xref: /openbmc/linux/fs/btrfs/inode.c (revision e6c81cce)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/statfs.h>
34 #include <linux/compat.h>
35 #include <linux/bit_spinlock.h>
36 #include <linux/xattr.h>
37 #include <linux/posix_acl.h>
38 #include <linux/falloc.h>
39 #include <linux/slab.h>
40 #include <linux/ratelimit.h>
41 #include <linux/mount.h>
42 #include <linux/btrfs.h>
43 #include <linux/blkdev.h>
44 #include <linux/posix_acl_xattr.h>
45 #include <linux/uio.h>
46 #include "ctree.h"
47 #include "disk-io.h"
48 #include "transaction.h"
49 #include "btrfs_inode.h"
50 #include "print-tree.h"
51 #include "ordered-data.h"
52 #include "xattr.h"
53 #include "tree-log.h"
54 #include "volumes.h"
55 #include "compression.h"
56 #include "locking.h"
57 #include "free-space-cache.h"
58 #include "inode-map.h"
59 #include "backref.h"
60 #include "hash.h"
61 #include "props.h"
62 
63 struct btrfs_iget_args {
64 	struct btrfs_key *location;
65 	struct btrfs_root *root;
66 };
67 
68 static const struct inode_operations btrfs_dir_inode_operations;
69 static const struct inode_operations btrfs_symlink_inode_operations;
70 static const struct inode_operations btrfs_dir_ro_inode_operations;
71 static const struct inode_operations btrfs_special_inode_operations;
72 static const struct inode_operations btrfs_file_inode_operations;
73 static const struct address_space_operations btrfs_aops;
74 static const struct address_space_operations btrfs_symlink_aops;
75 static const struct file_operations btrfs_dir_file_operations;
76 static struct extent_io_ops btrfs_extent_io_ops;
77 
78 static struct kmem_cache *btrfs_inode_cachep;
79 static struct kmem_cache *btrfs_delalloc_work_cachep;
80 struct kmem_cache *btrfs_trans_handle_cachep;
81 struct kmem_cache *btrfs_transaction_cachep;
82 struct kmem_cache *btrfs_path_cachep;
83 struct kmem_cache *btrfs_free_space_cachep;
84 
85 #define S_SHIFT 12
86 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
87 	[S_IFREG >> S_SHIFT]	= BTRFS_FT_REG_FILE,
88 	[S_IFDIR >> S_SHIFT]	= BTRFS_FT_DIR,
89 	[S_IFCHR >> S_SHIFT]	= BTRFS_FT_CHRDEV,
90 	[S_IFBLK >> S_SHIFT]	= BTRFS_FT_BLKDEV,
91 	[S_IFIFO >> S_SHIFT]	= BTRFS_FT_FIFO,
92 	[S_IFSOCK >> S_SHIFT]	= BTRFS_FT_SOCK,
93 	[S_IFLNK >> S_SHIFT]	= BTRFS_FT_SYMLINK,
94 };
95 
96 static int btrfs_setsize(struct inode *inode, struct iattr *attr);
97 static int btrfs_truncate(struct inode *inode);
98 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
99 static noinline int cow_file_range(struct inode *inode,
100 				   struct page *locked_page,
101 				   u64 start, u64 end, int *page_started,
102 				   unsigned long *nr_written, int unlock);
103 static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
104 					   u64 len, u64 orig_start,
105 					   u64 block_start, u64 block_len,
106 					   u64 orig_block_len, u64 ram_bytes,
107 					   int type);
108 
109 static int btrfs_dirty_inode(struct inode *inode);
110 
111 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
112 void btrfs_test_inode_set_ops(struct inode *inode)
113 {
114 	BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
115 }
116 #endif
117 
118 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
119 				     struct inode *inode,  struct inode *dir,
120 				     const struct qstr *qstr)
121 {
122 	int err;
123 
124 	err = btrfs_init_acl(trans, inode, dir);
125 	if (!err)
126 		err = btrfs_xattr_security_init(trans, inode, dir, qstr);
127 	return err;
128 }
129 
130 /*
131  * this does all the hard work for inserting an inline extent into
132  * the btree.  The caller should have done a btrfs_drop_extents so that
133  * no overlapping inline items exist in the btree
134  */
135 static int insert_inline_extent(struct btrfs_trans_handle *trans,
136 				struct btrfs_path *path, int extent_inserted,
137 				struct btrfs_root *root, struct inode *inode,
138 				u64 start, size_t size, size_t compressed_size,
139 				int compress_type,
140 				struct page **compressed_pages)
141 {
142 	struct extent_buffer *leaf;
143 	struct page *page = NULL;
144 	char *kaddr;
145 	unsigned long ptr;
146 	struct btrfs_file_extent_item *ei;
147 	int err = 0;
148 	int ret;
149 	size_t cur_size = size;
150 	unsigned long offset;
151 
152 	if (compressed_size && compressed_pages)
153 		cur_size = compressed_size;
154 
155 	inode_add_bytes(inode, size);
156 
157 	if (!extent_inserted) {
158 		struct btrfs_key key;
159 		size_t datasize;
160 
161 		key.objectid = btrfs_ino(inode);
162 		key.offset = start;
163 		key.type = BTRFS_EXTENT_DATA_KEY;
164 
165 		datasize = btrfs_file_extent_calc_inline_size(cur_size);
166 		path->leave_spinning = 1;
167 		ret = btrfs_insert_empty_item(trans, root, path, &key,
168 					      datasize);
169 		if (ret) {
170 			err = ret;
171 			goto fail;
172 		}
173 	}
174 	leaf = path->nodes[0];
175 	ei = btrfs_item_ptr(leaf, path->slots[0],
176 			    struct btrfs_file_extent_item);
177 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
178 	btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
179 	btrfs_set_file_extent_encryption(leaf, ei, 0);
180 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
181 	btrfs_set_file_extent_ram_bytes(leaf, ei, size);
182 	ptr = btrfs_file_extent_inline_start(ei);
183 
184 	if (compress_type != BTRFS_COMPRESS_NONE) {
185 		struct page *cpage;
186 		int i = 0;
187 		while (compressed_size > 0) {
188 			cpage = compressed_pages[i];
189 			cur_size = min_t(unsigned long, compressed_size,
190 				       PAGE_CACHE_SIZE);
191 
192 			kaddr = kmap_atomic(cpage);
193 			write_extent_buffer(leaf, kaddr, ptr, cur_size);
194 			kunmap_atomic(kaddr);
195 
196 			i++;
197 			ptr += cur_size;
198 			compressed_size -= cur_size;
199 		}
200 		btrfs_set_file_extent_compression(leaf, ei,
201 						  compress_type);
202 	} else {
203 		page = find_get_page(inode->i_mapping,
204 				     start >> PAGE_CACHE_SHIFT);
205 		btrfs_set_file_extent_compression(leaf, ei, 0);
206 		kaddr = kmap_atomic(page);
207 		offset = start & (PAGE_CACHE_SIZE - 1);
208 		write_extent_buffer(leaf, kaddr + offset, ptr, size);
209 		kunmap_atomic(kaddr);
210 		page_cache_release(page);
211 	}
212 	btrfs_mark_buffer_dirty(leaf);
213 	btrfs_release_path(path);
214 
215 	/*
216 	 * we're an inline extent, so nobody can
217 	 * extend the file past i_size without locking
218 	 * a page we already have locked.
219 	 *
220 	 * We must do any isize and inode updates
221 	 * before we unlock the pages.  Otherwise we
222 	 * could end up racing with unlink.
223 	 */
224 	BTRFS_I(inode)->disk_i_size = inode->i_size;
225 	ret = btrfs_update_inode(trans, root, inode);
226 
227 	return ret;
228 fail:
229 	return err;
230 }
231 
232 
233 /*
234  * conditionally insert an inline extent into the file.  This
235  * does the checks required to make sure the data is small enough
236  * to fit as an inline extent.
237  */
238 static noinline int cow_file_range_inline(struct btrfs_root *root,
239 					  struct inode *inode, u64 start,
240 					  u64 end, size_t compressed_size,
241 					  int compress_type,
242 					  struct page **compressed_pages)
243 {
244 	struct btrfs_trans_handle *trans;
245 	u64 isize = i_size_read(inode);
246 	u64 actual_end = min(end + 1, isize);
247 	u64 inline_len = actual_end - start;
248 	u64 aligned_end = ALIGN(end, root->sectorsize);
249 	u64 data_len = inline_len;
250 	int ret;
251 	struct btrfs_path *path;
252 	int extent_inserted = 0;
253 	u32 extent_item_size;
254 
255 	if (compressed_size)
256 		data_len = compressed_size;
257 
258 	if (start > 0 ||
259 	    actual_end > PAGE_CACHE_SIZE ||
260 	    data_len > BTRFS_MAX_INLINE_DATA_SIZE(root) ||
261 	    (!compressed_size &&
262 	    (actual_end & (root->sectorsize - 1)) == 0) ||
263 	    end + 1 < isize ||
264 	    data_len > root->fs_info->max_inline) {
265 		return 1;
266 	}
267 
268 	path = btrfs_alloc_path();
269 	if (!path)
270 		return -ENOMEM;
271 
272 	trans = btrfs_join_transaction(root);
273 	if (IS_ERR(trans)) {
274 		btrfs_free_path(path);
275 		return PTR_ERR(trans);
276 	}
277 	trans->block_rsv = &root->fs_info->delalloc_block_rsv;
278 
279 	if (compressed_size && compressed_pages)
280 		extent_item_size = btrfs_file_extent_calc_inline_size(
281 		   compressed_size);
282 	else
283 		extent_item_size = btrfs_file_extent_calc_inline_size(
284 		    inline_len);
285 
286 	ret = __btrfs_drop_extents(trans, root, inode, path,
287 				   start, aligned_end, NULL,
288 				   1, 1, extent_item_size, &extent_inserted);
289 	if (ret) {
290 		btrfs_abort_transaction(trans, root, ret);
291 		goto out;
292 	}
293 
294 	if (isize > actual_end)
295 		inline_len = min_t(u64, isize, actual_end);
296 	ret = insert_inline_extent(trans, path, extent_inserted,
297 				   root, inode, start,
298 				   inline_len, compressed_size,
299 				   compress_type, compressed_pages);
300 	if (ret && ret != -ENOSPC) {
301 		btrfs_abort_transaction(trans, root, ret);
302 		goto out;
303 	} else if (ret == -ENOSPC) {
304 		ret = 1;
305 		goto out;
306 	}
307 
308 	set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
309 	btrfs_delalloc_release_metadata(inode, end + 1 - start);
310 	btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
311 out:
312 	btrfs_free_path(path);
313 	btrfs_end_transaction(trans, root);
314 	return ret;
315 }
316 
317 struct async_extent {
318 	u64 start;
319 	u64 ram_size;
320 	u64 compressed_size;
321 	struct page **pages;
322 	unsigned long nr_pages;
323 	int compress_type;
324 	struct list_head list;
325 };
326 
327 struct async_cow {
328 	struct inode *inode;
329 	struct btrfs_root *root;
330 	struct page *locked_page;
331 	u64 start;
332 	u64 end;
333 	struct list_head extents;
334 	struct btrfs_work work;
335 };
336 
337 static noinline int add_async_extent(struct async_cow *cow,
338 				     u64 start, u64 ram_size,
339 				     u64 compressed_size,
340 				     struct page **pages,
341 				     unsigned long nr_pages,
342 				     int compress_type)
343 {
344 	struct async_extent *async_extent;
345 
346 	async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
347 	BUG_ON(!async_extent); /* -ENOMEM */
348 	async_extent->start = start;
349 	async_extent->ram_size = ram_size;
350 	async_extent->compressed_size = compressed_size;
351 	async_extent->pages = pages;
352 	async_extent->nr_pages = nr_pages;
353 	async_extent->compress_type = compress_type;
354 	list_add_tail(&async_extent->list, &cow->extents);
355 	return 0;
356 }
357 
358 static inline int inode_need_compress(struct inode *inode)
359 {
360 	struct btrfs_root *root = BTRFS_I(inode)->root;
361 
362 	/* force compress */
363 	if (btrfs_test_opt(root, FORCE_COMPRESS))
364 		return 1;
365 	/* bad compression ratios */
366 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
367 		return 0;
368 	if (btrfs_test_opt(root, COMPRESS) ||
369 	    BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS ||
370 	    BTRFS_I(inode)->force_compress)
371 		return 1;
372 	return 0;
373 }
374 
375 /*
376  * we create compressed extents in two phases.  The first
377  * phase compresses a range of pages that have already been
378  * locked (both pages and state bits are locked).
379  *
380  * This is done inside an ordered work queue, and the compression
381  * is spread across many cpus.  The actual IO submission is step
382  * two, and the ordered work queue takes care of making sure that
383  * happens in the same order things were put onto the queue by
384  * writepages and friends.
385  *
386  * If this code finds it can't get good compression, it puts an
387  * entry onto the work queue to write the uncompressed bytes.  This
388  * makes sure that both compressed inodes and uncompressed inodes
389  * are written in the same order that the flusher thread sent them
390  * down.
391  */
392 static noinline void compress_file_range(struct inode *inode,
393 					struct page *locked_page,
394 					u64 start, u64 end,
395 					struct async_cow *async_cow,
396 					int *num_added)
397 {
398 	struct btrfs_root *root = BTRFS_I(inode)->root;
399 	u64 num_bytes;
400 	u64 blocksize = root->sectorsize;
401 	u64 actual_end;
402 	u64 isize = i_size_read(inode);
403 	int ret = 0;
404 	struct page **pages = NULL;
405 	unsigned long nr_pages;
406 	unsigned long nr_pages_ret = 0;
407 	unsigned long total_compressed = 0;
408 	unsigned long total_in = 0;
409 	unsigned long max_compressed = 128 * 1024;
410 	unsigned long max_uncompressed = 128 * 1024;
411 	int i;
412 	int will_compress;
413 	int compress_type = root->fs_info->compress_type;
414 	int redirty = 0;
415 
416 	/* if this is a small write inside eof, kick off a defrag */
417 	if ((end - start + 1) < 16 * 1024 &&
418 	    (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
419 		btrfs_add_inode_defrag(NULL, inode);
420 
421 	actual_end = min_t(u64, isize, end + 1);
422 again:
423 	will_compress = 0;
424 	nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
425 	nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
426 
427 	/*
428 	 * we don't want to send crud past the end of i_size through
429 	 * compression, that's just a waste of CPU time.  So, if the
430 	 * end of the file is before the start of our current
431 	 * requested range of bytes, we bail out to the uncompressed
432 	 * cleanup code that can deal with all of this.
433 	 *
434 	 * It isn't really the fastest way to fix things, but this is a
435 	 * very uncommon corner.
436 	 */
437 	if (actual_end <= start)
438 		goto cleanup_and_bail_uncompressed;
439 
440 	total_compressed = actual_end - start;
441 
442 	/*
443 	 * skip compression for a small file range(<=blocksize) that
444 	 * isn't an inline extent, since it dosen't save disk space at all.
445 	 */
446 	if (total_compressed <= blocksize &&
447 	   (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
448 		goto cleanup_and_bail_uncompressed;
449 
450 	/* we want to make sure that amount of ram required to uncompress
451 	 * an extent is reasonable, so we limit the total size in ram
452 	 * of a compressed extent to 128k.  This is a crucial number
453 	 * because it also controls how easily we can spread reads across
454 	 * cpus for decompression.
455 	 *
456 	 * We also want to make sure the amount of IO required to do
457 	 * a random read is reasonably small, so we limit the size of
458 	 * a compressed extent to 128k.
459 	 */
460 	total_compressed = min(total_compressed, max_uncompressed);
461 	num_bytes = ALIGN(end - start + 1, blocksize);
462 	num_bytes = max(blocksize,  num_bytes);
463 	total_in = 0;
464 	ret = 0;
465 
466 	/*
467 	 * we do compression for mount -o compress and when the
468 	 * inode has not been flagged as nocompress.  This flag can
469 	 * change at any time if we discover bad compression ratios.
470 	 */
471 	if (inode_need_compress(inode)) {
472 		WARN_ON(pages);
473 		pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
474 		if (!pages) {
475 			/* just bail out to the uncompressed code */
476 			goto cont;
477 		}
478 
479 		if (BTRFS_I(inode)->force_compress)
480 			compress_type = BTRFS_I(inode)->force_compress;
481 
482 		/*
483 		 * we need to call clear_page_dirty_for_io on each
484 		 * page in the range.  Otherwise applications with the file
485 		 * mmap'd can wander in and change the page contents while
486 		 * we are compressing them.
487 		 *
488 		 * If the compression fails for any reason, we set the pages
489 		 * dirty again later on.
490 		 */
491 		extent_range_clear_dirty_for_io(inode, start, end);
492 		redirty = 1;
493 		ret = btrfs_compress_pages(compress_type,
494 					   inode->i_mapping, start,
495 					   total_compressed, pages,
496 					   nr_pages, &nr_pages_ret,
497 					   &total_in,
498 					   &total_compressed,
499 					   max_compressed);
500 
501 		if (!ret) {
502 			unsigned long offset = total_compressed &
503 				(PAGE_CACHE_SIZE - 1);
504 			struct page *page = pages[nr_pages_ret - 1];
505 			char *kaddr;
506 
507 			/* zero the tail end of the last page, we might be
508 			 * sending it down to disk
509 			 */
510 			if (offset) {
511 				kaddr = kmap_atomic(page);
512 				memset(kaddr + offset, 0,
513 				       PAGE_CACHE_SIZE - offset);
514 				kunmap_atomic(kaddr);
515 			}
516 			will_compress = 1;
517 		}
518 	}
519 cont:
520 	if (start == 0) {
521 		/* lets try to make an inline extent */
522 		if (ret || total_in < (actual_end - start)) {
523 			/* we didn't compress the entire range, try
524 			 * to make an uncompressed inline extent.
525 			 */
526 			ret = cow_file_range_inline(root, inode, start, end,
527 						    0, 0, NULL);
528 		} else {
529 			/* try making a compressed inline extent */
530 			ret = cow_file_range_inline(root, inode, start, end,
531 						    total_compressed,
532 						    compress_type, pages);
533 		}
534 		if (ret <= 0) {
535 			unsigned long clear_flags = EXTENT_DELALLOC |
536 				EXTENT_DEFRAG;
537 			unsigned long page_error_op;
538 
539 			clear_flags |= (ret < 0) ? EXTENT_DO_ACCOUNTING : 0;
540 			page_error_op = ret < 0 ? PAGE_SET_ERROR : 0;
541 
542 			/*
543 			 * inline extent creation worked or returned error,
544 			 * we don't need to create any more async work items.
545 			 * Unlock and free up our temp pages.
546 			 */
547 			extent_clear_unlock_delalloc(inode, start, end, NULL,
548 						     clear_flags, PAGE_UNLOCK |
549 						     PAGE_CLEAR_DIRTY |
550 						     PAGE_SET_WRITEBACK |
551 						     page_error_op |
552 						     PAGE_END_WRITEBACK);
553 			goto free_pages_out;
554 		}
555 	}
556 
557 	if (will_compress) {
558 		/*
559 		 * we aren't doing an inline extent round the compressed size
560 		 * up to a block size boundary so the allocator does sane
561 		 * things
562 		 */
563 		total_compressed = ALIGN(total_compressed, blocksize);
564 
565 		/*
566 		 * one last check to make sure the compression is really a
567 		 * win, compare the page count read with the blocks on disk
568 		 */
569 		total_in = ALIGN(total_in, PAGE_CACHE_SIZE);
570 		if (total_compressed >= total_in) {
571 			will_compress = 0;
572 		} else {
573 			num_bytes = total_in;
574 		}
575 	}
576 	if (!will_compress && pages) {
577 		/*
578 		 * the compression code ran but failed to make things smaller,
579 		 * free any pages it allocated and our page pointer array
580 		 */
581 		for (i = 0; i < nr_pages_ret; i++) {
582 			WARN_ON(pages[i]->mapping);
583 			page_cache_release(pages[i]);
584 		}
585 		kfree(pages);
586 		pages = NULL;
587 		total_compressed = 0;
588 		nr_pages_ret = 0;
589 
590 		/* flag the file so we don't compress in the future */
591 		if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
592 		    !(BTRFS_I(inode)->force_compress)) {
593 			BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
594 		}
595 	}
596 	if (will_compress) {
597 		*num_added += 1;
598 
599 		/* the async work queues will take care of doing actual
600 		 * allocation on disk for these compressed pages,
601 		 * and will submit them to the elevator.
602 		 */
603 		add_async_extent(async_cow, start, num_bytes,
604 				 total_compressed, pages, nr_pages_ret,
605 				 compress_type);
606 
607 		if (start + num_bytes < end) {
608 			start += num_bytes;
609 			pages = NULL;
610 			cond_resched();
611 			goto again;
612 		}
613 	} else {
614 cleanup_and_bail_uncompressed:
615 		/*
616 		 * No compression, but we still need to write the pages in
617 		 * the file we've been given so far.  redirty the locked
618 		 * page if it corresponds to our extent and set things up
619 		 * for the async work queue to run cow_file_range to do
620 		 * the normal delalloc dance
621 		 */
622 		if (page_offset(locked_page) >= start &&
623 		    page_offset(locked_page) <= end) {
624 			__set_page_dirty_nobuffers(locked_page);
625 			/* unlocked later on in the async handlers */
626 		}
627 		if (redirty)
628 			extent_range_redirty_for_io(inode, start, end);
629 		add_async_extent(async_cow, start, end - start + 1,
630 				 0, NULL, 0, BTRFS_COMPRESS_NONE);
631 		*num_added += 1;
632 	}
633 
634 	return;
635 
636 free_pages_out:
637 	for (i = 0; i < nr_pages_ret; i++) {
638 		WARN_ON(pages[i]->mapping);
639 		page_cache_release(pages[i]);
640 	}
641 	kfree(pages);
642 }
643 
644 static void free_async_extent_pages(struct async_extent *async_extent)
645 {
646 	int i;
647 
648 	if (!async_extent->pages)
649 		return;
650 
651 	for (i = 0; i < async_extent->nr_pages; i++) {
652 		WARN_ON(async_extent->pages[i]->mapping);
653 		page_cache_release(async_extent->pages[i]);
654 	}
655 	kfree(async_extent->pages);
656 	async_extent->nr_pages = 0;
657 	async_extent->pages = NULL;
658 }
659 
660 /*
661  * phase two of compressed writeback.  This is the ordered portion
662  * of the code, which only gets called in the order the work was
663  * queued.  We walk all the async extents created by compress_file_range
664  * and send them down to the disk.
665  */
666 static noinline void submit_compressed_extents(struct inode *inode,
667 					      struct async_cow *async_cow)
668 {
669 	struct async_extent *async_extent;
670 	u64 alloc_hint = 0;
671 	struct btrfs_key ins;
672 	struct extent_map *em;
673 	struct btrfs_root *root = BTRFS_I(inode)->root;
674 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
675 	struct extent_io_tree *io_tree;
676 	int ret = 0;
677 
678 again:
679 	while (!list_empty(&async_cow->extents)) {
680 		async_extent = list_entry(async_cow->extents.next,
681 					  struct async_extent, list);
682 		list_del(&async_extent->list);
683 
684 		io_tree = &BTRFS_I(inode)->io_tree;
685 
686 retry:
687 		/* did the compression code fall back to uncompressed IO? */
688 		if (!async_extent->pages) {
689 			int page_started = 0;
690 			unsigned long nr_written = 0;
691 
692 			lock_extent(io_tree, async_extent->start,
693 					 async_extent->start +
694 					 async_extent->ram_size - 1);
695 
696 			/* allocate blocks */
697 			ret = cow_file_range(inode, async_cow->locked_page,
698 					     async_extent->start,
699 					     async_extent->start +
700 					     async_extent->ram_size - 1,
701 					     &page_started, &nr_written, 0);
702 
703 			/* JDM XXX */
704 
705 			/*
706 			 * if page_started, cow_file_range inserted an
707 			 * inline extent and took care of all the unlocking
708 			 * and IO for us.  Otherwise, we need to submit
709 			 * all those pages down to the drive.
710 			 */
711 			if (!page_started && !ret)
712 				extent_write_locked_range(io_tree,
713 						  inode, async_extent->start,
714 						  async_extent->start +
715 						  async_extent->ram_size - 1,
716 						  btrfs_get_extent,
717 						  WB_SYNC_ALL);
718 			else if (ret)
719 				unlock_page(async_cow->locked_page);
720 			kfree(async_extent);
721 			cond_resched();
722 			continue;
723 		}
724 
725 		lock_extent(io_tree, async_extent->start,
726 			    async_extent->start + async_extent->ram_size - 1);
727 
728 		ret = btrfs_reserve_extent(root,
729 					   async_extent->compressed_size,
730 					   async_extent->compressed_size,
731 					   0, alloc_hint, &ins, 1, 1);
732 		if (ret) {
733 			free_async_extent_pages(async_extent);
734 
735 			if (ret == -ENOSPC) {
736 				unlock_extent(io_tree, async_extent->start,
737 					      async_extent->start +
738 					      async_extent->ram_size - 1);
739 
740 				/*
741 				 * we need to redirty the pages if we decide to
742 				 * fallback to uncompressed IO, otherwise we
743 				 * will not submit these pages down to lower
744 				 * layers.
745 				 */
746 				extent_range_redirty_for_io(inode,
747 						async_extent->start,
748 						async_extent->start +
749 						async_extent->ram_size - 1);
750 
751 				goto retry;
752 			}
753 			goto out_free;
754 		}
755 
756 		/*
757 		 * here we're doing allocation and writeback of the
758 		 * compressed pages
759 		 */
760 		btrfs_drop_extent_cache(inode, async_extent->start,
761 					async_extent->start +
762 					async_extent->ram_size - 1, 0);
763 
764 		em = alloc_extent_map();
765 		if (!em) {
766 			ret = -ENOMEM;
767 			goto out_free_reserve;
768 		}
769 		em->start = async_extent->start;
770 		em->len = async_extent->ram_size;
771 		em->orig_start = em->start;
772 		em->mod_start = em->start;
773 		em->mod_len = em->len;
774 
775 		em->block_start = ins.objectid;
776 		em->block_len = ins.offset;
777 		em->orig_block_len = ins.offset;
778 		em->ram_bytes = async_extent->ram_size;
779 		em->bdev = root->fs_info->fs_devices->latest_bdev;
780 		em->compress_type = async_extent->compress_type;
781 		set_bit(EXTENT_FLAG_PINNED, &em->flags);
782 		set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
783 		em->generation = -1;
784 
785 		while (1) {
786 			write_lock(&em_tree->lock);
787 			ret = add_extent_mapping(em_tree, em, 1);
788 			write_unlock(&em_tree->lock);
789 			if (ret != -EEXIST) {
790 				free_extent_map(em);
791 				break;
792 			}
793 			btrfs_drop_extent_cache(inode, async_extent->start,
794 						async_extent->start +
795 						async_extent->ram_size - 1, 0);
796 		}
797 
798 		if (ret)
799 			goto out_free_reserve;
800 
801 		ret = btrfs_add_ordered_extent_compress(inode,
802 						async_extent->start,
803 						ins.objectid,
804 						async_extent->ram_size,
805 						ins.offset,
806 						BTRFS_ORDERED_COMPRESSED,
807 						async_extent->compress_type);
808 		if (ret) {
809 			btrfs_drop_extent_cache(inode, async_extent->start,
810 						async_extent->start +
811 						async_extent->ram_size - 1, 0);
812 			goto out_free_reserve;
813 		}
814 
815 		/*
816 		 * clear dirty, set writeback and unlock the pages.
817 		 */
818 		extent_clear_unlock_delalloc(inode, async_extent->start,
819 				async_extent->start +
820 				async_extent->ram_size - 1,
821 				NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
822 				PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
823 				PAGE_SET_WRITEBACK);
824 		ret = btrfs_submit_compressed_write(inode,
825 				    async_extent->start,
826 				    async_extent->ram_size,
827 				    ins.objectid,
828 				    ins.offset, async_extent->pages,
829 				    async_extent->nr_pages);
830 		if (ret) {
831 			struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
832 			struct page *p = async_extent->pages[0];
833 			const u64 start = async_extent->start;
834 			const u64 end = start + async_extent->ram_size - 1;
835 
836 			p->mapping = inode->i_mapping;
837 			tree->ops->writepage_end_io_hook(p, start, end,
838 							 NULL, 0);
839 			p->mapping = NULL;
840 			extent_clear_unlock_delalloc(inode, start, end, NULL, 0,
841 						     PAGE_END_WRITEBACK |
842 						     PAGE_SET_ERROR);
843 			free_async_extent_pages(async_extent);
844 		}
845 		alloc_hint = ins.objectid + ins.offset;
846 		kfree(async_extent);
847 		cond_resched();
848 	}
849 	return;
850 out_free_reserve:
851 	btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
852 out_free:
853 	extent_clear_unlock_delalloc(inode, async_extent->start,
854 				     async_extent->start +
855 				     async_extent->ram_size - 1,
856 				     NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
857 				     EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
858 				     PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
859 				     PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
860 				     PAGE_SET_ERROR);
861 	free_async_extent_pages(async_extent);
862 	kfree(async_extent);
863 	goto again;
864 }
865 
866 static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
867 				      u64 num_bytes)
868 {
869 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
870 	struct extent_map *em;
871 	u64 alloc_hint = 0;
872 
873 	read_lock(&em_tree->lock);
874 	em = search_extent_mapping(em_tree, start, num_bytes);
875 	if (em) {
876 		/*
877 		 * if block start isn't an actual block number then find the
878 		 * first block in this inode and use that as a hint.  If that
879 		 * block is also bogus then just don't worry about it.
880 		 */
881 		if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
882 			free_extent_map(em);
883 			em = search_extent_mapping(em_tree, 0, 0);
884 			if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
885 				alloc_hint = em->block_start;
886 			if (em)
887 				free_extent_map(em);
888 		} else {
889 			alloc_hint = em->block_start;
890 			free_extent_map(em);
891 		}
892 	}
893 	read_unlock(&em_tree->lock);
894 
895 	return alloc_hint;
896 }
897 
898 /*
899  * when extent_io.c finds a delayed allocation range in the file,
900  * the call backs end up in this code.  The basic idea is to
901  * allocate extents on disk for the range, and create ordered data structs
902  * in ram to track those extents.
903  *
904  * locked_page is the page that writepage had locked already.  We use
905  * it to make sure we don't do extra locks or unlocks.
906  *
907  * *page_started is set to one if we unlock locked_page and do everything
908  * required to start IO on it.  It may be clean and already done with
909  * IO when we return.
910  */
911 static noinline int cow_file_range(struct inode *inode,
912 				   struct page *locked_page,
913 				   u64 start, u64 end, int *page_started,
914 				   unsigned long *nr_written,
915 				   int unlock)
916 {
917 	struct btrfs_root *root = BTRFS_I(inode)->root;
918 	u64 alloc_hint = 0;
919 	u64 num_bytes;
920 	unsigned long ram_size;
921 	u64 disk_num_bytes;
922 	u64 cur_alloc_size;
923 	u64 blocksize = root->sectorsize;
924 	struct btrfs_key ins;
925 	struct extent_map *em;
926 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
927 	int ret = 0;
928 
929 	if (btrfs_is_free_space_inode(inode)) {
930 		WARN_ON_ONCE(1);
931 		ret = -EINVAL;
932 		goto out_unlock;
933 	}
934 
935 	num_bytes = ALIGN(end - start + 1, blocksize);
936 	num_bytes = max(blocksize,  num_bytes);
937 	disk_num_bytes = num_bytes;
938 
939 	/* if this is a small write inside eof, kick off defrag */
940 	if (num_bytes < 64 * 1024 &&
941 	    (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
942 		btrfs_add_inode_defrag(NULL, inode);
943 
944 	if (start == 0) {
945 		/* lets try to make an inline extent */
946 		ret = cow_file_range_inline(root, inode, start, end, 0, 0,
947 					    NULL);
948 		if (ret == 0) {
949 			extent_clear_unlock_delalloc(inode, start, end, NULL,
950 				     EXTENT_LOCKED | EXTENT_DELALLOC |
951 				     EXTENT_DEFRAG, PAGE_UNLOCK |
952 				     PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
953 				     PAGE_END_WRITEBACK);
954 
955 			*nr_written = *nr_written +
956 			     (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
957 			*page_started = 1;
958 			goto out;
959 		} else if (ret < 0) {
960 			goto out_unlock;
961 		}
962 	}
963 
964 	BUG_ON(disk_num_bytes >
965 	       btrfs_super_total_bytes(root->fs_info->super_copy));
966 
967 	alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
968 	btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
969 
970 	while (disk_num_bytes > 0) {
971 		unsigned long op;
972 
973 		cur_alloc_size = disk_num_bytes;
974 		ret = btrfs_reserve_extent(root, cur_alloc_size,
975 					   root->sectorsize, 0, alloc_hint,
976 					   &ins, 1, 1);
977 		if (ret < 0)
978 			goto out_unlock;
979 
980 		em = alloc_extent_map();
981 		if (!em) {
982 			ret = -ENOMEM;
983 			goto out_reserve;
984 		}
985 		em->start = start;
986 		em->orig_start = em->start;
987 		ram_size = ins.offset;
988 		em->len = ins.offset;
989 		em->mod_start = em->start;
990 		em->mod_len = em->len;
991 
992 		em->block_start = ins.objectid;
993 		em->block_len = ins.offset;
994 		em->orig_block_len = ins.offset;
995 		em->ram_bytes = ram_size;
996 		em->bdev = root->fs_info->fs_devices->latest_bdev;
997 		set_bit(EXTENT_FLAG_PINNED, &em->flags);
998 		em->generation = -1;
999 
1000 		while (1) {
1001 			write_lock(&em_tree->lock);
1002 			ret = add_extent_mapping(em_tree, em, 1);
1003 			write_unlock(&em_tree->lock);
1004 			if (ret != -EEXIST) {
1005 				free_extent_map(em);
1006 				break;
1007 			}
1008 			btrfs_drop_extent_cache(inode, start,
1009 						start + ram_size - 1, 0);
1010 		}
1011 		if (ret)
1012 			goto out_reserve;
1013 
1014 		cur_alloc_size = ins.offset;
1015 		ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
1016 					       ram_size, cur_alloc_size, 0);
1017 		if (ret)
1018 			goto out_drop_extent_cache;
1019 
1020 		if (root->root_key.objectid ==
1021 		    BTRFS_DATA_RELOC_TREE_OBJECTID) {
1022 			ret = btrfs_reloc_clone_csums(inode, start,
1023 						      cur_alloc_size);
1024 			if (ret)
1025 				goto out_drop_extent_cache;
1026 		}
1027 
1028 		if (disk_num_bytes < cur_alloc_size)
1029 			break;
1030 
1031 		/* we're not doing compressed IO, don't unlock the first
1032 		 * page (which the caller expects to stay locked), don't
1033 		 * clear any dirty bits and don't set any writeback bits
1034 		 *
1035 		 * Do set the Private2 bit so we know this page was properly
1036 		 * setup for writepage
1037 		 */
1038 		op = unlock ? PAGE_UNLOCK : 0;
1039 		op |= PAGE_SET_PRIVATE2;
1040 
1041 		extent_clear_unlock_delalloc(inode, start,
1042 					     start + ram_size - 1, locked_page,
1043 					     EXTENT_LOCKED | EXTENT_DELALLOC,
1044 					     op);
1045 		disk_num_bytes -= cur_alloc_size;
1046 		num_bytes -= cur_alloc_size;
1047 		alloc_hint = ins.objectid + ins.offset;
1048 		start += cur_alloc_size;
1049 	}
1050 out:
1051 	return ret;
1052 
1053 out_drop_extent_cache:
1054 	btrfs_drop_extent_cache(inode, start, start + ram_size - 1, 0);
1055 out_reserve:
1056 	btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
1057 out_unlock:
1058 	extent_clear_unlock_delalloc(inode, start, end, locked_page,
1059 				     EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
1060 				     EXTENT_DELALLOC | EXTENT_DEFRAG,
1061 				     PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
1062 				     PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK);
1063 	goto out;
1064 }
1065 
1066 /*
1067  * work queue call back to started compression on a file and pages
1068  */
1069 static noinline void async_cow_start(struct btrfs_work *work)
1070 {
1071 	struct async_cow *async_cow;
1072 	int num_added = 0;
1073 	async_cow = container_of(work, struct async_cow, work);
1074 
1075 	compress_file_range(async_cow->inode, async_cow->locked_page,
1076 			    async_cow->start, async_cow->end, async_cow,
1077 			    &num_added);
1078 	if (num_added == 0) {
1079 		btrfs_add_delayed_iput(async_cow->inode);
1080 		async_cow->inode = NULL;
1081 	}
1082 }
1083 
1084 /*
1085  * work queue call back to submit previously compressed pages
1086  */
1087 static noinline void async_cow_submit(struct btrfs_work *work)
1088 {
1089 	struct async_cow *async_cow;
1090 	struct btrfs_root *root;
1091 	unsigned long nr_pages;
1092 
1093 	async_cow = container_of(work, struct async_cow, work);
1094 
1095 	root = async_cow->root;
1096 	nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
1097 		PAGE_CACHE_SHIFT;
1098 
1099 	if (atomic_sub_return(nr_pages, &root->fs_info->async_delalloc_pages) <
1100 	    5 * 1024 * 1024 &&
1101 	    waitqueue_active(&root->fs_info->async_submit_wait))
1102 		wake_up(&root->fs_info->async_submit_wait);
1103 
1104 	if (async_cow->inode)
1105 		submit_compressed_extents(async_cow->inode, async_cow);
1106 }
1107 
1108 static noinline void async_cow_free(struct btrfs_work *work)
1109 {
1110 	struct async_cow *async_cow;
1111 	async_cow = container_of(work, struct async_cow, work);
1112 	if (async_cow->inode)
1113 		btrfs_add_delayed_iput(async_cow->inode);
1114 	kfree(async_cow);
1115 }
1116 
1117 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1118 				u64 start, u64 end, int *page_started,
1119 				unsigned long *nr_written)
1120 {
1121 	struct async_cow *async_cow;
1122 	struct btrfs_root *root = BTRFS_I(inode)->root;
1123 	unsigned long nr_pages;
1124 	u64 cur_end;
1125 	int limit = 10 * 1024 * 1024;
1126 
1127 	clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
1128 			 1, 0, NULL, GFP_NOFS);
1129 	while (start < end) {
1130 		async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
1131 		BUG_ON(!async_cow); /* -ENOMEM */
1132 		async_cow->inode = igrab(inode);
1133 		async_cow->root = root;
1134 		async_cow->locked_page = locked_page;
1135 		async_cow->start = start;
1136 
1137 		if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS &&
1138 		    !btrfs_test_opt(root, FORCE_COMPRESS))
1139 			cur_end = end;
1140 		else
1141 			cur_end = min(end, start + 512 * 1024 - 1);
1142 
1143 		async_cow->end = cur_end;
1144 		INIT_LIST_HEAD(&async_cow->extents);
1145 
1146 		btrfs_init_work(&async_cow->work,
1147 				btrfs_delalloc_helper,
1148 				async_cow_start, async_cow_submit,
1149 				async_cow_free);
1150 
1151 		nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
1152 			PAGE_CACHE_SHIFT;
1153 		atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
1154 
1155 		btrfs_queue_work(root->fs_info->delalloc_workers,
1156 				 &async_cow->work);
1157 
1158 		if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
1159 			wait_event(root->fs_info->async_submit_wait,
1160 			   (atomic_read(&root->fs_info->async_delalloc_pages) <
1161 			    limit));
1162 		}
1163 
1164 		while (atomic_read(&root->fs_info->async_submit_draining) &&
1165 		      atomic_read(&root->fs_info->async_delalloc_pages)) {
1166 			wait_event(root->fs_info->async_submit_wait,
1167 			  (atomic_read(&root->fs_info->async_delalloc_pages) ==
1168 			   0));
1169 		}
1170 
1171 		*nr_written += nr_pages;
1172 		start = cur_end + 1;
1173 	}
1174 	*page_started = 1;
1175 	return 0;
1176 }
1177 
1178 static noinline int csum_exist_in_range(struct btrfs_root *root,
1179 					u64 bytenr, u64 num_bytes)
1180 {
1181 	int ret;
1182 	struct btrfs_ordered_sum *sums;
1183 	LIST_HEAD(list);
1184 
1185 	ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
1186 				       bytenr + num_bytes - 1, &list, 0);
1187 	if (ret == 0 && list_empty(&list))
1188 		return 0;
1189 
1190 	while (!list_empty(&list)) {
1191 		sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1192 		list_del(&sums->list);
1193 		kfree(sums);
1194 	}
1195 	return 1;
1196 }
1197 
1198 /*
1199  * when nowcow writeback call back.  This checks for snapshots or COW copies
1200  * of the extents that exist in the file, and COWs the file as required.
