1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/kernel.h> 20 #include <linux/bio.h> 21 #include <linux/buffer_head.h> 22 #include <linux/file.h> 23 #include <linux/fs.h> 24 #include <linux/pagemap.h> 25 #include <linux/highmem.h> 26 #include <linux/time.h> 27 #include <linux/init.h> 28 #include <linux/string.h> 29 #include <linux/backing-dev.h> 30 #include <linux/mpage.h> 31 #include <linux/swap.h> 32 #include <linux/writeback.h> 33 #include <linux/statfs.h> 34 #include <linux/compat.h> 35 #include <linux/bit_spinlock.h> 36 #include <linux/xattr.h> 37 #include <linux/posix_acl.h> 38 #include <linux/falloc.h> 39 #include <linux/slab.h> 40 #include <linux/ratelimit.h> 41 #include <linux/mount.h> 42 #include <linux/btrfs.h> 43 #include <linux/blkdev.h> 44 #include <linux/posix_acl_xattr.h> 45 #include <linux/uio.h> 46 #include "ctree.h" 47 #include "disk-io.h" 48 #include "transaction.h" 49 #include "btrfs_inode.h" 50 #include "print-tree.h" 51 #include "ordered-data.h" 52 #include "xattr.h" 53 #include "tree-log.h" 54 #include "volumes.h" 55 #include "compression.h" 56 #include "locking.h" 57 #include "free-space-cache.h" 58 #include "inode-map.h" 59 #include "backref.h" 60 #include "hash.h" 61 #include "props.h" 62 #include "qgroup.h" 63 64 struct btrfs_iget_args { 65 struct btrfs_key *location; 66 struct btrfs_root *root; 67 }; 68 69 static const struct inode_operations btrfs_dir_inode_operations; 70 static const struct inode_operations btrfs_symlink_inode_operations; 71 static const struct inode_operations btrfs_dir_ro_inode_operations; 72 static const struct inode_operations btrfs_special_inode_operations; 73 static const struct inode_operations btrfs_file_inode_operations; 74 static const struct address_space_operations btrfs_aops; 75 static const struct address_space_operations btrfs_symlink_aops; 76 static const struct file_operations btrfs_dir_file_operations; 77 static struct extent_io_ops btrfs_extent_io_ops; 78 79 static struct kmem_cache *btrfs_inode_cachep; 80 static struct kmem_cache *btrfs_delalloc_work_cachep; 81 struct kmem_cache *btrfs_trans_handle_cachep; 82 struct kmem_cache *btrfs_transaction_cachep; 83 struct kmem_cache *btrfs_path_cachep; 84 struct kmem_cache *btrfs_free_space_cachep; 85 86 #define S_SHIFT 12 87 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = { 88 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE, 89 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR, 90 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV, 91 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV, 92 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO, 93 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK, 94 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK, 95 }; 96 97 static int btrfs_setsize(struct inode *inode, struct iattr *attr); 98 static int btrfs_truncate(struct inode *inode); 99 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent); 100 static noinline int cow_file_range(struct inode *inode, 101 struct page *locked_page, 102 u64 start, u64 end, int *page_started, 103 unsigned long *nr_written, int unlock); 104 static struct extent_map *create_pinned_em(struct inode *inode, u64 start, 105 u64 len, u64 orig_start, 106 u64 block_start, u64 block_len, 107 u64 orig_block_len, u64 ram_bytes, 108 int type); 109 110 static int btrfs_dirty_inode(struct inode *inode); 111 112 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 113 void btrfs_test_inode_set_ops(struct inode *inode) 114 { 115 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 116 } 117 #endif 118 119 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans, 120 struct inode *inode, struct inode *dir, 121 const struct qstr *qstr) 122 { 123 int err; 124 125 err = btrfs_init_acl(trans, inode, dir); 126 if (!err) 127 err = btrfs_xattr_security_init(trans, inode, dir, qstr); 128 return err; 129 } 130 131 /* 132 * this does all the hard work for inserting an inline extent into 133 * the btree. The caller should have done a btrfs_drop_extents so that 134 * no overlapping inline items exist in the btree 135 */ 136 static int insert_inline_extent(struct btrfs_trans_handle *trans, 137 struct btrfs_path *path, int extent_inserted, 138 struct btrfs_root *root, struct inode *inode, 139 u64 start, size_t size, size_t compressed_size, 140 int compress_type, 141 struct page **compressed_pages) 142 { 143 struct extent_buffer *leaf; 144 struct page *page = NULL; 145 char *kaddr; 146 unsigned long ptr; 147 struct btrfs_file_extent_item *ei; 148 int err = 0; 149 int ret; 150 size_t cur_size = size; 151 unsigned long offset; 152 153 if (compressed_size && compressed_pages) 154 cur_size = compressed_size; 155 156 inode_add_bytes(inode, size); 157 158 if (!extent_inserted) { 159 struct btrfs_key key; 160 size_t datasize; 161 162 key.objectid = btrfs_ino(inode); 163 key.offset = start; 164 key.type = BTRFS_EXTENT_DATA_KEY; 165 166 datasize = btrfs_file_extent_calc_inline_size(cur_size); 167 path->leave_spinning = 1; 168 ret = btrfs_insert_empty_item(trans, root, path, &key, 169 datasize); 170 if (ret) { 171 err = ret; 172 goto fail; 173 } 174 } 175 leaf = path->nodes[0]; 176 ei = btrfs_item_ptr(leaf, path->slots[0], 177 struct btrfs_file_extent_item); 178 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 179 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE); 180 btrfs_set_file_extent_encryption(leaf, ei, 0); 181 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 182 btrfs_set_file_extent_ram_bytes(leaf, ei, size); 183 ptr = btrfs_file_extent_inline_start(ei); 184 185 if (compress_type != BTRFS_COMPRESS_NONE) { 186 struct page *cpage; 187 int i = 0; 188 while (compressed_size > 0) { 189 cpage = compressed_pages[i]; 190 cur_size = min_t(unsigned long, compressed_size, 191 PAGE_CACHE_SIZE); 192 193 kaddr = kmap_atomic(cpage); 194 write_extent_buffer(leaf, kaddr, ptr, cur_size); 195 kunmap_atomic(kaddr); 196 197 i++; 198 ptr += cur_size; 199 compressed_size -= cur_size; 200 } 201 btrfs_set_file_extent_compression(leaf, ei, 202 compress_type); 203 } else { 204 page = find_get_page(inode->i_mapping, 205 start >> PAGE_CACHE_SHIFT); 206 btrfs_set_file_extent_compression(leaf, ei, 0); 207 kaddr = kmap_atomic(page); 208 offset = start & (PAGE_CACHE_SIZE - 1); 209 write_extent_buffer(leaf, kaddr + offset, ptr, size); 210 kunmap_atomic(kaddr); 211 page_cache_release(page); 212 } 213 btrfs_mark_buffer_dirty(leaf); 214 btrfs_release_path(path); 215 216 /* 217 * we're an inline extent, so nobody can 218 * extend the file past i_size without locking 219 * a page we already have locked. 220 * 221 * We must do any isize and inode updates 222 * before we unlock the pages. Otherwise we 223 * could end up racing with unlink. 224 */ 225 BTRFS_I(inode)->disk_i_size = inode->i_size; 226 ret = btrfs_update_inode(trans, root, inode); 227 228 return ret; 229 fail: 230 return err; 231 } 232 233 234 /* 235 * conditionally insert an inline extent into the file. This 236 * does the checks required to make sure the data is small enough 237 * to fit as an inline extent. 238 */ 239 static noinline int cow_file_range_inline(struct btrfs_root *root, 240 struct inode *inode, u64 start, 241 u64 end, size_t compressed_size, 242 int compress_type, 243 struct page **compressed_pages) 244 { 245 struct btrfs_trans_handle *trans; 246 u64 isize = i_size_read(inode); 247 u64 actual_end = min(end + 1, isize); 248 u64 inline_len = actual_end - start; 249 u64 aligned_end = ALIGN(end, root->sectorsize); 250 u64 data_len = inline_len; 251 int ret; 252 struct btrfs_path *path; 253 int extent_inserted = 0; 254 u32 extent_item_size; 255 256 if (compressed_size) 257 data_len = compressed_size; 258 259 if (start > 0 || 260 actual_end > PAGE_CACHE_SIZE || 261 data_len > BTRFS_MAX_INLINE_DATA_SIZE(root) || 262 (!compressed_size && 263 (actual_end & (root->sectorsize - 1)) == 0) || 264 end + 1 < isize || 265 data_len > root->fs_info->max_inline) { 266 return 1; 267 } 268 269 path = btrfs_alloc_path(); 270 if (!path) 271 return -ENOMEM; 272 273 trans = btrfs_join_transaction(root); 274 if (IS_ERR(trans)) { 275 btrfs_free_path(path); 276 return PTR_ERR(trans); 277 } 278 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 279 280 if (compressed_size && compressed_pages) 281 extent_item_size = btrfs_file_extent_calc_inline_size( 282 compressed_size); 283 else 284 extent_item_size = btrfs_file_extent_calc_inline_size( 285 inline_len); 286 287 ret = __btrfs_drop_extents(trans, root, inode, path, 288 start, aligned_end, NULL, 289 1, 1, extent_item_size, &extent_inserted); 290 if (ret) { 291 btrfs_abort_transaction(trans, root, ret); 292 goto out; 293 } 294 295 if (isize > actual_end) 296 inline_len = min_t(u64, isize, actual_end); 297 ret = insert_inline_extent(trans, path, extent_inserted, 298 root, inode, start, 299 inline_len, compressed_size, 300 compress_type, compressed_pages); 301 if (ret && ret != -ENOSPC) { 302 btrfs_abort_transaction(trans, root, ret); 303 goto out; 304 } else if (ret == -ENOSPC) { 305 ret = 1; 306 goto out; 307 } 308 309 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 310 btrfs_delalloc_release_metadata(inode, end + 1 - start); 311 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0); 312 out: 313 btrfs_free_path(path); 314 btrfs_end_transaction(trans, root); 315 return ret; 316 } 317 318 struct async_extent { 319 u64 start; 320 u64 ram_size; 321 u64 compressed_size; 322 struct page **pages; 323 unsigned long nr_pages; 324 int compress_type; 325 struct list_head list; 326 }; 327 328 struct async_cow { 329 struct inode *inode; 330 struct btrfs_root *root; 331 struct page *locked_page; 332 u64 start; 333 u64 end; 334 struct list_head extents; 335 struct btrfs_work work; 336 }; 337 338 static noinline int add_async_extent(struct async_cow *cow, 339 u64 start, u64 ram_size, 340 u64 compressed_size, 341 struct page **pages, 342 unsigned long nr_pages, 343 int compress_type) 344 { 345 struct async_extent *async_extent; 346 347 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS); 348 BUG_ON(!async_extent); /* -ENOMEM */ 349 async_extent->start = start; 350 async_extent->ram_size = ram_size; 351 async_extent->compressed_size = compressed_size; 352 async_extent->pages = pages; 353 async_extent->nr_pages = nr_pages; 354 async_extent->compress_type = compress_type; 355 list_add_tail(&async_extent->list, &cow->extents); 356 return 0; 357 } 358 359 static inline int inode_need_compress(struct inode *inode) 360 { 361 struct btrfs_root *root = BTRFS_I(inode)->root; 362 363 /* force compress */ 364 if (btrfs_test_opt(root, FORCE_COMPRESS)) 365 return 1; 366 /* bad compression ratios */ 367 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) 368 return 0; 369 if (btrfs_test_opt(root, COMPRESS) || 370 BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS || 371 BTRFS_I(inode)->force_compress) 372 return 1; 373 return 0; 374 } 375 376 /* 377 * we create compressed extents in two phases. The first 378 * phase compresses a range of pages that have already been 379 * locked (both pages and state bits are locked). 380 * 381 * This is done inside an ordered work queue, and the compression 382 * is spread across many cpus. The actual IO submission is step 383 * two, and the ordered work queue takes care of making sure that 384 * happens in the same order things were put onto the queue by 385 * writepages and friends. 386 * 387 * If this code finds it can't get good compression, it puts an 388 * entry onto the work queue to write the uncompressed bytes. This 389 * makes sure that both compressed inodes and uncompressed inodes 390 * are written in the same order that the flusher thread sent them 391 * down. 392 */ 393 static noinline void compress_file_range(struct inode *inode, 394 struct page *locked_page, 395 u64 start, u64 end, 396 struct async_cow *async_cow, 397 int *num_added) 398 { 399 struct btrfs_root *root = BTRFS_I(inode)->root; 400 u64 num_bytes; 401 u64 blocksize = root->sectorsize; 402 u64 actual_end; 403 u64 isize = i_size_read(inode); 404 int ret = 0; 405 struct page **pages = NULL; 406 unsigned long nr_pages; 407 unsigned long nr_pages_ret = 0; 408 unsigned long total_compressed = 0; 409 unsigned long total_in = 0; 410 unsigned long max_compressed = 128 * 1024; 411 unsigned long max_uncompressed = 128 * 1024; 412 int i; 413 int will_compress; 414 int compress_type = root->fs_info->compress_type; 415 int redirty = 0; 416 417 /* if this is a small write inside eof, kick off a defrag */ 418 if ((end - start + 1) < 16 * 1024 && 419 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size)) 420 btrfs_add_inode_defrag(NULL, inode); 421 422 actual_end = min_t(u64, isize, end + 1); 423 again: 424 will_compress = 0; 425 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1; 426 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE); 427 428 /* 429 * we don't want to send crud past the end of i_size through 430 * compression, that's just a waste of CPU time. So, if the 431 * end of the file is before the start of our current 432 * requested range of bytes, we bail out to the uncompressed 433 * cleanup code that can deal with all of this. 434 * 435 * It isn't really the fastest way to fix things, but this is a 436 * very uncommon corner. 437 */ 438 if (actual_end <= start) 439 goto cleanup_and_bail_uncompressed; 440 441 total_compressed = actual_end - start; 442 443 /* 444 * skip compression for a small file range(<=blocksize) that 445 * isn't an inline extent, since it dosen't save disk space at all. 446 */ 447 if (total_compressed <= blocksize && 448 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size)) 449 goto cleanup_and_bail_uncompressed; 450 451 /* we want to make sure that amount of ram required to uncompress 452 * an extent is reasonable, so we limit the total size in ram 453 * of a compressed extent to 128k. This is a crucial number 454 * because it also controls how easily we can spread reads across 455 * cpus for decompression. 456 * 457 * We also want to make sure the amount of IO required to do 458 * a random read is reasonably small, so we limit the size of 459 * a compressed extent to 128k. 460 */ 461 total_compressed = min(total_compressed, max_uncompressed); 462 num_bytes = ALIGN(end - start + 1, blocksize); 463 num_bytes = max(blocksize, num_bytes); 464 total_in = 0; 465 ret = 0; 466 467 /* 468 * we do compression for mount -o compress and when the 469 * inode has not been flagged as nocompress. This flag can 470 * change at any time if we discover bad compression ratios. 471 */ 472 if (inode_need_compress(inode)) { 473 WARN_ON(pages); 474 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS); 475 if (!pages) { 476 /* just bail out to the uncompressed code */ 477 goto cont; 478 } 479 480 if (BTRFS_I(inode)->force_compress) 481 compress_type = BTRFS_I(inode)->force_compress; 482 483 /* 484 * we need to call clear_page_dirty_for_io on each 485 * page in the range. Otherwise applications with the file 486 * mmap'd can wander in and change the page contents while 487 * we are compressing them. 488 * 489 * If the compression fails for any reason, we set the pages 490 * dirty again later on. 491 */ 492 extent_range_clear_dirty_for_io(inode, start, end); 493 redirty = 1; 494 ret = btrfs_compress_pages(compress_type, 495 inode->i_mapping, start, 496 total_compressed, pages, 497 nr_pages, &nr_pages_ret, 498 &total_in, 499 &total_compressed, 500 max_compressed); 501 502 if (!ret) { 503 unsigned long offset = total_compressed & 504 (PAGE_CACHE_SIZE - 1); 505 struct page *page = pages[nr_pages_ret - 1]; 506 char *kaddr; 507 508 /* zero the tail end of the last page, we might be 509 * sending it down to disk 510 */ 511 if (offset) { 512 kaddr = kmap_atomic(page); 513 memset(kaddr + offset, 0, 514 PAGE_CACHE_SIZE - offset); 515 kunmap_atomic(kaddr); 516 } 517 will_compress = 1; 518 } 519 } 520 cont: 521 if (start == 0) { 522 /* lets try to make an inline extent */ 523 if (ret || total_in < (actual_end - start)) { 524 /* we didn't compress the entire range, try 525 * to make an uncompressed inline extent. 526 */ 527 ret = cow_file_range_inline(root, inode, start, end, 528 0, 0, NULL); 529 } else { 530 /* try making a compressed inline extent */ 531 ret = cow_file_range_inline(root, inode, start, end, 532 total_compressed, 533 compress_type, pages); 534 } 535 if (ret <= 0) { 536 unsigned long clear_flags = EXTENT_DELALLOC | 537 EXTENT_DEFRAG; 538 unsigned long page_error_op; 539 540 clear_flags |= (ret < 0) ? EXTENT_DO_ACCOUNTING : 0; 541 page_error_op = ret < 0 ? PAGE_SET_ERROR : 0; 542 543 /* 544 * inline extent creation worked or returned error, 545 * we don't need to create any more async work items. 546 * Unlock and free up our temp pages. 547 */ 548 extent_clear_unlock_delalloc(inode, start, end, NULL, 549 clear_flags, PAGE_UNLOCK | 550 PAGE_CLEAR_DIRTY | 551 PAGE_SET_WRITEBACK | 552 page_error_op | 553 PAGE_END_WRITEBACK); 554 goto free_pages_out; 555 } 556 } 557 558 if (will_compress) { 559 /* 560 * we aren't doing an inline extent round the compressed size 561 * up to a block size boundary so the allocator does sane 562 * things 563 */ 564 total_compressed = ALIGN(total_compressed, blocksize); 565 566 /* 567 * one last check to make sure the compression is really a 568 * win, compare the page count read with the blocks on disk 569 */ 570 total_in = ALIGN(total_in, PAGE_CACHE_SIZE); 571 if (total_compressed >= total_in) { 572 will_compress = 0; 573 } else { 574 num_bytes = total_in; 575 } 576 } 577 if (!will_compress && pages) { 578 /* 579 * the compression code ran but failed to make things smaller, 580 * free any pages it allocated and our page pointer array 581 */ 582 for (i = 0; i < nr_pages_ret; i++) { 583 WARN_ON(pages[i]->mapping); 584 page_cache_release(pages[i]); 585 } 586 kfree(pages); 587 pages = NULL; 588 total_compressed = 0; 589 nr_pages_ret = 0; 590 591 /* flag the file so we don't compress in the future */ 592 if (!btrfs_test_opt(root, FORCE_COMPRESS) && 593 !(BTRFS_I(inode)->force_compress)) { 594 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS; 595 } 596 } 597 if (will_compress) { 598 *num_added += 1; 599 600 /* the async work queues will take care of doing actual 601 * allocation on disk for these compressed pages, 602 * and will submit them to the elevator. 603 */ 604 add_async_extent(async_cow, start, num_bytes, 605 total_compressed, pages, nr_pages_ret, 606 compress_type); 607 608 if (start + num_bytes < end) { 609 start += num_bytes; 610 pages = NULL; 611 cond_resched(); 612 goto again; 613 } 614 } else { 615 cleanup_and_bail_uncompressed: 616 /* 617 * No compression, but we still need to write the pages in 618 * the file we've been given so far. redirty the locked 619 * page if it corresponds to our extent and set things up 620 * for the async work queue to run cow_file_range to do 621 * the normal delalloc dance 622 */ 623 if (page_offset(locked_page) >= start && 624 page_offset(locked_page) <= end) { 625 __set_page_dirty_nobuffers(locked_page); 626 /* unlocked later on in the async handlers */ 627 } 628 if (redirty) 629 extent_range_redirty_for_io(inode, start, end); 630 add_async_extent(async_cow, start, end - start + 1, 631 0, NULL, 0, BTRFS_COMPRESS_NONE); 632 *num_added += 1; 633 } 634 635 return; 636 637 free_pages_out: 638 for (i = 0; i < nr_pages_ret; i++) { 639 WARN_ON(pages[i]->mapping); 640 page_cache_release(pages[i]); 641 } 642 kfree(pages); 643 } 644 645 static void free_async_extent_pages(struct async_extent *async_extent) 646 { 647 int i; 648 649 if (!async_extent->pages) 650 return; 651 652 for (i = 0; i < async_extent->nr_pages; i++) { 653 WARN_ON(async_extent->pages[i]->mapping); 654 page_cache_release(async_extent->pages[i]); 655 } 656 kfree(async_extent->pages); 657 async_extent->nr_pages = 0; 658 async_extent->pages = NULL; 659 } 660 661 /* 662 * phase two of compressed writeback. This is the ordered portion 663 * of the code, which only gets called in the order the work was 664 * queued. We walk all the async extents created by compress_file_range 665 * and send them down to the disk. 666 */ 667 static noinline void submit_compressed_extents(struct inode *inode, 668 struct async_cow *async_cow) 669 { 670 struct async_extent *async_extent; 671 u64 alloc_hint = 0; 672 struct btrfs_key ins; 673 struct extent_map *em; 674 struct btrfs_root *root = BTRFS_I(inode)->root; 675 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 676 struct extent_io_tree *io_tree; 677 int ret = 0; 678 679 again: 680 while (!list_empty(&async_cow->extents)) { 681 async_extent = list_entry(async_cow->extents.next, 682 struct async_extent, list); 683 list_del(&async_extent->list); 684 685 io_tree = &BTRFS_I(inode)->io_tree; 686 687 retry: 688 /* did the compression code fall back to uncompressed IO? */ 689 if (!async_extent->pages) { 690 int page_started = 0; 691 unsigned long nr_written = 0; 692 693 lock_extent(io_tree, async_extent->start, 694 async_extent->start + 695 async_extent->ram_size - 1); 696 697 /* allocate blocks */ 698 ret = cow_file_range(inode, async_cow->locked_page, 699 async_extent->start, 700 async_extent->start + 701 async_extent->ram_size - 1, 702 &page_started, &nr_written, 0); 703 704 /* JDM XXX */ 705 706 /* 707 * if page_started, cow_file_range inserted an 708 * inline extent and took care of all the unlocking 709 * and IO for us. Otherwise, we need to submit 710 * all those pages down to the drive. 711 */ 712 if (!page_started && !ret) 713 extent_write_locked_range(io_tree, 714 inode, async_extent->start, 715 async_extent->start + 716 async_extent->ram_size - 1, 717 btrfs_get_extent, 718 WB_SYNC_ALL); 719 else if (ret) 720 unlock_page(async_cow->locked_page); 721 kfree(async_extent); 722 cond_resched(); 723 continue; 724 } 725 726 lock_extent(io_tree, async_extent->start, 727 async_extent->start + async_extent->ram_size - 1); 728 729 ret = btrfs_reserve_extent(root, 730 async_extent->compressed_size, 731 async_extent->compressed_size, 732 0, alloc_hint, &ins, 1, 1); 733 if (ret) { 734 free_async_extent_pages(async_extent); 735 736 if (ret == -ENOSPC) { 737 unlock_extent(io_tree, async_extent->start, 738 async_extent->start + 739 async_extent->ram_size - 1); 740 741 /* 742 * we need to redirty the pages if we decide to 743 * fallback to uncompressed IO, otherwise we 744 * will not submit these pages down to lower 745 * layers. 746 */ 747 extent_range_redirty_for_io(inode, 748 async_extent->start, 749 async_extent->start + 750 async_extent->ram_size - 1); 751 752 goto retry; 753 } 754 goto out_free; 755 } 756 /* 757 * here we're doing allocation and writeback of the 758 * compressed pages 759 */ 760 btrfs_drop_extent_cache(inode, async_extent->start, 761 async_extent->start + 762 async_extent->ram_size - 1, 0); 763 764 em = alloc_extent_map(); 765 if (!em) { 766 ret = -ENOMEM; 767 goto out_free_reserve; 768 } 769 em->start = async_extent->start; 770 em->len = async_extent->ram_size; 771 em->orig_start = em->start; 772 em->mod_start = em->start; 773 em->mod_len = em->len; 774 775 em->block_start = ins.objectid; 776 em->block_len = ins.offset; 777 em->orig_block_len = ins.offset; 778 em->ram_bytes = async_extent->ram_size; 779 em->bdev = root->fs_info->fs_devices->latest_bdev; 780 em->compress_type = async_extent->compress_type; 781 set_bit(EXTENT_FLAG_PINNED, &em->flags); 782 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 783 em->generation = -1; 784 785 while (1) { 786 write_lock(&em_tree->lock); 787 ret = add_extent_mapping(em_tree, em, 1); 788 write_unlock(&em_tree->lock); 789 if (ret != -EEXIST) { 790 free_extent_map(em); 791 break; 792 } 793 btrfs_drop_extent_cache(inode, async_extent->start, 794 async_extent->start + 795 async_extent->ram_size - 1, 0); 796 } 797 798 if (ret) 799 goto out_free_reserve; 800 801 ret = btrfs_add_ordered_extent_compress(inode, 802 async_extent->start, 803 ins.objectid, 804 async_extent->ram_size, 805 ins.offset, 806 BTRFS_ORDERED_COMPRESSED, 807 async_extent->compress_type); 808 if (ret) { 809 btrfs_drop_extent_cache(inode, async_extent->start, 810 async_extent->start + 811 async_extent->ram_size - 1, 0); 812 goto out_free_reserve; 813 } 814 815 /* 816 * clear dirty, set writeback and unlock the pages. 817 */ 818 extent_clear_unlock_delalloc(inode, async_extent->start, 819 async_extent->start + 820 async_extent->ram_size - 1, 821 NULL, EXTENT_LOCKED | EXTENT_DELALLOC, 822 PAGE_UNLOCK | PAGE_CLEAR_DIRTY | 823 PAGE_SET_WRITEBACK); 824 ret = btrfs_submit_compressed_write(inode, 825 async_extent->start, 826 async_extent->ram_size, 827 ins.objectid, 828 ins.offset, async_extent->pages, 829 async_extent->nr_pages); 830 if (ret) { 831 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 832 struct page *p = async_extent->pages[0]; 833 const u64 start = async_extent->start; 834 const u64 end = start + async_extent->ram_size - 1; 835 836 p->mapping = inode->i_mapping; 837 tree->ops->writepage_end_io_hook(p, start, end, 838 NULL, 0); 839 p->mapping = NULL; 840 extent_clear_unlock_delalloc(inode, start, end, NULL, 0, 841 PAGE_END_WRITEBACK | 842 PAGE_SET_ERROR); 843 free_async_extent_pages(async_extent); 844 } 845 alloc_hint = ins.objectid + ins.offset; 846 kfree(async_extent); 847 cond_resched(); 848 } 849 return; 850 out_free_reserve: 851 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1); 852 out_free: 853 extent_clear_unlock_delalloc(inode, async_extent->start, 854 async_extent->start + 855 async_extent->ram_size - 1, 856 NULL, EXTENT_LOCKED | EXTENT_DELALLOC | 857 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING, 858 PAGE_UNLOCK | PAGE_CLEAR_DIRTY | 859 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK | 860 PAGE_SET_ERROR); 861 free_async_extent_pages(async_extent); 862 kfree(async_extent); 863 goto again; 864 } 865 866 static u64 get_extent_allocation_hint(struct inode *inode, u64 start, 867 u64 num_bytes) 868 { 869 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 870 struct extent_map *em; 871 u64 alloc_hint = 0; 872 873 read_lock(&em_tree->lock); 874 em = search_extent_mapping(em_tree, start, num_bytes); 875 if (em) { 876 /* 877 * if block start isn't an actual block number then find the 878 * first block in this inode and use that as a hint. If that 879 * block is also bogus then just don't worry about it. 880 */ 881 if (em->block_start >= EXTENT_MAP_LAST_BYTE) { 882 free_extent_map(em); 883 em = search_extent_mapping(em_tree, 0, 0); 884 if (em && em->block_start < EXTENT_MAP_LAST_BYTE) 885 alloc_hint = em->block_start; 886 if (em) 887 free_extent_map(em); 888 } else { 889 alloc_hint = em->block_start; 890 free_extent_map(em); 891 } 892 } 893 read_unlock(&em_tree->lock); 894 895 return alloc_hint; 896 } 897 898 /* 899 * when extent_io.c finds a delayed allocation range in the file, 900 * the call backs end up in this code. The basic idea is to 901 * allocate extents on disk for the range, and create ordered data structs 902 * in ram to track those extents. 903 * 904 * locked_page is the page that writepage had locked already. We use 905 * it to make sure we don't do extra locks or unlocks. 906 * 907 * *page_started is set to one if we unlock locked_page and do everything 908 * required to start IO on it. It may be clean and already done with 909 * IO when we return. 910 */ 911 static noinline int cow_file_range(struct inode *inode, 912 struct page *locked_page, 913 u64 start, u64 end, int *page_started, 914 unsigned long *nr_written, 915 int unlock) 916 { 917 struct btrfs_root *root = BTRFS_I(inode)->root; 918 u64 alloc_hint = 0; 919 u64 num_bytes; 920 unsigned long ram_size; 921 u64 disk_num_bytes; 922 u64 cur_alloc_size; 923 u64 blocksize = root->sectorsize; 924 struct btrfs_key ins; 925 struct extent_map *em; 926 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 927 int ret = 0; 928 929 if (btrfs_is_free_space_inode(inode)) { 930 WARN_ON_ONCE(1); 931 ret = -EINVAL; 932 goto out_unlock; 933 } 934 935 num_bytes = ALIGN(end - start + 1, blocksize); 936 num_bytes = max(blocksize, num_bytes); 937 disk_num_bytes = num_bytes; 938 939 /* if this is a small write inside eof, kick off defrag */ 940 if (num_bytes < 64 * 1024 && 941 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size)) 942 btrfs_add_inode_defrag(NULL, inode); 943 944 if (start == 0) { 945 /* lets try to make an inline extent */ 946 ret = cow_file_range_inline(root, inode, start, end, 0, 0, 947 NULL); 948 if (ret == 0) { 949 extent_clear_unlock_delalloc(inode, start, end, NULL, 950 EXTENT_LOCKED | EXTENT_DELALLOC | 951 EXTENT_DEFRAG, PAGE_UNLOCK | 952 PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK | 953 PAGE_END_WRITEBACK); 954 955 *nr_written = *nr_written + 956 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE; 957 *page_started = 1; 958 goto out; 959 } else if (ret < 0) { 960 goto out_unlock; 961 } 962 } 963 964 BUG_ON(disk_num_bytes > 965 btrfs_super_total_bytes(root->fs_info->super_copy)); 966 967 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes); 968 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0); 969 970 while (disk_num_bytes > 0) { 971 unsigned long op; 972 973 cur_alloc_size = disk_num_bytes; 974 ret = btrfs_reserve_extent(root, cur_alloc_size, 975 root->sectorsize, 0, alloc_hint, 976 &ins, 1, 1); 977 if (ret < 0) 978 goto out_unlock; 979 980 em = alloc_extent_map(); 981 if (!em) { 982 ret = -ENOMEM; 983 goto out_reserve; 984 } 985 em->start = start; 986 em->orig_start = em->start; 987 ram_size = ins.offset; 988 em->len = ins.offset; 989 em->mod_start = em->start; 990 em->mod_len = em->len; 991 992 em->block_start = ins.objectid; 993 em->block_len = ins.offset; 994 em->orig_block_len = ins.offset; 995 em->ram_bytes = ram_size; 996 em->bdev = root->fs_info->fs_devices->latest_bdev; 997 set_bit(EXTENT_FLAG_PINNED, &em->flags); 998 em->generation = -1; 999 1000 while (1) { 1001 write_lock(&em_tree->lock); 1002 ret = add_extent_mapping(em_tree, em, 1); 1003 write_unlock(&em_tree->lock); 1004 if (ret != -EEXIST) { 1005 free_extent_map(em); 1006 break; 1007 } 1008 btrfs_drop_extent_cache(inode, start, 1009 start + ram_size - 1, 0); 1010 } 1011 if (ret) 1012 goto out_reserve; 1013 1014 cur_alloc_size = ins.offset; 1015 ret = btrfs_add_ordered_extent(inode, start, ins.objectid, 1016 ram_size, cur_alloc_size, 0); 1017 if (ret) 1018 goto out_drop_extent_cache; 1019 1020 if (root->root_key.objectid == 1021 BTRFS_DATA_RELOC_TREE_OBJECTID) { 1022 ret = btrfs_reloc_clone_csums(inode, start, 1023 cur_alloc_size); 1024 if (ret) 1025 goto out_drop_extent_cache; 1026 } 1027 1028 if (disk_num_bytes < cur_alloc_size) 1029 break; 1030 1031 /* we're not doing compressed IO, don't unlock the first 1032 * page (which the caller expects to stay locked), don't 1033 * clear any dirty bits and don't set any writeback bits 1034 * 1035 * Do set the Private2 bit so we know this page was properly 1036 * setup for writepage 1037 */ 1038 op = unlock ? PAGE_UNLOCK : 0; 1039 op |= PAGE_SET_PRIVATE2; 1040 1041 extent_clear_unlock_delalloc(inode, start, 1042 start + ram_size - 1, locked_page, 1043 EXTENT_LOCKED | EXTENT_DELALLOC, 1044 op); 1045 disk_num_bytes -= cur_alloc_size; 1046 num_bytes -= cur_alloc_size; 1047 alloc_hint = ins.objectid + ins.offset; 1048 start += cur_alloc_size; 1049 } 1050 out: 1051 return ret; 1052 1053 out_drop_extent_cache: 1054 btrfs_drop_extent_cache(inode, start, start + ram_size - 1, 0); 1055 out_reserve: 1056 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1); 1057 out_unlock: 1058 extent_clear_unlock_delalloc(inode, start, end, locked_page, 1059 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING | 1060 EXTENT_DELALLOC | EXTENT_DEFRAG, 1061 PAGE_UNLOCK | PAGE_CLEAR_DIRTY | 1062 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK); 1063 goto out; 1064 } 1065 1066 /* 1067 * work queue call back to started compression on a file and pages 1068 */ 1069 static noinline void async_cow_start(struct btrfs_work *work) 1070 { 1071 struct async_cow *async_cow; 1072 int num_added = 0; 1073 async_cow = container_of(work, struct async_cow, work); 1074 1075 compress_file_range(async_cow->inode, async_cow->locked_page, 1076 async_cow->start, async_cow->end, async_cow, 1077 &num_added); 1078 if (num_added == 0) { 1079 btrfs_add_delayed_iput(async_cow->inode); 1080 async_cow->inode = NULL; 1081 } 1082 } 1083 1084 /* 1085 * work queue call back to submit previously compressed pages 1086 */ 1087 static noinline void async_cow_submit(struct btrfs_work *work) 1088 { 1089 struct async_cow *async_cow; 1090 struct btrfs_root *root; 1091 unsigned long nr_pages; 1092 1093 async_cow = container_of(work, struct async_cow, work); 1094 1095 root = async_cow->root; 1096 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >> 1097 PAGE_CACHE_SHIFT; 1098 1099 if (atomic_sub_return(nr_pages, &root->fs_info->async_delalloc_pages) < 1100 5 * 1024 * 1024 && 1101 waitqueue_active(&root->fs_info->async_submit_wait)) 1102 wake_up(&root->fs_info->async_submit_wait); 1103 1104 if (async_cow->inode) 1105 submit_compressed_extents(async_cow->inode, async_cow); 1106 } 1107 1108 static noinline void async_cow_free(struct btrfs_work *work) 1109 { 1110 struct async_cow *async_cow; 1111 async_cow = container_of(work, struct async_cow, work); 1112 if (async_cow->inode) 1113 btrfs_add_delayed_iput(async_cow->inode); 1114 kfree(async_cow); 1115 } 1116 1117 static int cow_file_range_async(struct inode *inode, struct page *locked_page, 1118 u64 start, u64 end, int *page_started, 1119 unsigned long *nr_written) 1120 { 1121 struct async_cow *async_cow; 1122 struct btrfs_root *root = BTRFS_I(inode)->root; 1123 unsigned long nr_pages; 1124 u64 cur_end; 1125 int limit = 10 * 1024 * 1024; 1126 1127 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED, 1128 1, 0, NULL, GFP_NOFS); 1129 while (start < end) { 1130 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS); 1131 BUG_ON(!async_cow); /* -ENOMEM */ 1132 async_cow->inode = igrab(inode); 1133 async_cow->root = root; 1134 async_cow->locked_page = locked_page; 1135 async_cow->start = start; 1136 1137 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS && 1138 !btrfs_test_opt(root, FORCE_COMPRESS)) 1139 cur_end = end; 1140 else 1141 cur_end = min(end, start + 512 * 1024 - 1); 1142 1143 async_cow->end = cur_end; 1144 INIT_LIST_HEAD(&async_cow->extents); 1145 1146 btrfs_init_work(&async_cow->work, 1147 btrfs_delalloc_helper, 1148 async_cow_start, async_cow_submit, 1149 async_cow_free); 1150 1151 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >> 1152 PAGE_CACHE_SHIFT; 1153 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages); 1154 1155 btrfs_queue_work(root->fs_info->delalloc_workers, 1156 &async_cow->work); 1157 1158 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) { 1159 wait_event(root->fs_info->async_submit_wait, 1160 (atomic_read(&root->fs_info->async_delalloc_pages) < 1161 limit)); 1162 } 1163 1164 while (atomic_read(&root->fs_info->async_submit_draining) && 1165 atomic_read(&root->fs_info->async_delalloc_pages)) { 1166 wait_event(root->fs_info->async_submit_wait, 1167 (atomic_read(&root->fs_info->async_delalloc_pages) == 1168 0)); 1169 } 1170 1171 *nr_written += nr_pages; 1172 start = cur_end + 1; 1173 } 1174 *page_started = 1; 1175 return 0; 1176 } 1177 1178 static noinline int csum_exist_in_range(struct btrfs_root *root, 1179 u64 bytenr, u64 num_bytes) 1180 { 1181 int ret; 1182 struct btrfs_ordered_sum *sums; 1183 LIST_HEAD(list); 1184 1185 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr, 1186 bytenr + num_bytes - 1, &list, 0); 1187 if (ret == 0 && list_empty(&list)) 1188 return 0; 1189 1190 while (!list_empty(&list)) { 1191 sums = list_entry(list.next, struct btrfs_ordered_sum, list); 1192 list_del(&sums->list); 1193 kfree(sums); 1194 } 1195 return 1; 1196 } 1197 1198 /* 1199 * when nowcow writeback call back. This checks for snapshots or COW copies 1200 * of the extents that exist in the file, and COWs the file as required. 