1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/kernel.h> 20 #include <linux/bio.h> 21 #include <linux/buffer_head.h> 22 #include <linux/file.h> 23 #include <linux/fs.h> 24 #include <linux/pagemap.h> 25 #include <linux/highmem.h> 26 #include <linux/time.h> 27 #include <linux/init.h> 28 #include <linux/string.h> 29 #include <linux/backing-dev.h> 30 #include <linux/mpage.h> 31 #include <linux/swap.h> 32 #include <linux/writeback.h> 33 #include <linux/statfs.h> 34 #include <linux/compat.h> 35 #include <linux/bit_spinlock.h> 36 #include <linux/xattr.h> 37 #include <linux/posix_acl.h> 38 #include <linux/falloc.h> 39 #include <linux/slab.h> 40 #include <linux/ratelimit.h> 41 #include <linux/mount.h> 42 #include <linux/btrfs.h> 43 #include <linux/blkdev.h> 44 #include <linux/posix_acl_xattr.h> 45 #include <linux/uio.h> 46 #include "ctree.h" 47 #include "disk-io.h" 48 #include "transaction.h" 49 #include "btrfs_inode.h" 50 #include "print-tree.h" 51 #include "ordered-data.h" 52 #include "xattr.h" 53 #include "tree-log.h" 54 #include "volumes.h" 55 #include "compression.h" 56 #include "locking.h" 57 #include "free-space-cache.h" 58 #include "inode-map.h" 59 #include "backref.h" 60 #include "hash.h" 61 #include "props.h" 62 #include "qgroup.h" 63 64 struct btrfs_iget_args { 65 struct btrfs_key *location; 66 struct btrfs_root *root; 67 }; 68 69 static const struct inode_operations btrfs_dir_inode_operations; 70 static const struct inode_operations btrfs_symlink_inode_operations; 71 static const struct inode_operations btrfs_dir_ro_inode_operations; 72 static const struct inode_operations btrfs_special_inode_operations; 73 static const struct inode_operations btrfs_file_inode_operations; 74 static const struct address_space_operations btrfs_aops; 75 static const struct address_space_operations btrfs_symlink_aops; 76 static const struct file_operations btrfs_dir_file_operations; 77 static struct extent_io_ops btrfs_extent_io_ops; 78 79 static struct kmem_cache *btrfs_inode_cachep; 80 static struct kmem_cache *btrfs_delalloc_work_cachep; 81 struct kmem_cache *btrfs_trans_handle_cachep; 82 struct kmem_cache *btrfs_transaction_cachep; 83 struct kmem_cache *btrfs_path_cachep; 84 struct kmem_cache *btrfs_free_space_cachep; 85 86 #define S_SHIFT 12 87 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = { 88 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE, 89 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR, 90 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV, 91 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV, 92 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO, 93 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK, 94 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK, 95 }; 96 97 static int btrfs_setsize(struct inode *inode, struct iattr *attr); 98 static int btrfs_truncate(struct inode *inode); 99 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent); 100 static noinline int cow_file_range(struct inode *inode, 101 struct page *locked_page, 102 u64 start, u64 end, int *page_started, 103 unsigned long *nr_written, int unlock); 104 static struct extent_map *create_pinned_em(struct inode *inode, u64 start, 105 u64 len, u64 orig_start, 106 u64 block_start, u64 block_len, 107 u64 orig_block_len, u64 ram_bytes, 108 int type); 109 110 static int btrfs_dirty_inode(struct inode *inode); 111 112 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 113 void btrfs_test_inode_set_ops(struct inode *inode) 114 { 115 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 116 } 117 #endif 118 119 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans, 120 struct inode *inode, struct inode *dir, 121 const struct qstr *qstr) 122 { 123 int err; 124 125 err = btrfs_init_acl(trans, inode, dir); 126 if (!err) 127 err = btrfs_xattr_security_init(trans, inode, dir, qstr); 128 return err; 129 } 130 131 /* 132 * this does all the hard work for inserting an inline extent into 133 * the btree. The caller should have done a btrfs_drop_extents so that 134 * no overlapping inline items exist in the btree 135 */ 136 static int insert_inline_extent(struct btrfs_trans_handle *trans, 137 struct btrfs_path *path, int extent_inserted, 138 struct btrfs_root *root, struct inode *inode, 139 u64 start, size_t size, size_t compressed_size, 140 int compress_type, 141 struct page **compressed_pages) 142 { 143 struct extent_buffer *leaf; 144 struct page *page = NULL; 145 char *kaddr; 146 unsigned long ptr; 147 struct btrfs_file_extent_item *ei; 148 int err = 0; 149 int ret; 150 size_t cur_size = size; 151 unsigned long offset; 152 153 if (compressed_size && compressed_pages) 154 cur_size = compressed_size; 155 156 inode_add_bytes(inode, size); 157 158 if (!extent_inserted) { 159 struct btrfs_key key; 160 size_t datasize; 161 162 key.objectid = btrfs_ino(inode); 163 key.offset = start; 164 key.type = BTRFS_EXTENT_DATA_KEY; 165 166 datasize = btrfs_file_extent_calc_inline_size(cur_size); 167 path->leave_spinning = 1; 168 ret = btrfs_insert_empty_item(trans, root, path, &key, 169 datasize); 170 if (ret) { 171 err = ret; 172 goto fail; 173 } 174 } 175 leaf = path->nodes[0]; 176 ei = btrfs_item_ptr(leaf, path->slots[0], 177 struct btrfs_file_extent_item); 178 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 179 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE); 180 btrfs_set_file_extent_encryption(leaf, ei, 0); 181 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 182 btrfs_set_file_extent_ram_bytes(leaf, ei, size); 183 ptr = btrfs_file_extent_inline_start(ei); 184 185 if (compress_type != BTRFS_COMPRESS_NONE) { 186 struct page *cpage; 187 int i = 0; 188 while (compressed_size > 0) { 189 cpage = compressed_pages[i]; 190 cur_size = min_t(unsigned long, compressed_size, 191 PAGE_CACHE_SIZE); 192 193 kaddr = kmap_atomic(cpage); 194 write_extent_buffer(leaf, kaddr, ptr, cur_size); 195 kunmap_atomic(kaddr); 196 197 i++; 198 ptr += cur_size; 199 compressed_size -= cur_size; 200 } 201 btrfs_set_file_extent_compression(leaf, ei, 202 compress_type); 203 } else { 204 page = find_get_page(inode->i_mapping, 205 start >> PAGE_CACHE_SHIFT); 206 btrfs_set_file_extent_compression(leaf, ei, 0); 207 kaddr = kmap_atomic(page); 208 offset = start & (PAGE_CACHE_SIZE - 1); 209 write_extent_buffer(leaf, kaddr + offset, ptr, size); 210 kunmap_atomic(kaddr); 211 page_cache_release(page); 212 } 213 btrfs_mark_buffer_dirty(leaf); 214 btrfs_release_path(path); 215 216 /* 217 * we're an inline extent, so nobody can 218 * extend the file past i_size without locking 219 * a page we already have locked. 220 * 221 * We must do any isize and inode updates 222 * before we unlock the pages. Otherwise we 223 * could end up racing with unlink. 224 */ 225 BTRFS_I(inode)->disk_i_size = inode->i_size; 226 ret = btrfs_update_inode(trans, root, inode); 227 228 return ret; 229 fail: 230 return err; 231 } 232 233 234 /* 235 * conditionally insert an inline extent into the file. This 236 * does the checks required to make sure the data is small enough 237 * to fit as an inline extent. 238 */ 239 static noinline int cow_file_range_inline(struct btrfs_root *root, 240 struct inode *inode, u64 start, 241 u64 end, size_t compressed_size, 242 int compress_type, 243 struct page **compressed_pages) 244 { 245 struct btrfs_trans_handle *trans; 246 u64 isize = i_size_read(inode); 247 u64 actual_end = min(end + 1, isize); 248 u64 inline_len = actual_end - start; 249 u64 aligned_end = ALIGN(end, root->sectorsize); 250 u64 data_len = inline_len; 251 int ret; 252 struct btrfs_path *path; 253 int extent_inserted = 0; 254 u32 extent_item_size; 255 256 if (compressed_size) 257 data_len = compressed_size; 258 259 if (start > 0 || 260 actual_end > PAGE_CACHE_SIZE || 261 data_len > BTRFS_MAX_INLINE_DATA_SIZE(root) || 262 (!compressed_size && 263 (actual_end & (root->sectorsize - 1)) == 0) || 264 end + 1 < isize || 265 data_len > root->fs_info->max_inline) { 266 return 1; 267 } 268 269 path = btrfs_alloc_path(); 270 if (!path) 271 return -ENOMEM; 272 273 trans = btrfs_join_transaction(root); 274 if (IS_ERR(trans)) { 275 btrfs_free_path(path); 276 return PTR_ERR(trans); 277 } 278 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 279 280 if (compressed_size && compressed_pages) 281 extent_item_size = btrfs_file_extent_calc_inline_size( 282 compressed_size); 283 else 284 extent_item_size = btrfs_file_extent_calc_inline_size( 285 inline_len); 286 287 ret = __btrfs_drop_extents(trans, root, inode, path, 288 start, aligned_end, NULL, 289 1, 1, extent_item_size, &extent_inserted); 290 if (ret) { 291 btrfs_abort_transaction(trans, root, ret); 292 goto out; 293 } 294 295 if (isize > actual_end) 296 inline_len = min_t(u64, isize, actual_end); 297 ret = insert_inline_extent(trans, path, extent_inserted, 298 root, inode, start, 299 inline_len, compressed_size, 300 compress_type, compressed_pages); 301 if (ret && ret != -ENOSPC) { 302 btrfs_abort_transaction(trans, root, ret); 303 goto out; 304 } else if (ret == -ENOSPC) { 305 ret = 1; 306 goto out; 307 } 308 309 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 310 btrfs_delalloc_release_metadata(inode, end + 1 - start); 311 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0); 312 out: 313 btrfs_free_path(path); 314 btrfs_end_transaction(trans, root); 315 return ret; 316 } 317 318 struct async_extent { 319 u64 start; 320 u64 ram_size; 321 u64 compressed_size; 322 struct page **pages; 323 unsigned long nr_pages; 324 int compress_type; 325 struct list_head list; 326 }; 327 328 struct async_cow { 329 struct inode *inode; 330 struct btrfs_root *root; 331 struct page *locked_page; 332 u64 start; 333 u64 end; 334 struct list_head extents; 335 struct btrfs_work work; 336 }; 337 338 static noinline int add_async_extent(struct async_cow *cow, 339 u64 start, u64 ram_size, 340 u64 compressed_size, 341 struct page **pages, 342 unsigned long nr_pages, 343 int compress_type) 344 { 345 struct async_extent *async_extent; 346 347 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS); 348 BUG_ON(!async_extent); /* -ENOMEM */ 349 async_extent->start = start; 350 async_extent->ram_size = ram_size; 351 async_extent->compressed_size = compressed_size; 352 async_extent->pages = pages; 353 async_extent->nr_pages = nr_pages; 354 async_extent->compress_type = compress_type; 355 list_add_tail(&async_extent->list, &cow->extents); 356 return 0; 357 } 358 359 static inline int inode_need_compress(struct inode *inode) 360 { 361 struct btrfs_root *root = BTRFS_I(inode)->root; 362 363 /* force compress */ 364 if (btrfs_test_opt(root, FORCE_COMPRESS)) 365 return 1; 366 /* bad compression ratios */ 367 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) 368 return 0; 369 if (btrfs_test_opt(root, COMPRESS) || 370 BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS || 371 BTRFS_I(inode)->force_compress) 372 return 1; 373 return 0; 374 } 375 376 /* 377 * we create compressed extents in two phases. The first 378 * phase compresses a range of pages that have already been 379 * locked (both pages and state bits are locked). 380 * 381 * This is done inside an ordered work queue, and the compression 382 * is spread across many cpus. The actual IO submission is step 383 * two, and the ordered work queue takes care of making sure that 384 * happens in the same order things were put onto the queue by 385 * writepages and friends. 386 * 387 * If this code finds it can't get good compression, it puts an 388 * entry onto the work queue to write the uncompressed bytes. This 389 * makes sure that both compressed inodes and uncompressed inodes 390 * are written in the same order that the flusher thread sent them 391 * down. 392 */ 393 static noinline void compress_file_range(struct inode *inode, 394 struct page *locked_page, 395 u64 start, u64 end, 396 struct async_cow *async_cow, 397 int *num_added) 398 { 399 struct btrfs_root *root = BTRFS_I(inode)->root; 400 u64 num_bytes; 401 u64 blocksize = root->sectorsize; 402 u64 actual_end; 403 u64 isize = i_size_read(inode); 404 int ret = 0; 405 struct page **pages = NULL; 406 unsigned long nr_pages; 407 unsigned long nr_pages_ret = 0; 408 unsigned long total_compressed = 0; 409 unsigned long total_in = 0; 410 unsigned long max_compressed = 128 * 1024; 411 unsigned long max_uncompressed = 128 * 1024; 412 int i; 413 int will_compress; 414 int compress_type = root->fs_info->compress_type; 415 int redirty = 0; 416 417 /* if this is a small write inside eof, kick off a defrag */ 418 if ((end - start + 1) < 16 * 1024 && 419 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size)) 420 btrfs_add_inode_defrag(NULL, inode); 421 422 actual_end = min_t(u64, isize, end + 1); 423 again: 424 will_compress = 0; 425 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1; 426 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE); 427 428 /* 429 * we don't want to send crud past the end of i_size through 430 * compression, that's just a waste of CPU time. So, if the 431 * end of the file is before the start of our current 432 * requested range of bytes, we bail out to the uncompressed 433 * cleanup code that can deal with all of this. 434 * 435 * It isn't really the fastest way to fix things, but this is a 436 * very uncommon corner. 437 */ 438 if (actual_end <= start) 439 goto cleanup_and_bail_uncompressed; 440 441 total_compressed = actual_end - start; 442 443 /* 444 * skip compression for a small file range(<=blocksize) that 445 * isn't an inline extent, since it dosen't save disk space at all. 446 */ 447 if (total_compressed <= blocksize && 448 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size)) 449 goto cleanup_and_bail_uncompressed; 450 451 /* we want to make sure that amount of ram required to uncompress 452 * an extent is reasonable, so we limit the total size in ram 453 * of a compressed extent to 128k. This is a crucial number 454 * because it also controls how easily we can spread reads across 455 * cpus for decompression. 456 * 457 * We also want to make sure the amount of IO required to do 458 * a random read is reasonably small, so we limit the size of 459 * a compressed extent to 128k. 460 */ 461 total_compressed = min(total_compressed, max_uncompressed); 462 num_bytes = ALIGN(end - start + 1, blocksize); 463 num_bytes = max(blocksize, num_bytes); 464 total_in = 0; 465 ret = 0; 466 467 /* 468 * we do compression for mount -o compress and when the 469 * inode has not been flagged as nocompress. This flag can 470 * change at any time if we discover bad compression ratios. 471 */ 472 if (inode_need_compress(inode)) { 473 WARN_ON(pages); 474 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS); 475 if (!pages) { 476 /* just bail out to the uncompressed code */ 477 goto cont; 478 } 479 480 if (BTRFS_I(inode)->force_compress) 481 compress_type = BTRFS_I(inode)->force_compress; 482 483 /* 484 * we need to call clear_page_dirty_for_io on each 485 * page in the range. Otherwise applications with the file 486 * mmap'd can wander in and change the page contents while 487 * we are compressing them. 488 * 489 * If the compression fails for any reason, we set the pages 490 * dirty again later on. 491 */ 492 extent_range_clear_dirty_for_io(inode, start, end); 493 redirty = 1; 494 ret = btrfs_compress_pages(compress_type, 495 inode->i_mapping, start, 496 total_compressed, pages, 497 nr_pages, &nr_pages_ret, 498 &total_in, 499 &total_compressed, 500 max_compressed); 501 502 if (!ret) { 503 unsigned long offset = total_compressed & 504 (PAGE_CACHE_SIZE - 1); 505 struct page *page = pages[nr_pages_ret - 1]; 506 char *kaddr; 507 508 /* zero the tail end of the last page, we might be 509 * sending it down to disk 510 */ 511 if (offset) { 512 kaddr = kmap_atomic(page); 513 memset(kaddr + offset, 0, 514 PAGE_CACHE_SIZE - offset); 515 kunmap_atomic(kaddr); 516 } 517 will_compress = 1; 518 } 519 } 520 cont: 521 if (start == 0) { 522 /* lets try to make an inline extent */ 523 if (ret || total_in < (actual_end - start)) { 524 /* we didn't compress the entire range, try 525 * to make an uncompressed inline extent. 526 */ 527 ret = cow_file_range_inline(root, inode, start, end, 528 0, 0, NULL); 529 } else { 530 /* try making a compressed inline extent */ 531 ret = cow_file_range_inline(root, inode, start, end, 532 total_compressed, 533 compress_type, pages); 534 } 535 if (ret <= 0) { 536 unsigned long clear_flags = EXTENT_DELALLOC | 537 EXTENT_DEFRAG; 538 unsigned long page_error_op; 539 540 clear_flags |= (ret < 0) ? EXTENT_DO_ACCOUNTING : 0; 541 page_error_op = ret < 0 ? PAGE_SET_ERROR : 0; 542 543 /* 544 * inline extent creation worked or returned error, 545 * we don't need to create any more async work items. 546 * Unlock and free up our temp pages. 547 */ 548 extent_clear_unlock_delalloc(inode, start, end, NULL, 549 clear_flags, PAGE_UNLOCK | 550 PAGE_CLEAR_DIRTY | 551 PAGE_SET_WRITEBACK | 552 page_error_op | 553 PAGE_END_WRITEBACK); 554 goto free_pages_out; 555 } 556 } 557 558 if (will_compress) { 559 /* 560 * we aren't doing an inline extent round the compressed size 561 * up to a block size boundary so the allocator does sane 562 * things 563 */ 564 total_compressed = ALIGN(total_compressed, blocksize); 565 566 /* 567 * one last check to make sure the compression is really a 568 * win, compare the page count read with the blocks on disk 569 */ 570 total_in = ALIGN(total_in, PAGE_CACHE_SIZE); 571 if (total_compressed >= total_in) { 572 will_compress = 0; 573 } else { 574 num_bytes = total_in; 575 } 576 } 577 if (!will_compress && pages) { 578 /* 579 * the compression code ran but failed to make things smaller, 580 * free any pages it allocated and our page pointer array 581 */ 582 for (i = 0; i < nr_pages_ret; i++) { 583 WARN_ON(pages[i]->mapping); 584 page_cache_release(pages[i]); 585 } 586 kfree(pages); 587 pages = NULL; 588 total_compressed = 0; 589 nr_pages_ret = 0; 590 591 /* flag the file so we don't compress in the future */ 592 if (!btrfs_test_opt(root, FORCE_COMPRESS) && 593 !(BTRFS_I(inode)->force_compress)) { 594 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS; 595 } 596 } 597 if (will_compress) { 598 *num_added += 1; 599 600 /* the async work queues will take care of doing actual 601 * allocation on disk for these compressed pages, 602 * and will submit them to the elevator. 603 */ 604 add_async_extent(async_cow, start, num_bytes, 605 total_compressed, pages, nr_pages_ret, 606 compress_type); 607 608 if (start + num_bytes < end) { 609 start += num_bytes; 610 pages = NULL; 611 cond_resched(); 612 goto again; 613 } 614 } else { 615 cleanup_and_bail_uncompressed: 616 /* 617 * No compression, but we still need to write the pages in 618 * the file we've been given so far. redirty the locked 619 * page if it corresponds to our extent and set things up 620 * for the async work queue to run cow_file_range to do 621 * the normal delalloc dance 622 */ 623 if (page_offset(locked_page) >= start && 624 page_offset(locked_page) <= end) { 625 __set_page_dirty_nobuffers(locked_page); 626 /* unlocked later on in the async handlers */ 627 } 628 if (redirty) 629 extent_range_redirty_for_io(inode, start, end); 630 add_async_extent(async_cow, start, end - start + 1, 631 0, NULL, 0, BTRFS_COMPRESS_NONE); 632 *num_added += 1; 633 } 634 635 return; 636 637 free_pages_out: 638 for (i = 0; i < nr_pages_ret; i++) { 639 WARN_ON(pages[i]->mapping); 640 page_cache_release(pages[i]); 641 } 642 kfree(pages); 643 } 644 645 static void free_async_extent_pages(struct async_extent *async_extent) 646 { 647 int i; 648 649 if (!async_extent->pages) 650 return; 651 652 for (i = 0; i < async_extent->nr_pages; i++) { 653 WARN_ON(async_extent->pages[i]->mapping); 654 page_cache_release(async_extent->pages[i]); 655 } 656 kfree(async_extent->pages); 657 async_extent->nr_pages = 0; 658 async_extent->pages = NULL; 659 } 660 661 /* 662 * phase two of compressed writeback. This is the ordered portion 663 * of the code, which only gets called in the order the work was 664 * queued. We walk all the async extents created by compress_file_range 665 * and send them down to the disk. 666 */ 667 static noinline void submit_compressed_extents(struct inode *inode, 668 struct async_cow *async_cow) 669 { 670 struct async_extent *async_extent; 671 u64 alloc_hint = 0; 672 struct btrfs_key ins; 673 struct extent_map *em; 674 struct btrfs_root *root = BTRFS_I(inode)->root; 675 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 676 struct extent_io_tree *io_tree; 677 int ret = 0; 678 679 again: 680 while (!list_empty(&async_cow->extents)) { 681 async_extent = list_entry(async_cow->extents.next, 682 struct async_extent, list); 683 list_del(&async_extent->list); 684 685 io_tree = &BTRFS_I(inode)->io_tree; 686 687 retry: 688 /* did the compression code fall back to uncompressed IO? */ 689 if (!async_extent->pages) { 690 int page_started = 0; 691 unsigned long nr_written = 0; 692 693 lock_extent(io_tree, async_extent->start, 694 async_extent->start + 695 async_extent->ram_size - 1); 696 697 /* allocate blocks */ 698 ret = cow_file_range(inode, async_cow->locked_page, 699 async_extent->start, 700 async_extent->start + 701 async_extent->ram_size - 1, 702 &page_started, &nr_written, 0); 703 704 /* JDM XXX */ 705 706 /* 707 * if page_started, cow_file_range inserted an 708 * inline extent and took care of all the unlocking 709 * and IO for us. Otherwise, we need to submit 710 * all those pages down to the drive. 711 */ 712 if (!page_started && !ret) 713 extent_write_locked_range(io_tree, 714 inode, async_extent->start, 715 async_extent->start + 716 async_extent->ram_size - 1, 717 btrfs_get_extent, 718 WB_SYNC_ALL); 719 else if (ret) 720 unlock_page(async_cow->locked_page); 721 kfree(async_extent); 722 cond_resched(); 723 continue; 724 } 725 726 lock_extent(io_tree, async_extent->start, 727 async_extent->start + async_extent->ram_size - 1); 728 729 ret = btrfs_reserve_extent(root, 730 async_extent->compressed_size, 731 async_extent->compressed_size, 732 0, alloc_hint, &ins, 1, 1); 733 if (ret) { 734 free_async_extent_pages(async_extent); 735 736 if (ret == -ENOSPC) { 737 unlock_extent(io_tree, async_extent->start, 738 async_extent->start + 739 async_extent->ram_size - 1); 740 741 /* 742 * we need to redirty the pages if we decide to 743 * fallback to uncompressed IO, otherwise we 744 * will not submit these pages down to lower 745 * layers. 746 */ 747 extent_range_redirty_for_io(inode, 748 async_extent->start, 749 async_extent->start + 750 async_extent->ram_size - 1); 751 752 goto retry; 753 } 754 goto out_free; 755 } 756 /* 757 * here we're doing allocation and writeback of the 758 * compressed pages 759 */ 760 btrfs_drop_extent_cache(inode, async_extent->start, 761 async_extent->start + 762 async_extent->ram_size - 1, 0); 763 764 em = alloc_extent_map(); 765 if (!em) { 766 ret = -ENOMEM; 767 goto out_free_reserve; 768 } 769 em->start = async_extent->start; 770 em->len = async_extent->ram_size; 771 em->orig_start = em->start; 772 em->mod_start = em->start; 773 em->mod_len = em->len; 774 775 em->block_start = ins.objectid; 776 em->block_len = ins.offset; 777 em->orig_block_len = ins.offset; 778 em->ram_bytes = async_extent->ram_size; 779 em->bdev = root->fs_info->fs_devices->latest_bdev; 780 em->compress_type = async_extent->compress_type; 781 set_bit(EXTENT_FLAG_PINNED, &em->flags); 782 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 783 em->generation = -1; 784 785 while (1) { 786 write_lock(&em_tree->lock); 787 ret = add_extent_mapping(em_tree, em, 1); 788 write_unlock(&em_tree->lock); 789 if (ret != -EEXIST) { 790 free_extent_map(em); 791 break; 792 } 793 btrfs_drop_extent_cache(inode, async_extent->start, 794 async_extent->start + 795 async_extent->ram_size - 1, 0); 796 } 797 798 if (ret) 799 goto out_free_reserve; 800 801 ret = btrfs_add_ordered_extent_compress(inode, 802 async_extent->start, 803 ins.objectid, 804 async_extent->ram_size, 805 ins.offset, 806 BTRFS_ORDERED_COMPRESSED, 807 async_extent->compress_type); 808 if (ret) { 809 btrfs_drop_extent_cache(inode, async_extent->start, 810 async_extent->start + 811 async_extent->ram_size - 1, 0); 812 goto out_free_reserve; 813 } 814 815 /* 816 * clear dirty, set writeback and unlock the pages. 817 */ 818 extent_clear_unlock_delalloc(inode, async_extent->start, 819 async_extent->start + 820 async_extent->ram_size - 1, 821 NULL, EXTENT_LOCKED | EXTENT_DELALLOC, 822 PAGE_UNLOCK | PAGE_CLEAR_DIRTY | 823 PAGE_SET_WRITEBACK); 824 ret = btrfs_submit_compressed_write(inode, 825 async_extent->start, 826 async_extent->ram_size, 827 ins.objectid, 828 ins.offset, async_extent->pages, 829 async_extent->nr_pages); 830 if (ret) { 831 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 832 struct page *p = async_extent->pages[0]; 833 const u64 start = async_extent->start; 834 const u64 end = start + async_extent->ram_size - 1; 835 836 p->mapping = inode->i_mapping; 837 tree->ops->writepage_end_io_hook(p, start, end, 838 NULL, 0); 839 p->mapping = NULL; 840 extent_clear_unlock_delalloc(inode, start, end, NULL, 0, 841 PAGE_END_WRITEBACK | 842 PAGE_SET_ERROR); 843 free_async_extent_pages(async_extent); 844 } 845 alloc_hint = ins.objectid + ins.offset; 846 kfree(async_extent); 847 cond_resched(); 848 } 849 return; 850 out_free_reserve: 851 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1); 852 out_free: 853 extent_clear_unlock_delalloc(inode, async_extent->start, 854 async_extent->start + 855 async_extent->ram_size - 1, 856 NULL, EXTENT_LOCKED | EXTENT_DELALLOC | 857 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING, 858 PAGE_UNLOCK | PAGE_CLEAR_DIRTY | 859 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK | 860 PAGE_SET_ERROR); 861 free_async_extent_pages(async_extent); 862 kfree(async_extent); 863 goto again; 864 } 865 866 static u64 get_extent_allocation_hint(struct inode *inode, u64 start, 867 u64 num_bytes) 868 { 869 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 870 struct extent_map *em; 871 u64 alloc_hint = 0; 872 873 read_lock(&em_tree->lock); 874 em = search_extent_mapping(em_tree, start, num_bytes); 875 if (em) { 876 /* 877 * if block start isn't an actual block number then find the 878 * first block in this inode and use that as a hint. If that 879 * block is also bogus then just don't worry about it. 880 */ 881 if (em->block_start >= EXTENT_MAP_LAST_BYTE) { 882 free_extent_map(em); 883 em = search_extent_mapping(em_tree, 0, 0); 884 if (em && em->block_start < EXTENT_MAP_LAST_BYTE) 885 alloc_hint = em->block_start; 886 if (em) 887 free_extent_map(em); 888 } else { 889 alloc_hint = em->block_start; 890 free_extent_map(em); 891 } 892 } 893 read_unlock(&em_tree->lock); 894 895 return alloc_hint; 896 } 897 898 /* 899 * when extent_io.c finds a delayed allocation range in the file, 900 * the call backs end up in this code. The basic idea is to 901 * allocate extents on disk for the range, and create ordered data structs 902 * in ram to track those extents. 903 * 904 * locked_page is the page that writepage had locked already. We use 905 * it to make sure we don't do extra locks or unlocks. 906 * 907 * *page_started is set to one if we unlock locked_page and do everything 908 * required to start IO on it. It may be clean and already done with 909 * IO when we return. 910 */ 911 static noinline int cow_file_range(struct inode *inode, 912 struct page *locked_page, 913 u64 start, u64 end, int *page_started, 914 unsigned long *nr_written, 915 int unlock) 916 { 917 struct btrfs_root *root = BTRFS_I(inode)->root; 918 u64 alloc_hint = 0; 919 u64 num_bytes; 920 unsigned long ram_size; 921 u64 disk_num_bytes; 922 u64 cur_alloc_size; 923 u64 blocksize = root->sectorsize; 924 struct btrfs_key ins; 925 struct extent_map *em; 926 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 927 int ret = 0; 928 929 if (btrfs_is_free_space_inode(inode)) { 930 WARN_ON_ONCE(1); 931 ret = -EINVAL; 932 goto out_unlock; 933 } 934 935 num_bytes = ALIGN(end - start + 1, blocksize); 936 num_bytes = max(blocksize, num_bytes); 937 disk_num_bytes = num_bytes; 938 939 /* if this is a small write inside eof, kick off defrag */ 940 if (num_bytes < 64 * 1024 && 941 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size)) 942 btrfs_add_inode_defrag(NULL, inode); 943 944 if (start == 0) { 945 /* lets try to make an inline extent */ 946 ret = cow_file_range_inline(root, inode, start, end, 0, 0, 947 NULL); 948 if (ret == 0) { 949 extent_clear_unlock_delalloc(inode, start, end, NULL, 950 EXTENT_LOCKED | EXTENT_DELALLOC | 951 EXTENT_DEFRAG, PAGE_UNLOCK | 952 PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK | 953 PAGE_END_WRITEBACK); 954 955 *nr_written = *nr_written + 956 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE; 957 *page_started = 1; 958 goto out; 959 } else if (ret < 0) { 960 goto out_unlock; 961 } 962 } 963 964 BUG_ON(disk_num_bytes > 965 btrfs_super_total_bytes(root->fs_info->super_copy)); 966 967 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes); 968 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0); 969 970 while (disk_num_bytes > 0) { 971 unsigned long op; 972 973 cur_alloc_size = disk_num_bytes; 974 ret = btrfs_reserve_extent(root, cur_alloc_size, 975 root->sectorsize, 0, alloc_hint, 976 &ins, 1, 1); 977 if (ret < 0) 978 goto out_unlock; 979 980 em = alloc_extent_map(); 981 if (!em) { 982 ret = -ENOMEM; 983 goto out_reserve; 984 } 985 em->start = start; 986 em->orig_start = em->start; 987 ram_size = ins.offset; 988 em->len = ins.offset; 989 em->mod_start = em->start; 990 em->mod_len = em->len; 991 992 em->block_start = ins.objectid; 993 em->block_len = ins.offset; 994 em->orig_block_len = ins.offset; 995 em->ram_bytes = ram_size; 996 em->bdev = root->fs_info->fs_devices->latest_bdev; 997 set_bit(EXTENT_FLAG_PINNED, &em->flags); 998 em->generation = -1; 999 1000 while (1) { 1001 write_lock(&em_tree->lock); 1002 ret = add_extent_mapping(em_tree, em, 1); 1003 write_unlock(&em_tree->lock); 1004 if (ret != -EEXIST) { 1005 free_extent_map(em); 1006 break; 1007 } 1008 btrfs_drop_extent_cache(inode, start, 1009 start + ram_size - 1, 0); 1010 } 1011 if (ret) 1012 goto out_reserve; 1013 1014 cur_alloc_size = ins.offset; 1015 ret = btrfs_add_ordered_extent(inode, start, ins.objectid, 1016 ram_size, cur_alloc_size, 0); 1017 if (ret) 1018 goto out_drop_extent_cache; 1019 1020 if (root->root_key.objectid == 1021 BTRFS_DATA_RELOC_TREE_OBJECTID) { 1022 ret = btrfs_reloc_clone_csums(inode, start, 1023 cur_alloc_size); 1024 if (ret) 1025 goto out_drop_extent_cache; 1026 } 1027 1028 if (disk_num_bytes < cur_alloc_size) 1029 break; 1030 1031 /* we're not doing compressed IO, don't unlock the first 1032 * page (which the caller expects to stay locked), don't 1033 * clear any dirty bits and don't set any writeback bits 1034 * 1035 * Do set the Private2 bit so we know this page was properly 1036 * setup for writepage 1037 */ 1038 op = unlock ? PAGE_UNLOCK : 0; 1039 op |= PAGE_SET_PRIVATE2; 1040 1041 extent_clear_unlock_delalloc(inode, start, 1042 start + ram_size - 1, locked_page, 1043 EXTENT_LOCKED | EXTENT_DELALLOC, 1044 op); 1045 disk_num_bytes -= cur_alloc_size; 1046 num_bytes -= cur_alloc_size; 1047 alloc_hint = ins.objectid + ins.offset; 1048 start += cur_alloc_size; 1049 } 1050 out: 1051 return ret; 1052 1053 out_drop_extent_cache: 1054 btrfs_drop_extent_cache(inode, start, start + ram_size - 1, 0); 1055 out_reserve: 1056 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1); 1057 out_unlock: 1058 extent_clear_unlock_delalloc(inode, start, end, locked_page, 1059 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING | 1060 EXTENT_DELALLOC | EXTENT_DEFRAG, 1061 PAGE_UNLOCK | PAGE_CLEAR_DIRTY | 1062 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK); 1063 goto out; 1064 } 1065 1066 /* 1067 * work queue call back to started compression on a file and pages 1068 */ 1069 static noinline void async_cow_start(struct btrfs_work *work) 1070 { 1071 struct async_cow *async_cow; 1072 int num_added = 0; 1073 async_cow = container_of(work, struct async_cow, work); 1074 1075 compress_file_range(async_cow->inode, async_cow->locked_page, 1076 async_cow->start, async_cow->end, async_cow, 1077 &num_added); 1078 if (num_added == 0) { 1079 btrfs_add_delayed_iput(async_cow->inode); 1080 async_cow->inode = NULL; 1081 } 1082 } 1083 1084 /* 1085 * work queue call back to submit previously compressed pages 1086 */ 1087 static noinline void async_cow_submit(struct btrfs_work *work) 1088 { 1089 struct async_cow *async_cow; 1090 struct btrfs_root *root; 1091 unsigned long nr_pages; 1092 1093 async_cow = container_of(work, struct async_cow, work); 1094 1095 root = async_cow->root; 1096 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >> 1097 PAGE_CACHE_SHIFT; 1098 1099 if (atomic_sub_return(nr_pages, &root->fs_info->async_delalloc_pages) < 1100 5 * 1024 * 1024 && 1101 waitqueue_active(&root->fs_info->async_submit_wait)) 1102 wake_up(&root->fs_info->async_submit_wait); 1103 1104 if (async_cow->inode) 1105 submit_compressed_extents(async_cow->inode, async_cow); 1106 } 1107 1108 static noinline void async_cow_free(struct btrfs_work *work) 1109 { 1110 struct async_cow *async_cow; 1111 async_cow = container_of(work, struct async_cow, work); 1112 if (async_cow->inode) 1113 btrfs_add_delayed_iput(async_cow->inode); 1114 kfree(async_cow); 1115 } 1116 1117 static int cow_file_range_async(struct inode *inode, struct page *locked_page, 1118 u64 start, u64 end, int *page_started, 1119 unsigned long *nr_written) 1120 { 1121 struct async_cow *async_cow; 1122 struct btrfs_root *root = BTRFS_I(inode)->root; 1123 unsigned long nr_pages; 1124 u64 cur_end; 1125 int limit = 10 * 1024 * 1024; 1126 1127 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED, 1128 1, 0, NULL, GFP_NOFS); 1129 while (start < end) { 1130 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS); 1131 BUG_ON(!async_cow); /* -ENOMEM */ 1132 async_cow->inode = igrab(inode); 1133 async_cow->root = root; 1134 async_cow->locked_page = locked_page; 1135 async_cow->start = start; 1136 1137 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS && 1138 !btrfs_test_opt(root, FORCE_COMPRESS)) 1139 cur_end = end; 1140 else 1141 cur_end = min(end, start + 512 * 1024 - 1); 1142 1143 async_cow->end = cur_end; 1144 INIT_LIST_HEAD(&async_cow->extents); 1145 1146 btrfs_init_work(&async_cow->work, 1147 btrfs_delalloc_helper, 1148 async_cow_start, async_cow_submit, 1149 async_cow_free); 1150 1151 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >> 1152 PAGE_CACHE_SHIFT; 1153 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages); 1154 1155 btrfs_queue_work(root->fs_info->delalloc_workers, 1156 &async_cow->work); 1157 1158 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) { 1159 wait_event(root->fs_info->async_submit_wait, 1160 (atomic_read(&root->fs_info->async_delalloc_pages) < 1161 limit)); 1162 } 1163 1164 while (atomic_read(&root->fs_info->async_submit_draining) && 1165 atomic_read(&root->fs_info->async_delalloc_pages)) { 1166 wait_event(root->fs_info->async_submit_wait, 1167 (atomic_read(&root->fs_info->async_delalloc_pages) == 1168 0)); 1169 } 1170 1171 *nr_written += nr_pages; 1172 start = cur_end + 1; 1173 } 1174 *page_started = 1; 1175 return 0; 1176 } 1177 1178 static noinline int csum_exist_in_range(struct btrfs_root *root, 1179 u64 bytenr, u64 num_bytes) 1180 { 1181 int ret; 1182 struct btrfs_ordered_sum *sums; 1183 LIST_HEAD(list); 1184 1185 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr, 1186 bytenr + num_bytes - 1, &list, 0); 1187 if (ret == 0 && list_empty(&list)) 1188 return 0; 1189 1190 while (!list_empty(&list)) { 1191 sums = list_entry(list.next, struct btrfs_ordered_sum, list); 1192 list_del(&sums->list); 1193 kfree(sums); 1194 } 1195 return 1; 1196 } 1197 1198 /* 1199 * when nowcow writeback call back. This checks for snapshots or COW copies 1200 * of the extents that exist in the file, and COWs the file as required. 