xref: /openbmc/linux/fs/btrfs/inode.c (revision e8377f49)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <crypto/hash.h>
7 #include <linux/kernel.h>
8 #include <linux/bio.h>
9 #include <linux/file.h>
10 #include <linux/fs.h>
11 #include <linux/pagemap.h>
12 #include <linux/highmem.h>
13 #include <linux/time.h>
14 #include <linux/init.h>
15 #include <linux/string.h>
16 #include <linux/backing-dev.h>
17 #include <linux/writeback.h>
18 #include <linux/compat.h>
19 #include <linux/xattr.h>
20 #include <linux/posix_acl.h>
21 #include <linux/falloc.h>
22 #include <linux/slab.h>
23 #include <linux/ratelimit.h>
24 #include <linux/btrfs.h>
25 #include <linux/blkdev.h>
26 #include <linux/posix_acl_xattr.h>
27 #include <linux/uio.h>
28 #include <linux/magic.h>
29 #include <linux/iversion.h>
30 #include <linux/swap.h>
31 #include <linux/migrate.h>
32 #include <linux/sched/mm.h>
33 #include <linux/iomap.h>
34 #include <asm/unaligned.h>
35 #include <linux/fsverity.h>
36 #include "misc.h"
37 #include "ctree.h"
38 #include "disk-io.h"
39 #include "transaction.h"
40 #include "btrfs_inode.h"
41 #include "print-tree.h"
42 #include "ordered-data.h"
43 #include "xattr.h"
44 #include "tree-log.h"
45 #include "volumes.h"
46 #include "compression.h"
47 #include "locking.h"
48 #include "free-space-cache.h"
49 #include "props.h"
50 #include "qgroup.h"
51 #include "delalloc-space.h"
52 #include "block-group.h"
53 #include "space-info.h"
54 #include "zoned.h"
55 #include "subpage.h"
56 
57 struct btrfs_iget_args {
58 	u64 ino;
59 	struct btrfs_root *root;
60 };
61 
62 struct btrfs_dio_data {
63 	u64 reserve;
64 	loff_t length;
65 	ssize_t submitted;
66 	struct extent_changeset *data_reserved;
67 };
68 
69 static const struct inode_operations btrfs_dir_inode_operations;
70 static const struct inode_operations btrfs_symlink_inode_operations;
71 static const struct inode_operations btrfs_special_inode_operations;
72 static const struct inode_operations btrfs_file_inode_operations;
73 static const struct address_space_operations btrfs_aops;
74 static const struct file_operations btrfs_dir_file_operations;
75 
76 static struct kmem_cache *btrfs_inode_cachep;
77 struct kmem_cache *btrfs_trans_handle_cachep;
78 struct kmem_cache *btrfs_path_cachep;
79 struct kmem_cache *btrfs_free_space_cachep;
80 struct kmem_cache *btrfs_free_space_bitmap_cachep;
81 
82 static int btrfs_setsize(struct inode *inode, struct iattr *attr);
83 static int btrfs_truncate(struct inode *inode, bool skip_writeback);
84 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
85 static noinline int cow_file_range(struct btrfs_inode *inode,
86 				   struct page *locked_page,
87 				   u64 start, u64 end, int *page_started,
88 				   unsigned long *nr_written, int unlock);
89 static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start,
90 				       u64 len, u64 orig_start, u64 block_start,
91 				       u64 block_len, u64 orig_block_len,
92 				       u64 ram_bytes, int compress_type,
93 				       int type);
94 
95 static void __endio_write_update_ordered(struct btrfs_inode *inode,
96 					 const u64 offset, const u64 bytes,
97 					 const bool uptodate);
98 
99 /*
100  * btrfs_inode_lock - lock inode i_rwsem based on arguments passed
101  *
102  * ilock_flags can have the following bit set:
103  *
104  * BTRFS_ILOCK_SHARED - acquire a shared lock on the inode
105  * BTRFS_ILOCK_TRY - try to acquire the lock, if fails on first attempt
106  *		     return -EAGAIN
107  * BTRFS_ILOCK_MMAP - acquire a write lock on the i_mmap_lock
108  */
109 int btrfs_inode_lock(struct inode *inode, unsigned int ilock_flags)
110 {
111 	if (ilock_flags & BTRFS_ILOCK_SHARED) {
112 		if (ilock_flags & BTRFS_ILOCK_TRY) {
113 			if (!inode_trylock_shared(inode))
114 				return -EAGAIN;
115 			else
116 				return 0;
117 		}
118 		inode_lock_shared(inode);
119 	} else {
120 		if (ilock_flags & BTRFS_ILOCK_TRY) {
121 			if (!inode_trylock(inode))
122 				return -EAGAIN;
123 			else
124 				return 0;
125 		}
126 		inode_lock(inode);
127 	}
128 	if (ilock_flags & BTRFS_ILOCK_MMAP)
129 		down_write(&BTRFS_I(inode)->i_mmap_lock);
130 	return 0;
131 }
132 
133 /*
134  * btrfs_inode_unlock - unock inode i_rwsem
135  *
136  * ilock_flags should contain the same bits set as passed to btrfs_inode_lock()
137  * to decide whether the lock acquired is shared or exclusive.
138  */
139 void btrfs_inode_unlock(struct inode *inode, unsigned int ilock_flags)
140 {
141 	if (ilock_flags & BTRFS_ILOCK_MMAP)
142 		up_write(&BTRFS_I(inode)->i_mmap_lock);
143 	if (ilock_flags & BTRFS_ILOCK_SHARED)
144 		inode_unlock_shared(inode);
145 	else
146 		inode_unlock(inode);
147 }
148 
149 /*
150  * Cleanup all submitted ordered extents in specified range to handle errors
151  * from the btrfs_run_delalloc_range() callback.
152  *
153  * NOTE: caller must ensure that when an error happens, it can not call
154  * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING
155  * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata
156  * to be released, which we want to happen only when finishing the ordered
157  * extent (btrfs_finish_ordered_io()).
158  */
159 static inline void btrfs_cleanup_ordered_extents(struct btrfs_inode *inode,
160 						 struct page *locked_page,
161 						 u64 offset, u64 bytes)
162 {
163 	unsigned long index = offset >> PAGE_SHIFT;
164 	unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT;
165 	u64 page_start = page_offset(locked_page);
166 	u64 page_end = page_start + PAGE_SIZE - 1;
167 
168 	struct page *page;
169 
170 	while (index <= end_index) {
171 		/*
172 		 * For locked page, we will call end_extent_writepage() on it
173 		 * in run_delalloc_range() for the error handling.  That
174 		 * end_extent_writepage() function will call
175 		 * btrfs_mark_ordered_io_finished() to clear page Ordered and
176 		 * run the ordered extent accounting.
177 		 *
178 		 * Here we can't just clear the Ordered bit, or
179 		 * btrfs_mark_ordered_io_finished() would skip the accounting
180 		 * for the page range, and the ordered extent will never finish.
181 		 */
182 		if (index == (page_offset(locked_page) >> PAGE_SHIFT)) {
183 			index++;
184 			continue;
185 		}
186 		page = find_get_page(inode->vfs_inode.i_mapping, index);
187 		index++;
188 		if (!page)
189 			continue;
190 
191 		/*
192 		 * Here we just clear all Ordered bits for every page in the
193 		 * range, then __endio_write_update_ordered() will handle
194 		 * the ordered extent accounting for the range.
195 		 */
196 		btrfs_page_clamp_clear_ordered(inode->root->fs_info, page,
197 					       offset, bytes);
198 		put_page(page);
199 	}
200 
201 	/* The locked page covers the full range, nothing needs to be done */
202 	if (bytes + offset <= page_offset(locked_page) + PAGE_SIZE)
203 		return;
204 	/*
205 	 * In case this page belongs to the delalloc range being instantiated
206 	 * then skip it, since the first page of a range is going to be
207 	 * properly cleaned up by the caller of run_delalloc_range
208 	 */
209 	if (page_start >= offset && page_end <= (offset + bytes - 1)) {
210 		bytes = offset + bytes - page_offset(locked_page) - PAGE_SIZE;
211 		offset = page_offset(locked_page) + PAGE_SIZE;
212 	}
213 
214 	return __endio_write_update_ordered(inode, offset, bytes, false);
215 }
216 
217 static int btrfs_dirty_inode(struct inode *inode);
218 
219 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
220 				     struct inode *inode,  struct inode *dir,
221 				     const struct qstr *qstr)
222 {
223 	int err;
224 
225 	err = btrfs_init_acl(trans, inode, dir);
226 	if (!err)
227 		err = btrfs_xattr_security_init(trans, inode, dir, qstr);
228 	return err;
229 }
230 
231 /*
232  * this does all the hard work for inserting an inline extent into
233  * the btree.  The caller should have done a btrfs_drop_extents so that
234  * no overlapping inline items exist in the btree
235  */
236 static int insert_inline_extent(struct btrfs_trans_handle *trans,
237 				struct btrfs_path *path, bool extent_inserted,
238 				struct btrfs_root *root, struct inode *inode,
239 				u64 start, size_t size, size_t compressed_size,
240 				int compress_type,
241 				struct page **compressed_pages)
242 {
243 	struct extent_buffer *leaf;
244 	struct page *page = NULL;
245 	char *kaddr;
246 	unsigned long ptr;
247 	struct btrfs_file_extent_item *ei;
248 	int ret;
249 	size_t cur_size = size;
250 	unsigned long offset;
251 
252 	ASSERT((compressed_size > 0 && compressed_pages) ||
253 	       (compressed_size == 0 && !compressed_pages));
254 
255 	if (compressed_size && compressed_pages)
256 		cur_size = compressed_size;
257 
258 	if (!extent_inserted) {
259 		struct btrfs_key key;
260 		size_t datasize;
261 
262 		key.objectid = btrfs_ino(BTRFS_I(inode));
263 		key.offset = start;
264 		key.type = BTRFS_EXTENT_DATA_KEY;
265 
266 		datasize = btrfs_file_extent_calc_inline_size(cur_size);
267 		ret = btrfs_insert_empty_item(trans, root, path, &key,
268 					      datasize);
269 		if (ret)
270 			goto fail;
271 	}
272 	leaf = path->nodes[0];
273 	ei = btrfs_item_ptr(leaf, path->slots[0],
274 			    struct btrfs_file_extent_item);
275 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
276 	btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
277 	btrfs_set_file_extent_encryption(leaf, ei, 0);
278 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
279 	btrfs_set_file_extent_ram_bytes(leaf, ei, size);
280 	ptr = btrfs_file_extent_inline_start(ei);
281 
282 	if (compress_type != BTRFS_COMPRESS_NONE) {
283 		struct page *cpage;
284 		int i = 0;
285 		while (compressed_size > 0) {
286 			cpage = compressed_pages[i];
287 			cur_size = min_t(unsigned long, compressed_size,
288 				       PAGE_SIZE);
289 
290 			kaddr = page_address(cpage);
291 			write_extent_buffer(leaf, kaddr, ptr, cur_size);
292 
293 			i++;
294 			ptr += cur_size;
295 			compressed_size -= cur_size;
296 		}
297 		btrfs_set_file_extent_compression(leaf, ei,
298 						  compress_type);
299 	} else {
300 		page = find_get_page(inode->i_mapping,
301 				     start >> PAGE_SHIFT);
302 		btrfs_set_file_extent_compression(leaf, ei, 0);
303 		kaddr = kmap_atomic(page);
304 		offset = offset_in_page(start);
305 		write_extent_buffer(leaf, kaddr + offset, ptr, size);
306 		kunmap_atomic(kaddr);
307 		put_page(page);
308 	}
309 	btrfs_mark_buffer_dirty(leaf);
310 	btrfs_release_path(path);
311 
312 	/*
313 	 * We align size to sectorsize for inline extents just for simplicity
314 	 * sake.
315 	 */
316 	size = ALIGN(size, root->fs_info->sectorsize);
317 	ret = btrfs_inode_set_file_extent_range(BTRFS_I(inode), start, size);
318 	if (ret)
319 		goto fail;
320 
321 	/*
322 	 * we're an inline extent, so nobody can
323 	 * extend the file past i_size without locking
324 	 * a page we already have locked.
325 	 *
326 	 * We must do any isize and inode updates
327 	 * before we unlock the pages.  Otherwise we
328 	 * could end up racing with unlink.
329 	 */
330 	BTRFS_I(inode)->disk_i_size = inode->i_size;
331 fail:
332 	return ret;
333 }
334 
335 
336 /*
337  * conditionally insert an inline extent into the file.  This
338  * does the checks required to make sure the data is small enough
339  * to fit as an inline extent.
340  */
341 static noinline int cow_file_range_inline(struct btrfs_inode *inode, u64 start,
342 					  u64 end, size_t compressed_size,
343 					  int compress_type,
344 					  struct page **compressed_pages)
345 {
346 	struct btrfs_drop_extents_args drop_args = { 0 };
347 	struct btrfs_root *root = inode->root;
348 	struct btrfs_fs_info *fs_info = root->fs_info;
349 	struct btrfs_trans_handle *trans;
350 	u64 isize = i_size_read(&inode->vfs_inode);
351 	u64 actual_end = min(end + 1, isize);
352 	u64 inline_len = actual_end - start;
353 	u64 aligned_end = ALIGN(end, fs_info->sectorsize);
354 	u64 data_len = inline_len;
355 	int ret;
356 	struct btrfs_path *path;
357 
358 	if (compressed_size)
359 		data_len = compressed_size;
360 
361 	if (start > 0 ||
362 	    actual_end > fs_info->sectorsize ||
363 	    data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) ||
364 	    (!compressed_size &&
365 	    (actual_end & (fs_info->sectorsize - 1)) == 0) ||
366 	    end + 1 < isize ||
367 	    data_len > fs_info->max_inline) {
368 		return 1;
369 	}
370 
371 	path = btrfs_alloc_path();
372 	if (!path)
373 		return -ENOMEM;
374 
375 	trans = btrfs_join_transaction(root);
376 	if (IS_ERR(trans)) {
377 		btrfs_free_path(path);
378 		return PTR_ERR(trans);
379 	}
380 	trans->block_rsv = &inode->block_rsv;
381 
382 	drop_args.path = path;
383 	drop_args.start = start;
384 	drop_args.end = aligned_end;
385 	drop_args.drop_cache = true;
386 	drop_args.replace_extent = true;
387 
388 	if (compressed_size && compressed_pages)
389 		drop_args.extent_item_size = btrfs_file_extent_calc_inline_size(
390 		   compressed_size);
391 	else
392 		drop_args.extent_item_size = btrfs_file_extent_calc_inline_size(
393 		    inline_len);
394 
395 	ret = btrfs_drop_extents(trans, root, inode, &drop_args);
396 	if (ret) {
397 		btrfs_abort_transaction(trans, ret);
398 		goto out;
399 	}
400 
401 	if (isize > actual_end)
402 		inline_len = min_t(u64, isize, actual_end);
403 	ret = insert_inline_extent(trans, path, drop_args.extent_inserted,
404 				   root, &inode->vfs_inode, start,
405 				   inline_len, compressed_size,
406 				   compress_type, compressed_pages);
407 	if (ret && ret != -ENOSPC) {
408 		btrfs_abort_transaction(trans, ret);
409 		goto out;
410 	} else if (ret == -ENOSPC) {
411 		ret = 1;
412 		goto out;
413 	}
414 
415 	btrfs_update_inode_bytes(inode, inline_len, drop_args.bytes_found);
416 	ret = btrfs_update_inode(trans, root, inode);
417 	if (ret && ret != -ENOSPC) {
418 		btrfs_abort_transaction(trans, ret);
419 		goto out;
420 	} else if (ret == -ENOSPC) {
421 		ret = 1;
422 		goto out;
423 	}
424 
425 	set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
426 out:
427 	/*
428 	 * Don't forget to free the reserved space, as for inlined extent
429 	 * it won't count as data extent, free them directly here.
430 	 * And at reserve time, it's always aligned to page size, so
431 	 * just free one page here.
432 	 */
433 	btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE);
434 	btrfs_free_path(path);
435 	btrfs_end_transaction(trans);
436 	return ret;
437 }
438 
439 struct async_extent {
440 	u64 start;
441 	u64 ram_size;
442 	u64 compressed_size;
443 	struct page **pages;
444 	unsigned long nr_pages;
445 	int compress_type;
446 	struct list_head list;
447 };
448 
449 struct async_chunk {
450 	struct inode *inode;
451 	struct page *locked_page;
452 	u64 start;
453 	u64 end;
454 	unsigned int write_flags;
455 	struct list_head extents;
456 	struct cgroup_subsys_state *blkcg_css;
457 	struct btrfs_work work;
458 	atomic_t *pending;
459 };
460 
461 struct async_cow {
462 	/* Number of chunks in flight; must be first in the structure */
463 	atomic_t num_chunks;
464 	struct async_chunk chunks[];
465 };
466 
467 static noinline int add_async_extent(struct async_chunk *cow,
468 				     u64 start, u64 ram_size,
469 				     u64 compressed_size,
470 				     struct page **pages,
471 				     unsigned long nr_pages,
472 				     int compress_type)
473 {
474 	struct async_extent *async_extent;
475 
476 	async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
477 	BUG_ON(!async_extent); /* -ENOMEM */
478 	async_extent->start = start;
479 	async_extent->ram_size = ram_size;
480 	async_extent->compressed_size = compressed_size;
481 	async_extent->pages = pages;
482 	async_extent->nr_pages = nr_pages;
483 	async_extent->compress_type = compress_type;
484 	list_add_tail(&async_extent->list, &cow->extents);
485 	return 0;
486 }
487 
488 /*
489  * Check if the inode has flags compatible with compression
490  */
491 static inline bool inode_can_compress(struct btrfs_inode *inode)
492 {
493 	/* Subpage doesn't support compression yet */
494 	if (inode->root->fs_info->sectorsize < PAGE_SIZE)
495 		return false;
496 	if (inode->flags & BTRFS_INODE_NODATACOW ||
497 	    inode->flags & BTRFS_INODE_NODATASUM)
498 		return false;
499 	return true;
500 }
501 
502 /*
503  * Check if the inode needs to be submitted to compression, based on mount
504  * options, defragmentation, properties or heuristics.
505  */
506 static inline int inode_need_compress(struct btrfs_inode *inode, u64 start,
507 				      u64 end)
508 {
509 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
510 
511 	if (!inode_can_compress(inode)) {
512 		WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
513 			KERN_ERR "BTRFS: unexpected compression for ino %llu\n",
514 			btrfs_ino(inode));
515 		return 0;
516 	}
517 	/* force compress */
518 	if (btrfs_test_opt(fs_info, FORCE_COMPRESS))
519 		return 1;
520 	/* defrag ioctl */
521 	if (inode->defrag_compress)
522 		return 1;
523 	/* bad compression ratios */
524 	if (inode->flags & BTRFS_INODE_NOCOMPRESS)
525 		return 0;
526 	if (btrfs_test_opt(fs_info, COMPRESS) ||
527 	    inode->flags & BTRFS_INODE_COMPRESS ||
528 	    inode->prop_compress)
529 		return btrfs_compress_heuristic(&inode->vfs_inode, start, end);
530 	return 0;
531 }
532 
533 static inline void inode_should_defrag(struct btrfs_inode *inode,
534 		u64 start, u64 end, u64 num_bytes, u64 small_write)
535 {
536 	/* If this is a small write inside eof, kick off a defrag */
537 	if (num_bytes < small_write &&
538 	    (start > 0 || end + 1 < inode->disk_i_size))
539 		btrfs_add_inode_defrag(NULL, inode);
540 }
541 
542 /*
543  * we create compressed extents in two phases.  The first
544  * phase compresses a range of pages that have already been
545  * locked (both pages and state bits are locked).
546  *
547  * This is done inside an ordered work queue, and the compression
548  * is spread across many cpus.  The actual IO submission is step
549  * two, and the ordered work queue takes care of making sure that
550  * happens in the same order things were put onto the queue by
551  * writepages and friends.
552  *
553  * If this code finds it can't get good compression, it puts an
554  * entry onto the work queue to write the uncompressed bytes.  This
555  * makes sure that both compressed inodes and uncompressed inodes
556  * are written in the same order that the flusher thread sent them
557  * down.
558  */
559 static noinline int compress_file_range(struct async_chunk *async_chunk)
560 {
561 	struct inode *inode = async_chunk->inode;
562 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
563 	u64 blocksize = fs_info->sectorsize;
564 	u64 start = async_chunk->start;
565 	u64 end = async_chunk->end;
566 	u64 actual_end;
567 	u64 i_size;
568 	int ret = 0;
569 	struct page **pages = NULL;
570 	unsigned long nr_pages;
571 	unsigned long total_compressed = 0;
572 	unsigned long total_in = 0;
573 	int i;
574 	int will_compress;
575 	int compress_type = fs_info->compress_type;
576 	int compressed_extents = 0;
577 	int redirty = 0;
578 
579 	inode_should_defrag(BTRFS_I(inode), start, end, end - start + 1,
580 			SZ_16K);
581 
582 	/*
583 	 * We need to save i_size before now because it could change in between
584 	 * us evaluating the size and assigning it.  This is because we lock and
585 	 * unlock the page in truncate and fallocate, and then modify the i_size
586 	 * later on.
587 	 *
588 	 * The barriers are to emulate READ_ONCE, remove that once i_size_read
589 	 * does that for us.
590 	 */
591 	barrier();
592 	i_size = i_size_read(inode);
593 	barrier();
594 	actual_end = min_t(u64, i_size, end + 1);
595 again:
596 	will_compress = 0;
597 	nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
598 	BUILD_BUG_ON((BTRFS_MAX_COMPRESSED % PAGE_SIZE) != 0);
599 	nr_pages = min_t(unsigned long, nr_pages,
600 			BTRFS_MAX_COMPRESSED / PAGE_SIZE);
601 
602 	/*
603 	 * we don't want to send crud past the end of i_size through
604 	 * compression, that's just a waste of CPU time.  So, if the
605 	 * end of the file is before the start of our current
606 	 * requested range of bytes, we bail out to the uncompressed
607 	 * cleanup code that can deal with all of this.
608 	 *
609 	 * It isn't really the fastest way to fix things, but this is a
610 	 * very uncommon corner.
611 	 */
612 	if (actual_end <= start)
613 		goto cleanup_and_bail_uncompressed;
614 
615 	total_compressed = actual_end - start;
616 
617 	/*
618 	 * skip compression for a small file range(<=blocksize) that
619 	 * isn't an inline extent, since it doesn't save disk space at all.
620 	 */
621 	if (total_compressed <= blocksize &&
622 	   (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
623 		goto cleanup_and_bail_uncompressed;
624 
625 	total_compressed = min_t(unsigned long, total_compressed,
626 			BTRFS_MAX_UNCOMPRESSED);
627 	total_in = 0;
628 	ret = 0;
629 
630 	/*
631 	 * we do compression for mount -o compress and when the
632 	 * inode has not been flagged as nocompress.  This flag can
633 	 * change at any time if we discover bad compression ratios.
634 	 */
635 	if (inode_need_compress(BTRFS_I(inode), start, end)) {
636 		WARN_ON(pages);
637 		pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
638 		if (!pages) {
639 			/* just bail out to the uncompressed code */
640 			nr_pages = 0;
641 			goto cont;
642 		}
643 
644 		if (BTRFS_I(inode)->defrag_compress)
645 			compress_type = BTRFS_I(inode)->defrag_compress;
646 		else if (BTRFS_I(inode)->prop_compress)
647 			compress_type = BTRFS_I(inode)->prop_compress;
648 
649 		/*
650 		 * we need to call clear_page_dirty_for_io on each
651 		 * page in the range.  Otherwise applications with the file
652 		 * mmap'd can wander in and change the page contents while
653 		 * we are compressing them.
654 		 *
655 		 * If the compression fails for any reason, we set the pages
656 		 * dirty again later on.
657 		 *
658 		 * Note that the remaining part is redirtied, the start pointer
659 		 * has moved, the end is the original one.
660 		 */
661 		if (!redirty) {
662 			extent_range_clear_dirty_for_io(inode, start, end);
663 			redirty = 1;
664 		}
665 
666 		/* Compression level is applied here and only here */
667 		ret = btrfs_compress_pages(
668 			compress_type | (fs_info->compress_level << 4),
669 					   inode->i_mapping, start,
670 					   pages,
671 					   &nr_pages,
672 					   &total_in,
673 					   &total_compressed);
674 
675 		if (!ret) {
676 			unsigned long offset = offset_in_page(total_compressed);
677 			struct page *page = pages[nr_pages - 1];
678 
679 			/* zero the tail end of the last page, we might be
680 			 * sending it down to disk
681 			 */
682 			if (offset)
683 				memzero_page(page, offset, PAGE_SIZE - offset);
684 			will_compress = 1;
685 		}
686 	}
687 cont:
688 	/*
689 	 * Check cow_file_range() for why we don't even try to create inline
690 	 * extent for subpage case.
691 	 */
692 	if (start == 0 && fs_info->sectorsize == PAGE_SIZE) {
693 		/* lets try to make an inline extent */
694 		if (ret || total_in < actual_end) {
695 			/* we didn't compress the entire range, try
696 			 * to make an uncompressed inline extent.
697 			 */
698 			ret = cow_file_range_inline(BTRFS_I(inode), start, end,
699 						    0, BTRFS_COMPRESS_NONE,
700 						    NULL);
701 		} else {
702 			/* try making a compressed inline extent */
703 			ret = cow_file_range_inline(BTRFS_I(inode), start, end,
704 						    total_compressed,
705 						    compress_type, pages);
706 		}
707 		if (ret <= 0) {
708 			unsigned long clear_flags = EXTENT_DELALLOC |
709 				EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
710 				EXTENT_DO_ACCOUNTING;
711 			unsigned long page_error_op;
712 
713 			page_error_op = ret < 0 ? PAGE_SET_ERROR : 0;
714 
715 			/*
716 			 * inline extent creation worked or returned error,
717 			 * we don't need to create any more async work items.
718 			 * Unlock and free up our temp pages.
719 			 *
720 			 * We use DO_ACCOUNTING here because we need the
721 			 * delalloc_release_metadata to be done _after_ we drop
722 			 * our outstanding extent for clearing delalloc for this
723 			 * range.
724 			 */
725 			extent_clear_unlock_delalloc(BTRFS_I(inode), start, end,
726 						     NULL,
727 						     clear_flags,
728 						     PAGE_UNLOCK |
729 						     PAGE_START_WRITEBACK |
730 						     page_error_op |
731 						     PAGE_END_WRITEBACK);
732 
733 			/*
734 			 * Ensure we only free the compressed pages if we have
735 			 * them allocated, as we can still reach here with
736 			 * inode_need_compress() == false.
737 			 */
738 			if (pages) {
739 				for (i = 0; i < nr_pages; i++) {
740 					WARN_ON(pages[i]->mapping);
741 					put_page(pages[i]);
742 				}
743 				kfree(pages);
744 			}
745 			return 0;
746 		}
747 	}
748 
749 	if (will_compress) {
750 		/*
751 		 * we aren't doing an inline extent round the compressed size
752 		 * up to a block size boundary so the allocator does sane
753 		 * things
754 		 */
755 		total_compressed = ALIGN(total_compressed, blocksize);
756 
757 		/*
758 		 * one last check to make sure the compression is really a
759 		 * win, compare the page count read with the blocks on disk,
760 		 * compression must free at least one sector size
761 		 */
762 		total_in = ALIGN(total_in, PAGE_SIZE);
763 		if (total_compressed + blocksize <= total_in) {
764 			compressed_extents++;
765 
766 			/*
767 			 * The async work queues will take care of doing actual
768 			 * allocation on disk for these compressed pages, and
769 			 * will submit them to the elevator.
770 			 */
771 			add_async_extent(async_chunk, start, total_in,
772 					total_compressed, pages, nr_pages,
773 					compress_type);
774 
775 			if (start + total_in < end) {
776 				start += total_in;
777 				pages = NULL;
778 				cond_resched();
779 				goto again;
780 			}
781 			return compressed_extents;
782 		}
783 	}
784 	if (pages) {
785 		/*
786 		 * the compression code ran but failed to make things smaller,
787 		 * free any pages it allocated and our page pointer array
788 		 */
789 		for (i = 0; i < nr_pages; i++) {
790 			WARN_ON(pages[i]->mapping);
791 			put_page(pages[i]);
792 		}
793 		kfree(pages);
794 		pages = NULL;
795 		total_compressed = 0;
796 		nr_pages = 0;
797 
798 		/* flag the file so we don't compress in the future */
799 		if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) &&
800 		    !(BTRFS_I(inode)->prop_compress)) {
801 			BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
802 		}
803 	}
804 cleanup_and_bail_uncompressed:
805 	/*
806 	 * No compression, but we still need to write the pages in the file
807 	 * we've been given so far.  redirty the locked page if it corresponds
808 	 * to our extent and set things up for the async work queue to run
809 	 * cow_file_range to do the normal delalloc dance.
810 	 */
811 	if (async_chunk->locked_page &&
812 	    (page_offset(async_chunk->locked_page) >= start &&
813 	     page_offset(async_chunk->locked_page)) <= end) {
814 		__set_page_dirty_nobuffers(async_chunk->locked_page);
815 		/* unlocked later on in the async handlers */
816 	}
817 
818 	if (redirty)
819 		extent_range_redirty_for_io(inode, start, end);
820 	add_async_extent(async_chunk, start, end - start + 1, 0, NULL, 0,
821 			 BTRFS_COMPRESS_NONE);
822 	compressed_extents++;
823 
824 	return compressed_extents;
825 }
826 
827 static void free_async_extent_pages(struct async_extent *async_extent)
828 {
829 	int i;
830 
831 	if (!async_extent->pages)
832 		return;
833 
834 	for (i = 0; i < async_extent->nr_pages; i++) {
835 		WARN_ON(async_extent->pages[i]->mapping);
836 		put_page(async_extent->pages[i]);
837 	}
838 	kfree(async_extent->pages);
839 	async_extent->nr_pages = 0;
840 	async_extent->pages = NULL;
841 }
842 
843 /*
844  * phase two of compressed writeback.  This is the ordered portion
845  * of the code, which only gets called in the order the work was
846  * queued.  We walk all the async extents created by compress_file_range
847  * and send them down to the disk.
848  */
849 static noinline void submit_compressed_extents(struct async_chunk *async_chunk)
850 {
851 	struct btrfs_inode *inode = BTRFS_I(async_chunk->inode);
852 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
853 	struct async_extent *async_extent;
854 	u64 alloc_hint = 0;
855 	struct btrfs_key ins;
856 	struct extent_map *em;
857 	struct btrfs_root *root = inode->root;
858 	struct extent_io_tree *io_tree = &inode->io_tree;
859 	int ret = 0;
860 
861 again:
862 	while (!list_empty(&async_chunk->extents)) {
863 		async_extent = list_entry(async_chunk->extents.next,
864 					  struct async_extent, list);
865 		list_del(&async_extent->list);
866 
867 retry:
868 		lock_extent(io_tree, async_extent->start,
869 			    async_extent->start + async_extent->ram_size - 1);
870 		/* did the compression code fall back to uncompressed IO? */
871 		if (!async_extent->pages) {
872 			int page_started = 0;
873 			unsigned long nr_written = 0;
874 
875 			/* allocate blocks */
876 			ret = cow_file_range(inode, async_chunk->locked_page,
877 					     async_extent->start,
878 					     async_extent->start +
879 					     async_extent->ram_size - 1,
880 					     &page_started, &nr_written, 0);
881 
882 			/* JDM XXX */
883 
884 			/*
885 			 * if page_started, cow_file_range inserted an
886 			 * inline extent and took care of all the unlocking
887 			 * and IO for us.  Otherwise, we need to submit
888 			 * all those pages down to the drive.
889 			 */
890 			if (!page_started && !ret)
891 				extent_write_locked_range(&inode->vfs_inode,
892 						  async_extent->start,
893 						  async_extent->start +
894 						  async_extent->ram_size - 1,
895 						  WB_SYNC_ALL);
896 			else if (ret && async_chunk->locked_page)
897 				unlock_page(async_chunk->locked_page);
898 			kfree(async_extent);
899 			cond_resched();
900 			continue;
901 		}
902 
903 		ret = btrfs_reserve_extent(root, async_extent->ram_size,
904 					   async_extent->compressed_size,
905 					   async_extent->compressed_size,
906 					   0, alloc_hint, &ins, 1, 1);
907 		if (ret) {
908 			free_async_extent_pages(async_extent);
909 
910 			if (ret == -ENOSPC) {
911 				unlock_extent(io_tree, async_extent->start,
912 					      async_extent->start +
913 					      async_extent->ram_size - 1);
914 
915 				/*
916 				 * we need to redirty the pages if we decide to
917 				 * fallback to uncompressed IO, otherwise we
918 				 * will not submit these pages down to lower
919 				 * layers.
920 				 */
921 				extent_range_redirty_for_io(&inode->vfs_inode,
922 						async_extent->start,
923 						async_extent->start +
924 						async_extent->ram_size - 1);
925 
926 				goto retry;
927 			}
928 			goto out_free;
929 		}
930 		/*
931 		 * here we're doing allocation and writeback of the
932 		 * compressed pages
933 		 */
934 		em = create_io_em(inode, async_extent->start,
935 				  async_extent->ram_size, /* len */
936 				  async_extent->start, /* orig_start */
937 				  ins.objectid, /* block_start */
938 				  ins.offset, /* block_len */
939 				  ins.offset, /* orig_block_len */
940 				  async_extent->ram_size, /* ram_bytes */
941 				  async_extent->compress_type,
942 				  BTRFS_ORDERED_COMPRESSED);
943 		if (IS_ERR(em))
944 			/* ret value is not necessary due to void function */
945 			goto out_free_reserve;
946 		free_extent_map(em);
947 
948 		ret = btrfs_add_ordered_extent_compress(inode,
949 						async_extent->start,
950 						ins.objectid,
951 						async_extent->ram_size,
952 						ins.offset,
953 						async_extent->compress_type);
954 		if (ret) {
955 			btrfs_drop_extent_cache(inode, async_extent->start,
956 						async_extent->start +
957 						async_extent->ram_size - 1, 0);
958 			goto out_free_reserve;
959 		}
960 		btrfs_dec_block_group_reservations(fs_info, ins.objectid);
961 
962 		/*
963 		 * clear dirty, set writeback and unlock the pages.
964 		 */
965 		extent_clear_unlock_delalloc(inode, async_extent->start,
966 				async_extent->start +
967 				async_extent->ram_size - 1,
968 				NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
969 				PAGE_UNLOCK | PAGE_START_WRITEBACK);
970 		if (btrfs_submit_compressed_write(inode, async_extent->start,
971 				    async_extent->ram_size,
972 				    ins.objectid,
973 				    ins.offset, async_extent->pages,
974 				    async_extent->nr_pages,
975 				    async_chunk->write_flags,
976 				    async_chunk->blkcg_css)) {
977 			struct page *p = async_extent->pages[0];
978 			const u64 start = async_extent->start;
979 			const u64 end = start + async_extent->ram_size - 1;
980 
981 			p->mapping = inode->vfs_inode.i_mapping;
982 			btrfs_writepage_endio_finish_ordered(inode, p, start,
983 							     end, false);
984 
985 			p->mapping = NULL;
986 			extent_clear_unlock_delalloc(inode, start, end, NULL, 0,
987 						     PAGE_END_WRITEBACK |
988 						     PAGE_SET_ERROR);
989 			free_async_extent_pages(async_extent);
990 		}
991 		alloc_hint = ins.objectid + ins.offset;
992 		kfree(async_extent);
993 		cond_resched();
994 	}
995 	return;
996 out_free_reserve:
997 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
998 	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
999 out_free:
1000 	extent_clear_unlock_delalloc(inode, async_extent->start,
1001 				     async_extent->start +
1002 				     async_extent->ram_size - 1,
1003 				     NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
1004 				     EXTENT_DELALLOC_NEW |
1005 				     EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
1006 				     PAGE_UNLOCK | PAGE_START_WRITEBACK |
1007 				     PAGE_END_WRITEBACK | PAGE_SET_ERROR);
1008 	free_async_extent_pages(async_extent);
1009 	kfree(async_extent);
1010 	goto again;
1011 }
1012 
1013 static u64 get_extent_allocation_hint(struct btrfs_inode *inode, u64 start,
1014 				      u64 num_bytes)
1015 {
1016 	struct extent_map_tree *em_tree = &inode->extent_tree;
1017 	struct extent_map *em;
1018 	u64 alloc_hint = 0;
1019 
1020 	read_lock(&em_tree->lock);
1021 	em = search_extent_mapping(em_tree, start, num_bytes);
1022 	if (em) {
1023 		/*
1024 		 * if block start isn't an actual block number then find the
1025 		 * first block in this inode and use that as a hint.  If that
1026 		 * block is also bogus then just don't worry about it.
1027 		 */
1028 		if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1029 			free_extent_map(em);
1030 			em = search_extent_mapping(em_tree, 0, 0);
1031 			if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
1032 				alloc_hint = em->block_start;
1033 			if (em)
1034 				free_extent_map(em);
1035 		} else {
1036 			alloc_hint = em->block_start;
1037 			free_extent_map(em);
1038 		}
1039 	}
1040 	read_unlock(&em_tree->lock);
1041 
1042 	return alloc_hint;
1043 }
1044 
1045 /*
1046  * when extent_io.c finds a delayed allocation range in the file,
1047  * the call backs end up in this code.  The basic idea is to
1048  * allocate extents on disk for the range, and create ordered data structs
1049  * in ram to track those extents.
1050  *
1051  * locked_page is the page that writepage had locked already.  We use
1052  * it to make sure we don't do extra locks or unlocks.
1053  *
1054  * *page_started is set to one if we unlock locked_page and do everything
1055  * required to start IO on it.  It may be clean and already done with
1056  * IO when we return.
1057  */
1058 static noinline int cow_file_range(struct btrfs_inode *inode,
1059 				   struct page *locked_page,
1060 				   u64 start, u64 end, int *page_started,
1061 				   unsigned long *nr_written, int unlock)
1062 {
1063 	struct btrfs_root *root = inode->root;
1064 	struct btrfs_fs_info *fs_info = root->fs_info;
1065 	u64 alloc_hint = 0;
1066 	u64 num_bytes;
1067 	unsigned long ram_size;
1068 	u64 cur_alloc_size = 0;
1069 	u64 min_alloc_size;
1070 	u64 blocksize = fs_info->sectorsize;
1071 	struct btrfs_key ins;
1072 	struct extent_map *em;
1073 	unsigned clear_bits;
1074 	unsigned long page_ops;
1075 	bool extent_reserved = false;
1076 	int ret = 0;
1077 
1078 	if (btrfs_is_free_space_inode(inode)) {
1079 		WARN_ON_ONCE(1);
1080 		ret = -EINVAL;
1081 		goto out_unlock;
1082 	}
1083 
1084 	num_bytes = ALIGN(end - start + 1, blocksize);
1085 	num_bytes = max(blocksize,  num_bytes);
1086 	ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy));
1087 
1088 	inode_should_defrag(inode, start, end, num_bytes, SZ_64K);
1089 
1090 	/*
1091 	 * Due to the page size limit, for subpage we can only trigger the
1092 	 * writeback for the dirty sectors of page, that means data writeback
1093 	 * is doing more writeback than what we want.
1094 	 *
1095 	 * This is especially unexpected for some call sites like fallocate,
1096 	 * where we only increase i_size after everything is done.
1097 	 * This means we can trigger inline extent even if we didn't want to.
1098 	 * So here we skip inline extent creation completely.
1099 	 */
1100 	if (start == 0 && fs_info->sectorsize == PAGE_SIZE) {
1101 		/* lets try to make an inline extent */
1102 		ret = cow_file_range_inline(inode, start, end, 0,
1103 					    BTRFS_COMPRESS_NONE, NULL);
1104 		if (ret == 0) {
1105 			/*
1106 			 * We use DO_ACCOUNTING here because we need the
1107 			 * delalloc_release_metadata to be run _after_ we drop
1108 			 * our outstanding extent for clearing delalloc for this
1109 			 * range.
1110 			 */
1111 			extent_clear_unlock_delalloc(inode, start, end,
1112 				     locked_page,
1113 				     EXTENT_LOCKED | EXTENT_DELALLOC |
1114 				     EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
1115 				     EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1116 				     PAGE_START_WRITEBACK | PAGE_END_WRITEBACK);
1117 			*nr_written = *nr_written +
1118 			     (end - start + PAGE_SIZE) / PAGE_SIZE;
1119 			*page_started = 1;
1120 			/*
1121 			 * locked_page is locked by the caller of
1122 			 * writepage_delalloc(), not locked by
1123 			 * __process_pages_contig().
1124 			 *
1125 			 * We can't let __process_pages_contig() to unlock it,
1126 			 * as it doesn't have any subpage::writers recorded.
1127 			 *
1128 			 * Here we manually unlock the page, since the caller
1129 			 * can't use page_started to determine if it's an
1130 			 * inline extent or a compressed extent.
1131 			 */
1132 			unlock_page(locked_page);
1133 			goto out;
1134 		} else if (ret < 0) {
1135 			goto out_unlock;
1136 		}
1137 	}
1138 
1139 	alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
1140 	btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
1141 
1142 	/*
1143 	 * Relocation relies on the relocated extents to have exactly the same
1144 	 * size as the original extents. Normally writeback for relocation data
1145 	 * extents follows a NOCOW path because relocation preallocates the
1146 	 * extents. However, due to an operation such as scrub turning a block
1147 	 * group to RO mode, it may fallback to COW mode, so we must make sure
1148 	 * an extent allocated during COW has exactly the requested size and can
1149 	 * not be split into smaller extents, otherwise relocation breaks and
1150 	 * fails during the stage where it updates the bytenr of file extent
1151 	 * items.
1152 	 */
1153 	if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1154 		min_alloc_size = num_bytes;
1155 	else
1156 		min_alloc_size = fs_info->sectorsize;
1157 
1158 	while (num_bytes > 0) {
1159 		cur_alloc_size = num_bytes;
1160 		ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size,
1161 					   min_alloc_size, 0, alloc_hint,
1162 					   &ins, 1, 1);
1163 		if (ret < 0)
1164 			goto out_unlock;
1165 		cur_alloc_size = ins.offset;
1166 		extent_reserved = true;
1167 
1168 		ram_size = ins.offset;
1169 		em = create_io_em(inode, start, ins.offset, /* len */
1170 				  start, /* orig_start */
1171 				  ins.objectid, /* block_start */
1172 				  ins.offset, /* block_len */
1173 				  ins.offset, /* orig_block_len */
1174 				  ram_size, /* ram_bytes */
1175 				  BTRFS_COMPRESS_NONE, /* compress_type */
1176 				  BTRFS_ORDERED_REGULAR /* type */);
1177 		if (IS_ERR(em)) {
1178 			ret = PTR_ERR(em);
1179 			goto out_reserve;
1180 		}
1181 		free_extent_map(em);
1182 
1183 		ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
1184 					       ram_size, cur_alloc_size,
1185 					       BTRFS_ORDERED_REGULAR);
1186 		if (ret)
1187 			goto out_drop_extent_cache;
1188 
1189 		if (root->root_key.objectid ==
1190 		    BTRFS_DATA_RELOC_TREE_OBJECTID) {
1191 			ret = btrfs_reloc_clone_csums(inode, start,
1192 						      cur_alloc_size);
1193 			/*
1194 			 * Only drop cache here, and process as normal.
1195 			 *
1196 			 * We must not allow extent_clear_unlock_delalloc()
1197 			 * at out_unlock label to free meta of this ordered
1198 			 * extent, as its meta should be freed by
1199 			 * btrfs_finish_ordered_io().
1200 			 *
1201 			 * So we must continue until @start is increased to
1202 			 * skip current ordered extent.
1203 			 */
1204 			if (ret)
1205 				btrfs_drop_extent_cache(inode, start,
1206 						start + ram_size - 1, 0);
1207 		}
1208 
1209 		btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1210 
1211 		/*
1212 		 * We're not doing compressed IO, don't unlock the first page
1213 		 * (which the caller expects to stay locked), don't clear any
1214 		 * dirty bits and don't set any writeback bits
1215 		 *
1216 		 * Do set the Ordered (Private2) bit so we know this page was
1217 		 * properly setup for writepage.
1218 		 */
1219 		page_ops = unlock ? PAGE_UNLOCK : 0;
1220 		page_ops |= PAGE_SET_ORDERED;
1221 
1222 		extent_clear_unlock_delalloc(inode, start, start + ram_size - 1,
1223 					     locked_page,
1224 					     EXTENT_LOCKED | EXTENT_DELALLOC,
1225 					     page_ops);
1226 		if (num_bytes < cur_alloc_size)
1227 			num_bytes = 0;
1228 		else
1229 			num_bytes -= cur_alloc_size;
1230 		alloc_hint = ins.objectid + ins.offset;
1231 		start += cur_alloc_size;
1232 		extent_reserved = false;
1233 
1234 		/*
1235 		 * btrfs_reloc_clone_csums() error, since start is increased
1236 		 * extent_clear_unlock_delalloc() at out_unlock label won't
1237 		 * free metadata of current ordered extent, we're OK to exit.
1238 		 */
1239 		if (ret)
1240 			goto out_unlock;
1241 	}
1242 out:
1243 	return ret;
1244 
1245 out_drop_extent_cache:
1246 	btrfs_drop_extent_cache(inode, start, start + ram_size - 1, 0);
1247 out_reserve:
1248 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1249 	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
1250 out_unlock:
1251 	clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
1252 		EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV;
1253 	page_ops = PAGE_UNLOCK | PAGE_START_WRITEBACK | PAGE_END_WRITEBACK;
1254 	/*
1255 	 * If we reserved an extent for our delalloc range (or a subrange) and
1256 	 * failed to create the respective ordered extent, then it means that
1257 	 * when we reserved the extent we decremented the extent's size from
1258 	 * the data space_info's bytes_may_use counter and incremented the
1259 	 * space_info's bytes_reserved counter by the same amount. We must make
1260 	 * sure extent_clear_unlock_delalloc() does not try to decrement again
1261 	 * the data space_info's bytes_may_use counter, therefore we do not pass
1262 	 * it the flag EXTENT_CLEAR_DATA_RESV.
1263 	 */
1264 	if (extent_reserved) {
1265 		extent_clear_unlock_delalloc(inode, start,
1266 					     start + cur_alloc_size - 1,
1267 					     locked_page,
1268 					     clear_bits,
1269 					     page_ops);
1270 		start += cur_alloc_size;
1271 		if (start >= end)
1272 			goto out;
1273 	}
1274 	extent_clear_unlock_delalloc(inode, start, end, locked_page,
1275 				     clear_bits | EXTENT_CLEAR_DATA_RESV,
1276 				     page_ops);
1277 	goto out;
1278 }
1279 
1280 /*
1281  * work queue call back to started compression on a file and pages
1282  */
1283 static noinline void async_cow_start(struct btrfs_work *work)
1284 {
1285 	struct async_chunk *async_chunk;
1286 	int compressed_extents;
1287 
1288 	async_chunk = container_of(work, struct async_chunk, work);
1289 
1290 	compressed_extents = compress_file_range(async_chunk);
1291 	if (compressed_extents == 0) {
1292 		btrfs_add_delayed_iput(async_chunk->inode);
1293 		async_chunk->inode = NULL;
1294 	}
1295 }
1296 
1297 /*
1298  * work queue call back to submit previously compressed pages
1299  */
1300 static noinline void async_cow_submit(struct btrfs_work *work)
1301 {
1302 	struct async_chunk *async_chunk = container_of(work, struct async_chunk,
1303 						     work);
1304 	struct btrfs_fs_info *fs_info = btrfs_work_owner(work);
1305 	unsigned long nr_pages;
1306 
1307 	nr_pages = (async_chunk->end - async_chunk->start + PAGE_SIZE) >>
1308 		PAGE_SHIFT;
1309 
1310 	/*
1311 	 * ->inode could be NULL if async_chunk_start has failed to compress,
1312 	 * in which case we don't have anything to submit, yet we need to
1313 	 * always adjust ->async_delalloc_pages as its paired with the init
1314 	 * happening in cow_file_range_async
1315 	 */
1316 	if (async_chunk->inode)
1317 		submit_compressed_extents(async_chunk);
1318 
1319 	/* atomic_sub_return implies a barrier */
1320 	if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) <
1321 	    5 * SZ_1M)
1322 		cond_wake_up_nomb(&fs_info->async_submit_wait);
1323 }
1324 
1325 static noinline void async_cow_free(struct btrfs_work *work)
1326 {
1327 	struct async_chunk *async_chunk;
1328 
1329 	async_chunk = container_of(work, struct async_chunk, work);
1330 	if (async_chunk->inode)
1331 		btrfs_add_delayed_iput(async_chunk->inode);
1332 	if (async_chunk->blkcg_css)
1333 		css_put(async_chunk->blkcg_css);
1334 	/*
1335 	 * Since the pointer to 'pending' is at the beginning of the array of
1336 	 * async_chunk's, freeing it ensures the whole array has been freed.
1337 	 */
1338 	if (atomic_dec_and_test(async_chunk->pending))
1339 		kvfree(async_chunk->pending);
1340 }
1341 
1342 static int cow_file_range_async(struct btrfs_inode *inode,
1343 				struct writeback_control *wbc,
1344 				struct page *locked_page,
1345 				u64 start, u64 end, int *page_started,
1346 				unsigned long *nr_written)
1347 {
1348 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1349 	struct cgroup_subsys_state *blkcg_css = wbc_blkcg_css(wbc);
1350 	struct async_cow *ctx;
1351 	struct async_chunk *async_chunk;
1352 	unsigned long nr_pages;
1353 	u64 cur_end;
1354 	u64 num_chunks = DIV_ROUND_UP(end - start, SZ_512K);
1355 	int i;
1356 	bool should_compress;
1357 	unsigned nofs_flag;
1358 	const unsigned int write_flags = wbc_to_write_flags(wbc);
1359 
1360 	unlock_extent(&inode->io_tree, start, end);
1361 
1362 	if (inode->flags & BTRFS_INODE_NOCOMPRESS &&
1363 	    !btrfs_test_opt(fs_info, FORCE_COMPRESS)) {
1364 		num_chunks = 1;
1365 		should_compress = false;
1366 	} else {
1367 		should_compress = true;
1368 	}
1369 
1370 	nofs_flag = memalloc_nofs_save();
1371 	ctx = kvmalloc(struct_size(ctx, chunks, num_chunks), GFP_KERNEL);
1372 	memalloc_nofs_restore(nofs_flag);
1373 
1374 	if (!ctx) {
1375 		unsigned clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC |
1376 			EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
1377 			EXTENT_DO_ACCOUNTING;
1378 		unsigned long page_ops = PAGE_UNLOCK | PAGE_START_WRITEBACK |
1379 					 PAGE_END_WRITEBACK | PAGE_SET_ERROR;
1380 
1381 		extent_clear_unlock_delalloc(inode, start, end, locked_page,
1382 					     clear_bits, page_ops);
1383 		return -ENOMEM;
1384 	}
1385 
1386 	async_chunk = ctx->chunks;
1387 	atomic_set(&ctx->num_chunks, num_chunks);
1388 
1389 	for (i = 0; i < num_chunks; i++) {
1390 		if (should_compress)
1391 			cur_end = min(end, start + SZ_512K - 1);
1392 		else
1393 			cur_end = end;
1394 
1395 		/*
1396 		 * igrab is called higher up in the call chain, take only the
1397 		 * lightweight reference for the callback lifetime
1398 		 */
1399 		ihold(&inode->vfs_inode);
1400 		async_chunk[i].pending = &ctx->num_chunks;
1401 		async_chunk[i].inode = &inode->vfs_inode;
1402 		async_chunk[i].start = start;
1403 		async_chunk[i].end = cur_end;
1404 		async_chunk[i].write_flags = write_flags;
1405 		INIT_LIST_HEAD(&async_chunk[i].extents);
1406 
1407 		/*
1408 		 * The locked_page comes all the way from writepage and its
1409 		 * the original page we were actually given.  As we spread
1410 		 * this large delalloc region across multiple async_chunk
1411 		 * structs, only the first struct needs a pointer to locked_page
1412 		 *
1413 		 * This way we don't need racey decisions about who is supposed
1414 		 * to unlock it.
