xref: /openbmc/linux/fs/btrfs/inode.c (revision f3a8b664)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/statfs.h>
34 #include <linux/compat.h>
35 #include <linux/bit_spinlock.h>
36 #include <linux/xattr.h>
37 #include <linux/posix_acl.h>
38 #include <linux/falloc.h>
39 #include <linux/slab.h>
40 #include <linux/ratelimit.h>
41 #include <linux/mount.h>
42 #include <linux/btrfs.h>
43 #include <linux/blkdev.h>
44 #include <linux/posix_acl_xattr.h>
45 #include <linux/uio.h>
46 #include "ctree.h"
47 #include "disk-io.h"
48 #include "transaction.h"
49 #include "btrfs_inode.h"
50 #include "print-tree.h"
51 #include "ordered-data.h"
52 #include "xattr.h"
53 #include "tree-log.h"
54 #include "volumes.h"
55 #include "compression.h"
56 #include "locking.h"
57 #include "free-space-cache.h"
58 #include "inode-map.h"
59 #include "backref.h"
60 #include "hash.h"
61 #include "props.h"
62 #include "qgroup.h"
63 #include "dedupe.h"
64 
65 struct btrfs_iget_args {
66 	struct btrfs_key *location;
67 	struct btrfs_root *root;
68 };
69 
70 struct btrfs_dio_data {
71 	u64 outstanding_extents;
72 	u64 reserve;
73 	u64 unsubmitted_oe_range_start;
74 	u64 unsubmitted_oe_range_end;
75 };
76 
77 static const struct inode_operations btrfs_dir_inode_operations;
78 static const struct inode_operations btrfs_symlink_inode_operations;
79 static const struct inode_operations btrfs_dir_ro_inode_operations;
80 static const struct inode_operations btrfs_special_inode_operations;
81 static const struct inode_operations btrfs_file_inode_operations;
82 static const struct address_space_operations btrfs_aops;
83 static const struct address_space_operations btrfs_symlink_aops;
84 static const struct file_operations btrfs_dir_file_operations;
85 static const struct extent_io_ops btrfs_extent_io_ops;
86 
87 static struct kmem_cache *btrfs_inode_cachep;
88 struct kmem_cache *btrfs_trans_handle_cachep;
89 struct kmem_cache *btrfs_transaction_cachep;
90 struct kmem_cache *btrfs_path_cachep;
91 struct kmem_cache *btrfs_free_space_cachep;
92 
93 #define S_SHIFT 12
94 static const unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
95 	[S_IFREG >> S_SHIFT]	= BTRFS_FT_REG_FILE,
96 	[S_IFDIR >> S_SHIFT]	= BTRFS_FT_DIR,
97 	[S_IFCHR >> S_SHIFT]	= BTRFS_FT_CHRDEV,
98 	[S_IFBLK >> S_SHIFT]	= BTRFS_FT_BLKDEV,
99 	[S_IFIFO >> S_SHIFT]	= BTRFS_FT_FIFO,
100 	[S_IFSOCK >> S_SHIFT]	= BTRFS_FT_SOCK,
101 	[S_IFLNK >> S_SHIFT]	= BTRFS_FT_SYMLINK,
102 };
103 
104 static int btrfs_setsize(struct inode *inode, struct iattr *attr);
105 static int btrfs_truncate(struct inode *inode);
106 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
107 static noinline int cow_file_range(struct inode *inode,
108 				   struct page *locked_page,
109 				   u64 start, u64 end, u64 delalloc_end,
110 				   int *page_started, unsigned long *nr_written,
111 				   int unlock, struct btrfs_dedupe_hash *hash);
112 static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
113 					   u64 len, u64 orig_start,
114 					   u64 block_start, u64 block_len,
115 					   u64 orig_block_len, u64 ram_bytes,
116 					   int type);
117 
118 static int btrfs_dirty_inode(struct inode *inode);
119 
120 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
121 void btrfs_test_inode_set_ops(struct inode *inode)
122 {
123 	BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
124 }
125 #endif
126 
127 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
128 				     struct inode *inode,  struct inode *dir,
129 				     const struct qstr *qstr)
130 {
131 	int err;
132 
133 	err = btrfs_init_acl(trans, inode, dir);
134 	if (!err)
135 		err = btrfs_xattr_security_init(trans, inode, dir, qstr);
136 	return err;
137 }
138 
139 /*
140  * this does all the hard work for inserting an inline extent into
141  * the btree.  The caller should have done a btrfs_drop_extents so that
142  * no overlapping inline items exist in the btree
143  */
144 static int insert_inline_extent(struct btrfs_trans_handle *trans,
145 				struct btrfs_path *path, int extent_inserted,
146 				struct btrfs_root *root, struct inode *inode,
147 				u64 start, size_t size, size_t compressed_size,
148 				int compress_type,
149 				struct page **compressed_pages)
150 {
151 	struct extent_buffer *leaf;
152 	struct page *page = NULL;
153 	char *kaddr;
154 	unsigned long ptr;
155 	struct btrfs_file_extent_item *ei;
156 	int err = 0;
157 	int ret;
158 	size_t cur_size = size;
159 	unsigned long offset;
160 
161 	if (compressed_size && compressed_pages)
162 		cur_size = compressed_size;
163 
164 	inode_add_bytes(inode, size);
165 
166 	if (!extent_inserted) {
167 		struct btrfs_key key;
168 		size_t datasize;
169 
170 		key.objectid = btrfs_ino(inode);
171 		key.offset = start;
172 		key.type = BTRFS_EXTENT_DATA_KEY;
173 
174 		datasize = btrfs_file_extent_calc_inline_size(cur_size);
175 		path->leave_spinning = 1;
176 		ret = btrfs_insert_empty_item(trans, root, path, &key,
177 					      datasize);
178 		if (ret) {
179 			err = ret;
180 			goto fail;
181 		}
182 	}
183 	leaf = path->nodes[0];
184 	ei = btrfs_item_ptr(leaf, path->slots[0],
185 			    struct btrfs_file_extent_item);
186 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
187 	btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
188 	btrfs_set_file_extent_encryption(leaf, ei, 0);
189 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
190 	btrfs_set_file_extent_ram_bytes(leaf, ei, size);
191 	ptr = btrfs_file_extent_inline_start(ei);
192 
193 	if (compress_type != BTRFS_COMPRESS_NONE) {
194 		struct page *cpage;
195 		int i = 0;
196 		while (compressed_size > 0) {
197 			cpage = compressed_pages[i];
198 			cur_size = min_t(unsigned long, compressed_size,
199 				       PAGE_SIZE);
200 
201 			kaddr = kmap_atomic(cpage);
202 			write_extent_buffer(leaf, kaddr, ptr, cur_size);
203 			kunmap_atomic(kaddr);
204 
205 			i++;
206 			ptr += cur_size;
207 			compressed_size -= cur_size;
208 		}
209 		btrfs_set_file_extent_compression(leaf, ei,
210 						  compress_type);
211 	} else {
212 		page = find_get_page(inode->i_mapping,
213 				     start >> PAGE_SHIFT);
214 		btrfs_set_file_extent_compression(leaf, ei, 0);
215 		kaddr = kmap_atomic(page);
216 		offset = start & (PAGE_SIZE - 1);
217 		write_extent_buffer(leaf, kaddr + offset, ptr, size);
218 		kunmap_atomic(kaddr);
219 		put_page(page);
220 	}
221 	btrfs_mark_buffer_dirty(leaf);
222 	btrfs_release_path(path);
223 
224 	/*
225 	 * we're an inline extent, so nobody can
226 	 * extend the file past i_size without locking
227 	 * a page we already have locked.
228 	 *
229 	 * We must do any isize and inode updates
230 	 * before we unlock the pages.  Otherwise we
231 	 * could end up racing with unlink.
232 	 */
233 	BTRFS_I(inode)->disk_i_size = inode->i_size;
234 	ret = btrfs_update_inode(trans, root, inode);
235 
236 	return ret;
237 fail:
238 	return err;
239 }
240 
241 
242 /*
243  * conditionally insert an inline extent into the file.  This
244  * does the checks required to make sure the data is small enough
245  * to fit as an inline extent.
246  */
247 static noinline int cow_file_range_inline(struct btrfs_root *root,
248 					  struct inode *inode, u64 start,
249 					  u64 end, size_t compressed_size,
250 					  int compress_type,
251 					  struct page **compressed_pages)
252 {
253 	struct btrfs_trans_handle *trans;
254 	u64 isize = i_size_read(inode);
255 	u64 actual_end = min(end + 1, isize);
256 	u64 inline_len = actual_end - start;
257 	u64 aligned_end = ALIGN(end, root->sectorsize);
258 	u64 data_len = inline_len;
259 	int ret;
260 	struct btrfs_path *path;
261 	int extent_inserted = 0;
262 	u32 extent_item_size;
263 
264 	if (compressed_size)
265 		data_len = compressed_size;
266 
267 	if (start > 0 ||
268 	    actual_end > root->sectorsize ||
269 	    data_len > BTRFS_MAX_INLINE_DATA_SIZE(root) ||
270 	    (!compressed_size &&
271 	    (actual_end & (root->sectorsize - 1)) == 0) ||
272 	    end + 1 < isize ||
273 	    data_len > root->fs_info->max_inline) {
274 		return 1;
275 	}
276 
277 	path = btrfs_alloc_path();
278 	if (!path)
279 		return -ENOMEM;
280 
281 	trans = btrfs_join_transaction(root);
282 	if (IS_ERR(trans)) {
283 		btrfs_free_path(path);
284 		return PTR_ERR(trans);
285 	}
286 	trans->block_rsv = &root->fs_info->delalloc_block_rsv;
287 
288 	if (compressed_size && compressed_pages)
289 		extent_item_size = btrfs_file_extent_calc_inline_size(
290 		   compressed_size);
291 	else
292 		extent_item_size = btrfs_file_extent_calc_inline_size(
293 		    inline_len);
294 
295 	ret = __btrfs_drop_extents(trans, root, inode, path,
296 				   start, aligned_end, NULL,
297 				   1, 1, extent_item_size, &extent_inserted);
298 	if (ret) {
299 		btrfs_abort_transaction(trans, ret);
300 		goto out;
301 	}
302 
303 	if (isize > actual_end)
304 		inline_len = min_t(u64, isize, actual_end);
305 	ret = insert_inline_extent(trans, path, extent_inserted,
306 				   root, inode, start,
307 				   inline_len, compressed_size,
308 				   compress_type, compressed_pages);
309 	if (ret && ret != -ENOSPC) {
310 		btrfs_abort_transaction(trans, ret);
311 		goto out;
312 	} else if (ret == -ENOSPC) {
313 		ret = 1;
314 		goto out;
315 	}
316 
317 	set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
318 	btrfs_delalloc_release_metadata(inode, end + 1 - start);
319 	btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
320 out:
321 	/*
322 	 * Don't forget to free the reserved space, as for inlined extent
323 	 * it won't count as data extent, free them directly here.
324 	 * And at reserve time, it's always aligned to page size, so
325 	 * just free one page here.
326 	 */
327 	btrfs_qgroup_free_data(inode, 0, PAGE_SIZE);
328 	btrfs_free_path(path);
329 	btrfs_end_transaction(trans, root);
330 	return ret;
331 }
332 
333 struct async_extent {
334 	u64 start;
335 	u64 ram_size;
336 	u64 compressed_size;
337 	struct page **pages;
338 	unsigned long nr_pages;
339 	int compress_type;
340 	struct list_head list;
341 };
342 
343 struct async_cow {
344 	struct inode *inode;
345 	struct btrfs_root *root;
346 	struct page *locked_page;
347 	u64 start;
348 	u64 end;
349 	struct list_head extents;
350 	struct btrfs_work work;
351 };
352 
353 static noinline int add_async_extent(struct async_cow *cow,
354 				     u64 start, u64 ram_size,
355 				     u64 compressed_size,
356 				     struct page **pages,
357 				     unsigned long nr_pages,
358 				     int compress_type)
359 {
360 	struct async_extent *async_extent;
361 
362 	async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
363 	BUG_ON(!async_extent); /* -ENOMEM */
364 	async_extent->start = start;
365 	async_extent->ram_size = ram_size;
366 	async_extent->compressed_size = compressed_size;
367 	async_extent->pages = pages;
368 	async_extent->nr_pages = nr_pages;
369 	async_extent->compress_type = compress_type;
370 	list_add_tail(&async_extent->list, &cow->extents);
371 	return 0;
372 }
373 
374 static inline int inode_need_compress(struct inode *inode)
375 {
376 	struct btrfs_root *root = BTRFS_I(inode)->root;
377 
378 	/* force compress */
379 	if (btrfs_test_opt(root->fs_info, FORCE_COMPRESS))
380 		return 1;
381 	/* bad compression ratios */
382 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
383 		return 0;
384 	if (btrfs_test_opt(root->fs_info, COMPRESS) ||
385 	    BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS ||
386 	    BTRFS_I(inode)->force_compress)
387 		return 1;
388 	return 0;
389 }
390 
391 /*
392  * we create compressed extents in two phases.  The first
393  * phase compresses a range of pages that have already been
394  * locked (both pages and state bits are locked).
395  *
396  * This is done inside an ordered work queue, and the compression
397  * is spread across many cpus.  The actual IO submission is step
398  * two, and the ordered work queue takes care of making sure that
399  * happens in the same order things were put onto the queue by
400  * writepages and friends.
401  *
402  * If this code finds it can't get good compression, it puts an
403  * entry onto the work queue to write the uncompressed bytes.  This
404  * makes sure that both compressed inodes and uncompressed inodes
405  * are written in the same order that the flusher thread sent them
406  * down.
407  */
408 static noinline void compress_file_range(struct inode *inode,
409 					struct page *locked_page,
410 					u64 start, u64 end,
411 					struct async_cow *async_cow,
412 					int *num_added)
413 {
414 	struct btrfs_root *root = BTRFS_I(inode)->root;
415 	u64 num_bytes;
416 	u64 blocksize = root->sectorsize;
417 	u64 actual_end;
418 	u64 isize = i_size_read(inode);
419 	int ret = 0;
420 	struct page **pages = NULL;
421 	unsigned long nr_pages;
422 	unsigned long nr_pages_ret = 0;
423 	unsigned long total_compressed = 0;
424 	unsigned long total_in = 0;
425 	unsigned long max_compressed = SZ_128K;
426 	unsigned long max_uncompressed = SZ_128K;
427 	int i;
428 	int will_compress;
429 	int compress_type = root->fs_info->compress_type;
430 	int redirty = 0;
431 
432 	/* if this is a small write inside eof, kick off a defrag */
433 	if ((end - start + 1) < SZ_16K &&
434 	    (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
435 		btrfs_add_inode_defrag(NULL, inode);
436 
437 	actual_end = min_t(u64, isize, end + 1);
438 again:
439 	will_compress = 0;
440 	nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
441 	nr_pages = min_t(unsigned long, nr_pages, SZ_128K / PAGE_SIZE);
442 
443 	/*
444 	 * we don't want to send crud past the end of i_size through
445 	 * compression, that's just a waste of CPU time.  So, if the
446 	 * end of the file is before the start of our current
447 	 * requested range of bytes, we bail out to the uncompressed
448 	 * cleanup code that can deal with all of this.
449 	 *
450 	 * It isn't really the fastest way to fix things, but this is a
451 	 * very uncommon corner.
452 	 */
453 	if (actual_end <= start)
454 		goto cleanup_and_bail_uncompressed;
455 
456 	total_compressed = actual_end - start;
457 
458 	/*
459 	 * skip compression for a small file range(<=blocksize) that
460 	 * isn't an inline extent, since it doesn't save disk space at all.
461 	 */
462 	if (total_compressed <= blocksize &&
463 	   (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
464 		goto cleanup_and_bail_uncompressed;
465 
466 	/* we want to make sure that amount of ram required to uncompress
467 	 * an extent is reasonable, so we limit the total size in ram
468 	 * of a compressed extent to 128k.  This is a crucial number
469 	 * because it also controls how easily we can spread reads across
470 	 * cpus for decompression.
471 	 *
472 	 * We also want to make sure the amount of IO required to do
473 	 * a random read is reasonably small, so we limit the size of
474 	 * a compressed extent to 128k.
475 	 */
476 	total_compressed = min(total_compressed, max_uncompressed);
477 	num_bytes = ALIGN(end - start + 1, blocksize);
478 	num_bytes = max(blocksize,  num_bytes);
479 	total_in = 0;
480 	ret = 0;
481 
482 	/*
483 	 * we do compression for mount -o compress and when the
484 	 * inode has not been flagged as nocompress.  This flag can
485 	 * change at any time if we discover bad compression ratios.
486 	 */
487 	if (inode_need_compress(inode)) {
488 		WARN_ON(pages);
489 		pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
490 		if (!pages) {
491 			/* just bail out to the uncompressed code */
492 			goto cont;
493 		}
494 
495 		if (BTRFS_I(inode)->force_compress)
496 			compress_type = BTRFS_I(inode)->force_compress;
497 
498 		/*
499 		 * we need to call clear_page_dirty_for_io on each
500 		 * page in the range.  Otherwise applications with the file
501 		 * mmap'd can wander in and change the page contents while
502 		 * we are compressing them.
503 		 *
504 		 * If the compression fails for any reason, we set the pages
505 		 * dirty again later on.
506 		 */
507 		extent_range_clear_dirty_for_io(inode, start, end);
508 		redirty = 1;
509 		ret = btrfs_compress_pages(compress_type,
510 					   inode->i_mapping, start,
511 					   total_compressed, pages,
512 					   nr_pages, &nr_pages_ret,
513 					   &total_in,
514 					   &total_compressed,
515 					   max_compressed);
516 
517 		if (!ret) {
518 			unsigned long offset = total_compressed &
519 				(PAGE_SIZE - 1);
520 			struct page *page = pages[nr_pages_ret - 1];
521 			char *kaddr;
522 
523 			/* zero the tail end of the last page, we might be
524 			 * sending it down to disk
525 			 */
526 			if (offset) {
527 				kaddr = kmap_atomic(page);
528 				memset(kaddr + offset, 0,
529 				       PAGE_SIZE - offset);
530 				kunmap_atomic(kaddr);
531 			}
532 			will_compress = 1;
533 		}
534 	}
535 cont:
536 	if (start == 0) {
537 		/* lets try to make an inline extent */
538 		if (ret || total_in < (actual_end - start)) {
539 			/* we didn't compress the entire range, try
540 			 * to make an uncompressed inline extent.
541 			 */
542 			ret = cow_file_range_inline(root, inode, start, end,
543 						    0, 0, NULL);
544 		} else {
545 			/* try making a compressed inline extent */
546 			ret = cow_file_range_inline(root, inode, start, end,
547 						    total_compressed,
548 						    compress_type, pages);
549 		}
550 		if (ret <= 0) {
551 			unsigned long clear_flags = EXTENT_DELALLOC |
552 				EXTENT_DEFRAG;
553 			unsigned long page_error_op;
554 
555 			clear_flags |= (ret < 0) ? EXTENT_DO_ACCOUNTING : 0;
556 			page_error_op = ret < 0 ? PAGE_SET_ERROR : 0;
557 
558 			/*
559 			 * inline extent creation worked or returned error,
560 			 * we don't need to create any more async work items.
561 			 * Unlock and free up our temp pages.
562 			 */
563 			extent_clear_unlock_delalloc(inode, start, end, end,
564 						     NULL, clear_flags,
565 						     PAGE_UNLOCK |
566 						     PAGE_CLEAR_DIRTY |
567 						     PAGE_SET_WRITEBACK |
568 						     page_error_op |
569 						     PAGE_END_WRITEBACK);
570 			btrfs_free_reserved_data_space_noquota(inode, start,
571 						end - start + 1);
572 			goto free_pages_out;
573 		}
574 	}
575 
576 	if (will_compress) {
577 		/*
578 		 * we aren't doing an inline extent round the compressed size
579 		 * up to a block size boundary so the allocator does sane
580 		 * things
581 		 */
582 		total_compressed = ALIGN(total_compressed, blocksize);
583 
584 		/*
585 		 * one last check to make sure the compression is really a
586 		 * win, compare the page count read with the blocks on disk
587 		 */
588 		total_in = ALIGN(total_in, PAGE_SIZE);
589 		if (total_compressed >= total_in) {
590 			will_compress = 0;
591 		} else {
592 			num_bytes = total_in;
593 			*num_added += 1;
594 
595 			/*
596 			 * The async work queues will take care of doing actual
597 			 * allocation on disk for these compressed pages, and
598 			 * will submit them to the elevator.
599 			 */
600 			add_async_extent(async_cow, start, num_bytes,
601 					total_compressed, pages, nr_pages_ret,
602 					compress_type);
603 
604 			if (start + num_bytes < end) {
605 				start += num_bytes;
606 				pages = NULL;
607 				cond_resched();
608 				goto again;
609 			}
610 			return;
611 		}
612 	}
613 	if (pages) {
614 		/*
615 		 * the compression code ran but failed to make things smaller,
616 		 * free any pages it allocated and our page pointer array
617 		 */
618 		for (i = 0; i < nr_pages_ret; i++) {
619 			WARN_ON(pages[i]->mapping);
620 			put_page(pages[i]);
621 		}
622 		kfree(pages);
623 		pages = NULL;
624 		total_compressed = 0;
625 		nr_pages_ret = 0;
626 
627 		/* flag the file so we don't compress in the future */
628 		if (!btrfs_test_opt(root->fs_info, FORCE_COMPRESS) &&
629 		    !(BTRFS_I(inode)->force_compress)) {
630 			BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
631 		}
632 	}
633 cleanup_and_bail_uncompressed:
634 	/*
635 	 * No compression, but we still need to write the pages in the file
636 	 * we've been given so far.  redirty the locked page if it corresponds
637 	 * to our extent and set things up for the async work queue to run
638 	 * cow_file_range to do the normal delalloc dance.
639 	 */
640 	if (page_offset(locked_page) >= start &&
641 	    page_offset(locked_page) <= end)
642 		__set_page_dirty_nobuffers(locked_page);
643 		/* unlocked later on in the async handlers */
644 
645 	if (redirty)
646 		extent_range_redirty_for_io(inode, start, end);
647 	add_async_extent(async_cow, start, end - start + 1, 0, NULL, 0,
648 			 BTRFS_COMPRESS_NONE);
649 	*num_added += 1;
650 
651 	return;
652 
653 free_pages_out:
654 	for (i = 0; i < nr_pages_ret; i++) {
655 		WARN_ON(pages[i]->mapping);
656 		put_page(pages[i]);
657 	}
658 	kfree(pages);
659 }
660 
661 static void free_async_extent_pages(struct async_extent *async_extent)
662 {
663 	int i;
664 
665 	if (!async_extent->pages)
666 		return;
667 
668 	for (i = 0; i < async_extent->nr_pages; i++) {
669 		WARN_ON(async_extent->pages[i]->mapping);
670 		put_page(async_extent->pages[i]);
671 	}
672 	kfree(async_extent->pages);
673 	async_extent->nr_pages = 0;
674 	async_extent->pages = NULL;
675 }
676 
677 /*
678  * phase two of compressed writeback.  This is the ordered portion
679  * of the code, which only gets called in the order the work was
680  * queued.  We walk all the async extents created by compress_file_range
681  * and send them down to the disk.
682  */
683 static noinline void submit_compressed_extents(struct inode *inode,
684 					      struct async_cow *async_cow)
685 {
686 	struct async_extent *async_extent;
687 	u64 alloc_hint = 0;
688 	struct btrfs_key ins;
689 	struct extent_map *em;
690 	struct btrfs_root *root = BTRFS_I(inode)->root;
691 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
692 	struct extent_io_tree *io_tree;
693 	int ret = 0;
694 
695 again:
696 	while (!list_empty(&async_cow->extents)) {
697 		async_extent = list_entry(async_cow->extents.next,
698 					  struct async_extent, list);
699 		list_del(&async_extent->list);
700 
701 		io_tree = &BTRFS_I(inode)->io_tree;
702 
703 retry:
704 		/* did the compression code fall back to uncompressed IO? */
705 		if (!async_extent->pages) {
706 			int page_started = 0;
707 			unsigned long nr_written = 0;
708 
709 			lock_extent(io_tree, async_extent->start,
710 					 async_extent->start +
711 					 async_extent->ram_size - 1);
712 
713 			/* allocate blocks */
714 			ret = cow_file_range(inode, async_cow->locked_page,
715 					     async_extent->start,
716 					     async_extent->start +
717 					     async_extent->ram_size - 1,
718 					     async_extent->start +
719 					     async_extent->ram_size - 1,
720 					     &page_started, &nr_written, 0,
721 					     NULL);
722 
723 			/* JDM XXX */
724 
725 			/*
726 			 * if page_started, cow_file_range inserted an
727 			 * inline extent and took care of all the unlocking
728 			 * and IO for us.  Otherwise, we need to submit
729 			 * all those pages down to the drive.
730 			 */
731 			if (!page_started && !ret)
732 				extent_write_locked_range(io_tree,
733 						  inode, async_extent->start,
734 						  async_extent->start +
735 						  async_extent->ram_size - 1,
736 						  btrfs_get_extent,
737 						  WB_SYNC_ALL);
738 			else if (ret)
739 				unlock_page(async_cow->locked_page);
740 			kfree(async_extent);
741 			cond_resched();
742 			continue;
743 		}
744 
745 		lock_extent(io_tree, async_extent->start,
746 			    async_extent->start + async_extent->ram_size - 1);
747 
748 		ret = btrfs_reserve_extent(root, async_extent->ram_size,
749 					   async_extent->compressed_size,
750 					   async_extent->compressed_size,
751 					   0, alloc_hint, &ins, 1, 1);
752 		if (ret) {
753 			free_async_extent_pages(async_extent);
754 
755 			if (ret == -ENOSPC) {
756 				unlock_extent(io_tree, async_extent->start,
757 					      async_extent->start +
758 					      async_extent->ram_size - 1);
759 
760 				/*
761 				 * we need to redirty the pages if we decide to
762 				 * fallback to uncompressed IO, otherwise we
763 				 * will not submit these pages down to lower
764 				 * layers.
765 				 */
766 				extent_range_redirty_for_io(inode,
767 						async_extent->start,
768 						async_extent->start +
769 						async_extent->ram_size - 1);
770 
771 				goto retry;
772 			}
773 			goto out_free;
774 		}
775 		/*
776 		 * here we're doing allocation and writeback of the
777 		 * compressed pages
778 		 */
779 		btrfs_drop_extent_cache(inode, async_extent->start,
780 					async_extent->start +
781 					async_extent->ram_size - 1, 0);
782 
783 		em = alloc_extent_map();
784 		if (!em) {
785 			ret = -ENOMEM;
786 			goto out_free_reserve;
787 		}
788 		em->start = async_extent->start;
789 		em->len = async_extent->ram_size;
790 		em->orig_start = em->start;
791 		em->mod_start = em->start;
792 		em->mod_len = em->len;
793 
794 		em->block_start = ins.objectid;
795 		em->block_len = ins.offset;
796 		em->orig_block_len = ins.offset;
797 		em->ram_bytes = async_extent->ram_size;
798 		em->bdev = root->fs_info->fs_devices->latest_bdev;
799 		em->compress_type = async_extent->compress_type;
800 		set_bit(EXTENT_FLAG_PINNED, &em->flags);
801 		set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
802 		em->generation = -1;
803 
804 		while (1) {
805 			write_lock(&em_tree->lock);
806 			ret = add_extent_mapping(em_tree, em, 1);
807 			write_unlock(&em_tree->lock);
808 			if (ret != -EEXIST) {
809 				free_extent_map(em);
810 				break;
811 			}
812 			btrfs_drop_extent_cache(inode, async_extent->start,
813 						async_extent->start +
814 						async_extent->ram_size - 1, 0);
815 		}
816 
817 		if (ret)
818 			goto out_free_reserve;
819 
820 		ret = btrfs_add_ordered_extent_compress(inode,
821 						async_extent->start,
822 						ins.objectid,
823 						async_extent->ram_size,
824 						ins.offset,
825 						BTRFS_ORDERED_COMPRESSED,
826 						async_extent->compress_type);
827 		if (ret) {
828 			btrfs_drop_extent_cache(inode, async_extent->start,
829 						async_extent->start +
830 						async_extent->ram_size - 1, 0);
831 			goto out_free_reserve;
832 		}
833 		btrfs_dec_block_group_reservations(root->fs_info, ins.objectid);
834 
835 		/*
836 		 * clear dirty, set writeback and unlock the pages.
837 		 */
838 		extent_clear_unlock_delalloc(inode, async_extent->start,
839 				async_extent->start +
840 				async_extent->ram_size - 1,
841 				async_extent->start +
842 				async_extent->ram_size - 1,
843 				NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
844 				PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
845 				PAGE_SET_WRITEBACK);
846 		ret = btrfs_submit_compressed_write(inode,
847 				    async_extent->start,
848 				    async_extent->ram_size,
849 				    ins.objectid,
850 				    ins.offset, async_extent->pages,
851 				    async_extent->nr_pages);
852 		if (ret) {
853 			struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
854 			struct page *p = async_extent->pages[0];
855 			const u64 start = async_extent->start;
856 			const u64 end = start + async_extent->ram_size - 1;
857 
858 			p->mapping = inode->i_mapping;
859 			tree->ops->writepage_end_io_hook(p, start, end,
860 							 NULL, 0);
861 			p->mapping = NULL;
862 			extent_clear_unlock_delalloc(inode, start, end, end,
863 						     NULL, 0,
864 						     PAGE_END_WRITEBACK |
865 						     PAGE_SET_ERROR);
866 			free_async_extent_pages(async_extent);
867 		}
868 		alloc_hint = ins.objectid + ins.offset;
869 		kfree(async_extent);
870 		cond_resched();
871 	}
872 	return;
873 out_free_reserve:
874 	btrfs_dec_block_group_reservations(root->fs_info, ins.objectid);
875 	btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
876 out_free:
877 	extent_clear_unlock_delalloc(inode, async_extent->start,
878 				     async_extent->start +
879 				     async_extent->ram_size - 1,
880 				     async_extent->start +
881 				     async_extent->ram_size - 1,
882 				     NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
883 				     EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
884 				     PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
885 				     PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
886 				     PAGE_SET_ERROR);
887 	free_async_extent_pages(async_extent);
888 	kfree(async_extent);
889 	goto again;
890 }
891 
892 static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
893 				      u64 num_bytes)
894 {
895 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
896 	struct extent_map *em;
897 	u64 alloc_hint = 0;
898 
899 	read_lock(&em_tree->lock);
900 	em = search_extent_mapping(em_tree, start, num_bytes);
901 	if (em) {
902 		/*
903 		 * if block start isn't an actual block number then find the
904 		 * first block in this inode and use that as a hint.  If that
905 		 * block is also bogus then just don't worry about it.
906 		 */
907 		if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
908 			free_extent_map(em);
909 			em = search_extent_mapping(em_tree, 0, 0);
910 			if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
911 				alloc_hint = em->block_start;
912 			if (em)
913 				free_extent_map(em);
914 		} else {
915 			alloc_hint = em->block_start;
916 			free_extent_map(em);
917 		}
918 	}
919 	read_unlock(&em_tree->lock);
920 
921 	return alloc_hint;
922 }
923 
924 /*
925  * when extent_io.c finds a delayed allocation range in the file,
926  * the call backs end up in this code.  The basic idea is to
927  * allocate extents on disk for the range, and create ordered data structs
928  * in ram to track those extents.
929  *
930  * locked_page is the page that writepage had locked already.  We use
931  * it to make sure we don't do extra locks or unlocks.
932  *
933  * *page_started is set to one if we unlock locked_page and do everything
934  * required to start IO on it.  It may be clean and already done with
935  * IO when we return.
936  */
937 static noinline int cow_file_range(struct inode *inode,
938 				   struct page *locked_page,
939 				   u64 start, u64 end, u64 delalloc_end,
940 				   int *page_started, unsigned long *nr_written,
941 				   int unlock, struct btrfs_dedupe_hash *hash)
942 {
943 	struct btrfs_root *root = BTRFS_I(inode)->root;
944 	u64 alloc_hint = 0;
945 	u64 num_bytes;
946 	unsigned long ram_size;
947 	u64 disk_num_bytes;
948 	u64 cur_alloc_size;
949 	u64 blocksize = root->sectorsize;
950 	struct btrfs_key ins;
951 	struct extent_map *em;
952 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
953 	int ret = 0;
954 
955 	if (btrfs_is_free_space_inode(inode)) {
956 		WARN_ON_ONCE(1);
957 		ret = -EINVAL;
958 		goto out_unlock;
959 	}
960 
961 	num_bytes = ALIGN(end - start + 1, blocksize);
962 	num_bytes = max(blocksize,  num_bytes);
963 	disk_num_bytes = num_bytes;
964 
965 	/* if this is a small write inside eof, kick off defrag */
966 	if (num_bytes < SZ_64K &&
967 	    (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
968 		btrfs_add_inode_defrag(NULL, inode);
969 
970 	if (start == 0) {
971 		/* lets try to make an inline extent */
972 		ret = cow_file_range_inline(root, inode, start, end, 0, 0,
973 					    NULL);
974 		if (ret == 0) {
975 			extent_clear_unlock_delalloc(inode, start, end,
976 				     delalloc_end, NULL,
977 				     EXTENT_LOCKED | EXTENT_DELALLOC |
978 				     EXTENT_DEFRAG, PAGE_UNLOCK |
979 				     PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
980 				     PAGE_END_WRITEBACK);
981 			btrfs_free_reserved_data_space_noquota(inode, start,
982 						end - start + 1);
983 			*nr_written = *nr_written +
984 			     (end - start + PAGE_SIZE) / PAGE_SIZE;
985 			*page_started = 1;
986 			goto out;
987 		} else if (ret < 0) {
988 			goto out_unlock;
989 		}
990 	}
991 
992 	BUG_ON(disk_num_bytes >
993 	       btrfs_super_total_bytes(root->fs_info->super_copy));
994 
995 	alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
996 	btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
997 
998 	while (disk_num_bytes > 0) {
999 		unsigned long op;
1000 
1001 		cur_alloc_size = disk_num_bytes;
1002 		ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size,
1003 					   root->sectorsize, 0, alloc_hint,
1004 					   &ins, 1, 1);
1005 		if (ret < 0)
1006 			goto out_unlock;
1007 
1008 		em = alloc_extent_map();
1009 		if (!em) {
1010 			ret = -ENOMEM;
1011 			goto out_reserve;
1012 		}
1013 		em->start = start;
1014 		em->orig_start = em->start;
1015 		ram_size = ins.offset;
1016 		em->len = ins.offset;
1017 		em->mod_start = em->start;
1018 		em->mod_len = em->len;
1019 
1020 		em->block_start = ins.objectid;
1021 		em->block_len = ins.offset;
1022 		em->orig_block_len = ins.offset;
1023 		em->ram_bytes = ram_size;
1024 		em->bdev = root->fs_info->fs_devices->latest_bdev;
1025 		set_bit(EXTENT_FLAG_PINNED, &em->flags);
1026 		em->generation = -1;
1027 
1028 		while (1) {
1029 			write_lock(&em_tree->lock);
1030 			ret = add_extent_mapping(em_tree, em, 1);
1031 			write_unlock(&em_tree->lock);
1032 			if (ret != -EEXIST) {
1033 				free_extent_map(em);
1034 				break;
1035 			}
1036 			btrfs_drop_extent_cache(inode, start,
1037 						start + ram_size - 1, 0);
1038 		}
1039 		if (ret)
1040 			goto out_reserve;
1041 
1042 		cur_alloc_size = ins.offset;
1043 		ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
1044 					       ram_size, cur_alloc_size, 0);
1045 		if (ret)
1046 			goto out_drop_extent_cache;
1047 
1048 		if (root->root_key.objectid ==
1049 		    BTRFS_DATA_RELOC_TREE_OBJECTID) {
1050 			ret = btrfs_reloc_clone_csums(inode, start,
1051 						      cur_alloc_size);
1052 			if (ret)
1053 				goto out_drop_extent_cache;
1054 		}
1055 
1056 		btrfs_dec_block_group_reservations(root->fs_info, ins.objectid);
1057 
1058 		if (disk_num_bytes < cur_alloc_size)
1059 			break;
1060 
1061 		/* we're not doing compressed IO, don't unlock the first
1062 		 * page (which the caller expects to stay locked), don't
1063 		 * clear any dirty bits and don't set any writeback bits
1064 		 *
1065 		 * Do set the Private2 bit so we know this page was properly
1066 		 * setup for writepage
1067 		 */
1068 		op = unlock ? PAGE_UNLOCK : 0;
1069 		op |= PAGE_SET_PRIVATE2;
1070 
1071 		extent_clear_unlock_delalloc(inode, start,
1072 					     start + ram_size - 1,
1073 					     delalloc_end, locked_page,
1074 					     EXTENT_LOCKED | EXTENT_DELALLOC,
1075 					     op);
1076 		disk_num_bytes -= cur_alloc_size;
1077 		num_bytes -= cur_alloc_size;
1078 		alloc_hint = ins.objectid + ins.offset;
1079 		start += cur_alloc_size;
1080 	}
1081 out:
1082 	return ret;
1083 
1084 out_drop_extent_cache:
1085 	btrfs_drop_extent_cache(inode, start, start + ram_size - 1, 0);
1086 out_reserve:
1087 	btrfs_dec_block_group_reservations(root->fs_info, ins.objectid);
1088 	btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
1089 out_unlock:
1090 	extent_clear_unlock_delalloc(inode, start, end, delalloc_end,
1091 				     locked_page,
1092 				     EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
1093 				     EXTENT_DELALLOC | EXTENT_DEFRAG,
1094 				     PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
1095 				     PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK);
1096 	goto out;
1097 }
1098 
1099 /*
1100  * work queue call back to started compression on a file and pages
1101  */
1102 static noinline void async_cow_start(struct btrfs_work *work)
1103 {
1104 	struct async_cow *async_cow;
1105 	int num_added = 0;
1106 	async_cow = container_of(work, struct async_cow, work);
1107 
1108 	compress_file_range(async_cow->inode, async_cow->locked_page,
1109 			    async_cow->start, async_cow->end, async_cow,
1110 			    &num_added);
1111 	if (num_added == 0) {
1112 		btrfs_add_delayed_iput(async_cow->inode);
1113 		async_cow->inode = NULL;
1114 	}
1115 }
1116 
1117 /*
1118  * work queue call back to submit previously compressed pages
1119  */
1120 static noinline void async_cow_submit(struct btrfs_work *work)
1121 {
1122 	struct async_cow *async_cow;
1123 	struct btrfs_root *root;
1124 	unsigned long nr_pages;
1125 
1126 	async_cow = container_of(work, struct async_cow, work);
1127 
1128 	root = async_cow->root;
1129 	nr_pages = (async_cow->end - async_cow->start + PAGE_SIZE) >>
1130 		PAGE_SHIFT;
1131 
1132 	/*
1133 	 * atomic_sub_return implies a barrier for waitqueue_active
1134 	 */
1135 	if (atomic_sub_return(nr_pages, &root->fs_info->async_delalloc_pages) <
1136 	    5 * SZ_1M &&
1137 	    waitqueue_active(&root->fs_info->async_submit_wait))
1138 		wake_up(&root->fs_info->async_submit_wait);
1139 
1140 	if (async_cow->inode)
1141 		submit_compressed_extents(async_cow->inode, async_cow);
1142 }
1143 
1144 static noinline void async_cow_free(struct btrfs_work *work)
1145 {
1146 	struct async_cow *async_cow;
1147 	async_cow = container_of(work, struct async_cow, work);
1148 	if (async_cow->inode)
1149 		btrfs_add_delayed_iput(async_cow->inode);
1150 	kfree(async_cow);
1151 }
1152 
1153 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1154 				u64 start, u64 end, int *page_started,
1155 				unsigned long *nr_written)
1156 {
1157 	struct async_cow *async_cow;
1158 	struct btrfs_root *root = BTRFS_I(inode)->root;
1159 	unsigned long nr_pages;
1160 	u64 cur_end;
1161 	int limit = 10 * SZ_1M;
1162 
1163 	clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
1164 			 1, 0, NULL, GFP_NOFS);
1165 	while (start < end) {
1166 		async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
1167 		BUG_ON(!async_cow); /* -ENOMEM */
1168 		async_cow->inode = igrab(inode);
1169 		async_cow->root = root;
1170 		async_cow->locked_page = locked_page;
1171 		async_cow->start = start;
1172 
1173 		if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS &&
1174 		    !btrfs_test_opt(root->fs_info, FORCE_COMPRESS))
1175 			cur_end = end;
1176 		else
1177 			cur_end = min(end, start + SZ_512K - 1);
1178 
1179 		async_cow->end = cur_end;
1180 		INIT_LIST_HEAD(&async_cow->extents);
1181 
1182 		btrfs_init_work(&async_cow->work,
1183 				btrfs_delalloc_helper,
1184 				async_cow_start, async_cow_submit,
1185 				async_cow_free);
1186 
1187 		nr_pages = (cur_end - start + PAGE_SIZE) >>
1188 			PAGE_SHIFT;
1189 		atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
1190 
1191 		btrfs_queue_work(root->fs_info->delalloc_workers,
1192 				 &async_cow->work);
1193 
1194 		if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
1195 			wait_event(root->fs_info->async_submit_wait,
1196 			   (atomic_read(&root->fs_info->async_delalloc_pages) <
1197 			    limit));
1198 		}
1199 
1200 		while (atomic_read(&root->fs_info->async_submit_draining) &&
1201 		      atomic_read(&root->fs_info->async_delalloc_pages)) {
1202 			wait_event(root->fs_info->async_submit_wait,
1203 			  (atomic_read(&root->fs_info->async_delalloc_pages) ==
1204 			   0));
1205 		}
1206 
1207 		*nr_written += nr_pages;
1208 		start = cur_end + 1;
1209 	}
1210 	*page_started = 1;
1211 	return 0;
1212 }
1213 
1214 static noinline int csum_exist_in_range(struct btrfs_root *root,
1215 					u64 bytenr, u64 num_bytes)
1216 {
1217 	int ret;
1218 	struct btrfs_ordered_sum *sums;
1219 	LIST_HEAD(list);
1220 
1221 	ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
1222 				       bytenr + num_bytes - 1, &list, 0);
1223 	if (ret == 0 && list_empty(&list))
1224 		return 0;
1225 
1226 	while (!list_empty(&list)) {
1227 		sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1228 		list_del(&sums->list);
1229 		kfree(sums);
1230 	}
1231 	return 1;
1232 }
1233 
1234 /*
1235  * when nowcow writeback call back.  This checks for snapshots or COW copies
1236  * of the extents that exist in the file, and COWs the file as required.
1237  *
1238  * If no cow copies or snapshots exist, we write directly to the existing
1239  * blocks on disk
1240  */
1241 static noinline int run_delalloc_nocow(struct inode *inode,
1242 				       struct page *locked_page,
1243 			      u64 start, u64 end, int *page_started, int force,
1244 			      unsigned long *nr_written)
1245 {
1246 	struct btrfs_root *root = BTRFS_I(inode)->root;
1247 	struct btrfs_trans_handle *trans;
1248 	struct extent_buffer *leaf;
1249 	struct btrfs_path *path;
1250 	struct btrfs_file_extent_item *fi;
1251 	struct btrfs_key found_key;
1252 	u64 cow_start;
1253 	u64 cur_offset;
1254 	u64 extent_end;
1255 	u64 extent_offset;
1256 	u64 disk_bytenr;
1257 	u64 num_bytes;
1258 	u64 disk_num_bytes;
1259 	u64 ram_bytes;
1260 	int extent_type;
1261 	int ret, err;
1262 	int type;
1263 	int nocow;
1264 	int check_prev = 1;
1265 	bool nolock;
1266 	u64 ino = btrfs_ino(inode);
1267 
1268 	path = btrfs_alloc_path();
1269 	if (!path) {
1270 		extent_clear_unlock_delalloc(inode, start, end, end,
1271 					     locked_page,
1272 					     EXTENT_LOCKED | EXTENT_DELALLOC |
1273 					     EXTENT_DO_ACCOUNTING |
1274 					     EXTENT_DEFRAG, PAGE_UNLOCK |
1275 					     PAGE_CLEAR_DIRTY |
1276 					     PAGE_SET_WRITEBACK |
1277 					     PAGE_END_WRITEBACK);
1278 		return -ENOMEM;
1279 	}
1280 
1281 	nolock = btrfs_is_free_space_inode(inode);
1282 
1283 	if (nolock)
1284 		trans = btrfs_join_transaction_nolock(root);
1285 	else
1286 		trans = btrfs_join_transaction(root);
1287 
1288 	if (IS_ERR(trans)) {
1289 		extent_clear_unlock_delalloc(inode, start, end, end,
1290 					     locked_page,
1291 					     EXTENT_LOCKED | EXTENT_DELALLOC |
1292 					     EXTENT_DO_ACCOUNTING |
1293 					     EXTENT_DEFRAG, PAGE_UNLOCK |
1294 					     PAGE_CLEAR_DIRTY |
1295 					     PAGE_SET_WRITEBACK |
1296 					     PAGE_END_WRITEBACK);
1297 		btrfs_free_path(path);
1298 		return PTR_ERR(trans);
1299 	}
1300 
1301 	trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1302 
1303 	cow_start = (u64)-1;
1304 	cur_offset = start;
1305 	while (1) {
1306 		ret = btrfs_lookup_file_extent(trans, root, path, ino,
1307 					       cur_offset, 0);
1308 		if (ret < 0)
1309 			goto error;
1310 		if (ret > 0 && path->slots[0] > 0 && check_prev) {
1311 			leaf = path->nodes[0];
1312 			btrfs_item_key_to_cpu(leaf, &found_key,
1313 					      path->slots[0] - 1);
1314 			if (found_key.objectid == ino &&
1315 			    found_key.type == BTRFS_EXTENT_DATA_KEY)
1316 				path->slots[0]--;
1317 		}
1318 		check_prev = 0;
1319 next_slot:
1320 		leaf = path->nodes[0];
1321 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1322 			ret = btrfs_next_leaf(root, path);
1323 			if (ret < 0)
1324 				goto error;
1325 			if (ret > 0)
1326 				break;
1327 			leaf = path->nodes[0];
1328 		}
1329 
1330 		nocow = 0;
1331 		disk_bytenr = 0;
1332 		num_bytes = 0;
1333 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1334 
1335 		if (found_key.objectid > ino)
1336 			break;
1337 		if (WARN_ON_ONCE(found_key.objectid < ino) ||
1338 		    found_key.type < BTRFS_EXTENT_DATA_KEY) {
1339 			path->slots[0]++;
1340 			goto next_slot;
1341 		}
1342 		if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
1343 		    found_key.offset > end)
1344 			break;
1345 
1346 		if (found_key.offset > cur_offset) {
1347 			extent_end = found_key.offset;
1348 			extent_type = 0;
1349 			goto out_check;
1350 		}
1351 
1352 		fi = btrfs_item_ptr(leaf, path->slots[0],
1353 				    struct btrfs_file_extent_item);
1354 		extent_type = btrfs_file_extent_type(leaf, fi);
1355 
1356 		ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1357 		if (extent_type == BTRFS_FILE_EXTENT_REG ||
1358 		    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1359 			disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1360 			extent_offset = btrfs_file_extent_offset(leaf, fi);
1361 			extent_end = found_key.offset +
1362 				btrfs_file_extent_num_bytes(leaf, fi);
1363 			disk_num_bytes =
1364 				btrfs_file_extent_disk_num_bytes(leaf, fi);
1365 			if (extent_end <= start) {
1366 				path->slots[0]++;
1367 				goto next_slot;
1368 			}
1369 			if (disk_bytenr == 0)
1370 				goto out_check;
1371 			if (btrfs_file_extent_compression(leaf, fi) ||
1372 			    btrfs_file_extent_encryption(leaf, fi) ||
1373 			    btrfs_file_extent_other_encoding(leaf, fi))
1374 				goto out_check;
1375 			if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1376 				goto out_check;
1377 			if (btrfs_extent_readonly(root, disk_bytenr))
1378 				goto out_check;
1379 			if (btrfs_cross_ref_exist(trans, root, ino,
1380 						  found_key.offset -
1381 						  extent_offset, disk_bytenr))
1382 				goto out_check;
1383 			disk_bytenr += extent_offset;
1384 			disk_bytenr += cur_offset - found_key.offset;
1385 			num_bytes = min(end + 1, extent_end) - cur_offset;
1386 			/*
1387 			 * if there are pending snapshots for this root,
1388 			 * we fall into common COW way.
