xref: /openbmc/linux/fs/btrfs/inode.c (revision f4284724)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <crypto/hash.h>
7 #include <linux/kernel.h>
8 #include <linux/bio.h>
9 #include <linux/blk-cgroup.h>
10 #include <linux/file.h>
11 #include <linux/fs.h>
12 #include <linux/pagemap.h>
13 #include <linux/highmem.h>
14 #include <linux/time.h>
15 #include <linux/init.h>
16 #include <linux/string.h>
17 #include <linux/backing-dev.h>
18 #include <linux/writeback.h>
19 #include <linux/compat.h>
20 #include <linux/xattr.h>
21 #include <linux/posix_acl.h>
22 #include <linux/falloc.h>
23 #include <linux/slab.h>
24 #include <linux/ratelimit.h>
25 #include <linux/btrfs.h>
26 #include <linux/blkdev.h>
27 #include <linux/posix_acl_xattr.h>
28 #include <linux/uio.h>
29 #include <linux/magic.h>
30 #include <linux/iversion.h>
31 #include <linux/swap.h>
32 #include <linux/migrate.h>
33 #include <linux/sched/mm.h>
34 #include <linux/iomap.h>
35 #include <asm/unaligned.h>
36 #include <linux/fsverity.h>
37 #include "misc.h"
38 #include "ctree.h"
39 #include "disk-io.h"
40 #include "transaction.h"
41 #include "btrfs_inode.h"
42 #include "print-tree.h"
43 #include "ordered-data.h"
44 #include "xattr.h"
45 #include "tree-log.h"
46 #include "volumes.h"
47 #include "compression.h"
48 #include "locking.h"
49 #include "free-space-cache.h"
50 #include "props.h"
51 #include "qgroup.h"
52 #include "delalloc-space.h"
53 #include "block-group.h"
54 #include "space-info.h"
55 #include "zoned.h"
56 #include "subpage.h"
57 #include "inode-item.h"
58 
59 struct btrfs_iget_args {
60 	u64 ino;
61 	struct btrfs_root *root;
62 };
63 
64 struct btrfs_dio_data {
65 	ssize_t submitted;
66 	struct extent_changeset *data_reserved;
67 	bool data_space_reserved;
68 	bool nocow_done;
69 };
70 
71 struct btrfs_dio_private {
72 	struct inode *inode;
73 
74 	/*
75 	 * Since DIO can use anonymous page, we cannot use page_offset() to
76 	 * grab the file offset, thus need a dedicated member for file offset.
77 	 */
78 	u64 file_offset;
79 	/* Used for bio::bi_size */
80 	u32 bytes;
81 
82 	/*
83 	 * References to this structure. There is one reference per in-flight
84 	 * bio plus one while we're still setting up.
85 	 */
86 	refcount_t refs;
87 
88 	/* Array of checksums */
89 	u8 *csums;
90 
91 	/* This must be last */
92 	struct bio bio;
93 };
94 
95 static struct bio_set btrfs_dio_bioset;
96 
97 struct btrfs_rename_ctx {
98 	/* Output field. Stores the index number of the old directory entry. */
99 	u64 index;
100 };
101 
102 static const struct inode_operations btrfs_dir_inode_operations;
103 static const struct inode_operations btrfs_symlink_inode_operations;
104 static const struct inode_operations btrfs_special_inode_operations;
105 static const struct inode_operations btrfs_file_inode_operations;
106 static const struct address_space_operations btrfs_aops;
107 static const struct file_operations btrfs_dir_file_operations;
108 
109 static struct kmem_cache *btrfs_inode_cachep;
110 struct kmem_cache *btrfs_trans_handle_cachep;
111 struct kmem_cache *btrfs_path_cachep;
112 struct kmem_cache *btrfs_free_space_cachep;
113 struct kmem_cache *btrfs_free_space_bitmap_cachep;
114 
115 static int btrfs_setsize(struct inode *inode, struct iattr *attr);
116 static int btrfs_truncate(struct inode *inode, bool skip_writeback);
117 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
118 static noinline int cow_file_range(struct btrfs_inode *inode,
119 				   struct page *locked_page,
120 				   u64 start, u64 end, int *page_started,
121 				   unsigned long *nr_written, int unlock);
122 static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start,
123 				       u64 len, u64 orig_start, u64 block_start,
124 				       u64 block_len, u64 orig_block_len,
125 				       u64 ram_bytes, int compress_type,
126 				       int type);
127 
128 static void __endio_write_update_ordered(struct btrfs_inode *inode,
129 					 const u64 offset, const u64 bytes,
130 					 const bool uptodate);
131 
132 /*
133  * btrfs_inode_lock - lock inode i_rwsem based on arguments passed
134  *
135  * ilock_flags can have the following bit set:
136  *
137  * BTRFS_ILOCK_SHARED - acquire a shared lock on the inode
138  * BTRFS_ILOCK_TRY - try to acquire the lock, if fails on first attempt
139  *		     return -EAGAIN
140  * BTRFS_ILOCK_MMAP - acquire a write lock on the i_mmap_lock
141  */
142 int btrfs_inode_lock(struct inode *inode, unsigned int ilock_flags)
143 {
144 	if (ilock_flags & BTRFS_ILOCK_SHARED) {
145 		if (ilock_flags & BTRFS_ILOCK_TRY) {
146 			if (!inode_trylock_shared(inode))
147 				return -EAGAIN;
148 			else
149 				return 0;
150 		}
151 		inode_lock_shared(inode);
152 	} else {
153 		if (ilock_flags & BTRFS_ILOCK_TRY) {
154 			if (!inode_trylock(inode))
155 				return -EAGAIN;
156 			else
157 				return 0;
158 		}
159 		inode_lock(inode);
160 	}
161 	if (ilock_flags & BTRFS_ILOCK_MMAP)
162 		down_write(&BTRFS_I(inode)->i_mmap_lock);
163 	return 0;
164 }
165 
166 /*
167  * btrfs_inode_unlock - unock inode i_rwsem
168  *
169  * ilock_flags should contain the same bits set as passed to btrfs_inode_lock()
170  * to decide whether the lock acquired is shared or exclusive.
171  */
172 void btrfs_inode_unlock(struct inode *inode, unsigned int ilock_flags)
173 {
174 	if (ilock_flags & BTRFS_ILOCK_MMAP)
175 		up_write(&BTRFS_I(inode)->i_mmap_lock);
176 	if (ilock_flags & BTRFS_ILOCK_SHARED)
177 		inode_unlock_shared(inode);
178 	else
179 		inode_unlock(inode);
180 }
181 
182 /*
183  * Cleanup all submitted ordered extents in specified range to handle errors
184  * from the btrfs_run_delalloc_range() callback.
185  *
186  * NOTE: caller must ensure that when an error happens, it can not call
187  * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING
188  * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata
189  * to be released, which we want to happen only when finishing the ordered
190  * extent (btrfs_finish_ordered_io()).
191  */
192 static inline void btrfs_cleanup_ordered_extents(struct btrfs_inode *inode,
193 						 struct page *locked_page,
194 						 u64 offset, u64 bytes)
195 {
196 	unsigned long index = offset >> PAGE_SHIFT;
197 	unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT;
198 	u64 page_start = page_offset(locked_page);
199 	u64 page_end = page_start + PAGE_SIZE - 1;
200 
201 	struct page *page;
202 
203 	while (index <= end_index) {
204 		/*
205 		 * For locked page, we will call end_extent_writepage() on it
206 		 * in run_delalloc_range() for the error handling.  That
207 		 * end_extent_writepage() function will call
208 		 * btrfs_mark_ordered_io_finished() to clear page Ordered and
209 		 * run the ordered extent accounting.
210 		 *
211 		 * Here we can't just clear the Ordered bit, or
212 		 * btrfs_mark_ordered_io_finished() would skip the accounting
213 		 * for the page range, and the ordered extent will never finish.
214 		 */
215 		if (index == (page_offset(locked_page) >> PAGE_SHIFT)) {
216 			index++;
217 			continue;
218 		}
219 		page = find_get_page(inode->vfs_inode.i_mapping, index);
220 		index++;
221 		if (!page)
222 			continue;
223 
224 		/*
225 		 * Here we just clear all Ordered bits for every page in the
226 		 * range, then __endio_write_update_ordered() will handle
227 		 * the ordered extent accounting for the range.
228 		 */
229 		btrfs_page_clamp_clear_ordered(inode->root->fs_info, page,
230 					       offset, bytes);
231 		put_page(page);
232 	}
233 
234 	/* The locked page covers the full range, nothing needs to be done */
235 	if (bytes + offset <= page_offset(locked_page) + PAGE_SIZE)
236 		return;
237 	/*
238 	 * In case this page belongs to the delalloc range being instantiated
239 	 * then skip it, since the first page of a range is going to be
240 	 * properly cleaned up by the caller of run_delalloc_range
241 	 */
242 	if (page_start >= offset && page_end <= (offset + bytes - 1)) {
243 		bytes = offset + bytes - page_offset(locked_page) - PAGE_SIZE;
244 		offset = page_offset(locked_page) + PAGE_SIZE;
245 	}
246 
247 	return __endio_write_update_ordered(inode, offset, bytes, false);
248 }
249 
250 static int btrfs_dirty_inode(struct inode *inode);
251 
252 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
253 				     struct btrfs_new_inode_args *args)
254 {
255 	int err;
256 
257 	if (args->default_acl) {
258 		err = __btrfs_set_acl(trans, args->inode, args->default_acl,
259 				      ACL_TYPE_DEFAULT);
260 		if (err)
261 			return err;
262 	}
263 	if (args->acl) {
264 		err = __btrfs_set_acl(trans, args->inode, args->acl, ACL_TYPE_ACCESS);
265 		if (err)
266 			return err;
267 	}
268 	if (!args->default_acl && !args->acl)
269 		cache_no_acl(args->inode);
270 	return btrfs_xattr_security_init(trans, args->inode, args->dir,
271 					 &args->dentry->d_name);
272 }
273 
274 /*
275  * this does all the hard work for inserting an inline extent into
276  * the btree.  The caller should have done a btrfs_drop_extents so that
277  * no overlapping inline items exist in the btree
278  */
279 static int insert_inline_extent(struct btrfs_trans_handle *trans,
280 				struct btrfs_path *path,
281 				struct btrfs_inode *inode, bool extent_inserted,
282 				size_t size, size_t compressed_size,
283 				int compress_type,
284 				struct page **compressed_pages,
285 				bool update_i_size)
286 {
287 	struct btrfs_root *root = inode->root;
288 	struct extent_buffer *leaf;
289 	struct page *page = NULL;
290 	char *kaddr;
291 	unsigned long ptr;
292 	struct btrfs_file_extent_item *ei;
293 	int ret;
294 	size_t cur_size = size;
295 	u64 i_size;
296 
297 	ASSERT((compressed_size > 0 && compressed_pages) ||
298 	       (compressed_size == 0 && !compressed_pages));
299 
300 	if (compressed_size && compressed_pages)
301 		cur_size = compressed_size;
302 
303 	if (!extent_inserted) {
304 		struct btrfs_key key;
305 		size_t datasize;
306 
307 		key.objectid = btrfs_ino(inode);
308 		key.offset = 0;
309 		key.type = BTRFS_EXTENT_DATA_KEY;
310 
311 		datasize = btrfs_file_extent_calc_inline_size(cur_size);
312 		ret = btrfs_insert_empty_item(trans, root, path, &key,
313 					      datasize);
314 		if (ret)
315 			goto fail;
316 	}
317 	leaf = path->nodes[0];
318 	ei = btrfs_item_ptr(leaf, path->slots[0],
319 			    struct btrfs_file_extent_item);
320 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
321 	btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
322 	btrfs_set_file_extent_encryption(leaf, ei, 0);
323 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
324 	btrfs_set_file_extent_ram_bytes(leaf, ei, size);
325 	ptr = btrfs_file_extent_inline_start(ei);
326 
327 	if (compress_type != BTRFS_COMPRESS_NONE) {
328 		struct page *cpage;
329 		int i = 0;
330 		while (compressed_size > 0) {
331 			cpage = compressed_pages[i];
332 			cur_size = min_t(unsigned long, compressed_size,
333 				       PAGE_SIZE);
334 
335 			kaddr = kmap_atomic(cpage);
336 			write_extent_buffer(leaf, kaddr, ptr, cur_size);
337 			kunmap_atomic(kaddr);
338 
339 			i++;
340 			ptr += cur_size;
341 			compressed_size -= cur_size;
342 		}
343 		btrfs_set_file_extent_compression(leaf, ei,
344 						  compress_type);
345 	} else {
346 		page = find_get_page(inode->vfs_inode.i_mapping, 0);
347 		btrfs_set_file_extent_compression(leaf, ei, 0);
348 		kaddr = kmap_atomic(page);
349 		write_extent_buffer(leaf, kaddr, ptr, size);
350 		kunmap_atomic(kaddr);
351 		put_page(page);
352 	}
353 	btrfs_mark_buffer_dirty(leaf);
354 	btrfs_release_path(path);
355 
356 	/*
357 	 * We align size to sectorsize for inline extents just for simplicity
358 	 * sake.
359 	 */
360 	ret = btrfs_inode_set_file_extent_range(inode, 0,
361 					ALIGN(size, root->fs_info->sectorsize));
362 	if (ret)
363 		goto fail;
364 
365 	/*
366 	 * We're an inline extent, so nobody can extend the file past i_size
367 	 * without locking a page we already have locked.
368 	 *
369 	 * We must do any i_size and inode updates before we unlock the pages.
370 	 * Otherwise we could end up racing with unlink.
371 	 */
372 	i_size = i_size_read(&inode->vfs_inode);
373 	if (update_i_size && size > i_size) {
374 		i_size_write(&inode->vfs_inode, size);
375 		i_size = size;
376 	}
377 	inode->disk_i_size = i_size;
378 
379 fail:
380 	return ret;
381 }
382 
383 
384 /*
385  * conditionally insert an inline extent into the file.  This
386  * does the checks required to make sure the data is small enough
387  * to fit as an inline extent.
388  */
389 static noinline int cow_file_range_inline(struct btrfs_inode *inode, u64 size,
390 					  size_t compressed_size,
391 					  int compress_type,
392 					  struct page **compressed_pages,
393 					  bool update_i_size)
394 {
395 	struct btrfs_drop_extents_args drop_args = { 0 };
396 	struct btrfs_root *root = inode->root;
397 	struct btrfs_fs_info *fs_info = root->fs_info;
398 	struct btrfs_trans_handle *trans;
399 	u64 data_len = (compressed_size ?: size);
400 	int ret;
401 	struct btrfs_path *path;
402 
403 	/*
404 	 * We can create an inline extent if it ends at or beyond the current
405 	 * i_size, is no larger than a sector (decompressed), and the (possibly
406 	 * compressed) data fits in a leaf and the configured maximum inline
407 	 * size.
408 	 */
409 	if (size < i_size_read(&inode->vfs_inode) ||
410 	    size > fs_info->sectorsize ||
411 	    data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) ||
412 	    data_len > fs_info->max_inline)
413 		return 1;
414 
415 	path = btrfs_alloc_path();
416 	if (!path)
417 		return -ENOMEM;
418 
419 	trans = btrfs_join_transaction(root);
420 	if (IS_ERR(trans)) {
421 		btrfs_free_path(path);
422 		return PTR_ERR(trans);
423 	}
424 	trans->block_rsv = &inode->block_rsv;
425 
426 	drop_args.path = path;
427 	drop_args.start = 0;
428 	drop_args.end = fs_info->sectorsize;
429 	drop_args.drop_cache = true;
430 	drop_args.replace_extent = true;
431 	drop_args.extent_item_size = btrfs_file_extent_calc_inline_size(data_len);
432 	ret = btrfs_drop_extents(trans, root, inode, &drop_args);
433 	if (ret) {
434 		btrfs_abort_transaction(trans, ret);
435 		goto out;
436 	}
437 
438 	ret = insert_inline_extent(trans, path, inode, drop_args.extent_inserted,
439 				   size, compressed_size, compress_type,
440 				   compressed_pages, update_i_size);
441 	if (ret && ret != -ENOSPC) {
442 		btrfs_abort_transaction(trans, ret);
443 		goto out;
444 	} else if (ret == -ENOSPC) {
445 		ret = 1;
446 		goto out;
447 	}
448 
449 	btrfs_update_inode_bytes(inode, size, drop_args.bytes_found);
450 	ret = btrfs_update_inode(trans, root, inode);
451 	if (ret && ret != -ENOSPC) {
452 		btrfs_abort_transaction(trans, ret);
453 		goto out;
454 	} else if (ret == -ENOSPC) {
455 		ret = 1;
456 		goto out;
457 	}
458 
459 	btrfs_set_inode_full_sync(inode);
460 out:
461 	/*
462 	 * Don't forget to free the reserved space, as for inlined extent
463 	 * it won't count as data extent, free them directly here.
464 	 * And at reserve time, it's always aligned to page size, so
465 	 * just free one page here.
466 	 */
467 	btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE);
468 	btrfs_free_path(path);
469 	btrfs_end_transaction(trans);
470 	return ret;
471 }
472 
473 struct async_extent {
474 	u64 start;
475 	u64 ram_size;
476 	u64 compressed_size;
477 	struct page **pages;
478 	unsigned long nr_pages;
479 	int compress_type;
480 	struct list_head list;
481 };
482 
483 struct async_chunk {
484 	struct inode *inode;
485 	struct page *locked_page;
486 	u64 start;
487 	u64 end;
488 	unsigned int write_flags;
489 	struct list_head extents;
490 	struct cgroup_subsys_state *blkcg_css;
491 	struct btrfs_work work;
492 	struct async_cow *async_cow;
493 };
494 
495 struct async_cow {
496 	atomic_t num_chunks;
497 	struct async_chunk chunks[];
498 };
499 
500 static noinline int add_async_extent(struct async_chunk *cow,
501 				     u64 start, u64 ram_size,
502 				     u64 compressed_size,
503 				     struct page **pages,
504 				     unsigned long nr_pages,
505 				     int compress_type)
506 {
507 	struct async_extent *async_extent;
508 
509 	async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
510 	BUG_ON(!async_extent); /* -ENOMEM */
511 	async_extent->start = start;
512 	async_extent->ram_size = ram_size;
513 	async_extent->compressed_size = compressed_size;
514 	async_extent->pages = pages;
515 	async_extent->nr_pages = nr_pages;
516 	async_extent->compress_type = compress_type;
517 	list_add_tail(&async_extent->list, &cow->extents);
518 	return 0;
519 }
520 
521 /*
522  * Check if the inode needs to be submitted to compression, based on mount
523  * options, defragmentation, properties or heuristics.
524  */
525 static inline int inode_need_compress(struct btrfs_inode *inode, u64 start,
526 				      u64 end)
527 {
528 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
529 
530 	if (!btrfs_inode_can_compress(inode)) {
531 		WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
532 			KERN_ERR "BTRFS: unexpected compression for ino %llu\n",
533 			btrfs_ino(inode));
534 		return 0;
535 	}
536 	/*
537 	 * Special check for subpage.
538 	 *
539 	 * We lock the full page then run each delalloc range in the page, thus
540 	 * for the following case, we will hit some subpage specific corner case:
541 	 *
542 	 * 0		32K		64K
543 	 * |	|///////|	|///////|
544 	 *		\- A		\- B
545 	 *
546 	 * In above case, both range A and range B will try to unlock the full
547 	 * page [0, 64K), causing the one finished later will have page
548 	 * unlocked already, triggering various page lock requirement BUG_ON()s.
549 	 *
550 	 * So here we add an artificial limit that subpage compression can only
551 	 * if the range is fully page aligned.
552 	 *
553 	 * In theory we only need to ensure the first page is fully covered, but
554 	 * the tailing partial page will be locked until the full compression
555 	 * finishes, delaying the write of other range.
556 	 *
557 	 * TODO: Make btrfs_run_delalloc_range() to lock all delalloc range
558 	 * first to prevent any submitted async extent to unlock the full page.
559 	 * By this, we can ensure for subpage case that only the last async_cow
560 	 * will unlock the full page.
561 	 */
562 	if (fs_info->sectorsize < PAGE_SIZE) {
563 		if (!IS_ALIGNED(start, PAGE_SIZE) ||
564 		    !IS_ALIGNED(end + 1, PAGE_SIZE))
565 			return 0;
566 	}
567 
568 	/* force compress */
569 	if (btrfs_test_opt(fs_info, FORCE_COMPRESS))
570 		return 1;
571 	/* defrag ioctl */
572 	if (inode->defrag_compress)
573 		return 1;
574 	/* bad compression ratios */
575 	if (inode->flags & BTRFS_INODE_NOCOMPRESS)
576 		return 0;
577 	if (btrfs_test_opt(fs_info, COMPRESS) ||
578 	    inode->flags & BTRFS_INODE_COMPRESS ||
579 	    inode->prop_compress)
580 		return btrfs_compress_heuristic(&inode->vfs_inode, start, end);
581 	return 0;
582 }
583 
584 static inline void inode_should_defrag(struct btrfs_inode *inode,
585 		u64 start, u64 end, u64 num_bytes, u32 small_write)
586 {
587 	/* If this is a small write inside eof, kick off a defrag */
588 	if (num_bytes < small_write &&
589 	    (start > 0 || end + 1 < inode->disk_i_size))
590 		btrfs_add_inode_defrag(NULL, inode, small_write);
591 }
592 
593 /*
594  * we create compressed extents in two phases.  The first
595  * phase compresses a range of pages that have already been
596  * locked (both pages and state bits are locked).
597  *
598  * This is done inside an ordered work queue, and the compression
599  * is spread across many cpus.  The actual IO submission is step
600  * two, and the ordered work queue takes care of making sure that
601  * happens in the same order things were put onto the queue by
602  * writepages and friends.
603  *
604  * If this code finds it can't get good compression, it puts an
605  * entry onto the work queue to write the uncompressed bytes.  This
606  * makes sure that both compressed inodes and uncompressed inodes
607  * are written in the same order that the flusher thread sent them
608  * down.
609  */
610 static noinline int compress_file_range(struct async_chunk *async_chunk)
611 {
612 	struct inode *inode = async_chunk->inode;
613 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
614 	u64 blocksize = fs_info->sectorsize;
615 	u64 start = async_chunk->start;
616 	u64 end = async_chunk->end;
617 	u64 actual_end;
618 	u64 i_size;
619 	int ret = 0;
620 	struct page **pages = NULL;
621 	unsigned long nr_pages;
622 	unsigned long total_compressed = 0;
623 	unsigned long total_in = 0;
624 	int i;
625 	int will_compress;
626 	int compress_type = fs_info->compress_type;
627 	int compressed_extents = 0;
628 	int redirty = 0;
629 
630 	inode_should_defrag(BTRFS_I(inode), start, end, end - start + 1,
631 			SZ_16K);
632 
633 	/*
634 	 * We need to save i_size before now because it could change in between
635 	 * us evaluating the size and assigning it.  This is because we lock and
636 	 * unlock the page in truncate and fallocate, and then modify the i_size
637 	 * later on.
638 	 *
639 	 * The barriers are to emulate READ_ONCE, remove that once i_size_read
640 	 * does that for us.
641 	 */
642 	barrier();
643 	i_size = i_size_read(inode);
644 	barrier();
645 	actual_end = min_t(u64, i_size, end + 1);
646 again:
647 	will_compress = 0;
648 	nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
649 	nr_pages = min_t(unsigned long, nr_pages,
650 			BTRFS_MAX_COMPRESSED / PAGE_SIZE);
651 
652 	/*
653 	 * we don't want to send crud past the end of i_size through
654 	 * compression, that's just a waste of CPU time.  So, if the
655 	 * end of the file is before the start of our current
656 	 * requested range of bytes, we bail out to the uncompressed
657 	 * cleanup code that can deal with all of this.
658 	 *
659 	 * It isn't really the fastest way to fix things, but this is a
660 	 * very uncommon corner.
661 	 */
662 	if (actual_end <= start)
663 		goto cleanup_and_bail_uncompressed;
664 
665 	total_compressed = actual_end - start;
666 
667 	/*
668 	 * Skip compression for a small file range(<=blocksize) that
669 	 * isn't an inline extent, since it doesn't save disk space at all.
670 	 */
671 	if (total_compressed <= blocksize &&
672 	   (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
673 		goto cleanup_and_bail_uncompressed;
674 
675 	/*
676 	 * For subpage case, we require full page alignment for the sector
677 	 * aligned range.
678 	 * Thus we must also check against @actual_end, not just @end.
679 	 */
680 	if (blocksize < PAGE_SIZE) {
681 		if (!IS_ALIGNED(start, PAGE_SIZE) ||
682 		    !IS_ALIGNED(round_up(actual_end, blocksize), PAGE_SIZE))
683 			goto cleanup_and_bail_uncompressed;
684 	}
685 
686 	total_compressed = min_t(unsigned long, total_compressed,
687 			BTRFS_MAX_UNCOMPRESSED);
688 	total_in = 0;
689 	ret = 0;
690 
691 	/*
692 	 * we do compression for mount -o compress and when the
693 	 * inode has not been flagged as nocompress.  This flag can
694 	 * change at any time if we discover bad compression ratios.
695 	 */
696 	if (inode_need_compress(BTRFS_I(inode), start, end)) {
697 		WARN_ON(pages);
698 		pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
699 		if (!pages) {
700 			/* just bail out to the uncompressed code */
701 			nr_pages = 0;
702 			goto cont;
703 		}
704 
705 		if (BTRFS_I(inode)->defrag_compress)
706 			compress_type = BTRFS_I(inode)->defrag_compress;
707 		else if (BTRFS_I(inode)->prop_compress)
708 			compress_type = BTRFS_I(inode)->prop_compress;
709 
710 		/*
711 		 * we need to call clear_page_dirty_for_io on each
712 		 * page in the range.  Otherwise applications with the file
713 		 * mmap'd can wander in and change the page contents while
714 		 * we are compressing them.
715 		 *
716 		 * If the compression fails for any reason, we set the pages
717 		 * dirty again later on.
718 		 *
719 		 * Note that the remaining part is redirtied, the start pointer
720 		 * has moved, the end is the original one.
721 		 */
722 		if (!redirty) {
723 			extent_range_clear_dirty_for_io(inode, start, end);
724 			redirty = 1;
725 		}
726 
727 		/* Compression level is applied here and only here */
728 		ret = btrfs_compress_pages(
729 			compress_type | (fs_info->compress_level << 4),
730 					   inode->i_mapping, start,
731 					   pages,
732 					   &nr_pages,
733 					   &total_in,
734 					   &total_compressed);
735 
736 		if (!ret) {
737 			unsigned long offset = offset_in_page(total_compressed);
738 			struct page *page = pages[nr_pages - 1];
739 
740 			/* zero the tail end of the last page, we might be
741 			 * sending it down to disk
742 			 */
743 			if (offset)
744 				memzero_page(page, offset, PAGE_SIZE - offset);
745 			will_compress = 1;
746 		}
747 	}
748 cont:
749 	/*
750 	 * Check cow_file_range() for why we don't even try to create inline
751 	 * extent for subpage case.
752 	 */
753 	if (start == 0 && fs_info->sectorsize == PAGE_SIZE) {
754 		/* lets try to make an inline extent */
755 		if (ret || total_in < actual_end) {
756 			/* we didn't compress the entire range, try
757 			 * to make an uncompressed inline extent.
758 			 */
759 			ret = cow_file_range_inline(BTRFS_I(inode), actual_end,
760 						    0, BTRFS_COMPRESS_NONE,
761 						    NULL, false);
762 		} else {
763 			/* try making a compressed inline extent */
764 			ret = cow_file_range_inline(BTRFS_I(inode), actual_end,
765 						    total_compressed,
766 						    compress_type, pages,
767 						    false);
768 		}
769 		if (ret <= 0) {
770 			unsigned long clear_flags = EXTENT_DELALLOC |
771 				EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
772 				EXTENT_DO_ACCOUNTING;
773 			unsigned long page_error_op;
774 
775 			page_error_op = ret < 0 ? PAGE_SET_ERROR : 0;
776 
777 			/*
778 			 * inline extent creation worked or returned error,
779 			 * we don't need to create any more async work items.
780 			 * Unlock and free up our temp pages.
781 			 *
782 			 * We use DO_ACCOUNTING here because we need the
783 			 * delalloc_release_metadata to be done _after_ we drop
784 			 * our outstanding extent for clearing delalloc for this
785 			 * range.
786 			 */
787 			extent_clear_unlock_delalloc(BTRFS_I(inode), start, end,
788 						     NULL,
789 						     clear_flags,
790 						     PAGE_UNLOCK |
791 						     PAGE_START_WRITEBACK |
792 						     page_error_op |
793 						     PAGE_END_WRITEBACK);
794 
795 			/*
796 			 * Ensure we only free the compressed pages if we have
797 			 * them allocated, as we can still reach here with
798 			 * inode_need_compress() == false.
799 			 */
800 			if (pages) {
801 				for (i = 0; i < nr_pages; i++) {
802 					WARN_ON(pages[i]->mapping);
803 					put_page(pages[i]);
804 				}
805 				kfree(pages);
806 			}
807 			return 0;
808 		}
809 	}
810 
811 	if (will_compress) {
812 		/*
813 		 * we aren't doing an inline extent round the compressed size
814 		 * up to a block size boundary so the allocator does sane
815 		 * things
816 		 */
817 		total_compressed = ALIGN(total_compressed, blocksize);
818 
819 		/*
820 		 * one last check to make sure the compression is really a
821 		 * win, compare the page count read with the blocks on disk,
822 		 * compression must free at least one sector size
823 		 */
824 		total_in = round_up(total_in, fs_info->sectorsize);
825 		if (total_compressed + blocksize <= total_in) {
826 			compressed_extents++;
827 
828 			/*
829 			 * The async work queues will take care of doing actual
830 			 * allocation on disk for these compressed pages, and
831 			 * will submit them to the elevator.
832 			 */
833 			add_async_extent(async_chunk, start, total_in,
834 					total_compressed, pages, nr_pages,
835 					compress_type);
836 
837 			if (start + total_in < end) {
838 				start += total_in;
839 				pages = NULL;
840 				cond_resched();
841 				goto again;
842 			}
843 			return compressed_extents;
844 		}
845 	}
846 	if (pages) {
847 		/*
848 		 * the compression code ran but failed to make things smaller,
849 		 * free any pages it allocated and our page pointer array
850 		 */
851 		for (i = 0; i < nr_pages; i++) {
852 			WARN_ON(pages[i]->mapping);
853 			put_page(pages[i]);
854 		}
855 		kfree(pages);
856 		pages = NULL;
857 		total_compressed = 0;
858 		nr_pages = 0;
859 
860 		/* flag the file so we don't compress in the future */
861 		if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) &&
862 		    !(BTRFS_I(inode)->prop_compress)) {
863 			BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
864 		}
865 	}
866 cleanup_and_bail_uncompressed:
867 	/*
868 	 * No compression, but we still need to write the pages in the file
869 	 * we've been given so far.  redirty the locked page if it corresponds
870 	 * to our extent and set things up for the async work queue to run
871 	 * cow_file_range to do the normal delalloc dance.
872 	 */
873 	if (async_chunk->locked_page &&
874 	    (page_offset(async_chunk->locked_page) >= start &&
875 	     page_offset(async_chunk->locked_page)) <= end) {
876 		__set_page_dirty_nobuffers(async_chunk->locked_page);
877 		/* unlocked later on in the async handlers */
878 	}
879 
880 	if (redirty)
881 		extent_range_redirty_for_io(inode, start, end);
882 	add_async_extent(async_chunk, start, end - start + 1, 0, NULL, 0,
883 			 BTRFS_COMPRESS_NONE);
884 	compressed_extents++;
885 
886 	return compressed_extents;
887 }
888 
889 static void free_async_extent_pages(struct async_extent *async_extent)
890 {
891 	int i;
892 
893 	if (!async_extent->pages)
894 		return;
895 
896 	for (i = 0; i < async_extent->nr_pages; i++) {
897 		WARN_ON(async_extent->pages[i]->mapping);
898 		put_page(async_extent->pages[i]);
899 	}
900 	kfree(async_extent->pages);
901 	async_extent->nr_pages = 0;
902 	async_extent->pages = NULL;
903 }
904 
905 static int submit_uncompressed_range(struct btrfs_inode *inode,
906 				     struct async_extent *async_extent,
907 				     struct page *locked_page)
908 {
909 	u64 start = async_extent->start;
910 	u64 end = async_extent->start + async_extent->ram_size - 1;
911 	unsigned long nr_written = 0;
912 	int page_started = 0;
913 	int ret;
914 
915 	/*
916 	 * Call cow_file_range() to run the delalloc range directly, since we
917 	 * won't go to NOCOW or async path again.
918 	 *
919 	 * Also we call cow_file_range() with @unlock_page == 0, so that we
920 	 * can directly submit them without interruption.
921 	 */
922 	ret = cow_file_range(inode, locked_page, start, end, &page_started,
923 			     &nr_written, 0);
924 	/* Inline extent inserted, page gets unlocked and everything is done */
925 	if (page_started) {
926 		ret = 0;
927 		goto out;
928 	}
929 	if (ret < 0) {
930 		if (locked_page)
931 			unlock_page(locked_page);
932 		goto out;
933 	}
934 
935 	ret = extent_write_locked_range(&inode->vfs_inode, start, end);
936 	/* All pages will be unlocked, including @locked_page */
937 out:
938 	kfree(async_extent);
939 	return ret;
940 }
941 
942 static int submit_one_async_extent(struct btrfs_inode *inode,
943 				   struct async_chunk *async_chunk,
944 				   struct async_extent *async_extent,
945 				   u64 *alloc_hint)
946 {
947 	struct extent_io_tree *io_tree = &inode->io_tree;
948 	struct btrfs_root *root = inode->root;
949 	struct btrfs_fs_info *fs_info = root->fs_info;
950 	struct btrfs_key ins;
951 	struct page *locked_page = NULL;
952 	struct extent_map *em;
953 	int ret = 0;
954 	u64 start = async_extent->start;
955 	u64 end = async_extent->start + async_extent->ram_size - 1;
956 
957 	/*
958 	 * If async_chunk->locked_page is in the async_extent range, we need to
959 	 * handle it.
960 	 */
961 	if (async_chunk->locked_page) {
962 		u64 locked_page_start = page_offset(async_chunk->locked_page);
963 		u64 locked_page_end = locked_page_start + PAGE_SIZE - 1;
964 
965 		if (!(start >= locked_page_end || end <= locked_page_start))
966 			locked_page = async_chunk->locked_page;
967 	}
968 	lock_extent(io_tree, start, end);
969 
970 	/* We have fall back to uncompressed write */
971 	if (!async_extent->pages)
972 		return submit_uncompressed_range(inode, async_extent, locked_page);
973 
974 	ret = btrfs_reserve_extent(root, async_extent->ram_size,
975 				   async_extent->compressed_size,
976 				   async_extent->compressed_size,
977 				   0, *alloc_hint, &ins, 1, 1);
978 	if (ret) {
979 		free_async_extent_pages(async_extent);
980 		/*
981 		 * Here we used to try again by going back to non-compressed
982 		 * path for ENOSPC.  But we can't reserve space even for
983 		 * compressed size, how could it work for uncompressed size
984 		 * which requires larger size?  So here we directly go error
985 		 * path.
986 		 */
987 		goto out_free;
988 	}
989 
990 	/* Here we're doing allocation and writeback of the compressed pages */
991 	em = create_io_em(inode, start,
992 			  async_extent->ram_size,	/* len */
993 			  start,			/* orig_start */
994 			  ins.objectid,			/* block_start */
995 			  ins.offset,			/* block_len */
996 			  ins.offset,			/* orig_block_len */
997 			  async_extent->ram_size,	/* ram_bytes */
998 			  async_extent->compress_type,
999 			  BTRFS_ORDERED_COMPRESSED);
1000 	if (IS_ERR(em)) {
1001 		ret = PTR_ERR(em);
1002 		goto out_free_reserve;
1003 	}
1004 	free_extent_map(em);
1005 
1006 	ret = btrfs_add_ordered_extent(inode, start,		/* file_offset */
1007 				       async_extent->ram_size,	/* num_bytes */
1008 				       async_extent->ram_size,	/* ram_bytes */
1009 				       ins.objectid,		/* disk_bytenr */
1010 				       ins.offset,		/* disk_num_bytes */
1011 				       0,			/* offset */
1012 				       1 << BTRFS_ORDERED_COMPRESSED,
1013 				       async_extent->compress_type);
1014 	if (ret) {
1015 		btrfs_drop_extent_cache(inode, start, end, 0);
1016 		goto out_free_reserve;
1017 	}
1018 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1019 
1020 	/* Clear dirty, set writeback and unlock the pages. */
1021 	extent_clear_unlock_delalloc(inode, start, end,
1022 			NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
1023 			PAGE_UNLOCK | PAGE_START_WRITEBACK);
1024 	if (btrfs_submit_compressed_write(inode, start,	/* file_offset */
1025 			    async_extent->ram_size,	/* num_bytes */
1026 			    ins.objectid,		/* disk_bytenr */
1027 			    ins.offset,			/* compressed_len */
1028 			    async_extent->pages,	/* compressed_pages */
1029 			    async_extent->nr_pages,
1030 			    async_chunk->write_flags,
1031 			    async_chunk->blkcg_css, true)) {
1032 		const u64 start = async_extent->start;
1033 		const u64 end = start + async_extent->ram_size - 1;
1034 
1035 		btrfs_writepage_endio_finish_ordered(inode, NULL, start, end, 0);
1036 
1037 		extent_clear_unlock_delalloc(inode, start, end, NULL, 0,
1038 					     PAGE_END_WRITEBACK | PAGE_SET_ERROR);
1039 		free_async_extent_pages(async_extent);
1040 	}
1041 	*alloc_hint = ins.objectid + ins.offset;
1042 	kfree(async_extent);
1043 	return ret;
1044 
1045 out_free_reserve:
1046 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1047 	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
1048 out_free:
1049 	extent_clear_unlock_delalloc(inode, start, end,
1050 				     NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
1051 				     EXTENT_DELALLOC_NEW |
1052 				     EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
1053 				     PAGE_UNLOCK | PAGE_START_WRITEBACK |
1054 				     PAGE_END_WRITEBACK | PAGE_SET_ERROR);
1055 	free_async_extent_pages(async_extent);
1056 	kfree(async_extent);
1057 	return ret;
1058 }
1059 
1060 /*
1061  * Phase two of compressed writeback.  This is the ordered portion of the code,
1062  * which only gets called in the order the work was queued.  We walk all the
1063  * async extents created by compress_file_range and send them down to the disk.
1064  */
1065 static noinline void submit_compressed_extents(struct async_chunk *async_chunk)
1066 {
1067 	struct btrfs_inode *inode = BTRFS_I(async_chunk->inode);
1068 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1069 	struct async_extent *async_extent;
1070 	u64 alloc_hint = 0;
1071 	int ret = 0;
1072 
1073 	while (!list_empty(&async_chunk->extents)) {
1074 		u64 extent_start;
1075 		u64 ram_size;
1076 
1077 		async_extent = list_entry(async_chunk->extents.next,
1078 					  struct async_extent, list);
1079 		list_del(&async_extent->list);
1080 		extent_start = async_extent->start;
1081 		ram_size = async_extent->ram_size;
1082 
1083 		ret = submit_one_async_extent(inode, async_chunk, async_extent,
1084 					      &alloc_hint);
1085 		btrfs_debug(fs_info,
1086 "async extent submission failed root=%lld inode=%llu start=%llu len=%llu ret=%d",
1087 			    inode->root->root_key.objectid,
1088 			    btrfs_ino(inode), extent_start, ram_size, ret);
1089 	}
1090 }
1091 
1092 static u64 get_extent_allocation_hint(struct btrfs_inode *inode, u64 start,
1093 				      u64 num_bytes)
1094 {
1095 	struct extent_map_tree *em_tree = &inode->extent_tree;
1096 	struct extent_map *em;
1097 	u64 alloc_hint = 0;
1098 
1099 	read_lock(&em_tree->lock);
1100 	em = search_extent_mapping(em_tree, start, num_bytes);
1101 	if (em) {
1102 		/*
1103 		 * if block start isn't an actual block number then find the
1104 		 * first block in this inode and use that as a hint.  If that
1105 		 * block is also bogus then just don't worry about it.
1106 		 */
1107 		if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1108 			free_extent_map(em);
1109 			em = search_extent_mapping(em_tree, 0, 0);
1110 			if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
1111 				alloc_hint = em->block_start;
1112 			if (em)
1113 				free_extent_map(em);
1114 		} else {
1115 			alloc_hint = em->block_start;
1116 			free_extent_map(em);
1117 		}
1118 	}
1119 	read_unlock(&em_tree->lock);
1120 
1121 	return alloc_hint;
1122 }
1123 
1124 /*
1125  * when extent_io.c finds a delayed allocation range in the file,
1126  * the call backs end up in this code.  The basic idea is to
1127  * allocate extents on disk for the range, and create ordered data structs
1128  * in ram to track those extents.
1129  *
1130  * locked_page is the page that writepage had locked already.  We use
1131  * it to make sure we don't do extra locks or unlocks.
1132  *
1133  * *page_started is set to one if we unlock locked_page and do everything
1134  * required to start IO on it.  It may be clean and already done with
1135  * IO when we return.
1136  */
1137 static noinline int cow_file_range(struct btrfs_inode *inode,
1138 				   struct page *locked_page,
1139 				   u64 start, u64 end, int *page_started,
1140 				   unsigned long *nr_written, int unlock)
1141 {
1142 	struct btrfs_root *root = inode->root;
1143 	struct btrfs_fs_info *fs_info = root->fs_info;
1144 	u64 alloc_hint = 0;
1145 	u64 num_bytes;
1146 	unsigned long ram_size;
1147 	u64 cur_alloc_size = 0;
1148 	u64 min_alloc_size;
1149 	u64 blocksize = fs_info->sectorsize;
1150 	struct btrfs_key ins;
1151 	struct extent_map *em;
1152 	unsigned clear_bits;
1153 	unsigned long page_ops;
1154 	bool extent_reserved = false;
1155 	int ret = 0;
1156 
1157 	if (btrfs_is_free_space_inode(inode)) {
1158 		ret = -EINVAL;
1159 		goto out_unlock;
1160 	}
1161 
1162 	num_bytes = ALIGN(end - start + 1, blocksize);
1163 	num_bytes = max(blocksize,  num_bytes);
1164 	ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy));
1165 
1166 	inode_should_defrag(inode, start, end, num_bytes, SZ_64K);
1167 
1168 	/*
1169 	 * Due to the page size limit, for subpage we can only trigger the
1170 	 * writeback for the dirty sectors of page, that means data writeback
1171 	 * is doing more writeback than what we want.
1172 	 *
1173 	 * This is especially unexpected for some call sites like fallocate,
1174 	 * where we only increase i_size after everything is done.
1175 	 * This means we can trigger inline extent even if we didn't want to.
1176 	 * So here we skip inline extent creation completely.
1177 	 */
1178 	if (start == 0 && fs_info->sectorsize == PAGE_SIZE) {
1179 		u64 actual_end = min_t(u64, i_size_read(&inode->vfs_inode),
1180 				       end + 1);
1181 
1182 		/* lets try to make an inline extent */
1183 		ret = cow_file_range_inline(inode, actual_end, 0,
1184 					    BTRFS_COMPRESS_NONE, NULL, false);
1185 		if (ret == 0) {
1186 			/*
1187 			 * We use DO_ACCOUNTING here because we need the
1188 			 * delalloc_release_metadata to be run _after_ we drop
1189 			 * our outstanding extent for clearing delalloc for this
1190 			 * range.
1191 			 */
1192 			extent_clear_unlock_delalloc(inode, start, end,
1193 				     locked_page,
1194 				     EXTENT_LOCKED | EXTENT_DELALLOC |
1195 				     EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
1196 				     EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1197 				     PAGE_START_WRITEBACK | PAGE_END_WRITEBACK);
1198 			*nr_written = *nr_written +
1199 			     (end - start + PAGE_SIZE) / PAGE_SIZE;
1200 			*page_started = 1;
1201 			/*
1202 			 * locked_page is locked by the caller of
1203 			 * writepage_delalloc(), not locked by
1204 			 * __process_pages_contig().
1205 			 *
1206 			 * We can't let __process_pages_contig() to unlock it,
1207 			 * as it doesn't have any subpage::writers recorded.
1208 			 *
1209 			 * Here we manually unlock the page, since the caller
1210 			 * can't use page_started to determine if it's an
1211 			 * inline extent or a compressed extent.
1212 			 */
1213 			unlock_page(locked_page);
1214 			goto out;
1215 		} else if (ret < 0) {
1216 			goto out_unlock;
1217 		}
1218 	}
1219 
1220 	alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
1221 	btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
1222 
1223 	/*
1224 	 * Relocation relies on the relocated extents to have exactly the same
1225 	 * size as the original extents. Normally writeback for relocation data
1226 	 * extents follows a NOCOW path because relocation preallocates the
1227 	 * extents. However, due to an operation such as scrub turning a block
1228 	 * group to RO mode, it may fallback to COW mode, so we must make sure
1229 	 * an extent allocated during COW has exactly the requested size and can
1230 	 * not be split into smaller extents, otherwise relocation breaks and
1231 	 * fails during the stage where it updates the bytenr of file extent
1232 	 * items.
1233 	 */
1234 	if (btrfs_is_data_reloc_root(root))
1235 		min_alloc_size = num_bytes;
1236 	else
1237 		min_alloc_size = fs_info->sectorsize;
1238 
1239 	while (num_bytes > 0) {
1240 		cur_alloc_size = num_bytes;
1241 		ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size,
1242 					   min_alloc_size, 0, alloc_hint,
1243 					   &ins, 1, 1);
1244 		if (ret < 0)
1245 			goto out_unlock;
1246 		cur_alloc_size = ins.offset;
1247 		extent_reserved = true;
1248 
1249 		ram_size = ins.offset;
1250 		em = create_io_em(inode, start, ins.offset, /* len */
1251 				  start, /* orig_start */
1252 				  ins.objectid, /* block_start */
1253 				  ins.offset, /* block_len */
1254 				  ins.offset, /* orig_block_len */
1255 				  ram_size, /* ram_bytes */
1256 				  BTRFS_COMPRESS_NONE, /* compress_type */
1257 				  BTRFS_ORDERED_REGULAR /* type */);
1258 		if (IS_ERR(em)) {
1259 			ret = PTR_ERR(em);
1260 			goto out_reserve;
1261 		}
1262 		free_extent_map(em);
1263 
1264 		ret = btrfs_add_ordered_extent(inode, start, ram_size, ram_size,
1265 					       ins.objectid, cur_alloc_size, 0,
1266 					       1 << BTRFS_ORDERED_REGULAR,
1267 					       BTRFS_COMPRESS_NONE);
1268 		if (ret)
1269 			goto out_drop_extent_cache;
1270 
1271 		if (btrfs_is_data_reloc_root(root)) {
1272 			ret = btrfs_reloc_clone_csums(inode, start,
1273 						      cur_alloc_size);
1274 			/*
1275 			 * Only drop cache here, and process as normal.
1276 			 *
1277 			 * We must not allow extent_clear_unlock_delalloc()
1278 			 * at out_unlock label to free meta of this ordered
1279 			 * extent, as its meta should be freed by
1280 			 * btrfs_finish_ordered_io().
1281 			 *
1282 			 * So we must continue until @start is increased to
1283 			 * skip current ordered extent.
1284 			 */
1285 			if (ret)
1286 				btrfs_drop_extent_cache(inode, start,
1287 						start + ram_size - 1, 0);
1288 		}
1289 
1290 		btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1291 
1292 		/*
1293 		 * We're not doing compressed IO, don't unlock the first page
1294 		 * (which the caller expects to stay locked), don't clear any
1295 		 * dirty bits and don't set any writeback bits
1296 		 *
1297 		 * Do set the Ordered (Private2) bit so we know this page was
1298 		 * properly setup for writepage.
1299 		 */
1300 		page_ops = unlock ? PAGE_UNLOCK : 0;
1301 		page_ops |= PAGE_SET_ORDERED;
1302 
1303 		extent_clear_unlock_delalloc(inode, start, start + ram_size - 1,
1304 					     locked_page,
1305 					     EXTENT_LOCKED | EXTENT_DELALLOC,
1306 					     page_ops);
1307 		if (num_bytes < cur_alloc_size)
1308 			num_bytes = 0;
1309 		else
1310 			num_bytes -= cur_alloc_size;
1311 		alloc_hint = ins.objectid + ins.offset;
1312 		start += cur_alloc_size;
1313 		extent_reserved = false;
1314 
1315 		/*
1316 		 * btrfs_reloc_clone_csums() error, since start is increased
1317 		 * extent_clear_unlock_delalloc() at out_unlock label won't
1318 		 * free metadata of current ordered extent, we're OK to exit.
1319 		 */
1320 		if (ret)
1321 			goto out_unlock;
1322 	}
1323 out:
1324 	return ret;
1325 
1326 out_drop_extent_cache:
1327 	btrfs_drop_extent_cache(inode, start, start + ram_size - 1, 0);
1328 out_reserve:
1329 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1330 	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
1331 out_unlock:
1332 	clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
1333 		EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV;
1334 	page_ops = PAGE_UNLOCK | PAGE_START_WRITEBACK | PAGE_END_WRITEBACK;
1335 	/*
1336 	 * If we reserved an extent for our delalloc range (or a subrange) and
1337 	 * failed to create the respective ordered extent, then it means that
1338 	 * when we reserved the extent we decremented the extent's size from
1339 	 * the data space_info's bytes_may_use counter and incremented the
1340 	 * space_info's bytes_reserved counter by the same amount. We must make
1341 	 * sure extent_clear_unlock_delalloc() does not try to decrement again
1342 	 * the data space_info's bytes_may_use counter, therefore we do not pass
1343 	 * it the flag EXTENT_CLEAR_DATA_RESV.
1344 	 */
1345 	if (extent_reserved) {
1346 		extent_clear_unlock_delalloc(inode, start,
1347 					     start + cur_alloc_size - 1,
1348 					     locked_page,
1349 					     clear_bits,
1350 					     page_ops);
1351 		start += cur_alloc_size;
1352 		if (start >= end)
1353 			goto out;
1354 	}
1355 	extent_clear_unlock_delalloc(inode, start, end, locked_page,
1356 				     clear_bits | EXTENT_CLEAR_DATA_RESV,
1357 				     page_ops);
1358 	goto out;
1359 }
1360 
1361 /*
1362  * work queue call back to started compression on a file and pages
1363  */
1364 static noinline void async_cow_start(struct btrfs_work *work)
1365 {
1366 	struct async_chunk *async_chunk;
1367 	int compressed_extents;
1368 
1369 	async_chunk = container_of(work, struct async_chunk, work);
1370 
1371 	compressed_extents = compress_file_range(async_chunk);
1372 	if (compressed_extents == 0) {
1373 		btrfs_add_delayed_iput(async_chunk->inode);
1374 		async_chunk->inode = NULL;
1375 	}
1376 }
1377 
1378 /*
1379  * work queue call back to submit previously compressed pages
1380  */
1381 static noinline void async_cow_submit(struct btrfs_work *work)
1382 {
1383 	struct async_chunk *async_chunk = container_of(work, struct async_chunk,
1384 						     work);
1385 	struct btrfs_fs_info *fs_info = btrfs_work_owner(work);
1386 	unsigned long nr_pages;
1387 
1388 	nr_pages = (async_chunk->end - async_chunk->start + PAGE_SIZE) >>
1389 		PAGE_SHIFT;
1390 
1391 	/*
1392 	 * ->inode could be NULL if async_chunk_start has failed to compress,
1393 	 * in which case we don't have anything to submit, yet we need to
1394 	 * always adjust ->async_delalloc_pages as its paired with the init
1395 	 * happening in cow_file_range_async
1396 	 */
1397 	if (async_chunk->inode)
1398 		submit_compressed_extents(async_chunk);
1399 
1400 	/* atomic_sub_return implies a barrier */
1401 	if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) <
1402 	    5 * SZ_1M)
1403 		cond_wake_up_nomb(&fs_info->async_submit_wait);
1404 }
1405 
1406 static noinline void async_cow_free(struct btrfs_work *work)
1407 {
1408 	struct async_chunk *async_chunk;
1409 	struct async_cow *async_cow;
1410 
1411 	async_chunk = container_of(work, struct async_chunk, work);
1412 	if (async_chunk->inode)
1413 		btrfs_add_delayed_iput(async_chunk->inode);
1414 	if (async_chunk->blkcg_css)
1415 		css_put(async_chunk->blkcg_css);
1416 
1417 	async_cow = async_chunk->async_cow;
1418 	if (atomic_dec_and_test(&async_cow->num_chunks))
1419 		kvfree(async_cow);
1420 }
1421 
1422 static int cow_file_range_async(struct btrfs_inode *inode,
1423 				struct writeback_control *wbc,
1424 				struct page *locked_page,
1425 				u64 start, u64 end, int *page_started,
1426 				unsigned long *nr_written)
1427 {
1428 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1429 	struct cgroup_subsys_state *blkcg_css = wbc_blkcg_css(wbc);
1430 	struct async_cow *ctx;
1431 	struct async_chunk *async_chunk;
1432 	unsigned long nr_pages;
1433 	u64 cur_end;
1434 	u64 num_chunks = DIV_ROUND_UP(end - start, SZ_512K);
1435 	int i;
1436 	bool should_compress;
1437 	unsigned nofs_flag;
1438 	const unsigned int write_flags = wbc_to_write_flags(wbc);
1439 
1440 	unlock_extent(&inode->io_tree, start, end);
1441 
1442 	if (inode->flags & BTRFS_INODE_NOCOMPRESS &&
1443 	    !btrfs_test_opt(fs_info, FORCE_COMPRESS)) {
1444 		num_chunks = 1;
1445 		should_compress = false;
1446 	} else {
1447 		should_compress = true;
1448 	}
1449 
1450 	nofs_flag = memalloc_nofs_save();
1451 	ctx = kvmalloc(struct_size(ctx, chunks, num_chunks), GFP_KERNEL);
1452 	memalloc_nofs_restore(nofs_flag);
1453 
1454 	if (!ctx) {
1455 		unsigned clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC |
1456 			EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
1457 			EXTENT_DO_ACCOUNTING;
1458 		unsigned long page_ops = PAGE_UNLOCK | PAGE_START_WRITEBACK |
1459 					 PAGE_END_WRITEBACK | PAGE_SET_ERROR;
1460 
1461 		extent_clear_unlock_delalloc(inode, start, end, locked_page,
1462 					     clear_bits, page_ops);
1463 		return -ENOMEM;
1464 	}
1465 
1466 	async_chunk = ctx->chunks;
1467 	atomic_set(&ctx->num_chunks, num_chunks);
1468 
1469 	for (i = 0; i < num_chunks; i++) {
1470 		if (should_compress)
1471 			cur_end = min(end, start + SZ_512K - 1);
1472 		else
1473 			cur_end = end;
1474 
1475 		/*
1476 		 * igrab is called higher up in the call chain, take only the
1477 		 * lightweight reference for the callback lifetime
1478 		 */
1479 		ihold(&inode->vfs_inode);
1480 		async_chunk[i].async_cow = ctx;
1481 		async_chunk[i].inode = &inode->vfs_inode;
1482 		async_chunk[i].start = start;
1483 		async_chunk[i].end = cur_end;
1484 		async_chunk[i].write_flags = write_flags;
1485 		INIT_LIST_HEAD(&async_chunk[i].extents);
1486 
1487 		/*
1488 		 * The locked_page comes all the way from writepage and its
1489 		 * the original page we were actually given.  As we spread
1490 		 * this large delalloc region across multiple async_chunk
1491 		 * structs, only the first struct needs a pointer to locked_page
1492 		 *
1493 		 * This way we don't need racey decisions about who is supposed
1494 		 * to unlock it.
