693 			spin_lock(&root->fs_info->delalloc_root_lock);
1694 			BUG_ON(!list_empty(&root->delalloc_root));
1695 			list_add_tail(&root->delalloc_root,
1696 				      &root->fs_info->delalloc_roots);
1697 			spin_unlock(&root->fs_info->delalloc_root_lock);
1698 		}
1699 	}
1700 	spin_unlock(&root->delalloc_lock);
1701 }
1702 
1703 static void btrfs_del_delalloc_inode(struct btrfs_root *root,
1704 				     struct inode *inode)
1705 {
1706 	spin_lock(&root->delalloc_lock);
1707 	if (!list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1708 		list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1709 		clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1710 			  &BTRFS_I(inode)->runtime_flags);
1711 		root->nr_delalloc_inodes--;
1712 		if (!root->nr_delalloc_inodes) {
1713 			spin_lock(&root->fs_info->delalloc_root_lock);
1714 			BUG_ON(list_empty(&root->delalloc_root));
1715 			list_del_init(&root->delalloc_root);
1716 			spin_unlock(&root->fs_info->delalloc_root_lock);
1717 		}
1718 	}
1719 	spin_unlock(&root->delalloc_lock);
1720 }
1721 
1722 /*
1723  * extent_io.c set_bit_hook, used to track delayed allocation
1724  * bytes in this file, and to maintain the list of inodes that
1725  * have pending delalloc work to be done.
1726  */
1727 static void btrfs_set_bit_hook(struct inode *inode,
1728 			       struct extent_state *state, unsigned *bits)
1729 {
1730 
1731 	if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC))
1732 		WARN_ON(1);
1733 	/*
1734 	 * set_bit and clear bit hooks normally require _irqsave/restore
1735 	 * but in this case, we are only testing for the DELALLOC
1736 	 * bit, which is only set or cleared with irqs on
1737 	 */
1738 	if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1739 		struct btrfs_root *root = BTRFS_I(inode)->root;
1740 		u64 len = state->end + 1 - state->start;
1741 		bool do_list = !btrfs_is_free_space_inode(inode);
1742 
1743 		if (*bits & EXTENT_FIRST_DELALLOC) {
1744 			*bits &= ~EXTENT_FIRST_DELALLOC;
1745 		} else {
1746 			spin_lock(&BTRFS_I(inode)->lock);
1747 			BTRFS_I(inode)->outstanding_extents++;
1748 			spin_unlock(&BTRFS_I(inode)->lock);
1749 		}
1750 
1751 		/* For sanity tests */
1752 		if (btrfs_is_testing(root->fs_info))
1753 			return;
1754 
1755 		__percpu_counter_add(&root->fs_info->delalloc_bytes, len,
1756 				     root->fs_info->delalloc_batch);
1757 		spin_lock(&BTRFS_I(inode)->lock);
1758 		BTRFS_I(inode)->delalloc_bytes += len;
1759 		if (*bits & EXTENT_DEFRAG)
1760 			BTRFS_I(inode)->defrag_bytes += len;
1761 		if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1762 					 &BTRFS_I(inode)->runtime_flags))
1763 			btrfs_add_delalloc_inodes(root, inode);
1764 		spin_unlock(&BTRFS_I(inode)->lock);
1765 	}
1766 }
1767 
1768 /*
1769  * extent_io.c clear_bit_hook, see set_bit_hook for why
1770  */
1771 static void btrfs_clear_bit_hook(struct inode *inode,
1772 				 struct extent_state *state,
1773 				 unsigned *bits)
1774 {
1775 	u64 len = state->end + 1 - state->start;
1776 	u64 num_extents = div64_u64(len + BTRFS_MAX_EXTENT_SIZE -1,
1777 				    BTRFS_MAX_EXTENT_SIZE);
1778 
1779 	spin_lock(&BTRFS_I(inode)->lock);
1780 	if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG))
1781 		BTRFS_I(inode)->defrag_bytes -= len;
1782 	spin_unlock(&BTRFS_I(inode)->lock);
1783 
1784 	/*
1785 	 * set_bit and clear bit hooks normally require _irqsave/restore
1786 	 * but in this case, we are only testing for the DELALLOC
1787 	 * bit, which is only set or cleared with irqs on
1788 	 */
1789 	if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1790 		struct btrfs_root *root = BTRFS_I(inode)->root;
1791 		bool do_list = !btrfs_is_free_space_inode(inode);
1792 
1793 		if (*bits & EXTENT_FIRST_DELALLOC) {
1794 			*bits &= ~EXTENT_FIRST_DELALLOC;
1795 		} else if (!(*bits & EXTENT_DO_ACCOUNTING)) {
1796 			spin_lock(&BTRFS_I(inode)->lock);
1797 			BTRFS_I(inode)->outstanding_extents -= num_extents;
1798 			spin_unlock(&BTRFS_I(inode)->lock);
1799 		}
1800 
1801 		/*
1802 		 * We don't reserve metadata space for space cache inodes so we
1803 		 * don't need to call dellalloc_release_metadata if there is an
1804 		 * error.
1805 		 */
1806 		if (*bits & EXTENT_DO_ACCOUNTING &&
1807 		    root != root->fs_info->tree_root)
1808 			btrfs_delalloc_release_metadata(inode, len);
1809 
1810 		/* For sanity tests. */
1811 		if (btrfs_is_testing(root->fs_info))
1812 			return;
1813 
1814 		if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
1815 		    && do_list && !(state->state & EXTENT_NORESERVE)
1816 		    && (*bits & (EXTENT_DO_ACCOUNTING |
1817 		    EXTENT_CLEAR_DATA_RESV)))
1818 			btrfs_free_reserved_data_space_noquota(inode,
1819 					state->start, len);
1820 
1821 		__percpu_counter_add(&root->fs_info->delalloc_bytes, -len,
1822 				     root->fs_info->delalloc_batch);
1823 		spin_lock(&BTRFS_I(inode)->lock);
1824 		BTRFS_I(inode)->delalloc_bytes -= len;
1825 		if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
1826 		    test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1827 			     &BTRFS_I(inode)->runtime_flags))
1828 			btrfs_del_delalloc_inode(root, inode);
1829 		spin_unlock(&BTRFS_I(inode)->lock);
1830 	}
1831 }
1832 
1833 /*
1834  * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1835  * we don't create bios that span stripes or chunks
1836  *
1837  * return 1 if page cannot be merged to bio
1838  * return 0 if page can be merged to bio
1839  * return error otherwise
1840  */
1841 int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
1842 			 size_t size, struct bio *bio,
1843 			 unsigned long bio_flags)
1844 {
1845 	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1846 	u64 logical = (u64)bio->bi_iter.bi_sector << 9;
1847 	u64 length = 0;
1848 	u64 map_length;
1849 	int ret;
1850 
1851 	if (bio_flags & EXTENT_BIO_COMPRESSED)
1852 		return 0;
1853 
1854 	length = bio->bi_iter.bi_size;
1855 	map_length = length;
1856 	ret = btrfs_map_block(root->fs_info, bio_op(bio), logical,
1857 			      &map_length, NULL, 0);
1858 	if (ret < 0)
1859 		return ret;
1860 	if (map_length < length + size)
1861 		return 1;
1862 	return 0;
1863 }
1864 
1865 /*
1866  * in order to insert checksums into the metadata in large chunks,
1867  * we wait until bio submission time.   All the pages in the bio are
1868  * checksummed and sums are attached onto the ordered extent record.
1869  *
1870  * At IO completion time the cums attached on the ordered extent record
1871  * are inserted into the btree
1872  */
1873 static int __btrfs_submit_bio_start(struct inode *inode, struct bio *bio,
1874 				    int mirror_num, unsigned long bio_flags,
1875 				    u64 bio_offset)
1876 {
1877 	struct btrfs_root *root = BTRFS_I(inode)->root;
1878 	int ret = 0;
1879 
1880 	ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1881 	BUG_ON(ret); /* -ENOMEM */
1882 	return 0;
1883 }
1884 
1885 /*
1886  * in order to insert checksums into the metadata in large chunks,
1887  * we wait until bio submission time.   All the pages in the bio are
1888  * checksummed and sums are attached onto the ordered extent record.
1889  *
1890  * At IO completion time the cums attached on the ordered extent record
1891  * are inserted into the btree
1892  */
1893 static int __btrfs_submit_bio_done(struct inode *inode, struct bio *bio,
1894 			  int mirror_num, unsigned long bio_flags,
1895 			  u64 bio_offset)
1896 {
1897 	struct btrfs_root *root = BTRFS_I(inode)->root;
1898 	int ret;
1899 
1900 	ret = btrfs_map_bio(root, bio, mirror_num, 1);
1901 	if (ret) {
1902 		bio->bi_error = ret;
1903 		bio_endio(bio);
1904 	}
1905 	return ret;
1906 }
1907 
1908 /*
1909  * extent_io.c submission hook. This does the right thing for csum calculation
1910  * on write, or reading the csums from the tree before a read
1911  */
1912 static int btrfs_submit_bio_hook(struct inode *inode, struct bio *bio,
1913 			  int mirror_num, unsigned long bio_flags,
1914 			  u64 bio_offset)
1915 {
1916 	struct btrfs_root *root = BTRFS_I(inode)->root;
1917 	enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA;
1918 	int ret = 0;
1919 	int skip_sum;
1920 	int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
1921 
1922 	skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
1923 
1924 	if (btrfs_is_free_space_inode(inode))
1925 		metadata = BTRFS_WQ_ENDIO_FREE_SPACE;
1926 
1927 	if (bio_op(bio) != REQ_OP_WRITE) {
1928 		ret = btrfs_bio_wq_end_io(root->fs_info, bio, metadata);
1929 		if (ret)
1930 			goto out;
1931 
1932 		if (bio_flags & EXTENT_BIO_COMPRESSED) {
1933 			ret = btrfs_submit_compressed_read(inode, bio,
1934 							   mirror_num,
1935 							   bio_flags);
1936 			goto out;
1937 		} else if (!skip_sum) {
1938 			ret = btrfs_lookup_bio_sums(root, inode, bio, NULL);
1939 			if (ret)
1940 				goto out;
1941 		}
1942 		goto mapit;
1943 	} else if (async && !skip_sum) {
1944 		/* csum items have already been cloned */
1945 		if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1946 			goto mapit;
1947 		/* we're doing a write, do the async checksumming */
1948 		ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1949 				   inode, bio, mirror_num,
1950 				   bio_flags, bio_offset,
1951 				   __btrfs_submit_bio_start,
1952 				   __btrfs_submit_bio_done);
1953 		goto out;
1954 	} else if (!skip_sum) {
1955 		ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1956 		if (ret)
1957 			goto out;
1958 	}
1959 
1960 mapit:
1961 	ret = btrfs_map_bio(root, bio, mirror_num, 0);
1962 
1963 out:
1964 	if (ret < 0) {
1965 		bio->bi_error = ret;
1966 		bio_endio(bio);
1967 	}
1968 	return ret;
1969 }
1970 
1971 /*
1972  * given a list of ordered sums record them in the inode.  This happens
1973  * at IO completion time based on sums calculated at bio submission time.
1974  */
1975 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
1976 			     struct inode *inode, u64 file_offset,
1977 			     struct list_head *list)
1978 {
1979 	struct btrfs_ordered_sum *sum;
1980 
1981 	list_for_each_entry(sum, list, list) {
1982 		trans->adding_csums = 1;
1983 		btrfs_csum_file_blocks(trans,
1984 		       BTRFS_I(inode)->root->fs_info->csum_root, sum);
1985 		trans->adding_csums = 0;
1986 	}
1987 	return 0;
1988 }
1989 
1990 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1991 			      struct extent_state **cached_state)
1992 {
1993 	WARN_ON((end & (PAGE_SIZE - 1)) == 0);
1994 	return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
1995 				   cached_state);
1996 }
1997 
1998 /* see btrfs_writepage_start_hook for details on why this is required */
1999 struct btrfs_writepage_fixup {
2000 	struct page *page;
2001 	struct btrfs_work work;
2002 };
2003 
2004 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
2005 {
2006 	struct btrfs_writepage_fixup *fixup;
2007 	struct btrfs_ordered_extent *ordered;
2008 	struct extent_state *cached_state = NULL;
2009 	struct page *page;
2010 	struct inode *inode;
2011 	u64 page_start;
2012 	u64 page_end;
2013 	int ret;
2014 
2015 	fixup = container_of(work, struct btrfs_writepage_fixup, work);
2016 	page = fixup->page;
2017 again:
2018 	lock_page(page);
2019 	if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
2020 		ClearPageChecked(page);
2021 		goto out_page;
2022 	}
2023 
2024 	inode = page->mapping->host;
2025 	page_start = page_offset(page);
2026 	page_end = page_offset(page) + PAGE_SIZE - 1;
2027 
2028 	lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end,
2029 			 &cached_state);
2030 
2031 	/* already ordered? We're done */
2032 	if (PagePrivate2(page))
2033 		goto out;
2034 
2035 	ordered = btrfs_lookup_ordered_range(inode, page_start,
2036 					PAGE_SIZE);
2037 	if (ordered) {
2038 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
2039 				     page_end, &cached_state, GFP_NOFS);
2040 		unlock_page(page);
2041 		btrfs_start_ordered_extent(inode, ordered, 1);
2042 		btrfs_put_ordered_extent(ordered);
2043 		goto again;
2044 	}
2045 
2046 	ret = btrfs_delalloc_reserve_space(inode, page_start,
2047 					   PAGE_SIZE);
2048 	if (ret) {
2049 		mapping_set_error(page->mapping, ret);
2050 		end_extent_writepage(page, ret, page_start, page_end);
2051 		ClearPageChecked(page);
2052 		goto out;
2053 	 }
2054 
2055 	btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
2056 	ClearPageChecked(page);
2057 	set_page_dirty(page);
2058 out:
2059 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
2060 			     &cached_state, GFP_NOFS);
2061 out_page:
2062 	unlock_page(page);
2063 	put_page(page);
2064 	kfree(fixup);
2065 }
2066 
2067 /*
2068  * There are a few paths in the higher layers of the kernel that directly
2069  * set the page dirty bit without asking the filesystem if it is a
2070  * good idea.  This causes problems because we want to make sure COW
2071  * properly happens and the data=ordered rules are followed.
2072  *
2073  * In our case any range that doesn't have the ORDERED bit set
2074  * hasn't been properly setup for IO.  We kick off an async process
2075  * to fix it up.  The async helper will wait for ordered extents, set
2076  * the delalloc bit and make it safe to write the page.
2077  */
2078 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
2079 {
2080 	struct inode *inode = page->mapping->host;
2081 	struct btrfs_writepage_fixup *fixup;
2082 	struct btrfs_root *root = BTRFS_I(inode)->root;
2083 
2084 	/* this page is properly in the ordered list */
2085 	if (TestClearPagePrivate2(page))
2086 		return 0;
2087 
2088 	if (PageChecked(page))
2089 		return -EAGAIN;
2090 
2091 	fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2092 	if (!fixup)
2093 		return -EAGAIN;
2094 
2095 	SetPageChecked(page);
2096 	get_page(page);
2097 	btrfs_init_work(&fixup->work, btrfs_fixup_helper,
2098 			btrfs_writepage_fixup_worker, NULL, NULL);
2099 	fixup->page = page;
2100 	btrfs_queue_work(root->fs_info->fixup_workers, &fixup->work);
2101 	return -EBUSY;
2102 }
2103 
2104 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2105 				       struct inode *inode, u64 file_pos,
2106 				       u64 disk_bytenr, u64 disk_num_bytes,
2107 				       u64 num_bytes, u64 ram_bytes,
2108 				       u8 compression, u8 encryption,
2109 				       u16 other_encoding, int extent_type)
2110 {
2111 	struct btrfs_root *root = BTRFS_I(inode)->root;
2112 	struct btrfs_file_extent_item *fi;
2113 	struct btrfs_path *path;
2114 	struct extent_buffer *leaf;
2115 	struct btrfs_key ins;
2116 	int extent_inserted = 0;
2117 	int ret;
2118 
2119 	path = btrfs_alloc_path();
2120 	if (!path)
2121 		return -ENOMEM;
2122 
2123 	/*
2124 	 * we may be replacing one extent in the tree with another.
2125 	 * The new extent is pinned in the extent map, and we don't want
2126 	 * to drop it from the cache until it is completely in the btree.
2127 	 *
2128 	 * So, tell btrfs_drop_extents to leave this extent in the cache.
2129 	 * the caller is expected to unpin it and allow it to be merged
2130 	 * with the others.
2131 	 */
2132 	ret = __btrfs_drop_extents(trans, root, inode, path, file_pos,
2133 				   file_pos + num_bytes, NULL, 0,
2134 				   1, sizeof(*fi), &extent_inserted);
2135 	if (ret)
2136 		goto out;
2137 
2138 	if (!extent_inserted) {
2139 		ins.objectid = btrfs_ino(inode);
2140 		ins.offset = file_pos;
2141 		ins.type = BTRFS_EXTENT_DATA_KEY;
2142 
2143 		path->leave_spinning = 1;
2144 		ret = btrfs_insert_empty_item(trans, root, path, &ins,
2145 					      sizeof(*fi));
2146 		if (ret)
2147 			goto out;
2148 	}
2149 	leaf = path->nodes[0];
2150 	fi = btrfs_item_ptr(leaf, path->slots[0],
2151 			    struct btrfs_file_extent_item);
2152 	btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2153 	btrfs_set_file_extent_type(leaf, fi, extent_type);
2154 	btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
2155 	btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
2156 	btrfs_set_file_extent_offset(leaf, fi, 0);
2157 	btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2158 	btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
2159 	btrfs_set_file_extent_compression(leaf, fi, compression);
2160 	btrfs_set_file_extent_encryption(leaf, fi, encryption);
2161 	btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
2162 
2163 	btrfs_mark_buffer_dirty(leaf);
2164 	btrfs_release_path(path);
2165 
2166 	inode_add_bytes(inode, num_bytes);
2167 
2168 	ins.objectid = disk_bytenr;
2169 	ins.offset = disk_num_bytes;
2170 	ins.type = BTRFS_EXTENT_ITEM_KEY;
2171 	ret = btrfs_alloc_reserved_file_extent(trans, root,
2172 					root->root_key.objectid,
2173 					btrfs_ino(inode), file_pos,
2174 					ram_bytes, &ins);
2175 	/*
2176 	 * Release the reserved range from inode dirty range map, as it is
2177 	 * already moved into delayed_ref_head
2178 	 */
2179 	btrfs_qgroup_release_data(inode, file_pos, ram_bytes);
2180 out:
2181 	btrfs_free_path(path);
2182 
2183 	return ret;
2184 }
2185 
2186 /* snapshot-aware defrag */
2187 struct sa_defrag_extent_backref {
2188 	struct rb_node node;
2189 	struct old_sa_defrag_extent *old;
2190 	u64 root_id;
2191 	u64 inum;
2192 	u64 file_pos;
2193 	u64 extent_offset;
2194 	u64 num_bytes;
2195 	u64 generation;
2196 };
2197 
2198 struct old_sa_defrag_extent {
2199 	struct list_head list;
2200 	struct new_sa_defrag_extent *new;
2201 
2202 	u64 extent_offset;
2203 	u64 bytenr;
2204 	u64 offset;
2205 	u64 len;
2206 	int count;
2207 };
2208 
2209 struct new_sa_defrag_extent {
2210 	struct rb_root root;
2211 	struct list_head head;
2212 	struct btrfs_path *path;
2213 	struct inode *inode;
2214 	u64 file_pos;
2215 	u64 len;
2216 	u64 bytenr;
2217 	u64 disk_len;
2218 	u8 compress_type;
2219 };
2220 
2221 static int backref_comp(struct sa_defrag_extent_backref *b1,
2222 			struct sa_defrag_extent_backref *b2)
2223 {
2224 	if (b1->root_id < b2->root_id)
2225 		return -1;
2226 	else if (b1->root_id > b2->root_id)
2227 		return 1;
2228 
2229 	if (b1->inum < b2->inum)
2230 		return -1;
2231 	else if (b1->inum > b2->inum)
2232 		return 1;
2233 
2234 	if (b1->file_pos < b2->file_pos)
2235 		return -1;
2236 	else if (b1->file_pos > b2->file_pos)
2237 		return 1;
2238 
2239 	/*
2240 	 * [------------------------------] ===> (a range of space)
2241 	 *     |<--->|   |<---->| =============> (fs/file tree A)
2242 	 * |<---------------------------->| ===> (fs/file tree B)
2243 	 *
2244 	 * A range of space can refer to two file extents in one tree while
2245 	 * refer to only one file extent in another tree.
2246 	 *
2247 	 * So we may process a disk offset more than one time(two extents in A)
2248 	 * and locate at the same extent(one extent in B), then insert two same
2249 	 * backrefs(both refer to the extent in B).
2250 	 */
2251 	return 0;
2252 }
2253 
2254 static void backref_insert(struct rb_root *root,
2255 			   struct sa_defrag_extent_backref *backref)
2256 {
2257 	struct rb_node **p = &root->rb_node;
2258 	struct rb_node *parent = NULL;
2259 	struct sa_defrag_extent_backref *entry;
2260 	int ret;
2261 
2262 	while (*p) {
2263 		parent = *p;
2264 		entry = rb_entry(parent, struct sa_defrag_extent_backref, node);
2265 
2266 		ret = backref_comp(backref, entry);
2267 		if (ret < 0)
2268 			p = &(*p)->rb_left;
2269 		else
2270 			p = &(*p)->rb_right;
2271 	}
2272 
2273 	rb_link_node(&backref->node, parent, p);
2274 	rb_insert_color(&backref->node, root);
2275 }
2276 
2277 /*
2278  * Note the backref might has changed, and in this case we just return 0.
2279  */
2280 static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id,
2281 				       void *ctx)
2282 {
2283 	struct btrfs_file_extent_item *extent;
2284 	struct btrfs_fs_info *fs_info;
2285 	struct old_sa_defrag_extent *old = ctx;
2286 	struct new_sa_defrag_extent *new = old->new;
2287 	struct btrfs_path *path = new->path;
2288 	struct btrfs_key key;
2289 	struct btrfs_root *root;
2290 	struct sa_defrag_extent_backref *backref;
2291 	struct extent_buffer *leaf;
2292 	struct inode *inode = new->inode;
2293 	int slot;
2294 	int ret;
2295 	u64 extent_offset;
2296 	u64 num_bytes;
2297 
2298 	if (BTRFS_I(inode)->root->root_key.objectid == root_id &&
2299 	    inum == btrfs_ino(inode))
2300 		return 0;
2301 
2302 	key.objectid = root_id;
2303 	key.type = BTRFS_ROOT_ITEM_KEY;
2304 	key.offset = (u64)-1;
2305 
2306 	fs_info = BTRFS_I(inode)->root->fs_info;
2307 	root = btrfs_read_fs_root_no_name(fs_info, &key);
2308 	if (IS_ERR(root)) {
2309 		if (PTR_ERR(root) == -ENOENT)
2310 			return 0;
2311 		WARN_ON(1);
2312 		pr_debug("inum=%llu, offset=%llu, root_id=%llu\n",
2313 			 inum, offset, root_id);
2314 		return PTR_ERR(root);
2315 	}
2316 
2317 	key.objectid = inum;
2318 	key.type = BTRFS_EXTENT_DATA_KEY;
2319 	if (offset > (u64)-1 << 32)
2320 		key.offset = 0;
2321 	else
2322 		key.offset = offset;
2323 
2324 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2325 	if (WARN_ON(ret < 0))
2326 		return ret;
2327 	ret = 0;
2328 
2329 	while (1) {
2330 		cond_resched();
2331 
2332 		leaf = path->nodes[0];
2333 		slot = path->slots[0];
2334 
2335 		if (slot >= btrfs_header_nritems(leaf)) {
2336 			ret = btrfs_next_leaf(root, path);
2337 			if (ret < 0) {
2338 				goto out;
2339 			} else if (ret > 0) {
2340 				ret = 0;
2341 				goto out;
2342 			}
2343 			continue;
2344 		}
2345 
2346 		path->slots[0]++;
2347 
2348 		btrfs_item_key_to_cpu(leaf, &key, slot);
2349 
2350 		if (key.objectid > inum)
2351 			goto out;
2352 
2353 		if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY)
2354 			continue;
2355 
2356 		extent = btrfs_item_ptr(leaf, slot,
2357 					struct btrfs_file_extent_item);
2358 
2359 		if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr)
2360 			continue;
2361 
2362 		/*
2363 		 * 'offset' refers to the exact key.offset,
2364 		 * NOT the 'offset' field in btrfs_extent_data_ref, ie.
2365 		 * (key.offset - extent_offset).
2366 		 */
2367 		if (key.offset != offset)
2368 			continue;
2369 
2370 		extent_offset = btrfs_file_extent_offset(leaf, extent);
2371 		num_bytes = btrfs_file_extent_num_bytes(leaf, extent);
2372 
2373 		if (extent_offset >= old->extent_offset + old->offset +
2374 		    old->len || extent_offset + num_bytes <=
2375 		    old->extent_offset + old->offset)
2376 			continue;
2377 		break;
2378 	}
2379 
2380 	backref = kmalloc(sizeof(*backref), GFP_NOFS);
2381 	if (!backref) {
2382 		ret = -ENOENT;
2383 		goto out;
2384 	}
2385 
2386 	backref->root_id = root_id;
2387 	backref->inum = inum;
2388 	backref->file_pos = offset;
2389 	backref->num_bytes = num_bytes;
2390 	backref->extent_offset = extent_offset;
2391 	backref->generation = btrfs_file_extent_generation(leaf, extent);
2392 	backref->old = old;
2393 	backref_insert(&new->root, backref);
2394 	old->count++;
2395 out:
2396 	btrfs_release_path(path);
2397 	WARN_ON(ret);
2398 	return ret;
2399 }
2400 
2401 static noinline bool record_extent_backrefs(struct btrfs_path *path,
2402 				   struct new_sa_defrag_extent *new)
2403 {
2404 	struct btrfs_fs_info *fs_info = BTRFS_I(new->inode)->root->fs_info;
2405 	struct old_sa_defrag_extent *old, *tmp;
2406 	int ret;
2407 
2408 	new->path = path;
2409 
2410 	list_for_each_entry_safe(old, tmp, &new->head, list) {
2411 		ret = iterate_inodes_from_logical(old->bytenr +
2412 						  old->extent_offset, fs_info,
2413 						  path, record_one_backref,
2414 						  old);
2415 		if (ret < 0 && ret != -ENOENT)
2416 			return false;
2417 
2418 		/* no backref to be processed for this extent */
2419 		if (!old->count) {
2420 			list_del(&old->list);
2421 			kfree(old);
2422 		}
2423 	}
2424 
2425 	if (list_empty(&new->head))
2426 		return false;
2427 
2428 	return true;
2429 }
2430 
2431 static int relink_is_mergable(struct extent_buffer *leaf,
2432 			      struct btrfs_file_extent_item *fi,
2433 			      struct new_sa_defrag_extent *new)
2434 {
2435 	if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr)
2436 		return 0;
2437 
2438 	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2439 		return 0;
2440 
2441 	if (btrfs_file_extent_compression(leaf, fi) != new->compress_type)
2442 		return 0;
2443 
2444 	if (btrfs_file_extent_encryption(leaf, fi) ||
2445 	    btrfs_file_extent_other_encoding(leaf, fi))
2446 		return 0;
2447 
2448 	return 1;
2449 }
2450 
2451 /*
2452  * Note the backref might has changed, and in this case we just return 0.
2453  */
2454 static noinline int relink_extent_backref(struct btrfs_path *path,
2455 				 struct sa_defrag_extent_backref *prev,
2456 				 struct sa_defrag_extent_backref *backref)
2457 {
2458 	struct btrfs_file_extent_item *extent;
2459 	struct btrfs_file_extent_item *item;
2460 	struct btrfs_ordered_extent *ordered;
2461 	struct btrfs_trans_handle *trans;
2462 	struct btrfs_fs_info *fs_info;
2463 	struct btrfs_root *root;
2464 	struct btrfs_key key;
2465 	struct extent_buffer *leaf;
2466 	struct old_sa_defrag_extent *old = backref->old;
2467 	struct new_sa_defrag_extent *new = old->new;
2468 	struct inode *src_inode = new->inode;
2469 	struct inode *inode;
2470 	struct extent_state *cached = NULL;
2471 	int ret = 0;
2472 	u64 start;
2473 	u64 len;
2474 	u64 lock_start;
2475 	u64 lock_end;
2476 	bool merge = false;
2477 	int index;
2478 
2479 	if (prev && prev->root_id == backref->root_id &&
2480 	    prev->inum == backref->inum &&
2481 	    prev->file_pos + prev->num_bytes == backref->file_pos)
2482 		merge = true;
2483 
2484 	/* step 1: get root */
2485 	key.objectid = backref->root_id;
2486 	key.type = BTRFS_ROOT_ITEM_KEY;
2487 	key.offset = (u64)-1;
2488 
2489 	fs_info = BTRFS_I(src_inode)->root->fs_info;
2490 	index = srcu_read_lock(&fs_info->subvol_srcu);
2491 
2492 	root = btrfs_read_fs_root_no_name(fs_info, &key);
2493 	if (IS_ERR(root)) {
2494 		srcu_read_unlock(&fs_info->subvol_srcu, index);
2495 		if (PTR_ERR(root) == -ENOENT)
2496 			return 0;
2497 		return PTR_ERR(root);
2498 	}
2499 
2500 	if (btrfs_root_readonly(root)) {
2501 		srcu_read_unlock(&fs_info->subvol_srcu, index);
2502 		return 0;
2503 	}
2504 
2505 	/* step 2: get inode */
2506 	key.objectid = backref->inum;
2507 	key.type = BTRFS_INODE_ITEM_KEY;
2508 	key.offset = 0;
2509 
2510 	inode = btrfs_iget(fs_info->sb, &key, root, NULL);
2511 	if (IS_ERR(inode)) {
2512 		srcu_read_unlock(&fs_info->subvol_srcu, index);
2513 		return 0;
2514 	}
2515 
2516 	srcu_read_unlock(&fs_info->subvol_srcu, index);
2517 
2518 	/* step 3: relink backref */
2519 	lock_start = backref->file_pos;
2520 	lock_end = backref->file_pos + backref->num_bytes - 1;
2521 	lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2522 			 &cached);
2523 
2524 	ordered = btrfs_lookup_first_ordered_extent(inode, lock_end);
2525 	if (ordered) {
2526 		btrfs_put_ordered_extent(ordered);
2527 		goto out_unlock;
2528 	}
2529 
2530 	trans = btrfs_join_transaction(root);
2531 	if (IS_ERR(trans)) {
2532 		ret = PTR_ERR(trans);
2533 		goto out_unlock;
2534 	}
2535 
2536 	key.objectid = backref->inum;
2537 	key.type = BTRFS_EXTENT_DATA_KEY;
2538 	key.offset = backref->file_pos;
2539 
2540 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2541 	if (ret < 0) {
2542 		goto out_free_path;
2543 	} else if (ret > 0) {
2544 		ret = 0;
2545 		goto out_free_path;
2546 	}
2547 
2548 	extent = btrfs_item_ptr(path->nodes[0], path->slots[0],
2549 				struct btrfs_file_extent_item);
2550 
2551 	if (btrfs_file_extent_generation(path->nodes[0], extent) !=
2552 	    backref->generation)
2553 		goto out_free_path;
2554 
2555 	btrfs_release_path(path);
2556 
2557 	start = backref->file_pos;
2558 	if (backref->extent_offset < old->extent_offset + old->offset)
2559 		start += old->extent_offset + old->offset -
2560 			 backref->extent_offset;
2561 
2562 	len = min(backref->extent_offset + backref->num_bytes,
2563 		  old->extent_offset + old->offset + old->len);
2564 	len -= max(backref->extent_offset, old->extent_offset + old->offset);
2565 
2566 	ret = btrfs_drop_extents(trans, root, inode, start,
2567 				 start + len, 1);
2568 	if (ret)
2569 		goto out_free_path;
2570 again:
2571 	key.objectid = btrfs_ino(inode);
2572 	key.type = BTRFS_EXTENT_DATA_KEY;
2573 	key.offset = start;
2574 
2575 	path->leave_spinning = 1;
2576 	if (merge) {
2577 		struct btrfs_file_extent_item *fi;
2578 		u64 extent_len;
2579 		struct btrfs_key found_key;
2580 
2581 		ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2582 		if (ret < 0)
2583 			goto out_free_path;
2584 
2585 		path->slots[0]--;
2586 		leaf = path->nodes[0];
2587 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2588 
2589 		fi = btrfs_item_ptr(leaf, path->slots[0],
2590 				    struct btrfs_file_extent_item);
2591 		extent_len = btrfs_file_extent_num_bytes(leaf, fi);
2592 
2593 		if (extent_len + found_key.offset == start &&
2594 		    relink_is_mergable(leaf, fi, new)) {
2595 			btrfs_set_file_extent_num_bytes(leaf, fi,
2596 							extent_len + len);
2597 			btrfs_mark_buffer_dirty(leaf);
2598 			inode_add_bytes(inode, len);
2599 
2600 			ret = 1;
2601 			goto out_free_path;
2602 		} else {
2603 			merge = false;
2604 			btrfs_release_path(path);
2605 			goto again;
2606 		}
2607 	}
2608 
2609 	ret = btrfs_insert_empty_item(trans, root, path, &key,
2610 					sizeof(*extent));
2611 	if (ret) {
2612 		btrfs_abort_transaction(trans, ret);
2613 		goto out_free_path;
2614 	}
2615 
2616 	leaf = path->nodes[0];
2617 	item = btrfs_item_ptr(leaf, path->slots[0],
2618 				struct btrfs_file_extent_item);
2619 	btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr);
2620 	btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len);
2621 	btrfs_set_file_extent_offset(leaf, item, start - new->file_pos);
2622 	btrfs_set_file_extent_num_bytes(leaf, item, len);
2623 	btrfs_set_file_extent_ram_bytes(leaf, item, new->len);
2624 	btrfs_set_file_extent_generation(leaf, item, trans->transid);
2625 	btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
2626 	btrfs_set_file_extent_compression(leaf, item, new->compress_type);
2627 	btrfs_set_file_extent_encryption(leaf, item, 0);
2628 	btrfs_set_file_extent_other_encoding(leaf, item, 0);
2629 
2630 	btrfs_mark_buffer_dirty(leaf);
2631 	inode_add_bytes(inode, len);
2632 	btrfs_release_path(path);
2633 
2634 	ret = btrfs_inc_extent_ref(trans, root, new->bytenr,
2635 			new->disk_len, 0,
2636 			backref->root_id, backref->inum,
2637 			new->file_pos);	/* start - extent_offset */
2638 	if (ret) {
2639 		btrfs_abort_transaction(trans, ret);
2640 		goto out_free_path;
2641 	}
2642 
2643 	ret = 1;
2644 out_free_path:
2645 	btrfs_release_path(path);
2646 	path->leave_spinning = 0;
2647 	btrfs_end_transaction(trans, root);
2648 out_unlock:
2649 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2650 			     &cached, GFP_NOFS);
2651 	iput(inode);
2652 	return ret;
2653 }
2654 
2655 static void free_sa_defrag_extent(struct new_sa_defrag_extent *new)
2656 {
2657 	struct old_sa_defrag_extent *old, *tmp;
2658 
2659 	if (!new)
2660 		return;
2661 
2662 	list_for_each_entry_safe(old, tmp, &new->head, list) {
2663 		kfree(old);
2664 	}
2665 	kfree(new);
2666 }
2667 
2668 static void relink_file_extents(struct new_sa_defrag_extent *new)
2669 {
2670 	struct btrfs_path *path;
2671 	struct sa_defrag_extent_backref *backref;
2672 	struct sa_defrag_extent_backref *prev = NULL;
2673 	struct inode *inode;
2674 	struct btrfs_root *root;
2675 	struct rb_node *node;
2676 	int ret;
2677 
2678 	inode = new->inode;
2679 	root = BTRFS_I(inode)->root;
2680 
2681 	path = btrfs_alloc_path();
2682 	if (!path)
2683 		return;
2684 
2685 	if (!record_extent_backrefs(path, new)) {
2686 		btrfs_free_path(path);
2687 		goto out;
2688 	}
2689 	btrfs_release_path(path);
2690 
2691 	while (1) {
2692 		node = rb_first(&new->root);
2693 		if (!node)
2694 			break;
2695 		rb_erase(node, &new->root);
2696 
2697 		backref = rb_entry(node, struct sa_defrag_extent_backref, node);
2698 
2699 		ret = relink_extent_backref(path, prev, backref);
2700 		WARN_ON(ret < 0);
2701 
2702 		kfree(prev);
2703 
2704 		if (ret == 1)
2705 			prev = backref;
2706 		else
2707 			prev = NULL;
2708 		cond_resched();
2709 	}
2710 	kfree(prev);
2711 
2712 	btrfs_free_path(path);
2713 out:
2714 	free_sa_defrag_extent(new);
2715 
2716 	atomic_dec(&root->fs_info->defrag_running);
2717 	wake_up(&root->fs_info->transaction_wait);
2718 }
2719 
2720 static struct new_sa_defrag_extent *
2721 record_old_file_extents(struct inode *inode,
2722 			struct btrfs_ordered_extent *ordered)
2723 {
2724 	struct btrfs_root *root = BTRFS_I(inode)->root;
2725 	struct btrfs_path *path;
2726 	struct btrfs_key key;
2727 	struct old_sa_defrag_extent *old;
2728 	struct new_sa_defrag_extent *new;
2729 	int ret;
2730 
2731 	new = kmalloc(sizeof(*new), GFP_NOFS);
2732 	if (!new)
2733 		return NULL;
2734 
2735 	new->inode = inode;
2736 	new->file_pos = ordered->file_offset;
2737 	new->len = ordered->len;
2738 	new->bytenr = ordered->start;
2739 	new->disk_len = ordered->disk_len;
2740 	new->compress_type = ordered->compress_type;
2741 	new->root = RB_ROOT;
2742 	INIT_LIST_HEAD(&new->head);
2743 
2744 	path = btrfs_alloc_path();
2745 	if (!path)
2746 		goto out_kfree;
2747 
2748 	key.objectid = btrfs_ino(inode);
2749 	key.type = BTRFS_EXTENT_DATA_KEY;
2750 	key.offset = new->file_pos;
2751 
2752 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2753 	if (ret < 0)
2754 		goto out_free_path;
2755 	if (ret > 0 && path->slots[0] > 0)
2756 		path->slots[0]--;
2757 
2758 	/* find out all the old extents for the file range */
2759 	while (1) {
2760 		struct btrfs_file_extent_item *extent;
2761 		struct extent_buffer *l;
2762 		int slot;
2763 		u64 num_bytes;
2764 		u64 offset;
2765 		u64 end;
2766 		u64 disk_bytenr;
2767 		u64 extent_offset;
2768 
2769 		l = path->nodes[0];
2770 		slot = path->slots[0];
2771 
2772 		if (slot >= btrfs_header_nritems(l)) {
2773 			ret = btrfs_next_leaf(root, path);
2774 			if (ret < 0)
2775 				goto out_free_path;
2776 			else if (ret > 0)
2777 				break;
2778 			continue;
2779 		}
2780 
2781 		btrfs_item_key_to_cpu(l, &key, slot);
2782 
2783 		if (key.objectid != btrfs_ino(inode))
2784 			break;
2785 		if (key.type != BTRFS_EXTENT_DATA_KEY)
2786 			break;
2787 		if (key.offset >= new->file_pos + new->len)
2788 			break;
2789 
2790 		extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item);
2791 
2792 		num_bytes = btrfs_file_extent_num_bytes(l, extent);
2793 		if (key.offset + num_bytes < new->file_pos)
2794 			goto next;
2795 
2796 		disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent);
2797 		if (!disk_bytenr)
2798 			goto next;
2799 
2800 		extent_offset = btrfs_file_extent_offset(l, extent);
2801 
2802 		old = kmalloc(sizeof(*old), GFP_NOFS);
2803 		if (!old)
2804 			goto out_free_path;
2805 
2806 		offset = max(new->file_pos, key.offset);
2807 		end = min(new->file_pos + new->len, key.offset + num_bytes);
2808 
2809 		old->bytenr = disk_bytenr;
2810 		old->extent_offset = extent_offset;
2811 		old->offset = offset - key.offset;
2812 		old->len = end - offset;
2813 		old->new = new;
2814 		old->count = 0;
2815 		list_add_tail(&old->list, &new->head);
2816 next:
2817 		path->slots[0]++;
2818 		cond_resched();
2819 	}
2820 
2821 	btrfs_free_path(path);
2822 	atomic_inc(&root->fs_info->defrag_running);
2823 
2824 	return new;
2825 
2826 out_free_path:
2827 	btrfs_free_path(path);
2828 out_kfree:
2829 	free_sa_defrag_extent(new);
2830 	return NULL;
2831 }
2832 
2833 static void btrfs_release_delalloc_bytes(struct btrfs_root *root,
2834 					 u64 start, u64 len)
2835 {
2836 	struct btrfs_block_group_cache *cache;
2837 
2838 	cache = btrfs_lookup_block_group(root->fs_info, start);
2839 	ASSERT(cache);
2840 
2841 	spin_lock(&cache->lock);
2842 	cache->delalloc_bytes -= len;
2843 	spin_unlock(&cache->lock);
2844 
2845 	btrfs_put_block_group(cache);
2846 }
2847 
2848 /* as ordered data IO finishes, this gets called so we can finish
2849  * an ordered extent if the range of bytes in the file it covers are
2850  * fully written.