1201 * 1202 * If no cow copies or snapshots exist, we write directly to the existing 1203 * blocks on disk 1204 */ 1205 static noinline int run_delalloc_nocow(struct inode *inode, 1206 struct page *locked_page, 1207 u64 start, u64 end, int *page_started, int force, 1208 unsigned long *nr_written) 1209 { 1210 struct btrfs_root *root = BTRFS_I(inode)->root; 1211 struct btrfs_trans_handle *trans; 1212 struct extent_buffer *leaf; 1213 struct btrfs_path *path; 1214 struct btrfs_file_extent_item *fi; 1215 struct btrfs_key found_key; 1216 u64 cow_start; 1217 u64 cur_offset; 1218 u64 extent_end; 1219 u64 extent_offset; 1220 u64 disk_bytenr; 1221 u64 num_bytes; 1222 u64 disk_num_bytes; 1223 u64 ram_bytes; 1224 int extent_type; 1225 int ret, err; 1226 int type; 1227 int nocow; 1228 int check_prev = 1; 1229 bool nolock; 1230 u64 ino = btrfs_ino(inode); 1231 1232 path = btrfs_alloc_path(); 1233 if (!path) { 1234 extent_clear_unlock_delalloc(inode, start, end, locked_page, 1235 EXTENT_LOCKED | EXTENT_DELALLOC | 1236 EXTENT_DO_ACCOUNTING | 1237 EXTENT_DEFRAG, PAGE_UNLOCK | 1238 PAGE_CLEAR_DIRTY | 1239 PAGE_SET_WRITEBACK | 1240 PAGE_END_WRITEBACK); 1241 return -ENOMEM; 1242 } 1243 1244 nolock = btrfs_is_free_space_inode(inode); 1245 1246 if (nolock) 1247 trans = btrfs_join_transaction_nolock(root); 1248 else 1249 trans = btrfs_join_transaction(root); 1250 1251 if (IS_ERR(trans)) { 1252 extent_clear_unlock_delalloc(inode, start, end, locked_page, 1253 EXTENT_LOCKED | EXTENT_DELALLOC | 1254 EXTENT_DO_ACCOUNTING | 1255 EXTENT_DEFRAG, PAGE_UNLOCK | 1256 PAGE_CLEAR_DIRTY | 1257 PAGE_SET_WRITEBACK | 1258 PAGE_END_WRITEBACK); 1259 btrfs_free_path(path); 1260 return PTR_ERR(trans); 1261 } 1262 1263 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 1264 1265 cow_start = (u64)-1; 1266 cur_offset = start; 1267 while (1) { 1268 ret = btrfs_lookup_file_extent(trans, root, path, ino, 1269 cur_offset, 0); 1270 if (ret < 0) 1271 goto error; 1272 if (ret > 0 && path->slots[0] > 0 && check_prev) { 1273 leaf = path->nodes[0]; 1274 btrfs_item_key_to_cpu(leaf, &found_key, 1275 path->slots[0] - 1); 1276 if (found_key.objectid == ino && 1277 found_key.type == BTRFS_EXTENT_DATA_KEY) 1278 path->slots[0]--; 1279 } 1280 check_prev = 0; 1281 next_slot: 1282 leaf = path->nodes[0]; 1283 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 1284 ret = btrfs_next_leaf(root, path); 1285 if (ret < 0) 1286 goto error; 1287 if (ret > 0) 1288 break; 1289 leaf = path->nodes[0]; 1290 } 1291 1292 nocow = 0; 1293 disk_bytenr = 0; 1294 num_bytes = 0; 1295 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1296 1297 if (found_key.objectid > ino || 1298 found_key.type > BTRFS_EXTENT_DATA_KEY || 1299 found_key.offset > end) 1300 break; 1301 1302 if (found_key.offset > cur_offset) { 1303 extent_end = found_key.offset; 1304 extent_type = 0; 1305 goto out_check; 1306 } 1307 1308 fi = btrfs_item_ptr(leaf, path->slots[0], 1309 struct btrfs_file_extent_item); 1310 extent_type = btrfs_file_extent_type(leaf, fi); 1311 1312 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 1313 if (extent_type == BTRFS_FILE_EXTENT_REG || 1314 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1315 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1316 extent_offset = btrfs_file_extent_offset(leaf, fi); 1317 extent_end = found_key.offset + 1318 btrfs_file_extent_num_bytes(leaf, fi); 1319 disk_num_bytes = 1320 btrfs_file_extent_disk_num_bytes(leaf, fi); 1321 if (extent_end <= start) { 1322 path->slots[0]++; 1323 goto next_slot; 1324 } 1325 if (disk_bytenr == 0) 1326 goto out_check; 1327 if (btrfs_file_extent_compression(leaf, fi) || 1328 btrfs_file_extent_encryption(leaf, fi) || 1329 btrfs_file_extent_other_encoding(leaf, fi)) 1330 goto out_check; 1331 if (extent_type == BTRFS_FILE_EXTENT_REG && !force) 1332 goto out_check; 1333 if (btrfs_extent_readonly(root, disk_bytenr)) 1334 goto out_check; 1335 if (btrfs_cross_ref_exist(trans, root, ino, 1336 found_key.offset - 1337 extent_offset, disk_bytenr)) 1338 goto out_check; 1339 disk_bytenr += extent_offset; 1340 disk_bytenr += cur_offset - found_key.offset; 1341 num_bytes = min(end + 1, extent_end) - cur_offset; 1342 /* 1343 * if there are pending snapshots for this root, 1344 * we fall into common COW way. 1345 */ 1346 if (!nolock) { 1347 err = btrfs_start_write_no_snapshoting(root); 1348 if (!err) 1349 goto out_check; 1350 } 1351 /* 1352 * force cow if csum exists in the range. 1353 * this ensure that csum for a given extent are 1354 * either valid or do not exist. 1355 */ 1356 if (csum_exist_in_range(root, disk_bytenr, num_bytes)) 1357 goto out_check; 1358 nocow = 1; 1359 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 1360 extent_end = found_key.offset + 1361 btrfs_file_extent_inline_len(leaf, 1362 path->slots[0], fi); 1363 extent_end = ALIGN(extent_end, root->sectorsize); 1364 } else { 1365 BUG_ON(1); 1366 } 1367 out_check: 1368 if (extent_end <= start) { 1369 path->slots[0]++; 1370 if (!nolock && nocow) 1371 btrfs_end_write_no_snapshoting(root); 1372 goto next_slot; 1373 } 1374 if (!nocow) { 1375 if (cow_start == (u64)-1) 1376 cow_start = cur_offset; 1377 cur_offset = extent_end; 1378 if (cur_offset > end) 1379 break; 1380 path->slots[0]++; 1381 goto next_slot; 1382 } 1383 1384 btrfs_release_path(path); 1385 if (cow_start != (u64)-1) { 1386 ret = cow_file_range(inode, locked_page, 1387 cow_start, found_key.offset - 1, 1388 page_started, nr_written, 1); 1389 if (ret) { 1390 if (!nolock && nocow) 1391 btrfs_end_write_no_snapshoting(root); 1392 goto error; 1393 } 1394 cow_start = (u64)-1; 1395 } 1396 1397 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1398 struct extent_map *em; 1399 struct extent_map_tree *em_tree; 1400 em_tree = &BTRFS_I(inode)->extent_tree; 1401 em = alloc_extent_map(); 1402 BUG_ON(!em); /* -ENOMEM */ 1403 em->start = cur_offset; 1404 em->orig_start = found_key.offset - extent_offset; 1405 em->len = num_bytes; 1406 em->block_len = num_bytes; 1407 em->block_start = disk_bytenr; 1408 em->orig_block_len = disk_num_bytes; 1409 em->ram_bytes = ram_bytes; 1410 em->bdev = root->fs_info->fs_devices->latest_bdev; 1411 em->mod_start = em->start; 1412 em->mod_len = em->len; 1413 set_bit(EXTENT_FLAG_PINNED, &em->flags); 1414 set_bit(EXTENT_FLAG_FILLING, &em->flags); 1415 em->generation = -1; 1416 while (1) { 1417 write_lock(&em_tree->lock); 1418 ret = add_extent_mapping(em_tree, em, 1); 1419 write_unlock(&em_tree->lock); 1420 if (ret != -EEXIST) { 1421 free_extent_map(em); 1422 break; 1423 } 1424 btrfs_drop_extent_cache(inode, em->start, 1425 em->start + em->len - 1, 0); 1426 } 1427 type = BTRFS_ORDERED_PREALLOC; 1428 } else { 1429 type = BTRFS_ORDERED_NOCOW; 1430 } 1431 1432 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr, 1433 num_bytes, num_bytes, type); 1434 BUG_ON(ret); /* -ENOMEM */ 1435 1436 if (root->root_key.objectid == 1437 BTRFS_DATA_RELOC_TREE_OBJECTID) { 1438 ret = btrfs_reloc_clone_csums(inode, cur_offset, 1439 num_bytes); 1440 if (ret) { 1441 if (!nolock && nocow) 1442 btrfs_end_write_no_snapshoting(root); 1443 goto error; 1444 } 1445 } 1446 1447 extent_clear_unlock_delalloc(inode, cur_offset, 1448 cur_offset + num_bytes - 1, 1449 locked_page, EXTENT_LOCKED | 1450 EXTENT_DELALLOC, PAGE_UNLOCK | 1451 PAGE_SET_PRIVATE2); 1452 if (!nolock && nocow) 1453 btrfs_end_write_no_snapshoting(root); 1454 cur_offset = extent_end; 1455 if (cur_offset > end) 1456 break; 1457 } 1458 btrfs_release_path(path); 1459 1460 if (cur_offset <= end && cow_start == (u64)-1) { 1461 cow_start = cur_offset; 1462 cur_offset = end; 1463 } 1464 1465 if (cow_start != (u64)-1) { 1466 ret = cow_file_range(inode, locked_page, cow_start, end, 1467 page_started, nr_written, 1); 1468 if (ret) 1469 goto error; 1470 } 1471 1472 error: 1473 err = btrfs_end_transaction(trans, root); 1474 if (!ret) 1475 ret = err; 1476 1477 if (ret && cur_offset < end) 1478 extent_clear_unlock_delalloc(inode, cur_offset, end, 1479 locked_page, EXTENT_LOCKED | 1480 EXTENT_DELALLOC | EXTENT_DEFRAG | 1481 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK | 1482 PAGE_CLEAR_DIRTY | 1483 PAGE_SET_WRITEBACK | 1484 PAGE_END_WRITEBACK); 1485 btrfs_free_path(path); 1486 return ret; 1487 } 1488 1489 static inline int need_force_cow(struct inode *inode, u64 start, u64 end) 1490 { 1491 1492 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) && 1493 !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)) 1494 return 0; 1495 1496 /* 1497 * @defrag_bytes is a hint value, no spinlock held here, 1498 * if is not zero, it means the file is defragging. 1499 * Force cow if given extent needs to be defragged. 1500 */ 1501 if (BTRFS_I(inode)->defrag_bytes && 1502 test_range_bit(&BTRFS_I(inode)->io_tree, start, end, 1503 EXTENT_DEFRAG, 0, NULL)) 1504 return 1; 1505 1506 return 0; 1507 } 1508 1509 /* 1510 * extent_io.c call back to do delayed allocation processing 1511 */ 1512 static int run_delalloc_range(struct inode *inode, struct page *locked_page, 1513 u64 start, u64 end, int *page_started, 1514 unsigned long *nr_written) 1515 { 1516 int ret; 1517 int force_cow = need_force_cow(inode, start, end); 1518 1519 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) { 1520 ret = run_delalloc_nocow(inode, locked_page, start, end, 1521 page_started, 1, nr_written); 1522 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) { 1523 ret = run_delalloc_nocow(inode, locked_page, start, end, 1524 page_started, 0, nr_written); 1525 } else if (!inode_need_compress(inode)) { 1526 ret = cow_file_range(inode, locked_page, start, end, 1527 page_started, nr_written, 1); 1528 } else { 1529 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 1530 &BTRFS_I(inode)->runtime_flags); 1531 ret = cow_file_range_async(inode, locked_page, start, end, 1532 page_started, nr_written); 1533 } 1534 return ret; 1535 } 1536 1537 static void btrfs_split_extent_hook(struct inode *inode, 1538 struct extent_state *orig, u64 split) 1539 { 1540 u64 size; 1541 1542 /* not delalloc, ignore it */ 1543 if (!(orig->state & EXTENT_DELALLOC)) 1544 return; 1545 1546 size = orig->end - orig->start + 1; 1547 if (size > BTRFS_MAX_EXTENT_SIZE) { 1548 u64 num_extents; 1549 u64 new_size; 1550 1551 /* 1552 * See the explanation in btrfs_merge_extent_hook, the same 1553 * applies here, just in reverse. 1554 */ 1555 new_size = orig->end - split + 1; 1556 num_extents = div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1, 1557 BTRFS_MAX_EXTENT_SIZE); 1558 new_size = split - orig->start; 1559 num_extents += div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1, 1560 BTRFS_MAX_EXTENT_SIZE); 1561 if (div64_u64(size + BTRFS_MAX_EXTENT_SIZE - 1, 1562 BTRFS_MAX_EXTENT_SIZE) >= num_extents) 1563 return; 1564 } 1565 1566 spin_lock(&BTRFS_I(inode)->lock); 1567 BTRFS_I(inode)->outstanding_extents++; 1568 spin_unlock(&BTRFS_I(inode)->lock); 1569 } 1570 1571 /* 1572 * extent_io.c merge_extent_hook, used to track merged delayed allocation 1573 * extents so we can keep track of new extents that are just merged onto old 1574 * extents, such as when we are doing sequential writes, so we can properly 1575 * account for the metadata space we'll need. 1576 */ 1577 static void btrfs_merge_extent_hook(struct inode *inode, 1578 struct extent_state *new, 1579 struct extent_state *other) 1580 { 1581 u64 new_size, old_size; 1582 u64 num_extents; 1583 1584 /* not delalloc, ignore it */ 1585 if (!(other->state & EXTENT_DELALLOC)) 1586 return; 1587 1588 if (new->start > other->start) 1589 new_size = new->end - other->start + 1; 1590 else 1591 new_size = other->end - new->start + 1; 1592 1593 /* we're not bigger than the max, unreserve the space and go */ 1594 if (new_size <= BTRFS_MAX_EXTENT_SIZE) { 1595 spin_lock(&BTRFS_I(inode)->lock); 1596 BTRFS_I(inode)->outstanding_extents--; 1597 spin_unlock(&BTRFS_I(inode)->lock); 1598 return; 1599 } 1600 1601 /* 1602 * We have to add up either side to figure out how many extents were 1603 * accounted for before we merged into one big extent. If the number of 1604 * extents we accounted for is <= the amount we need for the new range 1605 * then we can return, otherwise drop. Think of it like this 1606 * 1607 * [ 4k][MAX_SIZE] 1608 * 1609 * So we've grown the extent by a MAX_SIZE extent, this would mean we 1610 * need 2 outstanding extents, on one side we have 1 and the other side 1611 * we have 1 so they are == and we can return. But in this case 1612 * 1613 * [MAX_SIZE+4k][MAX_SIZE+4k] 1614 * 1615 * Each range on their own accounts for 2 extents, but merged together 1616 * they are only 3 extents worth of accounting, so we need to drop in 1617 * this case. 1618 */ 1619 old_size = other->end - other->start + 1; 1620 num_extents = div64_u64(old_size + BTRFS_MAX_EXTENT_SIZE - 1, 1621 BTRFS_MAX_EXTENT_SIZE); 1622 old_size = new->end - new->start + 1; 1623 num_extents += div64_u64(old_size + BTRFS_MAX_EXTENT_SIZE - 1, 1624 BTRFS_MAX_EXTENT_SIZE); 1625 1626 if (div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1, 1627 BTRFS_MAX_EXTENT_SIZE) >= num_extents) 1628 return; 1629 1630 spin_lock(&BTRFS_I(inode)->lock); 1631 BTRFS_I(inode)->outstanding_extents--; 1632 spin_unlock(&BTRFS_I(inode)->lock); 1633 } 1634 1635 static void btrfs_add_delalloc_inodes(struct btrfs_root *root, 1636 struct inode *inode) 1637 { 1638 spin_lock(&root->delalloc_lock); 1639 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) { 1640 list_add_tail(&BTRFS_I(inode)->delalloc_inodes, 1641 &root->delalloc_inodes); 1642 set_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1643 &BTRFS_I(inode)->runtime_flags); 1644 root->nr_delalloc_inodes++; 1645 if (root->nr_delalloc_inodes == 1) { 1646 spin_lock(&root->fs_info->delalloc_root_lock); 1647 BUG_ON(!list_empty(&root->delalloc_root)); 1648 list_add_tail(&root->delalloc_root, 1649 &root->fs_info->delalloc_roots); 1650 spin_unlock(&root->fs_info->delalloc_root_lock); 1651 } 1652 } 1653 spin_unlock(&root->delalloc_lock); 1654 } 1655 1656 static void btrfs_del_delalloc_inode(struct btrfs_root *root, 1657 struct inode *inode) 1658 { 1659 spin_lock(&root->delalloc_lock); 1660 if (!list_empty(&BTRFS_I(inode)->delalloc_inodes)) { 1661 list_del_init(&BTRFS_I(inode)->delalloc_inodes); 1662 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1663 &BTRFS_I(inode)->runtime_flags); 1664 root->nr_delalloc_inodes--; 1665 if (!root->nr_delalloc_inodes) { 1666 spin_lock(&root->fs_info->delalloc_root_lock); 1667 BUG_ON(list_empty(&root->delalloc_root)); 1668 list_del_init(&root->delalloc_root); 1669 spin_unlock(&root->fs_info->delalloc_root_lock); 1670 } 1671 } 1672 spin_unlock(&root->delalloc_lock); 1673 } 1674 1675 /* 1676 * extent_io.c set_bit_hook, used to track delayed allocation 1677 * bytes in this file, and to maintain the list of inodes that 1678 * have pending delalloc work to be done. 1679 */ 1680 static void btrfs_set_bit_hook(struct inode *inode, 1681 struct extent_state *state, unsigned *bits) 1682 { 1683 1684 if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC)) 1685 WARN_ON(1); 1686 /* 1687 * set_bit and clear bit hooks normally require _irqsave/restore 1688 * but in this case, we are only testing for the DELALLOC 1689 * bit, which is only set or cleared with irqs on 1690 */ 1691 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) { 1692 struct btrfs_root *root = BTRFS_I(inode)->root; 1693 u64 len = state->end + 1 - state->start; 1694 bool do_list = !btrfs_is_free_space_inode(inode); 1695 1696 if (*bits & EXTENT_FIRST_DELALLOC) { 1697 *bits &= ~EXTENT_FIRST_DELALLOC; 1698 } else { 1699 spin_lock(&BTRFS_I(inode)->lock); 1700 BTRFS_I(inode)->outstanding_extents++; 1701 spin_unlock(&BTRFS_I(inode)->lock); 1702 } 1703 1704 /* For sanity tests */ 1705 if (btrfs_test_is_dummy_root(root)) 1706 return; 1707 1708 __percpu_counter_add(&root->fs_info->delalloc_bytes, len, 1709 root->fs_info->delalloc_batch); 1710 spin_lock(&BTRFS_I(inode)->lock); 1711 BTRFS_I(inode)->delalloc_bytes += len; 1712 if (*bits & EXTENT_DEFRAG) 1713 BTRFS_I(inode)->defrag_bytes += len; 1714 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1715 &BTRFS_I(inode)->runtime_flags)) 1716 btrfs_add_delalloc_inodes(root, inode); 1717 spin_unlock(&BTRFS_I(inode)->lock); 1718 } 1719 } 1720 1721 /* 1722 * extent_io.c clear_bit_hook, see set_bit_hook for why 1723 */ 1724 static void btrfs_clear_bit_hook(struct inode *inode, 1725 struct extent_state *state, 1726 unsigned *bits) 1727 { 1728 u64 len = state->end + 1 - state->start; 1729 u64 num_extents = div64_u64(len + BTRFS_MAX_EXTENT_SIZE -1, 1730 BTRFS_MAX_EXTENT_SIZE); 1731 1732 spin_lock(&BTRFS_I(inode)->lock); 1733 if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG)) 1734 BTRFS_I(inode)->defrag_bytes -= len; 1735 spin_unlock(&BTRFS_I(inode)->lock); 1736 1737 /* 1738 * set_bit and clear bit hooks normally require _irqsave/restore 1739 * but in this case, we are only testing for the DELALLOC 1740 * bit, which is only set or cleared with irqs on 1741 */ 1742 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) { 1743 struct btrfs_root *root = BTRFS_I(inode)->root; 1744 bool do_list = !btrfs_is_free_space_inode(inode); 1745 1746 if (*bits & EXTENT_FIRST_DELALLOC) { 1747 *bits &= ~EXTENT_FIRST_DELALLOC; 1748 } else if (!(*bits & EXTENT_DO_ACCOUNTING)) { 1749 spin_lock(&BTRFS_I(inode)->lock); 1750 BTRFS_I(inode)->outstanding_extents -= num_extents; 1751 spin_unlock(&BTRFS_I(inode)->lock); 1752 } 1753 1754 /* 1755 * We don't reserve metadata space for space cache inodes so we 1756 * don't need to call dellalloc_release_metadata if there is an 1757 * error. 1758 */ 1759 if (*bits & EXTENT_DO_ACCOUNTING && 1760 root != root->fs_info->tree_root) 1761 btrfs_delalloc_release_metadata(inode, len); 1762 1763 /* For sanity tests. */ 1764 if (btrfs_test_is_dummy_root(root)) 1765 return; 1766 1767 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID 1768 && do_list && !(state->state & EXTENT_NORESERVE)) 1769 btrfs_free_reserved_data_space(inode, len); 1770 1771 __percpu_counter_add(&root->fs_info->delalloc_bytes, -len, 1772 root->fs_info->delalloc_batch); 1773 spin_lock(&BTRFS_I(inode)->lock); 1774 BTRFS_I(inode)->delalloc_bytes -= len; 1775 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 && 1776 test_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1777 &BTRFS_I(inode)->runtime_flags)) 1778 btrfs_del_delalloc_inode(root, inode); 1779 spin_unlock(&BTRFS_I(inode)->lock); 1780 } 1781 } 1782 1783 /* 1784 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure 1785 * we don't create bios that span stripes or chunks 1786 */ 1787 int btrfs_merge_bio_hook(int rw, struct page *page, unsigned long offset, 1788 size_t size, struct bio *bio, 1789 unsigned long bio_flags) 1790 { 1791 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; 1792 u64 logical = (u64)bio->bi_iter.bi_sector << 9; 1793 u64 length = 0; 1794 u64 map_length; 1795 int ret; 1796 1797 if (bio_flags & EXTENT_BIO_COMPRESSED) 1798 return 0; 1799 1800 length = bio->bi_iter.bi_size; 1801 map_length = length; 1802 ret = btrfs_map_block(root->fs_info, rw, logical, 1803 &map_length, NULL, 0); 1804 /* Will always return 0 with map_multi == NULL */ 1805 BUG_ON(ret < 0); 1806 if (map_length < length + size) 1807 return 1; 1808 return 0; 1809 } 1810 1811 /* 1812 * in order to insert checksums into the metadata in large chunks, 1813 * we wait until bio submission time. All the pages in the bio are 1814 * checksummed and sums are attached onto the ordered extent record. 1815 * 1816 * At IO completion time the cums attached on the ordered extent record 1817 * are inserted into the btree 1818 */ 1819 static int __btrfs_submit_bio_start(struct inode *inode, int rw, 1820 struct bio *bio, int mirror_num, 1821 unsigned long bio_flags, 1822 u64 bio_offset) 1823 { 1824 struct btrfs_root *root = BTRFS_I(inode)->root; 1825 int ret = 0; 1826 1827 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0); 1828 BUG_ON(ret); /* -ENOMEM */ 1829 return 0; 1830 } 1831 1832 /* 1833 * in order to insert checksums into the metadata in large chunks, 1834 * we wait until bio submission time. All the pages in the bio are 1835 * checksummed and sums are attached onto the ordered extent record. 1836 * 1837 * At IO completion time the cums attached on the ordered extent record 1838 * are inserted into the btree 1839 */ 1840 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio, 1841 int mirror_num, unsigned long bio_flags, 1842 u64 bio_offset) 1843 { 1844 struct btrfs_root *root = BTRFS_I(inode)->root; 1845 int ret; 1846 1847 ret = btrfs_map_bio(root, rw, bio, mirror_num, 1); 1848 if (ret) { 1849 bio->bi_error = ret; 1850 bio_endio(bio); 1851 } 1852 return ret; 1853 } 1854 1855 /* 1856 * extent_io.c submission hook. This does the right thing for csum calculation 1857 * on write, or reading the csums from the tree before a read 1858 */ 1859 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio, 1860 int mirror_num, unsigned long bio_flags, 1861 u64 bio_offset) 1862 { 1863 struct btrfs_root *root = BTRFS_I(inode)->root; 1864 int ret = 0; 1865 int skip_sum; 1866 int metadata = 0; 1867 int async = !atomic_read(&BTRFS_I(inode)->sync_writers); 1868 1869 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 1870 1871 if (btrfs_is_free_space_inode(inode)) 1872 metadata = 2; 1873 1874 if (!(rw & REQ_WRITE)) { 1875 ret = btrfs_bio_wq_end_io(root->fs_info, bio, metadata); 1876 if (ret) 1877 goto out; 1878 1879 if (bio_flags & EXTENT_BIO_COMPRESSED) { 1880 ret = btrfs_submit_compressed_read(inode, bio, 1881 mirror_num, 1882 bio_flags); 1883 goto out; 1884 } else if (!skip_sum) { 1885 ret = btrfs_lookup_bio_sums(root, inode, bio, NULL); 1886 if (ret) 1887 goto out; 1888 } 1889 goto mapit; 1890 } else if (async && !skip_sum) { 1891 /* csum items have already been cloned */ 1892 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) 1893 goto mapit; 1894 /* we're doing a write, do the async checksumming */ 1895 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info, 1896 inode, rw, bio, mirror_num, 1897 bio_flags, bio_offset, 1898 __btrfs_submit_bio_start, 1899 __btrfs_submit_bio_done); 1900 goto out; 1901 } else if (!skip_sum) { 1902 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0); 1903 if (ret) 1904 goto out; 1905 } 1906 1907 mapit: 1908 ret = btrfs_map_bio(root, rw, bio, mirror_num, 0); 1909 1910 out: 1911 if (ret < 0) { 1912 bio->bi_error = ret; 1913 bio_endio(bio); 1914 } 1915 return ret; 1916 } 1917 1918 /* 1919 * given a list of ordered sums record them in the inode. This happens 1920 * at IO completion time based on sums calculated at bio submission time. 1921 */ 1922 static noinline int add_pending_csums(struct btrfs_trans_handle *trans, 1923 struct inode *inode, u64 file_offset, 1924 struct list_head *list) 1925 { 1926 struct btrfs_ordered_sum *sum; 1927 1928 list_for_each_entry(sum, list, list) { 1929 trans->adding_csums = 1; 1930 btrfs_csum_file_blocks(trans, 1931 BTRFS_I(inode)->root->fs_info->csum_root, sum); 1932 trans->adding_csums = 0; 1933 } 1934 return 0; 1935 } 1936 1937 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end, 1938 struct extent_state **cached_state) 1939 { 1940 WARN_ON((end & (PAGE_CACHE_SIZE - 1)) == 0); 1941 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end, 1942 cached_state, GFP_NOFS); 1943 } 1944 1945 /* see btrfs_writepage_start_hook for details on why this is required */ 1946 struct btrfs_writepage_fixup { 1947 struct page *page; 1948 struct btrfs_work work; 1949 }; 1950 1951 static void btrfs_writepage_fixup_worker(struct btrfs_work *work) 1952 { 1953 struct btrfs_writepage_fixup *fixup; 1954 struct btrfs_ordered_extent *ordered; 1955 struct extent_state *cached_state = NULL; 1956 struct page *page; 1957 struct inode *inode; 1958 u64 page_start; 1959 u64 page_end; 1960 int ret; 1961 1962 fixup = container_of(work, struct btrfs_writepage_fixup, work); 1963 page = fixup->page; 1964 again: 1965 lock_page(page); 1966 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) { 1967 ClearPageChecked(page); 1968 goto out_page; 1969 } 1970 1971 inode = page->mapping->host; 1972 page_start = page_offset(page); 1973 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1; 1974 1975 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0, 1976 &cached_state); 1977 1978 /* already ordered? We're done */ 1979 if (PagePrivate2(page)) 1980 goto out; 1981 1982 ordered = btrfs_lookup_ordered_extent(inode, page_start); 1983 if (ordered) { 1984 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, 1985 page_end, &cached_state, GFP_NOFS); 1986 unlock_page(page); 1987 btrfs_start_ordered_extent(inode, ordered, 1); 1988 btrfs_put_ordered_extent(ordered); 1989 goto again; 1990 } 1991 1992 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE); 1993 if (ret) { 1994 mapping_set_error(page->mapping, ret); 1995 end_extent_writepage(page, ret, page_start, page_end); 1996 ClearPageChecked(page); 1997 goto out; 1998 } 1999 2000 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state); 2001 ClearPageChecked(page); 2002 set_page_dirty(page); 2003 out: 2004 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end, 2005 &cached_state, GFP_NOFS); 2006 out_page: 2007 unlock_page(page); 2008 page_cache_release(page); 2009 kfree(fixup); 2010 } 2011 2012 /* 2013 * There are a few paths in the higher layers of the kernel that directly 2014 * set the page dirty bit without asking the filesystem if it is a 2015 * good idea. This causes problems because we want to make sure COW 2016 * properly happens and the data=ordered rules are followed. 2017 * 2018 * In our case any range that doesn't have the ORDERED bit set 2019 * hasn't been properly setup for IO. We kick off an async process 2020 * to fix it up. The async helper will wait for ordered extents, set 2021 * the delalloc bit and make it safe to write the page. 2022 */ 2023 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end) 2024 { 2025 struct inode *inode = page->mapping->host; 2026 struct btrfs_writepage_fixup *fixup; 2027 struct btrfs_root *root = BTRFS_I(inode)->root; 2028 2029 /* this page is properly in the ordered list */ 2030 if (TestClearPagePrivate2(page)) 2031 return 0; 2032 2033 if (PageChecked(page)) 2034 return -EAGAIN; 2035 2036 fixup = kzalloc(sizeof(*fixup), GFP_NOFS); 2037 if (!fixup) 2038 return -EAGAIN; 2039 2040 SetPageChecked(page); 2041 page_cache_get(page); 2042 btrfs_init_work(&fixup->work, btrfs_fixup_helper, 2043 btrfs_writepage_fixup_worker, NULL, NULL); 2044 fixup->page = page; 2045 btrfs_queue_work(root->fs_info->fixup_workers, &fixup->work); 2046 return -EBUSY; 2047 } 2048 2049 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans, 2050 struct inode *inode, u64 file_pos, 2051 u64 disk_bytenr, u64 disk_num_bytes, 2052 u64 num_bytes, u64 ram_bytes, 2053 u8 compression, u8 encryption, 2054 u16 other_encoding, int extent_type) 2055 { 2056 struct btrfs_root *root = BTRFS_I(inode)->root; 2057 struct btrfs_file_extent_item *fi; 2058 struct btrfs_path *path; 2059 struct extent_buffer *leaf; 2060 struct btrfs_key ins; 2061 int extent_inserted = 0; 2062 int ret; 2063 2064 path = btrfs_alloc_path(); 2065 if (!path) 2066 return -ENOMEM; 2067 2068 /* 2069 * we may be replacing one extent in the tree with another. 2070 * The new extent is pinned in the extent map, and we don't want 2071 * to drop it from the cache until it is completely in the btree. 2072 * 2073 * So, tell btrfs_drop_extents to leave this extent in the cache. 2074 * the caller is expected to unpin it and allow it to be merged 2075 * with the others. 2076 */ 2077 ret = __btrfs_drop_extents(trans, root, inode, path, file_pos, 2078 file_pos + num_bytes, NULL, 0, 2079 1, sizeof(*fi), &extent_inserted); 2080 if (ret) 2081 goto out; 2082 2083 if (!extent_inserted) { 2084 ins.objectid = btrfs_ino(inode); 2085 ins.offset = file_pos; 2086 ins.type = BTRFS_EXTENT_DATA_KEY; 2087 2088 path->leave_spinning = 1; 2089 ret = btrfs_insert_empty_item(trans, root, path, &ins, 2090 sizeof(*fi)); 2091 if (ret) 2092 goto out; 2093 } 2094 leaf = path->nodes[0]; 2095 fi = btrfs_item_ptr(leaf, path->slots[0], 2096 struct btrfs_file_extent_item); 2097 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 2098 btrfs_set_file_extent_type(leaf, fi, extent_type); 2099 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr); 2100 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes); 2101 btrfs_set_file_extent_offset(leaf, fi, 0); 2102 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 2103 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes); 2104 btrfs_set_file_extent_compression(leaf, fi, compression); 2105 btrfs_set_file_extent_encryption(leaf, fi, encryption); 2106 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding); 2107 2108 btrfs_mark_buffer_dirty(leaf); 2109 btrfs_release_path(path); 2110 2111 inode_add_bytes(inode, num_bytes); 2112 2113 ins.objectid = disk_bytenr; 2114 ins.offset = disk_num_bytes; 2115 ins.type = BTRFS_EXTENT_ITEM_KEY; 2116 ret = btrfs_alloc_reserved_file_extent(trans, root, 2117 root->root_key.objectid, 2118 btrfs_ino(inode), file_pos, &ins); 2119 out: 2120 btrfs_free_path(path); 2121 2122 return ret; 2123 } 2124 2125 /* snapshot-aware defrag */ 2126 struct sa_defrag_extent_backref { 2127 struct rb_node node; 2128 struct old_sa_defrag_extent *old; 2129 u64 root_id; 2130 u64 inum; 2131 u64 file_pos; 2132 u64 extent_offset; 2133 u64 num_bytes; 2134 u64 generation; 2135 }; 2136 2137 struct old_sa_defrag_extent { 2138 struct list_head list; 2139 struct new_sa_defrag_extent *new; 2140 2141 u64 extent_offset; 2142 u64 bytenr; 2143 u64 offset; 2144 u64 len; 2145 int count; 2146 }; 2147 2148 struct new_sa_defrag_extent { 2149 struct rb_root root; 2150 struct list_head head; 2151 struct btrfs_path *path; 2152 struct inode *inode; 2153 u64 file_pos; 2154 u64 len; 2155 u64 bytenr; 2156 u64 disk_len; 2157 u8 compress_type; 2158 }; 2159 2160 static int backref_comp(struct sa_defrag_extent_backref *b1, 2161 struct sa_defrag_extent_backref *b2) 2162 { 2163 if (b1->root_id < b2->root_id) 2164 return -1; 2165 else if (b1->root_id > b2->root_id) 2166 return 1; 2167 2168 if (b1->inum < b2->inum) 2169 return -1; 2170 else if (b1->inum > b2->inum) 2171 return 1; 2172 2173 if (b1->file_pos < b2->file_pos) 2174 return -1; 2175 else if (b1->file_pos > b2->file_pos) 2176 return 1; 2177 2178 /* 2179 * [------------------------------] ===> (a range of space) 2180 * |<--->| |<---->| =============> (fs/file tree A) 2181 * |<---------------------------->| ===> (fs/file tree B) 2182 * 2183 * A range of space can refer to two file extents in one tree while 2184 * refer to only one file extent in another tree. 2185 * 2186 * So we may process a disk offset more than one time(two extents in A) 2187 * and locate at the same extent(one extent in B), then insert two same 2188 * backrefs(both refer to the extent in B). 2189 */ 2190 return 0; 2191 } 2192 2193 static void backref_insert(struct rb_root *root, 2194 struct sa_defrag_extent_backref *backref) 2195 { 2196 struct rb_node **p = &root->rb_node; 2197 struct rb_node *parent = NULL; 2198 struct sa_defrag_extent_backref *entry; 2199 int ret; 2200 2201 while (*p) { 2202 parent = *p; 2203 entry = rb_entry(parent, struct sa_defrag_extent_backref, node); 2204 2205 ret = backref_comp(backref, entry); 2206 if (ret < 0) 2207 p = &(*p)->rb_left; 2208 else 2209 p = &(*p)->rb_right; 2210 } 2211 2212 rb_link_node(&backref->node, parent, p); 2213 rb_insert_color(&backref->node, root); 2214 } 2215 2216 /* 2217 * Note the backref might has changed, and in this case we just return 0. 2218 */ 2219 static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id, 2220 void *ctx) 2221 { 2222 struct btrfs_file_extent_item *extent; 2223 struct btrfs_fs_info *fs_info; 2224 struct old_sa_defrag_extent *old = ctx; 2225 struct new_sa_defrag_extent *new = old->new; 2226 struct btrfs_path *path = new->path; 2227 struct btrfs_key key; 2228 struct btrfs_root *root; 2229 struct sa_defrag_extent_backref *backref; 2230 struct extent_buffer *leaf; 2231 struct inode *inode = new->inode; 2232 int slot; 2233 int ret; 2234 u64 extent_offset; 2235 u64 num_bytes; 2236 2237 if (BTRFS_I(inode)->root->root_key.objectid == root_id && 2238 inum == btrfs_ino(inode)) 2239 return 0; 2240 2241 key.objectid = root_id; 2242 key.type = BTRFS_ROOT_ITEM_KEY; 2243 key.offset = (u64)-1; 2244 2245 fs_info = BTRFS_I(inode)->root->fs_info; 2246 root = btrfs_read_fs_root_no_name(fs_info, &key); 2247 if (IS_ERR(root)) { 2248 if (PTR_ERR(root) == -ENOENT) 2249 return 0; 2250 WARN_ON(1); 2251 pr_debug("inum=%llu, offset=%llu, root_id=%llu\n", 2252 inum, offset, root_id); 2253 return PTR_ERR(root); 2254 } 2255 2256 key.objectid = inum; 2257 key.type = BTRFS_EXTENT_DATA_KEY; 2258 if (offset > (u64)-1 << 32) 2259 key.offset = 0; 2260 else 2261 key.offset = offset; 2262 2263 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2264 if (WARN_ON(ret < 0)) 2265 return ret; 2266 ret = 0; 2267 2268 while (1) { 2269 cond_resched(); 2270 2271 leaf = path->nodes[0]; 2272 slot = path->slots[0]; 2273 2274 if (slot >= btrfs_header_nritems(leaf)) { 2275 ret = btrfs_next_leaf(root, path); 2276 if (ret < 0) { 2277 goto out; 2278 } else if (ret > 0) { 2279 ret = 0; 2280 goto out; 2281 } 2282 continue; 2283 } 2284 2285 path->slots[0]++; 2286 2287 btrfs_item_key_to_cpu(leaf, &key, slot); 2288 2289 if (key.objectid > inum) 2290 goto out; 2291 2292 if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY) 2293 continue; 2294 2295 extent = btrfs_item_ptr(leaf, slot, 2296 struct btrfs_file_extent_item); 2297 2298 if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr) 2299 continue; 2300 2301 /* 2302 * 'offset' refers to the exact key.offset, 2303 * NOT the 'offset' field in btrfs_extent_data_ref, ie. 2304 * (key.offset - extent_offset). 2305 */ 2306 if (key.offset != offset) 2307 continue; 2308 2309 extent_offset = btrfs_file_extent_offset(leaf, extent); 2310 num_bytes = btrfs_file_extent_num_bytes(leaf, extent); 2311 2312 if (extent_offset >= old->extent_offset + old->offset + 2313 old->len || extent_offset + num_bytes <= 2314 old->extent_offset + old->offset) 2315 continue; 2316 break; 2317 } 2318 2319 backref = kmalloc(sizeof(*backref), GFP_NOFS); 2320 if (!backref) { 2321 ret = -ENOENT; 2322 goto out; 2323 } 2324 2325 backref->root_id = root_id; 2326 backref->inum = inum; 2327 backref->file_pos = offset; 2328 backref->num_bytes = num_bytes; 2329 backref->extent_offset = extent_offset; 2330 backref->generation = btrfs_file_extent_generation(leaf, extent); 2331 backref->old = old; 2332 backref_insert(&new->root, backref); 2333 old->count++; 2334 out: 2335 btrfs_release_path(path); 2336 WARN_ON(ret); 2337 return ret; 2338 } 2339 2340 static noinline bool record_extent_backrefs(struct btrfs_path *path, 2341 struct new_sa_defrag_extent *new) 2342 { 2343 struct btrfs_fs_info *fs_info = BTRFS_I(new->inode)->root->fs_info; 2344 struct old_sa_defrag_extent *old, *tmp; 2345 int ret; 2346 2347 new->path = path; 2348 2349 list_for_each_entry_safe(old, tmp, &new->head, list) { 2350 ret = iterate_inodes_from_logical(old->bytenr + 2351 old->extent_offset, fs_info, 2352 path, record_one_backref, 2353 old); 2354 if (ret < 0 && ret != -ENOENT) 2355 return false; 2356 2357 /* no backref to be processed for this extent */ 2358 if (!old->count) { 2359 list_del(&old->list); 2360 kfree(old); 2361 } 2362 } 2363 2364 if (list_empty(&new->head)) 2365 return false; 2366 2367 return true; 2368 } 2369 2370 static int relink_is_mergable(struct extent_buffer *leaf, 2371 struct btrfs_file_extent_item *fi, 2372 struct new_sa_defrag_extent *new) 2373 { 2374 if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr) 2375 return 0; 2376 2377 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG) 2378 return 0; 2379 2380 if (btrfs_file_extent_compression(leaf, fi) != new->compress_type) 2381 return 0; 2382 2383 if (btrfs_file_extent_encryption(leaf, fi) || 2384 btrfs_file_extent_other_encoding(leaf, fi)) 2385 return 0; 2386 2387 return 1; 2388 } 2389 2390 /* 2391 * Note the backref might has changed, and in this case we just return 0. 