1389 			 */
1390 			if (!nolock) {
1391 				err = btrfs_start_write_no_snapshoting(root);
1392 				if (!err)
1393 					goto out_check;
1394 			}
1395 			/*
1396 			 * force cow if csum exists in the range.
1397 			 * this ensure that csum for a given extent are
1398 			 * either valid or do not exist.
1399 			 */
1400 			if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1401 				goto out_check;
1402 			if (!btrfs_inc_nocow_writers(root->fs_info,
1403 						     disk_bytenr))
1404 				goto out_check;
1405 			nocow = 1;
1406 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1407 			extent_end = found_key.offset +
1408 				btrfs_file_extent_inline_len(leaf,
1409 						     path->slots[0], fi);
1410 			extent_end = ALIGN(extent_end, root->sectorsize);
1411 		} else {
1412 			BUG_ON(1);
1413 		}
1414 out_check:
1415 		if (extent_end <= start) {
1416 			path->slots[0]++;
1417 			if (!nolock && nocow)
1418 				btrfs_end_write_no_snapshoting(root);
1419 			if (nocow)
1420 				btrfs_dec_nocow_writers(root->fs_info,
1421 							disk_bytenr);
1422 			goto next_slot;
1423 		}
1424 		if (!nocow) {
1425 			if (cow_start == (u64)-1)
1426 				cow_start = cur_offset;
1427 			cur_offset = extent_end;
1428 			if (cur_offset > end)
1429 				break;
1430 			path->slots[0]++;
1431 			goto next_slot;
1432 		}
1433 
1434 		btrfs_release_path(path);
1435 		if (cow_start != (u64)-1) {
1436 			ret = cow_file_range(inode, locked_page,
1437 					     cow_start, found_key.offset - 1,
1438 					     end, page_started, nr_written, 1,
1439 					     NULL);
1440 			if (ret) {
1441 				if (!nolock && nocow)
1442 					btrfs_end_write_no_snapshoting(root);
1443 				if (nocow)
1444 					btrfs_dec_nocow_writers(root->fs_info,
1445 								disk_bytenr);
1446 				goto error;
1447 			}
1448 			cow_start = (u64)-1;
1449 		}
1450 
1451 		if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1452 			struct extent_map *em;
1453 			struct extent_map_tree *em_tree;
1454 			em_tree = &BTRFS_I(inode)->extent_tree;
1455 			em = alloc_extent_map();
1456 			BUG_ON(!em); /* -ENOMEM */
1457 			em->start = cur_offset;
1458 			em->orig_start = found_key.offset - extent_offset;
1459 			em->len = num_bytes;
1460 			em->block_len = num_bytes;
1461 			em->block_start = disk_bytenr;
1462 			em->orig_block_len = disk_num_bytes;
1463 			em->ram_bytes = ram_bytes;
1464 			em->bdev = root->fs_info->fs_devices->latest_bdev;
1465 			em->mod_start = em->start;
1466 			em->mod_len = em->len;
1467 			set_bit(EXTENT_FLAG_PINNED, &em->flags);
1468 			set_bit(EXTENT_FLAG_FILLING, &em->flags);
1469 			em->generation = -1;
1470 			while (1) {
1471 				write_lock(&em_tree->lock);
1472 				ret = add_extent_mapping(em_tree, em, 1);
1473 				write_unlock(&em_tree->lock);
1474 				if (ret != -EEXIST) {
1475 					free_extent_map(em);
1476 					break;
1477 				}
1478 				btrfs_drop_extent_cache(inode, em->start,
1479 						em->start + em->len - 1, 0);
1480 			}
1481 			type = BTRFS_ORDERED_PREALLOC;
1482 		} else {
1483 			type = BTRFS_ORDERED_NOCOW;
1484 		}
1485 
1486 		ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1487 					       num_bytes, num_bytes, type);
1488 		if (nocow)
1489 			btrfs_dec_nocow_writers(root->fs_info, disk_bytenr);
1490 		BUG_ON(ret); /* -ENOMEM */
1491 
1492 		if (root->root_key.objectid ==
1493 		    BTRFS_DATA_RELOC_TREE_OBJECTID) {
1494 			ret = btrfs_reloc_clone_csums(inode, cur_offset,
1495 						      num_bytes);
1496 			if (ret) {
1497 				if (!nolock && nocow)
1498 					btrfs_end_write_no_snapshoting(root);
1499 				goto error;
1500 			}
1501 		}
1502 
1503 		extent_clear_unlock_delalloc(inode, cur_offset,
1504 					     cur_offset + num_bytes - 1, end,
1505 					     locked_page, EXTENT_LOCKED |
1506 					     EXTENT_DELALLOC |
1507 					     EXTENT_CLEAR_DATA_RESV,
1508 					     PAGE_UNLOCK | PAGE_SET_PRIVATE2);
1509 
1510 		if (!nolock && nocow)
1511 			btrfs_end_write_no_snapshoting(root);
1512 		cur_offset = extent_end;
1513 		if (cur_offset > end)
1514 			break;
1515 	}
1516 	btrfs_release_path(path);
1517 
1518 	if (cur_offset <= end && cow_start == (u64)-1) {
1519 		cow_start = cur_offset;
1520 		cur_offset = end;
1521 	}
1522 
1523 	if (cow_start != (u64)-1) {
1524 		ret = cow_file_range(inode, locked_page, cow_start, end, end,
1525 				     page_started, nr_written, 1, NULL);
1526 		if (ret)
1527 			goto error;
1528 	}
1529 
1530 error:
1531 	err = btrfs_end_transaction(trans, root);
1532 	if (!ret)
1533 		ret = err;
1534 
1535 	if (ret && cur_offset < end)
1536 		extent_clear_unlock_delalloc(inode, cur_offset, end, end,
1537 					     locked_page, EXTENT_LOCKED |
1538 					     EXTENT_DELALLOC | EXTENT_DEFRAG |
1539 					     EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1540 					     PAGE_CLEAR_DIRTY |
1541 					     PAGE_SET_WRITEBACK |
1542 					     PAGE_END_WRITEBACK);
1543 	btrfs_free_path(path);
1544 	return ret;
1545 }
1546 
1547 static inline int need_force_cow(struct inode *inode, u64 start, u64 end)
1548 {
1549 
1550 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
1551 	    !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC))
1552 		return 0;
1553 
1554 	/*
1555 	 * @defrag_bytes is a hint value, no spinlock held here,
1556 	 * if is not zero, it means the file is defragging.
1557 	 * Force cow if given extent needs to be defragged.
1558 	 */
1559 	if (BTRFS_I(inode)->defrag_bytes &&
1560 	    test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
1561 			   EXTENT_DEFRAG, 0, NULL))
1562 		return 1;
1563 
1564 	return 0;
1565 }
1566 
1567 /*
1568  * extent_io.c call back to do delayed allocation processing
1569  */
1570 static int run_delalloc_range(struct inode *inode, struct page *locked_page,
1571 			      u64 start, u64 end, int *page_started,
1572 			      unsigned long *nr_written)
1573 {
1574 	int ret;
1575 	int force_cow = need_force_cow(inode, start, end);
1576 
1577 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) {
1578 		ret = run_delalloc_nocow(inode, locked_page, start, end,
1579 					 page_started, 1, nr_written);
1580 	} else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) {
1581 		ret = run_delalloc_nocow(inode, locked_page, start, end,
1582 					 page_started, 0, nr_written);
1583 	} else if (!inode_need_compress(inode)) {
1584 		ret = cow_file_range(inode, locked_page, start, end, end,
1585 				      page_started, nr_written, 1, NULL);
1586 	} else {
1587 		set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1588 			&BTRFS_I(inode)->runtime_flags);
1589 		ret = cow_file_range_async(inode, locked_page, start, end,
1590 					   page_started, nr_written);
1591 	}
1592 	return ret;
1593 }
1594 
1595 static void btrfs_split_extent_hook(struct inode *inode,
1596 				    struct extent_state *orig, u64 split)
1597 {
1598 	u64 size;
1599 
1600 	/* not delalloc, ignore it */
1601 	if (!(orig->state & EXTENT_DELALLOC))
1602 		return;
1603 
1604 	size = orig->end - orig->start + 1;
1605 	if (size > BTRFS_MAX_EXTENT_SIZE) {
1606 		u64 num_extents;
1607 		u64 new_size;
1608 
1609 		/*
1610 		 * See the explanation in btrfs_merge_extent_hook, the same
1611 		 * applies here, just in reverse.
1612 		 */
1613 		new_size = orig->end - split + 1;
1614 		num_extents = div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1,
1615 					BTRFS_MAX_EXTENT_SIZE);
1616 		new_size = split - orig->start;
1617 		num_extents += div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1,
1618 					BTRFS_MAX_EXTENT_SIZE);
1619 		if (div64_u64(size + BTRFS_MAX_EXTENT_SIZE - 1,
1620 			      BTRFS_MAX_EXTENT_SIZE) >= num_extents)
1621 			return;
1622 	}
1623 
1624 	spin_lock(&BTRFS_I(inode)->lock);
1625 	BTRFS_I(inode)->outstanding_extents++;
1626 	spin_unlock(&BTRFS_I(inode)->lock);
1627 }
1628 
1629 /*
1630  * extent_io.c merge_extent_hook, used to track merged delayed allocation
1631  * extents so we can keep track of new extents that are just merged onto old
1632  * extents, such as when we are doing sequential writes, so we can properly
1633  * account for the metadata space we'll need.
1634  */
1635 static void btrfs_merge_extent_hook(struct inode *inode,
1636 				    struct extent_state *new,
1637 				    struct extent_state *other)
1638 {
1639 	u64 new_size, old_size;
1640 	u64 num_extents;
1641 
1642 	/* not delalloc, ignore it */
1643 	if (!(other->state & EXTENT_DELALLOC))
1644 		return;
1645 
1646 	if (new->start > other->start)
1647 		new_size = new->end - other->start + 1;
1648 	else
1649 		new_size = other->end - new->start + 1;
1650 
1651 	/* we're not bigger than the max, unreserve the space and go */
1652 	if (new_size <= BTRFS_MAX_EXTENT_SIZE) {
1653 		spin_lock(&BTRFS_I(inode)->lock);
1654 		BTRFS_I(inode)->outstanding_extents--;
1655 		spin_unlock(&BTRFS_I(inode)->lock);
1656 		return;
1657 	}
1658 
1659 	/*
1660 	 * We have to add up either side to figure out how many extents were
1661 	 * accounted for before we merged into one big extent.  If the number of
1662 	 * extents we accounted for is <= the amount we need for the new range
1663 	 * then we can return, otherwise drop.  Think of it like this
1664 	 *
1665 	 * [ 4k][MAX_SIZE]
1666 	 *
1667 	 * So we've grown the extent by a MAX_SIZE extent, this would mean we
1668 	 * need 2 outstanding extents, on one side we have 1 and the other side
1669 	 * we have 1 so they are == and we can return.  But in this case
1670 	 *
1671 	 * [MAX_SIZE+4k][MAX_SIZE+4k]
1672 	 *
1673 	 * Each range on their own accounts for 2 extents, but merged together
1674 	 * they are only 3 extents worth of accounting, so we need to drop in
1675 	 * this case.
1676 	 */
1677 	old_size = other->end - other->start + 1;
1678 	num_extents = div64_u64(old_size + BTRFS_MAX_EXTENT_SIZE - 1,
1679 				BTRFS_MAX_EXTENT_SIZE);
1680 	old_size = new->end - new->start + 1;
1681 	num_extents += div64_u64(old_size + BTRFS_MAX_EXTENT_SIZE - 1,
1682 				 BTRFS_MAX_EXTENT_SIZE);
1683 
1684 	if (div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1,
1685 		      BTRFS_MAX_EXTENT_SIZE) >= num_extents)
1686 		return;
1687 
1688 	spin_lock(&BTRFS_I(inode)->lock);
1689 	BTRFS_I(inode)->outstanding_extents--;
1690 	spin_unlock(&BTRFS_I(inode)->lock);
1691 }
1692 
1693 static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1694 				      struct inode *inode)
1695 {
1696 	spin_lock(&root->delalloc_lock);
1697 	if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1698 		list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1699 			      &root->delalloc_inodes);
1700 		set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1701 			&BTRFS_I(inode)->runtime_flags);
1702 		root->nr_delalloc_inodes++;
1703 		if (root->nr_delalloc_inodes == 1) {
1704 			spin_lock(&root->fs_info->delalloc_root_lock);
1705 			BUG_ON(!list_empty(&root->delalloc_root));
1706 			list_add_tail(&root->delalloc_root,
1707 				      &root->fs_info->delalloc_roots);
1708 			spin_unlock(&root->fs_info->delalloc_root_lock);
1709 		}
1710 	}
1711 	spin_unlock(&root->delalloc_lock);
1712 }
1713 
1714 static void btrfs_del_delalloc_inode(struct btrfs_root *root,
1715 				     struct inode *inode)
1716 {
1717 	spin_lock(&root->delalloc_lock);
1718 	if (!list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1719 		list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1720 		clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1721 			  &BTRFS_I(inode)->runtime_flags);
1722 		root->nr_delalloc_inodes--;
1723 		if (!root->nr_delalloc_inodes) {
1724 			spin_lock(&root->fs_info->delalloc_root_lock);
1725 			BUG_ON(list_empty(&root->delalloc_root));
1726 			list_del_init(&root->delalloc_root);
1727 			spin_unlock(&root->fs_info->delalloc_root_lock);
1728 		}
1729 	}
1730 	spin_unlock(&root->delalloc_lock);
1731 }
1732 
1733 /*
1734  * extent_io.c set_bit_hook, used to track delayed allocation
1735  * bytes in this file, and to maintain the list of inodes that
1736  * have pending delalloc work to be done.
1737  */
1738 static void btrfs_set_bit_hook(struct inode *inode,
1739 			       struct extent_state *state, unsigned *bits)
1740 {
1741 
1742 	if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC))
1743 		WARN_ON(1);
1744 	/*
1745 	 * set_bit and clear bit hooks normally require _irqsave/restore
1746 	 * but in this case, we are only testing for the DELALLOC
1747 	 * bit, which is only set or cleared with irqs on
1748 	 */
1749 	if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1750 		struct btrfs_root *root = BTRFS_I(inode)->root;
1751 		u64 len = state->end + 1 - state->start;
1752 		bool do_list = !btrfs_is_free_space_inode(inode);
1753 
1754 		if (*bits & EXTENT_FIRST_DELALLOC) {
1755 			*bits &= ~EXTENT_FIRST_DELALLOC;
1756 		} else {
1757 			spin_lock(&BTRFS_I(inode)->lock);
1758 			BTRFS_I(inode)->outstanding_extents++;
1759 			spin_unlock(&BTRFS_I(inode)->lock);
1760 		}
1761 
1762 		/* For sanity tests */
1763 		if (btrfs_is_testing(root->fs_info))
1764 			return;
1765 
1766 		__percpu_counter_add(&root->fs_info->delalloc_bytes, len,
1767 				     root->fs_info->delalloc_batch);
1768 		spin_lock(&BTRFS_I(inode)->lock);
1769 		BTRFS_I(inode)->delalloc_bytes += len;
1770 		if (*bits & EXTENT_DEFRAG)
1771 			BTRFS_I(inode)->defrag_bytes += len;
1772 		if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1773 					 &BTRFS_I(inode)->runtime_flags))
1774 			btrfs_add_delalloc_inodes(root, inode);
1775 		spin_unlock(&BTRFS_I(inode)->lock);
1776 	}
1777 }
1778 
1779 /*
1780  * extent_io.c clear_bit_hook, see set_bit_hook for why
1781  */
1782 static void btrfs_clear_bit_hook(struct inode *inode,
1783 				 struct extent_state *state,
1784 				 unsigned *bits)
1785 {
1786 	u64 len = state->end + 1 - state->start;
1787 	u64 num_extents = div64_u64(len + BTRFS_MAX_EXTENT_SIZE -1,
1788 				    BTRFS_MAX_EXTENT_SIZE);
1789 
1790 	spin_lock(&BTRFS_I(inode)->lock);
1791 	if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG))
1792 		BTRFS_I(inode)->defrag_bytes -= len;
1793 	spin_unlock(&BTRFS_I(inode)->lock);
1794 
1795 	/*
1796 	 * set_bit and clear bit hooks normally require _irqsave/restore
1797 	 * but in this case, we are only testing for the DELALLOC
1798 	 * bit, which is only set or cleared with irqs on
1799 	 */
1800 	if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1801 		struct btrfs_root *root = BTRFS_I(inode)->root;
1802 		bool do_list = !btrfs_is_free_space_inode(inode);
1803 
1804 		if (*bits & EXTENT_FIRST_DELALLOC) {
1805 			*bits &= ~EXTENT_FIRST_DELALLOC;
1806 		} else if (!(*bits & EXTENT_DO_ACCOUNTING)) {
1807 			spin_lock(&BTRFS_I(inode)->lock);
1808 			BTRFS_I(inode)->outstanding_extents -= num_extents;
1809 			spin_unlock(&BTRFS_I(inode)->lock);
1810 		}
1811 
1812 		/*
1813 		 * We don't reserve metadata space for space cache inodes so we
1814 		 * don't need to call dellalloc_release_metadata if there is an
1815 		 * error.
1816 		 */
1817 		if (*bits & EXTENT_DO_ACCOUNTING &&
1818 		    root != root->fs_info->tree_root)
1819 			btrfs_delalloc_release_metadata(inode, len);
1820 
1821 		/* For sanity tests. */
1822 		if (btrfs_is_testing(root->fs_info))
1823 			return;
1824 
1825 		if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
1826 		    && do_list && !(state->state & EXTENT_NORESERVE)
1827 		    && (*bits & (EXTENT_DO_ACCOUNTING |
1828 		    EXTENT_CLEAR_DATA_RESV)))
1829 			btrfs_free_reserved_data_space_noquota(inode,
1830 					state->start, len);
1831 
1832 		__percpu_counter_add(&root->fs_info->delalloc_bytes, -len,
1833 				     root->fs_info->delalloc_batch);
1834 		spin_lock(&BTRFS_I(inode)->lock);
1835 		BTRFS_I(inode)->delalloc_bytes -= len;
1836 		if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
1837 		    test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1838 			     &BTRFS_I(inode)->runtime_flags))
1839 			btrfs_del_delalloc_inode(root, inode);
1840 		spin_unlock(&BTRFS_I(inode)->lock);
1841 	}
1842 }
1843 
1844 /*
1845  * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1846  * we don't create bios that span stripes or chunks
1847  *
1848  * return 1 if page cannot be merged to bio
1849  * return 0 if page can be merged to bio
1850  * return error otherwise
1851  */
1852 int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
1853 			 size_t size, struct bio *bio,
1854 			 unsigned long bio_flags)
1855 {
1856 	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1857 	u64 logical = (u64)bio->bi_iter.bi_sector << 9;
1858 	u64 length = 0;
1859 	u64 map_length;
1860 	int ret;
1861 
1862 	if (bio_flags & EXTENT_BIO_COMPRESSED)
1863 		return 0;
1864 
1865 	length = bio->bi_iter.bi_size;
1866 	map_length = length;
1867 	ret = btrfs_map_block(root->fs_info, bio_op(bio), logical,
1868 			      &map_length, NULL, 0);
1869 	if (ret < 0)
1870 		return ret;
1871 	if (map_length < length + size)
1872 		return 1;
1873 	return 0;
1874 }
1875 
1876 /*
1877  * in order to insert checksums into the metadata in large chunks,
1878  * we wait until bio submission time.   All the pages in the bio are
1879  * checksummed and sums are attached onto the ordered extent record.
1880  *
1881  * At IO completion time the cums attached on the ordered extent record
1882  * are inserted into the btree
1883  */
1884 static int __btrfs_submit_bio_start(struct inode *inode, struct bio *bio,
1885 				    int mirror_num, unsigned long bio_flags,
1886 				    u64 bio_offset)
1887 {
1888 	struct btrfs_root *root = BTRFS_I(inode)->root;
1889 	int ret = 0;
1890 
1891 	ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1892 	BUG_ON(ret); /* -ENOMEM */
1893 	return 0;
1894 }
1895 
1896 /*
1897  * in order to insert checksums into the metadata in large chunks,
1898  * we wait until bio submission time.   All the pages in the bio are
1899  * checksummed and sums are attached onto the ordered extent record.
1900  *
1901  * At IO completion time the cums attached on the ordered extent record
1902  * are inserted into the btree
1903  */
1904 static int __btrfs_submit_bio_done(struct inode *inode, struct bio *bio,
1905 			  int mirror_num, unsigned long bio_flags,
1906 			  u64 bio_offset)
1907 {
1908 	struct btrfs_root *root = BTRFS_I(inode)->root;
1909 	int ret;
1910 
1911 	ret = btrfs_map_bio(root, bio, mirror_num, 1);
1912 	if (ret) {
1913 		bio->bi_error = ret;
1914 		bio_endio(bio);
1915 	}
1916 	return ret;
1917 }
1918 
1919 /*
1920  * extent_io.c submission hook. This does the right thing for csum calculation
1921  * on write, or reading the csums from the tree before a read
1922  */
1923 static int btrfs_submit_bio_hook(struct inode *inode, struct bio *bio,
1924 			  int mirror_num, unsigned long bio_flags,
1925 			  u64 bio_offset)
1926 {
1927 	struct btrfs_root *root = BTRFS_I(inode)->root;
1928 	enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA;
1929 	int ret = 0;
1930 	int skip_sum;
1931 	int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
1932 
1933 	skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
1934 
1935 	if (btrfs_is_free_space_inode(inode))
1936 		metadata = BTRFS_WQ_ENDIO_FREE_SPACE;
1937 
1938 	if (bio_op(bio) != REQ_OP_WRITE) {
1939 		ret = btrfs_bio_wq_end_io(root->fs_info, bio, metadata);
1940 		if (ret)
1941 			goto out;
1942 
1943 		if (bio_flags & EXTENT_BIO_COMPRESSED) {
1944 			ret = btrfs_submit_compressed_read(inode, bio,
1945 							   mirror_num,
1946 							   bio_flags);
1947 			goto out;
1948 		} else if (!skip_sum) {
1949 			ret = btrfs_lookup_bio_sums(root, inode, bio, NULL);
1950 			if (ret)
1951 				goto out;
1952 		}
1953 		goto mapit;
1954 	} else if (async && !skip_sum) {
1955 		/* csum items have already been cloned */
1956 		if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1957 			goto mapit;
1958 		/* we're doing a write, do the async checksumming */
1959 		ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1960 				   inode, bio, mirror_num,
1961 				   bio_flags, bio_offset,
1962 				   __btrfs_submit_bio_start,
1963 				   __btrfs_submit_bio_done);
1964 		goto out;
1965 	} else if (!skip_sum) {
1966 		ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1967 		if (ret)
1968 			goto out;
1969 	}
1970 
1971 mapit:
1972 	ret = btrfs_map_bio(root, bio, mirror_num, 0);
1973 
1974 out:
1975 	if (ret < 0) {
1976 		bio->bi_error = ret;
1977 		bio_endio(bio);
1978 	}
1979 	return ret;
1980 }
1981 
1982 /*
1983  * given a list of ordered sums record them in the inode.  This happens
1984  * at IO completion time based on sums calculated at bio submission time.
1985  */
1986 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
1987 			     struct inode *inode, u64 file_offset,
1988 			     struct list_head *list)
1989 {
1990 	struct btrfs_ordered_sum *sum;
1991 
1992 	list_for_each_entry(sum, list, list) {
1993 		trans->adding_csums = 1;
1994 		btrfs_csum_file_blocks(trans,
1995 		       BTRFS_I(inode)->root->fs_info->csum_root, sum);
1996 		trans->adding_csums = 0;
1997 	}
1998 	return 0;
1999 }
2000 
2001 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
2002 			      struct extent_state **cached_state, int dedupe)
2003 {
2004 	WARN_ON((end & (PAGE_SIZE - 1)) == 0);
2005 	return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
2006 				   cached_state);
2007 }
2008 
2009 /* see btrfs_writepage_start_hook for details on why this is required */
2010 struct btrfs_writepage_fixup {
2011 	struct page *page;
2012 	struct btrfs_work work;
2013 };
2014 
2015 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
2016 {
2017 	struct btrfs_writepage_fixup *fixup;
2018 	struct btrfs_ordered_extent *ordered;
2019 	struct extent_state *cached_state = NULL;
2020 	struct page *page;
2021 	struct inode *inode;
2022 	u64 page_start;
2023 	u64 page_end;
2024 	int ret;
2025 
2026 	fixup = container_of(work, struct btrfs_writepage_fixup, work);
2027 	page = fixup->page;
2028 again:
2029 	lock_page(page);
2030 	if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
2031 		ClearPageChecked(page);
2032 		goto out_page;
2033 	}
2034 
2035 	inode = page->mapping->host;
2036 	page_start = page_offset(page);
2037 	page_end = page_offset(page) + PAGE_SIZE - 1;
2038 
2039 	lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end,
2040 			 &cached_state);
2041 
2042 	/* already ordered? We're done */
2043 	if (PagePrivate2(page))
2044 		goto out;
2045 
2046 	ordered = btrfs_lookup_ordered_range(inode, page_start,
2047 					PAGE_SIZE);
2048 	if (ordered) {
2049 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
2050 				     page_end, &cached_state, GFP_NOFS);
2051 		unlock_page(page);
2052 		btrfs_start_ordered_extent(inode, ordered, 1);
2053 		btrfs_put_ordered_extent(ordered);
2054 		goto again;
2055 	}
2056 
2057 	ret = btrfs_delalloc_reserve_space(inode, page_start,
2058 					   PAGE_SIZE);
2059 	if (ret) {
2060 		mapping_set_error(page->mapping, ret);
2061 		end_extent_writepage(page, ret, page_start, page_end);
2062 		ClearPageChecked(page);
2063 		goto out;
2064 	 }
2065 
2066 	btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state,
2067 				  0);
2068 	ClearPageChecked(page);
2069 	set_page_dirty(page);
2070 out:
2071 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
2072 			     &cached_state, GFP_NOFS);
2073 out_page:
2074 	unlock_page(page);
2075 	put_page(page);
2076 	kfree(fixup);
2077 }
2078 
2079 /*
2080  * There are a few paths in the higher layers of the kernel that directly
2081  * set the page dirty bit without asking the filesystem if it is a
2082  * good idea.  This causes problems because we want to make sure COW
2083  * properly happens and the data=ordered rules are followed.
2084  *
2085  * In our case any range that doesn't have the ORDERED bit set
2086  * hasn't been properly setup for IO.  We kick off an async process
2087  * to fix it up.  The async helper will wait for ordered extents, set
2088  * the delalloc bit and make it safe to write the page.
2089  */
2090 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
2091 {
2092 	struct inode *inode = page->mapping->host;
2093 	struct btrfs_writepage_fixup *fixup;
2094 	struct btrfs_root *root = BTRFS_I(inode)->root;
2095 
2096 	/* this page is properly in the ordered list */
2097 	if (TestClearPagePrivate2(page))
2098 		return 0;
2099 
2100 	if (PageChecked(page))
2101 		return -EAGAIN;
2102 
2103 	fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2104 	if (!fixup)
2105 		return -EAGAIN;
2106 
2107 	SetPageChecked(page);
2108 	get_page(page);
2109 	btrfs_init_work(&fixup->work, btrfs_fixup_helper,
2110 			btrfs_writepage_fixup_worker, NULL, NULL);
2111 	fixup->page = page;
2112 	btrfs_queue_work(root->fs_info->fixup_workers, &fixup->work);
2113 	return -EBUSY;
2114 }
2115 
2116 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2117 				       struct inode *inode, u64 file_pos,
2118 				       u64 disk_bytenr, u64 disk_num_bytes,
2119 				       u64 num_bytes, u64 ram_bytes,
2120 				       u8 compression, u8 encryption,
2121 				       u16 other_encoding, int extent_type)
2122 {
2123 	struct btrfs_root *root = BTRFS_I(inode)->root;
2124 	struct btrfs_file_extent_item *fi;
2125 	struct btrfs_path *path;
2126 	struct extent_buffer *leaf;
2127 	struct btrfs_key ins;
2128 	int extent_inserted = 0;
2129 	int ret;
2130 
2131 	path = btrfs_alloc_path();
2132 	if (!path)
2133 		return -ENOMEM;
2134 
2135 	/*
2136 	 * we may be replacing one extent in the tree with another.
2137 	 * The new extent is pinned in the extent map, and we don't want
2138 	 * to drop it from the cache until it is completely in the btree.
2139 	 *
2140 	 * So, tell btrfs_drop_extents to leave this extent in the cache.
2141 	 * the caller is expected to unpin it and allow it to be merged
2142 	 * with the others.
2143 	 */
2144 	ret = __btrfs_drop_extents(trans, root, inode, path, file_pos,
2145 				   file_pos + num_bytes, NULL, 0,
2146 				   1, sizeof(*fi), &extent_inserted);
2147 	if (ret)
2148 		goto out;
2149 
2150 	if (!extent_inserted) {
2151 		ins.objectid = btrfs_ino(inode);
2152 		ins.offset = file_pos;
2153 		ins.type = BTRFS_EXTENT_DATA_KEY;
2154 
2155 		path->leave_spinning = 1;
2156 		ret = btrfs_insert_empty_item(trans, root, path, &ins,
2157 					      sizeof(*fi));
2158 		if (ret)
2159 			goto out;
2160 	}
2161 	leaf = path->nodes[0];
2162 	fi = btrfs_item_ptr(leaf, path->slots[0],
2163 			    struct btrfs_file_extent_item);
2164 	btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2165 	btrfs_set_file_extent_type(leaf, fi, extent_type);
2166 	btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
2167 	btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
2168 	btrfs_set_file_extent_offset(leaf, fi, 0);
2169 	btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2170 	btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
2171 	btrfs_set_file_extent_compression(leaf, fi, compression);
2172 	btrfs_set_file_extent_encryption(leaf, fi, encryption);
2173 	btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
2174 
2175 	btrfs_mark_buffer_dirty(leaf);
2176 	btrfs_release_path(path);
2177 
2178 	inode_add_bytes(inode, num_bytes);
2179 
2180 	ins.objectid = disk_bytenr;
2181 	ins.offset = disk_num_bytes;
2182 	ins.type = BTRFS_EXTENT_ITEM_KEY;
2183 	ret = btrfs_alloc_reserved_file_extent(trans, root,
2184 					root->root_key.objectid,
2185 					btrfs_ino(inode), file_pos,
2186 					ram_bytes, &ins);
2187 	/*
2188 	 * Release the reserved range from inode dirty range map, as it is
2189 	 * already moved into delayed_ref_head
2190 	 */
2191 	btrfs_qgroup_release_data(inode, file_pos, ram_bytes);
2192 out:
2193 	btrfs_free_path(path);
2194 
2195 	return ret;
2196 }
2197 
2198 /* snapshot-aware defrag */
2199 struct sa_defrag_extent_backref {
2200 	struct rb_node node;
2201 	struct old_sa_defrag_extent *old;
2202 	u64 root_id;
2203 	u64 inum;
2204 	u64 file_pos;
2205 	u64 extent_offset;
2206 	u64 num_bytes;
2207 	u64 generation;
2208 };
2209 
2210 struct old_sa_defrag_extent {
2211 	struct list_head list;
2212 	struct new_sa_defrag_extent *new;
2213 
2214 	u64 extent_offset;
2215 	u64 bytenr;
2216 	u64 offset;
2217 	u64 len;
2218 	int count;
2219 };
2220 
2221 struct new_sa_defrag_extent {
2222 	struct rb_root root;
2223 	struct list_head head;
2224 	struct btrfs_path *path;
2225 	struct inode *inode;
2226 	u64 file_pos;
2227 	u64 len;
2228 	u64 bytenr;
2229 	u64 disk_len;
2230 	u8 compress_type;
2231 };
2232 
2233 static int backref_comp(struct sa_defrag_extent_backref *b1,
2234 			struct sa_defrag_extent_backref *b2)
2235 {
2236 	if (b1->root_id < b2->root_id)
2237 		return -1;
2238 	else if (b1->root_id > b2->root_id)
2239 		return 1;
2240 
2241 	if (b1->inum < b2->inum)
2242 		return -1;
2243 	else if (b1->inum > b2->inum)
2244 		return 1;
2245 
2246 	if (b1->file_pos < b2->file_pos)
2247 		return -1;
2248 	else if (b1->file_pos > b2->file_pos)
2249 		return 1;
2250 
2251 	/*
2252 	 * [------------------------------] ===> (a range of space)
2253 	 *     |<--->|   |<---->| =============> (fs/file tree A)
2254 	 * |<---------------------------->| ===> (fs/file tree B)
2255 	 *
2256 	 * A range of space can refer to two file extents in one tree while
2257 	 * refer to only one file extent in another tree.
2258 	 *
2259 	 * So we may process a disk offset more than one time(two extents in A)
2260 	 * and locate at the same extent(one extent in B), then insert two same
2261 	 * backrefs(both refer to the extent in B).
2262 	 */
2263 	return 0;
2264 }
2265 
2266 static void backref_insert(struct rb_root *root,
2267 			   struct sa_defrag_extent_backref *backref)
2268 {
2269 	struct rb_node **p = &root->rb_node;
2270 	struct rb_node *parent = NULL;
2271 	struct sa_defrag_extent_backref *entry;
2272 	int ret;
2273 
2274 	while (*p) {
2275 		parent = *p;
2276 		entry = rb_entry(parent, struct sa_defrag_extent_backref, node);
2277 
2278 		ret = backref_comp(backref, entry);
2279 		if (ret < 0)
2280 			p = &(*p)->rb_left;
2281 		else
2282 			p = &(*p)->rb_right;
2283 	}
2284 
2285 	rb_link_node(&backref->node, parent, p);
2286 	rb_insert_color(&backref->node, root);
2287 }
2288 
2289 /*
2290  * Note the backref might has changed, and in this case we just return 0.
2291  */
2292 static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id,
2293 				       void *ctx)
2294 {
2295 	struct btrfs_file_extent_item *extent;
2296 	struct btrfs_fs_info *fs_info;
2297 	struct old_sa_defrag_extent *old = ctx;
2298 	struct new_sa_defrag_extent *new = old->new;
2299 	struct btrfs_path *path = new->path;
2300 	struct btrfs_key key;
2301 	struct btrfs_root *root;
2302 	struct sa_defrag_extent_backref *backref;
2303 	struct extent_buffer *leaf;
2304 	struct inode *inode = new->inode;
2305 	int slot;
2306 	int ret;
2307 	u64 extent_offset;
2308 	u64 num_bytes;
2309 
2310 	if (BTRFS_I(inode)->root->root_key.objectid == root_id &&
2311 	    inum == btrfs_ino(inode))
2312 		return 0;
2313 
2314 	key.objectid = root_id;
2315 	key.type = BTRFS_ROOT_ITEM_KEY;
2316 	key.offset = (u64)-1;
2317 
2318 	fs_info = BTRFS_I(inode)->root->fs_info;
2319 	root = btrfs_read_fs_root_no_name(fs_info, &key);
2320 	if (IS_ERR(root)) {
2321 		if (PTR_ERR(root) == -ENOENT)
2322 			return 0;
2323 		WARN_ON(1);
2324 		btrfs_debug(fs_info, "inum=%llu, offset=%llu, root_id=%llu",
2325 			 inum, offset, root_id);
2326 		return PTR_ERR(root);
2327 	}
2328 
2329 	key.objectid = inum;
2330 	key.type = BTRFS_EXTENT_DATA_KEY;
2331 	if (offset > (u64)-1 << 32)
2332 		key.offset = 0;
2333 	else
2334 		key.offset = offset;
2335 
2336 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2337 	if (WARN_ON(ret < 0))
2338 		return ret;
2339 	ret = 0;
2340 
2341 	while (1) {
2342 		cond_resched();
2343 
2344 		leaf = path->nodes[0];
2345 		slot = path->slots[0];
2346 
2347 		if (slot >= btrfs_header_nritems(leaf)) {
2348 			ret = btrfs_next_leaf(root, path);
2349 			if (ret < 0) {
2350 				goto out;
2351 			} else if (ret > 0) {
2352 				ret = 0;
2353 				goto out;
2354 			}
2355 			continue;
2356 		}
2357 
2358 		path->slots[0]++;
2359 
2360 		btrfs_item_key_to_cpu(leaf, &key, slot);
2361 
2362 		if (key.objectid > inum)
2363 			goto out;
2364 
2365 		if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY)
2366 			continue;
2367 
2368 		extent = btrfs_item_ptr(leaf, slot,
2369 					struct btrfs_file_extent_item);
2370 
2371 		if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr)
2372 			continue;
2373 
2374 		/*
2375 		 * 'offset' refers to the exact key.offset,
2376 		 * NOT the 'offset' field in btrfs_extent_data_ref, ie.
2377 		 * (key.offset - extent_offset).
2378 		 */
2379 		if (key.offset != offset)
2380 			continue;
2381 
2382 		extent_offset = btrfs_file_extent_offset(leaf, extent);
2383 		num_bytes = btrfs_file_extent_num_bytes(leaf, extent);
2384 
2385 		if (extent_offset >= old->extent_offset + old->offset +
2386 		    old->len || extent_offset + num_bytes <=
2387 		    old->extent_offset + old->offset)
2388 			continue;
2389 		break;
2390 	}
2391 
2392 	backref = kmalloc(sizeof(*backref), GFP_NOFS);
2393 	if (!backref) {
2394 		ret = -ENOENT;
2395 		goto out;
2396 	}
2397 
2398 	backref->root_id = root_id;
2399 	backref->inum = inum;
2400 	backref->file_pos = offset;
2401 	backref->num_bytes = num_bytes;
2402 	backref->extent_offset = extent_offset;
2403 	backref->generation = btrfs_file_extent_generation(leaf, extent);
2404 	backref->old = old;
2405 	backref_insert(&new->root, backref);
2406 	old->count++;
2407 out:
2408 	btrfs_release_path(path);
2409 	WARN_ON(ret);
2410 	return ret;
2411 }
2412 
2413 static noinline bool record_extent_backrefs(struct btrfs_path *path,
2414 				   struct new_sa_defrag_extent *new)
2415 {
2416 	struct btrfs_fs_info *fs_info = BTRFS_I(new->inode)->root->fs_info;
2417 	struct old_sa_defrag_extent *old, *tmp;
2418 	int ret;
2419 
2420 	new->path = path;
2421 
2422 	list_for_each_entry_safe(old, tmp, &new->head, list) {
2423 		ret = iterate_inodes_from_logical(old->bytenr +
2424 						  old->extent_offset, fs_info,
2425 						  path, record_one_backref,
2426 						  old);
2427 		if (ret < 0 && ret != -ENOENT)
2428 			return false;
2429 
2430 		/* no backref to be processed for this extent */
2431 		if (!old->count) {
2432 			list_del(&old->list);
2433 			kfree(old);
2434 		}
2435 	}
2436 
2437 	if (list_empty(&new->head))
2438 		return false;
2439 
2440 	return true;
2441 }
2442 
2443 static int relink_is_mergable(struct extent_buffer *leaf,
2444 			      struct btrfs_file_extent_item *fi,
2445 			      struct new_sa_defrag_extent *new)
2446 {
2447 	if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr)
2448 		return 0;
2449 
2450 	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2451 		return 0;
2452 
2453 	if (btrfs_file_extent_compression(leaf, fi) != new->compress_type)
2454 		return 0;
2455 
2456 	if (btrfs_file_extent_encryption(leaf, fi) ||
2457 	    btrfs_file_extent_other_encoding(leaf, fi))
2458 		return 0;
2459 
2460 	return 1;
2461 }
2462 
2463 /*
2464  * Note the backref might has changed, and in this case we just return 0.
2465  */
2466 static noinline int relink_extent_backref(struct btrfs_path *path,
2467 				 struct sa_defrag_extent_backref *prev,
2468 				 struct sa_defrag_extent_backref *backref)
2469 {
2470 	struct btrfs_file_extent_item *extent;
2471 	struct btrfs_file_extent_item *item;
2472 	struct btrfs_ordered_extent *ordered;
2473 	struct btrfs_trans_handle *trans;
2474 	struct btrfs_fs_info *fs_info;
2475 	struct btrfs_root *root;
2476 	struct btrfs_key key;
2477 	struct extent_buffer *leaf;
2478 	struct old_sa_defrag_extent *old = backref->old;
2479 	struct new_sa_defrag_extent *new = old->new;
2480 	struct inode *src_inode = new->inode;
2481 	struct inode *inode;
2482 	struct extent_state *cached = NULL;
2483 	int ret = 0;
2484 	u64 start;
2485 	u64 len;
2486 	u64 lock_start;
2487 	u64 lock_end;
2488 	bool merge = false;
2489 	int index;
2490 
2491 	if (prev && prev->root_id == backref->root_id &&
2492 	    prev->inum == backref->inum &&
2493 	    prev->file_pos + prev->num_bytes == backref->file_pos)
2494 		merge = true;
2495 
2496 	/* step 1: get root */
2497 	key.objectid = backref->root_id;
2498 	key.type = BTRFS_ROOT_ITEM_KEY;
2499 	key.offset = (u64)-1;
2500 
2501 	fs_info = BTRFS_I(src_inode)->root->fs_info;
2502 	index = srcu_read_lock(&fs_info->subvol_srcu);
2503 
2504 	root = btrfs_read_fs_root_no_name(fs_info, &key);
2505 	if (IS_ERR(root)) {
2506 		srcu_read_unlock(&fs_info->subvol_srcu, index);
2507 		if (PTR_ERR(root) == -ENOENT)
2508 			return 0;
2509 		return PTR_ERR(root);
2510 	}
2511 
2512 	if (btrfs_root_readonly(root)) {
2513 		srcu_read_unlock(&fs_info->subvol_srcu, index);
2514 		return 0;
2515 	}
2516 
2517 	/* step 2: get inode */
2518 	key.objectid = backref->inum;
2519 	key.type = BTRFS_INODE_ITEM_KEY;
2520 	key.offset = 0;
2521 
2522 	inode = btrfs_iget(fs_info->sb, &key, root, NULL);
2523 	if (IS_ERR(inode)) {
2524 		srcu_read_unlock(&fs_info->subvol_srcu, index);
2525 		return 0;
2526 	}
2527 
2528 	srcu_read_unlock(&fs_info->subvol_srcu, index);
2529 
2530 	/* step 3: relink backref */
2531 	lock_start = backref->file_pos;
2532 	lock_end = backref->file_pos + backref->num_bytes - 1;
2533 	lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2534 			 &cached);
2535 
2536 	ordered = btrfs_lookup_first_ordered_extent(inode, lock_end);
2537 	if (ordered) {
2538 		btrfs_put_ordered_extent(ordered);
2539 		goto out_unlock;
2540 	}
2541 
2542 	trans = btrfs_join_transaction(root);
2543 	if (IS_ERR(trans)) {
2544 		ret = PTR_ERR(trans);
2545 		goto out_unlock;
2546 	}
2547 
2548 	key.objectid = backref->inum;
2549 	key.type = BTRFS_EXTENT_DATA_KEY;
2550 	key.offset = backref->file_pos;
2551 
2552 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2553 	if (ret < 0) {
2554 		goto out_free_path;
2555 	} else if (ret > 0) {
2556 		ret = 0;
2557 		goto out_free_path;
2558 	}
2559 
2560 	extent = btrfs_item_ptr(path->nodes[0], path->slots[0],
2561 				struct btrfs_file_extent_item);
2562 
2563 	if (btrfs_file_extent_generation(path->nodes[0], extent) !=
2564 	    backref->generation)
2565 		goto out_free_path;
2566 
2567 	btrfs_release_path(path);
2568 
2569 	start = backref->file_pos;
2570 	if (backref->extent_offset < old->extent_offset + old->offset)
2571 		start += old->extent_offset + old->offset -
2572 			 backref->extent_offset;
2573 
2574 	len = min(backref->extent_offset + backref->num_bytes,
2575 		  old->extent_offset + old->offset + old->len);
2576 	len -= max(backref->extent_offset, old->extent_offset + old->offset);
2577 
2578 	ret = btrfs_drop_extents(trans, root, inode, start,
2579 				 start + len, 1);
2580 	if (ret)
2581 		goto out_free_path;
2582 again:
2583 	key.objectid = btrfs_ino(inode);
2584 	key.type = BTRFS_EXTENT_DATA_KEY;
2585 	key.offset = start;
2586 
2587 	path->leave_spinning = 1;
2588 	if (merge) {
2589 		struct btrfs_file_extent_item *fi;
2590 		u64 extent_len;
2591 		struct btrfs_key found_key;
2592 
2593 		ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2594 		if (ret < 0)
2595 			goto out_free_path;
2596 
2597 		path->slots[0]--;
2598 		leaf = path->nodes[0];
2599 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2600 
2601 		fi = btrfs_item_ptr(leaf, path->slots[0],
2602 				    struct btrfs_file_extent_item);
2603 		extent_len = btrfs_file_extent_num_bytes(leaf, fi);
2604 
2605 		if (extent_len + found_key.offset == start &&
2606 		    relink_is_mergable(leaf, fi, new)) {
2607 			btrfs_set_file_extent_num_bytes(leaf, fi,
2608 							extent_len + len);
2609 			btrfs_mark_buffer_dirty(leaf);
2610 			inode_add_bytes(inode, len);
2611 
2612 			ret = 1;
2613 			goto out_free_path;
2614 		} else {
2615 			merge = false;
2616 			btrfs_release_path(path);
2617 			goto again;
2618 		}
2619 	}
2620 
2621 	ret = btrfs_insert_empty_item(trans, root, path, &key,
2622 					sizeof(*extent));
2623 	if (ret) {
2624 		btrfs_abort_transaction(trans, ret);
2625 		goto out_free_path;
2626 	}
2627 
2628 	leaf = path->nodes[0];
2629 	item = btrfs_item_ptr(leaf, path->slots[0],
2630 				struct btrfs_file_extent_item);
2631 	btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr);
2632 	btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len);
2633 	btrfs_set_file_extent_offset(leaf, item, start - new->file_pos);
2634 	btrfs_set_file_extent_num_bytes(leaf, item, len);
2635 	btrfs_set_file_extent_ram_bytes(leaf, item, new->len);
2636 	btrfs_set_file_extent_generation(leaf, item, trans->transid);
2637 	btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
2638 	btrfs_set_file_extent_compression(leaf, item, new->compress_type);
2639 	btrfs_set_file_extent_encryption(leaf, item, 0);
2640 	btrfs_set_file_extent_other_encoding(leaf, item, 0);
2641 
2642 	btrfs_mark_buffer_dirty(leaf);
2643 	inode_add_bytes(inode, len);
2644 	btrfs_release_path(path);
2645 
2646 	ret = btrfs_inc_extent_ref(trans, root, new->bytenr,
2647 			new->disk_len, 0,
2648 			backref->root_id, backref->inum,
2649 			new->file_pos);	/* start - extent_offset */
2650 	if (ret) {
2651 		btrfs_abort_transaction(trans, ret);
2652 		goto out_free_path;
2653 	}
2654 
2655 	ret = 1;
2656 out_free_path:
2657 	btrfs_release_path(path);
2658 	path->leave_spinning = 0;
2659 	btrfs_end_transaction(trans, root);
2660 out_unlock:
2661 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2662 			     &cached, GFP_NOFS);
2663 	iput(inode);
2664 	return ret;
2665 }
2666 
2667 static void free_sa_defrag_extent(struct new_sa_defrag_extent *new)
2668 {
2669 	struct old_sa_defrag_extent *old, *tmp;
2670 
2671 	if (!new)
2672 		return;
2673 
2674 	list_for_each_entry_safe(old, tmp, &new->head, list) {
2675 		kfree(old);
2676 	}
2677 	kfree(new);
2678 }
2679 
2680 static void relink_file_extents(struct new_sa_defrag_extent *new)
2681 {
2682 	struct btrfs_path *path;
2683 	struct sa_defrag_extent_backref *backref;
2684 	struct sa_defrag_extent_backref *prev = NULL;
2685 	struct inode *inode;
2686 	struct btrfs_root *root;
2687 	struct rb_node *node;
2688 	int ret;
2689 
2690 	inode = new->inode;
2691 	root = BTRFS_I(inode)->root;
2692 
2693 	path = btrfs_alloc_path();
2694 	if (!path)
2695 		return;
2696 
2697 	if (!record_extent_backrefs(path, new)) {
2698 		btrfs_free_path(path);
2699 		goto out;
2700 	}
2701 	btrfs_release_path(path);
2702 
2703 	while (1) {
2704 		node = rb_first(&new->root);
2705 		if (!node)
2706 			break;
2707 		rb_erase(node, &new->root);
2708 
2709 		backref = rb_entry(node, struct sa_defrag_extent_backref, node);
2710 
2711 		ret = relink_extent_backref(path, prev, backref);
2712 		WARN_ON(ret < 0);
2713 
2714 		kfree(prev);
2715 
2716 		if (ret == 1)
2717 			prev = backref;
2718 		else
2719 			prev = NULL;
2720 		cond_resched();
2721 	}
2722 	kfree(prev);
2723 
2724 	btrfs_free_path(path);
2725 out:
2726 	free_sa_defrag_extent(new);
2727 
2728 	atomic_dec(&root->fs_info->defrag_running);
2729 	wake_up(&root->fs_info->transaction_wait);
2730 }
2731 
2732 static struct new_sa_defrag_extent *
2733 record_old_file_extents(struct inode *inode,
2734 			struct btrfs_ordered_extent *ordered)
2735 {
2736 	struct btrfs_root *root = BTRFS_I(inode)->root;
2737 	struct btrfs_path *path;
2738 	struct btrfs_key key;
2739 	struct old_sa_defrag_extent *old;
2740 	struct new_sa_defrag_extent *new;
2741 	int ret;
2742 
2743 	new = kmalloc(sizeof(*new), GFP_NOFS);
2744 	if (!new)
2745 		return NULL;
2746 
2747 	new->inode = inode;
2748 	new->file_pos = ordered->file_offset;
2749 	new->len = ordered->len;
2750 	new->bytenr = ordered->start;
2751 	new->disk_len = ordered->disk_len;
2752 	new->compress_type = ordered->compress_type;
2753 	new->root = RB_ROOT;
2754 	INIT_LIST_HEAD(&new->head);
2755 
2756 	path = btrfs_alloc_path();
2757 	if (!path)
2758 		goto out_kfree;
2759 
2760 	key.objectid = btrfs_ino(inode);
2761 	key.type = BTRFS_EXTENT_DATA_KEY;
2762 	key.offset = new->file_pos;
2763 
2764 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2765 	if (ret < 0)
2766 		goto out_free_path;
2767 	if (ret > 0 && path->slots[0] > 0)
2768 		path->slots[0]--;
2769 
2770 	/* find out all the old extents for the file range */
2771 	while (1) {
2772 		struct btrfs_file_extent_item *extent;
2773 		struct extent_buffer *l;
2774 		int slot;
2775 		u64 num_bytes;
2776 		u64 offset;
2777 		u64 end;
2778 		u64 disk_bytenr;
2779 		u64 extent_offset;
2780 
2781 		l = path->nodes[0];
2782 		slot = path->slots[0];
2783 
2784 		if (slot >= btrfs_header_nritems(l)) {
2785 			ret = btrfs_next_leaf(root, path);
2786 			if (ret < 0)
2787 				goto out_free_path;
2788 			else if (ret > 0)
2789 				break;
2790 			continue;
2791 		}
2792 
2793 		btrfs_item_key_to_cpu(l, &key, slot);
2794 
2795 		if (key.objectid != btrfs_ino(inode))
2796 			break;
2797 		if (key.type != BTRFS_EXTENT_DATA_KEY)
2798 			break;
2799 		if (key.offset >= new->file_pos + new->len)
2800 			break;
2801 
2802 		extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item);
2803 
2804 		num_bytes = btrfs_file_extent_num_bytes(l, extent);
2805 		if (key.offset + num_bytes < new->file_pos)
2806 			goto next;
2807 
2808 		disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent);
2809 		if (!disk_bytenr)
2810 			goto next;
2811 
2812 		extent_offset = btrfs_file_extent_offset(l, extent);
2813 
2814 		old = kmalloc(sizeof(*old), GFP_NOFS);
2815 		if (!old)
2816 			goto out_free_path;
2817 
2818 		offset = max(new->file_pos, key.offset);
2819 		end = min(new->file_pos + new->len, key.offset + num_bytes);
2820 
2821 		old->bytenr = disk_bytenr;
2822 		old->extent_offset = extent_offset;
2823 		old->offset = offset - key.offset;
2824 		old->len = end - offset;
2825 		old->new = new;
2826 		old->count = 0;
2827 		list_add_tail(&old->list, &new->head);
2828 next:
2829 		path->slots[0]++;
2830 		cond_resched();
2831 	}
2832 
2833 	btrfs_free_path(path);
2834 	atomic_inc(&root->fs_info->defrag_running);
2835 
2836 	return new;
2837 
2838 out_free_path:
2839 	btrfs_free_path(path);
2840 out_kfree:
2841 	free_sa_defrag_extent(new);
2842 	return NULL;
2843 }
2844 
2845 static void btrfs_release_delalloc_bytes(struct btrfs_root *root,
2846 					 u64 start, u64 len)
2847 {
2848 	struct btrfs_block_group_cache *cache;
2849 
2850 	cache = btrfs_lookup_block_group(root->fs_info, start);
2851 	ASSERT(cache);
2852 
2853 	spin_lock(&cache->lock);
2854 	cache->delalloc_bytes -= len;
2855 	spin_unlock(&cache->lock);
2856 
2857 	btrfs_put_block_group(cache);
2858 }
2859 
2860 /* as ordered data IO finishes, this gets called so we can finish
2861  * an ordered extent if the range of bytes in the file it covers are
2862  * fully written.