1495 		 */
1496 		if (locked_page) {
1497 			/*
1498 			 * Depending on the compressibility, the pages might or
1499 			 * might not go through async.  We want all of them to
1500 			 * be accounted against wbc once.  Let's do it here
1501 			 * before the paths diverge.  wbc accounting is used
1502 			 * only for foreign writeback detection and doesn't
1503 			 * need full accuracy.  Just account the whole thing
1504 			 * against the first page.
1505 			 */
1506 			wbc_account_cgroup_owner(wbc, locked_page,
1507 						 cur_end - start);
1508 			async_chunk[i].locked_page = locked_page;
1509 			locked_page = NULL;
1510 		} else {
1511 			async_chunk[i].locked_page = NULL;
1512 		}
1513 
1514 		if (blkcg_css != blkcg_root_css) {
1515 			css_get(blkcg_css);
1516 			async_chunk[i].blkcg_css = blkcg_css;
1517 		} else {
1518 			async_chunk[i].blkcg_css = NULL;
1519 		}
1520 
1521 		btrfs_init_work(&async_chunk[i].work, async_cow_start,
1522 				async_cow_submit, async_cow_free);
1523 
1524 		nr_pages = DIV_ROUND_UP(cur_end - start, PAGE_SIZE);
1525 		atomic_add(nr_pages, &fs_info->async_delalloc_pages);
1526 
1527 		btrfs_queue_work(fs_info->delalloc_workers, &async_chunk[i].work);
1528 
1529 		*nr_written += nr_pages;
1530 		start = cur_end + 1;
1531 	}
1532 	*page_started = 1;
1533 	return 0;
1534 }
1535 
1536 static noinline int run_delalloc_zoned(struct btrfs_inode *inode,
1537 				       struct page *locked_page, u64 start,
1538 				       u64 end, int *page_started,
1539 				       unsigned long *nr_written)
1540 {
1541 	int ret;
1542 
1543 	ret = cow_file_range(inode, locked_page, start, end, page_started,
1544 			     nr_written, 0);
1545 	if (ret)
1546 		return ret;
1547 
1548 	if (*page_started)
1549 		return 0;
1550 
1551 	__set_page_dirty_nobuffers(locked_page);
1552 	account_page_redirty(locked_page);
1553 	extent_write_locked_range(&inode->vfs_inode, start, end);
1554 	*page_started = 1;
1555 
1556 	return 0;
1557 }
1558 
1559 static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info,
1560 					u64 bytenr, u64 num_bytes)
1561 {
1562 	struct btrfs_root *csum_root = btrfs_csum_root(fs_info, bytenr);
1563 	struct btrfs_ordered_sum *sums;
1564 	int ret;
1565 	LIST_HEAD(list);
1566 
1567 	ret = btrfs_lookup_csums_range(csum_root, bytenr,
1568 				       bytenr + num_bytes - 1, &list, 0);
1569 	if (ret == 0 && list_empty(&list))
1570 		return 0;
1571 
1572 	while (!list_empty(&list)) {
1573 		sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1574 		list_del(&sums->list);
1575 		kfree(sums);
1576 	}
1577 	if (ret < 0)
1578 		return ret;
1579 	return 1;
1580 }
1581 
1582 static int fallback_to_cow(struct btrfs_inode *inode, struct page *locked_page,
1583 			   const u64 start, const u64 end,
1584 			   int *page_started, unsigned long *nr_written)
1585 {
1586 	const bool is_space_ino = btrfs_is_free_space_inode(inode);
1587 	const bool is_reloc_ino = btrfs_is_data_reloc_root(inode->root);
1588 	const u64 range_bytes = end + 1 - start;
1589 	struct extent_io_tree *io_tree = &inode->io_tree;
1590 	u64 range_start = start;
1591 	u64 count;
1592 
1593 	/*
1594 	 * If EXTENT_NORESERVE is set it means that when the buffered write was
1595 	 * made we had not enough available data space and therefore we did not
1596 	 * reserve data space for it, since we though we could do NOCOW for the
1597 	 * respective file range (either there is prealloc extent or the inode
1598 	 * has the NOCOW bit set).
1599 	 *
1600 	 * However when we need to fallback to COW mode (because for example the
1601 	 * block group for the corresponding extent was turned to RO mode by a
1602 	 * scrub or relocation) we need to do the following:
1603 	 *
1604 	 * 1) We increment the bytes_may_use counter of the data space info.
1605 	 *    If COW succeeds, it allocates a new data extent and after doing
1606 	 *    that it decrements the space info's bytes_may_use counter and
1607 	 *    increments its bytes_reserved counter by the same amount (we do
1608 	 *    this at btrfs_add_reserved_bytes()). So we need to increment the
1609 	 *    bytes_may_use counter to compensate (when space is reserved at
1610 	 *    buffered write time, the bytes_may_use counter is incremented);
1611 	 *
1612 	 * 2) We clear the EXTENT_NORESERVE bit from the range. We do this so
1613 	 *    that if the COW path fails for any reason, it decrements (through
1614 	 *    extent_clear_unlock_delalloc()) the bytes_may_use counter of the
1615 	 *    data space info, which we incremented in the step above.
1616 	 *
1617 	 * If we need to fallback to cow and the inode corresponds to a free
1618 	 * space cache inode or an inode of the data relocation tree, we must
1619 	 * also increment bytes_may_use of the data space_info for the same
1620 	 * reason. Space caches and relocated data extents always get a prealloc
1621 	 * extent for them, however scrub or balance may have set the block
1622 	 * group that contains that extent to RO mode and therefore force COW
1623 	 * when starting writeback.
1624 	 */
1625 	count = count_range_bits(io_tree, &range_start, end, range_bytes,
1626 				 EXTENT_NORESERVE, 0);
1627 	if (count > 0 || is_space_ino || is_reloc_ino) {
1628 		u64 bytes = count;
1629 		struct btrfs_fs_info *fs_info = inode->root->fs_info;
1630 		struct btrfs_space_info *sinfo = fs_info->data_sinfo;
1631 
1632 		if (is_space_ino || is_reloc_ino)
1633 			bytes = range_bytes;
1634 
1635 		spin_lock(&sinfo->lock);
1636 		btrfs_space_info_update_bytes_may_use(fs_info, sinfo, bytes);
1637 		spin_unlock(&sinfo->lock);
1638 
1639 		if (count > 0)
1640 			clear_extent_bit(io_tree, start, end, EXTENT_NORESERVE,
1641 					 0, 0, NULL);
1642 	}
1643 
1644 	return cow_file_range(inode, locked_page, start, end, page_started,
1645 			      nr_written, 1);
1646 }
1647 
1648 struct can_nocow_file_extent_args {
1649 	/* Input fields. */
1650 
1651 	/* Start file offset of the range we want to NOCOW. */
1652 	u64 start;
1653 	/* End file offset (inclusive) of the range we want to NOCOW. */
1654 	u64 end;
1655 	bool writeback_path;
1656 	bool strict;
1657 	/*
1658 	 * Free the path passed to can_nocow_file_extent() once it's not needed
1659 	 * anymore.
1660 	 */
1661 	bool free_path;
1662 
1663 	/* Output fields. Only set when can_nocow_file_extent() returns 1. */
1664 
1665 	u64 disk_bytenr;
1666 	u64 disk_num_bytes;
1667 	u64 extent_offset;
1668 	/* Number of bytes that can be written to in NOCOW mode. */
1669 	u64 num_bytes;
1670 };
1671 
1672 /*
1673  * Check if we can NOCOW the file extent that the path points to.
1674  * This function may return with the path released, so the caller should check
1675  * if path->nodes[0] is NULL or not if it needs to use the path afterwards.
1676  *
1677  * Returns: < 0 on error
1678  *            0 if we can not NOCOW
1679  *            1 if we can NOCOW
1680  */
1681 static int can_nocow_file_extent(struct btrfs_path *path,
1682 				 struct btrfs_key *key,
1683 				 struct btrfs_inode *inode,
1684 				 struct can_nocow_file_extent_args *args)
1685 {
1686 	const bool is_freespace_inode = btrfs_is_free_space_inode(inode);
1687 	struct extent_buffer *leaf = path->nodes[0];
1688 	struct btrfs_root *root = inode->root;
1689 	struct btrfs_file_extent_item *fi;
1690 	u64 extent_end;
1691 	u8 extent_type;
1692 	int can_nocow = 0;
1693 	int ret = 0;
1694 
1695 	fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
1696 	extent_type = btrfs_file_extent_type(leaf, fi);
1697 
1698 	if (extent_type == BTRFS_FILE_EXTENT_INLINE)
1699 		goto out;
1700 
1701 	/* Can't access these fields unless we know it's not an inline extent. */
1702 	args->disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1703 	args->disk_num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1704 	args->extent_offset = btrfs_file_extent_offset(leaf, fi);
1705 
1706 	if (!(inode->flags & BTRFS_INODE_NODATACOW) &&
1707 	    extent_type == BTRFS_FILE_EXTENT_REG)
1708 		goto out;
1709 
1710 	/*
1711 	 * If the extent was created before the generation where the last snapshot
1712 	 * for its subvolume was created, then this implies the extent is shared,
1713 	 * hence we must COW.
1714 	 */
1715 	if (!args->strict &&
1716 	    btrfs_file_extent_generation(leaf, fi) <=
1717 	    btrfs_root_last_snapshot(&root->root_item))
1718 		goto out;
1719 
1720 	/* An explicit hole, must COW. */
1721 	if (args->disk_bytenr == 0)
1722 		goto out;
1723 
1724 	/* Compressed/encrypted/encoded extents must be COWed. */
1725 	if (btrfs_file_extent_compression(leaf, fi) ||
1726 	    btrfs_file_extent_encryption(leaf, fi) ||
1727 	    btrfs_file_extent_other_encoding(leaf, fi))
1728 		goto out;
1729 
1730 	extent_end = btrfs_file_extent_end(path);
1731 
1732 	/*
1733 	 * The following checks can be expensive, as they need to take other
1734 	 * locks and do btree or rbtree searches, so release the path to avoid
1735 	 * blocking other tasks for too long.
1736 	 */
1737 	btrfs_release_path(path);
1738 
1739 	ret = btrfs_cross_ref_exist(root, btrfs_ino(inode),
1740 				    key->offset - args->extent_offset,
1741 				    args->disk_bytenr, false, path);
1742 	WARN_ON_ONCE(ret > 0 && is_freespace_inode);
1743 	if (ret != 0)
1744 		goto out;
1745 
1746 	if (args->free_path) {
1747 		/*
1748 		 * We don't need the path anymore, plus through the
1749 		 * csum_exist_in_range() call below we will end up allocating
1750 		 * another path. So free the path to avoid unnecessary extra
1751 		 * memory usage.
1752 		 */
1753 		btrfs_free_path(path);
1754 		path = NULL;
1755 	}
1756 
1757 	/* If there are pending snapshots for this root, we must COW. */
1758 	if (args->writeback_path && !is_freespace_inode &&
1759 	    atomic_read(&root->snapshot_force_cow))
1760 		goto out;
1761 
1762 	args->disk_bytenr += args->extent_offset;
1763 	args->disk_bytenr += args->start - key->offset;
1764 	args->num_bytes = min(args->end + 1, extent_end) - args->start;
1765 
1766 	/*
1767 	 * Force COW if csums exist in the range. This ensures that csums for a
1768 	 * given extent are either valid or do not exist.
1769 	 */
1770 	ret = csum_exist_in_range(root->fs_info, args->disk_bytenr, args->num_bytes);
1771 	WARN_ON_ONCE(ret > 0 && is_freespace_inode);
1772 	if (ret != 0)
1773 		goto out;
1774 
1775 	can_nocow = 1;
1776  out:
1777 	if (args->free_path && path)
1778 		btrfs_free_path(path);
1779 
1780 	return ret < 0 ? ret : can_nocow;
1781 }
1782 
1783 /*
1784  * when nowcow writeback call back.  This checks for snapshots or COW copies
1785  * of the extents that exist in the file, and COWs the file as required.
1786  *
1787  * If no cow copies or snapshots exist, we write directly to the existing
1788  * blocks on disk
1789  */
1790 static noinline int run_delalloc_nocow(struct btrfs_inode *inode,
1791 				       struct page *locked_page,
1792 				       const u64 start, const u64 end,
1793 				       int *page_started,
1794 				       unsigned long *nr_written)
1795 {
1796 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1797 	struct btrfs_root *root = inode->root;
1798 	struct btrfs_path *path;
1799 	u64 cow_start = (u64)-1;
1800 	u64 cur_offset = start;
1801 	int ret;
1802 	bool check_prev = true;
1803 	u64 ino = btrfs_ino(inode);
1804 	struct btrfs_block_group *bg;
1805 	bool nocow = false;
1806 	struct can_nocow_file_extent_args nocow_args = { 0 };
1807 
1808 	path = btrfs_alloc_path();
1809 	if (!path) {
1810 		extent_clear_unlock_delalloc(inode, start, end, locked_page,
1811 					     EXTENT_LOCKED | EXTENT_DELALLOC |
1812 					     EXTENT_DO_ACCOUNTING |
1813 					     EXTENT_DEFRAG, PAGE_UNLOCK |
1814 					     PAGE_START_WRITEBACK |
1815 					     PAGE_END_WRITEBACK);
1816 		return -ENOMEM;
1817 	}
1818 
1819 	nocow_args.end = end;
1820 	nocow_args.writeback_path = true;
1821 
1822 	while (1) {
1823 		struct btrfs_key found_key;
1824 		struct btrfs_file_extent_item *fi;
1825 		struct extent_buffer *leaf;
1826 		u64 extent_end;
1827 		u64 ram_bytes;
1828 		u64 nocow_end;
1829 		int extent_type;
1830 
1831 		nocow = false;
1832 
1833 		ret = btrfs_lookup_file_extent(NULL, root, path, ino,
1834 					       cur_offset, 0);
1835 		if (ret < 0)
1836 			goto error;
1837 
1838 		/*
1839 		 * If there is no extent for our range when doing the initial
1840 		 * search, then go back to the previous slot as it will be the
1841 		 * one containing the search offset
1842 		 */
1843 		if (ret > 0 && path->slots[0] > 0 && check_prev) {
1844 			leaf = path->nodes[0];
1845 			btrfs_item_key_to_cpu(leaf, &found_key,
1846 					      path->slots[0] - 1);
1847 			if (found_key.objectid == ino &&
1848 			    found_key.type == BTRFS_EXTENT_DATA_KEY)
1849 				path->slots[0]--;
1850 		}
1851 		check_prev = false;
1852 next_slot:
1853 		/* Go to next leaf if we have exhausted the current one */
1854 		leaf = path->nodes[0];
1855 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1856 			ret = btrfs_next_leaf(root, path);
1857 			if (ret < 0) {
1858 				if (cow_start != (u64)-1)
1859 					cur_offset = cow_start;
1860 				goto error;
1861 			}
1862 			if (ret > 0)
1863 				break;
1864 			leaf = path->nodes[0];
1865 		}
1866 
1867 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1868 
1869 		/* Didn't find anything for our INO */
1870 		if (found_key.objectid > ino)
1871 			break;
1872 		/*
1873 		 * Keep searching until we find an EXTENT_ITEM or there are no
1874 		 * more extents for this inode
1875 		 */
1876 		if (WARN_ON_ONCE(found_key.objectid < ino) ||
1877 		    found_key.type < BTRFS_EXTENT_DATA_KEY) {
1878 			path->slots[0]++;
1879 			goto next_slot;
1880 		}
1881 
1882 		/* Found key is not EXTENT_DATA_KEY or starts after req range */
1883 		if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
1884 		    found_key.offset > end)
1885 			break;
1886 
1887 		/*
1888 		 * If the found extent starts after requested offset, then
1889 		 * adjust extent_end to be right before this extent begins
1890 		 */
1891 		if (found_key.offset > cur_offset) {
1892 			extent_end = found_key.offset;
1893 			extent_type = 0;
1894 			goto out_check;
1895 		}
1896 
1897 		/*
1898 		 * Found extent which begins before our range and potentially
1899 		 * intersect it
1900 		 */
1901 		fi = btrfs_item_ptr(leaf, path->slots[0],
1902 				    struct btrfs_file_extent_item);
1903 		extent_type = btrfs_file_extent_type(leaf, fi);
1904 		/* If this is triggered then we have a memory corruption. */
1905 		ASSERT(extent_type < BTRFS_NR_FILE_EXTENT_TYPES);
1906 		if (WARN_ON(extent_type >= BTRFS_NR_FILE_EXTENT_TYPES)) {
1907 			ret = -EUCLEAN;
1908 			goto error;
1909 		}
1910 		ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1911 		extent_end = btrfs_file_extent_end(path);
1912 
1913 		/*
1914 		 * If the extent we got ends before our current offset, skip to
1915 		 * the next extent.
1916 		 */
1917 		if (extent_end <= cur_offset) {
1918 			path->slots[0]++;
1919 			goto next_slot;
1920 		}
1921 
1922 		nocow_args.start = cur_offset;
1923 		ret = can_nocow_file_extent(path, &found_key, inode, &nocow_args);
1924 		if (ret < 0) {
1925 			if (cow_start != (u64)-1)
1926 				cur_offset = cow_start;
1927 			goto error;
1928 		} else if (ret == 0) {
1929 			goto out_check;
1930 		}
1931 
1932 		ret = 0;
1933 		bg = btrfs_inc_nocow_writers(fs_info, nocow_args.disk_bytenr);
1934 		if (bg)
1935 			nocow = true;
1936 out_check:
1937 		/*
1938 		 * If nocow is false then record the beginning of the range
1939 		 * that needs to be COWed
1940 		 */
1941 		if (!nocow) {
1942 			if (cow_start == (u64)-1)
1943 				cow_start = cur_offset;
1944 			cur_offset = extent_end;
1945 			if (cur_offset > end)
1946 				break;
1947 			if (!path->nodes[0])
1948 				continue;
1949 			path->slots[0]++;
1950 			goto next_slot;
1951 		}
1952 
1953 		/*
1954 		 * COW range from cow_start to found_key.offset - 1. As the key
1955 		 * will contain the beginning of the first extent that can be
1956 		 * NOCOW, following one which needs to be COW'ed
1957 		 */
1958 		if (cow_start != (u64)-1) {
1959 			ret = fallback_to_cow(inode, locked_page,
1960 					      cow_start, found_key.offset - 1,
1961 					      page_started, nr_written);
1962 			if (ret)
1963 				goto error;
1964 			cow_start = (u64)-1;
1965 		}
1966 
1967 		nocow_end = cur_offset + nocow_args.num_bytes - 1;
1968 
1969 		if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1970 			u64 orig_start = found_key.offset - nocow_args.extent_offset;
1971 			struct extent_map *em;
1972 
1973 			em = create_io_em(inode, cur_offset, nocow_args.num_bytes,
1974 					  orig_start,
1975 					  nocow_args.disk_bytenr, /* block_start */
1976 					  nocow_args.num_bytes, /* block_len */
1977 					  nocow_args.disk_num_bytes, /* orig_block_len */
1978 					  ram_bytes, BTRFS_COMPRESS_NONE,
1979 					  BTRFS_ORDERED_PREALLOC);
1980 			if (IS_ERR(em)) {
1981 				ret = PTR_ERR(em);
1982 				goto error;
1983 			}
1984 			free_extent_map(em);
1985 			ret = btrfs_add_ordered_extent(inode,
1986 					cur_offset, nocow_args.num_bytes,
1987 					nocow_args.num_bytes,
1988 					nocow_args.disk_bytenr,
1989 					nocow_args.num_bytes, 0,
1990 					1 << BTRFS_ORDERED_PREALLOC,
1991 					BTRFS_COMPRESS_NONE);
1992 			if (ret) {
1993 				btrfs_drop_extent_cache(inode, cur_offset,
1994 							nocow_end, 0);
1995 				goto error;
1996 			}
1997 		} else {
1998 			ret = btrfs_add_ordered_extent(inode, cur_offset,
1999 						       nocow_args.num_bytes,
2000 						       nocow_args.num_bytes,
2001 						       nocow_args.disk_bytenr,
2002 						       nocow_args.num_bytes,
2003 						       0,
2004 						       1 << BTRFS_ORDERED_NOCOW,
2005 						       BTRFS_COMPRESS_NONE);
2006 			if (ret)
2007 				goto error;
2008 		}
2009 
2010 		if (nocow) {
2011 			btrfs_dec_nocow_writers(bg);
2012 			nocow = false;
2013 		}
2014 
2015 		if (btrfs_is_data_reloc_root(root))
2016 			/*
2017 			 * Error handled later, as we must prevent
2018 			 * extent_clear_unlock_delalloc() in error handler
2019 			 * from freeing metadata of created ordered extent.
2020 			 */
2021 			ret = btrfs_reloc_clone_csums(inode, cur_offset,
2022 						      nocow_args.num_bytes);
2023 
2024 		extent_clear_unlock_delalloc(inode, cur_offset, nocow_end,
2025 					     locked_page, EXTENT_LOCKED |
2026 					     EXTENT_DELALLOC |
2027 					     EXTENT_CLEAR_DATA_RESV,
2028 					     PAGE_UNLOCK | PAGE_SET_ORDERED);
2029 
2030 		cur_offset = extent_end;
2031 
2032 		/*
2033 		 * btrfs_reloc_clone_csums() error, now we're OK to call error
2034 		 * handler, as metadata for created ordered extent will only
2035 		 * be freed by btrfs_finish_ordered_io().
2036 		 */
2037 		if (ret)
2038 			goto error;
2039 		if (cur_offset > end)
2040 			break;
2041 	}
2042 	btrfs_release_path(path);
2043 
2044 	if (cur_offset <= end && cow_start == (u64)-1)
2045 		cow_start = cur_offset;
2046 
2047 	if (cow_start != (u64)-1) {
2048 		cur_offset = end;
2049 		ret = fallback_to_cow(inode, locked_page, cow_start, end,
2050 				      page_started, nr_written);
2051 		if (ret)
2052 			goto error;
2053 	}
2054 
2055 error:
2056 	if (nocow)
2057 		btrfs_dec_nocow_writers(bg);
2058 
2059 	if (ret && cur_offset < end)
2060 		extent_clear_unlock_delalloc(inode, cur_offset, end,
2061 					     locked_page, EXTENT_LOCKED |
2062 					     EXTENT_DELALLOC | EXTENT_DEFRAG |
2063 					     EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
2064 					     PAGE_START_WRITEBACK |
2065 					     PAGE_END_WRITEBACK);
2066 	btrfs_free_path(path);
2067 	return ret;
2068 }
2069 
2070 static bool should_nocow(struct btrfs_inode *inode, u64 start, u64 end)
2071 {
2072 	if (inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)) {
2073 		if (inode->defrag_bytes &&
2074 		    test_range_bit(&inode->io_tree, start, end, EXTENT_DEFRAG,
2075 				   0, NULL))
2076 			return false;
2077 		return true;
2078 	}
2079 	return false;
2080 }
2081 
2082 /*
2083  * Function to process delayed allocation (create CoW) for ranges which are
2084  * being touched for the first time.
2085  */
2086 int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct page *locked_page,
2087 		u64 start, u64 end, int *page_started, unsigned long *nr_written,
2088 		struct writeback_control *wbc)
2089 {
2090 	int ret;
2091 	const bool zoned = btrfs_is_zoned(inode->root->fs_info);
2092 
2093 	/*
2094 	 * The range must cover part of the @locked_page, or the returned
2095 	 * @page_started can confuse the caller.
2096 	 */
2097 	ASSERT(!(end <= page_offset(locked_page) ||
2098 		 start >= page_offset(locked_page) + PAGE_SIZE));
2099 
2100 	if (should_nocow(inode, start, end)) {
2101 		/*
2102 		 * Normally on a zoned device we're only doing COW writes, but
2103 		 * in case of relocation on a zoned filesystem we have taken
2104 		 * precaution, that we're only writing sequentially. It's safe
2105 		 * to use run_delalloc_nocow() here, like for  regular
2106 		 * preallocated inodes.
2107 		 */
2108 		ASSERT(!zoned || btrfs_is_data_reloc_root(inode->root));
2109 		ret = run_delalloc_nocow(inode, locked_page, start, end,
2110 					 page_started, nr_written);
2111 	} else if (!btrfs_inode_can_compress(inode) ||
2112 		   !inode_need_compress(inode, start, end)) {
2113 		if (zoned)
2114 			ret = run_delalloc_zoned(inode, locked_page, start, end,
2115 						 page_started, nr_written);
2116 		else
2117 			ret = cow_file_range(inode, locked_page, start, end,
2118 					     page_started, nr_written, 1);
2119 	} else {
2120 		set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, &inode->runtime_flags);
2121 		ret = cow_file_range_async(inode, wbc, locked_page, start, end,
2122 					   page_started, nr_written);
2123 	}
2124 	ASSERT(ret <= 0);
2125 	if (ret)
2126 		btrfs_cleanup_ordered_extents(inode, locked_page, start,
2127 					      end - start + 1);
2128 	return ret;
2129 }
2130 
2131 void btrfs_split_delalloc_extent(struct inode *inode,
2132 				 struct extent_state *orig, u64 split)
2133 {
2134 	u64 size;
2135 
2136 	/* not delalloc, ignore it */
2137 	if (!(orig->state & EXTENT_DELALLOC))
2138 		return;
2139 
2140 	size = orig->end - orig->start + 1;
2141 	if (size > BTRFS_MAX_EXTENT_SIZE) {
2142 		u32 num_extents;
2143 		u64 new_size;
2144 
2145 		/*
2146 		 * See the explanation in btrfs_merge_delalloc_extent, the same
2147 		 * applies here, just in reverse.
2148 		 */
2149 		new_size = orig->end - split + 1;
2150 		num_extents = count_max_extents(new_size);
2151 		new_size = split - orig->start;
2152 		num_extents += count_max_extents(new_size);
2153 		if (count_max_extents(size) >= num_extents)
2154 			return;
2155 	}
2156 
2157 	spin_lock(&BTRFS_I(inode)->lock);
2158 	btrfs_mod_outstanding_extents(BTRFS_I(inode), 1);
2159 	spin_unlock(&BTRFS_I(inode)->lock);
2160 }
2161 
2162 /*
2163  * Handle merged delayed allocation extents so we can keep track of new extents
2164  * that are just merged onto old extents, such as when we are doing sequential
2165  * writes, so we can properly account for the metadata space we'll need.
2166  */
2167 void btrfs_merge_delalloc_extent(struct inode *inode, struct extent_state *new,
2168 				 struct extent_state *other)
2169 {
2170 	u64 new_size, old_size;
2171 	u32 num_extents;
2172 
2173 	/* not delalloc, ignore it */
2174 	if (!(other->state & EXTENT_DELALLOC))
2175 		return;
2176 
2177 	if (new->start > other->start)
2178 		new_size = new->end - other->start + 1;
2179 	else
2180 		new_size = other->end - new->start + 1;
2181 
2182 	/* we're not bigger than the max, unreserve the space and go */
2183 	if (new_size <= BTRFS_MAX_EXTENT_SIZE) {
2184 		spin_lock(&BTRFS_I(inode)->lock);
2185 		btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
2186 		spin_unlock(&BTRFS_I(inode)->lock);
2187 		return;
2188 	}
2189 
2190 	/*
2191 	 * We have to add up either side to figure out how many extents were
2192 	 * accounted for before we merged into one big extent.  If the number of
2193 	 * extents we accounted for is <= the amount we need for the new range
2194 	 * then we can return, otherwise drop.  Think of it like this
2195 	 *
2196 	 * [ 4k][MAX_SIZE]
2197 	 *
2198 	 * So we've grown the extent by a MAX_SIZE extent, this would mean we
2199 	 * need 2 outstanding extents, on one side we have 1 and the other side
2200 	 * we have 1 so they are == and we can return.  But in this case
2201 	 *
2202 	 * [MAX_SIZE+4k][MAX_SIZE+4k]
2203 	 *
2204 	 * Each range on their own accounts for 2 extents, but merged together
2205 	 * they are only 3 extents worth of accounting, so we need to drop in
2206 	 * this case.
2207 	 */
2208 	old_size = other->end - other->start + 1;
2209 	num_extents = count_max_extents(old_size);
2210 	old_size = new->end - new->start + 1;
2211 	num_extents += count_max_extents(old_size);
2212 	if (count_max_extents(new_size) >= num_extents)
2213 		return;
2214 
2215 	spin_lock(&BTRFS_I(inode)->lock);
2216 	btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
2217 	spin_unlock(&BTRFS_I(inode)->lock);
2218 }
2219 
2220 static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
2221 				      struct inode *inode)
2222 {
2223 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2224 
2225 	spin_lock(&root->delalloc_lock);
2226 	if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
2227 		list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
2228 			      &root->delalloc_inodes);
2229 		set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
2230 			&BTRFS_I(inode)->runtime_flags);
2231 		root->nr_delalloc_inodes++;
2232 		if (root->nr_delalloc_inodes == 1) {
2233 			spin_lock(&fs_info->delalloc_root_lock);
2234 			BUG_ON(!list_empty(&root->delalloc_root));
2235 			list_add_tail(&root->delalloc_root,
2236 				      &fs_info->delalloc_roots);
2237 			spin_unlock(&fs_info->delalloc_root_lock);
2238 		}
2239 	}
2240 	spin_unlock(&root->delalloc_lock);
2241 }
2242 
2243 
2244 void __btrfs_del_delalloc_inode(struct btrfs_root *root,
2245 				struct btrfs_inode *inode)
2246 {
2247 	struct btrfs_fs_info *fs_info = root->fs_info;
2248 
2249 	if (!list_empty(&inode->delalloc_inodes)) {
2250 		list_del_init(&inode->delalloc_inodes);
2251 		clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
2252 			  &inode->runtime_flags);
2253 		root->nr_delalloc_inodes--;
2254 		if (!root->nr_delalloc_inodes) {
2255 			ASSERT(list_empty(&root->delalloc_inodes));
2256 			spin_lock(&fs_info->delalloc_root_lock);
2257 			BUG_ON(list_empty(&root->delalloc_root));
2258 			list_del_init(&root->delalloc_root);
2259 			spin_unlock(&fs_info->delalloc_root_lock);
2260 		}
2261 	}
2262 }
2263 
2264 static void btrfs_del_delalloc_inode(struct btrfs_root *root,
2265 				     struct btrfs_inode *inode)
2266 {
2267 	spin_lock(&root->delalloc_lock);
2268 	__btrfs_del_delalloc_inode(root, inode);
2269 	spin_unlock(&root->delalloc_lock);
2270 }
2271 
2272 /*
2273  * Properly track delayed allocation bytes in the inode and to maintain the
2274  * list of inodes that have pending delalloc work to be done.
2275  */
2276 void btrfs_set_delalloc_extent(struct inode *inode, struct extent_state *state,
2277 			       unsigned *bits)
2278 {
2279 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2280 
2281 	if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC))
2282 		WARN_ON(1);
2283 	/*
2284 	 * set_bit and clear bit hooks normally require _irqsave/restore
2285 	 * but in this case, we are only testing for the DELALLOC
2286 	 * bit, which is only set or cleared with irqs on
2287 	 */
2288 	if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
2289 		struct btrfs_root *root = BTRFS_I(inode)->root;
2290 		u64 len = state->end + 1 - state->start;
2291 		u32 num_extents = count_max_extents(len);
2292 		bool do_list = !btrfs_is_free_space_inode(BTRFS_I(inode));
2293 
2294 		spin_lock(&BTRFS_I(inode)->lock);
2295 		btrfs_mod_outstanding_extents(BTRFS_I(inode), num_extents);
2296 		spin_unlock(&BTRFS_I(inode)->lock);
2297 
2298 		/* For sanity tests */
2299 		if (btrfs_is_testing(fs_info))
2300 			return;
2301 
2302 		percpu_counter_add_batch(&fs_info->delalloc_bytes, len,
2303 					 fs_info->delalloc_batch);
2304 		spin_lock(&BTRFS_I(inode)->lock);
2305 		BTRFS_I(inode)->delalloc_bytes += len;
2306 		if (*bits & EXTENT_DEFRAG)
2307 			BTRFS_I(inode)->defrag_bytes += len;
2308 		if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
2309 					 &BTRFS_I(inode)->runtime_flags))
2310 			btrfs_add_delalloc_inodes(root, inode);
2311 		spin_unlock(&BTRFS_I(inode)->lock);
2312 	}
2313 
2314 	if (!(state->state & EXTENT_DELALLOC_NEW) &&
2315 	    (*bits & EXTENT_DELALLOC_NEW)) {
2316 		spin_lock(&BTRFS_I(inode)->lock);
2317 		BTRFS_I(inode)->new_delalloc_bytes += state->end + 1 -
2318 			state->start;
2319 		spin_unlock(&BTRFS_I(inode)->lock);
2320 	}
2321 }
2322 
2323 /*
2324  * Once a range is no longer delalloc this function ensures that proper
2325  * accounting happens.
2326  */
2327 void btrfs_clear_delalloc_extent(struct inode *vfs_inode,
2328 				 struct extent_state *state, unsigned *bits)
2329 {
2330 	struct btrfs_inode *inode = BTRFS_I(vfs_inode);
2331 	struct btrfs_fs_info *fs_info = btrfs_sb(vfs_inode->i_sb);
2332 	u64 len = state->end + 1 - state->start;
2333 	u32 num_extents = count_max_extents(len);
2334 
2335 	if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG)) {
2336 		spin_lock(&inode->lock);
2337 		inode->defrag_bytes -= len;
2338 		spin_unlock(&inode->lock);
2339 	}
2340 
2341 	/*
2342 	 * set_bit and clear bit hooks normally require _irqsave/restore
2343 	 * but in this case, we are only testing for the DELALLOC
2344 	 * bit, which is only set or cleared with irqs on
2345 	 */
2346 	if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
2347 		struct btrfs_root *root = inode->root;
2348 		bool do_list = !btrfs_is_free_space_inode(inode);
2349 
2350 		spin_lock(&inode->lock);
2351 		btrfs_mod_outstanding_extents(inode, -num_extents);
2352 		spin_unlock(&inode->lock);
2353 
2354 		/*
2355 		 * We don't reserve metadata space for space cache inodes so we
2356 		 * don't need to call delalloc_release_metadata if there is an
2357 		 * error.
2358 		 */
2359 		if (*bits & EXTENT_CLEAR_META_RESV &&
2360 		    root != fs_info->tree_root)
2361 			btrfs_delalloc_release_metadata(inode, len, false);
2362 
2363 		/* For sanity tests. */
2364 		if (btrfs_is_testing(fs_info))
2365 			return;
2366 
2367 		if (!btrfs_is_data_reloc_root(root) &&
2368 		    do_list && !(state->state & EXTENT_NORESERVE) &&
2369 		    (*bits & EXTENT_CLEAR_DATA_RESV))
2370 			btrfs_free_reserved_data_space_noquota(fs_info, len);
2371 
2372 		percpu_counter_add_batch(&fs_info->delalloc_bytes, -len,
2373 					 fs_info->delalloc_batch);
2374 		spin_lock(&inode->lock);
2375 		inode->delalloc_bytes -= len;
2376 		if (do_list && inode->delalloc_bytes == 0 &&
2377 		    test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
2378 					&inode->runtime_flags))
2379 			btrfs_del_delalloc_inode(root, inode);
2380 		spin_unlock(&inode->lock);
2381 	}
2382 
2383 	if ((state->state & EXTENT_DELALLOC_NEW) &&
2384 	    (*bits & EXTENT_DELALLOC_NEW)) {
2385 		spin_lock(&inode->lock);
2386 		ASSERT(inode->new_delalloc_bytes >= len);
2387 		inode->new_delalloc_bytes -= len;
2388 		if (*bits & EXTENT_ADD_INODE_BYTES)
2389 			inode_add_bytes(&inode->vfs_inode, len);
2390 		spin_unlock(&inode->lock);
2391 	}
2392 }
2393 
2394 /*
2395  * in order to insert checksums into the metadata in large chunks,
2396  * we wait until bio submission time.   All the pages in the bio are
2397  * checksummed and sums are attached onto the ordered extent record.
2398  *
2399  * At IO completion time the cums attached on the ordered extent record
2400  * are inserted into the btree
2401  */
2402 static blk_status_t btrfs_submit_bio_start(struct inode *inode, struct bio *bio,
2403 					   u64 dio_file_offset)
2404 {
2405 	return btrfs_csum_one_bio(BTRFS_I(inode), bio, (u64)-1, false);
2406 }
2407 
2408 /*
2409  * Split an extent_map at [start, start + len]
2410  *
2411  * This function is intended to be used only for extract_ordered_extent().
2412  */
2413 static int split_zoned_em(struct btrfs_inode *inode, u64 start, u64 len,
2414 			  u64 pre, u64 post)
2415 {
2416 	struct extent_map_tree *em_tree = &inode->extent_tree;
2417 	struct extent_map *em;
2418 	struct extent_map *split_pre = NULL;
2419 	struct extent_map *split_mid = NULL;
2420 	struct extent_map *split_post = NULL;
2421 	int ret = 0;
2422 	unsigned long flags;
2423 
2424 	/* Sanity check */
2425 	if (pre == 0 && post == 0)
2426 		return 0;
2427 
2428 	split_pre = alloc_extent_map();
2429 	if (pre)
2430 		split_mid = alloc_extent_map();
2431 	if (post)
2432 		split_post = alloc_extent_map();
2433 	if (!split_pre || (pre && !split_mid) || (post && !split_post)) {
2434 		ret = -ENOMEM;
2435 		goto out;
2436 	}
2437 
2438 	ASSERT(pre + post < len);
2439 
2440 	lock_extent(&inode->io_tree, start, start + len - 1);
2441 	write_lock(&em_tree->lock);
2442 	em = lookup_extent_mapping(em_tree, start, len);
2443 	if (!em) {
2444 		ret = -EIO;
2445 		goto out_unlock;
2446 	}
2447 
2448 	ASSERT(em->len == len);
2449 	ASSERT(!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags));
2450 	ASSERT(em->block_start < EXTENT_MAP_LAST_BYTE);
2451 	ASSERT(test_bit(EXTENT_FLAG_PINNED, &em->flags));
2452 	ASSERT(!test_bit(EXTENT_FLAG_LOGGING, &em->flags));
2453 	ASSERT(!list_empty(&em->list));
2454 
2455 	flags = em->flags;
2456 	clear_bit(EXTENT_FLAG_PINNED, &em->flags);
2457 
2458 	/* First, replace the em with a new extent_map starting from * em->start */
2459 	split_pre->start = em->start;
2460 	split_pre->len = (pre ? pre : em->len - post);
2461 	split_pre->orig_start = split_pre->start;
2462 	split_pre->block_start = em->block_start;
2463 	split_pre->block_len = split_pre->len;
2464 	split_pre->orig_block_len = split_pre->block_len;
2465 	split_pre->ram_bytes = split_pre->len;
2466 	split_pre->flags = flags;
2467 	split_pre->compress_type = em->compress_type;
2468 	split_pre->generation = em->generation;
2469 
2470 	replace_extent_mapping(em_tree, em, split_pre, 1);
2471 
2472 	/*
2473 	 * Now we only have an extent_map at:
2474 	 *     [em->start, em->start + pre] if pre != 0
2475 	 *     [em->start, em->start + em->len - post] if pre == 0
2476 	 */
2477 
2478 	if (pre) {
2479 		/* Insert the middle extent_map */
2480 		split_mid->start = em->start + pre;
2481 		split_mid->len = em->len - pre - post;
2482 		split_mid->orig_start = split_mid->start;
2483 		split_mid->block_start = em->block_start + pre;
2484 		split_mid->block_len = split_mid->len;
2485 		split_mid->orig_block_len = split_mid->block_len;
2486 		split_mid->ram_bytes = split_mid->len;
2487 		split_mid->flags = flags;
2488 		split_mid->compress_type = em->compress_type;
2489 		split_mid->generation = em->generation;
2490 		add_extent_mapping(em_tree, split_mid, 1);
2491 	}
2492 
2493 	if (post) {
2494 		split_post->start = em->start + em->len - post;
2495 		split_post->len = post;
2496 		split_post->orig_start = split_post->start;
2497 		split_post->block_start = em->block_start + em->len - post;
2498 		split_post->block_len = split_post->len;
2499 		split_post->orig_block_len = split_post->block_len;
2500 		split_post->ram_bytes = split_post->len;
2501 		split_post->flags = flags;
2502 		split_post->compress_type = em->compress_type;
2503 		split_post->generation = em->generation;
2504 		add_extent_mapping(em_tree, split_post, 1);
2505 	}
2506 
2507 	/* Once for us */
2508 	free_extent_map(em);
2509 	/* Once for the tree */
2510 	free_extent_map(em);
2511 
2512 out_unlock:
2513 	write_unlock(&em_tree->lock);
2514 	unlock_extent(&inode->io_tree, start, start + len - 1);
2515 out:
2516 	free_extent_map(split_pre);
2517 	free_extent_map(split_mid);
2518 	free_extent_map(split_post);
2519 
2520 	return ret;
2521 }
2522 
2523 static blk_status_t extract_ordered_extent(struct btrfs_inode *inode,
2524 					   struct bio *bio, loff_t file_offset)
2525 {
2526 	struct btrfs_ordered_extent *ordered;
2527 	u64 start = (u64)bio->bi_iter.bi_sector << SECTOR_SHIFT;
2528 	u64 file_len;
2529 	u64 len = bio->bi_iter.bi_size;
2530 	u64 end = start + len;
2531 	u64 ordered_end;
2532 	u64 pre, post;
2533 	int ret = 0;
2534 
2535 	ordered = btrfs_lookup_ordered_extent(inode, file_offset);
2536 	if (WARN_ON_ONCE(!ordered))
2537 		return BLK_STS_IOERR;
2538 
2539 	/* No need to split */
2540 	if (ordered->disk_num_bytes == len)
2541 		goto out;
2542 
2543 	/* We cannot split once end_bio'd ordered extent */
2544 	if (WARN_ON_ONCE(ordered->bytes_left != ordered->disk_num_bytes)) {
2545 		ret = -EINVAL;
2546 		goto out;
2547 	}
2548 
2549 	/* We cannot split a compressed ordered extent */
2550 	if (WARN_ON_ONCE(ordered->disk_num_bytes != ordered->num_bytes)) {
2551 		ret = -EINVAL;
2552 		goto out;
2553 	}
2554 
2555 	ordered_end = ordered->disk_bytenr + ordered->disk_num_bytes;
2556 	/* bio must be in one ordered extent */
2557 	if (WARN_ON_ONCE(start < ordered->disk_bytenr || end > ordered_end)) {
2558 		ret = -EINVAL;
2559 		goto out;
2560 	}
2561 
2562 	/* Checksum list should be empty */
2563 	if (WARN_ON_ONCE(!list_empty(&ordered->list))) {
2564 		ret = -EINVAL;
2565 		goto out;
2566 	}
2567 
2568 	file_len = ordered->num_bytes;
2569 	pre = start - ordered->disk_bytenr;
2570 	post = ordered_end - end;
2571 
2572 	ret = btrfs_split_ordered_extent(ordered, pre, post);
2573 	if (ret)
2574 		goto out;
2575 	ret = split_zoned_em(inode, file_offset, file_len, pre, post);
2576 
2577 out:
2578 	btrfs_put_ordered_extent(ordered);
2579 
2580 	return errno_to_blk_status(ret);
2581 }
2582 
2583 /*
2584  * extent_io.c submission hook. This does the right thing for csum calculation
2585  * on write, or reading the csums from the tree before a read.
2586  *
2587  * Rules about async/sync submit,
2588  * a) read:				sync submit
2589  *
2590  * b) write without checksum:		sync submit
2591  *
2592  * c) write with checksum:
2593  *    c-1) if bio is issued by fsync:	sync submit
2594  *         (sync_writers != 0)
2595  *
2596  *    c-2) if root is reloc root:	sync submit
2597  *         (only in case of buffered IO)
2598  *
2599  *    c-3) otherwise:			async submit
2600  */
2601 void btrfs_submit_data_bio(struct inode *inode, struct bio *bio,
2602 			   int mirror_num, enum btrfs_compression_type compress_type)
2603 {
2604 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2605 	struct btrfs_root *root = BTRFS_I(inode)->root;
2606 	enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA;
2607 	blk_status_t ret = 0;
2608 	int skip_sum;
2609 	int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
2610 
2611 	skip_sum = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) ||
2612 		test_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state);
2613 
2614 	if (btrfs_is_free_space_inode(BTRFS_I(inode)))
2615 		metadata = BTRFS_WQ_ENDIO_FREE_SPACE;
2616 
2617 	if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
2618 		struct page *page = bio_first_bvec_all(bio)->bv_page;
2619 		loff_t file_offset = page_offset(page);
2620 
2621 		ret = extract_ordered_extent(BTRFS_I(inode), bio, file_offset);
2622 		if (ret)
2623 			goto out;
2624 	}
2625 
2626 	if (btrfs_op(bio) != BTRFS_MAP_WRITE) {
2627 		ret = btrfs_bio_wq_end_io(fs_info, bio, metadata);
2628 		if (ret)
2629 			goto out;
2630 
2631 		if (compress_type != BTRFS_COMPRESS_NONE) {
2632 			/*
2633 			 * btrfs_submit_compressed_read will handle completing
2634 			 * the bio if there were any errors, so just return
2635 			 * here.
2636 			 */
2637 			btrfs_submit_compressed_read(inode, bio, mirror_num);
2638 			return;
2639 		} else {
2640 			/*
2641 			 * Lookup bio sums does extra checks around whether we
2642 			 * need to csum or not, which is why we ignore skip_sum
2643 			 * here.
2644 			 */
2645 			ret = btrfs_lookup_bio_sums(inode, bio, NULL);
2646 			if (ret)
2647 				goto out;
2648 		}
2649 		goto mapit;
2650 	} else if (async && !skip_sum) {
2651 		/* csum items have already been cloned */
2652 		if (btrfs_is_data_reloc_root(root))
2653 			goto mapit;
2654 		/* we're doing a write, do the async checksumming */
2655 		ret = btrfs_wq_submit_bio(inode, bio, mirror_num,
2656 					  0, btrfs_submit_bio_start);
2657 		goto out;
2658 	} else if (!skip_sum) {
2659 		ret = btrfs_csum_one_bio(BTRFS_I(inode), bio, (u64)-1, false);
2660 		if (ret)
2661 			goto out;
2662 	}
2663 
2664 mapit:
2665 	ret = btrfs_map_bio(fs_info, bio, mirror_num);
2666 
2667 out:
2668 	if (ret) {
2669 		bio->bi_status = ret;
2670 		bio_endio(bio);
2671 	}
2672 }
2673 
2674 /*
2675  * given a list of ordered sums record them in the inode.  This happens
2676  * at IO completion time based on sums calculated at bio submission time.
2677  */
2678 static int add_pending_csums(struct btrfs_trans_handle *trans,
2679 			     struct list_head *list)
2680 {
2681 	struct btrfs_ordered_sum *sum;
2682 	struct btrfs_root *csum_root = NULL;
2683 	int ret;
2684 
2685 	list_for_each_entry(sum, list, list) {
2686 		trans->adding_csums = true;
2687 		if (!csum_root)
2688 			csum_root = btrfs_csum_root(trans->fs_info,
2689 						    sum->bytenr);
2690 		ret = btrfs_csum_file_blocks(trans, csum_root, sum);
2691 		trans->adding_csums = false;
2692 		if (ret)
2693 			return ret;
2694 	}
2695 	return 0;
2696 }
2697 
2698 static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode,
2699 					 const u64 start,
2700 					 const u64 len,
2701 					 struct extent_state **cached_state)
2702 {
2703 	u64 search_start = start;
2704 	const u64 end = start + len - 1;
2705 
2706 	while (search_start < end) {
2707 		const u64 search_len = end - search_start + 1;
2708 		struct extent_map *em;
2709 		u64 em_len;
2710 		int ret = 0;
2711 
2712 		em = btrfs_get_extent(inode, NULL, 0, search_start, search_len);
2713 		if (IS_ERR(em))
2714 			return PTR_ERR(em);
2715 
2716 		if (em->block_start != EXTENT_MAP_HOLE)
2717 			goto next;
2718 
2719 		em_len = em->len;
2720 		if (em->start < search_start)
2721 			em_len -= search_start - em->start;
2722 		if (em_len > search_len)
2723 			em_len = search_len;
2724 
2725 		ret = set_extent_bit(&inode->io_tree, search_start,
2726 				     search_start + em_len - 1,
2727 				     EXTENT_DELALLOC_NEW, 0, NULL, cached_state,
2728 				     GFP_NOFS, NULL);
2729 next:
2730 		search_start = extent_map_end(em);
2731 		free_extent_map(em);
2732 		if (ret)
2733 			return ret;
2734 	}
2735 	return 0;
2736 }
2737 
2738 int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
2739 			      unsigned int extra_bits,
2740 			      struct extent_state **cached_state)
2741 {
2742 	WARN_ON(PAGE_ALIGNED(end));
2743 
2744 	if (start >= i_size_read(&inode->vfs_inode) &&
2745 	    !(inode->flags & BTRFS_INODE_PREALLOC)) {
2746 		/*
2747 		 * There can't be any extents following eof in this case so just
2748 		 * set the delalloc new bit for the range directly.
2749 		 */
2750 		extra_bits |= EXTENT_DELALLOC_NEW;
2751 	} else {
2752 		int ret;
2753 
2754 		ret = btrfs_find_new_delalloc_bytes(inode, start,
2755 						    end + 1 - start,
2756 						    cached_state);
2757 		if (ret)
2758 			return ret;
2759 	}
2760 
2761 	return set_extent_delalloc(&inode->io_tree, start, end, extra_bits,
2762 				   cached_state);
2763 }
2764 
2765 /* see btrfs_writepage_start_hook for details on why this is required */
2766 struct btrfs_writepage_fixup {
2767 	struct page *page;
2768 	struct inode *inode;
2769 	struct btrfs_work work;
2770 };
2771 
2772 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
2773 {
2774 	struct btrfs_writepage_fixup *fixup;
2775 	struct btrfs_ordered_extent *ordered;
2776 	struct extent_state *cached_state = NULL;
2777 	struct extent_changeset *data_reserved = NULL;
2778 	struct page *page;
2779 	struct btrfs_inode *inode;
2780 	u64 page_start;
2781 	u64 page_end;
2782 	int ret = 0;
2783 	bool free_delalloc_space = true;
2784 
2785 	fixup = container_of(work, struct btrfs_writepage_fixup, work);
2786 	page = fixup->page;
2787 	inode = BTRFS_I(fixup->inode);
2788 	page_start = page_offset(page);
2789 	page_end = page_offset(page) + PAGE_SIZE - 1;
2790 
2791 	/*
2792 	 * This is similar to page_mkwrite, we need to reserve the space before
2793 	 * we take the page lock.
2794 	 */
2795 	ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
2796 					   PAGE_SIZE);
2797 again:
2798 	lock_page(page);
2799 
2800 	/*
2801 	 * Before we queued this fixup, we took a reference on the page.
2802 	 * page->mapping may go NULL, but it shouldn't be moved to a different
2803 	 * address space.
2804 	 */
2805 	if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
2806 		/*
2807 		 * Unfortunately this is a little tricky, either
2808 		 *
2809 		 * 1) We got here and our page had already been dealt with and
2810 		 *    we reserved our space, thus ret == 0, so we need to just
2811 		 *    drop our space reservation and bail.  This can happen the
2812 		 *    first time we come into the fixup worker, or could happen
2813 		 *    while waiting for the ordered extent.
2814 		 * 2) Our page was already dealt with, but we happened to get an
2815 		 *    ENOSPC above from the btrfs_delalloc_reserve_space.  In
2816 		 *    this case we obviously don't have anything to release, but
2817 		 *    because the page was already dealt with we don't want to
2818 		 *    mark the page with an error, so make sure we're resetting
2819 		 *    ret to 0.  This is why we have this check _before_ the ret
2820 		 *    check, because we do not want to have a surprise ENOSPC
2821 		 *    when the page was already properly dealt with.
2822 		 */
2823 		if (!ret) {
2824 			btrfs_delalloc_release_extents(inode, PAGE_SIZE);
2825 			btrfs_delalloc_release_space(inode, data_reserved,
2826 						     page_start, PAGE_SIZE,
2827 						     true);
2828 		}
2829 		ret = 0;
2830 		goto out_page;
2831 	}
2832 
2833 	/*
2834 	 * We can't mess with the page state unless it is locked, so now that
2835 	 * it is locked bail if we failed to make our space reservation.
2836 	 */
2837 	if (ret)
2838 		goto out_page;
2839 
2840 	lock_extent_bits(&inode->io_tree, page_start, page_end, &cached_state);
2841 
2842 	/* already ordered? We're done */
2843 	if (PageOrdered(page))
2844 		goto out_reserved;
2845 
2846 	ordered = btrfs_lookup_ordered_range(inode, page_start, PAGE_SIZE);
2847 	if (ordered) {
2848 		unlock_extent_cached(&inode->io_tree, page_start, page_end,
2849 				     &cached_state);
2850 		unlock_page(page);
2851 		btrfs_start_ordered_extent(ordered, 1);
2852 		btrfs_put_ordered_extent(ordered);
2853 		goto again;
2854 	}
2855 
2856 	ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0,
2857 					&cached_state);
2858 	if (ret)
2859 		goto out_reserved;
2860 
2861 	/*
2862 	 * Everything went as planned, we're now the owner of a dirty page with
2863 	 * delayed allocation bits set and space reserved for our COW
2864 	 * destination.
2865 	 *
2866 	 * The page was dirty when we started, nothing should have cleaned it.
2867 	 */
2868 	BUG_ON(!PageDirty(page));
2869 	free_delalloc_space = false;
2870 out_reserved:
2871 	btrfs_delalloc_release_extents(inode, PAGE_SIZE);
2872 	if (free_delalloc_space)
2873 		btrfs_delalloc_release_space(inode, data_reserved, page_start,
2874 					     PAGE_SIZE, true);
2875 	unlock_extent_cached(&inode->io_tree, page_start, page_end,
2876 			     &cached_state);
2877 out_page:
2878 	if (ret) {
2879 		/*
2880 		 * We hit ENOSPC or other errors.  Update the mapping and page
2881 		 * to reflect the errors and clean the page.
