1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/kernel.h> 7 #include <linux/bio.h> 8 #include <linux/buffer_head.h> 9 #include <linux/file.h> 10 #include <linux/fs.h> 11 #include <linux/pagemap.h> 12 #include <linux/highmem.h> 13 #include <linux/time.h> 14 #include <linux/init.h> 15 #include <linux/string.h> 16 #include <linux/backing-dev.h> 17 #include <linux/writeback.h> 18 #include <linux/compat.h> 19 #include <linux/xattr.h> 20 #include <linux/posix_acl.h> 21 #include <linux/falloc.h> 22 #include <linux/slab.h> 23 #include <linux/ratelimit.h> 24 #include <linux/btrfs.h> 25 #include <linux/blkdev.h> 26 #include <linux/posix_acl_xattr.h> 27 #include <linux/uio.h> 28 #include <linux/magic.h> 29 #include <linux/iversion.h> 30 #include <linux/swap.h> 31 #include <linux/sched/mm.h> 32 #include <asm/unaligned.h> 33 #include "misc.h" 34 #include "ctree.h" 35 #include "disk-io.h" 36 #include "transaction.h" 37 #include "btrfs_inode.h" 38 #include "print-tree.h" 39 #include "ordered-data.h" 40 #include "xattr.h" 41 #include "tree-log.h" 42 #include "volumes.h" 43 #include "compression.h" 44 #include "locking.h" 45 #include "free-space-cache.h" 46 #include "inode-map.h" 47 #include "backref.h" 48 #include "props.h" 49 #include "qgroup.h" 50 #include "delalloc-space.h" 51 #include "block-group.h" 52 53 struct btrfs_iget_args { 54 struct btrfs_key *location; 55 struct btrfs_root *root; 56 }; 57 58 struct btrfs_dio_data { 59 u64 reserve; 60 u64 unsubmitted_oe_range_start; 61 u64 unsubmitted_oe_range_end; 62 int overwrite; 63 }; 64 65 static const struct inode_operations btrfs_dir_inode_operations; 66 static const struct inode_operations btrfs_symlink_inode_operations; 67 static const struct inode_operations btrfs_dir_ro_inode_operations; 68 static const struct inode_operations btrfs_special_inode_operations; 69 static const struct inode_operations btrfs_file_inode_operations; 70 static const struct address_space_operations btrfs_aops; 71 static const struct file_operations btrfs_dir_file_operations; 72 static const struct extent_io_ops btrfs_extent_io_ops; 73 74 static struct kmem_cache *btrfs_inode_cachep; 75 struct kmem_cache *btrfs_trans_handle_cachep; 76 struct kmem_cache *btrfs_path_cachep; 77 struct kmem_cache *btrfs_free_space_cachep; 78 struct kmem_cache *btrfs_free_space_bitmap_cachep; 79 80 static int btrfs_setsize(struct inode *inode, struct iattr *attr); 81 static int btrfs_truncate(struct inode *inode, bool skip_writeback); 82 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent); 83 static noinline int cow_file_range(struct inode *inode, 84 struct page *locked_page, 85 u64 start, u64 end, int *page_started, 86 unsigned long *nr_written, int unlock); 87 static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len, 88 u64 orig_start, u64 block_start, 89 u64 block_len, u64 orig_block_len, 90 u64 ram_bytes, int compress_type, 91 int type); 92 93 static void __endio_write_update_ordered(struct inode *inode, 94 const u64 offset, const u64 bytes, 95 const bool uptodate); 96 97 /* 98 * Cleanup all submitted ordered extents in specified range to handle errors 99 * from the btrfs_run_delalloc_range() callback. 100 * 101 * NOTE: caller must ensure that when an error happens, it can not call 102 * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING 103 * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata 104 * to be released, which we want to happen only when finishing the ordered 105 * extent (btrfs_finish_ordered_io()). 106 */ 107 static inline void btrfs_cleanup_ordered_extents(struct inode *inode, 108 struct page *locked_page, 109 u64 offset, u64 bytes) 110 { 111 unsigned long index = offset >> PAGE_SHIFT; 112 unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT; 113 u64 page_start = page_offset(locked_page); 114 u64 page_end = page_start + PAGE_SIZE - 1; 115 116 struct page *page; 117 118 while (index <= end_index) { 119 page = find_get_page(inode->i_mapping, index); 120 index++; 121 if (!page) 122 continue; 123 ClearPagePrivate2(page); 124 put_page(page); 125 } 126 127 /* 128 * In case this page belongs to the delalloc range being instantiated 129 * then skip it, since the first page of a range is going to be 130 * properly cleaned up by the caller of run_delalloc_range 131 */ 132 if (page_start >= offset && page_end <= (offset + bytes - 1)) { 133 offset += PAGE_SIZE; 134 bytes -= PAGE_SIZE; 135 } 136 137 return __endio_write_update_ordered(inode, offset, bytes, false); 138 } 139 140 static int btrfs_dirty_inode(struct inode *inode); 141 142 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 143 void btrfs_test_inode_set_ops(struct inode *inode) 144 { 145 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 146 } 147 #endif 148 149 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans, 150 struct inode *inode, struct inode *dir, 151 const struct qstr *qstr) 152 { 153 int err; 154 155 err = btrfs_init_acl(trans, inode, dir); 156 if (!err) 157 err = btrfs_xattr_security_init(trans, inode, dir, qstr); 158 return err; 159 } 160 161 /* 162 * this does all the hard work for inserting an inline extent into 163 * the btree. The caller should have done a btrfs_drop_extents so that 164 * no overlapping inline items exist in the btree 165 */ 166 static int insert_inline_extent(struct btrfs_trans_handle *trans, 167 struct btrfs_path *path, int extent_inserted, 168 struct btrfs_root *root, struct inode *inode, 169 u64 start, size_t size, size_t compressed_size, 170 int compress_type, 171 struct page **compressed_pages) 172 { 173 struct extent_buffer *leaf; 174 struct page *page = NULL; 175 char *kaddr; 176 unsigned long ptr; 177 struct btrfs_file_extent_item *ei; 178 int ret; 179 size_t cur_size = size; 180 unsigned long offset; 181 182 ASSERT((compressed_size > 0 && compressed_pages) || 183 (compressed_size == 0 && !compressed_pages)); 184 185 if (compressed_size && compressed_pages) 186 cur_size = compressed_size; 187 188 inode_add_bytes(inode, size); 189 190 if (!extent_inserted) { 191 struct btrfs_key key; 192 size_t datasize; 193 194 key.objectid = btrfs_ino(BTRFS_I(inode)); 195 key.offset = start; 196 key.type = BTRFS_EXTENT_DATA_KEY; 197 198 datasize = btrfs_file_extent_calc_inline_size(cur_size); 199 path->leave_spinning = 1; 200 ret = btrfs_insert_empty_item(trans, root, path, &key, 201 datasize); 202 if (ret) 203 goto fail; 204 } 205 leaf = path->nodes[0]; 206 ei = btrfs_item_ptr(leaf, path->slots[0], 207 struct btrfs_file_extent_item); 208 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 209 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE); 210 btrfs_set_file_extent_encryption(leaf, ei, 0); 211 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 212 btrfs_set_file_extent_ram_bytes(leaf, ei, size); 213 ptr = btrfs_file_extent_inline_start(ei); 214 215 if (compress_type != BTRFS_COMPRESS_NONE) { 216 struct page *cpage; 217 int i = 0; 218 while (compressed_size > 0) { 219 cpage = compressed_pages[i]; 220 cur_size = min_t(unsigned long, compressed_size, 221 PAGE_SIZE); 222 223 kaddr = kmap_atomic(cpage); 224 write_extent_buffer(leaf, kaddr, ptr, cur_size); 225 kunmap_atomic(kaddr); 226 227 i++; 228 ptr += cur_size; 229 compressed_size -= cur_size; 230 } 231 btrfs_set_file_extent_compression(leaf, ei, 232 compress_type); 233 } else { 234 page = find_get_page(inode->i_mapping, 235 start >> PAGE_SHIFT); 236 btrfs_set_file_extent_compression(leaf, ei, 0); 237 kaddr = kmap_atomic(page); 238 offset = offset_in_page(start); 239 write_extent_buffer(leaf, kaddr + offset, ptr, size); 240 kunmap_atomic(kaddr); 241 put_page(page); 242 } 243 btrfs_mark_buffer_dirty(leaf); 244 btrfs_release_path(path); 245 246 /* 247 * we're an inline extent, so nobody can 248 * extend the file past i_size without locking 249 * a page we already have locked. 250 * 251 * We must do any isize and inode updates 252 * before we unlock the pages. Otherwise we 253 * could end up racing with unlink. 254 */ 255 BTRFS_I(inode)->disk_i_size = inode->i_size; 256 ret = btrfs_update_inode(trans, root, inode); 257 258 fail: 259 return ret; 260 } 261 262 263 /* 264 * conditionally insert an inline extent into the file. This 265 * does the checks required to make sure the data is small enough 266 * to fit as an inline extent. 267 */ 268 static noinline int cow_file_range_inline(struct inode *inode, u64 start, 269 u64 end, size_t compressed_size, 270 int compress_type, 271 struct page **compressed_pages) 272 { 273 struct btrfs_root *root = BTRFS_I(inode)->root; 274 struct btrfs_fs_info *fs_info = root->fs_info; 275 struct btrfs_trans_handle *trans; 276 u64 isize = i_size_read(inode); 277 u64 actual_end = min(end + 1, isize); 278 u64 inline_len = actual_end - start; 279 u64 aligned_end = ALIGN(end, fs_info->sectorsize); 280 u64 data_len = inline_len; 281 int ret; 282 struct btrfs_path *path; 283 int extent_inserted = 0; 284 u32 extent_item_size; 285 286 if (compressed_size) 287 data_len = compressed_size; 288 289 if (start > 0 || 290 actual_end > fs_info->sectorsize || 291 data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) || 292 (!compressed_size && 293 (actual_end & (fs_info->sectorsize - 1)) == 0) || 294 end + 1 < isize || 295 data_len > fs_info->max_inline) { 296 return 1; 297 } 298 299 path = btrfs_alloc_path(); 300 if (!path) 301 return -ENOMEM; 302 303 trans = btrfs_join_transaction(root); 304 if (IS_ERR(trans)) { 305 btrfs_free_path(path); 306 return PTR_ERR(trans); 307 } 308 trans->block_rsv = &BTRFS_I(inode)->block_rsv; 309 310 if (compressed_size && compressed_pages) 311 extent_item_size = btrfs_file_extent_calc_inline_size( 312 compressed_size); 313 else 314 extent_item_size = btrfs_file_extent_calc_inline_size( 315 inline_len); 316 317 ret = __btrfs_drop_extents(trans, root, inode, path, 318 start, aligned_end, NULL, 319 1, 1, extent_item_size, &extent_inserted); 320 if (ret) { 321 btrfs_abort_transaction(trans, ret); 322 goto out; 323 } 324 325 if (isize > actual_end) 326 inline_len = min_t(u64, isize, actual_end); 327 ret = insert_inline_extent(trans, path, extent_inserted, 328 root, inode, start, 329 inline_len, compressed_size, 330 compress_type, compressed_pages); 331 if (ret && ret != -ENOSPC) { 332 btrfs_abort_transaction(trans, ret); 333 goto out; 334 } else if (ret == -ENOSPC) { 335 ret = 1; 336 goto out; 337 } 338 339 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 340 btrfs_drop_extent_cache(BTRFS_I(inode), start, aligned_end - 1, 0); 341 out: 342 /* 343 * Don't forget to free the reserved space, as for inlined extent 344 * it won't count as data extent, free them directly here. 345 * And at reserve time, it's always aligned to page size, so 346 * just free one page here. 347 */ 348 btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE); 349 btrfs_free_path(path); 350 btrfs_end_transaction(trans); 351 return ret; 352 } 353 354 struct async_extent { 355 u64 start; 356 u64 ram_size; 357 u64 compressed_size; 358 struct page **pages; 359 unsigned long nr_pages; 360 int compress_type; 361 struct list_head list; 362 }; 363 364 struct async_chunk { 365 struct inode *inode; 366 struct page *locked_page; 367 u64 start; 368 u64 end; 369 unsigned int write_flags; 370 struct list_head extents; 371 struct cgroup_subsys_state *blkcg_css; 372 struct btrfs_work work; 373 atomic_t *pending; 374 }; 375 376 struct async_cow { 377 /* Number of chunks in flight; must be first in the structure */ 378 atomic_t num_chunks; 379 struct async_chunk chunks[]; 380 }; 381 382 static noinline int add_async_extent(struct async_chunk *cow, 383 u64 start, u64 ram_size, 384 u64 compressed_size, 385 struct page **pages, 386 unsigned long nr_pages, 387 int compress_type) 388 { 389 struct async_extent *async_extent; 390 391 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS); 392 BUG_ON(!async_extent); /* -ENOMEM */ 393 async_extent->start = start; 394 async_extent->ram_size = ram_size; 395 async_extent->compressed_size = compressed_size; 396 async_extent->pages = pages; 397 async_extent->nr_pages = nr_pages; 398 async_extent->compress_type = compress_type; 399 list_add_tail(&async_extent->list, &cow->extents); 400 return 0; 401 } 402 403 /* 404 * Check if the inode has flags compatible with compression 405 */ 406 static inline bool inode_can_compress(struct inode *inode) 407 { 408 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW || 409 BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) 410 return false; 411 return true; 412 } 413 414 /* 415 * Check if the inode needs to be submitted to compression, based on mount 416 * options, defragmentation, properties or heuristics. 417 */ 418 static inline int inode_need_compress(struct inode *inode, u64 start, u64 end) 419 { 420 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 421 422 if (!inode_can_compress(inode)) { 423 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG), 424 KERN_ERR "BTRFS: unexpected compression for ino %llu\n", 425 btrfs_ino(BTRFS_I(inode))); 426 return 0; 427 } 428 /* force compress */ 429 if (btrfs_test_opt(fs_info, FORCE_COMPRESS)) 430 return 1; 431 /* defrag ioctl */ 432 if (BTRFS_I(inode)->defrag_compress) 433 return 1; 434 /* bad compression ratios */ 435 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) 436 return 0; 437 if (btrfs_test_opt(fs_info, COMPRESS) || 438 BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS || 439 BTRFS_I(inode)->prop_compress) 440 return btrfs_compress_heuristic(inode, start, end); 441 return 0; 442 } 443 444 static inline void inode_should_defrag(struct btrfs_inode *inode, 445 u64 start, u64 end, u64 num_bytes, u64 small_write) 446 { 447 /* If this is a small write inside eof, kick off a defrag */ 448 if (num_bytes < small_write && 449 (start > 0 || end + 1 < inode->disk_i_size)) 450 btrfs_add_inode_defrag(NULL, inode); 451 } 452 453 /* 454 * we create compressed extents in two phases. The first 455 * phase compresses a range of pages that have already been 456 * locked (both pages and state bits are locked). 457 * 458 * This is done inside an ordered work queue, and the compression 459 * is spread across many cpus. The actual IO submission is step 460 * two, and the ordered work queue takes care of making sure that 461 * happens in the same order things were put onto the queue by 462 * writepages and friends. 463 * 464 * If this code finds it can't get good compression, it puts an 465 * entry onto the work queue to write the uncompressed bytes. This 466 * makes sure that both compressed inodes and uncompressed inodes 467 * are written in the same order that the flusher thread sent them 468 * down. 469 */ 470 static noinline int compress_file_range(struct async_chunk *async_chunk) 471 { 472 struct inode *inode = async_chunk->inode; 473 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 474 u64 blocksize = fs_info->sectorsize; 475 u64 start = async_chunk->start; 476 u64 end = async_chunk->end; 477 u64 actual_end; 478 u64 i_size; 479 int ret = 0; 480 struct page **pages = NULL; 481 unsigned long nr_pages; 482 unsigned long total_compressed = 0; 483 unsigned long total_in = 0; 484 int i; 485 int will_compress; 486 int compress_type = fs_info->compress_type; 487 int compressed_extents = 0; 488 int redirty = 0; 489 490 inode_should_defrag(BTRFS_I(inode), start, end, end - start + 1, 491 SZ_16K); 492 493 /* 494 * We need to save i_size before now because it could change in between 495 * us evaluating the size and assigning it. This is because we lock and 496 * unlock the page in truncate and fallocate, and then modify the i_size 497 * later on. 498 * 499 * The barriers are to emulate READ_ONCE, remove that once i_size_read 500 * does that for us. 501 */ 502 barrier(); 503 i_size = i_size_read(inode); 504 barrier(); 505 actual_end = min_t(u64, i_size, end + 1); 506 again: 507 will_compress = 0; 508 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1; 509 BUILD_BUG_ON((BTRFS_MAX_COMPRESSED % PAGE_SIZE) != 0); 510 nr_pages = min_t(unsigned long, nr_pages, 511 BTRFS_MAX_COMPRESSED / PAGE_SIZE); 512 513 /* 514 * we don't want to send crud past the end of i_size through 515 * compression, that's just a waste of CPU time. So, if the 516 * end of the file is before the start of our current 517 * requested range of bytes, we bail out to the uncompressed 518 * cleanup code that can deal with all of this. 519 * 520 * It isn't really the fastest way to fix things, but this is a 521 * very uncommon corner. 522 */ 523 if (actual_end <= start) 524 goto cleanup_and_bail_uncompressed; 525 526 total_compressed = actual_end - start; 527 528 /* 529 * skip compression for a small file range(<=blocksize) that 530 * isn't an inline extent, since it doesn't save disk space at all. 531 */ 532 if (total_compressed <= blocksize && 533 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size)) 534 goto cleanup_and_bail_uncompressed; 535 536 total_compressed = min_t(unsigned long, total_compressed, 537 BTRFS_MAX_UNCOMPRESSED); 538 total_in = 0; 539 ret = 0; 540 541 /* 542 * we do compression for mount -o compress and when the 543 * inode has not been flagged as nocompress. This flag can 544 * change at any time if we discover bad compression ratios. 545 */ 546 if (inode_need_compress(inode, start, end)) { 547 WARN_ON(pages); 548 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS); 549 if (!pages) { 550 /* just bail out to the uncompressed code */ 551 nr_pages = 0; 552 goto cont; 553 } 554 555 if (BTRFS_I(inode)->defrag_compress) 556 compress_type = BTRFS_I(inode)->defrag_compress; 557 else if (BTRFS_I(inode)->prop_compress) 558 compress_type = BTRFS_I(inode)->prop_compress; 559 560 /* 561 * we need to call clear_page_dirty_for_io on each 562 * page in the range. Otherwise applications with the file 563 * mmap'd can wander in and change the page contents while 564 * we are compressing them. 565 * 566 * If the compression fails for any reason, we set the pages 567 * dirty again later on. 568 * 569 * Note that the remaining part is redirtied, the start pointer 570 * has moved, the end is the original one. 571 */ 572 if (!redirty) { 573 extent_range_clear_dirty_for_io(inode, start, end); 574 redirty = 1; 575 } 576 577 /* Compression level is applied here and only here */ 578 ret = btrfs_compress_pages( 579 compress_type | (fs_info->compress_level << 4), 580 inode->i_mapping, start, 581 pages, 582 &nr_pages, 583 &total_in, 584 &total_compressed); 585 586 if (!ret) { 587 unsigned long offset = offset_in_page(total_compressed); 588 struct page *page = pages[nr_pages - 1]; 589 char *kaddr; 590 591 /* zero the tail end of the last page, we might be 592 * sending it down to disk 593 */ 594 if (offset) { 595 kaddr = kmap_atomic(page); 596 memset(kaddr + offset, 0, 597 PAGE_SIZE - offset); 598 kunmap_atomic(kaddr); 599 } 600 will_compress = 1; 601 } 602 } 603 cont: 604 if (start == 0) { 605 /* lets try to make an inline extent */ 606 if (ret || total_in < actual_end) { 607 /* we didn't compress the entire range, try 608 * to make an uncompressed inline extent. 609 */ 610 ret = cow_file_range_inline(inode, start, end, 0, 611 BTRFS_COMPRESS_NONE, NULL); 612 } else { 613 /* try making a compressed inline extent */ 614 ret = cow_file_range_inline(inode, start, end, 615 total_compressed, 616 compress_type, pages); 617 } 618 if (ret <= 0) { 619 unsigned long clear_flags = EXTENT_DELALLOC | 620 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG | 621 EXTENT_DO_ACCOUNTING; 622 unsigned long page_error_op; 623 624 page_error_op = ret < 0 ? PAGE_SET_ERROR : 0; 625 626 /* 627 * inline extent creation worked or returned error, 628 * we don't need to create any more async work items. 629 * Unlock and free up our temp pages. 630 * 631 * We use DO_ACCOUNTING here because we need the 632 * delalloc_release_metadata to be done _after_ we drop 633 * our outstanding extent for clearing delalloc for this 634 * range. 635 */ 636 extent_clear_unlock_delalloc(inode, start, end, NULL, 637 clear_flags, 638 PAGE_UNLOCK | 639 PAGE_CLEAR_DIRTY | 640 PAGE_SET_WRITEBACK | 641 page_error_op | 642 PAGE_END_WRITEBACK); 643 644 for (i = 0; i < nr_pages; i++) { 645 WARN_ON(pages[i]->mapping); 646 put_page(pages[i]); 647 } 648 kfree(pages); 649 650 return 0; 651 } 652 } 653 654 if (will_compress) { 655 /* 656 * we aren't doing an inline extent round the compressed size 657 * up to a block size boundary so the allocator does sane 658 * things 659 */ 660 total_compressed = ALIGN(total_compressed, blocksize); 661 662 /* 663 * one last check to make sure the compression is really a 664 * win, compare the page count read with the blocks on disk, 665 * compression must free at least one sector size 666 */ 667 total_in = ALIGN(total_in, PAGE_SIZE); 668 if (total_compressed + blocksize <= total_in) { 669 compressed_extents++; 670 671 /* 672 * The async work queues will take care of doing actual 673 * allocation on disk for these compressed pages, and 674 * will submit them to the elevator. 675 */ 676 add_async_extent(async_chunk, start, total_in, 677 total_compressed, pages, nr_pages, 678 compress_type); 679 680 if (start + total_in < end) { 681 start += total_in; 682 pages = NULL; 683 cond_resched(); 684 goto again; 685 } 686 return compressed_extents; 687 } 688 } 689 if (pages) { 690 /* 691 * the compression code ran but failed to make things smaller, 692 * free any pages it allocated and our page pointer array 693 */ 694 for (i = 0; i < nr_pages; i++) { 695 WARN_ON(pages[i]->mapping); 696 put_page(pages[i]); 697 } 698 kfree(pages); 699 pages = NULL; 700 total_compressed = 0; 701 nr_pages = 0; 702 703 /* flag the file so we don't compress in the future */ 704 if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) && 705 !(BTRFS_I(inode)->prop_compress)) { 706 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS; 707 } 708 } 709 cleanup_and_bail_uncompressed: 710 /* 711 * No compression, but we still need to write the pages in the file 712 * we've been given so far. redirty the locked page if it corresponds 713 * to our extent and set things up for the async work queue to run 714 * cow_file_range to do the normal delalloc dance. 715 */ 716 if (async_chunk->locked_page && 717 (page_offset(async_chunk->locked_page) >= start && 718 page_offset(async_chunk->locked_page)) <= end) { 719 __set_page_dirty_nobuffers(async_chunk->locked_page); 720 /* unlocked later on in the async handlers */ 721 } 722 723 if (redirty) 724 extent_range_redirty_for_io(inode, start, end); 725 add_async_extent(async_chunk, start, end - start + 1, 0, NULL, 0, 726 BTRFS_COMPRESS_NONE); 727 compressed_extents++; 728 729 return compressed_extents; 730 } 731 732 static void free_async_extent_pages(struct async_extent *async_extent) 733 { 734 int i; 735 736 if (!async_extent->pages) 737 return; 738 739 for (i = 0; i < async_extent->nr_pages; i++) { 740 WARN_ON(async_extent->pages[i]->mapping); 741 put_page(async_extent->pages[i]); 742 } 743 kfree(async_extent->pages); 744 async_extent->nr_pages = 0; 745 async_extent->pages = NULL; 746 } 747 748 /* 749 * phase two of compressed writeback. This is the ordered portion 750 * of the code, which only gets called in the order the work was 751 * queued. We walk all the async extents created by compress_file_range 752 * and send them down to the disk. 753 */ 754 static noinline void submit_compressed_extents(struct async_chunk *async_chunk) 755 { 756 struct inode *inode = async_chunk->inode; 757 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 758 struct async_extent *async_extent; 759 u64 alloc_hint = 0; 760 struct btrfs_key ins; 761 struct extent_map *em; 762 struct btrfs_root *root = BTRFS_I(inode)->root; 763 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 764 int ret = 0; 765 766 again: 767 while (!list_empty(&async_chunk->extents)) { 768 async_extent = list_entry(async_chunk->extents.next, 769 struct async_extent, list); 770 list_del(&async_extent->list); 771 772 retry: 773 lock_extent(io_tree, async_extent->start, 774 async_extent->start + async_extent->ram_size - 1); 775 /* did the compression code fall back to uncompressed IO? */ 776 if (!async_extent->pages) { 777 int page_started = 0; 778 unsigned long nr_written = 0; 779 780 /* allocate blocks */ 781 ret = cow_file_range(inode, async_chunk->locked_page, 782 async_extent->start, 783 async_extent->start + 784 async_extent->ram_size - 1, 785 &page_started, &nr_written, 0); 786 787 /* JDM XXX */ 788 789 /* 790 * if page_started, cow_file_range inserted an 791 * inline extent and took care of all the unlocking 792 * and IO for us. Otherwise, we need to submit 793 * all those pages down to the drive. 794 */ 795 if (!page_started && !ret) 796 extent_write_locked_range(inode, 797 async_extent->start, 798 async_extent->start + 799 async_extent->ram_size - 1, 800 WB_SYNC_ALL); 801 else if (ret && async_chunk->locked_page) 802 unlock_page(async_chunk->locked_page); 803 kfree(async_extent); 804 cond_resched(); 805 continue; 806 } 807 808 ret = btrfs_reserve_extent(root, async_extent->ram_size, 809 async_extent->compressed_size, 810 async_extent->compressed_size, 811 0, alloc_hint, &ins, 1, 1); 812 if (ret) { 813 free_async_extent_pages(async_extent); 814 815 if (ret == -ENOSPC) { 816 unlock_extent(io_tree, async_extent->start, 817 async_extent->start + 818 async_extent->ram_size - 1); 819 820 /* 821 * we need to redirty the pages if we decide to 822 * fallback to uncompressed IO, otherwise we 823 * will not submit these pages down to lower 824 * layers. 825 */ 826 extent_range_redirty_for_io(inode, 827 async_extent->start, 828 async_extent->start + 829 async_extent->ram_size - 1); 830 831 goto retry; 832 } 833 goto out_free; 834 } 835 /* 836 * here we're doing allocation and writeback of the 837 * compressed pages 838 */ 839 em = create_io_em(inode, async_extent->start, 840 async_extent->ram_size, /* len */ 841 async_extent->start, /* orig_start */ 842 ins.objectid, /* block_start */ 843 ins.offset, /* block_len */ 844 ins.offset, /* orig_block_len */ 845 async_extent->ram_size, /* ram_bytes */ 846 async_extent->compress_type, 847 BTRFS_ORDERED_COMPRESSED); 848 if (IS_ERR(em)) 849 /* ret value is not necessary due to void function */ 850 goto out_free_reserve; 851 free_extent_map(em); 852 853 ret = btrfs_add_ordered_extent_compress(inode, 854 async_extent->start, 855 ins.objectid, 856 async_extent->ram_size, 857 ins.offset, 858 BTRFS_ORDERED_COMPRESSED, 859 async_extent->compress_type); 860 if (ret) { 861 btrfs_drop_extent_cache(BTRFS_I(inode), 862 async_extent->start, 863 async_extent->start + 864 async_extent->ram_size - 1, 0); 865 goto out_free_reserve; 866 } 867 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 868 869 /* 870 * clear dirty, set writeback and unlock the pages. 871 */ 872 extent_clear_unlock_delalloc(inode, async_extent->start, 873 async_extent->start + 874 async_extent->ram_size - 1, 875 NULL, EXTENT_LOCKED | EXTENT_DELALLOC, 876 PAGE_UNLOCK | PAGE_CLEAR_DIRTY | 877 PAGE_SET_WRITEBACK); 878 if (btrfs_submit_compressed_write(inode, 879 async_extent->start, 880 async_extent->ram_size, 881 ins.objectid, 882 ins.offset, async_extent->pages, 883 async_extent->nr_pages, 884 async_chunk->write_flags, 885 async_chunk->blkcg_css)) { 886 struct page *p = async_extent->pages[0]; 887 const u64 start = async_extent->start; 888 const u64 end = start + async_extent->ram_size - 1; 889 890 p->mapping = inode->i_mapping; 891 btrfs_writepage_endio_finish_ordered(p, start, end, 0); 892 893 p->mapping = NULL; 894 extent_clear_unlock_delalloc(inode, start, end, 895 NULL, 0, 896 PAGE_END_WRITEBACK | 897 PAGE_SET_ERROR); 898 free_async_extent_pages(async_extent); 899 } 900 alloc_hint = ins.objectid + ins.offset; 901 kfree(async_extent); 902 cond_resched(); 903 } 904 return; 905 out_free_reserve: 906 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 907 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1); 908 out_free: 909 extent_clear_unlock_delalloc(inode, async_extent->start, 910 async_extent->start + 911 async_extent->ram_size - 1, 912 NULL, EXTENT_LOCKED | EXTENT_DELALLOC | 913 EXTENT_DELALLOC_NEW | 914 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING, 915 PAGE_UNLOCK | PAGE_CLEAR_DIRTY | 916 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK | 917 PAGE_SET_ERROR); 918 free_async_extent_pages(async_extent); 919 kfree(async_extent); 920 goto again; 921 } 922 923 static u64 get_extent_allocation_hint(struct inode *inode, u64 start, 924 u64 num_bytes) 925 { 926 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 927 struct extent_map *em; 928 u64 alloc_hint = 0; 929 930 read_lock(&em_tree->lock); 931 em = search_extent_mapping(em_tree, start, num_bytes); 932 if (em) { 933 /* 934 * if block start isn't an actual block number then find the 935 * first block in this inode and use that as a hint. If that 936 * block is also bogus then just don't worry about it. 937 */ 938 if (em->block_start >= EXTENT_MAP_LAST_BYTE) { 939 free_extent_map(em); 940 em = search_extent_mapping(em_tree, 0, 0); 941 if (em && em->block_start < EXTENT_MAP_LAST_BYTE) 942 alloc_hint = em->block_start; 943 if (em) 944 free_extent_map(em); 945 } else { 946 alloc_hint = em->block_start; 947 free_extent_map(em); 948 } 949 } 950 read_unlock(&em_tree->lock); 951 952 return alloc_hint; 953 } 954 955 /* 956 * when extent_io.c finds a delayed allocation range in the file, 957 * the call backs end up in this code. The basic idea is to 958 * allocate extents on disk for the range, and create ordered data structs 959 * in ram to track those extents. 960 * 961 * locked_page is the page that writepage had locked already. We use 962 * it to make sure we don't do extra locks or unlocks. 963 * 964 * *page_started is set to one if we unlock locked_page and do everything 965 * required to start IO on it. It may be clean and already done with 966 * IO when we return. 967 */ 968 static noinline int cow_file_range(struct inode *inode, 969 struct page *locked_page, 970 u64 start, u64 end, int *page_started, 971 unsigned long *nr_written, int unlock) 972 { 973 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 974 struct btrfs_root *root = BTRFS_I(inode)->root; 975 u64 alloc_hint = 0; 976 u64 num_bytes; 977 unsigned long ram_size; 978 u64 cur_alloc_size = 0; 979 u64 blocksize = fs_info->sectorsize; 980 struct btrfs_key ins; 981 struct extent_map *em; 982 unsigned clear_bits; 983 unsigned long page_ops; 984 bool extent_reserved = false; 985 int ret = 0; 986 987 if (btrfs_is_free_space_inode(BTRFS_I(inode))) { 988 WARN_ON_ONCE(1); 989 ret = -EINVAL; 990 goto out_unlock; 991 } 992 993 num_bytes = ALIGN(end - start + 1, blocksize); 994 num_bytes = max(blocksize, num_bytes); 995 ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy)); 996 997 inode_should_defrag(BTRFS_I(inode), start, end, num_bytes, SZ_64K); 998 999 if (start == 0) { 1000 /* lets try to make an inline extent */ 1001 ret = cow_file_range_inline(inode, start, end, 0, 1002 BTRFS_COMPRESS_NONE, NULL); 1003 if (ret == 0) { 1004 /* 1005 * We use DO_ACCOUNTING here because we need the 1006 * delalloc_release_metadata to be run _after_ we drop 1007 * our outstanding extent for clearing delalloc for this 1008 * range. 1009 */ 1010 extent_clear_unlock_delalloc(inode, start, end, NULL, 1011 EXTENT_LOCKED | EXTENT_DELALLOC | 1012 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG | 1013 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK | 1014 PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK | 1015 PAGE_END_WRITEBACK); 1016 *nr_written = *nr_written + 1017 (end - start + PAGE_SIZE) / PAGE_SIZE; 1018 *page_started = 1; 1019 goto out; 1020 } else if (ret < 0) { 1021 goto out_unlock; 1022 } 1023 } 1024 1025 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes); 1026 btrfs_drop_extent_cache(BTRFS_I(inode), start, 1027 start + num_bytes - 1, 0); 1028 1029 while (num_bytes > 0) { 1030 cur_alloc_size = num_bytes; 1031 ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size, 1032 fs_info->sectorsize, 0, alloc_hint, 1033 &ins, 1, 1); 1034 if (ret < 0) 1035 goto out_unlock; 1036 cur_alloc_size = ins.offset; 1037 extent_reserved = true; 1038 1039 ram_size = ins.offset; 1040 em = create_io_em(inode, start, ins.offset, /* len */ 1041 start, /* orig_start */ 1042 ins.objectid, /* block_start */ 1043 ins.offset, /* block_len */ 1044 ins.offset, /* orig_block_len */ 1045 ram_size, /* ram_bytes */ 1046 BTRFS_COMPRESS_NONE, /* compress_type */ 1047 BTRFS_ORDERED_REGULAR /* type */); 1048 if (IS_ERR(em)) { 1049 ret = PTR_ERR(em); 1050 goto out_reserve; 1051 } 1052 free_extent_map(em); 1053 1054 ret = btrfs_add_ordered_extent(inode, start, ins.objectid, 1055 ram_size, cur_alloc_size, 0); 1056 if (ret) 1057 goto out_drop_extent_cache; 1058 1059 if (root->root_key.objectid == 1060 BTRFS_DATA_RELOC_TREE_OBJECTID) { 1061 ret = btrfs_reloc_clone_csums(inode, start, 1062 cur_alloc_size); 1063 /* 1064 * Only drop cache here, and process as normal. 1065 * 1066 * We must not allow extent_clear_unlock_delalloc() 1067 * at out_unlock label to free meta of this ordered 1068 * extent, as its meta should be freed by 1069 * btrfs_finish_ordered_io(). 1070 * 1071 * So we must continue until @start is increased to 1072 * skip current ordered extent. 1073 */ 1074 if (ret) 1075 btrfs_drop_extent_cache(BTRFS_I(inode), start, 1076 start + ram_size - 1, 0); 1077 } 1078 1079 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1080 1081 /* we're not doing compressed IO, don't unlock the first 1082 * page (which the caller expects to stay locked), don't 1083 * clear any dirty bits and don't set any writeback bits 1084 * 1085 * Do set the Private2 bit so we know this page was properly 1086 * setup for writepage 1087 */ 1088 page_ops = unlock ? PAGE_UNLOCK : 0; 1089 page_ops |= PAGE_SET_PRIVATE2; 1090 1091 extent_clear_unlock_delalloc(inode, start, 1092 start + ram_size - 1, 1093 locked_page, 1094 EXTENT_LOCKED | EXTENT_DELALLOC, 1095 page_ops); 1096 if (num_bytes < cur_alloc_size) 1097 num_bytes = 0; 1098 else 1099 num_bytes -= cur_alloc_size; 1100 alloc_hint = ins.objectid + ins.offset; 1101 start += cur_alloc_size; 1102 extent_reserved = false; 1103 1104 /* 1105 * btrfs_reloc_clone_csums() error, since start is increased 1106 * extent_clear_unlock_delalloc() at out_unlock label won't 1107 * free metadata of current ordered extent, we're OK to exit. 1108 */ 1109 if (ret) 1110 goto out_unlock; 1111 } 1112 out: 1113 return ret; 1114 1115 out_drop_extent_cache: 1116 btrfs_drop_extent_cache(BTRFS_I(inode), start, start + ram_size - 1, 0); 1117 out_reserve: 1118 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1119 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1); 1120 out_unlock: 1121 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW | 1122 EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV; 1123 page_ops = PAGE_UNLOCK | PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK | 1124 PAGE_END_WRITEBACK; 1125 /* 1126 * If we reserved an extent for our delalloc range (or a subrange) and 1127 * failed to create the respective ordered extent, then it means that 1128 * when we reserved the extent we decremented the extent's size from 1129 * the data space_info's bytes_may_use counter and incremented the 1130 * space_info's bytes_reserved counter by the same amount. We must make 1131 * sure extent_clear_unlock_delalloc() does not try to decrement again 1132 * the data space_info's bytes_may_use counter, therefore we do not pass 1133 * it the flag EXTENT_CLEAR_DATA_RESV. 1134 */ 1135 if (extent_reserved) { 1136 extent_clear_unlock_delalloc(inode, start, 1137 start + cur_alloc_size, 1138 locked_page, 1139 clear_bits, 1140 page_ops); 1141 start += cur_alloc_size; 1142 if (start >= end) 1143 goto out; 1144 } 1145 extent_clear_unlock_delalloc(inode, start, end, locked_page, 1146 clear_bits | EXTENT_CLEAR_DATA_RESV, 1147 page_ops); 1148 goto out; 1149 } 1150 1151 /* 1152 * work queue call back to started compression on a file and pages 1153 */ 1154 static noinline void async_cow_start(struct btrfs_work *work) 1155 { 1156 struct async_chunk *async_chunk; 1157 int compressed_extents; 1158 1159 async_chunk = container_of(work, struct async_chunk, work); 1160 1161 compressed_extents = compress_file_range(async_chunk); 1162 if (compressed_extents == 0) { 1163 btrfs_add_delayed_iput(async_chunk->inode); 1164 async_chunk->inode = NULL; 1165 } 1166 } 1167 1168 /* 1169 * work queue call back to submit previously compressed pages 1170 */ 1171 static noinline void async_cow_submit(struct btrfs_work *work) 1172 { 1173 struct async_chunk *async_chunk = container_of(work, struct async_chunk, 1174 work); 1175 struct btrfs_fs_info *fs_info = btrfs_work_owner(work); 1176 unsigned long nr_pages; 1177 1178 nr_pages = (async_chunk->end - async_chunk->start + PAGE_SIZE) >> 1179 PAGE_SHIFT; 1180 1181 /* atomic_sub_return implies a barrier */ 1182 if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) < 1183 5 * SZ_1M) 1184 cond_wake_up_nomb(&fs_info->async_submit_wait); 1185 1186 /* 1187 * ->inode could be NULL if async_chunk_start has failed to compress, 1188 * in which case we don't have anything to submit, yet we need to 1189 * always adjust ->async_delalloc_pages as its paired with the init 1190 * happening in cow_file_range_async 1191 */ 1192 if (async_chunk->inode) 1193 submit_compressed_extents(async_chunk); 1194 } 1195 1196 static noinline void async_cow_free(struct btrfs_work *work) 1197 { 1198 struct async_chunk *async_chunk; 1199 1200 async_chunk = container_of(work, struct async_chunk, work); 1201 if (async_chunk->inode) 1202 btrfs_add_delayed_iput(async_chunk->inode); 1203 if (async_chunk->blkcg_css) 1204 css_put(async_chunk->blkcg_css); 1205 /* 1206 * Since the pointer to 'pending' is at the beginning of the array of 1207 * async_chunk's, freeing it ensures the whole array has been freed. 1208 */ 1209 if (atomic_dec_and_test(async_chunk->pending)) 1210 kvfree(async_chunk->pending); 1211 } 1212 1213 static int cow_file_range_async(struct inode *inode, 1214 struct writeback_control *wbc, 1215 struct page *locked_page, 1216 u64 start, u64 end, int *page_started, 1217 unsigned long *nr_written) 1218 { 1219 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1220 struct cgroup_subsys_state *blkcg_css = wbc_blkcg_css(wbc); 1221 struct async_cow *ctx; 1222 struct async_chunk *async_chunk; 1223 unsigned long nr_pages; 1224 u64 cur_end; 1225 u64 num_chunks = DIV_ROUND_UP(end - start, SZ_512K); 1226 int i; 1227 bool should_compress; 1228 unsigned nofs_flag; 1229 const unsigned int write_flags = wbc_to_write_flags(wbc); 1230 1231 unlock_extent(&BTRFS_I(inode)->io_tree, start, end); 1232 1233 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS && 1234 !btrfs_test_opt(fs_info, FORCE_COMPRESS)) { 1235 num_chunks = 1; 1236 should_compress = false; 1237 } else { 1238 should_compress = true; 1239 } 1240 1241 nofs_flag = memalloc_nofs_save(); 1242 ctx = kvmalloc(struct_size(ctx, chunks, num_chunks), GFP_KERNEL); 1243 memalloc_nofs_restore(nofs_flag); 1244 1245 if (!ctx) { 1246 unsigned clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | 1247 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG | 1248 EXTENT_DO_ACCOUNTING; 1249 unsigned long page_ops = PAGE_UNLOCK | PAGE_CLEAR_DIRTY | 1250 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK | 1251 PAGE_SET_ERROR; 1252 1253 extent_clear_unlock_delalloc(inode, start, end, locked_page, 1254 clear_bits, page_ops); 1255 return -ENOMEM; 1256 } 1257 1258 async_chunk = ctx->chunks; 1259 atomic_set(&ctx->num_chunks, num_chunks); 1260 1261 for (i = 0; i < num_chunks; i++) { 1262 if (should_compress) 1263 cur_end = min(end, start + SZ_512K - 1); 1264 else 1265 cur_end = end; 1266 1267 /* 1268 * igrab is called higher up in the call chain, take only the 1269 * lightweight reference for the callback lifetime 1270 */ 1271 ihold(inode); 1272 async_chunk[i].pending = &ctx->num_chunks; 1273 async_chunk[i].inode = inode; 1274 async_chunk[i].start = start; 1275 async_chunk[i].end = cur_end; 1276 async_chunk[i].write_flags = write_flags; 1277 INIT_LIST_HEAD(&async_chunk[i].extents); 1278 1279 /* 1280 * The locked_page comes all the way from writepage and its 1281 * the original page we were actually given. As we spread 1282 * this large delalloc region across multiple async_chunk 1283 * structs, only the first struct needs a pointer to locked_page 1284 * 1285 * This way we don't need racey decisions about who is supposed 1286 * to unlock it. 1287 */ 1288 if (locked_page) { 1289 /* 1290 * Depending on the compressibility, the pages might or 1291 * might not go through async. We want all of them to 1292 * be accounted against wbc once. Let's do it here 1293 * before the paths diverge. wbc accounting is used 1294 * only for foreign writeback detection and doesn't 1295 * need full accuracy. Just account the whole thing 1296 * against the first page. 1297 */ 1298 wbc_account_cgroup_owner(wbc, locked_page, 1299 cur_end - start); 1300 async_chunk[i].locked_page = locked_page; 1301 locked_page = NULL; 1302 } else { 1303 async_chunk[i].locked_page = NULL; 1304 } 1305 1306 if (blkcg_css != blkcg_root_css) { 1307 css_get(blkcg_css); 1308 async_chunk[i].blkcg_css = blkcg_css; 1309 } else { 1310 async_chunk[i].blkcg_css = NULL; 1311 } 1312 1313 btrfs_init_work(&async_chunk[i].work, async_cow_start, 1314 async_cow_submit, async_cow_free); 1315 1316 nr_pages = DIV_ROUND_UP(cur_end - start, PAGE_SIZE); 1317 atomic_add(nr_pages, &fs_info->async_delalloc_pages); 1318 1319 btrfs_queue_work(fs_info->delalloc_workers, &async_chunk[i].work); 1320 1321 *nr_written += nr_pages; 1322 start = cur_end + 1; 1323 } 1324 *page_started = 1; 1325 return 0; 1326 } 1327 1328 static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info, 1329 u64 bytenr, u64 num_bytes) 1330 { 1331 int ret; 1332 struct btrfs_ordered_sum *sums; 1333 LIST_HEAD(list); 1334 1335 ret = btrfs_lookup_csums_range(fs_info->csum_root, bytenr, 1336 bytenr + num_bytes - 1, &list, 0); 1337 if (ret == 0 && list_empty(&list)) 1338 return 0; 1339 1340 while (!list_empty(&list)) { 1341 sums = list_entry(list.next, struct btrfs_ordered_sum, list); 1342 list_del(&sums->list); 1343 kfree(sums); 1344 } 1345 if (ret < 0) 1346 return ret; 1347 return 1; 1348 } 1349 1350 /* 1351 * when nowcow writeback call back. This checks for snapshots or COW copies 1352 * of the extents that exist in the file, and COWs the file as required. 