2863  */
2864 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
2865 {
2866 	struct inode *inode = ordered_extent->inode;
2867 	struct btrfs_root *root = BTRFS_I(inode)->root;
2868 	struct btrfs_trans_handle *trans = NULL;
2869 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2870 	struct extent_state *cached_state = NULL;
2871 	struct new_sa_defrag_extent *new = NULL;
2872 	int compress_type = 0;
2873 	int ret = 0;
2874 	u64 logical_len = ordered_extent->len;
2875 	bool nolock;
2876 	bool truncated = false;
2877 
2878 	nolock = btrfs_is_free_space_inode(inode);
2879 
2880 	if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
2881 		ret = -EIO;
2882 		goto out;
2883 	}
2884 
2885 	btrfs_free_io_failure_record(inode, ordered_extent->file_offset,
2886 				     ordered_extent->file_offset +
2887 				     ordered_extent->len - 1);
2888 
2889 	if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
2890 		truncated = true;
2891 		logical_len = ordered_extent->truncated_len;
2892 		/* Truncated the entire extent, don't bother adding */
2893 		if (!logical_len)
2894 			goto out;
2895 	}
2896 
2897 	if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
2898 		BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
2899 
2900 		/*
2901 		 * For mwrite(mmap + memset to write) case, we still reserve
2902 		 * space for NOCOW range.
2903 		 * As NOCOW won't cause a new delayed ref, just free the space
2904 		 */
2905 		btrfs_qgroup_free_data(inode, ordered_extent->file_offset,
2906 				       ordered_extent->len);
2907 		btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2908 		if (nolock)
2909 			trans = btrfs_join_transaction_nolock(root);
2910 		else
2911 			trans = btrfs_join_transaction(root);
2912 		if (IS_ERR(trans)) {
2913 			ret = PTR_ERR(trans);
2914 			trans = NULL;
2915 			goto out;
2916 		}
2917 		trans->block_rsv = &root->fs_info->delalloc_block_rsv;
2918 		ret = btrfs_update_inode_fallback(trans, root, inode);
2919 		if (ret) /* -ENOMEM or corruption */
2920 			btrfs_abort_transaction(trans, ret);
2921 		goto out;
2922 	}
2923 
2924 	lock_extent_bits(io_tree, ordered_extent->file_offset,
2925 			 ordered_extent->file_offset + ordered_extent->len - 1,
2926 			 &cached_state);
2927 
2928 	ret = test_range_bit(io_tree, ordered_extent->file_offset,
2929 			ordered_extent->file_offset + ordered_extent->len - 1,
2930 			EXTENT_DEFRAG, 1, cached_state);
2931 	if (ret) {
2932 		u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
2933 		if (0 && last_snapshot >= BTRFS_I(inode)->generation)
2934 			/* the inode is shared */
2935 			new = record_old_file_extents(inode, ordered_extent);
2936 
2937 		clear_extent_bit(io_tree, ordered_extent->file_offset,
2938 			ordered_extent->file_offset + ordered_extent->len - 1,
2939 			EXTENT_DEFRAG, 0, 0, &cached_state, GFP_NOFS);
2940 	}
2941 
2942 	if (nolock)
2943 		trans = btrfs_join_transaction_nolock(root);
2944 	else
2945 		trans = btrfs_join_transaction(root);
2946 	if (IS_ERR(trans)) {
2947 		ret = PTR_ERR(trans);
2948 		trans = NULL;
2949 		goto out_unlock;
2950 	}
2951 
2952 	trans->block_rsv = &root->fs_info->delalloc_block_rsv;
2953 
2954 	if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
2955 		compress_type = ordered_extent->compress_type;
2956 	if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
2957 		BUG_ON(compress_type);
2958 		ret = btrfs_mark_extent_written(trans, inode,
2959 						ordered_extent->file_offset,
2960 						ordered_extent->file_offset +
2961 						logical_len);
2962 	} else {
2963 		BUG_ON(root == root->fs_info->tree_root);
2964 		ret = insert_reserved_file_extent(trans, inode,
2965 						ordered_extent->file_offset,
2966 						ordered_extent->start,
2967 						ordered_extent->disk_len,
2968 						logical_len, logical_len,
2969 						compress_type, 0, 0,
2970 						BTRFS_FILE_EXTENT_REG);
2971 		if (!ret)
2972 			btrfs_release_delalloc_bytes(root,
2973 						     ordered_extent->start,
2974 						     ordered_extent->disk_len);
2975 	}
2976 	unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
2977 			   ordered_extent->file_offset, ordered_extent->len,
2978 			   trans->transid);
2979 	if (ret < 0) {
2980 		btrfs_abort_transaction(trans, ret);
2981 		goto out_unlock;
2982 	}
2983 
2984 	add_pending_csums(trans, inode, ordered_extent->file_offset,
2985 			  &ordered_extent->list);
2986 
2987 	btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2988 	ret = btrfs_update_inode_fallback(trans, root, inode);
2989 	if (ret) { /* -ENOMEM or corruption */
2990 		btrfs_abort_transaction(trans, ret);
2991 		goto out_unlock;
2992 	}
2993 	ret = 0;
2994 out_unlock:
2995 	unlock_extent_cached(io_tree, ordered_extent->file_offset,
2996 			     ordered_extent->file_offset +
2997 			     ordered_extent->len - 1, &cached_state, GFP_NOFS);
2998 out:
2999 	if (root != root->fs_info->tree_root)
3000 		btrfs_delalloc_release_metadata(inode, ordered_extent->len);
3001 	if (trans)
3002 		btrfs_end_transaction(trans, root);
3003 
3004 	if (ret || truncated) {
3005 		u64 start, end;
3006 
3007 		if (truncated)
3008 			start = ordered_extent->file_offset + logical_len;
3009 		else
3010 			start = ordered_extent->file_offset;
3011 		end = ordered_extent->file_offset + ordered_extent->len - 1;
3012 		clear_extent_uptodate(io_tree, start, end, NULL, GFP_NOFS);
3013 
3014 		/* Drop the cache for the part of the extent we didn't write. */
3015 		btrfs_drop_extent_cache(inode, start, end, 0);
3016 
3017 		/*
3018 		 * If the ordered extent had an IOERR or something else went
3019 		 * wrong we need to return the space for this ordered extent
3020 		 * back to the allocator.  We only free the extent in the
3021 		 * truncated case if we didn't write out the extent at all.
3022 		 */
3023 		if ((ret || !logical_len) &&
3024 		    !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3025 		    !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags))
3026 			btrfs_free_reserved_extent(root, ordered_extent->start,
3027 						   ordered_extent->disk_len, 1);
3028 	}
3029 
3030 
3031 	/*
3032 	 * This needs to be done to make sure anybody waiting knows we are done
3033 	 * updating everything for this ordered extent.
3034 	 */
3035 	btrfs_remove_ordered_extent(inode, ordered_extent);
3036 
3037 	/* for snapshot-aware defrag */
3038 	if (new) {
3039 		if (ret) {
3040 			free_sa_defrag_extent(new);
3041 			atomic_dec(&root->fs_info->defrag_running);
3042 		} else {
3043 			relink_file_extents(new);
3044 		}
3045 	}
3046 
3047 	/* once for us */
3048 	btrfs_put_ordered_extent(ordered_extent);
3049 	/* once for the tree */
3050 	btrfs_put_ordered_extent(ordered_extent);
3051 
3052 	return ret;
3053 }
3054 
3055 static void finish_ordered_fn(struct btrfs_work *work)
3056 {
3057 	struct btrfs_ordered_extent *ordered_extent;
3058 	ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
3059 	btrfs_finish_ordered_io(ordered_extent);
3060 }
3061 
3062 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
3063 				struct extent_state *state, int uptodate)
3064 {
3065 	struct inode *inode = page->mapping->host;
3066 	struct btrfs_root *root = BTRFS_I(inode)->root;
3067 	struct btrfs_ordered_extent *ordered_extent = NULL;
3068 	struct btrfs_workqueue *wq;
3069 	btrfs_work_func_t func;
3070 
3071 	trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
3072 
3073 	ClearPagePrivate2(page);
3074 	if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
3075 					    end - start + 1, uptodate))
3076 		return 0;
3077 
3078 	if (btrfs_is_free_space_inode(inode)) {
3079 		wq = root->fs_info->endio_freespace_worker;
3080 		func = btrfs_freespace_write_helper;
3081 	} else {
3082 		wq = root->fs_info->endio_write_workers;
3083 		func = btrfs_endio_write_helper;
3084 	}
3085 
3086 	btrfs_init_work(&ordered_extent->work, func, finish_ordered_fn, NULL,
3087 			NULL);
3088 	btrfs_queue_work(wq, &ordered_extent->work);
3089 
3090 	return 0;
3091 }
3092 
3093 static int __readpage_endio_check(struct inode *inode,
3094 				  struct btrfs_io_bio *io_bio,
3095 				  int icsum, struct page *page,
3096 				  int pgoff, u64 start, size_t len)
3097 {
3098 	char *kaddr;
3099 	u32 csum_expected;
3100 	u32 csum = ~(u32)0;
3101 
3102 	csum_expected = *(((u32 *)io_bio->csum) + icsum);
3103 
3104 	kaddr = kmap_atomic(page);
3105 	csum = btrfs_csum_data(kaddr + pgoff, csum,  len);
3106 	btrfs_csum_final(csum, (char *)&csum);
3107 	if (csum != csum_expected)
3108 		goto zeroit;
3109 
3110 	kunmap_atomic(kaddr);
3111 	return 0;
3112 zeroit:
3113 	btrfs_warn_rl(BTRFS_I(inode)->root->fs_info,
3114 		"csum failed ino %llu off %llu csum %u expected csum %u",
3115 			   btrfs_ino(inode), start, csum, csum_expected);
3116 	memset(kaddr + pgoff, 1, len);
3117 	flush_dcache_page(page);
3118 	kunmap_atomic(kaddr);
3119 	if (csum_expected == 0)
3120 		return 0;
3121 	return -EIO;
3122 }
3123 
3124 /*
3125  * when reads are done, we need to check csums to verify the data is correct
3126  * if there's a match, we allow the bio to finish.  If not, the code in
3127  * extent_io.c will try to find good copies for us.
3128  */
3129 static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
3130 				      u64 phy_offset, struct page *page,
3131 				      u64 start, u64 end, int mirror)
3132 {
3133 	size_t offset = start - page_offset(page);
3134 	struct inode *inode = page->mapping->host;
3135 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3136 	struct btrfs_root *root = BTRFS_I(inode)->root;
3137 
3138 	if (PageChecked(page)) {
3139 		ClearPageChecked(page);
3140 		return 0;
3141 	}
3142 
3143 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
3144 		return 0;
3145 
3146 	if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
3147 	    test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
3148 		clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM);
3149 		return 0;
3150 	}
3151 
3152 	phy_offset >>= inode->i_sb->s_blocksize_bits;
3153 	return __readpage_endio_check(inode, io_bio, phy_offset, page, offset,
3154 				      start, (size_t)(end - start + 1));
3155 }
3156 
3157 void btrfs_add_delayed_iput(struct inode *inode)
3158 {
3159 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
3160 	struct btrfs_inode *binode = BTRFS_I(inode);
3161 
3162 	if (atomic_add_unless(&inode->i_count, -1, 1))
3163 		return;
3164 
3165 	spin_lock(&fs_info->delayed_iput_lock);
3166 	if (binode->delayed_iput_count == 0) {
3167 		ASSERT(list_empty(&binode->delayed_iput));
3168 		list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs);
3169 	} else {
3170 		binode->delayed_iput_count++;
3171 	}
3172 	spin_unlock(&fs_info->delayed_iput_lock);
3173 }
3174 
3175 void btrfs_run_delayed_iputs(struct btrfs_root *root)
3176 {
3177 	struct btrfs_fs_info *fs_info = root->fs_info;
3178 
3179 	spin_lock(&fs_info->delayed_iput_lock);
3180 	while (!list_empty(&fs_info->delayed_iputs)) {
3181 		struct btrfs_inode *inode;
3182 
3183 		inode = list_first_entry(&fs_info->delayed_iputs,
3184 				struct btrfs_inode, delayed_iput);
3185 		if (inode->delayed_iput_count) {
3186 			inode->delayed_iput_count--;
3187 			list_move_tail(&inode->delayed_iput,
3188 					&fs_info->delayed_iputs);
3189 		} else {
3190 			list_del_init(&inode->delayed_iput);
3191 		}
3192 		spin_unlock(&fs_info->delayed_iput_lock);
3193 		iput(&inode->vfs_inode);
3194 		spin_lock(&fs_info->delayed_iput_lock);
3195 	}
3196 	spin_unlock(&fs_info->delayed_iput_lock);
3197 }
3198 
3199 /*
3200  * This is called in transaction commit time. If there are no orphan
3201  * files in the subvolume, it removes orphan item and frees block_rsv
3202  * structure.
3203  */
3204 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
3205 			      struct btrfs_root *root)
3206 {
3207 	struct btrfs_block_rsv *block_rsv;
3208 	int ret;
3209 
3210 	if (atomic_read(&root->orphan_inodes) ||
3211 	    root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
3212 		return;
3213 
3214 	spin_lock(&root->orphan_lock);
3215 	if (atomic_read(&root->orphan_inodes)) {
3216 		spin_unlock(&root->orphan_lock);
3217 		return;
3218 	}
3219 
3220 	if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) {
3221 		spin_unlock(&root->orphan_lock);
3222 		return;
3223 	}
3224 
3225 	block_rsv = root->orphan_block_rsv;
3226 	root->orphan_block_rsv = NULL;
3227 	spin_unlock(&root->orphan_lock);
3228 
3229 	if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state) &&
3230 	    btrfs_root_refs(&root->root_item) > 0) {
3231 		ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
3232 					    root->root_key.objectid);
3233 		if (ret)
3234 			btrfs_abort_transaction(trans, ret);
3235 		else
3236 			clear_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED,
3237 				  &root->state);
3238 	}
3239 
3240 	if (block_rsv) {
3241 		WARN_ON(block_rsv->size > 0);
3242 		btrfs_free_block_rsv(root, block_rsv);
3243 	}
3244 }
3245 
3246 /*
3247  * This creates an orphan entry for the given inode in case something goes
3248  * wrong in the middle of an unlink/truncate.
3249  *
3250  * NOTE: caller of this function should reserve 5 units of metadata for
3251  *	 this function.
3252  */
3253 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
3254 {
3255 	struct btrfs_root *root = BTRFS_I(inode)->root;
3256 	struct btrfs_block_rsv *block_rsv = NULL;
3257 	int reserve = 0;
3258 	int insert = 0;
3259 	int ret;
3260 
3261 	if (!root->orphan_block_rsv) {
3262 		block_rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
3263 		if (!block_rsv)
3264 			return -ENOMEM;
3265 	}
3266 
3267 	spin_lock(&root->orphan_lock);
3268 	if (!root->orphan_block_rsv) {
3269 		root->orphan_block_rsv = block_rsv;
3270 	} else if (block_rsv) {
3271 		btrfs_free_block_rsv(root, block_rsv);
3272 		block_rsv = NULL;
3273 	}
3274 
3275 	if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3276 			      &BTRFS_I(inode)->runtime_flags)) {
3277 #if 0
3278 		/*
3279 		 * For proper ENOSPC handling, we should do orphan
3280 		 * cleanup when mounting. But this introduces backward
3281 		 * compatibility issue.
3282 		 */
3283 		if (!xchg(&root->orphan_item_inserted, 1))
3284 			insert = 2;
3285 		else
3286 			insert = 1;
3287 #endif
3288 		insert = 1;
3289 		atomic_inc(&root->orphan_inodes);
3290 	}
3291 
3292 	if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3293 			      &BTRFS_I(inode)->runtime_flags))
3294 		reserve = 1;
3295 	spin_unlock(&root->orphan_lock);
3296 
3297 	/* grab metadata reservation from transaction handle */
3298 	if (reserve) {
3299 		ret = btrfs_orphan_reserve_metadata(trans, inode);
3300 		ASSERT(!ret);
3301 		if (ret) {
3302 			atomic_dec(&root->orphan_inodes);
3303 			clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3304 				  &BTRFS_I(inode)->runtime_flags);
3305 			if (insert)
3306 				clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3307 					  &BTRFS_I(inode)->runtime_flags);
3308 			return ret;
3309 		}
3310 	}
3311 
3312 	/* insert an orphan item to track this unlinked/truncated file */
3313 	if (insert >= 1) {
3314 		ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
3315 		if (ret) {
3316 			atomic_dec(&root->orphan_inodes);
3317 			if (reserve) {
3318 				clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3319 					  &BTRFS_I(inode)->runtime_flags);
3320 				btrfs_orphan_release_metadata(inode);
3321 			}
3322 			if (ret != -EEXIST) {
3323 				clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3324 					  &BTRFS_I(inode)->runtime_flags);
3325 				btrfs_abort_transaction(trans, ret);
3326 				return ret;
3327 			}
3328 		}
3329 		ret = 0;
3330 	}
3331 
3332 	/* insert an orphan item to track subvolume contains orphan files */
3333 	if (insert >= 2) {
3334 		ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
3335 					       root->root_key.objectid);
3336 		if (ret && ret != -EEXIST) {
3337 			btrfs_abort_transaction(trans, ret);
3338 			return ret;
3339 		}
3340 	}
3341 	return 0;
3342 }
3343 
3344 /*
3345  * We have done the truncate/delete so we can go ahead and remove the orphan
3346  * item for this particular inode.
3347  */
3348 static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3349 			    struct inode *inode)
3350 {
3351 	struct btrfs_root *root = BTRFS_I(inode)->root;
3352 	int delete_item = 0;
3353 	int release_rsv = 0;
3354 	int ret = 0;
3355 
3356 	spin_lock(&root->orphan_lock);
3357 	if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3358 			       &BTRFS_I(inode)->runtime_flags))
3359 		delete_item = 1;
3360 
3361 	if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3362 			       &BTRFS_I(inode)->runtime_flags))
3363 		release_rsv = 1;
3364 	spin_unlock(&root->orphan_lock);
3365 
3366 	if (delete_item) {
3367 		atomic_dec(&root->orphan_inodes);
3368 		if (trans)
3369 			ret = btrfs_del_orphan_item(trans, root,
3370 						    btrfs_ino(inode));
3371 	}
3372 
3373 	if (release_rsv)
3374 		btrfs_orphan_release_metadata(inode);
3375 
3376 	return ret;
3377 }
3378 
3379 /*
3380  * this cleans up any orphans that may be left on the list from the last use
3381  * of this root.
3382  */
3383 int btrfs_orphan_cleanup(struct btrfs_root *root)
3384 {
3385 	struct btrfs_path *path;
3386 	struct extent_buffer *leaf;
3387 	struct btrfs_key key, found_key;
3388 	struct btrfs_trans_handle *trans;
3389 	struct inode *inode;
3390 	u64 last_objectid = 0;
3391 	int ret = 0, nr_unlink = 0, nr_truncate = 0;
3392 
3393 	if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
3394 		return 0;
3395 
3396 	path = btrfs_alloc_path();
3397 	if (!path) {
3398 		ret = -ENOMEM;
3399 		goto out;
3400 	}
3401 	path->reada = READA_BACK;
3402 
3403 	key.objectid = BTRFS_ORPHAN_OBJECTID;
3404 	key.type = BTRFS_ORPHAN_ITEM_KEY;
3405 	key.offset = (u64)-1;
3406 
3407 	while (1) {
3408 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3409 		if (ret < 0)
3410 			goto out;
3411 
3412 		/*
3413 		 * if ret == 0 means we found what we were searching for, which
3414 		 * is weird, but possible, so only screw with path if we didn't
3415 		 * find the key and see if we have stuff that matches
3416 		 */
3417 		if (ret > 0) {
3418 			ret = 0;
3419 			if (path->slots[0] == 0)
3420 				break;
3421 			path->slots[0]--;
3422 		}
3423 
3424 		/* pull out the item */
3425 		leaf = path->nodes[0];
3426 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3427 
3428 		/* make sure the item matches what we want */
3429 		if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3430 			break;
3431 		if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
3432 			break;
3433 
3434 		/* release the path since we're done with it */
3435 		btrfs_release_path(path);
3436 
3437 		/*
3438 		 * this is where we are basically btrfs_lookup, without the
3439 		 * crossing root thing.  we store the inode number in the
3440 		 * offset of the orphan item.
3441 		 */
3442 
3443 		if (found_key.offset == last_objectid) {
3444 			btrfs_err(root->fs_info,
3445 				"Error removing orphan entry, stopping orphan cleanup");
3446 			ret = -EINVAL;
3447 			goto out;
3448 		}
3449 
3450 		last_objectid = found_key.offset;
3451 
3452 		found_key.objectid = found_key.offset;
3453 		found_key.type = BTRFS_INODE_ITEM_KEY;
3454 		found_key.offset = 0;
3455 		inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
3456 		ret = PTR_ERR_OR_ZERO(inode);
3457 		if (ret && ret != -ENOENT)
3458 			goto out;
3459 
3460 		if (ret == -ENOENT && root == root->fs_info->tree_root) {
3461 			struct btrfs_root *dead_root;
3462 			struct btrfs_fs_info *fs_info = root->fs_info;
3463 			int is_dead_root = 0;
3464 
3465 			/*
3466 			 * this is an orphan in the tree root. Currently these
3467 			 * could come from 2 sources:
3468 			 *  a) a snapshot deletion in progress
3469 			 *  b) a free space cache inode
3470 			 * We need to distinguish those two, as the snapshot
3471 			 * orphan must not get deleted.
3472 			 * find_dead_roots already ran before us, so if this
3473 			 * is a snapshot deletion, we should find the root
3474 			 * in the dead_roots list
3475 			 */
3476 			spin_lock(&fs_info->trans_lock);
3477 			list_for_each_entry(dead_root, &fs_info->dead_roots,
3478 					    root_list) {
3479 				if (dead_root->root_key.objectid ==
3480 				    found_key.objectid) {
3481 					is_dead_root = 1;
3482 					break;
3483 				}
3484 			}
3485 			spin_unlock(&fs_info->trans_lock);
3486 			if (is_dead_root) {
3487 				/* prevent this orphan from being found again */
3488 				key.offset = found_key.objectid - 1;
3489 				continue;
3490 			}
3491 		}
3492 		/*
3493 		 * Inode is already gone but the orphan item is still there,
3494 		 * kill the orphan item.
3495 		 */
3496 		if (ret == -ENOENT) {
3497 			trans = btrfs_start_transaction(root, 1);
3498 			if (IS_ERR(trans)) {
3499 				ret = PTR_ERR(trans);
3500 				goto out;
3501 			}
3502 			btrfs_debug(root->fs_info, "auto deleting %Lu",
3503 				found_key.objectid);
3504 			ret = btrfs_del_orphan_item(trans, root,
3505 						    found_key.objectid);
3506 			btrfs_end_transaction(trans, root);
3507 			if (ret)
3508 				goto out;
3509 			continue;
3510 		}
3511 
3512 		/*
3513 		 * add this inode to the orphan list so btrfs_orphan_del does
3514 		 * the proper thing when we hit it
3515 		 */
3516 		set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3517 			&BTRFS_I(inode)->runtime_flags);
3518 		atomic_inc(&root->orphan_inodes);
3519 
3520 		/* if we have links, this was a truncate, lets do that */
3521 		if (inode->i_nlink) {
3522 			if (WARN_ON(!S_ISREG(inode->i_mode))) {
3523 				iput(inode);
3524 				continue;
3525 			}
3526 			nr_truncate++;
3527 
3528 			/* 1 for the orphan item deletion. */
3529 			trans = btrfs_start_transaction(root, 1);
3530 			if (IS_ERR(trans)) {
3531 				iput(inode);
3532 				ret = PTR_ERR(trans);
3533 				goto out;
3534 			}
3535 			ret = btrfs_orphan_add(trans, inode);
3536 			btrfs_end_transaction(trans, root);
3537 			if (ret) {
3538 				iput(inode);
3539 				goto out;
3540 			}
3541 
3542 			ret = btrfs_truncate(inode);
3543 			if (ret)
3544 				btrfs_orphan_del(NULL, inode);
3545 		} else {
3546 			nr_unlink++;
3547 		}
3548 
3549 		/* this will do delete_inode and everything for us */
3550 		iput(inode);
3551 		if (ret)
3552 			goto out;
3553 	}
3554 	/* release the path since we're done with it */
3555 	btrfs_release_path(path);
3556 
3557 	root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3558 
3559 	if (root->orphan_block_rsv)
3560 		btrfs_block_rsv_release(root, root->orphan_block_rsv,
3561 					(u64)-1);
3562 
3563 	if (root->orphan_block_rsv ||
3564 	    test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
3565 		trans = btrfs_join_transaction(root);
3566 		if (!IS_ERR(trans))
3567 			btrfs_end_transaction(trans, root);
3568 	}
3569 
3570 	if (nr_unlink)
3571 		btrfs_debug(root->fs_info, "unlinked %d orphans", nr_unlink);
3572 	if (nr_truncate)
3573 		btrfs_debug(root->fs_info, "truncated %d orphans", nr_truncate);
3574 
3575 out:
3576 	if (ret)
3577 		btrfs_err(root->fs_info,
3578 			"could not do orphan cleanup %d", ret);
3579 	btrfs_free_path(path);
3580 	return ret;
3581 }
3582 
3583 /*
3584  * very simple check to peek ahead in the leaf looking for xattrs.  If we
3585  * don't find any xattrs, we know there can't be any acls.
3586  *
3587  * slot is the slot the inode is in, objectid is the objectid of the inode
3588  */
3589 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
3590 					  int slot, u64 objectid,
3591 					  int *first_xattr_slot)
3592 {
3593 	u32 nritems = btrfs_header_nritems(leaf);
3594 	struct btrfs_key found_key;
3595 	static u64 xattr_access = 0;
3596 	static u64 xattr_default = 0;
3597 	int scanned = 0;
3598 
3599 	if (!xattr_access) {
3600 		xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
3601 					strlen(XATTR_NAME_POSIX_ACL_ACCESS));
3602 		xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
3603 					strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
3604 	}
3605 
3606 	slot++;
3607 	*first_xattr_slot = -1;
3608 	while (slot < nritems) {
3609 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3610 
3611 		/* we found a different objectid, there must not be acls */
3612 		if (found_key.objectid != objectid)
3613 			return 0;
3614 
3615 		/* we found an xattr, assume we've got an acl */
3616 		if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
3617 			if (*first_xattr_slot == -1)
3618 				*first_xattr_slot = slot;
3619 			if (found_key.offset == xattr_access ||
3620 			    found_key.offset == xattr_default)
3621 				return 1;
3622 		}
3623 
3624 		/*
3625 		 * we found a key greater than an xattr key, there can't
3626 		 * be any acls later on
3627 		 */
3628 		if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3629 			return 0;
3630 
3631 		slot++;
3632 		scanned++;
3633 
3634 		/*
3635 		 * it goes inode, inode backrefs, xattrs, extents,
3636 		 * so if there are a ton of hard links to an inode there can
3637 		 * be a lot of backrefs.  Don't waste time searching too hard,
3638 		 * this is just an optimization
3639 		 */
3640 		if (scanned >= 8)
3641 			break;
3642 	}
3643 	/* we hit the end of the leaf before we found an xattr or
3644 	 * something larger than an xattr.  We have to assume the inode
3645 	 * has acls
3646 	 */
3647 	if (*first_xattr_slot == -1)
3648 		*first_xattr_slot = slot;
3649 	return 1;
3650 }
3651 
3652 /*
3653  * read an inode from the btree into the in-memory inode
3654  */
3655 static int btrfs_read_locked_inode(struct inode *inode)
3656 {
3657 	struct btrfs_path *path;
3658 	struct extent_buffer *leaf;
3659 	struct btrfs_inode_item *inode_item;
3660 	struct btrfs_root *root = BTRFS_I(inode)->root;
3661 	struct btrfs_key location;
3662 	unsigned long ptr;
3663 	int maybe_acls;
3664 	u32 rdev;
3665 	int ret;
3666 	bool filled = false;
3667 	int first_xattr_slot;
3668 
3669 	ret = btrfs_fill_inode(inode, &rdev);
3670 	if (!ret)
3671 		filled = true;
3672 
3673 	path = btrfs_alloc_path();
3674 	if (!path) {
3675 		ret = -ENOMEM;
3676 		goto make_bad;
3677 	}
3678 
3679 	memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
3680 
3681 	ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
3682 	if (ret) {
3683 		if (ret > 0)
3684 			ret = -ENOENT;
3685 		goto make_bad;
3686 	}
3687 
3688 	leaf = path->nodes[0];
3689 
3690 	if (filled)
3691 		goto cache_index;
3692 
3693 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
3694 				    struct btrfs_inode_item);
3695 	inode->i_mode = btrfs_inode_mode(leaf, inode_item);
3696 	set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
3697 	i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3698 	i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
3699 	btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
3700 
3701 	inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime);
3702 	inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime);
3703 
3704 	inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime);
3705 	inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime);
3706 
3707 	inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime);
3708 	inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime);
3709 
3710 	BTRFS_I(inode)->i_otime.tv_sec =
3711 		btrfs_timespec_sec(leaf, &inode_item->otime);
3712 	BTRFS_I(inode)->i_otime.tv_nsec =
3713 		btrfs_timespec_nsec(leaf, &inode_item->otime);
3714 
3715 	inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
3716 	BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
3717 	BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3718 
3719 	inode->i_version = btrfs_inode_sequence(leaf, inode_item);
3720 	inode->i_generation = BTRFS_I(inode)->generation;
3721 	inode->i_rdev = 0;
3722 	rdev = btrfs_inode_rdev(leaf, inode_item);
3723 
3724 	BTRFS_I(inode)->index_cnt = (u64)-1;
3725 	BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
3726 
3727 cache_index:
3728 	/*
3729 	 * If we were modified in the current generation and evicted from memory
3730 	 * and then re-read we need to do a full sync since we don't have any
3731 	 * idea about which extents were modified before we were evicted from
3732 	 * cache.
3733 	 *
3734 	 * This is required for both inode re-read from disk and delayed inode
3735 	 * in delayed_nodes_tree.
3736 	 */
3737 	if (BTRFS_I(inode)->last_trans == root->fs_info->generation)
3738 		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3739 			&BTRFS_I(inode)->runtime_flags);
3740 
3741 	/*
3742 	 * We don't persist the id of the transaction where an unlink operation
3743 	 * against the inode was last made. So here we assume the inode might
3744 	 * have been evicted, and therefore the exact value of last_unlink_trans
3745 	 * lost, and set it to last_trans to avoid metadata inconsistencies
3746 	 * between the inode and its parent if the inode is fsync'ed and the log
3747 	 * replayed. For example, in the scenario:
3748 	 *
3749 	 * touch mydir/foo
3750 	 * ln mydir/foo mydir/bar
3751 	 * sync
3752 	 * unlink mydir/bar
3753 	 * echo 2 > /proc/sys/vm/drop_caches   # evicts inode
3754 	 * xfs_io -c fsync mydir/foo
3755 	 * <power failure>
3756 	 * mount fs, triggers fsync log replay
3757 	 *
3758 	 * We must make sure that when we fsync our inode foo we also log its
3759 	 * parent inode, otherwise after log replay the parent still has the
3760 	 * dentry with the "bar" name but our inode foo has a link count of 1
3761 	 * and doesn't have an inode ref with the name "bar" anymore.
3762 	 *
3763 	 * Setting last_unlink_trans to last_trans is a pessimistic approach,
3764 	 * but it guarantees correctness at the expense of occasional full
3765 	 * transaction commits on fsync if our inode is a directory, or if our
3766 	 * inode is not a directory, logging its parent unnecessarily.
3767 	 */
3768 	BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
3769 
3770 	path->slots[0]++;
3771 	if (inode->i_nlink != 1 ||
3772 	    path->slots[0] >= btrfs_header_nritems(leaf))
3773 		goto cache_acl;
3774 
3775 	btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
3776 	if (location.objectid != btrfs_ino(inode))
3777 		goto cache_acl;
3778 
3779 	ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3780 	if (location.type == BTRFS_INODE_REF_KEY) {
3781 		struct btrfs_inode_ref *ref;
3782 
3783 		ref = (struct btrfs_inode_ref *)ptr;
3784 		BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3785 	} else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3786 		struct btrfs_inode_extref *extref;
3787 
3788 		extref = (struct btrfs_inode_extref *)ptr;
3789 		BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3790 								     extref);
3791 	}
3792 cache_acl:
3793 	/*
3794 	 * try to precache a NULL acl entry for files that don't have
3795 	 * any xattrs or acls
3796 	 */
3797 	maybe_acls = acls_after_inode_item(leaf, path->slots[0],
3798 					   btrfs_ino(inode), &first_xattr_slot);
3799 	if (first_xattr_slot != -1) {
3800 		path->slots[0] = first_xattr_slot;
3801 		ret = btrfs_load_inode_props(inode, path);
3802 		if (ret)
3803 			btrfs_err(root->fs_info,
3804 				  "error loading props for ino %llu (root %llu): %d",
3805 				  btrfs_ino(inode),
3806 				  root->root_key.objectid, ret);
3807 	}
3808 	btrfs_free_path(path);
3809 
3810 	if (!maybe_acls)
3811 		cache_no_acl(inode);
3812 
3813 	switch (inode->i_mode & S_IFMT) {
3814 	case S_IFREG:
3815 		inode->i_mapping->a_ops = &btrfs_aops;
3816 		BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
3817 		inode->i_fop = &btrfs_file_operations;
3818 		inode->i_op = &btrfs_file_inode_operations;
3819 		break;
3820 	case S_IFDIR:
3821 		inode->i_fop = &btrfs_dir_file_operations;
3822 		if (root == root->fs_info->tree_root)
3823 			inode->i_op = &btrfs_dir_ro_inode_operations;
3824 		else
3825 			inode->i_op = &btrfs_dir_inode_operations;
3826 		break;
3827 	case S_IFLNK:
3828 		inode->i_op = &btrfs_symlink_inode_operations;
3829 		inode_nohighmem(inode);
3830 		inode->i_mapping->a_ops = &btrfs_symlink_aops;
3831 		break;
3832 	default:
3833 		inode->i_op = &btrfs_special_inode_operations;
3834 		init_special_inode(inode, inode->i_mode, rdev);
3835 		break;
3836 	}
3837 
3838 	btrfs_update_iflags(inode);
3839 	return 0;
3840 
3841 make_bad:
3842 	btrfs_free_path(path);
3843 	make_bad_inode(inode);
3844 	return ret;
3845 }
3846 
3847 /*
3848  * given a leaf and an inode, copy the inode fields into the leaf
3849  */
3850 static void fill_inode_item(struct btrfs_trans_handle *trans,
3851 			    struct extent_buffer *leaf,
3852 			    struct btrfs_inode_item *item,
3853 			    struct inode *inode)
3854 {
3855 	struct btrfs_map_token token;
3856 
3857 	btrfs_init_map_token(&token);
3858 
3859 	btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3860 	btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3861 	btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size,
3862 				   &token);
3863 	btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3864 	btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3865 
3866 	btrfs_set_token_timespec_sec(leaf, &item->atime,
3867 				     inode->i_atime.tv_sec, &token);
3868 	btrfs_set_token_timespec_nsec(leaf, &item->atime,
3869 				      inode->i_atime.tv_nsec, &token);
3870 
3871 	btrfs_set_token_timespec_sec(leaf, &item->mtime,
3872 				     inode->i_mtime.tv_sec, &token);
3873 	btrfs_set_token_timespec_nsec(leaf, &item->mtime,
3874 				      inode->i_mtime.tv_nsec, &token);
3875 
3876 	btrfs_set_token_timespec_sec(leaf, &item->ctime,
3877 				     inode->i_ctime.tv_sec, &token);
3878 	btrfs_set_token_timespec_nsec(leaf, &item->ctime,
3879 				      inode->i_ctime.tv_nsec, &token);
3880 
3881 	btrfs_set_token_timespec_sec(leaf, &item->otime,
3882 				     BTRFS_I(inode)->i_otime.tv_sec, &token);
3883 	btrfs_set_token_timespec_nsec(leaf, &item->otime,
3884 				      BTRFS_I(inode)->i_otime.tv_nsec, &token);
3885 
3886 	btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3887 				     &token);
3888 	btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation,
3889 					 &token);
3890 	btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
3891 	btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3892 	btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3893 	btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3894 	btrfs_set_token_inode_block_group(leaf, item, 0, &token);
3895 }
3896 
3897 /*
3898  * copy everything in the in-memory inode into the btree.
3899  */
3900 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
3901 				struct btrfs_root *root, struct inode *inode)
3902 {
3903 	struct btrfs_inode_item *inode_item;
3904 	struct btrfs_path *path;
3905 	struct extent_buffer *leaf;
3906 	int ret;
3907 
3908 	path = btrfs_alloc_path();
3909 	if (!path)
3910 		return -ENOMEM;
3911 
3912 	path->leave_spinning = 1;
3913 	ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
3914 				 1);
3915 	if (ret) {
3916 		if (ret > 0)
3917 			ret = -ENOENT;
3918 		goto failed;
3919 	}
3920 
3921 	leaf = path->nodes[0];
3922 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
3923 				    struct btrfs_inode_item);
3924 
3925 	fill_inode_item(trans, leaf, inode_item, inode);
3926 	btrfs_mark_buffer_dirty(leaf);
3927 	btrfs_set_inode_last_trans(trans, inode);
3928 	ret = 0;
3929 failed:
3930 	btrfs_free_path(path);
3931 	return ret;
3932 }
3933 
3934 /*
3935  * copy everything in the in-memory inode into the btree.
3936  */
3937 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
3938 				struct btrfs_root *root, struct inode *inode)
3939 {
3940 	int ret;
3941 
3942 	/*
3943 	 * If the inode is a free space inode, we can deadlock during commit
3944 	 * if we put it into the delayed code.
3945 	 *
3946 	 * The data relocation inode should also be directly updated
3947 	 * without delay
3948 	 */
3949 	if (!btrfs_is_free_space_inode(inode)
3950 	    && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
3951 	    && !test_bit(BTRFS_FS_LOG_RECOVERING, &root->fs_info->flags)) {
3952 		btrfs_update_root_times(trans, root);
3953 
3954 		ret = btrfs_delayed_update_inode(trans, root, inode);
3955 		if (!ret)
3956 			btrfs_set_inode_last_trans(trans, inode);
3957 		return ret;
3958 	}
3959 
3960 	return btrfs_update_inode_item(trans, root, inode);
3961 }
3962 
3963 noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3964 					 struct btrfs_root *root,
3965 					 struct inode *inode)
3966 {
3967 	int ret;
3968 
3969 	ret = btrfs_update_inode(trans, root, inode);
3970 	if (ret == -ENOSPC)
3971 		return btrfs_update_inode_item(trans, root, inode);
3972 	return ret;
3973 }
3974 
3975 /*
3976  * unlink helper that gets used here in inode.c and in the tree logging
3977  * recovery code.  It remove a link in a directory with a given name, and
3978  * also drops the back refs in the inode to the directory
3979  */
3980 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3981 				struct btrfs_root *root,
3982 				struct inode *dir, struct inode *inode,
3983 				const char *name, int name_len)
3984 {
3985 	struct btrfs_path *path;
3986 	int ret = 0;
3987 	struct extent_buffer *leaf;
3988 	struct btrfs_dir_item *di;
3989 	struct btrfs_key key;
3990 	u64 index;
3991 	u64 ino = btrfs_ino(inode);
3992 	u64 dir_ino = btrfs_ino(dir);
3993 
3994 	path = btrfs_alloc_path();
3995 	if (!path) {
3996 		ret = -ENOMEM;
3997 		goto out;
3998 	}
3999 
4000 	path->leave_spinning = 1;
4001 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4002 				    name, name_len, -1);
4003 	if (IS_ERR(di)) {
4004 		ret = PTR_ERR(di);
4005 		goto err;
4006 	}
4007 	if (!di) {
4008 		ret = -ENOENT;
4009 		goto err;
4010 	}
4011 	leaf = path->nodes[0];
4012 	btrfs_dir_item_key_to_cpu(leaf, di, &key);
4013 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
4014 	if (ret)
4015 		goto err;
4016 	btrfs_release_path(path);
4017 
4018 	/*
4019 	 * If we don't have dir index, we have to get it by looking up
4020 	 * the inode ref, since we get the inode ref, remove it directly,
4021 	 * it is unnecessary to do delayed deletion.
4022 	 *
4023 	 * But if we have dir index, needn't search inode ref to get it.
4024 	 * Since the inode ref is close to the inode item, it is better
4025 	 * that we delay to delete it, and just do this deletion when
4026 	 * we update the inode item.