1201  *
1202  * If no cow copies or snapshots exist, we write directly to the existing
1203  * blocks on disk
1204  */
1205 static noinline int run_delalloc_nocow(struct inode *inode,
1206 				       struct page *locked_page,
1207 			      u64 start, u64 end, int *page_started, int force,
1208 			      unsigned long *nr_written)
1209 {
1210 	struct btrfs_root *root = BTRFS_I(inode)->root;
1211 	struct btrfs_trans_handle *trans;
1212 	struct extent_buffer *leaf;
1213 	struct btrfs_path *path;
1214 	struct btrfs_file_extent_item *fi;
1215 	struct btrfs_key found_key;
1216 	u64 cow_start;
1217 	u64 cur_offset;
1218 	u64 extent_end;
1219 	u64 extent_offset;
1220 	u64 disk_bytenr;
1221 	u64 num_bytes;
1222 	u64 disk_num_bytes;
1223 	u64 ram_bytes;
1224 	int extent_type;
1225 	int ret, err;
1226 	int type;
1227 	int nocow;
1228 	int check_prev = 1;
1229 	bool nolock;
1230 	u64 ino = btrfs_ino(inode);
1231 
1232 	path = btrfs_alloc_path();
1233 	if (!path) {
1234 		extent_clear_unlock_delalloc(inode, start, end, locked_page,
1235 					     EXTENT_LOCKED | EXTENT_DELALLOC |
1236 					     EXTENT_DO_ACCOUNTING |
1237 					     EXTENT_DEFRAG, PAGE_UNLOCK |
1238 					     PAGE_CLEAR_DIRTY |
1239 					     PAGE_SET_WRITEBACK |
1240 					     PAGE_END_WRITEBACK);
1241 		return -ENOMEM;
1242 	}
1243 
1244 	nolock = btrfs_is_free_space_inode(inode);
1245 
1246 	if (nolock)
1247 		trans = btrfs_join_transaction_nolock(root);
1248 	else
1249 		trans = btrfs_join_transaction(root);
1250 
1251 	if (IS_ERR(trans)) {
1252 		extent_clear_unlock_delalloc(inode, start, end, locked_page,
1253 					     EXTENT_LOCKED | EXTENT_DELALLOC |
1254 					     EXTENT_DO_ACCOUNTING |
1255 					     EXTENT_DEFRAG, PAGE_UNLOCK |
1256 					     PAGE_CLEAR_DIRTY |
1257 					     PAGE_SET_WRITEBACK |
1258 					     PAGE_END_WRITEBACK);
1259 		btrfs_free_path(path);
1260 		return PTR_ERR(trans);
1261 	}
1262 
1263 	trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1264 
1265 	cow_start = (u64)-1;
1266 	cur_offset = start;
1267 	while (1) {
1268 		ret = btrfs_lookup_file_extent(trans, root, path, ino,
1269 					       cur_offset, 0);
1270 		if (ret < 0)
1271 			goto error;
1272 		if (ret > 0 && path->slots[0] > 0 && check_prev) {
1273 			leaf = path->nodes[0];
1274 			btrfs_item_key_to_cpu(leaf, &found_key,
1275 					      path->slots[0] - 1);
1276 			if (found_key.objectid == ino &&
1277 			    found_key.type == BTRFS_EXTENT_DATA_KEY)
1278 				path->slots[0]--;
1279 		}
1280 		check_prev = 0;
1281 next_slot:
1282 		leaf = path->nodes[0];
1283 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1284 			ret = btrfs_next_leaf(root, path);
1285 			if (ret < 0)
1286 				goto error;
1287 			if (ret > 0)
1288 				break;
1289 			leaf = path->nodes[0];
1290 		}
1291 
1292 		nocow = 0;
1293 		disk_bytenr = 0;
1294 		num_bytes = 0;
1295 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1296 
1297 		if (found_key.objectid > ino ||
1298 		    found_key.type > BTRFS_EXTENT_DATA_KEY ||
1299 		    found_key.offset > end)
1300 			break;
1301 
1302 		if (found_key.offset > cur_offset) {
1303 			extent_end = found_key.offset;
1304 			extent_type = 0;
1305 			goto out_check;
1306 		}
1307 
1308 		fi = btrfs_item_ptr(leaf, path->slots[0],
1309 				    struct btrfs_file_extent_item);
1310 		extent_type = btrfs_file_extent_type(leaf, fi);
1311 
1312 		ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1313 		if (extent_type == BTRFS_FILE_EXTENT_REG ||
1314 		    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1315 			disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1316 			extent_offset = btrfs_file_extent_offset(leaf, fi);
1317 			extent_end = found_key.offset +
1318 				btrfs_file_extent_num_bytes(leaf, fi);
1319 			disk_num_bytes =
1320 				btrfs_file_extent_disk_num_bytes(leaf, fi);
1321 			if (extent_end <= start) {
1322 				path->slots[0]++;
1323 				goto next_slot;
1324 			}
1325 			if (disk_bytenr == 0)
1326 				goto out_check;
1327 			if (btrfs_file_extent_compression(leaf, fi) ||
1328 			    btrfs_file_extent_encryption(leaf, fi) ||
1329 			    btrfs_file_extent_other_encoding(leaf, fi))
1330 				goto out_check;
1331 			if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1332 				goto out_check;
1333 			if (btrfs_extent_readonly(root, disk_bytenr))
1334 				goto out_check;
1335 			if (btrfs_cross_ref_exist(trans, root, ino,
1336 						  found_key.offset -
1337 						  extent_offset, disk_bytenr))
1338 				goto out_check;
1339 			disk_bytenr += extent_offset;
1340 			disk_bytenr += cur_offset - found_key.offset;
1341 			num_bytes = min(end + 1, extent_end) - cur_offset;
1342 			/*
1343 			 * if there are pending snapshots for this root,
1344 			 * we fall into common COW way.
1345 			 */
1346 			if (!nolock) {
1347 				err = btrfs_start_write_no_snapshoting(root);
1348 				if (!err)
1349 					goto out_check;
1350 			}
1351 			/*
1352 			 * force cow if csum exists in the range.
1353 			 * this ensure that csum for a given extent are
1354 			 * either valid or do not exist.
1355 			 */
1356 			if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1357 				goto out_check;
1358 			nocow = 1;
1359 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1360 			extent_end = found_key.offset +
1361 				btrfs_file_extent_inline_len(leaf,
1362 						     path->slots[0], fi);
1363 			extent_end = ALIGN(extent_end, root->sectorsize);
1364 		} else {
1365 			BUG_ON(1);
1366 		}
1367 out_check:
1368 		if (extent_end <= start) {
1369 			path->slots[0]++;
1370 			if (!nolock && nocow)
1371 				btrfs_end_write_no_snapshoting(root);
1372 			goto next_slot;
1373 		}
1374 		if (!nocow) {
1375 			if (cow_start == (u64)-1)
1376 				cow_start = cur_offset;
1377 			cur_offset = extent_end;
1378 			if (cur_offset > end)
1379 				break;
1380 			path->slots[0]++;
1381 			goto next_slot;
1382 		}
1383 
1384 		btrfs_release_path(path);
1385 		if (cow_start != (u64)-1) {
1386 			ret = cow_file_range(inode, locked_page,
1387 					     cow_start, found_key.offset - 1,
1388 					     page_started, nr_written, 1);
1389 			if (ret) {
1390 				if (!nolock && nocow)
1391 					btrfs_end_write_no_snapshoting(root);
1392 				goto error;
1393 			}
1394 			cow_start = (u64)-1;
1395 		}
1396 
1397 		if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1398 			struct extent_map *em;
1399 			struct extent_map_tree *em_tree;
1400 			em_tree = &BTRFS_I(inode)->extent_tree;
1401 			em = alloc_extent_map();
1402 			BUG_ON(!em); /* -ENOMEM */
1403 			em->start = cur_offset;
1404 			em->orig_start = found_key.offset - extent_offset;
1405 			em->len = num_bytes;
1406 			em->block_len = num_bytes;
1407 			em->block_start = disk_bytenr;
1408 			em->orig_block_len = disk_num_bytes;
1409 			em->ram_bytes = ram_bytes;
1410 			em->bdev = root->fs_info->fs_devices->latest_bdev;
1411 			em->mod_start = em->start;
1412 			em->mod_len = em->len;
1413 			set_bit(EXTENT_FLAG_PINNED, &em->flags);
1414 			set_bit(EXTENT_FLAG_FILLING, &em->flags);
1415 			em->generation = -1;
1416 			while (1) {
1417 				write_lock(&em_tree->lock);
1418 				ret = add_extent_mapping(em_tree, em, 1);
1419 				write_unlock(&em_tree->lock);
1420 				if (ret != -EEXIST) {
1421 					free_extent_map(em);
1422 					break;
1423 				}
1424 				btrfs_drop_extent_cache(inode, em->start,
1425 						em->start + em->len - 1, 0);
1426 			}
1427 			type = BTRFS_ORDERED_PREALLOC;
1428 		} else {
1429 			type = BTRFS_ORDERED_NOCOW;
1430 		}
1431 
1432 		ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1433 					       num_bytes, num_bytes, type);
1434 		BUG_ON(ret); /* -ENOMEM */
1435 
1436 		if (root->root_key.objectid ==
1437 		    BTRFS_DATA_RELOC_TREE_OBJECTID) {
1438 			ret = btrfs_reloc_clone_csums(inode, cur_offset,
1439 						      num_bytes);
1440 			if (ret) {
1441 				if (!nolock && nocow)
1442 					btrfs_end_write_no_snapshoting(root);
1443 				goto error;
1444 			}
1445 		}
1446 
1447 		extent_clear_unlock_delalloc(inode, cur_offset,
1448 					     cur_offset + num_bytes - 1,
1449 					     locked_page, EXTENT_LOCKED |
1450 					     EXTENT_DELALLOC, PAGE_UNLOCK |
1451 					     PAGE_SET_PRIVATE2);
1452 		if (!nolock && nocow)
1453 			btrfs_end_write_no_snapshoting(root);
1454 		cur_offset = extent_end;
1455 		if (cur_offset > end)
1456 			break;
1457 	}
1458 	btrfs_release_path(path);
1459 
1460 	if (cur_offset <= end && cow_start == (u64)-1) {
1461 		cow_start = cur_offset;
1462 		cur_offset = end;
1463 	}
1464 
1465 	if (cow_start != (u64)-1) {
1466 		ret = cow_file_range(inode, locked_page, cow_start, end,
1467 				     page_started, nr_written, 1);
1468 		if (ret)
1469 			goto error;
1470 	}
1471 
1472 error:
1473 	err = btrfs_end_transaction(trans, root);
1474 	if (!ret)
1475 		ret = err;
1476 
1477 	if (ret && cur_offset < end)
1478 		extent_clear_unlock_delalloc(inode, cur_offset, end,
1479 					     locked_page, EXTENT_LOCKED |
1480 					     EXTENT_DELALLOC | EXTENT_DEFRAG |
1481 					     EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1482 					     PAGE_CLEAR_DIRTY |
1483 					     PAGE_SET_WRITEBACK |
1484 					     PAGE_END_WRITEBACK);
1485 	btrfs_free_path(path);
1486 	return ret;
1487 }
1488 
1489 static inline int need_force_cow(struct inode *inode, u64 start, u64 end)
1490 {
1491 
1492 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
1493 	    !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC))
1494 		return 0;
1495 
1496 	/*
1497 	 * @defrag_bytes is a hint value, no spinlock held here,
1498 	 * if is not zero, it means the file is defragging.
1499 	 * Force cow if given extent needs to be defragged.
1500 	 */
1501 	if (BTRFS_I(inode)->defrag_bytes &&
1502 	    test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
1503 			   EXTENT_DEFRAG, 0, NULL))
1504 		return 1;
1505 
1506 	return 0;
1507 }
1508 
1509 /*
1510  * extent_io.c call back to do delayed allocation processing
1511  */
1512 static int run_delalloc_range(struct inode *inode, struct page *locked_page,
1513 			      u64 start, u64 end, int *page_started,
1514 			      unsigned long *nr_written)
1515 {
1516 	int ret;
1517 	int force_cow = need_force_cow(inode, start, end);
1518 
1519 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) {
1520 		ret = run_delalloc_nocow(inode, locked_page, start, end,
1521 					 page_started, 1, nr_written);
1522 	} else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) {
1523 		ret = run_delalloc_nocow(inode, locked_page, start, end,
1524 					 page_started, 0, nr_written);
1525 	} else if (!inode_need_compress(inode)) {
1526 		ret = cow_file_range(inode, locked_page, start, end,
1527 				      page_started, nr_written, 1);
1528 	} else {
1529 		set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1530 			&BTRFS_I(inode)->runtime_flags);
1531 		ret = cow_file_range_async(inode, locked_page, start, end,
1532 					   page_started, nr_written);
1533 	}
1534 	return ret;
1535 }
1536 
1537 static void btrfs_split_extent_hook(struct inode *inode,
1538 				    struct extent_state *orig, u64 split)
1539 {
1540 	u64 size;
1541 
1542 	/* not delalloc, ignore it */
1543 	if (!(orig->state & EXTENT_DELALLOC))
1544 		return;
1545 
1546 	size = orig->end - orig->start + 1;
1547 	if (size > BTRFS_MAX_EXTENT_SIZE) {
1548 		u64 num_extents;
1549 		u64 new_size;
1550 
1551 		/*
1552 		 * See the explanation in btrfs_merge_extent_hook, the same
1553 		 * applies here, just in reverse.
1554 		 */
1555 		new_size = orig->end - split + 1;
1556 		num_extents = div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1,
1557 					BTRFS_MAX_EXTENT_SIZE);
1558 		new_size = split - orig->start;
1559 		num_extents += div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1,
1560 					BTRFS_MAX_EXTENT_SIZE);
1561 		if (div64_u64(size + BTRFS_MAX_EXTENT_SIZE - 1,
1562 			      BTRFS_MAX_EXTENT_SIZE) >= num_extents)
1563 			return;
1564 	}
1565 
1566 	spin_lock(&BTRFS_I(inode)->lock);
1567 	BTRFS_I(inode)->outstanding_extents++;
1568 	spin_unlock(&BTRFS_I(inode)->lock);
1569 }
1570 
1571 /*
1572  * extent_io.c merge_extent_hook, used to track merged delayed allocation
1573  * extents so we can keep track of new extents that are just merged onto old
1574  * extents, such as when we are doing sequential writes, so we can properly
1575  * account for the metadata space we'll need.
1576  */
1577 static void btrfs_merge_extent_hook(struct inode *inode,
1578 				    struct extent_state *new,
1579 				    struct extent_state *other)
1580 {
1581 	u64 new_size, old_size;
1582 	u64 num_extents;
1583 
1584 	/* not delalloc, ignore it */
1585 	if (!(other->state & EXTENT_DELALLOC))
1586 		return;
1587 
1588 	if (new->start > other->start)
1589 		new_size = new->end - other->start + 1;
1590 	else
1591 		new_size = other->end - new->start + 1;
1592 
1593 	/* we're not bigger than the max, unreserve the space and go */
1594 	if (new_size <= BTRFS_MAX_EXTENT_SIZE) {
1595 		spin_lock(&BTRFS_I(inode)->lock);
1596 		BTRFS_I(inode)->outstanding_extents--;
1597 		spin_unlock(&BTRFS_I(inode)->lock);
1598 		return;
1599 	}
1600 
1601 	/*
1602 	 * We have to add up either side to figure out how many extents were
1603 	 * accounted for before we merged into one big extent.  If the number of
1604 	 * extents we accounted for is <= the amount we need for the new range
1605 	 * then we can return, otherwise drop.  Think of it like this
1606 	 *
1607 	 * [ 4k][MAX_SIZE]
1608 	 *
1609 	 * So we've grown the extent by a MAX_SIZE extent, this would mean we
1610 	 * need 2 outstanding extents, on one side we have 1 and the other side
1611 	 * we have 1 so they are == and we can return.  But in this case
1612 	 *
1613 	 * [MAX_SIZE+4k][MAX_SIZE+4k]
1614 	 *
1615 	 * Each range on their own accounts for 2 extents, but merged together
1616 	 * they are only 3 extents worth of accounting, so we need to drop in
1617 	 * this case.
1618 	 */
1619 	old_size = other->end - other->start + 1;
1620 	num_extents = div64_u64(old_size + BTRFS_MAX_EXTENT_SIZE - 1,
1621 				BTRFS_MAX_EXTENT_SIZE);
1622 	old_size = new->end - new->start + 1;
1623 	num_extents += div64_u64(old_size + BTRFS_MAX_EXTENT_SIZE - 1,
1624 				 BTRFS_MAX_EXTENT_SIZE);
1625 
1626 	if (div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1,
1627 		      BTRFS_MAX_EXTENT_SIZE) >= num_extents)
1628 		return;
1629 
1630 	spin_lock(&BTRFS_I(inode)->lock);
1631 	BTRFS_I(inode)->outstanding_extents--;
1632 	spin_unlock(&BTRFS_I(inode)->lock);
1633 }
1634 
1635 static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1636 				      struct inode *inode)
1637 {
1638 	spin_lock(&root->delalloc_lock);
1639 	if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1640 		list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1641 			      &root->delalloc_inodes);
1642 		set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1643 			&BTRFS_I(inode)->runtime_flags);
1644 		root->nr_delalloc_inodes++;
1645 		if (root->nr_delalloc_inodes == 1) {
1646 			spin_lock(&root->fs_info->delalloc_root_lock);
1647 			BUG_ON(!list_empty(&root->delalloc_root));
1648 			list_add_tail(&root->delalloc_root,
1649 				      &root->fs_info->delalloc_roots);
1650 			spin_unlock(&root->fs_info->delalloc_root_lock);
1651 		}
1652 	}
1653 	spin_unlock(&root->delalloc_lock);
1654 }
1655 
1656 static void btrfs_del_delalloc_inode(struct btrfs_root *root,
1657 				     struct inode *inode)
1658 {
1659 	spin_lock(&root->delalloc_lock);
1660 	if (!list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1661 		list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1662 		clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1663 			  &BTRFS_I(inode)->runtime_flags);
1664 		root->nr_delalloc_inodes--;
1665 		if (!root->nr_delalloc_inodes) {
1666 			spin_lock(&root->fs_info->delalloc_root_lock);
1667 			BUG_ON(list_empty(&root->delalloc_root));
1668 			list_del_init(&root->delalloc_root);
1669 			spin_unlock(&root->fs_info->delalloc_root_lock);
1670 		}
1671 	}
1672 	spin_unlock(&root->delalloc_lock);
1673 }
1674 
1675 /*
1676  * extent_io.c set_bit_hook, used to track delayed allocation
1677  * bytes in this file, and to maintain the list of inodes that
1678  * have pending delalloc work to be done.
1679  */
1680 static void btrfs_set_bit_hook(struct inode *inode,
1681 			       struct extent_state *state, unsigned *bits)
1682 {
1683 
1684 	if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC))
1685 		WARN_ON(1);
1686 	/*
1687 	 * set_bit and clear bit hooks normally require _irqsave/restore
1688 	 * but in this case, we are only testing for the DELALLOC
1689 	 * bit, which is only set or cleared with irqs on
1690 	 */
1691 	if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1692 		struct btrfs_root *root = BTRFS_I(inode)->root;
1693 		u64 len = state->end + 1 - state->start;
1694 		bool do_list = !btrfs_is_free_space_inode(inode);
1695 
1696 		if (*bits & EXTENT_FIRST_DELALLOC) {
1697 			*bits &= ~EXTENT_FIRST_DELALLOC;
1698 		} else {
1699 			spin_lock(&BTRFS_I(inode)->lock);
1700 			BTRFS_I(inode)->outstanding_extents++;
1701 			spin_unlock(&BTRFS_I(inode)->lock);
1702 		}
1703 
1704 		/* For sanity tests */
1705 		if (btrfs_test_is_dummy_root(root))
1706 			return;
1707 
1708 		__percpu_counter_add(&root->fs_info->delalloc_bytes, len,
1709 				     root->fs_info->delalloc_batch);
1710 		spin_lock(&BTRFS_I(inode)->lock);
1711 		BTRFS_I(inode)->delalloc_bytes += len;
1712 		if (*bits & EXTENT_DEFRAG)
1713 			BTRFS_I(inode)->defrag_bytes += len;
1714 		if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1715 					 &BTRFS_I(inode)->runtime_flags))
1716 			btrfs_add_delalloc_inodes(root, inode);
1717 		spin_unlock(&BTRFS_I(inode)->lock);
1718 	}
1719 }
1720 
1721 /*
1722  * extent_io.c clear_bit_hook, see set_bit_hook for why
1723  */
1724 static void btrfs_clear_bit_hook(struct inode *inode,
1725 				 struct extent_state *state,
1726 				 unsigned *bits)
1727 {
1728 	u64 len = state->end + 1 - state->start;
1729 	u64 num_extents = div64_u64(len + BTRFS_MAX_EXTENT_SIZE -1,
1730 				    BTRFS_MAX_EXTENT_SIZE);
1731 
1732 	spin_lock(&BTRFS_I(inode)->lock);
1733 	if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG))
1734 		BTRFS_I(inode)->defrag_bytes -= len;
1735 	spin_unlock(&BTRFS_I(inode)->lock);
1736 
1737 	/*
1738 	 * set_bit and clear bit hooks normally require _irqsave/restore
1739 	 * but in this case, we are only testing for the DELALLOC
1740 	 * bit, which is only set or cleared with irqs on
1741 	 */
1742 	if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1743 		struct btrfs_root *root = BTRFS_I(inode)->root;
1744 		bool do_list = !btrfs_is_free_space_inode(inode);
1745 
1746 		if (*bits & EXTENT_FIRST_DELALLOC) {
1747 			*bits &= ~EXTENT_FIRST_DELALLOC;
1748 		} else if (!(*bits & EXTENT_DO_ACCOUNTING)) {
1749 			spin_lock(&BTRFS_I(inode)->lock);
1750 			BTRFS_I(inode)->outstanding_extents -= num_extents;
1751 			spin_unlock(&BTRFS_I(inode)->lock);
1752 		}
1753 
1754 		/*
1755 		 * We don't reserve metadata space for space cache inodes so we
1756 		 * don't need to call dellalloc_release_metadata if there is an
1757 		 * error.
1758 		 */
1759 		if (*bits & EXTENT_DO_ACCOUNTING &&
1760 		    root != root->fs_info->tree_root)
1761 			btrfs_delalloc_release_metadata(inode, len);
1762 
1763 		/* For sanity tests. */
1764 		if (btrfs_test_is_dummy_root(root))
1765 			return;
1766 
1767 		if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
1768 		    && do_list && !(state->state & EXTENT_NORESERVE))
1769 			btrfs_free_reserved_data_space(inode, len);
1770 
1771 		__percpu_counter_add(&root->fs_info->delalloc_bytes, -len,
1772 				     root->fs_info->delalloc_batch);
1773 		spin_lock(&BTRFS_I(inode)->lock);
1774 		BTRFS_I(inode)->delalloc_bytes -= len;
1775 		if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
1776 		    test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1777 			     &BTRFS_I(inode)->runtime_flags))
1778 			btrfs_del_delalloc_inode(root, inode);
1779 		spin_unlock(&BTRFS_I(inode)->lock);
1780 	}
1781 }
1782 
1783 /*
1784  * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1785  * we don't create bios that span stripes or chunks
1786  */
1787 int btrfs_merge_bio_hook(int rw, struct page *page, unsigned long offset,
1788 			 size_t size, struct bio *bio,
1789 			 unsigned long bio_flags)
1790 {
1791 	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1792 	u64 logical = (u64)bio->bi_iter.bi_sector << 9;
1793 	u64 length = 0;
1794 	u64 map_length;
1795 	int ret;
1796 
1797 	if (bio_flags & EXTENT_BIO_COMPRESSED)
1798 		return 0;
1799 
1800 	length = bio->bi_iter.bi_size;
1801 	map_length = length;
1802 	ret = btrfs_map_block(root->fs_info, rw, logical,
1803 			      &map_length, NULL, 0);
1804 	/* Will always return 0 with map_multi == NULL */
1805 	BUG_ON(ret < 0);
1806 	if (map_length < length + size)
1807 		return 1;
1808 	return 0;
1809 }
1810 
1811 /*
1812  * in order to insert checksums into the metadata in large chunks,
1813  * we wait until bio submission time.   All the pages in the bio are
1814  * checksummed and sums are attached onto the ordered extent record.
1815  *
1816  * At IO completion time the cums attached on the ordered extent record
1817  * are inserted into the btree
1818  */
1819 static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1820 				    struct bio *bio, int mirror_num,
1821 				    unsigned long bio_flags,
1822 				    u64 bio_offset)
1823 {
1824 	struct btrfs_root *root = BTRFS_I(inode)->root;
1825 	int ret = 0;
1826 
1827 	ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1828 	BUG_ON(ret); /* -ENOMEM */
1829 	return 0;
1830 }
1831 
1832 /*
1833  * in order to insert checksums into the metadata in large chunks,
1834  * we wait until bio submission time.   All the pages in the bio are
1835  * checksummed and sums are attached onto the ordered extent record.
1836  *
1837  * At IO completion time the cums attached on the ordered extent record
1838  * are inserted into the btree
1839  */
1840 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
1841 			  int mirror_num, unsigned long bio_flags,
1842 			  u64 bio_offset)
1843 {
1844 	struct btrfs_root *root = BTRFS_I(inode)->root;
1845 	int ret;
1846 
1847 	ret = btrfs_map_bio(root, rw, bio, mirror_num, 1);
1848 	if (ret)
1849 		bio_endio(bio, ret);
1850 	return ret;
1851 }
1852 
1853 /*
1854  * extent_io.c submission hook. This does the right thing for csum calculation
1855  * on write, or reading the csums from the tree before a read
1856  */
1857 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
1858 			  int mirror_num, unsigned long bio_flags,
1859 			  u64 bio_offset)
1860 {
1861 	struct btrfs_root *root = BTRFS_I(inode)->root;
1862 	int ret = 0;
1863 	int skip_sum;
1864 	int metadata = 0;
1865 	int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
1866 
1867 	skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
1868 
1869 	if (btrfs_is_free_space_inode(inode))
1870 		metadata = 2;
1871 
1872 	if (!(rw & REQ_WRITE)) {
1873 		ret = btrfs_bio_wq_end_io(root->fs_info, bio, metadata);
1874 		if (ret)
1875 			goto out;
1876 
1877 		if (bio_flags & EXTENT_BIO_COMPRESSED) {
1878 			ret = btrfs_submit_compressed_read(inode, bio,
1879 							   mirror_num,
1880 							   bio_flags);
1881 			goto out;
1882 		} else if (!skip_sum) {
1883 			ret = btrfs_lookup_bio_sums(root, inode, bio, NULL);
1884 			if (ret)
1885 				goto out;
1886 		}
1887 		goto mapit;
1888 	} else if (async && !skip_sum) {
1889 		/* csum items have already been cloned */
1890 		if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1891 			goto mapit;
1892 		/* we're doing a write, do the async checksumming */
1893 		ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1894 				   inode, rw, bio, mirror_num,
1895 				   bio_flags, bio_offset,
1896 				   __btrfs_submit_bio_start,
1897 				   __btrfs_submit_bio_done);
1898 		goto out;
1899 	} else if (!skip_sum) {
1900 		ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1901 		if (ret)
1902 			goto out;
1903 	}
1904 
1905 mapit:
1906 	ret = btrfs_map_bio(root, rw, bio, mirror_num, 0);
1907 
1908 out:
1909 	if (ret < 0)
1910 		bio_endio(bio, ret);
1911 	return ret;
1912 }
1913 
1914 /*
1915  * given a list of ordered sums record them in the inode.  This happens
1916  * at IO completion time based on sums calculated at bio submission time.
1917  */
1918 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
1919 			     struct inode *inode, u64 file_offset,
1920 			     struct list_head *list)
1921 {
1922 	struct btrfs_ordered_sum *sum;
1923 
1924 	list_for_each_entry(sum, list, list) {
1925 		trans->adding_csums = 1;
1926 		btrfs_csum_file_blocks(trans,
1927 		       BTRFS_I(inode)->root->fs_info->csum_root, sum);
1928 		trans->adding_csums = 0;
1929 	}
1930 	return 0;
1931 }
1932 
1933 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1934 			      struct extent_state **cached_state)
1935 {
1936 	WARN_ON((end & (PAGE_CACHE_SIZE - 1)) == 0);
1937 	return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
1938 				   cached_state, GFP_NOFS);
1939 }
1940 
1941 /* see btrfs_writepage_start_hook for details on why this is required */
1942 struct btrfs_writepage_fixup {
1943 	struct page *page;
1944 	struct btrfs_work work;
1945 };
1946 
1947 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
1948 {
1949 	struct btrfs_writepage_fixup *fixup;
1950 	struct btrfs_ordered_extent *ordered;
1951 	struct extent_state *cached_state = NULL;
1952 	struct page *page;
1953 	struct inode *inode;
1954 	u64 page_start;
1955 	u64 page_end;
1956 	int ret;
1957 
1958 	fixup = container_of(work, struct btrfs_writepage_fixup, work);
1959 	page = fixup->page;
1960 again:
1961 	lock_page(page);
1962 	if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1963 		ClearPageChecked(page);
1964 		goto out_page;
1965 	}
1966 
1967 	inode = page->mapping->host;
1968 	page_start = page_offset(page);
1969 	page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1970 
1971 	lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0,
1972 			 &cached_state);
1973 
1974 	/* already ordered? We're done */
1975 	if (PagePrivate2(page))
1976 		goto out;
1977 
1978 	ordered = btrfs_lookup_ordered_extent(inode, page_start);
1979 	if (ordered) {
1980 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
1981 				     page_end, &cached_state, GFP_NOFS);
1982 		unlock_page(page);
1983 		btrfs_start_ordered_extent(inode, ordered, 1);
1984 		btrfs_put_ordered_extent(ordered);
1985 		goto again;
1986 	}
1987 
1988 	ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
1989 	if (ret) {
1990 		mapping_set_error(page->mapping, ret);
1991 		end_extent_writepage(page, ret, page_start, page_end);
1992 		ClearPageChecked(page);
1993 		goto out;
1994 	 }
1995 
1996 	btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
1997 	ClearPageChecked(page);
1998 	set_page_dirty(page);
1999 out:
2000 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
2001 			     &cached_state, GFP_NOFS);
2002 out_page:
2003 	unlock_page(page);
2004 	page_cache_release(page);
2005 	kfree(fixup);
2006 }
2007 
2008 /*
2009  * There are a few paths in the higher layers of the kernel that directly
2010  * set the page dirty bit without asking the filesystem if it is a
2011  * good idea.  This causes problems because we want to make sure COW
2012  * properly happens and the data=ordered rules are followed.
2013  *
2014  * In our case any range that doesn't have the ORDERED bit set
2015  * hasn't been properly setup for IO.  We kick off an async process
2016  * to fix it up.  The async helper will wait for ordered extents, set
2017  * the delalloc bit and make it safe to write the page.
2018  */
2019 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
2020 {
2021 	struct inode *inode = page->mapping->host;
2022 	struct btrfs_writepage_fixup *fixup;
2023 	struct btrfs_root *root = BTRFS_I(inode)->root;
2024 
2025 	/* this page is properly in the ordered list */
2026 	if (TestClearPagePrivate2(page))
2027 		return 0;
2028 
2029 	if (PageChecked(page))
2030 		return -EAGAIN;
2031 
2032 	fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2033 	if (!fixup)
2034 		return -EAGAIN;
2035 
2036 	SetPageChecked(page);
2037 	page_cache_get(page);
2038 	btrfs_init_work(&fixup->work, btrfs_fixup_helper,
2039 			btrfs_writepage_fixup_worker, NULL, NULL);
2040 	fixup->page = page;
2041 	btrfs_queue_work(root->fs_info->fixup_workers, &fixup->work);
2042 	return -EBUSY;
2043 }
2044 
2045 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2046 				       struct inode *inode, u64 file_pos,
2047 				       u64 disk_bytenr, u64 disk_num_bytes,
2048 				       u64 num_bytes, u64 ram_bytes,
2049 				       u8 compression, u8 encryption,
2050 				       u16 other_encoding, int extent_type)
2051 {
2052 	struct btrfs_root *root = BTRFS_I(inode)->root;
2053 	struct btrfs_file_extent_item *fi;
2054 	struct btrfs_path *path;
2055 	struct extent_buffer *leaf;
2056 	struct btrfs_key ins;
2057 	int extent_inserted = 0;
2058 	int ret;
2059 
2060 	path = btrfs_alloc_path();
2061 	if (!path)
2062 		return -ENOMEM;
2063 
2064 	/*
2065 	 * we may be replacing one extent in the tree with another.
2066 	 * The new extent is pinned in the extent map, and we don't want
2067 	 * to drop it from the cache until it is completely in the btree.
2068 	 *
2069 	 * So, tell btrfs_drop_extents to leave this extent in the cache.
2070 	 * the caller is expected to unpin it and allow it to be merged
2071 	 * with the others.
2072 	 */
2073 	ret = __btrfs_drop_extents(trans, root, inode, path, file_pos,
2074 				   file_pos + num_bytes, NULL, 0,
2075 				   1, sizeof(*fi), &extent_inserted);
2076 	if (ret)
2077 		goto out;
2078 
2079 	if (!extent_inserted) {
2080 		ins.objectid = btrfs_ino(inode);
2081 		ins.offset = file_pos;
2082 		ins.type = BTRFS_EXTENT_DATA_KEY;
2083 
2084 		path->leave_spinning = 1;
2085 		ret = btrfs_insert_empty_item(trans, root, path, &ins,
2086 					      sizeof(*fi));
2087 		if (ret)
2088 			goto out;
2089 	}
2090 	leaf = path->nodes[0];
2091 	fi = btrfs_item_ptr(leaf, path->slots[0],
2092 			    struct btrfs_file_extent_item);
2093 	btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2094 	btrfs_set_file_extent_type(leaf, fi, extent_type);
2095 	btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
2096 	btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
2097 	btrfs_set_file_extent_offset(leaf, fi, 0);
2098 	btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2099 	btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
2100 	btrfs_set_file_extent_compression(leaf, fi, compression);
2101 	btrfs_set_file_extent_encryption(leaf, fi, encryption);
2102 	btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
2103 
2104 	btrfs_mark_buffer_dirty(leaf);
2105 	btrfs_release_path(path);
2106 
2107 	inode_add_bytes(inode, num_bytes);
2108 
2109 	ins.objectid = disk_bytenr;
2110 	ins.offset = disk_num_bytes;
2111 	ins.type = BTRFS_EXTENT_ITEM_KEY;
2112 	ret = btrfs_alloc_reserved_file_extent(trans, root,
2113 					root->root_key.objectid,
2114 					btrfs_ino(inode), file_pos, &ins);
2115 out:
2116 	btrfs_free_path(path);
2117 
2118 	return ret;
2119 }
2120 
2121 /* snapshot-aware defrag */
2122 struct sa_defrag_extent_backref {
2123 	struct rb_node node;
2124 	struct old_sa_defrag_extent *old;
2125 	u64 root_id;
2126 	u64 inum;
2127 	u64 file_pos;
2128 	u64 extent_offset;
2129 	u64 num_bytes;
2130 	u64 generation;
2131 };
2132 
2133 struct old_sa_defrag_extent {
2134 	struct list_head list;
2135 	struct new_sa_defrag_extent *new;
2136 
2137 	u64 extent_offset;
2138 	u64 bytenr;
2139 	u64 offset;
2140 	u64 len;
2141 	int count;
2142 };
2143 
2144 struct new_sa_defrag_extent {
2145 	struct rb_root root;
2146 	struct list_head head;
2147 	struct btrfs_path *path;
2148 	struct inode *inode;
2149 	u64 file_pos;
2150 	u64 len;
2151 	u64 bytenr;
2152 	u64 disk_len;
2153 	u8 compress_type;
2154 };
2155 
2156 static int backref_comp(struct sa_defrag_extent_backref *b1,
2157 			struct sa_defrag_extent_backref *b2)
2158 {
2159 	if (b1->root_id < b2->root_id)
2160 		return -1;
2161 	else if (b1->root_id > b2->root_id)
2162 		return 1;
2163 
2164 	if (b1->inum < b2->inum)
2165 		return -1;
2166 	else if (b1->inum > b2->inum)
2167 		return 1;
2168 
2169 	if (b1->file_pos < b2->file_pos)
2170 		return -1;
2171 	else if (b1->file_pos > b2->file_pos)
2172 		return 1;
2173 
2174 	/*
2175 	 * [------------------------------] ===> (a range of space)
2176 	 *     |<--->|   |<---->| =============> (fs/file tree A)
2177 	 * |<---------------------------->| ===> (fs/file tree B)
2178 	 *
2179 	 * A range of space can refer to two file extents in one tree while
2180 	 * refer to only one file extent in another tree.
2181 	 *
2182 	 * So we may process a disk offset more than one time(two extents in A)
2183 	 * and locate at the same extent(one extent in B), then insert two same
2184 	 * backrefs(both refer to the extent in B).
2185 	 */
2186 	return 0;
2187 }
2188 
2189 static void backref_insert(struct rb_root *root,
2190 			   struct sa_defrag_extent_backref *backref)
2191 {
2192 	struct rb_node **p = &root->rb_node;
2193 	struct rb_node *parent = NULL;
2194 	struct sa_defrag_extent_backref *entry;
2195 	int ret;
2196 
2197 	while (*p) {
2198 		parent = *p;
2199 		entry = rb_entry(parent, struct sa_defrag_extent_backref, node);
2200 
2201 		ret = backref_comp(backref, entry);
2202 		if (ret < 0)
2203 			p = &(*p)->rb_left;
2204 		else
2205 			p = &(*p)->rb_right;
2206 	}
2207 
2208 	rb_link_node(&backref->node, parent, p);
2209 	rb_insert_color(&backref->node, root);
2210 }
2211 
2212 /*
2213  * Note the backref might has changed, and in this case we just return 0.
2214  */
2215 static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id,
2216 				       void *ctx)
2217 {
2218 	struct btrfs_file_extent_item *extent;
2219 	struct btrfs_fs_info *fs_info;
2220 	struct old_sa_defrag_extent *old = ctx;
2221 	struct new_sa_defrag_extent *new = old->new;
2222 	struct btrfs_path *path = new->path;
2223 	struct btrfs_key key;
2224 	struct btrfs_root *root;
2225 	struct sa_defrag_extent_backref *backref;
2226 	struct extent_buffer *leaf;
2227 	struct inode *inode = new->inode;
2228 	int slot;
2229 	int ret;
2230 	u64 extent_offset;
2231 	u64 num_bytes;
2232 
2233 	if (BTRFS_I(inode)->root->root_key.objectid == root_id &&
2234 	    inum == btrfs_ino(inode))
2235 		return 0;
2236 
2237 	key.objectid = root_id;
2238 	key.type = BTRFS_ROOT_ITEM_KEY;
2239 	key.offset = (u64)-1;
2240 
2241 	fs_info = BTRFS_I(inode)->root->fs_info;
2242 	root = btrfs_read_fs_root_no_name(fs_info, &key);
2243 	if (IS_ERR(root)) {
2244 		if (PTR_ERR(root) == -ENOENT)
2245 			return 0;
2246 		WARN_ON(1);
2247 		pr_debug("inum=%llu, offset=%llu, root_id=%llu\n",
2248 			 inum, offset, root_id);
2249 		return PTR_ERR(root);
2250 	}
2251 
2252 	key.objectid = inum;
2253 	key.type = BTRFS_EXTENT_DATA_KEY;
2254 	if (offset > (u64)-1 << 32)
2255 		key.offset = 0;
2256 	else
2257 		key.offset = offset;
2258 
2259 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2260 	if (WARN_ON(ret < 0))
2261 		return ret;
2262 	ret = 0;
2263 
2264 	while (1) {
2265 		cond_resched();
2266 
2267 		leaf = path->nodes[0];
2268 		slot = path->slots[0];
2269 
2270 		if (slot >= btrfs_header_nritems(leaf)) {
2271 			ret = btrfs_next_leaf(root, path);
2272 			if (ret < 0) {
2273 				goto out;
2274 			} else if (ret > 0) {
2275 				ret = 0;
2276 				goto out;
2277 			}
2278 			continue;
2279 		}
2280 
2281 		path->slots[0]++;
2282 
2283 		btrfs_item_key_to_cpu(leaf, &key, slot);
2284 
2285 		if (key.objectid > inum)
2286 			goto out;
2287 
2288 		if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY)
2289 			continue;
2290 
2291 		extent = btrfs_item_ptr(leaf, slot,
2292 					struct btrfs_file_extent_item);
2293 
2294 		if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr)
2295 			continue;
2296 
2297 		/*
2298 		 * 'offset' refers to the exact key.offset,
2299 		 * NOT the 'offset' field in btrfs_extent_data_ref, ie.
2300 		 * (key.offset - extent_offset).
2301 		 */
2302 		if (key.offset != offset)
2303 			continue;
2304 
2305 		extent_offset = btrfs_file_extent_offset(leaf, extent);
2306 		num_bytes = btrfs_file_extent_num_bytes(leaf, extent);
2307 
2308 		if (extent_offset >= old->extent_offset + old->offset +
2309 		    old->len || extent_offset + num_bytes <=
2310 		    old->extent_offset + old->offset)
2311 			continue;
2312 		break;
2313 	}
2314 
2315 	backref = kmalloc(sizeof(*backref), GFP_NOFS);
2316 	if (!backref) {
2317 		ret = -ENOENT;
2318 		goto out;
2319 	}
2320 
2321 	backref->root_id = root_id;
2322 	backref->inum = inum;
2323 	backref->file_pos = offset;
2324 	backref->num_bytes = num_bytes;
2325 	backref->extent_offset = extent_offset;
2326 	backref->generation = btrfs_file_extent_generation(leaf, extent);
2327 	backref->old = old;
2328 	backref_insert(&new->root, backref);
2329 	old->count++;
2330 out:
2331 	btrfs_release_path(path);
2332 	WARN_ON(ret);
2333 	return ret;
2334 }
2335 
2336 static noinline bool record_extent_backrefs(struct btrfs_path *path,
2337 				   struct new_sa_defrag_extent *new)
2338 {
2339 	struct btrfs_fs_info *fs_info = BTRFS_I(new->inode)->root->fs_info;
2340 	struct old_sa_defrag_extent *old, *tmp;
2341 	int ret;
2342 
2343 	new->path = path;
2344 
2345 	list_for_each_entry_safe(old, tmp, &new->head, list) {
2346 		ret = iterate_inodes_from_logical(old->bytenr +
2347 						  old->extent_offset, fs_info,
2348 						  path, record_one_backref,
2349 						  old);
2350 		if (ret < 0 && ret != -ENOENT)
2351 			return false;
2352 
2353 		/* no backref to be processed for this extent */
2354 		if (!old->count) {
2355 			list_del(&old->list);
2356 			kfree(old);
2357 		}
2358 	}
2359 
2360 	if (list_empty(&new->head))
2361 		return false;
2362 
2363 	return true;
2364 }
2365 
2366 static int relink_is_mergable(struct extent_buffer *leaf,
2367 			      struct btrfs_file_extent_item *fi,
2368 			      struct new_sa_defrag_extent *new)
2369 {
2370 	if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr)
2371 		return 0;
2372 
2373 	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2374 		return 0;
2375 
2376 	if (btrfs_file_extent_compression(leaf, fi) != new->compress_type)
2377 		return 0;
2378 
2379 	if (btrfs_file_extent_encryption(leaf, fi) ||
2380 	    btrfs_file_extent_other_encoding(leaf, fi))
2381 		return 0;
2382 
2383 	return 1;
2384 }
2385 
2386 /*
2387  * Note the backref might has changed, and in this case we just return 0.