1353 * 1354 * If no cow copies or snapshots exist, we write directly to the existing 1355 * blocks on disk 1356 */ 1357 static noinline int run_delalloc_nocow(struct inode *inode, 1358 struct page *locked_page, 1359 const u64 start, const u64 end, 1360 int *page_started, int force, 1361 unsigned long *nr_written) 1362 { 1363 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1364 struct btrfs_root *root = BTRFS_I(inode)->root; 1365 struct btrfs_path *path; 1366 u64 cow_start = (u64)-1; 1367 u64 cur_offset = start; 1368 int ret; 1369 bool check_prev = true; 1370 const bool freespace_inode = btrfs_is_free_space_inode(BTRFS_I(inode)); 1371 u64 ino = btrfs_ino(BTRFS_I(inode)); 1372 bool nocow = false; 1373 u64 disk_bytenr = 0; 1374 1375 path = btrfs_alloc_path(); 1376 if (!path) { 1377 extent_clear_unlock_delalloc(inode, start, end, locked_page, 1378 EXTENT_LOCKED | EXTENT_DELALLOC | 1379 EXTENT_DO_ACCOUNTING | 1380 EXTENT_DEFRAG, PAGE_UNLOCK | 1381 PAGE_CLEAR_DIRTY | 1382 PAGE_SET_WRITEBACK | 1383 PAGE_END_WRITEBACK); 1384 return -ENOMEM; 1385 } 1386 1387 while (1) { 1388 struct btrfs_key found_key; 1389 struct btrfs_file_extent_item *fi; 1390 struct extent_buffer *leaf; 1391 u64 extent_end; 1392 u64 extent_offset; 1393 u64 num_bytes = 0; 1394 u64 disk_num_bytes; 1395 u64 ram_bytes; 1396 int extent_type; 1397 1398 nocow = false; 1399 1400 ret = btrfs_lookup_file_extent(NULL, root, path, ino, 1401 cur_offset, 0); 1402 if (ret < 0) 1403 goto error; 1404 1405 /* 1406 * If there is no extent for our range when doing the initial 1407 * search, then go back to the previous slot as it will be the 1408 * one containing the search offset 1409 */ 1410 if (ret > 0 && path->slots[0] > 0 && check_prev) { 1411 leaf = path->nodes[0]; 1412 btrfs_item_key_to_cpu(leaf, &found_key, 1413 path->slots[0] - 1); 1414 if (found_key.objectid == ino && 1415 found_key.type == BTRFS_EXTENT_DATA_KEY) 1416 path->slots[0]--; 1417 } 1418 check_prev = false; 1419 next_slot: 1420 /* Go to next leaf if we have exhausted the current one */ 1421 leaf = path->nodes[0]; 1422 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 1423 ret = btrfs_next_leaf(root, path); 1424 if (ret < 0) { 1425 if (cow_start != (u64)-1) 1426 cur_offset = cow_start; 1427 goto error; 1428 } 1429 if (ret > 0) 1430 break; 1431 leaf = path->nodes[0]; 1432 } 1433 1434 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1435 1436 /* Didn't find anything for our INO */ 1437 if (found_key.objectid > ino) 1438 break; 1439 /* 1440 * Keep searching until we find an EXTENT_ITEM or there are no 1441 * more extents for this inode 1442 */ 1443 if (WARN_ON_ONCE(found_key.objectid < ino) || 1444 found_key.type < BTRFS_EXTENT_DATA_KEY) { 1445 path->slots[0]++; 1446 goto next_slot; 1447 } 1448 1449 /* Found key is not EXTENT_DATA_KEY or starts after req range */ 1450 if (found_key.type > BTRFS_EXTENT_DATA_KEY || 1451 found_key.offset > end) 1452 break; 1453 1454 /* 1455 * If the found extent starts after requested offset, then 1456 * adjust extent_end to be right before this extent begins 1457 */ 1458 if (found_key.offset > cur_offset) { 1459 extent_end = found_key.offset; 1460 extent_type = 0; 1461 goto out_check; 1462 } 1463 1464 /* 1465 * Found extent which begins before our range and potentially 1466 * intersect it 1467 */ 1468 fi = btrfs_item_ptr(leaf, path->slots[0], 1469 struct btrfs_file_extent_item); 1470 extent_type = btrfs_file_extent_type(leaf, fi); 1471 1472 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 1473 if (extent_type == BTRFS_FILE_EXTENT_REG || 1474 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1475 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1476 extent_offset = btrfs_file_extent_offset(leaf, fi); 1477 extent_end = found_key.offset + 1478 btrfs_file_extent_num_bytes(leaf, fi); 1479 disk_num_bytes = 1480 btrfs_file_extent_disk_num_bytes(leaf, fi); 1481 /* 1482 * If the extent we got ends before our current offset, 1483 * skip to the next extent. 1484 */ 1485 if (extent_end <= cur_offset) { 1486 path->slots[0]++; 1487 goto next_slot; 1488 } 1489 /* Skip holes */ 1490 if (disk_bytenr == 0) 1491 goto out_check; 1492 /* Skip compressed/encrypted/encoded extents */ 1493 if (btrfs_file_extent_compression(leaf, fi) || 1494 btrfs_file_extent_encryption(leaf, fi) || 1495 btrfs_file_extent_other_encoding(leaf, fi)) 1496 goto out_check; 1497 /* 1498 * If extent is created before the last volume's snapshot 1499 * this implies the extent is shared, hence we can't do 1500 * nocow. This is the same check as in 1501 * btrfs_cross_ref_exist but without calling 1502 * btrfs_search_slot. 1503 */ 1504 if (!freespace_inode && 1505 btrfs_file_extent_generation(leaf, fi) <= 1506 btrfs_root_last_snapshot(&root->root_item)) 1507 goto out_check; 1508 if (extent_type == BTRFS_FILE_EXTENT_REG && !force) 1509 goto out_check; 1510 /* If extent is RO, we must COW it */ 1511 if (btrfs_extent_readonly(fs_info, disk_bytenr)) 1512 goto out_check; 1513 ret = btrfs_cross_ref_exist(root, ino, 1514 found_key.offset - 1515 extent_offset, disk_bytenr); 1516 if (ret) { 1517 /* 1518 * ret could be -EIO if the above fails to read 1519 * metadata. 1520 */ 1521 if (ret < 0) { 1522 if (cow_start != (u64)-1) 1523 cur_offset = cow_start; 1524 goto error; 1525 } 1526 1527 WARN_ON_ONCE(freespace_inode); 1528 goto out_check; 1529 } 1530 disk_bytenr += extent_offset; 1531 disk_bytenr += cur_offset - found_key.offset; 1532 num_bytes = min(end + 1, extent_end) - cur_offset; 1533 /* 1534 * If there are pending snapshots for this root, we 1535 * fall into common COW way 1536 */ 1537 if (!freespace_inode && atomic_read(&root->snapshot_force_cow)) 1538 goto out_check; 1539 /* 1540 * force cow if csum exists in the range. 1541 * this ensure that csum for a given extent are 1542 * either valid or do not exist. 1543 */ 1544 ret = csum_exist_in_range(fs_info, disk_bytenr, 1545 num_bytes); 1546 if (ret) { 1547 /* 1548 * ret could be -EIO if the above fails to read 1549 * metadata. 1550 */ 1551 if (ret < 0) { 1552 if (cow_start != (u64)-1) 1553 cur_offset = cow_start; 1554 goto error; 1555 } 1556 WARN_ON_ONCE(freespace_inode); 1557 goto out_check; 1558 } 1559 if (!btrfs_inc_nocow_writers(fs_info, disk_bytenr)) 1560 goto out_check; 1561 nocow = true; 1562 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 1563 extent_end = found_key.offset + ram_bytes; 1564 extent_end = ALIGN(extent_end, fs_info->sectorsize); 1565 /* Skip extents outside of our requested range */ 1566 if (extent_end <= start) { 1567 path->slots[0]++; 1568 goto next_slot; 1569 } 1570 } else { 1571 /* If this triggers then we have a memory corruption */ 1572 BUG(); 1573 } 1574 out_check: 1575 /* 1576 * If nocow is false then record the beginning of the range 1577 * that needs to be COWed 1578 */ 1579 if (!nocow) { 1580 if (cow_start == (u64)-1) 1581 cow_start = cur_offset; 1582 cur_offset = extent_end; 1583 if (cur_offset > end) 1584 break; 1585 path->slots[0]++; 1586 goto next_slot; 1587 } 1588 1589 btrfs_release_path(path); 1590 1591 /* 1592 * COW range from cow_start to found_key.offset - 1. As the key 1593 * will contain the beginning of the first extent that can be 1594 * NOCOW, following one which needs to be COW'ed 1595 */ 1596 if (cow_start != (u64)-1) { 1597 ret = cow_file_range(inode, locked_page, 1598 cow_start, found_key.offset - 1, 1599 page_started, nr_written, 1); 1600 if (ret) { 1601 if (nocow) 1602 btrfs_dec_nocow_writers(fs_info, 1603 disk_bytenr); 1604 goto error; 1605 } 1606 cow_start = (u64)-1; 1607 } 1608 1609 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1610 u64 orig_start = found_key.offset - extent_offset; 1611 struct extent_map *em; 1612 1613 em = create_io_em(inode, cur_offset, num_bytes, 1614 orig_start, 1615 disk_bytenr, /* block_start */ 1616 num_bytes, /* block_len */ 1617 disk_num_bytes, /* orig_block_len */ 1618 ram_bytes, BTRFS_COMPRESS_NONE, 1619 BTRFS_ORDERED_PREALLOC); 1620 if (IS_ERR(em)) { 1621 if (nocow) 1622 btrfs_dec_nocow_writers(fs_info, 1623 disk_bytenr); 1624 ret = PTR_ERR(em); 1625 goto error; 1626 } 1627 free_extent_map(em); 1628 ret = btrfs_add_ordered_extent(inode, cur_offset, 1629 disk_bytenr, num_bytes, 1630 num_bytes, 1631 BTRFS_ORDERED_PREALLOC); 1632 if (ret) { 1633 btrfs_drop_extent_cache(BTRFS_I(inode), 1634 cur_offset, 1635 cur_offset + num_bytes - 1, 1636 0); 1637 goto error; 1638 } 1639 } else { 1640 ret = btrfs_add_ordered_extent(inode, cur_offset, 1641 disk_bytenr, num_bytes, 1642 num_bytes, 1643 BTRFS_ORDERED_NOCOW); 1644 if (ret) 1645 goto error; 1646 } 1647 1648 if (nocow) 1649 btrfs_dec_nocow_writers(fs_info, disk_bytenr); 1650 nocow = false; 1651 1652 if (root->root_key.objectid == 1653 BTRFS_DATA_RELOC_TREE_OBJECTID) 1654 /* 1655 * Error handled later, as we must prevent 1656 * extent_clear_unlock_delalloc() in error handler 1657 * from freeing metadata of created ordered extent. 1658 */ 1659 ret = btrfs_reloc_clone_csums(inode, cur_offset, 1660 num_bytes); 1661 1662 extent_clear_unlock_delalloc(inode, cur_offset, 1663 cur_offset + num_bytes - 1, 1664 locked_page, EXTENT_LOCKED | 1665 EXTENT_DELALLOC | 1666 EXTENT_CLEAR_DATA_RESV, 1667 PAGE_UNLOCK | PAGE_SET_PRIVATE2); 1668 1669 cur_offset = extent_end; 1670 1671 /* 1672 * btrfs_reloc_clone_csums() error, now we're OK to call error 1673 * handler, as metadata for created ordered extent will only 1674 * be freed by btrfs_finish_ordered_io(). 1675 */ 1676 if (ret) 1677 goto error; 1678 if (cur_offset > end) 1679 break; 1680 } 1681 btrfs_release_path(path); 1682 1683 if (cur_offset <= end && cow_start == (u64)-1) 1684 cow_start = cur_offset; 1685 1686 if (cow_start != (u64)-1) { 1687 cur_offset = end; 1688 ret = cow_file_range(inode, locked_page, cow_start, end, 1689 page_started, nr_written, 1); 1690 if (ret) 1691 goto error; 1692 } 1693 1694 error: 1695 if (nocow) 1696 btrfs_dec_nocow_writers(fs_info, disk_bytenr); 1697 1698 if (ret && cur_offset < end) 1699 extent_clear_unlock_delalloc(inode, cur_offset, end, 1700 locked_page, EXTENT_LOCKED | 1701 EXTENT_DELALLOC | EXTENT_DEFRAG | 1702 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK | 1703 PAGE_CLEAR_DIRTY | 1704 PAGE_SET_WRITEBACK | 1705 PAGE_END_WRITEBACK); 1706 btrfs_free_path(path); 1707 return ret; 1708 } 1709 1710 static inline int need_force_cow(struct inode *inode, u64 start, u64 end) 1711 { 1712 1713 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) && 1714 !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)) 1715 return 0; 1716 1717 /* 1718 * @defrag_bytes is a hint value, no spinlock held here, 1719 * if is not zero, it means the file is defragging. 1720 * Force cow if given extent needs to be defragged. 1721 */ 1722 if (BTRFS_I(inode)->defrag_bytes && 1723 test_range_bit(&BTRFS_I(inode)->io_tree, start, end, 1724 EXTENT_DEFRAG, 0, NULL)) 1725 return 1; 1726 1727 return 0; 1728 } 1729 1730 /* 1731 * Function to process delayed allocation (create CoW) for ranges which are 1732 * being touched for the first time. 1733 */ 1734 int btrfs_run_delalloc_range(struct inode *inode, struct page *locked_page, 1735 u64 start, u64 end, int *page_started, unsigned long *nr_written, 1736 struct writeback_control *wbc) 1737 { 1738 int ret; 1739 int force_cow = need_force_cow(inode, start, end); 1740 1741 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) { 1742 ret = run_delalloc_nocow(inode, locked_page, start, end, 1743 page_started, 1, nr_written); 1744 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) { 1745 ret = run_delalloc_nocow(inode, locked_page, start, end, 1746 page_started, 0, nr_written); 1747 } else if (!inode_can_compress(inode) || 1748 !inode_need_compress(inode, start, end)) { 1749 ret = cow_file_range(inode, locked_page, start, end, 1750 page_started, nr_written, 1); 1751 } else { 1752 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 1753 &BTRFS_I(inode)->runtime_flags); 1754 ret = cow_file_range_async(inode, wbc, locked_page, start, end, 1755 page_started, nr_written); 1756 } 1757 if (ret) 1758 btrfs_cleanup_ordered_extents(inode, locked_page, start, 1759 end - start + 1); 1760 return ret; 1761 } 1762 1763 void btrfs_split_delalloc_extent(struct inode *inode, 1764 struct extent_state *orig, u64 split) 1765 { 1766 u64 size; 1767 1768 /* not delalloc, ignore it */ 1769 if (!(orig->state & EXTENT_DELALLOC)) 1770 return; 1771 1772 size = orig->end - orig->start + 1; 1773 if (size > BTRFS_MAX_EXTENT_SIZE) { 1774 u32 num_extents; 1775 u64 new_size; 1776 1777 /* 1778 * See the explanation in btrfs_merge_delalloc_extent, the same 1779 * applies here, just in reverse. 1780 */ 1781 new_size = orig->end - split + 1; 1782 num_extents = count_max_extents(new_size); 1783 new_size = split - orig->start; 1784 num_extents += count_max_extents(new_size); 1785 if (count_max_extents(size) >= num_extents) 1786 return; 1787 } 1788 1789 spin_lock(&BTRFS_I(inode)->lock); 1790 btrfs_mod_outstanding_extents(BTRFS_I(inode), 1); 1791 spin_unlock(&BTRFS_I(inode)->lock); 1792 } 1793 1794 /* 1795 * Handle merged delayed allocation extents so we can keep track of new extents 1796 * that are just merged onto old extents, such as when we are doing sequential 1797 * writes, so we can properly account for the metadata space we'll need. 1798 */ 1799 void btrfs_merge_delalloc_extent(struct inode *inode, struct extent_state *new, 1800 struct extent_state *other) 1801 { 1802 u64 new_size, old_size; 1803 u32 num_extents; 1804 1805 /* not delalloc, ignore it */ 1806 if (!(other->state & EXTENT_DELALLOC)) 1807 return; 1808 1809 if (new->start > other->start) 1810 new_size = new->end - other->start + 1; 1811 else 1812 new_size = other->end - new->start + 1; 1813 1814 /* we're not bigger than the max, unreserve the space and go */ 1815 if (new_size <= BTRFS_MAX_EXTENT_SIZE) { 1816 spin_lock(&BTRFS_I(inode)->lock); 1817 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1); 1818 spin_unlock(&BTRFS_I(inode)->lock); 1819 return; 1820 } 1821 1822 /* 1823 * We have to add up either side to figure out how many extents were 1824 * accounted for before we merged into one big extent. If the number of 1825 * extents we accounted for is <= the amount we need for the new range 1826 * then we can return, otherwise drop. Think of it like this 1827 * 1828 * [ 4k][MAX_SIZE] 1829 * 1830 * So we've grown the extent by a MAX_SIZE extent, this would mean we 1831 * need 2 outstanding extents, on one side we have 1 and the other side 1832 * we have 1 so they are == and we can return. But in this case 1833 * 1834 * [MAX_SIZE+4k][MAX_SIZE+4k] 1835 * 1836 * Each range on their own accounts for 2 extents, but merged together 1837 * they are only 3 extents worth of accounting, so we need to drop in 1838 * this case. 1839 */ 1840 old_size = other->end - other->start + 1; 1841 num_extents = count_max_extents(old_size); 1842 old_size = new->end - new->start + 1; 1843 num_extents += count_max_extents(old_size); 1844 if (count_max_extents(new_size) >= num_extents) 1845 return; 1846 1847 spin_lock(&BTRFS_I(inode)->lock); 1848 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1); 1849 spin_unlock(&BTRFS_I(inode)->lock); 1850 } 1851 1852 static void btrfs_add_delalloc_inodes(struct btrfs_root *root, 1853 struct inode *inode) 1854 { 1855 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1856 1857 spin_lock(&root->delalloc_lock); 1858 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) { 1859 list_add_tail(&BTRFS_I(inode)->delalloc_inodes, 1860 &root->delalloc_inodes); 1861 set_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1862 &BTRFS_I(inode)->runtime_flags); 1863 root->nr_delalloc_inodes++; 1864 if (root->nr_delalloc_inodes == 1) { 1865 spin_lock(&fs_info->delalloc_root_lock); 1866 BUG_ON(!list_empty(&root->delalloc_root)); 1867 list_add_tail(&root->delalloc_root, 1868 &fs_info->delalloc_roots); 1869 spin_unlock(&fs_info->delalloc_root_lock); 1870 } 1871 } 1872 spin_unlock(&root->delalloc_lock); 1873 } 1874 1875 1876 void __btrfs_del_delalloc_inode(struct btrfs_root *root, 1877 struct btrfs_inode *inode) 1878 { 1879 struct btrfs_fs_info *fs_info = root->fs_info; 1880 1881 if (!list_empty(&inode->delalloc_inodes)) { 1882 list_del_init(&inode->delalloc_inodes); 1883 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1884 &inode->runtime_flags); 1885 root->nr_delalloc_inodes--; 1886 if (!root->nr_delalloc_inodes) { 1887 ASSERT(list_empty(&root->delalloc_inodes)); 1888 spin_lock(&fs_info->delalloc_root_lock); 1889 BUG_ON(list_empty(&root->delalloc_root)); 1890 list_del_init(&root->delalloc_root); 1891 spin_unlock(&fs_info->delalloc_root_lock); 1892 } 1893 } 1894 } 1895 1896 static void btrfs_del_delalloc_inode(struct btrfs_root *root, 1897 struct btrfs_inode *inode) 1898 { 1899 spin_lock(&root->delalloc_lock); 1900 __btrfs_del_delalloc_inode(root, inode); 1901 spin_unlock(&root->delalloc_lock); 1902 } 1903 1904 /* 1905 * Properly track delayed allocation bytes in the inode and to maintain the 1906 * list of inodes that have pending delalloc work to be done. 1907 */ 1908 void btrfs_set_delalloc_extent(struct inode *inode, struct extent_state *state, 1909 unsigned *bits) 1910 { 1911 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1912 1913 if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC)) 1914 WARN_ON(1); 1915 /* 1916 * set_bit and clear bit hooks normally require _irqsave/restore 1917 * but in this case, we are only testing for the DELALLOC 1918 * bit, which is only set or cleared with irqs on 1919 */ 1920 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) { 1921 struct btrfs_root *root = BTRFS_I(inode)->root; 1922 u64 len = state->end + 1 - state->start; 1923 u32 num_extents = count_max_extents(len); 1924 bool do_list = !btrfs_is_free_space_inode(BTRFS_I(inode)); 1925 1926 spin_lock(&BTRFS_I(inode)->lock); 1927 btrfs_mod_outstanding_extents(BTRFS_I(inode), num_extents); 1928 spin_unlock(&BTRFS_I(inode)->lock); 1929 1930 /* For sanity tests */ 1931 if (btrfs_is_testing(fs_info)) 1932 return; 1933 1934 percpu_counter_add_batch(&fs_info->delalloc_bytes, len, 1935 fs_info->delalloc_batch); 1936 spin_lock(&BTRFS_I(inode)->lock); 1937 BTRFS_I(inode)->delalloc_bytes += len; 1938 if (*bits & EXTENT_DEFRAG) 1939 BTRFS_I(inode)->defrag_bytes += len; 1940 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1941 &BTRFS_I(inode)->runtime_flags)) 1942 btrfs_add_delalloc_inodes(root, inode); 1943 spin_unlock(&BTRFS_I(inode)->lock); 1944 } 1945 1946 if (!(state->state & EXTENT_DELALLOC_NEW) && 1947 (*bits & EXTENT_DELALLOC_NEW)) { 1948 spin_lock(&BTRFS_I(inode)->lock); 1949 BTRFS_I(inode)->new_delalloc_bytes += state->end + 1 - 1950 state->start; 1951 spin_unlock(&BTRFS_I(inode)->lock); 1952 } 1953 } 1954 1955 /* 1956 * Once a range is no longer delalloc this function ensures that proper 1957 * accounting happens. 1958 */ 1959 void btrfs_clear_delalloc_extent(struct inode *vfs_inode, 1960 struct extent_state *state, unsigned *bits) 1961 { 1962 struct btrfs_inode *inode = BTRFS_I(vfs_inode); 1963 struct btrfs_fs_info *fs_info = btrfs_sb(vfs_inode->i_sb); 1964 u64 len = state->end + 1 - state->start; 1965 u32 num_extents = count_max_extents(len); 1966 1967 if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG)) { 1968 spin_lock(&inode->lock); 1969 inode->defrag_bytes -= len; 1970 spin_unlock(&inode->lock); 1971 } 1972 1973 /* 1974 * set_bit and clear bit hooks normally require _irqsave/restore 1975 * but in this case, we are only testing for the DELALLOC 1976 * bit, which is only set or cleared with irqs on 1977 */ 1978 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) { 1979 struct btrfs_root *root = inode->root; 1980 bool do_list = !btrfs_is_free_space_inode(inode); 1981 1982 spin_lock(&inode->lock); 1983 btrfs_mod_outstanding_extents(inode, -num_extents); 1984 spin_unlock(&inode->lock); 1985 1986 /* 1987 * We don't reserve metadata space for space cache inodes so we 1988 * don't need to call delalloc_release_metadata if there is an 1989 * error. 1990 */ 1991 if (*bits & EXTENT_CLEAR_META_RESV && 1992 root != fs_info->tree_root) 1993 btrfs_delalloc_release_metadata(inode, len, false); 1994 1995 /* For sanity tests. */ 1996 if (btrfs_is_testing(fs_info)) 1997 return; 1998 1999 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID && 2000 do_list && !(state->state & EXTENT_NORESERVE) && 2001 (*bits & EXTENT_CLEAR_DATA_RESV)) 2002 btrfs_free_reserved_data_space_noquota( 2003 &inode->vfs_inode, 2004 state->start, len); 2005 2006 percpu_counter_add_batch(&fs_info->delalloc_bytes, -len, 2007 fs_info->delalloc_batch); 2008 spin_lock(&inode->lock); 2009 inode->delalloc_bytes -= len; 2010 if (do_list && inode->delalloc_bytes == 0 && 2011 test_bit(BTRFS_INODE_IN_DELALLOC_LIST, 2012 &inode->runtime_flags)) 2013 btrfs_del_delalloc_inode(root, inode); 2014 spin_unlock(&inode->lock); 2015 } 2016 2017 if ((state->state & EXTENT_DELALLOC_NEW) && 2018 (*bits & EXTENT_DELALLOC_NEW)) { 2019 spin_lock(&inode->lock); 2020 ASSERT(inode->new_delalloc_bytes >= len); 2021 inode->new_delalloc_bytes -= len; 2022 spin_unlock(&inode->lock); 2023 } 2024 } 2025 2026 /* 2027 * btrfs_bio_fits_in_stripe - Checks whether the size of the given bio will fit 2028 * in a chunk's stripe. This function ensures that bios do not span a 2029 * stripe/chunk 2030 * 2031 * @page - The page we are about to add to the bio 2032 * @size - size we want to add to the bio 2033 * @bio - bio we want to ensure is smaller than a stripe 2034 * @bio_flags - flags of the bio 2035 * 2036 * return 1 if page cannot be added to the bio 2037 * return 0 if page can be added to the bio 2038 * return error otherwise 2039 */ 2040 int btrfs_bio_fits_in_stripe(struct page *page, size_t size, struct bio *bio, 2041 unsigned long bio_flags) 2042 { 2043 struct inode *inode = page->mapping->host; 2044 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2045 u64 logical = (u64)bio->bi_iter.bi_sector << 9; 2046 u64 length = 0; 2047 u64 map_length; 2048 int ret; 2049 struct btrfs_io_geometry geom; 2050 2051 if (bio_flags & EXTENT_BIO_COMPRESSED) 2052 return 0; 2053 2054 length = bio->bi_iter.bi_size; 2055 map_length = length; 2056 ret = btrfs_get_io_geometry(fs_info, btrfs_op(bio), logical, map_length, 2057 &geom); 2058 if (ret < 0) 2059 return ret; 2060 2061 if (geom.len < length + size) 2062 return 1; 2063 return 0; 2064 } 2065 2066 /* 2067 * in order to insert checksums into the metadata in large chunks, 2068 * we wait until bio submission time. All the pages in the bio are 2069 * checksummed and sums are attached onto the ordered extent record. 2070 * 2071 * At IO completion time the cums attached on the ordered extent record 2072 * are inserted into the btree 2073 */ 2074 static blk_status_t btrfs_submit_bio_start(void *private_data, struct bio *bio, 2075 u64 bio_offset) 2076 { 2077 struct inode *inode = private_data; 2078 blk_status_t ret = 0; 2079 2080 ret = btrfs_csum_one_bio(inode, bio, 0, 0); 2081 BUG_ON(ret); /* -ENOMEM */ 2082 return 0; 2083 } 2084 2085 /* 2086 * extent_io.c submission hook. This does the right thing for csum calculation 2087 * on write, or reading the csums from the tree before a read. 2088 * 2089 * Rules about async/sync submit, 2090 * a) read: sync submit 2091 * 2092 * b) write without checksum: sync submit 2093 * 2094 * c) write with checksum: 2095 * c-1) if bio is issued by fsync: sync submit 2096 * (sync_writers != 0) 2097 * 2098 * c-2) if root is reloc root: sync submit 2099 * (only in case of buffered IO) 2100 * 2101 * c-3) otherwise: async submit 2102 */ 2103 static blk_status_t btrfs_submit_bio_hook(struct inode *inode, struct bio *bio, 2104 int mirror_num, 2105 unsigned long bio_flags) 2106 2107 { 2108 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2109 struct btrfs_root *root = BTRFS_I(inode)->root; 2110 enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA; 2111 blk_status_t ret = 0; 2112 int skip_sum; 2113 int async = !atomic_read(&BTRFS_I(inode)->sync_writers); 2114 2115 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 2116 2117 if (btrfs_is_free_space_inode(BTRFS_I(inode))) 2118 metadata = BTRFS_WQ_ENDIO_FREE_SPACE; 2119 2120 if (bio_op(bio) != REQ_OP_WRITE) { 2121 ret = btrfs_bio_wq_end_io(fs_info, bio, metadata); 2122 if (ret) 2123 goto out; 2124 2125 if (bio_flags & EXTENT_BIO_COMPRESSED) { 2126 ret = btrfs_submit_compressed_read(inode, bio, 2127 mirror_num, 2128 bio_flags); 2129 goto out; 2130 } else if (!skip_sum) { 2131 ret = btrfs_lookup_bio_sums(inode, bio, NULL); 2132 if (ret) 2133 goto out; 2134 } 2135 goto mapit; 2136 } else if (async && !skip_sum) { 2137 /* csum items have already been cloned */ 2138 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) 2139 goto mapit; 2140 /* we're doing a write, do the async checksumming */ 2141 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, bio_flags, 2142 0, inode, btrfs_submit_bio_start); 2143 goto out; 2144 } else if (!skip_sum) { 2145 ret = btrfs_csum_one_bio(inode, bio, 0, 0); 2146 if (ret) 2147 goto out; 2148 } 2149 2150 mapit: 2151 ret = btrfs_map_bio(fs_info, bio, mirror_num); 2152 2153 out: 2154 if (ret) { 2155 bio->bi_status = ret; 2156 bio_endio(bio); 2157 } 2158 return ret; 2159 } 2160 2161 /* 2162 * given a list of ordered sums record them in the inode. This happens 2163 * at IO completion time based on sums calculated at bio submission time. 2164 */ 2165 static noinline int add_pending_csums(struct btrfs_trans_handle *trans, 2166 struct inode *inode, struct list_head *list) 2167 { 2168 struct btrfs_ordered_sum *sum; 2169 int ret; 2170 2171 list_for_each_entry(sum, list, list) { 2172 trans->adding_csums = true; 2173 ret = btrfs_csum_file_blocks(trans, 2174 BTRFS_I(inode)->root->fs_info->csum_root, sum); 2175 trans->adding_csums = false; 2176 if (ret) 2177 return ret; 2178 } 2179 return 0; 2180 } 2181 2182 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end, 2183 unsigned int extra_bits, 2184 struct extent_state **cached_state) 2185 { 2186 WARN_ON(PAGE_ALIGNED(end)); 2187 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end, 2188 extra_bits, cached_state); 2189 } 2190 2191 /* see btrfs_writepage_start_hook for details on why this is required */ 2192 struct btrfs_writepage_fixup { 2193 struct page *page; 2194 struct btrfs_work work; 2195 }; 2196 2197 static void btrfs_writepage_fixup_worker(struct btrfs_work *work) 2198 { 2199 struct btrfs_writepage_fixup *fixup; 2200 struct btrfs_ordered_extent *ordered; 2201 struct extent_state *cached_state = NULL; 2202 struct extent_changeset *data_reserved = NULL; 2203 struct page *page; 2204 struct inode *inode; 2205 u64 page_start; 2206 u64 page_end; 2207 int ret; 2208 2209 fixup = container_of(work, struct btrfs_writepage_fixup, work); 2210 page = fixup->page; 2211 again: 2212 lock_page(page); 2213 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) { 2214 ClearPageChecked(page); 2215 goto out_page; 2216 } 2217 2218 inode = page->mapping->host; 2219 page_start = page_offset(page); 2220 page_end = page_offset(page) + PAGE_SIZE - 1; 2221 2222 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 2223 &cached_state); 2224 2225 /* already ordered? We're done */ 2226 if (PagePrivate2(page)) 2227 goto out; 2228 2229 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start, 2230 PAGE_SIZE); 2231 if (ordered) { 2232 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, 2233 page_end, &cached_state); 2234 unlock_page(page); 2235 btrfs_start_ordered_extent(inode, ordered, 1); 2236 btrfs_put_ordered_extent(ordered); 2237 goto again; 2238 } 2239 2240 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start, 2241 PAGE_SIZE); 2242 if (ret) { 2243 mapping_set_error(page->mapping, ret); 2244 end_extent_writepage(page, ret, page_start, page_end); 2245 ClearPageChecked(page); 2246 goto out; 2247 } 2248 2249 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0, 2250 &cached_state); 2251 if (ret) { 2252 mapping_set_error(page->mapping, ret); 2253 end_extent_writepage(page, ret, page_start, page_end); 2254 ClearPageChecked(page); 2255 goto out_reserved; 2256 } 2257 2258 ClearPageChecked(page); 2259 set_page_dirty(page); 2260 out_reserved: 2261 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE); 2262 if (ret) 2263 btrfs_delalloc_release_space(inode, data_reserved, page_start, 2264 PAGE_SIZE, true); 2265 out: 2266 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end, 2267 &cached_state); 2268 out_page: 2269 unlock_page(page); 2270 put_page(page); 2271 kfree(fixup); 2272 extent_changeset_free(data_reserved); 2273 } 2274 2275 /* 2276 * There are a few paths in the higher layers of the kernel that directly 2277 * set the page dirty bit without asking the filesystem if it is a 2278 * good idea. This causes problems because we want to make sure COW 2279 * properly happens and the data=ordered rules are followed. 2280 * 2281 * In our case any range that doesn't have the ORDERED bit set 2282 * hasn't been properly setup for IO. We kick off an async process 2283 * to fix it up. The async helper will wait for ordered extents, set 2284 * the delalloc bit and make it safe to write the page. 2285 */ 2286 int btrfs_writepage_cow_fixup(struct page *page, u64 start, u64 end) 2287 { 2288 struct inode *inode = page->mapping->host; 2289 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2290 struct btrfs_writepage_fixup *fixup; 2291 2292 /* this page is properly in the ordered list */ 2293 if (TestClearPagePrivate2(page)) 2294 return 0; 2295 2296 if (PageChecked(page)) 2297 return -EAGAIN; 2298 2299 fixup = kzalloc(sizeof(*fixup), GFP_NOFS); 2300 if (!fixup) 2301 return -EAGAIN; 2302 2303 SetPageChecked(page); 2304 get_page(page); 2305 btrfs_init_work(&fixup->work, btrfs_writepage_fixup_worker, NULL, NULL); 2306 fixup->page = page; 2307 btrfs_queue_work(fs_info->fixup_workers, &fixup->work); 2308 return -EBUSY; 2309 } 2310 2311 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans, 2312 struct inode *inode, u64 file_pos, 2313 u64 disk_bytenr, u64 disk_num_bytes, 2314 u64 num_bytes, u64 ram_bytes, 2315 u8 compression, u8 encryption, 2316 u16 other_encoding, int extent_type) 2317 { 2318 struct btrfs_root *root = BTRFS_I(inode)->root; 2319 struct btrfs_file_extent_item *fi; 2320 struct btrfs_path *path; 2321 struct extent_buffer *leaf; 2322 struct btrfs_key ins; 2323 u64 qg_released; 2324 int extent_inserted = 0; 2325 int ret; 2326 2327 path = btrfs_alloc_path(); 2328 if (!path) 2329 return -ENOMEM; 2330 2331 /* 2332 * we may be replacing one extent in the tree with another. 2333 * The new extent is pinned in the extent map, and we don't want 2334 * to drop it from the cache until it is completely in the btree. 2335 * 2336 * So, tell btrfs_drop_extents to leave this extent in the cache. 2337 * the caller is expected to unpin it and allow it to be merged 2338 * with the others. 2339 */ 2340 ret = __btrfs_drop_extents(trans, root, inode, path, file_pos, 2341 file_pos + num_bytes, NULL, 0, 2342 1, sizeof(*fi), &extent_inserted); 2343 if (ret) 2344 goto out; 2345 2346 if (!extent_inserted) { 2347 ins.objectid = btrfs_ino(BTRFS_I(inode)); 2348 ins.offset = file_pos; 2349 ins.type = BTRFS_EXTENT_DATA_KEY; 2350 2351 path->leave_spinning = 1; 2352 ret = btrfs_insert_empty_item(trans, root, path, &ins, 2353 sizeof(*fi)); 2354 if (ret) 2355 goto out; 2356 } 2357 leaf = path->nodes[0]; 2358 fi = btrfs_item_ptr(leaf, path->slots[0], 2359 struct btrfs_file_extent_item); 2360 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 2361 btrfs_set_file_extent_type(leaf, fi, extent_type); 2362 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr); 2363 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes); 2364 btrfs_set_file_extent_offset(leaf, fi, 0); 2365 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 2366 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes); 2367 btrfs_set_file_extent_compression(leaf, fi, compression); 2368 btrfs_set_file_extent_encryption(leaf, fi, encryption); 2369 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding); 2370 2371 btrfs_mark_buffer_dirty(leaf); 2372 btrfs_release_path(path); 2373 2374 inode_add_bytes(inode, num_bytes); 2375 2376 ins.objectid = disk_bytenr; 2377 ins.offset = disk_num_bytes; 2378 ins.type = BTRFS_EXTENT_ITEM_KEY; 2379 2380 /* 2381 * Release the reserved range from inode dirty range map, as it is 2382 * already moved into delayed_ref_head 2383 */ 2384 ret = btrfs_qgroup_release_data(inode, file_pos, ram_bytes); 2385 if (ret < 0) 2386 goto out; 2387 qg_released = ret; 2388 ret = btrfs_alloc_reserved_file_extent(trans, root, 2389 btrfs_ino(BTRFS_I(inode)), 2390 file_pos, qg_released, &ins); 2391 out: 2392 btrfs_free_path(path); 2393 2394 return ret; 2395 } 2396 2397 /* snapshot-aware defrag */ 2398 struct sa_defrag_extent_backref { 2399 struct rb_node node; 2400 struct old_sa_defrag_extent *old; 2401 u64 root_id; 2402 u64 inum; 2403 u64 file_pos; 2404 u64 extent_offset; 2405 u64 num_bytes; 2406 u64 generation; 2407 }; 2408 2409 struct old_sa_defrag_extent { 2410 struct list_head list; 2411 struct new_sa_defrag_extent *new; 2412 2413 u64 extent_offset; 2414 u64 bytenr; 2415 u64 offset; 2416 u64 len; 2417 int count; 2418 }; 2419 2420 struct new_sa_defrag_extent { 2421 struct rb_root root; 2422 struct list_head head; 2423 struct btrfs_path *path; 2424 struct inode *inode; 2425 u64 file_pos; 2426 u64 len; 2427 u64 bytenr; 2428 u64 disk_len; 2429 u8 compress_type; 2430 }; 2431 2432 static int backref_comp(struct sa_defrag_extent_backref *b1, 2433 struct sa_defrag_extent_backref *b2) 2434 { 2435 if (b1->root_id < b2->root_id) 2436 return -1; 2437 else if (b1->root_id > b2->root_id) 2438 return 1; 2439 2440 if (b1->inum < b2->inum) 2441 return -1; 2442 else if (b1->inum > b2->inum) 2443 return 1; 2444 2445 if (b1->file_pos < b2->file_pos) 2446 return -1; 2447 else if (b1->file_pos > b2->file_pos) 2448 return 1; 2449 2450 /* 2451 * [------------------------------] ===> (a range of space) 2452 * |<--->| |<---->| =============> (fs/file tree A) 2453 * |<---------------------------->| ===> (fs/file tree B) 2454 * 2455 * A range of space can refer to two file extents in one tree while 2456 * refer to only one file extent in another tree. 2457 * 2458 * So we may process a disk offset more than one time(two extents in A) 2459 * and locate at the same extent(one extent in B), then insert two same 2460 * backrefs(both refer to the extent in B). 2461 */ 2462 return 0; 2463 } 2464 2465 static void backref_insert(struct rb_root *root, 2466 struct sa_defrag_extent_backref *backref) 2467 { 2468 struct rb_node **p = &root->rb_node; 2469 struct rb_node *parent = NULL; 2470 struct sa_defrag_extent_backref *entry; 2471 int ret; 2472 2473 while (*p) { 2474 parent = *p; 2475 entry = rb_entry(parent, struct sa_defrag_extent_backref, node); 2476 2477 ret = backref_comp(backref, entry); 2478 if (ret < 0) 2479 p = &(*p)->rb_left; 2480 else 2481 p = &(*p)->rb_right; 2482 } 2483 2484 rb_link_node(&backref->node, parent, p); 2485 rb_insert_color(&backref->node, root); 2486 } 2487 2488 /* 2489 * Note the backref might has changed, and in this case we just return 0. 2490 */ 2491 static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id, 2492 void *ctx) 2493 { 2494 struct btrfs_file_extent_item *extent; 2495 struct old_sa_defrag_extent *old = ctx; 2496 struct new_sa_defrag_extent *new = old->new; 2497 struct btrfs_path *path = new->path; 2498 struct btrfs_key key; 2499 struct btrfs_root *root; 2500 struct sa_defrag_extent_backref *backref; 2501 struct extent_buffer *leaf; 2502 struct inode *inode = new->inode; 2503 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2504 int slot; 2505 int ret; 2506 u64 extent_offset; 2507 u64 num_bytes; 2508 2509 if (BTRFS_I(inode)->root->root_key.objectid == root_id && 2510 inum == btrfs_ino(BTRFS_I(inode))) 2511 return 0; 2512 2513 key.objectid = root_id; 2514 key.type = BTRFS_ROOT_ITEM_KEY; 2515 key.offset = (u64)-1; 2516 2517 root = btrfs_read_fs_root_no_name(fs_info, &key); 2518 if (IS_ERR(root)) { 2519 if (PTR_ERR(root) == -ENOENT) 2520 return 0; 2521 WARN_ON(1); 2522 btrfs_debug(fs_info, "inum=%llu, offset=%llu, root_id=%llu", 2523 inum, offset, root_id); 2524 return PTR_ERR(root); 2525 } 2526 2527 key.objectid = inum; 2528 key.type = BTRFS_EXTENT_DATA_KEY; 2529 if (offset > (u64)-1 << 32) 2530 key.offset = 0; 2531 else 2532 key.offset = offset; 2533 2534 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2535 if (WARN_ON(ret < 0)) 2536 return ret; 2537 ret = 0; 2538 2539 while (1) { 2540 cond_resched(); 2541 2542 leaf = path->nodes[0]; 2543 slot = path->slots[0]; 2544 2545 if (slot >= btrfs_header_nritems(leaf)) { 2546 ret = btrfs_next_leaf(root, path); 2547 if (ret < 0) { 2548 goto out; 2549 } else if (ret > 0) { 2550 ret = 0; 2551 goto out; 2552 } 2553 continue; 2554 } 2555 2556 path->slots[0]++; 2557 2558 btrfs_item_key_to_cpu(leaf, &key, slot); 2559 2560 if (key.objectid > inum) 2561 goto out; 2562 2563 if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY) 2564 continue; 2565 2566 extent = btrfs_item_ptr(leaf, slot, 2567 struct btrfs_file_extent_item); 2568 2569 if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr) 2570 continue; 2571 2572 /* 2573 * 'offset' refers to the exact key.offset, 2574 * NOT the 'offset' field in btrfs_extent_data_ref, ie. 2575 * (key.offset - extent_offset). 2576 */ 2577 if (key.offset != offset) 2578 continue; 2579 2580 extent_offset = btrfs_file_extent_offset(leaf, extent); 2581 num_bytes = btrfs_file_extent_num_bytes(leaf, extent); 2582 2583 if (extent_offset >= old->extent_offset + old->offset + 2584 old->len || extent_offset + num_bytes <= 2585 old->extent_offset + old->offset) 2586 continue; 2587 break; 2588 } 2589 2590 backref = kmalloc(sizeof(*backref), GFP_NOFS); 2591 if (!backref) { 2592 ret = -ENOENT; 2593 goto out; 2594 } 2595 2596 backref->root_id = root_id; 2597 backref->inum = inum; 2598 backref->file_pos = offset; 2599 backref->num_bytes = num_bytes; 2600 backref->extent_offset = extent_offset; 2601 backref->generation = btrfs_file_extent_generation(leaf, extent); 2602 backref->old = old; 2603 backref_insert(&new->root, backref); 2604 old->count++; 2605 out: 2606 btrfs_release_path(path); 2607 WARN_ON(ret); 2608 return ret; 2609 } 2610 2611 static noinline bool record_extent_backrefs(struct btrfs_path *path, 2612 struct new_sa_defrag_extent *new) 2613 { 2614 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb); 2615 struct old_sa_defrag_extent *old, *tmp; 2616 int ret; 2617 2618 new->path = path; 2619 2620 list_for_each_entry_safe(old, tmp, &new->head, list) { 2621 ret = iterate_inodes_from_logical(old->bytenr + 2622 old->extent_offset, fs_info, 2623 path, record_one_backref, 2624 old, false); 2625 if (ret < 0 && ret != -ENOENT) 2626 return false; 2627 2628 /* no backref to be processed for this extent */ 2629 if (!old->count) { 2630 list_del(&old->list); 2631 kfree(old); 2632 } 2633 } 2634 2635 if (list_empty(&new->head)) 2636 return false; 2637 2638 return true; 2639 } 2640 2641 static int relink_is_mergable(struct extent_buffer *leaf, 2642 struct btrfs_file_extent_item *fi, 2643 struct new_sa_defrag_extent *new) 2644 { 2645 if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr) 2646 return 0; 2647 2648 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG) 2649 return 0; 2650 2651 if (btrfs_file_extent_compression(leaf, fi) != new->compress_type) 2652 return 0; 2653 2654 if (btrfs_file_extent_encryption(leaf, fi) || 2655 btrfs_file_extent_other_encoding(leaf, fi)) 2656 return 0; 2657 2658 return 1; 2659 } 2660 2661 /* 2662 * Note the backref might has changed, and in this case we just return 0. 