1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/kernel.h> 20 #include <linux/bio.h> 21 #include <linux/buffer_head.h> 22 #include <linux/file.h> 23 #include <linux/fs.h> 24 #include <linux/pagemap.h> 25 #include <linux/highmem.h> 26 #include <linux/time.h> 27 #include <linux/init.h> 28 #include <linux/string.h> 29 #include <linux/backing-dev.h> 30 #include <linux/mpage.h> 31 #include <linux/swap.h> 32 #include <linux/writeback.h> 33 #include <linux/compat.h> 34 #include <linux/bit_spinlock.h> 35 #include <linux/xattr.h> 36 #include <linux/posix_acl.h> 37 #include <linux/falloc.h> 38 #include <linux/slab.h> 39 #include <linux/ratelimit.h> 40 #include <linux/mount.h> 41 #include <linux/btrfs.h> 42 #include <linux/blkdev.h> 43 #include <linux/posix_acl_xattr.h> 44 #include <linux/uio.h> 45 #include <linux/magic.h> 46 #include <linux/iversion.h> 47 #include "ctree.h" 48 #include "disk-io.h" 49 #include "transaction.h" 50 #include "btrfs_inode.h" 51 #include "print-tree.h" 52 #include "ordered-data.h" 53 #include "xattr.h" 54 #include "tree-log.h" 55 #include "volumes.h" 56 #include "compression.h" 57 #include "locking.h" 58 #include "free-space-cache.h" 59 #include "inode-map.h" 60 #include "backref.h" 61 #include "hash.h" 62 #include "props.h" 63 #include "qgroup.h" 64 #include "dedupe.h" 65 66 struct btrfs_iget_args { 67 struct btrfs_key *location; 68 struct btrfs_root *root; 69 }; 70 71 struct btrfs_dio_data { 72 u64 reserve; 73 u64 unsubmitted_oe_range_start; 74 u64 unsubmitted_oe_range_end; 75 int overwrite; 76 }; 77 78 static const struct inode_operations btrfs_dir_inode_operations; 79 static const struct inode_operations btrfs_symlink_inode_operations; 80 static const struct inode_operations btrfs_dir_ro_inode_operations; 81 static const struct inode_operations btrfs_special_inode_operations; 82 static const struct inode_operations btrfs_file_inode_operations; 83 static const struct address_space_operations btrfs_aops; 84 static const struct address_space_operations btrfs_symlink_aops; 85 static const struct file_operations btrfs_dir_file_operations; 86 static const struct extent_io_ops btrfs_extent_io_ops; 87 88 static struct kmem_cache *btrfs_inode_cachep; 89 struct kmem_cache *btrfs_trans_handle_cachep; 90 struct kmem_cache *btrfs_path_cachep; 91 struct kmem_cache *btrfs_free_space_cachep; 92 93 #define S_SHIFT 12 94 static const unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = { 95 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE, 96 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR, 97 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV, 98 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV, 99 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO, 100 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK, 101 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK, 102 }; 103 104 static int btrfs_setsize(struct inode *inode, struct iattr *attr); 105 static int btrfs_truncate(struct inode *inode); 106 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent); 107 static noinline int cow_file_range(struct inode *inode, 108 struct page *locked_page, 109 u64 start, u64 end, u64 delalloc_end, 110 int *page_started, unsigned long *nr_written, 111 int unlock, struct btrfs_dedupe_hash *hash); 112 static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len, 113 u64 orig_start, u64 block_start, 114 u64 block_len, u64 orig_block_len, 115 u64 ram_bytes, int compress_type, 116 int type); 117 118 static void __endio_write_update_ordered(struct inode *inode, 119 const u64 offset, const u64 bytes, 120 const bool uptodate); 121 122 /* 123 * Cleanup all submitted ordered extents in specified range to handle errors 124 * from the fill_dellaloc() callback. 125 * 126 * NOTE: caller must ensure that when an error happens, it can not call 127 * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING 128 * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata 129 * to be released, which we want to happen only when finishing the ordered 130 * extent (btrfs_finish_ordered_io()). Also note that the caller of the 131 * fill_delalloc() callback already does proper cleanup for the first page of 132 * the range, that is, it invokes the callback writepage_end_io_hook() for the 133 * range of the first page. 134 */ 135 static inline void btrfs_cleanup_ordered_extents(struct inode *inode, 136 const u64 offset, 137 const u64 bytes) 138 { 139 unsigned long index = offset >> PAGE_SHIFT; 140 unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT; 141 struct page *page; 142 143 while (index <= end_index) { 144 page = find_get_page(inode->i_mapping, index); 145 index++; 146 if (!page) 147 continue; 148 ClearPagePrivate2(page); 149 put_page(page); 150 } 151 return __endio_write_update_ordered(inode, offset + PAGE_SIZE, 152 bytes - PAGE_SIZE, false); 153 } 154 155 static int btrfs_dirty_inode(struct inode *inode); 156 157 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 158 void btrfs_test_inode_set_ops(struct inode *inode) 159 { 160 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 161 } 162 #endif 163 164 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans, 165 struct inode *inode, struct inode *dir, 166 const struct qstr *qstr) 167 { 168 int err; 169 170 err = btrfs_init_acl(trans, inode, dir); 171 if (!err) 172 err = btrfs_xattr_security_init(trans, inode, dir, qstr); 173 return err; 174 } 175 176 /* 177 * this does all the hard work for inserting an inline extent into 178 * the btree. The caller should have done a btrfs_drop_extents so that 179 * no overlapping inline items exist in the btree 180 */ 181 static int insert_inline_extent(struct btrfs_trans_handle *trans, 182 struct btrfs_path *path, int extent_inserted, 183 struct btrfs_root *root, struct inode *inode, 184 u64 start, size_t size, size_t compressed_size, 185 int compress_type, 186 struct page **compressed_pages) 187 { 188 struct extent_buffer *leaf; 189 struct page *page = NULL; 190 char *kaddr; 191 unsigned long ptr; 192 struct btrfs_file_extent_item *ei; 193 int ret; 194 size_t cur_size = size; 195 unsigned long offset; 196 197 if (compressed_size && compressed_pages) 198 cur_size = compressed_size; 199 200 inode_add_bytes(inode, size); 201 202 if (!extent_inserted) { 203 struct btrfs_key key; 204 size_t datasize; 205 206 key.objectid = btrfs_ino(BTRFS_I(inode)); 207 key.offset = start; 208 key.type = BTRFS_EXTENT_DATA_KEY; 209 210 datasize = btrfs_file_extent_calc_inline_size(cur_size); 211 path->leave_spinning = 1; 212 ret = btrfs_insert_empty_item(trans, root, path, &key, 213 datasize); 214 if (ret) 215 goto fail; 216 } 217 leaf = path->nodes[0]; 218 ei = btrfs_item_ptr(leaf, path->slots[0], 219 struct btrfs_file_extent_item); 220 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 221 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE); 222 btrfs_set_file_extent_encryption(leaf, ei, 0); 223 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 224 btrfs_set_file_extent_ram_bytes(leaf, ei, size); 225 ptr = btrfs_file_extent_inline_start(ei); 226 227 if (compress_type != BTRFS_COMPRESS_NONE) { 228 struct page *cpage; 229 int i = 0; 230 while (compressed_size > 0) { 231 cpage = compressed_pages[i]; 232 cur_size = min_t(unsigned long, compressed_size, 233 PAGE_SIZE); 234 235 kaddr = kmap_atomic(cpage); 236 write_extent_buffer(leaf, kaddr, ptr, cur_size); 237 kunmap_atomic(kaddr); 238 239 i++; 240 ptr += cur_size; 241 compressed_size -= cur_size; 242 } 243 btrfs_set_file_extent_compression(leaf, ei, 244 compress_type); 245 } else { 246 page = find_get_page(inode->i_mapping, 247 start >> PAGE_SHIFT); 248 btrfs_set_file_extent_compression(leaf, ei, 0); 249 kaddr = kmap_atomic(page); 250 offset = start & (PAGE_SIZE - 1); 251 write_extent_buffer(leaf, kaddr + offset, ptr, size); 252 kunmap_atomic(kaddr); 253 put_page(page); 254 } 255 btrfs_mark_buffer_dirty(leaf); 256 btrfs_release_path(path); 257 258 /* 259 * we're an inline extent, so nobody can 260 * extend the file past i_size without locking 261 * a page we already have locked. 262 * 263 * We must do any isize and inode updates 264 * before we unlock the pages. Otherwise we 265 * could end up racing with unlink. 266 */ 267 BTRFS_I(inode)->disk_i_size = inode->i_size; 268 ret = btrfs_update_inode(trans, root, inode); 269 270 fail: 271 return ret; 272 } 273 274 275 /* 276 * conditionally insert an inline extent into the file. This 277 * does the checks required to make sure the data is small enough 278 * to fit as an inline extent. 279 */ 280 static noinline int cow_file_range_inline(struct btrfs_root *root, 281 struct inode *inode, u64 start, 282 u64 end, size_t compressed_size, 283 int compress_type, 284 struct page **compressed_pages) 285 { 286 struct btrfs_fs_info *fs_info = root->fs_info; 287 struct btrfs_trans_handle *trans; 288 u64 isize = i_size_read(inode); 289 u64 actual_end = min(end + 1, isize); 290 u64 inline_len = actual_end - start; 291 u64 aligned_end = ALIGN(end, fs_info->sectorsize); 292 u64 data_len = inline_len; 293 int ret; 294 struct btrfs_path *path; 295 int extent_inserted = 0; 296 u32 extent_item_size; 297 298 if (compressed_size) 299 data_len = compressed_size; 300 301 if (start > 0 || 302 actual_end > fs_info->sectorsize || 303 data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) || 304 (!compressed_size && 305 (actual_end & (fs_info->sectorsize - 1)) == 0) || 306 end + 1 < isize || 307 data_len > fs_info->max_inline) { 308 return 1; 309 } 310 311 path = btrfs_alloc_path(); 312 if (!path) 313 return -ENOMEM; 314 315 trans = btrfs_join_transaction(root); 316 if (IS_ERR(trans)) { 317 btrfs_free_path(path); 318 return PTR_ERR(trans); 319 } 320 trans->block_rsv = &BTRFS_I(inode)->block_rsv; 321 322 if (compressed_size && compressed_pages) 323 extent_item_size = btrfs_file_extent_calc_inline_size( 324 compressed_size); 325 else 326 extent_item_size = btrfs_file_extent_calc_inline_size( 327 inline_len); 328 329 ret = __btrfs_drop_extents(trans, root, inode, path, 330 start, aligned_end, NULL, 331 1, 1, extent_item_size, &extent_inserted); 332 if (ret) { 333 btrfs_abort_transaction(trans, ret); 334 goto out; 335 } 336 337 if (isize > actual_end) 338 inline_len = min_t(u64, isize, actual_end); 339 ret = insert_inline_extent(trans, path, extent_inserted, 340 root, inode, start, 341 inline_len, compressed_size, 342 compress_type, compressed_pages); 343 if (ret && ret != -ENOSPC) { 344 btrfs_abort_transaction(trans, ret); 345 goto out; 346 } else if (ret == -ENOSPC) { 347 ret = 1; 348 goto out; 349 } 350 351 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 352 btrfs_drop_extent_cache(BTRFS_I(inode), start, aligned_end - 1, 0); 353 out: 354 /* 355 * Don't forget to free the reserved space, as for inlined extent 356 * it won't count as data extent, free them directly here. 357 * And at reserve time, it's always aligned to page size, so 358 * just free one page here. 359 */ 360 btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE); 361 btrfs_free_path(path); 362 btrfs_end_transaction(trans); 363 return ret; 364 } 365 366 struct async_extent { 367 u64 start; 368 u64 ram_size; 369 u64 compressed_size; 370 struct page **pages; 371 unsigned long nr_pages; 372 int compress_type; 373 struct list_head list; 374 }; 375 376 struct async_cow { 377 struct inode *inode; 378 struct btrfs_root *root; 379 struct page *locked_page; 380 u64 start; 381 u64 end; 382 unsigned int write_flags; 383 struct list_head extents; 384 struct btrfs_work work; 385 }; 386 387 static noinline int add_async_extent(struct async_cow *cow, 388 u64 start, u64 ram_size, 389 u64 compressed_size, 390 struct page **pages, 391 unsigned long nr_pages, 392 int compress_type) 393 { 394 struct async_extent *async_extent; 395 396 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS); 397 BUG_ON(!async_extent); /* -ENOMEM */ 398 async_extent->start = start; 399 async_extent->ram_size = ram_size; 400 async_extent->compressed_size = compressed_size; 401 async_extent->pages = pages; 402 async_extent->nr_pages = nr_pages; 403 async_extent->compress_type = compress_type; 404 list_add_tail(&async_extent->list, &cow->extents); 405 return 0; 406 } 407 408 static inline int inode_need_compress(struct inode *inode, u64 start, u64 end) 409 { 410 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 411 412 /* force compress */ 413 if (btrfs_test_opt(fs_info, FORCE_COMPRESS)) 414 return 1; 415 /* defrag ioctl */ 416 if (BTRFS_I(inode)->defrag_compress) 417 return 1; 418 /* bad compression ratios */ 419 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) 420 return 0; 421 if (btrfs_test_opt(fs_info, COMPRESS) || 422 BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS || 423 BTRFS_I(inode)->prop_compress) 424 return btrfs_compress_heuristic(inode, start, end); 425 return 0; 426 } 427 428 static inline void inode_should_defrag(struct btrfs_inode *inode, 429 u64 start, u64 end, u64 num_bytes, u64 small_write) 430 { 431 /* If this is a small write inside eof, kick off a defrag */ 432 if (num_bytes < small_write && 433 (start > 0 || end + 1 < inode->disk_i_size)) 434 btrfs_add_inode_defrag(NULL, inode); 435 } 436 437 /* 438 * we create compressed extents in two phases. The first 439 * phase compresses a range of pages that have already been 440 * locked (both pages and state bits are locked). 441 * 442 * This is done inside an ordered work queue, and the compression 443 * is spread across many cpus. The actual IO submission is step 444 * two, and the ordered work queue takes care of making sure that 445 * happens in the same order things were put onto the queue by 446 * writepages and friends. 