1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <crypto/hash.h> 7 #include <linux/kernel.h> 8 #include <linux/bio.h> 9 #include <linux/blk-cgroup.h> 10 #include <linux/file.h> 11 #include <linux/fs.h> 12 #include <linux/pagemap.h> 13 #include <linux/highmem.h> 14 #include <linux/time.h> 15 #include <linux/init.h> 16 #include <linux/string.h> 17 #include <linux/backing-dev.h> 18 #include <linux/writeback.h> 19 #include <linux/compat.h> 20 #include <linux/xattr.h> 21 #include <linux/posix_acl.h> 22 #include <linux/falloc.h> 23 #include <linux/slab.h> 24 #include <linux/ratelimit.h> 25 #include <linux/btrfs.h> 26 #include <linux/blkdev.h> 27 #include <linux/posix_acl_xattr.h> 28 #include <linux/uio.h> 29 #include <linux/magic.h> 30 #include <linux/iversion.h> 31 #include <linux/swap.h> 32 #include <linux/migrate.h> 33 #include <linux/sched/mm.h> 34 #include <linux/iomap.h> 35 #include <asm/unaligned.h> 36 #include <linux/fsverity.h> 37 #include "misc.h" 38 #include "ctree.h" 39 #include "disk-io.h" 40 #include "transaction.h" 41 #include "btrfs_inode.h" 42 #include "print-tree.h" 43 #include "ordered-data.h" 44 #include "xattr.h" 45 #include "tree-log.h" 46 #include "bio.h" 47 #include "compression.h" 48 #include "locking.h" 49 #include "free-space-cache.h" 50 #include "props.h" 51 #include "qgroup.h" 52 #include "delalloc-space.h" 53 #include "block-group.h" 54 #include "space-info.h" 55 #include "zoned.h" 56 #include "subpage.h" 57 #include "inode-item.h" 58 #include "fs.h" 59 #include "accessors.h" 60 #include "extent-tree.h" 61 #include "root-tree.h" 62 #include "defrag.h" 63 #include "dir-item.h" 64 #include "file-item.h" 65 #include "uuid-tree.h" 66 #include "ioctl.h" 67 #include "file.h" 68 #include "acl.h" 69 #include "relocation.h" 70 #include "verity.h" 71 #include "super.h" 72 #include "orphan.h" 73 #include "backref.h" 74 75 struct btrfs_iget_args { 76 u64 ino; 77 struct btrfs_root *root; 78 }; 79 80 struct btrfs_dio_data { 81 ssize_t submitted; 82 struct extent_changeset *data_reserved; 83 struct btrfs_ordered_extent *ordered; 84 bool data_space_reserved; 85 bool nocow_done; 86 }; 87 88 struct btrfs_dio_private { 89 /* Range of I/O */ 90 u64 file_offset; 91 u32 bytes; 92 93 /* This must be last */ 94 struct btrfs_bio bbio; 95 }; 96 97 static struct bio_set btrfs_dio_bioset; 98 99 struct btrfs_rename_ctx { 100 /* Output field. Stores the index number of the old directory entry. */ 101 u64 index; 102 }; 103 104 /* 105 * Used by data_reloc_print_warning_inode() to pass needed info for filename 106 * resolution and output of error message. 107 */ 108 struct data_reloc_warn { 109 struct btrfs_path path; 110 struct btrfs_fs_info *fs_info; 111 u64 extent_item_size; 112 u64 logical; 113 int mirror_num; 114 }; 115 116 static const struct inode_operations btrfs_dir_inode_operations; 117 static const struct inode_operations btrfs_symlink_inode_operations; 118 static const struct inode_operations btrfs_special_inode_operations; 119 static const struct inode_operations btrfs_file_inode_operations; 120 static const struct address_space_operations btrfs_aops; 121 static const struct file_operations btrfs_dir_file_operations; 122 123 static struct kmem_cache *btrfs_inode_cachep; 124 125 static int btrfs_setsize(struct inode *inode, struct iattr *attr); 126 static int btrfs_truncate(struct btrfs_inode *inode, bool skip_writeback); 127 128 static noinline int run_delalloc_cow(struct btrfs_inode *inode, 129 struct page *locked_page, u64 start, 130 u64 end, struct writeback_control *wbc, 131 bool pages_dirty); 132 static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start, 133 u64 len, u64 orig_start, u64 block_start, 134 u64 block_len, u64 orig_block_len, 135 u64 ram_bytes, int compress_type, 136 int type); 137 138 static int data_reloc_print_warning_inode(u64 inum, u64 offset, u64 num_bytes, 139 u64 root, void *warn_ctx) 140 { 141 struct data_reloc_warn *warn = warn_ctx; 142 struct btrfs_fs_info *fs_info = warn->fs_info; 143 struct extent_buffer *eb; 144 struct btrfs_inode_item *inode_item; 145 struct inode_fs_paths *ipath = NULL; 146 struct btrfs_root *local_root; 147 struct btrfs_key key; 148 unsigned int nofs_flag; 149 u32 nlink; 150 int ret; 151 152 local_root = btrfs_get_fs_root(fs_info, root, true); 153 if (IS_ERR(local_root)) { 154 ret = PTR_ERR(local_root); 155 goto err; 156 } 157 158 /* This makes the path point to (inum INODE_ITEM ioff). */ 159 key.objectid = inum; 160 key.type = BTRFS_INODE_ITEM_KEY; 161 key.offset = 0; 162 163 ret = btrfs_search_slot(NULL, local_root, &key, &warn->path, 0, 0); 164 if (ret) { 165 btrfs_put_root(local_root); 166 btrfs_release_path(&warn->path); 167 goto err; 168 } 169 170 eb = warn->path.nodes[0]; 171 inode_item = btrfs_item_ptr(eb, warn->path.slots[0], struct btrfs_inode_item); 172 nlink = btrfs_inode_nlink(eb, inode_item); 173 btrfs_release_path(&warn->path); 174 175 nofs_flag = memalloc_nofs_save(); 176 ipath = init_ipath(4096, local_root, &warn->path); 177 memalloc_nofs_restore(nofs_flag); 178 if (IS_ERR(ipath)) { 179 btrfs_put_root(local_root); 180 ret = PTR_ERR(ipath); 181 ipath = NULL; 182 /* 183 * -ENOMEM, not a critical error, just output an generic error 184 * without filename. 185 */ 186 btrfs_warn(fs_info, 187 "checksum error at logical %llu mirror %u root %llu, inode %llu offset %llu", 188 warn->logical, warn->mirror_num, root, inum, offset); 189 return ret; 190 } 191 ret = paths_from_inode(inum, ipath); 192 if (ret < 0) 193 goto err; 194 195 /* 196 * We deliberately ignore the bit ipath might have been too small to 197 * hold all of the paths here 198 */ 199 for (int i = 0; i < ipath->fspath->elem_cnt; i++) { 200 btrfs_warn(fs_info, 201 "checksum error at logical %llu mirror %u root %llu inode %llu offset %llu length %u links %u (path: %s)", 202 warn->logical, warn->mirror_num, root, inum, offset, 203 fs_info->sectorsize, nlink, 204 (char *)(unsigned long)ipath->fspath->val[i]); 205 } 206 207 btrfs_put_root(local_root); 208 free_ipath(ipath); 209 return 0; 210 211 err: 212 btrfs_warn(fs_info, 213 "checksum error at logical %llu mirror %u root %llu inode %llu offset %llu, path resolving failed with ret=%d", 214 warn->logical, warn->mirror_num, root, inum, offset, ret); 215 216 free_ipath(ipath); 217 return ret; 218 } 219 220 /* 221 * Do extra user-friendly error output (e.g. lookup all the affected files). 222 * 223 * Return true if we succeeded doing the backref lookup. 224 * Return false if such lookup failed, and has to fallback to the old error message. 225 */ 226 static void print_data_reloc_error(const struct btrfs_inode *inode, u64 file_off, 227 const u8 *csum, const u8 *csum_expected, 228 int mirror_num) 229 { 230 struct btrfs_fs_info *fs_info = inode->root->fs_info; 231 struct btrfs_path path = { 0 }; 232 struct btrfs_key found_key = { 0 }; 233 struct extent_buffer *eb; 234 struct btrfs_extent_item *ei; 235 const u32 csum_size = fs_info->csum_size; 236 u64 logical; 237 u64 flags; 238 u32 item_size; 239 int ret; 240 241 mutex_lock(&fs_info->reloc_mutex); 242 logical = btrfs_get_reloc_bg_bytenr(fs_info); 243 mutex_unlock(&fs_info->reloc_mutex); 244 245 if (logical == U64_MAX) { 246 btrfs_warn_rl(fs_info, "has data reloc tree but no running relocation"); 247 btrfs_warn_rl(fs_info, 248 "csum failed root %lld ino %llu off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d", 249 inode->root->root_key.objectid, btrfs_ino(inode), file_off, 250 CSUM_FMT_VALUE(csum_size, csum), 251 CSUM_FMT_VALUE(csum_size, csum_expected), 252 mirror_num); 253 return; 254 } 255 256 logical += file_off; 257 btrfs_warn_rl(fs_info, 258 "csum failed root %lld ino %llu off %llu logical %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d", 259 inode->root->root_key.objectid, 260 btrfs_ino(inode), file_off, logical, 261 CSUM_FMT_VALUE(csum_size, csum), 262 CSUM_FMT_VALUE(csum_size, csum_expected), 263 mirror_num); 264 265 ret = extent_from_logical(fs_info, logical, &path, &found_key, &flags); 266 if (ret < 0) { 267 btrfs_err_rl(fs_info, "failed to lookup extent item for logical %llu: %d", 268 logical, ret); 269 return; 270 } 271 eb = path.nodes[0]; 272 ei = btrfs_item_ptr(eb, path.slots[0], struct btrfs_extent_item); 273 item_size = btrfs_item_size(eb, path.slots[0]); 274 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 275 unsigned long ptr = 0; 276 u64 ref_root; 277 u8 ref_level; 278 279 while (true) { 280 ret = tree_backref_for_extent(&ptr, eb, &found_key, ei, 281 item_size, &ref_root, 282 &ref_level); 283 if (ret < 0) { 284 btrfs_warn_rl(fs_info, 285 "failed to resolve tree backref for logical %llu: %d", 286 logical, ret); 287 break; 288 } 289 if (ret > 0) 290 break; 291 292 btrfs_warn_rl(fs_info, 293 "csum error at logical %llu mirror %u: metadata %s (level %d) in tree %llu", 294 logical, mirror_num, 295 (ref_level ? "node" : "leaf"), 296 ref_level, ref_root); 297 } 298 btrfs_release_path(&path); 299 } else { 300 struct btrfs_backref_walk_ctx ctx = { 0 }; 301 struct data_reloc_warn reloc_warn = { 0 }; 302 303 btrfs_release_path(&path); 304 305 ctx.bytenr = found_key.objectid; 306 ctx.extent_item_pos = logical - found_key.objectid; 307 ctx.fs_info = fs_info; 308 309 reloc_warn.logical = logical; 310 reloc_warn.extent_item_size = found_key.offset; 311 reloc_warn.mirror_num = mirror_num; 312 reloc_warn.fs_info = fs_info; 313 314 iterate_extent_inodes(&ctx, true, 315 data_reloc_print_warning_inode, &reloc_warn); 316 } 317 } 318 319 static void __cold btrfs_print_data_csum_error(struct btrfs_inode *inode, 320 u64 logical_start, u8 *csum, u8 *csum_expected, int mirror_num) 321 { 322 struct btrfs_root *root = inode->root; 323 const u32 csum_size = root->fs_info->csum_size; 324 325 /* For data reloc tree, it's better to do a backref lookup instead. */ 326 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) 327 return print_data_reloc_error(inode, logical_start, csum, 328 csum_expected, mirror_num); 329 330 /* Output without objectid, which is more meaningful */ 331 if (root->root_key.objectid >= BTRFS_LAST_FREE_OBJECTID) { 332 btrfs_warn_rl(root->fs_info, 333 "csum failed root %lld ino %lld off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d", 334 root->root_key.objectid, btrfs_ino(inode), 335 logical_start, 336 CSUM_FMT_VALUE(csum_size, csum), 337 CSUM_FMT_VALUE(csum_size, csum_expected), 338 mirror_num); 339 } else { 340 btrfs_warn_rl(root->fs_info, 341 "csum failed root %llu ino %llu off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d", 342 root->root_key.objectid, btrfs_ino(inode), 343 logical_start, 344 CSUM_FMT_VALUE(csum_size, csum), 345 CSUM_FMT_VALUE(csum_size, csum_expected), 346 mirror_num); 347 } 348 } 349 350 /* 351 * btrfs_inode_lock - lock inode i_rwsem based on arguments passed 352 * 353 * ilock_flags can have the following bit set: 354 * 355 * BTRFS_ILOCK_SHARED - acquire a shared lock on the inode 356 * BTRFS_ILOCK_TRY - try to acquire the lock, if fails on first attempt 357 * return -EAGAIN 358 * BTRFS_ILOCK_MMAP - acquire a write lock on the i_mmap_lock 359 */ 360 int btrfs_inode_lock(struct btrfs_inode *inode, unsigned int ilock_flags) 361 { 362 if (ilock_flags & BTRFS_ILOCK_SHARED) { 363 if (ilock_flags & BTRFS_ILOCK_TRY) { 364 if (!inode_trylock_shared(&inode->vfs_inode)) 365 return -EAGAIN; 366 else 367 return 0; 368 } 369 inode_lock_shared(&inode->vfs_inode); 370 } else { 371 if (ilock_flags & BTRFS_ILOCK_TRY) { 372 if (!inode_trylock(&inode->vfs_inode)) 373 return -EAGAIN; 374 else 375 return 0; 376 } 377 inode_lock(&inode->vfs_inode); 378 } 379 if (ilock_flags & BTRFS_ILOCK_MMAP) 380 down_write(&inode->i_mmap_lock); 381 return 0; 382 } 383 384 /* 385 * btrfs_inode_unlock - unock inode i_rwsem 386 * 387 * ilock_flags should contain the same bits set as passed to btrfs_inode_lock() 388 * to decide whether the lock acquired is shared or exclusive. 389 */ 390 void btrfs_inode_unlock(struct btrfs_inode *inode, unsigned int ilock_flags) 391 { 392 if (ilock_flags & BTRFS_ILOCK_MMAP) 393 up_write(&inode->i_mmap_lock); 394 if (ilock_flags & BTRFS_ILOCK_SHARED) 395 inode_unlock_shared(&inode->vfs_inode); 396 else 397 inode_unlock(&inode->vfs_inode); 398 } 399 400 /* 401 * Cleanup all submitted ordered extents in specified range to handle errors 402 * from the btrfs_run_delalloc_range() callback. 403 * 404 * NOTE: caller must ensure that when an error happens, it can not call 405 * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING 406 * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata 407 * to be released, which we want to happen only when finishing the ordered 408 * extent (btrfs_finish_ordered_io()). 409 */ 410 static inline void btrfs_cleanup_ordered_extents(struct btrfs_inode *inode, 411 struct page *locked_page, 412 u64 offset, u64 bytes) 413 { 414 unsigned long index = offset >> PAGE_SHIFT; 415 unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT; 416 u64 page_start = 0, page_end = 0; 417 struct page *page; 418 419 if (locked_page) { 420 page_start = page_offset(locked_page); 421 page_end = page_start + PAGE_SIZE - 1; 422 } 423 424 while (index <= end_index) { 425 /* 426 * For locked page, we will call btrfs_mark_ordered_io_finished 427 * through btrfs_mark_ordered_io_finished() on it 428 * in run_delalloc_range() for the error handling, which will 429 * clear page Ordered and run the ordered extent accounting. 430 * 431 * Here we can't just clear the Ordered bit, or 432 * btrfs_mark_ordered_io_finished() would skip the accounting 433 * for the page range, and the ordered extent will never finish. 434 */ 435 if (locked_page && index == (page_start >> PAGE_SHIFT)) { 436 index++; 437 continue; 438 } 439 page = find_get_page(inode->vfs_inode.i_mapping, index); 440 index++; 441 if (!page) 442 continue; 443 444 /* 445 * Here we just clear all Ordered bits for every page in the 446 * range, then btrfs_mark_ordered_io_finished() will handle 447 * the ordered extent accounting for the range. 448 */ 449 btrfs_page_clamp_clear_ordered(inode->root->fs_info, page, 450 offset, bytes); 451 put_page(page); 452 } 453 454 if (locked_page) { 455 /* The locked page covers the full range, nothing needs to be done */ 456 if (bytes + offset <= page_start + PAGE_SIZE) 457 return; 458 /* 459 * In case this page belongs to the delalloc range being 460 * instantiated then skip it, since the first page of a range is 461 * going to be properly cleaned up by the caller of 462 * run_delalloc_range 463 */ 464 if (page_start >= offset && page_end <= (offset + bytes - 1)) { 465 bytes = offset + bytes - page_offset(locked_page) - PAGE_SIZE; 466 offset = page_offset(locked_page) + PAGE_SIZE; 467 } 468 } 469 470 return btrfs_mark_ordered_io_finished(inode, NULL, offset, bytes, false); 471 } 472 473 static int btrfs_dirty_inode(struct btrfs_inode *inode); 474 475 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans, 476 struct btrfs_new_inode_args *args) 477 { 478 int err; 479 480 if (args->default_acl) { 481 err = __btrfs_set_acl(trans, args->inode, args->default_acl, 482 ACL_TYPE_DEFAULT); 483 if (err) 484 return err; 485 } 486 if (args->acl) { 487 err = __btrfs_set_acl(trans, args->inode, args->acl, ACL_TYPE_ACCESS); 488 if (err) 489 return err; 490 } 491 if (!args->default_acl && !args->acl) 492 cache_no_acl(args->inode); 493 return btrfs_xattr_security_init(trans, args->inode, args->dir, 494 &args->dentry->d_name); 495 } 496 497 /* 498 * this does all the hard work for inserting an inline extent into 499 * the btree. The caller should have done a btrfs_drop_extents so that 500 * no overlapping inline items exist in the btree 501 */ 502 static int insert_inline_extent(struct btrfs_trans_handle *trans, 503 struct btrfs_path *path, 504 struct btrfs_inode *inode, bool extent_inserted, 505 size_t size, size_t compressed_size, 506 int compress_type, 507 struct page **compressed_pages, 508 bool update_i_size) 509 { 510 struct btrfs_root *root = inode->root; 511 struct extent_buffer *leaf; 512 struct page *page = NULL; 513 char *kaddr; 514 unsigned long ptr; 515 struct btrfs_file_extent_item *ei; 516 int ret; 517 size_t cur_size = size; 518 u64 i_size; 519 520 ASSERT((compressed_size > 0 && compressed_pages) || 521 (compressed_size == 0 && !compressed_pages)); 522 523 if (compressed_size && compressed_pages) 524 cur_size = compressed_size; 525 526 if (!extent_inserted) { 527 struct btrfs_key key; 528 size_t datasize; 529 530 key.objectid = btrfs_ino(inode); 531 key.offset = 0; 532 key.type = BTRFS_EXTENT_DATA_KEY; 533 534 datasize = btrfs_file_extent_calc_inline_size(cur_size); 535 ret = btrfs_insert_empty_item(trans, root, path, &key, 536 datasize); 537 if (ret) 538 goto fail; 539 } 540 leaf = path->nodes[0]; 541 ei = btrfs_item_ptr(leaf, path->slots[0], 542 struct btrfs_file_extent_item); 543 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 544 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE); 545 btrfs_set_file_extent_encryption(leaf, ei, 0); 546 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 547 btrfs_set_file_extent_ram_bytes(leaf, ei, size); 548 ptr = btrfs_file_extent_inline_start(ei); 549 550 if (compress_type != BTRFS_COMPRESS_NONE) { 551 struct page *cpage; 552 int i = 0; 553 while (compressed_size > 0) { 554 cpage = compressed_pages[i]; 555 cur_size = min_t(unsigned long, compressed_size, 556 PAGE_SIZE); 557 558 kaddr = kmap_local_page(cpage); 559 write_extent_buffer(leaf, kaddr, ptr, cur_size); 560 kunmap_local(kaddr); 561 562 i++; 563 ptr += cur_size; 564 compressed_size -= cur_size; 565 } 566 btrfs_set_file_extent_compression(leaf, ei, 567 compress_type); 568 } else { 569 page = find_get_page(inode->vfs_inode.i_mapping, 0); 570 btrfs_set_file_extent_compression(leaf, ei, 0); 571 kaddr = kmap_local_page(page); 572 write_extent_buffer(leaf, kaddr, ptr, size); 573 kunmap_local(kaddr); 574 put_page(page); 575 } 576 btrfs_mark_buffer_dirty(trans, leaf); 577 btrfs_release_path(path); 578 579 /* 580 * We align size to sectorsize for inline extents just for simplicity 581 * sake. 582 */ 583 ret = btrfs_inode_set_file_extent_range(inode, 0, 584 ALIGN(size, root->fs_info->sectorsize)); 585 if (ret) 586 goto fail; 587 588 /* 589 * We're an inline extent, so nobody can extend the file past i_size 590 * without locking a page we already have locked. 591 * 592 * We must do any i_size and inode updates before we unlock the pages. 593 * Otherwise we could end up racing with unlink. 594 */ 595 i_size = i_size_read(&inode->vfs_inode); 596 if (update_i_size && size > i_size) { 597 i_size_write(&inode->vfs_inode, size); 598 i_size = size; 599 } 600 inode->disk_i_size = i_size; 601 602 fail: 603 return ret; 604 } 605 606 607 /* 608 * conditionally insert an inline extent into the file. This 609 * does the checks required to make sure the data is small enough 610 * to fit as an inline extent. 611 */ 612 static noinline int cow_file_range_inline(struct btrfs_inode *inode, u64 size, 613 size_t compressed_size, 614 int compress_type, 615 struct page **compressed_pages, 616 bool update_i_size) 617 { 618 struct btrfs_drop_extents_args drop_args = { 0 }; 619 struct btrfs_root *root = inode->root; 620 struct btrfs_fs_info *fs_info = root->fs_info; 621 struct btrfs_trans_handle *trans; 622 u64 data_len = (compressed_size ?: size); 623 int ret; 624 struct btrfs_path *path; 625 626 /* 627 * We can create an inline extent if it ends at or beyond the current 628 * i_size, is no larger than a sector (decompressed), and the (possibly 629 * compressed) data fits in a leaf and the configured maximum inline 630 * size. 631 */ 632 if (size < i_size_read(&inode->vfs_inode) || 633 size > fs_info->sectorsize || 634 data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) || 635 data_len > fs_info->max_inline) 636 return 1; 637 638 path = btrfs_alloc_path(); 639 if (!path) 640 return -ENOMEM; 641 642 trans = btrfs_join_transaction(root); 643 if (IS_ERR(trans)) { 644 btrfs_free_path(path); 645 return PTR_ERR(trans); 646 } 647 trans->block_rsv = &inode->block_rsv; 648 649 drop_args.path = path; 650 drop_args.start = 0; 651 drop_args.end = fs_info->sectorsize; 652 drop_args.drop_cache = true; 653 drop_args.replace_extent = true; 654 drop_args.extent_item_size = btrfs_file_extent_calc_inline_size(data_len); 655 ret = btrfs_drop_extents(trans, root, inode, &drop_args); 656 if (ret) { 657 btrfs_abort_transaction(trans, ret); 658 goto out; 659 } 660 661 ret = insert_inline_extent(trans, path, inode, drop_args.extent_inserted, 662 size, compressed_size, compress_type, 663 compressed_pages, update_i_size); 664 if (ret && ret != -ENOSPC) { 665 btrfs_abort_transaction(trans, ret); 666 goto out; 667 } else if (ret == -ENOSPC) { 668 ret = 1; 669 goto out; 670 } 671 672 btrfs_update_inode_bytes(inode, size, drop_args.bytes_found); 673 ret = btrfs_update_inode(trans, root, inode); 674 if (ret && ret != -ENOSPC) { 675 btrfs_abort_transaction(trans, ret); 676 goto out; 677 } else if (ret == -ENOSPC) { 678 ret = 1; 679 goto out; 680 } 681 682 btrfs_set_inode_full_sync(inode); 683 out: 684 /* 685 * Don't forget to free the reserved space, as for inlined extent 686 * it won't count as data extent, free them directly here. 687 * And at reserve time, it's always aligned to page size, so 688 * just free one page here. 689 */ 690 btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE, NULL); 691 btrfs_free_path(path); 692 btrfs_end_transaction(trans); 693 return ret; 694 } 695 696 struct async_extent { 697 u64 start; 698 u64 ram_size; 699 u64 compressed_size; 700 struct page **pages; 701 unsigned long nr_pages; 702 int compress_type; 703 struct list_head list; 704 }; 705 706 struct async_chunk { 707 struct btrfs_inode *inode; 708 struct page *locked_page; 709 u64 start; 710 u64 end; 711 blk_opf_t write_flags; 712 struct list_head extents; 713 struct cgroup_subsys_state *blkcg_css; 714 struct btrfs_work work; 715 struct async_cow *async_cow; 716 }; 717 718 struct async_cow { 719 atomic_t num_chunks; 720 struct async_chunk chunks[]; 721 }; 722 723 static noinline int add_async_extent(struct async_chunk *cow, 724 u64 start, u64 ram_size, 725 u64 compressed_size, 726 struct page **pages, 727 unsigned long nr_pages, 728 int compress_type) 729 { 730 struct async_extent *async_extent; 731 732 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS); 733 BUG_ON(!async_extent); /* -ENOMEM */ 734 async_extent->start = start; 735 async_extent->ram_size = ram_size; 736 async_extent->compressed_size = compressed_size; 737 async_extent->pages = pages; 738 async_extent->nr_pages = nr_pages; 739 async_extent->compress_type = compress_type; 740 list_add_tail(&async_extent->list, &cow->extents); 741 return 0; 742 } 743 744 /* 745 * Check if the inode needs to be submitted to compression, based on mount 746 * options, defragmentation, properties or heuristics. 747 */ 748 static inline int inode_need_compress(struct btrfs_inode *inode, u64 start, 749 u64 end) 750 { 751 struct btrfs_fs_info *fs_info = inode->root->fs_info; 752 753 if (!btrfs_inode_can_compress(inode)) { 754 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG), 755 KERN_ERR "BTRFS: unexpected compression for ino %llu\n", 756 btrfs_ino(inode)); 757 return 0; 758 } 759 /* 760 * Special check for subpage. 761 * 762 * We lock the full page then run each delalloc range in the page, thus 763 * for the following case, we will hit some subpage specific corner case: 764 * 765 * 0 32K 64K 766 * | |///////| |///////| 767 * \- A \- B 768 * 769 * In above case, both range A and range B will try to unlock the full 770 * page [0, 64K), causing the one finished later will have page 771 * unlocked already, triggering various page lock requirement BUG_ON()s. 772 * 773 * So here we add an artificial limit that subpage compression can only 774 * if the range is fully page aligned. 775 * 776 * In theory we only need to ensure the first page is fully covered, but 777 * the tailing partial page will be locked until the full compression 778 * finishes, delaying the write of other range. 779 * 780 * TODO: Make btrfs_run_delalloc_range() to lock all delalloc range 781 * first to prevent any submitted async extent to unlock the full page. 782 * By this, we can ensure for subpage case that only the last async_cow 783 * will unlock the full page. 784 */ 785 if (fs_info->sectorsize < PAGE_SIZE) { 786 if (!PAGE_ALIGNED(start) || 787 !PAGE_ALIGNED(end + 1)) 788 return 0; 789 } 790 791 /* force compress */ 792 if (btrfs_test_opt(fs_info, FORCE_COMPRESS)) 793 return 1; 794 /* defrag ioctl */ 795 if (inode->defrag_compress) 796 return 1; 797 /* bad compression ratios */ 798 if (inode->flags & BTRFS_INODE_NOCOMPRESS) 799 return 0; 800 if (btrfs_test_opt(fs_info, COMPRESS) || 801 inode->flags & BTRFS_INODE_COMPRESS || 802 inode->prop_compress) 803 return btrfs_compress_heuristic(&inode->vfs_inode, start, end); 804 return 0; 805 } 806 807 static inline void inode_should_defrag(struct btrfs_inode *inode, 808 u64 start, u64 end, u64 num_bytes, u32 small_write) 809 { 810 /* If this is a small write inside eof, kick off a defrag */ 811 if (num_bytes < small_write && 812 (start > 0 || end + 1 < inode->disk_i_size)) 813 btrfs_add_inode_defrag(NULL, inode, small_write); 814 } 815 816 /* 817 * Work queue call back to started compression on a file and pages. 818 * 819 * This is done inside an ordered work queue, and the compression is spread 820 * across many cpus. The actual IO submission is step two, and the ordered work 821 * queue takes care of making sure that happens in the same order things were 822 * put onto the queue by writepages and friends. 823 * 824 * If this code finds it can't get good compression, it puts an entry onto the 825 * work queue to write the uncompressed bytes. This makes sure that both 826 * compressed inodes and uncompressed inodes are written in the same order that 827 * the flusher thread sent them down. 828 */ 829 static void compress_file_range(struct btrfs_work *work) 830 { 831 struct async_chunk *async_chunk = 832 container_of(work, struct async_chunk, work); 833 struct btrfs_inode *inode = async_chunk->inode; 834 struct btrfs_fs_info *fs_info = inode->root->fs_info; 835 struct address_space *mapping = inode->vfs_inode.i_mapping; 836 u64 blocksize = fs_info->sectorsize; 837 u64 start = async_chunk->start; 838 u64 end = async_chunk->end; 839 u64 actual_end; 840 u64 i_size; 841 int ret = 0; 842 struct page **pages; 843 unsigned long nr_pages; 844 unsigned long total_compressed = 0; 845 unsigned long total_in = 0; 846 unsigned int poff; 847 int i; 848 int compress_type = fs_info->compress_type; 849 850 inode_should_defrag(inode, start, end, end - start + 1, SZ_16K); 851 852 /* 853 * We need to call clear_page_dirty_for_io on each page in the range. 854 * Otherwise applications with the file mmap'd can wander in and change 855 * the page contents while we are compressing them. 856 */ 857 extent_range_clear_dirty_for_io(&inode->vfs_inode, start, end); 858 859 /* 860 * We need to save i_size before now because it could change in between 861 * us evaluating the size and assigning it. This is because we lock and 862 * unlock the page in truncate and fallocate, and then modify the i_size 863 * later on. 864 * 865 * The barriers are to emulate READ_ONCE, remove that once i_size_read 866 * does that for us. 867 */ 868 barrier(); 869 i_size = i_size_read(&inode->vfs_inode); 870 barrier(); 871 actual_end = min_t(u64, i_size, end + 1); 872 again: 873 pages = NULL; 874 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1; 875 nr_pages = min_t(unsigned long, nr_pages, BTRFS_MAX_COMPRESSED_PAGES); 876 877 /* 878 * we don't want to send crud past the end of i_size through 879 * compression, that's just a waste of CPU time. So, if the 880 * end of the file is before the start of our current 881 * requested range of bytes, we bail out to the uncompressed 882 * cleanup code that can deal with all of this. 883 * 884 * It isn't really the fastest way to fix things, but this is a 885 * very uncommon corner. 886 */ 887 if (actual_end <= start) 888 goto cleanup_and_bail_uncompressed; 889 890 total_compressed = actual_end - start; 891 892 /* 893 * Skip compression for a small file range(<=blocksize) that 894 * isn't an inline extent, since it doesn't save disk space at all. 895 */ 896 if (total_compressed <= blocksize && 897 (start > 0 || end + 1 < inode->disk_i_size)) 898 goto cleanup_and_bail_uncompressed; 899 900 /* 901 * For subpage case, we require full page alignment for the sector 902 * aligned range. 903 * Thus we must also check against @actual_end, not just @end. 904 */ 905 if (blocksize < PAGE_SIZE) { 906 if (!PAGE_ALIGNED(start) || 907 !PAGE_ALIGNED(round_up(actual_end, blocksize))) 908 goto cleanup_and_bail_uncompressed; 909 } 910 911 total_compressed = min_t(unsigned long, total_compressed, 912 BTRFS_MAX_UNCOMPRESSED); 913 total_in = 0; 914 ret = 0; 915 916 /* 917 * We do compression for mount -o compress and when the inode has not 918 * been flagged as NOCOMPRESS. This flag can change at any time if we 919 * discover bad compression ratios. 920 */ 921 if (!inode_need_compress(inode, start, end)) 922 goto cleanup_and_bail_uncompressed; 923 924 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS); 925 if (!pages) { 926 /* 927 * Memory allocation failure is not a fatal error, we can fall 928 * back to uncompressed code. 929 */ 930 goto cleanup_and_bail_uncompressed; 931 } 932 933 if (inode->defrag_compress) 934 compress_type = inode->defrag_compress; 935 else if (inode->prop_compress) 936 compress_type = inode->prop_compress; 937 938 /* Compression level is applied here. */ 939 ret = btrfs_compress_pages(compress_type | (fs_info->compress_level << 4), 940 mapping, start, pages, &nr_pages, &total_in, 941 &total_compressed); 942 if (ret) 943 goto mark_incompressible; 944 945 /* 946 * Zero the tail end of the last page, as we might be sending it down 947 * to disk. 948 */ 949 poff = offset_in_page(total_compressed); 950 if (poff) 951 memzero_page(pages[nr_pages - 1], poff, PAGE_SIZE - poff); 952 953 /* 954 * Try to create an inline extent. 955 * 956 * If we didn't compress the entire range, try to create an uncompressed 957 * inline extent, else a compressed one. 958 * 959 * Check cow_file_range() for why we don't even try to create inline 960 * extent for the subpage case. 961 */ 962 if (start == 0 && fs_info->sectorsize == PAGE_SIZE) { 963 if (total_in < actual_end) { 964 ret = cow_file_range_inline(inode, actual_end, 0, 965 BTRFS_COMPRESS_NONE, NULL, 966 false); 967 } else { 968 ret = cow_file_range_inline(inode, actual_end, 969 total_compressed, 970 compress_type, pages, 971 false); 972 } 973 if (ret <= 0) { 974 unsigned long clear_flags = EXTENT_DELALLOC | 975 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG | 976 EXTENT_DO_ACCOUNTING; 977 978 if (ret < 0) 979 mapping_set_error(mapping, -EIO); 980 981 /* 982 * inline extent creation worked or returned error, 983 * we don't need to create any more async work items. 984 * Unlock and free up our temp pages. 985 * 986 * We use DO_ACCOUNTING here because we need the 987 * delalloc_release_metadata to be done _after_ we drop 988 * our outstanding extent for clearing delalloc for this 989 * range. 990 */ 991 extent_clear_unlock_delalloc(inode, start, end, 992 NULL, 993 clear_flags, 994 PAGE_UNLOCK | 995 PAGE_START_WRITEBACK | 996 PAGE_END_WRITEBACK); 997 goto free_pages; 998 } 999 } 1000 1001 /* 1002 * We aren't doing an inline extent. Round the compressed size up to a 1003 * block size boundary so the allocator does sane things. 1004 */ 1005 total_compressed = ALIGN(total_compressed, blocksize); 1006 1007 /* 1008 * One last check to make sure the compression is really a win, compare 1009 * the page count read with the blocks on disk, compression must free at 1010 * least one sector. 1011 */ 1012 total_in = round_up(total_in, fs_info->sectorsize); 1013 if (total_compressed + blocksize > total_in) 1014 goto mark_incompressible; 1015 1016 /* 1017 * The async work queues will take care of doing actual allocation on 1018 * disk for these compressed pages, and will submit the bios. 1019 */ 1020 add_async_extent(async_chunk, start, total_in, total_compressed, pages, 1021 nr_pages, compress_type); 1022 if (start + total_in < end) { 1023 start += total_in; 1024 cond_resched(); 1025 goto again; 1026 } 1027 return; 1028 1029 mark_incompressible: 1030 if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) && !inode->prop_compress) 1031 inode->flags |= BTRFS_INODE_NOCOMPRESS; 1032 cleanup_and_bail_uncompressed: 1033 add_async_extent(async_chunk, start, end - start + 1, 0, NULL, 0, 1034 BTRFS_COMPRESS_NONE); 1035 free_pages: 1036 if (pages) { 1037 for (i = 0; i < nr_pages; i++) { 1038 WARN_ON(pages[i]->mapping); 1039 put_page(pages[i]); 1040 } 1041 kfree(pages); 1042 } 1043 } 1044 1045 static void free_async_extent_pages(struct async_extent *async_extent) 1046 { 1047 int i; 1048 1049 if (!async_extent->pages) 1050 return; 1051 1052 for (i = 0; i < async_extent->nr_pages; i++) { 1053 WARN_ON(async_extent->pages[i]->mapping); 1054 put_page(async_extent->pages[i]); 1055 } 1056 kfree(async_extent->pages); 1057 async_extent->nr_pages = 0; 1058 async_extent->pages = NULL; 1059 } 1060 1061 static void submit_uncompressed_range(struct btrfs_inode *inode, 1062 struct async_extent *async_extent, 1063 struct page *locked_page) 1064 { 1065 u64 start = async_extent->start; 1066 u64 end = async_extent->start + async_extent->ram_size - 1; 1067 int ret; 1068 struct writeback_control wbc = { 1069 .sync_mode = WB_SYNC_ALL, 1070 .range_start = start, 1071 .range_end = end, 1072 .no_cgroup_owner = 1, 1073 }; 1074 1075 wbc_attach_fdatawrite_inode(&wbc, &inode->vfs_inode); 1076 ret = run_delalloc_cow(inode, locked_page, start, end, &wbc, false); 1077 wbc_detach_inode(&wbc); 1078 if (ret < 0) { 1079 btrfs_cleanup_ordered_extents(inode, locked_page, start, end - start + 1); 1080 if (locked_page) { 1081 const u64 page_start = page_offset(locked_page); 1082 1083 set_page_writeback(locked_page); 1084 end_page_writeback(locked_page); 1085 btrfs_mark_ordered_io_finished(inode, locked_page, 1086 page_start, PAGE_SIZE, 1087 !ret); 1088 mapping_set_error(locked_page->mapping, ret); 1089 unlock_page(locked_page); 1090 } 1091 } 1092 } 1093 1094 static void submit_one_async_extent(struct async_chunk *async_chunk, 1095 struct async_extent *async_extent, 1096 u64 *alloc_hint) 1097 { 1098 struct btrfs_inode *inode = async_chunk->inode; 1099 struct extent_io_tree *io_tree = &inode->io_tree; 1100 struct btrfs_root *root = inode->root; 1101 struct btrfs_fs_info *fs_info = root->fs_info; 1102 struct btrfs_ordered_extent *ordered; 1103 struct btrfs_key ins; 1104 struct page *locked_page = NULL; 1105 struct extent_map *em; 1106 int ret = 0; 1107 u64 start = async_extent->start; 1108 u64 end = async_extent->start + async_extent->ram_size - 1; 1109 1110 if (async_chunk->blkcg_css) 1111 kthread_associate_blkcg(async_chunk->blkcg_css); 1112 1113 /* 1114 * If async_chunk->locked_page is in the async_extent range, we need to 1115 * handle it. 1116 */ 1117 if (async_chunk->locked_page) { 1118 u64 locked_page_start = page_offset(async_chunk->locked_page); 1119 u64 locked_page_end = locked_page_start + PAGE_SIZE - 1; 1120 1121 if (!(start >= locked_page_end || end <= locked_page_start)) 1122 locked_page = async_chunk->locked_page; 1123 } 1124 lock_extent(io_tree, start, end, NULL); 1125 1126 if (async_extent->compress_type == BTRFS_COMPRESS_NONE) { 1127 submit_uncompressed_range(inode, async_extent, locked_page); 1128 goto done; 1129 } 1130 1131 ret = btrfs_reserve_extent(root, async_extent->ram_size, 1132 async_extent->compressed_size, 1133 async_extent->compressed_size, 1134 0, *alloc_hint, &ins, 1, 1); 1135 if (ret) { 1136 /* 1137 * We can't reserve contiguous space for the compressed size. 1138 * Unlikely, but it's possible that we could have enough 1139 * non-contiguous space for the uncompressed size instead. So 1140 * fall back to uncompressed. 1141 */ 1142 submit_uncompressed_range(inode, async_extent, locked_page); 1143 goto done; 1144 } 1145 1146 /* Here we're doing allocation and writeback of the compressed pages */ 1147 em = create_io_em(inode, start, 1148 async_extent->ram_size, /* len */ 1149 start, /* orig_start */ 1150 ins.objectid, /* block_start */ 1151 ins.offset, /* block_len */ 1152 ins.offset, /* orig_block_len */ 1153 async_extent->ram_size, /* ram_bytes */ 1154 async_extent->compress_type, 1155 BTRFS_ORDERED_COMPRESSED); 1156 if (IS_ERR(em)) { 1157 ret = PTR_ERR(em); 1158 goto out_free_reserve; 1159 } 1160 free_extent_map(em); 1161 1162 ordered = btrfs_alloc_ordered_extent(inode, start, /* file_offset */ 1163 async_extent->ram_size, /* num_bytes */ 1164 async_extent->ram_size, /* ram_bytes */ 1165 ins.objectid, /* disk_bytenr */ 1166 ins.offset, /* disk_num_bytes */ 1167 0, /* offset */ 1168 1 << BTRFS_ORDERED_COMPRESSED, 1169 async_extent->compress_type); 1170 if (IS_ERR(ordered)) { 1171 btrfs_drop_extent_map_range(inode, start, end, false); 1172 ret = PTR_ERR(ordered); 1173 goto out_free_reserve; 1174 } 1175 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1176 1177 /* Clear dirty, set writeback and unlock the pages. */ 1178 extent_clear_unlock_delalloc(inode, start, end, 1179 NULL, EXTENT_LOCKED | EXTENT_DELALLOC, 1180 PAGE_UNLOCK | PAGE_START_WRITEBACK); 1181 btrfs_submit_compressed_write(ordered, 1182 async_extent->pages, /* compressed_pages */ 1183 async_extent->nr_pages, 1184 async_chunk->write_flags, true); 1185 *alloc_hint = ins.objectid + ins.offset; 1186 done: 1187 if (async_chunk->blkcg_css) 1188 kthread_associate_blkcg(NULL); 1189 kfree(async_extent); 1190 return; 1191 1192 out_free_reserve: 1193 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1194 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1); 1195 mapping_set_error(inode->vfs_inode.i_mapping, -EIO); 1196 extent_clear_unlock_delalloc(inode, start, end, 1197 NULL, EXTENT_LOCKED | EXTENT_DELALLOC | 1198 EXTENT_DELALLOC_NEW | 1199 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING, 1200 PAGE_UNLOCK | PAGE_START_WRITEBACK | 1201 PAGE_END_WRITEBACK); 1202 free_async_extent_pages(async_extent); 1203 if (async_chunk->blkcg_css) 1204 kthread_associate_blkcg(NULL); 1205 btrfs_debug(fs_info, 1206 "async extent submission failed root=%lld inode=%llu start=%llu len=%llu ret=%d", 1207 root->root_key.objectid, btrfs_ino(inode), start, 1208 async_extent->ram_size, ret); 1209 kfree(async_extent); 1210 } 1211 1212 static u64 get_extent_allocation_hint(struct btrfs_inode *inode, u64 start, 1213 u64 num_bytes) 1214 { 1215 struct extent_map_tree *em_tree = &inode->extent_tree; 1216 struct extent_map *em; 1217 u64 alloc_hint = 0; 1218 1219 read_lock(&em_tree->lock); 1220 em = search_extent_mapping(em_tree, start, num_bytes); 1221 if (em) { 1222 /* 1223 * if block start isn't an actual block number then find the 1224 * first block in this inode and use that as a hint. If that 1225 * block is also bogus then just don't worry about it. 1226 */ 1227 if (em->block_start >= EXTENT_MAP_LAST_BYTE) { 1228 free_extent_map(em); 1229 em = search_extent_mapping(em_tree, 0, 0); 1230 if (em && em->block_start < EXTENT_MAP_LAST_BYTE) 1231 alloc_hint = em->block_start; 1232 if (em) 1233 free_extent_map(em); 1234 } else { 1235 alloc_hint = em->block_start; 1236 free_extent_map(em); 1237 } 1238 } 1239 read_unlock(&em_tree->lock); 1240 1241 return alloc_hint; 1242 } 1243 1244 /* 1245 * when extent_io.c finds a delayed allocation range in the file, 1246 * the call backs end up in this code. The basic idea is to 1247 * allocate extents on disk for the range, and create ordered data structs 1248 * in ram to track those extents. 1249 * 1250 * locked_page is the page that writepage had locked already. We use 1251 * it to make sure we don't do extra locks or unlocks. 1252 * 1253 * When this function fails, it unlocks all pages except @locked_page. 1254 * 1255 * When this function successfully creates an inline extent, it returns 1 and 1256 * unlocks all pages including locked_page and starts I/O on them. 1257 * (In reality inline extents are limited to a single page, so locked_page is 1258 * the only page handled anyway). 1259 * 1260 * When this function succeed and creates a normal extent, the page locking 1261 * status depends on the passed in flags: 1262 * 1263 * - If @keep_locked is set, all pages are kept locked. 1264 * - Else all pages except for @locked_page are unlocked. 1265 * 1266 * When a failure happens in the second or later iteration of the 1267 * while-loop, the ordered extents created in previous iterations are kept 1268 * intact. So, the caller must clean them up by calling 1269 * btrfs_cleanup_ordered_extents(). See btrfs_run_delalloc_range() for 1270 * example. 1271 */ 1272 static noinline int cow_file_range(struct btrfs_inode *inode, 1273 struct page *locked_page, u64 start, u64 end, 1274 u64 *done_offset, 1275 bool keep_locked, bool no_inline) 1276 { 1277 struct btrfs_root *root = inode->root; 1278 struct btrfs_fs_info *fs_info = root->fs_info; 1279 u64 alloc_hint = 0; 1280 u64 orig_start = start; 1281 u64 num_bytes; 1282 unsigned long ram_size; 1283 u64 cur_alloc_size = 0; 1284 u64 min_alloc_size; 1285 u64 blocksize = fs_info->sectorsize; 1286 struct btrfs_key ins; 1287 struct extent_map *em; 1288 unsigned clear_bits; 1289 unsigned long page_ops; 1290 bool extent_reserved = false; 1291 int ret = 0; 1292 1293 if (btrfs_is_free_space_inode(inode)) { 1294 ret = -EINVAL; 1295 goto out_unlock; 1296 } 1297 1298 num_bytes = ALIGN(end - start + 1, blocksize); 1299 num_bytes = max(blocksize, num_bytes); 1300 ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy)); 1301 1302 inode_should_defrag(inode, start, end, num_bytes, SZ_64K); 1303 1304 /* 1305 * Due to the page size limit, for subpage we can only trigger the 1306 * writeback for the dirty sectors of page, that means data writeback 1307 * is doing more writeback than what we want. 1308 * 1309 * This is especially unexpected for some call sites like fallocate, 1310 * where we only increase i_size after everything is done. 1311 * This means we can trigger inline extent even if we didn't want to. 1312 * So here we skip inline extent creation completely. 1313 */ 1314 if (start == 0 && fs_info->sectorsize == PAGE_SIZE && !no_inline) { 1315 u64 actual_end = min_t(u64, i_size_read(&inode->vfs_inode), 1316 end + 1); 1317 1318 /* lets try to make an inline extent */ 1319 ret = cow_file_range_inline(inode, actual_end, 0, 1320 BTRFS_COMPRESS_NONE, NULL, false); 1321 if (ret == 0) { 1322 /* 1323 * We use DO_ACCOUNTING here because we need the 1324 * delalloc_release_metadata to be run _after_ we drop 1325 * our outstanding extent for clearing delalloc for this 1326 * range. 1327 */ 1328 extent_clear_unlock_delalloc(inode, start, end, 1329 locked_page, 1330 EXTENT_LOCKED | EXTENT_DELALLOC | 1331 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG | 1332 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK | 1333 PAGE_START_WRITEBACK | PAGE_END_WRITEBACK); 1334 /* 1335 * locked_page is locked by the caller of 1336 * writepage_delalloc(), not locked by 1337 * __process_pages_contig(). 1338 * 1339 * We can't let __process_pages_contig() to unlock it, 1340 * as it doesn't have any subpage::writers recorded. 1341 * 1342 * Here we manually unlock the page, since the caller 1343 * can't determine if it's an inline extent or a 1344 * compressed extent. 1345 */ 1346 unlock_page(locked_page); 1347 ret = 1; 1348 goto done; 1349 } else if (ret < 0) { 1350 goto out_unlock; 1351 } 1352 } 1353 1354 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes); 1355 1356 /* 1357 * Relocation relies on the relocated extents to have exactly the same 1358 * size as the original extents. Normally writeback for relocation data 1359 * extents follows a NOCOW path because relocation preallocates the 1360 * extents. However, due to an operation such as scrub turning a block 1361 * group to RO mode, it may fallback to COW mode, so we must make sure 1362 * an extent allocated during COW has exactly the requested size and can 1363 * not be split into smaller extents, otherwise relocation breaks and 1364 * fails during the stage where it updates the bytenr of file extent 1365 * items. 