2663 */ 2664 static noinline int relink_extent_backref(struct btrfs_path *path, 2665 struct sa_defrag_extent_backref *prev, 2666 struct sa_defrag_extent_backref *backref) 2667 { 2668 struct btrfs_file_extent_item *extent; 2669 struct btrfs_file_extent_item *item; 2670 struct btrfs_ordered_extent *ordered; 2671 struct btrfs_trans_handle *trans; 2672 struct btrfs_ref ref = { 0 }; 2673 struct btrfs_root *root; 2674 struct btrfs_key key; 2675 struct extent_buffer *leaf; 2676 struct old_sa_defrag_extent *old = backref->old; 2677 struct new_sa_defrag_extent *new = old->new; 2678 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb); 2679 struct inode *inode; 2680 struct extent_state *cached = NULL; 2681 int ret = 0; 2682 u64 start; 2683 u64 len; 2684 u64 lock_start; 2685 u64 lock_end; 2686 bool merge = false; 2687 int index; 2688 2689 if (prev && prev->root_id == backref->root_id && 2690 prev->inum == backref->inum && 2691 prev->file_pos + prev->num_bytes == backref->file_pos) 2692 merge = true; 2693 2694 /* step 1: get root */ 2695 key.objectid = backref->root_id; 2696 key.type = BTRFS_ROOT_ITEM_KEY; 2697 key.offset = (u64)-1; 2698 2699 index = srcu_read_lock(&fs_info->subvol_srcu); 2700 2701 root = btrfs_read_fs_root_no_name(fs_info, &key); 2702 if (IS_ERR(root)) { 2703 srcu_read_unlock(&fs_info->subvol_srcu, index); 2704 if (PTR_ERR(root) == -ENOENT) 2705 return 0; 2706 return PTR_ERR(root); 2707 } 2708 2709 if (btrfs_root_readonly(root)) { 2710 srcu_read_unlock(&fs_info->subvol_srcu, index); 2711 return 0; 2712 } 2713 2714 /* step 2: get inode */ 2715 key.objectid = backref->inum; 2716 key.type = BTRFS_INODE_ITEM_KEY; 2717 key.offset = 0; 2718 2719 inode = btrfs_iget(fs_info->sb, &key, root); 2720 if (IS_ERR(inode)) { 2721 srcu_read_unlock(&fs_info->subvol_srcu, index); 2722 return 0; 2723 } 2724 2725 srcu_read_unlock(&fs_info->subvol_srcu, index); 2726 2727 /* step 3: relink backref */ 2728 lock_start = backref->file_pos; 2729 lock_end = backref->file_pos + backref->num_bytes - 1; 2730 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end, 2731 &cached); 2732 2733 ordered = btrfs_lookup_first_ordered_extent(inode, lock_end); 2734 if (ordered) { 2735 btrfs_put_ordered_extent(ordered); 2736 goto out_unlock; 2737 } 2738 2739 trans = btrfs_join_transaction(root); 2740 if (IS_ERR(trans)) { 2741 ret = PTR_ERR(trans); 2742 goto out_unlock; 2743 } 2744 2745 key.objectid = backref->inum; 2746 key.type = BTRFS_EXTENT_DATA_KEY; 2747 key.offset = backref->file_pos; 2748 2749 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2750 if (ret < 0) { 2751 goto out_free_path; 2752 } else if (ret > 0) { 2753 ret = 0; 2754 goto out_free_path; 2755 } 2756 2757 extent = btrfs_item_ptr(path->nodes[0], path->slots[0], 2758 struct btrfs_file_extent_item); 2759 2760 if (btrfs_file_extent_generation(path->nodes[0], extent) != 2761 backref->generation) 2762 goto out_free_path; 2763 2764 btrfs_release_path(path); 2765 2766 start = backref->file_pos; 2767 if (backref->extent_offset < old->extent_offset + old->offset) 2768 start += old->extent_offset + old->offset - 2769 backref->extent_offset; 2770 2771 len = min(backref->extent_offset + backref->num_bytes, 2772 old->extent_offset + old->offset + old->len); 2773 len -= max(backref->extent_offset, old->extent_offset + old->offset); 2774 2775 ret = btrfs_drop_extents(trans, root, inode, start, 2776 start + len, 1); 2777 if (ret) 2778 goto out_free_path; 2779 again: 2780 key.objectid = btrfs_ino(BTRFS_I(inode)); 2781 key.type = BTRFS_EXTENT_DATA_KEY; 2782 key.offset = start; 2783 2784 path->leave_spinning = 1; 2785 if (merge) { 2786 struct btrfs_file_extent_item *fi; 2787 u64 extent_len; 2788 struct btrfs_key found_key; 2789 2790 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2791 if (ret < 0) 2792 goto out_free_path; 2793 2794 path->slots[0]--; 2795 leaf = path->nodes[0]; 2796 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 2797 2798 fi = btrfs_item_ptr(leaf, path->slots[0], 2799 struct btrfs_file_extent_item); 2800 extent_len = btrfs_file_extent_num_bytes(leaf, fi); 2801 2802 if (extent_len + found_key.offset == start && 2803 relink_is_mergable(leaf, fi, new)) { 2804 btrfs_set_file_extent_num_bytes(leaf, fi, 2805 extent_len + len); 2806 btrfs_mark_buffer_dirty(leaf); 2807 inode_add_bytes(inode, len); 2808 2809 ret = 1; 2810 goto out_free_path; 2811 } else { 2812 merge = false; 2813 btrfs_release_path(path); 2814 goto again; 2815 } 2816 } 2817 2818 ret = btrfs_insert_empty_item(trans, root, path, &key, 2819 sizeof(*extent)); 2820 if (ret) { 2821 btrfs_abort_transaction(trans, ret); 2822 goto out_free_path; 2823 } 2824 2825 leaf = path->nodes[0]; 2826 item = btrfs_item_ptr(leaf, path->slots[0], 2827 struct btrfs_file_extent_item); 2828 btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr); 2829 btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len); 2830 btrfs_set_file_extent_offset(leaf, item, start - new->file_pos); 2831 btrfs_set_file_extent_num_bytes(leaf, item, len); 2832 btrfs_set_file_extent_ram_bytes(leaf, item, new->len); 2833 btrfs_set_file_extent_generation(leaf, item, trans->transid); 2834 btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG); 2835 btrfs_set_file_extent_compression(leaf, item, new->compress_type); 2836 btrfs_set_file_extent_encryption(leaf, item, 0); 2837 btrfs_set_file_extent_other_encoding(leaf, item, 0); 2838 2839 btrfs_mark_buffer_dirty(leaf); 2840 inode_add_bytes(inode, len); 2841 btrfs_release_path(path); 2842 2843 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, new->bytenr, 2844 new->disk_len, 0); 2845 btrfs_init_data_ref(&ref, backref->root_id, backref->inum, 2846 new->file_pos); /* start - extent_offset */ 2847 ret = btrfs_inc_extent_ref(trans, &ref); 2848 if (ret) { 2849 btrfs_abort_transaction(trans, ret); 2850 goto out_free_path; 2851 } 2852 2853 ret = 1; 2854 out_free_path: 2855 btrfs_release_path(path); 2856 path->leave_spinning = 0; 2857 btrfs_end_transaction(trans); 2858 out_unlock: 2859 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end, 2860 &cached); 2861 iput(inode); 2862 return ret; 2863 } 2864 2865 static void free_sa_defrag_extent(struct new_sa_defrag_extent *new) 2866 { 2867 struct old_sa_defrag_extent *old, *tmp; 2868 2869 if (!new) 2870 return; 2871 2872 list_for_each_entry_safe(old, tmp, &new->head, list) { 2873 kfree(old); 2874 } 2875 kfree(new); 2876 } 2877 2878 static void relink_file_extents(struct new_sa_defrag_extent *new) 2879 { 2880 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb); 2881 struct btrfs_path *path; 2882 struct sa_defrag_extent_backref *backref; 2883 struct sa_defrag_extent_backref *prev = NULL; 2884 struct rb_node *node; 2885 int ret; 2886 2887 path = btrfs_alloc_path(); 2888 if (!path) 2889 return; 2890 2891 if (!record_extent_backrefs(path, new)) { 2892 btrfs_free_path(path); 2893 goto out; 2894 } 2895 btrfs_release_path(path); 2896 2897 while (1) { 2898 node = rb_first(&new->root); 2899 if (!node) 2900 break; 2901 rb_erase(node, &new->root); 2902 2903 backref = rb_entry(node, struct sa_defrag_extent_backref, node); 2904 2905 ret = relink_extent_backref(path, prev, backref); 2906 WARN_ON(ret < 0); 2907 2908 kfree(prev); 2909 2910 if (ret == 1) 2911 prev = backref; 2912 else 2913 prev = NULL; 2914 cond_resched(); 2915 } 2916 kfree(prev); 2917 2918 btrfs_free_path(path); 2919 out: 2920 free_sa_defrag_extent(new); 2921 2922 atomic_dec(&fs_info->defrag_running); 2923 wake_up(&fs_info->transaction_wait); 2924 } 2925 2926 static struct new_sa_defrag_extent * 2927 record_old_file_extents(struct inode *inode, 2928 struct btrfs_ordered_extent *ordered) 2929 { 2930 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2931 struct btrfs_root *root = BTRFS_I(inode)->root; 2932 struct btrfs_path *path; 2933 struct btrfs_key key; 2934 struct old_sa_defrag_extent *old; 2935 struct new_sa_defrag_extent *new; 2936 int ret; 2937 2938 new = kmalloc(sizeof(*new), GFP_NOFS); 2939 if (!new) 2940 return NULL; 2941 2942 new->inode = inode; 2943 new->file_pos = ordered->file_offset; 2944 new->len = ordered->len; 2945 new->bytenr = ordered->start; 2946 new->disk_len = ordered->disk_len; 2947 new->compress_type = ordered->compress_type; 2948 new->root = RB_ROOT; 2949 INIT_LIST_HEAD(&new->head); 2950 2951 path = btrfs_alloc_path(); 2952 if (!path) 2953 goto out_kfree; 2954 2955 key.objectid = btrfs_ino(BTRFS_I(inode)); 2956 key.type = BTRFS_EXTENT_DATA_KEY; 2957 key.offset = new->file_pos; 2958 2959 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2960 if (ret < 0) 2961 goto out_free_path; 2962 if (ret > 0 && path->slots[0] > 0) 2963 path->slots[0]--; 2964 2965 /* find out all the old extents for the file range */ 2966 while (1) { 2967 struct btrfs_file_extent_item *extent; 2968 struct extent_buffer *l; 2969 int slot; 2970 u64 num_bytes; 2971 u64 offset; 2972 u64 end; 2973 u64 disk_bytenr; 2974 u64 extent_offset; 2975 2976 l = path->nodes[0]; 2977 slot = path->slots[0]; 2978 2979 if (slot >= btrfs_header_nritems(l)) { 2980 ret = btrfs_next_leaf(root, path); 2981 if (ret < 0) 2982 goto out_free_path; 2983 else if (ret > 0) 2984 break; 2985 continue; 2986 } 2987 2988 btrfs_item_key_to_cpu(l, &key, slot); 2989 2990 if (key.objectid != btrfs_ino(BTRFS_I(inode))) 2991 break; 2992 if (key.type != BTRFS_EXTENT_DATA_KEY) 2993 break; 2994 if (key.offset >= new->file_pos + new->len) 2995 break; 2996 2997 extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item); 2998 2999 num_bytes = btrfs_file_extent_num_bytes(l, extent); 3000 if (key.offset + num_bytes < new->file_pos) 3001 goto next; 3002 3003 disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent); 3004 if (!disk_bytenr) 3005 goto next; 3006 3007 extent_offset = btrfs_file_extent_offset(l, extent); 3008 3009 old = kmalloc(sizeof(*old), GFP_NOFS); 3010 if (!old) 3011 goto out_free_path; 3012 3013 offset = max(new->file_pos, key.offset); 3014 end = min(new->file_pos + new->len, key.offset + num_bytes); 3015 3016 old->bytenr = disk_bytenr; 3017 old->extent_offset = extent_offset; 3018 old->offset = offset - key.offset; 3019 old->len = end - offset; 3020 old->new = new; 3021 old->count = 0; 3022 list_add_tail(&old->list, &new->head); 3023 next: 3024 path->slots[0]++; 3025 cond_resched(); 3026 } 3027 3028 btrfs_free_path(path); 3029 atomic_inc(&fs_info->defrag_running); 3030 3031 return new; 3032 3033 out_free_path: 3034 btrfs_free_path(path); 3035 out_kfree: 3036 free_sa_defrag_extent(new); 3037 return NULL; 3038 } 3039 3040 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info, 3041 u64 start, u64 len) 3042 { 3043 struct btrfs_block_group *cache; 3044 3045 cache = btrfs_lookup_block_group(fs_info, start); 3046 ASSERT(cache); 3047 3048 spin_lock(&cache->lock); 3049 cache->delalloc_bytes -= len; 3050 spin_unlock(&cache->lock); 3051 3052 btrfs_put_block_group(cache); 3053 } 3054 3055 /* as ordered data IO finishes, this gets called so we can finish 3056 * an ordered extent if the range of bytes in the file it covers are 3057 * fully written. 3058 */ 3059 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent) 3060 { 3061 struct inode *inode = ordered_extent->inode; 3062 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3063 struct btrfs_root *root = BTRFS_I(inode)->root; 3064 struct btrfs_trans_handle *trans = NULL; 3065 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 3066 struct extent_state *cached_state = NULL; 3067 struct new_sa_defrag_extent *new = NULL; 3068 int compress_type = 0; 3069 int ret = 0; 3070 u64 logical_len = ordered_extent->len; 3071 bool freespace_inode; 3072 bool truncated = false; 3073 bool range_locked = false; 3074 bool clear_new_delalloc_bytes = false; 3075 bool clear_reserved_extent = true; 3076 3077 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) && 3078 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) && 3079 !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags)) 3080 clear_new_delalloc_bytes = true; 3081 3082 freespace_inode = btrfs_is_free_space_inode(BTRFS_I(inode)); 3083 3084 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) { 3085 ret = -EIO; 3086 goto out; 3087 } 3088 3089 btrfs_free_io_failure_record(BTRFS_I(inode), 3090 ordered_extent->file_offset, 3091 ordered_extent->file_offset + 3092 ordered_extent->len - 1); 3093 3094 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) { 3095 truncated = true; 3096 logical_len = ordered_extent->truncated_len; 3097 /* Truncated the entire extent, don't bother adding */ 3098 if (!logical_len) 3099 goto out; 3100 } 3101 3102 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) { 3103 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */ 3104 3105 /* 3106 * For mwrite(mmap + memset to write) case, we still reserve 3107 * space for NOCOW range. 3108 * As NOCOW won't cause a new delayed ref, just free the space 3109 */ 3110 btrfs_qgroup_free_data(inode, NULL, ordered_extent->file_offset, 3111 ordered_extent->len); 3112 btrfs_ordered_update_i_size(inode, 0, ordered_extent); 3113 if (freespace_inode) 3114 trans = btrfs_join_transaction_spacecache(root); 3115 else 3116 trans = btrfs_join_transaction(root); 3117 if (IS_ERR(trans)) { 3118 ret = PTR_ERR(trans); 3119 trans = NULL; 3120 goto out; 3121 } 3122 trans->block_rsv = &BTRFS_I(inode)->block_rsv; 3123 ret = btrfs_update_inode_fallback(trans, root, inode); 3124 if (ret) /* -ENOMEM or corruption */ 3125 btrfs_abort_transaction(trans, ret); 3126 goto out; 3127 } 3128 3129 range_locked = true; 3130 lock_extent_bits(io_tree, ordered_extent->file_offset, 3131 ordered_extent->file_offset + ordered_extent->len - 1, 3132 &cached_state); 3133 3134 ret = test_range_bit(io_tree, ordered_extent->file_offset, 3135 ordered_extent->file_offset + ordered_extent->len - 1, 3136 EXTENT_DEFRAG, 0, cached_state); 3137 if (ret) { 3138 u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item); 3139 if (0 && last_snapshot >= BTRFS_I(inode)->generation) 3140 /* the inode is shared */ 3141 new = record_old_file_extents(inode, ordered_extent); 3142 3143 clear_extent_bit(io_tree, ordered_extent->file_offset, 3144 ordered_extent->file_offset + ordered_extent->len - 1, 3145 EXTENT_DEFRAG, 0, 0, &cached_state); 3146 } 3147 3148 if (freespace_inode) 3149 trans = btrfs_join_transaction_spacecache(root); 3150 else 3151 trans = btrfs_join_transaction(root); 3152 if (IS_ERR(trans)) { 3153 ret = PTR_ERR(trans); 3154 trans = NULL; 3155 goto out; 3156 } 3157 3158 trans->block_rsv = &BTRFS_I(inode)->block_rsv; 3159 3160 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags)) 3161 compress_type = ordered_extent->compress_type; 3162 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 3163 BUG_ON(compress_type); 3164 btrfs_qgroup_free_data(inode, NULL, ordered_extent->file_offset, 3165 ordered_extent->len); 3166 ret = btrfs_mark_extent_written(trans, BTRFS_I(inode), 3167 ordered_extent->file_offset, 3168 ordered_extent->file_offset + 3169 logical_len); 3170 } else { 3171 BUG_ON(root == fs_info->tree_root); 3172 ret = insert_reserved_file_extent(trans, inode, 3173 ordered_extent->file_offset, 3174 ordered_extent->start, 3175 ordered_extent->disk_len, 3176 logical_len, logical_len, 3177 compress_type, 0, 0, 3178 BTRFS_FILE_EXTENT_REG); 3179 if (!ret) { 3180 clear_reserved_extent = false; 3181 btrfs_release_delalloc_bytes(fs_info, 3182 ordered_extent->start, 3183 ordered_extent->disk_len); 3184 } 3185 } 3186 unpin_extent_cache(&BTRFS_I(inode)->extent_tree, 3187 ordered_extent->file_offset, ordered_extent->len, 3188 trans->transid); 3189 if (ret < 0) { 3190 btrfs_abort_transaction(trans, ret); 3191 goto out; 3192 } 3193 3194 ret = add_pending_csums(trans, inode, &ordered_extent->list); 3195 if (ret) { 3196 btrfs_abort_transaction(trans, ret); 3197 goto out; 3198 } 3199 3200 btrfs_ordered_update_i_size(inode, 0, ordered_extent); 3201 ret = btrfs_update_inode_fallback(trans, root, inode); 3202 if (ret) { /* -ENOMEM or corruption */ 3203 btrfs_abort_transaction(trans, ret); 3204 goto out; 3205 } 3206 ret = 0; 3207 out: 3208 if (range_locked || clear_new_delalloc_bytes) { 3209 unsigned int clear_bits = 0; 3210 3211 if (range_locked) 3212 clear_bits |= EXTENT_LOCKED; 3213 if (clear_new_delalloc_bytes) 3214 clear_bits |= EXTENT_DELALLOC_NEW; 3215 clear_extent_bit(&BTRFS_I(inode)->io_tree, 3216 ordered_extent->file_offset, 3217 ordered_extent->file_offset + 3218 ordered_extent->len - 1, 3219 clear_bits, 3220 (clear_bits & EXTENT_LOCKED) ? 1 : 0, 3221 0, &cached_state); 3222 } 3223 3224 if (trans) 3225 btrfs_end_transaction(trans); 3226 3227 if (ret || truncated) { 3228 u64 start, end; 3229 3230 if (truncated) 3231 start = ordered_extent->file_offset + logical_len; 3232 else 3233 start = ordered_extent->file_offset; 3234 end = ordered_extent->file_offset + ordered_extent->len - 1; 3235 clear_extent_uptodate(io_tree, start, end, NULL); 3236 3237 /* Drop the cache for the part of the extent we didn't write. */ 3238 btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 0); 3239 3240 /* 3241 * If the ordered extent had an IOERR or something else went 3242 * wrong we need to return the space for this ordered extent 3243 * back to the allocator. We only free the extent in the 3244 * truncated case if we didn't write out the extent at all. 3245 * 3246 * If we made it past insert_reserved_file_extent before we 3247 * errored out then we don't need to do this as the accounting 3248 * has already been done. 3249 */ 3250 if ((ret || !logical_len) && 3251 clear_reserved_extent && 3252 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) && 3253 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) 3254 btrfs_free_reserved_extent(fs_info, 3255 ordered_extent->start, 3256 ordered_extent->disk_len, 1); 3257 } 3258 3259 3260 /* 3261 * This needs to be done to make sure anybody waiting knows we are done 3262 * updating everything for this ordered extent. 3263 */ 3264 btrfs_remove_ordered_extent(inode, ordered_extent); 3265 3266 /* for snapshot-aware defrag */ 3267 if (new) { 3268 if (ret) { 3269 free_sa_defrag_extent(new); 3270 atomic_dec(&fs_info->defrag_running); 3271 } else { 3272 relink_file_extents(new); 3273 } 3274 } 3275 3276 /* once for us */ 3277 btrfs_put_ordered_extent(ordered_extent); 3278 /* once for the tree */ 3279 btrfs_put_ordered_extent(ordered_extent); 3280 3281 return ret; 3282 } 3283 3284 static void finish_ordered_fn(struct btrfs_work *work) 3285 { 3286 struct btrfs_ordered_extent *ordered_extent; 3287 ordered_extent = container_of(work, struct btrfs_ordered_extent, work); 3288 btrfs_finish_ordered_io(ordered_extent); 3289 } 3290 3291 void btrfs_writepage_endio_finish_ordered(struct page *page, u64 start, 3292 u64 end, int uptodate) 3293 { 3294 struct inode *inode = page->mapping->host; 3295 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3296 struct btrfs_ordered_extent *ordered_extent = NULL; 3297 struct btrfs_workqueue *wq; 3298 3299 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate); 3300 3301 ClearPagePrivate2(page); 3302 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start, 3303 end - start + 1, uptodate)) 3304 return; 3305 3306 if (btrfs_is_free_space_inode(BTRFS_I(inode))) 3307 wq = fs_info->endio_freespace_worker; 3308 else 3309 wq = fs_info->endio_write_workers; 3310 3311 btrfs_init_work(&ordered_extent->work, finish_ordered_fn, NULL, NULL); 3312 btrfs_queue_work(wq, &ordered_extent->work); 3313 } 3314 3315 static int __readpage_endio_check(struct inode *inode, 3316 struct btrfs_io_bio *io_bio, 3317 int icsum, struct page *page, 3318 int pgoff, u64 start, size_t len) 3319 { 3320 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3321 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 3322 char *kaddr; 3323 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy); 3324 u8 *csum_expected; 3325 u8 csum[BTRFS_CSUM_SIZE]; 3326 3327 csum_expected = ((u8 *)io_bio->csum) + icsum * csum_size; 3328 3329 kaddr = kmap_atomic(page); 3330 shash->tfm = fs_info->csum_shash; 3331 3332 crypto_shash_init(shash); 3333 crypto_shash_update(shash, kaddr + pgoff, len); 3334 crypto_shash_final(shash, csum); 3335 3336 if (memcmp(csum, csum_expected, csum_size)) 3337 goto zeroit; 3338 3339 kunmap_atomic(kaddr); 3340 return 0; 3341 zeroit: 3342 btrfs_print_data_csum_error(BTRFS_I(inode), start, csum, csum_expected, 3343 io_bio->mirror_num); 3344 memset(kaddr + pgoff, 1, len); 3345 flush_dcache_page(page); 3346 kunmap_atomic(kaddr); 3347 return -EIO; 3348 } 3349 3350 /* 3351 * when reads are done, we need to check csums to verify the data is correct 3352 * if there's a match, we allow the bio to finish. If not, the code in 3353 * extent_io.c will try to find good copies for us. 3354 */ 3355 static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio, 3356 u64 phy_offset, struct page *page, 3357 u64 start, u64 end, int mirror) 3358 { 3359 size_t offset = start - page_offset(page); 3360 struct inode *inode = page->mapping->host; 3361 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 3362 struct btrfs_root *root = BTRFS_I(inode)->root; 3363 3364 if (PageChecked(page)) { 3365 ClearPageChecked(page); 3366 return 0; 3367 } 3368 3369 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) 3370 return 0; 3371 3372 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID && 3373 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) { 3374 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM); 3375 return 0; 3376 } 3377 3378 phy_offset >>= inode->i_sb->s_blocksize_bits; 3379 return __readpage_endio_check(inode, io_bio, phy_offset, page, offset, 3380 start, (size_t)(end - start + 1)); 3381 } 3382 3383 /* 3384 * btrfs_add_delayed_iput - perform a delayed iput on @inode 3385 * 3386 * @inode: The inode we want to perform iput on 3387 * 3388 * This function uses the generic vfs_inode::i_count to track whether we should 3389 * just decrement it (in case it's > 1) or if this is the last iput then link 3390 * the inode to the delayed iput machinery. Delayed iputs are processed at 3391 * transaction commit time/superblock commit/cleaner kthread. 3392 */ 3393 void btrfs_add_delayed_iput(struct inode *inode) 3394 { 3395 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3396 struct btrfs_inode *binode = BTRFS_I(inode); 3397 3398 if (atomic_add_unless(&inode->i_count, -1, 1)) 3399 return; 3400 3401 atomic_inc(&fs_info->nr_delayed_iputs); 3402 spin_lock(&fs_info->delayed_iput_lock); 3403 ASSERT(list_empty(&binode->delayed_iput)); 3404 list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs); 3405 spin_unlock(&fs_info->delayed_iput_lock); 3406 if (!test_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags)) 3407 wake_up_process(fs_info->cleaner_kthread); 3408 } 3409 3410 static void run_delayed_iput_locked(struct btrfs_fs_info *fs_info, 3411 struct btrfs_inode *inode) 3412 { 3413 list_del_init(&inode->delayed_iput); 3414 spin_unlock(&fs_info->delayed_iput_lock); 3415 iput(&inode->vfs_inode); 3416 if (atomic_dec_and_test(&fs_info->nr_delayed_iputs)) 3417 wake_up(&fs_info->delayed_iputs_wait); 3418 spin_lock(&fs_info->delayed_iput_lock); 3419 } 3420 3421 static void btrfs_run_delayed_iput(struct btrfs_fs_info *fs_info, 3422 struct btrfs_inode *inode) 3423 { 3424 if (!list_empty(&inode->delayed_iput)) { 3425 spin_lock(&fs_info->delayed_iput_lock); 3426 if (!list_empty(&inode->delayed_iput)) 3427 run_delayed_iput_locked(fs_info, inode); 3428 spin_unlock(&fs_info->delayed_iput_lock); 3429 } 3430 } 3431 3432 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info) 3433 { 3434 3435 spin_lock(&fs_info->delayed_iput_lock); 3436 while (!list_empty(&fs_info->delayed_iputs)) { 3437 struct btrfs_inode *inode; 3438 3439 inode = list_first_entry(&fs_info->delayed_iputs, 3440 struct btrfs_inode, delayed_iput); 3441 run_delayed_iput_locked(fs_info, inode); 3442 } 3443 spin_unlock(&fs_info->delayed_iput_lock); 3444 } 3445 3446 /** 3447 * btrfs_wait_on_delayed_iputs - wait on the delayed iputs to be done running 3448 * @fs_info - the fs_info for this fs 3449 * @return - EINTR if we were killed, 0 if nothing's pending 3450 * 3451 * This will wait on any delayed iputs that are currently running with KILLABLE 3452 * set. Once they are all done running we will return, unless we are killed in 3453 * which case we return EINTR. This helps in user operations like fallocate etc 3454 * that might get blocked on the iputs. 3455 */ 3456 int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info) 3457 { 3458 int ret = wait_event_killable(fs_info->delayed_iputs_wait, 3459 atomic_read(&fs_info->nr_delayed_iputs) == 0); 3460 if (ret) 3461 return -EINTR; 3462 return 0; 3463 } 3464 3465 /* 3466 * This creates an orphan entry for the given inode in case something goes wrong 3467 * in the middle of an unlink. 3468 */ 3469 int btrfs_orphan_add(struct btrfs_trans_handle *trans, 3470 struct btrfs_inode *inode) 3471 { 3472 int ret; 3473 3474 ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode)); 3475 if (ret && ret != -EEXIST) { 3476 btrfs_abort_transaction(trans, ret); 3477 return ret; 3478 } 3479 3480 return 0; 3481 } 3482 3483 /* 3484 * We have done the delete so we can go ahead and remove the orphan item for 3485 * this particular inode. 3486 */ 3487 static int btrfs_orphan_del(struct btrfs_trans_handle *trans, 3488 struct btrfs_inode *inode) 3489 { 3490 return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode)); 3491 } 3492 3493 /* 3494 * this cleans up any orphans that may be left on the list from the last use 3495 * of this root. 3496 */ 3497 int btrfs_orphan_cleanup(struct btrfs_root *root) 3498 { 3499 struct btrfs_fs_info *fs_info = root->fs_info; 3500 struct btrfs_path *path; 3501 struct extent_buffer *leaf; 3502 struct btrfs_key key, found_key; 3503 struct btrfs_trans_handle *trans; 3504 struct inode *inode; 3505 u64 last_objectid = 0; 3506 int ret = 0, nr_unlink = 0; 3507 3508 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED)) 3509 return 0; 3510 3511 path = btrfs_alloc_path(); 3512 if (!path) { 3513 ret = -ENOMEM; 3514 goto out; 3515 } 3516 path->reada = READA_BACK; 3517 3518 key.objectid = BTRFS_ORPHAN_OBJECTID; 3519 key.type = BTRFS_ORPHAN_ITEM_KEY; 3520 key.offset = (u64)-1; 3521 3522 while (1) { 3523 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3524 if (ret < 0) 3525 goto out; 3526 3527 /* 3528 * if ret == 0 means we found what we were searching for, which 3529 * is weird, but possible, so only screw with path if we didn't 3530 * find the key and see if we have stuff that matches 3531 */ 3532 if (ret > 0) { 3533 ret = 0; 3534 if (path->slots[0] == 0) 3535 break; 3536 path->slots[0]--; 3537 } 3538 3539 /* pull out the item */ 3540 leaf = path->nodes[0]; 3541 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 3542 3543 /* make sure the item matches what we want */ 3544 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID) 3545 break; 3546 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY) 3547 break; 3548 3549 /* release the path since we're done with it */ 3550 btrfs_release_path(path); 3551 3552 /* 3553 * this is where we are basically btrfs_lookup, without the 3554 * crossing root thing. we store the inode number in the 3555 * offset of the orphan item. 3556 */ 3557 3558 if (found_key.offset == last_objectid) { 3559 btrfs_err(fs_info, 3560 "Error removing orphan entry, stopping orphan cleanup"); 3561 ret = -EINVAL; 3562 goto out; 3563 } 3564 3565 last_objectid = found_key.offset; 3566 3567 found_key.objectid = found_key.offset; 3568 found_key.type = BTRFS_INODE_ITEM_KEY; 3569 found_key.offset = 0; 3570 inode = btrfs_iget(fs_info->sb, &found_key, root); 3571 ret = PTR_ERR_OR_ZERO(inode); 3572 if (ret && ret != -ENOENT) 3573 goto out; 3574 3575 if (ret == -ENOENT && root == fs_info->tree_root) { 3576 struct btrfs_root *dead_root; 3577 struct btrfs_fs_info *fs_info = root->fs_info; 3578 int is_dead_root = 0; 3579 3580 /* 3581 * this is an orphan in the tree root. Currently these 3582 * could come from 2 sources: 3583 * a) a snapshot deletion in progress 3584 * b) a free space cache inode 3585 * We need to distinguish those two, as the snapshot 3586 * orphan must not get deleted. 3587 * find_dead_roots already ran before us, so if this 3588 * is a snapshot deletion, we should find the root 3589 * in the dead_roots list 3590 */ 3591 spin_lock(&fs_info->trans_lock); 3592 list_for_each_entry(dead_root, &fs_info->dead_roots, 3593 root_list) { 3594 if (dead_root->root_key.objectid == 3595 found_key.objectid) { 3596 is_dead_root = 1; 3597 break; 3598 } 3599 } 3600 spin_unlock(&fs_info->trans_lock); 3601 if (is_dead_root) { 3602 /* prevent this orphan from being found again */ 3603 key.offset = found_key.objectid - 1; 3604 continue; 3605 } 3606 3607 } 3608 3609 /* 3610 * If we have an inode with links, there are a couple of 3611 * possibilities. Old kernels (before v3.12) used to create an 3612 * orphan item for truncate indicating that there were possibly 3613 * extent items past i_size that needed to be deleted. In v3.12, 3614 * truncate was changed to update i_size in sync with the extent 3615 * items, but the (useless) orphan item was still created. Since 3616 * v4.18, we don't create the orphan item for truncate at all. 3617 * 3618 * So, this item could mean that we need to do a truncate, but 3619 * only if this filesystem was last used on a pre-v3.12 kernel 3620 * and was not cleanly unmounted. The odds of that are quite 3621 * slim, and it's a pain to do the truncate now, so just delete 3622 * the orphan item. 3623 * 3624 * It's also possible that this orphan item was supposed to be 3625 * deleted but wasn't. The inode number may have been reused, 3626 * but either way, we can delete the orphan item. 3627 */ 3628 if (ret == -ENOENT || inode->i_nlink) { 3629 if (!ret) 3630 iput(inode); 3631 trans = btrfs_start_transaction(root, 1); 3632 if (IS_ERR(trans)) { 3633 ret = PTR_ERR(trans); 3634 goto out; 3635 } 3636 btrfs_debug(fs_info, "auto deleting %Lu", 3637 found_key.objectid); 3638 ret = btrfs_del_orphan_item(trans, root, 3639 found_key.objectid); 3640 btrfs_end_transaction(trans); 3641 if (ret) 3642 goto out; 3643 continue; 3644 } 3645 3646 nr_unlink++; 3647 3648 /* this will do delete_inode and everything for us */ 3649 iput(inode); 3650 } 3651 /* release the path since we're done with it */ 3652 btrfs_release_path(path); 3653 3654 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE; 3655 3656 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) { 3657 trans = btrfs_join_transaction(root); 3658 if (!IS_ERR(trans)) 3659 btrfs_end_transaction(trans); 3660 } 3661 3662 if (nr_unlink) 3663 btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink); 3664 3665 out: 3666 if (ret) 3667 btrfs_err(fs_info, "could not do orphan cleanup %d", ret); 3668 btrfs_free_path(path); 3669 return ret; 3670 } 3671 3672 /* 3673 * very simple check to peek ahead in the leaf looking for xattrs. If we 3674 * don't find any xattrs, we know there can't be any acls. 3675 * 3676 * slot is the slot the inode is in, objectid is the objectid of the inode 3677 */ 3678 static noinline int acls_after_inode_item(struct extent_buffer *leaf, 3679 int slot, u64 objectid, 3680 int *first_xattr_slot) 3681 { 3682 u32 nritems = btrfs_header_nritems(leaf); 3683 struct btrfs_key found_key; 3684 static u64 xattr_access = 0; 3685 static u64 xattr_default = 0; 3686 int scanned = 0; 3687 3688 if (!xattr_access) { 3689 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS, 3690 strlen(XATTR_NAME_POSIX_ACL_ACCESS)); 3691 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT, 3692 strlen(XATTR_NAME_POSIX_ACL_DEFAULT)); 3693 } 3694 3695 slot++; 3696 *first_xattr_slot = -1; 3697 while (slot < nritems) { 3698 btrfs_item_key_to_cpu(leaf, &found_key, slot); 3699 3700 /* we found a different objectid, there must not be acls */ 3701 if (found_key.objectid != objectid) 3702 return 0; 3703 3704 /* we found an xattr, assume we've got an acl */ 3705 if (found_key.type == BTRFS_XATTR_ITEM_KEY) { 3706 if (*first_xattr_slot == -1) 3707 *first_xattr_slot = slot; 3708 if (found_key.offset == xattr_access || 3709 found_key.offset == xattr_default) 3710 return 1; 3711 } 3712 3713 /* 3714 * we found a key greater than an xattr key, there can't 3715 * be any acls later on 3716 */ 3717 if (found_key.type > BTRFS_XATTR_ITEM_KEY) 3718 return 0; 3719 3720 slot++; 3721 scanned++; 3722 3723 /* 3724 * it goes inode, inode backrefs, xattrs, extents, 3725 * so if there are a ton of hard links to an inode there can 3726 * be a lot of backrefs. Don't waste time searching too hard, 3727 * this is just an optimization 3728 */ 3729 if (scanned >= 8) 3730 break; 3731 } 3732 /* we hit the end of the leaf before we found an xattr or 3733 * something larger than an xattr. We have to assume the inode 3734 * has acls 3735 */ 3736 if (*first_xattr_slot == -1) 3737 *first_xattr_slot = slot; 3738 return 1; 3739 } 3740 3741 /* 3742 * read an inode from the btree into the in-memory inode 3743 */ 3744 static int btrfs_read_locked_inode(struct inode *inode, 3745 struct btrfs_path *in_path) 3746 { 3747 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3748 struct btrfs_path *path = in_path; 3749 struct extent_buffer *leaf; 3750 struct btrfs_inode_item *inode_item; 3751 struct btrfs_root *root = BTRFS_I(inode)->root; 3752 struct btrfs_key location; 3753 unsigned long ptr; 3754 int maybe_acls; 3755 u32 rdev; 3756 int ret; 3757 bool filled = false; 3758 int first_xattr_slot; 3759 3760 ret = btrfs_fill_inode(inode, &rdev); 3761 if (!ret) 3762 filled = true; 3763 3764 if (!path) { 3765 path = btrfs_alloc_path(); 3766 if (!path) 3767 return -ENOMEM; 3768 } 3769 3770 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location)); 3771 3772 ret = btrfs_lookup_inode(NULL, root, path, &location, 0); 3773 if (ret) { 3774 if (path != in_path) 3775 btrfs_free_path(path); 3776 return ret; 3777 } 3778 3779 leaf = path->nodes[0]; 3780 3781 if (filled) 3782 goto cache_index; 3783 3784 inode_item = btrfs_item_ptr(leaf, path->slots[0], 3785 struct btrfs_inode_item); 3786 inode->i_mode = btrfs_inode_mode(leaf, inode_item); 3787 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item)); 3788 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item)); 3789 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item)); 3790 btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item)); 3791 3792 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime); 3793 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime); 3794 3795 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime); 3796 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime); 3797 3798 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime); 3799 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime); 3800 3801 BTRFS_I(inode)->i_otime.tv_sec = 3802 btrfs_timespec_sec(leaf, &inode_item->otime); 3803 BTRFS_I(inode)->i_otime.tv_nsec = 3804 btrfs_timespec_nsec(leaf, &inode_item->otime); 3805 3806 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item)); 3807 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item); 3808 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item); 3809 3810 inode_set_iversion_queried(inode, 3811 btrfs_inode_sequence(leaf, inode_item)); 3812 inode->i_generation = BTRFS_I(inode)->generation; 3813 inode->i_rdev = 0; 3814 rdev = btrfs_inode_rdev(leaf, inode_item); 3815 3816 BTRFS_I(inode)->index_cnt = (u64)-1; 3817 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item); 3818 3819 cache_index: 3820 /* 3821 * If we were modified in the current generation and evicted from memory 3822 * and then re-read we need to do a full sync since we don't have any 3823 * idea about which extents were modified before we were evicted from 3824 * cache. 3825 * 3826 * This is required for both inode re-read from disk and delayed inode 3827 * in delayed_nodes_tree. 3828 */ 3829 if (BTRFS_I(inode)->last_trans == fs_info->generation) 3830 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 3831 &BTRFS_I(inode)->runtime_flags); 3832 3833 /* 3834 * We don't persist the id of the transaction where an unlink operation 3835 * against the inode was last made. So here we assume the inode might 3836 * have been evicted, and therefore the exact value of last_unlink_trans 3837 * lost, and set it to last_trans to avoid metadata inconsistencies 3838 * between the inode and its parent if the inode is fsync'ed and the log 3839 * replayed. For example, in the scenario: 3840 * 3841 * touch mydir/foo 3842 * ln mydir/foo mydir/bar 3843 * sync 3844 * unlink mydir/bar 3845 * echo 2 > /proc/sys/vm/drop_caches # evicts inode 3846 * xfs_io -c fsync mydir/foo 3847 * <power failure> 3848 * mount fs, triggers fsync log replay 3849 * 3850 * We must make sure that when we fsync our inode foo we also log its 3851 * parent inode, otherwise after log replay the parent still has the 3852 * dentry with the "bar" name but our inode foo has a link count of 1 3853 * and doesn't have an inode ref with the name "bar" anymore. 3854 * 3855 * Setting last_unlink_trans to last_trans is a pessimistic approach, 3856 * but it guarantees correctness at the expense of occasional full 3857 * transaction commits on fsync if our inode is a directory, or if our 3858 * inode is not a directory, logging its parent unnecessarily. 3859 */ 3860 BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans; 3861 3862 path->slots[0]++; 3863 if (inode->i_nlink != 1 || 3864 path->slots[0] >= btrfs_header_nritems(leaf)) 3865 goto cache_acl; 3866 3867 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]); 3868 if (location.objectid != btrfs_ino(BTRFS_I(inode))) 3869 goto cache_acl; 3870 3871 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 3872 if (location.type == BTRFS_INODE_REF_KEY) { 3873 struct btrfs_inode_ref *ref; 3874 3875 ref = (struct btrfs_inode_ref *)ptr; 3876 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref); 3877 } else if (location.type == BTRFS_INODE_EXTREF_KEY) { 3878 struct btrfs_inode_extref *extref; 3879 3880 extref = (struct btrfs_inode_extref *)ptr; 3881 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf, 3882 extref); 3883 } 3884 cache_acl: 3885 /* 3886 * try to precache a NULL acl entry for files that don't have 3887 * any xattrs or acls 3888 */ 3889 maybe_acls = acls_after_inode_item(leaf, path->slots[0], 3890 btrfs_ino(BTRFS_I(inode)), &first_xattr_slot); 3891 if (first_xattr_slot != -1) { 3892 path->slots[0] = first_xattr_slot; 3893 ret = btrfs_load_inode_props(inode, path); 3894 if (ret) 3895 btrfs_err(fs_info, 3896 "error loading props for ino %llu (root %llu): %d", 3897 btrfs_ino(BTRFS_I(inode)), 3898 root->root_key.objectid, ret); 3899 } 3900 if (path != in_path) 3901 btrfs_free_path(path); 3902 3903 if (!maybe_acls) 3904 cache_no_acl(inode); 3905 3906 switch (inode->i_mode & S_IFMT) { 3907 case S_IFREG: 3908 inode->i_mapping->a_ops = &btrfs_aops; 3909 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 3910 inode->i_fop = &btrfs_file_operations; 3911 inode->i_op = &btrfs_file_inode_operations; 3912 break; 3913 case S_IFDIR: 3914 inode->i_fop = &btrfs_dir_file_operations; 3915 inode->i_op = &btrfs_dir_inode_operations; 3916 break; 3917 case S_IFLNK: 3918 inode->i_op = &btrfs_symlink_inode_operations; 3919 inode_nohighmem(inode); 3920 inode->i_mapping->a_ops = &btrfs_aops; 3921 break; 3922 default: 3923 inode->i_op = &btrfs_special_inode_operations; 3924 init_special_inode(inode, inode->i_mode, rdev); 3925 break; 3926 } 3927 3928 btrfs_sync_inode_flags_to_i_flags(inode); 3929 return 0; 3930 } 3931 3932 /* 3933 * given a leaf and an inode, copy the inode fields into the leaf 3934 */ 3935 static void fill_inode_item(struct btrfs_trans_handle *trans, 3936 struct extent_buffer *leaf, 3937 struct btrfs_inode_item *item, 3938 struct inode *inode) 3939 { 3940 struct btrfs_map_token token; 3941 3942 btrfs_init_map_token(&token, leaf); 3943 3944 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token); 3945 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token); 3946 btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size, 3947 &token); 3948 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token); 3949 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token); 3950 3951 btrfs_set_token_timespec_sec(leaf, &item->atime, 3952 inode->i_atime.tv_sec, &token); 3953 btrfs_set_token_timespec_nsec(leaf, &item->atime, 3954 inode->i_atime.tv_nsec, &token); 3955 3956 btrfs_set_token_timespec_sec(leaf, &item->mtime, 3957 inode->i_mtime.tv_sec, &token); 3958 btrfs_set_token_timespec_nsec(leaf, &item->mtime, 3959 inode->i_mtime.tv_nsec, &token); 3960 3961 btrfs_set_token_timespec_sec(leaf, &item->ctime, 3962 inode->i_ctime.tv_sec, &token); 3963 btrfs_set_token_timespec_nsec(leaf, &item->ctime, 3964 inode->i_ctime.tv_nsec, &token); 3965 3966 btrfs_set_token_timespec_sec(leaf, &item->otime, 3967 BTRFS_I(inode)->i_otime.tv_sec, &token); 3968 btrfs_set_token_timespec_nsec(leaf, &item->otime, 3969 BTRFS_I(inode)->i_otime.tv_nsec, &token); 3970 3971 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode), 3972 &token); 3973 btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation, 3974 &token); 3975 btrfs_set_token_inode_sequence(leaf, item, inode_peek_iversion(inode), 3976 &token); 3977 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token); 3978 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token); 3979 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token); 3980 btrfs_set_token_inode_block_group(leaf, item, 0, &token); 3981 } 3982 3983 /* 3984 * copy everything in the in-memory inode into the btree. 3985 */ 3986 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans, 3987 struct btrfs_root *root, struct inode *inode) 3988 { 3989 struct btrfs_inode_item *inode_item; 3990 struct btrfs_path *path; 3991 struct extent_buffer *leaf; 3992 int ret; 3993 3994 path = btrfs_alloc_path(); 3995 if (!path) 3996 return -ENOMEM; 3997 3998 path->leave_spinning = 1; 3999 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location, 4000 1); 4001 if (ret) { 4002 if (ret > 0) 4003 ret = -ENOENT; 4004 goto failed; 4005 } 4006 4007 leaf = path->nodes[0]; 4008 inode_item = btrfs_item_ptr(leaf, path->slots[0], 4009 struct btrfs_inode_item); 4010 4011 fill_inode_item(trans, leaf, inode_item, inode); 4012 btrfs_mark_buffer_dirty(leaf); 4013 btrfs_set_inode_last_trans(trans, inode); 4014 ret = 0; 4015 failed: 4016 btrfs_free_path(path); 4017 return ret; 4018 } 4019 4020 /* 4021 * copy everything in the in-memory inode into the btree. 4022 */ 4023 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans, 4024 struct btrfs_root *root, struct inode *inode) 4025 { 4026 struct btrfs_fs_info *fs_info = root->fs_info; 4027 int ret; 4028 4029 /* 4030 * If the inode is a free space inode, we can deadlock during commit 4031 * if we put it into the delayed code. 4032 * 4033 * The data relocation inode should also be directly updated 4034 * without delay 4035 */ 4036 if (!btrfs_is_free_space_inode(BTRFS_I(inode)) 4037 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID 4038 && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) { 4039 btrfs_update_root_times(trans, root); 4040 4041 ret = btrfs_delayed_update_inode(trans, root, inode); 4042 if (!ret) 4043 btrfs_set_inode_last_trans(trans, inode); 4044 return ret; 4045 } 4046 4047 return btrfs_update_inode_item(trans, root, inode); 4048 } 4049 4050 noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans, 4051 struct btrfs_root *root, 4052 struct inode *inode) 4053 { 4054 int ret; 4055 4056 ret = btrfs_update_inode(trans, root, inode); 4057 if (ret == -ENOSPC) 4058 return btrfs_update_inode_item(trans, root, inode); 4059 return ret; 4060 } 4061 4062 /* 4063 * unlink helper that gets used here in inode.c and in the tree logging 4064 * recovery code. It remove a link in a directory with a given name, and 4065 * also drops the back refs in the inode to the directory 4066 */ 4067 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans, 4068 struct btrfs_root *root, 4069 struct btrfs_inode *dir, 4070 struct btrfs_inode *inode, 4071 const char *name, int name_len) 4072 { 4073 struct btrfs_fs_info *fs_info = root->fs_info; 4074 struct btrfs_path *path; 4075 int ret = 0; 4076 struct btrfs_dir_item *di; 4077 u64 index; 4078 u64 ino = btrfs_ino(inode); 4079 u64 dir_ino = btrfs_ino(dir); 4080 4081 path = btrfs_alloc_path(); 4082 if (!path) { 4083 ret = -ENOMEM; 4084 goto out; 4085 } 4086 4087 path->leave_spinning = 1; 4088 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 4089 name, name_len, -1); 4090 if (IS_ERR_OR_NULL(di)) { 4091 ret = di ? PTR_ERR(di) : -ENOENT; 4092 goto err; 4093 } 4094 ret = btrfs_delete_one_dir_name(trans, root, path, di); 4095 if (ret) 4096 goto err; 4097 btrfs_release_path(path); 4098 4099 /* 4100 * If we don't have dir index, we have to get it by looking up 4101 * the inode ref, since we get the inode ref, remove it directly, 4102 * it is unnecessary to do delayed deletion. 