2392 */ 2393 static noinline int relink_extent_backref(struct btrfs_path *path, 2394 struct sa_defrag_extent_backref *prev, 2395 struct sa_defrag_extent_backref *backref) 2396 { 2397 struct btrfs_file_extent_item *extent; 2398 struct btrfs_file_extent_item *item; 2399 struct btrfs_ordered_extent *ordered; 2400 struct btrfs_trans_handle *trans; 2401 struct btrfs_fs_info *fs_info; 2402 struct btrfs_root *root; 2403 struct btrfs_key key; 2404 struct extent_buffer *leaf; 2405 struct old_sa_defrag_extent *old = backref->old; 2406 struct new_sa_defrag_extent *new = old->new; 2407 struct inode *src_inode = new->inode; 2408 struct inode *inode; 2409 struct extent_state *cached = NULL; 2410 int ret = 0; 2411 u64 start; 2412 u64 len; 2413 u64 lock_start; 2414 u64 lock_end; 2415 bool merge = false; 2416 int index; 2417 2418 if (prev && prev->root_id == backref->root_id && 2419 prev->inum == backref->inum && 2420 prev->file_pos + prev->num_bytes == backref->file_pos) 2421 merge = true; 2422 2423 /* step 1: get root */ 2424 key.objectid = backref->root_id; 2425 key.type = BTRFS_ROOT_ITEM_KEY; 2426 key.offset = (u64)-1; 2427 2428 fs_info = BTRFS_I(src_inode)->root->fs_info; 2429 index = srcu_read_lock(&fs_info->subvol_srcu); 2430 2431 root = btrfs_read_fs_root_no_name(fs_info, &key); 2432 if (IS_ERR(root)) { 2433 srcu_read_unlock(&fs_info->subvol_srcu, index); 2434 if (PTR_ERR(root) == -ENOENT) 2435 return 0; 2436 return PTR_ERR(root); 2437 } 2438 2439 if (btrfs_root_readonly(root)) { 2440 srcu_read_unlock(&fs_info->subvol_srcu, index); 2441 return 0; 2442 } 2443 2444 /* step 2: get inode */ 2445 key.objectid = backref->inum; 2446 key.type = BTRFS_INODE_ITEM_KEY; 2447 key.offset = 0; 2448 2449 inode = btrfs_iget(fs_info->sb, &key, root, NULL); 2450 if (IS_ERR(inode)) { 2451 srcu_read_unlock(&fs_info->subvol_srcu, index); 2452 return 0; 2453 } 2454 2455 srcu_read_unlock(&fs_info->subvol_srcu, index); 2456 2457 /* step 3: relink backref */ 2458 lock_start = backref->file_pos; 2459 lock_end = backref->file_pos + backref->num_bytes - 1; 2460 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end, 2461 0, &cached); 2462 2463 ordered = btrfs_lookup_first_ordered_extent(inode, lock_end); 2464 if (ordered) { 2465 btrfs_put_ordered_extent(ordered); 2466 goto out_unlock; 2467 } 2468 2469 trans = btrfs_join_transaction(root); 2470 if (IS_ERR(trans)) { 2471 ret = PTR_ERR(trans); 2472 goto out_unlock; 2473 } 2474 2475 key.objectid = backref->inum; 2476 key.type = BTRFS_EXTENT_DATA_KEY; 2477 key.offset = backref->file_pos; 2478 2479 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2480 if (ret < 0) { 2481 goto out_free_path; 2482 } else if (ret > 0) { 2483 ret = 0; 2484 goto out_free_path; 2485 } 2486 2487 extent = btrfs_item_ptr(path->nodes[0], path->slots[0], 2488 struct btrfs_file_extent_item); 2489 2490 if (btrfs_file_extent_generation(path->nodes[0], extent) != 2491 backref->generation) 2492 goto out_free_path; 2493 2494 btrfs_release_path(path); 2495 2496 start = backref->file_pos; 2497 if (backref->extent_offset < old->extent_offset + old->offset) 2498 start += old->extent_offset + old->offset - 2499 backref->extent_offset; 2500 2501 len = min(backref->extent_offset + backref->num_bytes, 2502 old->extent_offset + old->offset + old->len); 2503 len -= max(backref->extent_offset, old->extent_offset + old->offset); 2504 2505 ret = btrfs_drop_extents(trans, root, inode, start, 2506 start + len, 1); 2507 if (ret) 2508 goto out_free_path; 2509 again: 2510 key.objectid = btrfs_ino(inode); 2511 key.type = BTRFS_EXTENT_DATA_KEY; 2512 key.offset = start; 2513 2514 path->leave_spinning = 1; 2515 if (merge) { 2516 struct btrfs_file_extent_item *fi; 2517 u64 extent_len; 2518 struct btrfs_key found_key; 2519 2520 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2521 if (ret < 0) 2522 goto out_free_path; 2523 2524 path->slots[0]--; 2525 leaf = path->nodes[0]; 2526 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 2527 2528 fi = btrfs_item_ptr(leaf, path->slots[0], 2529 struct btrfs_file_extent_item); 2530 extent_len = btrfs_file_extent_num_bytes(leaf, fi); 2531 2532 if (extent_len + found_key.offset == start && 2533 relink_is_mergable(leaf, fi, new)) { 2534 btrfs_set_file_extent_num_bytes(leaf, fi, 2535 extent_len + len); 2536 btrfs_mark_buffer_dirty(leaf); 2537 inode_add_bytes(inode, len); 2538 2539 ret = 1; 2540 goto out_free_path; 2541 } else { 2542 merge = false; 2543 btrfs_release_path(path); 2544 goto again; 2545 } 2546 } 2547 2548 ret = btrfs_insert_empty_item(trans, root, path, &key, 2549 sizeof(*extent)); 2550 if (ret) { 2551 btrfs_abort_transaction(trans, root, ret); 2552 goto out_free_path; 2553 } 2554 2555 leaf = path->nodes[0]; 2556 item = btrfs_item_ptr(leaf, path->slots[0], 2557 struct btrfs_file_extent_item); 2558 btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr); 2559 btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len); 2560 btrfs_set_file_extent_offset(leaf, item, start - new->file_pos); 2561 btrfs_set_file_extent_num_bytes(leaf, item, len); 2562 btrfs_set_file_extent_ram_bytes(leaf, item, new->len); 2563 btrfs_set_file_extent_generation(leaf, item, trans->transid); 2564 btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG); 2565 btrfs_set_file_extent_compression(leaf, item, new->compress_type); 2566 btrfs_set_file_extent_encryption(leaf, item, 0); 2567 btrfs_set_file_extent_other_encoding(leaf, item, 0); 2568 2569 btrfs_mark_buffer_dirty(leaf); 2570 inode_add_bytes(inode, len); 2571 btrfs_release_path(path); 2572 2573 ret = btrfs_inc_extent_ref(trans, root, new->bytenr, 2574 new->disk_len, 0, 2575 backref->root_id, backref->inum, 2576 new->file_pos, 0); /* start - extent_offset */ 2577 if (ret) { 2578 btrfs_abort_transaction(trans, root, ret); 2579 goto out_free_path; 2580 } 2581 2582 ret = 1; 2583 out_free_path: 2584 btrfs_release_path(path); 2585 path->leave_spinning = 0; 2586 btrfs_end_transaction(trans, root); 2587 out_unlock: 2588 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end, 2589 &cached, GFP_NOFS); 2590 iput(inode); 2591 return ret; 2592 } 2593 2594 static void free_sa_defrag_extent(struct new_sa_defrag_extent *new) 2595 { 2596 struct old_sa_defrag_extent *old, *tmp; 2597 2598 if (!new) 2599 return; 2600 2601 list_for_each_entry_safe(old, tmp, &new->head, list) { 2602 list_del(&old->list); 2603 kfree(old); 2604 } 2605 kfree(new); 2606 } 2607 2608 static void relink_file_extents(struct new_sa_defrag_extent *new) 2609 { 2610 struct btrfs_path *path; 2611 struct sa_defrag_extent_backref *backref; 2612 struct sa_defrag_extent_backref *prev = NULL; 2613 struct inode *inode; 2614 struct btrfs_root *root; 2615 struct rb_node *node; 2616 int ret; 2617 2618 inode = new->inode; 2619 root = BTRFS_I(inode)->root; 2620 2621 path = btrfs_alloc_path(); 2622 if (!path) 2623 return; 2624 2625 if (!record_extent_backrefs(path, new)) { 2626 btrfs_free_path(path); 2627 goto out; 2628 } 2629 btrfs_release_path(path); 2630 2631 while (1) { 2632 node = rb_first(&new->root); 2633 if (!node) 2634 break; 2635 rb_erase(node, &new->root); 2636 2637 backref = rb_entry(node, struct sa_defrag_extent_backref, node); 2638 2639 ret = relink_extent_backref(path, prev, backref); 2640 WARN_ON(ret < 0); 2641 2642 kfree(prev); 2643 2644 if (ret == 1) 2645 prev = backref; 2646 else 2647 prev = NULL; 2648 cond_resched(); 2649 } 2650 kfree(prev); 2651 2652 btrfs_free_path(path); 2653 out: 2654 free_sa_defrag_extent(new); 2655 2656 atomic_dec(&root->fs_info->defrag_running); 2657 wake_up(&root->fs_info->transaction_wait); 2658 } 2659 2660 static struct new_sa_defrag_extent * 2661 record_old_file_extents(struct inode *inode, 2662 struct btrfs_ordered_extent *ordered) 2663 { 2664 struct btrfs_root *root = BTRFS_I(inode)->root; 2665 struct btrfs_path *path; 2666 struct btrfs_key key; 2667 struct old_sa_defrag_extent *old; 2668 struct new_sa_defrag_extent *new; 2669 int ret; 2670 2671 new = kmalloc(sizeof(*new), GFP_NOFS); 2672 if (!new) 2673 return NULL; 2674 2675 new->inode = inode; 2676 new->file_pos = ordered->file_offset; 2677 new->len = ordered->len; 2678 new->bytenr = ordered->start; 2679 new->disk_len = ordered->disk_len; 2680 new->compress_type = ordered->compress_type; 2681 new->root = RB_ROOT; 2682 INIT_LIST_HEAD(&new->head); 2683 2684 path = btrfs_alloc_path(); 2685 if (!path) 2686 goto out_kfree; 2687 2688 key.objectid = btrfs_ino(inode); 2689 key.type = BTRFS_EXTENT_DATA_KEY; 2690 key.offset = new->file_pos; 2691 2692 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2693 if (ret < 0) 2694 goto out_free_path; 2695 if (ret > 0 && path->slots[0] > 0) 2696 path->slots[0]--; 2697 2698 /* find out all the old extents for the file range */ 2699 while (1) { 2700 struct btrfs_file_extent_item *extent; 2701 struct extent_buffer *l; 2702 int slot; 2703 u64 num_bytes; 2704 u64 offset; 2705 u64 end; 2706 u64 disk_bytenr; 2707 u64 extent_offset; 2708 2709 l = path->nodes[0]; 2710 slot = path->slots[0]; 2711 2712 if (slot >= btrfs_header_nritems(l)) { 2713 ret = btrfs_next_leaf(root, path); 2714 if (ret < 0) 2715 goto out_free_path; 2716 else if (ret > 0) 2717 break; 2718 continue; 2719 } 2720 2721 btrfs_item_key_to_cpu(l, &key, slot); 2722 2723 if (key.objectid != btrfs_ino(inode)) 2724 break; 2725 if (key.type != BTRFS_EXTENT_DATA_KEY) 2726 break; 2727 if (key.offset >= new->file_pos + new->len) 2728 break; 2729 2730 extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item); 2731 2732 num_bytes = btrfs_file_extent_num_bytes(l, extent); 2733 if (key.offset + num_bytes < new->file_pos) 2734 goto next; 2735 2736 disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent); 2737 if (!disk_bytenr) 2738 goto next; 2739 2740 extent_offset = btrfs_file_extent_offset(l, extent); 2741 2742 old = kmalloc(sizeof(*old), GFP_NOFS); 2743 if (!old) 2744 goto out_free_path; 2745 2746 offset = max(new->file_pos, key.offset); 2747 end = min(new->file_pos + new->len, key.offset + num_bytes); 2748 2749 old->bytenr = disk_bytenr; 2750 old->extent_offset = extent_offset; 2751 old->offset = offset - key.offset; 2752 old->len = end - offset; 2753 old->new = new; 2754 old->count = 0; 2755 list_add_tail(&old->list, &new->head); 2756 next: 2757 path->slots[0]++; 2758 cond_resched(); 2759 } 2760 2761 btrfs_free_path(path); 2762 atomic_inc(&root->fs_info->defrag_running); 2763 2764 return new; 2765 2766 out_free_path: 2767 btrfs_free_path(path); 2768 out_kfree: 2769 free_sa_defrag_extent(new); 2770 return NULL; 2771 } 2772 2773 static void btrfs_release_delalloc_bytes(struct btrfs_root *root, 2774 u64 start, u64 len) 2775 { 2776 struct btrfs_block_group_cache *cache; 2777 2778 cache = btrfs_lookup_block_group(root->fs_info, start); 2779 ASSERT(cache); 2780 2781 spin_lock(&cache->lock); 2782 cache->delalloc_bytes -= len; 2783 spin_unlock(&cache->lock); 2784 2785 btrfs_put_block_group(cache); 2786 } 2787 2788 /* as ordered data IO finishes, this gets called so we can finish 2789 * an ordered extent if the range of bytes in the file it covers are 2790 * fully written. 2791 */ 2792 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent) 2793 { 2794 struct inode *inode = ordered_extent->inode; 2795 struct btrfs_root *root = BTRFS_I(inode)->root; 2796 struct btrfs_trans_handle *trans = NULL; 2797 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 2798 struct extent_state *cached_state = NULL; 2799 struct new_sa_defrag_extent *new = NULL; 2800 int compress_type = 0; 2801 int ret = 0; 2802 u64 logical_len = ordered_extent->len; 2803 bool nolock; 2804 bool truncated = false; 2805 2806 nolock = btrfs_is_free_space_inode(inode); 2807 2808 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) { 2809 ret = -EIO; 2810 goto out; 2811 } 2812 2813 btrfs_free_io_failure_record(inode, ordered_extent->file_offset, 2814 ordered_extent->file_offset + 2815 ordered_extent->len - 1); 2816 2817 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) { 2818 truncated = true; 2819 logical_len = ordered_extent->truncated_len; 2820 /* Truncated the entire extent, don't bother adding */ 2821 if (!logical_len) 2822 goto out; 2823 } 2824 2825 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) { 2826 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */ 2827 btrfs_ordered_update_i_size(inode, 0, ordered_extent); 2828 if (nolock) 2829 trans = btrfs_join_transaction_nolock(root); 2830 else 2831 trans = btrfs_join_transaction(root); 2832 if (IS_ERR(trans)) { 2833 ret = PTR_ERR(trans); 2834 trans = NULL; 2835 goto out; 2836 } 2837 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 2838 ret = btrfs_update_inode_fallback(trans, root, inode); 2839 if (ret) /* -ENOMEM or corruption */ 2840 btrfs_abort_transaction(trans, root, ret); 2841 goto out; 2842 } 2843 2844 lock_extent_bits(io_tree, ordered_extent->file_offset, 2845 ordered_extent->file_offset + ordered_extent->len - 1, 2846 0, &cached_state); 2847 2848 ret = test_range_bit(io_tree, ordered_extent->file_offset, 2849 ordered_extent->file_offset + ordered_extent->len - 1, 2850 EXTENT_DEFRAG, 1, cached_state); 2851 if (ret) { 2852 u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item); 2853 if (0 && last_snapshot >= BTRFS_I(inode)->generation) 2854 /* the inode is shared */ 2855 new = record_old_file_extents(inode, ordered_extent); 2856 2857 clear_extent_bit(io_tree, ordered_extent->file_offset, 2858 ordered_extent->file_offset + ordered_extent->len - 1, 2859 EXTENT_DEFRAG, 0, 0, &cached_state, GFP_NOFS); 2860 } 2861 2862 if (nolock) 2863 trans = btrfs_join_transaction_nolock(root); 2864 else 2865 trans = btrfs_join_transaction(root); 2866 if (IS_ERR(trans)) { 2867 ret = PTR_ERR(trans); 2868 trans = NULL; 2869 goto out_unlock; 2870 } 2871 2872 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 2873 2874 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags)) 2875 compress_type = ordered_extent->compress_type; 2876 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 2877 BUG_ON(compress_type); 2878 ret = btrfs_mark_extent_written(trans, inode, 2879 ordered_extent->file_offset, 2880 ordered_extent->file_offset + 2881 logical_len); 2882 } else { 2883 BUG_ON(root == root->fs_info->tree_root); 2884 ret = insert_reserved_file_extent(trans, inode, 2885 ordered_extent->file_offset, 2886 ordered_extent->start, 2887 ordered_extent->disk_len, 2888 logical_len, logical_len, 2889 compress_type, 0, 0, 2890 BTRFS_FILE_EXTENT_REG); 2891 if (!ret) 2892 btrfs_release_delalloc_bytes(root, 2893 ordered_extent->start, 2894 ordered_extent->disk_len); 2895 } 2896 unpin_extent_cache(&BTRFS_I(inode)->extent_tree, 2897 ordered_extent->file_offset, ordered_extent->len, 2898 trans->transid); 2899 if (ret < 0) { 2900 btrfs_abort_transaction(trans, root, ret); 2901 goto out_unlock; 2902 } 2903 2904 add_pending_csums(trans, inode, ordered_extent->file_offset, 2905 &ordered_extent->list); 2906 2907 btrfs_ordered_update_i_size(inode, 0, ordered_extent); 2908 ret = btrfs_update_inode_fallback(trans, root, inode); 2909 if (ret) { /* -ENOMEM or corruption */ 2910 btrfs_abort_transaction(trans, root, ret); 2911 goto out_unlock; 2912 } 2913 ret = 0; 2914 out_unlock: 2915 unlock_extent_cached(io_tree, ordered_extent->file_offset, 2916 ordered_extent->file_offset + 2917 ordered_extent->len - 1, &cached_state, GFP_NOFS); 2918 out: 2919 if (root != root->fs_info->tree_root) 2920 btrfs_delalloc_release_metadata(inode, ordered_extent->len); 2921 if (trans) 2922 btrfs_end_transaction(trans, root); 2923 2924 if (ret || truncated) { 2925 u64 start, end; 2926 2927 if (truncated) 2928 start = ordered_extent->file_offset + logical_len; 2929 else 2930 start = ordered_extent->file_offset; 2931 end = ordered_extent->file_offset + ordered_extent->len - 1; 2932 clear_extent_uptodate(io_tree, start, end, NULL, GFP_NOFS); 2933 2934 /* Drop the cache for the part of the extent we didn't write. */ 2935 btrfs_drop_extent_cache(inode, start, end, 0); 2936 2937 /* 2938 * If the ordered extent had an IOERR or something else went 2939 * wrong we need to return the space for this ordered extent 2940 * back to the allocator. We only free the extent in the 2941 * truncated case if we didn't write out the extent at all. 2942 */ 2943 if ((ret || !logical_len) && 2944 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) && 2945 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) 2946 btrfs_free_reserved_extent(root, ordered_extent->start, 2947 ordered_extent->disk_len, 1); 2948 } 2949 2950 2951 /* 2952 * This needs to be done to make sure anybody waiting knows we are done 2953 * updating everything for this ordered extent. 2954 */ 2955 btrfs_remove_ordered_extent(inode, ordered_extent); 2956 2957 /* for snapshot-aware defrag */ 2958 if (new) { 2959 if (ret) { 2960 free_sa_defrag_extent(new); 2961 atomic_dec(&root->fs_info->defrag_running); 2962 } else { 2963 relink_file_extents(new); 2964 } 2965 } 2966 2967 /* once for us */ 2968 btrfs_put_ordered_extent(ordered_extent); 2969 /* once for the tree */ 2970 btrfs_put_ordered_extent(ordered_extent); 2971 2972 return ret; 2973 } 2974 2975 static void finish_ordered_fn(struct btrfs_work *work) 2976 { 2977 struct btrfs_ordered_extent *ordered_extent; 2978 ordered_extent = container_of(work, struct btrfs_ordered_extent, work); 2979 btrfs_finish_ordered_io(ordered_extent); 2980 } 2981 2982 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end, 2983 struct extent_state *state, int uptodate) 2984 { 2985 struct inode *inode = page->mapping->host; 2986 struct btrfs_root *root = BTRFS_I(inode)->root; 2987 struct btrfs_ordered_extent *ordered_extent = NULL; 2988 struct btrfs_workqueue *wq; 2989 btrfs_work_func_t func; 2990 2991 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate); 2992 2993 ClearPagePrivate2(page); 2994 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start, 2995 end - start + 1, uptodate)) 2996 return 0; 2997 2998 if (btrfs_is_free_space_inode(inode)) { 2999 wq = root->fs_info->endio_freespace_worker; 3000 func = btrfs_freespace_write_helper; 3001 } else { 3002 wq = root->fs_info->endio_write_workers; 3003 func = btrfs_endio_write_helper; 3004 } 3005 3006 btrfs_init_work(&ordered_extent->work, func, finish_ordered_fn, NULL, 3007 NULL); 3008 btrfs_queue_work(wq, &ordered_extent->work); 3009 3010 return 0; 3011 } 3012 3013 static int __readpage_endio_check(struct inode *inode, 3014 struct btrfs_io_bio *io_bio, 3015 int icsum, struct page *page, 3016 int pgoff, u64 start, size_t len) 3017 { 3018 char *kaddr; 3019 u32 csum_expected; 3020 u32 csum = ~(u32)0; 3021 static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL, 3022 DEFAULT_RATELIMIT_BURST); 3023 3024 csum_expected = *(((u32 *)io_bio->csum) + icsum); 3025 3026 kaddr = kmap_atomic(page); 3027 csum = btrfs_csum_data(kaddr + pgoff, csum, len); 3028 btrfs_csum_final(csum, (char *)&csum); 3029 if (csum != csum_expected) 3030 goto zeroit; 3031 3032 kunmap_atomic(kaddr); 3033 return 0; 3034 zeroit: 3035 if (__ratelimit(&_rs)) 3036 btrfs_warn(BTRFS_I(inode)->root->fs_info, 3037 "csum failed ino %llu off %llu csum %u expected csum %u", 3038 btrfs_ino(inode), start, csum, csum_expected); 3039 memset(kaddr + pgoff, 1, len); 3040 flush_dcache_page(page); 3041 kunmap_atomic(kaddr); 3042 if (csum_expected == 0) 3043 return 0; 3044 return -EIO; 3045 } 3046 3047 /* 3048 * when reads are done, we need to check csums to verify the data is correct 3049 * if there's a match, we allow the bio to finish. If not, the code in 3050 * extent_io.c will try to find good copies for us. 3051 */ 3052 static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio, 3053 u64 phy_offset, struct page *page, 3054 u64 start, u64 end, int mirror) 3055 { 3056 size_t offset = start - page_offset(page); 3057 struct inode *inode = page->mapping->host; 3058 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 3059 struct btrfs_root *root = BTRFS_I(inode)->root; 3060 3061 if (PageChecked(page)) { 3062 ClearPageChecked(page); 3063 return 0; 3064 } 3065 3066 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) 3067 return 0; 3068 3069 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID && 3070 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) { 3071 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM, 3072 GFP_NOFS); 3073 return 0; 3074 } 3075 3076 phy_offset >>= inode->i_sb->s_blocksize_bits; 3077 return __readpage_endio_check(inode, io_bio, phy_offset, page, offset, 3078 start, (size_t)(end - start + 1)); 3079 } 3080 3081 struct delayed_iput { 3082 struct list_head list; 3083 struct inode *inode; 3084 }; 3085 3086 /* JDM: If this is fs-wide, why can't we add a pointer to 3087 * btrfs_inode instead and avoid the allocation? */ 3088 void btrfs_add_delayed_iput(struct inode *inode) 3089 { 3090 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 3091 struct delayed_iput *delayed; 3092 3093 if (atomic_add_unless(&inode->i_count, -1, 1)) 3094 return; 3095 3096 delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL); 3097 delayed->inode = inode; 3098 3099 spin_lock(&fs_info->delayed_iput_lock); 3100 list_add_tail(&delayed->list, &fs_info->delayed_iputs); 3101 spin_unlock(&fs_info->delayed_iput_lock); 3102 } 3103 3104 void btrfs_run_delayed_iputs(struct btrfs_root *root) 3105 { 3106 LIST_HEAD(list); 3107 struct btrfs_fs_info *fs_info = root->fs_info; 3108 struct delayed_iput *delayed; 3109 int empty; 3110 3111 spin_lock(&fs_info->delayed_iput_lock); 3112 empty = list_empty(&fs_info->delayed_iputs); 3113 spin_unlock(&fs_info->delayed_iput_lock); 3114 if (empty) 3115 return; 3116 3117 down_read(&fs_info->delayed_iput_sem); 3118 3119 spin_lock(&fs_info->delayed_iput_lock); 3120 list_splice_init(&fs_info->delayed_iputs, &list); 3121 spin_unlock(&fs_info->delayed_iput_lock); 3122 3123 while (!list_empty(&list)) { 3124 delayed = list_entry(list.next, struct delayed_iput, list); 3125 list_del(&delayed->list); 3126 iput(delayed->inode); 3127 kfree(delayed); 3128 } 3129 3130 up_read(&root->fs_info->delayed_iput_sem); 3131 } 3132 3133 /* 3134 * This is called in transaction commit time. If there are no orphan 3135 * files in the subvolume, it removes orphan item and frees block_rsv 3136 * structure. 3137 */ 3138 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans, 3139 struct btrfs_root *root) 3140 { 3141 struct btrfs_block_rsv *block_rsv; 3142 int ret; 3143 3144 if (atomic_read(&root->orphan_inodes) || 3145 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) 3146 return; 3147 3148 spin_lock(&root->orphan_lock); 3149 if (atomic_read(&root->orphan_inodes)) { 3150 spin_unlock(&root->orphan_lock); 3151 return; 3152 } 3153 3154 if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) { 3155 spin_unlock(&root->orphan_lock); 3156 return; 3157 } 3158 3159 block_rsv = root->orphan_block_rsv; 3160 root->orphan_block_rsv = NULL; 3161 spin_unlock(&root->orphan_lock); 3162 3163 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state) && 3164 btrfs_root_refs(&root->root_item) > 0) { 3165 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root, 3166 root->root_key.objectid); 3167 if (ret) 3168 btrfs_abort_transaction(trans, root, ret); 3169 else 3170 clear_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, 3171 &root->state); 3172 } 3173 3174 if (block_rsv) { 3175 WARN_ON(block_rsv->size > 0); 3176 btrfs_free_block_rsv(root, block_rsv); 3177 } 3178 } 3179 3180 /* 3181 * This creates an orphan entry for the given inode in case something goes 3182 * wrong in the middle of an unlink/truncate. 3183 * 3184 * NOTE: caller of this function should reserve 5 units of metadata for 3185 * this function. 3186 */ 3187 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode) 3188 { 3189 struct btrfs_root *root = BTRFS_I(inode)->root; 3190 struct btrfs_block_rsv *block_rsv = NULL; 3191 int reserve = 0; 3192 int insert = 0; 3193 int ret; 3194 3195 if (!root->orphan_block_rsv) { 3196 block_rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP); 3197 if (!block_rsv) 3198 return -ENOMEM; 3199 } 3200 3201 spin_lock(&root->orphan_lock); 3202 if (!root->orphan_block_rsv) { 3203 root->orphan_block_rsv = block_rsv; 3204 } else if (block_rsv) { 3205 btrfs_free_block_rsv(root, block_rsv); 3206 block_rsv = NULL; 3207 } 3208 3209 if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 3210 &BTRFS_I(inode)->runtime_flags)) { 3211 #if 0 3212 /* 3213 * For proper ENOSPC handling, we should do orphan 3214 * cleanup when mounting. But this introduces backward 3215 * compatibility issue. 3216 */ 3217 if (!xchg(&root->orphan_item_inserted, 1)) 3218 insert = 2; 3219 else 3220 insert = 1; 3221 #endif 3222 insert = 1; 3223 atomic_inc(&root->orphan_inodes); 3224 } 3225 3226 if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED, 3227 &BTRFS_I(inode)->runtime_flags)) 3228 reserve = 1; 3229 spin_unlock(&root->orphan_lock); 3230 3231 /* grab metadata reservation from transaction handle */ 3232 if (reserve) { 3233 ret = btrfs_orphan_reserve_metadata(trans, inode); 3234 BUG_ON(ret); /* -ENOSPC in reservation; Logic error? JDM */ 3235 } 3236 3237 /* insert an orphan item to track this unlinked/truncated file */ 3238 if (insert >= 1) { 3239 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode)); 3240 if (ret) { 3241 atomic_dec(&root->orphan_inodes); 3242 if (reserve) { 3243 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED, 3244 &BTRFS_I(inode)->runtime_flags); 3245 btrfs_orphan_release_metadata(inode); 3246 } 3247 if (ret != -EEXIST) { 3248 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 3249 &BTRFS_I(inode)->runtime_flags); 3250 btrfs_abort_transaction(trans, root, ret); 3251 return ret; 3252 } 3253 } 3254 ret = 0; 3255 } 3256 3257 /* insert an orphan item to track subvolume contains orphan files */ 3258 if (insert >= 2) { 3259 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root, 3260 root->root_key.objectid); 3261 if (ret && ret != -EEXIST) { 3262 btrfs_abort_transaction(trans, root, ret); 3263 return ret; 3264 } 3265 } 3266 return 0; 3267 } 3268 3269 /* 3270 * We have done the truncate/delete so we can go ahead and remove the orphan 3271 * item for this particular inode. 3272 */ 3273 static int btrfs_orphan_del(struct btrfs_trans_handle *trans, 3274 struct inode *inode) 3275 { 3276 struct btrfs_root *root = BTRFS_I(inode)->root; 3277 int delete_item = 0; 3278 int release_rsv = 0; 3279 int ret = 0; 3280 3281 spin_lock(&root->orphan_lock); 3282 if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 3283 &BTRFS_I(inode)->runtime_flags)) 3284 delete_item = 1; 3285 3286 if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED, 3287 &BTRFS_I(inode)->runtime_flags)) 3288 release_rsv = 1; 3289 spin_unlock(&root->orphan_lock); 3290 3291 if (delete_item) { 3292 atomic_dec(&root->orphan_inodes); 3293 if (trans) 3294 ret = btrfs_del_orphan_item(trans, root, 3295 btrfs_ino(inode)); 3296 } 3297 3298 if (release_rsv) 3299 btrfs_orphan_release_metadata(inode); 3300 3301 return ret; 3302 } 3303 3304 /* 3305 * this cleans up any orphans that may be left on the list from the last use 3306 * of this root. 3307 */ 3308 int btrfs_orphan_cleanup(struct btrfs_root *root) 3309 { 3310 struct btrfs_path *path; 3311 struct extent_buffer *leaf; 3312 struct btrfs_key key, found_key; 3313 struct btrfs_trans_handle *trans; 3314 struct inode *inode; 3315 u64 last_objectid = 0; 3316 int ret = 0, nr_unlink = 0, nr_truncate = 0; 3317 3318 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED)) 3319 return 0; 3320 3321 path = btrfs_alloc_path(); 3322 if (!path) { 3323 ret = -ENOMEM; 3324 goto out; 3325 } 3326 path->reada = -1; 3327 3328 key.objectid = BTRFS_ORPHAN_OBJECTID; 3329 key.type = BTRFS_ORPHAN_ITEM_KEY; 3330 key.offset = (u64)-1; 3331 3332 while (1) { 3333 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3334 if (ret < 0) 3335 goto out; 3336 3337 /* 3338 * if ret == 0 means we found what we were searching for, which 3339 * is weird, but possible, so only screw with path if we didn't 3340 * find the key and see if we have stuff that matches 3341 */ 3342 if (ret > 0) { 3343 ret = 0; 3344 if (path->slots[0] == 0) 3345 break; 3346 path->slots[0]--; 3347 } 3348 3349 /* pull out the item */ 3350 leaf = path->nodes[0]; 3351 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 3352 3353 /* make sure the item matches what we want */ 3354 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID) 3355 break; 3356 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY) 3357 break; 3358 3359 /* release the path since we're done with it */ 3360 btrfs_release_path(path); 3361 3362 /* 3363 * this is where we are basically btrfs_lookup, without the 3364 * crossing root thing. we store the inode number in the 3365 * offset of the orphan item. 3366 */ 3367 3368 if (found_key.offset == last_objectid) { 3369 btrfs_err(root->fs_info, 3370 "Error removing orphan entry, stopping orphan cleanup"); 3371 ret = -EINVAL; 3372 goto out; 3373 } 3374 3375 last_objectid = found_key.offset; 3376 3377 found_key.objectid = found_key.offset; 3378 found_key.type = BTRFS_INODE_ITEM_KEY; 3379 found_key.offset = 0; 3380 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL); 3381 ret = PTR_ERR_OR_ZERO(inode); 3382 if (ret && ret != -ESTALE) 3383 goto out; 3384 3385 if (ret == -ESTALE && root == root->fs_info->tree_root) { 3386 struct btrfs_root *dead_root; 3387 struct btrfs_fs_info *fs_info = root->fs_info; 3388 int is_dead_root = 0; 3389 3390 /* 3391 * this is an orphan in the tree root. Currently these 3392 * could come from 2 sources: 3393 * a) a snapshot deletion in progress 3394 * b) a free space cache inode 3395 * We need to distinguish those two, as the snapshot 3396 * orphan must not get deleted. 3397 * find_dead_roots already ran before us, so if this 3398 * is a snapshot deletion, we should find the root 3399 * in the dead_roots list 3400 */ 3401 spin_lock(&fs_info->trans_lock); 3402 list_for_each_entry(dead_root, &fs_info->dead_roots, 3403 root_list) { 3404 if (dead_root->root_key.objectid == 3405 found_key.objectid) { 3406 is_dead_root = 1; 3407 break; 3408 } 3409 } 3410 spin_unlock(&fs_info->trans_lock); 3411 if (is_dead_root) { 3412 /* prevent this orphan from being found again */ 3413 key.offset = found_key.objectid - 1; 3414 continue; 3415 } 3416 } 3417 /* 3418 * Inode is already gone but the orphan item is still there, 3419 * kill the orphan item. 3420 */ 3421 if (ret == -ESTALE) { 3422 trans = btrfs_start_transaction(root, 1); 3423 if (IS_ERR(trans)) { 3424 ret = PTR_ERR(trans); 3425 goto out; 3426 } 3427 btrfs_debug(root->fs_info, "auto deleting %Lu", 3428 found_key.objectid); 3429 ret = btrfs_del_orphan_item(trans, root, 3430 found_key.objectid); 3431 btrfs_end_transaction(trans, root); 3432 if (ret) 3433 goto out; 3434 continue; 3435 } 3436 3437 /* 3438 * add this inode to the orphan list so btrfs_orphan_del does 3439 * the proper thing when we hit it 3440 */ 3441 set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 3442 &BTRFS_I(inode)->runtime_flags); 3443 atomic_inc(&root->orphan_inodes); 3444 3445 /* if we have links, this was a truncate, lets do that */ 3446 if (inode->i_nlink) { 3447 if (WARN_ON(!S_ISREG(inode->i_mode))) { 3448 iput(inode); 3449 continue; 3450 } 3451 nr_truncate++; 3452 3453 /* 1 for the orphan item deletion. */ 3454 trans = btrfs_start_transaction(root, 1); 3455 if (IS_ERR(trans)) { 3456 iput(inode); 3457 ret = PTR_ERR(trans); 3458 goto out; 3459 } 3460 ret = btrfs_orphan_add(trans, inode); 3461 btrfs_end_transaction(trans, root); 3462 if (ret) { 3463 iput(inode); 3464 goto out; 3465 } 3466 3467 ret = btrfs_truncate(inode); 3468 if (ret) 3469 btrfs_orphan_del(NULL, inode); 3470 } else { 3471 nr_unlink++; 3472 } 3473 3474 /* this will do delete_inode and everything for us */ 3475 iput(inode); 3476 if (ret) 3477 goto out; 3478 } 3479 /* release the path since we're done with it */ 3480 btrfs_release_path(path); 3481 3482 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE; 3483 3484 if (root->orphan_block_rsv) 3485 btrfs_block_rsv_release(root, root->orphan_block_rsv, 3486 (u64)-1); 3487 3488 if (root->orphan_block_rsv || 3489 test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) { 3490 trans = btrfs_join_transaction(root); 3491 if (!IS_ERR(trans)) 3492 btrfs_end_transaction(trans, root); 3493 } 3494 3495 if (nr_unlink) 3496 btrfs_debug(root->fs_info, "unlinked %d orphans", nr_unlink); 3497 if (nr_truncate) 3498 btrfs_debug(root->fs_info, "truncated %d orphans", nr_truncate); 3499 3500 out: 3501 if (ret) 3502 btrfs_err(root->fs_info, 3503 "could not do orphan cleanup %d", ret); 3504 btrfs_free_path(path); 3505 return ret; 3506 } 3507 3508 /* 3509 * very simple check to peek ahead in the leaf looking for xattrs. If we 3510 * don't find any xattrs, we know there can't be any acls. 3511 * 3512 * slot is the slot the inode is in, objectid is the objectid of the inode 3513 */ 3514 static noinline int acls_after_inode_item(struct extent_buffer *leaf, 3515 int slot, u64 objectid, 3516 int *first_xattr_slot) 3517 { 3518 u32 nritems = btrfs_header_nritems(leaf); 3519 struct btrfs_key found_key; 3520 static u64 xattr_access = 0; 3521 static u64 xattr_default = 0; 3522 int scanned = 0; 3523 3524 if (!xattr_access) { 3525 xattr_access = btrfs_name_hash(POSIX_ACL_XATTR_ACCESS, 3526 strlen(POSIX_ACL_XATTR_ACCESS)); 3527 xattr_default = btrfs_name_hash(POSIX_ACL_XATTR_DEFAULT, 3528 strlen(POSIX_ACL_XATTR_DEFAULT)); 3529 } 3530 3531 slot++; 3532 *first_xattr_slot = -1; 3533 while (slot < nritems) { 3534 btrfs_item_key_to_cpu(leaf, &found_key, slot); 3535 3536 /* we found a different objectid, there must not be acls */ 3537 if (found_key.objectid != objectid) 3538 return 0; 3539 3540 /* we found an xattr, assume we've got an acl */ 3541 if (found_key.type == BTRFS_XATTR_ITEM_KEY) { 3542 if (*first_xattr_slot == -1) 3543 *first_xattr_slot = slot; 3544 if (found_key.offset == xattr_access || 3545 found_key.offset == xattr_default) 3546 return 1; 3547 } 3548 3549 /* 3550 * we found a key greater than an xattr key, there can't 3551 * be any acls later on 3552 */ 3553 if (found_key.type > BTRFS_XATTR_ITEM_KEY) 3554 return 0; 3555 3556 slot++; 3557 scanned++; 3558 3559 /* 3560 * it goes inode, inode backrefs, xattrs, extents, 3561 * so if there are a ton of hard links to an inode there can 3562 * be a lot of backrefs. Don't waste time searching too hard, 3563 * this is just an optimization 3564 */ 3565 if (scanned >= 8) 3566 break; 3567 } 3568 /* we hit the end of the leaf before we found an xattr or 3569 * something larger than an xattr. We have to assume the inode 3570 * has acls 3571 */ 3572 if (*first_xattr_slot == -1) 3573 *first_xattr_slot = slot; 3574 return 1; 3575 } 3576 3577 /* 3578 * read an inode from the btree into the in-memory inode 3579 */ 3580 static void btrfs_read_locked_inode(struct inode *inode) 3581 { 3582 struct btrfs_path *path; 3583 struct extent_buffer *leaf; 3584 struct btrfs_inode_item *inode_item; 3585 struct btrfs_root *root = BTRFS_I(inode)->root; 3586 struct btrfs_key location; 3587 unsigned long ptr; 3588 int maybe_acls; 3589 u32 rdev; 3590 int ret; 3591 bool filled = false; 3592 int first_xattr_slot; 3593 3594 ret = btrfs_fill_inode(inode, &rdev); 3595 if (!ret) 3596 filled = true; 3597 3598 path = btrfs_alloc_path(); 3599 if (!path) 3600 goto make_bad; 3601 3602 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location)); 3603 3604 ret = btrfs_lookup_inode(NULL, root, path, &location, 0); 3605 if (ret) 3606 goto make_bad; 3607 3608 leaf = path->nodes[0]; 3609 3610 if (filled) 3611 goto cache_index; 3612 3613 inode_item = btrfs_item_ptr(leaf, path->slots[0], 3614 struct btrfs_inode_item); 3615 inode->i_mode = btrfs_inode_mode(leaf, inode_item); 3616 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item)); 3617 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item)); 3618 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item)); 3619 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item)); 3620 3621 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime); 3622 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime); 3623 3624 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime); 3625 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime); 3626 3627 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime); 3628 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime); 3629 3630 BTRFS_I(inode)->i_otime.tv_sec = 3631 btrfs_timespec_sec(leaf, &inode_item->otime); 3632 BTRFS_I(inode)->i_otime.tv_nsec = 3633 btrfs_timespec_nsec(leaf, &inode_item->otime); 3634 3635 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item)); 3636 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item); 3637 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item); 3638 3639 inode->i_version = btrfs_inode_sequence(leaf, inode_item); 3640 inode->i_generation = BTRFS_I(inode)->generation; 3641 inode->i_rdev = 0; 3642 rdev = btrfs_inode_rdev(leaf, inode_item); 3643 3644 BTRFS_I(inode)->index_cnt = (u64)-1; 3645 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item); 3646 3647 cache_index: 3648 /* 3649 * If we were modified in the current generation and evicted from memory 3650 * and then re-read we need to do a full sync since we don't have any 3651 * idea about which extents were modified before we were evicted from 3652 * cache. 3653 * 3654 * This is required for both inode re-read from disk and delayed inode 3655 * in delayed_nodes_tree. 3656 */ 3657 if (BTRFS_I(inode)->last_trans == root->fs_info->generation) 3658 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 3659 &BTRFS_I(inode)->runtime_flags); 3660 3661 /* 3662 * We don't persist the id of the transaction where an unlink operation 3663 * against the inode was last made. So here we assume the inode might 3664 * have been evicted, and therefore the exact value of last_unlink_trans 3665 * lost, and set it to last_trans to avoid metadata inconsistencies 3666 * between the inode and its parent if the inode is fsync'ed and the log 3667 * replayed. For example, in the scenario: 3668 * 3669 * touch mydir/foo 3670 * ln mydir/foo mydir/bar 3671 * sync 3672 * unlink mydir/bar 3673 * echo 2 > /proc/sys/vm/drop_caches # evicts inode 3674 * xfs_io -c fsync mydir/foo 3675 * <power failure> 3676 * mount fs, triggers fsync log replay 3677 * 3678 * We must make sure that when we fsync our inode foo we also log its 3679 * parent inode, otherwise after log replay the parent still has the 3680 * dentry with the "bar" name but our inode foo has a link count of 1 3681 * and doesn't have an inode ref with the name "bar" anymore. 3682 * 3683 * Setting last_unlink_trans to last_trans is a pessimistic approach, 3684 * but it guarantees correctness at the expense of ocassional full 3685 * transaction commits on fsync if our inode is a directory, or if our 3686 * inode is not a directory, logging its parent unnecessarily. 