xref: /openbmc/linux/fs/btrfs/inode.c (revision e657c18a)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/kernel.h>
7 #include <linux/bio.h>
8 #include <linux/buffer_head.h>
9 #include <linux/file.h>
10 #include <linux/fs.h>
11 #include <linux/pagemap.h>
12 #include <linux/highmem.h>
13 #include <linux/time.h>
14 #include <linux/init.h>
15 #include <linux/string.h>
16 #include <linux/backing-dev.h>
17 #include <linux/writeback.h>
18 #include <linux/compat.h>
19 #include <linux/xattr.h>
20 #include <linux/posix_acl.h>
21 #include <linux/falloc.h>
22 #include <linux/slab.h>
23 #include <linux/ratelimit.h>
24 #include <linux/btrfs.h>
25 #include <linux/blkdev.h>
26 #include <linux/posix_acl_xattr.h>
27 #include <linux/uio.h>
28 #include <linux/magic.h>
29 #include <linux/iversion.h>
30 #include <linux/swap.h>
31 #include <asm/unaligned.h>
32 #include "ctree.h"
33 #include "disk-io.h"
34 #include "transaction.h"
35 #include "btrfs_inode.h"
36 #include "print-tree.h"
37 #include "ordered-data.h"
38 #include "xattr.h"
39 #include "tree-log.h"
40 #include "volumes.h"
41 #include "compression.h"
42 #include "locking.h"
43 #include "free-space-cache.h"
44 #include "inode-map.h"
45 #include "backref.h"
46 #include "props.h"
47 #include "qgroup.h"
48 #include "dedupe.h"
49 
50 struct btrfs_iget_args {
51 	struct btrfs_key *location;
52 	struct btrfs_root *root;
53 };
54 
55 struct btrfs_dio_data {
56 	u64 reserve;
57 	u64 unsubmitted_oe_range_start;
58 	u64 unsubmitted_oe_range_end;
59 	int overwrite;
60 };
61 
62 static const struct inode_operations btrfs_dir_inode_operations;
63 static const struct inode_operations btrfs_symlink_inode_operations;
64 static const struct inode_operations btrfs_dir_ro_inode_operations;
65 static const struct inode_operations btrfs_special_inode_operations;
66 static const struct inode_operations btrfs_file_inode_operations;
67 static const struct address_space_operations btrfs_aops;
68 static const struct file_operations btrfs_dir_file_operations;
69 static const struct extent_io_ops btrfs_extent_io_ops;
70 
71 static struct kmem_cache *btrfs_inode_cachep;
72 struct kmem_cache *btrfs_trans_handle_cachep;
73 struct kmem_cache *btrfs_path_cachep;
74 struct kmem_cache *btrfs_free_space_cachep;
75 
76 #define S_SHIFT 12
77 static const unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
78 	[S_IFREG >> S_SHIFT]	= BTRFS_FT_REG_FILE,
79 	[S_IFDIR >> S_SHIFT]	= BTRFS_FT_DIR,
80 	[S_IFCHR >> S_SHIFT]	= BTRFS_FT_CHRDEV,
81 	[S_IFBLK >> S_SHIFT]	= BTRFS_FT_BLKDEV,
82 	[S_IFIFO >> S_SHIFT]	= BTRFS_FT_FIFO,
83 	[S_IFSOCK >> S_SHIFT]	= BTRFS_FT_SOCK,
84 	[S_IFLNK >> S_SHIFT]	= BTRFS_FT_SYMLINK,
85 };
86 
87 static int btrfs_setsize(struct inode *inode, struct iattr *attr);
88 static int btrfs_truncate(struct inode *inode, bool skip_writeback);
89 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
90 static noinline int cow_file_range(struct inode *inode,
91 				   struct page *locked_page,
92 				   u64 start, u64 end, u64 delalloc_end,
93 				   int *page_started, unsigned long *nr_written,
94 				   int unlock, struct btrfs_dedupe_hash *hash);
95 static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len,
96 				       u64 orig_start, u64 block_start,
97 				       u64 block_len, u64 orig_block_len,
98 				       u64 ram_bytes, int compress_type,
99 				       int type);
100 
101 static void __endio_write_update_ordered(struct inode *inode,
102 					 const u64 offset, const u64 bytes,
103 					 const bool uptodate);
104 
105 /*
106  * Cleanup all submitted ordered extents in specified range to handle errors
107  * from the btrfs_run_delalloc_range() callback.
108  *
109  * NOTE: caller must ensure that when an error happens, it can not call
110  * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING
111  * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata
112  * to be released, which we want to happen only when finishing the ordered
113  * extent (btrfs_finish_ordered_io()).
114  */
115 static inline void btrfs_cleanup_ordered_extents(struct inode *inode,
116 						 struct page *locked_page,
117 						 u64 offset, u64 bytes)
118 {
119 	unsigned long index = offset >> PAGE_SHIFT;
120 	unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT;
121 	u64 page_start = page_offset(locked_page);
122 	u64 page_end = page_start + PAGE_SIZE - 1;
123 
124 	struct page *page;
125 
126 	while (index <= end_index) {
127 		page = find_get_page(inode->i_mapping, index);
128 		index++;
129 		if (!page)
130 			continue;
131 		ClearPagePrivate2(page);
132 		put_page(page);
133 	}
134 
135 	/*
136 	 * In case this page belongs to the delalloc range being instantiated
137 	 * then skip it, since the first page of a range is going to be
138 	 * properly cleaned up by the caller of run_delalloc_range
139 	 */
140 	if (page_start >= offset && page_end <= (offset + bytes - 1)) {
141 		offset += PAGE_SIZE;
142 		bytes -= PAGE_SIZE;
143 	}
144 
145 	return __endio_write_update_ordered(inode, offset, bytes, false);
146 }
147 
148 static int btrfs_dirty_inode(struct inode *inode);
149 
150 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
151 void btrfs_test_inode_set_ops(struct inode *inode)
152 {
153 	BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
154 }
155 #endif
156 
157 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
158 				     struct inode *inode,  struct inode *dir,
159 				     const struct qstr *qstr)
160 {
161 	int err;
162 
163 	err = btrfs_init_acl(trans, inode, dir);
164 	if (!err)
165 		err = btrfs_xattr_security_init(trans, inode, dir, qstr);
166 	return err;
167 }
168 
169 /*
170  * this does all the hard work for inserting an inline extent into
171  * the btree.  The caller should have done a btrfs_drop_extents so that
172  * no overlapping inline items exist in the btree
173  */
174 static int insert_inline_extent(struct btrfs_trans_handle *trans,
175 				struct btrfs_path *path, int extent_inserted,
176 				struct btrfs_root *root, struct inode *inode,
177 				u64 start, size_t size, size_t compressed_size,
178 				int compress_type,
179 				struct page **compressed_pages)
180 {
181 	struct extent_buffer *leaf;
182 	struct page *page = NULL;
183 	char *kaddr;
184 	unsigned long ptr;
185 	struct btrfs_file_extent_item *ei;
186 	int ret;
187 	size_t cur_size = size;
188 	unsigned long offset;
189 
190 	if (compressed_size && compressed_pages)
191 		cur_size = compressed_size;
192 
193 	inode_add_bytes(inode, size);
194 
195 	if (!extent_inserted) {
196 		struct btrfs_key key;
197 		size_t datasize;
198 
199 		key.objectid = btrfs_ino(BTRFS_I(inode));
200 		key.offset = start;
201 		key.type = BTRFS_EXTENT_DATA_KEY;
202 
203 		datasize = btrfs_file_extent_calc_inline_size(cur_size);
204 		path->leave_spinning = 1;
205 		ret = btrfs_insert_empty_item(trans, root, path, &key,
206 					      datasize);
207 		if (ret)
208 			goto fail;
209 	}
210 	leaf = path->nodes[0];
211 	ei = btrfs_item_ptr(leaf, path->slots[0],
212 			    struct btrfs_file_extent_item);
213 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
214 	btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
215 	btrfs_set_file_extent_encryption(leaf, ei, 0);
216 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
217 	btrfs_set_file_extent_ram_bytes(leaf, ei, size);
218 	ptr = btrfs_file_extent_inline_start(ei);
219 
220 	if (compress_type != BTRFS_COMPRESS_NONE) {
221 		struct page *cpage;
222 		int i = 0;
223 		while (compressed_size > 0) {
224 			cpage = compressed_pages[i];
225 			cur_size = min_t(unsigned long, compressed_size,
226 				       PAGE_SIZE);
227 
228 			kaddr = kmap_atomic(cpage);
229 			write_extent_buffer(leaf, kaddr, ptr, cur_size);
230 			kunmap_atomic(kaddr);
231 
232 			i++;
233 			ptr += cur_size;
234 			compressed_size -= cur_size;
235 		}
236 		btrfs_set_file_extent_compression(leaf, ei,
237 						  compress_type);
238 	} else {
239 		page = find_get_page(inode->i_mapping,
240 				     start >> PAGE_SHIFT);
241 		btrfs_set_file_extent_compression(leaf, ei, 0);
242 		kaddr = kmap_atomic(page);
243 		offset = offset_in_page(start);
244 		write_extent_buffer(leaf, kaddr + offset, ptr, size);
245 		kunmap_atomic(kaddr);
246 		put_page(page);
247 	}
248 	btrfs_mark_buffer_dirty(leaf);
249 	btrfs_release_path(path);
250 
251 	/*
252 	 * we're an inline extent, so nobody can
253 	 * extend the file past i_size without locking
254 	 * a page we already have locked.
255 	 *
256 	 * We must do any isize and inode updates
257 	 * before we unlock the pages.  Otherwise we
258 	 * could end up racing with unlink.
259 	 */
260 	BTRFS_I(inode)->disk_i_size = inode->i_size;
261 	ret = btrfs_update_inode(trans, root, inode);
262 
263 fail:
264 	return ret;
265 }
266 
267 
268 /*
269  * conditionally insert an inline extent into the file.  This
270  * does the checks required to make sure the data is small enough
271  * to fit as an inline extent.
272  */
273 static noinline int cow_file_range_inline(struct inode *inode, u64 start,
274 					  u64 end, size_t compressed_size,
275 					  int compress_type,
276 					  struct page **compressed_pages)
277 {
278 	struct btrfs_root *root = BTRFS_I(inode)->root;
279 	struct btrfs_fs_info *fs_info = root->fs_info;
280 	struct btrfs_trans_handle *trans;
281 	u64 isize = i_size_read(inode);
282 	u64 actual_end = min(end + 1, isize);
283 	u64 inline_len = actual_end - start;
284 	u64 aligned_end = ALIGN(end, fs_info->sectorsize);
285 	u64 data_len = inline_len;
286 	int ret;
287 	struct btrfs_path *path;
288 	int extent_inserted = 0;
289 	u32 extent_item_size;
290 
291 	if (compressed_size)
292 		data_len = compressed_size;
293 
294 	if (start > 0 ||
295 	    actual_end > fs_info->sectorsize ||
296 	    data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) ||
297 	    (!compressed_size &&
298 	    (actual_end & (fs_info->sectorsize - 1)) == 0) ||
299 	    end + 1 < isize ||
300 	    data_len > fs_info->max_inline) {
301 		return 1;
302 	}
303 
304 	path = btrfs_alloc_path();
305 	if (!path)
306 		return -ENOMEM;
307 
308 	trans = btrfs_join_transaction(root);
309 	if (IS_ERR(trans)) {
310 		btrfs_free_path(path);
311 		return PTR_ERR(trans);
312 	}
313 	trans->block_rsv = &BTRFS_I(inode)->block_rsv;
314 
315 	if (compressed_size && compressed_pages)
316 		extent_item_size = btrfs_file_extent_calc_inline_size(
317 		   compressed_size);
318 	else
319 		extent_item_size = btrfs_file_extent_calc_inline_size(
320 		    inline_len);
321 
322 	ret = __btrfs_drop_extents(trans, root, inode, path,
323 				   start, aligned_end, NULL,
324 				   1, 1, extent_item_size, &extent_inserted);
325 	if (ret) {
326 		btrfs_abort_transaction(trans, ret);
327 		goto out;
328 	}
329 
330 	if (isize > actual_end)
331 		inline_len = min_t(u64, isize, actual_end);
332 	ret = insert_inline_extent(trans, path, extent_inserted,
333 				   root, inode, start,
334 				   inline_len, compressed_size,
335 				   compress_type, compressed_pages);
336 	if (ret && ret != -ENOSPC) {
337 		btrfs_abort_transaction(trans, ret);
338 		goto out;
339 	} else if (ret == -ENOSPC) {
340 		ret = 1;
341 		goto out;
342 	}
343 
344 	set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
345 	btrfs_drop_extent_cache(BTRFS_I(inode), start, aligned_end - 1, 0);
346 out:
347 	/*
348 	 * Don't forget to free the reserved space, as for inlined extent
349 	 * it won't count as data extent, free them directly here.
350 	 * And at reserve time, it's always aligned to page size, so
351 	 * just free one page here.
352 	 */
353 	btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE);
354 	btrfs_free_path(path);
355 	btrfs_end_transaction(trans);
356 	return ret;
357 }
358 
359 struct async_extent {
360 	u64 start;
361 	u64 ram_size;
362 	u64 compressed_size;
363 	struct page **pages;
364 	unsigned long nr_pages;
365 	int compress_type;
366 	struct list_head list;
367 };
368 
369 struct async_cow {
370 	struct inode *inode;
371 	struct btrfs_fs_info *fs_info;
372 	struct page *locked_page;
373 	u64 start;
374 	u64 end;
375 	unsigned int write_flags;
376 	struct list_head extents;
377 	struct btrfs_work work;
378 };
379 
380 static noinline int add_async_extent(struct async_cow *cow,
381 				     u64 start, u64 ram_size,
382 				     u64 compressed_size,
383 				     struct page **pages,
384 				     unsigned long nr_pages,
385 				     int compress_type)
386 {
387 	struct async_extent *async_extent;
388 
389 	async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
390 	BUG_ON(!async_extent); /* -ENOMEM */
391 	async_extent->start = start;
392 	async_extent->ram_size = ram_size;
393 	async_extent->compressed_size = compressed_size;
394 	async_extent->pages = pages;
395 	async_extent->nr_pages = nr_pages;
396 	async_extent->compress_type = compress_type;
397 	list_add_tail(&async_extent->list, &cow->extents);
398 	return 0;
399 }
400 
401 static inline int inode_need_compress(struct inode *inode, u64 start, u64 end)
402 {
403 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
404 
405 	/* force compress */
406 	if (btrfs_test_opt(fs_info, FORCE_COMPRESS))
407 		return 1;
408 	/* defrag ioctl */
409 	if (BTRFS_I(inode)->defrag_compress)
410 		return 1;
411 	/* bad compression ratios */
412 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
413 		return 0;
414 	if (btrfs_test_opt(fs_info, COMPRESS) ||
415 	    BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS ||
416 	    BTRFS_I(inode)->prop_compress)
417 		return btrfs_compress_heuristic(inode, start, end);
418 	return 0;
419 }
420 
421 static inline void inode_should_defrag(struct btrfs_inode *inode,
422 		u64 start, u64 end, u64 num_bytes, u64 small_write)
423 {
424 	/* If this is a small write inside eof, kick off a defrag */
425 	if (num_bytes < small_write &&
426 	    (start > 0 || end + 1 < inode->disk_i_size))
427 		btrfs_add_inode_defrag(NULL, inode);
428 }
429 
430 /*
431  * we create compressed extents in two phases.  The first
432  * phase compresses a range of pages that have already been
433  * locked (both pages and state bits are locked).
434  *
435  * This is done inside an ordered work queue, and the compression
436  * is spread across many cpus.  The actual IO submission is step
437  * two, and the ordered work queue takes care of making sure that
438  * happens in the same order things were put onto the queue by
439  * writepages and friends.
440  *
441  * If this code finds it can't get good compression, it puts an
442  * entry onto the work queue to write the uncompressed bytes.  This
443  * makes sure that both compressed inodes and uncompressed inodes
444  * are written in the same order that the flusher thread sent them
445  * down.
446  */
447 static noinline void compress_file_range(struct inode *inode,
448 					struct page *locked_page,
449 					u64 start, u64 end,
450 					struct async_cow *async_cow,
451 					int *num_added)
452 {
453 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
454 	u64 blocksize = fs_info->sectorsize;
455 	u64 actual_end;
456 	int ret = 0;
457 	struct page **pages = NULL;
458 	unsigned long nr_pages;
459 	unsigned long total_compressed = 0;
460 	unsigned long total_in = 0;
461 	int i;
462 	int will_compress;
463 	int compress_type = fs_info->compress_type;
464 	int redirty = 0;
465 
466 	inode_should_defrag(BTRFS_I(inode), start, end, end - start + 1,
467 			SZ_16K);
468 
469 	actual_end = min_t(u64, i_size_read(inode), end + 1);
470 again:
471 	will_compress = 0;
472 	nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
473 	BUILD_BUG_ON((BTRFS_MAX_COMPRESSED % PAGE_SIZE) != 0);
474 	nr_pages = min_t(unsigned long, nr_pages,
475 			BTRFS_MAX_COMPRESSED / PAGE_SIZE);
476 
477 	/*
478 	 * we don't want to send crud past the end of i_size through
479 	 * compression, that's just a waste of CPU time.  So, if the
480 	 * end of the file is before the start of our current
481 	 * requested range of bytes, we bail out to the uncompressed
482 	 * cleanup code that can deal with all of this.
483 	 *
484 	 * It isn't really the fastest way to fix things, but this is a
485 	 * very uncommon corner.
486 	 */
487 	if (actual_end <= start)
488 		goto cleanup_and_bail_uncompressed;
489 
490 	total_compressed = actual_end - start;
491 
492 	/*
493 	 * skip compression for a small file range(<=blocksize) that
494 	 * isn't an inline extent, since it doesn't save disk space at all.
495 	 */
496 	if (total_compressed <= blocksize &&
497 	   (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
498 		goto cleanup_and_bail_uncompressed;
499 
500 	total_compressed = min_t(unsigned long, total_compressed,
501 			BTRFS_MAX_UNCOMPRESSED);
502 	total_in = 0;
503 	ret = 0;
504 
505 	/*
506 	 * we do compression for mount -o compress and when the
507 	 * inode has not been flagged as nocompress.  This flag can
508 	 * change at any time if we discover bad compression ratios.
509 	 */
510 	if (inode_need_compress(inode, start, end)) {
511 		WARN_ON(pages);
512 		pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
513 		if (!pages) {
514 			/* just bail out to the uncompressed code */
515 			nr_pages = 0;
516 			goto cont;
517 		}
518 
519 		if (BTRFS_I(inode)->defrag_compress)
520 			compress_type = BTRFS_I(inode)->defrag_compress;
521 		else if (BTRFS_I(inode)->prop_compress)
522 			compress_type = BTRFS_I(inode)->prop_compress;
523 
524 		/*
525 		 * we need to call clear_page_dirty_for_io on each
526 		 * page in the range.  Otherwise applications with the file
527 		 * mmap'd can wander in and change the page contents while
528 		 * we are compressing them.
529 		 *
530 		 * If the compression fails for any reason, we set the pages
531 		 * dirty again later on.
532 		 *
533 		 * Note that the remaining part is redirtied, the start pointer
534 		 * has moved, the end is the original one.
535 		 */
536 		if (!redirty) {
537 			extent_range_clear_dirty_for_io(inode, start, end);
538 			redirty = 1;
539 		}
540 
541 		/* Compression level is applied here and only here */
542 		ret = btrfs_compress_pages(
543 			compress_type | (fs_info->compress_level << 4),
544 					   inode->i_mapping, start,
545 					   pages,
546 					   &nr_pages,
547 					   &total_in,
548 					   &total_compressed);
549 
550 		if (!ret) {
551 			unsigned long offset = offset_in_page(total_compressed);
552 			struct page *page = pages[nr_pages - 1];
553 			char *kaddr;
554 
555 			/* zero the tail end of the last page, we might be
556 			 * sending it down to disk
557 			 */
558 			if (offset) {
559 				kaddr = kmap_atomic(page);
560 				memset(kaddr + offset, 0,
561 				       PAGE_SIZE - offset);
562 				kunmap_atomic(kaddr);
563 			}
564 			will_compress = 1;
565 		}
566 	}
567 cont:
568 	if (start == 0) {
569 		/* lets try to make an inline extent */
570 		if (ret || total_in < actual_end) {
571 			/* we didn't compress the entire range, try
572 			 * to make an uncompressed inline extent.
573 			 */
574 			ret = cow_file_range_inline(inode, start, end, 0,
575 						    BTRFS_COMPRESS_NONE, NULL);
576 		} else {
577 			/* try making a compressed inline extent */
578 			ret = cow_file_range_inline(inode, start, end,
579 						    total_compressed,
580 						    compress_type, pages);
581 		}
582 		if (ret <= 0) {
583 			unsigned long clear_flags = EXTENT_DELALLOC |
584 				EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
585 				EXTENT_DO_ACCOUNTING;
586 			unsigned long page_error_op;
587 
588 			page_error_op = ret < 0 ? PAGE_SET_ERROR : 0;
589 
590 			/*
591 			 * inline extent creation worked or returned error,
592 			 * we don't need to create any more async work items.
593 			 * Unlock and free up our temp pages.
594 			 *
595 			 * We use DO_ACCOUNTING here because we need the
596 			 * delalloc_release_metadata to be done _after_ we drop
597 			 * our outstanding extent for clearing delalloc for this
598 			 * range.
599 			 */
600 			extent_clear_unlock_delalloc(inode, start, end, end,
601 						     NULL, clear_flags,
602 						     PAGE_UNLOCK |
603 						     PAGE_CLEAR_DIRTY |
604 						     PAGE_SET_WRITEBACK |
605 						     page_error_op |
606 						     PAGE_END_WRITEBACK);
607 			goto free_pages_out;
608 		}
609 	}
610 
611 	if (will_compress) {
612 		/*
613 		 * we aren't doing an inline extent round the compressed size
614 		 * up to a block size boundary so the allocator does sane
615 		 * things
616 		 */
617 		total_compressed = ALIGN(total_compressed, blocksize);
618 
619 		/*
620 		 * one last check to make sure the compression is really a
621 		 * win, compare the page count read with the blocks on disk,
622 		 * compression must free at least one sector size
623 		 */
624 		total_in = ALIGN(total_in, PAGE_SIZE);
625 		if (total_compressed + blocksize <= total_in) {
626 			*num_added += 1;
627 
628 			/*
629 			 * The async work queues will take care of doing actual
630 			 * allocation on disk for these compressed pages, and
631 			 * will submit them to the elevator.
632 			 */
633 			add_async_extent(async_cow, start, total_in,
634 					total_compressed, pages, nr_pages,
635 					compress_type);
636 
637 			if (start + total_in < end) {
638 				start += total_in;
639 				pages = NULL;
640 				cond_resched();
641 				goto again;
642 			}
643 			return;
644 		}
645 	}
646 	if (pages) {
647 		/*
648 		 * the compression code ran but failed to make things smaller,
649 		 * free any pages it allocated and our page pointer array
650 		 */
651 		for (i = 0; i < nr_pages; i++) {
652 			WARN_ON(pages[i]->mapping);
653 			put_page(pages[i]);
654 		}
655 		kfree(pages);
656 		pages = NULL;
657 		total_compressed = 0;
658 		nr_pages = 0;
659 
660 		/* flag the file so we don't compress in the future */
661 		if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) &&
662 		    !(BTRFS_I(inode)->prop_compress)) {
663 			BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
664 		}
665 	}
666 cleanup_and_bail_uncompressed:
667 	/*
668 	 * No compression, but we still need to write the pages in the file
669 	 * we've been given so far.  redirty the locked page if it corresponds
670 	 * to our extent and set things up for the async work queue to run
671 	 * cow_file_range to do the normal delalloc dance.
672 	 */
673 	if (page_offset(locked_page) >= start &&
674 	    page_offset(locked_page) <= end)
675 		__set_page_dirty_nobuffers(locked_page);
676 		/* unlocked later on in the async handlers */
677 
678 	if (redirty)
679 		extent_range_redirty_for_io(inode, start, end);
680 	add_async_extent(async_cow, start, end - start + 1, 0, NULL, 0,
681 			 BTRFS_COMPRESS_NONE);
682 	*num_added += 1;
683 
684 	return;
685 
686 free_pages_out:
687 	for (i = 0; i < nr_pages; i++) {
688 		WARN_ON(pages[i]->mapping);
689 		put_page(pages[i]);
690 	}
691 	kfree(pages);
692 }
693 
694 static void free_async_extent_pages(struct async_extent *async_extent)
695 {
696 	int i;
697 
698 	if (!async_extent->pages)
699 		return;
700 
701 	for (i = 0; i < async_extent->nr_pages; i++) {
702 		WARN_ON(async_extent->pages[i]->mapping);
703 		put_page(async_extent->pages[i]);
704 	}
705 	kfree(async_extent->pages);
706 	async_extent->nr_pages = 0;
707 	async_extent->pages = NULL;
708 }
709 
710 /*
711  * phase two of compressed writeback.  This is the ordered portion
712  * of the code, which only gets called in the order the work was
713  * queued.  We walk all the async extents created by compress_file_range
714  * and send them down to the disk.
715  */
716 static noinline void submit_compressed_extents(struct async_cow *async_cow)
717 {
718 	struct inode *inode = async_cow->inode;
719 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
720 	struct async_extent *async_extent;
721 	u64 alloc_hint = 0;
722 	struct btrfs_key ins;
723 	struct extent_map *em;
724 	struct btrfs_root *root = BTRFS_I(inode)->root;
725 	struct extent_io_tree *io_tree;
726 	int ret = 0;
727 
728 again:
729 	while (!list_empty(&async_cow->extents)) {
730 		async_extent = list_entry(async_cow->extents.next,
731 					  struct async_extent, list);
732 		list_del(&async_extent->list);
733 
734 		io_tree = &BTRFS_I(inode)->io_tree;
735 
736 retry:
737 		/* did the compression code fall back to uncompressed IO? */
738 		if (!async_extent->pages) {
739 			int page_started = 0;
740 			unsigned long nr_written = 0;
741 
742 			lock_extent(io_tree, async_extent->start,
743 					 async_extent->start +
744 					 async_extent->ram_size - 1);
745 
746 			/* allocate blocks */
747 			ret = cow_file_range(inode, async_cow->locked_page,
748 					     async_extent->start,
749 					     async_extent->start +
750 					     async_extent->ram_size - 1,
751 					     async_extent->start +
752 					     async_extent->ram_size - 1,
753 					     &page_started, &nr_written, 0,
754 					     NULL);
755 
756 			/* JDM XXX */
757 
758 			/*
759 			 * if page_started, cow_file_range inserted an
760 			 * inline extent and took care of all the unlocking
761 			 * and IO for us.  Otherwise, we need to submit
762 			 * all those pages down to the drive.
763 			 */
764 			if (!page_started && !ret)
765 				extent_write_locked_range(inode,
766 						  async_extent->start,
767 						  async_extent->start +
768 						  async_extent->ram_size - 1,
769 						  WB_SYNC_ALL);
770 			else if (ret)
771 				unlock_page(async_cow->locked_page);
772 			kfree(async_extent);
773 			cond_resched();
774 			continue;
775 		}
776 
777 		lock_extent(io_tree, async_extent->start,
778 			    async_extent->start + async_extent->ram_size - 1);
779 
780 		ret = btrfs_reserve_extent(root, async_extent->ram_size,
781 					   async_extent->compressed_size,
782 					   async_extent->compressed_size,
783 					   0, alloc_hint, &ins, 1, 1);
784 		if (ret) {
785 			free_async_extent_pages(async_extent);
786 
787 			if (ret == -ENOSPC) {
788 				unlock_extent(io_tree, async_extent->start,
789 					      async_extent->start +
790 					      async_extent->ram_size - 1);
791 
792 				/*
793 				 * we need to redirty the pages if we decide to
794 				 * fallback to uncompressed IO, otherwise we
795 				 * will not submit these pages down to lower
796 				 * layers.
797 				 */
798 				extent_range_redirty_for_io(inode,
799 						async_extent->start,
800 						async_extent->start +
801 						async_extent->ram_size - 1);
802 
803 				goto retry;
804 			}
805 			goto out_free;
806 		}
807 		/*
808 		 * here we're doing allocation and writeback of the
809 		 * compressed pages
810 		 */
811 		em = create_io_em(inode, async_extent->start,
812 				  async_extent->ram_size, /* len */
813 				  async_extent->start, /* orig_start */
814 				  ins.objectid, /* block_start */
815 				  ins.offset, /* block_len */
816 				  ins.offset, /* orig_block_len */
817 				  async_extent->ram_size, /* ram_bytes */
818 				  async_extent->compress_type,
819 				  BTRFS_ORDERED_COMPRESSED);
820 		if (IS_ERR(em))
821 			/* ret value is not necessary due to void function */
822 			goto out_free_reserve;
823 		free_extent_map(em);
824 
825 		ret = btrfs_add_ordered_extent_compress(inode,
826 						async_extent->start,
827 						ins.objectid,
828 						async_extent->ram_size,
829 						ins.offset,
830 						BTRFS_ORDERED_COMPRESSED,
831 						async_extent->compress_type);
832 		if (ret) {
833 			btrfs_drop_extent_cache(BTRFS_I(inode),
834 						async_extent->start,
835 						async_extent->start +
836 						async_extent->ram_size - 1, 0);
837 			goto out_free_reserve;
838 		}
839 		btrfs_dec_block_group_reservations(fs_info, ins.objectid);
840 
841 		/*
842 		 * clear dirty, set writeback and unlock the pages.
843 		 */
844 		extent_clear_unlock_delalloc(inode, async_extent->start,
845 				async_extent->start +
846 				async_extent->ram_size - 1,
847 				async_extent->start +
848 				async_extent->ram_size - 1,
849 				NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
850 				PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
851 				PAGE_SET_WRITEBACK);
852 		if (btrfs_submit_compressed_write(inode,
853 				    async_extent->start,
854 				    async_extent->ram_size,
855 				    ins.objectid,
856 				    ins.offset, async_extent->pages,
857 				    async_extent->nr_pages,
858 				    async_cow->write_flags)) {
859 			struct page *p = async_extent->pages[0];
860 			const u64 start = async_extent->start;
861 			const u64 end = start + async_extent->ram_size - 1;
862 
863 			p->mapping = inode->i_mapping;
864 			btrfs_writepage_endio_finish_ordered(p, start, end, 0);
865 
866 			p->mapping = NULL;
867 			extent_clear_unlock_delalloc(inode, start, end, end,
868 						     NULL, 0,
869 						     PAGE_END_WRITEBACK |
870 						     PAGE_SET_ERROR);
871 			free_async_extent_pages(async_extent);
872 		}
873 		alloc_hint = ins.objectid + ins.offset;
874 		kfree(async_extent);
875 		cond_resched();
876 	}
877 	return;
878 out_free_reserve:
879 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
880 	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
881 out_free:
882 	extent_clear_unlock_delalloc(inode, async_extent->start,
883 				     async_extent->start +
884 				     async_extent->ram_size - 1,
885 				     async_extent->start +
886 				     async_extent->ram_size - 1,
887 				     NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
888 				     EXTENT_DELALLOC_NEW |
889 				     EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
890 				     PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
891 				     PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
892 				     PAGE_SET_ERROR);
893 	free_async_extent_pages(async_extent);
894 	kfree(async_extent);
895 	goto again;
896 }
897 
898 static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
899 				      u64 num_bytes)
900 {
901 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
902 	struct extent_map *em;
903 	u64 alloc_hint = 0;
904 
905 	read_lock(&em_tree->lock);
906 	em = search_extent_mapping(em_tree, start, num_bytes);
907 	if (em) {
908 		/*
909 		 * if block start isn't an actual block number then find the
910 		 * first block in this inode and use that as a hint.  If that
911 		 * block is also bogus then just don't worry about it.
912 		 */
913 		if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
914 			free_extent_map(em);
915 			em = search_extent_mapping(em_tree, 0, 0);
916 			if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
917 				alloc_hint = em->block_start;
918 			if (em)
919 				free_extent_map(em);
920 		} else {
921 			alloc_hint = em->block_start;
922 			free_extent_map(em);
923 		}
924 	}
925 	read_unlock(&em_tree->lock);
926 
927 	return alloc_hint;
928 }
929 
930 /*
931  * when extent_io.c finds a delayed allocation range in the file,
932  * the call backs end up in this code.  The basic idea is to
933  * allocate extents on disk for the range, and create ordered data structs
934  * in ram to track those extents.
935  *
936  * locked_page is the page that writepage had locked already.  We use
937  * it to make sure we don't do extra locks or unlocks.
938  *
939  * *page_started is set to one if we unlock locked_page and do everything
940  * required to start IO on it.  It may be clean and already done with
941  * IO when we return.
942  */
943 static noinline int cow_file_range(struct inode *inode,
944 				   struct page *locked_page,
945 				   u64 start, u64 end, u64 delalloc_end,
946 				   int *page_started, unsigned long *nr_written,
947 				   int unlock, struct btrfs_dedupe_hash *hash)
948 {
949 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
950 	struct btrfs_root *root = BTRFS_I(inode)->root;
951 	u64 alloc_hint = 0;
952 	u64 num_bytes;
953 	unsigned long ram_size;
954 	u64 cur_alloc_size = 0;
955 	u64 blocksize = fs_info->sectorsize;
956 	struct btrfs_key ins;
957 	struct extent_map *em;
958 	unsigned clear_bits;
959 	unsigned long page_ops;
960 	bool extent_reserved = false;
961 	int ret = 0;
962 
963 	if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
964 		WARN_ON_ONCE(1);
965 		ret = -EINVAL;
966 		goto out_unlock;
967 	}
968 
969 	num_bytes = ALIGN(end - start + 1, blocksize);
970 	num_bytes = max(blocksize,  num_bytes);
971 	ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy));
972 
973 	inode_should_defrag(BTRFS_I(inode), start, end, num_bytes, SZ_64K);
974 
975 	if (start == 0) {
976 		/* lets try to make an inline extent */
977 		ret = cow_file_range_inline(inode, start, end, 0,
978 					    BTRFS_COMPRESS_NONE, NULL);
979 		if (ret == 0) {
980 			/*
981 			 * We use DO_ACCOUNTING here because we need the
982 			 * delalloc_release_metadata to be run _after_ we drop
983 			 * our outstanding extent for clearing delalloc for this
984 			 * range.
985 			 */
986 			extent_clear_unlock_delalloc(inode, start, end,
987 				     delalloc_end, NULL,
988 				     EXTENT_LOCKED | EXTENT_DELALLOC |
989 				     EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
990 				     EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
991 				     PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
992 				     PAGE_END_WRITEBACK);
993 			*nr_written = *nr_written +
994 			     (end - start + PAGE_SIZE) / PAGE_SIZE;
995 			*page_started = 1;
996 			goto out;
997 		} else if (ret < 0) {
998 			goto out_unlock;
999 		}
1000 	}
1001 
1002 	alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
1003 	btrfs_drop_extent_cache(BTRFS_I(inode), start,
1004 			start + num_bytes - 1, 0);
1005 
1006 	while (num_bytes > 0) {
1007 		cur_alloc_size = num_bytes;
1008 		ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size,
1009 					   fs_info->sectorsize, 0, alloc_hint,
1010 					   &ins, 1, 1);
1011 		if (ret < 0)
1012 			goto out_unlock;
1013 		cur_alloc_size = ins.offset;
1014 		extent_reserved = true;
1015 
1016 		ram_size = ins.offset;
1017 		em = create_io_em(inode, start, ins.offset, /* len */
1018 				  start, /* orig_start */
1019 				  ins.objectid, /* block_start */
1020 				  ins.offset, /* block_len */
1021 				  ins.offset, /* orig_block_len */
1022 				  ram_size, /* ram_bytes */
1023 				  BTRFS_COMPRESS_NONE, /* compress_type */
1024 				  BTRFS_ORDERED_REGULAR /* type */);
1025 		if (IS_ERR(em)) {
1026 			ret = PTR_ERR(em);
1027 			goto out_reserve;
1028 		}
1029 		free_extent_map(em);
1030 
1031 		ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
1032 					       ram_size, cur_alloc_size, 0);
1033 		if (ret)
1034 			goto out_drop_extent_cache;
1035 
1036 		if (root->root_key.objectid ==
1037 		    BTRFS_DATA_RELOC_TREE_OBJECTID) {
1038 			ret = btrfs_reloc_clone_csums(inode, start,
1039 						      cur_alloc_size);
1040 			/*
1041 			 * Only drop cache here, and process as normal.
1042 			 *
1043 			 * We must not allow extent_clear_unlock_delalloc()
1044 			 * at out_unlock label to free meta of this ordered
1045 			 * extent, as its meta should be freed by
1046 			 * btrfs_finish_ordered_io().
1047 			 *
1048 			 * So we must continue until @start is increased to
1049 			 * skip current ordered extent.
1050 			 */
1051 			if (ret)
1052 				btrfs_drop_extent_cache(BTRFS_I(inode), start,
1053 						start + ram_size - 1, 0);
1054 		}
1055 
1056 		btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1057 
1058 		/* we're not doing compressed IO, don't unlock the first
1059 		 * page (which the caller expects to stay locked), don't
1060 		 * clear any dirty bits and don't set any writeback bits
1061 		 *
1062 		 * Do set the Private2 bit so we know this page was properly
1063 		 * setup for writepage
1064 		 */
1065 		page_ops = unlock ? PAGE_UNLOCK : 0;
1066 		page_ops |= PAGE_SET_PRIVATE2;
1067 
1068 		extent_clear_unlock_delalloc(inode, start,
1069 					     start + ram_size - 1,
1070 					     delalloc_end, locked_page,
1071 					     EXTENT_LOCKED | EXTENT_DELALLOC,
1072 					     page_ops);
1073 		if (num_bytes < cur_alloc_size)
1074 			num_bytes = 0;
1075 		else
1076 			num_bytes -= cur_alloc_size;
1077 		alloc_hint = ins.objectid + ins.offset;
1078 		start += cur_alloc_size;
1079 		extent_reserved = false;
1080 
1081 		/*
1082 		 * btrfs_reloc_clone_csums() error, since start is increased
1083 		 * extent_clear_unlock_delalloc() at out_unlock label won't
1084 		 * free metadata of current ordered extent, we're OK to exit.
1085 		 */
1086 		if (ret)
1087 			goto out_unlock;
1088 	}
1089 out:
1090 	return ret;
1091 
1092 out_drop_extent_cache:
1093 	btrfs_drop_extent_cache(BTRFS_I(inode), start, start + ram_size - 1, 0);
1094 out_reserve:
1095 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1096 	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
1097 out_unlock:
1098 	clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
1099 		EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV;
1100 	page_ops = PAGE_UNLOCK | PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
1101 		PAGE_END_WRITEBACK;
1102 	/*
1103 	 * If we reserved an extent for our delalloc range (or a subrange) and
1104 	 * failed to create the respective ordered extent, then it means that
1105 	 * when we reserved the extent we decremented the extent's size from
1106 	 * the data space_info's bytes_may_use counter and incremented the
1107 	 * space_info's bytes_reserved counter by the same amount. We must make
1108 	 * sure extent_clear_unlock_delalloc() does not try to decrement again
1109 	 * the data space_info's bytes_may_use counter, therefore we do not pass
1110 	 * it the flag EXTENT_CLEAR_DATA_RESV.
1111 	 */
1112 	if (extent_reserved) {
1113 		extent_clear_unlock_delalloc(inode, start,
1114 					     start + cur_alloc_size,
1115 					     start + cur_alloc_size,
1116 					     locked_page,
1117 					     clear_bits,
1118 					     page_ops);
1119 		start += cur_alloc_size;
1120 		if (start >= end)
1121 			goto out;
1122 	}
1123 	extent_clear_unlock_delalloc(inode, start, end, delalloc_end,
1124 				     locked_page,
1125 				     clear_bits | EXTENT_CLEAR_DATA_RESV,
1126 				     page_ops);
1127 	goto out;
1128 }
1129 
1130 /*
1131  * work queue call back to started compression on a file and pages
1132  */
1133 static noinline void async_cow_start(struct btrfs_work *work)
1134 {
1135 	struct async_cow *async_cow;
1136 	int num_added = 0;
1137 	async_cow = container_of(work, struct async_cow, work);
1138 
1139 	compress_file_range(async_cow->inode, async_cow->locked_page,
1140 			    async_cow->start, async_cow->end, async_cow,
1141 			    &num_added);
1142 	if (num_added == 0) {
1143 		btrfs_add_delayed_iput(async_cow->inode);
1144 		async_cow->inode = NULL;
1145 	}
1146 }
1147 
1148 /*
1149  * work queue call back to submit previously compressed pages
1150  */
1151 static noinline void async_cow_submit(struct btrfs_work *work)
1152 {
1153 	struct btrfs_fs_info *fs_info;
1154 	struct async_cow *async_cow;
1155 	unsigned long nr_pages;
1156 
1157 	async_cow = container_of(work, struct async_cow, work);
1158 
1159 	fs_info = async_cow->fs_info;
1160 	nr_pages = (async_cow->end - async_cow->start + PAGE_SIZE) >>
1161 		PAGE_SHIFT;
1162 
1163 	/* atomic_sub_return implies a barrier */
1164 	if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) <
1165 	    5 * SZ_1M)
1166 		cond_wake_up_nomb(&fs_info->async_submit_wait);
1167 
1168 	/*
1169 	 * ->inode could be NULL if async_cow_start has failed to compress,
1170 	 * in which case we don't have anything to submit, yet we need to
1171 	 * always adjust ->async_delalloc_pages as its paired with the init
1172 	 * happening in cow_file_range_async
1173 	 */
1174 	if (async_cow->inode)
1175 		submit_compressed_extents(async_cow);
1176 }
1177 
1178 static noinline void async_cow_free(struct btrfs_work *work)
1179 {
1180 	struct async_cow *async_cow;
1181 	async_cow = container_of(work, struct async_cow, work);
1182 	if (async_cow->inode)
1183 		btrfs_add_delayed_iput(async_cow->inode);
1184 	kfree(async_cow);
1185 }
1186 
1187 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1188 				u64 start, u64 end, int *page_started,
1189 				unsigned long *nr_written,
1190 				unsigned int write_flags)
1191 {
1192 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1193 	struct async_cow *async_cow;
1194 	unsigned long nr_pages;
1195 	u64 cur_end;
1196 
1197 	clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
1198 			 1, 0, NULL);
1199 	while (start < end) {
1200 		async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
1201 		BUG_ON(!async_cow); /* -ENOMEM */
1202 		/*
1203 		 * igrab is called higher up in the call chain, take only the
1204 		 * lightweight reference for the callback lifetime
1205 		 */
1206 		ihold(inode);
1207 		async_cow->inode = inode;
1208 		async_cow->fs_info = fs_info;
1209 		async_cow->locked_page = locked_page;
1210 		async_cow->start = start;
1211 		async_cow->write_flags = write_flags;
1212 
1213 		if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS &&
1214 		    !btrfs_test_opt(fs_info, FORCE_COMPRESS))
1215 			cur_end = end;
1216 		else
1217 			cur_end = min(end, start + SZ_512K - 1);
1218 
1219 		async_cow->end = cur_end;
1220 		INIT_LIST_HEAD(&async_cow->extents);
1221 
1222 		btrfs_init_work(&async_cow->work,
1223 				btrfs_delalloc_helper,
1224 				async_cow_start, async_cow_submit,
1225 				async_cow_free);
1226 
1227 		nr_pages = (cur_end - start + PAGE_SIZE) >>
1228 			PAGE_SHIFT;
1229 		atomic_add(nr_pages, &fs_info->async_delalloc_pages);
1230 
1231 		btrfs_queue_work(fs_info->delalloc_workers, &async_cow->work);
1232 
1233 		*nr_written += nr_pages;
1234 		start = cur_end + 1;
1235 	}
1236 	*page_started = 1;
1237 	return 0;
1238 }
1239 
1240 static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info,
1241 					u64 bytenr, u64 num_bytes)
1242 {
1243 	int ret;
1244 	struct btrfs_ordered_sum *sums;
1245 	LIST_HEAD(list);
1246 
1247 	ret = btrfs_lookup_csums_range(fs_info->csum_root, bytenr,
1248 				       bytenr + num_bytes - 1, &list, 0);
1249 	if (ret == 0 && list_empty(&list))
1250 		return 0;
1251 
1252 	while (!list_empty(&list)) {
1253 		sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1254 		list_del(&sums->list);
1255 		kfree(sums);
1256 	}
1257 	if (ret < 0)
1258 		return ret;
1259 	return 1;
1260 }
1261 
1262 /*
1263  * when nowcow writeback call back.  This checks for snapshots or COW copies
1264  * of the extents that exist in the file, and COWs the file as required.
1265  *
1266  * If no cow copies or snapshots exist, we write directly to the existing
1267  * blocks on disk
1268  */
1269 static noinline int run_delalloc_nocow(struct inode *inode,
1270 				       struct page *locked_page,
1271 			      u64 start, u64 end, int *page_started, int force,
1272 			      unsigned long *nr_written)
1273 {
1274 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1275 	struct btrfs_root *root = BTRFS_I(inode)->root;
1276 	struct extent_buffer *leaf;
1277 	struct btrfs_path *path;
1278 	struct btrfs_file_extent_item *fi;
1279 	struct btrfs_key found_key;
1280 	struct extent_map *em;
1281 	u64 cow_start;
1282 	u64 cur_offset;
1283 	u64 extent_end;
1284 	u64 extent_offset;
1285 	u64 disk_bytenr;
1286 	u64 num_bytes;
1287 	u64 disk_num_bytes;
1288 	u64 ram_bytes;
1289 	int extent_type;
1290 	int ret;
1291 	int type;
1292 	int nocow;
1293 	int check_prev = 1;
1294 	bool nolock;
1295 	u64 ino = btrfs_ino(BTRFS_I(inode));
1296 
1297 	path = btrfs_alloc_path();
1298 	if (!path) {
1299 		extent_clear_unlock_delalloc(inode, start, end, end,
1300 					     locked_page,
1301 					     EXTENT_LOCKED | EXTENT_DELALLOC |
1302 					     EXTENT_DO_ACCOUNTING |
1303 					     EXTENT_DEFRAG, PAGE_UNLOCK |
1304 					     PAGE_CLEAR_DIRTY |
1305 					     PAGE_SET_WRITEBACK |
1306 					     PAGE_END_WRITEBACK);
1307 		return -ENOMEM;
1308 	}
1309 
1310 	nolock = btrfs_is_free_space_inode(BTRFS_I(inode));
1311 
1312 	cow_start = (u64)-1;
1313 	cur_offset = start;
1314 	while (1) {
1315 		ret = btrfs_lookup_file_extent(NULL, root, path, ino,
1316 					       cur_offset, 0);
1317 		if (ret < 0)
1318 			goto error;
1319 		if (ret > 0 && path->slots[0] > 0 && check_prev) {
1320 			leaf = path->nodes[0];
1321 			btrfs_item_key_to_cpu(leaf, &found_key,
1322 					      path->slots[0] - 1);
1323 			if (found_key.objectid == ino &&
1324 			    found_key.type == BTRFS_EXTENT_DATA_KEY)
1325 				path->slots[0]--;
1326 		}
1327 		check_prev = 0;
1328 next_slot:
1329 		leaf = path->nodes[0];
1330 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1331 			ret = btrfs_next_leaf(root, path);
1332 			if (ret < 0) {
1333 				if (cow_start != (u64)-1)
1334 					cur_offset = cow_start;
1335 				goto error;
1336 			}
1337 			if (ret > 0)
1338 				break;
1339 			leaf = path->nodes[0];
1340 		}
1341 
1342 		nocow = 0;
1343 		disk_bytenr = 0;
1344 		num_bytes = 0;
1345 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1346 
1347 		if (found_key.objectid > ino)
1348 			break;
1349 		if (WARN_ON_ONCE(found_key.objectid < ino) ||
1350 		    found_key.type < BTRFS_EXTENT_DATA_KEY) {
1351 			path->slots[0]++;
1352 			goto next_slot;
1353 		}
1354 		if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
1355 		    found_key.offset > end)
1356 			break;
1357 
1358 		if (found_key.offset > cur_offset) {
1359 			extent_end = found_key.offset;
1360 			extent_type = 0;
1361 			goto out_check;
1362 		}
1363 
1364 		fi = btrfs_item_ptr(leaf, path->slots[0],
1365 				    struct btrfs_file_extent_item);
1366 		extent_type = btrfs_file_extent_type(leaf, fi);
1367 
1368 		ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1369 		if (extent_type == BTRFS_FILE_EXTENT_REG ||
1370 		    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1371 			disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1372 			extent_offset = btrfs_file_extent_offset(leaf, fi);
1373 			extent_end = found_key.offset +
1374 				btrfs_file_extent_num_bytes(leaf, fi);
1375 			disk_num_bytes =
1376 				btrfs_file_extent_disk_num_bytes(leaf, fi);
1377 			if (extent_end <= start) {
1378 				path->slots[0]++;
1379 				goto next_slot;
1380 			}
1381 			if (disk_bytenr == 0)
1382 				goto out_check;
1383 			if (btrfs_file_extent_compression(leaf, fi) ||
1384 			    btrfs_file_extent_encryption(leaf, fi) ||
1385 			    btrfs_file_extent_other_encoding(leaf, fi))
1386 				goto out_check;
1387 			/*
1388 			 * Do the same check as in btrfs_cross_ref_exist but
1389 			 * without the unnecessary search.