1366 */ 1367 if (btrfs_is_data_reloc_root(root)) 1368 min_alloc_size = num_bytes; 1369 else 1370 min_alloc_size = fs_info->sectorsize; 1371 1372 while (num_bytes > 0) { 1373 struct btrfs_ordered_extent *ordered; 1374 1375 cur_alloc_size = num_bytes; 1376 ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size, 1377 min_alloc_size, 0, alloc_hint, 1378 &ins, 1, 1); 1379 if (ret == -EAGAIN) { 1380 /* 1381 * btrfs_reserve_extent only returns -EAGAIN for zoned 1382 * file systems, which is an indication that there are 1383 * no active zones to allocate from at the moment. 1384 * 1385 * If this is the first loop iteration, wait for at 1386 * least one zone to finish before retrying the 1387 * allocation. Otherwise ask the caller to write out 1388 * the already allocated blocks before coming back to 1389 * us, or return -ENOSPC if it can't handle retries. 1390 */ 1391 ASSERT(btrfs_is_zoned(fs_info)); 1392 if (start == orig_start) { 1393 wait_on_bit_io(&inode->root->fs_info->flags, 1394 BTRFS_FS_NEED_ZONE_FINISH, 1395 TASK_UNINTERRUPTIBLE); 1396 continue; 1397 } 1398 if (done_offset) { 1399 *done_offset = start - 1; 1400 return 0; 1401 } 1402 ret = -ENOSPC; 1403 } 1404 if (ret < 0) 1405 goto out_unlock; 1406 cur_alloc_size = ins.offset; 1407 extent_reserved = true; 1408 1409 ram_size = ins.offset; 1410 em = create_io_em(inode, start, ins.offset, /* len */ 1411 start, /* orig_start */ 1412 ins.objectid, /* block_start */ 1413 ins.offset, /* block_len */ 1414 ins.offset, /* orig_block_len */ 1415 ram_size, /* ram_bytes */ 1416 BTRFS_COMPRESS_NONE, /* compress_type */ 1417 BTRFS_ORDERED_REGULAR /* type */); 1418 if (IS_ERR(em)) { 1419 ret = PTR_ERR(em); 1420 goto out_reserve; 1421 } 1422 free_extent_map(em); 1423 1424 ordered = btrfs_alloc_ordered_extent(inode, start, ram_size, 1425 ram_size, ins.objectid, cur_alloc_size, 1426 0, 1 << BTRFS_ORDERED_REGULAR, 1427 BTRFS_COMPRESS_NONE); 1428 if (IS_ERR(ordered)) { 1429 ret = PTR_ERR(ordered); 1430 goto out_drop_extent_cache; 1431 } 1432 1433 if (btrfs_is_data_reloc_root(root)) { 1434 ret = btrfs_reloc_clone_csums(ordered); 1435 1436 /* 1437 * Only drop cache here, and process as normal. 1438 * 1439 * We must not allow extent_clear_unlock_delalloc() 1440 * at out_unlock label to free meta of this ordered 1441 * extent, as its meta should be freed by 1442 * btrfs_finish_ordered_io(). 1443 * 1444 * So we must continue until @start is increased to 1445 * skip current ordered extent. 1446 */ 1447 if (ret) 1448 btrfs_drop_extent_map_range(inode, start, 1449 start + ram_size - 1, 1450 false); 1451 } 1452 btrfs_put_ordered_extent(ordered); 1453 1454 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1455 1456 /* 1457 * We're not doing compressed IO, don't unlock the first page 1458 * (which the caller expects to stay locked), don't clear any 1459 * dirty bits and don't set any writeback bits 1460 * 1461 * Do set the Ordered (Private2) bit so we know this page was 1462 * properly setup for writepage. 1463 */ 1464 page_ops = (keep_locked ? 0 : PAGE_UNLOCK); 1465 page_ops |= PAGE_SET_ORDERED; 1466 1467 extent_clear_unlock_delalloc(inode, start, start + ram_size - 1, 1468 locked_page, 1469 EXTENT_LOCKED | EXTENT_DELALLOC, 1470 page_ops); 1471 if (num_bytes < cur_alloc_size) 1472 num_bytes = 0; 1473 else 1474 num_bytes -= cur_alloc_size; 1475 alloc_hint = ins.objectid + ins.offset; 1476 start += cur_alloc_size; 1477 extent_reserved = false; 1478 1479 /* 1480 * btrfs_reloc_clone_csums() error, since start is increased 1481 * extent_clear_unlock_delalloc() at out_unlock label won't 1482 * free metadata of current ordered extent, we're OK to exit. 1483 */ 1484 if (ret) 1485 goto out_unlock; 1486 } 1487 done: 1488 if (done_offset) 1489 *done_offset = end; 1490 return ret; 1491 1492 out_drop_extent_cache: 1493 btrfs_drop_extent_map_range(inode, start, start + ram_size - 1, false); 1494 out_reserve: 1495 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1496 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1); 1497 out_unlock: 1498 /* 1499 * Now, we have three regions to clean up: 1500 * 1501 * |-------(1)----|---(2)---|-------------(3)----------| 1502 * `- orig_start `- start `- start + cur_alloc_size `- end 1503 * 1504 * We process each region below. 1505 */ 1506 1507 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW | 1508 EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV; 1509 page_ops = PAGE_UNLOCK | PAGE_START_WRITEBACK | PAGE_END_WRITEBACK; 1510 1511 /* 1512 * For the range (1). We have already instantiated the ordered extents 1513 * for this region. They are cleaned up by 1514 * btrfs_cleanup_ordered_extents() in e.g, 1515 * btrfs_run_delalloc_range(). EXTENT_LOCKED | EXTENT_DELALLOC are 1516 * already cleared in the above loop. And, EXTENT_DELALLOC_NEW | 1517 * EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV are handled by the cleanup 1518 * function. 1519 * 1520 * However, in case of @keep_locked, we still need to unlock the pages 1521 * (except @locked_page) to ensure all the pages are unlocked. 1522 */ 1523 if (keep_locked && orig_start < start) { 1524 if (!locked_page) 1525 mapping_set_error(inode->vfs_inode.i_mapping, ret); 1526 extent_clear_unlock_delalloc(inode, orig_start, start - 1, 1527 locked_page, 0, page_ops); 1528 } 1529 1530 /* 1531 * For the range (2). If we reserved an extent for our delalloc range 1532 * (or a subrange) and failed to create the respective ordered extent, 1533 * then it means that when we reserved the extent we decremented the 1534 * extent's size from the data space_info's bytes_may_use counter and 1535 * incremented the space_info's bytes_reserved counter by the same 1536 * amount. We must make sure extent_clear_unlock_delalloc() does not try 1537 * to decrement again the data space_info's bytes_may_use counter, 1538 * therefore we do not pass it the flag EXTENT_CLEAR_DATA_RESV. 1539 */ 1540 if (extent_reserved) { 1541 extent_clear_unlock_delalloc(inode, start, 1542 start + cur_alloc_size - 1, 1543 locked_page, 1544 clear_bits, 1545 page_ops); 1546 start += cur_alloc_size; 1547 } 1548 1549 /* 1550 * For the range (3). We never touched the region. In addition to the 1551 * clear_bits above, we add EXTENT_CLEAR_DATA_RESV to release the data 1552 * space_info's bytes_may_use counter, reserved in 1553 * btrfs_check_data_free_space(). 1554 */ 1555 if (start < end) { 1556 clear_bits |= EXTENT_CLEAR_DATA_RESV; 1557 extent_clear_unlock_delalloc(inode, start, end, locked_page, 1558 clear_bits, page_ops); 1559 } 1560 return ret; 1561 } 1562 1563 /* 1564 * Phase two of compressed writeback. This is the ordered portion of the code, 1565 * which only gets called in the order the work was queued. We walk all the 1566 * async extents created by compress_file_range and send them down to the disk. 1567 */ 1568 static noinline void submit_compressed_extents(struct btrfs_work *work) 1569 { 1570 struct async_chunk *async_chunk = container_of(work, struct async_chunk, 1571 work); 1572 struct btrfs_fs_info *fs_info = btrfs_work_owner(work); 1573 struct async_extent *async_extent; 1574 unsigned long nr_pages; 1575 u64 alloc_hint = 0; 1576 1577 nr_pages = (async_chunk->end - async_chunk->start + PAGE_SIZE) >> 1578 PAGE_SHIFT; 1579 1580 while (!list_empty(&async_chunk->extents)) { 1581 async_extent = list_entry(async_chunk->extents.next, 1582 struct async_extent, list); 1583 list_del(&async_extent->list); 1584 submit_one_async_extent(async_chunk, async_extent, &alloc_hint); 1585 } 1586 1587 /* atomic_sub_return implies a barrier */ 1588 if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) < 1589 5 * SZ_1M) 1590 cond_wake_up_nomb(&fs_info->async_submit_wait); 1591 } 1592 1593 static noinline void async_cow_free(struct btrfs_work *work) 1594 { 1595 struct async_chunk *async_chunk; 1596 struct async_cow *async_cow; 1597 1598 async_chunk = container_of(work, struct async_chunk, work); 1599 btrfs_add_delayed_iput(async_chunk->inode); 1600 if (async_chunk->blkcg_css) 1601 css_put(async_chunk->blkcg_css); 1602 1603 async_cow = async_chunk->async_cow; 1604 if (atomic_dec_and_test(&async_cow->num_chunks)) 1605 kvfree(async_cow); 1606 } 1607 1608 static bool run_delalloc_compressed(struct btrfs_inode *inode, 1609 struct page *locked_page, u64 start, 1610 u64 end, struct writeback_control *wbc) 1611 { 1612 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1613 struct cgroup_subsys_state *blkcg_css = wbc_blkcg_css(wbc); 1614 struct async_cow *ctx; 1615 struct async_chunk *async_chunk; 1616 unsigned long nr_pages; 1617 u64 num_chunks = DIV_ROUND_UP(end - start, SZ_512K); 1618 int i; 1619 unsigned nofs_flag; 1620 const blk_opf_t write_flags = wbc_to_write_flags(wbc); 1621 1622 nofs_flag = memalloc_nofs_save(); 1623 ctx = kvmalloc(struct_size(ctx, chunks, num_chunks), GFP_KERNEL); 1624 memalloc_nofs_restore(nofs_flag); 1625 if (!ctx) 1626 return false; 1627 1628 unlock_extent(&inode->io_tree, start, end, NULL); 1629 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, &inode->runtime_flags); 1630 1631 async_chunk = ctx->chunks; 1632 atomic_set(&ctx->num_chunks, num_chunks); 1633 1634 for (i = 0; i < num_chunks; i++) { 1635 u64 cur_end = min(end, start + SZ_512K - 1); 1636 1637 /* 1638 * igrab is called higher up in the call chain, take only the 1639 * lightweight reference for the callback lifetime 1640 */ 1641 ihold(&inode->vfs_inode); 1642 async_chunk[i].async_cow = ctx; 1643 async_chunk[i].inode = inode; 1644 async_chunk[i].start = start; 1645 async_chunk[i].end = cur_end; 1646 async_chunk[i].write_flags = write_flags; 1647 INIT_LIST_HEAD(&async_chunk[i].extents); 1648 1649 /* 1650 * The locked_page comes all the way from writepage and its 1651 * the original page we were actually given. As we spread 1652 * this large delalloc region across multiple async_chunk 1653 * structs, only the first struct needs a pointer to locked_page 1654 * 1655 * This way we don't need racey decisions about who is supposed 1656 * to unlock it. 1657 */ 1658 if (locked_page) { 1659 /* 1660 * Depending on the compressibility, the pages might or 1661 * might not go through async. We want all of them to 1662 * be accounted against wbc once. Let's do it here 1663 * before the paths diverge. wbc accounting is used 1664 * only for foreign writeback detection and doesn't 1665 * need full accuracy. Just account the whole thing 1666 * against the first page. 1667 */ 1668 wbc_account_cgroup_owner(wbc, locked_page, 1669 cur_end - start); 1670 async_chunk[i].locked_page = locked_page; 1671 locked_page = NULL; 1672 } else { 1673 async_chunk[i].locked_page = NULL; 1674 } 1675 1676 if (blkcg_css != blkcg_root_css) { 1677 css_get(blkcg_css); 1678 async_chunk[i].blkcg_css = blkcg_css; 1679 async_chunk[i].write_flags |= REQ_BTRFS_CGROUP_PUNT; 1680 } else { 1681 async_chunk[i].blkcg_css = NULL; 1682 } 1683 1684 btrfs_init_work(&async_chunk[i].work, compress_file_range, 1685 submit_compressed_extents, async_cow_free); 1686 1687 nr_pages = DIV_ROUND_UP(cur_end - start, PAGE_SIZE); 1688 atomic_add(nr_pages, &fs_info->async_delalloc_pages); 1689 1690 btrfs_queue_work(fs_info->delalloc_workers, &async_chunk[i].work); 1691 1692 start = cur_end + 1; 1693 } 1694 return true; 1695 } 1696 1697 /* 1698 * Run the delalloc range from start to end, and write back any dirty pages 1699 * covered by the range. 1700 */ 1701 static noinline int run_delalloc_cow(struct btrfs_inode *inode, 1702 struct page *locked_page, u64 start, 1703 u64 end, struct writeback_control *wbc, 1704 bool pages_dirty) 1705 { 1706 u64 done_offset = end; 1707 int ret; 1708 1709 while (start <= end) { 1710 ret = cow_file_range(inode, locked_page, start, end, &done_offset, 1711 true, false); 1712 if (ret) 1713 return ret; 1714 extent_write_locked_range(&inode->vfs_inode, locked_page, start, 1715 done_offset, wbc, pages_dirty); 1716 start = done_offset + 1; 1717 } 1718 1719 return 1; 1720 } 1721 1722 static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info, 1723 u64 bytenr, u64 num_bytes, bool nowait) 1724 { 1725 struct btrfs_root *csum_root = btrfs_csum_root(fs_info, bytenr); 1726 struct btrfs_ordered_sum *sums; 1727 int ret; 1728 LIST_HEAD(list); 1729 1730 ret = btrfs_lookup_csums_list(csum_root, bytenr, bytenr + num_bytes - 1, 1731 &list, 0, nowait); 1732 if (ret == 0 && list_empty(&list)) 1733 return 0; 1734 1735 while (!list_empty(&list)) { 1736 sums = list_entry(list.next, struct btrfs_ordered_sum, list); 1737 list_del(&sums->list); 1738 kfree(sums); 1739 } 1740 if (ret < 0) 1741 return ret; 1742 return 1; 1743 } 1744 1745 static int fallback_to_cow(struct btrfs_inode *inode, struct page *locked_page, 1746 const u64 start, const u64 end) 1747 { 1748 const bool is_space_ino = btrfs_is_free_space_inode(inode); 1749 const bool is_reloc_ino = btrfs_is_data_reloc_root(inode->root); 1750 const u64 range_bytes = end + 1 - start; 1751 struct extent_io_tree *io_tree = &inode->io_tree; 1752 u64 range_start = start; 1753 u64 count; 1754 int ret; 1755 1756 /* 1757 * If EXTENT_NORESERVE is set it means that when the buffered write was 1758 * made we had not enough available data space and therefore we did not 1759 * reserve data space for it, since we though we could do NOCOW for the 1760 * respective file range (either there is prealloc extent or the inode 1761 * has the NOCOW bit set). 1762 * 1763 * However when we need to fallback to COW mode (because for example the 1764 * block group for the corresponding extent was turned to RO mode by a 1765 * scrub or relocation) we need to do the following: 1766 * 1767 * 1) We increment the bytes_may_use counter of the data space info. 1768 * If COW succeeds, it allocates a new data extent and after doing 1769 * that it decrements the space info's bytes_may_use counter and 1770 * increments its bytes_reserved counter by the same amount (we do 1771 * this at btrfs_add_reserved_bytes()). So we need to increment the 1772 * bytes_may_use counter to compensate (when space is reserved at 1773 * buffered write time, the bytes_may_use counter is incremented); 1774 * 1775 * 2) We clear the EXTENT_NORESERVE bit from the range. We do this so 1776 * that if the COW path fails for any reason, it decrements (through 1777 * extent_clear_unlock_delalloc()) the bytes_may_use counter of the 1778 * data space info, which we incremented in the step above. 1779 * 1780 * If we need to fallback to cow and the inode corresponds to a free 1781 * space cache inode or an inode of the data relocation tree, we must 1782 * also increment bytes_may_use of the data space_info for the same 1783 * reason. Space caches and relocated data extents always get a prealloc 1784 * extent for them, however scrub or balance may have set the block 1785 * group that contains that extent to RO mode and therefore force COW 1786 * when starting writeback. 1787 */ 1788 count = count_range_bits(io_tree, &range_start, end, range_bytes, 1789 EXTENT_NORESERVE, 0, NULL); 1790 if (count > 0 || is_space_ino || is_reloc_ino) { 1791 u64 bytes = count; 1792 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1793 struct btrfs_space_info *sinfo = fs_info->data_sinfo; 1794 1795 if (is_space_ino || is_reloc_ino) 1796 bytes = range_bytes; 1797 1798 spin_lock(&sinfo->lock); 1799 btrfs_space_info_update_bytes_may_use(fs_info, sinfo, bytes); 1800 spin_unlock(&sinfo->lock); 1801 1802 if (count > 0) 1803 clear_extent_bit(io_tree, start, end, EXTENT_NORESERVE, 1804 NULL); 1805 } 1806 1807 /* 1808 * Don't try to create inline extents, as a mix of inline extent that 1809 * is written out and unlocked directly and a normal NOCOW extent 1810 * doesn't work. 1811 */ 1812 ret = cow_file_range(inode, locked_page, start, end, NULL, false, true); 1813 ASSERT(ret != 1); 1814 return ret; 1815 } 1816 1817 struct can_nocow_file_extent_args { 1818 /* Input fields. */ 1819 1820 /* Start file offset of the range we want to NOCOW. */ 1821 u64 start; 1822 /* End file offset (inclusive) of the range we want to NOCOW. */ 1823 u64 end; 1824 bool writeback_path; 1825 bool strict; 1826 /* 1827 * Free the path passed to can_nocow_file_extent() once it's not needed 1828 * anymore. 1829 */ 1830 bool free_path; 1831 1832 /* Output fields. Only set when can_nocow_file_extent() returns 1. */ 1833 1834 u64 disk_bytenr; 1835 u64 disk_num_bytes; 1836 u64 extent_offset; 1837 /* Number of bytes that can be written to in NOCOW mode. */ 1838 u64 num_bytes; 1839 }; 1840 1841 /* 1842 * Check if we can NOCOW the file extent that the path points to. 1843 * This function may return with the path released, so the caller should check 1844 * if path->nodes[0] is NULL or not if it needs to use the path afterwards. 1845 * 1846 * Returns: < 0 on error 1847 * 0 if we can not NOCOW 1848 * 1 if we can NOCOW 1849 */ 1850 static int can_nocow_file_extent(struct btrfs_path *path, 1851 struct btrfs_key *key, 1852 struct btrfs_inode *inode, 1853 struct can_nocow_file_extent_args *args) 1854 { 1855 const bool is_freespace_inode = btrfs_is_free_space_inode(inode); 1856 struct extent_buffer *leaf = path->nodes[0]; 1857 struct btrfs_root *root = inode->root; 1858 struct btrfs_file_extent_item *fi; 1859 u64 extent_end; 1860 u8 extent_type; 1861 int can_nocow = 0; 1862 int ret = 0; 1863 bool nowait = path->nowait; 1864 1865 fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); 1866 extent_type = btrfs_file_extent_type(leaf, fi); 1867 1868 if (extent_type == BTRFS_FILE_EXTENT_INLINE) 1869 goto out; 1870 1871 /* Can't access these fields unless we know it's not an inline extent. */ 1872 args->disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1873 args->disk_num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 1874 args->extent_offset = btrfs_file_extent_offset(leaf, fi); 1875 1876 if (!(inode->flags & BTRFS_INODE_NODATACOW) && 1877 extent_type == BTRFS_FILE_EXTENT_REG) 1878 goto out; 1879 1880 /* 1881 * If the extent was created before the generation where the last snapshot 1882 * for its subvolume was created, then this implies the extent is shared, 1883 * hence we must COW. 1884 */ 1885 if (!args->strict && 1886 btrfs_file_extent_generation(leaf, fi) <= 1887 btrfs_root_last_snapshot(&root->root_item)) 1888 goto out; 1889 1890 /* An explicit hole, must COW. */ 1891 if (args->disk_bytenr == 0) 1892 goto out; 1893 1894 /* Compressed/encrypted/encoded extents must be COWed. */ 1895 if (btrfs_file_extent_compression(leaf, fi) || 1896 btrfs_file_extent_encryption(leaf, fi) || 1897 btrfs_file_extent_other_encoding(leaf, fi)) 1898 goto out; 1899 1900 extent_end = btrfs_file_extent_end(path); 1901 1902 /* 1903 * The following checks can be expensive, as they need to take other 1904 * locks and do btree or rbtree searches, so release the path to avoid 1905 * blocking other tasks for too long. 1906 */ 1907 btrfs_release_path(path); 1908 1909 ret = btrfs_cross_ref_exist(root, btrfs_ino(inode), 1910 key->offset - args->extent_offset, 1911 args->disk_bytenr, args->strict, path); 1912 WARN_ON_ONCE(ret > 0 && is_freespace_inode); 1913 if (ret != 0) 1914 goto out; 1915 1916 if (args->free_path) { 1917 /* 1918 * We don't need the path anymore, plus through the 1919 * csum_exist_in_range() call below we will end up allocating 1920 * another path. So free the path to avoid unnecessary extra 1921 * memory usage. 1922 */ 1923 btrfs_free_path(path); 1924 path = NULL; 1925 } 1926 1927 /* If there are pending snapshots for this root, we must COW. */ 1928 if (args->writeback_path && !is_freespace_inode && 1929 atomic_read(&root->snapshot_force_cow)) 1930 goto out; 1931 1932 args->disk_bytenr += args->extent_offset; 1933 args->disk_bytenr += args->start - key->offset; 1934 args->num_bytes = min(args->end + 1, extent_end) - args->start; 1935 1936 /* 1937 * Force COW if csums exist in the range. This ensures that csums for a 1938 * given extent are either valid or do not exist. 1939 */ 1940 ret = csum_exist_in_range(root->fs_info, args->disk_bytenr, args->num_bytes, 1941 nowait); 1942 WARN_ON_ONCE(ret > 0 && is_freespace_inode); 1943 if (ret != 0) 1944 goto out; 1945 1946 can_nocow = 1; 1947 out: 1948 if (args->free_path && path) 1949 btrfs_free_path(path); 1950 1951 return ret < 0 ? ret : can_nocow; 1952 } 1953 1954 /* 1955 * when nowcow writeback call back. This checks for snapshots or COW copies 1956 * of the extents that exist in the file, and COWs the file as required. 1957 * 1958 * If no cow copies or snapshots exist, we write directly to the existing 1959 * blocks on disk 1960 */ 1961 static noinline int run_delalloc_nocow(struct btrfs_inode *inode, 1962 struct page *locked_page, 1963 const u64 start, const u64 end) 1964 { 1965 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1966 struct btrfs_root *root = inode->root; 1967 struct btrfs_path *path; 1968 u64 cow_start = (u64)-1; 1969 u64 cur_offset = start; 1970 int ret; 1971 bool check_prev = true; 1972 u64 ino = btrfs_ino(inode); 1973 struct can_nocow_file_extent_args nocow_args = { 0 }; 1974 1975 /* 1976 * Normally on a zoned device we're only doing COW writes, but in case 1977 * of relocation on a zoned filesystem serializes I/O so that we're only 1978 * writing sequentially and can end up here as well. 1979 */ 1980 ASSERT(!btrfs_is_zoned(fs_info) || btrfs_is_data_reloc_root(root)); 1981 1982 path = btrfs_alloc_path(); 1983 if (!path) { 1984 ret = -ENOMEM; 1985 goto error; 1986 } 1987 1988 nocow_args.end = end; 1989 nocow_args.writeback_path = true; 1990 1991 while (1) { 1992 struct btrfs_block_group *nocow_bg = NULL; 1993 struct btrfs_ordered_extent *ordered; 1994 struct btrfs_key found_key; 1995 struct btrfs_file_extent_item *fi; 1996 struct extent_buffer *leaf; 1997 u64 extent_end; 1998 u64 ram_bytes; 1999 u64 nocow_end; 2000 int extent_type; 2001 bool is_prealloc; 2002 2003 ret = btrfs_lookup_file_extent(NULL, root, path, ino, 2004 cur_offset, 0); 2005 if (ret < 0) 2006 goto error; 2007 2008 /* 2009 * If there is no extent for our range when doing the initial 2010 * search, then go back to the previous slot as it will be the 2011 * one containing the search offset 2012 */ 2013 if (ret > 0 && path->slots[0] > 0 && check_prev) { 2014 leaf = path->nodes[0]; 2015 btrfs_item_key_to_cpu(leaf, &found_key, 2016 path->slots[0] - 1); 2017 if (found_key.objectid == ino && 2018 found_key.type == BTRFS_EXTENT_DATA_KEY) 2019 path->slots[0]--; 2020 } 2021 check_prev = false; 2022 next_slot: 2023 /* Go to next leaf if we have exhausted the current one */ 2024 leaf = path->nodes[0]; 2025 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 2026 ret = btrfs_next_leaf(root, path); 2027 if (ret < 0) 2028 goto error; 2029 if (ret > 0) 2030 break; 2031 leaf = path->nodes[0]; 2032 } 2033 2034 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 2035 2036 /* Didn't find anything for our INO */ 2037 if (found_key.objectid > ino) 2038 break; 2039 /* 2040 * Keep searching until we find an EXTENT_ITEM or there are no 2041 * more extents for this inode 2042 */ 2043 if (WARN_ON_ONCE(found_key.objectid < ino) || 2044 found_key.type < BTRFS_EXTENT_DATA_KEY) { 2045 path->slots[0]++; 2046 goto next_slot; 2047 } 2048 2049 /* Found key is not EXTENT_DATA_KEY or starts after req range */ 2050 if (found_key.type > BTRFS_EXTENT_DATA_KEY || 2051 found_key.offset > end) 2052 break; 2053 2054 /* 2055 * If the found extent starts after requested offset, then 2056 * adjust extent_end to be right before this extent begins 2057 */ 2058 if (found_key.offset > cur_offset) { 2059 extent_end = found_key.offset; 2060 extent_type = 0; 2061 goto must_cow; 2062 } 2063 2064 /* 2065 * Found extent which begins before our range and potentially 2066 * intersect it 2067 */ 2068 fi = btrfs_item_ptr(leaf, path->slots[0], 2069 struct btrfs_file_extent_item); 2070 extent_type = btrfs_file_extent_type(leaf, fi); 2071 /* If this is triggered then we have a memory corruption. */ 2072 ASSERT(extent_type < BTRFS_NR_FILE_EXTENT_TYPES); 2073 if (WARN_ON(extent_type >= BTRFS_NR_FILE_EXTENT_TYPES)) { 2074 ret = -EUCLEAN; 2075 goto error; 2076 } 2077 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 2078 extent_end = btrfs_file_extent_end(path); 2079 2080 /* 2081 * If the extent we got ends before our current offset, skip to 2082 * the next extent. 2083 */ 2084 if (extent_end <= cur_offset) { 2085 path->slots[0]++; 2086 goto next_slot; 2087 } 2088 2089 nocow_args.start = cur_offset; 2090 ret = can_nocow_file_extent(path, &found_key, inode, &nocow_args); 2091 if (ret < 0) 2092 goto error; 2093 if (ret == 0) 2094 goto must_cow; 2095 2096 ret = 0; 2097 nocow_bg = btrfs_inc_nocow_writers(fs_info, nocow_args.disk_bytenr); 2098 if (!nocow_bg) { 2099 must_cow: 2100 /* 2101 * If we can't perform NOCOW writeback for the range, 2102 * then record the beginning of the range that needs to 2103 * be COWed. It will be written out before the next 2104 * NOCOW range if we find one, or when exiting this 2105 * loop. 2106 */ 2107 if (cow_start == (u64)-1) 2108 cow_start = cur_offset; 2109 cur_offset = extent_end; 2110 if (cur_offset > end) 2111 break; 2112 if (!path->nodes[0]) 2113 continue; 2114 path->slots[0]++; 2115 goto next_slot; 2116 } 2117 2118 /* 2119 * COW range from cow_start to found_key.offset - 1. As the key 2120 * will contain the beginning of the first extent that can be 2121 * NOCOW, following one which needs to be COW'ed 2122 */ 2123 if (cow_start != (u64)-1) { 2124 ret = fallback_to_cow(inode, locked_page, 2125 cow_start, found_key.offset - 1); 2126 cow_start = (u64)-1; 2127 if (ret) { 2128 btrfs_dec_nocow_writers(nocow_bg); 2129 goto error; 2130 } 2131 } 2132 2133 nocow_end = cur_offset + nocow_args.num_bytes - 1; 2134 is_prealloc = extent_type == BTRFS_FILE_EXTENT_PREALLOC; 2135 if (is_prealloc) { 2136 u64 orig_start = found_key.offset - nocow_args.extent_offset; 2137 struct extent_map *em; 2138 2139 em = create_io_em(inode, cur_offset, nocow_args.num_bytes, 2140 orig_start, 2141 nocow_args.disk_bytenr, /* block_start */ 2142 nocow_args.num_bytes, /* block_len */ 2143 nocow_args.disk_num_bytes, /* orig_block_len */ 2144 ram_bytes, BTRFS_COMPRESS_NONE, 2145 BTRFS_ORDERED_PREALLOC); 2146 if (IS_ERR(em)) { 2147 btrfs_dec_nocow_writers(nocow_bg); 2148 ret = PTR_ERR(em); 2149 goto error; 2150 } 2151 free_extent_map(em); 2152 } 2153 2154 ordered = btrfs_alloc_ordered_extent(inode, cur_offset, 2155 nocow_args.num_bytes, nocow_args.num_bytes, 2156 nocow_args.disk_bytenr, nocow_args.num_bytes, 0, 2157 is_prealloc 2158 ? (1 << BTRFS_ORDERED_PREALLOC) 2159 : (1 << BTRFS_ORDERED_NOCOW), 2160 BTRFS_COMPRESS_NONE); 2161 btrfs_dec_nocow_writers(nocow_bg); 2162 if (IS_ERR(ordered)) { 2163 if (is_prealloc) { 2164 btrfs_drop_extent_map_range(inode, cur_offset, 2165 nocow_end, false); 2166 } 2167 ret = PTR_ERR(ordered); 2168 goto error; 2169 } 2170 2171 if (btrfs_is_data_reloc_root(root)) 2172 /* 2173 * Error handled later, as we must prevent 2174 * extent_clear_unlock_delalloc() in error handler 2175 * from freeing metadata of created ordered extent. 2176 */ 2177 ret = btrfs_reloc_clone_csums(ordered); 2178 btrfs_put_ordered_extent(ordered); 2179 2180 extent_clear_unlock_delalloc(inode, cur_offset, nocow_end, 2181 locked_page, EXTENT_LOCKED | 2182 EXTENT_DELALLOC | 2183 EXTENT_CLEAR_DATA_RESV, 2184 PAGE_UNLOCK | PAGE_SET_ORDERED); 2185 2186 cur_offset = extent_end; 2187 2188 /* 2189 * btrfs_reloc_clone_csums() error, now we're OK to call error 2190 * handler, as metadata for created ordered extent will only 2191 * be freed by btrfs_finish_ordered_io(). 2192 */ 2193 if (ret) 2194 goto error; 2195 if (cur_offset > end) 2196 break; 2197 } 2198 btrfs_release_path(path); 2199 2200 if (cur_offset <= end && cow_start == (u64)-1) 2201 cow_start = cur_offset; 2202 2203 if (cow_start != (u64)-1) { 2204 cur_offset = end; 2205 ret = fallback_to_cow(inode, locked_page, cow_start, end); 2206 cow_start = (u64)-1; 2207 if (ret) 2208 goto error; 2209 } 2210 2211 btrfs_free_path(path); 2212 return 0; 2213 2214 error: 2215 /* 2216 * If an error happened while a COW region is outstanding, cur_offset 2217 * needs to be reset to cow_start to ensure the COW region is unlocked 2218 * as well. 2219 */ 2220 if (cow_start != (u64)-1) 2221 cur_offset = cow_start; 2222 if (cur_offset < end) 2223 extent_clear_unlock_delalloc(inode, cur_offset, end, 2224 locked_page, EXTENT_LOCKED | 2225 EXTENT_DELALLOC | EXTENT_DEFRAG | 2226 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK | 2227 PAGE_START_WRITEBACK | 2228 PAGE_END_WRITEBACK); 2229 btrfs_free_path(path); 2230 return ret; 2231 } 2232 2233 static bool should_nocow(struct btrfs_inode *inode, u64 start, u64 end) 2234 { 2235 if (inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)) { 2236 if (inode->defrag_bytes && 2237 test_range_bit(&inode->io_tree, start, end, EXTENT_DEFRAG, 2238 0, NULL)) 2239 return false; 2240 return true; 2241 } 2242 return false; 2243 } 2244 2245 /* 2246 * Function to process delayed allocation (create CoW) for ranges which are 2247 * being touched for the first time. 2248 */ 2249 int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct page *locked_page, 2250 u64 start, u64 end, struct writeback_control *wbc) 2251 { 2252 const bool zoned = btrfs_is_zoned(inode->root->fs_info); 2253 int ret; 2254 2255 /* 2256 * The range must cover part of the @locked_page, or a return of 1 2257 * can confuse the caller. 2258 */ 2259 ASSERT(!(end <= page_offset(locked_page) || 2260 start >= page_offset(locked_page) + PAGE_SIZE)); 2261 2262 if (should_nocow(inode, start, end)) { 2263 ret = run_delalloc_nocow(inode, locked_page, start, end); 2264 goto out; 2265 } 2266 2267 if (btrfs_inode_can_compress(inode) && 2268 inode_need_compress(inode, start, end) && 2269 run_delalloc_compressed(inode, locked_page, start, end, wbc)) 2270 return 1; 2271 2272 if (zoned) 2273 ret = run_delalloc_cow(inode, locked_page, start, end, wbc, 2274 true); 2275 else 2276 ret = cow_file_range(inode, locked_page, start, end, NULL, 2277 false, false); 2278 2279 out: 2280 if (ret < 0) 2281 btrfs_cleanup_ordered_extents(inode, locked_page, start, 2282 end - start + 1); 2283 return ret; 2284 } 2285 2286 void btrfs_split_delalloc_extent(struct btrfs_inode *inode, 2287 struct extent_state *orig, u64 split) 2288 { 2289 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2290 u64 size; 2291 2292 /* not delalloc, ignore it */ 2293 if (!(orig->state & EXTENT_DELALLOC)) 2294 return; 2295 2296 size = orig->end - orig->start + 1; 2297 if (size > fs_info->max_extent_size) { 2298 u32 num_extents; 2299 u64 new_size; 2300 2301 /* 2302 * See the explanation in btrfs_merge_delalloc_extent, the same 2303 * applies here, just in reverse. 2304 */ 2305 new_size = orig->end - split + 1; 2306 num_extents = count_max_extents(fs_info, new_size); 2307 new_size = split - orig->start; 2308 num_extents += count_max_extents(fs_info, new_size); 2309 if (count_max_extents(fs_info, size) >= num_extents) 2310 return; 2311 } 2312 2313 spin_lock(&inode->lock); 2314 btrfs_mod_outstanding_extents(inode, 1); 2315 spin_unlock(&inode->lock); 2316 } 2317 2318 /* 2319 * Handle merged delayed allocation extents so we can keep track of new extents 2320 * that are just merged onto old extents, such as when we are doing sequential 2321 * writes, so we can properly account for the metadata space we'll need. 2322 */ 2323 void btrfs_merge_delalloc_extent(struct btrfs_inode *inode, struct extent_state *new, 2324 struct extent_state *other) 2325 { 2326 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2327 u64 new_size, old_size; 2328 u32 num_extents; 2329 2330 /* not delalloc, ignore it */ 2331 if (!(other->state & EXTENT_DELALLOC)) 2332 return; 2333 2334 if (new->start > other->start) 2335 new_size = new->end - other->start + 1; 2336 else 2337 new_size = other->end - new->start + 1; 2338 2339 /* we're not bigger than the max, unreserve the space and go */ 2340 if (new_size <= fs_info->max_extent_size) { 2341 spin_lock(&inode->lock); 2342 btrfs_mod_outstanding_extents(inode, -1); 2343 spin_unlock(&inode->lock); 2344 return; 2345 } 2346 2347 /* 2348 * We have to add up either side to figure out how many extents were 2349 * accounted for before we merged into one big extent. If the number of 2350 * extents we accounted for is <= the amount we need for the new range 2351 * then we can return, otherwise drop. Think of it like this 2352 * 2353 * [ 4k][MAX_SIZE] 2354 * 2355 * So we've grown the extent by a MAX_SIZE extent, this would mean we 2356 * need 2 outstanding extents, on one side we have 1 and the other side 2357 * we have 1 so they are == and we can return. But in this case 2358 * 2359 * [MAX_SIZE+4k][MAX_SIZE+4k] 2360 * 2361 * Each range on their own accounts for 2 extents, but merged together 2362 * they are only 3 extents worth of accounting, so we need to drop in 2363 * this case. 2364 */ 2365 old_size = other->end - other->start + 1; 2366 num_extents = count_max_extents(fs_info, old_size); 2367 old_size = new->end - new->start + 1; 2368 num_extents += count_max_extents(fs_info, old_size); 2369 if (count_max_extents(fs_info, new_size) >= num_extents) 2370 return; 2371 2372 spin_lock(&inode->lock); 2373 btrfs_mod_outstanding_extents(inode, -1); 2374 spin_unlock(&inode->lock); 2375 } 2376 2377 static void btrfs_add_delalloc_inodes(struct btrfs_root *root, 2378 struct btrfs_inode *inode) 2379 { 2380 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2381 2382 spin_lock(&root->delalloc_lock); 2383 if (list_empty(&inode->delalloc_inodes)) { 2384 list_add_tail(&inode->delalloc_inodes, &root->delalloc_inodes); 2385 set_bit(BTRFS_INODE_IN_DELALLOC_LIST, &inode->runtime_flags); 2386 root->nr_delalloc_inodes++; 2387 if (root->nr_delalloc_inodes == 1) { 2388 spin_lock(&fs_info->delalloc_root_lock); 2389 BUG_ON(!list_empty(&root->delalloc_root)); 2390 list_add_tail(&root->delalloc_root, 2391 &fs_info->delalloc_roots); 2392 spin_unlock(&fs_info->delalloc_root_lock); 2393 } 2394 } 2395 spin_unlock(&root->delalloc_lock); 2396 } 2397 2398 void __btrfs_del_delalloc_inode(struct btrfs_root *root, 2399 struct btrfs_inode *inode) 2400 { 2401 struct btrfs_fs_info *fs_info = root->fs_info; 2402 2403 if (!list_empty(&inode->delalloc_inodes)) { 2404 list_del_init(&inode->delalloc_inodes); 2405 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST, 2406 &inode->runtime_flags); 2407 root->nr_delalloc_inodes--; 2408 if (!root->nr_delalloc_inodes) { 2409 ASSERT(list_empty(&root->delalloc_inodes)); 2410 spin_lock(&fs_info->delalloc_root_lock); 2411 BUG_ON(list_empty(&root->delalloc_root)); 2412 list_del_init(&root->delalloc_root); 2413 spin_unlock(&fs_info->delalloc_root_lock); 2414 } 2415 } 2416 } 2417 2418 static void btrfs_del_delalloc_inode(struct btrfs_root *root, 2419 struct btrfs_inode *inode) 2420 { 2421 spin_lock(&root->delalloc_lock); 2422 __btrfs_del_delalloc_inode(root, inode); 2423 spin_unlock(&root->delalloc_lock); 2424 } 2425 2426 /* 2427 * Properly track delayed allocation bytes in the inode and to maintain the 2428 * list of inodes that have pending delalloc work to be done. 2429 */ 2430 void btrfs_set_delalloc_extent(struct btrfs_inode *inode, struct extent_state *state, 2431 u32 bits) 2432 { 2433 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2434 2435 if ((bits & EXTENT_DEFRAG) && !(bits & EXTENT_DELALLOC)) 2436 WARN_ON(1); 2437 /* 2438 * set_bit and clear bit hooks normally require _irqsave/restore 2439 * but in this case, we are only testing for the DELALLOC 2440 * bit, which is only set or cleared with irqs on 2441 */ 2442 if (!(state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) { 2443 struct btrfs_root *root = inode->root; 2444 u64 len = state->end + 1 - state->start; 2445 u32 num_extents = count_max_extents(fs_info, len); 2446 bool do_list = !btrfs_is_free_space_inode(inode); 2447 2448 spin_lock(&inode->lock); 2449 btrfs_mod_outstanding_extents(inode, num_extents); 2450 spin_unlock(&inode->lock); 2451 2452 /* For sanity tests */ 2453 if (btrfs_is_testing(fs_info)) 2454 return; 2455 2456 percpu_counter_add_batch(&fs_info->delalloc_bytes, len, 2457 fs_info->delalloc_batch); 2458 spin_lock(&inode->lock); 2459 inode->delalloc_bytes += len; 2460 if (bits & EXTENT_DEFRAG) 2461 inode->defrag_bytes += len; 2462 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST, 2463 &inode->runtime_flags)) 2464 btrfs_add_delalloc_inodes(root, inode); 2465 spin_unlock(&inode->lock); 2466 } 2467 2468 if (!(state->state & EXTENT_DELALLOC_NEW) && 2469 (bits & EXTENT_DELALLOC_NEW)) { 2470 spin_lock(&inode->lock); 2471 inode->new_delalloc_bytes += state->end + 1 - state->start; 2472 spin_unlock(&inode->lock); 2473 } 2474 } 2475 2476 /* 2477 * Once a range is no longer delalloc this function ensures that proper 2478 * accounting happens. 2479 */ 2480 void btrfs_clear_delalloc_extent(struct btrfs_inode *inode, 2481 struct extent_state *state, u32 bits) 2482 { 2483 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2484 u64 len = state->end + 1 - state->start; 2485 u32 num_extents = count_max_extents(fs_info, len); 2486 2487 if ((state->state & EXTENT_DEFRAG) && (bits & EXTENT_DEFRAG)) { 2488 spin_lock(&inode->lock); 2489 inode->defrag_bytes -= len; 2490 spin_unlock(&inode->lock); 2491 } 2492 2493 /* 2494 * set_bit and clear bit hooks normally require _irqsave/restore 2495 * but in this case, we are only testing for the DELALLOC 2496 * bit, which is only set or cleared with irqs on 2497 */ 2498 if ((state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) { 2499 struct btrfs_root *root = inode->root; 2500 bool do_list = !btrfs_is_free_space_inode(inode); 2501 2502 spin_lock(&inode->lock); 2503 btrfs_mod_outstanding_extents(inode, -num_extents); 2504 spin_unlock(&inode->lock); 2505 2506 /* 2507 * We don't reserve metadata space for space cache inodes so we 2508 * don't need to call delalloc_release_metadata if there is an 2509 * error. 2510 */ 2511 if (bits & EXTENT_CLEAR_META_RESV && 2512 root != fs_info->tree_root) 2513 btrfs_delalloc_release_metadata(inode, len, false); 2514 2515 /* For sanity tests. */ 2516 if (btrfs_is_testing(fs_info)) 2517 return; 2518 2519 if (!btrfs_is_data_reloc_root(root) && 2520 do_list && !(state->state & EXTENT_NORESERVE) && 2521 (bits & EXTENT_CLEAR_DATA_RESV)) 2522 btrfs_free_reserved_data_space_noquota(fs_info, len); 2523 2524 percpu_counter_add_batch(&fs_info->delalloc_bytes, -len, 2525 fs_info->delalloc_batch); 2526 spin_lock(&inode->lock); 2527 inode->delalloc_bytes -= len; 2528 if (do_list && inode->delalloc_bytes == 0 && 2529 test_bit(BTRFS_INODE_IN_DELALLOC_LIST, 2530 &inode->runtime_flags)) 2531 btrfs_del_delalloc_inode(root, inode); 2532 spin_unlock(&inode->lock); 2533 } 2534 2535 if ((state->state & EXTENT_DELALLOC_NEW) && 2536 (bits & EXTENT_DELALLOC_NEW)) { 2537 spin_lock(&inode->lock); 2538 ASSERT(inode->new_delalloc_bytes >= len); 2539 inode->new_delalloc_bytes -= len; 2540 if (bits & EXTENT_ADD_INODE_BYTES) 2541 inode_add_bytes(&inode->vfs_inode, len); 2542 spin_unlock(&inode->lock); 2543 } 2544 } 2545 2546 static int btrfs_extract_ordered_extent(struct btrfs_bio *bbio, 2547 struct btrfs_ordered_extent *ordered) 2548 { 2549 u64 start = (u64)bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT; 2550 u64 len = bbio->bio.bi_iter.bi_size; 2551 struct btrfs_ordered_extent *new; 2552 int ret; 2553 2554 /* Must always be called for the beginning of an ordered extent. */ 2555 if (WARN_ON_ONCE(start != ordered->disk_bytenr)) 2556 return -EINVAL; 2557 2558 /* No need to split if the ordered extent covers the entire bio. */ 2559 if (ordered->disk_num_bytes == len) { 2560 refcount_inc(&ordered->refs); 2561 bbio->ordered = ordered; 2562 return 0; 2563 } 2564 2565 /* 2566 * Don't split the extent_map for NOCOW extents, as we're writing into 2567 * a pre-existing one. 2568 */ 2569 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags)) { 2570 ret = split_extent_map(bbio->inode, bbio->file_offset, 2571 ordered->num_bytes, len, 2572 ordered->disk_bytenr); 2573 if (ret) 2574 return ret; 2575 } 2576 2577 new = btrfs_split_ordered_extent(ordered, len); 2578 if (IS_ERR(new)) 2579 return PTR_ERR(new); 2580 bbio->ordered = new; 2581 return 0; 2582 } 2583 2584 /* 2585 * given a list of ordered sums record them in the inode. This happens 2586 * at IO completion time based on sums calculated at bio submission time. 2587 */ 2588 static int add_pending_csums(struct btrfs_trans_handle *trans, 2589 struct list_head *list) 2590 { 2591 struct btrfs_ordered_sum *sum; 2592 struct btrfs_root *csum_root = NULL; 2593 int ret; 2594 2595 list_for_each_entry(sum, list, list) { 2596 trans->adding_csums = true; 2597 if (!csum_root) 2598 csum_root = btrfs_csum_root(trans->fs_info, 2599 sum->logical); 2600 ret = btrfs_csum_file_blocks(trans, csum_root, sum); 2601 trans->adding_csums = false; 2602 if (ret) 2603 return ret; 2604 } 2605 return 0; 2606 } 2607 2608 static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode, 2609 const u64 start, 2610 const u64 len, 2611 struct extent_state **cached_state) 2612 { 2613 u64 search_start = start; 2614 const u64 end = start + len - 1; 2615 2616 while (search_start < end) { 2617 const u64 search_len = end - search_start + 1; 2618 struct extent_map *em; 2619 u64 em_len; 2620 int ret = 0; 2621 2622 em = btrfs_get_extent(inode, NULL, 0, search_start, search_len); 2623 if (IS_ERR(em)) 2624 return PTR_ERR(em); 2625 2626 if (em->block_start != EXTENT_MAP_HOLE) 2627 goto next; 2628 2629 em_len = em->len; 2630 if (em->start < search_start) 2631 em_len -= search_start - em->start; 2632 if (em_len > search_len) 2633 em_len = search_len; 2634 2635 ret = set_extent_bit(&inode->io_tree, search_start, 2636 search_start + em_len - 1, 2637 EXTENT_DELALLOC_NEW, cached_state); 2638 next: 2639 search_start = extent_map_end(em); 2640 free_extent_map(em); 2641 if (ret) 2642 return ret; 2643 } 2644 return 0; 2645 } 2646 2647 int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end, 2648 unsigned int extra_bits, 2649 struct extent_state **cached_state) 2650 { 2651 WARN_ON(PAGE_ALIGNED(end)); 2652 2653 if (start >= i_size_read(&inode->vfs_inode) && 2654 !(inode->flags & BTRFS_INODE_PREALLOC)) { 2655 /* 2656 * There can't be any extents following eof in this case so just 2657 * set the delalloc new bit for the range directly. 2658 */ 2659 extra_bits |= EXTENT_DELALLOC_NEW; 2660 } else { 2661 int ret; 2662 2663 ret = btrfs_find_new_delalloc_bytes(inode, start, 2664 end + 1 - start, 2665 cached_state); 2666 if (ret) 2667 return ret; 2668 } 2669 2670 return set_extent_bit(&inode->io_tree, start, end, 2671 EXTENT_DELALLOC | extra_bits, cached_state); 2672 } 2673 2674 /* see btrfs_writepage_start_hook for details on why this is required */ 2675 struct btrfs_writepage_fixup { 2676 struct page *page; 2677 struct btrfs_inode *inode; 2678 struct btrfs_work work; 2679 }; 2680 2681 static void btrfs_writepage_fixup_worker(struct btrfs_work *work) 2682 { 2683 struct btrfs_writepage_fixup *fixup = 2684 container_of(work, struct btrfs_writepage_fixup, work); 2685 struct btrfs_ordered_extent *ordered; 2686 struct extent_state *cached_state = NULL; 2687 struct extent_changeset *data_reserved = NULL; 2688 struct page *page = fixup->page; 2689 struct btrfs_inode *inode = fixup->inode; 2690 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2691 u64 page_start = page_offset(page); 2692 u64 page_end = page_offset(page) + PAGE_SIZE - 1; 2693 int ret = 0; 2694 bool free_delalloc_space = true; 2695 2696 /* 2697 * This is similar to page_mkwrite, we need to reserve the space before 2698 * we take the page lock. 2699 */ 2700 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start, 2701 PAGE_SIZE); 2702 again: 2703 lock_page(page); 2704 2705 /* 2706 * Before we queued this fixup, we took a reference on the page. 2707 * page->mapping may go NULL, but it shouldn't be moved to a different 2708 * address space. 2709 */ 2710 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) { 2711 /* 2712 * Unfortunately this is a little tricky, either 2713 * 2714 * 1) We got here and our page had already been dealt with and 2715 * we reserved our space, thus ret == 0, so we need to just 2716 * drop our space reservation and bail. This can happen the 2717 * first time we come into the fixup worker, or could happen 2718 * while waiting for the ordered extent. 