4103 * 4104 * But if we have dir index, needn't search inode ref to get it. 4105 * Since the inode ref is close to the inode item, it is better 4106 * that we delay to delete it, and just do this deletion when 4107 * we update the inode item. 4108 */ 4109 if (inode->dir_index) { 4110 ret = btrfs_delayed_delete_inode_ref(inode); 4111 if (!ret) { 4112 index = inode->dir_index; 4113 goto skip_backref; 4114 } 4115 } 4116 4117 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino, 4118 dir_ino, &index); 4119 if (ret) { 4120 btrfs_info(fs_info, 4121 "failed to delete reference to %.*s, inode %llu parent %llu", 4122 name_len, name, ino, dir_ino); 4123 btrfs_abort_transaction(trans, ret); 4124 goto err; 4125 } 4126 skip_backref: 4127 ret = btrfs_delete_delayed_dir_index(trans, dir, index); 4128 if (ret) { 4129 btrfs_abort_transaction(trans, ret); 4130 goto err; 4131 } 4132 4133 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, inode, 4134 dir_ino); 4135 if (ret != 0 && ret != -ENOENT) { 4136 btrfs_abort_transaction(trans, ret); 4137 goto err; 4138 } 4139 4140 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, dir, 4141 index); 4142 if (ret == -ENOENT) 4143 ret = 0; 4144 else if (ret) 4145 btrfs_abort_transaction(trans, ret); 4146 4147 /* 4148 * If we have a pending delayed iput we could end up with the final iput 4149 * being run in btrfs-cleaner context. If we have enough of these built 4150 * up we can end up burning a lot of time in btrfs-cleaner without any 4151 * way to throttle the unlinks. Since we're currently holding a ref on 4152 * the inode we can run the delayed iput here without any issues as the 4153 * final iput won't be done until after we drop the ref we're currently 4154 * holding. 4155 */ 4156 btrfs_run_delayed_iput(fs_info, inode); 4157 err: 4158 btrfs_free_path(path); 4159 if (ret) 4160 goto out; 4161 4162 btrfs_i_size_write(dir, dir->vfs_inode.i_size - name_len * 2); 4163 inode_inc_iversion(&inode->vfs_inode); 4164 inode_inc_iversion(&dir->vfs_inode); 4165 inode->vfs_inode.i_ctime = dir->vfs_inode.i_mtime = 4166 dir->vfs_inode.i_ctime = current_time(&inode->vfs_inode); 4167 ret = btrfs_update_inode(trans, root, &dir->vfs_inode); 4168 out: 4169 return ret; 4170 } 4171 4172 int btrfs_unlink_inode(struct btrfs_trans_handle *trans, 4173 struct btrfs_root *root, 4174 struct btrfs_inode *dir, struct btrfs_inode *inode, 4175 const char *name, int name_len) 4176 { 4177 int ret; 4178 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len); 4179 if (!ret) { 4180 drop_nlink(&inode->vfs_inode); 4181 ret = btrfs_update_inode(trans, root, &inode->vfs_inode); 4182 } 4183 return ret; 4184 } 4185 4186 /* 4187 * helper to start transaction for unlink and rmdir. 4188 * 4189 * unlink and rmdir are special in btrfs, they do not always free space, so 4190 * if we cannot make our reservations the normal way try and see if there is 4191 * plenty of slack room in the global reserve to migrate, otherwise we cannot 4192 * allow the unlink to occur. 4193 */ 4194 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir) 4195 { 4196 struct btrfs_root *root = BTRFS_I(dir)->root; 4197 4198 /* 4199 * 1 for the possible orphan item 4200 * 1 for the dir item 4201 * 1 for the dir index 4202 * 1 for the inode ref 4203 * 1 for the inode 4204 */ 4205 return btrfs_start_transaction_fallback_global_rsv(root, 5, 5); 4206 } 4207 4208 static int btrfs_unlink(struct inode *dir, struct dentry *dentry) 4209 { 4210 struct btrfs_root *root = BTRFS_I(dir)->root; 4211 struct btrfs_trans_handle *trans; 4212 struct inode *inode = d_inode(dentry); 4213 int ret; 4214 4215 trans = __unlink_start_trans(dir); 4216 if (IS_ERR(trans)) 4217 return PTR_ERR(trans); 4218 4219 btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)), 4220 0); 4221 4222 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir), 4223 BTRFS_I(d_inode(dentry)), dentry->d_name.name, 4224 dentry->d_name.len); 4225 if (ret) 4226 goto out; 4227 4228 if (inode->i_nlink == 0) { 4229 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 4230 if (ret) 4231 goto out; 4232 } 4233 4234 out: 4235 btrfs_end_transaction(trans); 4236 btrfs_btree_balance_dirty(root->fs_info); 4237 return ret; 4238 } 4239 4240 static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans, 4241 struct inode *dir, struct dentry *dentry) 4242 { 4243 struct btrfs_root *root = BTRFS_I(dir)->root; 4244 struct btrfs_inode *inode = BTRFS_I(d_inode(dentry)); 4245 struct btrfs_path *path; 4246 struct extent_buffer *leaf; 4247 struct btrfs_dir_item *di; 4248 struct btrfs_key key; 4249 const char *name = dentry->d_name.name; 4250 int name_len = dentry->d_name.len; 4251 u64 index; 4252 int ret; 4253 u64 objectid; 4254 u64 dir_ino = btrfs_ino(BTRFS_I(dir)); 4255 4256 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) { 4257 objectid = inode->root->root_key.objectid; 4258 } else if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) { 4259 objectid = inode->location.objectid; 4260 } else { 4261 WARN_ON(1); 4262 return -EINVAL; 4263 } 4264 4265 path = btrfs_alloc_path(); 4266 if (!path) 4267 return -ENOMEM; 4268 4269 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 4270 name, name_len, -1); 4271 if (IS_ERR_OR_NULL(di)) { 4272 ret = di ? PTR_ERR(di) : -ENOENT; 4273 goto out; 4274 } 4275 4276 leaf = path->nodes[0]; 4277 btrfs_dir_item_key_to_cpu(leaf, di, &key); 4278 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid); 4279 ret = btrfs_delete_one_dir_name(trans, root, path, di); 4280 if (ret) { 4281 btrfs_abort_transaction(trans, ret); 4282 goto out; 4283 } 4284 btrfs_release_path(path); 4285 4286 /* 4287 * This is a placeholder inode for a subvolume we didn't have a 4288 * reference to at the time of the snapshot creation. In the meantime 4289 * we could have renamed the real subvol link into our snapshot, so 4290 * depending on btrfs_del_root_ref to return -ENOENT here is incorret. 4291 * Instead simply lookup the dir_index_item for this entry so we can 4292 * remove it. Otherwise we know we have a ref to the root and we can 4293 * call btrfs_del_root_ref, and it _shouldn't_ fail. 4294 */ 4295 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) { 4296 di = btrfs_search_dir_index_item(root, path, dir_ino, 4297 name, name_len); 4298 if (IS_ERR_OR_NULL(di)) { 4299 if (!di) 4300 ret = -ENOENT; 4301 else 4302 ret = PTR_ERR(di); 4303 btrfs_abort_transaction(trans, ret); 4304 goto out; 4305 } 4306 4307 leaf = path->nodes[0]; 4308 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 4309 index = key.offset; 4310 btrfs_release_path(path); 4311 } else { 4312 ret = btrfs_del_root_ref(trans, objectid, 4313 root->root_key.objectid, dir_ino, 4314 &index, name, name_len); 4315 if (ret) { 4316 btrfs_abort_transaction(trans, ret); 4317 goto out; 4318 } 4319 } 4320 4321 ret = btrfs_delete_delayed_dir_index(trans, BTRFS_I(dir), index); 4322 if (ret) { 4323 btrfs_abort_transaction(trans, ret); 4324 goto out; 4325 } 4326 4327 btrfs_i_size_write(BTRFS_I(dir), dir->i_size - name_len * 2); 4328 inode_inc_iversion(dir); 4329 dir->i_mtime = dir->i_ctime = current_time(dir); 4330 ret = btrfs_update_inode_fallback(trans, root, dir); 4331 if (ret) 4332 btrfs_abort_transaction(trans, ret); 4333 out: 4334 btrfs_free_path(path); 4335 return ret; 4336 } 4337 4338 /* 4339 * Helper to check if the subvolume references other subvolumes or if it's 4340 * default. 4341 */ 4342 static noinline int may_destroy_subvol(struct btrfs_root *root) 4343 { 4344 struct btrfs_fs_info *fs_info = root->fs_info; 4345 struct btrfs_path *path; 4346 struct btrfs_dir_item *di; 4347 struct btrfs_key key; 4348 u64 dir_id; 4349 int ret; 4350 4351 path = btrfs_alloc_path(); 4352 if (!path) 4353 return -ENOMEM; 4354 4355 /* Make sure this root isn't set as the default subvol */ 4356 dir_id = btrfs_super_root_dir(fs_info->super_copy); 4357 di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path, 4358 dir_id, "default", 7, 0); 4359 if (di && !IS_ERR(di)) { 4360 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key); 4361 if (key.objectid == root->root_key.objectid) { 4362 ret = -EPERM; 4363 btrfs_err(fs_info, 4364 "deleting default subvolume %llu is not allowed", 4365 key.objectid); 4366 goto out; 4367 } 4368 btrfs_release_path(path); 4369 } 4370 4371 key.objectid = root->root_key.objectid; 4372 key.type = BTRFS_ROOT_REF_KEY; 4373 key.offset = (u64)-1; 4374 4375 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 4376 if (ret < 0) 4377 goto out; 4378 BUG_ON(ret == 0); 4379 4380 ret = 0; 4381 if (path->slots[0] > 0) { 4382 path->slots[0]--; 4383 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 4384 if (key.objectid == root->root_key.objectid && 4385 key.type == BTRFS_ROOT_REF_KEY) 4386 ret = -ENOTEMPTY; 4387 } 4388 out: 4389 btrfs_free_path(path); 4390 return ret; 4391 } 4392 4393 /* Delete all dentries for inodes belonging to the root */ 4394 static void btrfs_prune_dentries(struct btrfs_root *root) 4395 { 4396 struct btrfs_fs_info *fs_info = root->fs_info; 4397 struct rb_node *node; 4398 struct rb_node *prev; 4399 struct btrfs_inode *entry; 4400 struct inode *inode; 4401 u64 objectid = 0; 4402 4403 if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 4404 WARN_ON(btrfs_root_refs(&root->root_item) != 0); 4405 4406 spin_lock(&root->inode_lock); 4407 again: 4408 node = root->inode_tree.rb_node; 4409 prev = NULL; 4410 while (node) { 4411 prev = node; 4412 entry = rb_entry(node, struct btrfs_inode, rb_node); 4413 4414 if (objectid < btrfs_ino(entry)) 4415 node = node->rb_left; 4416 else if (objectid > btrfs_ino(entry)) 4417 node = node->rb_right; 4418 else 4419 break; 4420 } 4421 if (!node) { 4422 while (prev) { 4423 entry = rb_entry(prev, struct btrfs_inode, rb_node); 4424 if (objectid <= btrfs_ino(entry)) { 4425 node = prev; 4426 break; 4427 } 4428 prev = rb_next(prev); 4429 } 4430 } 4431 while (node) { 4432 entry = rb_entry(node, struct btrfs_inode, rb_node); 4433 objectid = btrfs_ino(entry) + 1; 4434 inode = igrab(&entry->vfs_inode); 4435 if (inode) { 4436 spin_unlock(&root->inode_lock); 4437 if (atomic_read(&inode->i_count) > 1) 4438 d_prune_aliases(inode); 4439 /* 4440 * btrfs_drop_inode will have it removed from the inode 4441 * cache when its usage count hits zero. 4442 */ 4443 iput(inode); 4444 cond_resched(); 4445 spin_lock(&root->inode_lock); 4446 goto again; 4447 } 4448 4449 if (cond_resched_lock(&root->inode_lock)) 4450 goto again; 4451 4452 node = rb_next(node); 4453 } 4454 spin_unlock(&root->inode_lock); 4455 } 4456 4457 int btrfs_delete_subvolume(struct inode *dir, struct dentry *dentry) 4458 { 4459 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb); 4460 struct btrfs_root *root = BTRFS_I(dir)->root; 4461 struct inode *inode = d_inode(dentry); 4462 struct btrfs_root *dest = BTRFS_I(inode)->root; 4463 struct btrfs_trans_handle *trans; 4464 struct btrfs_block_rsv block_rsv; 4465 u64 root_flags; 4466 int ret; 4467 int err; 4468 4469 /* 4470 * Don't allow to delete a subvolume with send in progress. This is 4471 * inside the inode lock so the error handling that has to drop the bit 4472 * again is not run concurrently. 4473 */ 4474 spin_lock(&dest->root_item_lock); 4475 if (dest->send_in_progress) { 4476 spin_unlock(&dest->root_item_lock); 4477 btrfs_warn(fs_info, 4478 "attempt to delete subvolume %llu during send", 4479 dest->root_key.objectid); 4480 return -EPERM; 4481 } 4482 root_flags = btrfs_root_flags(&dest->root_item); 4483 btrfs_set_root_flags(&dest->root_item, 4484 root_flags | BTRFS_ROOT_SUBVOL_DEAD); 4485 spin_unlock(&dest->root_item_lock); 4486 4487 down_write(&fs_info->subvol_sem); 4488 4489 err = may_destroy_subvol(dest); 4490 if (err) 4491 goto out_up_write; 4492 4493 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP); 4494 /* 4495 * One for dir inode, 4496 * two for dir entries, 4497 * two for root ref/backref. 4498 */ 4499 err = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true); 4500 if (err) 4501 goto out_up_write; 4502 4503 trans = btrfs_start_transaction(root, 0); 4504 if (IS_ERR(trans)) { 4505 err = PTR_ERR(trans); 4506 goto out_release; 4507 } 4508 trans->block_rsv = &block_rsv; 4509 trans->bytes_reserved = block_rsv.size; 4510 4511 btrfs_record_snapshot_destroy(trans, BTRFS_I(dir)); 4512 4513 ret = btrfs_unlink_subvol(trans, dir, dentry); 4514 if (ret) { 4515 err = ret; 4516 btrfs_abort_transaction(trans, ret); 4517 goto out_end_trans; 4518 } 4519 4520 btrfs_record_root_in_trans(trans, dest); 4521 4522 memset(&dest->root_item.drop_progress, 0, 4523 sizeof(dest->root_item.drop_progress)); 4524 dest->root_item.drop_level = 0; 4525 btrfs_set_root_refs(&dest->root_item, 0); 4526 4527 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) { 4528 ret = btrfs_insert_orphan_item(trans, 4529 fs_info->tree_root, 4530 dest->root_key.objectid); 4531 if (ret) { 4532 btrfs_abort_transaction(trans, ret); 4533 err = ret; 4534 goto out_end_trans; 4535 } 4536 } 4537 4538 ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid, 4539 BTRFS_UUID_KEY_SUBVOL, 4540 dest->root_key.objectid); 4541 if (ret && ret != -ENOENT) { 4542 btrfs_abort_transaction(trans, ret); 4543 err = ret; 4544 goto out_end_trans; 4545 } 4546 if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) { 4547 ret = btrfs_uuid_tree_remove(trans, 4548 dest->root_item.received_uuid, 4549 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 4550 dest->root_key.objectid); 4551 if (ret && ret != -ENOENT) { 4552 btrfs_abort_transaction(trans, ret); 4553 err = ret; 4554 goto out_end_trans; 4555 } 4556 } 4557 4558 out_end_trans: 4559 trans->block_rsv = NULL; 4560 trans->bytes_reserved = 0; 4561 ret = btrfs_end_transaction(trans); 4562 if (ret && !err) 4563 err = ret; 4564 inode->i_flags |= S_DEAD; 4565 out_release: 4566 btrfs_subvolume_release_metadata(fs_info, &block_rsv); 4567 out_up_write: 4568 up_write(&fs_info->subvol_sem); 4569 if (err) { 4570 spin_lock(&dest->root_item_lock); 4571 root_flags = btrfs_root_flags(&dest->root_item); 4572 btrfs_set_root_flags(&dest->root_item, 4573 root_flags & ~BTRFS_ROOT_SUBVOL_DEAD); 4574 spin_unlock(&dest->root_item_lock); 4575 } else { 4576 d_invalidate(dentry); 4577 btrfs_prune_dentries(dest); 4578 ASSERT(dest->send_in_progress == 0); 4579 4580 /* the last ref */ 4581 if (dest->ino_cache_inode) { 4582 iput(dest->ino_cache_inode); 4583 dest->ino_cache_inode = NULL; 4584 } 4585 } 4586 4587 return err; 4588 } 4589 4590 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry) 4591 { 4592 struct inode *inode = d_inode(dentry); 4593 int err = 0; 4594 struct btrfs_root *root = BTRFS_I(dir)->root; 4595 struct btrfs_trans_handle *trans; 4596 u64 last_unlink_trans; 4597 4598 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE) 4599 return -ENOTEMPTY; 4600 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID) 4601 return btrfs_delete_subvolume(dir, dentry); 4602 4603 trans = __unlink_start_trans(dir); 4604 if (IS_ERR(trans)) 4605 return PTR_ERR(trans); 4606 4607 if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 4608 err = btrfs_unlink_subvol(trans, dir, dentry); 4609 goto out; 4610 } 4611 4612 err = btrfs_orphan_add(trans, BTRFS_I(inode)); 4613 if (err) 4614 goto out; 4615 4616 last_unlink_trans = BTRFS_I(inode)->last_unlink_trans; 4617 4618 /* now the directory is empty */ 4619 err = btrfs_unlink_inode(trans, root, BTRFS_I(dir), 4620 BTRFS_I(d_inode(dentry)), dentry->d_name.name, 4621 dentry->d_name.len); 4622 if (!err) { 4623 btrfs_i_size_write(BTRFS_I(inode), 0); 4624 /* 4625 * Propagate the last_unlink_trans value of the deleted dir to 4626 * its parent directory. This is to prevent an unrecoverable 4627 * log tree in the case we do something like this: 4628 * 1) create dir foo 4629 * 2) create snapshot under dir foo 4630 * 3) delete the snapshot 4631 * 4) rmdir foo 4632 * 5) mkdir foo 4633 * 6) fsync foo or some file inside foo 4634 */ 4635 if (last_unlink_trans >= trans->transid) 4636 BTRFS_I(dir)->last_unlink_trans = last_unlink_trans; 4637 } 4638 out: 4639 btrfs_end_transaction(trans); 4640 btrfs_btree_balance_dirty(root->fs_info); 4641 4642 return err; 4643 } 4644 4645 /* 4646 * Return this if we need to call truncate_block for the last bit of the 4647 * truncate. 4648 */ 4649 #define NEED_TRUNCATE_BLOCK 1 4650 4651 /* 4652 * this can truncate away extent items, csum items and directory items. 4653 * It starts at a high offset and removes keys until it can't find 4654 * any higher than new_size 4655 * 4656 * csum items that cross the new i_size are truncated to the new size 4657 * as well. 4658 * 4659 * min_type is the minimum key type to truncate down to. If set to 0, this 4660 * will kill all the items on this inode, including the INODE_ITEM_KEY. 4661 */ 4662 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans, 4663 struct btrfs_root *root, 4664 struct inode *inode, 4665 u64 new_size, u32 min_type) 4666 { 4667 struct btrfs_fs_info *fs_info = root->fs_info; 4668 struct btrfs_path *path; 4669 struct extent_buffer *leaf; 4670 struct btrfs_file_extent_item *fi; 4671 struct btrfs_key key; 4672 struct btrfs_key found_key; 4673 u64 extent_start = 0; 4674 u64 extent_num_bytes = 0; 4675 u64 extent_offset = 0; 4676 u64 item_end = 0; 4677 u64 last_size = new_size; 4678 u32 found_type = (u8)-1; 4679 int found_extent; 4680 int del_item; 4681 int pending_del_nr = 0; 4682 int pending_del_slot = 0; 4683 int extent_type = -1; 4684 int ret; 4685 u64 ino = btrfs_ino(BTRFS_I(inode)); 4686 u64 bytes_deleted = 0; 4687 bool be_nice = false; 4688 bool should_throttle = false; 4689 4690 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY); 4691 4692 /* 4693 * for non-free space inodes and ref cows, we want to back off from 4694 * time to time 4695 */ 4696 if (!btrfs_is_free_space_inode(BTRFS_I(inode)) && 4697 test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 4698 be_nice = true; 4699 4700 path = btrfs_alloc_path(); 4701 if (!path) 4702 return -ENOMEM; 4703 path->reada = READA_BACK; 4704 4705 /* 4706 * We want to drop from the next block forward in case this new size is 4707 * not block aligned since we will be keeping the last block of the 4708 * extent just the way it is. 4709 */ 4710 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) || 4711 root == fs_info->tree_root) 4712 btrfs_drop_extent_cache(BTRFS_I(inode), ALIGN(new_size, 4713 fs_info->sectorsize), 4714 (u64)-1, 0); 4715 4716 /* 4717 * This function is also used to drop the items in the log tree before 4718 * we relog the inode, so if root != BTRFS_I(inode)->root, it means 4719 * it is used to drop the logged items. So we shouldn't kill the delayed 4720 * items. 4721 */ 4722 if (min_type == 0 && root == BTRFS_I(inode)->root) 4723 btrfs_kill_delayed_inode_items(BTRFS_I(inode)); 4724 4725 key.objectid = ino; 4726 key.offset = (u64)-1; 4727 key.type = (u8)-1; 4728 4729 search_again: 4730 /* 4731 * with a 16K leaf size and 128MB extents, you can actually queue 4732 * up a huge file in a single leaf. Most of the time that 4733 * bytes_deleted is > 0, it will be huge by the time we get here 4734 */ 4735 if (be_nice && bytes_deleted > SZ_32M && 4736 btrfs_should_end_transaction(trans)) { 4737 ret = -EAGAIN; 4738 goto out; 4739 } 4740 4741 path->leave_spinning = 1; 4742 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 4743 if (ret < 0) 4744 goto out; 4745 4746 if (ret > 0) { 4747 ret = 0; 4748 /* there are no items in the tree for us to truncate, we're 4749 * done 4750 */ 4751 if (path->slots[0] == 0) 4752 goto out; 4753 path->slots[0]--; 4754 } 4755 4756 while (1) { 4757 fi = NULL; 4758 leaf = path->nodes[0]; 4759 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 4760 found_type = found_key.type; 4761 4762 if (found_key.objectid != ino) 4763 break; 4764 4765 if (found_type < min_type) 4766 break; 4767 4768 item_end = found_key.offset; 4769 if (found_type == BTRFS_EXTENT_DATA_KEY) { 4770 fi = btrfs_item_ptr(leaf, path->slots[0], 4771 struct btrfs_file_extent_item); 4772 extent_type = btrfs_file_extent_type(leaf, fi); 4773 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 4774 item_end += 4775 btrfs_file_extent_num_bytes(leaf, fi); 4776 4777 trace_btrfs_truncate_show_fi_regular( 4778 BTRFS_I(inode), leaf, fi, 4779 found_key.offset); 4780 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 4781 item_end += btrfs_file_extent_ram_bytes(leaf, 4782 fi); 4783 4784 trace_btrfs_truncate_show_fi_inline( 4785 BTRFS_I(inode), leaf, fi, path->slots[0], 4786 found_key.offset); 4787 } 4788 item_end--; 4789 } 4790 if (found_type > min_type) { 4791 del_item = 1; 4792 } else { 4793 if (item_end < new_size) 4794 break; 4795 if (found_key.offset >= new_size) 4796 del_item = 1; 4797 else 4798 del_item = 0; 4799 } 4800 found_extent = 0; 4801 /* FIXME, shrink the extent if the ref count is only 1 */ 4802 if (found_type != BTRFS_EXTENT_DATA_KEY) 4803 goto delete; 4804 4805 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 4806 u64 num_dec; 4807 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi); 4808 if (!del_item) { 4809 u64 orig_num_bytes = 4810 btrfs_file_extent_num_bytes(leaf, fi); 4811 extent_num_bytes = ALIGN(new_size - 4812 found_key.offset, 4813 fs_info->sectorsize); 4814 btrfs_set_file_extent_num_bytes(leaf, fi, 4815 extent_num_bytes); 4816 num_dec = (orig_num_bytes - 4817 extent_num_bytes); 4818 if (test_bit(BTRFS_ROOT_REF_COWS, 4819 &root->state) && 4820 extent_start != 0) 4821 inode_sub_bytes(inode, num_dec); 4822 btrfs_mark_buffer_dirty(leaf); 4823 } else { 4824 extent_num_bytes = 4825 btrfs_file_extent_disk_num_bytes(leaf, 4826 fi); 4827 extent_offset = found_key.offset - 4828 btrfs_file_extent_offset(leaf, fi); 4829 4830 /* FIXME blocksize != 4096 */ 4831 num_dec = btrfs_file_extent_num_bytes(leaf, fi); 4832 if (extent_start != 0) { 4833 found_extent = 1; 4834 if (test_bit(BTRFS_ROOT_REF_COWS, 4835 &root->state)) 4836 inode_sub_bytes(inode, num_dec); 4837 } 4838 } 4839 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 4840 /* 4841 * we can't truncate inline items that have had 4842 * special encodings 4843 */ 4844 if (!del_item && 4845 btrfs_file_extent_encryption(leaf, fi) == 0 && 4846 btrfs_file_extent_other_encoding(leaf, fi) == 0 && 4847 btrfs_file_extent_compression(leaf, fi) == 0) { 4848 u32 size = (u32)(new_size - found_key.offset); 4849 4850 btrfs_set_file_extent_ram_bytes(leaf, fi, size); 4851 size = btrfs_file_extent_calc_inline_size(size); 4852 btrfs_truncate_item(path, size, 1); 4853 } else if (!del_item) { 4854 /* 4855 * We have to bail so the last_size is set to 4856 * just before this extent. 4857 */ 4858 ret = NEED_TRUNCATE_BLOCK; 4859 break; 4860 } 4861 4862 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 4863 inode_sub_bytes(inode, item_end + 1 - new_size); 4864 } 4865 delete: 4866 if (del_item) 4867 last_size = found_key.offset; 4868 else 4869 last_size = new_size; 4870 if (del_item) { 4871 if (!pending_del_nr) { 4872 /* no pending yet, add ourselves */ 4873 pending_del_slot = path->slots[0]; 4874 pending_del_nr = 1; 4875 } else if (pending_del_nr && 4876 path->slots[0] + 1 == pending_del_slot) { 4877 /* hop on the pending chunk */ 4878 pending_del_nr++; 4879 pending_del_slot = path->slots[0]; 4880 } else { 4881 BUG(); 4882 } 4883 } else { 4884 break; 4885 } 4886 should_throttle = false; 4887 4888 if (found_extent && 4889 (test_bit(BTRFS_ROOT_REF_COWS, &root->state) || 4890 root == fs_info->tree_root)) { 4891 struct btrfs_ref ref = { 0 }; 4892 4893 btrfs_set_path_blocking(path); 4894 bytes_deleted += extent_num_bytes; 4895 4896 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, 4897 extent_start, extent_num_bytes, 0); 4898 ref.real_root = root->root_key.objectid; 4899 btrfs_init_data_ref(&ref, btrfs_header_owner(leaf), 4900 ino, extent_offset); 4901 ret = btrfs_free_extent(trans, &ref); 4902 if (ret) { 4903 btrfs_abort_transaction(trans, ret); 4904 break; 4905 } 4906 if (be_nice) { 4907 if (btrfs_should_throttle_delayed_refs(trans)) 4908 should_throttle = true; 4909 } 4910 } 4911 4912 if (found_type == BTRFS_INODE_ITEM_KEY) 4913 break; 4914 4915 if (path->slots[0] == 0 || 4916 path->slots[0] != pending_del_slot || 4917 should_throttle) { 4918 if (pending_del_nr) { 4919 ret = btrfs_del_items(trans, root, path, 4920 pending_del_slot, 4921 pending_del_nr); 4922 if (ret) { 4923 btrfs_abort_transaction(trans, ret); 4924 break; 4925 } 4926 pending_del_nr = 0; 4927 } 4928 btrfs_release_path(path); 4929 4930 /* 4931 * We can generate a lot of delayed refs, so we need to 4932 * throttle every once and a while and make sure we're 4933 * adding enough space to keep up with the work we are 4934 * generating. Since we hold a transaction here we 4935 * can't flush, and we don't want to FLUSH_LIMIT because 4936 * we could have generated too many delayed refs to 4937 * actually allocate, so just bail if we're short and 4938 * let the normal reservation dance happen higher up. 4939 */ 4940 if (should_throttle) { 4941 ret = btrfs_delayed_refs_rsv_refill(fs_info, 4942 BTRFS_RESERVE_NO_FLUSH); 4943 if (ret) { 4944 ret = -EAGAIN; 4945 break; 4946 } 4947 } 4948 goto search_again; 4949 } else { 4950 path->slots[0]--; 4951 } 4952 } 4953 out: 4954 if (ret >= 0 && pending_del_nr) { 4955 int err; 4956 4957 err = btrfs_del_items(trans, root, path, pending_del_slot, 4958 pending_del_nr); 4959 if (err) { 4960 btrfs_abort_transaction(trans, err); 4961 ret = err; 4962 } 4963 } 4964 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 4965 ASSERT(last_size >= new_size); 4966 if (!ret && last_size > new_size) 4967 last_size = new_size; 4968 btrfs_ordered_update_i_size(inode, last_size, NULL); 4969 } 4970 4971 btrfs_free_path(path); 4972 return ret; 4973 } 4974 4975 /* 4976 * btrfs_truncate_block - read, zero a chunk and write a block 4977 * @inode - inode that we're zeroing 4978 * @from - the offset to start zeroing 4979 * @len - the length to zero, 0 to zero the entire range respective to the 4980 * offset 4981 * @front - zero up to the offset instead of from the offset on 4982 * 4983 * This will find the block for the "from" offset and cow the block and zero the 4984 * part we want to zero. This is used with truncate and hole punching. 4985 */ 4986 int btrfs_truncate_block(struct inode *inode, loff_t from, loff_t len, 4987 int front) 4988 { 4989 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4990 struct address_space *mapping = inode->i_mapping; 4991 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 4992 struct btrfs_ordered_extent *ordered; 4993 struct extent_state *cached_state = NULL; 4994 struct extent_changeset *data_reserved = NULL; 4995 char *kaddr; 4996 u32 blocksize = fs_info->sectorsize; 4997 pgoff_t index = from >> PAGE_SHIFT; 4998 unsigned offset = from & (blocksize - 1); 4999 struct page *page; 5000 gfp_t mask = btrfs_alloc_write_mask(mapping); 5001 int ret = 0; 5002 u64 block_start; 5003 u64 block_end; 5004 5005 if (IS_ALIGNED(offset, blocksize) && 5006 (!len || IS_ALIGNED(len, blocksize))) 5007 goto out; 5008 5009 block_start = round_down(from, blocksize); 5010 block_end = block_start + blocksize - 1; 5011 5012 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, 5013 block_start, blocksize); 5014 if (ret) 5015 goto out; 5016 5017 again: 5018 page = find_or_create_page(mapping, index, mask); 5019 if (!page) { 5020 btrfs_delalloc_release_space(inode, data_reserved, 5021 block_start, blocksize, true); 5022 btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize); 5023 ret = -ENOMEM; 5024 goto out; 5025 } 5026 5027 if (!PageUptodate(page)) { 5028 ret = btrfs_readpage(NULL, page); 5029 lock_page(page); 5030 if (page->mapping != mapping) { 5031 unlock_page(page); 5032 put_page(page); 5033 goto again; 5034 } 5035 if (!PageUptodate(page)) { 5036 ret = -EIO; 5037 goto out_unlock; 5038 } 5039 } 5040 wait_on_page_writeback(page); 5041 5042 lock_extent_bits(io_tree, block_start, block_end, &cached_state); 5043 set_page_extent_mapped(page); 5044 5045 ordered = btrfs_lookup_ordered_extent(inode, block_start); 5046 if (ordered) { 5047 unlock_extent_cached(io_tree, block_start, block_end, 5048 &cached_state); 5049 unlock_page(page); 5050 put_page(page); 5051 btrfs_start_ordered_extent(inode, ordered, 1); 5052 btrfs_put_ordered_extent(ordered); 5053 goto again; 5054 } 5055 5056 clear_extent_bit(&BTRFS_I(inode)->io_tree, block_start, block_end, 5057 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 5058 0, 0, &cached_state); 5059 5060 ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0, 5061 &cached_state); 5062 if (ret) { 5063 unlock_extent_cached(io_tree, block_start, block_end, 5064 &cached_state); 5065 goto out_unlock; 5066 } 5067 5068 if (offset != blocksize) { 5069 if (!len) 5070 len = blocksize - offset; 5071 kaddr = kmap(page); 5072 if (front) 5073 memset(kaddr + (block_start - page_offset(page)), 5074 0, offset); 5075 else 5076 memset(kaddr + (block_start - page_offset(page)) + offset, 5077 0, len); 5078 flush_dcache_page(page); 5079 kunmap(page); 5080 } 5081 ClearPageChecked(page); 5082 set_page_dirty(page); 5083 unlock_extent_cached(io_tree, block_start, block_end, &cached_state); 5084 5085 out_unlock: 5086 if (ret) 5087 btrfs_delalloc_release_space(inode, data_reserved, block_start, 5088 blocksize, true); 5089 btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize); 5090 unlock_page(page); 5091 put_page(page); 5092 out: 5093 extent_changeset_free(data_reserved); 5094 return ret; 5095 } 5096 5097 static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode, 5098 u64 offset, u64 len) 5099 { 5100 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5101 struct btrfs_trans_handle *trans; 5102 int ret; 5103 5104 /* 5105 * Still need to make sure the inode looks like it's been updated so 5106 * that any holes get logged if we fsync. 5107 */ 5108 if (btrfs_fs_incompat(fs_info, NO_HOLES)) { 5109 BTRFS_I(inode)->last_trans = fs_info->generation; 5110 BTRFS_I(inode)->last_sub_trans = root->log_transid; 5111 BTRFS_I(inode)->last_log_commit = root->last_log_commit; 5112 return 0; 5113 } 5114 5115 /* 5116 * 1 - for the one we're dropping 5117 * 1 - for the one we're adding 5118 * 1 - for updating the inode. 5119 */ 5120 trans = btrfs_start_transaction(root, 3); 5121 if (IS_ERR(trans)) 5122 return PTR_ERR(trans); 5123 5124 ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1); 5125 if (ret) { 5126 btrfs_abort_transaction(trans, ret); 5127 btrfs_end_transaction(trans); 5128 return ret; 5129 } 5130 5131 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(BTRFS_I(inode)), 5132 offset, 0, 0, len, 0, len, 0, 0, 0); 5133 if (ret) 5134 btrfs_abort_transaction(trans, ret); 5135 else 5136 btrfs_update_inode(trans, root, inode); 5137 btrfs_end_transaction(trans); 5138 return ret; 5139 } 5140 5141 /* 5142 * This function puts in dummy file extents for the area we're creating a hole 5143 * for. So if we are truncating this file to a larger size we need to insert 5144 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for 5145 * the range between oldsize and size 5146 */ 5147 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size) 5148 { 5149 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5150 struct btrfs_root *root = BTRFS_I(inode)->root; 5151 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 5152 struct extent_map *em = NULL; 5153 struct extent_state *cached_state = NULL; 5154 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 5155 u64 hole_start = ALIGN(oldsize, fs_info->sectorsize); 5156 u64 block_end = ALIGN(size, fs_info->sectorsize); 5157 u64 last_byte; 5158 u64 cur_offset; 5159 u64 hole_size; 5160 int err = 0; 5161 5162 /* 5163 * If our size started in the middle of a block we need to zero out the 5164 * rest of the block before we expand the i_size, otherwise we could 5165 * expose stale data. 5166 */ 5167 err = btrfs_truncate_block(inode, oldsize, 0, 0); 5168 if (err) 5169 return err; 5170 5171 if (size <= hole_start) 5172 return 0; 5173 5174 btrfs_lock_and_flush_ordered_range(io_tree, BTRFS_I(inode), hole_start, 5175 block_end - 1, &cached_state); 5176 cur_offset = hole_start; 5177 while (1) { 5178 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset, 5179 block_end - cur_offset, 0); 5180 if (IS_ERR(em)) { 5181 err = PTR_ERR(em); 5182 em = NULL; 5183 break; 5184 } 5185 last_byte = min(extent_map_end(em), block_end); 5186 last_byte = ALIGN(last_byte, fs_info->sectorsize); 5187 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) { 5188 struct extent_map *hole_em; 5189 hole_size = last_byte - cur_offset; 5190 5191 err = maybe_insert_hole(root, inode, cur_offset, 5192 hole_size); 5193 if (err) 5194 break; 5195 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset, 5196 cur_offset + hole_size - 1, 0); 5197 hole_em = alloc_extent_map(); 5198 if (!hole_em) { 5199 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 5200 &BTRFS_I(inode)->runtime_flags); 5201 goto next; 5202 } 5203 hole_em->start = cur_offset; 5204 hole_em->len = hole_size; 5205 hole_em->orig_start = cur_offset; 5206 5207 hole_em->block_start = EXTENT_MAP_HOLE; 5208 hole_em->block_len = 0; 5209 hole_em->orig_block_len = 0; 5210 hole_em->ram_bytes = hole_size; 5211 hole_em->compress_type = BTRFS_COMPRESS_NONE; 5212 hole_em->generation = fs_info->generation; 5213 5214 while (1) { 5215 write_lock(&em_tree->lock); 5216 err = add_extent_mapping(em_tree, hole_em, 1); 5217 write_unlock(&em_tree->lock); 5218 if (err != -EEXIST) 5219 break; 5220 btrfs_drop_extent_cache(BTRFS_I(inode), 5221 cur_offset, 5222 cur_offset + 5223 hole_size - 1, 0); 5224 } 5225 free_extent_map(hole_em); 5226 } 5227 next: 5228 free_extent_map(em); 5229 em = NULL; 5230 cur_offset = last_byte; 5231 if (cur_offset >= block_end) 5232 break; 5233 } 5234 free_extent_map(em); 5235 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state); 5236 return err; 5237 } 5238 5239 static int btrfs_setsize(struct inode *inode, struct iattr *attr) 5240 { 5241 struct btrfs_root *root = BTRFS_I(inode)->root; 5242 struct btrfs_trans_handle *trans; 5243 loff_t oldsize = i_size_read(inode); 5244 loff_t newsize = attr->ia_size; 5245 int mask = attr->ia_valid; 5246 int ret; 5247 5248 /* 5249 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a 5250 * special case where we need to update the times despite not having 5251 * these flags set. For all other operations the VFS set these flags 5252 * explicitly if it wants a timestamp update. 5253 */ 5254 if (newsize != oldsize) { 5255 inode_inc_iversion(inode); 5256 if (!(mask & (ATTR_CTIME | ATTR_MTIME))) 5257 inode->i_ctime = inode->i_mtime = 5258 current_time(inode); 5259 } 5260 5261 if (newsize > oldsize) { 5262 /* 5263 * Don't do an expanding truncate while snapshotting is ongoing. 5264 * This is to ensure the snapshot captures a fully consistent 5265 * state of this file - if the snapshot captures this expanding 5266 * truncation, it must capture all writes that happened before 5267 * this truncation. 5268 */ 5269 btrfs_wait_for_snapshot_creation(root); 5270 ret = btrfs_cont_expand(inode, oldsize, newsize); 5271 if (ret) { 5272 btrfs_end_write_no_snapshotting(root); 5273 return ret; 5274 } 5275 5276 trans = btrfs_start_transaction(root, 1); 5277 if (IS_ERR(trans)) { 5278 btrfs_end_write_no_snapshotting(root); 5279 return PTR_ERR(trans); 5280 } 5281 5282 i_size_write(inode, newsize); 5283 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL); 5284 pagecache_isize_extended(inode, oldsize, newsize); 5285 ret = btrfs_update_inode(trans, root, inode); 5286 btrfs_end_write_no_snapshotting(root); 5287 btrfs_end_transaction(trans); 5288 } else { 5289 5290 /* 5291 * We're truncating a file that used to have good data down to 5292 * zero. Make sure it gets into the ordered flush list so that 5293 * any new writes get down to disk quickly. 5294 */ 5295 if (newsize == 0) 5296 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE, 5297 &BTRFS_I(inode)->runtime_flags); 5298 5299 truncate_setsize(inode, newsize); 5300 5301 /* Disable nonlocked read DIO to avoid the endless truncate */ 5302 btrfs_inode_block_unlocked_dio(BTRFS_I(inode)); 5303 inode_dio_wait(inode); 5304 btrfs_inode_resume_unlocked_dio(BTRFS_I(inode)); 5305 5306 ret = btrfs_truncate(inode, newsize == oldsize); 5307 if (ret && inode->i_nlink) { 5308 int err; 5309 5310 /* 5311 * Truncate failed, so fix up the in-memory size. We 5312 * adjusted disk_i_size down as we removed extents, so 5313 * wait for disk_i_size to be stable and then update the 5314 * in-memory size to match. 5315 */ 5316 err = btrfs_wait_ordered_range(inode, 0, (u64)-1); 5317 if (err) 5318 return err; 5319 i_size_write(inode, BTRFS_I(inode)->disk_i_size); 5320 } 5321 } 5322 5323 return ret; 5324 } 5325 5326 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr) 5327 { 5328 struct inode *inode = d_inode(dentry); 5329 struct btrfs_root *root = BTRFS_I(inode)->root; 5330 int err; 5331 5332 if (btrfs_root_readonly(root)) 5333 return -EROFS; 5334 5335 err = setattr_prepare(dentry, attr); 5336 if (err) 5337 return err; 5338 5339 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 5340 err = btrfs_setsize(inode, attr); 5341 if (err) 5342 return err; 5343 } 5344 5345 if (attr->ia_valid) { 5346 setattr_copy(inode, attr); 5347 inode_inc_iversion(inode); 5348 err = btrfs_dirty_inode(inode); 5349 5350 if (!err && attr->ia_valid & ATTR_MODE) 5351 err = posix_acl_chmod(inode, inode->i_mode); 5352 } 5353 5354 return err; 5355 } 5356 5357 /* 5358 * While truncating the inode pages during eviction, we get the VFS calling 5359 * btrfs_invalidatepage() against each page of the inode. This is slow because 5360 * the calls to btrfs_invalidatepage() result in a huge amount of calls to 5361 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting 5362 * extent_state structures over and over, wasting lots of time. 5363 * 5364 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all 5365 * those expensive operations on a per page basis and do only the ordered io 5366 * finishing, while we release here the extent_map and extent_state structures, 5367 * without the excessive merging and splitting. 5368 */ 5369 static void evict_inode_truncate_pages(struct inode *inode) 5370 { 5371 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 5372 struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree; 5373 struct rb_node *node; 5374 5375 ASSERT(inode->i_state & I_FREEING); 5376 truncate_inode_pages_final(&inode->i_data); 5377 5378 write_lock(&map_tree->lock); 5379 while (!RB_EMPTY_ROOT(&map_tree->map.rb_root)) { 5380 struct extent_map *em; 5381 5382 node = rb_first_cached(&map_tree->map); 5383 em = rb_entry(node, struct extent_map, rb_node); 5384 clear_bit(EXTENT_FLAG_PINNED, &em->flags); 5385 clear_bit(EXTENT_FLAG_LOGGING, &em->flags); 5386 remove_extent_mapping(map_tree, em); 5387 free_extent_map(em); 5388 if (need_resched()) { 5389 write_unlock(&map_tree->lock); 5390 cond_resched(); 5391 write_lock(&map_tree->lock); 5392 } 5393 } 5394 write_unlock(&map_tree->lock); 5395 5396 /* 5397 * Keep looping until we have no more ranges in the io tree. 5398 * We can have ongoing bios started by readpages (called from readahead) 5399 * that have their endio callback (extent_io.c:end_bio_extent_readpage) 5400 * still in progress (unlocked the pages in the bio but did not yet 5401 * unlocked the ranges in the io tree). Therefore this means some 5402 * ranges can still be locked and eviction started because before 5403 * submitting those bios, which are executed by a separate task (work 5404 * queue kthread), inode references (inode->i_count) were not taken 5405 * (which would be dropped in the end io callback of each bio). 5406 * Therefore here we effectively end up waiting for those bios and 5407 * anyone else holding locked ranges without having bumped the inode's 5408 * reference count - if we don't do it, when they access the inode's 5409 * io_tree to unlock a range it may be too late, leading to an 5410 * use-after-free issue. 5411 */ 5412 spin_lock(&io_tree->lock); 5413 while (!RB_EMPTY_ROOT(&io_tree->state)) { 5414 struct extent_state *state; 5415 struct extent_state *cached_state = NULL; 5416 u64 start; 5417 u64 end; 5418 unsigned state_flags; 5419 5420 node = rb_first(&io_tree->state); 5421 state = rb_entry(node, struct extent_state, rb_node); 5422 start = state->start; 5423 end = state->end; 5424 state_flags = state->state; 5425 spin_unlock(&io_tree->lock); 5426 5427 lock_extent_bits(io_tree, start, end, &cached_state); 5428 5429 /* 5430 * If still has DELALLOC flag, the extent didn't reach disk, 5431 * and its reserved space won't be freed by delayed_ref. 5432 * So we need to free its reserved space here. 5433 * (Refer to comment in btrfs_invalidatepage, case 2) 5434 * 5435 * Note, end is the bytenr of last byte, so we need + 1 here. 5436 */ 5437 if (state_flags & EXTENT_DELALLOC) 5438 btrfs_qgroup_free_data(inode, NULL, start, end - start + 1); 5439 5440 clear_extent_bit(io_tree, start, end, 5441 EXTENT_LOCKED | EXTENT_DELALLOC | 5442 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1, 5443 &cached_state); 5444 5445 cond_resched(); 5446 spin_lock(&io_tree->lock); 5447 } 5448 spin_unlock(&io_tree->lock); 5449 } 5450 5451 static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root, 5452 struct btrfs_block_rsv *rsv) 5453 { 5454 struct btrfs_fs_info *fs_info = root->fs_info; 5455 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 5456 struct btrfs_trans_handle *trans; 5457 u64 delayed_refs_extra = btrfs_calc_insert_metadata_size(fs_info, 1); 5458 int ret; 5459 5460 /* 5461 * Eviction should be taking place at some place safe because of our 5462 * delayed iputs. However the normal flushing code will run delayed 5463 * iputs, so we cannot use FLUSH_ALL otherwise we'll deadlock. 5464 * 5465 * We reserve the delayed_refs_extra here again because we can't use 5466 * btrfs_start_transaction(root, 0) for the same deadlocky reason as 5467 * above. We reserve our extra bit here because we generate a ton of 5468 * delayed refs activity by truncating. 5469 * 5470 * If we cannot make our reservation we'll attempt to steal from the 5471 * global reserve, because we really want to be able to free up space. 