1201 * 1202 * If no cow copies or snapshots exist, we write directly to the existing 1203 * blocks on disk 1204 */ 1205 static noinline int run_delalloc_nocow(struct inode *inode, 1206 struct page *locked_page, 1207 u64 start, u64 end, int *page_started, int force, 1208 unsigned long *nr_written) 1209 { 1210 struct btrfs_root *root = BTRFS_I(inode)->root; 1211 struct btrfs_trans_handle *trans; 1212 struct extent_buffer *leaf; 1213 struct btrfs_path *path; 1214 struct btrfs_file_extent_item *fi; 1215 struct btrfs_key found_key; 1216 u64 cow_start; 1217 u64 cur_offset; 1218 u64 extent_end; 1219 u64 extent_offset; 1220 u64 disk_bytenr; 1221 u64 num_bytes; 1222 u64 disk_num_bytes; 1223 u64 ram_bytes; 1224 int extent_type; 1225 int ret, err; 1226 int type; 1227 int nocow; 1228 int check_prev = 1; 1229 bool nolock; 1230 u64 ino = btrfs_ino(inode); 1231 1232 path = btrfs_alloc_path(); 1233 if (!path) { 1234 extent_clear_unlock_delalloc(inode, start, end, locked_page, 1235 EXTENT_LOCKED | EXTENT_DELALLOC | 1236 EXTENT_DO_ACCOUNTING | 1237 EXTENT_DEFRAG, PAGE_UNLOCK | 1238 PAGE_CLEAR_DIRTY | 1239 PAGE_SET_WRITEBACK | 1240 PAGE_END_WRITEBACK); 1241 return -ENOMEM; 1242 } 1243 1244 nolock = btrfs_is_free_space_inode(inode); 1245 1246 if (nolock) 1247 trans = btrfs_join_transaction_nolock(root); 1248 else 1249 trans = btrfs_join_transaction(root); 1250 1251 if (IS_ERR(trans)) { 1252 extent_clear_unlock_delalloc(inode, start, end, locked_page, 1253 EXTENT_LOCKED | EXTENT_DELALLOC | 1254 EXTENT_DO_ACCOUNTING | 1255 EXTENT_DEFRAG, PAGE_UNLOCK | 1256 PAGE_CLEAR_DIRTY | 1257 PAGE_SET_WRITEBACK | 1258 PAGE_END_WRITEBACK); 1259 btrfs_free_path(path); 1260 return PTR_ERR(trans); 1261 } 1262 1263 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 1264 1265 cow_start = (u64)-1; 1266 cur_offset = start; 1267 while (1) { 1268 ret = btrfs_lookup_file_extent(trans, root, path, ino, 1269 cur_offset, 0); 1270 if (ret < 0) 1271 goto error; 1272 if (ret > 0 && path->slots[0] > 0 && check_prev) { 1273 leaf = path->nodes[0]; 1274 btrfs_item_key_to_cpu(leaf, &found_key, 1275 path->slots[0] - 1); 1276 if (found_key.objectid == ino && 1277 found_key.type == BTRFS_EXTENT_DATA_KEY) 1278 path->slots[0]--; 1279 } 1280 check_prev = 0; 1281 next_slot: 1282 leaf = path->nodes[0]; 1283 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 1284 ret = btrfs_next_leaf(root, path); 1285 if (ret < 0) 1286 goto error; 1287 if (ret > 0) 1288 break; 1289 leaf = path->nodes[0]; 1290 } 1291 1292 nocow = 0; 1293 disk_bytenr = 0; 1294 num_bytes = 0; 1295 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1296 1297 if (found_key.objectid > ino || 1298 found_key.type > BTRFS_EXTENT_DATA_KEY || 1299 found_key.offset > end) 1300 break; 1301 1302 if (found_key.offset > cur_offset) { 1303 extent_end = found_key.offset; 1304 extent_type = 0; 1305 goto out_check; 1306 } 1307 1308 fi = btrfs_item_ptr(leaf, path->slots[0], 1309 struct btrfs_file_extent_item); 1310 extent_type = btrfs_file_extent_type(leaf, fi); 1311 1312 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 1313 if (extent_type == BTRFS_FILE_EXTENT_REG || 1314 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1315 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1316 extent_offset = btrfs_file_extent_offset(leaf, fi); 1317 extent_end = found_key.offset + 1318 btrfs_file_extent_num_bytes(leaf, fi); 1319 disk_num_bytes = 1320 btrfs_file_extent_disk_num_bytes(leaf, fi); 1321 if (extent_end <= start) { 1322 path->slots[0]++; 1323 goto next_slot; 1324 } 1325 if (disk_bytenr == 0) 1326 goto out_check; 1327 if (btrfs_file_extent_compression(leaf, fi) || 1328 btrfs_file_extent_encryption(leaf, fi) || 1329 btrfs_file_extent_other_encoding(leaf, fi)) 1330 goto out_check; 1331 if (extent_type == BTRFS_FILE_EXTENT_REG && !force) 1332 goto out_check; 1333 if (btrfs_extent_readonly(root, disk_bytenr)) 1334 goto out_check; 1335 if (btrfs_cross_ref_exist(trans, root, ino, 1336 found_key.offset - 1337 extent_offset, disk_bytenr)) 1338 goto out_check; 1339 disk_bytenr += extent_offset; 1340 disk_bytenr += cur_offset - found_key.offset; 1341 num_bytes = min(end + 1, extent_end) - cur_offset; 1342 /* 1343 * if there are pending snapshots for this root, 1344 * we fall into common COW way. 1345 */ 1346 if (!nolock) { 1347 err = btrfs_start_write_no_snapshoting(root); 1348 if (!err) 1349 goto out_check; 1350 } 1351 /* 1352 * force cow if csum exists in the range. 1353 * this ensure that csum for a given extent are 1354 * either valid or do not exist. 1355 */ 1356 if (csum_exist_in_range(root, disk_bytenr, num_bytes)) 1357 goto out_check; 1358 nocow = 1; 1359 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 1360 extent_end = found_key.offset + 1361 btrfs_file_extent_inline_len(leaf, 1362 path->slots[0], fi); 1363 extent_end = ALIGN(extent_end, root->sectorsize); 1364 } else { 1365 BUG_ON(1); 1366 } 1367 out_check: 1368 if (extent_end <= start) { 1369 path->slots[0]++; 1370 if (!nolock && nocow) 1371 btrfs_end_write_no_snapshoting(root); 1372 goto next_slot; 1373 } 1374 if (!nocow) { 1375 if (cow_start == (u64)-1) 1376 cow_start = cur_offset; 1377 cur_offset = extent_end; 1378 if (cur_offset > end) 1379 break; 1380 path->slots[0]++; 1381 goto next_slot; 1382 } 1383 1384 btrfs_release_path(path); 1385 if (cow_start != (u64)-1) { 1386 ret = cow_file_range(inode, locked_page, 1387 cow_start, found_key.offset - 1, 1388 page_started, nr_written, 1); 1389 if (ret) { 1390 if (!nolock && nocow) 1391 btrfs_end_write_no_snapshoting(root); 1392 goto error; 1393 } 1394 cow_start = (u64)-1; 1395 } 1396 1397 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1398 struct extent_map *em; 1399 struct extent_map_tree *em_tree; 1400 em_tree = &BTRFS_I(inode)->extent_tree; 1401 em = alloc_extent_map(); 1402 BUG_ON(!em); /* -ENOMEM */ 1403 em->start = cur_offset; 1404 em->orig_start = found_key.offset - extent_offset; 1405 em->len = num_bytes; 1406 em->block_len = num_bytes; 1407 em->block_start = disk_bytenr; 1408 em->orig_block_len = disk_num_bytes; 1409 em->ram_bytes = ram_bytes; 1410 em->bdev = root->fs_info->fs_devices->latest_bdev; 1411 em->mod_start = em->start; 1412 em->mod_len = em->len; 1413 set_bit(EXTENT_FLAG_PINNED, &em->flags); 1414 set_bit(EXTENT_FLAG_FILLING, &em->flags); 1415 em->generation = -1; 1416 while (1) { 1417 write_lock(&em_tree->lock); 1418 ret = add_extent_mapping(em_tree, em, 1); 1419 write_unlock(&em_tree->lock); 1420 if (ret != -EEXIST) { 1421 free_extent_map(em); 1422 break; 1423 } 1424 btrfs_drop_extent_cache(inode, em->start, 1425 em->start + em->len - 1, 0); 1426 } 1427 type = BTRFS_ORDERED_PREALLOC; 1428 } else { 1429 type = BTRFS_ORDERED_NOCOW; 1430 } 1431 1432 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr, 1433 num_bytes, num_bytes, type); 1434 BUG_ON(ret); /* -ENOMEM */ 1435 1436 if (root->root_key.objectid == 1437 BTRFS_DATA_RELOC_TREE_OBJECTID) { 1438 ret = btrfs_reloc_clone_csums(inode, cur_offset, 1439 num_bytes); 1440 if (ret) { 1441 if (!nolock && nocow) 1442 btrfs_end_write_no_snapshoting(root); 1443 goto error; 1444 } 1445 } 1446 1447 extent_clear_unlock_delalloc(inode, cur_offset, 1448 cur_offset + num_bytes - 1, 1449 locked_page, EXTENT_LOCKED | 1450 EXTENT_DELALLOC, PAGE_UNLOCK | 1451 PAGE_SET_PRIVATE2); 1452 if (!nolock && nocow) 1453 btrfs_end_write_no_snapshoting(root); 1454 cur_offset = extent_end; 1455 if (cur_offset > end) 1456 break; 1457 } 1458 btrfs_release_path(path); 1459 1460 if (cur_offset <= end && cow_start == (u64)-1) { 1461 cow_start = cur_offset; 1462 cur_offset = end; 1463 } 1464 1465 if (cow_start != (u64)-1) { 1466 ret = cow_file_range(inode, locked_page, cow_start, end, 1467 page_started, nr_written, 1); 1468 if (ret) 1469 goto error; 1470 } 1471 1472 error: 1473 err = btrfs_end_transaction(trans, root); 1474 if (!ret) 1475 ret = err; 1476 1477 if (ret && cur_offset < end) 1478 extent_clear_unlock_delalloc(inode, cur_offset, end, 1479 locked_page, EXTENT_LOCKED | 1480 EXTENT_DELALLOC | EXTENT_DEFRAG | 1481 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK | 1482 PAGE_CLEAR_DIRTY | 1483 PAGE_SET_WRITEBACK | 1484 PAGE_END_WRITEBACK); 1485 btrfs_free_path(path); 1486 return ret; 1487 } 1488 1489 static inline int need_force_cow(struct inode *inode, u64 start, u64 end) 1490 { 1491 1492 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) && 1493 !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)) 1494 return 0; 1495 1496 /* 1497 * @defrag_bytes is a hint value, no spinlock held here, 1498 * if is not zero, it means the file is defragging. 1499 * Force cow if given extent needs to be defragged. 1500 */ 1501 if (BTRFS_I(inode)->defrag_bytes && 1502 test_range_bit(&BTRFS_I(inode)->io_tree, start, end, 1503 EXTENT_DEFRAG, 0, NULL)) 1504 return 1; 1505 1506 return 0; 1507 } 1508 1509 /* 1510 * extent_io.c call back to do delayed allocation processing 1511 */ 1512 static int run_delalloc_range(struct inode *inode, struct page *locked_page, 1513 u64 start, u64 end, int *page_started, 1514 unsigned long *nr_written) 1515 { 1516 int ret; 1517 int force_cow = need_force_cow(inode, start, end); 1518 1519 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) { 1520 ret = run_delalloc_nocow(inode, locked_page, start, end, 1521 page_started, 1, nr_written); 1522 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) { 1523 ret = run_delalloc_nocow(inode, locked_page, start, end, 1524 page_started, 0, nr_written); 1525 } else if (!inode_need_compress(inode)) { 1526 ret = cow_file_range(inode, locked_page, start, end, 1527 page_started, nr_written, 1); 1528 } else { 1529 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 1530 &BTRFS_I(inode)->runtime_flags); 1531 ret = cow_file_range_async(inode, locked_page, start, end, 1532 page_started, nr_written); 1533 } 1534 return ret; 1535 } 1536 1537 static void btrfs_split_extent_hook(struct inode *inode, 1538 struct extent_state *orig, u64 split) 1539 { 1540 u64 size; 1541 1542 /* not delalloc, ignore it */ 1543 if (!(orig->state & EXTENT_DELALLOC)) 1544 return; 1545 1546 size = orig->end - orig->start + 1; 1547 if (size > BTRFS_MAX_EXTENT_SIZE) { 1548 u64 num_extents; 1549 u64 new_size; 1550 1551 /* 1552 * See the explanation in btrfs_merge_extent_hook, the same 1553 * applies here, just in reverse. 1554 */ 1555 new_size = orig->end - split + 1; 1556 num_extents = div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1, 1557 BTRFS_MAX_EXTENT_SIZE); 1558 new_size = split - orig->start; 1559 num_extents += div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1, 1560 BTRFS_MAX_EXTENT_SIZE); 1561 if (div64_u64(size + BTRFS_MAX_EXTENT_SIZE - 1, 1562 BTRFS_MAX_EXTENT_SIZE) >= num_extents) 1563 return; 1564 } 1565 1566 spin_lock(&BTRFS_I(inode)->lock); 1567 BTRFS_I(inode)->outstanding_extents++; 1568 spin_unlock(&BTRFS_I(inode)->lock); 1569 } 1570 1571 /* 1572 * extent_io.c merge_extent_hook, used to track merged delayed allocation 1573 * extents so we can keep track of new extents that are just merged onto old 1574 * extents, such as when we are doing sequential writes, so we can properly 1575 * account for the metadata space we'll need. 1576 */ 1577 static void btrfs_merge_extent_hook(struct inode *inode, 1578 struct extent_state *new, 1579 struct extent_state *other) 1580 { 1581 u64 new_size, old_size; 1582 u64 num_extents; 1583 1584 /* not delalloc, ignore it */ 1585 if (!(other->state & EXTENT_DELALLOC)) 1586 return; 1587 1588 if (new->start > other->start) 1589 new_size = new->end - other->start + 1; 1590 else 1591 new_size = other->end - new->start + 1; 1592 1593 /* we're not bigger than the max, unreserve the space and go */ 1594 if (new_size <= BTRFS_MAX_EXTENT_SIZE) { 1595 spin_lock(&BTRFS_I(inode)->lock); 1596 BTRFS_I(inode)->outstanding_extents--; 1597 spin_unlock(&BTRFS_I(inode)->lock); 1598 return; 1599 } 1600 1601 /* 1602 * We have to add up either side to figure out how many extents were 1603 * accounted for before we merged into one big extent. If the number of 1604 * extents we accounted for is <= the amount we need for the new range 1605 * then we can return, otherwise drop. Think of it like this 1606 * 1607 * [ 4k][MAX_SIZE] 1608 * 1609 * So we've grown the extent by a MAX_SIZE extent, this would mean we 1610 * need 2 outstanding extents, on one side we have 1 and the other side 1611 * we have 1 so they are == and we can return. But in this case 1612 * 1613 * [MAX_SIZE+4k][MAX_SIZE+4k] 1614 * 1615 * Each range on their own accounts for 2 extents, but merged together 1616 * they are only 3 extents worth of accounting, so we need to drop in 1617 * this case. 1618 */ 1619 old_size = other->end - other->start + 1; 1620 num_extents = div64_u64(old_size + BTRFS_MAX_EXTENT_SIZE - 1, 1621 BTRFS_MAX_EXTENT_SIZE); 1622 old_size = new->end - new->start + 1; 1623 num_extents += div64_u64(old_size + BTRFS_MAX_EXTENT_SIZE - 1, 1624 BTRFS_MAX_EXTENT_SIZE); 1625 1626 if (div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1, 1627 BTRFS_MAX_EXTENT_SIZE) >= num_extents) 1628 return; 1629 1630 spin_lock(&BTRFS_I(inode)->lock); 1631 BTRFS_I(inode)->outstanding_extents--; 1632 spin_unlock(&BTRFS_I(inode)->lock); 1633 } 1634 1635 static void btrfs_add_delalloc_inodes(struct btrfs_root *root, 1636 struct inode *inode) 1637 { 1638 spin_lock(&root->delalloc_lock); 1639 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) { 1640 list_add_tail(&BTRFS_I(inode)->delalloc_inodes, 1641 &root->delalloc_inodes); 1642 set_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1643 &BTRFS_I(inode)->runtime_flags); 1644 root->nr_delalloc_inodes++; 1645 if (root->nr_delalloc_inodes == 1) { 1646 spin_lock(&root->fs_info->delalloc_root_lock); 1647 BUG_ON(!list_empty(&root->delalloc_root)); 1648 list_add_tail(&root->delalloc_root, 1649 &root->fs_info->delalloc_roots); 1650 spin_unlock(&root->fs_info->delalloc_root_lock); 1651 } 1652 } 1653 spin_unlock(&root->delalloc_lock); 1654 } 1655 1656 static void btrfs_del_delalloc_inode(struct btrfs_root *root, 1657 struct inode *inode) 1658 { 1659 spin_lock(&root->delalloc_lock); 1660 if (!list_empty(&BTRFS_I(inode)->delalloc_inodes)) { 1661 list_del_init(&BTRFS_I(inode)->delalloc_inodes); 1662 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1663 &BTRFS_I(inode)->runtime_flags); 1664 root->nr_delalloc_inodes--; 1665 if (!root->nr_delalloc_inodes) { 1666 spin_lock(&root->fs_info->delalloc_root_lock); 1667 BUG_ON(list_empty(&root->delalloc_root)); 1668 list_del_init(&root->delalloc_root); 1669 spin_unlock(&root->fs_info->delalloc_root_lock); 1670 } 1671 } 1672 spin_unlock(&root->delalloc_lock); 1673 } 1674 1675 /* 1676 * extent_io.c set_bit_hook, used to track delayed allocation 1677 * bytes in this file, and to maintain the list of inodes that 1678 * have pending delalloc work to be done. 1679 */ 1680 static void btrfs_set_bit_hook(struct inode *inode, 1681 struct extent_state *state, unsigned *bits) 1682 { 1683 1684 if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC)) 1685 WARN_ON(1); 1686 /* 1687 * set_bit and clear bit hooks normally require _irqsave/restore 1688 * but in this case, we are only testing for the DELALLOC 1689 * bit, which is only set or cleared with irqs on 1690 */ 1691 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) { 1692 struct btrfs_root *root = BTRFS_I(inode)->root; 1693 u64 len = state->end + 1 - state->start; 1694 bool do_list = !btrfs_is_free_space_inode(inode); 1695 1696 if (*bits & EXTENT_FIRST_DELALLOC) { 1697 *bits &= ~EXTENT_FIRST_DELALLOC; 1698 } else { 1699 spin_lock(&BTRFS_I(inode)->lock); 1700 BTRFS_I(inode)->outstanding_extents++; 1701 spin_unlock(&BTRFS_I(inode)->lock); 1702 } 1703 1704 /* For sanity tests */ 1705 if (btrfs_test_is_dummy_root(root)) 1706 return; 1707 1708 __percpu_counter_add(&root->fs_info->delalloc_bytes, len, 1709 root->fs_info->delalloc_batch); 1710 spin_lock(&BTRFS_I(inode)->lock); 1711 BTRFS_I(inode)->delalloc_bytes += len; 1712 if (*bits & EXTENT_DEFRAG) 1713 BTRFS_I(inode)->defrag_bytes += len; 1714 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1715 &BTRFS_I(inode)->runtime_flags)) 1716 btrfs_add_delalloc_inodes(root, inode); 1717 spin_unlock(&BTRFS_I(inode)->lock); 1718 } 1719 } 1720 1721 /* 1722 * extent_io.c clear_bit_hook, see set_bit_hook for why 1723 */ 1724 static void btrfs_clear_bit_hook(struct inode *inode, 1725 struct extent_state *state, 1726 unsigned *bits) 1727 { 1728 u64 len = state->end + 1 - state->start; 1729 u64 num_extents = div64_u64(len + BTRFS_MAX_EXTENT_SIZE -1, 1730 BTRFS_MAX_EXTENT_SIZE); 1731 1732 spin_lock(&BTRFS_I(inode)->lock); 1733 if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG)) 1734 BTRFS_I(inode)->defrag_bytes -= len; 1735 spin_unlock(&BTRFS_I(inode)->lock); 1736 1737 /* 1738 * set_bit and clear bit hooks normally require _irqsave/restore 1739 * but in this case, we are only testing for the DELALLOC 1740 * bit, which is only set or cleared with irqs on 1741 */ 1742 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) { 1743 struct btrfs_root *root = BTRFS_I(inode)->root; 1744 bool do_list = !btrfs_is_free_space_inode(inode); 1745 1746 if (*bits & EXTENT_FIRST_DELALLOC) { 1747 *bits &= ~EXTENT_FIRST_DELALLOC; 1748 } else if (!(*bits & EXTENT_DO_ACCOUNTING)) { 1749 spin_lock(&BTRFS_I(inode)->lock); 1750 BTRFS_I(inode)->outstanding_extents -= num_extents; 1751 spin_unlock(&BTRFS_I(inode)->lock); 1752 } 1753 1754 /* 1755 * We don't reserve metadata space for space cache inodes so we 1756 * don't need to call dellalloc_release_metadata if there is an 1757 * error. 1758 */ 1759 if (*bits & EXTENT_DO_ACCOUNTING && 1760 root != root->fs_info->tree_root) 1761 btrfs_delalloc_release_metadata(inode, len); 1762 1763 /* For sanity tests. */ 1764 if (btrfs_test_is_dummy_root(root)) 1765 return; 1766 1767 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID 1768 && do_list && !(state->state & EXTENT_NORESERVE)) 1769 btrfs_free_reserved_data_space(inode, len); 1770 1771 __percpu_counter_add(&root->fs_info->delalloc_bytes, -len, 1772 root->fs_info->delalloc_batch); 1773 spin_lock(&BTRFS_I(inode)->lock); 1774 BTRFS_I(inode)->delalloc_bytes -= len; 1775 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 && 1776 test_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1777 &BTRFS_I(inode)->runtime_flags)) 1778 btrfs_del_delalloc_inode(root, inode); 1779 spin_unlock(&BTRFS_I(inode)->lock); 1780 } 1781 } 1782 1783 /* 1784 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure 1785 * we don't create bios that span stripes or chunks 1786 */ 1787 int btrfs_merge_bio_hook(int rw, struct page *page, unsigned long offset, 1788 size_t size, struct bio *bio, 1789 unsigned long bio_flags) 1790 { 1791 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; 1792 u64 logical = (u64)bio->bi_iter.bi_sector << 9; 1793 u64 length = 0; 1794 u64 map_length; 1795 int ret; 1796 1797 if (bio_flags & EXTENT_BIO_COMPRESSED) 1798 return 0; 1799 1800 length = bio->bi_iter.bi_size; 1801 map_length = length; 1802 ret = btrfs_map_block(root->fs_info, rw, logical, 1803 &map_length, NULL, 0); 1804 /* Will always return 0 with map_multi == NULL */ 1805 BUG_ON(ret < 0); 1806 if (map_length < length + size) 1807 return 1; 1808 return 0; 1809 } 1810 1811 /* 1812 * in order to insert checksums into the metadata in large chunks, 1813 * we wait until bio submission time. All the pages in the bio are 1814 * checksummed and sums are attached onto the ordered extent record. 1815 * 1816 * At IO completion time the cums attached on the ordered extent record 1817 * are inserted into the btree 1818 */ 1819 static int __btrfs_submit_bio_start(struct inode *inode, int rw, 1820 struct bio *bio, int mirror_num, 1821 unsigned long bio_flags, 1822 u64 bio_offset) 1823 { 1824 struct btrfs_root *root = BTRFS_I(inode)->root; 1825 int ret = 0; 1826 1827 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0); 1828 BUG_ON(ret); /* -ENOMEM */ 1829 return 0; 1830 } 1831 1832 /* 1833 * in order to insert checksums into the metadata in large chunks, 1834 * we wait until bio submission time. All the pages in the bio are 1835 * checksummed and sums are attached onto the ordered extent record. 1836 * 1837 * At IO completion time the cums attached on the ordered extent record 1838 * are inserted into the btree 1839 */ 1840 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio, 1841 int mirror_num, unsigned long bio_flags, 1842 u64 bio_offset) 1843 { 1844 struct btrfs_root *root = BTRFS_I(inode)->root; 1845 int ret; 1846 1847 ret = btrfs_map_bio(root, rw, bio, mirror_num, 1); 1848 if (ret) 1849 bio_endio(bio, ret); 1850 return ret; 1851 } 1852 1853 /* 1854 * extent_io.c submission hook. This does the right thing for csum calculation 1855 * on write, or reading the csums from the tree before a read 1856 */ 1857 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio, 1858 int mirror_num, unsigned long bio_flags, 1859 u64 bio_offset) 1860 { 1861 struct btrfs_root *root = BTRFS_I(inode)->root; 1862 int ret = 0; 1863 int skip_sum; 1864 int metadata = 0; 1865 int async = !atomic_read(&BTRFS_I(inode)->sync_writers); 1866 1867 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 1868 1869 if (btrfs_is_free_space_inode(inode)) 1870 metadata = 2; 1871 1872 if (!(rw & REQ_WRITE)) { 1873 ret = btrfs_bio_wq_end_io(root->fs_info, bio, metadata); 1874 if (ret) 1875 goto out; 1876 1877 if (bio_flags & EXTENT_BIO_COMPRESSED) { 1878 ret = btrfs_submit_compressed_read(inode, bio, 1879 mirror_num, 1880 bio_flags); 1881 goto out; 1882 } else if (!skip_sum) { 1883 ret = btrfs_lookup_bio_sums(root, inode, bio, NULL); 1884 if (ret) 1885 goto out; 1886 } 1887 goto mapit; 1888 } else if (async && !skip_sum) { 1889 /* csum items have already been cloned */ 1890 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) 1891 goto mapit; 1892 /* we're doing a write, do the async checksumming */ 1893 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info, 1894 inode, rw, bio, mirror_num, 1895 bio_flags, bio_offset, 1896 __btrfs_submit_bio_start, 1897 __btrfs_submit_bio_done); 1898 goto out; 1899 } else if (!skip_sum) { 1900 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0); 1901 if (ret) 1902 goto out; 1903 } 1904 1905 mapit: 1906 ret = btrfs_map_bio(root, rw, bio, mirror_num, 0); 1907 1908 out: 1909 if (ret < 0) 1910 bio_endio(bio, ret); 1911 return ret; 1912 } 1913 1914 /* 1915 * given a list of ordered sums record them in the inode. This happens 1916 * at IO completion time based on sums calculated at bio submission time. 1917 */ 1918 static noinline int add_pending_csums(struct btrfs_trans_handle *trans, 1919 struct inode *inode, u64 file_offset, 1920 struct list_head *list) 1921 { 1922 struct btrfs_ordered_sum *sum; 1923 1924 list_for_each_entry(sum, list, list) { 1925 trans->adding_csums = 1; 1926 btrfs_csum_file_blocks(trans, 1927 BTRFS_I(inode)->root->fs_info->csum_root, sum); 1928 trans->adding_csums = 0; 1929 } 1930 return 0; 1931 } 1932 1933 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end, 1934 struct extent_state **cached_state) 1935 { 1936 WARN_ON((end & (PAGE_CACHE_SIZE - 1)) == 0); 1937 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end, 1938 cached_state, GFP_NOFS); 1939 } 1940 1941 /* see btrfs_writepage_start_hook for details on why this is required */ 1942 struct btrfs_writepage_fixup { 1943 struct page *page; 1944 struct btrfs_work work; 1945 }; 1946 1947 static void btrfs_writepage_fixup_worker(struct btrfs_work *work) 1948 { 1949 struct btrfs_writepage_fixup *fixup; 1950 struct btrfs_ordered_extent *ordered; 1951 struct extent_state *cached_state = NULL; 1952 struct page *page; 1953 struct inode *inode; 1954 u64 page_start; 1955 u64 page_end; 1956 int ret; 1957 1958 fixup = container_of(work, struct btrfs_writepage_fixup, work); 1959 page = fixup->page; 1960 again: 1961 lock_page(page); 1962 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) { 1963 ClearPageChecked(page); 1964 goto out_page; 1965 } 1966 1967 inode = page->mapping->host; 1968 page_start = page_offset(page); 1969 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1; 1970 1971 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0, 1972 &cached_state); 1973 1974 /* already ordered? We're done */ 1975 if (PagePrivate2(page)) 1976 goto out; 1977 1978 ordered = btrfs_lookup_ordered_extent(inode, page_start); 1979 if (ordered) { 1980 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, 1981 page_end, &cached_state, GFP_NOFS); 1982 unlock_page(page); 1983 btrfs_start_ordered_extent(inode, ordered, 1); 1984 btrfs_put_ordered_extent(ordered); 1985 goto again; 1986 } 1987 1988 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE); 1989 if (ret) { 1990 mapping_set_error(page->mapping, ret); 1991 end_extent_writepage(page, ret, page_start, page_end); 1992 ClearPageChecked(page); 1993 goto out; 1994 } 1995 1996 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state); 1997 ClearPageChecked(page); 1998 set_page_dirty(page); 1999 out: 2000 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end, 2001 &cached_state, GFP_NOFS); 2002 out_page: 2003 unlock_page(page); 2004 page_cache_release(page); 2005 kfree(fixup); 2006 } 2007 2008 /* 2009 * There are a few paths in the higher layers of the kernel that directly 2010 * set the page dirty bit without asking the filesystem if it is a 2011 * good idea. This causes problems because we want to make sure COW 2012 * properly happens and the data=ordered rules are followed. 2013 * 2014 * In our case any range that doesn't have the ORDERED bit set 2015 * hasn't been properly setup for IO. We kick off an async process 2016 * to fix it up. The async helper will wait for ordered extents, set 2017 * the delalloc bit and make it safe to write the page. 2018 */ 2019 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end) 2020 { 2021 struct inode *inode = page->mapping->host; 2022 struct btrfs_writepage_fixup *fixup; 2023 struct btrfs_root *root = BTRFS_I(inode)->root; 2024 2025 /* this page is properly in the ordered list */ 2026 if (TestClearPagePrivate2(page)) 2027 return 0; 2028 2029 if (PageChecked(page)) 2030 return -EAGAIN; 2031 2032 fixup = kzalloc(sizeof(*fixup), GFP_NOFS); 2033 if (!fixup) 2034 return -EAGAIN; 2035 2036 SetPageChecked(page); 2037 page_cache_get(page); 2038 btrfs_init_work(&fixup->work, btrfs_fixup_helper, 2039 btrfs_writepage_fixup_worker, NULL, NULL); 2040 fixup->page = page; 2041 btrfs_queue_work(root->fs_info->fixup_workers, &fixup->work); 2042 return -EBUSY; 2043 } 2044 2045 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans, 2046 struct inode *inode, u64 file_pos, 2047 u64 disk_bytenr, u64 disk_num_bytes, 2048 u64 num_bytes, u64 ram_bytes, 2049 u8 compression, u8 encryption, 2050 u16 other_encoding, int extent_type) 2051 { 2052 struct btrfs_root *root = BTRFS_I(inode)->root; 2053 struct btrfs_file_extent_item *fi; 2054 struct btrfs_path *path; 2055 struct extent_buffer *leaf; 2056 struct btrfs_key ins; 2057 int extent_inserted = 0; 2058 int ret; 2059 2060 path = btrfs_alloc_path(); 2061 if (!path) 2062 return -ENOMEM; 2063 2064 /* 2065 * we may be replacing one extent in the tree with another. 2066 * The new extent is pinned in the extent map, and we don't want 2067 * to drop it from the cache until it is completely in the btree. 2068 * 2069 * So, tell btrfs_drop_extents to leave this extent in the cache. 2070 * the caller is expected to unpin it and allow it to be merged 2071 * with the others. 2072 */ 2073 ret = __btrfs_drop_extents(trans, root, inode, path, file_pos, 2074 file_pos + num_bytes, NULL, 0, 2075 1, sizeof(*fi), &extent_inserted); 2076 if (ret) 2077 goto out; 2078 2079 if (!extent_inserted) { 2080 ins.objectid = btrfs_ino(inode); 2081 ins.offset = file_pos; 2082 ins.type = BTRFS_EXTENT_DATA_KEY; 2083 2084 path->leave_spinning = 1; 2085 ret = btrfs_insert_empty_item(trans, root, path, &ins, 2086 sizeof(*fi)); 2087 if (ret) 2088 goto out; 2089 } 2090 leaf = path->nodes[0]; 2091 fi = btrfs_item_ptr(leaf, path->slots[0], 2092 struct btrfs_file_extent_item); 2093 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 2094 btrfs_set_file_extent_type(leaf, fi, extent_type); 2095 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr); 2096 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes); 2097 btrfs_set_file_extent_offset(leaf, fi, 0); 2098 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 2099 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes); 2100 btrfs_set_file_extent_compression(leaf, fi, compression); 2101 btrfs_set_file_extent_encryption(leaf, fi, encryption); 2102 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding); 2103 2104 btrfs_mark_buffer_dirty(leaf); 2105 btrfs_release_path(path); 2106 2107 inode_add_bytes(inode, num_bytes); 2108 2109 ins.objectid = disk_bytenr; 2110 ins.offset = disk_num_bytes; 2111 ins.type = BTRFS_EXTENT_ITEM_KEY; 2112 ret = btrfs_alloc_reserved_file_extent(trans, root, 2113 root->root_key.objectid, 2114 btrfs_ino(inode), file_pos, &ins); 2115 out: 2116 btrfs_free_path(path); 2117 2118 return ret; 2119 } 2120 2121 /* snapshot-aware defrag */ 2122 struct sa_defrag_extent_backref { 2123 struct rb_node node; 2124 struct old_sa_defrag_extent *old; 2125 u64 root_id; 2126 u64 inum; 2127 u64 file_pos; 2128 u64 extent_offset; 2129 u64 num_bytes; 2130 u64 generation; 2131 }; 2132 2133 struct old_sa_defrag_extent { 2134 struct list_head list; 2135 struct new_sa_defrag_extent *new; 2136 2137 u64 extent_offset; 2138 u64 bytenr; 2139 u64 offset; 2140 u64 len; 2141 int count; 2142 }; 2143 2144 struct new_sa_defrag_extent { 2145 struct rb_root root; 2146 struct list_head head; 2147 struct btrfs_path *path; 2148 struct inode *inode; 2149 u64 file_pos; 2150 u64 len; 2151 u64 bytenr; 2152 u64 disk_len; 2153 u8 compress_type; 2154 }; 2155 2156 static int backref_comp(struct sa_defrag_extent_backref *b1, 2157 struct sa_defrag_extent_backref *b2) 2158 { 2159 if (b1->root_id < b2->root_id) 2160 return -1; 2161 else if (b1->root_id > b2->root_id) 2162 return 1; 2163 2164 if (b1->inum < b2->inum) 2165 return -1; 2166 else if (b1->inum > b2->inum) 2167 return 1; 2168 2169 if (b1->file_pos < b2->file_pos) 2170 return -1; 2171 else if (b1->file_pos > b2->file_pos) 2172 return 1; 2173 2174 /* 2175 * [------------------------------] ===> (a range of space) 2176 * |<--->| |<---->| =============> (fs/file tree A) 2177 * |<---------------------------->| ===> (fs/file tree B) 2178 * 2179 * A range of space can refer to two file extents in one tree while 2180 * refer to only one file extent in another tree. 2181 * 2182 * So we may process a disk offset more than one time(two extents in A) 2183 * and locate at the same extent(one extent in B), then insert two same 2184 * backrefs(both refer to the extent in B). 2185 */ 2186 return 0; 2187 } 2188 2189 static void backref_insert(struct rb_root *root, 2190 struct sa_defrag_extent_backref *backref) 2191 { 2192 struct rb_node **p = &root->rb_node; 2193 struct rb_node *parent = NULL; 2194 struct sa_defrag_extent_backref *entry; 2195 int ret; 2196 2197 while (*p) { 2198 parent = *p; 2199 entry = rb_entry(parent, struct sa_defrag_extent_backref, node); 2200 2201 ret = backref_comp(backref, entry); 2202 if (ret < 0) 2203 p = &(*p)->rb_left; 2204 else 2205 p = &(*p)->rb_right; 2206 } 2207 2208 rb_link_node(&backref->node, parent, p); 2209 rb_insert_color(&backref->node, root); 2210 } 2211 2212 /* 2213 * Note the backref might has changed, and in this case we just return 0. 2214 */ 2215 static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id, 2216 void *ctx) 2217 { 2218 struct btrfs_file_extent_item *extent; 2219 struct btrfs_fs_info *fs_info; 2220 struct old_sa_defrag_extent *old = ctx; 2221 struct new_sa_defrag_extent *new = old->new; 2222 struct btrfs_path *path = new->path; 2223 struct btrfs_key key; 2224 struct btrfs_root *root; 2225 struct sa_defrag_extent_backref *backref; 2226 struct extent_buffer *leaf; 2227 struct inode *inode = new->inode; 2228 int slot; 2229 int ret; 2230 u64 extent_offset; 2231 u64 num_bytes; 2232 2233 if (BTRFS_I(inode)->root->root_key.objectid == root_id && 2234 inum == btrfs_ino(inode)) 2235 return 0; 2236 2237 key.objectid = root_id; 2238 key.type = BTRFS_ROOT_ITEM_KEY; 2239 key.offset = (u64)-1; 2240 2241 fs_info = BTRFS_I(inode)->root->fs_info; 2242 root = btrfs_read_fs_root_no_name(fs_info, &key); 2243 if (IS_ERR(root)) { 2244 if (PTR_ERR(root) == -ENOENT) 2245 return 0; 2246 WARN_ON(1); 2247 pr_debug("inum=%llu, offset=%llu, root_id=%llu\n", 2248 inum, offset, root_id); 2249 return PTR_ERR(root); 2250 } 2251 2252 key.objectid = inum; 2253 key.type = BTRFS_EXTENT_DATA_KEY; 2254 if (offset > (u64)-1 << 32) 2255 key.offset = 0; 2256 else 2257 key.offset = offset; 2258 2259 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2260 if (WARN_ON(ret < 0)) 2261 return ret; 2262 ret = 0; 2263 2264 while (1) { 2265 cond_resched(); 2266 2267 leaf = path->nodes[0]; 2268 slot = path->slots[0]; 2269 2270 if (slot >= btrfs_header_nritems(leaf)) { 2271 ret = btrfs_next_leaf(root, path); 2272 if (ret < 0) { 2273 goto out; 2274 } else if (ret > 0) { 2275 ret = 0; 2276 goto out; 2277 } 2278 continue; 2279 } 2280 2281 path->slots[0]++; 2282 2283 btrfs_item_key_to_cpu(leaf, &key, slot); 2284 2285 if (key.objectid > inum) 2286 goto out; 2287 2288 if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY) 2289 continue; 2290 2291 extent = btrfs_item_ptr(leaf, slot, 2292 struct btrfs_file_extent_item); 2293 2294 if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr) 2295 continue; 2296 2297 /* 2298 * 'offset' refers to the exact key.offset, 2299 * NOT the 'offset' field in btrfs_extent_data_ref, ie. 2300 * (key.offset - extent_offset). 2301 */ 2302 if (key.offset != offset) 2303 continue; 2304 2305 extent_offset = btrfs_file_extent_offset(leaf, extent); 2306 num_bytes = btrfs_file_extent_num_bytes(leaf, extent); 2307 2308 if (extent_offset >= old->extent_offset + old->offset + 2309 old->len || extent_offset + num_bytes <= 2310 old->extent_offset + old->offset) 2311 continue; 2312 break; 2313 } 2314 2315 backref = kmalloc(sizeof(*backref), GFP_NOFS); 2316 if (!backref) { 2317 ret = -ENOENT; 2318 goto out; 2319 } 2320 2321 backref->root_id = root_id; 2322 backref->inum = inum; 2323 backref->file_pos = offset; 2324 backref->num_bytes = num_bytes; 2325 backref->extent_offset = extent_offset; 2326 backref->generation = btrfs_file_extent_generation(leaf, extent); 2327 backref->old = old; 2328 backref_insert(&new->root, backref); 2329 old->count++; 2330 out: 2331 btrfs_release_path(path); 2332 WARN_ON(ret); 2333 return ret; 2334 } 2335 2336 static noinline bool record_extent_backrefs(struct btrfs_path *path, 2337 struct new_sa_defrag_extent *new) 2338 { 2339 struct btrfs_fs_info *fs_info = BTRFS_I(new->inode)->root->fs_info; 2340 struct old_sa_defrag_extent *old, *tmp; 2341 int ret; 2342 2343 new->path = path; 2344 2345 list_for_each_entry_safe(old, tmp, &new->head, list) { 2346 ret = iterate_inodes_from_logical(old->bytenr + 2347 old->extent_offset, fs_info, 2348 path, record_one_backref, 2349 old); 2350 if (ret < 0 && ret != -ENOENT) 2351 return false; 2352 2353 /* no backref to be processed for this extent */ 2354 if (!old->count) { 2355 list_del(&old->list); 2356 kfree(old); 2357 } 2358 } 2359 2360 if (list_empty(&new->head)) 2361 return false; 2362 2363 return true; 2364 } 2365 2366 static int relink_is_mergable(struct extent_buffer *leaf, 2367 struct btrfs_file_extent_item *fi, 2368 struct new_sa_defrag_extent *new) 2369 { 2370 if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr) 2371 return 0; 2372 2373 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG) 2374 return 0; 2375 2376 if (btrfs_file_extent_compression(leaf, fi) != new->compress_type) 2377 return 0; 2378 2379 if (btrfs_file_extent_encryption(leaf, fi) || 2380 btrfs_file_extent_other_encoding(leaf, fi)) 2381 return 0; 2382 2383 return 1; 2384 } 2385 2386 /* 2387 * Note the backref might has changed, and in this case we just return 0. 