2851  */
2852 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
2853 {
2854 	struct inode *inode = ordered_extent->inode;
2855 	struct btrfs_root *root = BTRFS_I(inode)->root;
2856 	struct btrfs_trans_handle *trans = NULL;
2857 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2858 	struct extent_state *cached_state = NULL;
2859 	struct new_sa_defrag_extent *new = NULL;
2860 	int compress_type = 0;
2861 	int ret = 0;
2862 	u64 logical_len = ordered_extent->len;
2863 	bool nolock;
2864 	bool truncated = false;
2865 
2866 	nolock = btrfs_is_free_space_inode(inode);
2867 
2868 	if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
2869 		ret = -EIO;
2870 		goto out;
2871 	}
2872 
2873 	btrfs_free_io_failure_record(inode, ordered_extent->file_offset,
2874 				     ordered_extent->file_offset +
2875 				     ordered_extent->len - 1);
2876 
2877 	if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
2878 		truncated = true;
2879 		logical_len = ordered_extent->truncated_len;
2880 		/* Truncated the entire extent, don't bother adding */
2881 		if (!logical_len)
2882 			goto out;
2883 	}
2884 
2885 	if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
2886 		BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
2887 
2888 		/*
2889 		 * For mwrite(mmap + memset to write) case, we still reserve
2890 		 * space for NOCOW range.
2891 		 * As NOCOW won't cause a new delayed ref, just free the space
2892 		 */
2893 		btrfs_qgroup_free_data(inode, ordered_extent->file_offset,
2894 				       ordered_extent->len);
2895 		btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2896 		if (nolock)
2897 			trans = btrfs_join_transaction_nolock(root);
2898 		else
2899 			trans = btrfs_join_transaction(root);
2900 		if (IS_ERR(trans)) {
2901 			ret = PTR_ERR(trans);
2902 			trans = NULL;
2903 			goto out;
2904 		}
2905 		trans->block_rsv = &root->fs_info->delalloc_block_rsv;
2906 		ret = btrfs_update_inode_fallback(trans, root, inode);
2907 		if (ret) /* -ENOMEM or corruption */
2908 			btrfs_abort_transaction(trans, ret);
2909 		goto out;
2910 	}
2911 
2912 	lock_extent_bits(io_tree, ordered_extent->file_offset,
2913 			 ordered_extent->file_offset + ordered_extent->len - 1,
2914 			 &cached_state);
2915 
2916 	ret = test_range_bit(io_tree, ordered_extent->file_offset,
2917 			ordered_extent->file_offset + ordered_extent->len - 1,
2918 			EXTENT_DEFRAG, 1, cached_state);
2919 	if (ret) {
2920 		u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
2921 		if (0 && last_snapshot >= BTRFS_I(inode)->generation)
2922 			/* the inode is shared */
2923 			new = record_old_file_extents(inode, ordered_extent);
2924 
2925 		clear_extent_bit(io_tree, ordered_extent->file_offset,
2926 			ordered_extent->file_offset + ordered_extent->len - 1,
2927 			EXTENT_DEFRAG, 0, 0, &cached_state, GFP_NOFS);
2928 	}
2929 
2930 	if (nolock)
2931 		trans = btrfs_join_transaction_nolock(root);
2932 	else
2933 		trans = btrfs_join_transaction(root);
2934 	if (IS_ERR(trans)) {
2935 		ret = PTR_ERR(trans);
2936 		trans = NULL;
2937 		goto out_unlock;
2938 	}
2939 
2940 	trans->block_rsv = &root->fs_info->delalloc_block_rsv;
2941 
2942 	if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
2943 		compress_type = ordered_extent->compress_type;
2944 	if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
2945 		BUG_ON(compress_type);
2946 		ret = btrfs_mark_extent_written(trans, inode,
2947 						ordered_extent->file_offset,
2948 						ordered_extent->file_offset +
2949 						logical_len);
2950 	} else {
2951 		BUG_ON(root == root->fs_info->tree_root);
2952 		ret = insert_reserved_file_extent(trans, inode,
2953 						ordered_extent->file_offset,
2954 						ordered_extent->start,
2955 						ordered_extent->disk_len,
2956 						logical_len, logical_len,
2957 						compress_type, 0, 0,
2958 						BTRFS_FILE_EXTENT_REG);
2959 		if (!ret)
2960 			btrfs_release_delalloc_bytes(root,
2961 						     ordered_extent->start,
2962 						     ordered_extent->disk_len);
2963 	}
2964 	unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
2965 			   ordered_extent->file_offset, ordered_extent->len,
2966 			   trans->transid);
2967 	if (ret < 0) {
2968 		btrfs_abort_transaction(trans, ret);
2969 		goto out_unlock;
2970 	}
2971 
2972 	add_pending_csums(trans, inode, ordered_extent->file_offset,
2973 			  &ordered_extent->list);
2974 
2975 	btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2976 	ret = btrfs_update_inode_fallback(trans, root, inode);
2977 	if (ret) { /* -ENOMEM or corruption */
2978 		btrfs_abort_transaction(trans, ret);
2979 		goto out_unlock;
2980 	}
2981 	ret = 0;
2982 out_unlock:
2983 	unlock_extent_cached(io_tree, ordered_extent->file_offset,
2984 			     ordered_extent->file_offset +
2985 			     ordered_extent->len - 1, &cached_state, GFP_NOFS);
2986 out:
2987 	if (root != root->fs_info->tree_root)
2988 		btrfs_delalloc_release_metadata(inode, ordered_extent->len);
2989 	if (trans)
2990 		btrfs_end_transaction(trans, root);
2991 
2992 	if (ret || truncated) {
2993 		u64 start, end;
2994 
2995 		if (truncated)
2996 			start = ordered_extent->file_offset + logical_len;
2997 		else
2998 			start = ordered_extent->file_offset;
2999 		end = ordered_extent->file_offset + ordered_extent->len - 1;
3000 		clear_extent_uptodate(io_tree, start, end, NULL, GFP_NOFS);
3001 
3002 		/* Drop the cache for the part of the extent we didn't write. */
3003 		btrfs_drop_extent_cache(inode, start, end, 0);
3004 
3005 		/*
3006 		 * If the ordered extent had an IOERR or something else went
3007 		 * wrong we need to return the space for this ordered extent
3008 		 * back to the allocator.  We only free the extent in the
3009 		 * truncated case if we didn't write out the extent at all.
3010 		 */
3011 		if ((ret || !logical_len) &&
3012 		    !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3013 		    !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags))
3014 			btrfs_free_reserved_extent(root, ordered_extent->start,
3015 						   ordered_extent->disk_len, 1);
3016 	}
3017 
3018 
3019 	/*
3020 	 * This needs to be done to make sure anybody waiting knows we are done
3021 	 * updating everything for this ordered extent.
3022 	 */
3023 	btrfs_remove_ordered_extent(inode, ordered_extent);
3024 
3025 	/* for snapshot-aware defrag */
3026 	if (new) {
3027 		if (ret) {
3028 			free_sa_defrag_extent(new);
3029 			atomic_dec(&root->fs_info->defrag_running);
3030 		} else {
3031 			relink_file_extents(new);
3032 		}
3033 	}
3034 
3035 	/* once for us */
3036 	btrfs_put_ordered_extent(ordered_extent);
3037 	/* once for the tree */
3038 	btrfs_put_ordered_extent(ordered_extent);
3039 
3040 	return ret;
3041 }
3042 
3043 static void finish_ordered_fn(struct btrfs_work *work)
3044 {
3045 	struct btrfs_ordered_extent *ordered_extent;
3046 	ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
3047 	btrfs_finish_ordered_io(ordered_extent);
3048 }
3049 
3050 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
3051 				struct extent_state *state, int uptodate)
3052 {
3053 	struct inode *inode = page->mapping->host;
3054 	struct btrfs_root *root = BTRFS_I(inode)->root;
3055 	struct btrfs_ordered_extent *ordered_extent = NULL;
3056 	struct btrfs_workqueue *wq;
3057 	btrfs_work_func_t func;
3058 
3059 	trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
3060 
3061 	ClearPagePrivate2(page);
3062 	if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
3063 					    end - start + 1, uptodate))
3064 		return 0;
3065 
3066 	if (btrfs_is_free_space_inode(inode)) {
3067 		wq = root->fs_info->endio_freespace_worker;
3068 		func = btrfs_freespace_write_helper;
3069 	} else {
3070 		wq = root->fs_info->endio_write_workers;
3071 		func = btrfs_endio_write_helper;
3072 	}
3073 
3074 	btrfs_init_work(&ordered_extent->work, func, finish_ordered_fn, NULL,
3075 			NULL);
3076 	btrfs_queue_work(wq, &ordered_extent->work);
3077 
3078 	return 0;
3079 }
3080 
3081 static int __readpage_endio_check(struct inode *inode,
3082 				  struct btrfs_io_bio *io_bio,
3083 				  int icsum, struct page *page,
3084 				  int pgoff, u64 start, size_t len)
3085 {
3086 	char *kaddr;
3087 	u32 csum_expected;
3088 	u32 csum = ~(u32)0;
3089 
3090 	csum_expected = *(((u32 *)io_bio->csum) + icsum);
3091 
3092 	kaddr = kmap_atomic(page);
3093 	csum = btrfs_csum_data(kaddr + pgoff, csum,  len);
3094 	btrfs_csum_final(csum, (char *)&csum);
3095 	if (csum != csum_expected)
3096 		goto zeroit;
3097 
3098 	kunmap_atomic(kaddr);
3099 	return 0;
3100 zeroit:
3101 	btrfs_warn_rl(BTRFS_I(inode)->root->fs_info,
3102 		"csum failed ino %llu off %llu csum %u expected csum %u",
3103 			   btrfs_ino(inode), start, csum, csum_expected);
3104 	memset(kaddr + pgoff, 1, len);
3105 	flush_dcache_page(page);
3106 	kunmap_atomic(kaddr);
3107 	if (csum_expected == 0)
3108 		return 0;
3109 	return -EIO;
3110 }
3111 
3112 /*
3113  * when reads are done, we need to check csums to verify the data is correct
3114  * if there's a match, we allow the bio to finish.  If not, the code in
3115  * extent_io.c will try to find good copies for us.
3116  */
3117 static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
3118 				      u64 phy_offset, struct page *page,
3119 				      u64 start, u64 end, int mirror)
3120 {
3121 	size_t offset = start - page_offset(page);
3122 	struct inode *inode = page->mapping->host;
3123 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3124 	struct btrfs_root *root = BTRFS_I(inode)->root;
3125 
3126 	if (PageChecked(page)) {
3127 		ClearPageChecked(page);
3128 		return 0;
3129 	}
3130 
3131 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
3132 		return 0;
3133 
3134 	if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
3135 	    test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
3136 		clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM);
3137 		return 0;
3138 	}
3139 
3140 	phy_offset >>= inode->i_sb->s_blocksize_bits;
3141 	return __readpage_endio_check(inode, io_bio, phy_offset, page, offset,
3142 				      start, (size_t)(end - start + 1));
3143 }
3144 
3145 void btrfs_add_delayed_iput(struct inode *inode)
3146 {
3147 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
3148 	struct btrfs_inode *binode = BTRFS_I(inode);
3149 
3150 	if (atomic_add_unless(&inode->i_count, -1, 1))
3151 		return;
3152 
3153 	spin_lock(&fs_info->delayed_iput_lock);
3154 	if (binode->delayed_iput_count == 0) {
3155 		ASSERT(list_empty(&binode->delayed_iput));
3156 		list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs);
3157 	} else {
3158 		binode->delayed_iput_count++;
3159 	}
3160 	spin_unlock(&fs_info->delayed_iput_lock);
3161 }
3162 
3163 void btrfs_run_delayed_iputs(struct btrfs_root *root)
3164 {
3165 	struct btrfs_fs_info *fs_info = root->fs_info;
3166 
3167 	spin_lock(&fs_info->delayed_iput_lock);
3168 	while (!list_empty(&fs_info->delayed_iputs)) {
3169 		struct btrfs_inode *inode;
3170 
3171 		inode = list_first_entry(&fs_info->delayed_iputs,
3172 				struct btrfs_inode, delayed_iput);
3173 		if (inode->delayed_iput_count) {
3174 			inode->delayed_iput_count--;
3175 			list_move_tail(&inode->delayed_iput,
3176 					&fs_info->delayed_iputs);
3177 		} else {
3178 			list_del_init(&inode->delayed_iput);
3179 		}
3180 		spin_unlock(&fs_info->delayed_iput_lock);
3181 		iput(&inode->vfs_inode);
3182 		spin_lock(&fs_info->delayed_iput_lock);
3183 	}
3184 	spin_unlock(&fs_info->delayed_iput_lock);
3185 }
3186 
3187 /*
3188  * This is called in transaction commit time. If there are no orphan
3189  * files in the subvolume, it removes orphan item and frees block_rsv
3190  * structure.
3191  */
3192 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
3193 			      struct btrfs_root *root)
3194 {
3195 	struct btrfs_block_rsv *block_rsv;
3196 	int ret;
3197 
3198 	if (atomic_read(&root->orphan_inodes) ||
3199 	    root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
3200 		return;
3201 
3202 	spin_lock(&root->orphan_lock);
3203 	if (atomic_read(&root->orphan_inodes)) {
3204 		spin_unlock(&root->orphan_lock);
3205 		return;
3206 	}
3207 
3208 	if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) {
3209 		spin_unlock(&root->orphan_lock);
3210 		return;
3211 	}
3212 
3213 	block_rsv = root->orphan_block_rsv;
3214 	root->orphan_block_rsv = NULL;
3215 	spin_unlock(&root->orphan_lock);
3216 
3217 	if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state) &&
3218 	    btrfs_root_refs(&root->root_item) > 0) {
3219 		ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
3220 					    root->root_key.objectid);
3221 		if (ret)
3222 			btrfs_abort_transaction(trans, ret);
3223 		else
3224 			clear_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED,
3225 				  &root->state);
3226 	}
3227 
3228 	if (block_rsv) {
3229 		WARN_ON(block_rsv->size > 0);
3230 		btrfs_free_block_rsv(root, block_rsv);
3231 	}
3232 }
3233 
3234 /*
3235  * This creates an orphan entry for the given inode in case something goes
3236  * wrong in the middle of an unlink/truncate.
3237  *
3238  * NOTE: caller of this function should reserve 5 units of metadata for
3239  *	 this function.
3240  */
3241 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
3242 {
3243 	struct btrfs_root *root = BTRFS_I(inode)->root;
3244 	struct btrfs_block_rsv *block_rsv = NULL;
3245 	int reserve = 0;
3246 	int insert = 0;
3247 	int ret;
3248 
3249 	if (!root->orphan_block_rsv) {
3250 		block_rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
3251 		if (!block_rsv)
3252 			return -ENOMEM;
3253 	}
3254 
3255 	spin_lock(&root->orphan_lock);
3256 	if (!root->orphan_block_rsv) {
3257 		root->orphan_block_rsv = block_rsv;
3258 	} else if (block_rsv) {
3259 		btrfs_free_block_rsv(root, block_rsv);
3260 		block_rsv = NULL;
3261 	}
3262 
3263 	if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3264 			      &BTRFS_I(inode)->runtime_flags)) {
3265 #if 0
3266 		/*
3267 		 * For proper ENOSPC handling, we should do orphan
3268 		 * cleanup when mounting. But this introduces backward
3269 		 * compatibility issue.
3270 		 */
3271 		if (!xchg(&root->orphan_item_inserted, 1))
3272 			insert = 2;
3273 		else
3274 			insert = 1;
3275 #endif
3276 		insert = 1;
3277 		atomic_inc(&root->orphan_inodes);
3278 	}
3279 
3280 	if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3281 			      &BTRFS_I(inode)->runtime_flags))
3282 		reserve = 1;
3283 	spin_unlock(&root->orphan_lock);
3284 
3285 	/* grab metadata reservation from transaction handle */
3286 	if (reserve) {
3287 		ret = btrfs_orphan_reserve_metadata(trans, inode);
3288 		ASSERT(!ret);
3289 		if (ret) {
3290 			atomic_dec(&root->orphan_inodes);
3291 			clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3292 				  &BTRFS_I(inode)->runtime_flags);
3293 			if (insert)
3294 				clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3295 					  &BTRFS_I(inode)->runtime_flags);
3296 			return ret;
3297 		}
3298 	}
3299 
3300 	/* insert an orphan item to track this unlinked/truncated file */
3301 	if (insert >= 1) {
3302 		ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
3303 		if (ret) {
3304 			atomic_dec(&root->orphan_inodes);
3305 			if (reserve) {
3306 				clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3307 					  &BTRFS_I(inode)->runtime_flags);
3308 				btrfs_orphan_release_metadata(inode);
3309 			}
3310 			if (ret != -EEXIST) {
3311 				clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3312 					  &BTRFS_I(inode)->runtime_flags);
3313 				btrfs_abort_transaction(trans, ret);
3314 				return ret;
3315 			}
3316 		}
3317 		ret = 0;
3318 	}
3319 
3320 	/* insert an orphan item to track subvolume contains orphan files */
3321 	if (insert >= 2) {
3322 		ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
3323 					       root->root_key.objectid);
3324 		if (ret && ret != -EEXIST) {
3325 			btrfs_abort_transaction(trans, ret);
3326 			return ret;
3327 		}
3328 	}
3329 	return 0;
3330 }
3331 
3332 /*
3333  * We have done the truncate/delete so we can go ahead and remove the orphan
3334  * item for this particular inode.
3335  */
3336 static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3337 			    struct inode *inode)
3338 {
3339 	struct btrfs_root *root = BTRFS_I(inode)->root;
3340 	int delete_item = 0;
3341 	int release_rsv = 0;
3342 	int ret = 0;
3343 
3344 	spin_lock(&root->orphan_lock);
3345 	if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3346 			       &BTRFS_I(inode)->runtime_flags))
3347 		delete_item = 1;
3348 
3349 	if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3350 			       &BTRFS_I(inode)->runtime_flags))
3351 		release_rsv = 1;
3352 	spin_unlock(&root->orphan_lock);
3353 
3354 	if (delete_item) {
3355 		atomic_dec(&root->orphan_inodes);
3356 		if (trans)
3357 			ret = btrfs_del_orphan_item(trans, root,
3358 						    btrfs_ino(inode));
3359 	}
3360 
3361 	if (release_rsv)
3362 		btrfs_orphan_release_metadata(inode);
3363 
3364 	return ret;
3365 }
3366 
3367 /*
3368  * this cleans up any orphans that may be left on the list from the last use
3369  * of this root.
3370  */
3371 int btrfs_orphan_cleanup(struct btrfs_root *root)
3372 {
3373 	struct btrfs_path *path;
3374 	struct extent_buffer *leaf;
3375 	struct btrfs_key key, found_key;
3376 	struct btrfs_trans_handle *trans;
3377 	struct inode *inode;
3378 	u64 last_objectid = 0;
3379 	int ret = 0, nr_unlink = 0, nr_truncate = 0;
3380 
3381 	if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
3382 		return 0;
3383 
3384 	path = btrfs_alloc_path();
3385 	if (!path) {
3386 		ret = -ENOMEM;
3387 		goto out;
3388 	}
3389 	path->reada = READA_BACK;
3390 
3391 	key.objectid = BTRFS_ORPHAN_OBJECTID;
3392 	key.type = BTRFS_ORPHAN_ITEM_KEY;
3393 	key.offset = (u64)-1;
3394 
3395 	while (1) {
3396 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3397 		if (ret < 0)
3398 			goto out;
3399 
3400 		/*
3401 		 * if ret == 0 means we found what we were searching for, which
3402 		 * is weird, but possible, so only screw with path if we didn't
3403 		 * find the key and see if we have stuff that matches
3404 		 */
3405 		if (ret > 0) {
3406 			ret = 0;
3407 			if (path->slots[0] == 0)
3408 				break;
3409 			path->slots[0]--;
3410 		}
3411 
3412 		/* pull out the item */
3413 		leaf = path->nodes[0];
3414 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3415 
3416 		/* make sure the item matches what we want */
3417 		if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3418 			break;
3419 		if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
3420 			break;
3421 
3422 		/* release the path since we're done with it */
3423 		btrfs_release_path(path);
3424 
3425 		/*
3426 		 * this is where we are basically btrfs_lookup, without the
3427 		 * crossing root thing.  we store the inode number in the
3428 		 * offset of the orphan item.
3429 		 */
3430 
3431 		if (found_key.offset == last_objectid) {
3432 			btrfs_err(root->fs_info,
3433 				"Error removing orphan entry, stopping orphan cleanup");
3434 			ret = -EINVAL;
3435 			goto out;
3436 		}
3437 
3438 		last_objectid = found_key.offset;
3439 
3440 		found_key.objectid = found_key.offset;
3441 		found_key.type = BTRFS_INODE_ITEM_KEY;
3442 		found_key.offset = 0;
3443 		inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
3444 		ret = PTR_ERR_OR_ZERO(inode);
3445 		if (ret && ret != -ENOENT)
3446 			goto out;
3447 
3448 		if (ret == -ENOENT && root == root->fs_info->tree_root) {
3449 			struct btrfs_root *dead_root;
3450 			struct btrfs_fs_info *fs_info = root->fs_info;
3451 			int is_dead_root = 0;
3452 
3453 			/*
3454 			 * this is an orphan in the tree root. Currently these
3455 			 * could come from 2 sources:
3456 			 *  a) a snapshot deletion in progress
3457 			 *  b) a free space cache inode
3458 			 * We need to distinguish those two, as the snapshot
3459 			 * orphan must not get deleted.
3460 			 * find_dead_roots already ran before us, so if this
3461 			 * is a snapshot deletion, we should find the root
3462 			 * in the dead_roots list
3463 			 */
3464 			spin_lock(&fs_info->trans_lock);
3465 			list_for_each_entry(dead_root, &fs_info->dead_roots,
3466 					    root_list) {
3467 				if (dead_root->root_key.objectid ==
3468 				    found_key.objectid) {
3469 					is_dead_root = 1;
3470 					break;
3471 				}
3472 			}
3473 			spin_unlock(&fs_info->trans_lock);
3474 			if (is_dead_root) {
3475 				/* prevent this orphan from being found again */
3476 				key.offset = found_key.objectid - 1;
3477 				continue;
3478 			}
3479 		}
3480 		/*
3481 		 * Inode is already gone but the orphan item is still there,
3482 		 * kill the orphan item.
3483 		 */
3484 		if (ret == -ENOENT) {
3485 			trans = btrfs_start_transaction(root, 1);
3486 			if (IS_ERR(trans)) {
3487 				ret = PTR_ERR(trans);
3488 				goto out;
3489 			}
3490 			btrfs_debug(root->fs_info, "auto deleting %Lu",
3491 				found_key.objectid);
3492 			ret = btrfs_del_orphan_item(trans, root,
3493 						    found_key.objectid);
3494 			btrfs_end_transaction(trans, root);
3495 			if (ret)
3496 				goto out;
3497 			continue;
3498 		}
3499 
3500 		/*
3501 		 * add this inode to the orphan list so btrfs_orphan_del does
3502 		 * the proper thing when we hit it
3503 		 */
3504 		set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3505 			&BTRFS_I(inode)->runtime_flags);
3506 		atomic_inc(&root->orphan_inodes);
3507 
3508 		/* if we have links, this was a truncate, lets do that */
3509 		if (inode->i_nlink) {
3510 			if (WARN_ON(!S_ISREG(inode->i_mode))) {
3511 				iput(inode);
3512 				continue;
3513 			}
3514 			nr_truncate++;
3515 
3516 			/* 1 for the orphan item deletion. */
3517 			trans = btrfs_start_transaction(root, 1);
3518 			if (IS_ERR(trans)) {
3519 				iput(inode);
3520 				ret = PTR_ERR(trans);
3521 				goto out;
3522 			}
3523 			ret = btrfs_orphan_add(trans, inode);
3524 			btrfs_end_transaction(trans, root);
3525 			if (ret) {
3526 				iput(inode);
3527 				goto out;
3528 			}
3529 
3530 			ret = btrfs_truncate(inode);
3531 			if (ret)
3532 				btrfs_orphan_del(NULL, inode);
3533 		} else {
3534 			nr_unlink++;
3535 		}
3536 
3537 		/* this will do delete_inode and everything for us */
3538 		iput(inode);
3539 		if (ret)
3540 			goto out;
3541 	}
3542 	/* release the path since we're done with it */
3543 	btrfs_release_path(path);
3544 
3545 	root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3546 
3547 	if (root->orphan_block_rsv)
3548 		btrfs_block_rsv_release(root, root->orphan_block_rsv,
3549 					(u64)-1);
3550 
3551 	if (root->orphan_block_rsv ||
3552 	    test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
3553 		trans = btrfs_join_transaction(root);
3554 		if (!IS_ERR(trans))
3555 			btrfs_end_transaction(trans, root);
3556 	}
3557 
3558 	if (nr_unlink)
3559 		btrfs_debug(root->fs_info, "unlinked %d orphans", nr_unlink);
3560 	if (nr_truncate)
3561 		btrfs_debug(root->fs_info, "truncated %d orphans", nr_truncate);
3562 
3563 out:
3564 	if (ret)
3565 		btrfs_err(root->fs_info,
3566 			"could not do orphan cleanup %d", ret);
3567 	btrfs_free_path(path);
3568 	return ret;
3569 }
3570 
3571 /*
3572  * very simple check to peek ahead in the leaf looking for xattrs.  If we
3573  * don't find any xattrs, we know there can't be any acls.
3574  *
3575  * slot is the slot the inode is in, objectid is the objectid of the inode
3576  */
3577 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
3578 					  int slot, u64 objectid,
3579 					  int *first_xattr_slot)
3580 {
3581 	u32 nritems = btrfs_header_nritems(leaf);
3582 	struct btrfs_key found_key;
3583 	static u64 xattr_access = 0;
3584 	static u64 xattr_default = 0;
3585 	int scanned = 0;
3586 
3587 	if (!xattr_access) {
3588 		xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
3589 					strlen(XATTR_NAME_POSIX_ACL_ACCESS));
3590 		xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
3591 					strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
3592 	}
3593 
3594 	slot++;
3595 	*first_xattr_slot = -1;
3596 	while (slot < nritems) {
3597 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3598 
3599 		/* we found a different objectid, there must not be acls */
3600 		if (found_key.objectid != objectid)
3601 			return 0;
3602 
3603 		/* we found an xattr, assume we've got an acl */
3604 		if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
3605 			if (*first_xattr_slot == -1)
3606 				*first_xattr_slot = slot;
3607 			if (found_key.offset == xattr_access ||
3608 			    found_key.offset == xattr_default)
3609 				return 1;
3610 		}
3611 
3612 		/*
3613 		 * we found a key greater than an xattr key, there can't
3614 		 * be any acls later on
3615 		 */
3616 		if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3617 			return 0;
3618 
3619 		slot++;
3620 		scanned++;
3621 
3622 		/*
3623 		 * it goes inode, inode backrefs, xattrs, extents,
3624 		 * so if there are a ton of hard links to an inode there can
3625 		 * be a lot of backrefs.  Don't waste time searching too hard,
3626 		 * this is just an optimization
3627 		 */
3628 		if (scanned >= 8)
3629 			break;
3630 	}
3631 	/* we hit the end of the leaf before we found an xattr or
3632 	 * something larger than an xattr.  We have to assume the inode
3633 	 * has acls
3634 	 */
3635 	if (*first_xattr_slot == -1)
3636 		*first_xattr_slot = slot;
3637 	return 1;
3638 }
3639 
3640 /*
3641  * read an inode from the btree into the in-memory inode
3642  */
3643 static int btrfs_read_locked_inode(struct inode *inode)
3644 {
3645 	struct btrfs_path *path;
3646 	struct extent_buffer *leaf;
3647 	struct btrfs_inode_item *inode_item;
3648 	struct btrfs_root *root = BTRFS_I(inode)->root;
3649 	struct btrfs_key location;
3650 	unsigned long ptr;
3651 	int maybe_acls;
3652 	u32 rdev;
3653 	int ret;
3654 	bool filled = false;
3655 	int first_xattr_slot;
3656 
3657 	ret = btrfs_fill_inode(inode, &rdev);
3658 	if (!ret)
3659 		filled = true;
3660 
3661 	path = btrfs_alloc_path();
3662 	if (!path) {
3663 		ret = -ENOMEM;
3664 		goto make_bad;
3665 	}
3666 
3667 	memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
3668 
3669 	ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
3670 	if (ret) {
3671 		if (ret > 0)
3672 			ret = -ENOENT;
3673 		goto make_bad;
3674 	}
3675 
3676 	leaf = path->nodes[0];
3677 
3678 	if (filled)
3679 		goto cache_index;
3680 
3681 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
3682 				    struct btrfs_inode_item);
3683 	inode->i_mode = btrfs_inode_mode(leaf, inode_item);
3684 	set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
3685 	i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3686 	i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
3687 	btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
3688 
3689 	inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime);
3690 	inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime);
3691 
3692 	inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime);
3693 	inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime);
3694 
3695 	inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime);
3696 	inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime);
3697 
3698 	BTRFS_I(inode)->i_otime.tv_sec =
3699 		btrfs_timespec_sec(leaf, &inode_item->otime);
3700 	BTRFS_I(inode)->i_otime.tv_nsec =
3701 		btrfs_timespec_nsec(leaf, &inode_item->otime);
3702 
3703 	inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
3704 	BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
3705 	BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3706 
3707 	inode->i_version = btrfs_inode_sequence(leaf, inode_item);
3708 	inode->i_generation = BTRFS_I(inode)->generation;
3709 	inode->i_rdev = 0;
3710 	rdev = btrfs_inode_rdev(leaf, inode_item);
3711 
3712 	BTRFS_I(inode)->index_cnt = (u64)-1;
3713 	BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
3714 
3715 cache_index:
3716 	/*
3717 	 * If we were modified in the current generation and evicted from memory
3718 	 * and then re-read we need to do a full sync since we don't have any
3719 	 * idea about which extents were modified before we were evicted from
3720 	 * cache.
3721 	 *
3722 	 * This is required for both inode re-read from disk and delayed inode
3723 	 * in delayed_nodes_tree.
3724 	 */
3725 	if (BTRFS_I(inode)->last_trans == root->fs_info->generation)
3726 		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3727 			&BTRFS_I(inode)->runtime_flags);
3728 
3729 	/*
3730 	 * We don't persist the id of the transaction where an unlink operation
3731 	 * against the inode was last made. So here we assume the inode might
3732 	 * have been evicted, and therefore the exact value of last_unlink_trans
3733 	 * lost, and set it to last_trans to avoid metadata inconsistencies
3734 	 * between the inode and its parent if the inode is fsync'ed and the log
3735 	 * replayed. For example, in the scenario:
3736 	 *
3737 	 * touch mydir/foo
3738 	 * ln mydir/foo mydir/bar
3739 	 * sync
3740 	 * unlink mydir/bar
3741 	 * echo 2 > /proc/sys/vm/drop_caches   # evicts inode
3742 	 * xfs_io -c fsync mydir/foo
3743 	 * <power failure>
3744 	 * mount fs, triggers fsync log replay
3745 	 *
3746 	 * We must make sure that when we fsync our inode foo we also log its
3747 	 * parent inode, otherwise after log replay the parent still has the
3748 	 * dentry with the "bar" name but our inode foo has a link count of 1
3749 	 * and doesn't have an inode ref with the name "bar" anymore.
3750 	 *
3751 	 * Setting last_unlink_trans to last_trans is a pessimistic approach,
3752 	 * but it guarantees correctness at the expense of occasional full
3753 	 * transaction commits on fsync if our inode is a directory, or if our
3754 	 * inode is not a directory, logging its parent unnecessarily.
3755 	 */
3756 	BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
3757 
3758 	path->slots[0]++;
3759 	if (inode->i_nlink != 1 ||
3760 	    path->slots[0] >= btrfs_header_nritems(leaf))
3761 		goto cache_acl;
3762 
3763 	btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
3764 	if (location.objectid != btrfs_ino(inode))
3765 		goto cache_acl;
3766 
3767 	ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3768 	if (location.type == BTRFS_INODE_REF_KEY) {
3769 		struct btrfs_inode_ref *ref;
3770 
3771 		ref = (struct btrfs_inode_ref *)ptr;
3772 		BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3773 	} else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3774 		struct btrfs_inode_extref *extref;
3775 
3776 		extref = (struct btrfs_inode_extref *)ptr;
3777 		BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3778 								     extref);
3779 	}
3780 cache_acl:
3781 	/*
3782 	 * try to precache a NULL acl entry for files that don't have
3783 	 * any xattrs or acls
3784 	 */
3785 	maybe_acls = acls_after_inode_item(leaf, path->slots[0],
3786 					   btrfs_ino(inode), &first_xattr_slot);
3787 	if (first_xattr_slot != -1) {
3788 		path->slots[0] = first_xattr_slot;
3789 		ret = btrfs_load_inode_props(inode, path);
3790 		if (ret)
3791 			btrfs_err(root->fs_info,
3792 				  "error loading props for ino %llu (root %llu): %d",
3793 				  btrfs_ino(inode),
3794 				  root->root_key.objectid, ret);
3795 	}
3796 	btrfs_free_path(path);
3797 
3798 	if (!maybe_acls)
3799 		cache_no_acl(inode);
3800 
3801 	switch (inode->i_mode & S_IFMT) {
3802 	case S_IFREG:
3803 		inode->i_mapping->a_ops = &btrfs_aops;
3804 		BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
3805 		inode->i_fop = &btrfs_file_operations;
3806 		inode->i_op = &btrfs_file_inode_operations;
3807 		break;
3808 	case S_IFDIR:
3809 		inode->i_fop = &btrfs_dir_file_operations;
3810 		if (root == root->fs_info->tree_root)
3811 			inode->i_op = &btrfs_dir_ro_inode_operations;
3812 		else
3813 			inode->i_op = &btrfs_dir_inode_operations;
3814 		break;
3815 	case S_IFLNK:
3816 		inode->i_op = &btrfs_symlink_inode_operations;
3817 		inode_nohighmem(inode);
3818 		inode->i_mapping->a_ops = &btrfs_symlink_aops;
3819 		break;
3820 	default:
3821 		inode->i_op = &btrfs_special_inode_operations;
3822 		init_special_inode(inode, inode->i_mode, rdev);
3823 		break;
3824 	}
3825 
3826 	btrfs_update_iflags(inode);
3827 	return 0;
3828 
3829 make_bad:
3830 	btrfs_free_path(path);
3831 	make_bad_inode(inode);
3832 	return ret;
3833 }
3834 
3835 /*
3836  * given a leaf and an inode, copy the inode fields into the leaf
3837  */
3838 static void fill_inode_item(struct btrfs_trans_handle *trans,
3839 			    struct extent_buffer *leaf,
3840 			    struct btrfs_inode_item *item,
3841 			    struct inode *inode)
3842 {
3843 	struct btrfs_map_token token;
3844 
3845 	btrfs_init_map_token(&token);
3846 
3847 	btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3848 	btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3849 	btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size,
3850 				   &token);
3851 	btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3852 	btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3853 
3854 	btrfs_set_token_timespec_sec(leaf, &item->atime,
3855 				     inode->i_atime.tv_sec, &token);
3856 	btrfs_set_token_timespec_nsec(leaf, &item->atime,
3857 				      inode->i_atime.tv_nsec, &token);
3858 
3859 	btrfs_set_token_timespec_sec(leaf, &item->mtime,
3860 				     inode->i_mtime.tv_sec, &token);
3861 	btrfs_set_token_timespec_nsec(leaf, &item->mtime,
3862 				      inode->i_mtime.tv_nsec, &token);
3863 
3864 	btrfs_set_token_timespec_sec(leaf, &item->ctime,
3865 				     inode->i_ctime.tv_sec, &token);
3866 	btrfs_set_token_timespec_nsec(leaf, &item->ctime,
3867 				      inode->i_ctime.tv_nsec, &token);
3868 
3869 	btrfs_set_token_timespec_sec(leaf, &item->otime,
3870 				     BTRFS_I(inode)->i_otime.tv_sec, &token);
3871 	btrfs_set_token_timespec_nsec(leaf, &item->otime,
3872 				      BTRFS_I(inode)->i_otime.tv_nsec, &token);
3873 
3874 	btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3875 				     &token);
3876 	btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation,
3877 					 &token);
3878 	btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
3879 	btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3880 	btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3881 	btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3882 	btrfs_set_token_inode_block_group(leaf, item, 0, &token);
3883 }
3884 
3885 /*
3886  * copy everything in the in-memory inode into the btree.
3887  */
3888 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
3889 				struct btrfs_root *root, struct inode *inode)
3890 {
3891 	struct btrfs_inode_item *inode_item;
3892 	struct btrfs_path *path;
3893 	struct extent_buffer *leaf;
3894 	int ret;
3895 
3896 	path = btrfs_alloc_path();
3897 	if (!path)
3898 		return -ENOMEM;
3899 
3900 	path->leave_spinning = 1;
3901 	ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
3902 				 1);
3903 	if (ret) {
3904 		if (ret > 0)
3905 			ret = -ENOENT;
3906 		goto failed;
3907 	}
3908 
3909 	leaf = path->nodes[0];
3910 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
3911 				    struct btrfs_inode_item);
3912 
3913 	fill_inode_item(trans, leaf, inode_item, inode);
3914 	btrfs_mark_buffer_dirty(leaf);
3915 	btrfs_set_inode_last_trans(trans, inode);
3916 	ret = 0;
3917 failed:
3918 	btrfs_free_path(path);
3919 	return ret;
3920 }
3921 
3922 /*
3923  * copy everything in the in-memory inode into the btree.
3924  */
3925 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
3926 				struct btrfs_root *root, struct inode *inode)
3927 {
3928 	int ret;
3929 
3930 	/*
3931 	 * If the inode is a free space inode, we can deadlock during commit
3932 	 * if we put it into the delayed code.
3933 	 *
3934 	 * The data relocation inode should also be directly updated
3935 	 * without delay
3936 	 */
3937 	if (!btrfs_is_free_space_inode(inode)
3938 	    && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
3939 	    && !root->fs_info->log_root_recovering) {
3940 		btrfs_update_root_times(trans, root);
3941 
3942 		ret = btrfs_delayed_update_inode(trans, root, inode);
3943 		if (!ret)
3944 			btrfs_set_inode_last_trans(trans, inode);
3945 		return ret;
3946 	}
3947 
3948 	return btrfs_update_inode_item(trans, root, inode);
3949 }
3950 
3951 noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3952 					 struct btrfs_root *root,
3953 					 struct inode *inode)
3954 {
3955 	int ret;
3956 
3957 	ret = btrfs_update_inode(trans, root, inode);
3958 	if (ret == -ENOSPC)
3959 		return btrfs_update_inode_item(trans, root, inode);
3960 	return ret;
3961 }
3962 
3963 /*
3964  * unlink helper that gets used here in inode.c and in the tree logging
3965  * recovery code.  It remove a link in a directory with a given name, and
3966  * also drops the back refs in the inode to the directory
3967  */
3968 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3969 				struct btrfs_root *root,
3970 				struct inode *dir, struct inode *inode,
3971 				const char *name, int name_len)
3972 {
3973 	struct btrfs_path *path;
3974 	int ret = 0;
3975 	struct extent_buffer *leaf;
3976 	struct btrfs_dir_item *di;
3977 	struct btrfs_key key;
3978 	u64 index;
3979 	u64 ino = btrfs_ino(inode);
3980 	u64 dir_ino = btrfs_ino(dir);
3981 
3982 	path = btrfs_alloc_path();
3983 	if (!path) {
3984 		ret = -ENOMEM;
3985 		goto out;
3986 	}
3987 
3988 	path->leave_spinning = 1;
3989 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
3990 				    name, name_len, -1);
3991 	if (IS_ERR(di)) {
3992 		ret = PTR_ERR(di);
3993 		goto err;
3994 	}
3995 	if (!di) {
3996 		ret = -ENOENT;
3997 		goto err;
3998 	}
3999 	leaf = path->nodes[0];
4000 	btrfs_dir_item_key_to_cpu(leaf, di, &key);
4001 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
4002 	if (ret)
4003 		goto err;
4004 	btrfs_release_path(path);
4005 
4006 	/*
4007 	 * If we don't have dir index, we have to get it by looking up
4008 	 * the inode ref, since we get the inode ref, remove it directly,
4009 	 * it is unnecessary to do delayed deletion.