5472 */ 5473 ret = btrfs_block_rsv_refill(root, rsv, rsv->size + delayed_refs_extra, 5474 BTRFS_RESERVE_FLUSH_EVICT); 5475 if (ret) { 5476 /* 5477 * Try to steal from the global reserve if there is space for 5478 * it. 5479 */ 5480 if (btrfs_check_space_for_delayed_refs(fs_info) || 5481 btrfs_block_rsv_migrate(global_rsv, rsv, rsv->size, 0)) { 5482 btrfs_warn(fs_info, 5483 "could not allocate space for delete; will truncate on mount"); 5484 return ERR_PTR(-ENOSPC); 5485 } 5486 delayed_refs_extra = 0; 5487 } 5488 5489 trans = btrfs_join_transaction(root); 5490 if (IS_ERR(trans)) 5491 return trans; 5492 5493 if (delayed_refs_extra) { 5494 trans->block_rsv = &fs_info->trans_block_rsv; 5495 trans->bytes_reserved = delayed_refs_extra; 5496 btrfs_block_rsv_migrate(rsv, trans->block_rsv, 5497 delayed_refs_extra, 1); 5498 } 5499 return trans; 5500 } 5501 5502 void btrfs_evict_inode(struct inode *inode) 5503 { 5504 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5505 struct btrfs_trans_handle *trans; 5506 struct btrfs_root *root = BTRFS_I(inode)->root; 5507 struct btrfs_block_rsv *rsv; 5508 int ret; 5509 5510 trace_btrfs_inode_evict(inode); 5511 5512 if (!root) { 5513 clear_inode(inode); 5514 return; 5515 } 5516 5517 evict_inode_truncate_pages(inode); 5518 5519 if (inode->i_nlink && 5520 ((btrfs_root_refs(&root->root_item) != 0 && 5521 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) || 5522 btrfs_is_free_space_inode(BTRFS_I(inode)))) 5523 goto no_delete; 5524 5525 if (is_bad_inode(inode)) 5526 goto no_delete; 5527 5528 btrfs_free_io_failure_record(BTRFS_I(inode), 0, (u64)-1); 5529 5530 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) 5531 goto no_delete; 5532 5533 if (inode->i_nlink > 0) { 5534 BUG_ON(btrfs_root_refs(&root->root_item) != 0 && 5535 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID); 5536 goto no_delete; 5537 } 5538 5539 ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode)); 5540 if (ret) 5541 goto no_delete; 5542 5543 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP); 5544 if (!rsv) 5545 goto no_delete; 5546 rsv->size = btrfs_calc_metadata_size(fs_info, 1); 5547 rsv->failfast = 1; 5548 5549 btrfs_i_size_write(BTRFS_I(inode), 0); 5550 5551 while (1) { 5552 trans = evict_refill_and_join(root, rsv); 5553 if (IS_ERR(trans)) 5554 goto free_rsv; 5555 5556 trans->block_rsv = rsv; 5557 5558 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0); 5559 trans->block_rsv = &fs_info->trans_block_rsv; 5560 btrfs_end_transaction(trans); 5561 btrfs_btree_balance_dirty(fs_info); 5562 if (ret && ret != -ENOSPC && ret != -EAGAIN) 5563 goto free_rsv; 5564 else if (!ret) 5565 break; 5566 } 5567 5568 /* 5569 * Errors here aren't a big deal, it just means we leave orphan items in 5570 * the tree. They will be cleaned up on the next mount. If the inode 5571 * number gets reused, cleanup deletes the orphan item without doing 5572 * anything, and unlink reuses the existing orphan item. 5573 * 5574 * If it turns out that we are dropping too many of these, we might want 5575 * to add a mechanism for retrying these after a commit. 5576 */ 5577 trans = evict_refill_and_join(root, rsv); 5578 if (!IS_ERR(trans)) { 5579 trans->block_rsv = rsv; 5580 btrfs_orphan_del(trans, BTRFS_I(inode)); 5581 trans->block_rsv = &fs_info->trans_block_rsv; 5582 btrfs_end_transaction(trans); 5583 } 5584 5585 if (!(root == fs_info->tree_root || 5586 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)) 5587 btrfs_return_ino(root, btrfs_ino(BTRFS_I(inode))); 5588 5589 free_rsv: 5590 btrfs_free_block_rsv(fs_info, rsv); 5591 no_delete: 5592 /* 5593 * If we didn't successfully delete, the orphan item will still be in 5594 * the tree and we'll retry on the next mount. Again, we might also want 5595 * to retry these periodically in the future. 5596 */ 5597 btrfs_remove_delayed_node(BTRFS_I(inode)); 5598 clear_inode(inode); 5599 } 5600 5601 /* 5602 * Return the key found in the dir entry in the location pointer, fill @type 5603 * with BTRFS_FT_*, and return 0. 5604 * 5605 * If no dir entries were found, returns -ENOENT. 5606 * If found a corrupted location in dir entry, returns -EUCLEAN. 5607 */ 5608 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry, 5609 struct btrfs_key *location, u8 *type) 5610 { 5611 const char *name = dentry->d_name.name; 5612 int namelen = dentry->d_name.len; 5613 struct btrfs_dir_item *di; 5614 struct btrfs_path *path; 5615 struct btrfs_root *root = BTRFS_I(dir)->root; 5616 int ret = 0; 5617 5618 path = btrfs_alloc_path(); 5619 if (!path) 5620 return -ENOMEM; 5621 5622 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(BTRFS_I(dir)), 5623 name, namelen, 0); 5624 if (IS_ERR_OR_NULL(di)) { 5625 ret = di ? PTR_ERR(di) : -ENOENT; 5626 goto out; 5627 } 5628 5629 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location); 5630 if (location->type != BTRFS_INODE_ITEM_KEY && 5631 location->type != BTRFS_ROOT_ITEM_KEY) { 5632 ret = -EUCLEAN; 5633 btrfs_warn(root->fs_info, 5634 "%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))", 5635 __func__, name, btrfs_ino(BTRFS_I(dir)), 5636 location->objectid, location->type, location->offset); 5637 } 5638 if (!ret) 5639 *type = btrfs_dir_type(path->nodes[0], di); 5640 out: 5641 btrfs_free_path(path); 5642 return ret; 5643 } 5644 5645 /* 5646 * when we hit a tree root in a directory, the btrfs part of the inode 5647 * needs to be changed to reflect the root directory of the tree root. This 5648 * is kind of like crossing a mount point. 5649 */ 5650 static int fixup_tree_root_location(struct btrfs_fs_info *fs_info, 5651 struct inode *dir, 5652 struct dentry *dentry, 5653 struct btrfs_key *location, 5654 struct btrfs_root **sub_root) 5655 { 5656 struct btrfs_path *path; 5657 struct btrfs_root *new_root; 5658 struct btrfs_root_ref *ref; 5659 struct extent_buffer *leaf; 5660 struct btrfs_key key; 5661 int ret; 5662 int err = 0; 5663 5664 path = btrfs_alloc_path(); 5665 if (!path) { 5666 err = -ENOMEM; 5667 goto out; 5668 } 5669 5670 err = -ENOENT; 5671 key.objectid = BTRFS_I(dir)->root->root_key.objectid; 5672 key.type = BTRFS_ROOT_REF_KEY; 5673 key.offset = location->objectid; 5674 5675 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 5676 if (ret) { 5677 if (ret < 0) 5678 err = ret; 5679 goto out; 5680 } 5681 5682 leaf = path->nodes[0]; 5683 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); 5684 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(BTRFS_I(dir)) || 5685 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len) 5686 goto out; 5687 5688 ret = memcmp_extent_buffer(leaf, dentry->d_name.name, 5689 (unsigned long)(ref + 1), 5690 dentry->d_name.len); 5691 if (ret) 5692 goto out; 5693 5694 btrfs_release_path(path); 5695 5696 new_root = btrfs_read_fs_root_no_name(fs_info, location); 5697 if (IS_ERR(new_root)) { 5698 err = PTR_ERR(new_root); 5699 goto out; 5700 } 5701 5702 *sub_root = new_root; 5703 location->objectid = btrfs_root_dirid(&new_root->root_item); 5704 location->type = BTRFS_INODE_ITEM_KEY; 5705 location->offset = 0; 5706 err = 0; 5707 out: 5708 btrfs_free_path(path); 5709 return err; 5710 } 5711 5712 static void inode_tree_add(struct inode *inode) 5713 { 5714 struct btrfs_root *root = BTRFS_I(inode)->root; 5715 struct btrfs_inode *entry; 5716 struct rb_node **p; 5717 struct rb_node *parent; 5718 struct rb_node *new = &BTRFS_I(inode)->rb_node; 5719 u64 ino = btrfs_ino(BTRFS_I(inode)); 5720 5721 if (inode_unhashed(inode)) 5722 return; 5723 parent = NULL; 5724 spin_lock(&root->inode_lock); 5725 p = &root->inode_tree.rb_node; 5726 while (*p) { 5727 parent = *p; 5728 entry = rb_entry(parent, struct btrfs_inode, rb_node); 5729 5730 if (ino < btrfs_ino(entry)) 5731 p = &parent->rb_left; 5732 else if (ino > btrfs_ino(entry)) 5733 p = &parent->rb_right; 5734 else { 5735 WARN_ON(!(entry->vfs_inode.i_state & 5736 (I_WILL_FREE | I_FREEING))); 5737 rb_replace_node(parent, new, &root->inode_tree); 5738 RB_CLEAR_NODE(parent); 5739 spin_unlock(&root->inode_lock); 5740 return; 5741 } 5742 } 5743 rb_link_node(new, parent, p); 5744 rb_insert_color(new, &root->inode_tree); 5745 spin_unlock(&root->inode_lock); 5746 } 5747 5748 static void inode_tree_del(struct inode *inode) 5749 { 5750 struct btrfs_root *root = BTRFS_I(inode)->root; 5751 int empty = 0; 5752 5753 spin_lock(&root->inode_lock); 5754 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) { 5755 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree); 5756 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node); 5757 empty = RB_EMPTY_ROOT(&root->inode_tree); 5758 } 5759 spin_unlock(&root->inode_lock); 5760 5761 if (empty && btrfs_root_refs(&root->root_item) == 0) { 5762 spin_lock(&root->inode_lock); 5763 empty = RB_EMPTY_ROOT(&root->inode_tree); 5764 spin_unlock(&root->inode_lock); 5765 if (empty) 5766 btrfs_add_dead_root(root); 5767 } 5768 } 5769 5770 5771 static int btrfs_init_locked_inode(struct inode *inode, void *p) 5772 { 5773 struct btrfs_iget_args *args = p; 5774 inode->i_ino = args->location->objectid; 5775 memcpy(&BTRFS_I(inode)->location, args->location, 5776 sizeof(*args->location)); 5777 BTRFS_I(inode)->root = args->root; 5778 return 0; 5779 } 5780 5781 static int btrfs_find_actor(struct inode *inode, void *opaque) 5782 { 5783 struct btrfs_iget_args *args = opaque; 5784 return args->location->objectid == BTRFS_I(inode)->location.objectid && 5785 args->root == BTRFS_I(inode)->root; 5786 } 5787 5788 static struct inode *btrfs_iget_locked(struct super_block *s, 5789 struct btrfs_key *location, 5790 struct btrfs_root *root) 5791 { 5792 struct inode *inode; 5793 struct btrfs_iget_args args; 5794 unsigned long hashval = btrfs_inode_hash(location->objectid, root); 5795 5796 args.location = location; 5797 args.root = root; 5798 5799 inode = iget5_locked(s, hashval, btrfs_find_actor, 5800 btrfs_init_locked_inode, 5801 (void *)&args); 5802 return inode; 5803 } 5804 5805 /* 5806 * Get an inode object given its location and corresponding root. 5807 * Path can be preallocated to prevent recursing back to iget through 5808 * allocator. NULL is also valid but may require an additional allocation 5809 * later. 5810 */ 5811 struct inode *btrfs_iget_path(struct super_block *s, struct btrfs_key *location, 5812 struct btrfs_root *root, struct btrfs_path *path) 5813 { 5814 struct inode *inode; 5815 5816 inode = btrfs_iget_locked(s, location, root); 5817 if (!inode) 5818 return ERR_PTR(-ENOMEM); 5819 5820 if (inode->i_state & I_NEW) { 5821 int ret; 5822 5823 ret = btrfs_read_locked_inode(inode, path); 5824 if (!ret) { 5825 inode_tree_add(inode); 5826 unlock_new_inode(inode); 5827 } else { 5828 iget_failed(inode); 5829 /* 5830 * ret > 0 can come from btrfs_search_slot called by 5831 * btrfs_read_locked_inode, this means the inode item 5832 * was not found. 5833 */ 5834 if (ret > 0) 5835 ret = -ENOENT; 5836 inode = ERR_PTR(ret); 5837 } 5838 } 5839 5840 return inode; 5841 } 5842 5843 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location, 5844 struct btrfs_root *root) 5845 { 5846 return btrfs_iget_path(s, location, root, NULL); 5847 } 5848 5849 static struct inode *new_simple_dir(struct super_block *s, 5850 struct btrfs_key *key, 5851 struct btrfs_root *root) 5852 { 5853 struct inode *inode = new_inode(s); 5854 5855 if (!inode) 5856 return ERR_PTR(-ENOMEM); 5857 5858 BTRFS_I(inode)->root = root; 5859 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key)); 5860 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags); 5861 5862 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID; 5863 inode->i_op = &btrfs_dir_ro_inode_operations; 5864 inode->i_opflags &= ~IOP_XATTR; 5865 inode->i_fop = &simple_dir_operations; 5866 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO; 5867 inode->i_mtime = current_time(inode); 5868 inode->i_atime = inode->i_mtime; 5869 inode->i_ctime = inode->i_mtime; 5870 BTRFS_I(inode)->i_otime = inode->i_mtime; 5871 5872 return inode; 5873 } 5874 5875 static inline u8 btrfs_inode_type(struct inode *inode) 5876 { 5877 /* 5878 * Compile-time asserts that generic FT_* types still match 5879 * BTRFS_FT_* types 5880 */ 5881 BUILD_BUG_ON(BTRFS_FT_UNKNOWN != FT_UNKNOWN); 5882 BUILD_BUG_ON(BTRFS_FT_REG_FILE != FT_REG_FILE); 5883 BUILD_BUG_ON(BTRFS_FT_DIR != FT_DIR); 5884 BUILD_BUG_ON(BTRFS_FT_CHRDEV != FT_CHRDEV); 5885 BUILD_BUG_ON(BTRFS_FT_BLKDEV != FT_BLKDEV); 5886 BUILD_BUG_ON(BTRFS_FT_FIFO != FT_FIFO); 5887 BUILD_BUG_ON(BTRFS_FT_SOCK != FT_SOCK); 5888 BUILD_BUG_ON(BTRFS_FT_SYMLINK != FT_SYMLINK); 5889 5890 return fs_umode_to_ftype(inode->i_mode); 5891 } 5892 5893 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry) 5894 { 5895 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 5896 struct inode *inode; 5897 struct btrfs_root *root = BTRFS_I(dir)->root; 5898 struct btrfs_root *sub_root = root; 5899 struct btrfs_key location; 5900 u8 di_type = 0; 5901 int index; 5902 int ret = 0; 5903 5904 if (dentry->d_name.len > BTRFS_NAME_LEN) 5905 return ERR_PTR(-ENAMETOOLONG); 5906 5907 ret = btrfs_inode_by_name(dir, dentry, &location, &di_type); 5908 if (ret < 0) 5909 return ERR_PTR(ret); 5910 5911 if (location.type == BTRFS_INODE_ITEM_KEY) { 5912 inode = btrfs_iget(dir->i_sb, &location, root); 5913 if (IS_ERR(inode)) 5914 return inode; 5915 5916 /* Do extra check against inode mode with di_type */ 5917 if (btrfs_inode_type(inode) != di_type) { 5918 btrfs_crit(fs_info, 5919 "inode mode mismatch with dir: inode mode=0%o btrfs type=%u dir type=%u", 5920 inode->i_mode, btrfs_inode_type(inode), 5921 di_type); 5922 iput(inode); 5923 return ERR_PTR(-EUCLEAN); 5924 } 5925 return inode; 5926 } 5927 5928 index = srcu_read_lock(&fs_info->subvol_srcu); 5929 ret = fixup_tree_root_location(fs_info, dir, dentry, 5930 &location, &sub_root); 5931 if (ret < 0) { 5932 if (ret != -ENOENT) 5933 inode = ERR_PTR(ret); 5934 else 5935 inode = new_simple_dir(dir->i_sb, &location, sub_root); 5936 } else { 5937 inode = btrfs_iget(dir->i_sb, &location, sub_root); 5938 } 5939 srcu_read_unlock(&fs_info->subvol_srcu, index); 5940 5941 if (!IS_ERR(inode) && root != sub_root) { 5942 down_read(&fs_info->cleanup_work_sem); 5943 if (!sb_rdonly(inode->i_sb)) 5944 ret = btrfs_orphan_cleanup(sub_root); 5945 up_read(&fs_info->cleanup_work_sem); 5946 if (ret) { 5947 iput(inode); 5948 inode = ERR_PTR(ret); 5949 } 5950 } 5951 5952 return inode; 5953 } 5954 5955 static int btrfs_dentry_delete(const struct dentry *dentry) 5956 { 5957 struct btrfs_root *root; 5958 struct inode *inode = d_inode(dentry); 5959 5960 if (!inode && !IS_ROOT(dentry)) 5961 inode = d_inode(dentry->d_parent); 5962 5963 if (inode) { 5964 root = BTRFS_I(inode)->root; 5965 if (btrfs_root_refs(&root->root_item) == 0) 5966 return 1; 5967 5968 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 5969 return 1; 5970 } 5971 return 0; 5972 } 5973 5974 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry, 5975 unsigned int flags) 5976 { 5977 struct inode *inode = btrfs_lookup_dentry(dir, dentry); 5978 5979 if (inode == ERR_PTR(-ENOENT)) 5980 inode = NULL; 5981 return d_splice_alias(inode, dentry); 5982 } 5983 5984 /* 5985 * All this infrastructure exists because dir_emit can fault, and we are holding 5986 * the tree lock when doing readdir. For now just allocate a buffer and copy 5987 * our information into that, and then dir_emit from the buffer. This is 5988 * similar to what NFS does, only we don't keep the buffer around in pagecache 5989 * because I'm afraid I'll mess that up. Long term we need to make filldir do 5990 * copy_to_user_inatomic so we don't have to worry about page faulting under the 5991 * tree lock. 5992 */ 5993 static int btrfs_opendir(struct inode *inode, struct file *file) 5994 { 5995 struct btrfs_file_private *private; 5996 5997 private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL); 5998 if (!private) 5999 return -ENOMEM; 6000 private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL); 6001 if (!private->filldir_buf) { 6002 kfree(private); 6003 return -ENOMEM; 6004 } 6005 file->private_data = private; 6006 return 0; 6007 } 6008 6009 struct dir_entry { 6010 u64 ino; 6011 u64 offset; 6012 unsigned type; 6013 int name_len; 6014 }; 6015 6016 static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx) 6017 { 6018 while (entries--) { 6019 struct dir_entry *entry = addr; 6020 char *name = (char *)(entry + 1); 6021 6022 ctx->pos = get_unaligned(&entry->offset); 6023 if (!dir_emit(ctx, name, get_unaligned(&entry->name_len), 6024 get_unaligned(&entry->ino), 6025 get_unaligned(&entry->type))) 6026 return 1; 6027 addr += sizeof(struct dir_entry) + 6028 get_unaligned(&entry->name_len); 6029 ctx->pos++; 6030 } 6031 return 0; 6032 } 6033 6034 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx) 6035 { 6036 struct inode *inode = file_inode(file); 6037 struct btrfs_root *root = BTRFS_I(inode)->root; 6038 struct btrfs_file_private *private = file->private_data; 6039 struct btrfs_dir_item *di; 6040 struct btrfs_key key; 6041 struct btrfs_key found_key; 6042 struct btrfs_path *path; 6043 void *addr; 6044 struct list_head ins_list; 6045 struct list_head del_list; 6046 int ret; 6047 struct extent_buffer *leaf; 6048 int slot; 6049 char *name_ptr; 6050 int name_len; 6051 int entries = 0; 6052 int total_len = 0; 6053 bool put = false; 6054 struct btrfs_key location; 6055 6056 if (!dir_emit_dots(file, ctx)) 6057 return 0; 6058 6059 path = btrfs_alloc_path(); 6060 if (!path) 6061 return -ENOMEM; 6062 6063 addr = private->filldir_buf; 6064 path->reada = READA_FORWARD; 6065 6066 INIT_LIST_HEAD(&ins_list); 6067 INIT_LIST_HEAD(&del_list); 6068 put = btrfs_readdir_get_delayed_items(inode, &ins_list, &del_list); 6069 6070 again: 6071 key.type = BTRFS_DIR_INDEX_KEY; 6072 key.offset = ctx->pos; 6073 key.objectid = btrfs_ino(BTRFS_I(inode)); 6074 6075 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 6076 if (ret < 0) 6077 goto err; 6078 6079 while (1) { 6080 struct dir_entry *entry; 6081 6082 leaf = path->nodes[0]; 6083 slot = path->slots[0]; 6084 if (slot >= btrfs_header_nritems(leaf)) { 6085 ret = btrfs_next_leaf(root, path); 6086 if (ret < 0) 6087 goto err; 6088 else if (ret > 0) 6089 break; 6090 continue; 6091 } 6092 6093 btrfs_item_key_to_cpu(leaf, &found_key, slot); 6094 6095 if (found_key.objectid != key.objectid) 6096 break; 6097 if (found_key.type != BTRFS_DIR_INDEX_KEY) 6098 break; 6099 if (found_key.offset < ctx->pos) 6100 goto next; 6101 if (btrfs_should_delete_dir_index(&del_list, found_key.offset)) 6102 goto next; 6103 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item); 6104 name_len = btrfs_dir_name_len(leaf, di); 6105 if ((total_len + sizeof(struct dir_entry) + name_len) >= 6106 PAGE_SIZE) { 6107 btrfs_release_path(path); 6108 ret = btrfs_filldir(private->filldir_buf, entries, ctx); 6109 if (ret) 6110 goto nopos; 6111 addr = private->filldir_buf; 6112 entries = 0; 6113 total_len = 0; 6114 goto again; 6115 } 6116 6117 entry = addr; 6118 put_unaligned(name_len, &entry->name_len); 6119 name_ptr = (char *)(entry + 1); 6120 read_extent_buffer(leaf, name_ptr, (unsigned long)(di + 1), 6121 name_len); 6122 put_unaligned(fs_ftype_to_dtype(btrfs_dir_type(leaf, di)), 6123 &entry->type); 6124 btrfs_dir_item_key_to_cpu(leaf, di, &location); 6125 put_unaligned(location.objectid, &entry->ino); 6126 put_unaligned(found_key.offset, &entry->offset); 6127 entries++; 6128 addr += sizeof(struct dir_entry) + name_len; 6129 total_len += sizeof(struct dir_entry) + name_len; 6130 next: 6131 path->slots[0]++; 6132 } 6133 btrfs_release_path(path); 6134 6135 ret = btrfs_filldir(private->filldir_buf, entries, ctx); 6136 if (ret) 6137 goto nopos; 6138 6139 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list); 6140 if (ret) 6141 goto nopos; 6142 6143 /* 6144 * Stop new entries from being returned after we return the last 6145 * entry. 6146 * 6147 * New directory entries are assigned a strictly increasing 6148 * offset. This means that new entries created during readdir 6149 * are *guaranteed* to be seen in the future by that readdir. 6150 * This has broken buggy programs which operate on names as 6151 * they're returned by readdir. Until we re-use freed offsets 6152 * we have this hack to stop new entries from being returned 6153 * under the assumption that they'll never reach this huge 6154 * offset. 6155 * 6156 * This is being careful not to overflow 32bit loff_t unless the 6157 * last entry requires it because doing so has broken 32bit apps 6158 * in the past. 6159 */ 6160 if (ctx->pos >= INT_MAX) 6161 ctx->pos = LLONG_MAX; 6162 else 6163 ctx->pos = INT_MAX; 6164 nopos: 6165 ret = 0; 6166 err: 6167 if (put) 6168 btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list); 6169 btrfs_free_path(path); 6170 return ret; 6171 } 6172 6173 /* 6174 * This is somewhat expensive, updating the tree every time the 6175 * inode changes. But, it is most likely to find the inode in cache. 6176 * FIXME, needs more benchmarking...there are no reasons other than performance 6177 * to keep or drop this code. 6178 */ 6179 static int btrfs_dirty_inode(struct inode *inode) 6180 { 6181 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 6182 struct btrfs_root *root = BTRFS_I(inode)->root; 6183 struct btrfs_trans_handle *trans; 6184 int ret; 6185 6186 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags)) 6187 return 0; 6188 6189 trans = btrfs_join_transaction(root); 6190 if (IS_ERR(trans)) 6191 return PTR_ERR(trans); 6192 6193 ret = btrfs_update_inode(trans, root, inode); 6194 if (ret && ret == -ENOSPC) { 6195 /* whoops, lets try again with the full transaction */ 6196 btrfs_end_transaction(trans); 6197 trans = btrfs_start_transaction(root, 1); 6198 if (IS_ERR(trans)) 6199 return PTR_ERR(trans); 6200 6201 ret = btrfs_update_inode(trans, root, inode); 6202 } 6203 btrfs_end_transaction(trans); 6204 if (BTRFS_I(inode)->delayed_node) 6205 btrfs_balance_delayed_items(fs_info); 6206 6207 return ret; 6208 } 6209 6210 /* 6211 * This is a copy of file_update_time. We need this so we can return error on 6212 * ENOSPC for updating the inode in the case of file write and mmap writes. 6213 */ 6214 static int btrfs_update_time(struct inode *inode, struct timespec64 *now, 6215 int flags) 6216 { 6217 struct btrfs_root *root = BTRFS_I(inode)->root; 6218 bool dirty = flags & ~S_VERSION; 6219 6220 if (btrfs_root_readonly(root)) 6221 return -EROFS; 6222 6223 if (flags & S_VERSION) 6224 dirty |= inode_maybe_inc_iversion(inode, dirty); 6225 if (flags & S_CTIME) 6226 inode->i_ctime = *now; 6227 if (flags & S_MTIME) 6228 inode->i_mtime = *now; 6229 if (flags & S_ATIME) 6230 inode->i_atime = *now; 6231 return dirty ? btrfs_dirty_inode(inode) : 0; 6232 } 6233 6234 /* 6235 * find the highest existing sequence number in a directory 6236 * and then set the in-memory index_cnt variable to reflect 6237 * free sequence numbers 6238 */ 6239 static int btrfs_set_inode_index_count(struct btrfs_inode *inode) 6240 { 6241 struct btrfs_root *root = inode->root; 6242 struct btrfs_key key, found_key; 6243 struct btrfs_path *path; 6244 struct extent_buffer *leaf; 6245 int ret; 6246 6247 key.objectid = btrfs_ino(inode); 6248 key.type = BTRFS_DIR_INDEX_KEY; 6249 key.offset = (u64)-1; 6250 6251 path = btrfs_alloc_path(); 6252 if (!path) 6253 return -ENOMEM; 6254 6255 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 6256 if (ret < 0) 6257 goto out; 6258 /* FIXME: we should be able to handle this */ 6259 if (ret == 0) 6260 goto out; 6261 ret = 0; 6262 6263 /* 6264 * MAGIC NUMBER EXPLANATION: 6265 * since we search a directory based on f_pos we have to start at 2 6266 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody 6267 * else has to start at 2 6268 */ 6269 if (path->slots[0] == 0) { 6270 inode->index_cnt = 2; 6271 goto out; 6272 } 6273 6274 path->slots[0]--; 6275 6276 leaf = path->nodes[0]; 6277 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6278 6279 if (found_key.objectid != btrfs_ino(inode) || 6280 found_key.type != BTRFS_DIR_INDEX_KEY) { 6281 inode->index_cnt = 2; 6282 goto out; 6283 } 6284 6285 inode->index_cnt = found_key.offset + 1; 6286 out: 6287 btrfs_free_path(path); 6288 return ret; 6289 } 6290 6291 /* 6292 * helper to find a free sequence number in a given directory. This current 6293 * code is very simple, later versions will do smarter things in the btree 6294 */ 6295 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index) 6296 { 6297 int ret = 0; 6298 6299 if (dir->index_cnt == (u64)-1) { 6300 ret = btrfs_inode_delayed_dir_index_count(dir); 6301 if (ret) { 6302 ret = btrfs_set_inode_index_count(dir); 6303 if (ret) 6304 return ret; 6305 } 6306 } 6307 6308 *index = dir->index_cnt; 6309 dir->index_cnt++; 6310 6311 return ret; 6312 } 6313 6314 static int btrfs_insert_inode_locked(struct inode *inode) 6315 { 6316 struct btrfs_iget_args args; 6317 args.location = &BTRFS_I(inode)->location; 6318 args.root = BTRFS_I(inode)->root; 6319 6320 return insert_inode_locked4(inode, 6321 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root), 6322 btrfs_find_actor, &args); 6323 } 6324 6325 /* 6326 * Inherit flags from the parent inode. 6327 * 6328 * Currently only the compression flags and the cow flags are inherited. 6329 */ 6330 static void btrfs_inherit_iflags(struct inode *inode, struct inode *dir) 6331 { 6332 unsigned int flags; 6333 6334 if (!dir) 6335 return; 6336 6337 flags = BTRFS_I(dir)->flags; 6338 6339 if (flags & BTRFS_INODE_NOCOMPRESS) { 6340 BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS; 6341 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS; 6342 } else if (flags & BTRFS_INODE_COMPRESS) { 6343 BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS; 6344 BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS; 6345 } 6346 6347 if (flags & BTRFS_INODE_NODATACOW) { 6348 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW; 6349 if (S_ISREG(inode->i_mode)) 6350 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; 6351 } 6352 6353 btrfs_sync_inode_flags_to_i_flags(inode); 6354 } 6355 6356 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans, 6357 struct btrfs_root *root, 6358 struct inode *dir, 6359 const char *name, int name_len, 6360 u64 ref_objectid, u64 objectid, 6361 umode_t mode, u64 *index) 6362 { 6363 struct btrfs_fs_info *fs_info = root->fs_info; 6364 struct inode *inode; 6365 struct btrfs_inode_item *inode_item; 6366 struct btrfs_key *location; 6367 struct btrfs_path *path; 6368 struct btrfs_inode_ref *ref; 6369 struct btrfs_key key[2]; 6370 u32 sizes[2]; 6371 int nitems = name ? 2 : 1; 6372 unsigned long ptr; 6373 unsigned int nofs_flag; 6374 int ret; 6375 6376 path = btrfs_alloc_path(); 6377 if (!path) 6378 return ERR_PTR(-ENOMEM); 6379 6380 nofs_flag = memalloc_nofs_save(); 6381 inode = new_inode(fs_info->sb); 6382 memalloc_nofs_restore(nofs_flag); 6383 if (!inode) { 6384 btrfs_free_path(path); 6385 return ERR_PTR(-ENOMEM); 6386 } 6387 6388 /* 6389 * O_TMPFILE, set link count to 0, so that after this point, 6390 * we fill in an inode item with the correct link count. 6391 */ 6392 if (!name) 6393 set_nlink(inode, 0); 6394 6395 /* 6396 * we have to initialize this early, so we can reclaim the inode 6397 * number if we fail afterwards in this function. 6398 */ 6399 inode->i_ino = objectid; 6400 6401 if (dir && name) { 6402 trace_btrfs_inode_request(dir); 6403 6404 ret = btrfs_set_inode_index(BTRFS_I(dir), index); 6405 if (ret) { 6406 btrfs_free_path(path); 6407 iput(inode); 6408 return ERR_PTR(ret); 6409 } 6410 } else if (dir) { 6411 *index = 0; 6412 } 6413 /* 6414 * index_cnt is ignored for everything but a dir, 6415 * btrfs_set_inode_index_count has an explanation for the magic 6416 * number 6417 */ 6418 BTRFS_I(inode)->index_cnt = 2; 6419 BTRFS_I(inode)->dir_index = *index; 6420 BTRFS_I(inode)->root = root; 6421 BTRFS_I(inode)->generation = trans->transid; 6422 inode->i_generation = BTRFS_I(inode)->generation; 6423 6424 /* 6425 * We could have gotten an inode number from somebody who was fsynced 6426 * and then removed in this same transaction, so let's just set full 6427 * sync since it will be a full sync anyway and this will blow away the 6428 * old info in the log. 6429 */ 6430 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 6431 6432 key[0].objectid = objectid; 6433 key[0].type = BTRFS_INODE_ITEM_KEY; 6434 key[0].offset = 0; 6435 6436 sizes[0] = sizeof(struct btrfs_inode_item); 6437 6438 if (name) { 6439 /* 6440 * Start new inodes with an inode_ref. This is slightly more 6441 * efficient for small numbers of hard links since they will 6442 * be packed into one item. Extended refs will kick in if we 6443 * add more hard links than can fit in the ref item. 6444 */ 6445 key[1].objectid = objectid; 6446 key[1].type = BTRFS_INODE_REF_KEY; 6447 key[1].offset = ref_objectid; 6448 6449 sizes[1] = name_len + sizeof(*ref); 6450 } 6451 6452 location = &BTRFS_I(inode)->location; 6453 location->objectid = objectid; 6454 location->offset = 0; 6455 location->type = BTRFS_INODE_ITEM_KEY; 6456 6457 ret = btrfs_insert_inode_locked(inode); 6458 if (ret < 0) { 6459 iput(inode); 6460 goto fail; 6461 } 6462 6463 path->leave_spinning = 1; 6464 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems); 6465 if (ret != 0) 6466 goto fail_unlock; 6467 6468 inode_init_owner(inode, dir, mode); 6469 inode_set_bytes(inode, 0); 6470 6471 inode->i_mtime = current_time(inode); 6472 inode->i_atime = inode->i_mtime; 6473 inode->i_ctime = inode->i_mtime; 6474 BTRFS_I(inode)->i_otime = inode->i_mtime; 6475 6476 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0], 6477 struct btrfs_inode_item); 6478 memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item, 6479 sizeof(*inode_item)); 6480 fill_inode_item(trans, path->nodes[0], inode_item, inode); 6481 6482 if (name) { 6483 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1, 6484 struct btrfs_inode_ref); 6485 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len); 6486 btrfs_set_inode_ref_index(path->nodes[0], ref, *index); 6487 ptr = (unsigned long)(ref + 1); 6488 write_extent_buffer(path->nodes[0], name, ptr, name_len); 6489 } 6490 6491 btrfs_mark_buffer_dirty(path->nodes[0]); 6492 btrfs_free_path(path); 6493 6494 btrfs_inherit_iflags(inode, dir); 6495 6496 if (S_ISREG(mode)) { 6497 if (btrfs_test_opt(fs_info, NODATASUM)) 6498 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; 6499 if (btrfs_test_opt(fs_info, NODATACOW)) 6500 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW | 6501 BTRFS_INODE_NODATASUM; 6502 } 6503 6504 inode_tree_add(inode); 6505 6506 trace_btrfs_inode_new(inode); 6507 btrfs_set_inode_last_trans(trans, inode); 6508 6509 btrfs_update_root_times(trans, root); 6510 6511 ret = btrfs_inode_inherit_props(trans, inode, dir); 6512 if (ret) 6513 btrfs_err(fs_info, 6514 "error inheriting props for ino %llu (root %llu): %d", 6515 btrfs_ino(BTRFS_I(inode)), root->root_key.objectid, ret); 6516 6517 return inode; 6518 6519 fail_unlock: 6520 discard_new_inode(inode); 6521 fail: 6522 if (dir && name) 6523 BTRFS_I(dir)->index_cnt--; 6524 btrfs_free_path(path); 6525 return ERR_PTR(ret); 6526 } 6527 6528 /* 6529 * utility function to add 'inode' into 'parent_inode' with 6530 * a give name and a given sequence number. 6531 * if 'add_backref' is true, also insert a backref from the 6532 * inode to the parent directory. 6533 */ 6534 int btrfs_add_link(struct btrfs_trans_handle *trans, 6535 struct btrfs_inode *parent_inode, struct btrfs_inode *inode, 6536 const char *name, int name_len, int add_backref, u64 index) 6537 { 6538 int ret = 0; 6539 struct btrfs_key key; 6540 struct btrfs_root *root = parent_inode->root; 6541 u64 ino = btrfs_ino(inode); 6542 u64 parent_ino = btrfs_ino(parent_inode); 6543 6544 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6545 memcpy(&key, &inode->root->root_key, sizeof(key)); 6546 } else { 6547 key.objectid = ino; 6548 key.type = BTRFS_INODE_ITEM_KEY; 6549 key.offset = 0; 6550 } 6551 6552 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6553 ret = btrfs_add_root_ref(trans, key.objectid, 6554 root->root_key.objectid, parent_ino, 6555 index, name, name_len); 6556 } else if (add_backref) { 6557 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino, 6558 parent_ino, index); 6559 } 6560 6561 /* Nothing to clean up yet */ 6562 if (ret) 6563 return ret; 6564 6565 ret = btrfs_insert_dir_item(trans, name, name_len, parent_inode, &key, 6566 btrfs_inode_type(&inode->vfs_inode), index); 6567 if (ret == -EEXIST || ret == -EOVERFLOW) 6568 goto fail_dir_item; 6569 else if (ret) { 6570 btrfs_abort_transaction(trans, ret); 6571 return ret; 6572 } 6573 6574 btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size + 6575 name_len * 2); 6576 inode_inc_iversion(&parent_inode->vfs_inode); 6577 /* 6578 * If we are replaying a log tree, we do not want to update the mtime 6579 * and ctime of the parent directory with the current time, since the 6580 * log replay procedure is responsible for setting them to their correct 6581 * values (the ones it had when the fsync was done). 6582 */ 6583 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &root->fs_info->flags)) { 6584 struct timespec64 now = current_time(&parent_inode->vfs_inode); 6585 6586 parent_inode->vfs_inode.i_mtime = now; 6587 parent_inode->vfs_inode.i_ctime = now; 6588 } 6589 ret = btrfs_update_inode(trans, root, &parent_inode->vfs_inode); 6590 if (ret) 6591 btrfs_abort_transaction(trans, ret); 6592 return ret; 6593 6594 fail_dir_item: 6595 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6596 u64 local_index; 6597 int err; 6598 err = btrfs_del_root_ref(trans, key.objectid, 6599 root->root_key.objectid, parent_ino, 6600 &local_index, name, name_len); 6601 if (err) 6602 btrfs_abort_transaction(trans, err); 6603 } else if (add_backref) { 6604 u64 local_index; 6605 int err; 6606 6607 err = btrfs_del_inode_ref(trans, root, name, name_len, 6608 ino, parent_ino, &local_index); 6609 if (err) 6610 btrfs_abort_transaction(trans, err); 6611 } 6612 6613 /* Return the original error code */ 6614 return ret; 6615 } 6616 6617 static int btrfs_add_nondir(struct btrfs_trans_handle *trans, 6618 struct btrfs_inode *dir, struct dentry *dentry, 6619 struct btrfs_inode *inode, int backref, u64 index) 6620 { 6621 int err = btrfs_add_link(trans, dir, inode, 6622 dentry->d_name.name, dentry->d_name.len, 6623 backref, index); 6624 if (err > 0) 6625 err = -EEXIST; 6626 return err; 6627 } 6628 6629 static int btrfs_mknod(struct inode *dir, struct dentry *dentry, 6630 umode_t mode, dev_t rdev) 6631 { 6632 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 6633 struct btrfs_trans_handle *trans; 6634 struct btrfs_root *root = BTRFS_I(dir)->root; 6635 struct inode *inode = NULL; 6636 int err; 6637 u64 objectid; 6638 u64 index = 0; 6639 6640 /* 6641 * 2 for inode item and ref 6642 * 2 for dir items 6643 * 1 for xattr if selinux is on 6644 */ 6645 trans = btrfs_start_transaction(root, 5); 6646 if (IS_ERR(trans)) 6647 return PTR_ERR(trans); 6648 6649 err = btrfs_find_free_ino(root, &objectid); 6650 if (err) 6651 goto out_unlock; 6652 6653 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 6654 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid, 6655 mode, &index); 6656 if (IS_ERR(inode)) { 6657 err = PTR_ERR(inode); 6658 inode = NULL; 6659 goto out_unlock; 6660 } 6661 6662 /* 6663 * If the active LSM wants to access the inode during 6664 * d_instantiate it needs these. Smack checks to see 6665 * if the filesystem supports xattrs by looking at the 6666 * ops vector. 6667 */ 6668 inode->i_op = &btrfs_special_inode_operations; 6669 init_special_inode(inode, inode->i_mode, rdev); 6670 6671 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 6672 if (err) 6673 goto out_unlock; 6674 6675 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode), 6676 0, index); 6677 if (err) 6678 goto out_unlock; 6679 6680 btrfs_update_inode(trans, root, inode); 6681 d_instantiate_new(dentry, inode); 6682 6683 out_unlock: 6684 btrfs_end_transaction(trans); 6685 btrfs_btree_balance_dirty(fs_info); 6686 if (err && inode) { 6687 inode_dec_link_count(inode); 6688 discard_new_inode(inode); 6689 } 6690 return err; 6691 } 6692 6693 static int btrfs_create(struct inode *dir, struct dentry *dentry, 6694 umode_t mode, bool excl) 6695 { 6696 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 6697 struct btrfs_trans_handle *trans; 6698 struct btrfs_root *root = BTRFS_I(dir)->root; 6699 struct inode *inode = NULL; 6700 int err; 6701 u64 objectid; 6702 u64 index = 0; 6703 6704 /* 6705 * 2 for inode item and ref 6706 * 2 for dir items 6707 * 1 for xattr if selinux is on 6708 */ 6709 trans = btrfs_start_transaction(root, 5); 6710 if (IS_ERR(trans)) 6711 return PTR_ERR(trans); 6712 6713 err = btrfs_find_free_ino(root, &objectid); 6714 if (err) 6715 goto out_unlock; 6716 6717 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 6718 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid, 6719 mode, &index); 6720 if (IS_ERR(inode)) { 6721 err = PTR_ERR(inode); 6722 inode = NULL; 6723 goto out_unlock; 6724 } 6725 /* 6726 * If the active LSM wants to access the inode during 6727 * d_instantiate it needs these. Smack checks to see 6728 * if the filesystem supports xattrs by looking at the 6729 * ops vector. 6730 */ 6731 inode->i_fop = &btrfs_file_operations; 6732 inode->i_op = &btrfs_file_inode_operations; 6733 inode->i_mapping->a_ops = &btrfs_aops; 6734 6735 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 6736 if (err) 6737 goto out_unlock; 6738 6739 err = btrfs_update_inode(trans, root, inode); 6740 if (err) 6741 goto out_unlock; 6742 6743 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode), 6744 0, index); 6745 if (err) 6746 goto out_unlock; 6747 6748 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 6749 d_instantiate_new(dentry, inode); 6750 6751 out_unlock: 6752 btrfs_end_transaction(trans); 6753 if (err && inode) { 6754 inode_dec_link_count(inode); 6755 discard_new_inode(inode); 6756 } 6757 btrfs_btree_balance_dirty(fs_info); 6758 return err; 6759 } 6760 6761 static int btrfs_link(struct dentry *old_dentry, struct inode *dir, 6762 struct dentry *dentry) 6763 { 6764 struct btrfs_trans_handle *trans = NULL; 6765 struct btrfs_root *root = BTRFS_I(dir)->root; 6766 struct inode *inode = d_inode(old_dentry); 6767 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 6768 u64 index; 6769 int err; 6770 int drop_inode = 0; 6771 6772 /* do not allow sys_link's with other subvols of the same device */ 6773 if (root->root_key.objectid != BTRFS_I(inode)->root->root_key.objectid) 6774 return -EXDEV; 6775 6776 if (inode->i_nlink >= BTRFS_LINK_MAX) 6777 return -EMLINK; 6778 6779 err = btrfs_set_inode_index(BTRFS_I(dir), &index); 6780 if (err) 6781 goto fail; 6782 6783 /* 6784 * 2 items for inode and inode ref 6785 * 2 items for dir items 6786 * 1 item for parent inode 6787 * 1 item for orphan item deletion if O_TMPFILE 6788 */ 6789 trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6); 6790 if (IS_ERR(trans)) { 6791 err = PTR_ERR(trans); 6792 trans = NULL; 6793 goto fail; 6794 } 6795 6796 /* There are several dir indexes for this inode, clear the cache. */ 6797 BTRFS_I(inode)->dir_index = 0ULL; 6798 inc_nlink(inode); 6799 inode_inc_iversion(inode); 6800 inode->i_ctime = current_time(inode); 6801 ihold(inode); 6802 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags); 6803 6804 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode), 6805 1, index); 6806 6807 if (err) { 6808 drop_inode = 1; 6809 } else { 6810 struct dentry *parent = dentry->d_parent; 6811 int ret; 6812 6813 err = btrfs_update_inode(trans, root, inode); 6814 if (err) 6815 goto fail; 6816 if (inode->i_nlink == 1) { 6817 /* 6818 * If new hard link count is 1, it's a file created 6819 * with open(2) O_TMPFILE flag. 6820 */ 6821 err = btrfs_orphan_del(trans, BTRFS_I(inode)); 6822 if (err) 6823 goto fail; 6824 } 6825 d_instantiate(dentry, inode); 6826 ret = btrfs_log_new_name(trans, BTRFS_I(inode), NULL, parent, 6827 true, NULL); 6828 if (ret == BTRFS_NEED_TRANS_COMMIT) { 6829 err = btrfs_commit_transaction(trans); 6830 trans = NULL; 6831 } 6832 } 6833 6834 fail: 6835 if (trans) 6836 btrfs_end_transaction(trans); 6837 if (drop_inode) { 6838 inode_dec_link_count(inode); 6839 iput(inode); 6840 } 6841 btrfs_btree_balance_dirty(fs_info); 6842 return err; 6843 } 6844 6845 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 6846 { 6847 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 6848 struct inode *inode = NULL; 6849 struct btrfs_trans_handle *trans; 6850 struct btrfs_root *root = BTRFS_I(dir)->root; 6851 int err = 0; 6852 u64 objectid = 0; 6853 u64 index = 0; 6854 6855 /* 6856 * 2 items for inode and ref 6857 * 2 items for dir items 6858 * 1 for xattr if selinux is on 6859 */ 6860 trans = btrfs_start_transaction(root, 5); 6861 if (IS_ERR(trans)) 6862 return PTR_ERR(trans); 6863 6864 err = btrfs_find_free_ino(root, &objectid); 6865 if (err) 6866 goto out_fail; 6867 6868 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 6869 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid, 6870 S_IFDIR | mode, &index); 6871 if (IS_ERR(inode)) { 6872 err = PTR_ERR(inode); 6873 inode = NULL; 6874 goto out_fail; 6875 } 6876 6877 /* these must be set before we unlock the inode */ 6878 inode->i_op = &btrfs_dir_inode_operations; 6879 inode->i_fop = &btrfs_dir_file_operations; 6880 6881 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 6882 if (err) 6883 goto out_fail; 6884 6885 btrfs_i_size_write(BTRFS_I(inode), 0); 6886 err = btrfs_update_inode(trans, root, inode); 6887 if (err) 6888 goto out_fail; 6889 6890 err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), 6891 dentry->d_name.name, 6892 dentry->d_name.len, 0, index); 6893 if (err) 6894 goto out_fail; 6895 6896 d_instantiate_new(dentry, inode); 6897 6898 out_fail: 6899 btrfs_end_transaction(trans); 6900 if (err && inode) { 6901 inode_dec_link_count(inode); 6902 discard_new_inode(inode); 6903 } 6904 btrfs_btree_balance_dirty(fs_info); 6905 return err; 6906 } 6907 6908 static noinline int uncompress_inline(struct btrfs_path *path, 6909 struct page *page, 6910 size_t pg_offset, u64 extent_offset, 6911 struct btrfs_file_extent_item *item) 6912 { 6913 int ret; 6914 struct extent_buffer *leaf = path->nodes[0]; 6915 char *tmp; 6916 size_t max_size; 6917 unsigned long inline_size; 6918 unsigned long ptr; 6919 int compress_type; 6920 6921 WARN_ON(pg_offset != 0); 6922 compress_type = btrfs_file_extent_compression(leaf, item); 6923 max_size = btrfs_file_extent_ram_bytes(leaf, item); 6924 inline_size = btrfs_file_extent_inline_item_len(leaf, 6925 btrfs_item_nr(path->slots[0])); 6926 tmp = kmalloc(inline_size, GFP_NOFS); 6927 if (!tmp) 6928 return -ENOMEM; 6929 ptr = btrfs_file_extent_inline_start(item); 6930 6931 read_extent_buffer(leaf, tmp, ptr, inline_size); 6932 6933 max_size = min_t(unsigned long, PAGE_SIZE, max_size); 6934 ret = btrfs_decompress(compress_type, tmp, page, 6935 extent_offset, inline_size, max_size); 6936 6937 /* 6938 * decompression code contains a memset to fill in any space between the end 6939 * of the uncompressed data and the end of max_size in case the decompressed 6940 * data ends up shorter than ram_bytes. That doesn't cover the hole between 6941 * the end of an inline extent and the beginning of the next block, so we 6942 * cover that region here. 6943 */ 6944 6945 if (max_size + pg_offset < PAGE_SIZE) { 6946 char *map = kmap(page); 6947 memset(map + pg_offset + max_size, 0, PAGE_SIZE - max_size - pg_offset); 6948 kunmap(page); 6949 } 6950 kfree(tmp); 6951 return ret; 6952 } 6953 6954 /* 6955 * a bit scary, this does extent mapping from logical file offset to the disk. 6956 * the ugly parts come from merging extents from the disk with the in-ram 6957 * representation. This gets more complex because of the data=ordered code, 6958 * where the in-ram extents might be locked pending data=ordered completion. 