3687 */ 3688 BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans; 3689 3690 path->slots[0]++; 3691 if (inode->i_nlink != 1 || 3692 path->slots[0] >= btrfs_header_nritems(leaf)) 3693 goto cache_acl; 3694 3695 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]); 3696 if (location.objectid != btrfs_ino(inode)) 3697 goto cache_acl; 3698 3699 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 3700 if (location.type == BTRFS_INODE_REF_KEY) { 3701 struct btrfs_inode_ref *ref; 3702 3703 ref = (struct btrfs_inode_ref *)ptr; 3704 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref); 3705 } else if (location.type == BTRFS_INODE_EXTREF_KEY) { 3706 struct btrfs_inode_extref *extref; 3707 3708 extref = (struct btrfs_inode_extref *)ptr; 3709 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf, 3710 extref); 3711 } 3712 cache_acl: 3713 /* 3714 * try to precache a NULL acl entry for files that don't have 3715 * any xattrs or acls 3716 */ 3717 maybe_acls = acls_after_inode_item(leaf, path->slots[0], 3718 btrfs_ino(inode), &first_xattr_slot); 3719 if (first_xattr_slot != -1) { 3720 path->slots[0] = first_xattr_slot; 3721 ret = btrfs_load_inode_props(inode, path); 3722 if (ret) 3723 btrfs_err(root->fs_info, 3724 "error loading props for ino %llu (root %llu): %d", 3725 btrfs_ino(inode), 3726 root->root_key.objectid, ret); 3727 } 3728 btrfs_free_path(path); 3729 3730 if (!maybe_acls) 3731 cache_no_acl(inode); 3732 3733 switch (inode->i_mode & S_IFMT) { 3734 case S_IFREG: 3735 inode->i_mapping->a_ops = &btrfs_aops; 3736 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 3737 inode->i_fop = &btrfs_file_operations; 3738 inode->i_op = &btrfs_file_inode_operations; 3739 break; 3740 case S_IFDIR: 3741 inode->i_fop = &btrfs_dir_file_operations; 3742 if (root == root->fs_info->tree_root) 3743 inode->i_op = &btrfs_dir_ro_inode_operations; 3744 else 3745 inode->i_op = &btrfs_dir_inode_operations; 3746 break; 3747 case S_IFLNK: 3748 inode->i_op = &btrfs_symlink_inode_operations; 3749 inode->i_mapping->a_ops = &btrfs_symlink_aops; 3750 break; 3751 default: 3752 inode->i_op = &btrfs_special_inode_operations; 3753 init_special_inode(inode, inode->i_mode, rdev); 3754 break; 3755 } 3756 3757 btrfs_update_iflags(inode); 3758 return; 3759 3760 make_bad: 3761 btrfs_free_path(path); 3762 make_bad_inode(inode); 3763 } 3764 3765 /* 3766 * given a leaf and an inode, copy the inode fields into the leaf 3767 */ 3768 static void fill_inode_item(struct btrfs_trans_handle *trans, 3769 struct extent_buffer *leaf, 3770 struct btrfs_inode_item *item, 3771 struct inode *inode) 3772 { 3773 struct btrfs_map_token token; 3774 3775 btrfs_init_map_token(&token); 3776 3777 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token); 3778 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token); 3779 btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size, 3780 &token); 3781 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token); 3782 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token); 3783 3784 btrfs_set_token_timespec_sec(leaf, &item->atime, 3785 inode->i_atime.tv_sec, &token); 3786 btrfs_set_token_timespec_nsec(leaf, &item->atime, 3787 inode->i_atime.tv_nsec, &token); 3788 3789 btrfs_set_token_timespec_sec(leaf, &item->mtime, 3790 inode->i_mtime.tv_sec, &token); 3791 btrfs_set_token_timespec_nsec(leaf, &item->mtime, 3792 inode->i_mtime.tv_nsec, &token); 3793 3794 btrfs_set_token_timespec_sec(leaf, &item->ctime, 3795 inode->i_ctime.tv_sec, &token); 3796 btrfs_set_token_timespec_nsec(leaf, &item->ctime, 3797 inode->i_ctime.tv_nsec, &token); 3798 3799 btrfs_set_token_timespec_sec(leaf, &item->otime, 3800 BTRFS_I(inode)->i_otime.tv_sec, &token); 3801 btrfs_set_token_timespec_nsec(leaf, &item->otime, 3802 BTRFS_I(inode)->i_otime.tv_nsec, &token); 3803 3804 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode), 3805 &token); 3806 btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation, 3807 &token); 3808 btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token); 3809 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token); 3810 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token); 3811 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token); 3812 btrfs_set_token_inode_block_group(leaf, item, 0, &token); 3813 } 3814 3815 /* 3816 * copy everything in the in-memory inode into the btree. 3817 */ 3818 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans, 3819 struct btrfs_root *root, struct inode *inode) 3820 { 3821 struct btrfs_inode_item *inode_item; 3822 struct btrfs_path *path; 3823 struct extent_buffer *leaf; 3824 int ret; 3825 3826 path = btrfs_alloc_path(); 3827 if (!path) 3828 return -ENOMEM; 3829 3830 path->leave_spinning = 1; 3831 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location, 3832 1); 3833 if (ret) { 3834 if (ret > 0) 3835 ret = -ENOENT; 3836 goto failed; 3837 } 3838 3839 leaf = path->nodes[0]; 3840 inode_item = btrfs_item_ptr(leaf, path->slots[0], 3841 struct btrfs_inode_item); 3842 3843 fill_inode_item(trans, leaf, inode_item, inode); 3844 btrfs_mark_buffer_dirty(leaf); 3845 btrfs_set_inode_last_trans(trans, inode); 3846 ret = 0; 3847 failed: 3848 btrfs_free_path(path); 3849 return ret; 3850 } 3851 3852 /* 3853 * copy everything in the in-memory inode into the btree. 3854 */ 3855 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans, 3856 struct btrfs_root *root, struct inode *inode) 3857 { 3858 int ret; 3859 3860 /* 3861 * If the inode is a free space inode, we can deadlock during commit 3862 * if we put it into the delayed code. 3863 * 3864 * The data relocation inode should also be directly updated 3865 * without delay 3866 */ 3867 if (!btrfs_is_free_space_inode(inode) 3868 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID 3869 && !root->fs_info->log_root_recovering) { 3870 btrfs_update_root_times(trans, root); 3871 3872 ret = btrfs_delayed_update_inode(trans, root, inode); 3873 if (!ret) 3874 btrfs_set_inode_last_trans(trans, inode); 3875 return ret; 3876 } 3877 3878 return btrfs_update_inode_item(trans, root, inode); 3879 } 3880 3881 noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans, 3882 struct btrfs_root *root, 3883 struct inode *inode) 3884 { 3885 int ret; 3886 3887 ret = btrfs_update_inode(trans, root, inode); 3888 if (ret == -ENOSPC) 3889 return btrfs_update_inode_item(trans, root, inode); 3890 return ret; 3891 } 3892 3893 /* 3894 * unlink helper that gets used here in inode.c and in the tree logging 3895 * recovery code. It remove a link in a directory with a given name, and 3896 * also drops the back refs in the inode to the directory 3897 */ 3898 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans, 3899 struct btrfs_root *root, 3900 struct inode *dir, struct inode *inode, 3901 const char *name, int name_len) 3902 { 3903 struct btrfs_path *path; 3904 int ret = 0; 3905 struct extent_buffer *leaf; 3906 struct btrfs_dir_item *di; 3907 struct btrfs_key key; 3908 u64 index; 3909 u64 ino = btrfs_ino(inode); 3910 u64 dir_ino = btrfs_ino(dir); 3911 3912 path = btrfs_alloc_path(); 3913 if (!path) { 3914 ret = -ENOMEM; 3915 goto out; 3916 } 3917 3918 path->leave_spinning = 1; 3919 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 3920 name, name_len, -1); 3921 if (IS_ERR(di)) { 3922 ret = PTR_ERR(di); 3923 goto err; 3924 } 3925 if (!di) { 3926 ret = -ENOENT; 3927 goto err; 3928 } 3929 leaf = path->nodes[0]; 3930 btrfs_dir_item_key_to_cpu(leaf, di, &key); 3931 ret = btrfs_delete_one_dir_name(trans, root, path, di); 3932 if (ret) 3933 goto err; 3934 btrfs_release_path(path); 3935 3936 /* 3937 * If we don't have dir index, we have to get it by looking up 3938 * the inode ref, since we get the inode ref, remove it directly, 3939 * it is unnecessary to do delayed deletion. 3940 * 3941 * But if we have dir index, needn't search inode ref to get it. 3942 * Since the inode ref is close to the inode item, it is better 3943 * that we delay to delete it, and just do this deletion when 3944 * we update the inode item. 3945 */ 3946 if (BTRFS_I(inode)->dir_index) { 3947 ret = btrfs_delayed_delete_inode_ref(inode); 3948 if (!ret) { 3949 index = BTRFS_I(inode)->dir_index; 3950 goto skip_backref; 3951 } 3952 } 3953 3954 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino, 3955 dir_ino, &index); 3956 if (ret) { 3957 btrfs_info(root->fs_info, 3958 "failed to delete reference to %.*s, inode %llu parent %llu", 3959 name_len, name, ino, dir_ino); 3960 btrfs_abort_transaction(trans, root, ret); 3961 goto err; 3962 } 3963 skip_backref: 3964 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index); 3965 if (ret) { 3966 btrfs_abort_transaction(trans, root, ret); 3967 goto err; 3968 } 3969 3970 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, 3971 inode, dir_ino); 3972 if (ret != 0 && ret != -ENOENT) { 3973 btrfs_abort_transaction(trans, root, ret); 3974 goto err; 3975 } 3976 3977 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, 3978 dir, index); 3979 if (ret == -ENOENT) 3980 ret = 0; 3981 else if (ret) 3982 btrfs_abort_transaction(trans, root, ret); 3983 err: 3984 btrfs_free_path(path); 3985 if (ret) 3986 goto out; 3987 3988 btrfs_i_size_write(dir, dir->i_size - name_len * 2); 3989 inode_inc_iversion(inode); 3990 inode_inc_iversion(dir); 3991 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME; 3992 ret = btrfs_update_inode(trans, root, dir); 3993 out: 3994 return ret; 3995 } 3996 3997 int btrfs_unlink_inode(struct btrfs_trans_handle *trans, 3998 struct btrfs_root *root, 3999 struct inode *dir, struct inode *inode, 4000 const char *name, int name_len) 4001 { 4002 int ret; 4003 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len); 4004 if (!ret) { 4005 drop_nlink(inode); 4006 ret = btrfs_update_inode(trans, root, inode); 4007 } 4008 return ret; 4009 } 4010 4011 /* 4012 * helper to start transaction for unlink and rmdir. 4013 * 4014 * unlink and rmdir are special in btrfs, they do not always free space, so 4015 * if we cannot make our reservations the normal way try and see if there is 4016 * plenty of slack room in the global reserve to migrate, otherwise we cannot 4017 * allow the unlink to occur. 4018 */ 4019 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir) 4020 { 4021 struct btrfs_trans_handle *trans; 4022 struct btrfs_root *root = BTRFS_I(dir)->root; 4023 int ret; 4024 4025 /* 4026 * 1 for the possible orphan item 4027 * 1 for the dir item 4028 * 1 for the dir index 4029 * 1 for the inode ref 4030 * 1 for the inode 4031 */ 4032 trans = btrfs_start_transaction(root, 5); 4033 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC) 4034 return trans; 4035 4036 if (PTR_ERR(trans) == -ENOSPC) { 4037 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 5); 4038 4039 trans = btrfs_start_transaction(root, 0); 4040 if (IS_ERR(trans)) 4041 return trans; 4042 ret = btrfs_cond_migrate_bytes(root->fs_info, 4043 &root->fs_info->trans_block_rsv, 4044 num_bytes, 5); 4045 if (ret) { 4046 btrfs_end_transaction(trans, root); 4047 return ERR_PTR(ret); 4048 } 4049 trans->block_rsv = &root->fs_info->trans_block_rsv; 4050 trans->bytes_reserved = num_bytes; 4051 } 4052 return trans; 4053 } 4054 4055 static int btrfs_unlink(struct inode *dir, struct dentry *dentry) 4056 { 4057 struct btrfs_root *root = BTRFS_I(dir)->root; 4058 struct btrfs_trans_handle *trans; 4059 struct inode *inode = d_inode(dentry); 4060 int ret; 4061 4062 trans = __unlink_start_trans(dir); 4063 if (IS_ERR(trans)) 4064 return PTR_ERR(trans); 4065 4066 btrfs_record_unlink_dir(trans, dir, d_inode(dentry), 0); 4067 4068 ret = btrfs_unlink_inode(trans, root, dir, d_inode(dentry), 4069 dentry->d_name.name, dentry->d_name.len); 4070 if (ret) 4071 goto out; 4072 4073 if (inode->i_nlink == 0) { 4074 ret = btrfs_orphan_add(trans, inode); 4075 if (ret) 4076 goto out; 4077 } 4078 4079 out: 4080 btrfs_end_transaction(trans, root); 4081 btrfs_btree_balance_dirty(root); 4082 return ret; 4083 } 4084 4085 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans, 4086 struct btrfs_root *root, 4087 struct inode *dir, u64 objectid, 4088 const char *name, int name_len) 4089 { 4090 struct btrfs_path *path; 4091 struct extent_buffer *leaf; 4092 struct btrfs_dir_item *di; 4093 struct btrfs_key key; 4094 u64 index; 4095 int ret; 4096 u64 dir_ino = btrfs_ino(dir); 4097 4098 path = btrfs_alloc_path(); 4099 if (!path) 4100 return -ENOMEM; 4101 4102 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 4103 name, name_len, -1); 4104 if (IS_ERR_OR_NULL(di)) { 4105 if (!di) 4106 ret = -ENOENT; 4107 else 4108 ret = PTR_ERR(di); 4109 goto out; 4110 } 4111 4112 leaf = path->nodes[0]; 4113 btrfs_dir_item_key_to_cpu(leaf, di, &key); 4114 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid); 4115 ret = btrfs_delete_one_dir_name(trans, root, path, di); 4116 if (ret) { 4117 btrfs_abort_transaction(trans, root, ret); 4118 goto out; 4119 } 4120 btrfs_release_path(path); 4121 4122 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root, 4123 objectid, root->root_key.objectid, 4124 dir_ino, &index, name, name_len); 4125 if (ret < 0) { 4126 if (ret != -ENOENT) { 4127 btrfs_abort_transaction(trans, root, ret); 4128 goto out; 4129 } 4130 di = btrfs_search_dir_index_item(root, path, dir_ino, 4131 name, name_len); 4132 if (IS_ERR_OR_NULL(di)) { 4133 if (!di) 4134 ret = -ENOENT; 4135 else 4136 ret = PTR_ERR(di); 4137 btrfs_abort_transaction(trans, root, ret); 4138 goto out; 4139 } 4140 4141 leaf = path->nodes[0]; 4142 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 4143 btrfs_release_path(path); 4144 index = key.offset; 4145 } 4146 btrfs_release_path(path); 4147 4148 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index); 4149 if (ret) { 4150 btrfs_abort_transaction(trans, root, ret); 4151 goto out; 4152 } 4153 4154 btrfs_i_size_write(dir, dir->i_size - name_len * 2); 4155 inode_inc_iversion(dir); 4156 dir->i_mtime = dir->i_ctime = CURRENT_TIME; 4157 ret = btrfs_update_inode_fallback(trans, root, dir); 4158 if (ret) 4159 btrfs_abort_transaction(trans, root, ret); 4160 out: 4161 btrfs_free_path(path); 4162 return ret; 4163 } 4164 4165 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry) 4166 { 4167 struct inode *inode = d_inode(dentry); 4168 int err = 0; 4169 struct btrfs_root *root = BTRFS_I(dir)->root; 4170 struct btrfs_trans_handle *trans; 4171 4172 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE) 4173 return -ENOTEMPTY; 4174 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) 4175 return -EPERM; 4176 4177 trans = __unlink_start_trans(dir); 4178 if (IS_ERR(trans)) 4179 return PTR_ERR(trans); 4180 4181 if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 4182 err = btrfs_unlink_subvol(trans, root, dir, 4183 BTRFS_I(inode)->location.objectid, 4184 dentry->d_name.name, 4185 dentry->d_name.len); 4186 goto out; 4187 } 4188 4189 err = btrfs_orphan_add(trans, inode); 4190 if (err) 4191 goto out; 4192 4193 /* now the directory is empty */ 4194 err = btrfs_unlink_inode(trans, root, dir, d_inode(dentry), 4195 dentry->d_name.name, dentry->d_name.len); 4196 if (!err) 4197 btrfs_i_size_write(inode, 0); 4198 out: 4199 btrfs_end_transaction(trans, root); 4200 btrfs_btree_balance_dirty(root); 4201 4202 return err; 4203 } 4204 4205 static int truncate_space_check(struct btrfs_trans_handle *trans, 4206 struct btrfs_root *root, 4207 u64 bytes_deleted) 4208 { 4209 int ret; 4210 4211 bytes_deleted = btrfs_csum_bytes_to_leaves(root, bytes_deleted); 4212 ret = btrfs_block_rsv_add(root, &root->fs_info->trans_block_rsv, 4213 bytes_deleted, BTRFS_RESERVE_NO_FLUSH); 4214 if (!ret) 4215 trans->bytes_reserved += bytes_deleted; 4216 return ret; 4217 4218 } 4219 4220 /* 4221 * this can truncate away extent items, csum items and directory items. 4222 * It starts at a high offset and removes keys until it can't find 4223 * any higher than new_size 4224 * 4225 * csum items that cross the new i_size are truncated to the new size 4226 * as well. 4227 * 4228 * min_type is the minimum key type to truncate down to. If set to 0, this 4229 * will kill all the items on this inode, including the INODE_ITEM_KEY. 4230 */ 4231 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans, 4232 struct btrfs_root *root, 4233 struct inode *inode, 4234 u64 new_size, u32 min_type) 4235 { 4236 struct btrfs_path *path; 4237 struct extent_buffer *leaf; 4238 struct btrfs_file_extent_item *fi; 4239 struct btrfs_key key; 4240 struct btrfs_key found_key; 4241 u64 extent_start = 0; 4242 u64 extent_num_bytes = 0; 4243 u64 extent_offset = 0; 4244 u64 item_end = 0; 4245 u64 last_size = new_size; 4246 u32 found_type = (u8)-1; 4247 int found_extent; 4248 int del_item; 4249 int pending_del_nr = 0; 4250 int pending_del_slot = 0; 4251 int extent_type = -1; 4252 int ret; 4253 int err = 0; 4254 u64 ino = btrfs_ino(inode); 4255 u64 bytes_deleted = 0; 4256 bool be_nice = 0; 4257 bool should_throttle = 0; 4258 bool should_end = 0; 4259 4260 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY); 4261 4262 /* 4263 * for non-free space inodes and ref cows, we want to back off from 4264 * time to time 4265 */ 4266 if (!btrfs_is_free_space_inode(inode) && 4267 test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 4268 be_nice = 1; 4269 4270 path = btrfs_alloc_path(); 4271 if (!path) 4272 return -ENOMEM; 4273 path->reada = -1; 4274 4275 /* 4276 * We want to drop from the next block forward in case this new size is 4277 * not block aligned since we will be keeping the last block of the 4278 * extent just the way it is. 4279 */ 4280 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) || 4281 root == root->fs_info->tree_root) 4282 btrfs_drop_extent_cache(inode, ALIGN(new_size, 4283 root->sectorsize), (u64)-1, 0); 4284 4285 /* 4286 * This function is also used to drop the items in the log tree before 4287 * we relog the inode, so if root != BTRFS_I(inode)->root, it means 4288 * it is used to drop the loged items. So we shouldn't kill the delayed 4289 * items. 4290 */ 4291 if (min_type == 0 && root == BTRFS_I(inode)->root) 4292 btrfs_kill_delayed_inode_items(inode); 4293 4294 key.objectid = ino; 4295 key.offset = (u64)-1; 4296 key.type = (u8)-1; 4297 4298 search_again: 4299 /* 4300 * with a 16K leaf size and 128MB extents, you can actually queue 4301 * up a huge file in a single leaf. Most of the time that 4302 * bytes_deleted is > 0, it will be huge by the time we get here 4303 */ 4304 if (be_nice && bytes_deleted > 32 * 1024 * 1024) { 4305 if (btrfs_should_end_transaction(trans, root)) { 4306 err = -EAGAIN; 4307 goto error; 4308 } 4309 } 4310 4311 4312 path->leave_spinning = 1; 4313 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 4314 if (ret < 0) { 4315 err = ret; 4316 goto out; 4317 } 4318 4319 if (ret > 0) { 4320 /* there are no items in the tree for us to truncate, we're 4321 * done 4322 */ 4323 if (path->slots[0] == 0) 4324 goto out; 4325 path->slots[0]--; 4326 } 4327 4328 while (1) { 4329 fi = NULL; 4330 leaf = path->nodes[0]; 4331 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 4332 found_type = found_key.type; 4333 4334 if (found_key.objectid != ino) 4335 break; 4336 4337 if (found_type < min_type) 4338 break; 4339 4340 item_end = found_key.offset; 4341 if (found_type == BTRFS_EXTENT_DATA_KEY) { 4342 fi = btrfs_item_ptr(leaf, path->slots[0], 4343 struct btrfs_file_extent_item); 4344 extent_type = btrfs_file_extent_type(leaf, fi); 4345 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 4346 item_end += 4347 btrfs_file_extent_num_bytes(leaf, fi); 4348 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 4349 item_end += btrfs_file_extent_inline_len(leaf, 4350 path->slots[0], fi); 4351 } 4352 item_end--; 4353 } 4354 if (found_type > min_type) { 4355 del_item = 1; 4356 } else { 4357 if (item_end < new_size) 4358 break; 4359 if (found_key.offset >= new_size) 4360 del_item = 1; 4361 else 4362 del_item = 0; 4363 } 4364 found_extent = 0; 4365 /* FIXME, shrink the extent if the ref count is only 1 */ 4366 if (found_type != BTRFS_EXTENT_DATA_KEY) 4367 goto delete; 4368 4369 if (del_item) 4370 last_size = found_key.offset; 4371 else 4372 last_size = new_size; 4373 4374 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 4375 u64 num_dec; 4376 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi); 4377 if (!del_item) { 4378 u64 orig_num_bytes = 4379 btrfs_file_extent_num_bytes(leaf, fi); 4380 extent_num_bytes = ALIGN(new_size - 4381 found_key.offset, 4382 root->sectorsize); 4383 btrfs_set_file_extent_num_bytes(leaf, fi, 4384 extent_num_bytes); 4385 num_dec = (orig_num_bytes - 4386 extent_num_bytes); 4387 if (test_bit(BTRFS_ROOT_REF_COWS, 4388 &root->state) && 4389 extent_start != 0) 4390 inode_sub_bytes(inode, num_dec); 4391 btrfs_mark_buffer_dirty(leaf); 4392 } else { 4393 extent_num_bytes = 4394 btrfs_file_extent_disk_num_bytes(leaf, 4395 fi); 4396 extent_offset = found_key.offset - 4397 btrfs_file_extent_offset(leaf, fi); 4398 4399 /* FIXME blocksize != 4096 */ 4400 num_dec = btrfs_file_extent_num_bytes(leaf, fi); 4401 if (extent_start != 0) { 4402 found_extent = 1; 4403 if (test_bit(BTRFS_ROOT_REF_COWS, 4404 &root->state)) 4405 inode_sub_bytes(inode, num_dec); 4406 } 4407 } 4408 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 4409 /* 4410 * we can't truncate inline items that have had 4411 * special encodings 4412 */ 4413 if (!del_item && 4414 btrfs_file_extent_compression(leaf, fi) == 0 && 4415 btrfs_file_extent_encryption(leaf, fi) == 0 && 4416 btrfs_file_extent_other_encoding(leaf, fi) == 0) { 4417 u32 size = new_size - found_key.offset; 4418 4419 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 4420 inode_sub_bytes(inode, item_end + 1 - 4421 new_size); 4422 4423 /* 4424 * update the ram bytes to properly reflect 4425 * the new size of our item 4426 */ 4427 btrfs_set_file_extent_ram_bytes(leaf, fi, size); 4428 size = 4429 btrfs_file_extent_calc_inline_size(size); 4430 btrfs_truncate_item(root, path, size, 1); 4431 } else if (test_bit(BTRFS_ROOT_REF_COWS, 4432 &root->state)) { 4433 inode_sub_bytes(inode, item_end + 1 - 4434 found_key.offset); 4435 } 4436 } 4437 delete: 4438 if (del_item) { 4439 if (!pending_del_nr) { 4440 /* no pending yet, add ourselves */ 4441 pending_del_slot = path->slots[0]; 4442 pending_del_nr = 1; 4443 } else if (pending_del_nr && 4444 path->slots[0] + 1 == pending_del_slot) { 4445 /* hop on the pending chunk */ 4446 pending_del_nr++; 4447 pending_del_slot = path->slots[0]; 4448 } else { 4449 BUG(); 4450 } 4451 } else { 4452 break; 4453 } 4454 should_throttle = 0; 4455 4456 if (found_extent && 4457 (test_bit(BTRFS_ROOT_REF_COWS, &root->state) || 4458 root == root->fs_info->tree_root)) { 4459 btrfs_set_path_blocking(path); 4460 bytes_deleted += extent_num_bytes; 4461 ret = btrfs_free_extent(trans, root, extent_start, 4462 extent_num_bytes, 0, 4463 btrfs_header_owner(leaf), 4464 ino, extent_offset, 0); 4465 BUG_ON(ret); 4466 if (btrfs_should_throttle_delayed_refs(trans, root)) 4467 btrfs_async_run_delayed_refs(root, 4468 trans->delayed_ref_updates * 2, 0); 4469 if (be_nice) { 4470 if (truncate_space_check(trans, root, 4471 extent_num_bytes)) { 4472 should_end = 1; 4473 } 4474 if (btrfs_should_throttle_delayed_refs(trans, 4475 root)) { 4476 should_throttle = 1; 4477 } 4478 } 4479 } 4480 4481 if (found_type == BTRFS_INODE_ITEM_KEY) 4482 break; 4483 4484 if (path->slots[0] == 0 || 4485 path->slots[0] != pending_del_slot || 4486 should_throttle || should_end) { 4487 if (pending_del_nr) { 4488 ret = btrfs_del_items(trans, root, path, 4489 pending_del_slot, 4490 pending_del_nr); 4491 if (ret) { 4492 btrfs_abort_transaction(trans, 4493 root, ret); 4494 goto error; 4495 } 4496 pending_del_nr = 0; 4497 } 4498 btrfs_release_path(path); 4499 if (should_throttle) { 4500 unsigned long updates = trans->delayed_ref_updates; 4501 if (updates) { 4502 trans->delayed_ref_updates = 0; 4503 ret = btrfs_run_delayed_refs(trans, root, updates * 2); 4504 if (ret && !err) 4505 err = ret; 4506 } 4507 } 4508 /* 4509 * if we failed to refill our space rsv, bail out 4510 * and let the transaction restart 4511 */ 4512 if (should_end) { 4513 err = -EAGAIN; 4514 goto error; 4515 } 4516 goto search_again; 4517 } else { 4518 path->slots[0]--; 4519 } 4520 } 4521 out: 4522 if (pending_del_nr) { 4523 ret = btrfs_del_items(trans, root, path, pending_del_slot, 4524 pending_del_nr); 4525 if (ret) 4526 btrfs_abort_transaction(trans, root, ret); 4527 } 4528 error: 4529 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) 4530 btrfs_ordered_update_i_size(inode, last_size, NULL); 4531 4532 btrfs_free_path(path); 4533 4534 if (be_nice && bytes_deleted > 32 * 1024 * 1024) { 4535 unsigned long updates = trans->delayed_ref_updates; 4536 if (updates) { 4537 trans->delayed_ref_updates = 0; 4538 ret = btrfs_run_delayed_refs(trans, root, updates * 2); 4539 if (ret && !err) 4540 err = ret; 4541 } 4542 } 4543 return err; 4544 } 4545 4546 /* 4547 * btrfs_truncate_page - read, zero a chunk and write a page 4548 * @inode - inode that we're zeroing 4549 * @from - the offset to start zeroing 4550 * @len - the length to zero, 0 to zero the entire range respective to the 4551 * offset 4552 * @front - zero up to the offset instead of from the offset on 4553 * 4554 * This will find the page for the "from" offset and cow the page and zero the 4555 * part we want to zero. This is used with truncate and hole punching. 4556 */ 4557 int btrfs_truncate_page(struct inode *inode, loff_t from, loff_t len, 4558 int front) 4559 { 4560 struct address_space *mapping = inode->i_mapping; 4561 struct btrfs_root *root = BTRFS_I(inode)->root; 4562 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 4563 struct btrfs_ordered_extent *ordered; 4564 struct extent_state *cached_state = NULL; 4565 char *kaddr; 4566 u32 blocksize = root->sectorsize; 4567 pgoff_t index = from >> PAGE_CACHE_SHIFT; 4568 unsigned offset = from & (PAGE_CACHE_SIZE-1); 4569 struct page *page; 4570 gfp_t mask = btrfs_alloc_write_mask(mapping); 4571 int ret = 0; 4572 u64 page_start; 4573 u64 page_end; 4574 4575 if ((offset & (blocksize - 1)) == 0 && 4576 (!len || ((len & (blocksize - 1)) == 0))) 4577 goto out; 4578 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE); 4579 if (ret) 4580 goto out; 4581 4582 again: 4583 page = find_or_create_page(mapping, index, mask); 4584 if (!page) { 4585 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE); 4586 ret = -ENOMEM; 4587 goto out; 4588 } 4589 4590 page_start = page_offset(page); 4591 page_end = page_start + PAGE_CACHE_SIZE - 1; 4592 4593 if (!PageUptodate(page)) { 4594 ret = btrfs_readpage(NULL, page); 4595 lock_page(page); 4596 if (page->mapping != mapping) { 4597 unlock_page(page); 4598 page_cache_release(page); 4599 goto again; 4600 } 4601 if (!PageUptodate(page)) { 4602 ret = -EIO; 4603 goto out_unlock; 4604 } 4605 } 4606 wait_on_page_writeback(page); 4607 4608 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state); 4609 set_page_extent_mapped(page); 4610 4611 ordered = btrfs_lookup_ordered_extent(inode, page_start); 4612 if (ordered) { 4613 unlock_extent_cached(io_tree, page_start, page_end, 4614 &cached_state, GFP_NOFS); 4615 unlock_page(page); 4616 page_cache_release(page); 4617 btrfs_start_ordered_extent(inode, ordered, 1); 4618 btrfs_put_ordered_extent(ordered); 4619 goto again; 4620 } 4621 4622 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end, 4623 EXTENT_DIRTY | EXTENT_DELALLOC | 4624 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 4625 0, 0, &cached_state, GFP_NOFS); 4626 4627 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 4628 &cached_state); 4629 if (ret) { 4630 unlock_extent_cached(io_tree, page_start, page_end, 4631 &cached_state, GFP_NOFS); 4632 goto out_unlock; 4633 } 4634 4635 if (offset != PAGE_CACHE_SIZE) { 4636 if (!len) 4637 len = PAGE_CACHE_SIZE - offset; 4638 kaddr = kmap(page); 4639 if (front) 4640 memset(kaddr, 0, offset); 4641 else 4642 memset(kaddr + offset, 0, len); 4643 flush_dcache_page(page); 4644 kunmap(page); 4645 } 4646 ClearPageChecked(page); 4647 set_page_dirty(page); 4648 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, 4649 GFP_NOFS); 4650 4651 out_unlock: 4652 if (ret) 4653 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE); 4654 unlock_page(page); 4655 page_cache_release(page); 4656 out: 4657 return ret; 4658 } 4659 4660 static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode, 4661 u64 offset, u64 len) 4662 { 4663 struct btrfs_trans_handle *trans; 4664 int ret; 4665 4666 /* 4667 * Still need to make sure the inode looks like it's been updated so 4668 * that any holes get logged if we fsync. 4669 */ 4670 if (btrfs_fs_incompat(root->fs_info, NO_HOLES)) { 4671 BTRFS_I(inode)->last_trans = root->fs_info->generation; 4672 BTRFS_I(inode)->last_sub_trans = root->log_transid; 4673 BTRFS_I(inode)->last_log_commit = root->last_log_commit; 4674 return 0; 4675 } 4676 4677 /* 4678 * 1 - for the one we're dropping 4679 * 1 - for the one we're adding 4680 * 1 - for updating the inode. 4681 */ 4682 trans = btrfs_start_transaction(root, 3); 4683 if (IS_ERR(trans)) 4684 return PTR_ERR(trans); 4685 4686 ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1); 4687 if (ret) { 4688 btrfs_abort_transaction(trans, root, ret); 4689 btrfs_end_transaction(trans, root); 4690 return ret; 4691 } 4692 4693 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset, 4694 0, 0, len, 0, len, 0, 0, 0); 4695 if (ret) 4696 btrfs_abort_transaction(trans, root, ret); 4697 else 4698 btrfs_update_inode(trans, root, inode); 4699 btrfs_end_transaction(trans, root); 4700 return ret; 4701 } 4702 4703 /* 4704 * This function puts in dummy file extents for the area we're creating a hole 4705 * for. So if we are truncating this file to a larger size we need to insert 4706 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for 4707 * the range between oldsize and size 4708 */ 4709 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size) 4710 { 4711 struct btrfs_root *root = BTRFS_I(inode)->root; 4712 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 4713 struct extent_map *em = NULL; 4714 struct extent_state *cached_state = NULL; 4715 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 4716 u64 hole_start = ALIGN(oldsize, root->sectorsize); 4717 u64 block_end = ALIGN(size, root->sectorsize); 4718 u64 last_byte; 4719 u64 cur_offset; 4720 u64 hole_size; 4721 int err = 0; 4722 4723 /* 4724 * If our size started in the middle of a page we need to zero out the 4725 * rest of the page before we expand the i_size, otherwise we could 4726 * expose stale data. 4727 */ 4728 err = btrfs_truncate_page(inode, oldsize, 0, 0); 4729 if (err) 4730 return err; 4731 4732 if (size <= hole_start) 4733 return 0; 4734 4735 while (1) { 4736 struct btrfs_ordered_extent *ordered; 4737 4738 lock_extent_bits(io_tree, hole_start, block_end - 1, 0, 4739 &cached_state); 4740 ordered = btrfs_lookup_ordered_range(inode, hole_start, 4741 block_end - hole_start); 4742 if (!ordered) 4743 break; 4744 unlock_extent_cached(io_tree, hole_start, block_end - 1, 4745 &cached_state, GFP_NOFS); 4746 btrfs_start_ordered_extent(inode, ordered, 1); 4747 btrfs_put_ordered_extent(ordered); 4748 } 4749 4750 cur_offset = hole_start; 4751 while (1) { 4752 em = btrfs_get_extent(inode, NULL, 0, cur_offset, 4753 block_end - cur_offset, 0); 4754 if (IS_ERR(em)) { 4755 err = PTR_ERR(em); 4756 em = NULL; 4757 break; 4758 } 4759 last_byte = min(extent_map_end(em), block_end); 4760 last_byte = ALIGN(last_byte , root->sectorsize); 4761 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) { 4762 struct extent_map *hole_em; 4763 hole_size = last_byte - cur_offset; 4764 4765 err = maybe_insert_hole(root, inode, cur_offset, 4766 hole_size); 4767 if (err) 4768 break; 4769 btrfs_drop_extent_cache(inode, cur_offset, 4770 cur_offset + hole_size - 1, 0); 4771 hole_em = alloc_extent_map(); 4772 if (!hole_em) { 4773 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 4774 &BTRFS_I(inode)->runtime_flags); 4775 goto next; 4776 } 4777 hole_em->start = cur_offset; 4778 hole_em->len = hole_size; 4779 hole_em->orig_start = cur_offset; 4780 4781 hole_em->block_start = EXTENT_MAP_HOLE; 4782 hole_em->block_len = 0; 4783 hole_em->orig_block_len = 0; 4784 hole_em->ram_bytes = hole_size; 4785 hole_em->bdev = root->fs_info->fs_devices->latest_bdev; 4786 hole_em->compress_type = BTRFS_COMPRESS_NONE; 4787 hole_em->generation = root->fs_info->generation; 4788 4789 while (1) { 4790 write_lock(&em_tree->lock); 4791 err = add_extent_mapping(em_tree, hole_em, 1); 4792 write_unlock(&em_tree->lock); 4793 if (err != -EEXIST) 4794 break; 4795 btrfs_drop_extent_cache(inode, cur_offset, 4796 cur_offset + 4797 hole_size - 1, 0); 4798 } 4799 free_extent_map(hole_em); 4800 } 4801 next: 4802 free_extent_map(em); 4803 em = NULL; 4804 cur_offset = last_byte; 4805 if (cur_offset >= block_end) 4806 break; 4807 } 4808 free_extent_map(em); 4809 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state, 4810 GFP_NOFS); 4811 return err; 4812 } 4813 4814 static int wait_snapshoting_atomic_t(atomic_t *a) 4815 { 4816 schedule(); 4817 return 0; 4818 } 4819 4820 static void wait_for_snapshot_creation(struct btrfs_root *root) 4821 { 4822 while (true) { 4823 int ret; 4824 4825 ret = btrfs_start_write_no_snapshoting(root); 4826 if (ret) 4827 break; 4828 wait_on_atomic_t(&root->will_be_snapshoted, 4829 wait_snapshoting_atomic_t, 4830 TASK_UNINTERRUPTIBLE); 4831 } 4832 } 4833 4834 static int btrfs_setsize(struct inode *inode, struct iattr *attr) 4835 { 4836 struct btrfs_root *root = BTRFS_I(inode)->root; 4837 struct btrfs_trans_handle *trans; 4838 loff_t oldsize = i_size_read(inode); 4839 loff_t newsize = attr->ia_size; 4840 int mask = attr->ia_valid; 4841 int ret; 4842 4843 /* 4844 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a 4845 * special case where we need to update the times despite not having 4846 * these flags set. For all other operations the VFS set these flags 4847 * explicitly if it wants a timestamp update. 4848 */ 4849 if (newsize != oldsize) { 4850 inode_inc_iversion(inode); 4851 if (!(mask & (ATTR_CTIME | ATTR_MTIME))) 4852 inode->i_ctime = inode->i_mtime = 4853 current_fs_time(inode->i_sb); 4854 } 4855 4856 if (newsize > oldsize) { 4857 truncate_pagecache(inode, newsize); 4858 /* 4859 * Don't do an expanding truncate while snapshoting is ongoing. 4860 * This is to ensure the snapshot captures a fully consistent 4861 * state of this file - if the snapshot captures this expanding 4862 * truncation, it must capture all writes that happened before 4863 * this truncation. 4864 */ 4865 wait_for_snapshot_creation(root); 4866 ret = btrfs_cont_expand(inode, oldsize, newsize); 4867 if (ret) { 4868 btrfs_end_write_no_snapshoting(root); 4869 return ret; 4870 } 4871 4872 trans = btrfs_start_transaction(root, 1); 4873 if (IS_ERR(trans)) { 4874 btrfs_end_write_no_snapshoting(root); 4875 return PTR_ERR(trans); 4876 } 4877 4878 i_size_write(inode, newsize); 4879 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL); 4880 ret = btrfs_update_inode(trans, root, inode); 4881 btrfs_end_write_no_snapshoting(root); 4882 btrfs_end_transaction(trans, root); 4883 } else { 4884 4885 /* 4886 * We're truncating a file that used to have good data down to 4887 * zero. Make sure it gets into the ordered flush list so that 4888 * any new writes get down to disk quickly. 4889 */ 4890 if (newsize == 0) 4891 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE, 4892 &BTRFS_I(inode)->runtime_flags); 4893 4894 /* 4895 * 1 for the orphan item we're going to add 4896 * 1 for the orphan item deletion. 4897 */ 4898 trans = btrfs_start_transaction(root, 2); 4899 if (IS_ERR(trans)) 4900 return PTR_ERR(trans); 4901 4902 /* 4903 * We need to do this in case we fail at _any_ point during the 4904 * actual truncate. Once we do the truncate_setsize we could 4905 * invalidate pages which forces any outstanding ordered io to 4906 * be instantly completed which will give us extents that need 4907 * to be truncated. If we fail to get an orphan inode down we 4908 * could have left over extents that were never meant to live, 4909 * so we need to garuntee from this point on that everything 4910 * will be consistent. 4911 */ 4912 ret = btrfs_orphan_add(trans, inode); 4913 btrfs_end_transaction(trans, root); 4914 if (ret) 4915 return ret; 4916 4917 /* we don't support swapfiles, so vmtruncate shouldn't fail */ 4918 truncate_setsize(inode, newsize); 4919 4920 /* Disable nonlocked read DIO to avoid the end less truncate */ 4921 btrfs_inode_block_unlocked_dio(inode); 4922 inode_dio_wait(inode); 4923 btrfs_inode_resume_unlocked_dio(inode); 4924 4925 ret = btrfs_truncate(inode); 4926 if (ret && inode->i_nlink) { 4927 int err; 4928 4929 /* 4930 * failed to truncate, disk_i_size is only adjusted down 4931 * as we remove extents, so it should represent the true 4932 * size of the inode, so reset the in memory size and 4933 * delete our orphan entry. 