447 * 448 * If this code finds it can't get good compression, it puts an 449 * entry onto the work queue to write the uncompressed bytes. This 450 * makes sure that both compressed inodes and uncompressed inodes 451 * are written in the same order that the flusher thread sent them 452 * down. 453 */ 454 static noinline void compress_file_range(struct inode *inode, 455 struct page *locked_page, 456 u64 start, u64 end, 457 struct async_cow *async_cow, 458 int *num_added) 459 { 460 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 461 struct btrfs_root *root = BTRFS_I(inode)->root; 462 u64 blocksize = fs_info->sectorsize; 463 u64 actual_end; 464 u64 isize = i_size_read(inode); 465 int ret = 0; 466 struct page **pages = NULL; 467 unsigned long nr_pages; 468 unsigned long total_compressed = 0; 469 unsigned long total_in = 0; 470 int i; 471 int will_compress; 472 int compress_type = fs_info->compress_type; 473 int redirty = 0; 474 475 inode_should_defrag(BTRFS_I(inode), start, end, end - start + 1, 476 SZ_16K); 477 478 actual_end = min_t(u64, isize, end + 1); 479 again: 480 will_compress = 0; 481 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1; 482 BUILD_BUG_ON((BTRFS_MAX_COMPRESSED % PAGE_SIZE) != 0); 483 nr_pages = min_t(unsigned long, nr_pages, 484 BTRFS_MAX_COMPRESSED / PAGE_SIZE); 485 486 /* 487 * we don't want to send crud past the end of i_size through 488 * compression, that's just a waste of CPU time. So, if the 489 * end of the file is before the start of our current 490 * requested range of bytes, we bail out to the uncompressed 491 * cleanup code that can deal with all of this. 492 * 493 * It isn't really the fastest way to fix things, but this is a 494 * very uncommon corner. 495 */ 496 if (actual_end <= start) 497 goto cleanup_and_bail_uncompressed; 498 499 total_compressed = actual_end - start; 500 501 /* 502 * skip compression for a small file range(<=blocksize) that 503 * isn't an inline extent, since it doesn't save disk space at all. 504 */ 505 if (total_compressed <= blocksize && 506 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size)) 507 goto cleanup_and_bail_uncompressed; 508 509 total_compressed = min_t(unsigned long, total_compressed, 510 BTRFS_MAX_UNCOMPRESSED); 511 total_in = 0; 512 ret = 0; 513 514 /* 515 * we do compression for mount -o compress and when the 516 * inode has not been flagged as nocompress. This flag can 517 * change at any time if we discover bad compression ratios. 518 */ 519 if (inode_need_compress(inode, start, end)) { 520 WARN_ON(pages); 521 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS); 522 if (!pages) { 523 /* just bail out to the uncompressed code */ 524 goto cont; 525 } 526 527 if (BTRFS_I(inode)->defrag_compress) 528 compress_type = BTRFS_I(inode)->defrag_compress; 529 else if (BTRFS_I(inode)->prop_compress) 530 compress_type = BTRFS_I(inode)->prop_compress; 531 532 /* 533 * we need to call clear_page_dirty_for_io on each 534 * page in the range. Otherwise applications with the file 535 * mmap'd can wander in and change the page contents while 536 * we are compressing them. 537 * 538 * If the compression fails for any reason, we set the pages 539 * dirty again later on. 540 * 541 * Note that the remaining part is redirtied, the start pointer 542 * has moved, the end is the original one. 543 */ 544 if (!redirty) { 545 extent_range_clear_dirty_for_io(inode, start, end); 546 redirty = 1; 547 } 548 549 /* Compression level is applied here and only here */ 550 ret = btrfs_compress_pages( 551 compress_type | (fs_info->compress_level << 4), 552 inode->i_mapping, start, 553 pages, 554 &nr_pages, 555 &total_in, 556 &total_compressed); 557 558 if (!ret) { 559 unsigned long offset = total_compressed & 560 (PAGE_SIZE - 1); 561 struct page *page = pages[nr_pages - 1]; 562 char *kaddr; 563 564 /* zero the tail end of the last page, we might be 565 * sending it down to disk 566 */ 567 if (offset) { 568 kaddr = kmap_atomic(page); 569 memset(kaddr + offset, 0, 570 PAGE_SIZE - offset); 571 kunmap_atomic(kaddr); 572 } 573 will_compress = 1; 574 } 575 } 576 cont: 577 if (start == 0) { 578 /* lets try to make an inline extent */ 579 if (ret || total_in < actual_end) { 580 /* we didn't compress the entire range, try 581 * to make an uncompressed inline extent. 582 */ 583 ret = cow_file_range_inline(root, inode, start, end, 584 0, BTRFS_COMPRESS_NONE, NULL); 585 } else { 586 /* try making a compressed inline extent */ 587 ret = cow_file_range_inline(root, inode, start, end, 588 total_compressed, 589 compress_type, pages); 590 } 591 if (ret <= 0) { 592 unsigned long clear_flags = EXTENT_DELALLOC | 593 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG | 594 EXTENT_DO_ACCOUNTING; 595 unsigned long page_error_op; 596 597 page_error_op = ret < 0 ? PAGE_SET_ERROR : 0; 598 599 /* 600 * inline extent creation worked or returned error, 601 * we don't need to create any more async work items. 602 * Unlock and free up our temp pages. 603 * 604 * We use DO_ACCOUNTING here because we need the 605 * delalloc_release_metadata to be done _after_ we drop 606 * our outstanding extent for clearing delalloc for this 607 * range. 608 */ 609 extent_clear_unlock_delalloc(inode, start, end, end, 610 NULL, clear_flags, 611 PAGE_UNLOCK | 612 PAGE_CLEAR_DIRTY | 613 PAGE_SET_WRITEBACK | 614 page_error_op | 615 PAGE_END_WRITEBACK); 616 goto free_pages_out; 617 } 618 } 619 620 if (will_compress) { 621 /* 622 * we aren't doing an inline extent round the compressed size 623 * up to a block size boundary so the allocator does sane 624 * things 625 */ 626 total_compressed = ALIGN(total_compressed, blocksize); 627 628 /* 629 * one last check to make sure the compression is really a 630 * win, compare the page count read with the blocks on disk, 631 * compression must free at least one sector size 632 */ 633 total_in = ALIGN(total_in, PAGE_SIZE); 634 if (total_compressed + blocksize <= total_in) { 635 *num_added += 1; 636 637 /* 638 * The async work queues will take care of doing actual 639 * allocation on disk for these compressed pages, and 640 * will submit them to the elevator. 641 */ 642 add_async_extent(async_cow, start, total_in, 643 total_compressed, pages, nr_pages, 644 compress_type); 645 646 if (start + total_in < end) { 647 start += total_in; 648 pages = NULL; 649 cond_resched(); 650 goto again; 651 } 652 return; 653 } 654 } 655 if (pages) { 656 /* 657 * the compression code ran but failed to make things smaller, 658 * free any pages it allocated and our page pointer array 659 */ 660 for (i = 0; i < nr_pages; i++) { 661 WARN_ON(pages[i]->mapping); 662 put_page(pages[i]); 663 } 664 kfree(pages); 665 pages = NULL; 666 total_compressed = 0; 667 nr_pages = 0; 668 669 /* flag the file so we don't compress in the future */ 670 if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) && 671 !(BTRFS_I(inode)->prop_compress)) { 672 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS; 673 } 674 } 675 cleanup_and_bail_uncompressed: 676 /* 677 * No compression, but we still need to write the pages in the file 678 * we've been given so far. redirty the locked page if it corresponds 679 * to our extent and set things up for the async work queue to run 680 * cow_file_range to do the normal delalloc dance. 681 */ 682 if (page_offset(locked_page) >= start && 683 page_offset(locked_page) <= end) 684 __set_page_dirty_nobuffers(locked_page); 685 /* unlocked later on in the async handlers */ 686 687 if (redirty) 688 extent_range_redirty_for_io(inode, start, end); 689 add_async_extent(async_cow, start, end - start + 1, 0, NULL, 0, 690 BTRFS_COMPRESS_NONE); 691 *num_added += 1; 692 693 return; 694 695 free_pages_out: 696 for (i = 0; i < nr_pages; i++) { 697 WARN_ON(pages[i]->mapping); 698 put_page(pages[i]); 699 } 700 kfree(pages); 701 } 702 703 static void free_async_extent_pages(struct async_extent *async_extent) 704 { 705 int i; 706 707 if (!async_extent->pages) 708 return; 709 710 for (i = 0; i < async_extent->nr_pages; i++) { 711 WARN_ON(async_extent->pages[i]->mapping); 712 put_page(async_extent->pages[i]); 713 } 714 kfree(async_extent->pages); 715 async_extent->nr_pages = 0; 716 async_extent->pages = NULL; 717 } 718 719 /* 720 * phase two of compressed writeback. This is the ordered portion 721 * of the code, which only gets called in the order the work was 722 * queued. We walk all the async extents created by compress_file_range 723 * and send them down to the disk. 724 */ 725 static noinline void submit_compressed_extents(struct inode *inode, 726 struct async_cow *async_cow) 727 { 728 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 729 struct async_extent *async_extent; 730 u64 alloc_hint = 0; 731 struct btrfs_key ins; 732 struct extent_map *em; 733 struct btrfs_root *root = BTRFS_I(inode)->root; 734 struct extent_io_tree *io_tree; 735 int ret = 0; 736 737 again: 738 while (!list_empty(&async_cow->extents)) { 739 async_extent = list_entry(async_cow->extents.next, 740 struct async_extent, list); 741 list_del(&async_extent->list); 742 743 io_tree = &BTRFS_I(inode)->io_tree; 744 745 retry: 746 /* did the compression code fall back to uncompressed IO? */ 747 if (!async_extent->pages) { 748 int page_started = 0; 749 unsigned long nr_written = 0; 750 751 lock_extent(io_tree, async_extent->start, 752 async_extent->start + 753 async_extent->ram_size - 1); 754 755 /* allocate blocks */ 756 ret = cow_file_range(inode, async_cow->locked_page, 757 async_extent->start, 758 async_extent->start + 759 async_extent->ram_size - 1, 760 async_extent->start + 761 async_extent->ram_size - 1, 762 &page_started, &nr_written, 0, 763 NULL); 764 765 /* JDM XXX */ 766 767 /* 768 * if page_started, cow_file_range inserted an 769 * inline extent and took care of all the unlocking 770 * and IO for us. Otherwise, we need to submit 771 * all those pages down to the drive. 772 */ 773 if (!page_started && !ret) 774 extent_write_locked_range(inode, 775 async_extent->start, 776 async_extent->start + 777 async_extent->ram_size - 1, 778 WB_SYNC_ALL); 779 else if (ret) 780 unlock_page(async_cow->locked_page); 781 kfree(async_extent); 782 cond_resched(); 783 continue; 784 } 785 786 lock_extent(io_tree, async_extent->start, 787 async_extent->start + async_extent->ram_size - 1); 788 789 ret = btrfs_reserve_extent(root, async_extent->ram_size, 790 async_extent->compressed_size, 791 async_extent->compressed_size, 792 0, alloc_hint, &ins, 1, 1); 793 if (ret) { 794 free_async_extent_pages(async_extent); 795 796 if (ret == -ENOSPC) { 797 unlock_extent(io_tree, async_extent->start, 798 async_extent->start + 799 async_extent->ram_size - 1); 800 801 /* 802 * we need to redirty the pages if we decide to 803 * fallback to uncompressed IO, otherwise we 804 * will not submit these pages down to lower 805 * layers. 806 */ 807 extent_range_redirty_for_io(inode, 808 async_extent->start, 809 async_extent->start + 810 async_extent->ram_size - 1); 811 812 goto retry; 813 } 814 goto out_free; 815 } 816 /* 817 * here we're doing allocation and writeback of the 818 * compressed pages 819 */ 820 em = create_io_em(inode, async_extent->start, 821 async_extent->ram_size, /* len */ 822 async_extent->start, /* orig_start */ 823 ins.objectid, /* block_start */ 824 ins.offset, /* block_len */ 825 ins.offset, /* orig_block_len */ 826 async_extent->ram_size, /* ram_bytes */ 827 async_extent->compress_type, 828 BTRFS_ORDERED_COMPRESSED); 829 if (IS_ERR(em)) 830 /* ret value is not necessary due to void function */ 831 goto out_free_reserve; 832 free_extent_map(em); 833 834 ret = btrfs_add_ordered_extent_compress(inode, 835 async_extent->start, 836 ins.objectid, 837 async_extent->ram_size, 838 ins.offset, 839 BTRFS_ORDERED_COMPRESSED, 840 async_extent->compress_type); 841 if (ret) { 842 btrfs_drop_extent_cache(BTRFS_I(inode), 843 async_extent->start, 844 async_extent->start + 845 async_extent->ram_size - 1, 0); 846 goto out_free_reserve; 847 } 848 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 849 850 /* 851 * clear dirty, set writeback and unlock the pages. 852 */ 853 extent_clear_unlock_delalloc(inode, async_extent->start, 854 async_extent->start + 855 async_extent->ram_size - 1, 856 async_extent->start + 857 async_extent->ram_size - 1, 858 NULL, EXTENT_LOCKED | EXTENT_DELALLOC, 859 PAGE_UNLOCK | PAGE_CLEAR_DIRTY | 860 PAGE_SET_WRITEBACK); 861 if (btrfs_submit_compressed_write(inode, 862 async_extent->start, 863 async_extent->ram_size, 864 ins.objectid, 865 ins.offset, async_extent->pages, 866 async_extent->nr_pages, 867 async_cow->write_flags)) { 868 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 869 struct page *p = async_extent->pages[0]; 870 const u64 start = async_extent->start; 871 const u64 end = start + async_extent->ram_size - 1; 872 873 p->mapping = inode->i_mapping; 874 tree->ops->writepage_end_io_hook(p, start, end, 875 NULL, 0); 876 p->mapping = NULL; 877 extent_clear_unlock_delalloc(inode, start, end, end, 878 NULL, 0, 879 PAGE_END_WRITEBACK | 880 PAGE_SET_ERROR); 881 free_async_extent_pages(async_extent); 882 } 883 alloc_hint = ins.objectid + ins.offset; 884 kfree(async_extent); 885 cond_resched(); 886 } 887 return; 888 out_free_reserve: 889 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 890 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1); 891 out_free: 892 extent_clear_unlock_delalloc(inode, async_extent->start, 893 async_extent->start + 894 async_extent->ram_size - 1, 895 async_extent->start + 896 async_extent->ram_size - 1, 897 NULL, EXTENT_LOCKED | EXTENT_DELALLOC | 898 EXTENT_DELALLOC_NEW | 899 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING, 900 PAGE_UNLOCK | PAGE_CLEAR_DIRTY | 901 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK | 902 PAGE_SET_ERROR); 903 free_async_extent_pages(async_extent); 904 kfree(async_extent); 905 goto again; 906 } 907 908 static u64 get_extent_allocation_hint(struct inode *inode, u64 start, 909 u64 num_bytes) 910 { 911 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 912 struct extent_map *em; 913 u64 alloc_hint = 0; 914 915 read_lock(&em_tree->lock); 916 em = search_extent_mapping(em_tree, start, num_bytes); 917 if (em) { 918 /* 919 * if block start isn't an actual block number then find the 920 * first block in this inode and use that as a hint. If that 921 * block is also bogus then just don't worry about it. 922 */ 923 if (em->block_start >= EXTENT_MAP_LAST_BYTE) { 924 free_extent_map(em); 925 em = search_extent_mapping(em_tree, 0, 0); 926 if (em && em->block_start < EXTENT_MAP_LAST_BYTE) 927 alloc_hint = em->block_start; 928 if (em) 929 free_extent_map(em); 930 } else { 931 alloc_hint = em->block_start; 932 free_extent_map(em); 933 } 934 } 935 read_unlock(&em_tree->lock); 936 937 return alloc_hint; 938 } 939 940 /* 941 * when extent_io.c finds a delayed allocation range in the file, 942 * the call backs end up in this code. The basic idea is to 943 * allocate extents on disk for the range, and create ordered data structs 944 * in ram to track those extents. 