1415 		 */
1416 		if (locked_page) {
1417 			/*
1418 			 * Depending on the compressibility, the pages might or
1419 			 * might not go through async.  We want all of them to
1420 			 * be accounted against wbc once.  Let's do it here
1421 			 * before the paths diverge.  wbc accounting is used
1422 			 * only for foreign writeback detection and doesn't
1423 			 * need full accuracy.  Just account the whole thing
1424 			 * against the first page.
1425 			 */
1426 			wbc_account_cgroup_owner(wbc, locked_page,
1427 						 cur_end - start);
1428 			async_chunk[i].locked_page = locked_page;
1429 			locked_page = NULL;
1430 		} else {
1431 			async_chunk[i].locked_page = NULL;
1432 		}
1433 
1434 		if (blkcg_css != blkcg_root_css) {
1435 			css_get(blkcg_css);
1436 			async_chunk[i].blkcg_css = blkcg_css;
1437 		} else {
1438 			async_chunk[i].blkcg_css = NULL;
1439 		}
1440 
1441 		btrfs_init_work(&async_chunk[i].work, async_cow_start,
1442 				async_cow_submit, async_cow_free);
1443 
1444 		nr_pages = DIV_ROUND_UP(cur_end - start, PAGE_SIZE);
1445 		atomic_add(nr_pages, &fs_info->async_delalloc_pages);
1446 
1447 		btrfs_queue_work(fs_info->delalloc_workers, &async_chunk[i].work);
1448 
1449 		*nr_written += nr_pages;
1450 		start = cur_end + 1;
1451 	}
1452 	*page_started = 1;
1453 	return 0;
1454 }
1455 
1456 static noinline int run_delalloc_zoned(struct btrfs_inode *inode,
1457 				       struct page *locked_page, u64 start,
1458 				       u64 end, int *page_started,
1459 				       unsigned long *nr_written)
1460 {
1461 	int ret;
1462 
1463 	ret = cow_file_range(inode, locked_page, start, end, page_started,
1464 			     nr_written, 0);
1465 	if (ret)
1466 		return ret;
1467 
1468 	if (*page_started)
1469 		return 0;
1470 
1471 	__set_page_dirty_nobuffers(locked_page);
1472 	account_page_redirty(locked_page);
1473 	extent_write_locked_range(&inode->vfs_inode, start, end, WB_SYNC_ALL);
1474 	*page_started = 1;
1475 
1476 	return 0;
1477 }
1478 
1479 static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info,
1480 					u64 bytenr, u64 num_bytes)
1481 {
1482 	int ret;
1483 	struct btrfs_ordered_sum *sums;
1484 	LIST_HEAD(list);
1485 
1486 	ret = btrfs_lookup_csums_range(fs_info->csum_root, bytenr,
1487 				       bytenr + num_bytes - 1, &list, 0);
1488 	if (ret == 0 && list_empty(&list))
1489 		return 0;
1490 
1491 	while (!list_empty(&list)) {
1492 		sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1493 		list_del(&sums->list);
1494 		kfree(sums);
1495 	}
1496 	if (ret < 0)
1497 		return ret;
1498 	return 1;
1499 }
1500 
1501 static int fallback_to_cow(struct btrfs_inode *inode, struct page *locked_page,
1502 			   const u64 start, const u64 end,
1503 			   int *page_started, unsigned long *nr_written)
1504 {
1505 	const bool is_space_ino = btrfs_is_free_space_inode(inode);
1506 	const bool is_reloc_ino = (inode->root->root_key.objectid ==
1507 				   BTRFS_DATA_RELOC_TREE_OBJECTID);
1508 	const u64 range_bytes = end + 1 - start;
1509 	struct extent_io_tree *io_tree = &inode->io_tree;
1510 	u64 range_start = start;
1511 	u64 count;
1512 
1513 	/*
1514 	 * If EXTENT_NORESERVE is set it means that when the buffered write was
1515 	 * made we had not enough available data space and therefore we did not
1516 	 * reserve data space for it, since we though we could do NOCOW for the
1517 	 * respective file range (either there is prealloc extent or the inode
1518 	 * has the NOCOW bit set).
1519 	 *
1520 	 * However when we need to fallback to COW mode (because for example the
1521 	 * block group for the corresponding extent was turned to RO mode by a
1522 	 * scrub or relocation) we need to do the following:
1523 	 *
1524 	 * 1) We increment the bytes_may_use counter of the data space info.
1525 	 *    If COW succeeds, it allocates a new data extent and after doing
1526 	 *    that it decrements the space info's bytes_may_use counter and
1527 	 *    increments its bytes_reserved counter by the same amount (we do
1528 	 *    this at btrfs_add_reserved_bytes()). So we need to increment the
1529 	 *    bytes_may_use counter to compensate (when space is reserved at
1530 	 *    buffered write time, the bytes_may_use counter is incremented);
1531 	 *
1532 	 * 2) We clear the EXTENT_NORESERVE bit from the range. We do this so
1533 	 *    that if the COW path fails for any reason, it decrements (through
1534 	 *    extent_clear_unlock_delalloc()) the bytes_may_use counter of the
1535 	 *    data space info, which we incremented in the step above.
1536 	 *
1537 	 * If we need to fallback to cow and the inode corresponds to a free
1538 	 * space cache inode or an inode of the data relocation tree, we must
1539 	 * also increment bytes_may_use of the data space_info for the same
1540 	 * reason. Space caches and relocated data extents always get a prealloc
1541 	 * extent for them, however scrub or balance may have set the block
1542 	 * group that contains that extent to RO mode and therefore force COW
1543 	 * when starting writeback.
1544 	 */
1545 	count = count_range_bits(io_tree, &range_start, end, range_bytes,
1546 				 EXTENT_NORESERVE, 0);
1547 	if (count > 0 || is_space_ino || is_reloc_ino) {
1548 		u64 bytes = count;
1549 		struct btrfs_fs_info *fs_info = inode->root->fs_info;
1550 		struct btrfs_space_info *sinfo = fs_info->data_sinfo;
1551 
1552 		if (is_space_ino || is_reloc_ino)
1553 			bytes = range_bytes;
1554 
1555 		spin_lock(&sinfo->lock);
1556 		btrfs_space_info_update_bytes_may_use(fs_info, sinfo, bytes);
1557 		spin_unlock(&sinfo->lock);
1558 
1559 		if (count > 0)
1560 			clear_extent_bit(io_tree, start, end, EXTENT_NORESERVE,
1561 					 0, 0, NULL);
1562 	}
1563 
1564 	return cow_file_range(inode, locked_page, start, end, page_started,
1565 			      nr_written, 1);
1566 }
1567 
1568 /*
1569  * when nowcow writeback call back.  This checks for snapshots or COW copies
1570  * of the extents that exist in the file, and COWs the file as required.
1571  *
1572  * If no cow copies or snapshots exist, we write directly to the existing
1573  * blocks on disk
1574  */
1575 static noinline int run_delalloc_nocow(struct btrfs_inode *inode,
1576 				       struct page *locked_page,
1577 				       const u64 start, const u64 end,
1578 				       int *page_started,
1579 				       unsigned long *nr_written)
1580 {
1581 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1582 	struct btrfs_root *root = inode->root;
1583 	struct btrfs_path *path;
1584 	u64 cow_start = (u64)-1;
1585 	u64 cur_offset = start;
1586 	int ret;
1587 	bool check_prev = true;
1588 	const bool freespace_inode = btrfs_is_free_space_inode(inode);
1589 	u64 ino = btrfs_ino(inode);
1590 	bool nocow = false;
1591 	u64 disk_bytenr = 0;
1592 	const bool force = inode->flags & BTRFS_INODE_NODATACOW;
1593 
1594 	path = btrfs_alloc_path();
1595 	if (!path) {
1596 		extent_clear_unlock_delalloc(inode, start, end, locked_page,
1597 					     EXTENT_LOCKED | EXTENT_DELALLOC |
1598 					     EXTENT_DO_ACCOUNTING |
1599 					     EXTENT_DEFRAG, PAGE_UNLOCK |
1600 					     PAGE_START_WRITEBACK |
1601 					     PAGE_END_WRITEBACK);
1602 		return -ENOMEM;
1603 	}
1604 
1605 	while (1) {
1606 		struct btrfs_key found_key;
1607 		struct btrfs_file_extent_item *fi;
1608 		struct extent_buffer *leaf;
1609 		u64 extent_end;
1610 		u64 extent_offset;
1611 		u64 num_bytes = 0;
1612 		u64 disk_num_bytes;
1613 		u64 ram_bytes;
1614 		int extent_type;
1615 
1616 		nocow = false;
1617 
1618 		ret = btrfs_lookup_file_extent(NULL, root, path, ino,
1619 					       cur_offset, 0);
1620 		if (ret < 0)
1621 			goto error;
1622 
1623 		/*
1624 		 * If there is no extent for our range when doing the initial
1625 		 * search, then go back to the previous slot as it will be the
1626 		 * one containing the search offset
1627 		 */
1628 		if (ret > 0 && path->slots[0] > 0 && check_prev) {
1629 			leaf = path->nodes[0];
1630 			btrfs_item_key_to_cpu(leaf, &found_key,
1631 					      path->slots[0] - 1);
1632 			if (found_key.objectid == ino &&
1633 			    found_key.type == BTRFS_EXTENT_DATA_KEY)
1634 				path->slots[0]--;
1635 		}
1636 		check_prev = false;
1637 next_slot:
1638 		/* Go to next leaf if we have exhausted the current one */
1639 		leaf = path->nodes[0];
1640 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1641 			ret = btrfs_next_leaf(root, path);
1642 			if (ret < 0) {
1643 				if (cow_start != (u64)-1)
1644 					cur_offset = cow_start;
1645 				goto error;
1646 			}
1647 			if (ret > 0)
1648 				break;
1649 			leaf = path->nodes[0];
1650 		}
1651 
1652 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1653 
1654 		/* Didn't find anything for our INO */
1655 		if (found_key.objectid > ino)
1656 			break;
1657 		/*
1658 		 * Keep searching until we find an EXTENT_ITEM or there are no
1659 		 * more extents for this inode
1660 		 */
1661 		if (WARN_ON_ONCE(found_key.objectid < ino) ||
1662 		    found_key.type < BTRFS_EXTENT_DATA_KEY) {
1663 			path->slots[0]++;
1664 			goto next_slot;
1665 		}
1666 
1667 		/* Found key is not EXTENT_DATA_KEY or starts after req range */
1668 		if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
1669 		    found_key.offset > end)
1670 			break;
1671 
1672 		/*
1673 		 * If the found extent starts after requested offset, then
1674 		 * adjust extent_end to be right before this extent begins
1675 		 */
1676 		if (found_key.offset > cur_offset) {
1677 			extent_end = found_key.offset;
1678 			extent_type = 0;
1679 			goto out_check;
1680 		}
1681 
1682 		/*
1683 		 * Found extent which begins before our range and potentially
1684 		 * intersect it
1685 		 */
1686 		fi = btrfs_item_ptr(leaf, path->slots[0],
1687 				    struct btrfs_file_extent_item);
1688 		extent_type = btrfs_file_extent_type(leaf, fi);
1689 
1690 		ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1691 		if (extent_type == BTRFS_FILE_EXTENT_REG ||
1692 		    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1693 			disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1694 			extent_offset = btrfs_file_extent_offset(leaf, fi);
1695 			extent_end = found_key.offset +
1696 				btrfs_file_extent_num_bytes(leaf, fi);
1697 			disk_num_bytes =
1698 				btrfs_file_extent_disk_num_bytes(leaf, fi);
1699 			/*
1700 			 * If the extent we got ends before our current offset,
1701 			 * skip to the next extent.
1702 			 */
1703 			if (extent_end <= cur_offset) {
1704 				path->slots[0]++;
1705 				goto next_slot;
1706 			}
1707 			/* Skip holes */
1708 			if (disk_bytenr == 0)
1709 				goto out_check;
1710 			/* Skip compressed/encrypted/encoded extents */
1711 			if (btrfs_file_extent_compression(leaf, fi) ||
1712 			    btrfs_file_extent_encryption(leaf, fi) ||
1713 			    btrfs_file_extent_other_encoding(leaf, fi))
1714 				goto out_check;
1715 			/*
1716 			 * If extent is created before the last volume's snapshot
1717 			 * this implies the extent is shared, hence we can't do
1718 			 * nocow. This is the same check as in
1719 			 * btrfs_cross_ref_exist but without calling
1720 			 * btrfs_search_slot.
1721 			 */
1722 			if (!freespace_inode &&
1723 			    btrfs_file_extent_generation(leaf, fi) <=
1724 			    btrfs_root_last_snapshot(&root->root_item))
1725 				goto out_check;
1726 			if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1727 				goto out_check;
1728 
1729 			/*
1730 			 * The following checks can be expensive, as they need to
1731 			 * take other locks and do btree or rbtree searches, so
1732 			 * release the path to avoid blocking other tasks for too
1733 			 * long.
1734 			 */
1735 			btrfs_release_path(path);
1736 
1737 			ret = btrfs_cross_ref_exist(root, ino,
1738 						    found_key.offset -
1739 						    extent_offset, disk_bytenr, false);
1740 			if (ret) {
1741 				/*
1742 				 * ret could be -EIO if the above fails to read
1743 				 * metadata.
1744 				 */
1745 				if (ret < 0) {
1746 					if (cow_start != (u64)-1)
1747 						cur_offset = cow_start;
1748 					goto error;
1749 				}
1750 
1751 				WARN_ON_ONCE(freespace_inode);
1752 				goto out_check;
1753 			}
1754 			disk_bytenr += extent_offset;
1755 			disk_bytenr += cur_offset - found_key.offset;
1756 			num_bytes = min(end + 1, extent_end) - cur_offset;
1757 			/*
1758 			 * If there are pending snapshots for this root, we
1759 			 * fall into common COW way
1760 			 */
1761 			if (!freespace_inode && atomic_read(&root->snapshot_force_cow))
1762 				goto out_check;
1763 			/*
1764 			 * force cow if csum exists in the range.
1765 			 * this ensure that csum for a given extent are
1766 			 * either valid or do not exist.
1767 			 */
1768 			ret = csum_exist_in_range(fs_info, disk_bytenr,
1769 						  num_bytes);
1770 			if (ret) {
1771 				/*
1772 				 * ret could be -EIO if the above fails to read
1773 				 * metadata.
1774 				 */
1775 				if (ret < 0) {
1776 					if (cow_start != (u64)-1)
1777 						cur_offset = cow_start;
1778 					goto error;
1779 				}
1780 				WARN_ON_ONCE(freespace_inode);
1781 				goto out_check;
1782 			}
1783 			/* If the extent's block group is RO, we must COW */
1784 			if (!btrfs_inc_nocow_writers(fs_info, disk_bytenr))
1785 				goto out_check;
1786 			nocow = true;
1787 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1788 			extent_end = found_key.offset + ram_bytes;
1789 			extent_end = ALIGN(extent_end, fs_info->sectorsize);
1790 			/* Skip extents outside of our requested range */
1791 			if (extent_end <= start) {
1792 				path->slots[0]++;
1793 				goto next_slot;
1794 			}
1795 		} else {
1796 			/* If this triggers then we have a memory corruption */
1797 			BUG();
1798 		}
1799 out_check:
1800 		/*
1801 		 * If nocow is false then record the beginning of the range
1802 		 * that needs to be COWed
1803 		 */
1804 		if (!nocow) {
1805 			if (cow_start == (u64)-1)
1806 				cow_start = cur_offset;
1807 			cur_offset = extent_end;
1808 			if (cur_offset > end)
1809 				break;
1810 			if (!path->nodes[0])
1811 				continue;
1812 			path->slots[0]++;
1813 			goto next_slot;
1814 		}
1815 
1816 		/*
1817 		 * COW range from cow_start to found_key.offset - 1. As the key
1818 		 * will contain the beginning of the first extent that can be
1819 		 * NOCOW, following one which needs to be COW'ed
1820 		 */
1821 		if (cow_start != (u64)-1) {
1822 			ret = fallback_to_cow(inode, locked_page,
1823 					      cow_start, found_key.offset - 1,
1824 					      page_started, nr_written);
1825 			if (ret)
1826 				goto error;
1827 			cow_start = (u64)-1;
1828 		}
1829 
1830 		if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1831 			u64 orig_start = found_key.offset - extent_offset;
1832 			struct extent_map *em;
1833 
1834 			em = create_io_em(inode, cur_offset, num_bytes,
1835 					  orig_start,
1836 					  disk_bytenr, /* block_start */
1837 					  num_bytes, /* block_len */
1838 					  disk_num_bytes, /* orig_block_len */
1839 					  ram_bytes, BTRFS_COMPRESS_NONE,
1840 					  BTRFS_ORDERED_PREALLOC);
1841 			if (IS_ERR(em)) {
1842 				ret = PTR_ERR(em);
1843 				goto error;
1844 			}
1845 			free_extent_map(em);
1846 			ret = btrfs_add_ordered_extent(inode, cur_offset,
1847 						       disk_bytenr, num_bytes,
1848 						       num_bytes,
1849 						       BTRFS_ORDERED_PREALLOC);
1850 			if (ret) {
1851 				btrfs_drop_extent_cache(inode, cur_offset,
1852 							cur_offset + num_bytes - 1,
1853 							0);
1854 				goto error;
1855 			}
1856 		} else {
1857 			ret = btrfs_add_ordered_extent(inode, cur_offset,
1858 						       disk_bytenr, num_bytes,
1859 						       num_bytes,
1860 						       BTRFS_ORDERED_NOCOW);
1861 			if (ret)
1862 				goto error;
1863 		}
1864 
1865 		if (nocow)
1866 			btrfs_dec_nocow_writers(fs_info, disk_bytenr);
1867 		nocow = false;
1868 
1869 		if (root->root_key.objectid ==
1870 		    BTRFS_DATA_RELOC_TREE_OBJECTID)
1871 			/*
1872 			 * Error handled later, as we must prevent
1873 			 * extent_clear_unlock_delalloc() in error handler
1874 			 * from freeing metadata of created ordered extent.
1875 			 */
1876 			ret = btrfs_reloc_clone_csums(inode, cur_offset,
1877 						      num_bytes);
1878 
1879 		extent_clear_unlock_delalloc(inode, cur_offset,
1880 					     cur_offset + num_bytes - 1,
1881 					     locked_page, EXTENT_LOCKED |
1882 					     EXTENT_DELALLOC |
1883 					     EXTENT_CLEAR_DATA_RESV,
1884 					     PAGE_UNLOCK | PAGE_SET_ORDERED);
1885 
1886 		cur_offset = extent_end;
1887 
1888 		/*
1889 		 * btrfs_reloc_clone_csums() error, now we're OK to call error
1890 		 * handler, as metadata for created ordered extent will only
1891 		 * be freed by btrfs_finish_ordered_io().
1892 		 */
1893 		if (ret)
1894 			goto error;
1895 		if (cur_offset > end)
1896 			break;
1897 	}
1898 	btrfs_release_path(path);
1899 
1900 	if (cur_offset <= end && cow_start == (u64)-1)
1901 		cow_start = cur_offset;
1902 
1903 	if (cow_start != (u64)-1) {
1904 		cur_offset = end;
1905 		ret = fallback_to_cow(inode, locked_page, cow_start, end,
1906 				      page_started, nr_written);
1907 		if (ret)
1908 			goto error;
1909 	}
1910 
1911 error:
1912 	if (nocow)
1913 		btrfs_dec_nocow_writers(fs_info, disk_bytenr);
1914 
1915 	if (ret && cur_offset < end)
1916 		extent_clear_unlock_delalloc(inode, cur_offset, end,
1917 					     locked_page, EXTENT_LOCKED |
1918 					     EXTENT_DELALLOC | EXTENT_DEFRAG |
1919 					     EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1920 					     PAGE_START_WRITEBACK |
1921 					     PAGE_END_WRITEBACK);
1922 	btrfs_free_path(path);
1923 	return ret;
1924 }
1925 
1926 static bool should_nocow(struct btrfs_inode *inode, u64 start, u64 end)
1927 {
1928 	if (inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)) {
1929 		if (inode->defrag_bytes &&
1930 		    test_range_bit(&inode->io_tree, start, end, EXTENT_DEFRAG,
1931 				   0, NULL))
1932 			return false;
1933 		return true;
1934 	}
1935 	return false;
1936 }
1937 
1938 /*
1939  * Function to process delayed allocation (create CoW) for ranges which are
1940  * being touched for the first time.
1941  */
1942 int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct page *locked_page,
1943 		u64 start, u64 end, int *page_started, unsigned long *nr_written,
1944 		struct writeback_control *wbc)
1945 {
1946 	int ret;
1947 	const bool zoned = btrfs_is_zoned(inode->root->fs_info);
1948 
1949 	if (should_nocow(inode, start, end)) {
1950 		ASSERT(!zoned);
1951 		ret = run_delalloc_nocow(inode, locked_page, start, end,
1952 					 page_started, nr_written);
1953 	} else if (!inode_can_compress(inode) ||
1954 		   !inode_need_compress(inode, start, end)) {
1955 		if (zoned)
1956 			ret = run_delalloc_zoned(inode, locked_page, start, end,
1957 						 page_started, nr_written);
1958 		else
1959 			ret = cow_file_range(inode, locked_page, start, end,
1960 					     page_started, nr_written, 1);
1961 	} else {
1962 		set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, &inode->runtime_flags);
1963 		ret = cow_file_range_async(inode, wbc, locked_page, start, end,
1964 					   page_started, nr_written);
1965 	}
1966 	ASSERT(ret <= 0);
1967 	if (ret)
1968 		btrfs_cleanup_ordered_extents(inode, locked_page, start,
1969 					      end - start + 1);
1970 	return ret;
1971 }
1972 
1973 void btrfs_split_delalloc_extent(struct inode *inode,
1974 				 struct extent_state *orig, u64 split)
1975 {
1976 	u64 size;
1977 
1978 	/* not delalloc, ignore it */
1979 	if (!(orig->state & EXTENT_DELALLOC))
1980 		return;
1981 
1982 	size = orig->end - orig->start + 1;
1983 	if (size > BTRFS_MAX_EXTENT_SIZE) {
1984 		u32 num_extents;
1985 		u64 new_size;
1986 
1987 		/*
1988 		 * See the explanation in btrfs_merge_delalloc_extent, the same
1989 		 * applies here, just in reverse.
1990 		 */
1991 		new_size = orig->end - split + 1;
1992 		num_extents = count_max_extents(new_size);
1993 		new_size = split - orig->start;
1994 		num_extents += count_max_extents(new_size);
1995 		if (count_max_extents(size) >= num_extents)
1996 			return;
1997 	}
1998 
1999 	spin_lock(&BTRFS_I(inode)->lock);
2000 	btrfs_mod_outstanding_extents(BTRFS_I(inode), 1);
2001 	spin_unlock(&BTRFS_I(inode)->lock);
2002 }
2003 
2004 /*
2005  * Handle merged delayed allocation extents so we can keep track of new extents
2006  * that are just merged onto old extents, such as when we are doing sequential
2007  * writes, so we can properly account for the metadata space we'll need.
2008  */
2009 void btrfs_merge_delalloc_extent(struct inode *inode, struct extent_state *new,
2010 				 struct extent_state *other)
2011 {
2012 	u64 new_size, old_size;
2013 	u32 num_extents;
2014 
2015 	/* not delalloc, ignore it */
2016 	if (!(other->state & EXTENT_DELALLOC))
2017 		return;
2018 
2019 	if (new->start > other->start)
2020 		new_size = new->end - other->start + 1;
2021 	else
2022 		new_size = other->end - new->start + 1;
2023 
2024 	/* we're not bigger than the max, unreserve the space and go */
2025 	if (new_size <= BTRFS_MAX_EXTENT_SIZE) {
2026 		spin_lock(&BTRFS_I(inode)->lock);
2027 		btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
2028 		spin_unlock(&BTRFS_I(inode)->lock);
2029 		return;
2030 	}
2031 
2032 	/*
2033 	 * We have to add up either side to figure out how many extents were
2034 	 * accounted for before we merged into one big extent.  If the number of
2035 	 * extents we accounted for is <= the amount we need for the new range
2036 	 * then we can return, otherwise drop.  Think of it like this
2037 	 *
2038 	 * [ 4k][MAX_SIZE]
2039 	 *
2040 	 * So we've grown the extent by a MAX_SIZE extent, this would mean we
2041 	 * need 2 outstanding extents, on one side we have 1 and the other side
2042 	 * we have 1 so they are == and we can return.  But in this case
2043 	 *
2044 	 * [MAX_SIZE+4k][MAX_SIZE+4k]
2045 	 *
2046 	 * Each range on their own accounts for 2 extents, but merged together
2047 	 * they are only 3 extents worth of accounting, so we need to drop in
2048 	 * this case.
2049 	 */
2050 	old_size = other->end - other->start + 1;
2051 	num_extents = count_max_extents(old_size);
2052 	old_size = new->end - new->start + 1;
2053 	num_extents += count_max_extents(old_size);
2054 	if (count_max_extents(new_size) >= num_extents)
2055 		return;
2056 
2057 	spin_lock(&BTRFS_I(inode)->lock);
2058 	btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
2059 	spin_unlock(&BTRFS_I(inode)->lock);
2060 }
2061 
2062 static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
2063 				      struct inode *inode)
2064 {
2065 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2066 
2067 	spin_lock(&root->delalloc_lock);
2068 	if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
2069 		list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
2070 			      &root->delalloc_inodes);
2071 		set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
2072 			&BTRFS_I(inode)->runtime_flags);
2073 		root->nr_delalloc_inodes++;
2074 		if (root->nr_delalloc_inodes == 1) {
2075 			spin_lock(&fs_info->delalloc_root_lock);
2076 			BUG_ON(!list_empty(&root->delalloc_root));
2077 			list_add_tail(&root->delalloc_root,
2078 				      &fs_info->delalloc_roots);
2079 			spin_unlock(&fs_info->delalloc_root_lock);
2080 		}
2081 	}
2082 	spin_unlock(&root->delalloc_lock);
2083 }
2084 
2085 
2086 void __btrfs_del_delalloc_inode(struct btrfs_root *root,
2087 				struct btrfs_inode *inode)
2088 {
2089 	struct btrfs_fs_info *fs_info = root->fs_info;
2090 
2091 	if (!list_empty(&inode->delalloc_inodes)) {
2092 		list_del_init(&inode->delalloc_inodes);
2093 		clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
2094 			  &inode->runtime_flags);
2095 		root->nr_delalloc_inodes--;
2096 		if (!root->nr_delalloc_inodes) {
2097 			ASSERT(list_empty(&root->delalloc_inodes));
2098 			spin_lock(&fs_info->delalloc_root_lock);
2099 			BUG_ON(list_empty(&root->delalloc_root));
2100 			list_del_init(&root->delalloc_root);
2101 			spin_unlock(&fs_info->delalloc_root_lock);
2102 		}
2103 	}
2104 }
2105 
2106 static void btrfs_del_delalloc_inode(struct btrfs_root *root,
2107 				     struct btrfs_inode *inode)
2108 {
2109 	spin_lock(&root->delalloc_lock);
2110 	__btrfs_del_delalloc_inode(root, inode);
2111 	spin_unlock(&root->delalloc_lock);
2112 }
2113 
2114 /*
2115  * Properly track delayed allocation bytes in the inode and to maintain the
2116  * list of inodes that have pending delalloc work to be done.
2117  */
2118 void btrfs_set_delalloc_extent(struct inode *inode, struct extent_state *state,
2119 			       unsigned *bits)
2120 {
2121 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2122 
2123 	if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC))
2124 		WARN_ON(1);
2125 	/*
2126 	 * set_bit and clear bit hooks normally require _irqsave/restore
2127 	 * but in this case, we are only testing for the DELALLOC
2128 	 * bit, which is only set or cleared with irqs on
2129 	 */
2130 	if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
2131 		struct btrfs_root *root = BTRFS_I(inode)->root;
2132 		u64 len = state->end + 1 - state->start;
2133 		u32 num_extents = count_max_extents(len);
2134 		bool do_list = !btrfs_is_free_space_inode(BTRFS_I(inode));
2135 
2136 		spin_lock(&BTRFS_I(inode)->lock);
2137 		btrfs_mod_outstanding_extents(BTRFS_I(inode), num_extents);
2138 		spin_unlock(&BTRFS_I(inode)->lock);
2139 
2140 		/* For sanity tests */
2141 		if (btrfs_is_testing(fs_info))
2142 			return;
2143 
2144 		percpu_counter_add_batch(&fs_info->delalloc_bytes, len,
2145 					 fs_info->delalloc_batch);
2146 		spin_lock(&BTRFS_I(inode)->lock);
2147 		BTRFS_I(inode)->delalloc_bytes += len;
2148 		if (*bits & EXTENT_DEFRAG)
2149 			BTRFS_I(inode)->defrag_bytes += len;
2150 		if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
2151 					 &BTRFS_I(inode)->runtime_flags))
2152 			btrfs_add_delalloc_inodes(root, inode);
2153 		spin_unlock(&BTRFS_I(inode)->lock);
2154 	}
2155 
2156 	if (!(state->state & EXTENT_DELALLOC_NEW) &&
2157 	    (*bits & EXTENT_DELALLOC_NEW)) {
2158 		spin_lock(&BTRFS_I(inode)->lock);
2159 		BTRFS_I(inode)->new_delalloc_bytes += state->end + 1 -
2160 			state->start;
2161 		spin_unlock(&BTRFS_I(inode)->lock);
2162 	}
2163 }
2164 
2165 /*
2166  * Once a range is no longer delalloc this function ensures that proper
2167  * accounting happens.
2168  */
2169 void btrfs_clear_delalloc_extent(struct inode *vfs_inode,
2170 				 struct extent_state *state, unsigned *bits)
2171 {
2172 	struct btrfs_inode *inode = BTRFS_I(vfs_inode);
2173 	struct btrfs_fs_info *fs_info = btrfs_sb(vfs_inode->i_sb);
2174 	u64 len = state->end + 1 - state->start;
2175 	u32 num_extents = count_max_extents(len);
2176 
2177 	if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG)) {
2178 		spin_lock(&inode->lock);
2179 		inode->defrag_bytes -= len;
2180 		spin_unlock(&inode->lock);
2181 	}
2182 
2183 	/*
2184 	 * set_bit and clear bit hooks normally require _irqsave/restore
2185 	 * but in this case, we are only testing for the DELALLOC
2186 	 * bit, which is only set or cleared with irqs on
2187 	 */
2188 	if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
2189 		struct btrfs_root *root = inode->root;
2190 		bool do_list = !btrfs_is_free_space_inode(inode);
2191 
2192 		spin_lock(&inode->lock);
2193 		btrfs_mod_outstanding_extents(inode, -num_extents);
2194 		spin_unlock(&inode->lock);
2195 
2196 		/*
2197 		 * We don't reserve metadata space for space cache inodes so we
2198 		 * don't need to call delalloc_release_metadata if there is an
2199 		 * error.
2200 		 */
2201 		if (*bits & EXTENT_CLEAR_META_RESV &&
2202 		    root != fs_info->tree_root)
2203 			btrfs_delalloc_release_metadata(inode, len, false);
2204 
2205 		/* For sanity tests. */
2206 		if (btrfs_is_testing(fs_info))
2207 			return;
2208 
2209 		if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID &&
2210 		    do_list && !(state->state & EXTENT_NORESERVE) &&
2211 		    (*bits & EXTENT_CLEAR_DATA_RESV))
2212 			btrfs_free_reserved_data_space_noquota(fs_info, len);
2213 
2214 		percpu_counter_add_batch(&fs_info->delalloc_bytes, -len,
2215 					 fs_info->delalloc_batch);
2216 		spin_lock(&inode->lock);
2217 		inode->delalloc_bytes -= len;
2218 		if (do_list && inode->delalloc_bytes == 0 &&
2219 		    test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
2220 					&inode->runtime_flags))
2221 			btrfs_del_delalloc_inode(root, inode);
2222 		spin_unlock(&inode->lock);
2223 	}
2224 
2225 	if ((state->state & EXTENT_DELALLOC_NEW) &&
2226 	    (*bits & EXTENT_DELALLOC_NEW)) {
2227 		spin_lock(&inode->lock);
2228 		ASSERT(inode->new_delalloc_bytes >= len);
2229 		inode->new_delalloc_bytes -= len;
2230 		if (*bits & EXTENT_ADD_INODE_BYTES)
2231 			inode_add_bytes(&inode->vfs_inode, len);
2232 		spin_unlock(&inode->lock);
2233 	}
2234 }
2235 
2236 /*
2237  * btrfs_bio_fits_in_stripe - Checks whether the size of the given bio will fit
2238  * in a chunk's stripe. This function ensures that bios do not span a
2239  * stripe/chunk
2240  *
2241  * @page - The page we are about to add to the bio
2242  * @size - size we want to add to the bio
2243  * @bio - bio we want to ensure is smaller than a stripe
2244  * @bio_flags - flags of the bio
2245  *
2246  * return 1 if page cannot be added to the bio
2247  * return 0 if page can be added to the bio
2248  * return error otherwise
2249  */
2250 int btrfs_bio_fits_in_stripe(struct page *page, size_t size, struct bio *bio,
2251 			     unsigned long bio_flags)
2252 {
2253 	struct inode *inode = page->mapping->host;
2254 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2255 	u64 logical = bio->bi_iter.bi_sector << 9;
2256 	u32 bio_len = bio->bi_iter.bi_size;
2257 	struct extent_map *em;
2258 	int ret = 0;
2259 	struct btrfs_io_geometry geom;
2260 
2261 	if (bio_flags & EXTENT_BIO_COMPRESSED)
2262 		return 0;
2263 
2264 	em = btrfs_get_chunk_map(fs_info, logical, fs_info->sectorsize);
2265 	if (IS_ERR(em))
2266 		return PTR_ERR(em);
2267 	ret = btrfs_get_io_geometry(fs_info, em, btrfs_op(bio), logical, &geom);
2268 	if (ret < 0)
2269 		goto out;
2270 
2271 	if (geom.len < bio_len + size)
2272 		ret = 1;
2273 out:
2274 	free_extent_map(em);
2275 	return ret;
2276 }
2277 
2278 /*
2279  * in order to insert checksums into the metadata in large chunks,
2280  * we wait until bio submission time.   All the pages in the bio are
2281  * checksummed and sums are attached onto the ordered extent record.
2282  *
2283  * At IO completion time the cums attached on the ordered extent record
2284  * are inserted into the btree
2285  */
2286 static blk_status_t btrfs_submit_bio_start(struct inode *inode, struct bio *bio,
2287 					   u64 dio_file_offset)
2288 {
2289 	return btrfs_csum_one_bio(BTRFS_I(inode), bio, 0, 0);
2290 }
2291 
2292 /*
2293  * Split an extent_map at [start, start + len]
2294  *
2295  * This function is intended to be used only for extract_ordered_extent().
2296  */
2297 static int split_zoned_em(struct btrfs_inode *inode, u64 start, u64 len,
2298 			  u64 pre, u64 post)
2299 {
2300 	struct extent_map_tree *em_tree = &inode->extent_tree;
2301 	struct extent_map *em;
2302 	struct extent_map *split_pre = NULL;
2303 	struct extent_map *split_mid = NULL;
2304 	struct extent_map *split_post = NULL;
2305 	int ret = 0;
2306 	unsigned long flags;
2307 
2308 	/* Sanity check */
2309 	if (pre == 0 && post == 0)
2310 		return 0;
2311 
2312 	split_pre = alloc_extent_map();
2313 	if (pre)
2314 		split_mid = alloc_extent_map();
2315 	if (post)
2316 		split_post = alloc_extent_map();
2317 	if (!split_pre || (pre && !split_mid) || (post && !split_post)) {
2318 		ret = -ENOMEM;
2319 		goto out;
2320 	}
2321 
2322 	ASSERT(pre + post < len);
2323 
2324 	lock_extent(&inode->io_tree, start, start + len - 1);
2325 	write_lock(&em_tree->lock);
2326 	em = lookup_extent_mapping(em_tree, start, len);
2327 	if (!em) {
2328 		ret = -EIO;
2329 		goto out_unlock;
2330 	}
2331 
2332 	ASSERT(em->len == len);
2333 	ASSERT(!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags));
2334 	ASSERT(em->block_start < EXTENT_MAP_LAST_BYTE);
2335 	ASSERT(test_bit(EXTENT_FLAG_PINNED, &em->flags));
2336 	ASSERT(!test_bit(EXTENT_FLAG_LOGGING, &em->flags));
2337 	ASSERT(!list_empty(&em->list));
2338 
2339 	flags = em->flags;
2340 	clear_bit(EXTENT_FLAG_PINNED, &em->flags);
2341 
2342 	/* First, replace the em with a new extent_map starting from * em->start */
2343 	split_pre->start = em->start;
2344 	split_pre->len = (pre ? pre : em->len - post);
2345 	split_pre->orig_start = split_pre->start;
2346 	split_pre->block_start = em->block_start;
2347 	split_pre->block_len = split_pre->len;
2348 	split_pre->orig_block_len = split_pre->block_len;
2349 	split_pre->ram_bytes = split_pre->len;
2350 	split_pre->flags = flags;
2351 	split_pre->compress_type = em->compress_type;
2352 	split_pre->generation = em->generation;
2353 
2354 	replace_extent_mapping(em_tree, em, split_pre, 1);
2355 
2356 	/*
2357 	 * Now we only have an extent_map at:
2358 	 *     [em->start, em->start + pre] if pre != 0
2359 	 *     [em->start, em->start + em->len - post] if pre == 0
2360 	 */
2361 
2362 	if (pre) {
2363 		/* Insert the middle extent_map */
2364 		split_mid->start = em->start + pre;
2365 		split_mid->len = em->len - pre - post;
2366 		split_mid->orig_start = split_mid->start;
2367 		split_mid->block_start = em->block_start + pre;
2368 		split_mid->block_len = split_mid->len;
2369 		split_mid->orig_block_len = split_mid->block_len;
2370 		split_mid->ram_bytes = split_mid->len;
2371 		split_mid->flags = flags;
2372 		split_mid->compress_type = em->compress_type;
2373 		split_mid->generation = em->generation;
2374 		add_extent_mapping(em_tree, split_mid, 1);
2375 	}
2376 
2377 	if (post) {
2378 		split_post->start = em->start + em->len - post;
2379 		split_post->len = post;
2380 		split_post->orig_start = split_post->start;
2381 		split_post->block_start = em->block_start + em->len - post;
2382 		split_post->block_len = split_post->len;
2383 		split_post->orig_block_len = split_post->block_len;
2384 		split_post->ram_bytes = split_post->len;
2385 		split_post->flags = flags;
2386 		split_post->compress_type = em->compress_type;
2387 		split_post->generation = em->generation;
2388 		add_extent_mapping(em_tree, split_post, 1);
2389 	}
2390 
2391 	/* Once for us */
2392 	free_extent_map(em);
2393 	/* Once for the tree */
2394 	free_extent_map(em);
2395 
2396 out_unlock:
2397 	write_unlock(&em_tree->lock);
2398 	unlock_extent(&inode->io_tree, start, start + len - 1);
2399 out:
2400 	free_extent_map(split_pre);
2401 	free_extent_map(split_mid);
2402 	free_extent_map(split_post);
2403 
2404 	return ret;
2405 }
2406 
2407 static blk_status_t extract_ordered_extent(struct btrfs_inode *inode,
2408 					   struct bio *bio, loff_t file_offset)
2409 {
2410 	struct btrfs_ordered_extent *ordered;
2411 	u64 start = (u64)bio->bi_iter.bi_sector << SECTOR_SHIFT;
2412 	u64 file_len;
2413 	u64 len = bio->bi_iter.bi_size;
2414 	u64 end = start + len;
2415 	u64 ordered_end;
2416 	u64 pre, post;
2417 	int ret = 0;
2418 
2419 	ordered = btrfs_lookup_ordered_extent(inode, file_offset);
2420 	if (WARN_ON_ONCE(!ordered))
2421 		return BLK_STS_IOERR;
2422 
2423 	/* No need to split */
2424 	if (ordered->disk_num_bytes == len)
2425 		goto out;
2426 
2427 	/* We cannot split once end_bio'd ordered extent */
2428 	if (WARN_ON_ONCE(ordered->bytes_left != ordered->disk_num_bytes)) {
2429 		ret = -EINVAL;
2430 		goto out;
2431 	}
2432 
2433 	/* We cannot split a compressed ordered extent */
2434 	if (WARN_ON_ONCE(ordered->disk_num_bytes != ordered->num_bytes)) {
2435 		ret = -EINVAL;
2436 		goto out;
2437 	}
2438 
2439 	ordered_end = ordered->disk_bytenr + ordered->disk_num_bytes;
2440 	/* bio must be in one ordered extent */
2441 	if (WARN_ON_ONCE(start < ordered->disk_bytenr || end > ordered_end)) {
2442 		ret = -EINVAL;
2443 		goto out;
2444 	}
2445 
2446 	/* Checksum list should be empty */
2447 	if (WARN_ON_ONCE(!list_empty(&ordered->list))) {
2448 		ret = -EINVAL;
2449 		goto out;
2450 	}
2451 
2452 	file_len = ordered->num_bytes;
2453 	pre = start - ordered->disk_bytenr;
2454 	post = ordered_end - end;
2455 
2456 	ret = btrfs_split_ordered_extent(ordered, pre, post);
2457 	if (ret)
2458 		goto out;
2459 	ret = split_zoned_em(inode, file_offset, file_len, pre, post);
2460 
2461 out:
2462 	btrfs_put_ordered_extent(ordered);
2463 
2464 	return errno_to_blk_status(ret);
2465 }
2466 
2467 /*
2468  * extent_io.c submission hook. This does the right thing for csum calculation
2469  * on write, or reading the csums from the tree before a read.
2470  *
2471  * Rules about async/sync submit,
2472  * a) read:				sync submit
2473  *
2474  * b) write without checksum:		sync submit
2475  *
2476  * c) write with checksum:
2477  *    c-1) if bio is issued by fsync:	sync submit
2478  *         (sync_writers != 0)
2479  *
2480  *    c-2) if root is reloc root:	sync submit
2481  *         (only in case of buffered IO)
2482  *
2483  *    c-3) otherwise:			async submit
2484  */
2485 blk_status_t btrfs_submit_data_bio(struct inode *inode, struct bio *bio,
2486 				   int mirror_num, unsigned long bio_flags)
2487 
2488 {
2489 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2490 	struct btrfs_root *root = BTRFS_I(inode)->root;
2491 	enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA;
2492 	blk_status_t ret = 0;
2493 	int skip_sum;
2494 	int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
2495 
2496 	skip_sum = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) ||
2497 		   !fs_info->csum_root;
2498 
2499 	if (btrfs_is_free_space_inode(BTRFS_I(inode)))
2500 		metadata = BTRFS_WQ_ENDIO_FREE_SPACE;
2501 
2502 	if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
2503 		struct page *page = bio_first_bvec_all(bio)->bv_page;
2504 		loff_t file_offset = page_offset(page);
2505 
2506 		ret = extract_ordered_extent(BTRFS_I(inode), bio, file_offset);
2507 		if (ret)
2508 			goto out;
2509 	}
2510 
2511 	if (btrfs_op(bio) != BTRFS_MAP_WRITE) {
2512 		ret = btrfs_bio_wq_end_io(fs_info, bio, metadata);
2513 		if (ret)
2514 			goto out;
2515 
2516 		if (bio_flags & EXTENT_BIO_COMPRESSED) {
2517 			ret = btrfs_submit_compressed_read(inode, bio,
2518 							   mirror_num,
2519 							   bio_flags);
2520 			goto out;
2521 		} else {
2522 			/*
2523 			 * Lookup bio sums does extra checks around whether we
2524 			 * need to csum or not, which is why we ignore skip_sum
2525 			 * here.
2526 			 */
2527 			ret = btrfs_lookup_bio_sums(inode, bio, NULL);
2528 			if (ret)
2529 				goto out;
2530 		}
2531 		goto mapit;
2532 	} else if (async && !skip_sum) {
2533 		/* csum items have already been cloned */
2534 		if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
2535 			goto mapit;
2536 		/* we're doing a write, do the async checksumming */
2537 		ret = btrfs_wq_submit_bio(inode, bio, mirror_num, bio_flags,
2538 					  0, btrfs_submit_bio_start);
2539 		goto out;
2540 	} else if (!skip_sum) {
2541 		ret = btrfs_csum_one_bio(BTRFS_I(inode), bio, 0, 0);
2542 		if (ret)
2543 			goto out;
2544 	}
2545 
2546 mapit:
2547 	ret = btrfs_map_bio(fs_info, bio, mirror_num);
2548 
2549 out:
2550 	if (ret) {
2551 		bio->bi_status = ret;
2552 		bio_endio(bio);
2553 	}
2554 	return ret;
2555 }
2556 
2557 /*
2558  * given a list of ordered sums record them in the inode.  This happens
2559  * at IO completion time based on sums calculated at bio submission time.
2560  */
2561 static int add_pending_csums(struct btrfs_trans_handle *trans,
2562 			     struct list_head *list)
2563 {
2564 	struct btrfs_ordered_sum *sum;
2565 	int ret;
2566 
2567 	list_for_each_entry(sum, list, list) {
2568 		trans->adding_csums = true;
2569 		ret = btrfs_csum_file_blocks(trans, trans->fs_info->csum_root, sum);
2570 		trans->adding_csums = false;
2571 		if (ret)
2572 			return ret;
2573 	}
2574 	return 0;
2575 }
2576 
2577 static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode,
2578 					 const u64 start,
2579 					 const u64 len,
2580 					 struct extent_state **cached_state)
2581 {
2582 	u64 search_start = start;
2583 	const u64 end = start + len - 1;
2584 
2585 	while (search_start < end) {
2586 		const u64 search_len = end - search_start + 1;
2587 		struct extent_map *em;
2588 		u64 em_len;
2589 		int ret = 0;
2590 
2591 		em = btrfs_get_extent(inode, NULL, 0, search_start, search_len);
2592 		if (IS_ERR(em))
2593 			return PTR_ERR(em);
2594 
2595 		if (em->block_start != EXTENT_MAP_HOLE)
2596 			goto next;
2597 
2598 		em_len = em->len;
2599 		if (em->start < search_start)
2600 			em_len -= search_start - em->start;
2601 		if (em_len > search_len)
2602 			em_len = search_len;
2603 
2604 		ret = set_extent_bit(&inode->io_tree, search_start,
2605 				     search_start + em_len - 1,
2606 				     EXTENT_DELALLOC_NEW, 0, NULL, cached_state,
2607 				     GFP_NOFS, NULL);
2608 next:
2609 		search_start = extent_map_end(em);
2610 		free_extent_map(em);
2611 		if (ret)
2612 			return ret;
2613 	}
2614 	return 0;
2615 }
2616 
2617 int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
2618 			      unsigned int extra_bits,
2619 			      struct extent_state **cached_state)
2620 {
2621 	WARN_ON(PAGE_ALIGNED(end));
2622 
2623 	if (start >= i_size_read(&inode->vfs_inode) &&
2624 	    !(inode->flags & BTRFS_INODE_PREALLOC)) {
2625 		/*
2626 		 * There can't be any extents following eof in this case so just
2627 		 * set the delalloc new bit for the range directly.
2628 		 */
2629 		extra_bits |= EXTENT_DELALLOC_NEW;
2630 	} else {
2631 		int ret;
2632 
2633 		ret = btrfs_find_new_delalloc_bytes(inode, start,
2634 						    end + 1 - start,
2635 						    cached_state);
2636 		if (ret)
2637 			return ret;
2638 	}
2639 
2640 	return set_extent_delalloc(&inode->io_tree, start, end, extra_bits,
2641 				   cached_state);
2642 }
2643 
2644 /* see btrfs_writepage_start_hook for details on why this is required */
2645 struct btrfs_writepage_fixup {
2646 	struct page *page;
2647 	struct inode *inode;
2648 	struct btrfs_work work;
2649 };
2650 
2651 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
2652 {
2653 	struct btrfs_writepage_fixup *fixup;
2654 	struct btrfs_ordered_extent *ordered;
2655 	struct extent_state *cached_state = NULL;
2656 	struct extent_changeset *data_reserved = NULL;
2657 	struct page *page;
2658 	struct btrfs_inode *inode;
2659 	u64 page_start;
2660 	u64 page_end;
2661 	int ret = 0;
2662 	bool free_delalloc_space = true;
2663 
2664 	fixup = container_of(work, struct btrfs_writepage_fixup, work);
2665 	page = fixup->page;
2666 	inode = BTRFS_I(fixup->inode);
2667 	page_start = page_offset(page);
2668 	page_end = page_offset(page) + PAGE_SIZE - 1;
2669 
2670 	/*
2671 	 * This is similar to page_mkwrite, we need to reserve the space before
2672 	 * we take the page lock.
2673 	 */
2674 	ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
2675 					   PAGE_SIZE);
2676 again:
2677 	lock_page(page);
2678 
2679 	/*
2680 	 * Before we queued this fixup, we took a reference on the page.
2681 	 * page->mapping may go NULL, but it shouldn't be moved to a different
2682 	 * address space.
2683 	 */
2684 	if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
2685 		/*
2686 		 * Unfortunately this is a little tricky, either
2687 		 *
2688 		 * 1) We got here and our page had already been dealt with and
2689 		 *    we reserved our space, thus ret == 0, so we need to just
2690 		 *    drop our space reservation and bail.  This can happen the
2691 		 *    first time we come into the fixup worker, or could happen
2692 		 *    while waiting for the ordered extent.
2693 		 * 2) Our page was already dealt with, but we happened to get an
2694 		 *    ENOSPC above from the btrfs_delalloc_reserve_space.  In
2695 		 *    this case we obviously don't have anything to release, but
2696 		 *    because the page was already dealt with we don't want to
2697 		 *    mark the page with an error, so make sure we're resetting
2698 		 *    ret to 0.  This is why we have this check _before_ the ret
2699 		 *    check, because we do not want to have a surprise ENOSPC
2700 		 *    when the page was already properly dealt with.
2701 		 */
2702 		if (!ret) {
2703 			btrfs_delalloc_release_extents(inode, PAGE_SIZE);
2704 			btrfs_delalloc_release_space(inode, data_reserved,
2705 						     page_start, PAGE_SIZE,
2706 						     true);
2707 		}
2708 		ret = 0;
2709 		goto out_page;
2710 	}
2711 
2712 	/*
2713 	 * We can't mess with the page state unless it is locked, so now that
2714 	 * it is locked bail if we failed to make our space reservation.
2715 	 */
2716 	if (ret)
2717 		goto out_page;
2718 
2719 	lock_extent_bits(&inode->io_tree, page_start, page_end, &cached_state);
2720 
2721 	/* already ordered? We're done */
2722 	if (PageOrdered(page))
2723 		goto out_reserved;
2724 
2725 	ordered = btrfs_lookup_ordered_range(inode, page_start, PAGE_SIZE);
2726 	if (ordered) {
2727 		unlock_extent_cached(&inode->io_tree, page_start, page_end,
2728 				     &cached_state);
2729 		unlock_page(page);
2730 		btrfs_start_ordered_extent(ordered, 1);
2731 		btrfs_put_ordered_extent(ordered);
2732 		goto again;
2733 	}
2734 
2735 	ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0,
2736 					&cached_state);
2737 	if (ret)
2738 		goto out_reserved;
2739 
2740 	/*
2741 	 * Everything went as planned, we're now the owner of a dirty page with
2742 	 * delayed allocation bits set and space reserved for our COW
2743 	 * destination.