4934 */ 4935 trans = btrfs_join_transaction(root); 4936 if (IS_ERR(trans)) { 4937 btrfs_orphan_del(NULL, inode); 4938 return ret; 4939 } 4940 i_size_write(inode, BTRFS_I(inode)->disk_i_size); 4941 err = btrfs_orphan_del(trans, inode); 4942 if (err) 4943 btrfs_abort_transaction(trans, root, err); 4944 btrfs_end_transaction(trans, root); 4945 } 4946 } 4947 4948 return ret; 4949 } 4950 4951 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr) 4952 { 4953 struct inode *inode = d_inode(dentry); 4954 struct btrfs_root *root = BTRFS_I(inode)->root; 4955 int err; 4956 4957 if (btrfs_root_readonly(root)) 4958 return -EROFS; 4959 4960 err = inode_change_ok(inode, attr); 4961 if (err) 4962 return err; 4963 4964 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 4965 err = btrfs_setsize(inode, attr); 4966 if (err) 4967 return err; 4968 } 4969 4970 if (attr->ia_valid) { 4971 setattr_copy(inode, attr); 4972 inode_inc_iversion(inode); 4973 err = btrfs_dirty_inode(inode); 4974 4975 if (!err && attr->ia_valid & ATTR_MODE) 4976 err = posix_acl_chmod(inode, inode->i_mode); 4977 } 4978 4979 return err; 4980 } 4981 4982 /* 4983 * While truncating the inode pages during eviction, we get the VFS calling 4984 * btrfs_invalidatepage() against each page of the inode. This is slow because 4985 * the calls to btrfs_invalidatepage() result in a huge amount of calls to 4986 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting 4987 * extent_state structures over and over, wasting lots of time. 4988 * 4989 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all 4990 * those expensive operations on a per page basis and do only the ordered io 4991 * finishing, while we release here the extent_map and extent_state structures, 4992 * without the excessive merging and splitting. 4993 */ 4994 static void evict_inode_truncate_pages(struct inode *inode) 4995 { 4996 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 4997 struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree; 4998 struct rb_node *node; 4999 5000 ASSERT(inode->i_state & I_FREEING); 5001 truncate_inode_pages_final(&inode->i_data); 5002 5003 write_lock(&map_tree->lock); 5004 while (!RB_EMPTY_ROOT(&map_tree->map)) { 5005 struct extent_map *em; 5006 5007 node = rb_first(&map_tree->map); 5008 em = rb_entry(node, struct extent_map, rb_node); 5009 clear_bit(EXTENT_FLAG_PINNED, &em->flags); 5010 clear_bit(EXTENT_FLAG_LOGGING, &em->flags); 5011 remove_extent_mapping(map_tree, em); 5012 free_extent_map(em); 5013 if (need_resched()) { 5014 write_unlock(&map_tree->lock); 5015 cond_resched(); 5016 write_lock(&map_tree->lock); 5017 } 5018 } 5019 write_unlock(&map_tree->lock); 5020 5021 /* 5022 * Keep looping until we have no more ranges in the io tree. 5023 * We can have ongoing bios started by readpages (called from readahead) 5024 * that have their endio callback (extent_io.c:end_bio_extent_readpage) 5025 * still in progress (unlocked the pages in the bio but did not yet 5026 * unlocked the ranges in the io tree). Therefore this means some 5027 * ranges can still be locked and eviction started because before 5028 * submitting those bios, which are executed by a separate task (work 5029 * queue kthread), inode references (inode->i_count) were not taken 5030 * (which would be dropped in the end io callback of each bio). 5031 * Therefore here we effectively end up waiting for those bios and 5032 * anyone else holding locked ranges without having bumped the inode's 5033 * reference count - if we don't do it, when they access the inode's 5034 * io_tree to unlock a range it may be too late, leading to an 5035 * use-after-free issue. 5036 */ 5037 spin_lock(&io_tree->lock); 5038 while (!RB_EMPTY_ROOT(&io_tree->state)) { 5039 struct extent_state *state; 5040 struct extent_state *cached_state = NULL; 5041 u64 start; 5042 u64 end; 5043 5044 node = rb_first(&io_tree->state); 5045 state = rb_entry(node, struct extent_state, rb_node); 5046 start = state->start; 5047 end = state->end; 5048 spin_unlock(&io_tree->lock); 5049 5050 lock_extent_bits(io_tree, start, end, 0, &cached_state); 5051 clear_extent_bit(io_tree, start, end, 5052 EXTENT_LOCKED | EXTENT_DIRTY | 5053 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | 5054 EXTENT_DEFRAG, 1, 1, 5055 &cached_state, GFP_NOFS); 5056 5057 cond_resched(); 5058 spin_lock(&io_tree->lock); 5059 } 5060 spin_unlock(&io_tree->lock); 5061 } 5062 5063 void btrfs_evict_inode(struct inode *inode) 5064 { 5065 struct btrfs_trans_handle *trans; 5066 struct btrfs_root *root = BTRFS_I(inode)->root; 5067 struct btrfs_block_rsv *rsv, *global_rsv; 5068 int steal_from_global = 0; 5069 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1); 5070 int ret; 5071 5072 trace_btrfs_inode_evict(inode); 5073 5074 evict_inode_truncate_pages(inode); 5075 5076 if (inode->i_nlink && 5077 ((btrfs_root_refs(&root->root_item) != 0 && 5078 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) || 5079 btrfs_is_free_space_inode(inode))) 5080 goto no_delete; 5081 5082 if (is_bad_inode(inode)) { 5083 btrfs_orphan_del(NULL, inode); 5084 goto no_delete; 5085 } 5086 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */ 5087 if (!special_file(inode->i_mode)) 5088 btrfs_wait_ordered_range(inode, 0, (u64)-1); 5089 5090 btrfs_free_io_failure_record(inode, 0, (u64)-1); 5091 5092 if (root->fs_info->log_root_recovering) { 5093 BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 5094 &BTRFS_I(inode)->runtime_flags)); 5095 goto no_delete; 5096 } 5097 5098 if (inode->i_nlink > 0) { 5099 BUG_ON(btrfs_root_refs(&root->root_item) != 0 && 5100 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID); 5101 goto no_delete; 5102 } 5103 5104 ret = btrfs_commit_inode_delayed_inode(inode); 5105 if (ret) { 5106 btrfs_orphan_del(NULL, inode); 5107 goto no_delete; 5108 } 5109 5110 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP); 5111 if (!rsv) { 5112 btrfs_orphan_del(NULL, inode); 5113 goto no_delete; 5114 } 5115 rsv->size = min_size; 5116 rsv->failfast = 1; 5117 global_rsv = &root->fs_info->global_block_rsv; 5118 5119 btrfs_i_size_write(inode, 0); 5120 5121 /* 5122 * This is a bit simpler than btrfs_truncate since we've already 5123 * reserved our space for our orphan item in the unlink, so we just 5124 * need to reserve some slack space in case we add bytes and update 5125 * inode item when doing the truncate. 5126 */ 5127 while (1) { 5128 ret = btrfs_block_rsv_refill(root, rsv, min_size, 5129 BTRFS_RESERVE_FLUSH_LIMIT); 5130 5131 /* 5132 * Try and steal from the global reserve since we will 5133 * likely not use this space anyway, we want to try as 5134 * hard as possible to get this to work. 5135 */ 5136 if (ret) 5137 steal_from_global++; 5138 else 5139 steal_from_global = 0; 5140 ret = 0; 5141 5142 /* 5143 * steal_from_global == 0: we reserved stuff, hooray! 5144 * steal_from_global == 1: we didn't reserve stuff, boo! 5145 * steal_from_global == 2: we've committed, still not a lot of 5146 * room but maybe we'll have room in the global reserve this 5147 * time. 5148 * steal_from_global == 3: abandon all hope! 5149 */ 5150 if (steal_from_global > 2) { 5151 btrfs_warn(root->fs_info, 5152 "Could not get space for a delete, will truncate on mount %d", 5153 ret); 5154 btrfs_orphan_del(NULL, inode); 5155 btrfs_free_block_rsv(root, rsv); 5156 goto no_delete; 5157 } 5158 5159 trans = btrfs_join_transaction(root); 5160 if (IS_ERR(trans)) { 5161 btrfs_orphan_del(NULL, inode); 5162 btrfs_free_block_rsv(root, rsv); 5163 goto no_delete; 5164 } 5165 5166 /* 5167 * We can't just steal from the global reserve, we need tomake 5168 * sure there is room to do it, if not we need to commit and try 5169 * again. 5170 */ 5171 if (steal_from_global) { 5172 if (!btrfs_check_space_for_delayed_refs(trans, root)) 5173 ret = btrfs_block_rsv_migrate(global_rsv, rsv, 5174 min_size); 5175 else 5176 ret = -ENOSPC; 5177 } 5178 5179 /* 5180 * Couldn't steal from the global reserve, we have too much 5181 * pending stuff built up, commit the transaction and try it 5182 * again. 5183 */ 5184 if (ret) { 5185 ret = btrfs_commit_transaction(trans, root); 5186 if (ret) { 5187 btrfs_orphan_del(NULL, inode); 5188 btrfs_free_block_rsv(root, rsv); 5189 goto no_delete; 5190 } 5191 continue; 5192 } else { 5193 steal_from_global = 0; 5194 } 5195 5196 trans->block_rsv = rsv; 5197 5198 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0); 5199 if (ret != -ENOSPC && ret != -EAGAIN) 5200 break; 5201 5202 trans->block_rsv = &root->fs_info->trans_block_rsv; 5203 btrfs_end_transaction(trans, root); 5204 trans = NULL; 5205 btrfs_btree_balance_dirty(root); 5206 } 5207 5208 btrfs_free_block_rsv(root, rsv); 5209 5210 /* 5211 * Errors here aren't a big deal, it just means we leave orphan items 5212 * in the tree. They will be cleaned up on the next mount. 5213 */ 5214 if (ret == 0) { 5215 trans->block_rsv = root->orphan_block_rsv; 5216 btrfs_orphan_del(trans, inode); 5217 } else { 5218 btrfs_orphan_del(NULL, inode); 5219 } 5220 5221 trans->block_rsv = &root->fs_info->trans_block_rsv; 5222 if (!(root == root->fs_info->tree_root || 5223 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)) 5224 btrfs_return_ino(root, btrfs_ino(inode)); 5225 5226 btrfs_end_transaction(trans, root); 5227 btrfs_btree_balance_dirty(root); 5228 no_delete: 5229 btrfs_remove_delayed_node(inode); 5230 clear_inode(inode); 5231 return; 5232 } 5233 5234 /* 5235 * this returns the key found in the dir entry in the location pointer. 5236 * If no dir entries were found, location->objectid is 0. 5237 */ 5238 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry, 5239 struct btrfs_key *location) 5240 { 5241 const char *name = dentry->d_name.name; 5242 int namelen = dentry->d_name.len; 5243 struct btrfs_dir_item *di; 5244 struct btrfs_path *path; 5245 struct btrfs_root *root = BTRFS_I(dir)->root; 5246 int ret = 0; 5247 5248 path = btrfs_alloc_path(); 5249 if (!path) 5250 return -ENOMEM; 5251 5252 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name, 5253 namelen, 0); 5254 if (IS_ERR(di)) 5255 ret = PTR_ERR(di); 5256 5257 if (IS_ERR_OR_NULL(di)) 5258 goto out_err; 5259 5260 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location); 5261 out: 5262 btrfs_free_path(path); 5263 return ret; 5264 out_err: 5265 location->objectid = 0; 5266 goto out; 5267 } 5268 5269 /* 5270 * when we hit a tree root in a directory, the btrfs part of the inode 5271 * needs to be changed to reflect the root directory of the tree root. This 5272 * is kind of like crossing a mount point. 5273 */ 5274 static int fixup_tree_root_location(struct btrfs_root *root, 5275 struct inode *dir, 5276 struct dentry *dentry, 5277 struct btrfs_key *location, 5278 struct btrfs_root **sub_root) 5279 { 5280 struct btrfs_path *path; 5281 struct btrfs_root *new_root; 5282 struct btrfs_root_ref *ref; 5283 struct extent_buffer *leaf; 5284 struct btrfs_key key; 5285 int ret; 5286 int err = 0; 5287 5288 path = btrfs_alloc_path(); 5289 if (!path) { 5290 err = -ENOMEM; 5291 goto out; 5292 } 5293 5294 err = -ENOENT; 5295 key.objectid = BTRFS_I(dir)->root->root_key.objectid; 5296 key.type = BTRFS_ROOT_REF_KEY; 5297 key.offset = location->objectid; 5298 5299 ret = btrfs_search_slot(NULL, root->fs_info->tree_root, &key, path, 5300 0, 0); 5301 if (ret) { 5302 if (ret < 0) 5303 err = ret; 5304 goto out; 5305 } 5306 5307 leaf = path->nodes[0]; 5308 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); 5309 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) || 5310 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len) 5311 goto out; 5312 5313 ret = memcmp_extent_buffer(leaf, dentry->d_name.name, 5314 (unsigned long)(ref + 1), 5315 dentry->d_name.len); 5316 if (ret) 5317 goto out; 5318 5319 btrfs_release_path(path); 5320 5321 new_root = btrfs_read_fs_root_no_name(root->fs_info, location); 5322 if (IS_ERR(new_root)) { 5323 err = PTR_ERR(new_root); 5324 goto out; 5325 } 5326 5327 *sub_root = new_root; 5328 location->objectid = btrfs_root_dirid(&new_root->root_item); 5329 location->type = BTRFS_INODE_ITEM_KEY; 5330 location->offset = 0; 5331 err = 0; 5332 out: 5333 btrfs_free_path(path); 5334 return err; 5335 } 5336 5337 static void inode_tree_add(struct inode *inode) 5338 { 5339 struct btrfs_root *root = BTRFS_I(inode)->root; 5340 struct btrfs_inode *entry; 5341 struct rb_node **p; 5342 struct rb_node *parent; 5343 struct rb_node *new = &BTRFS_I(inode)->rb_node; 5344 u64 ino = btrfs_ino(inode); 5345 5346 if (inode_unhashed(inode)) 5347 return; 5348 parent = NULL; 5349 spin_lock(&root->inode_lock); 5350 p = &root->inode_tree.rb_node; 5351 while (*p) { 5352 parent = *p; 5353 entry = rb_entry(parent, struct btrfs_inode, rb_node); 5354 5355 if (ino < btrfs_ino(&entry->vfs_inode)) 5356 p = &parent->rb_left; 5357 else if (ino > btrfs_ino(&entry->vfs_inode)) 5358 p = &parent->rb_right; 5359 else { 5360 WARN_ON(!(entry->vfs_inode.i_state & 5361 (I_WILL_FREE | I_FREEING))); 5362 rb_replace_node(parent, new, &root->inode_tree); 5363 RB_CLEAR_NODE(parent); 5364 spin_unlock(&root->inode_lock); 5365 return; 5366 } 5367 } 5368 rb_link_node(new, parent, p); 5369 rb_insert_color(new, &root->inode_tree); 5370 spin_unlock(&root->inode_lock); 5371 } 5372 5373 static void inode_tree_del(struct inode *inode) 5374 { 5375 struct btrfs_root *root = BTRFS_I(inode)->root; 5376 int empty = 0; 5377 5378 spin_lock(&root->inode_lock); 5379 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) { 5380 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree); 5381 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node); 5382 empty = RB_EMPTY_ROOT(&root->inode_tree); 5383 } 5384 spin_unlock(&root->inode_lock); 5385 5386 if (empty && btrfs_root_refs(&root->root_item) == 0) { 5387 synchronize_srcu(&root->fs_info->subvol_srcu); 5388 spin_lock(&root->inode_lock); 5389 empty = RB_EMPTY_ROOT(&root->inode_tree); 5390 spin_unlock(&root->inode_lock); 5391 if (empty) 5392 btrfs_add_dead_root(root); 5393 } 5394 } 5395 5396 void btrfs_invalidate_inodes(struct btrfs_root *root) 5397 { 5398 struct rb_node *node; 5399 struct rb_node *prev; 5400 struct btrfs_inode *entry; 5401 struct inode *inode; 5402 u64 objectid = 0; 5403 5404 if (!test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) 5405 WARN_ON(btrfs_root_refs(&root->root_item) != 0); 5406 5407 spin_lock(&root->inode_lock); 5408 again: 5409 node = root->inode_tree.rb_node; 5410 prev = NULL; 5411 while (node) { 5412 prev = node; 5413 entry = rb_entry(node, struct btrfs_inode, rb_node); 5414 5415 if (objectid < btrfs_ino(&entry->vfs_inode)) 5416 node = node->rb_left; 5417 else if (objectid > btrfs_ino(&entry->vfs_inode)) 5418 node = node->rb_right; 5419 else 5420 break; 5421 } 5422 if (!node) { 5423 while (prev) { 5424 entry = rb_entry(prev, struct btrfs_inode, rb_node); 5425 if (objectid <= btrfs_ino(&entry->vfs_inode)) { 5426 node = prev; 5427 break; 5428 } 5429 prev = rb_next(prev); 5430 } 5431 } 5432 while (node) { 5433 entry = rb_entry(node, struct btrfs_inode, rb_node); 5434 objectid = btrfs_ino(&entry->vfs_inode) + 1; 5435 inode = igrab(&entry->vfs_inode); 5436 if (inode) { 5437 spin_unlock(&root->inode_lock); 5438 if (atomic_read(&inode->i_count) > 1) 5439 d_prune_aliases(inode); 5440 /* 5441 * btrfs_drop_inode will have it removed from 5442 * the inode cache when its usage count 5443 * hits zero. 5444 */ 5445 iput(inode); 5446 cond_resched(); 5447 spin_lock(&root->inode_lock); 5448 goto again; 5449 } 5450 5451 if (cond_resched_lock(&root->inode_lock)) 5452 goto again; 5453 5454 node = rb_next(node); 5455 } 5456 spin_unlock(&root->inode_lock); 5457 } 5458 5459 static int btrfs_init_locked_inode(struct inode *inode, void *p) 5460 { 5461 struct btrfs_iget_args *args = p; 5462 inode->i_ino = args->location->objectid; 5463 memcpy(&BTRFS_I(inode)->location, args->location, 5464 sizeof(*args->location)); 5465 BTRFS_I(inode)->root = args->root; 5466 return 0; 5467 } 5468 5469 static int btrfs_find_actor(struct inode *inode, void *opaque) 5470 { 5471 struct btrfs_iget_args *args = opaque; 5472 return args->location->objectid == BTRFS_I(inode)->location.objectid && 5473 args->root == BTRFS_I(inode)->root; 5474 } 5475 5476 static struct inode *btrfs_iget_locked(struct super_block *s, 5477 struct btrfs_key *location, 5478 struct btrfs_root *root) 5479 { 5480 struct inode *inode; 5481 struct btrfs_iget_args args; 5482 unsigned long hashval = btrfs_inode_hash(location->objectid, root); 5483 5484 args.location = location; 5485 args.root = root; 5486 5487 inode = iget5_locked(s, hashval, btrfs_find_actor, 5488 btrfs_init_locked_inode, 5489 (void *)&args); 5490 return inode; 5491 } 5492 5493 /* Get an inode object given its location and corresponding root. 5494 * Returns in *is_new if the inode was read from disk 5495 */ 5496 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location, 5497 struct btrfs_root *root, int *new) 5498 { 5499 struct inode *inode; 5500 5501 inode = btrfs_iget_locked(s, location, root); 5502 if (!inode) 5503 return ERR_PTR(-ENOMEM); 5504 5505 if (inode->i_state & I_NEW) { 5506 btrfs_read_locked_inode(inode); 5507 if (!is_bad_inode(inode)) { 5508 inode_tree_add(inode); 5509 unlock_new_inode(inode); 5510 if (new) 5511 *new = 1; 5512 } else { 5513 unlock_new_inode(inode); 5514 iput(inode); 5515 inode = ERR_PTR(-ESTALE); 5516 } 5517 } 5518 5519 return inode; 5520 } 5521 5522 static struct inode *new_simple_dir(struct super_block *s, 5523 struct btrfs_key *key, 5524 struct btrfs_root *root) 5525 { 5526 struct inode *inode = new_inode(s); 5527 5528 if (!inode) 5529 return ERR_PTR(-ENOMEM); 5530 5531 BTRFS_I(inode)->root = root; 5532 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key)); 5533 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags); 5534 5535 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID; 5536 inode->i_op = &btrfs_dir_ro_inode_operations; 5537 inode->i_fop = &simple_dir_operations; 5538 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO; 5539 inode->i_mtime = CURRENT_TIME; 5540 inode->i_atime = inode->i_mtime; 5541 inode->i_ctime = inode->i_mtime; 5542 BTRFS_I(inode)->i_otime = inode->i_mtime; 5543 5544 return inode; 5545 } 5546 5547 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry) 5548 { 5549 struct inode *inode; 5550 struct btrfs_root *root = BTRFS_I(dir)->root; 5551 struct btrfs_root *sub_root = root; 5552 struct btrfs_key location; 5553 int index; 5554 int ret = 0; 5555 5556 if (dentry->d_name.len > BTRFS_NAME_LEN) 5557 return ERR_PTR(-ENAMETOOLONG); 5558 5559 ret = btrfs_inode_by_name(dir, dentry, &location); 5560 if (ret < 0) 5561 return ERR_PTR(ret); 5562 5563 if (location.objectid == 0) 5564 return ERR_PTR(-ENOENT); 5565 5566 if (location.type == BTRFS_INODE_ITEM_KEY) { 5567 inode = btrfs_iget(dir->i_sb, &location, root, NULL); 5568 return inode; 5569 } 5570 5571 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY); 5572 5573 index = srcu_read_lock(&root->fs_info->subvol_srcu); 5574 ret = fixup_tree_root_location(root, dir, dentry, 5575 &location, &sub_root); 5576 if (ret < 0) { 5577 if (ret != -ENOENT) 5578 inode = ERR_PTR(ret); 5579 else 5580 inode = new_simple_dir(dir->i_sb, &location, sub_root); 5581 } else { 5582 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL); 5583 } 5584 srcu_read_unlock(&root->fs_info->subvol_srcu, index); 5585 5586 if (!IS_ERR(inode) && root != sub_root) { 5587 down_read(&root->fs_info->cleanup_work_sem); 5588 if (!(inode->i_sb->s_flags & MS_RDONLY)) 5589 ret = btrfs_orphan_cleanup(sub_root); 5590 up_read(&root->fs_info->cleanup_work_sem); 5591 if (ret) { 5592 iput(inode); 5593 inode = ERR_PTR(ret); 5594 } 5595 } 5596 5597 return inode; 5598 } 5599 5600 static int btrfs_dentry_delete(const struct dentry *dentry) 5601 { 5602 struct btrfs_root *root; 5603 struct inode *inode = d_inode(dentry); 5604 5605 if (!inode && !IS_ROOT(dentry)) 5606 inode = d_inode(dentry->d_parent); 5607 5608 if (inode) { 5609 root = BTRFS_I(inode)->root; 5610 if (btrfs_root_refs(&root->root_item) == 0) 5611 return 1; 5612 5613 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 5614 return 1; 5615 } 5616 return 0; 5617 } 5618 5619 static void btrfs_dentry_release(struct dentry *dentry) 5620 { 5621 kfree(dentry->d_fsdata); 5622 } 5623 5624 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry, 5625 unsigned int flags) 5626 { 5627 struct inode *inode; 5628 5629 inode = btrfs_lookup_dentry(dir, dentry); 5630 if (IS_ERR(inode)) { 5631 if (PTR_ERR(inode) == -ENOENT) 5632 inode = NULL; 5633 else 5634 return ERR_CAST(inode); 5635 } 5636 5637 return d_splice_alias(inode, dentry); 5638 } 5639 5640 unsigned char btrfs_filetype_table[] = { 5641 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK 5642 }; 5643 5644 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx) 5645 { 5646 struct inode *inode = file_inode(file); 5647 struct btrfs_root *root = BTRFS_I(inode)->root; 5648 struct btrfs_item *item; 5649 struct btrfs_dir_item *di; 5650 struct btrfs_key key; 5651 struct btrfs_key found_key; 5652 struct btrfs_path *path; 5653 struct list_head ins_list; 5654 struct list_head del_list; 5655 int ret; 5656 struct extent_buffer *leaf; 5657 int slot; 5658 unsigned char d_type; 5659 int over = 0; 5660 u32 di_cur; 5661 u32 di_total; 5662 u32 di_len; 5663 int key_type = BTRFS_DIR_INDEX_KEY; 5664 char tmp_name[32]; 5665 char *name_ptr; 5666 int name_len; 5667 int is_curr = 0; /* ctx->pos points to the current index? */ 5668 5669 /* FIXME, use a real flag for deciding about the key type */ 5670 if (root->fs_info->tree_root == root) 5671 key_type = BTRFS_DIR_ITEM_KEY; 5672 5673 if (!dir_emit_dots(file, ctx)) 5674 return 0; 5675 5676 path = btrfs_alloc_path(); 5677 if (!path) 5678 return -ENOMEM; 5679 5680 path->reada = 1; 5681 5682 if (key_type == BTRFS_DIR_INDEX_KEY) { 5683 INIT_LIST_HEAD(&ins_list); 5684 INIT_LIST_HEAD(&del_list); 5685 btrfs_get_delayed_items(inode, &ins_list, &del_list); 5686 } 5687 5688 key.type = key_type; 5689 key.offset = ctx->pos; 5690 key.objectid = btrfs_ino(inode); 5691 5692 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5693 if (ret < 0) 5694 goto err; 5695 5696 while (1) { 5697 leaf = path->nodes[0]; 5698 slot = path->slots[0]; 5699 if (slot >= btrfs_header_nritems(leaf)) { 5700 ret = btrfs_next_leaf(root, path); 5701 if (ret < 0) 5702 goto err; 5703 else if (ret > 0) 5704 break; 5705 continue; 5706 } 5707 5708 item = btrfs_item_nr(slot); 5709 btrfs_item_key_to_cpu(leaf, &found_key, slot); 5710 5711 if (found_key.objectid != key.objectid) 5712 break; 5713 if (found_key.type != key_type) 5714 break; 5715 if (found_key.offset < ctx->pos) 5716 goto next; 5717 if (key_type == BTRFS_DIR_INDEX_KEY && 5718 btrfs_should_delete_dir_index(&del_list, 5719 found_key.offset)) 5720 goto next; 5721 5722 ctx->pos = found_key.offset; 5723 is_curr = 1; 5724 5725 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item); 5726 di_cur = 0; 5727 di_total = btrfs_item_size(leaf, item); 5728 5729 while (di_cur < di_total) { 5730 struct btrfs_key location; 5731 5732 if (verify_dir_item(root, leaf, di)) 5733 break; 5734 5735 name_len = btrfs_dir_name_len(leaf, di); 5736 if (name_len <= sizeof(tmp_name)) { 5737 name_ptr = tmp_name; 5738 } else { 5739 name_ptr = kmalloc(name_len, GFP_NOFS); 5740 if (!name_ptr) { 5741 ret = -ENOMEM; 5742 goto err; 5743 } 5744 } 5745 read_extent_buffer(leaf, name_ptr, 5746 (unsigned long)(di + 1), name_len); 5747 5748 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)]; 5749 btrfs_dir_item_key_to_cpu(leaf, di, &location); 5750 5751 5752 /* is this a reference to our own snapshot? If so 5753 * skip it. 5754 * 5755 * In contrast to old kernels, we insert the snapshot's 5756 * dir item and dir index after it has been created, so 5757 * we won't find a reference to our own snapshot. We 5758 * still keep the following code for backward 5759 * compatibility. 5760 */ 5761 if (location.type == BTRFS_ROOT_ITEM_KEY && 5762 location.objectid == root->root_key.objectid) { 5763 over = 0; 5764 goto skip; 5765 } 5766 over = !dir_emit(ctx, name_ptr, name_len, 5767 location.objectid, d_type); 5768 5769 skip: 5770 if (name_ptr != tmp_name) 5771 kfree(name_ptr); 5772 5773 if (over) 5774 goto nopos; 5775 di_len = btrfs_dir_name_len(leaf, di) + 5776 btrfs_dir_data_len(leaf, di) + sizeof(*di); 5777 di_cur += di_len; 5778 di = (struct btrfs_dir_item *)((char *)di + di_len); 5779 } 5780 next: 5781 path->slots[0]++; 5782 } 5783 5784 if (key_type == BTRFS_DIR_INDEX_KEY) { 5785 if (is_curr) 5786 ctx->pos++; 5787 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list); 5788 if (ret) 5789 goto nopos; 5790 } 5791 5792 /* Reached end of directory/root. Bump pos past the last item. */ 5793 ctx->pos++; 5794 5795 /* 5796 * Stop new entries from being returned after we return the last 5797 * entry. 5798 * 5799 * New directory entries are assigned a strictly increasing 5800 * offset. This means that new entries created during readdir 5801 * are *guaranteed* to be seen in the future by that readdir. 5802 * This has broken buggy programs which operate on names as 5803 * they're returned by readdir. Until we re-use freed offsets 5804 * we have this hack to stop new entries from being returned 5805 * under the assumption that they'll never reach this huge 5806 * offset. 5807 * 5808 * This is being careful not to overflow 32bit loff_t unless the 5809 * last entry requires it because doing so has broken 32bit apps 5810 * in the past. 5811 */ 5812 if (key_type == BTRFS_DIR_INDEX_KEY) { 5813 if (ctx->pos >= INT_MAX) 5814 ctx->pos = LLONG_MAX; 5815 else 5816 ctx->pos = INT_MAX; 5817 } 5818 nopos: 5819 ret = 0; 5820 err: 5821 if (key_type == BTRFS_DIR_INDEX_KEY) 5822 btrfs_put_delayed_items(&ins_list, &del_list); 5823 btrfs_free_path(path); 5824 return ret; 5825 } 5826 5827 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc) 5828 { 5829 struct btrfs_root *root = BTRFS_I(inode)->root; 5830 struct btrfs_trans_handle *trans; 5831 int ret = 0; 5832 bool nolock = false; 5833 5834 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags)) 5835 return 0; 5836 5837 if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(inode)) 5838 nolock = true; 5839 5840 if (wbc->sync_mode == WB_SYNC_ALL) { 5841 if (nolock) 5842 trans = btrfs_join_transaction_nolock(root); 5843 else 5844 trans = btrfs_join_transaction(root); 5845 if (IS_ERR(trans)) 5846 return PTR_ERR(trans); 5847 ret = btrfs_commit_transaction(trans, root); 5848 } 5849 return ret; 5850 } 5851 5852 /* 5853 * This is somewhat expensive, updating the tree every time the 5854 * inode changes. But, it is most likely to find the inode in cache. 5855 * FIXME, needs more benchmarking...there are no reasons other than performance 5856 * to keep or drop this code. 5857 */ 5858 static int btrfs_dirty_inode(struct inode *inode) 5859 { 5860 struct btrfs_root *root = BTRFS_I(inode)->root; 5861 struct btrfs_trans_handle *trans; 5862 int ret; 5863 5864 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags)) 5865 return 0; 5866 5867 trans = btrfs_join_transaction(root); 5868 if (IS_ERR(trans)) 5869 return PTR_ERR(trans); 5870 5871 ret = btrfs_update_inode(trans, root, inode); 5872 if (ret && ret == -ENOSPC) { 5873 /* whoops, lets try again with the full transaction */ 5874 btrfs_end_transaction(trans, root); 5875 trans = btrfs_start_transaction(root, 1); 5876 if (IS_ERR(trans)) 5877 return PTR_ERR(trans); 5878 5879 ret = btrfs_update_inode(trans, root, inode); 5880 } 5881 btrfs_end_transaction(trans, root); 5882 if (BTRFS_I(inode)->delayed_node) 5883 btrfs_balance_delayed_items(root); 5884 5885 return ret; 5886 } 5887 5888 /* 5889 * This is a copy of file_update_time. We need this so we can return error on 5890 * ENOSPC for updating the inode in the case of file write and mmap writes. 5891 */ 5892 static int btrfs_update_time(struct inode *inode, struct timespec *now, 5893 int flags) 5894 { 5895 struct btrfs_root *root = BTRFS_I(inode)->root; 5896 5897 if (btrfs_root_readonly(root)) 5898 return -EROFS; 5899 5900 if (flags & S_VERSION) 5901 inode_inc_iversion(inode); 5902 if (flags & S_CTIME) 5903 inode->i_ctime = *now; 5904 if (flags & S_MTIME) 5905 inode->i_mtime = *now; 5906 if (flags & S_ATIME) 5907 inode->i_atime = *now; 5908 return btrfs_dirty_inode(inode); 5909 } 5910 5911 /* 5912 * find the highest existing sequence number in a directory 5913 * and then set the in-memory index_cnt variable to reflect 5914 * free sequence numbers 5915 */ 5916 static int btrfs_set_inode_index_count(struct inode *inode) 5917 { 5918 struct btrfs_root *root = BTRFS_I(inode)->root; 5919 struct btrfs_key key, found_key; 5920 struct btrfs_path *path; 5921 struct extent_buffer *leaf; 5922 int ret; 5923 5924 key.objectid = btrfs_ino(inode); 5925 key.type = BTRFS_DIR_INDEX_KEY; 5926 key.offset = (u64)-1; 5927 5928 path = btrfs_alloc_path(); 5929 if (!path) 5930 return -ENOMEM; 5931 5932 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5933 if (ret < 0) 5934 goto out; 5935 /* FIXME: we should be able to handle this */ 5936 if (ret == 0) 5937 goto out; 5938 ret = 0; 5939 5940 /* 5941 * MAGIC NUMBER EXPLANATION: 5942 * since we search a directory based on f_pos we have to start at 2 5943 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody 5944 * else has to start at 2 5945 */ 5946 if (path->slots[0] == 0) { 5947 BTRFS_I(inode)->index_cnt = 2; 5948 goto out; 5949 } 5950 5951 path->slots[0]--; 5952 5953 leaf = path->nodes[0]; 5954 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 5955 5956 if (found_key.objectid != btrfs_ino(inode) || 5957 found_key.type != BTRFS_DIR_INDEX_KEY) { 5958 BTRFS_I(inode)->index_cnt = 2; 5959 goto out; 5960 } 5961 5962 BTRFS_I(inode)->index_cnt = found_key.offset + 1; 5963 out: 5964 btrfs_free_path(path); 5965 return ret; 5966 } 5967 5968 /* 5969 * helper to find a free sequence number in a given directory. This current 5970 * code is very simple, later versions will do smarter things in the btree 5971 */ 5972 int btrfs_set_inode_index(struct inode *dir, u64 *index) 5973 { 5974 int ret = 0; 5975 5976 if (BTRFS_I(dir)->index_cnt == (u64)-1) { 5977 ret = btrfs_inode_delayed_dir_index_count(dir); 5978 if (ret) { 5979 ret = btrfs_set_inode_index_count(dir); 5980 if (ret) 5981 return ret; 5982 } 5983 } 5984 5985 *index = BTRFS_I(dir)->index_cnt; 5986 BTRFS_I(dir)->index_cnt++; 5987 5988 return ret; 5989 } 5990 5991 static int btrfs_insert_inode_locked(struct inode *inode) 5992 { 5993 struct btrfs_iget_args args; 5994 args.location = &BTRFS_I(inode)->location; 5995 args.root = BTRFS_I(inode)->root; 5996 5997 return insert_inode_locked4(inode, 5998 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root), 5999 btrfs_find_actor, &args); 6000 } 6001 6002 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans, 6003 struct btrfs_root *root, 6004 struct inode *dir, 6005 const char *name, int name_len, 6006 u64 ref_objectid, u64 objectid, 6007 umode_t mode, u64 *index) 6008 { 6009 struct inode *inode; 6010 struct btrfs_inode_item *inode_item; 6011 struct btrfs_key *location; 6012 struct btrfs_path *path; 6013 struct btrfs_inode_ref *ref; 6014 struct btrfs_key key[2]; 6015 u32 sizes[2]; 6016 int nitems = name ? 2 : 1; 6017 unsigned long ptr; 6018 int ret; 6019 6020 path = btrfs_alloc_path(); 6021 if (!path) 6022 return ERR_PTR(-ENOMEM); 6023 6024 inode = new_inode(root->fs_info->sb); 6025 if (!inode) { 6026 btrfs_free_path(path); 6027 return ERR_PTR(-ENOMEM); 6028 } 6029 6030 /* 6031 * O_TMPFILE, set link count to 0, so that after this point, 6032 * we fill in an inode item with the correct link count. 6033 */ 6034 if (!name) 6035 set_nlink(inode, 0); 6036 6037 /* 6038 * we have to initialize this early, so we can reclaim the inode 6039 * number if we fail afterwards in this function. 6040 */ 6041 inode->i_ino = objectid; 6042 6043 if (dir && name) { 6044 trace_btrfs_inode_request(dir); 6045 6046 ret = btrfs_set_inode_index(dir, index); 6047 if (ret) { 6048 btrfs_free_path(path); 6049 iput(inode); 6050 return ERR_PTR(ret); 6051 } 6052 } else if (dir) { 6053 *index = 0; 6054 } 6055 /* 6056 * index_cnt is ignored for everything but a dir, 6057 * btrfs_get_inode_index_count has an explanation for the magic 6058 * number 6059 */ 6060 BTRFS_I(inode)->index_cnt = 2; 6061 BTRFS_I(inode)->dir_index = *index; 6062 BTRFS_I(inode)->root = root; 6063 BTRFS_I(inode)->generation = trans->transid; 6064 inode->i_generation = BTRFS_I(inode)->generation; 6065 6066 /* 6067 * We could have gotten an inode number from somebody who was fsynced 6068 * and then removed in this same transaction, so let's just set full 6069 * sync since it will be a full sync anyway and this will blow away the 6070 * old info in the log. 6071 */ 6072 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 6073 6074 key[0].objectid = objectid; 6075 key[0].type = BTRFS_INODE_ITEM_KEY; 6076 key[0].offset = 0; 6077 6078 sizes[0] = sizeof(struct btrfs_inode_item); 6079 6080 if (name) { 6081 /* 6082 * Start new inodes with an inode_ref. This is slightly more 6083 * efficient for small numbers of hard links since they will 6084 * be packed into one item. Extended refs will kick in if we 6085 * add more hard links than can fit in the ref item. 6086 */ 6087 key[1].objectid = objectid; 6088 key[1].type = BTRFS_INODE_REF_KEY; 6089 key[1].offset = ref_objectid; 6090 6091 sizes[1] = name_len + sizeof(*ref); 6092 } 6093 6094 location = &BTRFS_I(inode)->location; 6095 location->objectid = objectid; 6096 location->offset = 0; 6097 location->type = BTRFS_INODE_ITEM_KEY; 6098 6099 ret = btrfs_insert_inode_locked(inode); 6100 if (ret < 0) 6101 goto fail; 6102 6103 path->leave_spinning = 1; 6104 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems); 6105 if (ret != 0) 6106 goto fail_unlock; 6107 6108 inode_init_owner(inode, dir, mode); 6109 inode_set_bytes(inode, 0); 6110 6111 inode->i_mtime = CURRENT_TIME; 6112 inode->i_atime = inode->i_mtime; 6113 inode->i_ctime = inode->i_mtime; 6114 BTRFS_I(inode)->i_otime = inode->i_mtime; 6115 6116 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0], 6117 struct btrfs_inode_item); 6118 memset_extent_buffer(path->nodes[0], 0, (unsigned long)inode_item, 6119 sizeof(*inode_item)); 6120 fill_inode_item(trans, path->nodes[0], inode_item, inode); 6121 6122 if (name) { 6123 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1, 6124 struct btrfs_inode_ref); 6125 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len); 6126 btrfs_set_inode_ref_index(path->nodes[0], ref, *index); 6127 ptr = (unsigned long)(ref + 1); 6128 write_extent_buffer(path->nodes[0], name, ptr, name_len); 6129 } 6130 6131 btrfs_mark_buffer_dirty(path->nodes[0]); 6132 btrfs_free_path(path); 6133 6134 btrfs_inherit_iflags(inode, dir); 6135 6136 if (S_ISREG(mode)) { 6137 if (btrfs_test_opt(root, NODATASUM)) 6138 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; 6139 if (btrfs_test_opt(root, NODATACOW)) 6140 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW | 6141 BTRFS_INODE_NODATASUM; 6142 } 6143 6144 inode_tree_add(inode); 6145 6146 trace_btrfs_inode_new(inode); 6147 btrfs_set_inode_last_trans(trans, inode); 6148 6149 btrfs_update_root_times(trans, root); 6150 6151 ret = btrfs_inode_inherit_props(trans, inode, dir); 6152 if (ret) 6153 btrfs_err(root->fs_info, 6154 "error inheriting props for ino %llu (root %llu): %d", 6155 btrfs_ino(inode), root->root_key.objectid, ret); 6156 6157 return inode; 6158 6159 fail_unlock: 6160 unlock_new_inode(inode); 6161 fail: 6162 if (dir && name) 6163 BTRFS_I(dir)->index_cnt--; 6164 btrfs_free_path(path); 6165 iput(inode); 6166 return ERR_PTR(ret); 6167 } 6168 6169 static inline u8 btrfs_inode_type(struct inode *inode) 6170 { 6171 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT]; 6172 } 6173 6174 /* 6175 * utility function to add 'inode' into 'parent_inode' with 6176 * a give name and a given sequence number. 6177 * if 'add_backref' is true, also insert a backref from the 6178 * inode to the parent directory. 