2719 * 2) Our page was already dealt with, but we happened to get an 2720 * ENOSPC above from the btrfs_delalloc_reserve_space. In 2721 * this case we obviously don't have anything to release, but 2722 * because the page was already dealt with we don't want to 2723 * mark the page with an error, so make sure we're resetting 2724 * ret to 0. This is why we have this check _before_ the ret 2725 * check, because we do not want to have a surprise ENOSPC 2726 * when the page was already properly dealt with. 2727 */ 2728 if (!ret) { 2729 btrfs_delalloc_release_extents(inode, PAGE_SIZE); 2730 btrfs_delalloc_release_space(inode, data_reserved, 2731 page_start, PAGE_SIZE, 2732 true); 2733 } 2734 ret = 0; 2735 goto out_page; 2736 } 2737 2738 /* 2739 * We can't mess with the page state unless it is locked, so now that 2740 * it is locked bail if we failed to make our space reservation. 2741 */ 2742 if (ret) 2743 goto out_page; 2744 2745 lock_extent(&inode->io_tree, page_start, page_end, &cached_state); 2746 2747 /* already ordered? We're done */ 2748 if (PageOrdered(page)) 2749 goto out_reserved; 2750 2751 ordered = btrfs_lookup_ordered_range(inode, page_start, PAGE_SIZE); 2752 if (ordered) { 2753 unlock_extent(&inode->io_tree, page_start, page_end, 2754 &cached_state); 2755 unlock_page(page); 2756 btrfs_start_ordered_extent(ordered); 2757 btrfs_put_ordered_extent(ordered); 2758 goto again; 2759 } 2760 2761 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0, 2762 &cached_state); 2763 if (ret) 2764 goto out_reserved; 2765 2766 /* 2767 * Everything went as planned, we're now the owner of a dirty page with 2768 * delayed allocation bits set and space reserved for our COW 2769 * destination. 2770 * 2771 * The page was dirty when we started, nothing should have cleaned it. 2772 */ 2773 BUG_ON(!PageDirty(page)); 2774 free_delalloc_space = false; 2775 out_reserved: 2776 btrfs_delalloc_release_extents(inode, PAGE_SIZE); 2777 if (free_delalloc_space) 2778 btrfs_delalloc_release_space(inode, data_reserved, page_start, 2779 PAGE_SIZE, true); 2780 unlock_extent(&inode->io_tree, page_start, page_end, &cached_state); 2781 out_page: 2782 if (ret) { 2783 /* 2784 * We hit ENOSPC or other errors. Update the mapping and page 2785 * to reflect the errors and clean the page. 2786 */ 2787 mapping_set_error(page->mapping, ret); 2788 btrfs_mark_ordered_io_finished(inode, page, page_start, 2789 PAGE_SIZE, !ret); 2790 clear_page_dirty_for_io(page); 2791 } 2792 btrfs_page_clear_checked(fs_info, page, page_start, PAGE_SIZE); 2793 unlock_page(page); 2794 put_page(page); 2795 kfree(fixup); 2796 extent_changeset_free(data_reserved); 2797 /* 2798 * As a precaution, do a delayed iput in case it would be the last iput 2799 * that could need flushing space. Recursing back to fixup worker would 2800 * deadlock. 2801 */ 2802 btrfs_add_delayed_iput(inode); 2803 } 2804 2805 /* 2806 * There are a few paths in the higher layers of the kernel that directly 2807 * set the page dirty bit without asking the filesystem if it is a 2808 * good idea. This causes problems because we want to make sure COW 2809 * properly happens and the data=ordered rules are followed. 2810 * 2811 * In our case any range that doesn't have the ORDERED bit set 2812 * hasn't been properly setup for IO. We kick off an async process 2813 * to fix it up. The async helper will wait for ordered extents, set 2814 * the delalloc bit and make it safe to write the page. 2815 */ 2816 int btrfs_writepage_cow_fixup(struct page *page) 2817 { 2818 struct inode *inode = page->mapping->host; 2819 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2820 struct btrfs_writepage_fixup *fixup; 2821 2822 /* This page has ordered extent covering it already */ 2823 if (PageOrdered(page)) 2824 return 0; 2825 2826 /* 2827 * PageChecked is set below when we create a fixup worker for this page, 2828 * don't try to create another one if we're already PageChecked() 2829 * 2830 * The extent_io writepage code will redirty the page if we send back 2831 * EAGAIN. 2832 */ 2833 if (PageChecked(page)) 2834 return -EAGAIN; 2835 2836 fixup = kzalloc(sizeof(*fixup), GFP_NOFS); 2837 if (!fixup) 2838 return -EAGAIN; 2839 2840 /* 2841 * We are already holding a reference to this inode from 2842 * write_cache_pages. We need to hold it because the space reservation 2843 * takes place outside of the page lock, and we can't trust 2844 * page->mapping outside of the page lock. 2845 */ 2846 ihold(inode); 2847 btrfs_page_set_checked(fs_info, page, page_offset(page), PAGE_SIZE); 2848 get_page(page); 2849 btrfs_init_work(&fixup->work, btrfs_writepage_fixup_worker, NULL, NULL); 2850 fixup->page = page; 2851 fixup->inode = BTRFS_I(inode); 2852 btrfs_queue_work(fs_info->fixup_workers, &fixup->work); 2853 2854 return -EAGAIN; 2855 } 2856 2857 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans, 2858 struct btrfs_inode *inode, u64 file_pos, 2859 struct btrfs_file_extent_item *stack_fi, 2860 const bool update_inode_bytes, 2861 u64 qgroup_reserved) 2862 { 2863 struct btrfs_root *root = inode->root; 2864 const u64 sectorsize = root->fs_info->sectorsize; 2865 struct btrfs_path *path; 2866 struct extent_buffer *leaf; 2867 struct btrfs_key ins; 2868 u64 disk_num_bytes = btrfs_stack_file_extent_disk_num_bytes(stack_fi); 2869 u64 disk_bytenr = btrfs_stack_file_extent_disk_bytenr(stack_fi); 2870 u64 offset = btrfs_stack_file_extent_offset(stack_fi); 2871 u64 num_bytes = btrfs_stack_file_extent_num_bytes(stack_fi); 2872 u64 ram_bytes = btrfs_stack_file_extent_ram_bytes(stack_fi); 2873 struct btrfs_drop_extents_args drop_args = { 0 }; 2874 int ret; 2875 2876 path = btrfs_alloc_path(); 2877 if (!path) 2878 return -ENOMEM; 2879 2880 /* 2881 * we may be replacing one extent in the tree with another. 2882 * The new extent is pinned in the extent map, and we don't want 2883 * to drop it from the cache until it is completely in the btree. 2884 * 2885 * So, tell btrfs_drop_extents to leave this extent in the cache. 2886 * the caller is expected to unpin it and allow it to be merged 2887 * with the others. 2888 */ 2889 drop_args.path = path; 2890 drop_args.start = file_pos; 2891 drop_args.end = file_pos + num_bytes; 2892 drop_args.replace_extent = true; 2893 drop_args.extent_item_size = sizeof(*stack_fi); 2894 ret = btrfs_drop_extents(trans, root, inode, &drop_args); 2895 if (ret) 2896 goto out; 2897 2898 if (!drop_args.extent_inserted) { 2899 ins.objectid = btrfs_ino(inode); 2900 ins.offset = file_pos; 2901 ins.type = BTRFS_EXTENT_DATA_KEY; 2902 2903 ret = btrfs_insert_empty_item(trans, root, path, &ins, 2904 sizeof(*stack_fi)); 2905 if (ret) 2906 goto out; 2907 } 2908 leaf = path->nodes[0]; 2909 btrfs_set_stack_file_extent_generation(stack_fi, trans->transid); 2910 write_extent_buffer(leaf, stack_fi, 2911 btrfs_item_ptr_offset(leaf, path->slots[0]), 2912 sizeof(struct btrfs_file_extent_item)); 2913 2914 btrfs_mark_buffer_dirty(trans, leaf); 2915 btrfs_release_path(path); 2916 2917 /* 2918 * If we dropped an inline extent here, we know the range where it is 2919 * was not marked with the EXTENT_DELALLOC_NEW bit, so we update the 2920 * number of bytes only for that range containing the inline extent. 2921 * The remaining of the range will be processed when clearning the 2922 * EXTENT_DELALLOC_BIT bit through the ordered extent completion. 2923 */ 2924 if (file_pos == 0 && !IS_ALIGNED(drop_args.bytes_found, sectorsize)) { 2925 u64 inline_size = round_down(drop_args.bytes_found, sectorsize); 2926 2927 inline_size = drop_args.bytes_found - inline_size; 2928 btrfs_update_inode_bytes(inode, sectorsize, inline_size); 2929 drop_args.bytes_found -= inline_size; 2930 num_bytes -= sectorsize; 2931 } 2932 2933 if (update_inode_bytes) 2934 btrfs_update_inode_bytes(inode, num_bytes, drop_args.bytes_found); 2935 2936 ins.objectid = disk_bytenr; 2937 ins.offset = disk_num_bytes; 2938 ins.type = BTRFS_EXTENT_ITEM_KEY; 2939 2940 ret = btrfs_inode_set_file_extent_range(inode, file_pos, ram_bytes); 2941 if (ret) 2942 goto out; 2943 2944 ret = btrfs_alloc_reserved_file_extent(trans, root, btrfs_ino(inode), 2945 file_pos - offset, 2946 qgroup_reserved, &ins); 2947 out: 2948 btrfs_free_path(path); 2949 2950 return ret; 2951 } 2952 2953 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info, 2954 u64 start, u64 len) 2955 { 2956 struct btrfs_block_group *cache; 2957 2958 cache = btrfs_lookup_block_group(fs_info, start); 2959 ASSERT(cache); 2960 2961 spin_lock(&cache->lock); 2962 cache->delalloc_bytes -= len; 2963 spin_unlock(&cache->lock); 2964 2965 btrfs_put_block_group(cache); 2966 } 2967 2968 static int insert_ordered_extent_file_extent(struct btrfs_trans_handle *trans, 2969 struct btrfs_ordered_extent *oe) 2970 { 2971 struct btrfs_file_extent_item stack_fi; 2972 bool update_inode_bytes; 2973 u64 num_bytes = oe->num_bytes; 2974 u64 ram_bytes = oe->ram_bytes; 2975 2976 memset(&stack_fi, 0, sizeof(stack_fi)); 2977 btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_REG); 2978 btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, oe->disk_bytenr); 2979 btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi, 2980 oe->disk_num_bytes); 2981 btrfs_set_stack_file_extent_offset(&stack_fi, oe->offset); 2982 if (test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags)) { 2983 num_bytes = oe->truncated_len; 2984 ram_bytes = num_bytes; 2985 } 2986 btrfs_set_stack_file_extent_num_bytes(&stack_fi, num_bytes); 2987 btrfs_set_stack_file_extent_ram_bytes(&stack_fi, ram_bytes); 2988 btrfs_set_stack_file_extent_compression(&stack_fi, oe->compress_type); 2989 /* Encryption and other encoding is reserved and all 0 */ 2990 2991 /* 2992 * For delalloc, when completing an ordered extent we update the inode's 2993 * bytes when clearing the range in the inode's io tree, so pass false 2994 * as the argument 'update_inode_bytes' to insert_reserved_file_extent(), 2995 * except if the ordered extent was truncated. 2996 */ 2997 update_inode_bytes = test_bit(BTRFS_ORDERED_DIRECT, &oe->flags) || 2998 test_bit(BTRFS_ORDERED_ENCODED, &oe->flags) || 2999 test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags); 3000 3001 return insert_reserved_file_extent(trans, BTRFS_I(oe->inode), 3002 oe->file_offset, &stack_fi, 3003 update_inode_bytes, oe->qgroup_rsv); 3004 } 3005 3006 /* 3007 * As ordered data IO finishes, this gets called so we can finish 3008 * an ordered extent if the range of bytes in the file it covers are 3009 * fully written. 3010 */ 3011 int btrfs_finish_one_ordered(struct btrfs_ordered_extent *ordered_extent) 3012 { 3013 struct btrfs_inode *inode = BTRFS_I(ordered_extent->inode); 3014 struct btrfs_root *root = inode->root; 3015 struct btrfs_fs_info *fs_info = root->fs_info; 3016 struct btrfs_trans_handle *trans = NULL; 3017 struct extent_io_tree *io_tree = &inode->io_tree; 3018 struct extent_state *cached_state = NULL; 3019 u64 start, end; 3020 int compress_type = 0; 3021 int ret = 0; 3022 u64 logical_len = ordered_extent->num_bytes; 3023 bool freespace_inode; 3024 bool truncated = false; 3025 bool clear_reserved_extent = true; 3026 unsigned int clear_bits = EXTENT_DEFRAG; 3027 3028 start = ordered_extent->file_offset; 3029 end = start + ordered_extent->num_bytes - 1; 3030 3031 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) && 3032 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) && 3033 !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags) && 3034 !test_bit(BTRFS_ORDERED_ENCODED, &ordered_extent->flags)) 3035 clear_bits |= EXTENT_DELALLOC_NEW; 3036 3037 freespace_inode = btrfs_is_free_space_inode(inode); 3038 if (!freespace_inode) 3039 btrfs_lockdep_acquire(fs_info, btrfs_ordered_extent); 3040 3041 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) { 3042 ret = -EIO; 3043 goto out; 3044 } 3045 3046 if (btrfs_is_zoned(fs_info)) 3047 btrfs_zone_finish_endio(fs_info, ordered_extent->disk_bytenr, 3048 ordered_extent->disk_num_bytes); 3049 3050 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) { 3051 truncated = true; 3052 logical_len = ordered_extent->truncated_len; 3053 /* Truncated the entire extent, don't bother adding */ 3054 if (!logical_len) 3055 goto out; 3056 } 3057 3058 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) { 3059 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */ 3060 3061 btrfs_inode_safe_disk_i_size_write(inode, 0); 3062 if (freespace_inode) 3063 trans = btrfs_join_transaction_spacecache(root); 3064 else 3065 trans = btrfs_join_transaction(root); 3066 if (IS_ERR(trans)) { 3067 ret = PTR_ERR(trans); 3068 trans = NULL; 3069 goto out; 3070 } 3071 trans->block_rsv = &inode->block_rsv; 3072 ret = btrfs_update_inode_fallback(trans, root, inode); 3073 if (ret) /* -ENOMEM or corruption */ 3074 btrfs_abort_transaction(trans, ret); 3075 goto out; 3076 } 3077 3078 clear_bits |= EXTENT_LOCKED; 3079 lock_extent(io_tree, start, end, &cached_state); 3080 3081 if (freespace_inode) 3082 trans = btrfs_join_transaction_spacecache(root); 3083 else 3084 trans = btrfs_join_transaction(root); 3085 if (IS_ERR(trans)) { 3086 ret = PTR_ERR(trans); 3087 trans = NULL; 3088 goto out; 3089 } 3090 3091 trans->block_rsv = &inode->block_rsv; 3092 3093 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags)) 3094 compress_type = ordered_extent->compress_type; 3095 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 3096 BUG_ON(compress_type); 3097 ret = btrfs_mark_extent_written(trans, inode, 3098 ordered_extent->file_offset, 3099 ordered_extent->file_offset + 3100 logical_len); 3101 btrfs_zoned_release_data_reloc_bg(fs_info, ordered_extent->disk_bytenr, 3102 ordered_extent->disk_num_bytes); 3103 } else { 3104 BUG_ON(root == fs_info->tree_root); 3105 ret = insert_ordered_extent_file_extent(trans, ordered_extent); 3106 if (!ret) { 3107 clear_reserved_extent = false; 3108 btrfs_release_delalloc_bytes(fs_info, 3109 ordered_extent->disk_bytenr, 3110 ordered_extent->disk_num_bytes); 3111 } 3112 } 3113 unpin_extent_cache(&inode->extent_tree, ordered_extent->file_offset, 3114 ordered_extent->num_bytes, trans->transid); 3115 if (ret < 0) { 3116 btrfs_abort_transaction(trans, ret); 3117 goto out; 3118 } 3119 3120 ret = add_pending_csums(trans, &ordered_extent->list); 3121 if (ret) { 3122 btrfs_abort_transaction(trans, ret); 3123 goto out; 3124 } 3125 3126 /* 3127 * If this is a new delalloc range, clear its new delalloc flag to 3128 * update the inode's number of bytes. This needs to be done first 3129 * before updating the inode item. 3130 */ 3131 if ((clear_bits & EXTENT_DELALLOC_NEW) && 3132 !test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) 3133 clear_extent_bit(&inode->io_tree, start, end, 3134 EXTENT_DELALLOC_NEW | EXTENT_ADD_INODE_BYTES, 3135 &cached_state); 3136 3137 btrfs_inode_safe_disk_i_size_write(inode, 0); 3138 ret = btrfs_update_inode_fallback(trans, root, inode); 3139 if (ret) { /* -ENOMEM or corruption */ 3140 btrfs_abort_transaction(trans, ret); 3141 goto out; 3142 } 3143 ret = 0; 3144 out: 3145 clear_extent_bit(&inode->io_tree, start, end, clear_bits, 3146 &cached_state); 3147 3148 if (trans) 3149 btrfs_end_transaction(trans); 3150 3151 if (ret || truncated) { 3152 u64 unwritten_start = start; 3153 3154 /* 3155 * If we failed to finish this ordered extent for any reason we 3156 * need to make sure BTRFS_ORDERED_IOERR is set on the ordered 3157 * extent, and mark the inode with the error if it wasn't 3158 * already set. Any error during writeback would have already 3159 * set the mapping error, so we need to set it if we're the ones 3160 * marking this ordered extent as failed. 3161 */ 3162 if (ret && !test_and_set_bit(BTRFS_ORDERED_IOERR, 3163 &ordered_extent->flags)) 3164 mapping_set_error(ordered_extent->inode->i_mapping, -EIO); 3165 3166 if (truncated) 3167 unwritten_start += logical_len; 3168 clear_extent_uptodate(io_tree, unwritten_start, end, NULL); 3169 3170 /* 3171 * Drop extent maps for the part of the extent we didn't write. 3172 * 3173 * We have an exception here for the free_space_inode, this is 3174 * because when we do btrfs_get_extent() on the free space inode 3175 * we will search the commit root. If this is a new block group 3176 * we won't find anything, and we will trip over the assert in 3177 * writepage where we do ASSERT(em->block_start != 3178 * EXTENT_MAP_HOLE). 3179 * 3180 * Theoretically we could also skip this for any NOCOW extent as 3181 * we don't mess with the extent map tree in the NOCOW case, but 3182 * for now simply skip this if we are the free space inode. 3183 */ 3184 if (!btrfs_is_free_space_inode(inode)) 3185 btrfs_drop_extent_map_range(inode, unwritten_start, 3186 end, false); 3187 3188 /* 3189 * If the ordered extent had an IOERR or something else went 3190 * wrong we need to return the space for this ordered extent 3191 * back to the allocator. We only free the extent in the 3192 * truncated case if we didn't write out the extent at all. 3193 * 3194 * If we made it past insert_reserved_file_extent before we 3195 * errored out then we don't need to do this as the accounting 3196 * has already been done. 3197 */ 3198 if ((ret || !logical_len) && 3199 clear_reserved_extent && 3200 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) && 3201 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 3202 /* 3203 * Discard the range before returning it back to the 3204 * free space pool 3205 */ 3206 if (ret && btrfs_test_opt(fs_info, DISCARD_SYNC)) 3207 btrfs_discard_extent(fs_info, 3208 ordered_extent->disk_bytenr, 3209 ordered_extent->disk_num_bytes, 3210 NULL); 3211 btrfs_free_reserved_extent(fs_info, 3212 ordered_extent->disk_bytenr, 3213 ordered_extent->disk_num_bytes, 1); 3214 /* 3215 * Actually free the qgroup rsv which was released when 3216 * the ordered extent was created. 3217 */ 3218 btrfs_qgroup_free_refroot(fs_info, inode->root->root_key.objectid, 3219 ordered_extent->qgroup_rsv, 3220 BTRFS_QGROUP_RSV_DATA); 3221 } 3222 } 3223 3224 /* 3225 * This needs to be done to make sure anybody waiting knows we are done 3226 * updating everything for this ordered extent. 3227 */ 3228 btrfs_remove_ordered_extent(inode, ordered_extent); 3229 3230 /* once for us */ 3231 btrfs_put_ordered_extent(ordered_extent); 3232 /* once for the tree */ 3233 btrfs_put_ordered_extent(ordered_extent); 3234 3235 return ret; 3236 } 3237 3238 int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered) 3239 { 3240 if (btrfs_is_zoned(btrfs_sb(ordered->inode->i_sb)) && 3241 !test_bit(BTRFS_ORDERED_IOERR, &ordered->flags)) 3242 btrfs_finish_ordered_zoned(ordered); 3243 return btrfs_finish_one_ordered(ordered); 3244 } 3245 3246 /* 3247 * Verify the checksum for a single sector without any extra action that depend 3248 * on the type of I/O. 3249 */ 3250 int btrfs_check_sector_csum(struct btrfs_fs_info *fs_info, struct page *page, 3251 u32 pgoff, u8 *csum, const u8 * const csum_expected) 3252 { 3253 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 3254 char *kaddr; 3255 3256 ASSERT(pgoff + fs_info->sectorsize <= PAGE_SIZE); 3257 3258 shash->tfm = fs_info->csum_shash; 3259 3260 kaddr = kmap_local_page(page) + pgoff; 3261 crypto_shash_digest(shash, kaddr, fs_info->sectorsize, csum); 3262 kunmap_local(kaddr); 3263 3264 if (memcmp(csum, csum_expected, fs_info->csum_size)) 3265 return -EIO; 3266 return 0; 3267 } 3268 3269 /* 3270 * Verify the checksum of a single data sector. 3271 * 3272 * @bbio: btrfs_io_bio which contains the csum 3273 * @dev: device the sector is on 3274 * @bio_offset: offset to the beginning of the bio (in bytes) 3275 * @bv: bio_vec to check 3276 * 3277 * Check if the checksum on a data block is valid. When a checksum mismatch is 3278 * detected, report the error and fill the corrupted range with zero. 3279 * 3280 * Return %true if the sector is ok or had no checksum to start with, else %false. 3281 */ 3282 bool btrfs_data_csum_ok(struct btrfs_bio *bbio, struct btrfs_device *dev, 3283 u32 bio_offset, struct bio_vec *bv) 3284 { 3285 struct btrfs_inode *inode = bbio->inode; 3286 struct btrfs_fs_info *fs_info = inode->root->fs_info; 3287 u64 file_offset = bbio->file_offset + bio_offset; 3288 u64 end = file_offset + bv->bv_len - 1; 3289 u8 *csum_expected; 3290 u8 csum[BTRFS_CSUM_SIZE]; 3291 3292 ASSERT(bv->bv_len == fs_info->sectorsize); 3293 3294 if (!bbio->csum) 3295 return true; 3296 3297 if (btrfs_is_data_reloc_root(inode->root) && 3298 test_range_bit(&inode->io_tree, file_offset, end, EXTENT_NODATASUM, 3299 1, NULL)) { 3300 /* Skip the range without csum for data reloc inode */ 3301 clear_extent_bits(&inode->io_tree, file_offset, end, 3302 EXTENT_NODATASUM); 3303 return true; 3304 } 3305 3306 csum_expected = bbio->csum + (bio_offset >> fs_info->sectorsize_bits) * 3307 fs_info->csum_size; 3308 if (btrfs_check_sector_csum(fs_info, bv->bv_page, bv->bv_offset, csum, 3309 csum_expected)) 3310 goto zeroit; 3311 return true; 3312 3313 zeroit: 3314 btrfs_print_data_csum_error(inode, file_offset, csum, csum_expected, 3315 bbio->mirror_num); 3316 if (dev) 3317 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS); 3318 memzero_bvec(bv); 3319 return false; 3320 } 3321 3322 /* 3323 * btrfs_add_delayed_iput - perform a delayed iput on @inode 3324 * 3325 * @inode: The inode we want to perform iput on 3326 * 3327 * This function uses the generic vfs_inode::i_count to track whether we should 3328 * just decrement it (in case it's > 1) or if this is the last iput then link 3329 * the inode to the delayed iput machinery. Delayed iputs are processed at 3330 * transaction commit time/superblock commit/cleaner kthread. 3331 */ 3332 void btrfs_add_delayed_iput(struct btrfs_inode *inode) 3333 { 3334 struct btrfs_fs_info *fs_info = inode->root->fs_info; 3335 unsigned long flags; 3336 3337 if (atomic_add_unless(&inode->vfs_inode.i_count, -1, 1)) 3338 return; 3339 3340 atomic_inc(&fs_info->nr_delayed_iputs); 3341 /* 3342 * Need to be irq safe here because we can be called from either an irq 3343 * context (see bio.c and btrfs_put_ordered_extent()) or a non-irq 3344 * context. 3345 */ 3346 spin_lock_irqsave(&fs_info->delayed_iput_lock, flags); 3347 ASSERT(list_empty(&inode->delayed_iput)); 3348 list_add_tail(&inode->delayed_iput, &fs_info->delayed_iputs); 3349 spin_unlock_irqrestore(&fs_info->delayed_iput_lock, flags); 3350 if (!test_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags)) 3351 wake_up_process(fs_info->cleaner_kthread); 3352 } 3353 3354 static void run_delayed_iput_locked(struct btrfs_fs_info *fs_info, 3355 struct btrfs_inode *inode) 3356 { 3357 list_del_init(&inode->delayed_iput); 3358 spin_unlock_irq(&fs_info->delayed_iput_lock); 3359 iput(&inode->vfs_inode); 3360 if (atomic_dec_and_test(&fs_info->nr_delayed_iputs)) 3361 wake_up(&fs_info->delayed_iputs_wait); 3362 spin_lock_irq(&fs_info->delayed_iput_lock); 3363 } 3364 3365 static void btrfs_run_delayed_iput(struct btrfs_fs_info *fs_info, 3366 struct btrfs_inode *inode) 3367 { 3368 if (!list_empty(&inode->delayed_iput)) { 3369 spin_lock_irq(&fs_info->delayed_iput_lock); 3370 if (!list_empty(&inode->delayed_iput)) 3371 run_delayed_iput_locked(fs_info, inode); 3372 spin_unlock_irq(&fs_info->delayed_iput_lock); 3373 } 3374 } 3375 3376 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info) 3377 { 3378 /* 3379 * btrfs_put_ordered_extent() can run in irq context (see bio.c), which 3380 * calls btrfs_add_delayed_iput() and that needs to lock 3381 * fs_info->delayed_iput_lock. So we need to disable irqs here to 3382 * prevent a deadlock. 3383 */ 3384 spin_lock_irq(&fs_info->delayed_iput_lock); 3385 while (!list_empty(&fs_info->delayed_iputs)) { 3386 struct btrfs_inode *inode; 3387 3388 inode = list_first_entry(&fs_info->delayed_iputs, 3389 struct btrfs_inode, delayed_iput); 3390 run_delayed_iput_locked(fs_info, inode); 3391 if (need_resched()) { 3392 spin_unlock_irq(&fs_info->delayed_iput_lock); 3393 cond_resched(); 3394 spin_lock_irq(&fs_info->delayed_iput_lock); 3395 } 3396 } 3397 spin_unlock_irq(&fs_info->delayed_iput_lock); 3398 } 3399 3400 /* 3401 * Wait for flushing all delayed iputs 3402 * 3403 * @fs_info: the filesystem 3404 * 3405 * This will wait on any delayed iputs that are currently running with KILLABLE 3406 * set. Once they are all done running we will return, unless we are killed in 3407 * which case we return EINTR. This helps in user operations like fallocate etc 3408 * that might get blocked on the iputs. 3409 * 3410 * Return EINTR if we were killed, 0 if nothing's pending 3411 */ 3412 int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info) 3413 { 3414 int ret = wait_event_killable(fs_info->delayed_iputs_wait, 3415 atomic_read(&fs_info->nr_delayed_iputs) == 0); 3416 if (ret) 3417 return -EINTR; 3418 return 0; 3419 } 3420 3421 /* 3422 * This creates an orphan entry for the given inode in case something goes wrong 3423 * in the middle of an unlink. 3424 */ 3425 int btrfs_orphan_add(struct btrfs_trans_handle *trans, 3426 struct btrfs_inode *inode) 3427 { 3428 int ret; 3429 3430 ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode)); 3431 if (ret && ret != -EEXIST) { 3432 btrfs_abort_transaction(trans, ret); 3433 return ret; 3434 } 3435 3436 return 0; 3437 } 3438 3439 /* 3440 * We have done the delete so we can go ahead and remove the orphan item for 3441 * this particular inode. 3442 */ 3443 static int btrfs_orphan_del(struct btrfs_trans_handle *trans, 3444 struct btrfs_inode *inode) 3445 { 3446 return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode)); 3447 } 3448 3449 /* 3450 * this cleans up any orphans that may be left on the list from the last use 3451 * of this root. 3452 */ 3453 int btrfs_orphan_cleanup(struct btrfs_root *root) 3454 { 3455 struct btrfs_fs_info *fs_info = root->fs_info; 3456 struct btrfs_path *path; 3457 struct extent_buffer *leaf; 3458 struct btrfs_key key, found_key; 3459 struct btrfs_trans_handle *trans; 3460 struct inode *inode; 3461 u64 last_objectid = 0; 3462 int ret = 0, nr_unlink = 0; 3463 3464 if (test_and_set_bit(BTRFS_ROOT_ORPHAN_CLEANUP, &root->state)) 3465 return 0; 3466 3467 path = btrfs_alloc_path(); 3468 if (!path) { 3469 ret = -ENOMEM; 3470 goto out; 3471 } 3472 path->reada = READA_BACK; 3473 3474 key.objectid = BTRFS_ORPHAN_OBJECTID; 3475 key.type = BTRFS_ORPHAN_ITEM_KEY; 3476 key.offset = (u64)-1; 3477 3478 while (1) { 3479 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3480 if (ret < 0) 3481 goto out; 3482 3483 /* 3484 * if ret == 0 means we found what we were searching for, which 3485 * is weird, but possible, so only screw with path if we didn't 3486 * find the key and see if we have stuff that matches 3487 */ 3488 if (ret > 0) { 3489 ret = 0; 3490 if (path->slots[0] == 0) 3491 break; 3492 path->slots[0]--; 3493 } 3494 3495 /* pull out the item */ 3496 leaf = path->nodes[0]; 3497 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 3498 3499 /* make sure the item matches what we want */ 3500 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID) 3501 break; 3502 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY) 3503 break; 3504 3505 /* release the path since we're done with it */ 3506 btrfs_release_path(path); 3507 3508 /* 3509 * this is where we are basically btrfs_lookup, without the 3510 * crossing root thing. we store the inode number in the 3511 * offset of the orphan item. 3512 */ 3513 3514 if (found_key.offset == last_objectid) { 3515 /* 3516 * We found the same inode as before. This means we were 3517 * not able to remove its items via eviction triggered 3518 * by an iput(). A transaction abort may have happened, 3519 * due to -ENOSPC for example, so try to grab the error 3520 * that lead to a transaction abort, if any. 3521 */ 3522 btrfs_err(fs_info, 3523 "Error removing orphan entry, stopping orphan cleanup"); 3524 ret = BTRFS_FS_ERROR(fs_info) ?: -EINVAL; 3525 goto out; 3526 } 3527 3528 last_objectid = found_key.offset; 3529 3530 found_key.objectid = found_key.offset; 3531 found_key.type = BTRFS_INODE_ITEM_KEY; 3532 found_key.offset = 0; 3533 inode = btrfs_iget(fs_info->sb, last_objectid, root); 3534 if (IS_ERR(inode)) { 3535 ret = PTR_ERR(inode); 3536 inode = NULL; 3537 if (ret != -ENOENT) 3538 goto out; 3539 } 3540 3541 if (!inode && root == fs_info->tree_root) { 3542 struct btrfs_root *dead_root; 3543 int is_dead_root = 0; 3544 3545 /* 3546 * This is an orphan in the tree root. Currently these 3547 * could come from 2 sources: 3548 * a) a root (snapshot/subvolume) deletion in progress 3549 * b) a free space cache inode 3550 * We need to distinguish those two, as the orphan item 3551 * for a root must not get deleted before the deletion 3552 * of the snapshot/subvolume's tree completes. 3553 * 3554 * btrfs_find_orphan_roots() ran before us, which has 3555 * found all deleted roots and loaded them into 3556 * fs_info->fs_roots_radix. So here we can find if an 3557 * orphan item corresponds to a deleted root by looking 3558 * up the root from that radix tree. 3559 */ 3560 3561 spin_lock(&fs_info->fs_roots_radix_lock); 3562 dead_root = radix_tree_lookup(&fs_info->fs_roots_radix, 3563 (unsigned long)found_key.objectid); 3564 if (dead_root && btrfs_root_refs(&dead_root->root_item) == 0) 3565 is_dead_root = 1; 3566 spin_unlock(&fs_info->fs_roots_radix_lock); 3567 3568 if (is_dead_root) { 3569 /* prevent this orphan from being found again */ 3570 key.offset = found_key.objectid - 1; 3571 continue; 3572 } 3573 3574 } 3575 3576 /* 3577 * If we have an inode with links, there are a couple of 3578 * possibilities: 3579 * 3580 * 1. We were halfway through creating fsverity metadata for the 3581 * file. In that case, the orphan item represents incomplete 3582 * fsverity metadata which must be cleaned up with 3583 * btrfs_drop_verity_items and deleting the orphan item. 3584 3585 * 2. Old kernels (before v3.12) used to create an 3586 * orphan item for truncate indicating that there were possibly 3587 * extent items past i_size that needed to be deleted. In v3.12, 3588 * truncate was changed to update i_size in sync with the extent 3589 * items, but the (useless) orphan item was still created. Since 3590 * v4.18, we don't create the orphan item for truncate at all. 3591 * 3592 * So, this item could mean that we need to do a truncate, but 3593 * only if this filesystem was last used on a pre-v3.12 kernel 3594 * and was not cleanly unmounted. The odds of that are quite 3595 * slim, and it's a pain to do the truncate now, so just delete 3596 * the orphan item. 3597 * 3598 * It's also possible that this orphan item was supposed to be 3599 * deleted but wasn't. The inode number may have been reused, 3600 * but either way, we can delete the orphan item. 3601 */ 3602 if (!inode || inode->i_nlink) { 3603 if (inode) { 3604 ret = btrfs_drop_verity_items(BTRFS_I(inode)); 3605 iput(inode); 3606 inode = NULL; 3607 if (ret) 3608 goto out; 3609 } 3610 trans = btrfs_start_transaction(root, 1); 3611 if (IS_ERR(trans)) { 3612 ret = PTR_ERR(trans); 3613 goto out; 3614 } 3615 btrfs_debug(fs_info, "auto deleting %Lu", 3616 found_key.objectid); 3617 ret = btrfs_del_orphan_item(trans, root, 3618 found_key.objectid); 3619 btrfs_end_transaction(trans); 3620 if (ret) 3621 goto out; 3622 continue; 3623 } 3624 3625 nr_unlink++; 3626 3627 /* this will do delete_inode and everything for us */ 3628 iput(inode); 3629 } 3630 /* release the path since we're done with it */ 3631 btrfs_release_path(path); 3632 3633 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) { 3634 trans = btrfs_join_transaction(root); 3635 if (!IS_ERR(trans)) 3636 btrfs_end_transaction(trans); 3637 } 3638 3639 if (nr_unlink) 3640 btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink); 3641 3642 out: 3643 if (ret) 3644 btrfs_err(fs_info, "could not do orphan cleanup %d", ret); 3645 btrfs_free_path(path); 3646 return ret; 3647 } 3648 3649 /* 3650 * very simple check to peek ahead in the leaf looking for xattrs. If we 3651 * don't find any xattrs, we know there can't be any acls. 3652 * 3653 * slot is the slot the inode is in, objectid is the objectid of the inode 3654 */ 3655 static noinline int acls_after_inode_item(struct extent_buffer *leaf, 3656 int slot, u64 objectid, 3657 int *first_xattr_slot) 3658 { 3659 u32 nritems = btrfs_header_nritems(leaf); 3660 struct btrfs_key found_key; 3661 static u64 xattr_access = 0; 3662 static u64 xattr_default = 0; 3663 int scanned = 0; 3664 3665 if (!xattr_access) { 3666 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS, 3667 strlen(XATTR_NAME_POSIX_ACL_ACCESS)); 3668 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT, 3669 strlen(XATTR_NAME_POSIX_ACL_DEFAULT)); 3670 } 3671 3672 slot++; 3673 *first_xattr_slot = -1; 3674 while (slot < nritems) { 3675 btrfs_item_key_to_cpu(leaf, &found_key, slot); 3676 3677 /* we found a different objectid, there must not be acls */ 3678 if (found_key.objectid != objectid) 3679 return 0; 3680 3681 /* we found an xattr, assume we've got an acl */ 3682 if (found_key.type == BTRFS_XATTR_ITEM_KEY) { 3683 if (*first_xattr_slot == -1) 3684 *first_xattr_slot = slot; 3685 if (found_key.offset == xattr_access || 3686 found_key.offset == xattr_default) 3687 return 1; 3688 } 3689 3690 /* 3691 * we found a key greater than an xattr key, there can't 3692 * be any acls later on 3693 */ 3694 if (found_key.type > BTRFS_XATTR_ITEM_KEY) 3695 return 0; 3696 3697 slot++; 3698 scanned++; 3699 3700 /* 3701 * it goes inode, inode backrefs, xattrs, extents, 3702 * so if there are a ton of hard links to an inode there can 3703 * be a lot of backrefs. Don't waste time searching too hard, 3704 * this is just an optimization 3705 */ 3706 if (scanned >= 8) 3707 break; 3708 } 3709 /* we hit the end of the leaf before we found an xattr or 3710 * something larger than an xattr. We have to assume the inode 3711 * has acls 3712 */ 3713 if (*first_xattr_slot == -1) 3714 *first_xattr_slot = slot; 3715 return 1; 3716 } 3717 3718 /* 3719 * read an inode from the btree into the in-memory inode 3720 */ 3721 static int btrfs_read_locked_inode(struct inode *inode, 3722 struct btrfs_path *in_path) 3723 { 3724 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3725 struct btrfs_path *path = in_path; 3726 struct extent_buffer *leaf; 3727 struct btrfs_inode_item *inode_item; 3728 struct btrfs_root *root = BTRFS_I(inode)->root; 3729 struct btrfs_key location; 3730 unsigned long ptr; 3731 int maybe_acls; 3732 u32 rdev; 3733 int ret; 3734 bool filled = false; 3735 int first_xattr_slot; 3736 3737 ret = btrfs_fill_inode(inode, &rdev); 3738 if (!ret) 3739 filled = true; 3740 3741 if (!path) { 3742 path = btrfs_alloc_path(); 3743 if (!path) 3744 return -ENOMEM; 3745 } 3746 3747 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location)); 3748 3749 ret = btrfs_lookup_inode(NULL, root, path, &location, 0); 3750 if (ret) { 3751 if (path != in_path) 3752 btrfs_free_path(path); 3753 return ret; 3754 } 3755 3756 leaf = path->nodes[0]; 3757 3758 if (filled) 3759 goto cache_index; 3760 3761 inode_item = btrfs_item_ptr(leaf, path->slots[0], 3762 struct btrfs_inode_item); 3763 inode->i_mode = btrfs_inode_mode(leaf, inode_item); 3764 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item)); 3765 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item)); 3766 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item)); 3767 btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item)); 3768 btrfs_inode_set_file_extent_range(BTRFS_I(inode), 0, 3769 round_up(i_size_read(inode), fs_info->sectorsize)); 3770 3771 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime); 3772 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime); 3773 3774 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime); 3775 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime); 3776 3777 inode_set_ctime(inode, btrfs_timespec_sec(leaf, &inode_item->ctime), 3778 btrfs_timespec_nsec(leaf, &inode_item->ctime)); 3779 3780 BTRFS_I(inode)->i_otime.tv_sec = 3781 btrfs_timespec_sec(leaf, &inode_item->otime); 3782 BTRFS_I(inode)->i_otime.tv_nsec = 3783 btrfs_timespec_nsec(leaf, &inode_item->otime); 3784 3785 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item)); 3786 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item); 3787 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item); 3788 3789 inode_set_iversion_queried(inode, 3790 btrfs_inode_sequence(leaf, inode_item)); 3791 inode->i_generation = BTRFS_I(inode)->generation; 3792 inode->i_rdev = 0; 3793 rdev = btrfs_inode_rdev(leaf, inode_item); 3794 3795 BTRFS_I(inode)->index_cnt = (u64)-1; 3796 btrfs_inode_split_flags(btrfs_inode_flags(leaf, inode_item), 3797 &BTRFS_I(inode)->flags, &BTRFS_I(inode)->ro_flags); 3798 3799 cache_index: 3800 /* 3801 * If we were modified in the current generation and evicted from memory 3802 * and then re-read we need to do a full sync since we don't have any 3803 * idea about which extents were modified before we were evicted from 3804 * cache. 3805 * 3806 * This is required for both inode re-read from disk and delayed inode 3807 * in delayed_nodes_tree. 3808 */ 3809 if (BTRFS_I(inode)->last_trans == fs_info->generation) 3810 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 3811 &BTRFS_I(inode)->runtime_flags); 3812 3813 /* 3814 * We don't persist the id of the transaction where an unlink operation 3815 * against the inode was last made. So here we assume the inode might 3816 * have been evicted, and therefore the exact value of last_unlink_trans 3817 * lost, and set it to last_trans to avoid metadata inconsistencies 3818 * between the inode and its parent if the inode is fsync'ed and the log 3819 * replayed. For example, in the scenario: 3820 * 3821 * touch mydir/foo 3822 * ln mydir/foo mydir/bar 3823 * sync 3824 * unlink mydir/bar 3825 * echo 2 > /proc/sys/vm/drop_caches # evicts inode 3826 * xfs_io -c fsync mydir/foo 3827 * <power failure> 3828 * mount fs, triggers fsync log replay 3829 * 3830 * We must make sure that when we fsync our inode foo we also log its 3831 * parent inode, otherwise after log replay the parent still has the 3832 * dentry with the "bar" name but our inode foo has a link count of 1 3833 * and doesn't have an inode ref with the name "bar" anymore. 3834 * 3835 * Setting last_unlink_trans to last_trans is a pessimistic approach, 3836 * but it guarantees correctness at the expense of occasional full 3837 * transaction commits on fsync if our inode is a directory, or if our 3838 * inode is not a directory, logging its parent unnecessarily. 3839 */ 3840 BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans; 3841 3842 /* 3843 * Same logic as for last_unlink_trans. We don't persist the generation 3844 * of the last transaction where this inode was used for a reflink 3845 * operation, so after eviction and reloading the inode we must be 3846 * pessimistic and assume the last transaction that modified the inode. 3847 */ 3848 BTRFS_I(inode)->last_reflink_trans = BTRFS_I(inode)->last_trans; 3849 3850 path->slots[0]++; 3851 if (inode->i_nlink != 1 || 3852 path->slots[0] >= btrfs_header_nritems(leaf)) 3853 goto cache_acl; 3854 3855 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]); 3856 if (location.objectid != btrfs_ino(BTRFS_I(inode))) 3857 goto cache_acl; 3858 3859 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 3860 if (location.type == BTRFS_INODE_REF_KEY) { 3861 struct btrfs_inode_ref *ref; 3862 3863 ref = (struct btrfs_inode_ref *)ptr; 3864 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref); 3865 } else if (location.type == BTRFS_INODE_EXTREF_KEY) { 3866 struct btrfs_inode_extref *extref; 3867 3868 extref = (struct btrfs_inode_extref *)ptr; 3869 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf, 3870 extref); 3871 } 3872 cache_acl: 3873 /* 3874 * try to precache a NULL acl entry for files that don't have 3875 * any xattrs or acls 3876 */ 3877 maybe_acls = acls_after_inode_item(leaf, path->slots[0], 3878 btrfs_ino(BTRFS_I(inode)), &first_xattr_slot); 3879 if (first_xattr_slot != -1) { 3880 path->slots[0] = first_xattr_slot; 3881 ret = btrfs_load_inode_props(inode, path); 3882 if (ret) 3883 btrfs_err(fs_info, 3884 "error loading props for ino %llu (root %llu): %d", 3885 btrfs_ino(BTRFS_I(inode)), 3886 root->root_key.objectid, ret); 3887 } 3888 if (path != in_path) 3889 btrfs_free_path(path); 3890 3891 if (!maybe_acls) 3892 cache_no_acl(inode); 3893 3894 switch (inode->i_mode & S_IFMT) { 3895 case S_IFREG: 3896 inode->i_mapping->a_ops = &btrfs_aops; 3897 inode->i_fop = &btrfs_file_operations; 3898 inode->i_op = &btrfs_file_inode_operations; 3899 break; 3900 case S_IFDIR: 3901 inode->i_fop = &btrfs_dir_file_operations; 3902 inode->i_op = &btrfs_dir_inode_operations; 3903 break; 3904 case S_IFLNK: 3905 inode->i_op = &btrfs_symlink_inode_operations; 3906 inode_nohighmem(inode); 3907 inode->i_mapping->a_ops = &btrfs_aops; 3908 break; 3909 default: 3910 inode->i_op = &btrfs_special_inode_operations; 3911 init_special_inode(inode, inode->i_mode, rdev); 3912 break; 3913 } 3914 3915 btrfs_sync_inode_flags_to_i_flags(inode); 3916 return 0; 3917 } 3918 3919 /* 3920 * given a leaf and an inode, copy the inode fields into the leaf 3921 */ 3922 static void fill_inode_item(struct btrfs_trans_handle *trans, 3923 struct extent_buffer *leaf, 3924 struct btrfs_inode_item *item, 3925 struct inode *inode) 3926 { 3927 struct btrfs_map_token token; 3928 u64 flags; 3929 3930 btrfs_init_map_token(&token, leaf); 3931 3932 btrfs_set_token_inode_uid(&token, item, i_uid_read(inode)); 3933 btrfs_set_token_inode_gid(&token, item, i_gid_read(inode)); 3934 btrfs_set_token_inode_size(&token, item, BTRFS_I(inode)->disk_i_size); 3935 btrfs_set_token_inode_mode(&token, item, inode->i_mode); 3936 btrfs_set_token_inode_nlink(&token, item, inode->i_nlink); 3937 3938 btrfs_set_token_timespec_sec(&token, &item->atime, 3939 inode->i_atime.tv_sec); 3940 btrfs_set_token_timespec_nsec(&token, &item->atime, 3941 inode->i_atime.tv_nsec); 3942 3943 btrfs_set_token_timespec_sec(&token, &item->mtime, 3944 inode->i_mtime.tv_sec); 3945 btrfs_set_token_timespec_nsec(&token, &item->mtime, 3946 inode->i_mtime.tv_nsec); 3947 3948 btrfs_set_token_timespec_sec(&token, &item->ctime, 3949 inode_get_ctime(inode).tv_sec); 3950 btrfs_set_token_timespec_nsec(&token, &item->ctime, 3951 inode_get_ctime(inode).tv_nsec); 3952 3953 btrfs_set_token_timespec_sec(&token, &item->otime, 3954 BTRFS_I(inode)->i_otime.tv_sec); 3955 btrfs_set_token_timespec_nsec(&token, &item->otime, 3956 BTRFS_I(inode)->i_otime.tv_nsec); 3957 3958 btrfs_set_token_inode_nbytes(&token, item, inode_get_bytes(inode)); 3959 btrfs_set_token_inode_generation(&token, item, 3960 BTRFS_I(inode)->generation); 3961 btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode)); 3962 btrfs_set_token_inode_transid(&token, item, trans->transid); 3963 btrfs_set_token_inode_rdev(&token, item, inode->i_rdev); 3964 flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags, 3965 BTRFS_I(inode)->ro_flags); 3966 btrfs_set_token_inode_flags(&token, item, flags); 3967 btrfs_set_token_inode_block_group(&token, item, 0); 3968 } 3969 3970 /* 3971 * copy everything in the in-memory inode into the btree. 3972 */ 3973 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans, 3974 struct btrfs_root *root, 3975 struct btrfs_inode *inode) 3976 { 3977 struct btrfs_inode_item *inode_item; 3978 struct btrfs_path *path; 3979 struct extent_buffer *leaf; 3980 int ret; 3981 3982 path = btrfs_alloc_path(); 3983 if (!path) 3984 return -ENOMEM; 3985 3986 ret = btrfs_lookup_inode(trans, root, path, &inode->location, 1); 3987 if (ret) { 3988 if (ret > 0) 3989 ret = -ENOENT; 3990 goto failed; 3991 } 3992 3993 leaf = path->nodes[0]; 3994 inode_item = btrfs_item_ptr(leaf, path->slots[0], 3995 struct btrfs_inode_item); 3996 3997 fill_inode_item(trans, leaf, inode_item, &inode->vfs_inode); 3998 btrfs_mark_buffer_dirty(trans, leaf); 3999 btrfs_set_inode_last_trans(trans, inode); 4000 ret = 0; 4001 failed: 4002 btrfs_free_path(path); 4003 return ret; 4004 } 4005 4006 /* 4007 * copy everything in the in-memory inode into the btree. 