4010 	 *
4011 	 * But if we have dir index, needn't search inode ref to get it.
4012 	 * Since the inode ref is close to the inode item, it is better
4013 	 * that we delay to delete it, and just do this deletion when
4014 	 * we update the inode item.
4015 	 */
4016 	if (BTRFS_I(inode)->dir_index) {
4017 		ret = btrfs_delayed_delete_inode_ref(inode);
4018 		if (!ret) {
4019 			index = BTRFS_I(inode)->dir_index;
4020 			goto skip_backref;
4021 		}
4022 	}
4023 
4024 	ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
4025 				  dir_ino, &index);
4026 	if (ret) {
4027 		btrfs_info(root->fs_info,
4028 			"failed to delete reference to %.*s, inode %llu parent %llu",
4029 			name_len, name, ino, dir_ino);
4030 		btrfs_abort_transaction(trans, ret);
4031 		goto err;
4032 	}
4033 skip_backref:
4034 	ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
4035 	if (ret) {
4036 		btrfs_abort_transaction(trans, ret);
4037 		goto err;
4038 	}
4039 
4040 	ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
4041 					 inode, dir_ino);
4042 	if (ret != 0 && ret != -ENOENT) {
4043 		btrfs_abort_transaction(trans, ret);
4044 		goto err;
4045 	}
4046 
4047 	ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
4048 					   dir, index);
4049 	if (ret == -ENOENT)
4050 		ret = 0;
4051 	else if (ret)
4052 		btrfs_abort_transaction(trans, ret);
4053 err:
4054 	btrfs_free_path(path);
4055 	if (ret)
4056 		goto out;
4057 
4058 	btrfs_i_size_write(dir, dir->i_size - name_len * 2);
4059 	inode_inc_iversion(inode);
4060 	inode_inc_iversion(dir);
4061 	inode->i_ctime = dir->i_mtime =
4062 		dir->i_ctime = current_fs_time(inode->i_sb);
4063 	ret = btrfs_update_inode(trans, root, dir);
4064 out:
4065 	return ret;
4066 }
4067 
4068 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4069 		       struct btrfs_root *root,
4070 		       struct inode *dir, struct inode *inode,
4071 		       const char *name, int name_len)
4072 {
4073 	int ret;
4074 	ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
4075 	if (!ret) {
4076 		drop_nlink(inode);
4077 		ret = btrfs_update_inode(trans, root, inode);
4078 	}
4079 	return ret;
4080 }
4081 
4082 /*
4083  * helper to start transaction for unlink and rmdir.
4084  *
4085  * unlink and rmdir are special in btrfs, they do not always free space, so
4086  * if we cannot make our reservations the normal way try and see if there is
4087  * plenty of slack room in the global reserve to migrate, otherwise we cannot
4088  * allow the unlink to occur.
4089  */
4090 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
4091 {
4092 	struct btrfs_root *root = BTRFS_I(dir)->root;
4093 
4094 	/*
4095 	 * 1 for the possible orphan item
4096 	 * 1 for the dir item
4097 	 * 1 for the dir index
4098 	 * 1 for the inode ref
4099 	 * 1 for the inode
4100 	 */
4101 	return btrfs_start_transaction_fallback_global_rsv(root, 5, 5);
4102 }
4103 
4104 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4105 {
4106 	struct btrfs_root *root = BTRFS_I(dir)->root;
4107 	struct btrfs_trans_handle *trans;
4108 	struct inode *inode = d_inode(dentry);
4109 	int ret;
4110 
4111 	trans = __unlink_start_trans(dir);
4112 	if (IS_ERR(trans))
4113 		return PTR_ERR(trans);
4114 
4115 	btrfs_record_unlink_dir(trans, dir, d_inode(dentry), 0);
4116 
4117 	ret = btrfs_unlink_inode(trans, root, dir, d_inode(dentry),
4118 				 dentry->d_name.name, dentry->d_name.len);
4119 	if (ret)
4120 		goto out;
4121 
4122 	if (inode->i_nlink == 0) {
4123 		ret = btrfs_orphan_add(trans, inode);
4124 		if (ret)
4125 			goto out;
4126 	}
4127 
4128 out:
4129 	btrfs_end_transaction(trans, root);
4130 	btrfs_btree_balance_dirty(root);
4131 	return ret;
4132 }
4133 
4134 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
4135 			struct btrfs_root *root,
4136 			struct inode *dir, u64 objectid,
4137 			const char *name, int name_len)
4138 {
4139 	struct btrfs_path *path;
4140 	struct extent_buffer *leaf;
4141 	struct btrfs_dir_item *di;
4142 	struct btrfs_key key;
4143 	u64 index;
4144 	int ret;
4145 	u64 dir_ino = btrfs_ino(dir);
4146 
4147 	path = btrfs_alloc_path();
4148 	if (!path)
4149 		return -ENOMEM;
4150 
4151 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4152 				   name, name_len, -1);
4153 	if (IS_ERR_OR_NULL(di)) {
4154 		if (!di)
4155 			ret = -ENOENT;
4156 		else
4157 			ret = PTR_ERR(di);
4158 		goto out;
4159 	}
4160 
4161 	leaf = path->nodes[0];
4162 	btrfs_dir_item_key_to_cpu(leaf, di, &key);
4163 	WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4164 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
4165 	if (ret) {
4166 		btrfs_abort_transaction(trans, ret);
4167 		goto out;
4168 	}
4169 	btrfs_release_path(path);
4170 
4171 	ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
4172 				 objectid, root->root_key.objectid,
4173 				 dir_ino, &index, name, name_len);
4174 	if (ret < 0) {
4175 		if (ret != -ENOENT) {
4176 			btrfs_abort_transaction(trans, ret);
4177 			goto out;
4178 		}
4179 		di = btrfs_search_dir_index_item(root, path, dir_ino,
4180 						 name, name_len);
4181 		if (IS_ERR_OR_NULL(di)) {
4182 			if (!di)
4183 				ret = -ENOENT;
4184 			else
4185 				ret = PTR_ERR(di);
4186 			btrfs_abort_transaction(trans, ret);
4187 			goto out;
4188 		}
4189 
4190 		leaf = path->nodes[0];
4191 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4192 		btrfs_release_path(path);
4193 		index = key.offset;
4194 	}
4195 	btrfs_release_path(path);
4196 
4197 	ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
4198 	if (ret) {
4199 		btrfs_abort_transaction(trans, ret);
4200 		goto out;
4201 	}
4202 
4203 	btrfs_i_size_write(dir, dir->i_size - name_len * 2);
4204 	inode_inc_iversion(dir);
4205 	dir->i_mtime = dir->i_ctime = current_fs_time(dir->i_sb);
4206 	ret = btrfs_update_inode_fallback(trans, root, dir);
4207 	if (ret)
4208 		btrfs_abort_transaction(trans, ret);
4209 out:
4210 	btrfs_free_path(path);
4211 	return ret;
4212 }
4213 
4214 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4215 {
4216 	struct inode *inode = d_inode(dentry);
4217 	int err = 0;
4218 	struct btrfs_root *root = BTRFS_I(dir)->root;
4219 	struct btrfs_trans_handle *trans;
4220 	u64 last_unlink_trans;
4221 
4222 	if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
4223 		return -ENOTEMPTY;
4224 	if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID)
4225 		return -EPERM;
4226 
4227 	trans = __unlink_start_trans(dir);
4228 	if (IS_ERR(trans))
4229 		return PTR_ERR(trans);
4230 
4231 	if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4232 		err = btrfs_unlink_subvol(trans, root, dir,
4233 					  BTRFS_I(inode)->location.objectid,
4234 					  dentry->d_name.name,
4235 					  dentry->d_name.len);
4236 		goto out;
4237 	}
4238 
4239 	err = btrfs_orphan_add(trans, inode);
4240 	if (err)
4241 		goto out;
4242 
4243 	last_unlink_trans = BTRFS_I(inode)->last_unlink_trans;
4244 
4245 	/* now the directory is empty */
4246 	err = btrfs_unlink_inode(trans, root, dir, d_inode(dentry),
4247 				 dentry->d_name.name, dentry->d_name.len);
4248 	if (!err) {
4249 		btrfs_i_size_write(inode, 0);
4250 		/*
4251 		 * Propagate the last_unlink_trans value of the deleted dir to
4252 		 * its parent directory. This is to prevent an unrecoverable
4253 		 * log tree in the case we do something like this:
4254 		 * 1) create dir foo
4255 		 * 2) create snapshot under dir foo
4256 		 * 3) delete the snapshot
4257 		 * 4) rmdir foo
4258 		 * 5) mkdir foo
4259 		 * 6) fsync foo or some file inside foo
4260 		 */
4261 		if (last_unlink_trans >= trans->transid)
4262 			BTRFS_I(dir)->last_unlink_trans = last_unlink_trans;
4263 	}
4264 out:
4265 	btrfs_end_transaction(trans, root);
4266 	btrfs_btree_balance_dirty(root);
4267 
4268 	return err;
4269 }
4270 
4271 static int truncate_space_check(struct btrfs_trans_handle *trans,
4272 				struct btrfs_root *root,
4273 				u64 bytes_deleted)
4274 {
4275 	int ret;
4276 
4277 	/*
4278 	 * This is only used to apply pressure to the enospc system, we don't
4279 	 * intend to use this reservation at all.
4280 	 */
4281 	bytes_deleted = btrfs_csum_bytes_to_leaves(root, bytes_deleted);
4282 	bytes_deleted *= root->nodesize;
4283 	ret = btrfs_block_rsv_add(root, &root->fs_info->trans_block_rsv,
4284 				  bytes_deleted, BTRFS_RESERVE_NO_FLUSH);
4285 	if (!ret) {
4286 		trace_btrfs_space_reservation(root->fs_info, "transaction",
4287 					      trans->transid,
4288 					      bytes_deleted, 1);
4289 		trans->bytes_reserved += bytes_deleted;
4290 	}
4291 	return ret;
4292 
4293 }
4294 
4295 static int truncate_inline_extent(struct inode *inode,
4296 				  struct btrfs_path *path,
4297 				  struct btrfs_key *found_key,
4298 				  const u64 item_end,
4299 				  const u64 new_size)
4300 {
4301 	struct extent_buffer *leaf = path->nodes[0];
4302 	int slot = path->slots[0];
4303 	struct btrfs_file_extent_item *fi;
4304 	u32 size = (u32)(new_size - found_key->offset);
4305 	struct btrfs_root *root = BTRFS_I(inode)->root;
4306 
4307 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
4308 
4309 	if (btrfs_file_extent_compression(leaf, fi) != BTRFS_COMPRESS_NONE) {
4310 		loff_t offset = new_size;
4311 		loff_t page_end = ALIGN(offset, PAGE_SIZE);
4312 
4313 		/*
4314 		 * Zero out the remaining of the last page of our inline extent,
4315 		 * instead of directly truncating our inline extent here - that
4316 		 * would be much more complex (decompressing all the data, then
4317 		 * compressing the truncated data, which might be bigger than
4318 		 * the size of the inline extent, resize the extent, etc).
4319 		 * We release the path because to get the page we might need to
4320 		 * read the extent item from disk (data not in the page cache).
4321 		 */
4322 		btrfs_release_path(path);
4323 		return btrfs_truncate_block(inode, offset, page_end - offset,
4324 					0);
4325 	}
4326 
4327 	btrfs_set_file_extent_ram_bytes(leaf, fi, size);
4328 	size = btrfs_file_extent_calc_inline_size(size);
4329 	btrfs_truncate_item(root, path, size, 1);
4330 
4331 	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4332 		inode_sub_bytes(inode, item_end + 1 - new_size);
4333 
4334 	return 0;
4335 }
4336 
4337 /*
4338  * this can truncate away extent items, csum items and directory items.
4339  * It starts at a high offset and removes keys until it can't find
4340  * any higher than new_size
4341  *
4342  * csum items that cross the new i_size are truncated to the new size
4343  * as well.
4344  *
4345  * min_type is the minimum key type to truncate down to.  If set to 0, this
4346  * will kill all the items on this inode, including the INODE_ITEM_KEY.
4347  */
4348 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
4349 			       struct btrfs_root *root,
4350 			       struct inode *inode,
4351 			       u64 new_size, u32 min_type)
4352 {
4353 	struct btrfs_path *path;
4354 	struct extent_buffer *leaf;
4355 	struct btrfs_file_extent_item *fi;
4356 	struct btrfs_key key;
4357 	struct btrfs_key found_key;
4358 	u64 extent_start = 0;
4359 	u64 extent_num_bytes = 0;
4360 	u64 extent_offset = 0;
4361 	u64 item_end = 0;
4362 	u64 last_size = new_size;
4363 	u32 found_type = (u8)-1;
4364 	int found_extent;
4365 	int del_item;
4366 	int pending_del_nr = 0;
4367 	int pending_del_slot = 0;
4368 	int extent_type = -1;
4369 	int ret;
4370 	int err = 0;
4371 	u64 ino = btrfs_ino(inode);
4372 	u64 bytes_deleted = 0;
4373 	bool be_nice = 0;
4374 	bool should_throttle = 0;
4375 	bool should_end = 0;
4376 
4377 	BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
4378 
4379 	/*
4380 	 * for non-free space inodes and ref cows, we want to back off from
4381 	 * time to time
4382 	 */
4383 	if (!btrfs_is_free_space_inode(inode) &&
4384 	    test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4385 		be_nice = 1;
4386 
4387 	path = btrfs_alloc_path();
4388 	if (!path)
4389 		return -ENOMEM;
4390 	path->reada = READA_BACK;
4391 
4392 	/*
4393 	 * We want to drop from the next block forward in case this new size is
4394 	 * not block aligned since we will be keeping the last block of the
4395 	 * extent just the way it is.
4396 	 */
4397 	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4398 	    root == root->fs_info->tree_root)
4399 		btrfs_drop_extent_cache(inode, ALIGN(new_size,
4400 					root->sectorsize), (u64)-1, 0);
4401 
4402 	/*
4403 	 * This function is also used to drop the items in the log tree before
4404 	 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
4405 	 * it is used to drop the loged items. So we shouldn't kill the delayed
4406 	 * items.
4407 	 */
4408 	if (min_type == 0 && root == BTRFS_I(inode)->root)
4409 		btrfs_kill_delayed_inode_items(inode);
4410 
4411 	key.objectid = ino;
4412 	key.offset = (u64)-1;
4413 	key.type = (u8)-1;
4414 
4415 search_again:
4416 	/*
4417 	 * with a 16K leaf size and 128MB extents, you can actually queue
4418 	 * up a huge file in a single leaf.  Most of the time that
4419 	 * bytes_deleted is > 0, it will be huge by the time we get here
4420 	 */
4421 	if (be_nice && bytes_deleted > SZ_32M) {
4422 		if (btrfs_should_end_transaction(trans, root)) {
4423 			err = -EAGAIN;
4424 			goto error;
4425 		}
4426 	}
4427 
4428 
4429 	path->leave_spinning = 1;
4430 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
4431 	if (ret < 0) {
4432 		err = ret;
4433 		goto out;
4434 	}
4435 
4436 	if (ret > 0) {
4437 		/* there are no items in the tree for us to truncate, we're
4438 		 * done
4439 		 */
4440 		if (path->slots[0] == 0)
4441 			goto out;
4442 		path->slots[0]--;
4443 	}
4444 
4445 	while (1) {
4446 		fi = NULL;
4447 		leaf = path->nodes[0];
4448 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4449 		found_type = found_key.type;
4450 
4451 		if (found_key.objectid != ino)
4452 			break;
4453 
4454 		if (found_type < min_type)
4455 			break;
4456 
4457 		item_end = found_key.offset;
4458 		if (found_type == BTRFS_EXTENT_DATA_KEY) {
4459 			fi = btrfs_item_ptr(leaf, path->slots[0],
4460 					    struct btrfs_file_extent_item);
4461 			extent_type = btrfs_file_extent_type(leaf, fi);
4462 			if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4463 				item_end +=
4464 				    btrfs_file_extent_num_bytes(leaf, fi);
4465 			} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4466 				item_end += btrfs_file_extent_inline_len(leaf,
4467 							 path->slots[0], fi);
4468 			}
4469 			item_end--;
4470 		}
4471 		if (found_type > min_type) {
4472 			del_item = 1;
4473 		} else {
4474 			if (item_end < new_size)
4475 				break;
4476 			if (found_key.offset >= new_size)
4477 				del_item = 1;
4478 			else
4479 				del_item = 0;
4480 		}
4481 		found_extent = 0;
4482 		/* FIXME, shrink the extent if the ref count is only 1 */
4483 		if (found_type != BTRFS_EXTENT_DATA_KEY)
4484 			goto delete;
4485 
4486 		if (del_item)
4487 			last_size = found_key.offset;
4488 		else
4489 			last_size = new_size;
4490 
4491 		if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4492 			u64 num_dec;
4493 			extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
4494 			if (!del_item) {
4495 				u64 orig_num_bytes =
4496 					btrfs_file_extent_num_bytes(leaf, fi);
4497 				extent_num_bytes = ALIGN(new_size -
4498 						found_key.offset,
4499 						root->sectorsize);
4500 				btrfs_set_file_extent_num_bytes(leaf, fi,
4501 							 extent_num_bytes);
4502 				num_dec = (orig_num_bytes -
4503 					   extent_num_bytes);
4504 				if (test_bit(BTRFS_ROOT_REF_COWS,
4505 					     &root->state) &&
4506 				    extent_start != 0)
4507 					inode_sub_bytes(inode, num_dec);
4508 				btrfs_mark_buffer_dirty(leaf);
4509 			} else {
4510 				extent_num_bytes =
4511 					btrfs_file_extent_disk_num_bytes(leaf,
4512 									 fi);
4513 				extent_offset = found_key.offset -
4514 					btrfs_file_extent_offset(leaf, fi);
4515 
4516 				/* FIXME blocksize != 4096 */
4517 				num_dec = btrfs_file_extent_num_bytes(leaf, fi);
4518 				if (extent_start != 0) {
4519 					found_extent = 1;
4520 					if (test_bit(BTRFS_ROOT_REF_COWS,
4521 						     &root->state))
4522 						inode_sub_bytes(inode, num_dec);
4523 				}
4524 			}
4525 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4526 			/*
4527 			 * we can't truncate inline items that have had
4528 			 * special encodings
4529 			 */
4530 			if (!del_item &&
4531 			    btrfs_file_extent_encryption(leaf, fi) == 0 &&
4532 			    btrfs_file_extent_other_encoding(leaf, fi) == 0) {
4533 
4534 				/*
4535 				 * Need to release path in order to truncate a
4536 				 * compressed extent. So delete any accumulated
4537 				 * extent items so far.
4538 				 */
4539 				if (btrfs_file_extent_compression(leaf, fi) !=
4540 				    BTRFS_COMPRESS_NONE && pending_del_nr) {
4541 					err = btrfs_del_items(trans, root, path,
4542 							      pending_del_slot,
4543 							      pending_del_nr);
4544 					if (err) {
4545 						btrfs_abort_transaction(trans,
4546 									err);
4547 						goto error;
4548 					}
4549 					pending_del_nr = 0;
4550 				}
4551 
4552 				err = truncate_inline_extent(inode, path,
4553 							     &found_key,
4554 							     item_end,
4555 							     new_size);
4556 				if (err) {
4557 					btrfs_abort_transaction(trans, err);
4558 					goto error;
4559 				}
4560 			} else if (test_bit(BTRFS_ROOT_REF_COWS,
4561 					    &root->state)) {
4562 				inode_sub_bytes(inode, item_end + 1 - new_size);
4563 			}
4564 		}
4565 delete:
4566 		if (del_item) {
4567 			if (!pending_del_nr) {
4568 				/* no pending yet, add ourselves */
4569 				pending_del_slot = path->slots[0];
4570 				pending_del_nr = 1;
4571 			} else if (pending_del_nr &&
4572 				   path->slots[0] + 1 == pending_del_slot) {
4573 				/* hop on the pending chunk */
4574 				pending_del_nr++;
4575 				pending_del_slot = path->slots[0];
4576 			} else {
4577 				BUG();
4578 			}
4579 		} else {
4580 			break;
4581 		}
4582 		should_throttle = 0;
4583 
4584 		if (found_extent &&
4585 		    (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4586 		     root == root->fs_info->tree_root)) {
4587 			btrfs_set_path_blocking(path);
4588 			bytes_deleted += extent_num_bytes;
4589 			ret = btrfs_free_extent(trans, root, extent_start,
4590 						extent_num_bytes, 0,
4591 						btrfs_header_owner(leaf),
4592 						ino, extent_offset);
4593 			BUG_ON(ret);
4594 			if (btrfs_should_throttle_delayed_refs(trans, root))
4595 				btrfs_async_run_delayed_refs(root,
4596 							     trans->transid,
4597 					trans->delayed_ref_updates * 2, 0);
4598 			if (be_nice) {
4599 				if (truncate_space_check(trans, root,
4600 							 extent_num_bytes)) {
4601 					should_end = 1;
4602 				}
4603 				if (btrfs_should_throttle_delayed_refs(trans,
4604 								       root)) {
4605 					should_throttle = 1;
4606 				}
4607 			}
4608 		}
4609 
4610 		if (found_type == BTRFS_INODE_ITEM_KEY)
4611 			break;
4612 
4613 		if (path->slots[0] == 0 ||
4614 		    path->slots[0] != pending_del_slot ||
4615 		    should_throttle || should_end) {
4616 			if (pending_del_nr) {
4617 				ret = btrfs_del_items(trans, root, path,
4618 						pending_del_slot,
4619 						pending_del_nr);
4620 				if (ret) {
4621 					btrfs_abort_transaction(trans, ret);
4622 					goto error;
4623 				}
4624 				pending_del_nr = 0;
4625 			}
4626 			btrfs_release_path(path);
4627 			if (should_throttle) {
4628 				unsigned long updates = trans->delayed_ref_updates;
4629 				if (updates) {
4630 					trans->delayed_ref_updates = 0;
4631 					ret = btrfs_run_delayed_refs(trans, root, updates * 2);
4632 					if (ret && !err)
4633 						err = ret;
4634 				}
4635 			}
4636 			/*
4637 			 * if we failed to refill our space rsv, bail out
4638 			 * and let the transaction restart
4639 			 */
4640 			if (should_end) {
4641 				err = -EAGAIN;
4642 				goto error;
4643 			}
4644 			goto search_again;
4645 		} else {
4646 			path->slots[0]--;
4647 		}
4648 	}
4649 out:
4650 	if (pending_del_nr) {
4651 		ret = btrfs_del_items(trans, root, path, pending_del_slot,
4652 				      pending_del_nr);
4653 		if (ret)
4654 			btrfs_abort_transaction(trans, ret);
4655 	}
4656 error:
4657 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
4658 		btrfs_ordered_update_i_size(inode, last_size, NULL);
4659 
4660 	btrfs_free_path(path);
4661 
4662 	if (be_nice && bytes_deleted > SZ_32M) {
4663 		unsigned long updates = trans->delayed_ref_updates;
4664 		if (updates) {
4665 			trans->delayed_ref_updates = 0;
4666 			ret = btrfs_run_delayed_refs(trans, root, updates * 2);
4667 			if (ret && !err)
4668 				err = ret;
4669 		}
4670 	}
4671 	return err;
4672 }
4673 
4674 /*
4675  * btrfs_truncate_block - read, zero a chunk and write a block
4676  * @inode - inode that we're zeroing
4677  * @from - the offset to start zeroing
4678  * @len - the length to zero, 0 to zero the entire range respective to the
4679  *	offset
4680  * @front - zero up to the offset instead of from the offset on
4681  *
4682  * This will find the block for the "from" offset and cow the block and zero the
4683  * part we want to zero.  This is used with truncate and hole punching.
4684  */
4685 int btrfs_truncate_block(struct inode *inode, loff_t from, loff_t len,
4686 			int front)
4687 {
4688 	struct address_space *mapping = inode->i_mapping;
4689 	struct btrfs_root *root = BTRFS_I(inode)->root;
4690 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4691 	struct btrfs_ordered_extent *ordered;
4692 	struct extent_state *cached_state = NULL;
4693 	char *kaddr;
4694 	u32 blocksize = root->sectorsize;
4695 	pgoff_t index = from >> PAGE_SHIFT;
4696 	unsigned offset = from & (blocksize - 1);
4697 	struct page *page;
4698 	gfp_t mask = btrfs_alloc_write_mask(mapping);
4699 	int ret = 0;
4700 	u64 block_start;
4701 	u64 block_end;
4702 
4703 	if ((offset & (blocksize - 1)) == 0 &&
4704 	    (!len || ((len & (blocksize - 1)) == 0)))
4705 		goto out;
4706 
4707 	ret = btrfs_delalloc_reserve_space(inode,
4708 			round_down(from, blocksize), blocksize);
4709 	if (ret)
4710 		goto out;
4711 
4712 again:
4713 	page = find_or_create_page(mapping, index, mask);
4714 	if (!page) {
4715 		btrfs_delalloc_release_space(inode,
4716 				round_down(from, blocksize),
4717 				blocksize);
4718 		ret = -ENOMEM;
4719 		goto out;
4720 	}
4721 
4722 	block_start = round_down(from, blocksize);
4723 	block_end = block_start + blocksize - 1;
4724 
4725 	if (!PageUptodate(page)) {
4726 		ret = btrfs_readpage(NULL, page);
4727 		lock_page(page);
4728 		if (page->mapping != mapping) {
4729 			unlock_page(page);
4730 			put_page(page);
4731 			goto again;
4732 		}
4733 		if (!PageUptodate(page)) {
4734 			ret = -EIO;
4735 			goto out_unlock;
4736 		}
4737 	}
4738 	wait_on_page_writeback(page);
4739 
4740 	lock_extent_bits(io_tree, block_start, block_end, &cached_state);
4741 	set_page_extent_mapped(page);
4742 
4743 	ordered = btrfs_lookup_ordered_extent(inode, block_start);
4744 	if (ordered) {
4745 		unlock_extent_cached(io_tree, block_start, block_end,
4746 				     &cached_state, GFP_NOFS);
4747 		unlock_page(page);
4748 		put_page(page);
4749 		btrfs_start_ordered_extent(inode, ordered, 1);
4750 		btrfs_put_ordered_extent(ordered);
4751 		goto again;
4752 	}
4753 
4754 	clear_extent_bit(&BTRFS_I(inode)->io_tree, block_start, block_end,
4755 			  EXTENT_DIRTY | EXTENT_DELALLOC |
4756 			  EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
4757 			  0, 0, &cached_state, GFP_NOFS);
4758 
4759 	ret = btrfs_set_extent_delalloc(inode, block_start, block_end,
4760 					&cached_state);
4761 	if (ret) {
4762 		unlock_extent_cached(io_tree, block_start, block_end,
4763 				     &cached_state, GFP_NOFS);
4764 		goto out_unlock;
4765 	}
4766 
4767 	if (offset != blocksize) {
4768 		if (!len)
4769 			len = blocksize - offset;
4770 		kaddr = kmap(page);
4771 		if (front)
4772 			memset(kaddr + (block_start - page_offset(page)),
4773 				0, offset);
4774 		else
4775 			memset(kaddr + (block_start - page_offset(page)) +  offset,
4776 				0, len);
4777 		flush_dcache_page(page);
4778 		kunmap(page);
4779 	}
4780 	ClearPageChecked(page);
4781 	set_page_dirty(page);
4782 	unlock_extent_cached(io_tree, block_start, block_end, &cached_state,
4783 			     GFP_NOFS);
4784 
4785 out_unlock:
4786 	if (ret)
4787 		btrfs_delalloc_release_space(inode, block_start,
4788 					     blocksize);
4789 	unlock_page(page);
4790 	put_page(page);
4791 out:
4792 	return ret;
4793 }
4794 
4795 static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode,
4796 			     u64 offset, u64 len)
4797 {
4798 	struct btrfs_trans_handle *trans;
4799 	int ret;
4800 
4801 	/*
4802 	 * Still need to make sure the inode looks like it's been updated so
4803 	 * that any holes get logged if we fsync.
4804 	 */
4805 	if (btrfs_fs_incompat(root->fs_info, NO_HOLES)) {
4806 		BTRFS_I(inode)->last_trans = root->fs_info->generation;
4807 		BTRFS_I(inode)->last_sub_trans = root->log_transid;
4808 		BTRFS_I(inode)->last_log_commit = root->last_log_commit;
4809 		return 0;
4810 	}
4811 
4812 	/*
4813 	 * 1 - for the one we're dropping
4814 	 * 1 - for the one we're adding
4815 	 * 1 - for updating the inode.
4816 	 */
4817 	trans = btrfs_start_transaction(root, 3);
4818 	if (IS_ERR(trans))
4819 		return PTR_ERR(trans);
4820 
4821 	ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1);
4822 	if (ret) {
4823 		btrfs_abort_transaction(trans, ret);
4824 		btrfs_end_transaction(trans, root);
4825 		return ret;
4826 	}
4827 
4828 	ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset,
4829 				       0, 0, len, 0, len, 0, 0, 0);
4830 	if (ret)
4831 		btrfs_abort_transaction(trans, ret);
4832 	else
4833 		btrfs_update_inode(trans, root, inode);
4834 	btrfs_end_transaction(trans, root);
4835 	return ret;
4836 }
4837 
4838 /*
4839  * This function puts in dummy file extents for the area we're creating a hole
4840  * for.  So if we are truncating this file to a larger size we need to insert
4841  * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4842  * the range between oldsize and size
4843  */
4844 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
4845 {
4846 	struct btrfs_root *root = BTRFS_I(inode)->root;
4847 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4848 	struct extent_map *em = NULL;
4849 	struct extent_state *cached_state = NULL;
4850 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4851 	u64 hole_start = ALIGN(oldsize, root->sectorsize);
4852 	u64 block_end = ALIGN(size, root->sectorsize);
4853 	u64 last_byte;
4854 	u64 cur_offset;
4855 	u64 hole_size;
4856 	int err = 0;
4857 
4858 	/*
4859 	 * If our size started in the middle of a block we need to zero out the
4860 	 * rest of the block before we expand the i_size, otherwise we could
4861 	 * expose stale data.
4862 	 */
4863 	err = btrfs_truncate_block(inode, oldsize, 0, 0);
4864 	if (err)
4865 		return err;
4866 
4867 	if (size <= hole_start)
4868 		return 0;
4869 
4870 	while (1) {
4871 		struct btrfs_ordered_extent *ordered;
4872 
4873 		lock_extent_bits(io_tree, hole_start, block_end - 1,
4874 				 &cached_state);
4875 		ordered = btrfs_lookup_ordered_range(inode, hole_start,
4876 						     block_end - hole_start);
4877 		if (!ordered)
4878 			break;
4879 		unlock_extent_cached(io_tree, hole_start, block_end - 1,
4880 				     &cached_state, GFP_NOFS);
4881 		btrfs_start_ordered_extent(inode, ordered, 1);
4882 		btrfs_put_ordered_extent(ordered);
4883 	}
4884 
4885 	cur_offset = hole_start;
4886 	while (1) {
4887 		em = btrfs_get_extent(inode, NULL, 0, cur_offset,
4888 				block_end - cur_offset, 0);
4889 		if (IS_ERR(em)) {
4890 			err = PTR_ERR(em);
4891 			em = NULL;
4892 			break;
4893 		}
4894 		last_byte = min(extent_map_end(em), block_end);
4895 		last_byte = ALIGN(last_byte , root->sectorsize);
4896 		if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
4897 			struct extent_map *hole_em;
4898 			hole_size = last_byte - cur_offset;
4899 
4900 			err = maybe_insert_hole(root, inode, cur_offset,
4901 						hole_size);
4902 			if (err)
4903 				break;
4904 			btrfs_drop_extent_cache(inode, cur_offset,
4905 						cur_offset + hole_size - 1, 0);
4906 			hole_em = alloc_extent_map();
4907 			if (!hole_em) {
4908 				set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4909 					&BTRFS_I(inode)->runtime_flags);
4910 				goto next;
4911 			}
4912 			hole_em->start = cur_offset;
4913 			hole_em->len = hole_size;
4914 			hole_em->orig_start = cur_offset;
4915 
4916 			hole_em->block_start = EXTENT_MAP_HOLE;
4917 			hole_em->block_len = 0;
4918 			hole_em->orig_block_len = 0;
4919 			hole_em->ram_bytes = hole_size;
4920 			hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
4921 			hole_em->compress_type = BTRFS_COMPRESS_NONE;
4922 			hole_em->generation = root->fs_info->generation;
4923 
4924 			while (1) {
4925 				write_lock(&em_tree->lock);
4926 				err = add_extent_mapping(em_tree, hole_em, 1);
4927 				write_unlock(&em_tree->lock);
4928 				if (err != -EEXIST)
4929 					break;
4930 				btrfs_drop_extent_cache(inode, cur_offset,
4931 							cur_offset +
4932 							hole_size - 1, 0);
4933 			}
4934 			free_extent_map(hole_em);
4935 		}
4936 next:
4937 		free_extent_map(em);
4938 		em = NULL;
4939 		cur_offset = last_byte;
4940 		if (cur_offset >= block_end)
4941 			break;
4942 	}
4943 	free_extent_map(em);
4944 	unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
4945 			     GFP_NOFS);
4946 	return err;
4947 }
4948 
4949 static int btrfs_setsize(struct inode *inode, struct iattr *attr)
4950 {
4951 	struct btrfs_root *root = BTRFS_I(inode)->root;
4952 	struct btrfs_trans_handle *trans;
4953 	loff_t oldsize = i_size_read(inode);
4954 	loff_t newsize = attr->ia_size;
4955 	int mask = attr->ia_valid;
4956 	int ret;
4957 
4958 	/*
4959 	 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
4960 	 * special case where we need to update the times despite not having
4961 	 * these flags set.  For all other operations the VFS set these flags
4962 	 * explicitly if it wants a timestamp update.
4963 	 */
4964 	if (newsize != oldsize) {
4965 		inode_inc_iversion(inode);
4966 		if (!(mask & (ATTR_CTIME | ATTR_MTIME)))
4967 			inode->i_ctime = inode->i_mtime =
4968 				current_fs_time(inode->i_sb);
4969 	}
4970 
4971 	if (newsize > oldsize) {
4972 		/*
4973 		 * Don't do an expanding truncate while snapshoting is ongoing.
4974 		 * This is to ensure the snapshot captures a fully consistent
4975 		 * state of this file - if the snapshot captures this expanding
4976 		 * truncation, it must capture all writes that happened before
4977 		 * this truncation.
4978 		 */
4979 		btrfs_wait_for_snapshot_creation(root);
4980 		ret = btrfs_cont_expand(inode, oldsize, newsize);
4981 		if (ret) {
4982 			btrfs_end_write_no_snapshoting(root);
4983 			return ret;
4984 		}
4985 
4986 		trans = btrfs_start_transaction(root, 1);
4987 		if (IS_ERR(trans)) {
4988 			btrfs_end_write_no_snapshoting(root);
4989 			return PTR_ERR(trans);
4990 		}
4991 
4992 		i_size_write(inode, newsize);
4993 		btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
4994 		pagecache_isize_extended(inode, oldsize, newsize);
4995 		ret = btrfs_update_inode(trans, root, inode);
4996 		btrfs_end_write_no_snapshoting(root);
4997 		btrfs_end_transaction(trans, root);
4998 	} else {
4999 
5000 		/*
5001 		 * We're truncating a file that used to have good data down to
5002 		 * zero. Make sure it gets into the ordered flush list so that
5003 		 * any new writes get down to disk quickly.
5004 		 */
5005 		if (newsize == 0)
5006 			set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
5007 				&BTRFS_I(inode)->runtime_flags);
5008 
5009 		/*
5010 		 * 1 for the orphan item we're going to add
5011 		 * 1 for the orphan item deletion.
5012 		 */
5013 		trans = btrfs_start_transaction(root, 2);
5014 		if (IS_ERR(trans))
5015 			return PTR_ERR(trans);
5016 
5017 		/*
5018 		 * We need to do this in case we fail at _any_ point during the
5019 		 * actual truncate.  Once we do the truncate_setsize we could
5020 		 * invalidate pages which forces any outstanding ordered io to
5021 		 * be instantly completed which will give us extents that need
5022 		 * to be truncated.  If we fail to get an orphan inode down we
5023 		 * could have left over extents that were never meant to live,
5024 		 * so we need to guarantee from this point on that everything
5025 		 * will be consistent.
5026 		 */
5027 		ret = btrfs_orphan_add(trans, inode);
5028 		btrfs_end_transaction(trans, root);
5029 		if (ret)
5030 			return ret;
5031 
5032 		/* we don't support swapfiles, so vmtruncate shouldn't fail */
5033 		truncate_setsize(inode, newsize);
5034 
5035 		/* Disable nonlocked read DIO to avoid the end less truncate */
5036 		btrfs_inode_block_unlocked_dio(inode);
5037 		inode_dio_wait(inode);
5038 		btrfs_inode_resume_unlocked_dio(inode);
5039 
5040 		ret = btrfs_truncate(inode);
5041 		if (ret && inode->i_nlink) {
5042 			int err;
5043 
5044 			/*
5045 			 * failed to truncate, disk_i_size is only adjusted down
5046 			 * as we remove extents, so it should represent the true
5047 			 * size of the inode, so reset the in memory size and
5048 			 * delete our orphan entry.
5049 			 */
5050 			trans = btrfs_join_transaction(root);
5051 			if (IS_ERR(trans)) {
5052 				btrfs_orphan_del(NULL, inode);
5053 				return ret;
5054 			}
5055 			i_size_write(inode, BTRFS_I(inode)->disk_i_size);
5056 			err = btrfs_orphan_del(trans, inode);
5057 			if (err)
5058 				btrfs_abort_transaction(trans, err);
5059 			btrfs_end_transaction(trans, root);
5060 		}
5061 	}
5062 
5063 	return ret;
5064 }
5065 
5066 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
5067 {
5068 	struct inode *inode = d_inode(dentry);
5069 	struct btrfs_root *root = BTRFS_I(inode)->root;
5070 	int err;
5071 
5072 	if (btrfs_root_readonly(root))
5073 		return -EROFS;
5074 
5075 	err = inode_change_ok(inode, attr);
5076 	if (err)
5077 		return err;
5078 
5079 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
5080 		err = btrfs_setsize(inode, attr);
5081 		if (err)
5082 			return err;
5083 	}
5084 
5085 	if (attr->ia_valid) {
5086 		setattr_copy(inode, attr);
5087 		inode_inc_iversion(inode);
5088 		err = btrfs_dirty_inode(inode);
5089 
5090 		if (!err && attr->ia_valid & ATTR_MODE)
5091 			err = posix_acl_chmod(inode, inode->i_mode);
5092 	}
5093 
5094 	return err;
5095 }
5096 
5097 /*
5098  * While truncating the inode pages during eviction, we get the VFS calling
5099  * btrfs_invalidatepage() against each page of the inode. This is slow because
5100  * the calls to btrfs_invalidatepage() result in a huge amount of calls to
5101  * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
5102  * extent_state structures over and over, wasting lots of time.
5103  *
5104  * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
5105  * those expensive operations on a per page basis and do only the ordered io
5106  * finishing, while we release here the extent_map and extent_state structures,
5107  * without the excessive merging and splitting.