6179 */ 6180 int btrfs_add_link(struct btrfs_trans_handle *trans, 6181 struct inode *parent_inode, struct inode *inode, 6182 const char *name, int name_len, int add_backref, u64 index) 6183 { 6184 int ret = 0; 6185 struct btrfs_key key; 6186 struct btrfs_root *root = BTRFS_I(parent_inode)->root; 6187 u64 ino = btrfs_ino(inode); 6188 u64 parent_ino = btrfs_ino(parent_inode); 6189 6190 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6191 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key)); 6192 } else { 6193 key.objectid = ino; 6194 key.type = BTRFS_INODE_ITEM_KEY; 6195 key.offset = 0; 6196 } 6197 6198 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6199 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root, 6200 key.objectid, root->root_key.objectid, 6201 parent_ino, index, name, name_len); 6202 } else if (add_backref) { 6203 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino, 6204 parent_ino, index); 6205 } 6206 6207 /* Nothing to clean up yet */ 6208 if (ret) 6209 return ret; 6210 6211 ret = btrfs_insert_dir_item(trans, root, name, name_len, 6212 parent_inode, &key, 6213 btrfs_inode_type(inode), index); 6214 if (ret == -EEXIST || ret == -EOVERFLOW) 6215 goto fail_dir_item; 6216 else if (ret) { 6217 btrfs_abort_transaction(trans, root, ret); 6218 return ret; 6219 } 6220 6221 btrfs_i_size_write(parent_inode, parent_inode->i_size + 6222 name_len * 2); 6223 inode_inc_iversion(parent_inode); 6224 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME; 6225 ret = btrfs_update_inode(trans, root, parent_inode); 6226 if (ret) 6227 btrfs_abort_transaction(trans, root, ret); 6228 return ret; 6229 6230 fail_dir_item: 6231 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6232 u64 local_index; 6233 int err; 6234 err = btrfs_del_root_ref(trans, root->fs_info->tree_root, 6235 key.objectid, root->root_key.objectid, 6236 parent_ino, &local_index, name, name_len); 6237 6238 } else if (add_backref) { 6239 u64 local_index; 6240 int err; 6241 6242 err = btrfs_del_inode_ref(trans, root, name, name_len, 6243 ino, parent_ino, &local_index); 6244 } 6245 return ret; 6246 } 6247 6248 static int btrfs_add_nondir(struct btrfs_trans_handle *trans, 6249 struct inode *dir, struct dentry *dentry, 6250 struct inode *inode, int backref, u64 index) 6251 { 6252 int err = btrfs_add_link(trans, dir, inode, 6253 dentry->d_name.name, dentry->d_name.len, 6254 backref, index); 6255 if (err > 0) 6256 err = -EEXIST; 6257 return err; 6258 } 6259 6260 static int btrfs_mknod(struct inode *dir, struct dentry *dentry, 6261 umode_t mode, dev_t rdev) 6262 { 6263 struct btrfs_trans_handle *trans; 6264 struct btrfs_root *root = BTRFS_I(dir)->root; 6265 struct inode *inode = NULL; 6266 int err; 6267 int drop_inode = 0; 6268 u64 objectid; 6269 u64 index = 0; 6270 6271 if (!new_valid_dev(rdev)) 6272 return -EINVAL; 6273 6274 /* 6275 * 2 for inode item and ref 6276 * 2 for dir items 6277 * 1 for xattr if selinux is on 6278 */ 6279 trans = btrfs_start_transaction(root, 5); 6280 if (IS_ERR(trans)) 6281 return PTR_ERR(trans); 6282 6283 err = btrfs_find_free_ino(root, &objectid); 6284 if (err) 6285 goto out_unlock; 6286 6287 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 6288 dentry->d_name.len, btrfs_ino(dir), objectid, 6289 mode, &index); 6290 if (IS_ERR(inode)) { 6291 err = PTR_ERR(inode); 6292 goto out_unlock; 6293 } 6294 6295 /* 6296 * If the active LSM wants to access the inode during 6297 * d_instantiate it needs these. Smack checks to see 6298 * if the filesystem supports xattrs by looking at the 6299 * ops vector. 6300 */ 6301 inode->i_op = &btrfs_special_inode_operations; 6302 init_special_inode(inode, inode->i_mode, rdev); 6303 6304 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 6305 if (err) 6306 goto out_unlock_inode; 6307 6308 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index); 6309 if (err) { 6310 goto out_unlock_inode; 6311 } else { 6312 btrfs_update_inode(trans, root, inode); 6313 unlock_new_inode(inode); 6314 d_instantiate(dentry, inode); 6315 } 6316 6317 out_unlock: 6318 btrfs_end_transaction(trans, root); 6319 btrfs_balance_delayed_items(root); 6320 btrfs_btree_balance_dirty(root); 6321 if (drop_inode) { 6322 inode_dec_link_count(inode); 6323 iput(inode); 6324 } 6325 return err; 6326 6327 out_unlock_inode: 6328 drop_inode = 1; 6329 unlock_new_inode(inode); 6330 goto out_unlock; 6331 6332 } 6333 6334 static int btrfs_create(struct inode *dir, struct dentry *dentry, 6335 umode_t mode, bool excl) 6336 { 6337 struct btrfs_trans_handle *trans; 6338 struct btrfs_root *root = BTRFS_I(dir)->root; 6339 struct inode *inode = NULL; 6340 int drop_inode_on_err = 0; 6341 int err; 6342 u64 objectid; 6343 u64 index = 0; 6344 6345 /* 6346 * 2 for inode item and ref 6347 * 2 for dir items 6348 * 1 for xattr if selinux is on 6349 */ 6350 trans = btrfs_start_transaction(root, 5); 6351 if (IS_ERR(trans)) 6352 return PTR_ERR(trans); 6353 6354 err = btrfs_find_free_ino(root, &objectid); 6355 if (err) 6356 goto out_unlock; 6357 6358 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 6359 dentry->d_name.len, btrfs_ino(dir), objectid, 6360 mode, &index); 6361 if (IS_ERR(inode)) { 6362 err = PTR_ERR(inode); 6363 goto out_unlock; 6364 } 6365 drop_inode_on_err = 1; 6366 /* 6367 * If the active LSM wants to access the inode during 6368 * d_instantiate it needs these. Smack checks to see 6369 * if the filesystem supports xattrs by looking at the 6370 * ops vector. 6371 */ 6372 inode->i_fop = &btrfs_file_operations; 6373 inode->i_op = &btrfs_file_inode_operations; 6374 inode->i_mapping->a_ops = &btrfs_aops; 6375 6376 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 6377 if (err) 6378 goto out_unlock_inode; 6379 6380 err = btrfs_update_inode(trans, root, inode); 6381 if (err) 6382 goto out_unlock_inode; 6383 6384 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index); 6385 if (err) 6386 goto out_unlock_inode; 6387 6388 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 6389 unlock_new_inode(inode); 6390 d_instantiate(dentry, inode); 6391 6392 out_unlock: 6393 btrfs_end_transaction(trans, root); 6394 if (err && drop_inode_on_err) { 6395 inode_dec_link_count(inode); 6396 iput(inode); 6397 } 6398 btrfs_balance_delayed_items(root); 6399 btrfs_btree_balance_dirty(root); 6400 return err; 6401 6402 out_unlock_inode: 6403 unlock_new_inode(inode); 6404 goto out_unlock; 6405 6406 } 6407 6408 static int btrfs_link(struct dentry *old_dentry, struct inode *dir, 6409 struct dentry *dentry) 6410 { 6411 struct btrfs_trans_handle *trans; 6412 struct btrfs_root *root = BTRFS_I(dir)->root; 6413 struct inode *inode = d_inode(old_dentry); 6414 u64 index; 6415 int err; 6416 int drop_inode = 0; 6417 6418 /* do not allow sys_link's with other subvols of the same device */ 6419 if (root->objectid != BTRFS_I(inode)->root->objectid) 6420 return -EXDEV; 6421 6422 if (inode->i_nlink >= BTRFS_LINK_MAX) 6423 return -EMLINK; 6424 6425 err = btrfs_set_inode_index(dir, &index); 6426 if (err) 6427 goto fail; 6428 6429 /* 6430 * 2 items for inode and inode ref 6431 * 2 items for dir items 6432 * 1 item for parent inode 6433 */ 6434 trans = btrfs_start_transaction(root, 5); 6435 if (IS_ERR(trans)) { 6436 err = PTR_ERR(trans); 6437 goto fail; 6438 } 6439 6440 /* There are several dir indexes for this inode, clear the cache. */ 6441 BTRFS_I(inode)->dir_index = 0ULL; 6442 inc_nlink(inode); 6443 inode_inc_iversion(inode); 6444 inode->i_ctime = CURRENT_TIME; 6445 ihold(inode); 6446 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags); 6447 6448 err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index); 6449 6450 if (err) { 6451 drop_inode = 1; 6452 } else { 6453 struct dentry *parent = dentry->d_parent; 6454 err = btrfs_update_inode(trans, root, inode); 6455 if (err) 6456 goto fail; 6457 if (inode->i_nlink == 1) { 6458 /* 6459 * If new hard link count is 1, it's a file created 6460 * with open(2) O_TMPFILE flag. 6461 */ 6462 err = btrfs_orphan_del(trans, inode); 6463 if (err) 6464 goto fail; 6465 } 6466 d_instantiate(dentry, inode); 6467 btrfs_log_new_name(trans, inode, NULL, parent); 6468 } 6469 6470 btrfs_end_transaction(trans, root); 6471 btrfs_balance_delayed_items(root); 6472 fail: 6473 if (drop_inode) { 6474 inode_dec_link_count(inode); 6475 iput(inode); 6476 } 6477 btrfs_btree_balance_dirty(root); 6478 return err; 6479 } 6480 6481 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 6482 { 6483 struct inode *inode = NULL; 6484 struct btrfs_trans_handle *trans; 6485 struct btrfs_root *root = BTRFS_I(dir)->root; 6486 int err = 0; 6487 int drop_on_err = 0; 6488 u64 objectid = 0; 6489 u64 index = 0; 6490 6491 /* 6492 * 2 items for inode and ref 6493 * 2 items for dir items 6494 * 1 for xattr if selinux is on 6495 */ 6496 trans = btrfs_start_transaction(root, 5); 6497 if (IS_ERR(trans)) 6498 return PTR_ERR(trans); 6499 6500 err = btrfs_find_free_ino(root, &objectid); 6501 if (err) 6502 goto out_fail; 6503 6504 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 6505 dentry->d_name.len, btrfs_ino(dir), objectid, 6506 S_IFDIR | mode, &index); 6507 if (IS_ERR(inode)) { 6508 err = PTR_ERR(inode); 6509 goto out_fail; 6510 } 6511 6512 drop_on_err = 1; 6513 /* these must be set before we unlock the inode */ 6514 inode->i_op = &btrfs_dir_inode_operations; 6515 inode->i_fop = &btrfs_dir_file_operations; 6516 6517 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 6518 if (err) 6519 goto out_fail_inode; 6520 6521 btrfs_i_size_write(inode, 0); 6522 err = btrfs_update_inode(trans, root, inode); 6523 if (err) 6524 goto out_fail_inode; 6525 6526 err = btrfs_add_link(trans, dir, inode, dentry->d_name.name, 6527 dentry->d_name.len, 0, index); 6528 if (err) 6529 goto out_fail_inode; 6530 6531 d_instantiate(dentry, inode); 6532 /* 6533 * mkdir is special. We're unlocking after we call d_instantiate 6534 * to avoid a race with nfsd calling d_instantiate. 6535 */ 6536 unlock_new_inode(inode); 6537 drop_on_err = 0; 6538 6539 out_fail: 6540 btrfs_end_transaction(trans, root); 6541 if (drop_on_err) { 6542 inode_dec_link_count(inode); 6543 iput(inode); 6544 } 6545 btrfs_balance_delayed_items(root); 6546 btrfs_btree_balance_dirty(root); 6547 return err; 6548 6549 out_fail_inode: 6550 unlock_new_inode(inode); 6551 goto out_fail; 6552 } 6553 6554 /* Find next extent map of a given extent map, caller needs to ensure locks */ 6555 static struct extent_map *next_extent_map(struct extent_map *em) 6556 { 6557 struct rb_node *next; 6558 6559 next = rb_next(&em->rb_node); 6560 if (!next) 6561 return NULL; 6562 return container_of(next, struct extent_map, rb_node); 6563 } 6564 6565 static struct extent_map *prev_extent_map(struct extent_map *em) 6566 { 6567 struct rb_node *prev; 6568 6569 prev = rb_prev(&em->rb_node); 6570 if (!prev) 6571 return NULL; 6572 return container_of(prev, struct extent_map, rb_node); 6573 } 6574 6575 /* helper for btfs_get_extent. Given an existing extent in the tree, 6576 * the existing extent is the nearest extent to map_start, 6577 * and an extent that you want to insert, deal with overlap and insert 6578 * the best fitted new extent into the tree. 6579 */ 6580 static int merge_extent_mapping(struct extent_map_tree *em_tree, 6581 struct extent_map *existing, 6582 struct extent_map *em, 6583 u64 map_start) 6584 { 6585 struct extent_map *prev; 6586 struct extent_map *next; 6587 u64 start; 6588 u64 end; 6589 u64 start_diff; 6590 6591 BUG_ON(map_start < em->start || map_start >= extent_map_end(em)); 6592 6593 if (existing->start > map_start) { 6594 next = existing; 6595 prev = prev_extent_map(next); 6596 } else { 6597 prev = existing; 6598 next = next_extent_map(prev); 6599 } 6600 6601 start = prev ? extent_map_end(prev) : em->start; 6602 start = max_t(u64, start, em->start); 6603 end = next ? next->start : extent_map_end(em); 6604 end = min_t(u64, end, extent_map_end(em)); 6605 start_diff = start - em->start; 6606 em->start = start; 6607 em->len = end - start; 6608 if (em->block_start < EXTENT_MAP_LAST_BYTE && 6609 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 6610 em->block_start += start_diff; 6611 em->block_len -= start_diff; 6612 } 6613 return add_extent_mapping(em_tree, em, 0); 6614 } 6615 6616 static noinline int uncompress_inline(struct btrfs_path *path, 6617 struct inode *inode, struct page *page, 6618 size_t pg_offset, u64 extent_offset, 6619 struct btrfs_file_extent_item *item) 6620 { 6621 int ret; 6622 struct extent_buffer *leaf = path->nodes[0]; 6623 char *tmp; 6624 size_t max_size; 6625 unsigned long inline_size; 6626 unsigned long ptr; 6627 int compress_type; 6628 6629 WARN_ON(pg_offset != 0); 6630 compress_type = btrfs_file_extent_compression(leaf, item); 6631 max_size = btrfs_file_extent_ram_bytes(leaf, item); 6632 inline_size = btrfs_file_extent_inline_item_len(leaf, 6633 btrfs_item_nr(path->slots[0])); 6634 tmp = kmalloc(inline_size, GFP_NOFS); 6635 if (!tmp) 6636 return -ENOMEM; 6637 ptr = btrfs_file_extent_inline_start(item); 6638 6639 read_extent_buffer(leaf, tmp, ptr, inline_size); 6640 6641 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size); 6642 ret = btrfs_decompress(compress_type, tmp, page, 6643 extent_offset, inline_size, max_size); 6644 kfree(tmp); 6645 return ret; 6646 } 6647 6648 /* 6649 * a bit scary, this does extent mapping from logical file offset to the disk. 6650 * the ugly parts come from merging extents from the disk with the in-ram 6651 * representation. This gets more complex because of the data=ordered code, 6652 * where the in-ram extents might be locked pending data=ordered completion. 6653 * 6654 * This also copies inline extents directly into the page. 6655 */ 6656 6657 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page, 6658 size_t pg_offset, u64 start, u64 len, 6659 int create) 6660 { 6661 int ret; 6662 int err = 0; 6663 u64 extent_start = 0; 6664 u64 extent_end = 0; 6665 u64 objectid = btrfs_ino(inode); 6666 u32 found_type; 6667 struct btrfs_path *path = NULL; 6668 struct btrfs_root *root = BTRFS_I(inode)->root; 6669 struct btrfs_file_extent_item *item; 6670 struct extent_buffer *leaf; 6671 struct btrfs_key found_key; 6672 struct extent_map *em = NULL; 6673 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 6674 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 6675 struct btrfs_trans_handle *trans = NULL; 6676 const bool new_inline = !page || create; 6677 6678 again: 6679 read_lock(&em_tree->lock); 6680 em = lookup_extent_mapping(em_tree, start, len); 6681 if (em) 6682 em->bdev = root->fs_info->fs_devices->latest_bdev; 6683 read_unlock(&em_tree->lock); 6684 6685 if (em) { 6686 if (em->start > start || em->start + em->len <= start) 6687 free_extent_map(em); 6688 else if (em->block_start == EXTENT_MAP_INLINE && page) 6689 free_extent_map(em); 6690 else 6691 goto out; 6692 } 6693 em = alloc_extent_map(); 6694 if (!em) { 6695 err = -ENOMEM; 6696 goto out; 6697 } 6698 em->bdev = root->fs_info->fs_devices->latest_bdev; 6699 em->start = EXTENT_MAP_HOLE; 6700 em->orig_start = EXTENT_MAP_HOLE; 6701 em->len = (u64)-1; 6702 em->block_len = (u64)-1; 6703 6704 if (!path) { 6705 path = btrfs_alloc_path(); 6706 if (!path) { 6707 err = -ENOMEM; 6708 goto out; 6709 } 6710 /* 6711 * Chances are we'll be called again, so go ahead and do 6712 * readahead 6713 */ 6714 path->reada = 1; 6715 } 6716 6717 ret = btrfs_lookup_file_extent(trans, root, path, 6718 objectid, start, trans != NULL); 6719 if (ret < 0) { 6720 err = ret; 6721 goto out; 6722 } 6723 6724 if (ret != 0) { 6725 if (path->slots[0] == 0) 6726 goto not_found; 6727 path->slots[0]--; 6728 } 6729 6730 leaf = path->nodes[0]; 6731 item = btrfs_item_ptr(leaf, path->slots[0], 6732 struct btrfs_file_extent_item); 6733 /* are we inside the extent that was found? */ 6734 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6735 found_type = found_key.type; 6736 if (found_key.objectid != objectid || 6737 found_type != BTRFS_EXTENT_DATA_KEY) { 6738 /* 6739 * If we backup past the first extent we want to move forward 6740 * and see if there is an extent in front of us, otherwise we'll 6741 * say there is a hole for our whole search range which can 6742 * cause problems. 6743 */ 6744 extent_end = start; 6745 goto next; 6746 } 6747 6748 found_type = btrfs_file_extent_type(leaf, item); 6749 extent_start = found_key.offset; 6750 if (found_type == BTRFS_FILE_EXTENT_REG || 6751 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 6752 extent_end = extent_start + 6753 btrfs_file_extent_num_bytes(leaf, item); 6754 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 6755 size_t size; 6756 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item); 6757 extent_end = ALIGN(extent_start + size, root->sectorsize); 6758 } 6759 next: 6760 if (start >= extent_end) { 6761 path->slots[0]++; 6762 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 6763 ret = btrfs_next_leaf(root, path); 6764 if (ret < 0) { 6765 err = ret; 6766 goto out; 6767 } 6768 if (ret > 0) 6769 goto not_found; 6770 leaf = path->nodes[0]; 6771 } 6772 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6773 if (found_key.objectid != objectid || 6774 found_key.type != BTRFS_EXTENT_DATA_KEY) 6775 goto not_found; 6776 if (start + len <= found_key.offset) 6777 goto not_found; 6778 if (start > found_key.offset) 6779 goto next; 6780 em->start = start; 6781 em->orig_start = start; 6782 em->len = found_key.offset - start; 6783 goto not_found_em; 6784 } 6785 6786 btrfs_extent_item_to_extent_map(inode, path, item, new_inline, em); 6787 6788 if (found_type == BTRFS_FILE_EXTENT_REG || 6789 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 6790 goto insert; 6791 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 6792 unsigned long ptr; 6793 char *map; 6794 size_t size; 6795 size_t extent_offset; 6796 size_t copy_size; 6797 6798 if (new_inline) 6799 goto out; 6800 6801 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item); 6802 extent_offset = page_offset(page) + pg_offset - extent_start; 6803 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset, 6804 size - extent_offset); 6805 em->start = extent_start + extent_offset; 6806 em->len = ALIGN(copy_size, root->sectorsize); 6807 em->orig_block_len = em->len; 6808 em->orig_start = em->start; 6809 ptr = btrfs_file_extent_inline_start(item) + extent_offset; 6810 if (create == 0 && !PageUptodate(page)) { 6811 if (btrfs_file_extent_compression(leaf, item) != 6812 BTRFS_COMPRESS_NONE) { 6813 ret = uncompress_inline(path, inode, page, 6814 pg_offset, 6815 extent_offset, item); 6816 if (ret) { 6817 err = ret; 6818 goto out; 6819 } 6820 } else { 6821 map = kmap(page); 6822 read_extent_buffer(leaf, map + pg_offset, ptr, 6823 copy_size); 6824 if (pg_offset + copy_size < PAGE_CACHE_SIZE) { 6825 memset(map + pg_offset + copy_size, 0, 6826 PAGE_CACHE_SIZE - pg_offset - 6827 copy_size); 6828 } 6829 kunmap(page); 6830 } 6831 flush_dcache_page(page); 6832 } else if (create && PageUptodate(page)) { 6833 BUG(); 6834 if (!trans) { 6835 kunmap(page); 6836 free_extent_map(em); 6837 em = NULL; 6838 6839 btrfs_release_path(path); 6840 trans = btrfs_join_transaction(root); 6841 6842 if (IS_ERR(trans)) 6843 return ERR_CAST(trans); 6844 goto again; 6845 } 6846 map = kmap(page); 6847 write_extent_buffer(leaf, map + pg_offset, ptr, 6848 copy_size); 6849 kunmap(page); 6850 btrfs_mark_buffer_dirty(leaf); 6851 } 6852 set_extent_uptodate(io_tree, em->start, 6853 extent_map_end(em) - 1, NULL, GFP_NOFS); 6854 goto insert; 6855 } 6856 not_found: 6857 em->start = start; 6858 em->orig_start = start; 6859 em->len = len; 6860 not_found_em: 6861 em->block_start = EXTENT_MAP_HOLE; 6862 set_bit(EXTENT_FLAG_VACANCY, &em->flags); 6863 insert: 6864 btrfs_release_path(path); 6865 if (em->start > start || extent_map_end(em) <= start) { 6866 btrfs_err(root->fs_info, "bad extent! em: [%llu %llu] passed [%llu %llu]", 6867 em->start, em->len, start, len); 6868 err = -EIO; 6869 goto out; 6870 } 6871 6872 err = 0; 6873 write_lock(&em_tree->lock); 6874 ret = add_extent_mapping(em_tree, em, 0); 6875 /* it is possible that someone inserted the extent into the tree 6876 * while we had the lock dropped. It is also possible that 6877 * an overlapping map exists in the tree 6878 */ 6879 if (ret == -EEXIST) { 6880 struct extent_map *existing; 6881 6882 ret = 0; 6883 6884 existing = search_extent_mapping(em_tree, start, len); 6885 /* 6886 * existing will always be non-NULL, since there must be 6887 * extent causing the -EEXIST. 6888 */ 6889 if (start >= extent_map_end(existing) || 6890 start <= existing->start) { 6891 /* 6892 * The existing extent map is the one nearest to 6893 * the [start, start + len) range which overlaps 6894 */ 6895 err = merge_extent_mapping(em_tree, existing, 6896 em, start); 6897 free_extent_map(existing); 6898 if (err) { 6899 free_extent_map(em); 6900 em = NULL; 6901 } 6902 } else { 6903 free_extent_map(em); 6904 em = existing; 6905 err = 0; 6906 } 6907 } 6908 write_unlock(&em_tree->lock); 6909 out: 6910 6911 trace_btrfs_get_extent(root, em); 6912 6913 btrfs_free_path(path); 6914 if (trans) { 6915 ret = btrfs_end_transaction(trans, root); 6916 if (!err) 6917 err = ret; 6918 } 6919 if (err) { 6920 free_extent_map(em); 6921 return ERR_PTR(err); 6922 } 6923 BUG_ON(!em); /* Error is always set */ 6924 return em; 6925 } 6926 6927 struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page, 6928 size_t pg_offset, u64 start, u64 len, 6929 int create) 6930 { 6931 struct extent_map *em; 6932 struct extent_map *hole_em = NULL; 6933 u64 range_start = start; 6934 u64 end; 6935 u64 found; 6936 u64 found_end; 6937 int err = 0; 6938 6939 em = btrfs_get_extent(inode, page, pg_offset, start, len, create); 6940 if (IS_ERR(em)) 6941 return em; 6942 if (em) { 6943 /* 6944 * if our em maps to 6945 * - a hole or 6946 * - a pre-alloc extent, 6947 * there might actually be delalloc bytes behind it. 6948 */ 6949 if (em->block_start != EXTENT_MAP_HOLE && 6950 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 6951 return em; 6952 else 6953 hole_em = em; 6954 } 6955 6956 /* check to see if we've wrapped (len == -1 or similar) */ 6957 end = start + len; 6958 if (end < start) 6959 end = (u64)-1; 6960 else 6961 end -= 1; 6962 6963 em = NULL; 6964 6965 /* ok, we didn't find anything, lets look for delalloc */ 6966 found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start, 6967 end, len, EXTENT_DELALLOC, 1); 6968 found_end = range_start + found; 6969 if (found_end < range_start) 6970 found_end = (u64)-1; 6971 6972 /* 6973 * we didn't find anything useful, return 6974 * the original results from get_extent() 6975 */ 6976 if (range_start > end || found_end <= start) { 6977 em = hole_em; 6978 hole_em = NULL; 6979 goto out; 6980 } 6981 6982 /* adjust the range_start to make sure it doesn't 6983 * go backwards from the start they passed in 6984 */ 6985 range_start = max(start, range_start); 6986 found = found_end - range_start; 6987 6988 if (found > 0) { 6989 u64 hole_start = start; 6990 u64 hole_len = len; 6991 6992 em = alloc_extent_map(); 6993 if (!em) { 6994 err = -ENOMEM; 6995 goto out; 6996 } 6997 /* 6998 * when btrfs_get_extent can't find anything it 6999 * returns one huge hole 7000 * 7001 * make sure what it found really fits our range, and 7002 * adjust to make sure it is based on the start from 7003 * the caller 7004 */ 7005 if (hole_em) { 7006 u64 calc_end = extent_map_end(hole_em); 7007 7008 if (calc_end <= start || (hole_em->start > end)) { 7009 free_extent_map(hole_em); 7010 hole_em = NULL; 7011 } else { 7012 hole_start = max(hole_em->start, start); 7013 hole_len = calc_end - hole_start; 7014 } 7015 } 7016 em->bdev = NULL; 7017 if (hole_em && range_start > hole_start) { 7018 /* our hole starts before our delalloc, so we 7019 * have to return just the parts of the hole 7020 * that go until the delalloc starts 7021 */ 7022 em->len = min(hole_len, 7023 range_start - hole_start); 7024 em->start = hole_start; 7025 em->orig_start = hole_start; 7026 /* 7027 * don't adjust block start at all, 7028 * it is fixed at EXTENT_MAP_HOLE 7029 */ 7030 em->block_start = hole_em->block_start; 7031 em->block_len = hole_len; 7032 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags)) 7033 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 7034 } else { 7035 em->start = range_start; 7036 em->len = found; 7037 em->orig_start = range_start; 7038 em->block_start = EXTENT_MAP_DELALLOC; 7039 em->block_len = found; 7040 } 7041 } else if (hole_em) { 7042 return hole_em; 7043 } 7044 out: 7045 7046 free_extent_map(hole_em); 7047 if (err) { 7048 free_extent_map(em); 7049 return ERR_PTR(err); 7050 } 7051 return em; 7052 } 7053 7054 static struct extent_map *btrfs_new_extent_direct(struct inode *inode, 7055 u64 start, u64 len) 7056 { 7057 struct btrfs_root *root = BTRFS_I(inode)->root; 7058 struct extent_map *em; 7059 struct btrfs_key ins; 7060 u64 alloc_hint; 7061 int ret; 7062 7063 alloc_hint = get_extent_allocation_hint(inode, start, len); 7064 ret = btrfs_reserve_extent(root, len, root->sectorsize, 0, 7065 alloc_hint, &ins, 1, 1); 7066 if (ret) 7067 return ERR_PTR(ret); 7068 7069 em = create_pinned_em(inode, start, ins.offset, start, ins.objectid, 7070 ins.offset, ins.offset, ins.offset, 0); 7071 if (IS_ERR(em)) { 7072 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1); 7073 return em; 7074 } 7075 7076 ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid, 7077 ins.offset, ins.offset, 0); 7078 if (ret) { 7079 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1); 7080 free_extent_map(em); 7081 return ERR_PTR(ret); 7082 } 7083 7084 return em; 7085 } 7086 7087 /* 7088 * returns 1 when the nocow is safe, < 1 on error, 0 if the 7089 * block must be cow'd 7090 */ 7091 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len, 7092 u64 *orig_start, u64 *orig_block_len, 7093 u64 *ram_bytes) 7094 { 7095 struct btrfs_trans_handle *trans; 7096 struct btrfs_path *path; 7097 int ret; 7098 struct extent_buffer *leaf; 7099 struct btrfs_root *root = BTRFS_I(inode)->root; 7100 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 7101 struct btrfs_file_extent_item *fi; 7102 struct btrfs_key key; 7103 u64 disk_bytenr; 7104 u64 backref_offset; 7105 u64 extent_end; 7106 u64 num_bytes; 7107 int slot; 7108 int found_type; 7109 bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW); 7110 7111 path = btrfs_alloc_path(); 7112 if (!path) 7113 return -ENOMEM; 7114 7115 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), 7116 offset, 0); 7117 if (ret < 0) 7118 goto out; 7119 7120 slot = path->slots[0]; 7121 if (ret == 1) { 7122 if (slot == 0) { 7123 /* can't find the item, must cow */ 7124 ret = 0; 7125 goto out; 7126 } 7127 slot--; 7128 } 7129 ret = 0; 7130 leaf = path->nodes[0]; 7131 btrfs_item_key_to_cpu(leaf, &key, slot); 7132 if (key.objectid != btrfs_ino(inode) || 7133 key.type != BTRFS_EXTENT_DATA_KEY) { 7134 /* not our file or wrong item type, must cow */ 7135 goto out; 7136 } 7137 7138 if (key.offset > offset) { 7139 /* Wrong offset, must cow */ 7140 goto out; 7141 } 7142 7143 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 7144 found_type = btrfs_file_extent_type(leaf, fi); 7145 if (found_type != BTRFS_FILE_EXTENT_REG && 7146 found_type != BTRFS_FILE_EXTENT_PREALLOC) { 7147 /* not a regular extent, must cow */ 7148 goto out; 7149 } 7150 7151 if (!nocow && found_type == BTRFS_FILE_EXTENT_REG) 7152 goto out; 7153 7154 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 7155 if (extent_end <= offset) 7156 goto out; 7157 7158 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 7159 if (disk_bytenr == 0) 7160 goto out; 7161 7162 if (btrfs_file_extent_compression(leaf, fi) || 7163 btrfs_file_extent_encryption(leaf, fi) || 7164 btrfs_file_extent_other_encoding(leaf, fi)) 7165 goto out; 7166 7167 backref_offset = btrfs_file_extent_offset(leaf, fi); 7168 7169 if (orig_start) { 7170 *orig_start = key.offset - backref_offset; 7171 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi); 7172 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 7173 } 7174 7175 if (btrfs_extent_readonly(root, disk_bytenr)) 7176 goto out; 7177 7178 num_bytes = min(offset + *len, extent_end) - offset; 7179 if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) { 7180 u64 range_end; 7181 7182 range_end = round_up(offset + num_bytes, root->sectorsize) - 1; 7183 ret = test_range_bit(io_tree, offset, range_end, 7184 EXTENT_DELALLOC, 0, NULL); 7185 if (ret) { 7186 ret = -EAGAIN; 7187 goto out; 7188 } 7189 } 7190 7191 btrfs_release_path(path); 7192 7193 /* 7194 * look for other files referencing this extent, if we 7195 * find any we must cow 7196 */ 7197 trans = btrfs_join_transaction(root); 7198 if (IS_ERR(trans)) { 7199 ret = 0; 7200 goto out; 7201 } 7202 7203 ret = btrfs_cross_ref_exist(trans, root, btrfs_ino(inode), 7204 key.offset - backref_offset, disk_bytenr); 7205 btrfs_end_transaction(trans, root); 7206 if (ret) { 7207 ret = 0; 7208 goto out; 7209 } 7210 7211 /* 7212 * adjust disk_bytenr and num_bytes to cover just the bytes 7213 * in this extent we are about to write. If there 7214 * are any csums in that range we have to cow in order 7215 * to keep the csums correct 7216 */ 7217 disk_bytenr += backref_offset; 7218 disk_bytenr += offset - key.offset; 7219 if (csum_exist_in_range(root, disk_bytenr, num_bytes)) 7220 goto out; 7221 /* 7222 * all of the above have passed, it is safe to overwrite this extent 7223 * without cow 7224 */ 7225 *len = num_bytes; 7226 ret = 1; 7227 out: 7228 btrfs_free_path(path); 7229 return ret; 7230 } 7231 7232 bool btrfs_page_exists_in_range(struct inode *inode, loff_t start, loff_t end) 7233 { 7234 struct radix_tree_root *root = &inode->i_mapping->page_tree; 7235 int found = false; 7236 void **pagep = NULL; 7237 struct page *page = NULL; 7238 int start_idx; 7239 int end_idx; 7240 7241 start_idx = start >> PAGE_CACHE_SHIFT; 7242 7243 /* 7244 * end is the last byte in the last page. end == start is legal 7245 */ 7246 end_idx = end >> PAGE_CACHE_SHIFT; 7247 7248 rcu_read_lock(); 7249 7250 /* Most of the code in this while loop is lifted from 7251 * find_get_page. It's been modified to begin searching from a 7252 * page and return just the first page found in that range. If the 7253 * found idx is less than or equal to the end idx then we know that 7254 * a page exists. If no pages are found or if those pages are 7255 * outside of the range then we're fine (yay!) */ 7256 while (page == NULL && 7257 radix_tree_gang_lookup_slot(root, &pagep, NULL, start_idx, 1)) { 7258 page = radix_tree_deref_slot(pagep); 7259 if (unlikely(!page)) 7260 break; 7261 7262 if (radix_tree_exception(page)) { 7263 if (radix_tree_deref_retry(page)) { 7264 page = NULL; 7265 continue; 7266 } 7267 /* 7268 * Otherwise, shmem/tmpfs must be storing a swap entry 7269 * here as an exceptional entry: so return it without 7270 * attempting to raise page count. 7271 */ 7272 page = NULL; 7273 break; /* TODO: Is this relevant for this use case? */ 7274 } 7275 7276 if (!page_cache_get_speculative(page)) { 7277 page = NULL; 7278 continue; 7279 } 7280 7281 /* 7282 * Has the page moved? 7283 * This is part of the lockless pagecache protocol. See 7284 * include/linux/pagemap.h for details. 7285 */ 7286 if (unlikely(page != *pagep)) { 7287 page_cache_release(page); 7288 page = NULL; 7289 } 7290 } 7291 7292 if (page) { 7293 if (page->index <= end_idx) 7294 found = true; 7295 page_cache_release(page); 7296 } 7297 7298 rcu_read_unlock(); 7299 return found; 7300 } 7301 7302 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend, 7303 struct extent_state **cached_state, int writing) 7304 { 7305 struct btrfs_ordered_extent *ordered; 7306 int ret = 0; 7307 7308 while (1) { 7309 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7310 0, cached_state); 7311 /* 7312 * We're concerned with the entire range that we're going to be 7313 * doing DIO to, so we need to make sure theres no ordered 7314 * extents in this range. 7315 */ 7316 ordered = btrfs_lookup_ordered_range(inode, lockstart, 7317 lockend - lockstart + 1); 7318 7319 /* 7320 * We need to make sure there are no buffered pages in this 7321 * range either, we could have raced between the invalidate in 7322 * generic_file_direct_write and locking the extent. The 7323 * invalidate needs to happen so that reads after a write do not 7324 * get stale data. 7325 */ 7326 if (!ordered && 7327 (!writing || 7328 !btrfs_page_exists_in_range(inode, lockstart, lockend))) 7329 break; 7330 7331 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7332 cached_state, GFP_NOFS); 7333 7334 if (ordered) { 7335 btrfs_start_ordered_extent(inode, ordered, 1); 7336 btrfs_put_ordered_extent(ordered); 7337 } else { 7338 /* Screw you mmap */ 7339 ret = btrfs_fdatawrite_range(inode, lockstart, lockend); 7340 if (ret) 7341 break; 7342 ret = filemap_fdatawait_range(inode->i_mapping, 7343 lockstart, 7344 lockend); 7345 if (ret) 7346 break; 7347 7348 /* 7349 * If we found a page that couldn't be invalidated just 7350 * fall back to buffered. 7351 */ 7352 ret = invalidate_inode_pages2_range(inode->i_mapping, 7353 lockstart >> PAGE_CACHE_SHIFT, 7354 lockend >> PAGE_CACHE_SHIFT); 7355 if (ret) 7356 break; 7357 } 7358 7359 cond_resched(); 7360 } 7361 7362 return ret; 7363 } 7364 7365 static struct extent_map *create_pinned_em(struct inode *inode, u64 start, 7366 u64 len, u64 orig_start, 7367 u64 block_start, u64 block_len, 7368 u64 orig_block_len, u64 ram_bytes, 7369 int type) 7370 { 7371 struct extent_map_tree *em_tree; 7372 struct extent_map *em; 7373 struct btrfs_root *root = BTRFS_I(inode)->root; 7374 int ret; 7375 7376 em_tree = &BTRFS_I(inode)->extent_tree; 7377 em = alloc_extent_map(); 7378 if (!em) 7379 return ERR_PTR(-ENOMEM); 7380 7381 em->start = start; 7382 em->orig_start = orig_start; 7383 em->mod_start = start; 7384 em->mod_len = len; 7385 em->len = len; 7386 em->block_len = block_len; 7387 em->block_start = block_start; 7388 em->bdev = root->fs_info->fs_devices->latest_bdev; 7389 em->orig_block_len = orig_block_len; 7390 em->ram_bytes = ram_bytes; 7391 em->generation = -1; 7392 set_bit(EXTENT_FLAG_PINNED, &em->flags); 7393 if (type == BTRFS_ORDERED_PREALLOC) 7394 set_bit(EXTENT_FLAG_FILLING, &em->flags); 7395 7396 do { 7397 btrfs_drop_extent_cache(inode, em->start, 7398 em->start + em->len - 1, 0); 7399 write_lock(&em_tree->lock); 7400 ret = add_extent_mapping(em_tree, em, 1); 7401 write_unlock(&em_tree->lock); 7402 } while (ret == -EEXIST); 7403 7404 if (ret) { 7405 free_extent_map(em); 7406 return ERR_PTR(ret); 7407 } 7408 7409 return em; 7410 } 7411 7412 struct btrfs_dio_data { 7413 u64 outstanding_extents; 7414 u64 reserve; 7415 }; 7416 7417 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock, 7418 struct buffer_head *bh_result, int create) 7419 { 7420 struct extent_map *em; 7421 struct btrfs_root *root = BTRFS_I(inode)->root; 7422 struct extent_state *cached_state = NULL; 7423 struct btrfs_dio_data *dio_data = NULL; 7424 u64 start = iblock << inode->i_blkbits; 7425 u64 lockstart, lockend; 7426 u64 len = bh_result->b_size; 7427 int unlock_bits = EXTENT_LOCKED; 7428 int ret = 0; 7429 7430 if (create) 7431 unlock_bits |= EXTENT_DIRTY; 7432 else 7433 len = min_t(u64, len, root->sectorsize); 7434 7435 lockstart = start; 7436 lockend = start + len - 1; 7437 7438 if (current->journal_info) { 7439 /* 7440 * Need to pull our outstanding extents and set journal_info to NULL so 7441 * that anything that needs to check if there's a transction doesn't get 7442 * confused. 7443 */ 7444 dio_data = current->journal_info; 7445 current->journal_info = NULL; 7446 } 7447 7448 /* 7449 * If this errors out it's because we couldn't invalidate pagecache for 7450 * this range and we need to fallback to buffered. 7451 */ 7452 if (lock_extent_direct(inode, lockstart, lockend, &cached_state, create)) 7453 return -ENOTBLK; 7454 7455 em = btrfs_get_extent(inode, NULL, 0, start, len, 0); 7456 if (IS_ERR(em)) { 7457 ret = PTR_ERR(em); 7458 goto unlock_err; 7459 } 7460 7461 /* 7462 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered 7463 * io. INLINE is special, and we could probably kludge it in here, but 7464 * it's still buffered so for safety lets just fall back to the generic 7465 * buffered path. 7466 * 7467 * For COMPRESSED we _have_ to read the entire extent in so we can 7468 * decompress it, so there will be buffering required no matter what we 7469 * do, so go ahead and fallback to buffered. 7470 * 7471 * We return -ENOTBLK because thats what makes DIO go ahead and go back 7472 * to buffered IO. Don't blame me, this is the price we pay for using 7473 * the generic code. 7474 */ 7475 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) || 7476 em->block_start == EXTENT_MAP_INLINE) { 7477 free_extent_map(em); 7478 ret = -ENOTBLK; 7479 goto unlock_err; 7480 } 7481 7482 /* Just a good old fashioned hole, return */ 7483 if (!create && (em->block_start == EXTENT_MAP_HOLE || 7484 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) { 7485 free_extent_map(em); 7486 goto unlock_err; 7487 } 7488 7489 /* 7490 * We don't allocate a new extent in the following cases 7491 * 7492 * 1) The inode is marked as NODATACOW. In this case we'll just use the 7493 * existing extent. 7494 * 2) The extent is marked as PREALLOC. We're good to go here and can 7495 * just use the extent. 