4008 */ 4009 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans, 4010 struct btrfs_root *root, 4011 struct btrfs_inode *inode) 4012 { 4013 struct btrfs_fs_info *fs_info = root->fs_info; 4014 int ret; 4015 4016 /* 4017 * If the inode is a free space inode, we can deadlock during commit 4018 * if we put it into the delayed code. 4019 * 4020 * The data relocation inode should also be directly updated 4021 * without delay 4022 */ 4023 if (!btrfs_is_free_space_inode(inode) 4024 && !btrfs_is_data_reloc_root(root) 4025 && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) { 4026 btrfs_update_root_times(trans, root); 4027 4028 ret = btrfs_delayed_update_inode(trans, root, inode); 4029 if (!ret) 4030 btrfs_set_inode_last_trans(trans, inode); 4031 return ret; 4032 } 4033 4034 return btrfs_update_inode_item(trans, root, inode); 4035 } 4036 4037 int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans, 4038 struct btrfs_root *root, struct btrfs_inode *inode) 4039 { 4040 int ret; 4041 4042 ret = btrfs_update_inode(trans, root, inode); 4043 if (ret == -ENOSPC) 4044 return btrfs_update_inode_item(trans, root, inode); 4045 return ret; 4046 } 4047 4048 /* 4049 * unlink helper that gets used here in inode.c and in the tree logging 4050 * recovery code. It remove a link in a directory with a given name, and 4051 * also drops the back refs in the inode to the directory 4052 */ 4053 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans, 4054 struct btrfs_inode *dir, 4055 struct btrfs_inode *inode, 4056 const struct fscrypt_str *name, 4057 struct btrfs_rename_ctx *rename_ctx) 4058 { 4059 struct btrfs_root *root = dir->root; 4060 struct btrfs_fs_info *fs_info = root->fs_info; 4061 struct btrfs_path *path; 4062 int ret = 0; 4063 struct btrfs_dir_item *di; 4064 u64 index; 4065 u64 ino = btrfs_ino(inode); 4066 u64 dir_ino = btrfs_ino(dir); 4067 4068 path = btrfs_alloc_path(); 4069 if (!path) { 4070 ret = -ENOMEM; 4071 goto out; 4072 } 4073 4074 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, name, -1); 4075 if (IS_ERR_OR_NULL(di)) { 4076 ret = di ? PTR_ERR(di) : -ENOENT; 4077 goto err; 4078 } 4079 ret = btrfs_delete_one_dir_name(trans, root, path, di); 4080 if (ret) 4081 goto err; 4082 btrfs_release_path(path); 4083 4084 /* 4085 * If we don't have dir index, we have to get it by looking up 4086 * the inode ref, since we get the inode ref, remove it directly, 4087 * it is unnecessary to do delayed deletion. 4088 * 4089 * But if we have dir index, needn't search inode ref to get it. 4090 * Since the inode ref is close to the inode item, it is better 4091 * that we delay to delete it, and just do this deletion when 4092 * we update the inode item. 4093 */ 4094 if (inode->dir_index) { 4095 ret = btrfs_delayed_delete_inode_ref(inode); 4096 if (!ret) { 4097 index = inode->dir_index; 4098 goto skip_backref; 4099 } 4100 } 4101 4102 ret = btrfs_del_inode_ref(trans, root, name, ino, dir_ino, &index); 4103 if (ret) { 4104 btrfs_info(fs_info, 4105 "failed to delete reference to %.*s, inode %llu parent %llu", 4106 name->len, name->name, ino, dir_ino); 4107 btrfs_abort_transaction(trans, ret); 4108 goto err; 4109 } 4110 skip_backref: 4111 if (rename_ctx) 4112 rename_ctx->index = index; 4113 4114 ret = btrfs_delete_delayed_dir_index(trans, dir, index); 4115 if (ret) { 4116 btrfs_abort_transaction(trans, ret); 4117 goto err; 4118 } 4119 4120 /* 4121 * If we are in a rename context, we don't need to update anything in the 4122 * log. That will be done later during the rename by btrfs_log_new_name(). 4123 * Besides that, doing it here would only cause extra unnecessary btree 4124 * operations on the log tree, increasing latency for applications. 4125 */ 4126 if (!rename_ctx) { 4127 btrfs_del_inode_ref_in_log(trans, root, name, inode, dir_ino); 4128 btrfs_del_dir_entries_in_log(trans, root, name, dir, index); 4129 } 4130 4131 /* 4132 * If we have a pending delayed iput we could end up with the final iput 4133 * being run in btrfs-cleaner context. If we have enough of these built 4134 * up we can end up burning a lot of time in btrfs-cleaner without any 4135 * way to throttle the unlinks. Since we're currently holding a ref on 4136 * the inode we can run the delayed iput here without any issues as the 4137 * final iput won't be done until after we drop the ref we're currently 4138 * holding. 4139 */ 4140 btrfs_run_delayed_iput(fs_info, inode); 4141 err: 4142 btrfs_free_path(path); 4143 if (ret) 4144 goto out; 4145 4146 btrfs_i_size_write(dir, dir->vfs_inode.i_size - name->len * 2); 4147 inode_inc_iversion(&inode->vfs_inode); 4148 inode_inc_iversion(&dir->vfs_inode); 4149 inode_set_ctime_current(&inode->vfs_inode); 4150 dir->vfs_inode.i_mtime = inode_set_ctime_current(&dir->vfs_inode); 4151 ret = btrfs_update_inode(trans, root, dir); 4152 out: 4153 return ret; 4154 } 4155 4156 int btrfs_unlink_inode(struct btrfs_trans_handle *trans, 4157 struct btrfs_inode *dir, struct btrfs_inode *inode, 4158 const struct fscrypt_str *name) 4159 { 4160 int ret; 4161 4162 ret = __btrfs_unlink_inode(trans, dir, inode, name, NULL); 4163 if (!ret) { 4164 drop_nlink(&inode->vfs_inode); 4165 ret = btrfs_update_inode(trans, inode->root, inode); 4166 } 4167 return ret; 4168 } 4169 4170 /* 4171 * helper to start transaction for unlink and rmdir. 4172 * 4173 * unlink and rmdir are special in btrfs, they do not always free space, so 4174 * if we cannot make our reservations the normal way try and see if there is 4175 * plenty of slack room in the global reserve to migrate, otherwise we cannot 4176 * allow the unlink to occur. 4177 */ 4178 static struct btrfs_trans_handle *__unlink_start_trans(struct btrfs_inode *dir) 4179 { 4180 struct btrfs_root *root = dir->root; 4181 4182 return btrfs_start_transaction_fallback_global_rsv(root, 4183 BTRFS_UNLINK_METADATA_UNITS); 4184 } 4185 4186 static int btrfs_unlink(struct inode *dir, struct dentry *dentry) 4187 { 4188 struct btrfs_trans_handle *trans; 4189 struct inode *inode = d_inode(dentry); 4190 int ret; 4191 struct fscrypt_name fname; 4192 4193 ret = fscrypt_setup_filename(dir, &dentry->d_name, 1, &fname); 4194 if (ret) 4195 return ret; 4196 4197 /* This needs to handle no-key deletions later on */ 4198 4199 trans = __unlink_start_trans(BTRFS_I(dir)); 4200 if (IS_ERR(trans)) { 4201 ret = PTR_ERR(trans); 4202 goto fscrypt_free; 4203 } 4204 4205 btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)), 4206 false); 4207 4208 ret = btrfs_unlink_inode(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)), 4209 &fname.disk_name); 4210 if (ret) 4211 goto end_trans; 4212 4213 if (inode->i_nlink == 0) { 4214 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 4215 if (ret) 4216 goto end_trans; 4217 } 4218 4219 end_trans: 4220 btrfs_end_transaction(trans); 4221 btrfs_btree_balance_dirty(BTRFS_I(dir)->root->fs_info); 4222 fscrypt_free: 4223 fscrypt_free_filename(&fname); 4224 return ret; 4225 } 4226 4227 static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans, 4228 struct btrfs_inode *dir, struct dentry *dentry) 4229 { 4230 struct btrfs_root *root = dir->root; 4231 struct btrfs_inode *inode = BTRFS_I(d_inode(dentry)); 4232 struct btrfs_path *path; 4233 struct extent_buffer *leaf; 4234 struct btrfs_dir_item *di; 4235 struct btrfs_key key; 4236 u64 index; 4237 int ret; 4238 u64 objectid; 4239 u64 dir_ino = btrfs_ino(dir); 4240 struct fscrypt_name fname; 4241 4242 ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 1, &fname); 4243 if (ret) 4244 return ret; 4245 4246 /* This needs to handle no-key deletions later on */ 4247 4248 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) { 4249 objectid = inode->root->root_key.objectid; 4250 } else if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) { 4251 objectid = inode->location.objectid; 4252 } else { 4253 WARN_ON(1); 4254 fscrypt_free_filename(&fname); 4255 return -EINVAL; 4256 } 4257 4258 path = btrfs_alloc_path(); 4259 if (!path) { 4260 ret = -ENOMEM; 4261 goto out; 4262 } 4263 4264 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 4265 &fname.disk_name, -1); 4266 if (IS_ERR_OR_NULL(di)) { 4267 ret = di ? PTR_ERR(di) : -ENOENT; 4268 goto out; 4269 } 4270 4271 leaf = path->nodes[0]; 4272 btrfs_dir_item_key_to_cpu(leaf, di, &key); 4273 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid); 4274 ret = btrfs_delete_one_dir_name(trans, root, path, di); 4275 if (ret) { 4276 btrfs_abort_transaction(trans, ret); 4277 goto out; 4278 } 4279 btrfs_release_path(path); 4280 4281 /* 4282 * This is a placeholder inode for a subvolume we didn't have a 4283 * reference to at the time of the snapshot creation. In the meantime 4284 * we could have renamed the real subvol link into our snapshot, so 4285 * depending on btrfs_del_root_ref to return -ENOENT here is incorrect. 4286 * Instead simply lookup the dir_index_item for this entry so we can 4287 * remove it. Otherwise we know we have a ref to the root and we can 4288 * call btrfs_del_root_ref, and it _shouldn't_ fail. 4289 */ 4290 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) { 4291 di = btrfs_search_dir_index_item(root, path, dir_ino, &fname.disk_name); 4292 if (IS_ERR_OR_NULL(di)) { 4293 if (!di) 4294 ret = -ENOENT; 4295 else 4296 ret = PTR_ERR(di); 4297 btrfs_abort_transaction(trans, ret); 4298 goto out; 4299 } 4300 4301 leaf = path->nodes[0]; 4302 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 4303 index = key.offset; 4304 btrfs_release_path(path); 4305 } else { 4306 ret = btrfs_del_root_ref(trans, objectid, 4307 root->root_key.objectid, dir_ino, 4308 &index, &fname.disk_name); 4309 if (ret) { 4310 btrfs_abort_transaction(trans, ret); 4311 goto out; 4312 } 4313 } 4314 4315 ret = btrfs_delete_delayed_dir_index(trans, dir, index); 4316 if (ret) { 4317 btrfs_abort_transaction(trans, ret); 4318 goto out; 4319 } 4320 4321 btrfs_i_size_write(dir, dir->vfs_inode.i_size - fname.disk_name.len * 2); 4322 inode_inc_iversion(&dir->vfs_inode); 4323 dir->vfs_inode.i_mtime = inode_set_ctime_current(&dir->vfs_inode); 4324 ret = btrfs_update_inode_fallback(trans, root, dir); 4325 if (ret) 4326 btrfs_abort_transaction(trans, ret); 4327 out: 4328 btrfs_free_path(path); 4329 fscrypt_free_filename(&fname); 4330 return ret; 4331 } 4332 4333 /* 4334 * Helper to check if the subvolume references other subvolumes or if it's 4335 * default. 4336 */ 4337 static noinline int may_destroy_subvol(struct btrfs_root *root) 4338 { 4339 struct btrfs_fs_info *fs_info = root->fs_info; 4340 struct btrfs_path *path; 4341 struct btrfs_dir_item *di; 4342 struct btrfs_key key; 4343 struct fscrypt_str name = FSTR_INIT("default", 7); 4344 u64 dir_id; 4345 int ret; 4346 4347 path = btrfs_alloc_path(); 4348 if (!path) 4349 return -ENOMEM; 4350 4351 /* Make sure this root isn't set as the default subvol */ 4352 dir_id = btrfs_super_root_dir(fs_info->super_copy); 4353 di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path, 4354 dir_id, &name, 0); 4355 if (di && !IS_ERR(di)) { 4356 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key); 4357 if (key.objectid == root->root_key.objectid) { 4358 ret = -EPERM; 4359 btrfs_err(fs_info, 4360 "deleting default subvolume %llu is not allowed", 4361 key.objectid); 4362 goto out; 4363 } 4364 btrfs_release_path(path); 4365 } 4366 4367 key.objectid = root->root_key.objectid; 4368 key.type = BTRFS_ROOT_REF_KEY; 4369 key.offset = (u64)-1; 4370 4371 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 4372 if (ret < 0) 4373 goto out; 4374 BUG_ON(ret == 0); 4375 4376 ret = 0; 4377 if (path->slots[0] > 0) { 4378 path->slots[0]--; 4379 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 4380 if (key.objectid == root->root_key.objectid && 4381 key.type == BTRFS_ROOT_REF_KEY) 4382 ret = -ENOTEMPTY; 4383 } 4384 out: 4385 btrfs_free_path(path); 4386 return ret; 4387 } 4388 4389 /* Delete all dentries for inodes belonging to the root */ 4390 static void btrfs_prune_dentries(struct btrfs_root *root) 4391 { 4392 struct btrfs_fs_info *fs_info = root->fs_info; 4393 struct rb_node *node; 4394 struct rb_node *prev; 4395 struct btrfs_inode *entry; 4396 struct inode *inode; 4397 u64 objectid = 0; 4398 4399 if (!BTRFS_FS_ERROR(fs_info)) 4400 WARN_ON(btrfs_root_refs(&root->root_item) != 0); 4401 4402 spin_lock(&root->inode_lock); 4403 again: 4404 node = root->inode_tree.rb_node; 4405 prev = NULL; 4406 while (node) { 4407 prev = node; 4408 entry = rb_entry(node, struct btrfs_inode, rb_node); 4409 4410 if (objectid < btrfs_ino(entry)) 4411 node = node->rb_left; 4412 else if (objectid > btrfs_ino(entry)) 4413 node = node->rb_right; 4414 else 4415 break; 4416 } 4417 if (!node) { 4418 while (prev) { 4419 entry = rb_entry(prev, struct btrfs_inode, rb_node); 4420 if (objectid <= btrfs_ino(entry)) { 4421 node = prev; 4422 break; 4423 } 4424 prev = rb_next(prev); 4425 } 4426 } 4427 while (node) { 4428 entry = rb_entry(node, struct btrfs_inode, rb_node); 4429 objectid = btrfs_ino(entry) + 1; 4430 inode = igrab(&entry->vfs_inode); 4431 if (inode) { 4432 spin_unlock(&root->inode_lock); 4433 if (atomic_read(&inode->i_count) > 1) 4434 d_prune_aliases(inode); 4435 /* 4436 * btrfs_drop_inode will have it removed from the inode 4437 * cache when its usage count hits zero. 4438 */ 4439 iput(inode); 4440 cond_resched(); 4441 spin_lock(&root->inode_lock); 4442 goto again; 4443 } 4444 4445 if (cond_resched_lock(&root->inode_lock)) 4446 goto again; 4447 4448 node = rb_next(node); 4449 } 4450 spin_unlock(&root->inode_lock); 4451 } 4452 4453 int btrfs_delete_subvolume(struct btrfs_inode *dir, struct dentry *dentry) 4454 { 4455 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb); 4456 struct btrfs_root *root = dir->root; 4457 struct inode *inode = d_inode(dentry); 4458 struct btrfs_root *dest = BTRFS_I(inode)->root; 4459 struct btrfs_trans_handle *trans; 4460 struct btrfs_block_rsv block_rsv; 4461 u64 root_flags; 4462 u64 qgroup_reserved = 0; 4463 int ret; 4464 4465 down_write(&fs_info->subvol_sem); 4466 4467 /* 4468 * Don't allow to delete a subvolume with send in progress. This is 4469 * inside the inode lock so the error handling that has to drop the bit 4470 * again is not run concurrently. 4471 */ 4472 spin_lock(&dest->root_item_lock); 4473 if (dest->send_in_progress) { 4474 spin_unlock(&dest->root_item_lock); 4475 btrfs_warn(fs_info, 4476 "attempt to delete subvolume %llu during send", 4477 dest->root_key.objectid); 4478 ret = -EPERM; 4479 goto out_up_write; 4480 } 4481 if (atomic_read(&dest->nr_swapfiles)) { 4482 spin_unlock(&dest->root_item_lock); 4483 btrfs_warn(fs_info, 4484 "attempt to delete subvolume %llu with active swapfile", 4485 root->root_key.objectid); 4486 ret = -EPERM; 4487 goto out_up_write; 4488 } 4489 root_flags = btrfs_root_flags(&dest->root_item); 4490 btrfs_set_root_flags(&dest->root_item, 4491 root_flags | BTRFS_ROOT_SUBVOL_DEAD); 4492 spin_unlock(&dest->root_item_lock); 4493 4494 ret = may_destroy_subvol(dest); 4495 if (ret) 4496 goto out_undead; 4497 4498 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP); 4499 /* 4500 * One for dir inode, 4501 * two for dir entries, 4502 * two for root ref/backref. 4503 */ 4504 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true); 4505 if (ret) 4506 goto out_undead; 4507 qgroup_reserved = block_rsv.qgroup_rsv_reserved; 4508 4509 trans = btrfs_start_transaction(root, 0); 4510 if (IS_ERR(trans)) { 4511 ret = PTR_ERR(trans); 4512 goto out_release; 4513 } 4514 ret = btrfs_record_root_in_trans(trans, root); 4515 if (ret) { 4516 btrfs_abort_transaction(trans, ret); 4517 goto out_end_trans; 4518 } 4519 btrfs_qgroup_convert_reserved_meta(root, qgroup_reserved); 4520 qgroup_reserved = 0; 4521 trans->block_rsv = &block_rsv; 4522 trans->bytes_reserved = block_rsv.size; 4523 4524 btrfs_record_snapshot_destroy(trans, dir); 4525 4526 ret = btrfs_unlink_subvol(trans, dir, dentry); 4527 if (ret) { 4528 btrfs_abort_transaction(trans, ret); 4529 goto out_end_trans; 4530 } 4531 4532 ret = btrfs_record_root_in_trans(trans, dest); 4533 if (ret) { 4534 btrfs_abort_transaction(trans, ret); 4535 goto out_end_trans; 4536 } 4537 4538 memset(&dest->root_item.drop_progress, 0, 4539 sizeof(dest->root_item.drop_progress)); 4540 btrfs_set_root_drop_level(&dest->root_item, 0); 4541 btrfs_set_root_refs(&dest->root_item, 0); 4542 4543 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) { 4544 ret = btrfs_insert_orphan_item(trans, 4545 fs_info->tree_root, 4546 dest->root_key.objectid); 4547 if (ret) { 4548 btrfs_abort_transaction(trans, ret); 4549 goto out_end_trans; 4550 } 4551 } 4552 4553 ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid, 4554 BTRFS_UUID_KEY_SUBVOL, 4555 dest->root_key.objectid); 4556 if (ret && ret != -ENOENT) { 4557 btrfs_abort_transaction(trans, ret); 4558 goto out_end_trans; 4559 } 4560 if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) { 4561 ret = btrfs_uuid_tree_remove(trans, 4562 dest->root_item.received_uuid, 4563 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 4564 dest->root_key.objectid); 4565 if (ret && ret != -ENOENT) { 4566 btrfs_abort_transaction(trans, ret); 4567 goto out_end_trans; 4568 } 4569 } 4570 4571 free_anon_bdev(dest->anon_dev); 4572 dest->anon_dev = 0; 4573 out_end_trans: 4574 trans->block_rsv = NULL; 4575 trans->bytes_reserved = 0; 4576 ret = btrfs_end_transaction(trans); 4577 inode->i_flags |= S_DEAD; 4578 out_release: 4579 btrfs_block_rsv_release(fs_info, &block_rsv, (u64)-1, NULL); 4580 if (qgroup_reserved) 4581 btrfs_qgroup_free_meta_prealloc(root, qgroup_reserved); 4582 out_undead: 4583 if (ret) { 4584 spin_lock(&dest->root_item_lock); 4585 root_flags = btrfs_root_flags(&dest->root_item); 4586 btrfs_set_root_flags(&dest->root_item, 4587 root_flags & ~BTRFS_ROOT_SUBVOL_DEAD); 4588 spin_unlock(&dest->root_item_lock); 4589 } 4590 out_up_write: 4591 up_write(&fs_info->subvol_sem); 4592 if (!ret) { 4593 d_invalidate(dentry); 4594 btrfs_prune_dentries(dest); 4595 ASSERT(dest->send_in_progress == 0); 4596 } 4597 4598 return ret; 4599 } 4600 4601 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry) 4602 { 4603 struct inode *inode = d_inode(dentry); 4604 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 4605 int err = 0; 4606 struct btrfs_trans_handle *trans; 4607 u64 last_unlink_trans; 4608 struct fscrypt_name fname; 4609 4610 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE) 4611 return -ENOTEMPTY; 4612 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID) { 4613 if (unlikely(btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))) { 4614 btrfs_err(fs_info, 4615 "extent tree v2 doesn't support snapshot deletion yet"); 4616 return -EOPNOTSUPP; 4617 } 4618 return btrfs_delete_subvolume(BTRFS_I(dir), dentry); 4619 } 4620 4621 err = fscrypt_setup_filename(dir, &dentry->d_name, 1, &fname); 4622 if (err) 4623 return err; 4624 4625 /* This needs to handle no-key deletions later on */ 4626 4627 trans = __unlink_start_trans(BTRFS_I(dir)); 4628 if (IS_ERR(trans)) { 4629 err = PTR_ERR(trans); 4630 goto out_notrans; 4631 } 4632 4633 if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 4634 err = btrfs_unlink_subvol(trans, BTRFS_I(dir), dentry); 4635 goto out; 4636 } 4637 4638 err = btrfs_orphan_add(trans, BTRFS_I(inode)); 4639 if (err) 4640 goto out; 4641 4642 last_unlink_trans = BTRFS_I(inode)->last_unlink_trans; 4643 4644 /* now the directory is empty */ 4645 err = btrfs_unlink_inode(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)), 4646 &fname.disk_name); 4647 if (!err) { 4648 btrfs_i_size_write(BTRFS_I(inode), 0); 4649 /* 4650 * Propagate the last_unlink_trans value of the deleted dir to 4651 * its parent directory. This is to prevent an unrecoverable 4652 * log tree in the case we do something like this: 4653 * 1) create dir foo 4654 * 2) create snapshot under dir foo 4655 * 3) delete the snapshot 4656 * 4) rmdir foo 4657 * 5) mkdir foo 4658 * 6) fsync foo or some file inside foo 4659 */ 4660 if (last_unlink_trans >= trans->transid) 4661 BTRFS_I(dir)->last_unlink_trans = last_unlink_trans; 4662 } 4663 out: 4664 btrfs_end_transaction(trans); 4665 out_notrans: 4666 btrfs_btree_balance_dirty(fs_info); 4667 fscrypt_free_filename(&fname); 4668 4669 return err; 4670 } 4671 4672 /* 4673 * btrfs_truncate_block - read, zero a chunk and write a block 4674 * @inode - inode that we're zeroing 4675 * @from - the offset to start zeroing 4676 * @len - the length to zero, 0 to zero the entire range respective to the 4677 * offset 4678 * @front - zero up to the offset instead of from the offset on 4679 * 4680 * This will find the block for the "from" offset and cow the block and zero the 4681 * part we want to zero. This is used with truncate and hole punching. 4682 */ 4683 int btrfs_truncate_block(struct btrfs_inode *inode, loff_t from, loff_t len, 4684 int front) 4685 { 4686 struct btrfs_fs_info *fs_info = inode->root->fs_info; 4687 struct address_space *mapping = inode->vfs_inode.i_mapping; 4688 struct extent_io_tree *io_tree = &inode->io_tree; 4689 struct btrfs_ordered_extent *ordered; 4690 struct extent_state *cached_state = NULL; 4691 struct extent_changeset *data_reserved = NULL; 4692 bool only_release_metadata = false; 4693 u32 blocksize = fs_info->sectorsize; 4694 pgoff_t index = from >> PAGE_SHIFT; 4695 unsigned offset = from & (blocksize - 1); 4696 struct page *page; 4697 gfp_t mask = btrfs_alloc_write_mask(mapping); 4698 size_t write_bytes = blocksize; 4699 int ret = 0; 4700 u64 block_start; 4701 u64 block_end; 4702 4703 if (IS_ALIGNED(offset, blocksize) && 4704 (!len || IS_ALIGNED(len, blocksize))) 4705 goto out; 4706 4707 block_start = round_down(from, blocksize); 4708 block_end = block_start + blocksize - 1; 4709 4710 ret = btrfs_check_data_free_space(inode, &data_reserved, block_start, 4711 blocksize, false); 4712 if (ret < 0) { 4713 if (btrfs_check_nocow_lock(inode, block_start, &write_bytes, false) > 0) { 4714 /* For nocow case, no need to reserve data space */ 4715 only_release_metadata = true; 4716 } else { 4717 goto out; 4718 } 4719 } 4720 ret = btrfs_delalloc_reserve_metadata(inode, blocksize, blocksize, false); 4721 if (ret < 0) { 4722 if (!only_release_metadata) 4723 btrfs_free_reserved_data_space(inode, data_reserved, 4724 block_start, blocksize); 4725 goto out; 4726 } 4727 again: 4728 page = find_or_create_page(mapping, index, mask); 4729 if (!page) { 4730 btrfs_delalloc_release_space(inode, data_reserved, block_start, 4731 blocksize, true); 4732 btrfs_delalloc_release_extents(inode, blocksize); 4733 ret = -ENOMEM; 4734 goto out; 4735 } 4736 4737 if (!PageUptodate(page)) { 4738 ret = btrfs_read_folio(NULL, page_folio(page)); 4739 lock_page(page); 4740 if (page->mapping != mapping) { 4741 unlock_page(page); 4742 put_page(page); 4743 goto again; 4744 } 4745 if (!PageUptodate(page)) { 4746 ret = -EIO; 4747 goto out_unlock; 4748 } 4749 } 4750 4751 /* 4752 * We unlock the page after the io is completed and then re-lock it 4753 * above. release_folio() could have come in between that and cleared 4754 * PagePrivate(), but left the page in the mapping. Set the page mapped 4755 * here to make sure it's properly set for the subpage stuff. 4756 */ 4757 ret = set_page_extent_mapped(page); 4758 if (ret < 0) 4759 goto out_unlock; 4760 4761 wait_on_page_writeback(page); 4762 4763 lock_extent(io_tree, block_start, block_end, &cached_state); 4764 4765 ordered = btrfs_lookup_ordered_extent(inode, block_start); 4766 if (ordered) { 4767 unlock_extent(io_tree, block_start, block_end, &cached_state); 4768 unlock_page(page); 4769 put_page(page); 4770 btrfs_start_ordered_extent(ordered); 4771 btrfs_put_ordered_extent(ordered); 4772 goto again; 4773 } 4774 4775 clear_extent_bit(&inode->io_tree, block_start, block_end, 4776 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 4777 &cached_state); 4778 4779 ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0, 4780 &cached_state); 4781 if (ret) { 4782 unlock_extent(io_tree, block_start, block_end, &cached_state); 4783 goto out_unlock; 4784 } 4785 4786 if (offset != blocksize) { 4787 if (!len) 4788 len = blocksize - offset; 4789 if (front) 4790 memzero_page(page, (block_start - page_offset(page)), 4791 offset); 4792 else 4793 memzero_page(page, (block_start - page_offset(page)) + offset, 4794 len); 4795 } 4796 btrfs_page_clear_checked(fs_info, page, block_start, 4797 block_end + 1 - block_start); 4798 btrfs_page_set_dirty(fs_info, page, block_start, block_end + 1 - block_start); 4799 unlock_extent(io_tree, block_start, block_end, &cached_state); 4800 4801 if (only_release_metadata) 4802 set_extent_bit(&inode->io_tree, block_start, block_end, 4803 EXTENT_NORESERVE, NULL); 4804 4805 out_unlock: 4806 if (ret) { 4807 if (only_release_metadata) 4808 btrfs_delalloc_release_metadata(inode, blocksize, true); 4809 else 4810 btrfs_delalloc_release_space(inode, data_reserved, 4811 block_start, blocksize, true); 4812 } 4813 btrfs_delalloc_release_extents(inode, blocksize); 4814 unlock_page(page); 4815 put_page(page); 4816 out: 4817 if (only_release_metadata) 4818 btrfs_check_nocow_unlock(inode); 4819 extent_changeset_free(data_reserved); 4820 return ret; 4821 } 4822 4823 static int maybe_insert_hole(struct btrfs_root *root, struct btrfs_inode *inode, 4824 u64 offset, u64 len) 4825 { 4826 struct btrfs_fs_info *fs_info = root->fs_info; 4827 struct btrfs_trans_handle *trans; 4828 struct btrfs_drop_extents_args drop_args = { 0 }; 4829 int ret; 4830 4831 /* 4832 * If NO_HOLES is enabled, we don't need to do anything. 4833 * Later, up in the call chain, either btrfs_set_inode_last_sub_trans() 4834 * or btrfs_update_inode() will be called, which guarantee that the next 4835 * fsync will know this inode was changed and needs to be logged. 4836 */ 4837 if (btrfs_fs_incompat(fs_info, NO_HOLES)) 4838 return 0; 4839 4840 /* 4841 * 1 - for the one we're dropping 4842 * 1 - for the one we're adding 4843 * 1 - for updating the inode. 4844 */ 4845 trans = btrfs_start_transaction(root, 3); 4846 if (IS_ERR(trans)) 4847 return PTR_ERR(trans); 4848 4849 drop_args.start = offset; 4850 drop_args.end = offset + len; 4851 drop_args.drop_cache = true; 4852 4853 ret = btrfs_drop_extents(trans, root, inode, &drop_args); 4854 if (ret) { 4855 btrfs_abort_transaction(trans, ret); 4856 btrfs_end_transaction(trans); 4857 return ret; 4858 } 4859 4860 ret = btrfs_insert_hole_extent(trans, root, btrfs_ino(inode), offset, len); 4861 if (ret) { 4862 btrfs_abort_transaction(trans, ret); 4863 } else { 4864 btrfs_update_inode_bytes(inode, 0, drop_args.bytes_found); 4865 btrfs_update_inode(trans, root, inode); 4866 } 4867 btrfs_end_transaction(trans); 4868 return ret; 4869 } 4870 4871 /* 4872 * This function puts in dummy file extents for the area we're creating a hole 4873 * for. So if we are truncating this file to a larger size we need to insert 4874 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for 4875 * the range between oldsize and size 4876 */ 4877 int btrfs_cont_expand(struct btrfs_inode *inode, loff_t oldsize, loff_t size) 4878 { 4879 struct btrfs_root *root = inode->root; 4880 struct btrfs_fs_info *fs_info = root->fs_info; 4881 struct extent_io_tree *io_tree = &inode->io_tree; 4882 struct extent_map *em = NULL; 4883 struct extent_state *cached_state = NULL; 4884 u64 hole_start = ALIGN(oldsize, fs_info->sectorsize); 4885 u64 block_end = ALIGN(size, fs_info->sectorsize); 4886 u64 last_byte; 4887 u64 cur_offset; 4888 u64 hole_size; 4889 int err = 0; 4890 4891 /* 4892 * If our size started in the middle of a block we need to zero out the 4893 * rest of the block before we expand the i_size, otherwise we could 4894 * expose stale data. 4895 */ 4896 err = btrfs_truncate_block(inode, oldsize, 0, 0); 4897 if (err) 4898 return err; 4899 4900 if (size <= hole_start) 4901 return 0; 4902 4903 btrfs_lock_and_flush_ordered_range(inode, hole_start, block_end - 1, 4904 &cached_state); 4905 cur_offset = hole_start; 4906 while (1) { 4907 em = btrfs_get_extent(inode, NULL, 0, cur_offset, 4908 block_end - cur_offset); 4909 if (IS_ERR(em)) { 4910 err = PTR_ERR(em); 4911 em = NULL; 4912 break; 4913 } 4914 last_byte = min(extent_map_end(em), block_end); 4915 last_byte = ALIGN(last_byte, fs_info->sectorsize); 4916 hole_size = last_byte - cur_offset; 4917 4918 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) { 4919 struct extent_map *hole_em; 4920 4921 err = maybe_insert_hole(root, inode, cur_offset, 4922 hole_size); 4923 if (err) 4924 break; 4925 4926 err = btrfs_inode_set_file_extent_range(inode, 4927 cur_offset, hole_size); 4928 if (err) 4929 break; 4930 4931 hole_em = alloc_extent_map(); 4932 if (!hole_em) { 4933 btrfs_drop_extent_map_range(inode, cur_offset, 4934 cur_offset + hole_size - 1, 4935 false); 4936 btrfs_set_inode_full_sync(inode); 4937 goto next; 4938 } 4939 hole_em->start = cur_offset; 4940 hole_em->len = hole_size; 4941 hole_em->orig_start = cur_offset; 4942 4943 hole_em->block_start = EXTENT_MAP_HOLE; 4944 hole_em->block_len = 0; 4945 hole_em->orig_block_len = 0; 4946 hole_em->ram_bytes = hole_size; 4947 hole_em->compress_type = BTRFS_COMPRESS_NONE; 4948 hole_em->generation = fs_info->generation; 4949 4950 err = btrfs_replace_extent_map_range(inode, hole_em, true); 4951 free_extent_map(hole_em); 4952 } else { 4953 err = btrfs_inode_set_file_extent_range(inode, 4954 cur_offset, hole_size); 4955 if (err) 4956 break; 4957 } 4958 next: 4959 free_extent_map(em); 4960 em = NULL; 4961 cur_offset = last_byte; 4962 if (cur_offset >= block_end) 4963 break; 4964 } 4965 free_extent_map(em); 4966 unlock_extent(io_tree, hole_start, block_end - 1, &cached_state); 4967 return err; 4968 } 4969 4970 static int btrfs_setsize(struct inode *inode, struct iattr *attr) 4971 { 4972 struct btrfs_root *root = BTRFS_I(inode)->root; 4973 struct btrfs_trans_handle *trans; 4974 loff_t oldsize = i_size_read(inode); 4975 loff_t newsize = attr->ia_size; 4976 int mask = attr->ia_valid; 4977 int ret; 4978 4979 /* 4980 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a 4981 * special case where we need to update the times despite not having 4982 * these flags set. For all other operations the VFS set these flags 4983 * explicitly if it wants a timestamp update. 4984 */ 4985 if (newsize != oldsize) { 4986 inode_inc_iversion(inode); 4987 if (!(mask & (ATTR_CTIME | ATTR_MTIME))) { 4988 inode->i_mtime = inode_set_ctime_current(inode); 4989 } 4990 } 4991 4992 if (newsize > oldsize) { 4993 /* 4994 * Don't do an expanding truncate while snapshotting is ongoing. 4995 * This is to ensure the snapshot captures a fully consistent 4996 * state of this file - if the snapshot captures this expanding 4997 * truncation, it must capture all writes that happened before 4998 * this truncation. 4999 */ 5000 btrfs_drew_write_lock(&root->snapshot_lock); 5001 ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, newsize); 5002 if (ret) { 5003 btrfs_drew_write_unlock(&root->snapshot_lock); 5004 return ret; 5005 } 5006 5007 trans = btrfs_start_transaction(root, 1); 5008 if (IS_ERR(trans)) { 5009 btrfs_drew_write_unlock(&root->snapshot_lock); 5010 return PTR_ERR(trans); 5011 } 5012 5013 i_size_write(inode, newsize); 5014 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0); 5015 pagecache_isize_extended(inode, oldsize, newsize); 5016 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 5017 btrfs_drew_write_unlock(&root->snapshot_lock); 5018 btrfs_end_transaction(trans); 5019 } else { 5020 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5021 5022 if (btrfs_is_zoned(fs_info)) { 5023 ret = btrfs_wait_ordered_range(inode, 5024 ALIGN(newsize, fs_info->sectorsize), 5025 (u64)-1); 5026 if (ret) 5027 return ret; 5028 } 5029 5030 /* 5031 * We're truncating a file that used to have good data down to 5032 * zero. Make sure any new writes to the file get on disk 5033 * on close. 5034 */ 5035 if (newsize == 0) 5036 set_bit(BTRFS_INODE_FLUSH_ON_CLOSE, 5037 &BTRFS_I(inode)->runtime_flags); 5038 5039 truncate_setsize(inode, newsize); 5040 5041 inode_dio_wait(inode); 5042 5043 ret = btrfs_truncate(BTRFS_I(inode), newsize == oldsize); 5044 if (ret && inode->i_nlink) { 5045 int err; 5046 5047 /* 5048 * Truncate failed, so fix up the in-memory size. We 5049 * adjusted disk_i_size down as we removed extents, so 5050 * wait for disk_i_size to be stable and then update the 5051 * in-memory size to match. 5052 */ 5053 err = btrfs_wait_ordered_range(inode, 0, (u64)-1); 5054 if (err) 5055 return err; 5056 i_size_write(inode, BTRFS_I(inode)->disk_i_size); 5057 } 5058 } 5059 5060 return ret; 5061 } 5062 5063 static int btrfs_setattr(struct mnt_idmap *idmap, struct dentry *dentry, 5064 struct iattr *attr) 5065 { 5066 struct inode *inode = d_inode(dentry); 5067 struct btrfs_root *root = BTRFS_I(inode)->root; 5068 int err; 5069 5070 if (btrfs_root_readonly(root)) 5071 return -EROFS; 5072 5073 err = setattr_prepare(idmap, dentry, attr); 5074 if (err) 5075 return err; 5076 5077 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 5078 err = btrfs_setsize(inode, attr); 5079 if (err) 5080 return err; 5081 } 5082 5083 if (attr->ia_valid) { 5084 setattr_copy(idmap, inode, attr); 5085 inode_inc_iversion(inode); 5086 err = btrfs_dirty_inode(BTRFS_I(inode)); 5087 5088 if (!err && attr->ia_valid & ATTR_MODE) 5089 err = posix_acl_chmod(idmap, dentry, inode->i_mode); 5090 } 5091 5092 return err; 5093 } 5094 5095 /* 5096 * While truncating the inode pages during eviction, we get the VFS 5097 * calling btrfs_invalidate_folio() against each folio of the inode. This 5098 * is slow because the calls to btrfs_invalidate_folio() result in a 5099 * huge amount of calls to lock_extent() and clear_extent_bit(), 5100 * which keep merging and splitting extent_state structures over and over, 5101 * wasting lots of time. 5102 * 5103 * Therefore if the inode is being evicted, let btrfs_invalidate_folio() 5104 * skip all those expensive operations on a per folio basis and do only 5105 * the ordered io finishing, while we release here the extent_map and 5106 * extent_state structures, without the excessive merging and splitting. 5107 */ 5108 static void evict_inode_truncate_pages(struct inode *inode) 5109 { 5110 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 5111 struct rb_node *node; 5112 5113 ASSERT(inode->i_state & I_FREEING); 5114 truncate_inode_pages_final(&inode->i_data); 5115 5116 btrfs_drop_extent_map_range(BTRFS_I(inode), 0, (u64)-1, false); 5117 5118 /* 5119 * Keep looping until we have no more ranges in the io tree. 5120 * We can have ongoing bios started by readahead that have 5121 * their endio callback (extent_io.c:end_bio_extent_readpage) 5122 * still in progress (unlocked the pages in the bio but did not yet 5123 * unlocked the ranges in the io tree). Therefore this means some 5124 * ranges can still be locked and eviction started because before 5125 * submitting those bios, which are executed by a separate task (work 5126 * queue kthread), inode references (inode->i_count) were not taken 5127 * (which would be dropped in the end io callback of each bio). 5128 * Therefore here we effectively end up waiting for those bios and 5129 * anyone else holding locked ranges without having bumped the inode's 5130 * reference count - if we don't do it, when they access the inode's 5131 * io_tree to unlock a range it may be too late, leading to an 5132 * use-after-free issue. 5133 */ 5134 spin_lock(&io_tree->lock); 5135 while (!RB_EMPTY_ROOT(&io_tree->state)) { 5136 struct extent_state *state; 5137 struct extent_state *cached_state = NULL; 5138 u64 start; 5139 u64 end; 5140 unsigned state_flags; 5141 5142 node = rb_first(&io_tree->state); 5143 state = rb_entry(node, struct extent_state, rb_node); 5144 start = state->start; 5145 end = state->end; 5146 state_flags = state->state; 5147 spin_unlock(&io_tree->lock); 5148 5149 lock_extent(io_tree, start, end, &cached_state); 5150 5151 /* 5152 * If still has DELALLOC flag, the extent didn't reach disk, 5153 * and its reserved space won't be freed by delayed_ref. 5154 * So we need to free its reserved space here. 5155 * (Refer to comment in btrfs_invalidate_folio, case 2) 5156 * 5157 * Note, end is the bytenr of last byte, so we need + 1 here. 5158 */ 5159 if (state_flags & EXTENT_DELALLOC) 5160 btrfs_qgroup_free_data(BTRFS_I(inode), NULL, start, 5161 end - start + 1, NULL); 5162 5163 clear_extent_bit(io_tree, start, end, 5164 EXTENT_CLEAR_ALL_BITS | EXTENT_DO_ACCOUNTING, 5165 &cached_state); 5166 5167 cond_resched(); 5168 spin_lock(&io_tree->lock); 5169 } 5170 spin_unlock(&io_tree->lock); 5171 } 5172 5173 static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root, 5174 struct btrfs_block_rsv *rsv) 5175 { 5176 struct btrfs_fs_info *fs_info = root->fs_info; 5177 struct btrfs_trans_handle *trans; 5178 u64 delayed_refs_extra = btrfs_calc_delayed_ref_bytes(fs_info, 1); 5179 int ret; 5180 5181 /* 5182 * Eviction should be taking place at some place safe because of our 5183 * delayed iputs. However the normal flushing code will run delayed 5184 * iputs, so we cannot use FLUSH_ALL otherwise we'll deadlock. 5185 * 5186 * We reserve the delayed_refs_extra here again because we can't use 5187 * btrfs_start_transaction(root, 0) for the same deadlocky reason as 5188 * above. We reserve our extra bit here because we generate a ton of 5189 * delayed refs activity by truncating. 5190 * 5191 * BTRFS_RESERVE_FLUSH_EVICT will steal from the global_rsv if it can, 5192 * if we fail to make this reservation we can re-try without the 5193 * delayed_refs_extra so we can make some forward progress. 5194 */ 5195 ret = btrfs_block_rsv_refill(fs_info, rsv, rsv->size + delayed_refs_extra, 5196 BTRFS_RESERVE_FLUSH_EVICT); 5197 if (ret) { 5198 ret = btrfs_block_rsv_refill(fs_info, rsv, rsv->size, 5199 BTRFS_RESERVE_FLUSH_EVICT); 5200 if (ret) { 5201 btrfs_warn(fs_info, 5202 "could not allocate space for delete; will truncate on mount"); 5203 return ERR_PTR(-ENOSPC); 5204 } 5205 delayed_refs_extra = 0; 5206 } 5207 5208 trans = btrfs_join_transaction(root); 5209 if (IS_ERR(trans)) 5210 return trans; 5211 5212 if (delayed_refs_extra) { 5213 trans->block_rsv = &fs_info->trans_block_rsv; 5214 trans->bytes_reserved = delayed_refs_extra; 5215 btrfs_block_rsv_migrate(rsv, trans->block_rsv, 5216 delayed_refs_extra, true); 5217 } 5218 return trans; 5219 } 5220 5221 void btrfs_evict_inode(struct inode *inode) 5222 { 5223 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5224 struct btrfs_trans_handle *trans; 5225 struct btrfs_root *root = BTRFS_I(inode)->root; 5226 struct btrfs_block_rsv *rsv = NULL; 5227 int ret; 5228 5229 trace_btrfs_inode_evict(inode); 5230 5231 if (!root) { 5232 fsverity_cleanup_inode(inode); 5233 clear_inode(inode); 5234 return; 5235 } 5236 5237 evict_inode_truncate_pages(inode); 5238 5239 if (inode->i_nlink && 5240 ((btrfs_root_refs(&root->root_item) != 0 && 5241 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) || 5242 btrfs_is_free_space_inode(BTRFS_I(inode)))) 5243 goto out; 5244 5245 if (is_bad_inode(inode)) 5246 goto out; 5247 5248 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) 5249 goto out; 5250 5251 if (inode->i_nlink > 0) { 5252 BUG_ON(btrfs_root_refs(&root->root_item) != 0 && 5253 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID); 5254 goto out; 5255 } 5256 5257 /* 5258 * This makes sure the inode item in tree is uptodate and the space for 5259 * the inode update is released. 5260 */ 5261 ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode)); 5262 if (ret) 5263 goto out; 5264 5265 /* 5266 * This drops any pending insert or delete operations we have for this 5267 * inode. We could have a delayed dir index deletion queued up, but 5268 * we're removing the inode completely so that'll be taken care of in 5269 * the truncate. 5270 */ 5271 btrfs_kill_delayed_inode_items(BTRFS_I(inode)); 5272 5273 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP); 5274 if (!rsv) 5275 goto out; 5276 rsv->size = btrfs_calc_metadata_size(fs_info, 1); 5277 rsv->failfast = true; 5278 5279 btrfs_i_size_write(BTRFS_I(inode), 0); 5280 5281 while (1) { 5282 struct btrfs_truncate_control control = { 5283 .inode = BTRFS_I(inode), 5284 .ino = btrfs_ino(BTRFS_I(inode)), 5285 .new_size = 0, 5286 .min_type = 0, 5287 }; 5288 5289 trans = evict_refill_and_join(root, rsv); 5290 if (IS_ERR(trans)) 5291 goto out; 5292 5293 trans->block_rsv = rsv; 5294 5295 ret = btrfs_truncate_inode_items(trans, root, &control); 5296 trans->block_rsv = &fs_info->trans_block_rsv; 5297 btrfs_end_transaction(trans); 5298 /* 5299 * We have not added new delayed items for our inode after we 5300 * have flushed its delayed items, so no need to throttle on 5301 * delayed items. However we have modified extent buffers. 5302 */ 5303 btrfs_btree_balance_dirty_nodelay(fs_info); 5304 if (ret && ret != -ENOSPC && ret != -EAGAIN) 5305 goto out; 5306 else if (!ret) 5307 break; 5308 } 5309 5310 /* 5311 * Errors here aren't a big deal, it just means we leave orphan items in 5312 * the tree. They will be cleaned up on the next mount. If the inode 5313 * number gets reused, cleanup deletes the orphan item without doing 5314 * anything, and unlink reuses the existing orphan item. 5315 * 5316 * If it turns out that we are dropping too many of these, we might want 5317 * to add a mechanism for retrying these after a commit. 5318 */ 5319 trans = evict_refill_and_join(root, rsv); 5320 if (!IS_ERR(trans)) { 5321 trans->block_rsv = rsv; 5322 btrfs_orphan_del(trans, BTRFS_I(inode)); 5323 trans->block_rsv = &fs_info->trans_block_rsv; 5324 btrfs_end_transaction(trans); 5325 } 5326 5327 out: 5328 btrfs_free_block_rsv(fs_info, rsv); 5329 /* 5330 * If we didn't successfully delete, the orphan item will still be in 5331 * the tree and we'll retry on the next mount. Again, we might also want 5332 * to retry these periodically in the future. 5333 */ 5334 btrfs_remove_delayed_node(BTRFS_I(inode)); 5335 fsverity_cleanup_inode(inode); 5336 clear_inode(inode); 5337 } 5338 5339 /* 5340 * Return the key found in the dir entry in the location pointer, fill @type 5341 * with BTRFS_FT_*, and return 0. 5342 * 5343 * If no dir entries were found, returns -ENOENT. 5344 * If found a corrupted location in dir entry, returns -EUCLEAN. 5345 */ 5346 static int btrfs_inode_by_name(struct btrfs_inode *dir, struct dentry *dentry, 5347 struct btrfs_key *location, u8 *type) 5348 { 5349 struct btrfs_dir_item *di; 5350 struct btrfs_path *path; 5351 struct btrfs_root *root = dir->root; 5352 int ret = 0; 5353 struct fscrypt_name fname; 5354 5355 path = btrfs_alloc_path(); 5356 if (!path) 5357 return -ENOMEM; 5358 5359 ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 1, &fname); 5360 if (ret < 0) 5361 goto out; 5362 /* 5363 * fscrypt_setup_filename() should never return a positive value, but 5364 * gcc on sparc/parisc thinks it can, so assert that doesn't happen. 5365 */ 5366 ASSERT(ret == 0); 5367 5368 /* This needs to handle no-key deletions later on */ 5369 5370 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), 5371 &fname.disk_name, 0); 5372 if (IS_ERR_OR_NULL(di)) { 5373 ret = di ? PTR_ERR(di) : -ENOENT; 5374 goto out; 5375 } 5376 5377 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location); 5378 if (location->type != BTRFS_INODE_ITEM_KEY && 5379 location->type != BTRFS_ROOT_ITEM_KEY) { 5380 ret = -EUCLEAN; 5381 btrfs_warn(root->fs_info, 5382 "%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))", 5383 __func__, fname.disk_name.name, btrfs_ino(dir), 5384 location->objectid, location->type, location->offset); 5385 } 5386 if (!ret) 5387 *type = btrfs_dir_ftype(path->nodes[0], di); 5388 out: 5389 fscrypt_free_filename(&fname); 5390 btrfs_free_path(path); 5391 return ret; 5392 } 5393 5394 /* 5395 * when we hit a tree root in a directory, the btrfs part of the inode 5396 * needs to be changed to reflect the root directory of the tree root. This 5397 * is kind of like crossing a mount point. 