4027 	 */
4028 	if (BTRFS_I(inode)->dir_index) {
4029 		ret = btrfs_delayed_delete_inode_ref(inode);
4030 		if (!ret) {
4031 			index = BTRFS_I(inode)->dir_index;
4032 			goto skip_backref;
4033 		}
4034 	}
4035 
4036 	ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
4037 				  dir_ino, &index);
4038 	if (ret) {
4039 		btrfs_info(root->fs_info,
4040 			"failed to delete reference to %.*s, inode %llu parent %llu",
4041 			name_len, name, ino, dir_ino);
4042 		btrfs_abort_transaction(trans, ret);
4043 		goto err;
4044 	}
4045 skip_backref:
4046 	ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
4047 	if (ret) {
4048 		btrfs_abort_transaction(trans, ret);
4049 		goto err;
4050 	}
4051 
4052 	ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
4053 					 inode, dir_ino);
4054 	if (ret != 0 && ret != -ENOENT) {
4055 		btrfs_abort_transaction(trans, ret);
4056 		goto err;
4057 	}
4058 
4059 	ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
4060 					   dir, index);
4061 	if (ret == -ENOENT)
4062 		ret = 0;
4063 	else if (ret)
4064 		btrfs_abort_transaction(trans, ret);
4065 err:
4066 	btrfs_free_path(path);
4067 	if (ret)
4068 		goto out;
4069 
4070 	btrfs_i_size_write(dir, dir->i_size - name_len * 2);
4071 	inode_inc_iversion(inode);
4072 	inode_inc_iversion(dir);
4073 	inode->i_ctime = dir->i_mtime =
4074 		dir->i_ctime = current_time(inode);
4075 	ret = btrfs_update_inode(trans, root, dir);
4076 out:
4077 	return ret;
4078 }
4079 
4080 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4081 		       struct btrfs_root *root,
4082 		       struct inode *dir, struct inode *inode,
4083 		       const char *name, int name_len)
4084 {
4085 	int ret;
4086 	ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
4087 	if (!ret) {
4088 		drop_nlink(inode);
4089 		ret = btrfs_update_inode(trans, root, inode);
4090 	}
4091 	return ret;
4092 }
4093 
4094 /*
4095  * helper to start transaction for unlink and rmdir.
4096  *
4097  * unlink and rmdir are special in btrfs, they do not always free space, so
4098  * if we cannot make our reservations the normal way try and see if there is
4099  * plenty of slack room in the global reserve to migrate, otherwise we cannot
4100  * allow the unlink to occur.
4101  */
4102 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
4103 {
4104 	struct btrfs_root *root = BTRFS_I(dir)->root;
4105 
4106 	/*
4107 	 * 1 for the possible orphan item
4108 	 * 1 for the dir item
4109 	 * 1 for the dir index
4110 	 * 1 for the inode ref
4111 	 * 1 for the inode
4112 	 */
4113 	return btrfs_start_transaction_fallback_global_rsv(root, 5, 5);
4114 }
4115 
4116 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4117 {
4118 	struct btrfs_root *root = BTRFS_I(dir)->root;
4119 	struct btrfs_trans_handle *trans;
4120 	struct inode *inode = d_inode(dentry);
4121 	int ret;
4122 
4123 	trans = __unlink_start_trans(dir);
4124 	if (IS_ERR(trans))
4125 		return PTR_ERR(trans);
4126 
4127 	btrfs_record_unlink_dir(trans, dir, d_inode(dentry), 0);
4128 
4129 	ret = btrfs_unlink_inode(trans, root, dir, d_inode(dentry),
4130 				 dentry->d_name.name, dentry->d_name.len);
4131 	if (ret)
4132 		goto out;
4133 
4134 	if (inode->i_nlink == 0) {
4135 		ret = btrfs_orphan_add(trans, inode);
4136 		if (ret)
4137 			goto out;
4138 	}
4139 
4140 out:
4141 	btrfs_end_transaction(trans, root);
4142 	btrfs_btree_balance_dirty(root);
4143 	return ret;
4144 }
4145 
4146 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
4147 			struct btrfs_root *root,
4148 			struct inode *dir, u64 objectid,
4149 			const char *name, int name_len)
4150 {
4151 	struct btrfs_path *path;
4152 	struct extent_buffer *leaf;
4153 	struct btrfs_dir_item *di;
4154 	struct btrfs_key key;
4155 	u64 index;
4156 	int ret;
4157 	u64 dir_ino = btrfs_ino(dir);
4158 
4159 	path = btrfs_alloc_path();
4160 	if (!path)
4161 		return -ENOMEM;
4162 
4163 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4164 				   name, name_len, -1);
4165 	if (IS_ERR_OR_NULL(di)) {
4166 		if (!di)
4167 			ret = -ENOENT;
4168 		else
4169 			ret = PTR_ERR(di);
4170 		goto out;
4171 	}
4172 
4173 	leaf = path->nodes[0];
4174 	btrfs_dir_item_key_to_cpu(leaf, di, &key);
4175 	WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4176 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
4177 	if (ret) {
4178 		btrfs_abort_transaction(trans, ret);
4179 		goto out;
4180 	}
4181 	btrfs_release_path(path);
4182 
4183 	ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
4184 				 objectid, root->root_key.objectid,
4185 				 dir_ino, &index, name, name_len);
4186 	if (ret < 0) {
4187 		if (ret != -ENOENT) {
4188 			btrfs_abort_transaction(trans, ret);
4189 			goto out;
4190 		}
4191 		di = btrfs_search_dir_index_item(root, path, dir_ino,
4192 						 name, name_len);
4193 		if (IS_ERR_OR_NULL(di)) {
4194 			if (!di)
4195 				ret = -ENOENT;
4196 			else
4197 				ret = PTR_ERR(di);
4198 			btrfs_abort_transaction(trans, ret);
4199 			goto out;
4200 		}
4201 
4202 		leaf = path->nodes[0];
4203 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4204 		btrfs_release_path(path);
4205 		index = key.offset;
4206 	}
4207 	btrfs_release_path(path);
4208 
4209 	ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
4210 	if (ret) {
4211 		btrfs_abort_transaction(trans, ret);
4212 		goto out;
4213 	}
4214 
4215 	btrfs_i_size_write(dir, dir->i_size - name_len * 2);
4216 	inode_inc_iversion(dir);
4217 	dir->i_mtime = dir->i_ctime = current_time(dir);
4218 	ret = btrfs_update_inode_fallback(trans, root, dir);
4219 	if (ret)
4220 		btrfs_abort_transaction(trans, ret);
4221 out:
4222 	btrfs_free_path(path);
4223 	return ret;
4224 }
4225 
4226 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4227 {
4228 	struct inode *inode = d_inode(dentry);
4229 	int err = 0;
4230 	struct btrfs_root *root = BTRFS_I(dir)->root;
4231 	struct btrfs_trans_handle *trans;
4232 	u64 last_unlink_trans;
4233 
4234 	if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
4235 		return -ENOTEMPTY;
4236 	if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID)
4237 		return -EPERM;
4238 
4239 	trans = __unlink_start_trans(dir);
4240 	if (IS_ERR(trans))
4241 		return PTR_ERR(trans);
4242 
4243 	if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4244 		err = btrfs_unlink_subvol(trans, root, dir,
4245 					  BTRFS_I(inode)->location.objectid,
4246 					  dentry->d_name.name,
4247 					  dentry->d_name.len);
4248 		goto out;
4249 	}
4250 
4251 	err = btrfs_orphan_add(trans, inode);
4252 	if (err)
4253 		goto out;
4254 
4255 	last_unlink_trans = BTRFS_I(inode)->last_unlink_trans;
4256 
4257 	/* now the directory is empty */
4258 	err = btrfs_unlink_inode(trans, root, dir, d_inode(dentry),
4259 				 dentry->d_name.name, dentry->d_name.len);
4260 	if (!err) {
4261 		btrfs_i_size_write(inode, 0);
4262 		/*
4263 		 * Propagate the last_unlink_trans value of the deleted dir to
4264 		 * its parent directory. This is to prevent an unrecoverable
4265 		 * log tree in the case we do something like this:
4266 		 * 1) create dir foo
4267 		 * 2) create snapshot under dir foo
4268 		 * 3) delete the snapshot
4269 		 * 4) rmdir foo
4270 		 * 5) mkdir foo
4271 		 * 6) fsync foo or some file inside foo
4272 		 */
4273 		if (last_unlink_trans >= trans->transid)
4274 			BTRFS_I(dir)->last_unlink_trans = last_unlink_trans;
4275 	}
4276 out:
4277 	btrfs_end_transaction(trans, root);
4278 	btrfs_btree_balance_dirty(root);
4279 
4280 	return err;
4281 }
4282 
4283 static int truncate_space_check(struct btrfs_trans_handle *trans,
4284 				struct btrfs_root *root,
4285 				u64 bytes_deleted)
4286 {
4287 	int ret;
4288 
4289 	/*
4290 	 * This is only used to apply pressure to the enospc system, we don't
4291 	 * intend to use this reservation at all.
4292 	 */
4293 	bytes_deleted = btrfs_csum_bytes_to_leaves(root, bytes_deleted);
4294 	bytes_deleted *= root->nodesize;
4295 	ret = btrfs_block_rsv_add(root, &root->fs_info->trans_block_rsv,
4296 				  bytes_deleted, BTRFS_RESERVE_NO_FLUSH);
4297 	if (!ret) {
4298 		trace_btrfs_space_reservation(root->fs_info, "transaction",
4299 					      trans->transid,
4300 					      bytes_deleted, 1);
4301 		trans->bytes_reserved += bytes_deleted;
4302 	}
4303 	return ret;
4304 
4305 }
4306 
4307 static int truncate_inline_extent(struct inode *inode,
4308 				  struct btrfs_path *path,
4309 				  struct btrfs_key *found_key,
4310 				  const u64 item_end,
4311 				  const u64 new_size)
4312 {
4313 	struct extent_buffer *leaf = path->nodes[0];
4314 	int slot = path->slots[0];
4315 	struct btrfs_file_extent_item *fi;
4316 	u32 size = (u32)(new_size - found_key->offset);
4317 	struct btrfs_root *root = BTRFS_I(inode)->root;
4318 
4319 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
4320 
4321 	if (btrfs_file_extent_compression(leaf, fi) != BTRFS_COMPRESS_NONE) {
4322 		loff_t offset = new_size;
4323 		loff_t page_end = ALIGN(offset, PAGE_SIZE);
4324 
4325 		/*
4326 		 * Zero out the remaining of the last page of our inline extent,
4327 		 * instead of directly truncating our inline extent here - that
4328 		 * would be much more complex (decompressing all the data, then
4329 		 * compressing the truncated data, which might be bigger than
4330 		 * the size of the inline extent, resize the extent, etc).
4331 		 * We release the path because to get the page we might need to
4332 		 * read the extent item from disk (data not in the page cache).
4333 		 */
4334 		btrfs_release_path(path);
4335 		return btrfs_truncate_block(inode, offset, page_end - offset,
4336 					0);
4337 	}
4338 
4339 	btrfs_set_file_extent_ram_bytes(leaf, fi, size);
4340 	size = btrfs_file_extent_calc_inline_size(size);
4341 	btrfs_truncate_item(root, path, size, 1);
4342 
4343 	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4344 		inode_sub_bytes(inode, item_end + 1 - new_size);
4345 
4346 	return 0;
4347 }
4348 
4349 /*
4350  * this can truncate away extent items, csum items and directory items.
4351  * It starts at a high offset and removes keys until it can't find
4352  * any higher than new_size
4353  *
4354  * csum items that cross the new i_size are truncated to the new size
4355  * as well.
4356  *
4357  * min_type is the minimum key type to truncate down to.  If set to 0, this
4358  * will kill all the items on this inode, including the INODE_ITEM_KEY.
4359  */
4360 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
4361 			       struct btrfs_root *root,
4362 			       struct inode *inode,
4363 			       u64 new_size, u32 min_type)
4364 {
4365 	struct btrfs_path *path;
4366 	struct extent_buffer *leaf;
4367 	struct btrfs_file_extent_item *fi;
4368 	struct btrfs_key key;
4369 	struct btrfs_key found_key;
4370 	u64 extent_start = 0;
4371 	u64 extent_num_bytes = 0;
4372 	u64 extent_offset = 0;
4373 	u64 item_end = 0;
4374 	u64 last_size = new_size;
4375 	u32 found_type = (u8)-1;
4376 	int found_extent;
4377 	int del_item;
4378 	int pending_del_nr = 0;
4379 	int pending_del_slot = 0;
4380 	int extent_type = -1;
4381 	int ret;
4382 	int err = 0;
4383 	u64 ino = btrfs_ino(inode);
4384 	u64 bytes_deleted = 0;
4385 	bool be_nice = 0;
4386 	bool should_throttle = 0;
4387 	bool should_end = 0;
4388 
4389 	BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
4390 
4391 	/*
4392 	 * for non-free space inodes and ref cows, we want to back off from
4393 	 * time to time
4394 	 */
4395 	if (!btrfs_is_free_space_inode(inode) &&
4396 	    test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4397 		be_nice = 1;
4398 
4399 	path = btrfs_alloc_path();
4400 	if (!path)
4401 		return -ENOMEM;
4402 	path->reada = READA_BACK;
4403 
4404 	/*
4405 	 * We want to drop from the next block forward in case this new size is
4406 	 * not block aligned since we will be keeping the last block of the
4407 	 * extent just the way it is.
4408 	 */
4409 	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4410 	    root == root->fs_info->tree_root)
4411 		btrfs_drop_extent_cache(inode, ALIGN(new_size,
4412 					root->sectorsize), (u64)-1, 0);
4413 
4414 	/*
4415 	 * This function is also used to drop the items in the log tree before
4416 	 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
4417 	 * it is used to drop the loged items. So we shouldn't kill the delayed
4418 	 * items.
4419 	 */
4420 	if (min_type == 0 && root == BTRFS_I(inode)->root)
4421 		btrfs_kill_delayed_inode_items(inode);
4422 
4423 	key.objectid = ino;
4424 	key.offset = (u64)-1;
4425 	key.type = (u8)-1;
4426 
4427 search_again:
4428 	/*
4429 	 * with a 16K leaf size and 128MB extents, you can actually queue
4430 	 * up a huge file in a single leaf.  Most of the time that
4431 	 * bytes_deleted is > 0, it will be huge by the time we get here
4432 	 */
4433 	if (be_nice && bytes_deleted > SZ_32M) {
4434 		if (btrfs_should_end_transaction(trans, root)) {
4435 			err = -EAGAIN;
4436 			goto error;
4437 		}
4438 	}
4439 
4440 
4441 	path->leave_spinning = 1;
4442 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
4443 	if (ret < 0) {
4444 		err = ret;
4445 		goto out;
4446 	}
4447 
4448 	if (ret > 0) {
4449 		/* there are no items in the tree for us to truncate, we're
4450 		 * done
4451 		 */
4452 		if (path->slots[0] == 0)
4453 			goto out;
4454 		path->slots[0]--;
4455 	}
4456 
4457 	while (1) {
4458 		fi = NULL;
4459 		leaf = path->nodes[0];
4460 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4461 		found_type = found_key.type;
4462 
4463 		if (found_key.objectid != ino)
4464 			break;
4465 
4466 		if (found_type < min_type)
4467 			break;
4468 
4469 		item_end = found_key.offset;
4470 		if (found_type == BTRFS_EXTENT_DATA_KEY) {
4471 			fi = btrfs_item_ptr(leaf, path->slots[0],
4472 					    struct btrfs_file_extent_item);
4473 			extent_type = btrfs_file_extent_type(leaf, fi);
4474 			if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4475 				item_end +=
4476 				    btrfs_file_extent_num_bytes(leaf, fi);
4477 			} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4478 				item_end += btrfs_file_extent_inline_len(leaf,
4479 							 path->slots[0], fi);
4480 			}
4481 			item_end--;
4482 		}
4483 		if (found_type > min_type) {
4484 			del_item = 1;
4485 		} else {
4486 			if (item_end < new_size)
4487 				break;
4488 			if (found_key.offset >= new_size)
4489 				del_item = 1;
4490 			else
4491 				del_item = 0;
4492 		}
4493 		found_extent = 0;
4494 		/* FIXME, shrink the extent if the ref count is only 1 */
4495 		if (found_type != BTRFS_EXTENT_DATA_KEY)
4496 			goto delete;
4497 
4498 		if (del_item)
4499 			last_size = found_key.offset;
4500 		else
4501 			last_size = new_size;
4502 
4503 		if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4504 			u64 num_dec;
4505 			extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
4506 			if (!del_item) {
4507 				u64 orig_num_bytes =
4508 					btrfs_file_extent_num_bytes(leaf, fi);
4509 				extent_num_bytes = ALIGN(new_size -
4510 						found_key.offset,
4511 						root->sectorsize);
4512 				btrfs_set_file_extent_num_bytes(leaf, fi,
4513 							 extent_num_bytes);
4514 				num_dec = (orig_num_bytes -
4515 					   extent_num_bytes);
4516 				if (test_bit(BTRFS_ROOT_REF_COWS,
4517 					     &root->state) &&
4518 				    extent_start != 0)
4519 					inode_sub_bytes(inode, num_dec);
4520 				btrfs_mark_buffer_dirty(leaf);
4521 			} else {
4522 				extent_num_bytes =
4523 					btrfs_file_extent_disk_num_bytes(leaf,
4524 									 fi);
4525 				extent_offset = found_key.offset -
4526 					btrfs_file_extent_offset(leaf, fi);
4527 
4528 				/* FIXME blocksize != 4096 */
4529 				num_dec = btrfs_file_extent_num_bytes(leaf, fi);
4530 				if (extent_start != 0) {
4531 					found_extent = 1;
4532 					if (test_bit(BTRFS_ROOT_REF_COWS,
4533 						     &root->state))
4534 						inode_sub_bytes(inode, num_dec);
4535 				}
4536 			}
4537 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4538 			/*
4539 			 * we can't truncate inline items that have had
4540 			 * special encodings
4541 			 */
4542 			if (!del_item &&
4543 			    btrfs_file_extent_encryption(leaf, fi) == 0 &&
4544 			    btrfs_file_extent_other_encoding(leaf, fi) == 0) {
4545 
4546 				/*
4547 				 * Need to release path in order to truncate a
4548 				 * compressed extent. So delete any accumulated
4549 				 * extent items so far.
4550 				 */
4551 				if (btrfs_file_extent_compression(leaf, fi) !=
4552 				    BTRFS_COMPRESS_NONE && pending_del_nr) {
4553 					err = btrfs_del_items(trans, root, path,
4554 							      pending_del_slot,
4555 							      pending_del_nr);
4556 					if (err) {
4557 						btrfs_abort_transaction(trans,
4558 									err);
4559 						goto error;
4560 					}
4561 					pending_del_nr = 0;
4562 				}
4563 
4564 				err = truncate_inline_extent(inode, path,
4565 							     &found_key,
4566 							     item_end,
4567 							     new_size);
4568 				if (err) {
4569 					btrfs_abort_transaction(trans, err);
4570 					goto error;
4571 				}
4572 			} else if (test_bit(BTRFS_ROOT_REF_COWS,
4573 					    &root->state)) {
4574 				inode_sub_bytes(inode, item_end + 1 - new_size);
4575 			}
4576 		}
4577 delete:
4578 		if (del_item) {
4579 			if (!pending_del_nr) {
4580 				/* no pending yet, add ourselves */
4581 				pending_del_slot = path->slots[0];
4582 				pending_del_nr = 1;
4583 			} else if (pending_del_nr &&
4584 				   path->slots[0] + 1 == pending_del_slot) {
4585 				/* hop on the pending chunk */
4586 				pending_del_nr++;
4587 				pending_del_slot = path->slots[0];
4588 			} else {
4589 				BUG();
4590 			}
4591 		} else {
4592 			break;
4593 		}
4594 		should_throttle = 0;
4595 
4596 		if (found_extent &&
4597 		    (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4598 		     root == root->fs_info->tree_root)) {
4599 			btrfs_set_path_blocking(path);
4600 			bytes_deleted += extent_num_bytes;
4601 			ret = btrfs_free_extent(trans, root, extent_start,
4602 						extent_num_bytes, 0,
4603 						btrfs_header_owner(leaf),
4604 						ino, extent_offset);
4605 			BUG_ON(ret);
4606 			if (btrfs_should_throttle_delayed_refs(trans, root))
4607 				btrfs_async_run_delayed_refs(root,
4608 					trans->delayed_ref_updates * 2,
4609 					trans->transid, 0);
4610 			if (be_nice) {
4611 				if (truncate_space_check(trans, root,
4612 							 extent_num_bytes)) {
4613 					should_end = 1;
4614 				}
4615 				if (btrfs_should_throttle_delayed_refs(trans,
4616 								       root)) {
4617 					should_throttle = 1;
4618 				}
4619 			}
4620 		}
4621 
4622 		if (found_type == BTRFS_INODE_ITEM_KEY)
4623 			break;
4624 
4625 		if (path->slots[0] == 0 ||
4626 		    path->slots[0] != pending_del_slot ||
4627 		    should_throttle || should_end) {
4628 			if (pending_del_nr) {
4629 				ret = btrfs_del_items(trans, root, path,
4630 						pending_del_slot,
4631 						pending_del_nr);
4632 				if (ret) {
4633 					btrfs_abort_transaction(trans, ret);
4634 					goto error;
4635 				}
4636 				pending_del_nr = 0;
4637 			}
4638 			btrfs_release_path(path);
4639 			if (should_throttle) {
4640 				unsigned long updates = trans->delayed_ref_updates;
4641 				if (updates) {
4642 					trans->delayed_ref_updates = 0;
4643 					ret = btrfs_run_delayed_refs(trans, root, updates * 2);
4644 					if (ret && !err)
4645 						err = ret;
4646 				}
4647 			}
4648 			/*
4649 			 * if we failed to refill our space rsv, bail out
4650 			 * and let the transaction restart
4651 			 */
4652 			if (should_end) {
4653 				err = -EAGAIN;
4654 				goto error;
4655 			}
4656 			goto search_again;
4657 		} else {
4658 			path->slots[0]--;
4659 		}
4660 	}
4661 out:
4662 	if (pending_del_nr) {
4663 		ret = btrfs_del_items(trans, root, path, pending_del_slot,
4664 				      pending_del_nr);
4665 		if (ret)
4666 			btrfs_abort_transaction(trans, ret);
4667 	}
4668 error:
4669 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
4670 		btrfs_ordered_update_i_size(inode, last_size, NULL);
4671 
4672 	btrfs_free_path(path);
4673 
4674 	if (be_nice && bytes_deleted > SZ_32M) {
4675 		unsigned long updates = trans->delayed_ref_updates;
4676 		if (updates) {
4677 			trans->delayed_ref_updates = 0;
4678 			ret = btrfs_run_delayed_refs(trans, root, updates * 2);
4679 			if (ret && !err)
4680 				err = ret;
4681 		}
4682 	}
4683 	return err;
4684 }
4685 
4686 /*
4687  * btrfs_truncate_block - read, zero a chunk and write a block
4688  * @inode - inode that we're zeroing
4689  * @from - the offset to start zeroing
4690  * @len - the length to zero, 0 to zero the entire range respective to the
4691  *	offset
4692  * @front - zero up to the offset instead of from the offset on
4693  *
4694  * This will find the block for the "from" offset and cow the block and zero the
4695  * part we want to zero.  This is used with truncate and hole punching.
4696  */
4697 int btrfs_truncate_block(struct inode *inode, loff_t from, loff_t len,
4698 			int front)
4699 {
4700 	struct address_space *mapping = inode->i_mapping;
4701 	struct btrfs_root *root = BTRFS_I(inode)->root;
4702 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4703 	struct btrfs_ordered_extent *ordered;
4704 	struct extent_state *cached_state = NULL;
4705 	char *kaddr;
4706 	u32 blocksize = root->sectorsize;
4707 	pgoff_t index = from >> PAGE_SHIFT;
4708 	unsigned offset = from & (blocksize - 1);
4709 	struct page *page;
4710 	gfp_t mask = btrfs_alloc_write_mask(mapping);
4711 	int ret = 0;
4712 	u64 block_start;
4713 	u64 block_end;
4714 
4715 	if ((offset & (blocksize - 1)) == 0 &&
4716 	    (!len || ((len & (blocksize - 1)) == 0)))
4717 		goto out;
4718 
4719 	ret = btrfs_delalloc_reserve_space(inode,
4720 			round_down(from, blocksize), blocksize);
4721 	if (ret)
4722 		goto out;
4723 
4724 again:
4725 	page = find_or_create_page(mapping, index, mask);
4726 	if (!page) {
4727 		btrfs_delalloc_release_space(inode,
4728 				round_down(from, blocksize),
4729 				blocksize);
4730 		ret = -ENOMEM;
4731 		goto out;
4732 	}
4733 
4734 	block_start = round_down(from, blocksize);
4735 	block_end = block_start + blocksize - 1;
4736 
4737 	if (!PageUptodate(page)) {
4738 		ret = btrfs_readpage(NULL, page);
4739 		lock_page(page);
4740 		if (page->mapping != mapping) {
4741 			unlock_page(page);
4742 			put_page(page);
4743 			goto again;
4744 		}
4745 		if (!PageUptodate(page)) {
4746 			ret = -EIO;
4747 			goto out_unlock;
4748 		}
4749 	}
4750 	wait_on_page_writeback(page);
4751 
4752 	lock_extent_bits(io_tree, block_start, block_end, &cached_state);
4753 	set_page_extent_mapped(page);
4754 
4755 	ordered = btrfs_lookup_ordered_extent(inode, block_start);
4756 	if (ordered) {
4757 		unlock_extent_cached(io_tree, block_start, block_end,
4758 				     &cached_state, GFP_NOFS);
4759 		unlock_page(page);
4760 		put_page(page);
4761 		btrfs_start_ordered_extent(inode, ordered, 1);
4762 		btrfs_put_ordered_extent(ordered);
4763 		goto again;
4764 	}
4765 
4766 	clear_extent_bit(&BTRFS_I(inode)->io_tree, block_start, block_end,
4767 			  EXTENT_DIRTY | EXTENT_DELALLOC |
4768 			  EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
4769 			  0, 0, &cached_state, GFP_NOFS);
4770 
4771 	ret = btrfs_set_extent_delalloc(inode, block_start, block_end,
4772 					&cached_state, 0);
4773 	if (ret) {
4774 		unlock_extent_cached(io_tree, block_start, block_end,
4775 				     &cached_state, GFP_NOFS);
4776 		goto out_unlock;
4777 	}
4778 
4779 	if (offset != blocksize) {
4780 		if (!len)
4781 			len = blocksize - offset;
4782 		kaddr = kmap(page);
4783 		if (front)
4784 			memset(kaddr + (block_start - page_offset(page)),
4785 				0, offset);
4786 		else
4787 			memset(kaddr + (block_start - page_offset(page)) +  offset,
4788 				0, len);
4789 		flush_dcache_page(page);
4790 		kunmap(page);
4791 	}
4792 	ClearPageChecked(page);
4793 	set_page_dirty(page);
4794 	unlock_extent_cached(io_tree, block_start, block_end, &cached_state,
4795 			     GFP_NOFS);
4796 
4797 out_unlock:
4798 	if (ret)
4799 		btrfs_delalloc_release_space(inode, block_start,
4800 					     blocksize);
4801 	unlock_page(page);
4802 	put_page(page);
4803 out:
4804 	return ret;
4805 }
4806 
4807 static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode,
4808 			     u64 offset, u64 len)
4809 {
4810 	struct btrfs_trans_handle *trans;
4811 	int ret;
4812 
4813 	/*
4814 	 * Still need to make sure the inode looks like it's been updated so
4815 	 * that any holes get logged if we fsync.
4816 	 */
4817 	if (btrfs_fs_incompat(root->fs_info, NO_HOLES)) {
4818 		BTRFS_I(inode)->last_trans = root->fs_info->generation;
4819 		BTRFS_I(inode)->last_sub_trans = root->log_transid;
4820 		BTRFS_I(inode)->last_log_commit = root->last_log_commit;
4821 		return 0;
4822 	}
4823 
4824 	/*
4825 	 * 1 - for the one we're dropping
4826 	 * 1 - for the one we're adding
4827 	 * 1 - for updating the inode.
4828 	 */
4829 	trans = btrfs_start_transaction(root, 3);
4830 	if (IS_ERR(trans))
4831 		return PTR_ERR(trans);
4832 
4833 	ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1);
4834 	if (ret) {
4835 		btrfs_abort_transaction(trans, ret);
4836 		btrfs_end_transaction(trans, root);
4837 		return ret;
4838 	}
4839 
4840 	ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset,
4841 				       0, 0, len, 0, len, 0, 0, 0);
4842 	if (ret)
4843 		btrfs_abort_transaction(trans, ret);
4844 	else
4845 		btrfs_update_inode(trans, root, inode);
4846 	btrfs_end_transaction(trans, root);
4847 	return ret;
4848 }
4849 
4850 /*
4851  * This function puts in dummy file extents for the area we're creating a hole
4852  * for.  So if we are truncating this file to a larger size we need to insert
4853  * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4854  * the range between oldsize and size
4855  */
4856 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
4857 {
4858 	struct btrfs_root *root = BTRFS_I(inode)->root;
4859 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4860 	struct extent_map *em = NULL;
4861 	struct extent_state *cached_state = NULL;
4862 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4863 	u64 hole_start = ALIGN(oldsize, root->sectorsize);
4864 	u64 block_end = ALIGN(size, root->sectorsize);
4865 	u64 last_byte;
4866 	u64 cur_offset;
4867 	u64 hole_size;
4868 	int err = 0;
4869 
4870 	/*
4871 	 * If our size started in the middle of a block we need to zero out the
4872 	 * rest of the block before we expand the i_size, otherwise we could
4873 	 * expose stale data.
4874 	 */
4875 	err = btrfs_truncate_block(inode, oldsize, 0, 0);
4876 	if (err)
4877 		return err;
4878 
4879 	if (size <= hole_start)
4880 		return 0;
4881 
4882 	while (1) {
4883 		struct btrfs_ordered_extent *ordered;
4884 
4885 		lock_extent_bits(io_tree, hole_start, block_end - 1,
4886 				 &cached_state);
4887 		ordered = btrfs_lookup_ordered_range(inode, hole_start,
4888 						     block_end - hole_start);
4889 		if (!ordered)
4890 			break;
4891 		unlock_extent_cached(io_tree, hole_start, block_end - 1,
4892 				     &cached_state, GFP_NOFS);
4893 		btrfs_start_ordered_extent(inode, ordered, 1);
4894 		btrfs_put_ordered_extent(ordered);
4895 	}
4896 
4897 	cur_offset = hole_start;
4898 	while (1) {
4899 		em = btrfs_get_extent(inode, NULL, 0, cur_offset,
4900 				block_end - cur_offset, 0);
4901 		if (IS_ERR(em)) {
4902 			err = PTR_ERR(em);
4903 			em = NULL;
4904 			break;
4905 		}
4906 		last_byte = min(extent_map_end(em), block_end);
4907 		last_byte = ALIGN(last_byte , root->sectorsize);
4908 		if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
4909 			struct extent_map *hole_em;
4910 			hole_size = last_byte - cur_offset;
4911 
4912 			err = maybe_insert_hole(root, inode, cur_offset,
4913 						hole_size);
4914 			if (err)
4915 				break;
4916 			btrfs_drop_extent_cache(inode, cur_offset,
4917 						cur_offset + hole_size - 1, 0);
4918 			hole_em = alloc_extent_map();
4919 			if (!hole_em) {
4920 				set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4921 					&BTRFS_I(inode)->runtime_flags);
4922 				goto next;
4923 			}
4924 			hole_em->start = cur_offset;
4925 			hole_em->len = hole_size;
4926 			hole_em->orig_start = cur_offset;
4927 
4928 			hole_em->block_start = EXTENT_MAP_HOLE;
4929 			hole_em->block_len = 0;
4930 			hole_em->orig_block_len = 0;
4931 			hole_em->ram_bytes = hole_size;
4932 			hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
4933 			hole_em->compress_type = BTRFS_COMPRESS_NONE;
4934 			hole_em->generation = root->fs_info->generation;
4935 
4936 			while (1) {
4937 				write_lock(&em_tree->lock);
4938 				err = add_extent_mapping(em_tree, hole_em, 1);
4939 				write_unlock(&em_tree->lock);
4940 				if (err != -EEXIST)
4941 					break;
4942 				btrfs_drop_extent_cache(inode, cur_offset,
4943 							cur_offset +
4944 							hole_size - 1, 0);
4945 			}
4946 			free_extent_map(hole_em);
4947 		}
4948 next:
4949 		free_extent_map(em);
4950 		em = NULL;
4951 		cur_offset = last_byte;
4952 		if (cur_offset >= block_end)
4953 			break;
4954 	}
4955 	free_extent_map(em);
4956 	unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
4957 			     GFP_NOFS);
4958 	return err;
4959 }
4960 
4961 static int btrfs_setsize(struct inode *inode, struct iattr *attr)
4962 {
4963 	struct btrfs_root *root = BTRFS_I(inode)->root;
4964 	struct btrfs_trans_handle *trans;
4965 	loff_t oldsize = i_size_read(inode);
4966 	loff_t newsize = attr->ia_size;
4967 	int mask = attr->ia_valid;
4968 	int ret;
4969 
4970 	/*
4971 	 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
4972 	 * special case where we need to update the times despite not having
4973 	 * these flags set.  For all other operations the VFS set these flags
4974 	 * explicitly if it wants a timestamp update.
4975 	 */
4976 	if (newsize != oldsize) {
4977 		inode_inc_iversion(inode);
4978 		if (!(mask & (ATTR_CTIME | ATTR_MTIME)))
4979 			inode->i_ctime = inode->i_mtime =
4980 				current_time(inode);
4981 	}
4982 
4983 	if (newsize > oldsize) {
4984 		/*
4985 		 * Don't do an expanding truncate while snapshoting is ongoing.
4986 		 * This is to ensure the snapshot captures a fully consistent
4987 		 * state of this file - if the snapshot captures this expanding
4988 		 * truncation, it must capture all writes that happened before
4989 		 * this truncation.
4990 		 */
4991 		btrfs_wait_for_snapshot_creation(root);
4992 		ret = btrfs_cont_expand(inode, oldsize, newsize);
4993 		if (ret) {
4994 			btrfs_end_write_no_snapshoting(root);
4995 			return ret;
4996 		}
4997 
4998 		trans = btrfs_start_transaction(root, 1);
4999 		if (IS_ERR(trans)) {
5000 			btrfs_end_write_no_snapshoting(root);
5001 			return PTR_ERR(trans);
5002 		}
5003 
5004 		i_size_write(inode, newsize);
5005 		btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
5006 		pagecache_isize_extended(inode, oldsize, newsize);
5007 		ret = btrfs_update_inode(trans, root, inode);
5008 		btrfs_end_write_no_snapshoting(root);
5009 		btrfs_end_transaction(trans, root);
5010 	} else {
5011 
5012 		/*
5013 		 * We're truncating a file that used to have good data down to
5014 		 * zero. Make sure it gets into the ordered flush list so that
5015 		 * any new writes get down to disk quickly.
5016 		 */
5017 		if (newsize == 0)
5018 			set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
5019 				&BTRFS_I(inode)->runtime_flags);
5020 
5021 		/*
5022 		 * 1 for the orphan item we're going to add
5023 		 * 1 for the orphan item deletion.
5024 		 */
5025 		trans = btrfs_start_transaction(root, 2);
5026 		if (IS_ERR(trans))
5027 			return PTR_ERR(trans);
5028 
5029 		/*
5030 		 * We need to do this in case we fail at _any_ point during the
5031 		 * actual truncate.  Once we do the truncate_setsize we could
5032 		 * invalidate pages which forces any outstanding ordered io to
5033 		 * be instantly completed which will give us extents that need
5034 		 * to be truncated.  If we fail to get an orphan inode down we
5035 		 * could have left over extents that were never meant to live,
5036 		 * so we need to guarantee from this point on that everything
5037 		 * will be consistent.
5038 		 */
5039 		ret = btrfs_orphan_add(trans, inode);
5040 		btrfs_end_transaction(trans, root);
5041 		if (ret)
5042 			return ret;
5043 
5044 		/* we don't support swapfiles, so vmtruncate shouldn't fail */
5045 		truncate_setsize(inode, newsize);
5046 
5047 		/* Disable nonlocked read DIO to avoid the end less truncate */
5048 		btrfs_inode_block_unlocked_dio(inode);
5049 		inode_dio_wait(inode);
5050 		btrfs_inode_resume_unlocked_dio(inode);
5051 
5052 		ret = btrfs_truncate(inode);
5053 		if (ret && inode->i_nlink) {
5054 			int err;
5055 
5056 			/*
5057 			 * failed to truncate, disk_i_size is only adjusted down
5058 			 * as we remove extents, so it should represent the true
5059 			 * size of the inode, so reset the in memory size and
5060 			 * delete our orphan entry.
5061 			 */
5062 			trans = btrfs_join_transaction(root);
5063 			if (IS_ERR(trans)) {
5064 				btrfs_orphan_del(NULL, inode);
5065 				return ret;
5066 			}
5067 			i_size_write(inode, BTRFS_I(inode)->disk_i_size);
5068 			err = btrfs_orphan_del(trans, inode);
5069 			if (err)
5070 				btrfs_abort_transaction(trans, err);
5071 			btrfs_end_transaction(trans, root);
5072 		}
5073 	}
5074 
5075 	return ret;
5076 }
5077 
5078 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
5079 {
5080 	struct inode *inode = d_inode(dentry);
5081 	struct btrfs_root *root = BTRFS_I(inode)->root;
5082 	int err;
5083 
5084 	if (btrfs_root_readonly(root))
5085 		return -EROFS;
5086 
5087 	err = setattr_prepare(dentry, attr);
5088 	if (err)
5089 		return err;
5090 
5091 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
5092 		err = btrfs_setsize(inode, attr);
5093 		if (err)
5094 			return err;
5095 	}
5096 
5097 	if (attr->ia_valid) {
5098 		setattr_copy(inode, attr);
5099 		inode_inc_iversion(inode);
5100 		err = btrfs_dirty_inode(inode);
5101 
5102 		if (!err && attr->ia_valid & ATTR_MODE)
5103 			err = posix_acl_chmod(inode, inode->i_mode);
5104 	}
5105 
5106 	return err;
5107 }
5108 
5109 /*
5110  * While truncating the inode pages during eviction, we get the VFS calling
5111  * btrfs_invalidatepage() against each page of the inode. This is slow because
5112  * the calls to btrfs_invalidatepage() result in a huge amount of calls to
5113  * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
5114  * extent_state structures over and over, wasting lots of time.
5115  *
5116  * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
5117  * those expensive operations on a per page basis and do only the ordered io
5118  * finishing, while we release here the extent_map and extent_state structures,
5119  * without the excessive merging and splitting.
5120  */
5121 static void evict_inode_truncate_pages(struct inode *inode)
5122 {
5123 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5124 	struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
5125 	struct rb_node *node;
5126 
5127 	ASSERT(inode->i_state & I_FREEING);
5128 	truncate_inode_pages_final(&inode->i_data);
5129 
5130 	write_lock(&map_tree->lock);
5131 	while (!RB_EMPTY_ROOT(&map_tree->map)) {
5132 		struct extent_map *em;
5133 
5134 		node = rb_first(&map_tree->map);
5135 		em = rb_entry(node, struct extent_map, rb_node);
5136 		clear_bit(EXTENT_FLAG_PINNED, &em->flags);
5137 		clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
5138 		remove_extent_mapping(map_tree, em);
5139 		free_extent_map(em);
5140 		if (need_resched()) {
5141 			write_unlock(&map_tree->lock);
5142 			cond_resched();
5143 			write_lock(&map_tree->lock);
5144 		}
5145 	}
5146 	write_unlock(&map_tree->lock);
5147 
5148 	/*
5149 	 * Keep looping until we have no more ranges in the io tree.
5150 	 * We can have ongoing bios started by readpages (called from readahead)
5151 	 * that have their endio callback (extent_io.c:end_bio_extent_readpage)
5152 	 * still in progress (unlocked the pages in the bio but did not yet
5153 	 * unlocked the ranges in the io tree). Therefore this means some
5154 	 * ranges can still be locked and eviction started because before
5155 	 * submitting those bios, which are executed by a separate task (work
5156 	 * queue kthread), inode references (inode->i_count) were not taken
5157 	 * (which would be dropped in the end io callback of each bio).
5158 	 * Therefore here we effectively end up waiting for those bios and
5159 	 * anyone else holding locked ranges without having bumped the inode's
5160 	 * reference count - if we don't do it, when they access the inode's
5161 	 * io_tree to unlock a range it may be too late, leading to an
5162 	 * use-after-free issue.
5163 	 */
5164 	spin_lock(&io_tree->lock);
5165 	while (!RB_EMPTY_ROOT(&io_tree->state)) {
5166 		struct extent_state *state;
5167 		struct extent_state *cached_state = NULL;
5168 		u64 start;
5169 		u64 end;
5170 
5171 		node = rb_first(&io_tree->state);
5172 		state = rb_entry(node, struct extent_state, rb_node);
5173 		start = state->start;
5174 		end = state->end;
5175 		spin_unlock(&io_tree->lock);
5176 
5177 		lock_extent_bits(io_tree, start, end, &cached_state);
5178 
5179 		/*
5180 		 * If still has DELALLOC flag, the extent didn't reach disk,
5181 		 * and its reserved space won't be freed by delayed_ref.
5182 		 * So we need to free its reserved space here.
5183 		 * (Refer to comment in btrfs_invalidatepage, case 2)
5184 		 *
5185 		 * Note, end is the bytenr of last byte, so we need + 1 here.
5186 		 */
5187 		if (state->state & EXTENT_DELALLOC)
5188 			btrfs_qgroup_free_data(inode, start, end - start + 1);
5189 
5190 		clear_extent_bit(io_tree, start, end,
5191 				 EXTENT_LOCKED | EXTENT_DIRTY |
5192 				 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
5193 				 EXTENT_DEFRAG, 1, 1,
5194 				 &cached_state, GFP_NOFS);
5195 
5196 		cond_resched();
5197 		spin_lock(&io_tree->lock);
5198 	}
5199 	spin_unlock(&io_tree->lock);
5200 }
5201 
5202 void btrfs_evict_inode(struct inode *inode)
5203 {
5204 	struct btrfs_trans_handle *trans;
5205 	struct btrfs_root *root = BTRFS_I(inode)->root;
5206 	struct btrfs_block_rsv *rsv, *global_rsv;
5207 	int steal_from_global = 0;
5208 	u64 min_size;
5209 	int ret;
5210 
5211 	trace_btrfs_inode_evict(inode);
5212 
5213 	if (!root) {
5214 		kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
5215 		return;
5216 	}
5217 
5218 	min_size = btrfs_calc_trunc_metadata_size(root, 1);
5219 
5220 	evict_inode_truncate_pages(inode);
5221 
5222 	if (inode->i_nlink &&
5223 	    ((btrfs_root_refs(&root->root_item) != 0 &&
5224 	      root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
5225 	     btrfs_is_free_space_inode(inode)))
5226 		goto no_delete;
5227 
5228 	if (is_bad_inode(inode)) {
5229 		btrfs_orphan_del(NULL, inode);
5230 		goto no_delete;
5231 	}
5232 	/* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
5233 	if (!special_file(inode->i_mode))
5234 		btrfs_wait_ordered_range(inode, 0, (u64)-1);
5235 
5236 	btrfs_free_io_failure_record(inode, 0, (u64)-1);
5237 
5238 	if (test_bit(BTRFS_FS_LOG_RECOVERING, &root->fs_info->flags)) {
5239 		BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
5240 				 &BTRFS_I(inode)->runtime_flags));
5241 		goto no_delete;
5242 	}
5243 
5244 	if (inode->i_nlink > 0) {
5245 		BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5246 		       root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
5247 		goto no_delete;
5248 	}
5249 
5250 	ret = btrfs_commit_inode_delayed_inode(inode);
5251 	if (ret) {
5252 		btrfs_orphan_del(NULL, inode);
5253 		goto no_delete;
5254 	}
5255 
5256 	rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
5257 	if (!rsv) {
5258 		btrfs_orphan_del(NULL, inode);
5259 		goto no_delete;
5260 	}
5261 	rsv->size = min_size;
5262 	rsv->failfast = 1;
5263 	global_rsv = &root->fs_info->global_block_rsv;
5264 
5265 	btrfs_i_size_write(inode, 0);
5266 
5267 	/*
5268 	 * This is a bit simpler than btrfs_truncate since we've already
5269 	 * reserved our space for our orphan item in the unlink, so we just
5270 	 * need to reserve some slack space in case we add bytes and update
5271 	 * inode item when doing the truncate.
5272 	 */
5273 	while (1) {
5274 		ret = btrfs_block_rsv_refill(root, rsv, min_size,
5275 					     BTRFS_RESERVE_FLUSH_LIMIT);
5276 
5277 		/*
5278 		 * Try and steal from the global reserve since we will
5279 		 * likely not use this space anyway, we want to try as
5280 		 * hard as possible to get this to work.
5281 		 */
5282 		if (ret)
5283 			steal_from_global++;
5284 		else
5285 			steal_from_global = 0;
5286 		ret = 0;
5287 
5288 		/*
5289 		 * steal_from_global == 0: we reserved stuff, hooray!
5290 		 * steal_from_global == 1: we didn't reserve stuff, boo!
5291 		 * steal_from_global == 2: we've committed, still not a lot of
5292 		 * room but maybe we'll have room in the global reserve this
5293 		 * time.
5294 		 * steal_from_global == 3: abandon all hope!
5295 		 */
5296 		if (steal_from_global > 2) {
5297 			btrfs_warn(root->fs_info,
5298 				"Could not get space for a delete, will truncate on mount %d",
5299 				ret);
5300 			btrfs_orphan_del(NULL, inode);
5301 			btrfs_free_block_rsv(root, rsv);
5302 			goto no_delete;
5303 		}
5304 
5305 		trans = btrfs_join_transaction(root);
5306 		if (IS_ERR(trans)) {
5307 			btrfs_orphan_del(NULL, inode);
5308 			btrfs_free_block_rsv(root, rsv);
5309 			goto no_delete;
5310 		}
5311 
5312 		/*
5313 		 * We can't just steal from the global reserve, we need to make
5314 		 * sure there is room to do it, if not we need to commit and try
5315 		 * again.
5316 		 */
5317 		if (steal_from_global) {
5318 			if (!btrfs_check_space_for_delayed_refs(trans, root))
5319 				ret = btrfs_block_rsv_migrate(global_rsv, rsv,
5320 							      min_size, 0);
5321 			else
5322 				ret = -ENOSPC;
5323 		}
5324 
5325 		/*
5326 		 * Couldn't steal from the global reserve, we have too much
5327 		 * pending stuff built up, commit the transaction and try it
5328 		 * again.
5329 		 */
5330 		if (ret) {
5331 			ret = btrfs_commit_transaction(trans, root);
5332 			if (ret) {
5333 				btrfs_orphan_del(NULL, inode);
5334 				btrfs_free_block_rsv(root, rsv);
5335 				goto no_delete;
5336 			}
5337 			continue;
5338 		} else {
5339 			steal_from_global = 0;
5340 		}
5341 
5342 		trans->block_rsv = rsv;
5343 
5344 		ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
5345 		if (ret != -ENOSPC && ret != -EAGAIN)
5346 			break;
5347 
5348 		trans->block_rsv = &root->fs_info->trans_block_rsv;
5349 		btrfs_end_transaction(trans, root);
5350 		trans = NULL;
5351 		btrfs_btree_balance_dirty(root);
5352 	}
5353 
5354 	btrfs_free_block_rsv(root, rsv);
5355 
5356 	/*
5357 	 * Errors here aren't a big deal, it just means we leave orphan items
5358 	 * in the tree.  They will be cleaned up on the next mount.
5359 	 */
5360 	if (ret == 0) {
5361 		trans->block_rsv = root->orphan_block_rsv;
5362 		btrfs_orphan_del(trans, inode);
5363 	} else {
5364 		btrfs_orphan_del(NULL, inode);
5365 	}
5366 
5367 	trans->block_rsv = &root->fs_info->trans_block_rsv;
5368 	if (!(root == root->fs_info->tree_root ||
5369 	      root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
5370 		btrfs_return_ino(root, btrfs_ino(inode));
5371 
5372 	btrfs_end_transaction(trans, root);
5373 	btrfs_btree_balance_dirty(root);
5374 no_delete:
5375 	btrfs_remove_delayed_node(inode);
5376 	clear_inode(inode);
5377 }
5378 
5379 /*
5380  * this returns the key found in the dir entry in the location pointer.