5108  */
5109 static void evict_inode_truncate_pages(struct inode *inode)
5110 {
5111 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5112 	struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
5113 	struct rb_node *node;
5114 
5115 	ASSERT(inode->i_state & I_FREEING);
5116 	truncate_inode_pages_final(&inode->i_data);
5117 
5118 	write_lock(&map_tree->lock);
5119 	while (!RB_EMPTY_ROOT(&map_tree->map)) {
5120 		struct extent_map *em;
5121 
5122 		node = rb_first(&map_tree->map);
5123 		em = rb_entry(node, struct extent_map, rb_node);
5124 		clear_bit(EXTENT_FLAG_PINNED, &em->flags);
5125 		clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
5126 		remove_extent_mapping(map_tree, em);
5127 		free_extent_map(em);
5128 		if (need_resched()) {
5129 			write_unlock(&map_tree->lock);
5130 			cond_resched();
5131 			write_lock(&map_tree->lock);
5132 		}
5133 	}
5134 	write_unlock(&map_tree->lock);
5135 
5136 	/*
5137 	 * Keep looping until we have no more ranges in the io tree.
5138 	 * We can have ongoing bios started by readpages (called from readahead)
5139 	 * that have their endio callback (extent_io.c:end_bio_extent_readpage)
5140 	 * still in progress (unlocked the pages in the bio but did not yet
5141 	 * unlocked the ranges in the io tree). Therefore this means some
5142 	 * ranges can still be locked and eviction started because before
5143 	 * submitting those bios, which are executed by a separate task (work
5144 	 * queue kthread), inode references (inode->i_count) were not taken
5145 	 * (which would be dropped in the end io callback of each bio).
5146 	 * Therefore here we effectively end up waiting for those bios and
5147 	 * anyone else holding locked ranges without having bumped the inode's
5148 	 * reference count - if we don't do it, when they access the inode's
5149 	 * io_tree to unlock a range it may be too late, leading to an
5150 	 * use-after-free issue.
5151 	 */
5152 	spin_lock(&io_tree->lock);
5153 	while (!RB_EMPTY_ROOT(&io_tree->state)) {
5154 		struct extent_state *state;
5155 		struct extent_state *cached_state = NULL;
5156 		u64 start;
5157 		u64 end;
5158 
5159 		node = rb_first(&io_tree->state);
5160 		state = rb_entry(node, struct extent_state, rb_node);
5161 		start = state->start;
5162 		end = state->end;
5163 		spin_unlock(&io_tree->lock);
5164 
5165 		lock_extent_bits(io_tree, start, end, &cached_state);
5166 
5167 		/*
5168 		 * If still has DELALLOC flag, the extent didn't reach disk,
5169 		 * and its reserved space won't be freed by delayed_ref.
5170 		 * So we need to free its reserved space here.
5171 		 * (Refer to comment in btrfs_invalidatepage, case 2)
5172 		 *
5173 		 * Note, end is the bytenr of last byte, so we need + 1 here.
5174 		 */
5175 		if (state->state & EXTENT_DELALLOC)
5176 			btrfs_qgroup_free_data(inode, start, end - start + 1);
5177 
5178 		clear_extent_bit(io_tree, start, end,
5179 				 EXTENT_LOCKED | EXTENT_DIRTY |
5180 				 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
5181 				 EXTENT_DEFRAG, 1, 1,
5182 				 &cached_state, GFP_NOFS);
5183 
5184 		cond_resched();
5185 		spin_lock(&io_tree->lock);
5186 	}
5187 	spin_unlock(&io_tree->lock);
5188 }
5189 
5190 void btrfs_evict_inode(struct inode *inode)
5191 {
5192 	struct btrfs_trans_handle *trans;
5193 	struct btrfs_root *root = BTRFS_I(inode)->root;
5194 	struct btrfs_block_rsv *rsv, *global_rsv;
5195 	int steal_from_global = 0;
5196 	u64 min_size;
5197 	int ret;
5198 
5199 	trace_btrfs_inode_evict(inode);
5200 
5201 	if (!root) {
5202 		kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
5203 		return;
5204 	}
5205 
5206 	min_size = btrfs_calc_trunc_metadata_size(root, 1);
5207 
5208 	evict_inode_truncate_pages(inode);
5209 
5210 	if (inode->i_nlink &&
5211 	    ((btrfs_root_refs(&root->root_item) != 0 &&
5212 	      root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
5213 	     btrfs_is_free_space_inode(inode)))
5214 		goto no_delete;
5215 
5216 	if (is_bad_inode(inode)) {
5217 		btrfs_orphan_del(NULL, inode);
5218 		goto no_delete;
5219 	}
5220 	/* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
5221 	if (!special_file(inode->i_mode))
5222 		btrfs_wait_ordered_range(inode, 0, (u64)-1);
5223 
5224 	btrfs_free_io_failure_record(inode, 0, (u64)-1);
5225 
5226 	if (root->fs_info->log_root_recovering) {
5227 		BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
5228 				 &BTRFS_I(inode)->runtime_flags));
5229 		goto no_delete;
5230 	}
5231 
5232 	if (inode->i_nlink > 0) {
5233 		BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5234 		       root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
5235 		goto no_delete;
5236 	}
5237 
5238 	ret = btrfs_commit_inode_delayed_inode(inode);
5239 	if (ret) {
5240 		btrfs_orphan_del(NULL, inode);
5241 		goto no_delete;
5242 	}
5243 
5244 	rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
5245 	if (!rsv) {
5246 		btrfs_orphan_del(NULL, inode);
5247 		goto no_delete;
5248 	}
5249 	rsv->size = min_size;
5250 	rsv->failfast = 1;
5251 	global_rsv = &root->fs_info->global_block_rsv;
5252 
5253 	btrfs_i_size_write(inode, 0);
5254 
5255 	/*
5256 	 * This is a bit simpler than btrfs_truncate since we've already
5257 	 * reserved our space for our orphan item in the unlink, so we just
5258 	 * need to reserve some slack space in case we add bytes and update
5259 	 * inode item when doing the truncate.
5260 	 */
5261 	while (1) {
5262 		ret = btrfs_block_rsv_refill(root, rsv, min_size,
5263 					     BTRFS_RESERVE_FLUSH_LIMIT);
5264 
5265 		/*
5266 		 * Try and steal from the global reserve since we will
5267 		 * likely not use this space anyway, we want to try as
5268 		 * hard as possible to get this to work.
5269 		 */
5270 		if (ret)
5271 			steal_from_global++;
5272 		else
5273 			steal_from_global = 0;
5274 		ret = 0;
5275 
5276 		/*
5277 		 * steal_from_global == 0: we reserved stuff, hooray!
5278 		 * steal_from_global == 1: we didn't reserve stuff, boo!
5279 		 * steal_from_global == 2: we've committed, still not a lot of
5280 		 * room but maybe we'll have room in the global reserve this
5281 		 * time.
5282 		 * steal_from_global == 3: abandon all hope!
5283 		 */
5284 		if (steal_from_global > 2) {
5285 			btrfs_warn(root->fs_info,
5286 				"Could not get space for a delete, will truncate on mount %d",
5287 				ret);
5288 			btrfs_orphan_del(NULL, inode);
5289 			btrfs_free_block_rsv(root, rsv);
5290 			goto no_delete;
5291 		}
5292 
5293 		trans = btrfs_join_transaction(root);
5294 		if (IS_ERR(trans)) {
5295 			btrfs_orphan_del(NULL, inode);
5296 			btrfs_free_block_rsv(root, rsv);
5297 			goto no_delete;
5298 		}
5299 
5300 		/*
5301 		 * We can't just steal from the global reserve, we need to make
5302 		 * sure there is room to do it, if not we need to commit and try
5303 		 * again.
5304 		 */
5305 		if (steal_from_global) {
5306 			if (!btrfs_check_space_for_delayed_refs(trans, root))
5307 				ret = btrfs_block_rsv_migrate(global_rsv, rsv,
5308 							      min_size, 0);
5309 			else
5310 				ret = -ENOSPC;
5311 		}
5312 
5313 		/*
5314 		 * Couldn't steal from the global reserve, we have too much
5315 		 * pending stuff built up, commit the transaction and try it
5316 		 * again.
5317 		 */
5318 		if (ret) {
5319 			ret = btrfs_commit_transaction(trans, root);
5320 			if (ret) {
5321 				btrfs_orphan_del(NULL, inode);
5322 				btrfs_free_block_rsv(root, rsv);
5323 				goto no_delete;
5324 			}
5325 			continue;
5326 		} else {
5327 			steal_from_global = 0;
5328 		}
5329 
5330 		trans->block_rsv = rsv;
5331 
5332 		ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
5333 		if (ret != -ENOSPC && ret != -EAGAIN)
5334 			break;
5335 
5336 		trans->block_rsv = &root->fs_info->trans_block_rsv;
5337 		btrfs_end_transaction(trans, root);
5338 		trans = NULL;
5339 		btrfs_btree_balance_dirty(root);
5340 	}
5341 
5342 	btrfs_free_block_rsv(root, rsv);
5343 
5344 	/*
5345 	 * Errors here aren't a big deal, it just means we leave orphan items
5346 	 * in the tree.  They will be cleaned up on the next mount.
5347 	 */
5348 	if (ret == 0) {
5349 		trans->block_rsv = root->orphan_block_rsv;
5350 		btrfs_orphan_del(trans, inode);
5351 	} else {
5352 		btrfs_orphan_del(NULL, inode);
5353 	}
5354 
5355 	trans->block_rsv = &root->fs_info->trans_block_rsv;
5356 	if (!(root == root->fs_info->tree_root ||
5357 	      root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
5358 		btrfs_return_ino(root, btrfs_ino(inode));
5359 
5360 	btrfs_end_transaction(trans, root);
5361 	btrfs_btree_balance_dirty(root);
5362 no_delete:
5363 	btrfs_remove_delayed_node(inode);
5364 	clear_inode(inode);
5365 }
5366 
5367 /*
5368  * this returns the key found in the dir entry in the location pointer.
5369  * If no dir entries were found, location->objectid is 0.
5370  */
5371 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
5372 			       struct btrfs_key *location)
5373 {
5374 	const char *name = dentry->d_name.name;
5375 	int namelen = dentry->d_name.len;
5376 	struct btrfs_dir_item *di;
5377 	struct btrfs_path *path;
5378 	struct btrfs_root *root = BTRFS_I(dir)->root;
5379 	int ret = 0;
5380 
5381 	path = btrfs_alloc_path();
5382 	if (!path)
5383 		return -ENOMEM;
5384 
5385 	di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name,
5386 				    namelen, 0);
5387 	if (IS_ERR(di))
5388 		ret = PTR_ERR(di);
5389 
5390 	if (IS_ERR_OR_NULL(di))
5391 		goto out_err;
5392 
5393 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
5394 out:
5395 	btrfs_free_path(path);
5396 	return ret;
5397 out_err:
5398 	location->objectid = 0;
5399 	goto out;
5400 }
5401 
5402 /*
5403  * when we hit a tree root in a directory, the btrfs part of the inode
5404  * needs to be changed to reflect the root directory of the tree root.  This
5405  * is kind of like crossing a mount point.
5406  */
5407 static int fixup_tree_root_location(struct btrfs_root *root,
5408 				    struct inode *dir,
5409 				    struct dentry *dentry,
5410 				    struct btrfs_key *location,
5411 				    struct btrfs_root **sub_root)
5412 {
5413 	struct btrfs_path *path;
5414 	struct btrfs_root *new_root;
5415 	struct btrfs_root_ref *ref;
5416 	struct extent_buffer *leaf;
5417 	struct btrfs_key key;
5418 	int ret;
5419 	int err = 0;
5420 
5421 	path = btrfs_alloc_path();
5422 	if (!path) {
5423 		err = -ENOMEM;
5424 		goto out;
5425 	}
5426 
5427 	err = -ENOENT;
5428 	key.objectid = BTRFS_I(dir)->root->root_key.objectid;
5429 	key.type = BTRFS_ROOT_REF_KEY;
5430 	key.offset = location->objectid;
5431 
5432 	ret = btrfs_search_slot(NULL, root->fs_info->tree_root, &key, path,
5433 				0, 0);
5434 	if (ret) {
5435 		if (ret < 0)
5436 			err = ret;
5437 		goto out;
5438 	}
5439 
5440 	leaf = path->nodes[0];
5441 	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
5442 	if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
5443 	    btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
5444 		goto out;
5445 
5446 	ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
5447 				   (unsigned long)(ref + 1),
5448 				   dentry->d_name.len);
5449 	if (ret)
5450 		goto out;
5451 
5452 	btrfs_release_path(path);
5453 
5454 	new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
5455 	if (IS_ERR(new_root)) {
5456 		err = PTR_ERR(new_root);
5457 		goto out;
5458 	}
5459 
5460 	*sub_root = new_root;
5461 	location->objectid = btrfs_root_dirid(&new_root->root_item);
5462 	location->type = BTRFS_INODE_ITEM_KEY;
5463 	location->offset = 0;
5464 	err = 0;
5465 out:
5466 	btrfs_free_path(path);
5467 	return err;
5468 }
5469 
5470 static void inode_tree_add(struct inode *inode)
5471 {
5472 	struct btrfs_root *root = BTRFS_I(inode)->root;
5473 	struct btrfs_inode *entry;
5474 	struct rb_node **p;
5475 	struct rb_node *parent;
5476 	struct rb_node *new = &BTRFS_I(inode)->rb_node;
5477 	u64 ino = btrfs_ino(inode);
5478 
5479 	if (inode_unhashed(inode))
5480 		return;
5481 	parent = NULL;
5482 	spin_lock(&root->inode_lock);
5483 	p = &root->inode_tree.rb_node;
5484 	while (*p) {
5485 		parent = *p;
5486 		entry = rb_entry(parent, struct btrfs_inode, rb_node);
5487 
5488 		if (ino < btrfs_ino(&entry->vfs_inode))
5489 			p = &parent->rb_left;
5490 		else if (ino > btrfs_ino(&entry->vfs_inode))
5491 			p = &parent->rb_right;
5492 		else {
5493 			WARN_ON(!(entry->vfs_inode.i_state &
5494 				  (I_WILL_FREE | I_FREEING)));
5495 			rb_replace_node(parent, new, &root->inode_tree);
5496 			RB_CLEAR_NODE(parent);
5497 			spin_unlock(&root->inode_lock);
5498 			return;
5499 		}
5500 	}
5501 	rb_link_node(new, parent, p);
5502 	rb_insert_color(new, &root->inode_tree);
5503 	spin_unlock(&root->inode_lock);
5504 }
5505 
5506 static void inode_tree_del(struct inode *inode)
5507 {
5508 	struct btrfs_root *root = BTRFS_I(inode)->root;
5509 	int empty = 0;
5510 
5511 	spin_lock(&root->inode_lock);
5512 	if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5513 		rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5514 		RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
5515 		empty = RB_EMPTY_ROOT(&root->inode_tree);
5516 	}
5517 	spin_unlock(&root->inode_lock);
5518 
5519 	if (empty && btrfs_root_refs(&root->root_item) == 0) {
5520 		synchronize_srcu(&root->fs_info->subvol_srcu);
5521 		spin_lock(&root->inode_lock);
5522 		empty = RB_EMPTY_ROOT(&root->inode_tree);
5523 		spin_unlock(&root->inode_lock);
5524 		if (empty)
5525 			btrfs_add_dead_root(root);
5526 	}
5527 }
5528 
5529 void btrfs_invalidate_inodes(struct btrfs_root *root)
5530 {
5531 	struct rb_node *node;
5532 	struct rb_node *prev;
5533 	struct btrfs_inode *entry;
5534 	struct inode *inode;
5535 	u64 objectid = 0;
5536 
5537 	if (!test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
5538 		WARN_ON(btrfs_root_refs(&root->root_item) != 0);
5539 
5540 	spin_lock(&root->inode_lock);
5541 again:
5542 	node = root->inode_tree.rb_node;
5543 	prev = NULL;
5544 	while (node) {
5545 		prev = node;
5546 		entry = rb_entry(node, struct btrfs_inode, rb_node);
5547 
5548 		if (objectid < btrfs_ino(&entry->vfs_inode))
5549 			node = node->rb_left;
5550 		else if (objectid > btrfs_ino(&entry->vfs_inode))
5551 			node = node->rb_right;
5552 		else
5553 			break;
5554 	}
5555 	if (!node) {
5556 		while (prev) {
5557 			entry = rb_entry(prev, struct btrfs_inode, rb_node);
5558 			if (objectid <= btrfs_ino(&entry->vfs_inode)) {
5559 				node = prev;
5560 				break;
5561 			}
5562 			prev = rb_next(prev);
5563 		}
5564 	}
5565 	while (node) {
5566 		entry = rb_entry(node, struct btrfs_inode, rb_node);
5567 		objectid = btrfs_ino(&entry->vfs_inode) + 1;
5568 		inode = igrab(&entry->vfs_inode);
5569 		if (inode) {
5570 			spin_unlock(&root->inode_lock);
5571 			if (atomic_read(&inode->i_count) > 1)
5572 				d_prune_aliases(inode);
5573 			/*
5574 			 * btrfs_drop_inode will have it removed from
5575 			 * the inode cache when its usage count
5576 			 * hits zero.
5577 			 */
5578 			iput(inode);
5579 			cond_resched();
5580 			spin_lock(&root->inode_lock);
5581 			goto again;
5582 		}
5583 
5584 		if (cond_resched_lock(&root->inode_lock))
5585 			goto again;
5586 
5587 		node = rb_next(node);
5588 	}
5589 	spin_unlock(&root->inode_lock);
5590 }
5591 
5592 static int btrfs_init_locked_inode(struct inode *inode, void *p)
5593 {
5594 	struct btrfs_iget_args *args = p;
5595 	inode->i_ino = args->location->objectid;
5596 	memcpy(&BTRFS_I(inode)->location, args->location,
5597 	       sizeof(*args->location));
5598 	BTRFS_I(inode)->root = args->root;
5599 	return 0;
5600 }
5601 
5602 static int btrfs_find_actor(struct inode *inode, void *opaque)
5603 {
5604 	struct btrfs_iget_args *args = opaque;
5605 	return args->location->objectid == BTRFS_I(inode)->location.objectid &&
5606 		args->root == BTRFS_I(inode)->root;
5607 }
5608 
5609 static struct inode *btrfs_iget_locked(struct super_block *s,
5610 				       struct btrfs_key *location,
5611 				       struct btrfs_root *root)
5612 {
5613 	struct inode *inode;
5614 	struct btrfs_iget_args args;
5615 	unsigned long hashval = btrfs_inode_hash(location->objectid, root);
5616 
5617 	args.location = location;
5618 	args.root = root;
5619 
5620 	inode = iget5_locked(s, hashval, btrfs_find_actor,
5621 			     btrfs_init_locked_inode,
5622 			     (void *)&args);
5623 	return inode;
5624 }
5625 
5626 /* Get an inode object given its location and corresponding root.
5627  * Returns in *is_new if the inode was read from disk
5628  */
5629 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
5630 			 struct btrfs_root *root, int *new)
5631 {
5632 	struct inode *inode;
5633 
5634 	inode = btrfs_iget_locked(s, location, root);
5635 	if (!inode)
5636 		return ERR_PTR(-ENOMEM);
5637 
5638 	if (inode->i_state & I_NEW) {
5639 		int ret;
5640 
5641 		ret = btrfs_read_locked_inode(inode);
5642 		if (!is_bad_inode(inode)) {
5643 			inode_tree_add(inode);
5644 			unlock_new_inode(inode);
5645 			if (new)
5646 				*new = 1;
5647 		} else {
5648 			unlock_new_inode(inode);
5649 			iput(inode);
5650 			ASSERT(ret < 0);
5651 			inode = ERR_PTR(ret < 0 ? ret : -ESTALE);
5652 		}
5653 	}
5654 
5655 	return inode;
5656 }
5657 
5658 static struct inode *new_simple_dir(struct super_block *s,
5659 				    struct btrfs_key *key,
5660 				    struct btrfs_root *root)
5661 {
5662 	struct inode *inode = new_inode(s);
5663 
5664 	if (!inode)
5665 		return ERR_PTR(-ENOMEM);
5666 
5667 	BTRFS_I(inode)->root = root;
5668 	memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
5669 	set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
5670 
5671 	inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
5672 	inode->i_op = &btrfs_dir_ro_inode_operations;
5673 	inode->i_fop = &simple_dir_operations;
5674 	inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
5675 	inode->i_mtime = current_fs_time(inode->i_sb);
5676 	inode->i_atime = inode->i_mtime;
5677 	inode->i_ctime = inode->i_mtime;
5678 	BTRFS_I(inode)->i_otime = inode->i_mtime;
5679 
5680 	return inode;
5681 }
5682 
5683 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
5684 {
5685 	struct inode *inode;
5686 	struct btrfs_root *root = BTRFS_I(dir)->root;
5687 	struct btrfs_root *sub_root = root;
5688 	struct btrfs_key location;
5689 	int index;
5690 	int ret = 0;
5691 
5692 	if (dentry->d_name.len > BTRFS_NAME_LEN)
5693 		return ERR_PTR(-ENAMETOOLONG);
5694 
5695 	ret = btrfs_inode_by_name(dir, dentry, &location);
5696 	if (ret < 0)
5697 		return ERR_PTR(ret);
5698 
5699 	if (location.objectid == 0)
5700 		return ERR_PTR(-ENOENT);
5701 
5702 	if (location.type == BTRFS_INODE_ITEM_KEY) {
5703 		inode = btrfs_iget(dir->i_sb, &location, root, NULL);
5704 		return inode;
5705 	}
5706 
5707 	BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
5708 
5709 	index = srcu_read_lock(&root->fs_info->subvol_srcu);
5710 	ret = fixup_tree_root_location(root, dir, dentry,
5711 				       &location, &sub_root);
5712 	if (ret < 0) {
5713 		if (ret != -ENOENT)
5714 			inode = ERR_PTR(ret);
5715 		else
5716 			inode = new_simple_dir(dir->i_sb, &location, sub_root);
5717 	} else {
5718 		inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
5719 	}
5720 	srcu_read_unlock(&root->fs_info->subvol_srcu, index);
5721 
5722 	if (!IS_ERR(inode) && root != sub_root) {
5723 		down_read(&root->fs_info->cleanup_work_sem);
5724 		if (!(inode->i_sb->s_flags & MS_RDONLY))
5725 			ret = btrfs_orphan_cleanup(sub_root);
5726 		up_read(&root->fs_info->cleanup_work_sem);
5727 		if (ret) {
5728 			iput(inode);
5729 			inode = ERR_PTR(ret);
5730 		}
5731 	}
5732 
5733 	return inode;
5734 }
5735 
5736 static int btrfs_dentry_delete(const struct dentry *dentry)
5737 {
5738 	struct btrfs_root *root;
5739 	struct inode *inode = d_inode(dentry);
5740 
5741 	if (!inode && !IS_ROOT(dentry))
5742 		inode = d_inode(dentry->d_parent);
5743 
5744 	if (inode) {
5745 		root = BTRFS_I(inode)->root;
5746 		if (btrfs_root_refs(&root->root_item) == 0)
5747 			return 1;
5748 
5749 		if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5750 			return 1;
5751 	}
5752 	return 0;
5753 }
5754 
5755 static void btrfs_dentry_release(struct dentry *dentry)
5756 {
5757 	kfree(dentry->d_fsdata);
5758 }
5759 
5760 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
5761 				   unsigned int flags)
5762 {
5763 	struct inode *inode;
5764 
5765 	inode = btrfs_lookup_dentry(dir, dentry);
5766 	if (IS_ERR(inode)) {
5767 		if (PTR_ERR(inode) == -ENOENT)
5768 			inode = NULL;
5769 		else
5770 			return ERR_CAST(inode);
5771 	}
5772 
5773 	return d_splice_alias(inode, dentry);
5774 }
5775 
5776 unsigned char btrfs_filetype_table[] = {
5777 	DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
5778 };
5779 
5780 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
5781 {
5782 	struct inode *inode = file_inode(file);
5783 	struct btrfs_root *root = BTRFS_I(inode)->root;
5784 	struct btrfs_item *item;
5785 	struct btrfs_dir_item *di;
5786 	struct btrfs_key key;
5787 	struct btrfs_key found_key;
5788 	struct btrfs_path *path;
5789 	struct list_head ins_list;
5790 	struct list_head del_list;
5791 	int ret;
5792 	struct extent_buffer *leaf;
5793 	int slot;
5794 	unsigned char d_type;
5795 	int over = 0;
5796 	u32 di_cur;
5797 	u32 di_total;
5798 	u32 di_len;
5799 	int key_type = BTRFS_DIR_INDEX_KEY;
5800 	char tmp_name[32];
5801 	char *name_ptr;
5802 	int name_len;
5803 	int is_curr = 0;	/* ctx->pos points to the current index? */
5804 	bool emitted;
5805 	bool put = false;
5806 
5807 	/* FIXME, use a real flag for deciding about the key type */
5808 	if (root->fs_info->tree_root == root)
5809 		key_type = BTRFS_DIR_ITEM_KEY;
5810 
5811 	if (!dir_emit_dots(file, ctx))
5812 		return 0;
5813 
5814 	path = btrfs_alloc_path();
5815 	if (!path)
5816 		return -ENOMEM;
5817 
5818 	path->reada = READA_FORWARD;
5819 
5820 	if (key_type == BTRFS_DIR_INDEX_KEY) {
5821 		INIT_LIST_HEAD(&ins_list);
5822 		INIT_LIST_HEAD(&del_list);
5823 		put = btrfs_readdir_get_delayed_items(inode, &ins_list,
5824 						      &del_list);
5825 	}
5826 
5827 	key.type = key_type;
5828 	key.offset = ctx->pos;
5829 	key.objectid = btrfs_ino(inode);
5830 
5831 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5832 	if (ret < 0)
5833 		goto err;
5834 
5835 	emitted = false;
5836 	while (1) {
5837 		leaf = path->nodes[0];
5838 		slot = path->slots[0];
5839 		if (slot >= btrfs_header_nritems(leaf)) {
5840 			ret = btrfs_next_leaf(root, path);
5841 			if (ret < 0)
5842 				goto err;
5843 			else if (ret > 0)
5844 				break;
5845 			continue;
5846 		}
5847 
5848 		item = btrfs_item_nr(slot);
5849 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
5850 
5851 		if (found_key.objectid != key.objectid)
5852 			break;
5853 		if (found_key.type != key_type)
5854 			break;
5855 		if (found_key.offset < ctx->pos)
5856 			goto next;
5857 		if (key_type == BTRFS_DIR_INDEX_KEY &&
5858 		    btrfs_should_delete_dir_index(&del_list,
5859 						  found_key.offset))
5860 			goto next;
5861 
5862 		ctx->pos = found_key.offset;
5863 		is_curr = 1;
5864 
5865 		di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
5866 		di_cur = 0;
5867 		di_total = btrfs_item_size(leaf, item);
5868 
5869 		while (di_cur < di_total) {
5870 			struct btrfs_key location;
5871 
5872 			if (verify_dir_item(root, leaf, di))
5873 				break;
5874 
5875 			name_len = btrfs_dir_name_len(leaf, di);
5876 			if (name_len <= sizeof(tmp_name)) {
5877 				name_ptr = tmp_name;
5878 			} else {
5879 				name_ptr = kmalloc(name_len, GFP_KERNEL);
5880 				if (!name_ptr) {
5881 					ret = -ENOMEM;
5882 					goto err;
5883 				}
5884 			}
5885 			read_extent_buffer(leaf, name_ptr,
5886 					   (unsigned long)(di + 1), name_len);
5887 
5888 			d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
5889 			btrfs_dir_item_key_to_cpu(leaf, di, &location);
5890 
5891 
5892 			/* is this a reference to our own snapshot? If so
5893 			 * skip it.
5894 			 *
5895 			 * In contrast to old kernels, we insert the snapshot's
5896 			 * dir item and dir index after it has been created, so
5897 			 * we won't find a reference to our own snapshot. We
5898 			 * still keep the following code for backward
5899 			 * compatibility.
5900 			 */
5901 			if (location.type == BTRFS_ROOT_ITEM_KEY &&
5902 			    location.objectid == root->root_key.objectid) {
5903 				over = 0;
5904 				goto skip;
5905 			}
5906 			over = !dir_emit(ctx, name_ptr, name_len,
5907 				       location.objectid, d_type);
5908 
5909 skip:
5910 			if (name_ptr != tmp_name)
5911 				kfree(name_ptr);
5912 
5913 			if (over)
5914 				goto nopos;
5915 			emitted = true;
5916 			di_len = btrfs_dir_name_len(leaf, di) +
5917 				 btrfs_dir_data_len(leaf, di) + sizeof(*di);
5918 			di_cur += di_len;
5919 			di = (struct btrfs_dir_item *)((char *)di + di_len);
5920 		}
5921 next:
5922 		path->slots[0]++;
5923 	}
5924 
5925 	if (key_type == BTRFS_DIR_INDEX_KEY) {
5926 		if (is_curr)
5927 			ctx->pos++;
5928 		ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list, &emitted);
5929 		if (ret)
5930 			goto nopos;
5931 	}
5932 
5933 	/*
5934 	 * If we haven't emitted any dir entry, we must not touch ctx->pos as
5935 	 * it was was set to the termination value in previous call. We assume
5936 	 * that "." and ".." were emitted if we reach this point and set the
5937 	 * termination value as well for an empty directory.
5938 	 */
5939 	if (ctx->pos > 2 && !emitted)
5940 		goto nopos;
5941 
5942 	/* Reached end of directory/root. Bump pos past the last item. */
5943 	ctx->pos++;
5944 
5945 	/*
5946 	 * Stop new entries from being returned after we return the last
5947 	 * entry.
5948 	 *
5949 	 * New directory entries are assigned a strictly increasing
5950 	 * offset.  This means that new entries created during readdir
5951 	 * are *guaranteed* to be seen in the future by that readdir.
5952 	 * This has broken buggy programs which operate on names as
5953 	 * they're returned by readdir.  Until we re-use freed offsets
5954 	 * we have this hack to stop new entries from being returned
5955 	 * under the assumption that they'll never reach this huge
5956 	 * offset.
5957 	 *
5958 	 * This is being careful not to overflow 32bit loff_t unless the
5959 	 * last entry requires it because doing so has broken 32bit apps
5960 	 * in the past.
5961 	 */
5962 	if (key_type == BTRFS_DIR_INDEX_KEY) {
5963 		if (ctx->pos >= INT_MAX)
5964 			ctx->pos = LLONG_MAX;
5965 		else
5966 			ctx->pos = INT_MAX;
5967 	}
5968 nopos:
5969 	ret = 0;
5970 err:
5971 	if (put)
5972 		btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list);
5973 	btrfs_free_path(path);
5974 	return ret;
5975 }
5976 
5977 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
5978 {
5979 	struct btrfs_root *root = BTRFS_I(inode)->root;
5980 	struct btrfs_trans_handle *trans;
5981 	int ret = 0;
5982 	bool nolock = false;
5983 
5984 	if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
5985 		return 0;
5986 
5987 	if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(inode))
5988 		nolock = true;
5989 
5990 	if (wbc->sync_mode == WB_SYNC_ALL) {
5991 		if (nolock)
5992 			trans = btrfs_join_transaction_nolock(root);
5993 		else
5994 			trans = btrfs_join_transaction(root);
5995 		if (IS_ERR(trans))
5996 			return PTR_ERR(trans);
5997 		ret = btrfs_commit_transaction(trans, root);
5998 	}
5999 	return ret;
6000 }
6001 
6002 /*
6003  * This is somewhat expensive, updating the tree every time the
6004  * inode changes.  But, it is most likely to find the inode in cache.
6005  * FIXME, needs more benchmarking...there are no reasons other than performance
6006  * to keep or drop this code.
6007  */
6008 static int btrfs_dirty_inode(struct inode *inode)
6009 {
6010 	struct btrfs_root *root = BTRFS_I(inode)->root;
6011 	struct btrfs_trans_handle *trans;
6012 	int ret;
6013 
6014 	if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
6015 		return 0;
6016 
6017 	trans = btrfs_join_transaction(root);
6018 	if (IS_ERR(trans))
6019 		return PTR_ERR(trans);
6020 
6021 	ret = btrfs_update_inode(trans, root, inode);
6022 	if (ret && ret == -ENOSPC) {
6023 		/* whoops, lets try again with the full transaction */
6024 		btrfs_end_transaction(trans, root);
6025 		trans = btrfs_start_transaction(root, 1);
6026 		if (IS_ERR(trans))
6027 			return PTR_ERR(trans);
6028 
6029 		ret = btrfs_update_inode(trans, root, inode);
6030 	}
6031 	btrfs_end_transaction(trans, root);
6032 	if (BTRFS_I(inode)->delayed_node)
6033 		btrfs_balance_delayed_items(root);
6034 
6035 	return ret;
6036 }
6037 
6038 /*
6039  * This is a copy of file_update_time.  We need this so we can return error on
6040  * ENOSPC for updating the inode in the case of file write and mmap writes.
6041  */
6042 static int btrfs_update_time(struct inode *inode, struct timespec *now,
6043 			     int flags)
6044 {
6045 	struct btrfs_root *root = BTRFS_I(inode)->root;
6046 
6047 	if (btrfs_root_readonly(root))
6048 		return -EROFS;
6049 
6050 	if (flags & S_VERSION)
6051 		inode_inc_iversion(inode);
6052 	if (flags & S_CTIME)
6053 		inode->i_ctime = *now;
6054 	if (flags & S_MTIME)
6055 		inode->i_mtime = *now;
6056 	if (flags & S_ATIME)
6057 		inode->i_atime = *now;
6058 	return btrfs_dirty_inode(inode);
6059 }
6060 
6061 /*
6062  * find the highest existing sequence number in a directory
6063  * and then set the in-memory index_cnt variable to reflect
6064  * free sequence numbers
6065  */
6066 static int btrfs_set_inode_index_count(struct inode *inode)
6067 {
6068 	struct btrfs_root *root = BTRFS_I(inode)->root;
6069 	struct btrfs_key key, found_key;
6070 	struct btrfs_path *path;
6071 	struct extent_buffer *leaf;
6072 	int ret;
6073 
6074 	key.objectid = btrfs_ino(inode);
6075 	key.type = BTRFS_DIR_INDEX_KEY;
6076 	key.offset = (u64)-1;
6077 
6078 	path = btrfs_alloc_path();
6079 	if (!path)
6080 		return -ENOMEM;
6081 
6082 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6083 	if (ret < 0)
6084 		goto out;
6085 	/* FIXME: we should be able to handle this */
6086 	if (ret == 0)
6087 		goto out;
6088 	ret = 0;
6089 
6090 	/*
6091 	 * MAGIC NUMBER EXPLANATION:
6092 	 * since we search a directory based on f_pos we have to start at 2
6093 	 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
6094 	 * else has to start at 2
6095 	 */
6096 	if (path->slots[0] == 0) {
6097 		BTRFS_I(inode)->index_cnt = 2;
6098 		goto out;
6099 	}
6100 
6101 	path->slots[0]--;
6102 
6103 	leaf = path->nodes[0];
6104 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6105 
6106 	if (found_key.objectid != btrfs_ino(inode) ||
6107 	    found_key.type != BTRFS_DIR_INDEX_KEY) {
6108 		BTRFS_I(inode)->index_cnt = 2;
6109 		goto out;
6110 	}
6111 
6112 	BTRFS_I(inode)->index_cnt = found_key.offset + 1;
6113 out:
6114 	btrfs_free_path(path);
6115 	return ret;
6116 }
6117 
6118 /*
6119  * helper to find a free sequence number in a given directory.  This current
6120  * code is very simple, later versions will do smarter things in the btree
6121  */
6122 int btrfs_set_inode_index(struct inode *dir, u64 *index)
6123 {
6124 	int ret = 0;
6125 
6126 	if (BTRFS_I(dir)->index_cnt == (u64)-1) {
6127 		ret = btrfs_inode_delayed_dir_index_count(dir);
6128 		if (ret) {
6129 			ret = btrfs_set_inode_index_count(dir);
6130 			if (ret)
6131 				return ret;
6132 		}
6133 	}
6134 
6135 	*index = BTRFS_I(dir)->index_cnt;
6136 	BTRFS_I(dir)->index_cnt++;
6137 
6138 	return ret;
6139 }
6140 
6141 static int btrfs_insert_inode_locked(struct inode *inode)
6142 {
6143 	struct btrfs_iget_args args;
6144 	args.location = &BTRFS_I(inode)->location;
6145 	args.root = BTRFS_I(inode)->root;
6146 
6147 	return insert_inode_locked4(inode,
6148 		   btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
6149 		   btrfs_find_actor, &args);
6150 }
6151 
6152 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
6153 				     struct btrfs_root *root,
6154 				     struct inode *dir,
6155 				     const char *name, int name_len,
6156 				     u64 ref_objectid, u64 objectid,
6157 				     umode_t mode, u64 *index)
6158 {
6159 	struct inode *inode;
6160 	struct btrfs_inode_item *inode_item;
6161 	struct btrfs_key *location;
6162 	struct btrfs_path *path;
6163 	struct btrfs_inode_ref *ref;
6164 	struct btrfs_key key[2];
6165 	u32 sizes[2];
6166 	int nitems = name ? 2 : 1;
6167 	unsigned long ptr;
6168 	int ret;
6169 
6170 	path = btrfs_alloc_path();
6171 	if (!path)
6172 		return ERR_PTR(-ENOMEM);
6173 
6174 	inode = new_inode(root->fs_info->sb);
6175 	if (!inode) {
6176 		btrfs_free_path(path);
6177 		return ERR_PTR(-ENOMEM);
6178 	}
6179 
6180 	/*
6181 	 * O_TMPFILE, set link count to 0, so that after this point,
6182 	 * we fill in an inode item with the correct link count.
6183 	 */
6184 	if (!name)
6185 		set_nlink(inode, 0);
6186 
6187 	/*
6188 	 * we have to initialize this early, so we can reclaim the inode
6189 	 * number if we fail afterwards in this function.
6190 	 */
6191 	inode->i_ino = objectid;
6192 
6193 	if (dir && name) {
6194 		trace_btrfs_inode_request(dir);
6195 
6196 		ret = btrfs_set_inode_index(dir, index);
6197 		if (ret) {
6198 			btrfs_free_path(path);
6199 			iput(inode);
6200 			return ERR_PTR(ret);
6201 		}
6202 	} else if (dir) {
6203 		*index = 0;
6204 	}
6205 	/*
6206 	 * index_cnt is ignored for everything but a dir,
6207 	 * btrfs_get_inode_index_count has an explanation for the magic
6208 	 * number
6209 	 */
6210 	BTRFS_I(inode)->index_cnt = 2;
6211 	BTRFS_I(inode)->dir_index = *index;
6212 	BTRFS_I(inode)->root = root;
6213 	BTRFS_I(inode)->generation = trans->transid;
6214 	inode->i_generation = BTRFS_I(inode)->generation;
6215 
6216 	/*
6217 	 * We could have gotten an inode number from somebody who was fsynced
6218 	 * and then removed in this same transaction, so let's just set full
6219 	 * sync since it will be a full sync anyway and this will blow away the
6220 	 * old info in the log.
6221 	 */
6222 	set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
6223 
6224 	key[0].objectid = objectid;
6225 	key[0].type = BTRFS_INODE_ITEM_KEY;
6226 	key[0].offset = 0;
6227 
6228 	sizes[0] = sizeof(struct btrfs_inode_item);
6229 
6230 	if (name) {
6231 		/*
6232 		 * Start new inodes with an inode_ref. This is slightly more
6233 		 * efficient for small numbers of hard links since they will
6234 		 * be packed into one item. Extended refs will kick in if we
6235 		 * add more hard links than can fit in the ref item.