2388 */ 2389 static noinline int relink_extent_backref(struct btrfs_path *path, 2390 struct sa_defrag_extent_backref *prev, 2391 struct sa_defrag_extent_backref *backref) 2392 { 2393 struct btrfs_file_extent_item *extent; 2394 struct btrfs_file_extent_item *item; 2395 struct btrfs_ordered_extent *ordered; 2396 struct btrfs_trans_handle *trans; 2397 struct btrfs_fs_info *fs_info; 2398 struct btrfs_root *root; 2399 struct btrfs_key key; 2400 struct extent_buffer *leaf; 2401 struct old_sa_defrag_extent *old = backref->old; 2402 struct new_sa_defrag_extent *new = old->new; 2403 struct inode *src_inode = new->inode; 2404 struct inode *inode; 2405 struct extent_state *cached = NULL; 2406 int ret = 0; 2407 u64 start; 2408 u64 len; 2409 u64 lock_start; 2410 u64 lock_end; 2411 bool merge = false; 2412 int index; 2413 2414 if (prev && prev->root_id == backref->root_id && 2415 prev->inum == backref->inum && 2416 prev->file_pos + prev->num_bytes == backref->file_pos) 2417 merge = true; 2418 2419 /* step 1: get root */ 2420 key.objectid = backref->root_id; 2421 key.type = BTRFS_ROOT_ITEM_KEY; 2422 key.offset = (u64)-1; 2423 2424 fs_info = BTRFS_I(src_inode)->root->fs_info; 2425 index = srcu_read_lock(&fs_info->subvol_srcu); 2426 2427 root = btrfs_read_fs_root_no_name(fs_info, &key); 2428 if (IS_ERR(root)) { 2429 srcu_read_unlock(&fs_info->subvol_srcu, index); 2430 if (PTR_ERR(root) == -ENOENT) 2431 return 0; 2432 return PTR_ERR(root); 2433 } 2434 2435 if (btrfs_root_readonly(root)) { 2436 srcu_read_unlock(&fs_info->subvol_srcu, index); 2437 return 0; 2438 } 2439 2440 /* step 2: get inode */ 2441 key.objectid = backref->inum; 2442 key.type = BTRFS_INODE_ITEM_KEY; 2443 key.offset = 0; 2444 2445 inode = btrfs_iget(fs_info->sb, &key, root, NULL); 2446 if (IS_ERR(inode)) { 2447 srcu_read_unlock(&fs_info->subvol_srcu, index); 2448 return 0; 2449 } 2450 2451 srcu_read_unlock(&fs_info->subvol_srcu, index); 2452 2453 /* step 3: relink backref */ 2454 lock_start = backref->file_pos; 2455 lock_end = backref->file_pos + backref->num_bytes - 1; 2456 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end, 2457 0, &cached); 2458 2459 ordered = btrfs_lookup_first_ordered_extent(inode, lock_end); 2460 if (ordered) { 2461 btrfs_put_ordered_extent(ordered); 2462 goto out_unlock; 2463 } 2464 2465 trans = btrfs_join_transaction(root); 2466 if (IS_ERR(trans)) { 2467 ret = PTR_ERR(trans); 2468 goto out_unlock; 2469 } 2470 2471 key.objectid = backref->inum; 2472 key.type = BTRFS_EXTENT_DATA_KEY; 2473 key.offset = backref->file_pos; 2474 2475 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2476 if (ret < 0) { 2477 goto out_free_path; 2478 } else if (ret > 0) { 2479 ret = 0; 2480 goto out_free_path; 2481 } 2482 2483 extent = btrfs_item_ptr(path->nodes[0], path->slots[0], 2484 struct btrfs_file_extent_item); 2485 2486 if (btrfs_file_extent_generation(path->nodes[0], extent) != 2487 backref->generation) 2488 goto out_free_path; 2489 2490 btrfs_release_path(path); 2491 2492 start = backref->file_pos; 2493 if (backref->extent_offset < old->extent_offset + old->offset) 2494 start += old->extent_offset + old->offset - 2495 backref->extent_offset; 2496 2497 len = min(backref->extent_offset + backref->num_bytes, 2498 old->extent_offset + old->offset + old->len); 2499 len -= max(backref->extent_offset, old->extent_offset + old->offset); 2500 2501 ret = btrfs_drop_extents(trans, root, inode, start, 2502 start + len, 1); 2503 if (ret) 2504 goto out_free_path; 2505 again: 2506 key.objectid = btrfs_ino(inode); 2507 key.type = BTRFS_EXTENT_DATA_KEY; 2508 key.offset = start; 2509 2510 path->leave_spinning = 1; 2511 if (merge) { 2512 struct btrfs_file_extent_item *fi; 2513 u64 extent_len; 2514 struct btrfs_key found_key; 2515 2516 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2517 if (ret < 0) 2518 goto out_free_path; 2519 2520 path->slots[0]--; 2521 leaf = path->nodes[0]; 2522 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 2523 2524 fi = btrfs_item_ptr(leaf, path->slots[0], 2525 struct btrfs_file_extent_item); 2526 extent_len = btrfs_file_extent_num_bytes(leaf, fi); 2527 2528 if (extent_len + found_key.offset == start && 2529 relink_is_mergable(leaf, fi, new)) { 2530 btrfs_set_file_extent_num_bytes(leaf, fi, 2531 extent_len + len); 2532 btrfs_mark_buffer_dirty(leaf); 2533 inode_add_bytes(inode, len); 2534 2535 ret = 1; 2536 goto out_free_path; 2537 } else { 2538 merge = false; 2539 btrfs_release_path(path); 2540 goto again; 2541 } 2542 } 2543 2544 ret = btrfs_insert_empty_item(trans, root, path, &key, 2545 sizeof(*extent)); 2546 if (ret) { 2547 btrfs_abort_transaction(trans, root, ret); 2548 goto out_free_path; 2549 } 2550 2551 leaf = path->nodes[0]; 2552 item = btrfs_item_ptr(leaf, path->slots[0], 2553 struct btrfs_file_extent_item); 2554 btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr); 2555 btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len); 2556 btrfs_set_file_extent_offset(leaf, item, start - new->file_pos); 2557 btrfs_set_file_extent_num_bytes(leaf, item, len); 2558 btrfs_set_file_extent_ram_bytes(leaf, item, new->len); 2559 btrfs_set_file_extent_generation(leaf, item, trans->transid); 2560 btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG); 2561 btrfs_set_file_extent_compression(leaf, item, new->compress_type); 2562 btrfs_set_file_extent_encryption(leaf, item, 0); 2563 btrfs_set_file_extent_other_encoding(leaf, item, 0); 2564 2565 btrfs_mark_buffer_dirty(leaf); 2566 inode_add_bytes(inode, len); 2567 btrfs_release_path(path); 2568 2569 ret = btrfs_inc_extent_ref(trans, root, new->bytenr, 2570 new->disk_len, 0, 2571 backref->root_id, backref->inum, 2572 new->file_pos, 0); /* start - extent_offset */ 2573 if (ret) { 2574 btrfs_abort_transaction(trans, root, ret); 2575 goto out_free_path; 2576 } 2577 2578 ret = 1; 2579 out_free_path: 2580 btrfs_release_path(path); 2581 path->leave_spinning = 0; 2582 btrfs_end_transaction(trans, root); 2583 out_unlock: 2584 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end, 2585 &cached, GFP_NOFS); 2586 iput(inode); 2587 return ret; 2588 } 2589 2590 static void free_sa_defrag_extent(struct new_sa_defrag_extent *new) 2591 { 2592 struct old_sa_defrag_extent *old, *tmp; 2593 2594 if (!new) 2595 return; 2596 2597 list_for_each_entry_safe(old, tmp, &new->head, list) { 2598 list_del(&old->list); 2599 kfree(old); 2600 } 2601 kfree(new); 2602 } 2603 2604 static void relink_file_extents(struct new_sa_defrag_extent *new) 2605 { 2606 struct btrfs_path *path; 2607 struct sa_defrag_extent_backref *backref; 2608 struct sa_defrag_extent_backref *prev = NULL; 2609 struct inode *inode; 2610 struct btrfs_root *root; 2611 struct rb_node *node; 2612 int ret; 2613 2614 inode = new->inode; 2615 root = BTRFS_I(inode)->root; 2616 2617 path = btrfs_alloc_path(); 2618 if (!path) 2619 return; 2620 2621 if (!record_extent_backrefs(path, new)) { 2622 btrfs_free_path(path); 2623 goto out; 2624 } 2625 btrfs_release_path(path); 2626 2627 while (1) { 2628 node = rb_first(&new->root); 2629 if (!node) 2630 break; 2631 rb_erase(node, &new->root); 2632 2633 backref = rb_entry(node, struct sa_defrag_extent_backref, node); 2634 2635 ret = relink_extent_backref(path, prev, backref); 2636 WARN_ON(ret < 0); 2637 2638 kfree(prev); 2639 2640 if (ret == 1) 2641 prev = backref; 2642 else 2643 prev = NULL; 2644 cond_resched(); 2645 } 2646 kfree(prev); 2647 2648 btrfs_free_path(path); 2649 out: 2650 free_sa_defrag_extent(new); 2651 2652 atomic_dec(&root->fs_info->defrag_running); 2653 wake_up(&root->fs_info->transaction_wait); 2654 } 2655 2656 static struct new_sa_defrag_extent * 2657 record_old_file_extents(struct inode *inode, 2658 struct btrfs_ordered_extent *ordered) 2659 { 2660 struct btrfs_root *root = BTRFS_I(inode)->root; 2661 struct btrfs_path *path; 2662 struct btrfs_key key; 2663 struct old_sa_defrag_extent *old; 2664 struct new_sa_defrag_extent *new; 2665 int ret; 2666 2667 new = kmalloc(sizeof(*new), GFP_NOFS); 2668 if (!new) 2669 return NULL; 2670 2671 new->inode = inode; 2672 new->file_pos = ordered->file_offset; 2673 new->len = ordered->len; 2674 new->bytenr = ordered->start; 2675 new->disk_len = ordered->disk_len; 2676 new->compress_type = ordered->compress_type; 2677 new->root = RB_ROOT; 2678 INIT_LIST_HEAD(&new->head); 2679 2680 path = btrfs_alloc_path(); 2681 if (!path) 2682 goto out_kfree; 2683 2684 key.objectid = btrfs_ino(inode); 2685 key.type = BTRFS_EXTENT_DATA_KEY; 2686 key.offset = new->file_pos; 2687 2688 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2689 if (ret < 0) 2690 goto out_free_path; 2691 if (ret > 0 && path->slots[0] > 0) 2692 path->slots[0]--; 2693 2694 /* find out all the old extents for the file range */ 2695 while (1) { 2696 struct btrfs_file_extent_item *extent; 2697 struct extent_buffer *l; 2698 int slot; 2699 u64 num_bytes; 2700 u64 offset; 2701 u64 end; 2702 u64 disk_bytenr; 2703 u64 extent_offset; 2704 2705 l = path->nodes[0]; 2706 slot = path->slots[0]; 2707 2708 if (slot >= btrfs_header_nritems(l)) { 2709 ret = btrfs_next_leaf(root, path); 2710 if (ret < 0) 2711 goto out_free_path; 2712 else if (ret > 0) 2713 break; 2714 continue; 2715 } 2716 2717 btrfs_item_key_to_cpu(l, &key, slot); 2718 2719 if (key.objectid != btrfs_ino(inode)) 2720 break; 2721 if (key.type != BTRFS_EXTENT_DATA_KEY) 2722 break; 2723 if (key.offset >= new->file_pos + new->len) 2724 break; 2725 2726 extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item); 2727 2728 num_bytes = btrfs_file_extent_num_bytes(l, extent); 2729 if (key.offset + num_bytes < new->file_pos) 2730 goto next; 2731 2732 disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent); 2733 if (!disk_bytenr) 2734 goto next; 2735 2736 extent_offset = btrfs_file_extent_offset(l, extent); 2737 2738 old = kmalloc(sizeof(*old), GFP_NOFS); 2739 if (!old) 2740 goto out_free_path; 2741 2742 offset = max(new->file_pos, key.offset); 2743 end = min(new->file_pos + new->len, key.offset + num_bytes); 2744 2745 old->bytenr = disk_bytenr; 2746 old->extent_offset = extent_offset; 2747 old->offset = offset - key.offset; 2748 old->len = end - offset; 2749 old->new = new; 2750 old->count = 0; 2751 list_add_tail(&old->list, &new->head); 2752 next: 2753 path->slots[0]++; 2754 cond_resched(); 2755 } 2756 2757 btrfs_free_path(path); 2758 atomic_inc(&root->fs_info->defrag_running); 2759 2760 return new; 2761 2762 out_free_path: 2763 btrfs_free_path(path); 2764 out_kfree: 2765 free_sa_defrag_extent(new); 2766 return NULL; 2767 } 2768 2769 static void btrfs_release_delalloc_bytes(struct btrfs_root *root, 2770 u64 start, u64 len) 2771 { 2772 struct btrfs_block_group_cache *cache; 2773 2774 cache = btrfs_lookup_block_group(root->fs_info, start); 2775 ASSERT(cache); 2776 2777 spin_lock(&cache->lock); 2778 cache->delalloc_bytes -= len; 2779 spin_unlock(&cache->lock); 2780 2781 btrfs_put_block_group(cache); 2782 } 2783 2784 /* as ordered data IO finishes, this gets called so we can finish 2785 * an ordered extent if the range of bytes in the file it covers are 2786 * fully written. 2787 */ 2788 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent) 2789 { 2790 struct inode *inode = ordered_extent->inode; 2791 struct btrfs_root *root = BTRFS_I(inode)->root; 2792 struct btrfs_trans_handle *trans = NULL; 2793 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 2794 struct extent_state *cached_state = NULL; 2795 struct new_sa_defrag_extent *new = NULL; 2796 int compress_type = 0; 2797 int ret = 0; 2798 u64 logical_len = ordered_extent->len; 2799 bool nolock; 2800 bool truncated = false; 2801 2802 nolock = btrfs_is_free_space_inode(inode); 2803 2804 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) { 2805 ret = -EIO; 2806 goto out; 2807 } 2808 2809 btrfs_free_io_failure_record(inode, ordered_extent->file_offset, 2810 ordered_extent->file_offset + 2811 ordered_extent->len - 1); 2812 2813 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) { 2814 truncated = true; 2815 logical_len = ordered_extent->truncated_len; 2816 /* Truncated the entire extent, don't bother adding */ 2817 if (!logical_len) 2818 goto out; 2819 } 2820 2821 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) { 2822 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */ 2823 btrfs_ordered_update_i_size(inode, 0, ordered_extent); 2824 if (nolock) 2825 trans = btrfs_join_transaction_nolock(root); 2826 else 2827 trans = btrfs_join_transaction(root); 2828 if (IS_ERR(trans)) { 2829 ret = PTR_ERR(trans); 2830 trans = NULL; 2831 goto out; 2832 } 2833 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 2834 ret = btrfs_update_inode_fallback(trans, root, inode); 2835 if (ret) /* -ENOMEM or corruption */ 2836 btrfs_abort_transaction(trans, root, ret); 2837 goto out; 2838 } 2839 2840 lock_extent_bits(io_tree, ordered_extent->file_offset, 2841 ordered_extent->file_offset + ordered_extent->len - 1, 2842 0, &cached_state); 2843 2844 ret = test_range_bit(io_tree, ordered_extent->file_offset, 2845 ordered_extent->file_offset + ordered_extent->len - 1, 2846 EXTENT_DEFRAG, 1, cached_state); 2847 if (ret) { 2848 u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item); 2849 if (0 && last_snapshot >= BTRFS_I(inode)->generation) 2850 /* the inode is shared */ 2851 new = record_old_file_extents(inode, ordered_extent); 2852 2853 clear_extent_bit(io_tree, ordered_extent->file_offset, 2854 ordered_extent->file_offset + ordered_extent->len - 1, 2855 EXTENT_DEFRAG, 0, 0, &cached_state, GFP_NOFS); 2856 } 2857 2858 if (nolock) 2859 trans = btrfs_join_transaction_nolock(root); 2860 else 2861 trans = btrfs_join_transaction(root); 2862 if (IS_ERR(trans)) { 2863 ret = PTR_ERR(trans); 2864 trans = NULL; 2865 goto out_unlock; 2866 } 2867 2868 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 2869 2870 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags)) 2871 compress_type = ordered_extent->compress_type; 2872 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 2873 BUG_ON(compress_type); 2874 ret = btrfs_mark_extent_written(trans, inode, 2875 ordered_extent->file_offset, 2876 ordered_extent->file_offset + 2877 logical_len); 2878 } else { 2879 BUG_ON(root == root->fs_info->tree_root); 2880 ret = insert_reserved_file_extent(trans, inode, 2881 ordered_extent->file_offset, 2882 ordered_extent->start, 2883 ordered_extent->disk_len, 2884 logical_len, logical_len, 2885 compress_type, 0, 0, 2886 BTRFS_FILE_EXTENT_REG); 2887 if (!ret) 2888 btrfs_release_delalloc_bytes(root, 2889 ordered_extent->start, 2890 ordered_extent->disk_len); 2891 } 2892 unpin_extent_cache(&BTRFS_I(inode)->extent_tree, 2893 ordered_extent->file_offset, ordered_extent->len, 2894 trans->transid); 2895 if (ret < 0) { 2896 btrfs_abort_transaction(trans, root, ret); 2897 goto out_unlock; 2898 } 2899 2900 add_pending_csums(trans, inode, ordered_extent->file_offset, 2901 &ordered_extent->list); 2902 2903 btrfs_ordered_update_i_size(inode, 0, ordered_extent); 2904 ret = btrfs_update_inode_fallback(trans, root, inode); 2905 if (ret) { /* -ENOMEM or corruption */ 2906 btrfs_abort_transaction(trans, root, ret); 2907 goto out_unlock; 2908 } 2909 ret = 0; 2910 out_unlock: 2911 unlock_extent_cached(io_tree, ordered_extent->file_offset, 2912 ordered_extent->file_offset + 2913 ordered_extent->len - 1, &cached_state, GFP_NOFS); 2914 out: 2915 if (root != root->fs_info->tree_root) 2916 btrfs_delalloc_release_metadata(inode, ordered_extent->len); 2917 if (trans) 2918 btrfs_end_transaction(trans, root); 2919 2920 if (ret || truncated) { 2921 u64 start, end; 2922 2923 if (truncated) 2924 start = ordered_extent->file_offset + logical_len; 2925 else 2926 start = ordered_extent->file_offset; 2927 end = ordered_extent->file_offset + ordered_extent->len - 1; 2928 clear_extent_uptodate(io_tree, start, end, NULL, GFP_NOFS); 2929 2930 /* Drop the cache for the part of the extent we didn't write. */ 2931 btrfs_drop_extent_cache(inode, start, end, 0); 2932 2933 /* 2934 * If the ordered extent had an IOERR or something else went 2935 * wrong we need to return the space for this ordered extent 2936 * back to the allocator. We only free the extent in the 2937 * truncated case if we didn't write out the extent at all. 2938 */ 2939 if ((ret || !logical_len) && 2940 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) && 2941 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) 2942 btrfs_free_reserved_extent(root, ordered_extent->start, 2943 ordered_extent->disk_len, 1); 2944 } 2945 2946 2947 /* 2948 * This needs to be done to make sure anybody waiting knows we are done 2949 * updating everything for this ordered extent. 2950 */ 2951 btrfs_remove_ordered_extent(inode, ordered_extent); 2952 2953 /* for snapshot-aware defrag */ 2954 if (new) { 2955 if (ret) { 2956 free_sa_defrag_extent(new); 2957 atomic_dec(&root->fs_info->defrag_running); 2958 } else { 2959 relink_file_extents(new); 2960 } 2961 } 2962 2963 /* once for us */ 2964 btrfs_put_ordered_extent(ordered_extent); 2965 /* once for the tree */ 2966 btrfs_put_ordered_extent(ordered_extent); 2967 2968 return ret; 2969 } 2970 2971 static void finish_ordered_fn(struct btrfs_work *work) 2972 { 2973 struct btrfs_ordered_extent *ordered_extent; 2974 ordered_extent = container_of(work, struct btrfs_ordered_extent, work); 2975 btrfs_finish_ordered_io(ordered_extent); 2976 } 2977 2978 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end, 2979 struct extent_state *state, int uptodate) 2980 { 2981 struct inode *inode = page->mapping->host; 2982 struct btrfs_root *root = BTRFS_I(inode)->root; 2983 struct btrfs_ordered_extent *ordered_extent = NULL; 2984 struct btrfs_workqueue *wq; 2985 btrfs_work_func_t func; 2986 2987 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate); 2988 2989 ClearPagePrivate2(page); 2990 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start, 2991 end - start + 1, uptodate)) 2992 return 0; 2993 2994 if (btrfs_is_free_space_inode(inode)) { 2995 wq = root->fs_info->endio_freespace_worker; 2996 func = btrfs_freespace_write_helper; 2997 } else { 2998 wq = root->fs_info->endio_write_workers; 2999 func = btrfs_endio_write_helper; 3000 } 3001 3002 btrfs_init_work(&ordered_extent->work, func, finish_ordered_fn, NULL, 3003 NULL); 3004 btrfs_queue_work(wq, &ordered_extent->work); 3005 3006 return 0; 3007 } 3008 3009 static int __readpage_endio_check(struct inode *inode, 3010 struct btrfs_io_bio *io_bio, 3011 int icsum, struct page *page, 3012 int pgoff, u64 start, size_t len) 3013 { 3014 char *kaddr; 3015 u32 csum_expected; 3016 u32 csum = ~(u32)0; 3017 static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL, 3018 DEFAULT_RATELIMIT_BURST); 3019 3020 csum_expected = *(((u32 *)io_bio->csum) + icsum); 3021 3022 kaddr = kmap_atomic(page); 3023 csum = btrfs_csum_data(kaddr + pgoff, csum, len); 3024 btrfs_csum_final(csum, (char *)&csum); 3025 if (csum != csum_expected) 3026 goto zeroit; 3027 3028 kunmap_atomic(kaddr); 3029 return 0; 3030 zeroit: 3031 if (__ratelimit(&_rs)) 3032 btrfs_warn(BTRFS_I(inode)->root->fs_info, 3033 "csum failed ino %llu off %llu csum %u expected csum %u", 3034 btrfs_ino(inode), start, csum, csum_expected); 3035 memset(kaddr + pgoff, 1, len); 3036 flush_dcache_page(page); 3037 kunmap_atomic(kaddr); 3038 if (csum_expected == 0) 3039 return 0; 3040 return -EIO; 3041 } 3042 3043 /* 3044 * when reads are done, we need to check csums to verify the data is correct 3045 * if there's a match, we allow the bio to finish. If not, the code in 3046 * extent_io.c will try to find good copies for us. 3047 */ 3048 static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio, 3049 u64 phy_offset, struct page *page, 3050 u64 start, u64 end, int mirror) 3051 { 3052 size_t offset = start - page_offset(page); 3053 struct inode *inode = page->mapping->host; 3054 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 3055 struct btrfs_root *root = BTRFS_I(inode)->root; 3056 3057 if (PageChecked(page)) { 3058 ClearPageChecked(page); 3059 return 0; 3060 } 3061 3062 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) 3063 return 0; 3064 3065 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID && 3066 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) { 3067 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM, 3068 GFP_NOFS); 3069 return 0; 3070 } 3071 3072 phy_offset >>= inode->i_sb->s_blocksize_bits; 3073 return __readpage_endio_check(inode, io_bio, phy_offset, page, offset, 3074 start, (size_t)(end - start + 1)); 3075 } 3076 3077 struct delayed_iput { 3078 struct list_head list; 3079 struct inode *inode; 3080 }; 3081 3082 /* JDM: If this is fs-wide, why can't we add a pointer to 3083 * btrfs_inode instead and avoid the allocation? */ 3084 void btrfs_add_delayed_iput(struct inode *inode) 3085 { 3086 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 3087 struct delayed_iput *delayed; 3088 3089 if (atomic_add_unless(&inode->i_count, -1, 1)) 3090 return; 3091 3092 delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL); 3093 delayed->inode = inode; 3094 3095 spin_lock(&fs_info->delayed_iput_lock); 3096 list_add_tail(&delayed->list, &fs_info->delayed_iputs); 3097 spin_unlock(&fs_info->delayed_iput_lock); 3098 } 3099 3100 void btrfs_run_delayed_iputs(struct btrfs_root *root) 3101 { 3102 LIST_HEAD(list); 3103 struct btrfs_fs_info *fs_info = root->fs_info; 3104 struct delayed_iput *delayed; 3105 int empty; 3106 3107 spin_lock(&fs_info->delayed_iput_lock); 3108 empty = list_empty(&fs_info->delayed_iputs); 3109 spin_unlock(&fs_info->delayed_iput_lock); 3110 if (empty) 3111 return; 3112 3113 down_read(&fs_info->delayed_iput_sem); 3114 3115 spin_lock(&fs_info->delayed_iput_lock); 3116 list_splice_init(&fs_info->delayed_iputs, &list); 3117 spin_unlock(&fs_info->delayed_iput_lock); 3118 3119 while (!list_empty(&list)) { 3120 delayed = list_entry(list.next, struct delayed_iput, list); 3121 list_del(&delayed->list); 3122 iput(delayed->inode); 3123 kfree(delayed); 3124 } 3125 3126 up_read(&root->fs_info->delayed_iput_sem); 3127 } 3128 3129 /* 3130 * This is called in transaction commit time. If there are no orphan 3131 * files in the subvolume, it removes orphan item and frees block_rsv 3132 * structure. 3133 */ 3134 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans, 3135 struct btrfs_root *root) 3136 { 3137 struct btrfs_block_rsv *block_rsv; 3138 int ret; 3139 3140 if (atomic_read(&root->orphan_inodes) || 3141 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) 3142 return; 3143 3144 spin_lock(&root->orphan_lock); 3145 if (atomic_read(&root->orphan_inodes)) { 3146 spin_unlock(&root->orphan_lock); 3147 return; 3148 } 3149 3150 if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) { 3151 spin_unlock(&root->orphan_lock); 3152 return; 3153 } 3154 3155 block_rsv = root->orphan_block_rsv; 3156 root->orphan_block_rsv = NULL; 3157 spin_unlock(&root->orphan_lock); 3158 3159 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state) && 3160 btrfs_root_refs(&root->root_item) > 0) { 3161 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root, 3162 root->root_key.objectid); 3163 if (ret) 3164 btrfs_abort_transaction(trans, root, ret); 3165 else 3166 clear_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, 3167 &root->state); 3168 } 3169 3170 if (block_rsv) { 3171 WARN_ON(block_rsv->size > 0); 3172 btrfs_free_block_rsv(root, block_rsv); 3173 } 3174 } 3175 3176 /* 3177 * This creates an orphan entry for the given inode in case something goes 3178 * wrong in the middle of an unlink/truncate. 3179 * 3180 * NOTE: caller of this function should reserve 5 units of metadata for 3181 * this function. 3182 */ 3183 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode) 3184 { 3185 struct btrfs_root *root = BTRFS_I(inode)->root; 3186 struct btrfs_block_rsv *block_rsv = NULL; 3187 int reserve = 0; 3188 int insert = 0; 3189 int ret; 3190 3191 if (!root->orphan_block_rsv) { 3192 block_rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP); 3193 if (!block_rsv) 3194 return -ENOMEM; 3195 } 3196 3197 spin_lock(&root->orphan_lock); 3198 if (!root->orphan_block_rsv) { 3199 root->orphan_block_rsv = block_rsv; 3200 } else if (block_rsv) { 3201 btrfs_free_block_rsv(root, block_rsv); 3202 block_rsv = NULL; 3203 } 3204 3205 if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 3206 &BTRFS_I(inode)->runtime_flags)) { 3207 #if 0 3208 /* 3209 * For proper ENOSPC handling, we should do orphan 3210 * cleanup when mounting. But this introduces backward 3211 * compatibility issue. 3212 */ 3213 if (!xchg(&root->orphan_item_inserted, 1)) 3214 insert = 2; 3215 else 3216 insert = 1; 3217 #endif 3218 insert = 1; 3219 atomic_inc(&root->orphan_inodes); 3220 } 3221 3222 if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED, 3223 &BTRFS_I(inode)->runtime_flags)) 3224 reserve = 1; 3225 spin_unlock(&root->orphan_lock); 3226 3227 /* grab metadata reservation from transaction handle */ 3228 if (reserve) { 3229 ret = btrfs_orphan_reserve_metadata(trans, inode); 3230 BUG_ON(ret); /* -ENOSPC in reservation; Logic error? JDM */ 3231 } 3232 3233 /* insert an orphan item to track this unlinked/truncated file */ 3234 if (insert >= 1) { 3235 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode)); 3236 if (ret) { 3237 atomic_dec(&root->orphan_inodes); 3238 if (reserve) { 3239 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED, 3240 &BTRFS_I(inode)->runtime_flags); 3241 btrfs_orphan_release_metadata(inode); 3242 } 3243 if (ret != -EEXIST) { 3244 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 3245 &BTRFS_I(inode)->runtime_flags); 3246 btrfs_abort_transaction(trans, root, ret); 3247 return ret; 3248 } 3249 } 3250 ret = 0; 3251 } 3252 3253 /* insert an orphan item to track subvolume contains orphan files */ 3254 if (insert >= 2) { 3255 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root, 3256 root->root_key.objectid); 3257 if (ret && ret != -EEXIST) { 3258 btrfs_abort_transaction(trans, root, ret); 3259 return ret; 3260 } 3261 } 3262 return 0; 3263 } 3264 3265 /* 3266 * We have done the truncate/delete so we can go ahead and remove the orphan 3267 * item for this particular inode. 3268 */ 3269 static int btrfs_orphan_del(struct btrfs_trans_handle *trans, 3270 struct inode *inode) 3271 { 3272 struct btrfs_root *root = BTRFS_I(inode)->root; 3273 int delete_item = 0; 3274 int release_rsv = 0; 3275 int ret = 0; 3276 3277 spin_lock(&root->orphan_lock); 3278 if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 3279 &BTRFS_I(inode)->runtime_flags)) 3280 delete_item = 1; 3281 3282 if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED, 3283 &BTRFS_I(inode)->runtime_flags)) 3284 release_rsv = 1; 3285 spin_unlock(&root->orphan_lock); 3286 3287 if (delete_item) { 3288 atomic_dec(&root->orphan_inodes); 3289 if (trans) 3290 ret = btrfs_del_orphan_item(trans, root, 3291 btrfs_ino(inode)); 3292 } 3293 3294 if (release_rsv) 3295 btrfs_orphan_release_metadata(inode); 3296 3297 return ret; 3298 } 3299 3300 /* 3301 * this cleans up any orphans that may be left on the list from the last use 3302 * of this root. 3303 */ 3304 int btrfs_orphan_cleanup(struct btrfs_root *root) 3305 { 3306 struct btrfs_path *path; 3307 struct extent_buffer *leaf; 3308 struct btrfs_key key, found_key; 3309 struct btrfs_trans_handle *trans; 3310 struct inode *inode; 3311 u64 last_objectid = 0; 3312 int ret = 0, nr_unlink = 0, nr_truncate = 0; 3313 3314 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED)) 3315 return 0; 3316 3317 path = btrfs_alloc_path(); 3318 if (!path) { 3319 ret = -ENOMEM; 3320 goto out; 3321 } 3322 path->reada = -1; 3323 3324 key.objectid = BTRFS_ORPHAN_OBJECTID; 3325 key.type = BTRFS_ORPHAN_ITEM_KEY; 3326 key.offset = (u64)-1; 3327 3328 while (1) { 3329 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3330 if (ret < 0) 3331 goto out; 3332 3333 /* 3334 * if ret == 0 means we found what we were searching for, which 3335 * is weird, but possible, so only screw with path if we didn't 3336 * find the key and see if we have stuff that matches 3337 */ 3338 if (ret > 0) { 3339 ret = 0; 3340 if (path->slots[0] == 0) 3341 break; 3342 path->slots[0]--; 3343 } 3344 3345 /* pull out the item */ 3346 leaf = path->nodes[0]; 3347 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 3348 3349 /* make sure the item matches what we want */ 3350 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID) 3351 break; 3352 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY) 3353 break; 3354 3355 /* release the path since we're done with it */ 3356 btrfs_release_path(path); 3357 3358 /* 3359 * this is where we are basically btrfs_lookup, without the 3360 * crossing root thing. we store the inode number in the 3361 * offset of the orphan item. 3362 */ 3363 3364 if (found_key.offset == last_objectid) { 3365 btrfs_err(root->fs_info, 3366 "Error removing orphan entry, stopping orphan cleanup"); 3367 ret = -EINVAL; 3368 goto out; 3369 } 3370 3371 last_objectid = found_key.offset; 3372 3373 found_key.objectid = found_key.offset; 3374 found_key.type = BTRFS_INODE_ITEM_KEY; 3375 found_key.offset = 0; 3376 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL); 3377 ret = PTR_ERR_OR_ZERO(inode); 3378 if (ret && ret != -ESTALE) 3379 goto out; 3380 3381 if (ret == -ESTALE && root == root->fs_info->tree_root) { 3382 struct btrfs_root *dead_root; 3383 struct btrfs_fs_info *fs_info = root->fs_info; 3384 int is_dead_root = 0; 3385 3386 /* 3387 * this is an orphan in the tree root. Currently these 3388 * could come from 2 sources: 3389 * a) a snapshot deletion in progress 3390 * b) a free space cache inode 3391 * We need to distinguish those two, as the snapshot 3392 * orphan must not get deleted. 3393 * find_dead_roots already ran before us, so if this 3394 * is a snapshot deletion, we should find the root 3395 * in the dead_roots list 3396 */ 3397 spin_lock(&fs_info->trans_lock); 3398 list_for_each_entry(dead_root, &fs_info->dead_roots, 3399 root_list) { 3400 if (dead_root->root_key.objectid == 3401 found_key.objectid) { 3402 is_dead_root = 1; 3403 break; 3404 } 3405 } 3406 spin_unlock(&fs_info->trans_lock); 3407 if (is_dead_root) { 3408 /* prevent this orphan from being found again */ 3409 key.offset = found_key.objectid - 1; 3410 continue; 3411 } 3412 } 3413 /* 3414 * Inode is already gone but the orphan item is still there, 3415 * kill the orphan item. 3416 */ 3417 if (ret == -ESTALE) { 3418 trans = btrfs_start_transaction(root, 1); 3419 if (IS_ERR(trans)) { 3420 ret = PTR_ERR(trans); 3421 goto out; 3422 } 3423 btrfs_debug(root->fs_info, "auto deleting %Lu", 3424 found_key.objectid); 3425 ret = btrfs_del_orphan_item(trans, root, 3426 found_key.objectid); 3427 btrfs_end_transaction(trans, root); 3428 if (ret) 3429 goto out; 3430 continue; 3431 } 3432 3433 /* 3434 * add this inode to the orphan list so btrfs_orphan_del does 3435 * the proper thing when we hit it 3436 */ 3437 set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 3438 &BTRFS_I(inode)->runtime_flags); 3439 atomic_inc(&root->orphan_inodes); 3440 3441 /* if we have links, this was a truncate, lets do that */ 3442 if (inode->i_nlink) { 3443 if (WARN_ON(!S_ISREG(inode->i_mode))) { 3444 iput(inode); 3445 continue; 3446 } 3447 nr_truncate++; 3448 3449 /* 1 for the orphan item deletion. */ 3450 trans = btrfs_start_transaction(root, 1); 3451 if (IS_ERR(trans)) { 3452 iput(inode); 3453 ret = PTR_ERR(trans); 3454 goto out; 3455 } 3456 ret = btrfs_orphan_add(trans, inode); 3457 btrfs_end_transaction(trans, root); 3458 if (ret) { 3459 iput(inode); 3460 goto out; 3461 } 3462 3463 ret = btrfs_truncate(inode); 3464 if (ret) 3465 btrfs_orphan_del(NULL, inode); 3466 } else { 3467 nr_unlink++; 3468 } 3469 3470 /* this will do delete_inode and everything for us */ 3471 iput(inode); 3472 if (ret) 3473 goto out; 3474 } 3475 /* release the path since we're done with it */ 3476 btrfs_release_path(path); 3477 3478 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE; 3479 3480 if (root->orphan_block_rsv) 3481 btrfs_block_rsv_release(root, root->orphan_block_rsv, 3482 (u64)-1); 3483 3484 if (root->orphan_block_rsv || 3485 test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) { 3486 trans = btrfs_join_transaction(root); 3487 if (!IS_ERR(trans)) 3488 btrfs_end_transaction(trans, root); 3489 } 3490 3491 if (nr_unlink) 3492 btrfs_debug(root->fs_info, "unlinked %d orphans", nr_unlink); 3493 if (nr_truncate) 3494 btrfs_debug(root->fs_info, "truncated %d orphans", nr_truncate); 3495 3496 out: 3497 if (ret) 3498 btrfs_err(root->fs_info, 3499 "could not do orphan cleanup %d", ret); 3500 btrfs_free_path(path); 3501 return ret; 3502 } 3503 3504 /* 3505 * very simple check to peek ahead in the leaf looking for xattrs. If we 3506 * don't find any xattrs, we know there can't be any acls. 3507 * 3508 * slot is the slot the inode is in, objectid is the objectid of the inode 3509 */ 3510 static noinline int acls_after_inode_item(struct extent_buffer *leaf, 3511 int slot, u64 objectid, 3512 int *first_xattr_slot) 3513 { 3514 u32 nritems = btrfs_header_nritems(leaf); 3515 struct btrfs_key found_key; 3516 static u64 xattr_access = 0; 3517 static u64 xattr_default = 0; 3518 int scanned = 0; 3519 3520 if (!xattr_access) { 3521 xattr_access = btrfs_name_hash(POSIX_ACL_XATTR_ACCESS, 3522 strlen(POSIX_ACL_XATTR_ACCESS)); 3523 xattr_default = btrfs_name_hash(POSIX_ACL_XATTR_DEFAULT, 3524 strlen(POSIX_ACL_XATTR_DEFAULT)); 3525 } 3526 3527 slot++; 3528 *first_xattr_slot = -1; 3529 while (slot < nritems) { 3530 btrfs_item_key_to_cpu(leaf, &found_key, slot); 3531 3532 /* we found a different objectid, there must not be acls */ 3533 if (found_key.objectid != objectid) 3534 return 0; 3535 3536 /* we found an xattr, assume we've got an acl */ 3537 if (found_key.type == BTRFS_XATTR_ITEM_KEY) { 3538 if (*first_xattr_slot == -1) 3539 *first_xattr_slot = slot; 3540 if (found_key.offset == xattr_access || 3541 found_key.offset == xattr_default) 3542 return 1; 3543 } 3544 3545 /* 3546 * we found a key greater than an xattr key, there can't 3547 * be any acls later on 3548 */ 3549 if (found_key.type > BTRFS_XATTR_ITEM_KEY) 3550 return 0; 3551 3552 slot++; 3553 scanned++; 3554 3555 /* 3556 * it goes inode, inode backrefs, xattrs, extents, 3557 * so if there are a ton of hard links to an inode there can 3558 * be a lot of backrefs. Don't waste time searching too hard, 3559 * this is just an optimization 3560 */ 3561 if (scanned >= 8) 3562 break; 3563 } 3564 /* we hit the end of the leaf before we found an xattr or 3565 * something larger than an xattr. We have to assume the inode 3566 * has acls 3567 */ 3568 if (*first_xattr_slot == -1) 3569 *first_xattr_slot = slot; 3570 return 1; 3571 } 3572 3573 /* 3574 * read an inode from the btree into the in-memory inode 3575 */ 3576 static void btrfs_read_locked_inode(struct inode *inode) 3577 { 3578 struct btrfs_path *path; 3579 struct extent_buffer *leaf; 3580 struct btrfs_inode_item *inode_item; 3581 struct btrfs_root *root = BTRFS_I(inode)->root; 3582 struct btrfs_key location; 3583 unsigned long ptr; 3584 int maybe_acls; 3585 u32 rdev; 3586 int ret; 3587 bool filled = false; 3588 int first_xattr_slot; 3589 3590 ret = btrfs_fill_inode(inode, &rdev); 3591 if (!ret) 3592 filled = true; 3593 3594 path = btrfs_alloc_path(); 3595 if (!path) 3596 goto make_bad; 3597 3598 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location)); 3599 3600 ret = btrfs_lookup_inode(NULL, root, path, &location, 0); 3601 if (ret) 3602 goto make_bad; 3603 3604 leaf = path->nodes[0]; 3605 3606 if (filled) 3607 goto cache_index; 3608 3609 inode_item = btrfs_item_ptr(leaf, path->slots[0], 3610 struct btrfs_inode_item); 3611 inode->i_mode = btrfs_inode_mode(leaf, inode_item); 3612 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item)); 3613 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item)); 3614 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item)); 3615 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item)); 3616 3617 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime); 3618 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime); 3619 3620 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime); 3621 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime); 3622 3623 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime); 3624 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime); 3625 3626 BTRFS_I(inode)->i_otime.tv_sec = 3627 btrfs_timespec_sec(leaf, &inode_item->otime); 3628 BTRFS_I(inode)->i_otime.tv_nsec = 3629 btrfs_timespec_nsec(leaf, &inode_item->otime); 3630 3631 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item)); 3632 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item); 3633 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item); 3634 3635 inode->i_version = btrfs_inode_sequence(leaf, inode_item); 3636 inode->i_generation = BTRFS_I(inode)->generation; 3637 inode->i_rdev = 0; 3638 rdev = btrfs_inode_rdev(leaf, inode_item); 3639 3640 BTRFS_I(inode)->index_cnt = (u64)-1; 3641 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item); 3642 3643 cache_index: 3644 /* 3645 * If we were modified in the current generation and evicted from memory 3646 * and then re-read we need to do a full sync since we don't have any 3647 * idea about which extents were modified before we were evicted from 3648 * cache. 