6959 * 6960 * This also copies inline extents directly into the page. 6961 */ 6962 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode, 6963 struct page *page, 6964 size_t pg_offset, u64 start, u64 len, 6965 int create) 6966 { 6967 struct btrfs_fs_info *fs_info = inode->root->fs_info; 6968 int ret; 6969 int err = 0; 6970 u64 extent_start = 0; 6971 u64 extent_end = 0; 6972 u64 objectid = btrfs_ino(inode); 6973 int extent_type = -1; 6974 struct btrfs_path *path = NULL; 6975 struct btrfs_root *root = inode->root; 6976 struct btrfs_file_extent_item *item; 6977 struct extent_buffer *leaf; 6978 struct btrfs_key found_key; 6979 struct extent_map *em = NULL; 6980 struct extent_map_tree *em_tree = &inode->extent_tree; 6981 struct extent_io_tree *io_tree = &inode->io_tree; 6982 const bool new_inline = !page || create; 6983 6984 read_lock(&em_tree->lock); 6985 em = lookup_extent_mapping(em_tree, start, len); 6986 read_unlock(&em_tree->lock); 6987 6988 if (em) { 6989 if (em->start > start || em->start + em->len <= start) 6990 free_extent_map(em); 6991 else if (em->block_start == EXTENT_MAP_INLINE && page) 6992 free_extent_map(em); 6993 else 6994 goto out; 6995 } 6996 em = alloc_extent_map(); 6997 if (!em) { 6998 err = -ENOMEM; 6999 goto out; 7000 } 7001 em->start = EXTENT_MAP_HOLE; 7002 em->orig_start = EXTENT_MAP_HOLE; 7003 em->len = (u64)-1; 7004 em->block_len = (u64)-1; 7005 7006 path = btrfs_alloc_path(); 7007 if (!path) { 7008 err = -ENOMEM; 7009 goto out; 7010 } 7011 7012 /* Chances are we'll be called again, so go ahead and do readahead */ 7013 path->reada = READA_FORWARD; 7014 7015 /* 7016 * Unless we're going to uncompress the inline extent, no sleep would 7017 * happen. 7018 */ 7019 path->leave_spinning = 1; 7020 7021 ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0); 7022 if (ret < 0) { 7023 err = ret; 7024 goto out; 7025 } else if (ret > 0) { 7026 if (path->slots[0] == 0) 7027 goto not_found; 7028 path->slots[0]--; 7029 } 7030 7031 leaf = path->nodes[0]; 7032 item = btrfs_item_ptr(leaf, path->slots[0], 7033 struct btrfs_file_extent_item); 7034 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 7035 if (found_key.objectid != objectid || 7036 found_key.type != BTRFS_EXTENT_DATA_KEY) { 7037 /* 7038 * If we backup past the first extent we want to move forward 7039 * and see if there is an extent in front of us, otherwise we'll 7040 * say there is a hole for our whole search range which can 7041 * cause problems. 7042 */ 7043 extent_end = start; 7044 goto next; 7045 } 7046 7047 extent_type = btrfs_file_extent_type(leaf, item); 7048 extent_start = found_key.offset; 7049 if (extent_type == BTRFS_FILE_EXTENT_REG || 7050 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 7051 /* Only regular file could have regular/prealloc extent */ 7052 if (!S_ISREG(inode->vfs_inode.i_mode)) { 7053 ret = -EUCLEAN; 7054 btrfs_crit(fs_info, 7055 "regular/prealloc extent found for non-regular inode %llu", 7056 btrfs_ino(inode)); 7057 goto out; 7058 } 7059 extent_end = extent_start + 7060 btrfs_file_extent_num_bytes(leaf, item); 7061 7062 trace_btrfs_get_extent_show_fi_regular(inode, leaf, item, 7063 extent_start); 7064 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 7065 size_t size; 7066 7067 size = btrfs_file_extent_ram_bytes(leaf, item); 7068 extent_end = ALIGN(extent_start + size, 7069 fs_info->sectorsize); 7070 7071 trace_btrfs_get_extent_show_fi_inline(inode, leaf, item, 7072 path->slots[0], 7073 extent_start); 7074 } 7075 next: 7076 if (start >= extent_end) { 7077 path->slots[0]++; 7078 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 7079 ret = btrfs_next_leaf(root, path); 7080 if (ret < 0) { 7081 err = ret; 7082 goto out; 7083 } else if (ret > 0) { 7084 goto not_found; 7085 } 7086 leaf = path->nodes[0]; 7087 } 7088 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 7089 if (found_key.objectid != objectid || 7090 found_key.type != BTRFS_EXTENT_DATA_KEY) 7091 goto not_found; 7092 if (start + len <= found_key.offset) 7093 goto not_found; 7094 if (start > found_key.offset) 7095 goto next; 7096 7097 /* New extent overlaps with existing one */ 7098 em->start = start; 7099 em->orig_start = start; 7100 em->len = found_key.offset - start; 7101 em->block_start = EXTENT_MAP_HOLE; 7102 goto insert; 7103 } 7104 7105 btrfs_extent_item_to_extent_map(inode, path, item, 7106 new_inline, em); 7107 7108 if (extent_type == BTRFS_FILE_EXTENT_REG || 7109 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 7110 goto insert; 7111 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 7112 unsigned long ptr; 7113 char *map; 7114 size_t size; 7115 size_t extent_offset; 7116 size_t copy_size; 7117 7118 if (new_inline) 7119 goto out; 7120 7121 size = btrfs_file_extent_ram_bytes(leaf, item); 7122 extent_offset = page_offset(page) + pg_offset - extent_start; 7123 copy_size = min_t(u64, PAGE_SIZE - pg_offset, 7124 size - extent_offset); 7125 em->start = extent_start + extent_offset; 7126 em->len = ALIGN(copy_size, fs_info->sectorsize); 7127 em->orig_block_len = em->len; 7128 em->orig_start = em->start; 7129 ptr = btrfs_file_extent_inline_start(item) + extent_offset; 7130 7131 btrfs_set_path_blocking(path); 7132 if (!PageUptodate(page)) { 7133 if (btrfs_file_extent_compression(leaf, item) != 7134 BTRFS_COMPRESS_NONE) { 7135 ret = uncompress_inline(path, page, pg_offset, 7136 extent_offset, item); 7137 if (ret) { 7138 err = ret; 7139 goto out; 7140 } 7141 } else { 7142 map = kmap(page); 7143 read_extent_buffer(leaf, map + pg_offset, ptr, 7144 copy_size); 7145 if (pg_offset + copy_size < PAGE_SIZE) { 7146 memset(map + pg_offset + copy_size, 0, 7147 PAGE_SIZE - pg_offset - 7148 copy_size); 7149 } 7150 kunmap(page); 7151 } 7152 flush_dcache_page(page); 7153 } 7154 set_extent_uptodate(io_tree, em->start, 7155 extent_map_end(em) - 1, NULL, GFP_NOFS); 7156 goto insert; 7157 } 7158 not_found: 7159 em->start = start; 7160 em->orig_start = start; 7161 em->len = len; 7162 em->block_start = EXTENT_MAP_HOLE; 7163 insert: 7164 btrfs_release_path(path); 7165 if (em->start > start || extent_map_end(em) <= start) { 7166 btrfs_err(fs_info, 7167 "bad extent! em: [%llu %llu] passed [%llu %llu]", 7168 em->start, em->len, start, len); 7169 err = -EIO; 7170 goto out; 7171 } 7172 7173 err = 0; 7174 write_lock(&em_tree->lock); 7175 err = btrfs_add_extent_mapping(fs_info, em_tree, &em, start, len); 7176 write_unlock(&em_tree->lock); 7177 out: 7178 btrfs_free_path(path); 7179 7180 trace_btrfs_get_extent(root, inode, em); 7181 7182 if (err) { 7183 free_extent_map(em); 7184 return ERR_PTR(err); 7185 } 7186 BUG_ON(!em); /* Error is always set */ 7187 return em; 7188 } 7189 7190 struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode, 7191 u64 start, u64 len) 7192 { 7193 struct extent_map *em; 7194 struct extent_map *hole_em = NULL; 7195 u64 delalloc_start = start; 7196 u64 end; 7197 u64 delalloc_len; 7198 u64 delalloc_end; 7199 int err = 0; 7200 7201 em = btrfs_get_extent(inode, NULL, 0, start, len, 0); 7202 if (IS_ERR(em)) 7203 return em; 7204 /* 7205 * If our em maps to: 7206 * - a hole or 7207 * - a pre-alloc extent, 7208 * there might actually be delalloc bytes behind it. 7209 */ 7210 if (em->block_start != EXTENT_MAP_HOLE && 7211 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 7212 return em; 7213 else 7214 hole_em = em; 7215 7216 /* check to see if we've wrapped (len == -1 or similar) */ 7217 end = start + len; 7218 if (end < start) 7219 end = (u64)-1; 7220 else 7221 end -= 1; 7222 7223 em = NULL; 7224 7225 /* ok, we didn't find anything, lets look for delalloc */ 7226 delalloc_len = count_range_bits(&inode->io_tree, &delalloc_start, 7227 end, len, EXTENT_DELALLOC, 1); 7228 delalloc_end = delalloc_start + delalloc_len; 7229 if (delalloc_end < delalloc_start) 7230 delalloc_end = (u64)-1; 7231 7232 /* 7233 * We didn't find anything useful, return the original results from 7234 * get_extent() 7235 */ 7236 if (delalloc_start > end || delalloc_end <= start) { 7237 em = hole_em; 7238 hole_em = NULL; 7239 goto out; 7240 } 7241 7242 /* 7243 * Adjust the delalloc_start to make sure it doesn't go backwards from 7244 * the start they passed in 7245 */ 7246 delalloc_start = max(start, delalloc_start); 7247 delalloc_len = delalloc_end - delalloc_start; 7248 7249 if (delalloc_len > 0) { 7250 u64 hole_start; 7251 u64 hole_len; 7252 const u64 hole_end = extent_map_end(hole_em); 7253 7254 em = alloc_extent_map(); 7255 if (!em) { 7256 err = -ENOMEM; 7257 goto out; 7258 } 7259 7260 ASSERT(hole_em); 7261 /* 7262 * When btrfs_get_extent can't find anything it returns one 7263 * huge hole 7264 * 7265 * Make sure what it found really fits our range, and adjust to 7266 * make sure it is based on the start from the caller 7267 */ 7268 if (hole_end <= start || hole_em->start > end) { 7269 free_extent_map(hole_em); 7270 hole_em = NULL; 7271 } else { 7272 hole_start = max(hole_em->start, start); 7273 hole_len = hole_end - hole_start; 7274 } 7275 7276 if (hole_em && delalloc_start > hole_start) { 7277 /* 7278 * Our hole starts before our delalloc, so we have to 7279 * return just the parts of the hole that go until the 7280 * delalloc starts 7281 */ 7282 em->len = min(hole_len, delalloc_start - hole_start); 7283 em->start = hole_start; 7284 em->orig_start = hole_start; 7285 /* 7286 * Don't adjust block start at all, it is fixed at 7287 * EXTENT_MAP_HOLE 7288 */ 7289 em->block_start = hole_em->block_start; 7290 em->block_len = hole_len; 7291 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags)) 7292 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 7293 } else { 7294 /* 7295 * Hole is out of passed range or it starts after 7296 * delalloc range 7297 */ 7298 em->start = delalloc_start; 7299 em->len = delalloc_len; 7300 em->orig_start = delalloc_start; 7301 em->block_start = EXTENT_MAP_DELALLOC; 7302 em->block_len = delalloc_len; 7303 } 7304 } else { 7305 return hole_em; 7306 } 7307 out: 7308 7309 free_extent_map(hole_em); 7310 if (err) { 7311 free_extent_map(em); 7312 return ERR_PTR(err); 7313 } 7314 return em; 7315 } 7316 7317 static struct extent_map *btrfs_create_dio_extent(struct inode *inode, 7318 const u64 start, 7319 const u64 len, 7320 const u64 orig_start, 7321 const u64 block_start, 7322 const u64 block_len, 7323 const u64 orig_block_len, 7324 const u64 ram_bytes, 7325 const int type) 7326 { 7327 struct extent_map *em = NULL; 7328 int ret; 7329 7330 if (type != BTRFS_ORDERED_NOCOW) { 7331 em = create_io_em(inode, start, len, orig_start, 7332 block_start, block_len, orig_block_len, 7333 ram_bytes, 7334 BTRFS_COMPRESS_NONE, /* compress_type */ 7335 type); 7336 if (IS_ERR(em)) 7337 goto out; 7338 } 7339 ret = btrfs_add_ordered_extent_dio(inode, start, block_start, 7340 len, block_len, type); 7341 if (ret) { 7342 if (em) { 7343 free_extent_map(em); 7344 btrfs_drop_extent_cache(BTRFS_I(inode), start, 7345 start + len - 1, 0); 7346 } 7347 em = ERR_PTR(ret); 7348 } 7349 out: 7350 7351 return em; 7352 } 7353 7354 static struct extent_map *btrfs_new_extent_direct(struct inode *inode, 7355 u64 start, u64 len) 7356 { 7357 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7358 struct btrfs_root *root = BTRFS_I(inode)->root; 7359 struct extent_map *em; 7360 struct btrfs_key ins; 7361 u64 alloc_hint; 7362 int ret; 7363 7364 alloc_hint = get_extent_allocation_hint(inode, start, len); 7365 ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize, 7366 0, alloc_hint, &ins, 1, 1); 7367 if (ret) 7368 return ERR_PTR(ret); 7369 7370 em = btrfs_create_dio_extent(inode, start, ins.offset, start, 7371 ins.objectid, ins.offset, ins.offset, 7372 ins.offset, BTRFS_ORDERED_REGULAR); 7373 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 7374 if (IS_ERR(em)) 7375 btrfs_free_reserved_extent(fs_info, ins.objectid, 7376 ins.offset, 1); 7377 7378 return em; 7379 } 7380 7381 /* 7382 * returns 1 when the nocow is safe, < 1 on error, 0 if the 7383 * block must be cow'd 7384 */ 7385 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len, 7386 u64 *orig_start, u64 *orig_block_len, 7387 u64 *ram_bytes) 7388 { 7389 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7390 struct btrfs_path *path; 7391 int ret; 7392 struct extent_buffer *leaf; 7393 struct btrfs_root *root = BTRFS_I(inode)->root; 7394 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 7395 struct btrfs_file_extent_item *fi; 7396 struct btrfs_key key; 7397 u64 disk_bytenr; 7398 u64 backref_offset; 7399 u64 extent_end; 7400 u64 num_bytes; 7401 int slot; 7402 int found_type; 7403 bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW); 7404 7405 path = btrfs_alloc_path(); 7406 if (!path) 7407 return -ENOMEM; 7408 7409 ret = btrfs_lookup_file_extent(NULL, root, path, 7410 btrfs_ino(BTRFS_I(inode)), offset, 0); 7411 if (ret < 0) 7412 goto out; 7413 7414 slot = path->slots[0]; 7415 if (ret == 1) { 7416 if (slot == 0) { 7417 /* can't find the item, must cow */ 7418 ret = 0; 7419 goto out; 7420 } 7421 slot--; 7422 } 7423 ret = 0; 7424 leaf = path->nodes[0]; 7425 btrfs_item_key_to_cpu(leaf, &key, slot); 7426 if (key.objectid != btrfs_ino(BTRFS_I(inode)) || 7427 key.type != BTRFS_EXTENT_DATA_KEY) { 7428 /* not our file or wrong item type, must cow */ 7429 goto out; 7430 } 7431 7432 if (key.offset > offset) { 7433 /* Wrong offset, must cow */ 7434 goto out; 7435 } 7436 7437 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 7438 found_type = btrfs_file_extent_type(leaf, fi); 7439 if (found_type != BTRFS_FILE_EXTENT_REG && 7440 found_type != BTRFS_FILE_EXTENT_PREALLOC) { 7441 /* not a regular extent, must cow */ 7442 goto out; 7443 } 7444 7445 if (!nocow && found_type == BTRFS_FILE_EXTENT_REG) 7446 goto out; 7447 7448 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 7449 if (extent_end <= offset) 7450 goto out; 7451 7452 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 7453 if (disk_bytenr == 0) 7454 goto out; 7455 7456 if (btrfs_file_extent_compression(leaf, fi) || 7457 btrfs_file_extent_encryption(leaf, fi) || 7458 btrfs_file_extent_other_encoding(leaf, fi)) 7459 goto out; 7460 7461 /* 7462 * Do the same check as in btrfs_cross_ref_exist but without the 7463 * unnecessary search. 7464 */ 7465 if (btrfs_file_extent_generation(leaf, fi) <= 7466 btrfs_root_last_snapshot(&root->root_item)) 7467 goto out; 7468 7469 backref_offset = btrfs_file_extent_offset(leaf, fi); 7470 7471 if (orig_start) { 7472 *orig_start = key.offset - backref_offset; 7473 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi); 7474 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 7475 } 7476 7477 if (btrfs_extent_readonly(fs_info, disk_bytenr)) 7478 goto out; 7479 7480 num_bytes = min(offset + *len, extent_end) - offset; 7481 if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) { 7482 u64 range_end; 7483 7484 range_end = round_up(offset + num_bytes, 7485 root->fs_info->sectorsize) - 1; 7486 ret = test_range_bit(io_tree, offset, range_end, 7487 EXTENT_DELALLOC, 0, NULL); 7488 if (ret) { 7489 ret = -EAGAIN; 7490 goto out; 7491 } 7492 } 7493 7494 btrfs_release_path(path); 7495 7496 /* 7497 * look for other files referencing this extent, if we 7498 * find any we must cow 7499 */ 7500 7501 ret = btrfs_cross_ref_exist(root, btrfs_ino(BTRFS_I(inode)), 7502 key.offset - backref_offset, disk_bytenr); 7503 if (ret) { 7504 ret = 0; 7505 goto out; 7506 } 7507 7508 /* 7509 * adjust disk_bytenr and num_bytes to cover just the bytes 7510 * in this extent we are about to write. If there 7511 * are any csums in that range we have to cow in order 7512 * to keep the csums correct 7513 */ 7514 disk_bytenr += backref_offset; 7515 disk_bytenr += offset - key.offset; 7516 if (csum_exist_in_range(fs_info, disk_bytenr, num_bytes)) 7517 goto out; 7518 /* 7519 * all of the above have passed, it is safe to overwrite this extent 7520 * without cow 7521 */ 7522 *len = num_bytes; 7523 ret = 1; 7524 out: 7525 btrfs_free_path(path); 7526 return ret; 7527 } 7528 7529 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend, 7530 struct extent_state **cached_state, int writing) 7531 { 7532 struct btrfs_ordered_extent *ordered; 7533 int ret = 0; 7534 7535 while (1) { 7536 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7537 cached_state); 7538 /* 7539 * We're concerned with the entire range that we're going to be 7540 * doing DIO to, so we need to make sure there's no ordered 7541 * extents in this range. 7542 */ 7543 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart, 7544 lockend - lockstart + 1); 7545 7546 /* 7547 * We need to make sure there are no buffered pages in this 7548 * range either, we could have raced between the invalidate in 7549 * generic_file_direct_write and locking the extent. The 7550 * invalidate needs to happen so that reads after a write do not 7551 * get stale data. 7552 */ 7553 if (!ordered && 7554 (!writing || !filemap_range_has_page(inode->i_mapping, 7555 lockstart, lockend))) 7556 break; 7557 7558 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7559 cached_state); 7560 7561 if (ordered) { 7562 /* 7563 * If we are doing a DIO read and the ordered extent we 7564 * found is for a buffered write, we can not wait for it 7565 * to complete and retry, because if we do so we can 7566 * deadlock with concurrent buffered writes on page 7567 * locks. This happens only if our DIO read covers more 7568 * than one extent map, if at this point has already 7569 * created an ordered extent for a previous extent map 7570 * and locked its range in the inode's io tree, and a 7571 * concurrent write against that previous extent map's 7572 * range and this range started (we unlock the ranges 7573 * in the io tree only when the bios complete and 7574 * buffered writes always lock pages before attempting 7575 * to lock range in the io tree). 7576 */ 7577 if (writing || 7578 test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) 7579 btrfs_start_ordered_extent(inode, ordered, 1); 7580 else 7581 ret = -ENOTBLK; 7582 btrfs_put_ordered_extent(ordered); 7583 } else { 7584 /* 7585 * We could trigger writeback for this range (and wait 7586 * for it to complete) and then invalidate the pages for 7587 * this range (through invalidate_inode_pages2_range()), 7588 * but that can lead us to a deadlock with a concurrent 7589 * call to readpages() (a buffered read or a defrag call 7590 * triggered a readahead) on a page lock due to an 7591 * ordered dio extent we created before but did not have 7592 * yet a corresponding bio submitted (whence it can not 7593 * complete), which makes readpages() wait for that 7594 * ordered extent to complete while holding a lock on 7595 * that page. 7596 */ 7597 ret = -ENOTBLK; 7598 } 7599 7600 if (ret) 7601 break; 7602 7603 cond_resched(); 7604 } 7605 7606 return ret; 7607 } 7608 7609 /* The callers of this must take lock_extent() */ 7610 static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len, 7611 u64 orig_start, u64 block_start, 7612 u64 block_len, u64 orig_block_len, 7613 u64 ram_bytes, int compress_type, 7614 int type) 7615 { 7616 struct extent_map_tree *em_tree; 7617 struct extent_map *em; 7618 int ret; 7619 7620 ASSERT(type == BTRFS_ORDERED_PREALLOC || 7621 type == BTRFS_ORDERED_COMPRESSED || 7622 type == BTRFS_ORDERED_NOCOW || 7623 type == BTRFS_ORDERED_REGULAR); 7624 7625 em_tree = &BTRFS_I(inode)->extent_tree; 7626 em = alloc_extent_map(); 7627 if (!em) 7628 return ERR_PTR(-ENOMEM); 7629 7630 em->start = start; 7631 em->orig_start = orig_start; 7632 em->len = len; 7633 em->block_len = block_len; 7634 em->block_start = block_start; 7635 em->orig_block_len = orig_block_len; 7636 em->ram_bytes = ram_bytes; 7637 em->generation = -1; 7638 set_bit(EXTENT_FLAG_PINNED, &em->flags); 7639 if (type == BTRFS_ORDERED_PREALLOC) { 7640 set_bit(EXTENT_FLAG_FILLING, &em->flags); 7641 } else if (type == BTRFS_ORDERED_COMPRESSED) { 7642 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 7643 em->compress_type = compress_type; 7644 } 7645 7646 do { 7647 btrfs_drop_extent_cache(BTRFS_I(inode), em->start, 7648 em->start + em->len - 1, 0); 7649 write_lock(&em_tree->lock); 7650 ret = add_extent_mapping(em_tree, em, 1); 7651 write_unlock(&em_tree->lock); 7652 /* 7653 * The caller has taken lock_extent(), who could race with us 7654 * to add em? 7655 */ 7656 } while (ret == -EEXIST); 7657 7658 if (ret) { 7659 free_extent_map(em); 7660 return ERR_PTR(ret); 7661 } 7662 7663 /* em got 2 refs now, callers needs to do free_extent_map once. */ 7664 return em; 7665 } 7666 7667 7668 static int btrfs_get_blocks_direct_read(struct extent_map *em, 7669 struct buffer_head *bh_result, 7670 struct inode *inode, 7671 u64 start, u64 len) 7672 { 7673 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7674 7675 if (em->block_start == EXTENT_MAP_HOLE || 7676 test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 7677 return -ENOENT; 7678 7679 len = min(len, em->len - (start - em->start)); 7680 7681 bh_result->b_blocknr = (em->block_start + (start - em->start)) >> 7682 inode->i_blkbits; 7683 bh_result->b_size = len; 7684 bh_result->b_bdev = fs_info->fs_devices->latest_bdev; 7685 set_buffer_mapped(bh_result); 7686 7687 return 0; 7688 } 7689 7690 static int btrfs_get_blocks_direct_write(struct extent_map **map, 7691 struct buffer_head *bh_result, 7692 struct inode *inode, 7693 struct btrfs_dio_data *dio_data, 7694 u64 start, u64 len) 7695 { 7696 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7697 struct extent_map *em = *map; 7698 int ret = 0; 7699 7700 /* 7701 * We don't allocate a new extent in the following cases 7702 * 7703 * 1) The inode is marked as NODATACOW. In this case we'll just use the 7704 * existing extent. 7705 * 2) The extent is marked as PREALLOC. We're good to go here and can 7706 * just use the extent. 7707 * 7708 */ 7709 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) || 7710 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) && 7711 em->block_start != EXTENT_MAP_HOLE)) { 7712 int type; 7713 u64 block_start, orig_start, orig_block_len, ram_bytes; 7714 7715 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 7716 type = BTRFS_ORDERED_PREALLOC; 7717 else 7718 type = BTRFS_ORDERED_NOCOW; 7719 len = min(len, em->len - (start - em->start)); 7720 block_start = em->block_start + (start - em->start); 7721 7722 if (can_nocow_extent(inode, start, &len, &orig_start, 7723 &orig_block_len, &ram_bytes) == 1 && 7724 btrfs_inc_nocow_writers(fs_info, block_start)) { 7725 struct extent_map *em2; 7726 7727 em2 = btrfs_create_dio_extent(inode, start, len, 7728 orig_start, block_start, 7729 len, orig_block_len, 7730 ram_bytes, type); 7731 btrfs_dec_nocow_writers(fs_info, block_start); 7732 if (type == BTRFS_ORDERED_PREALLOC) { 7733 free_extent_map(em); 7734 *map = em = em2; 7735 } 7736 7737 if (em2 && IS_ERR(em2)) { 7738 ret = PTR_ERR(em2); 7739 goto out; 7740 } 7741 /* 7742 * For inode marked NODATACOW or extent marked PREALLOC, 7743 * use the existing or preallocated extent, so does not 7744 * need to adjust btrfs_space_info's bytes_may_use. 7745 */ 7746 btrfs_free_reserved_data_space_noquota(inode, start, 7747 len); 7748 goto skip_cow; 7749 } 7750 } 7751 7752 /* this will cow the extent */ 7753 len = bh_result->b_size; 7754 free_extent_map(em); 7755 *map = em = btrfs_new_extent_direct(inode, start, len); 7756 if (IS_ERR(em)) { 7757 ret = PTR_ERR(em); 7758 goto out; 7759 } 7760 7761 len = min(len, em->len - (start - em->start)); 7762 7763 skip_cow: 7764 bh_result->b_blocknr = (em->block_start + (start - em->start)) >> 7765 inode->i_blkbits; 7766 bh_result->b_size = len; 7767 bh_result->b_bdev = fs_info->fs_devices->latest_bdev; 7768 set_buffer_mapped(bh_result); 7769 7770 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 7771 set_buffer_new(bh_result); 7772 7773 /* 7774 * Need to update the i_size under the extent lock so buffered 7775 * readers will get the updated i_size when we unlock. 7776 */ 7777 if (!dio_data->overwrite && start + len > i_size_read(inode)) 7778 i_size_write(inode, start + len); 7779 7780 WARN_ON(dio_data->reserve < len); 7781 dio_data->reserve -= len; 7782 dio_data->unsubmitted_oe_range_end = start + len; 7783 current->journal_info = dio_data; 7784 out: 7785 return ret; 7786 } 7787 7788 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock, 7789 struct buffer_head *bh_result, int create) 7790 { 7791 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7792 struct extent_map *em; 7793 struct extent_state *cached_state = NULL; 7794 struct btrfs_dio_data *dio_data = NULL; 7795 u64 start = iblock << inode->i_blkbits; 7796 u64 lockstart, lockend; 7797 u64 len = bh_result->b_size; 7798 int ret = 0; 7799 7800 if (!create) 7801 len = min_t(u64, len, fs_info->sectorsize); 7802 7803 lockstart = start; 7804 lockend = start + len - 1; 7805 7806 if (current->journal_info) { 7807 /* 7808 * Need to pull our outstanding extents and set journal_info to NULL so 7809 * that anything that needs to check if there's a transaction doesn't get 7810 * confused. 7811 */ 7812 dio_data = current->journal_info; 7813 current->journal_info = NULL; 7814 } 7815 7816 /* 7817 * If this errors out it's because we couldn't invalidate pagecache for 7818 * this range and we need to fallback to buffered. 7819 */ 7820 if (lock_extent_direct(inode, lockstart, lockend, &cached_state, 7821 create)) { 7822 ret = -ENOTBLK; 7823 goto err; 7824 } 7825 7826 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len, 0); 7827 if (IS_ERR(em)) { 7828 ret = PTR_ERR(em); 7829 goto unlock_err; 7830 } 7831 7832 /* 7833 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered 7834 * io. INLINE is special, and we could probably kludge it in here, but 7835 * it's still buffered so for safety lets just fall back to the generic 7836 * buffered path. 7837 * 7838 * For COMPRESSED we _have_ to read the entire extent in so we can 7839 * decompress it, so there will be buffering required no matter what we 7840 * do, so go ahead and fallback to buffered. 7841 * 7842 * We return -ENOTBLK because that's what makes DIO go ahead and go back 7843 * to buffered IO. Don't blame me, this is the price we pay for using 7844 * the generic code. 7845 */ 7846 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) || 7847 em->block_start == EXTENT_MAP_INLINE) { 7848 free_extent_map(em); 7849 ret = -ENOTBLK; 7850 goto unlock_err; 7851 } 7852 7853 if (create) { 7854 ret = btrfs_get_blocks_direct_write(&em, bh_result, inode, 7855 dio_data, start, len); 7856 if (ret < 0) 7857 goto unlock_err; 7858 7859 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, 7860 lockend, &cached_state); 7861 } else { 7862 ret = btrfs_get_blocks_direct_read(em, bh_result, inode, 7863 start, len); 7864 /* Can be negative only if we read from a hole */ 7865 if (ret < 0) { 7866 ret = 0; 7867 free_extent_map(em); 7868 goto unlock_err; 7869 } 7870 /* 7871 * We need to unlock only the end area that we aren't using. 7872 * The rest is going to be unlocked by the endio routine. 7873 */ 7874 lockstart = start + bh_result->b_size; 7875 if (lockstart < lockend) { 7876 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 7877 lockstart, lockend, &cached_state); 7878 } else { 7879 free_extent_state(cached_state); 7880 } 7881 } 7882 7883 free_extent_map(em); 7884 7885 return 0; 7886 7887 unlock_err: 7888 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7889 &cached_state); 7890 err: 7891 if (dio_data) 7892 current->journal_info = dio_data; 7893 return ret; 7894 } 7895 7896 static inline blk_status_t submit_dio_repair_bio(struct inode *inode, 7897 struct bio *bio, 7898 int mirror_num) 7899 { 7900 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7901 blk_status_t ret; 7902 7903 BUG_ON(bio_op(bio) == REQ_OP_WRITE); 7904 7905 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DIO_REPAIR); 7906 if (ret) 7907 return ret; 7908 7909 ret = btrfs_map_bio(fs_info, bio, mirror_num); 7910 7911 return ret; 7912 } 7913 7914 static int btrfs_check_dio_repairable(struct inode *inode, 7915 struct bio *failed_bio, 7916 struct io_failure_record *failrec, 7917 int failed_mirror) 7918 { 7919 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7920 int num_copies; 7921 7922 num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len); 7923 if (num_copies == 1) { 7924 /* 7925 * we only have a single copy of the data, so don't bother with 7926 * all the retry and error correction code that follows. no 7927 * matter what the error is, it is very likely to persist. 7928 */ 7929 btrfs_debug(fs_info, 7930 "Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d", 7931 num_copies, failrec->this_mirror, failed_mirror); 7932 return 0; 7933 } 7934 7935 failrec->failed_mirror = failed_mirror; 7936 failrec->this_mirror++; 7937 if (failrec->this_mirror == failed_mirror) 7938 failrec->this_mirror++; 7939 7940 if (failrec->this_mirror > num_copies) { 7941 btrfs_debug(fs_info, 7942 "Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d", 7943 num_copies, failrec->this_mirror, failed_mirror); 7944 return 0; 7945 } 7946 7947 return 1; 7948 } 7949 7950 static blk_status_t dio_read_error(struct inode *inode, struct bio *failed_bio, 7951 struct page *page, unsigned int pgoff, 7952 u64 start, u64 end, int failed_mirror, 7953 bio_end_io_t *repair_endio, void *repair_arg) 7954 { 7955 struct io_failure_record *failrec; 7956 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 7957 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; 7958 struct bio *bio; 7959 int isector; 7960 unsigned int read_mode = 0; 7961 int segs; 7962 int ret; 7963 blk_status_t status; 7964 struct bio_vec bvec; 7965 7966 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE); 7967 7968 ret = btrfs_get_io_failure_record(inode, start, end, &failrec); 7969 if (ret) 7970 return errno_to_blk_status(ret); 7971 7972 ret = btrfs_check_dio_repairable(inode, failed_bio, failrec, 7973 failed_mirror); 7974 if (!ret) { 7975 free_io_failure(failure_tree, io_tree, failrec); 7976 return BLK_STS_IOERR; 7977 } 7978 7979 segs = bio_segments(failed_bio); 7980 bio_get_first_bvec(failed_bio, &bvec); 7981 if (segs > 1 || 7982 (bvec.bv_len > btrfs_inode_sectorsize(inode))) 7983 read_mode |= REQ_FAILFAST_DEV; 7984 7985 isector = start - btrfs_io_bio(failed_bio)->logical; 7986 isector >>= inode->i_sb->s_blocksize_bits; 7987 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page, 7988 pgoff, isector, repair_endio, repair_arg); 7989 bio->bi_opf = REQ_OP_READ | read_mode; 7990 7991 btrfs_debug(BTRFS_I(inode)->root->fs_info, 7992 "repair DIO read error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d", 7993 read_mode, failrec->this_mirror, failrec->in_validation); 7994 7995 status = submit_dio_repair_bio(inode, bio, failrec->this_mirror); 7996 if (status) { 7997 free_io_failure(failure_tree, io_tree, failrec); 7998 bio_put(bio); 7999 } 8000 8001 return status; 8002 } 8003 8004 struct btrfs_retry_complete { 8005 struct completion done; 8006 struct inode *inode; 8007 u64 start; 8008 int uptodate; 8009 }; 8010 8011 static void btrfs_retry_endio_nocsum(struct bio *bio) 8012 { 8013 struct btrfs_retry_complete *done = bio->bi_private; 8014 struct inode *inode = done->inode; 8015 struct bio_vec *bvec; 8016 struct extent_io_tree *io_tree, *failure_tree; 8017 struct bvec_iter_all iter_all; 8018 8019 if (bio->bi_status) 8020 goto end; 8021 8022 ASSERT(bio->bi_vcnt == 1); 8023 io_tree = &BTRFS_I(inode)->io_tree; 8024 failure_tree = &BTRFS_I(inode)->io_failure_tree; 8025 ASSERT(bio_first_bvec_all(bio)->bv_len == btrfs_inode_sectorsize(inode)); 8026 8027 done->uptodate = 1; 8028 ASSERT(!bio_flagged(bio, BIO_CLONED)); 8029 bio_for_each_segment_all(bvec, bio, iter_all) 8030 clean_io_failure(BTRFS_I(inode)->root->fs_info, failure_tree, 8031 io_tree, done->start, bvec->bv_page, 8032 btrfs_ino(BTRFS_I(inode)), 0); 8033 end: 8034 complete(&done->done); 8035 bio_put(bio); 8036 } 8037 8038 static blk_status_t __btrfs_correct_data_nocsum(struct inode *inode, 8039 struct btrfs_io_bio *io_bio) 8040 { 8041 struct btrfs_fs_info *fs_info; 8042 struct bio_vec bvec; 8043 struct bvec_iter iter; 8044 struct btrfs_retry_complete done; 8045 u64 start; 8046 unsigned int pgoff; 8047 u32 sectorsize; 8048 int nr_sectors; 8049 blk_status_t ret; 8050 blk_status_t err = BLK_STS_OK; 8051 8052 fs_info = BTRFS_I(inode)->root->fs_info; 8053 sectorsize = fs_info->sectorsize; 8054 8055 start = io_bio->logical; 8056 done.inode = inode; 8057 io_bio->bio.bi_iter = io_bio->iter; 8058 8059 bio_for_each_segment(bvec, &io_bio->bio, iter) { 8060 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len); 8061 pgoff = bvec.bv_offset; 8062 8063 next_block_or_try_again: 8064 done.uptodate = 0; 8065 done.start = start; 8066 init_completion(&done.done); 8067 8068 ret = dio_read_error(inode, &io_bio->bio, bvec.bv_page, 8069 pgoff, start, start + sectorsize - 1, 8070 io_bio->mirror_num, 8071 btrfs_retry_endio_nocsum, &done); 8072 if (ret) { 8073 err = ret; 8074 goto next; 8075 } 8076 8077 wait_for_completion_io(&done.done); 8078 8079 if (!done.uptodate) { 8080 /* We might have another mirror, so try again */ 8081 goto next_block_or_try_again; 8082 } 8083 8084 next: 8085 start += sectorsize; 8086 8087 nr_sectors--; 8088 if (nr_sectors) { 8089 pgoff += sectorsize; 8090 ASSERT(pgoff < PAGE_SIZE); 8091 goto next_block_or_try_again; 8092 } 8093 } 8094 8095 return err; 8096 } 8097 8098 static void btrfs_retry_endio(struct bio *bio) 8099 { 8100 struct btrfs_retry_complete *done = bio->bi_private; 8101 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio); 8102 struct extent_io_tree *io_tree, *failure_tree; 8103 struct inode *inode = done->inode; 8104 struct bio_vec *bvec; 8105 int uptodate; 8106 int ret; 8107 int i = 0; 8108 struct bvec_iter_all iter_all; 8109 8110 if (bio->bi_status) 8111 goto end; 8112 8113 uptodate = 1; 8114 8115 ASSERT(bio->bi_vcnt == 1); 8116 ASSERT(bio_first_bvec_all(bio)->bv_len == btrfs_inode_sectorsize(done->inode)); 8117 8118 io_tree = &BTRFS_I(inode)->io_tree; 8119 failure_tree = &BTRFS_I(inode)->io_failure_tree; 8120 8121 ASSERT(!bio_flagged(bio, BIO_CLONED)); 8122 bio_for_each_segment_all(bvec, bio, iter_all) { 8123 ret = __readpage_endio_check(inode, io_bio, i, bvec->bv_page, 8124 bvec->bv_offset, done->start, 8125 bvec->bv_len); 8126 if (!ret) 8127 clean_io_failure(BTRFS_I(inode)->root->fs_info, 8128 failure_tree, io_tree, done->start, 8129 bvec->bv_page, 8130 btrfs_ino(BTRFS_I(inode)), 8131 bvec->bv_offset); 8132 else 8133 uptodate = 0; 8134 i++; 8135 } 8136 8137 done->uptodate = uptodate; 8138 end: 8139 complete(&done->done); 8140 bio_put(bio); 8141 } 8142 8143 static blk_status_t __btrfs_subio_endio_read(struct inode *inode, 8144 struct btrfs_io_bio *io_bio, blk_status_t err) 8145 { 8146 struct btrfs_fs_info *fs_info; 8147 struct bio_vec bvec; 8148 struct bvec_iter iter; 8149 struct btrfs_retry_complete done; 8150 u64 start; 8151 u64 offset = 0; 8152 u32 sectorsize; 8153 int nr_sectors; 8154 unsigned int pgoff; 8155 int csum_pos; 8156 bool uptodate = (err == 0); 8157 int ret; 8158 blk_status_t status; 8159 8160 fs_info = BTRFS_I(inode)->root->fs_info; 8161 sectorsize = fs_info->sectorsize; 8162 8163 err = BLK_STS_OK; 8164 start = io_bio->logical; 8165 done.inode = inode; 8166 io_bio->bio.bi_iter = io_bio->iter; 8167 8168 bio_for_each_segment(bvec, &io_bio->bio, iter) { 8169 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len); 8170 8171 pgoff = bvec.bv_offset; 8172 next_block: 8173 if (uptodate) { 8174 csum_pos = BTRFS_BYTES_TO_BLKS(fs_info, offset); 8175 ret = __readpage_endio_check(inode, io_bio, csum_pos, 8176 bvec.bv_page, pgoff, start, sectorsize); 8177 if (likely(!ret)) 8178 goto next; 8179 } 8180 try_again: 8181 done.uptodate = 0; 8182 done.start = start; 8183 init_completion(&done.done); 8184 8185 status = dio_read_error(inode, &io_bio->bio, bvec.bv_page, 8186 pgoff, start, start + sectorsize - 1, 8187 io_bio->mirror_num, btrfs_retry_endio, 8188 &done); 8189 if (status) { 8190 err = status; 8191 goto next; 8192 } 8193 8194 wait_for_completion_io(&done.done); 8195 8196 if (!done.uptodate) { 8197 /* We might have another mirror, so try again */ 8198 goto try_again; 8199 } 8200 next: 8201 offset += sectorsize; 8202 start += sectorsize; 8203 8204 ASSERT(nr_sectors); 8205 8206 nr_sectors--; 8207 if (nr_sectors) { 8208 pgoff += sectorsize; 8209 ASSERT(pgoff < PAGE_SIZE); 8210 goto next_block; 8211 } 8212 } 8213 8214 return err; 8215 } 8216 8217 static blk_status_t btrfs_subio_endio_read(struct inode *inode, 8218 struct btrfs_io_bio *io_bio, blk_status_t err) 8219 { 8220 bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 8221 8222 if (skip_csum) { 8223 if (unlikely(err)) 8224 return __btrfs_correct_data_nocsum(inode, io_bio); 8225 else 8226 return BLK_STS_OK; 8227 } else { 8228 return __btrfs_subio_endio_read(inode, io_bio, err); 8229 } 8230 } 8231 8232 static void btrfs_endio_direct_read(struct bio *bio) 8233 { 8234 struct btrfs_dio_private *dip = bio->bi_private; 8235 struct inode *inode = dip->inode; 8236 struct bio *dio_bio; 8237 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio); 8238 blk_status_t err = bio->bi_status; 8239 8240 if (dip->flags & BTRFS_DIO_ORIG_BIO_SUBMITTED) 8241 err = btrfs_subio_endio_read(inode, io_bio, err); 8242 8243 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset, 8244 dip->logical_offset + dip->bytes - 1); 8245 dio_bio = dip->dio_bio; 8246 8247 kfree(dip); 8248 8249 dio_bio->bi_status = err; 8250 dio_end_io(dio_bio); 8251 btrfs_io_bio_free_csum(io_bio); 8252 bio_put(bio); 8253 } 8254 8255 static void __endio_write_update_ordered(struct inode *inode, 8256 const u64 offset, const u64 bytes, 8257 const bool uptodate) 8258 { 8259 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8260 struct btrfs_ordered_extent *ordered = NULL; 8261 struct btrfs_workqueue *wq; 8262 u64 ordered_offset = offset; 8263 u64 ordered_bytes = bytes; 8264 u64 last_offset; 8265 8266 if (btrfs_is_free_space_inode(BTRFS_I(inode))) 8267 wq = fs_info->endio_freespace_worker; 8268 else 8269 wq = fs_info->endio_write_workers; 8270 8271 while (ordered_offset < offset + bytes) { 8272 last_offset = ordered_offset; 8273 if (btrfs_dec_test_first_ordered_pending(inode, &ordered, 8274 &ordered_offset, 8275 ordered_bytes, 8276 uptodate)) { 8277 btrfs_init_work(&ordered->work, finish_ordered_fn, NULL, 8278 NULL); 8279 btrfs_queue_work(wq, &ordered->work); 8280 } 8281 /* 8282 * If btrfs_dec_test_ordered_pending does not find any ordered 8283 * extent in the range, we can exit. 8284 */ 8285 if (ordered_offset == last_offset) 8286 return; 8287 /* 8288 * Our bio might span multiple ordered extents. In this case 8289 * we keep going until we have accounted the whole dio. 8290 */ 8291 if (ordered_offset < offset + bytes) { 8292 ordered_bytes = offset + bytes - ordered_offset; 8293 ordered = NULL; 8294 } 8295 } 8296 } 8297 8298 static void btrfs_endio_direct_write(struct bio *bio) 8299 { 8300 struct btrfs_dio_private *dip = bio->bi_private; 8301 struct bio *dio_bio = dip->dio_bio; 8302 8303 __endio_write_update_ordered(dip->inode, dip->logical_offset, 8304 dip->bytes, !bio->bi_status); 8305 8306 kfree(dip); 8307 8308 dio_bio->bi_status = bio->bi_status; 8309 dio_end_io(dio_bio); 8310 bio_put(bio); 8311 } 8312 8313 static blk_status_t btrfs_submit_bio_start_direct_io(void *private_data, 8314 struct bio *bio, u64 offset) 8315 { 8316 struct inode *inode = private_data; 8317 blk_status_t ret; 8318 ret = btrfs_csum_one_bio(inode, bio, offset, 1); 8319 BUG_ON(ret); /* -ENOMEM */ 8320 return 0; 8321 } 8322 8323 static void btrfs_end_dio_bio(struct bio *bio) 8324 { 8325 struct btrfs_dio_private *dip = bio->bi_private; 8326 blk_status_t err = bio->bi_status; 8327 8328 if (err) 8329 btrfs_warn(BTRFS_I(dip->inode)->root->fs_info, 8330 "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d", 8331 btrfs_ino(BTRFS_I(dip->inode)), bio_op(bio), 8332 bio->bi_opf, 8333 (unsigned long long)bio->bi_iter.bi_sector, 8334 bio->bi_iter.bi_size, err); 8335 8336 if (dip->subio_endio) 8337 err = dip->subio_endio(dip->inode, btrfs_io_bio(bio), err); 8338 8339 if (err) { 8340 /* 8341 * We want to perceive the errors flag being set before 8342 * decrementing the reference count. We don't need a barrier 8343 * since atomic operations with a return value are fully 8344 * ordered as per atomic_t.txt 8345 */ 8346 dip->errors = 1; 8347 } 8348 8349 /* if there are more bios still pending for this dio, just exit */ 8350 if (!atomic_dec_and_test(&dip->pending_bios)) 8351 goto out; 8352 8353 if (dip->errors) { 8354 bio_io_error(dip->orig_bio); 8355 } else { 8356 dip->dio_bio->bi_status = BLK_STS_OK; 8357 bio_endio(dip->orig_bio); 8358 } 8359 out: 8360 bio_put(bio); 8361 } 8362 8363 static inline blk_status_t btrfs_lookup_and_bind_dio_csum(struct inode *inode, 8364 struct btrfs_dio_private *dip, 8365 struct bio *bio, 8366 u64 file_offset) 8367 { 8368 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio); 8369 struct btrfs_io_bio *orig_io_bio = btrfs_io_bio(dip->orig_bio); 8370 blk_status_t ret; 8371 8372 /* 8373 * We load all the csum data we need when we submit 8374 * the first bio to reduce the csum tree search and 8375 * contention. 