6236 		 */
6237 		key[1].objectid = objectid;
6238 		key[1].type = BTRFS_INODE_REF_KEY;
6239 		key[1].offset = ref_objectid;
6240 
6241 		sizes[1] = name_len + sizeof(*ref);
6242 	}
6243 
6244 	location = &BTRFS_I(inode)->location;
6245 	location->objectid = objectid;
6246 	location->offset = 0;
6247 	location->type = BTRFS_INODE_ITEM_KEY;
6248 
6249 	ret = btrfs_insert_inode_locked(inode);
6250 	if (ret < 0)
6251 		goto fail;
6252 
6253 	path->leave_spinning = 1;
6254 	ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems);
6255 	if (ret != 0)
6256 		goto fail_unlock;
6257 
6258 	inode_init_owner(inode, dir, mode);
6259 	inode_set_bytes(inode, 0);
6260 
6261 	inode->i_mtime = current_fs_time(inode->i_sb);
6262 	inode->i_atime = inode->i_mtime;
6263 	inode->i_ctime = inode->i_mtime;
6264 	BTRFS_I(inode)->i_otime = inode->i_mtime;
6265 
6266 	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6267 				  struct btrfs_inode_item);
6268 	memset_extent_buffer(path->nodes[0], 0, (unsigned long)inode_item,
6269 			     sizeof(*inode_item));
6270 	fill_inode_item(trans, path->nodes[0], inode_item, inode);
6271 
6272 	if (name) {
6273 		ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6274 				     struct btrfs_inode_ref);
6275 		btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
6276 		btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
6277 		ptr = (unsigned long)(ref + 1);
6278 		write_extent_buffer(path->nodes[0], name, ptr, name_len);
6279 	}
6280 
6281 	btrfs_mark_buffer_dirty(path->nodes[0]);
6282 	btrfs_free_path(path);
6283 
6284 	btrfs_inherit_iflags(inode, dir);
6285 
6286 	if (S_ISREG(mode)) {
6287 		if (btrfs_test_opt(root->fs_info, NODATASUM))
6288 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6289 		if (btrfs_test_opt(root->fs_info, NODATACOW))
6290 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6291 				BTRFS_INODE_NODATASUM;
6292 	}
6293 
6294 	inode_tree_add(inode);
6295 
6296 	trace_btrfs_inode_new(inode);
6297 	btrfs_set_inode_last_trans(trans, inode);
6298 
6299 	btrfs_update_root_times(trans, root);
6300 
6301 	ret = btrfs_inode_inherit_props(trans, inode, dir);
6302 	if (ret)
6303 		btrfs_err(root->fs_info,
6304 			  "error inheriting props for ino %llu (root %llu): %d",
6305 			  btrfs_ino(inode), root->root_key.objectid, ret);
6306 
6307 	return inode;
6308 
6309 fail_unlock:
6310 	unlock_new_inode(inode);
6311 fail:
6312 	if (dir && name)
6313 		BTRFS_I(dir)->index_cnt--;
6314 	btrfs_free_path(path);
6315 	iput(inode);
6316 	return ERR_PTR(ret);
6317 }
6318 
6319 static inline u8 btrfs_inode_type(struct inode *inode)
6320 {
6321 	return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
6322 }
6323 
6324 /*
6325  * utility function to add 'inode' into 'parent_inode' with
6326  * a give name and a given sequence number.
6327  * if 'add_backref' is true, also insert a backref from the
6328  * inode to the parent directory.
6329  */
6330 int btrfs_add_link(struct btrfs_trans_handle *trans,
6331 		   struct inode *parent_inode, struct inode *inode,
6332 		   const char *name, int name_len, int add_backref, u64 index)
6333 {
6334 	int ret = 0;
6335 	struct btrfs_key key;
6336 	struct btrfs_root *root = BTRFS_I(parent_inode)->root;
6337 	u64 ino = btrfs_ino(inode);
6338 	u64 parent_ino = btrfs_ino(parent_inode);
6339 
6340 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6341 		memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
6342 	} else {
6343 		key.objectid = ino;
6344 		key.type = BTRFS_INODE_ITEM_KEY;
6345 		key.offset = 0;
6346 	}
6347 
6348 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6349 		ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
6350 					 key.objectid, root->root_key.objectid,
6351 					 parent_ino, index, name, name_len);
6352 	} else if (add_backref) {
6353 		ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
6354 					     parent_ino, index);
6355 	}
6356 
6357 	/* Nothing to clean up yet */
6358 	if (ret)
6359 		return ret;
6360 
6361 	ret = btrfs_insert_dir_item(trans, root, name, name_len,
6362 				    parent_inode, &key,
6363 				    btrfs_inode_type(inode), index);
6364 	if (ret == -EEXIST || ret == -EOVERFLOW)
6365 		goto fail_dir_item;
6366 	else if (ret) {
6367 		btrfs_abort_transaction(trans, ret);
6368 		return ret;
6369 	}
6370 
6371 	btrfs_i_size_write(parent_inode, parent_inode->i_size +
6372 			   name_len * 2);
6373 	inode_inc_iversion(parent_inode);
6374 	parent_inode->i_mtime = parent_inode->i_ctime =
6375 		current_fs_time(parent_inode->i_sb);
6376 	ret = btrfs_update_inode(trans, root, parent_inode);
6377 	if (ret)
6378 		btrfs_abort_transaction(trans, ret);
6379 	return ret;
6380 
6381 fail_dir_item:
6382 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6383 		u64 local_index;
6384 		int err;
6385 		err = btrfs_del_root_ref(trans, root->fs_info->tree_root,
6386 				 key.objectid, root->root_key.objectid,
6387 				 parent_ino, &local_index, name, name_len);
6388 
6389 	} else if (add_backref) {
6390 		u64 local_index;
6391 		int err;
6392 
6393 		err = btrfs_del_inode_ref(trans, root, name, name_len,
6394 					  ino, parent_ino, &local_index);
6395 	}
6396 	return ret;
6397 }
6398 
6399 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
6400 			    struct inode *dir, struct dentry *dentry,
6401 			    struct inode *inode, int backref, u64 index)
6402 {
6403 	int err = btrfs_add_link(trans, dir, inode,
6404 				 dentry->d_name.name, dentry->d_name.len,
6405 				 backref, index);
6406 	if (err > 0)
6407 		err = -EEXIST;
6408 	return err;
6409 }
6410 
6411 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
6412 			umode_t mode, dev_t rdev)
6413 {
6414 	struct btrfs_trans_handle *trans;
6415 	struct btrfs_root *root = BTRFS_I(dir)->root;
6416 	struct inode *inode = NULL;
6417 	int err;
6418 	int drop_inode = 0;
6419 	u64 objectid;
6420 	u64 index = 0;
6421 
6422 	/*
6423 	 * 2 for inode item and ref
6424 	 * 2 for dir items
6425 	 * 1 for xattr if selinux is on
6426 	 */
6427 	trans = btrfs_start_transaction(root, 5);
6428 	if (IS_ERR(trans))
6429 		return PTR_ERR(trans);
6430 
6431 	err = btrfs_find_free_ino(root, &objectid);
6432 	if (err)
6433 		goto out_unlock;
6434 
6435 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6436 				dentry->d_name.len, btrfs_ino(dir), objectid,
6437 				mode, &index);
6438 	if (IS_ERR(inode)) {
6439 		err = PTR_ERR(inode);
6440 		goto out_unlock;
6441 	}
6442 
6443 	/*
6444 	* If the active LSM wants to access the inode during
6445 	* d_instantiate it needs these. Smack checks to see
6446 	* if the filesystem supports xattrs by looking at the
6447 	* ops vector.
6448 	*/
6449 	inode->i_op = &btrfs_special_inode_operations;
6450 	init_special_inode(inode, inode->i_mode, rdev);
6451 
6452 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6453 	if (err)
6454 		goto out_unlock_inode;
6455 
6456 	err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
6457 	if (err) {
6458 		goto out_unlock_inode;
6459 	} else {
6460 		btrfs_update_inode(trans, root, inode);
6461 		unlock_new_inode(inode);
6462 		d_instantiate(dentry, inode);
6463 	}
6464 
6465 out_unlock:
6466 	btrfs_end_transaction(trans, root);
6467 	btrfs_balance_delayed_items(root);
6468 	btrfs_btree_balance_dirty(root);
6469 	if (drop_inode) {
6470 		inode_dec_link_count(inode);
6471 		iput(inode);
6472 	}
6473 	return err;
6474 
6475 out_unlock_inode:
6476 	drop_inode = 1;
6477 	unlock_new_inode(inode);
6478 	goto out_unlock;
6479 
6480 }
6481 
6482 static int btrfs_create(struct inode *dir, struct dentry *dentry,
6483 			umode_t mode, bool excl)
6484 {
6485 	struct btrfs_trans_handle *trans;
6486 	struct btrfs_root *root = BTRFS_I(dir)->root;
6487 	struct inode *inode = NULL;
6488 	int drop_inode_on_err = 0;
6489 	int err;
6490 	u64 objectid;
6491 	u64 index = 0;
6492 
6493 	/*
6494 	 * 2 for inode item and ref
6495 	 * 2 for dir items
6496 	 * 1 for xattr if selinux is on
6497 	 */
6498 	trans = btrfs_start_transaction(root, 5);
6499 	if (IS_ERR(trans))
6500 		return PTR_ERR(trans);
6501 
6502 	err = btrfs_find_free_ino(root, &objectid);
6503 	if (err)
6504 		goto out_unlock;
6505 
6506 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6507 				dentry->d_name.len, btrfs_ino(dir), objectid,
6508 				mode, &index);
6509 	if (IS_ERR(inode)) {
6510 		err = PTR_ERR(inode);
6511 		goto out_unlock;
6512 	}
6513 	drop_inode_on_err = 1;
6514 	/*
6515 	* If the active LSM wants to access the inode during
6516 	* d_instantiate it needs these. Smack checks to see
6517 	* if the filesystem supports xattrs by looking at the
6518 	* ops vector.
6519 	*/
6520 	inode->i_fop = &btrfs_file_operations;
6521 	inode->i_op = &btrfs_file_inode_operations;
6522 	inode->i_mapping->a_ops = &btrfs_aops;
6523 
6524 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6525 	if (err)
6526 		goto out_unlock_inode;
6527 
6528 	err = btrfs_update_inode(trans, root, inode);
6529 	if (err)
6530 		goto out_unlock_inode;
6531 
6532 	err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
6533 	if (err)
6534 		goto out_unlock_inode;
6535 
6536 	BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
6537 	unlock_new_inode(inode);
6538 	d_instantiate(dentry, inode);
6539 
6540 out_unlock:
6541 	btrfs_end_transaction(trans, root);
6542 	if (err && drop_inode_on_err) {
6543 		inode_dec_link_count(inode);
6544 		iput(inode);
6545 	}
6546 	btrfs_balance_delayed_items(root);
6547 	btrfs_btree_balance_dirty(root);
6548 	return err;
6549 
6550 out_unlock_inode:
6551 	unlock_new_inode(inode);
6552 	goto out_unlock;
6553 
6554 }
6555 
6556 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6557 		      struct dentry *dentry)
6558 {
6559 	struct btrfs_trans_handle *trans = NULL;
6560 	struct btrfs_root *root = BTRFS_I(dir)->root;
6561 	struct inode *inode = d_inode(old_dentry);
6562 	u64 index;
6563 	int err;
6564 	int drop_inode = 0;
6565 
6566 	/* do not allow sys_link's with other subvols of the same device */
6567 	if (root->objectid != BTRFS_I(inode)->root->objectid)
6568 		return -EXDEV;
6569 
6570 	if (inode->i_nlink >= BTRFS_LINK_MAX)
6571 		return -EMLINK;
6572 
6573 	err = btrfs_set_inode_index(dir, &index);
6574 	if (err)
6575 		goto fail;
6576 
6577 	/*
6578 	 * 2 items for inode and inode ref
6579 	 * 2 items for dir items
6580 	 * 1 item for parent inode
6581 	 */
6582 	trans = btrfs_start_transaction(root, 5);
6583 	if (IS_ERR(trans)) {
6584 		err = PTR_ERR(trans);
6585 		trans = NULL;
6586 		goto fail;
6587 	}
6588 
6589 	/* There are several dir indexes for this inode, clear the cache. */
6590 	BTRFS_I(inode)->dir_index = 0ULL;
6591 	inc_nlink(inode);
6592 	inode_inc_iversion(inode);
6593 	inode->i_ctime = current_fs_time(inode->i_sb);
6594 	ihold(inode);
6595 	set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
6596 
6597 	err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
6598 
6599 	if (err) {
6600 		drop_inode = 1;
6601 	} else {
6602 		struct dentry *parent = dentry->d_parent;
6603 		err = btrfs_update_inode(trans, root, inode);
6604 		if (err)
6605 			goto fail;
6606 		if (inode->i_nlink == 1) {
6607 			/*
6608 			 * If new hard link count is 1, it's a file created
6609 			 * with open(2) O_TMPFILE flag.
6610 			 */
6611 			err = btrfs_orphan_del(trans, inode);
6612 			if (err)
6613 				goto fail;
6614 		}
6615 		d_instantiate(dentry, inode);
6616 		btrfs_log_new_name(trans, inode, NULL, parent);
6617 	}
6618 
6619 	btrfs_balance_delayed_items(root);
6620 fail:
6621 	if (trans)
6622 		btrfs_end_transaction(trans, root);
6623 	if (drop_inode) {
6624 		inode_dec_link_count(inode);
6625 		iput(inode);
6626 	}
6627 	btrfs_btree_balance_dirty(root);
6628 	return err;
6629 }
6630 
6631 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
6632 {
6633 	struct inode *inode = NULL;
6634 	struct btrfs_trans_handle *trans;
6635 	struct btrfs_root *root = BTRFS_I(dir)->root;
6636 	int err = 0;
6637 	int drop_on_err = 0;
6638 	u64 objectid = 0;
6639 	u64 index = 0;
6640 
6641 	/*
6642 	 * 2 items for inode and ref
6643 	 * 2 items for dir items
6644 	 * 1 for xattr if selinux is on
6645 	 */
6646 	trans = btrfs_start_transaction(root, 5);
6647 	if (IS_ERR(trans))
6648 		return PTR_ERR(trans);
6649 
6650 	err = btrfs_find_free_ino(root, &objectid);
6651 	if (err)
6652 		goto out_fail;
6653 
6654 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6655 				dentry->d_name.len, btrfs_ino(dir), objectid,
6656 				S_IFDIR | mode, &index);
6657 	if (IS_ERR(inode)) {
6658 		err = PTR_ERR(inode);
6659 		goto out_fail;
6660 	}
6661 
6662 	drop_on_err = 1;
6663 	/* these must be set before we unlock the inode */
6664 	inode->i_op = &btrfs_dir_inode_operations;
6665 	inode->i_fop = &btrfs_dir_file_operations;
6666 
6667 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6668 	if (err)
6669 		goto out_fail_inode;
6670 
6671 	btrfs_i_size_write(inode, 0);
6672 	err = btrfs_update_inode(trans, root, inode);
6673 	if (err)
6674 		goto out_fail_inode;
6675 
6676 	err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
6677 			     dentry->d_name.len, 0, index);
6678 	if (err)
6679 		goto out_fail_inode;
6680 
6681 	d_instantiate(dentry, inode);
6682 	/*
6683 	 * mkdir is special.  We're unlocking after we call d_instantiate
6684 	 * to avoid a race with nfsd calling d_instantiate.
6685 	 */
6686 	unlock_new_inode(inode);
6687 	drop_on_err = 0;
6688 
6689 out_fail:
6690 	btrfs_end_transaction(trans, root);
6691 	if (drop_on_err) {
6692 		inode_dec_link_count(inode);
6693 		iput(inode);
6694 	}
6695 	btrfs_balance_delayed_items(root);
6696 	btrfs_btree_balance_dirty(root);
6697 	return err;
6698 
6699 out_fail_inode:
6700 	unlock_new_inode(inode);
6701 	goto out_fail;
6702 }
6703 
6704 /* Find next extent map of a given extent map, caller needs to ensure locks */
6705 static struct extent_map *next_extent_map(struct extent_map *em)
6706 {
6707 	struct rb_node *next;
6708 
6709 	next = rb_next(&em->rb_node);
6710 	if (!next)
6711 		return NULL;
6712 	return container_of(next, struct extent_map, rb_node);
6713 }
6714 
6715 static struct extent_map *prev_extent_map(struct extent_map *em)
6716 {
6717 	struct rb_node *prev;
6718 
6719 	prev = rb_prev(&em->rb_node);
6720 	if (!prev)
6721 		return NULL;
6722 	return container_of(prev, struct extent_map, rb_node);
6723 }
6724 
6725 /* helper for btfs_get_extent.  Given an existing extent in the tree,
6726  * the existing extent is the nearest extent to map_start,
6727  * and an extent that you want to insert, deal with overlap and insert
6728  * the best fitted new extent into the tree.
6729  */
6730 static int merge_extent_mapping(struct extent_map_tree *em_tree,
6731 				struct extent_map *existing,
6732 				struct extent_map *em,
6733 				u64 map_start)
6734 {
6735 	struct extent_map *prev;
6736 	struct extent_map *next;
6737 	u64 start;
6738 	u64 end;
6739 	u64 start_diff;
6740 
6741 	BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
6742 
6743 	if (existing->start > map_start) {
6744 		next = existing;
6745 		prev = prev_extent_map(next);
6746 	} else {
6747 		prev = existing;
6748 		next = next_extent_map(prev);
6749 	}
6750 
6751 	start = prev ? extent_map_end(prev) : em->start;
6752 	start = max_t(u64, start, em->start);
6753 	end = next ? next->start : extent_map_end(em);
6754 	end = min_t(u64, end, extent_map_end(em));
6755 	start_diff = start - em->start;
6756 	em->start = start;
6757 	em->len = end - start;
6758 	if (em->block_start < EXTENT_MAP_LAST_BYTE &&
6759 	    !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
6760 		em->block_start += start_diff;
6761 		em->block_len -= start_diff;
6762 	}
6763 	return add_extent_mapping(em_tree, em, 0);
6764 }
6765 
6766 static noinline int uncompress_inline(struct btrfs_path *path,
6767 				      struct page *page,
6768 				      size_t pg_offset, u64 extent_offset,
6769 				      struct btrfs_file_extent_item *item)
6770 {
6771 	int ret;
6772 	struct extent_buffer *leaf = path->nodes[0];
6773 	char *tmp;
6774 	size_t max_size;
6775 	unsigned long inline_size;
6776 	unsigned long ptr;
6777 	int compress_type;
6778 
6779 	WARN_ON(pg_offset != 0);
6780 	compress_type = btrfs_file_extent_compression(leaf, item);
6781 	max_size = btrfs_file_extent_ram_bytes(leaf, item);
6782 	inline_size = btrfs_file_extent_inline_item_len(leaf,
6783 					btrfs_item_nr(path->slots[0]));
6784 	tmp = kmalloc(inline_size, GFP_NOFS);
6785 	if (!tmp)
6786 		return -ENOMEM;
6787 	ptr = btrfs_file_extent_inline_start(item);
6788 
6789 	read_extent_buffer(leaf, tmp, ptr, inline_size);
6790 
6791 	max_size = min_t(unsigned long, PAGE_SIZE, max_size);
6792 	ret = btrfs_decompress(compress_type, tmp, page,
6793 			       extent_offset, inline_size, max_size);
6794 	kfree(tmp);
6795 	return ret;
6796 }
6797 
6798 /*
6799  * a bit scary, this does extent mapping from logical file offset to the disk.
6800  * the ugly parts come from merging extents from the disk with the in-ram
6801  * representation.  This gets more complex because of the data=ordered code,
6802  * where the in-ram extents might be locked pending data=ordered completion.
6803  *
6804  * This also copies inline extents directly into the page.
6805  */
6806 
6807 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
6808 				    size_t pg_offset, u64 start, u64 len,
6809 				    int create)
6810 {
6811 	int ret;
6812 	int err = 0;
6813 	u64 extent_start = 0;
6814 	u64 extent_end = 0;
6815 	u64 objectid = btrfs_ino(inode);
6816 	u32 found_type;
6817 	struct btrfs_path *path = NULL;
6818 	struct btrfs_root *root = BTRFS_I(inode)->root;
6819 	struct btrfs_file_extent_item *item;
6820 	struct extent_buffer *leaf;
6821 	struct btrfs_key found_key;
6822 	struct extent_map *em = NULL;
6823 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
6824 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
6825 	struct btrfs_trans_handle *trans = NULL;
6826 	const bool new_inline = !page || create;
6827 
6828 again:
6829 	read_lock(&em_tree->lock);
6830 	em = lookup_extent_mapping(em_tree, start, len);
6831 	if (em)
6832 		em->bdev = root->fs_info->fs_devices->latest_bdev;
6833 	read_unlock(&em_tree->lock);
6834 
6835 	if (em) {
6836 		if (em->start > start || em->start + em->len <= start)
6837 			free_extent_map(em);
6838 		else if (em->block_start == EXTENT_MAP_INLINE && page)
6839 			free_extent_map(em);
6840 		else
6841 			goto out;
6842 	}
6843 	em = alloc_extent_map();
6844 	if (!em) {
6845 		err = -ENOMEM;
6846 		goto out;
6847 	}
6848 	em->bdev = root->fs_info->fs_devices->latest_bdev;
6849 	em->start = EXTENT_MAP_HOLE;
6850 	em->orig_start = EXTENT_MAP_HOLE;
6851 	em->len = (u64)-1;
6852 	em->block_len = (u64)-1;
6853 
6854 	if (!path) {
6855 		path = btrfs_alloc_path();
6856 		if (!path) {
6857 			err = -ENOMEM;
6858 			goto out;
6859 		}
6860 		/*
6861 		 * Chances are we'll be called again, so go ahead and do
6862 		 * readahead
6863 		 */
6864 		path->reada = READA_FORWARD;
6865 	}
6866 
6867 	ret = btrfs_lookup_file_extent(trans, root, path,
6868 				       objectid, start, trans != NULL);
6869 	if (ret < 0) {
6870 		err = ret;
6871 		goto out;
6872 	}
6873 
6874 	if (ret != 0) {
6875 		if (path->slots[0] == 0)
6876 			goto not_found;
6877 		path->slots[0]--;
6878 	}
6879 
6880 	leaf = path->nodes[0];
6881 	item = btrfs_item_ptr(leaf, path->slots[0],
6882 			      struct btrfs_file_extent_item);
6883 	/* are we inside the extent that was found? */
6884 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6885 	found_type = found_key.type;
6886 	if (found_key.objectid != objectid ||
6887 	    found_type != BTRFS_EXTENT_DATA_KEY) {
6888 		/*
6889 		 * If we backup past the first extent we want to move forward
6890 		 * and see if there is an extent in front of us, otherwise we'll
6891 		 * say there is a hole for our whole search range which can
6892 		 * cause problems.
6893 		 */
6894 		extent_end = start;
6895 		goto next;
6896 	}
6897 
6898 	found_type = btrfs_file_extent_type(leaf, item);
6899 	extent_start = found_key.offset;
6900 	if (found_type == BTRFS_FILE_EXTENT_REG ||
6901 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
6902 		extent_end = extent_start +
6903 		       btrfs_file_extent_num_bytes(leaf, item);
6904 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6905 		size_t size;
6906 		size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
6907 		extent_end = ALIGN(extent_start + size, root->sectorsize);
6908 	}
6909 next:
6910 	if (start >= extent_end) {
6911 		path->slots[0]++;
6912 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6913 			ret = btrfs_next_leaf(root, path);
6914 			if (ret < 0) {
6915 				err = ret;
6916 				goto out;
6917 			}
6918 			if (ret > 0)
6919 				goto not_found;
6920 			leaf = path->nodes[0];
6921 		}
6922 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6923 		if (found_key.objectid != objectid ||
6924 		    found_key.type != BTRFS_EXTENT_DATA_KEY)
6925 			goto not_found;
6926 		if (start + len <= found_key.offset)
6927 			goto not_found;
6928 		if (start > found_key.offset)
6929 			goto next;
6930 		em->start = start;
6931 		em->orig_start = start;
6932 		em->len = found_key.offset - start;
6933 		goto not_found_em;
6934 	}
6935 
6936 	btrfs_extent_item_to_extent_map(inode, path, item, new_inline, em);
6937 
6938 	if (found_type == BTRFS_FILE_EXTENT_REG ||
6939 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
6940 		goto insert;
6941 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6942 		unsigned long ptr;
6943 		char *map;
6944 		size_t size;
6945 		size_t extent_offset;
6946 		size_t copy_size;
6947 
6948 		if (new_inline)
6949 			goto out;
6950 
6951 		size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
6952 		extent_offset = page_offset(page) + pg_offset - extent_start;
6953 		copy_size = min_t(u64, PAGE_SIZE - pg_offset,
6954 				  size - extent_offset);
6955 		em->start = extent_start + extent_offset;
6956 		em->len = ALIGN(copy_size, root->sectorsize);
6957 		em->orig_block_len = em->len;
6958 		em->orig_start = em->start;
6959 		ptr = btrfs_file_extent_inline_start(item) + extent_offset;
6960 		if (create == 0 && !PageUptodate(page)) {
6961 			if (btrfs_file_extent_compression(leaf, item) !=
6962 			    BTRFS_COMPRESS_NONE) {
6963 				ret = uncompress_inline(path, page, pg_offset,
6964 							extent_offset, item);
6965 				if (ret) {
6966 					err = ret;
6967 					goto out;
6968 				}
6969 			} else {
6970 				map = kmap(page);
6971 				read_extent_buffer(leaf, map + pg_offset, ptr,
6972 						   copy_size);
6973 				if (pg_offset + copy_size < PAGE_SIZE) {
6974 					memset(map + pg_offset + copy_size, 0,
6975 					       PAGE_SIZE - pg_offset -
6976 					       copy_size);
6977 				}
6978 				kunmap(page);
6979 			}
6980 			flush_dcache_page(page);
6981 		} else if (create && PageUptodate(page)) {
6982 			BUG();
6983 			if (!trans) {
6984 				kunmap(page);
6985 				free_extent_map(em);
6986 				em = NULL;
6987 
6988 				btrfs_release_path(path);
6989 				trans = btrfs_join_transaction(root);
6990 
6991 				if (IS_ERR(trans))
6992 					return ERR_CAST(trans);
6993 				goto again;
6994 			}
6995 			map = kmap(page);
6996 			write_extent_buffer(leaf, map + pg_offset, ptr,
6997 					    copy_size);
6998 			kunmap(page);
6999 			btrfs_mark_buffer_dirty(leaf);
7000 		}
7001 		set_extent_uptodate(io_tree, em->start,
7002 				    extent_map_end(em) - 1, NULL, GFP_NOFS);
7003 		goto insert;
7004 	}
7005 not_found:
7006 	em->start = start;
7007 	em->orig_start = start;
7008 	em->len = len;
7009 not_found_em:
7010 	em->block_start = EXTENT_MAP_HOLE;
7011 	set_bit(EXTENT_FLAG_VACANCY, &em->flags);
7012 insert:
7013 	btrfs_release_path(path);
7014 	if (em->start > start || extent_map_end(em) <= start) {
7015 		btrfs_err(root->fs_info, "bad extent! em: [%llu %llu] passed [%llu %llu]",
7016 			em->start, em->len, start, len);
7017 		err = -EIO;
7018 		goto out;
7019 	}
7020 
7021 	err = 0;
7022 	write_lock(&em_tree->lock);
7023 	ret = add_extent_mapping(em_tree, em, 0);
7024 	/* it is possible that someone inserted the extent into the tree
7025 	 * while we had the lock dropped.  It is also possible that
7026 	 * an overlapping map exists in the tree
7027 	 */
7028 	if (ret == -EEXIST) {
7029 		struct extent_map *existing;
7030 
7031 		ret = 0;
7032 
7033 		existing = search_extent_mapping(em_tree, start, len);
7034 		/*
7035 		 * existing will always be non-NULL, since there must be
7036 		 * extent causing the -EEXIST.
7037 		 */
7038 		if (existing->start == em->start &&
7039 		    extent_map_end(existing) == extent_map_end(em) &&
7040 		    em->block_start == existing->block_start) {
7041 			/*
7042 			 * these two extents are the same, it happens
7043 			 * with inlines especially
7044 			 */
7045 			free_extent_map(em);
7046 			em = existing;
7047 			err = 0;
7048 
7049 		} else if (start >= extent_map_end(existing) ||
7050 		    start <= existing->start) {
7051 			/*
7052 			 * The existing extent map is the one nearest to
7053 			 * the [start, start + len) range which overlaps
7054 			 */
7055 			err = merge_extent_mapping(em_tree, existing,
7056 						   em, start);
7057 			free_extent_map(existing);
7058 			if (err) {
7059 				free_extent_map(em);
7060 				em = NULL;
7061 			}
7062 		} else {
7063 			free_extent_map(em);
7064 			em = existing;
7065 			err = 0;
7066 		}
7067 	}
7068 	write_unlock(&em_tree->lock);
7069 out:
7070 
7071 	trace_btrfs_get_extent(root, em);
7072 
7073 	btrfs_free_path(path);
7074 	if (trans) {
7075 		ret = btrfs_end_transaction(trans, root);
7076 		if (!err)
7077 			err = ret;
7078 	}
7079 	if (err) {
7080 		free_extent_map(em);
7081 		return ERR_PTR(err);
7082 	}
7083 	BUG_ON(!em); /* Error is always set */
7084 	return em;
7085 }
7086 
7087 struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
7088 					   size_t pg_offset, u64 start, u64 len,
7089 					   int create)
7090 {
7091 	struct extent_map *em;
7092 	struct extent_map *hole_em = NULL;
7093 	u64 range_start = start;
7094 	u64 end;
7095 	u64 found;
7096 	u64 found_end;
7097 	int err = 0;
7098 
7099 	em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
7100 	if (IS_ERR(em))
7101 		return em;
7102 	if (em) {
7103 		/*
7104 		 * if our em maps to
7105 		 * -  a hole or
7106 		 * -  a pre-alloc extent,
7107 		 * there might actually be delalloc bytes behind it.
7108 		 */
7109 		if (em->block_start != EXTENT_MAP_HOLE &&
7110 		    !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7111 			return em;
7112 		else
7113 			hole_em = em;
7114 	}
7115 
7116 	/* check to see if we've wrapped (len == -1 or similar) */
7117 	end = start + len;
7118 	if (end < start)
7119 		end = (u64)-1;
7120 	else
7121 		end -= 1;
7122 
7123 	em = NULL;
7124 
7125 	/* ok, we didn't find anything, lets look for delalloc */
7126 	found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
7127 				 end, len, EXTENT_DELALLOC, 1);
7128 	found_end = range_start + found;
7129 	if (found_end < range_start)
7130 		found_end = (u64)-1;
7131 
7132 	/*
7133 	 * we didn't find anything useful, return
7134 	 * the original results from get_extent()
7135 	 */
7136 	if (range_start > end || found_end <= start) {
7137 		em = hole_em;
7138 		hole_em = NULL;
7139 		goto out;
7140 	}
7141 
7142 	/* adjust the range_start to make sure it doesn't
7143 	 * go backwards from the start they passed in
7144 	 */
7145 	range_start = max(start, range_start);
7146 	found = found_end - range_start;
7147 
7148 	if (found > 0) {
7149 		u64 hole_start = start;
7150 		u64 hole_len = len;
7151 
7152 		em = alloc_extent_map();
7153 		if (!em) {
7154 			err = -ENOMEM;
7155 			goto out;
7156 		}
7157 		/*
7158 		 * when btrfs_get_extent can't find anything it
7159 		 * returns one huge hole
7160 		 *
7161 		 * make sure what it found really fits our range, and
7162 		 * adjust to make sure it is based on the start from
7163 		 * the caller
7164 		 */
7165 		if (hole_em) {
7166 			u64 calc_end = extent_map_end(hole_em);
7167 
7168 			if (calc_end <= start || (hole_em->start > end)) {
7169 				free_extent_map(hole_em);
7170 				hole_em = NULL;
7171 			} else {
7172 				hole_start = max(hole_em->start, start);
7173 				hole_len = calc_end - hole_start;
7174 			}
7175 		}
7176 		em->bdev = NULL;
7177 		if (hole_em && range_start > hole_start) {
7178 			/* our hole starts before our delalloc, so we
7179 			 * have to return just the parts of the hole
7180 			 * that go until  the delalloc starts
7181 			 */
7182 			em->len = min(hole_len,
7183 				      range_start - hole_start);
7184 			em->start = hole_start;
7185 			em->orig_start = hole_start;
7186 			/*
7187 			 * don't adjust block start at all,
7188 			 * it is fixed at EXTENT_MAP_HOLE
7189 			 */
7190 			em->block_start = hole_em->block_start;
7191 			em->block_len = hole_len;
7192 			if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
7193 				set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
7194 		} else {
7195 			em->start = range_start;
7196 			em->len = found;
7197 			em->orig_start = range_start;
7198 			em->block_start = EXTENT_MAP_DELALLOC;
7199 			em->block_len = found;
7200 		}
7201 	} else if (hole_em) {
7202 		return hole_em;
7203 	}
7204 out:
7205 
7206 	free_extent_map(hole_em);
7207 	if (err) {
7208 		free_extent_map(em);
7209 		return ERR_PTR(err);
7210 	}
7211 	return em;
7212 }
7213 
7214 static struct extent_map *btrfs_create_dio_extent(struct inode *inode,
7215 						  const u64 start,
7216 						  const u64 len,
7217 						  const u64 orig_start,
7218 						  const u64 block_start,
7219 						  const u64 block_len,
7220 						  const u64 orig_block_len,
7221 						  const u64 ram_bytes,
7222 						  const int type)
7223 {
7224 	struct extent_map *em = NULL;
7225 	int ret;
7226 
7227 	down_read(&BTRFS_I(inode)->dio_sem);
7228 	if (type != BTRFS_ORDERED_NOCOW) {
7229 		em = create_pinned_em(inode, start, len, orig_start,
7230 				      block_start, block_len, orig_block_len,
7231 				      ram_bytes, type);
7232 		if (IS_ERR(em))
7233 			goto out;
7234 	}
7235 	ret = btrfs_add_ordered_extent_dio(inode, start, block_start,
7236 					   len, block_len, type);
7237 	if (ret) {
7238 		if (em) {
7239 			free_extent_map(em);
7240 			btrfs_drop_extent_cache(inode, start,
7241 						start + len - 1, 0);
7242 		}
7243 		em = ERR_PTR(ret);
7244 	}
7245  out:
7246 	up_read(&BTRFS_I(inode)->dio_sem);
7247 
7248 	return em;
7249 }
7250 
7251 static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
7252 						  u64 start, u64 len)
7253 {
7254 	struct btrfs_root *root = BTRFS_I(inode)->root;
7255 	struct extent_map *em;
7256 	struct btrfs_key ins;
7257 	u64 alloc_hint;
7258 	int ret;
7259 
7260 	alloc_hint = get_extent_allocation_hint(inode, start, len);
7261 	ret = btrfs_reserve_extent(root, len, len, root->sectorsize, 0,
7262 				   alloc_hint, &ins, 1, 1);
7263 	if (ret)
7264 		return ERR_PTR(ret);
7265 
7266 	em = btrfs_create_dio_extent(inode, start, ins.offset, start,
7267 				     ins.objectid, ins.offset, ins.offset,
7268 				     ins.offset, 0);
7269 	btrfs_dec_block_group_reservations(root->fs_info, ins.objectid);
7270 	if (IS_ERR(em))
7271 		btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
7272 
7273 	return em;
7274 }
7275 
7276 /*
7277  * returns 1 when the nocow is safe, < 1 on error, 0 if the
7278  * block must be cow'd
7279  */
7280 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7281 			      u64 *orig_start, u64 *orig_block_len,
7282 			      u64 *ram_bytes)
7283 {
7284 	struct btrfs_trans_handle *trans;
7285 	struct btrfs_path *path;
7286 	int ret;
7287 	struct extent_buffer *leaf;
7288 	struct btrfs_root *root = BTRFS_I(inode)->root;
7289 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7290 	struct btrfs_file_extent_item *fi;
7291 	struct btrfs_key key;
7292 	u64 disk_bytenr;
7293 	u64 backref_offset;
7294 	u64 extent_end;
7295 	u64 num_bytes;
7296 	int slot;
7297 	int found_type;
7298 	bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
7299 
7300 	path = btrfs_alloc_path();
7301 	if (!path)
7302 		return -ENOMEM;
7303 
7304 	ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode),
7305 				       offset, 0);
7306 	if (ret < 0)
7307 		goto out;
7308 
7309 	slot = path->slots[0];
7310 	if (ret == 1) {
7311 		if (slot == 0) {
7312 			/* can't find the item, must cow */
7313 			ret = 0;
7314 			goto out;
7315 		}
7316 		slot--;
7317 	}
7318 	ret = 0;
7319 	leaf = path->nodes[0];
7320 	btrfs_item_key_to_cpu(leaf, &key, slot);
7321 	if (key.objectid != btrfs_ino(inode) ||
7322 	    key.type != BTRFS_EXTENT_DATA_KEY) {
7323 		/* not our file or wrong item type, must cow */
7324 		goto out;
7325 	}
7326 
7327 	if (key.offset > offset) {
7328 		/* Wrong offset, must cow */
7329 		goto out;
7330 	}
7331 
7332 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
7333 	found_type = btrfs_file_extent_type(leaf, fi);
7334 	if (found_type != BTRFS_FILE_EXTENT_REG &&
7335 	    found_type != BTRFS_FILE_EXTENT_PREALLOC) {
7336 		/* not a regular extent, must cow */
7337 		goto out;
7338 	}
7339 
7340 	if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
7341 		goto out;
7342 
7343 	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
7344 	if (extent_end <= offset)
7345 		goto out;
7346 
7347 	disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
7348 	if (disk_bytenr == 0)
7349 		goto out;
7350 
7351 	if (btrfs_file_extent_compression(leaf, fi) ||
7352 	    btrfs_file_extent_encryption(leaf, fi) ||
7353 	    btrfs_file_extent_other_encoding(leaf, fi))
7354 		goto out;
7355 
7356 	backref_offset = btrfs_file_extent_offset(leaf, fi);
7357 
7358 	if (orig_start) {
7359 		*orig_start = key.offset - backref_offset;
7360 		*orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
7361 		*ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
7362 	}
7363 
7364 	if (btrfs_extent_readonly(root, disk_bytenr))
7365 		goto out;
7366 
7367 	num_bytes = min(offset + *len, extent_end) - offset;
7368 	if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7369 		u64 range_end;
7370 
7371 		range_end = round_up(offset + num_bytes, root->sectorsize) - 1;
7372 		ret = test_range_bit(io_tree, offset, range_end,
7373 				     EXTENT_DELALLOC, 0, NULL);
7374 		if (ret) {
7375 			ret = -EAGAIN;
7376 			goto out;
7377 		}
7378 	}
7379 
7380 	btrfs_release_path(path);
7381 
7382 	/*
7383 	 * look for other files referencing this extent, if we
7384 	 * find any we must cow
7385 	 */
7386 	trans = btrfs_join_transaction(root);
7387 	if (IS_ERR(trans)) {
7388 		ret = 0;
7389 		goto out;
7390 	}
7391 
7392 	ret = btrfs_cross_ref_exist(trans, root, btrfs_ino(inode),
7393 				    key.offset - backref_offset, disk_bytenr);
7394 	btrfs_end_transaction(trans, root);
7395 	if (ret) {
7396 		ret = 0;
7397 		goto out;
7398 	}
7399 
7400 	/*
7401 	 * adjust disk_bytenr and num_bytes to cover just the bytes
7402 	 * in this extent we are about to write.  If there
7403 	 * are any csums in that range we have to cow in order
7404 	 * to keep the csums correct
7405 	 */
7406 	disk_bytenr += backref_offset;
7407 	disk_bytenr += offset - key.offset;
7408 	if (csum_exist_in_range(root, disk_bytenr, num_bytes))
7409 				goto out;
7410 	/*
7411 	 * all of the above have passed, it is safe to overwrite this extent
7412 	 * without cow
7413 	 */
7414 	*len = num_bytes;
7415 	ret = 1;
7416 out:
7417 	btrfs_free_path(path);
7418 	return ret;
7419 }
7420 
7421 bool btrfs_page_exists_in_range(struct inode *inode, loff_t start, loff_t end)
7422 {
7423 	struct radix_tree_root *root = &inode->i_mapping->page_tree;
7424 	int found = false;
7425 	void **pagep = NULL;
7426 	struct page *page = NULL;
7427 	int start_idx;
7428 	int end_idx;
7429 
7430 	start_idx = start >> PAGE_SHIFT;
7431 
7432 	/*
7433 	 * end is the last byte in the last page.  end == start is legal
7434 	 */
7435 	end_idx = end >> PAGE_SHIFT;
7436 
7437 	rcu_read_lock();
7438 
7439 	/* Most of the code in this while loop is lifted from
7440 	 * find_get_page.  It's been modified to begin searching from a
7441 	 * page and return just the first page found in that range.  If the
7442 	 * found idx is less than or equal to the end idx then we know that
7443 	 * a page exists.  If no pages are found or if those pages are
7444 	 * outside of the range then we're fine (yay!) */
7445 	while (page == NULL &&
7446 	       radix_tree_gang_lookup_slot(root, &pagep, NULL, start_idx, 1)) {
7447 		page = radix_tree_deref_slot(pagep);
7448 		if (unlikely(!page))
7449 			break;
7450 
7451 		if (radix_tree_exception(page)) {
7452 			if (radix_tree_deref_retry(page)) {
7453 				page = NULL;
7454 				continue;
7455 			}
7456 			/*
7457 			 * Otherwise, shmem/tmpfs must be storing a swap entry
7458 			 * here as an exceptional entry: so return it without
7459 			 * attempting to raise page count.