2882 		 */
2883 		mapping_set_error(page->mapping, ret);
2884 		end_extent_writepage(page, ret, page_start, page_end);
2885 		clear_page_dirty_for_io(page);
2886 		SetPageError(page);
2887 	}
2888 	btrfs_page_clear_checked(inode->root->fs_info, page, page_start, PAGE_SIZE);
2889 	unlock_page(page);
2890 	put_page(page);
2891 	kfree(fixup);
2892 	extent_changeset_free(data_reserved);
2893 	/*
2894 	 * As a precaution, do a delayed iput in case it would be the last iput
2895 	 * that could need flushing space. Recursing back to fixup worker would
2896 	 * deadlock.
2897 	 */
2898 	btrfs_add_delayed_iput(&inode->vfs_inode);
2899 }
2900 
2901 /*
2902  * There are a few paths in the higher layers of the kernel that directly
2903  * set the page dirty bit without asking the filesystem if it is a
2904  * good idea.  This causes problems because we want to make sure COW
2905  * properly happens and the data=ordered rules are followed.
2906  *
2907  * In our case any range that doesn't have the ORDERED bit set
2908  * hasn't been properly setup for IO.  We kick off an async process
2909  * to fix it up.  The async helper will wait for ordered extents, set
2910  * the delalloc bit and make it safe to write the page.
2911  */
2912 int btrfs_writepage_cow_fixup(struct page *page)
2913 {
2914 	struct inode *inode = page->mapping->host;
2915 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2916 	struct btrfs_writepage_fixup *fixup;
2917 
2918 	/* This page has ordered extent covering it already */
2919 	if (PageOrdered(page))
2920 		return 0;
2921 
2922 	/*
2923 	 * PageChecked is set below when we create a fixup worker for this page,
2924 	 * don't try to create another one if we're already PageChecked()
2925 	 *
2926 	 * The extent_io writepage code will redirty the page if we send back
2927 	 * EAGAIN.
2928 	 */
2929 	if (PageChecked(page))
2930 		return -EAGAIN;
2931 
2932 	fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2933 	if (!fixup)
2934 		return -EAGAIN;
2935 
2936 	/*
2937 	 * We are already holding a reference to this inode from
2938 	 * write_cache_pages.  We need to hold it because the space reservation
2939 	 * takes place outside of the page lock, and we can't trust
2940 	 * page->mapping outside of the page lock.
2941 	 */
2942 	ihold(inode);
2943 	btrfs_page_set_checked(fs_info, page, page_offset(page), PAGE_SIZE);
2944 	get_page(page);
2945 	btrfs_init_work(&fixup->work, btrfs_writepage_fixup_worker, NULL, NULL);
2946 	fixup->page = page;
2947 	fixup->inode = inode;
2948 	btrfs_queue_work(fs_info->fixup_workers, &fixup->work);
2949 
2950 	return -EAGAIN;
2951 }
2952 
2953 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2954 				       struct btrfs_inode *inode, u64 file_pos,
2955 				       struct btrfs_file_extent_item *stack_fi,
2956 				       const bool update_inode_bytes,
2957 				       u64 qgroup_reserved)
2958 {
2959 	struct btrfs_root *root = inode->root;
2960 	const u64 sectorsize = root->fs_info->sectorsize;
2961 	struct btrfs_path *path;
2962 	struct extent_buffer *leaf;
2963 	struct btrfs_key ins;
2964 	u64 disk_num_bytes = btrfs_stack_file_extent_disk_num_bytes(stack_fi);
2965 	u64 disk_bytenr = btrfs_stack_file_extent_disk_bytenr(stack_fi);
2966 	u64 offset = btrfs_stack_file_extent_offset(stack_fi);
2967 	u64 num_bytes = btrfs_stack_file_extent_num_bytes(stack_fi);
2968 	u64 ram_bytes = btrfs_stack_file_extent_ram_bytes(stack_fi);
2969 	struct btrfs_drop_extents_args drop_args = { 0 };
2970 	int ret;
2971 
2972 	path = btrfs_alloc_path();
2973 	if (!path)
2974 		return -ENOMEM;
2975 
2976 	/*
2977 	 * we may be replacing one extent in the tree with another.
2978 	 * The new extent is pinned in the extent map, and we don't want
2979 	 * to drop it from the cache until it is completely in the btree.
2980 	 *
2981 	 * So, tell btrfs_drop_extents to leave this extent in the cache.
2982 	 * the caller is expected to unpin it and allow it to be merged
2983 	 * with the others.
2984 	 */
2985 	drop_args.path = path;
2986 	drop_args.start = file_pos;
2987 	drop_args.end = file_pos + num_bytes;
2988 	drop_args.replace_extent = true;
2989 	drop_args.extent_item_size = sizeof(*stack_fi);
2990 	ret = btrfs_drop_extents(trans, root, inode, &drop_args);
2991 	if (ret)
2992 		goto out;
2993 
2994 	if (!drop_args.extent_inserted) {
2995 		ins.objectid = btrfs_ino(inode);
2996 		ins.offset = file_pos;
2997 		ins.type = BTRFS_EXTENT_DATA_KEY;
2998 
2999 		ret = btrfs_insert_empty_item(trans, root, path, &ins,
3000 					      sizeof(*stack_fi));
3001 		if (ret)
3002 			goto out;
3003 	}
3004 	leaf = path->nodes[0];
3005 	btrfs_set_stack_file_extent_generation(stack_fi, trans->transid);
3006 	write_extent_buffer(leaf, stack_fi,
3007 			btrfs_item_ptr_offset(leaf, path->slots[0]),
3008 			sizeof(struct btrfs_file_extent_item));
3009 
3010 	btrfs_mark_buffer_dirty(leaf);
3011 	btrfs_release_path(path);
3012 
3013 	/*
3014 	 * If we dropped an inline extent here, we know the range where it is
3015 	 * was not marked with the EXTENT_DELALLOC_NEW bit, so we update the
3016 	 * number of bytes only for that range containing the inline extent.
3017 	 * The remaining of the range will be processed when clearning the
3018 	 * EXTENT_DELALLOC_BIT bit through the ordered extent completion.
3019 	 */
3020 	if (file_pos == 0 && !IS_ALIGNED(drop_args.bytes_found, sectorsize)) {
3021 		u64 inline_size = round_down(drop_args.bytes_found, sectorsize);
3022 
3023 		inline_size = drop_args.bytes_found - inline_size;
3024 		btrfs_update_inode_bytes(inode, sectorsize, inline_size);
3025 		drop_args.bytes_found -= inline_size;
3026 		num_bytes -= sectorsize;
3027 	}
3028 
3029 	if (update_inode_bytes)
3030 		btrfs_update_inode_bytes(inode, num_bytes, drop_args.bytes_found);
3031 
3032 	ins.objectid = disk_bytenr;
3033 	ins.offset = disk_num_bytes;
3034 	ins.type = BTRFS_EXTENT_ITEM_KEY;
3035 
3036 	ret = btrfs_inode_set_file_extent_range(inode, file_pos, ram_bytes);
3037 	if (ret)
3038 		goto out;
3039 
3040 	ret = btrfs_alloc_reserved_file_extent(trans, root, btrfs_ino(inode),
3041 					       file_pos - offset,
3042 					       qgroup_reserved, &ins);
3043 out:
3044 	btrfs_free_path(path);
3045 
3046 	return ret;
3047 }
3048 
3049 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info,
3050 					 u64 start, u64 len)
3051 {
3052 	struct btrfs_block_group *cache;
3053 
3054 	cache = btrfs_lookup_block_group(fs_info, start);
3055 	ASSERT(cache);
3056 
3057 	spin_lock(&cache->lock);
3058 	cache->delalloc_bytes -= len;
3059 	spin_unlock(&cache->lock);
3060 
3061 	btrfs_put_block_group(cache);
3062 }
3063 
3064 static int insert_ordered_extent_file_extent(struct btrfs_trans_handle *trans,
3065 					     struct btrfs_ordered_extent *oe)
3066 {
3067 	struct btrfs_file_extent_item stack_fi;
3068 	bool update_inode_bytes;
3069 	u64 num_bytes = oe->num_bytes;
3070 	u64 ram_bytes = oe->ram_bytes;
3071 
3072 	memset(&stack_fi, 0, sizeof(stack_fi));
3073 	btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_REG);
3074 	btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, oe->disk_bytenr);
3075 	btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi,
3076 						   oe->disk_num_bytes);
3077 	btrfs_set_stack_file_extent_offset(&stack_fi, oe->offset);
3078 	if (test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags))
3079 		num_bytes = ram_bytes = oe->truncated_len;
3080 	btrfs_set_stack_file_extent_num_bytes(&stack_fi, num_bytes);
3081 	btrfs_set_stack_file_extent_ram_bytes(&stack_fi, ram_bytes);
3082 	btrfs_set_stack_file_extent_compression(&stack_fi, oe->compress_type);
3083 	/* Encryption and other encoding is reserved and all 0 */
3084 
3085 	/*
3086 	 * For delalloc, when completing an ordered extent we update the inode's
3087 	 * bytes when clearing the range in the inode's io tree, so pass false
3088 	 * as the argument 'update_inode_bytes' to insert_reserved_file_extent(),
3089 	 * except if the ordered extent was truncated.
3090 	 */
3091 	update_inode_bytes = test_bit(BTRFS_ORDERED_DIRECT, &oe->flags) ||
3092 			     test_bit(BTRFS_ORDERED_ENCODED, &oe->flags) ||
3093 			     test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags);
3094 
3095 	return insert_reserved_file_extent(trans, BTRFS_I(oe->inode),
3096 					   oe->file_offset, &stack_fi,
3097 					   update_inode_bytes, oe->qgroup_rsv);
3098 }
3099 
3100 /*
3101  * As ordered data IO finishes, this gets called so we can finish
3102  * an ordered extent if the range of bytes in the file it covers are
3103  * fully written.
3104  */
3105 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
3106 {
3107 	struct btrfs_inode *inode = BTRFS_I(ordered_extent->inode);
3108 	struct btrfs_root *root = inode->root;
3109 	struct btrfs_fs_info *fs_info = root->fs_info;
3110 	struct btrfs_trans_handle *trans = NULL;
3111 	struct extent_io_tree *io_tree = &inode->io_tree;
3112 	struct extent_state *cached_state = NULL;
3113 	u64 start, end;
3114 	int compress_type = 0;
3115 	int ret = 0;
3116 	u64 logical_len = ordered_extent->num_bytes;
3117 	bool freespace_inode;
3118 	bool truncated = false;
3119 	bool clear_reserved_extent = true;
3120 	unsigned int clear_bits = EXTENT_DEFRAG;
3121 
3122 	start = ordered_extent->file_offset;
3123 	end = start + ordered_extent->num_bytes - 1;
3124 
3125 	if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3126 	    !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) &&
3127 	    !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags) &&
3128 	    !test_bit(BTRFS_ORDERED_ENCODED, &ordered_extent->flags))
3129 		clear_bits |= EXTENT_DELALLOC_NEW;
3130 
3131 	freespace_inode = btrfs_is_free_space_inode(inode);
3132 
3133 	if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
3134 		ret = -EIO;
3135 		goto out;
3136 	}
3137 
3138 	/* A valid bdev implies a write on a sequential zone */
3139 	if (ordered_extent->bdev) {
3140 		btrfs_rewrite_logical_zoned(ordered_extent);
3141 		btrfs_zone_finish_endio(fs_info, ordered_extent->disk_bytenr,
3142 					ordered_extent->disk_num_bytes);
3143 	}
3144 
3145 	btrfs_free_io_failure_record(inode, start, end);
3146 
3147 	if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
3148 		truncated = true;
3149 		logical_len = ordered_extent->truncated_len;
3150 		/* Truncated the entire extent, don't bother adding */
3151 		if (!logical_len)
3152 			goto out;
3153 	}
3154 
3155 	if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
3156 		BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
3157 
3158 		btrfs_inode_safe_disk_i_size_write(inode, 0);
3159 		if (freespace_inode)
3160 			trans = btrfs_join_transaction_spacecache(root);
3161 		else
3162 			trans = btrfs_join_transaction(root);
3163 		if (IS_ERR(trans)) {
3164 			ret = PTR_ERR(trans);
3165 			trans = NULL;
3166 			goto out;
3167 		}
3168 		trans->block_rsv = &inode->block_rsv;
3169 		ret = btrfs_update_inode_fallback(trans, root, inode);
3170 		if (ret) /* -ENOMEM or corruption */
3171 			btrfs_abort_transaction(trans, ret);
3172 		goto out;
3173 	}
3174 
3175 	clear_bits |= EXTENT_LOCKED;
3176 	lock_extent_bits(io_tree, start, end, &cached_state);
3177 
3178 	if (freespace_inode)
3179 		trans = btrfs_join_transaction_spacecache(root);
3180 	else
3181 		trans = btrfs_join_transaction(root);
3182 	if (IS_ERR(trans)) {
3183 		ret = PTR_ERR(trans);
3184 		trans = NULL;
3185 		goto out;
3186 	}
3187 
3188 	trans->block_rsv = &inode->block_rsv;
3189 
3190 	if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
3191 		compress_type = ordered_extent->compress_type;
3192 	if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
3193 		BUG_ON(compress_type);
3194 		ret = btrfs_mark_extent_written(trans, inode,
3195 						ordered_extent->file_offset,
3196 						ordered_extent->file_offset +
3197 						logical_len);
3198 	} else {
3199 		BUG_ON(root == fs_info->tree_root);
3200 		ret = insert_ordered_extent_file_extent(trans, ordered_extent);
3201 		if (!ret) {
3202 			clear_reserved_extent = false;
3203 			btrfs_release_delalloc_bytes(fs_info,
3204 						ordered_extent->disk_bytenr,
3205 						ordered_extent->disk_num_bytes);
3206 		}
3207 	}
3208 	unpin_extent_cache(&inode->extent_tree, ordered_extent->file_offset,
3209 			   ordered_extent->num_bytes, trans->transid);
3210 	if (ret < 0) {
3211 		btrfs_abort_transaction(trans, ret);
3212 		goto out;
3213 	}
3214 
3215 	ret = add_pending_csums(trans, &ordered_extent->list);
3216 	if (ret) {
3217 		btrfs_abort_transaction(trans, ret);
3218 		goto out;
3219 	}
3220 
3221 	/*
3222 	 * If this is a new delalloc range, clear its new delalloc flag to
3223 	 * update the inode's number of bytes. This needs to be done first
3224 	 * before updating the inode item.
3225 	 */
3226 	if ((clear_bits & EXTENT_DELALLOC_NEW) &&
3227 	    !test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags))
3228 		clear_extent_bit(&inode->io_tree, start, end,
3229 				 EXTENT_DELALLOC_NEW | EXTENT_ADD_INODE_BYTES,
3230 				 0, 0, &cached_state);
3231 
3232 	btrfs_inode_safe_disk_i_size_write(inode, 0);
3233 	ret = btrfs_update_inode_fallback(trans, root, inode);
3234 	if (ret) { /* -ENOMEM or corruption */
3235 		btrfs_abort_transaction(trans, ret);
3236 		goto out;
3237 	}
3238 	ret = 0;
3239 out:
3240 	clear_extent_bit(&inode->io_tree, start, end, clear_bits,
3241 			 (clear_bits & EXTENT_LOCKED) ? 1 : 0, 0,
3242 			 &cached_state);
3243 
3244 	if (trans)
3245 		btrfs_end_transaction(trans);
3246 
3247 	if (ret || truncated) {
3248 		u64 unwritten_start = start;
3249 
3250 		/*
3251 		 * If we failed to finish this ordered extent for any reason we
3252 		 * need to make sure BTRFS_ORDERED_IOERR is set on the ordered
3253 		 * extent, and mark the inode with the error if it wasn't
3254 		 * already set.  Any error during writeback would have already
3255 		 * set the mapping error, so we need to set it if we're the ones
3256 		 * marking this ordered extent as failed.
3257 		 */
3258 		if (ret && !test_and_set_bit(BTRFS_ORDERED_IOERR,
3259 					     &ordered_extent->flags))
3260 			mapping_set_error(ordered_extent->inode->i_mapping, -EIO);
3261 
3262 		if (truncated)
3263 			unwritten_start += logical_len;
3264 		clear_extent_uptodate(io_tree, unwritten_start, end, NULL);
3265 
3266 		/* Drop the cache for the part of the extent we didn't write. */
3267 		btrfs_drop_extent_cache(inode, unwritten_start, end, 0);
3268 
3269 		/*
3270 		 * If the ordered extent had an IOERR or something else went
3271 		 * wrong we need to return the space for this ordered extent
3272 		 * back to the allocator.  We only free the extent in the
3273 		 * truncated case if we didn't write out the extent at all.
3274 		 *
3275 		 * If we made it past insert_reserved_file_extent before we
3276 		 * errored out then we don't need to do this as the accounting
3277 		 * has already been done.
3278 		 */
3279 		if ((ret || !logical_len) &&
3280 		    clear_reserved_extent &&
3281 		    !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3282 		    !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
3283 			/*
3284 			 * Discard the range before returning it back to the
3285 			 * free space pool
3286 			 */
3287 			if (ret && btrfs_test_opt(fs_info, DISCARD_SYNC))
3288 				btrfs_discard_extent(fs_info,
3289 						ordered_extent->disk_bytenr,
3290 						ordered_extent->disk_num_bytes,
3291 						NULL);
3292 			btrfs_free_reserved_extent(fs_info,
3293 					ordered_extent->disk_bytenr,
3294 					ordered_extent->disk_num_bytes, 1);
3295 		}
3296 	}
3297 
3298 	/*
3299 	 * This needs to be done to make sure anybody waiting knows we are done
3300 	 * updating everything for this ordered extent.
3301 	 */
3302 	btrfs_remove_ordered_extent(inode, ordered_extent);
3303 
3304 	/* once for us */
3305 	btrfs_put_ordered_extent(ordered_extent);
3306 	/* once for the tree */
3307 	btrfs_put_ordered_extent(ordered_extent);
3308 
3309 	return ret;
3310 }
3311 
3312 static void finish_ordered_fn(struct btrfs_work *work)
3313 {
3314 	struct btrfs_ordered_extent *ordered_extent;
3315 	ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
3316 	btrfs_finish_ordered_io(ordered_extent);
3317 }
3318 
3319 void btrfs_writepage_endio_finish_ordered(struct btrfs_inode *inode,
3320 					  struct page *page, u64 start,
3321 					  u64 end, bool uptodate)
3322 {
3323 	trace_btrfs_writepage_end_io_hook(inode, start, end, uptodate);
3324 
3325 	btrfs_mark_ordered_io_finished(inode, page, start, end + 1 - start,
3326 				       finish_ordered_fn, uptodate);
3327 }
3328 
3329 /*
3330  * check_data_csum - verify checksum of one sector of uncompressed data
3331  * @inode:	inode
3332  * @io_bio:	btrfs_io_bio which contains the csum
3333  * @bio_offset:	offset to the beginning of the bio (in bytes)
3334  * @page:	page where is the data to be verified
3335  * @pgoff:	offset inside the page
3336  * @start:	logical offset in the file
3337  *
3338  * The length of such check is always one sector size.
3339  */
3340 static int check_data_csum(struct inode *inode, struct btrfs_bio *bbio,
3341 			   u32 bio_offset, struct page *page, u32 pgoff,
3342 			   u64 start)
3343 {
3344 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3345 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
3346 	char *kaddr;
3347 	u32 len = fs_info->sectorsize;
3348 	const u32 csum_size = fs_info->csum_size;
3349 	unsigned int offset_sectors;
3350 	u8 *csum_expected;
3351 	u8 csum[BTRFS_CSUM_SIZE];
3352 
3353 	ASSERT(pgoff + len <= PAGE_SIZE);
3354 
3355 	offset_sectors = bio_offset >> fs_info->sectorsize_bits;
3356 	csum_expected = ((u8 *)bbio->csum) + offset_sectors * csum_size;
3357 
3358 	kaddr = kmap_atomic(page);
3359 	shash->tfm = fs_info->csum_shash;
3360 
3361 	crypto_shash_digest(shash, kaddr + pgoff, len, csum);
3362 	kunmap_atomic(kaddr);
3363 
3364 	if (memcmp(csum, csum_expected, csum_size))
3365 		goto zeroit;
3366 
3367 	return 0;
3368 zeroit:
3369 	btrfs_print_data_csum_error(BTRFS_I(inode), start, csum, csum_expected,
3370 				    bbio->mirror_num);
3371 	if (bbio->device)
3372 		btrfs_dev_stat_inc_and_print(bbio->device,
3373 					     BTRFS_DEV_STAT_CORRUPTION_ERRS);
3374 	memzero_page(page, pgoff, len);
3375 	return -EIO;
3376 }
3377 
3378 /*
3379  * When reads are done, we need to check csums to verify the data is correct.
3380  * if there's a match, we allow the bio to finish.  If not, the code in
3381  * extent_io.c will try to find good copies for us.
3382  *
3383  * @bio_offset:	offset to the beginning of the bio (in bytes)
3384  * @start:	file offset of the range start
3385  * @end:	file offset of the range end (inclusive)
3386  *
3387  * Return a bitmap where bit set means a csum mismatch, and bit not set means
3388  * csum match.
3389  */
3390 unsigned int btrfs_verify_data_csum(struct btrfs_bio *bbio,
3391 				    u32 bio_offset, struct page *page,
3392 				    u64 start, u64 end)
3393 {
3394 	struct inode *inode = page->mapping->host;
3395 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3396 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3397 	struct btrfs_root *root = BTRFS_I(inode)->root;
3398 	const u32 sectorsize = root->fs_info->sectorsize;
3399 	u32 pg_off;
3400 	unsigned int result = 0;
3401 
3402 	if (btrfs_page_test_checked(fs_info, page, start, end + 1 - start)) {
3403 		btrfs_page_clear_checked(fs_info, page, start, end + 1 - start);
3404 		return 0;
3405 	}
3406 
3407 	/*
3408 	 * This only happens for NODATASUM or compressed read.
3409 	 * Normally this should be covered by above check for compressed read
3410 	 * or the next check for NODATASUM.  Just do a quicker exit here.
3411 	 */
3412 	if (bbio->csum == NULL)
3413 		return 0;
3414 
3415 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
3416 		return 0;
3417 
3418 	if (unlikely(test_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state)))
3419 		return 0;
3420 
3421 	ASSERT(page_offset(page) <= start &&
3422 	       end <= page_offset(page) + PAGE_SIZE - 1);
3423 	for (pg_off = offset_in_page(start);
3424 	     pg_off < offset_in_page(end);
3425 	     pg_off += sectorsize, bio_offset += sectorsize) {
3426 		u64 file_offset = pg_off + page_offset(page);
3427 		int ret;
3428 
3429 		if (btrfs_is_data_reloc_root(root) &&
3430 		    test_range_bit(io_tree, file_offset,
3431 				   file_offset + sectorsize - 1,
3432 				   EXTENT_NODATASUM, 1, NULL)) {
3433 			/* Skip the range without csum for data reloc inode */
3434 			clear_extent_bits(io_tree, file_offset,
3435 					  file_offset + sectorsize - 1,
3436 					  EXTENT_NODATASUM);
3437 			continue;
3438 		}
3439 		ret = check_data_csum(inode, bbio, bio_offset, page, pg_off,
3440 				      page_offset(page) + pg_off);
3441 		if (ret < 0) {
3442 			const int nr_bit = (pg_off - offset_in_page(start)) >>
3443 				     root->fs_info->sectorsize_bits;
3444 
3445 			result |= (1U << nr_bit);
3446 		}
3447 	}
3448 	return result;
3449 }
3450 
3451 /*
3452  * btrfs_add_delayed_iput - perform a delayed iput on @inode
3453  *
3454  * @inode: The inode we want to perform iput on
3455  *
3456  * This function uses the generic vfs_inode::i_count to track whether we should
3457  * just decrement it (in case it's > 1) or if this is the last iput then link
3458  * the inode to the delayed iput machinery. Delayed iputs are processed at
3459  * transaction commit time/superblock commit/cleaner kthread.
3460  */
3461 void btrfs_add_delayed_iput(struct inode *inode)
3462 {
3463 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3464 	struct btrfs_inode *binode = BTRFS_I(inode);
3465 
3466 	if (atomic_add_unless(&inode->i_count, -1, 1))
3467 		return;
3468 
3469 	atomic_inc(&fs_info->nr_delayed_iputs);
3470 	spin_lock(&fs_info->delayed_iput_lock);
3471 	ASSERT(list_empty(&binode->delayed_iput));
3472 	list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs);
3473 	spin_unlock(&fs_info->delayed_iput_lock);
3474 	if (!test_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags))
3475 		wake_up_process(fs_info->cleaner_kthread);
3476 }
3477 
3478 static void run_delayed_iput_locked(struct btrfs_fs_info *fs_info,
3479 				    struct btrfs_inode *inode)
3480 {
3481 	list_del_init(&inode->delayed_iput);
3482 	spin_unlock(&fs_info->delayed_iput_lock);
3483 	iput(&inode->vfs_inode);
3484 	if (atomic_dec_and_test(&fs_info->nr_delayed_iputs))
3485 		wake_up(&fs_info->delayed_iputs_wait);
3486 	spin_lock(&fs_info->delayed_iput_lock);
3487 }
3488 
3489 static void btrfs_run_delayed_iput(struct btrfs_fs_info *fs_info,
3490 				   struct btrfs_inode *inode)
3491 {
3492 	if (!list_empty(&inode->delayed_iput)) {
3493 		spin_lock(&fs_info->delayed_iput_lock);
3494 		if (!list_empty(&inode->delayed_iput))
3495 			run_delayed_iput_locked(fs_info, inode);
3496 		spin_unlock(&fs_info->delayed_iput_lock);
3497 	}
3498 }
3499 
3500 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info)
3501 {
3502 
3503 	spin_lock(&fs_info->delayed_iput_lock);
3504 	while (!list_empty(&fs_info->delayed_iputs)) {
3505 		struct btrfs_inode *inode;
3506 
3507 		inode = list_first_entry(&fs_info->delayed_iputs,
3508 				struct btrfs_inode, delayed_iput);
3509 		run_delayed_iput_locked(fs_info, inode);
3510 		cond_resched_lock(&fs_info->delayed_iput_lock);
3511 	}
3512 	spin_unlock(&fs_info->delayed_iput_lock);
3513 }
3514 
3515 /**
3516  * Wait for flushing all delayed iputs
3517  *
3518  * @fs_info:  the filesystem
3519  *
3520  * This will wait on any delayed iputs that are currently running with KILLABLE
3521  * set.  Once they are all done running we will return, unless we are killed in
3522  * which case we return EINTR. This helps in user operations like fallocate etc
3523  * that might get blocked on the iputs.
3524  *
3525  * Return EINTR if we were killed, 0 if nothing's pending
3526  */
3527 int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info)
3528 {
3529 	int ret = wait_event_killable(fs_info->delayed_iputs_wait,
3530 			atomic_read(&fs_info->nr_delayed_iputs) == 0);
3531 	if (ret)
3532 		return -EINTR;
3533 	return 0;
3534 }
3535 
3536 /*
3537  * This creates an orphan entry for the given inode in case something goes wrong
3538  * in the middle of an unlink.
3539  */
3540 int btrfs_orphan_add(struct btrfs_trans_handle *trans,
3541 		     struct btrfs_inode *inode)
3542 {
3543 	int ret;
3544 
3545 	ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode));
3546 	if (ret && ret != -EEXIST) {
3547 		btrfs_abort_transaction(trans, ret);
3548 		return ret;
3549 	}
3550 
3551 	return 0;
3552 }
3553 
3554 /*
3555  * We have done the delete so we can go ahead and remove the orphan item for
3556  * this particular inode.
3557  */
3558 static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3559 			    struct btrfs_inode *inode)
3560 {
3561 	return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode));
3562 }
3563 
3564 /*
3565  * this cleans up any orphans that may be left on the list from the last use
3566  * of this root.
3567  */
3568 int btrfs_orphan_cleanup(struct btrfs_root *root)
3569 {
3570 	struct btrfs_fs_info *fs_info = root->fs_info;
3571 	struct btrfs_path *path;
3572 	struct extent_buffer *leaf;
3573 	struct btrfs_key key, found_key;
3574 	struct btrfs_trans_handle *trans;
3575 	struct inode *inode;
3576 	u64 last_objectid = 0;
3577 	int ret = 0, nr_unlink = 0;
3578 
3579 	/* Bail out if the cleanup is already running. */
3580 	if (test_and_set_bit(BTRFS_ROOT_ORPHAN_CLEANUP, &root->state))
3581 		return 0;
3582 
3583 	path = btrfs_alloc_path();
3584 	if (!path) {
3585 		ret = -ENOMEM;
3586 		goto out;
3587 	}
3588 	path->reada = READA_BACK;
3589 
3590 	key.objectid = BTRFS_ORPHAN_OBJECTID;
3591 	key.type = BTRFS_ORPHAN_ITEM_KEY;
3592 	key.offset = (u64)-1;
3593 
3594 	while (1) {
3595 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3596 		if (ret < 0)
3597 			goto out;
3598 
3599 		/*
3600 		 * if ret == 0 means we found what we were searching for, which
3601 		 * is weird, but possible, so only screw with path if we didn't
3602 		 * find the key and see if we have stuff that matches
3603 		 */
3604 		if (ret > 0) {
3605 			ret = 0;
3606 			if (path->slots[0] == 0)
3607 				break;
3608 			path->slots[0]--;
3609 		}
3610 
3611 		/* pull out the item */
3612 		leaf = path->nodes[0];
3613 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3614 
3615 		/* make sure the item matches what we want */
3616 		if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3617 			break;
3618 		if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
3619 			break;
3620 
3621 		/* release the path since we're done with it */
3622 		btrfs_release_path(path);
3623 
3624 		/*
3625 		 * this is where we are basically btrfs_lookup, without the
3626 		 * crossing root thing.  we store the inode number in the
3627 		 * offset of the orphan item.
3628 		 */
3629 
3630 		if (found_key.offset == last_objectid) {
3631 			btrfs_err(fs_info,
3632 				  "Error removing orphan entry, stopping orphan cleanup");
3633 			ret = -EINVAL;
3634 			goto out;
3635 		}
3636 
3637 		last_objectid = found_key.offset;
3638 
3639 		found_key.objectid = found_key.offset;
3640 		found_key.type = BTRFS_INODE_ITEM_KEY;
3641 		found_key.offset = 0;
3642 		inode = btrfs_iget(fs_info->sb, last_objectid, root);
3643 		ret = PTR_ERR_OR_ZERO(inode);
3644 		if (ret && ret != -ENOENT)
3645 			goto out;
3646 
3647 		if (ret == -ENOENT && root == fs_info->tree_root) {
3648 			struct btrfs_root *dead_root;
3649 			int is_dead_root = 0;
3650 
3651 			/*
3652 			 * This is an orphan in the tree root. Currently these
3653 			 * could come from 2 sources:
3654 			 *  a) a root (snapshot/subvolume) deletion in progress
3655 			 *  b) a free space cache inode
3656 			 * We need to distinguish those two, as the orphan item
3657 			 * for a root must not get deleted before the deletion
3658 			 * of the snapshot/subvolume's tree completes.
3659 			 *
3660 			 * btrfs_find_orphan_roots() ran before us, which has
3661 			 * found all deleted roots and loaded them into
3662 			 * fs_info->fs_roots. So here we can find if an
3663 			 * orphan item corresponds to a deleted root by looking
3664 			 * up the root from that xarray.
3665 			 */
3666 
3667 			spin_lock(&fs_info->fs_roots_lock);
3668 			dead_root = xa_load(&fs_info->fs_roots,
3669 					    (unsigned long)found_key.objectid);
3670 			if (dead_root && btrfs_root_refs(&dead_root->root_item) == 0)
3671 				is_dead_root = 1;
3672 			spin_unlock(&fs_info->fs_roots_lock);
3673 
3674 			if (is_dead_root) {
3675 				/* prevent this orphan from being found again */
3676 				key.offset = found_key.objectid - 1;
3677 				continue;
3678 			}
3679 
3680 		}
3681 
3682 		/*
3683 		 * If we have an inode with links, there are a couple of
3684 		 * possibilities:
3685 		 *
3686 		 * 1. We were halfway through creating fsverity metadata for the
3687 		 * file. In that case, the orphan item represents incomplete
3688 		 * fsverity metadata which must be cleaned up with
3689 		 * btrfs_drop_verity_items and deleting the orphan item.
3690 
3691 		 * 2. Old kernels (before v3.12) used to create an
3692 		 * orphan item for truncate indicating that there were possibly
3693 		 * extent items past i_size that needed to be deleted. In v3.12,
3694 		 * truncate was changed to update i_size in sync with the extent
3695 		 * items, but the (useless) orphan item was still created. Since
3696 		 * v4.18, we don't create the orphan item for truncate at all.
3697 		 *
3698 		 * So, this item could mean that we need to do a truncate, but
3699 		 * only if this filesystem was last used on a pre-v3.12 kernel
3700 		 * and was not cleanly unmounted. The odds of that are quite
3701 		 * slim, and it's a pain to do the truncate now, so just delete
3702 		 * the orphan item.
3703 		 *
3704 		 * It's also possible that this orphan item was supposed to be
3705 		 * deleted but wasn't. The inode number may have been reused,
3706 		 * but either way, we can delete the orphan item.
3707 		 */
3708 		if (ret == -ENOENT || inode->i_nlink) {
3709 			if (!ret) {
3710 				ret = btrfs_drop_verity_items(BTRFS_I(inode));
3711 				iput(inode);
3712 				if (ret)
3713 					goto out;
3714 			}
3715 			trans = btrfs_start_transaction(root, 1);
3716 			if (IS_ERR(trans)) {
3717 				ret = PTR_ERR(trans);
3718 				goto out;
3719 			}
3720 			btrfs_debug(fs_info, "auto deleting %Lu",
3721 				    found_key.objectid);
3722 			ret = btrfs_del_orphan_item(trans, root,
3723 						    found_key.objectid);
3724 			btrfs_end_transaction(trans);
3725 			if (ret)
3726 				goto out;
3727 			continue;
3728 		}
3729 
3730 		nr_unlink++;
3731 
3732 		/* this will do delete_inode and everything for us */
3733 		iput(inode);
3734 	}
3735 	/* release the path since we're done with it */
3736 	btrfs_release_path(path);
3737 
3738 	if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
3739 		trans = btrfs_join_transaction(root);
3740 		if (!IS_ERR(trans))
3741 			btrfs_end_transaction(trans);
3742 	}
3743 
3744 	if (nr_unlink)
3745 		btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink);
3746 
3747 out:
3748 	if (ret)
3749 		btrfs_err(fs_info, "could not do orphan cleanup %d", ret);
3750 	btrfs_free_path(path);
3751 	return ret;
3752 }
3753 
3754 /*
3755  * very simple check to peek ahead in the leaf looking for xattrs.  If we
3756  * don't find any xattrs, we know there can't be any acls.
3757  *
3758  * slot is the slot the inode is in, objectid is the objectid of the inode
3759  */
3760 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
3761 					  int slot, u64 objectid,
3762 					  int *first_xattr_slot)
3763 {
3764 	u32 nritems = btrfs_header_nritems(leaf);
3765 	struct btrfs_key found_key;
3766 	static u64 xattr_access = 0;
3767 	static u64 xattr_default = 0;
3768 	int scanned = 0;
3769 
3770 	if (!xattr_access) {
3771 		xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
3772 					strlen(XATTR_NAME_POSIX_ACL_ACCESS));
3773 		xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
3774 					strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
3775 	}
3776 
3777 	slot++;
3778 	*first_xattr_slot = -1;
3779 	while (slot < nritems) {
3780 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3781 
3782 		/* we found a different objectid, there must not be acls */
3783 		if (found_key.objectid != objectid)
3784 			return 0;
3785 
3786 		/* we found an xattr, assume we've got an acl */
3787 		if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
3788 			if (*first_xattr_slot == -1)
3789 				*first_xattr_slot = slot;
3790 			if (found_key.offset == xattr_access ||
3791 			    found_key.offset == xattr_default)
3792 				return 1;
3793 		}
3794 
3795 		/*
3796 		 * we found a key greater than an xattr key, there can't
3797 		 * be any acls later on
3798 		 */
3799 		if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3800 			return 0;
3801 
3802 		slot++;
3803 		scanned++;
3804 
3805 		/*
3806 		 * it goes inode, inode backrefs, xattrs, extents,
3807 		 * so if there are a ton of hard links to an inode there can
3808 		 * be a lot of backrefs.  Don't waste time searching too hard,
3809 		 * this is just an optimization
3810 		 */
3811 		if (scanned >= 8)
3812 			break;
3813 	}
3814 	/* we hit the end of the leaf before we found an xattr or
3815 	 * something larger than an xattr.  We have to assume the inode
3816 	 * has acls
3817 	 */
3818 	if (*first_xattr_slot == -1)
3819 		*first_xattr_slot = slot;
3820 	return 1;
3821 }
3822 
3823 /*
3824  * read an inode from the btree into the in-memory inode
3825  */
3826 static int btrfs_read_locked_inode(struct inode *inode,
3827 				   struct btrfs_path *in_path)
3828 {
3829 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3830 	struct btrfs_path *path = in_path;
3831 	struct extent_buffer *leaf;
3832 	struct btrfs_inode_item *inode_item;
3833 	struct btrfs_root *root = BTRFS_I(inode)->root;
3834 	struct btrfs_key location;
3835 	unsigned long ptr;
3836 	int maybe_acls;
3837 	u32 rdev;
3838 	int ret;
3839 	bool filled = false;
3840 	int first_xattr_slot;
3841 
3842 	ret = btrfs_fill_inode(inode, &rdev);
3843 	if (!ret)
3844 		filled = true;
3845 
3846 	if (!path) {
3847 		path = btrfs_alloc_path();
3848 		if (!path)
3849 			return -ENOMEM;
3850 	}
3851 
3852 	memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
3853 
3854 	ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
3855 	if (ret) {
3856 		if (path != in_path)
3857 			btrfs_free_path(path);
3858 		return ret;
3859 	}
3860 
3861 	leaf = path->nodes[0];
3862 
3863 	if (filled)
3864 		goto cache_index;
3865 
3866 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
3867 				    struct btrfs_inode_item);
3868 	inode->i_mode = btrfs_inode_mode(leaf, inode_item);
3869 	set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
3870 	i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3871 	i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
3872 	btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item));
3873 	btrfs_inode_set_file_extent_range(BTRFS_I(inode), 0,
3874 			round_up(i_size_read(inode), fs_info->sectorsize));
3875 
3876 	inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime);
3877 	inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime);
3878 
3879 	inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime);
3880 	inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime);
3881 
3882 	inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime);
3883 	inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime);
3884 
3885 	BTRFS_I(inode)->i_otime.tv_sec =
3886 		btrfs_timespec_sec(leaf, &inode_item->otime);
3887 	BTRFS_I(inode)->i_otime.tv_nsec =
3888 		btrfs_timespec_nsec(leaf, &inode_item->otime);
3889 
3890 	inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
3891 	BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
3892 	BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3893 
3894 	inode_set_iversion_queried(inode,
3895 				   btrfs_inode_sequence(leaf, inode_item));
3896 	inode->i_generation = BTRFS_I(inode)->generation;
3897 	inode->i_rdev = 0;
3898 	rdev = btrfs_inode_rdev(leaf, inode_item);
3899 
3900 	BTRFS_I(inode)->index_cnt = (u64)-1;
3901 	btrfs_inode_split_flags(btrfs_inode_flags(leaf, inode_item),
3902 				&BTRFS_I(inode)->flags, &BTRFS_I(inode)->ro_flags);
3903 
3904 cache_index:
3905 	/*
3906 	 * If we were modified in the current generation and evicted from memory
3907 	 * and then re-read we need to do a full sync since we don't have any
3908 	 * idea about which extents were modified before we were evicted from
3909 	 * cache.
3910 	 *
3911 	 * This is required for both inode re-read from disk and delayed inode
3912 	 * in the delayed_nodes xarray.
3913 	 */
3914 	if (BTRFS_I(inode)->last_trans == fs_info->generation)
3915 		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3916 			&BTRFS_I(inode)->runtime_flags);
3917 
3918 	/*
3919 	 * We don't persist the id of the transaction where an unlink operation
3920 	 * against the inode was last made. So here we assume the inode might
3921 	 * have been evicted, and therefore the exact value of last_unlink_trans
3922 	 * lost, and set it to last_trans to avoid metadata inconsistencies
3923 	 * between the inode and its parent if the inode is fsync'ed and the log
3924 	 * replayed. For example, in the scenario:
3925 	 *
3926 	 * touch mydir/foo
3927 	 * ln mydir/foo mydir/bar
3928 	 * sync
3929 	 * unlink mydir/bar
3930 	 * echo 2 > /proc/sys/vm/drop_caches   # evicts inode
3931 	 * xfs_io -c fsync mydir/foo
3932 	 * <power failure>
3933 	 * mount fs, triggers fsync log replay
3934 	 *
3935 	 * We must make sure that when we fsync our inode foo we also log its
3936 	 * parent inode, otherwise after log replay the parent still has the
3937 	 * dentry with the "bar" name but our inode foo has a link count of 1
3938 	 * and doesn't have an inode ref with the name "bar" anymore.
3939 	 *
3940 	 * Setting last_unlink_trans to last_trans is a pessimistic approach,
3941 	 * but it guarantees correctness at the expense of occasional full
3942 	 * transaction commits on fsync if our inode is a directory, or if our
3943 	 * inode is not a directory, logging its parent unnecessarily.
3944 	 */
3945 	BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
3946 
3947 	/*
3948 	 * Same logic as for last_unlink_trans. We don't persist the generation
3949 	 * of the last transaction where this inode was used for a reflink
3950 	 * operation, so after eviction and reloading the inode we must be
3951 	 * pessimistic and assume the last transaction that modified the inode.
3952 	 */
3953 	BTRFS_I(inode)->last_reflink_trans = BTRFS_I(inode)->last_trans;
3954 
3955 	path->slots[0]++;
3956 	if (inode->i_nlink != 1 ||
3957 	    path->slots[0] >= btrfs_header_nritems(leaf))
3958 		goto cache_acl;
3959 
3960 	btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
3961 	if (location.objectid != btrfs_ino(BTRFS_I(inode)))
3962 		goto cache_acl;
3963 
3964 	ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3965 	if (location.type == BTRFS_INODE_REF_KEY) {
3966 		struct btrfs_inode_ref *ref;
3967 
3968 		ref = (struct btrfs_inode_ref *)ptr;
3969 		BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3970 	} else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3971 		struct btrfs_inode_extref *extref;
3972 
3973 		extref = (struct btrfs_inode_extref *)ptr;
3974 		BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3975 								     extref);
3976 	}
3977 cache_acl:
3978 	/*
3979 	 * try to precache a NULL acl entry for files that don't have
3980 	 * any xattrs or acls
3981 	 */
3982 	maybe_acls = acls_after_inode_item(leaf, path->slots[0],
3983 			btrfs_ino(BTRFS_I(inode)), &first_xattr_slot);
3984 	if (first_xattr_slot != -1) {
3985 		path->slots[0] = first_xattr_slot;
3986 		ret = btrfs_load_inode_props(inode, path);
3987 		if (ret)
3988 			btrfs_err(fs_info,
3989 				  "error loading props for ino %llu (root %llu): %d",
3990 				  btrfs_ino(BTRFS_I(inode)),
3991 				  root->root_key.objectid, ret);
3992 	}
3993 	if (path != in_path)
3994 		btrfs_free_path(path);
3995 
3996 	if (!maybe_acls)
3997 		cache_no_acl(inode);
3998 
3999 	switch (inode->i_mode & S_IFMT) {
4000 	case S_IFREG:
4001 		inode->i_mapping->a_ops = &btrfs_aops;
4002 		inode->i_fop = &btrfs_file_operations;
4003 		inode->i_op = &btrfs_file_inode_operations;
4004 		break;
4005 	case S_IFDIR:
4006 		inode->i_fop = &btrfs_dir_file_operations;
4007 		inode->i_op = &btrfs_dir_inode_operations;
4008 		break;
4009 	case S_IFLNK:
4010 		inode->i_op = &btrfs_symlink_inode_operations;
4011 		inode_nohighmem(inode);
4012 		inode->i_mapping->a_ops = &btrfs_aops;
4013 		break;
4014 	default:
4015 		inode->i_op = &btrfs_special_inode_operations;
4016 		init_special_inode(inode, inode->i_mode, rdev);
4017 		break;
4018 	}
4019 
4020 	btrfs_sync_inode_flags_to_i_flags(inode);
4021 	return 0;
4022 }
4023 
4024 /*
4025  * given a leaf and an inode, copy the inode fields into the leaf
4026  */
4027 static void fill_inode_item(struct btrfs_trans_handle *trans,
4028 			    struct extent_buffer *leaf,
4029 			    struct btrfs_inode_item *item,
4030 			    struct inode *inode)
4031 {
4032 	struct btrfs_map_token token;
4033 	u64 flags;
4034 
4035 	btrfs_init_map_token(&token, leaf);
4036 
4037 	btrfs_set_token_inode_uid(&token, item, i_uid_read(inode));
4038 	btrfs_set_token_inode_gid(&token, item, i_gid_read(inode));
4039 	btrfs_set_token_inode_size(&token, item, BTRFS_I(inode)->disk_i_size);
4040 	btrfs_set_token_inode_mode(&token, item, inode->i_mode);
4041 	btrfs_set_token_inode_nlink(&token, item, inode->i_nlink);
4042 
4043 	btrfs_set_token_timespec_sec(&token, &item->atime,
4044 				     inode->i_atime.tv_sec);
4045 	btrfs_set_token_timespec_nsec(&token, &item->atime,
4046 				      inode->i_atime.tv_nsec);
4047 
4048 	btrfs_set_token_timespec_sec(&token, &item->mtime,
4049 				     inode->i_mtime.tv_sec);
4050 	btrfs_set_token_timespec_nsec(&token, &item->mtime,
4051 				      inode->i_mtime.tv_nsec);
4052 
4053 	btrfs_set_token_timespec_sec(&token, &item->ctime,
4054 				     inode->i_ctime.tv_sec);
4055 	btrfs_set_token_timespec_nsec(&token, &item->ctime,
4056 				      inode->i_ctime.tv_nsec);
4057 
4058 	btrfs_set_token_timespec_sec(&token, &item->otime,
4059 				     BTRFS_I(inode)->i_otime.tv_sec);
4060 	btrfs_set_token_timespec_nsec(&token, &item->otime,
4061 				      BTRFS_I(inode)->i_otime.tv_nsec);
4062 
4063 	btrfs_set_token_inode_nbytes(&token, item, inode_get_bytes(inode));
4064 	btrfs_set_token_inode_generation(&token, item,
4065 					 BTRFS_I(inode)->generation);
4066 	btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode));
4067 	btrfs_set_token_inode_transid(&token, item, trans->transid);
4068 	btrfs_set_token_inode_rdev(&token, item, inode->i_rdev);
4069 	flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags,
4070 					  BTRFS_I(inode)->ro_flags);
4071 	btrfs_set_token_inode_flags(&token, item, flags);
4072 	btrfs_set_token_inode_block_group(&token, item, 0);
4073 }
4074 
4075 /*
4076  * copy everything in the in-memory inode into the btree.
4077  */
4078 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
4079 				struct btrfs_root *root,
4080 				struct btrfs_inode *inode)
4081 {
4082 	struct btrfs_inode_item *inode_item;
4083 	struct btrfs_path *path;
4084 	struct extent_buffer *leaf;
4085 	int ret;
4086 
4087 	path = btrfs_alloc_path();
4088 	if (!path)
4089 		return -ENOMEM;
4090 
4091 	ret = btrfs_lookup_inode(trans, root, path, &inode->location, 1);
4092 	if (ret) {
4093 		if (ret > 0)
4094 			ret = -ENOENT;
4095 		goto failed;
4096 	}
4097 
4098 	leaf = path->nodes[0];
4099 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
4100 				    struct btrfs_inode_item);
4101 
4102 	fill_inode_item(trans, leaf, inode_item, &inode->vfs_inode);
4103 	btrfs_mark_buffer_dirty(leaf);
4104 	btrfs_set_inode_last_trans(trans, inode);
4105 	ret = 0;
4106 failed:
4107 	btrfs_free_path(path);
4108 	return ret;
4109 }
4110 
4111 /*
4112  * copy everything in the in-memory inode into the btree.
4113  */
4114 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
4115 				struct btrfs_root *root,
4116 				struct btrfs_inode *inode)
4117 {
4118 	struct btrfs_fs_info *fs_info = root->fs_info;
4119 	int ret;
4120 
4121 	/*
4122 	 * If the inode is a free space inode, we can deadlock during commit
4123 	 * if we put it into the delayed code.
4124 	 *
4125 	 * The data relocation inode should also be directly updated
4126 	 * without delay
4127 	 */
4128 	if (!btrfs_is_free_space_inode(inode)
4129 	    && !btrfs_is_data_reloc_root(root)
4130 	    && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
4131 		btrfs_update_root_times(trans, root);
4132 
4133 		ret = btrfs_delayed_update_inode(trans, root, inode);
4134 		if (!ret)
4135 			btrfs_set_inode_last_trans(trans, inode);
4136 		return ret;
4137 	}
4138 
4139 	return btrfs_update_inode_item(trans, root, inode);
4140 }
4141 
4142 int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
4143 				struct btrfs_root *root, struct btrfs_inode *inode)
4144 {
4145 	int ret;
4146 
4147 	ret = btrfs_update_inode(trans, root, inode);
4148 	if (ret == -ENOSPC)
4149 		return btrfs_update_inode_item(trans, root, inode);
4150 	return ret;
4151 }
4152 
4153 /*
4154  * unlink helper that gets used here in inode.c and in the tree logging
4155  * recovery code.  It remove a link in a directory with a given name, and
4156  * also drops the back refs in the inode to the directory
4157  */
4158 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4159 				struct btrfs_inode *dir,
4160 				struct btrfs_inode *inode,
4161 				const char *name, int name_len,
4162 				struct btrfs_rename_ctx *rename_ctx)
4163 {
4164 	struct btrfs_root *root = dir->root;
4165 	struct btrfs_fs_info *fs_info = root->fs_info;
4166 	struct btrfs_path *path;
4167 	int ret = 0;
4168 	struct btrfs_dir_item *di;
4169 	u64 index;
4170 	u64 ino = btrfs_ino(inode);
4171 	u64 dir_ino = btrfs_ino(dir);
4172 
4173 	path = btrfs_alloc_path();
4174 	if (!path) {
4175 		ret = -ENOMEM;
4176 		goto out;
4177 	}
4178 
4179 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4180 				    name, name_len, -1);
4181 	if (IS_ERR_OR_NULL(di)) {
4182 		ret = di ? PTR_ERR(di) : -ENOENT;
4183 		goto err;
4184 	}
4185 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
4186 	if (ret)
4187 		goto err;
4188 	btrfs_release_path(path);
4189 
4190 	/*
4191 	 * If we don't have dir index, we have to get it by looking up
4192 	 * the inode ref, since we get the inode ref, remove it directly,
4193 	 * it is unnecessary to do delayed deletion.
4194 	 *
4195 	 * But if we have dir index, needn't search inode ref to get it.
4196 	 * Since the inode ref is close to the inode item, it is better
4197 	 * that we delay to delete it, and just do this deletion when
4198 	 * we update the inode item.
4199 	 */
4200 	if (inode->dir_index) {
4201 		ret = btrfs_delayed_delete_inode_ref(inode);
4202 		if (!ret) {
4203 			index = inode->dir_index;
4204 			goto skip_backref;
4205 		}
4206 	}
4207 
4208 	ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
4209 				  dir_ino, &index);
4210 	if (ret) {
4211 		btrfs_info(fs_info,
4212 			"failed to delete reference to %.*s, inode %llu parent %llu",
4213 			name_len, name, ino, dir_ino);
4214 		btrfs_abort_transaction(trans, ret);
4215 		goto err;
4216 	}
4217 skip_backref:
4218 	if (rename_ctx)
4219 		rename_ctx->index = index;
4220 
4221 	ret = btrfs_delete_delayed_dir_index(trans, dir, index);
4222 	if (ret) {
4223 		btrfs_abort_transaction(trans, ret);
4224 		goto err;
4225 	}
4226 
4227 	/*
4228 	 * If we are in a rename context, we don't need to update anything in the
4229 	 * log. That will be done later during the rename by btrfs_log_new_name().
4230 	 * Besides that, doing it here would only cause extra unncessary btree
4231 	 * operations on the log tree, increasing latency for applications.
4232 	 */
4233 	if (!rename_ctx) {
4234 		btrfs_del_inode_ref_in_log(trans, root, name, name_len, inode,
4235 					   dir_ino);
4236 		btrfs_del_dir_entries_in_log(trans, root, name, name_len, dir,
4237 					     index);
4238 	}
4239 
4240 	/*
4241 	 * If we have a pending delayed iput we could end up with the final iput
4242 	 * being run in btrfs-cleaner context.  If we have enough of these built
4243 	 * up we can end up burning a lot of time in btrfs-cleaner without any
4244 	 * way to throttle the unlinks.  Since we're currently holding a ref on
4245 	 * the inode we can run the delayed iput here without any issues as the
4246 	 * final iput won't be done until after we drop the ref we're currently
4247 	 * holding.
4248 	 */
4249 	btrfs_run_delayed_iput(fs_info, inode);
4250 err:
4251 	btrfs_free_path(path);
4252 	if (ret)
4253 		goto out;
4254 
4255 	btrfs_i_size_write(dir, dir->vfs_inode.i_size - name_len * 2);
4256 	inode_inc_iversion(&inode->vfs_inode);
4257 	inode_inc_iversion(&dir->vfs_inode);
4258 	inode->vfs_inode.i_ctime = dir->vfs_inode.i_mtime =
4259 		dir->vfs_inode.i_ctime = current_time(&inode->vfs_inode);
4260 	ret = btrfs_update_inode(trans, root, dir);
4261 out:
4262 	return ret;
4263 }
4264 
4265 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4266 		       struct btrfs_inode *dir, struct btrfs_inode *inode,
4267 		       const char *name, int name_len)
4268 {
4269 	int ret;
4270 	ret = __btrfs_unlink_inode(trans, dir, inode, name, name_len, NULL);
4271 	if (!ret) {
4272 		drop_nlink(&inode->vfs_inode);
4273 		ret = btrfs_update_inode(trans, inode->root, inode);
4274 	}
4275 	return ret;
4276 }
4277 
4278 /*
4279  * helper to start transaction for unlink and rmdir.
4280  *
4281  * unlink and rmdir are special in btrfs, they do not always free space, so
4282  * if we cannot make our reservations the normal way try and see if there is
4283  * plenty of slack room in the global reserve to migrate, otherwise we cannot
4284  * allow the unlink to occur.