2744 	 *
2745 	 * The page was dirty when we started, nothing should have cleaned it.
2746 	 */
2747 	BUG_ON(!PageDirty(page));
2748 	free_delalloc_space = false;
2749 out_reserved:
2750 	btrfs_delalloc_release_extents(inode, PAGE_SIZE);
2751 	if (free_delalloc_space)
2752 		btrfs_delalloc_release_space(inode, data_reserved, page_start,
2753 					     PAGE_SIZE, true);
2754 	unlock_extent_cached(&inode->io_tree, page_start, page_end,
2755 			     &cached_state);
2756 out_page:
2757 	if (ret) {
2758 		/*
2759 		 * We hit ENOSPC or other errors.  Update the mapping and page
2760 		 * to reflect the errors and clean the page.
2761 		 */
2762 		mapping_set_error(page->mapping, ret);
2763 		end_extent_writepage(page, ret, page_start, page_end);
2764 		clear_page_dirty_for_io(page);
2765 		SetPageError(page);
2766 	}
2767 	ClearPageChecked(page);
2768 	unlock_page(page);
2769 	put_page(page);
2770 	kfree(fixup);
2771 	extent_changeset_free(data_reserved);
2772 	/*
2773 	 * As a precaution, do a delayed iput in case it would be the last iput
2774 	 * that could need flushing space. Recursing back to fixup worker would
2775 	 * deadlock.
2776 	 */
2777 	btrfs_add_delayed_iput(&inode->vfs_inode);
2778 }
2779 
2780 /*
2781  * There are a few paths in the higher layers of the kernel that directly
2782  * set the page dirty bit without asking the filesystem if it is a
2783  * good idea.  This causes problems because we want to make sure COW
2784  * properly happens and the data=ordered rules are followed.
2785  *
2786  * In our case any range that doesn't have the ORDERED bit set
2787  * hasn't been properly setup for IO.  We kick off an async process
2788  * to fix it up.  The async helper will wait for ordered extents, set
2789  * the delalloc bit and make it safe to write the page.
2790  */
2791 int btrfs_writepage_cow_fixup(struct page *page)
2792 {
2793 	struct inode *inode = page->mapping->host;
2794 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2795 	struct btrfs_writepage_fixup *fixup;
2796 
2797 	/* This page has ordered extent covering it already */
2798 	if (PageOrdered(page))
2799 		return 0;
2800 
2801 	/*
2802 	 * PageChecked is set below when we create a fixup worker for this page,
2803 	 * don't try to create another one if we're already PageChecked()
2804 	 *
2805 	 * The extent_io writepage code will redirty the page if we send back
2806 	 * EAGAIN.
2807 	 */
2808 	if (PageChecked(page))
2809 		return -EAGAIN;
2810 
2811 	fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2812 	if (!fixup)
2813 		return -EAGAIN;
2814 
2815 	/*
2816 	 * We are already holding a reference to this inode from
2817 	 * write_cache_pages.  We need to hold it because the space reservation
2818 	 * takes place outside of the page lock, and we can't trust
2819 	 * page->mapping outside of the page lock.
2820 	 */
2821 	ihold(inode);
2822 	SetPageChecked(page);
2823 	get_page(page);
2824 	btrfs_init_work(&fixup->work, btrfs_writepage_fixup_worker, NULL, NULL);
2825 	fixup->page = page;
2826 	fixup->inode = inode;
2827 	btrfs_queue_work(fs_info->fixup_workers, &fixup->work);
2828 
2829 	return -EAGAIN;
2830 }
2831 
2832 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2833 				       struct btrfs_inode *inode, u64 file_pos,
2834 				       struct btrfs_file_extent_item *stack_fi,
2835 				       const bool update_inode_bytes,
2836 				       u64 qgroup_reserved)
2837 {
2838 	struct btrfs_root *root = inode->root;
2839 	const u64 sectorsize = root->fs_info->sectorsize;
2840 	struct btrfs_path *path;
2841 	struct extent_buffer *leaf;
2842 	struct btrfs_key ins;
2843 	u64 disk_num_bytes = btrfs_stack_file_extent_disk_num_bytes(stack_fi);
2844 	u64 disk_bytenr = btrfs_stack_file_extent_disk_bytenr(stack_fi);
2845 	u64 num_bytes = btrfs_stack_file_extent_num_bytes(stack_fi);
2846 	u64 ram_bytes = btrfs_stack_file_extent_ram_bytes(stack_fi);
2847 	struct btrfs_drop_extents_args drop_args = { 0 };
2848 	int ret;
2849 
2850 	path = btrfs_alloc_path();
2851 	if (!path)
2852 		return -ENOMEM;
2853 
2854 	/*
2855 	 * we may be replacing one extent in the tree with another.
2856 	 * The new extent is pinned in the extent map, and we don't want
2857 	 * to drop it from the cache until it is completely in the btree.
2858 	 *
2859 	 * So, tell btrfs_drop_extents to leave this extent in the cache.
2860 	 * the caller is expected to unpin it and allow it to be merged
2861 	 * with the others.
2862 	 */
2863 	drop_args.path = path;
2864 	drop_args.start = file_pos;
2865 	drop_args.end = file_pos + num_bytes;
2866 	drop_args.replace_extent = true;
2867 	drop_args.extent_item_size = sizeof(*stack_fi);
2868 	ret = btrfs_drop_extents(trans, root, inode, &drop_args);
2869 	if (ret)
2870 		goto out;
2871 
2872 	if (!drop_args.extent_inserted) {
2873 		ins.objectid = btrfs_ino(inode);
2874 		ins.offset = file_pos;
2875 		ins.type = BTRFS_EXTENT_DATA_KEY;
2876 
2877 		ret = btrfs_insert_empty_item(trans, root, path, &ins,
2878 					      sizeof(*stack_fi));
2879 		if (ret)
2880 			goto out;
2881 	}
2882 	leaf = path->nodes[0];
2883 	btrfs_set_stack_file_extent_generation(stack_fi, trans->transid);
2884 	write_extent_buffer(leaf, stack_fi,
2885 			btrfs_item_ptr_offset(leaf, path->slots[0]),
2886 			sizeof(struct btrfs_file_extent_item));
2887 
2888 	btrfs_mark_buffer_dirty(leaf);
2889 	btrfs_release_path(path);
2890 
2891 	/*
2892 	 * If we dropped an inline extent here, we know the range where it is
2893 	 * was not marked with the EXTENT_DELALLOC_NEW bit, so we update the
2894 	 * number of bytes only for that range containing the inline extent.
2895 	 * The remaining of the range will be processed when clearning the
2896 	 * EXTENT_DELALLOC_BIT bit through the ordered extent completion.
2897 	 */
2898 	if (file_pos == 0 && !IS_ALIGNED(drop_args.bytes_found, sectorsize)) {
2899 		u64 inline_size = round_down(drop_args.bytes_found, sectorsize);
2900 
2901 		inline_size = drop_args.bytes_found - inline_size;
2902 		btrfs_update_inode_bytes(inode, sectorsize, inline_size);
2903 		drop_args.bytes_found -= inline_size;
2904 		num_bytes -= sectorsize;
2905 	}
2906 
2907 	if (update_inode_bytes)
2908 		btrfs_update_inode_bytes(inode, num_bytes, drop_args.bytes_found);
2909 
2910 	ins.objectid = disk_bytenr;
2911 	ins.offset = disk_num_bytes;
2912 	ins.type = BTRFS_EXTENT_ITEM_KEY;
2913 
2914 	ret = btrfs_inode_set_file_extent_range(inode, file_pos, ram_bytes);
2915 	if (ret)
2916 		goto out;
2917 
2918 	ret = btrfs_alloc_reserved_file_extent(trans, root, btrfs_ino(inode),
2919 					       file_pos, qgroup_reserved, &ins);
2920 out:
2921 	btrfs_free_path(path);
2922 
2923 	return ret;
2924 }
2925 
2926 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info,
2927 					 u64 start, u64 len)
2928 {
2929 	struct btrfs_block_group *cache;
2930 
2931 	cache = btrfs_lookup_block_group(fs_info, start);
2932 	ASSERT(cache);
2933 
2934 	spin_lock(&cache->lock);
2935 	cache->delalloc_bytes -= len;
2936 	spin_unlock(&cache->lock);
2937 
2938 	btrfs_put_block_group(cache);
2939 }
2940 
2941 static int insert_ordered_extent_file_extent(struct btrfs_trans_handle *trans,
2942 					     struct btrfs_ordered_extent *oe)
2943 {
2944 	struct btrfs_file_extent_item stack_fi;
2945 	u64 logical_len;
2946 	bool update_inode_bytes;
2947 
2948 	memset(&stack_fi, 0, sizeof(stack_fi));
2949 	btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_REG);
2950 	btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, oe->disk_bytenr);
2951 	btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi,
2952 						   oe->disk_num_bytes);
2953 	if (test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags))
2954 		logical_len = oe->truncated_len;
2955 	else
2956 		logical_len = oe->num_bytes;
2957 	btrfs_set_stack_file_extent_num_bytes(&stack_fi, logical_len);
2958 	btrfs_set_stack_file_extent_ram_bytes(&stack_fi, logical_len);
2959 	btrfs_set_stack_file_extent_compression(&stack_fi, oe->compress_type);
2960 	/* Encryption and other encoding is reserved and all 0 */
2961 
2962 	/*
2963 	 * For delalloc, when completing an ordered extent we update the inode's
2964 	 * bytes when clearing the range in the inode's io tree, so pass false
2965 	 * as the argument 'update_inode_bytes' to insert_reserved_file_extent(),
2966 	 * except if the ordered extent was truncated.
2967 	 */
2968 	update_inode_bytes = test_bit(BTRFS_ORDERED_DIRECT, &oe->flags) ||
2969 			     test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags);
2970 
2971 	return insert_reserved_file_extent(trans, BTRFS_I(oe->inode),
2972 					   oe->file_offset, &stack_fi,
2973 					   update_inode_bytes, oe->qgroup_rsv);
2974 }
2975 
2976 /*
2977  * As ordered data IO finishes, this gets called so we can finish
2978  * an ordered extent if the range of bytes in the file it covers are
2979  * fully written.
2980  */
2981 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
2982 {
2983 	struct btrfs_inode *inode = BTRFS_I(ordered_extent->inode);
2984 	struct btrfs_root *root = inode->root;
2985 	struct btrfs_fs_info *fs_info = root->fs_info;
2986 	struct btrfs_trans_handle *trans = NULL;
2987 	struct extent_io_tree *io_tree = &inode->io_tree;
2988 	struct extent_state *cached_state = NULL;
2989 	u64 start, end;
2990 	int compress_type = 0;
2991 	int ret = 0;
2992 	u64 logical_len = ordered_extent->num_bytes;
2993 	bool freespace_inode;
2994 	bool truncated = false;
2995 	bool clear_reserved_extent = true;
2996 	unsigned int clear_bits = EXTENT_DEFRAG;
2997 
2998 	start = ordered_extent->file_offset;
2999 	end = start + ordered_extent->num_bytes - 1;
3000 
3001 	if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3002 	    !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) &&
3003 	    !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags))
3004 		clear_bits |= EXTENT_DELALLOC_NEW;
3005 
3006 	freespace_inode = btrfs_is_free_space_inode(inode);
3007 
3008 	if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
3009 		ret = -EIO;
3010 		goto out;
3011 	}
3012 
3013 	if (ordered_extent->bdev)
3014 		btrfs_rewrite_logical_zoned(ordered_extent);
3015 
3016 	btrfs_free_io_failure_record(inode, start, end);
3017 
3018 	if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
3019 		truncated = true;
3020 		logical_len = ordered_extent->truncated_len;
3021 		/* Truncated the entire extent, don't bother adding */
3022 		if (!logical_len)
3023 			goto out;
3024 	}
3025 
3026 	if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
3027 		BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
3028 
3029 		btrfs_inode_safe_disk_i_size_write(inode, 0);
3030 		if (freespace_inode)
3031 			trans = btrfs_join_transaction_spacecache(root);
3032 		else
3033 			trans = btrfs_join_transaction(root);
3034 		if (IS_ERR(trans)) {
3035 			ret = PTR_ERR(trans);
3036 			trans = NULL;
3037 			goto out;
3038 		}
3039 		trans->block_rsv = &inode->block_rsv;
3040 		ret = btrfs_update_inode_fallback(trans, root, inode);
3041 		if (ret) /* -ENOMEM or corruption */
3042 			btrfs_abort_transaction(trans, ret);
3043 		goto out;
3044 	}
3045 
3046 	clear_bits |= EXTENT_LOCKED;
3047 	lock_extent_bits(io_tree, start, end, &cached_state);
3048 
3049 	if (freespace_inode)
3050 		trans = btrfs_join_transaction_spacecache(root);
3051 	else
3052 		trans = btrfs_join_transaction(root);
3053 	if (IS_ERR(trans)) {
3054 		ret = PTR_ERR(trans);
3055 		trans = NULL;
3056 		goto out;
3057 	}
3058 
3059 	trans->block_rsv = &inode->block_rsv;
3060 
3061 	if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
3062 		compress_type = ordered_extent->compress_type;
3063 	if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
3064 		BUG_ON(compress_type);
3065 		ret = btrfs_mark_extent_written(trans, inode,
3066 						ordered_extent->file_offset,
3067 						ordered_extent->file_offset +
3068 						logical_len);
3069 	} else {
3070 		BUG_ON(root == fs_info->tree_root);
3071 		ret = insert_ordered_extent_file_extent(trans, ordered_extent);
3072 		if (!ret) {
3073 			clear_reserved_extent = false;
3074 			btrfs_release_delalloc_bytes(fs_info,
3075 						ordered_extent->disk_bytenr,
3076 						ordered_extent->disk_num_bytes);
3077 		}
3078 	}
3079 	unpin_extent_cache(&inode->extent_tree, ordered_extent->file_offset,
3080 			   ordered_extent->num_bytes, trans->transid);
3081 	if (ret < 0) {
3082 		btrfs_abort_transaction(trans, ret);
3083 		goto out;
3084 	}
3085 
3086 	ret = add_pending_csums(trans, &ordered_extent->list);
3087 	if (ret) {
3088 		btrfs_abort_transaction(trans, ret);
3089 		goto out;
3090 	}
3091 
3092 	/*
3093 	 * If this is a new delalloc range, clear its new delalloc flag to
3094 	 * update the inode's number of bytes. This needs to be done first
3095 	 * before updating the inode item.
3096 	 */
3097 	if ((clear_bits & EXTENT_DELALLOC_NEW) &&
3098 	    !test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags))
3099 		clear_extent_bit(&inode->io_tree, start, end,
3100 				 EXTENT_DELALLOC_NEW | EXTENT_ADD_INODE_BYTES,
3101 				 0, 0, &cached_state);
3102 
3103 	btrfs_inode_safe_disk_i_size_write(inode, 0);
3104 	ret = btrfs_update_inode_fallback(trans, root, inode);
3105 	if (ret) { /* -ENOMEM or corruption */
3106 		btrfs_abort_transaction(trans, ret);
3107 		goto out;
3108 	}
3109 	ret = 0;
3110 out:
3111 	clear_extent_bit(&inode->io_tree, start, end, clear_bits,
3112 			 (clear_bits & EXTENT_LOCKED) ? 1 : 0, 0,
3113 			 &cached_state);
3114 
3115 	if (trans)
3116 		btrfs_end_transaction(trans);
3117 
3118 	if (ret || truncated) {
3119 		u64 unwritten_start = start;
3120 
3121 		/*
3122 		 * If we failed to finish this ordered extent for any reason we
3123 		 * need to make sure BTRFS_ORDERED_IOERR is set on the ordered
3124 		 * extent, and mark the inode with the error if it wasn't
3125 		 * already set.  Any error during writeback would have already
3126 		 * set the mapping error, so we need to set it if we're the ones
3127 		 * marking this ordered extent as failed.
3128 		 */
3129 		if (ret && !test_and_set_bit(BTRFS_ORDERED_IOERR,
3130 					     &ordered_extent->flags))
3131 			mapping_set_error(ordered_extent->inode->i_mapping, -EIO);
3132 
3133 		if (truncated)
3134 			unwritten_start += logical_len;
3135 		clear_extent_uptodate(io_tree, unwritten_start, end, NULL);
3136 
3137 		/* Drop the cache for the part of the extent we didn't write. */
3138 		btrfs_drop_extent_cache(inode, unwritten_start, end, 0);
3139 
3140 		/*
3141 		 * If the ordered extent had an IOERR or something else went
3142 		 * wrong we need to return the space for this ordered extent
3143 		 * back to the allocator.  We only free the extent in the
3144 		 * truncated case if we didn't write out the extent at all.
3145 		 *
3146 		 * If we made it past insert_reserved_file_extent before we
3147 		 * errored out then we don't need to do this as the accounting
3148 		 * has already been done.
3149 		 */
3150 		if ((ret || !logical_len) &&
3151 		    clear_reserved_extent &&
3152 		    !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3153 		    !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
3154 			/*
3155 			 * Discard the range before returning it back to the
3156 			 * free space pool
3157 			 */
3158 			if (ret && btrfs_test_opt(fs_info, DISCARD_SYNC))
3159 				btrfs_discard_extent(fs_info,
3160 						ordered_extent->disk_bytenr,
3161 						ordered_extent->disk_num_bytes,
3162 						NULL);
3163 			btrfs_free_reserved_extent(fs_info,
3164 					ordered_extent->disk_bytenr,
3165 					ordered_extent->disk_num_bytes, 1);
3166 		}
3167 	}
3168 
3169 	/*
3170 	 * This needs to be done to make sure anybody waiting knows we are done
3171 	 * updating everything for this ordered extent.
3172 	 */
3173 	btrfs_remove_ordered_extent(inode, ordered_extent);
3174 
3175 	/* once for us */
3176 	btrfs_put_ordered_extent(ordered_extent);
3177 	/* once for the tree */
3178 	btrfs_put_ordered_extent(ordered_extent);
3179 
3180 	return ret;
3181 }
3182 
3183 static void finish_ordered_fn(struct btrfs_work *work)
3184 {
3185 	struct btrfs_ordered_extent *ordered_extent;
3186 	ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
3187 	btrfs_finish_ordered_io(ordered_extent);
3188 }
3189 
3190 void btrfs_writepage_endio_finish_ordered(struct btrfs_inode *inode,
3191 					  struct page *page, u64 start,
3192 					  u64 end, bool uptodate)
3193 {
3194 	trace_btrfs_writepage_end_io_hook(inode, start, end, uptodate);
3195 
3196 	btrfs_mark_ordered_io_finished(inode, page, start, end + 1 - start,
3197 				       finish_ordered_fn, uptodate);
3198 }
3199 
3200 /*
3201  * check_data_csum - verify checksum of one sector of uncompressed data
3202  * @inode:	inode
3203  * @io_bio:	btrfs_io_bio which contains the csum
3204  * @bio_offset:	offset to the beginning of the bio (in bytes)
3205  * @page:	page where is the data to be verified
3206  * @pgoff:	offset inside the page
3207  * @start:	logical offset in the file
3208  *
3209  * The length of such check is always one sector size.
3210  */
3211 static int check_data_csum(struct inode *inode, struct btrfs_io_bio *io_bio,
3212 			   u32 bio_offset, struct page *page, u32 pgoff,
3213 			   u64 start)
3214 {
3215 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3216 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
3217 	char *kaddr;
3218 	u32 len = fs_info->sectorsize;
3219 	const u32 csum_size = fs_info->csum_size;
3220 	unsigned int offset_sectors;
3221 	u8 *csum_expected;
3222 	u8 csum[BTRFS_CSUM_SIZE];
3223 
3224 	ASSERT(pgoff + len <= PAGE_SIZE);
3225 
3226 	offset_sectors = bio_offset >> fs_info->sectorsize_bits;
3227 	csum_expected = ((u8 *)io_bio->csum) + offset_sectors * csum_size;
3228 
3229 	kaddr = kmap_atomic(page);
3230 	shash->tfm = fs_info->csum_shash;
3231 
3232 	crypto_shash_digest(shash, kaddr + pgoff, len, csum);
3233 
3234 	if (memcmp(csum, csum_expected, csum_size))
3235 		goto zeroit;
3236 
3237 	kunmap_atomic(kaddr);
3238 	return 0;
3239 zeroit:
3240 	btrfs_print_data_csum_error(BTRFS_I(inode), start, csum, csum_expected,
3241 				    io_bio->mirror_num);
3242 	if (io_bio->device)
3243 		btrfs_dev_stat_inc_and_print(io_bio->device,
3244 					     BTRFS_DEV_STAT_CORRUPTION_ERRS);
3245 	memset(kaddr + pgoff, 1, len);
3246 	flush_dcache_page(page);
3247 	kunmap_atomic(kaddr);
3248 	return -EIO;
3249 }
3250 
3251 /*
3252  * When reads are done, we need to check csums to verify the data is correct.
3253  * if there's a match, we allow the bio to finish.  If not, the code in
3254  * extent_io.c will try to find good copies for us.
3255  *
3256  * @bio_offset:	offset to the beginning of the bio (in bytes)
3257  * @start:	file offset of the range start
3258  * @end:	file offset of the range end (inclusive)
3259  *
3260  * Return a bitmap where bit set means a csum mismatch, and bit not set means
3261  * csum match.
3262  */
3263 unsigned int btrfs_verify_data_csum(struct btrfs_io_bio *io_bio, u32 bio_offset,
3264 				    struct page *page, u64 start, u64 end)
3265 {
3266 	struct inode *inode = page->mapping->host;
3267 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3268 	struct btrfs_root *root = BTRFS_I(inode)->root;
3269 	const u32 sectorsize = root->fs_info->sectorsize;
3270 	u32 pg_off;
3271 	unsigned int result = 0;
3272 
3273 	if (PageChecked(page)) {
3274 		ClearPageChecked(page);
3275 		return 0;
3276 	}
3277 
3278 	/*
3279 	 * For subpage case, above PageChecked is not safe as it's not subpage
3280 	 * compatible.
3281 	 * But for now only cow fixup and compressed read utilize PageChecked
3282 	 * flag, while in this context we can easily use io_bio->csum to
3283 	 * determine if we really need to do csum verification.
3284 	 *
3285 	 * So for now, just exit if io_bio->csum is NULL, as it means it's
3286 	 * compressed read, and its compressed data csum has already been
3287 	 * verified.
3288 	 */
3289 	if (io_bio->csum == NULL)
3290 		return 0;
3291 
3292 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
3293 		return 0;
3294 
3295 	if (!root->fs_info->csum_root)
3296 		return 0;
3297 
3298 	ASSERT(page_offset(page) <= start &&
3299 	       end <= page_offset(page) + PAGE_SIZE - 1);
3300 	for (pg_off = offset_in_page(start);
3301 	     pg_off < offset_in_page(end);
3302 	     pg_off += sectorsize, bio_offset += sectorsize) {
3303 		u64 file_offset = pg_off + page_offset(page);
3304 		int ret;
3305 
3306 		if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
3307 		    test_range_bit(io_tree, file_offset,
3308 				   file_offset + sectorsize - 1,
3309 				   EXTENT_NODATASUM, 1, NULL)) {
3310 			/* Skip the range without csum for data reloc inode */
3311 			clear_extent_bits(io_tree, file_offset,
3312 					  file_offset + sectorsize - 1,
3313 					  EXTENT_NODATASUM);
3314 			continue;
3315 		}
3316 		ret = check_data_csum(inode, io_bio, bio_offset, page, pg_off,
3317 				      page_offset(page) + pg_off);
3318 		if (ret < 0) {
3319 			const int nr_bit = (pg_off - offset_in_page(start)) >>
3320 				     root->fs_info->sectorsize_bits;
3321 
3322 			result |= (1U << nr_bit);
3323 		}
3324 	}
3325 	return result;
3326 }
3327 
3328 /*
3329  * btrfs_add_delayed_iput - perform a delayed iput on @inode
3330  *
3331  * @inode: The inode we want to perform iput on
3332  *
3333  * This function uses the generic vfs_inode::i_count to track whether we should
3334  * just decrement it (in case it's > 1) or if this is the last iput then link
3335  * the inode to the delayed iput machinery. Delayed iputs are processed at
3336  * transaction commit time/superblock commit/cleaner kthread.
3337  */
3338 void btrfs_add_delayed_iput(struct inode *inode)
3339 {
3340 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3341 	struct btrfs_inode *binode = BTRFS_I(inode);
3342 
3343 	if (atomic_add_unless(&inode->i_count, -1, 1))
3344 		return;
3345 
3346 	atomic_inc(&fs_info->nr_delayed_iputs);
3347 	spin_lock(&fs_info->delayed_iput_lock);
3348 	ASSERT(list_empty(&binode->delayed_iput));
3349 	list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs);
3350 	spin_unlock(&fs_info->delayed_iput_lock);
3351 	if (!test_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags))
3352 		wake_up_process(fs_info->cleaner_kthread);
3353 }
3354 
3355 static void run_delayed_iput_locked(struct btrfs_fs_info *fs_info,
3356 				    struct btrfs_inode *inode)
3357 {
3358 	list_del_init(&inode->delayed_iput);
3359 	spin_unlock(&fs_info->delayed_iput_lock);
3360 	iput(&inode->vfs_inode);
3361 	if (atomic_dec_and_test(&fs_info->nr_delayed_iputs))
3362 		wake_up(&fs_info->delayed_iputs_wait);
3363 	spin_lock(&fs_info->delayed_iput_lock);
3364 }
3365 
3366 static void btrfs_run_delayed_iput(struct btrfs_fs_info *fs_info,
3367 				   struct btrfs_inode *inode)
3368 {
3369 	if (!list_empty(&inode->delayed_iput)) {
3370 		spin_lock(&fs_info->delayed_iput_lock);
3371 		if (!list_empty(&inode->delayed_iput))
3372 			run_delayed_iput_locked(fs_info, inode);
3373 		spin_unlock(&fs_info->delayed_iput_lock);
3374 	}
3375 }
3376 
3377 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info)
3378 {
3379 
3380 	spin_lock(&fs_info->delayed_iput_lock);
3381 	while (!list_empty(&fs_info->delayed_iputs)) {
3382 		struct btrfs_inode *inode;
3383 
3384 		inode = list_first_entry(&fs_info->delayed_iputs,
3385 				struct btrfs_inode, delayed_iput);
3386 		run_delayed_iput_locked(fs_info, inode);
3387 		cond_resched_lock(&fs_info->delayed_iput_lock);
3388 	}
3389 	spin_unlock(&fs_info->delayed_iput_lock);
3390 }
3391 
3392 /**
3393  * Wait for flushing all delayed iputs
3394  *
3395  * @fs_info:  the filesystem
3396  *
3397  * This will wait on any delayed iputs that are currently running with KILLABLE
3398  * set.  Once they are all done running we will return, unless we are killed in
3399  * which case we return EINTR. This helps in user operations like fallocate etc
3400  * that might get blocked on the iputs.
3401  *
3402  * Return EINTR if we were killed, 0 if nothing's pending
3403  */
3404 int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info)
3405 {
3406 	int ret = wait_event_killable(fs_info->delayed_iputs_wait,
3407 			atomic_read(&fs_info->nr_delayed_iputs) == 0);
3408 	if (ret)
3409 		return -EINTR;
3410 	return 0;
3411 }
3412 
3413 /*
3414  * This creates an orphan entry for the given inode in case something goes wrong
3415  * in the middle of an unlink.
3416  */
3417 int btrfs_orphan_add(struct btrfs_trans_handle *trans,
3418 		     struct btrfs_inode *inode)
3419 {
3420 	int ret;
3421 
3422 	ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode));
3423 	if (ret && ret != -EEXIST) {
3424 		btrfs_abort_transaction(trans, ret);
3425 		return ret;
3426 	}
3427 
3428 	return 0;
3429 }
3430 
3431 /*
3432  * We have done the delete so we can go ahead and remove the orphan item for
3433  * this particular inode.
3434  */
3435 static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3436 			    struct btrfs_inode *inode)
3437 {
3438 	return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode));
3439 }
3440 
3441 /*
3442  * this cleans up any orphans that may be left on the list from the last use
3443  * of this root.
3444  */
3445 int btrfs_orphan_cleanup(struct btrfs_root *root)
3446 {
3447 	struct btrfs_fs_info *fs_info = root->fs_info;
3448 	struct btrfs_path *path;
3449 	struct extent_buffer *leaf;
3450 	struct btrfs_key key, found_key;
3451 	struct btrfs_trans_handle *trans;
3452 	struct inode *inode;
3453 	u64 last_objectid = 0;
3454 	int ret = 0, nr_unlink = 0;
3455 
3456 	if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
3457 		return 0;
3458 
3459 	path = btrfs_alloc_path();
3460 	if (!path) {
3461 		ret = -ENOMEM;
3462 		goto out;
3463 	}
3464 	path->reada = READA_BACK;
3465 
3466 	key.objectid = BTRFS_ORPHAN_OBJECTID;
3467 	key.type = BTRFS_ORPHAN_ITEM_KEY;
3468 	key.offset = (u64)-1;
3469 
3470 	while (1) {
3471 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3472 		if (ret < 0)
3473 			goto out;
3474 
3475 		/*
3476 		 * if ret == 0 means we found what we were searching for, which
3477 		 * is weird, but possible, so only screw with path if we didn't
3478 		 * find the key and see if we have stuff that matches
3479 		 */
3480 		if (ret > 0) {
3481 			ret = 0;
3482 			if (path->slots[0] == 0)
3483 				break;
3484 			path->slots[0]--;
3485 		}
3486 
3487 		/* pull out the item */
3488 		leaf = path->nodes[0];
3489 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3490 
3491 		/* make sure the item matches what we want */
3492 		if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3493 			break;
3494 		if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
3495 			break;
3496 
3497 		/* release the path since we're done with it */
3498 		btrfs_release_path(path);
3499 
3500 		/*
3501 		 * this is where we are basically btrfs_lookup, without the
3502 		 * crossing root thing.  we store the inode number in the
3503 		 * offset of the orphan item.
3504 		 */
3505 
3506 		if (found_key.offset == last_objectid) {
3507 			btrfs_err(fs_info,
3508 				  "Error removing orphan entry, stopping orphan cleanup");
3509 			ret = -EINVAL;
3510 			goto out;
3511 		}
3512 
3513 		last_objectid = found_key.offset;
3514 
3515 		found_key.objectid = found_key.offset;
3516 		found_key.type = BTRFS_INODE_ITEM_KEY;
3517 		found_key.offset = 0;
3518 		inode = btrfs_iget(fs_info->sb, last_objectid, root);
3519 		ret = PTR_ERR_OR_ZERO(inode);
3520 		if (ret && ret != -ENOENT)
3521 			goto out;
3522 
3523 		if (ret == -ENOENT && root == fs_info->tree_root) {
3524 			struct btrfs_root *dead_root;
3525 			int is_dead_root = 0;
3526 
3527 			/*
3528 			 * This is an orphan in the tree root. Currently these
3529 			 * could come from 2 sources:
3530 			 *  a) a root (snapshot/subvolume) deletion in progress
3531 			 *  b) a free space cache inode
3532 			 * We need to distinguish those two, as the orphan item
3533 			 * for a root must not get deleted before the deletion
3534 			 * of the snapshot/subvolume's tree completes.
3535 			 *
3536 			 * btrfs_find_orphan_roots() ran before us, which has
3537 			 * found all deleted roots and loaded them into
3538 			 * fs_info->fs_roots_radix. So here we can find if an
3539 			 * orphan item corresponds to a deleted root by looking
3540 			 * up the root from that radix tree.
3541 			 */
3542 
3543 			spin_lock(&fs_info->fs_roots_radix_lock);
3544 			dead_root = radix_tree_lookup(&fs_info->fs_roots_radix,
3545 							 (unsigned long)found_key.objectid);
3546 			if (dead_root && btrfs_root_refs(&dead_root->root_item) == 0)
3547 				is_dead_root = 1;
3548 			spin_unlock(&fs_info->fs_roots_radix_lock);
3549 
3550 			if (is_dead_root) {
3551 				/* prevent this orphan from being found again */
3552 				key.offset = found_key.objectid - 1;
3553 				continue;
3554 			}
3555 
3556 		}
3557 
3558 		/*
3559 		 * If we have an inode with links, there are a couple of
3560 		 * possibilities:
3561 		 *
3562 		 * 1. We were halfway through creating fsverity metadata for the
3563 		 * file. In that case, the orphan item represents incomplete
3564 		 * fsverity metadata which must be cleaned up with
3565 		 * btrfs_drop_verity_items and deleting the orphan item.
3566 
3567 		 * 2. Old kernels (before v3.12) used to create an
3568 		 * orphan item for truncate indicating that there were possibly
3569 		 * extent items past i_size that needed to be deleted. In v3.12,
3570 		 * truncate was changed to update i_size in sync with the extent
3571 		 * items, but the (useless) orphan item was still created. Since
3572 		 * v4.18, we don't create the orphan item for truncate at all.
3573 		 *
3574 		 * So, this item could mean that we need to do a truncate, but
3575 		 * only if this filesystem was last used on a pre-v3.12 kernel
3576 		 * and was not cleanly unmounted. The odds of that are quite
3577 		 * slim, and it's a pain to do the truncate now, so just delete
3578 		 * the orphan item.
3579 		 *
3580 		 * It's also possible that this orphan item was supposed to be
3581 		 * deleted but wasn't. The inode number may have been reused,
3582 		 * but either way, we can delete the orphan item.
3583 		 */
3584 		if (ret == -ENOENT || inode->i_nlink) {
3585 			if (!ret) {
3586 				ret = btrfs_drop_verity_items(BTRFS_I(inode));
3587 				iput(inode);
3588 				if (ret)
3589 					goto out;
3590 			}
3591 			trans = btrfs_start_transaction(root, 1);
3592 			if (IS_ERR(trans)) {
3593 				ret = PTR_ERR(trans);
3594 				goto out;
3595 			}
3596 			btrfs_debug(fs_info, "auto deleting %Lu",
3597 				    found_key.objectid);
3598 			ret = btrfs_del_orphan_item(trans, root,
3599 						    found_key.objectid);
3600 			btrfs_end_transaction(trans);
3601 			if (ret)
3602 				goto out;
3603 			continue;
3604 		}
3605 
3606 		nr_unlink++;
3607 
3608 		/* this will do delete_inode and everything for us */
3609 		iput(inode);
3610 	}
3611 	/* release the path since we're done with it */
3612 	btrfs_release_path(path);
3613 
3614 	root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3615 
3616 	if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
3617 		trans = btrfs_join_transaction(root);
3618 		if (!IS_ERR(trans))
3619 			btrfs_end_transaction(trans);
3620 	}
3621 
3622 	if (nr_unlink)
3623 		btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink);
3624 
3625 out:
3626 	if (ret)
3627 		btrfs_err(fs_info, "could not do orphan cleanup %d", ret);
3628 	btrfs_free_path(path);
3629 	return ret;
3630 }
3631 
3632 /*
3633  * very simple check to peek ahead in the leaf looking for xattrs.  If we
3634  * don't find any xattrs, we know there can't be any acls.
3635  *
3636  * slot is the slot the inode is in, objectid is the objectid of the inode
3637  */
3638 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
3639 					  int slot, u64 objectid,
3640 					  int *first_xattr_slot)
3641 {
3642 	u32 nritems = btrfs_header_nritems(leaf);
3643 	struct btrfs_key found_key;
3644 	static u64 xattr_access = 0;
3645 	static u64 xattr_default = 0;
3646 	int scanned = 0;
3647 
3648 	if (!xattr_access) {
3649 		xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
3650 					strlen(XATTR_NAME_POSIX_ACL_ACCESS));
3651 		xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
3652 					strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
3653 	}
3654 
3655 	slot++;
3656 	*first_xattr_slot = -1;
3657 	while (slot < nritems) {
3658 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3659 
3660 		/* we found a different objectid, there must not be acls */
3661 		if (found_key.objectid != objectid)
3662 			return 0;
3663 
3664 		/* we found an xattr, assume we've got an acl */
3665 		if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
3666 			if (*first_xattr_slot == -1)
3667 				*first_xattr_slot = slot;
3668 			if (found_key.offset == xattr_access ||
3669 			    found_key.offset == xattr_default)
3670 				return 1;
3671 		}
3672 
3673 		/*
3674 		 * we found a key greater than an xattr key, there can't
3675 		 * be any acls later on
3676 		 */
3677 		if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3678 			return 0;
3679 
3680 		slot++;
3681 		scanned++;
3682 
3683 		/*
3684 		 * it goes inode, inode backrefs, xattrs, extents,
3685 		 * so if there are a ton of hard links to an inode there can
3686 		 * be a lot of backrefs.  Don't waste time searching too hard,
3687 		 * this is just an optimization
3688 		 */
3689 		if (scanned >= 8)
3690 			break;
3691 	}
3692 	/* we hit the end of the leaf before we found an xattr or
3693 	 * something larger than an xattr.  We have to assume the inode
3694 	 * has acls
3695 	 */
3696 	if (*first_xattr_slot == -1)
3697 		*first_xattr_slot = slot;
3698 	return 1;
3699 }
3700 
3701 /*
3702  * read an inode from the btree into the in-memory inode
3703  */
3704 static int btrfs_read_locked_inode(struct inode *inode,
3705 				   struct btrfs_path *in_path)
3706 {
3707 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3708 	struct btrfs_path *path = in_path;
3709 	struct extent_buffer *leaf;
3710 	struct btrfs_inode_item *inode_item;
3711 	struct btrfs_root *root = BTRFS_I(inode)->root;
3712 	struct btrfs_key location;
3713 	unsigned long ptr;
3714 	int maybe_acls;
3715 	u32 rdev;
3716 	int ret;
3717 	bool filled = false;
3718 	int first_xattr_slot;
3719 
3720 	ret = btrfs_fill_inode(inode, &rdev);
3721 	if (!ret)
3722 		filled = true;
3723 
3724 	if (!path) {
3725 		path = btrfs_alloc_path();
3726 		if (!path)
3727 			return -ENOMEM;
3728 	}
3729 
3730 	memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
3731 
3732 	ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
3733 	if (ret) {
3734 		if (path != in_path)
3735 			btrfs_free_path(path);
3736 		return ret;
3737 	}
3738 
3739 	leaf = path->nodes[0];
3740 
3741 	if (filled)
3742 		goto cache_index;
3743 
3744 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
3745 				    struct btrfs_inode_item);
3746 	inode->i_mode = btrfs_inode_mode(leaf, inode_item);
3747 	set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
3748 	i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3749 	i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
3750 	btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item));
3751 	btrfs_inode_set_file_extent_range(BTRFS_I(inode), 0,
3752 			round_up(i_size_read(inode), fs_info->sectorsize));
3753 
3754 	inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime);
3755 	inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime);
3756 
3757 	inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime);
3758 	inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime);
3759 
3760 	inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime);
3761 	inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime);
3762 
3763 	BTRFS_I(inode)->i_otime.tv_sec =
3764 		btrfs_timespec_sec(leaf, &inode_item->otime);
3765 	BTRFS_I(inode)->i_otime.tv_nsec =
3766 		btrfs_timespec_nsec(leaf, &inode_item->otime);
3767 
3768 	inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
3769 	BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
3770 	BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3771 
3772 	inode_set_iversion_queried(inode,
3773 				   btrfs_inode_sequence(leaf, inode_item));
3774 	inode->i_generation = BTRFS_I(inode)->generation;
3775 	inode->i_rdev = 0;
3776 	rdev = btrfs_inode_rdev(leaf, inode_item);
3777 
3778 	BTRFS_I(inode)->index_cnt = (u64)-1;
3779 	btrfs_inode_split_flags(btrfs_inode_flags(leaf, inode_item),
3780 				&BTRFS_I(inode)->flags, &BTRFS_I(inode)->ro_flags);
3781 
3782 cache_index:
3783 	/*
3784 	 * If we were modified in the current generation and evicted from memory
3785 	 * and then re-read we need to do a full sync since we don't have any
3786 	 * idea about which extents were modified before we were evicted from
3787 	 * cache.
3788 	 *
3789 	 * This is required for both inode re-read from disk and delayed inode
3790 	 * in delayed_nodes_tree.
3791 	 */
3792 	if (BTRFS_I(inode)->last_trans == fs_info->generation)
3793 		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3794 			&BTRFS_I(inode)->runtime_flags);
3795 
3796 	/*
3797 	 * We don't persist the id of the transaction where an unlink operation
3798 	 * against the inode was last made. So here we assume the inode might
3799 	 * have been evicted, and therefore the exact value of last_unlink_trans
3800 	 * lost, and set it to last_trans to avoid metadata inconsistencies
3801 	 * between the inode and its parent if the inode is fsync'ed and the log
3802 	 * replayed. For example, in the scenario:
3803 	 *
3804 	 * touch mydir/foo
3805 	 * ln mydir/foo mydir/bar
3806 	 * sync
3807 	 * unlink mydir/bar
3808 	 * echo 2 > /proc/sys/vm/drop_caches   # evicts inode
3809 	 * xfs_io -c fsync mydir/foo
3810 	 * <power failure>
3811 	 * mount fs, triggers fsync log replay
3812 	 *
3813 	 * We must make sure that when we fsync our inode foo we also log its
3814 	 * parent inode, otherwise after log replay the parent still has the
3815 	 * dentry with the "bar" name but our inode foo has a link count of 1
3816 	 * and doesn't have an inode ref with the name "bar" anymore.
3817 	 *
3818 	 * Setting last_unlink_trans to last_trans is a pessimistic approach,
3819 	 * but it guarantees correctness at the expense of occasional full
3820 	 * transaction commits on fsync if our inode is a directory, or if our
3821 	 * inode is not a directory, logging its parent unnecessarily.
3822 	 */
3823 	BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
3824 
3825 	/*
3826 	 * Same logic as for last_unlink_trans. We don't persist the generation
3827 	 * of the last transaction where this inode was used for a reflink
3828 	 * operation, so after eviction and reloading the inode we must be
3829 	 * pessimistic and assume the last transaction that modified the inode.
3830 	 */
3831 	BTRFS_I(inode)->last_reflink_trans = BTRFS_I(inode)->last_trans;
3832 
3833 	path->slots[0]++;
3834 	if (inode->i_nlink != 1 ||
3835 	    path->slots[0] >= btrfs_header_nritems(leaf))
3836 		goto cache_acl;
3837 
3838 	btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
3839 	if (location.objectid != btrfs_ino(BTRFS_I(inode)))
3840 		goto cache_acl;
3841 
3842 	ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3843 	if (location.type == BTRFS_INODE_REF_KEY) {
3844 		struct btrfs_inode_ref *ref;
3845 
3846 		ref = (struct btrfs_inode_ref *)ptr;
3847 		BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3848 	} else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3849 		struct btrfs_inode_extref *extref;
3850 
3851 		extref = (struct btrfs_inode_extref *)ptr;
3852 		BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3853 								     extref);
3854 	}
3855 cache_acl:
3856 	/*
3857 	 * try to precache a NULL acl entry for files that don't have
3858 	 * any xattrs or acls
3859 	 */
3860 	maybe_acls = acls_after_inode_item(leaf, path->slots[0],
3861 			btrfs_ino(BTRFS_I(inode)), &first_xattr_slot);
3862 	if (first_xattr_slot != -1) {
3863 		path->slots[0] = first_xattr_slot;
3864 		ret = btrfs_load_inode_props(inode, path);
3865 		if (ret)
3866 			btrfs_err(fs_info,
3867 				  "error loading props for ino %llu (root %llu): %d",
3868 				  btrfs_ino(BTRFS_I(inode)),
3869 				  root->root_key.objectid, ret);
3870 	}
3871 	if (path != in_path)
3872 		btrfs_free_path(path);
3873 
3874 	if (!maybe_acls)
3875 		cache_no_acl(inode);
3876 
3877 	switch (inode->i_mode & S_IFMT) {
3878 	case S_IFREG:
3879 		inode->i_mapping->a_ops = &btrfs_aops;
3880 		inode->i_fop = &btrfs_file_operations;
3881 		inode->i_op = &btrfs_file_inode_operations;
3882 		break;
3883 	case S_IFDIR:
3884 		inode->i_fop = &btrfs_dir_file_operations;
3885 		inode->i_op = &btrfs_dir_inode_operations;
3886 		break;
3887 	case S_IFLNK:
3888 		inode->i_op = &btrfs_symlink_inode_operations;
3889 		inode_nohighmem(inode);
3890 		inode->i_mapping->a_ops = &btrfs_aops;
3891 		break;
3892 	default:
3893 		inode->i_op = &btrfs_special_inode_operations;
3894 		init_special_inode(inode, inode->i_mode, rdev);
3895 		break;
3896 	}
3897 
3898 	btrfs_sync_inode_flags_to_i_flags(inode);
3899 	return 0;
3900 }
3901 
3902 /*
3903  * given a leaf and an inode, copy the inode fields into the leaf
3904  */
3905 static void fill_inode_item(struct btrfs_trans_handle *trans,
3906 			    struct extent_buffer *leaf,
3907 			    struct btrfs_inode_item *item,
3908 			    struct inode *inode)
3909 {
3910 	struct btrfs_map_token token;
3911 	u64 flags;
3912 
3913 	btrfs_init_map_token(&token, leaf);
3914 
3915 	btrfs_set_token_inode_uid(&token, item, i_uid_read(inode));
3916 	btrfs_set_token_inode_gid(&token, item, i_gid_read(inode));
3917 	btrfs_set_token_inode_size(&token, item, BTRFS_I(inode)->disk_i_size);
3918 	btrfs_set_token_inode_mode(&token, item, inode->i_mode);
3919 	btrfs_set_token_inode_nlink(&token, item, inode->i_nlink);
3920 
3921 	btrfs_set_token_timespec_sec(&token, &item->atime,
3922 				     inode->i_atime.tv_sec);
3923 	btrfs_set_token_timespec_nsec(&token, &item->atime,
3924 				      inode->i_atime.tv_nsec);
3925 
3926 	btrfs_set_token_timespec_sec(&token, &item->mtime,
3927 				     inode->i_mtime.tv_sec);
3928 	btrfs_set_token_timespec_nsec(&token, &item->mtime,
3929 				      inode->i_mtime.tv_nsec);
3930 
3931 	btrfs_set_token_timespec_sec(&token, &item->ctime,
3932 				     inode->i_ctime.tv_sec);
3933 	btrfs_set_token_timespec_nsec(&token, &item->ctime,
3934 				      inode->i_ctime.tv_nsec);
3935 
3936 	btrfs_set_token_timespec_sec(&token, &item->otime,
3937 				     BTRFS_I(inode)->i_otime.tv_sec);
3938 	btrfs_set_token_timespec_nsec(&token, &item->otime,
3939 				      BTRFS_I(inode)->i_otime.tv_nsec);
3940 
3941 	btrfs_set_token_inode_nbytes(&token, item, inode_get_bytes(inode));
3942 	btrfs_set_token_inode_generation(&token, item,
3943 					 BTRFS_I(inode)->generation);
3944 	btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode));
3945 	btrfs_set_token_inode_transid(&token, item, trans->transid);
3946 	btrfs_set_token_inode_rdev(&token, item, inode->i_rdev);
3947 	flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags,
3948 					  BTRFS_I(inode)->ro_flags);
3949 	btrfs_set_token_inode_flags(&token, item, flags);
3950 	btrfs_set_token_inode_block_group(&token, item, 0);
3951 }
3952 
3953 /*
3954  * copy everything in the in-memory inode into the btree.
3955  */
3956 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
3957 				struct btrfs_root *root,
3958 				struct btrfs_inode *inode)
3959 {
3960 	struct btrfs_inode_item *inode_item;
3961 	struct btrfs_path *path;
3962 	struct extent_buffer *leaf;
3963 	int ret;
3964 
3965 	path = btrfs_alloc_path();
3966 	if (!path)
3967 		return -ENOMEM;
3968 
3969 	ret = btrfs_lookup_inode(trans, root, path, &inode->location, 1);
3970 	if (ret) {
3971 		if (ret > 0)
3972 			ret = -ENOENT;
3973 		goto failed;
3974 	}
3975 
3976 	leaf = path->nodes[0];
3977 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
3978 				    struct btrfs_inode_item);
3979 
3980 	fill_inode_item(trans, leaf, inode_item, &inode->vfs_inode);
3981 	btrfs_mark_buffer_dirty(leaf);
3982 	btrfs_set_inode_last_trans(trans, inode);
3983 	ret = 0;
3984 failed:
3985 	btrfs_free_path(path);
3986 	return ret;
3987 }
3988 
3989 /*
3990  * copy everything in the in-memory inode into the btree.
3991  */
3992 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
3993 				struct btrfs_root *root,
3994 				struct btrfs_inode *inode)
3995 {
3996 	struct btrfs_fs_info *fs_info = root->fs_info;
3997 	int ret;
3998 
3999 	/*
4000 	 * If the inode is a free space inode, we can deadlock during commit
4001 	 * if we put it into the delayed code.
4002 	 *
4003 	 * The data relocation inode should also be directly updated
4004 	 * without delay
4005 	 */
4006 	if (!btrfs_is_free_space_inode(inode)
4007 	    && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
4008 	    && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
4009 		btrfs_update_root_times(trans, root);
4010 
4011 		ret = btrfs_delayed_update_inode(trans, root, inode);
4012 		if (!ret)
4013 			btrfs_set_inode_last_trans(trans, inode);
4014 		return ret;
4015 	}
4016 
4017 	return btrfs_update_inode_item(trans, root, inode);
4018 }
4019 
4020 int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
4021 				struct btrfs_root *root, struct btrfs_inode *inode)
4022 {
4023 	int ret;
4024 
4025 	ret = btrfs_update_inode(trans, root, inode);
4026 	if (ret == -ENOSPC)
4027 		return btrfs_update_inode_item(trans, root, inode);
4028 	return ret;
4029 }
4030 
4031 /*
4032  * unlink helper that gets used here in inode.c and in the tree logging
4033  * recovery code.  It remove a link in a directory with a given name, and
4034  * also drops the back refs in the inode to the directory
4035  */
4036 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4037 				struct btrfs_root *root,
4038 				struct btrfs_inode *dir,
4039 				struct btrfs_inode *inode,
4040 				const char *name, int name_len)
4041 {
4042 	struct btrfs_fs_info *fs_info = root->fs_info;
4043 	struct btrfs_path *path;
4044 	int ret = 0;
4045 	struct btrfs_dir_item *di;
4046 	u64 index;
4047 	u64 ino = btrfs_ino(inode);
4048 	u64 dir_ino = btrfs_ino(dir);
4049 
4050 	path = btrfs_alloc_path();
4051 	if (!path) {
4052 		ret = -ENOMEM;
4053 		goto out;
4054 	}
4055 
4056 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4057 				    name, name_len, -1);
4058 	if (IS_ERR_OR_NULL(di)) {
4059 		ret = di ? PTR_ERR(di) : -ENOENT;
4060 		goto err;
4061 	}
4062 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
4063 	if (ret)
4064 		goto err;
4065 	btrfs_release_path(path);
4066 
4067 	/*
4068 	 * If we don't have dir index, we have to get it by looking up
4069 	 * the inode ref, since we get the inode ref, remove it directly,
4070 	 * it is unnecessary to do delayed deletion.
4071 	 *
4072 	 * But if we have dir index, needn't search inode ref to get it.