7460 			 */
7461 			page = NULL;
7462 			break; /* TODO: Is this relevant for this use case? */
7463 		}
7464 
7465 		if (!page_cache_get_speculative(page)) {
7466 			page = NULL;
7467 			continue;
7468 		}
7469 
7470 		/*
7471 		 * Has the page moved?
7472 		 * This is part of the lockless pagecache protocol. See
7473 		 * include/linux/pagemap.h for details.
7474 		 */
7475 		if (unlikely(page != *pagep)) {
7476 			put_page(page);
7477 			page = NULL;
7478 		}
7479 	}
7480 
7481 	if (page) {
7482 		if (page->index <= end_idx)
7483 			found = true;
7484 		put_page(page);
7485 	}
7486 
7487 	rcu_read_unlock();
7488 	return found;
7489 }
7490 
7491 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
7492 			      struct extent_state **cached_state, int writing)
7493 {
7494 	struct btrfs_ordered_extent *ordered;
7495 	int ret = 0;
7496 
7497 	while (1) {
7498 		lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7499 				 cached_state);
7500 		/*
7501 		 * We're concerned with the entire range that we're going to be
7502 		 * doing DIO to, so we need to make sure there's no ordered
7503 		 * extents in this range.
7504 		 */
7505 		ordered = btrfs_lookup_ordered_range(inode, lockstart,
7506 						     lockend - lockstart + 1);
7507 
7508 		/*
7509 		 * We need to make sure there are no buffered pages in this
7510 		 * range either, we could have raced between the invalidate in
7511 		 * generic_file_direct_write and locking the extent.  The
7512 		 * invalidate needs to happen so that reads after a write do not
7513 		 * get stale data.
7514 		 */
7515 		if (!ordered &&
7516 		    (!writing ||
7517 		     !btrfs_page_exists_in_range(inode, lockstart, lockend)))
7518 			break;
7519 
7520 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7521 				     cached_state, GFP_NOFS);
7522 
7523 		if (ordered) {
7524 			/*
7525 			 * If we are doing a DIO read and the ordered extent we
7526 			 * found is for a buffered write, we can not wait for it
7527 			 * to complete and retry, because if we do so we can
7528 			 * deadlock with concurrent buffered writes on page
7529 			 * locks. This happens only if our DIO read covers more
7530 			 * than one extent map, if at this point has already
7531 			 * created an ordered extent for a previous extent map
7532 			 * and locked its range in the inode's io tree, and a
7533 			 * concurrent write against that previous extent map's
7534 			 * range and this range started (we unlock the ranges
7535 			 * in the io tree only when the bios complete and
7536 			 * buffered writes always lock pages before attempting
7537 			 * to lock range in the io tree).
7538 			 */
7539 			if (writing ||
7540 			    test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags))
7541 				btrfs_start_ordered_extent(inode, ordered, 1);
7542 			else
7543 				ret = -ENOTBLK;
7544 			btrfs_put_ordered_extent(ordered);
7545 		} else {
7546 			/*
7547 			 * We could trigger writeback for this range (and wait
7548 			 * for it to complete) and then invalidate the pages for
7549 			 * this range (through invalidate_inode_pages2_range()),
7550 			 * but that can lead us to a deadlock with a concurrent
7551 			 * call to readpages() (a buffered read or a defrag call
7552 			 * triggered a readahead) on a page lock due to an
7553 			 * ordered dio extent we created before but did not have
7554 			 * yet a corresponding bio submitted (whence it can not
7555 			 * complete), which makes readpages() wait for that
7556 			 * ordered extent to complete while holding a lock on
7557 			 * that page.
7558 			 */
7559 			ret = -ENOTBLK;
7560 		}
7561 
7562 		if (ret)
7563 			break;
7564 
7565 		cond_resched();
7566 	}
7567 
7568 	return ret;
7569 }
7570 
7571 static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
7572 					   u64 len, u64 orig_start,
7573 					   u64 block_start, u64 block_len,
7574 					   u64 orig_block_len, u64 ram_bytes,
7575 					   int type)
7576 {
7577 	struct extent_map_tree *em_tree;
7578 	struct extent_map *em;
7579 	struct btrfs_root *root = BTRFS_I(inode)->root;
7580 	int ret;
7581 
7582 	em_tree = &BTRFS_I(inode)->extent_tree;
7583 	em = alloc_extent_map();
7584 	if (!em)
7585 		return ERR_PTR(-ENOMEM);
7586 
7587 	em->start = start;
7588 	em->orig_start = orig_start;
7589 	em->mod_start = start;
7590 	em->mod_len = len;
7591 	em->len = len;
7592 	em->block_len = block_len;
7593 	em->block_start = block_start;
7594 	em->bdev = root->fs_info->fs_devices->latest_bdev;
7595 	em->orig_block_len = orig_block_len;
7596 	em->ram_bytes = ram_bytes;
7597 	em->generation = -1;
7598 	set_bit(EXTENT_FLAG_PINNED, &em->flags);
7599 	if (type == BTRFS_ORDERED_PREALLOC)
7600 		set_bit(EXTENT_FLAG_FILLING, &em->flags);
7601 
7602 	do {
7603 		btrfs_drop_extent_cache(inode, em->start,
7604 				em->start + em->len - 1, 0);
7605 		write_lock(&em_tree->lock);
7606 		ret = add_extent_mapping(em_tree, em, 1);
7607 		write_unlock(&em_tree->lock);
7608 	} while (ret == -EEXIST);
7609 
7610 	if (ret) {
7611 		free_extent_map(em);
7612 		return ERR_PTR(ret);
7613 	}
7614 
7615 	return em;
7616 }
7617 
7618 static void adjust_dio_outstanding_extents(struct inode *inode,
7619 					   struct btrfs_dio_data *dio_data,
7620 					   const u64 len)
7621 {
7622 	unsigned num_extents;
7623 
7624 	num_extents = (unsigned) div64_u64(len + BTRFS_MAX_EXTENT_SIZE - 1,
7625 					   BTRFS_MAX_EXTENT_SIZE);
7626 	/*
7627 	 * If we have an outstanding_extents count still set then we're
7628 	 * within our reservation, otherwise we need to adjust our inode
7629 	 * counter appropriately.
7630 	 */
7631 	if (dio_data->outstanding_extents) {
7632 		dio_data->outstanding_extents -= num_extents;
7633 	} else {
7634 		spin_lock(&BTRFS_I(inode)->lock);
7635 		BTRFS_I(inode)->outstanding_extents += num_extents;
7636 		spin_unlock(&BTRFS_I(inode)->lock);
7637 	}
7638 }
7639 
7640 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
7641 				   struct buffer_head *bh_result, int create)
7642 {
7643 	struct extent_map *em;
7644 	struct btrfs_root *root = BTRFS_I(inode)->root;
7645 	struct extent_state *cached_state = NULL;
7646 	struct btrfs_dio_data *dio_data = NULL;
7647 	u64 start = iblock << inode->i_blkbits;
7648 	u64 lockstart, lockend;
7649 	u64 len = bh_result->b_size;
7650 	int unlock_bits = EXTENT_LOCKED;
7651 	int ret = 0;
7652 
7653 	if (create)
7654 		unlock_bits |= EXTENT_DIRTY;
7655 	else
7656 		len = min_t(u64, len, root->sectorsize);
7657 
7658 	lockstart = start;
7659 	lockend = start + len - 1;
7660 
7661 	if (current->journal_info) {
7662 		/*
7663 		 * Need to pull our outstanding extents and set journal_info to NULL so
7664 		 * that anything that needs to check if there's a transaction doesn't get
7665 		 * confused.
7666 		 */
7667 		dio_data = current->journal_info;
7668 		current->journal_info = NULL;
7669 	}
7670 
7671 	/*
7672 	 * If this errors out it's because we couldn't invalidate pagecache for
7673 	 * this range and we need to fallback to buffered.
7674 	 */
7675 	if (lock_extent_direct(inode, lockstart, lockend, &cached_state,
7676 			       create)) {
7677 		ret = -ENOTBLK;
7678 		goto err;
7679 	}
7680 
7681 	em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
7682 	if (IS_ERR(em)) {
7683 		ret = PTR_ERR(em);
7684 		goto unlock_err;
7685 	}
7686 
7687 	/*
7688 	 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7689 	 * io.  INLINE is special, and we could probably kludge it in here, but
7690 	 * it's still buffered so for safety lets just fall back to the generic
7691 	 * buffered path.
7692 	 *
7693 	 * For COMPRESSED we _have_ to read the entire extent in so we can
7694 	 * decompress it, so there will be buffering required no matter what we
7695 	 * do, so go ahead and fallback to buffered.
7696 	 *
7697 	 * We return -ENOTBLK because that's what makes DIO go ahead and go back
7698 	 * to buffered IO.  Don't blame me, this is the price we pay for using
7699 	 * the generic code.
7700 	 */
7701 	if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7702 	    em->block_start == EXTENT_MAP_INLINE) {
7703 		free_extent_map(em);
7704 		ret = -ENOTBLK;
7705 		goto unlock_err;
7706 	}
7707 
7708 	/* Just a good old fashioned hole, return */
7709 	if (!create && (em->block_start == EXTENT_MAP_HOLE ||
7710 			test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
7711 		free_extent_map(em);
7712 		goto unlock_err;
7713 	}
7714 
7715 	/*
7716 	 * We don't allocate a new extent in the following cases
7717 	 *
7718 	 * 1) The inode is marked as NODATACOW.  In this case we'll just use the
7719 	 * existing extent.
7720 	 * 2) The extent is marked as PREALLOC.  We're good to go here and can
7721 	 * just use the extent.
7722 	 *
7723 	 */
7724 	if (!create) {
7725 		len = min(len, em->len - (start - em->start));
7726 		lockstart = start + len;
7727 		goto unlock;
7728 	}
7729 
7730 	if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7731 	    ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7732 	     em->block_start != EXTENT_MAP_HOLE)) {
7733 		int type;
7734 		u64 block_start, orig_start, orig_block_len, ram_bytes;
7735 
7736 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7737 			type = BTRFS_ORDERED_PREALLOC;
7738 		else
7739 			type = BTRFS_ORDERED_NOCOW;
7740 		len = min(len, em->len - (start - em->start));
7741 		block_start = em->block_start + (start - em->start);
7742 
7743 		if (can_nocow_extent(inode, start, &len, &orig_start,
7744 				     &orig_block_len, &ram_bytes) == 1 &&
7745 		    btrfs_inc_nocow_writers(root->fs_info, block_start)) {
7746 			struct extent_map *em2;
7747 
7748 			em2 = btrfs_create_dio_extent(inode, start, len,
7749 						      orig_start, block_start,
7750 						      len, orig_block_len,
7751 						      ram_bytes, type);
7752 			btrfs_dec_nocow_writers(root->fs_info, block_start);
7753 			if (type == BTRFS_ORDERED_PREALLOC) {
7754 				free_extent_map(em);
7755 				em = em2;
7756 			}
7757 			if (em2 && IS_ERR(em2)) {
7758 				ret = PTR_ERR(em2);
7759 				goto unlock_err;
7760 			}
7761 			/*
7762 			 * For inode marked NODATACOW or extent marked PREALLOC,
7763 			 * use the existing or preallocated extent, so does not
7764 			 * need to adjust btrfs_space_info's bytes_may_use.
7765 			 */
7766 			btrfs_free_reserved_data_space_noquota(inode,
7767 					start, len);
7768 			goto unlock;
7769 		}
7770 	}
7771 
7772 	/*
7773 	 * this will cow the extent, reset the len in case we changed
7774 	 * it above
7775 	 */
7776 	len = bh_result->b_size;
7777 	free_extent_map(em);
7778 	em = btrfs_new_extent_direct(inode, start, len);
7779 	if (IS_ERR(em)) {
7780 		ret = PTR_ERR(em);
7781 		goto unlock_err;
7782 	}
7783 	len = min(len, em->len - (start - em->start));
7784 unlock:
7785 	bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7786 		inode->i_blkbits;
7787 	bh_result->b_size = len;
7788 	bh_result->b_bdev = em->bdev;
7789 	set_buffer_mapped(bh_result);
7790 	if (create) {
7791 		if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7792 			set_buffer_new(bh_result);
7793 
7794 		/*
7795 		 * Need to update the i_size under the extent lock so buffered
7796 		 * readers will get the updated i_size when we unlock.
7797 		 */
7798 		if (start + len > i_size_read(inode))
7799 			i_size_write(inode, start + len);
7800 
7801 		adjust_dio_outstanding_extents(inode, dio_data, len);
7802 		WARN_ON(dio_data->reserve < len);
7803 		dio_data->reserve -= len;
7804 		dio_data->unsubmitted_oe_range_end = start + len;
7805 		current->journal_info = dio_data;
7806 	}
7807 
7808 	/*
7809 	 * In the case of write we need to clear and unlock the entire range,
7810 	 * in the case of read we need to unlock only the end area that we
7811 	 * aren't using if there is any left over space.
7812 	 */
7813 	if (lockstart < lockend) {
7814 		clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
7815 				 lockend, unlock_bits, 1, 0,
7816 				 &cached_state, GFP_NOFS);
7817 	} else {
7818 		free_extent_state(cached_state);
7819 	}
7820 
7821 	free_extent_map(em);
7822 
7823 	return 0;
7824 
7825 unlock_err:
7826 	clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7827 			 unlock_bits, 1, 0, &cached_state, GFP_NOFS);
7828 err:
7829 	if (dio_data)
7830 		current->journal_info = dio_data;
7831 	/*
7832 	 * Compensate the delalloc release we do in btrfs_direct_IO() when we
7833 	 * write less data then expected, so that we don't underflow our inode's
7834 	 * outstanding extents counter.
7835 	 */
7836 	if (create && dio_data)
7837 		adjust_dio_outstanding_extents(inode, dio_data, len);
7838 
7839 	return ret;
7840 }
7841 
7842 static inline int submit_dio_repair_bio(struct inode *inode, struct bio *bio,
7843 					int mirror_num)
7844 {
7845 	struct btrfs_root *root = BTRFS_I(inode)->root;
7846 	int ret;
7847 
7848 	BUG_ON(bio_op(bio) == REQ_OP_WRITE);
7849 
7850 	bio_get(bio);
7851 
7852 	ret = btrfs_bio_wq_end_io(root->fs_info, bio,
7853 				  BTRFS_WQ_ENDIO_DIO_REPAIR);
7854 	if (ret)
7855 		goto err;
7856 
7857 	ret = btrfs_map_bio(root, bio, mirror_num, 0);
7858 err:
7859 	bio_put(bio);
7860 	return ret;
7861 }
7862 
7863 static int btrfs_check_dio_repairable(struct inode *inode,
7864 				      struct bio *failed_bio,
7865 				      struct io_failure_record *failrec,
7866 				      int failed_mirror)
7867 {
7868 	int num_copies;
7869 
7870 	num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info,
7871 				      failrec->logical, failrec->len);
7872 	if (num_copies == 1) {
7873 		/*
7874 		 * we only have a single copy of the data, so don't bother with
7875 		 * all the retry and error correction code that follows. no
7876 		 * matter what the error is, it is very likely to persist.
7877 		 */
7878 		pr_debug("Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n",
7879 			 num_copies, failrec->this_mirror, failed_mirror);
7880 		return 0;
7881 	}
7882 
7883 	failrec->failed_mirror = failed_mirror;
7884 	failrec->this_mirror++;
7885 	if (failrec->this_mirror == failed_mirror)
7886 		failrec->this_mirror++;
7887 
7888 	if (failrec->this_mirror > num_copies) {
7889 		pr_debug("Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n",
7890 			 num_copies, failrec->this_mirror, failed_mirror);
7891 		return 0;
7892 	}
7893 
7894 	return 1;
7895 }
7896 
7897 static int dio_read_error(struct inode *inode, struct bio *failed_bio,
7898 			struct page *page, unsigned int pgoff,
7899 			u64 start, u64 end, int failed_mirror,
7900 			bio_end_io_t *repair_endio, void *repair_arg)
7901 {
7902 	struct io_failure_record *failrec;
7903 	struct bio *bio;
7904 	int isector;
7905 	int read_mode;
7906 	int ret;
7907 
7908 	BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
7909 
7910 	ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
7911 	if (ret)
7912 		return ret;
7913 
7914 	ret = btrfs_check_dio_repairable(inode, failed_bio, failrec,
7915 					 failed_mirror);
7916 	if (!ret) {
7917 		free_io_failure(inode, failrec);
7918 		return -EIO;
7919 	}
7920 
7921 	if ((failed_bio->bi_vcnt > 1)
7922 		|| (failed_bio->bi_io_vec->bv_len
7923 			> BTRFS_I(inode)->root->sectorsize))
7924 		read_mode = READ_SYNC | REQ_FAILFAST_DEV;
7925 	else
7926 		read_mode = READ_SYNC;
7927 
7928 	isector = start - btrfs_io_bio(failed_bio)->logical;
7929 	isector >>= inode->i_sb->s_blocksize_bits;
7930 	bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
7931 				pgoff, isector, repair_endio, repair_arg);
7932 	if (!bio) {
7933 		free_io_failure(inode, failrec);
7934 		return -EIO;
7935 	}
7936 	bio_set_op_attrs(bio, REQ_OP_READ, read_mode);
7937 
7938 	btrfs_debug(BTRFS_I(inode)->root->fs_info,
7939 		    "Repair DIO Read Error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d\n",
7940 		    read_mode, failrec->this_mirror, failrec->in_validation);
7941 
7942 	ret = submit_dio_repair_bio(inode, bio, failrec->this_mirror);
7943 	if (ret) {
7944 		free_io_failure(inode, failrec);
7945 		bio_put(bio);
7946 	}
7947 
7948 	return ret;
7949 }
7950 
7951 struct btrfs_retry_complete {
7952 	struct completion done;
7953 	struct inode *inode;
7954 	u64 start;
7955 	int uptodate;
7956 };
7957 
7958 static void btrfs_retry_endio_nocsum(struct bio *bio)
7959 {
7960 	struct btrfs_retry_complete *done = bio->bi_private;
7961 	struct inode *inode;
7962 	struct bio_vec *bvec;
7963 	int i;
7964 
7965 	if (bio->bi_error)
7966 		goto end;
7967 
7968 	ASSERT(bio->bi_vcnt == 1);
7969 	inode = bio->bi_io_vec->bv_page->mapping->host;
7970 	ASSERT(bio->bi_io_vec->bv_len == BTRFS_I(inode)->root->sectorsize);
7971 
7972 	done->uptodate = 1;
7973 	bio_for_each_segment_all(bvec, bio, i)
7974 		clean_io_failure(done->inode, done->start, bvec->bv_page, 0);
7975 end:
7976 	complete(&done->done);
7977 	bio_put(bio);
7978 }
7979 
7980 static int __btrfs_correct_data_nocsum(struct inode *inode,
7981 				       struct btrfs_io_bio *io_bio)
7982 {
7983 	struct btrfs_fs_info *fs_info;
7984 	struct bio_vec *bvec;
7985 	struct btrfs_retry_complete done;
7986 	u64 start;
7987 	unsigned int pgoff;
7988 	u32 sectorsize;
7989 	int nr_sectors;
7990 	int i;
7991 	int ret;
7992 
7993 	fs_info = BTRFS_I(inode)->root->fs_info;
7994 	sectorsize = BTRFS_I(inode)->root->sectorsize;
7995 
7996 	start = io_bio->logical;
7997 	done.inode = inode;
7998 
7999 	bio_for_each_segment_all(bvec, &io_bio->bio, i) {
8000 		nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec->bv_len);
8001 		pgoff = bvec->bv_offset;
8002 
8003 next_block_or_try_again:
8004 		done.uptodate = 0;
8005 		done.start = start;
8006 		init_completion(&done.done);
8007 
8008 		ret = dio_read_error(inode, &io_bio->bio, bvec->bv_page,
8009 				pgoff, start, start + sectorsize - 1,
8010 				io_bio->mirror_num,
8011 				btrfs_retry_endio_nocsum, &done);
8012 		if (ret)
8013 			return ret;
8014 
8015 		wait_for_completion(&done.done);
8016 
8017 		if (!done.uptodate) {
8018 			/* We might have another mirror, so try again */
8019 			goto next_block_or_try_again;
8020 		}
8021 
8022 		start += sectorsize;
8023 
8024 		if (nr_sectors--) {
8025 			pgoff += sectorsize;
8026 			goto next_block_or_try_again;
8027 		}
8028 	}
8029 
8030 	return 0;
8031 }
8032 
8033 static void btrfs_retry_endio(struct bio *bio)
8034 {
8035 	struct btrfs_retry_complete *done = bio->bi_private;
8036 	struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8037 	struct inode *inode;
8038 	struct bio_vec *bvec;
8039 	u64 start;
8040 	int uptodate;
8041 	int ret;
8042 	int i;
8043 
8044 	if (bio->bi_error)
8045 		goto end;
8046 
8047 	uptodate = 1;
8048 
8049 	start = done->start;
8050 
8051 	ASSERT(bio->bi_vcnt == 1);
8052 	inode = bio->bi_io_vec->bv_page->mapping->host;
8053 	ASSERT(bio->bi_io_vec->bv_len == BTRFS_I(inode)->root->sectorsize);
8054 
8055 	bio_for_each_segment_all(bvec, bio, i) {
8056 		ret = __readpage_endio_check(done->inode, io_bio, i,
8057 					bvec->bv_page, bvec->bv_offset,
8058 					done->start, bvec->bv_len);
8059 		if (!ret)
8060 			clean_io_failure(done->inode, done->start,
8061 					bvec->bv_page, bvec->bv_offset);
8062 		else
8063 			uptodate = 0;
8064 	}
8065 
8066 	done->uptodate = uptodate;
8067 end:
8068 	complete(&done->done);
8069 	bio_put(bio);
8070 }
8071 
8072 static int __btrfs_subio_endio_read(struct inode *inode,
8073 				    struct btrfs_io_bio *io_bio, int err)
8074 {
8075 	struct btrfs_fs_info *fs_info;
8076 	struct bio_vec *bvec;
8077 	struct btrfs_retry_complete done;
8078 	u64 start;
8079 	u64 offset = 0;
8080 	u32 sectorsize;
8081 	int nr_sectors;
8082 	unsigned int pgoff;
8083 	int csum_pos;
8084 	int i;
8085 	int ret;
8086 
8087 	fs_info = BTRFS_I(inode)->root->fs_info;
8088 	sectorsize = BTRFS_I(inode)->root->sectorsize;
8089 
8090 	err = 0;
8091 	start = io_bio->logical;
8092 	done.inode = inode;
8093 
8094 	bio_for_each_segment_all(bvec, &io_bio->bio, i) {
8095 		nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec->bv_len);
8096 
8097 		pgoff = bvec->bv_offset;
8098 next_block:
8099 		csum_pos = BTRFS_BYTES_TO_BLKS(fs_info, offset);
8100 		ret = __readpage_endio_check(inode, io_bio, csum_pos,
8101 					bvec->bv_page, pgoff, start,
8102 					sectorsize);
8103 		if (likely(!ret))
8104 			goto next;
8105 try_again:
8106 		done.uptodate = 0;
8107 		done.start = start;
8108 		init_completion(&done.done);
8109 
8110 		ret = dio_read_error(inode, &io_bio->bio, bvec->bv_page,
8111 				pgoff, start, start + sectorsize - 1,
8112 				io_bio->mirror_num,
8113 				btrfs_retry_endio, &done);
8114 		if (ret) {
8115 			err = ret;
8116 			goto next;
8117 		}
8118 
8119 		wait_for_completion(&done.done);
8120 
8121 		if (!done.uptodate) {
8122 			/* We might have another mirror, so try again */
8123 			goto try_again;
8124 		}
8125 next:
8126 		offset += sectorsize;
8127 		start += sectorsize;
8128 
8129 		ASSERT(nr_sectors);
8130 
8131 		if (--nr_sectors) {
8132 			pgoff += sectorsize;
8133 			goto next_block;
8134 		}
8135 	}
8136 
8137 	return err;
8138 }
8139 
8140 static int btrfs_subio_endio_read(struct inode *inode,
8141 				  struct btrfs_io_bio *io_bio, int err)
8142 {
8143 	bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
8144 
8145 	if (skip_csum) {
8146 		if (unlikely(err))
8147 			return __btrfs_correct_data_nocsum(inode, io_bio);
8148 		else
8149 			return 0;
8150 	} else {
8151 		return __btrfs_subio_endio_read(inode, io_bio, err);
8152 	}
8153 }
8154 
8155 static void btrfs_endio_direct_read(struct bio *bio)
8156 {
8157 	struct btrfs_dio_private *dip = bio->bi_private;
8158 	struct inode *inode = dip->inode;
8159 	struct bio *dio_bio;
8160 	struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8161 	int err = bio->bi_error;
8162 
8163 	if (dip->flags & BTRFS_DIO_ORIG_BIO_SUBMITTED)
8164 		err = btrfs_subio_endio_read(inode, io_bio, err);
8165 
8166 	unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
8167 		      dip->logical_offset + dip->bytes - 1);
8168 	dio_bio = dip->dio_bio;
8169 
8170 	kfree(dip);
8171 
8172 	dio_bio->bi_error = bio->bi_error;
8173 	dio_end_io(dio_bio, bio->bi_error);
8174 
8175 	if (io_bio->end_io)
8176 		io_bio->end_io(io_bio, err);
8177 	bio_put(bio);
8178 }
8179 
8180 static void btrfs_endio_direct_write_update_ordered(struct inode *inode,
8181 						    const u64 offset,
8182 						    const u64 bytes,
8183 						    const int uptodate)
8184 {
8185 	struct btrfs_root *root = BTRFS_I(inode)->root;
8186 	struct btrfs_ordered_extent *ordered = NULL;
8187 	u64 ordered_offset = offset;
8188 	u64 ordered_bytes = bytes;
8189 	int ret;
8190 
8191 again:
8192 	ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
8193 						   &ordered_offset,
8194 						   ordered_bytes,
8195 						   uptodate);
8196 	if (!ret)
8197 		goto out_test;
8198 
8199 	btrfs_init_work(&ordered->work, btrfs_endio_write_helper,
8200 			finish_ordered_fn, NULL, NULL);
8201 	btrfs_queue_work(root->fs_info->endio_write_workers,
8202 			 &ordered->work);
8203 out_test:
8204 	/*
8205 	 * our bio might span multiple ordered extents.  If we haven't
8206 	 * completed the accounting for the whole dio, go back and try again
8207 	 */
8208 	if (ordered_offset < offset + bytes) {
8209 		ordered_bytes = offset + bytes - ordered_offset;
8210 		ordered = NULL;
8211 		goto again;
8212 	}
8213 }
8214 
8215 static void btrfs_endio_direct_write(struct bio *bio)
8216 {
8217 	struct btrfs_dio_private *dip = bio->bi_private;
8218 	struct bio *dio_bio = dip->dio_bio;
8219 
8220 	btrfs_endio_direct_write_update_ordered(dip->inode,
8221 						dip->logical_offset,
8222 						dip->bytes,
8223 						!bio->bi_error);
8224 
8225 	kfree(dip);
8226 
8227 	dio_bio->bi_error = bio->bi_error;
8228 	dio_end_io(dio_bio, bio->bi_error);
8229 	bio_put(bio);
8230 }
8231 
8232 static int __btrfs_submit_bio_start_direct_io(struct inode *inode,
8233 				    struct bio *bio, int mirror_num,
8234 				    unsigned long bio_flags, u64 offset)
8235 {
8236 	int ret;
8237 	struct btrfs_root *root = BTRFS_I(inode)->root;
8238 	ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
8239 	BUG_ON(ret); /* -ENOMEM */
8240 	return 0;
8241 }
8242 
8243 static void btrfs_end_dio_bio(struct bio *bio)
8244 {
8245 	struct btrfs_dio_private *dip = bio->bi_private;
8246 	int err = bio->bi_error;
8247 
8248 	if (err)
8249 		btrfs_warn(BTRFS_I(dip->inode)->root->fs_info,
8250 			   "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d",
8251 			   btrfs_ino(dip->inode), bio_op(bio), bio->bi_opf,
8252 			   (unsigned long long)bio->bi_iter.bi_sector,
8253 			   bio->bi_iter.bi_size, err);
8254 
8255 	if (dip->subio_endio)
8256 		err = dip->subio_endio(dip->inode, btrfs_io_bio(bio), err);
8257 
8258 	if (err) {
8259 		dip->errors = 1;
8260 
8261 		/*
8262 		 * before atomic variable goto zero, we must make sure
8263 		 * dip->errors is perceived to be set.
8264 		 */
8265 		smp_mb__before_atomic();
8266 	}
8267 
8268 	/* if there are more bios still pending for this dio, just exit */
8269 	if (!atomic_dec_and_test(&dip->pending_bios))
8270 		goto out;
8271 
8272 	if (dip->errors) {
8273 		bio_io_error(dip->orig_bio);
8274 	} else {
8275 		dip->dio_bio->bi_error = 0;
8276 		bio_endio(dip->orig_bio);
8277 	}
8278 out:
8279 	bio_put(bio);
8280 }
8281 
8282 static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
8283 				       u64 first_sector, gfp_t gfp_flags)
8284 {
8285 	struct bio *bio;
8286 	bio = btrfs_bio_alloc(bdev, first_sector, BIO_MAX_PAGES, gfp_flags);
8287 	if (bio)
8288 		bio_associate_current(bio);
8289 	return bio;
8290 }
8291 
8292 static inline int btrfs_lookup_and_bind_dio_csum(struct btrfs_root *root,
8293 						 struct inode *inode,
8294 						 struct btrfs_dio_private *dip,
8295 						 struct bio *bio,
8296 						 u64 file_offset)
8297 {
8298 	struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8299 	struct btrfs_io_bio *orig_io_bio = btrfs_io_bio(dip->orig_bio);
8300 	int ret;
8301 
8302 	/*
8303 	 * We load all the csum data we need when we submit
8304 	 * the first bio to reduce the csum tree search and
8305 	 * contention.
8306 	 */
8307 	if (dip->logical_offset == file_offset) {
8308 		ret = btrfs_lookup_bio_sums_dio(root, inode, dip->orig_bio,
8309 						file_offset);
8310 		if (ret)
8311 			return ret;
8312 	}
8313 
8314 	if (bio == dip->orig_bio)
8315 		return 0;
8316 
8317 	file_offset -= dip->logical_offset;
8318 	file_offset >>= inode->i_sb->s_blocksize_bits;
8319 	io_bio->csum = (u8 *)(((u32 *)orig_io_bio->csum) + file_offset);
8320 
8321 	return 0;
8322 }
8323 
8324 static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
8325 					 u64 file_offset, int skip_sum,
8326 					 int async_submit)
8327 {
8328 	struct btrfs_dio_private *dip = bio->bi_private;
8329 	bool write = bio_op(bio) == REQ_OP_WRITE;
8330 	struct btrfs_root *root = BTRFS_I(inode)->root;
8331 	int ret;
8332 
8333 	if (async_submit)
8334 		async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
8335 
8336 	bio_get(bio);
8337 
8338 	if (!write) {
8339 		ret = btrfs_bio_wq_end_io(root->fs_info, bio,
8340 				BTRFS_WQ_ENDIO_DATA);
8341 		if (ret)
8342 			goto err;
8343 	}
8344 
8345 	if (skip_sum)
8346 		goto map;
8347 
8348 	if (write && async_submit) {
8349 		ret = btrfs_wq_submit_bio(root->fs_info,
8350 				   inode, bio, 0, 0, file_offset,
8351 				   __btrfs_submit_bio_start_direct_io,
8352 				   __btrfs_submit_bio_done);
8353 		goto err;
8354 	} else if (write) {
8355 		/*
8356 		 * If we aren't doing async submit, calculate the csum of the
8357 		 * bio now.
8358 		 */
8359 		ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1);
8360 		if (ret)
8361 			goto err;
8362 	} else {
8363 		ret = btrfs_lookup_and_bind_dio_csum(root, inode, dip, bio,
8364 						     file_offset);
8365 		if (ret)
8366 			goto err;
8367 	}
8368 map:
8369 	ret = btrfs_map_bio(root, bio, 0, async_submit);
8370 err:
8371 	bio_put(bio);
8372 	return ret;
8373 }
8374 
8375 static int btrfs_submit_direct_hook(struct btrfs_dio_private *dip,
8376 				    int skip_sum)
8377 {
8378 	struct inode *inode = dip->inode;
8379 	struct btrfs_root *root = BTRFS_I(inode)->root;
8380 	struct bio *bio;
8381 	struct bio *orig_bio = dip->orig_bio;
8382 	struct bio_vec *bvec = orig_bio->bi_io_vec;
8383 	u64 start_sector = orig_bio->bi_iter.bi_sector;
8384 	u64 file_offset = dip->logical_offset;
8385 	u64 submit_len = 0;
8386 	u64 map_length;
8387 	u32 blocksize = root->sectorsize;
8388 	int async_submit = 0;
8389 	int nr_sectors;
8390 	int ret;
8391 	int i;
8392 
8393 	map_length = orig_bio->bi_iter.bi_size;
8394 	ret = btrfs_map_block(root->fs_info, bio_op(orig_bio),
8395 			      start_sector << 9, &map_length, NULL, 0);
8396 	if (ret)
8397 		return -EIO;
8398 
8399 	if (map_length >= orig_bio->bi_iter.bi_size) {
8400 		bio = orig_bio;
8401 		dip->flags |= BTRFS_DIO_ORIG_BIO_SUBMITTED;
8402 		goto submit;
8403 	}
8404 
8405 	/* async crcs make it difficult to collect full stripe writes. */
8406 	if (btrfs_get_alloc_profile(root, 1) & BTRFS_BLOCK_GROUP_RAID56_MASK)
8407 		async_submit = 0;
8408 	else
8409 		async_submit = 1;
8410 
8411 	bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
8412 	if (!bio)
8413 		return -ENOMEM;
8414 
8415 	bio_set_op_attrs(bio, bio_op(orig_bio), orig_bio->bi_opf);
8416 	bio->bi_private = dip;
8417 	bio->bi_end_io = btrfs_end_dio_bio;
8418 	btrfs_io_bio(bio)->logical = file_offset;
8419 	atomic_inc(&dip->pending_bios);
8420 
8421 	while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
8422 		nr_sectors = BTRFS_BYTES_TO_BLKS(root->fs_info, bvec->bv_len);
8423 		i = 0;
8424 next_block:
8425 		if (unlikely(map_length < submit_len + blocksize ||
8426 		    bio_add_page(bio, bvec->bv_page, blocksize,
8427 			    bvec->bv_offset + (i * blocksize)) < blocksize)) {
8428 			/*
8429 			 * inc the count before we submit the bio so
8430 			 * we know the end IO handler won't happen before
8431 			 * we inc the count. Otherwise, the dip might get freed
8432 			 * before we're done setting it up
8433 			 */
8434 			atomic_inc(&dip->pending_bios);
8435 			ret = __btrfs_submit_dio_bio(bio, inode,
8436 						     file_offset, skip_sum,
8437 						     async_submit);
8438 			if (ret) {
8439 				bio_put(bio);
8440 				atomic_dec(&dip->pending_bios);
8441 				goto out_err;
8442 			}
8443 
8444 			start_sector += submit_len >> 9;
8445 			file_offset += submit_len;
8446 
8447 			submit_len = 0;
8448 
8449 			bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
8450 						  start_sector, GFP_NOFS);
8451 			if (!bio)
8452 				goto out_err;
8453 			bio_set_op_attrs(bio, bio_op(orig_bio), orig_bio->bi_opf);
8454 			bio->bi_private = dip;
8455 			bio->bi_end_io = btrfs_end_dio_bio;
8456 			btrfs_io_bio(bio)->logical = file_offset;
8457 
8458 			map_length = orig_bio->bi_iter.bi_size;
8459 			ret = btrfs_map_block(root->fs_info, bio_op(orig_bio),
8460 					      start_sector << 9,
8461 					      &map_length, NULL, 0);
8462 			if (ret) {
8463 				bio_put(bio);
8464 				goto out_err;
8465 			}
8466 
8467 			goto next_block;
8468 		} else {
8469 			submit_len += blocksize;
8470 			if (--nr_sectors) {
8471 				i++;
8472 				goto next_block;
8473 			}
8474 			bvec++;
8475 		}
8476 	}
8477 
8478 submit:
8479 	ret = __btrfs_submit_dio_bio(bio, inode, file_offset, skip_sum,
8480 				     async_submit);
8481 	if (!ret)
8482 		return 0;
8483 
8484 	bio_put(bio);
8485 out_err:
8486 	dip->errors = 1;
8487 	/*
8488 	 * before atomic variable goto zero, we must
8489 	 * make sure dip->errors is perceived to be set.
8490 	 */
8491 	smp_mb__before_atomic();
8492 	if (atomic_dec_and_test(&dip->pending_bios))
8493 		bio_io_error(dip->orig_bio);
8494 
8495 	/* bio_end_io() will handle error, so we needn't return it */
8496 	return 0;
8497 }
8498 
8499 static void btrfs_submit_direct(struct bio *dio_bio, struct inode *inode,
8500 				loff_t file_offset)
8501 {
8502 	struct btrfs_dio_private *dip = NULL;
8503 	struct bio *io_bio = NULL;
8504 	struct btrfs_io_bio *btrfs_bio;
8505 	int skip_sum;
8506 	bool write = (bio_op(dio_bio) == REQ_OP_WRITE);
8507 	int ret = 0;
8508 
8509 	skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
8510 
8511 	io_bio = btrfs_bio_clone(dio_bio, GFP_NOFS);
8512 	if (!io_bio) {
8513 		ret = -ENOMEM;
8514 		goto free_ordered;
8515 	}
8516 
8517 	dip = kzalloc(sizeof(*dip), GFP_NOFS);
8518 	if (!dip) {
8519 		ret = -ENOMEM;
8520 		goto free_ordered;
8521 	}
8522 
8523 	dip->private = dio_bio->bi_private;
8524 	dip->inode = inode;
8525 	dip->logical_offset = file_offset;
8526 	dip->bytes = dio_bio->bi_iter.bi_size;
8527 	dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9;
8528 	io_bio->bi_private = dip;
8529 	dip->orig_bio = io_bio;
8530 	dip->dio_bio = dio_bio;
8531 	atomic_set(&dip->pending_bios, 0);
8532 	btrfs_bio = btrfs_io_bio(io_bio);
8533 	btrfs_bio->logical = file_offset;
8534 
8535 	if (write) {
8536 		io_bio->bi_end_io = btrfs_endio_direct_write;
8537 	} else {
8538 		io_bio->bi_end_io = btrfs_endio_direct_read;
8539 		dip->subio_endio = btrfs_subio_endio_read;
8540 	}
8541 
8542 	/*
8543 	 * Reset the range for unsubmitted ordered extents (to a 0 length range)
8544 	 * even if we fail to submit a bio, because in such case we do the
8545 	 * corresponding error handling below and it must not be done a second
8546 	 * time by btrfs_direct_IO().
8547 	 */
8548 	if (write) {
8549 		struct btrfs_dio_data *dio_data = current->journal_info;
8550 
8551 		dio_data->unsubmitted_oe_range_end = dip->logical_offset +
8552 			dip->bytes;
8553 		dio_data->unsubmitted_oe_range_start =
8554 			dio_data->unsubmitted_oe_range_end;
8555 	}
8556 
8557 	ret = btrfs_submit_direct_hook(dip, skip_sum);
8558 	if (!ret)
8559 		return;
8560 
8561 	if (btrfs_bio->end_io)
8562 		btrfs_bio->end_io(btrfs_bio, ret);
8563 
8564 free_ordered:
8565 	/*
8566 	 * If we arrived here it means either we failed to submit the dip
8567 	 * or we either failed to clone the dio_bio or failed to allocate the
8568 	 * dip. If we cloned the dio_bio and allocated the dip, we can just
8569 	 * call bio_endio against our io_bio so that we get proper resource
8570 	 * cleanup if we fail to submit the dip, otherwise, we must do the
8571 	 * same as btrfs_endio_direct_[write|read] because we can't call these
8572 	 * callbacks - they require an allocated dip and a clone of dio_bio.