945 * 946 * locked_page is the page that writepage had locked already. We use 947 * it to make sure we don't do extra locks or unlocks. 948 * 949 * *page_started is set to one if we unlock locked_page and do everything 950 * required to start IO on it. It may be clean and already done with 951 * IO when we return. 952 */ 953 static noinline int cow_file_range(struct inode *inode, 954 struct page *locked_page, 955 u64 start, u64 end, u64 delalloc_end, 956 int *page_started, unsigned long *nr_written, 957 int unlock, struct btrfs_dedupe_hash *hash) 958 { 959 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 960 struct btrfs_root *root = BTRFS_I(inode)->root; 961 u64 alloc_hint = 0; 962 u64 num_bytes; 963 unsigned long ram_size; 964 u64 disk_num_bytes; 965 u64 cur_alloc_size = 0; 966 u64 blocksize = fs_info->sectorsize; 967 struct btrfs_key ins; 968 struct extent_map *em; 969 unsigned clear_bits; 970 unsigned long page_ops; 971 bool extent_reserved = false; 972 int ret = 0; 973 974 if (btrfs_is_free_space_inode(BTRFS_I(inode))) { 975 WARN_ON_ONCE(1); 976 ret = -EINVAL; 977 goto out_unlock; 978 } 979 980 num_bytes = ALIGN(end - start + 1, blocksize); 981 num_bytes = max(blocksize, num_bytes); 982 disk_num_bytes = num_bytes; 983 984 inode_should_defrag(BTRFS_I(inode), start, end, num_bytes, SZ_64K); 985 986 if (start == 0) { 987 /* lets try to make an inline extent */ 988 ret = cow_file_range_inline(root, inode, start, end, 0, 989 BTRFS_COMPRESS_NONE, NULL); 990 if (ret == 0) { 991 /* 992 * We use DO_ACCOUNTING here because we need the 993 * delalloc_release_metadata to be run _after_ we drop 994 * our outstanding extent for clearing delalloc for this 995 * range. 996 */ 997 extent_clear_unlock_delalloc(inode, start, end, 998 delalloc_end, NULL, 999 EXTENT_LOCKED | EXTENT_DELALLOC | 1000 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG | 1001 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK | 1002 PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK | 1003 PAGE_END_WRITEBACK); 1004 *nr_written = *nr_written + 1005 (end - start + PAGE_SIZE) / PAGE_SIZE; 1006 *page_started = 1; 1007 goto out; 1008 } else if (ret < 0) { 1009 goto out_unlock; 1010 } 1011 } 1012 1013 BUG_ON(disk_num_bytes > 1014 btrfs_super_total_bytes(fs_info->super_copy)); 1015 1016 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes); 1017 btrfs_drop_extent_cache(BTRFS_I(inode), start, 1018 start + num_bytes - 1, 0); 1019 1020 while (disk_num_bytes > 0) { 1021 cur_alloc_size = disk_num_bytes; 1022 ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size, 1023 fs_info->sectorsize, 0, alloc_hint, 1024 &ins, 1, 1); 1025 if (ret < 0) 1026 goto out_unlock; 1027 cur_alloc_size = ins.offset; 1028 extent_reserved = true; 1029 1030 ram_size = ins.offset; 1031 em = create_io_em(inode, start, ins.offset, /* len */ 1032 start, /* orig_start */ 1033 ins.objectid, /* block_start */ 1034 ins.offset, /* block_len */ 1035 ins.offset, /* orig_block_len */ 1036 ram_size, /* ram_bytes */ 1037 BTRFS_COMPRESS_NONE, /* compress_type */ 1038 BTRFS_ORDERED_REGULAR /* type */); 1039 if (IS_ERR(em)) 1040 goto out_reserve; 1041 free_extent_map(em); 1042 1043 ret = btrfs_add_ordered_extent(inode, start, ins.objectid, 1044 ram_size, cur_alloc_size, 0); 1045 if (ret) 1046 goto out_drop_extent_cache; 1047 1048 if (root->root_key.objectid == 1049 BTRFS_DATA_RELOC_TREE_OBJECTID) { 1050 ret = btrfs_reloc_clone_csums(inode, start, 1051 cur_alloc_size); 1052 /* 1053 * Only drop cache here, and process as normal. 1054 * 1055 * We must not allow extent_clear_unlock_delalloc() 1056 * at out_unlock label to free meta of this ordered 1057 * extent, as its meta should be freed by 1058 * btrfs_finish_ordered_io(). 1059 * 1060 * So we must continue until @start is increased to 1061 * skip current ordered extent. 1062 */ 1063 if (ret) 1064 btrfs_drop_extent_cache(BTRFS_I(inode), start, 1065 start + ram_size - 1, 0); 1066 } 1067 1068 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1069 1070 /* we're not doing compressed IO, don't unlock the first 1071 * page (which the caller expects to stay locked), don't 1072 * clear any dirty bits and don't set any writeback bits 1073 * 1074 * Do set the Private2 bit so we know this page was properly 1075 * setup for writepage 1076 */ 1077 page_ops = unlock ? PAGE_UNLOCK : 0; 1078 page_ops |= PAGE_SET_PRIVATE2; 1079 1080 extent_clear_unlock_delalloc(inode, start, 1081 start + ram_size - 1, 1082 delalloc_end, locked_page, 1083 EXTENT_LOCKED | EXTENT_DELALLOC, 1084 page_ops); 1085 if (disk_num_bytes < cur_alloc_size) 1086 disk_num_bytes = 0; 1087 else 1088 disk_num_bytes -= cur_alloc_size; 1089 num_bytes -= cur_alloc_size; 1090 alloc_hint = ins.objectid + ins.offset; 1091 start += cur_alloc_size; 1092 extent_reserved = false; 1093 1094 /* 1095 * btrfs_reloc_clone_csums() error, since start is increased 1096 * extent_clear_unlock_delalloc() at out_unlock label won't 1097 * free metadata of current ordered extent, we're OK to exit. 1098 */ 1099 if (ret) 1100 goto out_unlock; 1101 } 1102 out: 1103 return ret; 1104 1105 out_drop_extent_cache: 1106 btrfs_drop_extent_cache(BTRFS_I(inode), start, start + ram_size - 1, 0); 1107 out_reserve: 1108 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1109 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1); 1110 out_unlock: 1111 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW | 1112 EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV; 1113 page_ops = PAGE_UNLOCK | PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK | 1114 PAGE_END_WRITEBACK; 1115 /* 1116 * If we reserved an extent for our delalloc range (or a subrange) and 1117 * failed to create the respective ordered extent, then it means that 1118 * when we reserved the extent we decremented the extent's size from 1119 * the data space_info's bytes_may_use counter and incremented the 1120 * space_info's bytes_reserved counter by the same amount. We must make 1121 * sure extent_clear_unlock_delalloc() does not try to decrement again 1122 * the data space_info's bytes_may_use counter, therefore we do not pass 1123 * it the flag EXTENT_CLEAR_DATA_RESV. 1124 */ 1125 if (extent_reserved) { 1126 extent_clear_unlock_delalloc(inode, start, 1127 start + cur_alloc_size, 1128 start + cur_alloc_size, 1129 locked_page, 1130 clear_bits, 1131 page_ops); 1132 start += cur_alloc_size; 1133 if (start >= end) 1134 goto out; 1135 } 1136 extent_clear_unlock_delalloc(inode, start, end, delalloc_end, 1137 locked_page, 1138 clear_bits | EXTENT_CLEAR_DATA_RESV, 1139 page_ops); 1140 goto out; 1141 } 1142 1143 /* 1144 * work queue call back to started compression on a file and pages 1145 */ 1146 static noinline void async_cow_start(struct btrfs_work *work) 1147 { 1148 struct async_cow *async_cow; 1149 int num_added = 0; 1150 async_cow = container_of(work, struct async_cow, work); 1151 1152 compress_file_range(async_cow->inode, async_cow->locked_page, 1153 async_cow->start, async_cow->end, async_cow, 1154 &num_added); 1155 if (num_added == 0) { 1156 btrfs_add_delayed_iput(async_cow->inode); 1157 async_cow->inode = NULL; 1158 } 1159 } 1160 1161 /* 1162 * work queue call back to submit previously compressed pages 1163 */ 1164 static noinline void async_cow_submit(struct btrfs_work *work) 1165 { 1166 struct btrfs_fs_info *fs_info; 1167 struct async_cow *async_cow; 1168 struct btrfs_root *root; 1169 unsigned long nr_pages; 1170 1171 async_cow = container_of(work, struct async_cow, work); 1172 1173 root = async_cow->root; 1174 fs_info = root->fs_info; 1175 nr_pages = (async_cow->end - async_cow->start + PAGE_SIZE) >> 1176 PAGE_SHIFT; 1177 1178 /* 1179 * atomic_sub_return implies a barrier for waitqueue_active 1180 */ 1181 if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) < 1182 5 * SZ_1M && 1183 waitqueue_active(&fs_info->async_submit_wait)) 1184 wake_up(&fs_info->async_submit_wait); 1185 1186 if (async_cow->inode) 1187 submit_compressed_extents(async_cow->inode, async_cow); 1188 } 1189 1190 static noinline void async_cow_free(struct btrfs_work *work) 1191 { 1192 struct async_cow *async_cow; 1193 async_cow = container_of(work, struct async_cow, work); 1194 if (async_cow->inode) 1195 btrfs_add_delayed_iput(async_cow->inode); 1196 kfree(async_cow); 1197 } 1198 1199 static int cow_file_range_async(struct inode *inode, struct page *locked_page, 1200 u64 start, u64 end, int *page_started, 1201 unsigned long *nr_written, 1202 unsigned int write_flags) 1203 { 1204 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1205 struct async_cow *async_cow; 1206 struct btrfs_root *root = BTRFS_I(inode)->root; 1207 unsigned long nr_pages; 1208 u64 cur_end; 1209 1210 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED, 1211 1, 0, NULL); 1212 while (start < end) { 1213 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS); 1214 BUG_ON(!async_cow); /* -ENOMEM */ 1215 async_cow->inode = igrab(inode); 1216 async_cow->root = root; 1217 async_cow->locked_page = locked_page; 1218 async_cow->start = start; 1219 async_cow->write_flags = write_flags; 1220 1221 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS && 1222 !btrfs_test_opt(fs_info, FORCE_COMPRESS)) 1223 cur_end = end; 1224 else 1225 cur_end = min(end, start + SZ_512K - 1); 1226 1227 async_cow->end = cur_end; 1228 INIT_LIST_HEAD(&async_cow->extents); 1229 1230 btrfs_init_work(&async_cow->work, 1231 btrfs_delalloc_helper, 1232 async_cow_start, async_cow_submit, 1233 async_cow_free); 1234 1235 nr_pages = (cur_end - start + PAGE_SIZE) >> 1236 PAGE_SHIFT; 1237 atomic_add(nr_pages, &fs_info->async_delalloc_pages); 1238 1239 btrfs_queue_work(fs_info->delalloc_workers, &async_cow->work); 1240 1241 *nr_written += nr_pages; 1242 start = cur_end + 1; 1243 } 1244 *page_started = 1; 1245 return 0; 1246 } 1247 1248 static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info, 1249 u64 bytenr, u64 num_bytes) 1250 { 1251 int ret; 1252 struct btrfs_ordered_sum *sums; 1253 LIST_HEAD(list); 1254 1255 ret = btrfs_lookup_csums_range(fs_info->csum_root, bytenr, 1256 bytenr + num_bytes - 1, &list, 0); 1257 if (ret == 0 && list_empty(&list)) 1258 return 0; 1259 1260 while (!list_empty(&list)) { 1261 sums = list_entry(list.next, struct btrfs_ordered_sum, list); 1262 list_del(&sums->list); 1263 kfree(sums); 1264 } 1265 return 1; 1266 } 1267 1268 /* 1269 * when nowcow writeback call back. This checks for snapshots or COW copies 1270 * of the extents that exist in the file, and COWs the file as required. 1271 * 1272 * If no cow copies or snapshots exist, we write directly to the existing 1273 * blocks on disk 1274 */ 1275 static noinline int run_delalloc_nocow(struct inode *inode, 1276 struct page *locked_page, 1277 u64 start, u64 end, int *page_started, int force, 1278 unsigned long *nr_written) 1279 { 1280 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1281 struct btrfs_root *root = BTRFS_I(inode)->root; 1282 struct extent_buffer *leaf; 1283 struct btrfs_path *path; 1284 struct btrfs_file_extent_item *fi; 1285 struct btrfs_key found_key; 1286 struct extent_map *em; 1287 u64 cow_start; 1288 u64 cur_offset; 1289 u64 extent_end; 1290 u64 extent_offset; 1291 u64 disk_bytenr; 1292 u64 num_bytes; 1293 u64 disk_num_bytes; 1294 u64 ram_bytes; 1295 int extent_type; 1296 int ret, err; 1297 int type; 1298 int nocow; 1299 int check_prev = 1; 1300 bool nolock; 1301 u64 ino = btrfs_ino(BTRFS_I(inode)); 1302 1303 path = btrfs_alloc_path(); 1304 if (!path) { 1305 extent_clear_unlock_delalloc(inode, start, end, end, 1306 locked_page, 1307 EXTENT_LOCKED | EXTENT_DELALLOC | 1308 EXTENT_DO_ACCOUNTING | 1309 EXTENT_DEFRAG, PAGE_UNLOCK | 1310 PAGE_CLEAR_DIRTY | 1311 PAGE_SET_WRITEBACK | 1312 PAGE_END_WRITEBACK); 1313 return -ENOMEM; 1314 } 1315 1316 nolock = btrfs_is_free_space_inode(BTRFS_I(inode)); 1317 1318 cow_start = (u64)-1; 1319 cur_offset = start; 1320 while (1) { 1321 ret = btrfs_lookup_file_extent(NULL, root, path, ino, 1322 cur_offset, 0); 1323 if (ret < 0) 1324 goto error; 1325 if (ret > 0 && path->slots[0] > 0 && check_prev) { 1326 leaf = path->nodes[0]; 1327 btrfs_item_key_to_cpu(leaf, &found_key, 1328 path->slots[0] - 1); 1329 if (found_key.objectid == ino && 1330 found_key.type == BTRFS_EXTENT_DATA_KEY) 1331 path->slots[0]--; 1332 } 1333 check_prev = 0; 1334 next_slot: 1335 leaf = path->nodes[0]; 1336 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 1337 ret = btrfs_next_leaf(root, path); 1338 if (ret < 0) { 1339 if (cow_start != (u64)-1) 1340 cur_offset = cow_start; 1341 goto error; 1342 } 1343 if (ret > 0) 1344 break; 1345 leaf = path->nodes[0]; 1346 } 1347 1348 nocow = 0; 1349 disk_bytenr = 0; 1350 num_bytes = 0; 1351 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1352 1353 if (found_key.objectid > ino) 1354 break; 1355 if (WARN_ON_ONCE(found_key.objectid < ino) || 1356 found_key.type < BTRFS_EXTENT_DATA_KEY) { 1357 path->slots[0]++; 1358 goto next_slot; 1359 } 1360 if (found_key.type > BTRFS_EXTENT_DATA_KEY || 1361 found_key.offset > end) 1362 break; 1363 1364 if (found_key.offset > cur_offset) { 1365 extent_end = found_key.offset; 1366 extent_type = 0; 1367 goto out_check; 1368 } 1369 1370 fi = btrfs_item_ptr(leaf, path->slots[0], 1371 struct btrfs_file_extent_item); 1372 extent_type = btrfs_file_extent_type(leaf, fi); 1373 1374 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 1375 if (extent_type == BTRFS_FILE_EXTENT_REG || 1376 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1377 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1378 extent_offset = btrfs_file_extent_offset(leaf, fi); 1379 extent_end = found_key.offset + 1380 btrfs_file_extent_num_bytes(leaf, fi); 1381 disk_num_bytes = 1382 btrfs_file_extent_disk_num_bytes(leaf, fi); 1383 if (extent_end <= start) { 1384 path->slots[0]++; 1385 goto next_slot; 1386 } 1387 if (disk_bytenr == 0) 1388 goto out_check; 1389 if (btrfs_file_extent_compression(leaf, fi) || 1390 btrfs_file_extent_encryption(leaf, fi) || 1391 btrfs_file_extent_other_encoding(leaf, fi)) 1392 goto out_check; 1393 if (extent_type == BTRFS_FILE_EXTENT_REG && !force) 1394 goto out_check; 1395 if (btrfs_extent_readonly(fs_info, disk_bytenr)) 1396 goto out_check; 1397 if (btrfs_cross_ref_exist(root, ino, 1398 found_key.offset - 1399 extent_offset, disk_bytenr)) 1400 goto out_check; 1401 disk_bytenr += extent_offset; 1402 disk_bytenr += cur_offset - found_key.offset; 1403 num_bytes = min(end + 1, extent_end) - cur_offset; 1404 /* 1405 * if there are pending snapshots for this root, 1406 * we fall into common COW way. 1407 */ 1408 if (!nolock) { 1409 err = btrfs_start_write_no_snapshotting(root); 1410 if (!err) 1411 goto out_check; 1412 } 1413 /* 1414 * force cow if csum exists in the range. 