7496 * 7497 */ 7498 if (!create) { 7499 len = min(len, em->len - (start - em->start)); 7500 lockstart = start + len; 7501 goto unlock; 7502 } 7503 7504 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) || 7505 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) && 7506 em->block_start != EXTENT_MAP_HOLE)) { 7507 int type; 7508 u64 block_start, orig_start, orig_block_len, ram_bytes; 7509 7510 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 7511 type = BTRFS_ORDERED_PREALLOC; 7512 else 7513 type = BTRFS_ORDERED_NOCOW; 7514 len = min(len, em->len - (start - em->start)); 7515 block_start = em->block_start + (start - em->start); 7516 7517 if (can_nocow_extent(inode, start, &len, &orig_start, 7518 &orig_block_len, &ram_bytes) == 1) { 7519 if (type == BTRFS_ORDERED_PREALLOC) { 7520 free_extent_map(em); 7521 em = create_pinned_em(inode, start, len, 7522 orig_start, 7523 block_start, len, 7524 orig_block_len, 7525 ram_bytes, type); 7526 if (IS_ERR(em)) { 7527 ret = PTR_ERR(em); 7528 goto unlock_err; 7529 } 7530 } 7531 7532 ret = btrfs_add_ordered_extent_dio(inode, start, 7533 block_start, len, len, type); 7534 if (ret) { 7535 free_extent_map(em); 7536 goto unlock_err; 7537 } 7538 goto unlock; 7539 } 7540 } 7541 7542 /* 7543 * this will cow the extent, reset the len in case we changed 7544 * it above 7545 */ 7546 len = bh_result->b_size; 7547 free_extent_map(em); 7548 em = btrfs_new_extent_direct(inode, start, len); 7549 if (IS_ERR(em)) { 7550 ret = PTR_ERR(em); 7551 goto unlock_err; 7552 } 7553 len = min(len, em->len - (start - em->start)); 7554 unlock: 7555 bh_result->b_blocknr = (em->block_start + (start - em->start)) >> 7556 inode->i_blkbits; 7557 bh_result->b_size = len; 7558 bh_result->b_bdev = em->bdev; 7559 set_buffer_mapped(bh_result); 7560 if (create) { 7561 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 7562 set_buffer_new(bh_result); 7563 7564 /* 7565 * Need to update the i_size under the extent lock so buffered 7566 * readers will get the updated i_size when we unlock. 7567 */ 7568 if (start + len > i_size_read(inode)) 7569 i_size_write(inode, start + len); 7570 7571 /* 7572 * If we have an outstanding_extents count still set then we're 7573 * within our reservation, otherwise we need to adjust our inode 7574 * counter appropriately. 7575 */ 7576 if (dio_data->outstanding_extents) { 7577 (dio_data->outstanding_extents)--; 7578 } else { 7579 spin_lock(&BTRFS_I(inode)->lock); 7580 BTRFS_I(inode)->outstanding_extents++; 7581 spin_unlock(&BTRFS_I(inode)->lock); 7582 } 7583 7584 btrfs_free_reserved_data_space(inode, len); 7585 WARN_ON(dio_data->reserve < len); 7586 dio_data->reserve -= len; 7587 current->journal_info = dio_data; 7588 } 7589 7590 /* 7591 * In the case of write we need to clear and unlock the entire range, 7592 * in the case of read we need to unlock only the end area that we 7593 * aren't using if there is any left over space. 7594 */ 7595 if (lockstart < lockend) { 7596 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, 7597 lockend, unlock_bits, 1, 0, 7598 &cached_state, GFP_NOFS); 7599 } else { 7600 free_extent_state(cached_state); 7601 } 7602 7603 free_extent_map(em); 7604 7605 return 0; 7606 7607 unlock_err: 7608 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7609 unlock_bits, 1, 0, &cached_state, GFP_NOFS); 7610 if (dio_data) 7611 current->journal_info = dio_data; 7612 return ret; 7613 } 7614 7615 static inline int submit_dio_repair_bio(struct inode *inode, struct bio *bio, 7616 int rw, int mirror_num) 7617 { 7618 struct btrfs_root *root = BTRFS_I(inode)->root; 7619 int ret; 7620 7621 BUG_ON(rw & REQ_WRITE); 7622 7623 bio_get(bio); 7624 7625 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 7626 BTRFS_WQ_ENDIO_DIO_REPAIR); 7627 if (ret) 7628 goto err; 7629 7630 ret = btrfs_map_bio(root, rw, bio, mirror_num, 0); 7631 err: 7632 bio_put(bio); 7633 return ret; 7634 } 7635 7636 static int btrfs_check_dio_repairable(struct inode *inode, 7637 struct bio *failed_bio, 7638 struct io_failure_record *failrec, 7639 int failed_mirror) 7640 { 7641 int num_copies; 7642 7643 num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info, 7644 failrec->logical, failrec->len); 7645 if (num_copies == 1) { 7646 /* 7647 * we only have a single copy of the data, so don't bother with 7648 * all the retry and error correction code that follows. no 7649 * matter what the error is, it is very likely to persist. 7650 */ 7651 pr_debug("Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n", 7652 num_copies, failrec->this_mirror, failed_mirror); 7653 return 0; 7654 } 7655 7656 failrec->failed_mirror = failed_mirror; 7657 failrec->this_mirror++; 7658 if (failrec->this_mirror == failed_mirror) 7659 failrec->this_mirror++; 7660 7661 if (failrec->this_mirror > num_copies) { 7662 pr_debug("Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n", 7663 num_copies, failrec->this_mirror, failed_mirror); 7664 return 0; 7665 } 7666 7667 return 1; 7668 } 7669 7670 static int dio_read_error(struct inode *inode, struct bio *failed_bio, 7671 struct page *page, u64 start, u64 end, 7672 int failed_mirror, bio_end_io_t *repair_endio, 7673 void *repair_arg) 7674 { 7675 struct io_failure_record *failrec; 7676 struct bio *bio; 7677 int isector; 7678 int read_mode; 7679 int ret; 7680 7681 BUG_ON(failed_bio->bi_rw & REQ_WRITE); 7682 7683 ret = btrfs_get_io_failure_record(inode, start, end, &failrec); 7684 if (ret) 7685 return ret; 7686 7687 ret = btrfs_check_dio_repairable(inode, failed_bio, failrec, 7688 failed_mirror); 7689 if (!ret) { 7690 free_io_failure(inode, failrec); 7691 return -EIO; 7692 } 7693 7694 if (failed_bio->bi_vcnt > 1) 7695 read_mode = READ_SYNC | REQ_FAILFAST_DEV; 7696 else 7697 read_mode = READ_SYNC; 7698 7699 isector = start - btrfs_io_bio(failed_bio)->logical; 7700 isector >>= inode->i_sb->s_blocksize_bits; 7701 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page, 7702 0, isector, repair_endio, repair_arg); 7703 if (!bio) { 7704 free_io_failure(inode, failrec); 7705 return -EIO; 7706 } 7707 7708 btrfs_debug(BTRFS_I(inode)->root->fs_info, 7709 "Repair DIO Read Error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d\n", 7710 read_mode, failrec->this_mirror, failrec->in_validation); 7711 7712 ret = submit_dio_repair_bio(inode, bio, read_mode, 7713 failrec->this_mirror); 7714 if (ret) { 7715 free_io_failure(inode, failrec); 7716 bio_put(bio); 7717 } 7718 7719 return ret; 7720 } 7721 7722 struct btrfs_retry_complete { 7723 struct completion done; 7724 struct inode *inode; 7725 u64 start; 7726 int uptodate; 7727 }; 7728 7729 static void btrfs_retry_endio_nocsum(struct bio *bio) 7730 { 7731 struct btrfs_retry_complete *done = bio->bi_private; 7732 struct bio_vec *bvec; 7733 int i; 7734 7735 if (bio->bi_error) 7736 goto end; 7737 7738 done->uptodate = 1; 7739 bio_for_each_segment_all(bvec, bio, i) 7740 clean_io_failure(done->inode, done->start, bvec->bv_page, 0); 7741 end: 7742 complete(&done->done); 7743 bio_put(bio); 7744 } 7745 7746 static int __btrfs_correct_data_nocsum(struct inode *inode, 7747 struct btrfs_io_bio *io_bio) 7748 { 7749 struct bio_vec *bvec; 7750 struct btrfs_retry_complete done; 7751 u64 start; 7752 int i; 7753 int ret; 7754 7755 start = io_bio->logical; 7756 done.inode = inode; 7757 7758 bio_for_each_segment_all(bvec, &io_bio->bio, i) { 7759 try_again: 7760 done.uptodate = 0; 7761 done.start = start; 7762 init_completion(&done.done); 7763 7764 ret = dio_read_error(inode, &io_bio->bio, bvec->bv_page, start, 7765 start + bvec->bv_len - 1, 7766 io_bio->mirror_num, 7767 btrfs_retry_endio_nocsum, &done); 7768 if (ret) 7769 return ret; 7770 7771 wait_for_completion(&done.done); 7772 7773 if (!done.uptodate) { 7774 /* We might have another mirror, so try again */ 7775 goto try_again; 7776 } 7777 7778 start += bvec->bv_len; 7779 } 7780 7781 return 0; 7782 } 7783 7784 static void btrfs_retry_endio(struct bio *bio) 7785 { 7786 struct btrfs_retry_complete *done = bio->bi_private; 7787 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio); 7788 struct bio_vec *bvec; 7789 int uptodate; 7790 int ret; 7791 int i; 7792 7793 if (bio->bi_error) 7794 goto end; 7795 7796 uptodate = 1; 7797 bio_for_each_segment_all(bvec, bio, i) { 7798 ret = __readpage_endio_check(done->inode, io_bio, i, 7799 bvec->bv_page, 0, 7800 done->start, bvec->bv_len); 7801 if (!ret) 7802 clean_io_failure(done->inode, done->start, 7803 bvec->bv_page, 0); 7804 else 7805 uptodate = 0; 7806 } 7807 7808 done->uptodate = uptodate; 7809 end: 7810 complete(&done->done); 7811 bio_put(bio); 7812 } 7813 7814 static int __btrfs_subio_endio_read(struct inode *inode, 7815 struct btrfs_io_bio *io_bio, int err) 7816 { 7817 struct bio_vec *bvec; 7818 struct btrfs_retry_complete done; 7819 u64 start; 7820 u64 offset = 0; 7821 int i; 7822 int ret; 7823 7824 err = 0; 7825 start = io_bio->logical; 7826 done.inode = inode; 7827 7828 bio_for_each_segment_all(bvec, &io_bio->bio, i) { 7829 ret = __readpage_endio_check(inode, io_bio, i, bvec->bv_page, 7830 0, start, bvec->bv_len); 7831 if (likely(!ret)) 7832 goto next; 7833 try_again: 7834 done.uptodate = 0; 7835 done.start = start; 7836 init_completion(&done.done); 7837 7838 ret = dio_read_error(inode, &io_bio->bio, bvec->bv_page, start, 7839 start + bvec->bv_len - 1, 7840 io_bio->mirror_num, 7841 btrfs_retry_endio, &done); 7842 if (ret) { 7843 err = ret; 7844 goto next; 7845 } 7846 7847 wait_for_completion(&done.done); 7848 7849 if (!done.uptodate) { 7850 /* We might have another mirror, so try again */ 7851 goto try_again; 7852 } 7853 next: 7854 offset += bvec->bv_len; 7855 start += bvec->bv_len; 7856 } 7857 7858 return err; 7859 } 7860 7861 static int btrfs_subio_endio_read(struct inode *inode, 7862 struct btrfs_io_bio *io_bio, int err) 7863 { 7864 bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 7865 7866 if (skip_csum) { 7867 if (unlikely(err)) 7868 return __btrfs_correct_data_nocsum(inode, io_bio); 7869 else 7870 return 0; 7871 } else { 7872 return __btrfs_subio_endio_read(inode, io_bio, err); 7873 } 7874 } 7875 7876 static void btrfs_endio_direct_read(struct bio *bio) 7877 { 7878 struct btrfs_dio_private *dip = bio->bi_private; 7879 struct inode *inode = dip->inode; 7880 struct bio *dio_bio; 7881 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio); 7882 int err = bio->bi_error; 7883 7884 if (dip->flags & BTRFS_DIO_ORIG_BIO_SUBMITTED) 7885 err = btrfs_subio_endio_read(inode, io_bio, err); 7886 7887 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset, 7888 dip->logical_offset + dip->bytes - 1); 7889 dio_bio = dip->dio_bio; 7890 7891 kfree(dip); 7892 7893 dio_end_io(dio_bio, bio->bi_error); 7894 7895 if (io_bio->end_io) 7896 io_bio->end_io(io_bio, err); 7897 bio_put(bio); 7898 } 7899 7900 static void btrfs_endio_direct_write(struct bio *bio) 7901 { 7902 struct btrfs_dio_private *dip = bio->bi_private; 7903 struct inode *inode = dip->inode; 7904 struct btrfs_root *root = BTRFS_I(inode)->root; 7905 struct btrfs_ordered_extent *ordered = NULL; 7906 u64 ordered_offset = dip->logical_offset; 7907 u64 ordered_bytes = dip->bytes; 7908 struct bio *dio_bio; 7909 int ret; 7910 7911 again: 7912 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered, 7913 &ordered_offset, 7914 ordered_bytes, 7915 !bio->bi_error); 7916 if (!ret) 7917 goto out_test; 7918 7919 btrfs_init_work(&ordered->work, btrfs_endio_write_helper, 7920 finish_ordered_fn, NULL, NULL); 7921 btrfs_queue_work(root->fs_info->endio_write_workers, 7922 &ordered->work); 7923 out_test: 7924 /* 7925 * our bio might span multiple ordered extents. If we haven't 7926 * completed the accounting for the whole dio, go back and try again 7927 */ 7928 if (ordered_offset < dip->logical_offset + dip->bytes) { 7929 ordered_bytes = dip->logical_offset + dip->bytes - 7930 ordered_offset; 7931 ordered = NULL; 7932 goto again; 7933 } 7934 dio_bio = dip->dio_bio; 7935 7936 kfree(dip); 7937 7938 dio_end_io(dio_bio, bio->bi_error); 7939 bio_put(bio); 7940 } 7941 7942 static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw, 7943 struct bio *bio, int mirror_num, 7944 unsigned long bio_flags, u64 offset) 7945 { 7946 int ret; 7947 struct btrfs_root *root = BTRFS_I(inode)->root; 7948 ret = btrfs_csum_one_bio(root, inode, bio, offset, 1); 7949 BUG_ON(ret); /* -ENOMEM */ 7950 return 0; 7951 } 7952 7953 static void btrfs_end_dio_bio(struct bio *bio) 7954 { 7955 struct btrfs_dio_private *dip = bio->bi_private; 7956 int err = bio->bi_error; 7957 7958 if (err) 7959 btrfs_warn(BTRFS_I(dip->inode)->root->fs_info, 7960 "direct IO failed ino %llu rw %lu sector %#Lx len %u err no %d", 7961 btrfs_ino(dip->inode), bio->bi_rw, 7962 (unsigned long long)bio->bi_iter.bi_sector, 7963 bio->bi_iter.bi_size, err); 7964 7965 if (dip->subio_endio) 7966 err = dip->subio_endio(dip->inode, btrfs_io_bio(bio), err); 7967 7968 if (err) { 7969 dip->errors = 1; 7970 7971 /* 7972 * before atomic variable goto zero, we must make sure 7973 * dip->errors is perceived to be set. 7974 */ 7975 smp_mb__before_atomic(); 7976 } 7977 7978 /* if there are more bios still pending for this dio, just exit */ 7979 if (!atomic_dec_and_test(&dip->pending_bios)) 7980 goto out; 7981 7982 if (dip->errors) { 7983 bio_io_error(dip->orig_bio); 7984 } else { 7985 dip->dio_bio->bi_error = 0; 7986 bio_endio(dip->orig_bio); 7987 } 7988 out: 7989 bio_put(bio); 7990 } 7991 7992 static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev, 7993 u64 first_sector, gfp_t gfp_flags) 7994 { 7995 struct bio *bio; 7996 bio = btrfs_bio_alloc(bdev, first_sector, BIO_MAX_PAGES, gfp_flags); 7997 if (bio) 7998 bio_associate_current(bio); 7999 return bio; 8000 } 8001 8002 static inline int btrfs_lookup_and_bind_dio_csum(struct btrfs_root *root, 8003 struct inode *inode, 8004 struct btrfs_dio_private *dip, 8005 struct bio *bio, 8006 u64 file_offset) 8007 { 8008 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio); 8009 struct btrfs_io_bio *orig_io_bio = btrfs_io_bio(dip->orig_bio); 8010 int ret; 8011 8012 /* 8013 * We load all the csum data we need when we submit 8014 * the first bio to reduce the csum tree search and 8015 * contention. 8016 */ 8017 if (dip->logical_offset == file_offset) { 8018 ret = btrfs_lookup_bio_sums_dio(root, inode, dip->orig_bio, 8019 file_offset); 8020 if (ret) 8021 return ret; 8022 } 8023 8024 if (bio == dip->orig_bio) 8025 return 0; 8026 8027 file_offset -= dip->logical_offset; 8028 file_offset >>= inode->i_sb->s_blocksize_bits; 8029 io_bio->csum = (u8 *)(((u32 *)orig_io_bio->csum) + file_offset); 8030 8031 return 0; 8032 } 8033 8034 static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode, 8035 int rw, u64 file_offset, int skip_sum, 8036 int async_submit) 8037 { 8038 struct btrfs_dio_private *dip = bio->bi_private; 8039 int write = rw & REQ_WRITE; 8040 struct btrfs_root *root = BTRFS_I(inode)->root; 8041 int ret; 8042 8043 if (async_submit) 8044 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers); 8045 8046 bio_get(bio); 8047 8048 if (!write) { 8049 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 8050 BTRFS_WQ_ENDIO_DATA); 8051 if (ret) 8052 goto err; 8053 } 8054 8055 if (skip_sum) 8056 goto map; 8057 8058 if (write && async_submit) { 8059 ret = btrfs_wq_submit_bio(root->fs_info, 8060 inode, rw, bio, 0, 0, 8061 file_offset, 8062 __btrfs_submit_bio_start_direct_io, 8063 __btrfs_submit_bio_done); 8064 goto err; 8065 } else if (write) { 8066 /* 8067 * If we aren't doing async submit, calculate the csum of the 8068 * bio now. 8069 */ 8070 ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1); 8071 if (ret) 8072 goto err; 8073 } else { 8074 ret = btrfs_lookup_and_bind_dio_csum(root, inode, dip, bio, 8075 file_offset); 8076 if (ret) 8077 goto err; 8078 } 8079 map: 8080 ret = btrfs_map_bio(root, rw, bio, 0, async_submit); 8081 err: 8082 bio_put(bio); 8083 return ret; 8084 } 8085 8086 static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip, 8087 int skip_sum) 8088 { 8089 struct inode *inode = dip->inode; 8090 struct btrfs_root *root = BTRFS_I(inode)->root; 8091 struct bio *bio; 8092 struct bio *orig_bio = dip->orig_bio; 8093 struct bio_vec *bvec = orig_bio->bi_io_vec; 8094 u64 start_sector = orig_bio->bi_iter.bi_sector; 8095 u64 file_offset = dip->logical_offset; 8096 u64 submit_len = 0; 8097 u64 map_length; 8098 int nr_pages = 0; 8099 int ret; 8100 int async_submit = 0; 8101 8102 map_length = orig_bio->bi_iter.bi_size; 8103 ret = btrfs_map_block(root->fs_info, rw, start_sector << 9, 8104 &map_length, NULL, 0); 8105 if (ret) 8106 return -EIO; 8107 8108 if (map_length >= orig_bio->bi_iter.bi_size) { 8109 bio = orig_bio; 8110 dip->flags |= BTRFS_DIO_ORIG_BIO_SUBMITTED; 8111 goto submit; 8112 } 8113 8114 /* async crcs make it difficult to collect full stripe writes. */ 8115 if (btrfs_get_alloc_profile(root, 1) & BTRFS_BLOCK_GROUP_RAID56_MASK) 8116 async_submit = 0; 8117 else 8118 async_submit = 1; 8119 8120 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS); 8121 if (!bio) 8122 return -ENOMEM; 8123 8124 bio->bi_private = dip; 8125 bio->bi_end_io = btrfs_end_dio_bio; 8126 btrfs_io_bio(bio)->logical = file_offset; 8127 atomic_inc(&dip->pending_bios); 8128 8129 while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) { 8130 if (map_length < submit_len + bvec->bv_len || 8131 bio_add_page(bio, bvec->bv_page, bvec->bv_len, 8132 bvec->bv_offset) < bvec->bv_len) { 8133 /* 8134 * inc the count before we submit the bio so 8135 * we know the end IO handler won't happen before 8136 * we inc the count. Otherwise, the dip might get freed 8137 * before we're done setting it up 8138 */ 8139 atomic_inc(&dip->pending_bios); 8140 ret = __btrfs_submit_dio_bio(bio, inode, rw, 8141 file_offset, skip_sum, 8142 async_submit); 8143 if (ret) { 8144 bio_put(bio); 8145 atomic_dec(&dip->pending_bios); 8146 goto out_err; 8147 } 8148 8149 start_sector += submit_len >> 9; 8150 file_offset += submit_len; 8151 8152 submit_len = 0; 8153 nr_pages = 0; 8154 8155 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, 8156 start_sector, GFP_NOFS); 8157 if (!bio) 8158 goto out_err; 8159 bio->bi_private = dip; 8160 bio->bi_end_io = btrfs_end_dio_bio; 8161 btrfs_io_bio(bio)->logical = file_offset; 8162 8163 map_length = orig_bio->bi_iter.bi_size; 8164 ret = btrfs_map_block(root->fs_info, rw, 8165 start_sector << 9, 8166 &map_length, NULL, 0); 8167 if (ret) { 8168 bio_put(bio); 8169 goto out_err; 8170 } 8171 } else { 8172 submit_len += bvec->bv_len; 8173 nr_pages++; 8174 bvec++; 8175 } 8176 } 8177 8178 submit: 8179 ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum, 8180 async_submit); 8181 if (!ret) 8182 return 0; 8183 8184 bio_put(bio); 8185 out_err: 8186 dip->errors = 1; 8187 /* 8188 * before atomic variable goto zero, we must 8189 * make sure dip->errors is perceived to be set. 8190 */ 8191 smp_mb__before_atomic(); 8192 if (atomic_dec_and_test(&dip->pending_bios)) 8193 bio_io_error(dip->orig_bio); 8194 8195 /* bio_end_io() will handle error, so we needn't return it */ 8196 return 0; 8197 } 8198 8199 static void btrfs_submit_direct(int rw, struct bio *dio_bio, 8200 struct inode *inode, loff_t file_offset) 8201 { 8202 struct btrfs_dio_private *dip = NULL; 8203 struct bio *io_bio = NULL; 8204 struct btrfs_io_bio *btrfs_bio; 8205 int skip_sum; 8206 int write = rw & REQ_WRITE; 8207 int ret = 0; 8208 8209 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 8210 8211 io_bio = btrfs_bio_clone(dio_bio, GFP_NOFS); 8212 if (!io_bio) { 8213 ret = -ENOMEM; 8214 goto free_ordered; 8215 } 8216 8217 dip = kzalloc(sizeof(*dip), GFP_NOFS); 8218 if (!dip) { 8219 ret = -ENOMEM; 8220 goto free_ordered; 8221 } 8222 8223 dip->private = dio_bio->bi_private; 8224 dip->inode = inode; 8225 dip->logical_offset = file_offset; 8226 dip->bytes = dio_bio->bi_iter.bi_size; 8227 dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9; 8228 io_bio->bi_private = dip; 8229 dip->orig_bio = io_bio; 8230 dip->dio_bio = dio_bio; 8231 atomic_set(&dip->pending_bios, 0); 8232 btrfs_bio = btrfs_io_bio(io_bio); 8233 btrfs_bio->logical = file_offset; 8234 8235 if (write) { 8236 io_bio->bi_end_io = btrfs_endio_direct_write; 8237 } else { 8238 io_bio->bi_end_io = btrfs_endio_direct_read; 8239 dip->subio_endio = btrfs_subio_endio_read; 8240 } 8241 8242 ret = btrfs_submit_direct_hook(rw, dip, skip_sum); 8243 if (!ret) 8244 return; 8245 8246 if (btrfs_bio->end_io) 8247 btrfs_bio->end_io(btrfs_bio, ret); 8248 8249 free_ordered: 8250 /* 8251 * If we arrived here it means either we failed to submit the dip 8252 * or we either failed to clone the dio_bio or failed to allocate the 8253 * dip. If we cloned the dio_bio and allocated the dip, we can just 8254 * call bio_endio against our io_bio so that we get proper resource 8255 * cleanup if we fail to submit the dip, otherwise, we must do the 8256 * same as btrfs_endio_direct_[write|read] because we can't call these 8257 * callbacks - they require an allocated dip and a clone of dio_bio. 8258 */ 8259 if (io_bio && dip) { 8260 io_bio->bi_error = -EIO; 8261 bio_endio(io_bio); 8262 /* 8263 * The end io callbacks free our dip, do the final put on io_bio 8264 * and all the cleanup and final put for dio_bio (through 8265 * dio_end_io()). 8266 */ 8267 dip = NULL; 8268 io_bio = NULL; 8269 } else { 8270 if (write) { 8271 struct btrfs_ordered_extent *ordered; 8272 8273 ordered = btrfs_lookup_ordered_extent(inode, 8274 file_offset); 8275 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags); 8276 /* 8277 * Decrements our ref on the ordered extent and removes 8278 * the ordered extent from the inode's ordered tree, 8279 * doing all the proper resource cleanup such as for the 8280 * reserved space and waking up any waiters for this 8281 * ordered extent (through btrfs_remove_ordered_extent). 8282 */ 8283 btrfs_finish_ordered_io(ordered); 8284 } else { 8285 unlock_extent(&BTRFS_I(inode)->io_tree, file_offset, 8286 file_offset + dio_bio->bi_iter.bi_size - 1); 8287 } 8288 dio_bio->bi_error = -EIO; 8289 /* 8290 * Releases and cleans up our dio_bio, no need to bio_put() 8291 * nor bio_endio()/bio_io_error() against dio_bio. 8292 */ 8293 dio_end_io(dio_bio, ret); 8294 } 8295 if (io_bio) 8296 bio_put(io_bio); 8297 kfree(dip); 8298 } 8299 8300 static ssize_t check_direct_IO(struct btrfs_root *root, struct kiocb *iocb, 8301 const struct iov_iter *iter, loff_t offset) 8302 { 8303 int seg; 8304 int i; 8305 unsigned blocksize_mask = root->sectorsize - 1; 8306 ssize_t retval = -EINVAL; 8307 8308 if (offset & blocksize_mask) 8309 goto out; 8310 8311 if (iov_iter_alignment(iter) & blocksize_mask) 8312 goto out; 8313 8314 /* If this is a write we don't need to check anymore */ 8315 if (iov_iter_rw(iter) == WRITE) 8316 return 0; 8317 /* 8318 * Check to make sure we don't have duplicate iov_base's in this 8319 * iovec, if so return EINVAL, otherwise we'll get csum errors 8320 * when reading back. 8321 */ 8322 for (seg = 0; seg < iter->nr_segs; seg++) { 8323 for (i = seg + 1; i < iter->nr_segs; i++) { 8324 if (iter->iov[seg].iov_base == iter->iov[i].iov_base) 8325 goto out; 8326 } 8327 } 8328 retval = 0; 8329 out: 8330 return retval; 8331 } 8332 8333 static ssize_t btrfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter, 8334 loff_t offset) 8335 { 8336 struct file *file = iocb->ki_filp; 8337 struct inode *inode = file->f_mapping->host; 8338 struct btrfs_root *root = BTRFS_I(inode)->root; 8339 struct btrfs_dio_data dio_data = { 0 }; 8340 size_t count = 0; 8341 int flags = 0; 8342 bool wakeup = true; 8343 bool relock = false; 8344 ssize_t ret; 8345 8346 if (check_direct_IO(BTRFS_I(inode)->root, iocb, iter, offset)) 8347 return 0; 8348 8349 inode_dio_begin(inode); 8350 smp_mb__after_atomic(); 8351 8352 /* 8353 * The generic stuff only does filemap_write_and_wait_range, which 8354 * isn't enough if we've written compressed pages to this area, so 8355 * we need to flush the dirty pages again to make absolutely sure 8356 * that any outstanding dirty pages are on disk. 8357 */ 8358 count = iov_iter_count(iter); 8359 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 8360 &BTRFS_I(inode)->runtime_flags)) 8361 filemap_fdatawrite_range(inode->i_mapping, offset, 8362 offset + count - 1); 8363 8364 if (iov_iter_rw(iter) == WRITE) { 8365 /* 8366 * If the write DIO is beyond the EOF, we need update 8367 * the isize, but it is protected by i_mutex. So we can 8368 * not unlock the i_mutex at this case. 8369 */ 8370 if (offset + count <= inode->i_size) { 8371 mutex_unlock(&inode->i_mutex); 8372 relock = true; 8373 } 8374 ret = btrfs_delalloc_reserve_space(inode, count); 8375 if (ret) 8376 goto out; 8377 dio_data.outstanding_extents = div64_u64(count + 8378 BTRFS_MAX_EXTENT_SIZE - 1, 8379 BTRFS_MAX_EXTENT_SIZE); 8380 8381 /* 8382 * We need to know how many extents we reserved so that we can 8383 * do the accounting properly if we go over the number we 8384 * originally calculated. Abuse current->journal_info for this. 8385 */ 8386 dio_data.reserve = round_up(count, root->sectorsize); 8387 current->journal_info = &dio_data; 8388 } else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK, 8389 &BTRFS_I(inode)->runtime_flags)) { 8390 inode_dio_end(inode); 8391 flags = DIO_LOCKING | DIO_SKIP_HOLES; 8392 wakeup = false; 8393 } 8394 8395 ret = __blockdev_direct_IO(iocb, inode, 8396 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev, 8397 iter, offset, btrfs_get_blocks_direct, NULL, 8398 btrfs_submit_direct, flags); 8399 if (iov_iter_rw(iter) == WRITE) { 8400 current->journal_info = NULL; 8401 if (ret < 0 && ret != -EIOCBQUEUED) { 8402 if (dio_data.reserve) 8403 btrfs_delalloc_release_space(inode, 8404 dio_data.reserve); 8405 } else if (ret >= 0 && (size_t)ret < count) 8406 btrfs_delalloc_release_space(inode, 8407 count - (size_t)ret); 8408 } 8409 out: 8410 if (wakeup) 8411 inode_dio_end(inode); 8412 if (relock) 8413 mutex_lock(&inode->i_mutex); 8414 8415 return ret; 8416 } 8417 8418 #define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC) 8419 8420 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 8421 __u64 start, __u64 len) 8422 { 8423 int ret; 8424 8425 ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS); 8426 if (ret) 8427 return ret; 8428 8429 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap); 8430 } 8431 8432 int btrfs_readpage(struct file *file, struct page *page) 8433 { 8434 struct extent_io_tree *tree; 8435 tree = &BTRFS_I(page->mapping->host)->io_tree; 8436 return extent_read_full_page(tree, page, btrfs_get_extent, 0); 8437 } 8438 8439 static int btrfs_writepage(struct page *page, struct writeback_control *wbc) 8440 { 8441 struct extent_io_tree *tree; 8442 8443 8444 if (current->flags & PF_MEMALLOC) { 8445 redirty_page_for_writepage(wbc, page); 8446 unlock_page(page); 8447 return 0; 8448 } 8449 tree = &BTRFS_I(page->mapping->host)->io_tree; 8450 return extent_write_full_page(tree, page, btrfs_get_extent, wbc); 8451 } 8452 8453 static int btrfs_writepages(struct address_space *mapping, 8454 struct writeback_control *wbc) 8455 { 8456 struct extent_io_tree *tree; 8457 8458 tree = &BTRFS_I(mapping->host)->io_tree; 8459 return extent_writepages(tree, mapping, btrfs_get_extent, wbc); 8460 } 8461 8462 static int 8463 btrfs_readpages(struct file *file, struct address_space *mapping, 8464 struct list_head *pages, unsigned nr_pages) 8465 { 8466 struct extent_io_tree *tree; 8467 tree = &BTRFS_I(mapping->host)->io_tree; 8468 return extent_readpages(tree, mapping, pages, nr_pages, 8469 btrfs_get_extent); 8470 } 8471 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags) 8472 { 8473 struct extent_io_tree *tree; 8474 struct extent_map_tree *map; 8475 int ret; 8476 8477 tree = &BTRFS_I(page->mapping->host)->io_tree; 8478 map = &BTRFS_I(page->mapping->host)->extent_tree; 8479 ret = try_release_extent_mapping(map, tree, page, gfp_flags); 8480 if (ret == 1) { 8481 ClearPagePrivate(page); 8482 set_page_private(page, 0); 8483 page_cache_release(page); 8484 } 8485 return ret; 8486 } 8487 8488 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags) 8489 { 8490 if (PageWriteback(page) || PageDirty(page)) 8491 return 0; 8492 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS); 8493 } 8494 8495 static void btrfs_invalidatepage(struct page *page, unsigned int offset, 8496 unsigned int length) 8497 { 8498 struct inode *inode = page->mapping->host; 8499 struct extent_io_tree *tree; 8500 struct btrfs_ordered_extent *ordered; 8501 struct extent_state *cached_state = NULL; 8502 u64 page_start = page_offset(page); 8503 u64 page_end = page_start + PAGE_CACHE_SIZE - 1; 8504 int inode_evicting = inode->i_state & I_FREEING; 8505 8506 /* 8507 * we have the page locked, so new writeback can't start, 8508 * and the dirty bit won't be cleared while we are here. 8509 * 8510 * Wait for IO on this page so that we can safely clear 8511 * the PagePrivate2 bit and do ordered accounting 8512 */ 8513 wait_on_page_writeback(page); 8514 8515 tree = &BTRFS_I(inode)->io_tree; 8516 if (offset) { 8517 btrfs_releasepage(page, GFP_NOFS); 8518 return; 8519 } 8520 8521 if (!inode_evicting) 8522 lock_extent_bits(tree, page_start, page_end, 0, &cached_state); 8523 ordered = btrfs_lookup_ordered_extent(inode, page_start); 8524 if (ordered) { 8525 /* 8526 * IO on this page will never be started, so we need 8527 * to account for any ordered extents now 8528 */ 8529 if (!inode_evicting) 8530 clear_extent_bit(tree, page_start, page_end, 8531 EXTENT_DIRTY | EXTENT_DELALLOC | 8532 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING | 8533 EXTENT_DEFRAG, 1, 0, &cached_state, 8534 GFP_NOFS); 8535 /* 8536 * whoever cleared the private bit is responsible 8537 * for the finish_ordered_io 8538 */ 8539 if (TestClearPagePrivate2(page)) { 8540 struct btrfs_ordered_inode_tree *tree; 8541 u64 new_len; 8542 8543 tree = &BTRFS_I(inode)->ordered_tree; 8544 8545 spin_lock_irq(&tree->lock); 8546 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags); 8547 new_len = page_start - ordered->file_offset; 8548 if (new_len < ordered->truncated_len) 8549 ordered->truncated_len = new_len; 8550 spin_unlock_irq(&tree->lock); 8551 8552 if (btrfs_dec_test_ordered_pending(inode, &ordered, 8553 page_start, 8554 PAGE_CACHE_SIZE, 1)) 8555 btrfs_finish_ordered_io(ordered); 8556 } 8557 btrfs_put_ordered_extent(ordered); 8558 if (!inode_evicting) { 8559 cached_state = NULL; 8560 lock_extent_bits(tree, page_start, page_end, 0, 8561 &cached_state); 8562 } 8563 } 8564 8565 if (!inode_evicting) { 8566 clear_extent_bit(tree, page_start, page_end, 8567 EXTENT_LOCKED | EXTENT_DIRTY | 8568 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | 8569 EXTENT_DEFRAG, 1, 1, 8570 &cached_state, GFP_NOFS); 8571 8572 __btrfs_releasepage(page, GFP_NOFS); 8573 } 8574 8575 ClearPageChecked(page); 8576 if (PagePrivate(page)) { 8577 ClearPagePrivate(page); 8578 set_page_private(page, 0); 8579 page_cache_release(page); 8580 } 8581 } 8582 8583 /* 8584 * btrfs_page_mkwrite() is not allowed to change the file size as it gets 8585 * called from a page fault handler when a page is first dirtied. Hence we must 8586 * be careful to check for EOF conditions here. We set the page up correctly 8587 * for a written page which means we get ENOSPC checking when writing into 8588 * holes and correct delalloc and unwritten extent mapping on filesystems that 8589 * support these features. 8590 * 8591 * We are not allowed to take the i_mutex here so we have to play games to 8592 * protect against truncate races as the page could now be beyond EOF. Because 8593 * vmtruncate() writes the inode size before removing pages, once we have the 8594 * page lock we can determine safely if the page is beyond EOF. If it is not 8595 * beyond EOF, then the page is guaranteed safe against truncation until we 8596 * unlock the page. 8597 */ 8598 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf) 8599 { 8600 struct page *page = vmf->page; 8601 struct inode *inode = file_inode(vma->vm_file); 8602 struct btrfs_root *root = BTRFS_I(inode)->root; 8603 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 8604 struct btrfs_ordered_extent *ordered; 8605 struct extent_state *cached_state = NULL; 8606 char *kaddr; 8607 unsigned long zero_start; 8608 loff_t size; 8609 int ret; 8610 int reserved = 0; 8611 u64 page_start; 8612 u64 page_end; 8613 8614 sb_start_pagefault(inode->i_sb); 8615 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE); 8616 if (!ret) { 8617 ret = file_update_time(vma->vm_file); 8618 reserved = 1; 8619 } 8620 if (ret) { 8621 if (ret == -ENOMEM) 8622 ret = VM_FAULT_OOM; 8623 else /* -ENOSPC, -EIO, etc */ 8624 ret = VM_FAULT_SIGBUS; 8625 if (reserved) 8626 goto out; 8627 goto out_noreserve; 8628 } 8629 8630 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */ 8631 again: 8632 lock_page(page); 8633 size = i_size_read(inode); 8634 page_start = page_offset(page); 8635 page_end = page_start + PAGE_CACHE_SIZE - 1; 8636 8637 if ((page->mapping != inode->i_mapping) || 8638 (page_start >= size)) { 8639 /* page got truncated out from underneath us */ 8640 goto out_unlock; 8641 } 8642 wait_on_page_writeback(page); 8643 8644 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state); 8645 set_page_extent_mapped(page); 8646 8647 /* 8648 * we can't set the delalloc bits if there are pending ordered 8649 * extents. Drop our locks and wait for them to finish 8650 */ 8651 ordered = btrfs_lookup_ordered_extent(inode, page_start); 8652 if (ordered) { 8653 unlock_extent_cached(io_tree, page_start, page_end, 8654 &cached_state, GFP_NOFS); 8655 unlock_page(page); 8656 btrfs_start_ordered_extent(inode, ordered, 1); 8657 btrfs_put_ordered_extent(ordered); 8658 goto again; 8659 } 8660 8661 /* 8662 * XXX - page_mkwrite gets called every time the page is dirtied, even 8663 * if it was already dirty, so for space accounting reasons we need to 8664 * clear any delalloc bits for the range we are fixing to save. There 8665 * is probably a better way to do this, but for now keep consistent with 8666 * prepare_pages in the normal write path. 8667 */ 8668 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end, 8669 EXTENT_DIRTY | EXTENT_DELALLOC | 8670 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 8671 0, 0, &cached_state, GFP_NOFS); 8672 8673 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 8674 &cached_state); 8675 if (ret) { 8676 unlock_extent_cached(io_tree, page_start, page_end, 8677 &cached_state, GFP_NOFS); 8678 ret = VM_FAULT_SIGBUS; 8679 goto out_unlock; 8680 } 8681 ret = 0; 8682 8683 /* page is wholly or partially inside EOF */ 8684 if (page_start + PAGE_CACHE_SIZE > size) 8685 zero_start = size & ~PAGE_CACHE_MASK; 8686 else 8687 zero_start = PAGE_CACHE_SIZE; 8688 8689 if (zero_start != PAGE_CACHE_SIZE) { 8690 kaddr = kmap(page); 8691 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start); 8692 flush_dcache_page(page); 8693 kunmap(page); 8694 } 8695 ClearPageChecked(page); 8696 set_page_dirty(page); 8697 SetPageUptodate(page); 8698 8699 BTRFS_I(inode)->last_trans = root->fs_info->generation; 8700 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid; 8701 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit; 8702 8703 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS); 8704 8705 out_unlock: 8706 if (!ret) { 8707 sb_end_pagefault(inode->i_sb); 8708 return VM_FAULT_LOCKED; 8709 } 8710 unlock_page(page); 8711 out: 8712 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE); 8713 out_noreserve: 8714 sb_end_pagefault(inode->i_sb); 8715 return ret; 8716 } 8717 8718 static int btrfs_truncate(struct inode *inode) 8719 { 8720 struct btrfs_root *root = BTRFS_I(inode)->root; 8721 struct btrfs_block_rsv *rsv; 8722 int ret = 0; 8723 int err = 0; 8724 struct btrfs_trans_handle *trans; 8725 u64 mask = root->sectorsize - 1; 8726 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1); 8727 8728 ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask), 8729 (u64)-1); 8730 if (ret) 8731 return ret; 8732 8733 /* 8734 * Yes ladies and gentelment, this is indeed ugly. The fact is we have 8735 * 3 things going on here 8736 * 8737 * 1) We need to reserve space for our orphan item and the space to 8738 * delete our orphan item. Lord knows we don't want to have a dangling 8739 * orphan item because we didn't reserve space to remove it. 8740 * 8741 * 2) We need to reserve space to update our inode. 8742 * 8743 * 3) We need to have something to cache all the space that is going to 8744 * be free'd up by the truncate operation, but also have some slack 8745 * space reserved in case it uses space during the truncate (thank you 8746 * very much snapshotting). 8747 * 8748 * And we need these to all be seperate. The fact is we can use alot of 8749 * space doing the truncate, and we have no earthly idea how much space 8750 * we will use, so we need the truncate reservation to be seperate so it 8751 * doesn't end up using space reserved for updating the inode or 8752 * removing the orphan item. We also need to be able to stop the 8753 * transaction and start a new one, which means we need to be able to 8754 * update the inode several times, and we have no idea of knowing how 8755 * many times that will be, so we can't just reserve 1 item for the 8756 * entirety of the opration, so that has to be done seperately as well. 8757 * Then there is the orphan item, which does indeed need to be held on 8758 * to for the whole operation, and we need nobody to touch this reserved 8759 * space except the orphan code. 8760 * 8761 * So that leaves us with 8762 * 8763 * 1) root->orphan_block_rsv - for the orphan deletion. 8764 * 2) rsv - for the truncate reservation, which we will steal from the 8765 * transaction reservation. 8766 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for 8767 * updating the inode. 