8573 	 */
8574 	if (io_bio && dip) {
8575 		io_bio->bi_error = -EIO;
8576 		bio_endio(io_bio);
8577 		/*
8578 		 * The end io callbacks free our dip, do the final put on io_bio
8579 		 * and all the cleanup and final put for dio_bio (through
8580 		 * dio_end_io()).
8581 		 */
8582 		dip = NULL;
8583 		io_bio = NULL;
8584 	} else {
8585 		if (write)
8586 			btrfs_endio_direct_write_update_ordered(inode,
8587 						file_offset,
8588 						dio_bio->bi_iter.bi_size,
8589 						0);
8590 		else
8591 			unlock_extent(&BTRFS_I(inode)->io_tree, file_offset,
8592 			      file_offset + dio_bio->bi_iter.bi_size - 1);
8593 
8594 		dio_bio->bi_error = -EIO;
8595 		/*
8596 		 * Releases and cleans up our dio_bio, no need to bio_put()
8597 		 * nor bio_endio()/bio_io_error() against dio_bio.
8598 		 */
8599 		dio_end_io(dio_bio, ret);
8600 	}
8601 	if (io_bio)
8602 		bio_put(io_bio);
8603 	kfree(dip);
8604 }
8605 
8606 static ssize_t check_direct_IO(struct btrfs_root *root, struct kiocb *iocb,
8607 			const struct iov_iter *iter, loff_t offset)
8608 {
8609 	int seg;
8610 	int i;
8611 	unsigned blocksize_mask = root->sectorsize - 1;
8612 	ssize_t retval = -EINVAL;
8613 
8614 	if (offset & blocksize_mask)
8615 		goto out;
8616 
8617 	if (iov_iter_alignment(iter) & blocksize_mask)
8618 		goto out;
8619 
8620 	/* If this is a write we don't need to check anymore */
8621 	if (iov_iter_rw(iter) == WRITE)
8622 		return 0;
8623 	/*
8624 	 * Check to make sure we don't have duplicate iov_base's in this
8625 	 * iovec, if so return EINVAL, otherwise we'll get csum errors
8626 	 * when reading back.
8627 	 */
8628 	for (seg = 0; seg < iter->nr_segs; seg++) {
8629 		for (i = seg + 1; i < iter->nr_segs; i++) {
8630 			if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
8631 				goto out;
8632 		}
8633 	}
8634 	retval = 0;
8635 out:
8636 	return retval;
8637 }
8638 
8639 static ssize_t btrfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
8640 {
8641 	struct file *file = iocb->ki_filp;
8642 	struct inode *inode = file->f_mapping->host;
8643 	struct btrfs_root *root = BTRFS_I(inode)->root;
8644 	struct btrfs_dio_data dio_data = { 0 };
8645 	loff_t offset = iocb->ki_pos;
8646 	size_t count = 0;
8647 	int flags = 0;
8648 	bool wakeup = true;
8649 	bool relock = false;
8650 	ssize_t ret;
8651 
8652 	if (check_direct_IO(BTRFS_I(inode)->root, iocb, iter, offset))
8653 		return 0;
8654 
8655 	inode_dio_begin(inode);
8656 	smp_mb__after_atomic();
8657 
8658 	/*
8659 	 * The generic stuff only does filemap_write_and_wait_range, which
8660 	 * isn't enough if we've written compressed pages to this area, so
8661 	 * we need to flush the dirty pages again to make absolutely sure
8662 	 * that any outstanding dirty pages are on disk.
8663 	 */
8664 	count = iov_iter_count(iter);
8665 	if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
8666 		     &BTRFS_I(inode)->runtime_flags))
8667 		filemap_fdatawrite_range(inode->i_mapping, offset,
8668 					 offset + count - 1);
8669 
8670 	if (iov_iter_rw(iter) == WRITE) {
8671 		/*
8672 		 * If the write DIO is beyond the EOF, we need update
8673 		 * the isize, but it is protected by i_mutex. So we can
8674 		 * not unlock the i_mutex at this case.
8675 		 */
8676 		if (offset + count <= inode->i_size) {
8677 			inode_unlock(inode);
8678 			relock = true;
8679 		}
8680 		ret = btrfs_delalloc_reserve_space(inode, offset, count);
8681 		if (ret)
8682 			goto out;
8683 		dio_data.outstanding_extents = div64_u64(count +
8684 						BTRFS_MAX_EXTENT_SIZE - 1,
8685 						BTRFS_MAX_EXTENT_SIZE);
8686 
8687 		/*
8688 		 * We need to know how many extents we reserved so that we can
8689 		 * do the accounting properly if we go over the number we
8690 		 * originally calculated.  Abuse current->journal_info for this.
8691 		 */
8692 		dio_data.reserve = round_up(count, root->sectorsize);
8693 		dio_data.unsubmitted_oe_range_start = (u64)offset;
8694 		dio_data.unsubmitted_oe_range_end = (u64)offset;
8695 		current->journal_info = &dio_data;
8696 	} else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK,
8697 				     &BTRFS_I(inode)->runtime_flags)) {
8698 		inode_dio_end(inode);
8699 		flags = DIO_LOCKING | DIO_SKIP_HOLES;
8700 		wakeup = false;
8701 	}
8702 
8703 	ret = __blockdev_direct_IO(iocb, inode,
8704 				   BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
8705 				   iter, btrfs_get_blocks_direct, NULL,
8706 				   btrfs_submit_direct, flags);
8707 	if (iov_iter_rw(iter) == WRITE) {
8708 		current->journal_info = NULL;
8709 		if (ret < 0 && ret != -EIOCBQUEUED) {
8710 			if (dio_data.reserve)
8711 				btrfs_delalloc_release_space(inode, offset,
8712 							     dio_data.reserve);
8713 			/*
8714 			 * On error we might have left some ordered extents
8715 			 * without submitting corresponding bios for them, so
8716 			 * cleanup them up to avoid other tasks getting them
8717 			 * and waiting for them to complete forever.
8718 			 */
8719 			if (dio_data.unsubmitted_oe_range_start <
8720 			    dio_data.unsubmitted_oe_range_end)
8721 				btrfs_endio_direct_write_update_ordered(inode,
8722 					dio_data.unsubmitted_oe_range_start,
8723 					dio_data.unsubmitted_oe_range_end -
8724 					dio_data.unsubmitted_oe_range_start,
8725 					0);
8726 		} else if (ret >= 0 && (size_t)ret < count)
8727 			btrfs_delalloc_release_space(inode, offset,
8728 						     count - (size_t)ret);
8729 	}
8730 out:
8731 	if (wakeup)
8732 		inode_dio_end(inode);
8733 	if (relock)
8734 		inode_lock(inode);
8735 
8736 	return ret;
8737 }
8738 
8739 #define BTRFS_FIEMAP_FLAGS	(FIEMAP_FLAG_SYNC)
8740 
8741 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
8742 		__u64 start, __u64 len)
8743 {
8744 	int	ret;
8745 
8746 	ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS);
8747 	if (ret)
8748 		return ret;
8749 
8750 	return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
8751 }
8752 
8753 int btrfs_readpage(struct file *file, struct page *page)
8754 {
8755 	struct extent_io_tree *tree;
8756 	tree = &BTRFS_I(page->mapping->host)->io_tree;
8757 	return extent_read_full_page(tree, page, btrfs_get_extent, 0);
8758 }
8759 
8760 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
8761 {
8762 	struct extent_io_tree *tree;
8763 	struct inode *inode = page->mapping->host;
8764 	int ret;
8765 
8766 	if (current->flags & PF_MEMALLOC) {
8767 		redirty_page_for_writepage(wbc, page);
8768 		unlock_page(page);
8769 		return 0;
8770 	}
8771 
8772 	/*
8773 	 * If we are under memory pressure we will call this directly from the
8774 	 * VM, we need to make sure we have the inode referenced for the ordered
8775 	 * extent.  If not just return like we didn't do anything.
8776 	 */
8777 	if (!igrab(inode)) {
8778 		redirty_page_for_writepage(wbc, page);
8779 		return AOP_WRITEPAGE_ACTIVATE;
8780 	}
8781 	tree = &BTRFS_I(page->mapping->host)->io_tree;
8782 	ret = extent_write_full_page(tree, page, btrfs_get_extent, wbc);
8783 	btrfs_add_delayed_iput(inode);
8784 	return ret;
8785 }
8786 
8787 static int btrfs_writepages(struct address_space *mapping,
8788 			    struct writeback_control *wbc)
8789 {
8790 	struct extent_io_tree *tree;
8791 
8792 	tree = &BTRFS_I(mapping->host)->io_tree;
8793 	return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
8794 }
8795 
8796 static int
8797 btrfs_readpages(struct file *file, struct address_space *mapping,
8798 		struct list_head *pages, unsigned nr_pages)
8799 {
8800 	struct extent_io_tree *tree;
8801 	tree = &BTRFS_I(mapping->host)->io_tree;
8802 	return extent_readpages(tree, mapping, pages, nr_pages,
8803 				btrfs_get_extent);
8804 }
8805 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8806 {
8807 	struct extent_io_tree *tree;
8808 	struct extent_map_tree *map;
8809 	int ret;
8810 
8811 	tree = &BTRFS_I(page->mapping->host)->io_tree;
8812 	map = &BTRFS_I(page->mapping->host)->extent_tree;
8813 	ret = try_release_extent_mapping(map, tree, page, gfp_flags);
8814 	if (ret == 1) {
8815 		ClearPagePrivate(page);
8816 		set_page_private(page, 0);
8817 		put_page(page);
8818 	}
8819 	return ret;
8820 }
8821 
8822 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8823 {
8824 	if (PageWriteback(page) || PageDirty(page))
8825 		return 0;
8826 	return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
8827 }
8828 
8829 static void btrfs_invalidatepage(struct page *page, unsigned int offset,
8830 				 unsigned int length)
8831 {
8832 	struct inode *inode = page->mapping->host;
8833 	struct extent_io_tree *tree;
8834 	struct btrfs_ordered_extent *ordered;
8835 	struct extent_state *cached_state = NULL;
8836 	u64 page_start = page_offset(page);
8837 	u64 page_end = page_start + PAGE_SIZE - 1;
8838 	u64 start;
8839 	u64 end;
8840 	int inode_evicting = inode->i_state & I_FREEING;
8841 
8842 	/*
8843 	 * we have the page locked, so new writeback can't start,
8844 	 * and the dirty bit won't be cleared while we are here.
8845 	 *
8846 	 * Wait for IO on this page so that we can safely clear
8847 	 * the PagePrivate2 bit and do ordered accounting
8848 	 */
8849 	wait_on_page_writeback(page);
8850 
8851 	tree = &BTRFS_I(inode)->io_tree;
8852 	if (offset) {
8853 		btrfs_releasepage(page, GFP_NOFS);
8854 		return;
8855 	}
8856 
8857 	if (!inode_evicting)
8858 		lock_extent_bits(tree, page_start, page_end, &cached_state);
8859 again:
8860 	start = page_start;
8861 	ordered = btrfs_lookup_ordered_range(inode, start,
8862 					page_end - start + 1);
8863 	if (ordered) {
8864 		end = min(page_end, ordered->file_offset + ordered->len - 1);
8865 		/*
8866 		 * IO on this page will never be started, so we need
8867 		 * to account for any ordered extents now
8868 		 */
8869 		if (!inode_evicting)
8870 			clear_extent_bit(tree, start, end,
8871 					 EXTENT_DIRTY | EXTENT_DELALLOC |
8872 					 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
8873 					 EXTENT_DEFRAG, 1, 0, &cached_state,
8874 					 GFP_NOFS);
8875 		/*
8876 		 * whoever cleared the private bit is responsible
8877 		 * for the finish_ordered_io
8878 		 */
8879 		if (TestClearPagePrivate2(page)) {
8880 			struct btrfs_ordered_inode_tree *tree;
8881 			u64 new_len;
8882 
8883 			tree = &BTRFS_I(inode)->ordered_tree;
8884 
8885 			spin_lock_irq(&tree->lock);
8886 			set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
8887 			new_len = start - ordered->file_offset;
8888 			if (new_len < ordered->truncated_len)
8889 				ordered->truncated_len = new_len;
8890 			spin_unlock_irq(&tree->lock);
8891 
8892 			if (btrfs_dec_test_ordered_pending(inode, &ordered,
8893 							   start,
8894 							   end - start + 1, 1))
8895 				btrfs_finish_ordered_io(ordered);
8896 		}
8897 		btrfs_put_ordered_extent(ordered);
8898 		if (!inode_evicting) {
8899 			cached_state = NULL;
8900 			lock_extent_bits(tree, start, end,
8901 					 &cached_state);
8902 		}
8903 
8904 		start = end + 1;
8905 		if (start < page_end)
8906 			goto again;
8907 	}
8908 
8909 	/*
8910 	 * Qgroup reserved space handler
8911 	 * Page here will be either
8912 	 * 1) Already written to disk
8913 	 *    In this case, its reserved space is released from data rsv map
8914 	 *    and will be freed by delayed_ref handler finally.
8915 	 *    So even we call qgroup_free_data(), it won't decrease reserved
8916 	 *    space.
8917 	 * 2) Not written to disk
8918 	 *    This means the reserved space should be freed here.
8919 	 */
8920 	btrfs_qgroup_free_data(inode, page_start, PAGE_SIZE);
8921 	if (!inode_evicting) {
8922 		clear_extent_bit(tree, page_start, page_end,
8923 				 EXTENT_LOCKED | EXTENT_DIRTY |
8924 				 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
8925 				 EXTENT_DEFRAG, 1, 1,
8926 				 &cached_state, GFP_NOFS);
8927 
8928 		__btrfs_releasepage(page, GFP_NOFS);
8929 	}
8930 
8931 	ClearPageChecked(page);
8932 	if (PagePrivate(page)) {
8933 		ClearPagePrivate(page);
8934 		set_page_private(page, 0);
8935 		put_page(page);
8936 	}
8937 }
8938 
8939 /*
8940  * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8941  * called from a page fault handler when a page is first dirtied. Hence we must
8942  * be careful to check for EOF conditions here. We set the page up correctly
8943  * for a written page which means we get ENOSPC checking when writing into
8944  * holes and correct delalloc and unwritten extent mapping on filesystems that
8945  * support these features.
8946  *
8947  * We are not allowed to take the i_mutex here so we have to play games to
8948  * protect against truncate races as the page could now be beyond EOF.  Because
8949  * vmtruncate() writes the inode size before removing pages, once we have the
8950  * page lock we can determine safely if the page is beyond EOF. If it is not
8951  * beyond EOF, then the page is guaranteed safe against truncation until we
8952  * unlock the page.
8953  */
8954 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
8955 {
8956 	struct page *page = vmf->page;
8957 	struct inode *inode = file_inode(vma->vm_file);
8958 	struct btrfs_root *root = BTRFS_I(inode)->root;
8959 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8960 	struct btrfs_ordered_extent *ordered;
8961 	struct extent_state *cached_state = NULL;
8962 	char *kaddr;
8963 	unsigned long zero_start;
8964 	loff_t size;
8965 	int ret;
8966 	int reserved = 0;
8967 	u64 reserved_space;
8968 	u64 page_start;
8969 	u64 page_end;
8970 	u64 end;
8971 
8972 	reserved_space = PAGE_SIZE;
8973 
8974 	sb_start_pagefault(inode->i_sb);
8975 	page_start = page_offset(page);
8976 	page_end = page_start + PAGE_SIZE - 1;
8977 	end = page_end;
8978 
8979 	/*
8980 	 * Reserving delalloc space after obtaining the page lock can lead to
8981 	 * deadlock. For example, if a dirty page is locked by this function
8982 	 * and the call to btrfs_delalloc_reserve_space() ends up triggering
8983 	 * dirty page write out, then the btrfs_writepage() function could
8984 	 * end up waiting indefinitely to get a lock on the page currently
8985 	 * being processed by btrfs_page_mkwrite() function.
8986 	 */
8987 	ret = btrfs_delalloc_reserve_space(inode, page_start,
8988 					   reserved_space);
8989 	if (!ret) {
8990 		ret = file_update_time(vma->vm_file);
8991 		reserved = 1;
8992 	}
8993 	if (ret) {
8994 		if (ret == -ENOMEM)
8995 			ret = VM_FAULT_OOM;
8996 		else /* -ENOSPC, -EIO, etc */
8997 			ret = VM_FAULT_SIGBUS;
8998 		if (reserved)
8999 			goto out;
9000 		goto out_noreserve;
9001 	}
9002 
9003 	ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
9004 again:
9005 	lock_page(page);
9006 	size = i_size_read(inode);
9007 
9008 	if ((page->mapping != inode->i_mapping) ||
9009 	    (page_start >= size)) {
9010 		/* page got truncated out from underneath us */
9011 		goto out_unlock;
9012 	}
9013 	wait_on_page_writeback(page);
9014 
9015 	lock_extent_bits(io_tree, page_start, page_end, &cached_state);
9016 	set_page_extent_mapped(page);
9017 
9018 	/*
9019 	 * we can't set the delalloc bits if there are pending ordered
9020 	 * extents.  Drop our locks and wait for them to finish
9021 	 */
9022 	ordered = btrfs_lookup_ordered_range(inode, page_start, page_end);
9023 	if (ordered) {
9024 		unlock_extent_cached(io_tree, page_start, page_end,
9025 				     &cached_state, GFP_NOFS);
9026 		unlock_page(page);
9027 		btrfs_start_ordered_extent(inode, ordered, 1);
9028 		btrfs_put_ordered_extent(ordered);
9029 		goto again;
9030 	}
9031 
9032 	if (page->index == ((size - 1) >> PAGE_SHIFT)) {
9033 		reserved_space = round_up(size - page_start, root->sectorsize);
9034 		if (reserved_space < PAGE_SIZE) {
9035 			end = page_start + reserved_space - 1;
9036 			spin_lock(&BTRFS_I(inode)->lock);
9037 			BTRFS_I(inode)->outstanding_extents++;
9038 			spin_unlock(&BTRFS_I(inode)->lock);
9039 			btrfs_delalloc_release_space(inode, page_start,
9040 						PAGE_SIZE - reserved_space);
9041 		}
9042 	}
9043 
9044 	/*
9045 	 * XXX - page_mkwrite gets called every time the page is dirtied, even
9046 	 * if it was already dirty, so for space accounting reasons we need to
9047 	 * clear any delalloc bits for the range we are fixing to save.  There
9048 	 * is probably a better way to do this, but for now keep consistent with
9049 	 * prepare_pages in the normal write path.
9050 	 */
9051 	clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end,
9052 			  EXTENT_DIRTY | EXTENT_DELALLOC |
9053 			  EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
9054 			  0, 0, &cached_state, GFP_NOFS);
9055 
9056 	ret = btrfs_set_extent_delalloc(inode, page_start, end,
9057 					&cached_state);
9058 	if (ret) {
9059 		unlock_extent_cached(io_tree, page_start, page_end,
9060 				     &cached_state, GFP_NOFS);
9061 		ret = VM_FAULT_SIGBUS;
9062 		goto out_unlock;
9063 	}
9064 	ret = 0;
9065 
9066 	/* page is wholly or partially inside EOF */
9067 	if (page_start + PAGE_SIZE > size)
9068 		zero_start = size & ~PAGE_MASK;
9069 	else
9070 		zero_start = PAGE_SIZE;
9071 
9072 	if (zero_start != PAGE_SIZE) {
9073 		kaddr = kmap(page);
9074 		memset(kaddr + zero_start, 0, PAGE_SIZE - zero_start);
9075 		flush_dcache_page(page);
9076 		kunmap(page);
9077 	}
9078 	ClearPageChecked(page);
9079 	set_page_dirty(page);
9080 	SetPageUptodate(page);
9081 
9082 	BTRFS_I(inode)->last_trans = root->fs_info->generation;
9083 	BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
9084 	BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
9085 
9086 	unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
9087 
9088 out_unlock:
9089 	if (!ret) {
9090 		sb_end_pagefault(inode->i_sb);
9091 		return VM_FAULT_LOCKED;
9092 	}
9093 	unlock_page(page);
9094 out:
9095 	btrfs_delalloc_release_space(inode, page_start, reserved_space);
9096 out_noreserve:
9097 	sb_end_pagefault(inode->i_sb);
9098 	return ret;
9099 }
9100 
9101 static int btrfs_truncate(struct inode *inode)
9102 {
9103 	struct btrfs_root *root = BTRFS_I(inode)->root;
9104 	struct btrfs_block_rsv *rsv;
9105 	int ret = 0;
9106 	int err = 0;
9107 	struct btrfs_trans_handle *trans;
9108 	u64 mask = root->sectorsize - 1;
9109 	u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
9110 
9111 	ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
9112 				       (u64)-1);
9113 	if (ret)
9114 		return ret;
9115 
9116 	/*
9117 	 * Yes ladies and gentlemen, this is indeed ugly.  The fact is we have
9118 	 * 3 things going on here
9119 	 *
9120 	 * 1) We need to reserve space for our orphan item and the space to
9121 	 * delete our orphan item.  Lord knows we don't want to have a dangling
9122 	 * orphan item because we didn't reserve space to remove it.
9123 	 *
9124 	 * 2) We need to reserve space to update our inode.
9125 	 *
9126 	 * 3) We need to have something to cache all the space that is going to
9127 	 * be free'd up by the truncate operation, but also have some slack
9128 	 * space reserved in case it uses space during the truncate (thank you
9129 	 * very much snapshotting).
9130 	 *
9131 	 * And we need these to all be separate.  The fact is we can use a lot of
9132 	 * space doing the truncate, and we have no earthly idea how much space
9133 	 * we will use, so we need the truncate reservation to be separate so it
9134 	 * doesn't end up using space reserved for updating the inode or
9135 	 * removing the orphan item.  We also need to be able to stop the
9136 	 * transaction and start a new one, which means we need to be able to
9137 	 * update the inode several times, and we have no idea of knowing how
9138 	 * many times that will be, so we can't just reserve 1 item for the
9139 	 * entirety of the operation, so that has to be done separately as well.
9140 	 * Then there is the orphan item, which does indeed need to be held on
9141 	 * to for the whole operation, and we need nobody to touch this reserved
9142 	 * space except the orphan code.
9143 	 *
9144 	 * So that leaves us with
9145 	 *
9146 	 * 1) root->orphan_block_rsv - for the orphan deletion.
9147 	 * 2) rsv - for the truncate reservation, which we will steal from the
9148 	 * transaction reservation.
9149 	 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
9150 	 * updating the inode.
9151 	 */
9152 	rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
9153 	if (!rsv)
9154 		return -ENOMEM;
9155 	rsv->size = min_size;
9156 	rsv->failfast = 1;
9157 
9158 	/*
9159 	 * 1 for the truncate slack space
9160 	 * 1 for updating the inode.
9161 	 */
9162 	trans = btrfs_start_transaction(root, 2);
9163 	if (IS_ERR(trans)) {
9164 		err = PTR_ERR(trans);
9165 		goto out;
9166 	}
9167 
9168 	/* Migrate the slack space for the truncate to our reserve */
9169 	ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
9170 				      min_size, 0);
9171 	BUG_ON(ret);
9172 
9173 	/*
9174 	 * So if we truncate and then write and fsync we normally would just
9175 	 * write the extents that changed, which is a problem if we need to
9176 	 * first truncate that entire inode.  So set this flag so we write out
9177 	 * all of the extents in the inode to the sync log so we're completely
9178 	 * safe.
9179 	 */
9180 	set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
9181 	trans->block_rsv = rsv;
9182 
9183 	while (1) {
9184 		ret = btrfs_truncate_inode_items(trans, root, inode,
9185 						 inode->i_size,
9186 						 BTRFS_EXTENT_DATA_KEY);
9187 		if (ret != -ENOSPC && ret != -EAGAIN) {
9188 			err = ret;
9189 			break;
9190 		}
9191 
9192 		trans->block_rsv = &root->fs_info->trans_block_rsv;
9193 		ret = btrfs_update_inode(trans, root, inode);
9194 		if (ret) {
9195 			err = ret;
9196 			break;
9197 		}
9198 
9199 		btrfs_end_transaction(trans, root);
9200 		btrfs_btree_balance_dirty(root);
9201 
9202 		trans = btrfs_start_transaction(root, 2);
9203 		if (IS_ERR(trans)) {
9204 			ret = err = PTR_ERR(trans);
9205 			trans = NULL;
9206 			break;
9207 		}
9208 
9209 		ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
9210 					      rsv, min_size, 0);
9211 		BUG_ON(ret);	/* shouldn't happen */
9212 		trans->block_rsv = rsv;
9213 	}
9214 
9215 	if (ret == 0 && inode->i_nlink > 0) {
9216 		trans->block_rsv = root->orphan_block_rsv;
9217 		ret = btrfs_orphan_del(trans, inode);
9218 		if (ret)
9219 			err = ret;
9220 	}
9221 
9222 	if (trans) {
9223 		trans->block_rsv = &root->fs_info->trans_block_rsv;
9224 		ret = btrfs_update_inode(trans, root, inode);
9225 		if (ret && !err)
9226 			err = ret;
9227 
9228 		ret = btrfs_end_transaction(trans, root);
9229 		btrfs_btree_balance_dirty(root);
9230 	}
9231 out:
9232 	btrfs_free_block_rsv(root, rsv);
9233 
9234 	if (ret && !err)
9235 		err = ret;
9236 
9237 	return err;
9238 }
9239 
9240 /*
9241  * create a new subvolume directory/inode (helper for the ioctl).
9242  */
9243 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
9244 			     struct btrfs_root *new_root,
9245 			     struct btrfs_root *parent_root,
9246 			     u64 new_dirid)
9247 {
9248 	struct inode *inode;
9249 	int err;
9250 	u64 index = 0;
9251 
9252 	inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
9253 				new_dirid, new_dirid,
9254 				S_IFDIR | (~current_umask() & S_IRWXUGO),
9255 				&index);
9256 	if (IS_ERR(inode))
9257 		return PTR_ERR(inode);
9258 	inode->i_op = &btrfs_dir_inode_operations;
9259 	inode->i_fop = &btrfs_dir_file_operations;
9260 
9261 	set_nlink(inode, 1);
9262 	btrfs_i_size_write(inode, 0);
9263 	unlock_new_inode(inode);
9264 
9265 	err = btrfs_subvol_inherit_props(trans, new_root, parent_root);
9266 	if (err)
9267 		btrfs_err(new_root->fs_info,
9268 			  "error inheriting subvolume %llu properties: %d",
9269 			  new_root->root_key.objectid, err);
9270 
9271 	err = btrfs_update_inode(trans, new_root, inode);
9272 
9273 	iput(inode);
9274 	return err;
9275 }
9276 
9277 struct inode *btrfs_alloc_inode(struct super_block *sb)
9278 {
9279 	struct btrfs_inode *ei;
9280 	struct inode *inode;
9281 
9282 	ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
9283 	if (!ei)
9284 		return NULL;
9285 
9286 	ei->root = NULL;
9287 	ei->generation = 0;
9288 	ei->last_trans = 0;
9289 	ei->last_sub_trans = 0;
9290 	ei->logged_trans = 0;
9291 	ei->delalloc_bytes = 0;
9292 	ei->defrag_bytes = 0;
9293 	ei->disk_i_size = 0;
9294 	ei->flags = 0;
9295 	ei->csum_bytes = 0;
9296 	ei->index_cnt = (u64)-1;
9297 	ei->dir_index = 0;
9298 	ei->last_unlink_trans = 0;
9299 	ei->last_log_commit = 0;
9300 	ei->delayed_iput_count = 0;
9301 
9302 	spin_lock_init(&ei->lock);
9303 	ei->outstanding_extents = 0;
9304 	ei->reserved_extents = 0;
9305 
9306 	ei->runtime_flags = 0;
9307 	ei->force_compress = BTRFS_COMPRESS_NONE;
9308 
9309 	ei->delayed_node = NULL;
9310 
9311 	ei->i_otime.tv_sec = 0;
9312 	ei->i_otime.tv_nsec = 0;
9313 
9314 	inode = &ei->vfs_inode;
9315 	extent_map_tree_init(&ei->extent_tree);
9316 	extent_io_tree_init(&ei->io_tree, &inode->i_data);
9317 	extent_io_tree_init(&ei->io_failure_tree, &inode->i_data);
9318 	ei->io_tree.track_uptodate = 1;
9319 	ei->io_failure_tree.track_uptodate = 1;
9320 	atomic_set(&ei->sync_writers, 0);
9321 	mutex_init(&ei->log_mutex);
9322 	mutex_init(&ei->delalloc_mutex);
9323 	btrfs_ordered_inode_tree_init(&ei->ordered_tree);
9324 	INIT_LIST_HEAD(&ei->delalloc_inodes);
9325 	INIT_LIST_HEAD(&ei->delayed_iput);
9326 	RB_CLEAR_NODE(&ei->rb_node);
9327 	init_rwsem(&ei->dio_sem);
9328 
9329 	return inode;
9330 }
9331 
9332 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
9333 void btrfs_test_destroy_inode(struct inode *inode)
9334 {
9335 	btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
9336 	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9337 }
9338 #endif
9339 
9340 static void btrfs_i_callback(struct rcu_head *head)
9341 {
9342 	struct inode *inode = container_of(head, struct inode, i_rcu);
9343 	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9344 }
9345 
9346 void btrfs_destroy_inode(struct inode *inode)
9347 {
9348 	struct btrfs_ordered_extent *ordered;
9349 	struct btrfs_root *root = BTRFS_I(inode)->root;
9350 
9351 	WARN_ON(!hlist_empty(&inode->i_dentry));
9352 	WARN_ON(inode->i_data.nrpages);
9353 	WARN_ON(BTRFS_I(inode)->outstanding_extents);
9354 	WARN_ON(BTRFS_I(inode)->reserved_extents);
9355 	WARN_ON(BTRFS_I(inode)->delalloc_bytes);
9356 	WARN_ON(BTRFS_I(inode)->csum_bytes);
9357 	WARN_ON(BTRFS_I(inode)->defrag_bytes);
9358 
9359 	/*
9360 	 * This can happen where we create an inode, but somebody else also
9361 	 * created the same inode and we need to destroy the one we already
9362 	 * created.
9363 	 */
9364 	if (!root)
9365 		goto free;
9366 
9367 	if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
9368 		     &BTRFS_I(inode)->runtime_flags)) {
9369 		btrfs_info(root->fs_info, "inode %llu still on the orphan list",
9370 			btrfs_ino(inode));
9371 		atomic_dec(&root->orphan_inodes);
9372 	}
9373 
9374 	while (1) {
9375 		ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
9376 		if (!ordered)
9377 			break;
9378 		else {
9379 			btrfs_err(root->fs_info, "found ordered extent %llu %llu on inode cleanup",
9380 				ordered->file_offset, ordered->len);
9381 			btrfs_remove_ordered_extent(inode, ordered);
9382 			btrfs_put_ordered_extent(ordered);
9383 			btrfs_put_ordered_extent(ordered);
9384 		}
9385 	}
9386 	btrfs_qgroup_check_reserved_leak(inode);
9387 	inode_tree_del(inode);
9388 	btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
9389 free:
9390 	call_rcu(&inode->i_rcu, btrfs_i_callback);
9391 }
9392 
9393 int btrfs_drop_inode(struct inode *inode)
9394 {
9395 	struct btrfs_root *root = BTRFS_I(inode)->root;
9396 
9397 	if (root == NULL)
9398 		return 1;
9399 
9400 	/* the snap/subvol tree is on deleting */
9401 	if (btrfs_root_refs(&root->root_item) == 0)
9402 		return 1;
9403 	else
9404 		return generic_drop_inode(inode);
9405 }
9406 
9407 static void init_once(void *foo)
9408 {
9409 	struct btrfs_inode *ei = (struct btrfs_inode *) foo;
9410 
9411 	inode_init_once(&ei->vfs_inode);
9412 }
9413 
9414 void btrfs_destroy_cachep(void)
9415 {
9416 	/*
9417 	 * Make sure all delayed rcu free inodes are flushed before we
9418 	 * destroy cache.
9419 	 */
9420 	rcu_barrier();
9421 	kmem_cache_destroy(btrfs_inode_cachep);
9422 	kmem_cache_destroy(btrfs_trans_handle_cachep);
9423 	kmem_cache_destroy(btrfs_transaction_cachep);
9424 	kmem_cache_destroy(btrfs_path_cachep);
9425 	kmem_cache_destroy(btrfs_free_space_cachep);
9426 }
9427 
9428 int btrfs_init_cachep(void)
9429 {
9430 	btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
9431 			sizeof(struct btrfs_inode), 0,
9432 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT,
9433 			init_once);
9434 	if (!btrfs_inode_cachep)
9435 		goto fail;
9436 
9437 	btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
9438 			sizeof(struct btrfs_trans_handle), 0,
9439 			SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL);
9440 	if (!btrfs_trans_handle_cachep)
9441 		goto fail;
9442 
9443 	btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction",
9444 			sizeof(struct btrfs_transaction), 0,
9445 			SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL);
9446 	if (!btrfs_transaction_cachep)
9447 		goto fail;
9448 
9449 	btrfs_path_cachep = kmem_cache_create("btrfs_path",
9450 			sizeof(struct btrfs_path), 0,
9451 			SLAB_MEM_SPREAD, NULL);
9452 	if (!btrfs_path_cachep)
9453 		goto fail;
9454 
9455 	btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
9456 			sizeof(struct btrfs_free_space), 0,
9457 			SLAB_MEM_SPREAD, NULL);
9458 	if (!btrfs_free_space_cachep)
9459 		goto fail;
9460 
9461 	return 0;
9462 fail:
9463 	btrfs_destroy_cachep();
9464 	return -ENOMEM;
9465 }
9466 
9467 static int btrfs_getattr(struct vfsmount *mnt,
9468 			 struct dentry *dentry, struct kstat *stat)
9469 {
9470 	u64 delalloc_bytes;
9471 	struct inode *inode = d_inode(dentry);
9472 	u32 blocksize = inode->i_sb->s_blocksize;
9473 
9474 	generic_fillattr(inode, stat);
9475 	stat->dev = BTRFS_I(inode)->root->anon_dev;
9476 
9477 	spin_lock(&BTRFS_I(inode)->lock);
9478 	delalloc_bytes = BTRFS_I(inode)->delalloc_bytes;
9479 	spin_unlock(&BTRFS_I(inode)->lock);
9480 	stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
9481 			ALIGN(delalloc_bytes, blocksize)) >> 9;
9482 	return 0;
9483 }
9484 
9485 static int btrfs_rename_exchange(struct inode *old_dir,
9486 			      struct dentry *old_dentry,
9487 			      struct inode *new_dir,
9488 			      struct dentry *new_dentry)
9489 {
9490 	struct btrfs_trans_handle *trans;
9491 	struct btrfs_root *root = BTRFS_I(old_dir)->root;
9492 	struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9493 	struct inode *new_inode = new_dentry->d_inode;
9494 	struct inode *old_inode = old_dentry->d_inode;
9495 	struct timespec ctime = CURRENT_TIME;
9496 	struct dentry *parent;
9497 	u64 old_ino = btrfs_ino(old_inode);
9498 	u64 new_ino = btrfs_ino(new_inode);
9499 	u64 old_idx = 0;
9500 	u64 new_idx = 0;
9501 	u64 root_objectid;
9502 	int ret;
9503 	bool root_log_pinned = false;
9504 	bool dest_log_pinned = false;
9505 
9506 	/* we only allow rename subvolume link between subvolumes */
9507 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9508 		return -EXDEV;
9509 
9510 	/* close the race window with snapshot create/destroy ioctl */
9511 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9512 		down_read(&root->fs_info->subvol_sem);
9513 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
9514 		down_read(&dest->fs_info->subvol_sem);
9515 
9516 	/*
9517 	 * We want to reserve the absolute worst case amount of items.  So if
9518 	 * both inodes are subvols and we need to unlink them then that would
9519 	 * require 4 item modifications, but if they are both normal inodes it
9520 	 * would require 5 item modifications, so we'll assume their normal
9521 	 * inodes.  So 5 * 2 is 10, plus 2 for the new links, so 12 total items
9522 	 * should cover the worst case number of items we'll modify.
9523 	 */
9524 	trans = btrfs_start_transaction(root, 12);
9525 	if (IS_ERR(trans)) {
9526 		ret = PTR_ERR(trans);
9527 		goto out_notrans;
9528 	}
9529 
9530 	/*
9531 	 * We need to find a free sequence number both in the source and
9532 	 * in the destination directory for the exchange.
9533 	 */
9534 	ret = btrfs_set_inode_index(new_dir, &old_idx);
9535 	if (ret)
9536 		goto out_fail;
9537 	ret = btrfs_set_inode_index(old_dir, &new_idx);
9538 	if (ret)
9539 		goto out_fail;
9540 
9541 	BTRFS_I(old_inode)->dir_index = 0ULL;
9542 	BTRFS_I(new_inode)->dir_index = 0ULL;
9543 
9544 	/* Reference for the source. */
9545 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9546 		/* force full log commit if subvolume involved. */
9547 		btrfs_set_log_full_commit(root->fs_info, trans);
9548 	} else {
9549 		btrfs_pin_log_trans(root);
9550 		root_log_pinned = true;
9551 		ret = btrfs_insert_inode_ref(trans, dest,
9552 					     new_dentry->d_name.name,
9553 					     new_dentry->d_name.len,
9554 					     old_ino,
9555 					     btrfs_ino(new_dir), old_idx);
9556 		if (ret)
9557 			goto out_fail;
9558 	}
9559 
9560 	/* And now for the dest. */
9561 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9562 		/* force full log commit if subvolume involved. */
9563 		btrfs_set_log_full_commit(dest->fs_info, trans);
9564 	} else {
9565 		btrfs_pin_log_trans(dest);
9566 		dest_log_pinned = true;
9567 		ret = btrfs_insert_inode_ref(trans, root,
9568 					     old_dentry->d_name.name,
9569 					     old_dentry->d_name.len,
9570 					     new_ino,
9571 					     btrfs_ino(old_dir), new_idx);
9572 		if (ret)
9573 			goto out_fail;
9574 	}
9575 
9576 	/* Update inode version and ctime/mtime. */
9577 	inode_inc_iversion(old_dir);
9578 	inode_inc_iversion(new_dir);
9579 	inode_inc_iversion(old_inode);
9580 	inode_inc_iversion(new_inode);
9581 	old_dir->i_ctime = old_dir->i_mtime = ctime;
9582 	new_dir->i_ctime = new_dir->i_mtime = ctime;
9583 	old_inode->i_ctime = ctime;
9584 	new_inode->i_ctime = ctime;
9585 
9586 	if (old_dentry->d_parent != new_dentry->d_parent) {
9587 		btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
9588 		btrfs_record_unlink_dir(trans, new_dir, new_inode, 1);
9589 	}
9590 
9591 	/* src is a subvolume */
9592 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9593 		root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
9594 		ret = btrfs_unlink_subvol(trans, root, old_dir,
9595 					  root_objectid,
9596 					  old_dentry->d_name.name,
9597 					  old_dentry->d_name.len);
9598 	} else { /* src is an inode */
9599 		ret = __btrfs_unlink_inode(trans, root, old_dir,
9600 					   old_dentry->d_inode,
9601 					   old_dentry->d_name.name,
9602 					   old_dentry->d_name.len);
9603 		if (!ret)
9604 			ret = btrfs_update_inode(trans, root, old_inode);
9605 	}
9606 	if (ret) {
9607 		btrfs_abort_transaction(trans, ret);
9608 		goto out_fail;
9609 	}
9610 
9611 	/* dest is a subvolume */
9612 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9613 		root_objectid = BTRFS_I(new_inode)->root->root_key.objectid;
9614 		ret = btrfs_unlink_subvol(trans, dest, new_dir,
9615 					  root_objectid,
9616 					  new_dentry->d_name.name,
9617 					  new_dentry->d_name.len);
9618 	} else { /* dest is an inode */
9619 		ret = __btrfs_unlink_inode(trans, dest, new_dir,
9620 					   new_dentry->d_inode,
9621 					   new_dentry->d_name.name,
9622 					   new_dentry->d_name.len);
9623 		if (!ret)
9624 			ret = btrfs_update_inode(trans, dest, new_inode);
9625 	}
9626 	if (ret) {
9627 		btrfs_abort_transaction(trans, ret);
9628 		goto out_fail;
9629 	}
9630 
9631 	ret = btrfs_add_link(trans, new_dir, old_inode,
9632 			     new_dentry->d_name.name,
9633 			     new_dentry->d_name.len, 0, old_idx);
9634 	if (ret) {
9635 		btrfs_abort_transaction(trans, ret);
9636 		goto out_fail;
9637 	}
9638 
9639 	ret = btrfs_add_link(trans, old_dir, new_inode,
9640 			     old_dentry->d_name.name,
9641 			     old_dentry->d_name.len, 0, new_idx);
9642 	if (ret) {
9643 		btrfs_abort_transaction(trans, ret);
9644 		goto out_fail;
9645 	}
9646 
9647 	if (old_inode->i_nlink == 1)
9648 		BTRFS_I(old_inode)->dir_index = old_idx;
9649 	if (new_inode->i_nlink == 1)
9650 		BTRFS_I(new_inode)->dir_index = new_idx;
9651 
9652 	if (root_log_pinned) {
9653 		parent = new_dentry->d_parent;
9654 		btrfs_log_new_name(trans, old_inode, old_dir, parent);
9655 		btrfs_end_log_trans(root);
9656 		root_log_pinned = false;
9657 	}
9658 	if (dest_log_pinned) {
9659 		parent = old_dentry->d_parent;
9660 		btrfs_log_new_name(trans, new_inode, new_dir, parent);
9661 		btrfs_end_log_trans(dest);
9662 		dest_log_pinned = false;
9663 	}
9664 out_fail:
9665 	/*
9666 	 * If we have pinned a log and an error happened, we unpin tasks
9667 	 * trying to sync the log and force them to fallback to a transaction
9668 	 * commit if the log currently contains any of the inodes involved in
9669 	 * this rename operation (to ensure we do not persist a log with an
9670 	 * inconsistent state for any of these inodes or leading to any
9671 	 * inconsistencies when replayed). If the transaction was aborted, the
9672 	 * abortion reason is propagated to userspace when attempting to commit
9673 	 * the transaction. If the log does not contain any of these inodes, we
9674 	 * allow the tasks to sync it.