4073 	 * Since the inode ref is close to the inode item, it is better
4074 	 * that we delay to delete it, and just do this deletion when
4075 	 * we update the inode item.
4076 	 */
4077 	if (inode->dir_index) {
4078 		ret = btrfs_delayed_delete_inode_ref(inode);
4079 		if (!ret) {
4080 			index = inode->dir_index;
4081 			goto skip_backref;
4082 		}
4083 	}
4084 
4085 	ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
4086 				  dir_ino, &index);
4087 	if (ret) {
4088 		btrfs_info(fs_info,
4089 			"failed to delete reference to %.*s, inode %llu parent %llu",
4090 			name_len, name, ino, dir_ino);
4091 		btrfs_abort_transaction(trans, ret);
4092 		goto err;
4093 	}
4094 skip_backref:
4095 	ret = btrfs_delete_delayed_dir_index(trans, dir, index);
4096 	if (ret) {
4097 		btrfs_abort_transaction(trans, ret);
4098 		goto err;
4099 	}
4100 
4101 	ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, inode,
4102 			dir_ino);
4103 	if (ret != 0 && ret != -ENOENT) {
4104 		btrfs_abort_transaction(trans, ret);
4105 		goto err;
4106 	}
4107 
4108 	ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, dir,
4109 			index);
4110 	if (ret == -ENOENT)
4111 		ret = 0;
4112 	else if (ret)
4113 		btrfs_abort_transaction(trans, ret);
4114 
4115 	/*
4116 	 * If we have a pending delayed iput we could end up with the final iput
4117 	 * being run in btrfs-cleaner context.  If we have enough of these built
4118 	 * up we can end up burning a lot of time in btrfs-cleaner without any
4119 	 * way to throttle the unlinks.  Since we're currently holding a ref on
4120 	 * the inode we can run the delayed iput here without any issues as the
4121 	 * final iput won't be done until after we drop the ref we're currently
4122 	 * holding.
4123 	 */
4124 	btrfs_run_delayed_iput(fs_info, inode);
4125 err:
4126 	btrfs_free_path(path);
4127 	if (ret)
4128 		goto out;
4129 
4130 	btrfs_i_size_write(dir, dir->vfs_inode.i_size - name_len * 2);
4131 	inode_inc_iversion(&inode->vfs_inode);
4132 	inode_inc_iversion(&dir->vfs_inode);
4133 	inode->vfs_inode.i_ctime = dir->vfs_inode.i_mtime =
4134 		dir->vfs_inode.i_ctime = current_time(&inode->vfs_inode);
4135 	ret = btrfs_update_inode(trans, root, dir);
4136 out:
4137 	return ret;
4138 }
4139 
4140 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4141 		       struct btrfs_root *root,
4142 		       struct btrfs_inode *dir, struct btrfs_inode *inode,
4143 		       const char *name, int name_len)
4144 {
4145 	int ret;
4146 	ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
4147 	if (!ret) {
4148 		drop_nlink(&inode->vfs_inode);
4149 		ret = btrfs_update_inode(trans, root, inode);
4150 	}
4151 	return ret;
4152 }
4153 
4154 /*
4155  * helper to start transaction for unlink and rmdir.
4156  *
4157  * unlink and rmdir are special in btrfs, they do not always free space, so
4158  * if we cannot make our reservations the normal way try and see if there is
4159  * plenty of slack room in the global reserve to migrate, otherwise we cannot
4160  * allow the unlink to occur.
4161  */
4162 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
4163 {
4164 	struct btrfs_root *root = BTRFS_I(dir)->root;
4165 
4166 	/*
4167 	 * 1 for the possible orphan item
4168 	 * 1 for the dir item
4169 	 * 1 for the dir index
4170 	 * 1 for the inode ref
4171 	 * 1 for the inode
4172 	 */
4173 	return btrfs_start_transaction_fallback_global_rsv(root, 5);
4174 }
4175 
4176 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4177 {
4178 	struct btrfs_root *root = BTRFS_I(dir)->root;
4179 	struct btrfs_trans_handle *trans;
4180 	struct inode *inode = d_inode(dentry);
4181 	int ret;
4182 
4183 	trans = __unlink_start_trans(dir);
4184 	if (IS_ERR(trans))
4185 		return PTR_ERR(trans);
4186 
4187 	btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4188 			0);
4189 
4190 	ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
4191 			BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4192 			dentry->d_name.len);
4193 	if (ret)
4194 		goto out;
4195 
4196 	if (inode->i_nlink == 0) {
4197 		ret = btrfs_orphan_add(trans, BTRFS_I(inode));
4198 		if (ret)
4199 			goto out;
4200 	}
4201 
4202 out:
4203 	btrfs_end_transaction(trans);
4204 	btrfs_btree_balance_dirty(root->fs_info);
4205 	return ret;
4206 }
4207 
4208 static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
4209 			       struct inode *dir, struct dentry *dentry)
4210 {
4211 	struct btrfs_root *root = BTRFS_I(dir)->root;
4212 	struct btrfs_inode *inode = BTRFS_I(d_inode(dentry));
4213 	struct btrfs_path *path;
4214 	struct extent_buffer *leaf;
4215 	struct btrfs_dir_item *di;
4216 	struct btrfs_key key;
4217 	const char *name = dentry->d_name.name;
4218 	int name_len = dentry->d_name.len;
4219 	u64 index;
4220 	int ret;
4221 	u64 objectid;
4222 	u64 dir_ino = btrfs_ino(BTRFS_I(dir));
4223 
4224 	if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) {
4225 		objectid = inode->root->root_key.objectid;
4226 	} else if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
4227 		objectid = inode->location.objectid;
4228 	} else {
4229 		WARN_ON(1);
4230 		return -EINVAL;
4231 	}
4232 
4233 	path = btrfs_alloc_path();
4234 	if (!path)
4235 		return -ENOMEM;
4236 
4237 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4238 				   name, name_len, -1);
4239 	if (IS_ERR_OR_NULL(di)) {
4240 		ret = di ? PTR_ERR(di) : -ENOENT;
4241 		goto out;
4242 	}
4243 
4244 	leaf = path->nodes[0];
4245 	btrfs_dir_item_key_to_cpu(leaf, di, &key);
4246 	WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4247 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
4248 	if (ret) {
4249 		btrfs_abort_transaction(trans, ret);
4250 		goto out;
4251 	}
4252 	btrfs_release_path(path);
4253 
4254 	/*
4255 	 * This is a placeholder inode for a subvolume we didn't have a
4256 	 * reference to at the time of the snapshot creation.  In the meantime
4257 	 * we could have renamed the real subvol link into our snapshot, so
4258 	 * depending on btrfs_del_root_ref to return -ENOENT here is incorrect.
4259 	 * Instead simply lookup the dir_index_item for this entry so we can
4260 	 * remove it.  Otherwise we know we have a ref to the root and we can
4261 	 * call btrfs_del_root_ref, and it _shouldn't_ fail.
4262 	 */
4263 	if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
4264 		di = btrfs_search_dir_index_item(root, path, dir_ino,
4265 						 name, name_len);
4266 		if (IS_ERR_OR_NULL(di)) {
4267 			if (!di)
4268 				ret = -ENOENT;
4269 			else
4270 				ret = PTR_ERR(di);
4271 			btrfs_abort_transaction(trans, ret);
4272 			goto out;
4273 		}
4274 
4275 		leaf = path->nodes[0];
4276 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4277 		index = key.offset;
4278 		btrfs_release_path(path);
4279 	} else {
4280 		ret = btrfs_del_root_ref(trans, objectid,
4281 					 root->root_key.objectid, dir_ino,
4282 					 &index, name, name_len);
4283 		if (ret) {
4284 			btrfs_abort_transaction(trans, ret);
4285 			goto out;
4286 		}
4287 	}
4288 
4289 	ret = btrfs_delete_delayed_dir_index(trans, BTRFS_I(dir), index);
4290 	if (ret) {
4291 		btrfs_abort_transaction(trans, ret);
4292 		goto out;
4293 	}
4294 
4295 	btrfs_i_size_write(BTRFS_I(dir), dir->i_size - name_len * 2);
4296 	inode_inc_iversion(dir);
4297 	dir->i_mtime = dir->i_ctime = current_time(dir);
4298 	ret = btrfs_update_inode_fallback(trans, root, BTRFS_I(dir));
4299 	if (ret)
4300 		btrfs_abort_transaction(trans, ret);
4301 out:
4302 	btrfs_free_path(path);
4303 	return ret;
4304 }
4305 
4306 /*
4307  * Helper to check if the subvolume references other subvolumes or if it's
4308  * default.
4309  */
4310 static noinline int may_destroy_subvol(struct btrfs_root *root)
4311 {
4312 	struct btrfs_fs_info *fs_info = root->fs_info;
4313 	struct btrfs_path *path;
4314 	struct btrfs_dir_item *di;
4315 	struct btrfs_key key;
4316 	u64 dir_id;
4317 	int ret;
4318 
4319 	path = btrfs_alloc_path();
4320 	if (!path)
4321 		return -ENOMEM;
4322 
4323 	/* Make sure this root isn't set as the default subvol */
4324 	dir_id = btrfs_super_root_dir(fs_info->super_copy);
4325 	di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path,
4326 				   dir_id, "default", 7, 0);
4327 	if (di && !IS_ERR(di)) {
4328 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
4329 		if (key.objectid == root->root_key.objectid) {
4330 			ret = -EPERM;
4331 			btrfs_err(fs_info,
4332 				  "deleting default subvolume %llu is not allowed",
4333 				  key.objectid);
4334 			goto out;
4335 		}
4336 		btrfs_release_path(path);
4337 	}
4338 
4339 	key.objectid = root->root_key.objectid;
4340 	key.type = BTRFS_ROOT_REF_KEY;
4341 	key.offset = (u64)-1;
4342 
4343 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4344 	if (ret < 0)
4345 		goto out;
4346 	BUG_ON(ret == 0);
4347 
4348 	ret = 0;
4349 	if (path->slots[0] > 0) {
4350 		path->slots[0]--;
4351 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
4352 		if (key.objectid == root->root_key.objectid &&
4353 		    key.type == BTRFS_ROOT_REF_KEY)
4354 			ret = -ENOTEMPTY;
4355 	}
4356 out:
4357 	btrfs_free_path(path);
4358 	return ret;
4359 }
4360 
4361 /* Delete all dentries for inodes belonging to the root */
4362 static void btrfs_prune_dentries(struct btrfs_root *root)
4363 {
4364 	struct btrfs_fs_info *fs_info = root->fs_info;
4365 	struct rb_node *node;
4366 	struct rb_node *prev;
4367 	struct btrfs_inode *entry;
4368 	struct inode *inode;
4369 	u64 objectid = 0;
4370 
4371 	if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
4372 		WARN_ON(btrfs_root_refs(&root->root_item) != 0);
4373 
4374 	spin_lock(&root->inode_lock);
4375 again:
4376 	node = root->inode_tree.rb_node;
4377 	prev = NULL;
4378 	while (node) {
4379 		prev = node;
4380 		entry = rb_entry(node, struct btrfs_inode, rb_node);
4381 
4382 		if (objectid < btrfs_ino(entry))
4383 			node = node->rb_left;
4384 		else if (objectid > btrfs_ino(entry))
4385 			node = node->rb_right;
4386 		else
4387 			break;
4388 	}
4389 	if (!node) {
4390 		while (prev) {
4391 			entry = rb_entry(prev, struct btrfs_inode, rb_node);
4392 			if (objectid <= btrfs_ino(entry)) {
4393 				node = prev;
4394 				break;
4395 			}
4396 			prev = rb_next(prev);
4397 		}
4398 	}
4399 	while (node) {
4400 		entry = rb_entry(node, struct btrfs_inode, rb_node);
4401 		objectid = btrfs_ino(entry) + 1;
4402 		inode = igrab(&entry->vfs_inode);
4403 		if (inode) {
4404 			spin_unlock(&root->inode_lock);
4405 			if (atomic_read(&inode->i_count) > 1)
4406 				d_prune_aliases(inode);
4407 			/*
4408 			 * btrfs_drop_inode will have it removed from the inode
4409 			 * cache when its usage count hits zero.
4410 			 */
4411 			iput(inode);
4412 			cond_resched();
4413 			spin_lock(&root->inode_lock);
4414 			goto again;
4415 		}
4416 
4417 		if (cond_resched_lock(&root->inode_lock))
4418 			goto again;
4419 
4420 		node = rb_next(node);
4421 	}
4422 	spin_unlock(&root->inode_lock);
4423 }
4424 
4425 int btrfs_delete_subvolume(struct inode *dir, struct dentry *dentry)
4426 {
4427 	struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
4428 	struct btrfs_root *root = BTRFS_I(dir)->root;
4429 	struct inode *inode = d_inode(dentry);
4430 	struct btrfs_root *dest = BTRFS_I(inode)->root;
4431 	struct btrfs_trans_handle *trans;
4432 	struct btrfs_block_rsv block_rsv;
4433 	u64 root_flags;
4434 	int ret;
4435 
4436 	/*
4437 	 * Don't allow to delete a subvolume with send in progress. This is
4438 	 * inside the inode lock so the error handling that has to drop the bit
4439 	 * again is not run concurrently.
4440 	 */
4441 	spin_lock(&dest->root_item_lock);
4442 	if (dest->send_in_progress) {
4443 		spin_unlock(&dest->root_item_lock);
4444 		btrfs_warn(fs_info,
4445 			   "attempt to delete subvolume %llu during send",
4446 			   dest->root_key.objectid);
4447 		return -EPERM;
4448 	}
4449 	root_flags = btrfs_root_flags(&dest->root_item);
4450 	btrfs_set_root_flags(&dest->root_item,
4451 			     root_flags | BTRFS_ROOT_SUBVOL_DEAD);
4452 	spin_unlock(&dest->root_item_lock);
4453 
4454 	down_write(&fs_info->subvol_sem);
4455 
4456 	ret = may_destroy_subvol(dest);
4457 	if (ret)
4458 		goto out_up_write;
4459 
4460 	btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
4461 	/*
4462 	 * One for dir inode,
4463 	 * two for dir entries,
4464 	 * two for root ref/backref.
4465 	 */
4466 	ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true);
4467 	if (ret)
4468 		goto out_up_write;
4469 
4470 	trans = btrfs_start_transaction(root, 0);
4471 	if (IS_ERR(trans)) {
4472 		ret = PTR_ERR(trans);
4473 		goto out_release;
4474 	}
4475 	trans->block_rsv = &block_rsv;
4476 	trans->bytes_reserved = block_rsv.size;
4477 
4478 	btrfs_record_snapshot_destroy(trans, BTRFS_I(dir));
4479 
4480 	ret = btrfs_unlink_subvol(trans, dir, dentry);
4481 	if (ret) {
4482 		btrfs_abort_transaction(trans, ret);
4483 		goto out_end_trans;
4484 	}
4485 
4486 	ret = btrfs_record_root_in_trans(trans, dest);
4487 	if (ret) {
4488 		btrfs_abort_transaction(trans, ret);
4489 		goto out_end_trans;
4490 	}
4491 
4492 	memset(&dest->root_item.drop_progress, 0,
4493 		sizeof(dest->root_item.drop_progress));
4494 	btrfs_set_root_drop_level(&dest->root_item, 0);
4495 	btrfs_set_root_refs(&dest->root_item, 0);
4496 
4497 	if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) {
4498 		ret = btrfs_insert_orphan_item(trans,
4499 					fs_info->tree_root,
4500 					dest->root_key.objectid);
4501 		if (ret) {
4502 			btrfs_abort_transaction(trans, ret);
4503 			goto out_end_trans;
4504 		}
4505 	}
4506 
4507 	ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid,
4508 				  BTRFS_UUID_KEY_SUBVOL,
4509 				  dest->root_key.objectid);
4510 	if (ret && ret != -ENOENT) {
4511 		btrfs_abort_transaction(trans, ret);
4512 		goto out_end_trans;
4513 	}
4514 	if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) {
4515 		ret = btrfs_uuid_tree_remove(trans,
4516 					  dest->root_item.received_uuid,
4517 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4518 					  dest->root_key.objectid);
4519 		if (ret && ret != -ENOENT) {
4520 			btrfs_abort_transaction(trans, ret);
4521 			goto out_end_trans;
4522 		}
4523 	}
4524 
4525 	free_anon_bdev(dest->anon_dev);
4526 	dest->anon_dev = 0;
4527 out_end_trans:
4528 	trans->block_rsv = NULL;
4529 	trans->bytes_reserved = 0;
4530 	ret = btrfs_end_transaction(trans);
4531 	inode->i_flags |= S_DEAD;
4532 out_release:
4533 	btrfs_subvolume_release_metadata(root, &block_rsv);
4534 out_up_write:
4535 	up_write(&fs_info->subvol_sem);
4536 	if (ret) {
4537 		spin_lock(&dest->root_item_lock);
4538 		root_flags = btrfs_root_flags(&dest->root_item);
4539 		btrfs_set_root_flags(&dest->root_item,
4540 				root_flags & ~BTRFS_ROOT_SUBVOL_DEAD);
4541 		spin_unlock(&dest->root_item_lock);
4542 	} else {
4543 		d_invalidate(dentry);
4544 		btrfs_prune_dentries(dest);
4545 		ASSERT(dest->send_in_progress == 0);
4546 	}
4547 
4548 	return ret;
4549 }
4550 
4551 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4552 {
4553 	struct inode *inode = d_inode(dentry);
4554 	int err = 0;
4555 	struct btrfs_root *root = BTRFS_I(dir)->root;
4556 	struct btrfs_trans_handle *trans;
4557 	u64 last_unlink_trans;
4558 
4559 	if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
4560 		return -ENOTEMPTY;
4561 	if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID)
4562 		return btrfs_delete_subvolume(dir, dentry);
4563 
4564 	trans = __unlink_start_trans(dir);
4565 	if (IS_ERR(trans))
4566 		return PTR_ERR(trans);
4567 
4568 	if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4569 		err = btrfs_unlink_subvol(trans, dir, dentry);
4570 		goto out;
4571 	}
4572 
4573 	err = btrfs_orphan_add(trans, BTRFS_I(inode));
4574 	if (err)
4575 		goto out;
4576 
4577 	last_unlink_trans = BTRFS_I(inode)->last_unlink_trans;
4578 
4579 	/* now the directory is empty */
4580 	err = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
4581 			BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4582 			dentry->d_name.len);
4583 	if (!err) {
4584 		btrfs_i_size_write(BTRFS_I(inode), 0);
4585 		/*
4586 		 * Propagate the last_unlink_trans value of the deleted dir to
4587 		 * its parent directory. This is to prevent an unrecoverable
4588 		 * log tree in the case we do something like this:
4589 		 * 1) create dir foo
4590 		 * 2) create snapshot under dir foo
4591 		 * 3) delete the snapshot
4592 		 * 4) rmdir foo
4593 		 * 5) mkdir foo
4594 		 * 6) fsync foo or some file inside foo
4595 		 */
4596 		if (last_unlink_trans >= trans->transid)
4597 			BTRFS_I(dir)->last_unlink_trans = last_unlink_trans;
4598 	}
4599 out:
4600 	btrfs_end_transaction(trans);
4601 	btrfs_btree_balance_dirty(root->fs_info);
4602 
4603 	return err;
4604 }
4605 
4606 /*
4607  * Return this if we need to call truncate_block for the last bit of the
4608  * truncate.
4609  */
4610 #define NEED_TRUNCATE_BLOCK 1
4611 
4612 /*
4613  * Remove inode items from a given root.
4614  *
4615  * @trans:		A transaction handle.
4616  * @root:		The root from which to remove items.
4617  * @inode:		The inode whose items we want to remove.
4618  * @new_size:		The new i_size for the inode. This is only applicable when
4619  *			@min_type is BTRFS_EXTENT_DATA_KEY, must be 0 otherwise.
4620  * @min_type:		The minimum key type to remove. All keys with a type
4621  *			greater than this value are removed and all keys with
4622  *			this type are removed only if their offset is >= @new_size.
4623  * @extents_found:	Output parameter that will contain the number of file
4624  *			extent items that were removed or adjusted to the new
4625  *			inode i_size. The caller is responsible for initializing
4626  *			the counter. Also, it can be NULL if the caller does not
4627  *			need this counter.
4628  *
4629  * Remove all keys associated with the inode from the given root that have a key
4630  * with a type greater than or equals to @min_type. When @min_type has a value of
4631  * BTRFS_EXTENT_DATA_KEY, only remove file extent items that have an offset value
4632  * greater than or equals to @new_size. If a file extent item that starts before
4633  * @new_size and ends after it is found, its length is adjusted.
4634  *
4635  * Returns: 0 on success, < 0 on error and NEED_TRUNCATE_BLOCK when @min_type is
4636  * BTRFS_EXTENT_DATA_KEY and the caller must truncate the last block.
4637  */
4638 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
4639 			       struct btrfs_root *root,
4640 			       struct btrfs_inode *inode,
4641 			       u64 new_size, u32 min_type,
4642 			       u64 *extents_found)
4643 {
4644 	struct btrfs_fs_info *fs_info = root->fs_info;
4645 	struct btrfs_path *path;
4646 	struct extent_buffer *leaf;
4647 	struct btrfs_file_extent_item *fi;
4648 	struct btrfs_key key;
4649 	struct btrfs_key found_key;
4650 	u64 extent_start = 0;
4651 	u64 extent_num_bytes = 0;
4652 	u64 extent_offset = 0;
4653 	u64 item_end = 0;
4654 	u64 last_size = new_size;
4655 	u32 found_type = (u8)-1;
4656 	int found_extent;
4657 	int del_item;
4658 	int pending_del_nr = 0;
4659 	int pending_del_slot = 0;
4660 	int extent_type = -1;
4661 	int ret;
4662 	u64 ino = btrfs_ino(inode);
4663 	u64 bytes_deleted = 0;
4664 	bool be_nice = false;
4665 	bool should_throttle = false;
4666 	const u64 lock_start = ALIGN_DOWN(new_size, fs_info->sectorsize);
4667 	struct extent_state *cached_state = NULL;
4668 
4669 	BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
4670 
4671 	/*
4672 	 * For non-free space inodes and non-shareable roots, we want to back
4673 	 * off from time to time.  This means all inodes in subvolume roots,
4674 	 * reloc roots, and data reloc roots.
4675 	 */
4676 	if (!btrfs_is_free_space_inode(inode) &&
4677 	    test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
4678 		be_nice = true;
4679 
4680 	path = btrfs_alloc_path();
4681 	if (!path)
4682 		return -ENOMEM;
4683 	path->reada = READA_BACK;
4684 
4685 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
4686 		lock_extent_bits(&inode->io_tree, lock_start, (u64)-1,
4687 				 &cached_state);
4688 
4689 		/*
4690 		 * We want to drop from the next block forward in case this
4691 		 * new size is not block aligned since we will be keeping the
4692 		 * last block of the extent just the way it is.
4693 		 */
4694 		btrfs_drop_extent_cache(inode, ALIGN(new_size,
4695 					fs_info->sectorsize),
4696 					(u64)-1, 0);
4697 	}
4698 
4699 	/*
4700 	 * This function is also used to drop the items in the log tree before
4701 	 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
4702 	 * it is used to drop the logged items. So we shouldn't kill the delayed
4703 	 * items.
4704 	 */
4705 	if (min_type == 0 && root == inode->root)
4706 		btrfs_kill_delayed_inode_items(inode);
4707 
4708 	key.objectid = ino;
4709 	key.offset = (u64)-1;
4710 	key.type = (u8)-1;
4711 
4712 search_again:
4713 	/*
4714 	 * with a 16K leaf size and 128MB extents, you can actually queue
4715 	 * up a huge file in a single leaf.  Most of the time that
4716 	 * bytes_deleted is > 0, it will be huge by the time we get here
4717 	 */
4718 	if (be_nice && bytes_deleted > SZ_32M &&
4719 	    btrfs_should_end_transaction(trans)) {
4720 		ret = -EAGAIN;
4721 		goto out;
4722 	}
4723 
4724 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
4725 	if (ret < 0)
4726 		goto out;
4727 
4728 	if (ret > 0) {
4729 		ret = 0;
4730 		/* there are no items in the tree for us to truncate, we're
4731 		 * done
4732 		 */
4733 		if (path->slots[0] == 0)
4734 			goto out;
4735 		path->slots[0]--;
4736 	}
4737 
4738 	while (1) {
4739 		u64 clear_start = 0, clear_len = 0;
4740 
4741 		fi = NULL;
4742 		leaf = path->nodes[0];
4743 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4744 		found_type = found_key.type;
4745 
4746 		if (found_key.objectid != ino)
4747 			break;
4748 
4749 		if (found_type < min_type)
4750 			break;
4751 
4752 		item_end = found_key.offset;
4753 		if (found_type == BTRFS_EXTENT_DATA_KEY) {
4754 			fi = btrfs_item_ptr(leaf, path->slots[0],
4755 					    struct btrfs_file_extent_item);
4756 			extent_type = btrfs_file_extent_type(leaf, fi);
4757 			if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4758 				item_end +=
4759 				    btrfs_file_extent_num_bytes(leaf, fi);
4760 
4761 				trace_btrfs_truncate_show_fi_regular(
4762 					inode, leaf, fi, found_key.offset);
4763 			} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4764 				item_end += btrfs_file_extent_ram_bytes(leaf,
4765 									fi);
4766 
4767 				trace_btrfs_truncate_show_fi_inline(
4768 					inode, leaf, fi, path->slots[0],
4769 					found_key.offset);
4770 			}
4771 			item_end--;
4772 		}
4773 		if (found_type > min_type) {
4774 			del_item = 1;
4775 		} else {
4776 			if (item_end < new_size)
4777 				break;
4778 			if (found_key.offset >= new_size)
4779 				del_item = 1;
4780 			else
4781 				del_item = 0;
4782 		}
4783 		found_extent = 0;
4784 		/* FIXME, shrink the extent if the ref count is only 1 */
4785 		if (found_type != BTRFS_EXTENT_DATA_KEY)
4786 			goto delete;
4787 
4788 		if (extents_found != NULL)
4789 			(*extents_found)++;
4790 
4791 		if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4792 			u64 num_dec;
4793 
4794 			clear_start = found_key.offset;
4795 			extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
4796 			if (!del_item) {
4797 				u64 orig_num_bytes =
4798 					btrfs_file_extent_num_bytes(leaf, fi);
4799 				extent_num_bytes = ALIGN(new_size -
4800 						found_key.offset,
4801 						fs_info->sectorsize);
4802 				clear_start = ALIGN(new_size, fs_info->sectorsize);
4803 				btrfs_set_file_extent_num_bytes(leaf, fi,
4804 							 extent_num_bytes);
4805 				num_dec = (orig_num_bytes -
4806 					   extent_num_bytes);
4807 				if (test_bit(BTRFS_ROOT_SHAREABLE,
4808 					     &root->state) &&
4809 				    extent_start != 0)
4810 					inode_sub_bytes(&inode->vfs_inode,
4811 							num_dec);
4812 				btrfs_mark_buffer_dirty(leaf);
4813 			} else {
4814 				extent_num_bytes =
4815 					btrfs_file_extent_disk_num_bytes(leaf,
4816 									 fi);
4817 				extent_offset = found_key.offset -
4818 					btrfs_file_extent_offset(leaf, fi);
4819 
4820 				/* FIXME blocksize != 4096 */
4821 				num_dec = btrfs_file_extent_num_bytes(leaf, fi);
4822 				if (extent_start != 0) {
4823 					found_extent = 1;
4824 					if (test_bit(BTRFS_ROOT_SHAREABLE,
4825 						     &root->state))
4826 						inode_sub_bytes(&inode->vfs_inode,
4827 								num_dec);
4828 				}
4829 			}
4830 			clear_len = num_dec;
4831 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4832 			/*
4833 			 * we can't truncate inline items that have had
4834 			 * special encodings
4835 			 */
4836 			if (!del_item &&
4837 			    btrfs_file_extent_encryption(leaf, fi) == 0 &&
4838 			    btrfs_file_extent_other_encoding(leaf, fi) == 0 &&
4839 			    btrfs_file_extent_compression(leaf, fi) == 0) {
4840 				u32 size = (u32)(new_size - found_key.offset);
4841 
4842 				btrfs_set_file_extent_ram_bytes(leaf, fi, size);
4843 				size = btrfs_file_extent_calc_inline_size(size);
4844 				btrfs_truncate_item(path, size, 1);
4845 			} else if (!del_item) {
4846 				/*
4847 				 * We have to bail so the last_size is set to
4848 				 * just before this extent.
4849 				 */
4850 				ret = NEED_TRUNCATE_BLOCK;
4851 				break;
4852 			} else {
4853 				/*
4854 				 * Inline extents are special, we just treat
4855 				 * them as a full sector worth in the file
4856 				 * extent tree just for simplicity sake.
4857 				 */
4858 				clear_len = fs_info->sectorsize;
4859 			}
4860 
4861 			if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
4862 				inode_sub_bytes(&inode->vfs_inode,
4863 						item_end + 1 - new_size);
4864 		}
4865 delete:
4866 		/*
4867 		 * We use btrfs_truncate_inode_items() to clean up log trees for
4868 		 * multiple fsyncs, and in this case we don't want to clear the
4869 		 * file extent range because it's just the log.
4870 		 */
4871 		if (root == inode->root) {
4872 			ret = btrfs_inode_clear_file_extent_range(inode,
4873 						  clear_start, clear_len);
4874 			if (ret) {
4875 				btrfs_abort_transaction(trans, ret);
4876 				break;
4877 			}
4878 		}
4879 
4880 		if (del_item)
4881 			last_size = found_key.offset;
4882 		else
4883 			last_size = new_size;
4884 		if (del_item) {
4885 			if (!pending_del_nr) {
4886 				/* no pending yet, add ourselves */
4887 				pending_del_slot = path->slots[0];
4888 				pending_del_nr = 1;
4889 			} else if (pending_del_nr &&
4890 				   path->slots[0] + 1 == pending_del_slot) {
4891 				/* hop on the pending chunk */
4892 				pending_del_nr++;
4893 				pending_del_slot = path->slots[0];
4894 			} else {
4895 				BUG();
4896 			}
4897 		} else {
4898 			break;
4899 		}
4900 		should_throttle = false;
4901 
4902 		if (found_extent &&
4903 		    root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
4904 			struct btrfs_ref ref = { 0 };
4905 
4906 			bytes_deleted += extent_num_bytes;
4907 
4908 			btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF,
4909 					extent_start, extent_num_bytes, 0);
4910 			ref.real_root = root->root_key.objectid;
4911 			btrfs_init_data_ref(&ref, btrfs_header_owner(leaf),
4912 					ino, extent_offset);
4913 			ret = btrfs_free_extent(trans, &ref);
4914 			if (ret) {
4915 				btrfs_abort_transaction(trans, ret);
4916 				break;
4917 			}
4918 			if (be_nice) {
4919 				if (btrfs_should_throttle_delayed_refs(trans))
4920 					should_throttle = true;
4921 			}
4922 		}
4923 
4924 		if (found_type == BTRFS_INODE_ITEM_KEY)
4925 			break;
4926 
4927 		if (path->slots[0] == 0 ||
4928 		    path->slots[0] != pending_del_slot ||
4929 		    should_throttle) {
4930 			if (pending_del_nr) {
4931 				ret = btrfs_del_items(trans, root, path,
4932 						pending_del_slot,
4933 						pending_del_nr);
4934 				if (ret) {
4935 					btrfs_abort_transaction(trans, ret);
4936 					break;
4937 				}
4938 				pending_del_nr = 0;
4939 			}
4940 			btrfs_release_path(path);
4941 
4942 			/*
4943 			 * We can generate a lot of delayed refs, so we need to
4944 			 * throttle every once and a while and make sure we're
4945 			 * adding enough space to keep up with the work we are
4946 			 * generating.  Since we hold a transaction here we
4947 			 * can't flush, and we don't want to FLUSH_LIMIT because
4948 			 * we could have generated too many delayed refs to
4949 			 * actually allocate, so just bail if we're short and
4950 			 * let the normal reservation dance happen higher up.
4951 			 */
4952 			if (should_throttle) {
4953 				ret = btrfs_delayed_refs_rsv_refill(fs_info,
4954 							BTRFS_RESERVE_NO_FLUSH);
4955 				if (ret) {
4956 					ret = -EAGAIN;
4957 					break;
4958 				}
4959 			}
4960 			goto search_again;
4961 		} else {
4962 			path->slots[0]--;
4963 		}
4964 	}
4965 out:
4966 	if (ret >= 0 && pending_del_nr) {
4967 		int err;
4968 
4969 		err = btrfs_del_items(trans, root, path, pending_del_slot,
4970 				      pending_del_nr);
4971 		if (err) {
4972 			btrfs_abort_transaction(trans, err);
4973 			ret = err;
4974 		}
4975 	}
4976 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
4977 		ASSERT(last_size >= new_size);
4978 		if (!ret && last_size > new_size)
4979 			last_size = new_size;
4980 		btrfs_inode_safe_disk_i_size_write(inode, last_size);
4981 		unlock_extent_cached(&inode->io_tree, lock_start, (u64)-1,
4982 				     &cached_state);
4983 	}
4984 
4985 	btrfs_free_path(path);
4986 	return ret;
4987 }
4988 
4989 /*
4990  * btrfs_truncate_block - read, zero a chunk and write a block
4991  * @inode - inode that we're zeroing
4992  * @from - the offset to start zeroing
4993  * @len - the length to zero, 0 to zero the entire range respective to the
4994  *	offset
4995  * @front - zero up to the offset instead of from the offset on
4996  *
4997  * This will find the block for the "from" offset and cow the block and zero the
4998  * part we want to zero.  This is used with truncate and hole punching.
4999  */
5000 int btrfs_truncate_block(struct btrfs_inode *inode, loff_t from, loff_t len,
5001 			 int front)
5002 {
5003 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
5004 	struct address_space *mapping = inode->vfs_inode.i_mapping;
5005 	struct extent_io_tree *io_tree = &inode->io_tree;
5006 	struct btrfs_ordered_extent *ordered;
5007 	struct extent_state *cached_state = NULL;
5008 	struct extent_changeset *data_reserved = NULL;
5009 	bool only_release_metadata = false;
5010 	u32 blocksize = fs_info->sectorsize;
5011 	pgoff_t index = from >> PAGE_SHIFT;
5012 	unsigned offset = from & (blocksize - 1);
5013 	struct page *page;
5014 	gfp_t mask = btrfs_alloc_write_mask(mapping);
5015 	size_t write_bytes = blocksize;
5016 	int ret = 0;
5017 	u64 block_start;
5018 	u64 block_end;
5019 
5020 	if (IS_ALIGNED(offset, blocksize) &&
5021 	    (!len || IS_ALIGNED(len, blocksize)))
5022 		goto out;
5023 
5024 	block_start = round_down(from, blocksize);
5025 	block_end = block_start + blocksize - 1;
5026 
5027 	ret = btrfs_check_data_free_space(inode, &data_reserved, block_start,
5028 					  blocksize);
5029 	if (ret < 0) {
5030 		if (btrfs_check_nocow_lock(inode, block_start, &write_bytes) > 0) {
5031 			/* For nocow case, no need to reserve data space */
5032 			only_release_metadata = true;
5033 		} else {
5034 			goto out;
5035 		}
5036 	}
5037 	ret = btrfs_delalloc_reserve_metadata(inode, blocksize);
5038 	if (ret < 0) {
5039 		if (!only_release_metadata)
5040 			btrfs_free_reserved_data_space(inode, data_reserved,
5041 						       block_start, blocksize);
5042 		goto out;
5043 	}
5044 again:
5045 	page = find_or_create_page(mapping, index, mask);
5046 	if (!page) {
5047 		btrfs_delalloc_release_space(inode, data_reserved, block_start,
5048 					     blocksize, true);
5049 		btrfs_delalloc_release_extents(inode, blocksize);
5050 		ret = -ENOMEM;
5051 		goto out;
5052 	}
5053 	ret = set_page_extent_mapped(page);
5054 	if (ret < 0)
5055 		goto out_unlock;
5056 
5057 	if (!PageUptodate(page)) {
5058 		ret = btrfs_readpage(NULL, page);
5059 		lock_page(page);
5060 		if (page->mapping != mapping) {
5061 			unlock_page(page);
5062 			put_page(page);
5063 			goto again;
5064 		}
5065 		if (!PageUptodate(page)) {
5066 			ret = -EIO;
5067 			goto out_unlock;
5068 		}
5069 	}
5070 	wait_on_page_writeback(page);
5071 
5072 	lock_extent_bits(io_tree, block_start, block_end, &cached_state);
5073 
5074 	ordered = btrfs_lookup_ordered_extent(inode, block_start);
5075 	if (ordered) {
5076 		unlock_extent_cached(io_tree, block_start, block_end,
5077 				     &cached_state);
5078 		unlock_page(page);
5079 		put_page(page);
5080 		btrfs_start_ordered_extent(ordered, 1);
5081 		btrfs_put_ordered_extent(ordered);
5082 		goto again;
5083 	}
5084 
5085 	clear_extent_bit(&inode->io_tree, block_start, block_end,
5086 			 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
5087 			 0, 0, &cached_state);
5088 
5089 	ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0,
5090 					&cached_state);
5091 	if (ret) {
5092 		unlock_extent_cached(io_tree, block_start, block_end,
5093 				     &cached_state);
5094 		goto out_unlock;
5095 	}
5096 
5097 	if (offset != blocksize) {
5098 		if (!len)
5099 			len = blocksize - offset;
5100 		if (front)
5101 			memzero_page(page, (block_start - page_offset(page)),
5102 				     offset);
5103 		else
5104 			memzero_page(page, (block_start - page_offset(page)) + offset,
5105 				     len);
5106 		flush_dcache_page(page);
5107 	}
5108 	ClearPageChecked(page);
5109 	btrfs_page_set_dirty(fs_info, page, block_start, block_end + 1 - block_start);
5110 	unlock_extent_cached(io_tree, block_start, block_end, &cached_state);
5111 
5112 	if (only_release_metadata)
5113 		set_extent_bit(&inode->io_tree, block_start, block_end,
5114 			       EXTENT_NORESERVE, 0, NULL, NULL, GFP_NOFS, NULL);
5115 
5116 out_unlock:
5117 	if (ret) {
5118 		if (only_release_metadata)
5119 			btrfs_delalloc_release_metadata(inode, blocksize, true);
5120 		else
5121 			btrfs_delalloc_release_space(inode, data_reserved,
5122 					block_start, blocksize, true);
5123 	}
5124 	btrfs_delalloc_release_extents(inode, blocksize);
5125 	unlock_page(page);
5126 	put_page(page);
5127 out:
5128 	if (only_release_metadata)
5129 		btrfs_check_nocow_unlock(inode);
5130 	extent_changeset_free(data_reserved);
5131 	return ret;
5132 }
5133 
5134 static int maybe_insert_hole(struct btrfs_root *root, struct btrfs_inode *inode,
5135 			     u64 offset, u64 len)
5136 {
5137 	struct btrfs_fs_info *fs_info = root->fs_info;
5138 	struct btrfs_trans_handle *trans;
5139 	struct btrfs_drop_extents_args drop_args = { 0 };
5140 	int ret;
5141 
5142 	/*
5143 	 * If NO_HOLES is enabled, we don't need to do anything.
5144 	 * Later, up in the call chain, either btrfs_set_inode_last_sub_trans()
5145 	 * or btrfs_update_inode() will be called, which guarantee that the next
5146 	 * fsync will know this inode was changed and needs to be logged.
5147 	 */
5148 	if (btrfs_fs_incompat(fs_info, NO_HOLES))
5149 		return 0;
5150 
5151 	/*
5152 	 * 1 - for the one we're dropping
5153 	 * 1 - for the one we're adding
5154 	 * 1 - for updating the inode.
5155 	 */
5156 	trans = btrfs_start_transaction(root, 3);
5157 	if (IS_ERR(trans))
5158 		return PTR_ERR(trans);
5159 
5160 	drop_args.start = offset;
5161 	drop_args.end = offset + len;
5162 	drop_args.drop_cache = true;
5163 
5164 	ret = btrfs_drop_extents(trans, root, inode, &drop_args);
5165 	if (ret) {
5166 		btrfs_abort_transaction(trans, ret);
5167 		btrfs_end_transaction(trans);
5168 		return ret;
5169 	}
5170 
5171 	ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode),
5172 			offset, 0, 0, len, 0, len, 0, 0, 0);
5173 	if (ret) {
5174 		btrfs_abort_transaction(trans, ret);
5175 	} else {
5176 		btrfs_update_inode_bytes(inode, 0, drop_args.bytes_found);
5177 		btrfs_update_inode(trans, root, inode);
5178 	}
5179 	btrfs_end_transaction(trans);
5180 	return ret;
5181 }
5182 
5183 /*
5184  * This function puts in dummy file extents for the area we're creating a hole
5185  * for.  So if we are truncating this file to a larger size we need to insert
5186  * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
5187  * the range between oldsize and size
5188  */
5189 int btrfs_cont_expand(struct btrfs_inode *inode, loff_t oldsize, loff_t size)
5190 {
5191 	struct btrfs_root *root = inode->root;
5192 	struct btrfs_fs_info *fs_info = root->fs_info;
5193 	struct extent_io_tree *io_tree = &inode->io_tree;
5194 	struct extent_map *em = NULL;
5195 	struct extent_state *cached_state = NULL;
5196 	struct extent_map_tree *em_tree = &inode->extent_tree;
5197 	u64 hole_start = ALIGN(oldsize, fs_info->sectorsize);
5198 	u64 block_end = ALIGN(size, fs_info->sectorsize);
5199 	u64 last_byte;
5200 	u64 cur_offset;
5201 	u64 hole_size;
5202 	int err = 0;
5203 
5204 	/*
5205 	 * If our size started in the middle of a block we need to zero out the
5206 	 * rest of the block before we expand the i_size, otherwise we could
5207 	 * expose stale data.
5208 	 */
5209 	err = btrfs_truncate_block(inode, oldsize, 0, 0);
5210 	if (err)
5211 		return err;
5212 
5213 	if (size <= hole_start)
5214 		return 0;
5215 
5216 	btrfs_lock_and_flush_ordered_range(inode, hole_start, block_end - 1,
5217 					   &cached_state);
5218 	cur_offset = hole_start;
5219 	while (1) {
5220 		em = btrfs_get_extent(inode, NULL, 0, cur_offset,
5221 				      block_end - cur_offset);
5222 		if (IS_ERR(em)) {
5223 			err = PTR_ERR(em);
5224 			em = NULL;
5225 			break;
5226 		}
5227 		last_byte = min(extent_map_end(em), block_end);
5228 		last_byte = ALIGN(last_byte, fs_info->sectorsize);
5229 		hole_size = last_byte - cur_offset;
5230 
5231 		if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
5232 			struct extent_map *hole_em;
5233 
5234 			err = maybe_insert_hole(root, inode, cur_offset,
5235 						hole_size);
5236 			if (err)
5237 				break;
5238 
5239 			err = btrfs_inode_set_file_extent_range(inode,
5240 							cur_offset, hole_size);
5241 			if (err)
5242 				break;
5243 
5244 			btrfs_drop_extent_cache(inode, cur_offset,
5245 						cur_offset + hole_size - 1, 0);
5246 			hole_em = alloc_extent_map();
5247 			if (!hole_em) {
5248 				set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5249 					&inode->runtime_flags);
5250 				goto next;
5251 			}
5252 			hole_em->start = cur_offset;
5253 			hole_em->len = hole_size;
5254 			hole_em->orig_start = cur_offset;
5255 
5256 			hole_em->block_start = EXTENT_MAP_HOLE;
5257 			hole_em->block_len = 0;
5258 			hole_em->orig_block_len = 0;
5259 			hole_em->ram_bytes = hole_size;
5260 			hole_em->compress_type = BTRFS_COMPRESS_NONE;
5261 			hole_em->generation = fs_info->generation;
5262 
5263 			while (1) {
5264 				write_lock(&em_tree->lock);
5265 				err = add_extent_mapping(em_tree, hole_em, 1);
5266 				write_unlock(&em_tree->lock);
5267 				if (err != -EEXIST)
5268 					break;
5269 				btrfs_drop_extent_cache(inode, cur_offset,
5270 							cur_offset +
5271 							hole_size - 1, 0);
5272 			}
5273 			free_extent_map(hole_em);
5274 		} else {
5275 			err = btrfs_inode_set_file_extent_range(inode,
5276 							cur_offset, hole_size);
5277 			if (err)
5278 				break;
5279 		}
5280 next:
5281 		free_extent_map(em);
5282 		em = NULL;
5283 		cur_offset = last_byte;
5284 		if (cur_offset >= block_end)
5285 			break;
5286 	}
5287 	free_extent_map(em);
5288 	unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state);
5289 	return err;
5290 }
5291 
5292 static int btrfs_setsize(struct inode *inode, struct iattr *attr)
5293 {
5294 	struct btrfs_root *root = BTRFS_I(inode)->root;
5295 	struct btrfs_trans_handle *trans;
5296 	loff_t oldsize = i_size_read(inode);
5297 	loff_t newsize = attr->ia_size;
5298 	int mask = attr->ia_valid;
5299 	int ret;
5300 
5301 	/*
5302 	 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
5303 	 * special case where we need to update the times despite not having
5304 	 * these flags set.  For all other operations the VFS set these flags
5305 	 * explicitly if it wants a timestamp update.
5306 	 */
5307 	if (newsize != oldsize) {
5308 		inode_inc_iversion(inode);
5309 		if (!(mask & (ATTR_CTIME | ATTR_MTIME)))
5310 			inode->i_ctime = inode->i_mtime =
5311 				current_time(inode);
5312 	}
5313 
5314 	if (newsize > oldsize) {
5315 		/*
5316 		 * Don't do an expanding truncate while snapshotting is ongoing.
5317 		 * This is to ensure the snapshot captures a fully consistent
5318 		 * state of this file - if the snapshot captures this expanding
5319 		 * truncation, it must capture all writes that happened before
5320 		 * this truncation.
5321 		 */
5322 		btrfs_drew_write_lock(&root->snapshot_lock);
5323 		ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, newsize);
5324 		if (ret) {
5325 			btrfs_drew_write_unlock(&root->snapshot_lock);
5326 			return ret;
5327 		}
5328 
5329 		trans = btrfs_start_transaction(root, 1);
5330 		if (IS_ERR(trans)) {
5331 			btrfs_drew_write_unlock(&root->snapshot_lock);
5332 			return PTR_ERR(trans);
5333 		}
5334 
5335 		i_size_write(inode, newsize);
5336 		btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
5337 		pagecache_isize_extended(inode, oldsize, newsize);
5338 		ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
5339 		btrfs_drew_write_unlock(&root->snapshot_lock);
5340 		btrfs_end_transaction(trans);
5341 	} else {
5342 		struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5343 
5344 		if (btrfs_is_zoned(fs_info)) {
5345 			ret = btrfs_wait_ordered_range(inode,
5346 					ALIGN(newsize, fs_info->sectorsize),
5347 					(u64)-1);
5348 			if (ret)
5349 				return ret;
5350 		}
5351 
5352 		/*
5353 		 * We're truncating a file that used to have good data down to
5354 		 * zero. Make sure any new writes to the file get on disk
5355 		 * on close.
5356 		 */
5357 		if (newsize == 0)
5358 			set_bit(BTRFS_INODE_FLUSH_ON_CLOSE,
5359 				&BTRFS_I(inode)->runtime_flags);
5360 
5361 		truncate_setsize(inode, newsize);
5362 
5363 		inode_dio_wait(inode);
5364 
5365 		ret = btrfs_truncate(inode, newsize == oldsize);
5366 		if (ret && inode->i_nlink) {
5367 			int err;
5368 
5369 			/*
5370 			 * Truncate failed, so fix up the in-memory size. We
5371 			 * adjusted disk_i_size down as we removed extents, so
5372 			 * wait for disk_i_size to be stable and then update the
5373 			 * in-memory size to match.
5374 			 */
5375 			err = btrfs_wait_ordered_range(inode, 0, (u64)-1);
5376 			if (err)
5377 				return err;
5378 			i_size_write(inode, BTRFS_I(inode)->disk_i_size);
5379 		}
5380 	}
5381 
5382 	return ret;
5383 }
5384 
5385 static int btrfs_setattr(struct user_namespace *mnt_userns, struct dentry *dentry,
5386 			 struct iattr *attr)
5387 {
5388 	struct inode *inode = d_inode(dentry);
5389 	struct btrfs_root *root = BTRFS_I(inode)->root;
5390 	int err;
5391 
5392 	if (btrfs_root_readonly(root))
5393 		return -EROFS;
5394 
5395 	err = setattr_prepare(mnt_userns, dentry, attr);
5396 	if (err)
5397 		return err;
5398 
5399 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
5400 		err = btrfs_setsize(inode, attr);
5401 		if (err)
5402 			return err;
5403 	}
5404 
5405 	if (attr->ia_valid) {
5406 		setattr_copy(mnt_userns, inode, attr);
5407 		inode_inc_iversion(inode);
5408 		err = btrfs_dirty_inode(inode);
5409 
5410 		if (!err && attr->ia_valid & ATTR_MODE)
5411 			err = posix_acl_chmod(mnt_userns, inode, inode->i_mode);
5412 	}
5413 
5414 	return err;
5415 }
5416 
5417 /*
5418  * While truncating the inode pages during eviction, we get the VFS calling
5419  * btrfs_invalidatepage() against each page of the inode. This is slow because
5420  * the calls to btrfs_invalidatepage() result in a huge amount of calls to
5421  * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
5422  * extent_state structures over and over, wasting lots of time.
5423  *
5424  * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
5425  * those expensive operations on a per page basis and do only the ordered io
5426  * finishing, while we release here the extent_map and extent_state structures,
5427  * without the excessive merging and splitting.
5428  */
5429 static void evict_inode_truncate_pages(struct inode *inode)
5430 {
5431 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5432 	struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
5433 	struct rb_node *node;
5434 
5435 	ASSERT(inode->i_state & I_FREEING);
5436 	truncate_inode_pages_final(&inode->i_data);
5437 
5438 	write_lock(&map_tree->lock);
5439 	while (!RB_EMPTY_ROOT(&map_tree->map.rb_root)) {
5440 		struct extent_map *em;
5441 
5442 		node = rb_first_cached(&map_tree->map);
5443 		em = rb_entry(node, struct extent_map, rb_node);
5444 		clear_bit(EXTENT_FLAG_PINNED, &em->flags);
5445 		clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
5446 		remove_extent_mapping(map_tree, em);
5447 		free_extent_map(em);
5448 		if (need_resched()) {
5449 			write_unlock(&map_tree->lock);
5450 			cond_resched();
5451 			write_lock(&map_tree->lock);
5452 		}
5453 	}
5454 	write_unlock(&map_tree->lock);
5455 
5456 	/*
5457 	 * Keep looping until we have no more ranges in the io tree.
5458 	 * We can have ongoing bios started by readahead that have
5459 	 * their endio callback (extent_io.c:end_bio_extent_readpage)
5460 	 * still in progress (unlocked the pages in the bio but did not yet
5461 	 * unlocked the ranges in the io tree). Therefore this means some
5462 	 * ranges can still be locked and eviction started because before
5463 	 * submitting those bios, which are executed by a separate task (work
5464 	 * queue kthread), inode references (inode->i_count) were not taken
5465 	 * (which would be dropped in the end io callback of each bio).
5466 	 * Therefore here we effectively end up waiting for those bios and
5467 	 * anyone else holding locked ranges without having bumped the inode's
5468 	 * reference count - if we don't do it, when they access the inode's
5469 	 * io_tree to unlock a range it may be too late, leading to an
5470 	 * use-after-free issue.