1390 			 */
1391 			if (!nolock &&
1392 			    btrfs_file_extent_generation(leaf, fi) <=
1393 			    btrfs_root_last_snapshot(&root->root_item))
1394 				goto out_check;
1395 			if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1396 				goto out_check;
1397 			if (btrfs_extent_readonly(fs_info, disk_bytenr))
1398 				goto out_check;
1399 			ret = btrfs_cross_ref_exist(root, ino,
1400 						    found_key.offset -
1401 						    extent_offset, disk_bytenr);
1402 			if (ret) {
1403 				/*
1404 				 * ret could be -EIO if the above fails to read
1405 				 * metadata.
1406 				 */
1407 				if (ret < 0) {
1408 					if (cow_start != (u64)-1)
1409 						cur_offset = cow_start;
1410 					goto error;
1411 				}
1412 
1413 				WARN_ON_ONCE(nolock);
1414 				goto out_check;
1415 			}
1416 			disk_bytenr += extent_offset;
1417 			disk_bytenr += cur_offset - found_key.offset;
1418 			num_bytes = min(end + 1, extent_end) - cur_offset;
1419 			/*
1420 			 * if there are pending snapshots for this root,
1421 			 * we fall into common COW way.
1422 			 */
1423 			if (!nolock && atomic_read(&root->snapshot_force_cow))
1424 				goto out_check;
1425 			/*
1426 			 * force cow if csum exists in the range.
1427 			 * this ensure that csum for a given extent are
1428 			 * either valid or do not exist.
1429 			 */
1430 			ret = csum_exist_in_range(fs_info, disk_bytenr,
1431 						  num_bytes);
1432 			if (ret) {
1433 				/*
1434 				 * ret could be -EIO if the above fails to read
1435 				 * metadata.
1436 				 */
1437 				if (ret < 0) {
1438 					if (cow_start != (u64)-1)
1439 						cur_offset = cow_start;
1440 					goto error;
1441 				}
1442 				WARN_ON_ONCE(nolock);
1443 				goto out_check;
1444 			}
1445 			if (!btrfs_inc_nocow_writers(fs_info, disk_bytenr))
1446 				goto out_check;
1447 			nocow = 1;
1448 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1449 			extent_end = found_key.offset +
1450 				btrfs_file_extent_ram_bytes(leaf, fi);
1451 			extent_end = ALIGN(extent_end,
1452 					   fs_info->sectorsize);
1453 		} else {
1454 			BUG_ON(1);
1455 		}
1456 out_check:
1457 		if (extent_end <= start) {
1458 			path->slots[0]++;
1459 			if (nocow)
1460 				btrfs_dec_nocow_writers(fs_info, disk_bytenr);
1461 			goto next_slot;
1462 		}
1463 		if (!nocow) {
1464 			if (cow_start == (u64)-1)
1465 				cow_start = cur_offset;
1466 			cur_offset = extent_end;
1467 			if (cur_offset > end)
1468 				break;
1469 			path->slots[0]++;
1470 			goto next_slot;
1471 		}
1472 
1473 		btrfs_release_path(path);
1474 		if (cow_start != (u64)-1) {
1475 			ret = cow_file_range(inode, locked_page,
1476 					     cow_start, found_key.offset - 1,
1477 					     end, page_started, nr_written, 1,
1478 					     NULL);
1479 			if (ret) {
1480 				if (nocow)
1481 					btrfs_dec_nocow_writers(fs_info,
1482 								disk_bytenr);
1483 				goto error;
1484 			}
1485 			cow_start = (u64)-1;
1486 		}
1487 
1488 		if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1489 			u64 orig_start = found_key.offset - extent_offset;
1490 
1491 			em = create_io_em(inode, cur_offset, num_bytes,
1492 					  orig_start,
1493 					  disk_bytenr, /* block_start */
1494 					  num_bytes, /* block_len */
1495 					  disk_num_bytes, /* orig_block_len */
1496 					  ram_bytes, BTRFS_COMPRESS_NONE,
1497 					  BTRFS_ORDERED_PREALLOC);
1498 			if (IS_ERR(em)) {
1499 				if (nocow)
1500 					btrfs_dec_nocow_writers(fs_info,
1501 								disk_bytenr);
1502 				ret = PTR_ERR(em);
1503 				goto error;
1504 			}
1505 			free_extent_map(em);
1506 		}
1507 
1508 		if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1509 			type = BTRFS_ORDERED_PREALLOC;
1510 		} else {
1511 			type = BTRFS_ORDERED_NOCOW;
1512 		}
1513 
1514 		ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1515 					       num_bytes, num_bytes, type);
1516 		if (nocow)
1517 			btrfs_dec_nocow_writers(fs_info, disk_bytenr);
1518 		BUG_ON(ret); /* -ENOMEM */
1519 
1520 		if (root->root_key.objectid ==
1521 		    BTRFS_DATA_RELOC_TREE_OBJECTID)
1522 			/*
1523 			 * Error handled later, as we must prevent
1524 			 * extent_clear_unlock_delalloc() in error handler
1525 			 * from freeing metadata of created ordered extent.
1526 			 */
1527 			ret = btrfs_reloc_clone_csums(inode, cur_offset,
1528 						      num_bytes);
1529 
1530 		extent_clear_unlock_delalloc(inode, cur_offset,
1531 					     cur_offset + num_bytes - 1, end,
1532 					     locked_page, EXTENT_LOCKED |
1533 					     EXTENT_DELALLOC |
1534 					     EXTENT_CLEAR_DATA_RESV,
1535 					     PAGE_UNLOCK | PAGE_SET_PRIVATE2);
1536 
1537 		cur_offset = extent_end;
1538 
1539 		/*
1540 		 * btrfs_reloc_clone_csums() error, now we're OK to call error
1541 		 * handler, as metadata for created ordered extent will only
1542 		 * be freed by btrfs_finish_ordered_io().
1543 		 */
1544 		if (ret)
1545 			goto error;
1546 		if (cur_offset > end)
1547 			break;
1548 	}
1549 	btrfs_release_path(path);
1550 
1551 	if (cur_offset <= end && cow_start == (u64)-1)
1552 		cow_start = cur_offset;
1553 
1554 	if (cow_start != (u64)-1) {
1555 		cur_offset = end;
1556 		ret = cow_file_range(inode, locked_page, cow_start, end, end,
1557 				     page_started, nr_written, 1, NULL);
1558 		if (ret)
1559 			goto error;
1560 	}
1561 
1562 error:
1563 	if (ret && cur_offset < end)
1564 		extent_clear_unlock_delalloc(inode, cur_offset, end, end,
1565 					     locked_page, EXTENT_LOCKED |
1566 					     EXTENT_DELALLOC | EXTENT_DEFRAG |
1567 					     EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1568 					     PAGE_CLEAR_DIRTY |
1569 					     PAGE_SET_WRITEBACK |
1570 					     PAGE_END_WRITEBACK);
1571 	btrfs_free_path(path);
1572 	return ret;
1573 }
1574 
1575 static inline int need_force_cow(struct inode *inode, u64 start, u64 end)
1576 {
1577 
1578 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
1579 	    !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC))
1580 		return 0;
1581 
1582 	/*
1583 	 * @defrag_bytes is a hint value, no spinlock held here,
1584 	 * if is not zero, it means the file is defragging.
1585 	 * Force cow if given extent needs to be defragged.
1586 	 */
1587 	if (BTRFS_I(inode)->defrag_bytes &&
1588 	    test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
1589 			   EXTENT_DEFRAG, 0, NULL))
1590 		return 1;
1591 
1592 	return 0;
1593 }
1594 
1595 /*
1596  * Function to process delayed allocation (create CoW) for ranges which are
1597  * being touched for the first time.
1598  */
1599 int btrfs_run_delalloc_range(struct inode *inode, struct page *locked_page,
1600 		u64 start, u64 end, int *page_started, unsigned long *nr_written,
1601 		struct writeback_control *wbc)
1602 {
1603 	int ret;
1604 	int force_cow = need_force_cow(inode, start, end);
1605 	unsigned int write_flags = wbc_to_write_flags(wbc);
1606 
1607 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) {
1608 		ret = run_delalloc_nocow(inode, locked_page, start, end,
1609 					 page_started, 1, nr_written);
1610 	} else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) {
1611 		ret = run_delalloc_nocow(inode, locked_page, start, end,
1612 					 page_started, 0, nr_written);
1613 	} else if (!inode_need_compress(inode, start, end)) {
1614 		ret = cow_file_range(inode, locked_page, start, end, end,
1615 				      page_started, nr_written, 1, NULL);
1616 	} else {
1617 		set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1618 			&BTRFS_I(inode)->runtime_flags);
1619 		ret = cow_file_range_async(inode, locked_page, start, end,
1620 					   page_started, nr_written,
1621 					   write_flags);
1622 	}
1623 	if (ret)
1624 		btrfs_cleanup_ordered_extents(inode, locked_page, start,
1625 					      end - start + 1);
1626 	return ret;
1627 }
1628 
1629 void btrfs_split_delalloc_extent(struct inode *inode,
1630 				 struct extent_state *orig, u64 split)
1631 {
1632 	u64 size;
1633 
1634 	/* not delalloc, ignore it */
1635 	if (!(orig->state & EXTENT_DELALLOC))
1636 		return;
1637 
1638 	size = orig->end - orig->start + 1;
1639 	if (size > BTRFS_MAX_EXTENT_SIZE) {
1640 		u32 num_extents;
1641 		u64 new_size;
1642 
1643 		/*
1644 		 * See the explanation in btrfs_merge_delalloc_extent, the same
1645 		 * applies here, just in reverse.
1646 		 */
1647 		new_size = orig->end - split + 1;
1648 		num_extents = count_max_extents(new_size);
1649 		new_size = split - orig->start;
1650 		num_extents += count_max_extents(new_size);
1651 		if (count_max_extents(size) >= num_extents)
1652 			return;
1653 	}
1654 
1655 	spin_lock(&BTRFS_I(inode)->lock);
1656 	btrfs_mod_outstanding_extents(BTRFS_I(inode), 1);
1657 	spin_unlock(&BTRFS_I(inode)->lock);
1658 }
1659 
1660 /*
1661  * Handle merged delayed allocation extents so we can keep track of new extents
1662  * that are just merged onto old extents, such as when we are doing sequential
1663  * writes, so we can properly account for the metadata space we'll need.
1664  */
1665 void btrfs_merge_delalloc_extent(struct inode *inode, struct extent_state *new,
1666 				 struct extent_state *other)
1667 {
1668 	u64 new_size, old_size;
1669 	u32 num_extents;
1670 
1671 	/* not delalloc, ignore it */
1672 	if (!(other->state & EXTENT_DELALLOC))
1673 		return;
1674 
1675 	if (new->start > other->start)
1676 		new_size = new->end - other->start + 1;
1677 	else
1678 		new_size = other->end - new->start + 1;
1679 
1680 	/* we're not bigger than the max, unreserve the space and go */
1681 	if (new_size <= BTRFS_MAX_EXTENT_SIZE) {
1682 		spin_lock(&BTRFS_I(inode)->lock);
1683 		btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
1684 		spin_unlock(&BTRFS_I(inode)->lock);
1685 		return;
1686 	}
1687 
1688 	/*
1689 	 * We have to add up either side to figure out how many extents were
1690 	 * accounted for before we merged into one big extent.  If the number of
1691 	 * extents we accounted for is <= the amount we need for the new range
1692 	 * then we can return, otherwise drop.  Think of it like this
1693 	 *
1694 	 * [ 4k][MAX_SIZE]
1695 	 *
1696 	 * So we've grown the extent by a MAX_SIZE extent, this would mean we
1697 	 * need 2 outstanding extents, on one side we have 1 and the other side
1698 	 * we have 1 so they are == and we can return.  But in this case
1699 	 *
1700 	 * [MAX_SIZE+4k][MAX_SIZE+4k]
1701 	 *
1702 	 * Each range on their own accounts for 2 extents, but merged together
1703 	 * they are only 3 extents worth of accounting, so we need to drop in
1704 	 * this case.
1705 	 */
1706 	old_size = other->end - other->start + 1;
1707 	num_extents = count_max_extents(old_size);
1708 	old_size = new->end - new->start + 1;
1709 	num_extents += count_max_extents(old_size);
1710 	if (count_max_extents(new_size) >= num_extents)
1711 		return;
1712 
1713 	spin_lock(&BTRFS_I(inode)->lock);
1714 	btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
1715 	spin_unlock(&BTRFS_I(inode)->lock);
1716 }
1717 
1718 static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1719 				      struct inode *inode)
1720 {
1721 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1722 
1723 	spin_lock(&root->delalloc_lock);
1724 	if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1725 		list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1726 			      &root->delalloc_inodes);
1727 		set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1728 			&BTRFS_I(inode)->runtime_flags);
1729 		root->nr_delalloc_inodes++;
1730 		if (root->nr_delalloc_inodes == 1) {
1731 			spin_lock(&fs_info->delalloc_root_lock);
1732 			BUG_ON(!list_empty(&root->delalloc_root));
1733 			list_add_tail(&root->delalloc_root,
1734 				      &fs_info->delalloc_roots);
1735 			spin_unlock(&fs_info->delalloc_root_lock);
1736 		}
1737 	}
1738 	spin_unlock(&root->delalloc_lock);
1739 }
1740 
1741 
1742 void __btrfs_del_delalloc_inode(struct btrfs_root *root,
1743 				struct btrfs_inode *inode)
1744 {
1745 	struct btrfs_fs_info *fs_info = root->fs_info;
1746 
1747 	if (!list_empty(&inode->delalloc_inodes)) {
1748 		list_del_init(&inode->delalloc_inodes);
1749 		clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1750 			  &inode->runtime_flags);
1751 		root->nr_delalloc_inodes--;
1752 		if (!root->nr_delalloc_inodes) {
1753 			ASSERT(list_empty(&root->delalloc_inodes));
1754 			spin_lock(&fs_info->delalloc_root_lock);
1755 			BUG_ON(list_empty(&root->delalloc_root));
1756 			list_del_init(&root->delalloc_root);
1757 			spin_unlock(&fs_info->delalloc_root_lock);
1758 		}
1759 	}
1760 }
1761 
1762 static void btrfs_del_delalloc_inode(struct btrfs_root *root,
1763 				     struct btrfs_inode *inode)
1764 {
1765 	spin_lock(&root->delalloc_lock);
1766 	__btrfs_del_delalloc_inode(root, inode);
1767 	spin_unlock(&root->delalloc_lock);
1768 }
1769 
1770 /*
1771  * Properly track delayed allocation bytes in the inode and to maintain the
1772  * list of inodes that have pending delalloc work to be done.
1773  */
1774 void btrfs_set_delalloc_extent(struct inode *inode, struct extent_state *state,
1775 			       unsigned *bits)
1776 {
1777 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1778 
1779 	if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC))
1780 		WARN_ON(1);
1781 	/*
1782 	 * set_bit and clear bit hooks normally require _irqsave/restore
1783 	 * but in this case, we are only testing for the DELALLOC
1784 	 * bit, which is only set or cleared with irqs on
1785 	 */
1786 	if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1787 		struct btrfs_root *root = BTRFS_I(inode)->root;
1788 		u64 len = state->end + 1 - state->start;
1789 		u32 num_extents = count_max_extents(len);
1790 		bool do_list = !btrfs_is_free_space_inode(BTRFS_I(inode));
1791 
1792 		spin_lock(&BTRFS_I(inode)->lock);
1793 		btrfs_mod_outstanding_extents(BTRFS_I(inode), num_extents);
1794 		spin_unlock(&BTRFS_I(inode)->lock);
1795 
1796 		/* For sanity tests */
1797 		if (btrfs_is_testing(fs_info))
1798 			return;
1799 
1800 		percpu_counter_add_batch(&fs_info->delalloc_bytes, len,
1801 					 fs_info->delalloc_batch);
1802 		spin_lock(&BTRFS_I(inode)->lock);
1803 		BTRFS_I(inode)->delalloc_bytes += len;
1804 		if (*bits & EXTENT_DEFRAG)
1805 			BTRFS_I(inode)->defrag_bytes += len;
1806 		if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1807 					 &BTRFS_I(inode)->runtime_flags))
1808 			btrfs_add_delalloc_inodes(root, inode);
1809 		spin_unlock(&BTRFS_I(inode)->lock);
1810 	}
1811 
1812 	if (!(state->state & EXTENT_DELALLOC_NEW) &&
1813 	    (*bits & EXTENT_DELALLOC_NEW)) {
1814 		spin_lock(&BTRFS_I(inode)->lock);
1815 		BTRFS_I(inode)->new_delalloc_bytes += state->end + 1 -
1816 			state->start;
1817 		spin_unlock(&BTRFS_I(inode)->lock);
1818 	}
1819 }
1820 
1821 /*
1822  * Once a range is no longer delalloc this function ensures that proper
1823  * accounting happens.
1824  */
1825 void btrfs_clear_delalloc_extent(struct inode *vfs_inode,
1826 				 struct extent_state *state, unsigned *bits)
1827 {
1828 	struct btrfs_inode *inode = BTRFS_I(vfs_inode);
1829 	struct btrfs_fs_info *fs_info = btrfs_sb(vfs_inode->i_sb);
1830 	u64 len = state->end + 1 - state->start;
1831 	u32 num_extents = count_max_extents(len);
1832 
1833 	if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG)) {
1834 		spin_lock(&inode->lock);
1835 		inode->defrag_bytes -= len;
1836 		spin_unlock(&inode->lock);
1837 	}
1838 
1839 	/*
1840 	 * set_bit and clear bit hooks normally require _irqsave/restore
1841 	 * but in this case, we are only testing for the DELALLOC
1842 	 * bit, which is only set or cleared with irqs on
1843 	 */
1844 	if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1845 		struct btrfs_root *root = inode->root;
1846 		bool do_list = !btrfs_is_free_space_inode(inode);
1847 
1848 		spin_lock(&inode->lock);
1849 		btrfs_mod_outstanding_extents(inode, -num_extents);
1850 		spin_unlock(&inode->lock);
1851 
1852 		/*
1853 		 * We don't reserve metadata space for space cache inodes so we
1854 		 * don't need to call delalloc_release_metadata if there is an
1855 		 * error.
1856 		 */
1857 		if (*bits & EXTENT_CLEAR_META_RESV &&
1858 		    root != fs_info->tree_root)
1859 			btrfs_delalloc_release_metadata(inode, len, false);
1860 
1861 		/* For sanity tests. */
1862 		if (btrfs_is_testing(fs_info))
1863 			return;
1864 
1865 		if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID &&
1866 		    do_list && !(state->state & EXTENT_NORESERVE) &&
1867 		    (*bits & EXTENT_CLEAR_DATA_RESV))
1868 			btrfs_free_reserved_data_space_noquota(
1869 					&inode->vfs_inode,
1870 					state->start, len);
1871 
1872 		percpu_counter_add_batch(&fs_info->delalloc_bytes, -len,
1873 					 fs_info->delalloc_batch);
1874 		spin_lock(&inode->lock);
1875 		inode->delalloc_bytes -= len;
1876 		if (do_list && inode->delalloc_bytes == 0 &&
1877 		    test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1878 					&inode->runtime_flags))
1879 			btrfs_del_delalloc_inode(root, inode);
1880 		spin_unlock(&inode->lock);
1881 	}
1882 
1883 	if ((state->state & EXTENT_DELALLOC_NEW) &&
1884 	    (*bits & EXTENT_DELALLOC_NEW)) {
1885 		spin_lock(&inode->lock);
1886 		ASSERT(inode->new_delalloc_bytes >= len);
1887 		inode->new_delalloc_bytes -= len;
1888 		spin_unlock(&inode->lock);
1889 	}
1890 }
1891 
1892 /*
1893  * btrfs_bio_fits_in_stripe - Checks whether the size of the given bio will fit
1894  * in a chunk's stripe. This function ensures that bios do not span a
1895  * stripe/chunk
1896  *
1897  * @page - The page we are about to add to the bio
1898  * @size - size we want to add to the bio
1899  * @bio - bio we want to ensure is smaller than a stripe
1900  * @bio_flags - flags of the bio
1901  *
1902  * return 1 if page cannot be added to the bio
1903  * return 0 if page can be added to the bio
1904  * return error otherwise
1905  */
1906 int btrfs_bio_fits_in_stripe(struct page *page, size_t size, struct bio *bio,
1907 			     unsigned long bio_flags)
1908 {
1909 	struct inode *inode = page->mapping->host;
1910 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1911 	u64 logical = (u64)bio->bi_iter.bi_sector << 9;
1912 	u64 length = 0;
1913 	u64 map_length;
1914 	int ret;
1915 
1916 	if (bio_flags & EXTENT_BIO_COMPRESSED)
1917 		return 0;
1918 
1919 	length = bio->bi_iter.bi_size;
1920 	map_length = length;
1921 	ret = btrfs_map_block(fs_info, btrfs_op(bio), logical, &map_length,
1922 			      NULL, 0);
1923 	if (ret < 0)
1924 		return ret;
1925 	if (map_length < length + size)
1926 		return 1;
1927 	return 0;
1928 }
1929 
1930 /*
1931  * in order to insert checksums into the metadata in large chunks,
1932  * we wait until bio submission time.   All the pages in the bio are
1933  * checksummed and sums are attached onto the ordered extent record.
1934  *
1935  * At IO completion time the cums attached on the ordered extent record
1936  * are inserted into the btree
1937  */
1938 static blk_status_t btrfs_submit_bio_start(void *private_data, struct bio *bio,
1939 				    u64 bio_offset)
1940 {
1941 	struct inode *inode = private_data;
1942 	blk_status_t ret = 0;
1943 
1944 	ret = btrfs_csum_one_bio(inode, bio, 0, 0);
1945 	BUG_ON(ret); /* -ENOMEM */
1946 	return 0;
1947 }
1948 
1949 /*
1950  * extent_io.c submission hook. This does the right thing for csum calculation
1951  * on write, or reading the csums from the tree before a read.
1952  *
1953  * Rules about async/sync submit,
1954  * a) read:				sync submit
1955  *
1956  * b) write without checksum:		sync submit
1957  *
1958  * c) write with checksum:
1959  *    c-1) if bio is issued by fsync:	sync submit
1960  *         (sync_writers != 0)
1961  *
1962  *    c-2) if root is reloc root:	sync submit
1963  *         (only in case of buffered IO)
1964  *
1965  *    c-3) otherwise:			async submit
1966  */
1967 static blk_status_t btrfs_submit_bio_hook(void *private_data, struct bio *bio,
1968 				 int mirror_num, unsigned long bio_flags,
1969 				 u64 bio_offset)
1970 {
1971 	struct inode *inode = private_data;
1972 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1973 	struct btrfs_root *root = BTRFS_I(inode)->root;
1974 	enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA;
1975 	blk_status_t ret = 0;
1976 	int skip_sum;
1977 	int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
1978 
1979 	skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
1980 
1981 	if (btrfs_is_free_space_inode(BTRFS_I(inode)))
1982 		metadata = BTRFS_WQ_ENDIO_FREE_SPACE;
1983 
1984 	if (bio_op(bio) != REQ_OP_WRITE) {
1985 		ret = btrfs_bio_wq_end_io(fs_info, bio, metadata);
1986 		if (ret)
1987 			goto out;
1988 
1989 		if (bio_flags & EXTENT_BIO_COMPRESSED) {
1990 			ret = btrfs_submit_compressed_read(inode, bio,
1991 							   mirror_num,
1992 							   bio_flags);
1993 			goto out;
1994 		} else if (!skip_sum) {
1995 			ret = btrfs_lookup_bio_sums(inode, bio, NULL);
1996 			if (ret)
1997 				goto out;
1998 		}
1999 		goto mapit;
2000 	} else if (async && !skip_sum) {
2001 		/* csum items have already been cloned */
2002 		if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
2003 			goto mapit;
2004 		/* we're doing a write, do the async checksumming */
2005 		ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, bio_flags,
2006 					  bio_offset, inode,
2007 					  btrfs_submit_bio_start);
2008 		goto out;
2009 	} else if (!skip_sum) {
2010 		ret = btrfs_csum_one_bio(inode, bio, 0, 0);
2011 		if (ret)
2012 			goto out;
2013 	}
2014 
2015 mapit:
2016 	ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
2017 
2018 out:
2019 	if (ret) {
2020 		bio->bi_status = ret;
2021 		bio_endio(bio);
2022 	}
2023 	return ret;
2024 }
2025 
2026 /*
2027  * given a list of ordered sums record them in the inode.  This happens
2028  * at IO completion time based on sums calculated at bio submission time.
2029  */
2030 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
2031 			     struct inode *inode, struct list_head *list)
2032 {
2033 	struct btrfs_ordered_sum *sum;
2034 	int ret;
2035 
2036 	list_for_each_entry(sum, list, list) {
2037 		trans->adding_csums = true;
2038 		ret = btrfs_csum_file_blocks(trans,
2039 		       BTRFS_I(inode)->root->fs_info->csum_root, sum);
2040 		trans->adding_csums = false;
2041 		if (ret)
2042 			return ret;
2043 	}
2044 	return 0;
2045 }
2046 
2047 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
2048 			      unsigned int extra_bits,
2049 			      struct extent_state **cached_state, int dedupe)
2050 {
2051 	WARN_ON(PAGE_ALIGNED(end));
2052 	return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
2053 				   extra_bits, cached_state);
2054 }
2055 
2056 /* see btrfs_writepage_start_hook for details on why this is required */
2057 struct btrfs_writepage_fixup {
2058 	struct page *page;
2059 	struct btrfs_work work;
2060 };
2061 
2062 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
2063 {
2064 	struct btrfs_writepage_fixup *fixup;
2065 	struct btrfs_ordered_extent *ordered;
2066 	struct extent_state *cached_state = NULL;
2067 	struct extent_changeset *data_reserved = NULL;
2068 	struct page *page;
2069 	struct inode *inode;
2070 	u64 page_start;
2071 	u64 page_end;
2072 	int ret;
2073 
2074 	fixup = container_of(work, struct btrfs_writepage_fixup, work);
2075 	page = fixup->page;
2076 again:
2077 	lock_page(page);
2078 	if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
2079 		ClearPageChecked(page);
2080 		goto out_page;
2081 	}
2082 
2083 	inode = page->mapping->host;
2084 	page_start = page_offset(page);
2085 	page_end = page_offset(page) + PAGE_SIZE - 1;
2086 
2087 	lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end,
2088 			 &cached_state);
2089 
2090 	/* already ordered? We're done */
2091 	if (PagePrivate2(page))
2092 		goto out;
2093 
2094 	ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
2095 					PAGE_SIZE);
2096 	if (ordered) {
2097 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
2098 				     page_end, &cached_state);
2099 		unlock_page(page);
2100 		btrfs_start_ordered_extent(inode, ordered, 1);
2101 		btrfs_put_ordered_extent(ordered);
2102 		goto again;
2103 	}
2104 
2105 	ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
2106 					   PAGE_SIZE);
2107 	if (ret) {
2108 		mapping_set_error(page->mapping, ret);
2109 		end_extent_writepage(page, ret, page_start, page_end);
2110 		ClearPageChecked(page);
2111 		goto out;
2112 	 }
2113 
2114 	ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0,
2115 					&cached_state, 0);
2116 	if (ret) {
2117 		mapping_set_error(page->mapping, ret);
2118 		end_extent_writepage(page, ret, page_start, page_end);
2119 		ClearPageChecked(page);
2120 		goto out;
2121 	}
2122 
2123 	ClearPageChecked(page);
2124 	set_page_dirty(page);
2125 	btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE, false);
2126 out:
2127 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
2128 			     &cached_state);
2129 out_page:
2130 	unlock_page(page);
2131 	put_page(page);
2132 	kfree(fixup);
2133 	extent_changeset_free(data_reserved);
2134 }
2135 
2136 /*
2137  * There are a few paths in the higher layers of the kernel that directly
2138  * set the page dirty bit without asking the filesystem if it is a
2139  * good idea.  This causes problems because we want to make sure COW
2140  * properly happens and the data=ordered rules are followed.
2141  *
2142  * In our case any range that doesn't have the ORDERED bit set
2143  * hasn't been properly setup for IO.  We kick off an async process
2144  * to fix it up.  The async helper will wait for ordered extents, set
2145  * the delalloc bit and make it safe to write the page.
2146  */
2147 int btrfs_writepage_cow_fixup(struct page *page, u64 start, u64 end)
2148 {
2149 	struct inode *inode = page->mapping->host;
2150 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2151 	struct btrfs_writepage_fixup *fixup;
2152 
2153 	/* this page is properly in the ordered list */
2154 	if (TestClearPagePrivate2(page))
2155 		return 0;
2156 
2157 	if (PageChecked(page))
2158 		return -EAGAIN;
2159 
2160 	fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2161 	if (!fixup)
2162 		return -EAGAIN;
2163 
2164 	SetPageChecked(page);
2165 	get_page(page);
2166 	btrfs_init_work(&fixup->work, btrfs_fixup_helper,
2167 			btrfs_writepage_fixup_worker, NULL, NULL);
2168 	fixup->page = page;
2169 	btrfs_queue_work(fs_info->fixup_workers, &fixup->work);
2170 	return -EBUSY;
2171 }
2172 
2173 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2174 				       struct inode *inode, u64 file_pos,
2175 				       u64 disk_bytenr, u64 disk_num_bytes,
2176 				       u64 num_bytes, u64 ram_bytes,
2177 				       u8 compression, u8 encryption,
2178 				       u16 other_encoding, int extent_type)
2179 {
2180 	struct btrfs_root *root = BTRFS_I(inode)->root;
2181 	struct btrfs_file_extent_item *fi;
2182 	struct btrfs_path *path;
2183 	struct extent_buffer *leaf;
2184 	struct btrfs_key ins;
2185 	u64 qg_released;
2186 	int extent_inserted = 0;
2187 	int ret;
2188 
2189 	path = btrfs_alloc_path();
2190 	if (!path)
2191 		return -ENOMEM;
2192 
2193 	/*
2194 	 * we may be replacing one extent in the tree with another.
2195 	 * The new extent is pinned in the extent map, and we don't want
2196 	 * to drop it from the cache until it is completely in the btree.
2197 	 *
2198 	 * So, tell btrfs_drop_extents to leave this extent in the cache.
2199 	 * the caller is expected to unpin it and allow it to be merged
2200 	 * with the others.
2201 	 */
2202 	ret = __btrfs_drop_extents(trans, root, inode, path, file_pos,
2203 				   file_pos + num_bytes, NULL, 0,
2204 				   1, sizeof(*fi), &extent_inserted);
2205 	if (ret)
2206 		goto out;
2207 
2208 	if (!extent_inserted) {
2209 		ins.objectid = btrfs_ino(BTRFS_I(inode));
2210 		ins.offset = file_pos;
2211 		ins.type = BTRFS_EXTENT_DATA_KEY;
2212 
2213 		path->leave_spinning = 1;
2214 		ret = btrfs_insert_empty_item(trans, root, path, &ins,
2215 					      sizeof(*fi));
2216 		if (ret)
2217 			goto out;
2218 	}
2219 	leaf = path->nodes[0];
2220 	fi = btrfs_item_ptr(leaf, path->slots[0],
2221 			    struct btrfs_file_extent_item);
2222 	btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2223 	btrfs_set_file_extent_type(leaf, fi, extent_type);
2224 	btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
2225 	btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
2226 	btrfs_set_file_extent_offset(leaf, fi, 0);
2227 	btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2228 	btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
2229 	btrfs_set_file_extent_compression(leaf, fi, compression);
2230 	btrfs_set_file_extent_encryption(leaf, fi, encryption);
2231 	btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
2232 
2233 	btrfs_mark_buffer_dirty(leaf);
2234 	btrfs_release_path(path);
2235 
2236 	inode_add_bytes(inode, num_bytes);
2237 
2238 	ins.objectid = disk_bytenr;
2239 	ins.offset = disk_num_bytes;
2240 	ins.type = BTRFS_EXTENT_ITEM_KEY;
2241 
2242 	/*
2243 	 * Release the reserved range from inode dirty range map, as it is
2244 	 * already moved into delayed_ref_head
2245 	 */
2246 	ret = btrfs_qgroup_release_data(inode, file_pos, ram_bytes);
2247 	if (ret < 0)
2248 		goto out;
2249 	qg_released = ret;
2250 	ret = btrfs_alloc_reserved_file_extent(trans, root,
2251 					       btrfs_ino(BTRFS_I(inode)),
2252 					       file_pos, qg_released, &ins);
2253 out:
2254 	btrfs_free_path(path);
2255 
2256 	return ret;
2257 }
2258 
2259 /* snapshot-aware defrag */
2260 struct sa_defrag_extent_backref {
2261 	struct rb_node node;
2262 	struct old_sa_defrag_extent *old;
2263 	u64 root_id;
2264 	u64 inum;
2265 	u64 file_pos;
2266 	u64 extent_offset;
2267 	u64 num_bytes;
2268 	u64 generation;
2269 };
2270 
2271 struct old_sa_defrag_extent {
2272 	struct list_head list;
2273 	struct new_sa_defrag_extent *new;
2274 
2275 	u64 extent_offset;
2276 	u64 bytenr;
2277 	u64 offset;
2278 	u64 len;
2279 	int count;
2280 };
2281 
2282 struct new_sa_defrag_extent {
2283 	struct rb_root root;
2284 	struct list_head head;
2285 	struct btrfs_path *path;
2286 	struct inode *inode;
2287 	u64 file_pos;
2288 	u64 len;
2289 	u64 bytenr;
2290 	u64 disk_len;
2291 	u8 compress_type;
2292 };
2293 
2294 static int backref_comp(struct sa_defrag_extent_backref *b1,
2295 			struct sa_defrag_extent_backref *b2)
2296 {
2297 	if (b1->root_id < b2->root_id)
2298 		return -1;
2299 	else if (b1->root_id > b2->root_id)
2300 		return 1;
2301 
2302 	if (b1->inum < b2->inum)
2303 		return -1;
2304 	else if (b1->inum > b2->inum)
2305 		return 1;
2306 
2307 	if (b1->file_pos < b2->file_pos)
2308 		return -1;
2309 	else if (b1->file_pos > b2->file_pos)
2310 		return 1;
2311 
2312 	/*
2313 	 * [------------------------------] ===> (a range of space)
2314 	 *     |<--->|   |<---->| =============> (fs/file tree A)
2315 	 * |<---------------------------->| ===> (fs/file tree B)
2316 	 *
2317 	 * A range of space can refer to two file extents in one tree while
2318 	 * refer to only one file extent in another tree.
2319 	 *
2320 	 * So we may process a disk offset more than one time(two extents in A)
2321 	 * and locate at the same extent(one extent in B), then insert two same
2322 	 * backrefs(both refer to the extent in B).
2323 	 */
2324 	return 0;
2325 }
2326 
2327 static void backref_insert(struct rb_root *root,
2328 			   struct sa_defrag_extent_backref *backref)
2329 {
2330 	struct rb_node **p = &root->rb_node;
2331 	struct rb_node *parent = NULL;
2332 	struct sa_defrag_extent_backref *entry;
2333 	int ret;
2334 
2335 	while (*p) {
2336 		parent = *p;
2337 		entry = rb_entry(parent, struct sa_defrag_extent_backref, node);
2338 
2339 		ret = backref_comp(backref, entry);
2340 		if (ret < 0)
2341 			p = &(*p)->rb_left;
2342 		else
2343 			p = &(*p)->rb_right;
2344 	}
2345 
2346 	rb_link_node(&backref->node, parent, p);
2347 	rb_insert_color(&backref->node, root);
2348 }
2349 
2350 /*
2351  * Note the backref might has changed, and in this case we just return 0.
2352  */
2353 static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id,
2354 				       void *ctx)
2355 {
2356 	struct btrfs_file_extent_item *extent;
2357 	struct old_sa_defrag_extent *old = ctx;
2358 	struct new_sa_defrag_extent *new = old->new;
2359 	struct btrfs_path *path = new->path;
2360 	struct btrfs_key key;
2361 	struct btrfs_root *root;
2362 	struct sa_defrag_extent_backref *backref;
2363 	struct extent_buffer *leaf;
2364 	struct inode *inode = new->inode;
2365 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2366 	int slot;
2367 	int ret;
2368 	u64 extent_offset;
2369 	u64 num_bytes;
2370 
2371 	if (BTRFS_I(inode)->root->root_key.objectid == root_id &&
2372 	    inum == btrfs_ino(BTRFS_I(inode)))
2373 		return 0;
2374 
2375 	key.objectid = root_id;
2376 	key.type = BTRFS_ROOT_ITEM_KEY;
2377 	key.offset = (u64)-1;
2378 
2379 	root = btrfs_read_fs_root_no_name(fs_info, &key);
2380 	if (IS_ERR(root)) {
2381 		if (PTR_ERR(root) == -ENOENT)
2382 			return 0;
2383 		WARN_ON(1);
2384 		btrfs_debug(fs_info, "inum=%llu, offset=%llu, root_id=%llu",
2385 			 inum, offset, root_id);
2386 		return PTR_ERR(root);
2387 	}
2388 
2389 	key.objectid = inum;
2390 	key.type = BTRFS_EXTENT_DATA_KEY;
2391 	if (offset > (u64)-1 << 32)
2392 		key.offset = 0;
2393 	else
2394 		key.offset = offset;
2395 
2396 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2397 	if (WARN_ON(ret < 0))
2398 		return ret;
2399 	ret = 0;
2400 
2401 	while (1) {
2402 		cond_resched();
2403 
2404 		leaf = path->nodes[0];
2405 		slot = path->slots[0];
2406 
2407 		if (slot >= btrfs_header_nritems(leaf)) {
2408 			ret = btrfs_next_leaf(root, path);
2409 			if (ret < 0) {
2410 				goto out;
2411 			} else if (ret > 0) {
2412 				ret = 0;
2413 				goto out;
2414 			}
2415 			continue;
2416 		}
2417 
2418 		path->slots[0]++;
2419 
2420 		btrfs_item_key_to_cpu(leaf, &key, slot);
2421 
2422 		if (key.objectid > inum)
2423 			goto out;
2424 
2425 		if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY)
2426 			continue;
2427 
2428 		extent = btrfs_item_ptr(leaf, slot,
2429 					struct btrfs_file_extent_item);
2430 
2431 		if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr)
2432 			continue;
2433 
2434 		/*
2435 		 * 'offset' refers to the exact key.offset,
2436 		 * NOT the 'offset' field in btrfs_extent_data_ref, ie.
2437 		 * (key.offset - extent_offset).
2438 		 */
2439 		if (key.offset != offset)
2440 			continue;
2441 
2442 		extent_offset = btrfs_file_extent_offset(leaf, extent);
2443 		num_bytes = btrfs_file_extent_num_bytes(leaf, extent);
2444 
2445 		if (extent_offset >= old->extent_offset + old->offset +
2446 		    old->len || extent_offset + num_bytes <=
2447 		    old->extent_offset + old->offset)
2448 			continue;
2449 		break;
2450 	}
2451 
2452 	backref = kmalloc(sizeof(*backref), GFP_NOFS);
2453 	if (!backref) {
2454 		ret = -ENOENT;
2455 		goto out;
2456 	}
2457 
2458 	backref->root_id = root_id;
2459 	backref->inum = inum;
2460 	backref->file_pos = offset;
2461 	backref->num_bytes = num_bytes;
2462 	backref->extent_offset = extent_offset;
2463 	backref->generation = btrfs_file_extent_generation(leaf, extent);
2464 	backref->old = old;
2465 	backref_insert(&new->root, backref);
2466 	old->count++;
2467 out:
2468 	btrfs_release_path(path);
2469 	WARN_ON(ret);
2470 	return ret;
2471 }
2472 
2473 static noinline bool record_extent_backrefs(struct btrfs_path *path,
2474 				   struct new_sa_defrag_extent *new)
2475 {
2476 	struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
2477 	struct old_sa_defrag_extent *old, *tmp;
2478 	int ret;
2479 
2480 	new->path = path;
2481 
2482 	list_for_each_entry_safe(old, tmp, &new->head, list) {
2483 		ret = iterate_inodes_from_logical(old->bytenr +
2484 						  old->extent_offset, fs_info,
2485 						  path, record_one_backref,
2486 						  old, false);
2487 		if (ret < 0 && ret != -ENOENT)
2488 			return false;
2489 
2490 		/* no backref to be processed for this extent */
2491 		if (!old->count) {
2492 			list_del(&old->list);
2493 			kfree(old);
2494 		}
2495 	}
2496 
2497 	if (list_empty(&new->head))
2498 		return false;
2499 
2500 	return true;
2501 }
2502 
2503 static int relink_is_mergable(struct extent_buffer *leaf,
2504 			      struct btrfs_file_extent_item *fi,
2505 			      struct new_sa_defrag_extent *new)
2506 {
2507 	if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr)
2508 		return 0;
2509 
2510 	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2511 		return 0;
2512 
2513 	if (btrfs_file_extent_compression(leaf, fi) != new->compress_type)
2514 		return 0;
2515 
2516 	if (btrfs_file_extent_encryption(leaf, fi) ||
2517 	    btrfs_file_extent_other_encoding(leaf, fi))
2518 		return 0;
2519 
2520 	return 1;
2521 }
2522 
2523 /*
2524  * Note the backref might has changed, and in this case we just return 0.
2525  */
2526 static noinline int relink_extent_backref(struct btrfs_path *path,
2527 				 struct sa_defrag_extent_backref *prev,
2528 				 struct sa_defrag_extent_backref *backref)
2529 {
2530 	struct btrfs_file_extent_item *extent;
2531 	struct btrfs_file_extent_item *item;
2532 	struct btrfs_ordered_extent *ordered;
2533 	struct btrfs_trans_handle *trans;
2534 	struct btrfs_root *root;
2535 	struct btrfs_key key;
2536 	struct extent_buffer *leaf;
2537 	struct old_sa_defrag_extent *old = backref->old;
2538 	struct new_sa_defrag_extent *new = old->new;
2539 	struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
2540 	struct inode *inode;
2541 	struct extent_state *cached = NULL;
2542 	int ret = 0;
2543 	u64 start;
2544 	u64 len;
2545 	u64 lock_start;
2546 	u64 lock_end;
2547 	bool merge = false;
2548 	int index;
2549 
2550 	if (prev && prev->root_id == backref->root_id &&
2551 	    prev->inum == backref->inum &&
2552 	    prev->file_pos + prev->num_bytes == backref->file_pos)
2553 		merge = true;
2554 
2555 	/* step 1: get root */
2556 	key.objectid = backref->root_id;
2557 	key.type = BTRFS_ROOT_ITEM_KEY;
2558 	key.offset = (u64)-1;
2559 
2560 	index = srcu_read_lock(&fs_info->subvol_srcu);
2561 
2562 	root = btrfs_read_fs_root_no_name(fs_info, &key);
2563 	if (IS_ERR(root)) {
2564 		srcu_read_unlock(&fs_info->subvol_srcu, index);
2565 		if (PTR_ERR(root) == -ENOENT)
2566 			return 0;
2567 		return PTR_ERR(root);
2568 	}
2569 
2570 	if (btrfs_root_readonly(root)) {
2571 		srcu_read_unlock(&fs_info->subvol_srcu, index);
2572 		return 0;
2573 	}
2574 
2575 	/* step 2: get inode */
2576 	key.objectid = backref->inum;
2577 	key.type = BTRFS_INODE_ITEM_KEY;
2578 	key.offset = 0;
2579 
2580 	inode = btrfs_iget(fs_info->sb, &key, root, NULL);
2581 	if (IS_ERR(inode)) {
2582 		srcu_read_unlock(&fs_info->subvol_srcu, index);
2583 		return 0;
2584 	}
2585 
2586 	srcu_read_unlock(&fs_info->subvol_srcu, index);
2587 
2588 	/* step 3: relink backref */
2589 	lock_start = backref->file_pos;
2590 	lock_end = backref->file_pos + backref->num_bytes - 1;
2591 	lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2592 			 &cached);
2593 
2594 	ordered = btrfs_lookup_first_ordered_extent(inode, lock_end);
2595 	if (ordered) {
2596 		btrfs_put_ordered_extent(ordered);
2597 		goto out_unlock;
2598 	}
2599 
2600 	trans = btrfs_join_transaction(root);
2601 	if (IS_ERR(trans)) {
2602 		ret = PTR_ERR(trans);
2603 		goto out_unlock;
2604 	}
2605 
2606 	key.objectid = backref->inum;
2607 	key.type = BTRFS_EXTENT_DATA_KEY;
2608 	key.offset = backref->file_pos;
2609 
2610 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2611 	if (ret < 0) {
2612 		goto out_free_path;
2613 	} else if (ret > 0) {
2614 		ret = 0;
2615 		goto out_free_path;
2616 	}
2617 
2618 	extent = btrfs_item_ptr(path->nodes[0], path->slots[0],
2619 				struct btrfs_file_extent_item);
2620 
2621 	if (btrfs_file_extent_generation(path->nodes[0], extent) !=
2622 	    backref->generation)
2623 		goto out_free_path;
2624 
2625 	btrfs_release_path(path);
2626 
2627 	start = backref->file_pos;
2628 	if (backref->extent_offset < old->extent_offset + old->offset)
2629 		start += old->extent_offset + old->offset -
2630 			 backref->extent_offset;
2631 
2632 	len = min(backref->extent_offset + backref->num_bytes,
2633 		  old->extent_offset + old->offset + old->len);
2634 	len -= max(backref->extent_offset, old->extent_offset + old->offset);
2635 
2636 	ret = btrfs_drop_extents(trans, root, inode, start,
2637 				 start + len, 1);
2638 	if (ret)
2639 		goto out_free_path;
2640 again:
2641 	key.objectid = btrfs_ino(BTRFS_I(inode));
2642 	key.type = BTRFS_EXTENT_DATA_KEY;
2643 	key.offset = start;
2644 
2645 	path->leave_spinning = 1;
2646 	if (merge) {
2647 		struct btrfs_file_extent_item *fi;
2648 		u64 extent_len;
2649 		struct btrfs_key found_key;
2650 
2651 		ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2652 		if (ret < 0)
2653 			goto out_free_path;
2654 
2655 		path->slots[0]--;
2656 		leaf = path->nodes[0];
2657 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2658 
2659 		fi = btrfs_item_ptr(leaf, path->slots[0],
2660 				    struct btrfs_file_extent_item);
2661 		extent_len = btrfs_file_extent_num_bytes(leaf, fi);
2662 
2663 		if (extent_len + found_key.offset == start &&
2664 		    relink_is_mergable(leaf, fi, new)) {
2665 			btrfs_set_file_extent_num_bytes(leaf, fi,
2666 							extent_len + len);
2667 			btrfs_mark_buffer_dirty(leaf);
2668 			inode_add_bytes(inode, len);
2669 
2670 			ret = 1;
2671 			goto out_free_path;
2672 		} else {
2673 			merge = false;
2674 			btrfs_release_path(path);
2675 			goto again;
2676 		}
2677 	}
2678 
2679 	ret = btrfs_insert_empty_item(trans, root, path, &key,
2680 					sizeof(*extent));
2681 	if (ret) {
2682 		btrfs_abort_transaction(trans, ret);
2683 		goto out_free_path;
2684 	}
2685 
2686 	leaf = path->nodes[0];
2687 	item = btrfs_item_ptr(leaf, path->slots[0],
2688 				struct btrfs_file_extent_item);
2689 	btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr);
2690 	btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len);
2691 	btrfs_set_file_extent_offset(leaf, item, start - new->file_pos);
2692 	btrfs_set_file_extent_num_bytes(leaf, item, len);
2693 	btrfs_set_file_extent_ram_bytes(leaf, item, new->len);
2694 	btrfs_set_file_extent_generation(leaf, item, trans->transid);
2695 	btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
2696 	btrfs_set_file_extent_compression(leaf, item, new->compress_type);
2697 	btrfs_set_file_extent_encryption(leaf, item, 0);
2698 	btrfs_set_file_extent_other_encoding(leaf, item, 0);
2699 
2700 	btrfs_mark_buffer_dirty(leaf);
2701 	inode_add_bytes(inode, len);
2702 	btrfs_release_path(path);
2703 
2704 	ret = btrfs_inc_extent_ref(trans, root, new->bytenr,
2705 			new->disk_len, 0,
2706 			backref->root_id, backref->inum,
2707 			new->file_pos);	/* start - extent_offset */
2708 	if (ret) {
2709 		btrfs_abort_transaction(trans, ret);
2710 		goto out_free_path;
2711 	}
2712 
2713 	ret = 1;
2714 out_free_path:
2715 	btrfs_release_path(path);
2716 	path->leave_spinning = 0;
2717 	btrfs_end_transaction(trans);
2718 out_unlock:
2719 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2720 			     &cached);
2721 	iput(inode);
2722 	return ret;
2723 }
2724 
2725 static void free_sa_defrag_extent(struct new_sa_defrag_extent *new)
2726 {
2727 	struct old_sa_defrag_extent *old, *tmp;
2728 
2729 	if (!new)
2730 		return;
2731 
2732 	list_for_each_entry_safe(old, tmp, &new->head, list) {
2733 		kfree(old);
2734 	}
2735 	kfree(new);
2736 }
2737 
2738 static void relink_file_extents(struct new_sa_defrag_extent *new)
2739 {
2740 	struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
2741 	struct btrfs_path *path;
2742 	struct sa_defrag_extent_backref *backref;
2743 	struct sa_defrag_extent_backref *prev = NULL;
2744 	struct rb_node *node;
2745 	int ret;
2746 
2747 	path = btrfs_alloc_path();
2748 	if (!path)
2749 		return;
2750 
2751 	if (!record_extent_backrefs(path, new)) {
2752 		btrfs_free_path(path);
2753 		goto out;
2754 	}
2755 	btrfs_release_path(path);
2756 
2757 	while (1) {
2758 		node = rb_first(&new->root);
2759 		if (!node)
2760 			break;
2761 		rb_erase(node, &new->root);
2762 
2763 		backref = rb_entry(node, struct sa_defrag_extent_backref, node);
2764 
2765 		ret = relink_extent_backref(path, prev, backref);
2766 		WARN_ON(ret < 0);
2767 
2768 		kfree(prev);
2769 
2770 		if (ret == 1)
2771 			prev = backref;
2772 		else
2773 			prev = NULL;
2774 		cond_resched();
2775 	}
2776 	kfree(prev);
2777 
2778 	btrfs_free_path(path);
2779 out:
2780 	free_sa_defrag_extent(new);
2781 
2782 	atomic_dec(&fs_info->defrag_running);
2783 	wake_up(&fs_info->transaction_wait);
2784 }
2785 
2786 static struct new_sa_defrag_extent *
2787 record_old_file_extents(struct inode *inode,
2788 			struct btrfs_ordered_extent *ordered)
2789 {
2790 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2791 	struct btrfs_root *root = BTRFS_I(inode)->root;
2792 	struct btrfs_path *path;
2793 	struct btrfs_key key;
2794 	struct old_sa_defrag_extent *old;
2795 	struct new_sa_defrag_extent *new;
2796 	int ret;
2797 
2798 	new = kmalloc(sizeof(*new), GFP_NOFS);
2799 	if (!new)
2800 		return NULL;
2801 
2802 	new->inode = inode;
2803 	new->file_pos = ordered->file_offset;
2804 	new->len = ordered->len;
2805 	new->bytenr = ordered->start;
2806 	new->disk_len = ordered->disk_len;
2807 	new->compress_type = ordered->compress_type;
2808 	new->root = RB_ROOT;
2809 	INIT_LIST_HEAD(&new->head);
2810 
2811 	path = btrfs_alloc_path();
2812 	if (!path)
2813 		goto out_kfree;
2814 
2815 	key.objectid = btrfs_ino(BTRFS_I(inode));
2816 	key.type = BTRFS_EXTENT_DATA_KEY;
2817 	key.offset = new->file_pos;
2818 
2819 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2820 	if (ret < 0)
2821 		goto out_free_path;
2822 	if (ret > 0 && path->slots[0] > 0)
2823 		path->slots[0]--;
2824 
2825 	/* find out all the old extents for the file range */
2826 	while (1) {
2827 		struct btrfs_file_extent_item *extent;
2828 		struct extent_buffer *l;
2829 		int slot;
2830 		u64 num_bytes;
2831 		u64 offset;
2832 		u64 end;
2833 		u64 disk_bytenr;
2834 		u64 extent_offset;
2835 
2836 		l = path->nodes[0];
2837 		slot = path->slots[0];
2838 
2839 		if (slot >= btrfs_header_nritems(l)) {
2840 			ret = btrfs_next_leaf(root, path);
2841 			if (ret < 0)
2842 				goto out_free_path;
2843 			else if (ret > 0)
2844 				break;
2845 			continue;
2846 		}
2847 
2848 		btrfs_item_key_to_cpu(l, &key, slot);
2849 
2850 		if (key.objectid != btrfs_ino(BTRFS_I(inode)))
2851 			break;
2852 		if (key.type != BTRFS_EXTENT_DATA_KEY)
2853 			break;
2854 		if (key.offset >= new->file_pos + new->len)
2855 			break;
2856 
2857 		extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item);
2858 
2859 		num_bytes = btrfs_file_extent_num_bytes(l, extent);
2860 		if (key.offset + num_bytes < new->file_pos)
2861 			goto next;
2862 
2863 		disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent);
2864 		if (!disk_bytenr)
2865 			goto next;
2866 
2867 		extent_offset = btrfs_file_extent_offset(l, extent);
2868 
2869 		old = kmalloc(sizeof(*old), GFP_NOFS);
2870 		if (!old)
2871 			goto out_free_path;
2872 
2873 		offset = max(new->file_pos, key.offset);
2874 		end = min(new->file_pos + new->len, key.offset + num_bytes);
2875 
2876 		old->bytenr = disk_bytenr;
2877 		old->extent_offset = extent_offset;
2878 		old->offset = offset - key.offset;
2879 		old->len = end - offset;
2880 		old->new = new;
2881 		old->count = 0;
2882 		list_add_tail(&old->list, &new->head);
2883 next:
2884 		path->slots[0]++;
2885 		cond_resched();
2886 	}
2887 
2888 	btrfs_free_path(path);
2889 	atomic_inc(&fs_info->defrag_running);
2890 
2891 	return new;
2892 
2893 out_free_path:
2894 	btrfs_free_path(path);
2895 out_kfree:
2896 	free_sa_defrag_extent(new);
2897 	return NULL;
2898 }
2899 
2900 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info,
2901 					 u64 start, u64 len)
2902 {
2903 	struct btrfs_block_group_cache *cache;
2904 
2905 	cache = btrfs_lookup_block_group(fs_info, start);
2906 	ASSERT(cache);
2907 
2908 	spin_lock(&cache->lock);
2909 	cache->delalloc_bytes -= len;
2910 	spin_unlock(&cache->lock);
2911 
2912 	btrfs_put_block_group(cache);
2913 }
2914 
2915 /* as ordered data IO finishes, this gets called so we can finish
2916  * an ordered extent if the range of bytes in the file it covers are
2917  * fully written.