2388  */
2389 static noinline int relink_extent_backref(struct btrfs_path *path,
2390 				 struct sa_defrag_extent_backref *prev,
2391 				 struct sa_defrag_extent_backref *backref)
2392 {
2393 	struct btrfs_file_extent_item *extent;
2394 	struct btrfs_file_extent_item *item;
2395 	struct btrfs_ordered_extent *ordered;
2396 	struct btrfs_trans_handle *trans;
2397 	struct btrfs_fs_info *fs_info;
2398 	struct btrfs_root *root;
2399 	struct btrfs_key key;
2400 	struct extent_buffer *leaf;
2401 	struct old_sa_defrag_extent *old = backref->old;
2402 	struct new_sa_defrag_extent *new = old->new;
2403 	struct inode *src_inode = new->inode;
2404 	struct inode *inode;
2405 	struct extent_state *cached = NULL;
2406 	int ret = 0;
2407 	u64 start;
2408 	u64 len;
2409 	u64 lock_start;
2410 	u64 lock_end;
2411 	bool merge = false;
2412 	int index;
2413 
2414 	if (prev && prev->root_id == backref->root_id &&
2415 	    prev->inum == backref->inum &&
2416 	    prev->file_pos + prev->num_bytes == backref->file_pos)
2417 		merge = true;
2418 
2419 	/* step 1: get root */
2420 	key.objectid = backref->root_id;
2421 	key.type = BTRFS_ROOT_ITEM_KEY;
2422 	key.offset = (u64)-1;
2423 
2424 	fs_info = BTRFS_I(src_inode)->root->fs_info;
2425 	index = srcu_read_lock(&fs_info->subvol_srcu);
2426 
2427 	root = btrfs_read_fs_root_no_name(fs_info, &key);
2428 	if (IS_ERR(root)) {
2429 		srcu_read_unlock(&fs_info->subvol_srcu, index);
2430 		if (PTR_ERR(root) == -ENOENT)
2431 			return 0;
2432 		return PTR_ERR(root);
2433 	}
2434 
2435 	if (btrfs_root_readonly(root)) {
2436 		srcu_read_unlock(&fs_info->subvol_srcu, index);
2437 		return 0;
2438 	}
2439 
2440 	/* step 2: get inode */
2441 	key.objectid = backref->inum;
2442 	key.type = BTRFS_INODE_ITEM_KEY;
2443 	key.offset = 0;
2444 
2445 	inode = btrfs_iget(fs_info->sb, &key, root, NULL);
2446 	if (IS_ERR(inode)) {
2447 		srcu_read_unlock(&fs_info->subvol_srcu, index);
2448 		return 0;
2449 	}
2450 
2451 	srcu_read_unlock(&fs_info->subvol_srcu, index);
2452 
2453 	/* step 3: relink backref */
2454 	lock_start = backref->file_pos;
2455 	lock_end = backref->file_pos + backref->num_bytes - 1;
2456 	lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2457 			 0, &cached);
2458 
2459 	ordered = btrfs_lookup_first_ordered_extent(inode, lock_end);
2460 	if (ordered) {
2461 		btrfs_put_ordered_extent(ordered);
2462 		goto out_unlock;
2463 	}
2464 
2465 	trans = btrfs_join_transaction(root);
2466 	if (IS_ERR(trans)) {
2467 		ret = PTR_ERR(trans);
2468 		goto out_unlock;
2469 	}
2470 
2471 	key.objectid = backref->inum;
2472 	key.type = BTRFS_EXTENT_DATA_KEY;
2473 	key.offset = backref->file_pos;
2474 
2475 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2476 	if (ret < 0) {
2477 		goto out_free_path;
2478 	} else if (ret > 0) {
2479 		ret = 0;
2480 		goto out_free_path;
2481 	}
2482 
2483 	extent = btrfs_item_ptr(path->nodes[0], path->slots[0],
2484 				struct btrfs_file_extent_item);
2485 
2486 	if (btrfs_file_extent_generation(path->nodes[0], extent) !=
2487 	    backref->generation)
2488 		goto out_free_path;
2489 
2490 	btrfs_release_path(path);
2491 
2492 	start = backref->file_pos;
2493 	if (backref->extent_offset < old->extent_offset + old->offset)
2494 		start += old->extent_offset + old->offset -
2495 			 backref->extent_offset;
2496 
2497 	len = min(backref->extent_offset + backref->num_bytes,
2498 		  old->extent_offset + old->offset + old->len);
2499 	len -= max(backref->extent_offset, old->extent_offset + old->offset);
2500 
2501 	ret = btrfs_drop_extents(trans, root, inode, start,
2502 				 start + len, 1);
2503 	if (ret)
2504 		goto out_free_path;
2505 again:
2506 	key.objectid = btrfs_ino(inode);
2507 	key.type = BTRFS_EXTENT_DATA_KEY;
2508 	key.offset = start;
2509 
2510 	path->leave_spinning = 1;
2511 	if (merge) {
2512 		struct btrfs_file_extent_item *fi;
2513 		u64 extent_len;
2514 		struct btrfs_key found_key;
2515 
2516 		ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2517 		if (ret < 0)
2518 			goto out_free_path;
2519 
2520 		path->slots[0]--;
2521 		leaf = path->nodes[0];
2522 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2523 
2524 		fi = btrfs_item_ptr(leaf, path->slots[0],
2525 				    struct btrfs_file_extent_item);
2526 		extent_len = btrfs_file_extent_num_bytes(leaf, fi);
2527 
2528 		if (extent_len + found_key.offset == start &&
2529 		    relink_is_mergable(leaf, fi, new)) {
2530 			btrfs_set_file_extent_num_bytes(leaf, fi,
2531 							extent_len + len);
2532 			btrfs_mark_buffer_dirty(leaf);
2533 			inode_add_bytes(inode, len);
2534 
2535 			ret = 1;
2536 			goto out_free_path;
2537 		} else {
2538 			merge = false;
2539 			btrfs_release_path(path);
2540 			goto again;
2541 		}
2542 	}
2543 
2544 	ret = btrfs_insert_empty_item(trans, root, path, &key,
2545 					sizeof(*extent));
2546 	if (ret) {
2547 		btrfs_abort_transaction(trans, root, ret);
2548 		goto out_free_path;
2549 	}
2550 
2551 	leaf = path->nodes[0];
2552 	item = btrfs_item_ptr(leaf, path->slots[0],
2553 				struct btrfs_file_extent_item);
2554 	btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr);
2555 	btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len);
2556 	btrfs_set_file_extent_offset(leaf, item, start - new->file_pos);
2557 	btrfs_set_file_extent_num_bytes(leaf, item, len);
2558 	btrfs_set_file_extent_ram_bytes(leaf, item, new->len);
2559 	btrfs_set_file_extent_generation(leaf, item, trans->transid);
2560 	btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
2561 	btrfs_set_file_extent_compression(leaf, item, new->compress_type);
2562 	btrfs_set_file_extent_encryption(leaf, item, 0);
2563 	btrfs_set_file_extent_other_encoding(leaf, item, 0);
2564 
2565 	btrfs_mark_buffer_dirty(leaf);
2566 	inode_add_bytes(inode, len);
2567 	btrfs_release_path(path);
2568 
2569 	ret = btrfs_inc_extent_ref(trans, root, new->bytenr,
2570 			new->disk_len, 0,
2571 			backref->root_id, backref->inum,
2572 			new->file_pos, 0);	/* start - extent_offset */
2573 	if (ret) {
2574 		btrfs_abort_transaction(trans, root, ret);
2575 		goto out_free_path;
2576 	}
2577 
2578 	ret = 1;
2579 out_free_path:
2580 	btrfs_release_path(path);
2581 	path->leave_spinning = 0;
2582 	btrfs_end_transaction(trans, root);
2583 out_unlock:
2584 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2585 			     &cached, GFP_NOFS);
2586 	iput(inode);
2587 	return ret;
2588 }
2589 
2590 static void free_sa_defrag_extent(struct new_sa_defrag_extent *new)
2591 {
2592 	struct old_sa_defrag_extent *old, *tmp;
2593 
2594 	if (!new)
2595 		return;
2596 
2597 	list_for_each_entry_safe(old, tmp, &new->head, list) {
2598 		list_del(&old->list);
2599 		kfree(old);
2600 	}
2601 	kfree(new);
2602 }
2603 
2604 static void relink_file_extents(struct new_sa_defrag_extent *new)
2605 {
2606 	struct btrfs_path *path;
2607 	struct sa_defrag_extent_backref *backref;
2608 	struct sa_defrag_extent_backref *prev = NULL;
2609 	struct inode *inode;
2610 	struct btrfs_root *root;
2611 	struct rb_node *node;
2612 	int ret;
2613 
2614 	inode = new->inode;
2615 	root = BTRFS_I(inode)->root;
2616 
2617 	path = btrfs_alloc_path();
2618 	if (!path)
2619 		return;
2620 
2621 	if (!record_extent_backrefs(path, new)) {
2622 		btrfs_free_path(path);
2623 		goto out;
2624 	}
2625 	btrfs_release_path(path);
2626 
2627 	while (1) {
2628 		node = rb_first(&new->root);
2629 		if (!node)
2630 			break;
2631 		rb_erase(node, &new->root);
2632 
2633 		backref = rb_entry(node, struct sa_defrag_extent_backref, node);
2634 
2635 		ret = relink_extent_backref(path, prev, backref);
2636 		WARN_ON(ret < 0);
2637 
2638 		kfree(prev);
2639 
2640 		if (ret == 1)
2641 			prev = backref;
2642 		else
2643 			prev = NULL;
2644 		cond_resched();
2645 	}
2646 	kfree(prev);
2647 
2648 	btrfs_free_path(path);
2649 out:
2650 	free_sa_defrag_extent(new);
2651 
2652 	atomic_dec(&root->fs_info->defrag_running);
2653 	wake_up(&root->fs_info->transaction_wait);
2654 }
2655 
2656 static struct new_sa_defrag_extent *
2657 record_old_file_extents(struct inode *inode,
2658 			struct btrfs_ordered_extent *ordered)
2659 {
2660 	struct btrfs_root *root = BTRFS_I(inode)->root;
2661 	struct btrfs_path *path;
2662 	struct btrfs_key key;
2663 	struct old_sa_defrag_extent *old;
2664 	struct new_sa_defrag_extent *new;
2665 	int ret;
2666 
2667 	new = kmalloc(sizeof(*new), GFP_NOFS);
2668 	if (!new)
2669 		return NULL;
2670 
2671 	new->inode = inode;
2672 	new->file_pos = ordered->file_offset;
2673 	new->len = ordered->len;
2674 	new->bytenr = ordered->start;
2675 	new->disk_len = ordered->disk_len;
2676 	new->compress_type = ordered->compress_type;
2677 	new->root = RB_ROOT;
2678 	INIT_LIST_HEAD(&new->head);
2679 
2680 	path = btrfs_alloc_path();
2681 	if (!path)
2682 		goto out_kfree;
2683 
2684 	key.objectid = btrfs_ino(inode);
2685 	key.type = BTRFS_EXTENT_DATA_KEY;
2686 	key.offset = new->file_pos;
2687 
2688 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2689 	if (ret < 0)
2690 		goto out_free_path;
2691 	if (ret > 0 && path->slots[0] > 0)
2692 		path->slots[0]--;
2693 
2694 	/* find out all the old extents for the file range */
2695 	while (1) {
2696 		struct btrfs_file_extent_item *extent;
2697 		struct extent_buffer *l;
2698 		int slot;
2699 		u64 num_bytes;
2700 		u64 offset;
2701 		u64 end;
2702 		u64 disk_bytenr;
2703 		u64 extent_offset;
2704 
2705 		l = path->nodes[0];
2706 		slot = path->slots[0];
2707 
2708 		if (slot >= btrfs_header_nritems(l)) {
2709 			ret = btrfs_next_leaf(root, path);
2710 			if (ret < 0)
2711 				goto out_free_path;
2712 			else if (ret > 0)
2713 				break;
2714 			continue;
2715 		}
2716 
2717 		btrfs_item_key_to_cpu(l, &key, slot);
2718 
2719 		if (key.objectid != btrfs_ino(inode))
2720 			break;
2721 		if (key.type != BTRFS_EXTENT_DATA_KEY)
2722 			break;
2723 		if (key.offset >= new->file_pos + new->len)
2724 			break;
2725 
2726 		extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item);
2727 
2728 		num_bytes = btrfs_file_extent_num_bytes(l, extent);
2729 		if (key.offset + num_bytes < new->file_pos)
2730 			goto next;
2731 
2732 		disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent);
2733 		if (!disk_bytenr)
2734 			goto next;
2735 
2736 		extent_offset = btrfs_file_extent_offset(l, extent);
2737 
2738 		old = kmalloc(sizeof(*old), GFP_NOFS);
2739 		if (!old)
2740 			goto out_free_path;
2741 
2742 		offset = max(new->file_pos, key.offset);
2743 		end = min(new->file_pos + new->len, key.offset + num_bytes);
2744 
2745 		old->bytenr = disk_bytenr;
2746 		old->extent_offset = extent_offset;
2747 		old->offset = offset - key.offset;
2748 		old->len = end - offset;
2749 		old->new = new;
2750 		old->count = 0;
2751 		list_add_tail(&old->list, &new->head);
2752 next:
2753 		path->slots[0]++;
2754 		cond_resched();
2755 	}
2756 
2757 	btrfs_free_path(path);
2758 	atomic_inc(&root->fs_info->defrag_running);
2759 
2760 	return new;
2761 
2762 out_free_path:
2763 	btrfs_free_path(path);
2764 out_kfree:
2765 	free_sa_defrag_extent(new);
2766 	return NULL;
2767 }
2768 
2769 static void btrfs_release_delalloc_bytes(struct btrfs_root *root,
2770 					 u64 start, u64 len)
2771 {
2772 	struct btrfs_block_group_cache *cache;
2773 
2774 	cache = btrfs_lookup_block_group(root->fs_info, start);
2775 	ASSERT(cache);
2776 
2777 	spin_lock(&cache->lock);
2778 	cache->delalloc_bytes -= len;
2779 	spin_unlock(&cache->lock);
2780 
2781 	btrfs_put_block_group(cache);
2782 }
2783 
2784 /* as ordered data IO finishes, this gets called so we can finish
2785  * an ordered extent if the range of bytes in the file it covers are
2786  * fully written.
2787  */
2788 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
2789 {
2790 	struct inode *inode = ordered_extent->inode;
2791 	struct btrfs_root *root = BTRFS_I(inode)->root;
2792 	struct btrfs_trans_handle *trans = NULL;
2793 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2794 	struct extent_state *cached_state = NULL;
2795 	struct new_sa_defrag_extent *new = NULL;
2796 	int compress_type = 0;
2797 	int ret = 0;
2798 	u64 logical_len = ordered_extent->len;
2799 	bool nolock;
2800 	bool truncated = false;
2801 
2802 	nolock = btrfs_is_free_space_inode(inode);
2803 
2804 	if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
2805 		ret = -EIO;
2806 		goto out;
2807 	}
2808 
2809 	btrfs_free_io_failure_record(inode, ordered_extent->file_offset,
2810 				     ordered_extent->file_offset +
2811 				     ordered_extent->len - 1);
2812 
2813 	if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
2814 		truncated = true;
2815 		logical_len = ordered_extent->truncated_len;
2816 		/* Truncated the entire extent, don't bother adding */
2817 		if (!logical_len)
2818 			goto out;
2819 	}
2820 
2821 	if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
2822 		BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
2823 		btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2824 		if (nolock)
2825 			trans = btrfs_join_transaction_nolock(root);
2826 		else
2827 			trans = btrfs_join_transaction(root);
2828 		if (IS_ERR(trans)) {
2829 			ret = PTR_ERR(trans);
2830 			trans = NULL;
2831 			goto out;
2832 		}
2833 		trans->block_rsv = &root->fs_info->delalloc_block_rsv;
2834 		ret = btrfs_update_inode_fallback(trans, root, inode);
2835 		if (ret) /* -ENOMEM or corruption */
2836 			btrfs_abort_transaction(trans, root, ret);
2837 		goto out;
2838 	}
2839 
2840 	lock_extent_bits(io_tree, ordered_extent->file_offset,
2841 			 ordered_extent->file_offset + ordered_extent->len - 1,
2842 			 0, &cached_state);
2843 
2844 	ret = test_range_bit(io_tree, ordered_extent->file_offset,
2845 			ordered_extent->file_offset + ordered_extent->len - 1,
2846 			EXTENT_DEFRAG, 1, cached_state);
2847 	if (ret) {
2848 		u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
2849 		if (0 && last_snapshot >= BTRFS_I(inode)->generation)
2850 			/* the inode is shared */
2851 			new = record_old_file_extents(inode, ordered_extent);
2852 
2853 		clear_extent_bit(io_tree, ordered_extent->file_offset,
2854 			ordered_extent->file_offset + ordered_extent->len - 1,
2855 			EXTENT_DEFRAG, 0, 0, &cached_state, GFP_NOFS);
2856 	}
2857 
2858 	if (nolock)
2859 		trans = btrfs_join_transaction_nolock(root);
2860 	else
2861 		trans = btrfs_join_transaction(root);
2862 	if (IS_ERR(trans)) {
2863 		ret = PTR_ERR(trans);
2864 		trans = NULL;
2865 		goto out_unlock;
2866 	}
2867 
2868 	trans->block_rsv = &root->fs_info->delalloc_block_rsv;
2869 
2870 	if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
2871 		compress_type = ordered_extent->compress_type;
2872 	if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
2873 		BUG_ON(compress_type);
2874 		ret = btrfs_mark_extent_written(trans, inode,
2875 						ordered_extent->file_offset,
2876 						ordered_extent->file_offset +
2877 						logical_len);
2878 	} else {
2879 		BUG_ON(root == root->fs_info->tree_root);
2880 		ret = insert_reserved_file_extent(trans, inode,
2881 						ordered_extent->file_offset,
2882 						ordered_extent->start,
2883 						ordered_extent->disk_len,
2884 						logical_len, logical_len,
2885 						compress_type, 0, 0,
2886 						BTRFS_FILE_EXTENT_REG);
2887 		if (!ret)
2888 			btrfs_release_delalloc_bytes(root,
2889 						     ordered_extent->start,
2890 						     ordered_extent->disk_len);
2891 	}
2892 	unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
2893 			   ordered_extent->file_offset, ordered_extent->len,
2894 			   trans->transid);
2895 	if (ret < 0) {
2896 		btrfs_abort_transaction(trans, root, ret);
2897 		goto out_unlock;
2898 	}
2899 
2900 	add_pending_csums(trans, inode, ordered_extent->file_offset,
2901 			  &ordered_extent->list);
2902 
2903 	btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2904 	ret = btrfs_update_inode_fallback(trans, root, inode);
2905 	if (ret) { /* -ENOMEM or corruption */
2906 		btrfs_abort_transaction(trans, root, ret);
2907 		goto out_unlock;
2908 	}
2909 	ret = 0;
2910 out_unlock:
2911 	unlock_extent_cached(io_tree, ordered_extent->file_offset,
2912 			     ordered_extent->file_offset +
2913 			     ordered_extent->len - 1, &cached_state, GFP_NOFS);
2914 out:
2915 	if (root != root->fs_info->tree_root)
2916 		btrfs_delalloc_release_metadata(inode, ordered_extent->len);
2917 	if (trans)
2918 		btrfs_end_transaction(trans, root);
2919 
2920 	if (ret || truncated) {
2921 		u64 start, end;
2922 
2923 		if (truncated)
2924 			start = ordered_extent->file_offset + logical_len;
2925 		else
2926 			start = ordered_extent->file_offset;
2927 		end = ordered_extent->file_offset + ordered_extent->len - 1;
2928 		clear_extent_uptodate(io_tree, start, end, NULL, GFP_NOFS);
2929 
2930 		/* Drop the cache for the part of the extent we didn't write. */
2931 		btrfs_drop_extent_cache(inode, start, end, 0);
2932 
2933 		/*
2934 		 * If the ordered extent had an IOERR or something else went
2935 		 * wrong we need to return the space for this ordered extent
2936 		 * back to the allocator.  We only free the extent in the
2937 		 * truncated case if we didn't write out the extent at all.
2938 		 */
2939 		if ((ret || !logical_len) &&
2940 		    !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
2941 		    !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags))
2942 			btrfs_free_reserved_extent(root, ordered_extent->start,
2943 						   ordered_extent->disk_len, 1);
2944 	}
2945 
2946 
2947 	/*
2948 	 * This needs to be done to make sure anybody waiting knows we are done
2949 	 * updating everything for this ordered extent.
2950 	 */
2951 	btrfs_remove_ordered_extent(inode, ordered_extent);
2952 
2953 	/* for snapshot-aware defrag */
2954 	if (new) {
2955 		if (ret) {
2956 			free_sa_defrag_extent(new);
2957 			atomic_dec(&root->fs_info->defrag_running);
2958 		} else {
2959 			relink_file_extents(new);
2960 		}
2961 	}
2962 
2963 	/* once for us */
2964 	btrfs_put_ordered_extent(ordered_extent);
2965 	/* once for the tree */
2966 	btrfs_put_ordered_extent(ordered_extent);
2967 
2968 	return ret;
2969 }
2970 
2971 static void finish_ordered_fn(struct btrfs_work *work)
2972 {
2973 	struct btrfs_ordered_extent *ordered_extent;
2974 	ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
2975 	btrfs_finish_ordered_io(ordered_extent);
2976 }
2977 
2978 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
2979 				struct extent_state *state, int uptodate)
2980 {
2981 	struct inode *inode = page->mapping->host;
2982 	struct btrfs_root *root = BTRFS_I(inode)->root;
2983 	struct btrfs_ordered_extent *ordered_extent = NULL;
2984 	struct btrfs_workqueue *wq;
2985 	btrfs_work_func_t func;
2986 
2987 	trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
2988 
2989 	ClearPagePrivate2(page);
2990 	if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
2991 					    end - start + 1, uptodate))
2992 		return 0;
2993 
2994 	if (btrfs_is_free_space_inode(inode)) {
2995 		wq = root->fs_info->endio_freespace_worker;
2996 		func = btrfs_freespace_write_helper;
2997 	} else {
2998 		wq = root->fs_info->endio_write_workers;
2999 		func = btrfs_endio_write_helper;
3000 	}
3001 
3002 	btrfs_init_work(&ordered_extent->work, func, finish_ordered_fn, NULL,
3003 			NULL);
3004 	btrfs_queue_work(wq, &ordered_extent->work);
3005 
3006 	return 0;
3007 }
3008 
3009 static int __readpage_endio_check(struct inode *inode,
3010 				  struct btrfs_io_bio *io_bio,
3011 				  int icsum, struct page *page,
3012 				  int pgoff, u64 start, size_t len)
3013 {
3014 	char *kaddr;
3015 	u32 csum_expected;
3016 	u32 csum = ~(u32)0;
3017 	static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
3018 				      DEFAULT_RATELIMIT_BURST);
3019 
3020 	csum_expected = *(((u32 *)io_bio->csum) + icsum);
3021 
3022 	kaddr = kmap_atomic(page);
3023 	csum = btrfs_csum_data(kaddr + pgoff, csum,  len);
3024 	btrfs_csum_final(csum, (char *)&csum);
3025 	if (csum != csum_expected)
3026 		goto zeroit;
3027 
3028 	kunmap_atomic(kaddr);
3029 	return 0;
3030 zeroit:
3031 	if (__ratelimit(&_rs))
3032 		btrfs_warn(BTRFS_I(inode)->root->fs_info,
3033 			   "csum failed ino %llu off %llu csum %u expected csum %u",
3034 			   btrfs_ino(inode), start, csum, csum_expected);
3035 	memset(kaddr + pgoff, 1, len);
3036 	flush_dcache_page(page);
3037 	kunmap_atomic(kaddr);
3038 	if (csum_expected == 0)
3039 		return 0;
3040 	return -EIO;
3041 }
3042 
3043 /*
3044  * when reads are done, we need to check csums to verify the data is correct
3045  * if there's a match, we allow the bio to finish.  If not, the code in
3046  * extent_io.c will try to find good copies for us.
3047  */
3048 static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
3049 				      u64 phy_offset, struct page *page,
3050 				      u64 start, u64 end, int mirror)
3051 {
3052 	size_t offset = start - page_offset(page);
3053 	struct inode *inode = page->mapping->host;
3054 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3055 	struct btrfs_root *root = BTRFS_I(inode)->root;
3056 
3057 	if (PageChecked(page)) {
3058 		ClearPageChecked(page);
3059 		return 0;
3060 	}
3061 
3062 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
3063 		return 0;
3064 
3065 	if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
3066 	    test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
3067 		clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
3068 				  GFP_NOFS);
3069 		return 0;
3070 	}
3071 
3072 	phy_offset >>= inode->i_sb->s_blocksize_bits;
3073 	return __readpage_endio_check(inode, io_bio, phy_offset, page, offset,
3074 				      start, (size_t)(end - start + 1));
3075 }
3076 
3077 struct delayed_iput {
3078 	struct list_head list;
3079 	struct inode *inode;
3080 };
3081 
3082 /* JDM: If this is fs-wide, why can't we add a pointer to
3083  * btrfs_inode instead and avoid the allocation? */
3084 void btrfs_add_delayed_iput(struct inode *inode)
3085 {
3086 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
3087 	struct delayed_iput *delayed;
3088 
3089 	if (atomic_add_unless(&inode->i_count, -1, 1))
3090 		return;
3091 
3092 	delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
3093 	delayed->inode = inode;
3094 
3095 	spin_lock(&fs_info->delayed_iput_lock);
3096 	list_add_tail(&delayed->list, &fs_info->delayed_iputs);
3097 	spin_unlock(&fs_info->delayed_iput_lock);
3098 }
3099 
3100 void btrfs_run_delayed_iputs(struct btrfs_root *root)
3101 {
3102 	LIST_HEAD(list);
3103 	struct btrfs_fs_info *fs_info = root->fs_info;
3104 	struct delayed_iput *delayed;
3105 	int empty;
3106 
3107 	spin_lock(&fs_info->delayed_iput_lock);
3108 	empty = list_empty(&fs_info->delayed_iputs);
3109 	spin_unlock(&fs_info->delayed_iput_lock);
3110 	if (empty)
3111 		return;
3112 
3113 	spin_lock(&fs_info->delayed_iput_lock);
3114 	list_splice_init(&fs_info->delayed_iputs, &list);
3115 	spin_unlock(&fs_info->delayed_iput_lock);
3116 
3117 	while (!list_empty(&list)) {
3118 		delayed = list_entry(list.next, struct delayed_iput, list);
3119 		list_del(&delayed->list);
3120 		iput(delayed->inode);
3121 		kfree(delayed);
3122 	}
3123 }
3124 
3125 /*
3126  * This is called in transaction commit time. If there are no orphan
3127  * files in the subvolume, it removes orphan item and frees block_rsv
3128  * structure.
3129  */
3130 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
3131 			      struct btrfs_root *root)
3132 {
3133 	struct btrfs_block_rsv *block_rsv;
3134 	int ret;
3135 
3136 	if (atomic_read(&root->orphan_inodes) ||
3137 	    root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
3138 		return;
3139 
3140 	spin_lock(&root->orphan_lock);
3141 	if (atomic_read(&root->orphan_inodes)) {
3142 		spin_unlock(&root->orphan_lock);
3143 		return;
3144 	}
3145 
3146 	if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) {
3147 		spin_unlock(&root->orphan_lock);
3148 		return;
3149 	}
3150 
3151 	block_rsv = root->orphan_block_rsv;
3152 	root->orphan_block_rsv = NULL;
3153 	spin_unlock(&root->orphan_lock);
3154 
3155 	if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state) &&
3156 	    btrfs_root_refs(&root->root_item) > 0) {
3157 		ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
3158 					    root->root_key.objectid);
3159 		if (ret)
3160 			btrfs_abort_transaction(trans, root, ret);
3161 		else
3162 			clear_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED,
3163 				  &root->state);
3164 	}
3165 
3166 	if (block_rsv) {
3167 		WARN_ON(block_rsv->size > 0);
3168 		btrfs_free_block_rsv(root, block_rsv);
3169 	}
3170 }
3171 
3172 /*
3173  * This creates an orphan entry for the given inode in case something goes
3174  * wrong in the middle of an unlink/truncate.
3175  *
3176  * NOTE: caller of this function should reserve 5 units of metadata for
3177  *	 this function.
3178  */
3179 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
3180 {
3181 	struct btrfs_root *root = BTRFS_I(inode)->root;
3182 	struct btrfs_block_rsv *block_rsv = NULL;
3183 	int reserve = 0;
3184 	int insert = 0;
3185 	int ret;
3186 
3187 	if (!root->orphan_block_rsv) {
3188 		block_rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
3189 		if (!block_rsv)
3190 			return -ENOMEM;
3191 	}
3192 
3193 	spin_lock(&root->orphan_lock);
3194 	if (!root->orphan_block_rsv) {
3195 		root->orphan_block_rsv = block_rsv;
3196 	} else if (block_rsv) {
3197 		btrfs_free_block_rsv(root, block_rsv);
3198 		block_rsv = NULL;
3199 	}
3200 
3201 	if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3202 			      &BTRFS_I(inode)->runtime_flags)) {
3203 #if 0
3204 		/*
3205 		 * For proper ENOSPC handling, we should do orphan
3206 		 * cleanup when mounting. But this introduces backward
3207 		 * compatibility issue.
3208 		 */
3209 		if (!xchg(&root->orphan_item_inserted, 1))
3210 			insert = 2;
3211 		else
3212 			insert = 1;
3213 #endif
3214 		insert = 1;
3215 		atomic_inc(&root->orphan_inodes);
3216 	}
3217 
3218 	if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3219 			      &BTRFS_I(inode)->runtime_flags))
3220 		reserve = 1;
3221 	spin_unlock(&root->orphan_lock);
3222 
3223 	/* grab metadata reservation from transaction handle */
3224 	if (reserve) {
3225 		ret = btrfs_orphan_reserve_metadata(trans, inode);
3226 		BUG_ON(ret); /* -ENOSPC in reservation; Logic error? JDM */
3227 	}
3228 
3229 	/* insert an orphan item to track this unlinked/truncated file */
3230 	if (insert >= 1) {
3231 		ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
3232 		if (ret) {
3233 			atomic_dec(&root->orphan_inodes);
3234 			if (reserve) {
3235 				clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3236 					  &BTRFS_I(inode)->runtime_flags);
3237 				btrfs_orphan_release_metadata(inode);
3238 			}
3239 			if (ret != -EEXIST) {
3240 				clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3241 					  &BTRFS_I(inode)->runtime_flags);
3242 				btrfs_abort_transaction(trans, root, ret);
3243 				return ret;
3244 			}
3245 		}
3246 		ret = 0;
3247 	}
3248 
3249 	/* insert an orphan item to track subvolume contains orphan files */
3250 	if (insert >= 2) {
3251 		ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
3252 					       root->root_key.objectid);
3253 		if (ret && ret != -EEXIST) {
3254 			btrfs_abort_transaction(trans, root, ret);
3255 			return ret;
3256 		}
3257 	}
3258 	return 0;
3259 }
3260 
3261 /*
3262  * We have done the truncate/delete so we can go ahead and remove the orphan
3263  * item for this particular inode.
3264  */
3265 static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3266 			    struct inode *inode)
3267 {
3268 	struct btrfs_root *root = BTRFS_I(inode)->root;
3269 	int delete_item = 0;
3270 	int release_rsv = 0;
3271 	int ret = 0;
3272 
3273 	spin_lock(&root->orphan_lock);
3274 	if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3275 			       &BTRFS_I(inode)->runtime_flags))
3276 		delete_item = 1;
3277 
3278 	if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3279 			       &BTRFS_I(inode)->runtime_flags))
3280 		release_rsv = 1;
3281 	spin_unlock(&root->orphan_lock);
3282 
3283 	if (delete_item) {
3284 		atomic_dec(&root->orphan_inodes);
3285 		if (trans)
3286 			ret = btrfs_del_orphan_item(trans, root,
3287 						    btrfs_ino(inode));
3288 	}
3289 
3290 	if (release_rsv)
3291 		btrfs_orphan_release_metadata(inode);
3292 
3293 	return ret;
3294 }
3295 
3296 /*
3297  * this cleans up any orphans that may be left on the list from the last use
3298  * of this root.
3299  */
3300 int btrfs_orphan_cleanup(struct btrfs_root *root)
3301 {
3302 	struct btrfs_path *path;
3303 	struct extent_buffer *leaf;
3304 	struct btrfs_key key, found_key;
3305 	struct btrfs_trans_handle *trans;
3306 	struct inode *inode;
3307 	u64 last_objectid = 0;
3308 	int ret = 0, nr_unlink = 0, nr_truncate = 0;
3309 
3310 	if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
3311 		return 0;
3312 
3313 	path = btrfs_alloc_path();
3314 	if (!path) {
3315 		ret = -ENOMEM;
3316 		goto out;
3317 	}
3318 	path->reada = -1;
3319 
3320 	key.objectid = BTRFS_ORPHAN_OBJECTID;
3321 	key.type = BTRFS_ORPHAN_ITEM_KEY;
3322 	key.offset = (u64)-1;
3323 
3324 	while (1) {
3325 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3326 		if (ret < 0)
3327 			goto out;
3328 
3329 		/*
3330 		 * if ret == 0 means we found what we were searching for, which
3331 		 * is weird, but possible, so only screw with path if we didn't
3332 		 * find the key and see if we have stuff that matches
3333 		 */
3334 		if (ret > 0) {
3335 			ret = 0;
3336 			if (path->slots[0] == 0)
3337 				break;
3338 			path->slots[0]--;
3339 		}
3340 
3341 		/* pull out the item */
3342 		leaf = path->nodes[0];
3343 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3344 
3345 		/* make sure the item matches what we want */
3346 		if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3347 			break;
3348 		if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
3349 			break;
3350 
3351 		/* release the path since we're done with it */
3352 		btrfs_release_path(path);
3353 
3354 		/*
3355 		 * this is where we are basically btrfs_lookup, without the
3356 		 * crossing root thing.  we store the inode number in the
3357 		 * offset of the orphan item.
3358 		 */
3359 
3360 		if (found_key.offset == last_objectid) {
3361 			btrfs_err(root->fs_info,
3362 				"Error removing orphan entry, stopping orphan cleanup");
3363 			ret = -EINVAL;
3364 			goto out;
3365 		}
3366 
3367 		last_objectid = found_key.offset;
3368 
3369 		found_key.objectid = found_key.offset;
3370 		found_key.type = BTRFS_INODE_ITEM_KEY;
3371 		found_key.offset = 0;
3372 		inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
3373 		ret = PTR_ERR_OR_ZERO(inode);
3374 		if (ret && ret != -ESTALE)
3375 			goto out;
3376 
3377 		if (ret == -ESTALE && root == root->fs_info->tree_root) {
3378 			struct btrfs_root *dead_root;
3379 			struct btrfs_fs_info *fs_info = root->fs_info;
3380 			int is_dead_root = 0;
3381 
3382 			/*
3383 			 * this is an orphan in the tree root. Currently these
3384 			 * could come from 2 sources:
3385 			 *  a) a snapshot deletion in progress
3386 			 *  b) a free space cache inode
3387 			 * We need to distinguish those two, as the snapshot
3388 			 * orphan must not get deleted.
3389 			 * find_dead_roots already ran before us, so if this
3390 			 * is a snapshot deletion, we should find the root
3391 			 * in the dead_roots list
3392 			 */
3393 			spin_lock(&fs_info->trans_lock);
3394 			list_for_each_entry(dead_root, &fs_info->dead_roots,
3395 					    root_list) {
3396 				if (dead_root->root_key.objectid ==
3397 				    found_key.objectid) {
3398 					is_dead_root = 1;
3399 					break;
3400 				}
3401 			}
3402 			spin_unlock(&fs_info->trans_lock);
3403 			if (is_dead_root) {
3404 				/* prevent this orphan from being found again */
3405 				key.offset = found_key.objectid - 1;
3406 				continue;
3407 			}
3408 		}
3409 		/*
3410 		 * Inode is already gone but the orphan item is still there,
3411 		 * kill the orphan item.
3412 		 */
3413 		if (ret == -ESTALE) {
3414 			trans = btrfs_start_transaction(root, 1);
3415 			if (IS_ERR(trans)) {
3416 				ret = PTR_ERR(trans);
3417 				goto out;
3418 			}
3419 			btrfs_debug(root->fs_info, "auto deleting %Lu",
3420 				found_key.objectid);
3421 			ret = btrfs_del_orphan_item(trans, root,
3422 						    found_key.objectid);
3423 			btrfs_end_transaction(trans, root);
3424 			if (ret)
3425 				goto out;
3426 			continue;
3427 		}
3428 
3429 		/*
3430 		 * add this inode to the orphan list so btrfs_orphan_del does
3431 		 * the proper thing when we hit it
3432 		 */
3433 		set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3434 			&BTRFS_I(inode)->runtime_flags);
3435 		atomic_inc(&root->orphan_inodes);
3436 
3437 		/* if we have links, this was a truncate, lets do that */
3438 		if (inode->i_nlink) {
3439 			if (WARN_ON(!S_ISREG(inode->i_mode))) {
3440 				iput(inode);
3441 				continue;
3442 			}
3443 			nr_truncate++;
3444 
3445 			/* 1 for the orphan item deletion. */
3446 			trans = btrfs_start_transaction(root, 1);
3447 			if (IS_ERR(trans)) {
3448 				iput(inode);
3449 				ret = PTR_ERR(trans);
3450 				goto out;
3451 			}
3452 			ret = btrfs_orphan_add(trans, inode);
3453 			btrfs_end_transaction(trans, root);
3454 			if (ret) {
3455 				iput(inode);
3456 				goto out;
3457 			}
3458 
3459 			ret = btrfs_truncate(inode);
3460 			if (ret)
3461 				btrfs_orphan_del(NULL, inode);
3462 		} else {
3463 			nr_unlink++;
3464 		}
3465 
3466 		/* this will do delete_inode and everything for us */
3467 		iput(inode);
3468 		if (ret)
3469 			goto out;
3470 	}
3471 	/* release the path since we're done with it */
3472 	btrfs_release_path(path);
3473 
3474 	root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3475 
3476 	if (root->orphan_block_rsv)
3477 		btrfs_block_rsv_release(root, root->orphan_block_rsv,
3478 					(u64)-1);
3479 
3480 	if (root->orphan_block_rsv ||
3481 	    test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
3482 		trans = btrfs_join_transaction(root);
3483 		if (!IS_ERR(trans))
3484 			btrfs_end_transaction(trans, root);
3485 	}
3486 
3487 	if (nr_unlink)
3488 		btrfs_debug(root->fs_info, "unlinked %d orphans", nr_unlink);
3489 	if (nr_truncate)
3490 		btrfs_debug(root->fs_info, "truncated %d orphans", nr_truncate);
3491 
3492 out:
3493 	if (ret)
3494 		btrfs_err(root->fs_info,
3495 			"could not do orphan cleanup %d", ret);
3496 	btrfs_free_path(path);
3497 	return ret;
3498 }
3499 
3500 /*
3501  * very simple check to peek ahead in the leaf looking for xattrs.  If we
3502  * don't find any xattrs, we know there can't be any acls.
3503  *
3504  * slot is the slot the inode is in, objectid is the objectid of the inode
3505  */
3506 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
3507 					  int slot, u64 objectid,
3508 					  int *first_xattr_slot)
3509 {
3510 	u32 nritems = btrfs_header_nritems(leaf);
3511 	struct btrfs_key found_key;
3512 	static u64 xattr_access = 0;
3513 	static u64 xattr_default = 0;
3514 	int scanned = 0;
3515 
3516 	if (!xattr_access) {
3517 		xattr_access = btrfs_name_hash(POSIX_ACL_XATTR_ACCESS,
3518 					strlen(POSIX_ACL_XATTR_ACCESS));
3519 		xattr_default = btrfs_name_hash(POSIX_ACL_XATTR_DEFAULT,
3520 					strlen(POSIX_ACL_XATTR_DEFAULT));
3521 	}
3522 
3523 	slot++;
3524 	*first_xattr_slot = -1;
3525 	while (slot < nritems) {
3526 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3527 
3528 		/* we found a different objectid, there must not be acls */
3529 		if (found_key.objectid != objectid)
3530 			return 0;
3531 
3532 		/* we found an xattr, assume we've got an acl */
3533 		if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
3534 			if (*first_xattr_slot == -1)
3535 				*first_xattr_slot = slot;
3536 			if (found_key.offset == xattr_access ||
3537 			    found_key.offset == xattr_default)
3538 				return 1;
3539 		}
3540 
3541 		/*
3542 		 * we found a key greater than an xattr key, there can't
3543 		 * be any acls later on
3544 		 */
3545 		if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3546 			return 0;
3547 
3548 		slot++;
3549 		scanned++;
3550 
3551 		/*
3552 		 * it goes inode, inode backrefs, xattrs, extents,
3553 		 * so if there are a ton of hard links to an inode there can
3554 		 * be a lot of backrefs.  Don't waste time searching too hard,
3555 		 * this is just an optimization
3556 		 */
3557 		if (scanned >= 8)
3558 			break;
3559 	}
3560 	/* we hit the end of the leaf before we found an xattr or
3561 	 * something larger than an xattr.  We have to assume the inode
3562 	 * has acls
3563 	 */
3564 	if (*first_xattr_slot == -1)
3565 		*first_xattr_slot = slot;
3566 	return 1;
3567 }
3568 
3569 /*
3570  * read an inode from the btree into the in-memory inode
3571  */
3572 static void btrfs_read_locked_inode(struct inode *inode)
3573 {
3574 	struct btrfs_path *path;
3575 	struct extent_buffer *leaf;
3576 	struct btrfs_inode_item *inode_item;
3577 	struct btrfs_root *root = BTRFS_I(inode)->root;
3578 	struct btrfs_key location;
3579 	unsigned long ptr;
3580 	int maybe_acls;
3581 	u32 rdev;
3582 	int ret;
3583 	bool filled = false;
3584 	int first_xattr_slot;
3585 
3586 	ret = btrfs_fill_inode(inode, &rdev);
3587 	if (!ret)
3588 		filled = true;
3589 
3590 	path = btrfs_alloc_path();
3591 	if (!path)
3592 		goto make_bad;
3593 
3594 	memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
3595 
3596 	ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
3597 	if (ret)
3598 		goto make_bad;
3599 
3600 	leaf = path->nodes[0];
3601 
3602 	if (filled)
3603 		goto cache_index;
3604 
3605 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
3606 				    struct btrfs_inode_item);
3607 	inode->i_mode = btrfs_inode_mode(leaf, inode_item);
3608 	set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
3609 	i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3610 	i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
3611 	btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
3612 
3613 	inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime);
3614 	inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime);
3615 
3616 	inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime);
3617 	inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime);
3618 
3619 	inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime);
3620 	inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime);
3621 
3622 	BTRFS_I(inode)->i_otime.tv_sec =
3623 		btrfs_timespec_sec(leaf, &inode_item->otime);
3624 	BTRFS_I(inode)->i_otime.tv_nsec =
3625 		btrfs_timespec_nsec(leaf, &inode_item->otime);
3626 
3627 	inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
3628 	BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
3629 	BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3630 
3631 	/*
3632 	 * If we were modified in the current generation and evicted from memory
3633 	 * and then re-read we need to do a full sync since we don't have any
3634 	 * idea about which extents were modified before we were evicted from
3635 	 * cache.