4285  */
4286 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
4287 {
4288 	struct btrfs_root *root = BTRFS_I(dir)->root;
4289 
4290 	/*
4291 	 * 1 for the possible orphan item
4292 	 * 1 for the dir item
4293 	 * 1 for the dir index
4294 	 * 1 for the inode ref
4295 	 * 1 for the inode
4296 	 * 1 for the parent inode
4297 	 */
4298 	return btrfs_start_transaction_fallback_global_rsv(root, 6);
4299 }
4300 
4301 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4302 {
4303 	struct btrfs_trans_handle *trans;
4304 	struct inode *inode = d_inode(dentry);
4305 	int ret;
4306 
4307 	trans = __unlink_start_trans(dir);
4308 	if (IS_ERR(trans))
4309 		return PTR_ERR(trans);
4310 
4311 	btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4312 			0);
4313 
4314 	ret = btrfs_unlink_inode(trans, BTRFS_I(dir),
4315 			BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4316 			dentry->d_name.len);
4317 	if (ret)
4318 		goto out;
4319 
4320 	if (inode->i_nlink == 0) {
4321 		ret = btrfs_orphan_add(trans, BTRFS_I(inode));
4322 		if (ret)
4323 			goto out;
4324 	}
4325 
4326 out:
4327 	btrfs_end_transaction(trans);
4328 	btrfs_btree_balance_dirty(BTRFS_I(dir)->root->fs_info);
4329 	return ret;
4330 }
4331 
4332 static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
4333 			       struct inode *dir, struct dentry *dentry)
4334 {
4335 	struct btrfs_root *root = BTRFS_I(dir)->root;
4336 	struct btrfs_inode *inode = BTRFS_I(d_inode(dentry));
4337 	struct btrfs_path *path;
4338 	struct extent_buffer *leaf;
4339 	struct btrfs_dir_item *di;
4340 	struct btrfs_key key;
4341 	const char *name = dentry->d_name.name;
4342 	int name_len = dentry->d_name.len;
4343 	u64 index;
4344 	int ret;
4345 	u64 objectid;
4346 	u64 dir_ino = btrfs_ino(BTRFS_I(dir));
4347 
4348 	if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) {
4349 		objectid = inode->root->root_key.objectid;
4350 	} else if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
4351 		objectid = inode->location.objectid;
4352 	} else {
4353 		WARN_ON(1);
4354 		return -EINVAL;
4355 	}
4356 
4357 	path = btrfs_alloc_path();
4358 	if (!path)
4359 		return -ENOMEM;
4360 
4361 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4362 				   name, name_len, -1);
4363 	if (IS_ERR_OR_NULL(di)) {
4364 		ret = di ? PTR_ERR(di) : -ENOENT;
4365 		goto out;
4366 	}
4367 
4368 	leaf = path->nodes[0];
4369 	btrfs_dir_item_key_to_cpu(leaf, di, &key);
4370 	WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4371 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
4372 	if (ret) {
4373 		btrfs_abort_transaction(trans, ret);
4374 		goto out;
4375 	}
4376 	btrfs_release_path(path);
4377 
4378 	/*
4379 	 * This is a placeholder inode for a subvolume we didn't have a
4380 	 * reference to at the time of the snapshot creation.  In the meantime
4381 	 * we could have renamed the real subvol link into our snapshot, so
4382 	 * depending on btrfs_del_root_ref to return -ENOENT here is incorrect.
4383 	 * Instead simply lookup the dir_index_item for this entry so we can
4384 	 * remove it.  Otherwise we know we have a ref to the root and we can
4385 	 * call btrfs_del_root_ref, and it _shouldn't_ fail.
4386 	 */
4387 	if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
4388 		di = btrfs_search_dir_index_item(root, path, dir_ino,
4389 						 name, name_len);
4390 		if (IS_ERR_OR_NULL(di)) {
4391 			if (!di)
4392 				ret = -ENOENT;
4393 			else
4394 				ret = PTR_ERR(di);
4395 			btrfs_abort_transaction(trans, ret);
4396 			goto out;
4397 		}
4398 
4399 		leaf = path->nodes[0];
4400 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4401 		index = key.offset;
4402 		btrfs_release_path(path);
4403 	} else {
4404 		ret = btrfs_del_root_ref(trans, objectid,
4405 					 root->root_key.objectid, dir_ino,
4406 					 &index, name, name_len);
4407 		if (ret) {
4408 			btrfs_abort_transaction(trans, ret);
4409 			goto out;
4410 		}
4411 	}
4412 
4413 	ret = btrfs_delete_delayed_dir_index(trans, BTRFS_I(dir), index);
4414 	if (ret) {
4415 		btrfs_abort_transaction(trans, ret);
4416 		goto out;
4417 	}
4418 
4419 	btrfs_i_size_write(BTRFS_I(dir), dir->i_size - name_len * 2);
4420 	inode_inc_iversion(dir);
4421 	dir->i_mtime = dir->i_ctime = current_time(dir);
4422 	ret = btrfs_update_inode_fallback(trans, root, BTRFS_I(dir));
4423 	if (ret)
4424 		btrfs_abort_transaction(trans, ret);
4425 out:
4426 	btrfs_free_path(path);
4427 	return ret;
4428 }
4429 
4430 /*
4431  * Helper to check if the subvolume references other subvolumes or if it's
4432  * default.
4433  */
4434 static noinline int may_destroy_subvol(struct btrfs_root *root)
4435 {
4436 	struct btrfs_fs_info *fs_info = root->fs_info;
4437 	struct btrfs_path *path;
4438 	struct btrfs_dir_item *di;
4439 	struct btrfs_key key;
4440 	u64 dir_id;
4441 	int ret;
4442 
4443 	path = btrfs_alloc_path();
4444 	if (!path)
4445 		return -ENOMEM;
4446 
4447 	/* Make sure this root isn't set as the default subvol */
4448 	dir_id = btrfs_super_root_dir(fs_info->super_copy);
4449 	di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path,
4450 				   dir_id, "default", 7, 0);
4451 	if (di && !IS_ERR(di)) {
4452 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
4453 		if (key.objectid == root->root_key.objectid) {
4454 			ret = -EPERM;
4455 			btrfs_err(fs_info,
4456 				  "deleting default subvolume %llu is not allowed",
4457 				  key.objectid);
4458 			goto out;
4459 		}
4460 		btrfs_release_path(path);
4461 	}
4462 
4463 	key.objectid = root->root_key.objectid;
4464 	key.type = BTRFS_ROOT_REF_KEY;
4465 	key.offset = (u64)-1;
4466 
4467 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4468 	if (ret < 0)
4469 		goto out;
4470 	BUG_ON(ret == 0);
4471 
4472 	ret = 0;
4473 	if (path->slots[0] > 0) {
4474 		path->slots[0]--;
4475 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
4476 		if (key.objectid == root->root_key.objectid &&
4477 		    key.type == BTRFS_ROOT_REF_KEY)
4478 			ret = -ENOTEMPTY;
4479 	}
4480 out:
4481 	btrfs_free_path(path);
4482 	return ret;
4483 }
4484 
4485 /* Delete all dentries for inodes belonging to the root */
4486 static void btrfs_prune_dentries(struct btrfs_root *root)
4487 {
4488 	struct btrfs_fs_info *fs_info = root->fs_info;
4489 	struct rb_node *node;
4490 	struct rb_node *prev;
4491 	struct btrfs_inode *entry;
4492 	struct inode *inode;
4493 	u64 objectid = 0;
4494 
4495 	if (!BTRFS_FS_ERROR(fs_info))
4496 		WARN_ON(btrfs_root_refs(&root->root_item) != 0);
4497 
4498 	spin_lock(&root->inode_lock);
4499 again:
4500 	node = root->inode_tree.rb_node;
4501 	prev = NULL;
4502 	while (node) {
4503 		prev = node;
4504 		entry = rb_entry(node, struct btrfs_inode, rb_node);
4505 
4506 		if (objectid < btrfs_ino(entry))
4507 			node = node->rb_left;
4508 		else if (objectid > btrfs_ino(entry))
4509 			node = node->rb_right;
4510 		else
4511 			break;
4512 	}
4513 	if (!node) {
4514 		while (prev) {
4515 			entry = rb_entry(prev, struct btrfs_inode, rb_node);
4516 			if (objectid <= btrfs_ino(entry)) {
4517 				node = prev;
4518 				break;
4519 			}
4520 			prev = rb_next(prev);
4521 		}
4522 	}
4523 	while (node) {
4524 		entry = rb_entry(node, struct btrfs_inode, rb_node);
4525 		objectid = btrfs_ino(entry) + 1;
4526 		inode = igrab(&entry->vfs_inode);
4527 		if (inode) {
4528 			spin_unlock(&root->inode_lock);
4529 			if (atomic_read(&inode->i_count) > 1)
4530 				d_prune_aliases(inode);
4531 			/*
4532 			 * btrfs_drop_inode will have it removed from the inode
4533 			 * cache when its usage count hits zero.
4534 			 */
4535 			iput(inode);
4536 			cond_resched();
4537 			spin_lock(&root->inode_lock);
4538 			goto again;
4539 		}
4540 
4541 		if (cond_resched_lock(&root->inode_lock))
4542 			goto again;
4543 
4544 		node = rb_next(node);
4545 	}
4546 	spin_unlock(&root->inode_lock);
4547 }
4548 
4549 int btrfs_delete_subvolume(struct inode *dir, struct dentry *dentry)
4550 {
4551 	struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
4552 	struct btrfs_root *root = BTRFS_I(dir)->root;
4553 	struct inode *inode = d_inode(dentry);
4554 	struct btrfs_root *dest = BTRFS_I(inode)->root;
4555 	struct btrfs_trans_handle *trans;
4556 	struct btrfs_block_rsv block_rsv;
4557 	u64 root_flags;
4558 	int ret;
4559 
4560 	/*
4561 	 * Don't allow to delete a subvolume with send in progress. This is
4562 	 * inside the inode lock so the error handling that has to drop the bit
4563 	 * again is not run concurrently.
4564 	 */
4565 	spin_lock(&dest->root_item_lock);
4566 	if (dest->send_in_progress) {
4567 		spin_unlock(&dest->root_item_lock);
4568 		btrfs_warn(fs_info,
4569 			   "attempt to delete subvolume %llu during send",
4570 			   dest->root_key.objectid);
4571 		return -EPERM;
4572 	}
4573 	if (atomic_read(&dest->nr_swapfiles)) {
4574 		spin_unlock(&dest->root_item_lock);
4575 		btrfs_warn(fs_info,
4576 			   "attempt to delete subvolume %llu with active swapfile",
4577 			   root->root_key.objectid);
4578 		return -EPERM;
4579 	}
4580 	root_flags = btrfs_root_flags(&dest->root_item);
4581 	btrfs_set_root_flags(&dest->root_item,
4582 			     root_flags | BTRFS_ROOT_SUBVOL_DEAD);
4583 	spin_unlock(&dest->root_item_lock);
4584 
4585 	down_write(&fs_info->subvol_sem);
4586 
4587 	ret = may_destroy_subvol(dest);
4588 	if (ret)
4589 		goto out_up_write;
4590 
4591 	btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
4592 	/*
4593 	 * One for dir inode,
4594 	 * two for dir entries,
4595 	 * two for root ref/backref.
4596 	 */
4597 	ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true);
4598 	if (ret)
4599 		goto out_up_write;
4600 
4601 	trans = btrfs_start_transaction(root, 0);
4602 	if (IS_ERR(trans)) {
4603 		ret = PTR_ERR(trans);
4604 		goto out_release;
4605 	}
4606 	trans->block_rsv = &block_rsv;
4607 	trans->bytes_reserved = block_rsv.size;
4608 
4609 	btrfs_record_snapshot_destroy(trans, BTRFS_I(dir));
4610 
4611 	ret = btrfs_unlink_subvol(trans, dir, dentry);
4612 	if (ret) {
4613 		btrfs_abort_transaction(trans, ret);
4614 		goto out_end_trans;
4615 	}
4616 
4617 	ret = btrfs_record_root_in_trans(trans, dest);
4618 	if (ret) {
4619 		btrfs_abort_transaction(trans, ret);
4620 		goto out_end_trans;
4621 	}
4622 
4623 	memset(&dest->root_item.drop_progress, 0,
4624 		sizeof(dest->root_item.drop_progress));
4625 	btrfs_set_root_drop_level(&dest->root_item, 0);
4626 	btrfs_set_root_refs(&dest->root_item, 0);
4627 
4628 	if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) {
4629 		ret = btrfs_insert_orphan_item(trans,
4630 					fs_info->tree_root,
4631 					dest->root_key.objectid);
4632 		if (ret) {
4633 			btrfs_abort_transaction(trans, ret);
4634 			goto out_end_trans;
4635 		}
4636 	}
4637 
4638 	ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid,
4639 				  BTRFS_UUID_KEY_SUBVOL,
4640 				  dest->root_key.objectid);
4641 	if (ret && ret != -ENOENT) {
4642 		btrfs_abort_transaction(trans, ret);
4643 		goto out_end_trans;
4644 	}
4645 	if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) {
4646 		ret = btrfs_uuid_tree_remove(trans,
4647 					  dest->root_item.received_uuid,
4648 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4649 					  dest->root_key.objectid);
4650 		if (ret && ret != -ENOENT) {
4651 			btrfs_abort_transaction(trans, ret);
4652 			goto out_end_trans;
4653 		}
4654 	}
4655 
4656 	free_anon_bdev(dest->anon_dev);
4657 	dest->anon_dev = 0;
4658 out_end_trans:
4659 	trans->block_rsv = NULL;
4660 	trans->bytes_reserved = 0;
4661 	ret = btrfs_end_transaction(trans);
4662 	inode->i_flags |= S_DEAD;
4663 out_release:
4664 	btrfs_subvolume_release_metadata(root, &block_rsv);
4665 out_up_write:
4666 	up_write(&fs_info->subvol_sem);
4667 	if (ret) {
4668 		spin_lock(&dest->root_item_lock);
4669 		root_flags = btrfs_root_flags(&dest->root_item);
4670 		btrfs_set_root_flags(&dest->root_item,
4671 				root_flags & ~BTRFS_ROOT_SUBVOL_DEAD);
4672 		spin_unlock(&dest->root_item_lock);
4673 	} else {
4674 		d_invalidate(dentry);
4675 		btrfs_prune_dentries(dest);
4676 		ASSERT(dest->send_in_progress == 0);
4677 	}
4678 
4679 	return ret;
4680 }
4681 
4682 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4683 {
4684 	struct inode *inode = d_inode(dentry);
4685 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
4686 	int err = 0;
4687 	struct btrfs_trans_handle *trans;
4688 	u64 last_unlink_trans;
4689 
4690 	if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
4691 		return -ENOTEMPTY;
4692 	if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID) {
4693 		if (unlikely(btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))) {
4694 			btrfs_err(fs_info,
4695 			"extent tree v2 doesn't support snapshot deletion yet");
4696 			return -EOPNOTSUPP;
4697 		}
4698 		return btrfs_delete_subvolume(dir, dentry);
4699 	}
4700 
4701 	trans = __unlink_start_trans(dir);
4702 	if (IS_ERR(trans))
4703 		return PTR_ERR(trans);
4704 
4705 	if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4706 		err = btrfs_unlink_subvol(trans, dir, dentry);
4707 		goto out;
4708 	}
4709 
4710 	err = btrfs_orphan_add(trans, BTRFS_I(inode));
4711 	if (err)
4712 		goto out;
4713 
4714 	last_unlink_trans = BTRFS_I(inode)->last_unlink_trans;
4715 
4716 	/* now the directory is empty */
4717 	err = btrfs_unlink_inode(trans, BTRFS_I(dir),
4718 			BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4719 			dentry->d_name.len);
4720 	if (!err) {
4721 		btrfs_i_size_write(BTRFS_I(inode), 0);
4722 		/*
4723 		 * Propagate the last_unlink_trans value of the deleted dir to
4724 		 * its parent directory. This is to prevent an unrecoverable
4725 		 * log tree in the case we do something like this:
4726 		 * 1) create dir foo
4727 		 * 2) create snapshot under dir foo
4728 		 * 3) delete the snapshot
4729 		 * 4) rmdir foo
4730 		 * 5) mkdir foo
4731 		 * 6) fsync foo or some file inside foo
4732 		 */
4733 		if (last_unlink_trans >= trans->transid)
4734 			BTRFS_I(dir)->last_unlink_trans = last_unlink_trans;
4735 	}
4736 out:
4737 	btrfs_end_transaction(trans);
4738 	btrfs_btree_balance_dirty(fs_info);
4739 
4740 	return err;
4741 }
4742 
4743 /*
4744  * btrfs_truncate_block - read, zero a chunk and write a block
4745  * @inode - inode that we're zeroing
4746  * @from - the offset to start zeroing
4747  * @len - the length to zero, 0 to zero the entire range respective to the
4748  *	offset
4749  * @front - zero up to the offset instead of from the offset on
4750  *
4751  * This will find the block for the "from" offset and cow the block and zero the
4752  * part we want to zero.  This is used with truncate and hole punching.
4753  */
4754 int btrfs_truncate_block(struct btrfs_inode *inode, loff_t from, loff_t len,
4755 			 int front)
4756 {
4757 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
4758 	struct address_space *mapping = inode->vfs_inode.i_mapping;
4759 	struct extent_io_tree *io_tree = &inode->io_tree;
4760 	struct btrfs_ordered_extent *ordered;
4761 	struct extent_state *cached_state = NULL;
4762 	struct extent_changeset *data_reserved = NULL;
4763 	bool only_release_metadata = false;
4764 	u32 blocksize = fs_info->sectorsize;
4765 	pgoff_t index = from >> PAGE_SHIFT;
4766 	unsigned offset = from & (blocksize - 1);
4767 	struct page *page;
4768 	gfp_t mask = btrfs_alloc_write_mask(mapping);
4769 	size_t write_bytes = blocksize;
4770 	int ret = 0;
4771 	u64 block_start;
4772 	u64 block_end;
4773 
4774 	if (IS_ALIGNED(offset, blocksize) &&
4775 	    (!len || IS_ALIGNED(len, blocksize)))
4776 		goto out;
4777 
4778 	block_start = round_down(from, blocksize);
4779 	block_end = block_start + blocksize - 1;
4780 
4781 	ret = btrfs_check_data_free_space(inode, &data_reserved, block_start,
4782 					  blocksize);
4783 	if (ret < 0) {
4784 		if (btrfs_check_nocow_lock(inode, block_start, &write_bytes) > 0) {
4785 			/* For nocow case, no need to reserve data space */
4786 			only_release_metadata = true;
4787 		} else {
4788 			goto out;
4789 		}
4790 	}
4791 	ret = btrfs_delalloc_reserve_metadata(inode, blocksize, blocksize, false);
4792 	if (ret < 0) {
4793 		if (!only_release_metadata)
4794 			btrfs_free_reserved_data_space(inode, data_reserved,
4795 						       block_start, blocksize);
4796 		goto out;
4797 	}
4798 again:
4799 	page = find_or_create_page(mapping, index, mask);
4800 	if (!page) {
4801 		btrfs_delalloc_release_space(inode, data_reserved, block_start,
4802 					     blocksize, true);
4803 		btrfs_delalloc_release_extents(inode, blocksize);
4804 		ret = -ENOMEM;
4805 		goto out;
4806 	}
4807 	ret = set_page_extent_mapped(page);
4808 	if (ret < 0)
4809 		goto out_unlock;
4810 
4811 	if (!PageUptodate(page)) {
4812 		ret = btrfs_read_folio(NULL, page_folio(page));
4813 		lock_page(page);
4814 		if (page->mapping != mapping) {
4815 			unlock_page(page);
4816 			put_page(page);
4817 			goto again;
4818 		}
4819 		if (!PageUptodate(page)) {
4820 			ret = -EIO;
4821 			goto out_unlock;
4822 		}
4823 	}
4824 	wait_on_page_writeback(page);
4825 
4826 	lock_extent_bits(io_tree, block_start, block_end, &cached_state);
4827 
4828 	ordered = btrfs_lookup_ordered_extent(inode, block_start);
4829 	if (ordered) {
4830 		unlock_extent_cached(io_tree, block_start, block_end,
4831 				     &cached_state);
4832 		unlock_page(page);
4833 		put_page(page);
4834 		btrfs_start_ordered_extent(ordered, 1);
4835 		btrfs_put_ordered_extent(ordered);
4836 		goto again;
4837 	}
4838 
4839 	clear_extent_bit(&inode->io_tree, block_start, block_end,
4840 			 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
4841 			 0, 0, &cached_state);
4842 
4843 	ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0,
4844 					&cached_state);
4845 	if (ret) {
4846 		unlock_extent_cached(io_tree, block_start, block_end,
4847 				     &cached_state);
4848 		goto out_unlock;
4849 	}
4850 
4851 	if (offset != blocksize) {
4852 		if (!len)
4853 			len = blocksize - offset;
4854 		if (front)
4855 			memzero_page(page, (block_start - page_offset(page)),
4856 				     offset);
4857 		else
4858 			memzero_page(page, (block_start - page_offset(page)) + offset,
4859 				     len);
4860 		flush_dcache_page(page);
4861 	}
4862 	btrfs_page_clear_checked(fs_info, page, block_start,
4863 				 block_end + 1 - block_start);
4864 	btrfs_page_set_dirty(fs_info, page, block_start, block_end + 1 - block_start);
4865 	unlock_extent_cached(io_tree, block_start, block_end, &cached_state);
4866 
4867 	if (only_release_metadata)
4868 		set_extent_bit(&inode->io_tree, block_start, block_end,
4869 			       EXTENT_NORESERVE, 0, NULL, NULL, GFP_NOFS, NULL);
4870 
4871 out_unlock:
4872 	if (ret) {
4873 		if (only_release_metadata)
4874 			btrfs_delalloc_release_metadata(inode, blocksize, true);
4875 		else
4876 			btrfs_delalloc_release_space(inode, data_reserved,
4877 					block_start, blocksize, true);
4878 	}
4879 	btrfs_delalloc_release_extents(inode, blocksize);
4880 	unlock_page(page);
4881 	put_page(page);
4882 out:
4883 	if (only_release_metadata)
4884 		btrfs_check_nocow_unlock(inode);
4885 	extent_changeset_free(data_reserved);
4886 	return ret;
4887 }
4888 
4889 static int maybe_insert_hole(struct btrfs_root *root, struct btrfs_inode *inode,
4890 			     u64 offset, u64 len)
4891 {
4892 	struct btrfs_fs_info *fs_info = root->fs_info;
4893 	struct btrfs_trans_handle *trans;
4894 	struct btrfs_drop_extents_args drop_args = { 0 };
4895 	int ret;
4896 
4897 	/*
4898 	 * If NO_HOLES is enabled, we don't need to do anything.
4899 	 * Later, up in the call chain, either btrfs_set_inode_last_sub_trans()
4900 	 * or btrfs_update_inode() will be called, which guarantee that the next
4901 	 * fsync will know this inode was changed and needs to be logged.
4902 	 */
4903 	if (btrfs_fs_incompat(fs_info, NO_HOLES))
4904 		return 0;
4905 
4906 	/*
4907 	 * 1 - for the one we're dropping
4908 	 * 1 - for the one we're adding
4909 	 * 1 - for updating the inode.
4910 	 */
4911 	trans = btrfs_start_transaction(root, 3);
4912 	if (IS_ERR(trans))
4913 		return PTR_ERR(trans);
4914 
4915 	drop_args.start = offset;
4916 	drop_args.end = offset + len;
4917 	drop_args.drop_cache = true;
4918 
4919 	ret = btrfs_drop_extents(trans, root, inode, &drop_args);
4920 	if (ret) {
4921 		btrfs_abort_transaction(trans, ret);
4922 		btrfs_end_transaction(trans);
4923 		return ret;
4924 	}
4925 
4926 	ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode),
4927 			offset, 0, 0, len, 0, len, 0, 0, 0);
4928 	if (ret) {
4929 		btrfs_abort_transaction(trans, ret);
4930 	} else {
4931 		btrfs_update_inode_bytes(inode, 0, drop_args.bytes_found);
4932 		btrfs_update_inode(trans, root, inode);
4933 	}
4934 	btrfs_end_transaction(trans);
4935 	return ret;
4936 }
4937 
4938 /*
4939  * This function puts in dummy file extents for the area we're creating a hole
4940  * for.  So if we are truncating this file to a larger size we need to insert
4941  * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4942  * the range between oldsize and size
4943  */
4944 int btrfs_cont_expand(struct btrfs_inode *inode, loff_t oldsize, loff_t size)
4945 {
4946 	struct btrfs_root *root = inode->root;
4947 	struct btrfs_fs_info *fs_info = root->fs_info;
4948 	struct extent_io_tree *io_tree = &inode->io_tree;
4949 	struct extent_map *em = NULL;
4950 	struct extent_state *cached_state = NULL;
4951 	struct extent_map_tree *em_tree = &inode->extent_tree;
4952 	u64 hole_start = ALIGN(oldsize, fs_info->sectorsize);
4953 	u64 block_end = ALIGN(size, fs_info->sectorsize);
4954 	u64 last_byte;
4955 	u64 cur_offset;
4956 	u64 hole_size;
4957 	int err = 0;
4958 
4959 	/*
4960 	 * If our size started in the middle of a block we need to zero out the
4961 	 * rest of the block before we expand the i_size, otherwise we could
4962 	 * expose stale data.
4963 	 */
4964 	err = btrfs_truncate_block(inode, oldsize, 0, 0);
4965 	if (err)
4966 		return err;
4967 
4968 	if (size <= hole_start)
4969 		return 0;
4970 
4971 	btrfs_lock_and_flush_ordered_range(inode, hole_start, block_end - 1,
4972 					   &cached_state);
4973 	cur_offset = hole_start;
4974 	while (1) {
4975 		em = btrfs_get_extent(inode, NULL, 0, cur_offset,
4976 				      block_end - cur_offset);
4977 		if (IS_ERR(em)) {
4978 			err = PTR_ERR(em);
4979 			em = NULL;
4980 			break;
4981 		}
4982 		last_byte = min(extent_map_end(em), block_end);
4983 		last_byte = ALIGN(last_byte, fs_info->sectorsize);
4984 		hole_size = last_byte - cur_offset;
4985 
4986 		if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
4987 			struct extent_map *hole_em;
4988 
4989 			err = maybe_insert_hole(root, inode, cur_offset,
4990 						hole_size);
4991 			if (err)
4992 				break;
4993 
4994 			err = btrfs_inode_set_file_extent_range(inode,
4995 							cur_offset, hole_size);
4996 			if (err)
4997 				break;
4998 
4999 			btrfs_drop_extent_cache(inode, cur_offset,
5000 						cur_offset + hole_size - 1, 0);
5001 			hole_em = alloc_extent_map();
5002 			if (!hole_em) {
5003 				btrfs_set_inode_full_sync(inode);
5004 				goto next;
5005 			}
5006 			hole_em->start = cur_offset;
5007 			hole_em->len = hole_size;
5008 			hole_em->orig_start = cur_offset;
5009 
5010 			hole_em->block_start = EXTENT_MAP_HOLE;
5011 			hole_em->block_len = 0;
5012 			hole_em->orig_block_len = 0;
5013 			hole_em->ram_bytes = hole_size;
5014 			hole_em->compress_type = BTRFS_COMPRESS_NONE;
5015 			hole_em->generation = fs_info->generation;
5016 
5017 			while (1) {
5018 				write_lock(&em_tree->lock);
5019 				err = add_extent_mapping(em_tree, hole_em, 1);
5020 				write_unlock(&em_tree->lock);
5021 				if (err != -EEXIST)
5022 					break;
5023 				btrfs_drop_extent_cache(inode, cur_offset,
5024 							cur_offset +
5025 							hole_size - 1, 0);
5026 			}
5027 			free_extent_map(hole_em);
5028 		} else {
5029 			err = btrfs_inode_set_file_extent_range(inode,
5030 							cur_offset, hole_size);
5031 			if (err)
5032 				break;
5033 		}
5034 next:
5035 		free_extent_map(em);
5036 		em = NULL;
5037 		cur_offset = last_byte;
5038 		if (cur_offset >= block_end)
5039 			break;
5040 	}
5041 	free_extent_map(em);
5042 	unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state);
5043 	return err;
5044 }
5045 
5046 static int btrfs_setsize(struct inode *inode, struct iattr *attr)
5047 {
5048 	struct btrfs_root *root = BTRFS_I(inode)->root;
5049 	struct btrfs_trans_handle *trans;
5050 	loff_t oldsize = i_size_read(inode);
5051 	loff_t newsize = attr->ia_size;
5052 	int mask = attr->ia_valid;
5053 	int ret;
5054 
5055 	/*
5056 	 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
5057 	 * special case where we need to update the times despite not having
5058 	 * these flags set.  For all other operations the VFS set these flags
5059 	 * explicitly if it wants a timestamp update.
5060 	 */
5061 	if (newsize != oldsize) {
5062 		inode_inc_iversion(inode);
5063 		if (!(mask & (ATTR_CTIME | ATTR_MTIME)))
5064 			inode->i_ctime = inode->i_mtime =
5065 				current_time(inode);
5066 	}
5067 
5068 	if (newsize > oldsize) {
5069 		/*
5070 		 * Don't do an expanding truncate while snapshotting is ongoing.
5071 		 * This is to ensure the snapshot captures a fully consistent
5072 		 * state of this file - if the snapshot captures this expanding
5073 		 * truncation, it must capture all writes that happened before
5074 		 * this truncation.
5075 		 */
5076 		btrfs_drew_write_lock(&root->snapshot_lock);
5077 		ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, newsize);
5078 		if (ret) {
5079 			btrfs_drew_write_unlock(&root->snapshot_lock);
5080 			return ret;
5081 		}
5082 
5083 		trans = btrfs_start_transaction(root, 1);
5084 		if (IS_ERR(trans)) {
5085 			btrfs_drew_write_unlock(&root->snapshot_lock);
5086 			return PTR_ERR(trans);
5087 		}
5088 
5089 		i_size_write(inode, newsize);
5090 		btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
5091 		pagecache_isize_extended(inode, oldsize, newsize);
5092 		ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
5093 		btrfs_drew_write_unlock(&root->snapshot_lock);
5094 		btrfs_end_transaction(trans);
5095 	} else {
5096 		struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5097 
5098 		if (btrfs_is_zoned(fs_info)) {
5099 			ret = btrfs_wait_ordered_range(inode,
5100 					ALIGN(newsize, fs_info->sectorsize),
5101 					(u64)-1);
5102 			if (ret)
5103 				return ret;
5104 		}
5105 
5106 		/*
5107 		 * We're truncating a file that used to have good data down to
5108 		 * zero. Make sure any new writes to the file get on disk
5109 		 * on close.
5110 		 */
5111 		if (newsize == 0)
5112 			set_bit(BTRFS_INODE_FLUSH_ON_CLOSE,
5113 				&BTRFS_I(inode)->runtime_flags);
5114 
5115 		truncate_setsize(inode, newsize);
5116 
5117 		inode_dio_wait(inode);
5118 
5119 		ret = btrfs_truncate(inode, newsize == oldsize);
5120 		if (ret && inode->i_nlink) {
5121 			int err;
5122 
5123 			/*
5124 			 * Truncate failed, so fix up the in-memory size. We
5125 			 * adjusted disk_i_size down as we removed extents, so
5126 			 * wait for disk_i_size to be stable and then update the
5127 			 * in-memory size to match.
5128 			 */
5129 			err = btrfs_wait_ordered_range(inode, 0, (u64)-1);
5130 			if (err)
5131 				return err;
5132 			i_size_write(inode, BTRFS_I(inode)->disk_i_size);
5133 		}
5134 	}
5135 
5136 	return ret;
5137 }
5138 
5139 static int btrfs_setattr(struct user_namespace *mnt_userns, struct dentry *dentry,
5140 			 struct iattr *attr)
5141 {
5142 	struct inode *inode = d_inode(dentry);
5143 	struct btrfs_root *root = BTRFS_I(inode)->root;
5144 	int err;
5145 
5146 	if (btrfs_root_readonly(root))
5147 		return -EROFS;
5148 
5149 	err = setattr_prepare(mnt_userns, dentry, attr);
5150 	if (err)
5151 		return err;
5152 
5153 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
5154 		err = btrfs_setsize(inode, attr);
5155 		if (err)
5156 			return err;
5157 	}
5158 
5159 	if (attr->ia_valid) {
5160 		setattr_copy(mnt_userns, inode, attr);
5161 		inode_inc_iversion(inode);
5162 		err = btrfs_dirty_inode(inode);
5163 
5164 		if (!err && attr->ia_valid & ATTR_MODE)
5165 			err = posix_acl_chmod(mnt_userns, inode, inode->i_mode);
5166 	}
5167 
5168 	return err;
5169 }
5170 
5171 /*
5172  * While truncating the inode pages during eviction, we get the VFS
5173  * calling btrfs_invalidate_folio() against each folio of the inode. This
5174  * is slow because the calls to btrfs_invalidate_folio() result in a
5175  * huge amount of calls to lock_extent_bits() and clear_extent_bit(),
5176  * which keep merging and splitting extent_state structures over and over,
5177  * wasting lots of time.
5178  *
5179  * Therefore if the inode is being evicted, let btrfs_invalidate_folio()
5180  * skip all those expensive operations on a per folio basis and do only
5181  * the ordered io finishing, while we release here the extent_map and
5182  * extent_state structures, without the excessive merging and splitting.
5183  */
5184 static void evict_inode_truncate_pages(struct inode *inode)
5185 {
5186 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5187 	struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
5188 	struct rb_node *node;
5189 
5190 	ASSERT(inode->i_state & I_FREEING);
5191 	truncate_inode_pages_final(&inode->i_data);
5192 
5193 	write_lock(&map_tree->lock);
5194 	while (!RB_EMPTY_ROOT(&map_tree->map.rb_root)) {
5195 		struct extent_map *em;
5196 
5197 		node = rb_first_cached(&map_tree->map);
5198 		em = rb_entry(node, struct extent_map, rb_node);
5199 		clear_bit(EXTENT_FLAG_PINNED, &em->flags);
5200 		clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
5201 		remove_extent_mapping(map_tree, em);
5202 		free_extent_map(em);
5203 		if (need_resched()) {
5204 			write_unlock(&map_tree->lock);
5205 			cond_resched();
5206 			write_lock(&map_tree->lock);
5207 		}
5208 	}
5209 	write_unlock(&map_tree->lock);
5210 
5211 	/*
5212 	 * Keep looping until we have no more ranges in the io tree.
5213 	 * We can have ongoing bios started by readahead that have
5214 	 * their endio callback (extent_io.c:end_bio_extent_readpage)
5215 	 * still in progress (unlocked the pages in the bio but did not yet
5216 	 * unlocked the ranges in the io tree). Therefore this means some
5217 	 * ranges can still be locked and eviction started because before
5218 	 * submitting those bios, which are executed by a separate task (work
5219 	 * queue kthread), inode references (inode->i_count) were not taken
5220 	 * (which would be dropped in the end io callback of each bio).
5221 	 * Therefore here we effectively end up waiting for those bios and
5222 	 * anyone else holding locked ranges without having bumped the inode's
5223 	 * reference count - if we don't do it, when they access the inode's
5224 	 * io_tree to unlock a range it may be too late, leading to an
5225 	 * use-after-free issue.
5226 	 */
5227 	spin_lock(&io_tree->lock);
5228 	while (!RB_EMPTY_ROOT(&io_tree->state)) {
5229 		struct extent_state *state;
5230 		struct extent_state *cached_state = NULL;
5231 		u64 start;
5232 		u64 end;
5233 		unsigned state_flags;
5234 
5235 		node = rb_first(&io_tree->state);
5236 		state = rb_entry(node, struct extent_state, rb_node);
5237 		start = state->start;
5238 		end = state->end;
5239 		state_flags = state->state;
5240 		spin_unlock(&io_tree->lock);
5241 
5242 		lock_extent_bits(io_tree, start, end, &cached_state);
5243 
5244 		/*
5245 		 * If still has DELALLOC flag, the extent didn't reach disk,
5246 		 * and its reserved space won't be freed by delayed_ref.
5247 		 * So we need to free its reserved space here.
5248 		 * (Refer to comment in btrfs_invalidate_folio, case 2)
5249 		 *
5250 		 * Note, end is the bytenr of last byte, so we need + 1 here.
5251 		 */
5252 		if (state_flags & EXTENT_DELALLOC)
5253 			btrfs_qgroup_free_data(BTRFS_I(inode), NULL, start,
5254 					       end - start + 1);
5255 
5256 		clear_extent_bit(io_tree, start, end,
5257 				 EXTENT_LOCKED | EXTENT_DELALLOC |
5258 				 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1,
5259 				 &cached_state);
5260 
5261 		cond_resched();
5262 		spin_lock(&io_tree->lock);
5263 	}
5264 	spin_unlock(&io_tree->lock);
5265 }
5266 
5267 static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root,
5268 							struct btrfs_block_rsv *rsv)
5269 {
5270 	struct btrfs_fs_info *fs_info = root->fs_info;
5271 	struct btrfs_trans_handle *trans;
5272 	u64 delayed_refs_extra = btrfs_calc_insert_metadata_size(fs_info, 1);
5273 	int ret;
5274 
5275 	/*
5276 	 * Eviction should be taking place at some place safe because of our
5277 	 * delayed iputs.  However the normal flushing code will run delayed
5278 	 * iputs, so we cannot use FLUSH_ALL otherwise we'll deadlock.
5279 	 *
5280 	 * We reserve the delayed_refs_extra here again because we can't use
5281 	 * btrfs_start_transaction(root, 0) for the same deadlocky reason as
5282 	 * above.  We reserve our extra bit here because we generate a ton of
5283 	 * delayed refs activity by truncating.
5284 	 *
5285 	 * BTRFS_RESERVE_FLUSH_EVICT will steal from the global_rsv if it can,
5286 	 * if we fail to make this reservation we can re-try without the
5287 	 * delayed_refs_extra so we can make some forward progress.
5288 	 */
5289 	ret = btrfs_block_rsv_refill(fs_info, rsv, rsv->size + delayed_refs_extra,
5290 				     BTRFS_RESERVE_FLUSH_EVICT);
5291 	if (ret) {
5292 		ret = btrfs_block_rsv_refill(fs_info, rsv, rsv->size,
5293 					     BTRFS_RESERVE_FLUSH_EVICT);
5294 		if (ret) {
5295 			btrfs_warn(fs_info,
5296 				   "could not allocate space for delete; will truncate on mount");
5297 			return ERR_PTR(-ENOSPC);
5298 		}
5299 		delayed_refs_extra = 0;
5300 	}
5301 
5302 	trans = btrfs_join_transaction(root);
5303 	if (IS_ERR(trans))
5304 		return trans;
5305 
5306 	if (delayed_refs_extra) {
5307 		trans->block_rsv = &fs_info->trans_block_rsv;
5308 		trans->bytes_reserved = delayed_refs_extra;
5309 		btrfs_block_rsv_migrate(rsv, trans->block_rsv,
5310 					delayed_refs_extra, 1);
5311 	}
5312 	return trans;
5313 }
5314 
5315 void btrfs_evict_inode(struct inode *inode)
5316 {
5317 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5318 	struct btrfs_trans_handle *trans;
5319 	struct btrfs_root *root = BTRFS_I(inode)->root;
5320 	struct btrfs_block_rsv *rsv;
5321 	int ret;
5322 
5323 	trace_btrfs_inode_evict(inode);
5324 
5325 	if (!root) {
5326 		fsverity_cleanup_inode(inode);
5327 		clear_inode(inode);
5328 		return;
5329 	}
5330 
5331 	evict_inode_truncate_pages(inode);
5332 
5333 	if (inode->i_nlink &&
5334 	    ((btrfs_root_refs(&root->root_item) != 0 &&
5335 	      root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
5336 	     btrfs_is_free_space_inode(BTRFS_I(inode))))
5337 		goto no_delete;
5338 
5339 	if (is_bad_inode(inode))
5340 		goto no_delete;
5341 
5342 	btrfs_free_io_failure_record(BTRFS_I(inode), 0, (u64)-1);
5343 
5344 	if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
5345 		goto no_delete;
5346 
5347 	if (inode->i_nlink > 0) {
5348 		BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5349 		       root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
5350 		goto no_delete;
5351 	}
5352 
5353 	/*
5354 	 * This makes sure the inode item in tree is uptodate and the space for
5355 	 * the inode update is released.
5356 	 */
5357 	ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode));
5358 	if (ret)
5359 		goto no_delete;
5360 
5361 	/*
5362 	 * This drops any pending insert or delete operations we have for this
5363 	 * inode.  We could have a delayed dir index deletion queued up, but
5364 	 * we're removing the inode completely so that'll be taken care of in
5365 	 * the truncate.
5366 	 */
5367 	btrfs_kill_delayed_inode_items(BTRFS_I(inode));
5368 
5369 	rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
5370 	if (!rsv)
5371 		goto no_delete;
5372 	rsv->size = btrfs_calc_metadata_size(fs_info, 1);
5373 	rsv->failfast = 1;
5374 
5375 	btrfs_i_size_write(BTRFS_I(inode), 0);
5376 
5377 	while (1) {
5378 		struct btrfs_truncate_control control = {
5379 			.inode = BTRFS_I(inode),
5380 			.ino = btrfs_ino(BTRFS_I(inode)),
5381 			.new_size = 0,
5382 			.min_type = 0,
5383 		};
5384 
5385 		trans = evict_refill_and_join(root, rsv);
5386 		if (IS_ERR(trans))
5387 			goto free_rsv;
5388 
5389 		trans->block_rsv = rsv;
5390 
5391 		ret = btrfs_truncate_inode_items(trans, root, &control);
5392 		trans->block_rsv = &fs_info->trans_block_rsv;
5393 		btrfs_end_transaction(trans);
5394 		btrfs_btree_balance_dirty(fs_info);
5395 		if (ret && ret != -ENOSPC && ret != -EAGAIN)
5396 			goto free_rsv;
5397 		else if (!ret)
5398 			break;
5399 	}
5400 
5401 	/*
5402 	 * Errors here aren't a big deal, it just means we leave orphan items in
5403 	 * the tree. They will be cleaned up on the next mount. If the inode
5404 	 * number gets reused, cleanup deletes the orphan item without doing
5405 	 * anything, and unlink reuses the existing orphan item.
5406 	 *
5407 	 * If it turns out that we are dropping too many of these, we might want
5408 	 * to add a mechanism for retrying these after a commit.
5409 	 */
5410 	trans = evict_refill_and_join(root, rsv);
5411 	if (!IS_ERR(trans)) {
5412 		trans->block_rsv = rsv;
5413 		btrfs_orphan_del(trans, BTRFS_I(inode));
5414 		trans->block_rsv = &fs_info->trans_block_rsv;
5415 		btrfs_end_transaction(trans);
5416 	}
5417 
5418 free_rsv:
5419 	btrfs_free_block_rsv(fs_info, rsv);
5420 no_delete:
5421 	/*
5422 	 * If we didn't successfully delete, the orphan item will still be in
5423 	 * the tree and we'll retry on the next mount. Again, we might also want
5424 	 * to retry these periodically in the future.
5425 	 */
5426 	btrfs_remove_delayed_node(BTRFS_I(inode));
5427 	fsverity_cleanup_inode(inode);
5428 	clear_inode(inode);
5429 }
5430 
5431 /*
5432  * Return the key found in the dir entry in the location pointer, fill @type
5433  * with BTRFS_FT_*, and return 0.
5434  *
5435  * If no dir entries were found, returns -ENOENT.
5436  * If found a corrupted location in dir entry, returns -EUCLEAN.
5437  */
5438 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
5439 			       struct btrfs_key *location, u8 *type)
5440 {
5441 	const char *name = dentry->d_name.name;
5442 	int namelen = dentry->d_name.len;
5443 	struct btrfs_dir_item *di;
5444 	struct btrfs_path *path;
5445 	struct btrfs_root *root = BTRFS_I(dir)->root;
5446 	int ret = 0;
5447 
5448 	path = btrfs_alloc_path();
5449 	if (!path)
5450 		return -ENOMEM;
5451 
5452 	di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(BTRFS_I(dir)),
5453 			name, namelen, 0);
5454 	if (IS_ERR_OR_NULL(di)) {
5455 		ret = di ? PTR_ERR(di) : -ENOENT;
5456 		goto out;
5457 	}
5458 
5459 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
5460 	if (location->type != BTRFS_INODE_ITEM_KEY &&
5461 	    location->type != BTRFS_ROOT_ITEM_KEY) {
5462 		ret = -EUCLEAN;
5463 		btrfs_warn(root->fs_info,
5464 "%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))",
5465 			   __func__, name, btrfs_ino(BTRFS_I(dir)),
5466 			   location->objectid, location->type, location->offset);
5467 	}
5468 	if (!ret)
5469 		*type = btrfs_dir_type(path->nodes[0], di);
5470 out:
5471 	btrfs_free_path(path);
5472 	return ret;
5473 }
5474 
5475 /*
5476  * when we hit a tree root in a directory, the btrfs part of the inode
5477  * needs to be changed to reflect the root directory of the tree root.  This
5478  * is kind of like crossing a mount point.
5479  */
5480 static int fixup_tree_root_location(struct btrfs_fs_info *fs_info,
5481 				    struct inode *dir,
5482 				    struct dentry *dentry,
5483 				    struct btrfs_key *location,
5484 				    struct btrfs_root **sub_root)
5485 {
5486 	struct btrfs_path *path;
5487 	struct btrfs_root *new_root;
5488 	struct btrfs_root_ref *ref;
5489 	struct extent_buffer *leaf;
5490 	struct btrfs_key key;
5491 	int ret;
5492 	int err = 0;
5493 
5494 	path = btrfs_alloc_path();
5495 	if (!path) {
5496 		err = -ENOMEM;
5497 		goto out;
5498 	}
5499 
5500 	err = -ENOENT;
5501 	key.objectid = BTRFS_I(dir)->root->root_key.objectid;
5502 	key.type = BTRFS_ROOT_REF_KEY;
5503 	key.offset = location->objectid;
5504 
5505 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
5506 	if (ret) {
5507 		if (ret < 0)
5508 			err = ret;
5509 		goto out;
5510 	}
5511 
5512 	leaf = path->nodes[0];
5513 	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
5514 	if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(BTRFS_I(dir)) ||
5515 	    btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
5516 		goto out;
5517 
5518 	ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
5519 				   (unsigned long)(ref + 1),
5520 				   dentry->d_name.len);
5521 	if (ret)
5522 		goto out;
5523 
5524 	btrfs_release_path(path);
5525 
5526 	new_root = btrfs_get_fs_root(fs_info, location->objectid, true);
5527 	if (IS_ERR(new_root)) {
5528 		err = PTR_ERR(new_root);
5529 		goto out;
5530 	}
5531 
5532 	*sub_root = new_root;
5533 	location->objectid = btrfs_root_dirid(&new_root->root_item);
5534 	location->type = BTRFS_INODE_ITEM_KEY;
5535 	location->offset = 0;
5536 	err = 0;
5537 out:
5538 	btrfs_free_path(path);
5539 	return err;
5540 }
5541 
5542 static void inode_tree_add(struct inode *inode)
5543 {
5544 	struct btrfs_root *root = BTRFS_I(inode)->root;
5545 	struct btrfs_inode *entry;
5546 	struct rb_node **p;
5547 	struct rb_node *parent;
5548 	struct rb_node *new = &BTRFS_I(inode)->rb_node;
5549 	u64 ino = btrfs_ino(BTRFS_I(inode));
5550 
5551 	if (inode_unhashed(inode))
5552 		return;
5553 	parent = NULL;
5554 	spin_lock(&root->inode_lock);
5555 	p = &root->inode_tree.rb_node;
5556 	while (*p) {
5557 		parent = *p;
5558 		entry = rb_entry(parent, struct btrfs_inode, rb_node);
5559 
5560 		if (ino < btrfs_ino(entry))
5561 			p = &parent->rb_left;
5562 		else if (ino > btrfs_ino(entry))
5563 			p = &parent->rb_right;
5564 		else {
5565 			WARN_ON(!(entry->vfs_inode.i_state &
5566 				  (I_WILL_FREE | I_FREEING)));
5567 			rb_replace_node(parent, new, &root->inode_tree);
5568 			RB_CLEAR_NODE(parent);
5569 			spin_unlock(&root->inode_lock);
5570 			return;
5571 		}
5572 	}
5573 	rb_link_node(new, parent, p);
5574 	rb_insert_color(new, &root->inode_tree);
5575 	spin_unlock(&root->inode_lock);
5576 }
5577 
5578 static void inode_tree_del(struct btrfs_inode *inode)
5579 {
5580 	struct btrfs_root *root = inode->root;
5581 	int empty = 0;
5582 
5583 	spin_lock(&root->inode_lock);
5584 	if (!RB_EMPTY_NODE(&inode->rb_node)) {
5585 		rb_erase(&inode->rb_node, &root->inode_tree);
5586 		RB_CLEAR_NODE(&inode->rb_node);
5587 		empty = RB_EMPTY_ROOT(&root->inode_tree);
5588 	}
5589 	spin_unlock(&root->inode_lock);
5590 
5591 	if (empty && btrfs_root_refs(&root->root_item) == 0) {
5592 		spin_lock(&root->inode_lock);
5593 		empty = RB_EMPTY_ROOT(&root->inode_tree);
5594 		spin_unlock(&root->inode_lock);
5595 		if (empty)
5596 			btrfs_add_dead_root(root);
5597 	}
5598 }
5599 
5600 
5601 static int btrfs_init_locked_inode(struct inode *inode, void *p)
5602 {
5603 	struct btrfs_iget_args *args = p;
5604 
5605 	inode->i_ino = args->ino;
5606 	BTRFS_I(inode)->location.objectid = args->ino;
5607 	BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY;
5608 	BTRFS_I(inode)->location.offset = 0;
5609 	BTRFS_I(inode)->root = btrfs_grab_root(args->root);
5610 	BUG_ON(args->root && !BTRFS_I(inode)->root);
5611 	return 0;
5612 }
5613 
5614 static int btrfs_find_actor(struct inode *inode, void *opaque)
5615 {
5616 	struct btrfs_iget_args *args = opaque;
5617 
5618 	return args->ino == BTRFS_I(inode)->location.objectid &&
5619 		args->root == BTRFS_I(inode)->root;
5620 }
5621 
5622 static struct inode *btrfs_iget_locked(struct super_block *s, u64 ino,
5623 				       struct btrfs_root *root)
5624 {
5625 	struct inode *inode;
5626 	struct btrfs_iget_args args;
5627 	unsigned long hashval = btrfs_inode_hash(ino, root);
5628 
5629 	args.ino = ino;
5630 	args.root = root;
5631 
5632 	inode = iget5_locked(s, hashval, btrfs_find_actor,
5633 			     btrfs_init_locked_inode,
5634 			     (void *)&args);
5635 	return inode;
5636 }
5637 
5638 /*
5639  * Get an inode object given its inode number and corresponding root.
5640  * Path can be preallocated to prevent recursing back to iget through
5641  * allocator. NULL is also valid but may require an additional allocation
5642  * later.
5643  */
5644 struct inode *btrfs_iget_path(struct super_block *s, u64 ino,
5645 			      struct btrfs_root *root, struct btrfs_path *path)
5646 {
5647 	struct inode *inode;
5648 
5649 	inode = btrfs_iget_locked(s, ino, root);
5650 	if (!inode)
5651 		return ERR_PTR(-ENOMEM);
5652 
5653 	if (inode->i_state & I_NEW) {
5654 		int ret;
5655 
5656 		ret = btrfs_read_locked_inode(inode, path);
5657 		if (!ret) {
5658 			inode_tree_add(inode);
5659 			unlock_new_inode(inode);
5660 		} else {
5661 			iget_failed(inode);
5662 			/*
5663 			 * ret > 0 can come from btrfs_search_slot called by
5664 			 * btrfs_read_locked_inode, this means the inode item
5665 			 * was not found.
5666 			 */
5667 			if (ret > 0)
5668 				ret = -ENOENT;
5669 			inode = ERR_PTR(ret);
5670 		}
5671 	}
5672 
5673 	return inode;
5674 }
5675 
5676 struct inode *btrfs_iget(struct super_block *s, u64 ino, struct btrfs_root *root)
5677 {
5678 	return btrfs_iget_path(s, ino, root, NULL);
5679 }
5680 
5681 static struct inode *new_simple_dir(struct super_block *s,
5682 				    struct btrfs_key *key,
5683 				    struct btrfs_root *root)
5684 {
5685 	struct inode *inode = new_inode(s);
5686 
5687 	if (!inode)
5688 		return ERR_PTR(-ENOMEM);
5689 
5690 	BTRFS_I(inode)->root = btrfs_grab_root(root);
5691 	memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
5692 	set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
5693 
5694 	inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
5695 	/*
5696 	 * We only need lookup, the rest is read-only and there's no inode
5697 	 * associated with the dentry
5698 	 */
5699 	inode->i_op = &simple_dir_inode_operations;
5700 	inode->i_opflags &= ~IOP_XATTR;
5701 	inode->i_fop = &simple_dir_operations;
5702 	inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
5703 	inode->i_mtime = current_time(inode);
5704 	inode->i_atime = inode->i_mtime;
5705 	inode->i_ctime = inode->i_mtime;
5706 	BTRFS_I(inode)->i_otime = inode->i_mtime;
5707 
5708 	return inode;
5709 }
5710 
5711 static_assert(BTRFS_FT_UNKNOWN == FT_UNKNOWN);
5712 static_assert(BTRFS_FT_REG_FILE == FT_REG_FILE);
5713 static_assert(BTRFS_FT_DIR == FT_DIR);
5714 static_assert(BTRFS_FT_CHRDEV == FT_CHRDEV);
5715 static_assert(BTRFS_FT_BLKDEV == FT_BLKDEV);
5716 static_assert(BTRFS_FT_FIFO == FT_FIFO);
5717 static_assert(BTRFS_FT_SOCK == FT_SOCK);
5718 static_assert(BTRFS_FT_SYMLINK == FT_SYMLINK);
5719 
5720 static inline u8 btrfs_inode_type(struct inode *inode)
5721 {
5722 	return fs_umode_to_ftype(inode->i_mode);
5723 }
5724 
5725 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
5726 {
5727 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
5728 	struct inode *inode;
5729 	struct btrfs_root *root = BTRFS_I(dir)->root;
5730 	struct btrfs_root *sub_root = root;
5731 	struct btrfs_key location;
5732 	u8 di_type = 0;
5733 	int ret = 0;
5734 
5735 	if (dentry->d_name.len > BTRFS_NAME_LEN)
5736 		return ERR_PTR(-ENAMETOOLONG);
5737 
5738 	ret = btrfs_inode_by_name(dir, dentry, &location, &di_type);
5739 	if (ret < 0)
5740 		return ERR_PTR(ret);
5741 
5742 	if (location.type == BTRFS_INODE_ITEM_KEY) {
5743 		inode = btrfs_iget(dir->i_sb, location.objectid, root);
5744 		if (IS_ERR(inode))
5745 			return inode;
5746 
5747 		/* Do extra check against inode mode with di_type */
5748 		if (btrfs_inode_type(inode) != di_type) {
5749 			btrfs_crit(fs_info,
5750 "inode mode mismatch with dir: inode mode=0%o btrfs type=%u dir type=%u",
5751 				  inode->i_mode, btrfs_inode_type(inode),
5752 				  di_type);
5753 			iput(inode);
5754 			return ERR_PTR(-EUCLEAN);
5755 		}
5756 		return inode;
5757 	}
5758 
5759 	ret = fixup_tree_root_location(fs_info, dir, dentry,
5760 				       &location, &sub_root);
5761 	if (ret < 0) {
5762 		if (ret != -ENOENT)
5763 			inode = ERR_PTR(ret);
5764 		else
5765 			inode = new_simple_dir(dir->i_sb, &location, sub_root);
5766 	} else {
5767 		inode = btrfs_iget(dir->i_sb, location.objectid, sub_root);
5768 	}
5769 	if (root != sub_root)
5770 		btrfs_put_root(sub_root);
5771 
5772 	if (!IS_ERR(inode) && root != sub_root) {
5773 		down_read(&fs_info->cleanup_work_sem);
5774 		if (!sb_rdonly(inode->i_sb))
5775 			ret = btrfs_orphan_cleanup(sub_root);
5776 		up_read(&fs_info->cleanup_work_sem);
5777 		if (ret) {
5778 			iput(inode);
5779 			inode = ERR_PTR(ret);
5780 		}
5781 	}
5782 
5783 	return inode;
5784 }
5785 
5786 static int btrfs_dentry_delete(const struct dentry *dentry)
5787 {
5788 	struct btrfs_root *root;
5789 	struct inode *inode = d_inode(dentry);
5790 
5791 	if (!inode && !IS_ROOT(dentry))
5792 		inode = d_inode(dentry->d_parent);
5793 
5794 	if (inode) {
5795 		root = BTRFS_I(inode)->root;
5796 		if (btrfs_root_refs(&root->root_item) == 0)
5797 			return 1;
5798 
5799 		if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5800 			return 1;
5801 	}
5802 	return 0;
5803 }
5804 
5805 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
5806 				   unsigned int flags)
5807 {
5808 	struct inode *inode = btrfs_lookup_dentry(dir, dentry);
5809 
5810 	if (inode == ERR_PTR(-ENOENT))
5811 		inode = NULL;
5812 	return d_splice_alias(inode, dentry);
5813 }
5814 
5815 /*
5816  * All this infrastructure exists because dir_emit can fault, and we are holding
5817  * the tree lock when doing readdir.  For now just allocate a buffer and copy
5818  * our information into that, and then dir_emit from the buffer.  This is
5819  * similar to what NFS does, only we don't keep the buffer around in pagecache
5820  * because I'm afraid I'll mess that up.  Long term we need to make filldir do
5821  * copy_to_user_inatomic so we don't have to worry about page faulting under the
5822  * tree lock.