1415 * this ensure that csum for a given extent are 1416 * either valid or do not exist. 1417 */ 1418 if (csum_exist_in_range(fs_info, disk_bytenr, 1419 num_bytes)) { 1420 if (!nolock) 1421 btrfs_end_write_no_snapshotting(root); 1422 goto out_check; 1423 } 1424 if (!btrfs_inc_nocow_writers(fs_info, disk_bytenr)) { 1425 if (!nolock) 1426 btrfs_end_write_no_snapshotting(root); 1427 goto out_check; 1428 } 1429 nocow = 1; 1430 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 1431 extent_end = found_key.offset + 1432 btrfs_file_extent_inline_len(leaf, 1433 path->slots[0], fi); 1434 extent_end = ALIGN(extent_end, 1435 fs_info->sectorsize); 1436 } else { 1437 BUG_ON(1); 1438 } 1439 out_check: 1440 if (extent_end <= start) { 1441 path->slots[0]++; 1442 if (!nolock && nocow) 1443 btrfs_end_write_no_snapshotting(root); 1444 if (nocow) 1445 btrfs_dec_nocow_writers(fs_info, disk_bytenr); 1446 goto next_slot; 1447 } 1448 if (!nocow) { 1449 if (cow_start == (u64)-1) 1450 cow_start = cur_offset; 1451 cur_offset = extent_end; 1452 if (cur_offset > end) 1453 break; 1454 path->slots[0]++; 1455 goto next_slot; 1456 } 1457 1458 btrfs_release_path(path); 1459 if (cow_start != (u64)-1) { 1460 ret = cow_file_range(inode, locked_page, 1461 cow_start, found_key.offset - 1, 1462 end, page_started, nr_written, 1, 1463 NULL); 1464 if (ret) { 1465 if (!nolock && nocow) 1466 btrfs_end_write_no_snapshotting(root); 1467 if (nocow) 1468 btrfs_dec_nocow_writers(fs_info, 1469 disk_bytenr); 1470 goto error; 1471 } 1472 cow_start = (u64)-1; 1473 } 1474 1475 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1476 u64 orig_start = found_key.offset - extent_offset; 1477 1478 em = create_io_em(inode, cur_offset, num_bytes, 1479 orig_start, 1480 disk_bytenr, /* block_start */ 1481 num_bytes, /* block_len */ 1482 disk_num_bytes, /* orig_block_len */ 1483 ram_bytes, BTRFS_COMPRESS_NONE, 1484 BTRFS_ORDERED_PREALLOC); 1485 if (IS_ERR(em)) { 1486 if (!nolock && nocow) 1487 btrfs_end_write_no_snapshotting(root); 1488 if (nocow) 1489 btrfs_dec_nocow_writers(fs_info, 1490 disk_bytenr); 1491 ret = PTR_ERR(em); 1492 goto error; 1493 } 1494 free_extent_map(em); 1495 } 1496 1497 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1498 type = BTRFS_ORDERED_PREALLOC; 1499 } else { 1500 type = BTRFS_ORDERED_NOCOW; 1501 } 1502 1503 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr, 1504 num_bytes, num_bytes, type); 1505 if (nocow) 1506 btrfs_dec_nocow_writers(fs_info, disk_bytenr); 1507 BUG_ON(ret); /* -ENOMEM */ 1508 1509 if (root->root_key.objectid == 1510 BTRFS_DATA_RELOC_TREE_OBJECTID) 1511 /* 1512 * Error handled later, as we must prevent 1513 * extent_clear_unlock_delalloc() in error handler 1514 * from freeing metadata of created ordered extent. 1515 */ 1516 ret = btrfs_reloc_clone_csums(inode, cur_offset, 1517 num_bytes); 1518 1519 extent_clear_unlock_delalloc(inode, cur_offset, 1520 cur_offset + num_bytes - 1, end, 1521 locked_page, EXTENT_LOCKED | 1522 EXTENT_DELALLOC | 1523 EXTENT_CLEAR_DATA_RESV, 1524 PAGE_UNLOCK | PAGE_SET_PRIVATE2); 1525 1526 if (!nolock && nocow) 1527 btrfs_end_write_no_snapshotting(root); 1528 cur_offset = extent_end; 1529 1530 /* 1531 * btrfs_reloc_clone_csums() error, now we're OK to call error 1532 * handler, as metadata for created ordered extent will only 1533 * be freed by btrfs_finish_ordered_io(). 1534 */ 1535 if (ret) 1536 goto error; 1537 if (cur_offset > end) 1538 break; 1539 } 1540 btrfs_release_path(path); 1541 1542 if (cur_offset <= end && cow_start == (u64)-1) { 1543 cow_start = cur_offset; 1544 cur_offset = end; 1545 } 1546 1547 if (cow_start != (u64)-1) { 1548 ret = cow_file_range(inode, locked_page, cow_start, end, end, 1549 page_started, nr_written, 1, NULL); 1550 if (ret) 1551 goto error; 1552 } 1553 1554 error: 1555 if (ret && cur_offset < end) 1556 extent_clear_unlock_delalloc(inode, cur_offset, end, end, 1557 locked_page, EXTENT_LOCKED | 1558 EXTENT_DELALLOC | EXTENT_DEFRAG | 1559 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK | 1560 PAGE_CLEAR_DIRTY | 1561 PAGE_SET_WRITEBACK | 1562 PAGE_END_WRITEBACK); 1563 btrfs_free_path(path); 1564 return ret; 1565 } 1566 1567 static inline int need_force_cow(struct inode *inode, u64 start, u64 end) 1568 { 1569 1570 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) && 1571 !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)) 1572 return 0; 1573 1574 /* 1575 * @defrag_bytes is a hint value, no spinlock held here, 1576 * if is not zero, it means the file is defragging. 1577 * Force cow if given extent needs to be defragged. 1578 */ 1579 if (BTRFS_I(inode)->defrag_bytes && 1580 test_range_bit(&BTRFS_I(inode)->io_tree, start, end, 1581 EXTENT_DEFRAG, 0, NULL)) 1582 return 1; 1583 1584 return 0; 1585 } 1586 1587 /* 1588 * extent_io.c call back to do delayed allocation processing 1589 */ 1590 static int run_delalloc_range(void *private_data, struct page *locked_page, 1591 u64 start, u64 end, int *page_started, 1592 unsigned long *nr_written, 1593 struct writeback_control *wbc) 1594 { 1595 struct inode *inode = private_data; 1596 int ret; 1597 int force_cow = need_force_cow(inode, start, end); 1598 unsigned int write_flags = wbc_to_write_flags(wbc); 1599 1600 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) { 1601 ret = run_delalloc_nocow(inode, locked_page, start, end, 1602 page_started, 1, nr_written); 1603 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) { 1604 ret = run_delalloc_nocow(inode, locked_page, start, end, 1605 page_started, 0, nr_written); 1606 } else if (!inode_need_compress(inode, start, end)) { 1607 ret = cow_file_range(inode, locked_page, start, end, end, 1608 page_started, nr_written, 1, NULL); 1609 } else { 1610 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 1611 &BTRFS_I(inode)->runtime_flags); 1612 ret = cow_file_range_async(inode, locked_page, start, end, 1613 page_started, nr_written, 1614 write_flags); 1615 } 1616 if (ret) 1617 btrfs_cleanup_ordered_extents(inode, start, end - start + 1); 1618 return ret; 1619 } 1620 1621 static void btrfs_split_extent_hook(void *private_data, 1622 struct extent_state *orig, u64 split) 1623 { 1624 struct inode *inode = private_data; 1625 u64 size; 1626 1627 /* not delalloc, ignore it */ 1628 if (!(orig->state & EXTENT_DELALLOC)) 1629 return; 1630 1631 size = orig->end - orig->start + 1; 1632 if (size > BTRFS_MAX_EXTENT_SIZE) { 1633 u32 num_extents; 1634 u64 new_size; 1635 1636 /* 1637 * See the explanation in btrfs_merge_extent_hook, the same 1638 * applies here, just in reverse. 1639 */ 1640 new_size = orig->end - split + 1; 1641 num_extents = count_max_extents(new_size); 1642 new_size = split - orig->start; 1643 num_extents += count_max_extents(new_size); 1644 if (count_max_extents(size) >= num_extents) 1645 return; 1646 } 1647 1648 spin_lock(&BTRFS_I(inode)->lock); 1649 btrfs_mod_outstanding_extents(BTRFS_I(inode), 1); 1650 spin_unlock(&BTRFS_I(inode)->lock); 1651 } 1652 1653 /* 1654 * extent_io.c merge_extent_hook, used to track merged delayed allocation 1655 * extents so we can keep track of new extents that are just merged onto old 1656 * extents, such as when we are doing sequential writes, so we can properly 1657 * account for the metadata space we'll need. 1658 */ 1659 static void btrfs_merge_extent_hook(void *private_data, 1660 struct extent_state *new, 1661 struct extent_state *other) 1662 { 1663 struct inode *inode = private_data; 1664 u64 new_size, old_size; 1665 u32 num_extents; 1666 1667 /* not delalloc, ignore it */ 1668 if (!(other->state & EXTENT_DELALLOC)) 1669 return; 1670 1671 if (new->start > other->start) 1672 new_size = new->end - other->start + 1; 1673 else 1674 new_size = other->end - new->start + 1; 1675 1676 /* we're not bigger than the max, unreserve the space and go */ 1677 if (new_size <= BTRFS_MAX_EXTENT_SIZE) { 1678 spin_lock(&BTRFS_I(inode)->lock); 1679 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1); 1680 spin_unlock(&BTRFS_I(inode)->lock); 1681 return; 1682 } 1683 1684 /* 1685 * We have to add up either side to figure out how many extents were 1686 * accounted for before we merged into one big extent. If the number of 1687 * extents we accounted for is <= the amount we need for the new range 1688 * then we can return, otherwise drop. Think of it like this 1689 * 1690 * [ 4k][MAX_SIZE] 1691 * 1692 * So we've grown the extent by a MAX_SIZE extent, this would mean we 1693 * need 2 outstanding extents, on one side we have 1 and the other side 1694 * we have 1 so they are == and we can return. But in this case 1695 * 1696 * [MAX_SIZE+4k][MAX_SIZE+4k] 1697 * 1698 * Each range on their own accounts for 2 extents, but merged together 1699 * they are only 3 extents worth of accounting, so we need to drop in 1700 * this case. 1701 */ 1702 old_size = other->end - other->start + 1; 1703 num_extents = count_max_extents(old_size); 1704 old_size = new->end - new->start + 1; 1705 num_extents += count_max_extents(old_size); 1706 if (count_max_extents(new_size) >= num_extents) 1707 return; 1708 1709 spin_lock(&BTRFS_I(inode)->lock); 1710 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1); 1711 spin_unlock(&BTRFS_I(inode)->lock); 1712 } 1713 1714 static void btrfs_add_delalloc_inodes(struct btrfs_root *root, 1715 struct inode *inode) 1716 { 1717 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1718 1719 spin_lock(&root->delalloc_lock); 1720 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) { 1721 list_add_tail(&BTRFS_I(inode)->delalloc_inodes, 1722 &root->delalloc_inodes); 1723 set_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1724 &BTRFS_I(inode)->runtime_flags); 1725 root->nr_delalloc_inodes++; 1726 if (root->nr_delalloc_inodes == 1) { 1727 spin_lock(&fs_info->delalloc_root_lock); 1728 BUG_ON(!list_empty(&root->delalloc_root)); 1729 list_add_tail(&root->delalloc_root, 1730 &fs_info->delalloc_roots); 1731 spin_unlock(&fs_info->delalloc_root_lock); 1732 } 1733 } 1734 spin_unlock(&root->delalloc_lock); 1735 } 1736 1737 static void btrfs_del_delalloc_inode(struct btrfs_root *root, 1738 struct btrfs_inode *inode) 1739 { 1740 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb); 1741 1742 spin_lock(&root->delalloc_lock); 1743 if (!list_empty(&inode->delalloc_inodes)) { 1744 list_del_init(&inode->delalloc_inodes); 1745 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1746 &inode->runtime_flags); 1747 root->nr_delalloc_inodes--; 1748 if (!root->nr_delalloc_inodes) { 1749 spin_lock(&fs_info->delalloc_root_lock); 1750 BUG_ON(list_empty(&root->delalloc_root)); 1751 list_del_init(&root->delalloc_root); 1752 spin_unlock(&fs_info->delalloc_root_lock); 1753 } 1754 } 1755 spin_unlock(&root->delalloc_lock); 1756 } 1757 1758 /* 1759 * extent_io.c set_bit_hook, used to track delayed allocation 1760 * bytes in this file, and to maintain the list of inodes that 1761 * have pending delalloc work to be done. 1762 */ 1763 static void btrfs_set_bit_hook(void *private_data, 1764 struct extent_state *state, unsigned *bits) 1765 { 1766 struct inode *inode = private_data; 1767 1768 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1769 1770 if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC)) 1771 WARN_ON(1); 1772 /* 1773 * set_bit and clear bit hooks normally require _irqsave/restore 1774 * but in this case, we are only testing for the DELALLOC 1775 * bit, which is only set or cleared with irqs on 1776 */ 1777 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) { 1778 struct btrfs_root *root = BTRFS_I(inode)->root; 1779 u64 len = state->end + 1 - state->start; 1780 u32 num_extents = count_max_extents(len); 1781 bool do_list = !btrfs_is_free_space_inode(BTRFS_I(inode)); 1782 1783 spin_lock(&BTRFS_I(inode)->lock); 1784 btrfs_mod_outstanding_extents(BTRFS_I(inode), num_extents); 1785 spin_unlock(&BTRFS_I(inode)->lock); 1786 1787 /* For sanity tests */ 1788 if (btrfs_is_testing(fs_info)) 1789 return; 1790 1791 percpu_counter_add_batch(&fs_info->delalloc_bytes, len, 1792 fs_info->delalloc_batch); 1793 spin_lock(&BTRFS_I(inode)->lock); 1794 BTRFS_I(inode)->delalloc_bytes += len; 1795 if (*bits & EXTENT_DEFRAG) 1796 BTRFS_I(inode)->defrag_bytes += len; 1797 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1798 &BTRFS_I(inode)->runtime_flags)) 1799 btrfs_add_delalloc_inodes(root, inode); 1800 spin_unlock(&BTRFS_I(inode)->lock); 1801 } 1802 1803 if (!