5381  * If no dir entries were found, location->objectid is 0.
5382  */
5383 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
5384 			       struct btrfs_key *location)
5385 {
5386 	const char *name = dentry->d_name.name;
5387 	int namelen = dentry->d_name.len;
5388 	struct btrfs_dir_item *di;
5389 	struct btrfs_path *path;
5390 	struct btrfs_root *root = BTRFS_I(dir)->root;
5391 	int ret = 0;
5392 
5393 	path = btrfs_alloc_path();
5394 	if (!path)
5395 		return -ENOMEM;
5396 
5397 	di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name,
5398 				    namelen, 0);
5399 	if (IS_ERR(di))
5400 		ret = PTR_ERR(di);
5401 
5402 	if (IS_ERR_OR_NULL(di))
5403 		goto out_err;
5404 
5405 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
5406 out:
5407 	btrfs_free_path(path);
5408 	return ret;
5409 out_err:
5410 	location->objectid = 0;
5411 	goto out;
5412 }
5413 
5414 /*
5415  * when we hit a tree root in a directory, the btrfs part of the inode
5416  * needs to be changed to reflect the root directory of the tree root.  This
5417  * is kind of like crossing a mount point.
5418  */
5419 static int fixup_tree_root_location(struct btrfs_root *root,
5420 				    struct inode *dir,
5421 				    struct dentry *dentry,
5422 				    struct btrfs_key *location,
5423 				    struct btrfs_root **sub_root)
5424 {
5425 	struct btrfs_path *path;
5426 	struct btrfs_root *new_root;
5427 	struct btrfs_root_ref *ref;
5428 	struct extent_buffer *leaf;
5429 	struct btrfs_key key;
5430 	int ret;
5431 	int err = 0;
5432 
5433 	path = btrfs_alloc_path();
5434 	if (!path) {
5435 		err = -ENOMEM;
5436 		goto out;
5437 	}
5438 
5439 	err = -ENOENT;
5440 	key.objectid = BTRFS_I(dir)->root->root_key.objectid;
5441 	key.type = BTRFS_ROOT_REF_KEY;
5442 	key.offset = location->objectid;
5443 
5444 	ret = btrfs_search_slot(NULL, root->fs_info->tree_root, &key, path,
5445 				0, 0);
5446 	if (ret) {
5447 		if (ret < 0)
5448 			err = ret;
5449 		goto out;
5450 	}
5451 
5452 	leaf = path->nodes[0];
5453 	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
5454 	if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
5455 	    btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
5456 		goto out;
5457 
5458 	ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
5459 				   (unsigned long)(ref + 1),
5460 				   dentry->d_name.len);
5461 	if (ret)
5462 		goto out;
5463 
5464 	btrfs_release_path(path);
5465 
5466 	new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
5467 	if (IS_ERR(new_root)) {
5468 		err = PTR_ERR(new_root);
5469 		goto out;
5470 	}
5471 
5472 	*sub_root = new_root;
5473 	location->objectid = btrfs_root_dirid(&new_root->root_item);
5474 	location->type = BTRFS_INODE_ITEM_KEY;
5475 	location->offset = 0;
5476 	err = 0;
5477 out:
5478 	btrfs_free_path(path);
5479 	return err;
5480 }
5481 
5482 static void inode_tree_add(struct inode *inode)
5483 {
5484 	struct btrfs_root *root = BTRFS_I(inode)->root;
5485 	struct btrfs_inode *entry;
5486 	struct rb_node **p;
5487 	struct rb_node *parent;
5488 	struct rb_node *new = &BTRFS_I(inode)->rb_node;
5489 	u64 ino = btrfs_ino(inode);
5490 
5491 	if (inode_unhashed(inode))
5492 		return;
5493 	parent = NULL;
5494 	spin_lock(&root->inode_lock);
5495 	p = &root->inode_tree.rb_node;
5496 	while (*p) {
5497 		parent = *p;
5498 		entry = rb_entry(parent, struct btrfs_inode, rb_node);
5499 
5500 		if (ino < btrfs_ino(&entry->vfs_inode))
5501 			p = &parent->rb_left;
5502 		else if (ino > btrfs_ino(&entry->vfs_inode))
5503 			p = &parent->rb_right;
5504 		else {
5505 			WARN_ON(!(entry->vfs_inode.i_state &
5506 				  (I_WILL_FREE | I_FREEING)));
5507 			rb_replace_node(parent, new, &root->inode_tree);
5508 			RB_CLEAR_NODE(parent);
5509 			spin_unlock(&root->inode_lock);
5510 			return;
5511 		}
5512 	}
5513 	rb_link_node(new, parent, p);
5514 	rb_insert_color(new, &root->inode_tree);
5515 	spin_unlock(&root->inode_lock);
5516 }
5517 
5518 static void inode_tree_del(struct inode *inode)
5519 {
5520 	struct btrfs_root *root = BTRFS_I(inode)->root;
5521 	int empty = 0;
5522 
5523 	spin_lock(&root->inode_lock);
5524 	if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5525 		rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5526 		RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
5527 		empty = RB_EMPTY_ROOT(&root->inode_tree);
5528 	}
5529 	spin_unlock(&root->inode_lock);
5530 
5531 	if (empty && btrfs_root_refs(&root->root_item) == 0) {
5532 		synchronize_srcu(&root->fs_info->subvol_srcu);
5533 		spin_lock(&root->inode_lock);
5534 		empty = RB_EMPTY_ROOT(&root->inode_tree);
5535 		spin_unlock(&root->inode_lock);
5536 		if (empty)
5537 			btrfs_add_dead_root(root);
5538 	}
5539 }
5540 
5541 void btrfs_invalidate_inodes(struct btrfs_root *root)
5542 {
5543 	struct rb_node *node;
5544 	struct rb_node *prev;
5545 	struct btrfs_inode *entry;
5546 	struct inode *inode;
5547 	u64 objectid = 0;
5548 
5549 	if (!test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
5550 		WARN_ON(btrfs_root_refs(&root->root_item) != 0);
5551 
5552 	spin_lock(&root->inode_lock);
5553 again:
5554 	node = root->inode_tree.rb_node;
5555 	prev = NULL;
5556 	while (node) {
5557 		prev = node;
5558 		entry = rb_entry(node, struct btrfs_inode, rb_node);
5559 
5560 		if (objectid < btrfs_ino(&entry->vfs_inode))
5561 			node = node->rb_left;
5562 		else if (objectid > btrfs_ino(&entry->vfs_inode))
5563 			node = node->rb_right;
5564 		else
5565 			break;
5566 	}
5567 	if (!node) {
5568 		while (prev) {
5569 			entry = rb_entry(prev, struct btrfs_inode, rb_node);
5570 			if (objectid <= btrfs_ino(&entry->vfs_inode)) {
5571 				node = prev;
5572 				break;
5573 			}
5574 			prev = rb_next(prev);
5575 		}
5576 	}
5577 	while (node) {
5578 		entry = rb_entry(node, struct btrfs_inode, rb_node);
5579 		objectid = btrfs_ino(&entry->vfs_inode) + 1;
5580 		inode = igrab(&entry->vfs_inode);
5581 		if (inode) {
5582 			spin_unlock(&root->inode_lock);
5583 			if (atomic_read(&inode->i_count) > 1)
5584 				d_prune_aliases(inode);
5585 			/*
5586 			 * btrfs_drop_inode will have it removed from
5587 			 * the inode cache when its usage count
5588 			 * hits zero.
5589 			 */
5590 			iput(inode);
5591 			cond_resched();
5592 			spin_lock(&root->inode_lock);
5593 			goto again;
5594 		}
5595 
5596 		if (cond_resched_lock(&root->inode_lock))
5597 			goto again;
5598 
5599 		node = rb_next(node);
5600 	}
5601 	spin_unlock(&root->inode_lock);
5602 }
5603 
5604 static int btrfs_init_locked_inode(struct inode *inode, void *p)
5605 {
5606 	struct btrfs_iget_args *args = p;
5607 	inode->i_ino = args->location->objectid;
5608 	memcpy(&BTRFS_I(inode)->location, args->location,
5609 	       sizeof(*args->location));
5610 	BTRFS_I(inode)->root = args->root;
5611 	return 0;
5612 }
5613 
5614 static int btrfs_find_actor(struct inode *inode, void *opaque)
5615 {
5616 	struct btrfs_iget_args *args = opaque;
5617 	return args->location->objectid == BTRFS_I(inode)->location.objectid &&
5618 		args->root == BTRFS_I(inode)->root;
5619 }
5620 
5621 static struct inode *btrfs_iget_locked(struct super_block *s,
5622 				       struct btrfs_key *location,
5623 				       struct btrfs_root *root)
5624 {
5625 	struct inode *inode;
5626 	struct btrfs_iget_args args;
5627 	unsigned long hashval = btrfs_inode_hash(location->objectid, root);
5628 
5629 	args.location = location;
5630 	args.root = root;
5631 
5632 	inode = iget5_locked(s, hashval, btrfs_find_actor,
5633 			     btrfs_init_locked_inode,
5634 			     (void *)&args);
5635 	return inode;
5636 }
5637 
5638 /* Get an inode object given its location and corresponding root.
5639  * Returns in *is_new if the inode was read from disk
5640  */
5641 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
5642 			 struct btrfs_root *root, int *new)
5643 {
5644 	struct inode *inode;
5645 
5646 	inode = btrfs_iget_locked(s, location, root);
5647 	if (!inode)
5648 		return ERR_PTR(-ENOMEM);
5649 
5650 	if (inode->i_state & I_NEW) {
5651 		int ret;
5652 
5653 		ret = btrfs_read_locked_inode(inode);
5654 		if (!is_bad_inode(inode)) {
5655 			inode_tree_add(inode);
5656 			unlock_new_inode(inode);
5657 			if (new)
5658 				*new = 1;
5659 		} else {
5660 			unlock_new_inode(inode);
5661 			iput(inode);
5662 			ASSERT(ret < 0);
5663 			inode = ERR_PTR(ret < 0 ? ret : -ESTALE);
5664 		}
5665 	}
5666 
5667 	return inode;
5668 }
5669 
5670 static struct inode *new_simple_dir(struct super_block *s,
5671 				    struct btrfs_key *key,
5672 				    struct btrfs_root *root)
5673 {
5674 	struct inode *inode = new_inode(s);
5675 
5676 	if (!inode)
5677 		return ERR_PTR(-ENOMEM);
5678 
5679 	BTRFS_I(inode)->root = root;
5680 	memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
5681 	set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
5682 
5683 	inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
5684 	inode->i_op = &btrfs_dir_ro_inode_operations;
5685 	inode->i_fop = &simple_dir_operations;
5686 	inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
5687 	inode->i_mtime = current_time(inode);
5688 	inode->i_atime = inode->i_mtime;
5689 	inode->i_ctime = inode->i_mtime;
5690 	BTRFS_I(inode)->i_otime = inode->i_mtime;
5691 
5692 	return inode;
5693 }
5694 
5695 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
5696 {
5697 	struct inode *inode;
5698 	struct btrfs_root *root = BTRFS_I(dir)->root;
5699 	struct btrfs_root *sub_root = root;
5700 	struct btrfs_key location;
5701 	int index;
5702 	int ret = 0;
5703 
5704 	if (dentry->d_name.len > BTRFS_NAME_LEN)
5705 		return ERR_PTR(-ENAMETOOLONG);
5706 
5707 	ret = btrfs_inode_by_name(dir, dentry, &location);
5708 	if (ret < 0)
5709 		return ERR_PTR(ret);
5710 
5711 	if (location.objectid == 0)
5712 		return ERR_PTR(-ENOENT);
5713 
5714 	if (location.type == BTRFS_INODE_ITEM_KEY) {
5715 		inode = btrfs_iget(dir->i_sb, &location, root, NULL);
5716 		return inode;
5717 	}
5718 
5719 	BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
5720 
5721 	index = srcu_read_lock(&root->fs_info->subvol_srcu);
5722 	ret = fixup_tree_root_location(root, dir, dentry,
5723 				       &location, &sub_root);
5724 	if (ret < 0) {
5725 		if (ret != -ENOENT)
5726 			inode = ERR_PTR(ret);
5727 		else
5728 			inode = new_simple_dir(dir->i_sb, &location, sub_root);
5729 	} else {
5730 		inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
5731 	}
5732 	srcu_read_unlock(&root->fs_info->subvol_srcu, index);
5733 
5734 	if (!IS_ERR(inode) && root != sub_root) {
5735 		down_read(&root->fs_info->cleanup_work_sem);
5736 		if (!(inode->i_sb->s_flags & MS_RDONLY))
5737 			ret = btrfs_orphan_cleanup(sub_root);
5738 		up_read(&root->fs_info->cleanup_work_sem);
5739 		if (ret) {
5740 			iput(inode);
5741 			inode = ERR_PTR(ret);
5742 		}
5743 	}
5744 
5745 	return inode;
5746 }
5747 
5748 static int btrfs_dentry_delete(const struct dentry *dentry)
5749 {
5750 	struct btrfs_root *root;
5751 	struct inode *inode = d_inode(dentry);
5752 
5753 	if (!inode && !IS_ROOT(dentry))
5754 		inode = d_inode(dentry->d_parent);
5755 
5756 	if (inode) {
5757 		root = BTRFS_I(inode)->root;
5758 		if (btrfs_root_refs(&root->root_item) == 0)
5759 			return 1;
5760 
5761 		if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5762 			return 1;
5763 	}
5764 	return 0;
5765 }
5766 
5767 static void btrfs_dentry_release(struct dentry *dentry)
5768 {
5769 	kfree(dentry->d_fsdata);
5770 }
5771 
5772 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
5773 				   unsigned int flags)
5774 {
5775 	struct inode *inode;
5776 
5777 	inode = btrfs_lookup_dentry(dir, dentry);
5778 	if (IS_ERR(inode)) {
5779 		if (PTR_ERR(inode) == -ENOENT)
5780 			inode = NULL;
5781 		else
5782 			return ERR_CAST(inode);
5783 	}
5784 
5785 	return d_splice_alias(inode, dentry);
5786 }
5787 
5788 unsigned char btrfs_filetype_table[] = {
5789 	DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
5790 };
5791 
5792 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
5793 {
5794 	struct inode *inode = file_inode(file);
5795 	struct btrfs_root *root = BTRFS_I(inode)->root;
5796 	struct btrfs_item *item;
5797 	struct btrfs_dir_item *di;
5798 	struct btrfs_key key;
5799 	struct btrfs_key found_key;
5800 	struct btrfs_path *path;
5801 	struct list_head ins_list;
5802 	struct list_head del_list;
5803 	int ret;
5804 	struct extent_buffer *leaf;
5805 	int slot;
5806 	unsigned char d_type;
5807 	int over = 0;
5808 	u32 di_cur;
5809 	u32 di_total;
5810 	u32 di_len;
5811 	int key_type = BTRFS_DIR_INDEX_KEY;
5812 	char tmp_name[32];
5813 	char *name_ptr;
5814 	int name_len;
5815 	int is_curr = 0;	/* ctx->pos points to the current index? */
5816 	bool emitted;
5817 	bool put = false;
5818 
5819 	/* FIXME, use a real flag for deciding about the key type */
5820 	if (root->fs_info->tree_root == root)
5821 		key_type = BTRFS_DIR_ITEM_KEY;
5822 
5823 	if (!dir_emit_dots(file, ctx))
5824 		return 0;
5825 
5826 	path = btrfs_alloc_path();
5827 	if (!path)
5828 		return -ENOMEM;
5829 
5830 	path->reada = READA_FORWARD;
5831 
5832 	if (key_type == BTRFS_DIR_INDEX_KEY) {
5833 		INIT_LIST_HEAD(&ins_list);
5834 		INIT_LIST_HEAD(&del_list);
5835 		put = btrfs_readdir_get_delayed_items(inode, &ins_list,
5836 						      &del_list);
5837 	}
5838 
5839 	key.type = key_type;
5840 	key.offset = ctx->pos;
5841 	key.objectid = btrfs_ino(inode);
5842 
5843 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5844 	if (ret < 0)
5845 		goto err;
5846 
5847 	emitted = false;
5848 	while (1) {
5849 		leaf = path->nodes[0];
5850 		slot = path->slots[0];
5851 		if (slot >= btrfs_header_nritems(leaf)) {
5852 			ret = btrfs_next_leaf(root, path);
5853 			if (ret < 0)
5854 				goto err;
5855 			else if (ret > 0)
5856 				break;
5857 			continue;
5858 		}
5859 
5860 		item = btrfs_item_nr(slot);
5861 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
5862 
5863 		if (found_key.objectid != key.objectid)
5864 			break;
5865 		if (found_key.type != key_type)
5866 			break;
5867 		if (found_key.offset < ctx->pos)
5868 			goto next;
5869 		if (key_type == BTRFS_DIR_INDEX_KEY &&
5870 		    btrfs_should_delete_dir_index(&del_list,
5871 						  found_key.offset))
5872 			goto next;
5873 
5874 		ctx->pos = found_key.offset;
5875 		is_curr = 1;
5876 
5877 		di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
5878 		di_cur = 0;
5879 		di_total = btrfs_item_size(leaf, item);
5880 
5881 		while (di_cur < di_total) {
5882 			struct btrfs_key location;
5883 
5884 			if (verify_dir_item(root, leaf, di))
5885 				break;
5886 
5887 			name_len = btrfs_dir_name_len(leaf, di);
5888 			if (name_len <= sizeof(tmp_name)) {
5889 				name_ptr = tmp_name;
5890 			} else {
5891 				name_ptr = kmalloc(name_len, GFP_KERNEL);
5892 				if (!name_ptr) {
5893 					ret = -ENOMEM;
5894 					goto err;
5895 				}
5896 			}
5897 			read_extent_buffer(leaf, name_ptr,
5898 					   (unsigned long)(di + 1), name_len);
5899 
5900 			d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
5901 			btrfs_dir_item_key_to_cpu(leaf, di, &location);
5902 
5903 
5904 			/* is this a reference to our own snapshot? If so
5905 			 * skip it.
5906 			 *
5907 			 * In contrast to old kernels, we insert the snapshot's
5908 			 * dir item and dir index after it has been created, so
5909 			 * we won't find a reference to our own snapshot. We
5910 			 * still keep the following code for backward
5911 			 * compatibility.
5912 			 */
5913 			if (location.type == BTRFS_ROOT_ITEM_KEY &&
5914 			    location.objectid == root->root_key.objectid) {
5915 				over = 0;
5916 				goto skip;
5917 			}
5918 			over = !dir_emit(ctx, name_ptr, name_len,
5919 				       location.objectid, d_type);
5920 
5921 skip:
5922 			if (name_ptr != tmp_name)
5923 				kfree(name_ptr);
5924 
5925 			if (over)
5926 				goto nopos;
5927 			emitted = true;
5928 			di_len = btrfs_dir_name_len(leaf, di) +
5929 				 btrfs_dir_data_len(leaf, di) + sizeof(*di);
5930 			di_cur += di_len;
5931 			di = (struct btrfs_dir_item *)((char *)di + di_len);
5932 		}
5933 next:
5934 		path->slots[0]++;
5935 	}
5936 
5937 	if (key_type == BTRFS_DIR_INDEX_KEY) {
5938 		if (is_curr)
5939 			ctx->pos++;
5940 		ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list, &emitted);
5941 		if (ret)
5942 			goto nopos;
5943 	}
5944 
5945 	/*
5946 	 * If we haven't emitted any dir entry, we must not touch ctx->pos as
5947 	 * it was was set to the termination value in previous call. We assume
5948 	 * that "." and ".." were emitted if we reach this point and set the
5949 	 * termination value as well for an empty directory.
5950 	 */
5951 	if (ctx->pos > 2 && !emitted)
5952 		goto nopos;
5953 
5954 	/* Reached end of directory/root. Bump pos past the last item. */
5955 	ctx->pos++;
5956 
5957 	/*
5958 	 * Stop new entries from being returned after we return the last
5959 	 * entry.
5960 	 *
5961 	 * New directory entries are assigned a strictly increasing
5962 	 * offset.  This means that new entries created during readdir
5963 	 * are *guaranteed* to be seen in the future by that readdir.
5964 	 * This has broken buggy programs which operate on names as
5965 	 * they're returned by readdir.  Until we re-use freed offsets
5966 	 * we have this hack to stop new entries from being returned
5967 	 * under the assumption that they'll never reach this huge
5968 	 * offset.
5969 	 *
5970 	 * This is being careful not to overflow 32bit loff_t unless the
5971 	 * last entry requires it because doing so has broken 32bit apps
5972 	 * in the past.
5973 	 */
5974 	if (key_type == BTRFS_DIR_INDEX_KEY) {
5975 		if (ctx->pos >= INT_MAX)
5976 			ctx->pos = LLONG_MAX;
5977 		else
5978 			ctx->pos = INT_MAX;
5979 	}
5980 nopos:
5981 	ret = 0;
5982 err:
5983 	if (put)
5984 		btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list);
5985 	btrfs_free_path(path);
5986 	return ret;
5987 }
5988 
5989 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
5990 {
5991 	struct btrfs_root *root = BTRFS_I(inode)->root;
5992 	struct btrfs_trans_handle *trans;
5993 	int ret = 0;
5994 	bool nolock = false;
5995 
5996 	if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
5997 		return 0;
5998 
5999 	if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(inode))
6000 		nolock = true;
6001 
6002 	if (wbc->sync_mode == WB_SYNC_ALL) {
6003 		if (nolock)
6004 			trans = btrfs_join_transaction_nolock(root);
6005 		else
6006 			trans = btrfs_join_transaction(root);
6007 		if (IS_ERR(trans))
6008 			return PTR_ERR(trans);
6009 		ret = btrfs_commit_transaction(trans, root);
6010 	}
6011 	return ret;
6012 }
6013 
6014 /*
6015  * This is somewhat expensive, updating the tree every time the
6016  * inode changes.  But, it is most likely to find the inode in cache.
6017  * FIXME, needs more benchmarking...there are no reasons other than performance
6018  * to keep or drop this code.
6019  */
6020 static int btrfs_dirty_inode(struct inode *inode)
6021 {
6022 	struct btrfs_root *root = BTRFS_I(inode)->root;
6023 	struct btrfs_trans_handle *trans;
6024 	int ret;
6025 
6026 	if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
6027 		return 0;
6028 
6029 	trans = btrfs_join_transaction(root);
6030 	if (IS_ERR(trans))
6031 		return PTR_ERR(trans);
6032 
6033 	ret = btrfs_update_inode(trans, root, inode);
6034 	if (ret && ret == -ENOSPC) {
6035 		/* whoops, lets try again with the full transaction */
6036 		btrfs_end_transaction(trans, root);
6037 		trans = btrfs_start_transaction(root, 1);
6038 		if (IS_ERR(trans))
6039 			return PTR_ERR(trans);
6040 
6041 		ret = btrfs_update_inode(trans, root, inode);
6042 	}
6043 	btrfs_end_transaction(trans, root);
6044 	if (BTRFS_I(inode)->delayed_node)
6045 		btrfs_balance_delayed_items(root);
6046 
6047 	return ret;
6048 }
6049 
6050 /*
6051  * This is a copy of file_update_time.  We need this so we can return error on
6052  * ENOSPC for updating the inode in the case of file write and mmap writes.
6053  */
6054 static int btrfs_update_time(struct inode *inode, struct timespec *now,
6055 			     int flags)
6056 {
6057 	struct btrfs_root *root = BTRFS_I(inode)->root;
6058 
6059 	if (btrfs_root_readonly(root))
6060 		return -EROFS;
6061 
6062 	if (flags & S_VERSION)
6063 		inode_inc_iversion(inode);
6064 	if (flags & S_CTIME)
6065 		inode->i_ctime = *now;
6066 	if (flags & S_MTIME)
6067 		inode->i_mtime = *now;
6068 	if (flags & S_ATIME)
6069 		inode->i_atime = *now;
6070 	return btrfs_dirty_inode(inode);
6071 }
6072 
6073 /*
6074  * find the highest existing sequence number in a directory
6075  * and then set the in-memory index_cnt variable to reflect
6076  * free sequence numbers
6077  */
6078 static int btrfs_set_inode_index_count(struct inode *inode)
6079 {
6080 	struct btrfs_root *root = BTRFS_I(inode)->root;
6081 	struct btrfs_key key, found_key;
6082 	struct btrfs_path *path;
6083 	struct extent_buffer *leaf;
6084 	int ret;
6085 
6086 	key.objectid = btrfs_ino(inode);
6087 	key.type = BTRFS_DIR_INDEX_KEY;
6088 	key.offset = (u64)-1;
6089 
6090 	path = btrfs_alloc_path();
6091 	if (!path)
6092 		return -ENOMEM;
6093 
6094 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6095 	if (ret < 0)
6096 		goto out;
6097 	/* FIXME: we should be able to handle this */
6098 	if (ret == 0)
6099 		goto out;
6100 	ret = 0;
6101 
6102 	/*
6103 	 * MAGIC NUMBER EXPLANATION:
6104 	 * since we search a directory based on f_pos we have to start at 2
6105 	 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
6106 	 * else has to start at 2
6107 	 */
6108 	if (path->slots[0] == 0) {
6109 		BTRFS_I(inode)->index_cnt = 2;
6110 		goto out;
6111 	}
6112 
6113 	path->slots[0]--;
6114 
6115 	leaf = path->nodes[0];
6116 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6117 
6118 	if (found_key.objectid != btrfs_ino(inode) ||
6119 	    found_key.type != BTRFS_DIR_INDEX_KEY) {
6120 		BTRFS_I(inode)->index_cnt = 2;
6121 		goto out;
6122 	}
6123 
6124 	BTRFS_I(inode)->index_cnt = found_key.offset + 1;
6125 out:
6126 	btrfs_free_path(path);
6127 	return ret;
6128 }
6129 
6130 /*
6131  * helper to find a free sequence number in a given directory.  This current
6132  * code is very simple, later versions will do smarter things in the btree
6133  */
6134 int btrfs_set_inode_index(struct inode *dir, u64 *index)
6135 {
6136 	int ret = 0;
6137 
6138 	if (BTRFS_I(dir)->index_cnt == (u64)-1) {
6139 		ret = btrfs_inode_delayed_dir_index_count(dir);
6140 		if (ret) {
6141 			ret = btrfs_set_inode_index_count(dir);
6142 			if (ret)
6143 				return ret;
6144 		}
6145 	}
6146 
6147 	*index = BTRFS_I(dir)->index_cnt;
6148 	BTRFS_I(dir)->index_cnt++;
6149 
6150 	return ret;
6151 }
6152 
6153 static int btrfs_insert_inode_locked(struct inode *inode)
6154 {
6155 	struct btrfs_iget_args args;
6156 	args.location = &BTRFS_I(inode)->location;
6157 	args.root = BTRFS_I(inode)->root;
6158 
6159 	return insert_inode_locked4(inode,
6160 		   btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
6161 		   btrfs_find_actor, &args);
6162 }
6163 
6164 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
6165 				     struct btrfs_root *root,
6166 				     struct inode *dir,
6167 				     const char *name, int name_len,
6168 				     u64 ref_objectid, u64 objectid,
6169 				     umode_t mode, u64 *index)
6170 {
6171 	struct inode *inode;
6172 	struct btrfs_inode_item *inode_item;
6173 	struct btrfs_key *location;
6174 	struct btrfs_path *path;
6175 	struct btrfs_inode_ref *ref;
6176 	struct btrfs_key key[2];
6177 	u32 sizes[2];
6178 	int nitems = name ? 2 : 1;
6179 	unsigned long ptr;
6180 	int ret;
6181 
6182 	path = btrfs_alloc_path();
6183 	if (!path)
6184 		return ERR_PTR(-ENOMEM);
6185 
6186 	inode = new_inode(root->fs_info->sb);
6187 	if (!inode) {
6188 		btrfs_free_path(path);
6189 		return ERR_PTR(-ENOMEM);
6190 	}
6191 
6192 	/*
6193 	 * O_TMPFILE, set link count to 0, so that after this point,
6194 	 * we fill in an inode item with the correct link count.
6195 	 */
6196 	if (!name)
6197 		set_nlink(inode, 0);
6198 
6199 	/*
6200 	 * we have to initialize this early, so we can reclaim the inode
6201 	 * number if we fail afterwards in this function.
6202 	 */
6203 	inode->i_ino = objectid;
6204 
6205 	if (dir && name) {
6206 		trace_btrfs_inode_request(dir);
6207 
6208 		ret = btrfs_set_inode_index(dir, index);
6209 		if (ret) {
6210 			btrfs_free_path(path);
6211 			iput(inode);
6212 			return ERR_PTR(ret);
6213 		}
6214 	} else if (dir) {
6215 		*index = 0;
6216 	}
6217 	/*
6218 	 * index_cnt is ignored for everything but a dir,
6219 	 * btrfs_get_inode_index_count has an explanation for the magic
6220 	 * number
6221 	 */
6222 	BTRFS_I(inode)->index_cnt = 2;
6223 	BTRFS_I(inode)->dir_index = *index;
6224 	BTRFS_I(inode)->root = root;
6225 	BTRFS_I(inode)->generation = trans->transid;
6226 	inode->i_generation = BTRFS_I(inode)->generation;
6227 
6228 	/*
6229 	 * We could have gotten an inode number from somebody who was fsynced
6230 	 * and then removed in this same transaction, so let's just set full
6231 	 * sync since it will be a full sync anyway and this will blow away the
6232 	 * old info in the log.
6233 	 */
6234 	set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
6235 
6236 	key[0].objectid = objectid;
6237 	key[0].type = BTRFS_INODE_ITEM_KEY;
6238 	key[0].offset = 0;
6239 
6240 	sizes[0] = sizeof(struct btrfs_inode_item);
6241 
6242 	if (name) {
6243 		/*
6244 		 * Start new inodes with an inode_ref. This is slightly more
6245 		 * efficient for small numbers of hard links since they will
6246 		 * be packed into one item. Extended refs will kick in if we
6247 		 * add more hard links than can fit in the ref item.
6248 		 */
6249 		key[1].objectid = objectid;
6250 		key[1].type = BTRFS_INODE_REF_KEY;
6251 		key[1].offset = ref_objectid;
6252 
6253 		sizes[1] = name_len + sizeof(*ref);
6254 	}
6255 
6256 	location = &BTRFS_I(inode)->location;
6257 	location->objectid = objectid;
6258 	location->offset = 0;
6259 	location->type = BTRFS_INODE_ITEM_KEY;
6260 
6261 	ret = btrfs_insert_inode_locked(inode);
6262 	if (ret < 0)
6263 		goto fail;
6264 
6265 	path->leave_spinning = 1;
6266 	ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems);
6267 	if (ret != 0)
6268 		goto fail_unlock;
6269 
6270 	inode_init_owner(inode, dir, mode);
6271 	inode_set_bytes(inode, 0);
6272 
6273 	inode->i_mtime = current_time(inode);
6274 	inode->i_atime = inode->i_mtime;
6275 	inode->i_ctime = inode->i_mtime;
6276 	BTRFS_I(inode)->i_otime = inode->i_mtime;
6277 
6278 	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6279 				  struct btrfs_inode_item);
6280 	memset_extent_buffer(path->nodes[0], 0, (unsigned long)inode_item,
6281 			     sizeof(*inode_item));
6282 	fill_inode_item(trans, path->nodes[0], inode_item, inode);
6283 
6284 	if (name) {
6285 		ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6286 				     struct btrfs_inode_ref);
6287 		btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
6288 		btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
6289 		ptr = (unsigned long)(ref + 1);
6290 		write_extent_buffer(path->nodes[0], name, ptr, name_len);
6291 	}
6292 
6293 	btrfs_mark_buffer_dirty(path->nodes[0]);
6294 	btrfs_free_path(path);
6295 
6296 	btrfs_inherit_iflags(inode, dir);
6297 
6298 	if (S_ISREG(mode)) {
6299 		if (btrfs_test_opt(root->fs_info, NODATASUM))
6300 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6301 		if (btrfs_test_opt(root->fs_info, NODATACOW))
6302 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6303 				BTRFS_INODE_NODATASUM;
6304 	}
6305 
6306 	inode_tree_add(inode);
6307 
6308 	trace_btrfs_inode_new(inode);
6309 	btrfs_set_inode_last_trans(trans, inode);
6310 
6311 	btrfs_update_root_times(trans, root);
6312 
6313 	ret = btrfs_inode_inherit_props(trans, inode, dir);
6314 	if (ret)
6315 		btrfs_err(root->fs_info,
6316 			  "error inheriting props for ino %llu (root %llu): %d",
6317 			  btrfs_ino(inode), root->root_key.objectid, ret);
6318 
6319 	return inode;
6320 
6321 fail_unlock:
6322 	unlock_new_inode(inode);
6323 fail:
6324 	if (dir && name)
6325 		BTRFS_I(dir)->index_cnt--;
6326 	btrfs_free_path(path);
6327 	iput(inode);
6328 	return ERR_PTR(ret);
6329 }
6330 
6331 static inline u8 btrfs_inode_type(struct inode *inode)
6332 {
6333 	return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
6334 }
6335 
6336 /*
6337  * utility function to add 'inode' into 'parent_inode' with
6338  * a give name and a given sequence number.
6339  * if 'add_backref' is true, also insert a backref from the
6340  * inode to the parent directory.
6341  */
6342 int btrfs_add_link(struct btrfs_trans_handle *trans,
6343 		   struct inode *parent_inode, struct inode *inode,
6344 		   const char *name, int name_len, int add_backref, u64 index)
6345 {
6346 	int ret = 0;
6347 	struct btrfs_key key;
6348 	struct btrfs_root *root = BTRFS_I(parent_inode)->root;
6349 	u64 ino = btrfs_ino(inode);
6350 	u64 parent_ino = btrfs_ino(parent_inode);
6351 
6352 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6353 		memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
6354 	} else {
6355 		key.objectid = ino;
6356 		key.type = BTRFS_INODE_ITEM_KEY;
6357 		key.offset = 0;
6358 	}
6359 
6360 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6361 		ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
6362 					 key.objectid, root->root_key.objectid,
6363 					 parent_ino, index, name, name_len);
6364 	} else if (add_backref) {
6365 		ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
6366 					     parent_ino, index);
6367 	}
6368 
6369 	/* Nothing to clean up yet */
6370 	if (ret)
6371 		return ret;
6372 
6373 	ret = btrfs_insert_dir_item(trans, root, name, name_len,
6374 				    parent_inode, &key,
6375 				    btrfs_inode_type(inode), index);
6376 	if (ret == -EEXIST || ret == -EOVERFLOW)
6377 		goto fail_dir_item;
6378 	else if (ret) {
6379 		btrfs_abort_transaction(trans, ret);
6380 		return ret;
6381 	}
6382 
6383 	btrfs_i_size_write(parent_inode, parent_inode->i_size +
6384 			   name_len * 2);
6385 	inode_inc_iversion(parent_inode);
6386 	parent_inode->i_mtime = parent_inode->i_ctime =
6387 		current_time(parent_inode);
6388 	ret = btrfs_update_inode(trans, root, parent_inode);
6389 	if (ret)
6390 		btrfs_abort_transaction(trans, ret);
6391 	return ret;
6392 
6393 fail_dir_item:
6394 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6395 		u64 local_index;
6396 		int err;
6397 		err = btrfs_del_root_ref(trans, root->fs_info->tree_root,
6398 				 key.objectid, root->root_key.objectid,
6399 				 parent_ino, &local_index, name, name_len);
6400 
6401 	} else if (add_backref) {
6402 		u64 local_index;
6403 		int err;
6404 
6405 		err = btrfs_del_inode_ref(trans, root, name, name_len,
6406 					  ino, parent_ino, &local_index);
6407 	}
6408 	return ret;
6409 }
6410 
6411 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
6412 			    struct inode *dir, struct dentry *dentry,
6413 			    struct inode *inode, int backref, u64 index)
6414 {
6415 	int err = btrfs_add_link(trans, dir, inode,
6416 				 dentry->d_name.name, dentry->d_name.len,
6417 				 backref, index);
6418 	if (err > 0)
6419 		err = -EEXIST;
6420 	return err;
6421 }
6422 
6423 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
6424 			umode_t mode, dev_t rdev)
6425 {
6426 	struct btrfs_trans_handle *trans;
6427 	struct btrfs_root *root = BTRFS_I(dir)->root;
6428 	struct inode *inode = NULL;
6429 	int err;
6430 	int drop_inode = 0;
6431 	u64 objectid;
6432 	u64 index = 0;
6433 
6434 	/*
6435 	 * 2 for inode item and ref
6436 	 * 2 for dir items
6437 	 * 1 for xattr if selinux is on
6438 	 */
6439 	trans = btrfs_start_transaction(root, 5);
6440 	if (IS_ERR(trans))
6441 		return PTR_ERR(trans);
6442 
6443 	err = btrfs_find_free_ino(root, &objectid);
6444 	if (err)
6445 		goto out_unlock;
6446 
6447 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6448 				dentry->d_name.len, btrfs_ino(dir), objectid,
6449 				mode, &index);
6450 	if (IS_ERR(inode)) {
6451 		err = PTR_ERR(inode);
6452 		goto out_unlock;
6453 	}
6454 
6455 	/*
6456 	* If the active LSM wants to access the inode during
6457 	* d_instantiate it needs these. Smack checks to see
6458 	* if the filesystem supports xattrs by looking at the
6459 	* ops vector.
6460 	*/
6461 	inode->i_op = &btrfs_special_inode_operations;
6462 	init_special_inode(inode, inode->i_mode, rdev);
6463 
6464 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6465 	if (err)
6466 		goto out_unlock_inode;
6467 
6468 	err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
6469 	if (err) {
6470 		goto out_unlock_inode;
6471 	} else {
6472 		btrfs_update_inode(trans, root, inode);
6473 		unlock_new_inode(inode);
6474 		d_instantiate(dentry, inode);
6475 	}
6476 
6477 out_unlock:
6478 	btrfs_end_transaction(trans, root);
6479 	btrfs_balance_delayed_items(root);
6480 	btrfs_btree_balance_dirty(root);
6481 	if (drop_inode) {
6482 		inode_dec_link_count(inode);
6483 		iput(inode);
6484 	}
6485 	return err;
6486 
6487 out_unlock_inode:
6488 	drop_inode = 1;
6489 	unlock_new_inode(inode);
6490 	goto out_unlock;
6491 
6492 }
6493 
6494 static int btrfs_create(struct inode *dir, struct dentry *dentry,
6495 			umode_t mode, bool excl)
6496 {
6497 	struct btrfs_trans_handle *trans;
6498 	struct btrfs_root *root = BTRFS_I(dir)->root;
6499 	struct inode *inode = NULL;
6500 	int drop_inode_on_err = 0;
6501 	int err;
6502 	u64 objectid;
6503 	u64 index = 0;
6504 
6505 	/*
6506 	 * 2 for inode item and ref
6507 	 * 2 for dir items
6508 	 * 1 for xattr if selinux is on
6509 	 */
6510 	trans = btrfs_start_transaction(root, 5);
6511 	if (IS_ERR(trans))
6512 		return PTR_ERR(trans);
6513 
6514 	err = btrfs_find_free_ino(root, &objectid);
6515 	if (err)
6516 		goto out_unlock;
6517 
6518 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6519 				dentry->d_name.len, btrfs_ino(dir), objectid,
6520 				mode, &index);
6521 	if (IS_ERR(inode)) {
6522 		err = PTR_ERR(inode);
6523 		goto out_unlock;
6524 	}
6525 	drop_inode_on_err = 1;
6526 	/*
6527 	* If the active LSM wants to access the inode during
6528 	* d_instantiate it needs these. Smack checks to see
6529 	* if the filesystem supports xattrs by looking at the
6530 	* ops vector.
6531 	*/
6532 	inode->i_fop = &btrfs_file_operations;
6533 	inode->i_op = &btrfs_file_inode_operations;
6534 	inode->i_mapping->a_ops = &btrfs_aops;
6535 
6536 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6537 	if (err)
6538 		goto out_unlock_inode;
6539 
6540 	err = btrfs_update_inode(trans, root, inode);
6541 	if (err)
6542 		goto out_unlock_inode;
6543 
6544 	err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
6545 	if (err)
6546 		goto out_unlock_inode;
6547 
6548 	BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
6549 	unlock_new_inode(inode);
6550 	d_instantiate(dentry, inode);
6551 
6552 out_unlock:
6553 	btrfs_end_transaction(trans, root);
6554 	if (err && drop_inode_on_err) {
6555 		inode_dec_link_count(inode);
6556 		iput(inode);
6557 	}
6558 	btrfs_balance_delayed_items(root);
6559 	btrfs_btree_balance_dirty(root);
6560 	return err;
6561 
6562 out_unlock_inode:
6563 	unlock_new_inode(inode);
6564 	goto out_unlock;
6565 
6566 }
6567 
6568 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6569 		      struct dentry *dentry)
6570 {
6571 	struct btrfs_trans_handle *trans = NULL;
6572 	struct btrfs_root *root = BTRFS_I(dir)->root;
6573 	struct inode *inode = d_inode(old_dentry);
6574 	u64 index;
6575 	int err;
6576 	int drop_inode = 0;
6577 
6578 	/* do not allow sys_link's with other subvols of the same device */
6579 	if (root->objectid != BTRFS_I(inode)->root->objectid)
6580 		return -EXDEV;
6581 
6582 	if (inode->i_nlink >= BTRFS_LINK_MAX)
6583 		return -EMLINK;
6584 
6585 	err = btrfs_set_inode_index(dir, &index);
6586 	if (err)
6587 		goto fail;
6588 
6589 	/*
6590 	 * 2 items for inode and inode ref
6591 	 * 2 items for dir items
6592 	 * 1 item for parent inode
6593 	 */
6594 	trans = btrfs_start_transaction(root, 5);
6595 	if (IS_ERR(trans)) {
6596 		err = PTR_ERR(trans);
6597 		trans = NULL;
6598 		goto fail;
6599 	}
6600 
6601 	/* There are several dir indexes for this inode, clear the cache. */
6602 	BTRFS_I(inode)->dir_index = 0ULL;
6603 	inc_nlink(inode);
6604 	inode_inc_iversion(inode);
6605 	inode->i_ctime = current_time(inode);
6606 	ihold(inode);
6607 	set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
6608 
6609 	err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
6610 
6611 	if (err) {
6612 		drop_inode = 1;
6613 	} else {
6614 		struct dentry *parent = dentry->d_parent;
6615 		err = btrfs_update_inode(trans, root, inode);
6616 		if (err)
6617 			goto fail;
6618 		if (inode->i_nlink == 1) {
6619 			/*
6620 			 * If new hard link count is 1, it's a file created
6621 			 * with open(2) O_TMPFILE flag.
6622 			 */
6623 			err = btrfs_orphan_del(trans, inode);
6624 			if (err)
6625 				goto fail;
6626 		}
6627 		d_instantiate(dentry, inode);
6628 		btrfs_log_new_name(trans, inode, NULL, parent);
6629 	}
6630 
6631 	btrfs_balance_delayed_items(root);
6632 fail:
6633 	if (trans)
6634 		btrfs_end_transaction(trans, root);
6635 	if (drop_inode) {
6636 		inode_dec_link_count(inode);
6637 		iput(inode);
6638 	}
6639 	btrfs_btree_balance_dirty(root);
6640 	return err;
6641 }
6642 
6643 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
6644 {
6645 	struct inode *inode = NULL;
6646 	struct btrfs_trans_handle *trans;
6647 	struct btrfs_root *root = BTRFS_I(dir)->root;
6648 	int err = 0;
6649 	int drop_on_err = 0;
6650 	u64 objectid = 0;
6651 	u64 index = 0;
6652 
6653 	/*
6654 	 * 2 items for inode and ref
6655 	 * 2 items for dir items
6656 	 * 1 for xattr if selinux is on
6657 	 */
6658 	trans = btrfs_start_transaction(root, 5);
6659 	if (IS_ERR(trans))
6660 		return PTR_ERR(trans);
6661 
6662 	err = btrfs_find_free_ino(root, &objectid);
6663 	if (err)
6664 		goto out_fail;
6665 
6666 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6667 				dentry->d_name.len, btrfs_ino(dir), objectid,
6668 				S_IFDIR | mode, &index);
6669 	if (IS_ERR(inode)) {
6670 		err = PTR_ERR(inode);
6671 		goto out_fail;
6672 	}
6673 
6674 	drop_on_err = 1;
6675 	/* these must be set before we unlock the inode */
6676 	inode->i_op = &btrfs_dir_inode_operations;
6677 	inode->i_fop = &btrfs_dir_file_operations;
6678 
6679 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6680 	if (err)
6681 		goto out_fail_inode;
6682 
6683 	btrfs_i_size_write(inode, 0);
6684 	err = btrfs_update_inode(trans, root, inode);
6685 	if (err)
6686 		goto out_fail_inode;
6687 
6688 	err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
6689 			     dentry->d_name.len, 0, index);
6690 	if (err)
6691 		goto out_fail_inode;
6692 
6693 	d_instantiate(dentry, inode);
6694 	/*
6695 	 * mkdir is special.  We're unlocking after we call d_instantiate
6696 	 * to avoid a race with nfsd calling d_instantiate.
6697 	 */
6698 	unlock_new_inode(inode);
6699 	drop_on_err = 0;
6700 
6701 out_fail:
6702 	btrfs_end_transaction(trans, root);
6703 	if (drop_on_err) {
6704 		inode_dec_link_count(inode);
6705 		iput(inode);
6706 	}
6707 	btrfs_balance_delayed_items(root);
6708 	btrfs_btree_balance_dirty(root);
6709 	return err;
6710 
6711 out_fail_inode:
6712 	unlock_new_inode(inode);
6713 	goto out_fail;
6714 }
6715 
6716 /* Find next extent map of a given extent map, caller needs to ensure locks */
6717 static struct extent_map *next_extent_map(struct extent_map *em)
6718 {
6719 	struct rb_node *next;
6720 
6721 	next = rb_next(&em->rb_node);
6722 	if (!next)
6723 		return NULL;
6724 	return container_of(next, struct extent_map, rb_node);
6725 }
6726 
6727 static struct extent_map *prev_extent_map(struct extent_map *em)
6728 {
6729 	struct rb_node *prev;
6730 
6731 	prev = rb_prev(&em->rb_node);
6732 	if (!prev)
6733 		return NULL;
6734 	return container_of(prev, struct extent_map, rb_node);
6735 }
6736 
6737 /* helper for btfs_get_extent.  Given an existing extent in the tree,
6738  * the existing extent is the nearest extent to map_start,
6739  * and an extent that you want to insert, deal with overlap and insert
6740  * the best fitted new extent into the tree.