8768 */ 8769 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP); 8770 if (!rsv) 8771 return -ENOMEM; 8772 rsv->size = min_size; 8773 rsv->failfast = 1; 8774 8775 /* 8776 * 1 for the truncate slack space 8777 * 1 for updating the inode. 8778 */ 8779 trans = btrfs_start_transaction(root, 2); 8780 if (IS_ERR(trans)) { 8781 err = PTR_ERR(trans); 8782 goto out; 8783 } 8784 8785 /* Migrate the slack space for the truncate to our reserve */ 8786 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv, 8787 min_size); 8788 BUG_ON(ret); 8789 8790 /* 8791 * So if we truncate and then write and fsync we normally would just 8792 * write the extents that changed, which is a problem if we need to 8793 * first truncate that entire inode. So set this flag so we write out 8794 * all of the extents in the inode to the sync log so we're completely 8795 * safe. 8796 */ 8797 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 8798 trans->block_rsv = rsv; 8799 8800 while (1) { 8801 ret = btrfs_truncate_inode_items(trans, root, inode, 8802 inode->i_size, 8803 BTRFS_EXTENT_DATA_KEY); 8804 if (ret != -ENOSPC && ret != -EAGAIN) { 8805 err = ret; 8806 break; 8807 } 8808 8809 trans->block_rsv = &root->fs_info->trans_block_rsv; 8810 ret = btrfs_update_inode(trans, root, inode); 8811 if (ret) { 8812 err = ret; 8813 break; 8814 } 8815 8816 btrfs_end_transaction(trans, root); 8817 btrfs_btree_balance_dirty(root); 8818 8819 trans = btrfs_start_transaction(root, 2); 8820 if (IS_ERR(trans)) { 8821 ret = err = PTR_ERR(trans); 8822 trans = NULL; 8823 break; 8824 } 8825 8826 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, 8827 rsv, min_size); 8828 BUG_ON(ret); /* shouldn't happen */ 8829 trans->block_rsv = rsv; 8830 } 8831 8832 if (ret == 0 && inode->i_nlink > 0) { 8833 trans->block_rsv = root->orphan_block_rsv; 8834 ret = btrfs_orphan_del(trans, inode); 8835 if (ret) 8836 err = ret; 8837 } 8838 8839 if (trans) { 8840 trans->block_rsv = &root->fs_info->trans_block_rsv; 8841 ret = btrfs_update_inode(trans, root, inode); 8842 if (ret && !err) 8843 err = ret; 8844 8845 ret = btrfs_end_transaction(trans, root); 8846 btrfs_btree_balance_dirty(root); 8847 } 8848 8849 out: 8850 btrfs_free_block_rsv(root, rsv); 8851 8852 if (ret && !err) 8853 err = ret; 8854 8855 return err; 8856 } 8857 8858 /* 8859 * create a new subvolume directory/inode (helper for the ioctl). 8860 */ 8861 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans, 8862 struct btrfs_root *new_root, 8863 struct btrfs_root *parent_root, 8864 u64 new_dirid) 8865 { 8866 struct inode *inode; 8867 int err; 8868 u64 index = 0; 8869 8870 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, 8871 new_dirid, new_dirid, 8872 S_IFDIR | (~current_umask() & S_IRWXUGO), 8873 &index); 8874 if (IS_ERR(inode)) 8875 return PTR_ERR(inode); 8876 inode->i_op = &btrfs_dir_inode_operations; 8877 inode->i_fop = &btrfs_dir_file_operations; 8878 8879 set_nlink(inode, 1); 8880 btrfs_i_size_write(inode, 0); 8881 unlock_new_inode(inode); 8882 8883 err = btrfs_subvol_inherit_props(trans, new_root, parent_root); 8884 if (err) 8885 btrfs_err(new_root->fs_info, 8886 "error inheriting subvolume %llu properties: %d", 8887 new_root->root_key.objectid, err); 8888 8889 err = btrfs_update_inode(trans, new_root, inode); 8890 8891 iput(inode); 8892 return err; 8893 } 8894 8895 struct inode *btrfs_alloc_inode(struct super_block *sb) 8896 { 8897 struct btrfs_inode *ei; 8898 struct inode *inode; 8899 8900 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS); 8901 if (!ei) 8902 return NULL; 8903 8904 ei->root = NULL; 8905 ei->generation = 0; 8906 ei->last_trans = 0; 8907 ei->last_sub_trans = 0; 8908 ei->logged_trans = 0; 8909 ei->delalloc_bytes = 0; 8910 ei->defrag_bytes = 0; 8911 ei->disk_i_size = 0; 8912 ei->flags = 0; 8913 ei->csum_bytes = 0; 8914 ei->index_cnt = (u64)-1; 8915 ei->dir_index = 0; 8916 ei->last_unlink_trans = 0; 8917 ei->last_log_commit = 0; 8918 8919 spin_lock_init(&ei->lock); 8920 ei->outstanding_extents = 0; 8921 ei->reserved_extents = 0; 8922 8923 ei->runtime_flags = 0; 8924 ei->force_compress = BTRFS_COMPRESS_NONE; 8925 8926 ei->delayed_node = NULL; 8927 8928 ei->i_otime.tv_sec = 0; 8929 ei->i_otime.tv_nsec = 0; 8930 8931 inode = &ei->vfs_inode; 8932 extent_map_tree_init(&ei->extent_tree); 8933 extent_io_tree_init(&ei->io_tree, &inode->i_data); 8934 extent_io_tree_init(&ei->io_failure_tree, &inode->i_data); 8935 ei->io_tree.track_uptodate = 1; 8936 ei->io_failure_tree.track_uptodate = 1; 8937 atomic_set(&ei->sync_writers, 0); 8938 mutex_init(&ei->log_mutex); 8939 mutex_init(&ei->delalloc_mutex); 8940 btrfs_ordered_inode_tree_init(&ei->ordered_tree); 8941 INIT_LIST_HEAD(&ei->delalloc_inodes); 8942 RB_CLEAR_NODE(&ei->rb_node); 8943 8944 return inode; 8945 } 8946 8947 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 8948 void btrfs_test_destroy_inode(struct inode *inode) 8949 { 8950 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0); 8951 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 8952 } 8953 #endif 8954 8955 static void btrfs_i_callback(struct rcu_head *head) 8956 { 8957 struct inode *inode = container_of(head, struct inode, i_rcu); 8958 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 8959 } 8960 8961 void btrfs_destroy_inode(struct inode *inode) 8962 { 8963 struct btrfs_ordered_extent *ordered; 8964 struct btrfs_root *root = BTRFS_I(inode)->root; 8965 8966 WARN_ON(!hlist_empty(&inode->i_dentry)); 8967 WARN_ON(inode->i_data.nrpages); 8968 WARN_ON(BTRFS_I(inode)->outstanding_extents); 8969 WARN_ON(BTRFS_I(inode)->reserved_extents); 8970 WARN_ON(BTRFS_I(inode)->delalloc_bytes); 8971 WARN_ON(BTRFS_I(inode)->csum_bytes); 8972 WARN_ON(BTRFS_I(inode)->defrag_bytes); 8973 8974 /* 8975 * This can happen where we create an inode, but somebody else also 8976 * created the same inode and we need to destroy the one we already 8977 * created. 8978 */ 8979 if (!root) 8980 goto free; 8981 8982 if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 8983 &BTRFS_I(inode)->runtime_flags)) { 8984 btrfs_info(root->fs_info, "inode %llu still on the orphan list", 8985 btrfs_ino(inode)); 8986 atomic_dec(&root->orphan_inodes); 8987 } 8988 8989 while (1) { 8990 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1); 8991 if (!ordered) 8992 break; 8993 else { 8994 btrfs_err(root->fs_info, "found ordered extent %llu %llu on inode cleanup", 8995 ordered->file_offset, ordered->len); 8996 btrfs_remove_ordered_extent(inode, ordered); 8997 btrfs_put_ordered_extent(ordered); 8998 btrfs_put_ordered_extent(ordered); 8999 } 9000 } 9001 inode_tree_del(inode); 9002 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0); 9003 free: 9004 call_rcu(&inode->i_rcu, btrfs_i_callback); 9005 } 9006 9007 int btrfs_drop_inode(struct inode *inode) 9008 { 9009 struct btrfs_root *root = BTRFS_I(inode)->root; 9010 9011 if (root == NULL) 9012 return 1; 9013 9014 /* the snap/subvol tree is on deleting */ 9015 if (btrfs_root_refs(&root->root_item) == 0) 9016 return 1; 9017 else 9018 return generic_drop_inode(inode); 9019 } 9020 9021 static void init_once(void *foo) 9022 { 9023 struct btrfs_inode *ei = (struct btrfs_inode *) foo; 9024 9025 inode_init_once(&ei->vfs_inode); 9026 } 9027 9028 void btrfs_destroy_cachep(void) 9029 { 9030 /* 9031 * Make sure all delayed rcu free inodes are flushed before we 9032 * destroy cache. 9033 */ 9034 rcu_barrier(); 9035 if (btrfs_inode_cachep) 9036 kmem_cache_destroy(btrfs_inode_cachep); 9037 if (btrfs_trans_handle_cachep) 9038 kmem_cache_destroy(btrfs_trans_handle_cachep); 9039 if (btrfs_transaction_cachep) 9040 kmem_cache_destroy(btrfs_transaction_cachep); 9041 if (btrfs_path_cachep) 9042 kmem_cache_destroy(btrfs_path_cachep); 9043 if (btrfs_free_space_cachep) 9044 kmem_cache_destroy(btrfs_free_space_cachep); 9045 if (btrfs_delalloc_work_cachep) 9046 kmem_cache_destroy(btrfs_delalloc_work_cachep); 9047 } 9048 9049 int btrfs_init_cachep(void) 9050 { 9051 btrfs_inode_cachep = kmem_cache_create("btrfs_inode", 9052 sizeof(struct btrfs_inode), 0, 9053 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once); 9054 if (!btrfs_inode_cachep) 9055 goto fail; 9056 9057 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle", 9058 sizeof(struct btrfs_trans_handle), 0, 9059 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 9060 if (!btrfs_trans_handle_cachep) 9061 goto fail; 9062 9063 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction", 9064 sizeof(struct btrfs_transaction), 0, 9065 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 9066 if (!btrfs_transaction_cachep) 9067 goto fail; 9068 9069 btrfs_path_cachep = kmem_cache_create("btrfs_path", 9070 sizeof(struct btrfs_path), 0, 9071 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 9072 if (!btrfs_path_cachep) 9073 goto fail; 9074 9075 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space", 9076 sizeof(struct btrfs_free_space), 0, 9077 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 9078 if (!btrfs_free_space_cachep) 9079 goto fail; 9080 9081 btrfs_delalloc_work_cachep = kmem_cache_create("btrfs_delalloc_work", 9082 sizeof(struct btrfs_delalloc_work), 0, 9083 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, 9084 NULL); 9085 if (!btrfs_delalloc_work_cachep) 9086 goto fail; 9087 9088 return 0; 9089 fail: 9090 btrfs_destroy_cachep(); 9091 return -ENOMEM; 9092 } 9093 9094 static int btrfs_getattr(struct vfsmount *mnt, 9095 struct dentry *dentry, struct kstat *stat) 9096 { 9097 u64 delalloc_bytes; 9098 struct inode *inode = d_inode(dentry); 9099 u32 blocksize = inode->i_sb->s_blocksize; 9100 9101 generic_fillattr(inode, stat); 9102 stat->dev = BTRFS_I(inode)->root->anon_dev; 9103 stat->blksize = PAGE_CACHE_SIZE; 9104 9105 spin_lock(&BTRFS_I(inode)->lock); 9106 delalloc_bytes = BTRFS_I(inode)->delalloc_bytes; 9107 spin_unlock(&BTRFS_I(inode)->lock); 9108 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) + 9109 ALIGN(delalloc_bytes, blocksize)) >> 9; 9110 return 0; 9111 } 9112 9113 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry, 9114 struct inode *new_dir, struct dentry *new_dentry) 9115 { 9116 struct btrfs_trans_handle *trans; 9117 struct btrfs_root *root = BTRFS_I(old_dir)->root; 9118 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 9119 struct inode *new_inode = d_inode(new_dentry); 9120 struct inode *old_inode = d_inode(old_dentry); 9121 struct timespec ctime = CURRENT_TIME; 9122 u64 index = 0; 9123 u64 root_objectid; 9124 int ret; 9125 u64 old_ino = btrfs_ino(old_inode); 9126 9127 if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 9128 return -EPERM; 9129 9130 /* we only allow rename subvolume link between subvolumes */ 9131 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest) 9132 return -EXDEV; 9133 9134 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID || 9135 (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID)) 9136 return -ENOTEMPTY; 9137 9138 if (S_ISDIR(old_inode->i_mode) && new_inode && 9139 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) 9140 return -ENOTEMPTY; 9141 9142 9143 /* check for collisions, even if the name isn't there */ 9144 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino, 9145 new_dentry->d_name.name, 9146 new_dentry->d_name.len); 9147 9148 if (ret) { 9149 if (ret == -EEXIST) { 9150 /* we shouldn't get 9151 * eexist without a new_inode */ 9152 if (WARN_ON(!new_inode)) { 9153 return ret; 9154 } 9155 } else { 9156 /* maybe -EOVERFLOW */ 9157 return ret; 9158 } 9159 } 9160 ret = 0; 9161 9162 /* 9163 * we're using rename to replace one file with another. Start IO on it 9164 * now so we don't add too much work to the end of the transaction 9165 */ 9166 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size) 9167 filemap_flush(old_inode->i_mapping); 9168 9169 /* close the racy window with snapshot create/destroy ioctl */ 9170 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 9171 down_read(&root->fs_info->subvol_sem); 9172 /* 9173 * We want to reserve the absolute worst case amount of items. So if 9174 * both inodes are subvols and we need to unlink them then that would 9175 * require 4 item modifications, but if they are both normal inodes it 9176 * would require 5 item modifications, so we'll assume their normal 9177 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items 9178 * should cover the worst case number of items we'll modify. 9179 */ 9180 trans = btrfs_start_transaction(root, 11); 9181 if (IS_ERR(trans)) { 9182 ret = PTR_ERR(trans); 9183 goto out_notrans; 9184 } 9185 9186 if (dest != root) 9187 btrfs_record_root_in_trans(trans, dest); 9188 9189 ret = btrfs_set_inode_index(new_dir, &index); 9190 if (ret) 9191 goto out_fail; 9192 9193 BTRFS_I(old_inode)->dir_index = 0ULL; 9194 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 9195 /* force full log commit if subvolume involved. */ 9196 btrfs_set_log_full_commit(root->fs_info, trans); 9197 } else { 9198 ret = btrfs_insert_inode_ref(trans, dest, 9199 new_dentry->d_name.name, 9200 new_dentry->d_name.len, 9201 old_ino, 9202 btrfs_ino(new_dir), index); 9203 if (ret) 9204 goto out_fail; 9205 /* 9206 * this is an ugly little race, but the rename is required 9207 * to make sure that if we crash, the inode is either at the 9208 * old name or the new one. pinning the log transaction lets 9209 * us make sure we don't allow a log commit to come in after 9210 * we unlink the name but before we add the new name back in. 9211 */ 9212 btrfs_pin_log_trans(root); 9213 } 9214 9215 inode_inc_iversion(old_dir); 9216 inode_inc_iversion(new_dir); 9217 inode_inc_iversion(old_inode); 9218 old_dir->i_ctime = old_dir->i_mtime = ctime; 9219 new_dir->i_ctime = new_dir->i_mtime = ctime; 9220 old_inode->i_ctime = ctime; 9221 9222 if (old_dentry->d_parent != new_dentry->d_parent) 9223 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1); 9224 9225 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 9226 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid; 9227 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid, 9228 old_dentry->d_name.name, 9229 old_dentry->d_name.len); 9230 } else { 9231 ret = __btrfs_unlink_inode(trans, root, old_dir, 9232 d_inode(old_dentry), 9233 old_dentry->d_name.name, 9234 old_dentry->d_name.len); 9235 if (!ret) 9236 ret = btrfs_update_inode(trans, root, old_inode); 9237 } 9238 if (ret) { 9239 btrfs_abort_transaction(trans, root, ret); 9240 goto out_fail; 9241 } 9242 9243 if (new_inode) { 9244 inode_inc_iversion(new_inode); 9245 new_inode->i_ctime = CURRENT_TIME; 9246 if (unlikely(btrfs_ino(new_inode) == 9247 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 9248 root_objectid = BTRFS_I(new_inode)->location.objectid; 9249 ret = btrfs_unlink_subvol(trans, dest, new_dir, 9250 root_objectid, 9251 new_dentry->d_name.name, 9252 new_dentry->d_name.len); 9253 BUG_ON(new_inode->i_nlink == 0); 9254 } else { 9255 ret = btrfs_unlink_inode(trans, dest, new_dir, 9256 d_inode(new_dentry), 9257 new_dentry->d_name.name, 9258 new_dentry->d_name.len); 9259 } 9260 if (!ret && new_inode->i_nlink == 0) 9261 ret = btrfs_orphan_add(trans, d_inode(new_dentry)); 9262 if (ret) { 9263 btrfs_abort_transaction(trans, root, ret); 9264 goto out_fail; 9265 } 9266 } 9267 9268 ret = btrfs_add_link(trans, new_dir, old_inode, 9269 new_dentry->d_name.name, 9270 new_dentry->d_name.len, 0, index); 9271 if (ret) { 9272 btrfs_abort_transaction(trans, root, ret); 9273 goto out_fail; 9274 } 9275 9276 if (old_inode->i_nlink == 1) 9277 BTRFS_I(old_inode)->dir_index = index; 9278 9279 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) { 9280 struct dentry *parent = new_dentry->d_parent; 9281 btrfs_log_new_name(trans, old_inode, old_dir, parent); 9282 btrfs_end_log_trans(root); 9283 } 9284 out_fail: 9285 btrfs_end_transaction(trans, root); 9286 out_notrans: 9287 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 9288 up_read(&root->fs_info->subvol_sem); 9289 9290 return ret; 9291 } 9292 9293 static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry, 9294 struct inode *new_dir, struct dentry *new_dentry, 9295 unsigned int flags) 9296 { 9297 if (flags & ~RENAME_NOREPLACE) 9298 return -EINVAL; 9299 9300 return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry); 9301 } 9302 9303 static void btrfs_run_delalloc_work(struct btrfs_work *work) 9304 { 9305 struct btrfs_delalloc_work *delalloc_work; 9306 struct inode *inode; 9307 9308 delalloc_work = container_of(work, struct btrfs_delalloc_work, 9309 work); 9310 inode = delalloc_work->inode; 9311 if (delalloc_work->wait) { 9312 btrfs_wait_ordered_range(inode, 0, (u64)-1); 9313 } else { 9314 filemap_flush(inode->i_mapping); 9315 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 9316 &BTRFS_I(inode)->runtime_flags)) 9317 filemap_flush(inode->i_mapping); 9318 } 9319 9320 if (delalloc_work->delay_iput) 9321 btrfs_add_delayed_iput(inode); 9322 else 9323 iput(inode); 9324 complete(&delalloc_work->completion); 9325 } 9326 9327 struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode, 9328 int wait, int delay_iput) 9329 { 9330 struct btrfs_delalloc_work *work; 9331 9332 work = kmem_cache_zalloc(btrfs_delalloc_work_cachep, GFP_NOFS); 9333 if (!work) 9334 return NULL; 9335 9336 init_completion(&work->completion); 9337 INIT_LIST_HEAD(&work->list); 9338 work->inode = inode; 9339 work->wait = wait; 9340 work->delay_iput = delay_iput; 9341 WARN_ON_ONCE(!inode); 9342 btrfs_init_work(&work->work, btrfs_flush_delalloc_helper, 9343 btrfs_run_delalloc_work, NULL, NULL); 9344 9345 return work; 9346 } 9347 9348 void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work) 9349 { 9350 wait_for_completion(&work->completion); 9351 kmem_cache_free(btrfs_delalloc_work_cachep, work); 9352 } 9353 9354 /* 9355 * some fairly slow code that needs optimization. This walks the list 9356 * of all the inodes with pending delalloc and forces them to disk. 9357 */ 9358 static int __start_delalloc_inodes(struct btrfs_root *root, int delay_iput, 9359 int nr) 9360 { 9361 struct btrfs_inode *binode; 9362 struct inode *inode; 9363 struct btrfs_delalloc_work *work, *next; 9364 struct list_head works; 9365 struct list_head splice; 9366 int ret = 0; 9367 9368 INIT_LIST_HEAD(&works); 9369 INIT_LIST_HEAD(&splice); 9370 9371 mutex_lock(&root->delalloc_mutex); 9372 spin_lock(&root->delalloc_lock); 9373 list_splice_init(&root->delalloc_inodes, &splice); 9374 while (!list_empty(&splice)) { 9375 binode = list_entry(splice.next, struct btrfs_inode, 9376 delalloc_inodes); 9377 9378 list_move_tail(&binode->delalloc_inodes, 9379 &root->delalloc_inodes); 9380 inode = igrab(&binode->vfs_inode); 9381 if (!inode) { 9382 cond_resched_lock(&root->delalloc_lock); 9383 continue; 9384 } 9385 spin_unlock(&root->delalloc_lock); 9386 9387 work = btrfs_alloc_delalloc_work(inode, 0, delay_iput); 9388 if (!work) { 9389 if (delay_iput) 9390 btrfs_add_delayed_iput(inode); 9391 else 9392 iput(inode); 9393 ret = -ENOMEM; 9394 goto out; 9395 } 9396 list_add_tail(&work->list, &works); 9397 btrfs_queue_work(root->fs_info->flush_workers, 9398 &work->work); 9399 ret++; 9400 if (nr != -1 && ret >= nr) 9401 goto out; 9402 cond_resched(); 9403 spin_lock(&root->delalloc_lock); 9404 } 9405 spin_unlock(&root->delalloc_lock); 9406 9407 out: 9408 list_for_each_entry_safe(work, next, &works, list) { 9409 list_del_init(&work->list); 9410 btrfs_wait_and_free_delalloc_work(work); 9411 } 9412 9413 if (!list_empty_careful(&splice)) { 9414 spin_lock(&root->delalloc_lock); 9415 list_splice_tail(&splice, &root->delalloc_inodes); 9416 spin_unlock(&root->delalloc_lock); 9417 } 9418 mutex_unlock(&root->delalloc_mutex); 9419 return ret; 9420 } 9421 9422 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput) 9423 { 9424 int ret; 9425 9426 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) 9427 return -EROFS; 9428 9429 ret = __start_delalloc_inodes(root, delay_iput, -1); 9430 if (ret > 0) 9431 ret = 0; 9432 /* 9433 * the filemap_flush will queue IO into the worker threads, but 9434 * we have to make sure the IO is actually started and that 9435 * ordered extents get created before we return 9436 */ 9437 atomic_inc(&root->fs_info->async_submit_draining); 9438 while (atomic_read(&root->fs_info->nr_async_submits) || 9439 atomic_read(&root->fs_info->async_delalloc_pages)) { 9440 wait_event(root->fs_info->async_submit_wait, 9441 (atomic_read(&root->fs_info->nr_async_submits) == 0 && 9442 atomic_read(&root->fs_info->async_delalloc_pages) == 0)); 9443 } 9444 atomic_dec(&root->fs_info->async_submit_draining); 9445 return ret; 9446 } 9447 9448 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int delay_iput, 9449 int nr) 9450 { 9451 struct btrfs_root *root; 9452 struct list_head splice; 9453 int ret; 9454 9455 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 9456 return -EROFS; 9457 9458 INIT_LIST_HEAD(&splice); 9459 9460 mutex_lock(&fs_info->delalloc_root_mutex); 9461 spin_lock(&fs_info->delalloc_root_lock); 9462 list_splice_init(&fs_info->delalloc_roots, &splice); 9463 while (!list_empty(&splice) && nr) { 9464 root = list_first_entry(&splice, struct btrfs_root, 9465 delalloc_root); 9466 root = btrfs_grab_fs_root(root); 9467 BUG_ON(!root); 9468 list_move_tail(&root->delalloc_root, 9469 &fs_info->delalloc_roots); 9470 spin_unlock(&fs_info->delalloc_root_lock); 9471 9472 ret = __start_delalloc_inodes(root, delay_iput, nr); 9473 btrfs_put_fs_root(root); 9474 if (ret < 0) 9475 goto out; 9476 9477 if (nr != -1) { 9478 nr -= ret; 9479 WARN_ON(nr < 0); 9480 } 9481 spin_lock(&fs_info->delalloc_root_lock); 9482 } 9483 spin_unlock(&fs_info->delalloc_root_lock); 9484 9485 ret = 0; 9486 atomic_inc(&fs_info->async_submit_draining); 9487 while (atomic_read(&fs_info->nr_async_submits) || 9488 atomic_read(&fs_info->async_delalloc_pages)) { 9489 wait_event(fs_info->async_submit_wait, 9490 (atomic_read(&fs_info->nr_async_submits) == 0 && 9491 atomic_read(&fs_info->async_delalloc_pages) == 0)); 9492 } 9493 atomic_dec(&fs_info->async_submit_draining); 9494 out: 9495 if (!list_empty_careful(&splice)) { 9496 spin_lock(&fs_info->delalloc_root_lock); 9497 list_splice_tail(&splice, &fs_info->delalloc_roots); 9498 spin_unlock(&fs_info->delalloc_root_lock); 9499 } 9500 mutex_unlock(&fs_info->delalloc_root_mutex); 9501 return ret; 9502 } 9503 9504 static int btrfs_symlink(struct inode *dir, struct dentry *dentry, 9505 const char *symname) 9506 { 9507 struct btrfs_trans_handle *trans; 9508 struct btrfs_root *root = BTRFS_I(dir)->root; 9509 struct btrfs_path *path; 9510 struct btrfs_key key; 9511 struct inode *inode = NULL; 9512 int err; 9513 int drop_inode = 0; 9514 u64 objectid; 9515 u64 index = 0; 9516 int name_len; 9517 int datasize; 9518 unsigned long ptr; 9519 struct btrfs_file_extent_item *ei; 9520 struct extent_buffer *leaf; 9521 9522 name_len = strlen(symname); 9523 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root)) 9524 return -ENAMETOOLONG; 9525 9526 /* 9527 * 2 items for inode item and ref 9528 * 2 items for dir items 9529 * 1 item for xattr if selinux is on 9530 */ 9531 trans = btrfs_start_transaction(root, 5); 9532 if (IS_ERR(trans)) 9533 return PTR_ERR(trans); 9534 9535 err = btrfs_find_free_ino(root, &objectid); 9536 if (err) 9537 goto out_unlock; 9538 9539 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 9540 dentry->d_name.len, btrfs_ino(dir), objectid, 9541 S_IFLNK|S_IRWXUGO, &index); 9542 if (IS_ERR(inode)) { 9543 err = PTR_ERR(inode); 9544 goto out_unlock; 9545 } 9546 9547 /* 9548 * If the active LSM wants to access the inode during 9549 * d_instantiate it needs these. Smack checks to see 9550 * if the filesystem supports xattrs by looking at the 9551 * ops vector. 9552 */ 9553 inode->i_fop = &btrfs_file_operations; 9554 inode->i_op = &btrfs_file_inode_operations; 9555 inode->i_mapping->a_ops = &btrfs_aops; 9556 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 9557 9558 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 9559 if (err) 9560 goto out_unlock_inode; 9561 9562 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index); 9563 if (err) 9564 goto out_unlock_inode; 9565 9566 path = btrfs_alloc_path(); 9567 if (!path) { 9568 err = -ENOMEM; 9569 goto out_unlock_inode; 9570 } 9571 key.objectid = btrfs_ino(inode); 9572 key.offset = 0; 9573 key.type = BTRFS_EXTENT_DATA_KEY; 9574 datasize = btrfs_file_extent_calc_inline_size(name_len); 9575 err = btrfs_insert_empty_item(trans, root, path, &key, 9576 datasize); 9577 if (err) { 9578 btrfs_free_path(path); 9579 goto out_unlock_inode; 9580 } 9581 leaf = path->nodes[0]; 9582 ei = btrfs_item_ptr(leaf, path->slots[0], 9583 struct btrfs_file_extent_item); 9584 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 9585 btrfs_set_file_extent_type(leaf, ei, 9586 BTRFS_FILE_EXTENT_INLINE); 9587 btrfs_set_file_extent_encryption(leaf, ei, 0); 9588 btrfs_set_file_extent_compression(leaf, ei, 0); 9589 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 9590 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len); 9591 9592 ptr = btrfs_file_extent_inline_start(ei); 9593 write_extent_buffer(leaf, symname, ptr, name_len); 9594 btrfs_mark_buffer_dirty(leaf); 9595 btrfs_free_path(path); 9596 9597 inode->i_op = &btrfs_symlink_inode_operations; 9598 inode->i_mapping->a_ops = &btrfs_symlink_aops; 9599 inode_set_bytes(inode, name_len); 9600 btrfs_i_size_write(inode, name_len); 9601 err = btrfs_update_inode(trans, root, inode); 9602 if (err) { 9603 drop_inode = 1; 9604 goto out_unlock_inode; 9605 } 9606 9607 unlock_new_inode(inode); 9608 d_instantiate(dentry, inode); 9609 9610 out_unlock: 9611 btrfs_end_transaction(trans, root); 9612 if (drop_inode) { 9613 inode_dec_link_count(inode); 9614 iput(inode); 9615 } 9616 btrfs_btree_balance_dirty(root); 9617 return err; 9618 9619 out_unlock_inode: 9620 drop_inode = 1; 9621 unlock_new_inode(inode); 9622 goto out_unlock; 9623 } 9624 9625 static int __btrfs_prealloc_file_range(struct inode *inode, int mode, 9626 u64 start, u64 num_bytes, u64 min_size, 9627 loff_t actual_len, u64 *alloc_hint, 9628 struct btrfs_trans_handle *trans) 9629 { 9630 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 9631 struct extent_map *em; 9632 struct btrfs_root *root = BTRFS_I(inode)->root; 9633 struct btrfs_key ins; 9634 u64 cur_offset = start; 9635 u64 i_size; 9636 u64 cur_bytes; 9637 int ret = 0; 9638 bool own_trans = true; 9639 9640 if (trans) 9641 own_trans = false; 9642 while (num_bytes > 0) { 9643 if (own_trans) { 9644 trans = btrfs_start_transaction(root, 3); 9645 if (IS_ERR(trans)) { 9646 ret = PTR_ERR(trans); 9647 break; 9648 } 9649 } 9650 9651 cur_bytes = min(num_bytes, 256ULL * 1024 * 1024); 9652 cur_bytes = max(cur_bytes, min_size); 9653 ret = btrfs_reserve_extent(root, cur_bytes, min_size, 0, 9654 *alloc_hint, &ins, 1, 0); 9655 if (ret) { 9656 if (own_trans) 9657 btrfs_end_transaction(trans, root); 9658 break; 9659 } 9660 9661 ret = insert_reserved_file_extent(trans, inode, 9662 cur_offset, ins.objectid, 9663 ins.offset, ins.offset, 9664 ins.offset, 0, 0, 0, 9665 BTRFS_FILE_EXTENT_PREALLOC); 9666 if (ret) { 9667 btrfs_free_reserved_extent(root, ins.objectid, 9668 ins.offset, 0); 9669 btrfs_abort_transaction(trans, root, ret); 9670 if (own_trans) 9671 btrfs_end_transaction(trans, root); 9672 break; 9673 } 9674 9675 btrfs_drop_extent_cache(inode, cur_offset, 9676 cur_offset + ins.offset -1, 0); 9677 9678 em = alloc_extent_map(); 9679 if (!em) { 9680 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 9681 &BTRFS_I(inode)->runtime_flags); 9682 goto next; 9683 } 9684 9685 em->start = cur_offset; 9686 em->orig_start = cur_offset; 9687 em->len = ins.offset; 9688 em->block_start = ins.objectid; 9689 em->block_len = ins.offset; 9690 em->orig_block_len = ins.offset; 9691 em->ram_bytes = ins.offset; 9692 em->bdev = root->fs_info->fs_devices->latest_bdev; 9693 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 9694 em->generation = trans->transid; 9695 9696 while (1) { 9697 write_lock(&em_tree->lock); 9698 ret = add_extent_mapping(em_tree, em, 1); 9699 write_unlock(&em_tree->lock); 9700 if (ret != -EEXIST) 9701 break; 9702 btrfs_drop_extent_cache(inode, cur_offset, 9703 cur_offset + ins.offset - 1, 9704 0); 9705 } 9706 free_extent_map(em); 9707 next: 9708 num_bytes -= ins.offset; 9709 cur_offset += ins.offset; 9710 *alloc_hint = ins.objectid + ins.offset; 9711 9712 inode_inc_iversion(inode); 9713 inode->i_ctime = CURRENT_TIME; 9714 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC; 9715 if (!(mode & FALLOC_FL_KEEP_SIZE) && 9716 (actual_len > inode->i_size) && 9717 (cur_offset > inode->i_size)) { 9718 if (cur_offset > actual_len) 9719 i_size = actual_len; 9720 else 9721 i_size = cur_offset; 9722 i_size_write(inode, i_size); 9723 btrfs_ordered_update_i_size(inode, i_size, NULL); 9724 } 9725 9726 ret = btrfs_update_inode(trans, root, inode); 9727 9728 if (ret) { 9729 btrfs_abort_transaction(trans, root, ret); 9730 if (own_trans) 9731 btrfs_end_transaction(trans, root); 9732 break; 9733 } 9734 9735 if (own_trans) 9736 btrfs_end_transaction(trans, root); 9737 } 9738 return ret; 9739 } 9740 9741 int btrfs_prealloc_file_range(struct inode *inode, int mode, 9742 u64 start, u64 num_bytes, u64 min_size, 9743 loff_t actual_len, u64 *alloc_hint) 9744 { 9745 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 9746 min_size, actual_len, alloc_hint, 9747 NULL); 9748 } 9749 9750 int btrfs_prealloc_file_range_trans(struct inode *inode, 9751 struct btrfs_trans_handle *trans, int mode, 9752 u64 start, u64 num_bytes, u64 min_size, 9753 loff_t actual_len, u64 *alloc_hint) 9754 { 9755 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 9756 min_size, actual_len, alloc_hint, trans); 9757 } 9758 9759 static int btrfs_set_page_dirty(struct page *page) 9760 { 9761 return __set_page_dirty_nobuffers(page); 9762 } 9763 9764 static int btrfs_permission(struct inode *inode, int mask) 9765 { 9766 struct btrfs_root *root = BTRFS_I(inode)->root; 9767 umode_t mode = inode->i_mode; 9768 9769 if (mask & MAY_WRITE && 9770 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) { 9771 if (btrfs_root_readonly(root)) 9772 return -EROFS; 9773 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) 9774 return -EACCES; 9775 } 9776 return generic_permission(inode, mask); 9777 } 9778 9779 static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode) 9780 { 9781 struct btrfs_trans_handle *trans; 9782 struct btrfs_root *root = BTRFS_I(dir)->root; 9783 struct inode *inode = NULL; 9784 u64 objectid; 9785 u64 index; 9786 int ret = 0; 9787 9788 /* 9789 * 5 units required for adding orphan entry 9790 */ 9791 trans = btrfs_start_transaction(root, 5); 9792 if (IS_ERR(trans)) 9793 return PTR_ERR(trans); 9794 9795 ret = btrfs_find_free_ino(root, &objectid); 9796 if (ret) 9797 goto out; 9798 9799 inode = btrfs_new_inode(trans, root, dir, NULL, 0, 9800 btrfs_ino(dir), objectid, mode, &index); 9801 if (IS_ERR(inode)) { 9802 ret = PTR_ERR(inode); 9803 inode = NULL; 9804 goto out; 9805 } 9806 9807 inode->i_fop = &btrfs_file_operations; 9808 inode->i_op = &btrfs_file_inode_operations; 9809 9810 inode->i_mapping->a_ops = &btrfs_aops; 9811 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 9812 9813 ret = btrfs_init_inode_security(trans, inode, dir, NULL); 9814 if (ret) 9815 goto out_inode; 9816 9817 ret = btrfs_update_inode(trans, root, inode); 9818 if (ret) 9819 goto out_inode; 9820 ret = btrfs_orphan_add(trans, inode); 9821 if (ret) 9822 goto out_inode; 9823 9824 /* 9825 * We set number of links to 0 in btrfs_new_inode(), and here we set 9826 * it to 1 because d_tmpfile() will issue a warning if the count is 0, 9827 * through: 9828 * 9829 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink() 9830 */ 9831 set_nlink(inode, 1); 9832 unlock_new_inode(inode); 9833 d_tmpfile(dentry, inode); 9834 mark_inode_dirty(inode); 9835 9836 out: 9837 btrfs_end_transaction(trans, root); 9838 if (ret) 9839 iput(inode); 9840 btrfs_balance_delayed_items(root); 9841 btrfs_btree_balance_dirty(root); 9842 return ret; 9843 9844 out_inode: 9845 unlock_new_inode(inode); 9846 goto out; 9847 9848 } 9849 9850 /* Inspired by filemap_check_errors() */ 9851 int btrfs_inode_check_errors(struct inode *inode) 9852 { 9853 int ret = 0; 9854 9855 if (test_bit(AS_ENOSPC, &inode->i_mapping->flags) && 9856 test_and_clear_bit(AS_ENOSPC, &inode->i_mapping->flags)) 9857 ret = -ENOSPC; 9858 if (test_bit(AS_EIO, &inode->i_mapping->flags) && 9859 test_and_clear_bit(AS_EIO, &inode->i_mapping->flags)) 9860 ret = -EIO; 9861 9862 return ret; 9863 } 9864 9865 static const struct inode_operations btrfs_dir_inode_operations = { 9866 .getattr = btrfs_getattr, 9867 .lookup = btrfs_lookup, 9868 .create = btrfs_create, 9869 .unlink = btrfs_unlink, 9870 .link = btrfs_link, 9871 .mkdir = btrfs_mkdir, 9872 .rmdir = btrfs_rmdir, 9873 .rename2 = btrfs_rename2, 9874 .symlink = btrfs_symlink, 9875 .setattr = btrfs_setattr, 9876 .mknod = btrfs_mknod, 9877 .setxattr = btrfs_setxattr, 9878 .getxattr = btrfs_getxattr, 9879 .listxattr = btrfs_listxattr, 9880 .removexattr = btrfs_removexattr, 9881 .permission = btrfs_permission, 9882 .get_acl = btrfs_get_acl, 9883 .set_acl = btrfs_set_acl, 9884 .update_time = btrfs_update_time, 9885 .tmpfile = btrfs_tmpfile, 9886 }; 9887 static const struct inode_operations btrfs_dir_ro_inode_operations = { 9888 .lookup = btrfs_lookup, 9889 .permission = btrfs_permission, 9890 .get_acl = btrfs_get_acl, 9891 .set_acl = btrfs_set_acl, 9892 .update_time = btrfs_update_time, 9893 }; 9894 9895 static const struct file_operations btrfs_dir_file_operations = { 9896 .llseek = generic_file_llseek, 9897 .read = generic_read_dir, 9898 .iterate = btrfs_real_readdir, 9899 .unlocked_ioctl = btrfs_ioctl, 9900 #ifdef CONFIG_COMPAT 9901 .compat_ioctl = btrfs_ioctl, 9902 #endif 9903 .release = btrfs_release_file, 9904 .fsync = btrfs_sync_file, 9905 }; 9906 9907 static struct extent_io_ops btrfs_extent_io_ops = { 9908 .fill_delalloc = run_delalloc_range, 9909 .submit_bio_hook = btrfs_submit_bio_hook, 9910 .merge_bio_hook = btrfs_merge_bio_hook, 9911 .readpage_end_io_hook = btrfs_readpage_end_io_hook, 9912 .writepage_end_io_hook = btrfs_writepage_end_io_hook, 9913 .writepage_start_hook = btrfs_writepage_start_hook, 9914 .set_bit_hook = btrfs_set_bit_hook, 9915 .clear_bit_hook = btrfs_clear_bit_hook, 9916 .merge_extent_hook = btrfs_merge_extent_hook, 9917 .split_extent_hook = btrfs_split_extent_hook, 9918 }; 9919 9920 /* 9921 * btrfs doesn't support the bmap operation because swapfiles 9922 * use bmap to make a mapping of extents in the file. They assume 9923 * these extents won't change over the life of the file and they 9924 * use the bmap result to do IO directly to the drive. 9925 * 9926 * the btrfs bmap call would return logical addresses that aren't 9927 * suitable for IO and they also will change frequently as COW 9928 * operations happen. So, swapfile + btrfs == corruption. 9929 * 9930 * For now we're avoiding this by dropping bmap. 9931 */ 9932 static const struct address_space_operations btrfs_aops = { 9933 .readpage = btrfs_readpage, 9934 .writepage = btrfs_writepage, 9935 .writepages = btrfs_writepages, 9936 .readpages = btrfs_readpages, 9937 .direct_IO = btrfs_direct_IO, 9938 .invalidatepage = btrfs_invalidatepage, 9939 .releasepage = btrfs_releasepage, 9940 .set_page_dirty = btrfs_set_page_dirty, 9941 .error_remove_page = generic_error_remove_page, 9942 }; 9943 9944 static const struct address_space_operations btrfs_symlink_aops = { 9945 .readpage = btrfs_readpage, 9946 .writepage = btrfs_writepage, 9947 .invalidatepage = btrfs_invalidatepage, 9948 .releasepage = btrfs_releasepage, 9949 }; 9950 9951 static const struct inode_operations btrfs_file_inode_operations = { 9952 .getattr = btrfs_getattr, 9953 .setattr = btrfs_setattr, 9954 .setxattr = btrfs_setxattr, 9955 .getxattr = btrfs_getxattr, 9956 .listxattr = btrfs_listxattr, 9957 .removexattr = btrfs_removexattr, 9958 .permission = btrfs_permission, 9959 .fiemap = btrfs_fiemap, 9960 .get_acl = btrfs_get_acl, 9961 .set_acl = btrfs_set_acl, 9962 .update_time = btrfs_update_time, 9963 }; 9964 static const struct inode_operations btrfs_special_inode_operations = { 9965 .getattr = btrfs_getattr, 9966 .setattr = btrfs_setattr, 9967 .permission = btrfs_permission, 9968 .setxattr = btrfs_setxattr, 9969 .getxattr = btrfs_getxattr, 9970 .listxattr = btrfs_listxattr, 9971 .removexattr = btrfs_removexattr, 9972 .get_acl = btrfs_get_acl, 9973 .set_acl = btrfs_set_acl, 9974 .update_time = btrfs_update_time, 9975 }; 9976 static const struct inode_operations btrfs_symlink_inode_operations = { 9977 .readlink = generic_readlink, 9978 .follow_link = page_follow_link_light, 9979 .put_link = page_put_link, 9980 .getattr = btrfs_getattr, 9981 .setattr = btrfs_setattr, 9982 .permission = btrfs_permission, 9983 .setxattr = btrfs_setxattr, 9984 .getxattr = btrfs_getxattr, 9985 .listxattr = btrfs_listxattr, 9986 .removexattr = btrfs_removexattr, 9987 .update_time = btrfs_update_time, 9988 }; 9989 9990 const struct dentry_operations btrfs_dentry_operations = { 9991 .d_delete = btrfs_dentry_delete, 9992 .d_release = btrfs_dentry_release, 9993 }; 9994