(state->state & EXTENT_DELALLOC_NEW) && 1804 (*bits & EXTENT_DELALLOC_NEW)) { 1805 spin_lock(&BTRFS_I(inode)->lock); 1806 BTRFS_I(inode)->new_delalloc_bytes += state->end + 1 - 1807 state->start; 1808 spin_unlock(&BTRFS_I(inode)->lock); 1809 } 1810 } 1811 1812 /* 1813 * extent_io.c clear_bit_hook, see set_bit_hook for why 1814 */ 1815 static void btrfs_clear_bit_hook(void *private_data, 1816 struct extent_state *state, 1817 unsigned *bits) 1818 { 1819 struct btrfs_inode *inode = BTRFS_I((struct inode *)private_data); 1820 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb); 1821 u64 len = state->end + 1 - state->start; 1822 u32 num_extents = count_max_extents(len); 1823 1824 if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG)) { 1825 spin_lock(&inode->lock); 1826 inode->defrag_bytes -= len; 1827 spin_unlock(&inode->lock); 1828 } 1829 1830 /* 1831 * set_bit and clear bit hooks normally require _irqsave/restore 1832 * but in this case, we are only testing for the DELALLOC 1833 * bit, which is only set or cleared with irqs on 1834 */ 1835 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) { 1836 struct btrfs_root *root = inode->root; 1837 bool do_list = !btrfs_is_free_space_inode(inode); 1838 1839 spin_lock(&inode->lock); 1840 btrfs_mod_outstanding_extents(inode, -num_extents); 1841 spin_unlock(&inode->lock); 1842 1843 /* 1844 * We don't reserve metadata space for space cache inodes so we 1845 * don't need to call dellalloc_release_metadata if there is an 1846 * error. 1847 */ 1848 if (*bits & EXTENT_CLEAR_META_RESV && 1849 root != fs_info->tree_root) 1850 btrfs_delalloc_release_metadata(inode, len); 1851 1852 /* For sanity tests. */ 1853 if (btrfs_is_testing(fs_info)) 1854 return; 1855 1856 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID && 1857 do_list && !(state->state & EXTENT_NORESERVE) && 1858 (*bits & EXTENT_CLEAR_DATA_RESV)) 1859 btrfs_free_reserved_data_space_noquota( 1860 &inode->vfs_inode, 1861 state->start, len); 1862 1863 percpu_counter_add_batch(&fs_info->delalloc_bytes, -len, 1864 fs_info->delalloc_batch); 1865 spin_lock(&inode->lock); 1866 inode->delalloc_bytes -= len; 1867 if (do_list && inode->delalloc_bytes == 0 && 1868 test_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1869 &inode->runtime_flags)) 1870 btrfs_del_delalloc_inode(root, inode); 1871 spin_unlock(&inode->lock); 1872 } 1873 1874 if ((state->state & EXTENT_DELALLOC_NEW) && 1875 (*bits & EXTENT_DELALLOC_NEW)) { 1876 spin_lock(&inode->lock); 1877 ASSERT(inode->new_delalloc_bytes >= len); 1878 inode->new_delalloc_bytes -= len; 1879 spin_unlock(&inode->lock); 1880 } 1881 } 1882 1883 /* 1884 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure 1885 * we don't create bios that span stripes or chunks 1886 * 1887 * return 1 if page cannot be merged to bio 1888 * return 0 if page can be merged to bio 1889 * return error otherwise 1890 */ 1891 int btrfs_merge_bio_hook(struct page *page, unsigned long offset, 1892 size_t size, struct bio *bio, 1893 unsigned long bio_flags) 1894 { 1895 struct inode *inode = page->mapping->host; 1896 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1897 u64 logical = (u64)bio->bi_iter.bi_sector << 9; 1898 u64 length = 0; 1899 u64 map_length; 1900 int ret; 1901 1902 if (bio_flags & EXTENT_BIO_COMPRESSED) 1903 return 0; 1904 1905 length = bio->bi_iter.bi_size; 1906 map_length = length; 1907 ret = btrfs_map_block(fs_info, btrfs_op(bio), logical, &map_length, 1908 NULL, 0); 1909 if (ret < 0) 1910 return ret; 1911 if (map_length < length + size) 1912 return 1; 1913 return 0; 1914 } 1915 1916 /* 1917 * in order to insert checksums into the metadata in large chunks, 1918 * we wait until bio submission time. All the pages in the bio are 1919 * checksummed and sums are attached onto the ordered extent record. 1920 * 1921 * At IO completion time the cums attached on the ordered extent record 1922 * are inserted into the btree 1923 */ 1924 static blk_status_t __btrfs_submit_bio_start(void *private_data, struct bio *bio, 1925 int mirror_num, unsigned long bio_flags, 1926 u64 bio_offset) 1927 { 1928 struct inode *inode = private_data; 1929 blk_status_t ret = 0; 1930 1931 ret = btrfs_csum_one_bio(inode, bio, 0, 0); 1932 BUG_ON(ret); /* -ENOMEM */ 1933 return 0; 1934 } 1935 1936 /* 1937 * in order to insert checksums into the metadata in large chunks, 1938 * we wait until bio submission time. All the pages in the bio are 1939 * checksummed and sums are attached onto the ordered extent record. 1940 * 1941 * At IO completion time the cums attached on the ordered extent record 1942 * are inserted into the btree 1943 */ 1944 static blk_status_t __btrfs_submit_bio_done(void *private_data, struct bio *bio, 1945 int mirror_num, unsigned long bio_flags, 1946 u64 bio_offset) 1947 { 1948 struct inode *inode = private_data; 1949 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1950 blk_status_t ret; 1951 1952 ret = btrfs_map_bio(fs_info, bio, mirror_num, 1); 1953 if (ret) { 1954 bio->bi_status = ret; 1955 bio_endio(bio); 1956 } 1957 return ret; 1958 } 1959 1960 /* 1961 * extent_io.c submission hook. This does the right thing for csum calculation 1962 * on write, or reading the csums from the tree before a read. 1963 * 1964 * Rules about async/sync submit, 1965 * a) read: sync submit 1966 * 1967 * b) write without checksum: sync submit 1968 * 1969 * c) write with checksum: 1970 * c-1) if bio is issued by fsync: sync submit 1971 * (sync_writers != 0) 1972 * 1973 * c-2) if root is reloc root: sync submit 1974 * (only in case of buffered IO) 1975 * 1976 * c-3) otherwise: async submit 1977 */ 1978 static blk_status_t btrfs_submit_bio_hook(void *private_data, struct bio *bio, 1979 int mirror_num, unsigned long bio_flags, 1980 u64 bio_offset) 1981 { 1982 struct inode *inode = private_data; 1983 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1984 struct btrfs_root *root = BTRFS_I(inode)->root; 1985 enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA; 1986 blk_status_t ret = 0; 1987 int skip_sum; 1988 int async = !atomic_read(&BTRFS_I(inode)->sync_writers); 1989 1990 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 1991 1992 if (btrfs_is_free_space_inode(BTRFS_I(inode))) 1993 metadata = BTRFS_WQ_ENDIO_FREE_SPACE; 1994 1995 if (bio_op(bio) != REQ_OP_WRITE) { 1996 ret = btrfs_bio_wq_end_io(fs_info, bio, metadata); 1997 if (ret) 1998 goto out; 1999 2000 if (bio_flags & EXTENT_BIO_COMPRESSED) { 2001 ret = btrfs_submit_compressed_read(inode, bio, 2002 mirror_num, 2003 bio_flags); 2004 goto out; 2005 } else if (!skip_sum) { 2006 ret = btrfs_lookup_bio_sums(inode, bio, NULL); 2007 if (ret) 2008 goto out; 2009 } 2010 goto mapit; 2011 } else if (async && !skip_sum) { 2012 /* csum items have already been cloned */ 2013 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) 2014 goto mapit; 2015 /* we're doing a write, do the async checksumming */ 2016 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, bio_flags, 2017 bio_offset, inode, 2018 __btrfs_submit_bio_start, 2019 __btrfs_submit_bio_done); 2020 goto out; 2021 } else if (!skip_sum) { 2022 ret = btrfs_csum_one_bio(inode, bio, 0, 0); 2023 if (ret) 2024 goto out; 2025 } 2026 2027 mapit: 2028 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0); 2029 2030 out: 2031 if (ret) { 2032 bio->bi_status = ret; 2033 bio_endio(bio); 2034 } 2035 return ret; 2036 } 2037 2038 /* 2039 * given a list of ordered sums record them in the inode. This happens 2040 * at IO completion time based on sums calculated at bio submission time. 2041 */ 2042 static noinline int add_pending_csums(struct btrfs_trans_handle *trans, 2043 struct inode *inode, struct list_head *list) 2044 { 2045 struct btrfs_ordered_sum *sum; 2046 int ret; 2047 2048 list_for_each_entry(sum, list, list) { 2049 trans->adding_csums = true; 2050 ret = btrfs_csum_file_blocks(trans, 2051 BTRFS_I(inode)->root->fs_info->csum_root, sum); 2052 trans->adding_csums = false; 2053 if (ret) 2054 return ret; 2055 } 2056 return 0; 2057 } 2058 2059 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end, 2060 unsigned int extra_bits, 2061 struct extent_state **cached_state, int dedupe) 2062 { 2063 WARN_ON((end & (PAGE_SIZE - 1)) == 0); 2064 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end, 2065 extra_bits, cached_state); 2066 } 2067 2068 /* see btrfs_writepage_start_hook for details on why this is required */ 2069 struct btrfs_writepage_fixup { 2070 struct page *page; 2071 struct btrfs_work work; 2072 }; 2073 2074 static void btrfs_writepage_fixup_worker(struct btrfs_work *work) 2075 { 2076 struct btrfs_writepage_fixup *fixup; 2077 struct btrfs_ordered_extent *ordered; 2078 struct extent_state *cached_state = NULL; 2079 struct extent_changeset *data_reserved = NULL; 2080 struct page *page; 2081 struct inode *inode; 2082 u64 page_start; 2083 u64 page_end; 2084 int ret; 2085 2086 fixup = container_of(work, struct btrfs_writepage_fixup, work); 2087 page = fixup->page; 2088 again: 2089 lock_page(page); 2090 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) { 2091 ClearPageChecked(page); 2092 goto out_page; 2093 } 2094 2095 inode = page->mapping->host; 2096 page_start = page_offset(page); 2097 page_end = page_offset(page) + PAGE_SIZE - 1; 2098 2099 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 2100 &cached_state); 2101 2102 /* already ordered? We're done */ 2103 if (PagePrivate2(page)) 2104 goto out; 2105 2106 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start, 2107 PAGE_SIZE); 2108 if (ordered) { 2109 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, 2110 page_end, &cached_state); 2111 unlock_page(page); 2112 btrfs_start_ordered_extent(inode, ordered, 1); 2113 btrfs_put_ordered_extent(ordered); 2114 goto again; 2115 } 2116 2117 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start, 2118 PAGE_SIZE); 2119 if (ret) { 2120 mapping_set_error(page->mapping, ret); 2121 end_extent_writepage(page, ret, page_start, page_end); 2122 ClearPageChecked(page); 2123 goto out; 2124 } 2125 2126 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0, 2127 &cached_state, 0); 2128 if (ret) { 2129 mapping_set_error(page->mapping, ret); 2130 end_extent_writepage(page, ret, page_start, page_end); 2131 ClearPageChecked(page); 2132 goto out; 2133 } 2134 2135 ClearPageChecked(page); 2136 set_page_dirty(page); 2137 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE); 2138 out: 2139 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end, 2140 &cached_state); 2141 out_page: 2142 unlock_page(page); 2143 put_page(page); 2144 kfree(fixup); 2145 extent_changeset_free(data_reserved); 2146 } 2147 2148 /* 2149 * There are a few paths in the higher layers of the kernel that directly 2150 * set the page dirty bit without asking the filesystem if it is a 2151 * good idea. This causes problems because we want to make sure COW 2152 * properly happens and the data=ordered rules are followed. 2153 * 2154 * In our case any range that doesn't have the ORDERED bit set 2155 * hasn't been properly setup for IO. We kick off an async process 2156 * to fix it up. The async helper will wait for ordered extents, set 2157 * the delalloc bit and make it safe to write the page. 2158 */ 2159 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end) 2160 { 2161 struct inode *inode = page->mapping->host; 2162 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2163 struct btrfs_writepage_fixup *fixup; 2164 2165 /* this page is properly in the ordered list */ 2166 if (TestClearPagePrivate2(page)) 2167 return 0; 2168 2169 if (PageChecked(page)) 2170 return -EAGAIN; 2171 2172 fixup = kzalloc(sizeof(*fixup), GFP_NOFS); 2173 if (!fixup) 2174 return -EAGAIN; 2175 2176 SetPageChecked(page); 2177 get_page(page); 2178 btrfs_init_work(&fixup->work, btrfs_fixup_helper, 2179 btrfs_writepage_fixup_worker, NULL, NULL); 2180 fixup->page = page; 2181 btrfs_queue_work(fs_info->fixup_workers, &fixup->work); 2182 return -EBUSY; 2183 } 2184 2185 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans, 2186 struct inode *inode, u64 file_pos, 2187 u64 disk_bytenr, u64 disk_num_bytes, 2188 u64 num_bytes, u64 ram_bytes, 2189 u8 compression, u8 encryption, 2190 u16 other_encoding, int extent_type) 2191 { 2192 struct btrfs_root *root = BTRFS_I(inode)->root; 2193 struct btrfs_file_extent_item *fi; 2194 struct btrfs_path *path; 2195 struct extent_buffer *leaf; 2196 struct btrfs_key ins; 2197 u64 qg_released; 2198 int extent_inserted = 0; 2199 int ret; 2200 2201 path = btrfs_alloc_path(); 2202 if (!path) 2203 return -ENOMEM; 2204 2205 /* 2206 * we may be replacing one extent in the tree with another. 2207 * The new extent is pinned in the extent map, and we don't want 2208 * to drop it from the cache until it is completely in the btree. 2209 * 2210 * So, tell btrfs_drop_extents to leave this extent in the cache. 2211 * the caller is expected to unpin it and allow it to be merged 2212 * with the others. 2213 */ 2214 ret = __btrfs_drop_extents(trans, root, inode, path, file_pos, 2215 file_pos + num_bytes, NULL, 0, 2216 1, sizeof(*fi), &extent_inserted); 2217 if (ret) 2218 goto out; 2219 2220 if (!extent_inserted) { 2221 ins.objectid = btrfs_ino(BTRFS_I(inode)); 2222 ins.offset = file_pos; 2223 ins.type = BTRFS_EXTENT_DATA_KEY; 2224 2225 path->leave_spinning = 1; 2226 ret = btrfs_insert_empty_item(trans, root, path, &ins, 2227 sizeof(*fi)); 2228 if (ret) 2229 goto out; 2230 } 2231 leaf = path->nodes[0]; 2232 fi = btrfs_item_ptr(leaf, path->slots[0], 2233 struct btrfs_file_extent_item); 2234 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 2235 btrfs_set_file_extent_type(leaf, fi, extent_type); 2236 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr); 2237 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes); 2238 btrfs_set_file_extent_offset(leaf, fi, 0); 2239 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 2240 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes); 2241 btrfs_set_file_extent_compression(leaf, fi, compression); 2242 btrfs_set_file_extent_encryption(leaf, fi, encryption); 2243 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding); 2244 2245 btrfs_mark_buffer_dirty(leaf); 2246 btrfs_release_path(path); 2247 2248 inode_add_bytes(inode, num_bytes); 2249 2250 ins.objectid = disk_bytenr; 2251 ins.offset = disk_num_bytes; 2252 ins.type = BTRFS_EXTENT_ITEM_KEY; 2253 2254 /* 2255 * Release the reserved range from inode dirty range map, as it is 2256 * already moved into delayed_ref_head 2257 */ 2258 ret = btrfs_qgroup_release_data(inode, file_pos, ram_bytes); 2259 if (ret < 0) 2260 goto out; 2261 qg_released = ret; 2262 ret = btrfs_alloc_reserved_file_extent(trans, root, 2263 btrfs_ino(BTRFS_I(inode)), 2264 file_pos, qg_released, &ins); 2265 out: 2266 btrfs_free_path(path); 2267 2268 return ret; 2269 } 2270 2271 /* snapshot-aware defrag */ 2272 struct sa_defrag_extent_backref { 2273 struct rb_node node; 2274 struct old_sa_defrag_extent *old; 2275 u64 root_id; 2276 u64 inum; 2277 u64 file_pos; 2278 u64 extent_offset; 2279 u64 num_bytes; 2280 u64 generation; 2281 }; 2282 2283 struct old_sa_defrag_extent { 2284 struct list_head list; 2285 struct new_sa_defrag_extent *new; 2286 2287 u64 extent_offset; 2288 u64 bytenr; 2289 u64 offset; 2290 u64 len; 2291 int count; 2292 }; 2293 2294 struct new_sa_defrag_extent { 2295 struct rb_root root; 2296 struct list_head head; 2297 struct btrfs_path *path; 2298 struct inode *inode; 2299 u64 file_pos; 2300 u64 len; 2301 u64 bytenr; 2302 u64 disk_len; 2303 u8 compress_type; 2304 }; 2305 2306 static int backref_comp(struct sa_defrag_extent_backref *b1, 2307 struct sa_defrag_extent_backref *b2) 2308 { 2309 if (b1->root_id < b2->root_id) 2310 return -1; 2311 else if (b1->root_id > b2->root_id) 2312 return 1; 2313 2314 if (b1->inum < b2->inum) 2315 return -1; 2316 else if (b1->inum > b2->inum) 2317 return 1; 2318 2319 if (b1->file_pos < b2->file_pos) 2320 return -1; 2321 else if (b1->file_pos > b2->file_pos) 2322 return 1; 2323 2324 /* 2325 * [------------------------------] ===> (a range of space) 2326 * |<--->| |<---->| =============> (fs/file tree A) 2327 * |<---------------------------->| ===> (fs/file tree B) 2328 * 2329 * A range of space can refer to two file extents in one tree while 2330 * refer to only one file extent in another tree. 2331 * 2332 * So we may process a disk offset more than one time(two extents in A) 2333 * and locate at the same extent(one extent in B), then insert two same 2334 * backrefs(both refer to the extent in B). 