3636 	 */
3637 	if (BTRFS_I(inode)->last_trans == root->fs_info->generation)
3638 		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3639 			&BTRFS_I(inode)->runtime_flags);
3640 
3641 	inode->i_version = btrfs_inode_sequence(leaf, inode_item);
3642 	inode->i_generation = BTRFS_I(inode)->generation;
3643 	inode->i_rdev = 0;
3644 	rdev = btrfs_inode_rdev(leaf, inode_item);
3645 
3646 	BTRFS_I(inode)->index_cnt = (u64)-1;
3647 	BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
3648 
3649 cache_index:
3650 	path->slots[0]++;
3651 	if (inode->i_nlink != 1 ||
3652 	    path->slots[0] >= btrfs_header_nritems(leaf))
3653 		goto cache_acl;
3654 
3655 	btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
3656 	if (location.objectid != btrfs_ino(inode))
3657 		goto cache_acl;
3658 
3659 	ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3660 	if (location.type == BTRFS_INODE_REF_KEY) {
3661 		struct btrfs_inode_ref *ref;
3662 
3663 		ref = (struct btrfs_inode_ref *)ptr;
3664 		BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3665 	} else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3666 		struct btrfs_inode_extref *extref;
3667 
3668 		extref = (struct btrfs_inode_extref *)ptr;
3669 		BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3670 								     extref);
3671 	}
3672 cache_acl:
3673 	/*
3674 	 * try to precache a NULL acl entry for files that don't have
3675 	 * any xattrs or acls
3676 	 */
3677 	maybe_acls = acls_after_inode_item(leaf, path->slots[0],
3678 					   btrfs_ino(inode), &first_xattr_slot);
3679 	if (first_xattr_slot != -1) {
3680 		path->slots[0] = first_xattr_slot;
3681 		ret = btrfs_load_inode_props(inode, path);
3682 		if (ret)
3683 			btrfs_err(root->fs_info,
3684 				  "error loading props for ino %llu (root %llu): %d",
3685 				  btrfs_ino(inode),
3686 				  root->root_key.objectid, ret);
3687 	}
3688 	btrfs_free_path(path);
3689 
3690 	if (!maybe_acls)
3691 		cache_no_acl(inode);
3692 
3693 	switch (inode->i_mode & S_IFMT) {
3694 	case S_IFREG:
3695 		inode->i_mapping->a_ops = &btrfs_aops;
3696 		BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
3697 		inode->i_fop = &btrfs_file_operations;
3698 		inode->i_op = &btrfs_file_inode_operations;
3699 		break;
3700 	case S_IFDIR:
3701 		inode->i_fop = &btrfs_dir_file_operations;
3702 		if (root == root->fs_info->tree_root)
3703 			inode->i_op = &btrfs_dir_ro_inode_operations;
3704 		else
3705 			inode->i_op = &btrfs_dir_inode_operations;
3706 		break;
3707 	case S_IFLNK:
3708 		inode->i_op = &btrfs_symlink_inode_operations;
3709 		inode->i_mapping->a_ops = &btrfs_symlink_aops;
3710 		break;
3711 	default:
3712 		inode->i_op = &btrfs_special_inode_operations;
3713 		init_special_inode(inode, inode->i_mode, rdev);
3714 		break;
3715 	}
3716 
3717 	btrfs_update_iflags(inode);
3718 	return;
3719 
3720 make_bad:
3721 	btrfs_free_path(path);
3722 	make_bad_inode(inode);
3723 }
3724 
3725 /*
3726  * given a leaf and an inode, copy the inode fields into the leaf
3727  */
3728 static void fill_inode_item(struct btrfs_trans_handle *trans,
3729 			    struct extent_buffer *leaf,
3730 			    struct btrfs_inode_item *item,
3731 			    struct inode *inode)
3732 {
3733 	struct btrfs_map_token token;
3734 
3735 	btrfs_init_map_token(&token);
3736 
3737 	btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3738 	btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3739 	btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size,
3740 				   &token);
3741 	btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3742 	btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3743 
3744 	btrfs_set_token_timespec_sec(leaf, &item->atime,
3745 				     inode->i_atime.tv_sec, &token);
3746 	btrfs_set_token_timespec_nsec(leaf, &item->atime,
3747 				      inode->i_atime.tv_nsec, &token);
3748 
3749 	btrfs_set_token_timespec_sec(leaf, &item->mtime,
3750 				     inode->i_mtime.tv_sec, &token);
3751 	btrfs_set_token_timespec_nsec(leaf, &item->mtime,
3752 				      inode->i_mtime.tv_nsec, &token);
3753 
3754 	btrfs_set_token_timespec_sec(leaf, &item->ctime,
3755 				     inode->i_ctime.tv_sec, &token);
3756 	btrfs_set_token_timespec_nsec(leaf, &item->ctime,
3757 				      inode->i_ctime.tv_nsec, &token);
3758 
3759 	btrfs_set_token_timespec_sec(leaf, &item->otime,
3760 				     BTRFS_I(inode)->i_otime.tv_sec, &token);
3761 	btrfs_set_token_timespec_nsec(leaf, &item->otime,
3762 				      BTRFS_I(inode)->i_otime.tv_nsec, &token);
3763 
3764 	btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3765 				     &token);
3766 	btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation,
3767 					 &token);
3768 	btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
3769 	btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3770 	btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3771 	btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3772 	btrfs_set_token_inode_block_group(leaf, item, 0, &token);
3773 }
3774 
3775 /*
3776  * copy everything in the in-memory inode into the btree.
3777  */
3778 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
3779 				struct btrfs_root *root, struct inode *inode)
3780 {
3781 	struct btrfs_inode_item *inode_item;
3782 	struct btrfs_path *path;
3783 	struct extent_buffer *leaf;
3784 	int ret;
3785 
3786 	path = btrfs_alloc_path();
3787 	if (!path)
3788 		return -ENOMEM;
3789 
3790 	path->leave_spinning = 1;
3791 	ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
3792 				 1);
3793 	if (ret) {
3794 		if (ret > 0)
3795 			ret = -ENOENT;
3796 		goto failed;
3797 	}
3798 
3799 	leaf = path->nodes[0];
3800 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
3801 				    struct btrfs_inode_item);
3802 
3803 	fill_inode_item(trans, leaf, inode_item, inode);
3804 	btrfs_mark_buffer_dirty(leaf);
3805 	btrfs_set_inode_last_trans(trans, inode);
3806 	ret = 0;
3807 failed:
3808 	btrfs_free_path(path);
3809 	return ret;
3810 }
3811 
3812 /*
3813  * copy everything in the in-memory inode into the btree.
3814  */
3815 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
3816 				struct btrfs_root *root, struct inode *inode)
3817 {
3818 	int ret;
3819 
3820 	/*
3821 	 * If the inode is a free space inode, we can deadlock during commit
3822 	 * if we put it into the delayed code.
3823 	 *
3824 	 * The data relocation inode should also be directly updated
3825 	 * without delay
3826 	 */
3827 	if (!btrfs_is_free_space_inode(inode)
3828 	    && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
3829 	    && !root->fs_info->log_root_recovering) {
3830 		btrfs_update_root_times(trans, root);
3831 
3832 		ret = btrfs_delayed_update_inode(trans, root, inode);
3833 		if (!ret)
3834 			btrfs_set_inode_last_trans(trans, inode);
3835 		return ret;
3836 	}
3837 
3838 	return btrfs_update_inode_item(trans, root, inode);
3839 }
3840 
3841 noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3842 					 struct btrfs_root *root,
3843 					 struct inode *inode)
3844 {
3845 	int ret;
3846 
3847 	ret = btrfs_update_inode(trans, root, inode);
3848 	if (ret == -ENOSPC)
3849 		return btrfs_update_inode_item(trans, root, inode);
3850 	return ret;
3851 }
3852 
3853 /*
3854  * unlink helper that gets used here in inode.c and in the tree logging
3855  * recovery code.  It remove a link in a directory with a given name, and
3856  * also drops the back refs in the inode to the directory
3857  */
3858 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3859 				struct btrfs_root *root,
3860 				struct inode *dir, struct inode *inode,
3861 				const char *name, int name_len)
3862 {
3863 	struct btrfs_path *path;
3864 	int ret = 0;
3865 	struct extent_buffer *leaf;
3866 	struct btrfs_dir_item *di;
3867 	struct btrfs_key key;
3868 	u64 index;
3869 	u64 ino = btrfs_ino(inode);
3870 	u64 dir_ino = btrfs_ino(dir);
3871 
3872 	path = btrfs_alloc_path();
3873 	if (!path) {
3874 		ret = -ENOMEM;
3875 		goto out;
3876 	}
3877 
3878 	path->leave_spinning = 1;
3879 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
3880 				    name, name_len, -1);
3881 	if (IS_ERR(di)) {
3882 		ret = PTR_ERR(di);
3883 		goto err;
3884 	}
3885 	if (!di) {
3886 		ret = -ENOENT;
3887 		goto err;
3888 	}
3889 	leaf = path->nodes[0];
3890 	btrfs_dir_item_key_to_cpu(leaf, di, &key);
3891 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
3892 	if (ret)
3893 		goto err;
3894 	btrfs_release_path(path);
3895 
3896 	/*
3897 	 * If we don't have dir index, we have to get it by looking up
3898 	 * the inode ref, since we get the inode ref, remove it directly,
3899 	 * it is unnecessary to do delayed deletion.
3900 	 *
3901 	 * But if we have dir index, needn't search inode ref to get it.
3902 	 * Since the inode ref is close to the inode item, it is better
3903 	 * that we delay to delete it, and just do this deletion when
3904 	 * we update the inode item.
3905 	 */
3906 	if (BTRFS_I(inode)->dir_index) {
3907 		ret = btrfs_delayed_delete_inode_ref(inode);
3908 		if (!ret) {
3909 			index = BTRFS_I(inode)->dir_index;
3910 			goto skip_backref;
3911 		}
3912 	}
3913 
3914 	ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
3915 				  dir_ino, &index);
3916 	if (ret) {
3917 		btrfs_info(root->fs_info,
3918 			"failed to delete reference to %.*s, inode %llu parent %llu",
3919 			name_len, name, ino, dir_ino);
3920 		btrfs_abort_transaction(trans, root, ret);
3921 		goto err;
3922 	}
3923 skip_backref:
3924 	ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
3925 	if (ret) {
3926 		btrfs_abort_transaction(trans, root, ret);
3927 		goto err;
3928 	}
3929 
3930 	ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
3931 					 inode, dir_ino);
3932 	if (ret != 0 && ret != -ENOENT) {
3933 		btrfs_abort_transaction(trans, root, ret);
3934 		goto err;
3935 	}
3936 
3937 	ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
3938 					   dir, index);
3939 	if (ret == -ENOENT)
3940 		ret = 0;
3941 	else if (ret)
3942 		btrfs_abort_transaction(trans, root, ret);
3943 err:
3944 	btrfs_free_path(path);
3945 	if (ret)
3946 		goto out;
3947 
3948 	btrfs_i_size_write(dir, dir->i_size - name_len * 2);
3949 	inode_inc_iversion(inode);
3950 	inode_inc_iversion(dir);
3951 	inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
3952 	ret = btrfs_update_inode(trans, root, dir);
3953 out:
3954 	return ret;
3955 }
3956 
3957 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3958 		       struct btrfs_root *root,
3959 		       struct inode *dir, struct inode *inode,
3960 		       const char *name, int name_len)
3961 {
3962 	int ret;
3963 	ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
3964 	if (!ret) {
3965 		drop_nlink(inode);
3966 		ret = btrfs_update_inode(trans, root, inode);
3967 	}
3968 	return ret;
3969 }
3970 
3971 /*
3972  * helper to start transaction for unlink and rmdir.
3973  *
3974  * unlink and rmdir are special in btrfs, they do not always free space, so
3975  * if we cannot make our reservations the normal way try and see if there is
3976  * plenty of slack room in the global reserve to migrate, otherwise we cannot
3977  * allow the unlink to occur.
3978  */
3979 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
3980 {
3981 	struct btrfs_trans_handle *trans;
3982 	struct btrfs_root *root = BTRFS_I(dir)->root;
3983 	int ret;
3984 
3985 	/*
3986 	 * 1 for the possible orphan item
3987 	 * 1 for the dir item
3988 	 * 1 for the dir index
3989 	 * 1 for the inode ref
3990 	 * 1 for the inode
3991 	 */
3992 	trans = btrfs_start_transaction(root, 5);
3993 	if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
3994 		return trans;
3995 
3996 	if (PTR_ERR(trans) == -ENOSPC) {
3997 		u64 num_bytes = btrfs_calc_trans_metadata_size(root, 5);
3998 
3999 		trans = btrfs_start_transaction(root, 0);
4000 		if (IS_ERR(trans))
4001 			return trans;
4002 		ret = btrfs_cond_migrate_bytes(root->fs_info,
4003 					       &root->fs_info->trans_block_rsv,
4004 					       num_bytes, 5);
4005 		if (ret) {
4006 			btrfs_end_transaction(trans, root);
4007 			return ERR_PTR(ret);
4008 		}
4009 		trans->block_rsv = &root->fs_info->trans_block_rsv;
4010 		trans->bytes_reserved = num_bytes;
4011 	}
4012 	return trans;
4013 }
4014 
4015 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4016 {
4017 	struct btrfs_root *root = BTRFS_I(dir)->root;
4018 	struct btrfs_trans_handle *trans;
4019 	struct inode *inode = dentry->d_inode;
4020 	int ret;
4021 
4022 	trans = __unlink_start_trans(dir);
4023 	if (IS_ERR(trans))
4024 		return PTR_ERR(trans);
4025 
4026 	btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
4027 
4028 	ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
4029 				 dentry->d_name.name, dentry->d_name.len);
4030 	if (ret)
4031 		goto out;
4032 
4033 	if (inode->i_nlink == 0) {
4034 		ret = btrfs_orphan_add(trans, inode);
4035 		if (ret)
4036 			goto out;
4037 	}
4038 
4039 out:
4040 	btrfs_end_transaction(trans, root);
4041 	btrfs_btree_balance_dirty(root);
4042 	return ret;
4043 }
4044 
4045 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
4046 			struct btrfs_root *root,
4047 			struct inode *dir, u64 objectid,
4048 			const char *name, int name_len)
4049 {
4050 	struct btrfs_path *path;
4051 	struct extent_buffer *leaf;
4052 	struct btrfs_dir_item *di;
4053 	struct btrfs_key key;
4054 	u64 index;
4055 	int ret;
4056 	u64 dir_ino = btrfs_ino(dir);
4057 
4058 	path = btrfs_alloc_path();
4059 	if (!path)
4060 		return -ENOMEM;
4061 
4062 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4063 				   name, name_len, -1);
4064 	if (IS_ERR_OR_NULL(di)) {
4065 		if (!di)
4066 			ret = -ENOENT;
4067 		else
4068 			ret = PTR_ERR(di);
4069 		goto out;
4070 	}
4071 
4072 	leaf = path->nodes[0];
4073 	btrfs_dir_item_key_to_cpu(leaf, di, &key);
4074 	WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4075 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
4076 	if (ret) {
4077 		btrfs_abort_transaction(trans, root, ret);
4078 		goto out;
4079 	}
4080 	btrfs_release_path(path);
4081 
4082 	ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
4083 				 objectid, root->root_key.objectid,
4084 				 dir_ino, &index, name, name_len);
4085 	if (ret < 0) {
4086 		if (ret != -ENOENT) {
4087 			btrfs_abort_transaction(trans, root, ret);
4088 			goto out;
4089 		}
4090 		di = btrfs_search_dir_index_item(root, path, dir_ino,
4091 						 name, name_len);
4092 		if (IS_ERR_OR_NULL(di)) {
4093 			if (!di)
4094 				ret = -ENOENT;
4095 			else
4096 				ret = PTR_ERR(di);
4097 			btrfs_abort_transaction(trans, root, ret);
4098 			goto out;
4099 		}
4100 
4101 		leaf = path->nodes[0];
4102 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4103 		btrfs_release_path(path);
4104 		index = key.offset;
4105 	}
4106 	btrfs_release_path(path);
4107 
4108 	ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
4109 	if (ret) {
4110 		btrfs_abort_transaction(trans, root, ret);
4111 		goto out;
4112 	}
4113 
4114 	btrfs_i_size_write(dir, dir->i_size - name_len * 2);
4115 	inode_inc_iversion(dir);
4116 	dir->i_mtime = dir->i_ctime = CURRENT_TIME;
4117 	ret = btrfs_update_inode_fallback(trans, root, dir);
4118 	if (ret)
4119 		btrfs_abort_transaction(trans, root, ret);
4120 out:
4121 	btrfs_free_path(path);
4122 	return ret;
4123 }
4124 
4125 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4126 {
4127 	struct inode *inode = dentry->d_inode;
4128 	int err = 0;
4129 	struct btrfs_root *root = BTRFS_I(dir)->root;
4130 	struct btrfs_trans_handle *trans;
4131 
4132 	if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
4133 		return -ENOTEMPTY;
4134 	if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID)
4135 		return -EPERM;
4136 
4137 	trans = __unlink_start_trans(dir);
4138 	if (IS_ERR(trans))
4139 		return PTR_ERR(trans);
4140 
4141 	if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4142 		err = btrfs_unlink_subvol(trans, root, dir,
4143 					  BTRFS_I(inode)->location.objectid,
4144 					  dentry->d_name.name,
4145 					  dentry->d_name.len);
4146 		goto out;
4147 	}
4148 
4149 	err = btrfs_orphan_add(trans, inode);
4150 	if (err)
4151 		goto out;
4152 
4153 	/* now the directory is empty */
4154 	err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
4155 				 dentry->d_name.name, dentry->d_name.len);
4156 	if (!err)
4157 		btrfs_i_size_write(inode, 0);
4158 out:
4159 	btrfs_end_transaction(trans, root);
4160 	btrfs_btree_balance_dirty(root);
4161 
4162 	return err;
4163 }
4164 
4165 /*
4166  * this can truncate away extent items, csum items and directory items.
4167  * It starts at a high offset and removes keys until it can't find
4168  * any higher than new_size
4169  *
4170  * csum items that cross the new i_size are truncated to the new size
4171  * as well.
4172  *
4173  * min_type is the minimum key type to truncate down to.  If set to 0, this
4174  * will kill all the items on this inode, including the INODE_ITEM_KEY.
4175  */
4176 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
4177 			       struct btrfs_root *root,
4178 			       struct inode *inode,
4179 			       u64 new_size, u32 min_type)
4180 {
4181 	struct btrfs_path *path;
4182 	struct extent_buffer *leaf;
4183 	struct btrfs_file_extent_item *fi;
4184 	struct btrfs_key key;
4185 	struct btrfs_key found_key;
4186 	u64 extent_start = 0;
4187 	u64 extent_num_bytes = 0;
4188 	u64 extent_offset = 0;
4189 	u64 item_end = 0;
4190 	u64 last_size = (u64)-1;
4191 	u32 found_type = (u8)-1;
4192 	int found_extent;
4193 	int del_item;
4194 	int pending_del_nr = 0;
4195 	int pending_del_slot = 0;
4196 	int extent_type = -1;
4197 	int ret;
4198 	int err = 0;
4199 	u64 ino = btrfs_ino(inode);
4200 
4201 	BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
4202 
4203 	path = btrfs_alloc_path();
4204 	if (!path)
4205 		return -ENOMEM;
4206 	path->reada = -1;
4207 
4208 	/*
4209 	 * We want to drop from the next block forward in case this new size is
4210 	 * not block aligned since we will be keeping the last block of the
4211 	 * extent just the way it is.
4212 	 */
4213 	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4214 	    root == root->fs_info->tree_root)
4215 		btrfs_drop_extent_cache(inode, ALIGN(new_size,
4216 					root->sectorsize), (u64)-1, 0);
4217 
4218 	/*
4219 	 * This function is also used to drop the items in the log tree before
4220 	 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
4221 	 * it is used to drop the loged items. So we shouldn't kill the delayed
4222 	 * items.
4223 	 */
4224 	if (min_type == 0 && root == BTRFS_I(inode)->root)
4225 		btrfs_kill_delayed_inode_items(inode);
4226 
4227 	key.objectid = ino;
4228 	key.offset = (u64)-1;
4229 	key.type = (u8)-1;
4230 
4231 search_again:
4232 	path->leave_spinning = 1;
4233 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
4234 	if (ret < 0) {
4235 		err = ret;
4236 		goto out;
4237 	}
4238 
4239 	if (ret > 0) {
4240 		/* there are no items in the tree for us to truncate, we're
4241 		 * done
4242 		 */
4243 		if (path->slots[0] == 0)
4244 			goto out;
4245 		path->slots[0]--;
4246 	}
4247 
4248 	while (1) {
4249 		fi = NULL;
4250 		leaf = path->nodes[0];
4251 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4252 		found_type = found_key.type;
4253 
4254 		if (found_key.objectid != ino)
4255 			break;
4256 
4257 		if (found_type < min_type)
4258 			break;
4259 
4260 		item_end = found_key.offset;
4261 		if (found_type == BTRFS_EXTENT_DATA_KEY) {
4262 			fi = btrfs_item_ptr(leaf, path->slots[0],
4263 					    struct btrfs_file_extent_item);
4264 			extent_type = btrfs_file_extent_type(leaf, fi);
4265 			if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4266 				item_end +=
4267 				    btrfs_file_extent_num_bytes(leaf, fi);
4268 			} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4269 				item_end += btrfs_file_extent_inline_len(leaf,
4270 							 path->slots[0], fi);
4271 			}
4272 			item_end--;
4273 		}
4274 		if (found_type > min_type) {
4275 			del_item = 1;
4276 		} else {
4277 			if (item_end < new_size)
4278 				break;
4279 			if (found_key.offset >= new_size)
4280 				del_item = 1;
4281 			else
4282 				del_item = 0;
4283 		}
4284 		found_extent = 0;
4285 		/* FIXME, shrink the extent if the ref count is only 1 */
4286 		if (found_type != BTRFS_EXTENT_DATA_KEY)
4287 			goto delete;
4288 
4289 		if (del_item)
4290 			last_size = found_key.offset;
4291 		else
4292 			last_size = new_size;
4293 
4294 		if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4295 			u64 num_dec;
4296 			extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
4297 			if (!del_item) {
4298 				u64 orig_num_bytes =
4299 					btrfs_file_extent_num_bytes(leaf, fi);
4300 				extent_num_bytes = ALIGN(new_size -
4301 						found_key.offset,
4302 						root->sectorsize);
4303 				btrfs_set_file_extent_num_bytes(leaf, fi,
4304 							 extent_num_bytes);
4305 				num_dec = (orig_num_bytes -
4306 					   extent_num_bytes);
4307 				if (test_bit(BTRFS_ROOT_REF_COWS,
4308 					     &root->state) &&
4309 				    extent_start != 0)
4310 					inode_sub_bytes(inode, num_dec);
4311 				btrfs_mark_buffer_dirty(leaf);
4312 			} else {
4313 				extent_num_bytes =
4314 					btrfs_file_extent_disk_num_bytes(leaf,
4315 									 fi);
4316 				extent_offset = found_key.offset -
4317 					btrfs_file_extent_offset(leaf, fi);
4318 
4319 				/* FIXME blocksize != 4096 */
4320 				num_dec = btrfs_file_extent_num_bytes(leaf, fi);
4321 				if (extent_start != 0) {
4322 					found_extent = 1;
4323 					if (test_bit(BTRFS_ROOT_REF_COWS,
4324 						     &root->state))
4325 						inode_sub_bytes(inode, num_dec);
4326 				}
4327 			}
4328 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4329 			/*
4330 			 * we can't truncate inline items that have had
4331 			 * special encodings
4332 			 */
4333 			if (!del_item &&
4334 			    btrfs_file_extent_compression(leaf, fi) == 0 &&
4335 			    btrfs_file_extent_encryption(leaf, fi) == 0 &&
4336 			    btrfs_file_extent_other_encoding(leaf, fi) == 0) {
4337 				u32 size = new_size - found_key.offset;
4338 
4339 				if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4340 					inode_sub_bytes(inode, item_end + 1 -
4341 							new_size);
4342 
4343 				/*
4344 				 * update the ram bytes to properly reflect
4345 				 * the new size of our item
4346 				 */
4347 				btrfs_set_file_extent_ram_bytes(leaf, fi, size);
4348 				size =
4349 				    btrfs_file_extent_calc_inline_size(size);
4350 				btrfs_truncate_item(root, path, size, 1);
4351 			} else if (test_bit(BTRFS_ROOT_REF_COWS,
4352 					    &root->state)) {
4353 				inode_sub_bytes(inode, item_end + 1 -
4354 						found_key.offset);
4355 			}
4356 		}
4357 delete:
4358 		if (del_item) {
4359 			if (!pending_del_nr) {
4360 				/* no pending yet, add ourselves */
4361 				pending_del_slot = path->slots[0];
4362 				pending_del_nr = 1;
4363 			} else if (pending_del_nr &&
4364 				   path->slots[0] + 1 == pending_del_slot) {
4365 				/* hop on the pending chunk */
4366 				pending_del_nr++;
4367 				pending_del_slot = path->slots[0];
4368 			} else {
4369 				BUG();
4370 			}
4371 		} else {
4372 			break;
4373 		}
4374 		if (found_extent &&
4375 		    (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4376 		     root == root->fs_info->tree_root)) {
4377 			btrfs_set_path_blocking(path);
4378 			ret = btrfs_free_extent(trans, root, extent_start,
4379 						extent_num_bytes, 0,
4380 						btrfs_header_owner(leaf),
4381 						ino, extent_offset, 0);
4382 			BUG_ON(ret);
4383 		}
4384 
4385 		if (found_type == BTRFS_INODE_ITEM_KEY)
4386 			break;
4387 
4388 		if (path->slots[0] == 0 ||
4389 		    path->slots[0] != pending_del_slot) {
4390 			if (pending_del_nr) {
4391 				ret = btrfs_del_items(trans, root, path,
4392 						pending_del_slot,
4393 						pending_del_nr);
4394 				if (ret) {
4395 					btrfs_abort_transaction(trans,
4396 								root, ret);
4397 					goto error;
4398 				}
4399 				pending_del_nr = 0;
4400 			}
4401 			btrfs_release_path(path);
4402 			goto search_again;
4403 		} else {
4404 			path->slots[0]--;
4405 		}
4406 	}
4407 out:
4408 	if (pending_del_nr) {
4409 		ret = btrfs_del_items(trans, root, path, pending_del_slot,
4410 				      pending_del_nr);
4411 		if (ret)
4412 			btrfs_abort_transaction(trans, root, ret);
4413 	}
4414 error:
4415 	if (last_size != (u64)-1 &&
4416 	    root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
4417 		btrfs_ordered_update_i_size(inode, last_size, NULL);
4418 	btrfs_free_path(path);
4419 	return err;
4420 }
4421 
4422 /*
4423  * btrfs_truncate_page - read, zero a chunk and write a page
4424  * @inode - inode that we're zeroing
4425  * @from - the offset to start zeroing
4426  * @len - the length to zero, 0 to zero the entire range respective to the
4427  *	offset
4428  * @front - zero up to the offset instead of from the offset on
4429  *
4430  * This will find the page for the "from" offset and cow the page and zero the
4431  * part we want to zero.  This is used with truncate and hole punching.
4432  */
4433 int btrfs_truncate_page(struct inode *inode, loff_t from, loff_t len,
4434 			int front)
4435 {
4436 	struct address_space *mapping = inode->i_mapping;
4437 	struct btrfs_root *root = BTRFS_I(inode)->root;
4438 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4439 	struct btrfs_ordered_extent *ordered;
4440 	struct extent_state *cached_state = NULL;
4441 	char *kaddr;
4442 	u32 blocksize = root->sectorsize;
4443 	pgoff_t index = from >> PAGE_CACHE_SHIFT;
4444 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
4445 	struct page *page;
4446 	gfp_t mask = btrfs_alloc_write_mask(mapping);
4447 	int ret = 0;
4448 	u64 page_start;
4449 	u64 page_end;
4450 
4451 	if ((offset & (blocksize - 1)) == 0 &&
4452 	    (!len || ((len & (blocksize - 1)) == 0)))
4453 		goto out;
4454 	ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
4455 	if (ret)
4456 		goto out;
4457 
4458 again:
4459 	page = find_or_create_page(mapping, index, mask);
4460 	if (!page) {
4461 		btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
4462 		ret = -ENOMEM;
4463 		goto out;
4464 	}
4465 
4466 	page_start = page_offset(page);
4467 	page_end = page_start + PAGE_CACHE_SIZE - 1;
4468 
4469 	if (!PageUptodate(page)) {
4470 		ret = btrfs_readpage(NULL, page);
4471 		lock_page(page);
4472 		if (page->mapping != mapping) {
4473 			unlock_page(page);
4474 			page_cache_release(page);
4475 			goto again;
4476 		}
4477 		if (!PageUptodate(page)) {
4478 			ret = -EIO;
4479 			goto out_unlock;
4480 		}
4481 	}
4482 	wait_on_page_writeback(page);
4483 
4484 	lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
4485 	set_page_extent_mapped(page);
4486 
4487 	ordered = btrfs_lookup_ordered_extent(inode, page_start);
4488 	if (ordered) {
4489 		unlock_extent_cached(io_tree, page_start, page_end,
4490 				     &cached_state, GFP_NOFS);
4491 		unlock_page(page);
4492 		page_cache_release(page);
4493 		btrfs_start_ordered_extent(inode, ordered, 1);
4494 		btrfs_put_ordered_extent(ordered);
4495 		goto again;
4496 	}
4497 
4498 	clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
4499 			  EXTENT_DIRTY | EXTENT_DELALLOC |
4500 			  EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
4501 			  0, 0, &cached_state, GFP_NOFS);
4502 
4503 	ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
4504 					&cached_state);
4505 	if (ret) {
4506 		unlock_extent_cached(io_tree, page_start, page_end,
4507 				     &cached_state, GFP_NOFS);
4508 		goto out_unlock;
4509 	}
4510 
4511 	if (offset != PAGE_CACHE_SIZE) {
4512 		if (!len)
4513 			len = PAGE_CACHE_SIZE - offset;
4514 		kaddr = kmap(page);
4515 		if (front)
4516 			memset(kaddr, 0, offset);
4517 		else
4518 			memset(kaddr + offset, 0, len);
4519 		flush_dcache_page(page);
4520 		kunmap(page);
4521 	}
4522 	ClearPageChecked(page);
4523 	set_page_dirty(page);
4524 	unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
4525 			     GFP_NOFS);
4526 
4527 out_unlock:
4528 	if (ret)
4529 		btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
4530 	unlock_page(page);
4531 	page_cache_release(page);
4532 out:
4533 	return ret;
4534 }
4535 
4536 static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode,
4537 			     u64 offset, u64 len)
4538 {
4539 	struct btrfs_trans_handle *trans;
4540 	int ret;
4541 
4542 	/*
4543 	 * Still need to make sure the inode looks like it's been updated so
4544 	 * that any holes get logged if we fsync.
4545 	 */
4546 	if (btrfs_fs_incompat(root->fs_info, NO_HOLES)) {
4547 		BTRFS_I(inode)->last_trans = root->fs_info->generation;
4548 		BTRFS_I(inode)->last_sub_trans = root->log_transid;
4549 		BTRFS_I(inode)->last_log_commit = root->last_log_commit;
4550 		return 0;
4551 	}
4552 
4553 	/*
4554 	 * 1 - for the one we're dropping
4555 	 * 1 - for the one we're adding
4556 	 * 1 - for updating the inode.
4557 	 */
4558 	trans = btrfs_start_transaction(root, 3);
4559 	if (IS_ERR(trans))
4560 		return PTR_ERR(trans);
4561 
4562 	ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1);
4563 	if (ret) {
4564 		btrfs_abort_transaction(trans, root, ret);
4565 		btrfs_end_transaction(trans, root);
4566 		return ret;
4567 	}
4568 
4569 	ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset,
4570 				       0, 0, len, 0, len, 0, 0, 0);
4571 	if (ret)
4572 		btrfs_abort_transaction(trans, root, ret);
4573 	else
4574 		btrfs_update_inode(trans, root, inode);
4575 	btrfs_end_transaction(trans, root);
4576 	return ret;
4577 }
4578 
4579 /*
4580  * This function puts in dummy file extents for the area we're creating a hole
4581  * for.  So if we are truncating this file to a larger size we need to insert
4582  * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4583  * the range between oldsize and size
4584  */
4585 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
4586 {
4587 	struct btrfs_root *root = BTRFS_I(inode)->root;
4588 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4589 	struct extent_map *em = NULL;
4590 	struct extent_state *cached_state = NULL;
4591 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4592 	u64 hole_start = ALIGN(oldsize, root->sectorsize);
4593 	u64 block_end = ALIGN(size, root->sectorsize);
4594 	u64 last_byte;
4595 	u64 cur_offset;
4596 	u64 hole_size;
4597 	int err = 0;
4598 
4599 	/*
4600 	 * If our size started in the middle of a page we need to zero out the
4601 	 * rest of the page before we expand the i_size, otherwise we could
4602 	 * expose stale data.
4603 	 */
4604 	err = btrfs_truncate_page(inode, oldsize, 0, 0);
4605 	if (err)
4606 		return err;
4607 
4608 	if (size <= hole_start)
4609 		return 0;
4610 
4611 	while (1) {
4612 		struct btrfs_ordered_extent *ordered;
4613 
4614 		lock_extent_bits(io_tree, hole_start, block_end - 1, 0,
4615 				 &cached_state);
4616 		ordered = btrfs_lookup_ordered_range(inode, hole_start,
4617 						     block_end - hole_start);
4618 		if (!ordered)
4619 			break;
4620 		unlock_extent_cached(io_tree, hole_start, block_end - 1,
4621 				     &cached_state, GFP_NOFS);
4622 		btrfs_start_ordered_extent(inode, ordered, 1);
4623 		btrfs_put_ordered_extent(ordered);
4624 	}
4625 
4626 	cur_offset = hole_start;
4627 	while (1) {
4628 		em = btrfs_get_extent(inode, NULL, 0, cur_offset,
4629 				block_end - cur_offset, 0);
4630 		if (IS_ERR(em)) {
4631 			err = PTR_ERR(em);
4632 			em = NULL;
4633 			break;
4634 		}
4635 		last_byte = min(extent_map_end(em), block_end);
4636 		last_byte = ALIGN(last_byte , root->sectorsize);
4637 		if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
4638 			struct extent_map *hole_em;
4639 			hole_size = last_byte - cur_offset;
4640 
4641 			err = maybe_insert_hole(root, inode, cur_offset,
4642 						hole_size);
4643 			if (err)
4644 				break;
4645 			btrfs_drop_extent_cache(inode, cur_offset,
4646 						cur_offset + hole_size - 1, 0);
4647 			hole_em = alloc_extent_map();
4648 			if (!hole_em) {
4649 				set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4650 					&BTRFS_I(inode)->runtime_flags);
4651 				goto next;
4652 			}
4653 			hole_em->start = cur_offset;
4654 			hole_em->len = hole_size;
4655 			hole_em->orig_start = cur_offset;
4656 
4657 			hole_em->block_start = EXTENT_MAP_HOLE;
4658 			hole_em->block_len = 0;
4659 			hole_em->orig_block_len = 0;
4660 			hole_em->ram_bytes = hole_size;
4661 			hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
4662 			hole_em->compress_type = BTRFS_COMPRESS_NONE;
4663 			hole_em->generation = root->fs_info->generation;
4664 
4665 			while (1) {
4666 				write_lock(&em_tree->lock);
4667 				err = add_extent_mapping(em_tree, hole_em, 1);
4668 				write_unlock(&em_tree->lock);
4669 				if (err != -EEXIST)
4670 					break;
4671 				btrfs_drop_extent_cache(inode, cur_offset,
4672 							cur_offset +
4673 							hole_size - 1, 0);
4674 			}
4675 			free_extent_map(hole_em);
4676 		}
4677 next:
4678 		free_extent_map(em);
4679 		em = NULL;
4680 		cur_offset = last_byte;
4681 		if (cur_offset >= block_end)
4682 			break;
4683 	}
4684 	free_extent_map(em);
4685 	unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
4686 			     GFP_NOFS);
4687 	return err;
4688 }
4689 
4690 static int wait_snapshoting_atomic_t(atomic_t *a)
4691 {
4692 	schedule();
4693 	return 0;
4694 }
4695 
4696 static void wait_for_snapshot_creation(struct btrfs_root *root)
4697 {
4698 	while (true) {
4699 		int ret;
4700 
4701 		ret = btrfs_start_write_no_snapshoting(root);
4702 		if (ret)
4703 			break;
4704 		wait_on_atomic_t(&root->will_be_snapshoted,
4705 				 wait_snapshoting_atomic_t,
4706 				 TASK_UNINTERRUPTIBLE);
4707 	}
4708 }
4709 
4710 static int btrfs_setsize(struct inode *inode, struct iattr *attr)
4711 {
4712 	struct btrfs_root *root = BTRFS_I(inode)->root;
4713 	struct btrfs_trans_handle *trans;
4714 	loff_t oldsize = i_size_read(inode);
4715 	loff_t newsize = attr->ia_size;
4716 	int mask = attr->ia_valid;
4717 	int ret;
4718 
4719 	/*
4720 	 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
4721 	 * special case where we need to update the times despite not having
4722 	 * these flags set.  For all other operations the VFS set these flags
4723 	 * explicitly if it wants a timestamp update.
4724 	 */
4725 	if (newsize != oldsize) {
4726 		inode_inc_iversion(inode);
4727 		if (!(mask & (ATTR_CTIME | ATTR_MTIME)))
4728 			inode->i_ctime = inode->i_mtime =
4729 				current_fs_time(inode->i_sb);
4730 	}
4731 
4732 	if (newsize > oldsize) {
4733 		truncate_pagecache(inode, newsize);
4734 		/*
4735 		 * Don't do an expanding truncate while snapshoting is ongoing.
4736 		 * This is to ensure the snapshot captures a fully consistent
4737 		 * state of this file - if the snapshot captures this expanding
4738 		 * truncation, it must capture all writes that happened before
4739 		 * this truncation.
4740 		 */
4741 		wait_for_snapshot_creation(root);
4742 		ret = btrfs_cont_expand(inode, oldsize, newsize);
4743 		if (ret) {
4744 			btrfs_end_write_no_snapshoting(root);
4745 			return ret;
4746 		}
4747 
4748 		trans = btrfs_start_transaction(root, 1);
4749 		if (IS_ERR(trans)) {
4750 			btrfs_end_write_no_snapshoting(root);
4751 			return PTR_ERR(trans);
4752 		}
4753 
4754 		i_size_write(inode, newsize);
4755 		btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
4756 		ret = btrfs_update_inode(trans, root, inode);
4757 		btrfs_end_write_no_snapshoting(root);
4758 		btrfs_end_transaction(trans, root);
4759 	} else {
4760 
4761 		/*
4762 		 * We're truncating a file that used to have good data down to
4763 		 * zero. Make sure it gets into the ordered flush list so that
4764 		 * any new writes get down to disk quickly.
4765 		 */
4766 		if (newsize == 0)
4767 			set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
4768 				&BTRFS_I(inode)->runtime_flags);
4769 
4770 		/*
4771 		 * 1 for the orphan item we're going to add
4772 		 * 1 for the orphan item deletion.
4773 		 */
4774 		trans = btrfs_start_transaction(root, 2);
4775 		if (IS_ERR(trans))
4776 			return PTR_ERR(trans);
4777 
4778 		/*
4779 		 * We need to do this in case we fail at _any_ point during the
4780 		 * actual truncate.  Once we do the truncate_setsize we could
4781 		 * invalidate pages which forces any outstanding ordered io to
4782 		 * be instantly completed which will give us extents that need
4783 		 * to be truncated.  If we fail to get an orphan inode down we
4784 		 * could have left over extents that were never meant to live,
4785 		 * so we need to garuntee from this point on that everything
4786 		 * will be consistent.
4787 		 */
4788 		ret = btrfs_orphan_add(trans, inode);
4789 		btrfs_end_transaction(trans, root);
4790 		if (ret)
4791 			return ret;
4792 
4793 		/* we don't support swapfiles, so vmtruncate shouldn't fail */
4794 		truncate_setsize(inode, newsize);
4795 
4796 		/* Disable nonlocked read DIO to avoid the end less truncate */
4797 		btrfs_inode_block_unlocked_dio(inode);
4798 		inode_dio_wait(inode);
4799 		btrfs_inode_resume_unlocked_dio(inode);
4800 
4801 		ret = btrfs_truncate(inode);
4802 		if (ret && inode->i_nlink) {
4803 			int err;
4804 
4805 			/*
4806 			 * failed to truncate, disk_i_size is only adjusted down
4807 			 * as we remove extents, so it should represent the true
4808 			 * size of the inode, so reset the in memory size and
4809 			 * delete our orphan entry.
4810 			 */
4811 			trans = btrfs_join_transaction(root);
4812 			if (IS_ERR(trans)) {
4813 				btrfs_orphan_del(NULL, inode);
4814 				return ret;
4815 			}
4816 			i_size_write(inode, BTRFS_I(inode)->disk_i_size);
4817 			err = btrfs_orphan_del(trans, inode);
4818 			if (err)
4819 				btrfs_abort_transaction(trans, root, err);
4820 			btrfs_end_transaction(trans, root);
4821 		}
4822 	}
4823 
4824 	return ret;
4825 }
4826 
4827 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
4828 {
4829 	struct inode *inode = dentry->d_inode;
4830 	struct btrfs_root *root = BTRFS_I(inode)->root;
4831 	int err;
4832 
4833 	if (btrfs_root_readonly(root))
4834 		return -EROFS;
4835 
4836 	err = inode_change_ok(inode, attr);
4837 	if (err)
4838 		return err;
4839 
4840 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
4841 		err = btrfs_setsize(inode, attr);
4842 		if (err)
4843 			return err;
4844 	}
4845 
4846 	if (attr->ia_valid) {
4847 		setattr_copy(inode, attr);
4848 		inode_inc_iversion(inode);
4849 		err = btrfs_dirty_inode(inode);
4850 
4851 		if (!err && attr->ia_valid & ATTR_MODE)
4852 			err = posix_acl_chmod(inode, inode->i_mode);
4853 	}
4854 
4855 	return err;
4856 }
4857 
4858 /*
4859  * While truncating the inode pages during eviction, we get the VFS calling
4860  * btrfs_invalidatepage() against each page of the inode. This is slow because
4861  * the calls to btrfs_invalidatepage() result in a huge amount of calls to
4862  * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
4863  * extent_state structures over and over, wasting lots of time.
4864  *
4865  * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
4866  * those expensive operations on a per page basis and do only the ordered io
4867  * finishing, while we release here the extent_map and extent_state structures,
4868  * without the excessive merging and splitting.