6741  */
6742 static int merge_extent_mapping(struct extent_map_tree *em_tree,
6743 				struct extent_map *existing,
6744 				struct extent_map *em,
6745 				u64 map_start)
6746 {
6747 	struct extent_map *prev;
6748 	struct extent_map *next;
6749 	u64 start;
6750 	u64 end;
6751 	u64 start_diff;
6752 
6753 	BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
6754 
6755 	if (existing->start > map_start) {
6756 		next = existing;
6757 		prev = prev_extent_map(next);
6758 	} else {
6759 		prev = existing;
6760 		next = next_extent_map(prev);
6761 	}
6762 
6763 	start = prev ? extent_map_end(prev) : em->start;
6764 	start = max_t(u64, start, em->start);
6765 	end = next ? next->start : extent_map_end(em);
6766 	end = min_t(u64, end, extent_map_end(em));
6767 	start_diff = start - em->start;
6768 	em->start = start;
6769 	em->len = end - start;
6770 	if (em->block_start < EXTENT_MAP_LAST_BYTE &&
6771 	    !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
6772 		em->block_start += start_diff;
6773 		em->block_len -= start_diff;
6774 	}
6775 	return add_extent_mapping(em_tree, em, 0);
6776 }
6777 
6778 static noinline int uncompress_inline(struct btrfs_path *path,
6779 				      struct page *page,
6780 				      size_t pg_offset, u64 extent_offset,
6781 				      struct btrfs_file_extent_item *item)
6782 {
6783 	int ret;
6784 	struct extent_buffer *leaf = path->nodes[0];
6785 	char *tmp;
6786 	size_t max_size;
6787 	unsigned long inline_size;
6788 	unsigned long ptr;
6789 	int compress_type;
6790 
6791 	WARN_ON(pg_offset != 0);
6792 	compress_type = btrfs_file_extent_compression(leaf, item);
6793 	max_size = btrfs_file_extent_ram_bytes(leaf, item);
6794 	inline_size = btrfs_file_extent_inline_item_len(leaf,
6795 					btrfs_item_nr(path->slots[0]));
6796 	tmp = kmalloc(inline_size, GFP_NOFS);
6797 	if (!tmp)
6798 		return -ENOMEM;
6799 	ptr = btrfs_file_extent_inline_start(item);
6800 
6801 	read_extent_buffer(leaf, tmp, ptr, inline_size);
6802 
6803 	max_size = min_t(unsigned long, PAGE_SIZE, max_size);
6804 	ret = btrfs_decompress(compress_type, tmp, page,
6805 			       extent_offset, inline_size, max_size);
6806 	kfree(tmp);
6807 	return ret;
6808 }
6809 
6810 /*
6811  * a bit scary, this does extent mapping from logical file offset to the disk.
6812  * the ugly parts come from merging extents from the disk with the in-ram
6813  * representation.  This gets more complex because of the data=ordered code,
6814  * where the in-ram extents might be locked pending data=ordered completion.
6815  *
6816  * This also copies inline extents directly into the page.
6817  */
6818 
6819 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
6820 				    size_t pg_offset, u64 start, u64 len,
6821 				    int create)
6822 {
6823 	int ret;
6824 	int err = 0;
6825 	u64 extent_start = 0;
6826 	u64 extent_end = 0;
6827 	u64 objectid = btrfs_ino(inode);
6828 	u32 found_type;
6829 	struct btrfs_path *path = NULL;
6830 	struct btrfs_root *root = BTRFS_I(inode)->root;
6831 	struct btrfs_file_extent_item *item;
6832 	struct extent_buffer *leaf;
6833 	struct btrfs_key found_key;
6834 	struct extent_map *em = NULL;
6835 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
6836 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
6837 	struct btrfs_trans_handle *trans = NULL;
6838 	const bool new_inline = !page || create;
6839 
6840 again:
6841 	read_lock(&em_tree->lock);
6842 	em = lookup_extent_mapping(em_tree, start, len);
6843 	if (em)
6844 		em->bdev = root->fs_info->fs_devices->latest_bdev;
6845 	read_unlock(&em_tree->lock);
6846 
6847 	if (em) {
6848 		if (em->start > start || em->start + em->len <= start)
6849 			free_extent_map(em);
6850 		else if (em->block_start == EXTENT_MAP_INLINE && page)
6851 			free_extent_map(em);
6852 		else
6853 			goto out;
6854 	}
6855 	em = alloc_extent_map();
6856 	if (!em) {
6857 		err = -ENOMEM;
6858 		goto out;
6859 	}
6860 	em->bdev = root->fs_info->fs_devices->latest_bdev;
6861 	em->start = EXTENT_MAP_HOLE;
6862 	em->orig_start = EXTENT_MAP_HOLE;
6863 	em->len = (u64)-1;
6864 	em->block_len = (u64)-1;
6865 
6866 	if (!path) {
6867 		path = btrfs_alloc_path();
6868 		if (!path) {
6869 			err = -ENOMEM;
6870 			goto out;
6871 		}
6872 		/*
6873 		 * Chances are we'll be called again, so go ahead and do
6874 		 * readahead
6875 		 */
6876 		path->reada = READA_FORWARD;
6877 	}
6878 
6879 	ret = btrfs_lookup_file_extent(trans, root, path,
6880 				       objectid, start, trans != NULL);
6881 	if (ret < 0) {
6882 		err = ret;
6883 		goto out;
6884 	}
6885 
6886 	if (ret != 0) {
6887 		if (path->slots[0] == 0)
6888 			goto not_found;
6889 		path->slots[0]--;
6890 	}
6891 
6892 	leaf = path->nodes[0];
6893 	item = btrfs_item_ptr(leaf, path->slots[0],
6894 			      struct btrfs_file_extent_item);
6895 	/* are we inside the extent that was found? */
6896 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6897 	found_type = found_key.type;
6898 	if (found_key.objectid != objectid ||
6899 	    found_type != BTRFS_EXTENT_DATA_KEY) {
6900 		/*
6901 		 * If we backup past the first extent we want to move forward
6902 		 * and see if there is an extent in front of us, otherwise we'll
6903 		 * say there is a hole for our whole search range which can
6904 		 * cause problems.
6905 		 */
6906 		extent_end = start;
6907 		goto next;
6908 	}
6909 
6910 	found_type = btrfs_file_extent_type(leaf, item);
6911 	extent_start = found_key.offset;
6912 	if (found_type == BTRFS_FILE_EXTENT_REG ||
6913 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
6914 		extent_end = extent_start +
6915 		       btrfs_file_extent_num_bytes(leaf, item);
6916 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6917 		size_t size;
6918 		size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
6919 		extent_end = ALIGN(extent_start + size, root->sectorsize);
6920 	}
6921 next:
6922 	if (start >= extent_end) {
6923 		path->slots[0]++;
6924 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6925 			ret = btrfs_next_leaf(root, path);
6926 			if (ret < 0) {
6927 				err = ret;
6928 				goto out;
6929 			}
6930 			if (ret > 0)
6931 				goto not_found;
6932 			leaf = path->nodes[0];
6933 		}
6934 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6935 		if (found_key.objectid != objectid ||
6936 		    found_key.type != BTRFS_EXTENT_DATA_KEY)
6937 			goto not_found;
6938 		if (start + len <= found_key.offset)
6939 			goto not_found;
6940 		if (start > found_key.offset)
6941 			goto next;
6942 		em->start = start;
6943 		em->orig_start = start;
6944 		em->len = found_key.offset - start;
6945 		goto not_found_em;
6946 	}
6947 
6948 	btrfs_extent_item_to_extent_map(inode, path, item, new_inline, em);
6949 
6950 	if (found_type == BTRFS_FILE_EXTENT_REG ||
6951 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
6952 		goto insert;
6953 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6954 		unsigned long ptr;
6955 		char *map;
6956 		size_t size;
6957 		size_t extent_offset;
6958 		size_t copy_size;
6959 
6960 		if (new_inline)
6961 			goto out;
6962 
6963 		size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
6964 		extent_offset = page_offset(page) + pg_offset - extent_start;
6965 		copy_size = min_t(u64, PAGE_SIZE - pg_offset,
6966 				  size - extent_offset);
6967 		em->start = extent_start + extent_offset;
6968 		em->len = ALIGN(copy_size, root->sectorsize);
6969 		em->orig_block_len = em->len;
6970 		em->orig_start = em->start;
6971 		ptr = btrfs_file_extent_inline_start(item) + extent_offset;
6972 		if (create == 0 && !PageUptodate(page)) {
6973 			if (btrfs_file_extent_compression(leaf, item) !=
6974 			    BTRFS_COMPRESS_NONE) {
6975 				ret = uncompress_inline(path, page, pg_offset,
6976 							extent_offset, item);
6977 				if (ret) {
6978 					err = ret;
6979 					goto out;
6980 				}
6981 			} else {
6982 				map = kmap(page);
6983 				read_extent_buffer(leaf, map + pg_offset, ptr,
6984 						   copy_size);
6985 				if (pg_offset + copy_size < PAGE_SIZE) {
6986 					memset(map + pg_offset + copy_size, 0,
6987 					       PAGE_SIZE - pg_offset -
6988 					       copy_size);
6989 				}
6990 				kunmap(page);
6991 			}
6992 			flush_dcache_page(page);
6993 		} else if (create && PageUptodate(page)) {
6994 			BUG();
6995 			if (!trans) {
6996 				kunmap(page);
6997 				free_extent_map(em);
6998 				em = NULL;
6999 
7000 				btrfs_release_path(path);
7001 				trans = btrfs_join_transaction(root);
7002 
7003 				if (IS_ERR(trans))
7004 					return ERR_CAST(trans);
7005 				goto again;
7006 			}
7007 			map = kmap(page);
7008 			write_extent_buffer(leaf, map + pg_offset, ptr,
7009 					    copy_size);
7010 			kunmap(page);
7011 			btrfs_mark_buffer_dirty(leaf);
7012 		}
7013 		set_extent_uptodate(io_tree, em->start,
7014 				    extent_map_end(em) - 1, NULL, GFP_NOFS);
7015 		goto insert;
7016 	}
7017 not_found:
7018 	em->start = start;
7019 	em->orig_start = start;
7020 	em->len = len;
7021 not_found_em:
7022 	em->block_start = EXTENT_MAP_HOLE;
7023 	set_bit(EXTENT_FLAG_VACANCY, &em->flags);
7024 insert:
7025 	btrfs_release_path(path);
7026 	if (em->start > start || extent_map_end(em) <= start) {
7027 		btrfs_err(root->fs_info,
7028 			  "bad extent! em: [%llu %llu] passed [%llu %llu]",
7029 			  em->start, em->len, start, len);
7030 		err = -EIO;
7031 		goto out;
7032 	}
7033 
7034 	err = 0;
7035 	write_lock(&em_tree->lock);
7036 	ret = add_extent_mapping(em_tree, em, 0);
7037 	/* it is possible that someone inserted the extent into the tree
7038 	 * while we had the lock dropped.  It is also possible that
7039 	 * an overlapping map exists in the tree
7040 	 */
7041 	if (ret == -EEXIST) {
7042 		struct extent_map *existing;
7043 
7044 		ret = 0;
7045 
7046 		existing = search_extent_mapping(em_tree, start, len);
7047 		/*
7048 		 * existing will always be non-NULL, since there must be
7049 		 * extent causing the -EEXIST.
7050 		 */
7051 		if (existing->start == em->start &&
7052 		    extent_map_end(existing) == extent_map_end(em) &&
7053 		    em->block_start == existing->block_start) {
7054 			/*
7055 			 * these two extents are the same, it happens
7056 			 * with inlines especially
7057 			 */
7058 			free_extent_map(em);
7059 			em = existing;
7060 			err = 0;
7061 
7062 		} else if (start >= extent_map_end(existing) ||
7063 		    start <= existing->start) {
7064 			/*
7065 			 * The existing extent map is the one nearest to
7066 			 * the [start, start + len) range which overlaps
7067 			 */
7068 			err = merge_extent_mapping(em_tree, existing,
7069 						   em, start);
7070 			free_extent_map(existing);
7071 			if (err) {
7072 				free_extent_map(em);
7073 				em = NULL;
7074 			}
7075 		} else {
7076 			free_extent_map(em);
7077 			em = existing;
7078 			err = 0;
7079 		}
7080 	}
7081 	write_unlock(&em_tree->lock);
7082 out:
7083 
7084 	trace_btrfs_get_extent(root, em);
7085 
7086 	btrfs_free_path(path);
7087 	if (trans) {
7088 		ret = btrfs_end_transaction(trans, root);
7089 		if (!err)
7090 			err = ret;
7091 	}
7092 	if (err) {
7093 		free_extent_map(em);
7094 		return ERR_PTR(err);
7095 	}
7096 	BUG_ON(!em); /* Error is always set */
7097 	return em;
7098 }
7099 
7100 struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
7101 					   size_t pg_offset, u64 start, u64 len,
7102 					   int create)
7103 {
7104 	struct extent_map *em;
7105 	struct extent_map *hole_em = NULL;
7106 	u64 range_start = start;
7107 	u64 end;
7108 	u64 found;
7109 	u64 found_end;
7110 	int err = 0;
7111 
7112 	em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
7113 	if (IS_ERR(em))
7114 		return em;
7115 	if (em) {
7116 		/*
7117 		 * if our em maps to
7118 		 * -  a hole or
7119 		 * -  a pre-alloc extent,
7120 		 * there might actually be delalloc bytes behind it.
7121 		 */
7122 		if (em->block_start != EXTENT_MAP_HOLE &&
7123 		    !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7124 			return em;
7125 		else
7126 			hole_em = em;
7127 	}
7128 
7129 	/* check to see if we've wrapped (len == -1 or similar) */
7130 	end = start + len;
7131 	if (end < start)
7132 		end = (u64)-1;
7133 	else
7134 		end -= 1;
7135 
7136 	em = NULL;
7137 
7138 	/* ok, we didn't find anything, lets look for delalloc */
7139 	found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
7140 				 end, len, EXTENT_DELALLOC, 1);
7141 	found_end = range_start + found;
7142 	if (found_end < range_start)
7143 		found_end = (u64)-1;
7144 
7145 	/*
7146 	 * we didn't find anything useful, return
7147 	 * the original results from get_extent()
7148 	 */
7149 	if (range_start > end || found_end <= start) {
7150 		em = hole_em;
7151 		hole_em = NULL;
7152 		goto out;
7153 	}
7154 
7155 	/* adjust the range_start to make sure it doesn't
7156 	 * go backwards from the start they passed in
7157 	 */
7158 	range_start = max(start, range_start);
7159 	found = found_end - range_start;
7160 
7161 	if (found > 0) {
7162 		u64 hole_start = start;
7163 		u64 hole_len = len;
7164 
7165 		em = alloc_extent_map();
7166 		if (!em) {
7167 			err = -ENOMEM;
7168 			goto out;
7169 		}
7170 		/*
7171 		 * when btrfs_get_extent can't find anything it
7172 		 * returns one huge hole
7173 		 *
7174 		 * make sure what it found really fits our range, and
7175 		 * adjust to make sure it is based on the start from
7176 		 * the caller
7177 		 */
7178 		if (hole_em) {
7179 			u64 calc_end = extent_map_end(hole_em);
7180 
7181 			if (calc_end <= start || (hole_em->start > end)) {
7182 				free_extent_map(hole_em);
7183 				hole_em = NULL;
7184 			} else {
7185 				hole_start = max(hole_em->start, start);
7186 				hole_len = calc_end - hole_start;
7187 			}
7188 		}
7189 		em->bdev = NULL;
7190 		if (hole_em && range_start > hole_start) {
7191 			/* our hole starts before our delalloc, so we
7192 			 * have to return just the parts of the hole
7193 			 * that go until  the delalloc starts
7194 			 */
7195 			em->len = min(hole_len,
7196 				      range_start - hole_start);
7197 			em->start = hole_start;
7198 			em->orig_start = hole_start;
7199 			/*
7200 			 * don't adjust block start at all,
7201 			 * it is fixed at EXTENT_MAP_HOLE
7202 			 */
7203 			em->block_start = hole_em->block_start;
7204 			em->block_len = hole_len;
7205 			if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
7206 				set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
7207 		} else {
7208 			em->start = range_start;
7209 			em->len = found;
7210 			em->orig_start = range_start;
7211 			em->block_start = EXTENT_MAP_DELALLOC;
7212 			em->block_len = found;
7213 		}
7214 	} else if (hole_em) {
7215 		return hole_em;
7216 	}
7217 out:
7218 
7219 	free_extent_map(hole_em);
7220 	if (err) {
7221 		free_extent_map(em);
7222 		return ERR_PTR(err);
7223 	}
7224 	return em;
7225 }
7226 
7227 static struct extent_map *btrfs_create_dio_extent(struct inode *inode,
7228 						  const u64 start,
7229 						  const u64 len,
7230 						  const u64 orig_start,
7231 						  const u64 block_start,
7232 						  const u64 block_len,
7233 						  const u64 orig_block_len,
7234 						  const u64 ram_bytes,
7235 						  const int type)
7236 {
7237 	struct extent_map *em = NULL;
7238 	int ret;
7239 
7240 	down_read(&BTRFS_I(inode)->dio_sem);
7241 	if (type != BTRFS_ORDERED_NOCOW) {
7242 		em = create_pinned_em(inode, start, len, orig_start,
7243 				      block_start, block_len, orig_block_len,
7244 				      ram_bytes, type);
7245 		if (IS_ERR(em))
7246 			goto out;
7247 	}
7248 	ret = btrfs_add_ordered_extent_dio(inode, start, block_start,
7249 					   len, block_len, type);
7250 	if (ret) {
7251 		if (em) {
7252 			free_extent_map(em);
7253 			btrfs_drop_extent_cache(inode, start,
7254 						start + len - 1, 0);
7255 		}
7256 		em = ERR_PTR(ret);
7257 	}
7258  out:
7259 	up_read(&BTRFS_I(inode)->dio_sem);
7260 
7261 	return em;
7262 }
7263 
7264 static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
7265 						  u64 start, u64 len)
7266 {
7267 	struct btrfs_root *root = BTRFS_I(inode)->root;
7268 	struct extent_map *em;
7269 	struct btrfs_key ins;
7270 	u64 alloc_hint;
7271 	int ret;
7272 
7273 	alloc_hint = get_extent_allocation_hint(inode, start, len);
7274 	ret = btrfs_reserve_extent(root, len, len, root->sectorsize, 0,
7275 				   alloc_hint, &ins, 1, 1);
7276 	if (ret)
7277 		return ERR_PTR(ret);
7278 
7279 	em = btrfs_create_dio_extent(inode, start, ins.offset, start,
7280 				     ins.objectid, ins.offset, ins.offset,
7281 				     ins.offset, 0);
7282 	btrfs_dec_block_group_reservations(root->fs_info, ins.objectid);
7283 	if (IS_ERR(em))
7284 		btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
7285 
7286 	return em;
7287 }
7288 
7289 /*
7290  * returns 1 when the nocow is safe, < 1 on error, 0 if the
7291  * block must be cow'd
7292  */
7293 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7294 			      u64 *orig_start, u64 *orig_block_len,
7295 			      u64 *ram_bytes)
7296 {
7297 	struct btrfs_trans_handle *trans;
7298 	struct btrfs_path *path;
7299 	int ret;
7300 	struct extent_buffer *leaf;
7301 	struct btrfs_root *root = BTRFS_I(inode)->root;
7302 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7303 	struct btrfs_file_extent_item *fi;
7304 	struct btrfs_key key;
7305 	u64 disk_bytenr;
7306 	u64 backref_offset;
7307 	u64 extent_end;
7308 	u64 num_bytes;
7309 	int slot;
7310 	int found_type;
7311 	bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
7312 
7313 	path = btrfs_alloc_path();
7314 	if (!path)
7315 		return -ENOMEM;
7316 
7317 	ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode),
7318 				       offset, 0);
7319 	if (ret < 0)
7320 		goto out;
7321 
7322 	slot = path->slots[0];
7323 	if (ret == 1) {
7324 		if (slot == 0) {
7325 			/* can't find the item, must cow */
7326 			ret = 0;
7327 			goto out;
7328 		}
7329 		slot--;
7330 	}
7331 	ret = 0;
7332 	leaf = path->nodes[0];
7333 	btrfs_item_key_to_cpu(leaf, &key, slot);
7334 	if (key.objectid != btrfs_ino(inode) ||
7335 	    key.type != BTRFS_EXTENT_DATA_KEY) {
7336 		/* not our file or wrong item type, must cow */
7337 		goto out;
7338 	}
7339 
7340 	if (key.offset > offset) {
7341 		/* Wrong offset, must cow */
7342 		goto out;
7343 	}
7344 
7345 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
7346 	found_type = btrfs_file_extent_type(leaf, fi);
7347 	if (found_type != BTRFS_FILE_EXTENT_REG &&
7348 	    found_type != BTRFS_FILE_EXTENT_PREALLOC) {
7349 		/* not a regular extent, must cow */
7350 		goto out;
7351 	}
7352 
7353 	if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
7354 		goto out;
7355 
7356 	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
7357 	if (extent_end <= offset)
7358 		goto out;
7359 
7360 	disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
7361 	if (disk_bytenr == 0)
7362 		goto out;
7363 
7364 	if (btrfs_file_extent_compression(leaf, fi) ||
7365 	    btrfs_file_extent_encryption(leaf, fi) ||
7366 	    btrfs_file_extent_other_encoding(leaf, fi))
7367 		goto out;
7368 
7369 	backref_offset = btrfs_file_extent_offset(leaf, fi);
7370 
7371 	if (orig_start) {
7372 		*orig_start = key.offset - backref_offset;
7373 		*orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
7374 		*ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
7375 	}
7376 
7377 	if (btrfs_extent_readonly(root, disk_bytenr))
7378 		goto out;
7379 
7380 	num_bytes = min(offset + *len, extent_end) - offset;
7381 	if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7382 		u64 range_end;
7383 
7384 		range_end = round_up(offset + num_bytes, root->sectorsize) - 1;
7385 		ret = test_range_bit(io_tree, offset, range_end,
7386 				     EXTENT_DELALLOC, 0, NULL);
7387 		if (ret) {
7388 			ret = -EAGAIN;
7389 			goto out;
7390 		}
7391 	}
7392 
7393 	btrfs_release_path(path);
7394 
7395 	/*
7396 	 * look for other files referencing this extent, if we
7397 	 * find any we must cow
7398 	 */
7399 	trans = btrfs_join_transaction(root);
7400 	if (IS_ERR(trans)) {
7401 		ret = 0;
7402 		goto out;
7403 	}
7404 
7405 	ret = btrfs_cross_ref_exist(trans, root, btrfs_ino(inode),
7406 				    key.offset - backref_offset, disk_bytenr);
7407 	btrfs_end_transaction(trans, root);
7408 	if (ret) {
7409 		ret = 0;
7410 		goto out;
7411 	}
7412 
7413 	/*
7414 	 * adjust disk_bytenr and num_bytes to cover just the bytes
7415 	 * in this extent we are about to write.  If there
7416 	 * are any csums in that range we have to cow in order
7417 	 * to keep the csums correct
7418 	 */
7419 	disk_bytenr += backref_offset;
7420 	disk_bytenr += offset - key.offset;
7421 	if (csum_exist_in_range(root, disk_bytenr, num_bytes))
7422 				goto out;
7423 	/*
7424 	 * all of the above have passed, it is safe to overwrite this extent
7425 	 * without cow
7426 	 */
7427 	*len = num_bytes;
7428 	ret = 1;
7429 out:
7430 	btrfs_free_path(path);
7431 	return ret;
7432 }
7433 
7434 bool btrfs_page_exists_in_range(struct inode *inode, loff_t start, loff_t end)
7435 {
7436 	struct radix_tree_root *root = &inode->i_mapping->page_tree;
7437 	int found = false;
7438 	void **pagep = NULL;
7439 	struct page *page = NULL;
7440 	int start_idx;
7441 	int end_idx;
7442 
7443 	start_idx = start >> PAGE_SHIFT;
7444 
7445 	/*
7446 	 * end is the last byte in the last page.  end == start is legal
7447 	 */
7448 	end_idx = end >> PAGE_SHIFT;
7449 
7450 	rcu_read_lock();
7451 
7452 	/* Most of the code in this while loop is lifted from
7453 	 * find_get_page.  It's been modified to begin searching from a
7454 	 * page and return just the first page found in that range.  If the
7455 	 * found idx is less than or equal to the end idx then we know that
7456 	 * a page exists.  If no pages are found or if those pages are
7457 	 * outside of the range then we're fine (yay!) */
7458 	while (page == NULL &&
7459 	       radix_tree_gang_lookup_slot(root, &pagep, NULL, start_idx, 1)) {
7460 		page = radix_tree_deref_slot(pagep);
7461 		if (unlikely(!page))
7462 			break;
7463 
7464 		if (radix_tree_exception(page)) {
7465 			if (radix_tree_deref_retry(page)) {
7466 				page = NULL;
7467 				continue;
7468 			}
7469 			/*
7470 			 * Otherwise, shmem/tmpfs must be storing a swap entry
7471 			 * here as an exceptional entry: so return it without
7472 			 * attempting to raise page count.
7473 			 */
7474 			page = NULL;
7475 			break; /* TODO: Is this relevant for this use case? */
7476 		}
7477 
7478 		if (!page_cache_get_speculative(page)) {
7479 			page = NULL;
7480 			continue;
7481 		}
7482 
7483 		/*
7484 		 * Has the page moved?
7485 		 * This is part of the lockless pagecache protocol. See
7486 		 * include/linux/pagemap.h for details.
7487 		 */
7488 		if (unlikely(page != *pagep)) {
7489 			put_page(page);
7490 			page = NULL;
7491 		}
7492 	}
7493 
7494 	if (page) {
7495 		if (page->index <= end_idx)
7496 			found = true;
7497 		put_page(page);
7498 	}
7499 
7500 	rcu_read_unlock();
7501 	return found;
7502 }
7503 
7504 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
7505 			      struct extent_state **cached_state, int writing)
7506 {
7507 	struct btrfs_ordered_extent *ordered;
7508 	int ret = 0;
7509 
7510 	while (1) {
7511 		lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7512 				 cached_state);
7513 		/*
7514 		 * We're concerned with the entire range that we're going to be
7515 		 * doing DIO to, so we need to make sure there's no ordered
7516 		 * extents in this range.
7517 		 */
7518 		ordered = btrfs_lookup_ordered_range(inode, lockstart,
7519 						     lockend - lockstart + 1);
7520 
7521 		/*
7522 		 * We need to make sure there are no buffered pages in this
7523 		 * range either, we could have raced between the invalidate in
7524 		 * generic_file_direct_write and locking the extent.  The
7525 		 * invalidate needs to happen so that reads after a write do not
7526 		 * get stale data.
7527 		 */
7528 		if (!ordered &&
7529 		    (!writing ||
7530 		     !btrfs_page_exists_in_range(inode, lockstart, lockend)))
7531 			break;
7532 
7533 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7534 				     cached_state, GFP_NOFS);
7535 
7536 		if (ordered) {
7537 			/*
7538 			 * If we are doing a DIO read and the ordered extent we
7539 			 * found is for a buffered write, we can not wait for it
7540 			 * to complete and retry, because if we do so we can
7541 			 * deadlock with concurrent buffered writes on page
7542 			 * locks. This happens only if our DIO read covers more
7543 			 * than one extent map, if at this point has already
7544 			 * created an ordered extent for a previous extent map
7545 			 * and locked its range in the inode's io tree, and a
7546 			 * concurrent write against that previous extent map's
7547 			 * range and this range started (we unlock the ranges
7548 			 * in the io tree only when the bios complete and
7549 			 * buffered writes always lock pages before attempting
7550 			 * to lock range in the io tree).
7551 			 */
7552 			if (writing ||
7553 			    test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags))
7554 				btrfs_start_ordered_extent(inode, ordered, 1);
7555 			else
7556 				ret = -ENOTBLK;
7557 			btrfs_put_ordered_extent(ordered);
7558 		} else {
7559 			/*
7560 			 * We could trigger writeback for this range (and wait
7561 			 * for it to complete) and then invalidate the pages for
7562 			 * this range (through invalidate_inode_pages2_range()),
7563 			 * but that can lead us to a deadlock with a concurrent
7564 			 * call to readpages() (a buffered read or a defrag call
7565 			 * triggered a readahead) on a page lock due to an
7566 			 * ordered dio extent we created before but did not have
7567 			 * yet a corresponding bio submitted (whence it can not
7568 			 * complete), which makes readpages() wait for that
7569 			 * ordered extent to complete while holding a lock on
7570 			 * that page.
7571 			 */
7572 			ret = -ENOTBLK;
7573 		}
7574 
7575 		if (ret)
7576 			break;
7577 
7578 		cond_resched();
7579 	}
7580 
7581 	return ret;
7582 }
7583 
7584 static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
7585 					   u64 len, u64 orig_start,
7586 					   u64 block_start, u64 block_len,
7587 					   u64 orig_block_len, u64 ram_bytes,
7588 					   int type)
7589 {
7590 	struct extent_map_tree *em_tree;
7591 	struct extent_map *em;
7592 	struct btrfs_root *root = BTRFS_I(inode)->root;
7593 	int ret;
7594 
7595 	em_tree = &BTRFS_I(inode)->extent_tree;
7596 	em = alloc_extent_map();
7597 	if (!em)
7598 		return ERR_PTR(-ENOMEM);
7599 
7600 	em->start = start;
7601 	em->orig_start = orig_start;
7602 	em->mod_start = start;
7603 	em->mod_len = len;
7604 	em->len = len;
7605 	em->block_len = block_len;
7606 	em->block_start = block_start;
7607 	em->bdev = root->fs_info->fs_devices->latest_bdev;
7608 	em->orig_block_len = orig_block_len;
7609 	em->ram_bytes = ram_bytes;
7610 	em->generation = -1;
7611 	set_bit(EXTENT_FLAG_PINNED, &em->flags);
7612 	if (type == BTRFS_ORDERED_PREALLOC)
7613 		set_bit(EXTENT_FLAG_FILLING, &em->flags);
7614 
7615 	do {
7616 		btrfs_drop_extent_cache(inode, em->start,
7617 				em->start + em->len - 1, 0);
7618 		write_lock(&em_tree->lock);
7619 		ret = add_extent_mapping(em_tree, em, 1);
7620 		write_unlock(&em_tree->lock);
7621 	} while (ret == -EEXIST);
7622 
7623 	if (ret) {
7624 		free_extent_map(em);
7625 		return ERR_PTR(ret);
7626 	}
7627 
7628 	return em;
7629 }
7630 
7631 static void adjust_dio_outstanding_extents(struct inode *inode,
7632 					   struct btrfs_dio_data *dio_data,
7633 					   const u64 len)
7634 {
7635 	unsigned num_extents;
7636 
7637 	num_extents = (unsigned) div64_u64(len + BTRFS_MAX_EXTENT_SIZE - 1,
7638 					   BTRFS_MAX_EXTENT_SIZE);
7639 	/*
7640 	 * If we have an outstanding_extents count still set then we're
7641 	 * within our reservation, otherwise we need to adjust our inode
7642 	 * counter appropriately.
7643 	 */
7644 	if (dio_data->outstanding_extents) {
7645 		dio_data->outstanding_extents -= num_extents;
7646 	} else {
7647 		spin_lock(&BTRFS_I(inode)->lock);
7648 		BTRFS_I(inode)->outstanding_extents += num_extents;
7649 		spin_unlock(&BTRFS_I(inode)->lock);
7650 	}
7651 }
7652 
7653 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
7654 				   struct buffer_head *bh_result, int create)
7655 {
7656 	struct extent_map *em;
7657 	struct btrfs_root *root = BTRFS_I(inode)->root;
7658 	struct extent_state *cached_state = NULL;
7659 	struct btrfs_dio_data *dio_data = NULL;
7660 	u64 start = iblock << inode->i_blkbits;
7661 	u64 lockstart, lockend;
7662 	u64 len = bh_result->b_size;
7663 	int unlock_bits = EXTENT_LOCKED;
7664 	int ret = 0;
7665 
7666 	if (create)
7667 		unlock_bits |= EXTENT_DIRTY;
7668 	else
7669 		len = min_t(u64, len, root->sectorsize);
7670 
7671 	lockstart = start;
7672 	lockend = start + len - 1;
7673 
7674 	if (current->journal_info) {
7675 		/*
7676 		 * Need to pull our outstanding extents and set journal_info to NULL so
7677 		 * that anything that needs to check if there's a transaction doesn't get
7678 		 * confused.
7679 		 */
7680 		dio_data = current->journal_info;
7681 		current->journal_info = NULL;
7682 	}
7683 
7684 	/*
7685 	 * If this errors out it's because we couldn't invalidate pagecache for
7686 	 * this range and we need to fallback to buffered.
7687 	 */
7688 	if (lock_extent_direct(inode, lockstart, lockend, &cached_state,
7689 			       create)) {
7690 		ret = -ENOTBLK;
7691 		goto err;
7692 	}
7693 
7694 	em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
7695 	if (IS_ERR(em)) {
7696 		ret = PTR_ERR(em);
7697 		goto unlock_err;
7698 	}
7699 
7700 	/*
7701 	 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7702 	 * io.  INLINE is special, and we could probably kludge it in here, but
7703 	 * it's still buffered so for safety lets just fall back to the generic
7704 	 * buffered path.
7705 	 *
7706 	 * For COMPRESSED we _have_ to read the entire extent in so we can
7707 	 * decompress it, so there will be buffering required no matter what we
7708 	 * do, so go ahead and fallback to buffered.
7709 	 *
7710 	 * We return -ENOTBLK because that's what makes DIO go ahead and go back
7711 	 * to buffered IO.  Don't blame me, this is the price we pay for using
7712 	 * the generic code.
7713 	 */
7714 	if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7715 	    em->block_start == EXTENT_MAP_INLINE) {
7716 		free_extent_map(em);
7717 		ret = -ENOTBLK;
7718 		goto unlock_err;
7719 	}
7720 
7721 	/* Just a good old fashioned hole, return */
7722 	if (!create && (em->block_start == EXTENT_MAP_HOLE ||
7723 			test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
7724 		free_extent_map(em);
7725 		goto unlock_err;
7726 	}
7727 
7728 	/*
7729 	 * We don't allocate a new extent in the following cases
7730 	 *
7731 	 * 1) The inode is marked as NODATACOW.  In this case we'll just use the
7732 	 * existing extent.
7733 	 * 2) The extent is marked as PREALLOC.  We're good to go here and can
7734 	 * just use the extent.
7735 	 *
7736 	 */
7737 	if (!create) {
7738 		len = min(len, em->len - (start - em->start));
7739 		lockstart = start + len;
7740 		goto unlock;
7741 	}
7742 
7743 	if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7744 	    ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7745 	     em->block_start != EXTENT_MAP_HOLE)) {
7746 		int type;
7747 		u64 block_start, orig_start, orig_block_len, ram_bytes;
7748 
7749 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7750 			type = BTRFS_ORDERED_PREALLOC;
7751 		else
7752 			type = BTRFS_ORDERED_NOCOW;
7753 		len = min(len, em->len - (start - em->start));
7754 		block_start = em->block_start + (start - em->start);
7755 
7756 		if (can_nocow_extent(inode, start, &len, &orig_start,
7757 				     &orig_block_len, &ram_bytes) == 1 &&
7758 		    btrfs_inc_nocow_writers(root->fs_info, block_start)) {
7759 			struct extent_map *em2;
7760 
7761 			em2 = btrfs_create_dio_extent(inode, start, len,
7762 						      orig_start, block_start,
7763 						      len, orig_block_len,
7764 						      ram_bytes, type);
7765 			btrfs_dec_nocow_writers(root->fs_info, block_start);
7766 			if (type == BTRFS_ORDERED_PREALLOC) {
7767 				free_extent_map(em);
7768 				em = em2;
7769 			}
7770 			if (em2 && IS_ERR(em2)) {
7771 				ret = PTR_ERR(em2);
7772 				goto unlock_err;
7773 			}
7774 			/*
7775 			 * For inode marked NODATACOW or extent marked PREALLOC,
7776 			 * use the existing or preallocated extent, so does not
7777 			 * need to adjust btrfs_space_info's bytes_may_use.
7778 			 */
7779 			btrfs_free_reserved_data_space_noquota(inode,
7780 					start, len);
7781 			goto unlock;
7782 		}
7783 	}
7784 
7785 	/*
7786 	 * this will cow the extent, reset the len in case we changed
7787 	 * it above
7788 	 */
7789 	len = bh_result->b_size;
7790 	free_extent_map(em);
7791 	em = btrfs_new_extent_direct(inode, start, len);
7792 	if (IS_ERR(em)) {
7793 		ret = PTR_ERR(em);
7794 		goto unlock_err;
7795 	}
7796 	len = min(len, em->len - (start - em->start));
7797 unlock:
7798 	bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7799 		inode->i_blkbits;
7800 	bh_result->b_size = len;
7801 	bh_result->b_bdev = em->bdev;
7802 	set_buffer_mapped(bh_result);
7803 	if (create) {
7804 		if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7805 			set_buffer_new(bh_result);
7806 
7807 		/*
7808 		 * Need to update the i_size under the extent lock so buffered
7809 		 * readers will get the updated i_size when we unlock.
7810 		 */
7811 		if (start + len > i_size_read(inode))
7812 			i_size_write(inode, start + len);
7813 
7814 		adjust_dio_outstanding_extents(inode, dio_data, len);
7815 		WARN_ON(dio_data->reserve < len);
7816 		dio_data->reserve -= len;
7817 		dio_data->unsubmitted_oe_range_end = start + len;
7818 		current->journal_info = dio_data;
7819 	}
7820 
7821 	/*
7822 	 * In the case of write we need to clear and unlock the entire range,
7823 	 * in the case of read we need to unlock only the end area that we
7824 	 * aren't using if there is any left over space.
7825 	 */
7826 	if (lockstart < lockend) {
7827 		clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
7828 				 lockend, unlock_bits, 1, 0,
7829 				 &cached_state, GFP_NOFS);
7830 	} else {
7831 		free_extent_state(cached_state);
7832 	}
7833 
7834 	free_extent_map(em);
7835 
7836 	return 0;
7837 
7838 unlock_err:
7839 	clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7840 			 unlock_bits, 1, 0, &cached_state, GFP_NOFS);
7841 err:
7842 	if (dio_data)
7843 		current->journal_info = dio_data;
7844 	/*
7845 	 * Compensate the delalloc release we do in btrfs_direct_IO() when we
7846 	 * write less data then expected, so that we don't underflow our inode's
7847 	 * outstanding extents counter.
7848 	 */
7849 	if (create && dio_data)
7850 		adjust_dio_outstanding_extents(inode, dio_data, len);
7851 
7852 	return ret;
7853 }
7854 
7855 static inline int submit_dio_repair_bio(struct inode *inode, struct bio *bio,
7856 					int mirror_num)
7857 {
7858 	struct btrfs_root *root = BTRFS_I(inode)->root;
7859 	int ret;
7860 
7861 	BUG_ON(bio_op(bio) == REQ_OP_WRITE);
7862 
7863 	bio_get(bio);
7864 
7865 	ret = btrfs_bio_wq_end_io(root->fs_info, bio,
7866 				  BTRFS_WQ_ENDIO_DIO_REPAIR);
7867 	if (ret)
7868 		goto err;
7869 
7870 	ret = btrfs_map_bio(root, bio, mirror_num, 0);
7871 err:
7872 	bio_put(bio);
7873 	return ret;
7874 }
7875 
7876 static int btrfs_check_dio_repairable(struct inode *inode,
7877 				      struct bio *failed_bio,
7878 				      struct io_failure_record *failrec,
7879 				      int failed_mirror)
7880 {
7881 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7882 	int num_copies;
7883 
7884 	num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
7885 	if (num_copies == 1) {
7886 		/*
7887 		 * we only have a single copy of the data, so don't bother with
7888 		 * all the retry and error correction code that follows. no
7889 		 * matter what the error is, it is very likely to persist.
7890 		 */
7891 		btrfs_debug(fs_info,
7892 			"Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
7893 			num_copies, failrec->this_mirror, failed_mirror);
7894 		return 0;
7895 	}
7896 
7897 	failrec->failed_mirror = failed_mirror;
7898 	failrec->this_mirror++;
7899 	if (failrec->this_mirror == failed_mirror)
7900 		failrec->this_mirror++;
7901 
7902 	if (failrec->this_mirror > num_copies) {
7903 		btrfs_debug(fs_info,
7904 			"Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
7905 			num_copies, failrec->this_mirror, failed_mirror);
7906 		return 0;
7907 	}
7908 
7909 	return 1;
7910 }
7911 
7912 static int dio_read_error(struct inode *inode, struct bio *failed_bio,
7913 			struct page *page, unsigned int pgoff,
7914 			u64 start, u64 end, int failed_mirror,
7915 			bio_end_io_t *repair_endio, void *repair_arg)
7916 {
7917 	struct io_failure_record *failrec;
7918 	struct bio *bio;
7919 	int isector;
7920 	int read_mode;
7921 	int ret;
7922 
7923 	BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
7924 
7925 	ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
7926 	if (ret)
7927 		return ret;
7928 
7929 	ret = btrfs_check_dio_repairable(inode, failed_bio, failrec,
7930 					 failed_mirror);
7931 	if (!ret) {
7932 		free_io_failure(inode, failrec);
7933 		return -EIO;
7934 	}
7935 
7936 	if ((failed_bio->bi_vcnt > 1)
7937 		|| (failed_bio->bi_io_vec->bv_len
7938 			> BTRFS_I(inode)->root->sectorsize))
7939 		read_mode = READ_SYNC | REQ_FAILFAST_DEV;
7940 	else
7941 		read_mode = READ_SYNC;
7942 
7943 	isector = start - btrfs_io_bio(failed_bio)->logical;
7944 	isector >>= inode->i_sb->s_blocksize_bits;
7945 	bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
7946 				pgoff, isector, repair_endio, repair_arg);
7947 	if (!bio) {
7948 		free_io_failure(inode, failrec);
7949 		return -EIO;
7950 	}
7951 	bio_set_op_attrs(bio, REQ_OP_READ, read_mode);
7952 
7953 	btrfs_debug(BTRFS_I(inode)->root->fs_info,
7954 		    "Repair DIO Read Error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d\n",
7955 		    read_mode, failrec->this_mirror, failrec->in_validation);
7956 
7957 	ret = submit_dio_repair_bio(inode, bio, failrec->this_mirror);
7958 	if (ret) {
7959 		free_io_failure(inode, failrec);
7960 		bio_put(bio);
7961 	}
7962 
7963 	return ret;
7964 }
7965 
7966 struct btrfs_retry_complete {
7967 	struct completion done;
7968 	struct inode *inode;
7969 	u64 start;
7970 	int uptodate;
7971 };
7972 
7973 static void btrfs_retry_endio_nocsum(struct bio *bio)
7974 {
7975 	struct btrfs_retry_complete *done = bio->bi_private;
7976 	struct inode *inode;
7977 	struct bio_vec *bvec;
7978 	int i;
7979 
7980 	if (bio->bi_error)
7981 		goto end;
7982 
7983 	ASSERT(bio->bi_vcnt == 1);
7984 	inode = bio->bi_io_vec->bv_page->mapping->host;
7985 	ASSERT(bio->bi_io_vec->bv_len == BTRFS_I(inode)->root->sectorsize);
7986 
7987 	done->uptodate = 1;
7988 	bio_for_each_segment_all(bvec, bio, i)
7989 		clean_io_failure(done->inode, done->start, bvec->bv_page, 0);
7990 end:
7991 	complete(&done->done);
7992 	bio_put(bio);
7993 }
7994 
7995 static int __btrfs_correct_data_nocsum(struct inode *inode,
7996 				       struct btrfs_io_bio *io_bio)
7997 {
7998 	struct btrfs_fs_info *fs_info;
7999 	struct bio_vec *bvec;
8000 	struct btrfs_retry_complete done;
8001 	u64 start;
8002 	unsigned int pgoff;
8003 	u32 sectorsize;
8004 	int nr_sectors;
8005 	int i;
8006 	int ret;
8007 
8008 	fs_info = BTRFS_I(inode)->root->fs_info;
8009 	sectorsize = BTRFS_I(inode)->root->sectorsize;
8010 
8011 	start = io_bio->logical;
8012 	done.inode = inode;
8013 
8014 	bio_for_each_segment_all(bvec, &io_bio->bio, i) {
8015 		nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec->bv_len);
8016 		pgoff = bvec->bv_offset;
8017 
8018 next_block_or_try_again:
8019 		done.uptodate = 0;
8020 		done.start = start;
8021 		init_completion(&done.done);
8022 
8023 		ret = dio_read_error(inode, &io_bio->bio, bvec->bv_page,
8024 				pgoff, start, start + sectorsize - 1,
8025 				io_bio->mirror_num,
8026 				btrfs_retry_endio_nocsum, &done);
8027 		if (ret)
8028 			return ret;
8029 
8030 		wait_for_completion(&done.done);
8031 
8032 		if (!done.uptodate) {
8033 			/* We might have another mirror, so try again */
8034 			goto next_block_or_try_again;
8035 		}
8036 
8037 		start += sectorsize;
8038 
8039 		if (nr_sectors--) {
8040 			pgoff += sectorsize;
8041 			goto next_block_or_try_again;
8042 		}
8043 	}
8044 
8045 	return 0;
8046 }
8047 
8048 static void btrfs_retry_endio(struct bio *bio)
8049 {
8050 	struct btrfs_retry_complete *done = bio->bi_private;
8051 	struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8052 	struct inode *inode;
8053 	struct bio_vec *bvec;
8054 	u64 start;
8055 	int uptodate;
8056 	int ret;
8057 	int i;
8058 
8059 	if (bio->bi_error)
8060 		goto end;
8061 
8062 	uptodate = 1;
8063 
8064 	start = done->start;
8065 
8066 	ASSERT(bio->bi_vcnt == 1);
8067 	inode = bio->bi_io_vec->bv_page->mapping->host;
8068 	ASSERT(bio->bi_io_vec->bv_len == BTRFS_I(inode)->root->sectorsize);
8069 
8070 	bio_for_each_segment_all(bvec, bio, i) {
8071 		ret = __readpage_endio_check(done->inode, io_bio, i,
8072 					bvec->bv_page, bvec->bv_offset,
8073 					done->start, bvec->bv_len);
8074 		if (!ret)
8075 			clean_io_failure(done->inode, done->start,
8076 					bvec->bv_page, bvec->bv_offset);
8077 		else
8078 			uptodate = 0;
8079 	}
8080 
8081 	done->uptodate = uptodate;
8082 end:
8083 	complete(&done->done);
8084 	bio_put(bio);
8085 }
8086 
8087 static int __btrfs_subio_endio_read(struct inode *inode,
8088 				    struct btrfs_io_bio *io_bio, int err)
8089 {
8090 	struct btrfs_fs_info *fs_info;
8091 	struct bio_vec *bvec;
8092 	struct btrfs_retry_complete done;
8093 	u64 start;
8094 	u64 offset = 0;
8095 	u32 sectorsize;
8096 	int nr_sectors;
8097 	unsigned int pgoff;
8098 	int csum_pos;
8099 	int i;
8100 	int ret;
8101 
8102 	fs_info = BTRFS_I(inode)->root->fs_info;
8103 	sectorsize = BTRFS_I(inode)->root->sectorsize;
8104 
8105 	err = 0;
8106 	start = io_bio->logical;
8107 	done.inode = inode;
8108 
8109 	bio_for_each_segment_all(bvec, &io_bio->bio, i) {
8110 		nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec->bv_len);
8111 
8112 		pgoff = bvec->bv_offset;
8113 next_block:
8114 		csum_pos = BTRFS_BYTES_TO_BLKS(fs_info, offset);
8115 		ret = __readpage_endio_check(inode, io_bio, csum_pos,
8116 					bvec->bv_page, pgoff, start,
8117 					sectorsize);
8118 		if (likely(!ret))
8119 			goto next;
8120 try_again:
8121 		done.uptodate = 0;
8122 		done.start = start;
8123 		init_completion(&done.done);
8124 
8125 		ret = dio_read_error(inode, &io_bio->bio, bvec->bv_page,
8126 				pgoff, start, start + sectorsize - 1,
8127 				io_bio->mirror_num,
8128 				btrfs_retry_endio, &done);
8129 		if (ret) {
8130 			err = ret;
8131 			goto next;
8132 		}
8133 
8134 		wait_for_completion(&done.done);
8135 
8136 		if (!done.uptodate) {
8137 			/* We might have another mirror, so try again */
8138 			goto try_again;
8139 		}
8140 next:
8141 		offset += sectorsize;
8142 		start += sectorsize;
8143 
8144 		ASSERT(nr_sectors);
8145 
8146 		if (--nr_sectors) {
8147 			pgoff += sectorsize;
8148 			goto next_block;
8149 		}
8150 	}
8151 
8152 	return err;
8153 }
8154 
8155 static int btrfs_subio_endio_read(struct inode *inode,
8156 				  struct btrfs_io_bio *io_bio, int err)
8157 {
8158 	bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
8159 
8160 	if (skip_csum) {
8161 		if (unlikely(err))
8162 			return __btrfs_correct_data_nocsum(inode, io_bio);
8163 		else
8164 			return 0;
8165 	} else {
8166 		return __btrfs_subio_endio_read(inode, io_bio, err);
8167 	}
8168 }
8169 
8170 static void btrfs_endio_direct_read(struct bio *bio)
8171 {
8172 	struct btrfs_dio_private *dip = bio->bi_private;
8173 	struct inode *inode = dip->inode;
8174 	struct bio *dio_bio;
8175 	struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8176 	int err = bio->bi_error;
8177 
8178 	if (dip->flags & BTRFS_DIO_ORIG_BIO_SUBMITTED)
8179 		err = btrfs_subio_endio_read(inode, io_bio, err);
8180 
8181 	unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
8182 		      dip->logical_offset + dip->bytes - 1);
8183 	dio_bio = dip->dio_bio;
8184 
8185 	kfree(dip);
8186 
8187 	dio_bio->bi_error = bio->bi_error;
8188 	dio_end_io(dio_bio, bio->bi_error);
8189 
8190 	if (io_bio->end_io)
8191 		io_bio->end_io(io_bio, err);
8192 	bio_put(bio);
8193 }
8194 
8195 static void btrfs_endio_direct_write_update_ordered(struct inode *inode,
8196 						    const u64 offset,
8197 						    const u64 bytes,
8198 						    const int uptodate)
8199 {
8200 	struct btrfs_root *root = BTRFS_I(inode)->root;
8201 	struct btrfs_ordered_extent *ordered = NULL;
8202 	u64 ordered_offset = offset;
8203 	u64 ordered_bytes = bytes;
8204 	int ret;
8205 
8206 again:
8207 	ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
8208 						   &ordered_offset,
8209 						   ordered_bytes,
8210 						   uptodate);
8211 	if (!ret)
8212 		goto out_test;
8213 
8214 	btrfs_init_work(&ordered->work, btrfs_endio_write_helper,
8215 			finish_ordered_fn, NULL, NULL);
8216 	btrfs_queue_work(root->fs_info->endio_write_workers,
8217 			 &ordered->work);
8218 out_test:
8219 	/*
8220 	 * our bio might span multiple ordered extents.  If we haven't
8221 	 * completed the accounting for the whole dio, go back and try again
8222 	 */
8223 	if (ordered_offset < offset + bytes) {
8224 		ordered_bytes = offset + bytes - ordered_offset;
8225 		ordered = NULL;
8226 		goto again;
8227 	}
8228 }
8229 
8230 static void btrfs_endio_direct_write(struct bio *bio)
8231 {
8232 	struct btrfs_dio_private *dip = bio->bi_private;
8233 	struct bio *dio_bio = dip->dio_bio;
8234 
8235 	btrfs_endio_direct_write_update_ordered(dip->inode,
8236 						dip->logical_offset,
8237 						dip->bytes,
8238 						!bio->bi_error);
8239 
8240 	kfree(dip);
8241 
8242 	dio_bio->bi_error = bio->bi_error;
8243 	dio_end_io(dio_bio, bio->bi_error);
8244 	bio_put(bio);
8245 }
8246 
8247 static int __btrfs_submit_bio_start_direct_io(struct inode *inode,
8248 				    struct bio *bio, int mirror_num,
8249 				    unsigned long bio_flags, u64 offset)
8250 {
8251 	int ret;
8252 	struct btrfs_root *root = BTRFS_I(inode)->root;
8253 	ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
8254 	BUG_ON(ret); /* -ENOMEM */
8255 	return 0;
8256 }
8257 
8258 static void btrfs_end_dio_bio(struct bio *bio)
8259 {
8260 	struct btrfs_dio_private *dip = bio->bi_private;
8261 	int err = bio->bi_error;
8262 
8263 	if (err)
8264 		btrfs_warn(BTRFS_I(dip->inode)->root->fs_info,
8265 			   "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d",
8266 			   btrfs_ino(dip->inode), bio_op(bio), bio->bi_opf,
8267 			   (unsigned long long)bio->bi_iter.bi_sector,
8268 			   bio->bi_iter.bi_size, err);
8269 
8270 	if (dip->subio_endio)
8271 		err = dip->subio_endio(dip->inode, btrfs_io_bio(bio), err);
8272 
8273 	if (err) {
8274 		dip->errors = 1;
8275 
8276 		/*
8277 		 * before atomic variable goto zero, we must make sure
8278 		 * dip->errors is perceived to be set.