3649 * 3650 * This is required for both inode re-read from disk and delayed inode 3651 * in delayed_nodes_tree. 3652 */ 3653 if (BTRFS_I(inode)->last_trans == root->fs_info->generation) 3654 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 3655 &BTRFS_I(inode)->runtime_flags); 3656 3657 path->slots[0]++; 3658 if (inode->i_nlink != 1 || 3659 path->slots[0] >= btrfs_header_nritems(leaf)) 3660 goto cache_acl; 3661 3662 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]); 3663 if (location.objectid != btrfs_ino(inode)) 3664 goto cache_acl; 3665 3666 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 3667 if (location.type == BTRFS_INODE_REF_KEY) { 3668 struct btrfs_inode_ref *ref; 3669 3670 ref = (struct btrfs_inode_ref *)ptr; 3671 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref); 3672 } else if (location.type == BTRFS_INODE_EXTREF_KEY) { 3673 struct btrfs_inode_extref *extref; 3674 3675 extref = (struct btrfs_inode_extref *)ptr; 3676 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf, 3677 extref); 3678 } 3679 cache_acl: 3680 /* 3681 * try to precache a NULL acl entry for files that don't have 3682 * any xattrs or acls 3683 */ 3684 maybe_acls = acls_after_inode_item(leaf, path->slots[0], 3685 btrfs_ino(inode), &first_xattr_slot); 3686 if (first_xattr_slot != -1) { 3687 path->slots[0] = first_xattr_slot; 3688 ret = btrfs_load_inode_props(inode, path); 3689 if (ret) 3690 btrfs_err(root->fs_info, 3691 "error loading props for ino %llu (root %llu): %d", 3692 btrfs_ino(inode), 3693 root->root_key.objectid, ret); 3694 } 3695 btrfs_free_path(path); 3696 3697 if (!maybe_acls) 3698 cache_no_acl(inode); 3699 3700 switch (inode->i_mode & S_IFMT) { 3701 case S_IFREG: 3702 inode->i_mapping->a_ops = &btrfs_aops; 3703 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 3704 inode->i_fop = &btrfs_file_operations; 3705 inode->i_op = &btrfs_file_inode_operations; 3706 break; 3707 case S_IFDIR: 3708 inode->i_fop = &btrfs_dir_file_operations; 3709 if (root == root->fs_info->tree_root) 3710 inode->i_op = &btrfs_dir_ro_inode_operations; 3711 else 3712 inode->i_op = &btrfs_dir_inode_operations; 3713 break; 3714 case S_IFLNK: 3715 inode->i_op = &btrfs_symlink_inode_operations; 3716 inode->i_mapping->a_ops = &btrfs_symlink_aops; 3717 break; 3718 default: 3719 inode->i_op = &btrfs_special_inode_operations; 3720 init_special_inode(inode, inode->i_mode, rdev); 3721 break; 3722 } 3723 3724 btrfs_update_iflags(inode); 3725 return; 3726 3727 make_bad: 3728 btrfs_free_path(path); 3729 make_bad_inode(inode); 3730 } 3731 3732 /* 3733 * given a leaf and an inode, copy the inode fields into the leaf 3734 */ 3735 static void fill_inode_item(struct btrfs_trans_handle *trans, 3736 struct extent_buffer *leaf, 3737 struct btrfs_inode_item *item, 3738 struct inode *inode) 3739 { 3740 struct btrfs_map_token token; 3741 3742 btrfs_init_map_token(&token); 3743 3744 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token); 3745 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token); 3746 btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size, 3747 &token); 3748 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token); 3749 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token); 3750 3751 btrfs_set_token_timespec_sec(leaf, &item->atime, 3752 inode->i_atime.tv_sec, &token); 3753 btrfs_set_token_timespec_nsec(leaf, &item->atime, 3754 inode->i_atime.tv_nsec, &token); 3755 3756 btrfs_set_token_timespec_sec(leaf, &item->mtime, 3757 inode->i_mtime.tv_sec, &token); 3758 btrfs_set_token_timespec_nsec(leaf, &item->mtime, 3759 inode->i_mtime.tv_nsec, &token); 3760 3761 btrfs_set_token_timespec_sec(leaf, &item->ctime, 3762 inode->i_ctime.tv_sec, &token); 3763 btrfs_set_token_timespec_nsec(leaf, &item->ctime, 3764 inode->i_ctime.tv_nsec, &token); 3765 3766 btrfs_set_token_timespec_sec(leaf, &item->otime, 3767 BTRFS_I(inode)->i_otime.tv_sec, &token); 3768 btrfs_set_token_timespec_nsec(leaf, &item->otime, 3769 BTRFS_I(inode)->i_otime.tv_nsec, &token); 3770 3771 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode), 3772 &token); 3773 btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation, 3774 &token); 3775 btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token); 3776 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token); 3777 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token); 3778 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token); 3779 btrfs_set_token_inode_block_group(leaf, item, 0, &token); 3780 } 3781 3782 /* 3783 * copy everything in the in-memory inode into the btree. 3784 */ 3785 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans, 3786 struct btrfs_root *root, struct inode *inode) 3787 { 3788 struct btrfs_inode_item *inode_item; 3789 struct btrfs_path *path; 3790 struct extent_buffer *leaf; 3791 int ret; 3792 3793 path = btrfs_alloc_path(); 3794 if (!path) 3795 return -ENOMEM; 3796 3797 path->leave_spinning = 1; 3798 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location, 3799 1); 3800 if (ret) { 3801 if (ret > 0) 3802 ret = -ENOENT; 3803 goto failed; 3804 } 3805 3806 leaf = path->nodes[0]; 3807 inode_item = btrfs_item_ptr(leaf, path->slots[0], 3808 struct btrfs_inode_item); 3809 3810 fill_inode_item(trans, leaf, inode_item, inode); 3811 btrfs_mark_buffer_dirty(leaf); 3812 btrfs_set_inode_last_trans(trans, inode); 3813 ret = 0; 3814 failed: 3815 btrfs_free_path(path); 3816 return ret; 3817 } 3818 3819 /* 3820 * copy everything in the in-memory inode into the btree. 3821 */ 3822 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans, 3823 struct btrfs_root *root, struct inode *inode) 3824 { 3825 int ret; 3826 3827 /* 3828 * If the inode is a free space inode, we can deadlock during commit 3829 * if we put it into the delayed code. 3830 * 3831 * The data relocation inode should also be directly updated 3832 * without delay 3833 */ 3834 if (!btrfs_is_free_space_inode(inode) 3835 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID 3836 && !root->fs_info->log_root_recovering) { 3837 btrfs_update_root_times(trans, root); 3838 3839 ret = btrfs_delayed_update_inode(trans, root, inode); 3840 if (!ret) 3841 btrfs_set_inode_last_trans(trans, inode); 3842 return ret; 3843 } 3844 3845 return btrfs_update_inode_item(trans, root, inode); 3846 } 3847 3848 noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans, 3849 struct btrfs_root *root, 3850 struct inode *inode) 3851 { 3852 int ret; 3853 3854 ret = btrfs_update_inode(trans, root, inode); 3855 if (ret == -ENOSPC) 3856 return btrfs_update_inode_item(trans, root, inode); 3857 return ret; 3858 } 3859 3860 /* 3861 * unlink helper that gets used here in inode.c and in the tree logging 3862 * recovery code. It remove a link in a directory with a given name, and 3863 * also drops the back refs in the inode to the directory 3864 */ 3865 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans, 3866 struct btrfs_root *root, 3867 struct inode *dir, struct inode *inode, 3868 const char *name, int name_len) 3869 { 3870 struct btrfs_path *path; 3871 int ret = 0; 3872 struct extent_buffer *leaf; 3873 struct btrfs_dir_item *di; 3874 struct btrfs_key key; 3875 u64 index; 3876 u64 ino = btrfs_ino(inode); 3877 u64 dir_ino = btrfs_ino(dir); 3878 3879 path = btrfs_alloc_path(); 3880 if (!path) { 3881 ret = -ENOMEM; 3882 goto out; 3883 } 3884 3885 path->leave_spinning = 1; 3886 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 3887 name, name_len, -1); 3888 if (IS_ERR(di)) { 3889 ret = PTR_ERR(di); 3890 goto err; 3891 } 3892 if (!di) { 3893 ret = -ENOENT; 3894 goto err; 3895 } 3896 leaf = path->nodes[0]; 3897 btrfs_dir_item_key_to_cpu(leaf, di, &key); 3898 ret = btrfs_delete_one_dir_name(trans, root, path, di); 3899 if (ret) 3900 goto err; 3901 btrfs_release_path(path); 3902 3903 /* 3904 * If we don't have dir index, we have to get it by looking up 3905 * the inode ref, since we get the inode ref, remove it directly, 3906 * it is unnecessary to do delayed deletion. 3907 * 3908 * But if we have dir index, needn't search inode ref to get it. 3909 * Since the inode ref is close to the inode item, it is better 3910 * that we delay to delete it, and just do this deletion when 3911 * we update the inode item. 3912 */ 3913 if (BTRFS_I(inode)->dir_index) { 3914 ret = btrfs_delayed_delete_inode_ref(inode); 3915 if (!ret) { 3916 index = BTRFS_I(inode)->dir_index; 3917 goto skip_backref; 3918 } 3919 } 3920 3921 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino, 3922 dir_ino, &index); 3923 if (ret) { 3924 btrfs_info(root->fs_info, 3925 "failed to delete reference to %.*s, inode %llu parent %llu", 3926 name_len, name, ino, dir_ino); 3927 btrfs_abort_transaction(trans, root, ret); 3928 goto err; 3929 } 3930 skip_backref: 3931 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index); 3932 if (ret) { 3933 btrfs_abort_transaction(trans, root, ret); 3934 goto err; 3935 } 3936 3937 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, 3938 inode, dir_ino); 3939 if (ret != 0 && ret != -ENOENT) { 3940 btrfs_abort_transaction(trans, root, ret); 3941 goto err; 3942 } 3943 3944 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, 3945 dir, index); 3946 if (ret == -ENOENT) 3947 ret = 0; 3948 else if (ret) 3949 btrfs_abort_transaction(trans, root, ret); 3950 err: 3951 btrfs_free_path(path); 3952 if (ret) 3953 goto out; 3954 3955 btrfs_i_size_write(dir, dir->i_size - name_len * 2); 3956 inode_inc_iversion(inode); 3957 inode_inc_iversion(dir); 3958 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME; 3959 ret = btrfs_update_inode(trans, root, dir); 3960 out: 3961 return ret; 3962 } 3963 3964 int btrfs_unlink_inode(struct btrfs_trans_handle *trans, 3965 struct btrfs_root *root, 3966 struct inode *dir, struct inode *inode, 3967 const char *name, int name_len) 3968 { 3969 int ret; 3970 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len); 3971 if (!ret) { 3972 drop_nlink(inode); 3973 ret = btrfs_update_inode(trans, root, inode); 3974 } 3975 return ret; 3976 } 3977 3978 /* 3979 * helper to start transaction for unlink and rmdir. 3980 * 3981 * unlink and rmdir are special in btrfs, they do not always free space, so 3982 * if we cannot make our reservations the normal way try and see if there is 3983 * plenty of slack room in the global reserve to migrate, otherwise we cannot 3984 * allow the unlink to occur. 3985 */ 3986 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir) 3987 { 3988 struct btrfs_trans_handle *trans; 3989 struct btrfs_root *root = BTRFS_I(dir)->root; 3990 int ret; 3991 3992 /* 3993 * 1 for the possible orphan item 3994 * 1 for the dir item 3995 * 1 for the dir index 3996 * 1 for the inode ref 3997 * 1 for the inode 3998 */ 3999 trans = btrfs_start_transaction(root, 5); 4000 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC) 4001 return trans; 4002 4003 if (PTR_ERR(trans) == -ENOSPC) { 4004 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 5); 4005 4006 trans = btrfs_start_transaction(root, 0); 4007 if (IS_ERR(trans)) 4008 return trans; 4009 ret = btrfs_cond_migrate_bytes(root->fs_info, 4010 &root->fs_info->trans_block_rsv, 4011 num_bytes, 5); 4012 if (ret) { 4013 btrfs_end_transaction(trans, root); 4014 return ERR_PTR(ret); 4015 } 4016 trans->block_rsv = &root->fs_info->trans_block_rsv; 4017 trans->bytes_reserved = num_bytes; 4018 } 4019 return trans; 4020 } 4021 4022 static int btrfs_unlink(struct inode *dir, struct dentry *dentry) 4023 { 4024 struct btrfs_root *root = BTRFS_I(dir)->root; 4025 struct btrfs_trans_handle *trans; 4026 struct inode *inode = d_inode(dentry); 4027 int ret; 4028 4029 trans = __unlink_start_trans(dir); 4030 if (IS_ERR(trans)) 4031 return PTR_ERR(trans); 4032 4033 btrfs_record_unlink_dir(trans, dir, d_inode(dentry), 0); 4034 4035 ret = btrfs_unlink_inode(trans, root, dir, d_inode(dentry), 4036 dentry->d_name.name, dentry->d_name.len); 4037 if (ret) 4038 goto out; 4039 4040 if (inode->i_nlink == 0) { 4041 ret = btrfs_orphan_add(trans, inode); 4042 if (ret) 4043 goto out; 4044 } 4045 4046 out: 4047 btrfs_end_transaction(trans, root); 4048 btrfs_btree_balance_dirty(root); 4049 return ret; 4050 } 4051 4052 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans, 4053 struct btrfs_root *root, 4054 struct inode *dir, u64 objectid, 4055 const char *name, int name_len) 4056 { 4057 struct btrfs_path *path; 4058 struct extent_buffer *leaf; 4059 struct btrfs_dir_item *di; 4060 struct btrfs_key key; 4061 u64 index; 4062 int ret; 4063 u64 dir_ino = btrfs_ino(dir); 4064 4065 path = btrfs_alloc_path(); 4066 if (!path) 4067 return -ENOMEM; 4068 4069 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 4070 name, name_len, -1); 4071 if (IS_ERR_OR_NULL(di)) { 4072 if (!di) 4073 ret = -ENOENT; 4074 else 4075 ret = PTR_ERR(di); 4076 goto out; 4077 } 4078 4079 leaf = path->nodes[0]; 4080 btrfs_dir_item_key_to_cpu(leaf, di, &key); 4081 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid); 4082 ret = btrfs_delete_one_dir_name(trans, root, path, di); 4083 if (ret) { 4084 btrfs_abort_transaction(trans, root, ret); 4085 goto out; 4086 } 4087 btrfs_release_path(path); 4088 4089 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root, 4090 objectid, root->root_key.objectid, 4091 dir_ino, &index, name, name_len); 4092 if (ret < 0) { 4093 if (ret != -ENOENT) { 4094 btrfs_abort_transaction(trans, root, ret); 4095 goto out; 4096 } 4097 di = btrfs_search_dir_index_item(root, path, dir_ino, 4098 name, name_len); 4099 if (IS_ERR_OR_NULL(di)) { 4100 if (!di) 4101 ret = -ENOENT; 4102 else 4103 ret = PTR_ERR(di); 4104 btrfs_abort_transaction(trans, root, ret); 4105 goto out; 4106 } 4107 4108 leaf = path->nodes[0]; 4109 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 4110 btrfs_release_path(path); 4111 index = key.offset; 4112 } 4113 btrfs_release_path(path); 4114 4115 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index); 4116 if (ret) { 4117 btrfs_abort_transaction(trans, root, ret); 4118 goto out; 4119 } 4120 4121 btrfs_i_size_write(dir, dir->i_size - name_len * 2); 4122 inode_inc_iversion(dir); 4123 dir->i_mtime = dir->i_ctime = CURRENT_TIME; 4124 ret = btrfs_update_inode_fallback(trans, root, dir); 4125 if (ret) 4126 btrfs_abort_transaction(trans, root, ret); 4127 out: 4128 btrfs_free_path(path); 4129 return ret; 4130 } 4131 4132 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry) 4133 { 4134 struct inode *inode = d_inode(dentry); 4135 int err = 0; 4136 struct btrfs_root *root = BTRFS_I(dir)->root; 4137 struct btrfs_trans_handle *trans; 4138 4139 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE) 4140 return -ENOTEMPTY; 4141 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) 4142 return -EPERM; 4143 4144 trans = __unlink_start_trans(dir); 4145 if (IS_ERR(trans)) 4146 return PTR_ERR(trans); 4147 4148 if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 4149 err = btrfs_unlink_subvol(trans, root, dir, 4150 BTRFS_I(inode)->location.objectid, 4151 dentry->d_name.name, 4152 dentry->d_name.len); 4153 goto out; 4154 } 4155 4156 err = btrfs_orphan_add(trans, inode); 4157 if (err) 4158 goto out; 4159 4160 /* now the directory is empty */ 4161 err = btrfs_unlink_inode(trans, root, dir, d_inode(dentry), 4162 dentry->d_name.name, dentry->d_name.len); 4163 if (!err) 4164 btrfs_i_size_write(inode, 0); 4165 out: 4166 btrfs_end_transaction(trans, root); 4167 btrfs_btree_balance_dirty(root); 4168 4169 return err; 4170 } 4171 4172 static int truncate_space_check(struct btrfs_trans_handle *trans, 4173 struct btrfs_root *root, 4174 u64 bytes_deleted) 4175 { 4176 int ret; 4177 4178 bytes_deleted = btrfs_csum_bytes_to_leaves(root, bytes_deleted); 4179 ret = btrfs_block_rsv_add(root, &root->fs_info->trans_block_rsv, 4180 bytes_deleted, BTRFS_RESERVE_NO_FLUSH); 4181 if (!ret) 4182 trans->bytes_reserved += bytes_deleted; 4183 return ret; 4184 4185 } 4186 4187 /* 4188 * this can truncate away extent items, csum items and directory items. 4189 * It starts at a high offset and removes keys until it can't find 4190 * any higher than new_size 4191 * 4192 * csum items that cross the new i_size are truncated to the new size 4193 * as well. 4194 * 4195 * min_type is the minimum key type to truncate down to. If set to 0, this 4196 * will kill all the items on this inode, including the INODE_ITEM_KEY. 4197 */ 4198 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans, 4199 struct btrfs_root *root, 4200 struct inode *inode, 4201 u64 new_size, u32 min_type) 4202 { 4203 struct btrfs_path *path; 4204 struct extent_buffer *leaf; 4205 struct btrfs_file_extent_item *fi; 4206 struct btrfs_key key; 4207 struct btrfs_key found_key; 4208 u64 extent_start = 0; 4209 u64 extent_num_bytes = 0; 4210 u64 extent_offset = 0; 4211 u64 item_end = 0; 4212 u64 last_size = new_size; 4213 u32 found_type = (u8)-1; 4214 int found_extent; 4215 int del_item; 4216 int pending_del_nr = 0; 4217 int pending_del_slot = 0; 4218 int extent_type = -1; 4219 int ret; 4220 int err = 0; 4221 u64 ino = btrfs_ino(inode); 4222 u64 bytes_deleted = 0; 4223 bool be_nice = 0; 4224 bool should_throttle = 0; 4225 bool should_end = 0; 4226 4227 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY); 4228 4229 /* 4230 * for non-free space inodes and ref cows, we want to back off from 4231 * time to time 4232 */ 4233 if (!btrfs_is_free_space_inode(inode) && 4234 test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 4235 be_nice = 1; 4236 4237 path = btrfs_alloc_path(); 4238 if (!path) 4239 return -ENOMEM; 4240 path->reada = -1; 4241 4242 /* 4243 * We want to drop from the next block forward in case this new size is 4244 * not block aligned since we will be keeping the last block of the 4245 * extent just the way it is. 4246 */ 4247 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) || 4248 root == root->fs_info->tree_root) 4249 btrfs_drop_extent_cache(inode, ALIGN(new_size, 4250 root->sectorsize), (u64)-1, 0); 4251 4252 /* 4253 * This function is also used to drop the items in the log tree before 4254 * we relog the inode, so if root != BTRFS_I(inode)->root, it means 4255 * it is used to drop the loged items. So we shouldn't kill the delayed 4256 * items. 4257 */ 4258 if (min_type == 0 && root == BTRFS_I(inode)->root) 4259 btrfs_kill_delayed_inode_items(inode); 4260 4261 key.objectid = ino; 4262 key.offset = (u64)-1; 4263 key.type = (u8)-1; 4264 4265 search_again: 4266 /* 4267 * with a 16K leaf size and 128MB extents, you can actually queue 4268 * up a huge file in a single leaf. Most of the time that 4269 * bytes_deleted is > 0, it will be huge by the time we get here 4270 */ 4271 if (be_nice && bytes_deleted > 32 * 1024 * 1024) { 4272 if (btrfs_should_end_transaction(trans, root)) { 4273 err = -EAGAIN; 4274 goto error; 4275 } 4276 } 4277 4278 4279 path->leave_spinning = 1; 4280 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 4281 if (ret < 0) { 4282 err = ret; 4283 goto out; 4284 } 4285 4286 if (ret > 0) { 4287 /* there are no items in the tree for us to truncate, we're 4288 * done 4289 */ 4290 if (path->slots[0] == 0) 4291 goto out; 4292 path->slots[0]--; 4293 } 4294 4295 while (1) { 4296 fi = NULL; 4297 leaf = path->nodes[0]; 4298 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 4299 found_type = found_key.type; 4300 4301 if (found_key.objectid != ino) 4302 break; 4303 4304 if (found_type < min_type) 4305 break; 4306 4307 item_end = found_key.offset; 4308 if (found_type == BTRFS_EXTENT_DATA_KEY) { 4309 fi = btrfs_item_ptr(leaf, path->slots[0], 4310 struct btrfs_file_extent_item); 4311 extent_type = btrfs_file_extent_type(leaf, fi); 4312 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 4313 item_end += 4314 btrfs_file_extent_num_bytes(leaf, fi); 4315 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 4316 item_end += btrfs_file_extent_inline_len(leaf, 4317 path->slots[0], fi); 4318 } 4319 item_end--; 4320 } 4321 if (found_type > min_type) { 4322 del_item = 1; 4323 } else { 4324 if (item_end < new_size) 4325 break; 4326 if (found_key.offset >= new_size) 4327 del_item = 1; 4328 else 4329 del_item = 0; 4330 } 4331 found_extent = 0; 4332 /* FIXME, shrink the extent if the ref count is only 1 */ 4333 if (found_type != BTRFS_EXTENT_DATA_KEY) 4334 goto delete; 4335 4336 if (del_item) 4337 last_size = found_key.offset; 4338 else 4339 last_size = new_size; 4340 4341 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 4342 u64 num_dec; 4343 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi); 4344 if (!del_item) { 4345 u64 orig_num_bytes = 4346 btrfs_file_extent_num_bytes(leaf, fi); 4347 extent_num_bytes = ALIGN(new_size - 4348 found_key.offset, 4349 root->sectorsize); 4350 btrfs_set_file_extent_num_bytes(leaf, fi, 4351 extent_num_bytes); 4352 num_dec = (orig_num_bytes - 4353 extent_num_bytes); 4354 if (test_bit(BTRFS_ROOT_REF_COWS, 4355 &root->state) && 4356 extent_start != 0) 4357 inode_sub_bytes(inode, num_dec); 4358 btrfs_mark_buffer_dirty(leaf); 4359 } else { 4360 extent_num_bytes = 4361 btrfs_file_extent_disk_num_bytes(leaf, 4362 fi); 4363 extent_offset = found_key.offset - 4364 btrfs_file_extent_offset(leaf, fi); 4365 4366 /* FIXME blocksize != 4096 */ 4367 num_dec = btrfs_file_extent_num_bytes(leaf, fi); 4368 if (extent_start != 0) { 4369 found_extent = 1; 4370 if (test_bit(BTRFS_ROOT_REF_COWS, 4371 &root->state)) 4372 inode_sub_bytes(inode, num_dec); 4373 } 4374 } 4375 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 4376 /* 4377 * we can't truncate inline items that have had 4378 * special encodings 4379 */ 4380 if (!del_item && 4381 btrfs_file_extent_compression(leaf, fi) == 0 && 4382 btrfs_file_extent_encryption(leaf, fi) == 0 && 4383 btrfs_file_extent_other_encoding(leaf, fi) == 0) { 4384 u32 size = new_size - found_key.offset; 4385 4386 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 4387 inode_sub_bytes(inode, item_end + 1 - 4388 new_size); 4389 4390 /* 4391 * update the ram bytes to properly reflect 4392 * the new size of our item 4393 */ 4394 btrfs_set_file_extent_ram_bytes(leaf, fi, size); 4395 size = 4396 btrfs_file_extent_calc_inline_size(size); 4397 btrfs_truncate_item(root, path, size, 1); 4398 } else if (test_bit(BTRFS_ROOT_REF_COWS, 4399 &root->state)) { 4400 inode_sub_bytes(inode, item_end + 1 - 4401 found_key.offset); 4402 } 4403 } 4404 delete: 4405 if (del_item) { 4406 if (!pending_del_nr) { 4407 /* no pending yet, add ourselves */ 4408 pending_del_slot = path->slots[0]; 4409 pending_del_nr = 1; 4410 } else if (pending_del_nr && 4411 path->slots[0] + 1 == pending_del_slot) { 4412 /* hop on the pending chunk */ 4413 pending_del_nr++; 4414 pending_del_slot = path->slots[0]; 4415 } else { 4416 BUG(); 4417 } 4418 } else { 4419 break; 4420 } 4421 should_throttle = 0; 4422 4423 if (found_extent && 4424 (test_bit(BTRFS_ROOT_REF_COWS, &root->state) || 4425 root == root->fs_info->tree_root)) { 4426 btrfs_set_path_blocking(path); 4427 bytes_deleted += extent_num_bytes; 4428 ret = btrfs_free_extent(trans, root, extent_start, 4429 extent_num_bytes, 0, 4430 btrfs_header_owner(leaf), 4431 ino, extent_offset, 0); 4432 BUG_ON(ret); 4433 if (btrfs_should_throttle_delayed_refs(trans, root)) 4434 btrfs_async_run_delayed_refs(root, 4435 trans->delayed_ref_updates * 2, 0); 4436 if (be_nice) { 4437 if (truncate_space_check(trans, root, 4438 extent_num_bytes)) { 4439 should_end = 1; 4440 } 4441 if (btrfs_should_throttle_delayed_refs(trans, 4442 root)) { 4443 should_throttle = 1; 4444 } 4445 } 4446 } 4447 4448 if (found_type == BTRFS_INODE_ITEM_KEY) 4449 break; 4450 4451 if (path->slots[0] == 0 || 4452 path->slots[0] != pending_del_slot || 4453 should_throttle || should_end) { 4454 if (pending_del_nr) { 4455 ret = btrfs_del_items(trans, root, path, 4456 pending_del_slot, 4457 pending_del_nr); 4458 if (ret) { 4459 btrfs_abort_transaction(trans, 4460 root, ret); 4461 goto error; 4462 } 4463 pending_del_nr = 0; 4464 } 4465 btrfs_release_path(path); 4466 if (should_throttle) { 4467 unsigned long updates = trans->delayed_ref_updates; 4468 if (updates) { 4469 trans->delayed_ref_updates = 0; 4470 ret = btrfs_run_delayed_refs(trans, root, updates * 2); 4471 if (ret && !err) 4472 err = ret; 4473 } 4474 } 4475 /* 4476 * if we failed to refill our space rsv, bail out 4477 * and let the transaction restart 4478 */ 4479 if (should_end) { 4480 err = -EAGAIN; 4481 goto error; 4482 } 4483 goto search_again; 4484 } else { 4485 path->slots[0]--; 4486 } 4487 } 4488 out: 4489 if (pending_del_nr) { 4490 ret = btrfs_del_items(trans, root, path, pending_del_slot, 4491 pending_del_nr); 4492 if (ret) 4493 btrfs_abort_transaction(trans, root, ret); 4494 } 4495 error: 4496 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) 4497 btrfs_ordered_update_i_size(inode, last_size, NULL); 4498 4499 btrfs_free_path(path); 4500 4501 if (be_nice && bytes_deleted > 32 * 1024 * 1024) { 4502 unsigned long updates = trans->delayed_ref_updates; 4503 if (updates) { 4504 trans->delayed_ref_updates = 0; 4505 ret = btrfs_run_delayed_refs(trans, root, updates * 2); 4506 if (ret && !err) 4507 err = ret; 4508 } 4509 } 4510 return err; 4511 } 4512 4513 /* 4514 * btrfs_truncate_page - read, zero a chunk and write a page 4515 * @inode - inode that we're zeroing 4516 * @from - the offset to start zeroing 4517 * @len - the length to zero, 0 to zero the entire range respective to the 4518 * offset 4519 * @front - zero up to the offset instead of from the offset on 4520 * 4521 * This will find the page for the "from" offset and cow the page and zero the 4522 * part we want to zero. This is used with truncate and hole punching. 4523 */ 4524 int btrfs_truncate_page(struct inode *inode, loff_t from, loff_t len, 4525 int front) 4526 { 4527 struct address_space *mapping = inode->i_mapping; 4528 struct btrfs_root *root = BTRFS_I(inode)->root; 4529 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 4530 struct btrfs_ordered_extent *ordered; 4531 struct extent_state *cached_state = NULL; 4532 char *kaddr; 4533 u32 blocksize = root->sectorsize; 4534 pgoff_t index = from >> PAGE_CACHE_SHIFT; 4535 unsigned offset = from & (PAGE_CACHE_SIZE-1); 4536 struct page *page; 4537 gfp_t mask = btrfs_alloc_write_mask(mapping); 4538 int ret = 0; 4539 u64 page_start; 4540 u64 page_end; 4541 4542 if ((offset & (blocksize - 1)) == 0 && 4543 (!len || ((len & (blocksize - 1)) == 0))) 4544 goto out; 4545 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE); 4546 if (ret) 4547 goto out; 4548 4549 again: 4550 page = find_or_create_page(mapping, index, mask); 4551 if (!page) { 4552 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE); 4553 ret = -ENOMEM; 4554 goto out; 4555 } 4556 4557 page_start = page_offset(page); 4558 page_end = page_start + PAGE_CACHE_SIZE - 1; 4559 4560 if (!PageUptodate(page)) { 4561 ret = btrfs_readpage(NULL, page); 4562 lock_page(page); 4563 if (page->mapping != mapping) { 4564 unlock_page(page); 4565 page_cache_release(page); 4566 goto again; 4567 } 4568 if (!PageUptodate(page)) { 4569 ret = -EIO; 4570 goto out_unlock; 4571 } 4572 } 4573 wait_on_page_writeback(page); 4574 4575 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state); 4576 set_page_extent_mapped(page); 4577 4578 ordered = btrfs_lookup_ordered_extent(inode, page_start); 4579 if (ordered) { 4580 unlock_extent_cached(io_tree, page_start, page_end, 4581 &cached_state, GFP_NOFS); 4582 unlock_page(page); 4583 page_cache_release(page); 4584 btrfs_start_ordered_extent(inode, ordered, 1); 4585 btrfs_put_ordered_extent(ordered); 4586 goto again; 4587 } 4588 4589 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end, 4590 EXTENT_DIRTY | EXTENT_DELALLOC | 4591 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 4592 0, 0, &cached_state, GFP_NOFS); 4593 4594 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 4595 &cached_state); 4596 if (ret) { 4597 unlock_extent_cached(io_tree, page_start, page_end, 4598 &cached_state, GFP_NOFS); 4599 goto out_unlock; 4600 } 4601 4602 if (offset != PAGE_CACHE_SIZE) { 4603 if (!len) 4604 len = PAGE_CACHE_SIZE - offset; 4605 kaddr = kmap(page); 4606 if (front) 4607 memset(kaddr, 0, offset); 4608 else 4609 memset(kaddr + offset, 0, len); 4610 flush_dcache_page(page); 4611 kunmap(page); 4612 } 4613 ClearPageChecked(page); 4614 set_page_dirty(page); 4615 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, 4616 GFP_NOFS); 4617 4618 out_unlock: 4619 if (ret) 4620 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE); 4621 unlock_page(page); 4622 page_cache_release(page); 4623 out: 4624 return ret; 4625 } 4626 4627 static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode, 4628 u64 offset, u64 len) 4629 { 4630 struct btrfs_trans_handle *trans; 4631 int ret; 4632 4633 /* 4634 * Still need to make sure the inode looks like it's been updated so 4635 * that any holes get logged if we fsync. 4636 */ 4637 if (btrfs_fs_incompat(root->fs_info, NO_HOLES)) { 4638 BTRFS_I(inode)->last_trans = root->fs_info->generation; 4639 BTRFS_I(inode)->last_sub_trans = root->log_transid; 4640 BTRFS_I(inode)->last_log_commit = root->last_log_commit; 4641 return 0; 4642 } 4643 4644 /* 4645 * 1 - for the one we're dropping 4646 * 1 - for the one we're adding 4647 * 1 - for updating the inode. 4648 */ 4649 trans = btrfs_start_transaction(root, 3); 4650 if (IS_ERR(trans)) 4651 return PTR_ERR(trans); 4652 4653 ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1); 4654 if (ret) { 4655 btrfs_abort_transaction(trans, root, ret); 4656 btrfs_end_transaction(trans, root); 4657 return ret; 4658 } 4659 4660 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset, 4661 0, 0, len, 0, len, 0, 0, 0); 4662 if (ret) 4663 btrfs_abort_transaction(trans, root, ret); 4664 else 4665 btrfs_update_inode(trans, root, inode); 4666 btrfs_end_transaction(trans, root); 4667 return ret; 4668 } 4669 4670 /* 4671 * This function puts in dummy file extents for the area we're creating a hole 4672 * for. So if we are truncating this file to a larger size we need to insert 4673 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for 4674 * the range between oldsize and size 4675 */ 4676 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size) 4677 { 4678 struct btrfs_root *root = BTRFS_I(inode)->root; 4679 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 4680 struct extent_map *em = NULL; 4681 struct extent_state *cached_state = NULL; 4682 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 4683 u64 hole_start = ALIGN(oldsize, root->sectorsize); 4684 u64 block_end = ALIGN(size, root->sectorsize); 4685 u64 last_byte; 4686 u64 cur_offset; 4687 u64 hole_size; 4688 int err = 0; 4689 4690 /* 4691 * If our size started in the middle of a page we need to zero out the 4692 * rest of the page before we expand the i_size, otherwise we could 4693 * expose stale data. 4694 */ 4695 err = btrfs_truncate_page(inode, oldsize, 0, 0); 4696 if (err) 4697 return err; 4698 4699 if (size <= hole_start) 4700 return 0; 4701 4702 while (1) { 4703 struct btrfs_ordered_extent *ordered; 4704 4705 lock_extent_bits(io_tree, hole_start, block_end - 1, 0, 4706 &cached_state); 4707 ordered = btrfs_lookup_ordered_range(inode, hole_start, 4708 block_end - hole_start); 4709 if (!ordered) 4710 break; 4711 unlock_extent_cached(io_tree, hole_start, block_end - 1, 4712 &cached_state, GFP_NOFS); 4713 btrfs_start_ordered_extent(inode, ordered, 1); 4714 btrfs_put_ordered_extent(ordered); 4715 } 4716 4717 cur_offset = hole_start; 4718 while (1) { 4719 em = btrfs_get_extent(inode, NULL, 0, cur_offset, 4720 block_end - cur_offset, 0); 4721 if (IS_ERR(em)) { 4722 err = PTR_ERR(em); 4723 em = NULL; 4724 break; 4725 } 4726 last_byte = min(extent_map_end(em), block_end); 4727 last_byte = ALIGN(last_byte , root->sectorsize); 4728 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) { 4729 struct extent_map *hole_em; 4730 hole_size = last_byte - cur_offset; 4731 4732 err = maybe_insert_hole(root, inode, cur_offset, 4733 hole_size); 4734 if (err) 4735 break; 4736 btrfs_drop_extent_cache(inode, cur_offset, 4737 cur_offset + hole_size - 1, 0); 4738 hole_em = alloc_extent_map(); 4739 if (!hole_em) { 4740 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 4741 &BTRFS_I(inode)->runtime_flags); 4742 goto next; 4743 } 4744 hole_em->start = cur_offset; 4745 hole_em->len = hole_size; 4746 hole_em->orig_start = cur_offset; 4747 4748 hole_em->block_start = EXTENT_MAP_HOLE; 4749 hole_em->block_len = 0; 4750 hole_em->orig_block_len = 0; 4751 hole_em->ram_bytes = hole_size; 4752 hole_em->bdev = root->fs_info->fs_devices->latest_bdev; 4753 hole_em->compress_type = BTRFS_COMPRESS_NONE; 4754 hole_em->generation = root->fs_info->generation; 4755 4756 while (1) { 4757 write_lock(&em_tree->lock); 4758 err = add_extent_mapping(em_tree, hole_em, 1); 4759 write_unlock(&em_tree->lock); 4760 if (err != -EEXIST) 4761 break; 4762 btrfs_drop_extent_cache(inode, cur_offset, 4763 cur_offset + 4764 hole_size - 1, 0); 4765 } 4766 free_extent_map(hole_em); 4767 } 4768 next: 4769 free_extent_map(em); 4770 em = NULL; 4771 cur_offset = last_byte; 4772 if (cur_offset >= block_end) 4773 break; 4774 } 4775 free_extent_map(em); 4776 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state, 4777 GFP_NOFS); 4778 return err; 4779 } 4780 4781 static int wait_snapshoting_atomic_t(atomic_t *a) 4782 { 4783 schedule(); 4784 return 0; 4785 } 4786 4787 static void wait_for_snapshot_creation(struct btrfs_root *root) 4788 { 4789 while (true) { 4790 int ret; 4791 4792 ret = btrfs_start_write_no_snapshoting(root); 4793 if (ret) 4794 break; 4795 wait_on_atomic_t(&root->will_be_snapshoted, 4796 wait_snapshoting_atomic_t, 4797 TASK_UNINTERRUPTIBLE); 4798 } 4799 } 4800 4801 static int btrfs_setsize(struct inode *inode, struct iattr *attr) 4802 { 4803 struct btrfs_root *root = BTRFS_I(inode)->root; 4804 struct btrfs_trans_handle *trans; 4805 loff_t oldsize = i_size_read(inode); 4806 loff_t newsize = attr->ia_size; 4807 int mask = attr->ia_valid; 4808 int ret; 4809 4810 /* 4811 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a 4812 * special case where we need to update the times despite not having 4813 * these flags set. For all other operations the VFS set these flags 4814 * explicitly if it wants a timestamp update. 4815 */ 4816 if (newsize != oldsize) { 4817 inode_inc_iversion(inode); 4818 if (!(mask & (ATTR_CTIME | ATTR_MTIME))) 4819 inode->i_ctime = inode->i_mtime = 4820 current_fs_time(inode->i_sb); 4821 } 4822 4823 if (newsize > oldsize) { 4824 truncate_pagecache(inode, newsize); 4825 /* 4826 * Don't do an expanding truncate while snapshoting is ongoing. 4827 * This is to ensure the snapshot captures a fully consistent 4828 * state of this file - if the snapshot captures this expanding 4829 * truncation, it must capture all writes that happened before 4830 * this truncation. 4831 */ 4832 wait_for_snapshot_creation(root); 4833 ret = btrfs_cont_expand(inode, oldsize, newsize); 4834 if (ret) { 4835 btrfs_end_write_no_snapshoting(root); 4836 return ret; 4837 } 4838 4839 trans = btrfs_start_transaction(root, 1); 4840 if (IS_ERR(trans)) { 4841 btrfs_end_write_no_snapshoting(root); 4842 return PTR_ERR(trans); 4843 } 4844 4845 i_size_write(inode, newsize); 4846 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL); 4847 ret = btrfs_update_inode(trans, root, inode); 4848 btrfs_end_write_no_snapshoting(root); 4849 btrfs_end_transaction(trans, root); 4850 } else { 4851 4852 /* 4853 * We're truncating a file that used to have good data down to 4854 * zero. Make sure it gets into the ordered flush list so that 4855 * any new writes get down to disk quickly. 4856 */ 4857 if (newsize == 0) 4858 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE, 4859 &BTRFS_I(inode)->runtime_flags); 4860 4861 /* 4862 * 1 for the orphan item we're going to add 4863 * 1 for the orphan item deletion. 4864 */ 4865 trans = btrfs_start_transaction(root, 2); 4866 if (IS_ERR(trans)) 4867 return PTR_ERR(trans); 4868 4869 /* 4870 * We need to do this in case we fail at _any_ point during the 4871 * actual truncate. Once we do the truncate_setsize we could 4872 * invalidate pages which forces any outstanding ordered io to 4873 * be instantly completed which will give us extents that need 4874 * to be truncated. If we fail to get an orphan inode down we 4875 * could have left over extents that were never meant to live, 4876 * so we need to garuntee from this point on that everything 4877 * will be consistent. 4878 */ 4879 ret = btrfs_orphan_add(trans, inode); 4880 btrfs_end_transaction(trans, root); 4881 if (ret) 4882 return ret; 4883 4884 /* we don't support swapfiles, so vmtruncate shouldn't fail */ 4885 truncate_setsize(inode, newsize); 4886 4887 /* Disable nonlocked read DIO to avoid the end less truncate */ 4888 btrfs_inode_block_unlocked_dio(inode); 4889 inode_dio_wait(inode); 4890 btrfs_inode_resume_unlocked_dio(inode); 4891 4892 ret = btrfs_truncate(inode); 4893 if (ret && inode->i_nlink) { 4894 int err; 4895 4896 /* 4897 * failed to truncate, disk_i_size is only adjusted down 4898 * as we remove extents, so it should represent the true 4899 * size of the inode, so reset the in memory size and 4900 * delete our orphan entry. 4901 */ 4902 trans = btrfs_join_transaction(root); 4903 if (IS_ERR(trans)) { 4904 btrfs_orphan_del(NULL, inode); 4905 return ret; 4906 } 4907 i_size_write(inode, BTRFS_I(inode)->disk_i_size); 4908 err = btrfs_orphan_del(trans, inode); 4909 if (err) 4910 btrfs_abort_transaction(trans, root, err); 4911 btrfs_end_transaction(trans, root); 4912 } 4913 } 4914 4915 return ret; 4916 } 4917 4918 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr) 4919 { 4920 struct inode *inode = d_inode(dentry); 4921 struct btrfs_root *root = BTRFS_I(inode)->root; 4922 int err; 4923 4924 if (btrfs_root_readonly(root)) 4925 return -EROFS; 4926 4927 err = inode_change_ok(inode, attr); 4928 if (err) 4929 return err; 4930 4931 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 4932 err = btrfs_setsize(inode, attr); 4933 if (err) 4934 return err; 4935 } 4936 4937 if (attr->ia_valid) { 4938 setattr_copy(inode, attr); 4939 inode_inc_iversion(inode); 4940 err = btrfs_dirty_inode(inode); 4941 4942 if (!err && attr->ia_valid & ATTR_MODE) 4943 err = posix_acl_chmod(inode, inode->i_mode); 4944 } 4945 4946 return err; 4947 } 4948 4949 /* 4950 * While truncating the inode pages during eviction, we get the VFS calling 4951 * btrfs_invalidatepage() against each page of the inode. This is slow because 4952 * the calls to btrfs_invalidatepage() result in a huge amount of calls to 4953 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting 4954 * extent_state structures over and over, wasting lots of time. 4955 * 4956 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all 4957 * those expensive operations on a per page basis and do only the ordered io 4958 * finishing, while we release here the extent_map and extent_state structures, 4959 * without the excessive merging and splitting. 