5471 	 */
5472 	spin_lock(&io_tree->lock);
5473 	while (!RB_EMPTY_ROOT(&io_tree->state)) {
5474 		struct extent_state *state;
5475 		struct extent_state *cached_state = NULL;
5476 		u64 start;
5477 		u64 end;
5478 		unsigned state_flags;
5479 
5480 		node = rb_first(&io_tree->state);
5481 		state = rb_entry(node, struct extent_state, rb_node);
5482 		start = state->start;
5483 		end = state->end;
5484 		state_flags = state->state;
5485 		spin_unlock(&io_tree->lock);
5486 
5487 		lock_extent_bits(io_tree, start, end, &cached_state);
5488 
5489 		/*
5490 		 * If still has DELALLOC flag, the extent didn't reach disk,
5491 		 * and its reserved space won't be freed by delayed_ref.
5492 		 * So we need to free its reserved space here.
5493 		 * (Refer to comment in btrfs_invalidatepage, case 2)
5494 		 *
5495 		 * Note, end is the bytenr of last byte, so we need + 1 here.
5496 		 */
5497 		if (state_flags & EXTENT_DELALLOC)
5498 			btrfs_qgroup_free_data(BTRFS_I(inode), NULL, start,
5499 					       end - start + 1);
5500 
5501 		clear_extent_bit(io_tree, start, end,
5502 				 EXTENT_LOCKED | EXTENT_DELALLOC |
5503 				 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1,
5504 				 &cached_state);
5505 
5506 		cond_resched();
5507 		spin_lock(&io_tree->lock);
5508 	}
5509 	spin_unlock(&io_tree->lock);
5510 }
5511 
5512 static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root,
5513 							struct btrfs_block_rsv *rsv)
5514 {
5515 	struct btrfs_fs_info *fs_info = root->fs_info;
5516 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5517 	struct btrfs_trans_handle *trans;
5518 	u64 delayed_refs_extra = btrfs_calc_insert_metadata_size(fs_info, 1);
5519 	int ret;
5520 
5521 	/*
5522 	 * Eviction should be taking place at some place safe because of our
5523 	 * delayed iputs.  However the normal flushing code will run delayed
5524 	 * iputs, so we cannot use FLUSH_ALL otherwise we'll deadlock.
5525 	 *
5526 	 * We reserve the delayed_refs_extra here again because we can't use
5527 	 * btrfs_start_transaction(root, 0) for the same deadlocky reason as
5528 	 * above.  We reserve our extra bit here because we generate a ton of
5529 	 * delayed refs activity by truncating.
5530 	 *
5531 	 * If we cannot make our reservation we'll attempt to steal from the
5532 	 * global reserve, because we really want to be able to free up space.
5533 	 */
5534 	ret = btrfs_block_rsv_refill(root, rsv, rsv->size + delayed_refs_extra,
5535 				     BTRFS_RESERVE_FLUSH_EVICT);
5536 	if (ret) {
5537 		/*
5538 		 * Try to steal from the global reserve if there is space for
5539 		 * it.
5540 		 */
5541 		if (btrfs_check_space_for_delayed_refs(fs_info) ||
5542 		    btrfs_block_rsv_migrate(global_rsv, rsv, rsv->size, 0)) {
5543 			btrfs_warn(fs_info,
5544 				   "could not allocate space for delete; will truncate on mount");
5545 			return ERR_PTR(-ENOSPC);
5546 		}
5547 		delayed_refs_extra = 0;
5548 	}
5549 
5550 	trans = btrfs_join_transaction(root);
5551 	if (IS_ERR(trans))
5552 		return trans;
5553 
5554 	if (delayed_refs_extra) {
5555 		trans->block_rsv = &fs_info->trans_block_rsv;
5556 		trans->bytes_reserved = delayed_refs_extra;
5557 		btrfs_block_rsv_migrate(rsv, trans->block_rsv,
5558 					delayed_refs_extra, 1);
5559 	}
5560 	return trans;
5561 }
5562 
5563 void btrfs_evict_inode(struct inode *inode)
5564 {
5565 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5566 	struct btrfs_trans_handle *trans;
5567 	struct btrfs_root *root = BTRFS_I(inode)->root;
5568 	struct btrfs_block_rsv *rsv;
5569 	int ret;
5570 
5571 	trace_btrfs_inode_evict(inode);
5572 
5573 	if (!root) {
5574 		fsverity_cleanup_inode(inode);
5575 		clear_inode(inode);
5576 		return;
5577 	}
5578 
5579 	evict_inode_truncate_pages(inode);
5580 
5581 	if (inode->i_nlink &&
5582 	    ((btrfs_root_refs(&root->root_item) != 0 &&
5583 	      root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
5584 	     btrfs_is_free_space_inode(BTRFS_I(inode))))
5585 		goto no_delete;
5586 
5587 	if (is_bad_inode(inode))
5588 		goto no_delete;
5589 
5590 	btrfs_free_io_failure_record(BTRFS_I(inode), 0, (u64)-1);
5591 
5592 	if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
5593 		goto no_delete;
5594 
5595 	if (inode->i_nlink > 0) {
5596 		BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5597 		       root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
5598 		goto no_delete;
5599 	}
5600 
5601 	ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode));
5602 	if (ret)
5603 		goto no_delete;
5604 
5605 	rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
5606 	if (!rsv)
5607 		goto no_delete;
5608 	rsv->size = btrfs_calc_metadata_size(fs_info, 1);
5609 	rsv->failfast = 1;
5610 
5611 	btrfs_i_size_write(BTRFS_I(inode), 0);
5612 
5613 	while (1) {
5614 		trans = evict_refill_and_join(root, rsv);
5615 		if (IS_ERR(trans))
5616 			goto free_rsv;
5617 
5618 		trans->block_rsv = rsv;
5619 
5620 		ret = btrfs_truncate_inode_items(trans, root, BTRFS_I(inode),
5621 						 0, 0, NULL);
5622 		trans->block_rsv = &fs_info->trans_block_rsv;
5623 		btrfs_end_transaction(trans);
5624 		btrfs_btree_balance_dirty(fs_info);
5625 		if (ret && ret != -ENOSPC && ret != -EAGAIN)
5626 			goto free_rsv;
5627 		else if (!ret)
5628 			break;
5629 	}
5630 
5631 	/*
5632 	 * Errors here aren't a big deal, it just means we leave orphan items in
5633 	 * the tree. They will be cleaned up on the next mount. If the inode
5634 	 * number gets reused, cleanup deletes the orphan item without doing
5635 	 * anything, and unlink reuses the existing orphan item.
5636 	 *
5637 	 * If it turns out that we are dropping too many of these, we might want
5638 	 * to add a mechanism for retrying these after a commit.
5639 	 */
5640 	trans = evict_refill_and_join(root, rsv);
5641 	if (!IS_ERR(trans)) {
5642 		trans->block_rsv = rsv;
5643 		btrfs_orphan_del(trans, BTRFS_I(inode));
5644 		trans->block_rsv = &fs_info->trans_block_rsv;
5645 		btrfs_end_transaction(trans);
5646 	}
5647 
5648 free_rsv:
5649 	btrfs_free_block_rsv(fs_info, rsv);
5650 no_delete:
5651 	/*
5652 	 * If we didn't successfully delete, the orphan item will still be in
5653 	 * the tree and we'll retry on the next mount. Again, we might also want
5654 	 * to retry these periodically in the future.
5655 	 */
5656 	btrfs_remove_delayed_node(BTRFS_I(inode));
5657 	fsverity_cleanup_inode(inode);
5658 	clear_inode(inode);
5659 }
5660 
5661 /*
5662  * Return the key found in the dir entry in the location pointer, fill @type
5663  * with BTRFS_FT_*, and return 0.
5664  *
5665  * If no dir entries were found, returns -ENOENT.
5666  * If found a corrupted location in dir entry, returns -EUCLEAN.
5667  */
5668 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
5669 			       struct btrfs_key *location, u8 *type)
5670 {
5671 	const char *name = dentry->d_name.name;
5672 	int namelen = dentry->d_name.len;
5673 	struct btrfs_dir_item *di;
5674 	struct btrfs_path *path;
5675 	struct btrfs_root *root = BTRFS_I(dir)->root;
5676 	int ret = 0;
5677 
5678 	path = btrfs_alloc_path();
5679 	if (!path)
5680 		return -ENOMEM;
5681 
5682 	di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(BTRFS_I(dir)),
5683 			name, namelen, 0);
5684 	if (IS_ERR_OR_NULL(di)) {
5685 		ret = di ? PTR_ERR(di) : -ENOENT;
5686 		goto out;
5687 	}
5688 
5689 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
5690 	if (location->type != BTRFS_INODE_ITEM_KEY &&
5691 	    location->type != BTRFS_ROOT_ITEM_KEY) {
5692 		ret = -EUCLEAN;
5693 		btrfs_warn(root->fs_info,
5694 "%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))",
5695 			   __func__, name, btrfs_ino(BTRFS_I(dir)),
5696 			   location->objectid, location->type, location->offset);
5697 	}
5698 	if (!ret)
5699 		*type = btrfs_dir_type(path->nodes[0], di);
5700 out:
5701 	btrfs_free_path(path);
5702 	return ret;
5703 }
5704 
5705 /*
5706  * when we hit a tree root in a directory, the btrfs part of the inode
5707  * needs to be changed to reflect the root directory of the tree root.  This
5708  * is kind of like crossing a mount point.
5709  */
5710 static int fixup_tree_root_location(struct btrfs_fs_info *fs_info,
5711 				    struct inode *dir,
5712 				    struct dentry *dentry,
5713 				    struct btrfs_key *location,
5714 				    struct btrfs_root **sub_root)
5715 {
5716 	struct btrfs_path *path;
5717 	struct btrfs_root *new_root;
5718 	struct btrfs_root_ref *ref;
5719 	struct extent_buffer *leaf;
5720 	struct btrfs_key key;
5721 	int ret;
5722 	int err = 0;
5723 
5724 	path = btrfs_alloc_path();
5725 	if (!path) {
5726 		err = -ENOMEM;
5727 		goto out;
5728 	}
5729 
5730 	err = -ENOENT;
5731 	key.objectid = BTRFS_I(dir)->root->root_key.objectid;
5732 	key.type = BTRFS_ROOT_REF_KEY;
5733 	key.offset = location->objectid;
5734 
5735 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
5736 	if (ret) {
5737 		if (ret < 0)
5738 			err = ret;
5739 		goto out;
5740 	}
5741 
5742 	leaf = path->nodes[0];
5743 	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
5744 	if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(BTRFS_I(dir)) ||
5745 	    btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
5746 		goto out;
5747 
5748 	ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
5749 				   (unsigned long)(ref + 1),
5750 				   dentry->d_name.len);
5751 	if (ret)
5752 		goto out;
5753 
5754 	btrfs_release_path(path);
5755 
5756 	new_root = btrfs_get_fs_root(fs_info, location->objectid, true);
5757 	if (IS_ERR(new_root)) {
5758 		err = PTR_ERR(new_root);
5759 		goto out;
5760 	}
5761 
5762 	*sub_root = new_root;
5763 	location->objectid = btrfs_root_dirid(&new_root->root_item);
5764 	location->type = BTRFS_INODE_ITEM_KEY;
5765 	location->offset = 0;
5766 	err = 0;
5767 out:
5768 	btrfs_free_path(path);
5769 	return err;
5770 }
5771 
5772 static void inode_tree_add(struct inode *inode)
5773 {
5774 	struct btrfs_root *root = BTRFS_I(inode)->root;
5775 	struct btrfs_inode *entry;
5776 	struct rb_node **p;
5777 	struct rb_node *parent;
5778 	struct rb_node *new = &BTRFS_I(inode)->rb_node;
5779 	u64 ino = btrfs_ino(BTRFS_I(inode));
5780 
5781 	if (inode_unhashed(inode))
5782 		return;
5783 	parent = NULL;
5784 	spin_lock(&root->inode_lock);
5785 	p = &root->inode_tree.rb_node;
5786 	while (*p) {
5787 		parent = *p;
5788 		entry = rb_entry(parent, struct btrfs_inode, rb_node);
5789 
5790 		if (ino < btrfs_ino(entry))
5791 			p = &parent->rb_left;
5792 		else if (ino > btrfs_ino(entry))
5793 			p = &parent->rb_right;
5794 		else {
5795 			WARN_ON(!(entry->vfs_inode.i_state &
5796 				  (I_WILL_FREE | I_FREEING)));
5797 			rb_replace_node(parent, new, &root->inode_tree);
5798 			RB_CLEAR_NODE(parent);
5799 			spin_unlock(&root->inode_lock);
5800 			return;
5801 		}
5802 	}
5803 	rb_link_node(new, parent, p);
5804 	rb_insert_color(new, &root->inode_tree);
5805 	spin_unlock(&root->inode_lock);
5806 }
5807 
5808 static void inode_tree_del(struct btrfs_inode *inode)
5809 {
5810 	struct btrfs_root *root = inode->root;
5811 	int empty = 0;
5812 
5813 	spin_lock(&root->inode_lock);
5814 	if (!RB_EMPTY_NODE(&inode->rb_node)) {
5815 		rb_erase(&inode->rb_node, &root->inode_tree);
5816 		RB_CLEAR_NODE(&inode->rb_node);
5817 		empty = RB_EMPTY_ROOT(&root->inode_tree);
5818 	}
5819 	spin_unlock(&root->inode_lock);
5820 
5821 	if (empty && btrfs_root_refs(&root->root_item) == 0) {
5822 		spin_lock(&root->inode_lock);
5823 		empty = RB_EMPTY_ROOT(&root->inode_tree);
5824 		spin_unlock(&root->inode_lock);
5825 		if (empty)
5826 			btrfs_add_dead_root(root);
5827 	}
5828 }
5829 
5830 
5831 static int btrfs_init_locked_inode(struct inode *inode, void *p)
5832 {
5833 	struct btrfs_iget_args *args = p;
5834 
5835 	inode->i_ino = args->ino;
5836 	BTRFS_I(inode)->location.objectid = args->ino;
5837 	BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY;
5838 	BTRFS_I(inode)->location.offset = 0;
5839 	BTRFS_I(inode)->root = btrfs_grab_root(args->root);
5840 	BUG_ON(args->root && !BTRFS_I(inode)->root);
5841 	return 0;
5842 }
5843 
5844 static int btrfs_find_actor(struct inode *inode, void *opaque)
5845 {
5846 	struct btrfs_iget_args *args = opaque;
5847 
5848 	return args->ino == BTRFS_I(inode)->location.objectid &&
5849 		args->root == BTRFS_I(inode)->root;
5850 }
5851 
5852 static struct inode *btrfs_iget_locked(struct super_block *s, u64 ino,
5853 				       struct btrfs_root *root)
5854 {
5855 	struct inode *inode;
5856 	struct btrfs_iget_args args;
5857 	unsigned long hashval = btrfs_inode_hash(ino, root);
5858 
5859 	args.ino = ino;
5860 	args.root = root;
5861 
5862 	inode = iget5_locked(s, hashval, btrfs_find_actor,
5863 			     btrfs_init_locked_inode,
5864 			     (void *)&args);
5865 	return inode;
5866 }
5867 
5868 /*
5869  * Get an inode object given its inode number and corresponding root.
5870  * Path can be preallocated to prevent recursing back to iget through
5871  * allocator. NULL is also valid but may require an additional allocation
5872  * later.
5873  */
5874 struct inode *btrfs_iget_path(struct super_block *s, u64 ino,
5875 			      struct btrfs_root *root, struct btrfs_path *path)
5876 {
5877 	struct inode *inode;
5878 
5879 	inode = btrfs_iget_locked(s, ino, root);
5880 	if (!inode)
5881 		return ERR_PTR(-ENOMEM);
5882 
5883 	if (inode->i_state & I_NEW) {
5884 		int ret;
5885 
5886 		ret = btrfs_read_locked_inode(inode, path);
5887 		if (!ret) {
5888 			inode_tree_add(inode);
5889 			unlock_new_inode(inode);
5890 		} else {
5891 			iget_failed(inode);
5892 			/*
5893 			 * ret > 0 can come from btrfs_search_slot called by
5894 			 * btrfs_read_locked_inode, this means the inode item
5895 			 * was not found.
5896 			 */
5897 			if (ret > 0)
5898 				ret = -ENOENT;
5899 			inode = ERR_PTR(ret);
5900 		}
5901 	}
5902 
5903 	return inode;
5904 }
5905 
5906 struct inode *btrfs_iget(struct super_block *s, u64 ino, struct btrfs_root *root)
5907 {
5908 	return btrfs_iget_path(s, ino, root, NULL);
5909 }
5910 
5911 static struct inode *new_simple_dir(struct super_block *s,
5912 				    struct btrfs_key *key,
5913 				    struct btrfs_root *root)
5914 {
5915 	struct inode *inode = new_inode(s);
5916 
5917 	if (!inode)
5918 		return ERR_PTR(-ENOMEM);
5919 
5920 	BTRFS_I(inode)->root = btrfs_grab_root(root);
5921 	memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
5922 	set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
5923 
5924 	inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
5925 	/*
5926 	 * We only need lookup, the rest is read-only and there's no inode
5927 	 * associated with the dentry
5928 	 */
5929 	inode->i_op = &simple_dir_inode_operations;
5930 	inode->i_opflags &= ~IOP_XATTR;
5931 	inode->i_fop = &simple_dir_operations;
5932 	inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
5933 	inode->i_mtime = current_time(inode);
5934 	inode->i_atime = inode->i_mtime;
5935 	inode->i_ctime = inode->i_mtime;
5936 	BTRFS_I(inode)->i_otime = inode->i_mtime;
5937 
5938 	return inode;
5939 }
5940 
5941 static inline u8 btrfs_inode_type(struct inode *inode)
5942 {
5943 	/*
5944 	 * Compile-time asserts that generic FT_* types still match
5945 	 * BTRFS_FT_* types
5946 	 */
5947 	BUILD_BUG_ON(BTRFS_FT_UNKNOWN != FT_UNKNOWN);
5948 	BUILD_BUG_ON(BTRFS_FT_REG_FILE != FT_REG_FILE);
5949 	BUILD_BUG_ON(BTRFS_FT_DIR != FT_DIR);
5950 	BUILD_BUG_ON(BTRFS_FT_CHRDEV != FT_CHRDEV);
5951 	BUILD_BUG_ON(BTRFS_FT_BLKDEV != FT_BLKDEV);
5952 	BUILD_BUG_ON(BTRFS_FT_FIFO != FT_FIFO);
5953 	BUILD_BUG_ON(BTRFS_FT_SOCK != FT_SOCK);
5954 	BUILD_BUG_ON(BTRFS_FT_SYMLINK != FT_SYMLINK);
5955 
5956 	return fs_umode_to_ftype(inode->i_mode);
5957 }
5958 
5959 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
5960 {
5961 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
5962 	struct inode *inode;
5963 	struct btrfs_root *root = BTRFS_I(dir)->root;
5964 	struct btrfs_root *sub_root = root;
5965 	struct btrfs_key location;
5966 	u8 di_type = 0;
5967 	int ret = 0;
5968 
5969 	if (dentry->d_name.len > BTRFS_NAME_LEN)
5970 		return ERR_PTR(-ENAMETOOLONG);
5971 
5972 	ret = btrfs_inode_by_name(dir, dentry, &location, &di_type);
5973 	if (ret < 0)
5974 		return ERR_PTR(ret);
5975 
5976 	if (location.type == BTRFS_INODE_ITEM_KEY) {
5977 		inode = btrfs_iget(dir->i_sb, location.objectid, root);
5978 		if (IS_ERR(inode))
5979 			return inode;
5980 
5981 		/* Do extra check against inode mode with di_type */
5982 		if (btrfs_inode_type(inode) != di_type) {
5983 			btrfs_crit(fs_info,
5984 "inode mode mismatch with dir: inode mode=0%o btrfs type=%u dir type=%u",
5985 				  inode->i_mode, btrfs_inode_type(inode),
5986 				  di_type);
5987 			iput(inode);
5988 			return ERR_PTR(-EUCLEAN);
5989 		}
5990 		return inode;
5991 	}
5992 
5993 	ret = fixup_tree_root_location(fs_info, dir, dentry,
5994 				       &location, &sub_root);
5995 	if (ret < 0) {
5996 		if (ret != -ENOENT)
5997 			inode = ERR_PTR(ret);
5998 		else
5999 			inode = new_simple_dir(dir->i_sb, &location, sub_root);
6000 	} else {
6001 		inode = btrfs_iget(dir->i_sb, location.objectid, sub_root);
6002 	}
6003 	if (root != sub_root)
6004 		btrfs_put_root(sub_root);
6005 
6006 	if (!IS_ERR(inode) && root != sub_root) {
6007 		down_read(&fs_info->cleanup_work_sem);
6008 		if (!sb_rdonly(inode->i_sb))
6009 			ret = btrfs_orphan_cleanup(sub_root);
6010 		up_read(&fs_info->cleanup_work_sem);
6011 		if (ret) {
6012 			iput(inode);
6013 			inode = ERR_PTR(ret);
6014 		}
6015 	}
6016 
6017 	return inode;
6018 }
6019 
6020 static int btrfs_dentry_delete(const struct dentry *dentry)
6021 {
6022 	struct btrfs_root *root;
6023 	struct inode *inode = d_inode(dentry);
6024 
6025 	if (!inode && !IS_ROOT(dentry))
6026 		inode = d_inode(dentry->d_parent);
6027 
6028 	if (inode) {
6029 		root = BTRFS_I(inode)->root;
6030 		if (btrfs_root_refs(&root->root_item) == 0)
6031 			return 1;
6032 
6033 		if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
6034 			return 1;
6035 	}
6036 	return 0;
6037 }
6038 
6039 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
6040 				   unsigned int flags)
6041 {
6042 	struct inode *inode = btrfs_lookup_dentry(dir, dentry);
6043 
6044 	if (inode == ERR_PTR(-ENOENT))
6045 		inode = NULL;
6046 	return d_splice_alias(inode, dentry);
6047 }
6048 
6049 /*
6050  * All this infrastructure exists because dir_emit can fault, and we are holding
6051  * the tree lock when doing readdir.  For now just allocate a buffer and copy
6052  * our information into that, and then dir_emit from the buffer.  This is
6053  * similar to what NFS does, only we don't keep the buffer around in pagecache
6054  * because I'm afraid I'll mess that up.  Long term we need to make filldir do
6055  * copy_to_user_inatomic so we don't have to worry about page faulting under the
6056  * tree lock.
6057  */
6058 static int btrfs_opendir(struct inode *inode, struct file *file)
6059 {
6060 	struct btrfs_file_private *private;
6061 
6062 	private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL);
6063 	if (!private)
6064 		return -ENOMEM;
6065 	private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL);
6066 	if (!private->filldir_buf) {
6067 		kfree(private);
6068 		return -ENOMEM;
6069 	}
6070 	file->private_data = private;
6071 	return 0;
6072 }
6073 
6074 struct dir_entry {
6075 	u64 ino;
6076 	u64 offset;
6077 	unsigned type;
6078 	int name_len;
6079 };
6080 
6081 static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx)
6082 {
6083 	while (entries--) {
6084 		struct dir_entry *entry = addr;
6085 		char *name = (char *)(entry + 1);
6086 
6087 		ctx->pos = get_unaligned(&entry->offset);
6088 		if (!dir_emit(ctx, name, get_unaligned(&entry->name_len),
6089 					 get_unaligned(&entry->ino),
6090 					 get_unaligned(&entry->type)))
6091 			return 1;
6092 		addr += sizeof(struct dir_entry) +
6093 			get_unaligned(&entry->name_len);
6094 		ctx->pos++;
6095 	}
6096 	return 0;
6097 }
6098 
6099 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
6100 {
6101 	struct inode *inode = file_inode(file);
6102 	struct btrfs_root *root = BTRFS_I(inode)->root;
6103 	struct btrfs_file_private *private = file->private_data;
6104 	struct btrfs_dir_item *di;
6105 	struct btrfs_key key;
6106 	struct btrfs_key found_key;
6107 	struct btrfs_path *path;
6108 	void *addr;
6109 	struct list_head ins_list;
6110 	struct list_head del_list;
6111 	int ret;
6112 	struct extent_buffer *leaf;
6113 	int slot;
6114 	char *name_ptr;
6115 	int name_len;
6116 	int entries = 0;
6117 	int total_len = 0;
6118 	bool put = false;
6119 	struct btrfs_key location;
6120 
6121 	if (!dir_emit_dots(file, ctx))
6122 		return 0;
6123 
6124 	path = btrfs_alloc_path();
6125 	if (!path)
6126 		return -ENOMEM;
6127 
6128 	addr = private->filldir_buf;
6129 	path->reada = READA_FORWARD;
6130 
6131 	INIT_LIST_HEAD(&ins_list);
6132 	INIT_LIST_HEAD(&del_list);
6133 	put = btrfs_readdir_get_delayed_items(inode, &ins_list, &del_list);
6134 
6135 again:
6136 	key.type = BTRFS_DIR_INDEX_KEY;
6137 	key.offset = ctx->pos;
6138 	key.objectid = btrfs_ino(BTRFS_I(inode));
6139 
6140 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6141 	if (ret < 0)
6142 		goto err;
6143 
6144 	while (1) {
6145 		struct dir_entry *entry;
6146 
6147 		leaf = path->nodes[0];
6148 		slot = path->slots[0];
6149 		if (slot >= btrfs_header_nritems(leaf)) {
6150 			ret = btrfs_next_leaf(root, path);
6151 			if (ret < 0)
6152 				goto err;
6153 			else if (ret > 0)
6154 				break;
6155 			continue;
6156 		}
6157 
6158 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
6159 
6160 		if (found_key.objectid != key.objectid)
6161 			break;
6162 		if (found_key.type != BTRFS_DIR_INDEX_KEY)
6163 			break;
6164 		if (found_key.offset < ctx->pos)
6165 			goto next;
6166 		if (btrfs_should_delete_dir_index(&del_list, found_key.offset))
6167 			goto next;
6168 		di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
6169 		name_len = btrfs_dir_name_len(leaf, di);
6170 		if ((total_len + sizeof(struct dir_entry) + name_len) >=
6171 		    PAGE_SIZE) {
6172 			btrfs_release_path(path);
6173 			ret = btrfs_filldir(private->filldir_buf, entries, ctx);
6174 			if (ret)
6175 				goto nopos;
6176 			addr = private->filldir_buf;
6177 			entries = 0;
6178 			total_len = 0;
6179 			goto again;
6180 		}
6181 
6182 		entry = addr;
6183 		put_unaligned(name_len, &entry->name_len);
6184 		name_ptr = (char *)(entry + 1);
6185 		read_extent_buffer(leaf, name_ptr, (unsigned long)(di + 1),
6186 				   name_len);
6187 		put_unaligned(fs_ftype_to_dtype(btrfs_dir_type(leaf, di)),
6188 				&entry->type);
6189 		btrfs_dir_item_key_to_cpu(leaf, di, &location);
6190 		put_unaligned(location.objectid, &entry->ino);
6191 		put_unaligned(found_key.offset, &entry->offset);
6192 		entries++;
6193 		addr += sizeof(struct dir_entry) + name_len;
6194 		total_len += sizeof(struct dir_entry) + name_len;
6195 next:
6196 		path->slots[0]++;
6197 	}
6198 	btrfs_release_path(path);
6199 
6200 	ret = btrfs_filldir(private->filldir_buf, entries, ctx);
6201 	if (ret)
6202 		goto nopos;
6203 
6204 	ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
6205 	if (ret)
6206 		goto nopos;
6207 
6208 	/*
6209 	 * Stop new entries from being returned after we return the last
6210 	 * entry.
6211 	 *
6212 	 * New directory entries are assigned a strictly increasing
6213 	 * offset.  This means that new entries created during readdir
6214 	 * are *guaranteed* to be seen in the future by that readdir.
6215 	 * This has broken buggy programs which operate on names as
6216 	 * they're returned by readdir.  Until we re-use freed offsets
6217 	 * we have this hack to stop new entries from being returned
6218 	 * under the assumption that they'll never reach this huge
6219 	 * offset.
6220 	 *
6221 	 * This is being careful not to overflow 32bit loff_t unless the
6222 	 * last entry requires it because doing so has broken 32bit apps
6223 	 * in the past.
6224 	 */
6225 	if (ctx->pos >= INT_MAX)
6226 		ctx->pos = LLONG_MAX;
6227 	else
6228 		ctx->pos = INT_MAX;
6229 nopos:
6230 	ret = 0;
6231 err:
6232 	if (put)
6233 		btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list);
6234 	btrfs_free_path(path);
6235 	return ret;
6236 }
6237 
6238 /*
6239  * This is somewhat expensive, updating the tree every time the
6240  * inode changes.  But, it is most likely to find the inode in cache.
6241  * FIXME, needs more benchmarking...there are no reasons other than performance
6242  * to keep or drop this code.
6243  */
6244 static int btrfs_dirty_inode(struct inode *inode)
6245 {
6246 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
6247 	struct btrfs_root *root = BTRFS_I(inode)->root;
6248 	struct btrfs_trans_handle *trans;
6249 	int ret;
6250 
6251 	if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
6252 		return 0;
6253 
6254 	trans = btrfs_join_transaction(root);
6255 	if (IS_ERR(trans))
6256 		return PTR_ERR(trans);
6257 
6258 	ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
6259 	if (ret && (ret == -ENOSPC || ret == -EDQUOT)) {
6260 		/* whoops, lets try again with the full transaction */
6261 		btrfs_end_transaction(trans);
6262 		trans = btrfs_start_transaction(root, 1);
6263 		if (IS_ERR(trans))
6264 			return PTR_ERR(trans);
6265 
6266 		ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
6267 	}
6268 	btrfs_end_transaction(trans);
6269 	if (BTRFS_I(inode)->delayed_node)
6270 		btrfs_balance_delayed_items(fs_info);
6271 
6272 	return ret;
6273 }
6274 
6275 /*
6276  * This is a copy of file_update_time.  We need this so we can return error on
6277  * ENOSPC for updating the inode in the case of file write and mmap writes.
6278  */
6279 static int btrfs_update_time(struct inode *inode, struct timespec64 *now,
6280 			     int flags)
6281 {
6282 	struct btrfs_root *root = BTRFS_I(inode)->root;
6283 	bool dirty = flags & ~S_VERSION;
6284 
6285 	if (btrfs_root_readonly(root))
6286 		return -EROFS;
6287 
6288 	if (flags & S_VERSION)
6289 		dirty |= inode_maybe_inc_iversion(inode, dirty);
6290 	if (flags & S_CTIME)
6291 		inode->i_ctime = *now;
6292 	if (flags & S_MTIME)
6293 		inode->i_mtime = *now;
6294 	if (flags & S_ATIME)
6295 		inode->i_atime = *now;
6296 	return dirty ? btrfs_dirty_inode(inode) : 0;
6297 }
6298 
6299 /*
6300  * find the highest existing sequence number in a directory
6301  * and then set the in-memory index_cnt variable to reflect
6302  * free sequence numbers
6303  */
6304 static int btrfs_set_inode_index_count(struct btrfs_inode *inode)
6305 {
6306 	struct btrfs_root *root = inode->root;
6307 	struct btrfs_key key, found_key;
6308 	struct btrfs_path *path;
6309 	struct extent_buffer *leaf;
6310 	int ret;
6311 
6312 	key.objectid = btrfs_ino(inode);
6313 	key.type = BTRFS_DIR_INDEX_KEY;
6314 	key.offset = (u64)-1;
6315 
6316 	path = btrfs_alloc_path();
6317 	if (!path)
6318 		return -ENOMEM;
6319 
6320 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6321 	if (ret < 0)
6322 		goto out;
6323 	/* FIXME: we should be able to handle this */
6324 	if (ret == 0)
6325 		goto out;
6326 	ret = 0;
6327 
6328 	/*
6329 	 * MAGIC NUMBER EXPLANATION:
6330 	 * since we search a directory based on f_pos we have to start at 2
6331 	 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
6332 	 * else has to start at 2
6333 	 */
6334 	if (path->slots[0] == 0) {
6335 		inode->index_cnt = 2;
6336 		goto out;
6337 	}
6338 
6339 	path->slots[0]--;
6340 
6341 	leaf = path->nodes[0];
6342 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6343 
6344 	if (found_key.objectid != btrfs_ino(inode) ||
6345 	    found_key.type != BTRFS_DIR_INDEX_KEY) {
6346 		inode->index_cnt = 2;
6347 		goto out;
6348 	}
6349 
6350 	inode->index_cnt = found_key.offset + 1;
6351 out:
6352 	btrfs_free_path(path);
6353 	return ret;
6354 }
6355 
6356 /*
6357  * helper to find a free sequence number in a given directory.  This current
6358  * code is very simple, later versions will do smarter things in the btree
6359  */
6360 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index)
6361 {
6362 	int ret = 0;
6363 
6364 	if (dir->index_cnt == (u64)-1) {
6365 		ret = btrfs_inode_delayed_dir_index_count(dir);
6366 		if (ret) {
6367 			ret = btrfs_set_inode_index_count(dir);
6368 			if (ret)
6369 				return ret;
6370 		}
6371 	}
6372 
6373 	*index = dir->index_cnt;
6374 	dir->index_cnt++;
6375 
6376 	return ret;
6377 }
6378 
6379 static int btrfs_insert_inode_locked(struct inode *inode)
6380 {
6381 	struct btrfs_iget_args args;
6382 
6383 	args.ino = BTRFS_I(inode)->location.objectid;
6384 	args.root = BTRFS_I(inode)->root;
6385 
6386 	return insert_inode_locked4(inode,
6387 		   btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
6388 		   btrfs_find_actor, &args);
6389 }
6390 
6391 /*
6392  * Inherit flags from the parent inode.
6393  *
6394  * Currently only the compression flags and the cow flags are inherited.
6395  */
6396 static void btrfs_inherit_iflags(struct inode *inode, struct inode *dir)
6397 {
6398 	unsigned int flags;
6399 
6400 	if (!dir)
6401 		return;
6402 
6403 	flags = BTRFS_I(dir)->flags;
6404 
6405 	if (flags & BTRFS_INODE_NOCOMPRESS) {
6406 		BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS;
6407 		BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
6408 	} else if (flags & BTRFS_INODE_COMPRESS) {
6409 		BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS;
6410 		BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS;
6411 	}
6412 
6413 	if (flags & BTRFS_INODE_NODATACOW) {
6414 		BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
6415 		if (S_ISREG(inode->i_mode))
6416 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6417 	}
6418 
6419 	btrfs_sync_inode_flags_to_i_flags(inode);
6420 }
6421 
6422 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
6423 				     struct btrfs_root *root,
6424 				     struct user_namespace *mnt_userns,
6425 				     struct inode *dir,
6426 				     const char *name, int name_len,
6427 				     u64 ref_objectid, u64 objectid,
6428 				     umode_t mode, u64 *index)
6429 {
6430 	struct btrfs_fs_info *fs_info = root->fs_info;
6431 	struct inode *inode;
6432 	struct btrfs_inode_item *inode_item;
6433 	struct btrfs_key *location;
6434 	struct btrfs_path *path;
6435 	struct btrfs_inode_ref *ref;
6436 	struct btrfs_key key[2];
6437 	u32 sizes[2];
6438 	int nitems = name ? 2 : 1;
6439 	unsigned long ptr;
6440 	unsigned int nofs_flag;
6441 	int ret;
6442 
6443 	path = btrfs_alloc_path();
6444 	if (!path)
6445 		return ERR_PTR(-ENOMEM);
6446 
6447 	nofs_flag = memalloc_nofs_save();
6448 	inode = new_inode(fs_info->sb);
6449 	memalloc_nofs_restore(nofs_flag);
6450 	if (!inode) {
6451 		btrfs_free_path(path);
6452 		return ERR_PTR(-ENOMEM);
6453 	}
6454 
6455 	/*
6456 	 * O_TMPFILE, set link count to 0, so that after this point,
6457 	 * we fill in an inode item with the correct link count.
6458 	 */
6459 	if (!name)
6460 		set_nlink(inode, 0);
6461 
6462 	/*
6463 	 * we have to initialize this early, so we can reclaim the inode
6464 	 * number if we fail afterwards in this function.
6465 	 */
6466 	inode->i_ino = objectid;
6467 
6468 	if (dir && name) {
6469 		trace_btrfs_inode_request(dir);
6470 
6471 		ret = btrfs_set_inode_index(BTRFS_I(dir), index);
6472 		if (ret) {
6473 			btrfs_free_path(path);
6474 			iput(inode);
6475 			return ERR_PTR(ret);
6476 		}
6477 	} else if (dir) {
6478 		*index = 0;
6479 	}
6480 	/*
6481 	 * index_cnt is ignored for everything but a dir,
6482 	 * btrfs_set_inode_index_count has an explanation for the magic
6483 	 * number
6484 	 */
6485 	BTRFS_I(inode)->index_cnt = 2;
6486 	BTRFS_I(inode)->dir_index = *index;
6487 	BTRFS_I(inode)->root = btrfs_grab_root(root);
6488 	BTRFS_I(inode)->generation = trans->transid;
6489 	inode->i_generation = BTRFS_I(inode)->generation;
6490 
6491 	/*
6492 	 * We could have gotten an inode number from somebody who was fsynced
6493 	 * and then removed in this same transaction, so let's just set full
6494 	 * sync since it will be a full sync anyway and this will blow away the
6495 	 * old info in the log.
6496 	 */
6497 	set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
6498 
6499 	key[0].objectid = objectid;
6500 	key[0].type = BTRFS_INODE_ITEM_KEY;
6501 	key[0].offset = 0;
6502 
6503 	sizes[0] = sizeof(struct btrfs_inode_item);
6504 
6505 	if (name) {
6506 		/*
6507 		 * Start new inodes with an inode_ref. This is slightly more
6508 		 * efficient for small numbers of hard links since they will
6509 		 * be packed into one item. Extended refs will kick in if we
6510 		 * add more hard links than can fit in the ref item.
6511 		 */
6512 		key[1].objectid = objectid;
6513 		key[1].type = BTRFS_INODE_REF_KEY;
6514 		key[1].offset = ref_objectid;
6515 
6516 		sizes[1] = name_len + sizeof(*ref);
6517 	}
6518 
6519 	location = &BTRFS_I(inode)->location;
6520 	location->objectid = objectid;
6521 	location->offset = 0;
6522 	location->type = BTRFS_INODE_ITEM_KEY;
6523 
6524 	ret = btrfs_insert_inode_locked(inode);
6525 	if (ret < 0) {
6526 		iput(inode);
6527 		goto fail;
6528 	}
6529 
6530 	ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems);
6531 	if (ret != 0)
6532 		goto fail_unlock;
6533 
6534 	inode_init_owner(mnt_userns, inode, dir, mode);
6535 	inode_set_bytes(inode, 0);
6536 
6537 	inode->i_mtime = current_time(inode);
6538 	inode->i_atime = inode->i_mtime;
6539 	inode->i_ctime = inode->i_mtime;
6540 	BTRFS_I(inode)->i_otime = inode->i_mtime;
6541 
6542 	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6543 				  struct btrfs_inode_item);
6544 	memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item,
6545 			     sizeof(*inode_item));
6546 	fill_inode_item(trans, path->nodes[0], inode_item, inode);
6547 
6548 	if (name) {
6549 		ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6550 				     struct btrfs_inode_ref);
6551 		btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
6552 		btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
6553 		ptr = (unsigned long)(ref + 1);
6554 		write_extent_buffer(path->nodes[0], name, ptr, name_len);
6555 	}
6556 
6557 	btrfs_mark_buffer_dirty(path->nodes[0]);
6558 	btrfs_free_path(path);
6559 
6560 	btrfs_inherit_iflags(inode, dir);
6561 
6562 	if (S_ISREG(mode)) {
6563 		if (btrfs_test_opt(fs_info, NODATASUM))
6564 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6565 		if (btrfs_test_opt(fs_info, NODATACOW))
6566 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6567 				BTRFS_INODE_NODATASUM;
6568 	}
6569 
6570 	inode_tree_add(inode);
6571 
6572 	trace_btrfs_inode_new(inode);
6573 	btrfs_set_inode_last_trans(trans, BTRFS_I(inode));
6574 
6575 	btrfs_update_root_times(trans, root);
6576 
6577 	ret = btrfs_inode_inherit_props(trans, inode, dir);
6578 	if (ret)
6579 		btrfs_err(fs_info,
6580 			  "error inheriting props for ino %llu (root %llu): %d",
6581 			btrfs_ino(BTRFS_I(inode)), root->root_key.objectid, ret);
6582 
6583 	return inode;
6584 
6585 fail_unlock:
6586 	discard_new_inode(inode);
6587 fail:
6588 	if (dir && name)
6589 		BTRFS_I(dir)->index_cnt--;
6590 	btrfs_free_path(path);
6591 	return ERR_PTR(ret);
6592 }
6593 
6594 /*
6595  * utility function to add 'inode' into 'parent_inode' with
6596  * a give name and a given sequence number.
6597  * if 'add_backref' is true, also insert a backref from the
6598  * inode to the parent directory.
6599  */
6600 int btrfs_add_link(struct btrfs_trans_handle *trans,
6601 		   struct btrfs_inode *parent_inode, struct btrfs_inode *inode,
6602 		   const char *name, int name_len, int add_backref, u64 index)
6603 {
6604 	int ret = 0;
6605 	struct btrfs_key key;
6606 	struct btrfs_root *root = parent_inode->root;
6607 	u64 ino = btrfs_ino(inode);
6608 	u64 parent_ino = btrfs_ino(parent_inode);
6609 
6610 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6611 		memcpy(&key, &inode->root->root_key, sizeof(key));
6612 	} else {
6613 		key.objectid = ino;
6614 		key.type = BTRFS_INODE_ITEM_KEY;
6615 		key.offset = 0;
6616 	}
6617 
6618 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6619 		ret = btrfs_add_root_ref(trans, key.objectid,
6620 					 root->root_key.objectid, parent_ino,
6621 					 index, name, name_len);
6622 	} else if (add_backref) {
6623 		ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
6624 					     parent_ino, index);
6625 	}
6626 
6627 	/* Nothing to clean up yet */
6628 	if (ret)
6629 		return ret;
6630 
6631 	ret = btrfs_insert_dir_item(trans, name, name_len, parent_inode, &key,
6632 				    btrfs_inode_type(&inode->vfs_inode), index);
6633 	if (ret == -EEXIST || ret == -EOVERFLOW)
6634 		goto fail_dir_item;
6635 	else if (ret) {
6636 		btrfs_abort_transaction(trans, ret);
6637 		return ret;
6638 	}
6639 
6640 	btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size +
6641 			   name_len * 2);
6642 	inode_inc_iversion(&parent_inode->vfs_inode);
6643 	/*
6644 	 * If we are replaying a log tree, we do not want to update the mtime
6645 	 * and ctime of the parent directory with the current time, since the
6646 	 * log replay procedure is responsible for setting them to their correct
6647 	 * values (the ones it had when the fsync was done).
6648 	 */
6649 	if (!test_bit(BTRFS_FS_LOG_RECOVERING, &root->fs_info->flags)) {
6650 		struct timespec64 now = current_time(&parent_inode->vfs_inode);
6651 
6652 		parent_inode->vfs_inode.i_mtime = now;
6653 		parent_inode->vfs_inode.i_ctime = now;
6654 	}
6655 	ret = btrfs_update_inode(trans, root, parent_inode);
6656 	if (ret)
6657 		btrfs_abort_transaction(trans, ret);
6658 	return ret;
6659 
6660 fail_dir_item:
6661 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6662 		u64 local_index;
6663 		int err;
6664 		err = btrfs_del_root_ref(trans, key.objectid,
6665 					 root->root_key.objectid, parent_ino,
6666 					 &local_index, name, name_len);
6667 		if (err)
6668 			btrfs_abort_transaction(trans, err);
6669 	} else if (add_backref) {
6670 		u64 local_index;
6671 		int err;
6672 
6673 		err = btrfs_del_inode_ref(trans, root, name, name_len,
6674 					  ino, parent_ino, &local_index);
6675 		if (err)
6676 			btrfs_abort_transaction(trans, err);
6677 	}
6678 
6679 	/* Return the original error code */
6680 	return ret;
6681 }
6682 
6683 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
6684 			    struct btrfs_inode *dir, struct dentry *dentry,
6685 			    struct btrfs_inode *inode, int backref, u64 index)
6686 {
6687 	int err = btrfs_add_link(trans, dir, inode,
6688 				 dentry->d_name.name, dentry->d_name.len,
6689 				 backref, index);
6690 	if (err > 0)
6691 		err = -EEXIST;
6692 	return err;
6693 }
6694 
6695 static int btrfs_mknod(struct user_namespace *mnt_userns, struct inode *dir,
6696 		       struct dentry *dentry, umode_t mode, dev_t rdev)
6697 {
6698 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6699 	struct btrfs_trans_handle *trans;
6700 	struct btrfs_root *root = BTRFS_I(dir)->root;
6701 	struct inode *inode = NULL;
6702 	int err;
6703 	u64 objectid;
6704 	u64 index = 0;
6705 
6706 	/*
6707 	 * 2 for inode item and ref
6708 	 * 2 for dir items
6709 	 * 1 for xattr if selinux is on
6710 	 */
6711 	trans = btrfs_start_transaction(root, 5);
6712 	if (IS_ERR(trans))
6713 		return PTR_ERR(trans);
6714 
6715 	err = btrfs_get_free_objectid(root, &objectid);
6716 	if (err)
6717 		goto out_unlock;
6718 
6719 	inode = btrfs_new_inode(trans, root, mnt_userns, dir,
6720 			dentry->d_name.name, dentry->d_name.len,
6721 			btrfs_ino(BTRFS_I(dir)), objectid, mode, &index);
6722 	if (IS_ERR(inode)) {
6723 		err = PTR_ERR(inode);
6724 		inode = NULL;
6725 		goto out_unlock;
6726 	}
6727 
6728 	/*
6729 	* If the active LSM wants to access the inode during
6730 	* d_instantiate it needs these. Smack checks to see
6731 	* if the filesystem supports xattrs by looking at the
6732 	* ops vector.
6733 	*/
6734 	inode->i_op = &btrfs_special_inode_operations;
6735 	init_special_inode(inode, inode->i_mode, rdev);
6736 
6737 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6738 	if (err)
6739 		goto out_unlock;
6740 
6741 	err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6742 			0, index);
6743 	if (err)
6744 		goto out_unlock;
6745 
6746 	btrfs_update_inode(trans, root, BTRFS_I(inode));
6747 	d_instantiate_new(dentry, inode);
6748 
6749 out_unlock:
6750 	btrfs_end_transaction(trans);
6751 	btrfs_btree_balance_dirty(fs_info);
6752 	if (err && inode) {
6753 		inode_dec_link_count(inode);
6754 		discard_new_inode(inode);
6755 	}
6756 	return err;
6757 }
6758 
6759 static int btrfs_create(struct user_namespace *mnt_userns, struct inode *dir,
6760 			struct dentry *dentry, umode_t mode, bool excl)
6761 {
6762 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6763 	struct btrfs_trans_handle *trans;
6764 	struct btrfs_root *root = BTRFS_I(dir)->root;
6765 	struct inode *inode = NULL;
6766 	int err;
6767 	u64 objectid;
6768 	u64 index = 0;
6769 
6770 	/*
6771 	 * 2 for inode item and ref
6772 	 * 2 for dir items
6773 	 * 1 for xattr if selinux is on
6774 	 */
6775 	trans = btrfs_start_transaction(root, 5);
6776 	if (IS_ERR(trans))
6777 		return PTR_ERR(trans);
6778 
6779 	err = btrfs_get_free_objectid(root, &objectid);
6780 	if (err)
6781 		goto out_unlock;
6782 
6783 	inode = btrfs_new_inode(trans, root, mnt_userns, dir,
6784 			dentry->d_name.name, dentry->d_name.len,
6785 			btrfs_ino(BTRFS_I(dir)), objectid, mode, &index);
6786 	if (IS_ERR(inode)) {
6787 		err = PTR_ERR(inode);
6788 		inode = NULL;
6789 		goto out_unlock;
6790 	}
6791 	/*
6792 	* If the active LSM wants to access the inode during
6793 	* d_instantiate it needs these. Smack checks to see
6794 	* if the filesystem supports xattrs by looking at the
6795 	* ops vector.
6796 	*/
6797 	inode->i_fop = &btrfs_file_operations;
6798 	inode->i_op = &btrfs_file_inode_operations;
6799 	inode->i_mapping->a_ops = &btrfs_aops;
6800 
6801 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6802 	if (err)
6803 		goto out_unlock;
6804 
6805 	err = btrfs_update_inode(trans, root, BTRFS_I(inode));
6806 	if (err)
6807 		goto out_unlock;
6808 
6809 	err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6810 			0, index);
6811 	if (err)
6812 		goto out_unlock;
6813 
6814 	d_instantiate_new(dentry, inode);
6815 
6816 out_unlock:
6817 	btrfs_end_transaction(trans);
6818 	if (err && inode) {
6819 		inode_dec_link_count(inode);
6820 		discard_new_inode(inode);
6821 	}
6822 	btrfs_btree_balance_dirty(fs_info);
6823 	return err;
6824 }
6825 
6826 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6827 		      struct dentry *dentry)
6828 {
6829 	struct btrfs_trans_handle *trans = NULL;
6830 	struct btrfs_root *root = BTRFS_I(dir)->root;
6831 	struct inode *inode = d_inode(old_dentry);
6832 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
6833 	u64 index;
6834 	int err;
6835 	int drop_inode = 0;
6836 
6837 	/* do not allow sys_link's with other subvols of the same device */
6838 	if (root->root_key.objectid != BTRFS_I(inode)->root->root_key.objectid)
6839 		return -EXDEV;
6840 
6841 	if (inode->i_nlink >= BTRFS_LINK_MAX)
6842 		return -EMLINK;
6843 
6844 	err = btrfs_set_inode_index(BTRFS_I(dir), &index);
6845 	if (err)
6846 		goto fail;
6847 
6848 	/*
6849 	 * 2 items for inode and inode ref
6850 	 * 2 items for dir items
6851 	 * 1 item for parent inode
6852 	 * 1 item for orphan item deletion if O_TMPFILE
6853 	 */
6854 	trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6);
6855 	if (IS_ERR(trans)) {
6856 		err = PTR_ERR(trans);
6857 		trans = NULL;
6858 		goto fail;
6859 	}
6860 
6861 	/* There are several dir indexes for this inode, clear the cache. */
6862 	BTRFS_I(inode)->dir_index = 0ULL;
6863 	inc_nlink(inode);
6864 	inode_inc_iversion(inode);
6865 	inode->i_ctime = current_time(inode);
6866 	ihold(inode);
6867 	set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
6868 
6869 	err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6870 			1, index);
6871 
6872 	if (err) {
6873 		drop_inode = 1;
6874 	} else {
6875 		struct dentry *parent = dentry->d_parent;
6876 
6877 		err = btrfs_update_inode(trans, root, BTRFS_I(inode));
6878 		if (err)
6879 			goto fail;
6880 		if (inode->i_nlink == 1) {
6881 			/*
6882 			 * If new hard link count is 1, it's a file created
6883 			 * with open(2) O_TMPFILE flag.