4869  */
4870 static void evict_inode_truncate_pages(struct inode *inode)
4871 {
4872 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4873 	struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
4874 	struct rb_node *node;
4875 
4876 	ASSERT(inode->i_state & I_FREEING);
4877 	truncate_inode_pages_final(&inode->i_data);
4878 
4879 	write_lock(&map_tree->lock);
4880 	while (!RB_EMPTY_ROOT(&map_tree->map)) {
4881 		struct extent_map *em;
4882 
4883 		node = rb_first(&map_tree->map);
4884 		em = rb_entry(node, struct extent_map, rb_node);
4885 		clear_bit(EXTENT_FLAG_PINNED, &em->flags);
4886 		clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
4887 		remove_extent_mapping(map_tree, em);
4888 		free_extent_map(em);
4889 		if (need_resched()) {
4890 			write_unlock(&map_tree->lock);
4891 			cond_resched();
4892 			write_lock(&map_tree->lock);
4893 		}
4894 	}
4895 	write_unlock(&map_tree->lock);
4896 
4897 	spin_lock(&io_tree->lock);
4898 	while (!RB_EMPTY_ROOT(&io_tree->state)) {
4899 		struct extent_state *state;
4900 		struct extent_state *cached_state = NULL;
4901 
4902 		node = rb_first(&io_tree->state);
4903 		state = rb_entry(node, struct extent_state, rb_node);
4904 		atomic_inc(&state->refs);
4905 		spin_unlock(&io_tree->lock);
4906 
4907 		lock_extent_bits(io_tree, state->start, state->end,
4908 				 0, &cached_state);
4909 		clear_extent_bit(io_tree, state->start, state->end,
4910 				 EXTENT_LOCKED | EXTENT_DIRTY |
4911 				 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
4912 				 EXTENT_DEFRAG, 1, 1,
4913 				 &cached_state, GFP_NOFS);
4914 		free_extent_state(state);
4915 
4916 		cond_resched();
4917 		spin_lock(&io_tree->lock);
4918 	}
4919 	spin_unlock(&io_tree->lock);
4920 }
4921 
4922 void btrfs_evict_inode(struct inode *inode)
4923 {
4924 	struct btrfs_trans_handle *trans;
4925 	struct btrfs_root *root = BTRFS_I(inode)->root;
4926 	struct btrfs_block_rsv *rsv, *global_rsv;
4927 	u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
4928 	int ret;
4929 
4930 	trace_btrfs_inode_evict(inode);
4931 
4932 	evict_inode_truncate_pages(inode);
4933 
4934 	if (inode->i_nlink &&
4935 	    ((btrfs_root_refs(&root->root_item) != 0 &&
4936 	      root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
4937 	     btrfs_is_free_space_inode(inode)))
4938 		goto no_delete;
4939 
4940 	if (is_bad_inode(inode)) {
4941 		btrfs_orphan_del(NULL, inode);
4942 		goto no_delete;
4943 	}
4944 	/* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
4945 	btrfs_wait_ordered_range(inode, 0, (u64)-1);
4946 
4947 	btrfs_free_io_failure_record(inode, 0, (u64)-1);
4948 
4949 	if (root->fs_info->log_root_recovering) {
4950 		BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
4951 				 &BTRFS_I(inode)->runtime_flags));
4952 		goto no_delete;
4953 	}
4954 
4955 	if (inode->i_nlink > 0) {
4956 		BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
4957 		       root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
4958 		goto no_delete;
4959 	}
4960 
4961 	ret = btrfs_commit_inode_delayed_inode(inode);
4962 	if (ret) {
4963 		btrfs_orphan_del(NULL, inode);
4964 		goto no_delete;
4965 	}
4966 
4967 	rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
4968 	if (!rsv) {
4969 		btrfs_orphan_del(NULL, inode);
4970 		goto no_delete;
4971 	}
4972 	rsv->size = min_size;
4973 	rsv->failfast = 1;
4974 	global_rsv = &root->fs_info->global_block_rsv;
4975 
4976 	btrfs_i_size_write(inode, 0);
4977 
4978 	/*
4979 	 * This is a bit simpler than btrfs_truncate since we've already
4980 	 * reserved our space for our orphan item in the unlink, so we just
4981 	 * need to reserve some slack space in case we add bytes and update
4982 	 * inode item when doing the truncate.
4983 	 */
4984 	while (1) {
4985 		ret = btrfs_block_rsv_refill(root, rsv, min_size,
4986 					     BTRFS_RESERVE_FLUSH_LIMIT);
4987 
4988 		/*
4989 		 * Try and steal from the global reserve since we will
4990 		 * likely not use this space anyway, we want to try as
4991 		 * hard as possible to get this to work.
4992 		 */
4993 		if (ret)
4994 			ret = btrfs_block_rsv_migrate(global_rsv, rsv, min_size);
4995 
4996 		if (ret) {
4997 			btrfs_warn(root->fs_info,
4998 				"Could not get space for a delete, will truncate on mount %d",
4999 				ret);
5000 			btrfs_orphan_del(NULL, inode);
5001 			btrfs_free_block_rsv(root, rsv);
5002 			goto no_delete;
5003 		}
5004 
5005 		trans = btrfs_join_transaction(root);
5006 		if (IS_ERR(trans)) {
5007 			btrfs_orphan_del(NULL, inode);
5008 			btrfs_free_block_rsv(root, rsv);
5009 			goto no_delete;
5010 		}
5011 
5012 		trans->block_rsv = rsv;
5013 
5014 		ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
5015 		if (ret != -ENOSPC)
5016 			break;
5017 
5018 		trans->block_rsv = &root->fs_info->trans_block_rsv;
5019 		btrfs_end_transaction(trans, root);
5020 		trans = NULL;
5021 		btrfs_btree_balance_dirty(root);
5022 	}
5023 
5024 	btrfs_free_block_rsv(root, rsv);
5025 
5026 	/*
5027 	 * Errors here aren't a big deal, it just means we leave orphan items
5028 	 * in the tree.  They will be cleaned up on the next mount.
5029 	 */
5030 	if (ret == 0) {
5031 		trans->block_rsv = root->orphan_block_rsv;
5032 		btrfs_orphan_del(trans, inode);
5033 	} else {
5034 		btrfs_orphan_del(NULL, inode);
5035 	}
5036 
5037 	trans->block_rsv = &root->fs_info->trans_block_rsv;
5038 	if (!(root == root->fs_info->tree_root ||
5039 	      root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
5040 		btrfs_return_ino(root, btrfs_ino(inode));
5041 
5042 	btrfs_end_transaction(trans, root);
5043 	btrfs_btree_balance_dirty(root);
5044 no_delete:
5045 	btrfs_remove_delayed_node(inode);
5046 	clear_inode(inode);
5047 	return;
5048 }
5049 
5050 /*
5051  * this returns the key found in the dir entry in the location pointer.
5052  * If no dir entries were found, location->objectid is 0.
5053  */
5054 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
5055 			       struct btrfs_key *location)
5056 {
5057 	const char *name = dentry->d_name.name;
5058 	int namelen = dentry->d_name.len;
5059 	struct btrfs_dir_item *di;
5060 	struct btrfs_path *path;
5061 	struct btrfs_root *root = BTRFS_I(dir)->root;
5062 	int ret = 0;
5063 
5064 	path = btrfs_alloc_path();
5065 	if (!path)
5066 		return -ENOMEM;
5067 
5068 	di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name,
5069 				    namelen, 0);
5070 	if (IS_ERR(di))
5071 		ret = PTR_ERR(di);
5072 
5073 	if (IS_ERR_OR_NULL(di))
5074 		goto out_err;
5075 
5076 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
5077 out:
5078 	btrfs_free_path(path);
5079 	return ret;
5080 out_err:
5081 	location->objectid = 0;
5082 	goto out;
5083 }
5084 
5085 /*
5086  * when we hit a tree root in a directory, the btrfs part of the inode
5087  * needs to be changed to reflect the root directory of the tree root.  This
5088  * is kind of like crossing a mount point.
5089  */
5090 static int fixup_tree_root_location(struct btrfs_root *root,
5091 				    struct inode *dir,
5092 				    struct dentry *dentry,
5093 				    struct btrfs_key *location,
5094 				    struct btrfs_root **sub_root)
5095 {
5096 	struct btrfs_path *path;
5097 	struct btrfs_root *new_root;
5098 	struct btrfs_root_ref *ref;
5099 	struct extent_buffer *leaf;
5100 	struct btrfs_key key;
5101 	int ret;
5102 	int err = 0;
5103 
5104 	path = btrfs_alloc_path();
5105 	if (!path) {
5106 		err = -ENOMEM;
5107 		goto out;
5108 	}
5109 
5110 	err = -ENOENT;
5111 	key.objectid = BTRFS_I(dir)->root->root_key.objectid;
5112 	key.type = BTRFS_ROOT_REF_KEY;
5113 	key.offset = location->objectid;
5114 
5115 	ret = btrfs_search_slot(NULL, root->fs_info->tree_root, &key, path,
5116 				0, 0);
5117 	if (ret) {
5118 		if (ret < 0)
5119 			err = ret;
5120 		goto out;
5121 	}
5122 
5123 	leaf = path->nodes[0];
5124 	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
5125 	if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
5126 	    btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
5127 		goto out;
5128 
5129 	ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
5130 				   (unsigned long)(ref + 1),
5131 				   dentry->d_name.len);
5132 	if (ret)
5133 		goto out;
5134 
5135 	btrfs_release_path(path);
5136 
5137 	new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
5138 	if (IS_ERR(new_root)) {
5139 		err = PTR_ERR(new_root);
5140 		goto out;
5141 	}
5142 
5143 	*sub_root = new_root;
5144 	location->objectid = btrfs_root_dirid(&new_root->root_item);
5145 	location->type = BTRFS_INODE_ITEM_KEY;
5146 	location->offset = 0;
5147 	err = 0;
5148 out:
5149 	btrfs_free_path(path);
5150 	return err;
5151 }
5152 
5153 static void inode_tree_add(struct inode *inode)
5154 {
5155 	struct btrfs_root *root = BTRFS_I(inode)->root;
5156 	struct btrfs_inode *entry;
5157 	struct rb_node **p;
5158 	struct rb_node *parent;
5159 	struct rb_node *new = &BTRFS_I(inode)->rb_node;
5160 	u64 ino = btrfs_ino(inode);
5161 
5162 	if (inode_unhashed(inode))
5163 		return;
5164 	parent = NULL;
5165 	spin_lock(&root->inode_lock);
5166 	p = &root->inode_tree.rb_node;
5167 	while (*p) {
5168 		parent = *p;
5169 		entry = rb_entry(parent, struct btrfs_inode, rb_node);
5170 
5171 		if (ino < btrfs_ino(&entry->vfs_inode))
5172 			p = &parent->rb_left;
5173 		else if (ino > btrfs_ino(&entry->vfs_inode))
5174 			p = &parent->rb_right;
5175 		else {
5176 			WARN_ON(!(entry->vfs_inode.i_state &
5177 				  (I_WILL_FREE | I_FREEING)));
5178 			rb_replace_node(parent, new, &root->inode_tree);
5179 			RB_CLEAR_NODE(parent);
5180 			spin_unlock(&root->inode_lock);
5181 			return;
5182 		}
5183 	}
5184 	rb_link_node(new, parent, p);
5185 	rb_insert_color(new, &root->inode_tree);
5186 	spin_unlock(&root->inode_lock);
5187 }
5188 
5189 static void inode_tree_del(struct inode *inode)
5190 {
5191 	struct btrfs_root *root = BTRFS_I(inode)->root;
5192 	int empty = 0;
5193 
5194 	spin_lock(&root->inode_lock);
5195 	if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5196 		rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5197 		RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
5198 		empty = RB_EMPTY_ROOT(&root->inode_tree);
5199 	}
5200 	spin_unlock(&root->inode_lock);
5201 
5202 	if (empty && btrfs_root_refs(&root->root_item) == 0) {
5203 		synchronize_srcu(&root->fs_info->subvol_srcu);
5204 		spin_lock(&root->inode_lock);
5205 		empty = RB_EMPTY_ROOT(&root->inode_tree);
5206 		spin_unlock(&root->inode_lock);
5207 		if (empty)
5208 			btrfs_add_dead_root(root);
5209 	}
5210 }
5211 
5212 void btrfs_invalidate_inodes(struct btrfs_root *root)
5213 {
5214 	struct rb_node *node;
5215 	struct rb_node *prev;
5216 	struct btrfs_inode *entry;
5217 	struct inode *inode;
5218 	u64 objectid = 0;
5219 
5220 	if (!test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
5221 		WARN_ON(btrfs_root_refs(&root->root_item) != 0);
5222 
5223 	spin_lock(&root->inode_lock);
5224 again:
5225 	node = root->inode_tree.rb_node;
5226 	prev = NULL;
5227 	while (node) {
5228 		prev = node;
5229 		entry = rb_entry(node, struct btrfs_inode, rb_node);
5230 
5231 		if (objectid < btrfs_ino(&entry->vfs_inode))
5232 			node = node->rb_left;
5233 		else if (objectid > btrfs_ino(&entry->vfs_inode))
5234 			node = node->rb_right;
5235 		else
5236 			break;
5237 	}
5238 	if (!node) {
5239 		while (prev) {
5240 			entry = rb_entry(prev, struct btrfs_inode, rb_node);
5241 			if (objectid <= btrfs_ino(&entry->vfs_inode)) {
5242 				node = prev;
5243 				break;
5244 			}
5245 			prev = rb_next(prev);
5246 		}
5247 	}
5248 	while (node) {
5249 		entry = rb_entry(node, struct btrfs_inode, rb_node);
5250 		objectid = btrfs_ino(&entry->vfs_inode) + 1;
5251 		inode = igrab(&entry->vfs_inode);
5252 		if (inode) {
5253 			spin_unlock(&root->inode_lock);
5254 			if (atomic_read(&inode->i_count) > 1)
5255 				d_prune_aliases(inode);
5256 			/*
5257 			 * btrfs_drop_inode will have it removed from
5258 			 * the inode cache when its usage count
5259 			 * hits zero.
5260 			 */
5261 			iput(inode);
5262 			cond_resched();
5263 			spin_lock(&root->inode_lock);
5264 			goto again;
5265 		}
5266 
5267 		if (cond_resched_lock(&root->inode_lock))
5268 			goto again;
5269 
5270 		node = rb_next(node);
5271 	}
5272 	spin_unlock(&root->inode_lock);
5273 }
5274 
5275 static int btrfs_init_locked_inode(struct inode *inode, void *p)
5276 {
5277 	struct btrfs_iget_args *args = p;
5278 	inode->i_ino = args->location->objectid;
5279 	memcpy(&BTRFS_I(inode)->location, args->location,
5280 	       sizeof(*args->location));
5281 	BTRFS_I(inode)->root = args->root;
5282 	return 0;
5283 }
5284 
5285 static int btrfs_find_actor(struct inode *inode, void *opaque)
5286 {
5287 	struct btrfs_iget_args *args = opaque;
5288 	return args->location->objectid == BTRFS_I(inode)->location.objectid &&
5289 		args->root == BTRFS_I(inode)->root;
5290 }
5291 
5292 static struct inode *btrfs_iget_locked(struct super_block *s,
5293 				       struct btrfs_key *location,
5294 				       struct btrfs_root *root)
5295 {
5296 	struct inode *inode;
5297 	struct btrfs_iget_args args;
5298 	unsigned long hashval = btrfs_inode_hash(location->objectid, root);
5299 
5300 	args.location = location;
5301 	args.root = root;
5302 
5303 	inode = iget5_locked(s, hashval, btrfs_find_actor,
5304 			     btrfs_init_locked_inode,
5305 			     (void *)&args);
5306 	return inode;
5307 }
5308 
5309 /* Get an inode object given its location and corresponding root.
5310  * Returns in *is_new if the inode was read from disk
5311  */
5312 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
5313 			 struct btrfs_root *root, int *new)
5314 {
5315 	struct inode *inode;
5316 
5317 	inode = btrfs_iget_locked(s, location, root);
5318 	if (!inode)
5319 		return ERR_PTR(-ENOMEM);
5320 
5321 	if (inode->i_state & I_NEW) {
5322 		btrfs_read_locked_inode(inode);
5323 		if (!is_bad_inode(inode)) {
5324 			inode_tree_add(inode);
5325 			unlock_new_inode(inode);
5326 			if (new)
5327 				*new = 1;
5328 		} else {
5329 			unlock_new_inode(inode);
5330 			iput(inode);
5331 			inode = ERR_PTR(-ESTALE);
5332 		}
5333 	}
5334 
5335 	return inode;
5336 }
5337 
5338 static struct inode *new_simple_dir(struct super_block *s,
5339 				    struct btrfs_key *key,
5340 				    struct btrfs_root *root)
5341 {
5342 	struct inode *inode = new_inode(s);
5343 
5344 	if (!inode)
5345 		return ERR_PTR(-ENOMEM);
5346 
5347 	BTRFS_I(inode)->root = root;
5348 	memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
5349 	set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
5350 
5351 	inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
5352 	inode->i_op = &btrfs_dir_ro_inode_operations;
5353 	inode->i_fop = &simple_dir_operations;
5354 	inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
5355 	inode->i_mtime = CURRENT_TIME;
5356 	inode->i_atime = inode->i_mtime;
5357 	inode->i_ctime = inode->i_mtime;
5358 	BTRFS_I(inode)->i_otime = inode->i_mtime;
5359 
5360 	return inode;
5361 }
5362 
5363 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
5364 {
5365 	struct inode *inode;
5366 	struct btrfs_root *root = BTRFS_I(dir)->root;
5367 	struct btrfs_root *sub_root = root;
5368 	struct btrfs_key location;
5369 	int index;
5370 	int ret = 0;
5371 
5372 	if (dentry->d_name.len > BTRFS_NAME_LEN)
5373 		return ERR_PTR(-ENAMETOOLONG);
5374 
5375 	ret = btrfs_inode_by_name(dir, dentry, &location);
5376 	if (ret < 0)
5377 		return ERR_PTR(ret);
5378 
5379 	if (location.objectid == 0)
5380 		return ERR_PTR(-ENOENT);
5381 
5382 	if (location.type == BTRFS_INODE_ITEM_KEY) {
5383 		inode = btrfs_iget(dir->i_sb, &location, root, NULL);
5384 		return inode;
5385 	}
5386 
5387 	BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
5388 
5389 	index = srcu_read_lock(&root->fs_info->subvol_srcu);
5390 	ret = fixup_tree_root_location(root, dir, dentry,
5391 				       &location, &sub_root);
5392 	if (ret < 0) {
5393 		if (ret != -ENOENT)
5394 			inode = ERR_PTR(ret);
5395 		else
5396 			inode = new_simple_dir(dir->i_sb, &location, sub_root);
5397 	} else {
5398 		inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
5399 	}
5400 	srcu_read_unlock(&root->fs_info->subvol_srcu, index);
5401 
5402 	if (!IS_ERR(inode) && root != sub_root) {
5403 		down_read(&root->fs_info->cleanup_work_sem);
5404 		if (!(inode->i_sb->s_flags & MS_RDONLY))
5405 			ret = btrfs_orphan_cleanup(sub_root);
5406 		up_read(&root->fs_info->cleanup_work_sem);
5407 		if (ret) {
5408 			iput(inode);
5409 			inode = ERR_PTR(ret);
5410 		}
5411 	}
5412 
5413 	return inode;
5414 }
5415 
5416 static int btrfs_dentry_delete(const struct dentry *dentry)
5417 {
5418 	struct btrfs_root *root;
5419 	struct inode *inode = dentry->d_inode;
5420 
5421 	if (!inode && !IS_ROOT(dentry))
5422 		inode = dentry->d_parent->d_inode;
5423 
5424 	if (inode) {
5425 		root = BTRFS_I(inode)->root;
5426 		if (btrfs_root_refs(&root->root_item) == 0)
5427 			return 1;
5428 
5429 		if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5430 			return 1;
5431 	}
5432 	return 0;
5433 }
5434 
5435 static void btrfs_dentry_release(struct dentry *dentry)
5436 {
5437 	kfree(dentry->d_fsdata);
5438 }
5439 
5440 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
5441 				   unsigned int flags)
5442 {
5443 	struct inode *inode;
5444 
5445 	inode = btrfs_lookup_dentry(dir, dentry);
5446 	if (IS_ERR(inode)) {
5447 		if (PTR_ERR(inode) == -ENOENT)
5448 			inode = NULL;
5449 		else
5450 			return ERR_CAST(inode);
5451 	}
5452 
5453 	return d_splice_alias(inode, dentry);
5454 }
5455 
5456 unsigned char btrfs_filetype_table[] = {
5457 	DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
5458 };
5459 
5460 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
5461 {
5462 	struct inode *inode = file_inode(file);
5463 	struct btrfs_root *root = BTRFS_I(inode)->root;
5464 	struct btrfs_item *item;
5465 	struct btrfs_dir_item *di;
5466 	struct btrfs_key key;
5467 	struct btrfs_key found_key;
5468 	struct btrfs_path *path;
5469 	struct list_head ins_list;
5470 	struct list_head del_list;
5471 	int ret;
5472 	struct extent_buffer *leaf;
5473 	int slot;
5474 	unsigned char d_type;
5475 	int over = 0;
5476 	u32 di_cur;
5477 	u32 di_total;
5478 	u32 di_len;
5479 	int key_type = BTRFS_DIR_INDEX_KEY;
5480 	char tmp_name[32];
5481 	char *name_ptr;
5482 	int name_len;
5483 	int is_curr = 0;	/* ctx->pos points to the current index? */
5484 
5485 	/* FIXME, use a real flag for deciding about the key type */
5486 	if (root->fs_info->tree_root == root)
5487 		key_type = BTRFS_DIR_ITEM_KEY;
5488 
5489 	if (!dir_emit_dots(file, ctx))
5490 		return 0;
5491 
5492 	path = btrfs_alloc_path();
5493 	if (!path)
5494 		return -ENOMEM;
5495 
5496 	path->reada = 1;
5497 
5498 	if (key_type == BTRFS_DIR_INDEX_KEY) {
5499 		INIT_LIST_HEAD(&ins_list);
5500 		INIT_LIST_HEAD(&del_list);
5501 		btrfs_get_delayed_items(inode, &ins_list, &del_list);
5502 	}
5503 
5504 	key.type = key_type;
5505 	key.offset = ctx->pos;
5506 	key.objectid = btrfs_ino(inode);
5507 
5508 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5509 	if (ret < 0)
5510 		goto err;
5511 
5512 	while (1) {
5513 		leaf = path->nodes[0];
5514 		slot = path->slots[0];
5515 		if (slot >= btrfs_header_nritems(leaf)) {
5516 			ret = btrfs_next_leaf(root, path);
5517 			if (ret < 0)
5518 				goto err;
5519 			else if (ret > 0)
5520 				break;
5521 			continue;
5522 		}
5523 
5524 		item = btrfs_item_nr(slot);
5525 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
5526 
5527 		if (found_key.objectid != key.objectid)
5528 			break;
5529 		if (found_key.type != key_type)
5530 			break;
5531 		if (found_key.offset < ctx->pos)
5532 			goto next;
5533 		if (key_type == BTRFS_DIR_INDEX_KEY &&
5534 		    btrfs_should_delete_dir_index(&del_list,
5535 						  found_key.offset))
5536 			goto next;
5537 
5538 		ctx->pos = found_key.offset;
5539 		is_curr = 1;
5540 
5541 		di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
5542 		di_cur = 0;
5543 		di_total = btrfs_item_size(leaf, item);
5544 
5545 		while (di_cur < di_total) {
5546 			struct btrfs_key location;
5547 
5548 			if (verify_dir_item(root, leaf, di))
5549 				break;
5550 
5551 			name_len = btrfs_dir_name_len(leaf, di);
5552 			if (name_len <= sizeof(tmp_name)) {
5553 				name_ptr = tmp_name;
5554 			} else {
5555 				name_ptr = kmalloc(name_len, GFP_NOFS);
5556 				if (!name_ptr) {
5557 					ret = -ENOMEM;
5558 					goto err;
5559 				}
5560 			}
5561 			read_extent_buffer(leaf, name_ptr,
5562 					   (unsigned long)(di + 1), name_len);
5563 
5564 			d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
5565 			btrfs_dir_item_key_to_cpu(leaf, di, &location);
5566 
5567 
5568 			/* is this a reference to our own snapshot? If so
5569 			 * skip it.
5570 			 *
5571 			 * In contrast to old kernels, we insert the snapshot's
5572 			 * dir item and dir index after it has been created, so
5573 			 * we won't find a reference to our own snapshot. We
5574 			 * still keep the following code for backward
5575 			 * compatibility.
5576 			 */
5577 			if (location.type == BTRFS_ROOT_ITEM_KEY &&
5578 			    location.objectid == root->root_key.objectid) {
5579 				over = 0;
5580 				goto skip;
5581 			}
5582 			over = !dir_emit(ctx, name_ptr, name_len,
5583 				       location.objectid, d_type);
5584 
5585 skip:
5586 			if (name_ptr != tmp_name)
5587 				kfree(name_ptr);
5588 
5589 			if (over)
5590 				goto nopos;
5591 			di_len = btrfs_dir_name_len(leaf, di) +
5592 				 btrfs_dir_data_len(leaf, di) + sizeof(*di);
5593 			di_cur += di_len;
5594 			di = (struct btrfs_dir_item *)((char *)di + di_len);
5595 		}
5596 next:
5597 		path->slots[0]++;
5598 	}
5599 
5600 	if (key_type == BTRFS_DIR_INDEX_KEY) {
5601 		if (is_curr)
5602 			ctx->pos++;
5603 		ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
5604 		if (ret)
5605 			goto nopos;
5606 	}
5607 
5608 	/* Reached end of directory/root. Bump pos past the last item. */
5609 	ctx->pos++;
5610 
5611 	/*
5612 	 * Stop new entries from being returned after we return the last
5613 	 * entry.
5614 	 *
5615 	 * New directory entries are assigned a strictly increasing
5616 	 * offset.  This means that new entries created during readdir
5617 	 * are *guaranteed* to be seen in the future by that readdir.
5618 	 * This has broken buggy programs which operate on names as
5619 	 * they're returned by readdir.  Until we re-use freed offsets
5620 	 * we have this hack to stop new entries from being returned
5621 	 * under the assumption that they'll never reach this huge
5622 	 * offset.
5623 	 *
5624 	 * This is being careful not to overflow 32bit loff_t unless the
5625 	 * last entry requires it because doing so has broken 32bit apps
5626 	 * in the past.
5627 	 */
5628 	if (key_type == BTRFS_DIR_INDEX_KEY) {
5629 		if (ctx->pos >= INT_MAX)
5630 			ctx->pos = LLONG_MAX;
5631 		else
5632 			ctx->pos = INT_MAX;
5633 	}
5634 nopos:
5635 	ret = 0;
5636 err:
5637 	if (key_type == BTRFS_DIR_INDEX_KEY)
5638 		btrfs_put_delayed_items(&ins_list, &del_list);
5639 	btrfs_free_path(path);
5640 	return ret;
5641 }
5642 
5643 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
5644 {
5645 	struct btrfs_root *root = BTRFS_I(inode)->root;
5646 	struct btrfs_trans_handle *trans;
5647 	int ret = 0;
5648 	bool nolock = false;
5649 
5650 	if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
5651 		return 0;
5652 
5653 	if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(inode))
5654 		nolock = true;
5655 
5656 	if (wbc->sync_mode == WB_SYNC_ALL) {
5657 		if (nolock)
5658 			trans = btrfs_join_transaction_nolock(root);
5659 		else
5660 			trans = btrfs_join_transaction(root);
5661 		if (IS_ERR(trans))
5662 			return PTR_ERR(trans);
5663 		ret = btrfs_commit_transaction(trans, root);
5664 	}
5665 	return ret;
5666 }
5667 
5668 /*
5669  * This is somewhat expensive, updating the tree every time the
5670  * inode changes.  But, it is most likely to find the inode in cache.
5671  * FIXME, needs more benchmarking...there are no reasons other than performance
5672  * to keep or drop this code.
5673  */
5674 static int btrfs_dirty_inode(struct inode *inode)
5675 {
5676 	struct btrfs_root *root = BTRFS_I(inode)->root;
5677 	struct btrfs_trans_handle *trans;
5678 	int ret;
5679 
5680 	if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
5681 		return 0;
5682 
5683 	trans = btrfs_join_transaction(root);
5684 	if (IS_ERR(trans))
5685 		return PTR_ERR(trans);
5686 
5687 	ret = btrfs_update_inode(trans, root, inode);
5688 	if (ret && ret == -ENOSPC) {
5689 		/* whoops, lets try again with the full transaction */
5690 		btrfs_end_transaction(trans, root);
5691 		trans = btrfs_start_transaction(root, 1);
5692 		if (IS_ERR(trans))
5693 			return PTR_ERR(trans);
5694 
5695 		ret = btrfs_update_inode(trans, root, inode);
5696 	}
5697 	btrfs_end_transaction(trans, root);
5698 	if (BTRFS_I(inode)->delayed_node)
5699 		btrfs_balance_delayed_items(root);
5700 
5701 	return ret;
5702 }
5703 
5704 /*
5705  * This is a copy of file_update_time.  We need this so we can return error on
5706  * ENOSPC for updating the inode in the case of file write and mmap writes.
5707  */
5708 static int btrfs_update_time(struct inode *inode, struct timespec *now,
5709 			     int flags)
5710 {
5711 	struct btrfs_root *root = BTRFS_I(inode)->root;
5712 
5713 	if (btrfs_root_readonly(root))
5714 		return -EROFS;
5715 
5716 	if (flags & S_VERSION)
5717 		inode_inc_iversion(inode);
5718 	if (flags & S_CTIME)
5719 		inode->i_ctime = *now;
5720 	if (flags & S_MTIME)
5721 		inode->i_mtime = *now;
5722 	if (flags & S_ATIME)
5723 		inode->i_atime = *now;
5724 	return btrfs_dirty_inode(inode);
5725 }
5726 
5727 /*
5728  * find the highest existing sequence number in a directory
5729  * and then set the in-memory index_cnt variable to reflect
5730  * free sequence numbers
5731  */
5732 static int btrfs_set_inode_index_count(struct inode *inode)
5733 {
5734 	struct btrfs_root *root = BTRFS_I(inode)->root;
5735 	struct btrfs_key key, found_key;
5736 	struct btrfs_path *path;
5737 	struct extent_buffer *leaf;
5738 	int ret;
5739 
5740 	key.objectid = btrfs_ino(inode);
5741 	key.type = BTRFS_DIR_INDEX_KEY;
5742 	key.offset = (u64)-1;
5743 
5744 	path = btrfs_alloc_path();
5745 	if (!path)
5746 		return -ENOMEM;
5747 
5748 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5749 	if (ret < 0)
5750 		goto out;
5751 	/* FIXME: we should be able to handle this */
5752 	if (ret == 0)
5753 		goto out;
5754 	ret = 0;
5755 
5756 	/*
5757 	 * MAGIC NUMBER EXPLANATION:
5758 	 * since we search a directory based on f_pos we have to start at 2
5759 	 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
5760 	 * else has to start at 2
5761 	 */
5762 	if (path->slots[0] == 0) {
5763 		BTRFS_I(inode)->index_cnt = 2;
5764 		goto out;
5765 	}
5766 
5767 	path->slots[0]--;
5768 
5769 	leaf = path->nodes[0];
5770 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5771 
5772 	if (found_key.objectid != btrfs_ino(inode) ||
5773 	    found_key.type != BTRFS_DIR_INDEX_KEY) {
5774 		BTRFS_I(inode)->index_cnt = 2;
5775 		goto out;
5776 	}
5777 
5778 	BTRFS_I(inode)->index_cnt = found_key.offset + 1;
5779 out:
5780 	btrfs_free_path(path);
5781 	return ret;
5782 }
5783 
5784 /*
5785  * helper to find a free sequence number in a given directory.  This current
5786  * code is very simple, later versions will do smarter things in the btree
5787  */
5788 int btrfs_set_inode_index(struct inode *dir, u64 *index)
5789 {
5790 	int ret = 0;
5791 
5792 	if (BTRFS_I(dir)->index_cnt == (u64)-1) {
5793 		ret = btrfs_inode_delayed_dir_index_count(dir);
5794 		if (ret) {
5795 			ret = btrfs_set_inode_index_count(dir);
5796 			if (ret)
5797 				return ret;
5798 		}
5799 	}
5800 
5801 	*index = BTRFS_I(dir)->index_cnt;
5802 	BTRFS_I(dir)->index_cnt++;
5803 
5804 	return ret;
5805 }
5806 
5807 static int btrfs_insert_inode_locked(struct inode *inode)
5808 {
5809 	struct btrfs_iget_args args;
5810 	args.location = &BTRFS_I(inode)->location;
5811 	args.root = BTRFS_I(inode)->root;
5812 
5813 	return insert_inode_locked4(inode,
5814 		   btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
5815 		   btrfs_find_actor, &args);
5816 }
5817 
5818 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
5819 				     struct btrfs_root *root,
5820 				     struct inode *dir,
5821 				     const char *name, int name_len,
5822 				     u64 ref_objectid, u64 objectid,
5823 				     umode_t mode, u64 *index)
5824 {
5825 	struct inode *inode;
5826 	struct btrfs_inode_item *inode_item;
5827 	struct btrfs_key *location;
5828 	struct btrfs_path *path;
5829 	struct btrfs_inode_ref *ref;
5830 	struct btrfs_key key[2];
5831 	u32 sizes[2];
5832 	int nitems = name ? 2 : 1;
5833 	unsigned long ptr;
5834 	int ret;
5835 
5836 	path = btrfs_alloc_path();
5837 	if (!path)
5838 		return ERR_PTR(-ENOMEM);
5839 
5840 	inode = new_inode(root->fs_info->sb);
5841 	if (!inode) {
5842 		btrfs_free_path(path);
5843 		return ERR_PTR(-ENOMEM);
5844 	}
5845 
5846 	/*
5847 	 * O_TMPFILE, set link count to 0, so that after this point,
5848 	 * we fill in an inode item with the correct link count.
5849 	 */
5850 	if (!name)
5851 		set_nlink(inode, 0);
5852 
5853 	/*
5854 	 * we have to initialize this early, so we can reclaim the inode
5855 	 * number if we fail afterwards in this function.
5856 	 */
5857 	inode->i_ino = objectid;
5858 
5859 	if (dir && name) {
5860 		trace_btrfs_inode_request(dir);
5861 
5862 		ret = btrfs_set_inode_index(dir, index);
5863 		if (ret) {
5864 			btrfs_free_path(path);
5865 			iput(inode);
5866 			return ERR_PTR(ret);
5867 		}
5868 	} else if (dir) {
5869 		*index = 0;
5870 	}
5871 	/*
5872 	 * index_cnt is ignored for everything but a dir,
5873 	 * btrfs_get_inode_index_count has an explanation for the magic
5874 	 * number
5875 	 */
5876 	BTRFS_I(inode)->index_cnt = 2;
5877 	BTRFS_I(inode)->dir_index = *index;
5878 	BTRFS_I(inode)->root = root;
5879 	BTRFS_I(inode)->generation = trans->transid;
5880 	inode->i_generation = BTRFS_I(inode)->generation;
5881 
5882 	/*
5883 	 * We could have gotten an inode number from somebody who was fsynced
5884 	 * and then removed in this same transaction, so let's just set full
5885 	 * sync since it will be a full sync anyway and this will blow away the
5886 	 * old info in the log.
5887 	 */
5888 	set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
5889 
5890 	key[0].objectid = objectid;
5891 	key[0].type = BTRFS_INODE_ITEM_KEY;
5892 	key[0].offset = 0;
5893 
5894 	sizes[0] = sizeof(struct btrfs_inode_item);
5895 
5896 	if (name) {
5897 		/*
5898 		 * Start new inodes with an inode_ref. This is slightly more
5899 		 * efficient for small numbers of hard links since they will
5900 		 * be packed into one item. Extended refs will kick in if we
5901 		 * add more hard links than can fit in the ref item.
5902 		 */
5903 		key[1].objectid = objectid;
5904 		key[1].type = BTRFS_INODE_REF_KEY;
5905 		key[1].offset = ref_objectid;
5906 
5907 		sizes[1] = name_len + sizeof(*ref);
5908 	}
5909 
5910 	location = &BTRFS_I(inode)->location;
5911 	location->objectid = objectid;
5912 	location->offset = 0;
5913 	location->type = BTRFS_INODE_ITEM_KEY;
5914 
5915 	ret = btrfs_insert_inode_locked(inode);
5916 	if (ret < 0)
5917 		goto fail;
5918 
5919 	path->leave_spinning = 1;
5920 	ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems);
5921 	if (ret != 0)
5922 		goto fail_unlock;
5923 
5924 	inode_init_owner(inode, dir, mode);
5925 	inode_set_bytes(inode, 0);
5926 
5927 	inode->i_mtime = CURRENT_TIME;
5928 	inode->i_atime = inode->i_mtime;
5929 	inode->i_ctime = inode->i_mtime;
5930 	BTRFS_I(inode)->i_otime = inode->i_mtime;
5931 
5932 	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
5933 				  struct btrfs_inode_item);
5934 	memset_extent_buffer(path->nodes[0], 0, (unsigned long)inode_item,
5935 			     sizeof(*inode_item));
5936 	fill_inode_item(trans, path->nodes[0], inode_item, inode);
5937 
5938 	if (name) {
5939 		ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
5940 				     struct btrfs_inode_ref);
5941 		btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
5942 		btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
5943 		ptr = (unsigned long)(ref + 1);
5944 		write_extent_buffer(path->nodes[0], name, ptr, name_len);
5945 	}
5946 
5947 	btrfs_mark_buffer_dirty(path->nodes[0]);
5948 	btrfs_free_path(path);
5949 
5950 	btrfs_inherit_iflags(inode, dir);
5951 
5952 	if (S_ISREG(mode)) {
5953 		if (btrfs_test_opt(root, NODATASUM))
5954 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
5955 		if (btrfs_test_opt(root, NODATACOW))
5956 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
5957 				BTRFS_INODE_NODATASUM;
5958 	}
5959 
5960 	inode_tree_add(inode);
5961 
5962 	trace_btrfs_inode_new(inode);
5963 	btrfs_set_inode_last_trans(trans, inode);
5964 
5965 	btrfs_update_root_times(trans, root);
5966 
5967 	ret = btrfs_inode_inherit_props(trans, inode, dir);
5968 	if (ret)
5969 		btrfs_err(root->fs_info,
5970 			  "error inheriting props for ino %llu (root %llu): %d",
5971 			  btrfs_ino(inode), root->root_key.objectid, ret);
5972 
5973 	return inode;
5974 
5975 fail_unlock:
5976 	unlock_new_inode(inode);
5977 fail:
5978 	if (dir && name)
5979 		BTRFS_I(dir)->index_cnt--;
5980 	btrfs_free_path(path);
5981 	iput(inode);
5982 	return ERR_PTR(ret);
5983 }
5984 
5985 static inline u8 btrfs_inode_type(struct inode *inode)
5986 {
5987 	return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
5988 }
5989 
5990 /*
5991  * utility function to add 'inode' into 'parent_inode' with
5992  * a give name and a given sequence number.
5993  * if 'add_backref' is true, also insert a backref from the
5994  * inode to the parent directory.
5995  */
5996 int btrfs_add_link(struct btrfs_trans_handle *trans,
5997 		   struct inode *parent_inode, struct inode *inode,
5998 		   const char *name, int name_len, int add_backref, u64 index)
5999 {
6000 	int ret = 0;
6001 	struct btrfs_key key;
6002 	struct btrfs_root *root = BTRFS_I(parent_inode)->root;
6003 	u64 ino = btrfs_ino(inode);
6004 	u64 parent_ino = btrfs_ino(parent_inode);
6005 
6006 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6007 		memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
6008 	} else {
6009 		key.objectid = ino;
6010 		key.type = BTRFS_INODE_ITEM_KEY;
6011 		key.offset = 0;
6012 	}
6013 
6014 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6015 		ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
6016 					 key.objectid, root->root_key.objectid,
6017 					 parent_ino, index, name, name_len);
6018 	} else if (add_backref) {
6019 		ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
6020 					     parent_ino, index);
6021 	}
6022 
6023 	/* Nothing to clean up yet */
6024 	if (ret)
6025 		return ret;
6026 
6027 	ret = btrfs_insert_dir_item(trans, root, name, name_len,
6028 				    parent_inode, &key,
6029 				    btrfs_inode_type(inode), index);
6030 	if (ret == -EEXIST || ret == -EOVERFLOW)
6031 		goto fail_dir_item;
6032 	else if (ret) {
6033 		btrfs_abort_transaction(trans, root, ret);
6034 		return ret;
6035 	}
6036 
6037 	btrfs_i_size_write(parent_inode, parent_inode->i_size +
6038 			   name_len * 2);
6039 	inode_inc_iversion(parent_inode);
6040 	parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
6041 	ret = btrfs_update_inode(trans, root, parent_inode);
6042 	if (ret)
6043 		btrfs_abort_transaction(trans, root, ret);
6044 	return ret;
6045 
6046 fail_dir_item:
6047 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6048 		u64 local_index;
6049 		int err;
6050 		err = btrfs_del_root_ref(trans, root->fs_info->tree_root,
6051 				 key.objectid, root->root_key.objectid,
6052 				 parent_ino, &local_index, name, name_len);
6053 
6054 	} else if (add_backref) {
6055 		u64 local_index;
6056 		int err;
6057 
6058 		err = btrfs_del_inode_ref(trans, root, name, name_len,
6059 					  ino, parent_ino, &local_index);
6060 	}
6061 	return ret;
6062 }
6063 
6064 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
6065 			    struct inode *dir, struct dentry *dentry,
6066 			    struct inode *inode, int backref, u64 index)
6067 {
6068 	int err = btrfs_add_link(trans, dir, inode,
6069 				 dentry->d_name.name, dentry->d_name.len,
6070 				 backref, index);
6071 	if (err > 0)
6072 		err = -EEXIST;
6073 	return err;
6074 }
6075 
6076 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
6077 			umode_t mode, dev_t rdev)
6078 {
6079 	struct btrfs_trans_handle *trans;
6080 	struct btrfs_root *root = BTRFS_I(dir)->root;
6081 	struct inode *inode = NULL;
6082 	int err;
6083 	int drop_inode = 0;
6084 	u64 objectid;
6085 	u64 index = 0;
6086 
6087 	if (!new_valid_dev(rdev))
6088 		return -EINVAL;
6089 
6090 	/*
6091 	 * 2 for inode item and ref
6092 	 * 2 for dir items
6093 	 * 1 for xattr if selinux is on
6094 	 */
6095 	trans = btrfs_start_transaction(root, 5);
6096 	if (IS_ERR(trans))
6097 		return PTR_ERR(trans);
6098 
6099 	err = btrfs_find_free_ino(root, &objectid);
6100 	if (err)
6101 		goto out_unlock;
6102 
6103 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6104 				dentry->d_name.len, btrfs_ino(dir), objectid,
6105 				mode, &index);
6106 	if (IS_ERR(inode)) {
6107 		err = PTR_ERR(inode);
6108 		goto out_unlock;
6109 	}
6110 
6111 	/*
6112 	* If the active LSM wants to access the inode during
6113 	* d_instantiate it needs these. Smack checks to see
6114 	* if the filesystem supports xattrs by looking at the
6115 	* ops vector.
6116 	*/
6117 	inode->i_op = &btrfs_special_inode_operations;
6118 	init_special_inode(inode, inode->i_mode, rdev);
6119 
6120 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6121 	if (err)
6122 		goto out_unlock_inode;
6123 
6124 	err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
6125 	if (err) {
6126 		goto out_unlock_inode;
6127 	} else {
6128 		btrfs_update_inode(trans, root, inode);
6129 		unlock_new_inode(inode);
6130 		d_instantiate(dentry, inode);
6131 	}
6132 
6133 out_unlock:
6134 	btrfs_end_transaction(trans, root);
6135 	btrfs_balance_delayed_items(root);
6136 	btrfs_btree_balance_dirty(root);
6137 	if (drop_inode) {
6138 		inode_dec_link_count(inode);
6139 		iput(inode);
6140 	}
6141 	return err;
6142 
6143 out_unlock_inode:
6144 	drop_inode = 1;
6145 	unlock_new_inode(inode);
6146 	goto out_unlock;
6147 
6148 }
6149 
6150 static int btrfs_create(struct inode *dir, struct dentry *dentry,
6151 			umode_t mode, bool excl)
6152 {
6153 	struct btrfs_trans_handle *trans;
6154 	struct btrfs_root *root = BTRFS_I(dir)->root;
6155 	struct inode *inode = NULL;
6156 	int drop_inode_on_err = 0;
6157 	int err;
6158 	u64 objectid;
6159 	u64 index = 0;
6160 
6161 	/*
6162 	 * 2 for inode item and ref
6163 	 * 2 for dir items
6164 	 * 1 for xattr if selinux is on
6165 	 */
6166 	trans = btrfs_start_transaction(root, 5);
6167 	if (IS_ERR(trans))
6168 		return PTR_ERR(trans);
6169 
6170 	err = btrfs_find_free_ino(root, &objectid);
6171 	if (err)
6172 		goto out_unlock;
6173 
6174 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6175 				dentry->d_name.len, btrfs_ino(dir), objectid,
6176 				mode, &index);
6177 	if (IS_ERR(inode)) {
6178 		err = PTR_ERR(inode);
6179 		goto out_unlock;
6180 	}
6181 	drop_inode_on_err = 1;
6182 	/*
6183 	* If the active LSM wants to access the inode during
6184 	* d_instantiate it needs these. Smack checks to see
6185 	* if the filesystem supports xattrs by looking at the
6186 	* ops vector.