5823  */
5824 static int btrfs_opendir(struct inode *inode, struct file *file)
5825 {
5826 	struct btrfs_file_private *private;
5827 
5828 	private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL);
5829 	if (!private)
5830 		return -ENOMEM;
5831 	private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL);
5832 	if (!private->filldir_buf) {
5833 		kfree(private);
5834 		return -ENOMEM;
5835 	}
5836 	file->private_data = private;
5837 	return 0;
5838 }
5839 
5840 struct dir_entry {
5841 	u64 ino;
5842 	u64 offset;
5843 	unsigned type;
5844 	int name_len;
5845 };
5846 
5847 static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx)
5848 {
5849 	while (entries--) {
5850 		struct dir_entry *entry = addr;
5851 		char *name = (char *)(entry + 1);
5852 
5853 		ctx->pos = get_unaligned(&entry->offset);
5854 		if (!dir_emit(ctx, name, get_unaligned(&entry->name_len),
5855 					 get_unaligned(&entry->ino),
5856 					 get_unaligned(&entry->type)))
5857 			return 1;
5858 		addr += sizeof(struct dir_entry) +
5859 			get_unaligned(&entry->name_len);
5860 		ctx->pos++;
5861 	}
5862 	return 0;
5863 }
5864 
5865 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
5866 {
5867 	struct inode *inode = file_inode(file);
5868 	struct btrfs_root *root = BTRFS_I(inode)->root;
5869 	struct btrfs_file_private *private = file->private_data;
5870 	struct btrfs_dir_item *di;
5871 	struct btrfs_key key;
5872 	struct btrfs_key found_key;
5873 	struct btrfs_path *path;
5874 	void *addr;
5875 	struct list_head ins_list;
5876 	struct list_head del_list;
5877 	int ret;
5878 	char *name_ptr;
5879 	int name_len;
5880 	int entries = 0;
5881 	int total_len = 0;
5882 	bool put = false;
5883 	struct btrfs_key location;
5884 
5885 	if (!dir_emit_dots(file, ctx))
5886 		return 0;
5887 
5888 	path = btrfs_alloc_path();
5889 	if (!path)
5890 		return -ENOMEM;
5891 
5892 	addr = private->filldir_buf;
5893 	path->reada = READA_FORWARD;
5894 
5895 	INIT_LIST_HEAD(&ins_list);
5896 	INIT_LIST_HEAD(&del_list);
5897 	put = btrfs_readdir_get_delayed_items(inode, &ins_list, &del_list);
5898 
5899 again:
5900 	key.type = BTRFS_DIR_INDEX_KEY;
5901 	key.offset = ctx->pos;
5902 	key.objectid = btrfs_ino(BTRFS_I(inode));
5903 
5904 	btrfs_for_each_slot(root, &key, &found_key, path, ret) {
5905 		struct dir_entry *entry;
5906 		struct extent_buffer *leaf = path->nodes[0];
5907 
5908 		if (found_key.objectid != key.objectid)
5909 			break;
5910 		if (found_key.type != BTRFS_DIR_INDEX_KEY)
5911 			break;
5912 		if (found_key.offset < ctx->pos)
5913 			continue;
5914 		if (btrfs_should_delete_dir_index(&del_list, found_key.offset))
5915 			continue;
5916 		di = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dir_item);
5917 		name_len = btrfs_dir_name_len(leaf, di);
5918 		if ((total_len + sizeof(struct dir_entry) + name_len) >=
5919 		    PAGE_SIZE) {
5920 			btrfs_release_path(path);
5921 			ret = btrfs_filldir(private->filldir_buf, entries, ctx);
5922 			if (ret)
5923 				goto nopos;
5924 			addr = private->filldir_buf;
5925 			entries = 0;
5926 			total_len = 0;
5927 			goto again;
5928 		}
5929 
5930 		entry = addr;
5931 		put_unaligned(name_len, &entry->name_len);
5932 		name_ptr = (char *)(entry + 1);
5933 		read_extent_buffer(leaf, name_ptr, (unsigned long)(di + 1),
5934 				   name_len);
5935 		put_unaligned(fs_ftype_to_dtype(btrfs_dir_type(leaf, di)),
5936 				&entry->type);
5937 		btrfs_dir_item_key_to_cpu(leaf, di, &location);
5938 		put_unaligned(location.objectid, &entry->ino);
5939 		put_unaligned(found_key.offset, &entry->offset);
5940 		entries++;
5941 		addr += sizeof(struct dir_entry) + name_len;
5942 		total_len += sizeof(struct dir_entry) + name_len;
5943 	}
5944 	/* Catch error encountered during iteration */
5945 	if (ret < 0)
5946 		goto err;
5947 
5948 	btrfs_release_path(path);
5949 
5950 	ret = btrfs_filldir(private->filldir_buf, entries, ctx);
5951 	if (ret)
5952 		goto nopos;
5953 
5954 	ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
5955 	if (ret)
5956 		goto nopos;
5957 
5958 	/*
5959 	 * Stop new entries from being returned after we return the last
5960 	 * entry.
5961 	 *
5962 	 * New directory entries are assigned a strictly increasing
5963 	 * offset.  This means that new entries created during readdir
5964 	 * are *guaranteed* to be seen in the future by that readdir.
5965 	 * This has broken buggy programs which operate on names as
5966 	 * they're returned by readdir.  Until we re-use freed offsets
5967 	 * we have this hack to stop new entries from being returned
5968 	 * under the assumption that they'll never reach this huge
5969 	 * offset.
5970 	 *
5971 	 * This is being careful not to overflow 32bit loff_t unless the
5972 	 * last entry requires it because doing so has broken 32bit apps
5973 	 * in the past.
5974 	 */
5975 	if (ctx->pos >= INT_MAX)
5976 		ctx->pos = LLONG_MAX;
5977 	else
5978 		ctx->pos = INT_MAX;
5979 nopos:
5980 	ret = 0;
5981 err:
5982 	if (put)
5983 		btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list);
5984 	btrfs_free_path(path);
5985 	return ret;
5986 }
5987 
5988 /*
5989  * This is somewhat expensive, updating the tree every time the
5990  * inode changes.  But, it is most likely to find the inode in cache.
5991  * FIXME, needs more benchmarking...there are no reasons other than performance
5992  * to keep or drop this code.
5993  */
5994 static int btrfs_dirty_inode(struct inode *inode)
5995 {
5996 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5997 	struct btrfs_root *root = BTRFS_I(inode)->root;
5998 	struct btrfs_trans_handle *trans;
5999 	int ret;
6000 
6001 	if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
6002 		return 0;
6003 
6004 	trans = btrfs_join_transaction(root);
6005 	if (IS_ERR(trans))
6006 		return PTR_ERR(trans);
6007 
6008 	ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
6009 	if (ret && (ret == -ENOSPC || ret == -EDQUOT)) {
6010 		/* whoops, lets try again with the full transaction */
6011 		btrfs_end_transaction(trans);
6012 		trans = btrfs_start_transaction(root, 1);
6013 		if (IS_ERR(trans))
6014 			return PTR_ERR(trans);
6015 
6016 		ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
6017 	}
6018 	btrfs_end_transaction(trans);
6019 	if (BTRFS_I(inode)->delayed_node)
6020 		btrfs_balance_delayed_items(fs_info);
6021 
6022 	return ret;
6023 }
6024 
6025 /*
6026  * This is a copy of file_update_time.  We need this so we can return error on
6027  * ENOSPC for updating the inode in the case of file write and mmap writes.
6028  */
6029 static int btrfs_update_time(struct inode *inode, struct timespec64 *now,
6030 			     int flags)
6031 {
6032 	struct btrfs_root *root = BTRFS_I(inode)->root;
6033 	bool dirty = flags & ~S_VERSION;
6034 
6035 	if (btrfs_root_readonly(root))
6036 		return -EROFS;
6037 
6038 	if (flags & S_VERSION)
6039 		dirty |= inode_maybe_inc_iversion(inode, dirty);
6040 	if (flags & S_CTIME)
6041 		inode->i_ctime = *now;
6042 	if (flags & S_MTIME)
6043 		inode->i_mtime = *now;
6044 	if (flags & S_ATIME)
6045 		inode->i_atime = *now;
6046 	return dirty ? btrfs_dirty_inode(inode) : 0;
6047 }
6048 
6049 /*
6050  * find the highest existing sequence number in a directory
6051  * and then set the in-memory index_cnt variable to reflect
6052  * free sequence numbers
6053  */
6054 static int btrfs_set_inode_index_count(struct btrfs_inode *inode)
6055 {
6056 	struct btrfs_root *root = inode->root;
6057 	struct btrfs_key key, found_key;
6058 	struct btrfs_path *path;
6059 	struct extent_buffer *leaf;
6060 	int ret;
6061 
6062 	key.objectid = btrfs_ino(inode);
6063 	key.type = BTRFS_DIR_INDEX_KEY;
6064 	key.offset = (u64)-1;
6065 
6066 	path = btrfs_alloc_path();
6067 	if (!path)
6068 		return -ENOMEM;
6069 
6070 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6071 	if (ret < 0)
6072 		goto out;
6073 	/* FIXME: we should be able to handle this */
6074 	if (ret == 0)
6075 		goto out;
6076 	ret = 0;
6077 
6078 	if (path->slots[0] == 0) {
6079 		inode->index_cnt = BTRFS_DIR_START_INDEX;
6080 		goto out;
6081 	}
6082 
6083 	path->slots[0]--;
6084 
6085 	leaf = path->nodes[0];
6086 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6087 
6088 	if (found_key.objectid != btrfs_ino(inode) ||
6089 	    found_key.type != BTRFS_DIR_INDEX_KEY) {
6090 		inode->index_cnt = BTRFS_DIR_START_INDEX;
6091 		goto out;
6092 	}
6093 
6094 	inode->index_cnt = found_key.offset + 1;
6095 out:
6096 	btrfs_free_path(path);
6097 	return ret;
6098 }
6099 
6100 /*
6101  * helper to find a free sequence number in a given directory.  This current
6102  * code is very simple, later versions will do smarter things in the btree
6103  */
6104 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index)
6105 {
6106 	int ret = 0;
6107 
6108 	if (dir->index_cnt == (u64)-1) {
6109 		ret = btrfs_inode_delayed_dir_index_count(dir);
6110 		if (ret) {
6111 			ret = btrfs_set_inode_index_count(dir);
6112 			if (ret)
6113 				return ret;
6114 		}
6115 	}
6116 
6117 	*index = dir->index_cnt;
6118 	dir->index_cnt++;
6119 
6120 	return ret;
6121 }
6122 
6123 static int btrfs_insert_inode_locked(struct inode *inode)
6124 {
6125 	struct btrfs_iget_args args;
6126 
6127 	args.ino = BTRFS_I(inode)->location.objectid;
6128 	args.root = BTRFS_I(inode)->root;
6129 
6130 	return insert_inode_locked4(inode,
6131 		   btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
6132 		   btrfs_find_actor, &args);
6133 }
6134 
6135 int btrfs_new_inode_prepare(struct btrfs_new_inode_args *args,
6136 			    unsigned int *trans_num_items)
6137 {
6138 	struct inode *dir = args->dir;
6139 	struct inode *inode = args->inode;
6140 	int ret;
6141 
6142 	ret = posix_acl_create(dir, &inode->i_mode, &args->default_acl, &args->acl);
6143 	if (ret)
6144 		return ret;
6145 
6146 	/* 1 to add inode item */
6147 	*trans_num_items = 1;
6148 	/* 1 to add compression property */
6149 	if (BTRFS_I(dir)->prop_compress)
6150 		(*trans_num_items)++;
6151 	/* 1 to add default ACL xattr */
6152 	if (args->default_acl)
6153 		(*trans_num_items)++;
6154 	/* 1 to add access ACL xattr */
6155 	if (args->acl)
6156 		(*trans_num_items)++;
6157 #ifdef CONFIG_SECURITY
6158 	/* 1 to add LSM xattr */
6159 	if (dir->i_security)
6160 		(*trans_num_items)++;
6161 #endif
6162 	if (args->orphan) {
6163 		/* 1 to add orphan item */
6164 		(*trans_num_items)++;
6165 	} else {
6166 		/*
6167 		 * 1 to add dir item
6168 		 * 1 to add dir index
6169 		 * 1 to update parent inode item
6170 		 *
6171 		 * No need for 1 unit for the inode ref item because it is
6172 		 * inserted in a batch together with the inode item at
6173 		 * btrfs_create_new_inode().
6174 		 */
6175 		*trans_num_items += 3;
6176 	}
6177 	return 0;
6178 }
6179 
6180 void btrfs_new_inode_args_destroy(struct btrfs_new_inode_args *args)
6181 {
6182 	posix_acl_release(args->acl);
6183 	posix_acl_release(args->default_acl);
6184 }
6185 
6186 /*
6187  * Inherit flags from the parent inode.
6188  *
6189  * Currently only the compression flags and the cow flags are inherited.
6190  */
6191 static void btrfs_inherit_iflags(struct inode *inode, struct inode *dir)
6192 {
6193 	unsigned int flags;
6194 
6195 	flags = BTRFS_I(dir)->flags;
6196 
6197 	if (flags & BTRFS_INODE_NOCOMPRESS) {
6198 		BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS;
6199 		BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
6200 	} else if (flags & BTRFS_INODE_COMPRESS) {
6201 		BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS;
6202 		BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS;
6203 	}
6204 
6205 	if (flags & BTRFS_INODE_NODATACOW) {
6206 		BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
6207 		if (S_ISREG(inode->i_mode))
6208 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6209 	}
6210 
6211 	btrfs_sync_inode_flags_to_i_flags(inode);
6212 }
6213 
6214 int btrfs_create_new_inode(struct btrfs_trans_handle *trans,
6215 			   struct btrfs_new_inode_args *args)
6216 {
6217 	struct inode *dir = args->dir;
6218 	struct inode *inode = args->inode;
6219 	const char *name = args->orphan ? NULL : args->dentry->d_name.name;
6220 	int name_len = args->orphan ? 0 : args->dentry->d_name.len;
6221 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6222 	struct btrfs_root *root;
6223 	struct btrfs_inode_item *inode_item;
6224 	struct btrfs_key *location;
6225 	struct btrfs_path *path;
6226 	u64 objectid;
6227 	struct btrfs_inode_ref *ref;
6228 	struct btrfs_key key[2];
6229 	u32 sizes[2];
6230 	struct btrfs_item_batch batch;
6231 	unsigned long ptr;
6232 	int ret;
6233 
6234 	path = btrfs_alloc_path();
6235 	if (!path)
6236 		return -ENOMEM;
6237 
6238 	if (!args->subvol)
6239 		BTRFS_I(inode)->root = btrfs_grab_root(BTRFS_I(dir)->root);
6240 	root = BTRFS_I(inode)->root;
6241 
6242 	ret = btrfs_get_free_objectid(root, &objectid);
6243 	if (ret)
6244 		goto out;
6245 	inode->i_ino = objectid;
6246 
6247 	if (args->orphan) {
6248 		/*
6249 		 * O_TMPFILE, set link count to 0, so that after this point, we
6250 		 * fill in an inode item with the correct link count.
6251 		 */
6252 		set_nlink(inode, 0);
6253 	} else {
6254 		trace_btrfs_inode_request(dir);
6255 
6256 		ret = btrfs_set_inode_index(BTRFS_I(dir), &BTRFS_I(inode)->dir_index);
6257 		if (ret)
6258 			goto out;
6259 	}
6260 	/* index_cnt is ignored for everything but a dir. */
6261 	BTRFS_I(inode)->index_cnt = BTRFS_DIR_START_INDEX;
6262 	BTRFS_I(inode)->generation = trans->transid;
6263 	inode->i_generation = BTRFS_I(inode)->generation;
6264 
6265 	/*
6266 	 * Subvolumes don't inherit flags from their parent directory.
6267 	 * Originally this was probably by accident, but we probably can't
6268 	 * change it now without compatibility issues.
6269 	 */
6270 	if (!args->subvol)
6271 		btrfs_inherit_iflags(inode, dir);
6272 
6273 	if (S_ISREG(inode->i_mode)) {
6274 		if (btrfs_test_opt(fs_info, NODATASUM))
6275 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6276 		if (btrfs_test_opt(fs_info, NODATACOW))
6277 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6278 				BTRFS_INODE_NODATASUM;
6279 	}
6280 
6281 	location = &BTRFS_I(inode)->location;
6282 	location->objectid = objectid;
6283 	location->offset = 0;
6284 	location->type = BTRFS_INODE_ITEM_KEY;
6285 
6286 	ret = btrfs_insert_inode_locked(inode);
6287 	if (ret < 0) {
6288 		if (!args->orphan)
6289 			BTRFS_I(dir)->index_cnt--;
6290 		goto out;
6291 	}
6292 
6293 	/*
6294 	 * We could have gotten an inode number from somebody who was fsynced
6295 	 * and then removed in this same transaction, so let's just set full
6296 	 * sync since it will be a full sync anyway and this will blow away the
6297 	 * old info in the log.
6298 	 */
6299 	btrfs_set_inode_full_sync(BTRFS_I(inode));
6300 
6301 	key[0].objectid = objectid;
6302 	key[0].type = BTRFS_INODE_ITEM_KEY;
6303 	key[0].offset = 0;
6304 
6305 	sizes[0] = sizeof(struct btrfs_inode_item);
6306 
6307 	if (!args->orphan) {
6308 		/*
6309 		 * Start new inodes with an inode_ref. This is slightly more
6310 		 * efficient for small numbers of hard links since they will
6311 		 * be packed into one item. Extended refs will kick in if we
6312 		 * add more hard links than can fit in the ref item.
6313 		 */
6314 		key[1].objectid = objectid;
6315 		key[1].type = BTRFS_INODE_REF_KEY;
6316 		if (args->subvol) {
6317 			key[1].offset = objectid;
6318 			sizes[1] = 2 + sizeof(*ref);
6319 		} else {
6320 			key[1].offset = btrfs_ino(BTRFS_I(dir));
6321 			sizes[1] = name_len + sizeof(*ref);
6322 		}
6323 	}
6324 
6325 	batch.keys = &key[0];
6326 	batch.data_sizes = &sizes[0];
6327 	batch.total_data_size = sizes[0] + (args->orphan ? 0 : sizes[1]);
6328 	batch.nr = args->orphan ? 1 : 2;
6329 	ret = btrfs_insert_empty_items(trans, root, path, &batch);
6330 	if (ret != 0) {
6331 		btrfs_abort_transaction(trans, ret);
6332 		goto discard;
6333 	}
6334 
6335 	inode->i_mtime = current_time(inode);
6336 	inode->i_atime = inode->i_mtime;
6337 	inode->i_ctime = inode->i_mtime;
6338 	BTRFS_I(inode)->i_otime = inode->i_mtime;
6339 
6340 	/*
6341 	 * We're going to fill the inode item now, so at this point the inode
6342 	 * must be fully initialized.
6343 	 */
6344 
6345 	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6346 				  struct btrfs_inode_item);
6347 	memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item,
6348 			     sizeof(*inode_item));
6349 	fill_inode_item(trans, path->nodes[0], inode_item, inode);
6350 
6351 	if (!args->orphan) {
6352 		ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6353 				     struct btrfs_inode_ref);
6354 		ptr = (unsigned long)(ref + 1);
6355 		if (args->subvol) {
6356 			btrfs_set_inode_ref_name_len(path->nodes[0], ref, 2);
6357 			btrfs_set_inode_ref_index(path->nodes[0], ref, 0);
6358 			write_extent_buffer(path->nodes[0], "..", ptr, 2);
6359 		} else {
6360 			btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
6361 			btrfs_set_inode_ref_index(path->nodes[0], ref,
6362 						  BTRFS_I(inode)->dir_index);
6363 			write_extent_buffer(path->nodes[0], name, ptr, name_len);
6364 		}
6365 	}
6366 
6367 	btrfs_mark_buffer_dirty(path->nodes[0]);
6368 	btrfs_release_path(path);
6369 
6370 	if (args->subvol) {
6371 		struct inode *parent;
6372 
6373 		/*
6374 		 * Subvolumes inherit properties from their parent subvolume,
6375 		 * not the directory they were created in.
6376 		 */
6377 		parent = btrfs_iget(fs_info->sb, BTRFS_FIRST_FREE_OBJECTID,
6378 				    BTRFS_I(dir)->root);
6379 		if (IS_ERR(parent)) {
6380 			ret = PTR_ERR(parent);
6381 		} else {
6382 			ret = btrfs_inode_inherit_props(trans, inode, parent);
6383 			iput(parent);
6384 		}
6385 	} else {
6386 		ret = btrfs_inode_inherit_props(trans, inode, dir);
6387 	}
6388 	if (ret) {
6389 		btrfs_err(fs_info,
6390 			  "error inheriting props for ino %llu (root %llu): %d",
6391 			  btrfs_ino(BTRFS_I(inode)), root->root_key.objectid,
6392 			  ret);
6393 	}
6394 
6395 	/*
6396 	 * Subvolumes don't inherit ACLs or get passed to the LSM. This is
6397 	 * probably a bug.
6398 	 */
6399 	if (!args->subvol) {
6400 		ret = btrfs_init_inode_security(trans, args);
6401 		if (ret) {
6402 			btrfs_abort_transaction(trans, ret);
6403 			goto discard;
6404 		}
6405 	}
6406 
6407 	inode_tree_add(inode);
6408 
6409 	trace_btrfs_inode_new(inode);
6410 	btrfs_set_inode_last_trans(trans, BTRFS_I(inode));
6411 
6412 	btrfs_update_root_times(trans, root);
6413 
6414 	if (args->orphan) {
6415 		ret = btrfs_orphan_add(trans, BTRFS_I(inode));
6416 	} else {
6417 		ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name,
6418 				     name_len, 0, BTRFS_I(inode)->dir_index);
6419 	}
6420 	if (ret) {
6421 		btrfs_abort_transaction(trans, ret);
6422 		goto discard;
6423 	}
6424 
6425 	ret = 0;
6426 	goto out;
6427 
6428 discard:
6429 	/*
6430 	 * discard_new_inode() calls iput(), but the caller owns the reference
6431 	 * to the inode.
6432 	 */
6433 	ihold(inode);
6434 	discard_new_inode(inode);
6435 out:
6436 	btrfs_free_path(path);
6437 	return ret;
6438 }
6439 
6440 /*
6441  * utility function to add 'inode' into 'parent_inode' with
6442  * a give name and a given sequence number.
6443  * if 'add_backref' is true, also insert a backref from the
6444  * inode to the parent directory.
6445  */
6446 int btrfs_add_link(struct btrfs_trans_handle *trans,
6447 		   struct btrfs_inode *parent_inode, struct btrfs_inode *inode,
6448 		   const char *name, int name_len, int add_backref, u64 index)
6449 {
6450 	int ret = 0;
6451 	struct btrfs_key key;
6452 	struct btrfs_root *root = parent_inode->root;
6453 	u64 ino = btrfs_ino(inode);
6454 	u64 parent_ino = btrfs_ino(parent_inode);
6455 
6456 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6457 		memcpy(&key, &inode->root->root_key, sizeof(key));
6458 	} else {
6459 		key.objectid = ino;
6460 		key.type = BTRFS_INODE_ITEM_KEY;
6461 		key.offset = 0;
6462 	}
6463 
6464 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6465 		ret = btrfs_add_root_ref(trans, key.objectid,
6466 					 root->root_key.objectid, parent_ino,
6467 					 index, name, name_len);
6468 	} else if (add_backref) {
6469 		ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
6470 					     parent_ino, index);
6471 	}
6472 
6473 	/* Nothing to clean up yet */
6474 	if (ret)
6475 		return ret;
6476 
6477 	ret = btrfs_insert_dir_item(trans, name, name_len, parent_inode, &key,
6478 				    btrfs_inode_type(&inode->vfs_inode), index);
6479 	if (ret == -EEXIST || ret == -EOVERFLOW)
6480 		goto fail_dir_item;
6481 	else if (ret) {
6482 		btrfs_abort_transaction(trans, ret);
6483 		return ret;
6484 	}
6485 
6486 	btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size +
6487 			   name_len * 2);
6488 	inode_inc_iversion(&parent_inode->vfs_inode);
6489 	/*
6490 	 * If we are replaying a log tree, we do not want to update the mtime
6491 	 * and ctime of the parent directory with the current time, since the
6492 	 * log replay procedure is responsible for setting them to their correct
6493 	 * values (the ones it had when the fsync was done).
6494 	 */
6495 	if (!test_bit(BTRFS_FS_LOG_RECOVERING, &root->fs_info->flags)) {
6496 		struct timespec64 now = current_time(&parent_inode->vfs_inode);
6497 
6498 		parent_inode->vfs_inode.i_mtime = now;
6499 		parent_inode->vfs_inode.i_ctime = now;
6500 	}
6501 	ret = btrfs_update_inode(trans, root, parent_inode);
6502 	if (ret)
6503 		btrfs_abort_transaction(trans, ret);
6504 	return ret;
6505 
6506 fail_dir_item:
6507 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6508 		u64 local_index;
6509 		int err;
6510 		err = btrfs_del_root_ref(trans, key.objectid,
6511 					 root->root_key.objectid, parent_ino,
6512 					 &local_index, name, name_len);
6513 		if (err)
6514 			btrfs_abort_transaction(trans, err);
6515 	} else if (add_backref) {
6516 		u64 local_index;
6517 		int err;
6518 
6519 		err = btrfs_del_inode_ref(trans, root, name, name_len,
6520 					  ino, parent_ino, &local_index);
6521 		if (err)
6522 			btrfs_abort_transaction(trans, err);
6523 	}
6524 
6525 	/* Return the original error code */
6526 	return ret;
6527 }
6528 
6529 static int btrfs_create_common(struct inode *dir, struct dentry *dentry,
6530 			       struct inode *inode)
6531 {
6532 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6533 	struct btrfs_root *root = BTRFS_I(dir)->root;
6534 	struct btrfs_new_inode_args new_inode_args = {
6535 		.dir = dir,
6536 		.dentry = dentry,
6537 		.inode = inode,
6538 	};
6539 	unsigned int trans_num_items;
6540 	struct btrfs_trans_handle *trans;
6541 	int err;
6542 
6543 	err = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
6544 	if (err)
6545 		goto out_inode;
6546 
6547 	trans = btrfs_start_transaction(root, trans_num_items);
6548 	if (IS_ERR(trans)) {
6549 		err = PTR_ERR(trans);
6550 		goto out_new_inode_args;
6551 	}
6552 
6553 	err = btrfs_create_new_inode(trans, &new_inode_args);
6554 	if (!err)
6555 		d_instantiate_new(dentry, inode);
6556 
6557 	btrfs_end_transaction(trans);
6558 	btrfs_btree_balance_dirty(fs_info);
6559 out_new_inode_args:
6560 	btrfs_new_inode_args_destroy(&new_inode_args);
6561 out_inode:
6562 	if (err)
6563 		iput(inode);
6564 	return err;
6565 }
6566 
6567 static int btrfs_mknod(struct user_namespace *mnt_userns, struct inode *dir,
6568 		       struct dentry *dentry, umode_t mode, dev_t rdev)
6569 {
6570 	struct inode *inode;
6571 
6572 	inode = new_inode(dir->i_sb);
6573 	if (!inode)
6574 		return -ENOMEM;
6575 	inode_init_owner(mnt_userns, inode, dir, mode);
6576 	inode->i_op = &btrfs_special_inode_operations;
6577 	init_special_inode(inode, inode->i_mode, rdev);
6578 	return btrfs_create_common(dir, dentry, inode);
6579 }
6580 
6581 static int btrfs_create(struct user_namespace *mnt_userns, struct inode *dir,
6582 			struct dentry *dentry, umode_t mode, bool excl)
6583 {
6584 	struct inode *inode;
6585 
6586 	inode = new_inode(dir->i_sb);
6587 	if (!inode)
6588 		return -ENOMEM;
6589 	inode_init_owner(mnt_userns, inode, dir, mode);
6590 	inode->i_fop = &btrfs_file_operations;
6591 	inode->i_op = &btrfs_file_inode_operations;
6592 	inode->i_mapping->a_ops = &btrfs_aops;
6593 	return btrfs_create_common(dir, dentry, inode);
6594 }
6595 
6596 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6597 		      struct dentry *dentry)
6598 {
6599 	struct btrfs_trans_handle *trans = NULL;
6600 	struct btrfs_root *root = BTRFS_I(dir)->root;
6601 	struct inode *inode = d_inode(old_dentry);
6602 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
6603 	u64 index;
6604 	int err;
6605 	int drop_inode = 0;
6606 
6607 	/* do not allow sys_link's with other subvols of the same device */
6608 	if (root->root_key.objectid != BTRFS_I(inode)->root->root_key.objectid)
6609 		return -EXDEV;
6610 
6611 	if (inode->i_nlink >= BTRFS_LINK_MAX)
6612 		return -EMLINK;
6613 
6614 	err = btrfs_set_inode_index(BTRFS_I(dir), &index);
6615 	if (err)
6616 		goto fail;
6617 
6618 	/*
6619 	 * 2 items for inode and inode ref
6620 	 * 2 items for dir items
6621 	 * 1 item for parent inode
6622 	 * 1 item for orphan item deletion if O_TMPFILE
6623 	 */
6624 	trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6);
6625 	if (IS_ERR(trans)) {
6626 		err = PTR_ERR(trans);
6627 		trans = NULL;
6628 		goto fail;
6629 	}
6630 
6631 	/* There are several dir indexes for this inode, clear the cache. */
6632 	BTRFS_I(inode)->dir_index = 0ULL;
6633 	inc_nlink(inode);
6634 	inode_inc_iversion(inode);
6635 	inode->i_ctime = current_time(inode);
6636 	ihold(inode);
6637 	set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
6638 
6639 	err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
6640 			     dentry->d_name.name, dentry->d_name.len, 1, index);
6641 
6642 	if (err) {
6643 		drop_inode = 1;
6644 	} else {
6645 		struct dentry *parent = dentry->d_parent;
6646 
6647 		err = btrfs_update_inode(trans, root, BTRFS_I(inode));
6648 		if (err)
6649 			goto fail;
6650 		if (inode->i_nlink == 1) {
6651 			/*
6652 			 * If new hard link count is 1, it's a file created
6653 			 * with open(2) O_TMPFILE flag.
6654 			 */
6655 			err = btrfs_orphan_del(trans, BTRFS_I(inode));
6656 			if (err)
6657 				goto fail;
6658 		}
6659 		d_instantiate(dentry, inode);
6660 		btrfs_log_new_name(trans, old_dentry, NULL, 0, parent);
6661 	}
6662 
6663 fail:
6664 	if (trans)
6665 		btrfs_end_transaction(trans);
6666 	if (drop_inode) {
6667 		inode_dec_link_count(inode);
6668 		iput(inode);
6669 	}
6670 	btrfs_btree_balance_dirty(fs_info);
6671 	return err;
6672 }
6673 
6674 static int btrfs_mkdir(struct user_namespace *mnt_userns, struct inode *dir,
6675 		       struct dentry *dentry, umode_t mode)
6676 {
6677 	struct inode *inode;
6678 
6679 	inode = new_inode(dir->i_sb);
6680 	if (!inode)
6681 		return -ENOMEM;
6682 	inode_init_owner(mnt_userns, inode, dir, S_IFDIR | mode);
6683 	inode->i_op = &btrfs_dir_inode_operations;
6684 	inode->i_fop = &btrfs_dir_file_operations;
6685 	return btrfs_create_common(dir, dentry, inode);
6686 }
6687 
6688 static noinline int uncompress_inline(struct btrfs_path *path,
6689 				      struct page *page,
6690 				      size_t pg_offset, u64 extent_offset,
6691 				      struct btrfs_file_extent_item *item)
6692 {
6693 	int ret;
6694 	struct extent_buffer *leaf = path->nodes[0];
6695 	char *tmp;
6696 	size_t max_size;
6697 	unsigned long inline_size;
6698 	unsigned long ptr;
6699 	int compress_type;
6700 
6701 	WARN_ON(pg_offset != 0);
6702 	compress_type = btrfs_file_extent_compression(leaf, item);
6703 	max_size = btrfs_file_extent_ram_bytes(leaf, item);
6704 	inline_size = btrfs_file_extent_inline_item_len(leaf, path->slots[0]);
6705 	tmp = kmalloc(inline_size, GFP_NOFS);
6706 	if (!tmp)
6707 		return -ENOMEM;
6708 	ptr = btrfs_file_extent_inline_start(item);
6709 
6710 	read_extent_buffer(leaf, tmp, ptr, inline_size);
6711 
6712 	max_size = min_t(unsigned long, PAGE_SIZE, max_size);
6713 	ret = btrfs_decompress(compress_type, tmp, page,
6714 			       extent_offset, inline_size, max_size);
6715 
6716 	/*
6717 	 * decompression code contains a memset to fill in any space between the end
6718 	 * of the uncompressed data and the end of max_size in case the decompressed
6719 	 * data ends up shorter than ram_bytes.  That doesn't cover the hole between
6720 	 * the end of an inline extent and the beginning of the next block, so we
6721 	 * cover that region here.
6722 	 */
6723 
6724 	if (max_size + pg_offset < PAGE_SIZE)
6725 		memzero_page(page,  pg_offset + max_size,
6726 			     PAGE_SIZE - max_size - pg_offset);
6727 	kfree(tmp);
6728 	return ret;
6729 }
6730 
6731 /**
6732  * btrfs_get_extent - Lookup the first extent overlapping a range in a file.
6733  * @inode:	file to search in
6734  * @page:	page to read extent data into if the extent is inline
6735  * @pg_offset:	offset into @page to copy to
6736  * @start:	file offset
6737  * @len:	length of range starting at @start
6738  *
6739  * This returns the first &struct extent_map which overlaps with the given
6740  * range, reading it from the B-tree and caching it if necessary. Note that
6741  * there may be more extents which overlap the given range after the returned
6742  * extent_map.
6743  *
6744  * If @page is not NULL and the extent is inline, this also reads the extent
6745  * data directly into the page and marks the extent up to date in the io_tree.
6746  *
6747  * Return: ERR_PTR on error, non-NULL extent_map on success.
6748  */
6749 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode,
6750 				    struct page *page, size_t pg_offset,
6751 				    u64 start, u64 len)
6752 {
6753 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
6754 	int ret = 0;
6755 	u64 extent_start = 0;
6756 	u64 extent_end = 0;
6757 	u64 objectid = btrfs_ino(inode);
6758 	int extent_type = -1;
6759 	struct btrfs_path *path = NULL;
6760 	struct btrfs_root *root = inode->root;
6761 	struct btrfs_file_extent_item *item;
6762 	struct extent_buffer *leaf;
6763 	struct btrfs_key found_key;
6764 	struct extent_map *em = NULL;
6765 	struct extent_map_tree *em_tree = &inode->extent_tree;
6766 	struct extent_io_tree *io_tree = &inode->io_tree;
6767 
6768 	read_lock(&em_tree->lock);
6769 	em = lookup_extent_mapping(em_tree, start, len);
6770 	read_unlock(&em_tree->lock);
6771 
6772 	if (em) {
6773 		if (em->start > start || em->start + em->len <= start)
6774 			free_extent_map(em);
6775 		else if (em->block_start == EXTENT_MAP_INLINE && page)
6776 			free_extent_map(em);
6777 		else
6778 			goto out;
6779 	}
6780 	em = alloc_extent_map();
6781 	if (!em) {
6782 		ret = -ENOMEM;
6783 		goto out;
6784 	}
6785 	em->start = EXTENT_MAP_HOLE;
6786 	em->orig_start = EXTENT_MAP_HOLE;
6787 	em->len = (u64)-1;
6788 	em->block_len = (u64)-1;
6789 
6790 	path = btrfs_alloc_path();
6791 	if (!path) {
6792 		ret = -ENOMEM;
6793 		goto out;
6794 	}
6795 
6796 	/* Chances are we'll be called again, so go ahead and do readahead */
6797 	path->reada = READA_FORWARD;
6798 
6799 	/*
6800 	 * The same explanation in load_free_space_cache applies here as well,
6801 	 * we only read when we're loading the free space cache, and at that
6802 	 * point the commit_root has everything we need.
6803 	 */
6804 	if (btrfs_is_free_space_inode(inode)) {
6805 		path->search_commit_root = 1;
6806 		path->skip_locking = 1;
6807 	}
6808 
6809 	ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0);
6810 	if (ret < 0) {
6811 		goto out;
6812 	} else if (ret > 0) {
6813 		if (path->slots[0] == 0)
6814 			goto not_found;
6815 		path->slots[0]--;
6816 		ret = 0;
6817 	}
6818 
6819 	leaf = path->nodes[0];
6820 	item = btrfs_item_ptr(leaf, path->slots[0],
6821 			      struct btrfs_file_extent_item);
6822 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6823 	if (found_key.objectid != objectid ||
6824 	    found_key.type != BTRFS_EXTENT_DATA_KEY) {
6825 		/*
6826 		 * If we backup past the first extent we want to move forward
6827 		 * and see if there is an extent in front of us, otherwise we'll
6828 		 * say there is a hole for our whole search range which can
6829 		 * cause problems.
6830 		 */
6831 		extent_end = start;
6832 		goto next;
6833 	}
6834 
6835 	extent_type = btrfs_file_extent_type(leaf, item);
6836 	extent_start = found_key.offset;
6837 	extent_end = btrfs_file_extent_end(path);
6838 	if (extent_type == BTRFS_FILE_EXTENT_REG ||
6839 	    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
6840 		/* Only regular file could have regular/prealloc extent */
6841 		if (!S_ISREG(inode->vfs_inode.i_mode)) {
6842 			ret = -EUCLEAN;
6843 			btrfs_crit(fs_info,
6844 		"regular/prealloc extent found for non-regular inode %llu",
6845 				   btrfs_ino(inode));
6846 			goto out;
6847 		}
6848 		trace_btrfs_get_extent_show_fi_regular(inode, leaf, item,
6849 						       extent_start);
6850 	} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
6851 		trace_btrfs_get_extent_show_fi_inline(inode, leaf, item,
6852 						      path->slots[0],
6853 						      extent_start);
6854 	}
6855 next:
6856 	if (start >= extent_end) {
6857 		path->slots[0]++;
6858 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6859 			ret = btrfs_next_leaf(root, path);
6860 			if (ret < 0)
6861 				goto out;
6862 			else if (ret > 0)
6863 				goto not_found;
6864 
6865 			leaf = path->nodes[0];
6866 		}
6867 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6868 		if (found_key.objectid != objectid ||
6869 		    found_key.type != BTRFS_EXTENT_DATA_KEY)
6870 			goto not_found;
6871 		if (start + len <= found_key.offset)
6872 			goto not_found;
6873 		if (start > found_key.offset)
6874 			goto next;
6875 
6876 		/* New extent overlaps with existing one */
6877 		em->start = start;
6878 		em->orig_start = start;
6879 		em->len = found_key.offset - start;
6880 		em->block_start = EXTENT_MAP_HOLE;
6881 		goto insert;
6882 	}
6883 
6884 	btrfs_extent_item_to_extent_map(inode, path, item, !page, em);
6885 
6886 	if (extent_type == BTRFS_FILE_EXTENT_REG ||
6887 	    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
6888 		goto insert;
6889 	} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
6890 		unsigned long ptr;
6891 		char *map;
6892 		size_t size;
6893 		size_t extent_offset;
6894 		size_t copy_size;
6895 
6896 		if (!page)
6897 			goto out;
6898 
6899 		size = btrfs_file_extent_ram_bytes(leaf, item);
6900 		extent_offset = page_offset(page) + pg_offset - extent_start;
6901 		copy_size = min_t(u64, PAGE_SIZE - pg_offset,
6902 				  size - extent_offset);
6903 		em->start = extent_start + extent_offset;
6904 		em->len = ALIGN(copy_size, fs_info->sectorsize);
6905 		em->orig_block_len = em->len;
6906 		em->orig_start = em->start;
6907 		ptr = btrfs_file_extent_inline_start(item) + extent_offset;
6908 
6909 		if (!PageUptodate(page)) {
6910 			if (btrfs_file_extent_compression(leaf, item) !=
6911 			    BTRFS_COMPRESS_NONE) {
6912 				ret = uncompress_inline(path, page, pg_offset,
6913 							extent_offset, item);
6914 				if (ret)
6915 					goto out;
6916 			} else {
6917 				map = kmap_local_page(page);
6918 				read_extent_buffer(leaf, map + pg_offset, ptr,
6919 						   copy_size);
6920 				if (pg_offset + copy_size < PAGE_SIZE) {
6921 					memset(map + pg_offset + copy_size, 0,
6922 					       PAGE_SIZE - pg_offset -
6923 					       copy_size);
6924 				}
6925 				kunmap_local(map);
6926 			}
6927 			flush_dcache_page(page);
6928 		}
6929 		set_extent_uptodate(io_tree, em->start,
6930 				    extent_map_end(em) - 1, NULL, GFP_NOFS);
6931 		goto insert;
6932 	}
6933 not_found:
6934 	em->start = start;
6935 	em->orig_start = start;
6936 	em->len = len;
6937 	em->block_start = EXTENT_MAP_HOLE;
6938 insert:
6939 	ret = 0;
6940 	btrfs_release_path(path);
6941 	if (em->start > start || extent_map_end(em) <= start) {
6942 		btrfs_err(fs_info,
6943 			  "bad extent! em: [%llu %llu] passed [%llu %llu]",
6944 			  em->start, em->len, start, len);
6945 		ret = -EIO;
6946 		goto out;
6947 	}
6948 
6949 	write_lock(&em_tree->lock);
6950 	ret = btrfs_add_extent_mapping(fs_info, em_tree, &em, start, len);
6951 	write_unlock(&em_tree->lock);
6952 out:
6953 	btrfs_free_path(path);
6954 
6955 	trace_btrfs_get_extent(root, inode, em);
6956 
6957 	if (ret) {
6958 		free_extent_map(em);
6959 		return ERR_PTR(ret);
6960 	}
6961 	return em;
6962 }
6963 
6964 struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode,
6965 					   u64 start, u64 len)
6966 {
6967 	struct extent_map *em;
6968 	struct extent_map *hole_em = NULL;
6969 	u64 delalloc_start = start;
6970 	u64 end;
6971 	u64 delalloc_len;
6972 	u64 delalloc_end;
6973 	int err = 0;
6974 
6975 	em = btrfs_get_extent(inode, NULL, 0, start, len);
6976 	if (IS_ERR(em))
6977 		return em;
6978 	/*
6979 	 * If our em maps to:
6980 	 * - a hole or
6981 	 * - a pre-alloc extent,
6982 	 * there might actually be delalloc bytes behind it.
6983 	 */
6984 	if (em->block_start != EXTENT_MAP_HOLE &&
6985 	    !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
6986 		return em;
6987 	else
6988 		hole_em = em;
6989 
6990 	/* check to see if we've wrapped (len == -1 or similar) */
6991 	end = start + len;
6992 	if (end < start)
6993 		end = (u64)-1;
6994 	else
6995 		end -= 1;
6996 
6997 	em = NULL;
6998 
6999 	/* ok, we didn't find anything, lets look for delalloc */
7000 	delalloc_len = count_range_bits(&inode->io_tree, &delalloc_start,
7001 				 end, len, EXTENT_DELALLOC, 1);
7002 	delalloc_end = delalloc_start + delalloc_len;
7003 	if (delalloc_end < delalloc_start)
7004 		delalloc_end = (u64)-1;
7005 
7006 	/*
7007 	 * We didn't find anything useful, return the original results from
7008 	 * get_extent()
7009 	 */
7010 	if (delalloc_start > end || delalloc_end <= start) {
7011 		em = hole_em;
7012 		hole_em = NULL;
7013 		goto out;
7014 	}
7015 
7016 	/*
7017 	 * Adjust the delalloc_start to make sure it doesn't go backwards from
7018 	 * the start they passed in
7019 	 */
7020 	delalloc_start = max(start, delalloc_start);
7021 	delalloc_len = delalloc_end - delalloc_start;
7022 
7023 	if (delalloc_len > 0) {
7024 		u64 hole_start;
7025 		u64 hole_len;
7026 		const u64 hole_end = extent_map_end(hole_em);
7027 
7028 		em = alloc_extent_map();
7029 		if (!em) {
7030 			err = -ENOMEM;
7031 			goto out;
7032 		}
7033 
7034 		ASSERT(hole_em);
7035 		/*
7036 		 * When btrfs_get_extent can't find anything it returns one
7037 		 * huge hole
7038 		 *
7039 		 * Make sure what it found really fits our range, and adjust to
7040 		 * make sure it is based on the start from the caller
7041 		 */
7042 		if (hole_end <= start || hole_em->start > end) {
7043 		       free_extent_map(hole_em);
7044 		       hole_em = NULL;
7045 		} else {
7046 		       hole_start = max(hole_em->start, start);
7047 		       hole_len = hole_end - hole_start;
7048 		}
7049 
7050 		if (hole_em && delalloc_start > hole_start) {
7051 			/*
7052 			 * Our hole starts before our delalloc, so we have to
7053 			 * return just the parts of the hole that go until the
7054 			 * delalloc starts
7055 			 */
7056 			em->len = min(hole_len, delalloc_start - hole_start);
7057 			em->start = hole_start;
7058 			em->orig_start = hole_start;
7059 			/*
7060 			 * Don't adjust block start at all, it is fixed at
7061 			 * EXTENT_MAP_HOLE
7062 			 */
7063 			em->block_start = hole_em->block_start;
7064 			em->block_len = hole_len;
7065 			if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
7066 				set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
7067 		} else {
7068 			/*
7069 			 * Hole is out of passed range or it starts after
7070 			 * delalloc range
7071 			 */
7072 			em->start = delalloc_start;
7073 			em->len = delalloc_len;
7074 			em->orig_start = delalloc_start;
7075 			em->block_start = EXTENT_MAP_DELALLOC;
7076 			em->block_len = delalloc_len;
7077 		}
7078 	} else {
7079 		return hole_em;
7080 	}
7081 out:
7082 
7083 	free_extent_map(hole_em);
7084 	if (err) {
7085 		free_extent_map(em);
7086 		return ERR_PTR(err);
7087 	}
7088 	return em;
7089 }
7090 
7091 static struct extent_map *btrfs_create_dio_extent(struct btrfs_inode *inode,
7092 						  const u64 start,
7093 						  const u64 len,
7094 						  const u64 orig_start,
7095 						  const u64 block_start,
7096 						  const u64 block_len,
7097 						  const u64 orig_block_len,
7098 						  const u64 ram_bytes,
7099 						  const int type)
7100 {
7101 	struct extent_map *em = NULL;
7102 	int ret;
7103 
7104 	if (type != BTRFS_ORDERED_NOCOW) {
7105 		em = create_io_em(inode, start, len, orig_start, block_start,
7106 				  block_len, orig_block_len, ram_bytes,
7107 				  BTRFS_COMPRESS_NONE, /* compress_type */
7108 				  type);
7109 		if (IS_ERR(em))
7110 			goto out;
7111 	}
7112 	ret = btrfs_add_ordered_extent(inode, start, len, len, block_start,
7113 				       block_len, 0,
7114 				       (1 << type) |
7115 				       (1 << BTRFS_ORDERED_DIRECT),
7116 				       BTRFS_COMPRESS_NONE);
7117 	if (ret) {
7118 		if (em) {
7119 			free_extent_map(em);
7120 			btrfs_drop_extent_cache(inode, start, start + len - 1, 0);
7121 		}
7122 		em = ERR_PTR(ret);
7123 	}
7124  out:
7125 
7126 	return em;
7127 }
7128 
7129 static struct extent_map *btrfs_new_extent_direct(struct btrfs_inode *inode,
7130 						  u64 start, u64 len)
7131 {
7132 	struct btrfs_root *root = inode->root;
7133 	struct btrfs_fs_info *fs_info = root->fs_info;
7134 	struct extent_map *em;
7135 	struct btrfs_key ins;
7136 	u64 alloc_hint;
7137 	int ret;
7138 
7139 	alloc_hint = get_extent_allocation_hint(inode, start, len);
7140 	ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize,
7141 				   0, alloc_hint, &ins, 1, 1);
7142 	if (ret)
7143 		return ERR_PTR(ret);
7144 
7145 	em = btrfs_create_dio_extent(inode, start, ins.offset, start,
7146 				     ins.objectid, ins.offset, ins.offset,
7147 				     ins.offset, BTRFS_ORDERED_REGULAR);
7148 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
7149 	if (IS_ERR(em))
7150 		btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset,
7151 					   1);
7152 
7153 	return em;
7154 }
7155 
7156 static bool btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr)
7157 {
7158 	struct btrfs_block_group *block_group;
7159 	bool readonly = false;
7160 
7161 	block_group = btrfs_lookup_block_group(fs_info, bytenr);
7162 	if (!block_group || block_group->ro)
7163 		readonly = true;
7164 	if (block_group)
7165 		btrfs_put_block_group(block_group);
7166 	return readonly;
7167 }
7168 
7169 /*
7170  * Check if we can do nocow write into the range [@offset, @offset + @len)
7171  *
7172  * @offset:	File offset
7173  * @len:	The length to write, will be updated to the nocow writeable
7174  *		range
7175  * @orig_start:	(optional) Return the original file offset of the file extent
7176  * @orig_len:	(optional) Return the original on-disk length of the file extent
7177  * @ram_bytes:	(optional) Return the ram_bytes of the file extent
7178  * @strict:	if true, omit optimizations that might force us into unnecessary
7179  *		cow. e.g., don't trust generation number.
7180  *
7181  * Return:
7182  * >0	and update @len if we can do nocow write
7183  *  0	if we can't do nocow write
7184  * <0	if error happened
7185  *
7186  * NOTE: This only checks the file extents, caller is responsible to wait for
7187  *	 any ordered extents.
7188  */
7189 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7190 			      u64 *orig_start, u64 *orig_block_len,
7191 			      u64 *ram_bytes, bool strict)
7192 {
7193 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7194 	struct can_nocow_file_extent_args nocow_args = { 0 };
7195 	struct btrfs_path *path;
7196 	int ret;
7197 	struct extent_buffer *leaf;
7198 	struct btrfs_root *root = BTRFS_I(inode)->root;
7199 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7200 	struct btrfs_file_extent_item *fi;
7201 	struct btrfs_key key;
7202 	int found_type;
7203 
7204 	path = btrfs_alloc_path();
7205 	if (!path)
7206 		return -ENOMEM;
7207 
7208 	ret = btrfs_lookup_file_extent(NULL, root, path,
7209 			btrfs_ino(BTRFS_I(inode)), offset, 0);
7210 	if (ret < 0)
7211 		goto out;
7212 
7213 	if (ret == 1) {
7214 		if (path->slots[0] == 0) {
7215 			/* can't find the item, must cow */
7216 			ret = 0;
7217 			goto out;
7218 		}
7219 		path->slots[0]--;
7220 	}
7221 	ret = 0;
7222 	leaf = path->nodes[0];
7223 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
7224 	if (key.objectid != btrfs_ino(BTRFS_I(inode)) ||
7225 	    key.type != BTRFS_EXTENT_DATA_KEY) {
7226 		/* not our file or wrong item type, must cow */
7227 		goto out;
7228 	}
7229 
7230 	if (key.offset > offset) {
7231 		/* Wrong offset, must cow */
7232 		goto out;
7233 	}
7234 
7235 	if (btrfs_file_extent_end(path) <= offset)
7236 		goto out;
7237 
7238 	fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
7239 	found_type = btrfs_file_extent_type(leaf, fi);
7240 	if (ram_bytes)
7241 		*ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
7242 
7243 	nocow_args.start = offset;
7244 	nocow_args.end = offset + *len - 1;
7245 	nocow_args.strict = strict;
7246 	nocow_args.free_path = true;
7247 
7248 	ret = can_nocow_file_extent(path, &key, BTRFS_I(inode), &nocow_args);
7249 	/* can_nocow_file_extent() has freed the path. */
7250 	path = NULL;
7251 
7252 	if (ret != 1) {
7253 		/* Treat errors as not being able to NOCOW. */
7254 		ret = 0;
7255 		goto out;
7256 	}
7257 
7258 	ret = 0;
7259 	if (btrfs_extent_readonly(fs_info, nocow_args.disk_bytenr))
7260 		goto out;
7261 
7262 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7263 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7264 		u64 range_end;
7265 
7266 		range_end = round_up(offset + nocow_args.num_bytes,
7267 				     root->fs_info->sectorsize) - 1;
7268 		ret = test_range_bit(io_tree, offset, range_end,
7269 				     EXTENT_DELALLOC, 0, NULL);
7270 		if (ret) {
7271 			ret = -EAGAIN;
7272 			goto out;
7273 		}
7274 	}
7275 
7276 	if (orig_start)
7277 		*orig_start = key.offset - nocow_args.extent_offset;
7278 	if (orig_block_len)
7279 		*orig_block_len = nocow_args.disk_num_bytes;
7280 
7281 	*len = nocow_args.num_bytes;
7282 	ret = 1;
7283 out:
7284 	btrfs_free_path(path);
7285 	return ret;
7286 }
7287 
7288 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
7289 			      struct extent_state **cached_state,
7290 			      unsigned int iomap_flags)
7291 {
7292 	const bool writing = (iomap_flags & IOMAP_WRITE);
7293 	const bool nowait = (iomap_flags & IOMAP_NOWAIT);
7294 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7295 	struct btrfs_ordered_extent *ordered;
7296 	int ret = 0;
7297 
7298 	while (1) {
7299 		if (nowait) {
7300 			if (!try_lock_extent(io_tree, lockstart, lockend))
7301 				return -EAGAIN;
7302 		} else {
7303 			lock_extent_bits(io_tree, lockstart, lockend, cached_state);
7304 		}
7305 		/*
7306 		 * We're concerned with the entire range that we're going to be
7307 		 * doing DIO to, so we need to make sure there's no ordered
7308 		 * extents in this range.