6884 			 */
6885 			err = btrfs_orphan_del(trans, BTRFS_I(inode));
6886 			if (err)
6887 				goto fail;
6888 		}
6889 		d_instantiate(dentry, inode);
6890 		btrfs_log_new_name(trans, BTRFS_I(inode), NULL, parent);
6891 	}
6892 
6893 fail:
6894 	if (trans)
6895 		btrfs_end_transaction(trans);
6896 	if (drop_inode) {
6897 		inode_dec_link_count(inode);
6898 		iput(inode);
6899 	}
6900 	btrfs_btree_balance_dirty(fs_info);
6901 	return err;
6902 }
6903 
6904 static int btrfs_mkdir(struct user_namespace *mnt_userns, struct inode *dir,
6905 		       struct dentry *dentry, umode_t mode)
6906 {
6907 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6908 	struct inode *inode = NULL;
6909 	struct btrfs_trans_handle *trans;
6910 	struct btrfs_root *root = BTRFS_I(dir)->root;
6911 	int err = 0;
6912 	u64 objectid = 0;
6913 	u64 index = 0;
6914 
6915 	/*
6916 	 * 2 items for inode and ref
6917 	 * 2 items for dir items
6918 	 * 1 for xattr if selinux is on
6919 	 */
6920 	trans = btrfs_start_transaction(root, 5);
6921 	if (IS_ERR(trans))
6922 		return PTR_ERR(trans);
6923 
6924 	err = btrfs_get_free_objectid(root, &objectid);
6925 	if (err)
6926 		goto out_fail;
6927 
6928 	inode = btrfs_new_inode(trans, root, mnt_userns, dir,
6929 			dentry->d_name.name, dentry->d_name.len,
6930 			btrfs_ino(BTRFS_I(dir)), objectid,
6931 			S_IFDIR | mode, &index);
6932 	if (IS_ERR(inode)) {
6933 		err = PTR_ERR(inode);
6934 		inode = NULL;
6935 		goto out_fail;
6936 	}
6937 
6938 	/* these must be set before we unlock the inode */
6939 	inode->i_op = &btrfs_dir_inode_operations;
6940 	inode->i_fop = &btrfs_dir_file_operations;
6941 
6942 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6943 	if (err)
6944 		goto out_fail;
6945 
6946 	btrfs_i_size_write(BTRFS_I(inode), 0);
6947 	err = btrfs_update_inode(trans, root, BTRFS_I(inode));
6948 	if (err)
6949 		goto out_fail;
6950 
6951 	err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
6952 			dentry->d_name.name,
6953 			dentry->d_name.len, 0, index);
6954 	if (err)
6955 		goto out_fail;
6956 
6957 	d_instantiate_new(dentry, inode);
6958 
6959 out_fail:
6960 	btrfs_end_transaction(trans);
6961 	if (err && inode) {
6962 		inode_dec_link_count(inode);
6963 		discard_new_inode(inode);
6964 	}
6965 	btrfs_btree_balance_dirty(fs_info);
6966 	return err;
6967 }
6968 
6969 static noinline int uncompress_inline(struct btrfs_path *path,
6970 				      struct page *page,
6971 				      size_t pg_offset, u64 extent_offset,
6972 				      struct btrfs_file_extent_item *item)
6973 {
6974 	int ret;
6975 	struct extent_buffer *leaf = path->nodes[0];
6976 	char *tmp;
6977 	size_t max_size;
6978 	unsigned long inline_size;
6979 	unsigned long ptr;
6980 	int compress_type;
6981 
6982 	WARN_ON(pg_offset != 0);
6983 	compress_type = btrfs_file_extent_compression(leaf, item);
6984 	max_size = btrfs_file_extent_ram_bytes(leaf, item);
6985 	inline_size = btrfs_file_extent_inline_item_len(leaf,
6986 					btrfs_item_nr(path->slots[0]));
6987 	tmp = kmalloc(inline_size, GFP_NOFS);
6988 	if (!tmp)
6989 		return -ENOMEM;
6990 	ptr = btrfs_file_extent_inline_start(item);
6991 
6992 	read_extent_buffer(leaf, tmp, ptr, inline_size);
6993 
6994 	max_size = min_t(unsigned long, PAGE_SIZE, max_size);
6995 	ret = btrfs_decompress(compress_type, tmp, page,
6996 			       extent_offset, inline_size, max_size);
6997 
6998 	/*
6999 	 * decompression code contains a memset to fill in any space between the end
7000 	 * of the uncompressed data and the end of max_size in case the decompressed
7001 	 * data ends up shorter than ram_bytes.  That doesn't cover the hole between
7002 	 * the end of an inline extent and the beginning of the next block, so we
7003 	 * cover that region here.
7004 	 */
7005 
7006 	if (max_size + pg_offset < PAGE_SIZE)
7007 		memzero_page(page,  pg_offset + max_size,
7008 			     PAGE_SIZE - max_size - pg_offset);
7009 	kfree(tmp);
7010 	return ret;
7011 }
7012 
7013 /**
7014  * btrfs_get_extent - Lookup the first extent overlapping a range in a file.
7015  * @inode:	file to search in
7016  * @page:	page to read extent data into if the extent is inline
7017  * @pg_offset:	offset into @page to copy to
7018  * @start:	file offset
7019  * @len:	length of range starting at @start
7020  *
7021  * This returns the first &struct extent_map which overlaps with the given
7022  * range, reading it from the B-tree and caching it if necessary. Note that
7023  * there may be more extents which overlap the given range after the returned
7024  * extent_map.
7025  *
7026  * If @page is not NULL and the extent is inline, this also reads the extent
7027  * data directly into the page and marks the extent up to date in the io_tree.
7028  *
7029  * Return: ERR_PTR on error, non-NULL extent_map on success.
7030  */
7031 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode,
7032 				    struct page *page, size_t pg_offset,
7033 				    u64 start, u64 len)
7034 {
7035 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
7036 	int ret = 0;
7037 	u64 extent_start = 0;
7038 	u64 extent_end = 0;
7039 	u64 objectid = btrfs_ino(inode);
7040 	int extent_type = -1;
7041 	struct btrfs_path *path = NULL;
7042 	struct btrfs_root *root = inode->root;
7043 	struct btrfs_file_extent_item *item;
7044 	struct extent_buffer *leaf;
7045 	struct btrfs_key found_key;
7046 	struct extent_map *em = NULL;
7047 	struct extent_map_tree *em_tree = &inode->extent_tree;
7048 	struct extent_io_tree *io_tree = &inode->io_tree;
7049 
7050 	read_lock(&em_tree->lock);
7051 	em = lookup_extent_mapping(em_tree, start, len);
7052 	read_unlock(&em_tree->lock);
7053 
7054 	if (em) {
7055 		if (em->start > start || em->start + em->len <= start)
7056 			free_extent_map(em);
7057 		else if (em->block_start == EXTENT_MAP_INLINE && page)
7058 			free_extent_map(em);
7059 		else
7060 			goto out;
7061 	}
7062 	em = alloc_extent_map();
7063 	if (!em) {
7064 		ret = -ENOMEM;
7065 		goto out;
7066 	}
7067 	em->start = EXTENT_MAP_HOLE;
7068 	em->orig_start = EXTENT_MAP_HOLE;
7069 	em->len = (u64)-1;
7070 	em->block_len = (u64)-1;
7071 
7072 	path = btrfs_alloc_path();
7073 	if (!path) {
7074 		ret = -ENOMEM;
7075 		goto out;
7076 	}
7077 
7078 	/* Chances are we'll be called again, so go ahead and do readahead */
7079 	path->reada = READA_FORWARD;
7080 
7081 	/*
7082 	 * The same explanation in load_free_space_cache applies here as well,
7083 	 * we only read when we're loading the free space cache, and at that
7084 	 * point the commit_root has everything we need.
7085 	 */
7086 	if (btrfs_is_free_space_inode(inode)) {
7087 		path->search_commit_root = 1;
7088 		path->skip_locking = 1;
7089 	}
7090 
7091 	ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0);
7092 	if (ret < 0) {
7093 		goto out;
7094 	} else if (ret > 0) {
7095 		if (path->slots[0] == 0)
7096 			goto not_found;
7097 		path->slots[0]--;
7098 		ret = 0;
7099 	}
7100 
7101 	leaf = path->nodes[0];
7102 	item = btrfs_item_ptr(leaf, path->slots[0],
7103 			      struct btrfs_file_extent_item);
7104 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
7105 	if (found_key.objectid != objectid ||
7106 	    found_key.type != BTRFS_EXTENT_DATA_KEY) {
7107 		/*
7108 		 * If we backup past the first extent we want to move forward
7109 		 * and see if there is an extent in front of us, otherwise we'll
7110 		 * say there is a hole for our whole search range which can
7111 		 * cause problems.
7112 		 */
7113 		extent_end = start;
7114 		goto next;
7115 	}
7116 
7117 	extent_type = btrfs_file_extent_type(leaf, item);
7118 	extent_start = found_key.offset;
7119 	extent_end = btrfs_file_extent_end(path);
7120 	if (extent_type == BTRFS_FILE_EXTENT_REG ||
7121 	    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
7122 		/* Only regular file could have regular/prealloc extent */
7123 		if (!S_ISREG(inode->vfs_inode.i_mode)) {
7124 			ret = -EUCLEAN;
7125 			btrfs_crit(fs_info,
7126 		"regular/prealloc extent found for non-regular inode %llu",
7127 				   btrfs_ino(inode));
7128 			goto out;
7129 		}
7130 		trace_btrfs_get_extent_show_fi_regular(inode, leaf, item,
7131 						       extent_start);
7132 	} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
7133 		trace_btrfs_get_extent_show_fi_inline(inode, leaf, item,
7134 						      path->slots[0],
7135 						      extent_start);
7136 	}
7137 next:
7138 	if (start >= extent_end) {
7139 		path->slots[0]++;
7140 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
7141 			ret = btrfs_next_leaf(root, path);
7142 			if (ret < 0)
7143 				goto out;
7144 			else if (ret > 0)
7145 				goto not_found;
7146 
7147 			leaf = path->nodes[0];
7148 		}
7149 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
7150 		if (found_key.objectid != objectid ||
7151 		    found_key.type != BTRFS_EXTENT_DATA_KEY)
7152 			goto not_found;
7153 		if (start + len <= found_key.offset)
7154 			goto not_found;
7155 		if (start > found_key.offset)
7156 			goto next;
7157 
7158 		/* New extent overlaps with existing one */
7159 		em->start = start;
7160 		em->orig_start = start;
7161 		em->len = found_key.offset - start;
7162 		em->block_start = EXTENT_MAP_HOLE;
7163 		goto insert;
7164 	}
7165 
7166 	btrfs_extent_item_to_extent_map(inode, path, item, !page, em);
7167 
7168 	if (extent_type == BTRFS_FILE_EXTENT_REG ||
7169 	    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
7170 		goto insert;
7171 	} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
7172 		unsigned long ptr;
7173 		char *map;
7174 		size_t size;
7175 		size_t extent_offset;
7176 		size_t copy_size;
7177 
7178 		if (!page)
7179 			goto out;
7180 
7181 		size = btrfs_file_extent_ram_bytes(leaf, item);
7182 		extent_offset = page_offset(page) + pg_offset - extent_start;
7183 		copy_size = min_t(u64, PAGE_SIZE - pg_offset,
7184 				  size - extent_offset);
7185 		em->start = extent_start + extent_offset;
7186 		em->len = ALIGN(copy_size, fs_info->sectorsize);
7187 		em->orig_block_len = em->len;
7188 		em->orig_start = em->start;
7189 		ptr = btrfs_file_extent_inline_start(item) + extent_offset;
7190 
7191 		if (!PageUptodate(page)) {
7192 			if (btrfs_file_extent_compression(leaf, item) !=
7193 			    BTRFS_COMPRESS_NONE) {
7194 				ret = uncompress_inline(path, page, pg_offset,
7195 							extent_offset, item);
7196 				if (ret)
7197 					goto out;
7198 			} else {
7199 				map = kmap_local_page(page);
7200 				read_extent_buffer(leaf, map + pg_offset, ptr,
7201 						   copy_size);
7202 				if (pg_offset + copy_size < PAGE_SIZE) {
7203 					memset(map + pg_offset + copy_size, 0,
7204 					       PAGE_SIZE - pg_offset -
7205 					       copy_size);
7206 				}
7207 				kunmap_local(map);
7208 			}
7209 			flush_dcache_page(page);
7210 		}
7211 		set_extent_uptodate(io_tree, em->start,
7212 				    extent_map_end(em) - 1, NULL, GFP_NOFS);
7213 		goto insert;
7214 	}
7215 not_found:
7216 	em->start = start;
7217 	em->orig_start = start;
7218 	em->len = len;
7219 	em->block_start = EXTENT_MAP_HOLE;
7220 insert:
7221 	ret = 0;
7222 	btrfs_release_path(path);
7223 	if (em->start > start || extent_map_end(em) <= start) {
7224 		btrfs_err(fs_info,
7225 			  "bad extent! em: [%llu %llu] passed [%llu %llu]",
7226 			  em->start, em->len, start, len);
7227 		ret = -EIO;
7228 		goto out;
7229 	}
7230 
7231 	write_lock(&em_tree->lock);
7232 	ret = btrfs_add_extent_mapping(fs_info, em_tree, &em, start, len);
7233 	write_unlock(&em_tree->lock);
7234 out:
7235 	btrfs_free_path(path);
7236 
7237 	trace_btrfs_get_extent(root, inode, em);
7238 
7239 	if (ret) {
7240 		free_extent_map(em);
7241 		return ERR_PTR(ret);
7242 	}
7243 	return em;
7244 }
7245 
7246 struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode,
7247 					   u64 start, u64 len)
7248 {
7249 	struct extent_map *em;
7250 	struct extent_map *hole_em = NULL;
7251 	u64 delalloc_start = start;
7252 	u64 end;
7253 	u64 delalloc_len;
7254 	u64 delalloc_end;
7255 	int err = 0;
7256 
7257 	em = btrfs_get_extent(inode, NULL, 0, start, len);
7258 	if (IS_ERR(em))
7259 		return em;
7260 	/*
7261 	 * If our em maps to:
7262 	 * - a hole or
7263 	 * - a pre-alloc extent,
7264 	 * there might actually be delalloc bytes behind it.
7265 	 */
7266 	if (em->block_start != EXTENT_MAP_HOLE &&
7267 	    !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7268 		return em;
7269 	else
7270 		hole_em = em;
7271 
7272 	/* check to see if we've wrapped (len == -1 or similar) */
7273 	end = start + len;
7274 	if (end < start)
7275 		end = (u64)-1;
7276 	else
7277 		end -= 1;
7278 
7279 	em = NULL;
7280 
7281 	/* ok, we didn't find anything, lets look for delalloc */
7282 	delalloc_len = count_range_bits(&inode->io_tree, &delalloc_start,
7283 				 end, len, EXTENT_DELALLOC, 1);
7284 	delalloc_end = delalloc_start + delalloc_len;
7285 	if (delalloc_end < delalloc_start)
7286 		delalloc_end = (u64)-1;
7287 
7288 	/*
7289 	 * We didn't find anything useful, return the original results from
7290 	 * get_extent()
7291 	 */
7292 	if (delalloc_start > end || delalloc_end <= start) {
7293 		em = hole_em;
7294 		hole_em = NULL;
7295 		goto out;
7296 	}
7297 
7298 	/*
7299 	 * Adjust the delalloc_start to make sure it doesn't go backwards from
7300 	 * the start they passed in
7301 	 */
7302 	delalloc_start = max(start, delalloc_start);
7303 	delalloc_len = delalloc_end - delalloc_start;
7304 
7305 	if (delalloc_len > 0) {
7306 		u64 hole_start;
7307 		u64 hole_len;
7308 		const u64 hole_end = extent_map_end(hole_em);
7309 
7310 		em = alloc_extent_map();
7311 		if (!em) {
7312 			err = -ENOMEM;
7313 			goto out;
7314 		}
7315 
7316 		ASSERT(hole_em);
7317 		/*
7318 		 * When btrfs_get_extent can't find anything it returns one
7319 		 * huge hole
7320 		 *
7321 		 * Make sure what it found really fits our range, and adjust to
7322 		 * make sure it is based on the start from the caller
7323 		 */
7324 		if (hole_end <= start || hole_em->start > end) {
7325 		       free_extent_map(hole_em);
7326 		       hole_em = NULL;
7327 		} else {
7328 		       hole_start = max(hole_em->start, start);
7329 		       hole_len = hole_end - hole_start;
7330 		}
7331 
7332 		if (hole_em && delalloc_start > hole_start) {
7333 			/*
7334 			 * Our hole starts before our delalloc, so we have to
7335 			 * return just the parts of the hole that go until the
7336 			 * delalloc starts
7337 			 */
7338 			em->len = min(hole_len, delalloc_start - hole_start);
7339 			em->start = hole_start;
7340 			em->orig_start = hole_start;
7341 			/*
7342 			 * Don't adjust block start at all, it is fixed at
7343 			 * EXTENT_MAP_HOLE
7344 			 */
7345 			em->block_start = hole_em->block_start;
7346 			em->block_len = hole_len;
7347 			if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
7348 				set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
7349 		} else {
7350 			/*
7351 			 * Hole is out of passed range or it starts after
7352 			 * delalloc range
7353 			 */
7354 			em->start = delalloc_start;
7355 			em->len = delalloc_len;
7356 			em->orig_start = delalloc_start;
7357 			em->block_start = EXTENT_MAP_DELALLOC;
7358 			em->block_len = delalloc_len;
7359 		}
7360 	} else {
7361 		return hole_em;
7362 	}
7363 out:
7364 
7365 	free_extent_map(hole_em);
7366 	if (err) {
7367 		free_extent_map(em);
7368 		return ERR_PTR(err);
7369 	}
7370 	return em;
7371 }
7372 
7373 static struct extent_map *btrfs_create_dio_extent(struct btrfs_inode *inode,
7374 						  const u64 start,
7375 						  const u64 len,
7376 						  const u64 orig_start,
7377 						  const u64 block_start,
7378 						  const u64 block_len,
7379 						  const u64 orig_block_len,
7380 						  const u64 ram_bytes,
7381 						  const int type)
7382 {
7383 	struct extent_map *em = NULL;
7384 	int ret;
7385 
7386 	if (type != BTRFS_ORDERED_NOCOW) {
7387 		em = create_io_em(inode, start, len, orig_start, block_start,
7388 				  block_len, orig_block_len, ram_bytes,
7389 				  BTRFS_COMPRESS_NONE, /* compress_type */
7390 				  type);
7391 		if (IS_ERR(em))
7392 			goto out;
7393 	}
7394 	ret = btrfs_add_ordered_extent_dio(inode, start, block_start, len,
7395 					   block_len, type);
7396 	if (ret) {
7397 		if (em) {
7398 			free_extent_map(em);
7399 			btrfs_drop_extent_cache(inode, start, start + len - 1, 0);
7400 		}
7401 		em = ERR_PTR(ret);
7402 	}
7403  out:
7404 
7405 	return em;
7406 }
7407 
7408 static struct extent_map *btrfs_new_extent_direct(struct btrfs_inode *inode,
7409 						  u64 start, u64 len)
7410 {
7411 	struct btrfs_root *root = inode->root;
7412 	struct btrfs_fs_info *fs_info = root->fs_info;
7413 	struct extent_map *em;
7414 	struct btrfs_key ins;
7415 	u64 alloc_hint;
7416 	int ret;
7417 
7418 	alloc_hint = get_extent_allocation_hint(inode, start, len);
7419 	ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize,
7420 				   0, alloc_hint, &ins, 1, 1);
7421 	if (ret)
7422 		return ERR_PTR(ret);
7423 
7424 	em = btrfs_create_dio_extent(inode, start, ins.offset, start,
7425 				     ins.objectid, ins.offset, ins.offset,
7426 				     ins.offset, BTRFS_ORDERED_REGULAR);
7427 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
7428 	if (IS_ERR(em))
7429 		btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset,
7430 					   1);
7431 
7432 	return em;
7433 }
7434 
7435 static bool btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr)
7436 {
7437 	struct btrfs_block_group *block_group;
7438 	bool readonly = false;
7439 
7440 	block_group = btrfs_lookup_block_group(fs_info, bytenr);
7441 	if (!block_group || block_group->ro)
7442 		readonly = true;
7443 	if (block_group)
7444 		btrfs_put_block_group(block_group);
7445 	return readonly;
7446 }
7447 
7448 /*
7449  * Check if we can do nocow write into the range [@offset, @offset + @len)
7450  *
7451  * @offset:	File offset
7452  * @len:	The length to write, will be updated to the nocow writeable
7453  *		range
7454  * @orig_start:	(optional) Return the original file offset of the file extent
7455  * @orig_len:	(optional) Return the original on-disk length of the file extent
7456  * @ram_bytes:	(optional) Return the ram_bytes of the file extent
7457  * @strict:	if true, omit optimizations that might force us into unnecessary
7458  *		cow. e.g., don't trust generation number.
7459  *
7460  * Return:
7461  * >0	and update @len if we can do nocow write
7462  *  0	if we can't do nocow write
7463  * <0	if error happened
7464  *
7465  * NOTE: This only checks the file extents, caller is responsible to wait for
7466  *	 any ordered extents.
7467  */
7468 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7469 			      u64 *orig_start, u64 *orig_block_len,
7470 			      u64 *ram_bytes, bool strict)
7471 {
7472 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7473 	struct btrfs_path *path;
7474 	int ret;
7475 	struct extent_buffer *leaf;
7476 	struct btrfs_root *root = BTRFS_I(inode)->root;
7477 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7478 	struct btrfs_file_extent_item *fi;
7479 	struct btrfs_key key;
7480 	u64 disk_bytenr;
7481 	u64 backref_offset;
7482 	u64 extent_end;
7483 	u64 num_bytes;
7484 	int slot;
7485 	int found_type;
7486 	bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
7487 
7488 	path = btrfs_alloc_path();
7489 	if (!path)
7490 		return -ENOMEM;
7491 
7492 	ret = btrfs_lookup_file_extent(NULL, root, path,
7493 			btrfs_ino(BTRFS_I(inode)), offset, 0);
7494 	if (ret < 0)
7495 		goto out;
7496 
7497 	slot = path->slots[0];
7498 	if (ret == 1) {
7499 		if (slot == 0) {
7500 			/* can't find the item, must cow */
7501 			ret = 0;
7502 			goto out;
7503 		}
7504 		slot--;
7505 	}
7506 	ret = 0;
7507 	leaf = path->nodes[0];
7508 	btrfs_item_key_to_cpu(leaf, &key, slot);
7509 	if (key.objectid != btrfs_ino(BTRFS_I(inode)) ||
7510 	    key.type != BTRFS_EXTENT_DATA_KEY) {
7511 		/* not our file or wrong item type, must cow */
7512 		goto out;
7513 	}
7514 
7515 	if (key.offset > offset) {
7516 		/* Wrong offset, must cow */
7517 		goto out;
7518 	}
7519 
7520 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
7521 	found_type = btrfs_file_extent_type(leaf, fi);
7522 	if (found_type != BTRFS_FILE_EXTENT_REG &&
7523 	    found_type != BTRFS_FILE_EXTENT_PREALLOC) {
7524 		/* not a regular extent, must cow */
7525 		goto out;
7526 	}
7527 
7528 	if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
7529 		goto out;
7530 
7531 	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
7532 	if (extent_end <= offset)
7533 		goto out;
7534 
7535 	disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
7536 	if (disk_bytenr == 0)
7537 		goto out;
7538 
7539 	if (btrfs_file_extent_compression(leaf, fi) ||
7540 	    btrfs_file_extent_encryption(leaf, fi) ||
7541 	    btrfs_file_extent_other_encoding(leaf, fi))
7542 		goto out;
7543 
7544 	/*
7545 	 * Do the same check as in btrfs_cross_ref_exist but without the
7546 	 * unnecessary search.
7547 	 */
7548 	if (!strict &&
7549 	    (btrfs_file_extent_generation(leaf, fi) <=
7550 	     btrfs_root_last_snapshot(&root->root_item)))
7551 		goto out;
7552 
7553 	backref_offset = btrfs_file_extent_offset(leaf, fi);
7554 
7555 	if (orig_start) {
7556 		*orig_start = key.offset - backref_offset;
7557 		*orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
7558 		*ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
7559 	}
7560 
7561 	if (btrfs_extent_readonly(fs_info, disk_bytenr))
7562 		goto out;
7563 
7564 	num_bytes = min(offset + *len, extent_end) - offset;
7565 	if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7566 		u64 range_end;
7567 
7568 		range_end = round_up(offset + num_bytes,
7569 				     root->fs_info->sectorsize) - 1;
7570 		ret = test_range_bit(io_tree, offset, range_end,
7571 				     EXTENT_DELALLOC, 0, NULL);
7572 		if (ret) {
7573 			ret = -EAGAIN;
7574 			goto out;
7575 		}
7576 	}
7577 
7578 	btrfs_release_path(path);
7579 
7580 	/*
7581 	 * look for other files referencing this extent, if we
7582 	 * find any we must cow
7583 	 */
7584 
7585 	ret = btrfs_cross_ref_exist(root, btrfs_ino(BTRFS_I(inode)),
7586 				    key.offset - backref_offset, disk_bytenr,
7587 				    strict);
7588 	if (ret) {
7589 		ret = 0;
7590 		goto out;
7591 	}
7592 
7593 	/*
7594 	 * adjust disk_bytenr and num_bytes to cover just the bytes
7595 	 * in this extent we are about to write.  If there
7596 	 * are any csums in that range we have to cow in order
7597 	 * to keep the csums correct
7598 	 */
7599 	disk_bytenr += backref_offset;
7600 	disk_bytenr += offset - key.offset;
7601 	if (csum_exist_in_range(fs_info, disk_bytenr, num_bytes))
7602 		goto out;
7603 	/*
7604 	 * all of the above have passed, it is safe to overwrite this extent
7605 	 * without cow
7606 	 */
7607 	*len = num_bytes;
7608 	ret = 1;
7609 out:
7610 	btrfs_free_path(path);
7611 	return ret;
7612 }
7613 
7614 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
7615 			      struct extent_state **cached_state, bool writing)
7616 {
7617 	struct btrfs_ordered_extent *ordered;
7618 	int ret = 0;
7619 
7620 	while (1) {
7621 		lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7622 				 cached_state);
7623 		/*
7624 		 * We're concerned with the entire range that we're going to be
7625 		 * doing DIO to, so we need to make sure there's no ordered
7626 		 * extents in this range.
7627 		 */
7628 		ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart,
7629 						     lockend - lockstart + 1);
7630 
7631 		/*
7632 		 * We need to make sure there are no buffered pages in this
7633 		 * range either, we could have raced between the invalidate in
7634 		 * generic_file_direct_write and locking the extent.  The
7635 		 * invalidate needs to happen so that reads after a write do not
7636 		 * get stale data.
7637 		 */
7638 		if (!ordered &&
7639 		    (!writing || !filemap_range_has_page(inode->i_mapping,
7640 							 lockstart, lockend)))
7641 			break;
7642 
7643 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7644 				     cached_state);
7645 
7646 		if (ordered) {
7647 			/*
7648 			 * If we are doing a DIO read and the ordered extent we
7649 			 * found is for a buffered write, we can not wait for it
7650 			 * to complete and retry, because if we do so we can
7651 			 * deadlock with concurrent buffered writes on page
7652 			 * locks. This happens only if our DIO read covers more
7653 			 * than one extent map, if at this point has already
7654 			 * created an ordered extent for a previous extent map
7655 			 * and locked its range in the inode's io tree, and a
7656 			 * concurrent write against that previous extent map's
7657 			 * range and this range started (we unlock the ranges
7658 			 * in the io tree only when the bios complete and
7659 			 * buffered writes always lock pages before attempting
7660 			 * to lock range in the io tree).
7661 			 */
7662 			if (writing ||
7663 			    test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags))
7664 				btrfs_start_ordered_extent(ordered, 1);
7665 			else
7666 				ret = -ENOTBLK;
7667 			btrfs_put_ordered_extent(ordered);
7668 		} else {
7669 			/*
7670 			 * We could trigger writeback for this range (and wait
7671 			 * for it to complete) and then invalidate the pages for
7672 			 * this range (through invalidate_inode_pages2_range()),
7673 			 * but that can lead us to a deadlock with a concurrent
7674 			 * call to readahead (a buffered read or a defrag call
7675 			 * triggered a readahead) on a page lock due to an
7676 			 * ordered dio extent we created before but did not have
7677 			 * yet a corresponding bio submitted (whence it can not
7678 			 * complete), which makes readahead wait for that
7679 			 * ordered extent to complete while holding a lock on
7680 			 * that page.
7681 			 */
7682 			ret = -ENOTBLK;
7683 		}
7684 
7685 		if (ret)
7686 			break;
7687 
7688 		cond_resched();
7689 	}
7690 
7691 	return ret;
7692 }
7693 
7694 /* The callers of this must take lock_extent() */
7695 static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start,
7696 				       u64 len, u64 orig_start, u64 block_start,
7697 				       u64 block_len, u64 orig_block_len,
7698 				       u64 ram_bytes, int compress_type,
7699 				       int type)
7700 {
7701 	struct extent_map_tree *em_tree;
7702 	struct extent_map *em;
7703 	int ret;
7704 
7705 	ASSERT(type == BTRFS_ORDERED_PREALLOC ||
7706 	       type == BTRFS_ORDERED_COMPRESSED ||
7707 	       type == BTRFS_ORDERED_NOCOW ||
7708 	       type == BTRFS_ORDERED_REGULAR);
7709 
7710 	em_tree = &inode->extent_tree;
7711 	em = alloc_extent_map();
7712 	if (!em)
7713 		return ERR_PTR(-ENOMEM);
7714 
7715 	em->start = start;
7716 	em->orig_start = orig_start;
7717 	em->len = len;
7718 	em->block_len = block_len;
7719 	em->block_start = block_start;
7720 	em->orig_block_len = orig_block_len;
7721 	em->ram_bytes = ram_bytes;
7722 	em->generation = -1;
7723 	set_bit(EXTENT_FLAG_PINNED, &em->flags);
7724 	if (type == BTRFS_ORDERED_PREALLOC) {
7725 		set_bit(EXTENT_FLAG_FILLING, &em->flags);
7726 	} else if (type == BTRFS_ORDERED_COMPRESSED) {
7727 		set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
7728 		em->compress_type = compress_type;
7729 	}
7730 
7731 	do {
7732 		btrfs_drop_extent_cache(inode, em->start,
7733 					em->start + em->len - 1, 0);
7734 		write_lock(&em_tree->lock);
7735 		ret = add_extent_mapping(em_tree, em, 1);
7736 		write_unlock(&em_tree->lock);
7737 		/*
7738 		 * The caller has taken lock_extent(), who could race with us
7739 		 * to add em?
7740 		 */
7741 	} while (ret == -EEXIST);
7742 
7743 	if (ret) {
7744 		free_extent_map(em);
7745 		return ERR_PTR(ret);
7746 	}
7747 
7748 	/* em got 2 refs now, callers needs to do free_extent_map once. */
7749 	return em;
7750 }
7751 
7752 
7753 static int btrfs_get_blocks_direct_write(struct extent_map **map,
7754 					 struct inode *inode,
7755 					 struct btrfs_dio_data *dio_data,
7756 					 u64 start, u64 len)
7757 {
7758 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7759 	struct extent_map *em = *map;
7760 	int ret = 0;
7761 
7762 	/*
7763 	 * We don't allocate a new extent in the following cases
7764 	 *
7765 	 * 1) The inode is marked as NODATACOW. In this case we'll just use the
7766 	 * existing extent.
7767 	 * 2) The extent is marked as PREALLOC. We're good to go here and can
7768 	 * just use the extent.
7769 	 *
7770 	 */
7771 	if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7772 	    ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7773 	     em->block_start != EXTENT_MAP_HOLE)) {
7774 		int type;
7775 		u64 block_start, orig_start, orig_block_len, ram_bytes;
7776 
7777 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7778 			type = BTRFS_ORDERED_PREALLOC;
7779 		else
7780 			type = BTRFS_ORDERED_NOCOW;
7781 		len = min(len, em->len - (start - em->start));
7782 		block_start = em->block_start + (start - em->start);
7783 
7784 		if (can_nocow_extent(inode, start, &len, &orig_start,
7785 				     &orig_block_len, &ram_bytes, false) == 1 &&
7786 		    btrfs_inc_nocow_writers(fs_info, block_start)) {
7787 			struct extent_map *em2;
7788 
7789 			em2 = btrfs_create_dio_extent(BTRFS_I(inode), start, len,
7790 						      orig_start, block_start,
7791 						      len, orig_block_len,
7792 						      ram_bytes, type);
7793 			btrfs_dec_nocow_writers(fs_info, block_start);
7794 			if (type == BTRFS_ORDERED_PREALLOC) {
7795 				free_extent_map(em);
7796 				*map = em = em2;
7797 			}
7798 
7799 			if (em2 && IS_ERR(em2)) {
7800 				ret = PTR_ERR(em2);
7801 				goto out;
7802 			}
7803 			/*
7804 			 * For inode marked NODATACOW or extent marked PREALLOC,
7805 			 * use the existing or preallocated extent, so does not
7806 			 * need to adjust btrfs_space_info's bytes_may_use.
7807 			 */
7808 			btrfs_free_reserved_data_space_noquota(fs_info, len);
7809 			goto skip_cow;
7810 		}
7811 	}
7812 
7813 	/* this will cow the extent */
7814 	free_extent_map(em);
7815 	*map = em = btrfs_new_extent_direct(BTRFS_I(inode), start, len);
7816 	if (IS_ERR(em)) {
7817 		ret = PTR_ERR(em);
7818 		goto out;
7819 	}
7820 
7821 	len = min(len, em->len - (start - em->start));
7822 
7823 skip_cow:
7824 	/*
7825 	 * Need to update the i_size under the extent lock so buffered
7826 	 * readers will get the updated i_size when we unlock.
7827 	 */
7828 	if (start + len > i_size_read(inode))
7829 		i_size_write(inode, start + len);
7830 
7831 	dio_data->reserve -= len;
7832 out:
7833 	return ret;
7834 }
7835 
7836 static int btrfs_dio_iomap_begin(struct inode *inode, loff_t start,
7837 		loff_t length, unsigned int flags, struct iomap *iomap,
7838 		struct iomap *srcmap)
7839 {
7840 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7841 	struct extent_map *em;
7842 	struct extent_state *cached_state = NULL;
7843 	struct btrfs_dio_data *dio_data = NULL;
7844 	u64 lockstart, lockend;
7845 	const bool write = !!(flags & IOMAP_WRITE);
7846 	int ret = 0;
7847 	u64 len = length;
7848 	bool unlock_extents = false;
7849 
7850 	if (!write)
7851 		len = min_t(u64, len, fs_info->sectorsize);
7852 
7853 	lockstart = start;
7854 	lockend = start + len - 1;
7855 
7856 	/*
7857 	 * The generic stuff only does filemap_write_and_wait_range, which
7858 	 * isn't enough if we've written compressed pages to this area, so we
7859 	 * need to flush the dirty pages again to make absolutely sure that any
7860 	 * outstanding dirty pages are on disk.
7861 	 */
7862 	if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
7863 		     &BTRFS_I(inode)->runtime_flags)) {
7864 		ret = filemap_fdatawrite_range(inode->i_mapping, start,
7865 					       start + length - 1);
7866 		if (ret)
7867 			return ret;
7868 	}
7869 
7870 	dio_data = kzalloc(sizeof(*dio_data), GFP_NOFS);
7871 	if (!dio_data)
7872 		return -ENOMEM;
7873 
7874 	dio_data->length = length;
7875 	if (write) {
7876 		dio_data->reserve = round_up(length, fs_info->sectorsize);
7877 		ret = btrfs_delalloc_reserve_space(BTRFS_I(inode),
7878 				&dio_data->data_reserved,
7879 				start, dio_data->reserve);
7880 		if (ret) {
7881 			extent_changeset_free(dio_data->data_reserved);
7882 			kfree(dio_data);
7883 			return ret;
7884 		}
7885 	}
7886 	iomap->private = dio_data;
7887 
7888 
7889 	/*
7890 	 * If this errors out it's because we couldn't invalidate pagecache for
7891 	 * this range and we need to fallback to buffered.
7892 	 */
7893 	if (lock_extent_direct(inode, lockstart, lockend, &cached_state, write)) {
7894 		ret = -ENOTBLK;
7895 		goto err;
7896 	}
7897 
7898 	em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len);
7899 	if (IS_ERR(em)) {
7900 		ret = PTR_ERR(em);
7901 		goto unlock_err;
7902 	}
7903 
7904 	/*
7905 	 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7906 	 * io.  INLINE is special, and we could probably kludge it in here, but
7907 	 * it's still buffered so for safety lets just fall back to the generic
7908 	 * buffered path.
7909 	 *
7910 	 * For COMPRESSED we _have_ to read the entire extent in so we can
7911 	 * decompress it, so there will be buffering required no matter what we
7912 	 * do, so go ahead and fallback to buffered.
7913 	 *
7914 	 * We return -ENOTBLK because that's what makes DIO go ahead and go back
7915 	 * to buffered IO.  Don't blame me, this is the price we pay for using
7916 	 * the generic code.
7917 	 */
7918 	if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7919 	    em->block_start == EXTENT_MAP_INLINE) {
7920 		free_extent_map(em);
7921 		ret = -ENOTBLK;
7922 		goto unlock_err;
7923 	}
7924 
7925 	len = min(len, em->len - (start - em->start));
7926 	if (write) {
7927 		ret = btrfs_get_blocks_direct_write(&em, inode, dio_data,
7928 						    start, len);
7929 		if (ret < 0)
7930 			goto unlock_err;
7931 		unlock_extents = true;
7932 		/* Recalc len in case the new em is smaller than requested */
7933 		len = min(len, em->len - (start - em->start));
7934 	} else {
7935 		/*
7936 		 * We need to unlock only the end area that we aren't using.
7937 		 * The rest is going to be unlocked by the endio routine.
7938 		 */
7939 		lockstart = start + len;
7940 		if (lockstart < lockend)
7941 			unlock_extents = true;
7942 	}
7943 
7944 	if (unlock_extents)
7945 		unlock_extent_cached(&BTRFS_I(inode)->io_tree,
7946 				     lockstart, lockend, &cached_state);
7947 	else
7948 		free_extent_state(cached_state);
7949 
7950 	/*
7951 	 * Translate extent map information to iomap.
7952 	 * We trim the extents (and move the addr) even though iomap code does
7953 	 * that, since we have locked only the parts we are performing I/O in.
7954 	 */
7955 	if ((em->block_start == EXTENT_MAP_HOLE) ||
7956 	    (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) && !write)) {
7957 		iomap->addr = IOMAP_NULL_ADDR;
7958 		iomap->type = IOMAP_HOLE;
7959 	} else {
7960 		iomap->addr = em->block_start + (start - em->start);
7961 		iomap->type = IOMAP_MAPPED;
7962 	}
7963 	iomap->offset = start;
7964 	iomap->bdev = fs_info->fs_devices->latest_bdev;
7965 	iomap->length = len;
7966 
7967 	if (write && btrfs_use_zone_append(BTRFS_I(inode), em->block_start))
7968 		iomap->flags |= IOMAP_F_ZONE_APPEND;
7969 
7970 	free_extent_map(em);
7971 
7972 	return 0;
7973 
7974 unlock_err:
7975 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7976 			     &cached_state);
7977 err:
7978 	if (dio_data) {
7979 		btrfs_delalloc_release_space(BTRFS_I(inode),
7980 				dio_data->data_reserved, start,
7981 				dio_data->reserve, true);
7982 		btrfs_delalloc_release_extents(BTRFS_I(inode), dio_data->reserve);
7983 		extent_changeset_free(dio_data->data_reserved);
7984 		kfree(dio_data);
7985 	}
7986 	return ret;
7987 }
7988 
7989 static int btrfs_dio_iomap_end(struct inode *inode, loff_t pos, loff_t length,
7990 		ssize_t written, unsigned int flags, struct iomap *iomap)
7991 {
7992 	int ret = 0;
7993 	struct btrfs_dio_data *dio_data = iomap->private;
7994 	size_t submitted = dio_data->submitted;
7995 	const bool write = !!(flags & IOMAP_WRITE);
7996 
7997 	if (!write && (iomap->type == IOMAP_HOLE)) {
7998 		/* If reading from a hole, unlock and return */
7999 		unlock_extent(&BTRFS_I(inode)->io_tree, pos, pos + length - 1);
8000 		goto out;
8001 	}
8002 
8003 	if (submitted < length) {
8004 		pos += submitted;
8005 		length -= submitted;
8006 		if (write)
8007 			__endio_write_update_ordered(BTRFS_I(inode), pos,
8008 					length, false);
8009 		else
8010 			unlock_extent(&BTRFS_I(inode)->io_tree, pos,
8011 				      pos + length - 1);
8012 		ret = -ENOTBLK;
8013 	}
8014 
8015 	if (write) {
8016 		if (dio_data->reserve)
8017 			btrfs_delalloc_release_space(BTRFS_I(inode),
8018 					dio_data->data_reserved, pos,
8019 					dio_data->reserve, true);
8020 		btrfs_delalloc_release_extents(BTRFS_I(inode), dio_data->length);
8021 		extent_changeset_free(dio_data->data_reserved);
8022 	}
8023 out:
8024 	kfree(dio_data);
8025 	iomap->private = NULL;
8026 
8027 	return ret;
8028 }
8029 
8030 static void btrfs_dio_private_put(struct btrfs_dio_private *dip)
8031 {
8032 	/*
8033 	 * This implies a barrier so that stores to dio_bio->bi_status before
8034 	 * this and loads of dio_bio->bi_status after this are fully ordered.
8035 	 */
8036 	if (!refcount_dec_and_test(&dip->refs))
8037 		return;
8038 
8039 	if (btrfs_op(dip->dio_bio) == BTRFS_MAP_WRITE) {
8040 		__endio_write_update_ordered(BTRFS_I(dip->inode),
8041 					     dip->logical_offset,
8042 					     dip->bytes,
8043 					     !dip->dio_bio->bi_status);
8044 	} else {
8045 		unlock_extent(&BTRFS_I(dip->inode)->io_tree,
8046 			      dip->logical_offset,
8047 			      dip->logical_offset + dip->bytes - 1);
8048 	}
8049 
8050 	bio_endio(dip->dio_bio);
8051 	kfree(dip);
8052 }
8053 
8054 static blk_status_t submit_dio_repair_bio(struct inode *inode, struct bio *bio,
8055 					  int mirror_num,
8056 					  unsigned long bio_flags)
8057 {
8058 	struct btrfs_dio_private *dip = bio->bi_private;
8059 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8060 	blk_status_t ret;
8061 
8062 	BUG_ON(bio_op(bio) == REQ_OP_WRITE);
8063 
8064 	ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
8065 	if (ret)
8066 		return ret;
8067 
8068 	refcount_inc(&dip->refs);
8069 	ret = btrfs_map_bio(fs_info, bio, mirror_num);
8070 	if (ret)
8071 		refcount_dec(&dip->refs);
8072 	return ret;
8073 }
8074 
8075 static blk_status_t btrfs_check_read_dio_bio(struct inode *inode,
8076 					     struct btrfs_io_bio *io_bio,
8077 					     const bool uptodate)
8078 {
8079 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
8080 	const u32 sectorsize = fs_info->sectorsize;
8081 	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
8082 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8083 	const bool csum = !(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM);
8084 	struct bio_vec bvec;
8085 	struct bvec_iter iter;
8086 	u64 start = io_bio->logical;
8087 	u32 bio_offset = 0;
8088 	blk_status_t err = BLK_STS_OK;
8089 
8090 	__bio_for_each_segment(bvec, &io_bio->bio, iter, io_bio->iter) {
8091 		unsigned int i, nr_sectors, pgoff;
8092 
8093 		nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len);
8094 		pgoff = bvec.bv_offset;
8095 		for (i = 0; i < nr_sectors; i++) {
8096 			ASSERT(pgoff < PAGE_SIZE);
8097 			if (uptodate &&
8098 			    (!csum || !check_data_csum(inode, io_bio,
8099 						       bio_offset, bvec.bv_page,
8100 						       pgoff, start))) {
8101 				clean_io_failure(fs_info, failure_tree, io_tree,
8102 						 start, bvec.bv_page,
8103 						 btrfs_ino(BTRFS_I(inode)),
8104 						 pgoff);
8105 			} else {
8106 				int ret;
8107 
8108 				ASSERT((start - io_bio->logical) < UINT_MAX);
8109 				ret = btrfs_repair_one_sector(inode,
8110 						&io_bio->bio,
8111 						start - io_bio->logical,
8112 						bvec.bv_page, pgoff,
8113 						start, io_bio->mirror_num,
8114 						submit_dio_repair_bio);
8115 				if (ret)
8116 					err = errno_to_blk_status(ret);
8117 			}
8118 			start += sectorsize;
8119 			ASSERT(bio_offset + sectorsize > bio_offset);
8120 			bio_offset += sectorsize;
8121 			pgoff += sectorsize;
8122 		}
8123 	}
8124 	return err;
8125 }
8126 
8127 static void __endio_write_update_ordered(struct btrfs_inode *inode,
8128 					 const u64 offset, const u64 bytes,
8129 					 const bool uptodate)
8130 {
8131 	btrfs_mark_ordered_io_finished(inode, NULL, offset, bytes,
8132 				       finish_ordered_fn, uptodate);
8133 }
8134 
8135 static blk_status_t btrfs_submit_bio_start_direct_io(struct inode *inode,
8136 						     struct bio *bio,
8137 						     u64 dio_file_offset)
8138 {
8139 	return btrfs_csum_one_bio(BTRFS_I(inode), bio, dio_file_offset, 1);
8140 }
8141 
8142 static void btrfs_end_dio_bio(struct bio *bio)
8143 {
8144 	struct btrfs_dio_private *dip = bio->bi_private;
8145 	blk_status_t err = bio->bi_status;
8146 
8147 	if (err)
8148 		btrfs_warn(BTRFS_I(dip->inode)->root->fs_info,
8149 			   "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d",
8150 			   btrfs_ino(BTRFS_I(dip->inode)), bio_op(bio),
8151 			   bio->bi_opf, bio->bi_iter.bi_sector,
8152 			   bio->bi_iter.bi_size, err);
8153 
8154 	if (bio_op(bio) == REQ_OP_READ) {
8155 		err = btrfs_check_read_dio_bio(dip->inode, btrfs_io_bio(bio),
8156 					       !err);
8157 	}
8158 
8159 	if (err)
8160 		dip->dio_bio->bi_status = err;
8161 
8162 	btrfs_record_physical_zoned(dip->inode, dip->logical_offset, bio);
8163 
8164 	bio_put(bio);
8165 	btrfs_dio_private_put(dip);
8166 }
8167 
8168 static inline blk_status_t btrfs_submit_dio_bio(struct bio *bio,
8169 		struct inode *inode, u64 file_offset, int async_submit)
8170 {
8171 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8172 	struct btrfs_dio_private *dip = bio->bi_private;
8173 	bool write = btrfs_op(bio) == BTRFS_MAP_WRITE;
8174 	blk_status_t ret;
8175 
8176 	/* Check btrfs_submit_bio_hook() for rules about async submit. */
8177 	if (async_submit)
8178 		async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
8179 
8180 	if (!write) {
8181 		ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
8182 		if (ret)
8183 			goto err;
8184 	}
8185 
8186 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
8187 		goto map;
8188 
8189 	if (write && async_submit) {
8190 		ret = btrfs_wq_submit_bio(inode, bio, 0, 0, file_offset,
8191 					  btrfs_submit_bio_start_direct_io);
8192 		goto err;
8193 	} else if (write) {
8194 		/*
8195 		 * If we aren't doing async submit, calculate the csum of the
8196 		 * bio now.
8197 		 */
8198 		ret = btrfs_csum_one_bio(BTRFS_I(inode), bio, file_offset, 1);
8199 		if (ret)
8200 			goto err;
8201 	} else {
8202 		u64 csum_offset;
8203 
8204 		csum_offset = file_offset - dip->logical_offset;
8205 		csum_offset >>= fs_info->sectorsize_bits;
8206 		csum_offset *= fs_info->csum_size;
8207 		btrfs_io_bio(bio)->csum = dip->csums + csum_offset;
8208 	}
8209 map:
8210 	ret = btrfs_map_bio(fs_info, bio, 0);
8211 err:
8212 	return ret;
8213 }
8214 
8215 /*
8216  * If this succeeds, the btrfs_dio_private is responsible for cleaning up locked
8217  * or ordered extents whether or not we submit any bios.
8218  */
8219 static struct btrfs_dio_private *btrfs_create_dio_private(struct bio *dio_bio,
8220 							  struct inode *inode,
8221 							  loff_t file_offset)
8222 {
8223 	const bool write = (btrfs_op(dio_bio) == BTRFS_MAP_WRITE);
8224 	const bool csum = !(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM);
8225 	size_t dip_size;
8226 	struct btrfs_dio_private *dip;
8227 
8228 	dip_size = sizeof(*dip);
8229 	if (!write && csum) {
8230 		struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8231 		size_t nblocks;
8232 
8233 		nblocks = dio_bio->bi_iter.bi_size >> fs_info->sectorsize_bits;
8234 		dip_size += fs_info->csum_size * nblocks;
8235 	}
8236 
8237 	dip = kzalloc(dip_size, GFP_NOFS);
8238 	if (!dip)
8239 		return NULL;
8240 
8241 	dip->inode = inode;
8242 	dip->logical_offset = file_offset;
8243 	dip->bytes = dio_bio->bi_iter.bi_size;
8244 	dip->disk_bytenr = dio_bio->bi_iter.bi_sector << 9;
8245 	dip->dio_bio = dio_bio;
8246 	refcount_set(&dip->refs, 1);
8247 	return dip;
8248 }
8249 
8250 static blk_qc_t btrfs_submit_direct(const struct iomap_iter *iter,
8251 		struct bio *dio_bio, loff_t file_offset)
8252 {
8253 	struct inode *inode = iter->inode;
8254 	const bool write = (btrfs_op(dio_bio) == BTRFS_MAP_WRITE);
8255 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8256 	const bool raid56 = (btrfs_data_alloc_profile(fs_info) &
8257 			     BTRFS_BLOCK_GROUP_RAID56_MASK);
8258 	struct btrfs_dio_private *dip;
8259 	struct bio *bio;
8260 	u64 start_sector;
8261 	int async_submit = 0;
8262 	u64 submit_len;
8263 	u64 clone_offset = 0;
8264 	u64 clone_len;
8265 	u64 logical;
8266 	int ret;
8267 	blk_status_t status;
8268 	struct btrfs_io_geometry geom;
8269 	struct btrfs_dio_data *dio_data = iter->iomap.private;
8270 	struct extent_map *em = NULL;
8271 
8272 	dip = btrfs_create_dio_private(dio_bio, inode, file_offset);
8273 	if (!dip) {
8274 		if (!write) {
8275 			unlock_extent(&BTRFS_I(inode)->io_tree, file_offset,
8276 				file_offset + dio_bio->bi_iter.bi_size - 1);
8277 		}
8278 		dio_bio->bi_status = BLK_STS_RESOURCE;
8279 		bio_endio(dio_bio);
8280 		return BLK_QC_T_NONE;
8281 	}
8282 
8283 	if (!write) {
8284 		/*
8285 		 * Load the csums up front to reduce csum tree searches and
8286 		 * contention when submitting bios.
8287 		 *
8288 		 * If we have csums disabled this will do nothing.
8289 		 */
8290 		status = btrfs_lookup_bio_sums(inode, dio_bio, dip->csums);
8291 		if (status != BLK_STS_OK)
8292 			goto out_err;
8293 	}
8294 
8295 	start_sector = dio_bio->bi_iter.bi_sector;
8296 	submit_len = dio_bio->bi_iter.bi_size;
8297 
8298 	do {
8299 		logical = start_sector << 9;
8300 		em = btrfs_get_chunk_map(fs_info, logical, submit_len);
8301 		if (IS_ERR(em)) {
8302 			status = errno_to_blk_status(PTR_ERR(em));
8303 			em = NULL;
8304 			goto out_err_em;
8305 		}
8306 		ret = btrfs_get_io_geometry(fs_info, em, btrfs_op(dio_bio),
8307 					    logical, &geom);
8308 		if (ret) {
8309 			status = errno_to_blk_status(ret);
8310 			goto out_err_em;
8311 		}
8312 
8313 		clone_len = min(submit_len, geom.len);
8314 		ASSERT(clone_len <= UINT_MAX);
8315 
8316 		/*
8317 		 * This will never fail as it's passing GPF_NOFS and
8318 		 * the allocation is backed by btrfs_bioset.