2918  */
2919 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
2920 {
2921 	struct inode *inode = ordered_extent->inode;
2922 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2923 	struct btrfs_root *root = BTRFS_I(inode)->root;
2924 	struct btrfs_trans_handle *trans = NULL;
2925 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2926 	struct extent_state *cached_state = NULL;
2927 	struct new_sa_defrag_extent *new = NULL;
2928 	int compress_type = 0;
2929 	int ret = 0;
2930 	u64 logical_len = ordered_extent->len;
2931 	bool nolock;
2932 	bool truncated = false;
2933 	bool range_locked = false;
2934 	bool clear_new_delalloc_bytes = false;
2935 	bool clear_reserved_extent = true;
2936 
2937 	if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
2938 	    !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) &&
2939 	    !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags))
2940 		clear_new_delalloc_bytes = true;
2941 
2942 	nolock = btrfs_is_free_space_inode(BTRFS_I(inode));
2943 
2944 	if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
2945 		ret = -EIO;
2946 		goto out;
2947 	}
2948 
2949 	btrfs_free_io_failure_record(BTRFS_I(inode),
2950 			ordered_extent->file_offset,
2951 			ordered_extent->file_offset +
2952 			ordered_extent->len - 1);
2953 
2954 	if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
2955 		truncated = true;
2956 		logical_len = ordered_extent->truncated_len;
2957 		/* Truncated the entire extent, don't bother adding */
2958 		if (!logical_len)
2959 			goto out;
2960 	}
2961 
2962 	if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
2963 		BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
2964 
2965 		/*
2966 		 * For mwrite(mmap + memset to write) case, we still reserve
2967 		 * space for NOCOW range.
2968 		 * As NOCOW won't cause a new delayed ref, just free the space
2969 		 */
2970 		btrfs_qgroup_free_data(inode, NULL, ordered_extent->file_offset,
2971 				       ordered_extent->len);
2972 		btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2973 		if (nolock)
2974 			trans = btrfs_join_transaction_nolock(root);
2975 		else
2976 			trans = btrfs_join_transaction(root);
2977 		if (IS_ERR(trans)) {
2978 			ret = PTR_ERR(trans);
2979 			trans = NULL;
2980 			goto out;
2981 		}
2982 		trans->block_rsv = &BTRFS_I(inode)->block_rsv;
2983 		ret = btrfs_update_inode_fallback(trans, root, inode);
2984 		if (ret) /* -ENOMEM or corruption */
2985 			btrfs_abort_transaction(trans, ret);
2986 		goto out;
2987 	}
2988 
2989 	range_locked = true;
2990 	lock_extent_bits(io_tree, ordered_extent->file_offset,
2991 			 ordered_extent->file_offset + ordered_extent->len - 1,
2992 			 &cached_state);
2993 
2994 	ret = test_range_bit(io_tree, ordered_extent->file_offset,
2995 			ordered_extent->file_offset + ordered_extent->len - 1,
2996 			EXTENT_DEFRAG, 0, cached_state);
2997 	if (ret) {
2998 		u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
2999 		if (0 && last_snapshot >= BTRFS_I(inode)->generation)
3000 			/* the inode is shared */
3001 			new = record_old_file_extents(inode, ordered_extent);
3002 
3003 		clear_extent_bit(io_tree, ordered_extent->file_offset,
3004 			ordered_extent->file_offset + ordered_extent->len - 1,
3005 			EXTENT_DEFRAG, 0, 0, &cached_state);
3006 	}
3007 
3008 	if (nolock)
3009 		trans = btrfs_join_transaction_nolock(root);
3010 	else
3011 		trans = btrfs_join_transaction(root);
3012 	if (IS_ERR(trans)) {
3013 		ret = PTR_ERR(trans);
3014 		trans = NULL;
3015 		goto out;
3016 	}
3017 
3018 	trans->block_rsv = &BTRFS_I(inode)->block_rsv;
3019 
3020 	if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
3021 		compress_type = ordered_extent->compress_type;
3022 	if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
3023 		BUG_ON(compress_type);
3024 		btrfs_qgroup_free_data(inode, NULL, ordered_extent->file_offset,
3025 				       ordered_extent->len);
3026 		ret = btrfs_mark_extent_written(trans, BTRFS_I(inode),
3027 						ordered_extent->file_offset,
3028 						ordered_extent->file_offset +
3029 						logical_len);
3030 	} else {
3031 		BUG_ON(root == fs_info->tree_root);
3032 		ret = insert_reserved_file_extent(trans, inode,
3033 						ordered_extent->file_offset,
3034 						ordered_extent->start,
3035 						ordered_extent->disk_len,
3036 						logical_len, logical_len,
3037 						compress_type, 0, 0,
3038 						BTRFS_FILE_EXTENT_REG);
3039 		if (!ret) {
3040 			clear_reserved_extent = false;
3041 			btrfs_release_delalloc_bytes(fs_info,
3042 						     ordered_extent->start,
3043 						     ordered_extent->disk_len);
3044 		}
3045 	}
3046 	unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
3047 			   ordered_extent->file_offset, ordered_extent->len,
3048 			   trans->transid);
3049 	if (ret < 0) {
3050 		btrfs_abort_transaction(trans, ret);
3051 		goto out;
3052 	}
3053 
3054 	ret = add_pending_csums(trans, inode, &ordered_extent->list);
3055 	if (ret) {
3056 		btrfs_abort_transaction(trans, ret);
3057 		goto out;
3058 	}
3059 
3060 	btrfs_ordered_update_i_size(inode, 0, ordered_extent);
3061 	ret = btrfs_update_inode_fallback(trans, root, inode);
3062 	if (ret) { /* -ENOMEM or corruption */
3063 		btrfs_abort_transaction(trans, ret);
3064 		goto out;
3065 	}
3066 	ret = 0;
3067 out:
3068 	if (range_locked || clear_new_delalloc_bytes) {
3069 		unsigned int clear_bits = 0;
3070 
3071 		if (range_locked)
3072 			clear_bits |= EXTENT_LOCKED;
3073 		if (clear_new_delalloc_bytes)
3074 			clear_bits |= EXTENT_DELALLOC_NEW;
3075 		clear_extent_bit(&BTRFS_I(inode)->io_tree,
3076 				 ordered_extent->file_offset,
3077 				 ordered_extent->file_offset +
3078 				 ordered_extent->len - 1,
3079 				 clear_bits,
3080 				 (clear_bits & EXTENT_LOCKED) ? 1 : 0,
3081 				 0, &cached_state);
3082 	}
3083 
3084 	if (trans)
3085 		btrfs_end_transaction(trans);
3086 
3087 	if (ret || truncated) {
3088 		u64 start, end;
3089 
3090 		if (truncated)
3091 			start = ordered_extent->file_offset + logical_len;
3092 		else
3093 			start = ordered_extent->file_offset;
3094 		end = ordered_extent->file_offset + ordered_extent->len - 1;
3095 		clear_extent_uptodate(io_tree, start, end, NULL);
3096 
3097 		/* Drop the cache for the part of the extent we didn't write. */
3098 		btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 0);
3099 
3100 		/*
3101 		 * If the ordered extent had an IOERR or something else went
3102 		 * wrong we need to return the space for this ordered extent
3103 		 * back to the allocator.  We only free the extent in the
3104 		 * truncated case if we didn't write out the extent at all.
3105 		 *
3106 		 * If we made it past insert_reserved_file_extent before we
3107 		 * errored out then we don't need to do this as the accounting
3108 		 * has already been done.
3109 		 */
3110 		if ((ret || !logical_len) &&
3111 		    clear_reserved_extent &&
3112 		    !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3113 		    !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags))
3114 			btrfs_free_reserved_extent(fs_info,
3115 						   ordered_extent->start,
3116 						   ordered_extent->disk_len, 1);
3117 	}
3118 
3119 
3120 	/*
3121 	 * This needs to be done to make sure anybody waiting knows we are done
3122 	 * updating everything for this ordered extent.
3123 	 */
3124 	btrfs_remove_ordered_extent(inode, ordered_extent);
3125 
3126 	/* for snapshot-aware defrag */
3127 	if (new) {
3128 		if (ret) {
3129 			free_sa_defrag_extent(new);
3130 			atomic_dec(&fs_info->defrag_running);
3131 		} else {
3132 			relink_file_extents(new);
3133 		}
3134 	}
3135 
3136 	/* once for us */
3137 	btrfs_put_ordered_extent(ordered_extent);
3138 	/* once for the tree */
3139 	btrfs_put_ordered_extent(ordered_extent);
3140 
3141 	return ret;
3142 }
3143 
3144 static void finish_ordered_fn(struct btrfs_work *work)
3145 {
3146 	struct btrfs_ordered_extent *ordered_extent;
3147 	ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
3148 	btrfs_finish_ordered_io(ordered_extent);
3149 }
3150 
3151 void btrfs_writepage_endio_finish_ordered(struct page *page, u64 start,
3152 					  u64 end, int uptodate)
3153 {
3154 	struct inode *inode = page->mapping->host;
3155 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3156 	struct btrfs_ordered_extent *ordered_extent = NULL;
3157 	struct btrfs_workqueue *wq;
3158 	btrfs_work_func_t func;
3159 
3160 	trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
3161 
3162 	ClearPagePrivate2(page);
3163 	if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
3164 					    end - start + 1, uptodate))
3165 		return;
3166 
3167 	if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
3168 		wq = fs_info->endio_freespace_worker;
3169 		func = btrfs_freespace_write_helper;
3170 	} else {
3171 		wq = fs_info->endio_write_workers;
3172 		func = btrfs_endio_write_helper;
3173 	}
3174 
3175 	btrfs_init_work(&ordered_extent->work, func, finish_ordered_fn, NULL,
3176 			NULL);
3177 	btrfs_queue_work(wq, &ordered_extent->work);
3178 }
3179 
3180 static int __readpage_endio_check(struct inode *inode,
3181 				  struct btrfs_io_bio *io_bio,
3182 				  int icsum, struct page *page,
3183 				  int pgoff, u64 start, size_t len)
3184 {
3185 	char *kaddr;
3186 	u32 csum_expected;
3187 	u32 csum = ~(u32)0;
3188 
3189 	csum_expected = *(((u32 *)io_bio->csum) + icsum);
3190 
3191 	kaddr = kmap_atomic(page);
3192 	csum = btrfs_csum_data(kaddr + pgoff, csum,  len);
3193 	btrfs_csum_final(csum, (u8 *)&csum);
3194 	if (csum != csum_expected)
3195 		goto zeroit;
3196 
3197 	kunmap_atomic(kaddr);
3198 	return 0;
3199 zeroit:
3200 	btrfs_print_data_csum_error(BTRFS_I(inode), start, csum, csum_expected,
3201 				    io_bio->mirror_num);
3202 	memset(kaddr + pgoff, 1, len);
3203 	flush_dcache_page(page);
3204 	kunmap_atomic(kaddr);
3205 	return -EIO;
3206 }
3207 
3208 /*
3209  * when reads are done, we need to check csums to verify the data is correct
3210  * if there's a match, we allow the bio to finish.  If not, the code in
3211  * extent_io.c will try to find good copies for us.
3212  */
3213 static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
3214 				      u64 phy_offset, struct page *page,
3215 				      u64 start, u64 end, int mirror)
3216 {
3217 	size_t offset = start - page_offset(page);
3218 	struct inode *inode = page->mapping->host;
3219 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3220 	struct btrfs_root *root = BTRFS_I(inode)->root;
3221 
3222 	if (PageChecked(page)) {
3223 		ClearPageChecked(page);
3224 		return 0;
3225 	}
3226 
3227 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
3228 		return 0;
3229 
3230 	if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
3231 	    test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
3232 		clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM);
3233 		return 0;
3234 	}
3235 
3236 	phy_offset >>= inode->i_sb->s_blocksize_bits;
3237 	return __readpage_endio_check(inode, io_bio, phy_offset, page, offset,
3238 				      start, (size_t)(end - start + 1));
3239 }
3240 
3241 /*
3242  * btrfs_add_delayed_iput - perform a delayed iput on @inode
3243  *
3244  * @inode: The inode we want to perform iput on
3245  *
3246  * This function uses the generic vfs_inode::i_count to track whether we should
3247  * just decrement it (in case it's > 1) or if this is the last iput then link
3248  * the inode to the delayed iput machinery. Delayed iputs are processed at
3249  * transaction commit time/superblock commit/cleaner kthread.
3250  */
3251 void btrfs_add_delayed_iput(struct inode *inode)
3252 {
3253 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3254 	struct btrfs_inode *binode = BTRFS_I(inode);
3255 
3256 	if (atomic_add_unless(&inode->i_count, -1, 1))
3257 		return;
3258 
3259 	atomic_inc(&fs_info->nr_delayed_iputs);
3260 	spin_lock(&fs_info->delayed_iput_lock);
3261 	ASSERT(list_empty(&binode->delayed_iput));
3262 	list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs);
3263 	spin_unlock(&fs_info->delayed_iput_lock);
3264 	if (!test_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags))
3265 		wake_up_process(fs_info->cleaner_kthread);
3266 }
3267 
3268 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info)
3269 {
3270 
3271 	spin_lock(&fs_info->delayed_iput_lock);
3272 	while (!list_empty(&fs_info->delayed_iputs)) {
3273 		struct btrfs_inode *inode;
3274 
3275 		inode = list_first_entry(&fs_info->delayed_iputs,
3276 				struct btrfs_inode, delayed_iput);
3277 		list_del_init(&inode->delayed_iput);
3278 		spin_unlock(&fs_info->delayed_iput_lock);
3279 		iput(&inode->vfs_inode);
3280 		if (atomic_dec_and_test(&fs_info->nr_delayed_iputs))
3281 			wake_up(&fs_info->delayed_iputs_wait);
3282 		spin_lock(&fs_info->delayed_iput_lock);
3283 	}
3284 	spin_unlock(&fs_info->delayed_iput_lock);
3285 }
3286 
3287 /**
3288  * btrfs_wait_on_delayed_iputs - wait on the delayed iputs to be done running
3289  * @fs_info - the fs_info for this fs
3290  * @return - EINTR if we were killed, 0 if nothing's pending
3291  *
3292  * This will wait on any delayed iputs that are currently running with KILLABLE
3293  * set.  Once they are all done running we will return, unless we are killed in
3294  * which case we return EINTR. This helps in user operations like fallocate etc
3295  * that might get blocked on the iputs.
3296  */
3297 int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info)
3298 {
3299 	int ret = wait_event_killable(fs_info->delayed_iputs_wait,
3300 			atomic_read(&fs_info->nr_delayed_iputs) == 0);
3301 	if (ret)
3302 		return -EINTR;
3303 	return 0;
3304 }
3305 
3306 /*
3307  * This creates an orphan entry for the given inode in case something goes wrong
3308  * in the middle of an unlink.
3309  */
3310 int btrfs_orphan_add(struct btrfs_trans_handle *trans,
3311 		     struct btrfs_inode *inode)
3312 {
3313 	int ret;
3314 
3315 	ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode));
3316 	if (ret && ret != -EEXIST) {
3317 		btrfs_abort_transaction(trans, ret);
3318 		return ret;
3319 	}
3320 
3321 	return 0;
3322 }
3323 
3324 /*
3325  * We have done the delete so we can go ahead and remove the orphan item for
3326  * this particular inode.
3327  */
3328 static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3329 			    struct btrfs_inode *inode)
3330 {
3331 	return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode));
3332 }
3333 
3334 /*
3335  * this cleans up any orphans that may be left on the list from the last use
3336  * of this root.
3337  */
3338 int btrfs_orphan_cleanup(struct btrfs_root *root)
3339 {
3340 	struct btrfs_fs_info *fs_info = root->fs_info;
3341 	struct btrfs_path *path;
3342 	struct extent_buffer *leaf;
3343 	struct btrfs_key key, found_key;
3344 	struct btrfs_trans_handle *trans;
3345 	struct inode *inode;
3346 	u64 last_objectid = 0;
3347 	int ret = 0, nr_unlink = 0;
3348 
3349 	if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
3350 		return 0;
3351 
3352 	path = btrfs_alloc_path();
3353 	if (!path) {
3354 		ret = -ENOMEM;
3355 		goto out;
3356 	}
3357 	path->reada = READA_BACK;
3358 
3359 	key.objectid = BTRFS_ORPHAN_OBJECTID;
3360 	key.type = BTRFS_ORPHAN_ITEM_KEY;
3361 	key.offset = (u64)-1;
3362 
3363 	while (1) {
3364 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3365 		if (ret < 0)
3366 			goto out;
3367 
3368 		/*
3369 		 * if ret == 0 means we found what we were searching for, which
3370 		 * is weird, but possible, so only screw with path if we didn't
3371 		 * find the key and see if we have stuff that matches
3372 		 */
3373 		if (ret > 0) {
3374 			ret = 0;
3375 			if (path->slots[0] == 0)
3376 				break;
3377 			path->slots[0]--;
3378 		}
3379 
3380 		/* pull out the item */
3381 		leaf = path->nodes[0];
3382 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3383 
3384 		/* make sure the item matches what we want */
3385 		if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3386 			break;
3387 		if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
3388 			break;
3389 
3390 		/* release the path since we're done with it */
3391 		btrfs_release_path(path);
3392 
3393 		/*
3394 		 * this is where we are basically btrfs_lookup, without the
3395 		 * crossing root thing.  we store the inode number in the
3396 		 * offset of the orphan item.
3397 		 */
3398 
3399 		if (found_key.offset == last_objectid) {
3400 			btrfs_err(fs_info,
3401 				  "Error removing orphan entry, stopping orphan cleanup");
3402 			ret = -EINVAL;
3403 			goto out;
3404 		}
3405 
3406 		last_objectid = found_key.offset;
3407 
3408 		found_key.objectid = found_key.offset;
3409 		found_key.type = BTRFS_INODE_ITEM_KEY;
3410 		found_key.offset = 0;
3411 		inode = btrfs_iget(fs_info->sb, &found_key, root, NULL);
3412 		ret = PTR_ERR_OR_ZERO(inode);
3413 		if (ret && ret != -ENOENT)
3414 			goto out;
3415 
3416 		if (ret == -ENOENT && root == fs_info->tree_root) {
3417 			struct btrfs_root *dead_root;
3418 			struct btrfs_fs_info *fs_info = root->fs_info;
3419 			int is_dead_root = 0;
3420 
3421 			/*
3422 			 * this is an orphan in the tree root. Currently these
3423 			 * could come from 2 sources:
3424 			 *  a) a snapshot deletion in progress
3425 			 *  b) a free space cache inode
3426 			 * We need to distinguish those two, as the snapshot
3427 			 * orphan must not get deleted.
3428 			 * find_dead_roots already ran before us, so if this
3429 			 * is a snapshot deletion, we should find the root
3430 			 * in the dead_roots list
3431 			 */
3432 			spin_lock(&fs_info->trans_lock);
3433 			list_for_each_entry(dead_root, &fs_info->dead_roots,
3434 					    root_list) {
3435 				if (dead_root->root_key.objectid ==
3436 				    found_key.objectid) {
3437 					is_dead_root = 1;
3438 					break;
3439 				}
3440 			}
3441 			spin_unlock(&fs_info->trans_lock);
3442 			if (is_dead_root) {
3443 				/* prevent this orphan from being found again */
3444 				key.offset = found_key.objectid - 1;
3445 				continue;
3446 			}
3447 
3448 		}
3449 
3450 		/*
3451 		 * If we have an inode with links, there are a couple of
3452 		 * possibilities. Old kernels (before v3.12) used to create an
3453 		 * orphan item for truncate indicating that there were possibly
3454 		 * extent items past i_size that needed to be deleted. In v3.12,
3455 		 * truncate was changed to update i_size in sync with the extent
3456 		 * items, but the (useless) orphan item was still created. Since
3457 		 * v4.18, we don't create the orphan item for truncate at all.
3458 		 *
3459 		 * So, this item could mean that we need to do a truncate, but
3460 		 * only if this filesystem was last used on a pre-v3.12 kernel
3461 		 * and was not cleanly unmounted. The odds of that are quite
3462 		 * slim, and it's a pain to do the truncate now, so just delete
3463 		 * the orphan item.
3464 		 *
3465 		 * It's also possible that this orphan item was supposed to be
3466 		 * deleted but wasn't. The inode number may have been reused,
3467 		 * but either way, we can delete the orphan item.
3468 		 */
3469 		if (ret == -ENOENT || inode->i_nlink) {
3470 			if (!ret)
3471 				iput(inode);
3472 			trans = btrfs_start_transaction(root, 1);
3473 			if (IS_ERR(trans)) {
3474 				ret = PTR_ERR(trans);
3475 				goto out;
3476 			}
3477 			btrfs_debug(fs_info, "auto deleting %Lu",
3478 				    found_key.objectid);
3479 			ret = btrfs_del_orphan_item(trans, root,
3480 						    found_key.objectid);
3481 			btrfs_end_transaction(trans);
3482 			if (ret)
3483 				goto out;
3484 			continue;
3485 		}
3486 
3487 		nr_unlink++;
3488 
3489 		/* this will do delete_inode and everything for us */
3490 		iput(inode);
3491 	}
3492 	/* release the path since we're done with it */
3493 	btrfs_release_path(path);
3494 
3495 	root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3496 
3497 	if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
3498 		trans = btrfs_join_transaction(root);
3499 		if (!IS_ERR(trans))
3500 			btrfs_end_transaction(trans);
3501 	}
3502 
3503 	if (nr_unlink)
3504 		btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink);
3505 
3506 out:
3507 	if (ret)
3508 		btrfs_err(fs_info, "could not do orphan cleanup %d", ret);
3509 	btrfs_free_path(path);
3510 	return ret;
3511 }
3512 
3513 /*
3514  * very simple check to peek ahead in the leaf looking for xattrs.  If we
3515  * don't find any xattrs, we know there can't be any acls.
3516  *
3517  * slot is the slot the inode is in, objectid is the objectid of the inode
3518  */
3519 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
3520 					  int slot, u64 objectid,
3521 					  int *first_xattr_slot)
3522 {
3523 	u32 nritems = btrfs_header_nritems(leaf);
3524 	struct btrfs_key found_key;
3525 	static u64 xattr_access = 0;
3526 	static u64 xattr_default = 0;
3527 	int scanned = 0;
3528 
3529 	if (!xattr_access) {
3530 		xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
3531 					strlen(XATTR_NAME_POSIX_ACL_ACCESS));
3532 		xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
3533 					strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
3534 	}
3535 
3536 	slot++;
3537 	*first_xattr_slot = -1;
3538 	while (slot < nritems) {
3539 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3540 
3541 		/* we found a different objectid, there must not be acls */
3542 		if (found_key.objectid != objectid)
3543 			return 0;
3544 
3545 		/* we found an xattr, assume we've got an acl */
3546 		if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
3547 			if (*first_xattr_slot == -1)
3548 				*first_xattr_slot = slot;
3549 			if (found_key.offset == xattr_access ||
3550 			    found_key.offset == xattr_default)
3551 				return 1;
3552 		}
3553 
3554 		/*
3555 		 * we found a key greater than an xattr key, there can't
3556 		 * be any acls later on
3557 		 */
3558 		if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3559 			return 0;
3560 
3561 		slot++;
3562 		scanned++;
3563 
3564 		/*
3565 		 * it goes inode, inode backrefs, xattrs, extents,
3566 		 * so if there are a ton of hard links to an inode there can
3567 		 * be a lot of backrefs.  Don't waste time searching too hard,
3568 		 * this is just an optimization
3569 		 */
3570 		if (scanned >= 8)
3571 			break;
3572 	}
3573 	/* we hit the end of the leaf before we found an xattr or
3574 	 * something larger than an xattr.  We have to assume the inode
3575 	 * has acls
3576 	 */
3577 	if (*first_xattr_slot == -1)
3578 		*first_xattr_slot = slot;
3579 	return 1;
3580 }
3581 
3582 /*
3583  * read an inode from the btree into the in-memory inode
3584  */
3585 static int btrfs_read_locked_inode(struct inode *inode,
3586 				   struct btrfs_path *in_path)
3587 {
3588 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3589 	struct btrfs_path *path = in_path;
3590 	struct extent_buffer *leaf;
3591 	struct btrfs_inode_item *inode_item;
3592 	struct btrfs_root *root = BTRFS_I(inode)->root;
3593 	struct btrfs_key location;
3594 	unsigned long ptr;
3595 	int maybe_acls;
3596 	u32 rdev;
3597 	int ret;
3598 	bool filled = false;
3599 	int first_xattr_slot;
3600 
3601 	ret = btrfs_fill_inode(inode, &rdev);
3602 	if (!ret)
3603 		filled = true;
3604 
3605 	if (!path) {
3606 		path = btrfs_alloc_path();
3607 		if (!path)
3608 			return -ENOMEM;
3609 	}
3610 
3611 	memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
3612 
3613 	ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
3614 	if (ret) {
3615 		if (path != in_path)
3616 			btrfs_free_path(path);
3617 		return ret;
3618 	}
3619 
3620 	leaf = path->nodes[0];
3621 
3622 	if (filled)
3623 		goto cache_index;
3624 
3625 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
3626 				    struct btrfs_inode_item);
3627 	inode->i_mode = btrfs_inode_mode(leaf, inode_item);
3628 	set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
3629 	i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3630 	i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
3631 	btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item));
3632 
3633 	inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime);
3634 	inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime);
3635 
3636 	inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime);
3637 	inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime);
3638 
3639 	inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime);
3640 	inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime);
3641 
3642 	BTRFS_I(inode)->i_otime.tv_sec =
3643 		btrfs_timespec_sec(leaf, &inode_item->otime);
3644 	BTRFS_I(inode)->i_otime.tv_nsec =
3645 		btrfs_timespec_nsec(leaf, &inode_item->otime);
3646 
3647 	inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
3648 	BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
3649 	BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3650 
3651 	inode_set_iversion_queried(inode,
3652 				   btrfs_inode_sequence(leaf, inode_item));
3653 	inode->i_generation = BTRFS_I(inode)->generation;
3654 	inode->i_rdev = 0;
3655 	rdev = btrfs_inode_rdev(leaf, inode_item);
3656 
3657 	BTRFS_I(inode)->index_cnt = (u64)-1;
3658 	BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
3659 
3660 cache_index:
3661 	/*
3662 	 * If we were modified in the current generation and evicted from memory
3663 	 * and then re-read we need to do a full sync since we don't have any
3664 	 * idea about which extents were modified before we were evicted from
3665 	 * cache.
3666 	 *
3667 	 * This is required for both inode re-read from disk and delayed inode
3668 	 * in delayed_nodes_tree.
3669 	 */
3670 	if (BTRFS_I(inode)->last_trans == fs_info->generation)
3671 		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3672 			&BTRFS_I(inode)->runtime_flags);
3673 
3674 	/*
3675 	 * We don't persist the id of the transaction where an unlink operation
3676 	 * against the inode was last made. So here we assume the inode might
3677 	 * have been evicted, and therefore the exact value of last_unlink_trans
3678 	 * lost, and set it to last_trans to avoid metadata inconsistencies
3679 	 * between the inode and its parent if the inode is fsync'ed and the log
3680 	 * replayed. For example, in the scenario:
3681 	 *
3682 	 * touch mydir/foo
3683 	 * ln mydir/foo mydir/bar
3684 	 * sync
3685 	 * unlink mydir/bar
3686 	 * echo 2 > /proc/sys/vm/drop_caches   # evicts inode
3687 	 * xfs_io -c fsync mydir/foo
3688 	 * <power failure>
3689 	 * mount fs, triggers fsync log replay
3690 	 *
3691 	 * We must make sure that when we fsync our inode foo we also log its
3692 	 * parent inode, otherwise after log replay the parent still has the
3693 	 * dentry with the "bar" name but our inode foo has a link count of 1
3694 	 * and doesn't have an inode ref with the name "bar" anymore.
3695 	 *
3696 	 * Setting last_unlink_trans to last_trans is a pessimistic approach,
3697 	 * but it guarantees correctness at the expense of occasional full
3698 	 * transaction commits on fsync if our inode is a directory, or if our
3699 	 * inode is not a directory, logging its parent unnecessarily.
3700 	 */
3701 	BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
3702 	/*
3703 	 * Similar reasoning for last_link_trans, needs to be set otherwise
3704 	 * for a case like the following:
3705 	 *
3706 	 * mkdir A
3707 	 * touch foo
3708 	 * ln foo A/bar
3709 	 * echo 2 > /proc/sys/vm/drop_caches
3710 	 * fsync foo
3711 	 * <power failure>
3712 	 *
3713 	 * Would result in link bar and directory A not existing after the power
3714 	 * failure.
3715 	 */
3716 	BTRFS_I(inode)->last_link_trans = BTRFS_I(inode)->last_trans;
3717 
3718 	path->slots[0]++;
3719 	if (inode->i_nlink != 1 ||
3720 	    path->slots[0] >= btrfs_header_nritems(leaf))
3721 		goto cache_acl;
3722 
3723 	btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
3724 	if (location.objectid != btrfs_ino(BTRFS_I(inode)))
3725 		goto cache_acl;
3726 
3727 	ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3728 	if (location.type == BTRFS_INODE_REF_KEY) {
3729 		struct btrfs_inode_ref *ref;
3730 
3731 		ref = (struct btrfs_inode_ref *)ptr;
3732 		BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3733 	} else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3734 		struct btrfs_inode_extref *extref;
3735 
3736 		extref = (struct btrfs_inode_extref *)ptr;
3737 		BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3738 								     extref);
3739 	}
3740 cache_acl:
3741 	/*
3742 	 * try to precache a NULL acl entry for files that don't have
3743 	 * any xattrs or acls
3744 	 */
3745 	maybe_acls = acls_after_inode_item(leaf, path->slots[0],
3746 			btrfs_ino(BTRFS_I(inode)), &first_xattr_slot);
3747 	if (first_xattr_slot != -1) {
3748 		path->slots[0] = first_xattr_slot;
3749 		ret = btrfs_load_inode_props(inode, path);
3750 		if (ret)
3751 			btrfs_err(fs_info,
3752 				  "error loading props for ino %llu (root %llu): %d",
3753 				  btrfs_ino(BTRFS_I(inode)),
3754 				  root->root_key.objectid, ret);
3755 	}
3756 	if (path != in_path)
3757 		btrfs_free_path(path);
3758 
3759 	if (!maybe_acls)
3760 		cache_no_acl(inode);
3761 
3762 	switch (inode->i_mode & S_IFMT) {
3763 	case S_IFREG:
3764 		inode->i_mapping->a_ops = &btrfs_aops;
3765 		BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
3766 		inode->i_fop = &btrfs_file_operations;
3767 		inode->i_op = &btrfs_file_inode_operations;
3768 		break;
3769 	case S_IFDIR:
3770 		inode->i_fop = &btrfs_dir_file_operations;
3771 		inode->i_op = &btrfs_dir_inode_operations;
3772 		break;
3773 	case S_IFLNK:
3774 		inode->i_op = &btrfs_symlink_inode_operations;
3775 		inode_nohighmem(inode);
3776 		inode->i_mapping->a_ops = &btrfs_aops;
3777 		break;
3778 	default:
3779 		inode->i_op = &btrfs_special_inode_operations;
3780 		init_special_inode(inode, inode->i_mode, rdev);
3781 		break;
3782 	}
3783 
3784 	btrfs_sync_inode_flags_to_i_flags(inode);
3785 	return 0;
3786 }
3787 
3788 /*
3789  * given a leaf and an inode, copy the inode fields into the leaf
3790  */
3791 static void fill_inode_item(struct btrfs_trans_handle *trans,
3792 			    struct extent_buffer *leaf,
3793 			    struct btrfs_inode_item *item,
3794 			    struct inode *inode)
3795 {
3796 	struct btrfs_map_token token;
3797 
3798 	btrfs_init_map_token(&token);
3799 
3800 	btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3801 	btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3802 	btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size,
3803 				   &token);
3804 	btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3805 	btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3806 
3807 	btrfs_set_token_timespec_sec(leaf, &item->atime,
3808 				     inode->i_atime.tv_sec, &token);
3809 	btrfs_set_token_timespec_nsec(leaf, &item->atime,
3810 				      inode->i_atime.tv_nsec, &token);
3811 
3812 	btrfs_set_token_timespec_sec(leaf, &item->mtime,
3813 				     inode->i_mtime.tv_sec, &token);
3814 	btrfs_set_token_timespec_nsec(leaf, &item->mtime,
3815 				      inode->i_mtime.tv_nsec, &token);
3816 
3817 	btrfs_set_token_timespec_sec(leaf, &item->ctime,
3818 				     inode->i_ctime.tv_sec, &token);
3819 	btrfs_set_token_timespec_nsec(leaf, &item->ctime,
3820 				      inode->i_ctime.tv_nsec, &token);
3821 
3822 	btrfs_set_token_timespec_sec(leaf, &item->otime,
3823 				     BTRFS_I(inode)->i_otime.tv_sec, &token);
3824 	btrfs_set_token_timespec_nsec(leaf, &item->otime,
3825 				      BTRFS_I(inode)->i_otime.tv_nsec, &token);
3826 
3827 	btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3828 				     &token);
3829 	btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation,
3830 					 &token);
3831 	btrfs_set_token_inode_sequence(leaf, item, inode_peek_iversion(inode),
3832 				       &token);
3833 	btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3834 	btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3835 	btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3836 	btrfs_set_token_inode_block_group(leaf, item, 0, &token);
3837 }
3838 
3839 /*
3840  * copy everything in the in-memory inode into the btree.
3841  */
3842 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
3843 				struct btrfs_root *root, struct inode *inode)
3844 {
3845 	struct btrfs_inode_item *inode_item;
3846 	struct btrfs_path *path;
3847 	struct extent_buffer *leaf;
3848 	int ret;
3849 
3850 	path = btrfs_alloc_path();
3851 	if (!path)
3852 		return -ENOMEM;
3853 
3854 	path->leave_spinning = 1;
3855 	ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
3856 				 1);
3857 	if (ret) {
3858 		if (ret > 0)
3859 			ret = -ENOENT;
3860 		goto failed;
3861 	}
3862 
3863 	leaf = path->nodes[0];
3864 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
3865 				    struct btrfs_inode_item);
3866 
3867 	fill_inode_item(trans, leaf, inode_item, inode);
3868 	btrfs_mark_buffer_dirty(leaf);
3869 	btrfs_set_inode_last_trans(trans, inode);
3870 	ret = 0;
3871 failed:
3872 	btrfs_free_path(path);
3873 	return ret;
3874 }
3875 
3876 /*
3877  * copy everything in the in-memory inode into the btree.
3878  */
3879 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
3880 				struct btrfs_root *root, struct inode *inode)
3881 {
3882 	struct btrfs_fs_info *fs_info = root->fs_info;
3883 	int ret;
3884 
3885 	/*
3886 	 * If the inode is a free space inode, we can deadlock during commit
3887 	 * if we put it into the delayed code.
3888 	 *
3889 	 * The data relocation inode should also be directly updated
3890 	 * without delay
3891 	 */
3892 	if (!btrfs_is_free_space_inode(BTRFS_I(inode))
3893 	    && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
3894 	    && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
3895 		btrfs_update_root_times(trans, root);
3896 
3897 		ret = btrfs_delayed_update_inode(trans, root, inode);
3898 		if (!ret)
3899 			btrfs_set_inode_last_trans(trans, inode);
3900 		return ret;
3901 	}
3902 
3903 	return btrfs_update_inode_item(trans, root, inode);
3904 }
3905 
3906 noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3907 					 struct btrfs_root *root,
3908 					 struct inode *inode)
3909 {
3910 	int ret;
3911 
3912 	ret = btrfs_update_inode(trans, root, inode);
3913 	if (ret == -ENOSPC)
3914 		return btrfs_update_inode_item(trans, root, inode);
3915 	return ret;
3916 }
3917 
3918 /*
3919  * unlink helper that gets used here in inode.c and in the tree logging
3920  * recovery code.  It remove a link in a directory with a given name, and
3921  * also drops the back refs in the inode to the directory
3922  */
3923 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3924 				struct btrfs_root *root,
3925 				struct btrfs_inode *dir,
3926 				struct btrfs_inode *inode,
3927 				const char *name, int name_len)
3928 {
3929 	struct btrfs_fs_info *fs_info = root->fs_info;
3930 	struct btrfs_path *path;
3931 	int ret = 0;
3932 	struct extent_buffer *leaf;
3933 	struct btrfs_dir_item *di;
3934 	struct btrfs_key key;
3935 	u64 index;
3936 	u64 ino = btrfs_ino(inode);
3937 	u64 dir_ino = btrfs_ino(dir);
3938 
3939 	path = btrfs_alloc_path();
3940 	if (!path) {
3941 		ret = -ENOMEM;
3942 		goto out;
3943 	}
3944 
3945 	path->leave_spinning = 1;
3946 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
3947 				    name, name_len, -1);
3948 	if (IS_ERR_OR_NULL(di)) {
3949 		ret = di ? PTR_ERR(di) : -ENOENT;
3950 		goto err;
3951 	}
3952 	leaf = path->nodes[0];
3953 	btrfs_dir_item_key_to_cpu(leaf, di, &key);
3954 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
3955 	if (ret)
3956 		goto err;
3957 	btrfs_release_path(path);
3958 
3959 	/*
3960 	 * If we don't have dir index, we have to get it by looking up
3961 	 * the inode ref, since we get the inode ref, remove it directly,
3962 	 * it is unnecessary to do delayed deletion.
3963 	 *
3964 	 * But if we have dir index, needn't search inode ref to get it.
3965 	 * Since the inode ref is close to the inode item, it is better
3966 	 * that we delay to delete it, and just do this deletion when
3967 	 * we update the inode item.
3968 	 */
3969 	if (inode->dir_index) {
3970 		ret = btrfs_delayed_delete_inode_ref(inode);
3971 		if (!ret) {
3972 			index = inode->dir_index;
3973 			goto skip_backref;
3974 		}
3975 	}
3976 
3977 	ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
3978 				  dir_ino, &index);
3979 	if (ret) {
3980 		btrfs_info(fs_info,
3981 			"failed to delete reference to %.*s, inode %llu parent %llu",
3982 			name_len, name, ino, dir_ino);
3983 		btrfs_abort_transaction(trans, ret);
3984 		goto err;
3985 	}
3986 skip_backref:
3987 	ret = btrfs_delete_delayed_dir_index(trans, dir, index);
3988 	if (ret) {
3989 		btrfs_abort_transaction(trans, ret);
3990 		goto err;
3991 	}
3992 
3993 	ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, inode,
3994 			dir_ino);
3995 	if (ret != 0 && ret != -ENOENT) {
3996 		btrfs_abort_transaction(trans, ret);
3997 		goto err;
3998 	}
3999 
4000 	ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, dir,
4001 			index);
4002 	if (ret == -ENOENT)
4003 		ret = 0;
4004 	else if (ret)
4005 		btrfs_abort_transaction(trans, ret);
4006 err:
4007 	btrfs_free_path(path);
4008 	if (ret)
4009 		goto out;
4010 
4011 	btrfs_i_size_write(dir, dir->vfs_inode.i_size - name_len * 2);
4012 	inode_inc_iversion(&inode->vfs_inode);
4013 	inode_inc_iversion(&dir->vfs_inode);
4014 	inode->vfs_inode.i_ctime = dir->vfs_inode.i_mtime =
4015 		dir->vfs_inode.i_ctime = current_time(&inode->vfs_inode);
4016 	ret = btrfs_update_inode(trans, root, &dir->vfs_inode);
4017 out:
4018 	return ret;
4019 }
4020 
4021 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4022 		       struct btrfs_root *root,
4023 		       struct btrfs_inode *dir, struct btrfs_inode *inode,
4024 		       const char *name, int name_len)
4025 {
4026 	int ret;
4027 	ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
4028 	if (!ret) {
4029 		drop_nlink(&inode->vfs_inode);
4030 		ret = btrfs_update_inode(trans, root, &inode->vfs_inode);
4031 	}
4032 	return ret;
4033 }
4034 
4035 /*
4036  * helper to start transaction for unlink and rmdir.
4037  *
4038  * unlink and rmdir are special in btrfs, they do not always free space, so
4039  * if we cannot make our reservations the normal way try and see if there is
4040  * plenty of slack room in the global reserve to migrate, otherwise we cannot
4041  * allow the unlink to occur.
4042  */
4043 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
4044 {
4045 	struct btrfs_root *root = BTRFS_I(dir)->root;
4046 
4047 	/*
4048 	 * 1 for the possible orphan item
4049 	 * 1 for the dir item
4050 	 * 1 for the dir index
4051 	 * 1 for the inode ref
4052 	 * 1 for the inode
4053 	 */
4054 	return btrfs_start_transaction_fallback_global_rsv(root, 5, 5);
4055 }
4056 
4057 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4058 {
4059 	struct btrfs_root *root = BTRFS_I(dir)->root;
4060 	struct btrfs_trans_handle *trans;
4061 	struct inode *inode = d_inode(dentry);
4062 	int ret;
4063 
4064 	trans = __unlink_start_trans(dir);
4065 	if (IS_ERR(trans))
4066 		return PTR_ERR(trans);
4067 
4068 	btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4069 			0);
4070 
4071 	ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
4072 			BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4073 			dentry->d_name.len);
4074 	if (ret)
4075 		goto out;
4076 
4077 	if (inode->i_nlink == 0) {
4078 		ret = btrfs_orphan_add(trans, BTRFS_I(inode));
4079 		if (ret)
4080 			goto out;
4081 	}
4082 
4083 out:
4084 	btrfs_end_transaction(trans);
4085 	btrfs_btree_balance_dirty(root->fs_info);
4086 	return ret;
4087 }
4088 
4089 static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
4090 			       struct inode *dir, u64 objectid,
4091 			       const char *name, int name_len)
4092 {
4093 	struct btrfs_root *root = BTRFS_I(dir)->root;
4094 	struct btrfs_path *path;
4095 	struct extent_buffer *leaf;
4096 	struct btrfs_dir_item *di;
4097 	struct btrfs_key key;
4098 	u64 index;
4099 	int ret;
4100 	u64 dir_ino = btrfs_ino(BTRFS_I(dir));
4101 
4102 	path = btrfs_alloc_path();
4103 	if (!path)
4104 		return -ENOMEM;
4105 
4106 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4107 				   name, name_len, -1);
4108 	if (IS_ERR_OR_NULL(di)) {
4109 		ret = di ? PTR_ERR(di) : -ENOENT;
4110 		goto out;
4111 	}
4112 
4113 	leaf = path->nodes[0];
4114 	btrfs_dir_item_key_to_cpu(leaf, di, &key);
4115 	WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4116 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
4117 	if (ret) {
4118 		btrfs_abort_transaction(trans, ret);
4119 		goto out;
4120 	}
4121 	btrfs_release_path(path);
4122 
4123 	ret = btrfs_del_root_ref(trans, objectid, root->root_key.objectid,
4124 				 dir_ino, &index, name, name_len);
4125 	if (ret < 0) {
4126 		if (ret != -ENOENT) {
4127 			btrfs_abort_transaction(trans, ret);
4128 			goto out;
4129 		}
4130 		di = btrfs_search_dir_index_item(root, path, dir_ino,
4131 						 name, name_len);
4132 		if (IS_ERR_OR_NULL(di)) {
4133 			if (!di)
4134 				ret = -ENOENT;
4135 			else
4136 				ret = PTR_ERR(di);
4137 			btrfs_abort_transaction(trans, ret);
4138 			goto out;
4139 		}
4140 
4141 		leaf = path->nodes[0];
4142 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4143 		index = key.offset;
4144 	}
4145 	btrfs_release_path(path);
4146 
4147 	ret = btrfs_delete_delayed_dir_index(trans, BTRFS_I(dir), index);
4148 	if (ret) {
4149 		btrfs_abort_transaction(trans, ret);
4150 		goto out;
4151 	}
4152 
4153 	btrfs_i_size_write(BTRFS_I(dir), dir->i_size - name_len * 2);
4154 	inode_inc_iversion(dir);
4155 	dir->i_mtime = dir->i_ctime = current_time(dir);
4156 	ret = btrfs_update_inode_fallback(trans, root, dir);
4157 	if (ret)
4158 		btrfs_abort_transaction(trans, ret);
4159 out:
4160 	btrfs_free_path(path);
4161 	return ret;
4162 }
4163 
4164 /*
4165  * Helper to check if the subvolume references other subvolumes or if it's
4166  * default.