7309 		 */
7310 		ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart,
7311 						     lockend - lockstart + 1);
7312 
7313 		/*
7314 		 * We need to make sure there are no buffered pages in this
7315 		 * range either, we could have raced between the invalidate in
7316 		 * generic_file_direct_write and locking the extent.  The
7317 		 * invalidate needs to happen so that reads after a write do not
7318 		 * get stale data.
7319 		 */
7320 		if (!ordered &&
7321 		    (!writing || !filemap_range_has_page(inode->i_mapping,
7322 							 lockstart, lockend)))
7323 			break;
7324 
7325 		unlock_extent_cached(io_tree, lockstart, lockend, cached_state);
7326 
7327 		if (ordered) {
7328 			if (nowait) {
7329 				btrfs_put_ordered_extent(ordered);
7330 				ret = -EAGAIN;
7331 				break;
7332 			}
7333 			/*
7334 			 * If we are doing a DIO read and the ordered extent we
7335 			 * found is for a buffered write, we can not wait for it
7336 			 * to complete and retry, because if we do so we can
7337 			 * deadlock with concurrent buffered writes on page
7338 			 * locks. This happens only if our DIO read covers more
7339 			 * than one extent map, if at this point has already
7340 			 * created an ordered extent for a previous extent map
7341 			 * and locked its range in the inode's io tree, and a
7342 			 * concurrent write against that previous extent map's
7343 			 * range and this range started (we unlock the ranges
7344 			 * in the io tree only when the bios complete and
7345 			 * buffered writes always lock pages before attempting
7346 			 * to lock range in the io tree).
7347 			 */
7348 			if (writing ||
7349 			    test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags))
7350 				btrfs_start_ordered_extent(ordered, 1);
7351 			else
7352 				ret = nowait ? -EAGAIN : -ENOTBLK;
7353 			btrfs_put_ordered_extent(ordered);
7354 		} else {
7355 			/*
7356 			 * We could trigger writeback for this range (and wait
7357 			 * for it to complete) and then invalidate the pages for
7358 			 * this range (through invalidate_inode_pages2_range()),
7359 			 * but that can lead us to a deadlock with a concurrent
7360 			 * call to readahead (a buffered read or a defrag call
7361 			 * triggered a readahead) on a page lock due to an
7362 			 * ordered dio extent we created before but did not have
7363 			 * yet a corresponding bio submitted (whence it can not
7364 			 * complete), which makes readahead wait for that
7365 			 * ordered extent to complete while holding a lock on
7366 			 * that page.
7367 			 */
7368 			ret = nowait ? -EAGAIN : -ENOTBLK;
7369 		}
7370 
7371 		if (ret)
7372 			break;
7373 
7374 		cond_resched();
7375 	}
7376 
7377 	return ret;
7378 }
7379 
7380 /* The callers of this must take lock_extent() */
7381 static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start,
7382 				       u64 len, u64 orig_start, u64 block_start,
7383 				       u64 block_len, u64 orig_block_len,
7384 				       u64 ram_bytes, int compress_type,
7385 				       int type)
7386 {
7387 	struct extent_map_tree *em_tree;
7388 	struct extent_map *em;
7389 	int ret;
7390 
7391 	ASSERT(type == BTRFS_ORDERED_PREALLOC ||
7392 	       type == BTRFS_ORDERED_COMPRESSED ||
7393 	       type == BTRFS_ORDERED_NOCOW ||
7394 	       type == BTRFS_ORDERED_REGULAR);
7395 
7396 	em_tree = &inode->extent_tree;
7397 	em = alloc_extent_map();
7398 	if (!em)
7399 		return ERR_PTR(-ENOMEM);
7400 
7401 	em->start = start;
7402 	em->orig_start = orig_start;
7403 	em->len = len;
7404 	em->block_len = block_len;
7405 	em->block_start = block_start;
7406 	em->orig_block_len = orig_block_len;
7407 	em->ram_bytes = ram_bytes;
7408 	em->generation = -1;
7409 	set_bit(EXTENT_FLAG_PINNED, &em->flags);
7410 	if (type == BTRFS_ORDERED_PREALLOC) {
7411 		set_bit(EXTENT_FLAG_FILLING, &em->flags);
7412 	} else if (type == BTRFS_ORDERED_COMPRESSED) {
7413 		set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
7414 		em->compress_type = compress_type;
7415 	}
7416 
7417 	do {
7418 		btrfs_drop_extent_cache(inode, em->start,
7419 					em->start + em->len - 1, 0);
7420 		write_lock(&em_tree->lock);
7421 		ret = add_extent_mapping(em_tree, em, 1);
7422 		write_unlock(&em_tree->lock);
7423 		/*
7424 		 * The caller has taken lock_extent(), who could race with us
7425 		 * to add em?
7426 		 */
7427 	} while (ret == -EEXIST);
7428 
7429 	if (ret) {
7430 		free_extent_map(em);
7431 		return ERR_PTR(ret);
7432 	}
7433 
7434 	/* em got 2 refs now, callers needs to do free_extent_map once. */
7435 	return em;
7436 }
7437 
7438 
7439 static int btrfs_get_blocks_direct_write(struct extent_map **map,
7440 					 struct inode *inode,
7441 					 struct btrfs_dio_data *dio_data,
7442 					 u64 start, u64 len,
7443 					 unsigned int iomap_flags)
7444 {
7445 	const bool nowait = (iomap_flags & IOMAP_NOWAIT);
7446 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7447 	struct extent_map *em = *map;
7448 	int type;
7449 	u64 block_start, orig_start, orig_block_len, ram_bytes;
7450 	struct btrfs_block_group *bg;
7451 	bool can_nocow = false;
7452 	bool space_reserved = false;
7453 	u64 prev_len;
7454 	int ret = 0;
7455 
7456 	/*
7457 	 * We don't allocate a new extent in the following cases
7458 	 *
7459 	 * 1) The inode is marked as NODATACOW. In this case we'll just use the
7460 	 * existing extent.
7461 	 * 2) The extent is marked as PREALLOC. We're good to go here and can
7462 	 * just use the extent.
7463 	 *
7464 	 */
7465 	if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7466 	    ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7467 	     em->block_start != EXTENT_MAP_HOLE)) {
7468 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7469 			type = BTRFS_ORDERED_PREALLOC;
7470 		else
7471 			type = BTRFS_ORDERED_NOCOW;
7472 		len = min(len, em->len - (start - em->start));
7473 		block_start = em->block_start + (start - em->start);
7474 
7475 		if (can_nocow_extent(inode, start, &len, &orig_start,
7476 				     &orig_block_len, &ram_bytes, false) == 1) {
7477 			bg = btrfs_inc_nocow_writers(fs_info, block_start);
7478 			if (bg)
7479 				can_nocow = true;
7480 		}
7481 	}
7482 
7483 	prev_len = len;
7484 	if (can_nocow) {
7485 		struct extent_map *em2;
7486 
7487 		/* We can NOCOW, so only need to reserve metadata space. */
7488 		ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len, len,
7489 						      nowait);
7490 		if (ret < 0) {
7491 			/* Our caller expects us to free the input extent map. */
7492 			free_extent_map(em);
7493 			*map = NULL;
7494 			btrfs_dec_nocow_writers(bg);
7495 			if (nowait && (ret == -ENOSPC || ret == -EDQUOT))
7496 				ret = -EAGAIN;
7497 			goto out;
7498 		}
7499 		space_reserved = true;
7500 
7501 		em2 = btrfs_create_dio_extent(BTRFS_I(inode), start, len,
7502 					      orig_start, block_start,
7503 					      len, orig_block_len,
7504 					      ram_bytes, type);
7505 		btrfs_dec_nocow_writers(bg);
7506 		if (type == BTRFS_ORDERED_PREALLOC) {
7507 			free_extent_map(em);
7508 			*map = em = em2;
7509 		}
7510 
7511 		if (IS_ERR(em2)) {
7512 			ret = PTR_ERR(em2);
7513 			goto out;
7514 		}
7515 
7516 		dio_data->nocow_done = true;
7517 	} else {
7518 		/* Our caller expects us to free the input extent map. */
7519 		free_extent_map(em);
7520 		*map = NULL;
7521 
7522 		if (nowait)
7523 			return -EAGAIN;
7524 
7525 		/*
7526 		 * If we could not allocate data space before locking the file
7527 		 * range and we can't do a NOCOW write, then we have to fail.
7528 		 */
7529 		if (!dio_data->data_space_reserved)
7530 			return -ENOSPC;
7531 
7532 		/*
7533 		 * We have to COW and we have already reserved data space before,
7534 		 * so now we reserve only metadata.
7535 		 */
7536 		ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len, len,
7537 						      false);
7538 		if (ret < 0)
7539 			goto out;
7540 		space_reserved = true;
7541 
7542 		em = btrfs_new_extent_direct(BTRFS_I(inode), start, len);
7543 		if (IS_ERR(em)) {
7544 			ret = PTR_ERR(em);
7545 			goto out;
7546 		}
7547 		*map = em;
7548 		len = min(len, em->len - (start - em->start));
7549 		if (len < prev_len)
7550 			btrfs_delalloc_release_metadata(BTRFS_I(inode),
7551 							prev_len - len, true);
7552 	}
7553 
7554 	/*
7555 	 * We have created our ordered extent, so we can now release our reservation
7556 	 * for an outstanding extent.
7557 	 */
7558 	btrfs_delalloc_release_extents(BTRFS_I(inode), prev_len);
7559 
7560 	/*
7561 	 * Need to update the i_size under the extent lock so buffered
7562 	 * readers will get the updated i_size when we unlock.
7563 	 */
7564 	if (start + len > i_size_read(inode))
7565 		i_size_write(inode, start + len);
7566 out:
7567 	if (ret && space_reserved) {
7568 		btrfs_delalloc_release_extents(BTRFS_I(inode), len);
7569 		btrfs_delalloc_release_metadata(BTRFS_I(inode), len, true);
7570 	}
7571 	return ret;
7572 }
7573 
7574 static int btrfs_dio_iomap_begin(struct inode *inode, loff_t start,
7575 		loff_t length, unsigned int flags, struct iomap *iomap,
7576 		struct iomap *srcmap)
7577 {
7578 	struct iomap_iter *iter = container_of(iomap, struct iomap_iter, iomap);
7579 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7580 	struct extent_map *em;
7581 	struct extent_state *cached_state = NULL;
7582 	struct btrfs_dio_data *dio_data = iter->private;
7583 	u64 lockstart, lockend;
7584 	const bool write = !!(flags & IOMAP_WRITE);
7585 	int ret = 0;
7586 	u64 len = length;
7587 	const u64 data_alloc_len = length;
7588 	bool unlock_extents = false;
7589 
7590 	if (!write)
7591 		len = min_t(u64, len, fs_info->sectorsize);
7592 
7593 	lockstart = start;
7594 	lockend = start + len - 1;
7595 
7596 	/*
7597 	 * iomap_dio_rw() only does filemap_write_and_wait_range(), which isn't
7598 	 * enough if we've written compressed pages to this area, so we need to
7599 	 * flush the dirty pages again to make absolutely sure that any
7600 	 * outstanding dirty pages are on disk - the first flush only starts
7601 	 * compression on the data, while keeping the pages locked, so by the
7602 	 * time the second flush returns we know bios for the compressed pages
7603 	 * were submitted and finished, and the pages no longer under writeback.
7604 	 *
7605 	 * If we have a NOWAIT request and we have any pages in the range that
7606 	 * are locked, likely due to compression still in progress, we don't want
7607 	 * to block on page locks. We also don't want to block on pages marked as
7608 	 * dirty or under writeback (same as for the non-compression case).
7609 	 * iomap_dio_rw() did the same check, but after that and before we got
7610 	 * here, mmap'ed writes may have happened or buffered reads started
7611 	 * (readpage() and readahead(), which lock pages), as we haven't locked
7612 	 * the file range yet.
7613 	 */
7614 	if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
7615 		     &BTRFS_I(inode)->runtime_flags)) {
7616 		if (flags & IOMAP_NOWAIT) {
7617 			if (filemap_range_needs_writeback(inode->i_mapping,
7618 							  lockstart, lockend))
7619 				return -EAGAIN;
7620 		} else {
7621 			ret = filemap_fdatawrite_range(inode->i_mapping, start,
7622 						       start + length - 1);
7623 			if (ret)
7624 				return ret;
7625 		}
7626 	}
7627 
7628 	memset(dio_data, 0, sizeof(*dio_data));
7629 
7630 	/*
7631 	 * We always try to allocate data space and must do it before locking
7632 	 * the file range, to avoid deadlocks with concurrent writes to the same
7633 	 * range if the range has several extents and the writes don't expand the
7634 	 * current i_size (the inode lock is taken in shared mode). If we fail to
7635 	 * allocate data space here we continue and later, after locking the
7636 	 * file range, we fail with ENOSPC only if we figure out we can not do a
7637 	 * NOCOW write.
7638 	 */
7639 	if (write && !(flags & IOMAP_NOWAIT)) {
7640 		ret = btrfs_check_data_free_space(BTRFS_I(inode),
7641 						  &dio_data->data_reserved,
7642 						  start, data_alloc_len);
7643 		if (!ret)
7644 			dio_data->data_space_reserved = true;
7645 		else if (ret && !(BTRFS_I(inode)->flags &
7646 				  (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)))
7647 			goto err;
7648 	}
7649 
7650 	/*
7651 	 * If this errors out it's because we couldn't invalidate pagecache for
7652 	 * this range and we need to fallback to buffered IO, or we are doing a
7653 	 * NOWAIT read/write and we need to block.
7654 	 */
7655 	ret = lock_extent_direct(inode, lockstart, lockend, &cached_state, flags);
7656 	if (ret < 0)
7657 		goto err;
7658 
7659 	em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len);
7660 	if (IS_ERR(em)) {
7661 		ret = PTR_ERR(em);
7662 		goto unlock_err;
7663 	}
7664 
7665 	/*
7666 	 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7667 	 * io.  INLINE is special, and we could probably kludge it in here, but
7668 	 * it's still buffered so for safety lets just fall back to the generic
7669 	 * buffered path.
7670 	 *
7671 	 * For COMPRESSED we _have_ to read the entire extent in so we can
7672 	 * decompress it, so there will be buffering required no matter what we
7673 	 * do, so go ahead and fallback to buffered.
7674 	 *
7675 	 * We return -ENOTBLK because that's what makes DIO go ahead and go back
7676 	 * to buffered IO.  Don't blame me, this is the price we pay for using
7677 	 * the generic code.
7678 	 */
7679 	if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7680 	    em->block_start == EXTENT_MAP_INLINE) {
7681 		free_extent_map(em);
7682 		ret = -ENOTBLK;
7683 		goto unlock_err;
7684 	}
7685 
7686 	len = min(len, em->len - (start - em->start));
7687 
7688 	/*
7689 	 * If we have a NOWAIT request and the range contains multiple extents
7690 	 * (or a mix of extents and holes), then we return -EAGAIN to make the
7691 	 * caller fallback to a context where it can do a blocking (without
7692 	 * NOWAIT) request. This way we avoid doing partial IO and returning
7693 	 * success to the caller, which is not optimal for writes and for reads
7694 	 * it can result in unexpected behaviour for an application.
7695 	 *
7696 	 * When doing a read, because we use IOMAP_DIO_PARTIAL when calling
7697 	 * iomap_dio_rw(), we can end up returning less data then what the caller
7698 	 * asked for, resulting in an unexpected, and incorrect, short read.
7699 	 * That is, the caller asked to read N bytes and we return less than that,
7700 	 * which is wrong unless we are crossing EOF. This happens if we get a
7701 	 * page fault error when trying to fault in pages for the buffer that is
7702 	 * associated to the struct iov_iter passed to iomap_dio_rw(), and we
7703 	 * have previously submitted bios for other extents in the range, in
7704 	 * which case iomap_dio_rw() may return us EIOCBQUEUED if not all of
7705 	 * those bios have completed by the time we get the page fault error,
7706 	 * which we return back to our caller - we should only return EIOCBQUEUED
7707 	 * after we have submitted bios for all the extents in the range.
7708 	 */
7709 	if ((flags & IOMAP_NOWAIT) && len < length) {
7710 		free_extent_map(em);
7711 		ret = -EAGAIN;
7712 		goto unlock_err;
7713 	}
7714 
7715 	if (write) {
7716 		ret = btrfs_get_blocks_direct_write(&em, inode, dio_data,
7717 						    start, len, flags);
7718 		if (ret < 0)
7719 			goto unlock_err;
7720 		unlock_extents = true;
7721 		/* Recalc len in case the new em is smaller than requested */
7722 		len = min(len, em->len - (start - em->start));
7723 		if (dio_data->data_space_reserved) {
7724 			u64 release_offset;
7725 			u64 release_len = 0;
7726 
7727 			if (dio_data->nocow_done) {
7728 				release_offset = start;
7729 				release_len = data_alloc_len;
7730 			} else if (len < data_alloc_len) {
7731 				release_offset = start + len;
7732 				release_len = data_alloc_len - len;
7733 			}
7734 
7735 			if (release_len > 0)
7736 				btrfs_free_reserved_data_space(BTRFS_I(inode),
7737 							       dio_data->data_reserved,
7738 							       release_offset,
7739 							       release_len);
7740 		}
7741 	} else {
7742 		/*
7743 		 * We need to unlock only the end area that we aren't using.
7744 		 * The rest is going to be unlocked by the endio routine.
7745 		 */
7746 		lockstart = start + len;
7747 		if (lockstart < lockend)
7748 			unlock_extents = true;
7749 	}
7750 
7751 	if (unlock_extents)
7752 		unlock_extent_cached(&BTRFS_I(inode)->io_tree,
7753 				     lockstart, lockend, &cached_state);
7754 	else
7755 		free_extent_state(cached_state);
7756 
7757 	/*
7758 	 * Translate extent map information to iomap.
7759 	 * We trim the extents (and move the addr) even though iomap code does
7760 	 * that, since we have locked only the parts we are performing I/O in.
7761 	 */
7762 	if ((em->block_start == EXTENT_MAP_HOLE) ||
7763 	    (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) && !write)) {
7764 		iomap->addr = IOMAP_NULL_ADDR;
7765 		iomap->type = IOMAP_HOLE;
7766 	} else {
7767 		iomap->addr = em->block_start + (start - em->start);
7768 		iomap->type = IOMAP_MAPPED;
7769 	}
7770 	iomap->offset = start;
7771 	iomap->bdev = fs_info->fs_devices->latest_dev->bdev;
7772 	iomap->length = len;
7773 
7774 	if (write && btrfs_use_zone_append(BTRFS_I(inode), em->block_start))
7775 		iomap->flags |= IOMAP_F_ZONE_APPEND;
7776 
7777 	free_extent_map(em);
7778 
7779 	return 0;
7780 
7781 unlock_err:
7782 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7783 			     &cached_state);
7784 err:
7785 	if (dio_data->data_space_reserved) {
7786 		btrfs_free_reserved_data_space(BTRFS_I(inode),
7787 					       dio_data->data_reserved,
7788 					       start, data_alloc_len);
7789 		extent_changeset_free(dio_data->data_reserved);
7790 	}
7791 
7792 	return ret;
7793 }
7794 
7795 static int btrfs_dio_iomap_end(struct inode *inode, loff_t pos, loff_t length,
7796 		ssize_t written, unsigned int flags, struct iomap *iomap)
7797 {
7798 	struct iomap_iter *iter = container_of(iomap, struct iomap_iter, iomap);
7799 	struct btrfs_dio_data *dio_data = iter->private;
7800 	size_t submitted = dio_data->submitted;
7801 	const bool write = !!(flags & IOMAP_WRITE);
7802 	int ret = 0;
7803 
7804 	if (!write && (iomap->type == IOMAP_HOLE)) {
7805 		/* If reading from a hole, unlock and return */
7806 		unlock_extent(&BTRFS_I(inode)->io_tree, pos, pos + length - 1);
7807 		return 0;
7808 	}
7809 
7810 	if (submitted < length) {
7811 		pos += submitted;
7812 		length -= submitted;
7813 		if (write)
7814 			__endio_write_update_ordered(BTRFS_I(inode), pos,
7815 					length, false);
7816 		else
7817 			unlock_extent(&BTRFS_I(inode)->io_tree, pos,
7818 				      pos + length - 1);
7819 		ret = -ENOTBLK;
7820 	}
7821 
7822 	if (write)
7823 		extent_changeset_free(dio_data->data_reserved);
7824 	return ret;
7825 }
7826 
7827 static void btrfs_dio_private_put(struct btrfs_dio_private *dip)
7828 {
7829 	/*
7830 	 * This implies a barrier so that stores to dio_bio->bi_status before
7831 	 * this and loads of dio_bio->bi_status after this are fully ordered.
7832 	 */
7833 	if (!refcount_dec_and_test(&dip->refs))
7834 		return;
7835 
7836 	if (btrfs_op(&dip->bio) == BTRFS_MAP_WRITE) {
7837 		__endio_write_update_ordered(BTRFS_I(dip->inode),
7838 					     dip->file_offset,
7839 					     dip->bytes,
7840 					     !dip->bio.bi_status);
7841 	} else {
7842 		unlock_extent(&BTRFS_I(dip->inode)->io_tree,
7843 			      dip->file_offset,
7844 			      dip->file_offset + dip->bytes - 1);
7845 	}
7846 
7847 	kfree(dip->csums);
7848 	bio_endio(&dip->bio);
7849 }
7850 
7851 static void submit_dio_repair_bio(struct inode *inode, struct bio *bio,
7852 				  int mirror_num,
7853 				  enum btrfs_compression_type compress_type)
7854 {
7855 	struct btrfs_dio_private *dip = bio->bi_private;
7856 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7857 
7858 	BUG_ON(bio_op(bio) == REQ_OP_WRITE);
7859 
7860 	if (btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA))
7861 		return;
7862 
7863 	refcount_inc(&dip->refs);
7864 	if (btrfs_map_bio(fs_info, bio, mirror_num))
7865 		refcount_dec(&dip->refs);
7866 }
7867 
7868 static blk_status_t btrfs_check_read_dio_bio(struct btrfs_dio_private *dip,
7869 					     struct btrfs_bio *bbio,
7870 					     const bool uptodate)
7871 {
7872 	struct inode *inode = dip->inode;
7873 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
7874 	const u32 sectorsize = fs_info->sectorsize;
7875 	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
7876 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7877 	const bool csum = !(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM);
7878 	struct bio_vec bvec;
7879 	struct bvec_iter iter;
7880 	u32 bio_offset = 0;
7881 	blk_status_t err = BLK_STS_OK;
7882 
7883 	__bio_for_each_segment(bvec, &bbio->bio, iter, bbio->iter) {
7884 		unsigned int i, nr_sectors, pgoff;
7885 
7886 		nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len);
7887 		pgoff = bvec.bv_offset;
7888 		for (i = 0; i < nr_sectors; i++) {
7889 			u64 start = bbio->file_offset + bio_offset;
7890 
7891 			ASSERT(pgoff < PAGE_SIZE);
7892 			if (uptodate &&
7893 			    (!csum || !check_data_csum(inode, bbio,
7894 						       bio_offset, bvec.bv_page,
7895 						       pgoff, start))) {
7896 				clean_io_failure(fs_info, failure_tree, io_tree,
7897 						 start, bvec.bv_page,
7898 						 btrfs_ino(BTRFS_I(inode)),
7899 						 pgoff);
7900 			} else {
7901 				int ret;
7902 
7903 				ret = btrfs_repair_one_sector(inode, &bbio->bio,
7904 						bio_offset, bvec.bv_page, pgoff,
7905 						start, bbio->mirror_num,
7906 						submit_dio_repair_bio);
7907 				if (ret)
7908 					err = errno_to_blk_status(ret);
7909 			}
7910 			ASSERT(bio_offset + sectorsize > bio_offset);
7911 			bio_offset += sectorsize;
7912 			pgoff += sectorsize;
7913 		}
7914 	}
7915 	return err;
7916 }
7917 
7918 static void __endio_write_update_ordered(struct btrfs_inode *inode,
7919 					 const u64 offset, const u64 bytes,
7920 					 const bool uptodate)
7921 {
7922 	btrfs_mark_ordered_io_finished(inode, NULL, offset, bytes,
7923 				       finish_ordered_fn, uptodate);
7924 }
7925 
7926 static blk_status_t btrfs_submit_bio_start_direct_io(struct inode *inode,
7927 						     struct bio *bio,
7928 						     u64 dio_file_offset)
7929 {
7930 	return btrfs_csum_one_bio(BTRFS_I(inode), bio, dio_file_offset, false);
7931 }
7932 
7933 static void btrfs_end_dio_bio(struct bio *bio)
7934 {
7935 	struct btrfs_dio_private *dip = bio->bi_private;
7936 	struct btrfs_bio *bbio = btrfs_bio(bio);
7937 	blk_status_t err = bio->bi_status;
7938 
7939 	if (err)
7940 		btrfs_warn(BTRFS_I(dip->inode)->root->fs_info,
7941 			   "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d",
7942 			   btrfs_ino(BTRFS_I(dip->inode)), bio_op(bio),
7943 			   bio->bi_opf, bio->bi_iter.bi_sector,
7944 			   bio->bi_iter.bi_size, err);
7945 
7946 	if (bio_op(bio) == REQ_OP_READ)
7947 		err = btrfs_check_read_dio_bio(dip, bbio, !err);
7948 
7949 	if (err)
7950 		dip->bio.bi_status = err;
7951 
7952 	btrfs_record_physical_zoned(dip->inode, bbio->file_offset, bio);
7953 
7954 	bio_put(bio);
7955 	btrfs_dio_private_put(dip);
7956 }
7957 
7958 static inline blk_status_t btrfs_submit_dio_bio(struct bio *bio,
7959 		struct inode *inode, u64 file_offset, int async_submit)
7960 {
7961 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7962 	struct btrfs_dio_private *dip = bio->bi_private;
7963 	bool write = btrfs_op(bio) == BTRFS_MAP_WRITE;
7964 	blk_status_t ret;
7965 
7966 	/* Check btrfs_submit_bio_hook() for rules about async submit. */
7967 	if (async_submit)
7968 		async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
7969 
7970 	if (!write) {
7971 		ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
7972 		if (ret)
7973 			goto err;
7974 	}
7975 
7976 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
7977 		goto map;
7978 
7979 	if (write && async_submit) {
7980 		ret = btrfs_wq_submit_bio(inode, bio, 0, file_offset,
7981 					  btrfs_submit_bio_start_direct_io);
7982 		goto err;
7983 	} else if (write) {
7984 		/*
7985 		 * If we aren't doing async submit, calculate the csum of the
7986 		 * bio now.
7987 		 */
7988 		ret = btrfs_csum_one_bio(BTRFS_I(inode), bio, file_offset, false);
7989 		if (ret)
7990 			goto err;
7991 	} else {
7992 		u64 csum_offset;
7993 
7994 		csum_offset = file_offset - dip->file_offset;
7995 		csum_offset >>= fs_info->sectorsize_bits;
7996 		csum_offset *= fs_info->csum_size;
7997 		btrfs_bio(bio)->csum = dip->csums + csum_offset;
7998 	}
7999 map:
8000 	ret = btrfs_map_bio(fs_info, bio, 0);
8001 err:
8002 	return ret;
8003 }
8004 
8005 static void btrfs_submit_direct(const struct iomap_iter *iter,
8006 		struct bio *dio_bio, loff_t file_offset)
8007 {
8008 	struct btrfs_dio_private *dip =
8009 		container_of(dio_bio, struct btrfs_dio_private, bio);
8010 	struct inode *inode = iter->inode;
8011 	const bool write = (btrfs_op(dio_bio) == BTRFS_MAP_WRITE);
8012 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8013 	const bool raid56 = (btrfs_data_alloc_profile(fs_info) &
8014 			     BTRFS_BLOCK_GROUP_RAID56_MASK);
8015 	struct bio *bio;
8016 	u64 start_sector;
8017 	int async_submit = 0;
8018 	u64 submit_len;
8019 	u64 clone_offset = 0;
8020 	u64 clone_len;
8021 	u64 logical;
8022 	int ret;
8023 	blk_status_t status;
8024 	struct btrfs_io_geometry geom;
8025 	struct btrfs_dio_data *dio_data = iter->private;
8026 	struct extent_map *em = NULL;
8027 
8028 	dip->inode = inode;
8029 	dip->file_offset = file_offset;
8030 	dip->bytes = dio_bio->bi_iter.bi_size;
8031 	refcount_set(&dip->refs, 1);
8032 	dip->csums = NULL;
8033 
8034 	if (!write && !(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
8035 		unsigned int nr_sectors =
8036 			(dio_bio->bi_iter.bi_size >> fs_info->sectorsize_bits);
8037 
8038 		/*
8039 		 * Load the csums up front to reduce csum tree searches and
8040 		 * contention when submitting bios.
8041 		 */
8042 		status = BLK_STS_RESOURCE;
8043 		dip->csums = kcalloc(nr_sectors, fs_info->csum_size, GFP_NOFS);
8044 		if (!dip)
8045 			goto out_err;
8046 
8047 		status = btrfs_lookup_bio_sums(inode, dio_bio, dip->csums);
8048 		if (status != BLK_STS_OK)
8049 			goto out_err;
8050 	}
8051 
8052 	start_sector = dio_bio->bi_iter.bi_sector;
8053 	submit_len = dio_bio->bi_iter.bi_size;
8054 
8055 	do {
8056 		logical = start_sector << 9;
8057 		em = btrfs_get_chunk_map(fs_info, logical, submit_len);
8058 		if (IS_ERR(em)) {
8059 			status = errno_to_blk_status(PTR_ERR(em));
8060 			em = NULL;
8061 			goto out_err_em;
8062 		}
8063 		ret = btrfs_get_io_geometry(fs_info, em, btrfs_op(dio_bio),
8064 					    logical, &geom);
8065 		if (ret) {
8066 			status = errno_to_blk_status(ret);
8067 			goto out_err_em;
8068 		}
8069 
8070 		clone_len = min(submit_len, geom.len);
8071 		ASSERT(clone_len <= UINT_MAX);
8072 
8073 		/*
8074 		 * This will never fail as it's passing GPF_NOFS and
8075 		 * the allocation is backed by btrfs_bioset.
8076 		 */
8077 		bio = btrfs_bio_clone_partial(dio_bio, clone_offset, clone_len);
8078 		bio->bi_private = dip;
8079 		bio->bi_end_io = btrfs_end_dio_bio;
8080 		btrfs_bio(bio)->file_offset = file_offset;
8081 
8082 		if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
8083 			status = extract_ordered_extent(BTRFS_I(inode), bio,
8084 							file_offset);
8085 			if (status) {
8086 				bio_put(bio);
8087 				goto out_err;
8088 			}
8089 		}
8090 
8091 		ASSERT(submit_len >= clone_len);
8092 		submit_len -= clone_len;
8093 
8094 		/*
8095 		 * Increase the count before we submit the bio so we know
8096 		 * the end IO handler won't happen before we increase the
8097 		 * count. Otherwise, the dip might get freed before we're
8098 		 * done setting it up.
8099 		 *
8100 		 * We transfer the initial reference to the last bio, so we
8101 		 * don't need to increment the reference count for the last one.
8102 		 */
8103 		if (submit_len > 0) {
8104 			refcount_inc(&dip->refs);
8105 			/*
8106 			 * If we are submitting more than one bio, submit them
8107 			 * all asynchronously. The exception is RAID 5 or 6, as
8108 			 * asynchronous checksums make it difficult to collect
8109 			 * full stripe writes.
8110 			 */
8111 			if (!raid56)
8112 				async_submit = 1;
8113 		}
8114 
8115 		status = btrfs_submit_dio_bio(bio, inode, file_offset,
8116 						async_submit);
8117 		if (status) {
8118 			bio_put(bio);
8119 			if (submit_len > 0)
8120 				refcount_dec(&dip->refs);
8121 			goto out_err_em;
8122 		}
8123 
8124 		dio_data->submitted += clone_len;
8125 		clone_offset += clone_len;
8126 		start_sector += clone_len >> 9;
8127 		file_offset += clone_len;
8128 
8129 		free_extent_map(em);
8130 	} while (submit_len > 0);
8131 	return;
8132 
8133 out_err_em:
8134 	free_extent_map(em);
8135 out_err:
8136 	dio_bio->bi_status = status;
8137 	btrfs_dio_private_put(dip);
8138 }
8139 
8140 static const struct iomap_ops btrfs_dio_iomap_ops = {
8141 	.iomap_begin            = btrfs_dio_iomap_begin,
8142 	.iomap_end              = btrfs_dio_iomap_end,
8143 };
8144 
8145 static const struct iomap_dio_ops btrfs_dio_ops = {
8146 	.submit_io		= btrfs_submit_direct,
8147 	.bio_set		= &btrfs_dio_bioset,
8148 };
8149 
8150 ssize_t btrfs_dio_rw(struct kiocb *iocb, struct iov_iter *iter, size_t done_before)
8151 {
8152 	struct btrfs_dio_data data;
8153 
8154 	return iomap_dio_rw(iocb, iter, &btrfs_dio_iomap_ops, &btrfs_dio_ops,
8155 			    IOMAP_DIO_PARTIAL, &data, done_before);
8156 }
8157 
8158 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
8159 			u64 start, u64 len)
8160 {
8161 	int	ret;
8162 
8163 	ret = fiemap_prep(inode, fieinfo, start, &len, 0);
8164 	if (ret)
8165 		return ret;
8166 
8167 	return extent_fiemap(BTRFS_I(inode), fieinfo, start, len);
8168 }
8169 
8170 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
8171 {
8172 	struct inode *inode = page->mapping->host;
8173 	int ret;
8174 
8175 	if (current->flags & PF_MEMALLOC) {
8176 		redirty_page_for_writepage(wbc, page);
8177 		unlock_page(page);
8178 		return 0;
8179 	}
8180 
8181 	/*
8182 	 * If we are under memory pressure we will call this directly from the
8183 	 * VM, we need to make sure we have the inode referenced for the ordered
8184 	 * extent.  If not just return like we didn't do anything.
8185 	 */
8186 	if (!igrab(inode)) {
8187 		redirty_page_for_writepage(wbc, page);
8188 		return AOP_WRITEPAGE_ACTIVATE;
8189 	}
8190 	ret = extent_write_full_page(page, wbc);
8191 	btrfs_add_delayed_iput(inode);
8192 	return ret;
8193 }
8194 
8195 static int btrfs_writepages(struct address_space *mapping,
8196 			    struct writeback_control *wbc)
8197 {
8198 	return extent_writepages(mapping, wbc);
8199 }
8200 
8201 static void btrfs_readahead(struct readahead_control *rac)
8202 {
8203 	extent_readahead(rac);
8204 }
8205 
8206 /*
8207  * For release_folio() and invalidate_folio() we have a race window where
8208  * folio_end_writeback() is called but the subpage spinlock is not yet released.
8209  * If we continue to release/invalidate the page, we could cause use-after-free
8210  * for subpage spinlock.  So this function is to spin and wait for subpage
8211  * spinlock.
8212  */
8213 static void wait_subpage_spinlock(struct page *page)
8214 {
8215 	struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
8216 	struct btrfs_subpage *subpage;
8217 
8218 	if (!btrfs_is_subpage(fs_info, page))
8219 		return;
8220 
8221 	ASSERT(PagePrivate(page) && page->private);
8222 	subpage = (struct btrfs_subpage *)page->private;
8223 
8224 	/*
8225 	 * This may look insane as we just acquire the spinlock and release it,
8226 	 * without doing anything.  But we just want to make sure no one is
8227 	 * still holding the subpage spinlock.
8228 	 * And since the page is not dirty nor writeback, and we have page
8229 	 * locked, the only possible way to hold a spinlock is from the endio
8230 	 * function to clear page writeback.
8231 	 *
8232 	 * Here we just acquire the spinlock so that all existing callers
8233 	 * should exit and we're safe to release/invalidate the page.
8234 	 */
8235 	spin_lock_irq(&subpage->lock);
8236 	spin_unlock_irq(&subpage->lock);
8237 }
8238 
8239 static bool __btrfs_release_folio(struct folio *folio, gfp_t gfp_flags)
8240 {
8241 	int ret = try_release_extent_mapping(&folio->page, gfp_flags);
8242 
8243 	if (ret == 1) {
8244 		wait_subpage_spinlock(&folio->page);
8245 		clear_page_extent_mapped(&folio->page);
8246 	}
8247 	return ret;
8248 }
8249 
8250 static bool btrfs_release_folio(struct folio *folio, gfp_t gfp_flags)
8251 {
8252 	if (folio_test_writeback(folio) || folio_test_dirty(folio))
8253 		return false;
8254 	return __btrfs_release_folio(folio, gfp_flags);
8255 }
8256 
8257 #ifdef CONFIG_MIGRATION
8258 static int btrfs_migratepage(struct address_space *mapping,
8259 			     struct page *newpage, struct page *page,
8260 			     enum migrate_mode mode)
8261 {
8262 	int ret;
8263 
8264 	ret = migrate_page_move_mapping(mapping, newpage, page, 0);
8265 	if (ret != MIGRATEPAGE_SUCCESS)
8266 		return ret;
8267 
8268 	if (page_has_private(page))
8269 		attach_page_private(newpage, detach_page_private(page));
8270 
8271 	if (PageOrdered(page)) {
8272 		ClearPageOrdered(page);
8273 		SetPageOrdered(newpage);
8274 	}
8275 
8276 	if (mode != MIGRATE_SYNC_NO_COPY)
8277 		migrate_page_copy(newpage, page);
8278 	else
8279 		migrate_page_states(newpage, page);
8280 	return MIGRATEPAGE_SUCCESS;
8281 }
8282 #endif
8283 
8284 static void btrfs_invalidate_folio(struct folio *folio, size_t offset,
8285 				 size_t length)
8286 {
8287 	struct btrfs_inode *inode = BTRFS_I(folio->mapping->host);
8288 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
8289 	struct extent_io_tree *tree = &inode->io_tree;
8290 	struct extent_state *cached_state = NULL;
8291 	u64 page_start = folio_pos(folio);
8292 	u64 page_end = page_start + folio_size(folio) - 1;
8293 	u64 cur;
8294 	int inode_evicting = inode->vfs_inode.i_state & I_FREEING;
8295 
8296 	/*
8297 	 * We have folio locked so no new ordered extent can be created on this
8298 	 * page, nor bio can be submitted for this folio.
8299 	 *
8300 	 * But already submitted bio can still be finished on this folio.
8301 	 * Furthermore, endio function won't skip folio which has Ordered
8302 	 * (Private2) already cleared, so it's possible for endio and
8303 	 * invalidate_folio to do the same ordered extent accounting twice
8304 	 * on one folio.
8305 	 *
8306 	 * So here we wait for any submitted bios to finish, so that we won't
8307 	 * do double ordered extent accounting on the same folio.
8308 	 */
8309 	folio_wait_writeback(folio);
8310 	wait_subpage_spinlock(&folio->page);
8311 
8312 	/*
8313 	 * For subpage case, we have call sites like
8314 	 * btrfs_punch_hole_lock_range() which passes range not aligned to
8315 	 * sectorsize.
8316 	 * If the range doesn't cover the full folio, we don't need to and
8317 	 * shouldn't clear page extent mapped, as folio->private can still
8318 	 * record subpage dirty bits for other part of the range.
8319 	 *
8320 	 * For cases that invalidate the full folio even the range doesn't
8321 	 * cover the full folio, like invalidating the last folio, we're
8322 	 * still safe to wait for ordered extent to finish.
8323 	 */
8324 	if (!(offset == 0 && length == folio_size(folio))) {
8325 		btrfs_release_folio(folio, GFP_NOFS);
8326 		return;
8327 	}
8328 
8329 	if (!inode_evicting)
8330 		lock_extent_bits(tree, page_start, page_end, &cached_state);
8331 
8332 	cur = page_start;
8333 	while (cur < page_end) {
8334 		struct btrfs_ordered_extent *ordered;
8335 		bool delete_states;
8336 		u64 range_end;
8337 		u32 range_len;
8338 
8339 		ordered = btrfs_lookup_first_ordered_range(inode, cur,
8340 							   page_end + 1 - cur);
8341 		if (!ordered) {
8342 			range_end = page_end;
8343 			/*
8344 			 * No ordered extent covering this range, we are safe
8345 			 * to delete all extent states in the range.
8346 			 */
8347 			delete_states = true;
8348 			goto next;
8349 		}
8350 		if (ordered->file_offset > cur) {
8351 			/*
8352 			 * There is a range between [cur, oe->file_offset) not
8353 			 * covered by any ordered extent.
8354 			 * We are safe to delete all extent states, and handle
8355 			 * the ordered extent in the next iteration.
8356 			 */
8357 			range_end = ordered->file_offset - 1;
8358 			delete_states = true;
8359 			goto next;
8360 		}
8361 
8362 		range_end = min(ordered->file_offset + ordered->num_bytes - 1,
8363 				page_end);
8364 		ASSERT(range_end + 1 - cur < U32_MAX);
8365 		range_len = range_end + 1 - cur;
8366 		if (!btrfs_page_test_ordered(fs_info, &folio->page, cur, range_len)) {
8367 			/*
8368 			 * If Ordered (Private2) is cleared, it means endio has
8369 			 * already been executed for the range.
8370 			 * We can't delete the extent states as
8371 			 * btrfs_finish_ordered_io() may still use some of them.
8372 			 */
8373 			delete_states = false;
8374 			goto next;
8375 		}
8376 		btrfs_page_clear_ordered(fs_info, &folio->page, cur, range_len);
8377 
8378 		/*
8379 		 * IO on this page will never be started, so we need to account
8380 		 * for any ordered extents now. Don't clear EXTENT_DELALLOC_NEW
8381 		 * here, must leave that up for the ordered extent completion.
8382 		 *
8383 		 * This will also unlock the range for incoming
8384 		 * btrfs_finish_ordered_io().
8385 		 */
8386 		if (!inode_evicting)
8387 			clear_extent_bit(tree, cur, range_end,
8388 					 EXTENT_DELALLOC |
8389 					 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
8390 					 EXTENT_DEFRAG, 1, 0, &cached_state);
8391 
8392 		spin_lock_irq(&inode->ordered_tree.lock);
8393 		set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
8394 		ordered->truncated_len = min(ordered->truncated_len,
8395 					     cur - ordered->file_offset);
8396 		spin_unlock_irq(&inode->ordered_tree.lock);
8397 
8398 		if (btrfs_dec_test_ordered_pending(inode, &ordered,
8399 						   cur, range_end + 1 - cur)) {
8400 			btrfs_finish_ordered_io(ordered);
8401 			/*
8402 			 * The ordered extent has finished, now we're again
8403 			 * safe to delete all extent states of the range.
8404 			 */
8405 			delete_states = true;
8406 		} else {
8407 			/*
8408 			 * btrfs_finish_ordered_io() will get executed by endio
8409 			 * of other pages, thus we can't delete extent states
8410 			 * anymore
8411 			 */
8412 			delete_states = false;
8413 		}
8414 next:
8415 		if (ordered)
8416 			btrfs_put_ordered_extent(ordered);
8417 		/*
8418 		 * Qgroup reserved space handler
8419 		 * Sector(s) here will be either:
8420 		 *
8421 		 * 1) Already written to disk or bio already finished
8422 		 *    Then its QGROUP_RESERVED bit in io_tree is already cleared.
8423 		 *    Qgroup will be handled by its qgroup_record then.
8424 		 *    btrfs_qgroup_free_data() call will do nothing here.
8425 		 *
8426 		 * 2) Not written to disk yet
8427 		 *    Then btrfs_qgroup_free_data() call will clear the
8428 		 *    QGROUP_RESERVED bit of its io_tree, and free the qgroup
8429 		 *    reserved data space.
8430 		 *    Since the IO will never happen for this page.
8431 		 */
8432 		btrfs_qgroup_free_data(inode, NULL, cur, range_end + 1 - cur);
8433 		if (!inode_evicting) {
8434 			clear_extent_bit(tree, cur, range_end, EXTENT_LOCKED |
8435 				 EXTENT_DELALLOC | EXTENT_UPTODATE |
8436 				 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1,
8437 				 delete_states, &cached_state);
8438 		}
8439 		cur = range_end + 1;
8440 	}
8441 	/*
8442 	 * We have iterated through all ordered extents of the page, the page
8443 	 * should not have Ordered (Private2) anymore, or the above iteration
8444 	 * did something wrong.
8445 	 */
8446 	ASSERT(!folio_test_ordered(folio));
8447 	btrfs_page_clear_checked(fs_info, &folio->page, folio_pos(folio), folio_size(folio));
8448 	if (!inode_evicting)
8449 		__btrfs_release_folio(folio, GFP_NOFS);
8450 	clear_page_extent_mapped(&folio->page);
8451 }
8452 
8453 /*
8454  * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8455  * called from a page fault handler when a page is first dirtied. Hence we must
8456  * be careful to check for EOF conditions here. We set the page up correctly
8457  * for a written page which means we get ENOSPC checking when writing into
8458  * holes and correct delalloc and unwritten extent mapping on filesystems that
8459  * support these features.
8460  *
8461  * We are not allowed to take the i_mutex here so we have to play games to
8462  * protect against truncate races as the page could now be beyond EOF.  Because
8463  * truncate_setsize() writes the inode size before removing pages, once we have
8464  * the page lock we can determine safely if the page is beyond EOF. If it is not
8465  * beyond EOF, then the page is guaranteed safe against truncation until we
8466  * unlock the page.
8467  */
8468 vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf)
8469 {
8470 	struct page *page = vmf->page;
8471 	struct inode *inode = file_inode(vmf->vma->vm_file);
8472 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8473 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8474 	struct btrfs_ordered_extent *ordered;
8475 	struct extent_state *cached_state = NULL;
8476 	struct extent_changeset *data_reserved = NULL;
8477 	unsigned long zero_start;
8478 	loff_t size;
8479 	vm_fault_t ret;
8480 	int ret2;
8481 	int reserved = 0;
8482 	u64 reserved_space;
8483 	u64 page_start;
8484 	u64 page_end;
8485 	u64 end;
8486 
8487 	reserved_space = PAGE_SIZE;
8488 
8489 	sb_start_pagefault(inode->i_sb);
8490 	page_start = page_offset(page);
8491 	page_end = page_start + PAGE_SIZE - 1;
8492 	end = page_end;
8493 
8494 	/*
8495 	 * Reserving delalloc space after obtaining the page lock can lead to
8496 	 * deadlock. For example, if a dirty page is locked by this function
8497 	 * and the call to btrfs_delalloc_reserve_space() ends up triggering
8498 	 * dirty page write out, then the btrfs_writepage() function could
8499 	 * end up waiting indefinitely to get a lock on the page currently
8500 	 * being processed by btrfs_page_mkwrite() function.
8501 	 */
8502 	ret2 = btrfs_delalloc_reserve_space(BTRFS_I(inode), &data_reserved,
8503 					    page_start, reserved_space);
8504 	if (!ret2) {
8505 		ret2 = file_update_time(vmf->vma->vm_file);
8506 		reserved = 1;
8507 	}
8508 	if (ret2) {
8509 		ret = vmf_error(ret2);
8510 		if (reserved)
8511 			goto out;
8512 		goto out_noreserve;
8513 	}
8514 
8515 	ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
8516 again:
8517 	down_read(&BTRFS_I(inode)->i_mmap_lock);
8518 	lock_page(page);
8519 	size = i_size_read(inode);
8520 
8521 	if ((page->mapping != inode->i_mapping) ||
8522 	    (page_start >= size)) {
8523 		/* page got truncated out from underneath us */
8524 		goto out_unlock;
8525 	}
8526 	wait_on_page_writeback(page);
8527 
8528 	lock_extent_bits(io_tree, page_start, page_end, &cached_state);
8529 	ret2 = set_page_extent_mapped(page);
8530 	if (ret2 < 0) {
8531 		ret = vmf_error(ret2);
8532 		unlock_extent_cached(io_tree, page_start, page_end, &cached_state);
8533 		goto out_unlock;
8534 	}
8535 
8536 	/*
8537 	 * we can't set the delalloc bits if there are pending ordered
8538 	 * extents.  Drop our locks and wait for them to finish
8539 	 */
8540 	ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
8541 			PAGE_SIZE);
8542 	if (ordered) {
8543 		unlock_extent_cached(io_tree, page_start, page_end,
8544 				     &cached_state);
8545 		unlock_page(page);
8546 		up_read(&BTRFS_I(inode)->i_mmap_lock);
8547 		btrfs_start_ordered_extent(ordered, 1);
8548 		btrfs_put_ordered_extent(ordered);
8549 		goto again;
8550 	}
8551 
8552 	if (page->index == ((size - 1) >> PAGE_SHIFT)) {
8553 		reserved_space = round_up(size - page_start,
8554 					  fs_info->sectorsize);
8555 		if (reserved_space < PAGE_SIZE) {
8556 			end = page_start + reserved_space - 1;
8557 			btrfs_delalloc_release_space(BTRFS_I(inode),
8558 					data_reserved, page_start,
8559 					PAGE_SIZE - reserved_space, true);
8560 		}
8561 	}
8562 
8563 	/*
8564 	 * page_mkwrite gets called when the page is firstly dirtied after it's
8565 	 * faulted in, but write(2) could also dirty a page and set delalloc
8566 	 * bits, thus in this case for space account reason, we still need to
8567 	 * clear any delalloc bits within this page range since we have to
8568 	 * reserve data&meta space before lock_page() (see above comments).
8569 	 */
8570 	clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end,
8571 			  EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
8572 			  EXTENT_DEFRAG, 0, 0, &cached_state);
8573 
8574 	ret2 = btrfs_set_extent_delalloc(BTRFS_I(inode), page_start, end, 0,
8575 					&cached_state);
8576 	if (ret2) {
8577 		unlock_extent_cached(io_tree, page_start, page_end,
8578 				     &cached_state);
8579 		ret = VM_FAULT_SIGBUS;
8580 		goto out_unlock;
8581 	}
8582 
8583 	/* page is wholly or partially inside EOF */
8584 	if (page_start + PAGE_SIZE > size)
8585 		zero_start = offset_in_page(size);
8586 	else
8587 		zero_start = PAGE_SIZE;
8588 
8589 	if (zero_start != PAGE_SIZE) {
8590 		memzero_page(page, zero_start, PAGE_SIZE - zero_start);
8591 		flush_dcache_page(page);
8592 	}
8593 	btrfs_page_clear_checked(fs_info, page, page_start, PAGE_SIZE);
8594 	btrfs_page_set_dirty(fs_info, page, page_start, end + 1 - page_start);
8595 	btrfs_page_set_uptodate(fs_info, page, page_start, end + 1 - page_start);
8596 
8597 	btrfs_set_inode_last_sub_trans(BTRFS_I(inode));
8598 
8599 	unlock_extent_cached(io_tree, page_start, page_end, &cached_state);
8600 	up_read(&BTRFS_I(inode)->i_mmap_lock);
8601 
8602 	btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
8603 	sb_end_pagefault(inode->i_sb);
8604 	extent_changeset_free(data_reserved);
8605 	return VM_FAULT_LOCKED;
8606 
8607 out_unlock:
8608 	unlock_page(page);
8609 	up_read(&BTRFS_I(inode)->i_mmap_lock);
8610 out:
8611 	btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
8612 	btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved, page_start,
8613 				     reserved_space, (ret != 0));
8614 out_noreserve:
8615 	sb_end_pagefault(inode->i_sb);
8616 	extent_changeset_free(data_reserved);
8617 	return ret;
8618 }
8619 
8620 static int btrfs_truncate(struct inode *inode, bool skip_writeback)
8621 {
8622 	struct btrfs_truncate_control control = {
8623 		.inode = BTRFS_I(inode),
8624 		.ino = btrfs_ino(BTRFS_I(inode)),
8625 		.min_type = BTRFS_EXTENT_DATA_KEY,
8626 		.clear_extent_range = true,
8627 	};
8628 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8629 	struct btrfs_root *root = BTRFS_I(inode)->root;
8630 	struct btrfs_block_rsv *rsv;
8631 	int ret;
8632 	struct btrfs_trans_handle *trans;
8633 	u64 mask = fs_info->sectorsize - 1;
8634 	u64 min_size = btrfs_calc_metadata_size(fs_info, 1);
8635 
8636 	if (!skip_writeback) {
8637 		ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
8638 					       (u64)-1);
8639 		if (ret)
8640 			return ret;
8641 	}
8642 
8643 	/*
8644 	 * Yes ladies and gentlemen, this is indeed ugly.  We have a couple of
8645 	 * things going on here:
8646 	 *
8647 	 * 1) We need to reserve space to update our inode.
8648 	 *
8649 	 * 2) We need to have something to cache all the space that is going to
8650 	 * be free'd up by the truncate operation, but also have some slack
8651 	 * space reserved in case it uses space during the truncate (thank you
8652 	 * very much snapshotting).
8653 	 *
8654 	 * And we need these to be separate.  The fact is we can use a lot of
8655 	 * space doing the truncate, and we have no earthly idea how much space
8656 	 * we will use, so we need the truncate reservation to be separate so it
8657 	 * doesn't end up using space reserved for updating the inode.  We also
8658 	 * need to be able to stop the transaction and start a new one, which
8659 	 * means we need to be able to update the inode several times, and we
8660 	 * have no idea of knowing how many times that will be, so we can't just
8661 	 * reserve 1 item for the entirety of the operation, so that has to be
8662 	 * done separately as well.
8663 	 *
8664 	 * So that leaves us with
8665 	 *
8666 	 * 1) rsv - for the truncate reservation, which we will steal from the
8667 	 * transaction reservation.
8668 	 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for
8669 	 * updating the inode.
8670 	 */
8671 	rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
8672 	if (!rsv)
8673 		return -ENOMEM;
8674 	rsv->size = min_size;
8675 	rsv->failfast = 1;
8676 
8677 	/*
8678 	 * 1 for the truncate slack space
8679 	 * 1 for updating the inode.