8279 		 */
8280 		smp_mb__before_atomic();
8281 	}
8282 
8283 	/* if there are more bios still pending for this dio, just exit */
8284 	if (!atomic_dec_and_test(&dip->pending_bios))
8285 		goto out;
8286 
8287 	if (dip->errors) {
8288 		bio_io_error(dip->orig_bio);
8289 	} else {
8290 		dip->dio_bio->bi_error = 0;
8291 		bio_endio(dip->orig_bio);
8292 	}
8293 out:
8294 	bio_put(bio);
8295 }
8296 
8297 static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
8298 				       u64 first_sector, gfp_t gfp_flags)
8299 {
8300 	struct bio *bio;
8301 	bio = btrfs_bio_alloc(bdev, first_sector, BIO_MAX_PAGES, gfp_flags);
8302 	if (bio)
8303 		bio_associate_current(bio);
8304 	return bio;
8305 }
8306 
8307 static inline int btrfs_lookup_and_bind_dio_csum(struct btrfs_root *root,
8308 						 struct inode *inode,
8309 						 struct btrfs_dio_private *dip,
8310 						 struct bio *bio,
8311 						 u64 file_offset)
8312 {
8313 	struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8314 	struct btrfs_io_bio *orig_io_bio = btrfs_io_bio(dip->orig_bio);
8315 	int ret;
8316 
8317 	/*
8318 	 * We load all the csum data we need when we submit
8319 	 * the first bio to reduce the csum tree search and
8320 	 * contention.
8321 	 */
8322 	if (dip->logical_offset == file_offset) {
8323 		ret = btrfs_lookup_bio_sums_dio(root, inode, dip->orig_bio,
8324 						file_offset);
8325 		if (ret)
8326 			return ret;
8327 	}
8328 
8329 	if (bio == dip->orig_bio)
8330 		return 0;
8331 
8332 	file_offset -= dip->logical_offset;
8333 	file_offset >>= inode->i_sb->s_blocksize_bits;
8334 	io_bio->csum = (u8 *)(((u32 *)orig_io_bio->csum) + file_offset);
8335 
8336 	return 0;
8337 }
8338 
8339 static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
8340 					 u64 file_offset, int skip_sum,
8341 					 int async_submit)
8342 {
8343 	struct btrfs_dio_private *dip = bio->bi_private;
8344 	bool write = bio_op(bio) == REQ_OP_WRITE;
8345 	struct btrfs_root *root = BTRFS_I(inode)->root;
8346 	int ret;
8347 
8348 	if (async_submit)
8349 		async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
8350 
8351 	bio_get(bio);
8352 
8353 	if (!write) {
8354 		ret = btrfs_bio_wq_end_io(root->fs_info, bio,
8355 				BTRFS_WQ_ENDIO_DATA);
8356 		if (ret)
8357 			goto err;
8358 	}
8359 
8360 	if (skip_sum)
8361 		goto map;
8362 
8363 	if (write && async_submit) {
8364 		ret = btrfs_wq_submit_bio(root->fs_info,
8365 				   inode, bio, 0, 0, file_offset,
8366 				   __btrfs_submit_bio_start_direct_io,
8367 				   __btrfs_submit_bio_done);
8368 		goto err;
8369 	} else if (write) {
8370 		/*
8371 		 * If we aren't doing async submit, calculate the csum of the
8372 		 * bio now.
8373 		 */
8374 		ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1);
8375 		if (ret)
8376 			goto err;
8377 	} else {
8378 		ret = btrfs_lookup_and_bind_dio_csum(root, inode, dip, bio,
8379 						     file_offset);
8380 		if (ret)
8381 			goto err;
8382 	}
8383 map:
8384 	ret = btrfs_map_bio(root, bio, 0, async_submit);
8385 err:
8386 	bio_put(bio);
8387 	return ret;
8388 }
8389 
8390 static int btrfs_submit_direct_hook(struct btrfs_dio_private *dip,
8391 				    int skip_sum)
8392 {
8393 	struct inode *inode = dip->inode;
8394 	struct btrfs_root *root = BTRFS_I(inode)->root;
8395 	struct bio *bio;
8396 	struct bio *orig_bio = dip->orig_bio;
8397 	struct bio_vec *bvec = orig_bio->bi_io_vec;
8398 	u64 start_sector = orig_bio->bi_iter.bi_sector;
8399 	u64 file_offset = dip->logical_offset;
8400 	u64 submit_len = 0;
8401 	u64 map_length;
8402 	u32 blocksize = root->sectorsize;
8403 	int async_submit = 0;
8404 	int nr_sectors;
8405 	int ret;
8406 	int i;
8407 
8408 	map_length = orig_bio->bi_iter.bi_size;
8409 	ret = btrfs_map_block(root->fs_info, bio_op(orig_bio),
8410 			      start_sector << 9, &map_length, NULL, 0);
8411 	if (ret)
8412 		return -EIO;
8413 
8414 	if (map_length >= orig_bio->bi_iter.bi_size) {
8415 		bio = orig_bio;
8416 		dip->flags |= BTRFS_DIO_ORIG_BIO_SUBMITTED;
8417 		goto submit;
8418 	}
8419 
8420 	/* async crcs make it difficult to collect full stripe writes. */
8421 	if (btrfs_get_alloc_profile(root, 1) & BTRFS_BLOCK_GROUP_RAID56_MASK)
8422 		async_submit = 0;
8423 	else
8424 		async_submit = 1;
8425 
8426 	bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
8427 	if (!bio)
8428 		return -ENOMEM;
8429 
8430 	bio_set_op_attrs(bio, bio_op(orig_bio), bio_flags(orig_bio));
8431 	bio->bi_private = dip;
8432 	bio->bi_end_io = btrfs_end_dio_bio;
8433 	btrfs_io_bio(bio)->logical = file_offset;
8434 	atomic_inc(&dip->pending_bios);
8435 
8436 	while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
8437 		nr_sectors = BTRFS_BYTES_TO_BLKS(root->fs_info, bvec->bv_len);
8438 		i = 0;
8439 next_block:
8440 		if (unlikely(map_length < submit_len + blocksize ||
8441 		    bio_add_page(bio, bvec->bv_page, blocksize,
8442 			    bvec->bv_offset + (i * blocksize)) < blocksize)) {
8443 			/*
8444 			 * inc the count before we submit the bio so
8445 			 * we know the end IO handler won't happen before
8446 			 * we inc the count. Otherwise, the dip might get freed
8447 			 * before we're done setting it up
8448 			 */
8449 			atomic_inc(&dip->pending_bios);
8450 			ret = __btrfs_submit_dio_bio(bio, inode,
8451 						     file_offset, skip_sum,
8452 						     async_submit);
8453 			if (ret) {
8454 				bio_put(bio);
8455 				atomic_dec(&dip->pending_bios);
8456 				goto out_err;
8457 			}
8458 
8459 			start_sector += submit_len >> 9;
8460 			file_offset += submit_len;
8461 
8462 			submit_len = 0;
8463 
8464 			bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
8465 						  start_sector, GFP_NOFS);
8466 			if (!bio)
8467 				goto out_err;
8468 			bio_set_op_attrs(bio, bio_op(orig_bio),
8469 					 bio_flags(orig_bio));
8470 			bio->bi_private = dip;
8471 			bio->bi_end_io = btrfs_end_dio_bio;
8472 			btrfs_io_bio(bio)->logical = file_offset;
8473 
8474 			map_length = orig_bio->bi_iter.bi_size;
8475 			ret = btrfs_map_block(root->fs_info, bio_op(orig_bio),
8476 					      start_sector << 9,
8477 					      &map_length, NULL, 0);
8478 			if (ret) {
8479 				bio_put(bio);
8480 				goto out_err;
8481 			}
8482 
8483 			goto next_block;
8484 		} else {
8485 			submit_len += blocksize;
8486 			if (--nr_sectors) {
8487 				i++;
8488 				goto next_block;
8489 			}
8490 			bvec++;
8491 		}
8492 	}
8493 
8494 submit:
8495 	ret = __btrfs_submit_dio_bio(bio, inode, file_offset, skip_sum,
8496 				     async_submit);
8497 	if (!ret)
8498 		return 0;
8499 
8500 	bio_put(bio);
8501 out_err:
8502 	dip->errors = 1;
8503 	/*
8504 	 * before atomic variable goto zero, we must
8505 	 * make sure dip->errors is perceived to be set.
8506 	 */
8507 	smp_mb__before_atomic();
8508 	if (atomic_dec_and_test(&dip->pending_bios))
8509 		bio_io_error(dip->orig_bio);
8510 
8511 	/* bio_end_io() will handle error, so we needn't return it */
8512 	return 0;
8513 }
8514 
8515 static void btrfs_submit_direct(struct bio *dio_bio, struct inode *inode,
8516 				loff_t file_offset)
8517 {
8518 	struct btrfs_dio_private *dip = NULL;
8519 	struct bio *io_bio = NULL;
8520 	struct btrfs_io_bio *btrfs_bio;
8521 	int skip_sum;
8522 	bool write = (bio_op(dio_bio) == REQ_OP_WRITE);
8523 	int ret = 0;
8524 
8525 	skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
8526 
8527 	io_bio = btrfs_bio_clone(dio_bio, GFP_NOFS);
8528 	if (!io_bio) {
8529 		ret = -ENOMEM;
8530 		goto free_ordered;
8531 	}
8532 
8533 	dip = kzalloc(sizeof(*dip), GFP_NOFS);
8534 	if (!dip) {
8535 		ret = -ENOMEM;
8536 		goto free_ordered;
8537 	}
8538 
8539 	dip->private = dio_bio->bi_private;
8540 	dip->inode = inode;
8541 	dip->logical_offset = file_offset;
8542 	dip->bytes = dio_bio->bi_iter.bi_size;
8543 	dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9;
8544 	io_bio->bi_private = dip;
8545 	dip->orig_bio = io_bio;
8546 	dip->dio_bio = dio_bio;
8547 	atomic_set(&dip->pending_bios, 0);
8548 	btrfs_bio = btrfs_io_bio(io_bio);
8549 	btrfs_bio->logical = file_offset;
8550 
8551 	if (write) {
8552 		io_bio->bi_end_io = btrfs_endio_direct_write;
8553 	} else {
8554 		io_bio->bi_end_io = btrfs_endio_direct_read;
8555 		dip->subio_endio = btrfs_subio_endio_read;
8556 	}
8557 
8558 	/*
8559 	 * Reset the range for unsubmitted ordered extents (to a 0 length range)
8560 	 * even if we fail to submit a bio, because in such case we do the
8561 	 * corresponding error handling below and it must not be done a second
8562 	 * time by btrfs_direct_IO().
8563 	 */
8564 	if (write) {
8565 		struct btrfs_dio_data *dio_data = current->journal_info;
8566 
8567 		dio_data->unsubmitted_oe_range_end = dip->logical_offset +
8568 			dip->bytes;
8569 		dio_data->unsubmitted_oe_range_start =
8570 			dio_data->unsubmitted_oe_range_end;
8571 	}
8572 
8573 	ret = btrfs_submit_direct_hook(dip, skip_sum);
8574 	if (!ret)
8575 		return;
8576 
8577 	if (btrfs_bio->end_io)
8578 		btrfs_bio->end_io(btrfs_bio, ret);
8579 
8580 free_ordered:
8581 	/*
8582 	 * If we arrived here it means either we failed to submit the dip
8583 	 * or we either failed to clone the dio_bio or failed to allocate the
8584 	 * dip. If we cloned the dio_bio and allocated the dip, we can just
8585 	 * call bio_endio against our io_bio so that we get proper resource
8586 	 * cleanup if we fail to submit the dip, otherwise, we must do the
8587 	 * same as btrfs_endio_direct_[write|read] because we can't call these
8588 	 * callbacks - they require an allocated dip and a clone of dio_bio.
8589 	 */
8590 	if (io_bio && dip) {
8591 		io_bio->bi_error = -EIO;
8592 		bio_endio(io_bio);
8593 		/*
8594 		 * The end io callbacks free our dip, do the final put on io_bio
8595 		 * and all the cleanup and final put for dio_bio (through
8596 		 * dio_end_io()).
8597 		 */
8598 		dip = NULL;
8599 		io_bio = NULL;
8600 	} else {
8601 		if (write)
8602 			btrfs_endio_direct_write_update_ordered(inode,
8603 						file_offset,
8604 						dio_bio->bi_iter.bi_size,
8605 						0);
8606 		else
8607 			unlock_extent(&BTRFS_I(inode)->io_tree, file_offset,
8608 			      file_offset + dio_bio->bi_iter.bi_size - 1);
8609 
8610 		dio_bio->bi_error = -EIO;
8611 		/*
8612 		 * Releases and cleans up our dio_bio, no need to bio_put()
8613 		 * nor bio_endio()/bio_io_error() against dio_bio.
8614 		 */
8615 		dio_end_io(dio_bio, ret);
8616 	}
8617 	if (io_bio)
8618 		bio_put(io_bio);
8619 	kfree(dip);
8620 }
8621 
8622 static ssize_t check_direct_IO(struct btrfs_root *root, struct kiocb *iocb,
8623 			const struct iov_iter *iter, loff_t offset)
8624 {
8625 	int seg;
8626 	int i;
8627 	unsigned blocksize_mask = root->sectorsize - 1;
8628 	ssize_t retval = -EINVAL;
8629 
8630 	if (offset & blocksize_mask)
8631 		goto out;
8632 
8633 	if (iov_iter_alignment(iter) & blocksize_mask)
8634 		goto out;
8635 
8636 	/* If this is a write we don't need to check anymore */
8637 	if (iov_iter_rw(iter) != READ || !iter_is_iovec(iter))
8638 		return 0;
8639 	/*
8640 	 * Check to make sure we don't have duplicate iov_base's in this
8641 	 * iovec, if so return EINVAL, otherwise we'll get csum errors
8642 	 * when reading back.
8643 	 */
8644 	for (seg = 0; seg < iter->nr_segs; seg++) {
8645 		for (i = seg + 1; i < iter->nr_segs; i++) {
8646 			if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
8647 				goto out;
8648 		}
8649 	}
8650 	retval = 0;
8651 out:
8652 	return retval;
8653 }
8654 
8655 static ssize_t btrfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
8656 {
8657 	struct file *file = iocb->ki_filp;
8658 	struct inode *inode = file->f_mapping->host;
8659 	struct btrfs_root *root = BTRFS_I(inode)->root;
8660 	struct btrfs_dio_data dio_data = { 0 };
8661 	loff_t offset = iocb->ki_pos;
8662 	size_t count = 0;
8663 	int flags = 0;
8664 	bool wakeup = true;
8665 	bool relock = false;
8666 	ssize_t ret;
8667 
8668 	if (check_direct_IO(BTRFS_I(inode)->root, iocb, iter, offset))
8669 		return 0;
8670 
8671 	inode_dio_begin(inode);
8672 	smp_mb__after_atomic();
8673 
8674 	/*
8675 	 * The generic stuff only does filemap_write_and_wait_range, which
8676 	 * isn't enough if we've written compressed pages to this area, so
8677 	 * we need to flush the dirty pages again to make absolutely sure
8678 	 * that any outstanding dirty pages are on disk.
8679 	 */
8680 	count = iov_iter_count(iter);
8681 	if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
8682 		     &BTRFS_I(inode)->runtime_flags))
8683 		filemap_fdatawrite_range(inode->i_mapping, offset,
8684 					 offset + count - 1);
8685 
8686 	if (iov_iter_rw(iter) == WRITE) {
8687 		/*
8688 		 * If the write DIO is beyond the EOF, we need update
8689 		 * the isize, but it is protected by i_mutex. So we can
8690 		 * not unlock the i_mutex at this case.
8691 		 */
8692 		if (offset + count <= inode->i_size) {
8693 			inode_unlock(inode);
8694 			relock = true;
8695 		}
8696 		ret = btrfs_delalloc_reserve_space(inode, offset, count);
8697 		if (ret)
8698 			goto out;
8699 		dio_data.outstanding_extents = div64_u64(count +
8700 						BTRFS_MAX_EXTENT_SIZE - 1,
8701 						BTRFS_MAX_EXTENT_SIZE);
8702 
8703 		/*
8704 		 * We need to know how many extents we reserved so that we can
8705 		 * do the accounting properly if we go over the number we
8706 		 * originally calculated.  Abuse current->journal_info for this.
8707 		 */
8708 		dio_data.reserve = round_up(count, root->sectorsize);
8709 		dio_data.unsubmitted_oe_range_start = (u64)offset;
8710 		dio_data.unsubmitted_oe_range_end = (u64)offset;
8711 		current->journal_info = &dio_data;
8712 	} else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK,
8713 				     &BTRFS_I(inode)->runtime_flags)) {
8714 		inode_dio_end(inode);
8715 		flags = DIO_LOCKING | DIO_SKIP_HOLES;
8716 		wakeup = false;
8717 	}
8718 
8719 	ret = __blockdev_direct_IO(iocb, inode,
8720 				   BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
8721 				   iter, btrfs_get_blocks_direct, NULL,
8722 				   btrfs_submit_direct, flags);
8723 	if (iov_iter_rw(iter) == WRITE) {
8724 		current->journal_info = NULL;
8725 		if (ret < 0 && ret != -EIOCBQUEUED) {
8726 			if (dio_data.reserve)
8727 				btrfs_delalloc_release_space(inode, offset,
8728 							     dio_data.reserve);
8729 			/*
8730 			 * On error we might have left some ordered extents
8731 			 * without submitting corresponding bios for them, so
8732 			 * cleanup them up to avoid other tasks getting them
8733 			 * and waiting for them to complete forever.
8734 			 */
8735 			if (dio_data.unsubmitted_oe_range_start <
8736 			    dio_data.unsubmitted_oe_range_end)
8737 				btrfs_endio_direct_write_update_ordered(inode,
8738 					dio_data.unsubmitted_oe_range_start,
8739 					dio_data.unsubmitted_oe_range_end -
8740 					dio_data.unsubmitted_oe_range_start,
8741 					0);
8742 		} else if (ret >= 0 && (size_t)ret < count)
8743 			btrfs_delalloc_release_space(inode, offset,
8744 						     count - (size_t)ret);
8745 	}
8746 out:
8747 	if (wakeup)
8748 		inode_dio_end(inode);
8749 	if (relock)
8750 		inode_lock(inode);
8751 
8752 	return ret;
8753 }
8754 
8755 #define BTRFS_FIEMAP_FLAGS	(FIEMAP_FLAG_SYNC)
8756 
8757 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
8758 		__u64 start, __u64 len)
8759 {
8760 	int	ret;
8761 
8762 	ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS);
8763 	if (ret)
8764 		return ret;
8765 
8766 	return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
8767 }
8768 
8769 int btrfs_readpage(struct file *file, struct page *page)
8770 {
8771 	struct extent_io_tree *tree;
8772 	tree = &BTRFS_I(page->mapping->host)->io_tree;
8773 	return extent_read_full_page(tree, page, btrfs_get_extent, 0);
8774 }
8775 
8776 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
8777 {
8778 	struct extent_io_tree *tree;
8779 	struct inode *inode = page->mapping->host;
8780 	int ret;
8781 
8782 	if (current->flags & PF_MEMALLOC) {
8783 		redirty_page_for_writepage(wbc, page);
8784 		unlock_page(page);
8785 		return 0;
8786 	}
8787 
8788 	/*
8789 	 * If we are under memory pressure we will call this directly from the
8790 	 * VM, we need to make sure we have the inode referenced for the ordered
8791 	 * extent.  If not just return like we didn't do anything.
8792 	 */
8793 	if (!igrab(inode)) {
8794 		redirty_page_for_writepage(wbc, page);
8795 		return AOP_WRITEPAGE_ACTIVATE;
8796 	}
8797 	tree = &BTRFS_I(page->mapping->host)->io_tree;
8798 	ret = extent_write_full_page(tree, page, btrfs_get_extent, wbc);
8799 	btrfs_add_delayed_iput(inode);
8800 	return ret;
8801 }
8802 
8803 static int btrfs_writepages(struct address_space *mapping,
8804 			    struct writeback_control *wbc)
8805 {
8806 	struct extent_io_tree *tree;
8807 
8808 	tree = &BTRFS_I(mapping->host)->io_tree;
8809 	return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
8810 }
8811 
8812 static int
8813 btrfs_readpages(struct file *file, struct address_space *mapping,
8814 		struct list_head *pages, unsigned nr_pages)
8815 {
8816 	struct extent_io_tree *tree;
8817 	tree = &BTRFS_I(mapping->host)->io_tree;
8818 	return extent_readpages(tree, mapping, pages, nr_pages,
8819 				btrfs_get_extent);
8820 }
8821 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8822 {
8823 	struct extent_io_tree *tree;
8824 	struct extent_map_tree *map;
8825 	int ret;
8826 
8827 	tree = &BTRFS_I(page->mapping->host)->io_tree;
8828 	map = &BTRFS_I(page->mapping->host)->extent_tree;
8829 	ret = try_release_extent_mapping(map, tree, page, gfp_flags);
8830 	if (ret == 1) {
8831 		ClearPagePrivate(page);
8832 		set_page_private(page, 0);
8833 		put_page(page);
8834 	}
8835 	return ret;
8836 }
8837 
8838 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8839 {
8840 	if (PageWriteback(page) || PageDirty(page))
8841 		return 0;
8842 	return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
8843 }
8844 
8845 static void btrfs_invalidatepage(struct page *page, unsigned int offset,
8846 				 unsigned int length)
8847 {
8848 	struct inode *inode = page->mapping->host;
8849 	struct extent_io_tree *tree;
8850 	struct btrfs_ordered_extent *ordered;
8851 	struct extent_state *cached_state = NULL;
8852 	u64 page_start = page_offset(page);
8853 	u64 page_end = page_start + PAGE_SIZE - 1;
8854 	u64 start;
8855 	u64 end;
8856 	int inode_evicting = inode->i_state & I_FREEING;
8857 
8858 	/*
8859 	 * we have the page locked, so new writeback can't start,
8860 	 * and the dirty bit won't be cleared while we are here.
8861 	 *
8862 	 * Wait for IO on this page so that we can safely clear
8863 	 * the PagePrivate2 bit and do ordered accounting
8864 	 */
8865 	wait_on_page_writeback(page);
8866 
8867 	tree = &BTRFS_I(inode)->io_tree;
8868 	if (offset) {
8869 		btrfs_releasepage(page, GFP_NOFS);
8870 		return;
8871 	}
8872 
8873 	if (!inode_evicting)
8874 		lock_extent_bits(tree, page_start, page_end, &cached_state);
8875 again:
8876 	start = page_start;
8877 	ordered = btrfs_lookup_ordered_range(inode, start,
8878 					page_end - start + 1);
8879 	if (ordered) {
8880 		end = min(page_end, ordered->file_offset + ordered->len - 1);
8881 		/*
8882 		 * IO on this page will never be started, so we need
8883 		 * to account for any ordered extents now
8884 		 */
8885 		if (!inode_evicting)
8886 			clear_extent_bit(tree, start, end,
8887 					 EXTENT_DIRTY | EXTENT_DELALLOC |
8888 					 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
8889 					 EXTENT_DEFRAG, 1, 0, &cached_state,
8890 					 GFP_NOFS);
8891 		/*
8892 		 * whoever cleared the private bit is responsible
8893 		 * for the finish_ordered_io
8894 		 */
8895 		if (TestClearPagePrivate2(page)) {
8896 			struct btrfs_ordered_inode_tree *tree;
8897 			u64 new_len;
8898 
8899 			tree = &BTRFS_I(inode)->ordered_tree;
8900 
8901 			spin_lock_irq(&tree->lock);
8902 			set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
8903 			new_len = start - ordered->file_offset;
8904 			if (new_len < ordered->truncated_len)
8905 				ordered->truncated_len = new_len;
8906 			spin_unlock_irq(&tree->lock);
8907 
8908 			if (btrfs_dec_test_ordered_pending(inode, &ordered,
8909 							   start,
8910 							   end - start + 1, 1))
8911 				btrfs_finish_ordered_io(ordered);
8912 		}
8913 		btrfs_put_ordered_extent(ordered);
8914 		if (!inode_evicting) {
8915 			cached_state = NULL;
8916 			lock_extent_bits(tree, start, end,
8917 					 &cached_state);
8918 		}
8919 
8920 		start = end + 1;
8921 		if (start < page_end)
8922 			goto again;
8923 	}
8924 
8925 	/*
8926 	 * Qgroup reserved space handler
8927 	 * Page here will be either
8928 	 * 1) Already written to disk
8929 	 *    In this case, its reserved space is released from data rsv map
8930 	 *    and will be freed by delayed_ref handler finally.
8931 	 *    So even we call qgroup_free_data(), it won't decrease reserved
8932 	 *    space.
8933 	 * 2) Not written to disk
8934 	 *    This means the reserved space should be freed here. However,
8935 	 *    if a truncate invalidates the page (by clearing PageDirty)
8936 	 *    and the page is accounted for while allocating extent
8937 	 *    in btrfs_check_data_free_space() we let delayed_ref to
8938 	 *    free the entire extent.
8939 	 */
8940 	if (PageDirty(page))
8941 		btrfs_qgroup_free_data(inode, page_start, PAGE_SIZE);
8942 	if (!inode_evicting) {
8943 		clear_extent_bit(tree, page_start, page_end,
8944 				 EXTENT_LOCKED | EXTENT_DIRTY |
8945 				 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
8946 				 EXTENT_DEFRAG, 1, 1,
8947 				 &cached_state, GFP_NOFS);
8948 
8949 		__btrfs_releasepage(page, GFP_NOFS);
8950 	}
8951 
8952 	ClearPageChecked(page);
8953 	if (PagePrivate(page)) {
8954 		ClearPagePrivate(page);
8955 		set_page_private(page, 0);
8956 		put_page(page);
8957 	}
8958 }
8959 
8960 /*
8961  * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8962  * called from a page fault handler when a page is first dirtied. Hence we must
8963  * be careful to check for EOF conditions here. We set the page up correctly
8964  * for a written page which means we get ENOSPC checking when writing into
8965  * holes and correct delalloc and unwritten extent mapping on filesystems that
8966  * support these features.
8967  *
8968  * We are not allowed to take the i_mutex here so we have to play games to
8969  * protect against truncate races as the page could now be beyond EOF.  Because
8970  * vmtruncate() writes the inode size before removing pages, once we have the
8971  * page lock we can determine safely if the page is beyond EOF. If it is not
8972  * beyond EOF, then the page is guaranteed safe against truncation until we
8973  * unlock the page.
8974  */
8975 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
8976 {
8977 	struct page *page = vmf->page;
8978 	struct inode *inode = file_inode(vma->vm_file);
8979 	struct btrfs_root *root = BTRFS_I(inode)->root;
8980 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8981 	struct btrfs_ordered_extent *ordered;
8982 	struct extent_state *cached_state = NULL;
8983 	char *kaddr;
8984 	unsigned long zero_start;
8985 	loff_t size;
8986 	int ret;
8987 	int reserved = 0;
8988 	u64 reserved_space;
8989 	u64 page_start;
8990 	u64 page_end;
8991 	u64 end;
8992 
8993 	reserved_space = PAGE_SIZE;
8994 
8995 	sb_start_pagefault(inode->i_sb);
8996 	page_start = page_offset(page);
8997 	page_end = page_start + PAGE_SIZE - 1;
8998 	end = page_end;
8999 
9000 	/*
9001 	 * Reserving delalloc space after obtaining the page lock can lead to
9002 	 * deadlock. For example, if a dirty page is locked by this function
9003 	 * and the call to btrfs_delalloc_reserve_space() ends up triggering
9004 	 * dirty page write out, then the btrfs_writepage() function could
9005 	 * end up waiting indefinitely to get a lock on the page currently
9006 	 * being processed by btrfs_page_mkwrite() function.
9007 	 */
9008 	ret = btrfs_delalloc_reserve_space(inode, page_start,
9009 					   reserved_space);
9010 	if (!ret) {
9011 		ret = file_update_time(vma->vm_file);
9012 		reserved = 1;
9013 	}
9014 	if (ret) {
9015 		if (ret == -ENOMEM)
9016 			ret = VM_FAULT_OOM;
9017 		else /* -ENOSPC, -EIO, etc */
9018 			ret = VM_FAULT_SIGBUS;
9019 		if (reserved)
9020 			goto out;
9021 		goto out_noreserve;
9022 	}
9023 
9024 	ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
9025 again:
9026 	lock_page(page);
9027 	size = i_size_read(inode);
9028 
9029 	if ((page->mapping != inode->i_mapping) ||
9030 	    (page_start >= size)) {
9031 		/* page got truncated out from underneath us */
9032 		goto out_unlock;
9033 	}
9034 	wait_on_page_writeback(page);
9035 
9036 	lock_extent_bits(io_tree, page_start, page_end, &cached_state);
9037 	set_page_extent_mapped(page);
9038 
9039 	/*
9040 	 * we can't set the delalloc bits if there are pending ordered
9041 	 * extents.  Drop our locks and wait for them to finish
9042 	 */
9043 	ordered = btrfs_lookup_ordered_range(inode, page_start, page_end);
9044 	if (ordered) {
9045 		unlock_extent_cached(io_tree, page_start, page_end,
9046 				     &cached_state, GFP_NOFS);
9047 		unlock_page(page);
9048 		btrfs_start_ordered_extent(inode, ordered, 1);
9049 		btrfs_put_ordered_extent(ordered);
9050 		goto again;
9051 	}
9052 
9053 	if (page->index == ((size - 1) >> PAGE_SHIFT)) {
9054 		reserved_space = round_up(size - page_start, root->sectorsize);
9055 		if (reserved_space < PAGE_SIZE) {
9056 			end = page_start + reserved_space - 1;
9057 			spin_lock(&BTRFS_I(inode)->lock);
9058 			BTRFS_I(inode)->outstanding_extents++;
9059 			spin_unlock(&BTRFS_I(inode)->lock);
9060 			btrfs_delalloc_release_space(inode, page_start,
9061 						PAGE_SIZE - reserved_space);
9062 		}
9063 	}
9064 
9065 	/*
9066 	 * XXX - page_mkwrite gets called every time the page is dirtied, even
9067 	 * if it was already dirty, so for space accounting reasons we need to
9068 	 * clear any delalloc bits for the range we are fixing to save.  There
9069 	 * is probably a better way to do this, but for now keep consistent with
9070 	 * prepare_pages in the normal write path.
9071 	 */
9072 	clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end,
9073 			  EXTENT_DIRTY | EXTENT_DELALLOC |
9074 			  EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
9075 			  0, 0, &cached_state, GFP_NOFS);
9076 
9077 	ret = btrfs_set_extent_delalloc(inode, page_start, end,
9078 					&cached_state, 0);
9079 	if (ret) {
9080 		unlock_extent_cached(io_tree, page_start, page_end,
9081 				     &cached_state, GFP_NOFS);
9082 		ret = VM_FAULT_SIGBUS;
9083 		goto out_unlock;
9084 	}
9085 	ret = 0;
9086 
9087 	/* page is wholly or partially inside EOF */
9088 	if (page_start + PAGE_SIZE > size)
9089 		zero_start = size & ~PAGE_MASK;
9090 	else
9091 		zero_start = PAGE_SIZE;
9092 
9093 	if (zero_start != PAGE_SIZE) {
9094 		kaddr = kmap(page);
9095 		memset(kaddr + zero_start, 0, PAGE_SIZE - zero_start);
9096 		flush_dcache_page(page);
9097 		kunmap(page);
9098 	}
9099 	ClearPageChecked(page);
9100 	set_page_dirty(page);
9101 	SetPageUptodate(page);
9102 
9103 	BTRFS_I(inode)->last_trans = root->fs_info->generation;
9104 	BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
9105 	BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
9106 
9107 	unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
9108 
9109 out_unlock:
9110 	if (!ret) {
9111 		sb_end_pagefault(inode->i_sb);
9112 		return VM_FAULT_LOCKED;
9113 	}
9114 	unlock_page(page);
9115 out:
9116 	btrfs_delalloc_release_space(inode, page_start, reserved_space);
9117 out_noreserve:
9118 	sb_end_pagefault(inode->i_sb);
9119 	return ret;
9120 }
9121 
9122 static int btrfs_truncate(struct inode *inode)
9123 {
9124 	struct btrfs_root *root = BTRFS_I(inode)->root;
9125 	struct btrfs_block_rsv *rsv;
9126 	int ret = 0;
9127 	int err = 0;
9128 	struct btrfs_trans_handle *trans;
9129 	u64 mask = root->sectorsize - 1;
9130 	u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
9131 
9132 	ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
9133 				       (u64)-1);
9134 	if (ret)
9135 		return ret;
9136 
9137 	/*
9138 	 * Yes ladies and gentlemen, this is indeed ugly.  The fact is we have
9139 	 * 3 things going on here
9140 	 *
9141 	 * 1) We need to reserve space for our orphan item and the space to
9142 	 * delete our orphan item.  Lord knows we don't want to have a dangling
9143 	 * orphan item because we didn't reserve space to remove it.
9144 	 *
9145 	 * 2) We need to reserve space to update our inode.
9146 	 *
9147 	 * 3) We need to have something to cache all the space that is going to
9148 	 * be free'd up by the truncate operation, but also have some slack
9149 	 * space reserved in case it uses space during the truncate (thank you
9150 	 * very much snapshotting).
9151 	 *
9152 	 * And we need these to all be separate.  The fact is we can use a lot of
9153 	 * space doing the truncate, and we have no earthly idea how much space
9154 	 * we will use, so we need the truncate reservation to be separate so it
9155 	 * doesn't end up using space reserved for updating the inode or
9156 	 * removing the orphan item.  We also need to be able to stop the
9157 	 * transaction and start a new one, which means we need to be able to
9158 	 * update the inode several times, and we have no idea of knowing how
9159 	 * many times that will be, so we can't just reserve 1 item for the
9160 	 * entirety of the operation, so that has to be done separately as well.
9161 	 * Then there is the orphan item, which does indeed need to be held on
9162 	 * to for the whole operation, and we need nobody to touch this reserved
9163 	 * space except the orphan code.
9164 	 *
9165 	 * So that leaves us with
9166 	 *
9167 	 * 1) root->orphan_block_rsv - for the orphan deletion.
9168 	 * 2) rsv - for the truncate reservation, which we will steal from the
9169 	 * transaction reservation.
9170 	 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
9171 	 * updating the inode.
9172 	 */
9173 	rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
9174 	if (!rsv)
9175 		return -ENOMEM;
9176 	rsv->size = min_size;
9177 	rsv->failfast = 1;
9178 
9179 	/*
9180 	 * 1 for the truncate slack space
9181 	 * 1 for updating the inode.
9182 	 */
9183 	trans = btrfs_start_transaction(root, 2);
9184 	if (IS_ERR(trans)) {
9185 		err = PTR_ERR(trans);
9186 		goto out;
9187 	}
9188 
9189 	/* Migrate the slack space for the truncate to our reserve */
9190 	ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
9191 				      min_size, 0);
9192 	BUG_ON(ret);
9193 
9194 	/*
9195 	 * So if we truncate and then write and fsync we normally would just
9196 	 * write the extents that changed, which is a problem if we need to
9197 	 * first truncate that entire inode.  So set this flag so we write out
9198 	 * all of the extents in the inode to the sync log so we're completely
9199 	 * safe.
9200 	 */
9201 	set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
9202 	trans->block_rsv = rsv;
9203 
9204 	while (1) {
9205 		ret = btrfs_truncate_inode_items(trans, root, inode,
9206 						 inode->i_size,
9207 						 BTRFS_EXTENT_DATA_KEY);
9208 		if (ret != -ENOSPC && ret != -EAGAIN) {
9209 			err = ret;
9210 			break;
9211 		}
9212 
9213 		trans->block_rsv = &root->fs_info->trans_block_rsv;
9214 		ret = btrfs_update_inode(trans, root, inode);
9215 		if (ret) {
9216 			err = ret;
9217 			break;
9218 		}
9219 
9220 		btrfs_end_transaction(trans, root);
9221 		btrfs_btree_balance_dirty(root);
9222 
9223 		trans = btrfs_start_transaction(root, 2);
9224 		if (IS_ERR(trans)) {
9225 			ret = err = PTR_ERR(trans);
9226 			trans = NULL;
9227 			break;
9228 		}
9229 
9230 		ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
9231 					      rsv, min_size, 0);
9232 		BUG_ON(ret);	/* shouldn't happen */
9233 		trans->block_rsv = rsv;
9234 	}
9235 
9236 	if (ret == 0 && inode->i_nlink > 0) {
9237 		trans->block_rsv = root->orphan_block_rsv;
9238 		ret = btrfs_orphan_del(trans, inode);
9239 		if (ret)
9240 			err = ret;
9241 	}
9242 
9243 	if (trans) {
9244 		trans->block_rsv = &root->fs_info->trans_block_rsv;
9245 		ret = btrfs_update_inode(trans, root, inode);
9246 		if (ret && !err)
9247 			err = ret;
9248 
9249 		ret = btrfs_end_transaction(trans, root);
9250 		btrfs_btree_balance_dirty(root);
9251 	}
9252 out:
9253 	btrfs_free_block_rsv(root, rsv);
9254 
9255 	if (ret && !err)
9256 		err = ret;
9257 
9258 	return err;
9259 }
9260 
9261 /*
9262  * create a new subvolume directory/inode (helper for the ioctl).
9263  */
9264 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
9265 			     struct btrfs_root *new_root,
9266 			     struct btrfs_root *parent_root,
9267 			     u64 new_dirid)
9268 {
9269 	struct inode *inode;
9270 	int err;
9271 	u64 index = 0;
9272 
9273 	inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
9274 				new_dirid, new_dirid,
9275 				S_IFDIR | (~current_umask() & S_IRWXUGO),
9276 				&index);
9277 	if (IS_ERR(inode))
9278 		return PTR_ERR(inode);
9279 	inode->i_op = &btrfs_dir_inode_operations;
9280 	inode->i_fop = &btrfs_dir_file_operations;
9281 
9282 	set_nlink(inode, 1);
9283 	btrfs_i_size_write(inode, 0);
9284 	unlock_new_inode(inode);
9285 
9286 	err = btrfs_subvol_inherit_props(trans, new_root, parent_root);
9287 	if (err)
9288 		btrfs_err(new_root->fs_info,
9289 			  "error inheriting subvolume %llu properties: %d",
9290 			  new_root->root_key.objectid, err);
9291 
9292 	err = btrfs_update_inode(trans, new_root, inode);
9293 
9294 	iput(inode);
9295 	return err;
9296 }
9297 
9298 struct inode *btrfs_alloc_inode(struct super_block *sb)
9299 {
9300 	struct btrfs_inode *ei;
9301 	struct inode *inode;
9302 
9303 	ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
9304 	if (!ei)
9305 		return NULL;
9306 
9307 	ei->root = NULL;
9308 	ei->generation = 0;
9309 	ei->last_trans = 0;
9310 	ei->last_sub_trans = 0;
9311 	ei->logged_trans = 0;
9312 	ei->delalloc_bytes = 0;
9313 	ei->defrag_bytes = 0;
9314 	ei->disk_i_size = 0;
9315 	ei->flags = 0;
9316 	ei->csum_bytes = 0;
9317 	ei->index_cnt = (u64)-1;
9318 	ei->dir_index = 0;
9319 	ei->last_unlink_trans = 0;
9320 	ei->last_log_commit = 0;
9321 	ei->delayed_iput_count = 0;
9322 
9323 	spin_lock_init(&ei->lock);
9324 	ei->outstanding_extents = 0;
9325 	ei->reserved_extents = 0;
9326 
9327 	ei->runtime_flags = 0;
9328 	ei->force_compress = BTRFS_COMPRESS_NONE;
9329 
9330 	ei->delayed_node = NULL;
9331 
9332 	ei->i_otime.tv_sec = 0;
9333 	ei->i_otime.tv_nsec = 0;
9334 
9335 	inode = &ei->vfs_inode;
9336 	extent_map_tree_init(&ei->extent_tree);
9337 	extent_io_tree_init(&ei->io_tree, &inode->i_data);
9338 	extent_io_tree_init(&ei->io_failure_tree, &inode->i_data);
9339 	ei->io_tree.track_uptodate = 1;
9340 	ei->io_failure_tree.track_uptodate = 1;
9341 	atomic_set(&ei->sync_writers, 0);
9342 	mutex_init(&ei->log_mutex);
9343 	mutex_init(&ei->delalloc_mutex);
9344 	btrfs_ordered_inode_tree_init(&ei->ordered_tree);
9345 	INIT_LIST_HEAD(&ei->delalloc_inodes);
9346 	INIT_LIST_HEAD(&ei->delayed_iput);
9347 	RB_CLEAR_NODE(&ei->rb_node);
9348 	init_rwsem(&ei->dio_sem);
9349 
9350 	return inode;
9351 }
9352 
9353 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
9354 void btrfs_test_destroy_inode(struct inode *inode)
9355 {
9356 	btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
9357 	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9358 }
9359 #endif
9360 
9361 static void btrfs_i_callback(struct rcu_head *head)
9362 {
9363 	struct inode *inode = container_of(head, struct inode, i_rcu);
9364 	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9365 }
9366 
9367 void btrfs_destroy_inode(struct inode *inode)
9368 {
9369 	struct btrfs_ordered_extent *ordered;
9370 	struct btrfs_root *root = BTRFS_I(inode)->root;
9371 
9372 	WARN_ON(!hlist_empty(&inode->i_dentry));
9373 	WARN_ON(inode->i_data.nrpages);
9374 	WARN_ON(BTRFS_I(inode)->outstanding_extents);
9375 	WARN_ON(BTRFS_I(inode)->reserved_extents);
9376 	WARN_ON(BTRFS_I(inode)->delalloc_bytes);
9377 	WARN_ON(BTRFS_I(inode)->csum_bytes);
9378 	WARN_ON(BTRFS_I(inode)->defrag_bytes);
9379 
9380 	/*
9381 	 * This can happen where we create an inode, but somebody else also
9382 	 * created the same inode and we need to destroy the one we already
9383 	 * created.
9384 	 */
9385 	if (!root)
9386 		goto free;
9387 
9388 	if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
9389 		     &BTRFS_I(inode)->runtime_flags)) {
9390 		btrfs_info(root->fs_info, "inode %llu still on the orphan list",
9391 			btrfs_ino(inode));
9392 		atomic_dec(&root->orphan_inodes);
9393 	}
9394 
9395 	while (1) {
9396 		ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
9397 		if (!ordered)
9398 			break;
9399 		else {
9400 			btrfs_err(root->fs_info,
9401 				  "found ordered extent %llu %llu on inode cleanup",
9402 				  ordered->file_offset, ordered->len);
9403 			btrfs_remove_ordered_extent(inode, ordered);
9404 			btrfs_put_ordered_extent(ordered);
9405 			btrfs_put_ordered_extent(ordered);
9406 		}
9407 	}
9408 	btrfs_qgroup_check_reserved_leak(inode);
9409 	inode_tree_del(inode);
9410 	btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
9411 free:
9412 	call_rcu(&inode->i_rcu, btrfs_i_callback);
9413 }
9414 
9415 int btrfs_drop_inode(struct inode *inode)
9416 {
9417 	struct btrfs_root *root = BTRFS_I(inode)->root;
9418 
9419 	if (root == NULL)
9420 		return 1;
9421 
9422 	/* the snap/subvol tree is on deleting */
9423 	if (btrfs_root_refs(&root->root_item) == 0)
9424 		return 1;
9425 	else
9426 		return generic_drop_inode(inode);
9427 }
9428 
9429 static void init_once(void *foo)
9430 {
9431 	struct btrfs_inode *ei = (struct btrfs_inode *) foo;
9432 
9433 	inode_init_once(&ei->vfs_inode);
9434 }
9435 
9436 void btrfs_destroy_cachep(void)
9437 {
9438 	/*
9439 	 * Make sure all delayed rcu free inodes are flushed before we
9440 	 * destroy cache.