4167  */
4168 static noinline int may_destroy_subvol(struct btrfs_root *root)
4169 {
4170 	struct btrfs_fs_info *fs_info = root->fs_info;
4171 	struct btrfs_path *path;
4172 	struct btrfs_dir_item *di;
4173 	struct btrfs_key key;
4174 	u64 dir_id;
4175 	int ret;
4176 
4177 	path = btrfs_alloc_path();
4178 	if (!path)
4179 		return -ENOMEM;
4180 
4181 	/* Make sure this root isn't set as the default subvol */
4182 	dir_id = btrfs_super_root_dir(fs_info->super_copy);
4183 	di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path,
4184 				   dir_id, "default", 7, 0);
4185 	if (di && !IS_ERR(di)) {
4186 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
4187 		if (key.objectid == root->root_key.objectid) {
4188 			ret = -EPERM;
4189 			btrfs_err(fs_info,
4190 				  "deleting default subvolume %llu is not allowed",
4191 				  key.objectid);
4192 			goto out;
4193 		}
4194 		btrfs_release_path(path);
4195 	}
4196 
4197 	key.objectid = root->root_key.objectid;
4198 	key.type = BTRFS_ROOT_REF_KEY;
4199 	key.offset = (u64)-1;
4200 
4201 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4202 	if (ret < 0)
4203 		goto out;
4204 	BUG_ON(ret == 0);
4205 
4206 	ret = 0;
4207 	if (path->slots[0] > 0) {
4208 		path->slots[0]--;
4209 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
4210 		if (key.objectid == root->root_key.objectid &&
4211 		    key.type == BTRFS_ROOT_REF_KEY)
4212 			ret = -ENOTEMPTY;
4213 	}
4214 out:
4215 	btrfs_free_path(path);
4216 	return ret;
4217 }
4218 
4219 /* Delete all dentries for inodes belonging to the root */
4220 static void btrfs_prune_dentries(struct btrfs_root *root)
4221 {
4222 	struct btrfs_fs_info *fs_info = root->fs_info;
4223 	struct rb_node *node;
4224 	struct rb_node *prev;
4225 	struct btrfs_inode *entry;
4226 	struct inode *inode;
4227 	u64 objectid = 0;
4228 
4229 	if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
4230 		WARN_ON(btrfs_root_refs(&root->root_item) != 0);
4231 
4232 	spin_lock(&root->inode_lock);
4233 again:
4234 	node = root->inode_tree.rb_node;
4235 	prev = NULL;
4236 	while (node) {
4237 		prev = node;
4238 		entry = rb_entry(node, struct btrfs_inode, rb_node);
4239 
4240 		if (objectid < btrfs_ino(entry))
4241 			node = node->rb_left;
4242 		else if (objectid > btrfs_ino(entry))
4243 			node = node->rb_right;
4244 		else
4245 			break;
4246 	}
4247 	if (!node) {
4248 		while (prev) {
4249 			entry = rb_entry(prev, struct btrfs_inode, rb_node);
4250 			if (objectid <= btrfs_ino(entry)) {
4251 				node = prev;
4252 				break;
4253 			}
4254 			prev = rb_next(prev);
4255 		}
4256 	}
4257 	while (node) {
4258 		entry = rb_entry(node, struct btrfs_inode, rb_node);
4259 		objectid = btrfs_ino(entry) + 1;
4260 		inode = igrab(&entry->vfs_inode);
4261 		if (inode) {
4262 			spin_unlock(&root->inode_lock);
4263 			if (atomic_read(&inode->i_count) > 1)
4264 				d_prune_aliases(inode);
4265 			/*
4266 			 * btrfs_drop_inode will have it removed from the inode
4267 			 * cache when its usage count hits zero.
4268 			 */
4269 			iput(inode);
4270 			cond_resched();
4271 			spin_lock(&root->inode_lock);
4272 			goto again;
4273 		}
4274 
4275 		if (cond_resched_lock(&root->inode_lock))
4276 			goto again;
4277 
4278 		node = rb_next(node);
4279 	}
4280 	spin_unlock(&root->inode_lock);
4281 }
4282 
4283 int btrfs_delete_subvolume(struct inode *dir, struct dentry *dentry)
4284 {
4285 	struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
4286 	struct btrfs_root *root = BTRFS_I(dir)->root;
4287 	struct inode *inode = d_inode(dentry);
4288 	struct btrfs_root *dest = BTRFS_I(inode)->root;
4289 	struct btrfs_trans_handle *trans;
4290 	struct btrfs_block_rsv block_rsv;
4291 	u64 root_flags;
4292 	int ret;
4293 	int err;
4294 
4295 	/*
4296 	 * Don't allow to delete a subvolume with send in progress. This is
4297 	 * inside the inode lock so the error handling that has to drop the bit
4298 	 * again is not run concurrently.
4299 	 */
4300 	spin_lock(&dest->root_item_lock);
4301 	if (dest->send_in_progress) {
4302 		spin_unlock(&dest->root_item_lock);
4303 		btrfs_warn(fs_info,
4304 			   "attempt to delete subvolume %llu during send",
4305 			   dest->root_key.objectid);
4306 		return -EPERM;
4307 	}
4308 	root_flags = btrfs_root_flags(&dest->root_item);
4309 	btrfs_set_root_flags(&dest->root_item,
4310 			     root_flags | BTRFS_ROOT_SUBVOL_DEAD);
4311 	spin_unlock(&dest->root_item_lock);
4312 
4313 	down_write(&fs_info->subvol_sem);
4314 
4315 	err = may_destroy_subvol(dest);
4316 	if (err)
4317 		goto out_up_write;
4318 
4319 	btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
4320 	/*
4321 	 * One for dir inode,
4322 	 * two for dir entries,
4323 	 * two for root ref/backref.
4324 	 */
4325 	err = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true);
4326 	if (err)
4327 		goto out_up_write;
4328 
4329 	trans = btrfs_start_transaction(root, 0);
4330 	if (IS_ERR(trans)) {
4331 		err = PTR_ERR(trans);
4332 		goto out_release;
4333 	}
4334 	trans->block_rsv = &block_rsv;
4335 	trans->bytes_reserved = block_rsv.size;
4336 
4337 	btrfs_record_snapshot_destroy(trans, BTRFS_I(dir));
4338 
4339 	ret = btrfs_unlink_subvol(trans, dir, dest->root_key.objectid,
4340 				  dentry->d_name.name, dentry->d_name.len);
4341 	if (ret) {
4342 		err = ret;
4343 		btrfs_abort_transaction(trans, ret);
4344 		goto out_end_trans;
4345 	}
4346 
4347 	btrfs_record_root_in_trans(trans, dest);
4348 
4349 	memset(&dest->root_item.drop_progress, 0,
4350 		sizeof(dest->root_item.drop_progress));
4351 	dest->root_item.drop_level = 0;
4352 	btrfs_set_root_refs(&dest->root_item, 0);
4353 
4354 	if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) {
4355 		ret = btrfs_insert_orphan_item(trans,
4356 					fs_info->tree_root,
4357 					dest->root_key.objectid);
4358 		if (ret) {
4359 			btrfs_abort_transaction(trans, ret);
4360 			err = ret;
4361 			goto out_end_trans;
4362 		}
4363 	}
4364 
4365 	ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid,
4366 				  BTRFS_UUID_KEY_SUBVOL,
4367 				  dest->root_key.objectid);
4368 	if (ret && ret != -ENOENT) {
4369 		btrfs_abort_transaction(trans, ret);
4370 		err = ret;
4371 		goto out_end_trans;
4372 	}
4373 	if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) {
4374 		ret = btrfs_uuid_tree_remove(trans,
4375 					  dest->root_item.received_uuid,
4376 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4377 					  dest->root_key.objectid);
4378 		if (ret && ret != -ENOENT) {
4379 			btrfs_abort_transaction(trans, ret);
4380 			err = ret;
4381 			goto out_end_trans;
4382 		}
4383 	}
4384 
4385 out_end_trans:
4386 	trans->block_rsv = NULL;
4387 	trans->bytes_reserved = 0;
4388 	ret = btrfs_end_transaction(trans);
4389 	if (ret && !err)
4390 		err = ret;
4391 	inode->i_flags |= S_DEAD;
4392 out_release:
4393 	btrfs_subvolume_release_metadata(fs_info, &block_rsv);
4394 out_up_write:
4395 	up_write(&fs_info->subvol_sem);
4396 	if (err) {
4397 		spin_lock(&dest->root_item_lock);
4398 		root_flags = btrfs_root_flags(&dest->root_item);
4399 		btrfs_set_root_flags(&dest->root_item,
4400 				root_flags & ~BTRFS_ROOT_SUBVOL_DEAD);
4401 		spin_unlock(&dest->root_item_lock);
4402 	} else {
4403 		d_invalidate(dentry);
4404 		btrfs_prune_dentries(dest);
4405 		ASSERT(dest->send_in_progress == 0);
4406 
4407 		/* the last ref */
4408 		if (dest->ino_cache_inode) {
4409 			iput(dest->ino_cache_inode);
4410 			dest->ino_cache_inode = NULL;
4411 		}
4412 	}
4413 
4414 	return err;
4415 }
4416 
4417 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4418 {
4419 	struct inode *inode = d_inode(dentry);
4420 	int err = 0;
4421 	struct btrfs_root *root = BTRFS_I(dir)->root;
4422 	struct btrfs_trans_handle *trans;
4423 	u64 last_unlink_trans;
4424 
4425 	if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
4426 		return -ENOTEMPTY;
4427 	if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID)
4428 		return btrfs_delete_subvolume(dir, dentry);
4429 
4430 	trans = __unlink_start_trans(dir);
4431 	if (IS_ERR(trans))
4432 		return PTR_ERR(trans);
4433 
4434 	if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4435 		err = btrfs_unlink_subvol(trans, dir,
4436 					  BTRFS_I(inode)->location.objectid,
4437 					  dentry->d_name.name,
4438 					  dentry->d_name.len);
4439 		goto out;
4440 	}
4441 
4442 	err = btrfs_orphan_add(trans, BTRFS_I(inode));
4443 	if (err)
4444 		goto out;
4445 
4446 	last_unlink_trans = BTRFS_I(inode)->last_unlink_trans;
4447 
4448 	/* now the directory is empty */
4449 	err = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
4450 			BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4451 			dentry->d_name.len);
4452 	if (!err) {
4453 		btrfs_i_size_write(BTRFS_I(inode), 0);
4454 		/*
4455 		 * Propagate the last_unlink_trans value of the deleted dir to
4456 		 * its parent directory. This is to prevent an unrecoverable
4457 		 * log tree in the case we do something like this:
4458 		 * 1) create dir foo
4459 		 * 2) create snapshot under dir foo
4460 		 * 3) delete the snapshot
4461 		 * 4) rmdir foo
4462 		 * 5) mkdir foo
4463 		 * 6) fsync foo or some file inside foo
4464 		 */
4465 		if (last_unlink_trans >= trans->transid)
4466 			BTRFS_I(dir)->last_unlink_trans = last_unlink_trans;
4467 	}
4468 out:
4469 	btrfs_end_transaction(trans);
4470 	btrfs_btree_balance_dirty(root->fs_info);
4471 
4472 	return err;
4473 }
4474 
4475 /*
4476  * Return this if we need to call truncate_block for the last bit of the
4477  * truncate.
4478  */
4479 #define NEED_TRUNCATE_BLOCK 1
4480 
4481 /*
4482  * this can truncate away extent items, csum items and directory items.
4483  * It starts at a high offset and removes keys until it can't find
4484  * any higher than new_size
4485  *
4486  * csum items that cross the new i_size are truncated to the new size
4487  * as well.
4488  *
4489  * min_type is the minimum key type to truncate down to.  If set to 0, this
4490  * will kill all the items on this inode, including the INODE_ITEM_KEY.
4491  */
4492 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
4493 			       struct btrfs_root *root,
4494 			       struct inode *inode,
4495 			       u64 new_size, u32 min_type)
4496 {
4497 	struct btrfs_fs_info *fs_info = root->fs_info;
4498 	struct btrfs_path *path;
4499 	struct extent_buffer *leaf;
4500 	struct btrfs_file_extent_item *fi;
4501 	struct btrfs_key key;
4502 	struct btrfs_key found_key;
4503 	u64 extent_start = 0;
4504 	u64 extent_num_bytes = 0;
4505 	u64 extent_offset = 0;
4506 	u64 item_end = 0;
4507 	u64 last_size = new_size;
4508 	u32 found_type = (u8)-1;
4509 	int found_extent;
4510 	int del_item;
4511 	int pending_del_nr = 0;
4512 	int pending_del_slot = 0;
4513 	int extent_type = -1;
4514 	int ret;
4515 	u64 ino = btrfs_ino(BTRFS_I(inode));
4516 	u64 bytes_deleted = 0;
4517 	bool be_nice = false;
4518 	bool should_throttle = false;
4519 
4520 	BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
4521 
4522 	/*
4523 	 * for non-free space inodes and ref cows, we want to back off from
4524 	 * time to time
4525 	 */
4526 	if (!btrfs_is_free_space_inode(BTRFS_I(inode)) &&
4527 	    test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4528 		be_nice = true;
4529 
4530 	path = btrfs_alloc_path();
4531 	if (!path)
4532 		return -ENOMEM;
4533 	path->reada = READA_BACK;
4534 
4535 	/*
4536 	 * We want to drop from the next block forward in case this new size is
4537 	 * not block aligned since we will be keeping the last block of the
4538 	 * extent just the way it is.
4539 	 */
4540 	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4541 	    root == fs_info->tree_root)
4542 		btrfs_drop_extent_cache(BTRFS_I(inode), ALIGN(new_size,
4543 					fs_info->sectorsize),
4544 					(u64)-1, 0);
4545 
4546 	/*
4547 	 * This function is also used to drop the items in the log tree before
4548 	 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
4549 	 * it is used to drop the logged items. So we shouldn't kill the delayed
4550 	 * items.
4551 	 */
4552 	if (min_type == 0 && root == BTRFS_I(inode)->root)
4553 		btrfs_kill_delayed_inode_items(BTRFS_I(inode));
4554 
4555 	key.objectid = ino;
4556 	key.offset = (u64)-1;
4557 	key.type = (u8)-1;
4558 
4559 search_again:
4560 	/*
4561 	 * with a 16K leaf size and 128MB extents, you can actually queue
4562 	 * up a huge file in a single leaf.  Most of the time that
4563 	 * bytes_deleted is > 0, it will be huge by the time we get here
4564 	 */
4565 	if (be_nice && bytes_deleted > SZ_32M &&
4566 	    btrfs_should_end_transaction(trans)) {
4567 		ret = -EAGAIN;
4568 		goto out;
4569 	}
4570 
4571 	path->leave_spinning = 1;
4572 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
4573 	if (ret < 0)
4574 		goto out;
4575 
4576 	if (ret > 0) {
4577 		ret = 0;
4578 		/* there are no items in the tree for us to truncate, we're
4579 		 * done
4580 		 */
4581 		if (path->slots[0] == 0)
4582 			goto out;
4583 		path->slots[0]--;
4584 	}
4585 
4586 	while (1) {
4587 		fi = NULL;
4588 		leaf = path->nodes[0];
4589 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4590 		found_type = found_key.type;
4591 
4592 		if (found_key.objectid != ino)
4593 			break;
4594 
4595 		if (found_type < min_type)
4596 			break;
4597 
4598 		item_end = found_key.offset;
4599 		if (found_type == BTRFS_EXTENT_DATA_KEY) {
4600 			fi = btrfs_item_ptr(leaf, path->slots[0],
4601 					    struct btrfs_file_extent_item);
4602 			extent_type = btrfs_file_extent_type(leaf, fi);
4603 			if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4604 				item_end +=
4605 				    btrfs_file_extent_num_bytes(leaf, fi);
4606 
4607 				trace_btrfs_truncate_show_fi_regular(
4608 					BTRFS_I(inode), leaf, fi,
4609 					found_key.offset);
4610 			} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4611 				item_end += btrfs_file_extent_ram_bytes(leaf,
4612 									fi);
4613 
4614 				trace_btrfs_truncate_show_fi_inline(
4615 					BTRFS_I(inode), leaf, fi, path->slots[0],
4616 					found_key.offset);
4617 			}
4618 			item_end--;
4619 		}
4620 		if (found_type > min_type) {
4621 			del_item = 1;
4622 		} else {
4623 			if (item_end < new_size)
4624 				break;
4625 			if (found_key.offset >= new_size)
4626 				del_item = 1;
4627 			else
4628 				del_item = 0;
4629 		}
4630 		found_extent = 0;
4631 		/* FIXME, shrink the extent if the ref count is only 1 */
4632 		if (found_type != BTRFS_EXTENT_DATA_KEY)
4633 			goto delete;
4634 
4635 		if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4636 			u64 num_dec;
4637 			extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
4638 			if (!del_item) {
4639 				u64 orig_num_bytes =
4640 					btrfs_file_extent_num_bytes(leaf, fi);
4641 				extent_num_bytes = ALIGN(new_size -
4642 						found_key.offset,
4643 						fs_info->sectorsize);
4644 				btrfs_set_file_extent_num_bytes(leaf, fi,
4645 							 extent_num_bytes);
4646 				num_dec = (orig_num_bytes -
4647 					   extent_num_bytes);
4648 				if (test_bit(BTRFS_ROOT_REF_COWS,
4649 					     &root->state) &&
4650 				    extent_start != 0)
4651 					inode_sub_bytes(inode, num_dec);
4652 				btrfs_mark_buffer_dirty(leaf);
4653 			} else {
4654 				extent_num_bytes =
4655 					btrfs_file_extent_disk_num_bytes(leaf,
4656 									 fi);
4657 				extent_offset = found_key.offset -
4658 					btrfs_file_extent_offset(leaf, fi);
4659 
4660 				/* FIXME blocksize != 4096 */
4661 				num_dec = btrfs_file_extent_num_bytes(leaf, fi);
4662 				if (extent_start != 0) {
4663 					found_extent = 1;
4664 					if (test_bit(BTRFS_ROOT_REF_COWS,
4665 						     &root->state))
4666 						inode_sub_bytes(inode, num_dec);
4667 				}
4668 			}
4669 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4670 			/*
4671 			 * we can't truncate inline items that have had
4672 			 * special encodings
4673 			 */
4674 			if (!del_item &&
4675 			    btrfs_file_extent_encryption(leaf, fi) == 0 &&
4676 			    btrfs_file_extent_other_encoding(leaf, fi) == 0 &&
4677 			    btrfs_file_extent_compression(leaf, fi) == 0) {
4678 				u32 size = (u32)(new_size - found_key.offset);
4679 
4680 				btrfs_set_file_extent_ram_bytes(leaf, fi, size);
4681 				size = btrfs_file_extent_calc_inline_size(size);
4682 				btrfs_truncate_item(root->fs_info, path, size, 1);
4683 			} else if (!del_item) {
4684 				/*
4685 				 * We have to bail so the last_size is set to
4686 				 * just before this extent.
4687 				 */
4688 				ret = NEED_TRUNCATE_BLOCK;
4689 				break;
4690 			}
4691 
4692 			if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4693 				inode_sub_bytes(inode, item_end + 1 - new_size);
4694 		}
4695 delete:
4696 		if (del_item)
4697 			last_size = found_key.offset;
4698 		else
4699 			last_size = new_size;
4700 		if (del_item) {
4701 			if (!pending_del_nr) {
4702 				/* no pending yet, add ourselves */
4703 				pending_del_slot = path->slots[0];
4704 				pending_del_nr = 1;
4705 			} else if (pending_del_nr &&
4706 				   path->slots[0] + 1 == pending_del_slot) {
4707 				/* hop on the pending chunk */
4708 				pending_del_nr++;
4709 				pending_del_slot = path->slots[0];
4710 			} else {
4711 				BUG();
4712 			}
4713 		} else {
4714 			break;
4715 		}
4716 		should_throttle = false;
4717 
4718 		if (found_extent &&
4719 		    (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4720 		     root == fs_info->tree_root)) {
4721 			btrfs_set_path_blocking(path);
4722 			bytes_deleted += extent_num_bytes;
4723 			ret = btrfs_free_extent(trans, root, extent_start,
4724 						extent_num_bytes, 0,
4725 						btrfs_header_owner(leaf),
4726 						ino, extent_offset);
4727 			if (ret) {
4728 				btrfs_abort_transaction(trans, ret);
4729 				break;
4730 			}
4731 			if (be_nice) {
4732 				if (btrfs_should_throttle_delayed_refs(trans))
4733 					should_throttle = true;
4734 			}
4735 		}
4736 
4737 		if (found_type == BTRFS_INODE_ITEM_KEY)
4738 			break;
4739 
4740 		if (path->slots[0] == 0 ||
4741 		    path->slots[0] != pending_del_slot ||
4742 		    should_throttle) {
4743 			if (pending_del_nr) {
4744 				ret = btrfs_del_items(trans, root, path,
4745 						pending_del_slot,
4746 						pending_del_nr);
4747 				if (ret) {
4748 					btrfs_abort_transaction(trans, ret);
4749 					break;
4750 				}
4751 				pending_del_nr = 0;
4752 			}
4753 			btrfs_release_path(path);
4754 
4755 			/*
4756 			 * We can generate a lot of delayed refs, so we need to
4757 			 * throttle every once and a while and make sure we're
4758 			 * adding enough space to keep up with the work we are
4759 			 * generating.  Since we hold a transaction here we
4760 			 * can't flush, and we don't want to FLUSH_LIMIT because
4761 			 * we could have generated too many delayed refs to
4762 			 * actually allocate, so just bail if we're short and
4763 			 * let the normal reservation dance happen higher up.
4764 			 */
4765 			if (should_throttle) {
4766 				ret = btrfs_delayed_refs_rsv_refill(fs_info,
4767 							BTRFS_RESERVE_NO_FLUSH);
4768 				if (ret) {
4769 					ret = -EAGAIN;
4770 					break;
4771 				}
4772 			}
4773 			goto search_again;
4774 		} else {
4775 			path->slots[0]--;
4776 		}
4777 	}
4778 out:
4779 	if (ret >= 0 && pending_del_nr) {
4780 		int err;
4781 
4782 		err = btrfs_del_items(trans, root, path, pending_del_slot,
4783 				      pending_del_nr);
4784 		if (err) {
4785 			btrfs_abort_transaction(trans, err);
4786 			ret = err;
4787 		}
4788 	}
4789 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
4790 		ASSERT(last_size >= new_size);
4791 		if (!ret && last_size > new_size)
4792 			last_size = new_size;
4793 		btrfs_ordered_update_i_size(inode, last_size, NULL);
4794 	}
4795 
4796 	btrfs_free_path(path);
4797 	return ret;
4798 }
4799 
4800 /*
4801  * btrfs_truncate_block - read, zero a chunk and write a block
4802  * @inode - inode that we're zeroing
4803  * @from - the offset to start zeroing
4804  * @len - the length to zero, 0 to zero the entire range respective to the
4805  *	offset
4806  * @front - zero up to the offset instead of from the offset on
4807  *
4808  * This will find the block for the "from" offset and cow the block and zero the
4809  * part we want to zero.  This is used with truncate and hole punching.
4810  */
4811 int btrfs_truncate_block(struct inode *inode, loff_t from, loff_t len,
4812 			int front)
4813 {
4814 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4815 	struct address_space *mapping = inode->i_mapping;
4816 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4817 	struct btrfs_ordered_extent *ordered;
4818 	struct extent_state *cached_state = NULL;
4819 	struct extent_changeset *data_reserved = NULL;
4820 	char *kaddr;
4821 	u32 blocksize = fs_info->sectorsize;
4822 	pgoff_t index = from >> PAGE_SHIFT;
4823 	unsigned offset = from & (blocksize - 1);
4824 	struct page *page;
4825 	gfp_t mask = btrfs_alloc_write_mask(mapping);
4826 	int ret = 0;
4827 	u64 block_start;
4828 	u64 block_end;
4829 
4830 	if (IS_ALIGNED(offset, blocksize) &&
4831 	    (!len || IS_ALIGNED(len, blocksize)))
4832 		goto out;
4833 
4834 	block_start = round_down(from, blocksize);
4835 	block_end = block_start + blocksize - 1;
4836 
4837 	ret = btrfs_delalloc_reserve_space(inode, &data_reserved,
4838 					   block_start, blocksize);
4839 	if (ret)
4840 		goto out;
4841 
4842 again:
4843 	page = find_or_create_page(mapping, index, mask);
4844 	if (!page) {
4845 		btrfs_delalloc_release_space(inode, data_reserved,
4846 					     block_start, blocksize, true);
4847 		btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize, true);
4848 		ret = -ENOMEM;
4849 		goto out;
4850 	}
4851 
4852 	if (!PageUptodate(page)) {
4853 		ret = btrfs_readpage(NULL, page);
4854 		lock_page(page);
4855 		if (page->mapping != mapping) {
4856 			unlock_page(page);
4857 			put_page(page);
4858 			goto again;
4859 		}
4860 		if (!PageUptodate(page)) {
4861 			ret = -EIO;
4862 			goto out_unlock;
4863 		}
4864 	}
4865 	wait_on_page_writeback(page);
4866 
4867 	lock_extent_bits(io_tree, block_start, block_end, &cached_state);
4868 	set_page_extent_mapped(page);
4869 
4870 	ordered = btrfs_lookup_ordered_extent(inode, block_start);
4871 	if (ordered) {
4872 		unlock_extent_cached(io_tree, block_start, block_end,
4873 				     &cached_state);
4874 		unlock_page(page);
4875 		put_page(page);
4876 		btrfs_start_ordered_extent(inode, ordered, 1);
4877 		btrfs_put_ordered_extent(ordered);
4878 		goto again;
4879 	}
4880 
4881 	clear_extent_bit(&BTRFS_I(inode)->io_tree, block_start, block_end,
4882 			  EXTENT_DIRTY | EXTENT_DELALLOC |
4883 			  EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
4884 			  0, 0, &cached_state);
4885 
4886 	ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0,
4887 					&cached_state, 0);
4888 	if (ret) {
4889 		unlock_extent_cached(io_tree, block_start, block_end,
4890 				     &cached_state);
4891 		goto out_unlock;
4892 	}
4893 
4894 	if (offset != blocksize) {
4895 		if (!len)
4896 			len = blocksize - offset;
4897 		kaddr = kmap(page);
4898 		if (front)
4899 			memset(kaddr + (block_start - page_offset(page)),
4900 				0, offset);
4901 		else
4902 			memset(kaddr + (block_start - page_offset(page)) +  offset,
4903 				0, len);
4904 		flush_dcache_page(page);
4905 		kunmap(page);
4906 	}
4907 	ClearPageChecked(page);
4908 	set_page_dirty(page);
4909 	unlock_extent_cached(io_tree, block_start, block_end, &cached_state);
4910 
4911 out_unlock:
4912 	if (ret)
4913 		btrfs_delalloc_release_space(inode, data_reserved, block_start,
4914 					     blocksize, true);
4915 	btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize, (ret != 0));
4916 	unlock_page(page);
4917 	put_page(page);
4918 out:
4919 	extent_changeset_free(data_reserved);
4920 	return ret;
4921 }
4922 
4923 static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode,
4924 			     u64 offset, u64 len)
4925 {
4926 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4927 	struct btrfs_trans_handle *trans;
4928 	int ret;
4929 
4930 	/*
4931 	 * Still need to make sure the inode looks like it's been updated so
4932 	 * that any holes get logged if we fsync.
4933 	 */
4934 	if (btrfs_fs_incompat(fs_info, NO_HOLES)) {
4935 		BTRFS_I(inode)->last_trans = fs_info->generation;
4936 		BTRFS_I(inode)->last_sub_trans = root->log_transid;
4937 		BTRFS_I(inode)->last_log_commit = root->last_log_commit;
4938 		return 0;
4939 	}
4940 
4941 	/*
4942 	 * 1 - for the one we're dropping
4943 	 * 1 - for the one we're adding
4944 	 * 1 - for updating the inode.
4945 	 */
4946 	trans = btrfs_start_transaction(root, 3);
4947 	if (IS_ERR(trans))
4948 		return PTR_ERR(trans);
4949 
4950 	ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1);
4951 	if (ret) {
4952 		btrfs_abort_transaction(trans, ret);
4953 		btrfs_end_transaction(trans);
4954 		return ret;
4955 	}
4956 
4957 	ret = btrfs_insert_file_extent(trans, root, btrfs_ino(BTRFS_I(inode)),
4958 			offset, 0, 0, len, 0, len, 0, 0, 0);
4959 	if (ret)
4960 		btrfs_abort_transaction(trans, ret);
4961 	else
4962 		btrfs_update_inode(trans, root, inode);
4963 	btrfs_end_transaction(trans);
4964 	return ret;
4965 }
4966 
4967 /*
4968  * This function puts in dummy file extents for the area we're creating a hole
4969  * for.  So if we are truncating this file to a larger size we need to insert
4970  * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4971  * the range between oldsize and size
4972  */
4973 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
4974 {
4975 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4976 	struct btrfs_root *root = BTRFS_I(inode)->root;
4977 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4978 	struct extent_map *em = NULL;
4979 	struct extent_state *cached_state = NULL;
4980 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4981 	u64 hole_start = ALIGN(oldsize, fs_info->sectorsize);
4982 	u64 block_end = ALIGN(size, fs_info->sectorsize);
4983 	u64 last_byte;
4984 	u64 cur_offset;
4985 	u64 hole_size;
4986 	int err = 0;
4987 
4988 	/*
4989 	 * If our size started in the middle of a block we need to zero out the
4990 	 * rest of the block before we expand the i_size, otherwise we could
4991 	 * expose stale data.
4992 	 */
4993 	err = btrfs_truncate_block(inode, oldsize, 0, 0);
4994 	if (err)
4995 		return err;
4996 
4997 	if (size <= hole_start)
4998 		return 0;
4999 
5000 	while (1) {
5001 		struct btrfs_ordered_extent *ordered;
5002 
5003 		lock_extent_bits(io_tree, hole_start, block_end - 1,
5004 				 &cached_state);
5005 		ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), hole_start,
5006 						     block_end - hole_start);
5007 		if (!ordered)
5008 			break;
5009 		unlock_extent_cached(io_tree, hole_start, block_end - 1,
5010 				     &cached_state);
5011 		btrfs_start_ordered_extent(inode, ordered, 1);
5012 		btrfs_put_ordered_extent(ordered);
5013 	}
5014 
5015 	cur_offset = hole_start;
5016 	while (1) {
5017 		em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset,
5018 				block_end - cur_offset, 0);
5019 		if (IS_ERR(em)) {
5020 			err = PTR_ERR(em);
5021 			em = NULL;
5022 			break;
5023 		}
5024 		last_byte = min(extent_map_end(em), block_end);
5025 		last_byte = ALIGN(last_byte, fs_info->sectorsize);
5026 		if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
5027 			struct extent_map *hole_em;
5028 			hole_size = last_byte - cur_offset;
5029 
5030 			err = maybe_insert_hole(root, inode, cur_offset,
5031 						hole_size);
5032 			if (err)
5033 				break;
5034 			btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
5035 						cur_offset + hole_size - 1, 0);
5036 			hole_em = alloc_extent_map();
5037 			if (!hole_em) {
5038 				set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5039 					&BTRFS_I(inode)->runtime_flags);
5040 				goto next;
5041 			}
5042 			hole_em->start = cur_offset;
5043 			hole_em->len = hole_size;
5044 			hole_em->orig_start = cur_offset;
5045 
5046 			hole_em->block_start = EXTENT_MAP_HOLE;
5047 			hole_em->block_len = 0;
5048 			hole_em->orig_block_len = 0;
5049 			hole_em->ram_bytes = hole_size;
5050 			hole_em->bdev = fs_info->fs_devices->latest_bdev;
5051 			hole_em->compress_type = BTRFS_COMPRESS_NONE;
5052 			hole_em->generation = fs_info->generation;
5053 
5054 			while (1) {
5055 				write_lock(&em_tree->lock);
5056 				err = add_extent_mapping(em_tree, hole_em, 1);
5057 				write_unlock(&em_tree->lock);
5058 				if (err != -EEXIST)
5059 					break;
5060 				btrfs_drop_extent_cache(BTRFS_I(inode),
5061 							cur_offset,
5062 							cur_offset +
5063 							hole_size - 1, 0);
5064 			}
5065 			free_extent_map(hole_em);
5066 		}
5067 next:
5068 		free_extent_map(em);
5069 		em = NULL;
5070 		cur_offset = last_byte;
5071 		if (cur_offset >= block_end)
5072 			break;
5073 	}
5074 	free_extent_map(em);
5075 	unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state);
5076 	return err;
5077 }
5078 
5079 static int btrfs_setsize(struct inode *inode, struct iattr *attr)
5080 {
5081 	struct btrfs_root *root = BTRFS_I(inode)->root;
5082 	struct btrfs_trans_handle *trans;
5083 	loff_t oldsize = i_size_read(inode);
5084 	loff_t newsize = attr->ia_size;
5085 	int mask = attr->ia_valid;
5086 	int ret;
5087 
5088 	/*
5089 	 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
5090 	 * special case where we need to update the times despite not having
5091 	 * these flags set.  For all other operations the VFS set these flags
5092 	 * explicitly if it wants a timestamp update.
5093 	 */
5094 	if (newsize != oldsize) {
5095 		inode_inc_iversion(inode);
5096 		if (!(mask & (ATTR_CTIME | ATTR_MTIME)))
5097 			inode->i_ctime = inode->i_mtime =
5098 				current_time(inode);
5099 	}
5100 
5101 	if (newsize > oldsize) {
5102 		/*
5103 		 * Don't do an expanding truncate while snapshotting is ongoing.
5104 		 * This is to ensure the snapshot captures a fully consistent
5105 		 * state of this file - if the snapshot captures this expanding
5106 		 * truncation, it must capture all writes that happened before
5107 		 * this truncation.
5108 		 */
5109 		btrfs_wait_for_snapshot_creation(root);
5110 		ret = btrfs_cont_expand(inode, oldsize, newsize);
5111 		if (ret) {
5112 			btrfs_end_write_no_snapshotting(root);
5113 			return ret;
5114 		}
5115 
5116 		trans = btrfs_start_transaction(root, 1);
5117 		if (IS_ERR(trans)) {
5118 			btrfs_end_write_no_snapshotting(root);
5119 			return PTR_ERR(trans);
5120 		}
5121 
5122 		i_size_write(inode, newsize);
5123 		btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
5124 		pagecache_isize_extended(inode, oldsize, newsize);
5125 		ret = btrfs_update_inode(trans, root, inode);
5126 		btrfs_end_write_no_snapshotting(root);
5127 		btrfs_end_transaction(trans);
5128 	} else {
5129 
5130 		/*
5131 		 * We're truncating a file that used to have good data down to
5132 		 * zero. Make sure it gets into the ordered flush list so that
5133 		 * any new writes get down to disk quickly.
5134 		 */
5135 		if (newsize == 0)
5136 			set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
5137 				&BTRFS_I(inode)->runtime_flags);
5138 
5139 		truncate_setsize(inode, newsize);
5140 
5141 		/* Disable nonlocked read DIO to avoid the endless truncate */
5142 		btrfs_inode_block_unlocked_dio(BTRFS_I(inode));
5143 		inode_dio_wait(inode);
5144 		btrfs_inode_resume_unlocked_dio(BTRFS_I(inode));
5145 
5146 		ret = btrfs_truncate(inode, newsize == oldsize);
5147 		if (ret && inode->i_nlink) {
5148 			int err;
5149 
5150 			/*
5151 			 * Truncate failed, so fix up the in-memory size. We
5152 			 * adjusted disk_i_size down as we removed extents, so
5153 			 * wait for disk_i_size to be stable and then update the
5154 			 * in-memory size to match.
5155 			 */
5156 			err = btrfs_wait_ordered_range(inode, 0, (u64)-1);
5157 			if (err)
5158 				return err;
5159 			i_size_write(inode, BTRFS_I(inode)->disk_i_size);
5160 		}
5161 	}
5162 
5163 	return ret;
5164 }
5165 
5166 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
5167 {
5168 	struct inode *inode = d_inode(dentry);
5169 	struct btrfs_root *root = BTRFS_I(inode)->root;
5170 	int err;
5171 
5172 	if (btrfs_root_readonly(root))
5173 		return -EROFS;
5174 
5175 	err = setattr_prepare(dentry, attr);
5176 	if (err)
5177 		return err;
5178 
5179 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
5180 		err = btrfs_setsize(inode, attr);
5181 		if (err)
5182 			return err;
5183 	}
5184 
5185 	if (attr->ia_valid) {
5186 		setattr_copy(inode, attr);
5187 		inode_inc_iversion(inode);
5188 		err = btrfs_dirty_inode(inode);
5189 
5190 		if (!err && attr->ia_valid & ATTR_MODE)
5191 			err = posix_acl_chmod(inode, inode->i_mode);
5192 	}
5193 
5194 	return err;
5195 }
5196 
5197 /*
5198  * While truncating the inode pages during eviction, we get the VFS calling
5199  * btrfs_invalidatepage() against each page of the inode. This is slow because
5200  * the calls to btrfs_invalidatepage() result in a huge amount of calls to
5201  * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
5202  * extent_state structures over and over, wasting lots of time.
5203  *
5204  * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
5205  * those expensive operations on a per page basis and do only the ordered io
5206  * finishing, while we release here the extent_map and extent_state structures,
5207  * without the excessive merging and splitting.
5208  */
5209 static void evict_inode_truncate_pages(struct inode *inode)
5210 {
5211 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5212 	struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
5213 	struct rb_node *node;
5214 
5215 	ASSERT(inode->i_state & I_FREEING);
5216 	truncate_inode_pages_final(&inode->i_data);
5217 
5218 	write_lock(&map_tree->lock);
5219 	while (!RB_EMPTY_ROOT(&map_tree->map.rb_root)) {
5220 		struct extent_map *em;
5221 
5222 		node = rb_first_cached(&map_tree->map);
5223 		em = rb_entry(node, struct extent_map, rb_node);
5224 		clear_bit(EXTENT_FLAG_PINNED, &em->flags);
5225 		clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
5226 		remove_extent_mapping(map_tree, em);
5227 		free_extent_map(em);
5228 		if (need_resched()) {
5229 			write_unlock(&map_tree->lock);
5230 			cond_resched();
5231 			write_lock(&map_tree->lock);
5232 		}
5233 	}
5234 	write_unlock(&map_tree->lock);
5235 
5236 	/*
5237 	 * Keep looping until we have no more ranges in the io tree.
5238 	 * We can have ongoing bios started by readpages (called from readahead)
5239 	 * that have their endio callback (extent_io.c:end_bio_extent_readpage)
5240 	 * still in progress (unlocked the pages in the bio but did not yet
5241 	 * unlocked the ranges in the io tree). Therefore this means some
5242 	 * ranges can still be locked and eviction started because before
5243 	 * submitting those bios, which are executed by a separate task (work
5244 	 * queue kthread), inode references (inode->i_count) were not taken
5245 	 * (which would be dropped in the end io callback of each bio).
5246 	 * Therefore here we effectively end up waiting for those bios and
5247 	 * anyone else holding locked ranges without having bumped the inode's
5248 	 * reference count - if we don't do it, when they access the inode's
5249 	 * io_tree to unlock a range it may be too late, leading to an
5250 	 * use-after-free issue.
5251 	 */
5252 	spin_lock(&io_tree->lock);
5253 	while (!RB_EMPTY_ROOT(&io_tree->state)) {
5254 		struct extent_state *state;
5255 		struct extent_state *cached_state = NULL;
5256 		u64 start;
5257 		u64 end;
5258 		unsigned state_flags;
5259 
5260 		node = rb_first(&io_tree->state);
5261 		state = rb_entry(node, struct extent_state, rb_node);
5262 		start = state->start;
5263 		end = state->end;
5264 		state_flags = state->state;
5265 		spin_unlock(&io_tree->lock);
5266 
5267 		lock_extent_bits(io_tree, start, end, &cached_state);
5268 
5269 		/*
5270 		 * If still has DELALLOC flag, the extent didn't reach disk,
5271 		 * and its reserved space won't be freed by delayed_ref.
5272 		 * So we need to free its reserved space here.
5273 		 * (Refer to comment in btrfs_invalidatepage, case 2)
5274 		 *
5275 		 * Note, end is the bytenr of last byte, so we need + 1 here.
5276 		 */
5277 		if (state_flags & EXTENT_DELALLOC)
5278 			btrfs_qgroup_free_data(inode, NULL, start, end - start + 1);
5279 
5280 		clear_extent_bit(io_tree, start, end,
5281 				 EXTENT_LOCKED | EXTENT_DIRTY |
5282 				 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
5283 				 EXTENT_DEFRAG, 1, 1, &cached_state);
5284 
5285 		cond_resched();
5286 		spin_lock(&io_tree->lock);
5287 	}
5288 	spin_unlock(&io_tree->lock);
5289 }
5290 
5291 static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root,
5292 							struct btrfs_block_rsv *rsv)
5293 {
5294 	struct btrfs_fs_info *fs_info = root->fs_info;
5295 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5296 	u64 delayed_refs_extra = btrfs_calc_trans_metadata_size(fs_info, 1);
5297 	int failures = 0;
5298 
5299 	for (;;) {
5300 		struct btrfs_trans_handle *trans;
5301 		int ret;
5302 
5303 		ret = btrfs_block_rsv_refill(root, rsv,
5304 					     rsv->size + delayed_refs_extra,
5305 					     BTRFS_RESERVE_FLUSH_LIMIT);
5306 
5307 		if (ret && ++failures > 2) {
5308 			btrfs_warn(fs_info,
5309 				   "could not allocate space for a delete; will truncate on mount");
5310 			return ERR_PTR(-ENOSPC);
5311 		}
5312 
5313 		/*
5314 		 * Evict can generate a large amount of delayed refs without
5315 		 * having a way to add space back since we exhaust our temporary
5316 		 * block rsv.  We aren't allowed to do FLUSH_ALL in this case
5317 		 * because we could deadlock with so many things in the flushing
5318 		 * code, so we have to try and hold some extra space to
5319 		 * compensate for our delayed ref generation.  If we can't get
5320 		 * that space then we need see if we can steal our minimum from
5321 		 * the global reserve.  We will be ratelimited by the amount of
5322 		 * space we have for the delayed refs rsv, so we'll end up
5323 		 * committing and trying again.
5324 		 */
5325 		trans = btrfs_join_transaction(root);
5326 		if (IS_ERR(trans) || !ret) {
5327 			if (!IS_ERR(trans)) {
5328 				trans->block_rsv = &fs_info->trans_block_rsv;
5329 				trans->bytes_reserved = delayed_refs_extra;
5330 				btrfs_block_rsv_migrate(rsv, trans->block_rsv,
5331 							delayed_refs_extra, 1);
5332 			}
5333 			return trans;
5334 		}
5335 
5336 		/*
5337 		 * Try to steal from the global reserve if there is space for
5338 		 * it.
5339 		 */
5340 		if (!btrfs_check_space_for_delayed_refs(fs_info) &&
5341 		    !btrfs_block_rsv_migrate(global_rsv, rsv, rsv->size, 0))
5342 			return trans;
5343 
5344 		/* If not, commit and try again. */
5345 		ret = btrfs_commit_transaction(trans);
5346 		if (ret)
5347 			return ERR_PTR(ret);
5348 	}
5349 }
5350 
5351 void btrfs_evict_inode(struct inode *inode)
5352 {
5353 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5354 	struct btrfs_trans_handle *trans;
5355 	struct btrfs_root *root = BTRFS_I(inode)->root;
5356 	struct btrfs_block_rsv *rsv;
5357 	int ret;
5358 
5359 	trace_btrfs_inode_evict(inode);
5360 
5361 	if (!root) {
5362 		clear_inode(inode);
5363 		return;
5364 	}
5365 
5366 	evict_inode_truncate_pages(inode);
5367 
5368 	if (inode->i_nlink &&
5369 	    ((btrfs_root_refs(&root->root_item) != 0 &&
5370 	      root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
5371 	     btrfs_is_free_space_inode(BTRFS_I(inode))))
5372 		goto no_delete;
5373 
5374 	if (is_bad_inode(inode))
5375 		goto no_delete;
5376 
5377 	btrfs_free_io_failure_record(BTRFS_I(inode), 0, (u64)-1);
5378 
5379 	if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
5380 		goto no_delete;
5381 
5382 	if (inode->i_nlink > 0) {
5383 		BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5384 		       root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
5385 		goto no_delete;
5386 	}
5387 
5388 	ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode));
5389 	if (ret)
5390 		goto no_delete;
5391 
5392 	rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
5393 	if (!rsv)
5394 		goto no_delete;
5395 	rsv->size = btrfs_calc_trunc_metadata_size(fs_info, 1);
5396 	rsv->failfast = 1;
5397 
5398 	btrfs_i_size_write(BTRFS_I(inode), 0);
5399 
5400 	while (1) {
5401 		trans = evict_refill_and_join(root, rsv);
5402 		if (IS_ERR(trans))
5403 			goto free_rsv;
5404 
5405 		trans->block_rsv = rsv;
5406 
5407 		ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
5408 		trans->block_rsv = &fs_info->trans_block_rsv;
5409 		btrfs_end_transaction(trans);
5410 		btrfs_btree_balance_dirty(fs_info);
5411 		if (ret && ret != -ENOSPC && ret != -EAGAIN)
5412 			goto free_rsv;
5413 		else if (!ret)
5414 			break;
5415 	}
5416 
5417 	/*
5418 	 * Errors here aren't a big deal, it just means we leave orphan items in
5419 	 * the tree. They will be cleaned up on the next mount. If the inode
5420 	 * number gets reused, cleanup deletes the orphan item without doing
5421 	 * anything, and unlink reuses the existing orphan item.
5422 	 *
5423 	 * If it turns out that we are dropping too many of these, we might want
5424 	 * to add a mechanism for retrying these after a commit.
5425 	 */
5426 	trans = evict_refill_and_join(root, rsv);
5427 	if (!IS_ERR(trans)) {
5428 		trans->block_rsv = rsv;
5429 		btrfs_orphan_del(trans, BTRFS_I(inode));
5430 		trans->block_rsv = &fs_info->trans_block_rsv;
5431 		btrfs_end_transaction(trans);
5432 	}
5433 
5434 	if (!(root == fs_info->tree_root ||
5435 	      root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
5436 		btrfs_return_ino(root, btrfs_ino(BTRFS_I(inode)));
5437 
5438 free_rsv:
5439 	btrfs_free_block_rsv(fs_info, rsv);
5440 no_delete:
5441 	/*
5442 	 * If we didn't successfully delete, the orphan item will still be in
5443 	 * the tree and we'll retry on the next mount. Again, we might also want
5444 	 * to retry these periodically in the future.
5445 	 */
5446 	btrfs_remove_delayed_node(BTRFS_I(inode));
5447 	clear_inode(inode);
5448 }
5449 
5450 /*
5451  * this returns the key found in the dir entry in the location pointer.
5452  * If no dir entries were found, returns -ENOENT.
5453  * If found a corrupted location in dir entry, returns -EUCLEAN.
5454  */
5455 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
5456 			       struct btrfs_key *location)
5457 {
5458 	const char *name = dentry->d_name.name;
5459 	int namelen = dentry->d_name.len;
5460 	struct btrfs_dir_item *di;
5461 	struct btrfs_path *path;
5462 	struct btrfs_root *root = BTRFS_I(dir)->root;
5463 	int ret = 0;
5464 
5465 	path = btrfs_alloc_path();
5466 	if (!path)
5467 		return -ENOMEM;
5468 
5469 	di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(BTRFS_I(dir)),
5470 			name, namelen, 0);
5471 	if (IS_ERR_OR_NULL(di)) {
5472 		ret = di ? PTR_ERR(di) : -ENOENT;
5473 		goto out;
5474 	}
5475 
5476 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
5477 	if (location->type != BTRFS_INODE_ITEM_KEY &&
5478 	    location->type != BTRFS_ROOT_ITEM_KEY) {
5479 		ret = -EUCLEAN;
5480 		btrfs_warn(root->fs_info,
5481 "%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))",
5482 			   __func__, name, btrfs_ino(BTRFS_I(dir)),
5483 			   location->objectid, location->type, location->offset);
5484 	}
5485 out:
5486 	btrfs_free_path(path);
5487 	return ret;
5488 }
5489 
5490 /*
5491  * when we hit a tree root in a directory, the btrfs part of the inode
5492  * needs to be changed to reflect the root directory of the tree root.  This
5493  * is kind of like crossing a mount point.