4960 */ 4961 static void evict_inode_truncate_pages(struct inode *inode) 4962 { 4963 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 4964 struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree; 4965 struct rb_node *node; 4966 4967 ASSERT(inode->i_state & I_FREEING); 4968 truncate_inode_pages_final(&inode->i_data); 4969 4970 write_lock(&map_tree->lock); 4971 while (!RB_EMPTY_ROOT(&map_tree->map)) { 4972 struct extent_map *em; 4973 4974 node = rb_first(&map_tree->map); 4975 em = rb_entry(node, struct extent_map, rb_node); 4976 clear_bit(EXTENT_FLAG_PINNED, &em->flags); 4977 clear_bit(EXTENT_FLAG_LOGGING, &em->flags); 4978 remove_extent_mapping(map_tree, em); 4979 free_extent_map(em); 4980 if (need_resched()) { 4981 write_unlock(&map_tree->lock); 4982 cond_resched(); 4983 write_lock(&map_tree->lock); 4984 } 4985 } 4986 write_unlock(&map_tree->lock); 4987 4988 /* 4989 * Keep looping until we have no more ranges in the io tree. 4990 * We can have ongoing bios started by readpages (called from readahead) 4991 * that have their endio callback (extent_io.c:end_bio_extent_readpage) 4992 * still in progress (unlocked the pages in the bio but did not yet 4993 * unlocked the ranges in the io tree). Therefore this means some 4994 * ranges can still be locked and eviction started because before 4995 * submitting those bios, which are executed by a separate task (work 4996 * queue kthread), inode references (inode->i_count) were not taken 4997 * (which would be dropped in the end io callback of each bio). 4998 * Therefore here we effectively end up waiting for those bios and 4999 * anyone else holding locked ranges without having bumped the inode's 5000 * reference count - if we don't do it, when they access the inode's 5001 * io_tree to unlock a range it may be too late, leading to an 5002 * use-after-free issue. 5003 */ 5004 spin_lock(&io_tree->lock); 5005 while (!RB_EMPTY_ROOT(&io_tree->state)) { 5006 struct extent_state *state; 5007 struct extent_state *cached_state = NULL; 5008 u64 start; 5009 u64 end; 5010 5011 node = rb_first(&io_tree->state); 5012 state = rb_entry(node, struct extent_state, rb_node); 5013 start = state->start; 5014 end = state->end; 5015 spin_unlock(&io_tree->lock); 5016 5017 lock_extent_bits(io_tree, start, end, 0, &cached_state); 5018 clear_extent_bit(io_tree, start, end, 5019 EXTENT_LOCKED | EXTENT_DIRTY | 5020 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | 5021 EXTENT_DEFRAG, 1, 1, 5022 &cached_state, GFP_NOFS); 5023 5024 cond_resched(); 5025 spin_lock(&io_tree->lock); 5026 } 5027 spin_unlock(&io_tree->lock); 5028 } 5029 5030 void btrfs_evict_inode(struct inode *inode) 5031 { 5032 struct btrfs_trans_handle *trans; 5033 struct btrfs_root *root = BTRFS_I(inode)->root; 5034 struct btrfs_block_rsv *rsv, *global_rsv; 5035 int steal_from_global = 0; 5036 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1); 5037 int ret; 5038 5039 trace_btrfs_inode_evict(inode); 5040 5041 evict_inode_truncate_pages(inode); 5042 5043 if (inode->i_nlink && 5044 ((btrfs_root_refs(&root->root_item) != 0 && 5045 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) || 5046 btrfs_is_free_space_inode(inode))) 5047 goto no_delete; 5048 5049 if (is_bad_inode(inode)) { 5050 btrfs_orphan_del(NULL, inode); 5051 goto no_delete; 5052 } 5053 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */ 5054 btrfs_wait_ordered_range(inode, 0, (u64)-1); 5055 5056 btrfs_free_io_failure_record(inode, 0, (u64)-1); 5057 5058 if (root->fs_info->log_root_recovering) { 5059 BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 5060 &BTRFS_I(inode)->runtime_flags)); 5061 goto no_delete; 5062 } 5063 5064 if (inode->i_nlink > 0) { 5065 BUG_ON(btrfs_root_refs(&root->root_item) != 0 && 5066 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID); 5067 goto no_delete; 5068 } 5069 5070 ret = btrfs_commit_inode_delayed_inode(inode); 5071 if (ret) { 5072 btrfs_orphan_del(NULL, inode); 5073 goto no_delete; 5074 } 5075 5076 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP); 5077 if (!rsv) { 5078 btrfs_orphan_del(NULL, inode); 5079 goto no_delete; 5080 } 5081 rsv->size = min_size; 5082 rsv->failfast = 1; 5083 global_rsv = &root->fs_info->global_block_rsv; 5084 5085 btrfs_i_size_write(inode, 0); 5086 5087 /* 5088 * This is a bit simpler than btrfs_truncate since we've already 5089 * reserved our space for our orphan item in the unlink, so we just 5090 * need to reserve some slack space in case we add bytes and update 5091 * inode item when doing the truncate. 5092 */ 5093 while (1) { 5094 ret = btrfs_block_rsv_refill(root, rsv, min_size, 5095 BTRFS_RESERVE_FLUSH_LIMIT); 5096 5097 /* 5098 * Try and steal from the global reserve since we will 5099 * likely not use this space anyway, we want to try as 5100 * hard as possible to get this to work. 5101 */ 5102 if (ret) 5103 steal_from_global++; 5104 else 5105 steal_from_global = 0; 5106 ret = 0; 5107 5108 /* 5109 * steal_from_global == 0: we reserved stuff, hooray! 5110 * steal_from_global == 1: we didn't reserve stuff, boo! 5111 * steal_from_global == 2: we've committed, still not a lot of 5112 * room but maybe we'll have room in the global reserve this 5113 * time. 5114 * steal_from_global == 3: abandon all hope! 5115 */ 5116 if (steal_from_global > 2) { 5117 btrfs_warn(root->fs_info, 5118 "Could not get space for a delete, will truncate on mount %d", 5119 ret); 5120 btrfs_orphan_del(NULL, inode); 5121 btrfs_free_block_rsv(root, rsv); 5122 goto no_delete; 5123 } 5124 5125 trans = btrfs_join_transaction(root); 5126 if (IS_ERR(trans)) { 5127 btrfs_orphan_del(NULL, inode); 5128 btrfs_free_block_rsv(root, rsv); 5129 goto no_delete; 5130 } 5131 5132 /* 5133 * We can't just steal from the global reserve, we need tomake 5134 * sure there is room to do it, if not we need to commit and try 5135 * again. 5136 */ 5137 if (steal_from_global) { 5138 if (!btrfs_check_space_for_delayed_refs(trans, root)) 5139 ret = btrfs_block_rsv_migrate(global_rsv, rsv, 5140 min_size); 5141 else 5142 ret = -ENOSPC; 5143 } 5144 5145 /* 5146 * Couldn't steal from the global reserve, we have too much 5147 * pending stuff built up, commit the transaction and try it 5148 * again. 5149 */ 5150 if (ret) { 5151 ret = btrfs_commit_transaction(trans, root); 5152 if (ret) { 5153 btrfs_orphan_del(NULL, inode); 5154 btrfs_free_block_rsv(root, rsv); 5155 goto no_delete; 5156 } 5157 continue; 5158 } else { 5159 steal_from_global = 0; 5160 } 5161 5162 trans->block_rsv = rsv; 5163 5164 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0); 5165 if (ret != -ENOSPC && ret != -EAGAIN) 5166 break; 5167 5168 trans->block_rsv = &root->fs_info->trans_block_rsv; 5169 btrfs_end_transaction(trans, root); 5170 trans = NULL; 5171 btrfs_btree_balance_dirty(root); 5172 } 5173 5174 btrfs_free_block_rsv(root, rsv); 5175 5176 /* 5177 * Errors here aren't a big deal, it just means we leave orphan items 5178 * in the tree. They will be cleaned up on the next mount. 5179 */ 5180 if (ret == 0) { 5181 trans->block_rsv = root->orphan_block_rsv; 5182 btrfs_orphan_del(trans, inode); 5183 } else { 5184 btrfs_orphan_del(NULL, inode); 5185 } 5186 5187 trans->block_rsv = &root->fs_info->trans_block_rsv; 5188 if (!(root == root->fs_info->tree_root || 5189 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)) 5190 btrfs_return_ino(root, btrfs_ino(inode)); 5191 5192 btrfs_end_transaction(trans, root); 5193 btrfs_btree_balance_dirty(root); 5194 no_delete: 5195 btrfs_remove_delayed_node(inode); 5196 clear_inode(inode); 5197 return; 5198 } 5199 5200 /* 5201 * this returns the key found in the dir entry in the location pointer. 5202 * If no dir entries were found, location->objectid is 0. 5203 */ 5204 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry, 5205 struct btrfs_key *location) 5206 { 5207 const char *name = dentry->d_name.name; 5208 int namelen = dentry->d_name.len; 5209 struct btrfs_dir_item *di; 5210 struct btrfs_path *path; 5211 struct btrfs_root *root = BTRFS_I(dir)->root; 5212 int ret = 0; 5213 5214 path = btrfs_alloc_path(); 5215 if (!path) 5216 return -ENOMEM; 5217 5218 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name, 5219 namelen, 0); 5220 if (IS_ERR(di)) 5221 ret = PTR_ERR(di); 5222 5223 if (IS_ERR_OR_NULL(di)) 5224 goto out_err; 5225 5226 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location); 5227 out: 5228 btrfs_free_path(path); 5229 return ret; 5230 out_err: 5231 location->objectid = 0; 5232 goto out; 5233 } 5234 5235 /* 5236 * when we hit a tree root in a directory, the btrfs part of the inode 5237 * needs to be changed to reflect the root directory of the tree root. This 5238 * is kind of like crossing a mount point. 5239 */ 5240 static int fixup_tree_root_location(struct btrfs_root *root, 5241 struct inode *dir, 5242 struct dentry *dentry, 5243 struct btrfs_key *location, 5244 struct btrfs_root **sub_root) 5245 { 5246 struct btrfs_path *path; 5247 struct btrfs_root *new_root; 5248 struct btrfs_root_ref *ref; 5249 struct extent_buffer *leaf; 5250 struct btrfs_key key; 5251 int ret; 5252 int err = 0; 5253 5254 path = btrfs_alloc_path(); 5255 if (!path) { 5256 err = -ENOMEM; 5257 goto out; 5258 } 5259 5260 err = -ENOENT; 5261 key.objectid = BTRFS_I(dir)->root->root_key.objectid; 5262 key.type = BTRFS_ROOT_REF_KEY; 5263 key.offset = location->objectid; 5264 5265 ret = btrfs_search_slot(NULL, root->fs_info->tree_root, &key, path, 5266 0, 0); 5267 if (ret) { 5268 if (ret < 0) 5269 err = ret; 5270 goto out; 5271 } 5272 5273 leaf = path->nodes[0]; 5274 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); 5275 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) || 5276 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len) 5277 goto out; 5278 5279 ret = memcmp_extent_buffer(leaf, dentry->d_name.name, 5280 (unsigned long)(ref + 1), 5281 dentry->d_name.len); 5282 if (ret) 5283 goto out; 5284 5285 btrfs_release_path(path); 5286 5287 new_root = btrfs_read_fs_root_no_name(root->fs_info, location); 5288 if (IS_ERR(new_root)) { 5289 err = PTR_ERR(new_root); 5290 goto out; 5291 } 5292 5293 *sub_root = new_root; 5294 location->objectid = btrfs_root_dirid(&new_root->root_item); 5295 location->type = BTRFS_INODE_ITEM_KEY; 5296 location->offset = 0; 5297 err = 0; 5298 out: 5299 btrfs_free_path(path); 5300 return err; 5301 } 5302 5303 static void inode_tree_add(struct inode *inode) 5304 { 5305 struct btrfs_root *root = BTRFS_I(inode)->root; 5306 struct btrfs_inode *entry; 5307 struct rb_node **p; 5308 struct rb_node *parent; 5309 struct rb_node *new = &BTRFS_I(inode)->rb_node; 5310 u64 ino = btrfs_ino(inode); 5311 5312 if (inode_unhashed(inode)) 5313 return; 5314 parent = NULL; 5315 spin_lock(&root->inode_lock); 5316 p = &root->inode_tree.rb_node; 5317 while (*p) { 5318 parent = *p; 5319 entry = rb_entry(parent, struct btrfs_inode, rb_node); 5320 5321 if (ino < btrfs_ino(&entry->vfs_inode)) 5322 p = &parent->rb_left; 5323 else if (ino > btrfs_ino(&entry->vfs_inode)) 5324 p = &parent->rb_right; 5325 else { 5326 WARN_ON(!(entry->vfs_inode.i_state & 5327 (I_WILL_FREE | I_FREEING))); 5328 rb_replace_node(parent, new, &root->inode_tree); 5329 RB_CLEAR_NODE(parent); 5330 spin_unlock(&root->inode_lock); 5331 return; 5332 } 5333 } 5334 rb_link_node(new, parent, p); 5335 rb_insert_color(new, &root->inode_tree); 5336 spin_unlock(&root->inode_lock); 5337 } 5338 5339 static void inode_tree_del(struct inode *inode) 5340 { 5341 struct btrfs_root *root = BTRFS_I(inode)->root; 5342 int empty = 0; 5343 5344 spin_lock(&root->inode_lock); 5345 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) { 5346 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree); 5347 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node); 5348 empty = RB_EMPTY_ROOT(&root->inode_tree); 5349 } 5350 spin_unlock(&root->inode_lock); 5351 5352 if (empty && btrfs_root_refs(&root->root_item) == 0) { 5353 synchronize_srcu(&root->fs_info->subvol_srcu); 5354 spin_lock(&root->inode_lock); 5355 empty = RB_EMPTY_ROOT(&root->inode_tree); 5356 spin_unlock(&root->inode_lock); 5357 if (empty) 5358 btrfs_add_dead_root(root); 5359 } 5360 } 5361 5362 void btrfs_invalidate_inodes(struct btrfs_root *root) 5363 { 5364 struct rb_node *node; 5365 struct rb_node *prev; 5366 struct btrfs_inode *entry; 5367 struct inode *inode; 5368 u64 objectid = 0; 5369 5370 if (!test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) 5371 WARN_ON(btrfs_root_refs(&root->root_item) != 0); 5372 5373 spin_lock(&root->inode_lock); 5374 again: 5375 node = root->inode_tree.rb_node; 5376 prev = NULL; 5377 while (node) { 5378 prev = node; 5379 entry = rb_entry(node, struct btrfs_inode, rb_node); 5380 5381 if (objectid < btrfs_ino(&entry->vfs_inode)) 5382 node = node->rb_left; 5383 else if (objectid > btrfs_ino(&entry->vfs_inode)) 5384 node = node->rb_right; 5385 else 5386 break; 5387 } 5388 if (!node) { 5389 while (prev) { 5390 entry = rb_entry(prev, struct btrfs_inode, rb_node); 5391 if (objectid <= btrfs_ino(&entry->vfs_inode)) { 5392 node = prev; 5393 break; 5394 } 5395 prev = rb_next(prev); 5396 } 5397 } 5398 while (node) { 5399 entry = rb_entry(node, struct btrfs_inode, rb_node); 5400 objectid = btrfs_ino(&entry->vfs_inode) + 1; 5401 inode = igrab(&entry->vfs_inode); 5402 if (inode) { 5403 spin_unlock(&root->inode_lock); 5404 if (atomic_read(&inode->i_count) > 1) 5405 d_prune_aliases(inode); 5406 /* 5407 * btrfs_drop_inode will have it removed from 5408 * the inode cache when its usage count 5409 * hits zero. 5410 */ 5411 iput(inode); 5412 cond_resched(); 5413 spin_lock(&root->inode_lock); 5414 goto again; 5415 } 5416 5417 if (cond_resched_lock(&root->inode_lock)) 5418 goto again; 5419 5420 node = rb_next(node); 5421 } 5422 spin_unlock(&root->inode_lock); 5423 } 5424 5425 static int btrfs_init_locked_inode(struct inode *inode, void *p) 5426 { 5427 struct btrfs_iget_args *args = p; 5428 inode->i_ino = args->location->objectid; 5429 memcpy(&BTRFS_I(inode)->location, args->location, 5430 sizeof(*args->location)); 5431 BTRFS_I(inode)->root = args->root; 5432 return 0; 5433 } 5434 5435 static int btrfs_find_actor(struct inode *inode, void *opaque) 5436 { 5437 struct btrfs_iget_args *args = opaque; 5438 return args->location->objectid == BTRFS_I(inode)->location.objectid && 5439 args->root == BTRFS_I(inode)->root; 5440 } 5441 5442 static struct inode *btrfs_iget_locked(struct super_block *s, 5443 struct btrfs_key *location, 5444 struct btrfs_root *root) 5445 { 5446 struct inode *inode; 5447 struct btrfs_iget_args args; 5448 unsigned long hashval = btrfs_inode_hash(location->objectid, root); 5449 5450 args.location = location; 5451 args.root = root; 5452 5453 inode = iget5_locked(s, hashval, btrfs_find_actor, 5454 btrfs_init_locked_inode, 5455 (void *)&args); 5456 return inode; 5457 } 5458 5459 /* Get an inode object given its location and corresponding root. 5460 * Returns in *is_new if the inode was read from disk 5461 */ 5462 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location, 5463 struct btrfs_root *root, int *new) 5464 { 5465 struct inode *inode; 5466 5467 inode = btrfs_iget_locked(s, location, root); 5468 if (!inode) 5469 return ERR_PTR(-ENOMEM); 5470 5471 if (inode->i_state & I_NEW) { 5472 btrfs_read_locked_inode(inode); 5473 if (!is_bad_inode(inode)) { 5474 inode_tree_add(inode); 5475 unlock_new_inode(inode); 5476 if (new) 5477 *new = 1; 5478 } else { 5479 unlock_new_inode(inode); 5480 iput(inode); 5481 inode = ERR_PTR(-ESTALE); 5482 } 5483 } 5484 5485 return inode; 5486 } 5487 5488 static struct inode *new_simple_dir(struct super_block *s, 5489 struct btrfs_key *key, 5490 struct btrfs_root *root) 5491 { 5492 struct inode *inode = new_inode(s); 5493 5494 if (!inode) 5495 return ERR_PTR(-ENOMEM); 5496 5497 BTRFS_I(inode)->root = root; 5498 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key)); 5499 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags); 5500 5501 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID; 5502 inode->i_op = &btrfs_dir_ro_inode_operations; 5503 inode->i_fop = &simple_dir_operations; 5504 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO; 5505 inode->i_mtime = CURRENT_TIME; 5506 inode->i_atime = inode->i_mtime; 5507 inode->i_ctime = inode->i_mtime; 5508 BTRFS_I(inode)->i_otime = inode->i_mtime; 5509 5510 return inode; 5511 } 5512 5513 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry) 5514 { 5515 struct inode *inode; 5516 struct btrfs_root *root = BTRFS_I(dir)->root; 5517 struct btrfs_root *sub_root = root; 5518 struct btrfs_key location; 5519 int index; 5520 int ret = 0; 5521 5522 if (dentry->d_name.len > BTRFS_NAME_LEN) 5523 return ERR_PTR(-ENAMETOOLONG); 5524 5525 ret = btrfs_inode_by_name(dir, dentry, &location); 5526 if (ret < 0) 5527 return ERR_PTR(ret); 5528 5529 if (location.objectid == 0) 5530 return ERR_PTR(-ENOENT); 5531 5532 if (location.type == BTRFS_INODE_ITEM_KEY) { 5533 inode = btrfs_iget(dir->i_sb, &location, root, NULL); 5534 return inode; 5535 } 5536 5537 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY); 5538 5539 index = srcu_read_lock(&root->fs_info->subvol_srcu); 5540 ret = fixup_tree_root_location(root, dir, dentry, 5541 &location, &sub_root); 5542 if (ret < 0) { 5543 if (ret != -ENOENT) 5544 inode = ERR_PTR(ret); 5545 else 5546 inode = new_simple_dir(dir->i_sb, &location, sub_root); 5547 } else { 5548 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL); 5549 } 5550 srcu_read_unlock(&root->fs_info->subvol_srcu, index); 5551 5552 if (!IS_ERR(inode) && root != sub_root) { 5553 down_read(&root->fs_info->cleanup_work_sem); 5554 if (!(inode->i_sb->s_flags & MS_RDONLY)) 5555 ret = btrfs_orphan_cleanup(sub_root); 5556 up_read(&root->fs_info->cleanup_work_sem); 5557 if (ret) { 5558 iput(inode); 5559 inode = ERR_PTR(ret); 5560 } 5561 } 5562 5563 return inode; 5564 } 5565 5566 static int btrfs_dentry_delete(const struct dentry *dentry) 5567 { 5568 struct btrfs_root *root; 5569 struct inode *inode = d_inode(dentry); 5570 5571 if (!inode && !IS_ROOT(dentry)) 5572 inode = d_inode(dentry->d_parent); 5573 5574 if (inode) { 5575 root = BTRFS_I(inode)->root; 5576 if (btrfs_root_refs(&root->root_item) == 0) 5577 return 1; 5578 5579 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 5580 return 1; 5581 } 5582 return 0; 5583 } 5584 5585 static void btrfs_dentry_release(struct dentry *dentry) 5586 { 5587 kfree(dentry->d_fsdata); 5588 } 5589 5590 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry, 5591 unsigned int flags) 5592 { 5593 struct inode *inode; 5594 5595 inode = btrfs_lookup_dentry(dir, dentry); 5596 if (IS_ERR(inode)) { 5597 if (PTR_ERR(inode) == -ENOENT) 5598 inode = NULL; 5599 else 5600 return ERR_CAST(inode); 5601 } 5602 5603 return d_splice_alias(inode, dentry); 5604 } 5605 5606 unsigned char btrfs_filetype_table[] = { 5607 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK 5608 }; 5609 5610 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx) 5611 { 5612 struct inode *inode = file_inode(file); 5613 struct btrfs_root *root = BTRFS_I(inode)->root; 5614 struct btrfs_item *item; 5615 struct btrfs_dir_item *di; 5616 struct btrfs_key key; 5617 struct btrfs_key found_key; 5618 struct btrfs_path *path; 5619 struct list_head ins_list; 5620 struct list_head del_list; 5621 int ret; 5622 struct extent_buffer *leaf; 5623 int slot; 5624 unsigned char d_type; 5625 int over = 0; 5626 u32 di_cur; 5627 u32 di_total; 5628 u32 di_len; 5629 int key_type = BTRFS_DIR_INDEX_KEY; 5630 char tmp_name[32]; 5631 char *name_ptr; 5632 int name_len; 5633 int is_curr = 0; /* ctx->pos points to the current index? */ 5634 5635 /* FIXME, use a real flag for deciding about the key type */ 5636 if (root->fs_info->tree_root == root) 5637 key_type = BTRFS_DIR_ITEM_KEY; 5638 5639 if (!dir_emit_dots(file, ctx)) 5640 return 0; 5641 5642 path = btrfs_alloc_path(); 5643 if (!path) 5644 return -ENOMEM; 5645 5646 path->reada = 1; 5647 5648 if (key_type == BTRFS_DIR_INDEX_KEY) { 5649 INIT_LIST_HEAD(&ins_list); 5650 INIT_LIST_HEAD(&del_list); 5651 btrfs_get_delayed_items(inode, &ins_list, &del_list); 5652 } 5653 5654 key.type = key_type; 5655 key.offset = ctx->pos; 5656 key.objectid = btrfs_ino(inode); 5657 5658 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5659 if (ret < 0) 5660 goto err; 5661 5662 while (1) { 5663 leaf = path->nodes[0]; 5664 slot = path->slots[0]; 5665 if (slot >= btrfs_header_nritems(leaf)) { 5666 ret = btrfs_next_leaf(root, path); 5667 if (ret < 0) 5668 goto err; 5669 else if (ret > 0) 5670 break; 5671 continue; 5672 } 5673 5674 item = btrfs_item_nr(slot); 5675 btrfs_item_key_to_cpu(leaf, &found_key, slot); 5676 5677 if (found_key.objectid != key.objectid) 5678 break; 5679 if (found_key.type != key_type) 5680 break; 5681 if (found_key.offset < ctx->pos) 5682 goto next; 5683 if (key_type == BTRFS_DIR_INDEX_KEY && 5684 btrfs_should_delete_dir_index(&del_list, 5685 found_key.offset)) 5686 goto next; 5687 5688 ctx->pos = found_key.offset; 5689 is_curr = 1; 5690 5691 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item); 5692 di_cur = 0; 5693 di_total = btrfs_item_size(leaf, item); 5694 5695 while (di_cur < di_total) { 5696 struct btrfs_key location; 5697 5698 if (verify_dir_item(root, leaf, di)) 5699 break; 5700 5701 name_len = btrfs_dir_name_len(leaf, di); 5702 if (name_len <= sizeof(tmp_name)) { 5703 name_ptr = tmp_name; 5704 } else { 5705 name_ptr = kmalloc(name_len, GFP_NOFS); 5706 if (!name_ptr) { 5707 ret = -ENOMEM; 5708 goto err; 5709 } 5710 } 5711 read_extent_buffer(leaf, name_ptr, 5712 (unsigned long)(di + 1), name_len); 5713 5714 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)]; 5715 btrfs_dir_item_key_to_cpu(leaf, di, &location); 5716 5717 5718 /* is this a reference to our own snapshot? If so 5719 * skip it. 5720 * 5721 * In contrast to old kernels, we insert the snapshot's 5722 * dir item and dir index after it has been created, so 5723 * we won't find a reference to our own snapshot. We 5724 * still keep the following code for backward 5725 * compatibility. 5726 */ 5727 if (location.type == BTRFS_ROOT_ITEM_KEY && 5728 location.objectid == root->root_key.objectid) { 5729 over = 0; 5730 goto skip; 5731 } 5732 over = !dir_emit(ctx, name_ptr, name_len, 5733 location.objectid, d_type); 5734 5735 skip: 5736 if (name_ptr != tmp_name) 5737 kfree(name_ptr); 5738 5739 if (over) 5740 goto nopos; 5741 di_len = btrfs_dir_name_len(leaf, di) + 5742 btrfs_dir_data_len(leaf, di) + sizeof(*di); 5743 di_cur += di_len; 5744 di = (struct btrfs_dir_item *)((char *)di + di_len); 5745 } 5746 next: 5747 path->slots[0]++; 5748 } 5749 5750 if (key_type == BTRFS_DIR_INDEX_KEY) { 5751 if (is_curr) 5752 ctx->pos++; 5753 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list); 5754 if (ret) 5755 goto nopos; 5756 } 5757 5758 /* Reached end of directory/root. Bump pos past the last item. */ 5759 ctx->pos++; 5760 5761 /* 5762 * Stop new entries from being returned after we return the last 5763 * entry. 5764 * 5765 * New directory entries are assigned a strictly increasing 5766 * offset. This means that new entries created during readdir 5767 * are *guaranteed* to be seen in the future by that readdir. 5768 * This has broken buggy programs which operate on names as 5769 * they're returned by readdir. Until we re-use freed offsets 5770 * we have this hack to stop new entries from being returned 5771 * under the assumption that they'll never reach this huge 5772 * offset. 5773 * 5774 * This is being careful not to overflow 32bit loff_t unless the 5775 * last entry requires it because doing so has broken 32bit apps 5776 * in the past. 5777 */ 5778 if (key_type == BTRFS_DIR_INDEX_KEY) { 5779 if (ctx->pos >= INT_MAX) 5780 ctx->pos = LLONG_MAX; 5781 else 5782 ctx->pos = INT_MAX; 5783 } 5784 nopos: 5785 ret = 0; 5786 err: 5787 if (key_type == BTRFS_DIR_INDEX_KEY) 5788 btrfs_put_delayed_items(&ins_list, &del_list); 5789 btrfs_free_path(path); 5790 return ret; 5791 } 5792 5793 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc) 5794 { 5795 struct btrfs_root *root = BTRFS_I(inode)->root; 5796 struct btrfs_trans_handle *trans; 5797 int ret = 0; 5798 bool nolock = false; 5799 5800 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags)) 5801 return 0; 5802 5803 if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(inode)) 5804 nolock = true; 5805 5806 if (wbc->sync_mode == WB_SYNC_ALL) { 5807 if (nolock) 5808 trans = btrfs_join_transaction_nolock(root); 5809 else 5810 trans = btrfs_join_transaction(root); 5811 if (IS_ERR(trans)) 5812 return PTR_ERR(trans); 5813 ret = btrfs_commit_transaction(trans, root); 5814 } 5815 return ret; 5816 } 5817 5818 /* 5819 * This is somewhat expensive, updating the tree every time the 5820 * inode changes. But, it is most likely to find the inode in cache. 5821 * FIXME, needs more benchmarking...there are no reasons other than performance 5822 * to keep or drop this code. 5823 */ 5824 static int btrfs_dirty_inode(struct inode *inode) 5825 { 5826 struct btrfs_root *root = BTRFS_I(inode)->root; 5827 struct btrfs_trans_handle *trans; 5828 int ret; 5829 5830 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags)) 5831 return 0; 5832 5833 trans = btrfs_join_transaction(root); 5834 if (IS_ERR(trans)) 5835 return PTR_ERR(trans); 5836 5837 ret = btrfs_update_inode(trans, root, inode); 5838 if (ret && ret == -ENOSPC) { 5839 /* whoops, lets try again with the full transaction */ 5840 btrfs_end_transaction(trans, root); 5841 trans = btrfs_start_transaction(root, 1); 5842 if (IS_ERR(trans)) 5843 return PTR_ERR(trans); 5844 5845 ret = btrfs_update_inode(trans, root, inode); 5846 } 5847 btrfs_end_transaction(trans, root); 5848 if (BTRFS_I(inode)->delayed_node) 5849 btrfs_balance_delayed_items(root); 5850 5851 return ret; 5852 } 5853 5854 /* 5855 * This is a copy of file_update_time. We need this so we can return error on 5856 * ENOSPC for updating the inode in the case of file write and mmap writes. 5857 */ 5858 static int btrfs_update_time(struct inode *inode, struct timespec *now, 5859 int flags) 5860 { 5861 struct btrfs_root *root = BTRFS_I(inode)->root; 5862 5863 if (btrfs_root_readonly(root)) 5864 return -EROFS; 5865 5866 if (flags & S_VERSION) 5867 inode_inc_iversion(inode); 5868 if (flags & S_CTIME) 5869 inode->i_ctime = *now; 5870 if (flags & S_MTIME) 5871 inode->i_mtime = *now; 5872 if (flags & S_ATIME) 5873 inode->i_atime = *now; 5874 return btrfs_dirty_inode(inode); 5875 } 5876 5877 /* 5878 * find the highest existing sequence number in a directory 5879 * and then set the in-memory index_cnt variable to reflect 5880 * free sequence numbers 5881 */ 5882 static int btrfs_set_inode_index_count(struct inode *inode) 5883 { 5884 struct btrfs_root *root = BTRFS_I(inode)->root; 5885 struct btrfs_key key, found_key; 5886 struct btrfs_path *path; 5887 struct extent_buffer *leaf; 5888 int ret; 5889 5890 key.objectid = btrfs_ino(inode); 5891 key.type = BTRFS_DIR_INDEX_KEY; 5892 key.offset = (u64)-1; 5893 5894 path = btrfs_alloc_path(); 5895 if (!path) 5896 return -ENOMEM; 5897 5898 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5899 if (ret < 0) 5900 goto out; 5901 /* FIXME: we should be able to handle this */ 5902 if (ret == 0) 5903 goto out; 5904 ret = 0; 5905 5906 /* 5907 * MAGIC NUMBER EXPLANATION: 5908 * since we search a directory based on f_pos we have to start at 2 5909 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody 5910 * else has to start at 2 5911 */ 5912 if (path->slots[0] == 0) { 5913 BTRFS_I(inode)->index_cnt = 2; 5914 goto out; 5915 } 5916 5917 path->slots[0]--; 5918 5919 leaf = path->nodes[0]; 5920 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 5921 5922 if (found_key.objectid != btrfs_ino(inode) || 5923 found_key.type != BTRFS_DIR_INDEX_KEY) { 5924 BTRFS_I(inode)->index_cnt = 2; 5925 goto out; 5926 } 5927 5928 BTRFS_I(inode)->index_cnt = found_key.offset + 1; 5929 out: 5930 btrfs_free_path(path); 5931 return ret; 5932 } 5933 5934 /* 5935 * helper to find a free sequence number in a given directory. This current 5936 * code is very simple, later versions will do smarter things in the btree 5937 */ 5938 int btrfs_set_inode_index(struct inode *dir, u64 *index) 5939 { 5940 int ret = 0; 5941 5942 if (BTRFS_I(dir)->index_cnt == (u64)-1) { 5943 ret = btrfs_inode_delayed_dir_index_count(dir); 5944 if (ret) { 5945 ret = btrfs_set_inode_index_count(dir); 5946 if (ret) 5947 return ret; 5948 } 5949 } 5950 5951 *index = BTRFS_I(dir)->index_cnt; 5952 BTRFS_I(dir)->index_cnt++; 5953 5954 return ret; 5955 } 5956 5957 static int btrfs_insert_inode_locked(struct inode *inode) 5958 { 5959 struct btrfs_iget_args args; 5960 args.location = &BTRFS_I(inode)->location; 5961 args.root = BTRFS_I(inode)->root; 5962 5963 return insert_inode_locked4(inode, 5964 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root), 5965 btrfs_find_actor, &args); 5966 } 5967 5968 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans, 5969 struct btrfs_root *root, 5970 struct inode *dir, 5971 const char *name, int name_len, 5972 u64 ref_objectid, u64 objectid, 5973 umode_t mode, u64 *index) 5974 { 5975 struct inode *inode; 5976 struct btrfs_inode_item *inode_item; 5977 struct btrfs_key *location; 5978 struct btrfs_path *path; 5979 struct btrfs_inode_ref *ref; 5980 struct btrfs_key key[2]; 5981 u32 sizes[2]; 5982 int nitems = name ? 2 : 1; 5983 unsigned long ptr; 5984 int ret; 5985 5986 path = btrfs_alloc_path(); 5987 if (!path) 5988 return ERR_PTR(-ENOMEM); 5989 5990 inode = new_inode(root->fs_info->sb); 5991 if (!inode) { 5992 btrfs_free_path(path); 5993 return ERR_PTR(-ENOMEM); 5994 } 5995 5996 /* 5997 * O_TMPFILE, set link count to 0, so that after this point, 5998 * we fill in an inode item with the correct link count. 5999 */ 6000 if (!name) 6001 set_nlink(inode, 0); 6002 6003 /* 6004 * we have to initialize this early, so we can reclaim the inode 6005 * number if we fail afterwards in this function. 6006 */ 6007 inode->i_ino = objectid; 6008 6009 if (dir && name) { 6010 trace_btrfs_inode_request(dir); 6011 6012 ret = btrfs_set_inode_index(dir, index); 6013 if (ret) { 6014 btrfs_free_path(path); 6015 iput(inode); 6016 return ERR_PTR(ret); 6017 } 6018 } else if (dir) { 6019 *index = 0; 6020 } 6021 /* 6022 * index_cnt is ignored for everything but a dir, 6023 * btrfs_get_inode_index_count has an explanation for the magic 6024 * number 6025 */ 6026 BTRFS_I(inode)->index_cnt = 2; 6027 BTRFS_I(inode)->dir_index = *index; 6028 BTRFS_I(inode)->root = root; 6029 BTRFS_I(inode)->generation = trans->transid; 6030 inode->i_generation = BTRFS_I(inode)->generation; 6031 6032 /* 6033 * We could have gotten an inode number from somebody who was fsynced 6034 * and then removed in this same transaction, so let's just set full 6035 * sync since it will be a full sync anyway and this will blow away the 6036 * old info in the log. 6037 */ 6038 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 6039 6040 key[0].objectid = objectid; 6041 key[0].type = BTRFS_INODE_ITEM_KEY; 6042 key[0].offset = 0; 6043 6044 sizes[0] = sizeof(struct btrfs_inode_item); 6045 6046 if (name) { 6047 /* 6048 * Start new inodes with an inode_ref. This is slightly more 6049 * efficient for small numbers of hard links since they will 6050 * be packed into one item. Extended refs will kick in if we 6051 * add more hard links than can fit in the ref item. 6052 */ 6053 key[1].objectid = objectid; 6054 key[1].type = BTRFS_INODE_REF_KEY; 6055 key[1].offset = ref_objectid; 6056 6057 sizes[1] = name_len + sizeof(*ref); 6058 } 6059 6060 location = &BTRFS_I(inode)->location; 6061 location->objectid = objectid; 6062 location->offset = 0; 6063 location->type = BTRFS_INODE_ITEM_KEY; 6064 6065 ret = btrfs_insert_inode_locked(inode); 6066 if (ret < 0) 6067 goto fail; 6068 6069 path->leave_spinning = 1; 6070 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems); 6071 if (ret != 0) 6072 goto fail_unlock; 6073 6074 inode_init_owner(inode, dir, mode); 6075 inode_set_bytes(inode, 0); 6076 6077 inode->i_mtime = CURRENT_TIME; 6078 inode->i_atime = inode->i_mtime; 6079 inode->i_ctime = inode->i_mtime; 6080 BTRFS_I(inode)->i_otime = inode->i_mtime; 6081 6082 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0], 6083 struct btrfs_inode_item); 6084 memset_extent_buffer(path->nodes[0], 0, (unsigned long)inode_item, 6085 sizeof(*inode_item)); 6086 fill_inode_item(trans, path->nodes[0], inode_item, inode); 6087 6088 if (name) { 6089 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1, 6090 struct btrfs_inode_ref); 6091 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len); 6092 btrfs_set_inode_ref_index(path->nodes[0], ref, *index); 6093 ptr = (unsigned long)(ref + 1); 6094 write_extent_buffer(path->nodes[0], name, ptr, name_len); 6095 } 6096 6097 btrfs_mark_buffer_dirty(path->nodes[0]); 6098 btrfs_free_path(path); 6099 6100 btrfs_inherit_iflags(inode, dir); 6101 6102 if (S_ISREG(mode)) { 6103 if (btrfs_test_opt(root, NODATASUM)) 6104 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; 6105 if (btrfs_test_opt(root, NODATACOW)) 6106 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW | 6107 BTRFS_INODE_NODATASUM; 6108 } 6109 6110 inode_tree_add(inode); 6111 6112 trace_btrfs_inode_new(inode); 6113 btrfs_set_inode_last_trans(trans, inode); 6114 6115 btrfs_update_root_times(trans, root); 6116 6117 ret = btrfs_inode_inherit_props(trans, inode, dir); 6118 if (ret) 6119 btrfs_err(root->fs_info, 6120 "error inheriting props for ino %llu (root %llu): %d", 6121 btrfs_ino(inode), root->root_key.objectid, ret); 6122 6123 return inode; 6124 6125 fail_unlock: 6126 unlock_new_inode(inode); 6127 fail: 6128 if (dir && name) 6129 BTRFS_I(dir)->index_cnt--; 6130 btrfs_free_path(path); 6131 iput(inode); 6132 return ERR_PTR(ret); 6133 } 6134 6135 static inline u8 btrfs_inode_type(struct inode *inode) 6136 { 6137 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT]; 6138 } 6139 6140 /* 6141 * utility function to add 'inode' into 'parent_inode' with 6142 * a give name and a given sequence number. 6143 * if 'add_backref' is true, also insert a backref from the 6144 * inode to the parent directory. 6145 */ 6146 int btrfs_add_link(struct btrfs_trans_handle *trans, 6147 struct inode *parent_inode, struct inode *inode, 6148 const char *name, int name_len, int add_backref, u64 index) 6149 { 6150 int ret = 0; 6151 struct btrfs_key key; 6152 struct btrfs_root *root = BTRFS_I(parent_inode)->root; 6153 u64 ino = btrfs_ino(inode); 6154 u64 parent_ino = btrfs_ino(parent_inode); 6155 6156 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6157 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key)); 6158 } else { 6159 key.objectid = ino; 6160 key.type = BTRFS_INODE_ITEM_KEY; 6161 key.offset = 0; 6162 } 6163 6164 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6165 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root, 6166 key.objectid, root->root_key.objectid, 6167 parent_ino, index, name, name_len); 6168 } else if (add_backref) { 6169 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino, 6170 parent_ino, index); 6171 } 6172 6173 /* Nothing to clean up yet */ 6174 if (ret) 6175 return ret; 6176 6177 ret = btrfs_insert_dir_item(trans, root, name, name_len, 6178 parent_inode, &key, 6179 btrfs_inode_type(inode), index); 6180 if (ret == -EEXIST || ret == -EOVERFLOW) 6181 goto fail_dir_item; 6182 else if (ret) { 6183 btrfs_abort_transaction(trans, root, ret); 6184 return ret; 6185 } 6186 6187 btrfs_i_size_write(parent_inode, parent_inode->i_size + 6188 name_len * 2); 6189 inode_inc_iversion(parent_inode); 6190 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME; 6191 ret = btrfs_update_inode(trans, root, parent_inode); 6192 if (ret) 6193 btrfs_abort_transaction(trans, root, ret); 6194 return ret; 6195 6196 fail_dir_item: 6197 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6198 u64 local_index; 6199 int err; 6200 err = btrfs_del_root_ref(trans, root->fs_info->tree_root, 6201 key.objectid, root->root_key.objectid, 6202 parent_ino, &local_index, name, name_len); 6203 6204 } else if (add_backref) { 6205 u64 local_index; 6206 int err; 6207 6208 err = btrfs_del_inode_ref(trans, root, name, name_len, 6209 ino, parent_ino, &local_index); 6210 } 6211 return ret; 6212 } 6213 6214 static int btrfs_add_nondir(struct btrfs_trans_handle *trans, 6215 struct inode *dir, struct dentry *dentry, 6216 struct inode *inode, int backref, u64 index) 6217 { 6218 int err = btrfs_add_link(trans, dir, inode, 6219 dentry->d_name.name, dentry->d_name.len, 6220 backref, index); 6221 if (err > 0) 6222 err = -EEXIST; 6223 return err; 6224 } 6225 6226 static int btrfs_mknod(struct inode *dir, struct dentry *dentry, 6227 umode_t mode, dev_t rdev) 6228 { 6229 struct btrfs_trans_handle *trans; 6230 struct btrfs_root *root = BTRFS_I(dir)->root; 6231 struct inode *inode = NULL; 6232 int err; 6233 int drop_inode = 0; 6234 u64 objectid; 6235 u64 index = 0; 6236 6237 if (!new_valid_dev(rdev)) 6238 return -EINVAL; 6239 6240 /* 6241 * 2 for inode item and ref 6242 * 2 for dir items 6243 * 1 for xattr if selinux is on 6244 */ 6245 trans = btrfs_start_transaction(root, 5); 6246 if (IS_ERR(trans)) 6247 return PTR_ERR(trans); 6248 6249 err = btrfs_find_free_ino(root, &objectid); 6250 if (err) 6251 goto out_unlock; 6252 6253 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 6254 dentry->d_name.len, btrfs_ino(dir), objectid, 6255 mode, &index); 6256 if (IS_ERR(inode)) { 6257 err = PTR_ERR(inode); 6258 goto out_unlock; 6259 } 6260 6261 /* 6262 * If the active LSM wants to access the inode during 6263 * d_instantiate it needs these. Smack checks to see 6264 * if the filesystem supports xattrs by looking at the 6265 * ops vector. 