2335 */ 2336 return 0; 2337 } 2338 2339 static void backref_insert(struct rb_root *root, 2340 struct sa_defrag_extent_backref *backref) 2341 { 2342 struct rb_node **p = &root->rb_node; 2343 struct rb_node *parent = NULL; 2344 struct sa_defrag_extent_backref *entry; 2345 int ret; 2346 2347 while (*p) { 2348 parent = *p; 2349 entry = rb_entry(parent, struct sa_defrag_extent_backref, node); 2350 2351 ret = backref_comp(backref, entry); 2352 if (ret < 0) 2353 p = &(*p)->rb_left; 2354 else 2355 p = &(*p)->rb_right; 2356 } 2357 2358 rb_link_node(&backref->node, parent, p); 2359 rb_insert_color(&backref->node, root); 2360 } 2361 2362 /* 2363 * Note the backref might has changed, and in this case we just return 0. 2364 */ 2365 static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id, 2366 void *ctx) 2367 { 2368 struct btrfs_file_extent_item *extent; 2369 struct old_sa_defrag_extent *old = ctx; 2370 struct new_sa_defrag_extent *new = old->new; 2371 struct btrfs_path *path = new->path; 2372 struct btrfs_key key; 2373 struct btrfs_root *root; 2374 struct sa_defrag_extent_backref *backref; 2375 struct extent_buffer *leaf; 2376 struct inode *inode = new->inode; 2377 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2378 int slot; 2379 int ret; 2380 u64 extent_offset; 2381 u64 num_bytes; 2382 2383 if (BTRFS_I(inode)->root->root_key.objectid == root_id && 2384 inum == btrfs_ino(BTRFS_I(inode))) 2385 return 0; 2386 2387 key.objectid = root_id; 2388 key.type = BTRFS_ROOT_ITEM_KEY; 2389 key.offset = (u64)-1; 2390 2391 root = btrfs_read_fs_root_no_name(fs_info, &key); 2392 if (IS_ERR(root)) { 2393 if (PTR_ERR(root) == -ENOENT) 2394 return 0; 2395 WARN_ON(1); 2396 btrfs_debug(fs_info, "inum=%llu, offset=%llu, root_id=%llu", 2397 inum, offset, root_id); 2398 return PTR_ERR(root); 2399 } 2400 2401 key.objectid = inum; 2402 key.type = BTRFS_EXTENT_DATA_KEY; 2403 if (offset > (u64)-1 << 32) 2404 key.offset = 0; 2405 else 2406 key.offset = offset; 2407 2408 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2409 if (WARN_ON(ret < 0)) 2410 return ret; 2411 ret = 0; 2412 2413 while (1) { 2414 cond_resched(); 2415 2416 leaf = path->nodes[0]; 2417 slot = path->slots[0]; 2418 2419 if (slot >= btrfs_header_nritems(leaf)) { 2420 ret = btrfs_next_leaf(root, path); 2421 if (ret < 0) { 2422 goto out; 2423 } else if (ret > 0) { 2424 ret = 0; 2425 goto out; 2426 } 2427 continue; 2428 } 2429 2430 path->slots[0]++; 2431 2432 btrfs_item_key_to_cpu(leaf, &key, slot); 2433 2434 if (key.objectid > inum) 2435 goto out; 2436 2437 if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY) 2438 continue; 2439 2440 extent = btrfs_item_ptr(leaf, slot, 2441 struct btrfs_file_extent_item); 2442 2443 if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr) 2444 continue; 2445 2446 /* 2447 * 'offset' refers to the exact key.offset, 2448 * NOT the 'offset' field in btrfs_extent_data_ref, ie. 2449 * (key.offset - extent_offset). 2450 */ 2451 if (key.offset != offset) 2452 continue; 2453 2454 extent_offset = btrfs_file_extent_offset(leaf, extent); 2455 num_bytes = btrfs_file_extent_num_bytes(leaf, extent); 2456 2457 if (extent_offset >= old->extent_offset + old->offset + 2458 old->len || extent_offset + num_bytes <= 2459 old->extent_offset + old->offset) 2460 continue; 2461 break; 2462 } 2463 2464 backref = kmalloc(sizeof(*backref), GFP_NOFS); 2465 if (!backref) { 2466 ret = -ENOENT; 2467 goto out; 2468 } 2469 2470 backref->root_id = root_id; 2471 backref->inum = inum; 2472 backref->file_pos = offset; 2473 backref->num_bytes = num_bytes; 2474 backref->extent_offset = extent_offset; 2475 backref->generation = btrfs_file_extent_generation(leaf, extent); 2476 backref->old = old; 2477 backref_insert(&new->root, backref); 2478 old->count++; 2479 out: 2480 btrfs_release_path(path); 2481 WARN_ON(ret); 2482 return ret; 2483 } 2484 2485 static noinline bool record_extent_backrefs(struct btrfs_path *path, 2486 struct new_sa_defrag_extent *new) 2487 { 2488 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb); 2489 struct old_sa_defrag_extent *old, *tmp; 2490 int ret; 2491 2492 new->path = path; 2493 2494 list_for_each_entry_safe(old, tmp, &new->head, list) { 2495 ret = iterate_inodes_from_logical(old->bytenr + 2496 old->extent_offset, fs_info, 2497 path, record_one_backref, 2498 old, false); 2499 if (ret < 0 && ret != -ENOENT) 2500 return false; 2501 2502 /* no backref to be processed for this extent */ 2503 if (!old->count) { 2504 list_del(&old->list); 2505 kfree(old); 2506 } 2507 } 2508 2509 if (list_empty(&new->head)) 2510 return false; 2511 2512 return true; 2513 } 2514 2515 static int relink_is_mergable(struct extent_buffer *leaf, 2516 struct btrfs_file_extent_item *fi, 2517 struct new_sa_defrag_extent *new) 2518 { 2519 if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr) 2520 return 0; 2521 2522 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG) 2523 return 0; 2524 2525 if (btrfs_file_extent_compression(leaf, fi) != new->compress_type) 2526 return 0; 2527 2528 if (btrfs_file_extent_encryption(leaf, fi) || 2529 btrfs_file_extent_other_encoding(leaf, fi)) 2530 return 0; 2531 2532 return 1; 2533 } 2534 2535 /* 2536 * Note the backref might has changed, and in this case we just return 0. 2537 */ 2538 static noinline int relink_extent_backref(struct btrfs_path *path, 2539 struct sa_defrag_extent_backref *prev, 2540 struct sa_defrag_extent_backref *backref) 2541 { 2542 struct btrfs_file_extent_item *extent; 2543 struct btrfs_file_extent_item *item; 2544 struct btrfs_ordered_extent *ordered; 2545 struct btrfs_trans_handle *trans; 2546 struct btrfs_root *root; 2547 struct btrfs_key key; 2548 struct extent_buffer *leaf; 2549 struct old_sa_defrag_extent *old = backref->old; 2550 struct new_sa_defrag_extent *new = old->new; 2551 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb); 2552 struct inode *inode; 2553 struct extent_state *cached = NULL; 2554 int ret = 0; 2555 u64 start; 2556 u64 len; 2557 u64 lock_start; 2558 u64 lock_end; 2559 bool merge = false; 2560 int index; 2561 2562 if (prev && prev->root_id == backref->root_id && 2563 prev->inum == backref->inum && 2564 prev->file_pos + prev->num_bytes == backref->file_pos) 2565 merge = true; 2566 2567 /* step 1: get root */ 2568 key.objectid = backref->root_id; 2569 key.type = BTRFS_ROOT_ITEM_KEY; 2570 key.offset = (u64)-1; 2571 2572 index = srcu_read_lock(&fs_info->subvol_srcu); 2573 2574 root = btrfs_read_fs_root_no_name(fs_info, &key); 2575 if (IS_ERR(root)) { 2576 srcu_read_unlock(&fs_info->subvol_srcu, index); 2577 if (PTR_ERR(root) == -ENOENT) 2578 return 0; 2579 return PTR_ERR(root); 2580 } 2581 2582 if (btrfs_root_readonly(root)) { 2583 srcu_read_unlock(&fs_info->subvol_srcu, index); 2584 return 0; 2585 } 2586 2587 /* step 2: get inode */ 2588 key.objectid = backref->inum; 2589 key.type = BTRFS_INODE_ITEM_KEY; 2590 key.offset = 0; 2591 2592 inode = btrfs_iget(fs_info->sb, &key, root, NULL); 2593 if (IS_ERR(inode)) { 2594 srcu_read_unlock(&fs_info->subvol_srcu, index); 2595 return 0; 2596 } 2597 2598 srcu_read_unlock(&fs_info->subvol_srcu, index); 2599 2600 /* step 3: relink backref */ 2601 lock_start = backref->file_pos; 2602 lock_end = backref->file_pos + backref->num_bytes - 1; 2603 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end, 2604 &cached); 2605 2606 ordered = btrfs_lookup_first_ordered_extent(inode, lock_end); 2607 if (ordered) { 2608 btrfs_put_ordered_extent(ordered); 2609 goto out_unlock; 2610 } 2611 2612 trans = btrfs_join_transaction(root); 2613 if (IS_ERR(trans)) { 2614 ret = PTR_ERR(trans); 2615 goto out_unlock; 2616 } 2617 2618 key.objectid = backref->inum; 2619 key.type = BTRFS_EXTENT_DATA_KEY; 2620 key.offset = backref->file_pos; 2621 2622 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2623 if (ret < 0) { 2624 goto out_free_path; 2625 } else if (ret > 0) { 2626 ret = 0; 2627 goto out_free_path; 2628 } 2629 2630 extent = btrfs_item_ptr(path->nodes[0], path->slots[0], 2631 struct btrfs_file_extent_item); 2632 2633 if (btrfs_file_extent_generation(path->nodes[0], extent) != 2634 backref->generation) 2635 goto out_free_path; 2636 2637 btrfs_release_path(path); 2638 2639 start = backref->file_pos; 2640 if (backref->extent_offset < old->extent_offset + old->offset) 2641 start += old->extent_offset + old->offset - 2642 backref->extent_offset; 2643 2644 len = min(backref->extent_offset + backref->num_bytes, 2645 old->extent_offset + old->offset + old->len); 2646 len -= max(backref->extent_offset, old->extent_offset + old->offset); 2647 2648 ret = btrfs_drop_extents(trans, root, inode, start, 2649 start + len, 1); 2650 if (ret) 2651 goto out_free_path; 2652 again: 2653 key.objectid = btrfs_ino(BTRFS_I(inode)); 2654 key.type = BTRFS_EXTENT_DATA_KEY; 2655 key.offset = start; 2656 2657 path->leave_spinning = 1; 2658 if (merge) { 2659 struct btrfs_file_extent_item *fi; 2660 u64 extent_len; 2661 struct btrfs_key found_key; 2662 2663 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2664 if (ret < 0) 2665 goto out_free_path; 2666 2667 path->slots[0]--; 2668 leaf = path->nodes[0]; 2669 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 2670 2671 fi = btrfs_item_ptr(leaf, path->slots[0], 2672 struct btrfs_file_extent_item); 2673 extent_len = btrfs_file_extent_num_bytes(leaf, fi); 2674 2675 if (extent_len + found_key.offset == start && 2676 relink_is_mergable(leaf, fi, new)) { 2677 btrfs_set_file_extent_num_bytes(leaf, fi, 2678 extent_len + len); 2679 btrfs_mark_buffer_dirty(leaf); 2680 inode_add_bytes(inode, len); 2681 2682 ret = 1; 2683 goto out_free_path; 2684 } else { 2685 merge = false; 2686 btrfs_release_path(path); 2687 goto again; 2688 } 2689 } 2690 2691 ret = btrfs_insert_empty_item(trans, root, path, &key, 2692 sizeof(*extent)); 2693 if (ret) { 2694 btrfs_abort_transaction(trans, ret); 2695 goto out_free_path; 2696 } 2697 2698 leaf = path->nodes[0]; 2699 item = btrfs_item_ptr(leaf, path->slots[0], 2700 struct btrfs_file_extent_item); 2701 btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr); 2702 btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len); 2703 btrfs_set_file_extent_offset(leaf, item, start - new->file_pos); 2704 btrfs_set_file_extent_num_bytes(leaf, item, len); 2705 btrfs_set_file_extent_ram_bytes(leaf, item, new->len); 2706 btrfs_set_file_extent_generation(leaf, item, trans->transid); 2707 btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG); 2708 btrfs_set_file_extent_compression(leaf, item, new->compress_type); 2709 btrfs_set_file_extent_encryption(leaf, item, 0); 2710 btrfs_set_file_extent_other_encoding(leaf, item, 0); 2711 2712 btrfs_mark_buffer_dirty(leaf); 2713 inode_add_bytes(inode, len); 2714 btrfs_release_path(path); 2715 2716 ret = btrfs_inc_extent_ref(trans, root, new->bytenr, 2717 new->disk_len, 0, 2718 backref->root_id, backref->inum, 2719 new->file_pos); /* start - extent_offset */ 2720 if (ret) { 2721 btrfs_abort_transaction(trans, ret); 2722 goto out_free_path; 2723 } 2724 2725 ret = 1; 2726 out_free_path: 2727 btrfs_release_path(path); 2728 path->leave_spinning = 0; 2729 btrfs_end_transaction(trans); 2730 out_unlock: 2731 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end, 2732 &cached); 2733 iput(inode); 2734 return ret; 2735 } 2736 2737 static void free_sa_defrag_extent(struct new_sa_defrag_extent *new) 2738 { 2739 struct old_sa_defrag_extent *old, *tmp; 2740 2741 if (!new) 2742 return; 2743 2744 list_for_each_entry_safe(old, tmp, &new->head, list) { 2745 kfree(old); 2746 } 2747 kfree(new); 2748 } 2749 2750 static void relink_file_extents(struct new_sa_defrag_extent *new) 2751 { 2752 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb); 2753 struct btrfs_path *path; 2754 struct sa_defrag_extent_backref *backref; 2755 struct sa_defrag_extent_backref *prev = NULL; 2756 struct inode *inode; 2757 struct btrfs_root *root; 2758 struct rb_node *node; 2759 int ret; 2760 2761 inode = new->inode; 2762 root = BTRFS_I(inode)->root; 2763 2764 path = btrfs_alloc_path(); 2765 if (!path) 2766 return; 2767 2768 if (!record_extent_backrefs(path, new)) { 2769 btrfs_free_path(path); 2770 goto out; 2771 } 2772 btrfs_release_path(path); 2773 2774 while (1) { 2775 node = rb_first(&new->root); 2776 if (!node) 2777 break; 2778 rb_erase(node, &new->root); 2779 2780 backref = rb_entry(node, struct sa_defrag_extent_backref, node); 2781 2782 ret = relink_extent_backref(path, prev, backref); 2783 WARN_ON(ret < 0); 2784 2785 kfree(prev); 2786 2787 if (ret == 1) 2788 prev = backref; 2789 else 2790 prev = NULL; 2791 cond_resched(); 2792 } 2793 kfree(prev); 2794 2795 btrfs_free_path(path); 2796 out: 2797 free_sa_defrag_extent(new); 2798 2799 atomic_dec(&fs_info->defrag_running); 2800 wake_up(&fs_info->transaction_wait); 2801 } 2802 2803 static struct new_sa_defrag_extent * 2804 record_old_file_extents(struct inode *inode, 2805 struct btrfs_ordered_extent *ordered) 2806 { 2807 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2808 struct btrfs_root *root = BTRFS_I(inode)->root; 2809 struct btrfs_path *path; 2810 struct btrfs_key key; 2811 struct old_sa_defrag_extent *old; 2812 struct new_sa_defrag_extent *new; 2813 int ret; 2814 2815 new = kmalloc(sizeof(*new), GFP_NOFS); 2816 if (!new) 2817 return NULL; 2818 2819 new->inode = inode; 2820 new->file_pos = ordered->file_offset; 2821 new->len = ordered->len; 2822 new->bytenr = ordered->start; 2823 new->disk_len = ordered->disk_len; 2824 new->compress_type = ordered->compress_type; 2825 new->root = RB_ROOT; 2826 INIT_LIST_HEAD(&new->head); 2827 2828 path = btrfs_alloc_path(); 2829 if (!path) 2830 goto out_kfree; 2831 2832 key.objectid = btrfs_ino(BTRFS_I(inode)); 2833 key.type = BTRFS_EXTENT_DATA_KEY; 2834 key.offset = new->file_pos; 2835 2836 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2837 if (ret < 0) 2838 goto out_free_path; 2839 if (ret > 0 && path->slots[0] > 0) 2840 path->slots[0]--; 2841 2842 /* find out all the old extents for the file range */ 2843 while (1) { 2844 struct btrfs_file_extent_item *extent; 2845 struct extent_buffer *l; 2846 int slot; 2847 u64 num_bytes; 2848 u64 offset; 2849 u64 end; 2850 u64 disk_bytenr; 2851 u64 extent_offset; 2852 2853 l = path->nodes[0]; 2854 slot = path->slots[0]; 2855 2856 if (slot >= btrfs_header_nritems(l)) { 2857 ret = btrfs_next_leaf(root, path); 2858 if (ret < 0) 2859 goto out_free_path; 2860 else if (ret > 0) 2861 break; 2862 continue; 2863 } 2864 2865 btrfs_item_key_to_cpu(l, &key, slot); 2866 2867 if (key.objectid != btrfs_ino(BTRFS_I(inode))) 2868 break; 2869 if (key.type != BTRFS_EXTENT_DATA_KEY) 2870 break; 2871 if (key.offset >= new->file_pos + new->len) 2872 break; 2873 2874 extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item); 2875 2876 num_bytes = btrfs_file_extent_num_bytes(l, extent); 2877 if (key.offset + num_bytes < new->file_pos) 2878 goto next; 2879 2880 disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent); 2881 if (!disk_bytenr) 2882 goto next; 2883 2884 extent_offset = btrfs_file_extent_offset(l, extent); 2885 2886 old = kmalloc(sizeof(*old), GFP_NOFS); 2887 if (!old) 2888 goto out_free_path; 2889 2890 offset = max(new->file_pos, key.offset); 2891 end = min(new->file_pos + new->len, key.offset + num_bytes); 2892 2893 old->bytenr = disk_bytenr; 2894 old->extent_offset = extent_offset; 2895 old->offset = offset - key.offset; 2896 old->len = end - offset; 2897 old->new = new; 2898 old->count = 0; 2899 list_add_tail(&old->list, &new->head); 2900 next: 2901 path->slots[0]++; 2902 cond_resched(); 2903 } 2904 2905 btrfs_free_path(path); 2906 atomic_inc(&fs_info->defrag_running); 2907 2908 return new; 2909 2910 out_free_path: 2911 btrfs_free_path(path); 2912 out_kfree: 2913 free_sa_defrag_extent(new); 2914 return NULL; 2915 } 2916 2917 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info, 2918 u64 start, u64 len) 2919 { 2920 struct btrfs_block_group_cache *cache; 2921 2922 cache = btrfs_lookup_block_group(fs_info, start); 2923 ASSERT(cache); 2924 2925 spin_lock(&cache->lock); 2926 cache->delalloc_bytes -= len; 2927 spin_unlock(&cache->lock); 2928 2929 btrfs_put_block_group(cache); 2930 } 2931 2932 /* as ordered data IO finishes, this gets called so we can finish 2933 * an ordered extent if the range of bytes in the file it covers are 2934 * fully written. 2935 */ 2936 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent) 2937 { 2938 struct inode *inode = ordered_extent->inode; 2939 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2940 struct btrfs_root *root = BTRFS_I(inode)->root; 2941 struct btrfs_trans_handle *trans = NULL; 2942 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 2943 struct extent_state *cached_state = NULL; 2944 struct new_sa_defrag_extent *new = NULL; 2945 int compress_type = 0; 2946 int ret = 0; 2947 u64 logical_len = ordered_extent->len; 2948 bool nolock; 2949 bool truncated = false; 2950 bool range_locked = false; 2951 bool clear_new_delalloc_bytes = false; 2952 2953 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) && 2954 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) && 2955 !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags)) 2956 clear_new_delalloc_bytes = true; 2957 2958 nolock = btrfs_is_free_space_inode(BTRFS_I(inode)); 2959 2960 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) { 2961 ret = -EIO; 2962 goto out; 2963 } 2964 2965 btrfs_free_io_failure_record(BTRFS_I(inode), 2966 ordered_extent->file_offset, 2967 ordered_extent->file_offset + 2968 ordered_extent->len - 1); 2969 2970 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) { 2971 truncated = true; 2972 logical_len = ordered_extent->truncated_len; 2973 /* Truncated the entire extent, don't bother adding */ 2974 if (!logical_len) 2975 goto out; 2976 } 2977 2978 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) { 2979 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */ 2980 2981 /* 2982 * For mwrite(mmap + memset to write) case, we still reserve 2983 * space for NOCOW range. 2984 * As NOCOW won't cause a new delayed ref, just free the space 2985 */ 2986 btrfs_qgroup_free_data(inode, NULL, ordered_extent->file_offset, 2987 ordered_extent->len); 2988 btrfs_ordered_update_i_size(inode, 0, ordered_extent); 2989 if (nolock) 2990 trans = btrfs_join_transaction_nolock(root); 2991 else 2992 trans = btrfs_join_transaction(root); 2993 if (IS_ERR(trans)) { 2994 ret = PTR_ERR(trans); 2995 trans = NULL; 2996 goto out; 2997 } 2998 trans->block_rsv = &BTRFS_I(inode)->block_rsv; 2999 ret = btrfs_update_inode_fallback(trans, root, inode); 3000 if (ret) /* -ENOMEM or corruption */ 3001 btrfs_abort_transaction(trans, ret); 3002 goto out; 3003 } 3004 3005 range_locked = true; 3006 lock_extent_bits(io_tree, ordered_extent->file_offset, 3007 ordered_extent->file_offset + ordered_extent->len - 1, 3008 &cached_state); 3009 3010 ret = test_range_bit(io_tree, ordered_extent->file_offset, 3011 ordered_extent->file_offset + ordered_extent->len - 1, 3012 EXTENT_DEFRAG, 0, cached_state); 3013 if (ret) { 3014 u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item); 3015 if (0 && last_snapshot >= BTRFS_I(inode)->generation) 3016 /* the inode is shared */ 3017 new = record_old_file_extents(inode, ordered_extent); 3018 3019 clear_extent_bit(io_tree, ordered_extent->file_offset, 3020 ordered_extent->file_offset + ordered_extent->len - 1, 3021 EXTENT_DEFRAG, 0, 0, &cached_state); 3022 } 3023 3024 if (nolock) 3025 trans = btrfs_join_transaction_nolock(root); 3026 else 3027 trans = btrfs_join_transaction(root); 3028 if (IS_ERR(trans)) { 3029 ret = PTR_ERR(trans); 3030 trans = NULL; 3031 goto out; 3032 } 3033 3034 trans->block_rsv = &BTRFS_I(inode)->block_rsv; 3035 3036 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags)) 3037 compress_type = ordered_extent->compress_type; 3038 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 3039 BUG_ON(compress_type); 3040 btrfs_qgroup_free_data(inode, NULL, ordered_extent->file_offset, 3041 ordered_extent->len); 3042 ret = btrfs_mark_extent_written(trans, BTRFS_I(inode), 3043 ordered_extent->file_offset, 3044 ordered_extent->file_offset + 3045 logical_len); 3046 } else { 3047 BUG_ON(root == fs_info->tree_root); 3048 ret = insert_reserved_file_extent(trans, inode, 3049 ordered_extent->file_offset, 3050 ordered_extent->start, 3051 ordered_extent->disk_len, 3052 logical_len, logical_len, 3053 compress_type, 0, 0, 3054 BTRFS_FILE_EXTENT_REG); 3055 if (!ret) 3056 btrfs_release_delalloc_bytes(fs_info, 3057 ordered_extent->start, 3058 ordered_extent->disk_len); 3059 } 3060 unpin_extent_cache(&BTRFS_I(inode)->extent_tree, 3061 ordered_extent->file_offset, ordered_extent->len, 3062 trans->transid); 3063 if (ret < 0) { 3064 btrfs_abort_transaction(trans, ret); 3065 goto out; 3066 } 3067 3068 ret = add_pending_csums(trans, inode, &ordered_extent->list); 3069 if (ret) { 3070 btrfs_abort_transaction(trans, ret); 3071 goto out; 3072 } 3073 3074 btrfs_ordered_update_i_size(inode, 0, ordered_extent); 3075 ret = btrfs_update_inode_fallback(trans, root, inode); 3076 if (ret) { /* -ENOMEM or corruption */ 3077 btrfs_abort_transaction(trans, ret); 3078 goto out; 3079 } 3080 ret = 0; 3081 out: 3082 if (range_locked || clear_new_delalloc_bytes) { 3083 unsigned int clear_bits = 0; 3084 3085 if (range_locked) 3086 clear_bits |= EXTENT_LOCKED; 3087 if (clear_new_delalloc_bytes) 3088 clear_bits |= EXTENT_DELALLOC_NEW; 3089 clear_extent_bit(&BTRFS_I(inode)->io_tree, 3090 ordered_extent->file_offset, 3091 ordered_extent->file_offset + 3092 ordered_extent->len - 1, 3093 clear_bits, 3094 (clear_bits & EXTENT_LOCKED) ? 1 : 0, 3095 0, &cached_state); 3096 } 3097 3098 if (trans) 3099 btrfs_end_transaction(trans); 3100 3101 if (ret || truncated) { 3102 u64 start, end; 3103 3104 if (truncated) 3105 start = ordered_extent->file_offset + logical_len; 3106 else 3107 start = ordered_extent->file_offset; 3108 end = ordered_extent->file_offset + ordered_extent->len - 1; 3109 clear_extent_uptodate(io_tree, start, end, NULL); 3110 3111 /* Drop the cache for the part of the extent we didn't write. */ 3112 btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 0); 3113 3114 /* 3115 * If the ordered extent had an IOERR or something else went 3116 * wrong we need to return the space for this ordered extent 3117 * back to the allocator. We only free the extent in the 3118 * truncated case if we didn't write out the extent at all. 3119 */ 3120 if ((ret || !logical_len) && 3121 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) && 3122 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) 3123 btrfs_free_reserved_extent(fs_info, 3124 ordered_extent->start, 3125 ordered_extent->disk_len, 1); 3126 } 3127 3128 3129 /* 3130 * This needs to be done to make sure anybody waiting knows we are done 3131 * updating everything for this ordered extent. 3132 */ 3133 btrfs_remove_ordered_extent(inode, ordered_extent); 3134 3135 /* for snapshot-aware defrag */ 3136 if (new) { 3137 if (ret) { 3138 free_sa_defrag_extent(new); 3139 atomic_dec(&fs_info->defrag_running); 3140 } else { 3141 relink_file_extents(new); 3142 } 3143 } 3144 3145 /* once for us */ 3146 btrfs_put_ordered_extent(ordered_extent); 3147 /* once for the tree */ 3148 btrfs_put_ordered_extent(ordered_extent); 3149 3150 return ret; 3151 } 3152 3153 static void finish_ordered_fn(struct btrfs_work *work) 3154 { 3155 struct btrfs_ordered_extent *ordered_extent; 3156 ordered_extent = container_of(work, struct btrfs_ordered_extent, work); 3157 btrfs_finish_ordered_io(ordered_extent); 3158 } 3159 3160 static void btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end, 3161 struct extent_state *state, int uptodate) 3162 { 3163 struct inode *inode = page->mapping->host; 3164 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3165 struct btrfs_ordered_extent *ordered_extent = NULL; 3166 struct btrfs_workqueue *wq; 3167 btrfs_work_func_t func; 3168 3169 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate); 3170 3171 ClearPagePrivate2(page); 3172 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start, 3173 end - start + 1, uptodate)) 3174 return; 3175 3176 if (btrfs_is_free_space_inode(BTRFS_I(inode))) { 3177 wq = fs_info->endio_freespace_worker; 3178 func = btrfs_freespace_write_helper; 3179 } else { 3180 wq = fs_info->endio_write_workers; 3181 func = btrfs_endio_write_helper; 3182 } 3183 3184 btrfs_init_work(&ordered_extent->work, func, finish_ordered_fn, NULL, 3185 NULL); 3186 btrfs_queue_work(wq, &ordered_extent->work); 3187 } 3188 3189 static int __readpage_endio_check(struct inode *inode, 3190 struct btrfs_io_bio *io_bio, 3191 int icsum, struct page *page, 3192 int pgoff, u64 start, size_t len) 3193 { 3194 char *kaddr; 3195 u32 csum_expected; 3196 u32 csum = ~(u32)0; 3197 3198 csum_expected = *(((u32 *)io_bio->csum) + icsum); 3199 3200 kaddr = kmap_atomic(page); 3201 csum = btrfs_csum_data(kaddr + pgoff, csum, len); 3202 btrfs_csum_final(csum, (u8 *)&csum); 3203 if (csum != csum_expected) 3204 goto zeroit; 3205 3206 kunmap_atomic(kaddr); 3207 return 0; 3208 zeroit: 3209 btrfs_print_data_csum_error(BTRFS_I(inode), start, csum, csum_expected, 3210 io_bio->mirror_num); 3211 memset(kaddr + pgoff, 1, len); 3212 flush_dcache_page(page); 3213 kunmap_atomic(kaddr); 3214 return -EIO; 3215 } 3216 3217 /* 3218 * when reads are done, we need to check csums to verify the data is correct 3219 * if there's a match, we allow the bio to finish. If not, the code in 3220 * extent_io.c will try to find good copies for us. 3221 */ 3222 static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio, 3223 u64 phy_offset, struct page *page, 3224 u64 start, u64 end, int mirror) 3225 { 3226 size_t offset = start - page_offset(page); 3227 struct inode *inode = page->mapping->host; 3228 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 3229 struct btrfs_root *root = BTRFS_I(inode)->root; 3230 3231 if (PageChecked(page)) { 3232 ClearPageChecked(page); 3233 return 0; 3234 } 3235 3236 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) 3237 return 0; 3238 3239 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID && 3240 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) { 3241 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM); 3242 return 0; 3243 } 3244 3245 phy_offset >>= inode->i_sb->s_blocksize_bits; 3246 return __readpage_endio_check(inode, io_bio, phy_offset, page, offset, 3247 start, (size_t)(end - start + 1)); 3248 } 3249 3250 void btrfs_add_delayed_iput(struct inode *inode) 3251 { 3252 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3253 struct btrfs_inode *binode = BTRFS_I(inode); 3254 3255 if (atomic_add_unless(&inode->i_count, -1, 1)) 3256 return; 3257 3258 spin_lock(&fs_info->delayed_iput_lock); 3259 if (binode->delayed_iput_count == 0) { 3260 ASSERT(list_empty(&binode->delayed_iput)); 3261 list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs); 3262 } else { 3263 binode->delayed_iput_count++; 3264 } 3265 spin_unlock(&fs_info->delayed_iput_lock); 3266 } 3267 3268 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info) 3269 { 3270 3271 spin_lock(&fs_info->delayed_iput_lock); 3272 while (!list_empty(&fs_info->delayed_iputs)) { 3273 struct btrfs_inode *inode; 3274 3275 inode = list_first_entry(&fs_info->delayed_iputs, 3276 struct btrfs_inode, delayed_iput); 3277 if (inode->delayed_iput_count) { 3278 inode->delayed_iput_count--; 3279 list_move_tail(&inode->delayed_iput, 3280 &fs_info->delayed_iputs); 3281 } else { 3282 list_del_init(&inode->delayed_iput); 3283 } 3284 spin_unlock(&fs_info->delayed_iput_lock); 3285 iput(&inode->vfs_inode); 3286 spin_lock(&fs_info->delayed_iput_lock); 3287 } 3288 spin_unlock(&fs_info->delayed_iput_lock); 3289 } 3290 3291 /* 3292 * This is called in transaction commit time. If there are no orphan 3293 * files in the subvolume, it removes orphan item and frees block_rsv 3294 * structure. 