8376 */ 8377 if (dip->logical_offset == file_offset) { 8378 ret = btrfs_lookup_bio_sums_dio(inode, dip->orig_bio, 8379 file_offset); 8380 if (ret) 8381 return ret; 8382 } 8383 8384 if (bio == dip->orig_bio) 8385 return 0; 8386 8387 file_offset -= dip->logical_offset; 8388 file_offset >>= inode->i_sb->s_blocksize_bits; 8389 io_bio->csum = (u8 *)(((u32 *)orig_io_bio->csum) + file_offset); 8390 8391 return 0; 8392 } 8393 8394 static inline blk_status_t btrfs_submit_dio_bio(struct bio *bio, 8395 struct inode *inode, u64 file_offset, int async_submit) 8396 { 8397 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8398 struct btrfs_dio_private *dip = bio->bi_private; 8399 bool write = bio_op(bio) == REQ_OP_WRITE; 8400 blk_status_t ret; 8401 8402 /* Check btrfs_submit_bio_hook() for rules about async submit. */ 8403 if (async_submit) 8404 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers); 8405 8406 if (!write) { 8407 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA); 8408 if (ret) 8409 goto err; 8410 } 8411 8412 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) 8413 goto map; 8414 8415 if (write && async_submit) { 8416 ret = btrfs_wq_submit_bio(fs_info, bio, 0, 0, 8417 file_offset, inode, 8418 btrfs_submit_bio_start_direct_io); 8419 goto err; 8420 } else if (write) { 8421 /* 8422 * If we aren't doing async submit, calculate the csum of the 8423 * bio now. 8424 */ 8425 ret = btrfs_csum_one_bio(inode, bio, file_offset, 1); 8426 if (ret) 8427 goto err; 8428 } else { 8429 ret = btrfs_lookup_and_bind_dio_csum(inode, dip, bio, 8430 file_offset); 8431 if (ret) 8432 goto err; 8433 } 8434 map: 8435 ret = btrfs_map_bio(fs_info, bio, 0); 8436 err: 8437 return ret; 8438 } 8439 8440 static int btrfs_submit_direct_hook(struct btrfs_dio_private *dip) 8441 { 8442 struct inode *inode = dip->inode; 8443 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8444 struct bio *bio; 8445 struct bio *orig_bio = dip->orig_bio; 8446 u64 start_sector = orig_bio->bi_iter.bi_sector; 8447 u64 file_offset = dip->logical_offset; 8448 int async_submit = 0; 8449 u64 submit_len; 8450 int clone_offset = 0; 8451 int clone_len; 8452 int ret; 8453 blk_status_t status; 8454 struct btrfs_io_geometry geom; 8455 8456 submit_len = orig_bio->bi_iter.bi_size; 8457 ret = btrfs_get_io_geometry(fs_info, btrfs_op(orig_bio), 8458 start_sector << 9, submit_len, &geom); 8459 if (ret) 8460 return -EIO; 8461 8462 if (geom.len >= submit_len) { 8463 bio = orig_bio; 8464 dip->flags |= BTRFS_DIO_ORIG_BIO_SUBMITTED; 8465 goto submit; 8466 } 8467 8468 /* async crcs make it difficult to collect full stripe writes. */ 8469 if (btrfs_data_alloc_profile(fs_info) & BTRFS_BLOCK_GROUP_RAID56_MASK) 8470 async_submit = 0; 8471 else 8472 async_submit = 1; 8473 8474 /* bio split */ 8475 ASSERT(geom.len <= INT_MAX); 8476 atomic_inc(&dip->pending_bios); 8477 do { 8478 clone_len = min_t(int, submit_len, geom.len); 8479 8480 /* 8481 * This will never fail as it's passing GPF_NOFS and 8482 * the allocation is backed by btrfs_bioset. 8483 */ 8484 bio = btrfs_bio_clone_partial(orig_bio, clone_offset, 8485 clone_len); 8486 bio->bi_private = dip; 8487 bio->bi_end_io = btrfs_end_dio_bio; 8488 btrfs_io_bio(bio)->logical = file_offset; 8489 8490 ASSERT(submit_len >= clone_len); 8491 submit_len -= clone_len; 8492 if (submit_len == 0) 8493 break; 8494 8495 /* 8496 * Increase the count before we submit the bio so we know 8497 * the end IO handler won't happen before we increase the 8498 * count. Otherwise, the dip might get freed before we're 8499 * done setting it up. 8500 */ 8501 atomic_inc(&dip->pending_bios); 8502 8503 status = btrfs_submit_dio_bio(bio, inode, file_offset, 8504 async_submit); 8505 if (status) { 8506 bio_put(bio); 8507 atomic_dec(&dip->pending_bios); 8508 goto out_err; 8509 } 8510 8511 clone_offset += clone_len; 8512 start_sector += clone_len >> 9; 8513 file_offset += clone_len; 8514 8515 ret = btrfs_get_io_geometry(fs_info, btrfs_op(orig_bio), 8516 start_sector << 9, submit_len, &geom); 8517 if (ret) 8518 goto out_err; 8519 } while (submit_len > 0); 8520 8521 submit: 8522 status = btrfs_submit_dio_bio(bio, inode, file_offset, async_submit); 8523 if (!status) 8524 return 0; 8525 8526 bio_put(bio); 8527 out_err: 8528 dip->errors = 1; 8529 /* 8530 * Before atomic variable goto zero, we must make sure dip->errors is 8531 * perceived to be set. This ordering is ensured by the fact that an 8532 * atomic operations with a return value are fully ordered as per 8533 * atomic_t.txt 8534 */ 8535 if (atomic_dec_and_test(&dip->pending_bios)) 8536 bio_io_error(dip->orig_bio); 8537 8538 /* bio_end_io() will handle error, so we needn't return it */ 8539 return 0; 8540 } 8541 8542 static void btrfs_submit_direct(struct bio *dio_bio, struct inode *inode, 8543 loff_t file_offset) 8544 { 8545 struct btrfs_dio_private *dip = NULL; 8546 struct bio *bio = NULL; 8547 struct btrfs_io_bio *io_bio; 8548 bool write = (bio_op(dio_bio) == REQ_OP_WRITE); 8549 int ret = 0; 8550 8551 bio = btrfs_bio_clone(dio_bio); 8552 8553 dip = kzalloc(sizeof(*dip), GFP_NOFS); 8554 if (!dip) { 8555 ret = -ENOMEM; 8556 goto free_ordered; 8557 } 8558 8559 dip->private = dio_bio->bi_private; 8560 dip->inode = inode; 8561 dip->logical_offset = file_offset; 8562 dip->bytes = dio_bio->bi_iter.bi_size; 8563 dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9; 8564 bio->bi_private = dip; 8565 dip->orig_bio = bio; 8566 dip->dio_bio = dio_bio; 8567 atomic_set(&dip->pending_bios, 0); 8568 io_bio = btrfs_io_bio(bio); 8569 io_bio->logical = file_offset; 8570 8571 if (write) { 8572 bio->bi_end_io = btrfs_endio_direct_write; 8573 } else { 8574 bio->bi_end_io = btrfs_endio_direct_read; 8575 dip->subio_endio = btrfs_subio_endio_read; 8576 } 8577 8578 /* 8579 * Reset the range for unsubmitted ordered extents (to a 0 length range) 8580 * even if we fail to submit a bio, because in such case we do the 8581 * corresponding error handling below and it must not be done a second 8582 * time by btrfs_direct_IO(). 8583 */ 8584 if (write) { 8585 struct btrfs_dio_data *dio_data = current->journal_info; 8586 8587 dio_data->unsubmitted_oe_range_end = dip->logical_offset + 8588 dip->bytes; 8589 dio_data->unsubmitted_oe_range_start = 8590 dio_data->unsubmitted_oe_range_end; 8591 } 8592 8593 ret = btrfs_submit_direct_hook(dip); 8594 if (!ret) 8595 return; 8596 8597 btrfs_io_bio_free_csum(io_bio); 8598 8599 free_ordered: 8600 /* 8601 * If we arrived here it means either we failed to submit the dip 8602 * or we either failed to clone the dio_bio or failed to allocate the 8603 * dip. If we cloned the dio_bio and allocated the dip, we can just 8604 * call bio_endio against our io_bio so that we get proper resource 8605 * cleanup if we fail to submit the dip, otherwise, we must do the 8606 * same as btrfs_endio_direct_[write|read] because we can't call these 8607 * callbacks - they require an allocated dip and a clone of dio_bio. 8608 */ 8609 if (bio && dip) { 8610 bio_io_error(bio); 8611 /* 8612 * The end io callbacks free our dip, do the final put on bio 8613 * and all the cleanup and final put for dio_bio (through 8614 * dio_end_io()). 8615 */ 8616 dip = NULL; 8617 bio = NULL; 8618 } else { 8619 if (write) 8620 __endio_write_update_ordered(inode, 8621 file_offset, 8622 dio_bio->bi_iter.bi_size, 8623 false); 8624 else 8625 unlock_extent(&BTRFS_I(inode)->io_tree, file_offset, 8626 file_offset + dio_bio->bi_iter.bi_size - 1); 8627 8628 dio_bio->bi_status = BLK_STS_IOERR; 8629 /* 8630 * Releases and cleans up our dio_bio, no need to bio_put() 8631 * nor bio_endio()/bio_io_error() against dio_bio. 8632 */ 8633 dio_end_io(dio_bio); 8634 } 8635 if (bio) 8636 bio_put(bio); 8637 kfree(dip); 8638 } 8639 8640 static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info, 8641 const struct iov_iter *iter, loff_t offset) 8642 { 8643 int seg; 8644 int i; 8645 unsigned int blocksize_mask = fs_info->sectorsize - 1; 8646 ssize_t retval = -EINVAL; 8647 8648 if (offset & blocksize_mask) 8649 goto out; 8650 8651 if (iov_iter_alignment(iter) & blocksize_mask) 8652 goto out; 8653 8654 /* If this is a write we don't need to check anymore */ 8655 if (iov_iter_rw(iter) != READ || !iter_is_iovec(iter)) 8656 return 0; 8657 /* 8658 * Check to make sure we don't have duplicate iov_base's in this 8659 * iovec, if so return EINVAL, otherwise we'll get csum errors 8660 * when reading back. 8661 */ 8662 for (seg = 0; seg < iter->nr_segs; seg++) { 8663 for (i = seg + 1; i < iter->nr_segs; i++) { 8664 if (iter->iov[seg].iov_base == iter->iov[i].iov_base) 8665 goto out; 8666 } 8667 } 8668 retval = 0; 8669 out: 8670 return retval; 8671 } 8672 8673 static ssize_t btrfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 8674 { 8675 struct file *file = iocb->ki_filp; 8676 struct inode *inode = file->f_mapping->host; 8677 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8678 struct btrfs_dio_data dio_data = { 0 }; 8679 struct extent_changeset *data_reserved = NULL; 8680 loff_t offset = iocb->ki_pos; 8681 size_t count = 0; 8682 int flags = 0; 8683 bool wakeup = true; 8684 bool relock = false; 8685 ssize_t ret; 8686 8687 if (check_direct_IO(fs_info, iter, offset)) 8688 return 0; 8689 8690 inode_dio_begin(inode); 8691 8692 /* 8693 * The generic stuff only does filemap_write_and_wait_range, which 8694 * isn't enough if we've written compressed pages to this area, so 8695 * we need to flush the dirty pages again to make absolutely sure 8696 * that any outstanding dirty pages are on disk. 8697 */ 8698 count = iov_iter_count(iter); 8699 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 8700 &BTRFS_I(inode)->runtime_flags)) 8701 filemap_fdatawrite_range(inode->i_mapping, offset, 8702 offset + count - 1); 8703 8704 if (iov_iter_rw(iter) == WRITE) { 8705 /* 8706 * If the write DIO is beyond the EOF, we need update 8707 * the isize, but it is protected by i_mutex. So we can 8708 * not unlock the i_mutex at this case. 8709 */ 8710 if (offset + count <= inode->i_size) { 8711 dio_data.overwrite = 1; 8712 inode_unlock(inode); 8713 relock = true; 8714 } else if (iocb->ki_flags & IOCB_NOWAIT) { 8715 ret = -EAGAIN; 8716 goto out; 8717 } 8718 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, 8719 offset, count); 8720 if (ret) 8721 goto out; 8722 8723 /* 8724 * We need to know how many extents we reserved so that we can 8725 * do the accounting properly if we go over the number we 8726 * originally calculated. Abuse current->journal_info for this. 8727 */ 8728 dio_data.reserve = round_up(count, 8729 fs_info->sectorsize); 8730 dio_data.unsubmitted_oe_range_start = (u64)offset; 8731 dio_data.unsubmitted_oe_range_end = (u64)offset; 8732 current->journal_info = &dio_data; 8733 down_read(&BTRFS_I(inode)->dio_sem); 8734 } else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK, 8735 &BTRFS_I(inode)->runtime_flags)) { 8736 inode_dio_end(inode); 8737 flags = DIO_LOCKING | DIO_SKIP_HOLES; 8738 wakeup = false; 8739 } 8740 8741 ret = __blockdev_direct_IO(iocb, inode, 8742 fs_info->fs_devices->latest_bdev, 8743 iter, btrfs_get_blocks_direct, NULL, 8744 btrfs_submit_direct, flags); 8745 if (iov_iter_rw(iter) == WRITE) { 8746 up_read(&BTRFS_I(inode)->dio_sem); 8747 current->journal_info = NULL; 8748 if (ret < 0 && ret != -EIOCBQUEUED) { 8749 if (dio_data.reserve) 8750 btrfs_delalloc_release_space(inode, data_reserved, 8751 offset, dio_data.reserve, true); 8752 /* 8753 * On error we might have left some ordered extents 8754 * without submitting corresponding bios for them, so 8755 * cleanup them up to avoid other tasks getting them 8756 * and waiting for them to complete forever. 8757 */ 8758 if (dio_data.unsubmitted_oe_range_start < 8759 dio_data.unsubmitted_oe_range_end) 8760 __endio_write_update_ordered(inode, 8761 dio_data.unsubmitted_oe_range_start, 8762 dio_data.unsubmitted_oe_range_end - 8763 dio_data.unsubmitted_oe_range_start, 8764 false); 8765 } else if (ret >= 0 && (size_t)ret < count) 8766 btrfs_delalloc_release_space(inode, data_reserved, 8767 offset, count - (size_t)ret, true); 8768 btrfs_delalloc_release_extents(BTRFS_I(inode), count); 8769 } 8770 out: 8771 if (wakeup) 8772 inode_dio_end(inode); 8773 if (relock) 8774 inode_lock(inode); 8775 8776 extent_changeset_free(data_reserved); 8777 return ret; 8778 } 8779 8780 #define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC) 8781 8782 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 8783 __u64 start, __u64 len) 8784 { 8785 int ret; 8786 8787 ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS); 8788 if (ret) 8789 return ret; 8790 8791 return extent_fiemap(inode, fieinfo, start, len); 8792 } 8793 8794 int btrfs_readpage(struct file *file, struct page *page) 8795 { 8796 struct extent_io_tree *tree; 8797 tree = &BTRFS_I(page->mapping->host)->io_tree; 8798 return extent_read_full_page(tree, page, btrfs_get_extent, 0); 8799 } 8800 8801 static int btrfs_writepage(struct page *page, struct writeback_control *wbc) 8802 { 8803 struct inode *inode = page->mapping->host; 8804 int ret; 8805 8806 if (current->flags & PF_MEMALLOC) { 8807 redirty_page_for_writepage(wbc, page); 8808 unlock_page(page); 8809 return 0; 8810 } 8811 8812 /* 8813 * If we are under memory pressure we will call this directly from the 8814 * VM, we need to make sure we have the inode referenced for the ordered 8815 * extent. If not just return like we didn't do anything. 8816 */ 8817 if (!igrab(inode)) { 8818 redirty_page_for_writepage(wbc, page); 8819 return AOP_WRITEPAGE_ACTIVATE; 8820 } 8821 ret = extent_write_full_page(page, wbc); 8822 btrfs_add_delayed_iput(inode); 8823 return ret; 8824 } 8825 8826 static int btrfs_writepages(struct address_space *mapping, 8827 struct writeback_control *wbc) 8828 { 8829 return extent_writepages(mapping, wbc); 8830 } 8831 8832 static int 8833 btrfs_readpages(struct file *file, struct address_space *mapping, 8834 struct list_head *pages, unsigned nr_pages) 8835 { 8836 return extent_readpages(mapping, pages, nr_pages); 8837 } 8838 8839 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags) 8840 { 8841 int ret = try_release_extent_mapping(page, gfp_flags); 8842 if (ret == 1) { 8843 ClearPagePrivate(page); 8844 set_page_private(page, 0); 8845 put_page(page); 8846 } 8847 return ret; 8848 } 8849 8850 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags) 8851 { 8852 if (PageWriteback(page) || PageDirty(page)) 8853 return 0; 8854 return __btrfs_releasepage(page, gfp_flags); 8855 } 8856 8857 static void btrfs_invalidatepage(struct page *page, unsigned int offset, 8858 unsigned int length) 8859 { 8860 struct inode *inode = page->mapping->host; 8861 struct extent_io_tree *tree; 8862 struct btrfs_ordered_extent *ordered; 8863 struct extent_state *cached_state = NULL; 8864 u64 page_start = page_offset(page); 8865 u64 page_end = page_start + PAGE_SIZE - 1; 8866 u64 start; 8867 u64 end; 8868 int inode_evicting = inode->i_state & I_FREEING; 8869 8870 /* 8871 * we have the page locked, so new writeback can't start, 8872 * and the dirty bit won't be cleared while we are here. 8873 * 8874 * Wait for IO on this page so that we can safely clear 8875 * the PagePrivate2 bit and do ordered accounting 8876 */ 8877 wait_on_page_writeback(page); 8878 8879 tree = &BTRFS_I(inode)->io_tree; 8880 if (offset) { 8881 btrfs_releasepage(page, GFP_NOFS); 8882 return; 8883 } 8884 8885 if (!inode_evicting) 8886 lock_extent_bits(tree, page_start, page_end, &cached_state); 8887 again: 8888 start = page_start; 8889 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start, 8890 page_end - start + 1); 8891 if (ordered) { 8892 end = min(page_end, ordered->file_offset + ordered->len - 1); 8893 /* 8894 * IO on this page will never be started, so we need 8895 * to account for any ordered extents now 8896 */ 8897 if (!inode_evicting) 8898 clear_extent_bit(tree, start, end, 8899 EXTENT_DELALLOC | EXTENT_DELALLOC_NEW | 8900 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING | 8901 EXTENT_DEFRAG, 1, 0, &cached_state); 8902 /* 8903 * whoever cleared the private bit is responsible 8904 * for the finish_ordered_io 8905 */ 8906 if (TestClearPagePrivate2(page)) { 8907 struct btrfs_ordered_inode_tree *tree; 8908 u64 new_len; 8909 8910 tree = &BTRFS_I(inode)->ordered_tree; 8911 8912 spin_lock_irq(&tree->lock); 8913 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags); 8914 new_len = start - ordered->file_offset; 8915 if (new_len < ordered->truncated_len) 8916 ordered->truncated_len = new_len; 8917 spin_unlock_irq(&tree->lock); 8918 8919 if (btrfs_dec_test_ordered_pending(inode, &ordered, 8920 start, 8921 end - start + 1, 1)) 8922 btrfs_finish_ordered_io(ordered); 8923 } 8924 btrfs_put_ordered_extent(ordered); 8925 if (!inode_evicting) { 8926 cached_state = NULL; 8927 lock_extent_bits(tree, start, end, 8928 &cached_state); 8929 } 8930 8931 start = end + 1; 8932 if (start < page_end) 8933 goto again; 8934 } 8935 8936 /* 8937 * Qgroup reserved space handler 8938 * Page here will be either 8939 * 1) Already written to disk 8940 * In this case, its reserved space is released from data rsv map 8941 * and will be freed by delayed_ref handler finally. 8942 * So even we call qgroup_free_data(), it won't decrease reserved 8943 * space. 8944 * 2) Not written to disk 8945 * This means the reserved space should be freed here. However, 8946 * if a truncate invalidates the page (by clearing PageDirty) 8947 * and the page is accounted for while allocating extent 8948 * in btrfs_check_data_free_space() we let delayed_ref to 8949 * free the entire extent. 8950 */ 8951 if (PageDirty(page)) 8952 btrfs_qgroup_free_data(inode, NULL, page_start, PAGE_SIZE); 8953 if (!inode_evicting) { 8954 clear_extent_bit(tree, page_start, page_end, EXTENT_LOCKED | 8955 EXTENT_DELALLOC | EXTENT_DELALLOC_NEW | 8956 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1, 8957 &cached_state); 8958 8959 __btrfs_releasepage(page, GFP_NOFS); 8960 } 8961 8962 ClearPageChecked(page); 8963 if (PagePrivate(page)) { 8964 ClearPagePrivate(page); 8965 set_page_private(page, 0); 8966 put_page(page); 8967 } 8968 } 8969 8970 /* 8971 * btrfs_page_mkwrite() is not allowed to change the file size as it gets 8972 * called from a page fault handler when a page is first dirtied. Hence we must 8973 * be careful to check for EOF conditions here. We set the page up correctly 8974 * for a written page which means we get ENOSPC checking when writing into 8975 * holes and correct delalloc and unwritten extent mapping on filesystems that 8976 * support these features. 8977 * 8978 * We are not allowed to take the i_mutex here so we have to play games to 8979 * protect against truncate races as the page could now be beyond EOF. Because 8980 * truncate_setsize() writes the inode size before removing pages, once we have 8981 * the page lock we can determine safely if the page is beyond EOF. If it is not 8982 * beyond EOF, then the page is guaranteed safe against truncation until we 8983 * unlock the page. 8984 */ 8985 vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf) 8986 { 8987 struct page *page = vmf->page; 8988 struct inode *inode = file_inode(vmf->vma->vm_file); 8989 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8990 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 8991 struct btrfs_ordered_extent *ordered; 8992 struct extent_state *cached_state = NULL; 8993 struct extent_changeset *data_reserved = NULL; 8994 char *kaddr; 8995 unsigned long zero_start; 8996 loff_t size; 8997 vm_fault_t ret; 8998 int ret2; 8999 int reserved = 0; 9000 u64 reserved_space; 9001 u64 page_start; 9002 u64 page_end; 9003 u64 end; 9004 9005 reserved_space = PAGE_SIZE; 9006 9007 sb_start_pagefault(inode->i_sb); 9008 page_start = page_offset(page); 9009 page_end = page_start + PAGE_SIZE - 1; 9010 end = page_end; 9011 9012 /* 9013 * Reserving delalloc space after obtaining the page lock can lead to 9014 * deadlock. For example, if a dirty page is locked by this function 9015 * and the call to btrfs_delalloc_reserve_space() ends up triggering 9016 * dirty page write out, then the btrfs_writepage() function could 9017 * end up waiting indefinitely to get a lock on the page currently 9018 * being processed by btrfs_page_mkwrite() function. 9019 */ 9020 ret2 = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start, 9021 reserved_space); 9022 if (!ret2) { 9023 ret2 = file_update_time(vmf->vma->vm_file); 9024 reserved = 1; 9025 } 9026 if (ret2) { 9027 ret = vmf_error(ret2); 9028 if (reserved) 9029 goto out; 9030 goto out_noreserve; 9031 } 9032 9033 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */ 9034 again: 9035 lock_page(page); 9036 size = i_size_read(inode); 9037 9038 if ((page->mapping != inode->i_mapping) || 9039 (page_start >= size)) { 9040 /* page got truncated out from underneath us */ 9041 goto out_unlock; 9042 } 9043 wait_on_page_writeback(page); 9044 9045 lock_extent_bits(io_tree, page_start, page_end, &cached_state); 9046 set_page_extent_mapped(page); 9047 9048 /* 9049 * we can't set the delalloc bits if there are pending ordered 9050 * extents. Drop our locks and wait for them to finish 9051 */ 9052 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start, 9053 PAGE_SIZE); 9054 if (ordered) { 9055 unlock_extent_cached(io_tree, page_start, page_end, 9056 &cached_state); 9057 unlock_page(page); 9058 btrfs_start_ordered_extent(inode, ordered, 1); 9059 btrfs_put_ordered_extent(ordered); 9060 goto again; 9061 } 9062 9063 if (page->index == ((size - 1) >> PAGE_SHIFT)) { 9064 reserved_space = round_up(size - page_start, 9065 fs_info->sectorsize); 9066 if (reserved_space < PAGE_SIZE) { 9067 end = page_start + reserved_space - 1; 9068 btrfs_delalloc_release_space(inode, data_reserved, 9069 page_start, PAGE_SIZE - reserved_space, 9070 true); 9071 } 9072 } 9073 9074 /* 9075 * page_mkwrite gets called when the page is firstly dirtied after it's 9076 * faulted in, but write(2) could also dirty a page and set delalloc 9077 * bits, thus in this case for space account reason, we still need to 9078 * clear any delalloc bits within this page range since we have to 9079 * reserve data&meta space before lock_page() (see above comments). 9080 */ 9081 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end, 9082 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | 9083 EXTENT_DEFRAG, 0, 0, &cached_state); 9084 9085 ret2 = btrfs_set_extent_delalloc(inode, page_start, end, 0, 9086 &cached_state); 9087 if (ret2) { 9088 unlock_extent_cached(io_tree, page_start, page_end, 9089 &cached_state); 9090 ret = VM_FAULT_SIGBUS; 9091 goto out_unlock; 9092 } 9093 ret2 = 0; 9094 9095 /* page is wholly or partially inside EOF */ 9096 if (page_start + PAGE_SIZE > size) 9097 zero_start = offset_in_page(size); 9098 else 9099 zero_start = PAGE_SIZE; 9100 9101 if (zero_start != PAGE_SIZE) { 9102 kaddr = kmap(page); 9103 memset(kaddr + zero_start, 0, PAGE_SIZE - zero_start); 9104 flush_dcache_page(page); 9105 kunmap(page); 9106 } 9107 ClearPageChecked(page); 9108 set_page_dirty(page); 9109 SetPageUptodate(page); 9110 9111 BTRFS_I(inode)->last_trans = fs_info->generation; 9112 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid; 9113 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit; 9114 9115 unlock_extent_cached(io_tree, page_start, page_end, &cached_state); 9116 9117 if (!ret2) { 9118 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE); 9119 sb_end_pagefault(inode->i_sb); 9120 extent_changeset_free(data_reserved); 9121 return VM_FAULT_LOCKED; 9122 } 9123 9124 out_unlock: 9125 unlock_page(page); 9126 out: 9127 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE); 9128 btrfs_delalloc_release_space(inode, data_reserved, page_start, 9129 reserved_space, (ret != 0)); 9130 out_noreserve: 9131 sb_end_pagefault(inode->i_sb); 9132 extent_changeset_free(data_reserved); 9133 return ret; 9134 } 9135 9136 static int btrfs_truncate(struct inode *inode, bool skip_writeback) 9137 { 9138 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 9139 struct btrfs_root *root = BTRFS_I(inode)->root; 9140 struct btrfs_block_rsv *rsv; 9141 int ret; 9142 struct btrfs_trans_handle *trans; 9143 u64 mask = fs_info->sectorsize - 1; 9144 u64 min_size = btrfs_calc_metadata_size(fs_info, 1); 9145 9146 if (!skip_writeback) { 9147 ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask), 9148 (u64)-1); 9149 if (ret) 9150 return ret; 9151 } 9152 9153 /* 9154 * Yes ladies and gentlemen, this is indeed ugly. We have a couple of 9155 * things going on here: 9156 * 9157 * 1) We need to reserve space to update our inode. 9158 * 9159 * 2) We need to have something to cache all the space that is going to 9160 * be free'd up by the truncate operation, but also have some slack 9161 * space reserved in case it uses space during the truncate (thank you 9162 * very much snapshotting). 9163 * 9164 * And we need these to be separate. The fact is we can use a lot of 9165 * space doing the truncate, and we have no earthly idea how much space 9166 * we will use, so we need the truncate reservation to be separate so it 9167 * doesn't end up using space reserved for updating the inode. We also 9168 * need to be able to stop the transaction and start a new one, which 9169 * means we need to be able to update the inode several times, and we 9170 * have no idea of knowing how many times that will be, so we can't just 9171 * reserve 1 item for the entirety of the operation, so that has to be 9172 * done separately as well. 9173 * 9174 * So that leaves us with 9175 * 9176 * 1) rsv - for the truncate reservation, which we will steal from the 9177 * transaction reservation. 9178 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for 9179 * updating the inode. 9180 */ 9181 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP); 9182 if (!rsv) 9183 return -ENOMEM; 9184 rsv->size = min_size; 9185 rsv->failfast = 1; 9186 9187 /* 9188 * 1 for the truncate slack space 9189 * 1 for updating the inode. 9190 */ 9191 trans = btrfs_start_transaction(root, 2); 9192 if (IS_ERR(trans)) { 9193 ret = PTR_ERR(trans); 9194 goto out; 9195 } 9196 9197 /* Migrate the slack space for the truncate to our reserve */ 9198 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv, 9199 min_size, false); 9200 BUG_ON(ret); 9201 9202 /* 9203 * So if we truncate and then write and fsync we normally would just 9204 * write the extents that changed, which is a problem if we need to 9205 * first truncate that entire inode. So set this flag so we write out 9206 * all of the extents in the inode to the sync log so we're completely 9207 * safe. 9208 */ 9209 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 9210 trans->block_rsv = rsv; 9211 9212 while (1) { 9213 ret = btrfs_truncate_inode_items(trans, root, inode, 9214 inode->i_size, 9215 BTRFS_EXTENT_DATA_KEY); 9216 trans->block_rsv = &fs_info->trans_block_rsv; 9217 if (ret != -ENOSPC && ret != -EAGAIN) 9218 break; 9219 9220 ret = btrfs_update_inode(trans, root, inode); 9221 if (ret) 9222 break; 9223 9224 btrfs_end_transaction(trans); 9225 btrfs_btree_balance_dirty(fs_info); 9226 9227 trans = btrfs_start_transaction(root, 2); 9228 if (IS_ERR(trans)) { 9229 ret = PTR_ERR(trans); 9230 trans = NULL; 9231 break; 9232 } 9233 9234 btrfs_block_rsv_release(fs_info, rsv, -1); 9235 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, 9236 rsv, min_size, false); 9237 BUG_ON(ret); /* shouldn't happen */ 9238 trans->block_rsv = rsv; 9239 } 9240 9241 /* 9242 * We can't call btrfs_truncate_block inside a trans handle as we could 9243 * deadlock with freeze, if we got NEED_TRUNCATE_BLOCK then we know 9244 * we've truncated everything except the last little bit, and can do 9245 * btrfs_truncate_block and then update the disk_i_size. 9246 */ 9247 if (ret == NEED_TRUNCATE_BLOCK) { 9248 btrfs_end_transaction(trans); 9249 btrfs_btree_balance_dirty(fs_info); 9250 9251 ret = btrfs_truncate_block(inode, inode->i_size, 0, 0); 9252 if (ret) 9253 goto out; 9254 trans = btrfs_start_transaction(root, 1); 9255 if (IS_ERR(trans)) { 9256 ret = PTR_ERR(trans); 9257 goto out; 9258 } 9259 btrfs_ordered_update_i_size(inode, inode->i_size, NULL); 9260 } 9261 9262 if (trans) { 9263 int ret2; 9264 9265 trans->block_rsv = &fs_info->trans_block_rsv; 9266 ret2 = btrfs_update_inode(trans, root, inode); 9267 if (ret2 && !ret) 9268 ret = ret2; 9269 9270 ret2 = btrfs_end_transaction(trans); 9271 if (ret2 && !ret) 9272 ret = ret2; 9273 btrfs_btree_balance_dirty(fs_info); 9274 } 9275 out: 9276 btrfs_free_block_rsv(fs_info, rsv); 9277 9278 return ret; 9279 } 9280 9281 /* 9282 * create a new subvolume directory/inode (helper for the ioctl). 9283 */ 9284 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans, 9285 struct btrfs_root *new_root, 9286 struct btrfs_root *parent_root, 9287 u64 new_dirid) 9288 { 9289 struct inode *inode; 9290 int err; 9291 u64 index = 0; 9292 9293 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, 9294 new_dirid, new_dirid, 9295 S_IFDIR | (~current_umask() & S_IRWXUGO), 9296 &index); 9297 if (IS_ERR(inode)) 9298 return PTR_ERR(inode); 9299 inode->i_op = &btrfs_dir_inode_operations; 9300 inode->i_fop = &btrfs_dir_file_operations; 9301 9302 set_nlink(inode, 1); 9303 btrfs_i_size_write(BTRFS_I(inode), 0); 9304 unlock_new_inode(inode); 9305 9306 err = btrfs_subvol_inherit_props(trans, new_root, parent_root); 9307 if (err) 9308 btrfs_err(new_root->fs_info, 9309 "error inheriting subvolume %llu properties: %d", 9310 new_root->root_key.objectid, err); 9311 9312 err = btrfs_update_inode(trans, new_root, inode); 9313 9314 iput(inode); 9315 return err; 9316 } 9317 9318 struct inode *btrfs_alloc_inode(struct super_block *sb) 9319 { 9320 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 9321 struct btrfs_inode *ei; 9322 struct inode *inode; 9323 9324 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_KERNEL); 9325 if (!ei) 9326 return NULL; 9327 9328 ei->root = NULL; 9329 ei->generation = 0; 9330 ei->last_trans = 0; 9331 ei->last_sub_trans = 0; 9332 ei->logged_trans = 0; 9333 ei->delalloc_bytes = 0; 9334 ei->new_delalloc_bytes = 0; 9335 ei->defrag_bytes = 0; 9336 ei->disk_i_size = 0; 9337 ei->flags = 0; 9338 ei->csum_bytes = 0; 9339 ei->index_cnt = (u64)-1; 9340 ei->dir_index = 0; 9341 ei->last_unlink_trans = 0; 9342 ei->last_log_commit = 0; 9343 9344 spin_lock_init(&ei->lock); 9345 ei->outstanding_extents = 0; 9346 if (sb->s_magic != BTRFS_TEST_MAGIC) 9347 btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv, 9348 BTRFS_BLOCK_RSV_DELALLOC); 9349 ei->runtime_flags = 0; 9350 ei->prop_compress = BTRFS_COMPRESS_NONE; 9351 ei->defrag_compress = BTRFS_COMPRESS_NONE; 9352 9353 ei->delayed_node = NULL; 9354 9355 ei->i_otime.tv_sec = 0; 9356 ei->i_otime.tv_nsec = 0; 9357 9358 inode = &ei->vfs_inode; 9359 extent_map_tree_init(&ei->extent_tree); 9360 extent_io_tree_init(fs_info, &ei->io_tree, IO_TREE_INODE_IO, inode); 9361 extent_io_tree_init(fs_info, &ei->io_failure_tree, 9362 IO_TREE_INODE_IO_FAILURE, inode); 9363 ei->io_tree.track_uptodate = true; 9364 ei->io_failure_tree.track_uptodate = true; 9365 atomic_set(&ei->sync_writers, 0); 9366 mutex_init(&ei->log_mutex); 9367 btrfs_ordered_inode_tree_init(&ei->ordered_tree); 9368 INIT_LIST_HEAD(&ei->delalloc_inodes); 9369 INIT_LIST_HEAD(&ei->delayed_iput); 9370 RB_CLEAR_NODE(&ei->rb_node); 9371 init_rwsem(&ei->dio_sem); 9372 9373 return inode; 9374 } 9375 9376 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 9377 void btrfs_test_destroy_inode(struct inode *inode) 9378 { 9379 btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0); 9380 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 9381 } 9382 #endif 9383 9384 void btrfs_free_inode(struct inode *inode) 9385 { 9386 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 9387 } 9388 9389 void btrfs_destroy_inode(struct inode *inode) 9390 { 9391 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 9392 struct btrfs_ordered_extent *ordered; 9393 struct btrfs_root *root = BTRFS_I(inode)->root; 9394 9395 WARN_ON(!hlist_empty(&inode->i_dentry)); 9396 WARN_ON(inode->i_data.nrpages); 9397 WARN_ON(BTRFS_I(inode)->block_rsv.reserved); 9398 WARN_ON(BTRFS_I(inode)->block_rsv.size); 9399 WARN_ON(BTRFS_I(inode)->outstanding_extents); 9400 WARN_ON(BTRFS_I(inode)->delalloc_bytes); 9401 WARN_ON(BTRFS_I(inode)->new_delalloc_bytes); 9402 WARN_ON(BTRFS_I(inode)->csum_bytes); 9403 WARN_ON(BTRFS_I(inode)->defrag_bytes); 9404 9405 /* 9406 * This can happen where we create an inode, but somebody else also 9407 * created the same inode and we need to destroy the one we already 9408 * created. 9409 */ 9410 if (!root) 9411 return; 9412 9413 while (1) { 9414 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1); 9415 if (!ordered) 9416 break; 9417 else { 9418 btrfs_err(fs_info, 9419 "found ordered extent %llu %llu on inode cleanup", 9420 ordered->file_offset, ordered->len); 9421 btrfs_remove_ordered_extent(inode, ordered); 9422 btrfs_put_ordered_extent(ordered); 9423 btrfs_put_ordered_extent(ordered); 9424 } 9425 } 9426 btrfs_qgroup_check_reserved_leak(inode); 9427 inode_tree_del(inode); 9428 btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0); 9429 } 9430 9431 int btrfs_drop_inode(struct inode *inode) 9432 { 9433 struct btrfs_root *root = BTRFS_I(inode)->root; 9434 9435 if (root == NULL) 9436 return 1; 9437 9438 /* the snap/subvol tree is on deleting */ 9439 if (btrfs_root_refs(&root->root_item) == 0) 9440 return 1; 9441 else 9442 return generic_drop_inode(inode); 9443 } 9444 9445 static void init_once(void *foo) 9446 { 9447 struct btrfs_inode *ei = (struct btrfs_inode *) foo; 9448 9449 inode_init_once(&ei->vfs_inode); 9450 } 9451 9452 void __cold btrfs_destroy_cachep(void) 9453 { 9454 /* 9455 * Make sure all delayed rcu free inodes are flushed before we 9456 * destroy cache. 9457 */ 9458 rcu_barrier(); 9459 kmem_cache_destroy(btrfs_inode_cachep); 9460 kmem_cache_destroy(btrfs_trans_handle_cachep); 9461 kmem_cache_destroy(btrfs_path_cachep); 9462 kmem_cache_destroy(btrfs_free_space_cachep); 9463 kmem_cache_destroy(btrfs_free_space_bitmap_cachep); 9464 } 9465 9466 int __init btrfs_init_cachep(void) 9467 { 9468 btrfs_inode_cachep = kmem_cache_create("btrfs_inode", 9469 sizeof(struct btrfs_inode), 0, 9470 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT, 9471 init_once); 9472 if (!btrfs_inode_cachep) 9473 goto fail; 9474 9475 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle", 9476 sizeof(struct btrfs_trans_handle), 0, 9477 SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL); 9478 if (!btrfs_trans_handle_cachep) 9479 goto fail; 9480 9481 btrfs_path_cachep = kmem_cache_create("btrfs_path", 9482 sizeof(struct btrfs_path), 0, 9483 SLAB_MEM_SPREAD, NULL); 9484 if (!btrfs_path_cachep) 9485 goto fail; 9486 9487 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space", 9488 sizeof(struct btrfs_free_space), 0, 9489 SLAB_MEM_SPREAD, NULL); 9490 if (!btrfs_free_space_cachep) 9491 goto fail; 9492 9493 btrfs_free_space_bitmap_cachep = kmem_cache_create("btrfs_free_space_bitmap", 9494 PAGE_SIZE, PAGE_SIZE, 9495 SLAB_RED_ZONE, NULL); 9496 if (!btrfs_free_space_bitmap_cachep) 9497 goto fail; 9498 9499 return 0; 9500 fail: 9501 btrfs_destroy_cachep(); 9502 return -ENOMEM; 9503 } 9504 9505 static int btrfs_getattr(const struct path *path, struct kstat *stat, 9506 u32 request_mask, unsigned int flags) 9507 { 9508 u64 delalloc_bytes; 9509 struct inode *inode = d_inode(path->dentry); 9510 u32 blocksize = inode->i_sb->s_blocksize; 9511 u32 bi_flags = BTRFS_I(inode)->flags; 9512 9513 stat->result_mask |= STATX_BTIME; 9514 stat->btime.tv_sec = BTRFS_I(inode)->i_otime.tv_sec; 9515 stat->btime.tv_nsec = BTRFS_I(inode)->i_otime.tv_nsec; 9516 if (bi_flags & BTRFS_INODE_APPEND) 9517 stat->attributes |= STATX_ATTR_APPEND; 9518 if (bi_flags & BTRFS_INODE_COMPRESS) 9519 stat->attributes |= STATX_ATTR_COMPRESSED; 9520 if (bi_flags & BTRFS_INODE_IMMUTABLE) 9521 stat->attributes |= STATX_ATTR_IMMUTABLE; 9522 if (bi_flags & BTRFS_INODE_NODUMP) 9523 stat->attributes |= STATX_ATTR_NODUMP; 9524 9525 stat->attributes_mask |= (STATX_ATTR_APPEND | 9526 STATX_ATTR_COMPRESSED | 9527 STATX_ATTR_IMMUTABLE | 9528 STATX_ATTR_NODUMP); 9529 9530 generic_fillattr(inode, stat); 9531 stat->dev = BTRFS_I(inode)->root->anon_dev; 9532 9533 spin_lock(&BTRFS_I(inode)->lock); 9534 delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes; 9535 spin_unlock(&BTRFS_I(inode)->lock); 9536 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) + 9537 ALIGN(delalloc_bytes, blocksize)) >> 9; 9538 return 0; 9539 } 9540 9541 static int btrfs_rename_exchange(struct inode *old_dir, 9542 struct dentry *old_dentry, 9543 struct inode *new_dir, 9544 struct dentry *new_dentry) 9545 { 9546 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb); 9547 struct btrfs_trans_handle *trans; 9548 struct btrfs_root *root = BTRFS_I(old_dir)->root; 9549 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 9550 struct inode *new_inode = new_dentry->d_inode; 9551 struct inode *old_inode = old_dentry->d_inode; 9552 struct timespec64 ctime = current_time(old_inode); 9553 struct dentry *parent; 9554 u64 old_ino = btrfs_ino(BTRFS_I(old_inode)); 9555 u64 new_ino = btrfs_ino(BTRFS_I(new_inode)); 9556 u64 old_idx = 0; 9557 u64 new_idx = 0; 9558 int ret; 9559 bool root_log_pinned = false; 9560 bool dest_log_pinned = false; 9561 struct btrfs_log_ctx ctx_root; 9562 struct btrfs_log_ctx ctx_dest; 9563 bool sync_log_root = false; 9564 bool sync_log_dest = false; 9565 bool commit_transaction = false; 9566 9567 /* we only allow rename subvolume link between subvolumes */ 9568 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest) 9569 return -EXDEV; 9570 9571 btrfs_init_log_ctx(&ctx_root, old_inode); 9572 btrfs_init_log_ctx(&ctx_dest, new_inode); 9573 9574 /* close the race window with snapshot create/destroy ioctl */ 9575 if (old_ino == BTRFS_FIRST_FREE_OBJECTID || 9576 new_ino == BTRFS_FIRST_FREE_OBJECTID) 9577 down_read(&fs_info->subvol_sem); 9578 9579 /* 9580 * We want to reserve the absolute worst case amount of items. So if 9581 * both inodes are subvols and we need to unlink them then that would 9582 * require 4 item modifications, but if they are both normal inodes it 9583 * would require 5 item modifications, so we'll assume their normal 9584 * inodes. So 5 * 2 is 10, plus 2 for the new links, so 12 total items 9585 * should cover the worst case number of items we'll modify. 9586 */ 9587 trans = btrfs_start_transaction(root, 12); 9588 if (IS_ERR(trans)) { 9589 ret = PTR_ERR(trans); 9590 goto out_notrans; 9591 } 9592 9593 if (dest != root) 9594 btrfs_record_root_in_trans(trans, dest); 9595 9596 /* 9597 * We need to find a free sequence number both in the source and 9598 * in the destination directory for the exchange. 9599 */ 9600 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx); 9601 if (ret) 9602 goto out_fail; 9603 ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx); 9604 if (ret) 9605 goto out_fail; 9606 9607 BTRFS_I(old_inode)->dir_index = 0ULL; 9608 BTRFS_I(new_inode)->dir_index = 0ULL; 9609 9610 /* Reference for the source. */ 9611 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 9612 /* force full log commit if subvolume involved. */ 9613 btrfs_set_log_full_commit(trans); 9614 } else { 9615 btrfs_pin_log_trans(root); 9616 root_log_pinned = true; 9617 ret = btrfs_insert_inode_ref(trans, dest, 9618 new_dentry->d_name.name, 9619 new_dentry->d_name.len, 9620 old_ino, 9621 btrfs_ino(BTRFS_I(new_dir)), 9622 old_idx); 9623 if (ret) 9624 goto out_fail; 9625 } 9626 9627 /* And now for the dest. */ 9628 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) { 9629 /* force full log commit if subvolume involved. */ 9630 btrfs_set_log_full_commit(trans); 9631 } else { 9632 btrfs_pin_log_trans(dest); 9633 dest_log_pinned = true; 9634 ret = btrfs_insert_inode_ref(trans, root, 9635 old_dentry->d_name.name, 9636 old_dentry->d_name.len, 9637 new_ino, 9638 btrfs_ino(BTRFS_I(old_dir)), 9639 new_idx); 9640 if (ret) 9641 goto out_fail; 9642 } 9643 9644 /* Update inode version and ctime/mtime. */ 9645 inode_inc_iversion(old_dir); 9646 inode_inc_iversion(new_dir); 9647 inode_inc_iversion(old_inode); 9648 inode_inc_iversion(new_inode); 9649 old_dir->i_ctime = old_dir->i_mtime = ctime; 9650 new_dir->i_ctime = new_dir->i_mtime = ctime; 9651 old_inode->i_ctime = ctime; 9652 new_inode->i_ctime = ctime; 9653 9654 if (old_dentry->d_parent != new_dentry->d_parent) { 9655 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir), 9656 BTRFS_I(old_inode), 1); 9657 btrfs_record_unlink_dir(trans, BTRFS_I(new_dir), 9658 BTRFS_I(new_inode), 1); 9659 } 9660 9661 /* src is a subvolume */ 9662 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 9663 ret = btrfs_unlink_subvol(trans, old_dir, old_dentry); 9664 } else { /* src is an inode */ 9665 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir), 9666 BTRFS_I(old_dentry->d_inode), 9667 old_dentry->d_name.name, 9668 old_dentry->d_name.len); 9669 if (!ret) 9670 ret = btrfs_update_inode(trans, root, old_inode); 9671 } 9672 if (ret) { 9673 btrfs_abort_transaction(trans, ret); 9674 goto out_fail; 9675 } 9676 9677 /* dest is a subvolume */ 9678 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) { 9679 ret = btrfs_unlink_subvol(trans, new_dir, new_dentry); 9680 } else { /* dest is an inode */ 9681 ret = __btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir), 9682 BTRFS_I(new_dentry->d_inode), 9683 new_dentry->d_name.name, 9684 new_dentry->d_name.len); 9685 if (!ret) 9686 ret = btrfs_update_inode(trans, dest, new_inode); 9687 } 9688 if (ret) { 9689 btrfs_abort_transaction(trans, ret); 9690 goto out_fail; 9691 } 9692 9693 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode), 9694 new_dentry->d_name.name, 9695 new_dentry->d_name.len, 0, old_idx); 9696 if (ret) { 9697 btrfs_abort_transaction(trans, ret); 9698 goto out_fail; 9699 } 9700 9701 ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode), 9702 old_dentry->d_name.name, 9703 old_dentry->d_name.len, 0, new_idx); 9704 if (ret) { 9705 btrfs_abort_transaction(trans, ret); 9706 goto out_fail; 9707 } 9708 9709 if (old_inode->i_nlink == 1) 9710 BTRFS_I(old_inode)->dir_index = old_idx; 9711 if (new_inode->i_nlink == 1) 9712 BTRFS_I(new_inode)->dir_index = new_idx; 9713 9714 if (root_log_pinned) { 9715 parent = new_dentry->d_parent; 9716 ret = btrfs_log_new_name(trans, BTRFS_I(old_inode), 9717 BTRFS_I(old_dir), parent, 9718 false, &ctx_root); 9719 if (ret == BTRFS_NEED_LOG_SYNC) 9720 sync_log_root = true; 9721 else if (ret == BTRFS_NEED_TRANS_COMMIT) 9722 commit_transaction = true; 9723 ret = 0; 9724 btrfs_end_log_trans(root); 9725 root_log_pinned = false; 9726 } 9727 if (dest_log_pinned) { 9728 if (!commit_transaction) { 9729 parent = old_dentry->d_parent; 9730 ret = btrfs_log_new_name(trans, BTRFS_I(new_inode), 9731 BTRFS_I(new_dir), parent, 9732 false, &ctx_dest); 9733 if (ret == BTRFS_NEED_LOG_SYNC) 9734 sync_log_dest = true; 9735 else if (ret == BTRFS_NEED_TRANS_COMMIT) 9736 commit_transaction = true; 9737 ret = 0; 9738 } 9739 btrfs_end_log_trans(dest); 9740 dest_log_pinned = false; 9741 } 9742 out_fail: 9743 /* 9744 * If we have pinned a log and an error happened, we unpin tasks 9745 * trying to sync the log and force them to fallback to a transaction 9746 * commit if the log currently contains any of the inodes involved in 9747 * this rename operation (to ensure we do not persist a log with an 9748 * inconsistent state for any of these inodes or leading to any 9749 * inconsistencies when replayed). If the transaction was aborted, the 9750 * abortion reason is propagated to userspace when attempting to commit 9751 * the transaction. If the log does not contain any of these inodes, we 9752 * allow the tasks to sync it. 9753 */ 9754 if (ret && (root_log_pinned || dest_log_pinned)) { 9755 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) || 9756 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) || 9757 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) || 9758 (new_inode && 9759 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation))) 9760 btrfs_set_log_full_commit(trans); 9761 9762 if (root_log_pinned) { 9763 btrfs_end_log_trans(root); 9764 root_log_pinned = false; 9765 } 9766 if (dest_log_pinned) { 9767 btrfs_end_log_trans(dest); 9768 dest_log_pinned = false; 9769 } 9770 } 9771 if (!ret && sync_log_root && !commit_transaction) { 9772 ret = btrfs_sync_log(trans, BTRFS_I(old_inode)->root, 9773 &ctx_root); 9774 if (ret) 9775 commit_transaction = true; 9776 } 9777 if (!ret && sync_log_dest && !commit_transaction) { 9778 ret = btrfs_sync_log(trans, BTRFS_I(new_inode)->root, 9779 &ctx_dest); 9780 if (ret) 9781 commit_transaction = true; 9782 } 9783 if (commit_transaction) { 9784 /* 9785 * We may have set commit_transaction when logging the new name 9786 * in the destination root, in which case we left the source 9787 * root context in the list of log contextes. So make sure we 9788 * remove it to avoid invalid memory accesses, since the context 9789 * was allocated in our stack frame. 