6266 */ 6267 inode->i_op = &btrfs_special_inode_operations; 6268 init_special_inode(inode, inode->i_mode, rdev); 6269 6270 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 6271 if (err) 6272 goto out_unlock_inode; 6273 6274 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index); 6275 if (err) { 6276 goto out_unlock_inode; 6277 } else { 6278 btrfs_update_inode(trans, root, inode); 6279 unlock_new_inode(inode); 6280 d_instantiate(dentry, inode); 6281 } 6282 6283 out_unlock: 6284 btrfs_end_transaction(trans, root); 6285 btrfs_balance_delayed_items(root); 6286 btrfs_btree_balance_dirty(root); 6287 if (drop_inode) { 6288 inode_dec_link_count(inode); 6289 iput(inode); 6290 } 6291 return err; 6292 6293 out_unlock_inode: 6294 drop_inode = 1; 6295 unlock_new_inode(inode); 6296 goto out_unlock; 6297 6298 } 6299 6300 static int btrfs_create(struct inode *dir, struct dentry *dentry, 6301 umode_t mode, bool excl) 6302 { 6303 struct btrfs_trans_handle *trans; 6304 struct btrfs_root *root = BTRFS_I(dir)->root; 6305 struct inode *inode = NULL; 6306 int drop_inode_on_err = 0; 6307 int err; 6308 u64 objectid; 6309 u64 index = 0; 6310 6311 /* 6312 * 2 for inode item and ref 6313 * 2 for dir items 6314 * 1 for xattr if selinux is on 6315 */ 6316 trans = btrfs_start_transaction(root, 5); 6317 if (IS_ERR(trans)) 6318 return PTR_ERR(trans); 6319 6320 err = btrfs_find_free_ino(root, &objectid); 6321 if (err) 6322 goto out_unlock; 6323 6324 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 6325 dentry->d_name.len, btrfs_ino(dir), objectid, 6326 mode, &index); 6327 if (IS_ERR(inode)) { 6328 err = PTR_ERR(inode); 6329 goto out_unlock; 6330 } 6331 drop_inode_on_err = 1; 6332 /* 6333 * If the active LSM wants to access the inode during 6334 * d_instantiate it needs these. Smack checks to see 6335 * if the filesystem supports xattrs by looking at the 6336 * ops vector. 6337 */ 6338 inode->i_fop = &btrfs_file_operations; 6339 inode->i_op = &btrfs_file_inode_operations; 6340 inode->i_mapping->a_ops = &btrfs_aops; 6341 6342 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 6343 if (err) 6344 goto out_unlock_inode; 6345 6346 err = btrfs_update_inode(trans, root, inode); 6347 if (err) 6348 goto out_unlock_inode; 6349 6350 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index); 6351 if (err) 6352 goto out_unlock_inode; 6353 6354 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 6355 unlock_new_inode(inode); 6356 d_instantiate(dentry, inode); 6357 6358 out_unlock: 6359 btrfs_end_transaction(trans, root); 6360 if (err && drop_inode_on_err) { 6361 inode_dec_link_count(inode); 6362 iput(inode); 6363 } 6364 btrfs_balance_delayed_items(root); 6365 btrfs_btree_balance_dirty(root); 6366 return err; 6367 6368 out_unlock_inode: 6369 unlock_new_inode(inode); 6370 goto out_unlock; 6371 6372 } 6373 6374 static int btrfs_link(struct dentry *old_dentry, struct inode *dir, 6375 struct dentry *dentry) 6376 { 6377 struct btrfs_trans_handle *trans; 6378 struct btrfs_root *root = BTRFS_I(dir)->root; 6379 struct inode *inode = d_inode(old_dentry); 6380 u64 index; 6381 int err; 6382 int drop_inode = 0; 6383 6384 /* do not allow sys_link's with other subvols of the same device */ 6385 if (root->objectid != BTRFS_I(inode)->root->objectid) 6386 return -EXDEV; 6387 6388 if (inode->i_nlink >= BTRFS_LINK_MAX) 6389 return -EMLINK; 6390 6391 err = btrfs_set_inode_index(dir, &index); 6392 if (err) 6393 goto fail; 6394 6395 /* 6396 * 2 items for inode and inode ref 6397 * 2 items for dir items 6398 * 1 item for parent inode 6399 */ 6400 trans = btrfs_start_transaction(root, 5); 6401 if (IS_ERR(trans)) { 6402 err = PTR_ERR(trans); 6403 goto fail; 6404 } 6405 6406 /* There are several dir indexes for this inode, clear the cache. */ 6407 BTRFS_I(inode)->dir_index = 0ULL; 6408 inc_nlink(inode); 6409 inode_inc_iversion(inode); 6410 inode->i_ctime = CURRENT_TIME; 6411 ihold(inode); 6412 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags); 6413 6414 err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index); 6415 6416 if (err) { 6417 drop_inode = 1; 6418 } else { 6419 struct dentry *parent = dentry->d_parent; 6420 err = btrfs_update_inode(trans, root, inode); 6421 if (err) 6422 goto fail; 6423 if (inode->i_nlink == 1) { 6424 /* 6425 * If new hard link count is 1, it's a file created 6426 * with open(2) O_TMPFILE flag. 6427 */ 6428 err = btrfs_orphan_del(trans, inode); 6429 if (err) 6430 goto fail; 6431 } 6432 d_instantiate(dentry, inode); 6433 btrfs_log_new_name(trans, inode, NULL, parent); 6434 } 6435 6436 btrfs_end_transaction(trans, root); 6437 btrfs_balance_delayed_items(root); 6438 fail: 6439 if (drop_inode) { 6440 inode_dec_link_count(inode); 6441 iput(inode); 6442 } 6443 btrfs_btree_balance_dirty(root); 6444 return err; 6445 } 6446 6447 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 6448 { 6449 struct inode *inode = NULL; 6450 struct btrfs_trans_handle *trans; 6451 struct btrfs_root *root = BTRFS_I(dir)->root; 6452 int err = 0; 6453 int drop_on_err = 0; 6454 u64 objectid = 0; 6455 u64 index = 0; 6456 6457 /* 6458 * 2 items for inode and ref 6459 * 2 items for dir items 6460 * 1 for xattr if selinux is on 6461 */ 6462 trans = btrfs_start_transaction(root, 5); 6463 if (IS_ERR(trans)) 6464 return PTR_ERR(trans); 6465 6466 err = btrfs_find_free_ino(root, &objectid); 6467 if (err) 6468 goto out_fail; 6469 6470 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 6471 dentry->d_name.len, btrfs_ino(dir), objectid, 6472 S_IFDIR | mode, &index); 6473 if (IS_ERR(inode)) { 6474 err = PTR_ERR(inode); 6475 goto out_fail; 6476 } 6477 6478 drop_on_err = 1; 6479 /* these must be set before we unlock the inode */ 6480 inode->i_op = &btrfs_dir_inode_operations; 6481 inode->i_fop = &btrfs_dir_file_operations; 6482 6483 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 6484 if (err) 6485 goto out_fail_inode; 6486 6487 btrfs_i_size_write(inode, 0); 6488 err = btrfs_update_inode(trans, root, inode); 6489 if (err) 6490 goto out_fail_inode; 6491 6492 err = btrfs_add_link(trans, dir, inode, dentry->d_name.name, 6493 dentry->d_name.len, 0, index); 6494 if (err) 6495 goto out_fail_inode; 6496 6497 d_instantiate(dentry, inode); 6498 /* 6499 * mkdir is special. We're unlocking after we call d_instantiate 6500 * to avoid a race with nfsd calling d_instantiate. 6501 */ 6502 unlock_new_inode(inode); 6503 drop_on_err = 0; 6504 6505 out_fail: 6506 btrfs_end_transaction(trans, root); 6507 if (drop_on_err) { 6508 inode_dec_link_count(inode); 6509 iput(inode); 6510 } 6511 btrfs_balance_delayed_items(root); 6512 btrfs_btree_balance_dirty(root); 6513 return err; 6514 6515 out_fail_inode: 6516 unlock_new_inode(inode); 6517 goto out_fail; 6518 } 6519 6520 /* Find next extent map of a given extent map, caller needs to ensure locks */ 6521 static struct extent_map *next_extent_map(struct extent_map *em) 6522 { 6523 struct rb_node *next; 6524 6525 next = rb_next(&em->rb_node); 6526 if (!next) 6527 return NULL; 6528 return container_of(next, struct extent_map, rb_node); 6529 } 6530 6531 static struct extent_map *prev_extent_map(struct extent_map *em) 6532 { 6533 struct rb_node *prev; 6534 6535 prev = rb_prev(&em->rb_node); 6536 if (!prev) 6537 return NULL; 6538 return container_of(prev, struct extent_map, rb_node); 6539 } 6540 6541 /* helper for btfs_get_extent. Given an existing extent in the tree, 6542 * the existing extent is the nearest extent to map_start, 6543 * and an extent that you want to insert, deal with overlap and insert 6544 * the best fitted new extent into the tree. 6545 */ 6546 static int merge_extent_mapping(struct extent_map_tree *em_tree, 6547 struct extent_map *existing, 6548 struct extent_map *em, 6549 u64 map_start) 6550 { 6551 struct extent_map *prev; 6552 struct extent_map *next; 6553 u64 start; 6554 u64 end; 6555 u64 start_diff; 6556 6557 BUG_ON(map_start < em->start || map_start >= extent_map_end(em)); 6558 6559 if (existing->start > map_start) { 6560 next = existing; 6561 prev = prev_extent_map(next); 6562 } else { 6563 prev = existing; 6564 next = next_extent_map(prev); 6565 } 6566 6567 start = prev ? extent_map_end(prev) : em->start; 6568 start = max_t(u64, start, em->start); 6569 end = next ? next->start : extent_map_end(em); 6570 end = min_t(u64, end, extent_map_end(em)); 6571 start_diff = start - em->start; 6572 em->start = start; 6573 em->len = end - start; 6574 if (em->block_start < EXTENT_MAP_LAST_BYTE && 6575 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 6576 em->block_start += start_diff; 6577 em->block_len -= start_diff; 6578 } 6579 return add_extent_mapping(em_tree, em, 0); 6580 } 6581 6582 static noinline int uncompress_inline(struct btrfs_path *path, 6583 struct inode *inode, struct page *page, 6584 size_t pg_offset, u64 extent_offset, 6585 struct btrfs_file_extent_item *item) 6586 { 6587 int ret; 6588 struct extent_buffer *leaf = path->nodes[0]; 6589 char *tmp; 6590 size_t max_size; 6591 unsigned long inline_size; 6592 unsigned long ptr; 6593 int compress_type; 6594 6595 WARN_ON(pg_offset != 0); 6596 compress_type = btrfs_file_extent_compression(leaf, item); 6597 max_size = btrfs_file_extent_ram_bytes(leaf, item); 6598 inline_size = btrfs_file_extent_inline_item_len(leaf, 6599 btrfs_item_nr(path->slots[0])); 6600 tmp = kmalloc(inline_size, GFP_NOFS); 6601 if (!tmp) 6602 return -ENOMEM; 6603 ptr = btrfs_file_extent_inline_start(item); 6604 6605 read_extent_buffer(leaf, tmp, ptr, inline_size); 6606 6607 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size); 6608 ret = btrfs_decompress(compress_type, tmp, page, 6609 extent_offset, inline_size, max_size); 6610 kfree(tmp); 6611 return ret; 6612 } 6613 6614 /* 6615 * a bit scary, this does extent mapping from logical file offset to the disk. 6616 * the ugly parts come from merging extents from the disk with the in-ram 6617 * representation. This gets more complex because of the data=ordered code, 6618 * where the in-ram extents might be locked pending data=ordered completion. 6619 * 6620 * This also copies inline extents directly into the page. 6621 */ 6622 6623 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page, 6624 size_t pg_offset, u64 start, u64 len, 6625 int create) 6626 { 6627 int ret; 6628 int err = 0; 6629 u64 extent_start = 0; 6630 u64 extent_end = 0; 6631 u64 objectid = btrfs_ino(inode); 6632 u32 found_type; 6633 struct btrfs_path *path = NULL; 6634 struct btrfs_root *root = BTRFS_I(inode)->root; 6635 struct btrfs_file_extent_item *item; 6636 struct extent_buffer *leaf; 6637 struct btrfs_key found_key; 6638 struct extent_map *em = NULL; 6639 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 6640 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 6641 struct btrfs_trans_handle *trans = NULL; 6642 const bool new_inline = !page || create; 6643 6644 again: 6645 read_lock(&em_tree->lock); 6646 em = lookup_extent_mapping(em_tree, start, len); 6647 if (em) 6648 em->bdev = root->fs_info->fs_devices->latest_bdev; 6649 read_unlock(&em_tree->lock); 6650 6651 if (em) { 6652 if (em->start > start || em->start + em->len <= start) 6653 free_extent_map(em); 6654 else if (em->block_start == EXTENT_MAP_INLINE && page) 6655 free_extent_map(em); 6656 else 6657 goto out; 6658 } 6659 em = alloc_extent_map(); 6660 if (!em) { 6661 err = -ENOMEM; 6662 goto out; 6663 } 6664 em->bdev = root->fs_info->fs_devices->latest_bdev; 6665 em->start = EXTENT_MAP_HOLE; 6666 em->orig_start = EXTENT_MAP_HOLE; 6667 em->len = (u64)-1; 6668 em->block_len = (u64)-1; 6669 6670 if (!path) { 6671 path = btrfs_alloc_path(); 6672 if (!path) { 6673 err = -ENOMEM; 6674 goto out; 6675 } 6676 /* 6677 * Chances are we'll be called again, so go ahead and do 6678 * readahead 6679 */ 6680 path->reada = 1; 6681 } 6682 6683 ret = btrfs_lookup_file_extent(trans, root, path, 6684 objectid, start, trans != NULL); 6685 if (ret < 0) { 6686 err = ret; 6687 goto out; 6688 } 6689 6690 if (ret != 0) { 6691 if (path->slots[0] == 0) 6692 goto not_found; 6693 path->slots[0]--; 6694 } 6695 6696 leaf = path->nodes[0]; 6697 item = btrfs_item_ptr(leaf, path->slots[0], 6698 struct btrfs_file_extent_item); 6699 /* are we inside the extent that was found? */ 6700 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6701 found_type = found_key.type; 6702 if (found_key.objectid != objectid || 6703 found_type != BTRFS_EXTENT_DATA_KEY) { 6704 /* 6705 * If we backup past the first extent we want to move forward 6706 * and see if there is an extent in front of us, otherwise we'll 6707 * say there is a hole for our whole search range which can 6708 * cause problems. 6709 */ 6710 extent_end = start; 6711 goto next; 6712 } 6713 6714 found_type = btrfs_file_extent_type(leaf, item); 6715 extent_start = found_key.offset; 6716 if (found_type == BTRFS_FILE_EXTENT_REG || 6717 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 6718 extent_end = extent_start + 6719 btrfs_file_extent_num_bytes(leaf, item); 6720 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 6721 size_t size; 6722 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item); 6723 extent_end = ALIGN(extent_start + size, root->sectorsize); 6724 } 6725 next: 6726 if (start >= extent_end) { 6727 path->slots[0]++; 6728 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 6729 ret = btrfs_next_leaf(root, path); 6730 if (ret < 0) { 6731 err = ret; 6732 goto out; 6733 } 6734 if (ret > 0) 6735 goto not_found; 6736 leaf = path->nodes[0]; 6737 } 6738 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6739 if (found_key.objectid != objectid || 6740 found_key.type != BTRFS_EXTENT_DATA_KEY) 6741 goto not_found; 6742 if (start + len <= found_key.offset) 6743 goto not_found; 6744 if (start > found_key.offset) 6745 goto next; 6746 em->start = start; 6747 em->orig_start = start; 6748 em->len = found_key.offset - start; 6749 goto not_found_em; 6750 } 6751 6752 btrfs_extent_item_to_extent_map(inode, path, item, new_inline, em); 6753 6754 if (found_type == BTRFS_FILE_EXTENT_REG || 6755 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 6756 goto insert; 6757 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 6758 unsigned long ptr; 6759 char *map; 6760 size_t size; 6761 size_t extent_offset; 6762 size_t copy_size; 6763 6764 if (new_inline) 6765 goto out; 6766 6767 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item); 6768 extent_offset = page_offset(page) + pg_offset - extent_start; 6769 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset, 6770 size - extent_offset); 6771 em->start = extent_start + extent_offset; 6772 em->len = ALIGN(copy_size, root->sectorsize); 6773 em->orig_block_len = em->len; 6774 em->orig_start = em->start; 6775 ptr = btrfs_file_extent_inline_start(item) + extent_offset; 6776 if (create == 0 && !PageUptodate(page)) { 6777 if (btrfs_file_extent_compression(leaf, item) != 6778 BTRFS_COMPRESS_NONE) { 6779 ret = uncompress_inline(path, inode, page, 6780 pg_offset, 6781 extent_offset, item); 6782 if (ret) { 6783 err = ret; 6784 goto out; 6785 } 6786 } else { 6787 map = kmap(page); 6788 read_extent_buffer(leaf, map + pg_offset, ptr, 6789 copy_size); 6790 if (pg_offset + copy_size < PAGE_CACHE_SIZE) { 6791 memset(map + pg_offset + copy_size, 0, 6792 PAGE_CACHE_SIZE - pg_offset - 6793 copy_size); 6794 } 6795 kunmap(page); 6796 } 6797 flush_dcache_page(page); 6798 } else if (create && PageUptodate(page)) { 6799 BUG(); 6800 if (!trans) { 6801 kunmap(page); 6802 free_extent_map(em); 6803 em = NULL; 6804 6805 btrfs_release_path(path); 6806 trans = btrfs_join_transaction(root); 6807 6808 if (IS_ERR(trans)) 6809 return ERR_CAST(trans); 6810 goto again; 6811 } 6812 map = kmap(page); 6813 write_extent_buffer(leaf, map + pg_offset, ptr, 6814 copy_size); 6815 kunmap(page); 6816 btrfs_mark_buffer_dirty(leaf); 6817 } 6818 set_extent_uptodate(io_tree, em->start, 6819 extent_map_end(em) - 1, NULL, GFP_NOFS); 6820 goto insert; 6821 } 6822 not_found: 6823 em->start = start; 6824 em->orig_start = start; 6825 em->len = len; 6826 not_found_em: 6827 em->block_start = EXTENT_MAP_HOLE; 6828 set_bit(EXTENT_FLAG_VACANCY, &em->flags); 6829 insert: 6830 btrfs_release_path(path); 6831 if (em->start > start || extent_map_end(em) <= start) { 6832 btrfs_err(root->fs_info, "bad extent! em: [%llu %llu] passed [%llu %llu]", 6833 em->start, em->len, start, len); 6834 err = -EIO; 6835 goto out; 6836 } 6837 6838 err = 0; 6839 write_lock(&em_tree->lock); 6840 ret = add_extent_mapping(em_tree, em, 0); 6841 /* it is possible that someone inserted the extent into the tree 6842 * while we had the lock dropped. It is also possible that 6843 * an overlapping map exists in the tree 6844 */ 6845 if (ret == -EEXIST) { 6846 struct extent_map *existing; 6847 6848 ret = 0; 6849 6850 existing = search_extent_mapping(em_tree, start, len); 6851 /* 6852 * existing will always be non-NULL, since there must be 6853 * extent causing the -EEXIST. 6854 */ 6855 if (start >= extent_map_end(existing) || 6856 start <= existing->start) { 6857 /* 6858 * The existing extent map is the one nearest to 6859 * the [start, start + len) range which overlaps 6860 */ 6861 err = merge_extent_mapping(em_tree, existing, 6862 em, start); 6863 free_extent_map(existing); 6864 if (err) { 6865 free_extent_map(em); 6866 em = NULL; 6867 } 6868 } else { 6869 free_extent_map(em); 6870 em = existing; 6871 err = 0; 6872 } 6873 } 6874 write_unlock(&em_tree->lock); 6875 out: 6876 6877 trace_btrfs_get_extent(root, em); 6878 6879 if (path) 6880 btrfs_free_path(path); 6881 if (trans) { 6882 ret = btrfs_end_transaction(trans, root); 6883 if (!err) 6884 err = ret; 6885 } 6886 if (err) { 6887 free_extent_map(em); 6888 return ERR_PTR(err); 6889 } 6890 BUG_ON(!em); /* Error is always set */ 6891 return em; 6892 } 6893 6894 struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page, 6895 size_t pg_offset, u64 start, u64 len, 6896 int create) 6897 { 6898 struct extent_map *em; 6899 struct extent_map *hole_em = NULL; 6900 u64 range_start = start; 6901 u64 end; 6902 u64 found; 6903 u64 found_end; 6904 int err = 0; 6905 6906 em = btrfs_get_extent(inode, page, pg_offset, start, len, create); 6907 if (IS_ERR(em)) 6908 return em; 6909 if (em) { 6910 /* 6911 * if our em maps to 6912 * - a hole or 6913 * - a pre-alloc extent, 6914 * there might actually be delalloc bytes behind it. 6915 */ 6916 if (em->block_start != EXTENT_MAP_HOLE && 6917 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 6918 return em; 6919 else 6920 hole_em = em; 6921 } 6922 6923 /* check to see if we've wrapped (len == -1 or similar) */ 6924 end = start + len; 6925 if (end < start) 6926 end = (u64)-1; 6927 else 6928 end -= 1; 6929 6930 em = NULL; 6931 6932 /* ok, we didn't find anything, lets look for delalloc */ 6933 found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start, 6934 end, len, EXTENT_DELALLOC, 1); 6935 found_end = range_start + found; 6936 if (found_end < range_start) 6937 found_end = (u64)-1; 6938 6939 /* 6940 * we didn't find anything useful, return 6941 * the original results from get_extent() 6942 */ 6943 if (range_start > end || found_end <= start) { 6944 em = hole_em; 6945 hole_em = NULL; 6946 goto out; 6947 } 6948 6949 /* adjust the range_start to make sure it doesn't 6950 * go backwards from the start they passed in 6951 */ 6952 range_start = max(start, range_start); 6953 found = found_end - range_start; 6954 6955 if (found > 0) { 6956 u64 hole_start = start; 6957 u64 hole_len = len; 6958 6959 em = alloc_extent_map(); 6960 if (!em) { 6961 err = -ENOMEM; 6962 goto out; 6963 } 6964 /* 6965 * when btrfs_get_extent can't find anything it 6966 * returns one huge hole 6967 * 6968 * make sure what it found really fits our range, and 6969 * adjust to make sure it is based on the start from 6970 * the caller 6971 */ 6972 if (hole_em) { 6973 u64 calc_end = extent_map_end(hole_em); 6974 6975 if (calc_end <= start || (hole_em->start > end)) { 6976 free_extent_map(hole_em); 6977 hole_em = NULL; 6978 } else { 6979 hole_start = max(hole_em->start, start); 6980 hole_len = calc_end - hole_start; 6981 } 6982 } 6983 em->bdev = NULL; 6984 if (hole_em && range_start > hole_start) { 6985 /* our hole starts before our delalloc, so we 6986 * have to return just the parts of the hole 6987 * that go until the delalloc starts 6988 */ 6989 em->len = min(hole_len, 6990 range_start - hole_start); 6991 em->start = hole_start; 6992 em->orig_start = hole_start; 6993 /* 6994 * don't adjust block start at all, 6995 * it is fixed at EXTENT_MAP_HOLE 6996 */ 6997 em->block_start = hole_em->block_start; 6998 em->block_len = hole_len; 6999 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags)) 7000 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 7001 } else { 7002 em->start = range_start; 7003 em->len = found; 7004 em->orig_start = range_start; 7005 em->block_start = EXTENT_MAP_DELALLOC; 7006 em->block_len = found; 7007 } 7008 } else if (hole_em) { 7009 return hole_em; 7010 } 7011 out: 7012 7013 free_extent_map(hole_em); 7014 if (err) { 7015 free_extent_map(em); 7016 return ERR_PTR(err); 7017 } 7018 return em; 7019 } 7020 7021 static struct extent_map *btrfs_new_extent_direct(struct inode *inode, 7022 u64 start, u64 len) 7023 { 7024 struct btrfs_root *root = BTRFS_I(inode)->root; 7025 struct extent_map *em; 7026 struct btrfs_key ins; 7027 u64 alloc_hint; 7028 int ret; 7029 7030 alloc_hint = get_extent_allocation_hint(inode, start, len); 7031 ret = btrfs_reserve_extent(root, len, root->sectorsize, 0, 7032 alloc_hint, &ins, 1, 1); 7033 if (ret) 7034 return ERR_PTR(ret); 7035 7036 em = create_pinned_em(inode, start, ins.offset, start, ins.objectid, 7037 ins.offset, ins.offset, ins.offset, 0); 7038 if (IS_ERR(em)) { 7039 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1); 7040 return em; 7041 } 7042 7043 ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid, 7044 ins.offset, ins.offset, 0); 7045 if (ret) { 7046 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1); 7047 free_extent_map(em); 7048 return ERR_PTR(ret); 7049 } 7050 7051 return em; 7052 } 7053 7054 /* 7055 * returns 1 when the nocow is safe, < 1 on error, 0 if the 7056 * block must be cow'd 7057 */ 7058 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len, 7059 u64 *orig_start, u64 *orig_block_len, 7060 u64 *ram_bytes) 7061 { 7062 struct btrfs_trans_handle *trans; 7063 struct btrfs_path *path; 7064 int ret; 7065 struct extent_buffer *leaf; 7066 struct btrfs_root *root = BTRFS_I(inode)->root; 7067 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 7068 struct btrfs_file_extent_item *fi; 7069 struct btrfs_key key; 7070 u64 disk_bytenr; 7071 u64 backref_offset; 7072 u64 extent_end; 7073 u64 num_bytes; 7074 int slot; 7075 int found_type; 7076 bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW); 7077 7078 path = btrfs_alloc_path(); 7079 if (!path) 7080 return -ENOMEM; 7081 7082 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), 7083 offset, 0); 7084 if (ret < 0) 7085 goto out; 7086 7087 slot = path->slots[0]; 7088 if (ret == 1) { 7089 if (slot == 0) { 7090 /* can't find the item, must cow */ 7091 ret = 0; 7092 goto out; 7093 } 7094 slot--; 7095 } 7096 ret = 0; 7097 leaf = path->nodes[0]; 7098 btrfs_item_key_to_cpu(leaf, &key, slot); 7099 if (key.objectid != btrfs_ino(inode) || 7100 key.type != BTRFS_EXTENT_DATA_KEY) { 7101 /* not our file or wrong item type, must cow */ 7102 goto out; 7103 } 7104 7105 if (key.offset > offset) { 7106 /* Wrong offset, must cow */ 7107 goto out; 7108 } 7109 7110 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 7111 found_type = btrfs_file_extent_type(leaf, fi); 7112 if (found_type != BTRFS_FILE_EXTENT_REG && 7113 found_type != BTRFS_FILE_EXTENT_PREALLOC) { 7114 /* not a regular extent, must cow */ 7115 goto out; 7116 } 7117 7118 if (!nocow && found_type == BTRFS_FILE_EXTENT_REG) 7119 goto out; 7120 7121 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 7122 if (extent_end <= offset) 7123 goto out; 7124 7125 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 7126 if (disk_bytenr == 0) 7127 goto out; 7128 7129 if (btrfs_file_extent_compression(leaf, fi) || 7130 btrfs_file_extent_encryption(leaf, fi) || 7131 btrfs_file_extent_other_encoding(leaf, fi)) 7132 goto out; 7133 7134 backref_offset = btrfs_file_extent_offset(leaf, fi); 7135 7136 if (orig_start) { 7137 *orig_start = key.offset - backref_offset; 7138 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi); 7139 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 7140 } 7141 7142 if (btrfs_extent_readonly(root, disk_bytenr)) 7143 goto out; 7144 7145 num_bytes = min(offset + *len, extent_end) - offset; 7146 if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) { 7147 u64 range_end; 7148 7149 range_end = round_up(offset + num_bytes, root->sectorsize) - 1; 7150 ret = test_range_bit(io_tree, offset, range_end, 7151 EXTENT_DELALLOC, 0, NULL); 7152 if (ret) { 7153 ret = -EAGAIN; 7154 goto out; 7155 } 7156 } 7157 7158 btrfs_release_path(path); 7159 7160 /* 7161 * look for other files referencing this extent, if we 7162 * find any we must cow 7163 */ 7164 trans = btrfs_join_transaction(root); 7165 if (IS_ERR(trans)) { 7166 ret = 0; 7167 goto out; 7168 } 7169 7170 ret = btrfs_cross_ref_exist(trans, root, btrfs_ino(inode), 7171 key.offset - backref_offset, disk_bytenr); 7172 btrfs_end_transaction(trans, root); 7173 if (ret) { 7174 ret = 0; 7175 goto out; 7176 } 7177 7178 /* 7179 * adjust disk_bytenr and num_bytes to cover just the bytes 7180 * in this extent we are about to write. If there 7181 * are any csums in that range we have to cow in order 7182 * to keep the csums correct 7183 */ 7184 disk_bytenr += backref_offset; 7185 disk_bytenr += offset - key.offset; 7186 if (csum_exist_in_range(root, disk_bytenr, num_bytes)) 7187 goto out; 7188 /* 7189 * all of the above have passed, it is safe to overwrite this extent 7190 * without cow 7191 */ 7192 *len = num_bytes; 7193 ret = 1; 7194 out: 7195 btrfs_free_path(path); 7196 return ret; 7197 } 7198 7199 bool btrfs_page_exists_in_range(struct inode *inode, loff_t start, loff_t end) 7200 { 7201 struct radix_tree_root *root = &inode->i_mapping->page_tree; 7202 int found = false; 7203 void **pagep = NULL; 7204 struct page *page = NULL; 7205 int start_idx; 7206 int end_idx; 7207 7208 start_idx = start >> PAGE_CACHE_SHIFT; 7209 7210 /* 7211 * end is the last byte in the last page. end == start is legal 7212 */ 7213 end_idx = end >> PAGE_CACHE_SHIFT; 7214 7215 rcu_read_lock(); 7216 7217 /* Most of the code in this while loop is lifted from 7218 * find_get_page. It's been modified to begin searching from a 7219 * page and return just the first page found in that range. If the 7220 * found idx is less than or equal to the end idx then we know that 7221 * a page exists. If no pages are found or if those pages are 7222 * outside of the range then we're fine (yay!) */ 7223 while (page == NULL && 7224 radix_tree_gang_lookup_slot(root, &pagep, NULL, start_idx, 1)) { 7225 page = radix_tree_deref_slot(pagep); 7226 if (unlikely(!page)) 7227 break; 7228 7229 if (radix_tree_exception(page)) { 7230 if (radix_tree_deref_retry(page)) { 7231 page = NULL; 7232 continue; 7233 } 7234 /* 7235 * Otherwise, shmem/tmpfs must be storing a swap entry 7236 * here as an exceptional entry: so return it without 7237 * attempting to raise page count. 7238 */ 7239 page = NULL; 7240 break; /* TODO: Is this relevant for this use case? */ 7241 } 7242 7243 if (!page_cache_get_speculative(page)) { 7244 page = NULL; 7245 continue; 7246 } 7247 7248 /* 7249 * Has the page moved? 7250 * This is part of the lockless pagecache protocol. See 7251 * include/linux/pagemap.h for details. 7252 */ 7253 if (unlikely(page != *pagep)) { 7254 page_cache_release(page); 7255 page = NULL; 7256 } 7257 } 7258 7259 if (page) { 7260 if (page->index <= end_idx) 7261 found = true; 7262 page_cache_release(page); 7263 } 7264 7265 rcu_read_unlock(); 7266 return found; 7267 } 7268 7269 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend, 7270 struct extent_state **cached_state, int writing) 7271 { 7272 struct btrfs_ordered_extent *ordered; 7273 int ret = 0; 7274 7275 while (1) { 7276 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7277 0, cached_state); 7278 /* 7279 * We're concerned with the entire range that we're going to be 7280 * doing DIO to, so we need to make sure theres no ordered 7281 * extents in this range. 7282 */ 7283 ordered = btrfs_lookup_ordered_range(inode, lockstart, 7284 lockend - lockstart + 1); 7285 7286 /* 7287 * We need to make sure there are no buffered pages in this 7288 * range either, we could have raced between the invalidate in 7289 * generic_file_direct_write and locking the extent. The 7290 * invalidate needs to happen so that reads after a write do not 7291 * get stale data. 7292 */ 7293 if (!ordered && 7294 (!writing || 7295 !btrfs_page_exists_in_range(inode, lockstart, lockend))) 7296 break; 7297 7298 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7299 cached_state, GFP_NOFS); 7300 7301 if (ordered) { 7302 btrfs_start_ordered_extent(inode, ordered, 1); 7303 btrfs_put_ordered_extent(ordered); 7304 } else { 7305 /* Screw you mmap */ 7306 ret = btrfs_fdatawrite_range(inode, lockstart, lockend); 7307 if (ret) 7308 break; 7309 ret = filemap_fdatawait_range(inode->i_mapping, 7310 lockstart, 7311 lockend); 7312 if (ret) 7313 break; 7314 7315 /* 7316 * If we found a page that couldn't be invalidated just 7317 * fall back to buffered. 7318 */ 7319 ret = invalidate_inode_pages2_range(inode->i_mapping, 7320 lockstart >> PAGE_CACHE_SHIFT, 7321 lockend >> PAGE_CACHE_SHIFT); 7322 if (ret) 7323 break; 7324 } 7325 7326 cond_resched(); 7327 } 7328 7329 return ret; 7330 } 7331 7332 static struct extent_map *create_pinned_em(struct inode *inode, u64 start, 7333 u64 len, u64 orig_start, 7334 u64 block_start, u64 block_len, 7335 u64 orig_block_len, u64 ram_bytes, 7336 int type) 7337 { 7338 struct extent_map_tree *em_tree; 7339 struct extent_map *em; 7340 struct btrfs_root *root = BTRFS_I(inode)->root; 7341 int ret; 7342 7343 em_tree = &BTRFS_I(inode)->extent_tree; 7344 em = alloc_extent_map(); 7345 if (!em) 7346 return ERR_PTR(-ENOMEM); 7347 7348 em->start = start; 7349 em->orig_start = orig_start; 7350 em->mod_start = start; 7351 em->mod_len = len; 7352 em->len = len; 7353 em->block_len = block_len; 7354 em->block_start = block_start; 7355 em->bdev = root->fs_info->fs_devices->latest_bdev; 7356 em->orig_block_len = orig_block_len; 7357 em->ram_bytes = ram_bytes; 7358 em->generation = -1; 7359 set_bit(EXTENT_FLAG_PINNED, &em->flags); 7360 if (type == BTRFS_ORDERED_PREALLOC) 7361 set_bit(EXTENT_FLAG_FILLING, &em->flags); 7362 7363 do { 7364 btrfs_drop_extent_cache(inode, em->start, 7365 em->start + em->len - 1, 0); 7366 write_lock(&em_tree->lock); 7367 ret = add_extent_mapping(em_tree, em, 1); 7368 write_unlock(&em_tree->lock); 7369 } while (ret == -EEXIST); 7370 7371 if (ret) { 7372 free_extent_map(em); 7373 return ERR_PTR(ret); 7374 } 7375 7376 return em; 7377 } 7378 7379 7380 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock, 7381 struct buffer_head *bh_result, int create) 7382 { 7383 struct extent_map *em; 7384 struct btrfs_root *root = BTRFS_I(inode)->root; 7385 struct extent_state *cached_state = NULL; 7386 u64 start = iblock << inode->i_blkbits; 7387 u64 lockstart, lockend; 7388 u64 len = bh_result->b_size; 7389 u64 *outstanding_extents = NULL; 7390 int unlock_bits = EXTENT_LOCKED; 7391 int ret = 0; 7392 7393 if (create) 7394 unlock_bits |= EXTENT_DIRTY; 7395 else 7396 len = min_t(u64, len, root->sectorsize); 7397 7398 lockstart = start; 7399 lockend = start + len - 1; 7400 7401 if (current->journal_info) { 7402 /* 7403 * Need to pull our outstanding extents and set journal_info to NULL so 7404 * that anything that needs to check if there's a transction doesn't get 7405 * confused. 7406 */ 7407 outstanding_extents = current->journal_info; 7408 current->journal_info = NULL; 7409 } 7410 7411 /* 7412 * If this errors out it's because we couldn't invalidate pagecache for 7413 * this range and we need to fallback to buffered. 7414 */ 7415 if (lock_extent_direct(inode, lockstart, lockend, &cached_state, create)) 7416 return -ENOTBLK; 7417 7418 em = btrfs_get_extent(inode, NULL, 0, start, len, 0); 7419 if (IS_ERR(em)) { 7420 ret = PTR_ERR(em); 7421 goto unlock_err; 7422 } 7423 7424 /* 7425 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered 7426 * io. INLINE is special, and we could probably kludge it in here, but 7427 * it's still buffered so for safety lets just fall back to the generic 7428 * buffered path. 7429 * 7430 * For COMPRESSED we _have_ to read the entire extent in so we can 7431 * decompress it, so there will be buffering required no matter what we 7432 * do, so go ahead and fallback to buffered. 7433 * 7434 * We return -ENOTBLK because thats what makes DIO go ahead and go back 7435 * to buffered IO. Don't blame me, this is the price we pay for using 7436 * the generic code. 7437 */ 7438 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) || 7439 em->block_start == EXTENT_MAP_INLINE) { 7440 free_extent_map(em); 7441 ret = -ENOTBLK; 7442 goto unlock_err; 7443 } 7444 7445 /* Just a good old fashioned hole, return */ 7446 if (!create && (em->block_start == EXTENT_MAP_HOLE || 7447 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) { 7448 free_extent_map(em); 7449 goto unlock_err; 7450 } 7451 7452 /* 7453 * We don't allocate a new extent in the following cases 7454 * 7455 * 1) The inode is marked as NODATACOW. In this case we'll just use the 7456 * existing extent. 7457 * 2) The extent is marked as PREALLOC. We're good to go here and can 7458 * just use the extent. 7459 * 7460 */ 7461 if (!create) { 7462 len = min(len, em->len - (start - em->start)); 7463 lockstart = start + len; 7464 goto unlock; 7465 } 7466 7467 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) || 7468 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) && 7469 em->block_start != EXTENT_MAP_HOLE)) { 7470 int type; 7471 u64 block_start, orig_start, orig_block_len, ram_bytes; 7472 7473 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 7474 type = BTRFS_ORDERED_PREALLOC; 7475 else 7476 type = BTRFS_ORDERED_NOCOW; 7477 len = min(len, em->len - (start - em->start)); 7478 block_start = em->block_start + (start - em->start); 7479 7480 if (can_nocow_extent(inode, start, &len, &orig_start, 7481 &orig_block_len, &ram_bytes) == 1) { 7482 if (type == BTRFS_ORDERED_PREALLOC) { 7483 free_extent_map(em); 7484 em = create_pinned_em(inode, start, len, 7485 orig_start, 7486 block_start, len, 7487 orig_block_len, 7488 ram_bytes, type); 7489 if (IS_ERR(em)) { 7490 ret = PTR_ERR(em); 7491 goto unlock_err; 7492 } 7493 } 7494 7495 ret = btrfs_add_ordered_extent_dio(inode, start, 7496 block_start, len, len, type); 7497 if (ret) { 7498 free_extent_map(em); 7499 goto unlock_err; 7500 } 7501 goto unlock; 7502 } 7503 } 7504 7505 /* 7506 * this will cow the extent, reset the len in case we changed 7507 * it above 7508 */ 7509 len = bh_result->b_size; 7510 free_extent_map(em); 7511 em = btrfs_new_extent_direct(inode, start, len); 7512 if (IS_ERR(em)) { 7513 ret = PTR_ERR(em); 7514 goto unlock_err; 7515 } 7516 len = min(len, em->len - (start - em->start)); 7517 unlock: 7518 bh_result->b_blocknr = (em->block_start + (start - em->start)) >> 7519 inode->i_blkbits; 7520 bh_result->b_size = len; 7521 bh_result->b_bdev = em->bdev; 7522 set_buffer_mapped(bh_result); 7523 if (create) { 7524 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 7525 set_buffer_new(bh_result); 7526 7527 /* 7528 * Need to update the i_size under the extent lock so buffered 7529 * readers will get the updated i_size when we unlock. 