5398 */ 5399 static int fixup_tree_root_location(struct btrfs_fs_info *fs_info, 5400 struct btrfs_inode *dir, 5401 struct dentry *dentry, 5402 struct btrfs_key *location, 5403 struct btrfs_root **sub_root) 5404 { 5405 struct btrfs_path *path; 5406 struct btrfs_root *new_root; 5407 struct btrfs_root_ref *ref; 5408 struct extent_buffer *leaf; 5409 struct btrfs_key key; 5410 int ret; 5411 int err = 0; 5412 struct fscrypt_name fname; 5413 5414 ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 0, &fname); 5415 if (ret) 5416 return ret; 5417 5418 path = btrfs_alloc_path(); 5419 if (!path) { 5420 err = -ENOMEM; 5421 goto out; 5422 } 5423 5424 err = -ENOENT; 5425 key.objectid = dir->root->root_key.objectid; 5426 key.type = BTRFS_ROOT_REF_KEY; 5427 key.offset = location->objectid; 5428 5429 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 5430 if (ret) { 5431 if (ret < 0) 5432 err = ret; 5433 goto out; 5434 } 5435 5436 leaf = path->nodes[0]; 5437 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); 5438 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) || 5439 btrfs_root_ref_name_len(leaf, ref) != fname.disk_name.len) 5440 goto out; 5441 5442 ret = memcmp_extent_buffer(leaf, fname.disk_name.name, 5443 (unsigned long)(ref + 1), fname.disk_name.len); 5444 if (ret) 5445 goto out; 5446 5447 btrfs_release_path(path); 5448 5449 new_root = btrfs_get_fs_root(fs_info, location->objectid, true); 5450 if (IS_ERR(new_root)) { 5451 err = PTR_ERR(new_root); 5452 goto out; 5453 } 5454 5455 *sub_root = new_root; 5456 location->objectid = btrfs_root_dirid(&new_root->root_item); 5457 location->type = BTRFS_INODE_ITEM_KEY; 5458 location->offset = 0; 5459 err = 0; 5460 out: 5461 btrfs_free_path(path); 5462 fscrypt_free_filename(&fname); 5463 return err; 5464 } 5465 5466 static void inode_tree_add(struct btrfs_inode *inode) 5467 { 5468 struct btrfs_root *root = inode->root; 5469 struct btrfs_inode *entry; 5470 struct rb_node **p; 5471 struct rb_node *parent; 5472 struct rb_node *new = &inode->rb_node; 5473 u64 ino = btrfs_ino(inode); 5474 5475 if (inode_unhashed(&inode->vfs_inode)) 5476 return; 5477 parent = NULL; 5478 spin_lock(&root->inode_lock); 5479 p = &root->inode_tree.rb_node; 5480 while (*p) { 5481 parent = *p; 5482 entry = rb_entry(parent, struct btrfs_inode, rb_node); 5483 5484 if (ino < btrfs_ino(entry)) 5485 p = &parent->rb_left; 5486 else if (ino > btrfs_ino(entry)) 5487 p = &parent->rb_right; 5488 else { 5489 WARN_ON(!(entry->vfs_inode.i_state & 5490 (I_WILL_FREE | I_FREEING))); 5491 rb_replace_node(parent, new, &root->inode_tree); 5492 RB_CLEAR_NODE(parent); 5493 spin_unlock(&root->inode_lock); 5494 return; 5495 } 5496 } 5497 rb_link_node(new, parent, p); 5498 rb_insert_color(new, &root->inode_tree); 5499 spin_unlock(&root->inode_lock); 5500 } 5501 5502 static void inode_tree_del(struct btrfs_inode *inode) 5503 { 5504 struct btrfs_root *root = inode->root; 5505 int empty = 0; 5506 5507 spin_lock(&root->inode_lock); 5508 if (!RB_EMPTY_NODE(&inode->rb_node)) { 5509 rb_erase(&inode->rb_node, &root->inode_tree); 5510 RB_CLEAR_NODE(&inode->rb_node); 5511 empty = RB_EMPTY_ROOT(&root->inode_tree); 5512 } 5513 spin_unlock(&root->inode_lock); 5514 5515 if (empty && btrfs_root_refs(&root->root_item) == 0) { 5516 spin_lock(&root->inode_lock); 5517 empty = RB_EMPTY_ROOT(&root->inode_tree); 5518 spin_unlock(&root->inode_lock); 5519 if (empty) 5520 btrfs_add_dead_root(root); 5521 } 5522 } 5523 5524 5525 static int btrfs_init_locked_inode(struct inode *inode, void *p) 5526 { 5527 struct btrfs_iget_args *args = p; 5528 5529 inode->i_ino = args->ino; 5530 BTRFS_I(inode)->location.objectid = args->ino; 5531 BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY; 5532 BTRFS_I(inode)->location.offset = 0; 5533 BTRFS_I(inode)->root = btrfs_grab_root(args->root); 5534 BUG_ON(args->root && !BTRFS_I(inode)->root); 5535 5536 if (args->root && args->root == args->root->fs_info->tree_root && 5537 args->ino != BTRFS_BTREE_INODE_OBJECTID) 5538 set_bit(BTRFS_INODE_FREE_SPACE_INODE, 5539 &BTRFS_I(inode)->runtime_flags); 5540 return 0; 5541 } 5542 5543 static int btrfs_find_actor(struct inode *inode, void *opaque) 5544 { 5545 struct btrfs_iget_args *args = opaque; 5546 5547 return args->ino == BTRFS_I(inode)->location.objectid && 5548 args->root == BTRFS_I(inode)->root; 5549 } 5550 5551 static struct inode *btrfs_iget_locked(struct super_block *s, u64 ino, 5552 struct btrfs_root *root) 5553 { 5554 struct inode *inode; 5555 struct btrfs_iget_args args; 5556 unsigned long hashval = btrfs_inode_hash(ino, root); 5557 5558 args.ino = ino; 5559 args.root = root; 5560 5561 inode = iget5_locked(s, hashval, btrfs_find_actor, 5562 btrfs_init_locked_inode, 5563 (void *)&args); 5564 return inode; 5565 } 5566 5567 /* 5568 * Get an inode object given its inode number and corresponding root. 5569 * Path can be preallocated to prevent recursing back to iget through 5570 * allocator. NULL is also valid but may require an additional allocation 5571 * later. 5572 */ 5573 struct inode *btrfs_iget_path(struct super_block *s, u64 ino, 5574 struct btrfs_root *root, struct btrfs_path *path) 5575 { 5576 struct inode *inode; 5577 5578 inode = btrfs_iget_locked(s, ino, root); 5579 if (!inode) 5580 return ERR_PTR(-ENOMEM); 5581 5582 if (inode->i_state & I_NEW) { 5583 int ret; 5584 5585 ret = btrfs_read_locked_inode(inode, path); 5586 if (!ret) { 5587 inode_tree_add(BTRFS_I(inode)); 5588 unlock_new_inode(inode); 5589 } else { 5590 iget_failed(inode); 5591 /* 5592 * ret > 0 can come from btrfs_search_slot called by 5593 * btrfs_read_locked_inode, this means the inode item 5594 * was not found. 5595 */ 5596 if (ret > 0) 5597 ret = -ENOENT; 5598 inode = ERR_PTR(ret); 5599 } 5600 } 5601 5602 return inode; 5603 } 5604 5605 struct inode *btrfs_iget(struct super_block *s, u64 ino, struct btrfs_root *root) 5606 { 5607 return btrfs_iget_path(s, ino, root, NULL); 5608 } 5609 5610 static struct inode *new_simple_dir(struct inode *dir, 5611 struct btrfs_key *key, 5612 struct btrfs_root *root) 5613 { 5614 struct inode *inode = new_inode(dir->i_sb); 5615 5616 if (!inode) 5617 return ERR_PTR(-ENOMEM); 5618 5619 BTRFS_I(inode)->root = btrfs_grab_root(root); 5620 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key)); 5621 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags); 5622 5623 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID; 5624 /* 5625 * We only need lookup, the rest is read-only and there's no inode 5626 * associated with the dentry 5627 */ 5628 inode->i_op = &simple_dir_inode_operations; 5629 inode->i_opflags &= ~IOP_XATTR; 5630 inode->i_fop = &simple_dir_operations; 5631 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO; 5632 inode->i_mtime = inode_set_ctime_current(inode); 5633 inode->i_atime = dir->i_atime; 5634 BTRFS_I(inode)->i_otime = inode->i_mtime; 5635 inode->i_uid = dir->i_uid; 5636 inode->i_gid = dir->i_gid; 5637 5638 return inode; 5639 } 5640 5641 static_assert(BTRFS_FT_UNKNOWN == FT_UNKNOWN); 5642 static_assert(BTRFS_FT_REG_FILE == FT_REG_FILE); 5643 static_assert(BTRFS_FT_DIR == FT_DIR); 5644 static_assert(BTRFS_FT_CHRDEV == FT_CHRDEV); 5645 static_assert(BTRFS_FT_BLKDEV == FT_BLKDEV); 5646 static_assert(BTRFS_FT_FIFO == FT_FIFO); 5647 static_assert(BTRFS_FT_SOCK == FT_SOCK); 5648 static_assert(BTRFS_FT_SYMLINK == FT_SYMLINK); 5649 5650 static inline u8 btrfs_inode_type(struct inode *inode) 5651 { 5652 return fs_umode_to_ftype(inode->i_mode); 5653 } 5654 5655 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry) 5656 { 5657 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 5658 struct inode *inode; 5659 struct btrfs_root *root = BTRFS_I(dir)->root; 5660 struct btrfs_root *sub_root = root; 5661 struct btrfs_key location; 5662 u8 di_type = 0; 5663 int ret = 0; 5664 5665 if (dentry->d_name.len > BTRFS_NAME_LEN) 5666 return ERR_PTR(-ENAMETOOLONG); 5667 5668 ret = btrfs_inode_by_name(BTRFS_I(dir), dentry, &location, &di_type); 5669 if (ret < 0) 5670 return ERR_PTR(ret); 5671 5672 if (location.type == BTRFS_INODE_ITEM_KEY) { 5673 inode = btrfs_iget(dir->i_sb, location.objectid, root); 5674 if (IS_ERR(inode)) 5675 return inode; 5676 5677 /* Do extra check against inode mode with di_type */ 5678 if (btrfs_inode_type(inode) != di_type) { 5679 btrfs_crit(fs_info, 5680 "inode mode mismatch with dir: inode mode=0%o btrfs type=%u dir type=%u", 5681 inode->i_mode, btrfs_inode_type(inode), 5682 di_type); 5683 iput(inode); 5684 return ERR_PTR(-EUCLEAN); 5685 } 5686 return inode; 5687 } 5688 5689 ret = fixup_tree_root_location(fs_info, BTRFS_I(dir), dentry, 5690 &location, &sub_root); 5691 if (ret < 0) { 5692 if (ret != -ENOENT) 5693 inode = ERR_PTR(ret); 5694 else 5695 inode = new_simple_dir(dir, &location, root); 5696 } else { 5697 inode = btrfs_iget(dir->i_sb, location.objectid, sub_root); 5698 btrfs_put_root(sub_root); 5699 5700 if (IS_ERR(inode)) 5701 return inode; 5702 5703 down_read(&fs_info->cleanup_work_sem); 5704 if (!sb_rdonly(inode->i_sb)) 5705 ret = btrfs_orphan_cleanup(sub_root); 5706 up_read(&fs_info->cleanup_work_sem); 5707 if (ret) { 5708 iput(inode); 5709 inode = ERR_PTR(ret); 5710 } 5711 } 5712 5713 return inode; 5714 } 5715 5716 static int btrfs_dentry_delete(const struct dentry *dentry) 5717 { 5718 struct btrfs_root *root; 5719 struct inode *inode = d_inode(dentry); 5720 5721 if (!inode && !IS_ROOT(dentry)) 5722 inode = d_inode(dentry->d_parent); 5723 5724 if (inode) { 5725 root = BTRFS_I(inode)->root; 5726 if (btrfs_root_refs(&root->root_item) == 0) 5727 return 1; 5728 5729 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 5730 return 1; 5731 } 5732 return 0; 5733 } 5734 5735 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry, 5736 unsigned int flags) 5737 { 5738 struct inode *inode = btrfs_lookup_dentry(dir, dentry); 5739 5740 if (inode == ERR_PTR(-ENOENT)) 5741 inode = NULL; 5742 return d_splice_alias(inode, dentry); 5743 } 5744 5745 /* 5746 * Find the highest existing sequence number in a directory and then set the 5747 * in-memory index_cnt variable to the first free sequence number. 5748 */ 5749 static int btrfs_set_inode_index_count(struct btrfs_inode *inode) 5750 { 5751 struct btrfs_root *root = inode->root; 5752 struct btrfs_key key, found_key; 5753 struct btrfs_path *path; 5754 struct extent_buffer *leaf; 5755 int ret; 5756 5757 key.objectid = btrfs_ino(inode); 5758 key.type = BTRFS_DIR_INDEX_KEY; 5759 key.offset = (u64)-1; 5760 5761 path = btrfs_alloc_path(); 5762 if (!path) 5763 return -ENOMEM; 5764 5765 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5766 if (ret < 0) 5767 goto out; 5768 /* FIXME: we should be able to handle this */ 5769 if (ret == 0) 5770 goto out; 5771 ret = 0; 5772 5773 if (path->slots[0] == 0) { 5774 inode->index_cnt = BTRFS_DIR_START_INDEX; 5775 goto out; 5776 } 5777 5778 path->slots[0]--; 5779 5780 leaf = path->nodes[0]; 5781 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 5782 5783 if (found_key.objectid != btrfs_ino(inode) || 5784 found_key.type != BTRFS_DIR_INDEX_KEY) { 5785 inode->index_cnt = BTRFS_DIR_START_INDEX; 5786 goto out; 5787 } 5788 5789 inode->index_cnt = found_key.offset + 1; 5790 out: 5791 btrfs_free_path(path); 5792 return ret; 5793 } 5794 5795 static int btrfs_get_dir_last_index(struct btrfs_inode *dir, u64 *index) 5796 { 5797 int ret = 0; 5798 5799 btrfs_inode_lock(dir, 0); 5800 if (dir->index_cnt == (u64)-1) { 5801 ret = btrfs_inode_delayed_dir_index_count(dir); 5802 if (ret) { 5803 ret = btrfs_set_inode_index_count(dir); 5804 if (ret) 5805 goto out; 5806 } 5807 } 5808 5809 /* index_cnt is the index number of next new entry, so decrement it. */ 5810 *index = dir->index_cnt - 1; 5811 out: 5812 btrfs_inode_unlock(dir, 0); 5813 5814 return ret; 5815 } 5816 5817 /* 5818 * All this infrastructure exists because dir_emit can fault, and we are holding 5819 * the tree lock when doing readdir. For now just allocate a buffer and copy 5820 * our information into that, and then dir_emit from the buffer. This is 5821 * similar to what NFS does, only we don't keep the buffer around in pagecache 5822 * because I'm afraid I'll mess that up. Long term we need to make filldir do 5823 * copy_to_user_inatomic so we don't have to worry about page faulting under the 5824 * tree lock. 5825 */ 5826 static int btrfs_opendir(struct inode *inode, struct file *file) 5827 { 5828 struct btrfs_file_private *private; 5829 u64 last_index; 5830 int ret; 5831 5832 ret = btrfs_get_dir_last_index(BTRFS_I(inode), &last_index); 5833 if (ret) 5834 return ret; 5835 5836 private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL); 5837 if (!private) 5838 return -ENOMEM; 5839 private->last_index = last_index; 5840 private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL); 5841 if (!private->filldir_buf) { 5842 kfree(private); 5843 return -ENOMEM; 5844 } 5845 file->private_data = private; 5846 return 0; 5847 } 5848 5849 static loff_t btrfs_dir_llseek(struct file *file, loff_t offset, int whence) 5850 { 5851 struct btrfs_file_private *private = file->private_data; 5852 int ret; 5853 5854 ret = btrfs_get_dir_last_index(BTRFS_I(file_inode(file)), 5855 &private->last_index); 5856 if (ret) 5857 return ret; 5858 5859 return generic_file_llseek(file, offset, whence); 5860 } 5861 5862 struct dir_entry { 5863 u64 ino; 5864 u64 offset; 5865 unsigned type; 5866 int name_len; 5867 }; 5868 5869 static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx) 5870 { 5871 while (entries--) { 5872 struct dir_entry *entry = addr; 5873 char *name = (char *)(entry + 1); 5874 5875 ctx->pos = get_unaligned(&entry->offset); 5876 if (!dir_emit(ctx, name, get_unaligned(&entry->name_len), 5877 get_unaligned(&entry->ino), 5878 get_unaligned(&entry->type))) 5879 return 1; 5880 addr += sizeof(struct dir_entry) + 5881 get_unaligned(&entry->name_len); 5882 ctx->pos++; 5883 } 5884 return 0; 5885 } 5886 5887 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx) 5888 { 5889 struct inode *inode = file_inode(file); 5890 struct btrfs_root *root = BTRFS_I(inode)->root; 5891 struct btrfs_file_private *private = file->private_data; 5892 struct btrfs_dir_item *di; 5893 struct btrfs_key key; 5894 struct btrfs_key found_key; 5895 struct btrfs_path *path; 5896 void *addr; 5897 LIST_HEAD(ins_list); 5898 LIST_HEAD(del_list); 5899 int ret; 5900 char *name_ptr; 5901 int name_len; 5902 int entries = 0; 5903 int total_len = 0; 5904 bool put = false; 5905 struct btrfs_key location; 5906 5907 if (!dir_emit_dots(file, ctx)) 5908 return 0; 5909 5910 path = btrfs_alloc_path(); 5911 if (!path) 5912 return -ENOMEM; 5913 5914 addr = private->filldir_buf; 5915 path->reada = READA_FORWARD; 5916 5917 put = btrfs_readdir_get_delayed_items(inode, private->last_index, 5918 &ins_list, &del_list); 5919 5920 again: 5921 key.type = BTRFS_DIR_INDEX_KEY; 5922 key.offset = ctx->pos; 5923 key.objectid = btrfs_ino(BTRFS_I(inode)); 5924 5925 btrfs_for_each_slot(root, &key, &found_key, path, ret) { 5926 struct dir_entry *entry; 5927 struct extent_buffer *leaf = path->nodes[0]; 5928 u8 ftype; 5929 5930 if (found_key.objectid != key.objectid) 5931 break; 5932 if (found_key.type != BTRFS_DIR_INDEX_KEY) 5933 break; 5934 if (found_key.offset < ctx->pos) 5935 continue; 5936 if (found_key.offset > private->last_index) 5937 break; 5938 if (btrfs_should_delete_dir_index(&del_list, found_key.offset)) 5939 continue; 5940 di = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dir_item); 5941 name_len = btrfs_dir_name_len(leaf, di); 5942 if ((total_len + sizeof(struct dir_entry) + name_len) >= 5943 PAGE_SIZE) { 5944 btrfs_release_path(path); 5945 ret = btrfs_filldir(private->filldir_buf, entries, ctx); 5946 if (ret) 5947 goto nopos; 5948 addr = private->filldir_buf; 5949 entries = 0; 5950 total_len = 0; 5951 goto again; 5952 } 5953 5954 ftype = btrfs_dir_flags_to_ftype(btrfs_dir_flags(leaf, di)); 5955 entry = addr; 5956 name_ptr = (char *)(entry + 1); 5957 read_extent_buffer(leaf, name_ptr, 5958 (unsigned long)(di + 1), name_len); 5959 put_unaligned(name_len, &entry->name_len); 5960 put_unaligned(fs_ftype_to_dtype(ftype), &entry->type); 5961 btrfs_dir_item_key_to_cpu(leaf, di, &location); 5962 put_unaligned(location.objectid, &entry->ino); 5963 put_unaligned(found_key.offset, &entry->offset); 5964 entries++; 5965 addr += sizeof(struct dir_entry) + name_len; 5966 total_len += sizeof(struct dir_entry) + name_len; 5967 } 5968 /* Catch error encountered during iteration */ 5969 if (ret < 0) 5970 goto err; 5971 5972 btrfs_release_path(path); 5973 5974 ret = btrfs_filldir(private->filldir_buf, entries, ctx); 5975 if (ret) 5976 goto nopos; 5977 5978 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list); 5979 if (ret) 5980 goto nopos; 5981 5982 /* 5983 * Stop new entries from being returned after we return the last 5984 * entry. 5985 * 5986 * New directory entries are assigned a strictly increasing 5987 * offset. This means that new entries created during readdir 5988 * are *guaranteed* to be seen in the future by that readdir. 5989 * This has broken buggy programs which operate on names as 5990 * they're returned by readdir. Until we re-use freed offsets 5991 * we have this hack to stop new entries from being returned 5992 * under the assumption that they'll never reach this huge 5993 * offset. 5994 * 5995 * This is being careful not to overflow 32bit loff_t unless the 5996 * last entry requires it because doing so has broken 32bit apps 5997 * in the past. 5998 */ 5999 if (ctx->pos >= INT_MAX) 6000 ctx->pos = LLONG_MAX; 6001 else 6002 ctx->pos = INT_MAX; 6003 nopos: 6004 ret = 0; 6005 err: 6006 if (put) 6007 btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list); 6008 btrfs_free_path(path); 6009 return ret; 6010 } 6011 6012 /* 6013 * This is somewhat expensive, updating the tree every time the 6014 * inode changes. But, it is most likely to find the inode in cache. 6015 * FIXME, needs more benchmarking...there are no reasons other than performance 6016 * to keep or drop this code. 6017 */ 6018 static int btrfs_dirty_inode(struct btrfs_inode *inode) 6019 { 6020 struct btrfs_root *root = inode->root; 6021 struct btrfs_fs_info *fs_info = root->fs_info; 6022 struct btrfs_trans_handle *trans; 6023 int ret; 6024 6025 if (test_bit(BTRFS_INODE_DUMMY, &inode->runtime_flags)) 6026 return 0; 6027 6028 trans = btrfs_join_transaction(root); 6029 if (IS_ERR(trans)) 6030 return PTR_ERR(trans); 6031 6032 ret = btrfs_update_inode(trans, root, inode); 6033 if (ret && (ret == -ENOSPC || ret == -EDQUOT)) { 6034 /* whoops, lets try again with the full transaction */ 6035 btrfs_end_transaction(trans); 6036 trans = btrfs_start_transaction(root, 1); 6037 if (IS_ERR(trans)) 6038 return PTR_ERR(trans); 6039 6040 ret = btrfs_update_inode(trans, root, inode); 6041 } 6042 btrfs_end_transaction(trans); 6043 if (inode->delayed_node) 6044 btrfs_balance_delayed_items(fs_info); 6045 6046 return ret; 6047 } 6048 6049 /* 6050 * This is a copy of file_update_time. We need this so we can return error on 6051 * ENOSPC for updating the inode in the case of file write and mmap writes. 6052 */ 6053 static int btrfs_update_time(struct inode *inode, int flags) 6054 { 6055 struct btrfs_root *root = BTRFS_I(inode)->root; 6056 bool dirty = flags & ~S_VERSION; 6057 6058 if (btrfs_root_readonly(root)) 6059 return -EROFS; 6060 6061 dirty = inode_update_timestamps(inode, flags); 6062 return dirty ? btrfs_dirty_inode(BTRFS_I(inode)) : 0; 6063 } 6064 6065 /* 6066 * helper to find a free sequence number in a given directory. This current 6067 * code is very simple, later versions will do smarter things in the btree 6068 */ 6069 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index) 6070 { 6071 int ret = 0; 6072 6073 if (dir->index_cnt == (u64)-1) { 6074 ret = btrfs_inode_delayed_dir_index_count(dir); 6075 if (ret) { 6076 ret = btrfs_set_inode_index_count(dir); 6077 if (ret) 6078 return ret; 6079 } 6080 } 6081 6082 *index = dir->index_cnt; 6083 dir->index_cnt++; 6084 6085 return ret; 6086 } 6087 6088 static int btrfs_insert_inode_locked(struct inode *inode) 6089 { 6090 struct btrfs_iget_args args; 6091 6092 args.ino = BTRFS_I(inode)->location.objectid; 6093 args.root = BTRFS_I(inode)->root; 6094 6095 return insert_inode_locked4(inode, 6096 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root), 6097 btrfs_find_actor, &args); 6098 } 6099 6100 int btrfs_new_inode_prepare(struct btrfs_new_inode_args *args, 6101 unsigned int *trans_num_items) 6102 { 6103 struct inode *dir = args->dir; 6104 struct inode *inode = args->inode; 6105 int ret; 6106 6107 if (!args->orphan) { 6108 ret = fscrypt_setup_filename(dir, &args->dentry->d_name, 0, 6109 &args->fname); 6110 if (ret) 6111 return ret; 6112 } 6113 6114 ret = posix_acl_create(dir, &inode->i_mode, &args->default_acl, &args->acl); 6115 if (ret) { 6116 fscrypt_free_filename(&args->fname); 6117 return ret; 6118 } 6119 6120 /* 1 to add inode item */ 6121 *trans_num_items = 1; 6122 /* 1 to add compression property */ 6123 if (BTRFS_I(dir)->prop_compress) 6124 (*trans_num_items)++; 6125 /* 1 to add default ACL xattr */ 6126 if (args->default_acl) 6127 (*trans_num_items)++; 6128 /* 1 to add access ACL xattr */ 6129 if (args->acl) 6130 (*trans_num_items)++; 6131 #ifdef CONFIG_SECURITY 6132 /* 1 to add LSM xattr */ 6133 if (dir->i_security) 6134 (*trans_num_items)++; 6135 #endif 6136 if (args->orphan) { 6137 /* 1 to add orphan item */ 6138 (*trans_num_items)++; 6139 } else { 6140 /* 6141 * 1 to add dir item 6142 * 1 to add dir index 6143 * 1 to update parent inode item 6144 * 6145 * No need for 1 unit for the inode ref item because it is 6146 * inserted in a batch together with the inode item at 6147 * btrfs_create_new_inode(). 6148 */ 6149 *trans_num_items += 3; 6150 } 6151 return 0; 6152 } 6153 6154 void btrfs_new_inode_args_destroy(struct btrfs_new_inode_args *args) 6155 { 6156 posix_acl_release(args->acl); 6157 posix_acl_release(args->default_acl); 6158 fscrypt_free_filename(&args->fname); 6159 } 6160 6161 /* 6162 * Inherit flags from the parent inode. 6163 * 6164 * Currently only the compression flags and the cow flags are inherited. 6165 */ 6166 static void btrfs_inherit_iflags(struct btrfs_inode *inode, struct btrfs_inode *dir) 6167 { 6168 unsigned int flags; 6169 6170 flags = dir->flags; 6171 6172 if (flags & BTRFS_INODE_NOCOMPRESS) { 6173 inode->flags &= ~BTRFS_INODE_COMPRESS; 6174 inode->flags |= BTRFS_INODE_NOCOMPRESS; 6175 } else if (flags & BTRFS_INODE_COMPRESS) { 6176 inode->flags &= ~BTRFS_INODE_NOCOMPRESS; 6177 inode->flags |= BTRFS_INODE_COMPRESS; 6178 } 6179 6180 if (flags & BTRFS_INODE_NODATACOW) { 6181 inode->flags |= BTRFS_INODE_NODATACOW; 6182 if (S_ISREG(inode->vfs_inode.i_mode)) 6183 inode->flags |= BTRFS_INODE_NODATASUM; 6184 } 6185 6186 btrfs_sync_inode_flags_to_i_flags(&inode->vfs_inode); 6187 } 6188 6189 int btrfs_create_new_inode(struct btrfs_trans_handle *trans, 6190 struct btrfs_new_inode_args *args) 6191 { 6192 struct inode *dir = args->dir; 6193 struct inode *inode = args->inode; 6194 const struct fscrypt_str *name = args->orphan ? NULL : &args->fname.disk_name; 6195 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 6196 struct btrfs_root *root; 6197 struct btrfs_inode_item *inode_item; 6198 struct btrfs_key *location; 6199 struct btrfs_path *path; 6200 u64 objectid; 6201 struct btrfs_inode_ref *ref; 6202 struct btrfs_key key[2]; 6203 u32 sizes[2]; 6204 struct btrfs_item_batch batch; 6205 unsigned long ptr; 6206 int ret; 6207 6208 path = btrfs_alloc_path(); 6209 if (!path) 6210 return -ENOMEM; 6211 6212 if (!args->subvol) 6213 BTRFS_I(inode)->root = btrfs_grab_root(BTRFS_I(dir)->root); 6214 root = BTRFS_I(inode)->root; 6215 6216 ret = btrfs_get_free_objectid(root, &objectid); 6217 if (ret) 6218 goto out; 6219 inode->i_ino = objectid; 6220 6221 if (args->orphan) { 6222 /* 6223 * O_TMPFILE, set link count to 0, so that after this point, we 6224 * fill in an inode item with the correct link count. 6225 */ 6226 set_nlink(inode, 0); 6227 } else { 6228 trace_btrfs_inode_request(dir); 6229 6230 ret = btrfs_set_inode_index(BTRFS_I(dir), &BTRFS_I(inode)->dir_index); 6231 if (ret) 6232 goto out; 6233 } 6234 /* index_cnt is ignored for everything but a dir. */ 6235 BTRFS_I(inode)->index_cnt = BTRFS_DIR_START_INDEX; 6236 BTRFS_I(inode)->generation = trans->transid; 6237 inode->i_generation = BTRFS_I(inode)->generation; 6238 6239 /* 6240 * Subvolumes don't inherit flags from their parent directory. 6241 * Originally this was probably by accident, but we probably can't 6242 * change it now without compatibility issues. 6243 */ 6244 if (!args->subvol) 6245 btrfs_inherit_iflags(BTRFS_I(inode), BTRFS_I(dir)); 6246 6247 if (S_ISREG(inode->i_mode)) { 6248 if (btrfs_test_opt(fs_info, NODATASUM)) 6249 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; 6250 if (btrfs_test_opt(fs_info, NODATACOW)) 6251 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW | 6252 BTRFS_INODE_NODATASUM; 6253 } 6254 6255 location = &BTRFS_I(inode)->location; 6256 location->objectid = objectid; 6257 location->offset = 0; 6258 location->type = BTRFS_INODE_ITEM_KEY; 6259 6260 ret = btrfs_insert_inode_locked(inode); 6261 if (ret < 0) { 6262 if (!args->orphan) 6263 BTRFS_I(dir)->index_cnt--; 6264 goto out; 6265 } 6266 6267 /* 6268 * We could have gotten an inode number from somebody who was fsynced 6269 * and then removed in this same transaction, so let's just set full 6270 * sync since it will be a full sync anyway and this will blow away the 6271 * old info in the log. 6272 */ 6273 btrfs_set_inode_full_sync(BTRFS_I(inode)); 6274 6275 key[0].objectid = objectid; 6276 key[0].type = BTRFS_INODE_ITEM_KEY; 6277 key[0].offset = 0; 6278 6279 sizes[0] = sizeof(struct btrfs_inode_item); 6280 6281 if (!args->orphan) { 6282 /* 6283 * Start new inodes with an inode_ref. This is slightly more 6284 * efficient for small numbers of hard links since they will 6285 * be packed into one item. Extended refs will kick in if we 6286 * add more hard links than can fit in the ref item. 6287 */ 6288 key[1].objectid = objectid; 6289 key[1].type = BTRFS_INODE_REF_KEY; 6290 if (args->subvol) { 6291 key[1].offset = objectid; 6292 sizes[1] = 2 + sizeof(*ref); 6293 } else { 6294 key[1].offset = btrfs_ino(BTRFS_I(dir)); 6295 sizes[1] = name->len + sizeof(*ref); 6296 } 6297 } 6298 6299 batch.keys = &key[0]; 6300 batch.data_sizes = &sizes[0]; 6301 batch.total_data_size = sizes[0] + (args->orphan ? 0 : sizes[1]); 6302 batch.nr = args->orphan ? 1 : 2; 6303 ret = btrfs_insert_empty_items(trans, root, path, &batch); 6304 if (ret != 0) { 6305 btrfs_abort_transaction(trans, ret); 6306 goto discard; 6307 } 6308 6309 inode->i_mtime = inode_set_ctime_current(inode); 6310 inode->i_atime = inode->i_mtime; 6311 BTRFS_I(inode)->i_otime = inode->i_mtime; 6312 6313 /* 6314 * We're going to fill the inode item now, so at this point the inode 6315 * must be fully initialized. 6316 */ 6317 6318 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0], 6319 struct btrfs_inode_item); 6320 memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item, 6321 sizeof(*inode_item)); 6322 fill_inode_item(trans, path->nodes[0], inode_item, inode); 6323 6324 if (!args->orphan) { 6325 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1, 6326 struct btrfs_inode_ref); 6327 ptr = (unsigned long)(ref + 1); 6328 if (args->subvol) { 6329 btrfs_set_inode_ref_name_len(path->nodes[0], ref, 2); 6330 btrfs_set_inode_ref_index(path->nodes[0], ref, 0); 6331 write_extent_buffer(path->nodes[0], "..", ptr, 2); 6332 } else { 6333 btrfs_set_inode_ref_name_len(path->nodes[0], ref, 6334 name->len); 6335 btrfs_set_inode_ref_index(path->nodes[0], ref, 6336 BTRFS_I(inode)->dir_index); 6337 write_extent_buffer(path->nodes[0], name->name, ptr, 6338 name->len); 6339 } 6340 } 6341 6342 btrfs_mark_buffer_dirty(trans, path->nodes[0]); 6343 /* 6344 * We don't need the path anymore, plus inheriting properties, adding 6345 * ACLs, security xattrs, orphan item or adding the link, will result in 6346 * allocating yet another path. So just free our path. 6347 */ 6348 btrfs_free_path(path); 6349 path = NULL; 6350 6351 if (args->subvol) { 6352 struct inode *parent; 6353 6354 /* 6355 * Subvolumes inherit properties from their parent subvolume, 6356 * not the directory they were created in. 6357 */ 6358 parent = btrfs_iget(fs_info->sb, BTRFS_FIRST_FREE_OBJECTID, 6359 BTRFS_I(dir)->root); 6360 if (IS_ERR(parent)) { 6361 ret = PTR_ERR(parent); 6362 } else { 6363 ret = btrfs_inode_inherit_props(trans, inode, parent); 6364 iput(parent); 6365 } 6366 } else { 6367 ret = btrfs_inode_inherit_props(trans, inode, dir); 6368 } 6369 if (ret) { 6370 btrfs_err(fs_info, 6371 "error inheriting props for ino %llu (root %llu): %d", 6372 btrfs_ino(BTRFS_I(inode)), root->root_key.objectid, 6373 ret); 6374 } 6375 6376 /* 6377 * Subvolumes don't inherit ACLs or get passed to the LSM. This is 6378 * probably a bug. 6379 */ 6380 if (!args->subvol) { 6381 ret = btrfs_init_inode_security(trans, args); 6382 if (ret) { 6383 btrfs_abort_transaction(trans, ret); 6384 goto discard; 6385 } 6386 } 6387 6388 inode_tree_add(BTRFS_I(inode)); 6389 6390 trace_btrfs_inode_new(inode); 6391 btrfs_set_inode_last_trans(trans, BTRFS_I(inode)); 6392 6393 btrfs_update_root_times(trans, root); 6394 6395 if (args->orphan) { 6396 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 6397 } else { 6398 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name, 6399 0, BTRFS_I(inode)->dir_index); 6400 } 6401 if (ret) { 6402 btrfs_abort_transaction(trans, ret); 6403 goto discard; 6404 } 6405 6406 return 0; 6407 6408 discard: 6409 /* 6410 * discard_new_inode() calls iput(), but the caller owns the reference 6411 * to the inode. 6412 */ 6413 ihold(inode); 6414 discard_new_inode(inode); 6415 out: 6416 btrfs_free_path(path); 6417 return ret; 6418 } 6419 6420 /* 6421 * utility function to add 'inode' into 'parent_inode' with 6422 * a give name and a given sequence number. 6423 * if 'add_backref' is true, also insert a backref from the 6424 * inode to the parent directory. 6425 */ 6426 int btrfs_add_link(struct btrfs_trans_handle *trans, 6427 struct btrfs_inode *parent_inode, struct btrfs_inode *inode, 6428 const struct fscrypt_str *name, int add_backref, u64 index) 6429 { 6430 int ret = 0; 6431 struct btrfs_key key; 6432 struct btrfs_root *root = parent_inode->root; 6433 u64 ino = btrfs_ino(inode); 6434 u64 parent_ino = btrfs_ino(parent_inode); 6435 6436 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6437 memcpy(&key, &inode->root->root_key, sizeof(key)); 6438 } else { 6439 key.objectid = ino; 6440 key.type = BTRFS_INODE_ITEM_KEY; 6441 key.offset = 0; 6442 } 6443 6444 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6445 ret = btrfs_add_root_ref(trans, key.objectid, 6446 root->root_key.objectid, parent_ino, 6447 index, name); 6448 } else if (add_backref) { 6449 ret = btrfs_insert_inode_ref(trans, root, name, 6450 ino, parent_ino, index); 6451 } 6452 6453 /* Nothing to clean up yet */ 6454 if (ret) 6455 return ret; 6456 6457 ret = btrfs_insert_dir_item(trans, name, parent_inode, &key, 6458 btrfs_inode_type(&inode->vfs_inode), index); 6459 if (ret == -EEXIST || ret == -EOVERFLOW) 6460 goto fail_dir_item; 6461 else if (ret) { 6462 btrfs_abort_transaction(trans, ret); 6463 return ret; 6464 } 6465 6466 btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size + 6467 name->len * 2); 6468 inode_inc_iversion(&parent_inode->vfs_inode); 6469 /* 6470 * If we are replaying a log tree, we do not want to update the mtime 6471 * and ctime of the parent directory with the current time, since the 6472 * log replay procedure is responsible for setting them to their correct 6473 * values (the ones it had when the fsync was done). 6474 */ 6475 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &root->fs_info->flags)) 6476 parent_inode->vfs_inode.i_mtime = 6477 inode_set_ctime_current(&parent_inode->vfs_inode); 6478 6479 ret = btrfs_update_inode(trans, root, parent_inode); 6480 if (ret) 6481 btrfs_abort_transaction(trans, ret); 6482 return ret; 6483 6484 fail_dir_item: 6485 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6486 u64 local_index; 6487 int err; 6488 err = btrfs_del_root_ref(trans, key.objectid, 6489 root->root_key.objectid, parent_ino, 6490 &local_index, name); 6491 if (err) 6492 btrfs_abort_transaction(trans, err); 6493 } else if (add_backref) { 6494 u64 local_index; 6495 int err; 6496 6497 err = btrfs_del_inode_ref(trans, root, name, ino, parent_ino, 6498 &local_index); 6499 if (err) 6500 btrfs_abort_transaction(trans, err); 6501 } 6502 6503 /* Return the original error code */ 6504 return ret; 6505 } 6506 6507 static int btrfs_create_common(struct inode *dir, struct dentry *dentry, 6508 struct inode *inode) 6509 { 6510 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 6511 struct btrfs_root *root = BTRFS_I(dir)->root; 6512 struct btrfs_new_inode_args new_inode_args = { 6513 .dir = dir, 6514 .dentry = dentry, 6515 .inode = inode, 6516 }; 6517 unsigned int trans_num_items; 6518 struct btrfs_trans_handle *trans; 6519 int err; 6520 6521 err = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items); 6522 if (err) 6523 goto out_inode; 6524 6525 trans = btrfs_start_transaction(root, trans_num_items); 6526 if (IS_ERR(trans)) { 6527 err = PTR_ERR(trans); 6528 goto out_new_inode_args; 6529 } 6530 6531 err = btrfs_create_new_inode(trans, &new_inode_args); 6532 if (!err) 6533 d_instantiate_new(dentry, inode); 6534 6535 btrfs_end_transaction(trans); 6536 btrfs_btree_balance_dirty(fs_info); 6537 out_new_inode_args: 6538 btrfs_new_inode_args_destroy(&new_inode_args); 6539 out_inode: 6540 if (err) 6541 iput(inode); 6542 return err; 6543 } 6544 6545 static int btrfs_mknod(struct mnt_idmap *idmap, struct inode *dir, 6546 struct dentry *dentry, umode_t mode, dev_t rdev) 6547 { 6548 struct inode *inode; 6549 6550 inode = new_inode(dir->i_sb); 6551 if (!inode) 6552 return -ENOMEM; 6553 inode_init_owner(idmap, inode, dir, mode); 6554 inode->i_op = &btrfs_special_inode_operations; 6555 init_special_inode(inode, inode->i_mode, rdev); 6556 return btrfs_create_common(dir, dentry, inode); 6557 } 6558 6559 static int btrfs_create(struct mnt_idmap *idmap, struct inode *dir, 6560 struct dentry *dentry, umode_t mode, bool excl) 6561 { 6562 struct inode *inode; 6563 6564 inode = new_inode(dir->i_sb); 6565 if (!inode) 6566 return -ENOMEM; 6567 inode_init_owner(idmap, inode, dir, mode); 6568 inode->i_fop = &btrfs_file_operations; 6569 inode->i_op = &btrfs_file_inode_operations; 6570 inode->i_mapping->a_ops = &btrfs_aops; 6571 return btrfs_create_common(dir, dentry, inode); 6572 } 6573 6574 static int btrfs_link(struct dentry *old_dentry, struct inode *dir, 6575 struct dentry *dentry) 6576 { 6577 struct btrfs_trans_handle *trans = NULL; 6578 struct btrfs_root *root = BTRFS_I(dir)->root; 6579 struct inode *inode = d_inode(old_dentry); 6580 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 6581 struct fscrypt_name fname; 6582 u64 index; 6583 int err; 6584 int drop_inode = 0; 6585 6586 /* do not allow sys_link's with other subvols of the same device */ 6587 if (root->root_key.objectid != BTRFS_I(inode)->root->root_key.objectid) 6588 return -EXDEV; 6589 6590 if (inode->i_nlink >= BTRFS_LINK_MAX) 6591 return -EMLINK; 6592 6593 err = fscrypt_setup_filename(dir, &dentry->d_name, 0, &fname); 6594 if (err) 6595 goto fail; 6596 6597 err = btrfs_set_inode_index(BTRFS_I(dir), &index); 6598 if (err) 6599 goto fail; 6600 6601 /* 6602 * 2 items for inode and inode ref 6603 * 2 items for dir items 6604 * 1 item for parent inode 6605 * 1 item for orphan item deletion if O_TMPFILE 6606 */ 6607 trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6); 6608 if (IS_ERR(trans)) { 6609 err = PTR_ERR(trans); 6610 trans = NULL; 6611 goto fail; 6612 } 6613 6614 /* There are several dir indexes for this inode, clear the cache. */ 6615 BTRFS_I(inode)->dir_index = 0ULL; 6616 inc_nlink(inode); 6617 inode_inc_iversion(inode); 6618 inode_set_ctime_current(inode); 6619 ihold(inode); 6620 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags); 6621 6622 err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), 6623 &fname.disk_name, 1, index); 6624 6625 if (err) { 6626 drop_inode = 1; 6627 } else { 6628 struct dentry *parent = dentry->d_parent; 6629 6630 err = btrfs_update_inode(trans, root, BTRFS_I(inode)); 6631 if (err) 6632 goto fail; 6633 if (inode->i_nlink == 1) { 6634 /* 6635 * If new hard link count is 1, it's a file created 6636 * with open(2) O_TMPFILE flag. 6637 */ 6638 err = btrfs_orphan_del(trans, BTRFS_I(inode)); 6639 if (err) 6640 goto fail; 6641 } 6642 d_instantiate(dentry, inode); 6643 btrfs_log_new_name(trans, old_dentry, NULL, 0, parent); 6644 } 6645 6646 fail: 6647 fscrypt_free_filename(&fname); 6648 if (trans) 6649 btrfs_end_transaction(trans); 6650 if (drop_inode) { 6651 inode_dec_link_count(inode); 6652 iput(inode); 6653 } 6654 btrfs_btree_balance_dirty(fs_info); 6655 return err; 6656 } 6657 6658 static int btrfs_mkdir(struct mnt_idmap *idmap, struct inode *dir, 6659 struct dentry *dentry, umode_t mode) 6660 { 6661 struct inode *inode; 6662 6663 inode = new_inode(dir->i_sb); 6664 if (!inode) 6665 return -ENOMEM; 6666 inode_init_owner(idmap, inode, dir, S_IFDIR | mode); 6667 inode->i_op = &btrfs_dir_inode_operations; 6668 inode->i_fop = &btrfs_dir_file_operations; 6669 return btrfs_create_common(dir, dentry, inode); 6670 } 6671 6672 static noinline int uncompress_inline(struct btrfs_path *path, 6673 struct page *page, 6674 struct btrfs_file_extent_item *item) 6675 { 6676 int ret; 6677 struct extent_buffer *leaf = path->nodes[0]; 6678 char *tmp; 6679 size_t max_size; 6680 unsigned long inline_size; 6681 unsigned long ptr; 6682 int compress_type; 6683 6684 compress_type = btrfs_file_extent_compression(leaf, item); 6685 max_size = btrfs_file_extent_ram_bytes(leaf, item); 6686 inline_size = btrfs_file_extent_inline_item_len(leaf, path->slots[0]); 6687 tmp = kmalloc(inline_size, GFP_NOFS); 6688 if (!tmp) 6689 return -ENOMEM; 6690 ptr = btrfs_file_extent_inline_start(item); 6691 6692 read_extent_buffer(leaf, tmp, ptr, inline_size); 6693 6694 max_size = min_t(unsigned long, PAGE_SIZE, max_size); 6695 ret = btrfs_decompress(compress_type, tmp, page, 0, inline_size, max_size); 6696 6697 /* 6698 * decompression code contains a memset to fill in any space between the end 6699 * of the uncompressed data and the end of max_size in case the decompressed 6700 * data ends up shorter than ram_bytes. That doesn't cover the hole between 6701 * the end of an inline extent and the beginning of the next block, so we 6702 * cover that region here. 6703 */ 6704 6705 if (max_size < PAGE_SIZE) 6706 memzero_page(page, max_size, PAGE_SIZE - max_size); 6707 kfree(tmp); 6708 return ret; 6709 } 6710 6711 static int read_inline_extent(struct btrfs_inode *inode, struct btrfs_path *path, 6712 struct page *page) 6713 { 6714 struct btrfs_file_extent_item *fi; 6715 void *kaddr; 6716 size_t copy_size; 6717 6718 if (!page || PageUptodate(page)) 6719 return 0; 6720 6721 ASSERT(page_offset(page) == 0); 6722 6723 fi = btrfs_item_ptr(path->nodes[0], path->slots[0], 6724 struct btrfs_file_extent_item); 6725 if (btrfs_file_extent_compression(path->nodes[0], fi) != BTRFS_COMPRESS_NONE) 6726 return uncompress_inline(path, page, fi); 6727 6728 copy_size = min_t(u64, PAGE_SIZE, 6729 btrfs_file_extent_ram_bytes(path->nodes[0], fi)); 6730 kaddr = kmap_local_page(page); 6731 read_extent_buffer(path->nodes[0], kaddr, 6732 btrfs_file_extent_inline_start(fi), copy_size); 6733 kunmap_local(kaddr); 6734 if (copy_size < PAGE_SIZE) 6735 memzero_page(page, copy_size, PAGE_SIZE - copy_size); 6736 return 0; 6737 } 6738 6739 /* 6740 * Lookup the first extent overlapping a range in a file. 6741 * 6742 * @inode: file to search in 6743 * @page: page to read extent data into if the extent is inline 6744 * @pg_offset: offset into @page to copy to 6745 * @start: file offset 6746 * @len: length of range starting at @start 6747 * 6748 * Return the first &struct extent_map which overlaps the given range, reading 6749 * it from the B-tree and caching it if necessary. Note that there may be more 6750 * extents which overlap the given range after the returned extent_map. 6751 * 6752 * If @page is not NULL and the extent is inline, this also reads the extent 6753 * data directly into the page and marks the extent up to date in the io_tree. 6754 * 6755 * Return: ERR_PTR on error, non-NULL extent_map on success. 6756 */ 6757 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode, 6758 struct page *page, size_t pg_offset, 6759 u64 start, u64 len) 6760 { 6761 struct btrfs_fs_info *fs_info = inode->root->fs_info; 6762 int ret = 0; 6763 u64 extent_start = 0; 6764 u64 extent_end = 0; 6765 u64 objectid = btrfs_ino(inode); 6766 int extent_type = -1; 6767 struct btrfs_path *path = NULL; 6768 struct btrfs_root *root = inode->root; 6769 struct btrfs_file_extent_item *item; 6770 struct extent_buffer *leaf; 6771 struct btrfs_key found_key; 6772 struct extent_map *em = NULL; 6773 struct extent_map_tree *em_tree = &inode->extent_tree; 6774 6775 read_lock(&em_tree->lock); 6776 em = lookup_extent_mapping(em_tree, start, len); 6777 read_unlock(&em_tree->lock); 6778 6779 if (em) { 6780 if (em->start > start || em->start + em->len <= start) 6781 free_extent_map(em); 6782 else if (em->block_start == EXTENT_MAP_INLINE && page) 6783 free_extent_map(em); 6784 else 6785 goto out; 6786 } 6787 em = alloc_extent_map(); 6788 if (!em) { 6789 ret = -ENOMEM; 6790 goto out; 6791 } 6792 em->start = EXTENT_MAP_HOLE; 6793 em->orig_start = EXTENT_MAP_HOLE; 6794 em->len = (u64)-1; 6795 em->block_len = (u64)-1; 6796 6797 path = btrfs_alloc_path(); 6798 if (!path) { 6799 ret = -ENOMEM; 6800 goto out; 6801 } 6802 6803 /* Chances are we'll be called again, so go ahead and do readahead */ 6804 path->reada = READA_FORWARD; 6805 6806 /* 6807 * The same explanation in load_free_space_cache applies here as well, 6808 * we only read when we're loading the free space cache, and at that 6809 * point the commit_root has everything we need. 6810 */ 6811 if (btrfs_is_free_space_inode(inode)) { 6812 path->search_commit_root = 1; 6813 path->skip_locking = 1; 6814 } 6815 6816 ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0); 6817 if (ret < 0) { 6818 goto out; 6819 } else if (ret > 0) { 6820 if (path->slots[0] == 0) 6821 goto not_found; 6822 path->slots[0]--; 6823 ret = 0; 6824 } 6825 6826 leaf = path->nodes[0]; 6827 item = btrfs_item_ptr(leaf, path->slots[0], 6828 struct btrfs_file_extent_item); 6829 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6830 if (found_key.objectid != objectid || 6831 found_key.type != BTRFS_EXTENT_DATA_KEY) { 6832 /* 6833 * If we backup past the first extent we want to move forward 6834 * and see if there is an extent in front of us, otherwise we'll 6835 * say there is a hole for our whole search range which can 6836 * cause problems. 6837 */ 6838 extent_end = start; 6839 goto next; 6840 } 6841 6842 extent_type = btrfs_file_extent_type(leaf, item); 6843 extent_start = found_key.offset; 6844 extent_end = btrfs_file_extent_end(path); 6845 if (extent_type == BTRFS_FILE_EXTENT_REG || 6846 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 6847 /* Only regular file could have regular/prealloc extent */ 6848 if (!S_ISREG(inode->vfs_inode.i_mode)) { 6849 ret = -EUCLEAN; 6850 btrfs_crit(fs_info, 6851 "regular/prealloc extent found for non-regular inode %llu", 6852 btrfs_ino(inode)); 6853 goto out; 6854 } 6855 trace_btrfs_get_extent_show_fi_regular(inode, leaf, item, 6856 extent_start); 6857 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 6858 trace_btrfs_get_extent_show_fi_inline(inode, leaf, item, 6859 path->slots[0], 6860 extent_start); 6861 } 6862 next: 6863 if (start >= extent_end) { 6864 path->slots[0]++; 6865 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 6866 ret = btrfs_next_leaf(root, path); 6867 if (ret < 0) 6868 goto out; 6869 else if (ret > 0) 6870 goto not_found; 6871 6872 leaf = path->nodes[0]; 6873 } 6874 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6875 if (found_key.objectid != objectid || 6876 found_key.type != BTRFS_EXTENT_DATA_KEY) 6877 goto not_found; 6878 if (start + len <= found_key.offset) 6879 goto not_found; 6880 if (start > found_key.offset) 6881 goto next; 6882 6883 /* New extent overlaps with existing one */ 6884 em->start = start; 6885 em->orig_start = start; 6886 em->len = found_key.offset - start; 6887 em->block_start = EXTENT_MAP_HOLE; 6888 goto insert; 6889 } 6890 6891 btrfs_extent_item_to_extent_map(inode, path, item, em); 6892 6893 if (extent_type == BTRFS_FILE_EXTENT_REG || 6894 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 6895 goto insert; 6896 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 6897 /* 6898 * Inline extent can only exist at file offset 0. This is 6899 * ensured by tree-checker and inline extent creation path. 6900 * Thus all members representing file offsets should be zero. 6901 */ 6902 ASSERT(pg_offset == 0); 6903 ASSERT(extent_start == 0); 6904 ASSERT(em->start == 0); 6905 6906 /* 6907 * btrfs_extent_item_to_extent_map() should have properly 6908 * initialized em members already. 6909 * 6910 * Other members are not utilized for inline extents. 