6187 	*/
6188 	inode->i_fop = &btrfs_file_operations;
6189 	inode->i_op = &btrfs_file_inode_operations;
6190 	inode->i_mapping->a_ops = &btrfs_aops;
6191 
6192 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6193 	if (err)
6194 		goto out_unlock_inode;
6195 
6196 	err = btrfs_update_inode(trans, root, inode);
6197 	if (err)
6198 		goto out_unlock_inode;
6199 
6200 	err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
6201 	if (err)
6202 		goto out_unlock_inode;
6203 
6204 	BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
6205 	unlock_new_inode(inode);
6206 	d_instantiate(dentry, inode);
6207 
6208 out_unlock:
6209 	btrfs_end_transaction(trans, root);
6210 	if (err && drop_inode_on_err) {
6211 		inode_dec_link_count(inode);
6212 		iput(inode);
6213 	}
6214 	btrfs_balance_delayed_items(root);
6215 	btrfs_btree_balance_dirty(root);
6216 	return err;
6217 
6218 out_unlock_inode:
6219 	unlock_new_inode(inode);
6220 	goto out_unlock;
6221 
6222 }
6223 
6224 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6225 		      struct dentry *dentry)
6226 {
6227 	struct btrfs_trans_handle *trans;
6228 	struct btrfs_root *root = BTRFS_I(dir)->root;
6229 	struct inode *inode = old_dentry->d_inode;
6230 	u64 index;
6231 	int err;
6232 	int drop_inode = 0;
6233 
6234 	/* do not allow sys_link's with other subvols of the same device */
6235 	if (root->objectid != BTRFS_I(inode)->root->objectid)
6236 		return -EXDEV;
6237 
6238 	if (inode->i_nlink >= BTRFS_LINK_MAX)
6239 		return -EMLINK;
6240 
6241 	err = btrfs_set_inode_index(dir, &index);
6242 	if (err)
6243 		goto fail;
6244 
6245 	/*
6246 	 * 2 items for inode and inode ref
6247 	 * 2 items for dir items
6248 	 * 1 item for parent inode
6249 	 */
6250 	trans = btrfs_start_transaction(root, 5);
6251 	if (IS_ERR(trans)) {
6252 		err = PTR_ERR(trans);
6253 		goto fail;
6254 	}
6255 
6256 	/* There are several dir indexes for this inode, clear the cache. */
6257 	BTRFS_I(inode)->dir_index = 0ULL;
6258 	inc_nlink(inode);
6259 	inode_inc_iversion(inode);
6260 	inode->i_ctime = CURRENT_TIME;
6261 	ihold(inode);
6262 	set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
6263 
6264 	err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
6265 
6266 	if (err) {
6267 		drop_inode = 1;
6268 	} else {
6269 		struct dentry *parent = dentry->d_parent;
6270 		err = btrfs_update_inode(trans, root, inode);
6271 		if (err)
6272 			goto fail;
6273 		if (inode->i_nlink == 1) {
6274 			/*
6275 			 * If new hard link count is 1, it's a file created
6276 			 * with open(2) O_TMPFILE flag.
6277 			 */
6278 			err = btrfs_orphan_del(trans, inode);
6279 			if (err)
6280 				goto fail;
6281 		}
6282 		d_instantiate(dentry, inode);
6283 		btrfs_log_new_name(trans, inode, NULL, parent);
6284 	}
6285 
6286 	btrfs_end_transaction(trans, root);
6287 	btrfs_balance_delayed_items(root);
6288 fail:
6289 	if (drop_inode) {
6290 		inode_dec_link_count(inode);
6291 		iput(inode);
6292 	}
6293 	btrfs_btree_balance_dirty(root);
6294 	return err;
6295 }
6296 
6297 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
6298 {
6299 	struct inode *inode = NULL;
6300 	struct btrfs_trans_handle *trans;
6301 	struct btrfs_root *root = BTRFS_I(dir)->root;
6302 	int err = 0;
6303 	int drop_on_err = 0;
6304 	u64 objectid = 0;
6305 	u64 index = 0;
6306 
6307 	/*
6308 	 * 2 items for inode and ref
6309 	 * 2 items for dir items
6310 	 * 1 for xattr if selinux is on
6311 	 */
6312 	trans = btrfs_start_transaction(root, 5);
6313 	if (IS_ERR(trans))
6314 		return PTR_ERR(trans);
6315 
6316 	err = btrfs_find_free_ino(root, &objectid);
6317 	if (err)
6318 		goto out_fail;
6319 
6320 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6321 				dentry->d_name.len, btrfs_ino(dir), objectid,
6322 				S_IFDIR | mode, &index);
6323 	if (IS_ERR(inode)) {
6324 		err = PTR_ERR(inode);
6325 		goto out_fail;
6326 	}
6327 
6328 	drop_on_err = 1;
6329 	/* these must be set before we unlock the inode */
6330 	inode->i_op = &btrfs_dir_inode_operations;
6331 	inode->i_fop = &btrfs_dir_file_operations;
6332 
6333 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6334 	if (err)
6335 		goto out_fail_inode;
6336 
6337 	btrfs_i_size_write(inode, 0);
6338 	err = btrfs_update_inode(trans, root, inode);
6339 	if (err)
6340 		goto out_fail_inode;
6341 
6342 	err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
6343 			     dentry->d_name.len, 0, index);
6344 	if (err)
6345 		goto out_fail_inode;
6346 
6347 	d_instantiate(dentry, inode);
6348 	/*
6349 	 * mkdir is special.  We're unlocking after we call d_instantiate
6350 	 * to avoid a race with nfsd calling d_instantiate.
6351 	 */
6352 	unlock_new_inode(inode);
6353 	drop_on_err = 0;
6354 
6355 out_fail:
6356 	btrfs_end_transaction(trans, root);
6357 	if (drop_on_err) {
6358 		inode_dec_link_count(inode);
6359 		iput(inode);
6360 	}
6361 	btrfs_balance_delayed_items(root);
6362 	btrfs_btree_balance_dirty(root);
6363 	return err;
6364 
6365 out_fail_inode:
6366 	unlock_new_inode(inode);
6367 	goto out_fail;
6368 }
6369 
6370 /* Find next extent map of a given extent map, caller needs to ensure locks */
6371 static struct extent_map *next_extent_map(struct extent_map *em)
6372 {
6373 	struct rb_node *next;
6374 
6375 	next = rb_next(&em->rb_node);
6376 	if (!next)
6377 		return NULL;
6378 	return container_of(next, struct extent_map, rb_node);
6379 }
6380 
6381 static struct extent_map *prev_extent_map(struct extent_map *em)
6382 {
6383 	struct rb_node *prev;
6384 
6385 	prev = rb_prev(&em->rb_node);
6386 	if (!prev)
6387 		return NULL;
6388 	return container_of(prev, struct extent_map, rb_node);
6389 }
6390 
6391 /* helper for btfs_get_extent.  Given an existing extent in the tree,
6392  * the existing extent is the nearest extent to map_start,
6393  * and an extent that you want to insert, deal with overlap and insert
6394  * the best fitted new extent into the tree.
6395  */
6396 static int merge_extent_mapping(struct extent_map_tree *em_tree,
6397 				struct extent_map *existing,
6398 				struct extent_map *em,
6399 				u64 map_start)
6400 {
6401 	struct extent_map *prev;
6402 	struct extent_map *next;
6403 	u64 start;
6404 	u64 end;
6405 	u64 start_diff;
6406 
6407 	BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
6408 
6409 	if (existing->start > map_start) {
6410 		next = existing;
6411 		prev = prev_extent_map(next);
6412 	} else {
6413 		prev = existing;
6414 		next = next_extent_map(prev);
6415 	}
6416 
6417 	start = prev ? extent_map_end(prev) : em->start;
6418 	start = max_t(u64, start, em->start);
6419 	end = next ? next->start : extent_map_end(em);
6420 	end = min_t(u64, end, extent_map_end(em));
6421 	start_diff = start - em->start;
6422 	em->start = start;
6423 	em->len = end - start;
6424 	if (em->block_start < EXTENT_MAP_LAST_BYTE &&
6425 	    !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
6426 		em->block_start += start_diff;
6427 		em->block_len -= start_diff;
6428 	}
6429 	return add_extent_mapping(em_tree, em, 0);
6430 }
6431 
6432 static noinline int uncompress_inline(struct btrfs_path *path,
6433 				      struct inode *inode, struct page *page,
6434 				      size_t pg_offset, u64 extent_offset,
6435 				      struct btrfs_file_extent_item *item)
6436 {
6437 	int ret;
6438 	struct extent_buffer *leaf = path->nodes[0];
6439 	char *tmp;
6440 	size_t max_size;
6441 	unsigned long inline_size;
6442 	unsigned long ptr;
6443 	int compress_type;
6444 
6445 	WARN_ON(pg_offset != 0);
6446 	compress_type = btrfs_file_extent_compression(leaf, item);
6447 	max_size = btrfs_file_extent_ram_bytes(leaf, item);
6448 	inline_size = btrfs_file_extent_inline_item_len(leaf,
6449 					btrfs_item_nr(path->slots[0]));
6450 	tmp = kmalloc(inline_size, GFP_NOFS);
6451 	if (!tmp)
6452 		return -ENOMEM;
6453 	ptr = btrfs_file_extent_inline_start(item);
6454 
6455 	read_extent_buffer(leaf, tmp, ptr, inline_size);
6456 
6457 	max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
6458 	ret = btrfs_decompress(compress_type, tmp, page,
6459 			       extent_offset, inline_size, max_size);
6460 	kfree(tmp);
6461 	return ret;
6462 }
6463 
6464 /*
6465  * a bit scary, this does extent mapping from logical file offset to the disk.
6466  * the ugly parts come from merging extents from the disk with the in-ram
6467  * representation.  This gets more complex because of the data=ordered code,
6468  * where the in-ram extents might be locked pending data=ordered completion.
6469  *
6470  * This also copies inline extents directly into the page.
6471  */
6472 
6473 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
6474 				    size_t pg_offset, u64 start, u64 len,
6475 				    int create)
6476 {
6477 	int ret;
6478 	int err = 0;
6479 	u64 extent_start = 0;
6480 	u64 extent_end = 0;
6481 	u64 objectid = btrfs_ino(inode);
6482 	u32 found_type;
6483 	struct btrfs_path *path = NULL;
6484 	struct btrfs_root *root = BTRFS_I(inode)->root;
6485 	struct btrfs_file_extent_item *item;
6486 	struct extent_buffer *leaf;
6487 	struct btrfs_key found_key;
6488 	struct extent_map *em = NULL;
6489 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
6490 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
6491 	struct btrfs_trans_handle *trans = NULL;
6492 	const bool new_inline = !page || create;
6493 
6494 again:
6495 	read_lock(&em_tree->lock);
6496 	em = lookup_extent_mapping(em_tree, start, len);
6497 	if (em)
6498 		em->bdev = root->fs_info->fs_devices->latest_bdev;
6499 	read_unlock(&em_tree->lock);
6500 
6501 	if (em) {
6502 		if (em->start > start || em->start + em->len <= start)
6503 			free_extent_map(em);
6504 		else if (em->block_start == EXTENT_MAP_INLINE && page)
6505 			free_extent_map(em);
6506 		else
6507 			goto out;
6508 	}
6509 	em = alloc_extent_map();
6510 	if (!em) {
6511 		err = -ENOMEM;
6512 		goto out;
6513 	}
6514 	em->bdev = root->fs_info->fs_devices->latest_bdev;
6515 	em->start = EXTENT_MAP_HOLE;
6516 	em->orig_start = EXTENT_MAP_HOLE;
6517 	em->len = (u64)-1;
6518 	em->block_len = (u64)-1;
6519 
6520 	if (!path) {
6521 		path = btrfs_alloc_path();
6522 		if (!path) {
6523 			err = -ENOMEM;
6524 			goto out;
6525 		}
6526 		/*
6527 		 * Chances are we'll be called again, so go ahead and do
6528 		 * readahead
6529 		 */
6530 		path->reada = 1;
6531 	}
6532 
6533 	ret = btrfs_lookup_file_extent(trans, root, path,
6534 				       objectid, start, trans != NULL);
6535 	if (ret < 0) {
6536 		err = ret;
6537 		goto out;
6538 	}
6539 
6540 	if (ret != 0) {
6541 		if (path->slots[0] == 0)
6542 			goto not_found;
6543 		path->slots[0]--;
6544 	}
6545 
6546 	leaf = path->nodes[0];
6547 	item = btrfs_item_ptr(leaf, path->slots[0],
6548 			      struct btrfs_file_extent_item);
6549 	/* are we inside the extent that was found? */
6550 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6551 	found_type = found_key.type;
6552 	if (found_key.objectid != objectid ||
6553 	    found_type != BTRFS_EXTENT_DATA_KEY) {
6554 		/*
6555 		 * If we backup past the first extent we want to move forward
6556 		 * and see if there is an extent in front of us, otherwise we'll
6557 		 * say there is a hole for our whole search range which can
6558 		 * cause problems.
6559 		 */
6560 		extent_end = start;
6561 		goto next;
6562 	}
6563 
6564 	found_type = btrfs_file_extent_type(leaf, item);
6565 	extent_start = found_key.offset;
6566 	if (found_type == BTRFS_FILE_EXTENT_REG ||
6567 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
6568 		extent_end = extent_start +
6569 		       btrfs_file_extent_num_bytes(leaf, item);
6570 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6571 		size_t size;
6572 		size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
6573 		extent_end = ALIGN(extent_start + size, root->sectorsize);
6574 	}
6575 next:
6576 	if (start >= extent_end) {
6577 		path->slots[0]++;
6578 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6579 			ret = btrfs_next_leaf(root, path);
6580 			if (ret < 0) {
6581 				err = ret;
6582 				goto out;
6583 			}
6584 			if (ret > 0)
6585 				goto not_found;
6586 			leaf = path->nodes[0];
6587 		}
6588 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6589 		if (found_key.objectid != objectid ||
6590 		    found_key.type != BTRFS_EXTENT_DATA_KEY)
6591 			goto not_found;
6592 		if (start + len <= found_key.offset)
6593 			goto not_found;
6594 		if (start > found_key.offset)
6595 			goto next;
6596 		em->start = start;
6597 		em->orig_start = start;
6598 		em->len = found_key.offset - start;
6599 		goto not_found_em;
6600 	}
6601 
6602 	btrfs_extent_item_to_extent_map(inode, path, item, new_inline, em);
6603 
6604 	if (found_type == BTRFS_FILE_EXTENT_REG ||
6605 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
6606 		goto insert;
6607 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6608 		unsigned long ptr;
6609 		char *map;
6610 		size_t size;
6611 		size_t extent_offset;
6612 		size_t copy_size;
6613 
6614 		if (new_inline)
6615 			goto out;
6616 
6617 		size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
6618 		extent_offset = page_offset(page) + pg_offset - extent_start;
6619 		copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
6620 				size - extent_offset);
6621 		em->start = extent_start + extent_offset;
6622 		em->len = ALIGN(copy_size, root->sectorsize);
6623 		em->orig_block_len = em->len;
6624 		em->orig_start = em->start;
6625 		ptr = btrfs_file_extent_inline_start(item) + extent_offset;
6626 		if (create == 0 && !PageUptodate(page)) {
6627 			if (btrfs_file_extent_compression(leaf, item) !=
6628 			    BTRFS_COMPRESS_NONE) {
6629 				ret = uncompress_inline(path, inode, page,
6630 							pg_offset,
6631 							extent_offset, item);
6632 				if (ret) {
6633 					err = ret;
6634 					goto out;
6635 				}
6636 			} else {
6637 				map = kmap(page);
6638 				read_extent_buffer(leaf, map + pg_offset, ptr,
6639 						   copy_size);
6640 				if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
6641 					memset(map + pg_offset + copy_size, 0,
6642 					       PAGE_CACHE_SIZE - pg_offset -
6643 					       copy_size);
6644 				}
6645 				kunmap(page);
6646 			}
6647 			flush_dcache_page(page);
6648 		} else if (create && PageUptodate(page)) {
6649 			BUG();
6650 			if (!trans) {
6651 				kunmap(page);
6652 				free_extent_map(em);
6653 				em = NULL;
6654 
6655 				btrfs_release_path(path);
6656 				trans = btrfs_join_transaction(root);
6657 
6658 				if (IS_ERR(trans))
6659 					return ERR_CAST(trans);
6660 				goto again;
6661 			}
6662 			map = kmap(page);
6663 			write_extent_buffer(leaf, map + pg_offset, ptr,
6664 					    copy_size);
6665 			kunmap(page);
6666 			btrfs_mark_buffer_dirty(leaf);
6667 		}
6668 		set_extent_uptodate(io_tree, em->start,
6669 				    extent_map_end(em) - 1, NULL, GFP_NOFS);
6670 		goto insert;
6671 	}
6672 not_found:
6673 	em->start = start;
6674 	em->orig_start = start;
6675 	em->len = len;
6676 not_found_em:
6677 	em->block_start = EXTENT_MAP_HOLE;
6678 	set_bit(EXTENT_FLAG_VACANCY, &em->flags);
6679 insert:
6680 	btrfs_release_path(path);
6681 	if (em->start > start || extent_map_end(em) <= start) {
6682 		btrfs_err(root->fs_info, "bad extent! em: [%llu %llu] passed [%llu %llu]",
6683 			em->start, em->len, start, len);
6684 		err = -EIO;
6685 		goto out;
6686 	}
6687 
6688 	err = 0;
6689 	write_lock(&em_tree->lock);
6690 	ret = add_extent_mapping(em_tree, em, 0);
6691 	/* it is possible that someone inserted the extent into the tree
6692 	 * while we had the lock dropped.  It is also possible that
6693 	 * an overlapping map exists in the tree
6694 	 */
6695 	if (ret == -EEXIST) {
6696 		struct extent_map *existing;
6697 
6698 		ret = 0;
6699 
6700 		existing = search_extent_mapping(em_tree, start, len);
6701 		/*
6702 		 * existing will always be non-NULL, since there must be
6703 		 * extent causing the -EEXIST.
6704 		 */
6705 		if (start >= extent_map_end(existing) ||
6706 		    start <= existing->start) {
6707 			/*
6708 			 * The existing extent map is the one nearest to
6709 			 * the [start, start + len) range which overlaps
6710 			 */
6711 			err = merge_extent_mapping(em_tree, existing,
6712 						   em, start);
6713 			free_extent_map(existing);
6714 			if (err) {
6715 				free_extent_map(em);
6716 				em = NULL;
6717 			}
6718 		} else {
6719 			free_extent_map(em);
6720 			em = existing;
6721 			err = 0;
6722 		}
6723 	}
6724 	write_unlock(&em_tree->lock);
6725 out:
6726 
6727 	trace_btrfs_get_extent(root, em);
6728 
6729 	if (path)
6730 		btrfs_free_path(path);
6731 	if (trans) {
6732 		ret = btrfs_end_transaction(trans, root);
6733 		if (!err)
6734 			err = ret;
6735 	}
6736 	if (err) {
6737 		free_extent_map(em);
6738 		return ERR_PTR(err);
6739 	}
6740 	BUG_ON(!em); /* Error is always set */
6741 	return em;
6742 }
6743 
6744 struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
6745 					   size_t pg_offset, u64 start, u64 len,
6746 					   int create)
6747 {
6748 	struct extent_map *em;
6749 	struct extent_map *hole_em = NULL;
6750 	u64 range_start = start;
6751 	u64 end;
6752 	u64 found;
6753 	u64 found_end;
6754 	int err = 0;
6755 
6756 	em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
6757 	if (IS_ERR(em))
6758 		return em;
6759 	if (em) {
6760 		/*
6761 		 * if our em maps to
6762 		 * -  a hole or
6763 		 * -  a pre-alloc extent,
6764 		 * there might actually be delalloc bytes behind it.
6765 		 */
6766 		if (em->block_start != EXTENT_MAP_HOLE &&
6767 		    !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
6768 			return em;
6769 		else
6770 			hole_em = em;
6771 	}
6772 
6773 	/* check to see if we've wrapped (len == -1 or similar) */
6774 	end = start + len;
6775 	if (end < start)
6776 		end = (u64)-1;
6777 	else
6778 		end -= 1;
6779 
6780 	em = NULL;
6781 
6782 	/* ok, we didn't find anything, lets look for delalloc */
6783 	found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
6784 				 end, len, EXTENT_DELALLOC, 1);
6785 	found_end = range_start + found;
6786 	if (found_end < range_start)
6787 		found_end = (u64)-1;
6788 
6789 	/*
6790 	 * we didn't find anything useful, return
6791 	 * the original results from get_extent()
6792 	 */
6793 	if (range_start > end || found_end <= start) {
6794 		em = hole_em;
6795 		hole_em = NULL;
6796 		goto out;
6797 	}
6798 
6799 	/* adjust the range_start to make sure it doesn't
6800 	 * go backwards from the start they passed in
6801 	 */
6802 	range_start = max(start, range_start);
6803 	found = found_end - range_start;
6804 
6805 	if (found > 0) {
6806 		u64 hole_start = start;
6807 		u64 hole_len = len;
6808 
6809 		em = alloc_extent_map();
6810 		if (!em) {
6811 			err = -ENOMEM;
6812 			goto out;
6813 		}
6814 		/*
6815 		 * when btrfs_get_extent can't find anything it
6816 		 * returns one huge hole
6817 		 *
6818 		 * make sure what it found really fits our range, and
6819 		 * adjust to make sure it is based on the start from
6820 		 * the caller
6821 		 */
6822 		if (hole_em) {
6823 			u64 calc_end = extent_map_end(hole_em);
6824 
6825 			if (calc_end <= start || (hole_em->start > end)) {
6826 				free_extent_map(hole_em);
6827 				hole_em = NULL;
6828 			} else {
6829 				hole_start = max(hole_em->start, start);
6830 				hole_len = calc_end - hole_start;
6831 			}
6832 		}
6833 		em->bdev = NULL;
6834 		if (hole_em && range_start > hole_start) {
6835 			/* our hole starts before our delalloc, so we
6836 			 * have to return just the parts of the hole
6837 			 * that go until  the delalloc starts
6838 			 */
6839 			em->len = min(hole_len,
6840 				      range_start - hole_start);
6841 			em->start = hole_start;
6842 			em->orig_start = hole_start;
6843 			/*
6844 			 * don't adjust block start at all,
6845 			 * it is fixed at EXTENT_MAP_HOLE
6846 			 */
6847 			em->block_start = hole_em->block_start;
6848 			em->block_len = hole_len;
6849 			if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
6850 				set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
6851 		} else {
6852 			em->start = range_start;
6853 			em->len = found;
6854 			em->orig_start = range_start;
6855 			em->block_start = EXTENT_MAP_DELALLOC;
6856 			em->block_len = found;
6857 		}
6858 	} else if (hole_em) {
6859 		return hole_em;
6860 	}
6861 out:
6862 
6863 	free_extent_map(hole_em);
6864 	if (err) {
6865 		free_extent_map(em);
6866 		return ERR_PTR(err);
6867 	}
6868 	return em;
6869 }
6870 
6871 static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
6872 						  u64 start, u64 len)
6873 {
6874 	struct btrfs_root *root = BTRFS_I(inode)->root;
6875 	struct extent_map *em;
6876 	struct btrfs_key ins;
6877 	u64 alloc_hint;
6878 	int ret;
6879 
6880 	alloc_hint = get_extent_allocation_hint(inode, start, len);
6881 	ret = btrfs_reserve_extent(root, len, root->sectorsize, 0,
6882 				   alloc_hint, &ins, 1, 1);
6883 	if (ret)
6884 		return ERR_PTR(ret);
6885 
6886 	em = create_pinned_em(inode, start, ins.offset, start, ins.objectid,
6887 			      ins.offset, ins.offset, ins.offset, 0);
6888 	if (IS_ERR(em)) {
6889 		btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
6890 		return em;
6891 	}
6892 
6893 	ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
6894 					   ins.offset, ins.offset, 0);
6895 	if (ret) {
6896 		btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
6897 		free_extent_map(em);
6898 		return ERR_PTR(ret);
6899 	}
6900 
6901 	return em;
6902 }
6903 
6904 /*
6905  * returns 1 when the nocow is safe, < 1 on error, 0 if the
6906  * block must be cow'd
6907  */
6908 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
6909 			      u64 *orig_start, u64 *orig_block_len,
6910 			      u64 *ram_bytes)
6911 {
6912 	struct btrfs_trans_handle *trans;
6913 	struct btrfs_path *path;
6914 	int ret;
6915 	struct extent_buffer *leaf;
6916 	struct btrfs_root *root = BTRFS_I(inode)->root;
6917 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
6918 	struct btrfs_file_extent_item *fi;
6919 	struct btrfs_key key;
6920 	u64 disk_bytenr;
6921 	u64 backref_offset;
6922 	u64 extent_end;
6923 	u64 num_bytes;
6924 	int slot;
6925 	int found_type;
6926 	bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
6927 
6928 	path = btrfs_alloc_path();
6929 	if (!path)
6930 		return -ENOMEM;
6931 
6932 	ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode),
6933 				       offset, 0);
6934 	if (ret < 0)
6935 		goto out;
6936 
6937 	slot = path->slots[0];
6938 	if (ret == 1) {
6939 		if (slot == 0) {
6940 			/* can't find the item, must cow */
6941 			ret = 0;
6942 			goto out;
6943 		}
6944 		slot--;
6945 	}
6946 	ret = 0;
6947 	leaf = path->nodes[0];
6948 	btrfs_item_key_to_cpu(leaf, &key, slot);
6949 	if (key.objectid != btrfs_ino(inode) ||
6950 	    key.type != BTRFS_EXTENT_DATA_KEY) {
6951 		/* not our file or wrong item type, must cow */
6952 		goto out;
6953 	}
6954 
6955 	if (key.offset > offset) {
6956 		/* Wrong offset, must cow */
6957 		goto out;
6958 	}
6959 
6960 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
6961 	found_type = btrfs_file_extent_type(leaf, fi);
6962 	if (found_type != BTRFS_FILE_EXTENT_REG &&
6963 	    found_type != BTRFS_FILE_EXTENT_PREALLOC) {
6964 		/* not a regular extent, must cow */
6965 		goto out;
6966 	}
6967 
6968 	if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
6969 		goto out;
6970 
6971 	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
6972 	if (extent_end <= offset)
6973 		goto out;
6974 
6975 	disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
6976 	if (disk_bytenr == 0)
6977 		goto out;
6978 
6979 	if (btrfs_file_extent_compression(leaf, fi) ||
6980 	    btrfs_file_extent_encryption(leaf, fi) ||
6981 	    btrfs_file_extent_other_encoding(leaf, fi))
6982 		goto out;
6983 
6984 	backref_offset = btrfs_file_extent_offset(leaf, fi);
6985 
6986 	if (orig_start) {
6987 		*orig_start = key.offset - backref_offset;
6988 		*orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
6989 		*ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
6990 	}
6991 
6992 	if (btrfs_extent_readonly(root, disk_bytenr))
6993 		goto out;
6994 
6995 	num_bytes = min(offset + *len, extent_end) - offset;
6996 	if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) {
6997 		u64 range_end;
6998 
6999 		range_end = round_up(offset + num_bytes, root->sectorsize) - 1;
7000 		ret = test_range_bit(io_tree, offset, range_end,
7001 				     EXTENT_DELALLOC, 0, NULL);
7002 		if (ret) {
7003 			ret = -EAGAIN;
7004 			goto out;
7005 		}
7006 	}
7007 
7008 	btrfs_release_path(path);
7009 
7010 	/*
7011 	 * look for other files referencing this extent, if we
7012 	 * find any we must cow
7013 	 */
7014 	trans = btrfs_join_transaction(root);
7015 	if (IS_ERR(trans)) {
7016 		ret = 0;
7017 		goto out;
7018 	}
7019 
7020 	ret = btrfs_cross_ref_exist(trans, root, btrfs_ino(inode),
7021 				    key.offset - backref_offset, disk_bytenr);
7022 	btrfs_end_transaction(trans, root);
7023 	if (ret) {
7024 		ret = 0;
7025 		goto out;
7026 	}
7027 
7028 	/*
7029 	 * adjust disk_bytenr and num_bytes to cover just the bytes
7030 	 * in this extent we are about to write.  If there
7031 	 * are any csums in that range we have to cow in order
7032 	 * to keep the csums correct
7033 	 */
7034 	disk_bytenr += backref_offset;
7035 	disk_bytenr += offset - key.offset;
7036 	if (csum_exist_in_range(root, disk_bytenr, num_bytes))
7037 				goto out;
7038 	/*
7039 	 * all of the above have passed, it is safe to overwrite this extent
7040 	 * without cow
7041 	 */
7042 	*len = num_bytes;
7043 	ret = 1;
7044 out:
7045 	btrfs_free_path(path);
7046 	return ret;
7047 }
7048 
7049 bool btrfs_page_exists_in_range(struct inode *inode, loff_t start, loff_t end)
7050 {
7051 	struct radix_tree_root *root = &inode->i_mapping->page_tree;
7052 	int found = false;
7053 	void **pagep = NULL;
7054 	struct page *page = NULL;
7055 	int start_idx;
7056 	int end_idx;
7057 
7058 	start_idx = start >> PAGE_CACHE_SHIFT;
7059 
7060 	/*
7061 	 * end is the last byte in the last page.  end == start is legal
7062 	 */
7063 	end_idx = end >> PAGE_CACHE_SHIFT;
7064 
7065 	rcu_read_lock();
7066 
7067 	/* Most of the code in this while loop is lifted from
7068 	 * find_get_page.  It's been modified to begin searching from a
7069 	 * page and return just the first page found in that range.  If the
7070 	 * found idx is less than or equal to the end idx then we know that
7071 	 * a page exists.  If no pages are found or if those pages are
7072 	 * outside of the range then we're fine (yay!) */
7073 	while (page == NULL &&
7074 	       radix_tree_gang_lookup_slot(root, &pagep, NULL, start_idx, 1)) {
7075 		page = radix_tree_deref_slot(pagep);
7076 		if (unlikely(!page))
7077 			break;
7078 
7079 		if (radix_tree_exception(page)) {
7080 			if (radix_tree_deref_retry(page)) {
7081 				page = NULL;
7082 				continue;
7083 			}
7084 			/*
7085 			 * Otherwise, shmem/tmpfs must be storing a swap entry
7086 			 * here as an exceptional entry: so return it without
7087 			 * attempting to raise page count.
7088 			 */
7089 			page = NULL;
7090 			break; /* TODO: Is this relevant for this use case? */
7091 		}
7092 
7093 		if (!page_cache_get_speculative(page)) {
7094 			page = NULL;
7095 			continue;
7096 		}
7097 
7098 		/*
7099 		 * Has the page moved?
7100 		 * This is part of the lockless pagecache protocol. See
7101 		 * include/linux/pagemap.h for details.
7102 		 */
7103 		if (unlikely(page != *pagep)) {
7104 			page_cache_release(page);
7105 			page = NULL;
7106 		}
7107 	}
7108 
7109 	if (page) {
7110 		if (page->index <= end_idx)
7111 			found = true;
7112 		page_cache_release(page);
7113 	}
7114 
7115 	rcu_read_unlock();
7116 	return found;
7117 }
7118 
7119 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
7120 			      struct extent_state **cached_state, int writing)
7121 {
7122 	struct btrfs_ordered_extent *ordered;
7123 	int ret = 0;
7124 
7125 	while (1) {
7126 		lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7127 				 0, cached_state);
7128 		/*
7129 		 * We're concerned with the entire range that we're going to be
7130 		 * doing DIO to, so we need to make sure theres no ordered
7131 		 * extents in this range.
7132 		 */
7133 		ordered = btrfs_lookup_ordered_range(inode, lockstart,
7134 						     lockend - lockstart + 1);
7135 
7136 		/*
7137 		 * We need to make sure there are no buffered pages in this
7138 		 * range either, we could have raced between the invalidate in
7139 		 * generic_file_direct_write and locking the extent.  The
7140 		 * invalidate needs to happen so that reads after a write do not
7141 		 * get stale data.
7142 		 */
7143 		if (!ordered &&
7144 		    (!writing ||
7145 		     !btrfs_page_exists_in_range(inode, lockstart, lockend)))
7146 			break;
7147 
7148 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7149 				     cached_state, GFP_NOFS);
7150 
7151 		if (ordered) {
7152 			btrfs_start_ordered_extent(inode, ordered, 1);
7153 			btrfs_put_ordered_extent(ordered);
7154 		} else {
7155 			/* Screw you mmap */
7156 			ret = btrfs_fdatawrite_range(inode, lockstart, lockend);
7157 			if (ret)
7158 				break;
7159 			ret = filemap_fdatawait_range(inode->i_mapping,
7160 						      lockstart,
7161 						      lockend);
7162 			if (ret)
7163 				break;
7164 
7165 			/*
7166 			 * If we found a page that couldn't be invalidated just
7167 			 * fall back to buffered.
7168 			 */
7169 			ret = invalidate_inode_pages2_range(inode->i_mapping,
7170 					lockstart >> PAGE_CACHE_SHIFT,
7171 					lockend >> PAGE_CACHE_SHIFT);
7172 			if (ret)
7173 				break;
7174 		}
7175 
7176 		cond_resched();
7177 	}
7178 
7179 	return ret;
7180 }
7181 
7182 static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
7183 					   u64 len, u64 orig_start,
7184 					   u64 block_start, u64 block_len,
7185 					   u64 orig_block_len, u64 ram_bytes,
7186 					   int type)
7187 {
7188 	struct extent_map_tree *em_tree;
7189 	struct extent_map *em;
7190 	struct btrfs_root *root = BTRFS_I(inode)->root;
7191 	int ret;
7192 
7193 	em_tree = &BTRFS_I(inode)->extent_tree;
7194 	em = alloc_extent_map();
7195 	if (!em)
7196 		return ERR_PTR(-ENOMEM);
7197 
7198 	em->start = start;
7199 	em->orig_start = orig_start;
7200 	em->mod_start = start;
7201 	em->mod_len = len;
7202 	em->len = len;
7203 	em->block_len = block_len;
7204 	em->block_start = block_start;
7205 	em->bdev = root->fs_info->fs_devices->latest_bdev;
7206 	em->orig_block_len = orig_block_len;
7207 	em->ram_bytes = ram_bytes;
7208 	em->generation = -1;
7209 	set_bit(EXTENT_FLAG_PINNED, &em->flags);
7210 	if (type == BTRFS_ORDERED_PREALLOC)
7211 		set_bit(EXTENT_FLAG_FILLING, &em->flags);
7212 
7213 	do {
7214 		btrfs_drop_extent_cache(inode, em->start,
7215 				em->start + em->len - 1, 0);
7216 		write_lock(&em_tree->lock);
7217 		ret = add_extent_mapping(em_tree, em, 1);
7218 		write_unlock(&em_tree->lock);
7219 	} while (ret == -EEXIST);
7220 
7221 	if (ret) {
7222 		free_extent_map(em);
7223 		return ERR_PTR(ret);
7224 	}
7225 
7226 	return em;
7227 }
7228 
7229 
7230 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
7231 				   struct buffer_head *bh_result, int create)
7232 {
7233 	struct extent_map *em;
7234 	struct btrfs_root *root = BTRFS_I(inode)->root;
7235 	struct extent_state *cached_state = NULL;
7236 	u64 start = iblock << inode->i_blkbits;
7237 	u64 lockstart, lockend;
7238 	u64 len = bh_result->b_size;
7239 	u64 *outstanding_extents = NULL;
7240 	int unlock_bits = EXTENT_LOCKED;
7241 	int ret = 0;
7242 
7243 	if (create)
7244 		unlock_bits |= EXTENT_DIRTY;
7245 	else
7246 		len = min_t(u64, len, root->sectorsize);
7247 
7248 	lockstart = start;
7249 	lockend = start + len - 1;
7250 
7251 	if (current->journal_info) {
7252 		/*
7253 		 * Need to pull our outstanding extents and set journal_info to NULL so
7254 		 * that anything that needs to check if there's a transction doesn't get
7255 		 * confused.
7256 		 */
7257 		outstanding_extents = current->journal_info;
7258 		current->journal_info = NULL;
7259 	}
7260 
7261 	/*
7262 	 * If this errors out it's because we couldn't invalidate pagecache for
7263 	 * this range and we need to fallback to buffered.
7264 	 */
7265 	if (lock_extent_direct(inode, lockstart, lockend, &cached_state, create))
7266 		return -ENOTBLK;
7267 
7268 	em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
7269 	if (IS_ERR(em)) {
7270 		ret = PTR_ERR(em);
7271 		goto unlock_err;
7272 	}
7273 
7274 	/*
7275 	 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7276 	 * io.  INLINE is special, and we could probably kludge it in here, but
7277 	 * it's still buffered so for safety lets just fall back to the generic
7278 	 * buffered path.
7279 	 *
7280 	 * For COMPRESSED we _have_ to read the entire extent in so we can
7281 	 * decompress it, so there will be buffering required no matter what we
7282 	 * do, so go ahead and fallback to buffered.
7283 	 *
7284 	 * We return -ENOTBLK because thats what makes DIO go ahead and go back
7285 	 * to buffered IO.  Don't blame me, this is the price we pay for using
7286 	 * the generic code.
7287 	 */
7288 	if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7289 	    em->block_start == EXTENT_MAP_INLINE) {
7290 		free_extent_map(em);
7291 		ret = -ENOTBLK;
7292 		goto unlock_err;
7293 	}
7294 
7295 	/* Just a good old fashioned hole, return */
7296 	if (!create && (em->block_start == EXTENT_MAP_HOLE ||
7297 			test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
7298 		free_extent_map(em);
7299 		goto unlock_err;
7300 	}
7301 
7302 	/*
7303 	 * We don't allocate a new extent in the following cases
7304 	 *
7305 	 * 1) The inode is marked as NODATACOW.  In this case we'll just use the
7306 	 * existing extent.
7307 	 * 2) The extent is marked as PREALLOC.  We're good to go here and can
7308 	 * just use the extent.
7309 	 *
7310 	 */
7311 	if (!create) {
7312 		len = min(len, em->len - (start - em->start));
7313 		lockstart = start + len;
7314 		goto unlock;
7315 	}
7316 
7317 	if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7318 	    ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7319 	     em->block_start != EXTENT_MAP_HOLE)) {
7320 		int type;
7321 		u64 block_start, orig_start, orig_block_len, ram_bytes;
7322 
7323 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7324 			type = BTRFS_ORDERED_PREALLOC;
7325 		else
7326 			type = BTRFS_ORDERED_NOCOW;
7327 		len = min(len, em->len - (start - em->start));
7328 		block_start = em->block_start + (start - em->start);
7329 
7330 		if (can_nocow_extent(inode, start, &len, &orig_start,
7331 				     &orig_block_len, &ram_bytes) == 1) {
7332 			if (type == BTRFS_ORDERED_PREALLOC) {
7333 				free_extent_map(em);
7334 				em = create_pinned_em(inode, start, len,
7335 						       orig_start,
7336 						       block_start, len,
7337 						       orig_block_len,
7338 						       ram_bytes, type);
7339 				if (IS_ERR(em)) {
7340 					ret = PTR_ERR(em);
7341 					goto unlock_err;
7342 				}
7343 			}
7344 
7345 			ret = btrfs_add_ordered_extent_dio(inode, start,
7346 					   block_start, len, len, type);
7347 			if (ret) {
7348 				free_extent_map(em);
7349 				goto unlock_err;
7350 			}
7351 			goto unlock;
7352 		}
7353 	}
7354 
7355 	/*
7356 	 * this will cow the extent, reset the len in case we changed
7357 	 * it above
7358 	 */
7359 	len = bh_result->b_size;
7360 	free_extent_map(em);
7361 	em = btrfs_new_extent_direct(inode, start, len);
7362 	if (IS_ERR(em)) {
7363 		ret = PTR_ERR(em);
7364 		goto unlock_err;
7365 	}
7366 	len = min(len, em->len - (start - em->start));
7367 unlock:
7368 	bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7369 		inode->i_blkbits;
7370 	bh_result->b_size = len;
7371 	bh_result->b_bdev = em->bdev;
7372 	set_buffer_mapped(bh_result);
7373 	if (create) {
7374 		if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7375 			set_buffer_new(bh_result);
7376 
7377 		/*
7378 		 * Need to update the i_size under the extent lock so buffered
7379 		 * readers will get the updated i_size when we unlock.
7380 		 */
7381 		if (start + len > i_size_read(inode))
7382 			i_size_write(inode, start + len);
7383 
7384 		/*
7385 		 * If we have an outstanding_extents count still set then we're
7386 		 * within our reservation, otherwise we need to adjust our inode
7387 		 * counter appropriately.
7388 		 */
7389 		if (*outstanding_extents) {
7390 			(*outstanding_extents)--;
7391 		} else {
7392 			spin_lock(&BTRFS_I(inode)->lock);
7393 			BTRFS_I(inode)->outstanding_extents++;
7394 			spin_unlock(&BTRFS_I(inode)->lock);
7395 		}
7396 
7397 		current->journal_info = outstanding_extents;
7398 		btrfs_free_reserved_data_space(inode, len);
7399 	}
7400 
7401 	/*
7402 	 * In the case of write we need to clear and unlock the entire range,
7403 	 * in the case of read we need to unlock only the end area that we
7404 	 * aren't using if there is any left over space.