5494  */
5495 static int fixup_tree_root_location(struct btrfs_fs_info *fs_info,
5496 				    struct inode *dir,
5497 				    struct dentry *dentry,
5498 				    struct btrfs_key *location,
5499 				    struct btrfs_root **sub_root)
5500 {
5501 	struct btrfs_path *path;
5502 	struct btrfs_root *new_root;
5503 	struct btrfs_root_ref *ref;
5504 	struct extent_buffer *leaf;
5505 	struct btrfs_key key;
5506 	int ret;
5507 	int err = 0;
5508 
5509 	path = btrfs_alloc_path();
5510 	if (!path) {
5511 		err = -ENOMEM;
5512 		goto out;
5513 	}
5514 
5515 	err = -ENOENT;
5516 	key.objectid = BTRFS_I(dir)->root->root_key.objectid;
5517 	key.type = BTRFS_ROOT_REF_KEY;
5518 	key.offset = location->objectid;
5519 
5520 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
5521 	if (ret) {
5522 		if (ret < 0)
5523 			err = ret;
5524 		goto out;
5525 	}
5526 
5527 	leaf = path->nodes[0];
5528 	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
5529 	if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(BTRFS_I(dir)) ||
5530 	    btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
5531 		goto out;
5532 
5533 	ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
5534 				   (unsigned long)(ref + 1),
5535 				   dentry->d_name.len);
5536 	if (ret)
5537 		goto out;
5538 
5539 	btrfs_release_path(path);
5540 
5541 	new_root = btrfs_read_fs_root_no_name(fs_info, location);
5542 	if (IS_ERR(new_root)) {
5543 		err = PTR_ERR(new_root);
5544 		goto out;
5545 	}
5546 
5547 	*sub_root = new_root;
5548 	location->objectid = btrfs_root_dirid(&new_root->root_item);
5549 	location->type = BTRFS_INODE_ITEM_KEY;
5550 	location->offset = 0;
5551 	err = 0;
5552 out:
5553 	btrfs_free_path(path);
5554 	return err;
5555 }
5556 
5557 static void inode_tree_add(struct inode *inode)
5558 {
5559 	struct btrfs_root *root = BTRFS_I(inode)->root;
5560 	struct btrfs_inode *entry;
5561 	struct rb_node **p;
5562 	struct rb_node *parent;
5563 	struct rb_node *new = &BTRFS_I(inode)->rb_node;
5564 	u64 ino = btrfs_ino(BTRFS_I(inode));
5565 
5566 	if (inode_unhashed(inode))
5567 		return;
5568 	parent = NULL;
5569 	spin_lock(&root->inode_lock);
5570 	p = &root->inode_tree.rb_node;
5571 	while (*p) {
5572 		parent = *p;
5573 		entry = rb_entry(parent, struct btrfs_inode, rb_node);
5574 
5575 		if (ino < btrfs_ino(entry))
5576 			p = &parent->rb_left;
5577 		else if (ino > btrfs_ino(entry))
5578 			p = &parent->rb_right;
5579 		else {
5580 			WARN_ON(!(entry->vfs_inode.i_state &
5581 				  (I_WILL_FREE | I_FREEING)));
5582 			rb_replace_node(parent, new, &root->inode_tree);
5583 			RB_CLEAR_NODE(parent);
5584 			spin_unlock(&root->inode_lock);
5585 			return;
5586 		}
5587 	}
5588 	rb_link_node(new, parent, p);
5589 	rb_insert_color(new, &root->inode_tree);
5590 	spin_unlock(&root->inode_lock);
5591 }
5592 
5593 static void inode_tree_del(struct inode *inode)
5594 {
5595 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5596 	struct btrfs_root *root = BTRFS_I(inode)->root;
5597 	int empty = 0;
5598 
5599 	spin_lock(&root->inode_lock);
5600 	if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5601 		rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5602 		RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
5603 		empty = RB_EMPTY_ROOT(&root->inode_tree);
5604 	}
5605 	spin_unlock(&root->inode_lock);
5606 
5607 	if (empty && btrfs_root_refs(&root->root_item) == 0) {
5608 		synchronize_srcu(&fs_info->subvol_srcu);
5609 		spin_lock(&root->inode_lock);
5610 		empty = RB_EMPTY_ROOT(&root->inode_tree);
5611 		spin_unlock(&root->inode_lock);
5612 		if (empty)
5613 			btrfs_add_dead_root(root);
5614 	}
5615 }
5616 
5617 
5618 static int btrfs_init_locked_inode(struct inode *inode, void *p)
5619 {
5620 	struct btrfs_iget_args *args = p;
5621 	inode->i_ino = args->location->objectid;
5622 	memcpy(&BTRFS_I(inode)->location, args->location,
5623 	       sizeof(*args->location));
5624 	BTRFS_I(inode)->root = args->root;
5625 	return 0;
5626 }
5627 
5628 static int btrfs_find_actor(struct inode *inode, void *opaque)
5629 {
5630 	struct btrfs_iget_args *args = opaque;
5631 	return args->location->objectid == BTRFS_I(inode)->location.objectid &&
5632 		args->root == BTRFS_I(inode)->root;
5633 }
5634 
5635 static struct inode *btrfs_iget_locked(struct super_block *s,
5636 				       struct btrfs_key *location,
5637 				       struct btrfs_root *root)
5638 {
5639 	struct inode *inode;
5640 	struct btrfs_iget_args args;
5641 	unsigned long hashval = btrfs_inode_hash(location->objectid, root);
5642 
5643 	args.location = location;
5644 	args.root = root;
5645 
5646 	inode = iget5_locked(s, hashval, btrfs_find_actor,
5647 			     btrfs_init_locked_inode,
5648 			     (void *)&args);
5649 	return inode;
5650 }
5651 
5652 /* Get an inode object given its location and corresponding root.
5653  * Returns in *is_new if the inode was read from disk
5654  */
5655 struct inode *btrfs_iget_path(struct super_block *s, struct btrfs_key *location,
5656 			      struct btrfs_root *root, int *new,
5657 			      struct btrfs_path *path)
5658 {
5659 	struct inode *inode;
5660 
5661 	inode = btrfs_iget_locked(s, location, root);
5662 	if (!inode)
5663 		return ERR_PTR(-ENOMEM);
5664 
5665 	if (inode->i_state & I_NEW) {
5666 		int ret;
5667 
5668 		ret = btrfs_read_locked_inode(inode, path);
5669 		if (!ret) {
5670 			inode_tree_add(inode);
5671 			unlock_new_inode(inode);
5672 			if (new)
5673 				*new = 1;
5674 		} else {
5675 			iget_failed(inode);
5676 			/*
5677 			 * ret > 0 can come from btrfs_search_slot called by
5678 			 * btrfs_read_locked_inode, this means the inode item
5679 			 * was not found.
5680 			 */
5681 			if (ret > 0)
5682 				ret = -ENOENT;
5683 			inode = ERR_PTR(ret);
5684 		}
5685 	}
5686 
5687 	return inode;
5688 }
5689 
5690 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
5691 			 struct btrfs_root *root, int *new)
5692 {
5693 	return btrfs_iget_path(s, location, root, new, NULL);
5694 }
5695 
5696 static struct inode *new_simple_dir(struct super_block *s,
5697 				    struct btrfs_key *key,
5698 				    struct btrfs_root *root)
5699 {
5700 	struct inode *inode = new_inode(s);
5701 
5702 	if (!inode)
5703 		return ERR_PTR(-ENOMEM);
5704 
5705 	BTRFS_I(inode)->root = root;
5706 	memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
5707 	set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
5708 
5709 	inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
5710 	inode->i_op = &btrfs_dir_ro_inode_operations;
5711 	inode->i_opflags &= ~IOP_XATTR;
5712 	inode->i_fop = &simple_dir_operations;
5713 	inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
5714 	inode->i_mtime = current_time(inode);
5715 	inode->i_atime = inode->i_mtime;
5716 	inode->i_ctime = inode->i_mtime;
5717 	BTRFS_I(inode)->i_otime = inode->i_mtime;
5718 
5719 	return inode;
5720 }
5721 
5722 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
5723 {
5724 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
5725 	struct inode *inode;
5726 	struct btrfs_root *root = BTRFS_I(dir)->root;
5727 	struct btrfs_root *sub_root = root;
5728 	struct btrfs_key location;
5729 	int index;
5730 	int ret = 0;
5731 
5732 	if (dentry->d_name.len > BTRFS_NAME_LEN)
5733 		return ERR_PTR(-ENAMETOOLONG);
5734 
5735 	ret = btrfs_inode_by_name(dir, dentry, &location);
5736 	if (ret < 0)
5737 		return ERR_PTR(ret);
5738 
5739 	if (location.type == BTRFS_INODE_ITEM_KEY) {
5740 		inode = btrfs_iget(dir->i_sb, &location, root, NULL);
5741 		return inode;
5742 	}
5743 
5744 	index = srcu_read_lock(&fs_info->subvol_srcu);
5745 	ret = fixup_tree_root_location(fs_info, dir, dentry,
5746 				       &location, &sub_root);
5747 	if (ret < 0) {
5748 		if (ret != -ENOENT)
5749 			inode = ERR_PTR(ret);
5750 		else
5751 			inode = new_simple_dir(dir->i_sb, &location, sub_root);
5752 	} else {
5753 		inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
5754 	}
5755 	srcu_read_unlock(&fs_info->subvol_srcu, index);
5756 
5757 	if (!IS_ERR(inode) && root != sub_root) {
5758 		down_read(&fs_info->cleanup_work_sem);
5759 		if (!sb_rdonly(inode->i_sb))
5760 			ret = btrfs_orphan_cleanup(sub_root);
5761 		up_read(&fs_info->cleanup_work_sem);
5762 		if (ret) {
5763 			iput(inode);
5764 			inode = ERR_PTR(ret);
5765 		}
5766 	}
5767 
5768 	return inode;
5769 }
5770 
5771 static int btrfs_dentry_delete(const struct dentry *dentry)
5772 {
5773 	struct btrfs_root *root;
5774 	struct inode *inode = d_inode(dentry);
5775 
5776 	if (!inode && !IS_ROOT(dentry))
5777 		inode = d_inode(dentry->d_parent);
5778 
5779 	if (inode) {
5780 		root = BTRFS_I(inode)->root;
5781 		if (btrfs_root_refs(&root->root_item) == 0)
5782 			return 1;
5783 
5784 		if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5785 			return 1;
5786 	}
5787 	return 0;
5788 }
5789 
5790 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
5791 				   unsigned int flags)
5792 {
5793 	struct inode *inode = btrfs_lookup_dentry(dir, dentry);
5794 
5795 	if (inode == ERR_PTR(-ENOENT))
5796 		inode = NULL;
5797 	return d_splice_alias(inode, dentry);
5798 }
5799 
5800 unsigned char btrfs_filetype_table[] = {
5801 	DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
5802 };
5803 
5804 /*
5805  * All this infrastructure exists because dir_emit can fault, and we are holding
5806  * the tree lock when doing readdir.  For now just allocate a buffer and copy
5807  * our information into that, and then dir_emit from the buffer.  This is
5808  * similar to what NFS does, only we don't keep the buffer around in pagecache
5809  * because I'm afraid I'll mess that up.  Long term we need to make filldir do
5810  * copy_to_user_inatomic so we don't have to worry about page faulting under the
5811  * tree lock.
5812  */
5813 static int btrfs_opendir(struct inode *inode, struct file *file)
5814 {
5815 	struct btrfs_file_private *private;
5816 
5817 	private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL);
5818 	if (!private)
5819 		return -ENOMEM;
5820 	private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL);
5821 	if (!private->filldir_buf) {
5822 		kfree(private);
5823 		return -ENOMEM;
5824 	}
5825 	file->private_data = private;
5826 	return 0;
5827 }
5828 
5829 struct dir_entry {
5830 	u64 ino;
5831 	u64 offset;
5832 	unsigned type;
5833 	int name_len;
5834 };
5835 
5836 static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx)
5837 {
5838 	while (entries--) {
5839 		struct dir_entry *entry = addr;
5840 		char *name = (char *)(entry + 1);
5841 
5842 		ctx->pos = get_unaligned(&entry->offset);
5843 		if (!dir_emit(ctx, name, get_unaligned(&entry->name_len),
5844 					 get_unaligned(&entry->ino),
5845 					 get_unaligned(&entry->type)))
5846 			return 1;
5847 		addr += sizeof(struct dir_entry) +
5848 			get_unaligned(&entry->name_len);
5849 		ctx->pos++;
5850 	}
5851 	return 0;
5852 }
5853 
5854 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
5855 {
5856 	struct inode *inode = file_inode(file);
5857 	struct btrfs_root *root = BTRFS_I(inode)->root;
5858 	struct btrfs_file_private *private = file->private_data;
5859 	struct btrfs_dir_item *di;
5860 	struct btrfs_key key;
5861 	struct btrfs_key found_key;
5862 	struct btrfs_path *path;
5863 	void *addr;
5864 	struct list_head ins_list;
5865 	struct list_head del_list;
5866 	int ret;
5867 	struct extent_buffer *leaf;
5868 	int slot;
5869 	char *name_ptr;
5870 	int name_len;
5871 	int entries = 0;
5872 	int total_len = 0;
5873 	bool put = false;
5874 	struct btrfs_key location;
5875 
5876 	if (!dir_emit_dots(file, ctx))
5877 		return 0;
5878 
5879 	path = btrfs_alloc_path();
5880 	if (!path)
5881 		return -ENOMEM;
5882 
5883 	addr = private->filldir_buf;
5884 	path->reada = READA_FORWARD;
5885 
5886 	INIT_LIST_HEAD(&ins_list);
5887 	INIT_LIST_HEAD(&del_list);
5888 	put = btrfs_readdir_get_delayed_items(inode, &ins_list, &del_list);
5889 
5890 again:
5891 	key.type = BTRFS_DIR_INDEX_KEY;
5892 	key.offset = ctx->pos;
5893 	key.objectid = btrfs_ino(BTRFS_I(inode));
5894 
5895 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5896 	if (ret < 0)
5897 		goto err;
5898 
5899 	while (1) {
5900 		struct dir_entry *entry;
5901 
5902 		leaf = path->nodes[0];
5903 		slot = path->slots[0];
5904 		if (slot >= btrfs_header_nritems(leaf)) {
5905 			ret = btrfs_next_leaf(root, path);
5906 			if (ret < 0)
5907 				goto err;
5908 			else if (ret > 0)
5909 				break;
5910 			continue;
5911 		}
5912 
5913 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
5914 
5915 		if (found_key.objectid != key.objectid)
5916 			break;
5917 		if (found_key.type != BTRFS_DIR_INDEX_KEY)
5918 			break;
5919 		if (found_key.offset < ctx->pos)
5920 			goto next;
5921 		if (btrfs_should_delete_dir_index(&del_list, found_key.offset))
5922 			goto next;
5923 		di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
5924 		name_len = btrfs_dir_name_len(leaf, di);
5925 		if ((total_len + sizeof(struct dir_entry) + name_len) >=
5926 		    PAGE_SIZE) {
5927 			btrfs_release_path(path);
5928 			ret = btrfs_filldir(private->filldir_buf, entries, ctx);
5929 			if (ret)
5930 				goto nopos;
5931 			addr = private->filldir_buf;
5932 			entries = 0;
5933 			total_len = 0;
5934 			goto again;
5935 		}
5936 
5937 		entry = addr;
5938 		put_unaligned(name_len, &entry->name_len);
5939 		name_ptr = (char *)(entry + 1);
5940 		read_extent_buffer(leaf, name_ptr, (unsigned long)(di + 1),
5941 				   name_len);
5942 		put_unaligned(btrfs_filetype_table[btrfs_dir_type(leaf, di)],
5943 				&entry->type);
5944 		btrfs_dir_item_key_to_cpu(leaf, di, &location);
5945 		put_unaligned(location.objectid, &entry->ino);
5946 		put_unaligned(found_key.offset, &entry->offset);
5947 		entries++;
5948 		addr += sizeof(struct dir_entry) + name_len;
5949 		total_len += sizeof(struct dir_entry) + name_len;
5950 next:
5951 		path->slots[0]++;
5952 	}
5953 	btrfs_release_path(path);
5954 
5955 	ret = btrfs_filldir(private->filldir_buf, entries, ctx);
5956 	if (ret)
5957 		goto nopos;
5958 
5959 	ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
5960 	if (ret)
5961 		goto nopos;
5962 
5963 	/*
5964 	 * Stop new entries from being returned after we return the last
5965 	 * entry.
5966 	 *
5967 	 * New directory entries are assigned a strictly increasing
5968 	 * offset.  This means that new entries created during readdir
5969 	 * are *guaranteed* to be seen in the future by that readdir.
5970 	 * This has broken buggy programs which operate on names as
5971 	 * they're returned by readdir.  Until we re-use freed offsets
5972 	 * we have this hack to stop new entries from being returned
5973 	 * under the assumption that they'll never reach this huge
5974 	 * offset.
5975 	 *
5976 	 * This is being careful not to overflow 32bit loff_t unless the
5977 	 * last entry requires it because doing so has broken 32bit apps
5978 	 * in the past.
5979 	 */
5980 	if (ctx->pos >= INT_MAX)
5981 		ctx->pos = LLONG_MAX;
5982 	else
5983 		ctx->pos = INT_MAX;
5984 nopos:
5985 	ret = 0;
5986 err:
5987 	if (put)
5988 		btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list);
5989 	btrfs_free_path(path);
5990 	return ret;
5991 }
5992 
5993 /*
5994  * This is somewhat expensive, updating the tree every time the
5995  * inode changes.  But, it is most likely to find the inode in cache.
5996  * FIXME, needs more benchmarking...there are no reasons other than performance
5997  * to keep or drop this code.
5998  */
5999 static int btrfs_dirty_inode(struct inode *inode)
6000 {
6001 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
6002 	struct btrfs_root *root = BTRFS_I(inode)->root;
6003 	struct btrfs_trans_handle *trans;
6004 	int ret;
6005 
6006 	if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
6007 		return 0;
6008 
6009 	trans = btrfs_join_transaction(root);
6010 	if (IS_ERR(trans))
6011 		return PTR_ERR(trans);
6012 
6013 	ret = btrfs_update_inode(trans, root, inode);
6014 	if (ret && ret == -ENOSPC) {
6015 		/* whoops, lets try again with the full transaction */
6016 		btrfs_end_transaction(trans);
6017 		trans = btrfs_start_transaction(root, 1);
6018 		if (IS_ERR(trans))
6019 			return PTR_ERR(trans);
6020 
6021 		ret = btrfs_update_inode(trans, root, inode);
6022 	}
6023 	btrfs_end_transaction(trans);
6024 	if (BTRFS_I(inode)->delayed_node)
6025 		btrfs_balance_delayed_items(fs_info);
6026 
6027 	return ret;
6028 }
6029 
6030 /*
6031  * This is a copy of file_update_time.  We need this so we can return error on
6032  * ENOSPC for updating the inode in the case of file write and mmap writes.
6033  */
6034 static int btrfs_update_time(struct inode *inode, struct timespec64 *now,
6035 			     int flags)
6036 {
6037 	struct btrfs_root *root = BTRFS_I(inode)->root;
6038 	bool dirty = flags & ~S_VERSION;
6039 
6040 	if (btrfs_root_readonly(root))
6041 		return -EROFS;
6042 
6043 	if (flags & S_VERSION)
6044 		dirty |= inode_maybe_inc_iversion(inode, dirty);
6045 	if (flags & S_CTIME)
6046 		inode->i_ctime = *now;
6047 	if (flags & S_MTIME)
6048 		inode->i_mtime = *now;
6049 	if (flags & S_ATIME)
6050 		inode->i_atime = *now;
6051 	return dirty ? btrfs_dirty_inode(inode) : 0;
6052 }
6053 
6054 /*
6055  * find the highest existing sequence number in a directory
6056  * and then set the in-memory index_cnt variable to reflect
6057  * free sequence numbers
6058  */
6059 static int btrfs_set_inode_index_count(struct btrfs_inode *inode)
6060 {
6061 	struct btrfs_root *root = inode->root;
6062 	struct btrfs_key key, found_key;
6063 	struct btrfs_path *path;
6064 	struct extent_buffer *leaf;
6065 	int ret;
6066 
6067 	key.objectid = btrfs_ino(inode);
6068 	key.type = BTRFS_DIR_INDEX_KEY;
6069 	key.offset = (u64)-1;
6070 
6071 	path = btrfs_alloc_path();
6072 	if (!path)
6073 		return -ENOMEM;
6074 
6075 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6076 	if (ret < 0)
6077 		goto out;
6078 	/* FIXME: we should be able to handle this */
6079 	if (ret == 0)
6080 		goto out;
6081 	ret = 0;
6082 
6083 	/*
6084 	 * MAGIC NUMBER EXPLANATION:
6085 	 * since we search a directory based on f_pos we have to start at 2
6086 	 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
6087 	 * else has to start at 2
6088 	 */
6089 	if (path->slots[0] == 0) {
6090 		inode->index_cnt = 2;
6091 		goto out;
6092 	}
6093 
6094 	path->slots[0]--;
6095 
6096 	leaf = path->nodes[0];
6097 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6098 
6099 	if (found_key.objectid != btrfs_ino(inode) ||
6100 	    found_key.type != BTRFS_DIR_INDEX_KEY) {
6101 		inode->index_cnt = 2;
6102 		goto out;
6103 	}
6104 
6105 	inode->index_cnt = found_key.offset + 1;
6106 out:
6107 	btrfs_free_path(path);
6108 	return ret;
6109 }
6110 
6111 /*
6112  * helper to find a free sequence number in a given directory.  This current
6113  * code is very simple, later versions will do smarter things in the btree
6114  */
6115 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index)
6116 {
6117 	int ret = 0;
6118 
6119 	if (dir->index_cnt == (u64)-1) {
6120 		ret = btrfs_inode_delayed_dir_index_count(dir);
6121 		if (ret) {
6122 			ret = btrfs_set_inode_index_count(dir);
6123 			if (ret)
6124 				return ret;
6125 		}
6126 	}
6127 
6128 	*index = dir->index_cnt;
6129 	dir->index_cnt++;
6130 
6131 	return ret;
6132 }
6133 
6134 static int btrfs_insert_inode_locked(struct inode *inode)
6135 {
6136 	struct btrfs_iget_args args;
6137 	args.location = &BTRFS_I(inode)->location;
6138 	args.root = BTRFS_I(inode)->root;
6139 
6140 	return insert_inode_locked4(inode,
6141 		   btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
6142 		   btrfs_find_actor, &args);
6143 }
6144 
6145 /*
6146  * Inherit flags from the parent inode.
6147  *
6148  * Currently only the compression flags and the cow flags are inherited.
6149  */
6150 static void btrfs_inherit_iflags(struct inode *inode, struct inode *dir)
6151 {
6152 	unsigned int flags;
6153 
6154 	if (!dir)
6155 		return;
6156 
6157 	flags = BTRFS_I(dir)->flags;
6158 
6159 	if (flags & BTRFS_INODE_NOCOMPRESS) {
6160 		BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS;
6161 		BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
6162 	} else if (flags & BTRFS_INODE_COMPRESS) {
6163 		BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS;
6164 		BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS;
6165 	}
6166 
6167 	if (flags & BTRFS_INODE_NODATACOW) {
6168 		BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
6169 		if (S_ISREG(inode->i_mode))
6170 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6171 	}
6172 
6173 	btrfs_sync_inode_flags_to_i_flags(inode);
6174 }
6175 
6176 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
6177 				     struct btrfs_root *root,
6178 				     struct inode *dir,
6179 				     const char *name, int name_len,
6180 				     u64 ref_objectid, u64 objectid,
6181 				     umode_t mode, u64 *index)
6182 {
6183 	struct btrfs_fs_info *fs_info = root->fs_info;
6184 	struct inode *inode;
6185 	struct btrfs_inode_item *inode_item;
6186 	struct btrfs_key *location;
6187 	struct btrfs_path *path;
6188 	struct btrfs_inode_ref *ref;
6189 	struct btrfs_key key[2];
6190 	u32 sizes[2];
6191 	int nitems = name ? 2 : 1;
6192 	unsigned long ptr;
6193 	int ret;
6194 
6195 	path = btrfs_alloc_path();
6196 	if (!path)
6197 		return ERR_PTR(-ENOMEM);
6198 
6199 	inode = new_inode(fs_info->sb);
6200 	if (!inode) {
6201 		btrfs_free_path(path);
6202 		return ERR_PTR(-ENOMEM);
6203 	}
6204 
6205 	/*
6206 	 * O_TMPFILE, set link count to 0, so that after this point,
6207 	 * we fill in an inode item with the correct link count.
6208 	 */
6209 	if (!name)
6210 		set_nlink(inode, 0);
6211 
6212 	/*
6213 	 * we have to initialize this early, so we can reclaim the inode
6214 	 * number if we fail afterwards in this function.
6215 	 */
6216 	inode->i_ino = objectid;
6217 
6218 	if (dir && name) {
6219 		trace_btrfs_inode_request(dir);
6220 
6221 		ret = btrfs_set_inode_index(BTRFS_I(dir), index);
6222 		if (ret) {
6223 			btrfs_free_path(path);
6224 			iput(inode);
6225 			return ERR_PTR(ret);
6226 		}
6227 	} else if (dir) {
6228 		*index = 0;
6229 	}
6230 	/*
6231 	 * index_cnt is ignored for everything but a dir,
6232 	 * btrfs_set_inode_index_count has an explanation for the magic
6233 	 * number
6234 	 */
6235 	BTRFS_I(inode)->index_cnt = 2;
6236 	BTRFS_I(inode)->dir_index = *index;
6237 	BTRFS_I(inode)->root = root;
6238 	BTRFS_I(inode)->generation = trans->transid;
6239 	inode->i_generation = BTRFS_I(inode)->generation;
6240 
6241 	/*
6242 	 * We could have gotten an inode number from somebody who was fsynced
6243 	 * and then removed in this same transaction, so let's just set full
6244 	 * sync since it will be a full sync anyway and this will blow away the
6245 	 * old info in the log.
6246 	 */
6247 	set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
6248 
6249 	key[0].objectid = objectid;
6250 	key[0].type = BTRFS_INODE_ITEM_KEY;
6251 	key[0].offset = 0;
6252 
6253 	sizes[0] = sizeof(struct btrfs_inode_item);
6254 
6255 	if (name) {
6256 		/*
6257 		 * Start new inodes with an inode_ref. This is slightly more
6258 		 * efficient for small numbers of hard links since they will
6259 		 * be packed into one item. Extended refs will kick in if we
6260 		 * add more hard links than can fit in the ref item.
6261 		 */
6262 		key[1].objectid = objectid;
6263 		key[1].type = BTRFS_INODE_REF_KEY;
6264 		key[1].offset = ref_objectid;
6265 
6266 		sizes[1] = name_len + sizeof(*ref);
6267 	}
6268 
6269 	location = &BTRFS_I(inode)->location;
6270 	location->objectid = objectid;
6271 	location->offset = 0;
6272 	location->type = BTRFS_INODE_ITEM_KEY;
6273 
6274 	ret = btrfs_insert_inode_locked(inode);
6275 	if (ret < 0) {
6276 		iput(inode);
6277 		goto fail;
6278 	}
6279 
6280 	path->leave_spinning = 1;
6281 	ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems);
6282 	if (ret != 0)
6283 		goto fail_unlock;
6284 
6285 	inode_init_owner(inode, dir, mode);
6286 	inode_set_bytes(inode, 0);
6287 
6288 	inode->i_mtime = current_time(inode);
6289 	inode->i_atime = inode->i_mtime;
6290 	inode->i_ctime = inode->i_mtime;
6291 	BTRFS_I(inode)->i_otime = inode->i_mtime;
6292 
6293 	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6294 				  struct btrfs_inode_item);
6295 	memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item,
6296 			     sizeof(*inode_item));
6297 	fill_inode_item(trans, path->nodes[0], inode_item, inode);
6298 
6299 	if (name) {
6300 		ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6301 				     struct btrfs_inode_ref);
6302 		btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
6303 		btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
6304 		ptr = (unsigned long)(ref + 1);
6305 		write_extent_buffer(path->nodes[0], name, ptr, name_len);
6306 	}
6307 
6308 	btrfs_mark_buffer_dirty(path->nodes[0]);
6309 	btrfs_free_path(path);
6310 
6311 	btrfs_inherit_iflags(inode, dir);
6312 
6313 	if (S_ISREG(mode)) {
6314 		if (btrfs_test_opt(fs_info, NODATASUM))
6315 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6316 		if (btrfs_test_opt(fs_info, NODATACOW))
6317 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6318 				BTRFS_INODE_NODATASUM;
6319 	}
6320 
6321 	inode_tree_add(inode);
6322 
6323 	trace_btrfs_inode_new(inode);
6324 	btrfs_set_inode_last_trans(trans, inode);
6325 
6326 	btrfs_update_root_times(trans, root);
6327 
6328 	ret = btrfs_inode_inherit_props(trans, inode, dir);
6329 	if (ret)
6330 		btrfs_err(fs_info,
6331 			  "error inheriting props for ino %llu (root %llu): %d",
6332 			btrfs_ino(BTRFS_I(inode)), root->root_key.objectid, ret);
6333 
6334 	return inode;
6335 
6336 fail_unlock:
6337 	discard_new_inode(inode);
6338 fail:
6339 	if (dir && name)
6340 		BTRFS_I(dir)->index_cnt--;
6341 	btrfs_free_path(path);
6342 	return ERR_PTR(ret);
6343 }
6344 
6345 static inline u8 btrfs_inode_type(struct inode *inode)
6346 {
6347 	return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
6348 }
6349 
6350 /*
6351  * utility function to add 'inode' into 'parent_inode' with
6352  * a give name and a given sequence number.
6353  * if 'add_backref' is true, also insert a backref from the
6354  * inode to the parent directory.
6355  */
6356 int btrfs_add_link(struct btrfs_trans_handle *trans,
6357 		   struct btrfs_inode *parent_inode, struct btrfs_inode *inode,
6358 		   const char *name, int name_len, int add_backref, u64 index)
6359 {
6360 	int ret = 0;
6361 	struct btrfs_key key;
6362 	struct btrfs_root *root = parent_inode->root;
6363 	u64 ino = btrfs_ino(inode);
6364 	u64 parent_ino = btrfs_ino(parent_inode);
6365 
6366 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6367 		memcpy(&key, &inode->root->root_key, sizeof(key));
6368 	} else {
6369 		key.objectid = ino;
6370 		key.type = BTRFS_INODE_ITEM_KEY;
6371 		key.offset = 0;
6372 	}
6373 
6374 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6375 		ret = btrfs_add_root_ref(trans, key.objectid,
6376 					 root->root_key.objectid, parent_ino,
6377 					 index, name, name_len);
6378 	} else if (add_backref) {
6379 		ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
6380 					     parent_ino, index);
6381 	}
6382 
6383 	/* Nothing to clean up yet */
6384 	if (ret)
6385 		return ret;
6386 
6387 	ret = btrfs_insert_dir_item(trans, name, name_len, parent_inode, &key,
6388 				    btrfs_inode_type(&inode->vfs_inode), index);
6389 	if (ret == -EEXIST || ret == -EOVERFLOW)
6390 		goto fail_dir_item;
6391 	else if (ret) {
6392 		btrfs_abort_transaction(trans, ret);
6393 		return ret;
6394 	}
6395 
6396 	btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size +
6397 			   name_len * 2);
6398 	inode_inc_iversion(&parent_inode->vfs_inode);
6399 	parent_inode->vfs_inode.i_mtime = parent_inode->vfs_inode.i_ctime =
6400 		current_time(&parent_inode->vfs_inode);
6401 	ret = btrfs_update_inode(trans, root, &parent_inode->vfs_inode);
6402 	if (ret)
6403 		btrfs_abort_transaction(trans, ret);
6404 	return ret;
6405 
6406 fail_dir_item:
6407 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6408 		u64 local_index;
6409 		int err;
6410 		err = btrfs_del_root_ref(trans, key.objectid,
6411 					 root->root_key.objectid, parent_ino,
6412 					 &local_index, name, name_len);
6413 		if (err)
6414 			btrfs_abort_transaction(trans, err);
6415 	} else if (add_backref) {
6416 		u64 local_index;
6417 		int err;
6418 
6419 		err = btrfs_del_inode_ref(trans, root, name, name_len,
6420 					  ino, parent_ino, &local_index);
6421 		if (err)
6422 			btrfs_abort_transaction(trans, err);
6423 	}
6424 
6425 	/* Return the original error code */
6426 	return ret;
6427 }
6428 
6429 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
6430 			    struct btrfs_inode *dir, struct dentry *dentry,
6431 			    struct btrfs_inode *inode, int backref, u64 index)
6432 {
6433 	int err = btrfs_add_link(trans, dir, inode,
6434 				 dentry->d_name.name, dentry->d_name.len,
6435 				 backref, index);
6436 	if (err > 0)
6437 		err = -EEXIST;
6438 	return err;
6439 }
6440 
6441 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
6442 			umode_t mode, dev_t rdev)
6443 {
6444 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6445 	struct btrfs_trans_handle *trans;
6446 	struct btrfs_root *root = BTRFS_I(dir)->root;
6447 	struct inode *inode = NULL;
6448 	int err;
6449 	u64 objectid;
6450 	u64 index = 0;
6451 
6452 	/*
6453 	 * 2 for inode item and ref
6454 	 * 2 for dir items
6455 	 * 1 for xattr if selinux is on
6456 	 */
6457 	trans = btrfs_start_transaction(root, 5);
6458 	if (IS_ERR(trans))
6459 		return PTR_ERR(trans);
6460 
6461 	err = btrfs_find_free_ino(root, &objectid);
6462 	if (err)
6463 		goto out_unlock;
6464 
6465 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6466 			dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6467 			mode, &index);
6468 	if (IS_ERR(inode)) {
6469 		err = PTR_ERR(inode);
6470 		inode = NULL;
6471 		goto out_unlock;
6472 	}
6473 
6474 	/*
6475 	* If the active LSM wants to access the inode during
6476 	* d_instantiate it needs these. Smack checks to see
6477 	* if the filesystem supports xattrs by looking at the
6478 	* ops vector.
6479 	*/
6480 	inode->i_op = &btrfs_special_inode_operations;
6481 	init_special_inode(inode, inode->i_mode, rdev);
6482 
6483 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6484 	if (err)
6485 		goto out_unlock;
6486 
6487 	err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6488 			0, index);
6489 	if (err)
6490 		goto out_unlock;
6491 
6492 	btrfs_update_inode(trans, root, inode);
6493 	d_instantiate_new(dentry, inode);
6494 
6495 out_unlock:
6496 	btrfs_end_transaction(trans);
6497 	btrfs_btree_balance_dirty(fs_info);
6498 	if (err && inode) {
6499 		inode_dec_link_count(inode);
6500 		discard_new_inode(inode);
6501 	}
6502 	return err;
6503 }
6504 
6505 static int btrfs_create(struct inode *dir, struct dentry *dentry,
6506 			umode_t mode, bool excl)
6507 {
6508 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6509 	struct btrfs_trans_handle *trans;
6510 	struct btrfs_root *root = BTRFS_I(dir)->root;
6511 	struct inode *inode = NULL;
6512 	int err;
6513 	u64 objectid;
6514 	u64 index = 0;
6515 
6516 	/*
6517 	 * 2 for inode item and ref
6518 	 * 2 for dir items
6519 	 * 1 for xattr if selinux is on
6520 	 */
6521 	trans = btrfs_start_transaction(root, 5);
6522 	if (IS_ERR(trans))
6523 		return PTR_ERR(trans);
6524 
6525 	err = btrfs_find_free_ino(root, &objectid);
6526 	if (err)
6527 		goto out_unlock;
6528 
6529 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6530 			dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6531 			mode, &index);
6532 	if (IS_ERR(inode)) {
6533 		err = PTR_ERR(inode);
6534 		inode = NULL;
6535 		goto out_unlock;
6536 	}
6537 	/*
6538 	* If the active LSM wants to access the inode during
6539 	* d_instantiate it needs these. Smack checks to see
6540 	* if the filesystem supports xattrs by looking at the
6541 	* ops vector.
6542 	*/
6543 	inode->i_fop = &btrfs_file_operations;
6544 	inode->i_op = &btrfs_file_inode_operations;
6545 	inode->i_mapping->a_ops = &btrfs_aops;
6546 
6547 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6548 	if (err)
6549 		goto out_unlock;
6550 
6551 	err = btrfs_update_inode(trans, root, inode);
6552 	if (err)
6553 		goto out_unlock;
6554 
6555 	err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6556 			0, index);
6557 	if (err)
6558 		goto out_unlock;
6559 
6560 	BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
6561 	d_instantiate_new(dentry, inode);
6562 
6563 out_unlock:
6564 	btrfs_end_transaction(trans);
6565 	if (err && inode) {
6566 		inode_dec_link_count(inode);
6567 		discard_new_inode(inode);
6568 	}
6569 	btrfs_btree_balance_dirty(fs_info);
6570 	return err;
6571 }
6572 
6573 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6574 		      struct dentry *dentry)
6575 {
6576 	struct btrfs_trans_handle *trans = NULL;
6577 	struct btrfs_root *root = BTRFS_I(dir)->root;
6578 	struct inode *inode = d_inode(old_dentry);
6579 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
6580 	u64 index;
6581 	int err;
6582 	int drop_inode = 0;
6583 
6584 	/* do not allow sys_link's with other subvols of the same device */
6585 	if (root->root_key.objectid != BTRFS_I(inode)->root->root_key.objectid)
6586 		return -EXDEV;
6587 
6588 	if (inode->i_nlink >= BTRFS_LINK_MAX)
6589 		return -EMLINK;
6590 
6591 	err = btrfs_set_inode_index(BTRFS_I(dir), &index);
6592 	if (err)
6593 		goto fail;
6594 
6595 	/*
6596 	 * 2 items for inode and inode ref
6597 	 * 2 items for dir items
6598 	 * 1 item for parent inode
6599 	 * 1 item for orphan item deletion if O_TMPFILE
6600 	 */
6601 	trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6);
6602 	if (IS_ERR(trans)) {
6603 		err = PTR_ERR(trans);
6604 		trans = NULL;
6605 		goto fail;
6606 	}
6607 
6608 	/* There are several dir indexes for this inode, clear the cache. */
6609 	BTRFS_I(inode)->dir_index = 0ULL;
6610 	inc_nlink(inode);
6611 	inode_inc_iversion(inode);
6612 	inode->i_ctime = current_time(inode);
6613 	ihold(inode);
6614 	set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
6615 
6616 	err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6617 			1, index);
6618 
6619 	if (err) {
6620 		drop_inode = 1;
6621 	} else {
6622 		struct dentry *parent = dentry->d_parent;
6623 		int ret;
6624 
6625 		err = btrfs_update_inode(trans, root, inode);
6626 		if (err)
6627 			goto fail;
6628 		if (inode->i_nlink == 1) {
6629 			/*
6630 			 * If new hard link count is 1, it's a file created
6631 			 * with open(2) O_TMPFILE flag.
6632 			 */
6633 			err = btrfs_orphan_del(trans, BTRFS_I(inode));
6634 			if (err)
6635 				goto fail;
6636 		}
6637 		BTRFS_I(inode)->last_link_trans = trans->transid;
6638 		d_instantiate(dentry, inode);
6639 		ret = btrfs_log_new_name(trans, BTRFS_I(inode), NULL, parent,
6640 					 true, NULL);
6641 		if (ret == BTRFS_NEED_TRANS_COMMIT) {
6642 			err = btrfs_commit_transaction(trans);
6643 			trans = NULL;
6644 		}
6645 	}
6646 
6647 fail:
6648 	if (trans)
6649 		btrfs_end_transaction(trans);
6650 	if (drop_inode) {
6651 		inode_dec_link_count(inode);
6652 		iput(inode);
6653 	}
6654 	btrfs_btree_balance_dirty(fs_info);
6655 	return err;
6656 }
6657 
6658 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
6659 {
6660 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6661 	struct inode *inode = NULL;
6662 	struct btrfs_trans_handle *trans;
6663 	struct btrfs_root *root = BTRFS_I(dir)->root;
6664 	int err = 0;
6665 	u64 objectid = 0;
6666 	u64 index = 0;
6667 
6668 	/*
6669 	 * 2 items for inode and ref
6670 	 * 2 items for dir items
6671 	 * 1 for xattr if selinux is on
6672 	 */
6673 	trans = btrfs_start_transaction(root, 5);
6674 	if (IS_ERR(trans))
6675 		return PTR_ERR(trans);
6676 
6677 	err = btrfs_find_free_ino(root, &objectid);
6678 	if (err)
6679 		goto out_fail;
6680 
6681 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6682 			dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6683 			S_IFDIR | mode, &index);
6684 	if (IS_ERR(inode)) {
6685 		err = PTR_ERR(inode);
6686 		inode = NULL;
6687 		goto out_fail;
6688 	}
6689 
6690 	/* these must be set before we unlock the inode */
6691 	inode->i_op = &btrfs_dir_inode_operations;
6692 	inode->i_fop = &btrfs_dir_file_operations;
6693 
6694 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6695 	if (err)
6696 		goto out_fail;
6697 
6698 	btrfs_i_size_write(BTRFS_I(inode), 0);
6699 	err = btrfs_update_inode(trans, root, inode);
6700 	if (err)
6701 		goto out_fail;
6702 
6703 	err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
6704 			dentry->d_name.name,
6705 			dentry->d_name.len, 0, index);
6706 	if (err)
6707 		goto out_fail;
6708 
6709 	d_instantiate_new(dentry, inode);
6710 
6711 out_fail:
6712 	btrfs_end_transaction(trans);
6713 	if (err && inode) {
6714 		inode_dec_link_count(inode);
6715 		discard_new_inode(inode);
6716 	}
6717 	btrfs_btree_balance_dirty(fs_info);
6718 	return err;
6719 }
6720 
6721 static noinline int uncompress_inline(struct btrfs_path *path,
6722 				      struct page *page,
6723 				      size_t pg_offset, u64 extent_offset,
6724 				      struct btrfs_file_extent_item *item)
6725 {
6726 	int ret;
6727 	struct extent_buffer *leaf = path->nodes[0];
6728 	char *tmp;
6729 	size_t max_size;
6730 	unsigned long inline_size;
6731 	unsigned long ptr;
6732 	int compress_type;
6733 
6734 	WARN_ON(pg_offset != 0);
6735 	compress_type = btrfs_file_extent_compression(leaf, item);
6736 	max_size = btrfs_file_extent_ram_bytes(leaf, item);
6737 	inline_size = btrfs_file_extent_inline_item_len(leaf,
6738 					btrfs_item_nr(path->slots[0]));
6739 	tmp = kmalloc(inline_size, GFP_NOFS);
6740 	if (!tmp)
6741 		return -ENOMEM;
6742 	ptr = btrfs_file_extent_inline_start(item);
6743 
6744 	read_extent_buffer(leaf, tmp, ptr, inline_size);
6745 
6746 	max_size = min_t(unsigned long, PAGE_SIZE, max_size);
6747 	ret = btrfs_decompress(compress_type, tmp, page,
6748 			       extent_offset, inline_size, max_size);
6749 
6750 	/*
6751 	 * decompression code contains a memset to fill in any space between the end
6752 	 * of the uncompressed data and the end of max_size in case the decompressed
6753 	 * data ends up shorter than ram_bytes.  That doesn't cover the hole between
6754 	 * the end of an inline extent and the beginning of the next block, so we
6755 	 * cover that region here.
6756 	 */
6757 
6758 	if (max_size + pg_offset < PAGE_SIZE) {
6759 		char *map = kmap(page);
6760 		memset(map + pg_offset + max_size, 0, PAGE_SIZE - max_size - pg_offset);
6761 		kunmap(page);
6762 	}
6763 	kfree(tmp);
6764 	return ret;
6765 }
6766 
6767 /*
6768  * a bit scary, this does extent mapping from logical file offset to the disk.
6769  * the ugly parts come from merging extents from the disk with the in-ram
6770  * representation.  This gets more complex because of the data=ordered code,
6771  * where the in-ram extents might be locked pending data=ordered completion.
6772  *
6773  * This also copies inline extents directly into the page.
6774  */
6775 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode,
6776 				    struct page *page,
6777 				    size_t pg_offset, u64 start, u64 len,
6778 				    int create)
6779 {
6780 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
6781 	int ret;
6782 	int err = 0;
6783 	u64 extent_start = 0;
6784 	u64 extent_end = 0;
6785 	u64 objectid = btrfs_ino(inode);
6786 	u8 extent_type;
6787 	struct btrfs_path *path = NULL;
6788 	struct btrfs_root *root = inode->root;
6789 	struct btrfs_file_extent_item *item;
6790 	struct extent_buffer *leaf;
6791 	struct btrfs_key found_key;
6792 	struct extent_map *em = NULL;
6793 	struct extent_map_tree *em_tree = &inode->extent_tree;
6794 	struct extent_io_tree *io_tree = &inode->io_tree;
6795 	const bool new_inline = !page || create;
6796 
6797 	read_lock(&em_tree->lock);
6798 	em = lookup_extent_mapping(em_tree, start, len);
6799 	if (em)
6800 		em->bdev = fs_info->fs_devices->latest_bdev;
6801 	read_unlock(&em_tree->lock);
6802 
6803 	if (em) {
6804 		if (em->start > start || em->start + em->len <= start)
6805 			free_extent_map(em);
6806 		else if (em->block_start == EXTENT_MAP_INLINE && page)
6807 			free_extent_map(em);
6808 		else
6809 			goto out;
6810 	}
6811 	em = alloc_extent_map();
6812 	if (!em) {
6813 		err = -ENOMEM;
6814 		goto out;
6815 	}
6816 	em->bdev = fs_info->fs_devices->latest_bdev;
6817 	em->start = EXTENT_MAP_HOLE;
6818 	em->orig_start = EXTENT_MAP_HOLE;
6819 	em->len = (u64)-1;
6820 	em->block_len = (u64)-1;
6821 
6822 	path = btrfs_alloc_path();
6823 	if (!path) {
6824 		err = -ENOMEM;
6825 		goto out;
6826 	}
6827 
6828 	/* Chances are we'll be called again, so go ahead and do readahead */
6829 	path->reada = READA_FORWARD;
6830 
6831 	/*
6832 	 * Unless we're going to uncompress the inline extent, no sleep would
6833 	 * happen.
6834 	 */
6835 	path->leave_spinning = 1;
6836 
6837 	ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0);
6838 	if (ret < 0) {
6839 		err = ret;
6840 		goto out;
6841 	} else if (ret > 0) {
6842 		if (path->slots[0] == 0)
6843 			goto not_found;
6844 		path->slots[0]--;
6845 	}
6846 
6847 	leaf = path->nodes[0];
6848 	item = btrfs_item_ptr(leaf, path->slots[0],
6849 			      struct btrfs_file_extent_item);
6850 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6851 	if (found_key.objectid != objectid ||
6852 	    found_key.type != BTRFS_EXTENT_DATA_KEY) {
6853 		/*
6854 		 * If we backup past the first extent we want to move forward
6855 		 * and see if there is an extent in front of us, otherwise we'll
6856 		 * say there is a hole for our whole search range which can
6857 		 * cause problems.