8319 		 */
8320 		bio = btrfs_bio_clone_partial(dio_bio, clone_offset, clone_len);
8321 		bio->bi_private = dip;
8322 		bio->bi_end_io = btrfs_end_dio_bio;
8323 		btrfs_io_bio(bio)->logical = file_offset;
8324 
8325 		if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
8326 			status = extract_ordered_extent(BTRFS_I(inode), bio,
8327 							file_offset);
8328 			if (status) {
8329 				bio_put(bio);
8330 				goto out_err;
8331 			}
8332 		}
8333 
8334 		ASSERT(submit_len >= clone_len);
8335 		submit_len -= clone_len;
8336 
8337 		/*
8338 		 * Increase the count before we submit the bio so we know
8339 		 * the end IO handler won't happen before we increase the
8340 		 * count. Otherwise, the dip might get freed before we're
8341 		 * done setting it up.
8342 		 *
8343 		 * We transfer the initial reference to the last bio, so we
8344 		 * don't need to increment the reference count for the last one.
8345 		 */
8346 		if (submit_len > 0) {
8347 			refcount_inc(&dip->refs);
8348 			/*
8349 			 * If we are submitting more than one bio, submit them
8350 			 * all asynchronously. The exception is RAID 5 or 6, as
8351 			 * asynchronous checksums make it difficult to collect
8352 			 * full stripe writes.
8353 			 */
8354 			if (!raid56)
8355 				async_submit = 1;
8356 		}
8357 
8358 		status = btrfs_submit_dio_bio(bio, inode, file_offset,
8359 						async_submit);
8360 		if (status) {
8361 			bio_put(bio);
8362 			if (submit_len > 0)
8363 				refcount_dec(&dip->refs);
8364 			goto out_err_em;
8365 		}
8366 
8367 		dio_data->submitted += clone_len;
8368 		clone_offset += clone_len;
8369 		start_sector += clone_len >> 9;
8370 		file_offset += clone_len;
8371 
8372 		free_extent_map(em);
8373 	} while (submit_len > 0);
8374 	return BLK_QC_T_NONE;
8375 
8376 out_err_em:
8377 	free_extent_map(em);
8378 out_err:
8379 	dip->dio_bio->bi_status = status;
8380 	btrfs_dio_private_put(dip);
8381 
8382 	return BLK_QC_T_NONE;
8383 }
8384 
8385 const struct iomap_ops btrfs_dio_iomap_ops = {
8386 	.iomap_begin            = btrfs_dio_iomap_begin,
8387 	.iomap_end              = btrfs_dio_iomap_end,
8388 };
8389 
8390 const struct iomap_dio_ops btrfs_dio_ops = {
8391 	.submit_io		= btrfs_submit_direct,
8392 };
8393 
8394 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
8395 			u64 start, u64 len)
8396 {
8397 	int	ret;
8398 
8399 	ret = fiemap_prep(inode, fieinfo, start, &len, 0);
8400 	if (ret)
8401 		return ret;
8402 
8403 	return extent_fiemap(BTRFS_I(inode), fieinfo, start, len);
8404 }
8405 
8406 int btrfs_readpage(struct file *file, struct page *page)
8407 {
8408 	struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
8409 	u64 start = page_offset(page);
8410 	u64 end = start + PAGE_SIZE - 1;
8411 	struct btrfs_bio_ctrl bio_ctrl = { 0 };
8412 	int ret;
8413 
8414 	btrfs_lock_and_flush_ordered_range(inode, start, end, NULL);
8415 
8416 	ret = btrfs_do_readpage(page, NULL, &bio_ctrl, 0, NULL);
8417 	if (bio_ctrl.bio)
8418 		ret = submit_one_bio(bio_ctrl.bio, 0, bio_ctrl.bio_flags);
8419 	return ret;
8420 }
8421 
8422 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
8423 {
8424 	struct inode *inode = page->mapping->host;
8425 	int ret;
8426 
8427 	if (current->flags & PF_MEMALLOC) {
8428 		redirty_page_for_writepage(wbc, page);
8429 		unlock_page(page);
8430 		return 0;
8431 	}
8432 
8433 	/*
8434 	 * If we are under memory pressure we will call this directly from the
8435 	 * VM, we need to make sure we have the inode referenced for the ordered
8436 	 * extent.  If not just return like we didn't do anything.
8437 	 */
8438 	if (!igrab(inode)) {
8439 		redirty_page_for_writepage(wbc, page);
8440 		return AOP_WRITEPAGE_ACTIVATE;
8441 	}
8442 	ret = extent_write_full_page(page, wbc);
8443 	btrfs_add_delayed_iput(inode);
8444 	return ret;
8445 }
8446 
8447 static int btrfs_writepages(struct address_space *mapping,
8448 			    struct writeback_control *wbc)
8449 {
8450 	return extent_writepages(mapping, wbc);
8451 }
8452 
8453 static void btrfs_readahead(struct readahead_control *rac)
8454 {
8455 	extent_readahead(rac);
8456 }
8457 
8458 /*
8459  * For releasepage() and invalidatepage() we have a race window where
8460  * end_page_writeback() is called but the subpage spinlock is not yet released.
8461  * If we continue to release/invalidate the page, we could cause use-after-free
8462  * for subpage spinlock.  So this function is to spin and wait for subpage
8463  * spinlock.
8464  */
8465 static void wait_subpage_spinlock(struct page *page)
8466 {
8467 	struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
8468 	struct btrfs_subpage *subpage;
8469 
8470 	if (fs_info->sectorsize == PAGE_SIZE)
8471 		return;
8472 
8473 	ASSERT(PagePrivate(page) && page->private);
8474 	subpage = (struct btrfs_subpage *)page->private;
8475 
8476 	/*
8477 	 * This may look insane as we just acquire the spinlock and release it,
8478 	 * without doing anything.  But we just want to make sure no one is
8479 	 * still holding the subpage spinlock.
8480 	 * And since the page is not dirty nor writeback, and we have page
8481 	 * locked, the only possible way to hold a spinlock is from the endio
8482 	 * function to clear page writeback.
8483 	 *
8484 	 * Here we just acquire the spinlock so that all existing callers
8485 	 * should exit and we're safe to release/invalidate the page.
8486 	 */
8487 	spin_lock_irq(&subpage->lock);
8488 	spin_unlock_irq(&subpage->lock);
8489 }
8490 
8491 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8492 {
8493 	int ret = try_release_extent_mapping(page, gfp_flags);
8494 
8495 	if (ret == 1) {
8496 		wait_subpage_spinlock(page);
8497 		clear_page_extent_mapped(page);
8498 	}
8499 	return ret;
8500 }
8501 
8502 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8503 {
8504 	if (PageWriteback(page) || PageDirty(page))
8505 		return 0;
8506 	return __btrfs_releasepage(page, gfp_flags);
8507 }
8508 
8509 #ifdef CONFIG_MIGRATION
8510 static int btrfs_migratepage(struct address_space *mapping,
8511 			     struct page *newpage, struct page *page,
8512 			     enum migrate_mode mode)
8513 {
8514 	int ret;
8515 
8516 	ret = migrate_page_move_mapping(mapping, newpage, page, 0);
8517 	if (ret != MIGRATEPAGE_SUCCESS)
8518 		return ret;
8519 
8520 	if (page_has_private(page))
8521 		attach_page_private(newpage, detach_page_private(page));
8522 
8523 	if (PageOrdered(page)) {
8524 		ClearPageOrdered(page);
8525 		SetPageOrdered(newpage);
8526 	}
8527 
8528 	if (mode != MIGRATE_SYNC_NO_COPY)
8529 		migrate_page_copy(newpage, page);
8530 	else
8531 		migrate_page_states(newpage, page);
8532 	return MIGRATEPAGE_SUCCESS;
8533 }
8534 #endif
8535 
8536 static void btrfs_invalidatepage(struct page *page, unsigned int offset,
8537 				 unsigned int length)
8538 {
8539 	struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
8540 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
8541 	struct extent_io_tree *tree = &inode->io_tree;
8542 	struct extent_state *cached_state = NULL;
8543 	u64 page_start = page_offset(page);
8544 	u64 page_end = page_start + PAGE_SIZE - 1;
8545 	u64 cur;
8546 	int inode_evicting = inode->vfs_inode.i_state & I_FREEING;
8547 
8548 	/*
8549 	 * We have page locked so no new ordered extent can be created on this
8550 	 * page, nor bio can be submitted for this page.
8551 	 *
8552 	 * But already submitted bio can still be finished on this page.
8553 	 * Furthermore, endio function won't skip page which has Ordered
8554 	 * (Private2) already cleared, so it's possible for endio and
8555 	 * invalidatepage to do the same ordered extent accounting twice
8556 	 * on one page.
8557 	 *
8558 	 * So here we wait for any submitted bios to finish, so that we won't
8559 	 * do double ordered extent accounting on the same page.
8560 	 */
8561 	wait_on_page_writeback(page);
8562 	wait_subpage_spinlock(page);
8563 
8564 	/*
8565 	 * For subpage case, we have call sites like
8566 	 * btrfs_punch_hole_lock_range() which passes range not aligned to
8567 	 * sectorsize.
8568 	 * If the range doesn't cover the full page, we don't need to and
8569 	 * shouldn't clear page extent mapped, as page->private can still
8570 	 * record subpage dirty bits for other part of the range.
8571 	 *
8572 	 * For cases that can invalidate the full even the range doesn't
8573 	 * cover the full page, like invalidating the last page, we're
8574 	 * still safe to wait for ordered extent to finish.
8575 	 */
8576 	if (!(offset == 0 && length == PAGE_SIZE)) {
8577 		btrfs_releasepage(page, GFP_NOFS);
8578 		return;
8579 	}
8580 
8581 	if (!inode_evicting)
8582 		lock_extent_bits(tree, page_start, page_end, &cached_state);
8583 
8584 	cur = page_start;
8585 	while (cur < page_end) {
8586 		struct btrfs_ordered_extent *ordered;
8587 		bool delete_states;
8588 		u64 range_end;
8589 		u32 range_len;
8590 
8591 		ordered = btrfs_lookup_first_ordered_range(inode, cur,
8592 							   page_end + 1 - cur);
8593 		if (!ordered) {
8594 			range_end = page_end;
8595 			/*
8596 			 * No ordered extent covering this range, we are safe
8597 			 * to delete all extent states in the range.
8598 			 */
8599 			delete_states = true;
8600 			goto next;
8601 		}
8602 		if (ordered->file_offset > cur) {
8603 			/*
8604 			 * There is a range between [cur, oe->file_offset) not
8605 			 * covered by any ordered extent.
8606 			 * We are safe to delete all extent states, and handle
8607 			 * the ordered extent in the next iteration.
8608 			 */
8609 			range_end = ordered->file_offset - 1;
8610 			delete_states = true;
8611 			goto next;
8612 		}
8613 
8614 		range_end = min(ordered->file_offset + ordered->num_bytes - 1,
8615 				page_end);
8616 		ASSERT(range_end + 1 - cur < U32_MAX);
8617 		range_len = range_end + 1 - cur;
8618 		if (!btrfs_page_test_ordered(fs_info, page, cur, range_len)) {
8619 			/*
8620 			 * If Ordered (Private2) is cleared, it means endio has
8621 			 * already been executed for the range.
8622 			 * We can't delete the extent states as
8623 			 * btrfs_finish_ordered_io() may still use some of them.
8624 			 */
8625 			delete_states = false;
8626 			goto next;
8627 		}
8628 		btrfs_page_clear_ordered(fs_info, page, cur, range_len);
8629 
8630 		/*
8631 		 * IO on this page will never be started, so we need to account
8632 		 * for any ordered extents now. Don't clear EXTENT_DELALLOC_NEW
8633 		 * here, must leave that up for the ordered extent completion.
8634 		 *
8635 		 * This will also unlock the range for incoming
8636 		 * btrfs_finish_ordered_io().
8637 		 */
8638 		if (!inode_evicting)
8639 			clear_extent_bit(tree, cur, range_end,
8640 					 EXTENT_DELALLOC |
8641 					 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
8642 					 EXTENT_DEFRAG, 1, 0, &cached_state);
8643 
8644 		spin_lock_irq(&inode->ordered_tree.lock);
8645 		set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
8646 		ordered->truncated_len = min(ordered->truncated_len,
8647 					     cur - ordered->file_offset);
8648 		spin_unlock_irq(&inode->ordered_tree.lock);
8649 
8650 		if (btrfs_dec_test_ordered_pending(inode, &ordered,
8651 						   cur, range_end + 1 - cur)) {
8652 			btrfs_finish_ordered_io(ordered);
8653 			/*
8654 			 * The ordered extent has finished, now we're again
8655 			 * safe to delete all extent states of the range.
8656 			 */
8657 			delete_states = true;
8658 		} else {
8659 			/*
8660 			 * btrfs_finish_ordered_io() will get executed by endio
8661 			 * of other pages, thus we can't delete extent states
8662 			 * anymore
8663 			 */
8664 			delete_states = false;
8665 		}
8666 next:
8667 		if (ordered)
8668 			btrfs_put_ordered_extent(ordered);
8669 		/*
8670 		 * Qgroup reserved space handler
8671 		 * Sector(s) here will be either:
8672 		 *
8673 		 * 1) Already written to disk or bio already finished
8674 		 *    Then its QGROUP_RESERVED bit in io_tree is already cleared.
8675 		 *    Qgroup will be handled by its qgroup_record then.
8676 		 *    btrfs_qgroup_free_data() call will do nothing here.
8677 		 *
8678 		 * 2) Not written to disk yet
8679 		 *    Then btrfs_qgroup_free_data() call will clear the
8680 		 *    QGROUP_RESERVED bit of its io_tree, and free the qgroup
8681 		 *    reserved data space.
8682 		 *    Since the IO will never happen for this page.
8683 		 */
8684 		btrfs_qgroup_free_data(inode, NULL, cur, range_end + 1 - cur);
8685 		if (!inode_evicting) {
8686 			clear_extent_bit(tree, cur, range_end, EXTENT_LOCKED |
8687 				 EXTENT_DELALLOC | EXTENT_UPTODATE |
8688 				 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1,
8689 				 delete_states, &cached_state);
8690 		}
8691 		cur = range_end + 1;
8692 	}
8693 	/*
8694 	 * We have iterated through all ordered extents of the page, the page
8695 	 * should not have Ordered (Private2) anymore, or the above iteration
8696 	 * did something wrong.
8697 	 */
8698 	ASSERT(!PageOrdered(page));
8699 	if (!inode_evicting)
8700 		__btrfs_releasepage(page, GFP_NOFS);
8701 	ClearPageChecked(page);
8702 	clear_page_extent_mapped(page);
8703 }
8704 
8705 /*
8706  * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8707  * called from a page fault handler when a page is first dirtied. Hence we must
8708  * be careful to check for EOF conditions here. We set the page up correctly
8709  * for a written page which means we get ENOSPC checking when writing into
8710  * holes and correct delalloc and unwritten extent mapping on filesystems that
8711  * support these features.
8712  *
8713  * We are not allowed to take the i_mutex here so we have to play games to
8714  * protect against truncate races as the page could now be beyond EOF.  Because
8715  * truncate_setsize() writes the inode size before removing pages, once we have
8716  * the page lock we can determine safely if the page is beyond EOF. If it is not
8717  * beyond EOF, then the page is guaranteed safe against truncation until we
8718  * unlock the page.
8719  */
8720 vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf)
8721 {
8722 	struct page *page = vmf->page;
8723 	struct inode *inode = file_inode(vmf->vma->vm_file);
8724 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8725 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8726 	struct btrfs_ordered_extent *ordered;
8727 	struct extent_state *cached_state = NULL;
8728 	struct extent_changeset *data_reserved = NULL;
8729 	unsigned long zero_start;
8730 	loff_t size;
8731 	vm_fault_t ret;
8732 	int ret2;
8733 	int reserved = 0;
8734 	u64 reserved_space;
8735 	u64 page_start;
8736 	u64 page_end;
8737 	u64 end;
8738 
8739 	reserved_space = PAGE_SIZE;
8740 
8741 	sb_start_pagefault(inode->i_sb);
8742 	page_start = page_offset(page);
8743 	page_end = page_start + PAGE_SIZE - 1;
8744 	end = page_end;
8745 
8746 	/*
8747 	 * Reserving delalloc space after obtaining the page lock can lead to
8748 	 * deadlock. For example, if a dirty page is locked by this function
8749 	 * and the call to btrfs_delalloc_reserve_space() ends up triggering
8750 	 * dirty page write out, then the btrfs_writepage() function could
8751 	 * end up waiting indefinitely to get a lock on the page currently
8752 	 * being processed by btrfs_page_mkwrite() function.
8753 	 */
8754 	ret2 = btrfs_delalloc_reserve_space(BTRFS_I(inode), &data_reserved,
8755 					    page_start, reserved_space);
8756 	if (!ret2) {
8757 		ret2 = file_update_time(vmf->vma->vm_file);
8758 		reserved = 1;
8759 	}
8760 	if (ret2) {
8761 		ret = vmf_error(ret2);
8762 		if (reserved)
8763 			goto out;
8764 		goto out_noreserve;
8765 	}
8766 
8767 	ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
8768 again:
8769 	down_read(&BTRFS_I(inode)->i_mmap_lock);
8770 	lock_page(page);
8771 	size = i_size_read(inode);
8772 
8773 	if ((page->mapping != inode->i_mapping) ||
8774 	    (page_start >= size)) {
8775 		/* page got truncated out from underneath us */
8776 		goto out_unlock;
8777 	}
8778 	wait_on_page_writeback(page);
8779 
8780 	lock_extent_bits(io_tree, page_start, page_end, &cached_state);
8781 	ret2 = set_page_extent_mapped(page);
8782 	if (ret2 < 0) {
8783 		ret = vmf_error(ret2);
8784 		unlock_extent_cached(io_tree, page_start, page_end, &cached_state);
8785 		goto out_unlock;
8786 	}
8787 
8788 	/*
8789 	 * we can't set the delalloc bits if there are pending ordered
8790 	 * extents.  Drop our locks and wait for them to finish
8791 	 */
8792 	ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
8793 			PAGE_SIZE);
8794 	if (ordered) {
8795 		unlock_extent_cached(io_tree, page_start, page_end,
8796 				     &cached_state);
8797 		unlock_page(page);
8798 		up_read(&BTRFS_I(inode)->i_mmap_lock);
8799 		btrfs_start_ordered_extent(ordered, 1);
8800 		btrfs_put_ordered_extent(ordered);
8801 		goto again;
8802 	}
8803 
8804 	if (page->index == ((size - 1) >> PAGE_SHIFT)) {
8805 		reserved_space = round_up(size - page_start,
8806 					  fs_info->sectorsize);
8807 		if (reserved_space < PAGE_SIZE) {
8808 			end = page_start + reserved_space - 1;
8809 			btrfs_delalloc_release_space(BTRFS_I(inode),
8810 					data_reserved, page_start,
8811 					PAGE_SIZE - reserved_space, true);
8812 		}
8813 	}
8814 
8815 	/*
8816 	 * page_mkwrite gets called when the page is firstly dirtied after it's
8817 	 * faulted in, but write(2) could also dirty a page and set delalloc
8818 	 * bits, thus in this case for space account reason, we still need to
8819 	 * clear any delalloc bits within this page range since we have to
8820 	 * reserve data&meta space before lock_page() (see above comments).
8821 	 */
8822 	clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end,
8823 			  EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
8824 			  EXTENT_DEFRAG, 0, 0, &cached_state);
8825 
8826 	ret2 = btrfs_set_extent_delalloc(BTRFS_I(inode), page_start, end, 0,
8827 					&cached_state);
8828 	if (ret2) {
8829 		unlock_extent_cached(io_tree, page_start, page_end,
8830 				     &cached_state);
8831 		ret = VM_FAULT_SIGBUS;
8832 		goto out_unlock;
8833 	}
8834 
8835 	/* page is wholly or partially inside EOF */
8836 	if (page_start + PAGE_SIZE > size)
8837 		zero_start = offset_in_page(size);
8838 	else
8839 		zero_start = PAGE_SIZE;
8840 
8841 	if (zero_start != PAGE_SIZE) {
8842 		memzero_page(page, zero_start, PAGE_SIZE - zero_start);
8843 		flush_dcache_page(page);
8844 	}
8845 	ClearPageChecked(page);
8846 	btrfs_page_set_dirty(fs_info, page, page_start, end + 1 - page_start);
8847 	btrfs_page_set_uptodate(fs_info, page, page_start, end + 1 - page_start);
8848 
8849 	btrfs_set_inode_last_sub_trans(BTRFS_I(inode));
8850 
8851 	unlock_extent_cached(io_tree, page_start, page_end, &cached_state);
8852 	up_read(&BTRFS_I(inode)->i_mmap_lock);
8853 
8854 	btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
8855 	sb_end_pagefault(inode->i_sb);
8856 	extent_changeset_free(data_reserved);
8857 	return VM_FAULT_LOCKED;
8858 
8859 out_unlock:
8860 	unlock_page(page);
8861 	up_read(&BTRFS_I(inode)->i_mmap_lock);
8862 out:
8863 	btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
8864 	btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved, page_start,
8865 				     reserved_space, (ret != 0));
8866 out_noreserve:
8867 	sb_end_pagefault(inode->i_sb);
8868 	extent_changeset_free(data_reserved);
8869 	return ret;
8870 }
8871 
8872 static int btrfs_truncate(struct inode *inode, bool skip_writeback)
8873 {
8874 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8875 	struct btrfs_root *root = BTRFS_I(inode)->root;
8876 	struct btrfs_block_rsv *rsv;
8877 	int ret;
8878 	struct btrfs_trans_handle *trans;
8879 	u64 mask = fs_info->sectorsize - 1;
8880 	u64 min_size = btrfs_calc_metadata_size(fs_info, 1);
8881 	u64 extents_found = 0;
8882 
8883 	if (!skip_writeback) {
8884 		ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
8885 					       (u64)-1);
8886 		if (ret)
8887 			return ret;
8888 	}
8889 
8890 	/*
8891 	 * Yes ladies and gentlemen, this is indeed ugly.  We have a couple of
8892 	 * things going on here:
8893 	 *
8894 	 * 1) We need to reserve space to update our inode.
8895 	 *
8896 	 * 2) We need to have something to cache all the space that is going to
8897 	 * be free'd up by the truncate operation, but also have some slack
8898 	 * space reserved in case it uses space during the truncate (thank you
8899 	 * very much snapshotting).
8900 	 *
8901 	 * And we need these to be separate.  The fact is we can use a lot of
8902 	 * space doing the truncate, and we have no earthly idea how much space
8903 	 * we will use, so we need the truncate reservation to be separate so it
8904 	 * doesn't end up using space reserved for updating the inode.  We also
8905 	 * need to be able to stop the transaction and start a new one, which
8906 	 * means we need to be able to update the inode several times, and we
8907 	 * have no idea of knowing how many times that will be, so we can't just
8908 	 * reserve 1 item for the entirety of the operation, so that has to be
8909 	 * done separately as well.
8910 	 *
8911 	 * So that leaves us with
8912 	 *
8913 	 * 1) rsv - for the truncate reservation, which we will steal from the
8914 	 * transaction reservation.
8915 	 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for
8916 	 * updating the inode.
8917 	 */
8918 	rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
8919 	if (!rsv)
8920 		return -ENOMEM;
8921 	rsv->size = min_size;
8922 	rsv->failfast = 1;
8923 
8924 	/*
8925 	 * 1 for the truncate slack space
8926 	 * 1 for updating the inode.
8927 	 */
8928 	trans = btrfs_start_transaction(root, 2);
8929 	if (IS_ERR(trans)) {
8930 		ret = PTR_ERR(trans);
8931 		goto out;
8932 	}
8933 
8934 	/* Migrate the slack space for the truncate to our reserve */
8935 	ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
8936 				      min_size, false);
8937 	BUG_ON(ret);
8938 
8939 	trans->block_rsv = rsv;
8940 
8941 	while (1) {
8942 		ret = btrfs_truncate_inode_items(trans, root, BTRFS_I(inode),
8943 						 inode->i_size,
8944 						 BTRFS_EXTENT_DATA_KEY,
8945 						 &extents_found);
8946 		trans->block_rsv = &fs_info->trans_block_rsv;
8947 		if (ret != -ENOSPC && ret != -EAGAIN)
8948 			break;
8949 
8950 		ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
8951 		if (ret)
8952 			break;
8953 
8954 		btrfs_end_transaction(trans);
8955 		btrfs_btree_balance_dirty(fs_info);
8956 
8957 		trans = btrfs_start_transaction(root, 2);
8958 		if (IS_ERR(trans)) {
8959 			ret = PTR_ERR(trans);
8960 			trans = NULL;
8961 			break;
8962 		}
8963 
8964 		btrfs_block_rsv_release(fs_info, rsv, -1, NULL);
8965 		ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
8966 					      rsv, min_size, false);
8967 		BUG_ON(ret);	/* shouldn't happen */
8968 		trans->block_rsv = rsv;
8969 	}
8970 
8971 	/*
8972 	 * We can't call btrfs_truncate_block inside a trans handle as we could
8973 	 * deadlock with freeze, if we got NEED_TRUNCATE_BLOCK then we know
8974 	 * we've truncated everything except the last little bit, and can do
8975 	 * btrfs_truncate_block and then update the disk_i_size.
8976 	 */
8977 	if (ret == NEED_TRUNCATE_BLOCK) {
8978 		btrfs_end_transaction(trans);
8979 		btrfs_btree_balance_dirty(fs_info);
8980 
8981 		ret = btrfs_truncate_block(BTRFS_I(inode), inode->i_size, 0, 0);
8982 		if (ret)
8983 			goto out;
8984 		trans = btrfs_start_transaction(root, 1);
8985 		if (IS_ERR(trans)) {
8986 			ret = PTR_ERR(trans);
8987 			goto out;
8988 		}
8989 		btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
8990 	}
8991 
8992 	if (trans) {
8993 		int ret2;
8994 
8995 		trans->block_rsv = &fs_info->trans_block_rsv;
8996 		ret2 = btrfs_update_inode(trans, root, BTRFS_I(inode));
8997 		if (ret2 && !ret)
8998 			ret = ret2;
8999 
9000 		ret2 = btrfs_end_transaction(trans);
9001 		if (ret2 && !ret)
9002 			ret = ret2;
9003 		btrfs_btree_balance_dirty(fs_info);
9004 	}
9005 out:
9006 	btrfs_free_block_rsv(fs_info, rsv);
9007 	/*
9008 	 * So if we truncate and then write and fsync we normally would just
9009 	 * write the extents that changed, which is a problem if we need to
9010 	 * first truncate that entire inode.  So set this flag so we write out
9011 	 * all of the extents in the inode to the sync log so we're completely
9012 	 * safe.
9013 	 *
9014 	 * If no extents were dropped or trimmed we don't need to force the next
9015 	 * fsync to truncate all the inode's items from the log and re-log them
9016 	 * all. This means the truncate operation did not change the file size,
9017 	 * or changed it to a smaller size but there was only an implicit hole
9018 	 * between the old i_size and the new i_size, and there were no prealloc
9019 	 * extents beyond i_size to drop.
9020 	 */
9021 	if (extents_found > 0)
9022 		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
9023 
9024 	return ret;
9025 }
9026 
9027 /*
9028  * create a new subvolume directory/inode (helper for the ioctl).
9029  */
9030 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
9031 			     struct btrfs_root *new_root,
9032 			     struct btrfs_root *parent_root,
9033 			     struct user_namespace *mnt_userns)
9034 {
9035 	struct inode *inode;
9036 	int err;
9037 	u64 index = 0;
9038 	u64 ino;
9039 
9040 	err = btrfs_get_free_objectid(new_root, &ino);
9041 	if (err < 0)
9042 		return err;
9043 
9044 	inode = btrfs_new_inode(trans, new_root, mnt_userns, NULL, "..", 2,
9045 				ino, ino,
9046 				S_IFDIR | (~current_umask() & S_IRWXUGO),
9047 				&index);
9048 	if (IS_ERR(inode))
9049 		return PTR_ERR(inode);
9050 	inode->i_op = &btrfs_dir_inode_operations;
9051 	inode->i_fop = &btrfs_dir_file_operations;
9052 
9053 	set_nlink(inode, 1);
9054 	btrfs_i_size_write(BTRFS_I(inode), 0);
9055 	unlock_new_inode(inode);
9056 
9057 	err = btrfs_subvol_inherit_props(trans, new_root, parent_root);
9058 	if (err)
9059 		btrfs_err(new_root->fs_info,
9060 			  "error inheriting subvolume %llu properties: %d",
9061 			  new_root->root_key.objectid, err);
9062 
9063 	err = btrfs_update_inode(trans, new_root, BTRFS_I(inode));
9064 
9065 	iput(inode);
9066 	return err;
9067 }
9068 
9069 struct inode *btrfs_alloc_inode(struct super_block *sb)
9070 {
9071 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
9072 	struct btrfs_inode *ei;
9073 	struct inode *inode;
9074 
9075 	ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_KERNEL);
9076 	if (!ei)
9077 		return NULL;
9078 
9079 	ei->root = NULL;
9080 	ei->generation = 0;
9081 	ei->last_trans = 0;
9082 	ei->last_sub_trans = 0;
9083 	ei->logged_trans = 0;
9084 	ei->delalloc_bytes = 0;
9085 	ei->new_delalloc_bytes = 0;
9086 	ei->defrag_bytes = 0;
9087 	ei->disk_i_size = 0;
9088 	ei->flags = 0;
9089 	ei->ro_flags = 0;
9090 	ei->csum_bytes = 0;
9091 	ei->index_cnt = (u64)-1;
9092 	ei->dir_index = 0;
9093 	ei->last_unlink_trans = 0;
9094 	ei->last_reflink_trans = 0;
9095 	ei->last_log_commit = 0;
9096 
9097 	spin_lock_init(&ei->lock);
9098 	ei->outstanding_extents = 0;
9099 	if (sb->s_magic != BTRFS_TEST_MAGIC)
9100 		btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv,
9101 					      BTRFS_BLOCK_RSV_DELALLOC);
9102 	ei->runtime_flags = 0;
9103 	ei->prop_compress = BTRFS_COMPRESS_NONE;
9104 	ei->defrag_compress = BTRFS_COMPRESS_NONE;
9105 
9106 	ei->delayed_node = NULL;
9107 
9108 	ei->i_otime.tv_sec = 0;
9109 	ei->i_otime.tv_nsec = 0;
9110 
9111 	inode = &ei->vfs_inode;
9112 	extent_map_tree_init(&ei->extent_tree);
9113 	extent_io_tree_init(fs_info, &ei->io_tree, IO_TREE_INODE_IO, inode);
9114 	extent_io_tree_init(fs_info, &ei->io_failure_tree,
9115 			    IO_TREE_INODE_IO_FAILURE, inode);
9116 	extent_io_tree_init(fs_info, &ei->file_extent_tree,
9117 			    IO_TREE_INODE_FILE_EXTENT, inode);
9118 	ei->io_tree.track_uptodate = true;
9119 	ei->io_failure_tree.track_uptodate = true;
9120 	atomic_set(&ei->sync_writers, 0);
9121 	mutex_init(&ei->log_mutex);
9122 	btrfs_ordered_inode_tree_init(&ei->ordered_tree);
9123 	INIT_LIST_HEAD(&ei->delalloc_inodes);
9124 	INIT_LIST_HEAD(&ei->delayed_iput);
9125 	RB_CLEAR_NODE(&ei->rb_node);
9126 	init_rwsem(&ei->i_mmap_lock);
9127 
9128 	return inode;
9129 }
9130 
9131 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
9132 void btrfs_test_destroy_inode(struct inode *inode)
9133 {
9134 	btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
9135 	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9136 }
9137 #endif
9138 
9139 void btrfs_free_inode(struct inode *inode)
9140 {
9141 	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9142 }
9143 
9144 void btrfs_destroy_inode(struct inode *vfs_inode)
9145 {
9146 	struct btrfs_ordered_extent *ordered;
9147 	struct btrfs_inode *inode = BTRFS_I(vfs_inode);
9148 	struct btrfs_root *root = inode->root;
9149 
9150 	WARN_ON(!hlist_empty(&vfs_inode->i_dentry));
9151 	WARN_ON(vfs_inode->i_data.nrpages);
9152 	WARN_ON(inode->block_rsv.reserved);
9153 	WARN_ON(inode->block_rsv.size);
9154 	WARN_ON(inode->outstanding_extents);
9155 	WARN_ON(inode->delalloc_bytes);
9156 	WARN_ON(inode->new_delalloc_bytes);
9157 	WARN_ON(inode->csum_bytes);
9158 	WARN_ON(inode->defrag_bytes);
9159 
9160 	/*
9161 	 * This can happen where we create an inode, but somebody else also
9162 	 * created the same inode and we need to destroy the one we already
9163 	 * created.
9164 	 */
9165 	if (!root)
9166 		return;
9167 
9168 	while (1) {
9169 		ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
9170 		if (!ordered)
9171 			break;
9172 		else {
9173 			btrfs_err(root->fs_info,
9174 				  "found ordered extent %llu %llu on inode cleanup",
9175 				  ordered->file_offset, ordered->num_bytes);
9176 			btrfs_remove_ordered_extent(inode, ordered);
9177 			btrfs_put_ordered_extent(ordered);
9178 			btrfs_put_ordered_extent(ordered);
9179 		}
9180 	}
9181 	btrfs_qgroup_check_reserved_leak(inode);
9182 	inode_tree_del(inode);
9183 	btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
9184 	btrfs_inode_clear_file_extent_range(inode, 0, (u64)-1);
9185 	btrfs_put_root(inode->root);
9186 }
9187 
9188 int btrfs_drop_inode(struct inode *inode)
9189 {
9190 	struct btrfs_root *root = BTRFS_I(inode)->root;
9191 
9192 	if (root == NULL)
9193 		return 1;
9194 
9195 	/* the snap/subvol tree is on deleting */
9196 	if (btrfs_root_refs(&root->root_item) == 0)
9197 		return 1;
9198 	else
9199 		return generic_drop_inode(inode);
9200 }
9201 
9202 static void init_once(void *foo)
9203 {
9204 	struct btrfs_inode *ei = (struct btrfs_inode *) foo;
9205 
9206 	inode_init_once(&ei->vfs_inode);
9207 }
9208 
9209 void __cold btrfs_destroy_cachep(void)
9210 {
9211 	/*
9212 	 * Make sure all delayed rcu free inodes are flushed before we
9213 	 * destroy cache.
9214 	 */
9215 	rcu_barrier();
9216 	kmem_cache_destroy(btrfs_inode_cachep);
9217 	kmem_cache_destroy(btrfs_trans_handle_cachep);
9218 	kmem_cache_destroy(btrfs_path_cachep);
9219 	kmem_cache_destroy(btrfs_free_space_cachep);
9220 	kmem_cache_destroy(btrfs_free_space_bitmap_cachep);
9221 }
9222 
9223 int __init btrfs_init_cachep(void)
9224 {
9225 	btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
9226 			sizeof(struct btrfs_inode), 0,
9227 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT,
9228 			init_once);
9229 	if (!btrfs_inode_cachep)
9230 		goto fail;
9231 
9232 	btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
9233 			sizeof(struct btrfs_trans_handle), 0,
9234 			SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL);
9235 	if (!btrfs_trans_handle_cachep)
9236 		goto fail;
9237 
9238 	btrfs_path_cachep = kmem_cache_create("btrfs_path",
9239 			sizeof(struct btrfs_path), 0,
9240 			SLAB_MEM_SPREAD, NULL);
9241 	if (!btrfs_path_cachep)
9242 		goto fail;
9243 
9244 	btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
9245 			sizeof(struct btrfs_free_space), 0,
9246 			SLAB_MEM_SPREAD, NULL);
9247 	if (!btrfs_free_space_cachep)
9248 		goto fail;
9249 
9250 	btrfs_free_space_bitmap_cachep = kmem_cache_create("btrfs_free_space_bitmap",
9251 							PAGE_SIZE, PAGE_SIZE,
9252 							SLAB_MEM_SPREAD, NULL);
9253 	if (!btrfs_free_space_bitmap_cachep)
9254 		goto fail;
9255 
9256 	return 0;
9257 fail:
9258 	btrfs_destroy_cachep();
9259 	return -ENOMEM;
9260 }
9261 
9262 static int btrfs_getattr(struct user_namespace *mnt_userns,
9263 			 const struct path *path, struct kstat *stat,
9264 			 u32 request_mask, unsigned int flags)
9265 {
9266 	u64 delalloc_bytes;
9267 	u64 inode_bytes;
9268 	struct inode *inode = d_inode(path->dentry);
9269 	u32 blocksize = inode->i_sb->s_blocksize;
9270 	u32 bi_flags = BTRFS_I(inode)->flags;
9271 	u32 bi_ro_flags = BTRFS_I(inode)->ro_flags;
9272 
9273 	stat->result_mask |= STATX_BTIME;
9274 	stat->btime.tv_sec = BTRFS_I(inode)->i_otime.tv_sec;
9275 	stat->btime.tv_nsec = BTRFS_I(inode)->i_otime.tv_nsec;
9276 	if (bi_flags & BTRFS_INODE_APPEND)
9277 		stat->attributes |= STATX_ATTR_APPEND;
9278 	if (bi_flags & BTRFS_INODE_COMPRESS)
9279 		stat->attributes |= STATX_ATTR_COMPRESSED;
9280 	if (bi_flags & BTRFS_INODE_IMMUTABLE)
9281 		stat->attributes |= STATX_ATTR_IMMUTABLE;
9282 	if (bi_flags & BTRFS_INODE_NODUMP)
9283 		stat->attributes |= STATX_ATTR_NODUMP;
9284 	if (bi_ro_flags & BTRFS_INODE_RO_VERITY)
9285 		stat->attributes |= STATX_ATTR_VERITY;
9286 
9287 	stat->attributes_mask |= (STATX_ATTR_APPEND |
9288 				  STATX_ATTR_COMPRESSED |
9289 				  STATX_ATTR_IMMUTABLE |
9290 				  STATX_ATTR_NODUMP);
9291 
9292 	generic_fillattr(mnt_userns, inode, stat);
9293 	stat->dev = BTRFS_I(inode)->root->anon_dev;
9294 
9295 	spin_lock(&BTRFS_I(inode)->lock);
9296 	delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes;
9297 	inode_bytes = inode_get_bytes(inode);
9298 	spin_unlock(&BTRFS_I(inode)->lock);
9299 	stat->blocks = (ALIGN(inode_bytes, blocksize) +
9300 			ALIGN(delalloc_bytes, blocksize)) >> 9;
9301 	return 0;
9302 }
9303 
9304 static int btrfs_rename_exchange(struct inode *old_dir,
9305 			      struct dentry *old_dentry,
9306 			      struct inode *new_dir,
9307 			      struct dentry *new_dentry)
9308 {
9309 	struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
9310 	struct btrfs_trans_handle *trans;
9311 	struct btrfs_root *root = BTRFS_I(old_dir)->root;
9312 	struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9313 	struct inode *new_inode = new_dentry->d_inode;
9314 	struct inode *old_inode = old_dentry->d_inode;
9315 	struct timespec64 ctime = current_time(old_inode);
9316 	u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
9317 	u64 new_ino = btrfs_ino(BTRFS_I(new_inode));
9318 	u64 old_idx = 0;
9319 	u64 new_idx = 0;
9320 	int ret;
9321 	int ret2;
9322 	bool root_log_pinned = false;
9323 	bool dest_log_pinned = false;
9324 	bool need_abort = false;
9325 
9326 	/*
9327 	 * For non-subvolumes allow exchange only within one subvolume, in the
9328 	 * same inode namespace. Two subvolumes (represented as directory) can
9329 	 * be exchanged as they're a logical link and have a fixed inode number.
9330 	 */
9331 	if (root != dest &&
9332 	    (old_ino != BTRFS_FIRST_FREE_OBJECTID ||
9333 	     new_ino != BTRFS_FIRST_FREE_OBJECTID))
9334 		return -EXDEV;
9335 
9336 	/* close the race window with snapshot create/destroy ioctl */
9337 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID ||
9338 	    new_ino == BTRFS_FIRST_FREE_OBJECTID)
9339 		down_read(&fs_info->subvol_sem);
9340 
9341 	/*
9342 	 * We want to reserve the absolute worst case amount of items.  So if
9343 	 * both inodes are subvols and we need to unlink them then that would
9344 	 * require 4 item modifications, but if they are both normal inodes it
9345 	 * would require 5 item modifications, so we'll assume their normal
9346 	 * inodes.  So 5 * 2 is 10, plus 2 for the new links, so 12 total items
9347 	 * should cover the worst case number of items we'll modify.
9348 	 */
9349 	trans = btrfs_start_transaction(root, 12);
9350 	if (IS_ERR(trans)) {
9351 		ret = PTR_ERR(trans);
9352 		goto out_notrans;
9353 	}
9354 
9355 	if (dest != root) {
9356 		ret = btrfs_record_root_in_trans(trans, dest);
9357 		if (ret)
9358 			goto out_fail;
9359 	}
9360 
9361 	/*
9362 	 * We need to find a free sequence number both in the source and
9363 	 * in the destination directory for the exchange.
9364 	 */
9365 	ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx);
9366 	if (ret)
9367 		goto out_fail;
9368 	ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx);
9369 	if (ret)
9370 		goto out_fail;
9371 
9372 	BTRFS_I(old_inode)->dir_index = 0ULL;
9373 	BTRFS_I(new_inode)->dir_index = 0ULL;
9374 
9375 	/* Reference for the source. */
9376 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9377 		/* force full log commit if subvolume involved. */
9378 		btrfs_set_log_full_commit(trans);
9379 	} else {
9380 		ret = btrfs_insert_inode_ref(trans, dest,
9381 					     new_dentry->d_name.name,
9382 					     new_dentry->d_name.len,
9383 					     old_ino,
9384 					     btrfs_ino(BTRFS_I(new_dir)),
9385 					     old_idx);
9386 		if (ret)
9387 			goto out_fail;
9388 		need_abort = true;
9389 	}
9390 
9391 	/* And now for the dest. */
9392 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9393 		/* force full log commit if subvolume involved. */
9394 		btrfs_set_log_full_commit(trans);
9395 	} else {
9396 		ret = btrfs_insert_inode_ref(trans, root,
9397 					     old_dentry->d_name.name,
9398 					     old_dentry->d_name.len,
9399 					     new_ino,
9400 					     btrfs_ino(BTRFS_I(old_dir)),
9401 					     new_idx);
9402 		if (ret) {
9403 			if (need_abort)
9404 				btrfs_abort_transaction(trans, ret);
9405 			goto out_fail;
9406 		}
9407 	}
9408 
9409 	/* Update inode version and ctime/mtime. */
9410 	inode_inc_iversion(old_dir);
9411 	inode_inc_iversion(new_dir);
9412 	inode_inc_iversion(old_inode);
9413 	inode_inc_iversion(new_inode);
9414 	old_dir->i_ctime = old_dir->i_mtime = ctime;
9415 	new_dir->i_ctime = new_dir->i_mtime = ctime;
9416 	old_inode->i_ctime = ctime;
9417 	new_inode->i_ctime = ctime;
9418 
9419 	if (old_dentry->d_parent != new_dentry->d_parent) {
9420 		btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9421 				BTRFS_I(old_inode), 1);
9422 		btrfs_record_unlink_dir(trans, BTRFS_I(new_dir),
9423 				BTRFS_I(new_inode), 1);
9424 	}
9425 
9426 	/*
9427 	 * Now pin the logs of the roots. We do it to ensure that no other task
9428 	 * can sync the logs while we are in progress with the rename, because
9429 	 * that could result in an inconsistency in case any of the inodes that
9430 	 * are part of this rename operation were logged before.
9431 	 *
9432 	 * We pin the logs even if at this precise moment none of the inodes was
9433 	 * logged before. This is because right after we checked for that, some
9434 	 * other task fsyncing some other inode not involved with this rename
9435 	 * operation could log that one of our inodes exists.
9436 	 *
9437 	 * We don't need to pin the logs before the above calls to
9438 	 * btrfs_insert_inode_ref(), since those don't ever need to change a log.
9439 	 */
9440 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID) {
9441 		btrfs_pin_log_trans(root);
9442 		root_log_pinned = true;
9443 	}
9444 	if (new_ino != BTRFS_FIRST_FREE_OBJECTID) {
9445 		btrfs_pin_log_trans(dest);
9446 		dest_log_pinned = true;
9447 	}
9448 
9449 	/* src is a subvolume */
9450 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9451 		ret = btrfs_unlink_subvol(trans, old_dir, old_dentry);
9452 	} else { /* src is an inode */
9453 		ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
9454 					   BTRFS_I(old_dentry->d_inode),
9455 					   old_dentry->d_name.name,
9456 					   old_dentry->d_name.len);
9457 		if (!ret)
9458 			ret = btrfs_update_inode(trans, root, BTRFS_I(old_inode));
9459 	}
9460 	if (ret) {
9461 		btrfs_abort_transaction(trans, ret);
9462 		goto out_fail;
9463 	}
9464 
9465 	/* dest is a subvolume */
9466 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9467 		ret = btrfs_unlink_subvol(trans, new_dir, new_dentry);
9468 	} else { /* dest is an inode */
9469 		ret = __btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
9470 					   BTRFS_I(new_dentry->d_inode),
9471 					   new_dentry->d_name.name,
9472 					   new_dentry->d_name.len);
9473 		if (!ret)
9474 			ret = btrfs_update_inode(trans, dest, BTRFS_I(new_inode));
9475 	}
9476 	if (ret) {
9477 		btrfs_abort_transaction(trans, ret);
9478 		goto out_fail;
9479 	}
9480 
9481 	ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
9482 			     new_dentry->d_name.name,
9483 			     new_dentry->d_name.len, 0, old_idx);
9484 	if (ret) {
9485 		btrfs_abort_transaction(trans, ret);
9486 		goto out_fail;
9487 	}
9488 
9489 	ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode),
9490 			     old_dentry->d_name.name,
9491 			     old_dentry->d_name.len, 0, new_idx);
9492 	if (ret) {
9493 		btrfs_abort_transaction(trans, ret);
9494 		goto out_fail;
9495 	}
9496 
9497 	if (old_inode->i_nlink == 1)
9498 		BTRFS_I(old_inode)->dir_index = old_idx;
9499 	if (new_inode->i_nlink == 1)
9500 		BTRFS_I(new_inode)->dir_index = new_idx;
9501 
9502 	if (root_log_pinned) {
9503 		btrfs_log_new_name(trans, BTRFS_I(old_inode), BTRFS_I(old_dir),
9504 				   new_dentry->d_parent);
9505 		btrfs_end_log_trans(root);
9506 		root_log_pinned = false;
9507 	}
9508 	if (dest_log_pinned) {
9509 		btrfs_log_new_name(trans, BTRFS_I(new_inode), BTRFS_I(new_dir),
9510 				   old_dentry->d_parent);
9511 		btrfs_end_log_trans(dest);
9512 		dest_log_pinned = false;
9513 	}
9514 out_fail:
9515 	/*
9516 	 * If we have pinned a log and an error happened, we unpin tasks
9517 	 * trying to sync the log and force them to fallback to a transaction
9518 	 * commit if the log currently contains any of the inodes involved in
9519 	 * this rename operation (to ensure we do not persist a log with an
9520 	 * inconsistent state for any of these inodes or leading to any
9521 	 * inconsistencies when replayed). If the transaction was aborted, the
9522 	 * abortion reason is propagated to userspace when attempting to commit
9523 	 * the transaction. If the log does not contain any of these inodes, we
9524 	 * allow the tasks to sync it.
9525 	 */
9526 	if (ret && (root_log_pinned || dest_log_pinned)) {
9527 		if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
9528 		    btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
9529 		    btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
9530 		    btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation))
9531 			btrfs_set_log_full_commit(trans);
9532 
9533 		if (root_log_pinned) {
9534 			btrfs_end_log_trans(root);
9535 			root_log_pinned = false;
9536 		}
9537 		if (dest_log_pinned) {
9538 			btrfs_end_log_trans(dest);
9539 			dest_log_pinned = false;
9540 		}
9541 	}
9542 	ret2 = btrfs_end_transaction(trans);
9543 	ret = ret ? ret : ret2;
9544 out_notrans:
9545 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID ||
9546 	    old_ino == BTRFS_FIRST_FREE_OBJECTID)
9547 		up_read(&fs_info->subvol_sem);
9548 
9549 	return ret;
9550 }
9551 
9552 static int btrfs_whiteout_for_rename(struct btrfs_trans_handle *trans,
9553 				     struct btrfs_root *root,
9554 				     struct user_namespace *mnt_userns,
9555 				     struct inode *dir,
9556 				     struct dentry *dentry)
9557 {
9558 	int ret;
9559 	struct inode *inode;
9560 	u64 objectid;
9561 	u64 index;
9562 
9563 	ret = btrfs_get_free_objectid(root, &objectid);
9564 	if (ret)
9565 		return ret;
9566 
9567 	inode = btrfs_new_inode(trans, root, mnt_userns, dir,
9568 				dentry->d_name.name,
9569 				dentry->d_name.len,
9570 				btrfs_ino(BTRFS_I(dir)),
9571 				objectid,
9572 				S_IFCHR | WHITEOUT_MODE,
9573 				&index);
9574 
9575 	if (IS_ERR(inode)) {
9576 		ret = PTR_ERR(inode);
9577 		return ret;
9578 	}
9579 
9580 	inode->i_op = &btrfs_special_inode_operations;
9581 	init_special_inode(inode, inode->i_mode,
9582 		WHITEOUT_DEV);
9583 
9584 	ret = btrfs_init_inode_security(trans, inode, dir,
9585 				&dentry->d_name);
9586 	if (ret)
9587 		goto out;
9588 
9589 	ret = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
9590 				BTRFS_I(inode), 0, index);
9591 	if (ret)
9592 		goto out;
9593 
9594 	ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
9595 out:
9596 	unlock_new_inode(inode);
9597 	if (ret)
9598 		inode_dec_link_count(inode);
9599 	iput(inode);
9600 
9601 	return ret;
9602 }
9603 
9604 static int btrfs_rename(struct user_namespace *mnt_userns,
9605 			struct inode *old_dir, struct dentry *old_dentry,
9606 			struct inode *new_dir, struct dentry *new_dentry,
9607 			unsigned int flags)
9608 {
9609 	struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
9610 	struct btrfs_trans_handle *trans;
9611 	unsigned int trans_num_items;
9612 	struct btrfs_root *root = BTRFS_I(old_dir)->root;
9613 	struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9614 	struct inode *new_inode = d_inode(new_dentry);
9615 	struct inode *old_inode = d_inode(old_dentry);
9616 	u64 index = 0;
9617 	int ret;
9618 	int ret2;
9619 	u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
9620 	bool log_pinned = false;
9621 
9622 	if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
9623 		return -EPERM;
9624 
9625 	/* we only allow rename subvolume link between subvolumes */
9626 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9627 		return -EXDEV;
9628 
9629 	if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
9630 	    (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID))
9631 		return -ENOTEMPTY;
9632 
9633 	if (S_ISDIR(old_inode->i_mode) && new_inode &&
9634 	    new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
9635 		return -ENOTEMPTY;
9636 
9637 
9638 	/* check for collisions, even if the  name isn't there */
9639 	ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
9640 			     new_dentry->d_name.name,
9641 			     new_dentry->d_name.len);
9642 
9643 	if (ret) {
9644 		if (ret == -EEXIST) {
9645 			/* we shouldn't get
9646 			 * eexist without a new_inode */
9647 			if (WARN_ON(!new_inode)) {
9648 				return ret;
9649 			}
9650 		} else {
9651 			/* maybe -EOVERFLOW */
9652 			return ret;
9653 		}
9654 	}
9655 	ret = 0;
9656 
9657 	/*
9658 	 * we're using rename to replace one file with another.  Start IO on it
9659 	 * now so  we don't add too much work to the end of the transaction
9660 	 */
9661 	if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
9662 		filemap_flush(old_inode->i_mapping);
9663 
9664 	/* close the racy window with snapshot create/destroy ioctl */
9665 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9666 		down_read(&fs_info->subvol_sem);
9667 	/*
9668 	 * We want to reserve the absolute worst case amount of items.  So if
9669 	 * both inodes are subvols and we need to unlink them then that would
9670 	 * require 4 item modifications, but if they are both normal inodes it
9671 	 * would require 5 item modifications, so we'll assume they are normal
9672 	 * inodes.  So 5 * 2 is 10, plus 1 for the new link, so 11 total items
9673 	 * should cover the worst case number of items we'll modify.