8680 	 */
8681 	trans = btrfs_start_transaction(root, 2);
8682 	if (IS_ERR(trans)) {
8683 		ret = PTR_ERR(trans);
8684 		goto out;
8685 	}
8686 
8687 	/* Migrate the slack space for the truncate to our reserve */
8688 	ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
8689 				      min_size, false);
8690 	BUG_ON(ret);
8691 
8692 	trans->block_rsv = rsv;
8693 
8694 	while (1) {
8695 		struct extent_state *cached_state = NULL;
8696 		const u64 new_size = inode->i_size;
8697 		const u64 lock_start = ALIGN_DOWN(new_size, fs_info->sectorsize);
8698 
8699 		control.new_size = new_size;
8700 		lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, (u64)-1,
8701 				 &cached_state);
8702 		/*
8703 		 * We want to drop from the next block forward in case this new
8704 		 * size is not block aligned since we will be keeping the last
8705 		 * block of the extent just the way it is.
8706 		 */
8707 		btrfs_drop_extent_cache(BTRFS_I(inode),
8708 					ALIGN(new_size, fs_info->sectorsize),
8709 					(u64)-1, 0);
8710 
8711 		ret = btrfs_truncate_inode_items(trans, root, &control);
8712 
8713 		inode_sub_bytes(inode, control.sub_bytes);
8714 		btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), control.last_size);
8715 
8716 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start,
8717 				     (u64)-1, &cached_state);
8718 
8719 		trans->block_rsv = &fs_info->trans_block_rsv;
8720 		if (ret != -ENOSPC && ret != -EAGAIN)
8721 			break;
8722 
8723 		ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
8724 		if (ret)
8725 			break;
8726 
8727 		btrfs_end_transaction(trans);
8728 		btrfs_btree_balance_dirty(fs_info);
8729 
8730 		trans = btrfs_start_transaction(root, 2);
8731 		if (IS_ERR(trans)) {
8732 			ret = PTR_ERR(trans);
8733 			trans = NULL;
8734 			break;
8735 		}
8736 
8737 		btrfs_block_rsv_release(fs_info, rsv, -1, NULL);
8738 		ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
8739 					      rsv, min_size, false);
8740 		BUG_ON(ret);	/* shouldn't happen */
8741 		trans->block_rsv = rsv;
8742 	}
8743 
8744 	/*
8745 	 * We can't call btrfs_truncate_block inside a trans handle as we could
8746 	 * deadlock with freeze, if we got BTRFS_NEED_TRUNCATE_BLOCK then we
8747 	 * know we've truncated everything except the last little bit, and can
8748 	 * do btrfs_truncate_block and then update the disk_i_size.
8749 	 */
8750 	if (ret == BTRFS_NEED_TRUNCATE_BLOCK) {
8751 		btrfs_end_transaction(trans);
8752 		btrfs_btree_balance_dirty(fs_info);
8753 
8754 		ret = btrfs_truncate_block(BTRFS_I(inode), inode->i_size, 0, 0);
8755 		if (ret)
8756 			goto out;
8757 		trans = btrfs_start_transaction(root, 1);
8758 		if (IS_ERR(trans)) {
8759 			ret = PTR_ERR(trans);
8760 			goto out;
8761 		}
8762 		btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
8763 	}
8764 
8765 	if (trans) {
8766 		int ret2;
8767 
8768 		trans->block_rsv = &fs_info->trans_block_rsv;
8769 		ret2 = btrfs_update_inode(trans, root, BTRFS_I(inode));
8770 		if (ret2 && !ret)
8771 			ret = ret2;
8772 
8773 		ret2 = btrfs_end_transaction(trans);
8774 		if (ret2 && !ret)
8775 			ret = ret2;
8776 		btrfs_btree_balance_dirty(fs_info);
8777 	}
8778 out:
8779 	btrfs_free_block_rsv(fs_info, rsv);
8780 	/*
8781 	 * So if we truncate and then write and fsync we normally would just
8782 	 * write the extents that changed, which is a problem if we need to
8783 	 * first truncate that entire inode.  So set this flag so we write out
8784 	 * all of the extents in the inode to the sync log so we're completely
8785 	 * safe.
8786 	 *
8787 	 * If no extents were dropped or trimmed we don't need to force the next
8788 	 * fsync to truncate all the inode's items from the log and re-log them
8789 	 * all. This means the truncate operation did not change the file size,
8790 	 * or changed it to a smaller size but there was only an implicit hole
8791 	 * between the old i_size and the new i_size, and there were no prealloc
8792 	 * extents beyond i_size to drop.
8793 	 */
8794 	if (control.extents_found > 0)
8795 		btrfs_set_inode_full_sync(BTRFS_I(inode));
8796 
8797 	return ret;
8798 }
8799 
8800 struct inode *btrfs_new_subvol_inode(struct user_namespace *mnt_userns,
8801 				     struct inode *dir)
8802 {
8803 	struct inode *inode;
8804 
8805 	inode = new_inode(dir->i_sb);
8806 	if (inode) {
8807 		/*
8808 		 * Subvolumes don't inherit the sgid bit or the parent's gid if
8809 		 * the parent's sgid bit is set. This is probably a bug.
8810 		 */
8811 		inode_init_owner(mnt_userns, inode, NULL,
8812 				 S_IFDIR | (~current_umask() & S_IRWXUGO));
8813 		inode->i_op = &btrfs_dir_inode_operations;
8814 		inode->i_fop = &btrfs_dir_file_operations;
8815 	}
8816 	return inode;
8817 }
8818 
8819 struct inode *btrfs_alloc_inode(struct super_block *sb)
8820 {
8821 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
8822 	struct btrfs_inode *ei;
8823 	struct inode *inode;
8824 
8825 	ei = alloc_inode_sb(sb, btrfs_inode_cachep, GFP_KERNEL);
8826 	if (!ei)
8827 		return NULL;
8828 
8829 	ei->root = NULL;
8830 	ei->generation = 0;
8831 	ei->last_trans = 0;
8832 	ei->last_sub_trans = 0;
8833 	ei->logged_trans = 0;
8834 	ei->delalloc_bytes = 0;
8835 	ei->new_delalloc_bytes = 0;
8836 	ei->defrag_bytes = 0;
8837 	ei->disk_i_size = 0;
8838 	ei->flags = 0;
8839 	ei->ro_flags = 0;
8840 	ei->csum_bytes = 0;
8841 	ei->index_cnt = (u64)-1;
8842 	ei->dir_index = 0;
8843 	ei->last_unlink_trans = 0;
8844 	ei->last_reflink_trans = 0;
8845 	ei->last_log_commit = 0;
8846 
8847 	spin_lock_init(&ei->lock);
8848 	ei->outstanding_extents = 0;
8849 	if (sb->s_magic != BTRFS_TEST_MAGIC)
8850 		btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv,
8851 					      BTRFS_BLOCK_RSV_DELALLOC);
8852 	ei->runtime_flags = 0;
8853 	ei->prop_compress = BTRFS_COMPRESS_NONE;
8854 	ei->defrag_compress = BTRFS_COMPRESS_NONE;
8855 
8856 	ei->delayed_node = NULL;
8857 
8858 	ei->i_otime.tv_sec = 0;
8859 	ei->i_otime.tv_nsec = 0;
8860 
8861 	inode = &ei->vfs_inode;
8862 	extent_map_tree_init(&ei->extent_tree);
8863 	extent_io_tree_init(fs_info, &ei->io_tree, IO_TREE_INODE_IO, inode);
8864 	extent_io_tree_init(fs_info, &ei->io_failure_tree,
8865 			    IO_TREE_INODE_IO_FAILURE, inode);
8866 	extent_io_tree_init(fs_info, &ei->file_extent_tree,
8867 			    IO_TREE_INODE_FILE_EXTENT, inode);
8868 	ei->io_tree.track_uptodate = true;
8869 	ei->io_failure_tree.track_uptodate = true;
8870 	atomic_set(&ei->sync_writers, 0);
8871 	mutex_init(&ei->log_mutex);
8872 	btrfs_ordered_inode_tree_init(&ei->ordered_tree);
8873 	INIT_LIST_HEAD(&ei->delalloc_inodes);
8874 	INIT_LIST_HEAD(&ei->delayed_iput);
8875 	RB_CLEAR_NODE(&ei->rb_node);
8876 	init_rwsem(&ei->i_mmap_lock);
8877 
8878 	return inode;
8879 }
8880 
8881 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
8882 void btrfs_test_destroy_inode(struct inode *inode)
8883 {
8884 	btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
8885 	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8886 }
8887 #endif
8888 
8889 void btrfs_free_inode(struct inode *inode)
8890 {
8891 	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8892 }
8893 
8894 void btrfs_destroy_inode(struct inode *vfs_inode)
8895 {
8896 	struct btrfs_ordered_extent *ordered;
8897 	struct btrfs_inode *inode = BTRFS_I(vfs_inode);
8898 	struct btrfs_root *root = inode->root;
8899 
8900 	WARN_ON(!hlist_empty(&vfs_inode->i_dentry));
8901 	WARN_ON(vfs_inode->i_data.nrpages);
8902 	WARN_ON(inode->block_rsv.reserved);
8903 	WARN_ON(inode->block_rsv.size);
8904 	WARN_ON(inode->outstanding_extents);
8905 	if (!S_ISDIR(vfs_inode->i_mode)) {
8906 		WARN_ON(inode->delalloc_bytes);
8907 		WARN_ON(inode->new_delalloc_bytes);
8908 	}
8909 	WARN_ON(inode->csum_bytes);
8910 	WARN_ON(inode->defrag_bytes);
8911 
8912 	/*
8913 	 * This can happen where we create an inode, but somebody else also
8914 	 * created the same inode and we need to destroy the one we already
8915 	 * created.
8916 	 */
8917 	if (!root)
8918 		return;
8919 
8920 	while (1) {
8921 		ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
8922 		if (!ordered)
8923 			break;
8924 		else {
8925 			btrfs_err(root->fs_info,
8926 				  "found ordered extent %llu %llu on inode cleanup",
8927 				  ordered->file_offset, ordered->num_bytes);
8928 			btrfs_remove_ordered_extent(inode, ordered);
8929 			btrfs_put_ordered_extent(ordered);
8930 			btrfs_put_ordered_extent(ordered);
8931 		}
8932 	}
8933 	btrfs_qgroup_check_reserved_leak(inode);
8934 	inode_tree_del(inode);
8935 	btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
8936 	btrfs_inode_clear_file_extent_range(inode, 0, (u64)-1);
8937 	btrfs_put_root(inode->root);
8938 }
8939 
8940 int btrfs_drop_inode(struct inode *inode)
8941 {
8942 	struct btrfs_root *root = BTRFS_I(inode)->root;
8943 
8944 	if (root == NULL)
8945 		return 1;
8946 
8947 	/* the snap/subvol tree is on deleting */
8948 	if (btrfs_root_refs(&root->root_item) == 0)
8949 		return 1;
8950 	else
8951 		return generic_drop_inode(inode);
8952 }
8953 
8954 static void init_once(void *foo)
8955 {
8956 	struct btrfs_inode *ei = foo;
8957 
8958 	inode_init_once(&ei->vfs_inode);
8959 }
8960 
8961 void __cold btrfs_destroy_cachep(void)
8962 {
8963 	/*
8964 	 * Make sure all delayed rcu free inodes are flushed before we
8965 	 * destroy cache.
8966 	 */
8967 	rcu_barrier();
8968 	bioset_exit(&btrfs_dio_bioset);
8969 	kmem_cache_destroy(btrfs_inode_cachep);
8970 	kmem_cache_destroy(btrfs_trans_handle_cachep);
8971 	kmem_cache_destroy(btrfs_path_cachep);
8972 	kmem_cache_destroy(btrfs_free_space_cachep);
8973 	kmem_cache_destroy(btrfs_free_space_bitmap_cachep);
8974 }
8975 
8976 int __init btrfs_init_cachep(void)
8977 {
8978 	btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
8979 			sizeof(struct btrfs_inode), 0,
8980 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT,
8981 			init_once);
8982 	if (!btrfs_inode_cachep)
8983 		goto fail;
8984 
8985 	btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
8986 			sizeof(struct btrfs_trans_handle), 0,
8987 			SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL);
8988 	if (!btrfs_trans_handle_cachep)
8989 		goto fail;
8990 
8991 	btrfs_path_cachep = kmem_cache_create("btrfs_path",
8992 			sizeof(struct btrfs_path), 0,
8993 			SLAB_MEM_SPREAD, NULL);
8994 	if (!btrfs_path_cachep)
8995 		goto fail;
8996 
8997 	btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
8998 			sizeof(struct btrfs_free_space), 0,
8999 			SLAB_MEM_SPREAD, NULL);
9000 	if (!btrfs_free_space_cachep)
9001 		goto fail;
9002 
9003 	btrfs_free_space_bitmap_cachep = kmem_cache_create("btrfs_free_space_bitmap",
9004 							PAGE_SIZE, PAGE_SIZE,
9005 							SLAB_MEM_SPREAD, NULL);
9006 	if (!btrfs_free_space_bitmap_cachep)
9007 		goto fail;
9008 
9009 	if (bioset_init(&btrfs_dio_bioset, BIO_POOL_SIZE,
9010 			offsetof(struct btrfs_dio_private, bio),
9011 			BIOSET_NEED_BVECS))
9012 		goto fail;
9013 
9014 	return 0;
9015 fail:
9016 	btrfs_destroy_cachep();
9017 	return -ENOMEM;
9018 }
9019 
9020 static int btrfs_getattr(struct user_namespace *mnt_userns,
9021 			 const struct path *path, struct kstat *stat,
9022 			 u32 request_mask, unsigned int flags)
9023 {
9024 	u64 delalloc_bytes;
9025 	u64 inode_bytes;
9026 	struct inode *inode = d_inode(path->dentry);
9027 	u32 blocksize = inode->i_sb->s_blocksize;
9028 	u32 bi_flags = BTRFS_I(inode)->flags;
9029 	u32 bi_ro_flags = BTRFS_I(inode)->ro_flags;
9030 
9031 	stat->result_mask |= STATX_BTIME;
9032 	stat->btime.tv_sec = BTRFS_I(inode)->i_otime.tv_sec;
9033 	stat->btime.tv_nsec = BTRFS_I(inode)->i_otime.tv_nsec;
9034 	if (bi_flags & BTRFS_INODE_APPEND)
9035 		stat->attributes |= STATX_ATTR_APPEND;
9036 	if (bi_flags & BTRFS_INODE_COMPRESS)
9037 		stat->attributes |= STATX_ATTR_COMPRESSED;
9038 	if (bi_flags & BTRFS_INODE_IMMUTABLE)
9039 		stat->attributes |= STATX_ATTR_IMMUTABLE;
9040 	if (bi_flags & BTRFS_INODE_NODUMP)
9041 		stat->attributes |= STATX_ATTR_NODUMP;
9042 	if (bi_ro_flags & BTRFS_INODE_RO_VERITY)
9043 		stat->attributes |= STATX_ATTR_VERITY;
9044 
9045 	stat->attributes_mask |= (STATX_ATTR_APPEND |
9046 				  STATX_ATTR_COMPRESSED |
9047 				  STATX_ATTR_IMMUTABLE |
9048 				  STATX_ATTR_NODUMP);
9049 
9050 	generic_fillattr(mnt_userns, inode, stat);
9051 	stat->dev = BTRFS_I(inode)->root->anon_dev;
9052 
9053 	spin_lock(&BTRFS_I(inode)->lock);
9054 	delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes;
9055 	inode_bytes = inode_get_bytes(inode);
9056 	spin_unlock(&BTRFS_I(inode)->lock);
9057 	stat->blocks = (ALIGN(inode_bytes, blocksize) +
9058 			ALIGN(delalloc_bytes, blocksize)) >> 9;
9059 	return 0;
9060 }
9061 
9062 static int btrfs_rename_exchange(struct inode *old_dir,
9063 			      struct dentry *old_dentry,
9064 			      struct inode *new_dir,
9065 			      struct dentry *new_dentry)
9066 {
9067 	struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
9068 	struct btrfs_trans_handle *trans;
9069 	unsigned int trans_num_items;
9070 	struct btrfs_root *root = BTRFS_I(old_dir)->root;
9071 	struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9072 	struct inode *new_inode = new_dentry->d_inode;
9073 	struct inode *old_inode = old_dentry->d_inode;
9074 	struct timespec64 ctime = current_time(old_inode);
9075 	struct btrfs_rename_ctx old_rename_ctx;
9076 	struct btrfs_rename_ctx new_rename_ctx;
9077 	u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
9078 	u64 new_ino = btrfs_ino(BTRFS_I(new_inode));
9079 	u64 old_idx = 0;
9080 	u64 new_idx = 0;
9081 	int ret;
9082 	int ret2;
9083 	bool need_abort = false;
9084 
9085 	/*
9086 	 * For non-subvolumes allow exchange only within one subvolume, in the
9087 	 * same inode namespace. Two subvolumes (represented as directory) can
9088 	 * be exchanged as they're a logical link and have a fixed inode number.
9089 	 */
9090 	if (root != dest &&
9091 	    (old_ino != BTRFS_FIRST_FREE_OBJECTID ||
9092 	     new_ino != BTRFS_FIRST_FREE_OBJECTID))
9093 		return -EXDEV;
9094 
9095 	/* close the race window with snapshot create/destroy ioctl */
9096 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID ||
9097 	    new_ino == BTRFS_FIRST_FREE_OBJECTID)
9098 		down_read(&fs_info->subvol_sem);
9099 
9100 	/*
9101 	 * For each inode:
9102 	 * 1 to remove old dir item
9103 	 * 1 to remove old dir index
9104 	 * 1 to add new dir item
9105 	 * 1 to add new dir index
9106 	 * 1 to update parent inode
9107 	 *
9108 	 * If the parents are the same, we only need to account for one
9109 	 */
9110 	trans_num_items = (old_dir == new_dir ? 9 : 10);
9111 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9112 		/*
9113 		 * 1 to remove old root ref
9114 		 * 1 to remove old root backref
9115 		 * 1 to add new root ref
9116 		 * 1 to add new root backref
9117 		 */
9118 		trans_num_items += 4;
9119 	} else {
9120 		/*
9121 		 * 1 to update inode item
9122 		 * 1 to remove old inode ref
9123 		 * 1 to add new inode ref
9124 		 */
9125 		trans_num_items += 3;
9126 	}
9127 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
9128 		trans_num_items += 4;
9129 	else
9130 		trans_num_items += 3;
9131 	trans = btrfs_start_transaction(root, trans_num_items);
9132 	if (IS_ERR(trans)) {
9133 		ret = PTR_ERR(trans);
9134 		goto out_notrans;
9135 	}
9136 
9137 	if (dest != root) {
9138 		ret = btrfs_record_root_in_trans(trans, dest);
9139 		if (ret)
9140 			goto out_fail;
9141 	}
9142 
9143 	/*
9144 	 * We need to find a free sequence number both in the source and
9145 	 * in the destination directory for the exchange.
9146 	 */
9147 	ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx);
9148 	if (ret)
9149 		goto out_fail;
9150 	ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx);
9151 	if (ret)
9152 		goto out_fail;
9153 
9154 	BTRFS_I(old_inode)->dir_index = 0ULL;
9155 	BTRFS_I(new_inode)->dir_index = 0ULL;
9156 
9157 	/* Reference for the source. */
9158 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9159 		/* force full log commit if subvolume involved. */
9160 		btrfs_set_log_full_commit(trans);
9161 	} else {
9162 		ret = btrfs_insert_inode_ref(trans, dest,
9163 					     new_dentry->d_name.name,
9164 					     new_dentry->d_name.len,
9165 					     old_ino,
9166 					     btrfs_ino(BTRFS_I(new_dir)),
9167 					     old_idx);
9168 		if (ret)
9169 			goto out_fail;
9170 		need_abort = true;
9171 	}
9172 
9173 	/* And now for the dest. */
9174 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9175 		/* force full log commit if subvolume involved. */
9176 		btrfs_set_log_full_commit(trans);
9177 	} else {
9178 		ret = btrfs_insert_inode_ref(trans, root,
9179 					     old_dentry->d_name.name,
9180 					     old_dentry->d_name.len,
9181 					     new_ino,
9182 					     btrfs_ino(BTRFS_I(old_dir)),
9183 					     new_idx);
9184 		if (ret) {
9185 			if (need_abort)
9186 				btrfs_abort_transaction(trans, ret);
9187 			goto out_fail;
9188 		}
9189 	}
9190 
9191 	/* Update inode version and ctime/mtime. */
9192 	inode_inc_iversion(old_dir);
9193 	inode_inc_iversion(new_dir);
9194 	inode_inc_iversion(old_inode);
9195 	inode_inc_iversion(new_inode);
9196 	old_dir->i_ctime = old_dir->i_mtime = ctime;
9197 	new_dir->i_ctime = new_dir->i_mtime = ctime;
9198 	old_inode->i_ctime = ctime;
9199 	new_inode->i_ctime = ctime;
9200 
9201 	if (old_dentry->d_parent != new_dentry->d_parent) {
9202 		btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9203 				BTRFS_I(old_inode), 1);
9204 		btrfs_record_unlink_dir(trans, BTRFS_I(new_dir),
9205 				BTRFS_I(new_inode), 1);
9206 	}
9207 
9208 	/* src is a subvolume */
9209 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9210 		ret = btrfs_unlink_subvol(trans, old_dir, old_dentry);
9211 	} else { /* src is an inode */
9212 		ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir),
9213 					   BTRFS_I(old_dentry->d_inode),
9214 					   old_dentry->d_name.name,
9215 					   old_dentry->d_name.len,
9216 					   &old_rename_ctx);
9217 		if (!ret)
9218 			ret = btrfs_update_inode(trans, root, BTRFS_I(old_inode));
9219 	}
9220 	if (ret) {
9221 		btrfs_abort_transaction(trans, ret);
9222 		goto out_fail;
9223 	}
9224 
9225 	/* dest is a subvolume */
9226 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9227 		ret = btrfs_unlink_subvol(trans, new_dir, new_dentry);
9228 	} else { /* dest is an inode */
9229 		ret = __btrfs_unlink_inode(trans, BTRFS_I(new_dir),
9230 					   BTRFS_I(new_dentry->d_inode),
9231 					   new_dentry->d_name.name,
9232 					   new_dentry->d_name.len,
9233 					   &new_rename_ctx);
9234 		if (!ret)
9235 			ret = btrfs_update_inode(trans, dest, BTRFS_I(new_inode));
9236 	}
9237 	if (ret) {
9238 		btrfs_abort_transaction(trans, ret);
9239 		goto out_fail;
9240 	}
9241 
9242 	ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
9243 			     new_dentry->d_name.name,
9244 			     new_dentry->d_name.len, 0, old_idx);
9245 	if (ret) {
9246 		btrfs_abort_transaction(trans, ret);
9247 		goto out_fail;
9248 	}
9249 
9250 	ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode),
9251 			     old_dentry->d_name.name,
9252 			     old_dentry->d_name.len, 0, new_idx);
9253 	if (ret) {
9254 		btrfs_abort_transaction(trans, ret);
9255 		goto out_fail;
9256 	}
9257 
9258 	if (old_inode->i_nlink == 1)
9259 		BTRFS_I(old_inode)->dir_index = old_idx;
9260 	if (new_inode->i_nlink == 1)
9261 		BTRFS_I(new_inode)->dir_index = new_idx;
9262 
9263 	/*
9264 	 * Now pin the logs of the roots. We do it to ensure that no other task
9265 	 * can sync the logs while we are in progress with the rename, because
9266 	 * that could result in an inconsistency in case any of the inodes that
9267 	 * are part of this rename operation were logged before.
9268 	 */
9269 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
9270 		btrfs_pin_log_trans(root);
9271 	if (new_ino != BTRFS_FIRST_FREE_OBJECTID)
9272 		btrfs_pin_log_trans(dest);
9273 
9274 	/* Do the log updates for all inodes. */
9275 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
9276 		btrfs_log_new_name(trans, old_dentry, BTRFS_I(old_dir),
9277 				   old_rename_ctx.index, new_dentry->d_parent);
9278 	if (new_ino != BTRFS_FIRST_FREE_OBJECTID)
9279 		btrfs_log_new_name(trans, new_dentry, BTRFS_I(new_dir),
9280 				   new_rename_ctx.index, old_dentry->d_parent);
9281 
9282 	/* Now unpin the logs. */
9283 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
9284 		btrfs_end_log_trans(root);
9285 	if (new_ino != BTRFS_FIRST_FREE_OBJECTID)
9286 		btrfs_end_log_trans(dest);
9287 out_fail:
9288 	ret2 = btrfs_end_transaction(trans);
9289 	ret = ret ? ret : ret2;
9290 out_notrans:
9291 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID ||
9292 	    old_ino == BTRFS_FIRST_FREE_OBJECTID)
9293 		up_read(&fs_info->subvol_sem);
9294 
9295 	return ret;
9296 }
9297 
9298 static struct inode *new_whiteout_inode(struct user_namespace *mnt_userns,
9299 					struct inode *dir)
9300 {
9301 	struct inode *inode;
9302 
9303 	inode = new_inode(dir->i_sb);
9304 	if (inode) {
9305 		inode_init_owner(mnt_userns, inode, dir,
9306 				 S_IFCHR | WHITEOUT_MODE);
9307 		inode->i_op = &btrfs_special_inode_operations;
9308 		init_special_inode(inode, inode->i_mode, WHITEOUT_DEV);
9309 	}
9310 	return inode;
9311 }
9312 
9313 static int btrfs_rename(struct user_namespace *mnt_userns,
9314 			struct inode *old_dir, struct dentry *old_dentry,
9315 			struct inode *new_dir, struct dentry *new_dentry,
9316 			unsigned int flags)
9317 {
9318 	struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
9319 	struct btrfs_new_inode_args whiteout_args = {
9320 		.dir = old_dir,
9321 		.dentry = old_dentry,
9322 	};
9323 	struct btrfs_trans_handle *trans;
9324 	unsigned int trans_num_items;
9325 	struct btrfs_root *root = BTRFS_I(old_dir)->root;
9326 	struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9327 	struct inode *new_inode = d_inode(new_dentry);
9328 	struct inode *old_inode = d_inode(old_dentry);
9329 	struct btrfs_rename_ctx rename_ctx;
9330 	u64 index = 0;
9331 	int ret;
9332 	int ret2;
9333 	u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
9334 
9335 	if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
9336 		return -EPERM;
9337 
9338 	/* we only allow rename subvolume link between subvolumes */
9339 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9340 		return -EXDEV;
9341 
9342 	if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
9343 	    (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID))
9344 		return -ENOTEMPTY;
9345 
9346 	if (S_ISDIR(old_inode->i_mode) && new_inode &&
9347 	    new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
9348 		return -ENOTEMPTY;
9349 
9350 
9351 	/* check for collisions, even if the  name isn't there */
9352 	ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
9353 			     new_dentry->d_name.name,
9354 			     new_dentry->d_name.len);
9355 
9356 	if (ret) {
9357 		if (ret == -EEXIST) {
9358 			/* we shouldn't get
9359 			 * eexist without a new_inode */
9360 			if (WARN_ON(!new_inode)) {
9361 				return ret;
9362 			}
9363 		} else {
9364 			/* maybe -EOVERFLOW */
9365 			return ret;
9366 		}
9367 	}
9368 	ret = 0;
9369 
9370 	/*
9371 	 * we're using rename to replace one file with another.  Start IO on it
9372 	 * now so  we don't add too much work to the end of the transaction
9373 	 */
9374 	if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
9375 		filemap_flush(old_inode->i_mapping);
9376 
9377 	if (flags & RENAME_WHITEOUT) {
9378 		whiteout_args.inode = new_whiteout_inode(mnt_userns, old_dir);
9379 		if (!whiteout_args.inode)
9380 			return -ENOMEM;
9381 		ret = btrfs_new_inode_prepare(&whiteout_args, &trans_num_items);
9382 		if (ret)
9383 			goto out_whiteout_inode;
9384 	} else {
9385 		/* 1 to update the old parent inode. */
9386 		trans_num_items = 1;
9387 	}
9388 
9389 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9390 		/* Close the race window with snapshot create/destroy ioctl */
9391 		down_read(&fs_info->subvol_sem);
9392 		/*
9393 		 * 1 to remove old root ref
9394 		 * 1 to remove old root backref
9395 		 * 1 to add new root ref
9396 		 * 1 to add new root backref
9397 		 */
9398 		trans_num_items += 4;
9399 	} else {
9400 		/*
9401 		 * 1 to update inode
9402 		 * 1 to remove old inode ref
9403 		 * 1 to add new inode ref
9404 		 */
9405 		trans_num_items += 3;
9406 	}
9407 	/*
9408 	 * 1 to remove old dir item
9409 	 * 1 to remove old dir index
9410 	 * 1 to add new dir item
9411 	 * 1 to add new dir index
9412 	 */
9413 	trans_num_items += 4;
9414 	/* 1 to update new parent inode if it's not the same as the old parent */
9415 	if (new_dir != old_dir)
9416 		trans_num_items++;
9417 	if (new_inode) {
9418 		/*
9419 		 * 1 to update inode
9420 		 * 1 to remove inode ref
9421 		 * 1 to remove dir item
9422 		 * 1 to remove dir index
9423 		 * 1 to possibly add orphan item
9424 		 */
9425 		trans_num_items += 5;
9426 	}
9427 	trans = btrfs_start_transaction(root, trans_num_items);
9428 	if (IS_ERR(trans)) {
9429 		ret = PTR_ERR(trans);
9430 		goto out_notrans;
9431 	}
9432 
9433 	if (dest != root) {
9434 		ret = btrfs_record_root_in_trans(trans, dest);
9435 		if (ret)
9436 			goto out_fail;
9437 	}
9438 
9439 	ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index);
9440 	if (ret)
9441 		goto out_fail;
9442 
9443 	BTRFS_I(old_inode)->dir_index = 0ULL;
9444 	if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9445 		/* force full log commit if subvolume involved. */
9446 		btrfs_set_log_full_commit(trans);
9447 	} else {
9448 		ret = btrfs_insert_inode_ref(trans, dest,
9449 					     new_dentry->d_name.name,
9450 					     new_dentry->d_name.len,
9451 					     old_ino,
9452 					     btrfs_ino(BTRFS_I(new_dir)), index);
9453 		if (ret)
9454 			goto out_fail;
9455 	}
9456 
9457 	inode_inc_iversion(old_dir);
9458 	inode_inc_iversion(new_dir);
9459 	inode_inc_iversion(old_inode);
9460 	old_dir->i_ctime = old_dir->i_mtime =
9461 	new_dir->i_ctime = new_dir->i_mtime =
9462 	old_inode->i_ctime = current_time(old_dir);
9463 
9464 	if (old_dentry->d_parent != new_dentry->d_parent)
9465 		btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9466 				BTRFS_I(old_inode), 1);
9467 
9468 	if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9469 		ret = btrfs_unlink_subvol(trans, old_dir, old_dentry);
9470 	} else {
9471 		ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir),
9472 					BTRFS_I(d_inode(old_dentry)),
9473 					old_dentry->d_name.name,
9474 					old_dentry->d_name.len,
9475 					&rename_ctx);
9476 		if (!ret)
9477 			ret = btrfs_update_inode(trans, root, BTRFS_I(old_inode));
9478 	}
9479 	if (ret) {
9480 		btrfs_abort_transaction(trans, ret);
9481 		goto out_fail;
9482 	}
9483 
9484 	if (new_inode) {
9485 		inode_inc_iversion(new_inode);
9486 		new_inode->i_ctime = current_time(new_inode);
9487 		if (unlikely(btrfs_ino(BTRFS_I(new_inode)) ==
9488 			     BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
9489 			ret = btrfs_unlink_subvol(trans, new_dir, new_dentry);
9490 			BUG_ON(new_inode->i_nlink == 0);
9491 		} else {
9492 			ret = btrfs_unlink_inode(trans, BTRFS_I(new_dir),
9493 						 BTRFS_I(d_inode(new_dentry)),
9494 						 new_dentry->d_name.name,
9495 						 new_dentry->d_name.len);
9496 		}
9497 		if (!ret && new_inode->i_nlink == 0)
9498 			ret = btrfs_orphan_add(trans,
9499 					BTRFS_I(d_inode(new_dentry)));
9500 		if (ret) {
9501 			btrfs_abort_transaction(trans, ret);
9502 			goto out_fail;
9503 		}
9504 	}
9505 
9506 	ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
9507 			     new_dentry->d_name.name,
9508 			     new_dentry->d_name.len, 0, index);
9509 	if (ret) {
9510 		btrfs_abort_transaction(trans, ret);
9511 		goto out_fail;
9512 	}
9513 
9514 	if (old_inode->i_nlink == 1)
9515 		BTRFS_I(old_inode)->dir_index = index;
9516 
9517 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
9518 		btrfs_log_new_name(trans, old_dentry, BTRFS_I(old_dir),
9519 				   rename_ctx.index, new_dentry->d_parent);
9520 
9521 	if (flags & RENAME_WHITEOUT) {
9522 		ret = btrfs_create_new_inode(trans, &whiteout_args);
9523 		if (ret) {
9524 			btrfs_abort_transaction(trans, ret);
9525 			goto out_fail;
9526 		} else {
9527 			unlock_new_inode(whiteout_args.inode);
9528 			iput(whiteout_args.inode);
9529 			whiteout_args.inode = NULL;
9530 		}
9531 	}
9532 out_fail:
9533 	ret2 = btrfs_end_transaction(trans);
9534 	ret = ret ? ret : ret2;
9535 out_notrans:
9536 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9537 		up_read(&fs_info->subvol_sem);
9538 	if (flags & RENAME_WHITEOUT)
9539 		btrfs_new_inode_args_destroy(&whiteout_args);
9540 out_whiteout_inode:
9541 	if (flags & RENAME_WHITEOUT)
9542 		iput(whiteout_args.inode);
9543 	return ret;
9544 }
9545 
9546 static int btrfs_rename2(struct user_namespace *mnt_userns, struct inode *old_dir,
9547 			 struct dentry *old_dentry, struct inode *new_dir,
9548 			 struct dentry *new_dentry, unsigned int flags)
9549 {
9550 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
9551 		return -EINVAL;
9552 
9553 	if (flags & RENAME_EXCHANGE)
9554 		return btrfs_rename_exchange(old_dir, old_dentry, new_dir,
9555 					  new_dentry);
9556 
9557 	return btrfs_rename(mnt_userns, old_dir, old_dentry, new_dir,
9558 			    new_dentry, flags);
9559 }
9560 
9561 struct btrfs_delalloc_work {
9562 	struct inode *inode;
9563 	struct completion completion;
9564 	struct list_head list;
9565 	struct btrfs_work work;
9566 };
9567 
9568 static void btrfs_run_delalloc_work(struct btrfs_work *work)
9569 {
9570 	struct btrfs_delalloc_work *delalloc_work;
9571 	struct inode *inode;
9572 
9573 	delalloc_work = container_of(work, struct btrfs_delalloc_work,
9574 				     work);
9575 	inode = delalloc_work->inode;
9576 	filemap_flush(inode->i_mapping);
9577 	if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
9578 				&BTRFS_I(inode)->runtime_flags))
9579 		filemap_flush(inode->i_mapping);
9580 
9581 	iput(inode);
9582 	complete(&delalloc_work->completion);
9583 }
9584 
9585 static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode)
9586 {
9587 	struct btrfs_delalloc_work *work;
9588 
9589 	work = kmalloc(sizeof(*work), GFP_NOFS);
9590 	if (!work)
9591 		return NULL;
9592 
9593 	init_completion(&work->completion);
9594 	INIT_LIST_HEAD(&work->list);
9595 	work->inode = inode;
9596 	btrfs_init_work(&work->work, btrfs_run_delalloc_work, NULL, NULL);
9597 
9598 	return work;
9599 }
9600 
9601 /*
9602  * some fairly slow code that needs optimization. This walks the list
9603  * of all the inodes with pending delalloc and forces them to disk.
9604  */
9605 static int start_delalloc_inodes(struct btrfs_root *root,
9606 				 struct writeback_control *wbc, bool snapshot,
9607 				 bool in_reclaim_context)
9608 {
9609 	struct btrfs_inode *binode;
9610 	struct inode *inode;
9611 	struct btrfs_delalloc_work *work, *next;
9612 	struct list_head works;
9613 	struct list_head splice;
9614 	int ret = 0;
9615 	bool full_flush = wbc->nr_to_write == LONG_MAX;
9616 
9617 	INIT_LIST_HEAD(&works);
9618 	INIT_LIST_HEAD(&splice);
9619 
9620 	mutex_lock(&root->delalloc_mutex);
9621 	spin_lock(&root->delalloc_lock);
9622 	list_splice_init(&root->delalloc_inodes, &splice);
9623 	while (!list_empty(&splice)) {
9624 		binode = list_entry(splice.next, struct btrfs_inode,
9625 				    delalloc_inodes);
9626 
9627 		list_move_tail(&binode->delalloc_inodes,
9628 			       &root->delalloc_inodes);
9629 
9630 		if (in_reclaim_context &&
9631 		    test_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &binode->runtime_flags))
9632 			continue;
9633 
9634 		inode = igrab(&binode->vfs_inode);
9635 		if (!inode) {
9636 			cond_resched_lock(&root->delalloc_lock);
9637 			continue;
9638 		}
9639 		spin_unlock(&root->delalloc_lock);
9640 
9641 		if (snapshot)
9642 			set_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
9643 				&binode->runtime_flags);
9644 		if (full_flush) {
9645 			work = btrfs_alloc_delalloc_work(inode);
9646 			if (!work) {
9647 				iput(inode);
9648 				ret = -ENOMEM;
9649 				goto out;
9650 			}
9651 			list_add_tail(&work->list, &works);
9652 			btrfs_queue_work(root->fs_info->flush_workers,
9653 					 &work->work);
9654 		} else {
9655 			ret = filemap_fdatawrite_wbc(inode->i_mapping, wbc);
9656 			btrfs_add_delayed_iput(inode);
9657 			if (ret || wbc->nr_to_write <= 0)
9658 				goto out;
9659 		}
9660 		cond_resched();
9661 		spin_lock(&root->delalloc_lock);
9662 	}
9663 	spin_unlock(&root->delalloc_lock);
9664 
9665 out:
9666 	list_for_each_entry_safe(work, next, &works, list) {
9667 		list_del_init(&work->list);
9668 		wait_for_completion(&work->completion);
9669 		kfree(work);
9670 	}
9671 
9672 	if (!list_empty(&splice)) {
9673 		spin_lock(&root->delalloc_lock);
9674 		list_splice_tail(&splice, &root->delalloc_inodes);
9675 		spin_unlock(&root->delalloc_lock);
9676 	}
9677 	mutex_unlock(&root->delalloc_mutex);
9678 	return ret;
9679 }
9680 
9681 int btrfs_start_delalloc_snapshot(struct btrfs_root *root, bool in_reclaim_context)
9682 {
9683 	struct writeback_control wbc = {
9684 		.nr_to_write = LONG_MAX,
9685 		.sync_mode = WB_SYNC_NONE,
9686 		.range_start = 0,
9687 		.range_end = LLONG_MAX,
9688 	};
9689 	struct btrfs_fs_info *fs_info = root->fs_info;
9690 
9691 	if (BTRFS_FS_ERROR(fs_info))
9692 		return -EROFS;
9693 
9694 	return start_delalloc_inodes(root, &wbc, true, in_reclaim_context);
9695 }
9696 
9697 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, long nr,
9698 			       bool in_reclaim_context)
9699 {
9700 	struct writeback_control wbc = {
9701 		.nr_to_write = nr,
9702 		.sync_mode = WB_SYNC_NONE,
9703 		.range_start = 0,
9704 		.range_end = LLONG_MAX,
9705 	};
9706 	struct btrfs_root *root;
9707 	struct list_head splice;
9708 	int ret;
9709 
9710 	if (BTRFS_FS_ERROR(fs_info))
9711 		return -EROFS;
9712 
9713 	INIT_LIST_HEAD(&splice);
9714 
9715 	mutex_lock(&fs_info->delalloc_root_mutex);
9716 	spin_lock(&fs_info->delalloc_root_lock);
9717 	list_splice_init(&fs_info->delalloc_roots, &splice);
9718 	while (!list_empty(&splice)) {
9719 		/*
9720 		 * Reset nr_to_write here so we know that we're doing a full
9721 		 * flush.
9722 		 */
9723 		if (nr == LONG_MAX)
9724 			wbc.nr_to_write = LONG_MAX;
9725 
9726 		root = list_first_entry(&splice, struct btrfs_root,
9727 					delalloc_root);
9728 		root = btrfs_grab_root(root);
9729 		BUG_ON(!root);
9730 		list_move_tail(&root->delalloc_root,
9731 			       &fs_info->delalloc_roots);
9732 		spin_unlock(&fs_info->delalloc_root_lock);
9733 
9734 		ret = start_delalloc_inodes(root, &wbc, false, in_reclaim_context);
9735 		btrfs_put_root(root);
9736 		if (ret < 0 || wbc.nr_to_write <= 0)
9737 			goto out;
9738 		spin_lock(&fs_info->delalloc_root_lock);
9739 	}
9740 	spin_unlock(&fs_info->delalloc_root_lock);
9741 
9742 	ret = 0;
9743 out:
9744 	if (!list_empty(&splice)) {
9745 		spin_lock(&fs_info->delalloc_root_lock);
9746 		list_splice_tail(&splice, &fs_info->delalloc_roots);
9747 		spin_unlock(&fs_info->delalloc_root_lock);
9748 	}
9749 	mutex_unlock(&fs_info->delalloc_root_mutex);
9750 	return ret;
9751 }
9752 
9753 static int btrfs_symlink(struct user_namespace *mnt_userns, struct inode *dir,
9754 			 struct dentry *dentry, const char *symname)
9755 {
9756 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
9757 	struct btrfs_trans_handle *trans;
9758 	struct btrfs_root *root = BTRFS_I(dir)->root;
9759 	struct btrfs_path *path;
9760 	struct btrfs_key key;
9761 	struct inode *inode;
9762 	struct btrfs_new_inode_args new_inode_args = {
9763 		.dir = dir,
9764 		.dentry = dentry,
9765 	};
9766 	unsigned int trans_num_items;
9767 	int err;
9768 	int name_len;
9769 	int datasize;
9770 	unsigned long ptr;
9771 	struct btrfs_file_extent_item *ei;
9772 	struct extent_buffer *leaf;
9773 
9774 	name_len = strlen(symname);
9775 	if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info))
9776 		return -ENAMETOOLONG;
9777 
9778 	inode = new_inode(dir->i_sb);
9779 	if (!inode)
9780 		return -ENOMEM;
9781 	inode_init_owner(mnt_userns, inode, dir, S_IFLNK | S_IRWXUGO);
9782 	inode->i_op = &btrfs_symlink_inode_operations;
9783 	inode_nohighmem(inode);
9784 	inode->i_mapping->a_ops = &btrfs_aops;
9785 	btrfs_i_size_write(BTRFS_I(inode), name_len);
9786 	inode_set_bytes(inode, name_len);
9787 
9788 	new_inode_args.inode = inode;
9789 	err = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
9790 	if (err)
9791 		goto out_inode;
9792 	/* 1 additional item for the inline extent */
9793 	trans_num_items++;
9794 
9795 	trans = btrfs_start_transaction(root, trans_num_items);
9796 	if (IS_ERR(trans)) {
9797 		err = PTR_ERR(trans);
9798 		goto out_new_inode_args;
9799 	}
9800 
9801 	err = btrfs_create_new_inode(trans, &new_inode_args);
9802 	if (err)
9803 		goto out;
9804 
9805 	path = btrfs_alloc_path();
9806 	if (!path) {
9807 		err = -ENOMEM;
9808 		btrfs_abort_transaction(trans, err);
9809 		discard_new_inode(inode);
9810 		inode = NULL;
9811 		goto out;
9812 	}
9813 	key.objectid = btrfs_ino(BTRFS_I(inode));
9814 	key.offset = 0;
9815 	key.type = BTRFS_EXTENT_DATA_KEY;
9816 	datasize = btrfs_file_extent_calc_inline_size(name_len);
9817 	err = btrfs_insert_empty_item(trans, root, path, &key,
9818 				      datasize);
9819 	if (err) {
9820 		btrfs_abort_transaction(trans, err);
9821 		btrfs_free_path(path);
9822 		discard_new_inode(inode);
9823 		inode = NULL;
9824 		goto out;
9825 	}
9826 	leaf = path->nodes[0];
9827 	ei = btrfs_item_ptr(leaf, path->slots[0],
9828 			    struct btrfs_file_extent_item);
9829 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
9830 	btrfs_set_file_extent_type(leaf, ei,
9831 				   BTRFS_FILE_EXTENT_INLINE);
9832 	btrfs_set_file_extent_encryption(leaf, ei, 0);
9833 	btrfs_set_file_extent_compression(leaf, ei, 0);
9834 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
9835 	btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
9836 
9837 	ptr = btrfs_file_extent_inline_start(ei);
9838 	write_extent_buffer(leaf, symname, ptr, name_len);
9839 	btrfs_mark_buffer_dirty(leaf);
9840 	btrfs_free_path(path);
9841 
9842 	d_instantiate_new(dentry, inode);
9843 	err = 0;
9844 out:
9845 	btrfs_end_transaction(trans);
9846 	btrfs_btree_balance_dirty(fs_info);
9847 out_new_inode_args:
9848 	btrfs_new_inode_args_destroy(&new_inode_args);
9849 out_inode:
9850 	if (err)
9851 		iput(inode);
9852 	return err;
9853 }
9854 
9855 static struct btrfs_trans_handle *insert_prealloc_file_extent(
9856 				       struct btrfs_trans_handle *trans_in,
9857 				       struct btrfs_inode *inode,
9858 				       struct btrfs_key *ins,
9859 				       u64 file_offset)
9860 {
9861 	struct btrfs_file_extent_item stack_fi;
9862 	struct btrfs_replace_extent_info extent_info;
9863 	struct btrfs_trans_handle *trans = trans_in;
9864 	struct btrfs_path *path;
9865 	u64 start = ins->objectid;
9866 	u64 len = ins->offset;
9867 	int qgroup_released;
9868 	int ret;
9869 
9870 	memset(&stack_fi, 0, sizeof(stack_fi));
9871 
9872 	btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_PREALLOC);
9873 	btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, start);
9874 	btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi, len);
9875 	btrfs_set_stack_file_extent_num_bytes(&stack_fi, len);
9876 	btrfs_set_stack_file_extent_ram_bytes(&stack_fi, len);
9877 	btrfs_set_stack_file_extent_compression(&stack_fi, BTRFS_COMPRESS_NONE);
9878 	/* Encryption and other encoding is reserved and all 0 */
9879 
9880 	qgroup_released = btrfs_qgroup_release_data(inode, file_offset, len);
9881 	if (qgroup_released < 0)
9882 		return ERR_PTR(qgroup_released);
9883 
9884 	if (trans) {
9885 		ret = insert_reserved_file_extent(trans, inode,
9886 						  file_offset, &stack_fi,
9887 						  true, qgroup_released);
9888 		if (ret)
9889 			goto free_qgroup;
9890 		return trans;
9891 	}
9892 
9893 	extent_info.disk_offset = start;
9894 	extent_info.disk_len = len;
9895 	extent_info.data_offset = 0;
9896 	extent_info.data_len = len;
9897 	extent_info.file_offset = file_offset;
9898 	extent_info.extent_buf = (char *)&stack_fi;
9899 	extent_info.is_new_extent = true;
9900 	extent_info.qgroup_reserved = qgroup_released;
9901 	extent_info.insertions = 0;
9902 
9903 	path = btrfs_alloc_path();
9904 	if (!path) {
9905 		ret = -ENOMEM;
9906 		goto free_qgroup;
9907 	}
9908 
9909 	ret = btrfs_replace_file_extents(inode, path, file_offset,
9910 				     file_offset + len - 1, &extent_info,
9911 				     &trans);
9912 	btrfs_free_path(path);
9913 	if (ret)
9914 		goto free_qgroup;
9915 	return trans;
9916 
9917 free_qgroup:
9918 	/*
9919 	 * We have released qgroup data range at the beginning of the function,
9920 	 * and normally qgroup_released bytes will be freed when committing
9921 	 * transaction.
9922 	 * But if we error out early, we have to free what we have released
9923 	 * or we leak qgroup data reservation.
9924 	 */
9925 	btrfs_qgroup_free_refroot(inode->root->fs_info,
9926 			inode->root->root_key.objectid, qgroup_released,
9927 			BTRFS_QGROUP_RSV_DATA);
9928 	return ERR_PTR(ret);
9929 }
9930 
9931 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
9932 				       u64 start, u64 num_bytes, u64 min_size,
9933 				       loff_t actual_len, u64 *alloc_hint,
9934 				       struct btrfs_trans_handle *trans)
9935 {
9936 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9937 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
9938 	struct extent_map *em;
9939 	struct btrfs_root *root = BTRFS_I(inode)->root;
9940 	struct btrfs_key ins;
9941 	u64 cur_offset = start;
9942 	u64 clear_offset = start;
9943 	u64 i_size;
9944 	u64 cur_bytes;
9945 	u64 last_alloc = (u64)-1;
9946 	int ret = 0;
9947 	bool own_trans = true;
9948 	u64 end = start + num_bytes - 1;
9949 
9950 	if (trans)
9951 		own_trans = false;
9952 	while (num_bytes > 0) {
9953 		cur_bytes = min_t(u64, num_bytes, SZ_256M);
9954 		cur_bytes = max(cur_bytes, min_size);
9955 		/*
9956 		 * If we are severely fragmented we could end up with really
9957 		 * small allocations, so if the allocator is returning small
9958 		 * chunks lets make its job easier by only searching for those
9959 		 * sized chunks.
9960 		 */
9961 		cur_bytes = min(cur_bytes, last_alloc);
9962 		ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes,
9963 				min_size, 0, *alloc_hint, &ins, 1, 0);
9964 		if (ret)
9965 			break;
9966 
9967 		/*
9968 		 * We've reserved this space, and thus converted it from
9969 		 * ->bytes_may_use to ->bytes_reserved.  Any error that happens
9970 		 * from here on out we will only need to clear our reservation
9971 		 * for the remaining unreserved area, so advance our
9972 		 * clear_offset by our extent size.
9973 		 */
9974 		clear_offset += ins.offset;
9975 
9976 		last_alloc = ins.offset;
9977 		trans = insert_prealloc_file_extent(trans, BTRFS_I(inode),
9978 						    &ins, cur_offset);
9979 		/*
9980 		 * Now that we inserted the prealloc extent we can finally
9981 		 * decrement the number of reservations in the block group.
9982 		 * If we did it before, we could race with relocation and have
9983 		 * relocation miss the reserved extent, making it fail later.
9984 		 */
9985 		btrfs_dec_block_group_reservations(fs_info, ins.objectid);
9986 		if (IS_ERR(trans)) {
9987 			ret = PTR_ERR(trans);
9988 			btrfs_free_reserved_extent(fs_info, ins.objectid,
9989 						   ins.offset, 0);
9990 			break;
9991 		}
9992 
9993 		btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
9994 					cur_offset + ins.offset -1, 0);
9995 
9996 		em = alloc_extent_map();
9997 		if (!em) {
9998 			btrfs_set_inode_full_sync(BTRFS_I(inode));
9999 			goto next;
10000 		}
10001 
10002 		em->start = cur_offset;
10003 		em->orig_start = cur_offset;
10004 		em->len = ins.offset;
10005 		em->block_start = ins.objectid;
10006 		em->block_len = ins.offset;
10007 		em->orig_block_len = ins.offset;
10008 		em->ram_bytes = ins.offset;
10009 		set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
10010 		em->generation = trans->transid;
10011 
10012 		while (1) {
10013 			write_lock(&em_tree->lock);
10014 			ret = add_extent_mapping(em_tree, em, 1);
10015 			write_unlock(&em_tree->lock);
10016 			if (ret != -EEXIST)
10017 				break;
10018 			btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
10019 						cur_offset + ins.offset - 1,
10020 						0);
10021 		}
10022 		free_extent_map(em);
10023 next:
10024 		num_bytes -= ins.offset;
10025 		cur_offset += ins.offset;
10026 		*alloc_hint = ins.objectid + ins.offset;
10027 
10028 		inode_inc_iversion(inode);
10029 		inode->i_ctime = current_time(inode);
10030 		BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
10031 		if (!(mode & FALLOC_FL_KEEP_SIZE) &&
10032 		    (actual_len > inode->i_size) &&
10033 		    (cur_offset > inode->i_size)) {
10034 			if (cur_offset > actual_len)
10035 				i_size = actual_len;
10036 			else
10037 				i_size = cur_offset;
10038 			i_size_write(inode, i_size);
10039 			btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
10040 		}
10041 
10042 		ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
10043 
10044 		if (ret) {
10045 			btrfs_abort_transaction(trans, ret);
10046 			if (own_trans)
10047 				btrfs_end_transaction(trans);
10048 			break;
10049 		}
10050 
10051 		if (own_trans) {
10052 			btrfs_end_transaction(trans);
10053 			trans = NULL;
10054 		}
10055 	}
10056 	if (clear_offset < end)
10057 		btrfs_free_reserved_data_space(BTRFS_I(inode), NULL, clear_offset,
10058 			end - clear_offset + 1);
10059 	return ret;
10060 }
10061 
10062 int btrfs_prealloc_file_range(struct inode *inode, int mode,
10063 			      u64 start, u64 num_bytes, u64 min_size,
10064 			      loff_t actual_len, u64 *alloc_hint)
10065 {
10066 	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10067 					   min_size, actual_len, alloc_hint,
10068 					   NULL);
10069 }
10070 
10071 int btrfs_prealloc_file_range_trans(struct inode *inode,
10072 				    struct btrfs_trans_handle *trans, int mode,
10073 				    u64 start, u64 num_bytes, u64 min_size,
10074 				    loff_t actual_len, u64 *alloc_hint)
10075 {
10076 	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10077 					   min_size, actual_len, alloc_hint, trans);
10078 }
10079 
10080 static int btrfs_permission(struct user_namespace *mnt_userns,
10081 			    struct inode *inode, int mask)
10082 {
10083 	struct btrfs_root *root = BTRFS_I(inode)->root;
10084 	umode_t mode = inode->i_mode;
10085 
10086 	if (mask & MAY_WRITE &&
10087 	    (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
10088 		if (btrfs_root_readonly(root))
10089 			return -EROFS;
10090 		if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
10091 			return -EACCES;
10092 	}
10093 	return generic_permission(mnt_userns, inode, mask);
10094 }
10095 
10096 static int btrfs_tmpfile(struct user_namespace *mnt_userns, struct inode *dir,
10097 			 struct dentry *dentry, umode_t mode)
10098 {
10099 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
10100 	struct btrfs_trans_handle *trans;
10101 	struct btrfs_root *root = BTRFS_I(dir)->root;
10102 	struct inode *inode;
10103 	struct btrfs_new_inode_args new_inode_args = {
10104 		.dir = dir,
10105 		.dentry = dentry,
10106 		.orphan = true,
10107 	};
10108 	unsigned int trans_num_items;
10109 	int ret;
10110 
10111 	inode = new_inode(dir->i_sb);
10112 	if (!inode)
10113 		return -ENOMEM;
10114 	inode_init_owner(mnt_userns, inode, dir, mode);
10115 	inode->i_fop = &btrfs_file_operations;
10116 	inode->i_op = &btrfs_file_inode_operations;
10117 	inode->i_mapping->a_ops = &btrfs_aops;
10118 
10119 	new_inode_args.inode = inode;
10120 	ret = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
10121 	if (ret)
10122 		goto out_inode;
10123 
10124 	trans = btrfs_start_transaction(root, trans_num_items);
10125 	if (IS_ERR(trans)) {
10126 		ret = PTR_ERR(trans);
10127 		goto out_new_inode_args;
10128 	}
10129 
10130 	ret = btrfs_create_new_inode(trans, &new_inode_args);
10131 
10132 	/*
10133 	 * We set number of links to 0 in btrfs_create_new_inode(), and here we
10134 	 * set it to 1 because d_tmpfile() will issue a warning if the count is
10135 	 * 0, through:
10136 	 *
10137 	 *    d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
10138 	 */
10139 	set_nlink(inode, 1);
10140 
10141 	if (!ret) {
10142 		d_tmpfile(dentry, inode);
10143 		unlock_new_inode(inode);
10144 		mark_inode_dirty(inode);
10145 	}
10146 
10147 	btrfs_end_transaction(trans);
10148 	btrfs_btree_balance_dirty(fs_info);
10149 out_new_inode_args:
10150 	btrfs_new_inode_args_destroy(&new_inode_args);
10151 out_inode:
10152 	if (ret)
10153 		iput(inode);
10154 	return ret;
10155 }
10156 
10157 void btrfs_set_range_writeback(struct btrfs_inode *inode, u64 start, u64 end)
10158 {
10159 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
10160 	unsigned long index = start >> PAGE_SHIFT;
10161 	unsigned long end_index = end >> PAGE_SHIFT;
10162 	struct page *page;
10163 	u32 len;
10164 
10165 	ASSERT(end + 1 - start <= U32_MAX);
10166 	len = end + 1 - start;
10167 	while (index <= end_index) {
10168 		page = find_get_page(inode->vfs_inode.i_mapping, index);
10169 		ASSERT(page); /* Pages should be in the extent_io_tree */
10170 
10171 		btrfs_page_set_writeback(fs_info, page, start, len);
10172 		put_page(page);
10173 		index++;
10174 	}
10175 }
10176 
10177 static int btrfs_encoded_io_compression_from_extent(
10178 				struct btrfs_fs_info *fs_info,
10179 				int compress_type)
10180 {
10181 	switch (compress_type) {
10182 	case BTRFS_COMPRESS_NONE:
10183 		return BTRFS_ENCODED_IO_COMPRESSION_NONE;
10184 	case BTRFS_COMPRESS_ZLIB:
10185 		return BTRFS_ENCODED_IO_COMPRESSION_ZLIB;
10186 	case BTRFS_COMPRESS_LZO:
10187 		/*
10188 		 * The LZO format depends on the sector size. 64K is the maximum
10189 		 * sector size that we support.