7530 */ 7531 if (start + len > i_size_read(inode)) 7532 i_size_write(inode, start + len); 7533 7534 /* 7535 * If we have an outstanding_extents count still set then we're 7536 * within our reservation, otherwise we need to adjust our inode 7537 * counter appropriately. 7538 */ 7539 if (*outstanding_extents) { 7540 (*outstanding_extents)--; 7541 } else { 7542 spin_lock(&BTRFS_I(inode)->lock); 7543 BTRFS_I(inode)->outstanding_extents++; 7544 spin_unlock(&BTRFS_I(inode)->lock); 7545 } 7546 7547 current->journal_info = outstanding_extents; 7548 btrfs_free_reserved_data_space(inode, len); 7549 set_bit(BTRFS_INODE_DIO_READY, &BTRFS_I(inode)->runtime_flags); 7550 } 7551 7552 /* 7553 * In the case of write we need to clear and unlock the entire range, 7554 * in the case of read we need to unlock only the end area that we 7555 * aren't using if there is any left over space. 7556 */ 7557 if (lockstart < lockend) { 7558 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, 7559 lockend, unlock_bits, 1, 0, 7560 &cached_state, GFP_NOFS); 7561 } else { 7562 free_extent_state(cached_state); 7563 } 7564 7565 free_extent_map(em); 7566 7567 return 0; 7568 7569 unlock_err: 7570 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7571 unlock_bits, 1, 0, &cached_state, GFP_NOFS); 7572 if (outstanding_extents) 7573 current->journal_info = outstanding_extents; 7574 return ret; 7575 } 7576 7577 static inline int submit_dio_repair_bio(struct inode *inode, struct bio *bio, 7578 int rw, int mirror_num) 7579 { 7580 struct btrfs_root *root = BTRFS_I(inode)->root; 7581 int ret; 7582 7583 BUG_ON(rw & REQ_WRITE); 7584 7585 bio_get(bio); 7586 7587 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 7588 BTRFS_WQ_ENDIO_DIO_REPAIR); 7589 if (ret) 7590 goto err; 7591 7592 ret = btrfs_map_bio(root, rw, bio, mirror_num, 0); 7593 err: 7594 bio_put(bio); 7595 return ret; 7596 } 7597 7598 static int btrfs_check_dio_repairable(struct inode *inode, 7599 struct bio *failed_bio, 7600 struct io_failure_record *failrec, 7601 int failed_mirror) 7602 { 7603 int num_copies; 7604 7605 num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info, 7606 failrec->logical, failrec->len); 7607 if (num_copies == 1) { 7608 /* 7609 * we only have a single copy of the data, so don't bother with 7610 * all the retry and error correction code that follows. no 7611 * matter what the error is, it is very likely to persist. 7612 */ 7613 pr_debug("Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n", 7614 num_copies, failrec->this_mirror, failed_mirror); 7615 return 0; 7616 } 7617 7618 failrec->failed_mirror = failed_mirror; 7619 failrec->this_mirror++; 7620 if (failrec->this_mirror == failed_mirror) 7621 failrec->this_mirror++; 7622 7623 if (failrec->this_mirror > num_copies) { 7624 pr_debug("Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n", 7625 num_copies, failrec->this_mirror, failed_mirror); 7626 return 0; 7627 } 7628 7629 return 1; 7630 } 7631 7632 static int dio_read_error(struct inode *inode, struct bio *failed_bio, 7633 struct page *page, u64 start, u64 end, 7634 int failed_mirror, bio_end_io_t *repair_endio, 7635 void *repair_arg) 7636 { 7637 struct io_failure_record *failrec; 7638 struct bio *bio; 7639 int isector; 7640 int read_mode; 7641 int ret; 7642 7643 BUG_ON(failed_bio->bi_rw & REQ_WRITE); 7644 7645 ret = btrfs_get_io_failure_record(inode, start, end, &failrec); 7646 if (ret) 7647 return ret; 7648 7649 ret = btrfs_check_dio_repairable(inode, failed_bio, failrec, 7650 failed_mirror); 7651 if (!ret) { 7652 free_io_failure(inode, failrec); 7653 return -EIO; 7654 } 7655 7656 if (failed_bio->bi_vcnt > 1) 7657 read_mode = READ_SYNC | REQ_FAILFAST_DEV; 7658 else 7659 read_mode = READ_SYNC; 7660 7661 isector = start - btrfs_io_bio(failed_bio)->logical; 7662 isector >>= inode->i_sb->s_blocksize_bits; 7663 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page, 7664 0, isector, repair_endio, repair_arg); 7665 if (!bio) { 7666 free_io_failure(inode, failrec); 7667 return -EIO; 7668 } 7669 7670 btrfs_debug(BTRFS_I(inode)->root->fs_info, 7671 "Repair DIO Read Error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d\n", 7672 read_mode, failrec->this_mirror, failrec->in_validation); 7673 7674 ret = submit_dio_repair_bio(inode, bio, read_mode, 7675 failrec->this_mirror); 7676 if (ret) { 7677 free_io_failure(inode, failrec); 7678 bio_put(bio); 7679 } 7680 7681 return ret; 7682 } 7683 7684 struct btrfs_retry_complete { 7685 struct completion done; 7686 struct inode *inode; 7687 u64 start; 7688 int uptodate; 7689 }; 7690 7691 static void btrfs_retry_endio_nocsum(struct bio *bio, int err) 7692 { 7693 struct btrfs_retry_complete *done = bio->bi_private; 7694 struct bio_vec *bvec; 7695 int i; 7696 7697 if (err) 7698 goto end; 7699 7700 done->uptodate = 1; 7701 bio_for_each_segment_all(bvec, bio, i) 7702 clean_io_failure(done->inode, done->start, bvec->bv_page, 0); 7703 end: 7704 complete(&done->done); 7705 bio_put(bio); 7706 } 7707 7708 static int __btrfs_correct_data_nocsum(struct inode *inode, 7709 struct btrfs_io_bio *io_bio) 7710 { 7711 struct bio_vec *bvec; 7712 struct btrfs_retry_complete done; 7713 u64 start; 7714 int i; 7715 int ret; 7716 7717 start = io_bio->logical; 7718 done.inode = inode; 7719 7720 bio_for_each_segment_all(bvec, &io_bio->bio, i) { 7721 try_again: 7722 done.uptodate = 0; 7723 done.start = start; 7724 init_completion(&done.done); 7725 7726 ret = dio_read_error(inode, &io_bio->bio, bvec->bv_page, start, 7727 start + bvec->bv_len - 1, 7728 io_bio->mirror_num, 7729 btrfs_retry_endio_nocsum, &done); 7730 if (ret) 7731 return ret; 7732 7733 wait_for_completion(&done.done); 7734 7735 if (!done.uptodate) { 7736 /* We might have another mirror, so try again */ 7737 goto try_again; 7738 } 7739 7740 start += bvec->bv_len; 7741 } 7742 7743 return 0; 7744 } 7745 7746 static void btrfs_retry_endio(struct bio *bio, int err) 7747 { 7748 struct btrfs_retry_complete *done = bio->bi_private; 7749 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio); 7750 struct bio_vec *bvec; 7751 int uptodate; 7752 int ret; 7753 int i; 7754 7755 if (err) 7756 goto end; 7757 7758 uptodate = 1; 7759 bio_for_each_segment_all(bvec, bio, i) { 7760 ret = __readpage_endio_check(done->inode, io_bio, i, 7761 bvec->bv_page, 0, 7762 done->start, bvec->bv_len); 7763 if (!ret) 7764 clean_io_failure(done->inode, done->start, 7765 bvec->bv_page, 0); 7766 else 7767 uptodate = 0; 7768 } 7769 7770 done->uptodate = uptodate; 7771 end: 7772 complete(&done->done); 7773 bio_put(bio); 7774 } 7775 7776 static int __btrfs_subio_endio_read(struct inode *inode, 7777 struct btrfs_io_bio *io_bio, int err) 7778 { 7779 struct bio_vec *bvec; 7780 struct btrfs_retry_complete done; 7781 u64 start; 7782 u64 offset = 0; 7783 int i; 7784 int ret; 7785 7786 err = 0; 7787 start = io_bio->logical; 7788 done.inode = inode; 7789 7790 bio_for_each_segment_all(bvec, &io_bio->bio, i) { 7791 ret = __readpage_endio_check(inode, io_bio, i, bvec->bv_page, 7792 0, start, bvec->bv_len); 7793 if (likely(!ret)) 7794 goto next; 7795 try_again: 7796 done.uptodate = 0; 7797 done.start = start; 7798 init_completion(&done.done); 7799 7800 ret = dio_read_error(inode, &io_bio->bio, bvec->bv_page, start, 7801 start + bvec->bv_len - 1, 7802 io_bio->mirror_num, 7803 btrfs_retry_endio, &done); 7804 if (ret) { 7805 err = ret; 7806 goto next; 7807 } 7808 7809 wait_for_completion(&done.done); 7810 7811 if (!done.uptodate) { 7812 /* We might have another mirror, so try again */ 7813 goto try_again; 7814 } 7815 next: 7816 offset += bvec->bv_len; 7817 start += bvec->bv_len; 7818 } 7819 7820 return err; 7821 } 7822 7823 static int btrfs_subio_endio_read(struct inode *inode, 7824 struct btrfs_io_bio *io_bio, int err) 7825 { 7826 bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 7827 7828 if (skip_csum) { 7829 if (unlikely(err)) 7830 return __btrfs_correct_data_nocsum(inode, io_bio); 7831 else 7832 return 0; 7833 } else { 7834 return __btrfs_subio_endio_read(inode, io_bio, err); 7835 } 7836 } 7837 7838 static void btrfs_endio_direct_read(struct bio *bio, int err) 7839 { 7840 struct btrfs_dio_private *dip = bio->bi_private; 7841 struct inode *inode = dip->inode; 7842 struct bio *dio_bio; 7843 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio); 7844 7845 if (dip->flags & BTRFS_DIO_ORIG_BIO_SUBMITTED) 7846 err = btrfs_subio_endio_read(inode, io_bio, err); 7847 7848 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset, 7849 dip->logical_offset + dip->bytes - 1); 7850 dio_bio = dip->dio_bio; 7851 7852 kfree(dip); 7853 7854 /* If we had a csum failure make sure to clear the uptodate flag */ 7855 if (err) 7856 clear_bit(BIO_UPTODATE, &dio_bio->bi_flags); 7857 dio_end_io(dio_bio, err); 7858 7859 if (io_bio->end_io) 7860 io_bio->end_io(io_bio, err); 7861 bio_put(bio); 7862 } 7863 7864 static void btrfs_endio_direct_write(struct bio *bio, int err) 7865 { 7866 struct btrfs_dio_private *dip = bio->bi_private; 7867 struct inode *inode = dip->inode; 7868 struct btrfs_root *root = BTRFS_I(inode)->root; 7869 struct btrfs_ordered_extent *ordered = NULL; 7870 u64 ordered_offset = dip->logical_offset; 7871 u64 ordered_bytes = dip->bytes; 7872 struct bio *dio_bio; 7873 int ret; 7874 7875 again: 7876 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered, 7877 &ordered_offset, 7878 ordered_bytes, !err); 7879 if (!ret) 7880 goto out_test; 7881 7882 btrfs_init_work(&ordered->work, btrfs_endio_write_helper, 7883 finish_ordered_fn, NULL, NULL); 7884 btrfs_queue_work(root->fs_info->endio_write_workers, 7885 &ordered->work); 7886 out_test: 7887 /* 7888 * our bio might span multiple ordered extents. If we haven't 7889 * completed the accounting for the whole dio, go back and try again 7890 */ 7891 if (ordered_offset < dip->logical_offset + dip->bytes) { 7892 ordered_bytes = dip->logical_offset + dip->bytes - 7893 ordered_offset; 7894 ordered = NULL; 7895 goto again; 7896 } 7897 dio_bio = dip->dio_bio; 7898 7899 kfree(dip); 7900 7901 /* If we had an error make sure to clear the uptodate flag */ 7902 if (err) 7903 clear_bit(BIO_UPTODATE, &dio_bio->bi_flags); 7904 dio_end_io(dio_bio, err); 7905 bio_put(bio); 7906 } 7907 7908 static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw, 7909 struct bio *bio, int mirror_num, 7910 unsigned long bio_flags, u64 offset) 7911 { 7912 int ret; 7913 struct btrfs_root *root = BTRFS_I(inode)->root; 7914 ret = btrfs_csum_one_bio(root, inode, bio, offset, 1); 7915 BUG_ON(ret); /* -ENOMEM */ 7916 return 0; 7917 } 7918 7919 static void btrfs_end_dio_bio(struct bio *bio, int err) 7920 { 7921 struct btrfs_dio_private *dip = bio->bi_private; 7922 7923 if (err) 7924 btrfs_warn(BTRFS_I(dip->inode)->root->fs_info, 7925 "direct IO failed ino %llu rw %lu sector %#Lx len %u err no %d", 7926 btrfs_ino(dip->inode), bio->bi_rw, 7927 (unsigned long long)bio->bi_iter.bi_sector, 7928 bio->bi_iter.bi_size, err); 7929 7930 if (dip->subio_endio) 7931 err = dip->subio_endio(dip->inode, btrfs_io_bio(bio), err); 7932 7933 if (err) { 7934 dip->errors = 1; 7935 7936 /* 7937 * before atomic variable goto zero, we must make sure 7938 * dip->errors is perceived to be set. 7939 */ 7940 smp_mb__before_atomic(); 7941 } 7942 7943 /* if there are more bios still pending for this dio, just exit */ 7944 if (!atomic_dec_and_test(&dip->pending_bios)) 7945 goto out; 7946 7947 if (dip->errors) { 7948 bio_io_error(dip->orig_bio); 7949 } else { 7950 set_bit(BIO_UPTODATE, &dip->dio_bio->bi_flags); 7951 bio_endio(dip->orig_bio, 0); 7952 } 7953 out: 7954 bio_put(bio); 7955 } 7956 7957 static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev, 7958 u64 first_sector, gfp_t gfp_flags) 7959 { 7960 int nr_vecs = bio_get_nr_vecs(bdev); 7961 return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags); 7962 } 7963 7964 static inline int btrfs_lookup_and_bind_dio_csum(struct btrfs_root *root, 7965 struct inode *inode, 7966 struct btrfs_dio_private *dip, 7967 struct bio *bio, 7968 u64 file_offset) 7969 { 7970 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio); 7971 struct btrfs_io_bio *orig_io_bio = btrfs_io_bio(dip->orig_bio); 7972 int ret; 7973 7974 /* 7975 * We load all the csum data we need when we submit 7976 * the first bio to reduce the csum tree search and 7977 * contention. 7978 */ 7979 if (dip->logical_offset == file_offset) { 7980 ret = btrfs_lookup_bio_sums_dio(root, inode, dip->orig_bio, 7981 file_offset); 7982 if (ret) 7983 return ret; 7984 } 7985 7986 if (bio == dip->orig_bio) 7987 return 0; 7988 7989 file_offset -= dip->logical_offset; 7990 file_offset >>= inode->i_sb->s_blocksize_bits; 7991 io_bio->csum = (u8 *)(((u32 *)orig_io_bio->csum) + file_offset); 7992 7993 return 0; 7994 } 7995 7996 static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode, 7997 int rw, u64 file_offset, int skip_sum, 7998 int async_submit) 7999 { 8000 struct btrfs_dio_private *dip = bio->bi_private; 8001 int write = rw & REQ_WRITE; 8002 struct btrfs_root *root = BTRFS_I(inode)->root; 8003 int ret; 8004 8005 if (async_submit) 8006 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers); 8007 8008 bio_get(bio); 8009 8010 if (!write) { 8011 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 8012 BTRFS_WQ_ENDIO_DATA); 8013 if (ret) 8014 goto err; 8015 } 8016 8017 if (skip_sum) 8018 goto map; 8019 8020 if (write && async_submit) { 8021 ret = btrfs_wq_submit_bio(root->fs_info, 8022 inode, rw, bio, 0, 0, 8023 file_offset, 8024 __btrfs_submit_bio_start_direct_io, 8025 __btrfs_submit_bio_done); 8026 goto err; 8027 } else if (write) { 8028 /* 8029 * If we aren't doing async submit, calculate the csum of the 8030 * bio now. 8031 */ 8032 ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1); 8033 if (ret) 8034 goto err; 8035 } else { 8036 ret = btrfs_lookup_and_bind_dio_csum(root, inode, dip, bio, 8037 file_offset); 8038 if (ret) 8039 goto err; 8040 } 8041 map: 8042 ret = btrfs_map_bio(root, rw, bio, 0, async_submit); 8043 err: 8044 bio_put(bio); 8045 return ret; 8046 } 8047 8048 static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip, 8049 int skip_sum) 8050 { 8051 struct inode *inode = dip->inode; 8052 struct btrfs_root *root = BTRFS_I(inode)->root; 8053 struct bio *bio; 8054 struct bio *orig_bio = dip->orig_bio; 8055 struct bio_vec *bvec = orig_bio->bi_io_vec; 8056 u64 start_sector = orig_bio->bi_iter.bi_sector; 8057 u64 file_offset = dip->logical_offset; 8058 u64 submit_len = 0; 8059 u64 map_length; 8060 int nr_pages = 0; 8061 int ret; 8062 int async_submit = 0; 8063 8064 map_length = orig_bio->bi_iter.bi_size; 8065 ret = btrfs_map_block(root->fs_info, rw, start_sector << 9, 8066 &map_length, NULL, 0); 8067 if (ret) 8068 return -EIO; 8069 8070 if (map_length >= orig_bio->bi_iter.bi_size) { 8071 bio = orig_bio; 8072 dip->flags |= BTRFS_DIO_ORIG_BIO_SUBMITTED; 8073 goto submit; 8074 } 8075 8076 /* async crcs make it difficult to collect full stripe writes. */ 8077 if (btrfs_get_alloc_profile(root, 1) & BTRFS_BLOCK_GROUP_RAID56_MASK) 8078 async_submit = 0; 8079 else 8080 async_submit = 1; 8081 8082 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS); 8083 if (!bio) 8084 return -ENOMEM; 8085 8086 bio->bi_private = dip; 8087 bio->bi_end_io = btrfs_end_dio_bio; 8088 btrfs_io_bio(bio)->logical = file_offset; 8089 atomic_inc(&dip->pending_bios); 8090 8091 while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) { 8092 if (map_length < submit_len + bvec->bv_len || 8093 bio_add_page(bio, bvec->bv_page, bvec->bv_len, 8094 bvec->bv_offset) < bvec->bv_len) { 8095 /* 8096 * inc the count before we submit the bio so 8097 * we know the end IO handler won't happen before 8098 * we inc the count. Otherwise, the dip might get freed 8099 * before we're done setting it up 8100 */ 8101 atomic_inc(&dip->pending_bios); 8102 ret = __btrfs_submit_dio_bio(bio, inode, rw, 8103 file_offset, skip_sum, 8104 async_submit); 8105 if (ret) { 8106 bio_put(bio); 8107 atomic_dec(&dip->pending_bios); 8108 goto out_err; 8109 } 8110 8111 start_sector += submit_len >> 9; 8112 file_offset += submit_len; 8113 8114 submit_len = 0; 8115 nr_pages = 0; 8116 8117 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, 8118 start_sector, GFP_NOFS); 8119 if (!bio) 8120 goto out_err; 8121 bio->bi_private = dip; 8122 bio->bi_end_io = btrfs_end_dio_bio; 8123 btrfs_io_bio(bio)->logical = file_offset; 8124 8125 map_length = orig_bio->bi_iter.bi_size; 8126 ret = btrfs_map_block(root->fs_info, rw, 8127 start_sector << 9, 8128 &map_length, NULL, 0); 8129 if (ret) { 8130 bio_put(bio); 8131 goto out_err; 8132 } 8133 } else { 8134 submit_len += bvec->bv_len; 8135 nr_pages++; 8136 bvec++; 8137 } 8138 } 8139 8140 submit: 8141 ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum, 8142 async_submit); 8143 if (!ret) 8144 return 0; 8145 8146 bio_put(bio); 8147 out_err: 8148 dip->errors = 1; 8149 /* 8150 * before atomic variable goto zero, we must 8151 * make sure dip->errors is perceived to be set. 8152 */ 8153 smp_mb__before_atomic(); 8154 if (atomic_dec_and_test(&dip->pending_bios)) 8155 bio_io_error(dip->orig_bio); 8156 8157 /* bio_end_io() will handle error, so we needn't return it */ 8158 return 0; 8159 } 8160 8161 static void btrfs_submit_direct(int rw, struct bio *dio_bio, 8162 struct inode *inode, loff_t file_offset) 8163 { 8164 struct btrfs_dio_private *dip = NULL; 8165 struct bio *io_bio = NULL; 8166 struct btrfs_io_bio *btrfs_bio; 8167 int skip_sum; 8168 int write = rw & REQ_WRITE; 8169 int ret = 0; 8170 8171 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 8172 8173 io_bio = btrfs_bio_clone(dio_bio, GFP_NOFS); 8174 if (!io_bio) { 8175 ret = -ENOMEM; 8176 goto free_ordered; 8177 } 8178 8179 dip = kzalloc(sizeof(*dip), GFP_NOFS); 8180 if (!dip) { 8181 ret = -ENOMEM; 8182 goto free_ordered; 8183 } 8184 8185 dip->private = dio_bio->bi_private; 8186 dip->inode = inode; 8187 dip->logical_offset = file_offset; 8188 dip->bytes = dio_bio->bi_iter.bi_size; 8189 dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9; 8190 io_bio->bi_private = dip; 8191 dip->orig_bio = io_bio; 8192 dip->dio_bio = dio_bio; 8193 atomic_set(&dip->pending_bios, 0); 8194 btrfs_bio = btrfs_io_bio(io_bio); 8195 btrfs_bio->logical = file_offset; 8196 8197 if (write) { 8198 io_bio->bi_end_io = btrfs_endio_direct_write; 8199 } else { 8200 io_bio->bi_end_io = btrfs_endio_direct_read; 8201 dip->subio_endio = btrfs_subio_endio_read; 8202 } 8203 8204 ret = btrfs_submit_direct_hook(rw, dip, skip_sum); 8205 if (!ret) 8206 return; 8207 8208 if (btrfs_bio->end_io) 8209 btrfs_bio->end_io(btrfs_bio, ret); 8210 8211 free_ordered: 8212 /* 8213 * If we arrived here it means either we failed to submit the dip 8214 * or we either failed to clone the dio_bio or failed to allocate the 8215 * dip. If we cloned the dio_bio and allocated the dip, we can just 8216 * call bio_endio against our io_bio so that we get proper resource 8217 * cleanup if we fail to submit the dip, otherwise, we must do the 8218 * same as btrfs_endio_direct_[write|read] because we can't call these 8219 * callbacks - they require an allocated dip and a clone of dio_bio. 8220 */ 8221 if (io_bio && dip) { 8222 bio_endio(io_bio, ret); 8223 /* 8224 * The end io callbacks free our dip, do the final put on io_bio 8225 * and all the cleanup and final put for dio_bio (through 8226 * dio_end_io()). 8227 */ 8228 dip = NULL; 8229 io_bio = NULL; 8230 } else { 8231 if (write) { 8232 struct btrfs_ordered_extent *ordered; 8233 8234 ordered = btrfs_lookup_ordered_extent(inode, 8235 file_offset); 8236 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags); 8237 /* 8238 * Decrements our ref on the ordered extent and removes 8239 * the ordered extent from the inode's ordered tree, 8240 * doing all the proper resource cleanup such as for the 8241 * reserved space and waking up any waiters for this 8242 * ordered extent (through btrfs_remove_ordered_extent). 8243 */ 8244 btrfs_finish_ordered_io(ordered); 8245 } else { 8246 unlock_extent(&BTRFS_I(inode)->io_tree, file_offset, 8247 file_offset + dio_bio->bi_iter.bi_size - 1); 8248 } 8249 clear_bit(BIO_UPTODATE, &dio_bio->bi_flags); 8250 /* 8251 * Releases and cleans up our dio_bio, no need to bio_put() 8252 * nor bio_endio()/bio_io_error() against dio_bio. 8253 */ 8254 dio_end_io(dio_bio, ret); 8255 } 8256 if (io_bio) 8257 bio_put(io_bio); 8258 kfree(dip); 8259 } 8260 8261 static ssize_t check_direct_IO(struct btrfs_root *root, struct kiocb *iocb, 8262 const struct iov_iter *iter, loff_t offset) 8263 { 8264 int seg; 8265 int i; 8266 unsigned blocksize_mask = root->sectorsize - 1; 8267 ssize_t retval = -EINVAL; 8268 8269 if (offset & blocksize_mask) 8270 goto out; 8271 8272 if (iov_iter_alignment(iter) & blocksize_mask) 8273 goto out; 8274 8275 /* If this is a write we don't need to check anymore */ 8276 if (iov_iter_rw(iter) == WRITE) 8277 return 0; 8278 /* 8279 * Check to make sure we don't have duplicate iov_base's in this 8280 * iovec, if so return EINVAL, otherwise we'll get csum errors 8281 * when reading back. 8282 */ 8283 for (seg = 0; seg < iter->nr_segs; seg++) { 8284 for (i = seg + 1; i < iter->nr_segs; i++) { 8285 if (iter->iov[seg].iov_base == iter->iov[i].iov_base) 8286 goto out; 8287 } 8288 } 8289 retval = 0; 8290 out: 8291 return retval; 8292 } 8293 8294 static ssize_t btrfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter, 8295 loff_t offset) 8296 { 8297 struct file *file = iocb->ki_filp; 8298 struct inode *inode = file->f_mapping->host; 8299 u64 outstanding_extents = 0; 8300 size_t count = 0; 8301 int flags = 0; 8302 bool wakeup = true; 8303 bool relock = false; 8304 ssize_t ret; 8305 8306 if (check_direct_IO(BTRFS_I(inode)->root, iocb, iter, offset)) 8307 return 0; 8308 8309 inode_dio_begin(inode); 8310 smp_mb__after_atomic(); 8311 8312 /* 8313 * The generic stuff only does filemap_write_and_wait_range, which 8314 * isn't enough if we've written compressed pages to this area, so 8315 * we need to flush the dirty pages again to make absolutely sure 8316 * that any outstanding dirty pages are on disk. 8317 */ 8318 count = iov_iter_count(iter); 8319 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 8320 &BTRFS_I(inode)->runtime_flags)) 8321 filemap_fdatawrite_range(inode->i_mapping, offset, 8322 offset + count - 1); 8323 8324 if (iov_iter_rw(iter) == WRITE) { 8325 /* 8326 * If the write DIO is beyond the EOF, we need update 8327 * the isize, but it is protected by i_mutex. So we can 8328 * not unlock the i_mutex at this case. 8329 */ 8330 if (offset + count <= inode->i_size) { 8331 mutex_unlock(&inode->i_mutex); 8332 relock = true; 8333 } 8334 ret = btrfs_delalloc_reserve_space(inode, count); 8335 if (ret) 8336 goto out; 8337 outstanding_extents = div64_u64(count + 8338 BTRFS_MAX_EXTENT_SIZE - 1, 8339 BTRFS_MAX_EXTENT_SIZE); 8340 8341 /* 8342 * We need to know how many extents we reserved so that we can 8343 * do the accounting properly if we go over the number we 8344 * originally calculated. Abuse current->journal_info for this. 8345 */ 8346 current->journal_info = &outstanding_extents; 8347 } else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK, 8348 &BTRFS_I(inode)->runtime_flags)) { 8349 inode_dio_end(inode); 8350 flags = DIO_LOCKING | DIO_SKIP_HOLES; 8351 wakeup = false; 8352 } 8353 8354 ret = __blockdev_direct_IO(iocb, inode, 8355 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev, 8356 iter, offset, btrfs_get_blocks_direct, NULL, 8357 btrfs_submit_direct, flags); 8358 if (iov_iter_rw(iter) == WRITE) { 8359 current->journal_info = NULL; 8360 if (ret < 0 && ret != -EIOCBQUEUED) { 8361 /* 8362 * If the error comes from submitting stage, 8363 * btrfs_get_blocsk_direct() has free'd data space, 8364 * and metadata space will be handled by 8365 * finish_ordered_fn, don't do that again to make 8366 * sure bytes_may_use is correct. 8367 */ 8368 if (!test_and_clear_bit(BTRFS_INODE_DIO_READY, 8369 &BTRFS_I(inode)->runtime_flags)) 8370 btrfs_delalloc_release_space(inode, count); 8371 } else if (ret >= 0 && (size_t)ret < count) 8372 btrfs_delalloc_release_space(inode, 8373 count - (size_t)ret); 8374 } 8375 out: 8376 if (wakeup) 8377 inode_dio_end(inode); 8378 if (relock) 8379 mutex_lock(&inode->i_mutex); 8380 8381 return ret; 8382 } 8383 8384 #define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC) 8385 8386 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 8387 __u64 start, __u64 len) 8388 { 8389 int ret; 8390 8391 ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS); 8392 if (ret) 8393 return ret; 8394 8395 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap); 8396 } 8397 8398 int btrfs_readpage(struct file *file, struct page *page) 8399 { 8400 struct extent_io_tree *tree; 8401 tree = &BTRFS_I(page->mapping->host)->io_tree; 8402 return extent_read_full_page(tree, page, btrfs_get_extent, 0); 8403 } 8404 8405 static int btrfs_writepage(struct page *page, struct writeback_control *wbc) 8406 { 8407 struct extent_io_tree *tree; 8408 8409 8410 if (current->flags & PF_MEMALLOC) { 8411 redirty_page_for_writepage(wbc, page); 8412 unlock_page(page); 8413 return 0; 8414 } 8415 tree = &BTRFS_I(page->mapping->host)->io_tree; 8416 return extent_write_full_page(tree, page, btrfs_get_extent, wbc); 8417 } 8418 8419 static int btrfs_writepages(struct address_space *mapping, 8420 struct writeback_control *wbc) 8421 { 8422 struct extent_io_tree *tree; 8423 8424 tree = &BTRFS_I(mapping->host)->io_tree; 8425 return extent_writepages(tree, mapping, btrfs_get_extent, wbc); 8426 } 8427 8428 static int 8429 btrfs_readpages(struct file *file, struct address_space *mapping, 8430 struct list_head *pages, unsigned nr_pages) 8431 { 8432 struct extent_io_tree *tree; 8433 tree = &BTRFS_I(mapping->host)->io_tree; 8434 return extent_readpages(tree, mapping, pages, nr_pages, 8435 btrfs_get_extent); 8436 } 8437 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags) 8438 { 8439 struct extent_io_tree *tree; 8440 struct extent_map_tree *map; 8441 int ret; 8442 8443 tree = &BTRFS_I(page->mapping->host)->io_tree; 8444 map = &BTRFS_I(page->mapping->host)->extent_tree; 8445 ret = try_release_extent_mapping(map, tree, page, gfp_flags); 8446 if (ret == 1) { 8447 ClearPagePrivate(page); 8448 set_page_private(page, 0); 8449 page_cache_release(page); 8450 } 8451 return ret; 8452 } 8453 8454 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags) 8455 { 8456 if (PageWriteback(page) || PageDirty(page)) 8457 return 0; 8458 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS); 8459 } 8460 8461 static void btrfs_invalidatepage(struct page *page, unsigned int offset, 8462 unsigned int length) 8463 { 8464 struct inode *inode = page->mapping->host; 8465 struct extent_io_tree *tree; 8466 struct btrfs_ordered_extent *ordered; 8467 struct extent_state *cached_state = NULL; 8468 u64 page_start = page_offset(page); 8469 u64 page_end = page_start + PAGE_CACHE_SIZE - 1; 8470 int inode_evicting = inode->i_state & I_FREEING; 8471 8472 /* 8473 * we have the page locked, so new writeback can't start, 8474 * and the dirty bit won't be cleared while we are here. 8475 * 8476 * Wait for IO on this page so that we can safely clear 8477 * the PagePrivate2 bit and do ordered accounting 8478 */ 8479 wait_on_page_writeback(page); 8480 8481 tree = &BTRFS_I(inode)->io_tree; 8482 if (offset) { 8483 btrfs_releasepage(page, GFP_NOFS); 8484 return; 8485 } 8486 8487 if (!inode_evicting) 8488 lock_extent_bits(tree, page_start, page_end, 0, &cached_state); 8489 ordered = btrfs_lookup_ordered_extent(inode, page_start); 8490 if (ordered) { 8491 /* 8492 * IO on this page will never be started, so we need 8493 * to account for any ordered extents now 8494 */ 8495 if (!inode_evicting) 8496 clear_extent_bit(tree, page_start, page_end, 8497 EXTENT_DIRTY | EXTENT_DELALLOC | 8498 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING | 8499 EXTENT_DEFRAG, 1, 0, &cached_state, 8500 GFP_NOFS); 8501 /* 8502 * whoever cleared the private bit is responsible 8503 * for the finish_ordered_io 8504 */ 8505 if (TestClearPagePrivate2(page)) { 8506 struct btrfs_ordered_inode_tree *tree; 8507 u64 new_len; 8508 8509 tree = &BTRFS_I(inode)->ordered_tree; 8510 8511 spin_lock_irq(&tree->lock); 8512 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags); 8513 new_len = page_start - ordered->file_offset; 8514 if (new_len < ordered->truncated_len) 8515 ordered->truncated_len = new_len; 8516 spin_unlock_irq(&tree->lock); 8517 8518 if (btrfs_dec_test_ordered_pending(inode, &ordered, 8519 page_start, 8520 PAGE_CACHE_SIZE, 1)) 8521 btrfs_finish_ordered_io(ordered); 8522 } 8523 btrfs_put_ordered_extent(ordered); 8524 if (!inode_evicting) { 8525 cached_state = NULL; 8526 lock_extent_bits(tree, page_start, page_end, 0, 8527 &cached_state); 8528 } 8529 } 8530 8531 if (!inode_evicting) { 8532 clear_extent_bit(tree, page_start, page_end, 8533 EXTENT_LOCKED | EXTENT_DIRTY | 8534 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | 8535 EXTENT_DEFRAG, 1, 1, 8536 &cached_state, GFP_NOFS); 8537 8538 __btrfs_releasepage(page, GFP_NOFS); 8539 } 8540 8541 ClearPageChecked(page); 8542 if (PagePrivate(page)) { 8543 ClearPagePrivate(page); 8544 set_page_private(page, 0); 8545 page_cache_release(page); 8546 } 8547 } 8548 8549 /* 8550 * btrfs_page_mkwrite() is not allowed to change the file size as it gets 8551 * called from a page fault handler when a page is first dirtied. Hence we must 8552 * be careful to check for EOF conditions here. We set the page up correctly 8553 * for a written page which means we get ENOSPC checking when writing into 8554 * holes and correct delalloc and unwritten extent mapping on filesystems that 8555 * support these features. 8556 * 8557 * We are not allowed to take the i_mutex here so we have to play games to 8558 * protect against truncate races as the page could now be beyond EOF. Because 8559 * vmtruncate() writes the inode size before removing pages, once we have the 8560 * page lock we can determine safely if the page is beyond EOF. If it is not 8561 * beyond EOF, then the page is guaranteed safe against truncation until we 8562 * unlock the page. 8563 */ 8564 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf) 8565 { 8566 struct page *page = vmf->page; 8567 struct inode *inode = file_inode(vma->vm_file); 8568 struct btrfs_root *root = BTRFS_I(inode)->root; 8569 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 8570 struct btrfs_ordered_extent *ordered; 8571 struct extent_state *cached_state = NULL; 8572 char *kaddr; 8573 unsigned long zero_start; 8574 loff_t size; 8575 int ret; 8576 int reserved = 0; 8577 u64 page_start; 8578 u64 page_end; 8579 8580 sb_start_pagefault(inode->i_sb); 8581 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE); 8582 if (!ret) { 8583 ret = file_update_time(vma->vm_file); 8584 reserved = 1; 8585 } 8586 if (ret) { 8587 if (ret == -ENOMEM) 8588 ret = VM_FAULT_OOM; 8589 else /* -ENOSPC, -EIO, etc */ 8590 ret = VM_FAULT_SIGBUS; 8591 if (reserved) 8592 goto out; 8593 goto out_noreserve; 8594 } 8595 8596 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */ 8597 again: 8598 lock_page(page); 8599 size = i_size_read(inode); 8600 page_start = page_offset(page); 8601 page_end = page_start + PAGE_CACHE_SIZE - 1; 8602 8603 if ((page->mapping != inode->i_mapping) || 8604 (page_start >= size)) { 8605 /* page got truncated out from underneath us */ 8606 goto out_unlock; 8607 } 8608 wait_on_page_writeback(page); 8609 8610 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state); 8611 set_page_extent_mapped(page); 8612 8613 /* 8614 * we can't set the delalloc bits if there are pending ordered 8615 * extents. Drop our locks and wait for them to finish 8616 */ 8617 ordered = btrfs_lookup_ordered_extent(inode, page_start); 8618 if (ordered) { 8619 unlock_extent_cached(io_tree, page_start, page_end, 8620 &cached_state, GFP_NOFS); 8621 unlock_page(page); 8622 btrfs_start_ordered_extent(inode, ordered, 1); 8623 btrfs_put_ordered_extent(ordered); 8624 goto again; 8625 } 8626 8627 /* 8628 * XXX - page_mkwrite gets called every time the page is dirtied, even 8629 * if it was already dirty, so for space accounting reasons we need to 8630 * clear any delalloc bits for the range we are fixing to save. There 8631 * is probably a better way to do this, but for now keep consistent with 8632 * prepare_pages in the normal write path. 8633 */ 8634 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end, 8635 EXTENT_DIRTY | EXTENT_DELALLOC | 8636 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 8637 0, 0, &cached_state, GFP_NOFS); 8638 8639 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 8640 &cached_state); 8641 if (ret) { 8642 unlock_extent_cached(io_tree, page_start, page_end, 8643 &cached_state, GFP_NOFS); 8644 ret = VM_FAULT_SIGBUS; 8645 goto out_unlock; 8646 } 8647 ret = 0; 8648 8649 /* page is wholly or partially inside EOF */ 8650 if (page_start + PAGE_CACHE_SIZE > size) 8651 zero_start = size & ~PAGE_CACHE_MASK; 8652 else 8653 zero_start = PAGE_CACHE_SIZE; 8654 8655 if (zero_start != PAGE_CACHE_SIZE) { 8656 kaddr = kmap(page); 8657 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start); 8658 flush_dcache_page(page); 8659 kunmap(page); 8660 } 8661 ClearPageChecked(page); 8662 set_page_dirty(page); 8663 SetPageUptodate(page); 8664 8665 BTRFS_I(inode)->last_trans = root->fs_info->generation; 8666 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid; 8667 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit; 8668 8669 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS); 8670 8671 out_unlock: 8672 if (!ret) { 8673 sb_end_pagefault(inode->i_sb); 8674 return VM_FAULT_LOCKED; 8675 } 8676 unlock_page(page); 8677 out: 8678 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE); 8679 out_noreserve: 8680 sb_end_pagefault(inode->i_sb); 8681 return ret; 8682 } 8683 8684 static int btrfs_truncate(struct inode *inode) 8685 { 8686 struct btrfs_root *root = BTRFS_I(inode)->root; 8687 struct btrfs_block_rsv *rsv; 8688 int ret = 0; 8689 int err = 0; 8690 struct btrfs_trans_handle *trans; 8691 u64 mask = root->sectorsize - 1; 8692 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1); 8693 8694 ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask), 8695 (u64)-1); 8696 if (ret) 8697 return ret; 8698 8699 /* 8700 * Yes ladies and gentelment, this is indeed ugly. The fact is we have 8701 * 3 things going on here 8702 * 8703 * 1) We need to reserve space for our orphan item and the space to 8704 * delete our orphan item. Lord knows we don't want to have a dangling 8705 * orphan item because we didn't reserve space to remove it. 8706 * 8707 * 2) We need to reserve space to update our inode. 8708 * 8709 * 3) We need to have something to cache all the space that is going to 8710 * be free'd up by the truncate operation, but also have some slack 8711 * space reserved in case it uses space during the truncate (thank you 8712 * very much snapshotting). 8713 * 8714 * And we need these to all be seperate. The fact is we can use alot of 8715 * space doing the truncate, and we have no earthly idea how much space 8716 * we will use, so we need the truncate reservation to be seperate so it 8717 * doesn't end up using space reserved for updating the inode or 8718 * removing the orphan item. We also need to be able to stop the 8719 * transaction and start a new one, which means we need to be able to 8720 * update the inode several times, and we have no idea of knowing how 8721 * many times that will be, so we can't just reserve 1 item for the 8722 * entirety of the opration, so that has to be done seperately as well. 8723 * Then there is the orphan item, which does indeed need to be held on 8724 * to for the whole operation, and we need nobody to touch this reserved 8725 * space except the orphan code. 8726 * 8727 * So that leaves us with 8728 * 8729 * 1) root->orphan_block_rsv - for the orphan deletion. 8730 * 2) rsv - for the truncate reservation, which we will steal from the 8731 * transaction reservation. 8732 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for 8733 * updating the inode. 8734 */ 8735 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP); 8736 if (!rsv) 8737 return -ENOMEM; 8738 rsv->size = min_size; 8739 rsv->failfast = 1; 8740 8741 /* 8742 * 1 for the truncate slack space 8743 * 1 for updating the inode. 