9674 	 * If our rename has the whiteout flag, we need more 5 units for the
9675 	 * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item
9676 	 * when selinux is enabled).
9677 	 */
9678 	trans_num_items = 11;
9679 	if (flags & RENAME_WHITEOUT)
9680 		trans_num_items += 5;
9681 	trans = btrfs_start_transaction(root, trans_num_items);
9682 	if (IS_ERR(trans)) {
9683 		ret = PTR_ERR(trans);
9684 		goto out_notrans;
9685 	}
9686 
9687 	if (dest != root) {
9688 		ret = btrfs_record_root_in_trans(trans, dest);
9689 		if (ret)
9690 			goto out_fail;
9691 	}
9692 
9693 	ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index);
9694 	if (ret)
9695 		goto out_fail;
9696 
9697 	BTRFS_I(old_inode)->dir_index = 0ULL;
9698 	if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9699 		/* force full log commit if subvolume involved. */
9700 		btrfs_set_log_full_commit(trans);
9701 	} else {
9702 		ret = btrfs_insert_inode_ref(trans, dest,
9703 					     new_dentry->d_name.name,
9704 					     new_dentry->d_name.len,
9705 					     old_ino,
9706 					     btrfs_ino(BTRFS_I(new_dir)), index);
9707 		if (ret)
9708 			goto out_fail;
9709 	}
9710 
9711 	inode_inc_iversion(old_dir);
9712 	inode_inc_iversion(new_dir);
9713 	inode_inc_iversion(old_inode);
9714 	old_dir->i_ctime = old_dir->i_mtime =
9715 	new_dir->i_ctime = new_dir->i_mtime =
9716 	old_inode->i_ctime = current_time(old_dir);
9717 
9718 	if (old_dentry->d_parent != new_dentry->d_parent)
9719 		btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9720 				BTRFS_I(old_inode), 1);
9721 
9722 	if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9723 		ret = btrfs_unlink_subvol(trans, old_dir, old_dentry);
9724 	} else {
9725 		/*
9726 		 * Now pin the log. We do it to ensure that no other task can
9727 		 * sync the log while we are in progress with the rename, as
9728 		 * that could result in an inconsistency in case any of the
9729 		 * inodes that are part of this rename operation were logged
9730 		 * before.
9731 		 *
9732 		 * We pin the log even if at this precise moment none of the
9733 		 * inodes was logged before. This is because right after we
9734 		 * checked for that, some other task fsyncing some other inode
9735 		 * not involved with this rename operation could log that one of
9736 		 * our inodes exists.
9737 		 *
9738 		 * We don't need to pin the logs before the above call to
9739 		 * btrfs_insert_inode_ref(), since that does not need to change
9740 		 * a log.
9741 		 */
9742 		btrfs_pin_log_trans(root);
9743 		log_pinned = true;
9744 		ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
9745 					BTRFS_I(d_inode(old_dentry)),
9746 					old_dentry->d_name.name,
9747 					old_dentry->d_name.len);
9748 		if (!ret)
9749 			ret = btrfs_update_inode(trans, root, BTRFS_I(old_inode));
9750 	}
9751 	if (ret) {
9752 		btrfs_abort_transaction(trans, ret);
9753 		goto out_fail;
9754 	}
9755 
9756 	if (new_inode) {
9757 		inode_inc_iversion(new_inode);
9758 		new_inode->i_ctime = current_time(new_inode);
9759 		if (unlikely(btrfs_ino(BTRFS_I(new_inode)) ==
9760 			     BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
9761 			ret = btrfs_unlink_subvol(trans, new_dir, new_dentry);
9762 			BUG_ON(new_inode->i_nlink == 0);
9763 		} else {
9764 			ret = btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
9765 						 BTRFS_I(d_inode(new_dentry)),
9766 						 new_dentry->d_name.name,
9767 						 new_dentry->d_name.len);
9768 		}
9769 		if (!ret && new_inode->i_nlink == 0)
9770 			ret = btrfs_orphan_add(trans,
9771 					BTRFS_I(d_inode(new_dentry)));
9772 		if (ret) {
9773 			btrfs_abort_transaction(trans, ret);
9774 			goto out_fail;
9775 		}
9776 	}
9777 
9778 	ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
9779 			     new_dentry->d_name.name,
9780 			     new_dentry->d_name.len, 0, index);
9781 	if (ret) {
9782 		btrfs_abort_transaction(trans, ret);
9783 		goto out_fail;
9784 	}
9785 
9786 	if (old_inode->i_nlink == 1)
9787 		BTRFS_I(old_inode)->dir_index = index;
9788 
9789 	if (log_pinned) {
9790 		btrfs_log_new_name(trans, BTRFS_I(old_inode), BTRFS_I(old_dir),
9791 				   new_dentry->d_parent);
9792 		btrfs_end_log_trans(root);
9793 		log_pinned = false;
9794 	}
9795 
9796 	if (flags & RENAME_WHITEOUT) {
9797 		ret = btrfs_whiteout_for_rename(trans, root, mnt_userns,
9798 						old_dir, old_dentry);
9799 
9800 		if (ret) {
9801 			btrfs_abort_transaction(trans, ret);
9802 			goto out_fail;
9803 		}
9804 	}
9805 out_fail:
9806 	/*
9807 	 * If we have pinned the log and an error happened, we unpin tasks
9808 	 * trying to sync the log and force them to fallback to a transaction
9809 	 * commit if the log currently contains any of the inodes involved in
9810 	 * this rename operation (to ensure we do not persist a log with an
9811 	 * inconsistent state for any of these inodes or leading to any
9812 	 * inconsistencies when replayed). If the transaction was aborted, the
9813 	 * abortion reason is propagated to userspace when attempting to commit
9814 	 * the transaction. If the log does not contain any of these inodes, we
9815 	 * allow the tasks to sync it.
9816 	 */
9817 	if (ret && log_pinned) {
9818 		if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
9819 		    btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
9820 		    btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
9821 		    (new_inode &&
9822 		     btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
9823 			btrfs_set_log_full_commit(trans);
9824 
9825 		btrfs_end_log_trans(root);
9826 		log_pinned = false;
9827 	}
9828 	ret2 = btrfs_end_transaction(trans);
9829 	ret = ret ? ret : ret2;
9830 out_notrans:
9831 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9832 		up_read(&fs_info->subvol_sem);
9833 
9834 	return ret;
9835 }
9836 
9837 static int btrfs_rename2(struct user_namespace *mnt_userns, struct inode *old_dir,
9838 			 struct dentry *old_dentry, struct inode *new_dir,
9839 			 struct dentry *new_dentry, unsigned int flags)
9840 {
9841 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
9842 		return -EINVAL;
9843 
9844 	if (flags & RENAME_EXCHANGE)
9845 		return btrfs_rename_exchange(old_dir, old_dentry, new_dir,
9846 					  new_dentry);
9847 
9848 	return btrfs_rename(mnt_userns, old_dir, old_dentry, new_dir,
9849 			    new_dentry, flags);
9850 }
9851 
9852 struct btrfs_delalloc_work {
9853 	struct inode *inode;
9854 	struct completion completion;
9855 	struct list_head list;
9856 	struct btrfs_work work;
9857 };
9858 
9859 static void btrfs_run_delalloc_work(struct btrfs_work *work)
9860 {
9861 	struct btrfs_delalloc_work *delalloc_work;
9862 	struct inode *inode;
9863 
9864 	delalloc_work = container_of(work, struct btrfs_delalloc_work,
9865 				     work);
9866 	inode = delalloc_work->inode;
9867 	filemap_flush(inode->i_mapping);
9868 	if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
9869 				&BTRFS_I(inode)->runtime_flags))
9870 		filemap_flush(inode->i_mapping);
9871 
9872 	iput(inode);
9873 	complete(&delalloc_work->completion);
9874 }
9875 
9876 static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode)
9877 {
9878 	struct btrfs_delalloc_work *work;
9879 
9880 	work = kmalloc(sizeof(*work), GFP_NOFS);
9881 	if (!work)
9882 		return NULL;
9883 
9884 	init_completion(&work->completion);
9885 	INIT_LIST_HEAD(&work->list);
9886 	work->inode = inode;
9887 	btrfs_init_work(&work->work, btrfs_run_delalloc_work, NULL, NULL);
9888 
9889 	return work;
9890 }
9891 
9892 /*
9893  * some fairly slow code that needs optimization. This walks the list
9894  * of all the inodes with pending delalloc and forces them to disk.
9895  */
9896 static int start_delalloc_inodes(struct btrfs_root *root,
9897 				 struct writeback_control *wbc, bool snapshot,
9898 				 bool in_reclaim_context)
9899 {
9900 	struct btrfs_inode *binode;
9901 	struct inode *inode;
9902 	struct btrfs_delalloc_work *work, *next;
9903 	struct list_head works;
9904 	struct list_head splice;
9905 	int ret = 0;
9906 	bool full_flush = wbc->nr_to_write == LONG_MAX;
9907 
9908 	INIT_LIST_HEAD(&works);
9909 	INIT_LIST_HEAD(&splice);
9910 
9911 	mutex_lock(&root->delalloc_mutex);
9912 	spin_lock(&root->delalloc_lock);
9913 	list_splice_init(&root->delalloc_inodes, &splice);
9914 	while (!list_empty(&splice)) {
9915 		binode = list_entry(splice.next, struct btrfs_inode,
9916 				    delalloc_inodes);
9917 
9918 		list_move_tail(&binode->delalloc_inodes,
9919 			       &root->delalloc_inodes);
9920 
9921 		if (in_reclaim_context &&
9922 		    test_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &binode->runtime_flags))
9923 			continue;
9924 
9925 		inode = igrab(&binode->vfs_inode);
9926 		if (!inode) {
9927 			cond_resched_lock(&root->delalloc_lock);
9928 			continue;
9929 		}
9930 		spin_unlock(&root->delalloc_lock);
9931 
9932 		if (snapshot)
9933 			set_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
9934 				&binode->runtime_flags);
9935 		if (full_flush) {
9936 			work = btrfs_alloc_delalloc_work(inode);
9937 			if (!work) {
9938 				iput(inode);
9939 				ret = -ENOMEM;
9940 				goto out;
9941 			}
9942 			list_add_tail(&work->list, &works);
9943 			btrfs_queue_work(root->fs_info->flush_workers,
9944 					 &work->work);
9945 		} else {
9946 			ret = filemap_fdatawrite_wbc(inode->i_mapping, wbc);
9947 			btrfs_add_delayed_iput(inode);
9948 			if (ret || wbc->nr_to_write <= 0)
9949 				goto out;
9950 		}
9951 		cond_resched();
9952 		spin_lock(&root->delalloc_lock);
9953 	}
9954 	spin_unlock(&root->delalloc_lock);
9955 
9956 out:
9957 	list_for_each_entry_safe(work, next, &works, list) {
9958 		list_del_init(&work->list);
9959 		wait_for_completion(&work->completion);
9960 		kfree(work);
9961 	}
9962 
9963 	if (!list_empty(&splice)) {
9964 		spin_lock(&root->delalloc_lock);
9965 		list_splice_tail(&splice, &root->delalloc_inodes);
9966 		spin_unlock(&root->delalloc_lock);
9967 	}
9968 	mutex_unlock(&root->delalloc_mutex);
9969 	return ret;
9970 }
9971 
9972 int btrfs_start_delalloc_snapshot(struct btrfs_root *root, bool in_reclaim_context)
9973 {
9974 	struct writeback_control wbc = {
9975 		.nr_to_write = LONG_MAX,
9976 		.sync_mode = WB_SYNC_NONE,
9977 		.range_start = 0,
9978 		.range_end = LLONG_MAX,
9979 	};
9980 	struct btrfs_fs_info *fs_info = root->fs_info;
9981 
9982 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
9983 		return -EROFS;
9984 
9985 	return start_delalloc_inodes(root, &wbc, true, in_reclaim_context);
9986 }
9987 
9988 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, long nr,
9989 			       bool in_reclaim_context)
9990 {
9991 	struct writeback_control wbc = {
9992 		.nr_to_write = nr,
9993 		.sync_mode = WB_SYNC_NONE,
9994 		.range_start = 0,
9995 		.range_end = LLONG_MAX,
9996 	};
9997 	struct btrfs_root *root;
9998 	struct list_head splice;
9999 	int ret;
10000 
10001 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
10002 		return -EROFS;
10003 
10004 	INIT_LIST_HEAD(&splice);
10005 
10006 	mutex_lock(&fs_info->delalloc_root_mutex);
10007 	spin_lock(&fs_info->delalloc_root_lock);
10008 	list_splice_init(&fs_info->delalloc_roots, &splice);
10009 	while (!list_empty(&splice)) {
10010 		/*
10011 		 * Reset nr_to_write here so we know that we're doing a full
10012 		 * flush.
10013 		 */
10014 		if (nr == LONG_MAX)
10015 			wbc.nr_to_write = LONG_MAX;
10016 
10017 		root = list_first_entry(&splice, struct btrfs_root,
10018 					delalloc_root);
10019 		root = btrfs_grab_root(root);
10020 		BUG_ON(!root);
10021 		list_move_tail(&root->delalloc_root,
10022 			       &fs_info->delalloc_roots);
10023 		spin_unlock(&fs_info->delalloc_root_lock);
10024 
10025 		ret = start_delalloc_inodes(root, &wbc, false, in_reclaim_context);
10026 		btrfs_put_root(root);
10027 		if (ret < 0 || wbc.nr_to_write <= 0)
10028 			goto out;
10029 		spin_lock(&fs_info->delalloc_root_lock);
10030 	}
10031 	spin_unlock(&fs_info->delalloc_root_lock);
10032 
10033 	ret = 0;
10034 out:
10035 	if (!list_empty(&splice)) {
10036 		spin_lock(&fs_info->delalloc_root_lock);
10037 		list_splice_tail(&splice, &fs_info->delalloc_roots);
10038 		spin_unlock(&fs_info->delalloc_root_lock);
10039 	}
10040 	mutex_unlock(&fs_info->delalloc_root_mutex);
10041 	return ret;
10042 }
10043 
10044 static int btrfs_symlink(struct user_namespace *mnt_userns, struct inode *dir,
10045 			 struct dentry *dentry, const char *symname)
10046 {
10047 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
10048 	struct btrfs_trans_handle *trans;
10049 	struct btrfs_root *root = BTRFS_I(dir)->root;
10050 	struct btrfs_path *path;
10051 	struct btrfs_key key;
10052 	struct inode *inode = NULL;
10053 	int err;
10054 	u64 objectid;
10055 	u64 index = 0;
10056 	int name_len;
10057 	int datasize;
10058 	unsigned long ptr;
10059 	struct btrfs_file_extent_item *ei;
10060 	struct extent_buffer *leaf;
10061 
10062 	name_len = strlen(symname);
10063 	if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info))
10064 		return -ENAMETOOLONG;
10065 
10066 	/*
10067 	 * 2 items for inode item and ref
10068 	 * 2 items for dir items
10069 	 * 1 item for updating parent inode item
10070 	 * 1 item for the inline extent item
10071 	 * 1 item for xattr if selinux is on
10072 	 */
10073 	trans = btrfs_start_transaction(root, 7);
10074 	if (IS_ERR(trans))
10075 		return PTR_ERR(trans);
10076 
10077 	err = btrfs_get_free_objectid(root, &objectid);
10078 	if (err)
10079 		goto out_unlock;
10080 
10081 	inode = btrfs_new_inode(trans, root, mnt_userns, dir,
10082 				dentry->d_name.name, dentry->d_name.len,
10083 				btrfs_ino(BTRFS_I(dir)), objectid,
10084 				S_IFLNK | S_IRWXUGO, &index);
10085 	if (IS_ERR(inode)) {
10086 		err = PTR_ERR(inode);
10087 		inode = NULL;
10088 		goto out_unlock;
10089 	}
10090 
10091 	/*
10092 	* If the active LSM wants to access the inode during
10093 	* d_instantiate it needs these. Smack checks to see
10094 	* if the filesystem supports xattrs by looking at the
10095 	* ops vector.
10096 	*/
10097 	inode->i_fop = &btrfs_file_operations;
10098 	inode->i_op = &btrfs_file_inode_operations;
10099 	inode->i_mapping->a_ops = &btrfs_aops;
10100 
10101 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
10102 	if (err)
10103 		goto out_unlock;
10104 
10105 	path = btrfs_alloc_path();
10106 	if (!path) {
10107 		err = -ENOMEM;
10108 		goto out_unlock;
10109 	}
10110 	key.objectid = btrfs_ino(BTRFS_I(inode));
10111 	key.offset = 0;
10112 	key.type = BTRFS_EXTENT_DATA_KEY;
10113 	datasize = btrfs_file_extent_calc_inline_size(name_len);
10114 	err = btrfs_insert_empty_item(trans, root, path, &key,
10115 				      datasize);
10116 	if (err) {
10117 		btrfs_free_path(path);
10118 		goto out_unlock;
10119 	}
10120 	leaf = path->nodes[0];
10121 	ei = btrfs_item_ptr(leaf, path->slots[0],
10122 			    struct btrfs_file_extent_item);
10123 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
10124 	btrfs_set_file_extent_type(leaf, ei,
10125 				   BTRFS_FILE_EXTENT_INLINE);
10126 	btrfs_set_file_extent_encryption(leaf, ei, 0);
10127 	btrfs_set_file_extent_compression(leaf, ei, 0);
10128 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
10129 	btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
10130 
10131 	ptr = btrfs_file_extent_inline_start(ei);
10132 	write_extent_buffer(leaf, symname, ptr, name_len);
10133 	btrfs_mark_buffer_dirty(leaf);
10134 	btrfs_free_path(path);
10135 
10136 	inode->i_op = &btrfs_symlink_inode_operations;
10137 	inode_nohighmem(inode);
10138 	inode_set_bytes(inode, name_len);
10139 	btrfs_i_size_write(BTRFS_I(inode), name_len);
10140 	err = btrfs_update_inode(trans, root, BTRFS_I(inode));
10141 	/*
10142 	 * Last step, add directory indexes for our symlink inode. This is the
10143 	 * last step to avoid extra cleanup of these indexes if an error happens
10144 	 * elsewhere above.
10145 	 */
10146 	if (!err)
10147 		err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
10148 				BTRFS_I(inode), 0, index);
10149 	if (err)
10150 		goto out_unlock;
10151 
10152 	d_instantiate_new(dentry, inode);
10153 
10154 out_unlock:
10155 	btrfs_end_transaction(trans);
10156 	if (err && inode) {
10157 		inode_dec_link_count(inode);
10158 		discard_new_inode(inode);
10159 	}
10160 	btrfs_btree_balance_dirty(fs_info);
10161 	return err;
10162 }
10163 
10164 static struct btrfs_trans_handle *insert_prealloc_file_extent(
10165 				       struct btrfs_trans_handle *trans_in,
10166 				       struct btrfs_inode *inode,
10167 				       struct btrfs_key *ins,
10168 				       u64 file_offset)
10169 {
10170 	struct btrfs_file_extent_item stack_fi;
10171 	struct btrfs_replace_extent_info extent_info;
10172 	struct btrfs_trans_handle *trans = trans_in;
10173 	struct btrfs_path *path;
10174 	u64 start = ins->objectid;
10175 	u64 len = ins->offset;
10176 	int qgroup_released;
10177 	int ret;
10178 
10179 	memset(&stack_fi, 0, sizeof(stack_fi));
10180 
10181 	btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_PREALLOC);
10182 	btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, start);
10183 	btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi, len);
10184 	btrfs_set_stack_file_extent_num_bytes(&stack_fi, len);
10185 	btrfs_set_stack_file_extent_ram_bytes(&stack_fi, len);
10186 	btrfs_set_stack_file_extent_compression(&stack_fi, BTRFS_COMPRESS_NONE);
10187 	/* Encryption and other encoding is reserved and all 0 */
10188 
10189 	qgroup_released = btrfs_qgroup_release_data(inode, file_offset, len);
10190 	if (qgroup_released < 0)
10191 		return ERR_PTR(qgroup_released);
10192 
10193 	if (trans) {
10194 		ret = insert_reserved_file_extent(trans, inode,
10195 						  file_offset, &stack_fi,
10196 						  true, qgroup_released);
10197 		if (ret)
10198 			goto free_qgroup;
10199 		return trans;
10200 	}
10201 
10202 	extent_info.disk_offset = start;
10203 	extent_info.disk_len = len;
10204 	extent_info.data_offset = 0;
10205 	extent_info.data_len = len;
10206 	extent_info.file_offset = file_offset;
10207 	extent_info.extent_buf = (char *)&stack_fi;
10208 	extent_info.is_new_extent = true;
10209 	extent_info.qgroup_reserved = qgroup_released;
10210 	extent_info.insertions = 0;
10211 
10212 	path = btrfs_alloc_path();
10213 	if (!path) {
10214 		ret = -ENOMEM;
10215 		goto free_qgroup;
10216 	}
10217 
10218 	ret = btrfs_replace_file_extents(inode, path, file_offset,
10219 				     file_offset + len - 1, &extent_info,
10220 				     &trans);
10221 	btrfs_free_path(path);
10222 	if (ret)
10223 		goto free_qgroup;
10224 	return trans;
10225 
10226 free_qgroup:
10227 	/*
10228 	 * We have released qgroup data range at the beginning of the function,
10229 	 * and normally qgroup_released bytes will be freed when committing
10230 	 * transaction.
10231 	 * But if we error out early, we have to free what we have released
10232 	 * or we leak qgroup data reservation.
10233 	 */
10234 	btrfs_qgroup_free_refroot(inode->root->fs_info,
10235 			inode->root->root_key.objectid, qgroup_released,
10236 			BTRFS_QGROUP_RSV_DATA);
10237 	return ERR_PTR(ret);
10238 }
10239 
10240 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
10241 				       u64 start, u64 num_bytes, u64 min_size,
10242 				       loff_t actual_len, u64 *alloc_hint,
10243 				       struct btrfs_trans_handle *trans)
10244 {
10245 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
10246 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
10247 	struct extent_map *em;
10248 	struct btrfs_root *root = BTRFS_I(inode)->root;
10249 	struct btrfs_key ins;
10250 	u64 cur_offset = start;
10251 	u64 clear_offset = start;
10252 	u64 i_size;
10253 	u64 cur_bytes;
10254 	u64 last_alloc = (u64)-1;
10255 	int ret = 0;
10256 	bool own_trans = true;
10257 	u64 end = start + num_bytes - 1;
10258 
10259 	if (trans)
10260 		own_trans = false;
10261 	while (num_bytes > 0) {
10262 		cur_bytes = min_t(u64, num_bytes, SZ_256M);
10263 		cur_bytes = max(cur_bytes, min_size);
10264 		/*
10265 		 * If we are severely fragmented we could end up with really
10266 		 * small allocations, so if the allocator is returning small
10267 		 * chunks lets make its job easier by only searching for those
10268 		 * sized chunks.
10269 		 */
10270 		cur_bytes = min(cur_bytes, last_alloc);
10271 		ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes,
10272 				min_size, 0, *alloc_hint, &ins, 1, 0);
10273 		if (ret)
10274 			break;
10275 
10276 		/*
10277 		 * We've reserved this space, and thus converted it from
10278 		 * ->bytes_may_use to ->bytes_reserved.  Any error that happens
10279 		 * from here on out we will only need to clear our reservation
10280 		 * for the remaining unreserved area, so advance our
10281 		 * clear_offset by our extent size.
10282 		 */
10283 		clear_offset += ins.offset;
10284 
10285 		last_alloc = ins.offset;
10286 		trans = insert_prealloc_file_extent(trans, BTRFS_I(inode),
10287 						    &ins, cur_offset);
10288 		/*
10289 		 * Now that we inserted the prealloc extent we can finally
10290 		 * decrement the number of reservations in the block group.
10291 		 * If we did it before, we could race with relocation and have
10292 		 * relocation miss the reserved extent, making it fail later.
10293 		 */
10294 		btrfs_dec_block_group_reservations(fs_info, ins.objectid);
10295 		if (IS_ERR(trans)) {
10296 			ret = PTR_ERR(trans);
10297 			btrfs_free_reserved_extent(fs_info, ins.objectid,
10298 						   ins.offset, 0);
10299 			break;
10300 		}
10301 
10302 		btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
10303 					cur_offset + ins.offset -1, 0);
10304 
10305 		em = alloc_extent_map();
10306 		if (!em) {
10307 			set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
10308 				&BTRFS_I(inode)->runtime_flags);
10309 			goto next;
10310 		}
10311 
10312 		em->start = cur_offset;
10313 		em->orig_start = cur_offset;
10314 		em->len = ins.offset;
10315 		em->block_start = ins.objectid;
10316 		em->block_len = ins.offset;
10317 		em->orig_block_len = ins.offset;
10318 		em->ram_bytes = ins.offset;
10319 		set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
10320 		em->generation = trans->transid;
10321 
10322 		while (1) {
10323 			write_lock(&em_tree->lock);
10324 			ret = add_extent_mapping(em_tree, em, 1);
10325 			write_unlock(&em_tree->lock);
10326 			if (ret != -EEXIST)
10327 				break;
10328 			btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
10329 						cur_offset + ins.offset - 1,
10330 						0);
10331 		}
10332 		free_extent_map(em);
10333 next:
10334 		num_bytes -= ins.offset;
10335 		cur_offset += ins.offset;
10336 		*alloc_hint = ins.objectid + ins.offset;
10337 
10338 		inode_inc_iversion(inode);
10339 		inode->i_ctime = current_time(inode);
10340 		BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
10341 		if (!(mode & FALLOC_FL_KEEP_SIZE) &&
10342 		    (actual_len > inode->i_size) &&
10343 		    (cur_offset > inode->i_size)) {
10344 			if (cur_offset > actual_len)
10345 				i_size = actual_len;
10346 			else
10347 				i_size = cur_offset;
10348 			i_size_write(inode, i_size);
10349 			btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
10350 		}
10351 
10352 		ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
10353 
10354 		if (ret) {
10355 			btrfs_abort_transaction(trans, ret);
10356 			if (own_trans)
10357 				btrfs_end_transaction(trans);
10358 			break;
10359 		}
10360 
10361 		if (own_trans) {
10362 			btrfs_end_transaction(trans);
10363 			trans = NULL;
10364 		}
10365 	}
10366 	if (clear_offset < end)
10367 		btrfs_free_reserved_data_space(BTRFS_I(inode), NULL, clear_offset,
10368 			end - clear_offset + 1);
10369 	return ret;
10370 }
10371 
10372 int btrfs_prealloc_file_range(struct inode *inode, int mode,
10373 			      u64 start, u64 num_bytes, u64 min_size,
10374 			      loff_t actual_len, u64 *alloc_hint)
10375 {
10376 	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10377 					   min_size, actual_len, alloc_hint,
10378 					   NULL);
10379 }
10380 
10381 int btrfs_prealloc_file_range_trans(struct inode *inode,
10382 				    struct btrfs_trans_handle *trans, int mode,
10383 				    u64 start, u64 num_bytes, u64 min_size,
10384 				    loff_t actual_len, u64 *alloc_hint)
10385 {
10386 	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10387 					   min_size, actual_len, alloc_hint, trans);
10388 }
10389 
10390 static int btrfs_set_page_dirty(struct page *page)
10391 {
10392 	return __set_page_dirty_nobuffers(page);
10393 }
10394 
10395 static int btrfs_permission(struct user_namespace *mnt_userns,
10396 			    struct inode *inode, int mask)
10397 {
10398 	struct btrfs_root *root = BTRFS_I(inode)->root;
10399 	umode_t mode = inode->i_mode;
10400 
10401 	if (mask & MAY_WRITE &&
10402 	    (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
10403 		if (btrfs_root_readonly(root))
10404 			return -EROFS;
10405 		if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
10406 			return -EACCES;
10407 	}
10408 	return generic_permission(mnt_userns, inode, mask);
10409 }
10410 
10411 static int btrfs_tmpfile(struct user_namespace *mnt_userns, struct inode *dir,
10412 			 struct dentry *dentry, umode_t mode)
10413 {
10414 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
10415 	struct btrfs_trans_handle *trans;
10416 	struct btrfs_root *root = BTRFS_I(dir)->root;
10417 	struct inode *inode = NULL;
10418 	u64 objectid;
10419 	u64 index;
10420 	int ret = 0;
10421 
10422 	/*
10423 	 * 5 units required for adding orphan entry
10424 	 */
10425 	trans = btrfs_start_transaction(root, 5);
10426 	if (IS_ERR(trans))
10427 		return PTR_ERR(trans);
10428 
10429 	ret = btrfs_get_free_objectid(root, &objectid);
10430 	if (ret)
10431 		goto out;
10432 
10433 	inode = btrfs_new_inode(trans, root, mnt_userns, dir, NULL, 0,
10434 			btrfs_ino(BTRFS_I(dir)), objectid, mode, &index);
10435 	if (IS_ERR(inode)) {
10436 		ret = PTR_ERR(inode);
10437 		inode = NULL;
10438 		goto out;
10439 	}
10440 
10441 	inode->i_fop = &btrfs_file_operations;
10442 	inode->i_op = &btrfs_file_inode_operations;
10443 
10444 	inode->i_mapping->a_ops = &btrfs_aops;
10445 
10446 	ret = btrfs_init_inode_security(trans, inode, dir, NULL);
10447 	if (ret)
10448 		goto out;
10449 
10450 	ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
10451 	if (ret)
10452 		goto out;
10453 	ret = btrfs_orphan_add(trans, BTRFS_I(inode));
10454 	if (ret)
10455 		goto out;
10456 
10457 	/*
10458 	 * We set number of links to 0 in btrfs_new_inode(), and here we set
10459 	 * it to 1 because d_tmpfile() will issue a warning if the count is 0,
10460 	 * through:
10461 	 *
10462 	 *    d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
10463 	 */
10464 	set_nlink(inode, 1);
10465 	d_tmpfile(dentry, inode);
10466 	unlock_new_inode(inode);
10467 	mark_inode_dirty(inode);
10468 out:
10469 	btrfs_end_transaction(trans);
10470 	if (ret && inode)
10471 		discard_new_inode(inode);
10472 	btrfs_btree_balance_dirty(fs_info);
10473 	return ret;
10474 }
10475 
10476 void btrfs_set_range_writeback(struct btrfs_inode *inode, u64 start, u64 end)
10477 {
10478 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
10479 	unsigned long index = start >> PAGE_SHIFT;
10480 	unsigned long end_index = end >> PAGE_SHIFT;
10481 	struct page *page;
10482 	u32 len;
10483 
10484 	ASSERT(end + 1 - start <= U32_MAX);
10485 	len = end + 1 - start;
10486 	while (index <= end_index) {
10487 		page = find_get_page(inode->vfs_inode.i_mapping, index);
10488 		ASSERT(page); /* Pages should be in the extent_io_tree */
10489 
10490 		btrfs_page_set_writeback(fs_info, page, start, len);
10491 		put_page(page);
10492 		index++;
10493 	}
10494 }
10495 
10496 #ifdef CONFIG_SWAP
10497 /*
10498  * Add an entry indicating a block group or device which is pinned by a
10499  * swapfile. Returns 0 on success, 1 if there is already an entry for it, or a
10500  * negative errno on failure.
10501  */
10502 static int btrfs_add_swapfile_pin(struct inode *inode, void *ptr,
10503 				  bool is_block_group)
10504 {
10505 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10506 	struct btrfs_swapfile_pin *sp, *entry;
10507 	struct rb_node **p;
10508 	struct rb_node *parent = NULL;
10509 
10510 	sp = kmalloc(sizeof(*sp), GFP_NOFS);
10511 	if (!sp)
10512 		return -ENOMEM;
10513 	sp->ptr = ptr;
10514 	sp->inode = inode;
10515 	sp->is_block_group = is_block_group;
10516 	sp->bg_extent_count = 1;
10517 
10518 	spin_lock(&fs_info->swapfile_pins_lock);
10519 	p = &fs_info->swapfile_pins.rb_node;
10520 	while (*p) {
10521 		parent = *p;
10522 		entry = rb_entry(parent, struct btrfs_swapfile_pin, node);
10523 		if (sp->ptr < entry->ptr ||
10524 		    (sp->ptr == entry->ptr && sp->inode < entry->inode)) {
10525 			p = &(*p)->rb_left;
10526 		} else if (sp->ptr > entry->ptr ||
10527 			   (sp->ptr == entry->ptr && sp->inode > entry->inode)) {
10528 			p = &(*p)->rb_right;
10529 		} else {
10530 			if (is_block_group)
10531 				entry->bg_extent_count++;
10532 			spin_unlock(&fs_info->swapfile_pins_lock);
10533 			kfree(sp);
10534 			return 1;
10535 		}
10536 	}
10537 	rb_link_node(&sp->node, parent, p);
10538 	rb_insert_color(&sp->node, &fs_info->swapfile_pins);
10539 	spin_unlock(&fs_info->swapfile_pins_lock);
10540 	return 0;
10541 }
10542 
10543 /* Free all of the entries pinned by this swapfile. */
10544 static void btrfs_free_swapfile_pins(struct inode *inode)
10545 {
10546 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10547 	struct btrfs_swapfile_pin *sp;
10548 	struct rb_node *node, *next;
10549 
10550 	spin_lock(&fs_info->swapfile_pins_lock);
10551 	node = rb_first(&fs_info->swapfile_pins);
10552 	while (node) {
10553 		next = rb_next(node);
10554 		sp = rb_entry(node, struct btrfs_swapfile_pin, node);
10555 		if (sp->inode == inode) {
10556 			rb_erase(&sp->node, &fs_info->swapfile_pins);
10557 			if (sp->is_block_group) {
10558 				btrfs_dec_block_group_swap_extents(sp->ptr,
10559 							   sp->bg_extent_count);
10560 				btrfs_put_block_group(sp->ptr);
10561 			}
10562 			kfree(sp);
10563 		}
10564 		node = next;
10565 	}
10566 	spin_unlock(&fs_info->swapfile_pins_lock);
10567 }
10568 
10569 struct btrfs_swap_info {
10570 	u64 start;
10571 	u64 block_start;
10572 	u64 block_len;
10573 	u64 lowest_ppage;
10574 	u64 highest_ppage;
10575 	unsigned long nr_pages;
10576 	int nr_extents;
10577 };
10578 
10579 static int btrfs_add_swap_extent(struct swap_info_struct *sis,
10580 				 struct btrfs_swap_info *bsi)
10581 {
10582 	unsigned long nr_pages;
10583 	u64 first_ppage, first_ppage_reported, next_ppage;
10584 	int ret;
10585 
10586 	first_ppage = ALIGN(bsi->block_start, PAGE_SIZE) >> PAGE_SHIFT;
10587 	next_ppage = ALIGN_DOWN(bsi->block_start + bsi->block_len,
10588 				PAGE_SIZE) >> PAGE_SHIFT;
10589 
10590 	if (first_ppage >= next_ppage)
10591 		return 0;
10592 	nr_pages = next_ppage - first_ppage;
10593 
10594 	first_ppage_reported = first_ppage;
10595 	if (bsi->start == 0)
10596 		first_ppage_reported++;
10597 	if (bsi->lowest_ppage > first_ppage_reported)
10598 		bsi->lowest_ppage = first_ppage_reported;
10599 	if (bsi->highest_ppage < (next_ppage - 1))
10600 		bsi->highest_ppage = next_ppage - 1;
10601 
10602 	ret = add_swap_extent(sis, bsi->nr_pages, nr_pages, first_ppage);
10603 	if (ret < 0)
10604 		return ret;
10605 	bsi->nr_extents += ret;
10606 	bsi->nr_pages += nr_pages;
10607 	return 0;
10608 }
10609 
10610 static void btrfs_swap_deactivate(struct file *file)
10611 {
10612 	struct inode *inode = file_inode(file);
10613 
10614 	btrfs_free_swapfile_pins(inode);
10615 	atomic_dec(&BTRFS_I(inode)->root->nr_swapfiles);
10616 }
10617 
10618 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
10619 			       sector_t *span)
10620 {
10621 	struct inode *inode = file_inode(file);
10622 	struct btrfs_root *root = BTRFS_I(inode)->root;
10623 	struct btrfs_fs_info *fs_info = root->fs_info;
10624 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
10625 	struct extent_state *cached_state = NULL;
10626 	struct extent_map *em = NULL;
10627 	struct btrfs_device *device = NULL;
10628 	struct btrfs_swap_info bsi = {
10629 		.lowest_ppage = (sector_t)-1ULL,
10630 	};
10631 	int ret = 0;
10632 	u64 isize;
10633 	u64 start;
10634 
10635 	/*
10636 	 * If the swap file was just created, make sure delalloc is done. If the
10637 	 * file changes again after this, the user is doing something stupid and
10638 	 * we don't really care.
10639 	 */
10640 	ret = btrfs_wait_ordered_range(inode, 0, (u64)-1);
10641 	if (ret)
10642 		return ret;
10643 
10644 	/*
10645 	 * The inode is locked, so these flags won't change after we check them.
10646 	 */
10647 	if (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS) {
10648 		btrfs_warn(fs_info, "swapfile must not be compressed");
10649 		return -EINVAL;
10650 	}
10651 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)) {
10652 		btrfs_warn(fs_info, "swapfile must not be copy-on-write");
10653 		return -EINVAL;
10654 	}
10655 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
10656 		btrfs_warn(fs_info, "swapfile must not be checksummed");
10657 		return -EINVAL;
10658 	}
10659 
10660 	/*
10661 	 * Balance or device remove/replace/resize can move stuff around from
10662 	 * under us. The exclop protection makes sure they aren't running/won't
10663 	 * run concurrently while we are mapping the swap extents, and
10664 	 * fs_info->swapfile_pins prevents them from running while the swap
10665 	 * file is active and moving the extents. Note that this also prevents
10666 	 * a concurrent device add which isn't actually necessary, but it's not
10667 	 * really worth the trouble to allow it.
10668 	 */
10669 	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_SWAP_ACTIVATE)) {
10670 		btrfs_warn(fs_info,
10671 	   "cannot activate swapfile while exclusive operation is running");
10672 		return -EBUSY;
10673 	}
10674 
10675 	/*
10676 	 * Prevent snapshot creation while we are activating the swap file.
10677 	 * We do not want to race with snapshot creation. If snapshot creation
10678 	 * already started before we bumped nr_swapfiles from 0 to 1 and
10679 	 * completes before the first write into the swap file after it is
10680 	 * activated, than that write would fallback to COW.
10681 	 */
10682 	if (!btrfs_drew_try_write_lock(&root->snapshot_lock)) {
10683 		btrfs_exclop_finish(fs_info);
10684 		btrfs_warn(fs_info,
10685 	   "cannot activate swapfile because snapshot creation is in progress");
10686 		return -EINVAL;
10687 	}
10688 	/*
10689 	 * Snapshots can create extents which require COW even if NODATACOW is
10690 	 * set. We use this counter to prevent snapshots. We must increment it
10691 	 * before walking the extents because we don't want a concurrent
10692 	 * snapshot to run after we've already checked the extents.
10693 	 */
10694 	atomic_inc(&root->nr_swapfiles);
10695 
10696 	isize = ALIGN_DOWN(inode->i_size, fs_info->sectorsize);
10697 
10698 	lock_extent_bits(io_tree, 0, isize - 1, &cached_state);
10699 	start = 0;
10700 	while (start < isize) {
10701 		u64 logical_block_start, physical_block_start;
10702 		struct btrfs_block_group *bg;
10703 		u64 len = isize - start;
10704 
10705 		em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len);
10706 		if (IS_ERR(em)) {
10707 			ret = PTR_ERR(em);
10708 			goto out;
10709 		}
10710 
10711 		if (em->block_start == EXTENT_MAP_HOLE) {
10712 			btrfs_warn(fs_info, "swapfile must not have holes");
10713 			ret = -EINVAL;
10714 			goto out;
10715 		}
10716 		if (em->block_start == EXTENT_MAP_INLINE) {
10717 			/*
10718 			 * It's unlikely we'll ever actually find ourselves
10719 			 * here, as a file small enough to fit inline won't be
10720 			 * big enough to store more than the swap header, but in
10721 			 * case something changes in the future, let's catch it
10722 			 * here rather than later.
10723 			 */
10724 			btrfs_warn(fs_info, "swapfile must not be inline");
10725 			ret = -EINVAL;
10726 			goto out;
10727 		}
10728 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
10729 			btrfs_warn(fs_info, "swapfile must not be compressed");
10730 			ret = -EINVAL;
10731 			goto out;
10732 		}
10733 
10734 		logical_block_start = em->block_start + (start - em->start);
10735 		len = min(len, em->len - (start - em->start));
10736 		free_extent_map(em);
10737 		em = NULL;
10738 
10739 		ret = can_nocow_extent(inode, start, &len, NULL, NULL, NULL, true);
10740 		if (ret < 0) {
10741 			goto out;
10742 		} else if (ret) {
10743 			ret = 0;
10744 		} else {
10745 			btrfs_warn(fs_info,
10746 				   "swapfile must not be copy-on-write");
10747 			ret = -EINVAL;
10748 			goto out;
10749 		}
10750 
10751 		em = btrfs_get_chunk_map(fs_info, logical_block_start, len);
10752 		if (IS_ERR(em)) {
10753 			ret = PTR_ERR(em);
10754 			goto out;
10755 		}
10756 
10757 		if (em->map_lookup->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
10758 			btrfs_warn(fs_info,
10759 				   "swapfile must have single data profile");
10760 			ret = -EINVAL;
10761 			goto out;
10762 		}
10763 
10764 		if (device == NULL) {
10765 			device = em->map_lookup->stripes[0].dev;
10766 			ret = btrfs_add_swapfile_pin(inode, device, false);
10767 			if (ret == 1)
10768 				ret = 0;
10769 			else if (ret)
10770 				goto out;
10771 		} else if (device != em->map_lookup->stripes[0].dev) {
10772 			btrfs_warn(fs_info, "swapfile must be on one device");
10773 			ret = -EINVAL;
10774 			goto out;
10775 		}
10776 
10777 		physical_block_start = (em->map_lookup->stripes[0].physical +
10778 					(logical_block_start - em->start));
10779 		len = min(len, em->len - (logical_block_start - em->start));
10780 		free_extent_map(em);
10781 		em = NULL;
10782 
10783 		bg = btrfs_lookup_block_group(fs_info, logical_block_start);
10784 		if (!bg) {
10785 			btrfs_warn(fs_info,
10786 			   "could not find block group containing swapfile");
10787 			ret = -EINVAL;
10788 			goto out;
10789 		}
10790 
10791 		if (!btrfs_inc_block_group_swap_extents(bg)) {
10792 			btrfs_warn(fs_info,
10793 			   "block group for swapfile at %llu is read-only%s",
10794 			   bg->start,
10795 			   atomic_read(&fs_info->scrubs_running) ?
10796 				       " (scrub running)" : "");
10797 			btrfs_put_block_group(bg);
10798 			ret = -EINVAL;
10799 			goto out;
10800 		}
10801 
10802 		ret = btrfs_add_swapfile_pin(inode, bg, true);
10803 		if (ret) {
10804 			btrfs_put_block_group(bg);
10805 			if (ret == 1)
10806 				ret = 0;
10807 			else
10808 				goto out;
10809 		}
10810 
10811 		if (bsi.block_len &&
10812 		    bsi.block_start + bsi.block_len == physical_block_start) {
10813 			bsi.block_len += len;
10814 		} else {
10815 			if (bsi.block_len) {
10816 				ret = btrfs_add_swap_extent(sis, &bsi);
10817 				if (ret)
10818 					goto out;
10819 			}
10820 			bsi.start = start;
10821 			bsi.block_start = physical_block_start;
10822 			bsi.block_len = len;
10823 		}
10824 
10825 		start += len;
10826 	}
10827 
10828 	if (bsi.block_len)
10829 		ret = btrfs_add_swap_extent(sis, &bsi);
10830 
10831 out:
10832 	if (!IS_ERR_OR_NULL(em))
10833 		free_extent_map(em);
10834 
10835 	unlock_extent_cached(io_tree, 0, isize - 1, &cached_state);
10836 
10837 	if (ret)
10838 		btrfs_swap_deactivate(file);
10839 
10840 	btrfs_drew_write_unlock(&root->snapshot_lock);
10841 
10842 	btrfs_exclop_finish(fs_info);
10843 
10844 	if (ret)
10845 		return ret;
10846 
10847 	if (device)
10848 		sis->bdev = device->bdev;
10849 	*span = bsi.highest_ppage - bsi.lowest_ppage + 1;
10850 	sis->max = bsi.nr_pages;
10851 	sis->pages = bsi.nr_pages - 1;
10852 	sis->highest_bit = bsi.nr_pages - 1;
10853 	return bsi.nr_extents;
10854 }
10855 #else
10856 static void btrfs_swap_deactivate(struct file *file)
10857 {
10858 }
10859 
10860 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
10861 			       sector_t *span)
10862 {
10863 	return -EOPNOTSUPP;
10864 }
10865 #endif
10866 
10867 /*
10868  * Update the number of bytes used in the VFS' inode. When we replace extents in
10869  * a range (clone, dedupe, fallocate's zero range), we must update the number of
10870  * bytes used by the inode in an atomic manner, so that concurrent stat(2) calls
10871  * always get a correct value.
10872  */
10873 void btrfs_update_inode_bytes(struct btrfs_inode *inode,
10874 			      const u64 add_bytes,
10875 			      const u64 del_bytes)
10876 {
10877 	if (add_bytes == del_bytes)
10878 		return;
10879 
10880 	spin_lock(&inode->lock);
10881 	if (del_bytes > 0)
10882 		inode_sub_bytes(&inode->vfs_inode, del_bytes);
10883 	if (add_bytes > 0)
10884 		inode_add_bytes(&inode->vfs_inode, add_bytes);
10885 	spin_unlock(&inode->lock);
10886 }
10887 
10888 static const struct inode_operations btrfs_dir_inode_operations = {
10889 	.getattr	= btrfs_getattr,
10890 	.lookup		= btrfs_lookup,
10891 	.create		= btrfs_create,
10892 	.unlink		= btrfs_unlink,
10893 	.link		= btrfs_link,
10894 	.mkdir		= btrfs_mkdir,
10895 	.rmdir		= btrfs_rmdir,
10896 	.rename		= btrfs_rename2,
10897 	.symlink	= btrfs_symlink,
10898 	.setattr	= btrfs_setattr,
10899 	.mknod		= btrfs_mknod,
10900 	.listxattr	= btrfs_listxattr,
10901 	.permission	= btrfs_permission,
10902 	.get_acl	= btrfs_get_acl,
10903 	.set_acl	= btrfs_set_acl,
10904 	.update_time	= btrfs_update_time,
10905 	.tmpfile        = btrfs_tmpfile,
10906 	.fileattr_get	= btrfs_fileattr_get,
10907 	.fileattr_set	= btrfs_fileattr_set,
10908 };
10909 
10910 static const struct file_operations btrfs_dir_file_operations = {
10911 	.llseek		= generic_file_llseek,
10912 	.read		= generic_read_dir,
10913 	.iterate_shared	= btrfs_real_readdir,
10914 	.open		= btrfs_opendir,
10915 	.unlocked_ioctl	= btrfs_ioctl,
10916 #ifdef CONFIG_COMPAT
10917 	.compat_ioctl	= btrfs_compat_ioctl,
10918 #endif
10919 	.release        = btrfs_release_file,
10920 	.fsync		= btrfs_sync_file,
10921 };
10922 
10923 /*
10924  * btrfs doesn't support the bmap operation because swapfiles
10925  * use bmap to make a mapping of extents in the file.  They assume
10926  * these extents won't change over the life of the file and they
10927  * use the bmap result to do IO directly to the drive.
10928  *
10929  * the btrfs bmap call would return logical addresses that aren't
10930  * suitable for IO and they also will change frequently as COW
10931  * operations happen.  So, swapfile + btrfs == corruption.
10932  *
10933  * For now we're avoiding this by dropping bmap.
10934  */
10935 static const struct address_space_operations btrfs_aops = {
10936 	.readpage	= btrfs_readpage,
10937 	.writepage	= btrfs_writepage,
10938 	.writepages	= btrfs_writepages,
10939 	.readahead	= btrfs_readahead,
10940 	.direct_IO	= noop_direct_IO,
10941 	.invalidatepage = btrfs_invalidatepage,
10942 	.releasepage	= btrfs_releasepage,
10943 #ifdef CONFIG_MIGRATION
10944 	.migratepage	= btrfs_migratepage,
10945 #endif
10946 	.set_page_dirty	= btrfs_set_page_dirty,
10947 	.error_remove_page = generic_error_remove_page,
10948 	.swap_activate	= btrfs_swap_activate,
10949 	.swap_deactivate = btrfs_swap_deactivate,
10950 };
10951 
10952 static const struct inode_operations btrfs_file_inode_operations = {
10953 	.getattr	= btrfs_getattr,
10954 	.setattr	= btrfs_setattr,
10955 	.listxattr      = btrfs_listxattr,
10956 	.permission	= btrfs_permission,
10957 	.fiemap		= btrfs_fiemap,
10958 	.get_acl	= btrfs_get_acl,
10959 	.set_acl	= btrfs_set_acl,
10960 	.update_time	= btrfs_update_time,
10961 	.fileattr_get	= btrfs_fileattr_get,
10962 	.fileattr_set	= btrfs_fileattr_set,
10963 };
10964 static const struct inode_operations btrfs_special_inode_operations = {
10965 	.getattr	= btrfs_getattr,
10966 	.setattr	= btrfs_setattr,
10967 	.permission	= btrfs_permission,
10968 	.listxattr	= btrfs_listxattr,
10969 	.get_acl	= btrfs_get_acl,
10970 	.set_acl	= btrfs_set_acl,
10971 	.update_time	= btrfs_update_time,
10972 };
10973 static const struct inode_operations btrfs_symlink_inode_operations = {
10974 	.get_link	= page_get_link,
10975 	.getattr	= btrfs_getattr,
10976 	.setattr	= btrfs_setattr,
10977 	.permission	= btrfs_permission,
10978 	.listxattr	= btrfs_listxattr,
10979 	.update_time	= btrfs_update_time,
10980 };
10981 
10982 const struct dentry_operations btrfs_dentry_operations = {
10983 	.d_delete	= btrfs_dentry_delete,
10984 };
10985