9790 */ 9791 if (sync_log_root) { 9792 mutex_lock(&root->log_mutex); 9793 list_del_init(&ctx_root.list); 9794 mutex_unlock(&root->log_mutex); 9795 } 9796 ret = btrfs_commit_transaction(trans); 9797 } else { 9798 int ret2; 9799 9800 ret2 = btrfs_end_transaction(trans); 9801 ret = ret ? ret : ret2; 9802 } 9803 out_notrans: 9804 if (new_ino == BTRFS_FIRST_FREE_OBJECTID || 9805 old_ino == BTRFS_FIRST_FREE_OBJECTID) 9806 up_read(&fs_info->subvol_sem); 9807 9808 ASSERT(list_empty(&ctx_root.list)); 9809 ASSERT(list_empty(&ctx_dest.list)); 9810 9811 return ret; 9812 } 9813 9814 static int btrfs_whiteout_for_rename(struct btrfs_trans_handle *trans, 9815 struct btrfs_root *root, 9816 struct inode *dir, 9817 struct dentry *dentry) 9818 { 9819 int ret; 9820 struct inode *inode; 9821 u64 objectid; 9822 u64 index; 9823 9824 ret = btrfs_find_free_ino(root, &objectid); 9825 if (ret) 9826 return ret; 9827 9828 inode = btrfs_new_inode(trans, root, dir, 9829 dentry->d_name.name, 9830 dentry->d_name.len, 9831 btrfs_ino(BTRFS_I(dir)), 9832 objectid, 9833 S_IFCHR | WHITEOUT_MODE, 9834 &index); 9835 9836 if (IS_ERR(inode)) { 9837 ret = PTR_ERR(inode); 9838 return ret; 9839 } 9840 9841 inode->i_op = &btrfs_special_inode_operations; 9842 init_special_inode(inode, inode->i_mode, 9843 WHITEOUT_DEV); 9844 9845 ret = btrfs_init_inode_security(trans, inode, dir, 9846 &dentry->d_name); 9847 if (ret) 9848 goto out; 9849 9850 ret = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, 9851 BTRFS_I(inode), 0, index); 9852 if (ret) 9853 goto out; 9854 9855 ret = btrfs_update_inode(trans, root, inode); 9856 out: 9857 unlock_new_inode(inode); 9858 if (ret) 9859 inode_dec_link_count(inode); 9860 iput(inode); 9861 9862 return ret; 9863 } 9864 9865 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry, 9866 struct inode *new_dir, struct dentry *new_dentry, 9867 unsigned int flags) 9868 { 9869 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb); 9870 struct btrfs_trans_handle *trans; 9871 unsigned int trans_num_items; 9872 struct btrfs_root *root = BTRFS_I(old_dir)->root; 9873 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 9874 struct inode *new_inode = d_inode(new_dentry); 9875 struct inode *old_inode = d_inode(old_dentry); 9876 u64 index = 0; 9877 int ret; 9878 u64 old_ino = btrfs_ino(BTRFS_I(old_inode)); 9879 bool log_pinned = false; 9880 struct btrfs_log_ctx ctx; 9881 bool sync_log = false; 9882 bool commit_transaction = false; 9883 9884 if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 9885 return -EPERM; 9886 9887 /* we only allow rename subvolume link between subvolumes */ 9888 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest) 9889 return -EXDEV; 9890 9891 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID || 9892 (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID)) 9893 return -ENOTEMPTY; 9894 9895 if (S_ISDIR(old_inode->i_mode) && new_inode && 9896 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) 9897 return -ENOTEMPTY; 9898 9899 9900 /* check for collisions, even if the name isn't there */ 9901 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino, 9902 new_dentry->d_name.name, 9903 new_dentry->d_name.len); 9904 9905 if (ret) { 9906 if (ret == -EEXIST) { 9907 /* we shouldn't get 9908 * eexist without a new_inode */ 9909 if (WARN_ON(!new_inode)) { 9910 return ret; 9911 } 9912 } else { 9913 /* maybe -EOVERFLOW */ 9914 return ret; 9915 } 9916 } 9917 ret = 0; 9918 9919 /* 9920 * we're using rename to replace one file with another. Start IO on it 9921 * now so we don't add too much work to the end of the transaction 9922 */ 9923 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size) 9924 filemap_flush(old_inode->i_mapping); 9925 9926 /* close the racy window with snapshot create/destroy ioctl */ 9927 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 9928 down_read(&fs_info->subvol_sem); 9929 /* 9930 * We want to reserve the absolute worst case amount of items. So if 9931 * both inodes are subvols and we need to unlink them then that would 9932 * require 4 item modifications, but if they are both normal inodes it 9933 * would require 5 item modifications, so we'll assume they are normal 9934 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items 9935 * should cover the worst case number of items we'll modify. 9936 * If our rename has the whiteout flag, we need more 5 units for the 9937 * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item 9938 * when selinux is enabled). 9939 */ 9940 trans_num_items = 11; 9941 if (flags & RENAME_WHITEOUT) 9942 trans_num_items += 5; 9943 trans = btrfs_start_transaction(root, trans_num_items); 9944 if (IS_ERR(trans)) { 9945 ret = PTR_ERR(trans); 9946 goto out_notrans; 9947 } 9948 9949 if (dest != root) 9950 btrfs_record_root_in_trans(trans, dest); 9951 9952 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index); 9953 if (ret) 9954 goto out_fail; 9955 9956 BTRFS_I(old_inode)->dir_index = 0ULL; 9957 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 9958 /* force full log commit if subvolume involved. */ 9959 btrfs_set_log_full_commit(trans); 9960 } else { 9961 btrfs_pin_log_trans(root); 9962 log_pinned = true; 9963 ret = btrfs_insert_inode_ref(trans, dest, 9964 new_dentry->d_name.name, 9965 new_dentry->d_name.len, 9966 old_ino, 9967 btrfs_ino(BTRFS_I(new_dir)), index); 9968 if (ret) 9969 goto out_fail; 9970 } 9971 9972 inode_inc_iversion(old_dir); 9973 inode_inc_iversion(new_dir); 9974 inode_inc_iversion(old_inode); 9975 old_dir->i_ctime = old_dir->i_mtime = 9976 new_dir->i_ctime = new_dir->i_mtime = 9977 old_inode->i_ctime = current_time(old_dir); 9978 9979 if (old_dentry->d_parent != new_dentry->d_parent) 9980 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir), 9981 BTRFS_I(old_inode), 1); 9982 9983 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 9984 ret = btrfs_unlink_subvol(trans, old_dir, old_dentry); 9985 } else { 9986 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir), 9987 BTRFS_I(d_inode(old_dentry)), 9988 old_dentry->d_name.name, 9989 old_dentry->d_name.len); 9990 if (!ret) 9991 ret = btrfs_update_inode(trans, root, old_inode); 9992 } 9993 if (ret) { 9994 btrfs_abort_transaction(trans, ret); 9995 goto out_fail; 9996 } 9997 9998 if (new_inode) { 9999 inode_inc_iversion(new_inode); 10000 new_inode->i_ctime = current_time(new_inode); 10001 if (unlikely(btrfs_ino(BTRFS_I(new_inode)) == 10002 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 10003 ret = btrfs_unlink_subvol(trans, new_dir, new_dentry); 10004 BUG_ON(new_inode->i_nlink == 0); 10005 } else { 10006 ret = btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir), 10007 BTRFS_I(d_inode(new_dentry)), 10008 new_dentry->d_name.name, 10009 new_dentry->d_name.len); 10010 } 10011 if (!ret && new_inode->i_nlink == 0) 10012 ret = btrfs_orphan_add(trans, 10013 BTRFS_I(d_inode(new_dentry))); 10014 if (ret) { 10015 btrfs_abort_transaction(trans, ret); 10016 goto out_fail; 10017 } 10018 } 10019 10020 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode), 10021 new_dentry->d_name.name, 10022 new_dentry->d_name.len, 0, index); 10023 if (ret) { 10024 btrfs_abort_transaction(trans, ret); 10025 goto out_fail; 10026 } 10027 10028 if (old_inode->i_nlink == 1) 10029 BTRFS_I(old_inode)->dir_index = index; 10030 10031 if (log_pinned) { 10032 struct dentry *parent = new_dentry->d_parent; 10033 10034 btrfs_init_log_ctx(&ctx, old_inode); 10035 ret = btrfs_log_new_name(trans, BTRFS_I(old_inode), 10036 BTRFS_I(old_dir), parent, 10037 false, &ctx); 10038 if (ret == BTRFS_NEED_LOG_SYNC) 10039 sync_log = true; 10040 else if (ret == BTRFS_NEED_TRANS_COMMIT) 10041 commit_transaction = true; 10042 ret = 0; 10043 btrfs_end_log_trans(root); 10044 log_pinned = false; 10045 } 10046 10047 if (flags & RENAME_WHITEOUT) { 10048 ret = btrfs_whiteout_for_rename(trans, root, old_dir, 10049 old_dentry); 10050 10051 if (ret) { 10052 btrfs_abort_transaction(trans, ret); 10053 goto out_fail; 10054 } 10055 } 10056 out_fail: 10057 /* 10058 * If we have pinned the log and an error happened, we unpin tasks 10059 * trying to sync the log and force them to fallback to a transaction 10060 * commit if the log currently contains any of the inodes involved in 10061 * this rename operation (to ensure we do not persist a log with an 10062 * inconsistent state for any of these inodes or leading to any 10063 * inconsistencies when replayed). If the transaction was aborted, the 10064 * abortion reason is propagated to userspace when attempting to commit 10065 * the transaction. If the log does not contain any of these inodes, we 10066 * allow the tasks to sync it. 10067 */ 10068 if (ret && log_pinned) { 10069 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) || 10070 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) || 10071 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) || 10072 (new_inode && 10073 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation))) 10074 btrfs_set_log_full_commit(trans); 10075 10076 btrfs_end_log_trans(root); 10077 log_pinned = false; 10078 } 10079 if (!ret && sync_log) { 10080 ret = btrfs_sync_log(trans, BTRFS_I(old_inode)->root, &ctx); 10081 if (ret) 10082 commit_transaction = true; 10083 } 10084 if (commit_transaction) { 10085 ret = btrfs_commit_transaction(trans); 10086 } else { 10087 int ret2; 10088 10089 ret2 = btrfs_end_transaction(trans); 10090 ret = ret ? ret : ret2; 10091 } 10092 out_notrans: 10093 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 10094 up_read(&fs_info->subvol_sem); 10095 10096 return ret; 10097 } 10098 10099 static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry, 10100 struct inode *new_dir, struct dentry *new_dentry, 10101 unsigned int flags) 10102 { 10103 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 10104 return -EINVAL; 10105 10106 if (flags & RENAME_EXCHANGE) 10107 return btrfs_rename_exchange(old_dir, old_dentry, new_dir, 10108 new_dentry); 10109 10110 return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry, flags); 10111 } 10112 10113 struct btrfs_delalloc_work { 10114 struct inode *inode; 10115 struct completion completion; 10116 struct list_head list; 10117 struct btrfs_work work; 10118 }; 10119 10120 static void btrfs_run_delalloc_work(struct btrfs_work *work) 10121 { 10122 struct btrfs_delalloc_work *delalloc_work; 10123 struct inode *inode; 10124 10125 delalloc_work = container_of(work, struct btrfs_delalloc_work, 10126 work); 10127 inode = delalloc_work->inode; 10128 filemap_flush(inode->i_mapping); 10129 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 10130 &BTRFS_I(inode)->runtime_flags)) 10131 filemap_flush(inode->i_mapping); 10132 10133 iput(inode); 10134 complete(&delalloc_work->completion); 10135 } 10136 10137 static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode) 10138 { 10139 struct btrfs_delalloc_work *work; 10140 10141 work = kmalloc(sizeof(*work), GFP_NOFS); 10142 if (!work) 10143 return NULL; 10144 10145 init_completion(&work->completion); 10146 INIT_LIST_HEAD(&work->list); 10147 work->inode = inode; 10148 btrfs_init_work(&work->work, btrfs_run_delalloc_work, NULL, NULL); 10149 10150 return work; 10151 } 10152 10153 /* 10154 * some fairly slow code that needs optimization. This walks the list 10155 * of all the inodes with pending delalloc and forces them to disk. 10156 */ 10157 static int start_delalloc_inodes(struct btrfs_root *root, int nr, bool snapshot) 10158 { 10159 struct btrfs_inode *binode; 10160 struct inode *inode; 10161 struct btrfs_delalloc_work *work, *next; 10162 struct list_head works; 10163 struct list_head splice; 10164 int ret = 0; 10165 10166 INIT_LIST_HEAD(&works); 10167 INIT_LIST_HEAD(&splice); 10168 10169 mutex_lock(&root->delalloc_mutex); 10170 spin_lock(&root->delalloc_lock); 10171 list_splice_init(&root->delalloc_inodes, &splice); 10172 while (!list_empty(&splice)) { 10173 binode = list_entry(splice.next, struct btrfs_inode, 10174 delalloc_inodes); 10175 10176 list_move_tail(&binode->delalloc_inodes, 10177 &root->delalloc_inodes); 10178 inode = igrab(&binode->vfs_inode); 10179 if (!inode) { 10180 cond_resched_lock(&root->delalloc_lock); 10181 continue; 10182 } 10183 spin_unlock(&root->delalloc_lock); 10184 10185 if (snapshot) 10186 set_bit(BTRFS_INODE_SNAPSHOT_FLUSH, 10187 &binode->runtime_flags); 10188 work = btrfs_alloc_delalloc_work(inode); 10189 if (!work) { 10190 iput(inode); 10191 ret = -ENOMEM; 10192 goto out; 10193 } 10194 list_add_tail(&work->list, &works); 10195 btrfs_queue_work(root->fs_info->flush_workers, 10196 &work->work); 10197 ret++; 10198 if (nr != -1 && ret >= nr) 10199 goto out; 10200 cond_resched(); 10201 spin_lock(&root->delalloc_lock); 10202 } 10203 spin_unlock(&root->delalloc_lock); 10204 10205 out: 10206 list_for_each_entry_safe(work, next, &works, list) { 10207 list_del_init(&work->list); 10208 wait_for_completion(&work->completion); 10209 kfree(work); 10210 } 10211 10212 if (!list_empty(&splice)) { 10213 spin_lock(&root->delalloc_lock); 10214 list_splice_tail(&splice, &root->delalloc_inodes); 10215 spin_unlock(&root->delalloc_lock); 10216 } 10217 mutex_unlock(&root->delalloc_mutex); 10218 return ret; 10219 } 10220 10221 int btrfs_start_delalloc_snapshot(struct btrfs_root *root) 10222 { 10223 struct btrfs_fs_info *fs_info = root->fs_info; 10224 int ret; 10225 10226 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 10227 return -EROFS; 10228 10229 ret = start_delalloc_inodes(root, -1, true); 10230 if (ret > 0) 10231 ret = 0; 10232 return ret; 10233 } 10234 10235 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int nr) 10236 { 10237 struct btrfs_root *root; 10238 struct list_head splice; 10239 int ret; 10240 10241 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 10242 return -EROFS; 10243 10244 INIT_LIST_HEAD(&splice); 10245 10246 mutex_lock(&fs_info->delalloc_root_mutex); 10247 spin_lock(&fs_info->delalloc_root_lock); 10248 list_splice_init(&fs_info->delalloc_roots, &splice); 10249 while (!list_empty(&splice) && nr) { 10250 root = list_first_entry(&splice, struct btrfs_root, 10251 delalloc_root); 10252 root = btrfs_grab_fs_root(root); 10253 BUG_ON(!root); 10254 list_move_tail(&root->delalloc_root, 10255 &fs_info->delalloc_roots); 10256 spin_unlock(&fs_info->delalloc_root_lock); 10257 10258 ret = start_delalloc_inodes(root, nr, false); 10259 btrfs_put_fs_root(root); 10260 if (ret < 0) 10261 goto out; 10262 10263 if (nr != -1) { 10264 nr -= ret; 10265 WARN_ON(nr < 0); 10266 } 10267 spin_lock(&fs_info->delalloc_root_lock); 10268 } 10269 spin_unlock(&fs_info->delalloc_root_lock); 10270 10271 ret = 0; 10272 out: 10273 if (!list_empty(&splice)) { 10274 spin_lock(&fs_info->delalloc_root_lock); 10275 list_splice_tail(&splice, &fs_info->delalloc_roots); 10276 spin_unlock(&fs_info->delalloc_root_lock); 10277 } 10278 mutex_unlock(&fs_info->delalloc_root_mutex); 10279 return ret; 10280 } 10281 10282 static int btrfs_symlink(struct inode *dir, struct dentry *dentry, 10283 const char *symname) 10284 { 10285 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 10286 struct btrfs_trans_handle *trans; 10287 struct btrfs_root *root = BTRFS_I(dir)->root; 10288 struct btrfs_path *path; 10289 struct btrfs_key key; 10290 struct inode *inode = NULL; 10291 int err; 10292 u64 objectid; 10293 u64 index = 0; 10294 int name_len; 10295 int datasize; 10296 unsigned long ptr; 10297 struct btrfs_file_extent_item *ei; 10298 struct extent_buffer *leaf; 10299 10300 name_len = strlen(symname); 10301 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info)) 10302 return -ENAMETOOLONG; 10303 10304 /* 10305 * 2 items for inode item and ref 10306 * 2 items for dir items 10307 * 1 item for updating parent inode item 10308 * 1 item for the inline extent item 10309 * 1 item for xattr if selinux is on 10310 */ 10311 trans = btrfs_start_transaction(root, 7); 10312 if (IS_ERR(trans)) 10313 return PTR_ERR(trans); 10314 10315 err = btrfs_find_free_ino(root, &objectid); 10316 if (err) 10317 goto out_unlock; 10318 10319 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 10320 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), 10321 objectid, S_IFLNK|S_IRWXUGO, &index); 10322 if (IS_ERR(inode)) { 10323 err = PTR_ERR(inode); 10324 inode = NULL; 10325 goto out_unlock; 10326 } 10327 10328 /* 10329 * If the active LSM wants to access the inode during 10330 * d_instantiate it needs these. Smack checks to see 10331 * if the filesystem supports xattrs by looking at the 10332 * ops vector. 10333 */ 10334 inode->i_fop = &btrfs_file_operations; 10335 inode->i_op = &btrfs_file_inode_operations; 10336 inode->i_mapping->a_ops = &btrfs_aops; 10337 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 10338 10339 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 10340 if (err) 10341 goto out_unlock; 10342 10343 path = btrfs_alloc_path(); 10344 if (!path) { 10345 err = -ENOMEM; 10346 goto out_unlock; 10347 } 10348 key.objectid = btrfs_ino(BTRFS_I(inode)); 10349 key.offset = 0; 10350 key.type = BTRFS_EXTENT_DATA_KEY; 10351 datasize = btrfs_file_extent_calc_inline_size(name_len); 10352 err = btrfs_insert_empty_item(trans, root, path, &key, 10353 datasize); 10354 if (err) { 10355 btrfs_free_path(path); 10356 goto out_unlock; 10357 } 10358 leaf = path->nodes[0]; 10359 ei = btrfs_item_ptr(leaf, path->slots[0], 10360 struct btrfs_file_extent_item); 10361 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 10362 btrfs_set_file_extent_type(leaf, ei, 10363 BTRFS_FILE_EXTENT_INLINE); 10364 btrfs_set_file_extent_encryption(leaf, ei, 0); 10365 btrfs_set_file_extent_compression(leaf, ei, 0); 10366 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 10367 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len); 10368 10369 ptr = btrfs_file_extent_inline_start(ei); 10370 write_extent_buffer(leaf, symname, ptr, name_len); 10371 btrfs_mark_buffer_dirty(leaf); 10372 btrfs_free_path(path); 10373 10374 inode->i_op = &btrfs_symlink_inode_operations; 10375 inode_nohighmem(inode); 10376 inode_set_bytes(inode, name_len); 10377 btrfs_i_size_write(BTRFS_I(inode), name_len); 10378 err = btrfs_update_inode(trans, root, inode); 10379 /* 10380 * Last step, add directory indexes for our symlink inode. This is the 10381 * last step to avoid extra cleanup of these indexes if an error happens 10382 * elsewhere above. 10383 */ 10384 if (!err) 10385 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, 10386 BTRFS_I(inode), 0, index); 10387 if (err) 10388 goto out_unlock; 10389 10390 d_instantiate_new(dentry, inode); 10391 10392 out_unlock: 10393 btrfs_end_transaction(trans); 10394 if (err && inode) { 10395 inode_dec_link_count(inode); 10396 discard_new_inode(inode); 10397 } 10398 btrfs_btree_balance_dirty(fs_info); 10399 return err; 10400 } 10401 10402 static int __btrfs_prealloc_file_range(struct inode *inode, int mode, 10403 u64 start, u64 num_bytes, u64 min_size, 10404 loff_t actual_len, u64 *alloc_hint, 10405 struct btrfs_trans_handle *trans) 10406 { 10407 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 10408 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 10409 struct extent_map *em; 10410 struct btrfs_root *root = BTRFS_I(inode)->root; 10411 struct btrfs_key ins; 10412 u64 cur_offset = start; 10413 u64 i_size; 10414 u64 cur_bytes; 10415 u64 last_alloc = (u64)-1; 10416 int ret = 0; 10417 bool own_trans = true; 10418 u64 end = start + num_bytes - 1; 10419 10420 if (trans) 10421 own_trans = false; 10422 while (num_bytes > 0) { 10423 if (own_trans) { 10424 trans = btrfs_start_transaction(root, 3); 10425 if (IS_ERR(trans)) { 10426 ret = PTR_ERR(trans); 10427 break; 10428 } 10429 } 10430 10431 cur_bytes = min_t(u64, num_bytes, SZ_256M); 10432 cur_bytes = max(cur_bytes, min_size); 10433 /* 10434 * If we are severely fragmented we could end up with really 10435 * small allocations, so if the allocator is returning small 10436 * chunks lets make its job easier by only searching for those 10437 * sized chunks. 10438 */ 10439 cur_bytes = min(cur_bytes, last_alloc); 10440 ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes, 10441 min_size, 0, *alloc_hint, &ins, 1, 0); 10442 if (ret) { 10443 if (own_trans) 10444 btrfs_end_transaction(trans); 10445 break; 10446 } 10447 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 10448 10449 last_alloc = ins.offset; 10450 ret = insert_reserved_file_extent(trans, inode, 10451 cur_offset, ins.objectid, 10452 ins.offset, ins.offset, 10453 ins.offset, 0, 0, 0, 10454 BTRFS_FILE_EXTENT_PREALLOC); 10455 if (ret) { 10456 btrfs_free_reserved_extent(fs_info, ins.objectid, 10457 ins.offset, 0); 10458 btrfs_abort_transaction(trans, ret); 10459 if (own_trans) 10460 btrfs_end_transaction(trans); 10461 break; 10462 } 10463 10464 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset, 10465 cur_offset + ins.offset -1, 0); 10466 10467 em = alloc_extent_map(); 10468 if (!em) { 10469 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 10470 &BTRFS_I(inode)->runtime_flags); 10471 goto next; 10472 } 10473 10474 em->start = cur_offset; 10475 em->orig_start = cur_offset; 10476 em->len = ins.offset; 10477 em->block_start = ins.objectid; 10478 em->block_len = ins.offset; 10479 em->orig_block_len = ins.offset; 10480 em->ram_bytes = ins.offset; 10481 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 10482 em->generation = trans->transid; 10483 10484 while (1) { 10485 write_lock(&em_tree->lock); 10486 ret = add_extent_mapping(em_tree, em, 1); 10487 write_unlock(&em_tree->lock); 10488 if (ret != -EEXIST) 10489 break; 10490 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset, 10491 cur_offset + ins.offset - 1, 10492 0); 10493 } 10494 free_extent_map(em); 10495 next: 10496 num_bytes -= ins.offset; 10497 cur_offset += ins.offset; 10498 *alloc_hint = ins.objectid + ins.offset; 10499 10500 inode_inc_iversion(inode); 10501 inode->i_ctime = current_time(inode); 10502 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC; 10503 if (!(mode & FALLOC_FL_KEEP_SIZE) && 10504 (actual_len > inode->i_size) && 10505 (cur_offset > inode->i_size)) { 10506 if (cur_offset > actual_len) 10507 i_size = actual_len; 10508 else 10509 i_size = cur_offset; 10510 i_size_write(inode, i_size); 10511 btrfs_ordered_update_i_size(inode, i_size, NULL); 10512 } 10513 10514 ret = btrfs_update_inode(trans, root, inode); 10515 10516 if (ret) { 10517 btrfs_abort_transaction(trans, ret); 10518 if (own_trans) 10519 btrfs_end_transaction(trans); 10520 break; 10521 } 10522 10523 if (own_trans) 10524 btrfs_end_transaction(trans); 10525 } 10526 if (cur_offset < end) 10527 btrfs_free_reserved_data_space(inode, NULL, cur_offset, 10528 end - cur_offset + 1); 10529 return ret; 10530 } 10531 10532 int btrfs_prealloc_file_range(struct inode *inode, int mode, 10533 u64 start, u64 num_bytes, u64 min_size, 10534 loff_t actual_len, u64 *alloc_hint) 10535 { 10536 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 10537 min_size, actual_len, alloc_hint, 10538 NULL); 10539 } 10540 10541 int btrfs_prealloc_file_range_trans(struct inode *inode, 10542 struct btrfs_trans_handle *trans, int mode, 10543 u64 start, u64 num_bytes, u64 min_size, 10544 loff_t actual_len, u64 *alloc_hint) 10545 { 10546 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 10547 min_size, actual_len, alloc_hint, trans); 10548 } 10549 10550 static int btrfs_set_page_dirty(struct page *page) 10551 { 10552 return __set_page_dirty_nobuffers(page); 10553 } 10554 10555 static int btrfs_permission(struct inode *inode, int mask) 10556 { 10557 struct btrfs_root *root = BTRFS_I(inode)->root; 10558 umode_t mode = inode->i_mode; 10559 10560 if (mask & MAY_WRITE && 10561 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) { 10562 if (btrfs_root_readonly(root)) 10563 return -EROFS; 10564 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) 10565 return -EACCES; 10566 } 10567 return generic_permission(inode, mask); 10568 } 10569 10570 static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode) 10571 { 10572 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 10573 struct btrfs_trans_handle *trans; 10574 struct btrfs_root *root = BTRFS_I(dir)->root; 10575 struct inode *inode = NULL; 10576 u64 objectid; 10577 u64 index; 10578 int ret = 0; 10579 10580 /* 10581 * 5 units required for adding orphan entry 10582 */ 10583 trans = btrfs_start_transaction(root, 5); 10584 if (IS_ERR(trans)) 10585 return PTR_ERR(trans); 10586 10587 ret = btrfs_find_free_ino(root, &objectid); 10588 if (ret) 10589 goto out; 10590 10591 inode = btrfs_new_inode(trans, root, dir, NULL, 0, 10592 btrfs_ino(BTRFS_I(dir)), objectid, mode, &index); 10593 if (IS_ERR(inode)) { 10594 ret = PTR_ERR(inode); 10595 inode = NULL; 10596 goto out; 10597 } 10598 10599 inode->i_fop = &btrfs_file_operations; 10600 inode->i_op = &btrfs_file_inode_operations; 10601 10602 inode->i_mapping->a_ops = &btrfs_aops; 10603 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 10604 10605 ret = btrfs_init_inode_security(trans, inode, dir, NULL); 10606 if (ret) 10607 goto out; 10608 10609 ret = btrfs_update_inode(trans, root, inode); 10610 if (ret) 10611 goto out; 10612 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 10613 if (ret) 10614 goto out; 10615 10616 /* 10617 * We set number of links to 0 in btrfs_new_inode(), and here we set 10618 * it to 1 because d_tmpfile() will issue a warning if the count is 0, 10619 * through: 10620 * 10621 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink() 10622 */ 10623 set_nlink(inode, 1); 10624 d_tmpfile(dentry, inode); 10625 unlock_new_inode(inode); 10626 mark_inode_dirty(inode); 10627 out: 10628 btrfs_end_transaction(trans); 10629 if (ret && inode) 10630 discard_new_inode(inode); 10631 btrfs_btree_balance_dirty(fs_info); 10632 return ret; 10633 } 10634 10635 void btrfs_set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end) 10636 { 10637 struct inode *inode = tree->private_data; 10638 unsigned long index = start >> PAGE_SHIFT; 10639 unsigned long end_index = end >> PAGE_SHIFT; 10640 struct page *page; 10641 10642 while (index <= end_index) { 10643 page = find_get_page(inode->i_mapping, index); 10644 ASSERT(page); /* Pages should be in the extent_io_tree */ 10645 set_page_writeback(page); 10646 put_page(page); 10647 index++; 10648 } 10649 } 10650 10651 #ifdef CONFIG_SWAP 10652 /* 10653 * Add an entry indicating a block group or device which is pinned by a 10654 * swapfile. Returns 0 on success, 1 if there is already an entry for it, or a 10655 * negative errno on failure. 10656 */ 10657 static int btrfs_add_swapfile_pin(struct inode *inode, void *ptr, 10658 bool is_block_group) 10659 { 10660 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 10661 struct btrfs_swapfile_pin *sp, *entry; 10662 struct rb_node **p; 10663 struct rb_node *parent = NULL; 10664 10665 sp = kmalloc(sizeof(*sp), GFP_NOFS); 10666 if (!sp) 10667 return -ENOMEM; 10668 sp->ptr = ptr; 10669 sp->inode = inode; 10670 sp->is_block_group = is_block_group; 10671 10672 spin_lock(&fs_info->swapfile_pins_lock); 10673 p = &fs_info->swapfile_pins.rb_node; 10674 while (*p) { 10675 parent = *p; 10676 entry = rb_entry(parent, struct btrfs_swapfile_pin, node); 10677 if (sp->ptr < entry->ptr || 10678 (sp->ptr == entry->ptr && sp->inode < entry->inode)) { 10679 p = &(*p)->rb_left; 10680 } else if (sp->ptr > entry->ptr || 10681 (sp->ptr == entry->ptr && sp->inode > entry->inode)) { 10682 p = &(*p)->rb_right; 10683 } else { 10684 spin_unlock(&fs_info->swapfile_pins_lock); 10685 kfree(sp); 10686 return 1; 10687 } 10688 } 10689 rb_link_node(&sp->node, parent, p); 10690 rb_insert_color(&sp->node, &fs_info->swapfile_pins); 10691 spin_unlock(&fs_info->swapfile_pins_lock); 10692 return 0; 10693 } 10694 10695 /* Free all of the entries pinned by this swapfile. */ 10696 static void btrfs_free_swapfile_pins(struct inode *inode) 10697 { 10698 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 10699 struct btrfs_swapfile_pin *sp; 10700 struct rb_node *node, *next; 10701 10702 spin_lock(&fs_info->swapfile_pins_lock); 10703 node = rb_first(&fs_info->swapfile_pins); 10704 while (node) { 10705 next = rb_next(node); 10706 sp = rb_entry(node, struct btrfs_swapfile_pin, node); 10707 if (sp->inode == inode) { 10708 rb_erase(&sp->node, &fs_info->swapfile_pins); 10709 if (sp->is_block_group) 10710 btrfs_put_block_group(sp->ptr); 10711 kfree(sp); 10712 } 10713 node = next; 10714 } 10715 spin_unlock(&fs_info->swapfile_pins_lock); 10716 } 10717 10718 struct btrfs_swap_info { 10719 u64 start; 10720 u64 block_start; 10721 u64 block_len; 10722 u64 lowest_ppage; 10723 u64 highest_ppage; 10724 unsigned long nr_pages; 10725 int nr_extents; 10726 }; 10727 10728 static int btrfs_add_swap_extent(struct swap_info_struct *sis, 10729 struct btrfs_swap_info *bsi) 10730 { 10731 unsigned long nr_pages; 10732 u64 first_ppage, first_ppage_reported, next_ppage; 10733 int ret; 10734 10735 first_ppage = ALIGN(bsi->block_start, PAGE_SIZE) >> PAGE_SHIFT; 10736 next_ppage = ALIGN_DOWN(bsi->block_start + bsi->block_len, 10737 PAGE_SIZE) >> PAGE_SHIFT; 10738 10739 if (first_ppage >= next_ppage) 10740 return 0; 10741 nr_pages = next_ppage - first_ppage; 10742 10743 first_ppage_reported = first_ppage; 10744 if (bsi->start == 0) 10745 first_ppage_reported++; 10746 if (bsi->lowest_ppage > first_ppage_reported) 10747 bsi->lowest_ppage = first_ppage_reported; 10748 if (bsi->highest_ppage < (next_ppage - 1)) 10749 bsi->highest_ppage = next_ppage - 1; 10750 10751 ret = add_swap_extent(sis, bsi->nr_pages, nr_pages, first_ppage); 10752 if (ret < 0) 10753 return ret; 10754 bsi->nr_extents += ret; 10755 bsi->nr_pages += nr_pages; 10756 return 0; 10757 } 10758 10759 static void btrfs_swap_deactivate(struct file *file) 10760 { 10761 struct inode *inode = file_inode(file); 10762 10763 btrfs_free_swapfile_pins(inode); 10764 atomic_dec(&BTRFS_I(inode)->root->nr_swapfiles); 10765 } 10766 10767 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file, 10768 sector_t *span) 10769 { 10770 struct inode *inode = file_inode(file); 10771 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 10772 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 10773 struct extent_state *cached_state = NULL; 10774 struct extent_map *em = NULL; 10775 struct btrfs_device *device = NULL; 10776 struct btrfs_swap_info bsi = { 10777 .lowest_ppage = (sector_t)-1ULL, 10778 }; 10779 int ret = 0; 10780 u64 isize; 10781 u64 start; 10782 10783 /* 10784 * If the swap file was just created, make sure delalloc is done. If the 10785 * file changes again after this, the user is doing something stupid and 10786 * we don't really care. 10787 */ 10788 ret = btrfs_wait_ordered_range(inode, 0, (u64)-1); 10789 if (ret) 10790 return ret; 10791 10792 /* 10793 * The inode is locked, so these flags won't change after we check them. 10794 */ 10795 if (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS) { 10796 btrfs_warn(fs_info, "swapfile must not be compressed"); 10797 return -EINVAL; 10798 } 10799 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)) { 10800 btrfs_warn(fs_info, "swapfile must not be copy-on-write"); 10801 return -EINVAL; 10802 } 10803 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) { 10804 btrfs_warn(fs_info, "swapfile must not be checksummed"); 10805 return -EINVAL; 10806 } 10807 10808 /* 10809 * Balance or device remove/replace/resize can move stuff around from 10810 * under us. The EXCL_OP flag makes sure they aren't running/won't run 10811 * concurrently while we are mapping the swap extents, and 10812 * fs_info->swapfile_pins prevents them from running while the swap file 10813 * is active and moving the extents. Note that this also prevents a 10814 * concurrent device add which isn't actually necessary, but it's not 10815 * really worth the trouble to allow it. 10816 */ 10817 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) { 10818 btrfs_warn(fs_info, 10819 "cannot activate swapfile while exclusive operation is running"); 10820 return -EBUSY; 10821 } 10822 /* 10823 * Snapshots can create extents which require COW even if NODATACOW is 10824 * set. We use this counter to prevent snapshots. We must increment it 10825 * before walking the extents because we don't want a concurrent 10826 * snapshot to run after we've already checked the extents. 10827 */ 10828 atomic_inc(&BTRFS_I(inode)->root->nr_swapfiles); 10829 10830 isize = ALIGN_DOWN(inode->i_size, fs_info->sectorsize); 10831 10832 lock_extent_bits(io_tree, 0, isize - 1, &cached_state); 10833 start = 0; 10834 while (start < isize) { 10835 u64 logical_block_start, physical_block_start; 10836 struct btrfs_block_group *bg; 10837 u64 len = isize - start; 10838 10839 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len, 0); 10840 if (IS_ERR(em)) { 10841 ret = PTR_ERR(em); 10842 goto out; 10843 } 10844 10845 if (em->block_start == EXTENT_MAP_HOLE) { 10846 btrfs_warn(fs_info, "swapfile must not have holes"); 10847 ret = -EINVAL; 10848 goto out; 10849 } 10850 if (em->block_start == EXTENT_MAP_INLINE) { 10851 /* 10852 * It's unlikely we'll ever actually find ourselves 10853 * here, as a file small enough to fit inline won't be 10854 * big enough to store more than the swap header, but in 10855 * case something changes in the future, let's catch it 10856 * here rather than later. 10857 */ 10858 btrfs_warn(fs_info, "swapfile must not be inline"); 10859 ret = -EINVAL; 10860 goto out; 10861 } 10862 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 10863 btrfs_warn(fs_info, "swapfile must not be compressed"); 10864 ret = -EINVAL; 10865 goto out; 10866 } 10867 10868 logical_block_start = em->block_start + (start - em->start); 10869 len = min(len, em->len - (start - em->start)); 10870 free_extent_map(em); 10871 em = NULL; 10872 10873 ret = can_nocow_extent(inode, start, &len, NULL, NULL, NULL); 10874 if (ret < 0) { 10875 goto out; 10876 } else if (ret) { 10877 ret = 0; 10878 } else { 10879 btrfs_warn(fs_info, 10880 "swapfile must not be copy-on-write"); 10881 ret = -EINVAL; 10882 goto out; 10883 } 10884 10885 em = btrfs_get_chunk_map(fs_info, logical_block_start, len); 10886 if (IS_ERR(em)) { 10887 ret = PTR_ERR(em); 10888 goto out; 10889 } 10890 10891 if (em->map_lookup->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) { 10892 btrfs_warn(fs_info, 10893 "swapfile must have single data profile"); 10894 ret = -EINVAL; 10895 goto out; 10896 } 10897 10898 if (device == NULL) { 10899 device = em->map_lookup->stripes[0].dev; 10900 ret = btrfs_add_swapfile_pin(inode, device, false); 10901 if (ret == 1) 10902 ret = 0; 10903 else if (ret) 10904 goto out; 10905 } else if (device != em->map_lookup->stripes[0].dev) { 10906 btrfs_warn(fs_info, "swapfile must be on one device"); 10907 ret = -EINVAL; 10908 goto out; 10909 } 10910 10911 physical_block_start = (em->map_lookup->stripes[0].physical + 10912 (logical_block_start - em->start)); 10913 len = min(len, em->len - (logical_block_start - em->start)); 10914 free_extent_map(em); 10915 em = NULL; 10916 10917 bg = btrfs_lookup_block_group(fs_info, logical_block_start); 10918 if (!bg) { 10919 btrfs_warn(fs_info, 10920 "could not find block group containing swapfile"); 10921 ret = -EINVAL; 10922 goto out; 10923 } 10924 10925 ret = btrfs_add_swapfile_pin(inode, bg, true); 10926 if (ret) { 10927 btrfs_put_block_group(bg); 10928 if (ret == 1) 10929 ret = 0; 10930 else 10931 goto out; 10932 } 10933 10934 if (bsi.block_len && 10935 bsi.block_start + bsi.block_len == physical_block_start) { 10936 bsi.block_len += len; 10937 } else { 10938 if (bsi.block_len) { 10939 ret = btrfs_add_swap_extent(sis, &bsi); 10940 if (ret) 10941 goto out; 10942 } 10943 bsi.start = start; 10944 bsi.block_start = physical_block_start; 10945 bsi.block_len = len; 10946 } 10947 10948 start += len; 10949 } 10950 10951 if (bsi.block_len) 10952 ret = btrfs_add_swap_extent(sis, &bsi); 10953 10954 out: 10955 if (!IS_ERR_OR_NULL(em)) 10956 free_extent_map(em); 10957 10958 unlock_extent_cached(io_tree, 0, isize - 1, &cached_state); 10959 10960 if (ret) 10961 btrfs_swap_deactivate(file); 10962 10963 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags); 10964 10965 if (ret) 10966 return ret; 10967 10968 if (device) 10969 sis->bdev = device->bdev; 10970 *span = bsi.highest_ppage - bsi.lowest_ppage + 1; 10971 sis->max = bsi.nr_pages; 10972 sis->pages = bsi.nr_pages - 1; 10973 sis->highest_bit = bsi.nr_pages - 1; 10974 return bsi.nr_extents; 10975 } 10976 #else 10977 static void btrfs_swap_deactivate(struct file *file) 10978 { 10979 } 10980 10981 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file, 10982 sector_t *span) 10983 { 10984 return -EOPNOTSUPP; 10985 } 10986 #endif 10987 10988 static const struct inode_operations btrfs_dir_inode_operations = { 10989 .getattr = btrfs_getattr, 10990 .lookup = btrfs_lookup, 10991 .create = btrfs_create, 10992 .unlink = btrfs_unlink, 10993 .link = btrfs_link, 10994 .mkdir = btrfs_mkdir, 10995 .rmdir = btrfs_rmdir, 10996 .rename = btrfs_rename2, 10997 .symlink = btrfs_symlink, 10998 .setattr = btrfs_setattr, 10999 .mknod = btrfs_mknod, 11000 .listxattr = btrfs_listxattr, 11001 .permission = btrfs_permission, 11002 .get_acl = btrfs_get_acl, 11003 .set_acl = btrfs_set_acl, 11004 .update_time = btrfs_update_time, 11005 .tmpfile = btrfs_tmpfile, 11006 }; 11007 static const struct inode_operations btrfs_dir_ro_inode_operations = { 11008 .lookup = btrfs_lookup, 11009 .permission = btrfs_permission, 11010 .update_time = btrfs_update_time, 11011 }; 11012 11013 static const struct file_operations btrfs_dir_file_operations = { 11014 .llseek = generic_file_llseek, 11015 .read = generic_read_dir, 11016 .iterate_shared = btrfs_real_readdir, 11017 .open = btrfs_opendir, 11018 .unlocked_ioctl = btrfs_ioctl, 11019 #ifdef CONFIG_COMPAT 11020 .compat_ioctl = btrfs_compat_ioctl, 11021 #endif 11022 .release = btrfs_release_file, 11023 .fsync = btrfs_sync_file, 11024 }; 11025 11026 static const struct extent_io_ops btrfs_extent_io_ops = { 11027 /* mandatory callbacks */ 11028 .submit_bio_hook = btrfs_submit_bio_hook, 11029 .readpage_end_io_hook = btrfs_readpage_end_io_hook, 11030 }; 11031 11032 /* 11033 * btrfs doesn't support the bmap operation because swapfiles 11034 * use bmap to make a mapping of extents in the file. They assume 11035 * these extents won't change over the life of the file and they 11036 * use the bmap result to do IO directly to the drive. 11037 * 11038 * the btrfs bmap call would return logical addresses that aren't 11039 * suitable for IO and they also will change frequently as COW 11040 * operations happen. So, swapfile + btrfs == corruption. 11041 * 11042 * For now we're avoiding this by dropping bmap. 11043 */ 11044 static const struct address_space_operations btrfs_aops = { 11045 .readpage = btrfs_readpage, 11046 .writepage = btrfs_writepage, 11047 .writepages = btrfs_writepages, 11048 .readpages = btrfs_readpages, 11049 .direct_IO = btrfs_direct_IO, 11050 .invalidatepage = btrfs_invalidatepage, 11051 .releasepage = btrfs_releasepage, 11052 .set_page_dirty = btrfs_set_page_dirty, 11053 .error_remove_page = generic_error_remove_page, 11054 .swap_activate = btrfs_swap_activate, 11055 .swap_deactivate = btrfs_swap_deactivate, 11056 }; 11057 11058 static const struct inode_operations btrfs_file_inode_operations = { 11059 .getattr = btrfs_getattr, 11060 .setattr = btrfs_setattr, 11061 .listxattr = btrfs_listxattr, 11062 .permission = btrfs_permission, 11063 .fiemap = btrfs_fiemap, 11064 .get_acl = btrfs_get_acl, 11065 .set_acl = btrfs_set_acl, 11066 .update_time = btrfs_update_time, 11067 }; 11068 static const struct inode_operations btrfs_special_inode_operations = { 11069 .getattr = btrfs_getattr, 11070 .setattr = btrfs_setattr, 11071 .permission = btrfs_permission, 11072 .listxattr = btrfs_listxattr, 11073 .get_acl = btrfs_get_acl, 11074 .set_acl = btrfs_set_acl, 11075 .update_time = btrfs_update_time, 11076 }; 11077 static const struct inode_operations btrfs_symlink_inode_operations = { 11078 .get_link = page_get_link, 11079 .getattr = btrfs_getattr, 11080 .setattr = btrfs_setattr, 11081 .permission = btrfs_permission, 11082 .listxattr = btrfs_listxattr, 11083 .update_time = btrfs_update_time, 11084 }; 11085 11086 const struct dentry_operations btrfs_dentry_operations = { 11087 .d_delete = btrfs_dentry_delete, 11088 }; 11089