6858 		 */
6859 		extent_end = start;
6860 		goto next;
6861 	}
6862 
6863 	extent_type = btrfs_file_extent_type(leaf, item);
6864 	extent_start = found_key.offset;
6865 	if (extent_type == BTRFS_FILE_EXTENT_REG ||
6866 	    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
6867 		extent_end = extent_start +
6868 		       btrfs_file_extent_num_bytes(leaf, item);
6869 
6870 		trace_btrfs_get_extent_show_fi_regular(inode, leaf, item,
6871 						       extent_start);
6872 	} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
6873 		size_t size;
6874 
6875 		size = btrfs_file_extent_ram_bytes(leaf, item);
6876 		extent_end = ALIGN(extent_start + size,
6877 				   fs_info->sectorsize);
6878 
6879 		trace_btrfs_get_extent_show_fi_inline(inode, leaf, item,
6880 						      path->slots[0],
6881 						      extent_start);
6882 	}
6883 next:
6884 	if (start >= extent_end) {
6885 		path->slots[0]++;
6886 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6887 			ret = btrfs_next_leaf(root, path);
6888 			if (ret < 0) {
6889 				err = ret;
6890 				goto out;
6891 			} else if (ret > 0) {
6892 				goto not_found;
6893 			}
6894 			leaf = path->nodes[0];
6895 		}
6896 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6897 		if (found_key.objectid != objectid ||
6898 		    found_key.type != BTRFS_EXTENT_DATA_KEY)
6899 			goto not_found;
6900 		if (start + len <= found_key.offset)
6901 			goto not_found;
6902 		if (start > found_key.offset)
6903 			goto next;
6904 
6905 		/* New extent overlaps with existing one */
6906 		em->start = start;
6907 		em->orig_start = start;
6908 		em->len = found_key.offset - start;
6909 		em->block_start = EXTENT_MAP_HOLE;
6910 		goto insert;
6911 	}
6912 
6913 	btrfs_extent_item_to_extent_map(inode, path, item,
6914 			new_inline, em);
6915 
6916 	if (extent_type == BTRFS_FILE_EXTENT_REG ||
6917 	    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
6918 		goto insert;
6919 	} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
6920 		unsigned long ptr;
6921 		char *map;
6922 		size_t size;
6923 		size_t extent_offset;
6924 		size_t copy_size;
6925 
6926 		if (new_inline)
6927 			goto out;
6928 
6929 		size = btrfs_file_extent_ram_bytes(leaf, item);
6930 		extent_offset = page_offset(page) + pg_offset - extent_start;
6931 		copy_size = min_t(u64, PAGE_SIZE - pg_offset,
6932 				  size - extent_offset);
6933 		em->start = extent_start + extent_offset;
6934 		em->len = ALIGN(copy_size, fs_info->sectorsize);
6935 		em->orig_block_len = em->len;
6936 		em->orig_start = em->start;
6937 		ptr = btrfs_file_extent_inline_start(item) + extent_offset;
6938 
6939 		btrfs_set_path_blocking(path);
6940 		if (!PageUptodate(page)) {
6941 			if (btrfs_file_extent_compression(leaf, item) !=
6942 			    BTRFS_COMPRESS_NONE) {
6943 				ret = uncompress_inline(path, page, pg_offset,
6944 							extent_offset, item);
6945 				if (ret) {
6946 					err = ret;
6947 					goto out;
6948 				}
6949 			} else {
6950 				map = kmap(page);
6951 				read_extent_buffer(leaf, map + pg_offset, ptr,
6952 						   copy_size);
6953 				if (pg_offset + copy_size < PAGE_SIZE) {
6954 					memset(map + pg_offset + copy_size, 0,
6955 					       PAGE_SIZE - pg_offset -
6956 					       copy_size);
6957 				}
6958 				kunmap(page);
6959 			}
6960 			flush_dcache_page(page);
6961 		}
6962 		set_extent_uptodate(io_tree, em->start,
6963 				    extent_map_end(em) - 1, NULL, GFP_NOFS);
6964 		goto insert;
6965 	}
6966 not_found:
6967 	em->start = start;
6968 	em->orig_start = start;
6969 	em->len = len;
6970 	em->block_start = EXTENT_MAP_HOLE;
6971 insert:
6972 	btrfs_release_path(path);
6973 	if (em->start > start || extent_map_end(em) <= start) {
6974 		btrfs_err(fs_info,
6975 			  "bad extent! em: [%llu %llu] passed [%llu %llu]",
6976 			  em->start, em->len, start, len);
6977 		err = -EIO;
6978 		goto out;
6979 	}
6980 
6981 	err = 0;
6982 	write_lock(&em_tree->lock);
6983 	err = btrfs_add_extent_mapping(fs_info, em_tree, &em, start, len);
6984 	write_unlock(&em_tree->lock);
6985 out:
6986 	btrfs_free_path(path);
6987 
6988 	trace_btrfs_get_extent(root, inode, em);
6989 
6990 	if (err) {
6991 		free_extent_map(em);
6992 		return ERR_PTR(err);
6993 	}
6994 	BUG_ON(!em); /* Error is always set */
6995 	return em;
6996 }
6997 
6998 struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode,
6999 					   u64 start, u64 len)
7000 {
7001 	struct extent_map *em;
7002 	struct extent_map *hole_em = NULL;
7003 	u64 delalloc_start = start;
7004 	u64 end;
7005 	u64 delalloc_len;
7006 	u64 delalloc_end;
7007 	int err = 0;
7008 
7009 	em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
7010 	if (IS_ERR(em))
7011 		return em;
7012 	/*
7013 	 * If our em maps to:
7014 	 * - a hole or
7015 	 * - a pre-alloc extent,
7016 	 * there might actually be delalloc bytes behind it.
7017 	 */
7018 	if (em->block_start != EXTENT_MAP_HOLE &&
7019 	    !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7020 		return em;
7021 	else
7022 		hole_em = em;
7023 
7024 	/* check to see if we've wrapped (len == -1 or similar) */
7025 	end = start + len;
7026 	if (end < start)
7027 		end = (u64)-1;
7028 	else
7029 		end -= 1;
7030 
7031 	em = NULL;
7032 
7033 	/* ok, we didn't find anything, lets look for delalloc */
7034 	delalloc_len = count_range_bits(&inode->io_tree, &delalloc_start,
7035 				 end, len, EXTENT_DELALLOC, 1);
7036 	delalloc_end = delalloc_start + delalloc_len;
7037 	if (delalloc_end < delalloc_start)
7038 		delalloc_end = (u64)-1;
7039 
7040 	/*
7041 	 * We didn't find anything useful, return the original results from
7042 	 * get_extent()
7043 	 */
7044 	if (delalloc_start > end || delalloc_end <= start) {
7045 		em = hole_em;
7046 		hole_em = NULL;
7047 		goto out;
7048 	}
7049 
7050 	/*
7051 	 * Adjust the delalloc_start to make sure it doesn't go backwards from
7052 	 * the start they passed in
7053 	 */
7054 	delalloc_start = max(start, delalloc_start);
7055 	delalloc_len = delalloc_end - delalloc_start;
7056 
7057 	if (delalloc_len > 0) {
7058 		u64 hole_start;
7059 		u64 hole_len;
7060 		const u64 hole_end = extent_map_end(hole_em);
7061 
7062 		em = alloc_extent_map();
7063 		if (!em) {
7064 			err = -ENOMEM;
7065 			goto out;
7066 		}
7067 		em->bdev = NULL;
7068 
7069 		ASSERT(hole_em);
7070 		/*
7071 		 * When btrfs_get_extent can't find anything it returns one
7072 		 * huge hole
7073 		 *
7074 		 * Make sure what it found really fits our range, and adjust to
7075 		 * make sure it is based on the start from the caller
7076 		 */
7077 		if (hole_end <= start || hole_em->start > end) {
7078 		       free_extent_map(hole_em);
7079 		       hole_em = NULL;
7080 		} else {
7081 		       hole_start = max(hole_em->start, start);
7082 		       hole_len = hole_end - hole_start;
7083 		}
7084 
7085 		if (hole_em && delalloc_start > hole_start) {
7086 			/*
7087 			 * Our hole starts before our delalloc, so we have to
7088 			 * return just the parts of the hole that go until the
7089 			 * delalloc starts
7090 			 */
7091 			em->len = min(hole_len, delalloc_start - hole_start);
7092 			em->start = hole_start;
7093 			em->orig_start = hole_start;
7094 			/*
7095 			 * Don't adjust block start at all, it is fixed at
7096 			 * EXTENT_MAP_HOLE
7097 			 */
7098 			em->block_start = hole_em->block_start;
7099 			em->block_len = hole_len;
7100 			if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
7101 				set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
7102 		} else {
7103 			/*
7104 			 * Hole is out of passed range or it starts after
7105 			 * delalloc range
7106 			 */
7107 			em->start = delalloc_start;
7108 			em->len = delalloc_len;
7109 			em->orig_start = delalloc_start;
7110 			em->block_start = EXTENT_MAP_DELALLOC;
7111 			em->block_len = delalloc_len;
7112 		}
7113 	} else {
7114 		return hole_em;
7115 	}
7116 out:
7117 
7118 	free_extent_map(hole_em);
7119 	if (err) {
7120 		free_extent_map(em);
7121 		return ERR_PTR(err);
7122 	}
7123 	return em;
7124 }
7125 
7126 static struct extent_map *btrfs_create_dio_extent(struct inode *inode,
7127 						  const u64 start,
7128 						  const u64 len,
7129 						  const u64 orig_start,
7130 						  const u64 block_start,
7131 						  const u64 block_len,
7132 						  const u64 orig_block_len,
7133 						  const u64 ram_bytes,
7134 						  const int type)
7135 {
7136 	struct extent_map *em = NULL;
7137 	int ret;
7138 
7139 	if (type != BTRFS_ORDERED_NOCOW) {
7140 		em = create_io_em(inode, start, len, orig_start,
7141 				  block_start, block_len, orig_block_len,
7142 				  ram_bytes,
7143 				  BTRFS_COMPRESS_NONE, /* compress_type */
7144 				  type);
7145 		if (IS_ERR(em))
7146 			goto out;
7147 	}
7148 	ret = btrfs_add_ordered_extent_dio(inode, start, block_start,
7149 					   len, block_len, type);
7150 	if (ret) {
7151 		if (em) {
7152 			free_extent_map(em);
7153 			btrfs_drop_extent_cache(BTRFS_I(inode), start,
7154 						start + len - 1, 0);
7155 		}
7156 		em = ERR_PTR(ret);
7157 	}
7158  out:
7159 
7160 	return em;
7161 }
7162 
7163 static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
7164 						  u64 start, u64 len)
7165 {
7166 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7167 	struct btrfs_root *root = BTRFS_I(inode)->root;
7168 	struct extent_map *em;
7169 	struct btrfs_key ins;
7170 	u64 alloc_hint;
7171 	int ret;
7172 
7173 	alloc_hint = get_extent_allocation_hint(inode, start, len);
7174 	ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize,
7175 				   0, alloc_hint, &ins, 1, 1);
7176 	if (ret)
7177 		return ERR_PTR(ret);
7178 
7179 	em = btrfs_create_dio_extent(inode, start, ins.offset, start,
7180 				     ins.objectid, ins.offset, ins.offset,
7181 				     ins.offset, BTRFS_ORDERED_REGULAR);
7182 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
7183 	if (IS_ERR(em))
7184 		btrfs_free_reserved_extent(fs_info, ins.objectid,
7185 					   ins.offset, 1);
7186 
7187 	return em;
7188 }
7189 
7190 /*
7191  * returns 1 when the nocow is safe, < 1 on error, 0 if the
7192  * block must be cow'd
7193  */
7194 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7195 			      u64 *orig_start, u64 *orig_block_len,
7196 			      u64 *ram_bytes)
7197 {
7198 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7199 	struct btrfs_path *path;
7200 	int ret;
7201 	struct extent_buffer *leaf;
7202 	struct btrfs_root *root = BTRFS_I(inode)->root;
7203 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7204 	struct btrfs_file_extent_item *fi;
7205 	struct btrfs_key key;
7206 	u64 disk_bytenr;
7207 	u64 backref_offset;
7208 	u64 extent_end;
7209 	u64 num_bytes;
7210 	int slot;
7211 	int found_type;
7212 	bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
7213 
7214 	path = btrfs_alloc_path();
7215 	if (!path)
7216 		return -ENOMEM;
7217 
7218 	ret = btrfs_lookup_file_extent(NULL, root, path,
7219 			btrfs_ino(BTRFS_I(inode)), offset, 0);
7220 	if (ret < 0)
7221 		goto out;
7222 
7223 	slot = path->slots[0];
7224 	if (ret == 1) {
7225 		if (slot == 0) {
7226 			/* can't find the item, must cow */
7227 			ret = 0;
7228 			goto out;
7229 		}
7230 		slot--;
7231 	}
7232 	ret = 0;
7233 	leaf = path->nodes[0];
7234 	btrfs_item_key_to_cpu(leaf, &key, slot);
7235 	if (key.objectid != btrfs_ino(BTRFS_I(inode)) ||
7236 	    key.type != BTRFS_EXTENT_DATA_KEY) {
7237 		/* not our file or wrong item type, must cow */
7238 		goto out;
7239 	}
7240 
7241 	if (key.offset > offset) {
7242 		/* Wrong offset, must cow */
7243 		goto out;
7244 	}
7245 
7246 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
7247 	found_type = btrfs_file_extent_type(leaf, fi);
7248 	if (found_type != BTRFS_FILE_EXTENT_REG &&
7249 	    found_type != BTRFS_FILE_EXTENT_PREALLOC) {
7250 		/* not a regular extent, must cow */
7251 		goto out;
7252 	}
7253 
7254 	if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
7255 		goto out;
7256 
7257 	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
7258 	if (extent_end <= offset)
7259 		goto out;
7260 
7261 	disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
7262 	if (disk_bytenr == 0)
7263 		goto out;
7264 
7265 	if (btrfs_file_extent_compression(leaf, fi) ||
7266 	    btrfs_file_extent_encryption(leaf, fi) ||
7267 	    btrfs_file_extent_other_encoding(leaf, fi))
7268 		goto out;
7269 
7270 	/*
7271 	 * Do the same check as in btrfs_cross_ref_exist but without the
7272 	 * unnecessary search.
7273 	 */
7274 	if (btrfs_file_extent_generation(leaf, fi) <=
7275 	    btrfs_root_last_snapshot(&root->root_item))
7276 		goto out;
7277 
7278 	backref_offset = btrfs_file_extent_offset(leaf, fi);
7279 
7280 	if (orig_start) {
7281 		*orig_start = key.offset - backref_offset;
7282 		*orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
7283 		*ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
7284 	}
7285 
7286 	if (btrfs_extent_readonly(fs_info, disk_bytenr))
7287 		goto out;
7288 
7289 	num_bytes = min(offset + *len, extent_end) - offset;
7290 	if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7291 		u64 range_end;
7292 
7293 		range_end = round_up(offset + num_bytes,
7294 				     root->fs_info->sectorsize) - 1;
7295 		ret = test_range_bit(io_tree, offset, range_end,
7296 				     EXTENT_DELALLOC, 0, NULL);
7297 		if (ret) {
7298 			ret = -EAGAIN;
7299 			goto out;
7300 		}
7301 	}
7302 
7303 	btrfs_release_path(path);
7304 
7305 	/*
7306 	 * look for other files referencing this extent, if we
7307 	 * find any we must cow
7308 	 */
7309 
7310 	ret = btrfs_cross_ref_exist(root, btrfs_ino(BTRFS_I(inode)),
7311 				    key.offset - backref_offset, disk_bytenr);
7312 	if (ret) {
7313 		ret = 0;
7314 		goto out;
7315 	}
7316 
7317 	/*
7318 	 * adjust disk_bytenr and num_bytes to cover just the bytes
7319 	 * in this extent we are about to write.  If there
7320 	 * are any csums in that range we have to cow in order
7321 	 * to keep the csums correct
7322 	 */
7323 	disk_bytenr += backref_offset;
7324 	disk_bytenr += offset - key.offset;
7325 	if (csum_exist_in_range(fs_info, disk_bytenr, num_bytes))
7326 		goto out;
7327 	/*
7328 	 * all of the above have passed, it is safe to overwrite this extent
7329 	 * without cow
7330 	 */
7331 	*len = num_bytes;
7332 	ret = 1;
7333 out:
7334 	btrfs_free_path(path);
7335 	return ret;
7336 }
7337 
7338 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
7339 			      struct extent_state **cached_state, int writing)
7340 {
7341 	struct btrfs_ordered_extent *ordered;
7342 	int ret = 0;
7343 
7344 	while (1) {
7345 		lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7346 				 cached_state);
7347 		/*
7348 		 * We're concerned with the entire range that we're going to be
7349 		 * doing DIO to, so we need to make sure there's no ordered
7350 		 * extents in this range.
7351 		 */
7352 		ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart,
7353 						     lockend - lockstart + 1);
7354 
7355 		/*
7356 		 * We need to make sure there are no buffered pages in this
7357 		 * range either, we could have raced between the invalidate in
7358 		 * generic_file_direct_write and locking the extent.  The
7359 		 * invalidate needs to happen so that reads after a write do not
7360 		 * get stale data.
7361 		 */
7362 		if (!ordered &&
7363 		    (!writing || !filemap_range_has_page(inode->i_mapping,
7364 							 lockstart, lockend)))
7365 			break;
7366 
7367 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7368 				     cached_state);
7369 
7370 		if (ordered) {
7371 			/*
7372 			 * If we are doing a DIO read and the ordered extent we
7373 			 * found is for a buffered write, we can not wait for it
7374 			 * to complete and retry, because if we do so we can
7375 			 * deadlock with concurrent buffered writes on page
7376 			 * locks. This happens only if our DIO read covers more
7377 			 * than one extent map, if at this point has already
7378 			 * created an ordered extent for a previous extent map
7379 			 * and locked its range in the inode's io tree, and a
7380 			 * concurrent write against that previous extent map's
7381 			 * range and this range started (we unlock the ranges
7382 			 * in the io tree only when the bios complete and
7383 			 * buffered writes always lock pages before attempting
7384 			 * to lock range in the io tree).
7385 			 */
7386 			if (writing ||
7387 			    test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags))
7388 				btrfs_start_ordered_extent(inode, ordered, 1);
7389 			else
7390 				ret = -ENOTBLK;
7391 			btrfs_put_ordered_extent(ordered);
7392 		} else {
7393 			/*
7394 			 * We could trigger writeback for this range (and wait
7395 			 * for it to complete) and then invalidate the pages for
7396 			 * this range (through invalidate_inode_pages2_range()),
7397 			 * but that can lead us to a deadlock with a concurrent
7398 			 * call to readpages() (a buffered read or a defrag call
7399 			 * triggered a readahead) on a page lock due to an
7400 			 * ordered dio extent we created before but did not have
7401 			 * yet a corresponding bio submitted (whence it can not
7402 			 * complete), which makes readpages() wait for that
7403 			 * ordered extent to complete while holding a lock on
7404 			 * that page.
7405 			 */
7406 			ret = -ENOTBLK;
7407 		}
7408 
7409 		if (ret)
7410 			break;
7411 
7412 		cond_resched();
7413 	}
7414 
7415 	return ret;
7416 }
7417 
7418 /* The callers of this must take lock_extent() */
7419 static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len,
7420 				       u64 orig_start, u64 block_start,
7421 				       u64 block_len, u64 orig_block_len,
7422 				       u64 ram_bytes, int compress_type,
7423 				       int type)
7424 {
7425 	struct extent_map_tree *em_tree;
7426 	struct extent_map *em;
7427 	struct btrfs_root *root = BTRFS_I(inode)->root;
7428 	int ret;
7429 
7430 	ASSERT(type == BTRFS_ORDERED_PREALLOC ||
7431 	       type == BTRFS_ORDERED_COMPRESSED ||
7432 	       type == BTRFS_ORDERED_NOCOW ||
7433 	       type == BTRFS_ORDERED_REGULAR);
7434 
7435 	em_tree = &BTRFS_I(inode)->extent_tree;
7436 	em = alloc_extent_map();
7437 	if (!em)
7438 		return ERR_PTR(-ENOMEM);
7439 
7440 	em->start = start;
7441 	em->orig_start = orig_start;
7442 	em->len = len;
7443 	em->block_len = block_len;
7444 	em->block_start = block_start;
7445 	em->bdev = root->fs_info->fs_devices->latest_bdev;
7446 	em->orig_block_len = orig_block_len;
7447 	em->ram_bytes = ram_bytes;
7448 	em->generation = -1;
7449 	set_bit(EXTENT_FLAG_PINNED, &em->flags);
7450 	if (type == BTRFS_ORDERED_PREALLOC) {
7451 		set_bit(EXTENT_FLAG_FILLING, &em->flags);
7452 	} else if (type == BTRFS_ORDERED_COMPRESSED) {
7453 		set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
7454 		em->compress_type = compress_type;
7455 	}
7456 
7457 	do {
7458 		btrfs_drop_extent_cache(BTRFS_I(inode), em->start,
7459 				em->start + em->len - 1, 0);
7460 		write_lock(&em_tree->lock);
7461 		ret = add_extent_mapping(em_tree, em, 1);
7462 		write_unlock(&em_tree->lock);
7463 		/*
7464 		 * The caller has taken lock_extent(), who could race with us
7465 		 * to add em?
7466 		 */
7467 	} while (ret == -EEXIST);
7468 
7469 	if (ret) {
7470 		free_extent_map(em);
7471 		return ERR_PTR(ret);
7472 	}
7473 
7474 	/* em got 2 refs now, callers needs to do free_extent_map once. */
7475 	return em;
7476 }
7477 
7478 
7479 static int btrfs_get_blocks_direct_read(struct extent_map *em,
7480 					struct buffer_head *bh_result,
7481 					struct inode *inode,
7482 					u64 start, u64 len)
7483 {
7484 	if (em->block_start == EXTENT_MAP_HOLE ||
7485 			test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7486 		return -ENOENT;
7487 
7488 	len = min(len, em->len - (start - em->start));
7489 
7490 	bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7491 		inode->i_blkbits;
7492 	bh_result->b_size = len;
7493 	bh_result->b_bdev = em->bdev;
7494 	set_buffer_mapped(bh_result);
7495 
7496 	return 0;
7497 }
7498 
7499 static int btrfs_get_blocks_direct_write(struct extent_map **map,
7500 					 struct buffer_head *bh_result,
7501 					 struct inode *inode,
7502 					 struct btrfs_dio_data *dio_data,
7503 					 u64 start, u64 len)
7504 {
7505 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7506 	struct extent_map *em = *map;
7507 	int ret = 0;
7508 
7509 	/*
7510 	 * We don't allocate a new extent in the following cases
7511 	 *
7512 	 * 1) The inode is marked as NODATACOW. In this case we'll just use the
7513 	 * existing extent.
7514 	 * 2) The extent is marked as PREALLOC. We're good to go here and can
7515 	 * just use the extent.
7516 	 *
7517 	 */
7518 	if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7519 	    ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7520 	     em->block_start != EXTENT_MAP_HOLE)) {
7521 		int type;
7522 		u64 block_start, orig_start, orig_block_len, ram_bytes;
7523 
7524 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7525 			type = BTRFS_ORDERED_PREALLOC;
7526 		else
7527 			type = BTRFS_ORDERED_NOCOW;
7528 		len = min(len, em->len - (start - em->start));
7529 		block_start = em->block_start + (start - em->start);
7530 
7531 		if (can_nocow_extent(inode, start, &len, &orig_start,
7532 				     &orig_block_len, &ram_bytes) == 1 &&
7533 		    btrfs_inc_nocow_writers(fs_info, block_start)) {
7534 			struct extent_map *em2;
7535 
7536 			em2 = btrfs_create_dio_extent(inode, start, len,
7537 						      orig_start, block_start,
7538 						      len, orig_block_len,
7539 						      ram_bytes, type);
7540 			btrfs_dec_nocow_writers(fs_info, block_start);
7541 			if (type == BTRFS_ORDERED_PREALLOC) {
7542 				free_extent_map(em);
7543 				*map = em = em2;
7544 			}
7545 
7546 			if (em2 && IS_ERR(em2)) {
7547 				ret = PTR_ERR(em2);
7548 				goto out;
7549 			}
7550 			/*
7551 			 * For inode marked NODATACOW or extent marked PREALLOC,
7552 			 * use the existing or preallocated extent, so does not
7553 			 * need to adjust btrfs_space_info's bytes_may_use.
7554 			 */
7555 			btrfs_free_reserved_data_space_noquota(inode, start,
7556 							       len);
7557 			goto skip_cow;
7558 		}
7559 	}
7560 
7561 	/* this will cow the extent */
7562 	len = bh_result->b_size;
7563 	free_extent_map(em);
7564 	*map = em = btrfs_new_extent_direct(inode, start, len);
7565 	if (IS_ERR(em)) {
7566 		ret = PTR_ERR(em);
7567 		goto out;
7568 	}
7569 
7570 	len = min(len, em->len - (start - em->start));
7571 
7572 skip_cow:
7573 	bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7574 		inode->i_blkbits;
7575 	bh_result->b_size = len;
7576 	bh_result->b_bdev = em->bdev;
7577 	set_buffer_mapped(bh_result);
7578 
7579 	if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7580 		set_buffer_new(bh_result);
7581 
7582 	/*
7583 	 * Need to update the i_size under the extent lock so buffered
7584 	 * readers will get the updated i_size when we unlock.
7585 	 */
7586 	if (!dio_data->overwrite && start + len > i_size_read(inode))
7587 		i_size_write(inode, start + len);
7588 
7589 	WARN_ON(dio_data->reserve < len);
7590 	dio_data->reserve -= len;
7591 	dio_data->unsubmitted_oe_range_end = start + len;
7592 	current->journal_info = dio_data;
7593 out:
7594 	return ret;
7595 }
7596 
7597 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
7598 				   struct buffer_head *bh_result, int create)
7599 {
7600 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7601 	struct extent_map *em;
7602 	struct extent_state *cached_state = NULL;
7603 	struct btrfs_dio_data *dio_data = NULL;
7604 	u64 start = iblock << inode->i_blkbits;
7605 	u64 lockstart, lockend;
7606 	u64 len = bh_result->b_size;
7607 	int unlock_bits = EXTENT_LOCKED;
7608 	int ret = 0;
7609 
7610 	if (create)
7611 		unlock_bits |= EXTENT_DIRTY;
7612 	else
7613 		len = min_t(u64, len, fs_info->sectorsize);
7614 
7615 	lockstart = start;
7616 	lockend = start + len - 1;
7617 
7618 	if (current->journal_info) {
7619 		/*
7620 		 * Need to pull our outstanding extents and set journal_info to NULL so
7621 		 * that anything that needs to check if there's a transaction doesn't get
7622 		 * confused.
7623 		 */
7624 		dio_data = current->journal_info;
7625 		current->journal_info = NULL;
7626 	}
7627 
7628 	/*
7629 	 * If this errors out it's because we couldn't invalidate pagecache for
7630 	 * this range and we need to fallback to buffered.
7631 	 */
7632 	if (lock_extent_direct(inode, lockstart, lockend, &cached_state,
7633 			       create)) {
7634 		ret = -ENOTBLK;
7635 		goto err;
7636 	}
7637 
7638 	em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len, 0);
7639 	if (IS_ERR(em)) {
7640 		ret = PTR_ERR(em);
7641 		goto unlock_err;
7642 	}
7643 
7644 	/*
7645 	 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7646 	 * io.  INLINE is special, and we could probably kludge it in here, but
7647 	 * it's still buffered so for safety lets just fall back to the generic
7648 	 * buffered path.
7649 	 *
7650 	 * For COMPRESSED we _have_ to read the entire extent in so we can
7651 	 * decompress it, so there will be buffering required no matter what we
7652 	 * do, so go ahead and fallback to buffered.
7653 	 *
7654 	 * We return -ENOTBLK because that's what makes DIO go ahead and go back
7655 	 * to buffered IO.  Don't blame me, this is the price we pay for using
7656 	 * the generic code.
7657 	 */
7658 	if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7659 	    em->block_start == EXTENT_MAP_INLINE) {
7660 		free_extent_map(em);
7661 		ret = -ENOTBLK;
7662 		goto unlock_err;
7663 	}
7664 
7665 	if (create) {
7666 		ret = btrfs_get_blocks_direct_write(&em, bh_result, inode,
7667 						    dio_data, start, len);
7668 		if (ret < 0)
7669 			goto unlock_err;
7670 
7671 		/* clear and unlock the entire range */
7672 		clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7673 				 unlock_bits, 1, 0, &cached_state);
7674 	} else {
7675 		ret = btrfs_get_blocks_direct_read(em, bh_result, inode,
7676 						   start, len);
7677 		/* Can be negative only if we read from a hole */
7678 		if (ret < 0) {
7679 			ret = 0;
7680 			free_extent_map(em);
7681 			goto unlock_err;
7682 		}
7683 		/*
7684 		 * We need to unlock only the end area that we aren't using.
7685 		 * The rest is going to be unlocked by the endio routine.
7686 		 */
7687 		lockstart = start + bh_result->b_size;
7688 		if (lockstart < lockend) {
7689 			clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
7690 					 lockend, unlock_bits, 1, 0,
7691 					 &cached_state);
7692 		} else {
7693 			free_extent_state(cached_state);
7694 		}
7695 	}
7696 
7697 	free_extent_map(em);
7698 
7699 	return 0;
7700 
7701 unlock_err:
7702 	clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7703 			 unlock_bits, 1, 0, &cached_state);
7704 err:
7705 	if (dio_data)
7706 		current->journal_info = dio_data;
7707 	return ret;
7708 }
7709 
7710 static inline blk_status_t submit_dio_repair_bio(struct inode *inode,
7711 						 struct bio *bio,
7712 						 int mirror_num)
7713 {
7714 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7715 	blk_status_t ret;
7716 
7717 	BUG_ON(bio_op(bio) == REQ_OP_WRITE);
7718 
7719 	ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DIO_REPAIR);
7720 	if (ret)
7721 		return ret;
7722 
7723 	ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
7724 
7725 	return ret;
7726 }
7727 
7728 static int btrfs_check_dio_repairable(struct inode *inode,
7729 				      struct bio *failed_bio,
7730 				      struct io_failure_record *failrec,
7731 				      int failed_mirror)
7732 {
7733 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7734 	int num_copies;
7735 
7736 	num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
7737 	if (num_copies == 1) {
7738 		/*
7739 		 * we only have a single copy of the data, so don't bother with
7740 		 * all the retry and error correction code that follows. no
7741 		 * matter what the error is, it is very likely to persist.
7742 		 */
7743 		btrfs_debug(fs_info,
7744 			"Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
7745 			num_copies, failrec->this_mirror, failed_mirror);
7746 		return 0;
7747 	}
7748 
7749 	failrec->failed_mirror = failed_mirror;
7750 	failrec->this_mirror++;
7751 	if (failrec->this_mirror == failed_mirror)
7752 		failrec->this_mirror++;
7753 
7754 	if (failrec->this_mirror > num_copies) {
7755 		btrfs_debug(fs_info,
7756 			"Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
7757 			num_copies, failrec->this_mirror, failed_mirror);
7758 		return 0;
7759 	}
7760 
7761 	return 1;
7762 }
7763 
7764 static blk_status_t dio_read_error(struct inode *inode, struct bio *failed_bio,
7765 				   struct page *page, unsigned int pgoff,
7766 				   u64 start, u64 end, int failed_mirror,
7767 				   bio_end_io_t *repair_endio, void *repair_arg)
7768 {
7769 	struct io_failure_record *failrec;
7770 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7771 	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
7772 	struct bio *bio;
7773 	int isector;
7774 	unsigned int read_mode = 0;
7775 	int segs;
7776 	int ret;
7777 	blk_status_t status;
7778 	struct bio_vec bvec;
7779 
7780 	BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
7781 
7782 	ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
7783 	if (ret)
7784 		return errno_to_blk_status(ret);
7785 
7786 	ret = btrfs_check_dio_repairable(inode, failed_bio, failrec,
7787 					 failed_mirror);
7788 	if (!ret) {
7789 		free_io_failure(failure_tree, io_tree, failrec);
7790 		return BLK_STS_IOERR;
7791 	}
7792 
7793 	segs = bio_segments(failed_bio);
7794 	bio_get_first_bvec(failed_bio, &bvec);
7795 	if (segs > 1 ||
7796 	    (bvec.bv_len > btrfs_inode_sectorsize(inode)))
7797 		read_mode |= REQ_FAILFAST_DEV;
7798 
7799 	isector = start - btrfs_io_bio(failed_bio)->logical;
7800 	isector >>= inode->i_sb->s_blocksize_bits;
7801 	bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
7802 				pgoff, isector, repair_endio, repair_arg);
7803 	bio->bi_opf = REQ_OP_READ | read_mode;
7804 
7805 	btrfs_debug(BTRFS_I(inode)->root->fs_info,
7806 		    "repair DIO read error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d",
7807 		    read_mode, failrec->this_mirror, failrec->in_validation);
7808 
7809 	status = submit_dio_repair_bio(inode, bio, failrec->this_mirror);
7810 	if (status) {
7811 		free_io_failure(failure_tree, io_tree, failrec);
7812 		bio_put(bio);
7813 	}
7814 
7815 	return status;
7816 }
7817 
7818 struct btrfs_retry_complete {
7819 	struct completion done;
7820 	struct inode *inode;
7821 	u64 start;
7822 	int uptodate;
7823 };
7824 
7825 static void btrfs_retry_endio_nocsum(struct bio *bio)
7826 {
7827 	struct btrfs_retry_complete *done = bio->bi_private;
7828 	struct inode *inode = done->inode;
7829 	struct bio_vec *bvec;
7830 	struct extent_io_tree *io_tree, *failure_tree;
7831 	int i;
7832 	struct bvec_iter_all iter_all;
7833 
7834 	if (bio->bi_status)
7835 		goto end;
7836 
7837 	ASSERT(bio->bi_vcnt == 1);
7838 	io_tree = &BTRFS_I(inode)->io_tree;
7839 	failure_tree = &BTRFS_I(inode)->io_failure_tree;
7840 	ASSERT(bio_first_bvec_all(bio)->bv_len == btrfs_inode_sectorsize(inode));
7841 
7842 	done->uptodate = 1;
7843 	ASSERT(!bio_flagged(bio, BIO_CLONED));
7844 	bio_for_each_segment_all(bvec, bio, i, iter_all)
7845 		clean_io_failure(BTRFS_I(inode)->root->fs_info, failure_tree,
7846 				 io_tree, done->start, bvec->bv_page,
7847 				 btrfs_ino(BTRFS_I(inode)), 0);
7848 end:
7849 	complete(&done->done);
7850 	bio_put(bio);
7851 }
7852 
7853 static blk_status_t __btrfs_correct_data_nocsum(struct inode *inode,
7854 						struct btrfs_io_bio *io_bio)
7855 {
7856 	struct btrfs_fs_info *fs_info;
7857 	struct bio_vec bvec;
7858 	struct bvec_iter iter;
7859 	struct btrfs_retry_complete done;
7860 	u64 start;
7861 	unsigned int pgoff;
7862 	u32 sectorsize;
7863 	int nr_sectors;
7864 	blk_status_t ret;
7865 	blk_status_t err = BLK_STS_OK;
7866 
7867 	fs_info = BTRFS_I(inode)->root->fs_info;
7868 	sectorsize = fs_info->sectorsize;
7869 
7870 	start = io_bio->logical;
7871 	done.inode = inode;
7872 	io_bio->bio.bi_iter = io_bio->iter;
7873 
7874 	bio_for_each_segment(bvec, &io_bio->bio, iter) {
7875 		nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len);
7876 		pgoff = bvec.bv_offset;
7877 
7878 next_block_or_try_again:
7879 		done.uptodate = 0;
7880 		done.start = start;
7881 		init_completion(&done.done);
7882 
7883 		ret = dio_read_error(inode, &io_bio->bio, bvec.bv_page,
7884 				pgoff, start, start + sectorsize - 1,
7885 				io_bio->mirror_num,
7886 				btrfs_retry_endio_nocsum, &done);
7887 		if (ret) {
7888 			err = ret;
7889 			goto next;
7890 		}
7891 
7892 		wait_for_completion_io(&done.done);
7893 
7894 		if (!done.uptodate) {
7895 			/* We might have another mirror, so try again */
7896 			goto next_block_or_try_again;
7897 		}
7898 
7899 next:
7900 		start += sectorsize;
7901 
7902 		nr_sectors--;
7903 		if (nr_sectors) {
7904 			pgoff += sectorsize;
7905 			ASSERT(pgoff < PAGE_SIZE);
7906 			goto next_block_or_try_again;
7907 		}
7908 	}
7909 
7910 	return err;
7911 }
7912 
7913 static void btrfs_retry_endio(struct bio *bio)
7914 {
7915 	struct btrfs_retry_complete *done = bio->bi_private;
7916 	struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
7917 	struct extent_io_tree *io_tree, *failure_tree;
7918 	struct inode *inode = done->inode;
7919 	struct bio_vec *bvec;
7920 	int uptodate;
7921 	int ret;
7922 	int i;
7923 	struct bvec_iter_all iter_all;
7924 
7925 	if (bio->bi_status)
7926 		goto end;
7927 
7928 	uptodate = 1;
7929 
7930 	ASSERT(bio->bi_vcnt == 1);
7931 	ASSERT(bio_first_bvec_all(bio)->bv_len == btrfs_inode_sectorsize(done->inode));
7932 
7933 	io_tree = &BTRFS_I(inode)->io_tree;
7934 	failure_tree = &BTRFS_I(inode)->io_failure_tree;
7935 
7936 	ASSERT(!bio_flagged(bio, BIO_CLONED));
7937 	bio_for_each_segment_all(bvec, bio, i, iter_all) {
7938 		ret = __readpage_endio_check(inode, io_bio, i, bvec->bv_page,
7939 					     bvec->bv_offset, done->start,
7940 					     bvec->bv_len);
7941 		if (!ret)
7942 			clean_io_failure(BTRFS_I(inode)->root->fs_info,
7943 					 failure_tree, io_tree, done->start,
7944 					 bvec->bv_page,
7945 					 btrfs_ino(BTRFS_I(inode)),
7946 					 bvec->bv_offset);
7947 		else
7948 			uptodate = 0;
7949 	}
7950 
7951 	done->uptodate = uptodate;
7952 end:
7953 	complete(&done->done);
7954 	bio_put(bio);
7955 }
7956 
7957 static blk_status_t __btrfs_subio_endio_read(struct inode *inode,
7958 		struct btrfs_io_bio *io_bio, blk_status_t err)
7959 {
7960 	struct btrfs_fs_info *fs_info;
7961 	struct bio_vec bvec;
7962 	struct bvec_iter iter;
7963 	struct btrfs_retry_complete done;
7964 	u64 start;
7965 	u64 offset = 0;
7966 	u32 sectorsize;
7967 	int nr_sectors;
7968 	unsigned int pgoff;
7969 	int csum_pos;
7970 	bool uptodate = (err == 0);
7971 	int ret;
7972 	blk_status_t status;
7973 
7974 	fs_info = BTRFS_I(inode)->root->fs_info;
7975 	sectorsize = fs_info->sectorsize;
7976 
7977 	err = BLK_STS_OK;
7978 	start = io_bio->logical;
7979 	done.inode = inode;
7980 	io_bio->bio.bi_iter = io_bio->iter;
7981 
7982 	bio_for_each_segment(bvec, &io_bio->bio, iter) {
7983 		nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len);
7984 
7985 		pgoff = bvec.bv_offset;
7986 next_block:
7987 		if (uptodate) {
7988 			csum_pos = BTRFS_BYTES_TO_BLKS(fs_info, offset);
7989 			ret = __readpage_endio_check(inode, io_bio, csum_pos,
7990 					bvec.bv_page, pgoff, start, sectorsize);
7991 			if (likely(!ret))
7992 				goto next;
7993 		}
7994 try_again:
7995 		done.uptodate = 0;
7996 		done.start = start;
7997 		init_completion(&done.done);
7998 
7999 		status = dio_read_error(inode, &io_bio->bio, bvec.bv_page,
8000 					pgoff, start, start + sectorsize - 1,
8001 					io_bio->mirror_num, btrfs_retry_endio,
8002 					&done);
8003 		if (status) {
8004 			err = status;
8005 			goto next;
8006 		}
8007 
8008 		wait_for_completion_io(&done.done);
8009 
8010 		if (!done.uptodate) {
8011 			/* We might have another mirror, so try again */
8012 			goto try_again;
8013 		}
8014 next:
8015 		offset += sectorsize;
8016 		start += sectorsize;
8017 
8018 		ASSERT(nr_sectors);
8019 
8020 		nr_sectors--;
8021 		if (nr_sectors) {
8022 			pgoff += sectorsize;
8023 			ASSERT(pgoff < PAGE_SIZE);
8024 			goto next_block;
8025 		}
8026 	}
8027 
8028 	return err;
8029 }
8030 
8031 static blk_status_t btrfs_subio_endio_read(struct inode *inode,
8032 		struct btrfs_io_bio *io_bio, blk_status_t err)
8033 {
8034 	bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
8035 
8036 	if (skip_csum) {
8037 		if (unlikely(err))
8038 			return __btrfs_correct_data_nocsum(inode, io_bio);
8039 		else
8040 			return BLK_STS_OK;
8041 	} else {
8042 		return __btrfs_subio_endio_read(inode, io_bio, err);
8043 	}
8044 }
8045 
8046 static void btrfs_endio_direct_read(struct bio *bio)
8047 {
8048 	struct btrfs_dio_private *dip = bio->bi_private;
8049 	struct inode *inode = dip->inode;
8050 	struct bio *dio_bio;
8051 	struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8052 	blk_status_t err = bio->bi_status;
8053 
8054 	if (dip->flags & BTRFS_DIO_ORIG_BIO_SUBMITTED)
8055 		err = btrfs_subio_endio_read(inode, io_bio, err);
8056 
8057 	unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
8058 		      dip->logical_offset + dip->bytes - 1);
8059 	dio_bio = dip->dio_bio;
8060 
8061 	kfree(dip);
8062 
8063 	dio_bio->bi_status = err;
8064 	dio_end_io(dio_bio);
8065 	btrfs_io_bio_free_csum(io_bio);
8066 	bio_put(bio);
8067 }
8068 
8069 static void __endio_write_update_ordered(struct inode *inode,
8070 					 const u64 offset, const u64 bytes,
8071 					 const bool uptodate)
8072 {
8073 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8074 	struct btrfs_ordered_extent *ordered = NULL;
8075 	struct btrfs_workqueue *wq;
8076 	btrfs_work_func_t func;
8077 	u64 ordered_offset = offset;
8078 	u64 ordered_bytes = bytes;
8079 	u64 last_offset;
8080 
8081 	if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
8082 		wq = fs_info->endio_freespace_worker;
8083 		func = btrfs_freespace_write_helper;
8084 	} else {
8085 		wq = fs_info->endio_write_workers;
8086 		func = btrfs_endio_write_helper;
8087 	}
8088 
8089 	while (ordered_offset < offset + bytes) {
8090 		last_offset = ordered_offset;
8091 		if (btrfs_dec_test_first_ordered_pending(inode, &ordered,
8092 							   &ordered_offset,
8093 							   ordered_bytes,
8094 							   uptodate)) {
8095 			btrfs_init_work(&ordered->work, func,
8096 					finish_ordered_fn,
8097 					NULL, NULL);
8098 			btrfs_queue_work(wq, &ordered->work);
8099 		}
8100 		/*
8101 		 * If btrfs_dec_test_ordered_pending does not find any ordered
8102 		 * extent in the range, we can exit.
8103 		 */
8104 		if (ordered_offset == last_offset)
8105 			return;
8106 		/*
8107 		 * Our bio might span multiple ordered extents. In this case
8108 		 * we keep going until we have accounted the whole dio.
8109 		 */
8110 		if (ordered_offset < offset + bytes) {
8111 			ordered_bytes = offset + bytes - ordered_offset;
8112 			ordered = NULL;
8113 		}
8114 	}
8115 }
8116 
8117 static void btrfs_endio_direct_write(struct bio *bio)
8118 {
8119 	struct btrfs_dio_private *dip = bio->bi_private;
8120 	struct bio *dio_bio = dip->dio_bio;
8121 
8122 	__endio_write_update_ordered(dip->inode, dip->logical_offset,
8123 				     dip->bytes, !bio->bi_status);
8124 
8125 	kfree(dip);
8126 
8127 	dio_bio->bi_status = bio->bi_status;
8128 	dio_end_io(dio_bio);
8129 	bio_put(bio);
8130 }
8131 
8132 static blk_status_t btrfs_submit_bio_start_direct_io(void *private_data,
8133 				    struct bio *bio, u64 offset)
8134 {
8135 	struct inode *inode = private_data;
8136 	blk_status_t ret;
8137 	ret = btrfs_csum_one_bio(inode, bio, offset, 1);
8138 	BUG_ON(ret); /* -ENOMEM */
8139 	return 0;
8140 }
8141 
8142 static void btrfs_end_dio_bio(struct bio *bio)
8143 {
8144 	struct btrfs_dio_private *dip = bio->bi_private;
8145 	blk_status_t err = bio->bi_status;
8146 
8147 	if (err)
8148 		btrfs_warn(BTRFS_I(dip->inode)->root->fs_info,
8149 			   "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d",
8150 			   btrfs_ino(BTRFS_I(dip->inode)), bio_op(bio),
8151 			   bio->bi_opf,
8152 			   (unsigned long long)bio->bi_iter.bi_sector,
8153 			   bio->bi_iter.bi_size, err);
8154 
8155 	if (dip->subio_endio)
8156 		err = dip->subio_endio(dip->inode, btrfs_io_bio(bio), err);
8157 
8158 	if (err) {
8159 		/*
8160 		 * We want to perceive the errors flag being set before
8161 		 * decrementing the reference count. We don't need a barrier
8162 		 * since atomic operations with a return value are fully
8163 		 * ordered as per atomic_t.txt
8164 		 */
8165 		dip->errors = 1;
8166 	}
8167 
8168 	/* if there are more bios still pending for this dio, just exit */
8169 	if (!atomic_dec_and_test(&dip->pending_bios))
8170 		goto out;
8171 
8172 	if (dip->errors) {
8173 		bio_io_error(dip->orig_bio);
8174 	} else {
8175 		dip->dio_bio->bi_status = BLK_STS_OK;
8176 		bio_endio(dip->orig_bio);
8177 	}
8178 out:
8179 	bio_put(bio);
8180 }
8181 
8182 static inline blk_status_t btrfs_lookup_and_bind_dio_csum(struct inode *inode,
8183 						 struct btrfs_dio_private *dip,
8184 						 struct bio *bio,
8185 						 u64 file_offset)
8186 {
8187 	struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8188 	struct btrfs_io_bio *orig_io_bio = btrfs_io_bio(dip->orig_bio);
8189 	blk_status_t ret;
8190 
8191 	/*
8192 	 * We load all the csum data we need when we submit
8193 	 * the first bio to reduce the csum tree search and
8194 	 * contention.
8195 	 */
8196 	if (dip->logical_offset == file_offset) {
8197 		ret = btrfs_lookup_bio_sums_dio(inode, dip->orig_bio,
8198 						file_offset);
8199 		if (ret)
8200 			return ret;
8201 	}
8202 
8203 	if (bio == dip->orig_bio)
8204 		return 0;
8205 
8206 	file_offset -= dip->logical_offset;
8207 	file_offset >>= inode->i_sb->s_blocksize_bits;
8208 	io_bio->csum = (u8 *)(((u32 *)orig_io_bio->csum) + file_offset);
8209 
8210 	return 0;
8211 }
8212 
8213 static inline blk_status_t btrfs_submit_dio_bio(struct bio *bio,
8214 		struct inode *inode, u64 file_offset, int async_submit)
8215 {
8216 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8217 	struct btrfs_dio_private *dip = bio->bi_private;
8218 	bool write = bio_op(bio) == REQ_OP_WRITE;
8219 	blk_status_t ret;
8220 
8221 	/* Check btrfs_submit_bio_hook() for rules about async submit. */
8222 	if (async_submit)
8223 		async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
8224 
8225 	if (!write) {
8226 		ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
8227 		if (ret)
8228 			goto err;
8229 	}
8230 
8231 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
8232 		goto map;
8233 
8234 	if (write && async_submit) {
8235 		ret = btrfs_wq_submit_bio(fs_info, bio, 0, 0,
8236 					  file_offset, inode,
8237 					  btrfs_submit_bio_start_direct_io);
8238 		goto err;
8239 	} else if (write) {
8240 		/*
8241 		 * If we aren't doing async submit, calculate the csum of the
8242 		 * bio now.
8243 		 */
8244 		ret = btrfs_csum_one_bio(inode, bio, file_offset, 1);
8245 		if (ret)
8246 			goto err;
8247 	} else {
8248 		ret = btrfs_lookup_and_bind_dio_csum(inode, dip, bio,
8249 						     file_offset);
8250 		if (ret)
8251 			goto err;
8252 	}
8253 map:
8254 	ret = btrfs_map_bio(fs_info, bio, 0, 0);
8255 err:
8256 	return ret;
8257 }
8258 
8259 static int btrfs_submit_direct_hook(struct btrfs_dio_private *dip)
8260 {
8261 	struct inode *inode = dip->inode;
8262 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8263 	struct bio *bio;
8264 	struct bio *orig_bio = dip->orig_bio;
8265 	u64 start_sector = orig_bio->bi_iter.bi_sector;
8266 	u64 file_offset = dip->logical_offset;
8267 	u64 map_length;
8268 	int async_submit = 0;
8269 	u64 submit_len;
8270 	int clone_offset = 0;
8271 	int clone_len;
8272 	int ret;
8273 	blk_status_t status;
8274 
8275 	map_length = orig_bio->bi_iter.bi_size;
8276 	submit_len = map_length;
8277 	ret = btrfs_map_block(fs_info, btrfs_op(orig_bio), start_sector << 9,
8278 			      &map_length, NULL, 0);
8279 	if (ret)
8280 		return -EIO;
8281 
8282 	if (map_length >= submit_len) {
8283 		bio = orig_bio;
8284 		dip->flags |= BTRFS_DIO_ORIG_BIO_SUBMITTED;
8285 		goto submit;
8286 	}
8287 
8288 	/* async crcs make it difficult to collect full stripe writes. */
8289 	if (btrfs_data_alloc_profile(fs_info) & BTRFS_BLOCK_GROUP_RAID56_MASK)
8290 		async_submit = 0;
8291 	else
8292 		async_submit = 1;
8293 
8294 	/* bio split */
8295 	ASSERT(map_length <= INT_MAX);
8296 	atomic_inc(&dip->pending_bios);
8297 	do {
8298 		clone_len = min_t(int, submit_len, map_length);
8299 
8300 		/*
8301 		 * This will never fail as it's passing GPF_NOFS and
8302 		 * the allocation is backed by btrfs_bioset.