7405 	 */
7406 	if (lockstart < lockend) {
7407 		clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
7408 				 lockend, unlock_bits, 1, 0,
7409 				 &cached_state, GFP_NOFS);
7410 	} else {
7411 		free_extent_state(cached_state);
7412 	}
7413 
7414 	free_extent_map(em);
7415 
7416 	return 0;
7417 
7418 unlock_err:
7419 	clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7420 			 unlock_bits, 1, 0, &cached_state, GFP_NOFS);
7421 	if (outstanding_extents)
7422 		current->journal_info = outstanding_extents;
7423 	return ret;
7424 }
7425 
7426 static inline int submit_dio_repair_bio(struct inode *inode, struct bio *bio,
7427 					int rw, int mirror_num)
7428 {
7429 	struct btrfs_root *root = BTRFS_I(inode)->root;
7430 	int ret;
7431 
7432 	BUG_ON(rw & REQ_WRITE);
7433 
7434 	bio_get(bio);
7435 
7436 	ret = btrfs_bio_wq_end_io(root->fs_info, bio,
7437 				  BTRFS_WQ_ENDIO_DIO_REPAIR);
7438 	if (ret)
7439 		goto err;
7440 
7441 	ret = btrfs_map_bio(root, rw, bio, mirror_num, 0);
7442 err:
7443 	bio_put(bio);
7444 	return ret;
7445 }
7446 
7447 static int btrfs_check_dio_repairable(struct inode *inode,
7448 				      struct bio *failed_bio,
7449 				      struct io_failure_record *failrec,
7450 				      int failed_mirror)
7451 {
7452 	int num_copies;
7453 
7454 	num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info,
7455 				      failrec->logical, failrec->len);
7456 	if (num_copies == 1) {
7457 		/*
7458 		 * we only have a single copy of the data, so don't bother with
7459 		 * all the retry and error correction code that follows. no
7460 		 * matter what the error is, it is very likely to persist.
7461 		 */
7462 		pr_debug("Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n",
7463 			 num_copies, failrec->this_mirror, failed_mirror);
7464 		return 0;
7465 	}
7466 
7467 	failrec->failed_mirror = failed_mirror;
7468 	failrec->this_mirror++;
7469 	if (failrec->this_mirror == failed_mirror)
7470 		failrec->this_mirror++;
7471 
7472 	if (failrec->this_mirror > num_copies) {
7473 		pr_debug("Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n",
7474 			 num_copies, failrec->this_mirror, failed_mirror);
7475 		return 0;
7476 	}
7477 
7478 	return 1;
7479 }
7480 
7481 static int dio_read_error(struct inode *inode, struct bio *failed_bio,
7482 			  struct page *page, u64 start, u64 end,
7483 			  int failed_mirror, bio_end_io_t *repair_endio,
7484 			  void *repair_arg)
7485 {
7486 	struct io_failure_record *failrec;
7487 	struct bio *bio;
7488 	int isector;
7489 	int read_mode;
7490 	int ret;
7491 
7492 	BUG_ON(failed_bio->bi_rw & REQ_WRITE);
7493 
7494 	ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
7495 	if (ret)
7496 		return ret;
7497 
7498 	ret = btrfs_check_dio_repairable(inode, failed_bio, failrec,
7499 					 failed_mirror);
7500 	if (!ret) {
7501 		free_io_failure(inode, failrec);
7502 		return -EIO;
7503 	}
7504 
7505 	if (failed_bio->bi_vcnt > 1)
7506 		read_mode = READ_SYNC | REQ_FAILFAST_DEV;
7507 	else
7508 		read_mode = READ_SYNC;
7509 
7510 	isector = start - btrfs_io_bio(failed_bio)->logical;
7511 	isector >>= inode->i_sb->s_blocksize_bits;
7512 	bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
7513 				      0, isector, repair_endio, repair_arg);
7514 	if (!bio) {
7515 		free_io_failure(inode, failrec);
7516 		return -EIO;
7517 	}
7518 
7519 	btrfs_debug(BTRFS_I(inode)->root->fs_info,
7520 		    "Repair DIO Read Error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d\n",
7521 		    read_mode, failrec->this_mirror, failrec->in_validation);
7522 
7523 	ret = submit_dio_repair_bio(inode, bio, read_mode,
7524 				    failrec->this_mirror);
7525 	if (ret) {
7526 		free_io_failure(inode, failrec);
7527 		bio_put(bio);
7528 	}
7529 
7530 	return ret;
7531 }
7532 
7533 struct btrfs_retry_complete {
7534 	struct completion done;
7535 	struct inode *inode;
7536 	u64 start;
7537 	int uptodate;
7538 };
7539 
7540 static void btrfs_retry_endio_nocsum(struct bio *bio, int err)
7541 {
7542 	struct btrfs_retry_complete *done = bio->bi_private;
7543 	struct bio_vec *bvec;
7544 	int i;
7545 
7546 	if (err)
7547 		goto end;
7548 
7549 	done->uptodate = 1;
7550 	bio_for_each_segment_all(bvec, bio, i)
7551 		clean_io_failure(done->inode, done->start, bvec->bv_page, 0);
7552 end:
7553 	complete(&done->done);
7554 	bio_put(bio);
7555 }
7556 
7557 static int __btrfs_correct_data_nocsum(struct inode *inode,
7558 				       struct btrfs_io_bio *io_bio)
7559 {
7560 	struct bio_vec *bvec;
7561 	struct btrfs_retry_complete done;
7562 	u64 start;
7563 	int i;
7564 	int ret;
7565 
7566 	start = io_bio->logical;
7567 	done.inode = inode;
7568 
7569 	bio_for_each_segment_all(bvec, &io_bio->bio, i) {
7570 try_again:
7571 		done.uptodate = 0;
7572 		done.start = start;
7573 		init_completion(&done.done);
7574 
7575 		ret = dio_read_error(inode, &io_bio->bio, bvec->bv_page, start,
7576 				     start + bvec->bv_len - 1,
7577 				     io_bio->mirror_num,
7578 				     btrfs_retry_endio_nocsum, &done);
7579 		if (ret)
7580 			return ret;
7581 
7582 		wait_for_completion(&done.done);
7583 
7584 		if (!done.uptodate) {
7585 			/* We might have another mirror, so try again */
7586 			goto try_again;
7587 		}
7588 
7589 		start += bvec->bv_len;
7590 	}
7591 
7592 	return 0;
7593 }
7594 
7595 static void btrfs_retry_endio(struct bio *bio, int err)
7596 {
7597 	struct btrfs_retry_complete *done = bio->bi_private;
7598 	struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
7599 	struct bio_vec *bvec;
7600 	int uptodate;
7601 	int ret;
7602 	int i;
7603 
7604 	if (err)
7605 		goto end;
7606 
7607 	uptodate = 1;
7608 	bio_for_each_segment_all(bvec, bio, i) {
7609 		ret = __readpage_endio_check(done->inode, io_bio, i,
7610 					     bvec->bv_page, 0,
7611 					     done->start, bvec->bv_len);
7612 		if (!ret)
7613 			clean_io_failure(done->inode, done->start,
7614 					 bvec->bv_page, 0);
7615 		else
7616 			uptodate = 0;
7617 	}
7618 
7619 	done->uptodate = uptodate;
7620 end:
7621 	complete(&done->done);
7622 	bio_put(bio);
7623 }
7624 
7625 static int __btrfs_subio_endio_read(struct inode *inode,
7626 				    struct btrfs_io_bio *io_bio, int err)
7627 {
7628 	struct bio_vec *bvec;
7629 	struct btrfs_retry_complete done;
7630 	u64 start;
7631 	u64 offset = 0;
7632 	int i;
7633 	int ret;
7634 
7635 	err = 0;
7636 	start = io_bio->logical;
7637 	done.inode = inode;
7638 
7639 	bio_for_each_segment_all(bvec, &io_bio->bio, i) {
7640 		ret = __readpage_endio_check(inode, io_bio, i, bvec->bv_page,
7641 					     0, start, bvec->bv_len);
7642 		if (likely(!ret))
7643 			goto next;
7644 try_again:
7645 		done.uptodate = 0;
7646 		done.start = start;
7647 		init_completion(&done.done);
7648 
7649 		ret = dio_read_error(inode, &io_bio->bio, bvec->bv_page, start,
7650 				     start + bvec->bv_len - 1,
7651 				     io_bio->mirror_num,
7652 				     btrfs_retry_endio, &done);
7653 		if (ret) {
7654 			err = ret;
7655 			goto next;
7656 		}
7657 
7658 		wait_for_completion(&done.done);
7659 
7660 		if (!done.uptodate) {
7661 			/* We might have another mirror, so try again */
7662 			goto try_again;
7663 		}
7664 next:
7665 		offset += bvec->bv_len;
7666 		start += bvec->bv_len;
7667 	}
7668 
7669 	return err;
7670 }
7671 
7672 static int btrfs_subio_endio_read(struct inode *inode,
7673 				  struct btrfs_io_bio *io_bio, int err)
7674 {
7675 	bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
7676 
7677 	if (skip_csum) {
7678 		if (unlikely(err))
7679 			return __btrfs_correct_data_nocsum(inode, io_bio);
7680 		else
7681 			return 0;
7682 	} else {
7683 		return __btrfs_subio_endio_read(inode, io_bio, err);
7684 	}
7685 }
7686 
7687 static void btrfs_endio_direct_read(struct bio *bio, int err)
7688 {
7689 	struct btrfs_dio_private *dip = bio->bi_private;
7690 	struct inode *inode = dip->inode;
7691 	struct bio *dio_bio;
7692 	struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
7693 
7694 	if (dip->flags & BTRFS_DIO_ORIG_BIO_SUBMITTED)
7695 		err = btrfs_subio_endio_read(inode, io_bio, err);
7696 
7697 	unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
7698 		      dip->logical_offset + dip->bytes - 1);
7699 	dio_bio = dip->dio_bio;
7700 
7701 	kfree(dip);
7702 
7703 	/* If we had a csum failure make sure to clear the uptodate flag */
7704 	if (err)
7705 		clear_bit(BIO_UPTODATE, &dio_bio->bi_flags);
7706 	dio_end_io(dio_bio, err);
7707 
7708 	if (io_bio->end_io)
7709 		io_bio->end_io(io_bio, err);
7710 	bio_put(bio);
7711 }
7712 
7713 static void btrfs_endio_direct_write(struct bio *bio, int err)
7714 {
7715 	struct btrfs_dio_private *dip = bio->bi_private;
7716 	struct inode *inode = dip->inode;
7717 	struct btrfs_root *root = BTRFS_I(inode)->root;
7718 	struct btrfs_ordered_extent *ordered = NULL;
7719 	u64 ordered_offset = dip->logical_offset;
7720 	u64 ordered_bytes = dip->bytes;
7721 	struct bio *dio_bio;
7722 	int ret;
7723 
7724 	if (err)
7725 		goto out_done;
7726 again:
7727 	ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
7728 						   &ordered_offset,
7729 						   ordered_bytes, !err);
7730 	if (!ret)
7731 		goto out_test;
7732 
7733 	btrfs_init_work(&ordered->work, btrfs_endio_write_helper,
7734 			finish_ordered_fn, NULL, NULL);
7735 	btrfs_queue_work(root->fs_info->endio_write_workers,
7736 			 &ordered->work);
7737 out_test:
7738 	/*
7739 	 * our bio might span multiple ordered extents.  If we haven't
7740 	 * completed the accounting for the whole dio, go back and try again
7741 	 */
7742 	if (ordered_offset < dip->logical_offset + dip->bytes) {
7743 		ordered_bytes = dip->logical_offset + dip->bytes -
7744 			ordered_offset;
7745 		ordered = NULL;
7746 		goto again;
7747 	}
7748 out_done:
7749 	dio_bio = dip->dio_bio;
7750 
7751 	kfree(dip);
7752 
7753 	/* If we had an error make sure to clear the uptodate flag */
7754 	if (err)
7755 		clear_bit(BIO_UPTODATE, &dio_bio->bi_flags);
7756 	dio_end_io(dio_bio, err);
7757 	bio_put(bio);
7758 }
7759 
7760 static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
7761 				    struct bio *bio, int mirror_num,
7762 				    unsigned long bio_flags, u64 offset)
7763 {
7764 	int ret;
7765 	struct btrfs_root *root = BTRFS_I(inode)->root;
7766 	ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
7767 	BUG_ON(ret); /* -ENOMEM */
7768 	return 0;
7769 }
7770 
7771 static void btrfs_end_dio_bio(struct bio *bio, int err)
7772 {
7773 	struct btrfs_dio_private *dip = bio->bi_private;
7774 
7775 	if (err)
7776 		btrfs_warn(BTRFS_I(dip->inode)->root->fs_info,
7777 			   "direct IO failed ino %llu rw %lu sector %#Lx len %u err no %d",
7778 			   btrfs_ino(dip->inode), bio->bi_rw,
7779 			   (unsigned long long)bio->bi_iter.bi_sector,
7780 			   bio->bi_iter.bi_size, err);
7781 
7782 	if (dip->subio_endio)
7783 		err = dip->subio_endio(dip->inode, btrfs_io_bio(bio), err);
7784 
7785 	if (err) {
7786 		dip->errors = 1;
7787 
7788 		/*
7789 		 * before atomic variable goto zero, we must make sure
7790 		 * dip->errors is perceived to be set.
7791 		 */
7792 		smp_mb__before_atomic();
7793 	}
7794 
7795 	/* if there are more bios still pending for this dio, just exit */
7796 	if (!atomic_dec_and_test(&dip->pending_bios))
7797 		goto out;
7798 
7799 	if (dip->errors) {
7800 		bio_io_error(dip->orig_bio);
7801 	} else {
7802 		set_bit(BIO_UPTODATE, &dip->dio_bio->bi_flags);
7803 		bio_endio(dip->orig_bio, 0);
7804 	}
7805 out:
7806 	bio_put(bio);
7807 }
7808 
7809 static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
7810 				       u64 first_sector, gfp_t gfp_flags)
7811 {
7812 	int nr_vecs = bio_get_nr_vecs(bdev);
7813 	return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags);
7814 }
7815 
7816 static inline int btrfs_lookup_and_bind_dio_csum(struct btrfs_root *root,
7817 						 struct inode *inode,
7818 						 struct btrfs_dio_private *dip,
7819 						 struct bio *bio,
7820 						 u64 file_offset)
7821 {
7822 	struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
7823 	struct btrfs_io_bio *orig_io_bio = btrfs_io_bio(dip->orig_bio);
7824 	int ret;
7825 
7826 	/*
7827 	 * We load all the csum data we need when we submit
7828 	 * the first bio to reduce the csum tree search and
7829 	 * contention.
7830 	 */
7831 	if (dip->logical_offset == file_offset) {
7832 		ret = btrfs_lookup_bio_sums_dio(root, inode, dip->orig_bio,
7833 						file_offset);
7834 		if (ret)
7835 			return ret;
7836 	}
7837 
7838 	if (bio == dip->orig_bio)
7839 		return 0;
7840 
7841 	file_offset -= dip->logical_offset;
7842 	file_offset >>= inode->i_sb->s_blocksize_bits;
7843 	io_bio->csum = (u8 *)(((u32 *)orig_io_bio->csum) + file_offset);
7844 
7845 	return 0;
7846 }
7847 
7848 static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
7849 					 int rw, u64 file_offset, int skip_sum,
7850 					 int async_submit)
7851 {
7852 	struct btrfs_dio_private *dip = bio->bi_private;
7853 	int write = rw & REQ_WRITE;
7854 	struct btrfs_root *root = BTRFS_I(inode)->root;
7855 	int ret;
7856 
7857 	if (async_submit)
7858 		async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
7859 
7860 	bio_get(bio);
7861 
7862 	if (!write) {
7863 		ret = btrfs_bio_wq_end_io(root->fs_info, bio,
7864 				BTRFS_WQ_ENDIO_DATA);
7865 		if (ret)
7866 			goto err;
7867 	}
7868 
7869 	if (skip_sum)
7870 		goto map;
7871 
7872 	if (write && async_submit) {
7873 		ret = btrfs_wq_submit_bio(root->fs_info,
7874 				   inode, rw, bio, 0, 0,
7875 				   file_offset,
7876 				   __btrfs_submit_bio_start_direct_io,
7877 				   __btrfs_submit_bio_done);
7878 		goto err;
7879 	} else if (write) {
7880 		/*
7881 		 * If we aren't doing async submit, calculate the csum of the
7882 		 * bio now.
7883 		 */
7884 		ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1);
7885 		if (ret)
7886 			goto err;
7887 	} else {
7888 		ret = btrfs_lookup_and_bind_dio_csum(root, inode, dip, bio,
7889 						     file_offset);
7890 		if (ret)
7891 			goto err;
7892 	}
7893 map:
7894 	ret = btrfs_map_bio(root, rw, bio, 0, async_submit);
7895 err:
7896 	bio_put(bio);
7897 	return ret;
7898 }
7899 
7900 static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
7901 				    int skip_sum)
7902 {
7903 	struct inode *inode = dip->inode;
7904 	struct btrfs_root *root = BTRFS_I(inode)->root;
7905 	struct bio *bio;
7906 	struct bio *orig_bio = dip->orig_bio;
7907 	struct bio_vec *bvec = orig_bio->bi_io_vec;
7908 	u64 start_sector = orig_bio->bi_iter.bi_sector;
7909 	u64 file_offset = dip->logical_offset;
7910 	u64 submit_len = 0;
7911 	u64 map_length;
7912 	int nr_pages = 0;
7913 	int ret;
7914 	int async_submit = 0;
7915 
7916 	map_length = orig_bio->bi_iter.bi_size;
7917 	ret = btrfs_map_block(root->fs_info, rw, start_sector << 9,
7918 			      &map_length, NULL, 0);
7919 	if (ret)
7920 		return -EIO;
7921 
7922 	if (map_length >= orig_bio->bi_iter.bi_size) {
7923 		bio = orig_bio;
7924 		dip->flags |= BTRFS_DIO_ORIG_BIO_SUBMITTED;
7925 		goto submit;
7926 	}
7927 
7928 	/* async crcs make it difficult to collect full stripe writes. */
7929 	if (btrfs_get_alloc_profile(root, 1) & BTRFS_BLOCK_GROUP_RAID56_MASK)
7930 		async_submit = 0;
7931 	else
7932 		async_submit = 1;
7933 
7934 	bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
7935 	if (!bio)
7936 		return -ENOMEM;
7937 
7938 	bio->bi_private = dip;
7939 	bio->bi_end_io = btrfs_end_dio_bio;
7940 	btrfs_io_bio(bio)->logical = file_offset;
7941 	atomic_inc(&dip->pending_bios);
7942 
7943 	while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
7944 		if (map_length < submit_len + bvec->bv_len ||
7945 		    bio_add_page(bio, bvec->bv_page, bvec->bv_len,
7946 				 bvec->bv_offset) < bvec->bv_len) {
7947 			/*
7948 			 * inc the count before we submit the bio so
7949 			 * we know the end IO handler won't happen before
7950 			 * we inc the count. Otherwise, the dip might get freed
7951 			 * before we're done setting it up
7952 			 */
7953 			atomic_inc(&dip->pending_bios);
7954 			ret = __btrfs_submit_dio_bio(bio, inode, rw,
7955 						     file_offset, skip_sum,
7956 						     async_submit);
7957 			if (ret) {
7958 				bio_put(bio);
7959 				atomic_dec(&dip->pending_bios);
7960 				goto out_err;
7961 			}
7962 
7963 			start_sector += submit_len >> 9;
7964 			file_offset += submit_len;
7965 
7966 			submit_len = 0;
7967 			nr_pages = 0;
7968 
7969 			bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
7970 						  start_sector, GFP_NOFS);
7971 			if (!bio)
7972 				goto out_err;
7973 			bio->bi_private = dip;
7974 			bio->bi_end_io = btrfs_end_dio_bio;
7975 			btrfs_io_bio(bio)->logical = file_offset;
7976 
7977 			map_length = orig_bio->bi_iter.bi_size;
7978 			ret = btrfs_map_block(root->fs_info, rw,
7979 					      start_sector << 9,
7980 					      &map_length, NULL, 0);
7981 			if (ret) {
7982 				bio_put(bio);
7983 				goto out_err;
7984 			}
7985 		} else {
7986 			submit_len += bvec->bv_len;
7987 			nr_pages++;
7988 			bvec++;
7989 		}
7990 	}
7991 
7992 submit:
7993 	ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
7994 				     async_submit);
7995 	if (!ret)
7996 		return 0;
7997 
7998 	bio_put(bio);
7999 out_err:
8000 	dip->errors = 1;
8001 	/*
8002 	 * before atomic variable goto zero, we must
8003 	 * make sure dip->errors is perceived to be set.
8004 	 */
8005 	smp_mb__before_atomic();
8006 	if (atomic_dec_and_test(&dip->pending_bios))
8007 		bio_io_error(dip->orig_bio);
8008 
8009 	/* bio_end_io() will handle error, so we needn't return it */
8010 	return 0;
8011 }
8012 
8013 static void btrfs_submit_direct(int rw, struct bio *dio_bio,
8014 				struct inode *inode, loff_t file_offset)
8015 {
8016 	struct btrfs_root *root = BTRFS_I(inode)->root;
8017 	struct btrfs_dio_private *dip;
8018 	struct bio *io_bio;
8019 	struct btrfs_io_bio *btrfs_bio;
8020 	int skip_sum;
8021 	int write = rw & REQ_WRITE;
8022 	int ret = 0;
8023 
8024 	skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
8025 
8026 	io_bio = btrfs_bio_clone(dio_bio, GFP_NOFS);
8027 	if (!io_bio) {
8028 		ret = -ENOMEM;
8029 		goto free_ordered;
8030 	}
8031 
8032 	dip = kzalloc(sizeof(*dip), GFP_NOFS);
8033 	if (!dip) {
8034 		ret = -ENOMEM;
8035 		goto free_io_bio;
8036 	}
8037 
8038 	dip->private = dio_bio->bi_private;
8039 	dip->inode = inode;
8040 	dip->logical_offset = file_offset;
8041 	dip->bytes = dio_bio->bi_iter.bi_size;
8042 	dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9;
8043 	io_bio->bi_private = dip;
8044 	dip->orig_bio = io_bio;
8045 	dip->dio_bio = dio_bio;
8046 	atomic_set(&dip->pending_bios, 0);
8047 	btrfs_bio = btrfs_io_bio(io_bio);
8048 	btrfs_bio->logical = file_offset;
8049 
8050 	if (write) {
8051 		io_bio->bi_end_io = btrfs_endio_direct_write;
8052 	} else {
8053 		io_bio->bi_end_io = btrfs_endio_direct_read;
8054 		dip->subio_endio = btrfs_subio_endio_read;
8055 	}
8056 
8057 	ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
8058 	if (!ret)
8059 		return;
8060 
8061 	if (btrfs_bio->end_io)
8062 		btrfs_bio->end_io(btrfs_bio, ret);
8063 free_io_bio:
8064 	bio_put(io_bio);
8065 
8066 free_ordered:
8067 	/*
8068 	 * If this is a write, we need to clean up the reserved space and kill
8069 	 * the ordered extent.
8070 	 */
8071 	if (write) {
8072 		struct btrfs_ordered_extent *ordered;
8073 		ordered = btrfs_lookup_ordered_extent(inode, file_offset);
8074 		if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) &&
8075 		    !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags))
8076 			btrfs_free_reserved_extent(root, ordered->start,
8077 						   ordered->disk_len, 1);
8078 		btrfs_put_ordered_extent(ordered);
8079 		btrfs_put_ordered_extent(ordered);
8080 	}
8081 	bio_endio(dio_bio, ret);
8082 }
8083 
8084 static ssize_t check_direct_IO(struct btrfs_root *root, struct kiocb *iocb,
8085 			const struct iov_iter *iter, loff_t offset)
8086 {
8087 	int seg;
8088 	int i;
8089 	unsigned blocksize_mask = root->sectorsize - 1;
8090 	ssize_t retval = -EINVAL;
8091 
8092 	if (offset & blocksize_mask)
8093 		goto out;
8094 
8095 	if (iov_iter_alignment(iter) & blocksize_mask)
8096 		goto out;
8097 
8098 	/* If this is a write we don't need to check anymore */
8099 	if (iov_iter_rw(iter) == WRITE)
8100 		return 0;
8101 	/*
8102 	 * Check to make sure we don't have duplicate iov_base's in this
8103 	 * iovec, if so return EINVAL, otherwise we'll get csum errors
8104 	 * when reading back.
8105 	 */
8106 	for (seg = 0; seg < iter->nr_segs; seg++) {
8107 		for (i = seg + 1; i < iter->nr_segs; i++) {
8108 			if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
8109 				goto out;
8110 		}
8111 	}
8112 	retval = 0;
8113 out:
8114 	return retval;
8115 }
8116 
8117 static ssize_t btrfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
8118 			       loff_t offset)
8119 {
8120 	struct file *file = iocb->ki_filp;
8121 	struct inode *inode = file->f_mapping->host;
8122 	u64 outstanding_extents = 0;
8123 	size_t count = 0;
8124 	int flags = 0;
8125 	bool wakeup = true;
8126 	bool relock = false;
8127 	ssize_t ret;
8128 
8129 	if (check_direct_IO(BTRFS_I(inode)->root, iocb, iter, offset))
8130 		return 0;
8131 
8132 	atomic_inc(&inode->i_dio_count);
8133 	smp_mb__after_atomic();
8134 
8135 	/*
8136 	 * The generic stuff only does filemap_write_and_wait_range, which
8137 	 * isn't enough if we've written compressed pages to this area, so
8138 	 * we need to flush the dirty pages again to make absolutely sure
8139 	 * that any outstanding dirty pages are on disk.
8140 	 */
8141 	count = iov_iter_count(iter);
8142 	if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
8143 		     &BTRFS_I(inode)->runtime_flags))
8144 		filemap_fdatawrite_range(inode->i_mapping, offset,
8145 					 offset + count - 1);
8146 
8147 	if (iov_iter_rw(iter) == WRITE) {
8148 		/*
8149 		 * If the write DIO is beyond the EOF, we need update
8150 		 * the isize, but it is protected by i_mutex. So we can
8151 		 * not unlock the i_mutex at this case.
8152 		 */
8153 		if (offset + count <= inode->i_size) {
8154 			mutex_unlock(&inode->i_mutex);
8155 			relock = true;
8156 		}
8157 		ret = btrfs_delalloc_reserve_space(inode, count);
8158 		if (ret)
8159 			goto out;
8160 		outstanding_extents = div64_u64(count +
8161 						BTRFS_MAX_EXTENT_SIZE - 1,
8162 						BTRFS_MAX_EXTENT_SIZE);
8163 
8164 		/*
8165 		 * We need to know how many extents we reserved so that we can
8166 		 * do the accounting properly if we go over the number we
8167 		 * originally calculated.  Abuse current->journal_info for this.
8168 		 */
8169 		current->journal_info = &outstanding_extents;
8170 	} else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK,
8171 				     &BTRFS_I(inode)->runtime_flags)) {
8172 		inode_dio_done(inode);
8173 		flags = DIO_LOCKING | DIO_SKIP_HOLES;
8174 		wakeup = false;
8175 	}
8176 
8177 	ret = __blockdev_direct_IO(iocb, inode,
8178 				   BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
8179 				   iter, offset, btrfs_get_blocks_direct, NULL,
8180 				   btrfs_submit_direct, flags);
8181 	if (iov_iter_rw(iter) == WRITE) {
8182 		current->journal_info = NULL;
8183 		if (ret < 0 && ret != -EIOCBQUEUED)
8184 			btrfs_delalloc_release_space(inode, count);
8185 		else if (ret >= 0 && (size_t)ret < count)
8186 			btrfs_delalloc_release_space(inode,
8187 						     count - (size_t)ret);
8188 	}
8189 out:
8190 	if (wakeup)
8191 		inode_dio_done(inode);
8192 	if (relock)
8193 		mutex_lock(&inode->i_mutex);
8194 
8195 	return ret;
8196 }
8197 
8198 #define BTRFS_FIEMAP_FLAGS	(FIEMAP_FLAG_SYNC)
8199 
8200 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
8201 		__u64 start, __u64 len)
8202 {
8203 	int	ret;
8204 
8205 	ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS);
8206 	if (ret)
8207 		return ret;
8208 
8209 	return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
8210 }
8211 
8212 int btrfs_readpage(struct file *file, struct page *page)
8213 {
8214 	struct extent_io_tree *tree;
8215 	tree = &BTRFS_I(page->mapping->host)->io_tree;
8216 	return extent_read_full_page(tree, page, btrfs_get_extent, 0);
8217 }
8218 
8219 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
8220 {
8221 	struct extent_io_tree *tree;
8222 
8223 
8224 	if (current->flags & PF_MEMALLOC) {
8225 		redirty_page_for_writepage(wbc, page);
8226 		unlock_page(page);
8227 		return 0;
8228 	}
8229 	tree = &BTRFS_I(page->mapping->host)->io_tree;
8230 	return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
8231 }
8232 
8233 static int btrfs_writepages(struct address_space *mapping,
8234 			    struct writeback_control *wbc)
8235 {
8236 	struct extent_io_tree *tree;
8237 
8238 	tree = &BTRFS_I(mapping->host)->io_tree;
8239 	return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
8240 }
8241 
8242 static int
8243 btrfs_readpages(struct file *file, struct address_space *mapping,
8244 		struct list_head *pages, unsigned nr_pages)
8245 {
8246 	struct extent_io_tree *tree;
8247 	tree = &BTRFS_I(mapping->host)->io_tree;
8248 	return extent_readpages(tree, mapping, pages, nr_pages,
8249 				btrfs_get_extent);
8250 }
8251 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8252 {
8253 	struct extent_io_tree *tree;
8254 	struct extent_map_tree *map;
8255 	int ret;
8256 
8257 	tree = &BTRFS_I(page->mapping->host)->io_tree;
8258 	map = &BTRFS_I(page->mapping->host)->extent_tree;
8259 	ret = try_release_extent_mapping(map, tree, page, gfp_flags);
8260 	if (ret == 1) {
8261 		ClearPagePrivate(page);
8262 		set_page_private(page, 0);
8263 		page_cache_release(page);
8264 	}
8265 	return ret;
8266 }
8267 
8268 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8269 {
8270 	if (PageWriteback(page) || PageDirty(page))
8271 		return 0;
8272 	return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
8273 }
8274 
8275 static void btrfs_invalidatepage(struct page *page, unsigned int offset,
8276 				 unsigned int length)
8277 {
8278 	struct inode *inode = page->mapping->host;
8279 	struct extent_io_tree *tree;
8280 	struct btrfs_ordered_extent *ordered;
8281 	struct extent_state *cached_state = NULL;
8282 	u64 page_start = page_offset(page);
8283 	u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
8284 	int inode_evicting = inode->i_state & I_FREEING;
8285 
8286 	/*
8287 	 * we have the page locked, so new writeback can't start,
8288 	 * and the dirty bit won't be cleared while we are here.
8289 	 *
8290 	 * Wait for IO on this page so that we can safely clear
8291 	 * the PagePrivate2 bit and do ordered accounting
8292 	 */
8293 	wait_on_page_writeback(page);
8294 
8295 	tree = &BTRFS_I(inode)->io_tree;
8296 	if (offset) {
8297 		btrfs_releasepage(page, GFP_NOFS);
8298 		return;
8299 	}
8300 
8301 	if (!inode_evicting)
8302 		lock_extent_bits(tree, page_start, page_end, 0, &cached_state);
8303 	ordered = btrfs_lookup_ordered_extent(inode, page_start);
8304 	if (ordered) {
8305 		/*
8306 		 * IO on this page will never be started, so we need
8307 		 * to account for any ordered extents now
8308 		 */
8309 		if (!inode_evicting)
8310 			clear_extent_bit(tree, page_start, page_end,
8311 					 EXTENT_DIRTY | EXTENT_DELALLOC |
8312 					 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
8313 					 EXTENT_DEFRAG, 1, 0, &cached_state,
8314 					 GFP_NOFS);
8315 		/*
8316 		 * whoever cleared the private bit is responsible
8317 		 * for the finish_ordered_io
8318 		 */
8319 		if (TestClearPagePrivate2(page)) {
8320 			struct btrfs_ordered_inode_tree *tree;
8321 			u64 new_len;
8322 
8323 			tree = &BTRFS_I(inode)->ordered_tree;
8324 
8325 			spin_lock_irq(&tree->lock);
8326 			set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
8327 			new_len = page_start - ordered->file_offset;
8328 			if (new_len < ordered->truncated_len)
8329 				ordered->truncated_len = new_len;
8330 			spin_unlock_irq(&tree->lock);
8331 
8332 			if (btrfs_dec_test_ordered_pending(inode, &ordered,
8333 							   page_start,
8334 							   PAGE_CACHE_SIZE, 1))
8335 				btrfs_finish_ordered_io(ordered);
8336 		}
8337 		btrfs_put_ordered_extent(ordered);
8338 		if (!inode_evicting) {
8339 			cached_state = NULL;
8340 			lock_extent_bits(tree, page_start, page_end, 0,
8341 					 &cached_state);
8342 		}
8343 	}
8344 
8345 	if (!inode_evicting) {
8346 		clear_extent_bit(tree, page_start, page_end,
8347 				 EXTENT_LOCKED | EXTENT_DIRTY |
8348 				 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
8349 				 EXTENT_DEFRAG, 1, 1,
8350 				 &cached_state, GFP_NOFS);
8351 
8352 		__btrfs_releasepage(page, GFP_NOFS);
8353 	}
8354 
8355 	ClearPageChecked(page);
8356 	if (PagePrivate(page)) {
8357 		ClearPagePrivate(page);
8358 		set_page_private(page, 0);
8359 		page_cache_release(page);
8360 	}
8361 }
8362 
8363 /*
8364  * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8365  * called from a page fault handler when a page is first dirtied. Hence we must
8366  * be careful to check for EOF conditions here. We set the page up correctly
8367  * for a written page which means we get ENOSPC checking when writing into
8368  * holes and correct delalloc and unwritten extent mapping on filesystems that
8369  * support these features.
8370  *
8371  * We are not allowed to take the i_mutex here so we have to play games to
8372  * protect against truncate races as the page could now be beyond EOF.  Because
8373  * vmtruncate() writes the inode size before removing pages, once we have the
8374  * page lock we can determine safely if the page is beyond EOF. If it is not
8375  * beyond EOF, then the page is guaranteed safe against truncation until we
8376  * unlock the page.
8377  */
8378 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
8379 {
8380 	struct page *page = vmf->page;
8381 	struct inode *inode = file_inode(vma->vm_file);
8382 	struct btrfs_root *root = BTRFS_I(inode)->root;
8383 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8384 	struct btrfs_ordered_extent *ordered;
8385 	struct extent_state *cached_state = NULL;
8386 	char *kaddr;
8387 	unsigned long zero_start;
8388 	loff_t size;
8389 	int ret;
8390 	int reserved = 0;
8391 	u64 page_start;
8392 	u64 page_end;
8393 
8394 	sb_start_pagefault(inode->i_sb);
8395 	ret  = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
8396 	if (!ret) {
8397 		ret = file_update_time(vma->vm_file);
8398 		reserved = 1;
8399 	}
8400 	if (ret) {
8401 		if (ret == -ENOMEM)
8402 			ret = VM_FAULT_OOM;
8403 		else /* -ENOSPC, -EIO, etc */
8404 			ret = VM_FAULT_SIGBUS;
8405 		if (reserved)
8406 			goto out;
8407 		goto out_noreserve;
8408 	}
8409 
8410 	ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
8411 again:
8412 	lock_page(page);
8413 	size = i_size_read(inode);
8414 	page_start = page_offset(page);
8415 	page_end = page_start + PAGE_CACHE_SIZE - 1;
8416 
8417 	if ((page->mapping != inode->i_mapping) ||
8418 	    (page_start >= size)) {
8419 		/* page got truncated out from underneath us */
8420 		goto out_unlock;
8421 	}
8422 	wait_on_page_writeback(page);
8423 
8424 	lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
8425 	set_page_extent_mapped(page);
8426 
8427 	/*
8428 	 * we can't set the delalloc bits if there are pending ordered
8429 	 * extents.  Drop our locks and wait for them to finish
8430 	 */
8431 	ordered = btrfs_lookup_ordered_extent(inode, page_start);
8432 	if (ordered) {
8433 		unlock_extent_cached(io_tree, page_start, page_end,
8434 				     &cached_state, GFP_NOFS);
8435 		unlock_page(page);
8436 		btrfs_start_ordered_extent(inode, ordered, 1);
8437 		btrfs_put_ordered_extent(ordered);
8438 		goto again;
8439 	}
8440 
8441 	/*
8442 	 * XXX - page_mkwrite gets called every time the page is dirtied, even
8443 	 * if it was already dirty, so for space accounting reasons we need to
8444 	 * clear any delalloc bits for the range we are fixing to save.  There
8445 	 * is probably a better way to do this, but for now keep consistent with
8446 	 * prepare_pages in the normal write path.
8447 	 */
8448 	clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
8449 			  EXTENT_DIRTY | EXTENT_DELALLOC |
8450 			  EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
8451 			  0, 0, &cached_state, GFP_NOFS);
8452 
8453 	ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
8454 					&cached_state);
8455 	if (ret) {
8456 		unlock_extent_cached(io_tree, page_start, page_end,
8457 				     &cached_state, GFP_NOFS);
8458 		ret = VM_FAULT_SIGBUS;
8459 		goto out_unlock;
8460 	}
8461 	ret = 0;
8462 
8463 	/* page is wholly or partially inside EOF */
8464 	if (page_start + PAGE_CACHE_SIZE > size)
8465 		zero_start = size & ~PAGE_CACHE_MASK;
8466 	else
8467 		zero_start = PAGE_CACHE_SIZE;
8468 
8469 	if (zero_start != PAGE_CACHE_SIZE) {
8470 		kaddr = kmap(page);
8471 		memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
8472 		flush_dcache_page(page);
8473 		kunmap(page);
8474 	}
8475 	ClearPageChecked(page);
8476 	set_page_dirty(page);
8477 	SetPageUptodate(page);
8478 
8479 	BTRFS_I(inode)->last_trans = root->fs_info->generation;
8480 	BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
8481 	BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
8482 
8483 	unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
8484 
8485 out_unlock:
8486 	if (!ret) {
8487 		sb_end_pagefault(inode->i_sb);
8488 		return VM_FAULT_LOCKED;
8489 	}
8490 	unlock_page(page);
8491 out:
8492 	btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
8493 out_noreserve:
8494 	sb_end_pagefault(inode->i_sb);
8495 	return ret;
8496 }
8497 
8498 static int btrfs_truncate(struct inode *inode)
8499 {
8500 	struct btrfs_root *root = BTRFS_I(inode)->root;
8501 	struct btrfs_block_rsv *rsv;
8502 	int ret = 0;
8503 	int err = 0;
8504 	struct btrfs_trans_handle *trans;
8505 	u64 mask = root->sectorsize - 1;
8506 	u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
8507 
8508 	ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
8509 				       (u64)-1);
8510 	if (ret)
8511 		return ret;
8512 
8513 	/*
8514 	 * Yes ladies and gentelment, this is indeed ugly.  The fact is we have
8515 	 * 3 things going on here
8516 	 *
8517 	 * 1) We need to reserve space for our orphan item and the space to
8518 	 * delete our orphan item.  Lord knows we don't want to have a dangling
8519 	 * orphan item because we didn't reserve space to remove it.
8520 	 *
8521 	 * 2) We need to reserve space to update our inode.
8522 	 *
8523 	 * 3) We need to have something to cache all the space that is going to
8524 	 * be free'd up by the truncate operation, but also have some slack
8525 	 * space reserved in case it uses space during the truncate (thank you
8526 	 * very much snapshotting).
8527 	 *
8528 	 * And we need these to all be seperate.  The fact is we can use alot of
8529 	 * space doing the truncate, and we have no earthly idea how much space
8530 	 * we will use, so we need the truncate reservation to be seperate so it
8531 	 * doesn't end up using space reserved for updating the inode or
8532 	 * removing the orphan item.  We also need to be able to stop the
8533 	 * transaction and start a new one, which means we need to be able to
8534 	 * update the inode several times, and we have no idea of knowing how
8535 	 * many times that will be, so we can't just reserve 1 item for the
8536 	 * entirety of the opration, so that has to be done seperately as well.
8537 	 * Then there is the orphan item, which does indeed need to be held on
8538 	 * to for the whole operation, and we need nobody to touch this reserved
8539 	 * space except the orphan code.
8540 	 *
8541 	 * So that leaves us with
8542 	 *
8543 	 * 1) root->orphan_block_rsv - for the orphan deletion.
8544 	 * 2) rsv - for the truncate reservation, which we will steal from the
8545 	 * transaction reservation.
8546 	 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
8547 	 * updating the inode.
8548 	 */
8549 	rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
8550 	if (!rsv)
8551 		return -ENOMEM;
8552 	rsv->size = min_size;
8553 	rsv->failfast = 1;
8554 
8555 	/*
8556 	 * 1 for the truncate slack space
8557 	 * 1 for updating the inode.
8558 	 */
8559 	trans = btrfs_start_transaction(root, 2);
8560 	if (IS_ERR(trans)) {
8561 		err = PTR_ERR(trans);
8562 		goto out;
8563 	}
8564 
8565 	/* Migrate the slack space for the truncate to our reserve */
8566 	ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
8567 				      min_size);
8568 	BUG_ON(ret);
8569 
8570 	/*
8571 	 * So if we truncate and then write and fsync we normally would just
8572 	 * write the extents that changed, which is a problem if we need to
8573 	 * first truncate that entire inode.  So set this flag so we write out
8574 	 * all of the extents in the inode to the sync log so we're completely
8575 	 * safe.
8576 	 */
8577 	set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
8578 	trans->block_rsv = rsv;
8579 
8580 	while (1) {
8581 		ret = btrfs_truncate_inode_items(trans, root, inode,
8582 						 inode->i_size,
8583 						 BTRFS_EXTENT_DATA_KEY);
8584 		if (ret != -ENOSPC) {
8585 			err = ret;
8586 			break;
8587 		}
8588 
8589 		trans->block_rsv = &root->fs_info->trans_block_rsv;
8590 		ret = btrfs_update_inode(trans, root, inode);
8591 		if (ret) {
8592 			err = ret;
8593 			break;
8594 		}
8595 
8596 		btrfs_end_transaction(trans, root);
8597 		btrfs_btree_balance_dirty(root);
8598 
8599 		trans = btrfs_start_transaction(root, 2);
8600 		if (IS_ERR(trans)) {
8601 			ret = err = PTR_ERR(trans);
8602 			trans = NULL;
8603 			break;
8604 		}
8605 
8606 		ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
8607 					      rsv, min_size);
8608 		BUG_ON(ret);	/* shouldn't happen */
8609 		trans->block_rsv = rsv;
8610 	}
8611 
8612 	if (ret == 0 && inode->i_nlink > 0) {
8613 		trans->block_rsv = root->orphan_block_rsv;
8614 		ret = btrfs_orphan_del(trans, inode);
8615 		if (ret)
8616 			err = ret;
8617 	}
8618 
8619 	if (trans) {
8620 		trans->block_rsv = &root->fs_info->trans_block_rsv;
8621 		ret = btrfs_update_inode(trans, root, inode);
8622 		if (ret && !err)
8623 			err = ret;
8624 
8625 		ret = btrfs_end_transaction(trans, root);
8626 		btrfs_btree_balance_dirty(root);
8627 	}
8628 
8629 out:
8630 	btrfs_free_block_rsv(root, rsv);
8631 
8632 	if (ret && !err)
8633 		err = ret;
8634 
8635 	return err;
8636 }
8637 
8638 /*
8639  * create a new subvolume directory/inode (helper for the ioctl).