6911 */ 6912 ASSERT(em->block_start == EXTENT_MAP_INLINE); 6913 ASSERT(em->len == fs_info->sectorsize); 6914 6915 ret = read_inline_extent(inode, path, page); 6916 if (ret < 0) 6917 goto out; 6918 goto insert; 6919 } 6920 not_found: 6921 em->start = start; 6922 em->orig_start = start; 6923 em->len = len; 6924 em->block_start = EXTENT_MAP_HOLE; 6925 insert: 6926 ret = 0; 6927 btrfs_release_path(path); 6928 if (em->start > start || extent_map_end(em) <= start) { 6929 btrfs_err(fs_info, 6930 "bad extent! em: [%llu %llu] passed [%llu %llu]", 6931 em->start, em->len, start, len); 6932 ret = -EIO; 6933 goto out; 6934 } 6935 6936 write_lock(&em_tree->lock); 6937 ret = btrfs_add_extent_mapping(fs_info, em_tree, &em, start, len); 6938 write_unlock(&em_tree->lock); 6939 out: 6940 btrfs_free_path(path); 6941 6942 trace_btrfs_get_extent(root, inode, em); 6943 6944 if (ret) { 6945 free_extent_map(em); 6946 return ERR_PTR(ret); 6947 } 6948 return em; 6949 } 6950 6951 static struct extent_map *btrfs_create_dio_extent(struct btrfs_inode *inode, 6952 struct btrfs_dio_data *dio_data, 6953 const u64 start, 6954 const u64 len, 6955 const u64 orig_start, 6956 const u64 block_start, 6957 const u64 block_len, 6958 const u64 orig_block_len, 6959 const u64 ram_bytes, 6960 const int type) 6961 { 6962 struct extent_map *em = NULL; 6963 struct btrfs_ordered_extent *ordered; 6964 6965 if (type != BTRFS_ORDERED_NOCOW) { 6966 em = create_io_em(inode, start, len, orig_start, block_start, 6967 block_len, orig_block_len, ram_bytes, 6968 BTRFS_COMPRESS_NONE, /* compress_type */ 6969 type); 6970 if (IS_ERR(em)) 6971 goto out; 6972 } 6973 ordered = btrfs_alloc_ordered_extent(inode, start, len, len, 6974 block_start, block_len, 0, 6975 (1 << type) | 6976 (1 << BTRFS_ORDERED_DIRECT), 6977 BTRFS_COMPRESS_NONE); 6978 if (IS_ERR(ordered)) { 6979 if (em) { 6980 free_extent_map(em); 6981 btrfs_drop_extent_map_range(inode, start, 6982 start + len - 1, false); 6983 } 6984 em = ERR_CAST(ordered); 6985 } else { 6986 ASSERT(!dio_data->ordered); 6987 dio_data->ordered = ordered; 6988 } 6989 out: 6990 6991 return em; 6992 } 6993 6994 static struct extent_map *btrfs_new_extent_direct(struct btrfs_inode *inode, 6995 struct btrfs_dio_data *dio_data, 6996 u64 start, u64 len) 6997 { 6998 struct btrfs_root *root = inode->root; 6999 struct btrfs_fs_info *fs_info = root->fs_info; 7000 struct extent_map *em; 7001 struct btrfs_key ins; 7002 u64 alloc_hint; 7003 int ret; 7004 7005 alloc_hint = get_extent_allocation_hint(inode, start, len); 7006 again: 7007 ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize, 7008 0, alloc_hint, &ins, 1, 1); 7009 if (ret == -EAGAIN) { 7010 ASSERT(btrfs_is_zoned(fs_info)); 7011 wait_on_bit_io(&inode->root->fs_info->flags, BTRFS_FS_NEED_ZONE_FINISH, 7012 TASK_UNINTERRUPTIBLE); 7013 goto again; 7014 } 7015 if (ret) 7016 return ERR_PTR(ret); 7017 7018 em = btrfs_create_dio_extent(inode, dio_data, start, ins.offset, start, 7019 ins.objectid, ins.offset, ins.offset, 7020 ins.offset, BTRFS_ORDERED_REGULAR); 7021 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 7022 if (IS_ERR(em)) 7023 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 7024 1); 7025 7026 return em; 7027 } 7028 7029 static bool btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr) 7030 { 7031 struct btrfs_block_group *block_group; 7032 bool readonly = false; 7033 7034 block_group = btrfs_lookup_block_group(fs_info, bytenr); 7035 if (!block_group || block_group->ro) 7036 readonly = true; 7037 if (block_group) 7038 btrfs_put_block_group(block_group); 7039 return readonly; 7040 } 7041 7042 /* 7043 * Check if we can do nocow write into the range [@offset, @offset + @len) 7044 * 7045 * @offset: File offset 7046 * @len: The length to write, will be updated to the nocow writeable 7047 * range 7048 * @orig_start: (optional) Return the original file offset of the file extent 7049 * @orig_len: (optional) Return the original on-disk length of the file extent 7050 * @ram_bytes: (optional) Return the ram_bytes of the file extent 7051 * @strict: if true, omit optimizations that might force us into unnecessary 7052 * cow. e.g., don't trust generation number. 7053 * 7054 * Return: 7055 * >0 and update @len if we can do nocow write 7056 * 0 if we can't do nocow write 7057 * <0 if error happened 7058 * 7059 * NOTE: This only checks the file extents, caller is responsible to wait for 7060 * any ordered extents. 7061 */ 7062 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len, 7063 u64 *orig_start, u64 *orig_block_len, 7064 u64 *ram_bytes, bool nowait, bool strict) 7065 { 7066 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7067 struct can_nocow_file_extent_args nocow_args = { 0 }; 7068 struct btrfs_path *path; 7069 int ret; 7070 struct extent_buffer *leaf; 7071 struct btrfs_root *root = BTRFS_I(inode)->root; 7072 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 7073 struct btrfs_file_extent_item *fi; 7074 struct btrfs_key key; 7075 int found_type; 7076 7077 path = btrfs_alloc_path(); 7078 if (!path) 7079 return -ENOMEM; 7080 path->nowait = nowait; 7081 7082 ret = btrfs_lookup_file_extent(NULL, root, path, 7083 btrfs_ino(BTRFS_I(inode)), offset, 0); 7084 if (ret < 0) 7085 goto out; 7086 7087 if (ret == 1) { 7088 if (path->slots[0] == 0) { 7089 /* can't find the item, must cow */ 7090 ret = 0; 7091 goto out; 7092 } 7093 path->slots[0]--; 7094 } 7095 ret = 0; 7096 leaf = path->nodes[0]; 7097 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 7098 if (key.objectid != btrfs_ino(BTRFS_I(inode)) || 7099 key.type != BTRFS_EXTENT_DATA_KEY) { 7100 /* not our file or wrong item type, must cow */ 7101 goto out; 7102 } 7103 7104 if (key.offset > offset) { 7105 /* Wrong offset, must cow */ 7106 goto out; 7107 } 7108 7109 if (btrfs_file_extent_end(path) <= offset) 7110 goto out; 7111 7112 fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); 7113 found_type = btrfs_file_extent_type(leaf, fi); 7114 if (ram_bytes) 7115 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 7116 7117 nocow_args.start = offset; 7118 nocow_args.end = offset + *len - 1; 7119 nocow_args.strict = strict; 7120 nocow_args.free_path = true; 7121 7122 ret = can_nocow_file_extent(path, &key, BTRFS_I(inode), &nocow_args); 7123 /* can_nocow_file_extent() has freed the path. */ 7124 path = NULL; 7125 7126 if (ret != 1) { 7127 /* Treat errors as not being able to NOCOW. */ 7128 ret = 0; 7129 goto out; 7130 } 7131 7132 ret = 0; 7133 if (btrfs_extent_readonly(fs_info, nocow_args.disk_bytenr)) 7134 goto out; 7135 7136 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) && 7137 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 7138 u64 range_end; 7139 7140 range_end = round_up(offset + nocow_args.num_bytes, 7141 root->fs_info->sectorsize) - 1; 7142 ret = test_range_bit(io_tree, offset, range_end, 7143 EXTENT_DELALLOC, 0, NULL); 7144 if (ret) { 7145 ret = -EAGAIN; 7146 goto out; 7147 } 7148 } 7149 7150 if (orig_start) 7151 *orig_start = key.offset - nocow_args.extent_offset; 7152 if (orig_block_len) 7153 *orig_block_len = nocow_args.disk_num_bytes; 7154 7155 *len = nocow_args.num_bytes; 7156 ret = 1; 7157 out: 7158 btrfs_free_path(path); 7159 return ret; 7160 } 7161 7162 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend, 7163 struct extent_state **cached_state, 7164 unsigned int iomap_flags) 7165 { 7166 const bool writing = (iomap_flags & IOMAP_WRITE); 7167 const bool nowait = (iomap_flags & IOMAP_NOWAIT); 7168 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 7169 struct btrfs_ordered_extent *ordered; 7170 int ret = 0; 7171 7172 while (1) { 7173 if (nowait) { 7174 if (!try_lock_extent(io_tree, lockstart, lockend, 7175 cached_state)) 7176 return -EAGAIN; 7177 } else { 7178 lock_extent(io_tree, lockstart, lockend, cached_state); 7179 } 7180 /* 7181 * We're concerned with the entire range that we're going to be 7182 * doing DIO to, so we need to make sure there's no ordered 7183 * extents in this range. 7184 */ 7185 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart, 7186 lockend - lockstart + 1); 7187 7188 /* 7189 * We need to make sure there are no buffered pages in this 7190 * range either, we could have raced between the invalidate in 7191 * generic_file_direct_write and locking the extent. The 7192 * invalidate needs to happen so that reads after a write do not 7193 * get stale data. 7194 */ 7195 if (!ordered && 7196 (!writing || !filemap_range_has_page(inode->i_mapping, 7197 lockstart, lockend))) 7198 break; 7199 7200 unlock_extent(io_tree, lockstart, lockend, cached_state); 7201 7202 if (ordered) { 7203 if (nowait) { 7204 btrfs_put_ordered_extent(ordered); 7205 ret = -EAGAIN; 7206 break; 7207 } 7208 /* 7209 * If we are doing a DIO read and the ordered extent we 7210 * found is for a buffered write, we can not wait for it 7211 * to complete and retry, because if we do so we can 7212 * deadlock with concurrent buffered writes on page 7213 * locks. This happens only if our DIO read covers more 7214 * than one extent map, if at this point has already 7215 * created an ordered extent for a previous extent map 7216 * and locked its range in the inode's io tree, and a 7217 * concurrent write against that previous extent map's 7218 * range and this range started (we unlock the ranges 7219 * in the io tree only when the bios complete and 7220 * buffered writes always lock pages before attempting 7221 * to lock range in the io tree). 7222 */ 7223 if (writing || 7224 test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) 7225 btrfs_start_ordered_extent(ordered); 7226 else 7227 ret = nowait ? -EAGAIN : -ENOTBLK; 7228 btrfs_put_ordered_extent(ordered); 7229 } else { 7230 /* 7231 * We could trigger writeback for this range (and wait 7232 * for it to complete) and then invalidate the pages for 7233 * this range (through invalidate_inode_pages2_range()), 7234 * but that can lead us to a deadlock with a concurrent 7235 * call to readahead (a buffered read or a defrag call 7236 * triggered a readahead) on a page lock due to an 7237 * ordered dio extent we created before but did not have 7238 * yet a corresponding bio submitted (whence it can not 7239 * complete), which makes readahead wait for that 7240 * ordered extent to complete while holding a lock on 7241 * that page. 7242 */ 7243 ret = nowait ? -EAGAIN : -ENOTBLK; 7244 } 7245 7246 if (ret) 7247 break; 7248 7249 cond_resched(); 7250 } 7251 7252 return ret; 7253 } 7254 7255 /* The callers of this must take lock_extent() */ 7256 static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start, 7257 u64 len, u64 orig_start, u64 block_start, 7258 u64 block_len, u64 orig_block_len, 7259 u64 ram_bytes, int compress_type, 7260 int type) 7261 { 7262 struct extent_map *em; 7263 int ret; 7264 7265 ASSERT(type == BTRFS_ORDERED_PREALLOC || 7266 type == BTRFS_ORDERED_COMPRESSED || 7267 type == BTRFS_ORDERED_NOCOW || 7268 type == BTRFS_ORDERED_REGULAR); 7269 7270 em = alloc_extent_map(); 7271 if (!em) 7272 return ERR_PTR(-ENOMEM); 7273 7274 em->start = start; 7275 em->orig_start = orig_start; 7276 em->len = len; 7277 em->block_len = block_len; 7278 em->block_start = block_start; 7279 em->orig_block_len = orig_block_len; 7280 em->ram_bytes = ram_bytes; 7281 em->generation = -1; 7282 set_bit(EXTENT_FLAG_PINNED, &em->flags); 7283 if (type == BTRFS_ORDERED_PREALLOC) { 7284 set_bit(EXTENT_FLAG_FILLING, &em->flags); 7285 } else if (type == BTRFS_ORDERED_COMPRESSED) { 7286 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 7287 em->compress_type = compress_type; 7288 } 7289 7290 ret = btrfs_replace_extent_map_range(inode, em, true); 7291 if (ret) { 7292 free_extent_map(em); 7293 return ERR_PTR(ret); 7294 } 7295 7296 /* em got 2 refs now, callers needs to do free_extent_map once. */ 7297 return em; 7298 } 7299 7300 7301 static int btrfs_get_blocks_direct_write(struct extent_map **map, 7302 struct inode *inode, 7303 struct btrfs_dio_data *dio_data, 7304 u64 start, u64 *lenp, 7305 unsigned int iomap_flags) 7306 { 7307 const bool nowait = (iomap_flags & IOMAP_NOWAIT); 7308 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7309 struct extent_map *em = *map; 7310 int type; 7311 u64 block_start, orig_start, orig_block_len, ram_bytes; 7312 struct btrfs_block_group *bg; 7313 bool can_nocow = false; 7314 bool space_reserved = false; 7315 u64 len = *lenp; 7316 u64 prev_len; 7317 int ret = 0; 7318 7319 /* 7320 * We don't allocate a new extent in the following cases 7321 * 7322 * 1) The inode is marked as NODATACOW. In this case we'll just use the 7323 * existing extent. 7324 * 2) The extent is marked as PREALLOC. We're good to go here and can 7325 * just use the extent. 7326 * 7327 */ 7328 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) || 7329 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) && 7330 em->block_start != EXTENT_MAP_HOLE)) { 7331 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 7332 type = BTRFS_ORDERED_PREALLOC; 7333 else 7334 type = BTRFS_ORDERED_NOCOW; 7335 len = min(len, em->len - (start - em->start)); 7336 block_start = em->block_start + (start - em->start); 7337 7338 if (can_nocow_extent(inode, start, &len, &orig_start, 7339 &orig_block_len, &ram_bytes, false, false) == 1) { 7340 bg = btrfs_inc_nocow_writers(fs_info, block_start); 7341 if (bg) 7342 can_nocow = true; 7343 } 7344 } 7345 7346 prev_len = len; 7347 if (can_nocow) { 7348 struct extent_map *em2; 7349 7350 /* We can NOCOW, so only need to reserve metadata space. */ 7351 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len, len, 7352 nowait); 7353 if (ret < 0) { 7354 /* Our caller expects us to free the input extent map. */ 7355 free_extent_map(em); 7356 *map = NULL; 7357 btrfs_dec_nocow_writers(bg); 7358 if (nowait && (ret == -ENOSPC || ret == -EDQUOT)) 7359 ret = -EAGAIN; 7360 goto out; 7361 } 7362 space_reserved = true; 7363 7364 em2 = btrfs_create_dio_extent(BTRFS_I(inode), dio_data, start, len, 7365 orig_start, block_start, 7366 len, orig_block_len, 7367 ram_bytes, type); 7368 btrfs_dec_nocow_writers(bg); 7369 if (type == BTRFS_ORDERED_PREALLOC) { 7370 free_extent_map(em); 7371 *map = em2; 7372 em = em2; 7373 } 7374 7375 if (IS_ERR(em2)) { 7376 ret = PTR_ERR(em2); 7377 goto out; 7378 } 7379 7380 dio_data->nocow_done = true; 7381 } else { 7382 /* Our caller expects us to free the input extent map. */ 7383 free_extent_map(em); 7384 *map = NULL; 7385 7386 if (nowait) { 7387 ret = -EAGAIN; 7388 goto out; 7389 } 7390 7391 /* 7392 * If we could not allocate data space before locking the file 7393 * range and we can't do a NOCOW write, then we have to fail. 7394 */ 7395 if (!dio_data->data_space_reserved) { 7396 ret = -ENOSPC; 7397 goto out; 7398 } 7399 7400 /* 7401 * We have to COW and we have already reserved data space before, 7402 * so now we reserve only metadata. 7403 */ 7404 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len, len, 7405 false); 7406 if (ret < 0) 7407 goto out; 7408 space_reserved = true; 7409 7410 em = btrfs_new_extent_direct(BTRFS_I(inode), dio_data, start, len); 7411 if (IS_ERR(em)) { 7412 ret = PTR_ERR(em); 7413 goto out; 7414 } 7415 *map = em; 7416 len = min(len, em->len - (start - em->start)); 7417 if (len < prev_len) 7418 btrfs_delalloc_release_metadata(BTRFS_I(inode), 7419 prev_len - len, true); 7420 } 7421 7422 /* 7423 * We have created our ordered extent, so we can now release our reservation 7424 * for an outstanding extent. 7425 */ 7426 btrfs_delalloc_release_extents(BTRFS_I(inode), prev_len); 7427 7428 /* 7429 * Need to update the i_size under the extent lock so buffered 7430 * readers will get the updated i_size when we unlock. 7431 */ 7432 if (start + len > i_size_read(inode)) 7433 i_size_write(inode, start + len); 7434 out: 7435 if (ret && space_reserved) { 7436 btrfs_delalloc_release_extents(BTRFS_I(inode), len); 7437 btrfs_delalloc_release_metadata(BTRFS_I(inode), len, true); 7438 } 7439 *lenp = len; 7440 return ret; 7441 } 7442 7443 static int btrfs_dio_iomap_begin(struct inode *inode, loff_t start, 7444 loff_t length, unsigned int flags, struct iomap *iomap, 7445 struct iomap *srcmap) 7446 { 7447 struct iomap_iter *iter = container_of(iomap, struct iomap_iter, iomap); 7448 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7449 struct extent_map *em; 7450 struct extent_state *cached_state = NULL; 7451 struct btrfs_dio_data *dio_data = iter->private; 7452 u64 lockstart, lockend; 7453 const bool write = !!(flags & IOMAP_WRITE); 7454 int ret = 0; 7455 u64 len = length; 7456 const u64 data_alloc_len = length; 7457 bool unlock_extents = false; 7458 7459 /* 7460 * We could potentially fault if we have a buffer > PAGE_SIZE, and if 7461 * we're NOWAIT we may submit a bio for a partial range and return 7462 * EIOCBQUEUED, which would result in an errant short read. 7463 * 7464 * The best way to handle this would be to allow for partial completions 7465 * of iocb's, so we could submit the partial bio, return and fault in 7466 * the rest of the pages, and then submit the io for the rest of the 7467 * range. However we don't have that currently, so simply return 7468 * -EAGAIN at this point so that the normal path is used. 7469 */ 7470 if (!write && (flags & IOMAP_NOWAIT) && length > PAGE_SIZE) 7471 return -EAGAIN; 7472 7473 /* 7474 * Cap the size of reads to that usually seen in buffered I/O as we need 7475 * to allocate a contiguous array for the checksums. 7476 */ 7477 if (!write) 7478 len = min_t(u64, len, fs_info->sectorsize * BTRFS_MAX_BIO_SECTORS); 7479 7480 lockstart = start; 7481 lockend = start + len - 1; 7482 7483 /* 7484 * iomap_dio_rw() only does filemap_write_and_wait_range(), which isn't 7485 * enough if we've written compressed pages to this area, so we need to 7486 * flush the dirty pages again to make absolutely sure that any 7487 * outstanding dirty pages are on disk - the first flush only starts 7488 * compression on the data, while keeping the pages locked, so by the 7489 * time the second flush returns we know bios for the compressed pages 7490 * were submitted and finished, and the pages no longer under writeback. 7491 * 7492 * If we have a NOWAIT request and we have any pages in the range that 7493 * are locked, likely due to compression still in progress, we don't want 7494 * to block on page locks. We also don't want to block on pages marked as 7495 * dirty or under writeback (same as for the non-compression case). 7496 * iomap_dio_rw() did the same check, but after that and before we got 7497 * here, mmap'ed writes may have happened or buffered reads started 7498 * (readpage() and readahead(), which lock pages), as we haven't locked 7499 * the file range yet. 7500 */ 7501 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 7502 &BTRFS_I(inode)->runtime_flags)) { 7503 if (flags & IOMAP_NOWAIT) { 7504 if (filemap_range_needs_writeback(inode->i_mapping, 7505 lockstart, lockend)) 7506 return -EAGAIN; 7507 } else { 7508 ret = filemap_fdatawrite_range(inode->i_mapping, start, 7509 start + length - 1); 7510 if (ret) 7511 return ret; 7512 } 7513 } 7514 7515 memset(dio_data, 0, sizeof(*dio_data)); 7516 7517 /* 7518 * We always try to allocate data space and must do it before locking 7519 * the file range, to avoid deadlocks with concurrent writes to the same 7520 * range if the range has several extents and the writes don't expand the 7521 * current i_size (the inode lock is taken in shared mode). If we fail to 7522 * allocate data space here we continue and later, after locking the 7523 * file range, we fail with ENOSPC only if we figure out we can not do a 7524 * NOCOW write. 7525 */ 7526 if (write && !(flags & IOMAP_NOWAIT)) { 7527 ret = btrfs_check_data_free_space(BTRFS_I(inode), 7528 &dio_data->data_reserved, 7529 start, data_alloc_len, false); 7530 if (!ret) 7531 dio_data->data_space_reserved = true; 7532 else if (ret && !(BTRFS_I(inode)->flags & 7533 (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC))) 7534 goto err; 7535 } 7536 7537 /* 7538 * If this errors out it's because we couldn't invalidate pagecache for 7539 * this range and we need to fallback to buffered IO, or we are doing a 7540 * NOWAIT read/write and we need to block. 7541 */ 7542 ret = lock_extent_direct(inode, lockstart, lockend, &cached_state, flags); 7543 if (ret < 0) 7544 goto err; 7545 7546 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len); 7547 if (IS_ERR(em)) { 7548 ret = PTR_ERR(em); 7549 goto unlock_err; 7550 } 7551 7552 /* 7553 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered 7554 * io. INLINE is special, and we could probably kludge it in here, but 7555 * it's still buffered so for safety lets just fall back to the generic 7556 * buffered path. 7557 * 7558 * For COMPRESSED we _have_ to read the entire extent in so we can 7559 * decompress it, so there will be buffering required no matter what we 7560 * do, so go ahead and fallback to buffered. 7561 * 7562 * We return -ENOTBLK because that's what makes DIO go ahead and go back 7563 * to buffered IO. Don't blame me, this is the price we pay for using 7564 * the generic code. 7565 */ 7566 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) || 7567 em->block_start == EXTENT_MAP_INLINE) { 7568 free_extent_map(em); 7569 /* 7570 * If we are in a NOWAIT context, return -EAGAIN in order to 7571 * fallback to buffered IO. This is not only because we can 7572 * block with buffered IO (no support for NOWAIT semantics at 7573 * the moment) but also to avoid returning short reads to user 7574 * space - this happens if we were able to read some data from 7575 * previous non-compressed extents and then when we fallback to 7576 * buffered IO, at btrfs_file_read_iter() by calling 7577 * filemap_read(), we fail to fault in pages for the read buffer, 7578 * in which case filemap_read() returns a short read (the number 7579 * of bytes previously read is > 0, so it does not return -EFAULT). 7580 */ 7581 ret = (flags & IOMAP_NOWAIT) ? -EAGAIN : -ENOTBLK; 7582 goto unlock_err; 7583 } 7584 7585 len = min(len, em->len - (start - em->start)); 7586 7587 /* 7588 * If we have a NOWAIT request and the range contains multiple extents 7589 * (or a mix of extents and holes), then we return -EAGAIN to make the 7590 * caller fallback to a context where it can do a blocking (without 7591 * NOWAIT) request. This way we avoid doing partial IO and returning 7592 * success to the caller, which is not optimal for writes and for reads 7593 * it can result in unexpected behaviour for an application. 7594 * 7595 * When doing a read, because we use IOMAP_DIO_PARTIAL when calling 7596 * iomap_dio_rw(), we can end up returning less data then what the caller 7597 * asked for, resulting in an unexpected, and incorrect, short read. 7598 * That is, the caller asked to read N bytes and we return less than that, 7599 * which is wrong unless we are crossing EOF. This happens if we get a 7600 * page fault error when trying to fault in pages for the buffer that is 7601 * associated to the struct iov_iter passed to iomap_dio_rw(), and we 7602 * have previously submitted bios for other extents in the range, in 7603 * which case iomap_dio_rw() may return us EIOCBQUEUED if not all of 7604 * those bios have completed by the time we get the page fault error, 7605 * which we return back to our caller - we should only return EIOCBQUEUED 7606 * after we have submitted bios for all the extents in the range. 7607 */ 7608 if ((flags & IOMAP_NOWAIT) && len < length) { 7609 free_extent_map(em); 7610 ret = -EAGAIN; 7611 goto unlock_err; 7612 } 7613 7614 if (write) { 7615 ret = btrfs_get_blocks_direct_write(&em, inode, dio_data, 7616 start, &len, flags); 7617 if (ret < 0) 7618 goto unlock_err; 7619 unlock_extents = true; 7620 /* Recalc len in case the new em is smaller than requested */ 7621 len = min(len, em->len - (start - em->start)); 7622 if (dio_data->data_space_reserved) { 7623 u64 release_offset; 7624 u64 release_len = 0; 7625 7626 if (dio_data->nocow_done) { 7627 release_offset = start; 7628 release_len = data_alloc_len; 7629 } else if (len < data_alloc_len) { 7630 release_offset = start + len; 7631 release_len = data_alloc_len - len; 7632 } 7633 7634 if (release_len > 0) 7635 btrfs_free_reserved_data_space(BTRFS_I(inode), 7636 dio_data->data_reserved, 7637 release_offset, 7638 release_len); 7639 } 7640 } else { 7641 /* 7642 * We need to unlock only the end area that we aren't using. 7643 * The rest is going to be unlocked by the endio routine. 7644 */ 7645 lockstart = start + len; 7646 if (lockstart < lockend) 7647 unlock_extents = true; 7648 } 7649 7650 if (unlock_extents) 7651 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7652 &cached_state); 7653 else 7654 free_extent_state(cached_state); 7655 7656 /* 7657 * Translate extent map information to iomap. 7658 * We trim the extents (and move the addr) even though iomap code does 7659 * that, since we have locked only the parts we are performing I/O in. 7660 */ 7661 if ((em->block_start == EXTENT_MAP_HOLE) || 7662 (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) && !write)) { 7663 iomap->addr = IOMAP_NULL_ADDR; 7664 iomap->type = IOMAP_HOLE; 7665 } else { 7666 iomap->addr = em->block_start + (start - em->start); 7667 iomap->type = IOMAP_MAPPED; 7668 } 7669 iomap->offset = start; 7670 iomap->bdev = fs_info->fs_devices->latest_dev->bdev; 7671 iomap->length = len; 7672 free_extent_map(em); 7673 7674 return 0; 7675 7676 unlock_err: 7677 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7678 &cached_state); 7679 err: 7680 if (dio_data->data_space_reserved) { 7681 btrfs_free_reserved_data_space(BTRFS_I(inode), 7682 dio_data->data_reserved, 7683 start, data_alloc_len); 7684 extent_changeset_free(dio_data->data_reserved); 7685 } 7686 7687 return ret; 7688 } 7689 7690 static int btrfs_dio_iomap_end(struct inode *inode, loff_t pos, loff_t length, 7691 ssize_t written, unsigned int flags, struct iomap *iomap) 7692 { 7693 struct iomap_iter *iter = container_of(iomap, struct iomap_iter, iomap); 7694 struct btrfs_dio_data *dio_data = iter->private; 7695 size_t submitted = dio_data->submitted; 7696 const bool write = !!(flags & IOMAP_WRITE); 7697 int ret = 0; 7698 7699 if (!write && (iomap->type == IOMAP_HOLE)) { 7700 /* If reading from a hole, unlock and return */ 7701 unlock_extent(&BTRFS_I(inode)->io_tree, pos, pos + length - 1, 7702 NULL); 7703 return 0; 7704 } 7705 7706 if (submitted < length) { 7707 pos += submitted; 7708 length -= submitted; 7709 if (write) 7710 btrfs_finish_ordered_extent(dio_data->ordered, NULL, 7711 pos, length, false); 7712 else 7713 unlock_extent(&BTRFS_I(inode)->io_tree, pos, 7714 pos + length - 1, NULL); 7715 ret = -ENOTBLK; 7716 } 7717 if (write) { 7718 btrfs_put_ordered_extent(dio_data->ordered); 7719 dio_data->ordered = NULL; 7720 } 7721 7722 if (write) 7723 extent_changeset_free(dio_data->data_reserved); 7724 return ret; 7725 } 7726 7727 static void btrfs_dio_end_io(struct btrfs_bio *bbio) 7728 { 7729 struct btrfs_dio_private *dip = 7730 container_of(bbio, struct btrfs_dio_private, bbio); 7731 struct btrfs_inode *inode = bbio->inode; 7732 struct bio *bio = &bbio->bio; 7733 7734 if (bio->bi_status) { 7735 btrfs_warn(inode->root->fs_info, 7736 "direct IO failed ino %llu op 0x%0x offset %#llx len %u err no %d", 7737 btrfs_ino(inode), bio->bi_opf, 7738 dip->file_offset, dip->bytes, bio->bi_status); 7739 } 7740 7741 if (btrfs_op(bio) == BTRFS_MAP_WRITE) { 7742 btrfs_finish_ordered_extent(bbio->ordered, NULL, 7743 dip->file_offset, dip->bytes, 7744 !bio->bi_status); 7745 } else { 7746 unlock_extent(&inode->io_tree, dip->file_offset, 7747 dip->file_offset + dip->bytes - 1, NULL); 7748 } 7749 7750 bbio->bio.bi_private = bbio->private; 7751 iomap_dio_bio_end_io(bio); 7752 } 7753 7754 static void btrfs_dio_submit_io(const struct iomap_iter *iter, struct bio *bio, 7755 loff_t file_offset) 7756 { 7757 struct btrfs_bio *bbio = btrfs_bio(bio); 7758 struct btrfs_dio_private *dip = 7759 container_of(bbio, struct btrfs_dio_private, bbio); 7760 struct btrfs_dio_data *dio_data = iter->private; 7761 7762 btrfs_bio_init(bbio, BTRFS_I(iter->inode)->root->fs_info, 7763 btrfs_dio_end_io, bio->bi_private); 7764 bbio->inode = BTRFS_I(iter->inode); 7765 bbio->file_offset = file_offset; 7766 7767 dip->file_offset = file_offset; 7768 dip->bytes = bio->bi_iter.bi_size; 7769 7770 dio_data->submitted += bio->bi_iter.bi_size; 7771 7772 /* 7773 * Check if we are doing a partial write. If we are, we need to split 7774 * the ordered extent to match the submitted bio. Hang on to the 7775 * remaining unfinishable ordered_extent in dio_data so that it can be 7776 * cancelled in iomap_end to avoid a deadlock wherein faulting the 7777 * remaining pages is blocked on the outstanding ordered extent. 7778 */ 7779 if (iter->flags & IOMAP_WRITE) { 7780 int ret; 7781 7782 ret = btrfs_extract_ordered_extent(bbio, dio_data->ordered); 7783 if (ret) { 7784 btrfs_finish_ordered_extent(dio_data->ordered, NULL, 7785 file_offset, dip->bytes, 7786 !ret); 7787 bio->bi_status = errno_to_blk_status(ret); 7788 iomap_dio_bio_end_io(bio); 7789 return; 7790 } 7791 } 7792 7793 btrfs_submit_bio(bbio, 0); 7794 } 7795 7796 static const struct iomap_ops btrfs_dio_iomap_ops = { 7797 .iomap_begin = btrfs_dio_iomap_begin, 7798 .iomap_end = btrfs_dio_iomap_end, 7799 }; 7800 7801 static const struct iomap_dio_ops btrfs_dio_ops = { 7802 .submit_io = btrfs_dio_submit_io, 7803 .bio_set = &btrfs_dio_bioset, 7804 }; 7805 7806 ssize_t btrfs_dio_read(struct kiocb *iocb, struct iov_iter *iter, size_t done_before) 7807 { 7808 struct btrfs_dio_data data = { 0 }; 7809 7810 return iomap_dio_rw(iocb, iter, &btrfs_dio_iomap_ops, &btrfs_dio_ops, 7811 IOMAP_DIO_PARTIAL, &data, done_before); 7812 } 7813 7814 struct iomap_dio *btrfs_dio_write(struct kiocb *iocb, struct iov_iter *iter, 7815 size_t done_before) 7816 { 7817 struct btrfs_dio_data data = { 0 }; 7818 7819 return __iomap_dio_rw(iocb, iter, &btrfs_dio_iomap_ops, &btrfs_dio_ops, 7820 IOMAP_DIO_PARTIAL, &data, done_before); 7821 } 7822 7823 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 7824 u64 start, u64 len) 7825 { 7826 struct btrfs_inode *btrfs_inode = BTRFS_I(inode); 7827 int ret; 7828 7829 ret = fiemap_prep(inode, fieinfo, start, &len, 0); 7830 if (ret) 7831 return ret; 7832 7833 /* 7834 * fiemap_prep() called filemap_write_and_wait() for the whole possible 7835 * file range (0 to LLONG_MAX), but that is not enough if we have 7836 * compression enabled. The first filemap_fdatawrite_range() only kicks 7837 * in the compression of data (in an async thread) and will return 7838 * before the compression is done and writeback is started. A second 7839 * filemap_fdatawrite_range() is needed to wait for the compression to 7840 * complete and writeback to start. We also need to wait for ordered 7841 * extents to complete, because our fiemap implementation uses mainly 7842 * file extent items to list the extents, searching for extent maps 7843 * only for file ranges with holes or prealloc extents to figure out 7844 * if we have delalloc in those ranges. 7845 */ 7846 if (fieinfo->fi_flags & FIEMAP_FLAG_SYNC) { 7847 ret = btrfs_wait_ordered_range(inode, 0, LLONG_MAX); 7848 if (ret) 7849 return ret; 7850 } 7851 7852 btrfs_inode_lock(btrfs_inode, BTRFS_ILOCK_SHARED); 7853 7854 /* 7855 * We did an initial flush to avoid holding the inode's lock while 7856 * triggering writeback and waiting for the completion of IO and ordered 7857 * extents. Now after we locked the inode we do it again, because it's 7858 * possible a new write may have happened in between those two steps. 7859 */ 7860 if (fieinfo->fi_flags & FIEMAP_FLAG_SYNC) { 7861 ret = btrfs_wait_ordered_range(inode, 0, LLONG_MAX); 7862 if (ret) { 7863 btrfs_inode_unlock(btrfs_inode, BTRFS_ILOCK_SHARED); 7864 return ret; 7865 } 7866 } 7867 7868 ret = extent_fiemap(btrfs_inode, fieinfo, start, len); 7869 btrfs_inode_unlock(btrfs_inode, BTRFS_ILOCK_SHARED); 7870 7871 return ret; 7872 } 7873 7874 static int btrfs_writepages(struct address_space *mapping, 7875 struct writeback_control *wbc) 7876 { 7877 return extent_writepages(mapping, wbc); 7878 } 7879 7880 static void btrfs_readahead(struct readahead_control *rac) 7881 { 7882 extent_readahead(rac); 7883 } 7884 7885 /* 7886 * For release_folio() and invalidate_folio() we have a race window where 7887 * folio_end_writeback() is called but the subpage spinlock is not yet released. 7888 * If we continue to release/invalidate the page, we could cause use-after-free 7889 * for subpage spinlock. So this function is to spin and wait for subpage 7890 * spinlock. 7891 */ 7892 static void wait_subpage_spinlock(struct page *page) 7893 { 7894 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb); 7895 struct btrfs_subpage *subpage; 7896 7897 if (!btrfs_is_subpage(fs_info, page)) 7898 return; 7899 7900 ASSERT(PagePrivate(page) && page->private); 7901 subpage = (struct btrfs_subpage *)page->private; 7902 7903 /* 7904 * This may look insane as we just acquire the spinlock and release it, 7905 * without doing anything. But we just want to make sure no one is 7906 * still holding the subpage spinlock. 7907 * And since the page is not dirty nor writeback, and we have page 7908 * locked, the only possible way to hold a spinlock is from the endio 7909 * function to clear page writeback. 7910 * 7911 * Here we just acquire the spinlock so that all existing callers 7912 * should exit and we're safe to release/invalidate the page. 7913 */ 7914 spin_lock_irq(&subpage->lock); 7915 spin_unlock_irq(&subpage->lock); 7916 } 7917 7918 static bool __btrfs_release_folio(struct folio *folio, gfp_t gfp_flags) 7919 { 7920 int ret = try_release_extent_mapping(&folio->page, gfp_flags); 7921 7922 if (ret == 1) { 7923 wait_subpage_spinlock(&folio->page); 7924 clear_page_extent_mapped(&folio->page); 7925 } 7926 return ret; 7927 } 7928 7929 static bool btrfs_release_folio(struct folio *folio, gfp_t gfp_flags) 7930 { 7931 if (folio_test_writeback(folio) || folio_test_dirty(folio)) 7932 return false; 7933 return __btrfs_release_folio(folio, gfp_flags); 7934 } 7935 7936 #ifdef CONFIG_MIGRATION 7937 static int btrfs_migrate_folio(struct address_space *mapping, 7938 struct folio *dst, struct folio *src, 7939 enum migrate_mode mode) 7940 { 7941 int ret = filemap_migrate_folio(mapping, dst, src, mode); 7942 7943 if (ret != MIGRATEPAGE_SUCCESS) 7944 return ret; 7945 7946 if (folio_test_ordered(src)) { 7947 folio_clear_ordered(src); 7948 folio_set_ordered(dst); 7949 } 7950 7951 return MIGRATEPAGE_SUCCESS; 7952 } 7953 #else 7954 #define btrfs_migrate_folio NULL 7955 #endif 7956 7957 static void btrfs_invalidate_folio(struct folio *folio, size_t offset, 7958 size_t length) 7959 { 7960 struct btrfs_inode *inode = BTRFS_I(folio->mapping->host); 7961 struct btrfs_fs_info *fs_info = inode->root->fs_info; 7962 struct extent_io_tree *tree = &inode->io_tree; 7963 struct extent_state *cached_state = NULL; 7964 u64 page_start = folio_pos(folio); 7965 u64 page_end = page_start + folio_size(folio) - 1; 7966 u64 cur; 7967 int inode_evicting = inode->vfs_inode.i_state & I_FREEING; 7968 7969 /* 7970 * We have folio locked so no new ordered extent can be created on this 7971 * page, nor bio can be submitted for this folio. 7972 * 7973 * But already submitted bio can still be finished on this folio. 7974 * Furthermore, endio function won't skip folio which has Ordered 7975 * (Private2) already cleared, so it's possible for endio and 7976 * invalidate_folio to do the same ordered extent accounting twice 7977 * on one folio. 7978 * 7979 * So here we wait for any submitted bios to finish, so that we won't 7980 * do double ordered extent accounting on the same folio. 7981 */ 7982 folio_wait_writeback(folio); 7983 wait_subpage_spinlock(&folio->page); 7984 7985 /* 7986 * For subpage case, we have call sites like 7987 * btrfs_punch_hole_lock_range() which passes range not aligned to 7988 * sectorsize. 7989 * If the range doesn't cover the full folio, we don't need to and 7990 * shouldn't clear page extent mapped, as folio->private can still 7991 * record subpage dirty bits for other part of the range. 7992 * 7993 * For cases that invalidate the full folio even the range doesn't 7994 * cover the full folio, like invalidating the last folio, we're 7995 * still safe to wait for ordered extent to finish. 7996 */ 7997 if (!(offset == 0 && length == folio_size(folio))) { 7998 btrfs_release_folio(folio, GFP_NOFS); 7999 return; 8000 } 8001 8002 if (!inode_evicting) 8003 lock_extent(tree, page_start, page_end, &cached_state); 8004 8005 cur = page_start; 8006 while (cur < page_end) { 8007 struct btrfs_ordered_extent *ordered; 8008 u64 range_end; 8009 u32 range_len; 8010 u32 extra_flags = 0; 8011 8012 ordered = btrfs_lookup_first_ordered_range(inode, cur, 8013 page_end + 1 - cur); 8014 if (!ordered) { 8015 range_end = page_end; 8016 /* 8017 * No ordered extent covering this range, we are safe 8018 * to delete all extent states in the range. 8019 */ 8020 extra_flags = EXTENT_CLEAR_ALL_BITS; 8021 goto next; 8022 } 8023 if (ordered->file_offset > cur) { 8024 /* 8025 * There is a range between [cur, oe->file_offset) not 8026 * covered by any ordered extent. 8027 * We are safe to delete all extent states, and handle 8028 * the ordered extent in the next iteration. 8029 */ 8030 range_end = ordered->file_offset - 1; 8031 extra_flags = EXTENT_CLEAR_ALL_BITS; 8032 goto next; 8033 } 8034 8035 range_end = min(ordered->file_offset + ordered->num_bytes - 1, 8036 page_end); 8037 ASSERT(range_end + 1 - cur < U32_MAX); 8038 range_len = range_end + 1 - cur; 8039 if (!btrfs_page_test_ordered(fs_info, &folio->page, cur, range_len)) { 8040 /* 8041 * If Ordered (Private2) is cleared, it means endio has 8042 * already been executed for the range. 8043 * We can't delete the extent states as 8044 * btrfs_finish_ordered_io() may still use some of them. 8045 */ 8046 goto next; 8047 } 8048 btrfs_page_clear_ordered(fs_info, &folio->page, cur, range_len); 8049 8050 /* 8051 * IO on this page will never be started, so we need to account 8052 * for any ordered extents now. Don't clear EXTENT_DELALLOC_NEW 8053 * here, must leave that up for the ordered extent completion. 8054 * 8055 * This will also unlock the range for incoming 8056 * btrfs_finish_ordered_io(). 8057 */ 8058 if (!inode_evicting) 8059 clear_extent_bit(tree, cur, range_end, 8060 EXTENT_DELALLOC | 8061 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING | 8062 EXTENT_DEFRAG, &cached_state); 8063 8064 spin_lock_irq(&inode->ordered_tree.lock); 8065 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags); 8066 ordered->truncated_len = min(ordered->truncated_len, 8067 cur - ordered->file_offset); 8068 spin_unlock_irq(&inode->ordered_tree.lock); 8069 8070 /* 8071 * If the ordered extent has finished, we're safe to delete all 8072 * the extent states of the range, otherwise 8073 * btrfs_finish_ordered_io() will get executed by endio for 8074 * other pages, so we can't delete extent states. 8075 */ 8076 if (btrfs_dec_test_ordered_pending(inode, &ordered, 8077 cur, range_end + 1 - cur)) { 8078 btrfs_finish_ordered_io(ordered); 8079 /* 8080 * The ordered extent has finished, now we're again 8081 * safe to delete all extent states of the range. 8082 */ 8083 extra_flags = EXTENT_CLEAR_ALL_BITS; 8084 } 8085 next: 8086 if (ordered) 8087 btrfs_put_ordered_extent(ordered); 8088 /* 8089 * Qgroup reserved space handler 8090 * Sector(s) here will be either: 8091 * 8092 * 1) Already written to disk or bio already finished 8093 * Then its QGROUP_RESERVED bit in io_tree is already cleared. 8094 * Qgroup will be handled by its qgroup_record then. 8095 * btrfs_qgroup_free_data() call will do nothing here. 8096 * 8097 * 2) Not written to disk yet 8098 * Then btrfs_qgroup_free_data() call will clear the 8099 * QGROUP_RESERVED bit of its io_tree, and free the qgroup 8100 * reserved data space. 8101 * Since the IO will never happen for this page. 8102 */ 8103 btrfs_qgroup_free_data(inode, NULL, cur, range_end + 1 - cur, NULL); 8104 if (!inode_evicting) { 8105 clear_extent_bit(tree, cur, range_end, EXTENT_LOCKED | 8106 EXTENT_DELALLOC | EXTENT_UPTODATE | 8107 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG | 8108 extra_flags, &cached_state); 8109 } 8110 cur = range_end + 1; 8111 } 8112 /* 8113 * We have iterated through all ordered extents of the page, the page 8114 * should not have Ordered (Private2) anymore, or the above iteration 8115 * did something wrong. 8116 */ 8117 ASSERT(!folio_test_ordered(folio)); 8118 btrfs_page_clear_checked(fs_info, &folio->page, folio_pos(folio), folio_size(folio)); 8119 if (!inode_evicting) 8120 __btrfs_release_folio(folio, GFP_NOFS); 8121 clear_page_extent_mapped(&folio->page); 8122 } 8123 8124 /* 8125 * btrfs_page_mkwrite() is not allowed to change the file size as it gets 8126 * called from a page fault handler when a page is first dirtied. Hence we must 8127 * be careful to check for EOF conditions here. We set the page up correctly 8128 * for a written page which means we get ENOSPC checking when writing into 8129 * holes and correct delalloc and unwritten extent mapping on filesystems that 8130 * support these features. 8131 * 8132 * We are not allowed to take the i_mutex here so we have to play games to 8133 * protect against truncate races as the page could now be beyond EOF. Because 8134 * truncate_setsize() writes the inode size before removing pages, once we have 8135 * the page lock we can determine safely if the page is beyond EOF. If it is not 8136 * beyond EOF, then the page is guaranteed safe against truncation until we 8137 * unlock the page. 8138 */ 8139 vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf) 8140 { 8141 struct page *page = vmf->page; 8142 struct inode *inode = file_inode(vmf->vma->vm_file); 8143 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8144 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 8145 struct btrfs_ordered_extent *ordered; 8146 struct extent_state *cached_state = NULL; 8147 struct extent_changeset *data_reserved = NULL; 8148 unsigned long zero_start; 8149 loff_t size; 8150 vm_fault_t ret; 8151 int ret2; 8152 int reserved = 0; 8153 u64 reserved_space; 8154 u64 page_start; 8155 u64 page_end; 8156 u64 end; 8157 8158 reserved_space = PAGE_SIZE; 8159 8160 sb_start_pagefault(inode->i_sb); 8161 page_start = page_offset(page); 8162 page_end = page_start + PAGE_SIZE - 1; 8163 end = page_end; 8164 8165 /* 8166 * Reserving delalloc space after obtaining the page lock can lead to 8167 * deadlock. For example, if a dirty page is locked by this function 8168 * and the call to btrfs_delalloc_reserve_space() ends up triggering 8169 * dirty page write out, then the btrfs_writepages() function could 8170 * end up waiting indefinitely to get a lock on the page currently 8171 * being processed by btrfs_page_mkwrite() function. 8172 */ 8173 ret2 = btrfs_delalloc_reserve_space(BTRFS_I(inode), &data_reserved, 8174 page_start, reserved_space); 8175 if (!ret2) { 8176 ret2 = file_update_time(vmf->vma->vm_file); 8177 reserved = 1; 8178 } 8179 if (ret2) { 8180 ret = vmf_error(ret2); 8181 if (reserved) 8182 goto out; 8183 goto out_noreserve; 8184 } 8185 8186 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */ 8187 again: 8188 down_read(&BTRFS_I(inode)->i_mmap_lock); 8189 lock_page(page); 8190 size = i_size_read(inode); 8191 8192 if ((page->mapping != inode->i_mapping) || 8193 (page_start >= size)) { 8194 /* page got truncated out from underneath us */ 8195 goto out_unlock; 8196 } 8197 wait_on_page_writeback(page); 8198 8199 lock_extent(io_tree, page_start, page_end, &cached_state); 8200 ret2 = set_page_extent_mapped(page); 8201 if (ret2 < 0) { 8202 ret = vmf_error(ret2); 8203 unlock_extent(io_tree, page_start, page_end, &cached_state); 8204 goto out_unlock; 8205 } 8206 8207 /* 8208 * we can't set the delalloc bits if there are pending ordered 8209 * extents. Drop our locks and wait for them to finish 8210 */ 8211 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start, 8212 PAGE_SIZE); 8213 if (ordered) { 8214 unlock_extent(io_tree, page_start, page_end, &cached_state); 8215 unlock_page(page); 8216 up_read(&BTRFS_I(inode)->i_mmap_lock); 8217 btrfs_start_ordered_extent(ordered); 8218 btrfs_put_ordered_extent(ordered); 8219 goto again; 8220 } 8221 8222 if (page->index == ((size - 1) >> PAGE_SHIFT)) { 8223 reserved_space = round_up(size - page_start, 8224 fs_info->sectorsize); 8225 if (reserved_space < PAGE_SIZE) { 8226 end = page_start + reserved_space - 1; 8227 btrfs_delalloc_release_space(BTRFS_I(inode), 8228 data_reserved, page_start, 8229 PAGE_SIZE - reserved_space, true); 8230 } 8231 } 8232 8233 /* 8234 * page_mkwrite gets called when the page is firstly dirtied after it's 8235 * faulted in, but write(2) could also dirty a page and set delalloc 8236 * bits, thus in this case for space account reason, we still need to 8237 * clear any delalloc bits within this page range since we have to 8238 * reserve data&meta space before lock_page() (see above comments). 