8303 		 */
8304 		bio = btrfs_bio_clone_partial(orig_bio, clone_offset,
8305 					      clone_len);
8306 		bio->bi_private = dip;
8307 		bio->bi_end_io = btrfs_end_dio_bio;
8308 		btrfs_io_bio(bio)->logical = file_offset;
8309 
8310 		ASSERT(submit_len >= clone_len);
8311 		submit_len -= clone_len;
8312 		if (submit_len == 0)
8313 			break;
8314 
8315 		/*
8316 		 * Increase the count before we submit the bio so we know
8317 		 * the end IO handler won't happen before we increase the
8318 		 * count. Otherwise, the dip might get freed before we're
8319 		 * done setting it up.
8320 		 */
8321 		atomic_inc(&dip->pending_bios);
8322 
8323 		status = btrfs_submit_dio_bio(bio, inode, file_offset,
8324 						async_submit);
8325 		if (status) {
8326 			bio_put(bio);
8327 			atomic_dec(&dip->pending_bios);
8328 			goto out_err;
8329 		}
8330 
8331 		clone_offset += clone_len;
8332 		start_sector += clone_len >> 9;
8333 		file_offset += clone_len;
8334 
8335 		map_length = submit_len;
8336 		ret = btrfs_map_block(fs_info, btrfs_op(orig_bio),
8337 				      start_sector << 9, &map_length, NULL, 0);
8338 		if (ret)
8339 			goto out_err;
8340 	} while (submit_len > 0);
8341 
8342 submit:
8343 	status = btrfs_submit_dio_bio(bio, inode, file_offset, async_submit);
8344 	if (!status)
8345 		return 0;
8346 
8347 	bio_put(bio);
8348 out_err:
8349 	dip->errors = 1;
8350 	/*
8351 	 * Before atomic variable goto zero, we must  make sure dip->errors is
8352 	 * perceived to be set. This ordering is ensured by the fact that an
8353 	 * atomic operations with a return value are fully ordered as per
8354 	 * atomic_t.txt
8355 	 */
8356 	if (atomic_dec_and_test(&dip->pending_bios))
8357 		bio_io_error(dip->orig_bio);
8358 
8359 	/* bio_end_io() will handle error, so we needn't return it */
8360 	return 0;
8361 }
8362 
8363 static void btrfs_submit_direct(struct bio *dio_bio, struct inode *inode,
8364 				loff_t file_offset)
8365 {
8366 	struct btrfs_dio_private *dip = NULL;
8367 	struct bio *bio = NULL;
8368 	struct btrfs_io_bio *io_bio;
8369 	bool write = (bio_op(dio_bio) == REQ_OP_WRITE);
8370 	int ret = 0;
8371 
8372 	bio = btrfs_bio_clone(dio_bio);
8373 
8374 	dip = kzalloc(sizeof(*dip), GFP_NOFS);
8375 	if (!dip) {
8376 		ret = -ENOMEM;
8377 		goto free_ordered;
8378 	}
8379 
8380 	dip->private = dio_bio->bi_private;
8381 	dip->inode = inode;
8382 	dip->logical_offset = file_offset;
8383 	dip->bytes = dio_bio->bi_iter.bi_size;
8384 	dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9;
8385 	bio->bi_private = dip;
8386 	dip->orig_bio = bio;
8387 	dip->dio_bio = dio_bio;
8388 	atomic_set(&dip->pending_bios, 0);
8389 	io_bio = btrfs_io_bio(bio);
8390 	io_bio->logical = file_offset;
8391 
8392 	if (write) {
8393 		bio->bi_end_io = btrfs_endio_direct_write;
8394 	} else {
8395 		bio->bi_end_io = btrfs_endio_direct_read;
8396 		dip->subio_endio = btrfs_subio_endio_read;
8397 	}
8398 
8399 	/*
8400 	 * Reset the range for unsubmitted ordered extents (to a 0 length range)
8401 	 * even if we fail to submit a bio, because in such case we do the
8402 	 * corresponding error handling below and it must not be done a second
8403 	 * time by btrfs_direct_IO().
8404 	 */
8405 	if (write) {
8406 		struct btrfs_dio_data *dio_data = current->journal_info;
8407 
8408 		dio_data->unsubmitted_oe_range_end = dip->logical_offset +
8409 			dip->bytes;
8410 		dio_data->unsubmitted_oe_range_start =
8411 			dio_data->unsubmitted_oe_range_end;
8412 	}
8413 
8414 	ret = btrfs_submit_direct_hook(dip);
8415 	if (!ret)
8416 		return;
8417 
8418 	btrfs_io_bio_free_csum(io_bio);
8419 
8420 free_ordered:
8421 	/*
8422 	 * If we arrived here it means either we failed to submit the dip
8423 	 * or we either failed to clone the dio_bio or failed to allocate the
8424 	 * dip. If we cloned the dio_bio and allocated the dip, we can just
8425 	 * call bio_endio against our io_bio so that we get proper resource
8426 	 * cleanup if we fail to submit the dip, otherwise, we must do the
8427 	 * same as btrfs_endio_direct_[write|read] because we can't call these
8428 	 * callbacks - they require an allocated dip and a clone of dio_bio.
8429 	 */
8430 	if (bio && dip) {
8431 		bio_io_error(bio);
8432 		/*
8433 		 * The end io callbacks free our dip, do the final put on bio
8434 		 * and all the cleanup and final put for dio_bio (through
8435 		 * dio_end_io()).
8436 		 */
8437 		dip = NULL;
8438 		bio = NULL;
8439 	} else {
8440 		if (write)
8441 			__endio_write_update_ordered(inode,
8442 						file_offset,
8443 						dio_bio->bi_iter.bi_size,
8444 						false);
8445 		else
8446 			unlock_extent(&BTRFS_I(inode)->io_tree, file_offset,
8447 			      file_offset + dio_bio->bi_iter.bi_size - 1);
8448 
8449 		dio_bio->bi_status = BLK_STS_IOERR;
8450 		/*
8451 		 * Releases and cleans up our dio_bio, no need to bio_put()
8452 		 * nor bio_endio()/bio_io_error() against dio_bio.
8453 		 */
8454 		dio_end_io(dio_bio);
8455 	}
8456 	if (bio)
8457 		bio_put(bio);
8458 	kfree(dip);
8459 }
8460 
8461 static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info,
8462 			       const struct iov_iter *iter, loff_t offset)
8463 {
8464 	int seg;
8465 	int i;
8466 	unsigned int blocksize_mask = fs_info->sectorsize - 1;
8467 	ssize_t retval = -EINVAL;
8468 
8469 	if (offset & blocksize_mask)
8470 		goto out;
8471 
8472 	if (iov_iter_alignment(iter) & blocksize_mask)
8473 		goto out;
8474 
8475 	/* If this is a write we don't need to check anymore */
8476 	if (iov_iter_rw(iter) != READ || !iter_is_iovec(iter))
8477 		return 0;
8478 	/*
8479 	 * Check to make sure we don't have duplicate iov_base's in this
8480 	 * iovec, if so return EINVAL, otherwise we'll get csum errors
8481 	 * when reading back.
8482 	 */
8483 	for (seg = 0; seg < iter->nr_segs; seg++) {
8484 		for (i = seg + 1; i < iter->nr_segs; i++) {
8485 			if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
8486 				goto out;
8487 		}
8488 	}
8489 	retval = 0;
8490 out:
8491 	return retval;
8492 }
8493 
8494 static ssize_t btrfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
8495 {
8496 	struct file *file = iocb->ki_filp;
8497 	struct inode *inode = file->f_mapping->host;
8498 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8499 	struct btrfs_dio_data dio_data = { 0 };
8500 	struct extent_changeset *data_reserved = NULL;
8501 	loff_t offset = iocb->ki_pos;
8502 	size_t count = 0;
8503 	int flags = 0;
8504 	bool wakeup = true;
8505 	bool relock = false;
8506 	ssize_t ret;
8507 
8508 	if (check_direct_IO(fs_info, iter, offset))
8509 		return 0;
8510 
8511 	inode_dio_begin(inode);
8512 
8513 	/*
8514 	 * The generic stuff only does filemap_write_and_wait_range, which
8515 	 * isn't enough if we've written compressed pages to this area, so
8516 	 * we need to flush the dirty pages again to make absolutely sure
8517 	 * that any outstanding dirty pages are on disk.
8518 	 */
8519 	count = iov_iter_count(iter);
8520 	if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
8521 		     &BTRFS_I(inode)->runtime_flags))
8522 		filemap_fdatawrite_range(inode->i_mapping, offset,
8523 					 offset + count - 1);
8524 
8525 	if (iov_iter_rw(iter) == WRITE) {
8526 		/*
8527 		 * If the write DIO is beyond the EOF, we need update
8528 		 * the isize, but it is protected by i_mutex. So we can
8529 		 * not unlock the i_mutex at this case.
8530 		 */
8531 		if (offset + count <= inode->i_size) {
8532 			dio_data.overwrite = 1;
8533 			inode_unlock(inode);
8534 			relock = true;
8535 		} else if (iocb->ki_flags & IOCB_NOWAIT) {
8536 			ret = -EAGAIN;
8537 			goto out;
8538 		}
8539 		ret = btrfs_delalloc_reserve_space(inode, &data_reserved,
8540 						   offset, count);
8541 		if (ret)
8542 			goto out;
8543 
8544 		/*
8545 		 * We need to know how many extents we reserved so that we can
8546 		 * do the accounting properly if we go over the number we
8547 		 * originally calculated.  Abuse current->journal_info for this.
8548 		 */
8549 		dio_data.reserve = round_up(count,
8550 					    fs_info->sectorsize);
8551 		dio_data.unsubmitted_oe_range_start = (u64)offset;
8552 		dio_data.unsubmitted_oe_range_end = (u64)offset;
8553 		current->journal_info = &dio_data;
8554 		down_read(&BTRFS_I(inode)->dio_sem);
8555 	} else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK,
8556 				     &BTRFS_I(inode)->runtime_flags)) {
8557 		inode_dio_end(inode);
8558 		flags = DIO_LOCKING | DIO_SKIP_HOLES;
8559 		wakeup = false;
8560 	}
8561 
8562 	ret = __blockdev_direct_IO(iocb, inode,
8563 				   fs_info->fs_devices->latest_bdev,
8564 				   iter, btrfs_get_blocks_direct, NULL,
8565 				   btrfs_submit_direct, flags);
8566 	if (iov_iter_rw(iter) == WRITE) {
8567 		up_read(&BTRFS_I(inode)->dio_sem);
8568 		current->journal_info = NULL;
8569 		if (ret < 0 && ret != -EIOCBQUEUED) {
8570 			if (dio_data.reserve)
8571 				btrfs_delalloc_release_space(inode, data_reserved,
8572 					offset, dio_data.reserve, true);
8573 			/*
8574 			 * On error we might have left some ordered extents
8575 			 * without submitting corresponding bios for them, so
8576 			 * cleanup them up to avoid other tasks getting them
8577 			 * and waiting for them to complete forever.
8578 			 */
8579 			if (dio_data.unsubmitted_oe_range_start <
8580 			    dio_data.unsubmitted_oe_range_end)
8581 				__endio_write_update_ordered(inode,
8582 					dio_data.unsubmitted_oe_range_start,
8583 					dio_data.unsubmitted_oe_range_end -
8584 					dio_data.unsubmitted_oe_range_start,
8585 					false);
8586 		} else if (ret >= 0 && (size_t)ret < count)
8587 			btrfs_delalloc_release_space(inode, data_reserved,
8588 					offset, count - (size_t)ret, true);
8589 		btrfs_delalloc_release_extents(BTRFS_I(inode), count, false);
8590 	}
8591 out:
8592 	if (wakeup)
8593 		inode_dio_end(inode);
8594 	if (relock)
8595 		inode_lock(inode);
8596 
8597 	extent_changeset_free(data_reserved);
8598 	return ret;
8599 }
8600 
8601 #define BTRFS_FIEMAP_FLAGS	(FIEMAP_FLAG_SYNC)
8602 
8603 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
8604 		__u64 start, __u64 len)
8605 {
8606 	int	ret;
8607 
8608 	ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS);
8609 	if (ret)
8610 		return ret;
8611 
8612 	return extent_fiemap(inode, fieinfo, start, len);
8613 }
8614 
8615 int btrfs_readpage(struct file *file, struct page *page)
8616 {
8617 	struct extent_io_tree *tree;
8618 	tree = &BTRFS_I(page->mapping->host)->io_tree;
8619 	return extent_read_full_page(tree, page, btrfs_get_extent, 0);
8620 }
8621 
8622 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
8623 {
8624 	struct inode *inode = page->mapping->host;
8625 	int ret;
8626 
8627 	if (current->flags & PF_MEMALLOC) {
8628 		redirty_page_for_writepage(wbc, page);
8629 		unlock_page(page);
8630 		return 0;
8631 	}
8632 
8633 	/*
8634 	 * If we are under memory pressure we will call this directly from the
8635 	 * VM, we need to make sure we have the inode referenced for the ordered
8636 	 * extent.  If not just return like we didn't do anything.
8637 	 */
8638 	if (!igrab(inode)) {
8639 		redirty_page_for_writepage(wbc, page);
8640 		return AOP_WRITEPAGE_ACTIVATE;
8641 	}
8642 	ret = extent_write_full_page(page, wbc);
8643 	btrfs_add_delayed_iput(inode);
8644 	return ret;
8645 }
8646 
8647 static int btrfs_writepages(struct address_space *mapping,
8648 			    struct writeback_control *wbc)
8649 {
8650 	return extent_writepages(mapping, wbc);
8651 }
8652 
8653 static int
8654 btrfs_readpages(struct file *file, struct address_space *mapping,
8655 		struct list_head *pages, unsigned nr_pages)
8656 {
8657 	return extent_readpages(mapping, pages, nr_pages);
8658 }
8659 
8660 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8661 {
8662 	int ret = try_release_extent_mapping(page, gfp_flags);
8663 	if (ret == 1) {
8664 		ClearPagePrivate(page);
8665 		set_page_private(page, 0);
8666 		put_page(page);
8667 	}
8668 	return ret;
8669 }
8670 
8671 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8672 {
8673 	if (PageWriteback(page) || PageDirty(page))
8674 		return 0;
8675 	return __btrfs_releasepage(page, gfp_flags);
8676 }
8677 
8678 static void btrfs_invalidatepage(struct page *page, unsigned int offset,
8679 				 unsigned int length)
8680 {
8681 	struct inode *inode = page->mapping->host;
8682 	struct extent_io_tree *tree;
8683 	struct btrfs_ordered_extent *ordered;
8684 	struct extent_state *cached_state = NULL;
8685 	u64 page_start = page_offset(page);
8686 	u64 page_end = page_start + PAGE_SIZE - 1;
8687 	u64 start;
8688 	u64 end;
8689 	int inode_evicting = inode->i_state & I_FREEING;
8690 
8691 	/*
8692 	 * we have the page locked, so new writeback can't start,
8693 	 * and the dirty bit won't be cleared while we are here.
8694 	 *
8695 	 * Wait for IO on this page so that we can safely clear
8696 	 * the PagePrivate2 bit and do ordered accounting
8697 	 */
8698 	wait_on_page_writeback(page);
8699 
8700 	tree = &BTRFS_I(inode)->io_tree;
8701 	if (offset) {
8702 		btrfs_releasepage(page, GFP_NOFS);
8703 		return;
8704 	}
8705 
8706 	if (!inode_evicting)
8707 		lock_extent_bits(tree, page_start, page_end, &cached_state);
8708 again:
8709 	start = page_start;
8710 	ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
8711 					page_end - start + 1);
8712 	if (ordered) {
8713 		end = min(page_end, ordered->file_offset + ordered->len - 1);
8714 		/*
8715 		 * IO on this page will never be started, so we need
8716 		 * to account for any ordered extents now
8717 		 */
8718 		if (!inode_evicting)
8719 			clear_extent_bit(tree, start, end,
8720 					 EXTENT_DIRTY | EXTENT_DELALLOC |
8721 					 EXTENT_DELALLOC_NEW |
8722 					 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
8723 					 EXTENT_DEFRAG, 1, 0, &cached_state);
8724 		/*
8725 		 * whoever cleared the private bit is responsible
8726 		 * for the finish_ordered_io
8727 		 */
8728 		if (TestClearPagePrivate2(page)) {
8729 			struct btrfs_ordered_inode_tree *tree;
8730 			u64 new_len;
8731 
8732 			tree = &BTRFS_I(inode)->ordered_tree;
8733 
8734 			spin_lock_irq(&tree->lock);
8735 			set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
8736 			new_len = start - ordered->file_offset;
8737 			if (new_len < ordered->truncated_len)
8738 				ordered->truncated_len = new_len;
8739 			spin_unlock_irq(&tree->lock);
8740 
8741 			if (btrfs_dec_test_ordered_pending(inode, &ordered,
8742 							   start,
8743 							   end - start + 1, 1))
8744 				btrfs_finish_ordered_io(ordered);
8745 		}
8746 		btrfs_put_ordered_extent(ordered);
8747 		if (!inode_evicting) {
8748 			cached_state = NULL;
8749 			lock_extent_bits(tree, start, end,
8750 					 &cached_state);
8751 		}
8752 
8753 		start = end + 1;
8754 		if (start < page_end)
8755 			goto again;
8756 	}
8757 
8758 	/*
8759 	 * Qgroup reserved space handler
8760 	 * Page here will be either
8761 	 * 1) Already written to disk
8762 	 *    In this case, its reserved space is released from data rsv map
8763 	 *    and will be freed by delayed_ref handler finally.
8764 	 *    So even we call qgroup_free_data(), it won't decrease reserved
8765 	 *    space.
8766 	 * 2) Not written to disk
8767 	 *    This means the reserved space should be freed here. However,
8768 	 *    if a truncate invalidates the page (by clearing PageDirty)
8769 	 *    and the page is accounted for while allocating extent
8770 	 *    in btrfs_check_data_free_space() we let delayed_ref to
8771 	 *    free the entire extent.
8772 	 */
8773 	if (PageDirty(page))
8774 		btrfs_qgroup_free_data(inode, NULL, page_start, PAGE_SIZE);
8775 	if (!inode_evicting) {
8776 		clear_extent_bit(tree, page_start, page_end,
8777 				 EXTENT_LOCKED | EXTENT_DIRTY |
8778 				 EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
8779 				 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1,
8780 				 &cached_state);
8781 
8782 		__btrfs_releasepage(page, GFP_NOFS);
8783 	}
8784 
8785 	ClearPageChecked(page);
8786 	if (PagePrivate(page)) {
8787 		ClearPagePrivate(page);
8788 		set_page_private(page, 0);
8789 		put_page(page);
8790 	}
8791 }
8792 
8793 /*
8794  * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8795  * called from a page fault handler when a page is first dirtied. Hence we must
8796  * be careful to check for EOF conditions here. We set the page up correctly
8797  * for a written page which means we get ENOSPC checking when writing into
8798  * holes and correct delalloc and unwritten extent mapping on filesystems that
8799  * support these features.
8800  *
8801  * We are not allowed to take the i_mutex here so we have to play games to
8802  * protect against truncate races as the page could now be beyond EOF.  Because
8803  * truncate_setsize() writes the inode size before removing pages, once we have
8804  * the page lock we can determine safely if the page is beyond EOF. If it is not
8805  * beyond EOF, then the page is guaranteed safe against truncation until we
8806  * unlock the page.
8807  */
8808 vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf)
8809 {
8810 	struct page *page = vmf->page;
8811 	struct inode *inode = file_inode(vmf->vma->vm_file);
8812 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8813 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8814 	struct btrfs_ordered_extent *ordered;
8815 	struct extent_state *cached_state = NULL;
8816 	struct extent_changeset *data_reserved = NULL;
8817 	char *kaddr;
8818 	unsigned long zero_start;
8819 	loff_t size;
8820 	vm_fault_t ret;
8821 	int ret2;
8822 	int reserved = 0;
8823 	u64 reserved_space;
8824 	u64 page_start;
8825 	u64 page_end;
8826 	u64 end;
8827 
8828 	reserved_space = PAGE_SIZE;
8829 
8830 	sb_start_pagefault(inode->i_sb);
8831 	page_start = page_offset(page);
8832 	page_end = page_start + PAGE_SIZE - 1;
8833 	end = page_end;
8834 
8835 	/*
8836 	 * Reserving delalloc space after obtaining the page lock can lead to
8837 	 * deadlock. For example, if a dirty page is locked by this function
8838 	 * and the call to btrfs_delalloc_reserve_space() ends up triggering
8839 	 * dirty page write out, then the btrfs_writepage() function could
8840 	 * end up waiting indefinitely to get a lock on the page currently
8841 	 * being processed by btrfs_page_mkwrite() function.
8842 	 */
8843 	ret2 = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
8844 					   reserved_space);
8845 	if (!ret2) {
8846 		ret2 = file_update_time(vmf->vma->vm_file);
8847 		reserved = 1;
8848 	}
8849 	if (ret2) {
8850 		ret = vmf_error(ret2);
8851 		if (reserved)
8852 			goto out;
8853 		goto out_noreserve;
8854 	}
8855 
8856 	ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
8857 again:
8858 	lock_page(page);
8859 	size = i_size_read(inode);
8860 
8861 	if ((page->mapping != inode->i_mapping) ||
8862 	    (page_start >= size)) {
8863 		/* page got truncated out from underneath us */
8864 		goto out_unlock;
8865 	}
8866 	wait_on_page_writeback(page);
8867 
8868 	lock_extent_bits(io_tree, page_start, page_end, &cached_state);
8869 	set_page_extent_mapped(page);
8870 
8871 	/*
8872 	 * we can't set the delalloc bits if there are pending ordered
8873 	 * extents.  Drop our locks and wait for them to finish
8874 	 */
8875 	ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
8876 			PAGE_SIZE);
8877 	if (ordered) {
8878 		unlock_extent_cached(io_tree, page_start, page_end,
8879 				     &cached_state);
8880 		unlock_page(page);
8881 		btrfs_start_ordered_extent(inode, ordered, 1);
8882 		btrfs_put_ordered_extent(ordered);
8883 		goto again;
8884 	}
8885 
8886 	if (page->index == ((size - 1) >> PAGE_SHIFT)) {
8887 		reserved_space = round_up(size - page_start,
8888 					  fs_info->sectorsize);
8889 		if (reserved_space < PAGE_SIZE) {
8890 			end = page_start + reserved_space - 1;
8891 			btrfs_delalloc_release_space(inode, data_reserved,
8892 					page_start, PAGE_SIZE - reserved_space,
8893 					true);
8894 		}
8895 	}
8896 
8897 	/*
8898 	 * page_mkwrite gets called when the page is firstly dirtied after it's
8899 	 * faulted in, but write(2) could also dirty a page and set delalloc
8900 	 * bits, thus in this case for space account reason, we still need to
8901 	 * clear any delalloc bits within this page range since we have to
8902 	 * reserve data&meta space before lock_page() (see above comments).
8903 	 */
8904 	clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end,
8905 			  EXTENT_DIRTY | EXTENT_DELALLOC |
8906 			  EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
8907 			  0, 0, &cached_state);
8908 
8909 	ret2 = btrfs_set_extent_delalloc(inode, page_start, end, 0,
8910 					&cached_state, 0);
8911 	if (ret2) {
8912 		unlock_extent_cached(io_tree, page_start, page_end,
8913 				     &cached_state);
8914 		ret = VM_FAULT_SIGBUS;
8915 		goto out_unlock;
8916 	}
8917 	ret2 = 0;
8918 
8919 	/* page is wholly or partially inside EOF */
8920 	if (page_start + PAGE_SIZE > size)
8921 		zero_start = offset_in_page(size);
8922 	else
8923 		zero_start = PAGE_SIZE;
8924 
8925 	if (zero_start != PAGE_SIZE) {
8926 		kaddr = kmap(page);
8927 		memset(kaddr + zero_start, 0, PAGE_SIZE - zero_start);
8928 		flush_dcache_page(page);
8929 		kunmap(page);
8930 	}
8931 	ClearPageChecked(page);
8932 	set_page_dirty(page);
8933 	SetPageUptodate(page);
8934 
8935 	BTRFS_I(inode)->last_trans = fs_info->generation;
8936 	BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
8937 	BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
8938 
8939 	unlock_extent_cached(io_tree, page_start, page_end, &cached_state);
8940 
8941 	if (!ret2) {
8942 		btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE, true);
8943 		sb_end_pagefault(inode->i_sb);
8944 		extent_changeset_free(data_reserved);
8945 		return VM_FAULT_LOCKED;
8946 	}
8947 
8948 out_unlock:
8949 	unlock_page(page);
8950 out:
8951 	btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE, (ret != 0));
8952 	btrfs_delalloc_release_space(inode, data_reserved, page_start,
8953 				     reserved_space, (ret != 0));
8954 out_noreserve:
8955 	sb_end_pagefault(inode->i_sb);
8956 	extent_changeset_free(data_reserved);
8957 	return ret;
8958 }
8959 
8960 static int btrfs_truncate(struct inode *inode, bool skip_writeback)
8961 {
8962 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8963 	struct btrfs_root *root = BTRFS_I(inode)->root;
8964 	struct btrfs_block_rsv *rsv;
8965 	int ret;
8966 	struct btrfs_trans_handle *trans;
8967 	u64 mask = fs_info->sectorsize - 1;
8968 	u64 min_size = btrfs_calc_trunc_metadata_size(fs_info, 1);
8969 
8970 	if (!skip_writeback) {
8971 		ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
8972 					       (u64)-1);
8973 		if (ret)
8974 			return ret;
8975 	}
8976 
8977 	/*
8978 	 * Yes ladies and gentlemen, this is indeed ugly.  We have a couple of
8979 	 * things going on here:
8980 	 *
8981 	 * 1) We need to reserve space to update our inode.
8982 	 *
8983 	 * 2) We need to have something to cache all the space that is going to
8984 	 * be free'd up by the truncate operation, but also have some slack
8985 	 * space reserved in case it uses space during the truncate (thank you
8986 	 * very much snapshotting).
8987 	 *
8988 	 * And we need these to be separate.  The fact is we can use a lot of
8989 	 * space doing the truncate, and we have no earthly idea how much space
8990 	 * we will use, so we need the truncate reservation to be separate so it
8991 	 * doesn't end up using space reserved for updating the inode.  We also
8992 	 * need to be able to stop the transaction and start a new one, which
8993 	 * means we need to be able to update the inode several times, and we
8994 	 * have no idea of knowing how many times that will be, so we can't just
8995 	 * reserve 1 item for the entirety of the operation, so that has to be
8996 	 * done separately as well.
8997 	 *
8998 	 * So that leaves us with
8999 	 *
9000 	 * 1) rsv - for the truncate reservation, which we will steal from the
9001 	 * transaction reservation.
9002 	 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for
9003 	 * updating the inode.
9004 	 */
9005 	rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
9006 	if (!rsv)
9007 		return -ENOMEM;
9008 	rsv->size = min_size;
9009 	rsv->failfast = 1;
9010 
9011 	/*
9012 	 * 1 for the truncate slack space
9013 	 * 1 for updating the inode.
9014 	 */
9015 	trans = btrfs_start_transaction(root, 2);
9016 	if (IS_ERR(trans)) {
9017 		ret = PTR_ERR(trans);
9018 		goto out;
9019 	}
9020 
9021 	/* Migrate the slack space for the truncate to our reserve */
9022 	ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
9023 				      min_size, false);
9024 	BUG_ON(ret);
9025 
9026 	/*
9027 	 * So if we truncate and then write and fsync we normally would just
9028 	 * write the extents that changed, which is a problem if we need to
9029 	 * first truncate that entire inode.  So set this flag so we write out
9030 	 * all of the extents in the inode to the sync log so we're completely
9031 	 * safe.
9032 	 */
9033 	set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
9034 	trans->block_rsv = rsv;
9035 
9036 	while (1) {
9037 		ret = btrfs_truncate_inode_items(trans, root, inode,
9038 						 inode->i_size,
9039 						 BTRFS_EXTENT_DATA_KEY);
9040 		trans->block_rsv = &fs_info->trans_block_rsv;
9041 		if (ret != -ENOSPC && ret != -EAGAIN)
9042 			break;
9043 
9044 		ret = btrfs_update_inode(trans, root, inode);
9045 		if (ret)
9046 			break;
9047 
9048 		btrfs_end_transaction(trans);
9049 		btrfs_btree_balance_dirty(fs_info);
9050 
9051 		trans = btrfs_start_transaction(root, 2);
9052 		if (IS_ERR(trans)) {
9053 			ret = PTR_ERR(trans);
9054 			trans = NULL;
9055 			break;
9056 		}
9057 
9058 		btrfs_block_rsv_release(fs_info, rsv, -1);
9059 		ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
9060 					      rsv, min_size, false);
9061 		BUG_ON(ret);	/* shouldn't happen */
9062 		trans->block_rsv = rsv;
9063 	}
9064 
9065 	/*
9066 	 * We can't call btrfs_truncate_block inside a trans handle as we could
9067 	 * deadlock with freeze, if we got NEED_TRUNCATE_BLOCK then we know
9068 	 * we've truncated everything except the last little bit, and can do
9069 	 * btrfs_truncate_block and then update the disk_i_size.
9070 	 */
9071 	if (ret == NEED_TRUNCATE_BLOCK) {
9072 		btrfs_end_transaction(trans);
9073 		btrfs_btree_balance_dirty(fs_info);
9074 
9075 		ret = btrfs_truncate_block(inode, inode->i_size, 0, 0);
9076 		if (ret)
9077 			goto out;
9078 		trans = btrfs_start_transaction(root, 1);
9079 		if (IS_ERR(trans)) {
9080 			ret = PTR_ERR(trans);
9081 			goto out;
9082 		}
9083 		btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
9084 	}
9085 
9086 	if (trans) {
9087 		int ret2;
9088 
9089 		trans->block_rsv = &fs_info->trans_block_rsv;
9090 		ret2 = btrfs_update_inode(trans, root, inode);
9091 		if (ret2 && !ret)
9092 			ret = ret2;
9093 
9094 		ret2 = btrfs_end_transaction(trans);
9095 		if (ret2 && !ret)
9096 			ret = ret2;
9097 		btrfs_btree_balance_dirty(fs_info);
9098 	}
9099 out:
9100 	btrfs_free_block_rsv(fs_info, rsv);
9101 
9102 	return ret;
9103 }
9104 
9105 /*
9106  * create a new subvolume directory/inode (helper for the ioctl).
9107  */
9108 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
9109 			     struct btrfs_root *new_root,
9110 			     struct btrfs_root *parent_root,
9111 			     u64 new_dirid)
9112 {
9113 	struct inode *inode;
9114 	int err;
9115 	u64 index = 0;
9116 
9117 	inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
9118 				new_dirid, new_dirid,
9119 				S_IFDIR | (~current_umask() & S_IRWXUGO),
9120 				&index);
9121 	if (IS_ERR(inode))
9122 		return PTR_ERR(inode);
9123 	inode->i_op = &btrfs_dir_inode_operations;
9124 	inode->i_fop = &btrfs_dir_file_operations;
9125 
9126 	set_nlink(inode, 1);
9127 	btrfs_i_size_write(BTRFS_I(inode), 0);
9128 	unlock_new_inode(inode);
9129 
9130 	err = btrfs_subvol_inherit_props(trans, new_root, parent_root);
9131 	if (err)
9132 		btrfs_err(new_root->fs_info,
9133 			  "error inheriting subvolume %llu properties: %d",
9134 			  new_root->root_key.objectid, err);
9135 
9136 	err = btrfs_update_inode(trans, new_root, inode);
9137 
9138 	iput(inode);
9139 	return err;
9140 }
9141 
9142 struct inode *btrfs_alloc_inode(struct super_block *sb)
9143 {
9144 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
9145 	struct btrfs_inode *ei;
9146 	struct inode *inode;
9147 
9148 	ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_KERNEL);
9149 	if (!ei)
9150 		return NULL;
9151 
9152 	ei->root = NULL;
9153 	ei->generation = 0;
9154 	ei->last_trans = 0;
9155 	ei->last_sub_trans = 0;
9156 	ei->logged_trans = 0;
9157 	ei->delalloc_bytes = 0;
9158 	ei->new_delalloc_bytes = 0;
9159 	ei->defrag_bytes = 0;
9160 	ei->disk_i_size = 0;
9161 	ei->flags = 0;
9162 	ei->csum_bytes = 0;
9163 	ei->index_cnt = (u64)-1;
9164 	ei->dir_index = 0;
9165 	ei->last_unlink_trans = 0;
9166 	ei->last_link_trans = 0;
9167 	ei->last_log_commit = 0;
9168 
9169 	spin_lock_init(&ei->lock);
9170 	ei->outstanding_extents = 0;
9171 	if (sb->s_magic != BTRFS_TEST_MAGIC)
9172 		btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv,
9173 					      BTRFS_BLOCK_RSV_DELALLOC);
9174 	ei->runtime_flags = 0;
9175 	ei->prop_compress = BTRFS_COMPRESS_NONE;
9176 	ei->defrag_compress = BTRFS_COMPRESS_NONE;
9177 
9178 	ei->delayed_node = NULL;
9179 
9180 	ei->i_otime.tv_sec = 0;
9181 	ei->i_otime.tv_nsec = 0;
9182 
9183 	inode = &ei->vfs_inode;
9184 	extent_map_tree_init(&ei->extent_tree);
9185 	extent_io_tree_init(&ei->io_tree, inode);
9186 	extent_io_tree_init(&ei->io_failure_tree, inode);
9187 	ei->io_tree.track_uptodate = 1;
9188 	ei->io_failure_tree.track_uptodate = 1;
9189 	atomic_set(&ei->sync_writers, 0);
9190 	mutex_init(&ei->log_mutex);
9191 	mutex_init(&ei->delalloc_mutex);
9192 	btrfs_ordered_inode_tree_init(&ei->ordered_tree);
9193 	INIT_LIST_HEAD(&ei->delalloc_inodes);
9194 	INIT_LIST_HEAD(&ei->delayed_iput);
9195 	RB_CLEAR_NODE(&ei->rb_node);
9196 	init_rwsem(&ei->dio_sem);
9197 
9198 	return inode;
9199 }
9200 
9201 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
9202 void btrfs_test_destroy_inode(struct inode *inode)
9203 {
9204 	btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
9205 	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9206 }
9207 #endif
9208 
9209 static void btrfs_i_callback(struct rcu_head *head)
9210 {
9211 	struct inode *inode = container_of(head, struct inode, i_rcu);
9212 	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9213 }
9214 
9215 void btrfs_destroy_inode(struct inode *inode)
9216 {
9217 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9218 	struct btrfs_ordered_extent *ordered;
9219 	struct btrfs_root *root = BTRFS_I(inode)->root;
9220 
9221 	WARN_ON(!hlist_empty(&inode->i_dentry));
9222 	WARN_ON(inode->i_data.nrpages);
9223 	WARN_ON(BTRFS_I(inode)->block_rsv.reserved);
9224 	WARN_ON(BTRFS_I(inode)->block_rsv.size);
9225 	WARN_ON(BTRFS_I(inode)->outstanding_extents);
9226 	WARN_ON(BTRFS_I(inode)->delalloc_bytes);
9227 	WARN_ON(BTRFS_I(inode)->new_delalloc_bytes);
9228 	WARN_ON(BTRFS_I(inode)->csum_bytes);
9229 	WARN_ON(BTRFS_I(inode)->defrag_bytes);
9230 
9231 	/*
9232 	 * This can happen where we create an inode, but somebody else also
9233 	 * created the same inode and we need to destroy the one we already
9234 	 * created.
9235 	 */
9236 	if (!root)
9237 		goto free;
9238 
9239 	while (1) {
9240 		ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
9241 		if (!ordered)
9242 			break;
9243 		else {
9244 			btrfs_err(fs_info,
9245 				  "found ordered extent %llu %llu on inode cleanup",
9246 				  ordered->file_offset, ordered->len);
9247 			btrfs_remove_ordered_extent(inode, ordered);
9248 			btrfs_put_ordered_extent(ordered);
9249 			btrfs_put_ordered_extent(ordered);
9250 		}
9251 	}
9252 	btrfs_qgroup_check_reserved_leak(inode);
9253 	inode_tree_del(inode);
9254 	btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
9255 free:
9256 	call_rcu(&inode->i_rcu, btrfs_i_callback);
9257 }
9258 
9259 int btrfs_drop_inode(struct inode *inode)
9260 {
9261 	struct btrfs_root *root = BTRFS_I(inode)->root;
9262 
9263 	if (root == NULL)
9264 		return 1;
9265 
9266 	/* the snap/subvol tree is on deleting */
9267 	if (btrfs_root_refs(&root->root_item) == 0)
9268 		return 1;
9269 	else
9270 		return generic_drop_inode(inode);
9271 }
9272 
9273 static void init_once(void *foo)
9274 {
9275 	struct btrfs_inode *ei = (struct btrfs_inode *) foo;
9276 
9277 	inode_init_once(&ei->vfs_inode);
9278 }
9279 
9280 void __cold btrfs_destroy_cachep(void)
9281 {
9282 	/*
9283 	 * Make sure all delayed rcu free inodes are flushed before we
9284 	 * destroy cache.
9285 	 */
9286 	rcu_barrier();
9287 	kmem_cache_destroy(btrfs_inode_cachep);
9288 	kmem_cache_destroy(btrfs_trans_handle_cachep);
9289 	kmem_cache_destroy(btrfs_path_cachep);
9290 	kmem_cache_destroy(btrfs_free_space_cachep);
9291 }
9292 
9293 int __init btrfs_init_cachep(void)
9294 {
9295 	btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
9296 			sizeof(struct btrfs_inode), 0,
9297 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT,
9298 			init_once);
9299 	if (!btrfs_inode_cachep)
9300 		goto fail;
9301 
9302 	btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
9303 			sizeof(struct btrfs_trans_handle), 0,
9304 			SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL);
9305 	if (!btrfs_trans_handle_cachep)
9306 		goto fail;
9307 
9308 	btrfs_path_cachep = kmem_cache_create("btrfs_path",
9309 			sizeof(struct btrfs_path), 0,
9310 			SLAB_MEM_SPREAD, NULL);
9311 	if (!btrfs_path_cachep)
9312 		goto fail;
9313 
9314 	btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
9315 			sizeof(struct btrfs_free_space), 0,
9316 			SLAB_MEM_SPREAD, NULL);
9317 	if (!btrfs_free_space_cachep)
9318 		goto fail;
9319 
9320 	return 0;
9321 fail:
9322 	btrfs_destroy_cachep();
9323 	return -ENOMEM;
9324 }
9325 
9326 static int btrfs_getattr(const struct path *path, struct kstat *stat,
9327 			 u32 request_mask, unsigned int flags)
9328 {
9329 	u64 delalloc_bytes;
9330 	struct inode *inode = d_inode(path->dentry);
9331 	u32 blocksize = inode->i_sb->s_blocksize;
9332 	u32 bi_flags = BTRFS_I(inode)->flags;
9333 
9334 	stat->result_mask |= STATX_BTIME;
9335 	stat->btime.tv_sec = BTRFS_I(inode)->i_otime.tv_sec;
9336 	stat->btime.tv_nsec = BTRFS_I(inode)->i_otime.tv_nsec;
9337 	if (bi_flags & BTRFS_INODE_APPEND)
9338 		stat->attributes |= STATX_ATTR_APPEND;
9339 	if (bi_flags & BTRFS_INODE_COMPRESS)
9340 		stat->attributes |= STATX_ATTR_COMPRESSED;
9341 	if (bi_flags & BTRFS_INODE_IMMUTABLE)
9342 		stat->attributes |= STATX_ATTR_IMMUTABLE;
9343 	if (bi_flags & BTRFS_INODE_NODUMP)
9344 		stat->attributes |= STATX_ATTR_NODUMP;
9345 
9346 	stat->attributes_mask |= (STATX_ATTR_APPEND |
9347 				  STATX_ATTR_COMPRESSED |
9348 				  STATX_ATTR_IMMUTABLE |
9349 				  STATX_ATTR_NODUMP);
9350 
9351 	generic_fillattr(inode, stat);
9352 	stat->dev = BTRFS_I(inode)->root->anon_dev;
9353 
9354 	spin_lock(&BTRFS_I(inode)->lock);
9355 	delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes;
9356 	spin_unlock(&BTRFS_I(inode)->lock);
9357 	stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
9358 			ALIGN(delalloc_bytes, blocksize)) >> 9;
9359 	return 0;
9360 }
9361 
9362 static int btrfs_rename_exchange(struct inode *old_dir,
9363 			      struct dentry *old_dentry,
9364 			      struct inode *new_dir,
9365 			      struct dentry *new_dentry)
9366 {
9367 	struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
9368 	struct btrfs_trans_handle *trans;
9369 	struct btrfs_root *root = BTRFS_I(old_dir)->root;
9370 	struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9371 	struct inode *new_inode = new_dentry->d_inode;
9372 	struct inode *old_inode = old_dentry->d_inode;
9373 	struct timespec64 ctime = current_time(old_inode);
9374 	struct dentry *parent;
9375 	u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
9376 	u64 new_ino = btrfs_ino(BTRFS_I(new_inode));
9377 	u64 old_idx = 0;
9378 	u64 new_idx = 0;
9379 	u64 root_objectid;
9380 	int ret;
9381 	bool root_log_pinned = false;
9382 	bool dest_log_pinned = false;
9383 	struct btrfs_log_ctx ctx_root;
9384 	struct btrfs_log_ctx ctx_dest;
9385 	bool sync_log_root = false;
9386 	bool sync_log_dest = false;
9387 	bool commit_transaction = false;
9388 
9389 	/* we only allow rename subvolume link between subvolumes */
9390 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9391 		return -EXDEV;
9392 
9393 	btrfs_init_log_ctx(&ctx_root, old_inode);
9394 	btrfs_init_log_ctx(&ctx_dest, new_inode);
9395 
9396 	/* close the race window with snapshot create/destroy ioctl */
9397 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9398 		down_read(&fs_info->subvol_sem);
9399 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
9400 		down_read(&fs_info->subvol_sem);
9401 
9402 	/*
9403 	 * We want to reserve the absolute worst case amount of items.  So if
9404 	 * both inodes are subvols and we need to unlink them then that would
9405 	 * require 4 item modifications, but if they are both normal inodes it
9406 	 * would require 5 item modifications, so we'll assume their normal
9407 	 * inodes.  So 5 * 2 is 10, plus 2 for the new links, so 12 total items
9408 	 * should cover the worst case number of items we'll modify.
9409 	 */
9410 	trans = btrfs_start_transaction(root, 12);
9411 	if (IS_ERR(trans)) {
9412 		ret = PTR_ERR(trans);
9413 		goto out_notrans;
9414 	}
9415 
9416 	/*
9417 	 * We need to find a free sequence number both in the source and
9418 	 * in the destination directory for the exchange.
9419 	 */
9420 	ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx);
9421 	if (ret)
9422 		goto out_fail;
9423 	ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx);
9424 	if (ret)
9425 		goto out_fail;
9426 
9427 	BTRFS_I(old_inode)->dir_index = 0ULL;
9428 	BTRFS_I(new_inode)->dir_index = 0ULL;
9429 
9430 	/* Reference for the source. */
9431 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9432 		/* force full log commit if subvolume involved. */
9433 		btrfs_set_log_full_commit(fs_info, trans);
9434 	} else {
9435 		btrfs_pin_log_trans(root);
9436 		root_log_pinned = true;
9437 		ret = btrfs_insert_inode_ref(trans, dest,
9438 					     new_dentry->d_name.name,
9439 					     new_dentry->d_name.len,
9440 					     old_ino,
9441 					     btrfs_ino(BTRFS_I(new_dir)),
9442 					     old_idx);
9443 		if (ret)
9444 			goto out_fail;
9445 	}
9446 
9447 	/* And now for the dest. */
9448 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9449 		/* force full log commit if subvolume involved. */
9450 		btrfs_set_log_full_commit(fs_info, trans);
9451 	} else {
9452 		btrfs_pin_log_trans(dest);
9453 		dest_log_pinned = true;
9454 		ret = btrfs_insert_inode_ref(trans, root,
9455 					     old_dentry->d_name.name,
9456 					     old_dentry->d_name.len,
9457 					     new_ino,
9458 					     btrfs_ino(BTRFS_I(old_dir)),
9459 					     new_idx);
9460 		if (ret)
9461 			goto out_fail;
9462 	}
9463 
9464 	/* Update inode version and ctime/mtime. */
9465 	inode_inc_iversion(old_dir);
9466 	inode_inc_iversion(new_dir);
9467 	inode_inc_iversion(old_inode);
9468 	inode_inc_iversion(new_inode);
9469 	old_dir->i_ctime = old_dir->i_mtime = ctime;
9470 	new_dir->i_ctime = new_dir->i_mtime = ctime;
9471 	old_inode->i_ctime = ctime;
9472 	new_inode->i_ctime = ctime;
9473 
9474 	if (old_dentry->d_parent != new_dentry->d_parent) {
9475 		btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9476 				BTRFS_I(old_inode), 1);
9477 		btrfs_record_unlink_dir(trans, BTRFS_I(new_dir),
9478 				BTRFS_I(new_inode), 1);
9479 	}
9480 
9481 	/* src is a subvolume */
9482 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9483 		root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
9484 		ret = btrfs_unlink_subvol(trans, old_dir, root_objectid,
9485 					  old_dentry->d_name.name,
9486 					  old_dentry->d_name.len);
9487 	} else { /* src is an inode */
9488 		ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
9489 					   BTRFS_I(old_dentry->d_inode),
9490 					   old_dentry->d_name.name,
9491 					   old_dentry->d_name.len);
9492 		if (!ret)
9493 			ret = btrfs_update_inode(trans, root, old_inode);
9494 	}
9495 	if (ret) {
9496 		btrfs_abort_transaction(trans, ret);
9497 		goto out_fail;
9498 	}
9499 
9500 	/* dest is a subvolume */
9501 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9502 		root_objectid = BTRFS_I(new_inode)->root->root_key.objectid;
9503 		ret = btrfs_unlink_subvol(trans, new_dir, root_objectid,
9504 					  new_dentry->d_name.name,
9505 					  new_dentry->d_name.len);
9506 	} else { /* dest is an inode */
9507 		ret = __btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
9508 					   BTRFS_I(new_dentry->d_inode),
9509 					   new_dentry->d_name.name,
9510 					   new_dentry->d_name.len);
9511 		if (!ret)
9512 			ret = btrfs_update_inode(trans, dest, new_inode);
9513 	}
9514 	if (ret) {
9515 		btrfs_abort_transaction(trans, ret);
9516 		goto out_fail;
9517 	}
9518 
9519 	ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
9520 			     new_dentry->d_name.name,
9521 			     new_dentry->d_name.len, 0, old_idx);
9522 	if (ret) {
9523 		btrfs_abort_transaction(trans, ret);
9524 		goto out_fail;
9525 	}
9526 
9527 	ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode),
9528 			     old_dentry->d_name.name,
9529 			     old_dentry->d_name.len, 0, new_idx);
9530 	if (ret) {
9531 		btrfs_abort_transaction(trans, ret);
9532 		goto out_fail;
9533 	}
9534 
9535 	if (old_inode->i_nlink == 1)
9536 		BTRFS_I(old_inode)->dir_index = old_idx;
9537 	if (new_inode->i_nlink == 1)
9538 		BTRFS_I(new_inode)->dir_index = new_idx;
9539 
9540 	if (root_log_pinned) {
9541 		parent = new_dentry->d_parent;
9542 		ret = btrfs_log_new_name(trans, BTRFS_I(old_inode),
9543 					 BTRFS_I(old_dir), parent,
9544 					 false, &ctx_root);
9545 		if (ret == BTRFS_NEED_LOG_SYNC)
9546 			sync_log_root = true;
9547 		else if (ret == BTRFS_NEED_TRANS_COMMIT)
9548 			commit_transaction = true;
9549 		ret = 0;
9550 		btrfs_end_log_trans(root);
9551 		root_log_pinned = false;
9552 	}
9553 	if (dest_log_pinned) {
9554 		if (!commit_transaction) {
9555 			parent = old_dentry->d_parent;
9556 			ret = btrfs_log_new_name(trans, BTRFS_I(new_inode),
9557 						 BTRFS_I(new_dir), parent,
9558 						 false, &ctx_dest);
9559 			if (ret == BTRFS_NEED_LOG_SYNC)
9560 				sync_log_dest = true;
9561 			else if (ret == BTRFS_NEED_TRANS_COMMIT)
9562 				commit_transaction = true;
9563 			ret = 0;
9564 		}
9565 		btrfs_end_log_trans(dest);
9566 		dest_log_pinned = false;
9567 	}
9568 out_fail:
9569 	/*
9570 	 * If we have pinned a log and an error happened, we unpin tasks
9571 	 * trying to sync the log and force them to fallback to a transaction
9572 	 * commit if the log currently contains any of the inodes involved in
9573 	 * this rename operation (to ensure we do not persist a log with an
9574 	 * inconsistent state for any of these inodes or leading to any
9575 	 * inconsistencies when replayed). If the transaction was aborted, the
9576 	 * abortion reason is propagated to userspace when attempting to commit
9577 	 * the transaction. If the log does not contain any of these inodes, we
9578 	 * allow the tasks to sync it.