8640  */
8641 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
8642 			     struct btrfs_root *new_root,
8643 			     struct btrfs_root *parent_root,
8644 			     u64 new_dirid)
8645 {
8646 	struct inode *inode;
8647 	int err;
8648 	u64 index = 0;
8649 
8650 	inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
8651 				new_dirid, new_dirid,
8652 				S_IFDIR | (~current_umask() & S_IRWXUGO),
8653 				&index);
8654 	if (IS_ERR(inode))
8655 		return PTR_ERR(inode);
8656 	inode->i_op = &btrfs_dir_inode_operations;
8657 	inode->i_fop = &btrfs_dir_file_operations;
8658 
8659 	set_nlink(inode, 1);
8660 	btrfs_i_size_write(inode, 0);
8661 	unlock_new_inode(inode);
8662 
8663 	err = btrfs_subvol_inherit_props(trans, new_root, parent_root);
8664 	if (err)
8665 		btrfs_err(new_root->fs_info,
8666 			  "error inheriting subvolume %llu properties: %d",
8667 			  new_root->root_key.objectid, err);
8668 
8669 	err = btrfs_update_inode(trans, new_root, inode);
8670 
8671 	iput(inode);
8672 	return err;
8673 }
8674 
8675 struct inode *btrfs_alloc_inode(struct super_block *sb)
8676 {
8677 	struct btrfs_inode *ei;
8678 	struct inode *inode;
8679 
8680 	ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
8681 	if (!ei)
8682 		return NULL;
8683 
8684 	ei->root = NULL;
8685 	ei->generation = 0;
8686 	ei->last_trans = 0;
8687 	ei->last_sub_trans = 0;
8688 	ei->logged_trans = 0;
8689 	ei->delalloc_bytes = 0;
8690 	ei->defrag_bytes = 0;
8691 	ei->disk_i_size = 0;
8692 	ei->flags = 0;
8693 	ei->csum_bytes = 0;
8694 	ei->index_cnt = (u64)-1;
8695 	ei->dir_index = 0;
8696 	ei->last_unlink_trans = 0;
8697 	ei->last_log_commit = 0;
8698 
8699 	spin_lock_init(&ei->lock);
8700 	ei->outstanding_extents = 0;
8701 	ei->reserved_extents = 0;
8702 
8703 	ei->runtime_flags = 0;
8704 	ei->force_compress = BTRFS_COMPRESS_NONE;
8705 
8706 	ei->delayed_node = NULL;
8707 
8708 	ei->i_otime.tv_sec = 0;
8709 	ei->i_otime.tv_nsec = 0;
8710 
8711 	inode = &ei->vfs_inode;
8712 	extent_map_tree_init(&ei->extent_tree);
8713 	extent_io_tree_init(&ei->io_tree, &inode->i_data);
8714 	extent_io_tree_init(&ei->io_failure_tree, &inode->i_data);
8715 	ei->io_tree.track_uptodate = 1;
8716 	ei->io_failure_tree.track_uptodate = 1;
8717 	atomic_set(&ei->sync_writers, 0);
8718 	mutex_init(&ei->log_mutex);
8719 	mutex_init(&ei->delalloc_mutex);
8720 	btrfs_ordered_inode_tree_init(&ei->ordered_tree);
8721 	INIT_LIST_HEAD(&ei->delalloc_inodes);
8722 	RB_CLEAR_NODE(&ei->rb_node);
8723 
8724 	return inode;
8725 }
8726 
8727 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
8728 void btrfs_test_destroy_inode(struct inode *inode)
8729 {
8730 	btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
8731 	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8732 }
8733 #endif
8734 
8735 static void btrfs_i_callback(struct rcu_head *head)
8736 {
8737 	struct inode *inode = container_of(head, struct inode, i_rcu);
8738 	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8739 }
8740 
8741 void btrfs_destroy_inode(struct inode *inode)
8742 {
8743 	struct btrfs_ordered_extent *ordered;
8744 	struct btrfs_root *root = BTRFS_I(inode)->root;
8745 
8746 	WARN_ON(!hlist_empty(&inode->i_dentry));
8747 	WARN_ON(inode->i_data.nrpages);
8748 	WARN_ON(BTRFS_I(inode)->outstanding_extents);
8749 	WARN_ON(BTRFS_I(inode)->reserved_extents);
8750 	WARN_ON(BTRFS_I(inode)->delalloc_bytes);
8751 	WARN_ON(BTRFS_I(inode)->csum_bytes);
8752 	WARN_ON(BTRFS_I(inode)->defrag_bytes);
8753 
8754 	/*
8755 	 * This can happen where we create an inode, but somebody else also
8756 	 * created the same inode and we need to destroy the one we already
8757 	 * created.
8758 	 */
8759 	if (!root)
8760 		goto free;
8761 
8762 	if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
8763 		     &BTRFS_I(inode)->runtime_flags)) {
8764 		btrfs_info(root->fs_info, "inode %llu still on the orphan list",
8765 			btrfs_ino(inode));
8766 		atomic_dec(&root->orphan_inodes);
8767 	}
8768 
8769 	while (1) {
8770 		ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
8771 		if (!ordered)
8772 			break;
8773 		else {
8774 			btrfs_err(root->fs_info, "found ordered extent %llu %llu on inode cleanup",
8775 				ordered->file_offset, ordered->len);
8776 			btrfs_remove_ordered_extent(inode, ordered);
8777 			btrfs_put_ordered_extent(ordered);
8778 			btrfs_put_ordered_extent(ordered);
8779 		}
8780 	}
8781 	inode_tree_del(inode);
8782 	btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
8783 free:
8784 	call_rcu(&inode->i_rcu, btrfs_i_callback);
8785 }
8786 
8787 int btrfs_drop_inode(struct inode *inode)
8788 {
8789 	struct btrfs_root *root = BTRFS_I(inode)->root;
8790 
8791 	if (root == NULL)
8792 		return 1;
8793 
8794 	/* the snap/subvol tree is on deleting */
8795 	if (btrfs_root_refs(&root->root_item) == 0)
8796 		return 1;
8797 	else
8798 		return generic_drop_inode(inode);
8799 }
8800 
8801 static void init_once(void *foo)
8802 {
8803 	struct btrfs_inode *ei = (struct btrfs_inode *) foo;
8804 
8805 	inode_init_once(&ei->vfs_inode);
8806 }
8807 
8808 void btrfs_destroy_cachep(void)
8809 {
8810 	/*
8811 	 * Make sure all delayed rcu free inodes are flushed before we
8812 	 * destroy cache.
8813 	 */
8814 	rcu_barrier();
8815 	if (btrfs_inode_cachep)
8816 		kmem_cache_destroy(btrfs_inode_cachep);
8817 	if (btrfs_trans_handle_cachep)
8818 		kmem_cache_destroy(btrfs_trans_handle_cachep);
8819 	if (btrfs_transaction_cachep)
8820 		kmem_cache_destroy(btrfs_transaction_cachep);
8821 	if (btrfs_path_cachep)
8822 		kmem_cache_destroy(btrfs_path_cachep);
8823 	if (btrfs_free_space_cachep)
8824 		kmem_cache_destroy(btrfs_free_space_cachep);
8825 	if (btrfs_delalloc_work_cachep)
8826 		kmem_cache_destroy(btrfs_delalloc_work_cachep);
8827 }
8828 
8829 int btrfs_init_cachep(void)
8830 {
8831 	btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
8832 			sizeof(struct btrfs_inode), 0,
8833 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
8834 	if (!btrfs_inode_cachep)
8835 		goto fail;
8836 
8837 	btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
8838 			sizeof(struct btrfs_trans_handle), 0,
8839 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
8840 	if (!btrfs_trans_handle_cachep)
8841 		goto fail;
8842 
8843 	btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction",
8844 			sizeof(struct btrfs_transaction), 0,
8845 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
8846 	if (!btrfs_transaction_cachep)
8847 		goto fail;
8848 
8849 	btrfs_path_cachep = kmem_cache_create("btrfs_path",
8850 			sizeof(struct btrfs_path), 0,
8851 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
8852 	if (!btrfs_path_cachep)
8853 		goto fail;
8854 
8855 	btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
8856 			sizeof(struct btrfs_free_space), 0,
8857 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
8858 	if (!btrfs_free_space_cachep)
8859 		goto fail;
8860 
8861 	btrfs_delalloc_work_cachep = kmem_cache_create("btrfs_delalloc_work",
8862 			sizeof(struct btrfs_delalloc_work), 0,
8863 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
8864 			NULL);
8865 	if (!btrfs_delalloc_work_cachep)
8866 		goto fail;
8867 
8868 	return 0;
8869 fail:
8870 	btrfs_destroy_cachep();
8871 	return -ENOMEM;
8872 }
8873 
8874 static int btrfs_getattr(struct vfsmount *mnt,
8875 			 struct dentry *dentry, struct kstat *stat)
8876 {
8877 	u64 delalloc_bytes;
8878 	struct inode *inode = dentry->d_inode;
8879 	u32 blocksize = inode->i_sb->s_blocksize;
8880 
8881 	generic_fillattr(inode, stat);
8882 	stat->dev = BTRFS_I(inode)->root->anon_dev;
8883 	stat->blksize = PAGE_CACHE_SIZE;
8884 
8885 	spin_lock(&BTRFS_I(inode)->lock);
8886 	delalloc_bytes = BTRFS_I(inode)->delalloc_bytes;
8887 	spin_unlock(&BTRFS_I(inode)->lock);
8888 	stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
8889 			ALIGN(delalloc_bytes, blocksize)) >> 9;
8890 	return 0;
8891 }
8892 
8893 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
8894 			   struct inode *new_dir, struct dentry *new_dentry)
8895 {
8896 	struct btrfs_trans_handle *trans;
8897 	struct btrfs_root *root = BTRFS_I(old_dir)->root;
8898 	struct btrfs_root *dest = BTRFS_I(new_dir)->root;
8899 	struct inode *new_inode = new_dentry->d_inode;
8900 	struct inode *old_inode = old_dentry->d_inode;
8901 	struct timespec ctime = CURRENT_TIME;
8902 	u64 index = 0;
8903 	u64 root_objectid;
8904 	int ret;
8905 	u64 old_ino = btrfs_ino(old_inode);
8906 
8907 	if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
8908 		return -EPERM;
8909 
8910 	/* we only allow rename subvolume link between subvolumes */
8911 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
8912 		return -EXDEV;
8913 
8914 	if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
8915 	    (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID))
8916 		return -ENOTEMPTY;
8917 
8918 	if (S_ISDIR(old_inode->i_mode) && new_inode &&
8919 	    new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
8920 		return -ENOTEMPTY;
8921 
8922 
8923 	/* check for collisions, even if the  name isn't there */
8924 	ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
8925 			     new_dentry->d_name.name,
8926 			     new_dentry->d_name.len);
8927 
8928 	if (ret) {
8929 		if (ret == -EEXIST) {
8930 			/* we shouldn't get
8931 			 * eexist without a new_inode */
8932 			if (WARN_ON(!new_inode)) {
8933 				return ret;
8934 			}
8935 		} else {
8936 			/* maybe -EOVERFLOW */
8937 			return ret;
8938 		}
8939 	}
8940 	ret = 0;
8941 
8942 	/*
8943 	 * we're using rename to replace one file with another.  Start IO on it
8944 	 * now so  we don't add too much work to the end of the transaction
8945 	 */
8946 	if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
8947 		filemap_flush(old_inode->i_mapping);
8948 
8949 	/* close the racy window with snapshot create/destroy ioctl */
8950 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
8951 		down_read(&root->fs_info->subvol_sem);
8952 	/*
8953 	 * We want to reserve the absolute worst case amount of items.  So if
8954 	 * both inodes are subvols and we need to unlink them then that would
8955 	 * require 4 item modifications, but if they are both normal inodes it
8956 	 * would require 5 item modifications, so we'll assume their normal
8957 	 * inodes.  So 5 * 2 is 10, plus 1 for the new link, so 11 total items
8958 	 * should cover the worst case number of items we'll modify.
8959 	 */
8960 	trans = btrfs_start_transaction(root, 11);
8961 	if (IS_ERR(trans)) {
8962                 ret = PTR_ERR(trans);
8963                 goto out_notrans;
8964         }
8965 
8966 	if (dest != root)
8967 		btrfs_record_root_in_trans(trans, dest);
8968 
8969 	ret = btrfs_set_inode_index(new_dir, &index);
8970 	if (ret)
8971 		goto out_fail;
8972 
8973 	BTRFS_I(old_inode)->dir_index = 0ULL;
8974 	if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
8975 		/* force full log commit if subvolume involved. */
8976 		btrfs_set_log_full_commit(root->fs_info, trans);
8977 	} else {
8978 		ret = btrfs_insert_inode_ref(trans, dest,
8979 					     new_dentry->d_name.name,
8980 					     new_dentry->d_name.len,
8981 					     old_ino,
8982 					     btrfs_ino(new_dir), index);
8983 		if (ret)
8984 			goto out_fail;
8985 		/*
8986 		 * this is an ugly little race, but the rename is required
8987 		 * to make sure that if we crash, the inode is either at the
8988 		 * old name or the new one.  pinning the log transaction lets
8989 		 * us make sure we don't allow a log commit to come in after
8990 		 * we unlink the name but before we add the new name back in.
8991 		 */
8992 		btrfs_pin_log_trans(root);
8993 	}
8994 
8995 	inode_inc_iversion(old_dir);
8996 	inode_inc_iversion(new_dir);
8997 	inode_inc_iversion(old_inode);
8998 	old_dir->i_ctime = old_dir->i_mtime = ctime;
8999 	new_dir->i_ctime = new_dir->i_mtime = ctime;
9000 	old_inode->i_ctime = ctime;
9001 
9002 	if (old_dentry->d_parent != new_dentry->d_parent)
9003 		btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
9004 
9005 	if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9006 		root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
9007 		ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
9008 					old_dentry->d_name.name,
9009 					old_dentry->d_name.len);
9010 	} else {
9011 		ret = __btrfs_unlink_inode(trans, root, old_dir,
9012 					old_dentry->d_inode,
9013 					old_dentry->d_name.name,
9014 					old_dentry->d_name.len);
9015 		if (!ret)
9016 			ret = btrfs_update_inode(trans, root, old_inode);
9017 	}
9018 	if (ret) {
9019 		btrfs_abort_transaction(trans, root, ret);
9020 		goto out_fail;
9021 	}
9022 
9023 	if (new_inode) {
9024 		inode_inc_iversion(new_inode);
9025 		new_inode->i_ctime = CURRENT_TIME;
9026 		if (unlikely(btrfs_ino(new_inode) ==
9027 			     BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
9028 			root_objectid = BTRFS_I(new_inode)->location.objectid;
9029 			ret = btrfs_unlink_subvol(trans, dest, new_dir,
9030 						root_objectid,
9031 						new_dentry->d_name.name,
9032 						new_dentry->d_name.len);
9033 			BUG_ON(new_inode->i_nlink == 0);
9034 		} else {
9035 			ret = btrfs_unlink_inode(trans, dest, new_dir,
9036 						 new_dentry->d_inode,
9037 						 new_dentry->d_name.name,
9038 						 new_dentry->d_name.len);
9039 		}
9040 		if (!ret && new_inode->i_nlink == 0)
9041 			ret = btrfs_orphan_add(trans, new_dentry->d_inode);
9042 		if (ret) {
9043 			btrfs_abort_transaction(trans, root, ret);
9044 			goto out_fail;
9045 		}
9046 	}
9047 
9048 	ret = btrfs_add_link(trans, new_dir, old_inode,
9049 			     new_dentry->d_name.name,
9050 			     new_dentry->d_name.len, 0, index);
9051 	if (ret) {
9052 		btrfs_abort_transaction(trans, root, ret);
9053 		goto out_fail;
9054 	}
9055 
9056 	if (old_inode->i_nlink == 1)
9057 		BTRFS_I(old_inode)->dir_index = index;
9058 
9059 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID) {
9060 		struct dentry *parent = new_dentry->d_parent;
9061 		btrfs_log_new_name(trans, old_inode, old_dir, parent);
9062 		btrfs_end_log_trans(root);
9063 	}
9064 out_fail:
9065 	btrfs_end_transaction(trans, root);
9066 out_notrans:
9067 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9068 		up_read(&root->fs_info->subvol_sem);
9069 
9070 	return ret;
9071 }
9072 
9073 static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry,
9074 			 struct inode *new_dir, struct dentry *new_dentry,
9075 			 unsigned int flags)
9076 {
9077 	if (flags & ~RENAME_NOREPLACE)
9078 		return -EINVAL;
9079 
9080 	return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry);
9081 }
9082 
9083 static void btrfs_run_delalloc_work(struct btrfs_work *work)
9084 {
9085 	struct btrfs_delalloc_work *delalloc_work;
9086 	struct inode *inode;
9087 
9088 	delalloc_work = container_of(work, struct btrfs_delalloc_work,
9089 				     work);
9090 	inode = delalloc_work->inode;
9091 	if (delalloc_work->wait) {
9092 		btrfs_wait_ordered_range(inode, 0, (u64)-1);
9093 	} else {
9094 		filemap_flush(inode->i_mapping);
9095 		if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
9096 			     &BTRFS_I(inode)->runtime_flags))
9097 			filemap_flush(inode->i_mapping);
9098 	}
9099 
9100 	if (delalloc_work->delay_iput)
9101 		btrfs_add_delayed_iput(inode);
9102 	else
9103 		iput(inode);
9104 	complete(&delalloc_work->completion);
9105 }
9106 
9107 struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode,
9108 						    int wait, int delay_iput)
9109 {
9110 	struct btrfs_delalloc_work *work;
9111 
9112 	work = kmem_cache_zalloc(btrfs_delalloc_work_cachep, GFP_NOFS);
9113 	if (!work)
9114 		return NULL;
9115 
9116 	init_completion(&work->completion);
9117 	INIT_LIST_HEAD(&work->list);
9118 	work->inode = inode;
9119 	work->wait = wait;
9120 	work->delay_iput = delay_iput;
9121 	WARN_ON_ONCE(!inode);
9122 	btrfs_init_work(&work->work, btrfs_flush_delalloc_helper,
9123 			btrfs_run_delalloc_work, NULL, NULL);
9124 
9125 	return work;
9126 }
9127 
9128 void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work)
9129 {
9130 	wait_for_completion(&work->completion);
9131 	kmem_cache_free(btrfs_delalloc_work_cachep, work);
9132 }
9133 
9134 /*
9135  * some fairly slow code that needs optimization. This walks the list
9136  * of all the inodes with pending delalloc and forces them to disk.
9137  */
9138 static int __start_delalloc_inodes(struct btrfs_root *root, int delay_iput,
9139 				   int nr)
9140 {
9141 	struct btrfs_inode *binode;
9142 	struct inode *inode;
9143 	struct btrfs_delalloc_work *work, *next;
9144 	struct list_head works;
9145 	struct list_head splice;
9146 	int ret = 0;
9147 
9148 	INIT_LIST_HEAD(&works);
9149 	INIT_LIST_HEAD(&splice);
9150 
9151 	mutex_lock(&root->delalloc_mutex);
9152 	spin_lock(&root->delalloc_lock);
9153 	list_splice_init(&root->delalloc_inodes, &splice);
9154 	while (!list_empty(&splice)) {
9155 		binode = list_entry(splice.next, struct btrfs_inode,
9156 				    delalloc_inodes);
9157 
9158 		list_move_tail(&binode->delalloc_inodes,
9159 			       &root->delalloc_inodes);
9160 		inode = igrab(&binode->vfs_inode);
9161 		if (!inode) {
9162 			cond_resched_lock(&root->delalloc_lock);
9163 			continue;
9164 		}
9165 		spin_unlock(&root->delalloc_lock);
9166 
9167 		work = btrfs_alloc_delalloc_work(inode, 0, delay_iput);
9168 		if (!work) {
9169 			if (delay_iput)
9170 				btrfs_add_delayed_iput(inode);
9171 			else
9172 				iput(inode);
9173 			ret = -ENOMEM;
9174 			goto out;
9175 		}
9176 		list_add_tail(&work->list, &works);
9177 		btrfs_queue_work(root->fs_info->flush_workers,
9178 				 &work->work);
9179 		ret++;
9180 		if (nr != -1 && ret >= nr)
9181 			goto out;
9182 		cond_resched();
9183 		spin_lock(&root->delalloc_lock);
9184 	}
9185 	spin_unlock(&root->delalloc_lock);
9186 
9187 out:
9188 	list_for_each_entry_safe(work, next, &works, list) {
9189 		list_del_init(&work->list);
9190 		btrfs_wait_and_free_delalloc_work(work);
9191 	}
9192 
9193 	if (!list_empty_careful(&splice)) {
9194 		spin_lock(&root->delalloc_lock);
9195 		list_splice_tail(&splice, &root->delalloc_inodes);
9196 		spin_unlock(&root->delalloc_lock);
9197 	}
9198 	mutex_unlock(&root->delalloc_mutex);
9199 	return ret;
9200 }
9201 
9202 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
9203 {
9204 	int ret;
9205 
9206 	if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
9207 		return -EROFS;
9208 
9209 	ret = __start_delalloc_inodes(root, delay_iput, -1);
9210 	if (ret > 0)
9211 		ret = 0;
9212 	/*
9213 	 * the filemap_flush will queue IO into the worker threads, but
9214 	 * we have to make sure the IO is actually started and that
9215 	 * ordered extents get created before we return
9216 	 */
9217 	atomic_inc(&root->fs_info->async_submit_draining);
9218 	while (atomic_read(&root->fs_info->nr_async_submits) ||
9219 	      atomic_read(&root->fs_info->async_delalloc_pages)) {
9220 		wait_event(root->fs_info->async_submit_wait,
9221 		   (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
9222 		    atomic_read(&root->fs_info->async_delalloc_pages) == 0));
9223 	}
9224 	atomic_dec(&root->fs_info->async_submit_draining);
9225 	return ret;
9226 }
9227 
9228 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int delay_iput,
9229 			       int nr)
9230 {
9231 	struct btrfs_root *root;
9232 	struct list_head splice;
9233 	int ret;
9234 
9235 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
9236 		return -EROFS;
9237 
9238 	INIT_LIST_HEAD(&splice);
9239 
9240 	mutex_lock(&fs_info->delalloc_root_mutex);
9241 	spin_lock(&fs_info->delalloc_root_lock);
9242 	list_splice_init(&fs_info->delalloc_roots, &splice);
9243 	while (!list_empty(&splice) && nr) {
9244 		root = list_first_entry(&splice, struct btrfs_root,
9245 					delalloc_root);
9246 		root = btrfs_grab_fs_root(root);
9247 		BUG_ON(!root);
9248 		list_move_tail(&root->delalloc_root,
9249 			       &fs_info->delalloc_roots);
9250 		spin_unlock(&fs_info->delalloc_root_lock);
9251 
9252 		ret = __start_delalloc_inodes(root, delay_iput, nr);
9253 		btrfs_put_fs_root(root);
9254 		if (ret < 0)
9255 			goto out;
9256 
9257 		if (nr != -1) {
9258 			nr -= ret;
9259 			WARN_ON(nr < 0);
9260 		}
9261 		spin_lock(&fs_info->delalloc_root_lock);
9262 	}
9263 	spin_unlock(&fs_info->delalloc_root_lock);
9264 
9265 	ret = 0;
9266 	atomic_inc(&fs_info->async_submit_draining);
9267 	while (atomic_read(&fs_info->nr_async_submits) ||
9268 	      atomic_read(&fs_info->async_delalloc_pages)) {
9269 		wait_event(fs_info->async_submit_wait,
9270 		   (atomic_read(&fs_info->nr_async_submits) == 0 &&
9271 		    atomic_read(&fs_info->async_delalloc_pages) == 0));
9272 	}
9273 	atomic_dec(&fs_info->async_submit_draining);
9274 out:
9275 	if (!list_empty_careful(&splice)) {
9276 		spin_lock(&fs_info->delalloc_root_lock);
9277 		list_splice_tail(&splice, &fs_info->delalloc_roots);
9278 		spin_unlock(&fs_info->delalloc_root_lock);
9279 	}
9280 	mutex_unlock(&fs_info->delalloc_root_mutex);
9281 	return ret;
9282 }
9283 
9284 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
9285 			 const char *symname)
9286 {
9287 	struct btrfs_trans_handle *trans;
9288 	struct btrfs_root *root = BTRFS_I(dir)->root;
9289 	struct btrfs_path *path;
9290 	struct btrfs_key key;
9291 	struct inode *inode = NULL;
9292 	int err;
9293 	int drop_inode = 0;
9294 	u64 objectid;
9295 	u64 index = 0;
9296 	int name_len;
9297 	int datasize;
9298 	unsigned long ptr;
9299 	struct btrfs_file_extent_item *ei;
9300 	struct extent_buffer *leaf;
9301 
9302 	name_len = strlen(symname);
9303 	if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
9304 		return -ENAMETOOLONG;
9305 
9306 	/*
9307 	 * 2 items for inode item and ref
9308 	 * 2 items for dir items
9309 	 * 1 item for xattr if selinux is on
9310 	 */
9311 	trans = btrfs_start_transaction(root, 5);
9312 	if (IS_ERR(trans))
9313 		return PTR_ERR(trans);
9314 
9315 	err = btrfs_find_free_ino(root, &objectid);
9316 	if (err)
9317 		goto out_unlock;
9318 
9319 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
9320 				dentry->d_name.len, btrfs_ino(dir), objectid,
9321 				S_IFLNK|S_IRWXUGO, &index);
9322 	if (IS_ERR(inode)) {
9323 		err = PTR_ERR(inode);
9324 		goto out_unlock;
9325 	}
9326 
9327 	/*
9328 	* If the active LSM wants to access the inode during
9329 	* d_instantiate it needs these. Smack checks to see
9330 	* if the filesystem supports xattrs by looking at the
9331 	* ops vector.
9332 	*/
9333 	inode->i_fop = &btrfs_file_operations;
9334 	inode->i_op = &btrfs_file_inode_operations;
9335 	inode->i_mapping->a_ops = &btrfs_aops;
9336 	BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
9337 
9338 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
9339 	if (err)
9340 		goto out_unlock_inode;
9341 
9342 	err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
9343 	if (err)
9344 		goto out_unlock_inode;
9345 
9346 	path = btrfs_alloc_path();
9347 	if (!path) {
9348 		err = -ENOMEM;
9349 		goto out_unlock_inode;
9350 	}
9351 	key.objectid = btrfs_ino(inode);
9352 	key.offset = 0;
9353 	key.type = BTRFS_EXTENT_DATA_KEY;
9354 	datasize = btrfs_file_extent_calc_inline_size(name_len);
9355 	err = btrfs_insert_empty_item(trans, root, path, &key,
9356 				      datasize);
9357 	if (err) {
9358 		btrfs_free_path(path);
9359 		goto out_unlock_inode;
9360 	}
9361 	leaf = path->nodes[0];
9362 	ei = btrfs_item_ptr(leaf, path->slots[0],
9363 			    struct btrfs_file_extent_item);
9364 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
9365 	btrfs_set_file_extent_type(leaf, ei,
9366 				   BTRFS_FILE_EXTENT_INLINE);
9367 	btrfs_set_file_extent_encryption(leaf, ei, 0);
9368 	btrfs_set_file_extent_compression(leaf, ei, 0);
9369 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
9370 	btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
9371 
9372 	ptr = btrfs_file_extent_inline_start(ei);
9373 	write_extent_buffer(leaf, symname, ptr, name_len);
9374 	btrfs_mark_buffer_dirty(leaf);
9375 	btrfs_free_path(path);
9376 
9377 	inode->i_op = &btrfs_symlink_inode_operations;
9378 	inode->i_mapping->a_ops = &btrfs_symlink_aops;
9379 	inode_set_bytes(inode, name_len);
9380 	btrfs_i_size_write(inode, name_len);
9381 	err = btrfs_update_inode(trans, root, inode);
9382 	if (err) {
9383 		drop_inode = 1;
9384 		goto out_unlock_inode;
9385 	}
9386 
9387 	unlock_new_inode(inode);
9388 	d_instantiate(dentry, inode);
9389 
9390 out_unlock:
9391 	btrfs_end_transaction(trans, root);
9392 	if (drop_inode) {
9393 		inode_dec_link_count(inode);
9394 		iput(inode);
9395 	}
9396 	btrfs_btree_balance_dirty(root);
9397 	return err;
9398 
9399 out_unlock_inode:
9400 	drop_inode = 1;
9401 	unlock_new_inode(inode);
9402 	goto out_unlock;
9403 }
9404 
9405 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
9406 				       u64 start, u64 num_bytes, u64 min_size,
9407 				       loff_t actual_len, u64 *alloc_hint,
9408 				       struct btrfs_trans_handle *trans)
9409 {
9410 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
9411 	struct extent_map *em;
9412 	struct btrfs_root *root = BTRFS_I(inode)->root;
9413 	struct btrfs_key ins;
9414 	u64 cur_offset = start;
9415 	u64 i_size;
9416 	u64 cur_bytes;
9417 	int ret = 0;
9418 	bool own_trans = true;
9419 
9420 	if (trans)
9421 		own_trans = false;
9422 	while (num_bytes > 0) {
9423 		if (own_trans) {
9424 			trans = btrfs_start_transaction(root, 3);
9425 			if (IS_ERR(trans)) {
9426 				ret = PTR_ERR(trans);
9427 				break;
9428 			}
9429 		}
9430 
9431 		cur_bytes = min(num_bytes, 256ULL * 1024 * 1024);
9432 		cur_bytes = max(cur_bytes, min_size);
9433 		ret = btrfs_reserve_extent(root, cur_bytes, min_size, 0,
9434 					   *alloc_hint, &ins, 1, 0);
9435 		if (ret) {
9436 			if (own_trans)
9437 				btrfs_end_transaction(trans, root);
9438 			break;
9439 		}
9440 
9441 		ret = insert_reserved_file_extent(trans, inode,
9442 						  cur_offset, ins.objectid,
9443 						  ins.offset, ins.offset,
9444 						  ins.offset, 0, 0, 0,
9445 						  BTRFS_FILE_EXTENT_PREALLOC);
9446 		if (ret) {
9447 			btrfs_free_reserved_extent(root, ins.objectid,
9448 						   ins.offset, 0);
9449 			btrfs_abort_transaction(trans, root, ret);
9450 			if (own_trans)
9451 				btrfs_end_transaction(trans, root);
9452 			break;
9453 		}
9454 		btrfs_drop_extent_cache(inode, cur_offset,
9455 					cur_offset + ins.offset -1, 0);
9456 
9457 		em = alloc_extent_map();
9458 		if (!em) {
9459 			set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
9460 				&BTRFS_I(inode)->runtime_flags);
9461 			goto next;
9462 		}
9463 
9464 		em->start = cur_offset;
9465 		em->orig_start = cur_offset;
9466 		em->len = ins.offset;
9467 		em->block_start = ins.objectid;
9468 		em->block_len = ins.offset;
9469 		em->orig_block_len = ins.offset;
9470 		em->ram_bytes = ins.offset;
9471 		em->bdev = root->fs_info->fs_devices->latest_bdev;
9472 		set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
9473 		em->generation = trans->transid;
9474 
9475 		while (1) {
9476 			write_lock(&em_tree->lock);
9477 			ret = add_extent_mapping(em_tree, em, 1);
9478 			write_unlock(&em_tree->lock);
9479 			if (ret != -EEXIST)
9480 				break;
9481 			btrfs_drop_extent_cache(inode, cur_offset,
9482 						cur_offset + ins.offset - 1,
9483 						0);
9484 		}
9485 		free_extent_map(em);
9486 next:
9487 		num_bytes -= ins.offset;
9488 		cur_offset += ins.offset;
9489 		*alloc_hint = ins.objectid + ins.offset;
9490 
9491 		inode_inc_iversion(inode);
9492 		inode->i_ctime = CURRENT_TIME;
9493 		BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
9494 		if (!(mode & FALLOC_FL_KEEP_SIZE) &&
9495 		    (actual_len > inode->i_size) &&
9496 		    (cur_offset > inode->i_size)) {
9497 			if (cur_offset > actual_len)
9498 				i_size = actual_len;
9499 			else
9500 				i_size = cur_offset;
9501 			i_size_write(inode, i_size);
9502 			btrfs_ordered_update_i_size(inode, i_size, NULL);
9503 		}
9504 
9505 		ret = btrfs_update_inode(trans, root, inode);
9506 
9507 		if (ret) {
9508 			btrfs_abort_transaction(trans, root, ret);
9509 			if (own_trans)
9510 				btrfs_end_transaction(trans, root);
9511 			break;
9512 		}
9513 
9514 		if (own_trans)
9515 			btrfs_end_transaction(trans, root);
9516 	}
9517 	return ret;
9518 }
9519 
9520 int btrfs_prealloc_file_range(struct inode *inode, int mode,
9521 			      u64 start, u64 num_bytes, u64 min_size,
9522 			      loff_t actual_len, u64 *alloc_hint)
9523 {
9524 	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9525 					   min_size, actual_len, alloc_hint,
9526 					   NULL);
9527 }
9528 
9529 int btrfs_prealloc_file_range_trans(struct inode *inode,
9530 				    struct btrfs_trans_handle *trans, int mode,
9531 				    u64 start, u64 num_bytes, u64 min_size,
9532 				    loff_t actual_len, u64 *alloc_hint)
9533 {
9534 	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9535 					   min_size, actual_len, alloc_hint, trans);
9536 }
9537 
9538 static int btrfs_set_page_dirty(struct page *page)
9539 {
9540 	return __set_page_dirty_nobuffers(page);
9541 }
9542 
9543 static int btrfs_permission(struct inode *inode, int mask)
9544 {
9545 	struct btrfs_root *root = BTRFS_I(inode)->root;
9546 	umode_t mode = inode->i_mode;
9547 
9548 	if (mask & MAY_WRITE &&
9549 	    (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
9550 		if (btrfs_root_readonly(root))
9551 			return -EROFS;
9552 		if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
9553 			return -EACCES;
9554 	}
9555 	return generic_permission(inode, mask);
9556 }
9557 
9558 static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
9559 {
9560 	struct btrfs_trans_handle *trans;
9561 	struct btrfs_root *root = BTRFS_I(dir)->root;
9562 	struct inode *inode = NULL;
9563 	u64 objectid;
9564 	u64 index;
9565 	int ret = 0;
9566 
9567 	/*
9568 	 * 5 units required for adding orphan entry
9569 	 */
9570 	trans = btrfs_start_transaction(root, 5);
9571 	if (IS_ERR(trans))
9572 		return PTR_ERR(trans);
9573 
9574 	ret = btrfs_find_free_ino(root, &objectid);
9575 	if (ret)
9576 		goto out;
9577 
9578 	inode = btrfs_new_inode(trans, root, dir, NULL, 0,
9579 				btrfs_ino(dir), objectid, mode, &index);
9580 	if (IS_ERR(inode)) {
9581 		ret = PTR_ERR(inode);
9582 		inode = NULL;
9583 		goto out;
9584 	}
9585 
9586 	inode->i_fop = &btrfs_file_operations;
9587 	inode->i_op = &btrfs_file_inode_operations;
9588 
9589 	inode->i_mapping->a_ops = &btrfs_aops;
9590 	BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
9591 
9592 	ret = btrfs_init_inode_security(trans, inode, dir, NULL);
9593 	if (ret)
9594 		goto out_inode;
9595 
9596 	ret = btrfs_update_inode(trans, root, inode);
9597 	if (ret)
9598 		goto out_inode;
9599 	ret = btrfs_orphan_add(trans, inode);
9600 	if (ret)
9601 		goto out_inode;
9602 
9603 	/*
9604 	 * We set number of links to 0 in btrfs_new_inode(), and here we set
9605 	 * it to 1 because d_tmpfile() will issue a warning if the count is 0,
9606 	 * through:
9607 	 *
9608 	 *    d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
9609 	 */
9610 	set_nlink(inode, 1);
9611 	unlock_new_inode(inode);
9612 	d_tmpfile(dentry, inode);
9613 	mark_inode_dirty(inode);
9614 
9615 out:
9616 	btrfs_end_transaction(trans, root);
9617 	if (ret)
9618 		iput(inode);
9619 	btrfs_balance_delayed_items(root);
9620 	btrfs_btree_balance_dirty(root);
9621 	return ret;
9622 
9623 out_inode:
9624 	unlock_new_inode(inode);
9625 	goto out;
9626 
9627 }
9628 
9629 /* Inspired by filemap_check_errors() */
9630 int btrfs_inode_check_errors(struct inode *inode)
9631 {
9632 	int ret = 0;
9633 
9634 	if (test_bit(AS_ENOSPC, &inode->i_mapping->flags) &&
9635 	    test_and_clear_bit(AS_ENOSPC, &inode->i_mapping->flags))
9636 		ret = -ENOSPC;
9637 	if (test_bit(AS_EIO, &inode->i_mapping->flags) &&
9638 	    test_and_clear_bit(AS_EIO, &inode->i_mapping->flags))
9639 		ret = -EIO;
9640 
9641 	return ret;
9642 }
9643 
9644 static const struct inode_operations btrfs_dir_inode_operations = {
9645 	.getattr	= btrfs_getattr,
9646 	.lookup		= btrfs_lookup,
9647 	.create		= btrfs_create,
9648 	.unlink		= btrfs_unlink,
9649 	.link		= btrfs_link,
9650 	.mkdir		= btrfs_mkdir,
9651 	.rmdir		= btrfs_rmdir,
9652 	.rename2	= btrfs_rename2,
9653 	.symlink	= btrfs_symlink,
9654 	.setattr	= btrfs_setattr,
9655 	.mknod		= btrfs_mknod,
9656 	.setxattr	= btrfs_setxattr,
9657 	.getxattr	= btrfs_getxattr,
9658 	.listxattr	= btrfs_listxattr,
9659 	.removexattr	= btrfs_removexattr,
9660 	.permission	= btrfs_permission,
9661 	.get_acl	= btrfs_get_acl,
9662 	.set_acl	= btrfs_set_acl,
9663 	.update_time	= btrfs_update_time,
9664 	.tmpfile        = btrfs_tmpfile,
9665 };
9666 static const struct inode_operations btrfs_dir_ro_inode_operations = {
9667 	.lookup		= btrfs_lookup,
9668 	.permission	= btrfs_permission,
9669 	.get_acl	= btrfs_get_acl,
9670 	.set_acl	= btrfs_set_acl,
9671 	.update_time	= btrfs_update_time,
9672 };
9673 
9674 static const struct file_operations btrfs_dir_file_operations = {
9675 	.llseek		= generic_file_llseek,
9676 	.read		= generic_read_dir,
9677 	.iterate	= btrfs_real_readdir,
9678 	.unlocked_ioctl	= btrfs_ioctl,
9679 #ifdef CONFIG_COMPAT
9680 	.compat_ioctl	= btrfs_ioctl,
9681 #endif
9682 	.release        = btrfs_release_file,
9683 	.fsync		= btrfs_sync_file,
9684 };
9685 
9686 static struct extent_io_ops btrfs_extent_io_ops = {
9687 	.fill_delalloc = run_delalloc_range,
9688 	.submit_bio_hook = btrfs_submit_bio_hook,
9689 	.merge_bio_hook = btrfs_merge_bio_hook,
9690 	.readpage_end_io_hook = btrfs_readpage_end_io_hook,
9691 	.writepage_end_io_hook = btrfs_writepage_end_io_hook,
9692 	.writepage_start_hook = btrfs_writepage_start_hook,
9693 	.set_bit_hook = btrfs_set_bit_hook,
9694 	.clear_bit_hook = btrfs_clear_bit_hook,
9695 	.merge_extent_hook = btrfs_merge_extent_hook,
9696 	.split_extent_hook = btrfs_split_extent_hook,
9697 };
9698 
9699 /*
9700  * btrfs doesn't support the bmap operation because swapfiles
9701  * use bmap to make a mapping of extents in the file.  They assume
9702  * these extents won't change over the life of the file and they
9703  * use the bmap result to do IO directly to the drive.
9704  *
9705  * the btrfs bmap call would return logical addresses that aren't
9706  * suitable for IO and they also will change frequently as COW
9707  * operations happen.  So, swapfile + btrfs == corruption.
9708  *
9709  * For now we're avoiding this by dropping bmap.
9710  */
9711 static const struct address_space_operations btrfs_aops = {
9712 	.readpage	= btrfs_readpage,
9713 	.writepage	= btrfs_writepage,
9714 	.writepages	= btrfs_writepages,
9715 	.readpages	= btrfs_readpages,
9716 	.direct_IO	= btrfs_direct_IO,
9717 	.invalidatepage = btrfs_invalidatepage,
9718 	.releasepage	= btrfs_releasepage,
9719 	.set_page_dirty	= btrfs_set_page_dirty,
9720 	.error_remove_page = generic_error_remove_page,
9721 };
9722 
9723 static const struct address_space_operations btrfs_symlink_aops = {
9724 	.readpage	= btrfs_readpage,
9725 	.writepage	= btrfs_writepage,
9726 	.invalidatepage = btrfs_invalidatepage,
9727 	.releasepage	= btrfs_releasepage,
9728 };
9729 
9730 static const struct inode_operations btrfs_file_inode_operations = {
9731 	.getattr	= btrfs_getattr,
9732 	.setattr	= btrfs_setattr,
9733 	.setxattr	= btrfs_setxattr,
9734 	.getxattr	= btrfs_getxattr,
9735 	.listxattr      = btrfs_listxattr,
9736 	.removexattr	= btrfs_removexattr,
9737 	.permission	= btrfs_permission,
9738 	.fiemap		= btrfs_fiemap,
9739 	.get_acl	= btrfs_get_acl,
9740 	.set_acl	= btrfs_set_acl,
9741 	.update_time	= btrfs_update_time,
9742 };
9743 static const struct inode_operations btrfs_special_inode_operations = {
9744 	.getattr	= btrfs_getattr,
9745 	.setattr	= btrfs_setattr,
9746 	.permission	= btrfs_permission,
9747 	.setxattr	= btrfs_setxattr,
9748 	.getxattr	= btrfs_getxattr,
9749 	.listxattr	= btrfs_listxattr,
9750 	.removexattr	= btrfs_removexattr,
9751 	.get_acl	= btrfs_get_acl,
9752 	.set_acl	= btrfs_set_acl,
9753 	.update_time	= btrfs_update_time,
9754 };
9755 static const struct inode_operations btrfs_symlink_inode_operations = {
9756 	.readlink	= generic_readlink,
9757 	.follow_link	= page_follow_link_light,
9758 	.put_link	= page_put_link,
9759 	.getattr	= btrfs_getattr,
9760 	.setattr	= btrfs_setattr,
9761 	.permission	= btrfs_permission,
9762 	.setxattr	= btrfs_setxattr,
9763 	.getxattr	= btrfs_getxattr,
9764 	.listxattr	= btrfs_listxattr,
9765 	.removexattr	= btrfs_removexattr,
9766 	.update_time	= btrfs_update_time,
9767 };
9768 
9769 const struct dentry_operations btrfs_dentry_operations = {
9770 	.d_delete	= btrfs_dentry_delete,
9771 	.d_release	= btrfs_dentry_release,
9772 };
9773