9675 	 */
9676 	if (ret && (root_log_pinned || dest_log_pinned)) {
9677 		if (btrfs_inode_in_log(old_dir, root->fs_info->generation) ||
9678 		    btrfs_inode_in_log(new_dir, root->fs_info->generation) ||
9679 		    btrfs_inode_in_log(old_inode, root->fs_info->generation) ||
9680 		    (new_inode &&
9681 		     btrfs_inode_in_log(new_inode, root->fs_info->generation)))
9682 		    btrfs_set_log_full_commit(root->fs_info, trans);
9683 
9684 		if (root_log_pinned) {
9685 			btrfs_end_log_trans(root);
9686 			root_log_pinned = false;
9687 		}
9688 		if (dest_log_pinned) {
9689 			btrfs_end_log_trans(dest);
9690 			dest_log_pinned = false;
9691 		}
9692 	}
9693 	ret = btrfs_end_transaction(trans, root);
9694 out_notrans:
9695 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
9696 		up_read(&dest->fs_info->subvol_sem);
9697 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9698 		up_read(&root->fs_info->subvol_sem);
9699 
9700 	return ret;
9701 }
9702 
9703 static int btrfs_whiteout_for_rename(struct btrfs_trans_handle *trans,
9704 				     struct btrfs_root *root,
9705 				     struct inode *dir,
9706 				     struct dentry *dentry)
9707 {
9708 	int ret;
9709 	struct inode *inode;
9710 	u64 objectid;
9711 	u64 index;
9712 
9713 	ret = btrfs_find_free_ino(root, &objectid);
9714 	if (ret)
9715 		return ret;
9716 
9717 	inode = btrfs_new_inode(trans, root, dir,
9718 				dentry->d_name.name,
9719 				dentry->d_name.len,
9720 				btrfs_ino(dir),
9721 				objectid,
9722 				S_IFCHR | WHITEOUT_MODE,
9723 				&index);
9724 
9725 	if (IS_ERR(inode)) {
9726 		ret = PTR_ERR(inode);
9727 		return ret;
9728 	}
9729 
9730 	inode->i_op = &btrfs_special_inode_operations;
9731 	init_special_inode(inode, inode->i_mode,
9732 		WHITEOUT_DEV);
9733 
9734 	ret = btrfs_init_inode_security(trans, inode, dir,
9735 				&dentry->d_name);
9736 	if (ret)
9737 		goto out;
9738 
9739 	ret = btrfs_add_nondir(trans, dir, dentry,
9740 				inode, 0, index);
9741 	if (ret)
9742 		goto out;
9743 
9744 	ret = btrfs_update_inode(trans, root, inode);
9745 out:
9746 	unlock_new_inode(inode);
9747 	if (ret)
9748 		inode_dec_link_count(inode);
9749 	iput(inode);
9750 
9751 	return ret;
9752 }
9753 
9754 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
9755 			   struct inode *new_dir, struct dentry *new_dentry,
9756 			   unsigned int flags)
9757 {
9758 	struct btrfs_trans_handle *trans;
9759 	unsigned int trans_num_items;
9760 	struct btrfs_root *root = BTRFS_I(old_dir)->root;
9761 	struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9762 	struct inode *new_inode = d_inode(new_dentry);
9763 	struct inode *old_inode = d_inode(old_dentry);
9764 	u64 index = 0;
9765 	u64 root_objectid;
9766 	int ret;
9767 	u64 old_ino = btrfs_ino(old_inode);
9768 	bool log_pinned = false;
9769 
9770 	if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
9771 		return -EPERM;
9772 
9773 	/* we only allow rename subvolume link between subvolumes */
9774 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9775 		return -EXDEV;
9776 
9777 	if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
9778 	    (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID))
9779 		return -ENOTEMPTY;
9780 
9781 	if (S_ISDIR(old_inode->i_mode) && new_inode &&
9782 	    new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
9783 		return -ENOTEMPTY;
9784 
9785 
9786 	/* check for collisions, even if the  name isn't there */
9787 	ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
9788 			     new_dentry->d_name.name,
9789 			     new_dentry->d_name.len);
9790 
9791 	if (ret) {
9792 		if (ret == -EEXIST) {
9793 			/* we shouldn't get
9794 			 * eexist without a new_inode */
9795 			if (WARN_ON(!new_inode)) {
9796 				return ret;
9797 			}
9798 		} else {
9799 			/* maybe -EOVERFLOW */
9800 			return ret;
9801 		}
9802 	}
9803 	ret = 0;
9804 
9805 	/*
9806 	 * we're using rename to replace one file with another.  Start IO on it
9807 	 * now so  we don't add too much work to the end of the transaction
9808 	 */
9809 	if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
9810 		filemap_flush(old_inode->i_mapping);
9811 
9812 	/* close the racy window with snapshot create/destroy ioctl */
9813 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9814 		down_read(&root->fs_info->subvol_sem);
9815 	/*
9816 	 * We want to reserve the absolute worst case amount of items.  So if
9817 	 * both inodes are subvols and we need to unlink them then that would
9818 	 * require 4 item modifications, but if they are both normal inodes it
9819 	 * would require 5 item modifications, so we'll assume they are normal
9820 	 * inodes.  So 5 * 2 is 10, plus 1 for the new link, so 11 total items
9821 	 * should cover the worst case number of items we'll modify.
9822 	 * If our rename has the whiteout flag, we need more 5 units for the
9823 	 * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item
9824 	 * when selinux is enabled).
9825 	 */
9826 	trans_num_items = 11;
9827 	if (flags & RENAME_WHITEOUT)
9828 		trans_num_items += 5;
9829 	trans = btrfs_start_transaction(root, trans_num_items);
9830 	if (IS_ERR(trans)) {
9831 		ret = PTR_ERR(trans);
9832 		goto out_notrans;
9833 	}
9834 
9835 	if (dest != root)
9836 		btrfs_record_root_in_trans(trans, dest);
9837 
9838 	ret = btrfs_set_inode_index(new_dir, &index);
9839 	if (ret)
9840 		goto out_fail;
9841 
9842 	BTRFS_I(old_inode)->dir_index = 0ULL;
9843 	if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9844 		/* force full log commit if subvolume involved. */
9845 		btrfs_set_log_full_commit(root->fs_info, trans);
9846 	} else {
9847 		btrfs_pin_log_trans(root);
9848 		log_pinned = true;
9849 		ret = btrfs_insert_inode_ref(trans, dest,
9850 					     new_dentry->d_name.name,
9851 					     new_dentry->d_name.len,
9852 					     old_ino,
9853 					     btrfs_ino(new_dir), index);
9854 		if (ret)
9855 			goto out_fail;
9856 	}
9857 
9858 	inode_inc_iversion(old_dir);
9859 	inode_inc_iversion(new_dir);
9860 	inode_inc_iversion(old_inode);
9861 	old_dir->i_ctime = old_dir->i_mtime =
9862 	new_dir->i_ctime = new_dir->i_mtime =
9863 	old_inode->i_ctime = current_fs_time(old_dir->i_sb);
9864 
9865 	if (old_dentry->d_parent != new_dentry->d_parent)
9866 		btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
9867 
9868 	if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9869 		root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
9870 		ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
9871 					old_dentry->d_name.name,
9872 					old_dentry->d_name.len);
9873 	} else {
9874 		ret = __btrfs_unlink_inode(trans, root, old_dir,
9875 					d_inode(old_dentry),
9876 					old_dentry->d_name.name,
9877 					old_dentry->d_name.len);
9878 		if (!ret)
9879 			ret = btrfs_update_inode(trans, root, old_inode);
9880 	}
9881 	if (ret) {
9882 		btrfs_abort_transaction(trans, ret);
9883 		goto out_fail;
9884 	}
9885 
9886 	if (new_inode) {
9887 		inode_inc_iversion(new_inode);
9888 		new_inode->i_ctime = current_fs_time(new_inode->i_sb);
9889 		if (unlikely(btrfs_ino(new_inode) ==
9890 			     BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
9891 			root_objectid = BTRFS_I(new_inode)->location.objectid;
9892 			ret = btrfs_unlink_subvol(trans, dest, new_dir,
9893 						root_objectid,
9894 						new_dentry->d_name.name,
9895 						new_dentry->d_name.len);
9896 			BUG_ON(new_inode->i_nlink == 0);
9897 		} else {
9898 			ret = btrfs_unlink_inode(trans, dest, new_dir,
9899 						 d_inode(new_dentry),
9900 						 new_dentry->d_name.name,
9901 						 new_dentry->d_name.len);
9902 		}
9903 		if (!ret && new_inode->i_nlink == 0)
9904 			ret = btrfs_orphan_add(trans, d_inode(new_dentry));
9905 		if (ret) {
9906 			btrfs_abort_transaction(trans, ret);
9907 			goto out_fail;
9908 		}
9909 	}
9910 
9911 	ret = btrfs_add_link(trans, new_dir, old_inode,
9912 			     new_dentry->d_name.name,
9913 			     new_dentry->d_name.len, 0, index);
9914 	if (ret) {
9915 		btrfs_abort_transaction(trans, ret);
9916 		goto out_fail;
9917 	}
9918 
9919 	if (old_inode->i_nlink == 1)
9920 		BTRFS_I(old_inode)->dir_index = index;
9921 
9922 	if (log_pinned) {
9923 		struct dentry *parent = new_dentry->d_parent;
9924 
9925 		btrfs_log_new_name(trans, old_inode, old_dir, parent);
9926 		btrfs_end_log_trans(root);
9927 		log_pinned = false;
9928 	}
9929 
9930 	if (flags & RENAME_WHITEOUT) {
9931 		ret = btrfs_whiteout_for_rename(trans, root, old_dir,
9932 						old_dentry);
9933 
9934 		if (ret) {
9935 			btrfs_abort_transaction(trans, ret);
9936 			goto out_fail;
9937 		}
9938 	}
9939 out_fail:
9940 	/*
9941 	 * If we have pinned the log and an error happened, we unpin tasks
9942 	 * trying to sync the log and force them to fallback to a transaction
9943 	 * commit if the log currently contains any of the inodes involved in
9944 	 * this rename operation (to ensure we do not persist a log with an
9945 	 * inconsistent state for any of these inodes or leading to any
9946 	 * inconsistencies when replayed). If the transaction was aborted, the
9947 	 * abortion reason is propagated to userspace when attempting to commit
9948 	 * the transaction. If the log does not contain any of these inodes, we
9949 	 * allow the tasks to sync it.
9950 	 */
9951 	if (ret && log_pinned) {
9952 		if (btrfs_inode_in_log(old_dir, root->fs_info->generation) ||
9953 		    btrfs_inode_in_log(new_dir, root->fs_info->generation) ||
9954 		    btrfs_inode_in_log(old_inode, root->fs_info->generation) ||
9955 		    (new_inode &&
9956 		     btrfs_inode_in_log(new_inode, root->fs_info->generation)))
9957 		    btrfs_set_log_full_commit(root->fs_info, trans);
9958 
9959 		btrfs_end_log_trans(root);
9960 		log_pinned = false;
9961 	}
9962 	btrfs_end_transaction(trans, root);
9963 out_notrans:
9964 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9965 		up_read(&root->fs_info->subvol_sem);
9966 
9967 	return ret;
9968 }
9969 
9970 static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry,
9971 			 struct inode *new_dir, struct dentry *new_dentry,
9972 			 unsigned int flags)
9973 {
9974 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
9975 		return -EINVAL;
9976 
9977 	if (flags & RENAME_EXCHANGE)
9978 		return btrfs_rename_exchange(old_dir, old_dentry, new_dir,
9979 					  new_dentry);
9980 
9981 	return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry, flags);
9982 }
9983 
9984 static void btrfs_run_delalloc_work(struct btrfs_work *work)
9985 {
9986 	struct btrfs_delalloc_work *delalloc_work;
9987 	struct inode *inode;
9988 
9989 	delalloc_work = container_of(work, struct btrfs_delalloc_work,
9990 				     work);
9991 	inode = delalloc_work->inode;
9992 	filemap_flush(inode->i_mapping);
9993 	if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
9994 				&BTRFS_I(inode)->runtime_flags))
9995 		filemap_flush(inode->i_mapping);
9996 
9997 	if (delalloc_work->delay_iput)
9998 		btrfs_add_delayed_iput(inode);
9999 	else
10000 		iput(inode);
10001 	complete(&delalloc_work->completion);
10002 }
10003 
10004 struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode,
10005 						    int delay_iput)
10006 {
10007 	struct btrfs_delalloc_work *work;
10008 
10009 	work = kmalloc(sizeof(*work), GFP_NOFS);
10010 	if (!work)
10011 		return NULL;
10012 
10013 	init_completion(&work->completion);
10014 	INIT_LIST_HEAD(&work->list);
10015 	work->inode = inode;
10016 	work->delay_iput = delay_iput;
10017 	WARN_ON_ONCE(!inode);
10018 	btrfs_init_work(&work->work, btrfs_flush_delalloc_helper,
10019 			btrfs_run_delalloc_work, NULL, NULL);
10020 
10021 	return work;
10022 }
10023 
10024 void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work)
10025 {
10026 	wait_for_completion(&work->completion);
10027 	kfree(work);
10028 }
10029 
10030 /*
10031  * some fairly slow code that needs optimization. This walks the list
10032  * of all the inodes with pending delalloc and forces them to disk.
10033  */
10034 static int __start_delalloc_inodes(struct btrfs_root *root, int delay_iput,
10035 				   int nr)
10036 {
10037 	struct btrfs_inode *binode;
10038 	struct inode *inode;
10039 	struct btrfs_delalloc_work *work, *next;
10040 	struct list_head works;
10041 	struct list_head splice;
10042 	int ret = 0;
10043 
10044 	INIT_LIST_HEAD(&works);
10045 	INIT_LIST_HEAD(&splice);
10046 
10047 	mutex_lock(&root->delalloc_mutex);
10048 	spin_lock(&root->delalloc_lock);
10049 	list_splice_init(&root->delalloc_inodes, &splice);
10050 	while (!list_empty(&splice)) {
10051 		binode = list_entry(splice.next, struct btrfs_inode,
10052 				    delalloc_inodes);
10053 
10054 		list_move_tail(&binode->delalloc_inodes,
10055 			       &root->delalloc_inodes);
10056 		inode = igrab(&binode->vfs_inode);
10057 		if (!inode) {
10058 			cond_resched_lock(&root->delalloc_lock);
10059 			continue;
10060 		}
10061 		spin_unlock(&root->delalloc_lock);
10062 
10063 		work = btrfs_alloc_delalloc_work(inode, delay_iput);
10064 		if (!work) {
10065 			if (delay_iput)
10066 				btrfs_add_delayed_iput(inode);
10067 			else
10068 				iput(inode);
10069 			ret = -ENOMEM;
10070 			goto out;
10071 		}
10072 		list_add_tail(&work->list, &works);
10073 		btrfs_queue_work(root->fs_info->flush_workers,
10074 				 &work->work);
10075 		ret++;
10076 		if (nr != -1 && ret >= nr)
10077 			goto out;
10078 		cond_resched();
10079 		spin_lock(&root->delalloc_lock);
10080 	}
10081 	spin_unlock(&root->delalloc_lock);
10082 
10083 out:
10084 	list_for_each_entry_safe(work, next, &works, list) {
10085 		list_del_init(&work->list);
10086 		btrfs_wait_and_free_delalloc_work(work);
10087 	}
10088 
10089 	if (!list_empty_careful(&splice)) {
10090 		spin_lock(&root->delalloc_lock);
10091 		list_splice_tail(&splice, &root->delalloc_inodes);
10092 		spin_unlock(&root->delalloc_lock);
10093 	}
10094 	mutex_unlock(&root->delalloc_mutex);
10095 	return ret;
10096 }
10097 
10098 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
10099 {
10100 	int ret;
10101 
10102 	if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
10103 		return -EROFS;
10104 
10105 	ret = __start_delalloc_inodes(root, delay_iput, -1);
10106 	if (ret > 0)
10107 		ret = 0;
10108 	/*
10109 	 * the filemap_flush will queue IO into the worker threads, but
10110 	 * we have to make sure the IO is actually started and that
10111 	 * ordered extents get created before we return
10112 	 */
10113 	atomic_inc(&root->fs_info->async_submit_draining);
10114 	while (atomic_read(&root->fs_info->nr_async_submits) ||
10115 	      atomic_read(&root->fs_info->async_delalloc_pages)) {
10116 		wait_event(root->fs_info->async_submit_wait,
10117 		   (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
10118 		    atomic_read(&root->fs_info->async_delalloc_pages) == 0));
10119 	}
10120 	atomic_dec(&root->fs_info->async_submit_draining);
10121 	return ret;
10122 }
10123 
10124 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int delay_iput,
10125 			       int nr)
10126 {
10127 	struct btrfs_root *root;
10128 	struct list_head splice;
10129 	int ret;
10130 
10131 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
10132 		return -EROFS;
10133 
10134 	INIT_LIST_HEAD(&splice);
10135 
10136 	mutex_lock(&fs_info->delalloc_root_mutex);
10137 	spin_lock(&fs_info->delalloc_root_lock);
10138 	list_splice_init(&fs_info->delalloc_roots, &splice);
10139 	while (!list_empty(&splice) && nr) {
10140 		root = list_first_entry(&splice, struct btrfs_root,
10141 					delalloc_root);
10142 		root = btrfs_grab_fs_root(root);
10143 		BUG_ON(!root);
10144 		list_move_tail(&root->delalloc_root,
10145 			       &fs_info->delalloc_roots);
10146 		spin_unlock(&fs_info->delalloc_root_lock);
10147 
10148 		ret = __start_delalloc_inodes(root, delay_iput, nr);
10149 		btrfs_put_fs_root(root);
10150 		if (ret < 0)
10151 			goto out;
10152 
10153 		if (nr != -1) {
10154 			nr -= ret;
10155 			WARN_ON(nr < 0);
10156 		}
10157 		spin_lock(&fs_info->delalloc_root_lock);
10158 	}
10159 	spin_unlock(&fs_info->delalloc_root_lock);
10160 
10161 	ret = 0;
10162 	atomic_inc(&fs_info->async_submit_draining);
10163 	while (atomic_read(&fs_info->nr_async_submits) ||
10164 	      atomic_read(&fs_info->async_delalloc_pages)) {
10165 		wait_event(fs_info->async_submit_wait,
10166 		   (atomic_read(&fs_info->nr_async_submits) == 0 &&
10167 		    atomic_read(&fs_info->async_delalloc_pages) == 0));
10168 	}
10169 	atomic_dec(&fs_info->async_submit_draining);
10170 out:
10171 	if (!list_empty_careful(&splice)) {
10172 		spin_lock(&fs_info->delalloc_root_lock);
10173 		list_splice_tail(&splice, &fs_info->delalloc_roots);
10174 		spin_unlock(&fs_info->delalloc_root_lock);
10175 	}
10176 	mutex_unlock(&fs_info->delalloc_root_mutex);
10177 	return ret;
10178 }
10179 
10180 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
10181 			 const char *symname)
10182 {
10183 	struct btrfs_trans_handle *trans;
10184 	struct btrfs_root *root = BTRFS_I(dir)->root;
10185 	struct btrfs_path *path;
10186 	struct btrfs_key key;
10187 	struct inode *inode = NULL;
10188 	int err;
10189 	int drop_inode = 0;
10190 	u64 objectid;
10191 	u64 index = 0;
10192 	int name_len;
10193 	int datasize;
10194 	unsigned long ptr;
10195 	struct btrfs_file_extent_item *ei;
10196 	struct extent_buffer *leaf;
10197 
10198 	name_len = strlen(symname);
10199 	if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
10200 		return -ENAMETOOLONG;
10201 
10202 	/*
10203 	 * 2 items for inode item and ref
10204 	 * 2 items for dir items
10205 	 * 1 item for updating parent inode item
10206 	 * 1 item for the inline extent item
10207 	 * 1 item for xattr if selinux is on
10208 	 */
10209 	trans = btrfs_start_transaction(root, 7);
10210 	if (IS_ERR(trans))
10211 		return PTR_ERR(trans);
10212 
10213 	err = btrfs_find_free_ino(root, &objectid);
10214 	if (err)
10215 		goto out_unlock;
10216 
10217 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
10218 				dentry->d_name.len, btrfs_ino(dir), objectid,
10219 				S_IFLNK|S_IRWXUGO, &index);
10220 	if (IS_ERR(inode)) {
10221 		err = PTR_ERR(inode);
10222 		goto out_unlock;
10223 	}
10224 
10225 	/*
10226 	* If the active LSM wants to access the inode during
10227 	* d_instantiate it needs these. Smack checks to see
10228 	* if the filesystem supports xattrs by looking at the
10229 	* ops vector.
10230 	*/
10231 	inode->i_fop = &btrfs_file_operations;
10232 	inode->i_op = &btrfs_file_inode_operations;
10233 	inode->i_mapping->a_ops = &btrfs_aops;
10234 	BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10235 
10236 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
10237 	if (err)
10238 		goto out_unlock_inode;
10239 
10240 	path = btrfs_alloc_path();
10241 	if (!path) {
10242 		err = -ENOMEM;
10243 		goto out_unlock_inode;
10244 	}
10245 	key.objectid = btrfs_ino(inode);
10246 	key.offset = 0;
10247 	key.type = BTRFS_EXTENT_DATA_KEY;
10248 	datasize = btrfs_file_extent_calc_inline_size(name_len);
10249 	err = btrfs_insert_empty_item(trans, root, path, &key,
10250 				      datasize);
10251 	if (err) {
10252 		btrfs_free_path(path);
10253 		goto out_unlock_inode;
10254 	}
10255 	leaf = path->nodes[0];
10256 	ei = btrfs_item_ptr(leaf, path->slots[0],
10257 			    struct btrfs_file_extent_item);
10258 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
10259 	btrfs_set_file_extent_type(leaf, ei,
10260 				   BTRFS_FILE_EXTENT_INLINE);
10261 	btrfs_set_file_extent_encryption(leaf, ei, 0);
10262 	btrfs_set_file_extent_compression(leaf, ei, 0);
10263 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
10264 	btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
10265 
10266 	ptr = btrfs_file_extent_inline_start(ei);
10267 	write_extent_buffer(leaf, symname, ptr, name_len);
10268 	btrfs_mark_buffer_dirty(leaf);
10269 	btrfs_free_path(path);
10270 
10271 	inode->i_op = &btrfs_symlink_inode_operations;
10272 	inode_nohighmem(inode);
10273 	inode->i_mapping->a_ops = &btrfs_symlink_aops;
10274 	inode_set_bytes(inode, name_len);
10275 	btrfs_i_size_write(inode, name_len);
10276 	err = btrfs_update_inode(trans, root, inode);
10277 	/*
10278 	 * Last step, add directory indexes for our symlink inode. This is the
10279 	 * last step to avoid extra cleanup of these indexes if an error happens
10280 	 * elsewhere above.
10281 	 */
10282 	if (!err)
10283 		err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
10284 	if (err) {
10285 		drop_inode = 1;
10286 		goto out_unlock_inode;
10287 	}
10288 
10289 	unlock_new_inode(inode);
10290 	d_instantiate(dentry, inode);
10291 
10292 out_unlock:
10293 	btrfs_end_transaction(trans, root);
10294 	if (drop_inode) {
10295 		inode_dec_link_count(inode);
10296 		iput(inode);
10297 	}
10298 	btrfs_btree_balance_dirty(root);
10299 	return err;
10300 
10301 out_unlock_inode:
10302 	drop_inode = 1;
10303 	unlock_new_inode(inode);
10304 	goto out_unlock;
10305 }
10306 
10307 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
10308 				       u64 start, u64 num_bytes, u64 min_size,
10309 				       loff_t actual_len, u64 *alloc_hint,
10310 				       struct btrfs_trans_handle *trans)
10311 {
10312 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
10313 	struct extent_map *em;
10314 	struct btrfs_root *root = BTRFS_I(inode)->root;
10315 	struct btrfs_key ins;
10316 	u64 cur_offset = start;
10317 	u64 i_size;
10318 	u64 cur_bytes;
10319 	u64 last_alloc = (u64)-1;
10320 	int ret = 0;
10321 	bool own_trans = true;
10322 	u64 end = start + num_bytes - 1;
10323 
10324 	if (trans)
10325 		own_trans = false;
10326 	while (num_bytes > 0) {
10327 		if (own_trans) {
10328 			trans = btrfs_start_transaction(root, 3);
10329 			if (IS_ERR(trans)) {
10330 				ret = PTR_ERR(trans);
10331 				break;
10332 			}
10333 		}
10334 
10335 		cur_bytes = min_t(u64, num_bytes, SZ_256M);
10336 		cur_bytes = max(cur_bytes, min_size);
10337 		/*
10338 		 * If we are severely fragmented we could end up with really
10339 		 * small allocations, so if the allocator is returning small
10340 		 * chunks lets make its job easier by only searching for those
10341 		 * sized chunks.
10342 		 */
10343 		cur_bytes = min(cur_bytes, last_alloc);
10344 		ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes,
10345 				min_size, 0, *alloc_hint, &ins, 1, 0);
10346 		if (ret) {
10347 			if (own_trans)
10348 				btrfs_end_transaction(trans, root);
10349 			break;
10350 		}
10351 		btrfs_dec_block_group_reservations(root->fs_info, ins.objectid);
10352 
10353 		last_alloc = ins.offset;
10354 		ret = insert_reserved_file_extent(trans, inode,
10355 						  cur_offset, ins.objectid,
10356 						  ins.offset, ins.offset,
10357 						  ins.offset, 0, 0, 0,
10358 						  BTRFS_FILE_EXTENT_PREALLOC);
10359 		if (ret) {
10360 			btrfs_free_reserved_extent(root, ins.objectid,
10361 						   ins.offset, 0);
10362 			btrfs_abort_transaction(trans, ret);
10363 			if (own_trans)
10364 				btrfs_end_transaction(trans, root);
10365 			break;
10366 		}
10367 
10368 		btrfs_drop_extent_cache(inode, cur_offset,
10369 					cur_offset + ins.offset -1, 0);
10370 
10371 		em = alloc_extent_map();
10372 		if (!em) {
10373 			set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
10374 				&BTRFS_I(inode)->runtime_flags);
10375 			goto next;
10376 		}
10377 
10378 		em->start = cur_offset;
10379 		em->orig_start = cur_offset;
10380 		em->len = ins.offset;
10381 		em->block_start = ins.objectid;
10382 		em->block_len = ins.offset;
10383 		em->orig_block_len = ins.offset;
10384 		em->ram_bytes = ins.offset;
10385 		em->bdev = root->fs_info->fs_devices->latest_bdev;
10386 		set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
10387 		em->generation = trans->transid;
10388 
10389 		while (1) {
10390 			write_lock(&em_tree->lock);
10391 			ret = add_extent_mapping(em_tree, em, 1);
10392 			write_unlock(&em_tree->lock);
10393 			if (ret != -EEXIST)
10394 				break;
10395 			btrfs_drop_extent_cache(inode, cur_offset,
10396 						cur_offset + ins.offset - 1,
10397 						0);
10398 		}
10399 		free_extent_map(em);
10400 next:
10401 		num_bytes -= ins.offset;
10402 		cur_offset += ins.offset;
10403 		*alloc_hint = ins.objectid + ins.offset;
10404 
10405 		inode_inc_iversion(inode);
10406 		inode->i_ctime = current_fs_time(inode->i_sb);
10407 		BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
10408 		if (!(mode & FALLOC_FL_KEEP_SIZE) &&
10409 		    (actual_len > inode->i_size) &&
10410 		    (cur_offset > inode->i_size)) {
10411 			if (cur_offset > actual_len)
10412 				i_size = actual_len;
10413 			else
10414 				i_size = cur_offset;
10415 			i_size_write(inode, i_size);
10416 			btrfs_ordered_update_i_size(inode, i_size, NULL);
10417 		}
10418 
10419 		ret = btrfs_update_inode(trans, root, inode);
10420 
10421 		if (ret) {
10422 			btrfs_abort_transaction(trans, ret);
10423 			if (own_trans)
10424 				btrfs_end_transaction(trans, root);
10425 			break;
10426 		}
10427 
10428 		if (own_trans)
10429 			btrfs_end_transaction(trans, root);
10430 	}
10431 	if (cur_offset < end)
10432 		btrfs_free_reserved_data_space(inode, cur_offset,
10433 			end - cur_offset + 1);
10434 	return ret;
10435 }
10436 
10437 int btrfs_prealloc_file_range(struct inode *inode, int mode,
10438 			      u64 start, u64 num_bytes, u64 min_size,
10439 			      loff_t actual_len, u64 *alloc_hint)
10440 {
10441 	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10442 					   min_size, actual_len, alloc_hint,
10443 					   NULL);
10444 }
10445 
10446 int btrfs_prealloc_file_range_trans(struct inode *inode,
10447 				    struct btrfs_trans_handle *trans, int mode,
10448 				    u64 start, u64 num_bytes, u64 min_size,
10449 				    loff_t actual_len, u64 *alloc_hint)
10450 {
10451 	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10452 					   min_size, actual_len, alloc_hint, trans);
10453 }
10454 
10455 static int btrfs_set_page_dirty(struct page *page)
10456 {
10457 	return __set_page_dirty_nobuffers(page);
10458 }
10459 
10460 static int btrfs_permission(struct inode *inode, int mask)
10461 {
10462 	struct btrfs_root *root = BTRFS_I(inode)->root;
10463 	umode_t mode = inode->i_mode;
10464 
10465 	if (mask & MAY_WRITE &&
10466 	    (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
10467 		if (btrfs_root_readonly(root))
10468 			return -EROFS;
10469 		if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
10470 			return -EACCES;
10471 	}
10472 	return generic_permission(inode, mask);
10473 }
10474 
10475 static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
10476 {
10477 	struct btrfs_trans_handle *trans;
10478 	struct btrfs_root *root = BTRFS_I(dir)->root;
10479 	struct inode *inode = NULL;
10480 	u64 objectid;
10481 	u64 index;
10482 	int ret = 0;
10483 
10484 	/*
10485 	 * 5 units required for adding orphan entry
10486 	 */
10487 	trans = btrfs_start_transaction(root, 5);
10488 	if (IS_ERR(trans))
10489 		return PTR_ERR(trans);
10490 
10491 	ret = btrfs_find_free_ino(root, &objectid);
10492 	if (ret)
10493 		goto out;
10494 
10495 	inode = btrfs_new_inode(trans, root, dir, NULL, 0,
10496 				btrfs_ino(dir), objectid, mode, &index);
10497 	if (IS_ERR(inode)) {
10498 		ret = PTR_ERR(inode);
10499 		inode = NULL;
10500 		goto out;
10501 	}
10502 
10503 	inode->i_fop = &btrfs_file_operations;
10504 	inode->i_op = &btrfs_file_inode_operations;
10505 
10506 	inode->i_mapping->a_ops = &btrfs_aops;
10507 	BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10508 
10509 	ret = btrfs_init_inode_security(trans, inode, dir, NULL);
10510 	if (ret)
10511 		goto out_inode;
10512 
10513 	ret = btrfs_update_inode(trans, root, inode);
10514 	if (ret)
10515 		goto out_inode;
10516 	ret = btrfs_orphan_add(trans, inode);
10517 	if (ret)
10518 		goto out_inode;
10519 
10520 	/*
10521 	 * We set number of links to 0 in btrfs_new_inode(), and here we set
10522 	 * it to 1 because d_tmpfile() will issue a warning if the count is 0,
10523 	 * through:
10524 	 *
10525 	 *    d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
10526 	 */
10527 	set_nlink(inode, 1);
10528 	unlock_new_inode(inode);
10529 	d_tmpfile(dentry, inode);
10530 	mark_inode_dirty(inode);
10531 
10532 out:
10533 	btrfs_end_transaction(trans, root);
10534 	if (ret)
10535 		iput(inode);
10536 	btrfs_balance_delayed_items(root);
10537 	btrfs_btree_balance_dirty(root);
10538 	return ret;
10539 
10540 out_inode:
10541 	unlock_new_inode(inode);
10542 	goto out;
10543 
10544 }
10545 
10546 /* Inspired by filemap_check_errors() */
10547 int btrfs_inode_check_errors(struct inode *inode)
10548 {
10549 	int ret = 0;
10550 
10551 	if (test_bit(AS_ENOSPC, &inode->i_mapping->flags) &&
10552 	    test_and_clear_bit(AS_ENOSPC, &inode->i_mapping->flags))
10553 		ret = -ENOSPC;
10554 	if (test_bit(AS_EIO, &inode->i_mapping->flags) &&
10555 	    test_and_clear_bit(AS_EIO, &inode->i_mapping->flags))
10556 		ret = -EIO;
10557 
10558 	return ret;
10559 }
10560 
10561 static const struct inode_operations btrfs_dir_inode_operations = {
10562 	.getattr	= btrfs_getattr,
10563 	.lookup		= btrfs_lookup,
10564 	.create		= btrfs_create,
10565 	.unlink		= btrfs_unlink,
10566 	.link		= btrfs_link,
10567 	.mkdir		= btrfs_mkdir,
10568 	.rmdir		= btrfs_rmdir,
10569 	.rename2	= btrfs_rename2,
10570 	.symlink	= btrfs_symlink,
10571 	.setattr	= btrfs_setattr,
10572 	.mknod		= btrfs_mknod,
10573 	.setxattr	= generic_setxattr,
10574 	.getxattr	= generic_getxattr,
10575 	.listxattr	= btrfs_listxattr,
10576 	.removexattr	= generic_removexattr,
10577 	.permission	= btrfs_permission,
10578 	.get_acl	= btrfs_get_acl,
10579 	.set_acl	= btrfs_set_acl,
10580 	.update_time	= btrfs_update_time,
10581 	.tmpfile        = btrfs_tmpfile,
10582 };
10583 static const struct inode_operations btrfs_dir_ro_inode_operations = {
10584 	.lookup		= btrfs_lookup,
10585 	.permission	= btrfs_permission,
10586 	.get_acl	= btrfs_get_acl,
10587 	.set_acl	= btrfs_set_acl,
10588 	.update_time	= btrfs_update_time,
10589 };
10590 
10591 static const struct file_operations btrfs_dir_file_operations = {
10592 	.llseek		= generic_file_llseek,
10593 	.read		= generic_read_dir,
10594 	.iterate_shared	= btrfs_real_readdir,
10595 	.unlocked_ioctl	= btrfs_ioctl,
10596 #ifdef CONFIG_COMPAT
10597 	.compat_ioctl	= btrfs_compat_ioctl,
10598 #endif
10599 	.release        = btrfs_release_file,
10600 	.fsync		= btrfs_sync_file,
10601 };
10602 
10603 static const struct extent_io_ops btrfs_extent_io_ops = {
10604 	.fill_delalloc = run_delalloc_range,
10605 	.submit_bio_hook = btrfs_submit_bio_hook,
10606 	.merge_bio_hook = btrfs_merge_bio_hook,
10607 	.readpage_end_io_hook = btrfs_readpage_end_io_hook,
10608 	.writepage_end_io_hook = btrfs_writepage_end_io_hook,
10609 	.writepage_start_hook = btrfs_writepage_start_hook,
10610 	.set_bit_hook = btrfs_set_bit_hook,
10611 	.clear_bit_hook = btrfs_clear_bit_hook,
10612 	.merge_extent_hook = btrfs_merge_extent_hook,
10613 	.split_extent_hook = btrfs_split_extent_hook,
10614 };
10615 
10616 /*
10617  * btrfs doesn't support the bmap operation because swapfiles
10618  * use bmap to make a mapping of extents in the file.  They assume
10619  * these extents won't change over the life of the file and they
10620  * use the bmap result to do IO directly to the drive.
10621  *
10622  * the btrfs bmap call would return logical addresses that aren't
10623  * suitable for IO and they also will change frequently as COW
10624  * operations happen.  So, swapfile + btrfs == corruption.
10625  *
10626  * For now we're avoiding this by dropping bmap.
10627  */
10628 static const struct address_space_operations btrfs_aops = {
10629 	.readpage	= btrfs_readpage,
10630 	.writepage	= btrfs_writepage,
10631 	.writepages	= btrfs_writepages,
10632 	.readpages	= btrfs_readpages,
10633 	.direct_IO	= btrfs_direct_IO,
10634 	.invalidatepage = btrfs_invalidatepage,
10635 	.releasepage	= btrfs_releasepage,
10636 	.set_page_dirty	= btrfs_set_page_dirty,
10637 	.error_remove_page = generic_error_remove_page,
10638 };
10639 
10640 static const struct address_space_operations btrfs_symlink_aops = {
10641 	.readpage	= btrfs_readpage,
10642 	.writepage	= btrfs_writepage,
10643 	.invalidatepage = btrfs_invalidatepage,
10644 	.releasepage	= btrfs_releasepage,
10645 };
10646 
10647 static const struct inode_operations btrfs_file_inode_operations = {
10648 	.getattr	= btrfs_getattr,
10649 	.setattr	= btrfs_setattr,
10650 	.setxattr	= generic_setxattr,
10651 	.getxattr	= generic_getxattr,
10652 	.listxattr      = btrfs_listxattr,
10653 	.removexattr	= generic_removexattr,
10654 	.permission	= btrfs_permission,
10655 	.fiemap		= btrfs_fiemap,
10656 	.get_acl	= btrfs_get_acl,
10657 	.set_acl	= btrfs_set_acl,
10658 	.update_time	= btrfs_update_time,
10659 };
10660 static const struct inode_operations btrfs_special_inode_operations = {
10661 	.getattr	= btrfs_getattr,
10662 	.setattr	= btrfs_setattr,
10663 	.permission	= btrfs_permission,
10664 	.setxattr	= generic_setxattr,
10665 	.getxattr	= generic_getxattr,
10666 	.listxattr	= btrfs_listxattr,
10667 	.removexattr	= generic_removexattr,
10668 	.get_acl	= btrfs_get_acl,
10669 	.set_acl	= btrfs_set_acl,
10670 	.update_time	= btrfs_update_time,
10671 };
10672 static const struct inode_operations btrfs_symlink_inode_operations = {
10673 	.readlink	= generic_readlink,
10674 	.get_link	= page_get_link,
10675 	.getattr	= btrfs_getattr,
10676 	.setattr	= btrfs_setattr,
10677 	.permission	= btrfs_permission,
10678 	.setxattr	= generic_setxattr,
10679 	.getxattr	= generic_getxattr,
10680 	.listxattr	= btrfs_listxattr,
10681 	.removexattr	= generic_removexattr,
10682 	.update_time	= btrfs_update_time,
10683 };
10684 
10685 const struct dentry_operations btrfs_dentry_operations = {
10686 	.d_delete	= btrfs_dentry_delete,
10687 	.d_release	= btrfs_dentry_release,
10688 };
10689