9579 	 */
9580 	if (ret && (root_log_pinned || dest_log_pinned)) {
9581 		if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
9582 		    btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
9583 		    btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
9584 		    (new_inode &&
9585 		     btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
9586 			btrfs_set_log_full_commit(fs_info, trans);
9587 
9588 		if (root_log_pinned) {
9589 			btrfs_end_log_trans(root);
9590 			root_log_pinned = false;
9591 		}
9592 		if (dest_log_pinned) {
9593 			btrfs_end_log_trans(dest);
9594 			dest_log_pinned = false;
9595 		}
9596 	}
9597 	if (!ret && sync_log_root && !commit_transaction) {
9598 		ret = btrfs_sync_log(trans, BTRFS_I(old_inode)->root,
9599 				     &ctx_root);
9600 		if (ret)
9601 			commit_transaction = true;
9602 	}
9603 	if (!ret && sync_log_dest && !commit_transaction) {
9604 		ret = btrfs_sync_log(trans, BTRFS_I(new_inode)->root,
9605 				     &ctx_dest);
9606 		if (ret)
9607 			commit_transaction = true;
9608 	}
9609 	if (commit_transaction) {
9610 		ret = btrfs_commit_transaction(trans);
9611 	} else {
9612 		int ret2;
9613 
9614 		ret2 = btrfs_end_transaction(trans);
9615 		ret = ret ? ret : ret2;
9616 	}
9617 out_notrans:
9618 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
9619 		up_read(&fs_info->subvol_sem);
9620 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9621 		up_read(&fs_info->subvol_sem);
9622 
9623 	return ret;
9624 }
9625 
9626 static int btrfs_whiteout_for_rename(struct btrfs_trans_handle *trans,
9627 				     struct btrfs_root *root,
9628 				     struct inode *dir,
9629 				     struct dentry *dentry)
9630 {
9631 	int ret;
9632 	struct inode *inode;
9633 	u64 objectid;
9634 	u64 index;
9635 
9636 	ret = btrfs_find_free_ino(root, &objectid);
9637 	if (ret)
9638 		return ret;
9639 
9640 	inode = btrfs_new_inode(trans, root, dir,
9641 				dentry->d_name.name,
9642 				dentry->d_name.len,
9643 				btrfs_ino(BTRFS_I(dir)),
9644 				objectid,
9645 				S_IFCHR | WHITEOUT_MODE,
9646 				&index);
9647 
9648 	if (IS_ERR(inode)) {
9649 		ret = PTR_ERR(inode);
9650 		return ret;
9651 	}
9652 
9653 	inode->i_op = &btrfs_special_inode_operations;
9654 	init_special_inode(inode, inode->i_mode,
9655 		WHITEOUT_DEV);
9656 
9657 	ret = btrfs_init_inode_security(trans, inode, dir,
9658 				&dentry->d_name);
9659 	if (ret)
9660 		goto out;
9661 
9662 	ret = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
9663 				BTRFS_I(inode), 0, index);
9664 	if (ret)
9665 		goto out;
9666 
9667 	ret = btrfs_update_inode(trans, root, inode);
9668 out:
9669 	unlock_new_inode(inode);
9670 	if (ret)
9671 		inode_dec_link_count(inode);
9672 	iput(inode);
9673 
9674 	return ret;
9675 }
9676 
9677 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
9678 			   struct inode *new_dir, struct dentry *new_dentry,
9679 			   unsigned int flags)
9680 {
9681 	struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
9682 	struct btrfs_trans_handle *trans;
9683 	unsigned int trans_num_items;
9684 	struct btrfs_root *root = BTRFS_I(old_dir)->root;
9685 	struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9686 	struct inode *new_inode = d_inode(new_dentry);
9687 	struct inode *old_inode = d_inode(old_dentry);
9688 	u64 index = 0;
9689 	u64 root_objectid;
9690 	int ret;
9691 	u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
9692 	bool log_pinned = false;
9693 	struct btrfs_log_ctx ctx;
9694 	bool sync_log = false;
9695 	bool commit_transaction = false;
9696 
9697 	if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
9698 		return -EPERM;
9699 
9700 	/* we only allow rename subvolume link between subvolumes */
9701 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9702 		return -EXDEV;
9703 
9704 	if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
9705 	    (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID))
9706 		return -ENOTEMPTY;
9707 
9708 	if (S_ISDIR(old_inode->i_mode) && new_inode &&
9709 	    new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
9710 		return -ENOTEMPTY;
9711 
9712 
9713 	/* check for collisions, even if the  name isn't there */
9714 	ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
9715 			     new_dentry->d_name.name,
9716 			     new_dentry->d_name.len);
9717 
9718 	if (ret) {
9719 		if (ret == -EEXIST) {
9720 			/* we shouldn't get
9721 			 * eexist without a new_inode */
9722 			if (WARN_ON(!new_inode)) {
9723 				return ret;
9724 			}
9725 		} else {
9726 			/* maybe -EOVERFLOW */
9727 			return ret;
9728 		}
9729 	}
9730 	ret = 0;
9731 
9732 	/*
9733 	 * we're using rename to replace one file with another.  Start IO on it
9734 	 * now so  we don't add too much work to the end of the transaction
9735 	 */
9736 	if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
9737 		filemap_flush(old_inode->i_mapping);
9738 
9739 	/* close the racy window with snapshot create/destroy ioctl */
9740 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9741 		down_read(&fs_info->subvol_sem);
9742 	/*
9743 	 * We want to reserve the absolute worst case amount of items.  So if
9744 	 * both inodes are subvols and we need to unlink them then that would
9745 	 * require 4 item modifications, but if they are both normal inodes it
9746 	 * would require 5 item modifications, so we'll assume they are normal
9747 	 * inodes.  So 5 * 2 is 10, plus 1 for the new link, so 11 total items
9748 	 * should cover the worst case number of items we'll modify.
9749 	 * If our rename has the whiteout flag, we need more 5 units for the
9750 	 * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item
9751 	 * when selinux is enabled).
9752 	 */
9753 	trans_num_items = 11;
9754 	if (flags & RENAME_WHITEOUT)
9755 		trans_num_items += 5;
9756 	trans = btrfs_start_transaction(root, trans_num_items);
9757 	if (IS_ERR(trans)) {
9758 		ret = PTR_ERR(trans);
9759 		goto out_notrans;
9760 	}
9761 
9762 	if (dest != root)
9763 		btrfs_record_root_in_trans(trans, dest);
9764 
9765 	ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index);
9766 	if (ret)
9767 		goto out_fail;
9768 
9769 	BTRFS_I(old_inode)->dir_index = 0ULL;
9770 	if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9771 		/* force full log commit if subvolume involved. */
9772 		btrfs_set_log_full_commit(fs_info, trans);
9773 	} else {
9774 		btrfs_pin_log_trans(root);
9775 		log_pinned = true;
9776 		ret = btrfs_insert_inode_ref(trans, dest,
9777 					     new_dentry->d_name.name,
9778 					     new_dentry->d_name.len,
9779 					     old_ino,
9780 					     btrfs_ino(BTRFS_I(new_dir)), index);
9781 		if (ret)
9782 			goto out_fail;
9783 	}
9784 
9785 	inode_inc_iversion(old_dir);
9786 	inode_inc_iversion(new_dir);
9787 	inode_inc_iversion(old_inode);
9788 	old_dir->i_ctime = old_dir->i_mtime =
9789 	new_dir->i_ctime = new_dir->i_mtime =
9790 	old_inode->i_ctime = current_time(old_dir);
9791 
9792 	if (old_dentry->d_parent != new_dentry->d_parent)
9793 		btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9794 				BTRFS_I(old_inode), 1);
9795 
9796 	if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9797 		root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
9798 		ret = btrfs_unlink_subvol(trans, old_dir, root_objectid,
9799 					old_dentry->d_name.name,
9800 					old_dentry->d_name.len);
9801 	} else {
9802 		ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
9803 					BTRFS_I(d_inode(old_dentry)),
9804 					old_dentry->d_name.name,
9805 					old_dentry->d_name.len);
9806 		if (!ret)
9807 			ret = btrfs_update_inode(trans, root, old_inode);
9808 	}
9809 	if (ret) {
9810 		btrfs_abort_transaction(trans, ret);
9811 		goto out_fail;
9812 	}
9813 
9814 	if (new_inode) {
9815 		inode_inc_iversion(new_inode);
9816 		new_inode->i_ctime = current_time(new_inode);
9817 		if (unlikely(btrfs_ino(BTRFS_I(new_inode)) ==
9818 			     BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
9819 			root_objectid = BTRFS_I(new_inode)->location.objectid;
9820 			ret = btrfs_unlink_subvol(trans, new_dir, root_objectid,
9821 						new_dentry->d_name.name,
9822 						new_dentry->d_name.len);
9823 			BUG_ON(new_inode->i_nlink == 0);
9824 		} else {
9825 			ret = btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
9826 						 BTRFS_I(d_inode(new_dentry)),
9827 						 new_dentry->d_name.name,
9828 						 new_dentry->d_name.len);
9829 		}
9830 		if (!ret && new_inode->i_nlink == 0)
9831 			ret = btrfs_orphan_add(trans,
9832 					BTRFS_I(d_inode(new_dentry)));
9833 		if (ret) {
9834 			btrfs_abort_transaction(trans, ret);
9835 			goto out_fail;
9836 		}
9837 	}
9838 
9839 	ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
9840 			     new_dentry->d_name.name,
9841 			     new_dentry->d_name.len, 0, index);
9842 	if (ret) {
9843 		btrfs_abort_transaction(trans, ret);
9844 		goto out_fail;
9845 	}
9846 
9847 	if (old_inode->i_nlink == 1)
9848 		BTRFS_I(old_inode)->dir_index = index;
9849 
9850 	if (log_pinned) {
9851 		struct dentry *parent = new_dentry->d_parent;
9852 
9853 		btrfs_init_log_ctx(&ctx, old_inode);
9854 		ret = btrfs_log_new_name(trans, BTRFS_I(old_inode),
9855 					 BTRFS_I(old_dir), parent,
9856 					 false, &ctx);
9857 		if (ret == BTRFS_NEED_LOG_SYNC)
9858 			sync_log = true;
9859 		else if (ret == BTRFS_NEED_TRANS_COMMIT)
9860 			commit_transaction = true;
9861 		ret = 0;
9862 		btrfs_end_log_trans(root);
9863 		log_pinned = false;
9864 	}
9865 
9866 	if (flags & RENAME_WHITEOUT) {
9867 		ret = btrfs_whiteout_for_rename(trans, root, old_dir,
9868 						old_dentry);
9869 
9870 		if (ret) {
9871 			btrfs_abort_transaction(trans, ret);
9872 			goto out_fail;
9873 		}
9874 	}
9875 out_fail:
9876 	/*
9877 	 * If we have pinned the log and an error happened, we unpin tasks
9878 	 * trying to sync the log and force them to fallback to a transaction
9879 	 * commit if the log currently contains any of the inodes involved in
9880 	 * this rename operation (to ensure we do not persist a log with an
9881 	 * inconsistent state for any of these inodes or leading to any
9882 	 * inconsistencies when replayed). If the transaction was aborted, the
9883 	 * abortion reason is propagated to userspace when attempting to commit
9884 	 * the transaction. If the log does not contain any of these inodes, we
9885 	 * allow the tasks to sync it.
9886 	 */
9887 	if (ret && log_pinned) {
9888 		if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
9889 		    btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
9890 		    btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
9891 		    (new_inode &&
9892 		     btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
9893 			btrfs_set_log_full_commit(fs_info, trans);
9894 
9895 		btrfs_end_log_trans(root);
9896 		log_pinned = false;
9897 	}
9898 	if (!ret && sync_log) {
9899 		ret = btrfs_sync_log(trans, BTRFS_I(old_inode)->root, &ctx);
9900 		if (ret)
9901 			commit_transaction = true;
9902 	}
9903 	if (commit_transaction) {
9904 		ret = btrfs_commit_transaction(trans);
9905 	} else {
9906 		int ret2;
9907 
9908 		ret2 = btrfs_end_transaction(trans);
9909 		ret = ret ? ret : ret2;
9910 	}
9911 out_notrans:
9912 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9913 		up_read(&fs_info->subvol_sem);
9914 
9915 	return ret;
9916 }
9917 
9918 static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry,
9919 			 struct inode *new_dir, struct dentry *new_dentry,
9920 			 unsigned int flags)
9921 {
9922 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
9923 		return -EINVAL;
9924 
9925 	if (flags & RENAME_EXCHANGE)
9926 		return btrfs_rename_exchange(old_dir, old_dentry, new_dir,
9927 					  new_dentry);
9928 
9929 	return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry, flags);
9930 }
9931 
9932 struct btrfs_delalloc_work {
9933 	struct inode *inode;
9934 	struct completion completion;
9935 	struct list_head list;
9936 	struct btrfs_work work;
9937 };
9938 
9939 static void btrfs_run_delalloc_work(struct btrfs_work *work)
9940 {
9941 	struct btrfs_delalloc_work *delalloc_work;
9942 	struct inode *inode;
9943 
9944 	delalloc_work = container_of(work, struct btrfs_delalloc_work,
9945 				     work);
9946 	inode = delalloc_work->inode;
9947 	filemap_flush(inode->i_mapping);
9948 	if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
9949 				&BTRFS_I(inode)->runtime_flags))
9950 		filemap_flush(inode->i_mapping);
9951 
9952 	iput(inode);
9953 	complete(&delalloc_work->completion);
9954 }
9955 
9956 static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode)
9957 {
9958 	struct btrfs_delalloc_work *work;
9959 
9960 	work = kmalloc(sizeof(*work), GFP_NOFS);
9961 	if (!work)
9962 		return NULL;
9963 
9964 	init_completion(&work->completion);
9965 	INIT_LIST_HEAD(&work->list);
9966 	work->inode = inode;
9967 	btrfs_init_work(&work->work, btrfs_flush_delalloc_helper,
9968 			btrfs_run_delalloc_work, NULL, NULL);
9969 
9970 	return work;
9971 }
9972 
9973 /*
9974  * some fairly slow code that needs optimization. This walks the list
9975  * of all the inodes with pending delalloc and forces them to disk.
9976  */
9977 static int start_delalloc_inodes(struct btrfs_root *root, int nr, bool snapshot)
9978 {
9979 	struct btrfs_inode *binode;
9980 	struct inode *inode;
9981 	struct btrfs_delalloc_work *work, *next;
9982 	struct list_head works;
9983 	struct list_head splice;
9984 	int ret = 0;
9985 
9986 	INIT_LIST_HEAD(&works);
9987 	INIT_LIST_HEAD(&splice);
9988 
9989 	mutex_lock(&root->delalloc_mutex);
9990 	spin_lock(&root->delalloc_lock);
9991 	list_splice_init(&root->delalloc_inodes, &splice);
9992 	while (!list_empty(&splice)) {
9993 		binode = list_entry(splice.next, struct btrfs_inode,
9994 				    delalloc_inodes);
9995 
9996 		list_move_tail(&binode->delalloc_inodes,
9997 			       &root->delalloc_inodes);
9998 		inode = igrab(&binode->vfs_inode);
9999 		if (!inode) {
10000 			cond_resched_lock(&root->delalloc_lock);
10001 			continue;
10002 		}
10003 		spin_unlock(&root->delalloc_lock);
10004 
10005 		if (snapshot)
10006 			set_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
10007 				&binode->runtime_flags);
10008 		work = btrfs_alloc_delalloc_work(inode);
10009 		if (!work) {
10010 			iput(inode);
10011 			ret = -ENOMEM;
10012 			goto out;
10013 		}
10014 		list_add_tail(&work->list, &works);
10015 		btrfs_queue_work(root->fs_info->flush_workers,
10016 				 &work->work);
10017 		ret++;
10018 		if (nr != -1 && ret >= nr)
10019 			goto out;
10020 		cond_resched();
10021 		spin_lock(&root->delalloc_lock);
10022 	}
10023 	spin_unlock(&root->delalloc_lock);
10024 
10025 out:
10026 	list_for_each_entry_safe(work, next, &works, list) {
10027 		list_del_init(&work->list);
10028 		wait_for_completion(&work->completion);
10029 		kfree(work);
10030 	}
10031 
10032 	if (!list_empty(&splice)) {
10033 		spin_lock(&root->delalloc_lock);
10034 		list_splice_tail(&splice, &root->delalloc_inodes);
10035 		spin_unlock(&root->delalloc_lock);
10036 	}
10037 	mutex_unlock(&root->delalloc_mutex);
10038 	return ret;
10039 }
10040 
10041 int btrfs_start_delalloc_snapshot(struct btrfs_root *root)
10042 {
10043 	struct btrfs_fs_info *fs_info = root->fs_info;
10044 	int ret;
10045 
10046 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
10047 		return -EROFS;
10048 
10049 	ret = start_delalloc_inodes(root, -1, true);
10050 	if (ret > 0)
10051 		ret = 0;
10052 	return ret;
10053 }
10054 
10055 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int nr)
10056 {
10057 	struct btrfs_root *root;
10058 	struct list_head splice;
10059 	int ret;
10060 
10061 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
10062 		return -EROFS;
10063 
10064 	INIT_LIST_HEAD(&splice);
10065 
10066 	mutex_lock(&fs_info->delalloc_root_mutex);
10067 	spin_lock(&fs_info->delalloc_root_lock);
10068 	list_splice_init(&fs_info->delalloc_roots, &splice);
10069 	while (!list_empty(&splice) && nr) {
10070 		root = list_first_entry(&splice, struct btrfs_root,
10071 					delalloc_root);
10072 		root = btrfs_grab_fs_root(root);
10073 		BUG_ON(!root);
10074 		list_move_tail(&root->delalloc_root,
10075 			       &fs_info->delalloc_roots);
10076 		spin_unlock(&fs_info->delalloc_root_lock);
10077 
10078 		ret = start_delalloc_inodes(root, nr, false);
10079 		btrfs_put_fs_root(root);
10080 		if (ret < 0)
10081 			goto out;
10082 
10083 		if (nr != -1) {
10084 			nr -= ret;
10085 			WARN_ON(nr < 0);
10086 		}
10087 		spin_lock(&fs_info->delalloc_root_lock);
10088 	}
10089 	spin_unlock(&fs_info->delalloc_root_lock);
10090 
10091 	ret = 0;
10092 out:
10093 	if (!list_empty(&splice)) {
10094 		spin_lock(&fs_info->delalloc_root_lock);
10095 		list_splice_tail(&splice, &fs_info->delalloc_roots);
10096 		spin_unlock(&fs_info->delalloc_root_lock);
10097 	}
10098 	mutex_unlock(&fs_info->delalloc_root_mutex);
10099 	return ret;
10100 }
10101 
10102 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
10103 			 const char *symname)
10104 {
10105 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
10106 	struct btrfs_trans_handle *trans;
10107 	struct btrfs_root *root = BTRFS_I(dir)->root;
10108 	struct btrfs_path *path;
10109 	struct btrfs_key key;
10110 	struct inode *inode = NULL;
10111 	int err;
10112 	u64 objectid;
10113 	u64 index = 0;
10114 	int name_len;
10115 	int datasize;
10116 	unsigned long ptr;
10117 	struct btrfs_file_extent_item *ei;
10118 	struct extent_buffer *leaf;
10119 
10120 	name_len = strlen(symname);
10121 	if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info))
10122 		return -ENAMETOOLONG;
10123 
10124 	/*
10125 	 * 2 items for inode item and ref
10126 	 * 2 items for dir items
10127 	 * 1 item for updating parent inode item
10128 	 * 1 item for the inline extent item
10129 	 * 1 item for xattr if selinux is on
10130 	 */
10131 	trans = btrfs_start_transaction(root, 7);
10132 	if (IS_ERR(trans))
10133 		return PTR_ERR(trans);
10134 
10135 	err = btrfs_find_free_ino(root, &objectid);
10136 	if (err)
10137 		goto out_unlock;
10138 
10139 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
10140 				dentry->d_name.len, btrfs_ino(BTRFS_I(dir)),
10141 				objectid, S_IFLNK|S_IRWXUGO, &index);
10142 	if (IS_ERR(inode)) {
10143 		err = PTR_ERR(inode);
10144 		inode = NULL;
10145 		goto out_unlock;
10146 	}
10147 
10148 	/*
10149 	* If the active LSM wants to access the inode during
10150 	* d_instantiate it needs these. Smack checks to see
10151 	* if the filesystem supports xattrs by looking at the
10152 	* ops vector.
10153 	*/
10154 	inode->i_fop = &btrfs_file_operations;
10155 	inode->i_op = &btrfs_file_inode_operations;
10156 	inode->i_mapping->a_ops = &btrfs_aops;
10157 	BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10158 
10159 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
10160 	if (err)
10161 		goto out_unlock;
10162 
10163 	path = btrfs_alloc_path();
10164 	if (!path) {
10165 		err = -ENOMEM;
10166 		goto out_unlock;
10167 	}
10168 	key.objectid = btrfs_ino(BTRFS_I(inode));
10169 	key.offset = 0;
10170 	key.type = BTRFS_EXTENT_DATA_KEY;
10171 	datasize = btrfs_file_extent_calc_inline_size(name_len);
10172 	err = btrfs_insert_empty_item(trans, root, path, &key,
10173 				      datasize);
10174 	if (err) {
10175 		btrfs_free_path(path);
10176 		goto out_unlock;
10177 	}
10178 	leaf = path->nodes[0];
10179 	ei = btrfs_item_ptr(leaf, path->slots[0],
10180 			    struct btrfs_file_extent_item);
10181 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
10182 	btrfs_set_file_extent_type(leaf, ei,
10183 				   BTRFS_FILE_EXTENT_INLINE);
10184 	btrfs_set_file_extent_encryption(leaf, ei, 0);
10185 	btrfs_set_file_extent_compression(leaf, ei, 0);
10186 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
10187 	btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
10188 
10189 	ptr = btrfs_file_extent_inline_start(ei);
10190 	write_extent_buffer(leaf, symname, ptr, name_len);
10191 	btrfs_mark_buffer_dirty(leaf);
10192 	btrfs_free_path(path);
10193 
10194 	inode->i_op = &btrfs_symlink_inode_operations;
10195 	inode_nohighmem(inode);
10196 	inode->i_mapping->a_ops = &btrfs_aops;
10197 	inode_set_bytes(inode, name_len);
10198 	btrfs_i_size_write(BTRFS_I(inode), name_len);
10199 	err = btrfs_update_inode(trans, root, inode);
10200 	/*
10201 	 * Last step, add directory indexes for our symlink inode. This is the
10202 	 * last step to avoid extra cleanup of these indexes if an error happens
10203 	 * elsewhere above.
10204 	 */
10205 	if (!err)
10206 		err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
10207 				BTRFS_I(inode), 0, index);
10208 	if (err)
10209 		goto out_unlock;
10210 
10211 	d_instantiate_new(dentry, inode);
10212 
10213 out_unlock:
10214 	btrfs_end_transaction(trans);
10215 	if (err && inode) {
10216 		inode_dec_link_count(inode);
10217 		discard_new_inode(inode);
10218 	}
10219 	btrfs_btree_balance_dirty(fs_info);
10220 	return err;
10221 }
10222 
10223 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
10224 				       u64 start, u64 num_bytes, u64 min_size,
10225 				       loff_t actual_len, u64 *alloc_hint,
10226 				       struct btrfs_trans_handle *trans)
10227 {
10228 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
10229 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
10230 	struct extent_map *em;
10231 	struct btrfs_root *root = BTRFS_I(inode)->root;
10232 	struct btrfs_key ins;
10233 	u64 cur_offset = start;
10234 	u64 i_size;
10235 	u64 cur_bytes;
10236 	u64 last_alloc = (u64)-1;
10237 	int ret = 0;
10238 	bool own_trans = true;
10239 	u64 end = start + num_bytes - 1;
10240 
10241 	if (trans)
10242 		own_trans = false;
10243 	while (num_bytes > 0) {
10244 		if (own_trans) {
10245 			trans = btrfs_start_transaction(root, 3);
10246 			if (IS_ERR(trans)) {
10247 				ret = PTR_ERR(trans);
10248 				break;
10249 			}
10250 		}
10251 
10252 		cur_bytes = min_t(u64, num_bytes, SZ_256M);
10253 		cur_bytes = max(cur_bytes, min_size);
10254 		/*
10255 		 * If we are severely fragmented we could end up with really
10256 		 * small allocations, so if the allocator is returning small
10257 		 * chunks lets make its job easier by only searching for those
10258 		 * sized chunks.
10259 		 */
10260 		cur_bytes = min(cur_bytes, last_alloc);
10261 		ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes,
10262 				min_size, 0, *alloc_hint, &ins, 1, 0);
10263 		if (ret) {
10264 			if (own_trans)
10265 				btrfs_end_transaction(trans);
10266 			break;
10267 		}
10268 		btrfs_dec_block_group_reservations(fs_info, ins.objectid);
10269 
10270 		last_alloc = ins.offset;
10271 		ret = insert_reserved_file_extent(trans, inode,
10272 						  cur_offset, ins.objectid,
10273 						  ins.offset, ins.offset,
10274 						  ins.offset, 0, 0, 0,
10275 						  BTRFS_FILE_EXTENT_PREALLOC);
10276 		if (ret) {
10277 			btrfs_free_reserved_extent(fs_info, ins.objectid,
10278 						   ins.offset, 0);
10279 			btrfs_abort_transaction(trans, ret);
10280 			if (own_trans)
10281 				btrfs_end_transaction(trans);
10282 			break;
10283 		}
10284 
10285 		btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
10286 					cur_offset + ins.offset -1, 0);
10287 
10288 		em = alloc_extent_map();
10289 		if (!em) {
10290 			set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
10291 				&BTRFS_I(inode)->runtime_flags);
10292 			goto next;
10293 		}
10294 
10295 		em->start = cur_offset;
10296 		em->orig_start = cur_offset;
10297 		em->len = ins.offset;
10298 		em->block_start = ins.objectid;
10299 		em->block_len = ins.offset;
10300 		em->orig_block_len = ins.offset;
10301 		em->ram_bytes = ins.offset;
10302 		em->bdev = fs_info->fs_devices->latest_bdev;
10303 		set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
10304 		em->generation = trans->transid;
10305 
10306 		while (1) {
10307 			write_lock(&em_tree->lock);
10308 			ret = add_extent_mapping(em_tree, em, 1);
10309 			write_unlock(&em_tree->lock);
10310 			if (ret != -EEXIST)
10311 				break;
10312 			btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
10313 						cur_offset + ins.offset - 1,
10314 						0);
10315 		}
10316 		free_extent_map(em);
10317 next:
10318 		num_bytes -= ins.offset;
10319 		cur_offset += ins.offset;
10320 		*alloc_hint = ins.objectid + ins.offset;
10321 
10322 		inode_inc_iversion(inode);
10323 		inode->i_ctime = current_time(inode);
10324 		BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
10325 		if (!(mode & FALLOC_FL_KEEP_SIZE) &&
10326 		    (actual_len > inode->i_size) &&
10327 		    (cur_offset > inode->i_size)) {
10328 			if (cur_offset > actual_len)
10329 				i_size = actual_len;
10330 			else
10331 				i_size = cur_offset;
10332 			i_size_write(inode, i_size);
10333 			btrfs_ordered_update_i_size(inode, i_size, NULL);
10334 		}
10335 
10336 		ret = btrfs_update_inode(trans, root, inode);
10337 
10338 		if (ret) {
10339 			btrfs_abort_transaction(trans, ret);
10340 			if (own_trans)
10341 				btrfs_end_transaction(trans);
10342 			break;
10343 		}
10344 
10345 		if (own_trans)
10346 			btrfs_end_transaction(trans);
10347 	}
10348 	if (cur_offset < end)
10349 		btrfs_free_reserved_data_space(inode, NULL, cur_offset,
10350 			end - cur_offset + 1);
10351 	return ret;
10352 }
10353 
10354 int btrfs_prealloc_file_range(struct inode *inode, int mode,
10355 			      u64 start, u64 num_bytes, u64 min_size,
10356 			      loff_t actual_len, u64 *alloc_hint)
10357 {
10358 	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10359 					   min_size, actual_len, alloc_hint,
10360 					   NULL);
10361 }
10362 
10363 int btrfs_prealloc_file_range_trans(struct inode *inode,
10364 				    struct btrfs_trans_handle *trans, int mode,
10365 				    u64 start, u64 num_bytes, u64 min_size,
10366 				    loff_t actual_len, u64 *alloc_hint)
10367 {
10368 	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10369 					   min_size, actual_len, alloc_hint, trans);
10370 }
10371 
10372 static int btrfs_set_page_dirty(struct page *page)
10373 {
10374 	return __set_page_dirty_nobuffers(page);
10375 }
10376 
10377 static int btrfs_permission(struct inode *inode, int mask)
10378 {
10379 	struct btrfs_root *root = BTRFS_I(inode)->root;
10380 	umode_t mode = inode->i_mode;
10381 
10382 	if (mask & MAY_WRITE &&
10383 	    (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
10384 		if (btrfs_root_readonly(root))
10385 			return -EROFS;
10386 		if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
10387 			return -EACCES;
10388 	}
10389 	return generic_permission(inode, mask);
10390 }
10391 
10392 static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
10393 {
10394 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
10395 	struct btrfs_trans_handle *trans;
10396 	struct btrfs_root *root = BTRFS_I(dir)->root;
10397 	struct inode *inode = NULL;
10398 	u64 objectid;
10399 	u64 index;
10400 	int ret = 0;
10401 
10402 	/*
10403 	 * 5 units required for adding orphan entry
10404 	 */
10405 	trans = btrfs_start_transaction(root, 5);
10406 	if (IS_ERR(trans))
10407 		return PTR_ERR(trans);
10408 
10409 	ret = btrfs_find_free_ino(root, &objectid);
10410 	if (ret)
10411 		goto out;
10412 
10413 	inode = btrfs_new_inode(trans, root, dir, NULL, 0,
10414 			btrfs_ino(BTRFS_I(dir)), objectid, mode, &index);
10415 	if (IS_ERR(inode)) {
10416 		ret = PTR_ERR(inode);
10417 		inode = NULL;
10418 		goto out;
10419 	}
10420 
10421 	inode->i_fop = &btrfs_file_operations;
10422 	inode->i_op = &btrfs_file_inode_operations;
10423 
10424 	inode->i_mapping->a_ops = &btrfs_aops;
10425 	BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10426 
10427 	ret = btrfs_init_inode_security(trans, inode, dir, NULL);
10428 	if (ret)
10429 		goto out;
10430 
10431 	ret = btrfs_update_inode(trans, root, inode);
10432 	if (ret)
10433 		goto out;
10434 	ret = btrfs_orphan_add(trans, BTRFS_I(inode));
10435 	if (ret)
10436 		goto out;
10437 
10438 	/*
10439 	 * We set number of links to 0 in btrfs_new_inode(), and here we set
10440 	 * it to 1 because d_tmpfile() will issue a warning if the count is 0,
10441 	 * through:
10442 	 *
10443 	 *    d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
10444 	 */
10445 	set_nlink(inode, 1);
10446 	d_tmpfile(dentry, inode);
10447 	unlock_new_inode(inode);
10448 	mark_inode_dirty(inode);
10449 out:
10450 	btrfs_end_transaction(trans);
10451 	if (ret && inode)
10452 		discard_new_inode(inode);
10453 	btrfs_btree_balance_dirty(fs_info);
10454 	return ret;
10455 }
10456 
10457 void btrfs_set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
10458 {
10459 	struct inode *inode = tree->private_data;
10460 	unsigned long index = start >> PAGE_SHIFT;
10461 	unsigned long end_index = end >> PAGE_SHIFT;
10462 	struct page *page;
10463 
10464 	while (index <= end_index) {
10465 		page = find_get_page(inode->i_mapping, index);
10466 		ASSERT(page); /* Pages should be in the extent_io_tree */
10467 		set_page_writeback(page);
10468 		put_page(page);
10469 		index++;
10470 	}
10471 }
10472 
10473 #ifdef CONFIG_SWAP
10474 /*
10475  * Add an entry indicating a block group or device which is pinned by a
10476  * swapfile. Returns 0 on success, 1 if there is already an entry for it, or a
10477  * negative errno on failure.
10478  */
10479 static int btrfs_add_swapfile_pin(struct inode *inode, void *ptr,
10480 				  bool is_block_group)
10481 {
10482 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10483 	struct btrfs_swapfile_pin *sp, *entry;
10484 	struct rb_node **p;
10485 	struct rb_node *parent = NULL;
10486 
10487 	sp = kmalloc(sizeof(*sp), GFP_NOFS);
10488 	if (!sp)
10489 		return -ENOMEM;
10490 	sp->ptr = ptr;
10491 	sp->inode = inode;
10492 	sp->is_block_group = is_block_group;
10493 
10494 	spin_lock(&fs_info->swapfile_pins_lock);
10495 	p = &fs_info->swapfile_pins.rb_node;
10496 	while (*p) {
10497 		parent = *p;
10498 		entry = rb_entry(parent, struct btrfs_swapfile_pin, node);
10499 		if (sp->ptr < entry->ptr ||
10500 		    (sp->ptr == entry->ptr && sp->inode < entry->inode)) {
10501 			p = &(*p)->rb_left;
10502 		} else if (sp->ptr > entry->ptr ||
10503 			   (sp->ptr == entry->ptr && sp->inode > entry->inode)) {
10504 			p = &(*p)->rb_right;
10505 		} else {
10506 			spin_unlock(&fs_info->swapfile_pins_lock);
10507 			kfree(sp);
10508 			return 1;
10509 		}
10510 	}
10511 	rb_link_node(&sp->node, parent, p);
10512 	rb_insert_color(&sp->node, &fs_info->swapfile_pins);
10513 	spin_unlock(&fs_info->swapfile_pins_lock);
10514 	return 0;
10515 }
10516 
10517 /* Free all of the entries pinned by this swapfile. */
10518 static void btrfs_free_swapfile_pins(struct inode *inode)
10519 {
10520 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10521 	struct btrfs_swapfile_pin *sp;
10522 	struct rb_node *node, *next;
10523 
10524 	spin_lock(&fs_info->swapfile_pins_lock);
10525 	node = rb_first(&fs_info->swapfile_pins);
10526 	while (node) {
10527 		next = rb_next(node);
10528 		sp = rb_entry(node, struct btrfs_swapfile_pin, node);
10529 		if (sp->inode == inode) {
10530 			rb_erase(&sp->node, &fs_info->swapfile_pins);
10531 			if (sp->is_block_group)
10532 				btrfs_put_block_group(sp->ptr);
10533 			kfree(sp);
10534 		}
10535 		node = next;
10536 	}
10537 	spin_unlock(&fs_info->swapfile_pins_lock);
10538 }
10539 
10540 struct btrfs_swap_info {
10541 	u64 start;
10542 	u64 block_start;
10543 	u64 block_len;
10544 	u64 lowest_ppage;
10545 	u64 highest_ppage;
10546 	unsigned long nr_pages;
10547 	int nr_extents;
10548 };
10549 
10550 static int btrfs_add_swap_extent(struct swap_info_struct *sis,
10551 				 struct btrfs_swap_info *bsi)
10552 {
10553 	unsigned long nr_pages;
10554 	u64 first_ppage, first_ppage_reported, next_ppage;
10555 	int ret;
10556 
10557 	first_ppage = ALIGN(bsi->block_start, PAGE_SIZE) >> PAGE_SHIFT;
10558 	next_ppage = ALIGN_DOWN(bsi->block_start + bsi->block_len,
10559 				PAGE_SIZE) >> PAGE_SHIFT;
10560 
10561 	if (first_ppage >= next_ppage)
10562 		return 0;
10563 	nr_pages = next_ppage - first_ppage;
10564 
10565 	first_ppage_reported = first_ppage;
10566 	if (bsi->start == 0)
10567 		first_ppage_reported++;
10568 	if (bsi->lowest_ppage > first_ppage_reported)
10569 		bsi->lowest_ppage = first_ppage_reported;
10570 	if (bsi->highest_ppage < (next_ppage - 1))
10571 		bsi->highest_ppage = next_ppage - 1;
10572 
10573 	ret = add_swap_extent(sis, bsi->nr_pages, nr_pages, first_ppage);
10574 	if (ret < 0)
10575 		return ret;
10576 	bsi->nr_extents += ret;
10577 	bsi->nr_pages += nr_pages;
10578 	return 0;
10579 }
10580 
10581 static void btrfs_swap_deactivate(struct file *file)
10582 {
10583 	struct inode *inode = file_inode(file);
10584 
10585 	btrfs_free_swapfile_pins(inode);
10586 	atomic_dec(&BTRFS_I(inode)->root->nr_swapfiles);
10587 }
10588 
10589 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
10590 			       sector_t *span)
10591 {
10592 	struct inode *inode = file_inode(file);
10593 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10594 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
10595 	struct extent_state *cached_state = NULL;
10596 	struct extent_map *em = NULL;
10597 	struct btrfs_device *device = NULL;
10598 	struct btrfs_swap_info bsi = {
10599 		.lowest_ppage = (sector_t)-1ULL,
10600 	};
10601 	int ret = 0;
10602 	u64 isize;
10603 	u64 start;
10604 
10605 	/*
10606 	 * If the swap file was just created, make sure delalloc is done. If the
10607 	 * file changes again after this, the user is doing something stupid and
10608 	 * we don't really care.
10609 	 */
10610 	ret = btrfs_wait_ordered_range(inode, 0, (u64)-1);
10611 	if (ret)
10612 		return ret;
10613 
10614 	/*
10615 	 * The inode is locked, so these flags won't change after we check them.
10616 	 */
10617 	if (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS) {
10618 		btrfs_warn(fs_info, "swapfile must not be compressed");
10619 		return -EINVAL;
10620 	}
10621 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)) {
10622 		btrfs_warn(fs_info, "swapfile must not be copy-on-write");
10623 		return -EINVAL;
10624 	}
10625 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
10626 		btrfs_warn(fs_info, "swapfile must not be checksummed");
10627 		return -EINVAL;
10628 	}
10629 
10630 	/*
10631 	 * Balance or device remove/replace/resize can move stuff around from
10632 	 * under us. The EXCL_OP flag makes sure they aren't running/won't run
10633 	 * concurrently while we are mapping the swap extents, and
10634 	 * fs_info->swapfile_pins prevents them from running while the swap file
10635 	 * is active and moving the extents. Note that this also prevents a
10636 	 * concurrent device add which isn't actually necessary, but it's not
10637 	 * really worth the trouble to allow it.
10638 	 */
10639 	if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
10640 		btrfs_warn(fs_info,
10641 	   "cannot activate swapfile while exclusive operation is running");
10642 		return -EBUSY;
10643 	}
10644 	/*
10645 	 * Snapshots can create extents which require COW even if NODATACOW is
10646 	 * set. We use this counter to prevent snapshots. We must increment it
10647 	 * before walking the extents because we don't want a concurrent
10648 	 * snapshot to run after we've already checked the extents.
10649 	 */
10650 	atomic_inc(&BTRFS_I(inode)->root->nr_swapfiles);
10651 
10652 	isize = ALIGN_DOWN(inode->i_size, fs_info->sectorsize);
10653 
10654 	lock_extent_bits(io_tree, 0, isize - 1, &cached_state);
10655 	start = 0;
10656 	while (start < isize) {
10657 		u64 logical_block_start, physical_block_start;
10658 		struct btrfs_block_group_cache *bg;
10659 		u64 len = isize - start;
10660 
10661 		em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len, 0);
10662 		if (IS_ERR(em)) {
10663 			ret = PTR_ERR(em);
10664 			goto out;
10665 		}
10666 
10667 		if (em->block_start == EXTENT_MAP_HOLE) {
10668 			btrfs_warn(fs_info, "swapfile must not have holes");
10669 			ret = -EINVAL;
10670 			goto out;
10671 		}
10672 		if (em->block_start == EXTENT_MAP_INLINE) {
10673 			/*
10674 			 * It's unlikely we'll ever actually find ourselves
10675 			 * here, as a file small enough to fit inline won't be
10676 			 * big enough to store more than the swap header, but in
10677 			 * case something changes in the future, let's catch it
10678 			 * here rather than later.
10679 			 */
10680 			btrfs_warn(fs_info, "swapfile must not be inline");
10681 			ret = -EINVAL;
10682 			goto out;
10683 		}
10684 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
10685 			btrfs_warn(fs_info, "swapfile must not be compressed");
10686 			ret = -EINVAL;
10687 			goto out;
10688 		}
10689 
10690 		logical_block_start = em->block_start + (start - em->start);
10691 		len = min(len, em->len - (start - em->start));
10692 		free_extent_map(em);
10693 		em = NULL;
10694 
10695 		ret = can_nocow_extent(inode, start, &len, NULL, NULL, NULL);
10696 		if (ret < 0) {
10697 			goto out;
10698 		} else if (ret) {
10699 			ret = 0;
10700 		} else {
10701 			btrfs_warn(fs_info,
10702 				   "swapfile must not be copy-on-write");
10703 			ret = -EINVAL;
10704 			goto out;
10705 		}
10706 
10707 		em = btrfs_get_chunk_map(fs_info, logical_block_start, len);
10708 		if (IS_ERR(em)) {
10709 			ret = PTR_ERR(em);
10710 			goto out;
10711 		}
10712 
10713 		if (em->map_lookup->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
10714 			btrfs_warn(fs_info,
10715 				   "swapfile must have single data profile");
10716 			ret = -EINVAL;
10717 			goto out;
10718 		}
10719 
10720 		if (device == NULL) {
10721 			device = em->map_lookup->stripes[0].dev;
10722 			ret = btrfs_add_swapfile_pin(inode, device, false);
10723 			if (ret == 1)
10724 				ret = 0;
10725 			else if (ret)
10726 				goto out;
10727 		} else if (device != em->map_lookup->stripes[0].dev) {
10728 			btrfs_warn(fs_info, "swapfile must be on one device");
10729 			ret = -EINVAL;
10730 			goto out;
10731 		}
10732 
10733 		physical_block_start = (em->map_lookup->stripes[0].physical +
10734 					(logical_block_start - em->start));
10735 		len = min(len, em->len - (logical_block_start - em->start));
10736 		free_extent_map(em);
10737 		em = NULL;
10738 
10739 		bg = btrfs_lookup_block_group(fs_info, logical_block_start);
10740 		if (!bg) {
10741 			btrfs_warn(fs_info,
10742 			   "could not find block group containing swapfile");
10743 			ret = -EINVAL;
10744 			goto out;
10745 		}
10746 
10747 		ret = btrfs_add_swapfile_pin(inode, bg, true);
10748 		if (ret) {
10749 			btrfs_put_block_group(bg);
10750 			if (ret == 1)
10751 				ret = 0;
10752 			else
10753 				goto out;
10754 		}
10755 
10756 		if (bsi.block_len &&
10757 		    bsi.block_start + bsi.block_len == physical_block_start) {
10758 			bsi.block_len += len;
10759 		} else {
10760 			if (bsi.block_len) {
10761 				ret = btrfs_add_swap_extent(sis, &bsi);
10762 				if (ret)
10763 					goto out;
10764 			}
10765 			bsi.start = start;
10766 			bsi.block_start = physical_block_start;
10767 			bsi.block_len = len;
10768 		}
10769 
10770 		start += len;
10771 	}
10772 
10773 	if (bsi.block_len)
10774 		ret = btrfs_add_swap_extent(sis, &bsi);
10775 
10776 out:
10777 	if (!IS_ERR_OR_NULL(em))
10778 		free_extent_map(em);
10779 
10780 	unlock_extent_cached(io_tree, 0, isize - 1, &cached_state);
10781 
10782 	if (ret)
10783 		btrfs_swap_deactivate(file);
10784 
10785 	clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
10786 
10787 	if (ret)
10788 		return ret;
10789 
10790 	if (device)
10791 		sis->bdev = device->bdev;
10792 	*span = bsi.highest_ppage - bsi.lowest_ppage + 1;
10793 	sis->max = bsi.nr_pages;
10794 	sis->pages = bsi.nr_pages - 1;
10795 	sis->highest_bit = bsi.nr_pages - 1;
10796 	return bsi.nr_extents;
10797 }
10798 #else
10799 static void btrfs_swap_deactivate(struct file *file)
10800 {
10801 }
10802 
10803 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
10804 			       sector_t *span)
10805 {
10806 	return -EOPNOTSUPP;
10807 }
10808 #endif
10809 
10810 static const struct inode_operations btrfs_dir_inode_operations = {
10811 	.getattr	= btrfs_getattr,
10812 	.lookup		= btrfs_lookup,
10813 	.create		= btrfs_create,
10814 	.unlink		= btrfs_unlink,
10815 	.link		= btrfs_link,
10816 	.mkdir		= btrfs_mkdir,
10817 	.rmdir		= btrfs_rmdir,
10818 	.rename		= btrfs_rename2,
10819 	.symlink	= btrfs_symlink,
10820 	.setattr	= btrfs_setattr,
10821 	.mknod		= btrfs_mknod,
10822 	.listxattr	= btrfs_listxattr,
10823 	.permission	= btrfs_permission,
10824 	.get_acl	= btrfs_get_acl,
10825 	.set_acl	= btrfs_set_acl,
10826 	.update_time	= btrfs_update_time,
10827 	.tmpfile        = btrfs_tmpfile,
10828 };
10829 static const struct inode_operations btrfs_dir_ro_inode_operations = {
10830 	.lookup		= btrfs_lookup,
10831 	.permission	= btrfs_permission,
10832 	.update_time	= btrfs_update_time,
10833 };
10834 
10835 static const struct file_operations btrfs_dir_file_operations = {
10836 	.llseek		= generic_file_llseek,
10837 	.read		= generic_read_dir,
10838 	.iterate_shared	= btrfs_real_readdir,
10839 	.open		= btrfs_opendir,
10840 	.unlocked_ioctl	= btrfs_ioctl,
10841 #ifdef CONFIG_COMPAT
10842 	.compat_ioctl	= btrfs_compat_ioctl,
10843 #endif
10844 	.release        = btrfs_release_file,
10845 	.fsync		= btrfs_sync_file,
10846 };
10847 
10848 static const struct extent_io_ops btrfs_extent_io_ops = {
10849 	/* mandatory callbacks */
10850 	.submit_bio_hook = btrfs_submit_bio_hook,
10851 	.readpage_end_io_hook = btrfs_readpage_end_io_hook,
10852 };
10853 
10854 /*
10855  * btrfs doesn't support the bmap operation because swapfiles
10856  * use bmap to make a mapping of extents in the file.  They assume
10857  * these extents won't change over the life of the file and they
10858  * use the bmap result to do IO directly to the drive.
10859  *
10860  * the btrfs bmap call would return logical addresses that aren't
10861  * suitable for IO and they also will change frequently as COW
10862  * operations happen.  So, swapfile + btrfs == corruption.
10863  *
10864  * For now we're avoiding this by dropping bmap.
10865  */
10866 static const struct address_space_operations btrfs_aops = {
10867 	.readpage	= btrfs_readpage,
10868 	.writepage	= btrfs_writepage,
10869 	.writepages	= btrfs_writepages,
10870 	.readpages	= btrfs_readpages,
10871 	.direct_IO	= btrfs_direct_IO,
10872 	.invalidatepage = btrfs_invalidatepage,
10873 	.releasepage	= btrfs_releasepage,
10874 	.set_page_dirty	= btrfs_set_page_dirty,
10875 	.error_remove_page = generic_error_remove_page,
10876 	.swap_activate	= btrfs_swap_activate,
10877 	.swap_deactivate = btrfs_swap_deactivate,
10878 };
10879 
10880 static const struct inode_operations btrfs_file_inode_operations = {
10881 	.getattr	= btrfs_getattr,
10882 	.setattr	= btrfs_setattr,
10883 	.listxattr      = btrfs_listxattr,
10884 	.permission	= btrfs_permission,
10885 	.fiemap		= btrfs_fiemap,
10886 	.get_acl	= btrfs_get_acl,
10887 	.set_acl	= btrfs_set_acl,
10888 	.update_time	= btrfs_update_time,
10889 };
10890 static const struct inode_operations btrfs_special_inode_operations = {
10891 	.getattr	= btrfs_getattr,
10892 	.setattr	= btrfs_setattr,
10893 	.permission	= btrfs_permission,
10894 	.listxattr	= btrfs_listxattr,
10895 	.get_acl	= btrfs_get_acl,
10896 	.set_acl	= btrfs_set_acl,
10897 	.update_time	= btrfs_update_time,
10898 };
10899 static const struct inode_operations btrfs_symlink_inode_operations = {
10900 	.get_link	= page_get_link,
10901 	.getattr	= btrfs_getattr,
10902 	.setattr	= btrfs_setattr,
10903 	.permission	= btrfs_permission,
10904 	.listxattr	= btrfs_listxattr,
10905 	.update_time	= btrfs_update_time,
10906 };
10907 
10908 const struct dentry_operations btrfs_dentry_operations = {
10909 	.d_delete	= btrfs_dentry_delete,
10910 };
10911