8744 */ 8745 trans = btrfs_start_transaction(root, 2); 8746 if (IS_ERR(trans)) { 8747 err = PTR_ERR(trans); 8748 goto out; 8749 } 8750 8751 /* Migrate the slack space for the truncate to our reserve */ 8752 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv, 8753 min_size); 8754 BUG_ON(ret); 8755 8756 /* 8757 * So if we truncate and then write and fsync we normally would just 8758 * write the extents that changed, which is a problem if we need to 8759 * first truncate that entire inode. So set this flag so we write out 8760 * all of the extents in the inode to the sync log so we're completely 8761 * safe. 8762 */ 8763 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 8764 trans->block_rsv = rsv; 8765 8766 while (1) { 8767 ret = btrfs_truncate_inode_items(trans, root, inode, 8768 inode->i_size, 8769 BTRFS_EXTENT_DATA_KEY); 8770 if (ret != -ENOSPC && ret != -EAGAIN) { 8771 err = ret; 8772 break; 8773 } 8774 8775 trans->block_rsv = &root->fs_info->trans_block_rsv; 8776 ret = btrfs_update_inode(trans, root, inode); 8777 if (ret) { 8778 err = ret; 8779 break; 8780 } 8781 8782 btrfs_end_transaction(trans, root); 8783 btrfs_btree_balance_dirty(root); 8784 8785 trans = btrfs_start_transaction(root, 2); 8786 if (IS_ERR(trans)) { 8787 ret = err = PTR_ERR(trans); 8788 trans = NULL; 8789 break; 8790 } 8791 8792 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, 8793 rsv, min_size); 8794 BUG_ON(ret); /* shouldn't happen */ 8795 trans->block_rsv = rsv; 8796 } 8797 8798 if (ret == 0 && inode->i_nlink > 0) { 8799 trans->block_rsv = root->orphan_block_rsv; 8800 ret = btrfs_orphan_del(trans, inode); 8801 if (ret) 8802 err = ret; 8803 } 8804 8805 if (trans) { 8806 trans->block_rsv = &root->fs_info->trans_block_rsv; 8807 ret = btrfs_update_inode(trans, root, inode); 8808 if (ret && !err) 8809 err = ret; 8810 8811 ret = btrfs_end_transaction(trans, root); 8812 btrfs_btree_balance_dirty(root); 8813 } 8814 8815 out: 8816 btrfs_free_block_rsv(root, rsv); 8817 8818 if (ret && !err) 8819 err = ret; 8820 8821 return err; 8822 } 8823 8824 /* 8825 * create a new subvolume directory/inode (helper for the ioctl). 8826 */ 8827 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans, 8828 struct btrfs_root *new_root, 8829 struct btrfs_root *parent_root, 8830 u64 new_dirid) 8831 { 8832 struct inode *inode; 8833 int err; 8834 u64 index = 0; 8835 8836 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, 8837 new_dirid, new_dirid, 8838 S_IFDIR | (~current_umask() & S_IRWXUGO), 8839 &index); 8840 if (IS_ERR(inode)) 8841 return PTR_ERR(inode); 8842 inode->i_op = &btrfs_dir_inode_operations; 8843 inode->i_fop = &btrfs_dir_file_operations; 8844 8845 set_nlink(inode, 1); 8846 btrfs_i_size_write(inode, 0); 8847 unlock_new_inode(inode); 8848 8849 err = btrfs_subvol_inherit_props(trans, new_root, parent_root); 8850 if (err) 8851 btrfs_err(new_root->fs_info, 8852 "error inheriting subvolume %llu properties: %d", 8853 new_root->root_key.objectid, err); 8854 8855 err = btrfs_update_inode(trans, new_root, inode); 8856 8857 iput(inode); 8858 return err; 8859 } 8860 8861 struct inode *btrfs_alloc_inode(struct super_block *sb) 8862 { 8863 struct btrfs_inode *ei; 8864 struct inode *inode; 8865 8866 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS); 8867 if (!ei) 8868 return NULL; 8869 8870 ei->root = NULL; 8871 ei->generation = 0; 8872 ei->last_trans = 0; 8873 ei->last_sub_trans = 0; 8874 ei->logged_trans = 0; 8875 ei->delalloc_bytes = 0; 8876 ei->defrag_bytes = 0; 8877 ei->disk_i_size = 0; 8878 ei->flags = 0; 8879 ei->csum_bytes = 0; 8880 ei->index_cnt = (u64)-1; 8881 ei->dir_index = 0; 8882 ei->last_unlink_trans = 0; 8883 ei->last_log_commit = 0; 8884 8885 spin_lock_init(&ei->lock); 8886 ei->outstanding_extents = 0; 8887 ei->reserved_extents = 0; 8888 8889 ei->runtime_flags = 0; 8890 ei->force_compress = BTRFS_COMPRESS_NONE; 8891 8892 ei->delayed_node = NULL; 8893 8894 ei->i_otime.tv_sec = 0; 8895 ei->i_otime.tv_nsec = 0; 8896 8897 inode = &ei->vfs_inode; 8898 extent_map_tree_init(&ei->extent_tree); 8899 extent_io_tree_init(&ei->io_tree, &inode->i_data); 8900 extent_io_tree_init(&ei->io_failure_tree, &inode->i_data); 8901 ei->io_tree.track_uptodate = 1; 8902 ei->io_failure_tree.track_uptodate = 1; 8903 atomic_set(&ei->sync_writers, 0); 8904 mutex_init(&ei->log_mutex); 8905 mutex_init(&ei->delalloc_mutex); 8906 btrfs_ordered_inode_tree_init(&ei->ordered_tree); 8907 INIT_LIST_HEAD(&ei->delalloc_inodes); 8908 RB_CLEAR_NODE(&ei->rb_node); 8909 8910 return inode; 8911 } 8912 8913 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 8914 void btrfs_test_destroy_inode(struct inode *inode) 8915 { 8916 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0); 8917 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 8918 } 8919 #endif 8920 8921 static void btrfs_i_callback(struct rcu_head *head) 8922 { 8923 struct inode *inode = container_of(head, struct inode, i_rcu); 8924 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 8925 } 8926 8927 void btrfs_destroy_inode(struct inode *inode) 8928 { 8929 struct btrfs_ordered_extent *ordered; 8930 struct btrfs_root *root = BTRFS_I(inode)->root; 8931 8932 WARN_ON(!hlist_empty(&inode->i_dentry)); 8933 WARN_ON(inode->i_data.nrpages); 8934 WARN_ON(BTRFS_I(inode)->outstanding_extents); 8935 WARN_ON(BTRFS_I(inode)->reserved_extents); 8936 WARN_ON(BTRFS_I(inode)->delalloc_bytes); 8937 WARN_ON(BTRFS_I(inode)->csum_bytes); 8938 WARN_ON(BTRFS_I(inode)->defrag_bytes); 8939 8940 /* 8941 * This can happen where we create an inode, but somebody else also 8942 * created the same inode and we need to destroy the one we already 8943 * created. 8944 */ 8945 if (!root) 8946 goto free; 8947 8948 if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 8949 &BTRFS_I(inode)->runtime_flags)) { 8950 btrfs_info(root->fs_info, "inode %llu still on the orphan list", 8951 btrfs_ino(inode)); 8952 atomic_dec(&root->orphan_inodes); 8953 } 8954 8955 while (1) { 8956 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1); 8957 if (!ordered) 8958 break; 8959 else { 8960 btrfs_err(root->fs_info, "found ordered extent %llu %llu on inode cleanup", 8961 ordered->file_offset, ordered->len); 8962 btrfs_remove_ordered_extent(inode, ordered); 8963 btrfs_put_ordered_extent(ordered); 8964 btrfs_put_ordered_extent(ordered); 8965 } 8966 } 8967 inode_tree_del(inode); 8968 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0); 8969 free: 8970 call_rcu(&inode->i_rcu, btrfs_i_callback); 8971 } 8972 8973 int btrfs_drop_inode(struct inode *inode) 8974 { 8975 struct btrfs_root *root = BTRFS_I(inode)->root; 8976 8977 if (root == NULL) 8978 return 1; 8979 8980 /* the snap/subvol tree is on deleting */ 8981 if (btrfs_root_refs(&root->root_item) == 0) 8982 return 1; 8983 else 8984 return generic_drop_inode(inode); 8985 } 8986 8987 static void init_once(void *foo) 8988 { 8989 struct btrfs_inode *ei = (struct btrfs_inode *) foo; 8990 8991 inode_init_once(&ei->vfs_inode); 8992 } 8993 8994 void btrfs_destroy_cachep(void) 8995 { 8996 /* 8997 * Make sure all delayed rcu free inodes are flushed before we 8998 * destroy cache. 8999 */ 9000 rcu_barrier(); 9001 if (btrfs_inode_cachep) 9002 kmem_cache_destroy(btrfs_inode_cachep); 9003 if (btrfs_trans_handle_cachep) 9004 kmem_cache_destroy(btrfs_trans_handle_cachep); 9005 if (btrfs_transaction_cachep) 9006 kmem_cache_destroy(btrfs_transaction_cachep); 9007 if (btrfs_path_cachep) 9008 kmem_cache_destroy(btrfs_path_cachep); 9009 if (btrfs_free_space_cachep) 9010 kmem_cache_destroy(btrfs_free_space_cachep); 9011 if (btrfs_delalloc_work_cachep) 9012 kmem_cache_destroy(btrfs_delalloc_work_cachep); 9013 } 9014 9015 int btrfs_init_cachep(void) 9016 { 9017 btrfs_inode_cachep = kmem_cache_create("btrfs_inode", 9018 sizeof(struct btrfs_inode), 0, 9019 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once); 9020 if (!btrfs_inode_cachep) 9021 goto fail; 9022 9023 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle", 9024 sizeof(struct btrfs_trans_handle), 0, 9025 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 9026 if (!btrfs_trans_handle_cachep) 9027 goto fail; 9028 9029 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction", 9030 sizeof(struct btrfs_transaction), 0, 9031 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 9032 if (!btrfs_transaction_cachep) 9033 goto fail; 9034 9035 btrfs_path_cachep = kmem_cache_create("btrfs_path", 9036 sizeof(struct btrfs_path), 0, 9037 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 9038 if (!btrfs_path_cachep) 9039 goto fail; 9040 9041 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space", 9042 sizeof(struct btrfs_free_space), 0, 9043 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 9044 if (!btrfs_free_space_cachep) 9045 goto fail; 9046 9047 btrfs_delalloc_work_cachep = kmem_cache_create("btrfs_delalloc_work", 9048 sizeof(struct btrfs_delalloc_work), 0, 9049 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, 9050 NULL); 9051 if (!btrfs_delalloc_work_cachep) 9052 goto fail; 9053 9054 return 0; 9055 fail: 9056 btrfs_destroy_cachep(); 9057 return -ENOMEM; 9058 } 9059 9060 static int btrfs_getattr(struct vfsmount *mnt, 9061 struct dentry *dentry, struct kstat *stat) 9062 { 9063 u64 delalloc_bytes; 9064 struct inode *inode = d_inode(dentry); 9065 u32 blocksize = inode->i_sb->s_blocksize; 9066 9067 generic_fillattr(inode, stat); 9068 stat->dev = BTRFS_I(inode)->root->anon_dev; 9069 stat->blksize = PAGE_CACHE_SIZE; 9070 9071 spin_lock(&BTRFS_I(inode)->lock); 9072 delalloc_bytes = BTRFS_I(inode)->delalloc_bytes; 9073 spin_unlock(&BTRFS_I(inode)->lock); 9074 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) + 9075 ALIGN(delalloc_bytes, blocksize)) >> 9; 9076 return 0; 9077 } 9078 9079 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry, 9080 struct inode *new_dir, struct dentry *new_dentry) 9081 { 9082 struct btrfs_trans_handle *trans; 9083 struct btrfs_root *root = BTRFS_I(old_dir)->root; 9084 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 9085 struct inode *new_inode = d_inode(new_dentry); 9086 struct inode *old_inode = d_inode(old_dentry); 9087 struct timespec ctime = CURRENT_TIME; 9088 u64 index = 0; 9089 u64 root_objectid; 9090 int ret; 9091 u64 old_ino = btrfs_ino(old_inode); 9092 9093 if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 9094 return -EPERM; 9095 9096 /* we only allow rename subvolume link between subvolumes */ 9097 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest) 9098 return -EXDEV; 9099 9100 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID || 9101 (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID)) 9102 return -ENOTEMPTY; 9103 9104 if (S_ISDIR(old_inode->i_mode) && new_inode && 9105 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) 9106 return -ENOTEMPTY; 9107 9108 9109 /* check for collisions, even if the name isn't there */ 9110 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino, 9111 new_dentry->d_name.name, 9112 new_dentry->d_name.len); 9113 9114 if (ret) { 9115 if (ret == -EEXIST) { 9116 /* we shouldn't get 9117 * eexist without a new_inode */ 9118 if (WARN_ON(!new_inode)) { 9119 return ret; 9120 } 9121 } else { 9122 /* maybe -EOVERFLOW */ 9123 return ret; 9124 } 9125 } 9126 ret = 0; 9127 9128 /* 9129 * we're using rename to replace one file with another. Start IO on it 9130 * now so we don't add too much work to the end of the transaction 9131 */ 9132 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size) 9133 filemap_flush(old_inode->i_mapping); 9134 9135 /* close the racy window with snapshot create/destroy ioctl */ 9136 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 9137 down_read(&root->fs_info->subvol_sem); 9138 /* 9139 * We want to reserve the absolute worst case amount of items. So if 9140 * both inodes are subvols and we need to unlink them then that would 9141 * require 4 item modifications, but if they are both normal inodes it 9142 * would require 5 item modifications, so we'll assume their normal 9143 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items 9144 * should cover the worst case number of items we'll modify. 9145 */ 9146 trans = btrfs_start_transaction(root, 11); 9147 if (IS_ERR(trans)) { 9148 ret = PTR_ERR(trans); 9149 goto out_notrans; 9150 } 9151 9152 if (dest != root) 9153 btrfs_record_root_in_trans(trans, dest); 9154 9155 ret = btrfs_set_inode_index(new_dir, &index); 9156 if (ret) 9157 goto out_fail; 9158 9159 BTRFS_I(old_inode)->dir_index = 0ULL; 9160 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 9161 /* force full log commit if subvolume involved. */ 9162 btrfs_set_log_full_commit(root->fs_info, trans); 9163 } else { 9164 ret = btrfs_insert_inode_ref(trans, dest, 9165 new_dentry->d_name.name, 9166 new_dentry->d_name.len, 9167 old_ino, 9168 btrfs_ino(new_dir), index); 9169 if (ret) 9170 goto out_fail; 9171 /* 9172 * this is an ugly little race, but the rename is required 9173 * to make sure that if we crash, the inode is either at the 9174 * old name or the new one. pinning the log transaction lets 9175 * us make sure we don't allow a log commit to come in after 9176 * we unlink the name but before we add the new name back in. 9177 */ 9178 btrfs_pin_log_trans(root); 9179 } 9180 9181 inode_inc_iversion(old_dir); 9182 inode_inc_iversion(new_dir); 9183 inode_inc_iversion(old_inode); 9184 old_dir->i_ctime = old_dir->i_mtime = ctime; 9185 new_dir->i_ctime = new_dir->i_mtime = ctime; 9186 old_inode->i_ctime = ctime; 9187 9188 if (old_dentry->d_parent != new_dentry->d_parent) 9189 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1); 9190 9191 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 9192 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid; 9193 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid, 9194 old_dentry->d_name.name, 9195 old_dentry->d_name.len); 9196 } else { 9197 ret = __btrfs_unlink_inode(trans, root, old_dir, 9198 d_inode(old_dentry), 9199 old_dentry->d_name.name, 9200 old_dentry->d_name.len); 9201 if (!ret) 9202 ret = btrfs_update_inode(trans, root, old_inode); 9203 } 9204 if (ret) { 9205 btrfs_abort_transaction(trans, root, ret); 9206 goto out_fail; 9207 } 9208 9209 if (new_inode) { 9210 inode_inc_iversion(new_inode); 9211 new_inode->i_ctime = CURRENT_TIME; 9212 if (unlikely(btrfs_ino(new_inode) == 9213 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 9214 root_objectid = BTRFS_I(new_inode)->location.objectid; 9215 ret = btrfs_unlink_subvol(trans, dest, new_dir, 9216 root_objectid, 9217 new_dentry->d_name.name, 9218 new_dentry->d_name.len); 9219 BUG_ON(new_inode->i_nlink == 0); 9220 } else { 9221 ret = btrfs_unlink_inode(trans, dest, new_dir, 9222 d_inode(new_dentry), 9223 new_dentry->d_name.name, 9224 new_dentry->d_name.len); 9225 } 9226 if (!ret && new_inode->i_nlink == 0) 9227 ret = btrfs_orphan_add(trans, d_inode(new_dentry)); 9228 if (ret) { 9229 btrfs_abort_transaction(trans, root, ret); 9230 goto out_fail; 9231 } 9232 } 9233 9234 ret = btrfs_add_link(trans, new_dir, old_inode, 9235 new_dentry->d_name.name, 9236 new_dentry->d_name.len, 0, index); 9237 if (ret) { 9238 btrfs_abort_transaction(trans, root, ret); 9239 goto out_fail; 9240 } 9241 9242 if (old_inode->i_nlink == 1) 9243 BTRFS_I(old_inode)->dir_index = index; 9244 9245 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) { 9246 struct dentry *parent = new_dentry->d_parent; 9247 btrfs_log_new_name(trans, old_inode, old_dir, parent); 9248 btrfs_end_log_trans(root); 9249 } 9250 out_fail: 9251 btrfs_end_transaction(trans, root); 9252 out_notrans: 9253 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 9254 up_read(&root->fs_info->subvol_sem); 9255 9256 return ret; 9257 } 9258 9259 static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry, 9260 struct inode *new_dir, struct dentry *new_dentry, 9261 unsigned int flags) 9262 { 9263 if (flags & ~RENAME_NOREPLACE) 9264 return -EINVAL; 9265 9266 return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry); 9267 } 9268 9269 static void btrfs_run_delalloc_work(struct btrfs_work *work) 9270 { 9271 struct btrfs_delalloc_work *delalloc_work; 9272 struct inode *inode; 9273 9274 delalloc_work = container_of(work, struct btrfs_delalloc_work, 9275 work); 9276 inode = delalloc_work->inode; 9277 if (delalloc_work->wait) { 9278 btrfs_wait_ordered_range(inode, 0, (u64)-1); 9279 } else { 9280 filemap_flush(inode->i_mapping); 9281 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 9282 &BTRFS_I(inode)->runtime_flags)) 9283 filemap_flush(inode->i_mapping); 9284 } 9285 9286 if (delalloc_work->delay_iput) 9287 btrfs_add_delayed_iput(inode); 9288 else 9289 iput(inode); 9290 complete(&delalloc_work->completion); 9291 } 9292 9293 struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode, 9294 int wait, int delay_iput) 9295 { 9296 struct btrfs_delalloc_work *work; 9297 9298 work = kmem_cache_zalloc(btrfs_delalloc_work_cachep, GFP_NOFS); 9299 if (!work) 9300 return NULL; 9301 9302 init_completion(&work->completion); 9303 INIT_LIST_HEAD(&work->list); 9304 work->inode = inode; 9305 work->wait = wait; 9306 work->delay_iput = delay_iput; 9307 WARN_ON_ONCE(!inode); 9308 btrfs_init_work(&work->work, btrfs_flush_delalloc_helper, 9309 btrfs_run_delalloc_work, NULL, NULL); 9310 9311 return work; 9312 } 9313 9314 void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work) 9315 { 9316 wait_for_completion(&work->completion); 9317 kmem_cache_free(btrfs_delalloc_work_cachep, work); 9318 } 9319 9320 /* 9321 * some fairly slow code that needs optimization. This walks the list 9322 * of all the inodes with pending delalloc and forces them to disk. 9323 */ 9324 static int __start_delalloc_inodes(struct btrfs_root *root, int delay_iput, 9325 int nr) 9326 { 9327 struct btrfs_inode *binode; 9328 struct inode *inode; 9329 struct btrfs_delalloc_work *work, *next; 9330 struct list_head works; 9331 struct list_head splice; 9332 int ret = 0; 9333 9334 INIT_LIST_HEAD(&works); 9335 INIT_LIST_HEAD(&splice); 9336 9337 mutex_lock(&root->delalloc_mutex); 9338 spin_lock(&root->delalloc_lock); 9339 list_splice_init(&root->delalloc_inodes, &splice); 9340 while (!list_empty(&splice)) { 9341 binode = list_entry(splice.next, struct btrfs_inode, 9342 delalloc_inodes); 9343 9344 list_move_tail(&binode->delalloc_inodes, 9345 &root->delalloc_inodes); 9346 inode = igrab(&binode->vfs_inode); 9347 if (!inode) { 9348 cond_resched_lock(&root->delalloc_lock); 9349 continue; 9350 } 9351 spin_unlock(&root->delalloc_lock); 9352 9353 work = btrfs_alloc_delalloc_work(inode, 0, delay_iput); 9354 if (!work) { 9355 if (delay_iput) 9356 btrfs_add_delayed_iput(inode); 9357 else 9358 iput(inode); 9359 ret = -ENOMEM; 9360 goto out; 9361 } 9362 list_add_tail(&work->list, &works); 9363 btrfs_queue_work(root->fs_info->flush_workers, 9364 &work->work); 9365 ret++; 9366 if (nr != -1 && ret >= nr) 9367 goto out; 9368 cond_resched(); 9369 spin_lock(&root->delalloc_lock); 9370 } 9371 spin_unlock(&root->delalloc_lock); 9372 9373 out: 9374 list_for_each_entry_safe(work, next, &works, list) { 9375 list_del_init(&work->list); 9376 btrfs_wait_and_free_delalloc_work(work); 9377 } 9378 9379 if (!list_empty_careful(&splice)) { 9380 spin_lock(&root->delalloc_lock); 9381 list_splice_tail(&splice, &root->delalloc_inodes); 9382 spin_unlock(&root->delalloc_lock); 9383 } 9384 mutex_unlock(&root->delalloc_mutex); 9385 return ret; 9386 } 9387 9388 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput) 9389 { 9390 int ret; 9391 9392 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) 9393 return -EROFS; 9394 9395 ret = __start_delalloc_inodes(root, delay_iput, -1); 9396 if (ret > 0) 9397 ret = 0; 9398 /* 9399 * the filemap_flush will queue IO into the worker threads, but 9400 * we have to make sure the IO is actually started and that 9401 * ordered extents get created before we return 9402 */ 9403 atomic_inc(&root->fs_info->async_submit_draining); 9404 while (atomic_read(&root->fs_info->nr_async_submits) || 9405 atomic_read(&root->fs_info->async_delalloc_pages)) { 9406 wait_event(root->fs_info->async_submit_wait, 9407 (atomic_read(&root->fs_info->nr_async_submits) == 0 && 9408 atomic_read(&root->fs_info->async_delalloc_pages) == 0)); 9409 } 9410 atomic_dec(&root->fs_info->async_submit_draining); 9411 return ret; 9412 } 9413 9414 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int delay_iput, 9415 int nr) 9416 { 9417 struct btrfs_root *root; 9418 struct list_head splice; 9419 int ret; 9420 9421 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 9422 return -EROFS; 9423 9424 INIT_LIST_HEAD(&splice); 9425 9426 mutex_lock(&fs_info->delalloc_root_mutex); 9427 spin_lock(&fs_info->delalloc_root_lock); 9428 list_splice_init(&fs_info->delalloc_roots, &splice); 9429 while (!list_empty(&splice) && nr) { 9430 root = list_first_entry(&splice, struct btrfs_root, 9431 delalloc_root); 9432 root = btrfs_grab_fs_root(root); 9433 BUG_ON(!root); 9434 list_move_tail(&root->delalloc_root, 9435 &fs_info->delalloc_roots); 9436 spin_unlock(&fs_info->delalloc_root_lock); 9437 9438 ret = __start_delalloc_inodes(root, delay_iput, nr); 9439 btrfs_put_fs_root(root); 9440 if (ret < 0) 9441 goto out; 9442 9443 if (nr != -1) { 9444 nr -= ret; 9445 WARN_ON(nr < 0); 9446 } 9447 spin_lock(&fs_info->delalloc_root_lock); 9448 } 9449 spin_unlock(&fs_info->delalloc_root_lock); 9450 9451 ret = 0; 9452 atomic_inc(&fs_info->async_submit_draining); 9453 while (atomic_read(&fs_info->nr_async_submits) || 9454 atomic_read(&fs_info->async_delalloc_pages)) { 9455 wait_event(fs_info->async_submit_wait, 9456 (atomic_read(&fs_info->nr_async_submits) == 0 && 9457 atomic_read(&fs_info->async_delalloc_pages) == 0)); 9458 } 9459 atomic_dec(&fs_info->async_submit_draining); 9460 out: 9461 if (!list_empty_careful(&splice)) { 9462 spin_lock(&fs_info->delalloc_root_lock); 9463 list_splice_tail(&splice, &fs_info->delalloc_roots); 9464 spin_unlock(&fs_info->delalloc_root_lock); 9465 } 9466 mutex_unlock(&fs_info->delalloc_root_mutex); 9467 return ret; 9468 } 9469 9470 static int btrfs_symlink(struct inode *dir, struct dentry *dentry, 9471 const char *symname) 9472 { 9473 struct btrfs_trans_handle *trans; 9474 struct btrfs_root *root = BTRFS_I(dir)->root; 9475 struct btrfs_path *path; 9476 struct btrfs_key key; 9477 struct inode *inode = NULL; 9478 int err; 9479 int drop_inode = 0; 9480 u64 objectid; 9481 u64 index = 0; 9482 int name_len; 9483 int datasize; 9484 unsigned long ptr; 9485 struct btrfs_file_extent_item *ei; 9486 struct extent_buffer *leaf; 9487 9488 name_len = strlen(symname); 9489 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root)) 9490 return -ENAMETOOLONG; 9491 9492 /* 9493 * 2 items for inode item and ref 9494 * 2 items for dir items 9495 * 1 item for xattr if selinux is on 9496 */ 9497 trans = btrfs_start_transaction(root, 5); 9498 if (IS_ERR(trans)) 9499 return PTR_ERR(trans); 9500 9501 err = btrfs_find_free_ino(root, &objectid); 9502 if (err) 9503 goto out_unlock; 9504 9505 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 9506 dentry->d_name.len, btrfs_ino(dir), objectid, 9507 S_IFLNK|S_IRWXUGO, &index); 9508 if (IS_ERR(inode)) { 9509 err = PTR_ERR(inode); 9510 goto out_unlock; 9511 } 9512 9513 /* 9514 * If the active LSM wants to access the inode during 9515 * d_instantiate it needs these. Smack checks to see 9516 * if the filesystem supports xattrs by looking at the 9517 * ops vector. 9518 */ 9519 inode->i_fop = &btrfs_file_operations; 9520 inode->i_op = &btrfs_file_inode_operations; 9521 inode->i_mapping->a_ops = &btrfs_aops; 9522 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 9523 9524 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 9525 if (err) 9526 goto out_unlock_inode; 9527 9528 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index); 9529 if (err) 9530 goto out_unlock_inode; 9531 9532 path = btrfs_alloc_path(); 9533 if (!path) { 9534 err = -ENOMEM; 9535 goto out_unlock_inode; 9536 } 9537 key.objectid = btrfs_ino(inode); 9538 key.offset = 0; 9539 key.type = BTRFS_EXTENT_DATA_KEY; 9540 datasize = btrfs_file_extent_calc_inline_size(name_len); 9541 err = btrfs_insert_empty_item(trans, root, path, &key, 9542 datasize); 9543 if (err) { 9544 btrfs_free_path(path); 9545 goto out_unlock_inode; 9546 } 9547 leaf = path->nodes[0]; 9548 ei = btrfs_item_ptr(leaf, path->slots[0], 9549 struct btrfs_file_extent_item); 9550 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 9551 btrfs_set_file_extent_type(leaf, ei, 9552 BTRFS_FILE_EXTENT_INLINE); 9553 btrfs_set_file_extent_encryption(leaf, ei, 0); 9554 btrfs_set_file_extent_compression(leaf, ei, 0); 9555 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 9556 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len); 9557 9558 ptr = btrfs_file_extent_inline_start(ei); 9559 write_extent_buffer(leaf, symname, ptr, name_len); 9560 btrfs_mark_buffer_dirty(leaf); 9561 btrfs_free_path(path); 9562 9563 inode->i_op = &btrfs_symlink_inode_operations; 9564 inode->i_mapping->a_ops = &btrfs_symlink_aops; 9565 inode_set_bytes(inode, name_len); 9566 btrfs_i_size_write(inode, name_len); 9567 err = btrfs_update_inode(trans, root, inode); 9568 if (err) { 9569 drop_inode = 1; 9570 goto out_unlock_inode; 9571 } 9572 9573 unlock_new_inode(inode); 9574 d_instantiate(dentry, inode); 9575 9576 out_unlock: 9577 btrfs_end_transaction(trans, root); 9578 if (drop_inode) { 9579 inode_dec_link_count(inode); 9580 iput(inode); 9581 } 9582 btrfs_btree_balance_dirty(root); 9583 return err; 9584 9585 out_unlock_inode: 9586 drop_inode = 1; 9587 unlock_new_inode(inode); 9588 goto out_unlock; 9589 } 9590 9591 static int __btrfs_prealloc_file_range(struct inode *inode, int mode, 9592 u64 start, u64 num_bytes, u64 min_size, 9593 loff_t actual_len, u64 *alloc_hint, 9594 struct btrfs_trans_handle *trans) 9595 { 9596 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 9597 struct extent_map *em; 9598 struct btrfs_root *root = BTRFS_I(inode)->root; 9599 struct btrfs_key ins; 9600 u64 cur_offset = start; 9601 u64 i_size; 9602 u64 cur_bytes; 9603 int ret = 0; 9604 bool own_trans = true; 9605 9606 if (trans) 9607 own_trans = false; 9608 while (num_bytes > 0) { 9609 if (own_trans) { 9610 trans = btrfs_start_transaction(root, 3); 9611 if (IS_ERR(trans)) { 9612 ret = PTR_ERR(trans); 9613 break; 9614 } 9615 } 9616 9617 cur_bytes = min(num_bytes, 256ULL * 1024 * 1024); 9618 cur_bytes = max(cur_bytes, min_size); 9619 ret = btrfs_reserve_extent(root, cur_bytes, min_size, 0, 9620 *alloc_hint, &ins, 1, 0); 9621 if (ret) { 9622 if (own_trans) 9623 btrfs_end_transaction(trans, root); 9624 break; 9625 } 9626 9627 ret = insert_reserved_file_extent(trans, inode, 9628 cur_offset, ins.objectid, 9629 ins.offset, ins.offset, 9630 ins.offset, 0, 0, 0, 9631 BTRFS_FILE_EXTENT_PREALLOC); 9632 if (ret) { 9633 btrfs_free_reserved_extent(root, ins.objectid, 9634 ins.offset, 0); 9635 btrfs_abort_transaction(trans, root, ret); 9636 if (own_trans) 9637 btrfs_end_transaction(trans, root); 9638 break; 9639 } 9640 9641 btrfs_drop_extent_cache(inode, cur_offset, 9642 cur_offset + ins.offset -1, 0); 9643 9644 em = alloc_extent_map(); 9645 if (!em) { 9646 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 9647 &BTRFS_I(inode)->runtime_flags); 9648 goto next; 9649 } 9650 9651 em->start = cur_offset; 9652 em->orig_start = cur_offset; 9653 em->len = ins.offset; 9654 em->block_start = ins.objectid; 9655 em->block_len = ins.offset; 9656 em->orig_block_len = ins.offset; 9657 em->ram_bytes = ins.offset; 9658 em->bdev = root->fs_info->fs_devices->latest_bdev; 9659 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 9660 em->generation = trans->transid; 9661 9662 while (1) { 9663 write_lock(&em_tree->lock); 9664 ret = add_extent_mapping(em_tree, em, 1); 9665 write_unlock(&em_tree->lock); 9666 if (ret != -EEXIST) 9667 break; 9668 btrfs_drop_extent_cache(inode, cur_offset, 9669 cur_offset + ins.offset - 1, 9670 0); 9671 } 9672 free_extent_map(em); 9673 next: 9674 num_bytes -= ins.offset; 9675 cur_offset += ins.offset; 9676 *alloc_hint = ins.objectid + ins.offset; 9677 9678 inode_inc_iversion(inode); 9679 inode->i_ctime = CURRENT_TIME; 9680 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC; 9681 if (!(mode & FALLOC_FL_KEEP_SIZE) && 9682 (actual_len > inode->i_size) && 9683 (cur_offset > inode->i_size)) { 9684 if (cur_offset > actual_len) 9685 i_size = actual_len; 9686 else 9687 i_size = cur_offset; 9688 i_size_write(inode, i_size); 9689 btrfs_ordered_update_i_size(inode, i_size, NULL); 9690 } 9691 9692 ret = btrfs_update_inode(trans, root, inode); 9693 9694 if (ret) { 9695 btrfs_abort_transaction(trans, root, ret); 9696 if (own_trans) 9697 btrfs_end_transaction(trans, root); 9698 break; 9699 } 9700 9701 if (own_trans) 9702 btrfs_end_transaction(trans, root); 9703 } 9704 return ret; 9705 } 9706 9707 int btrfs_prealloc_file_range(struct inode *inode, int mode, 9708 u64 start, u64 num_bytes, u64 min_size, 9709 loff_t actual_len, u64 *alloc_hint) 9710 { 9711 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 9712 min_size, actual_len, alloc_hint, 9713 NULL); 9714 } 9715 9716 int btrfs_prealloc_file_range_trans(struct inode *inode, 9717 struct btrfs_trans_handle *trans, int mode, 9718 u64 start, u64 num_bytes, u64 min_size, 9719 loff_t actual_len, u64 *alloc_hint) 9720 { 9721 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 9722 min_size, actual_len, alloc_hint, trans); 9723 } 9724 9725 static int btrfs_set_page_dirty(struct page *page) 9726 { 9727 return __set_page_dirty_nobuffers(page); 9728 } 9729 9730 static int btrfs_permission(struct inode *inode, int mask) 9731 { 9732 struct btrfs_root *root = BTRFS_I(inode)->root; 9733 umode_t mode = inode->i_mode; 9734 9735 if (mask & MAY_WRITE && 9736 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) { 9737 if (btrfs_root_readonly(root)) 9738 return -EROFS; 9739 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) 9740 return -EACCES; 9741 } 9742 return generic_permission(inode, mask); 9743 } 9744 9745 static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode) 9746 { 9747 struct btrfs_trans_handle *trans; 9748 struct btrfs_root *root = BTRFS_I(dir)->root; 9749 struct inode *inode = NULL; 9750 u64 objectid; 9751 u64 index; 9752 int ret = 0; 9753 9754 /* 9755 * 5 units required for adding orphan entry 9756 */ 9757 trans = btrfs_start_transaction(root, 5); 9758 if (IS_ERR(trans)) 9759 return PTR_ERR(trans); 9760 9761 ret = btrfs_find_free_ino(root, &objectid); 9762 if (ret) 9763 goto out; 9764 9765 inode = btrfs_new_inode(trans, root, dir, NULL, 0, 9766 btrfs_ino(dir), objectid, mode, &index); 9767 if (IS_ERR(inode)) { 9768 ret = PTR_ERR(inode); 9769 inode = NULL; 9770 goto out; 9771 } 9772 9773 inode->i_fop = &btrfs_file_operations; 9774 inode->i_op = &btrfs_file_inode_operations; 9775 9776 inode->i_mapping->a_ops = &btrfs_aops; 9777 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 9778 9779 ret = btrfs_init_inode_security(trans, inode, dir, NULL); 9780 if (ret) 9781 goto out_inode; 9782 9783 ret = btrfs_update_inode(trans, root, inode); 9784 if (ret) 9785 goto out_inode; 9786 ret = btrfs_orphan_add(trans, inode); 9787 if (ret) 9788 goto out_inode; 9789 9790 /* 9791 * We set number of links to 0 in btrfs_new_inode(), and here we set 9792 * it to 1 because d_tmpfile() will issue a warning if the count is 0, 9793 * through: 9794 * 9795 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink() 9796 */ 9797 set_nlink(inode, 1); 9798 unlock_new_inode(inode); 9799 d_tmpfile(dentry, inode); 9800 mark_inode_dirty(inode); 9801 9802 out: 9803 btrfs_end_transaction(trans, root); 9804 if (ret) 9805 iput(inode); 9806 btrfs_balance_delayed_items(root); 9807 btrfs_btree_balance_dirty(root); 9808 return ret; 9809 9810 out_inode: 9811 unlock_new_inode(inode); 9812 goto out; 9813 9814 } 9815 9816 /* Inspired by filemap_check_errors() */ 9817 int btrfs_inode_check_errors(struct inode *inode) 9818 { 9819 int ret = 0; 9820 9821 if (test_bit(AS_ENOSPC, &inode->i_mapping->flags) && 9822 test_and_clear_bit(AS_ENOSPC, &inode->i_mapping->flags)) 9823 ret = -ENOSPC; 9824 if (test_bit(AS_EIO, &inode->i_mapping->flags) && 9825 test_and_clear_bit(AS_EIO, &inode->i_mapping->flags)) 9826 ret = -EIO; 9827 9828 return ret; 9829 } 9830 9831 static const struct inode_operations btrfs_dir_inode_operations = { 9832 .getattr = btrfs_getattr, 9833 .lookup = btrfs_lookup, 9834 .create = btrfs_create, 9835 .unlink = btrfs_unlink, 9836 .link = btrfs_link, 9837 .mkdir = btrfs_mkdir, 9838 .rmdir = btrfs_rmdir, 9839 .rename2 = btrfs_rename2, 9840 .symlink = btrfs_symlink, 9841 .setattr = btrfs_setattr, 9842 .mknod = btrfs_mknod, 9843 .setxattr = btrfs_setxattr, 9844 .getxattr = btrfs_getxattr, 9845 .listxattr = btrfs_listxattr, 9846 .removexattr = btrfs_removexattr, 9847 .permission = btrfs_permission, 9848 .get_acl = btrfs_get_acl, 9849 .set_acl = btrfs_set_acl, 9850 .update_time = btrfs_update_time, 9851 .tmpfile = btrfs_tmpfile, 9852 }; 9853 static const struct inode_operations btrfs_dir_ro_inode_operations = { 9854 .lookup = btrfs_lookup, 9855 .permission = btrfs_permission, 9856 .get_acl = btrfs_get_acl, 9857 .set_acl = btrfs_set_acl, 9858 .update_time = btrfs_update_time, 9859 }; 9860 9861 static const struct file_operations btrfs_dir_file_operations = { 9862 .llseek = generic_file_llseek, 9863 .read = generic_read_dir, 9864 .iterate = btrfs_real_readdir, 9865 .unlocked_ioctl = btrfs_ioctl, 9866 #ifdef CONFIG_COMPAT 9867 .compat_ioctl = btrfs_ioctl, 9868 #endif 9869 .release = btrfs_release_file, 9870 .fsync = btrfs_sync_file, 9871 }; 9872 9873 static struct extent_io_ops btrfs_extent_io_ops = { 9874 .fill_delalloc = run_delalloc_range, 9875 .submit_bio_hook = btrfs_submit_bio_hook, 9876 .merge_bio_hook = btrfs_merge_bio_hook, 9877 .readpage_end_io_hook = btrfs_readpage_end_io_hook, 9878 .writepage_end_io_hook = btrfs_writepage_end_io_hook, 9879 .writepage_start_hook = btrfs_writepage_start_hook, 9880 .set_bit_hook = btrfs_set_bit_hook, 9881 .clear_bit_hook = btrfs_clear_bit_hook, 9882 .merge_extent_hook = btrfs_merge_extent_hook, 9883 .split_extent_hook = btrfs_split_extent_hook, 9884 }; 9885 9886 /* 9887 * btrfs doesn't support the bmap operation because swapfiles 9888 * use bmap to make a mapping of extents in the file. They assume 9889 * these extents won't change over the life of the file and they 9890 * use the bmap result to do IO directly to the drive. 9891 * 9892 * the btrfs bmap call would return logical addresses that aren't 9893 * suitable for IO and they also will change frequently as COW 9894 * operations happen. So, swapfile + btrfs == corruption. 9895 * 9896 * For now we're avoiding this by dropping bmap. 9897 */ 9898 static const struct address_space_operations btrfs_aops = { 9899 .readpage = btrfs_readpage, 9900 .writepage = btrfs_writepage, 9901 .writepages = btrfs_writepages, 9902 .readpages = btrfs_readpages, 9903 .direct_IO = btrfs_direct_IO, 9904 .invalidatepage = btrfs_invalidatepage, 9905 .releasepage = btrfs_releasepage, 9906 .set_page_dirty = btrfs_set_page_dirty, 9907 .error_remove_page = generic_error_remove_page, 9908 }; 9909 9910 static const struct address_space_operations btrfs_symlink_aops = { 9911 .readpage = btrfs_readpage, 9912 .writepage = btrfs_writepage, 9913 .invalidatepage = btrfs_invalidatepage, 9914 .releasepage = btrfs_releasepage, 9915 }; 9916 9917 static const struct inode_operations btrfs_file_inode_operations = { 9918 .getattr = btrfs_getattr, 9919 .setattr = btrfs_setattr, 9920 .setxattr = btrfs_setxattr, 9921 .getxattr = btrfs_getxattr, 9922 .listxattr = btrfs_listxattr, 9923 .removexattr = btrfs_removexattr, 9924 .permission = btrfs_permission, 9925 .fiemap = btrfs_fiemap, 9926 .get_acl = btrfs_get_acl, 9927 .set_acl = btrfs_set_acl, 9928 .update_time = btrfs_update_time, 9929 }; 9930 static const struct inode_operations btrfs_special_inode_operations = { 9931 .getattr = btrfs_getattr, 9932 .setattr = btrfs_setattr, 9933 .permission = btrfs_permission, 9934 .setxattr = btrfs_setxattr, 9935 .getxattr = btrfs_getxattr, 9936 .listxattr = btrfs_listxattr, 9937 .removexattr = btrfs_removexattr, 9938 .get_acl = btrfs_get_acl, 9939 .set_acl = btrfs_set_acl, 9940 .update_time = btrfs_update_time, 9941 }; 9942 static const struct inode_operations btrfs_symlink_inode_operations = { 9943 .readlink = generic_readlink, 9944 .follow_link = page_follow_link_light, 9945 .put_link = page_put_link, 9946 .getattr = btrfs_getattr, 9947 .setattr = btrfs_setattr, 9948 .permission = btrfs_permission, 9949 .setxattr = btrfs_setxattr, 9950 .getxattr = btrfs_getxattr, 9951 .listxattr = btrfs_listxattr, 9952 .removexattr = btrfs_removexattr, 9953 .update_time = btrfs_update_time, 9954 }; 9955 9956 const struct dentry_operations btrfs_dentry_operations = { 9957 .d_delete = btrfs_dentry_delete, 9958 .d_release = btrfs_dentry_release, 9959 }; 9960