9441 	 */
9442 	rcu_barrier();
9443 	kmem_cache_destroy(btrfs_inode_cachep);
9444 	kmem_cache_destroy(btrfs_trans_handle_cachep);
9445 	kmem_cache_destroy(btrfs_transaction_cachep);
9446 	kmem_cache_destroy(btrfs_path_cachep);
9447 	kmem_cache_destroy(btrfs_free_space_cachep);
9448 }
9449 
9450 int btrfs_init_cachep(void)
9451 {
9452 	btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
9453 			sizeof(struct btrfs_inode), 0,
9454 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT,
9455 			init_once);
9456 	if (!btrfs_inode_cachep)
9457 		goto fail;
9458 
9459 	btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
9460 			sizeof(struct btrfs_trans_handle), 0,
9461 			SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL);
9462 	if (!btrfs_trans_handle_cachep)
9463 		goto fail;
9464 
9465 	btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction",
9466 			sizeof(struct btrfs_transaction), 0,
9467 			SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL);
9468 	if (!btrfs_transaction_cachep)
9469 		goto fail;
9470 
9471 	btrfs_path_cachep = kmem_cache_create("btrfs_path",
9472 			sizeof(struct btrfs_path), 0,
9473 			SLAB_MEM_SPREAD, NULL);
9474 	if (!btrfs_path_cachep)
9475 		goto fail;
9476 
9477 	btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
9478 			sizeof(struct btrfs_free_space), 0,
9479 			SLAB_MEM_SPREAD, NULL);
9480 	if (!btrfs_free_space_cachep)
9481 		goto fail;
9482 
9483 	return 0;
9484 fail:
9485 	btrfs_destroy_cachep();
9486 	return -ENOMEM;
9487 }
9488 
9489 static int btrfs_getattr(struct vfsmount *mnt,
9490 			 struct dentry *dentry, struct kstat *stat)
9491 {
9492 	u64 delalloc_bytes;
9493 	struct inode *inode = d_inode(dentry);
9494 	u32 blocksize = inode->i_sb->s_blocksize;
9495 
9496 	generic_fillattr(inode, stat);
9497 	stat->dev = BTRFS_I(inode)->root->anon_dev;
9498 
9499 	spin_lock(&BTRFS_I(inode)->lock);
9500 	delalloc_bytes = BTRFS_I(inode)->delalloc_bytes;
9501 	spin_unlock(&BTRFS_I(inode)->lock);
9502 	stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
9503 			ALIGN(delalloc_bytes, blocksize)) >> 9;
9504 	return 0;
9505 }
9506 
9507 static int btrfs_rename_exchange(struct inode *old_dir,
9508 			      struct dentry *old_dentry,
9509 			      struct inode *new_dir,
9510 			      struct dentry *new_dentry)
9511 {
9512 	struct btrfs_trans_handle *trans;
9513 	struct btrfs_root *root = BTRFS_I(old_dir)->root;
9514 	struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9515 	struct inode *new_inode = new_dentry->d_inode;
9516 	struct inode *old_inode = old_dentry->d_inode;
9517 	struct timespec ctime = current_time(old_inode);
9518 	struct dentry *parent;
9519 	u64 old_ino = btrfs_ino(old_inode);
9520 	u64 new_ino = btrfs_ino(new_inode);
9521 	u64 old_idx = 0;
9522 	u64 new_idx = 0;
9523 	u64 root_objectid;
9524 	int ret;
9525 	bool root_log_pinned = false;
9526 	bool dest_log_pinned = false;
9527 
9528 	/* we only allow rename subvolume link between subvolumes */
9529 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9530 		return -EXDEV;
9531 
9532 	/* close the race window with snapshot create/destroy ioctl */
9533 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9534 		down_read(&root->fs_info->subvol_sem);
9535 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
9536 		down_read(&dest->fs_info->subvol_sem);
9537 
9538 	/*
9539 	 * We want to reserve the absolute worst case amount of items.  So if
9540 	 * both inodes are subvols and we need to unlink them then that would
9541 	 * require 4 item modifications, but if they are both normal inodes it
9542 	 * would require 5 item modifications, so we'll assume their normal
9543 	 * inodes.  So 5 * 2 is 10, plus 2 for the new links, so 12 total items
9544 	 * should cover the worst case number of items we'll modify.
9545 	 */
9546 	trans = btrfs_start_transaction(root, 12);
9547 	if (IS_ERR(trans)) {
9548 		ret = PTR_ERR(trans);
9549 		goto out_notrans;
9550 	}
9551 
9552 	/*
9553 	 * We need to find a free sequence number both in the source and
9554 	 * in the destination directory for the exchange.
9555 	 */
9556 	ret = btrfs_set_inode_index(new_dir, &old_idx);
9557 	if (ret)
9558 		goto out_fail;
9559 	ret = btrfs_set_inode_index(old_dir, &new_idx);
9560 	if (ret)
9561 		goto out_fail;
9562 
9563 	BTRFS_I(old_inode)->dir_index = 0ULL;
9564 	BTRFS_I(new_inode)->dir_index = 0ULL;
9565 
9566 	/* Reference for the source. */
9567 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9568 		/* force full log commit if subvolume involved. */
9569 		btrfs_set_log_full_commit(root->fs_info, trans);
9570 	} else {
9571 		btrfs_pin_log_trans(root);
9572 		root_log_pinned = true;
9573 		ret = btrfs_insert_inode_ref(trans, dest,
9574 					     new_dentry->d_name.name,
9575 					     new_dentry->d_name.len,
9576 					     old_ino,
9577 					     btrfs_ino(new_dir), old_idx);
9578 		if (ret)
9579 			goto out_fail;
9580 	}
9581 
9582 	/* And now for the dest. */
9583 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9584 		/* force full log commit if subvolume involved. */
9585 		btrfs_set_log_full_commit(dest->fs_info, trans);
9586 	} else {
9587 		btrfs_pin_log_trans(dest);
9588 		dest_log_pinned = true;
9589 		ret = btrfs_insert_inode_ref(trans, root,
9590 					     old_dentry->d_name.name,
9591 					     old_dentry->d_name.len,
9592 					     new_ino,
9593 					     btrfs_ino(old_dir), new_idx);
9594 		if (ret)
9595 			goto out_fail;
9596 	}
9597 
9598 	/* Update inode version and ctime/mtime. */
9599 	inode_inc_iversion(old_dir);
9600 	inode_inc_iversion(new_dir);
9601 	inode_inc_iversion(old_inode);
9602 	inode_inc_iversion(new_inode);
9603 	old_dir->i_ctime = old_dir->i_mtime = ctime;
9604 	new_dir->i_ctime = new_dir->i_mtime = ctime;
9605 	old_inode->i_ctime = ctime;
9606 	new_inode->i_ctime = ctime;
9607 
9608 	if (old_dentry->d_parent != new_dentry->d_parent) {
9609 		btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
9610 		btrfs_record_unlink_dir(trans, new_dir, new_inode, 1);
9611 	}
9612 
9613 	/* src is a subvolume */
9614 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9615 		root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
9616 		ret = btrfs_unlink_subvol(trans, root, old_dir,
9617 					  root_objectid,
9618 					  old_dentry->d_name.name,
9619 					  old_dentry->d_name.len);
9620 	} else { /* src is an inode */
9621 		ret = __btrfs_unlink_inode(trans, root, old_dir,
9622 					   old_dentry->d_inode,
9623 					   old_dentry->d_name.name,
9624 					   old_dentry->d_name.len);
9625 		if (!ret)
9626 			ret = btrfs_update_inode(trans, root, old_inode);
9627 	}
9628 	if (ret) {
9629 		btrfs_abort_transaction(trans, ret);
9630 		goto out_fail;
9631 	}
9632 
9633 	/* dest is a subvolume */
9634 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9635 		root_objectid = BTRFS_I(new_inode)->root->root_key.objectid;
9636 		ret = btrfs_unlink_subvol(trans, dest, new_dir,
9637 					  root_objectid,
9638 					  new_dentry->d_name.name,
9639 					  new_dentry->d_name.len);
9640 	} else { /* dest is an inode */
9641 		ret = __btrfs_unlink_inode(trans, dest, new_dir,
9642 					   new_dentry->d_inode,
9643 					   new_dentry->d_name.name,
9644 					   new_dentry->d_name.len);
9645 		if (!ret)
9646 			ret = btrfs_update_inode(trans, dest, new_inode);
9647 	}
9648 	if (ret) {
9649 		btrfs_abort_transaction(trans, ret);
9650 		goto out_fail;
9651 	}
9652 
9653 	ret = btrfs_add_link(trans, new_dir, old_inode,
9654 			     new_dentry->d_name.name,
9655 			     new_dentry->d_name.len, 0, old_idx);
9656 	if (ret) {
9657 		btrfs_abort_transaction(trans, ret);
9658 		goto out_fail;
9659 	}
9660 
9661 	ret = btrfs_add_link(trans, old_dir, new_inode,
9662 			     old_dentry->d_name.name,
9663 			     old_dentry->d_name.len, 0, new_idx);
9664 	if (ret) {
9665 		btrfs_abort_transaction(trans, ret);
9666 		goto out_fail;
9667 	}
9668 
9669 	if (old_inode->i_nlink == 1)
9670 		BTRFS_I(old_inode)->dir_index = old_idx;
9671 	if (new_inode->i_nlink == 1)
9672 		BTRFS_I(new_inode)->dir_index = new_idx;
9673 
9674 	if (root_log_pinned) {
9675 		parent = new_dentry->d_parent;
9676 		btrfs_log_new_name(trans, old_inode, old_dir, parent);
9677 		btrfs_end_log_trans(root);
9678 		root_log_pinned = false;
9679 	}
9680 	if (dest_log_pinned) {
9681 		parent = old_dentry->d_parent;
9682 		btrfs_log_new_name(trans, new_inode, new_dir, parent);
9683 		btrfs_end_log_trans(dest);
9684 		dest_log_pinned = false;
9685 	}
9686 out_fail:
9687 	/*
9688 	 * If we have pinned a log and an error happened, we unpin tasks
9689 	 * trying to sync the log and force them to fallback to a transaction
9690 	 * commit if the log currently contains any of the inodes involved in
9691 	 * this rename operation (to ensure we do not persist a log with an
9692 	 * inconsistent state for any of these inodes or leading to any
9693 	 * inconsistencies when replayed). If the transaction was aborted, the
9694 	 * abortion reason is propagated to userspace when attempting to commit
9695 	 * the transaction. If the log does not contain any of these inodes, we
9696 	 * allow the tasks to sync it.
9697 	 */
9698 	if (ret && (root_log_pinned || dest_log_pinned)) {
9699 		if (btrfs_inode_in_log(old_dir, root->fs_info->generation) ||
9700 		    btrfs_inode_in_log(new_dir, root->fs_info->generation) ||
9701 		    btrfs_inode_in_log(old_inode, root->fs_info->generation) ||
9702 		    (new_inode &&
9703 		     btrfs_inode_in_log(new_inode, root->fs_info->generation)))
9704 		    btrfs_set_log_full_commit(root->fs_info, trans);
9705 
9706 		if (root_log_pinned) {
9707 			btrfs_end_log_trans(root);
9708 			root_log_pinned = false;
9709 		}
9710 		if (dest_log_pinned) {
9711 			btrfs_end_log_trans(dest);
9712 			dest_log_pinned = false;
9713 		}
9714 	}
9715 	ret = btrfs_end_transaction(trans, root);
9716 out_notrans:
9717 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
9718 		up_read(&dest->fs_info->subvol_sem);
9719 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9720 		up_read(&root->fs_info->subvol_sem);
9721 
9722 	return ret;
9723 }
9724 
9725 static int btrfs_whiteout_for_rename(struct btrfs_trans_handle *trans,
9726 				     struct btrfs_root *root,
9727 				     struct inode *dir,
9728 				     struct dentry *dentry)
9729 {
9730 	int ret;
9731 	struct inode *inode;
9732 	u64 objectid;
9733 	u64 index;
9734 
9735 	ret = btrfs_find_free_ino(root, &objectid);
9736 	if (ret)
9737 		return ret;
9738 
9739 	inode = btrfs_new_inode(trans, root, dir,
9740 				dentry->d_name.name,
9741 				dentry->d_name.len,
9742 				btrfs_ino(dir),
9743 				objectid,
9744 				S_IFCHR | WHITEOUT_MODE,
9745 				&index);
9746 
9747 	if (IS_ERR(inode)) {
9748 		ret = PTR_ERR(inode);
9749 		return ret;
9750 	}
9751 
9752 	inode->i_op = &btrfs_special_inode_operations;
9753 	init_special_inode(inode, inode->i_mode,
9754 		WHITEOUT_DEV);
9755 
9756 	ret = btrfs_init_inode_security(trans, inode, dir,
9757 				&dentry->d_name);
9758 	if (ret)
9759 		goto out;
9760 
9761 	ret = btrfs_add_nondir(trans, dir, dentry,
9762 				inode, 0, index);
9763 	if (ret)
9764 		goto out;
9765 
9766 	ret = btrfs_update_inode(trans, root, inode);
9767 out:
9768 	unlock_new_inode(inode);
9769 	if (ret)
9770 		inode_dec_link_count(inode);
9771 	iput(inode);
9772 
9773 	return ret;
9774 }
9775 
9776 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
9777 			   struct inode *new_dir, struct dentry *new_dentry,
9778 			   unsigned int flags)
9779 {
9780 	struct btrfs_trans_handle *trans;
9781 	unsigned int trans_num_items;
9782 	struct btrfs_root *root = BTRFS_I(old_dir)->root;
9783 	struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9784 	struct inode *new_inode = d_inode(new_dentry);
9785 	struct inode *old_inode = d_inode(old_dentry);
9786 	u64 index = 0;
9787 	u64 root_objectid;
9788 	int ret;
9789 	u64 old_ino = btrfs_ino(old_inode);
9790 	bool log_pinned = false;
9791 
9792 	if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
9793 		return -EPERM;
9794 
9795 	/* we only allow rename subvolume link between subvolumes */
9796 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9797 		return -EXDEV;
9798 
9799 	if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
9800 	    (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID))
9801 		return -ENOTEMPTY;
9802 
9803 	if (S_ISDIR(old_inode->i_mode) && new_inode &&
9804 	    new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
9805 		return -ENOTEMPTY;
9806 
9807 
9808 	/* check for collisions, even if the  name isn't there */
9809 	ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
9810 			     new_dentry->d_name.name,
9811 			     new_dentry->d_name.len);
9812 
9813 	if (ret) {
9814 		if (ret == -EEXIST) {
9815 			/* we shouldn't get
9816 			 * eexist without a new_inode */
9817 			if (WARN_ON(!new_inode)) {
9818 				return ret;
9819 			}
9820 		} else {
9821 			/* maybe -EOVERFLOW */
9822 			return ret;
9823 		}
9824 	}
9825 	ret = 0;
9826 
9827 	/*
9828 	 * we're using rename to replace one file with another.  Start IO on it
9829 	 * now so  we don't add too much work to the end of the transaction
9830 	 */
9831 	if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
9832 		filemap_flush(old_inode->i_mapping);
9833 
9834 	/* close the racy window with snapshot create/destroy ioctl */
9835 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9836 		down_read(&root->fs_info->subvol_sem);
9837 	/*
9838 	 * We want to reserve the absolute worst case amount of items.  So if
9839 	 * both inodes are subvols and we need to unlink them then that would
9840 	 * require 4 item modifications, but if they are both normal inodes it
9841 	 * would require 5 item modifications, so we'll assume they are normal
9842 	 * inodes.  So 5 * 2 is 10, plus 1 for the new link, so 11 total items
9843 	 * should cover the worst case number of items we'll modify.
9844 	 * If our rename has the whiteout flag, we need more 5 units for the
9845 	 * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item
9846 	 * when selinux is enabled).
9847 	 */
9848 	trans_num_items = 11;
9849 	if (flags & RENAME_WHITEOUT)
9850 		trans_num_items += 5;
9851 	trans = btrfs_start_transaction(root, trans_num_items);
9852 	if (IS_ERR(trans)) {
9853 		ret = PTR_ERR(trans);
9854 		goto out_notrans;
9855 	}
9856 
9857 	if (dest != root)
9858 		btrfs_record_root_in_trans(trans, dest);
9859 
9860 	ret = btrfs_set_inode_index(new_dir, &index);
9861 	if (ret)
9862 		goto out_fail;
9863 
9864 	BTRFS_I(old_inode)->dir_index = 0ULL;
9865 	if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9866 		/* force full log commit if subvolume involved. */
9867 		btrfs_set_log_full_commit(root->fs_info, trans);
9868 	} else {
9869 		btrfs_pin_log_trans(root);
9870 		log_pinned = true;
9871 		ret = btrfs_insert_inode_ref(trans, dest,
9872 					     new_dentry->d_name.name,
9873 					     new_dentry->d_name.len,
9874 					     old_ino,
9875 					     btrfs_ino(new_dir), index);
9876 		if (ret)
9877 			goto out_fail;
9878 	}
9879 
9880 	inode_inc_iversion(old_dir);
9881 	inode_inc_iversion(new_dir);
9882 	inode_inc_iversion(old_inode);
9883 	old_dir->i_ctime = old_dir->i_mtime =
9884 	new_dir->i_ctime = new_dir->i_mtime =
9885 	old_inode->i_ctime = current_time(old_dir);
9886 
9887 	if (old_dentry->d_parent != new_dentry->d_parent)
9888 		btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
9889 
9890 	if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9891 		root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
9892 		ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
9893 					old_dentry->d_name.name,
9894 					old_dentry->d_name.len);
9895 	} else {
9896 		ret = __btrfs_unlink_inode(trans, root, old_dir,
9897 					d_inode(old_dentry),
9898 					old_dentry->d_name.name,
9899 					old_dentry->d_name.len);
9900 		if (!ret)
9901 			ret = btrfs_update_inode(trans, root, old_inode);
9902 	}
9903 	if (ret) {
9904 		btrfs_abort_transaction(trans, ret);
9905 		goto out_fail;
9906 	}
9907 
9908 	if (new_inode) {
9909 		inode_inc_iversion(new_inode);
9910 		new_inode->i_ctime = current_time(new_inode);
9911 		if (unlikely(btrfs_ino(new_inode) ==
9912 			     BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
9913 			root_objectid = BTRFS_I(new_inode)->location.objectid;
9914 			ret = btrfs_unlink_subvol(trans, dest, new_dir,
9915 						root_objectid,
9916 						new_dentry->d_name.name,
9917 						new_dentry->d_name.len);
9918 			BUG_ON(new_inode->i_nlink == 0);
9919 		} else {
9920 			ret = btrfs_unlink_inode(trans, dest, new_dir,
9921 						 d_inode(new_dentry),
9922 						 new_dentry->d_name.name,
9923 						 new_dentry->d_name.len);
9924 		}
9925 		if (!ret && new_inode->i_nlink == 0)
9926 			ret = btrfs_orphan_add(trans, d_inode(new_dentry));
9927 		if (ret) {
9928 			btrfs_abort_transaction(trans, ret);
9929 			goto out_fail;
9930 		}
9931 	}
9932 
9933 	ret = btrfs_add_link(trans, new_dir, old_inode,
9934 			     new_dentry->d_name.name,
9935 			     new_dentry->d_name.len, 0, index);
9936 	if (ret) {
9937 		btrfs_abort_transaction(trans, ret);
9938 		goto out_fail;
9939 	}
9940 
9941 	if (old_inode->i_nlink == 1)
9942 		BTRFS_I(old_inode)->dir_index = index;
9943 
9944 	if (log_pinned) {
9945 		struct dentry *parent = new_dentry->d_parent;
9946 
9947 		btrfs_log_new_name(trans, old_inode, old_dir, parent);
9948 		btrfs_end_log_trans(root);
9949 		log_pinned = false;
9950 	}
9951 
9952 	if (flags & RENAME_WHITEOUT) {
9953 		ret = btrfs_whiteout_for_rename(trans, root, old_dir,
9954 						old_dentry);
9955 
9956 		if (ret) {
9957 			btrfs_abort_transaction(trans, ret);
9958 			goto out_fail;
9959 		}
9960 	}
9961 out_fail:
9962 	/*
9963 	 * If we have pinned the log and an error happened, we unpin tasks
9964 	 * trying to sync the log and force them to fallback to a transaction
9965 	 * commit if the log currently contains any of the inodes involved in
9966 	 * this rename operation (to ensure we do not persist a log with an
9967 	 * inconsistent state for any of these inodes or leading to any
9968 	 * inconsistencies when replayed). If the transaction was aborted, the
9969 	 * abortion reason is propagated to userspace when attempting to commit
9970 	 * the transaction. If the log does not contain any of these inodes, we
9971 	 * allow the tasks to sync it.
9972 	 */
9973 	if (ret && log_pinned) {
9974 		if (btrfs_inode_in_log(old_dir, root->fs_info->generation) ||
9975 		    btrfs_inode_in_log(new_dir, root->fs_info->generation) ||
9976 		    btrfs_inode_in_log(old_inode, root->fs_info->generation) ||
9977 		    (new_inode &&
9978 		     btrfs_inode_in_log(new_inode, root->fs_info->generation)))
9979 		    btrfs_set_log_full_commit(root->fs_info, trans);
9980 
9981 		btrfs_end_log_trans(root);
9982 		log_pinned = false;
9983 	}
9984 	btrfs_end_transaction(trans, root);
9985 out_notrans:
9986 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9987 		up_read(&root->fs_info->subvol_sem);
9988 
9989 	return ret;
9990 }
9991 
9992 static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry,
9993 			 struct inode *new_dir, struct dentry *new_dentry,
9994 			 unsigned int flags)
9995 {
9996 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
9997 		return -EINVAL;
9998 
9999 	if (flags & RENAME_EXCHANGE)
10000 		return btrfs_rename_exchange(old_dir, old_dentry, new_dir,
10001 					  new_dentry);
10002 
10003 	return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry, flags);
10004 }
10005 
10006 static void btrfs_run_delalloc_work(struct btrfs_work *work)
10007 {
10008 	struct btrfs_delalloc_work *delalloc_work;
10009 	struct inode *inode;
10010 
10011 	delalloc_work = container_of(work, struct btrfs_delalloc_work,
10012 				     work);
10013 	inode = delalloc_work->inode;
10014 	filemap_flush(inode->i_mapping);
10015 	if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
10016 				&BTRFS_I(inode)->runtime_flags))
10017 		filemap_flush(inode->i_mapping);
10018 
10019 	if (delalloc_work->delay_iput)
10020 		btrfs_add_delayed_iput(inode);
10021 	else
10022 		iput(inode);
10023 	complete(&delalloc_work->completion);
10024 }
10025 
10026 struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode,
10027 						    int delay_iput)
10028 {
10029 	struct btrfs_delalloc_work *work;
10030 
10031 	work = kmalloc(sizeof(*work), GFP_NOFS);
10032 	if (!work)
10033 		return NULL;
10034 
10035 	init_completion(&work->completion);
10036 	INIT_LIST_HEAD(&work->list);
10037 	work->inode = inode;
10038 	work->delay_iput = delay_iput;
10039 	WARN_ON_ONCE(!inode);
10040 	btrfs_init_work(&work->work, btrfs_flush_delalloc_helper,
10041 			btrfs_run_delalloc_work, NULL, NULL);
10042 
10043 	return work;
10044 }
10045 
10046 void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work)
10047 {
10048 	wait_for_completion(&work->completion);
10049 	kfree(work);
10050 }
10051 
10052 /*
10053  * some fairly slow code that needs optimization. This walks the list
10054  * of all the inodes with pending delalloc and forces them to disk.
10055  */
10056 static int __start_delalloc_inodes(struct btrfs_root *root, int delay_iput,
10057 				   int nr)
10058 {
10059 	struct btrfs_inode *binode;
10060 	struct inode *inode;
10061 	struct btrfs_delalloc_work *work, *next;
10062 	struct list_head works;
10063 	struct list_head splice;
10064 	int ret = 0;
10065 
10066 	INIT_LIST_HEAD(&works);
10067 	INIT_LIST_HEAD(&splice);
10068 
10069 	mutex_lock(&root->delalloc_mutex);
10070 	spin_lock(&root->delalloc_lock);
10071 	list_splice_init(&root->delalloc_inodes, &splice);
10072 	while (!list_empty(&splice)) {
10073 		binode = list_entry(splice.next, struct btrfs_inode,
10074 				    delalloc_inodes);
10075 
10076 		list_move_tail(&binode->delalloc_inodes,
10077 			       &root->delalloc_inodes);
10078 		inode = igrab(&binode->vfs_inode);
10079 		if (!inode) {
10080 			cond_resched_lock(&root->delalloc_lock);
10081 			continue;
10082 		}
10083 		spin_unlock(&root->delalloc_lock);
10084 
10085 		work = btrfs_alloc_delalloc_work(inode, delay_iput);
10086 		if (!work) {
10087 			if (delay_iput)
10088 				btrfs_add_delayed_iput(inode);
10089 			else
10090 				iput(inode);
10091 			ret = -ENOMEM;
10092 			goto out;
10093 		}
10094 		list_add_tail(&work->list, &works);
10095 		btrfs_queue_work(root->fs_info->flush_workers,
10096 				 &work->work);
10097 		ret++;
10098 		if (nr != -1 && ret >= nr)
10099 			goto out;
10100 		cond_resched();
10101 		spin_lock(&root->delalloc_lock);
10102 	}
10103 	spin_unlock(&root->delalloc_lock);
10104 
10105 out:
10106 	list_for_each_entry_safe(work, next, &works, list) {
10107 		list_del_init(&work->list);
10108 		btrfs_wait_and_free_delalloc_work(work);
10109 	}
10110 
10111 	if (!list_empty_careful(&splice)) {
10112 		spin_lock(&root->delalloc_lock);
10113 		list_splice_tail(&splice, &root->delalloc_inodes);
10114 		spin_unlock(&root->delalloc_lock);
10115 	}
10116 	mutex_unlock(&root->delalloc_mutex);
10117 	return ret;
10118 }
10119 
10120 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
10121 {
10122 	int ret;
10123 
10124 	if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
10125 		return -EROFS;
10126 
10127 	ret = __start_delalloc_inodes(root, delay_iput, -1);
10128 	if (ret > 0)
10129 		ret = 0;
10130 	/*
10131 	 * the filemap_flush will queue IO into the worker threads, but
10132 	 * we have to make sure the IO is actually started and that
10133 	 * ordered extents get created before we return
10134 	 */
10135 	atomic_inc(&root->fs_info->async_submit_draining);
10136 	while (atomic_read(&root->fs_info->nr_async_submits) ||
10137 	      atomic_read(&root->fs_info->async_delalloc_pages)) {
10138 		wait_event(root->fs_info->async_submit_wait,
10139 		   (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
10140 		    atomic_read(&root->fs_info->async_delalloc_pages) == 0));
10141 	}
10142 	atomic_dec(&root->fs_info->async_submit_draining);
10143 	return ret;
10144 }
10145 
10146 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int delay_iput,
10147 			       int nr)
10148 {
10149 	struct btrfs_root *root;
10150 	struct list_head splice;
10151 	int ret;
10152 
10153 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
10154 		return -EROFS;
10155 
10156 	INIT_LIST_HEAD(&splice);
10157 
10158 	mutex_lock(&fs_info->delalloc_root_mutex);
10159 	spin_lock(&fs_info->delalloc_root_lock);
10160 	list_splice_init(&fs_info->delalloc_roots, &splice);
10161 	while (!list_empty(&splice) && nr) {
10162 		root = list_first_entry(&splice, struct btrfs_root,
10163 					delalloc_root);
10164 		root = btrfs_grab_fs_root(root);
10165 		BUG_ON(!root);
10166 		list_move_tail(&root->delalloc_root,
10167 			       &fs_info->delalloc_roots);
10168 		spin_unlock(&fs_info->delalloc_root_lock);
10169 
10170 		ret = __start_delalloc_inodes(root, delay_iput, nr);
10171 		btrfs_put_fs_root(root);
10172 		if (ret < 0)
10173 			goto out;
10174 
10175 		if (nr != -1) {
10176 			nr -= ret;
10177 			WARN_ON(nr < 0);
10178 		}
10179 		spin_lock(&fs_info->delalloc_root_lock);
10180 	}
10181 	spin_unlock(&fs_info->delalloc_root_lock);
10182 
10183 	ret = 0;
10184 	atomic_inc(&fs_info->async_submit_draining);
10185 	while (atomic_read(&fs_info->nr_async_submits) ||
10186 	      atomic_read(&fs_info->async_delalloc_pages)) {
10187 		wait_event(fs_info->async_submit_wait,
10188 		   (atomic_read(&fs_info->nr_async_submits) == 0 &&
10189 		    atomic_read(&fs_info->async_delalloc_pages) == 0));
10190 	}
10191 	atomic_dec(&fs_info->async_submit_draining);
10192 out:
10193 	if (!list_empty_careful(&splice)) {
10194 		spin_lock(&fs_info->delalloc_root_lock);
10195 		list_splice_tail(&splice, &fs_info->delalloc_roots);
10196 		spin_unlock(&fs_info->delalloc_root_lock);
10197 	}
10198 	mutex_unlock(&fs_info->delalloc_root_mutex);
10199 	return ret;
10200 }
10201 
10202 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
10203 			 const char *symname)
10204 {
10205 	struct btrfs_trans_handle *trans;
10206 	struct btrfs_root *root = BTRFS_I(dir)->root;
10207 	struct btrfs_path *path;
10208 	struct btrfs_key key;
10209 	struct inode *inode = NULL;
10210 	int err;
10211 	int drop_inode = 0;
10212 	u64 objectid;
10213 	u64 index = 0;
10214 	int name_len;
10215 	int datasize;
10216 	unsigned long ptr;
10217 	struct btrfs_file_extent_item *ei;
10218 	struct extent_buffer *leaf;
10219 
10220 	name_len = strlen(symname);
10221 	if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
10222 		return -ENAMETOOLONG;
10223 
10224 	/*
10225 	 * 2 items for inode item and ref
10226 	 * 2 items for dir items
10227 	 * 1 item for updating parent inode item
10228 	 * 1 item for the inline extent item
10229 	 * 1 item for xattr if selinux is on
10230 	 */
10231 	trans = btrfs_start_transaction(root, 7);
10232 	if (IS_ERR(trans))
10233 		return PTR_ERR(trans);
10234 
10235 	err = btrfs_find_free_ino(root, &objectid);
10236 	if (err)
10237 		goto out_unlock;
10238 
10239 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
10240 				dentry->d_name.len, btrfs_ino(dir), objectid,
10241 				S_IFLNK|S_IRWXUGO, &index);
10242 	if (IS_ERR(inode)) {
10243 		err = PTR_ERR(inode);
10244 		goto out_unlock;
10245 	}
10246 
10247 	/*
10248 	* If the active LSM wants to access the inode during
10249 	* d_instantiate it needs these. Smack checks to see
10250 	* if the filesystem supports xattrs by looking at the
10251 	* ops vector.
10252 	*/
10253 	inode->i_fop = &btrfs_file_operations;
10254 	inode->i_op = &btrfs_file_inode_operations;
10255 	inode->i_mapping->a_ops = &btrfs_aops;
10256 	BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10257 
10258 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
10259 	if (err)
10260 		goto out_unlock_inode;
10261 
10262 	path = btrfs_alloc_path();
10263 	if (!path) {
10264 		err = -ENOMEM;
10265 		goto out_unlock_inode;
10266 	}
10267 	key.objectid = btrfs_ino(inode);
10268 	key.offset = 0;
10269 	key.type = BTRFS_EXTENT_DATA_KEY;
10270 	datasize = btrfs_file_extent_calc_inline_size(name_len);
10271 	err = btrfs_insert_empty_item(trans, root, path, &key,
10272 				      datasize);
10273 	if (err) {
10274 		btrfs_free_path(path);
10275 		goto out_unlock_inode;
10276 	}
10277 	leaf = path->nodes[0];
10278 	ei = btrfs_item_ptr(leaf, path->slots[0],
10279 			    struct btrfs_file_extent_item);
10280 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
10281 	btrfs_set_file_extent_type(leaf, ei,
10282 				   BTRFS_FILE_EXTENT_INLINE);
10283 	btrfs_set_file_extent_encryption(leaf, ei, 0);
10284 	btrfs_set_file_extent_compression(leaf, ei, 0);
10285 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
10286 	btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
10287 
10288 	ptr = btrfs_file_extent_inline_start(ei);
10289 	write_extent_buffer(leaf, symname, ptr, name_len);
10290 	btrfs_mark_buffer_dirty(leaf);
10291 	btrfs_free_path(path);
10292 
10293 	inode->i_op = &btrfs_symlink_inode_operations;
10294 	inode_nohighmem(inode);
10295 	inode->i_mapping->a_ops = &btrfs_symlink_aops;
10296 	inode_set_bytes(inode, name_len);
10297 	btrfs_i_size_write(inode, name_len);
10298 	err = btrfs_update_inode(trans, root, inode);
10299 	/*
10300 	 * Last step, add directory indexes for our symlink inode. This is the
10301 	 * last step to avoid extra cleanup of these indexes if an error happens
10302 	 * elsewhere above.
10303 	 */
10304 	if (!err)
10305 		err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
10306 	if (err) {
10307 		drop_inode = 1;
10308 		goto out_unlock_inode;
10309 	}
10310 
10311 	unlock_new_inode(inode);
10312 	d_instantiate(dentry, inode);
10313 
10314 out_unlock:
10315 	btrfs_end_transaction(trans, root);
10316 	if (drop_inode) {
10317 		inode_dec_link_count(inode);
10318 		iput(inode);
10319 	}
10320 	btrfs_btree_balance_dirty(root);
10321 	return err;
10322 
10323 out_unlock_inode:
10324 	drop_inode = 1;
10325 	unlock_new_inode(inode);
10326 	goto out_unlock;
10327 }
10328 
10329 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
10330 				       u64 start, u64 num_bytes, u64 min_size,
10331 				       loff_t actual_len, u64 *alloc_hint,
10332 				       struct btrfs_trans_handle *trans)
10333 {
10334 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
10335 	struct extent_map *em;
10336 	struct btrfs_root *root = BTRFS_I(inode)->root;
10337 	struct btrfs_key ins;
10338 	u64 cur_offset = start;
10339 	u64 i_size;
10340 	u64 cur_bytes;
10341 	u64 last_alloc = (u64)-1;
10342 	int ret = 0;
10343 	bool own_trans = true;
10344 	u64 end = start + num_bytes - 1;
10345 
10346 	if (trans)
10347 		own_trans = false;
10348 	while (num_bytes > 0) {
10349 		if (own_trans) {
10350 			trans = btrfs_start_transaction(root, 3);
10351 			if (IS_ERR(trans)) {
10352 				ret = PTR_ERR(trans);
10353 				break;
10354 			}
10355 		}
10356 
10357 		cur_bytes = min_t(u64, num_bytes, SZ_256M);
10358 		cur_bytes = max(cur_bytes, min_size);
10359 		/*
10360 		 * If we are severely fragmented we could end up with really
10361 		 * small allocations, so if the allocator is returning small
10362 		 * chunks lets make its job easier by only searching for those
10363 		 * sized chunks.
10364 		 */
10365 		cur_bytes = min(cur_bytes, last_alloc);
10366 		ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes,
10367 				min_size, 0, *alloc_hint, &ins, 1, 0);
10368 		if (ret) {
10369 			if (own_trans)
10370 				btrfs_end_transaction(trans, root);
10371 			break;
10372 		}
10373 		btrfs_dec_block_group_reservations(root->fs_info, ins.objectid);
10374 
10375 		last_alloc = ins.offset;
10376 		ret = insert_reserved_file_extent(trans, inode,
10377 						  cur_offset, ins.objectid,
10378 						  ins.offset, ins.offset,
10379 						  ins.offset, 0, 0, 0,
10380 						  BTRFS_FILE_EXTENT_PREALLOC);
10381 		if (ret) {
10382 			btrfs_free_reserved_extent(root, ins.objectid,
10383 						   ins.offset, 0);
10384 			btrfs_abort_transaction(trans, ret);
10385 			if (own_trans)
10386 				btrfs_end_transaction(trans, root);
10387 			break;
10388 		}
10389 
10390 		btrfs_drop_extent_cache(inode, cur_offset,
10391 					cur_offset + ins.offset -1, 0);
10392 
10393 		em = alloc_extent_map();
10394 		if (!em) {
10395 			set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
10396 				&BTRFS_I(inode)->runtime_flags);
10397 			goto next;
10398 		}
10399 
10400 		em->start = cur_offset;
10401 		em->orig_start = cur_offset;
10402 		em->len = ins.offset;
10403 		em->block_start = ins.objectid;
10404 		em->block_len = ins.offset;
10405 		em->orig_block_len = ins.offset;
10406 		em->ram_bytes = ins.offset;
10407 		em->bdev = root->fs_info->fs_devices->latest_bdev;
10408 		set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
10409 		em->generation = trans->transid;
10410 
10411 		while (1) {
10412 			write_lock(&em_tree->lock);
10413 			ret = add_extent_mapping(em_tree, em, 1);
10414 			write_unlock(&em_tree->lock);
10415 			if (ret != -EEXIST)
10416 				break;
10417 			btrfs_drop_extent_cache(inode, cur_offset,
10418 						cur_offset + ins.offset - 1,
10419 						0);
10420 		}
10421 		free_extent_map(em);
10422 next:
10423 		num_bytes -= ins.offset;
10424 		cur_offset += ins.offset;
10425 		*alloc_hint = ins.objectid + ins.offset;
10426 
10427 		inode_inc_iversion(inode);
10428 		inode->i_ctime = current_time(inode);
10429 		BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
10430 		if (!(mode & FALLOC_FL_KEEP_SIZE) &&
10431 		    (actual_len > inode->i_size) &&
10432 		    (cur_offset > inode->i_size)) {
10433 			if (cur_offset > actual_len)
10434 				i_size = actual_len;
10435 			else
10436 				i_size = cur_offset;
10437 			i_size_write(inode, i_size);
10438 			btrfs_ordered_update_i_size(inode, i_size, NULL);
10439 		}
10440 
10441 		ret = btrfs_update_inode(trans, root, inode);
10442 
10443 		if (ret) {
10444 			btrfs_abort_transaction(trans, ret);
10445 			if (own_trans)
10446 				btrfs_end_transaction(trans, root);
10447 			break;
10448 		}
10449 
10450 		if (own_trans)
10451 			btrfs_end_transaction(trans, root);
10452 	}
10453 	if (cur_offset < end)
10454 		btrfs_free_reserved_data_space(inode, cur_offset,
10455 			end - cur_offset + 1);
10456 	return ret;
10457 }
10458 
10459 int btrfs_prealloc_file_range(struct inode *inode, int mode,
10460 			      u64 start, u64 num_bytes, u64 min_size,
10461 			      loff_t actual_len, u64 *alloc_hint)
10462 {
10463 	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10464 					   min_size, actual_len, alloc_hint,
10465 					   NULL);
10466 }
10467 
10468 int btrfs_prealloc_file_range_trans(struct inode *inode,
10469 				    struct btrfs_trans_handle *trans, int mode,
10470 				    u64 start, u64 num_bytes, u64 min_size,
10471 				    loff_t actual_len, u64 *alloc_hint)
10472 {
10473 	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10474 					   min_size, actual_len, alloc_hint, trans);
10475 }
10476 
10477 static int btrfs_set_page_dirty(struct page *page)
10478 {
10479 	return __set_page_dirty_nobuffers(page);
10480 }
10481 
10482 static int btrfs_permission(struct inode *inode, int mask)
10483 {
10484 	struct btrfs_root *root = BTRFS_I(inode)->root;
10485 	umode_t mode = inode->i_mode;
10486 
10487 	if (mask & MAY_WRITE &&
10488 	    (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
10489 		if (btrfs_root_readonly(root))
10490 			return -EROFS;
10491 		if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
10492 			return -EACCES;
10493 	}
10494 	return generic_permission(inode, mask);
10495 }
10496 
10497 static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
10498 {
10499 	struct btrfs_trans_handle *trans;
10500 	struct btrfs_root *root = BTRFS_I(dir)->root;
10501 	struct inode *inode = NULL;
10502 	u64 objectid;
10503 	u64 index;
10504 	int ret = 0;
10505 
10506 	/*
10507 	 * 5 units required for adding orphan entry
10508 	 */
10509 	trans = btrfs_start_transaction(root, 5);
10510 	if (IS_ERR(trans))
10511 		return PTR_ERR(trans);
10512 
10513 	ret = btrfs_find_free_ino(root, &objectid);
10514 	if (ret)
10515 		goto out;
10516 
10517 	inode = btrfs_new_inode(trans, root, dir, NULL, 0,
10518 				btrfs_ino(dir), objectid, mode, &index);
10519 	if (IS_ERR(inode)) {
10520 		ret = PTR_ERR(inode);
10521 		inode = NULL;
10522 		goto out;
10523 	}
10524 
10525 	inode->i_fop = &btrfs_file_operations;
10526 	inode->i_op = &btrfs_file_inode_operations;
10527 
10528 	inode->i_mapping->a_ops = &btrfs_aops;
10529 	BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10530 
10531 	ret = btrfs_init_inode_security(trans, inode, dir, NULL);
10532 	if (ret)
10533 		goto out_inode;
10534 
10535 	ret = btrfs_update_inode(trans, root, inode);
10536 	if (ret)
10537 		goto out_inode;
10538 	ret = btrfs_orphan_add(trans, inode);
10539 	if (ret)
10540 		goto out_inode;
10541 
10542 	/*
10543 	 * We set number of links to 0 in btrfs_new_inode(), and here we set
10544 	 * it to 1 because d_tmpfile() will issue a warning if the count is 0,
10545 	 * through:
10546 	 *
10547 	 *    d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
10548 	 */
10549 	set_nlink(inode, 1);
10550 	unlock_new_inode(inode);
10551 	d_tmpfile(dentry, inode);
10552 	mark_inode_dirty(inode);
10553 
10554 out:
10555 	btrfs_end_transaction(trans, root);
10556 	if (ret)
10557 		iput(inode);
10558 	btrfs_balance_delayed_items(root);
10559 	btrfs_btree_balance_dirty(root);
10560 	return ret;
10561 
10562 out_inode:
10563 	unlock_new_inode(inode);
10564 	goto out;
10565 
10566 }
10567 
10568 static const struct inode_operations btrfs_dir_inode_operations = {
10569 	.getattr	= btrfs_getattr,
10570 	.lookup		= btrfs_lookup,
10571 	.create		= btrfs_create,
10572 	.unlink		= btrfs_unlink,
10573 	.link		= btrfs_link,
10574 	.mkdir		= btrfs_mkdir,
10575 	.rmdir		= btrfs_rmdir,
10576 	.rename		= btrfs_rename2,
10577 	.symlink	= btrfs_symlink,
10578 	.setattr	= btrfs_setattr,
10579 	.mknod		= btrfs_mknod,
10580 	.listxattr	= btrfs_listxattr,
10581 	.permission	= btrfs_permission,
10582 	.get_acl	= btrfs_get_acl,
10583 	.set_acl	= btrfs_set_acl,
10584 	.update_time	= btrfs_update_time,
10585 	.tmpfile        = btrfs_tmpfile,
10586 };
10587 static const struct inode_operations btrfs_dir_ro_inode_operations = {
10588 	.lookup		= btrfs_lookup,
10589 	.permission	= btrfs_permission,
10590 	.get_acl	= btrfs_get_acl,
10591 	.set_acl	= btrfs_set_acl,
10592 	.update_time	= btrfs_update_time,
10593 };
10594 
10595 static const struct file_operations btrfs_dir_file_operations = {
10596 	.llseek		= generic_file_llseek,
10597 	.read		= generic_read_dir,
10598 	.iterate_shared	= btrfs_real_readdir,
10599 	.unlocked_ioctl	= btrfs_ioctl,
10600 #ifdef CONFIG_COMPAT
10601 	.compat_ioctl	= btrfs_compat_ioctl,
10602 #endif
10603 	.release        = btrfs_release_file,
10604 	.fsync		= btrfs_sync_file,
10605 };
10606 
10607 static const struct extent_io_ops btrfs_extent_io_ops = {
10608 	.fill_delalloc = run_delalloc_range,
10609 	.submit_bio_hook = btrfs_submit_bio_hook,
10610 	.merge_bio_hook = btrfs_merge_bio_hook,
10611 	.readpage_end_io_hook = btrfs_readpage_end_io_hook,
10612 	.writepage_end_io_hook = btrfs_writepage_end_io_hook,
10613 	.writepage_start_hook = btrfs_writepage_start_hook,
10614 	.set_bit_hook = btrfs_set_bit_hook,
10615 	.clear_bit_hook = btrfs_clear_bit_hook,
10616 	.merge_extent_hook = btrfs_merge_extent_hook,
10617 	.split_extent_hook = btrfs_split_extent_hook,
10618 };
10619 
10620 /*
10621  * btrfs doesn't support the bmap operation because swapfiles
10622  * use bmap to make a mapping of extents in the file.  They assume
10623  * these extents won't change over the life of the file and they
10624  * use the bmap result to do IO directly to the drive.
10625  *
10626  * the btrfs bmap call would return logical addresses that aren't
10627  * suitable for IO and they also will change frequently as COW
10628  * operations happen.  So, swapfile + btrfs == corruption.
10629  *
10630  * For now we're avoiding this by dropping bmap.
10631  */
10632 static const struct address_space_operations btrfs_aops = {
10633 	.readpage	= btrfs_readpage,
10634 	.writepage	= btrfs_writepage,
10635 	.writepages	= btrfs_writepages,
10636 	.readpages	= btrfs_readpages,
10637 	.direct_IO	= btrfs_direct_IO,
10638 	.invalidatepage = btrfs_invalidatepage,
10639 	.releasepage	= btrfs_releasepage,
10640 	.set_page_dirty	= btrfs_set_page_dirty,
10641 	.error_remove_page = generic_error_remove_page,
10642 };
10643 
10644 static const struct address_space_operations btrfs_symlink_aops = {
10645 	.readpage	= btrfs_readpage,
10646 	.writepage	= btrfs_writepage,
10647 	.invalidatepage = btrfs_invalidatepage,
10648 	.releasepage	= btrfs_releasepage,
10649 };
10650 
10651 static const struct inode_operations btrfs_file_inode_operations = {
10652 	.getattr	= btrfs_getattr,
10653 	.setattr	= btrfs_setattr,
10654 	.listxattr      = btrfs_listxattr,
10655 	.permission	= btrfs_permission,
10656 	.fiemap		= btrfs_fiemap,
10657 	.get_acl	= btrfs_get_acl,
10658 	.set_acl	= btrfs_set_acl,
10659 	.update_time	= btrfs_update_time,
10660 };
10661 static const struct inode_operations btrfs_special_inode_operations = {
10662 	.getattr	= btrfs_getattr,
10663 	.setattr	= btrfs_setattr,
10664 	.permission	= btrfs_permission,
10665 	.listxattr	= btrfs_listxattr,
10666 	.get_acl	= btrfs_get_acl,
10667 	.set_acl	= btrfs_set_acl,
10668 	.update_time	= btrfs_update_time,
10669 };
10670 static const struct inode_operations btrfs_symlink_inode_operations = {
10671 	.readlink	= generic_readlink,
10672 	.get_link	= page_get_link,
10673 	.getattr	= btrfs_getattr,
10674 	.setattr	= btrfs_setattr,
10675 	.permission	= btrfs_permission,
10676 	.listxattr	= btrfs_listxattr,
10677 	.update_time	= btrfs_update_time,
10678 };
10679 
10680 const struct dentry_operations btrfs_dentry_operations = {
10681 	.d_delete	= btrfs_dentry_delete,
10682 	.d_release	= btrfs_dentry_release,
10683 };
10684