8239 */ 8240 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end, 8241 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | 8242 EXTENT_DEFRAG, &cached_state); 8243 8244 ret2 = btrfs_set_extent_delalloc(BTRFS_I(inode), page_start, end, 0, 8245 &cached_state); 8246 if (ret2) { 8247 unlock_extent(io_tree, page_start, page_end, &cached_state); 8248 ret = VM_FAULT_SIGBUS; 8249 goto out_unlock; 8250 } 8251 8252 /* page is wholly or partially inside EOF */ 8253 if (page_start + PAGE_SIZE > size) 8254 zero_start = offset_in_page(size); 8255 else 8256 zero_start = PAGE_SIZE; 8257 8258 if (zero_start != PAGE_SIZE) 8259 memzero_page(page, zero_start, PAGE_SIZE - zero_start); 8260 8261 btrfs_page_clear_checked(fs_info, page, page_start, PAGE_SIZE); 8262 btrfs_page_set_dirty(fs_info, page, page_start, end + 1 - page_start); 8263 btrfs_page_set_uptodate(fs_info, page, page_start, end + 1 - page_start); 8264 8265 btrfs_set_inode_last_sub_trans(BTRFS_I(inode)); 8266 8267 unlock_extent(io_tree, page_start, page_end, &cached_state); 8268 up_read(&BTRFS_I(inode)->i_mmap_lock); 8269 8270 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE); 8271 sb_end_pagefault(inode->i_sb); 8272 extent_changeset_free(data_reserved); 8273 return VM_FAULT_LOCKED; 8274 8275 out_unlock: 8276 unlock_page(page); 8277 up_read(&BTRFS_I(inode)->i_mmap_lock); 8278 out: 8279 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE); 8280 btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved, page_start, 8281 reserved_space, (ret != 0)); 8282 out_noreserve: 8283 sb_end_pagefault(inode->i_sb); 8284 extent_changeset_free(data_reserved); 8285 return ret; 8286 } 8287 8288 static int btrfs_truncate(struct btrfs_inode *inode, bool skip_writeback) 8289 { 8290 struct btrfs_truncate_control control = { 8291 .inode = inode, 8292 .ino = btrfs_ino(inode), 8293 .min_type = BTRFS_EXTENT_DATA_KEY, 8294 .clear_extent_range = true, 8295 }; 8296 struct btrfs_root *root = inode->root; 8297 struct btrfs_fs_info *fs_info = root->fs_info; 8298 struct btrfs_block_rsv *rsv; 8299 int ret; 8300 struct btrfs_trans_handle *trans; 8301 u64 mask = fs_info->sectorsize - 1; 8302 const u64 min_size = btrfs_calc_metadata_size(fs_info, 1); 8303 8304 if (!skip_writeback) { 8305 ret = btrfs_wait_ordered_range(&inode->vfs_inode, 8306 inode->vfs_inode.i_size & (~mask), 8307 (u64)-1); 8308 if (ret) 8309 return ret; 8310 } 8311 8312 /* 8313 * Yes ladies and gentlemen, this is indeed ugly. We have a couple of 8314 * things going on here: 8315 * 8316 * 1) We need to reserve space to update our inode. 8317 * 8318 * 2) We need to have something to cache all the space that is going to 8319 * be free'd up by the truncate operation, but also have some slack 8320 * space reserved in case it uses space during the truncate (thank you 8321 * very much snapshotting). 8322 * 8323 * And we need these to be separate. The fact is we can use a lot of 8324 * space doing the truncate, and we have no earthly idea how much space 8325 * we will use, so we need the truncate reservation to be separate so it 8326 * doesn't end up using space reserved for updating the inode. We also 8327 * need to be able to stop the transaction and start a new one, which 8328 * means we need to be able to update the inode several times, and we 8329 * have no idea of knowing how many times that will be, so we can't just 8330 * reserve 1 item for the entirety of the operation, so that has to be 8331 * done separately as well. 8332 * 8333 * So that leaves us with 8334 * 8335 * 1) rsv - for the truncate reservation, which we will steal from the 8336 * transaction reservation. 8337 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for 8338 * updating the inode. 8339 */ 8340 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP); 8341 if (!rsv) 8342 return -ENOMEM; 8343 rsv->size = min_size; 8344 rsv->failfast = true; 8345 8346 /* 8347 * 1 for the truncate slack space 8348 * 1 for updating the inode. 8349 */ 8350 trans = btrfs_start_transaction(root, 2); 8351 if (IS_ERR(trans)) { 8352 ret = PTR_ERR(trans); 8353 goto out; 8354 } 8355 8356 /* Migrate the slack space for the truncate to our reserve */ 8357 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv, 8358 min_size, false); 8359 /* 8360 * We have reserved 2 metadata units when we started the transaction and 8361 * min_size matches 1 unit, so this should never fail, but if it does, 8362 * it's not critical we just fail truncation. 8363 */ 8364 if (WARN_ON(ret)) { 8365 btrfs_end_transaction(trans); 8366 goto out; 8367 } 8368 8369 trans->block_rsv = rsv; 8370 8371 while (1) { 8372 struct extent_state *cached_state = NULL; 8373 const u64 new_size = inode->vfs_inode.i_size; 8374 const u64 lock_start = ALIGN_DOWN(new_size, fs_info->sectorsize); 8375 8376 control.new_size = new_size; 8377 lock_extent(&inode->io_tree, lock_start, (u64)-1, &cached_state); 8378 /* 8379 * We want to drop from the next block forward in case this new 8380 * size is not block aligned since we will be keeping the last 8381 * block of the extent just the way it is. 8382 */ 8383 btrfs_drop_extent_map_range(inode, 8384 ALIGN(new_size, fs_info->sectorsize), 8385 (u64)-1, false); 8386 8387 ret = btrfs_truncate_inode_items(trans, root, &control); 8388 8389 inode_sub_bytes(&inode->vfs_inode, control.sub_bytes); 8390 btrfs_inode_safe_disk_i_size_write(inode, control.last_size); 8391 8392 unlock_extent(&inode->io_tree, lock_start, (u64)-1, &cached_state); 8393 8394 trans->block_rsv = &fs_info->trans_block_rsv; 8395 if (ret != -ENOSPC && ret != -EAGAIN) 8396 break; 8397 8398 ret = btrfs_update_inode(trans, root, inode); 8399 if (ret) 8400 break; 8401 8402 btrfs_end_transaction(trans); 8403 btrfs_btree_balance_dirty(fs_info); 8404 8405 trans = btrfs_start_transaction(root, 2); 8406 if (IS_ERR(trans)) { 8407 ret = PTR_ERR(trans); 8408 trans = NULL; 8409 break; 8410 } 8411 8412 btrfs_block_rsv_release(fs_info, rsv, -1, NULL); 8413 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, 8414 rsv, min_size, false); 8415 /* 8416 * We have reserved 2 metadata units when we started the 8417 * transaction and min_size matches 1 unit, so this should never 8418 * fail, but if it does, it's not critical we just fail truncation. 8419 */ 8420 if (WARN_ON(ret)) 8421 break; 8422 8423 trans->block_rsv = rsv; 8424 } 8425 8426 /* 8427 * We can't call btrfs_truncate_block inside a trans handle as we could 8428 * deadlock with freeze, if we got BTRFS_NEED_TRUNCATE_BLOCK then we 8429 * know we've truncated everything except the last little bit, and can 8430 * do btrfs_truncate_block and then update the disk_i_size. 8431 */ 8432 if (ret == BTRFS_NEED_TRUNCATE_BLOCK) { 8433 btrfs_end_transaction(trans); 8434 btrfs_btree_balance_dirty(fs_info); 8435 8436 ret = btrfs_truncate_block(inode, inode->vfs_inode.i_size, 0, 0); 8437 if (ret) 8438 goto out; 8439 trans = btrfs_start_transaction(root, 1); 8440 if (IS_ERR(trans)) { 8441 ret = PTR_ERR(trans); 8442 goto out; 8443 } 8444 btrfs_inode_safe_disk_i_size_write(inode, 0); 8445 } 8446 8447 if (trans) { 8448 int ret2; 8449 8450 trans->block_rsv = &fs_info->trans_block_rsv; 8451 ret2 = btrfs_update_inode(trans, root, inode); 8452 if (ret2 && !ret) 8453 ret = ret2; 8454 8455 ret2 = btrfs_end_transaction(trans); 8456 if (ret2 && !ret) 8457 ret = ret2; 8458 btrfs_btree_balance_dirty(fs_info); 8459 } 8460 out: 8461 btrfs_free_block_rsv(fs_info, rsv); 8462 /* 8463 * So if we truncate and then write and fsync we normally would just 8464 * write the extents that changed, which is a problem if we need to 8465 * first truncate that entire inode. So set this flag so we write out 8466 * all of the extents in the inode to the sync log so we're completely 8467 * safe. 8468 * 8469 * If no extents were dropped or trimmed we don't need to force the next 8470 * fsync to truncate all the inode's items from the log and re-log them 8471 * all. This means the truncate operation did not change the file size, 8472 * or changed it to a smaller size but there was only an implicit hole 8473 * between the old i_size and the new i_size, and there were no prealloc 8474 * extents beyond i_size to drop. 8475 */ 8476 if (control.extents_found > 0) 8477 btrfs_set_inode_full_sync(inode); 8478 8479 return ret; 8480 } 8481 8482 struct inode *btrfs_new_subvol_inode(struct mnt_idmap *idmap, 8483 struct inode *dir) 8484 { 8485 struct inode *inode; 8486 8487 inode = new_inode(dir->i_sb); 8488 if (inode) { 8489 /* 8490 * Subvolumes don't inherit the sgid bit or the parent's gid if 8491 * the parent's sgid bit is set. This is probably a bug. 8492 */ 8493 inode_init_owner(idmap, inode, NULL, 8494 S_IFDIR | (~current_umask() & S_IRWXUGO)); 8495 inode->i_op = &btrfs_dir_inode_operations; 8496 inode->i_fop = &btrfs_dir_file_operations; 8497 } 8498 return inode; 8499 } 8500 8501 struct inode *btrfs_alloc_inode(struct super_block *sb) 8502 { 8503 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 8504 struct btrfs_inode *ei; 8505 struct inode *inode; 8506 8507 ei = alloc_inode_sb(sb, btrfs_inode_cachep, GFP_KERNEL); 8508 if (!ei) 8509 return NULL; 8510 8511 ei->root = NULL; 8512 ei->generation = 0; 8513 ei->last_trans = 0; 8514 ei->last_sub_trans = 0; 8515 ei->logged_trans = 0; 8516 ei->delalloc_bytes = 0; 8517 ei->new_delalloc_bytes = 0; 8518 ei->defrag_bytes = 0; 8519 ei->disk_i_size = 0; 8520 ei->flags = 0; 8521 ei->ro_flags = 0; 8522 ei->csum_bytes = 0; 8523 ei->index_cnt = (u64)-1; 8524 ei->dir_index = 0; 8525 ei->last_unlink_trans = 0; 8526 ei->last_reflink_trans = 0; 8527 ei->last_log_commit = 0; 8528 8529 spin_lock_init(&ei->lock); 8530 ei->outstanding_extents = 0; 8531 if (sb->s_magic != BTRFS_TEST_MAGIC) 8532 btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv, 8533 BTRFS_BLOCK_RSV_DELALLOC); 8534 ei->runtime_flags = 0; 8535 ei->prop_compress = BTRFS_COMPRESS_NONE; 8536 ei->defrag_compress = BTRFS_COMPRESS_NONE; 8537 8538 ei->delayed_node = NULL; 8539 8540 ei->i_otime.tv_sec = 0; 8541 ei->i_otime.tv_nsec = 0; 8542 8543 inode = &ei->vfs_inode; 8544 extent_map_tree_init(&ei->extent_tree); 8545 extent_io_tree_init(fs_info, &ei->io_tree, IO_TREE_INODE_IO); 8546 ei->io_tree.inode = ei; 8547 extent_io_tree_init(fs_info, &ei->file_extent_tree, 8548 IO_TREE_INODE_FILE_EXTENT); 8549 mutex_init(&ei->log_mutex); 8550 btrfs_ordered_inode_tree_init(&ei->ordered_tree); 8551 INIT_LIST_HEAD(&ei->delalloc_inodes); 8552 INIT_LIST_HEAD(&ei->delayed_iput); 8553 RB_CLEAR_NODE(&ei->rb_node); 8554 init_rwsem(&ei->i_mmap_lock); 8555 8556 return inode; 8557 } 8558 8559 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 8560 void btrfs_test_destroy_inode(struct inode *inode) 8561 { 8562 btrfs_drop_extent_map_range(BTRFS_I(inode), 0, (u64)-1, false); 8563 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 8564 } 8565 #endif 8566 8567 void btrfs_free_inode(struct inode *inode) 8568 { 8569 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 8570 } 8571 8572 void btrfs_destroy_inode(struct inode *vfs_inode) 8573 { 8574 struct btrfs_ordered_extent *ordered; 8575 struct btrfs_inode *inode = BTRFS_I(vfs_inode); 8576 struct btrfs_root *root = inode->root; 8577 bool freespace_inode; 8578 8579 WARN_ON(!hlist_empty(&vfs_inode->i_dentry)); 8580 WARN_ON(vfs_inode->i_data.nrpages); 8581 WARN_ON(inode->block_rsv.reserved); 8582 WARN_ON(inode->block_rsv.size); 8583 WARN_ON(inode->outstanding_extents); 8584 if (!S_ISDIR(vfs_inode->i_mode)) { 8585 WARN_ON(inode->delalloc_bytes); 8586 WARN_ON(inode->new_delalloc_bytes); 8587 } 8588 WARN_ON(inode->csum_bytes); 8589 WARN_ON(inode->defrag_bytes); 8590 8591 /* 8592 * This can happen where we create an inode, but somebody else also 8593 * created the same inode and we need to destroy the one we already 8594 * created. 8595 */ 8596 if (!root) 8597 return; 8598 8599 /* 8600 * If this is a free space inode do not take the ordered extents lockdep 8601 * map. 8602 */ 8603 freespace_inode = btrfs_is_free_space_inode(inode); 8604 8605 while (1) { 8606 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1); 8607 if (!ordered) 8608 break; 8609 else { 8610 btrfs_err(root->fs_info, 8611 "found ordered extent %llu %llu on inode cleanup", 8612 ordered->file_offset, ordered->num_bytes); 8613 8614 if (!freespace_inode) 8615 btrfs_lockdep_acquire(root->fs_info, btrfs_ordered_extent); 8616 8617 btrfs_remove_ordered_extent(inode, ordered); 8618 btrfs_put_ordered_extent(ordered); 8619 btrfs_put_ordered_extent(ordered); 8620 } 8621 } 8622 btrfs_qgroup_check_reserved_leak(inode); 8623 inode_tree_del(inode); 8624 btrfs_drop_extent_map_range(inode, 0, (u64)-1, false); 8625 btrfs_inode_clear_file_extent_range(inode, 0, (u64)-1); 8626 btrfs_put_root(inode->root); 8627 } 8628 8629 int btrfs_drop_inode(struct inode *inode) 8630 { 8631 struct btrfs_root *root = BTRFS_I(inode)->root; 8632 8633 if (root == NULL) 8634 return 1; 8635 8636 /* the snap/subvol tree is on deleting */ 8637 if (btrfs_root_refs(&root->root_item) == 0) 8638 return 1; 8639 else 8640 return generic_drop_inode(inode); 8641 } 8642 8643 static void init_once(void *foo) 8644 { 8645 struct btrfs_inode *ei = foo; 8646 8647 inode_init_once(&ei->vfs_inode); 8648 } 8649 8650 void __cold btrfs_destroy_cachep(void) 8651 { 8652 /* 8653 * Make sure all delayed rcu free inodes are flushed before we 8654 * destroy cache. 8655 */ 8656 rcu_barrier(); 8657 bioset_exit(&btrfs_dio_bioset); 8658 kmem_cache_destroy(btrfs_inode_cachep); 8659 } 8660 8661 int __init btrfs_init_cachep(void) 8662 { 8663 btrfs_inode_cachep = kmem_cache_create("btrfs_inode", 8664 sizeof(struct btrfs_inode), 0, 8665 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT, 8666 init_once); 8667 if (!btrfs_inode_cachep) 8668 goto fail; 8669 8670 if (bioset_init(&btrfs_dio_bioset, BIO_POOL_SIZE, 8671 offsetof(struct btrfs_dio_private, bbio.bio), 8672 BIOSET_NEED_BVECS)) 8673 goto fail; 8674 8675 return 0; 8676 fail: 8677 btrfs_destroy_cachep(); 8678 return -ENOMEM; 8679 } 8680 8681 static int btrfs_getattr(struct mnt_idmap *idmap, 8682 const struct path *path, struct kstat *stat, 8683 u32 request_mask, unsigned int flags) 8684 { 8685 u64 delalloc_bytes; 8686 u64 inode_bytes; 8687 struct inode *inode = d_inode(path->dentry); 8688 u32 blocksize = inode->i_sb->s_blocksize; 8689 u32 bi_flags = BTRFS_I(inode)->flags; 8690 u32 bi_ro_flags = BTRFS_I(inode)->ro_flags; 8691 8692 stat->result_mask |= STATX_BTIME; 8693 stat->btime.tv_sec = BTRFS_I(inode)->i_otime.tv_sec; 8694 stat->btime.tv_nsec = BTRFS_I(inode)->i_otime.tv_nsec; 8695 if (bi_flags & BTRFS_INODE_APPEND) 8696 stat->attributes |= STATX_ATTR_APPEND; 8697 if (bi_flags & BTRFS_INODE_COMPRESS) 8698 stat->attributes |= STATX_ATTR_COMPRESSED; 8699 if (bi_flags & BTRFS_INODE_IMMUTABLE) 8700 stat->attributes |= STATX_ATTR_IMMUTABLE; 8701 if (bi_flags & BTRFS_INODE_NODUMP) 8702 stat->attributes |= STATX_ATTR_NODUMP; 8703 if (bi_ro_flags & BTRFS_INODE_RO_VERITY) 8704 stat->attributes |= STATX_ATTR_VERITY; 8705 8706 stat->attributes_mask |= (STATX_ATTR_APPEND | 8707 STATX_ATTR_COMPRESSED | 8708 STATX_ATTR_IMMUTABLE | 8709 STATX_ATTR_NODUMP); 8710 8711 generic_fillattr(idmap, request_mask, inode, stat); 8712 stat->dev = BTRFS_I(inode)->root->anon_dev; 8713 8714 spin_lock(&BTRFS_I(inode)->lock); 8715 delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes; 8716 inode_bytes = inode_get_bytes(inode); 8717 spin_unlock(&BTRFS_I(inode)->lock); 8718 stat->blocks = (ALIGN(inode_bytes, blocksize) + 8719 ALIGN(delalloc_bytes, blocksize)) >> SECTOR_SHIFT; 8720 return 0; 8721 } 8722 8723 static int btrfs_rename_exchange(struct inode *old_dir, 8724 struct dentry *old_dentry, 8725 struct inode *new_dir, 8726 struct dentry *new_dentry) 8727 { 8728 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb); 8729 struct btrfs_trans_handle *trans; 8730 unsigned int trans_num_items; 8731 struct btrfs_root *root = BTRFS_I(old_dir)->root; 8732 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 8733 struct inode *new_inode = new_dentry->d_inode; 8734 struct inode *old_inode = old_dentry->d_inode; 8735 struct btrfs_rename_ctx old_rename_ctx; 8736 struct btrfs_rename_ctx new_rename_ctx; 8737 u64 old_ino = btrfs_ino(BTRFS_I(old_inode)); 8738 u64 new_ino = btrfs_ino(BTRFS_I(new_inode)); 8739 u64 old_idx = 0; 8740 u64 new_idx = 0; 8741 int ret; 8742 int ret2; 8743 bool need_abort = false; 8744 struct fscrypt_name old_fname, new_fname; 8745 struct fscrypt_str *old_name, *new_name; 8746 8747 /* 8748 * For non-subvolumes allow exchange only within one subvolume, in the 8749 * same inode namespace. Two subvolumes (represented as directory) can 8750 * be exchanged as they're a logical link and have a fixed inode number. 8751 */ 8752 if (root != dest && 8753 (old_ino != BTRFS_FIRST_FREE_OBJECTID || 8754 new_ino != BTRFS_FIRST_FREE_OBJECTID)) 8755 return -EXDEV; 8756 8757 ret = fscrypt_setup_filename(old_dir, &old_dentry->d_name, 0, &old_fname); 8758 if (ret) 8759 return ret; 8760 8761 ret = fscrypt_setup_filename(new_dir, &new_dentry->d_name, 0, &new_fname); 8762 if (ret) { 8763 fscrypt_free_filename(&old_fname); 8764 return ret; 8765 } 8766 8767 old_name = &old_fname.disk_name; 8768 new_name = &new_fname.disk_name; 8769 8770 /* close the race window with snapshot create/destroy ioctl */ 8771 if (old_ino == BTRFS_FIRST_FREE_OBJECTID || 8772 new_ino == BTRFS_FIRST_FREE_OBJECTID) 8773 down_read(&fs_info->subvol_sem); 8774 8775 /* 8776 * For each inode: 8777 * 1 to remove old dir item 8778 * 1 to remove old dir index 8779 * 1 to add new dir item 8780 * 1 to add new dir index 8781 * 1 to update parent inode 8782 * 8783 * If the parents are the same, we only need to account for one 8784 */ 8785 trans_num_items = (old_dir == new_dir ? 9 : 10); 8786 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 8787 /* 8788 * 1 to remove old root ref 8789 * 1 to remove old root backref 8790 * 1 to add new root ref 8791 * 1 to add new root backref 8792 */ 8793 trans_num_items += 4; 8794 } else { 8795 /* 8796 * 1 to update inode item 8797 * 1 to remove old inode ref 8798 * 1 to add new inode ref 8799 */ 8800 trans_num_items += 3; 8801 } 8802 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) 8803 trans_num_items += 4; 8804 else 8805 trans_num_items += 3; 8806 trans = btrfs_start_transaction(root, trans_num_items); 8807 if (IS_ERR(trans)) { 8808 ret = PTR_ERR(trans); 8809 goto out_notrans; 8810 } 8811 8812 if (dest != root) { 8813 ret = btrfs_record_root_in_trans(trans, dest); 8814 if (ret) 8815 goto out_fail; 8816 } 8817 8818 /* 8819 * We need to find a free sequence number both in the source and 8820 * in the destination directory for the exchange. 8821 */ 8822 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx); 8823 if (ret) 8824 goto out_fail; 8825 ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx); 8826 if (ret) 8827 goto out_fail; 8828 8829 BTRFS_I(old_inode)->dir_index = 0ULL; 8830 BTRFS_I(new_inode)->dir_index = 0ULL; 8831 8832 /* Reference for the source. */ 8833 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 8834 /* force full log commit if subvolume involved. */ 8835 btrfs_set_log_full_commit(trans); 8836 } else { 8837 ret = btrfs_insert_inode_ref(trans, dest, new_name, old_ino, 8838 btrfs_ino(BTRFS_I(new_dir)), 8839 old_idx); 8840 if (ret) 8841 goto out_fail; 8842 need_abort = true; 8843 } 8844 8845 /* And now for the dest. */ 8846 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) { 8847 /* force full log commit if subvolume involved. */ 8848 btrfs_set_log_full_commit(trans); 8849 } else { 8850 ret = btrfs_insert_inode_ref(trans, root, old_name, new_ino, 8851 btrfs_ino(BTRFS_I(old_dir)), 8852 new_idx); 8853 if (ret) { 8854 if (need_abort) 8855 btrfs_abort_transaction(trans, ret); 8856 goto out_fail; 8857 } 8858 } 8859 8860 /* Update inode version and ctime/mtime. */ 8861 inode_inc_iversion(old_dir); 8862 inode_inc_iversion(new_dir); 8863 inode_inc_iversion(old_inode); 8864 inode_inc_iversion(new_inode); 8865 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry); 8866 8867 if (old_dentry->d_parent != new_dentry->d_parent) { 8868 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir), 8869 BTRFS_I(old_inode), true); 8870 btrfs_record_unlink_dir(trans, BTRFS_I(new_dir), 8871 BTRFS_I(new_inode), true); 8872 } 8873 8874 /* src is a subvolume */ 8875 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 8876 ret = btrfs_unlink_subvol(trans, BTRFS_I(old_dir), old_dentry); 8877 } else { /* src is an inode */ 8878 ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir), 8879 BTRFS_I(old_dentry->d_inode), 8880 old_name, &old_rename_ctx); 8881 if (!ret) 8882 ret = btrfs_update_inode(trans, root, BTRFS_I(old_inode)); 8883 } 8884 if (ret) { 8885 btrfs_abort_transaction(trans, ret); 8886 goto out_fail; 8887 } 8888 8889 /* dest is a subvolume */ 8890 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) { 8891 ret = btrfs_unlink_subvol(trans, BTRFS_I(new_dir), new_dentry); 8892 } else { /* dest is an inode */ 8893 ret = __btrfs_unlink_inode(trans, BTRFS_I(new_dir), 8894 BTRFS_I(new_dentry->d_inode), 8895 new_name, &new_rename_ctx); 8896 if (!ret) 8897 ret = btrfs_update_inode(trans, dest, BTRFS_I(new_inode)); 8898 } 8899 if (ret) { 8900 btrfs_abort_transaction(trans, ret); 8901 goto out_fail; 8902 } 8903 8904 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode), 8905 new_name, 0, old_idx); 8906 if (ret) { 8907 btrfs_abort_transaction(trans, ret); 8908 goto out_fail; 8909 } 8910 8911 ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode), 8912 old_name, 0, new_idx); 8913 if (ret) { 8914 btrfs_abort_transaction(trans, ret); 8915 goto out_fail; 8916 } 8917 8918 if (old_inode->i_nlink == 1) 8919 BTRFS_I(old_inode)->dir_index = old_idx; 8920 if (new_inode->i_nlink == 1) 8921 BTRFS_I(new_inode)->dir_index = new_idx; 8922 8923 /* 8924 * Now pin the logs of the roots. We do it to ensure that no other task 8925 * can sync the logs while we are in progress with the rename, because 8926 * that could result in an inconsistency in case any of the inodes that 8927 * are part of this rename operation were logged before. 8928 */ 8929 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) 8930 btrfs_pin_log_trans(root); 8931 if (new_ino != BTRFS_FIRST_FREE_OBJECTID) 8932 btrfs_pin_log_trans(dest); 8933 8934 /* Do the log updates for all inodes. */ 8935 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) 8936 btrfs_log_new_name(trans, old_dentry, BTRFS_I(old_dir), 8937 old_rename_ctx.index, new_dentry->d_parent); 8938 if (new_ino != BTRFS_FIRST_FREE_OBJECTID) 8939 btrfs_log_new_name(trans, new_dentry, BTRFS_I(new_dir), 8940 new_rename_ctx.index, old_dentry->d_parent); 8941 8942 /* Now unpin the logs. */ 8943 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) 8944 btrfs_end_log_trans(root); 8945 if (new_ino != BTRFS_FIRST_FREE_OBJECTID) 8946 btrfs_end_log_trans(dest); 8947 out_fail: 8948 ret2 = btrfs_end_transaction(trans); 8949 ret = ret ? ret : ret2; 8950 out_notrans: 8951 if (new_ino == BTRFS_FIRST_FREE_OBJECTID || 8952 old_ino == BTRFS_FIRST_FREE_OBJECTID) 8953 up_read(&fs_info->subvol_sem); 8954 8955 fscrypt_free_filename(&new_fname); 8956 fscrypt_free_filename(&old_fname); 8957 return ret; 8958 } 8959 8960 static struct inode *new_whiteout_inode(struct mnt_idmap *idmap, 8961 struct inode *dir) 8962 { 8963 struct inode *inode; 8964 8965 inode = new_inode(dir->i_sb); 8966 if (inode) { 8967 inode_init_owner(idmap, inode, dir, 8968 S_IFCHR | WHITEOUT_MODE); 8969 inode->i_op = &btrfs_special_inode_operations; 8970 init_special_inode(inode, inode->i_mode, WHITEOUT_DEV); 8971 } 8972 return inode; 8973 } 8974 8975 static int btrfs_rename(struct mnt_idmap *idmap, 8976 struct inode *old_dir, struct dentry *old_dentry, 8977 struct inode *new_dir, struct dentry *new_dentry, 8978 unsigned int flags) 8979 { 8980 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb); 8981 struct btrfs_new_inode_args whiteout_args = { 8982 .dir = old_dir, 8983 .dentry = old_dentry, 8984 }; 8985 struct btrfs_trans_handle *trans; 8986 unsigned int trans_num_items; 8987 struct btrfs_root *root = BTRFS_I(old_dir)->root; 8988 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 8989 struct inode *new_inode = d_inode(new_dentry); 8990 struct inode *old_inode = d_inode(old_dentry); 8991 struct btrfs_rename_ctx rename_ctx; 8992 u64 index = 0; 8993 int ret; 8994 int ret2; 8995 u64 old_ino = btrfs_ino(BTRFS_I(old_inode)); 8996 struct fscrypt_name old_fname, new_fname; 8997 8998 if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 8999 return -EPERM; 9000 9001 /* we only allow rename subvolume link between subvolumes */ 9002 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest) 9003 return -EXDEV; 9004 9005 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID || 9006 (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID)) 9007 return -ENOTEMPTY; 9008 9009 if (S_ISDIR(old_inode->i_mode) && new_inode && 9010 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) 9011 return -ENOTEMPTY; 9012 9013 ret = fscrypt_setup_filename(old_dir, &old_dentry->d_name, 0, &old_fname); 9014 if (ret) 9015 return ret; 9016 9017 ret = fscrypt_setup_filename(new_dir, &new_dentry->d_name, 0, &new_fname); 9018 if (ret) { 9019 fscrypt_free_filename(&old_fname); 9020 return ret; 9021 } 9022 9023 /* check for collisions, even if the name isn't there */ 9024 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino, &new_fname.disk_name); 9025 if (ret) { 9026 if (ret == -EEXIST) { 9027 /* we shouldn't get 9028 * eexist without a new_inode */ 9029 if (WARN_ON(!new_inode)) { 9030 goto out_fscrypt_names; 9031 } 9032 } else { 9033 /* maybe -EOVERFLOW */ 9034 goto out_fscrypt_names; 9035 } 9036 } 9037 ret = 0; 9038 9039 /* 9040 * we're using rename to replace one file with another. Start IO on it 9041 * now so we don't add too much work to the end of the transaction 9042 */ 9043 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size) 9044 filemap_flush(old_inode->i_mapping); 9045 9046 if (flags & RENAME_WHITEOUT) { 9047 whiteout_args.inode = new_whiteout_inode(idmap, old_dir); 9048 if (!whiteout_args.inode) { 9049 ret = -ENOMEM; 9050 goto out_fscrypt_names; 9051 } 9052 ret = btrfs_new_inode_prepare(&whiteout_args, &trans_num_items); 9053 if (ret) 9054 goto out_whiteout_inode; 9055 } else { 9056 /* 1 to update the old parent inode. */ 9057 trans_num_items = 1; 9058 } 9059 9060 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 9061 /* Close the race window with snapshot create/destroy ioctl */ 9062 down_read(&fs_info->subvol_sem); 9063 /* 9064 * 1 to remove old root ref 9065 * 1 to remove old root backref 9066 * 1 to add new root ref 9067 * 1 to add new root backref 9068 */ 9069 trans_num_items += 4; 9070 } else { 9071 /* 9072 * 1 to update inode 9073 * 1 to remove old inode ref 9074 * 1 to add new inode ref 9075 */ 9076 trans_num_items += 3; 9077 } 9078 /* 9079 * 1 to remove old dir item 9080 * 1 to remove old dir index 9081 * 1 to add new dir item 9082 * 1 to add new dir index 9083 */ 9084 trans_num_items += 4; 9085 /* 1 to update new parent inode if it's not the same as the old parent */ 9086 if (new_dir != old_dir) 9087 trans_num_items++; 9088 if (new_inode) { 9089 /* 9090 * 1 to update inode 9091 * 1 to remove inode ref 9092 * 1 to remove dir item 9093 * 1 to remove dir index 9094 * 1 to possibly add orphan item 9095 */ 9096 trans_num_items += 5; 9097 } 9098 trans = btrfs_start_transaction(root, trans_num_items); 9099 if (IS_ERR(trans)) { 9100 ret = PTR_ERR(trans); 9101 goto out_notrans; 9102 } 9103 9104 if (dest != root) { 9105 ret = btrfs_record_root_in_trans(trans, dest); 9106 if (ret) 9107 goto out_fail; 9108 } 9109 9110 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index); 9111 if (ret) 9112 goto out_fail; 9113 9114 BTRFS_I(old_inode)->dir_index = 0ULL; 9115 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 9116 /* force full log commit if subvolume involved. */ 9117 btrfs_set_log_full_commit(trans); 9118 } else { 9119 ret = btrfs_insert_inode_ref(trans, dest, &new_fname.disk_name, 9120 old_ino, btrfs_ino(BTRFS_I(new_dir)), 9121 index); 9122 if (ret) 9123 goto out_fail; 9124 } 9125 9126 inode_inc_iversion(old_dir); 9127 inode_inc_iversion(new_dir); 9128 inode_inc_iversion(old_inode); 9129 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry); 9130 9131 if (old_dentry->d_parent != new_dentry->d_parent) 9132 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir), 9133 BTRFS_I(old_inode), true); 9134 9135 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 9136 ret = btrfs_unlink_subvol(trans, BTRFS_I(old_dir), old_dentry); 9137 } else { 9138 ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir), 9139 BTRFS_I(d_inode(old_dentry)), 9140 &old_fname.disk_name, &rename_ctx); 9141 if (!ret) 9142 ret = btrfs_update_inode(trans, root, BTRFS_I(old_inode)); 9143 } 9144 if (ret) { 9145 btrfs_abort_transaction(trans, ret); 9146 goto out_fail; 9147 } 9148 9149 if (new_inode) { 9150 inode_inc_iversion(new_inode); 9151 if (unlikely(btrfs_ino(BTRFS_I(new_inode)) == 9152 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 9153 ret = btrfs_unlink_subvol(trans, BTRFS_I(new_dir), new_dentry); 9154 BUG_ON(new_inode->i_nlink == 0); 9155 } else { 9156 ret = btrfs_unlink_inode(trans, BTRFS_I(new_dir), 9157 BTRFS_I(d_inode(new_dentry)), 9158 &new_fname.disk_name); 9159 } 9160 if (!ret && new_inode->i_nlink == 0) 9161 ret = btrfs_orphan_add(trans, 9162 BTRFS_I(d_inode(new_dentry))); 9163 if (ret) { 9164 btrfs_abort_transaction(trans, ret); 9165 goto out_fail; 9166 } 9167 } 9168 9169 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode), 9170 &new_fname.disk_name, 0, index); 9171 if (ret) { 9172 btrfs_abort_transaction(trans, ret); 9173 goto out_fail; 9174 } 9175 9176 if (old_inode->i_nlink == 1) 9177 BTRFS_I(old_inode)->dir_index = index; 9178 9179 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) 9180 btrfs_log_new_name(trans, old_dentry, BTRFS_I(old_dir), 9181 rename_ctx.index, new_dentry->d_parent); 9182 9183 if (flags & RENAME_WHITEOUT) { 9184 ret = btrfs_create_new_inode(trans, &whiteout_args); 9185 if (ret) { 9186 btrfs_abort_transaction(trans, ret); 9187 goto out_fail; 9188 } else { 9189 unlock_new_inode(whiteout_args.inode); 9190 iput(whiteout_args.inode); 9191 whiteout_args.inode = NULL; 9192 } 9193 } 9194 out_fail: 9195 ret2 = btrfs_end_transaction(trans); 9196 ret = ret ? ret : ret2; 9197 out_notrans: 9198 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 9199 up_read(&fs_info->subvol_sem); 9200 if (flags & RENAME_WHITEOUT) 9201 btrfs_new_inode_args_destroy(&whiteout_args); 9202 out_whiteout_inode: 9203 if (flags & RENAME_WHITEOUT) 9204 iput(whiteout_args.inode); 9205 out_fscrypt_names: 9206 fscrypt_free_filename(&old_fname); 9207 fscrypt_free_filename(&new_fname); 9208 return ret; 9209 } 9210 9211 static int btrfs_rename2(struct mnt_idmap *idmap, struct inode *old_dir, 9212 struct dentry *old_dentry, struct inode *new_dir, 9213 struct dentry *new_dentry, unsigned int flags) 9214 { 9215 int ret; 9216 9217 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 9218 return -EINVAL; 9219 9220 if (flags & RENAME_EXCHANGE) 9221 ret = btrfs_rename_exchange(old_dir, old_dentry, new_dir, 9222 new_dentry); 9223 else 9224 ret = btrfs_rename(idmap, old_dir, old_dentry, new_dir, 9225 new_dentry, flags); 9226 9227 btrfs_btree_balance_dirty(BTRFS_I(new_dir)->root->fs_info); 9228 9229 return ret; 9230 } 9231 9232 struct btrfs_delalloc_work { 9233 struct inode *inode; 9234 struct completion completion; 9235 struct list_head list; 9236 struct btrfs_work work; 9237 }; 9238 9239 static void btrfs_run_delalloc_work(struct btrfs_work *work) 9240 { 9241 struct btrfs_delalloc_work *delalloc_work; 9242 struct inode *inode; 9243 9244 delalloc_work = container_of(work, struct btrfs_delalloc_work, 9245 work); 9246 inode = delalloc_work->inode; 9247 filemap_flush(inode->i_mapping); 9248 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 9249 &BTRFS_I(inode)->runtime_flags)) 9250 filemap_flush(inode->i_mapping); 9251 9252 iput(inode); 9253 complete(&delalloc_work->completion); 9254 } 9255 9256 static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode) 9257 { 9258 struct btrfs_delalloc_work *work; 9259 9260 work = kmalloc(sizeof(*work), GFP_NOFS); 9261 if (!work) 9262 return NULL; 9263 9264 init_completion(&work->completion); 9265 INIT_LIST_HEAD(&work->list); 9266 work->inode = inode; 9267 btrfs_init_work(&work->work, btrfs_run_delalloc_work, NULL, NULL); 9268 9269 return work; 9270 } 9271 9272 /* 9273 * some fairly slow code that needs optimization. This walks the list 9274 * of all the inodes with pending delalloc and forces them to disk. 9275 */ 9276 static int start_delalloc_inodes(struct btrfs_root *root, 9277 struct writeback_control *wbc, bool snapshot, 9278 bool in_reclaim_context) 9279 { 9280 struct btrfs_inode *binode; 9281 struct inode *inode; 9282 struct btrfs_delalloc_work *work, *next; 9283 LIST_HEAD(works); 9284 LIST_HEAD(splice); 9285 int ret = 0; 9286 bool full_flush = wbc->nr_to_write == LONG_MAX; 9287 9288 mutex_lock(&root->delalloc_mutex); 9289 spin_lock(&root->delalloc_lock); 9290 list_splice_init(&root->delalloc_inodes, &splice); 9291 while (!list_empty(&splice)) { 9292 binode = list_entry(splice.next, struct btrfs_inode, 9293 delalloc_inodes); 9294 9295 list_move_tail(&binode->delalloc_inodes, 9296 &root->delalloc_inodes); 9297 9298 if (in_reclaim_context && 9299 test_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &binode->runtime_flags)) 9300 continue; 9301 9302 inode = igrab(&binode->vfs_inode); 9303 if (!inode) { 9304 cond_resched_lock(&root->delalloc_lock); 9305 continue; 9306 } 9307 spin_unlock(&root->delalloc_lock); 9308 9309 if (snapshot) 9310 set_bit(BTRFS_INODE_SNAPSHOT_FLUSH, 9311 &binode->runtime_flags); 9312 if (full_flush) { 9313 work = btrfs_alloc_delalloc_work(inode); 9314 if (!work) { 9315 iput(inode); 9316 ret = -ENOMEM; 9317 goto out; 9318 } 9319 list_add_tail(&work->list, &works); 9320 btrfs_queue_work(root->fs_info->flush_workers, 9321 &work->work); 9322 } else { 9323 ret = filemap_fdatawrite_wbc(inode->i_mapping, wbc); 9324 btrfs_add_delayed_iput(BTRFS_I(inode)); 9325 if (ret || wbc->nr_to_write <= 0) 9326 goto out; 9327 } 9328 cond_resched(); 9329 spin_lock(&root->delalloc_lock); 9330 } 9331 spin_unlock(&root->delalloc_lock); 9332 9333 out: 9334 list_for_each_entry_safe(work, next, &works, list) { 9335 list_del_init(&work->list); 9336 wait_for_completion(&work->completion); 9337 kfree(work); 9338 } 9339 9340 if (!list_empty(&splice)) { 9341 spin_lock(&root->delalloc_lock); 9342 list_splice_tail(&splice, &root->delalloc_inodes); 9343 spin_unlock(&root->delalloc_lock); 9344 } 9345 mutex_unlock(&root->delalloc_mutex); 9346 return ret; 9347 } 9348 9349 int btrfs_start_delalloc_snapshot(struct btrfs_root *root, bool in_reclaim_context) 9350 { 9351 struct writeback_control wbc = { 9352 .nr_to_write = LONG_MAX, 9353 .sync_mode = WB_SYNC_NONE, 9354 .range_start = 0, 9355 .range_end = LLONG_MAX, 9356 }; 9357 struct btrfs_fs_info *fs_info = root->fs_info; 9358 9359 if (BTRFS_FS_ERROR(fs_info)) 9360 return -EROFS; 9361 9362 return start_delalloc_inodes(root, &wbc, true, in_reclaim_context); 9363 } 9364 9365 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, long nr, 9366 bool in_reclaim_context) 9367 { 9368 struct writeback_control wbc = { 9369 .nr_to_write = nr, 9370 .sync_mode = WB_SYNC_NONE, 9371 .range_start = 0, 9372 .range_end = LLONG_MAX, 9373 }; 9374 struct btrfs_root *root; 9375 LIST_HEAD(splice); 9376 int ret; 9377 9378 if (BTRFS_FS_ERROR(fs_info)) 9379 return -EROFS; 9380 9381 mutex_lock(&fs_info->delalloc_root_mutex); 9382 spin_lock(&fs_info->delalloc_root_lock); 9383 list_splice_init(&fs_info->delalloc_roots, &splice); 9384 while (!list_empty(&splice)) { 9385 /* 9386 * Reset nr_to_write here so we know that we're doing a full 9387 * flush. 9388 */ 9389 if (nr == LONG_MAX) 9390 wbc.nr_to_write = LONG_MAX; 9391 9392 root = list_first_entry(&splice, struct btrfs_root, 9393 delalloc_root); 9394 root = btrfs_grab_root(root); 9395 BUG_ON(!root); 9396 list_move_tail(&root->delalloc_root, 9397 &fs_info->delalloc_roots); 9398 spin_unlock(&fs_info->delalloc_root_lock); 9399 9400 ret = start_delalloc_inodes(root, &wbc, false, in_reclaim_context); 9401 btrfs_put_root(root); 9402 if (ret < 0 || wbc.nr_to_write <= 0) 9403 goto out; 9404 spin_lock(&fs_info->delalloc_root_lock); 9405 } 9406 spin_unlock(&fs_info->delalloc_root_lock); 9407 9408 ret = 0; 9409 out: 9410 if (!list_empty(&splice)) { 9411 spin_lock(&fs_info->delalloc_root_lock); 9412 list_splice_tail(&splice, &fs_info->delalloc_roots); 9413 spin_unlock(&fs_info->delalloc_root_lock); 9414 } 9415 mutex_unlock(&fs_info->delalloc_root_mutex); 9416 return ret; 9417 } 9418 9419 static int btrfs_symlink(struct mnt_idmap *idmap, struct inode *dir, 9420 struct dentry *dentry, const char *symname) 9421 { 9422 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 9423 struct btrfs_trans_handle *trans; 9424 struct btrfs_root *root = BTRFS_I(dir)->root; 9425 struct btrfs_path *path; 9426 struct btrfs_key key; 9427 struct inode *inode; 9428 struct btrfs_new_inode_args new_inode_args = { 9429 .dir = dir, 9430 .dentry = dentry, 9431 }; 9432 unsigned int trans_num_items; 9433 int err; 9434 int name_len; 9435 int datasize; 9436 unsigned long ptr; 9437 struct btrfs_file_extent_item *ei; 9438 struct extent_buffer *leaf; 9439 9440 name_len = strlen(symname); 9441 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info)) 9442 return -ENAMETOOLONG; 9443 9444 inode = new_inode(dir->i_sb); 9445 if (!inode) 9446 return -ENOMEM; 9447 inode_init_owner(idmap, inode, dir, S_IFLNK | S_IRWXUGO); 9448 inode->i_op = &btrfs_symlink_inode_operations; 9449 inode_nohighmem(inode); 9450 inode->i_mapping->a_ops = &btrfs_aops; 9451 btrfs_i_size_write(BTRFS_I(inode), name_len); 9452 inode_set_bytes(inode, name_len); 9453 9454 new_inode_args.inode = inode; 9455 err = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items); 9456 if (err) 9457 goto out_inode; 9458 /* 1 additional item for the inline extent */ 9459 trans_num_items++; 9460 9461 trans = btrfs_start_transaction(root, trans_num_items); 9462 if (IS_ERR(trans)) { 9463 err = PTR_ERR(trans); 9464 goto out_new_inode_args; 9465 } 9466 9467 err = btrfs_create_new_inode(trans, &new_inode_args); 9468 if (err) 9469 goto out; 9470 9471 path = btrfs_alloc_path(); 9472 if (!path) { 9473 err = -ENOMEM; 9474 btrfs_abort_transaction(trans, err); 9475 discard_new_inode(inode); 9476 inode = NULL; 9477 goto out; 9478 } 9479 key.objectid = btrfs_ino(BTRFS_I(inode)); 9480 key.offset = 0; 9481 key.type = BTRFS_EXTENT_DATA_KEY; 9482 datasize = btrfs_file_extent_calc_inline_size(name_len); 9483 err = btrfs_insert_empty_item(trans, root, path, &key, 9484 datasize); 9485 if (err) { 9486 btrfs_abort_transaction(trans, err); 9487 btrfs_free_path(path); 9488 discard_new_inode(inode); 9489 inode = NULL; 9490 goto out; 9491 } 9492 leaf = path->nodes[0]; 9493 ei = btrfs_item_ptr(leaf, path->slots[0], 9494 struct btrfs_file_extent_item); 9495 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 9496 btrfs_set_file_extent_type(leaf, ei, 9497 BTRFS_FILE_EXTENT_INLINE); 9498 btrfs_set_file_extent_encryption(leaf, ei, 0); 9499 btrfs_set_file_extent_compression(leaf, ei, 0); 9500 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 9501 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len); 9502 9503 ptr = btrfs_file_extent_inline_start(ei); 9504 write_extent_buffer(leaf, symname, ptr, name_len); 9505 btrfs_mark_buffer_dirty(trans, leaf); 9506 btrfs_free_path(path); 9507 9508 d_instantiate_new(dentry, inode); 9509 err = 0; 9510 out: 9511 btrfs_end_transaction(trans); 9512 btrfs_btree_balance_dirty(fs_info); 9513 out_new_inode_args: 9514 btrfs_new_inode_args_destroy(&new_inode_args); 9515 out_inode: 9516 if (err) 9517 iput(inode); 9518 return err; 9519 } 9520 9521 static struct btrfs_trans_handle *insert_prealloc_file_extent( 9522 struct btrfs_trans_handle *trans_in, 9523 struct btrfs_inode *inode, 9524 struct btrfs_key *ins, 9525 u64 file_offset) 9526 { 9527 struct btrfs_file_extent_item stack_fi; 9528 struct btrfs_replace_extent_info extent_info; 9529 struct btrfs_trans_handle *trans = trans_in; 9530 struct btrfs_path *path; 9531 u64 start = ins->objectid; 9532 u64 len = ins->offset; 9533 u64 qgroup_released = 0; 9534 int ret; 9535 9536 memset(&stack_fi, 0, sizeof(stack_fi)); 9537 9538 btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_PREALLOC); 9539 btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, start); 9540 btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi, len); 9541 btrfs_set_stack_file_extent_num_bytes(&stack_fi, len); 9542 btrfs_set_stack_file_extent_ram_bytes(&stack_fi, len); 9543 btrfs_set_stack_file_extent_compression(&stack_fi, BTRFS_COMPRESS_NONE); 9544 /* Encryption and other encoding is reserved and all 0 */ 9545 9546 ret = btrfs_qgroup_release_data(inode, file_offset, len, &qgroup_released); 9547 if (ret < 0) 9548 return ERR_PTR(ret); 9549 9550 if (trans) { 9551 ret = insert_reserved_file_extent(trans, inode, 9552 file_offset, &stack_fi, 9553 true, qgroup_released); 9554 if (ret) 9555 goto free_qgroup; 9556 return trans; 9557 } 9558 9559 extent_info.disk_offset = start; 9560 extent_info.disk_len = len; 9561 extent_info.data_offset = 0; 9562 extent_info.data_len = len; 9563 extent_info.file_offset = file_offset; 9564 extent_info.extent_buf = (char *)&stack_fi; 9565 extent_info.is_new_extent = true; 9566 extent_info.update_times = true; 9567 extent_info.qgroup_reserved = qgroup_released; 9568 extent_info.insertions = 0; 9569 9570 path = btrfs_alloc_path(); 9571 if (!path) { 9572 ret = -ENOMEM; 9573 goto free_qgroup; 9574 } 9575 9576 ret = btrfs_replace_file_extents(inode, path, file_offset, 9577 file_offset + len - 1, &extent_info, 9578 &trans); 9579 btrfs_free_path(path); 9580 if (ret) 9581 goto free_qgroup; 9582 return trans; 9583 9584 free_qgroup: 9585 /* 9586 * We have released qgroup data range at the beginning of the function, 9587 * and normally qgroup_released bytes will be freed when committing 9588 * transaction. 9589 * But if we error out early, we have to free what we have released 9590 * or we leak qgroup data reservation. 9591 */ 9592 btrfs_qgroup_free_refroot(inode->root->fs_info, 9593 inode->root->root_key.objectid, qgroup_released, 9594 BTRFS_QGROUP_RSV_DATA); 9595 return ERR_PTR(ret); 9596 } 9597 9598 static int __btrfs_prealloc_file_range(struct inode *inode, int mode, 9599 u64 start, u64 num_bytes, u64 min_size, 9600 loff_t actual_len, u64 *alloc_hint, 9601 struct btrfs_trans_handle *trans) 9602 { 9603 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 9604 struct extent_map *em; 9605 struct btrfs_root *root = BTRFS_I(inode)->root; 9606 struct btrfs_key ins; 9607 u64 cur_offset = start; 9608 u64 clear_offset = start; 9609 u64 i_size; 9610 u64 cur_bytes; 9611 u64 last_alloc = (u64)-1; 9612 int ret = 0; 9613 bool own_trans = true; 9614 u64 end = start + num_bytes - 1; 9615 9616 if (trans) 9617 own_trans = false; 9618 while (num_bytes > 0) { 9619 cur_bytes = min_t(u64, num_bytes, SZ_256M); 9620 cur_bytes = max(cur_bytes, min_size); 9621 /* 9622 * If we are severely fragmented we could end up with really 9623 * small allocations, so if the allocator is returning small 9624 * chunks lets make its job easier by only searching for those 9625 * sized chunks. 9626 */ 9627 cur_bytes = min(cur_bytes, last_alloc); 9628 ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes, 9629 min_size, 0, *alloc_hint, &ins, 1, 0); 9630 if (ret) 9631 break; 9632 9633 /* 9634 * We've reserved this space, and thus converted it from 9635 * ->bytes_may_use to ->bytes_reserved. Any error that happens 9636 * from here on out we will only need to clear our reservation 9637 * for the remaining unreserved area, so advance our 9638 * clear_offset by our extent size. 9639 */ 9640 clear_offset += ins.offset; 9641 9642 last_alloc = ins.offset; 9643 trans = insert_prealloc_file_extent(trans, BTRFS_I(inode), 9644 &ins, cur_offset); 9645 /* 9646 * Now that we inserted the prealloc extent we can finally 9647 * decrement the number of reservations in the block group. 