10190 		 */
10191 		if (fs_info->sectorsize < SZ_4K || fs_info->sectorsize > SZ_64K)
10192 			return -EINVAL;
10193 		return BTRFS_ENCODED_IO_COMPRESSION_LZO_4K +
10194 		       (fs_info->sectorsize_bits - 12);
10195 	case BTRFS_COMPRESS_ZSTD:
10196 		return BTRFS_ENCODED_IO_COMPRESSION_ZSTD;
10197 	default:
10198 		return -EUCLEAN;
10199 	}
10200 }
10201 
10202 static ssize_t btrfs_encoded_read_inline(
10203 				struct kiocb *iocb,
10204 				struct iov_iter *iter, u64 start,
10205 				u64 lockend,
10206 				struct extent_state **cached_state,
10207 				u64 extent_start, size_t count,
10208 				struct btrfs_ioctl_encoded_io_args *encoded,
10209 				bool *unlocked)
10210 {
10211 	struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
10212 	struct btrfs_root *root = inode->root;
10213 	struct btrfs_fs_info *fs_info = root->fs_info;
10214 	struct extent_io_tree *io_tree = &inode->io_tree;
10215 	struct btrfs_path *path;
10216 	struct extent_buffer *leaf;
10217 	struct btrfs_file_extent_item *item;
10218 	u64 ram_bytes;
10219 	unsigned long ptr;
10220 	void *tmp;
10221 	ssize_t ret;
10222 
10223 	path = btrfs_alloc_path();
10224 	if (!path) {
10225 		ret = -ENOMEM;
10226 		goto out;
10227 	}
10228 	ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode),
10229 				       extent_start, 0);
10230 	if (ret) {
10231 		if (ret > 0) {
10232 			/* The extent item disappeared? */
10233 			ret = -EIO;
10234 		}
10235 		goto out;
10236 	}
10237 	leaf = path->nodes[0];
10238 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
10239 
10240 	ram_bytes = btrfs_file_extent_ram_bytes(leaf, item);
10241 	ptr = btrfs_file_extent_inline_start(item);
10242 
10243 	encoded->len = min_t(u64, extent_start + ram_bytes,
10244 			     inode->vfs_inode.i_size) - iocb->ki_pos;
10245 	ret = btrfs_encoded_io_compression_from_extent(fs_info,
10246 				 btrfs_file_extent_compression(leaf, item));
10247 	if (ret < 0)
10248 		goto out;
10249 	encoded->compression = ret;
10250 	if (encoded->compression) {
10251 		size_t inline_size;
10252 
10253 		inline_size = btrfs_file_extent_inline_item_len(leaf,
10254 								path->slots[0]);
10255 		if (inline_size > count) {
10256 			ret = -ENOBUFS;
10257 			goto out;
10258 		}
10259 		count = inline_size;
10260 		encoded->unencoded_len = ram_bytes;
10261 		encoded->unencoded_offset = iocb->ki_pos - extent_start;
10262 	} else {
10263 		count = min_t(u64, count, encoded->len);
10264 		encoded->len = count;
10265 		encoded->unencoded_len = count;
10266 		ptr += iocb->ki_pos - extent_start;
10267 	}
10268 
10269 	tmp = kmalloc(count, GFP_NOFS);
10270 	if (!tmp) {
10271 		ret = -ENOMEM;
10272 		goto out;
10273 	}
10274 	read_extent_buffer(leaf, tmp, ptr, count);
10275 	btrfs_release_path(path);
10276 	unlock_extent_cached(io_tree, start, lockend, cached_state);
10277 	btrfs_inode_unlock(&inode->vfs_inode, BTRFS_ILOCK_SHARED);
10278 	*unlocked = true;
10279 
10280 	ret = copy_to_iter(tmp, count, iter);
10281 	if (ret != count)
10282 		ret = -EFAULT;
10283 	kfree(tmp);
10284 out:
10285 	btrfs_free_path(path);
10286 	return ret;
10287 }
10288 
10289 struct btrfs_encoded_read_private {
10290 	struct btrfs_inode *inode;
10291 	u64 file_offset;
10292 	wait_queue_head_t wait;
10293 	atomic_t pending;
10294 	blk_status_t status;
10295 	bool skip_csum;
10296 };
10297 
10298 static blk_status_t submit_encoded_read_bio(struct btrfs_inode *inode,
10299 					    struct bio *bio, int mirror_num)
10300 {
10301 	struct btrfs_encoded_read_private *priv = bio->bi_private;
10302 	struct btrfs_bio *bbio = btrfs_bio(bio);
10303 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
10304 	blk_status_t ret;
10305 
10306 	if (!priv->skip_csum) {
10307 		ret = btrfs_lookup_bio_sums(&inode->vfs_inode, bio, NULL);
10308 		if (ret)
10309 			return ret;
10310 	}
10311 
10312 	ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
10313 	if (ret) {
10314 		btrfs_bio_free_csum(bbio);
10315 		return ret;
10316 	}
10317 
10318 	atomic_inc(&priv->pending);
10319 	ret = btrfs_map_bio(fs_info, bio, mirror_num);
10320 	if (ret) {
10321 		atomic_dec(&priv->pending);
10322 		btrfs_bio_free_csum(bbio);
10323 	}
10324 	return ret;
10325 }
10326 
10327 static blk_status_t btrfs_encoded_read_verify_csum(struct btrfs_bio *bbio)
10328 {
10329 	const bool uptodate = (bbio->bio.bi_status == BLK_STS_OK);
10330 	struct btrfs_encoded_read_private *priv = bbio->bio.bi_private;
10331 	struct btrfs_inode *inode = priv->inode;
10332 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
10333 	u32 sectorsize = fs_info->sectorsize;
10334 	struct bio_vec *bvec;
10335 	struct bvec_iter_all iter_all;
10336 	u64 start = priv->file_offset;
10337 	u32 bio_offset = 0;
10338 
10339 	if (priv->skip_csum || !uptodate)
10340 		return bbio->bio.bi_status;
10341 
10342 	bio_for_each_segment_all(bvec, &bbio->bio, iter_all) {
10343 		unsigned int i, nr_sectors, pgoff;
10344 
10345 		nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec->bv_len);
10346 		pgoff = bvec->bv_offset;
10347 		for (i = 0; i < nr_sectors; i++) {
10348 			ASSERT(pgoff < PAGE_SIZE);
10349 			if (check_data_csum(&inode->vfs_inode, bbio, bio_offset,
10350 					    bvec->bv_page, pgoff, start))
10351 				return BLK_STS_IOERR;
10352 			start += sectorsize;
10353 			bio_offset += sectorsize;
10354 			pgoff += sectorsize;
10355 		}
10356 	}
10357 	return BLK_STS_OK;
10358 }
10359 
10360 static void btrfs_encoded_read_endio(struct bio *bio)
10361 {
10362 	struct btrfs_encoded_read_private *priv = bio->bi_private;
10363 	struct btrfs_bio *bbio = btrfs_bio(bio);
10364 	blk_status_t status;
10365 
10366 	status = btrfs_encoded_read_verify_csum(bbio);
10367 	if (status) {
10368 		/*
10369 		 * The memory barrier implied by the atomic_dec_return() here
10370 		 * pairs with the memory barrier implied by the
10371 		 * atomic_dec_return() or io_wait_event() in
10372 		 * btrfs_encoded_read_regular_fill_pages() to ensure that this
10373 		 * write is observed before the load of status in
10374 		 * btrfs_encoded_read_regular_fill_pages().
10375 		 */
10376 		WRITE_ONCE(priv->status, status);
10377 	}
10378 	if (!atomic_dec_return(&priv->pending))
10379 		wake_up(&priv->wait);
10380 	btrfs_bio_free_csum(bbio);
10381 	bio_put(bio);
10382 }
10383 
10384 static int btrfs_encoded_read_regular_fill_pages(struct btrfs_inode *inode,
10385 						 u64 file_offset,
10386 						 u64 disk_bytenr,
10387 						 u64 disk_io_size,
10388 						 struct page **pages)
10389 {
10390 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
10391 	struct btrfs_encoded_read_private priv = {
10392 		.inode = inode,
10393 		.file_offset = file_offset,
10394 		.pending = ATOMIC_INIT(1),
10395 		.skip_csum = (inode->flags & BTRFS_INODE_NODATASUM),
10396 	};
10397 	unsigned long i = 0;
10398 	u64 cur = 0;
10399 	int ret;
10400 
10401 	init_waitqueue_head(&priv.wait);
10402 	/*
10403 	 * Submit bios for the extent, splitting due to bio or stripe limits as
10404 	 * necessary.
10405 	 */
10406 	while (cur < disk_io_size) {
10407 		struct extent_map *em;
10408 		struct btrfs_io_geometry geom;
10409 		struct bio *bio = NULL;
10410 		u64 remaining;
10411 
10412 		em = btrfs_get_chunk_map(fs_info, disk_bytenr + cur,
10413 					 disk_io_size - cur);
10414 		if (IS_ERR(em)) {
10415 			ret = PTR_ERR(em);
10416 		} else {
10417 			ret = btrfs_get_io_geometry(fs_info, em, BTRFS_MAP_READ,
10418 						    disk_bytenr + cur, &geom);
10419 			free_extent_map(em);
10420 		}
10421 		if (ret) {
10422 			WRITE_ONCE(priv.status, errno_to_blk_status(ret));
10423 			break;
10424 		}
10425 		remaining = min(geom.len, disk_io_size - cur);
10426 		while (bio || remaining) {
10427 			size_t bytes = min_t(u64, remaining, PAGE_SIZE);
10428 
10429 			if (!bio) {
10430 				bio = btrfs_bio_alloc(BIO_MAX_VECS);
10431 				bio->bi_iter.bi_sector =
10432 					(disk_bytenr + cur) >> SECTOR_SHIFT;
10433 				bio->bi_end_io = btrfs_encoded_read_endio;
10434 				bio->bi_private = &priv;
10435 				bio->bi_opf = REQ_OP_READ;
10436 			}
10437 
10438 			if (!bytes ||
10439 			    bio_add_page(bio, pages[i], bytes, 0) < bytes) {
10440 				blk_status_t status;
10441 
10442 				status = submit_encoded_read_bio(inode, bio, 0);
10443 				if (status) {
10444 					WRITE_ONCE(priv.status, status);
10445 					bio_put(bio);
10446 					goto out;
10447 				}
10448 				bio = NULL;
10449 				continue;
10450 			}
10451 
10452 			i++;
10453 			cur += bytes;
10454 			remaining -= bytes;
10455 		}
10456 	}
10457 
10458 out:
10459 	if (atomic_dec_return(&priv.pending))
10460 		io_wait_event(priv.wait, !atomic_read(&priv.pending));
10461 	/* See btrfs_encoded_read_endio() for ordering. */
10462 	return blk_status_to_errno(READ_ONCE(priv.status));
10463 }
10464 
10465 static ssize_t btrfs_encoded_read_regular(struct kiocb *iocb,
10466 					  struct iov_iter *iter,
10467 					  u64 start, u64 lockend,
10468 					  struct extent_state **cached_state,
10469 					  u64 disk_bytenr, u64 disk_io_size,
10470 					  size_t count, bool compressed,
10471 					  bool *unlocked)
10472 {
10473 	struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
10474 	struct extent_io_tree *io_tree = &inode->io_tree;
10475 	struct page **pages;
10476 	unsigned long nr_pages, i;
10477 	u64 cur;
10478 	size_t page_offset;
10479 	ssize_t ret;
10480 
10481 	nr_pages = DIV_ROUND_UP(disk_io_size, PAGE_SIZE);
10482 	pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
10483 	if (!pages)
10484 		return -ENOMEM;
10485 	ret = btrfs_alloc_page_array(nr_pages, pages);
10486 	if (ret) {
10487 		ret = -ENOMEM;
10488 		goto out;
10489 		}
10490 
10491 	ret = btrfs_encoded_read_regular_fill_pages(inode, start, disk_bytenr,
10492 						    disk_io_size, pages);
10493 	if (ret)
10494 		goto out;
10495 
10496 	unlock_extent_cached(io_tree, start, lockend, cached_state);
10497 	btrfs_inode_unlock(&inode->vfs_inode, BTRFS_ILOCK_SHARED);
10498 	*unlocked = true;
10499 
10500 	if (compressed) {
10501 		i = 0;
10502 		page_offset = 0;
10503 	} else {
10504 		i = (iocb->ki_pos - start) >> PAGE_SHIFT;
10505 		page_offset = (iocb->ki_pos - start) & (PAGE_SIZE - 1);
10506 	}
10507 	cur = 0;
10508 	while (cur < count) {
10509 		size_t bytes = min_t(size_t, count - cur,
10510 				     PAGE_SIZE - page_offset);
10511 
10512 		if (copy_page_to_iter(pages[i], page_offset, bytes,
10513 				      iter) != bytes) {
10514 			ret = -EFAULT;
10515 			goto out;
10516 		}
10517 		i++;
10518 		cur += bytes;
10519 		page_offset = 0;
10520 	}
10521 	ret = count;
10522 out:
10523 	for (i = 0; i < nr_pages; i++) {
10524 		if (pages[i])
10525 			__free_page(pages[i]);
10526 	}
10527 	kfree(pages);
10528 	return ret;
10529 }
10530 
10531 ssize_t btrfs_encoded_read(struct kiocb *iocb, struct iov_iter *iter,
10532 			   struct btrfs_ioctl_encoded_io_args *encoded)
10533 {
10534 	struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
10535 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
10536 	struct extent_io_tree *io_tree = &inode->io_tree;
10537 	ssize_t ret;
10538 	size_t count = iov_iter_count(iter);
10539 	u64 start, lockend, disk_bytenr, disk_io_size;
10540 	struct extent_state *cached_state = NULL;
10541 	struct extent_map *em;
10542 	bool unlocked = false;
10543 
10544 	file_accessed(iocb->ki_filp);
10545 
10546 	btrfs_inode_lock(&inode->vfs_inode, BTRFS_ILOCK_SHARED);
10547 
10548 	if (iocb->ki_pos >= inode->vfs_inode.i_size) {
10549 		btrfs_inode_unlock(&inode->vfs_inode, BTRFS_ILOCK_SHARED);
10550 		return 0;
10551 	}
10552 	start = ALIGN_DOWN(iocb->ki_pos, fs_info->sectorsize);
10553 	/*
10554 	 * We don't know how long the extent containing iocb->ki_pos is, but if
10555 	 * it's compressed we know that it won't be longer than this.
10556 	 */
10557 	lockend = start + BTRFS_MAX_UNCOMPRESSED - 1;
10558 
10559 	for (;;) {
10560 		struct btrfs_ordered_extent *ordered;
10561 
10562 		ret = btrfs_wait_ordered_range(&inode->vfs_inode, start,
10563 					       lockend - start + 1);
10564 		if (ret)
10565 			goto out_unlock_inode;
10566 		lock_extent_bits(io_tree, start, lockend, &cached_state);
10567 		ordered = btrfs_lookup_ordered_range(inode, start,
10568 						     lockend - start + 1);
10569 		if (!ordered)
10570 			break;
10571 		btrfs_put_ordered_extent(ordered);
10572 		unlock_extent_cached(io_tree, start, lockend, &cached_state);
10573 		cond_resched();
10574 	}
10575 
10576 	em = btrfs_get_extent(inode, NULL, 0, start, lockend - start + 1);
10577 	if (IS_ERR(em)) {
10578 		ret = PTR_ERR(em);
10579 		goto out_unlock_extent;
10580 	}
10581 
10582 	if (em->block_start == EXTENT_MAP_INLINE) {
10583 		u64 extent_start = em->start;
10584 
10585 		/*
10586 		 * For inline extents we get everything we need out of the
10587 		 * extent item.
10588 		 */
10589 		free_extent_map(em);
10590 		em = NULL;
10591 		ret = btrfs_encoded_read_inline(iocb, iter, start, lockend,
10592 						&cached_state, extent_start,
10593 						count, encoded, &unlocked);
10594 		goto out;
10595 	}
10596 
10597 	/*
10598 	 * We only want to return up to EOF even if the extent extends beyond
10599 	 * that.
10600 	 */
10601 	encoded->len = min_t(u64, extent_map_end(em),
10602 			     inode->vfs_inode.i_size) - iocb->ki_pos;
10603 	if (em->block_start == EXTENT_MAP_HOLE ||
10604 	    test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
10605 		disk_bytenr = EXTENT_MAP_HOLE;
10606 		count = min_t(u64, count, encoded->len);
10607 		encoded->len = count;
10608 		encoded->unencoded_len = count;
10609 	} else if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
10610 		disk_bytenr = em->block_start;
10611 		/*
10612 		 * Bail if the buffer isn't large enough to return the whole
10613 		 * compressed extent.
10614 		 */
10615 		if (em->block_len > count) {
10616 			ret = -ENOBUFS;
10617 			goto out_em;
10618 		}
10619 		disk_io_size = count = em->block_len;
10620 		encoded->unencoded_len = em->ram_bytes;
10621 		encoded->unencoded_offset = iocb->ki_pos - em->orig_start;
10622 		ret = btrfs_encoded_io_compression_from_extent(fs_info,
10623 							     em->compress_type);
10624 		if (ret < 0)
10625 			goto out_em;
10626 		encoded->compression = ret;
10627 	} else {
10628 		disk_bytenr = em->block_start + (start - em->start);
10629 		if (encoded->len > count)
10630 			encoded->len = count;
10631 		/*
10632 		 * Don't read beyond what we locked. This also limits the page
10633 		 * allocations that we'll do.
10634 		 */
10635 		disk_io_size = min(lockend + 1, iocb->ki_pos + encoded->len) - start;
10636 		count = start + disk_io_size - iocb->ki_pos;
10637 		encoded->len = count;
10638 		encoded->unencoded_len = count;
10639 		disk_io_size = ALIGN(disk_io_size, fs_info->sectorsize);
10640 	}
10641 	free_extent_map(em);
10642 	em = NULL;
10643 
10644 	if (disk_bytenr == EXTENT_MAP_HOLE) {
10645 		unlock_extent_cached(io_tree, start, lockend, &cached_state);
10646 		btrfs_inode_unlock(&inode->vfs_inode, BTRFS_ILOCK_SHARED);
10647 		unlocked = true;
10648 		ret = iov_iter_zero(count, iter);
10649 		if (ret != count)
10650 			ret = -EFAULT;
10651 	} else {
10652 		ret = btrfs_encoded_read_regular(iocb, iter, start, lockend,
10653 						 &cached_state, disk_bytenr,
10654 						 disk_io_size, count,
10655 						 encoded->compression,
10656 						 &unlocked);
10657 	}
10658 
10659 out:
10660 	if (ret >= 0)
10661 		iocb->ki_pos += encoded->len;
10662 out_em:
10663 	free_extent_map(em);
10664 out_unlock_extent:
10665 	if (!unlocked)
10666 		unlock_extent_cached(io_tree, start, lockend, &cached_state);
10667 out_unlock_inode:
10668 	if (!unlocked)
10669 		btrfs_inode_unlock(&inode->vfs_inode, BTRFS_ILOCK_SHARED);
10670 	return ret;
10671 }
10672 
10673 ssize_t btrfs_do_encoded_write(struct kiocb *iocb, struct iov_iter *from,
10674 			       const struct btrfs_ioctl_encoded_io_args *encoded)
10675 {
10676 	struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
10677 	struct btrfs_root *root = inode->root;
10678 	struct btrfs_fs_info *fs_info = root->fs_info;
10679 	struct extent_io_tree *io_tree = &inode->io_tree;
10680 	struct extent_changeset *data_reserved = NULL;
10681 	struct extent_state *cached_state = NULL;
10682 	int compression;
10683 	size_t orig_count;
10684 	u64 start, end;
10685 	u64 num_bytes, ram_bytes, disk_num_bytes;
10686 	unsigned long nr_pages, i;
10687 	struct page **pages;
10688 	struct btrfs_key ins;
10689 	bool extent_reserved = false;
10690 	struct extent_map *em;
10691 	ssize_t ret;
10692 
10693 	switch (encoded->compression) {
10694 	case BTRFS_ENCODED_IO_COMPRESSION_ZLIB:
10695 		compression = BTRFS_COMPRESS_ZLIB;
10696 		break;
10697 	case BTRFS_ENCODED_IO_COMPRESSION_ZSTD:
10698 		compression = BTRFS_COMPRESS_ZSTD;
10699 		break;
10700 	case BTRFS_ENCODED_IO_COMPRESSION_LZO_4K:
10701 	case BTRFS_ENCODED_IO_COMPRESSION_LZO_8K:
10702 	case BTRFS_ENCODED_IO_COMPRESSION_LZO_16K:
10703 	case BTRFS_ENCODED_IO_COMPRESSION_LZO_32K:
10704 	case BTRFS_ENCODED_IO_COMPRESSION_LZO_64K:
10705 		/* The sector size must match for LZO. */
10706 		if (encoded->compression -
10707 		    BTRFS_ENCODED_IO_COMPRESSION_LZO_4K + 12 !=
10708 		    fs_info->sectorsize_bits)
10709 			return -EINVAL;
10710 		compression = BTRFS_COMPRESS_LZO;
10711 		break;
10712 	default:
10713 		return -EINVAL;
10714 	}
10715 	if (encoded->encryption != BTRFS_ENCODED_IO_ENCRYPTION_NONE)
10716 		return -EINVAL;
10717 
10718 	orig_count = iov_iter_count(from);
10719 
10720 	/* The extent size must be sane. */
10721 	if (encoded->unencoded_len > BTRFS_MAX_UNCOMPRESSED ||
10722 	    orig_count > BTRFS_MAX_COMPRESSED || orig_count == 0)
10723 		return -EINVAL;
10724 
10725 	/*
10726 	 * The compressed data must be smaller than the decompressed data.
10727 	 *
10728 	 * It's of course possible for data to compress to larger or the same
10729 	 * size, but the buffered I/O path falls back to no compression for such
10730 	 * data, and we don't want to break any assumptions by creating these
10731 	 * extents.
10732 	 *
10733 	 * Note that this is less strict than the current check we have that the
10734 	 * compressed data must be at least one sector smaller than the
10735 	 * decompressed data. We only want to enforce the weaker requirement
10736 	 * from old kernels that it is at least one byte smaller.
10737 	 */
10738 	if (orig_count >= encoded->unencoded_len)
10739 		return -EINVAL;
10740 
10741 	/* The extent must start on a sector boundary. */
10742 	start = iocb->ki_pos;
10743 	if (!IS_ALIGNED(start, fs_info->sectorsize))
10744 		return -EINVAL;
10745 
10746 	/*
10747 	 * The extent must end on a sector boundary. However, we allow a write
10748 	 * which ends at or extends i_size to have an unaligned length; we round
10749 	 * up the extent size and set i_size to the unaligned end.
10750 	 */
10751 	if (start + encoded->len < inode->vfs_inode.i_size &&
10752 	    !IS_ALIGNED(start + encoded->len, fs_info->sectorsize))
10753 		return -EINVAL;
10754 
10755 	/* Finally, the offset in the unencoded data must be sector-aligned. */
10756 	if (!IS_ALIGNED(encoded->unencoded_offset, fs_info->sectorsize))
10757 		return -EINVAL;
10758 
10759 	num_bytes = ALIGN(encoded->len, fs_info->sectorsize);
10760 	ram_bytes = ALIGN(encoded->unencoded_len, fs_info->sectorsize);
10761 	end = start + num_bytes - 1;
10762 
10763 	/*
10764 	 * If the extent cannot be inline, the compressed data on disk must be
10765 	 * sector-aligned. For convenience, we extend it with zeroes if it
10766 	 * isn't.
10767 	 */
10768 	disk_num_bytes = ALIGN(orig_count, fs_info->sectorsize);
10769 	nr_pages = DIV_ROUND_UP(disk_num_bytes, PAGE_SIZE);
10770 	pages = kvcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL_ACCOUNT);
10771 	if (!pages)
10772 		return -ENOMEM;
10773 	for (i = 0; i < nr_pages; i++) {
10774 		size_t bytes = min_t(size_t, PAGE_SIZE, iov_iter_count(from));
10775 		char *kaddr;
10776 
10777 		pages[i] = alloc_page(GFP_KERNEL_ACCOUNT);
10778 		if (!pages[i]) {
10779 			ret = -ENOMEM;
10780 			goto out_pages;
10781 		}
10782 		kaddr = kmap(pages[i]);
10783 		if (copy_from_iter(kaddr, bytes, from) != bytes) {
10784 			kunmap(pages[i]);
10785 			ret = -EFAULT;
10786 			goto out_pages;
10787 		}
10788 		if (bytes < PAGE_SIZE)
10789 			memset(kaddr + bytes, 0, PAGE_SIZE - bytes);
10790 		kunmap(pages[i]);
10791 	}
10792 
10793 	for (;;) {
10794 		struct btrfs_ordered_extent *ordered;
10795 
10796 		ret = btrfs_wait_ordered_range(&inode->vfs_inode, start, num_bytes);
10797 		if (ret)
10798 			goto out_pages;
10799 		ret = invalidate_inode_pages2_range(inode->vfs_inode.i_mapping,
10800 						    start >> PAGE_SHIFT,
10801 						    end >> PAGE_SHIFT);
10802 		if (ret)
10803 			goto out_pages;
10804 		lock_extent_bits(io_tree, start, end, &cached_state);
10805 		ordered = btrfs_lookup_ordered_range(inode, start, num_bytes);
10806 		if (!ordered &&
10807 		    !filemap_range_has_page(inode->vfs_inode.i_mapping, start, end))
10808 			break;
10809 		if (ordered)
10810 			btrfs_put_ordered_extent(ordered);
10811 		unlock_extent_cached(io_tree, start, end, &cached_state);
10812 		cond_resched();
10813 	}
10814 
10815 	/*
10816 	 * We don't use the higher-level delalloc space functions because our
10817 	 * num_bytes and disk_num_bytes are different.
10818 	 */
10819 	ret = btrfs_alloc_data_chunk_ondemand(inode, disk_num_bytes);
10820 	if (ret)
10821 		goto out_unlock;
10822 	ret = btrfs_qgroup_reserve_data(inode, &data_reserved, start, num_bytes);
10823 	if (ret)
10824 		goto out_free_data_space;
10825 	ret = btrfs_delalloc_reserve_metadata(inode, num_bytes, disk_num_bytes,
10826 					      false);
10827 	if (ret)
10828 		goto out_qgroup_free_data;
10829 
10830 	/* Try an inline extent first. */
10831 	if (start == 0 && encoded->unencoded_len == encoded->len &&
10832 	    encoded->unencoded_offset == 0) {
10833 		ret = cow_file_range_inline(inode, encoded->len, orig_count,
10834 					    compression, pages, true);
10835 		if (ret <= 0) {
10836 			if (ret == 0)
10837 				ret = orig_count;
10838 			goto out_delalloc_release;
10839 		}
10840 	}
10841 
10842 	ret = btrfs_reserve_extent(root, disk_num_bytes, disk_num_bytes,
10843 				   disk_num_bytes, 0, 0, &ins, 1, 1);
10844 	if (ret)
10845 		goto out_delalloc_release;
10846 	extent_reserved = true;
10847 
10848 	em = create_io_em(inode, start, num_bytes,
10849 			  start - encoded->unencoded_offset, ins.objectid,
10850 			  ins.offset, ins.offset, ram_bytes, compression,
10851 			  BTRFS_ORDERED_COMPRESSED);
10852 	if (IS_ERR(em)) {
10853 		ret = PTR_ERR(em);
10854 		goto out_free_reserved;
10855 	}
10856 	free_extent_map(em);
10857 
10858 	ret = btrfs_add_ordered_extent(inode, start, num_bytes, ram_bytes,
10859 				       ins.objectid, ins.offset,
10860 				       encoded->unencoded_offset,
10861 				       (1 << BTRFS_ORDERED_ENCODED) |
10862 				       (1 << BTRFS_ORDERED_COMPRESSED),
10863 				       compression);
10864 	if (ret) {
10865 		btrfs_drop_extent_cache(inode, start, end, 0);
10866 		goto out_free_reserved;
10867 	}
10868 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
10869 
10870 	if (start + encoded->len > inode->vfs_inode.i_size)
10871 		i_size_write(&inode->vfs_inode, start + encoded->len);
10872 
10873 	unlock_extent_cached(io_tree, start, end, &cached_state);
10874 
10875 	btrfs_delalloc_release_extents(inode, num_bytes);
10876 
10877 	if (btrfs_submit_compressed_write(inode, start, num_bytes, ins.objectid,
10878 					  ins.offset, pages, nr_pages, 0, NULL,
10879 					  false)) {
10880 		btrfs_writepage_endio_finish_ordered(inode, pages[0], start, end, 0);
10881 		ret = -EIO;
10882 		goto out_pages;
10883 	}
10884 	ret = orig_count;
10885 	goto out;
10886 
10887 out_free_reserved:
10888 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
10889 	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
10890 out_delalloc_release:
10891 	btrfs_delalloc_release_extents(inode, num_bytes);
10892 	btrfs_delalloc_release_metadata(inode, disk_num_bytes, ret < 0);
10893 out_qgroup_free_data:
10894 	if (ret < 0)
10895 		btrfs_qgroup_free_data(inode, data_reserved, start, num_bytes);
10896 out_free_data_space:
10897 	/*
10898 	 * If btrfs_reserve_extent() succeeded, then we already decremented
10899 	 * bytes_may_use.
10900 	 */
10901 	if (!extent_reserved)
10902 		btrfs_free_reserved_data_space_noquota(fs_info, disk_num_bytes);
10903 out_unlock:
10904 	unlock_extent_cached(io_tree, start, end, &cached_state);
10905 out_pages:
10906 	for (i = 0; i < nr_pages; i++) {
10907 		if (pages[i])
10908 			__free_page(pages[i]);
10909 	}
10910 	kvfree(pages);
10911 out:
10912 	if (ret >= 0)
10913 		iocb->ki_pos += encoded->len;
10914 	return ret;
10915 }
10916 
10917 #ifdef CONFIG_SWAP
10918 /*
10919  * Add an entry indicating a block group or device which is pinned by a
10920  * swapfile. Returns 0 on success, 1 if there is already an entry for it, or a
10921  * negative errno on failure.
10922  */
10923 static int btrfs_add_swapfile_pin(struct inode *inode, void *ptr,
10924 				  bool is_block_group)
10925 {
10926 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10927 	struct btrfs_swapfile_pin *sp, *entry;
10928 	struct rb_node **p;
10929 	struct rb_node *parent = NULL;
10930 
10931 	sp = kmalloc(sizeof(*sp), GFP_NOFS);
10932 	if (!sp)
10933 		return -ENOMEM;
10934 	sp->ptr = ptr;
10935 	sp->inode = inode;
10936 	sp->is_block_group = is_block_group;
10937 	sp->bg_extent_count = 1;
10938 
10939 	spin_lock(&fs_info->swapfile_pins_lock);
10940 	p = &fs_info->swapfile_pins.rb_node;
10941 	while (*p) {
10942 		parent = *p;
10943 		entry = rb_entry(parent, struct btrfs_swapfile_pin, node);
10944 		if (sp->ptr < entry->ptr ||
10945 		    (sp->ptr == entry->ptr && sp->inode < entry->inode)) {
10946 			p = &(*p)->rb_left;
10947 		} else if (sp->ptr > entry->ptr ||
10948 			   (sp->ptr == entry->ptr && sp->inode > entry->inode)) {
10949 			p = &(*p)->rb_right;
10950 		} else {
10951 			if (is_block_group)
10952 				entry->bg_extent_count++;
10953 			spin_unlock(&fs_info->swapfile_pins_lock);
10954 			kfree(sp);
10955 			return 1;
10956 		}
10957 	}
10958 	rb_link_node(&sp->node, parent, p);
10959 	rb_insert_color(&sp->node, &fs_info->swapfile_pins);
10960 	spin_unlock(&fs_info->swapfile_pins_lock);
10961 	return 0;
10962 }
10963 
10964 /* Free all of the entries pinned by this swapfile. */
10965 static void btrfs_free_swapfile_pins(struct inode *inode)
10966 {
10967 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10968 	struct btrfs_swapfile_pin *sp;
10969 	struct rb_node *node, *next;
10970 
10971 	spin_lock(&fs_info->swapfile_pins_lock);
10972 	node = rb_first(&fs_info->swapfile_pins);
10973 	while (node) {
10974 		next = rb_next(node);
10975 		sp = rb_entry(node, struct btrfs_swapfile_pin, node);
10976 		if (sp->inode == inode) {
10977 			rb_erase(&sp->node, &fs_info->swapfile_pins);
10978 			if (sp->is_block_group) {
10979 				btrfs_dec_block_group_swap_extents(sp->ptr,
10980 							   sp->bg_extent_count);
10981 				btrfs_put_block_group(sp->ptr);
10982 			}
10983 			kfree(sp);
10984 		}
10985 		node = next;
10986 	}
10987 	spin_unlock(&fs_info->swapfile_pins_lock);
10988 }
10989 
10990 struct btrfs_swap_info {
10991 	u64 start;
10992 	u64 block_start;
10993 	u64 block_len;
10994 	u64 lowest_ppage;
10995 	u64 highest_ppage;
10996 	unsigned long nr_pages;
10997 	int nr_extents;
10998 };
10999 
11000 static int btrfs_add_swap_extent(struct swap_info_struct *sis,
11001 				 struct btrfs_swap_info *bsi)
11002 {
11003 	unsigned long nr_pages;
11004 	unsigned long max_pages;
11005 	u64 first_ppage, first_ppage_reported, next_ppage;
11006 	int ret;
11007 
11008 	/*
11009 	 * Our swapfile may have had its size extended after the swap header was
11010 	 * written. In that case activating the swapfile should not go beyond
11011 	 * the max size set in the swap header.
11012 	 */
11013 	if (bsi->nr_pages >= sis->max)
11014 		return 0;
11015 
11016 	max_pages = sis->max - bsi->nr_pages;
11017 	first_ppage = ALIGN(bsi->block_start, PAGE_SIZE) >> PAGE_SHIFT;
11018 	next_ppage = ALIGN_DOWN(bsi->block_start + bsi->block_len,
11019 				PAGE_SIZE) >> PAGE_SHIFT;
11020 
11021 	if (first_ppage >= next_ppage)
11022 		return 0;
11023 	nr_pages = next_ppage - first_ppage;
11024 	nr_pages = min(nr_pages, max_pages);
11025 
11026 	first_ppage_reported = first_ppage;
11027 	if (bsi->start == 0)
11028 		first_ppage_reported++;
11029 	if (bsi->lowest_ppage > first_ppage_reported)
11030 		bsi->lowest_ppage = first_ppage_reported;
11031 	if (bsi->highest_ppage < (next_ppage - 1))
11032 		bsi->highest_ppage = next_ppage - 1;
11033 
11034 	ret = add_swap_extent(sis, bsi->nr_pages, nr_pages, first_ppage);
11035 	if (ret < 0)
11036 		return ret;
11037 	bsi->nr_extents += ret;
11038 	bsi->nr_pages += nr_pages;
11039 	return 0;
11040 }
11041 
11042 static void btrfs_swap_deactivate(struct file *file)
11043 {
11044 	struct inode *inode = file_inode(file);
11045 
11046 	btrfs_free_swapfile_pins(inode);
11047 	atomic_dec(&BTRFS_I(inode)->root->nr_swapfiles);
11048 }
11049 
11050 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
11051 			       sector_t *span)
11052 {
11053 	struct inode *inode = file_inode(file);
11054 	struct btrfs_root *root = BTRFS_I(inode)->root;
11055 	struct btrfs_fs_info *fs_info = root->fs_info;
11056 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
11057 	struct extent_state *cached_state = NULL;
11058 	struct extent_map *em = NULL;
11059 	struct btrfs_device *device = NULL;
11060 	struct btrfs_swap_info bsi = {
11061 		.lowest_ppage = (sector_t)-1ULL,
11062 	};
11063 	int ret = 0;
11064 	u64 isize;
11065 	u64 start;
11066 
11067 	/*
11068 	 * If the swap file was just created, make sure delalloc is done. If the
11069 	 * file changes again after this, the user is doing something stupid and
11070 	 * we don't really care.
11071 	 */
11072 	ret = btrfs_wait_ordered_range(inode, 0, (u64)-1);
11073 	if (ret)
11074 		return ret;
11075 
11076 	/*
11077 	 * The inode is locked, so these flags won't change after we check them.
11078 	 */
11079 	if (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS) {
11080 		btrfs_warn(fs_info, "swapfile must not be compressed");
11081 		return -EINVAL;
11082 	}
11083 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)) {
11084 		btrfs_warn(fs_info, "swapfile must not be copy-on-write");
11085 		return -EINVAL;
11086 	}
11087 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
11088 		btrfs_warn(fs_info, "swapfile must not be checksummed");
11089 		return -EINVAL;
11090 	}
11091 
11092 	/*
11093 	 * Balance or device remove/replace/resize can move stuff around from
11094 	 * under us. The exclop protection makes sure they aren't running/won't
11095 	 * run concurrently while we are mapping the swap extents, and
11096 	 * fs_info->swapfile_pins prevents them from running while the swap
11097 	 * file is active and moving the extents. Note that this also prevents
11098 	 * a concurrent device add which isn't actually necessary, but it's not
11099 	 * really worth the trouble to allow it.
11100 	 */
11101 	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_SWAP_ACTIVATE)) {
11102 		btrfs_warn(fs_info,
11103 	   "cannot activate swapfile while exclusive operation is running");
11104 		return -EBUSY;
11105 	}
11106 
11107 	/*
11108 	 * Prevent snapshot creation while we are activating the swap file.
11109 	 * We do not want to race with snapshot creation. If snapshot creation
11110 	 * already started before we bumped nr_swapfiles from 0 to 1 and
11111 	 * completes before the first write into the swap file after it is
11112 	 * activated, than that write would fallback to COW.
11113 	 */
11114 	if (!btrfs_drew_try_write_lock(&root->snapshot_lock)) {
11115 		btrfs_exclop_finish(fs_info);
11116 		btrfs_warn(fs_info,
11117 	   "cannot activate swapfile because snapshot creation is in progress");
11118 		return -EINVAL;
11119 	}
11120 	/*
11121 	 * Snapshots can create extents which require COW even if NODATACOW is
11122 	 * set. We use this counter to prevent snapshots. We must increment it
11123 	 * before walking the extents because we don't want a concurrent
11124 	 * snapshot to run after we've already checked the extents.
11125 	 *
11126 	 * It is possible that subvolume is marked for deletion but still not
11127 	 * removed yet. To prevent this race, we check the root status before
11128 	 * activating the swapfile.
11129 	 */
11130 	spin_lock(&root->root_item_lock);
11131 	if (btrfs_root_dead(root)) {
11132 		spin_unlock(&root->root_item_lock);
11133 
11134 		btrfs_exclop_finish(fs_info);
11135 		btrfs_warn(fs_info,
11136 		"cannot activate swapfile because subvolume %llu is being deleted",
11137 			root->root_key.objectid);
11138 		return -EPERM;
11139 	}
11140 	atomic_inc(&root->nr_swapfiles);
11141 	spin_unlock(&root->root_item_lock);
11142 
11143 	isize = ALIGN_DOWN(inode->i_size, fs_info->sectorsize);
11144 
11145 	lock_extent_bits(io_tree, 0, isize - 1, &cached_state);
11146 	start = 0;
11147 	while (start < isize) {
11148 		u64 logical_block_start, physical_block_start;
11149 		struct btrfs_block_group *bg;
11150 		u64 len = isize - start;
11151 
11152 		em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len);
11153 		if (IS_ERR(em)) {
11154 			ret = PTR_ERR(em);
11155 			goto out;
11156 		}
11157 
11158 		if (em->block_start == EXTENT_MAP_HOLE) {
11159 			btrfs_warn(fs_info, "swapfile must not have holes");
11160 			ret = -EINVAL;
11161 			goto out;
11162 		}
11163 		if (em->block_start == EXTENT_MAP_INLINE) {
11164 			/*
11165 			 * It's unlikely we'll ever actually find ourselves
11166 			 * here, as a file small enough to fit inline won't be
11167 			 * big enough to store more than the swap header, but in
11168 			 * case something changes in the future, let's catch it
11169 			 * here rather than later.
11170 			 */
11171 			btrfs_warn(fs_info, "swapfile must not be inline");
11172 			ret = -EINVAL;
11173 			goto out;
11174 		}
11175 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
11176 			btrfs_warn(fs_info, "swapfile must not be compressed");
11177 			ret = -EINVAL;
11178 			goto out;
11179 		}
11180 
11181 		logical_block_start = em->block_start + (start - em->start);
11182 		len = min(len, em->len - (start - em->start));
11183 		free_extent_map(em);
11184 		em = NULL;
11185 
11186 		ret = can_nocow_extent(inode, start, &len, NULL, NULL, NULL, true);
11187 		if (ret < 0) {
11188 			goto out;
11189 		} else if (ret) {
11190 			ret = 0;
11191 		} else {
11192 			btrfs_warn(fs_info,
11193 				   "swapfile must not be copy-on-write");
11194 			ret = -EINVAL;
11195 			goto out;
11196 		}
11197 
11198 		em = btrfs_get_chunk_map(fs_info, logical_block_start, len);
11199 		if (IS_ERR(em)) {
11200 			ret = PTR_ERR(em);
11201 			goto out;
11202 		}
11203 
11204 		if (em->map_lookup->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
11205 			btrfs_warn(fs_info,
11206 				   "swapfile must have single data profile");
11207 			ret = -EINVAL;
11208 			goto out;
11209 		}
11210 
11211 		if (device == NULL) {
11212 			device = em->map_lookup->stripes[0].dev;
11213 			ret = btrfs_add_swapfile_pin(inode, device, false);
11214 			if (ret == 1)
11215 				ret = 0;
11216 			else if (ret)
11217 				goto out;
11218 		} else if (device != em->map_lookup->stripes[0].dev) {
11219 			btrfs_warn(fs_info, "swapfile must be on one device");
11220 			ret = -EINVAL;
11221 			goto out;
11222 		}
11223 
11224 		physical_block_start = (em->map_lookup->stripes[0].physical +
11225 					(logical_block_start - em->start));
11226 		len = min(len, em->len - (logical_block_start - em->start));
11227 		free_extent_map(em);
11228 		em = NULL;
11229 
11230 		bg = btrfs_lookup_block_group(fs_info, logical_block_start);
11231 		if (!bg) {
11232 			btrfs_warn(fs_info,
11233 			   "could not find block group containing swapfile");
11234 			ret = -EINVAL;
11235 			goto out;
11236 		}
11237 
11238 		if (!btrfs_inc_block_group_swap_extents(bg)) {
11239 			btrfs_warn(fs_info,
11240 			   "block group for swapfile at %llu is read-only%s",
11241 			   bg->start,
11242 			   atomic_read(&fs_info->scrubs_running) ?
11243 				       " (scrub running)" : "");
11244 			btrfs_put_block_group(bg);
11245 			ret = -EINVAL;
11246 			goto out;
11247 		}
11248 
11249 		ret = btrfs_add_swapfile_pin(inode, bg, true);
11250 		if (ret) {
11251 			btrfs_put_block_group(bg);
11252 			if (ret == 1)
11253 				ret = 0;
11254 			else
11255 				goto out;
11256 		}
11257 
11258 		if (bsi.block_len &&
11259 		    bsi.block_start + bsi.block_len == physical_block_start) {
11260 			bsi.block_len += len;
11261 		} else {
11262 			if (bsi.block_len) {
11263 				ret = btrfs_add_swap_extent(sis, &bsi);
11264 				if (ret)
11265 					goto out;
11266 			}
11267 			bsi.start = start;
11268 			bsi.block_start = physical_block_start;
11269 			bsi.block_len = len;
11270 		}
11271 
11272 		start += len;
11273 	}
11274 
11275 	if (bsi.block_len)
11276 		ret = btrfs_add_swap_extent(sis, &bsi);
11277 
11278 out:
11279 	if (!IS_ERR_OR_NULL(em))
11280 		free_extent_map(em);
11281 
11282 	unlock_extent_cached(io_tree, 0, isize - 1, &cached_state);
11283 
11284 	if (ret)
11285 		btrfs_swap_deactivate(file);
11286 
11287 	btrfs_drew_write_unlock(&root->snapshot_lock);
11288 
11289 	btrfs_exclop_finish(fs_info);
11290 
11291 	if (ret)
11292 		return ret;
11293 
11294 	if (device)
11295 		sis->bdev = device->bdev;
11296 	*span = bsi.highest_ppage - bsi.lowest_ppage + 1;
11297 	sis->max = bsi.nr_pages;
11298 	sis->pages = bsi.nr_pages - 1;
11299 	sis->highest_bit = bsi.nr_pages - 1;
11300 	return bsi.nr_extents;
11301 }
11302 #else
11303 static void btrfs_swap_deactivate(struct file *file)
11304 {
11305 }
11306 
11307 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
11308 			       sector_t *span)
11309 {
11310 	return -EOPNOTSUPP;
11311 }
11312 #endif
11313 
11314 /*
11315  * Update the number of bytes used in the VFS' inode. When we replace extents in
11316  * a range (clone, dedupe, fallocate's zero range), we must update the number of
11317  * bytes used by the inode in an atomic manner, so that concurrent stat(2) calls
11318  * always get a correct value.
11319  */
11320 void btrfs_update_inode_bytes(struct btrfs_inode *inode,
11321 			      const u64 add_bytes,
11322 			      const u64 del_bytes)
11323 {
11324 	if (add_bytes == del_bytes)
11325 		return;
11326 
11327 	spin_lock(&inode->lock);
11328 	if (del_bytes > 0)
11329 		inode_sub_bytes(&inode->vfs_inode, del_bytes);
11330 	if (add_bytes > 0)
11331 		inode_add_bytes(&inode->vfs_inode, add_bytes);
11332 	spin_unlock(&inode->lock);
11333 }
11334 
11335 /**
11336  * Verify that there are no ordered extents for a given file range.
11337  *
11338  * @inode:   The target inode.
11339  * @start:   Start offset of the file range, should be sector size aligned.
11340  * @end:     End offset (inclusive) of the file range, its value +1 should be
11341  *           sector size aligned.
11342  *
11343  * This should typically be used for cases where we locked an inode's VFS lock in
11344  * exclusive mode, we have also locked the inode's i_mmap_lock in exclusive mode,
11345  * we have flushed all delalloc in the range, we have waited for all ordered
11346  * extents in the range to complete and finally we have locked the file range in
11347  * the inode's io_tree.
11348  */
11349 void btrfs_assert_inode_range_clean(struct btrfs_inode *inode, u64 start, u64 end)
11350 {
11351 	struct btrfs_root *root = inode->root;
11352 	struct btrfs_ordered_extent *ordered;
11353 
11354 	if (!IS_ENABLED(CONFIG_BTRFS_ASSERT))
11355 		return;
11356 
11357 	ordered = btrfs_lookup_first_ordered_range(inode, start, end + 1 - start);
11358 	if (ordered) {
11359 		btrfs_err(root->fs_info,
11360 "found unexpected ordered extent in file range [%llu, %llu] for inode %llu root %llu (ordered range [%llu, %llu])",
11361 			  start, end, btrfs_ino(inode), root->root_key.objectid,
11362 			  ordered->file_offset,
11363 			  ordered->file_offset + ordered->num_bytes - 1);
11364 		btrfs_put_ordered_extent(ordered);
11365 	}
11366 
11367 	ASSERT(ordered == NULL);
11368 }
11369 
11370 static const struct inode_operations btrfs_dir_inode_operations = {
11371 	.getattr	= btrfs_getattr,
11372 	.lookup		= btrfs_lookup,
11373 	.create		= btrfs_create,
11374 	.unlink		= btrfs_unlink,
11375 	.link		= btrfs_link,
11376 	.mkdir		= btrfs_mkdir,
11377 	.rmdir		= btrfs_rmdir,
11378 	.rename		= btrfs_rename2,
11379 	.symlink	= btrfs_symlink,
11380 	.setattr	= btrfs_setattr,
11381 	.mknod		= btrfs_mknod,
11382 	.listxattr	= btrfs_listxattr,
11383 	.permission	= btrfs_permission,
11384 	.get_acl	= btrfs_get_acl,
11385 	.set_acl	= btrfs_set_acl,
11386 	.update_time	= btrfs_update_time,
11387 	.tmpfile        = btrfs_tmpfile,
11388 	.fileattr_get	= btrfs_fileattr_get,
11389 	.fileattr_set	= btrfs_fileattr_set,
11390 };
11391 
11392 static const struct file_operations btrfs_dir_file_operations = {
11393 	.llseek		= generic_file_llseek,
11394 	.read		= generic_read_dir,
11395 	.iterate_shared	= btrfs_real_readdir,
11396 	.open		= btrfs_opendir,
11397 	.unlocked_ioctl	= btrfs_ioctl,
11398 #ifdef CONFIG_COMPAT
11399 	.compat_ioctl	= btrfs_compat_ioctl,
11400 #endif
11401 	.release        = btrfs_release_file,
11402 	.fsync		= btrfs_sync_file,
11403 };
11404 
11405 /*
11406  * btrfs doesn't support the bmap operation because swapfiles
11407  * use bmap to make a mapping of extents in the file.  They assume
11408  * these extents won't change over the life of the file and they
11409  * use the bmap result to do IO directly to the drive.
11410  *
11411  * the btrfs bmap call would return logical addresses that aren't
11412  * suitable for IO and they also will change frequently as COW
11413  * operations happen.  So, swapfile + btrfs == corruption.
11414  *
11415  * For now we're avoiding this by dropping bmap.
11416  */
11417 static const struct address_space_operations btrfs_aops = {
11418 	.read_folio	= btrfs_read_folio,
11419 	.writepage	= btrfs_writepage,
11420 	.writepages	= btrfs_writepages,
11421 	.readahead	= btrfs_readahead,
11422 	.direct_IO	= noop_direct_IO,
11423 	.invalidate_folio = btrfs_invalidate_folio,
11424 	.release_folio	= btrfs_release_folio,
11425 #ifdef CONFIG_MIGRATION
11426 	.migratepage	= btrfs_migratepage,
11427 #endif
11428 	.dirty_folio	= filemap_dirty_folio,
11429 	.error_remove_page = generic_error_remove_page,
11430 	.swap_activate	= btrfs_swap_activate,
11431 	.swap_deactivate = btrfs_swap_deactivate,
11432 };
11433 
11434 static const struct inode_operations btrfs_file_inode_operations = {
11435 	.getattr	= btrfs_getattr,
11436 	.setattr	= btrfs_setattr,
11437 	.listxattr      = btrfs_listxattr,
11438 	.permission	= btrfs_permission,
11439 	.fiemap		= btrfs_fiemap,
11440 	.get_acl	= btrfs_get_acl,
11441 	.set_acl	= btrfs_set_acl,
11442 	.update_time	= btrfs_update_time,
11443 	.fileattr_get	= btrfs_fileattr_get,
11444 	.fileattr_set	= btrfs_fileattr_set,
11445 };
11446 static const struct inode_operations btrfs_special_inode_operations = {
11447 	.getattr	= btrfs_getattr,
11448 	.setattr	= btrfs_setattr,
11449 	.permission	= btrfs_permission,
11450 	.listxattr	= btrfs_listxattr,
11451 	.get_acl	= btrfs_get_acl,
11452 	.set_acl	= btrfs_set_acl,
11453 	.update_time	= btrfs_update_time,
11454 };
11455 static const struct inode_operations btrfs_symlink_inode_operations = {
11456 	.get_link	= page_get_link,
11457 	.getattr	= btrfs_getattr,
11458 	.setattr	= btrfs_setattr,
11459 	.permission	= btrfs_permission,
11460 	.listxattr	= btrfs_listxattr,
11461 	.update_time	= btrfs_update_time,
11462 };
11463 
11464 const struct dentry_operations btrfs_dentry_operations = {
11465 	.d_delete	= btrfs_dentry_delete,
11466 };
11467