9648 * If we did it before, we could race with relocation and have 9649 * relocation miss the reserved extent, making it fail later. 9650 */ 9651 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 9652 if (IS_ERR(trans)) { 9653 ret = PTR_ERR(trans); 9654 btrfs_free_reserved_extent(fs_info, ins.objectid, 9655 ins.offset, 0); 9656 break; 9657 } 9658 9659 em = alloc_extent_map(); 9660 if (!em) { 9661 btrfs_drop_extent_map_range(BTRFS_I(inode), cur_offset, 9662 cur_offset + ins.offset - 1, false); 9663 btrfs_set_inode_full_sync(BTRFS_I(inode)); 9664 goto next; 9665 } 9666 9667 em->start = cur_offset; 9668 em->orig_start = cur_offset; 9669 em->len = ins.offset; 9670 em->block_start = ins.objectid; 9671 em->block_len = ins.offset; 9672 em->orig_block_len = ins.offset; 9673 em->ram_bytes = ins.offset; 9674 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 9675 em->generation = trans->transid; 9676 9677 ret = btrfs_replace_extent_map_range(BTRFS_I(inode), em, true); 9678 free_extent_map(em); 9679 next: 9680 num_bytes -= ins.offset; 9681 cur_offset += ins.offset; 9682 *alloc_hint = ins.objectid + ins.offset; 9683 9684 inode_inc_iversion(inode); 9685 inode_set_ctime_current(inode); 9686 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC; 9687 if (!(mode & FALLOC_FL_KEEP_SIZE) && 9688 (actual_len > inode->i_size) && 9689 (cur_offset > inode->i_size)) { 9690 if (cur_offset > actual_len) 9691 i_size = actual_len; 9692 else 9693 i_size = cur_offset; 9694 i_size_write(inode, i_size); 9695 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0); 9696 } 9697 9698 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 9699 9700 if (ret) { 9701 btrfs_abort_transaction(trans, ret); 9702 if (own_trans) 9703 btrfs_end_transaction(trans); 9704 break; 9705 } 9706 9707 if (own_trans) { 9708 btrfs_end_transaction(trans); 9709 trans = NULL; 9710 } 9711 } 9712 if (clear_offset < end) 9713 btrfs_free_reserved_data_space(BTRFS_I(inode), NULL, clear_offset, 9714 end - clear_offset + 1); 9715 return ret; 9716 } 9717 9718 int btrfs_prealloc_file_range(struct inode *inode, int mode, 9719 u64 start, u64 num_bytes, u64 min_size, 9720 loff_t actual_len, u64 *alloc_hint) 9721 { 9722 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 9723 min_size, actual_len, alloc_hint, 9724 NULL); 9725 } 9726 9727 int btrfs_prealloc_file_range_trans(struct inode *inode, 9728 struct btrfs_trans_handle *trans, int mode, 9729 u64 start, u64 num_bytes, u64 min_size, 9730 loff_t actual_len, u64 *alloc_hint) 9731 { 9732 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 9733 min_size, actual_len, alloc_hint, trans); 9734 } 9735 9736 static int btrfs_permission(struct mnt_idmap *idmap, 9737 struct inode *inode, int mask) 9738 { 9739 struct btrfs_root *root = BTRFS_I(inode)->root; 9740 umode_t mode = inode->i_mode; 9741 9742 if (mask & MAY_WRITE && 9743 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) { 9744 if (btrfs_root_readonly(root)) 9745 return -EROFS; 9746 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) 9747 return -EACCES; 9748 } 9749 return generic_permission(idmap, inode, mask); 9750 } 9751 9752 static int btrfs_tmpfile(struct mnt_idmap *idmap, struct inode *dir, 9753 struct file *file, umode_t mode) 9754 { 9755 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 9756 struct btrfs_trans_handle *trans; 9757 struct btrfs_root *root = BTRFS_I(dir)->root; 9758 struct inode *inode; 9759 struct btrfs_new_inode_args new_inode_args = { 9760 .dir = dir, 9761 .dentry = file->f_path.dentry, 9762 .orphan = true, 9763 }; 9764 unsigned int trans_num_items; 9765 int ret; 9766 9767 inode = new_inode(dir->i_sb); 9768 if (!inode) 9769 return -ENOMEM; 9770 inode_init_owner(idmap, inode, dir, mode); 9771 inode->i_fop = &btrfs_file_operations; 9772 inode->i_op = &btrfs_file_inode_operations; 9773 inode->i_mapping->a_ops = &btrfs_aops; 9774 9775 new_inode_args.inode = inode; 9776 ret = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items); 9777 if (ret) 9778 goto out_inode; 9779 9780 trans = btrfs_start_transaction(root, trans_num_items); 9781 if (IS_ERR(trans)) { 9782 ret = PTR_ERR(trans); 9783 goto out_new_inode_args; 9784 } 9785 9786 ret = btrfs_create_new_inode(trans, &new_inode_args); 9787 9788 /* 9789 * We set number of links to 0 in btrfs_create_new_inode(), and here we 9790 * set it to 1 because d_tmpfile() will issue a warning if the count is 9791 * 0, through: 9792 * 9793 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink() 9794 */ 9795 set_nlink(inode, 1); 9796 9797 if (!ret) { 9798 d_tmpfile(file, inode); 9799 unlock_new_inode(inode); 9800 mark_inode_dirty(inode); 9801 } 9802 9803 btrfs_end_transaction(trans); 9804 btrfs_btree_balance_dirty(fs_info); 9805 out_new_inode_args: 9806 btrfs_new_inode_args_destroy(&new_inode_args); 9807 out_inode: 9808 if (ret) 9809 iput(inode); 9810 return finish_open_simple(file, ret); 9811 } 9812 9813 void btrfs_set_range_writeback(struct btrfs_inode *inode, u64 start, u64 end) 9814 { 9815 struct btrfs_fs_info *fs_info = inode->root->fs_info; 9816 unsigned long index = start >> PAGE_SHIFT; 9817 unsigned long end_index = end >> PAGE_SHIFT; 9818 struct page *page; 9819 u32 len; 9820 9821 ASSERT(end + 1 - start <= U32_MAX); 9822 len = end + 1 - start; 9823 while (index <= end_index) { 9824 page = find_get_page(inode->vfs_inode.i_mapping, index); 9825 ASSERT(page); /* Pages should be in the extent_io_tree */ 9826 9827 btrfs_page_set_writeback(fs_info, page, start, len); 9828 put_page(page); 9829 index++; 9830 } 9831 } 9832 9833 int btrfs_encoded_io_compression_from_extent(struct btrfs_fs_info *fs_info, 9834 int compress_type) 9835 { 9836 switch (compress_type) { 9837 case BTRFS_COMPRESS_NONE: 9838 return BTRFS_ENCODED_IO_COMPRESSION_NONE; 9839 case BTRFS_COMPRESS_ZLIB: 9840 return BTRFS_ENCODED_IO_COMPRESSION_ZLIB; 9841 case BTRFS_COMPRESS_LZO: 9842 /* 9843 * The LZO format depends on the sector size. 64K is the maximum 9844 * sector size that we support. 9845 */ 9846 if (fs_info->sectorsize < SZ_4K || fs_info->sectorsize > SZ_64K) 9847 return -EINVAL; 9848 return BTRFS_ENCODED_IO_COMPRESSION_LZO_4K + 9849 (fs_info->sectorsize_bits - 12); 9850 case BTRFS_COMPRESS_ZSTD: 9851 return BTRFS_ENCODED_IO_COMPRESSION_ZSTD; 9852 default: 9853 return -EUCLEAN; 9854 } 9855 } 9856 9857 static ssize_t btrfs_encoded_read_inline( 9858 struct kiocb *iocb, 9859 struct iov_iter *iter, u64 start, 9860 u64 lockend, 9861 struct extent_state **cached_state, 9862 u64 extent_start, size_t count, 9863 struct btrfs_ioctl_encoded_io_args *encoded, 9864 bool *unlocked) 9865 { 9866 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp)); 9867 struct btrfs_root *root = inode->root; 9868 struct btrfs_fs_info *fs_info = root->fs_info; 9869 struct extent_io_tree *io_tree = &inode->io_tree; 9870 struct btrfs_path *path; 9871 struct extent_buffer *leaf; 9872 struct btrfs_file_extent_item *item; 9873 u64 ram_bytes; 9874 unsigned long ptr; 9875 void *tmp; 9876 ssize_t ret; 9877 9878 path = btrfs_alloc_path(); 9879 if (!path) { 9880 ret = -ENOMEM; 9881 goto out; 9882 } 9883 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), 9884 extent_start, 0); 9885 if (ret) { 9886 if (ret > 0) { 9887 /* The extent item disappeared? */ 9888 ret = -EIO; 9889 } 9890 goto out; 9891 } 9892 leaf = path->nodes[0]; 9893 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); 9894 9895 ram_bytes = btrfs_file_extent_ram_bytes(leaf, item); 9896 ptr = btrfs_file_extent_inline_start(item); 9897 9898 encoded->len = min_t(u64, extent_start + ram_bytes, 9899 inode->vfs_inode.i_size) - iocb->ki_pos; 9900 ret = btrfs_encoded_io_compression_from_extent(fs_info, 9901 btrfs_file_extent_compression(leaf, item)); 9902 if (ret < 0) 9903 goto out; 9904 encoded->compression = ret; 9905 if (encoded->compression) { 9906 size_t inline_size; 9907 9908 inline_size = btrfs_file_extent_inline_item_len(leaf, 9909 path->slots[0]); 9910 if (inline_size > count) { 9911 ret = -ENOBUFS; 9912 goto out; 9913 } 9914 count = inline_size; 9915 encoded->unencoded_len = ram_bytes; 9916 encoded->unencoded_offset = iocb->ki_pos - extent_start; 9917 } else { 9918 count = min_t(u64, count, encoded->len); 9919 encoded->len = count; 9920 encoded->unencoded_len = count; 9921 ptr += iocb->ki_pos - extent_start; 9922 } 9923 9924 tmp = kmalloc(count, GFP_NOFS); 9925 if (!tmp) { 9926 ret = -ENOMEM; 9927 goto out; 9928 } 9929 read_extent_buffer(leaf, tmp, ptr, count); 9930 btrfs_release_path(path); 9931 unlock_extent(io_tree, start, lockend, cached_state); 9932 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 9933 *unlocked = true; 9934 9935 ret = copy_to_iter(tmp, count, iter); 9936 if (ret != count) 9937 ret = -EFAULT; 9938 kfree(tmp); 9939 out: 9940 btrfs_free_path(path); 9941 return ret; 9942 } 9943 9944 struct btrfs_encoded_read_private { 9945 wait_queue_head_t wait; 9946 atomic_t pending; 9947 blk_status_t status; 9948 }; 9949 9950 static void btrfs_encoded_read_endio(struct btrfs_bio *bbio) 9951 { 9952 struct btrfs_encoded_read_private *priv = bbio->private; 9953 9954 if (bbio->bio.bi_status) { 9955 /* 9956 * The memory barrier implied by the atomic_dec_return() here 9957 * pairs with the memory barrier implied by the 9958 * atomic_dec_return() or io_wait_event() in 9959 * btrfs_encoded_read_regular_fill_pages() to ensure that this 9960 * write is observed before the load of status in 9961 * btrfs_encoded_read_regular_fill_pages(). 9962 */ 9963 WRITE_ONCE(priv->status, bbio->bio.bi_status); 9964 } 9965 if (!atomic_dec_return(&priv->pending)) 9966 wake_up(&priv->wait); 9967 bio_put(&bbio->bio); 9968 } 9969 9970 int btrfs_encoded_read_regular_fill_pages(struct btrfs_inode *inode, 9971 u64 file_offset, u64 disk_bytenr, 9972 u64 disk_io_size, struct page **pages) 9973 { 9974 struct btrfs_fs_info *fs_info = inode->root->fs_info; 9975 struct btrfs_encoded_read_private priv = { 9976 .pending = ATOMIC_INIT(1), 9977 }; 9978 unsigned long i = 0; 9979 struct btrfs_bio *bbio; 9980 9981 init_waitqueue_head(&priv.wait); 9982 9983 bbio = btrfs_bio_alloc(BIO_MAX_VECS, REQ_OP_READ, fs_info, 9984 btrfs_encoded_read_endio, &priv); 9985 bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT; 9986 bbio->inode = inode; 9987 9988 do { 9989 size_t bytes = min_t(u64, disk_io_size, PAGE_SIZE); 9990 9991 if (bio_add_page(&bbio->bio, pages[i], bytes, 0) < bytes) { 9992 atomic_inc(&priv.pending); 9993 btrfs_submit_bio(bbio, 0); 9994 9995 bbio = btrfs_bio_alloc(BIO_MAX_VECS, REQ_OP_READ, fs_info, 9996 btrfs_encoded_read_endio, &priv); 9997 bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT; 9998 bbio->inode = inode; 9999 continue; 10000 } 10001 10002 i++; 10003 disk_bytenr += bytes; 10004 disk_io_size -= bytes; 10005 } while (disk_io_size); 10006 10007 atomic_inc(&priv.pending); 10008 btrfs_submit_bio(bbio, 0); 10009 10010 if (atomic_dec_return(&priv.pending)) 10011 io_wait_event(priv.wait, !atomic_read(&priv.pending)); 10012 /* See btrfs_encoded_read_endio() for ordering. */ 10013 return blk_status_to_errno(READ_ONCE(priv.status)); 10014 } 10015 10016 static ssize_t btrfs_encoded_read_regular(struct kiocb *iocb, 10017 struct iov_iter *iter, 10018 u64 start, u64 lockend, 10019 struct extent_state **cached_state, 10020 u64 disk_bytenr, u64 disk_io_size, 10021 size_t count, bool compressed, 10022 bool *unlocked) 10023 { 10024 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp)); 10025 struct extent_io_tree *io_tree = &inode->io_tree; 10026 struct page **pages; 10027 unsigned long nr_pages, i; 10028 u64 cur; 10029 size_t page_offset; 10030 ssize_t ret; 10031 10032 nr_pages = DIV_ROUND_UP(disk_io_size, PAGE_SIZE); 10033 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS); 10034 if (!pages) 10035 return -ENOMEM; 10036 ret = btrfs_alloc_page_array(nr_pages, pages); 10037 if (ret) { 10038 ret = -ENOMEM; 10039 goto out; 10040 } 10041 10042 ret = btrfs_encoded_read_regular_fill_pages(inode, start, disk_bytenr, 10043 disk_io_size, pages); 10044 if (ret) 10045 goto out; 10046 10047 unlock_extent(io_tree, start, lockend, cached_state); 10048 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 10049 *unlocked = true; 10050 10051 if (compressed) { 10052 i = 0; 10053 page_offset = 0; 10054 } else { 10055 i = (iocb->ki_pos - start) >> PAGE_SHIFT; 10056 page_offset = (iocb->ki_pos - start) & (PAGE_SIZE - 1); 10057 } 10058 cur = 0; 10059 while (cur < count) { 10060 size_t bytes = min_t(size_t, count - cur, 10061 PAGE_SIZE - page_offset); 10062 10063 if (copy_page_to_iter(pages[i], page_offset, bytes, 10064 iter) != bytes) { 10065 ret = -EFAULT; 10066 goto out; 10067 } 10068 i++; 10069 cur += bytes; 10070 page_offset = 0; 10071 } 10072 ret = count; 10073 out: 10074 for (i = 0; i < nr_pages; i++) { 10075 if (pages[i]) 10076 __free_page(pages[i]); 10077 } 10078 kfree(pages); 10079 return ret; 10080 } 10081 10082 ssize_t btrfs_encoded_read(struct kiocb *iocb, struct iov_iter *iter, 10083 struct btrfs_ioctl_encoded_io_args *encoded) 10084 { 10085 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp)); 10086 struct btrfs_fs_info *fs_info = inode->root->fs_info; 10087 struct extent_io_tree *io_tree = &inode->io_tree; 10088 ssize_t ret; 10089 size_t count = iov_iter_count(iter); 10090 u64 start, lockend, disk_bytenr, disk_io_size; 10091 struct extent_state *cached_state = NULL; 10092 struct extent_map *em; 10093 bool unlocked = false; 10094 10095 file_accessed(iocb->ki_filp); 10096 10097 btrfs_inode_lock(inode, BTRFS_ILOCK_SHARED); 10098 10099 if (iocb->ki_pos >= inode->vfs_inode.i_size) { 10100 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 10101 return 0; 10102 } 10103 start = ALIGN_DOWN(iocb->ki_pos, fs_info->sectorsize); 10104 /* 10105 * We don't know how long the extent containing iocb->ki_pos is, but if 10106 * it's compressed we know that it won't be longer than this. 10107 */ 10108 lockend = start + BTRFS_MAX_UNCOMPRESSED - 1; 10109 10110 for (;;) { 10111 struct btrfs_ordered_extent *ordered; 10112 10113 ret = btrfs_wait_ordered_range(&inode->vfs_inode, start, 10114 lockend - start + 1); 10115 if (ret) 10116 goto out_unlock_inode; 10117 lock_extent(io_tree, start, lockend, &cached_state); 10118 ordered = btrfs_lookup_ordered_range(inode, start, 10119 lockend - start + 1); 10120 if (!ordered) 10121 break; 10122 btrfs_put_ordered_extent(ordered); 10123 unlock_extent(io_tree, start, lockend, &cached_state); 10124 cond_resched(); 10125 } 10126 10127 em = btrfs_get_extent(inode, NULL, 0, start, lockend - start + 1); 10128 if (IS_ERR(em)) { 10129 ret = PTR_ERR(em); 10130 goto out_unlock_extent; 10131 } 10132 10133 if (em->block_start == EXTENT_MAP_INLINE) { 10134 u64 extent_start = em->start; 10135 10136 /* 10137 * For inline extents we get everything we need out of the 10138 * extent item. 10139 */ 10140 free_extent_map(em); 10141 em = NULL; 10142 ret = btrfs_encoded_read_inline(iocb, iter, start, lockend, 10143 &cached_state, extent_start, 10144 count, encoded, &unlocked); 10145 goto out; 10146 } 10147 10148 /* 10149 * We only want to return up to EOF even if the extent extends beyond 10150 * that. 10151 */ 10152 encoded->len = min_t(u64, extent_map_end(em), 10153 inode->vfs_inode.i_size) - iocb->ki_pos; 10154 if (em->block_start == EXTENT_MAP_HOLE || 10155 test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) { 10156 disk_bytenr = EXTENT_MAP_HOLE; 10157 count = min_t(u64, count, encoded->len); 10158 encoded->len = count; 10159 encoded->unencoded_len = count; 10160 } else if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 10161 disk_bytenr = em->block_start; 10162 /* 10163 * Bail if the buffer isn't large enough to return the whole 10164 * compressed extent. 10165 */ 10166 if (em->block_len > count) { 10167 ret = -ENOBUFS; 10168 goto out_em; 10169 } 10170 disk_io_size = em->block_len; 10171 count = em->block_len; 10172 encoded->unencoded_len = em->ram_bytes; 10173 encoded->unencoded_offset = iocb->ki_pos - em->orig_start; 10174 ret = btrfs_encoded_io_compression_from_extent(fs_info, 10175 em->compress_type); 10176 if (ret < 0) 10177 goto out_em; 10178 encoded->compression = ret; 10179 } else { 10180 disk_bytenr = em->block_start + (start - em->start); 10181 if (encoded->len > count) 10182 encoded->len = count; 10183 /* 10184 * Don't read beyond what we locked. This also limits the page 10185 * allocations that we'll do. 10186 */ 10187 disk_io_size = min(lockend + 1, iocb->ki_pos + encoded->len) - start; 10188 count = start + disk_io_size - iocb->ki_pos; 10189 encoded->len = count; 10190 encoded->unencoded_len = count; 10191 disk_io_size = ALIGN(disk_io_size, fs_info->sectorsize); 10192 } 10193 free_extent_map(em); 10194 em = NULL; 10195 10196 if (disk_bytenr == EXTENT_MAP_HOLE) { 10197 unlock_extent(io_tree, start, lockend, &cached_state); 10198 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 10199 unlocked = true; 10200 ret = iov_iter_zero(count, iter); 10201 if (ret != count) 10202 ret = -EFAULT; 10203 } else { 10204 ret = btrfs_encoded_read_regular(iocb, iter, start, lockend, 10205 &cached_state, disk_bytenr, 10206 disk_io_size, count, 10207 encoded->compression, 10208 &unlocked); 10209 } 10210 10211 out: 10212 if (ret >= 0) 10213 iocb->ki_pos += encoded->len; 10214 out_em: 10215 free_extent_map(em); 10216 out_unlock_extent: 10217 if (!unlocked) 10218 unlock_extent(io_tree, start, lockend, &cached_state); 10219 out_unlock_inode: 10220 if (!unlocked) 10221 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 10222 return ret; 10223 } 10224 10225 ssize_t btrfs_do_encoded_write(struct kiocb *iocb, struct iov_iter *from, 10226 const struct btrfs_ioctl_encoded_io_args *encoded) 10227 { 10228 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp)); 10229 struct btrfs_root *root = inode->root; 10230 struct btrfs_fs_info *fs_info = root->fs_info; 10231 struct extent_io_tree *io_tree = &inode->io_tree; 10232 struct extent_changeset *data_reserved = NULL; 10233 struct extent_state *cached_state = NULL; 10234 struct btrfs_ordered_extent *ordered; 10235 int compression; 10236 size_t orig_count; 10237 u64 start, end; 10238 u64 num_bytes, ram_bytes, disk_num_bytes; 10239 unsigned long nr_pages, i; 10240 struct page **pages; 10241 struct btrfs_key ins; 10242 bool extent_reserved = false; 10243 struct extent_map *em; 10244 ssize_t ret; 10245 10246 switch (encoded->compression) { 10247 case BTRFS_ENCODED_IO_COMPRESSION_ZLIB: 10248 compression = BTRFS_COMPRESS_ZLIB; 10249 break; 10250 case BTRFS_ENCODED_IO_COMPRESSION_ZSTD: 10251 compression = BTRFS_COMPRESS_ZSTD; 10252 break; 10253 case BTRFS_ENCODED_IO_COMPRESSION_LZO_4K: 10254 case BTRFS_ENCODED_IO_COMPRESSION_LZO_8K: 10255 case BTRFS_ENCODED_IO_COMPRESSION_LZO_16K: 10256 case BTRFS_ENCODED_IO_COMPRESSION_LZO_32K: 10257 case BTRFS_ENCODED_IO_COMPRESSION_LZO_64K: 10258 /* The sector size must match for LZO. */ 10259 if (encoded->compression - 10260 BTRFS_ENCODED_IO_COMPRESSION_LZO_4K + 12 != 10261 fs_info->sectorsize_bits) 10262 return -EINVAL; 10263 compression = BTRFS_COMPRESS_LZO; 10264 break; 10265 default: 10266 return -EINVAL; 10267 } 10268 if (encoded->encryption != BTRFS_ENCODED_IO_ENCRYPTION_NONE) 10269 return -EINVAL; 10270 10271 /* 10272 * Compressed extents should always have checksums, so error out if we 10273 * have a NOCOW file or inode was created while mounted with NODATASUM. 10274 */ 10275 if (inode->flags & BTRFS_INODE_NODATASUM) 10276 return -EINVAL; 10277 10278 orig_count = iov_iter_count(from); 10279 10280 /* The extent size must be sane. */ 10281 if (encoded->unencoded_len > BTRFS_MAX_UNCOMPRESSED || 10282 orig_count > BTRFS_MAX_COMPRESSED || orig_count == 0) 10283 return -EINVAL; 10284 10285 /* 10286 * The compressed data must be smaller than the decompressed data. 10287 * 10288 * It's of course possible for data to compress to larger or the same 10289 * size, but the buffered I/O path falls back to no compression for such 10290 * data, and we don't want to break any assumptions by creating these 10291 * extents. 10292 * 10293 * Note that this is less strict than the current check we have that the 10294 * compressed data must be at least one sector smaller than the 10295 * decompressed data. We only want to enforce the weaker requirement 10296 * from old kernels that it is at least one byte smaller. 10297 */ 10298 if (orig_count >= encoded->unencoded_len) 10299 return -EINVAL; 10300 10301 /* The extent must start on a sector boundary. */ 10302 start = iocb->ki_pos; 10303 if (!IS_ALIGNED(start, fs_info->sectorsize)) 10304 return -EINVAL; 10305 10306 /* 10307 * The extent must end on a sector boundary. However, we allow a write 10308 * which ends at or extends i_size to have an unaligned length; we round 10309 * up the extent size and set i_size to the unaligned end. 10310 */ 10311 if (start + encoded->len < inode->vfs_inode.i_size && 10312 !IS_ALIGNED(start + encoded->len, fs_info->sectorsize)) 10313 return -EINVAL; 10314 10315 /* Finally, the offset in the unencoded data must be sector-aligned. */ 10316 if (!IS_ALIGNED(encoded->unencoded_offset, fs_info->sectorsize)) 10317 return -EINVAL; 10318 10319 num_bytes = ALIGN(encoded->len, fs_info->sectorsize); 10320 ram_bytes = ALIGN(encoded->unencoded_len, fs_info->sectorsize); 10321 end = start + num_bytes - 1; 10322 10323 /* 10324 * If the extent cannot be inline, the compressed data on disk must be 10325 * sector-aligned. For convenience, we extend it with zeroes if it 10326 * isn't. 10327 */ 10328 disk_num_bytes = ALIGN(orig_count, fs_info->sectorsize); 10329 nr_pages = DIV_ROUND_UP(disk_num_bytes, PAGE_SIZE); 10330 pages = kvcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL_ACCOUNT); 10331 if (!pages) 10332 return -ENOMEM; 10333 for (i = 0; i < nr_pages; i++) { 10334 size_t bytes = min_t(size_t, PAGE_SIZE, iov_iter_count(from)); 10335 char *kaddr; 10336 10337 pages[i] = alloc_page(GFP_KERNEL_ACCOUNT); 10338 if (!pages[i]) { 10339 ret = -ENOMEM; 10340 goto out_pages; 10341 } 10342 kaddr = kmap_local_page(pages[i]); 10343 if (copy_from_iter(kaddr, bytes, from) != bytes) { 10344 kunmap_local(kaddr); 10345 ret = -EFAULT; 10346 goto out_pages; 10347 } 10348 if (bytes < PAGE_SIZE) 10349 memset(kaddr + bytes, 0, PAGE_SIZE - bytes); 10350 kunmap_local(kaddr); 10351 } 10352 10353 for (;;) { 10354 struct btrfs_ordered_extent *ordered; 10355 10356 ret = btrfs_wait_ordered_range(&inode->vfs_inode, start, num_bytes); 10357 if (ret) 10358 goto out_pages; 10359 ret = invalidate_inode_pages2_range(inode->vfs_inode.i_mapping, 10360 start >> PAGE_SHIFT, 10361 end >> PAGE_SHIFT); 10362 if (ret) 10363 goto out_pages; 10364 lock_extent(io_tree, start, end, &cached_state); 10365 ordered = btrfs_lookup_ordered_range(inode, start, num_bytes); 10366 if (!ordered && 10367 !filemap_range_has_page(inode->vfs_inode.i_mapping, start, end)) 10368 break; 10369 if (ordered) 10370 btrfs_put_ordered_extent(ordered); 10371 unlock_extent(io_tree, start, end, &cached_state); 10372 cond_resched(); 10373 } 10374 10375 /* 10376 * We don't use the higher-level delalloc space functions because our 10377 * num_bytes and disk_num_bytes are different. 10378 */ 10379 ret = btrfs_alloc_data_chunk_ondemand(inode, disk_num_bytes); 10380 if (ret) 10381 goto out_unlock; 10382 ret = btrfs_qgroup_reserve_data(inode, &data_reserved, start, num_bytes); 10383 if (ret) 10384 goto out_free_data_space; 10385 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes, disk_num_bytes, 10386 false); 10387 if (ret) 10388 goto out_qgroup_free_data; 10389 10390 /* Try an inline extent first. */ 10391 if (start == 0 && encoded->unencoded_len == encoded->len && 10392 encoded->unencoded_offset == 0) { 10393 ret = cow_file_range_inline(inode, encoded->len, orig_count, 10394 compression, pages, true); 10395 if (ret <= 0) { 10396 if (ret == 0) 10397 ret = orig_count; 10398 goto out_delalloc_release; 10399 } 10400 } 10401 10402 ret = btrfs_reserve_extent(root, disk_num_bytes, disk_num_bytes, 10403 disk_num_bytes, 0, 0, &ins, 1, 1); 10404 if (ret) 10405 goto out_delalloc_release; 10406 extent_reserved = true; 10407 10408 em = create_io_em(inode, start, num_bytes, 10409 start - encoded->unencoded_offset, ins.objectid, 10410 ins.offset, ins.offset, ram_bytes, compression, 10411 BTRFS_ORDERED_COMPRESSED); 10412 if (IS_ERR(em)) { 10413 ret = PTR_ERR(em); 10414 goto out_free_reserved; 10415 } 10416 free_extent_map(em); 10417 10418 ordered = btrfs_alloc_ordered_extent(inode, start, num_bytes, ram_bytes, 10419 ins.objectid, ins.offset, 10420 encoded->unencoded_offset, 10421 (1 << BTRFS_ORDERED_ENCODED) | 10422 (1 << BTRFS_ORDERED_COMPRESSED), 10423 compression); 10424 if (IS_ERR(ordered)) { 10425 btrfs_drop_extent_map_range(inode, start, end, false); 10426 ret = PTR_ERR(ordered); 10427 goto out_free_reserved; 10428 } 10429 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 10430 10431 if (start + encoded->len > inode->vfs_inode.i_size) 10432 i_size_write(&inode->vfs_inode, start + encoded->len); 10433 10434 unlock_extent(io_tree, start, end, &cached_state); 10435 10436 btrfs_delalloc_release_extents(inode, num_bytes); 10437 10438 btrfs_submit_compressed_write(ordered, pages, nr_pages, 0, false); 10439 ret = orig_count; 10440 goto out; 10441 10442 out_free_reserved: 10443 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 10444 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1); 10445 out_delalloc_release: 10446 btrfs_delalloc_release_extents(inode, num_bytes); 10447 btrfs_delalloc_release_metadata(inode, disk_num_bytes, ret < 0); 10448 out_qgroup_free_data: 10449 if (ret < 0) 10450 btrfs_qgroup_free_data(inode, data_reserved, start, num_bytes, NULL); 10451 out_free_data_space: 10452 /* 10453 * If btrfs_reserve_extent() succeeded, then we already decremented 10454 * bytes_may_use. 10455 */ 10456 if (!extent_reserved) 10457 btrfs_free_reserved_data_space_noquota(fs_info, disk_num_bytes); 10458 out_unlock: 10459 unlock_extent(io_tree, start, end, &cached_state); 10460 out_pages: 10461 for (i = 0; i < nr_pages; i++) { 10462 if (pages[i]) 10463 __free_page(pages[i]); 10464 } 10465 kvfree(pages); 10466 out: 10467 if (ret >= 0) 10468 iocb->ki_pos += encoded->len; 10469 return ret; 10470 } 10471 10472 #ifdef CONFIG_SWAP 10473 /* 10474 * Add an entry indicating a block group or device which is pinned by a 10475 * swapfile. Returns 0 on success, 1 if there is already an entry for it, or a 10476 * negative errno on failure. 10477 */ 10478 static int btrfs_add_swapfile_pin(struct inode *inode, void *ptr, 10479 bool is_block_group) 10480 { 10481 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 10482 struct btrfs_swapfile_pin *sp, *entry; 10483 struct rb_node **p; 10484 struct rb_node *parent = NULL; 10485 10486 sp = kmalloc(sizeof(*sp), GFP_NOFS); 10487 if (!sp) 10488 return -ENOMEM; 10489 sp->ptr = ptr; 10490 sp->inode = inode; 10491 sp->is_block_group = is_block_group; 10492 sp->bg_extent_count = 1; 10493 10494 spin_lock(&fs_info->swapfile_pins_lock); 10495 p = &fs_info->swapfile_pins.rb_node; 10496 while (*p) { 10497 parent = *p; 10498 entry = rb_entry(parent, struct btrfs_swapfile_pin, node); 10499 if (sp->ptr < entry->ptr || 10500 (sp->ptr == entry->ptr && sp->inode < entry->inode)) { 10501 p = &(*p)->rb_left; 10502 } else if (sp->ptr > entry->ptr || 10503 (sp->ptr == entry->ptr && sp->inode > entry->inode)) { 10504 p = &(*p)->rb_right; 10505 } else { 10506 if (is_block_group) 10507 entry->bg_extent_count++; 10508 spin_unlock(&fs_info->swapfile_pins_lock); 10509 kfree(sp); 10510 return 1; 10511 } 10512 } 10513 rb_link_node(&sp->node, parent, p); 10514 rb_insert_color(&sp->node, &fs_info->swapfile_pins); 10515 spin_unlock(&fs_info->swapfile_pins_lock); 10516 return 0; 10517 } 10518 10519 /* Free all of the entries pinned by this swapfile. */ 10520 static void btrfs_free_swapfile_pins(struct inode *inode) 10521 { 10522 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 10523 struct btrfs_swapfile_pin *sp; 10524 struct rb_node *node, *next; 10525 10526 spin_lock(&fs_info->swapfile_pins_lock); 10527 node = rb_first(&fs_info->swapfile_pins); 10528 while (node) { 10529 next = rb_next(node); 10530 sp = rb_entry(node, struct btrfs_swapfile_pin, node); 10531 if (sp->inode == inode) { 10532 rb_erase(&sp->node, &fs_info->swapfile_pins); 10533 if (sp->is_block_group) { 10534 btrfs_dec_block_group_swap_extents(sp->ptr, 10535 sp->bg_extent_count); 10536 btrfs_put_block_group(sp->ptr); 10537 } 10538 kfree(sp); 10539 } 10540 node = next; 10541 } 10542 spin_unlock(&fs_info->swapfile_pins_lock); 10543 } 10544 10545 struct btrfs_swap_info { 10546 u64 start; 10547 u64 block_start; 10548 u64 block_len; 10549 u64 lowest_ppage; 10550 u64 highest_ppage; 10551 unsigned long nr_pages; 10552 int nr_extents; 10553 }; 10554 10555 static int btrfs_add_swap_extent(struct swap_info_struct *sis, 10556 struct btrfs_swap_info *bsi) 10557 { 10558 unsigned long nr_pages; 10559 unsigned long max_pages; 10560 u64 first_ppage, first_ppage_reported, next_ppage; 10561 int ret; 10562 10563 /* 10564 * Our swapfile may have had its size extended after the swap header was 10565 * written. In that case activating the swapfile should not go beyond 10566 * the max size set in the swap header. 10567 */ 10568 if (bsi->nr_pages >= sis->max) 10569 return 0; 10570 10571 max_pages = sis->max - bsi->nr_pages; 10572 first_ppage = PAGE_ALIGN(bsi->block_start) >> PAGE_SHIFT; 10573 next_ppage = PAGE_ALIGN_DOWN(bsi->block_start + bsi->block_len) >> PAGE_SHIFT; 10574 10575 if (first_ppage >= next_ppage) 10576 return 0; 10577 nr_pages = next_ppage - first_ppage; 10578 nr_pages = min(nr_pages, max_pages); 10579 10580 first_ppage_reported = first_ppage; 10581 if (bsi->start == 0) 10582 first_ppage_reported++; 10583 if (bsi->lowest_ppage > first_ppage_reported) 10584 bsi->lowest_ppage = first_ppage_reported; 10585 if (bsi->highest_ppage < (next_ppage - 1)) 10586 bsi->highest_ppage = next_ppage - 1; 10587 10588 ret = add_swap_extent(sis, bsi->nr_pages, nr_pages, first_ppage); 10589 if (ret < 0) 10590 return ret; 10591 bsi->nr_extents += ret; 10592 bsi->nr_pages += nr_pages; 10593 return 0; 10594 } 10595 10596 static void btrfs_swap_deactivate(struct file *file) 10597 { 10598 struct inode *inode = file_inode(file); 10599 10600 btrfs_free_swapfile_pins(inode); 10601 atomic_dec(&BTRFS_I(inode)->root->nr_swapfiles); 10602 } 10603 10604 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file, 10605 sector_t *span) 10606 { 10607 struct inode *inode = file_inode(file); 10608 struct btrfs_root *root = BTRFS_I(inode)->root; 10609 struct btrfs_fs_info *fs_info = root->fs_info; 10610 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 10611 struct extent_state *cached_state = NULL; 10612 struct extent_map *em = NULL; 10613 struct btrfs_device *device = NULL; 10614 struct btrfs_swap_info bsi = { 10615 .lowest_ppage = (sector_t)-1ULL, 10616 }; 10617 int ret = 0; 10618 u64 isize; 10619 u64 start; 10620 10621 /* 10622 * If the swap file was just created, make sure delalloc is done. If the 10623 * file changes again after this, the user is doing something stupid and 10624 * we don't really care. 10625 */ 10626 ret = btrfs_wait_ordered_range(inode, 0, (u64)-1); 10627 if (ret) 10628 return ret; 10629 10630 /* 10631 * The inode is locked, so these flags won't change after we check them. 10632 */ 10633 if (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS) { 10634 btrfs_warn(fs_info, "swapfile must not be compressed"); 10635 return -EINVAL; 10636 } 10637 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)) { 10638 btrfs_warn(fs_info, "swapfile must not be copy-on-write"); 10639 return -EINVAL; 10640 } 10641 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) { 10642 btrfs_warn(fs_info, "swapfile must not be checksummed"); 10643 return -EINVAL; 10644 } 10645 10646 /* 10647 * Balance or device remove/replace/resize can move stuff around from 10648 * under us. The exclop protection makes sure they aren't running/won't 10649 * run concurrently while we are mapping the swap extents, and 10650 * fs_info->swapfile_pins prevents them from running while the swap 10651 * file is active and moving the extents. Note that this also prevents 10652 * a concurrent device add which isn't actually necessary, but it's not 10653 * really worth the trouble to allow it. 10654 */ 10655 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_SWAP_ACTIVATE)) { 10656 btrfs_warn(fs_info, 10657 "cannot activate swapfile while exclusive operation is running"); 10658 return -EBUSY; 10659 } 10660 10661 /* 10662 * Prevent snapshot creation while we are activating the swap file. 10663 * We do not want to race with snapshot creation. If snapshot creation 10664 * already started before we bumped nr_swapfiles from 0 to 1 and 10665 * completes before the first write into the swap file after it is 10666 * activated, than that write would fallback to COW. 10667 */ 10668 if (!btrfs_drew_try_write_lock(&root->snapshot_lock)) { 10669 btrfs_exclop_finish(fs_info); 10670 btrfs_warn(fs_info, 10671 "cannot activate swapfile because snapshot creation is in progress"); 10672 return -EINVAL; 10673 } 10674 /* 10675 * Snapshots can create extents which require COW even if NODATACOW is 10676 * set. We use this counter to prevent snapshots. We must increment it 10677 * before walking the extents because we don't want a concurrent 10678 * snapshot to run after we've already checked the extents. 10679 * 10680 * It is possible that subvolume is marked for deletion but still not 10681 * removed yet. To prevent this race, we check the root status before 10682 * activating the swapfile. 10683 */ 10684 spin_lock(&root->root_item_lock); 10685 if (btrfs_root_dead(root)) { 10686 spin_unlock(&root->root_item_lock); 10687 10688 btrfs_exclop_finish(fs_info); 10689 btrfs_warn(fs_info, 10690 "cannot activate swapfile because subvolume %llu is being deleted", 10691 root->root_key.objectid); 10692 return -EPERM; 10693 } 10694 atomic_inc(&root->nr_swapfiles); 10695 spin_unlock(&root->root_item_lock); 10696 10697 isize = ALIGN_DOWN(inode->i_size, fs_info->sectorsize); 10698 10699 lock_extent(io_tree, 0, isize - 1, &cached_state); 10700 start = 0; 10701 while (start < isize) { 10702 u64 logical_block_start, physical_block_start; 10703 struct btrfs_block_group *bg; 10704 u64 len = isize - start; 10705 10706 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len); 10707 if (IS_ERR(em)) { 10708 ret = PTR_ERR(em); 10709 goto out; 10710 } 10711 10712 if (em->block_start == EXTENT_MAP_HOLE) { 10713 btrfs_warn(fs_info, "swapfile must not have holes"); 10714 ret = -EINVAL; 10715 goto out; 10716 } 10717 if (em->block_start == EXTENT_MAP_INLINE) { 10718 /* 10719 * It's unlikely we'll ever actually find ourselves 10720 * here, as a file small enough to fit inline won't be 10721 * big enough to store more than the swap header, but in 10722 * case something changes in the future, let's catch it 10723 * here rather than later. 10724 */ 10725 btrfs_warn(fs_info, "swapfile must not be inline"); 10726 ret = -EINVAL; 10727 goto out; 10728 } 10729 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 10730 btrfs_warn(fs_info, "swapfile must not be compressed"); 10731 ret = -EINVAL; 10732 goto out; 10733 } 10734 10735 logical_block_start = em->block_start + (start - em->start); 10736 len = min(len, em->len - (start - em->start)); 10737 free_extent_map(em); 10738 em = NULL; 10739 10740 ret = can_nocow_extent(inode, start, &len, NULL, NULL, NULL, false, true); 10741 if (ret < 0) { 10742 goto out; 10743 } else if (ret) { 10744 ret = 0; 10745 } else { 10746 btrfs_warn(fs_info, 10747 "swapfile must not be copy-on-write"); 10748 ret = -EINVAL; 10749 goto out; 10750 } 10751 10752 em = btrfs_get_chunk_map(fs_info, logical_block_start, len); 10753 if (IS_ERR(em)) { 10754 ret = PTR_ERR(em); 10755 goto out; 10756 } 10757 10758 if (em->map_lookup->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) { 10759 btrfs_warn(fs_info, 10760 "swapfile must have single data profile"); 10761 ret = -EINVAL; 10762 goto out; 10763 } 10764 10765 if (device == NULL) { 10766 device = em->map_lookup->stripes[0].dev; 10767 ret = btrfs_add_swapfile_pin(inode, device, false); 10768 if (ret == 1) 10769 ret = 0; 10770 else if (ret) 10771 goto out; 10772 } else if (device != em->map_lookup->stripes[0].dev) { 10773 btrfs_warn(fs_info, "swapfile must be on one device"); 10774 ret = -EINVAL; 10775 goto out; 10776 } 10777 10778 physical_block_start = (em->map_lookup->stripes[0].physical + 10779 (logical_block_start - em->start)); 10780 len = min(len, em->len - (logical_block_start - em->start)); 10781 free_extent_map(em); 10782 em = NULL; 10783 10784 bg = btrfs_lookup_block_group(fs_info, logical_block_start); 10785 if (!bg) { 10786 btrfs_warn(fs_info, 10787 "could not find block group containing swapfile"); 10788 ret = -EINVAL; 10789 goto out; 10790 } 10791 10792 if (!btrfs_inc_block_group_swap_extents(bg)) { 10793 btrfs_warn(fs_info, 10794 "block group for swapfile at %llu is read-only%s", 10795 bg->start, 10796 atomic_read(&fs_info->scrubs_running) ? 10797 " (scrub running)" : ""); 10798 btrfs_put_block_group(bg); 10799 ret = -EINVAL; 10800 goto out; 10801 } 10802 10803 ret = btrfs_add_swapfile_pin(inode, bg, true); 10804 if (ret) { 10805 btrfs_put_block_group(bg); 10806 if (ret == 1) 10807 ret = 0; 10808 else 10809 goto out; 10810 } 10811 10812 if (bsi.block_len && 10813 bsi.block_start + bsi.block_len == physical_block_start) { 10814 bsi.block_len += len; 10815 } else { 10816 if (bsi.block_len) { 10817 ret = btrfs_add_swap_extent(sis, &bsi); 10818 if (ret) 10819 goto out; 10820 } 10821 bsi.start = start; 10822 bsi.block_start = physical_block_start; 10823 bsi.block_len = len; 10824 } 10825 10826 start += len; 10827 } 10828 10829 if (bsi.block_len) 10830 ret = btrfs_add_swap_extent(sis, &bsi); 10831 10832 out: 10833 if (!IS_ERR_OR_NULL(em)) 10834 free_extent_map(em); 10835 10836 unlock_extent(io_tree, 0, isize - 1, &cached_state); 10837 10838 if (ret) 10839 btrfs_swap_deactivate(file); 10840 10841 btrfs_drew_write_unlock(&root->snapshot_lock); 10842 10843 btrfs_exclop_finish(fs_info); 10844 10845 if (ret) 10846 return ret; 10847 10848 if (device) 10849 sis->bdev = device->bdev; 10850 *span = bsi.highest_ppage - bsi.lowest_ppage + 1; 10851 sis->max = bsi.nr_pages; 10852 sis->pages = bsi.nr_pages - 1; 10853 sis->highest_bit = bsi.nr_pages - 1; 10854 return bsi.nr_extents; 10855 } 10856 #else 10857 static void btrfs_swap_deactivate(struct file *file) 10858 { 10859 } 10860 10861 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file, 10862 sector_t *span) 10863 { 10864 return -EOPNOTSUPP; 10865 } 10866 #endif 10867 10868 /* 10869 * Update the number of bytes used in the VFS' inode. When we replace extents in 10870 * a range (clone, dedupe, fallocate's zero range), we must update the number of 10871 * bytes used by the inode in an atomic manner, so that concurrent stat(2) calls 10872 * always get a correct value. 10873 */ 10874 void btrfs_update_inode_bytes(struct btrfs_inode *inode, 10875 const u64 add_bytes, 10876 const u64 del_bytes) 10877 { 10878 if (add_bytes == del_bytes) 10879 return; 10880 10881 spin_lock(&inode->lock); 10882 if (del_bytes > 0) 10883 inode_sub_bytes(&inode->vfs_inode, del_bytes); 10884 if (add_bytes > 0) 10885 inode_add_bytes(&inode->vfs_inode, add_bytes); 10886 spin_unlock(&inode->lock); 10887 } 10888 10889 /* 10890 * Verify that there are no ordered extents for a given file range. 10891 * 10892 * @inode: The target inode. 10893 * @start: Start offset of the file range, should be sector size aligned. 10894 * @end: End offset (inclusive) of the file range, its value +1 should be 10895 * sector size aligned. 10896 * 10897 * This should typically be used for cases where we locked an inode's VFS lock in 10898 * exclusive mode, we have also locked the inode's i_mmap_lock in exclusive mode, 10899 * we have flushed all delalloc in the range, we have waited for all ordered 10900 * extents in the range to complete and finally we have locked the file range in 10901 * the inode's io_tree. 10902 */ 10903 void btrfs_assert_inode_range_clean(struct btrfs_inode *inode, u64 start, u64 end) 10904 { 10905 struct btrfs_root *root = inode->root; 10906 struct btrfs_ordered_extent *ordered; 10907 10908 if (!IS_ENABLED(CONFIG_BTRFS_ASSERT)) 10909 return; 10910 10911 ordered = btrfs_lookup_first_ordered_range(inode, start, end + 1 - start); 10912 if (ordered) { 10913 btrfs_err(root->fs_info, 10914 "found unexpected ordered extent in file range [%llu, %llu] for inode %llu root %llu (ordered range [%llu, %llu])", 10915 start, end, btrfs_ino(inode), root->root_key.objectid, 10916 ordered->file_offset, 10917 ordered->file_offset + ordered->num_bytes - 1); 10918 btrfs_put_ordered_extent(ordered); 10919 } 10920 10921 ASSERT(ordered == NULL); 10922 } 10923 10924 static const struct inode_operations btrfs_dir_inode_operations = { 10925 .getattr = btrfs_getattr, 10926 .lookup = btrfs_lookup, 10927 .create = btrfs_create, 10928 .unlink = btrfs_unlink, 10929 .link = btrfs_link, 10930 .mkdir = btrfs_mkdir, 10931 .rmdir = btrfs_rmdir, 10932 .rename = btrfs_rename2, 10933 .symlink = btrfs_symlink, 10934 .setattr = btrfs_setattr, 10935 .mknod = btrfs_mknod, 10936 .listxattr = btrfs_listxattr, 10937 .permission = btrfs_permission, 10938 .get_inode_acl = btrfs_get_acl, 10939 .set_acl = btrfs_set_acl, 10940 .update_time = btrfs_update_time, 10941 .tmpfile = btrfs_tmpfile, 10942 .fileattr_get = btrfs_fileattr_get, 10943 .fileattr_set = btrfs_fileattr_set, 10944 }; 10945 10946 static const struct file_operations btrfs_dir_file_operations = { 10947 .llseek = btrfs_dir_llseek, 10948 .read = generic_read_dir, 10949 .iterate_shared = btrfs_real_readdir, 10950 .open = btrfs_opendir, 10951 .unlocked_ioctl = btrfs_ioctl, 10952 #ifdef CONFIG_COMPAT 10953 .compat_ioctl = btrfs_compat_ioctl, 10954 #endif 10955 .release = btrfs_release_file, 10956 .fsync = btrfs_sync_file, 10957 }; 10958 10959 /* 10960 * btrfs doesn't support the bmap operation because swapfiles 10961 * use bmap to make a mapping of extents in the file. They assume 10962 * these extents won't change over the life of the file and they 10963 * use the bmap result to do IO directly to the drive. 10964 * 10965 * the btrfs bmap call would return logical addresses that aren't 10966 * suitable for IO and they also will change frequently as COW 10967 * operations happen. So, swapfile + btrfs == corruption. 10968 * 10969 * For now we're avoiding this by dropping bmap. 10970 */ 10971 static const struct address_space_operations btrfs_aops = { 10972 .read_folio = btrfs_read_folio, 10973 .writepages = btrfs_writepages, 10974 .readahead = btrfs_readahead, 10975 .invalidate_folio = btrfs_invalidate_folio, 10976 .release_folio = btrfs_release_folio, 10977 .migrate_folio = btrfs_migrate_folio, 10978 .dirty_folio = filemap_dirty_folio, 10979 .error_remove_page = generic_error_remove_page, 10980 .swap_activate = btrfs_swap_activate, 10981 .swap_deactivate = btrfs_swap_deactivate, 10982 }; 10983 10984 static const struct inode_operations btrfs_file_inode_operations = { 10985 .getattr = btrfs_getattr, 10986 .setattr = btrfs_setattr, 10987 .listxattr = btrfs_listxattr, 10988 .permission = btrfs_permission, 10989 .fiemap = btrfs_fiemap, 10990 .get_inode_acl = btrfs_get_acl, 10991 .set_acl = btrfs_set_acl, 10992 .update_time = btrfs_update_time, 10993 .fileattr_get = btrfs_fileattr_get, 10994 .fileattr_set = btrfs_fileattr_set, 10995 }; 10996 static const struct inode_operations btrfs_special_inode_operations = { 10997 .getattr = btrfs_getattr, 10998 .setattr = btrfs_setattr, 10999 .permission = btrfs_permission, 11000 .listxattr = btrfs_listxattr, 11001 .get_inode_acl = btrfs_get_acl, 11002 .set_acl = btrfs_set_acl, 11003 .update_time = btrfs_update_time, 11004 }; 11005 static const struct inode_operations btrfs_symlink_inode_operations = { 11006 .get_link = page_get_link, 11007 .getattr = btrfs_getattr, 11008 .setattr = btrfs_setattr, 11009 .permission = btrfs_permission, 11010 .listxattr = btrfs_listxattr, 11011 .update_time = btrfs_update_time, 11012 }; 11013 11014 const struct dentry_operations btrfs_dentry_operations = { 11015 .d_delete = btrfs_dentry_delete, 11016 }; 11017