3295 */ 3296 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans, 3297 struct btrfs_root *root) 3298 { 3299 struct btrfs_fs_info *fs_info = root->fs_info; 3300 struct btrfs_block_rsv *block_rsv; 3301 int ret; 3302 3303 if (atomic_read(&root->orphan_inodes) || 3304 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) 3305 return; 3306 3307 spin_lock(&root->orphan_lock); 3308 if (atomic_read(&root->orphan_inodes)) { 3309 spin_unlock(&root->orphan_lock); 3310 return; 3311 } 3312 3313 if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) { 3314 spin_unlock(&root->orphan_lock); 3315 return; 3316 } 3317 3318 block_rsv = root->orphan_block_rsv; 3319 root->orphan_block_rsv = NULL; 3320 spin_unlock(&root->orphan_lock); 3321 3322 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state) && 3323 btrfs_root_refs(&root->root_item) > 0) { 3324 ret = btrfs_del_orphan_item(trans, fs_info->tree_root, 3325 root->root_key.objectid); 3326 if (ret) 3327 btrfs_abort_transaction(trans, ret); 3328 else 3329 clear_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, 3330 &root->state); 3331 } 3332 3333 if (block_rsv) { 3334 WARN_ON(block_rsv->size > 0); 3335 btrfs_free_block_rsv(fs_info, block_rsv); 3336 } 3337 } 3338 3339 /* 3340 * This creates an orphan entry for the given inode in case something goes 3341 * wrong in the middle of an unlink/truncate. 3342 * 3343 * NOTE: caller of this function should reserve 5 units of metadata for 3344 * this function. 3345 */ 3346 int btrfs_orphan_add(struct btrfs_trans_handle *trans, 3347 struct btrfs_inode *inode) 3348 { 3349 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb); 3350 struct btrfs_root *root = inode->root; 3351 struct btrfs_block_rsv *block_rsv = NULL; 3352 int reserve = 0; 3353 int insert = 0; 3354 int ret; 3355 3356 if (!root->orphan_block_rsv) { 3357 block_rsv = btrfs_alloc_block_rsv(fs_info, 3358 BTRFS_BLOCK_RSV_TEMP); 3359 if (!block_rsv) 3360 return -ENOMEM; 3361 } 3362 3363 spin_lock(&root->orphan_lock); 3364 if (!root->orphan_block_rsv) { 3365 root->orphan_block_rsv = block_rsv; 3366 } else if (block_rsv) { 3367 btrfs_free_block_rsv(fs_info, block_rsv); 3368 block_rsv = NULL; 3369 } 3370 3371 if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 3372 &inode->runtime_flags)) { 3373 #if 0 3374 /* 3375 * For proper ENOSPC handling, we should do orphan 3376 * cleanup when mounting. But this introduces backward 3377 * compatibility issue. 3378 */ 3379 if (!xchg(&root->orphan_item_inserted, 1)) 3380 insert = 2; 3381 else 3382 insert = 1; 3383 #endif 3384 insert = 1; 3385 atomic_inc(&root->orphan_inodes); 3386 } 3387 3388 if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED, 3389 &inode->runtime_flags)) 3390 reserve = 1; 3391 spin_unlock(&root->orphan_lock); 3392 3393 /* grab metadata reservation from transaction handle */ 3394 if (reserve) { 3395 ret = btrfs_orphan_reserve_metadata(trans, inode); 3396 ASSERT(!ret); 3397 if (ret) { 3398 /* 3399 * dec doesn't need spin_lock as ->orphan_block_rsv 3400 * would be released only if ->orphan_inodes is 3401 * zero. 3402 */ 3403 atomic_dec(&root->orphan_inodes); 3404 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED, 3405 &inode->runtime_flags); 3406 if (insert) 3407 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 3408 &inode->runtime_flags); 3409 return ret; 3410 } 3411 } 3412 3413 /* insert an orphan item to track this unlinked/truncated file */ 3414 if (insert >= 1) { 3415 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode)); 3416 if (ret) { 3417 if (reserve) { 3418 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED, 3419 &inode->runtime_flags); 3420 btrfs_orphan_release_metadata(inode); 3421 } 3422 /* 3423 * btrfs_orphan_commit_root may race with us and set 3424 * ->orphan_block_rsv to zero, in order to avoid that, 3425 * decrease ->orphan_inodes after everything is done. 3426 */ 3427 atomic_dec(&root->orphan_inodes); 3428 if (ret != -EEXIST) { 3429 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 3430 &inode->runtime_flags); 3431 btrfs_abort_transaction(trans, ret); 3432 return ret; 3433 } 3434 } 3435 ret = 0; 3436 } 3437 3438 /* insert an orphan item to track subvolume contains orphan files */ 3439 if (insert >= 2) { 3440 ret = btrfs_insert_orphan_item(trans, fs_info->tree_root, 3441 root->root_key.objectid); 3442 if (ret && ret != -EEXIST) { 3443 btrfs_abort_transaction(trans, ret); 3444 return ret; 3445 } 3446 } 3447 return 0; 3448 } 3449 3450 /* 3451 * We have done the truncate/delete so we can go ahead and remove the orphan 3452 * item for this particular inode. 3453 */ 3454 static int btrfs_orphan_del(struct btrfs_trans_handle *trans, 3455 struct btrfs_inode *inode) 3456 { 3457 struct btrfs_root *root = inode->root; 3458 int delete_item = 0; 3459 int ret = 0; 3460 3461 if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 3462 &inode->runtime_flags)) 3463 delete_item = 1; 3464 3465 if (delete_item && trans) 3466 ret = btrfs_del_orphan_item(trans, root, btrfs_ino(inode)); 3467 3468 if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED, 3469 &inode->runtime_flags)) 3470 btrfs_orphan_release_metadata(inode); 3471 3472 /* 3473 * btrfs_orphan_commit_root may race with us and set ->orphan_block_rsv 3474 * to zero, in order to avoid that, decrease ->orphan_inodes after 3475 * everything is done. 3476 */ 3477 if (delete_item) 3478 atomic_dec(&root->orphan_inodes); 3479 3480 return ret; 3481 } 3482 3483 /* 3484 * this cleans up any orphans that may be left on the list from the last use 3485 * of this root. 3486 */ 3487 int btrfs_orphan_cleanup(struct btrfs_root *root) 3488 { 3489 struct btrfs_fs_info *fs_info = root->fs_info; 3490 struct btrfs_path *path; 3491 struct extent_buffer *leaf; 3492 struct btrfs_key key, found_key; 3493 struct btrfs_trans_handle *trans; 3494 struct inode *inode; 3495 u64 last_objectid = 0; 3496 int ret = 0, nr_unlink = 0, nr_truncate = 0; 3497 3498 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED)) 3499 return 0; 3500 3501 path = btrfs_alloc_path(); 3502 if (!path) { 3503 ret = -ENOMEM; 3504 goto out; 3505 } 3506 path->reada = READA_BACK; 3507 3508 key.objectid = BTRFS_ORPHAN_OBJECTID; 3509 key.type = BTRFS_ORPHAN_ITEM_KEY; 3510 key.offset = (u64)-1; 3511 3512 while (1) { 3513 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3514 if (ret < 0) 3515 goto out; 3516 3517 /* 3518 * if ret == 0 means we found what we were searching for, which 3519 * is weird, but possible, so only screw with path if we didn't 3520 * find the key and see if we have stuff that matches 3521 */ 3522 if (ret > 0) { 3523 ret = 0; 3524 if (path->slots[0] == 0) 3525 break; 3526 path->slots[0]--; 3527 } 3528 3529 /* pull out the item */ 3530 leaf = path->nodes[0]; 3531 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 3532 3533 /* make sure the item matches what we want */ 3534 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID) 3535 break; 3536 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY) 3537 break; 3538 3539 /* release the path since we're done with it */ 3540 btrfs_release_path(path); 3541 3542 /* 3543 * this is where we are basically btrfs_lookup, without the 3544 * crossing root thing. we store the inode number in the 3545 * offset of the orphan item. 3546 */ 3547 3548 if (found_key.offset == last_objectid) { 3549 btrfs_err(fs_info, 3550 "Error removing orphan entry, stopping orphan cleanup"); 3551 ret = -EINVAL; 3552 goto out; 3553 } 3554 3555 last_objectid = found_key.offset; 3556 3557 found_key.objectid = found_key.offset; 3558 found_key.type = BTRFS_INODE_ITEM_KEY; 3559 found_key.offset = 0; 3560 inode = btrfs_iget(fs_info->sb, &found_key, root, NULL); 3561 ret = PTR_ERR_OR_ZERO(inode); 3562 if (ret && ret != -ENOENT) 3563 goto out; 3564 3565 if (ret == -ENOENT && root == fs_info->tree_root) { 3566 struct btrfs_root *dead_root; 3567 struct btrfs_fs_info *fs_info = root->fs_info; 3568 int is_dead_root = 0; 3569 3570 /* 3571 * this is an orphan in the tree root. Currently these 3572 * could come from 2 sources: 3573 * a) a snapshot deletion in progress 3574 * b) a free space cache inode 3575 * We need to distinguish those two, as the snapshot 3576 * orphan must not get deleted. 3577 * find_dead_roots already ran before us, so if this 3578 * is a snapshot deletion, we should find the root 3579 * in the dead_roots list 3580 */ 3581 spin_lock(&fs_info->trans_lock); 3582 list_for_each_entry(dead_root, &fs_info->dead_roots, 3583 root_list) { 3584 if (dead_root->root_key.objectid == 3585 found_key.objectid) { 3586 is_dead_root = 1; 3587 break; 3588 } 3589 } 3590 spin_unlock(&fs_info->trans_lock); 3591 if (is_dead_root) { 3592 /* prevent this orphan from being found again */ 3593 key.offset = found_key.objectid - 1; 3594 continue; 3595 } 3596 } 3597 /* 3598 * Inode is already gone but the orphan item is still there, 3599 * kill the orphan item. 3600 */ 3601 if (ret == -ENOENT) { 3602 trans = btrfs_start_transaction(root, 1); 3603 if (IS_ERR(trans)) { 3604 ret = PTR_ERR(trans); 3605 goto out; 3606 } 3607 btrfs_debug(fs_info, "auto deleting %Lu", 3608 found_key.objectid); 3609 ret = btrfs_del_orphan_item(trans, root, 3610 found_key.objectid); 3611 btrfs_end_transaction(trans); 3612 if (ret) 3613 goto out; 3614 continue; 3615 } 3616 3617 /* 3618 * add this inode to the orphan list so btrfs_orphan_del does 3619 * the proper thing when we hit it 3620 */ 3621 set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 3622 &BTRFS_I(inode)->runtime_flags); 3623 atomic_inc(&root->orphan_inodes); 3624 3625 /* if we have links, this was a truncate, lets do that */ 3626 if (inode->i_nlink) { 3627 if (WARN_ON(!S_ISREG(inode->i_mode))) { 3628 iput(inode); 3629 continue; 3630 } 3631 nr_truncate++; 3632 3633 /* 1 for the orphan item deletion. */ 3634 trans = btrfs_start_transaction(root, 1); 3635 if (IS_ERR(trans)) { 3636 iput(inode); 3637 ret = PTR_ERR(trans); 3638 goto out; 3639 } 3640 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 3641 btrfs_end_transaction(trans); 3642 if (ret) { 3643 iput(inode); 3644 goto out; 3645 } 3646 3647 ret = btrfs_truncate(inode); 3648 if (ret) 3649 btrfs_orphan_del(NULL, BTRFS_I(inode)); 3650 } else { 3651 nr_unlink++; 3652 } 3653 3654 /* this will do delete_inode and everything for us */ 3655 iput(inode); 3656 if (ret) 3657 goto out; 3658 } 3659 /* release the path since we're done with it */ 3660 btrfs_release_path(path); 3661 3662 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE; 3663 3664 if (root->orphan_block_rsv) 3665 btrfs_block_rsv_release(fs_info, root->orphan_block_rsv, 3666 (u64)-1); 3667 3668 if (root->orphan_block_rsv || 3669 test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) { 3670 trans = btrfs_join_transaction(root); 3671 if (!IS_ERR(trans)) 3672 btrfs_end_transaction(trans); 3673 } 3674 3675 if (nr_unlink) 3676 btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink); 3677 if (nr_truncate) 3678 btrfs_debug(fs_info, "truncated %d orphans", nr_truncate); 3679 3680 out: 3681 if (ret) 3682 btrfs_err(fs_info, "could not do orphan cleanup %d", ret); 3683 btrfs_free_path(path); 3684 return ret; 3685 } 3686 3687 /* 3688 * very simple check to peek ahead in the leaf looking for xattrs. If we 3689 * don't find any xattrs, we know there can't be any acls. 3690 * 3691 * slot is the slot the inode is in, objectid is the objectid of the inode 3692 */ 3693 static noinline int acls_after_inode_item(struct extent_buffer *leaf, 3694 int slot, u64 objectid, 3695 int *first_xattr_slot) 3696 { 3697 u32 nritems = btrfs_header_nritems(leaf); 3698 struct btrfs_key found_key; 3699 static u64 xattr_access = 0; 3700 static u64 xattr_default = 0; 3701 int scanned = 0; 3702 3703 if (!xattr_access) { 3704 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS, 3705 strlen(XATTR_NAME_POSIX_ACL_ACCESS)); 3706 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT, 3707 strlen(XATTR_NAME_POSIX_ACL_DEFAULT)); 3708 } 3709 3710 slot++; 3711 *first_xattr_slot = -1; 3712 while (slot < nritems) { 3713 btrfs_item_key_to_cpu(leaf, &found_key, slot); 3714 3715 /* we found a different objectid, there must not be acls */ 3716 if (found_key.objectid != objectid) 3717 return 0; 3718 3719 /* we found an xattr, assume we've got an acl */ 3720 if (found_key.type == BTRFS_XATTR_ITEM_KEY) { 3721 if (*first_xattr_slot == -1) 3722 *first_xattr_slot = slot; 3723 if (found_key.offset == xattr_access || 3724 found_key.offset == xattr_default) 3725 return 1; 3726 } 3727 3728 /* 3729 * we found a key greater than an xattr key, there can't 3730 * be any acls later on 3731 */ 3732 if (found_key.type > BTRFS_XATTR_ITEM_KEY) 3733 return 0; 3734 3735 slot++; 3736 scanned++; 3737 3738 /* 3739 * it goes inode, inode backrefs, xattrs, extents, 3740 * so if there are a ton of hard links to an inode there can 3741 * be a lot of backrefs. Don't waste time searching too hard, 3742 * this is just an optimization 3743 */ 3744 if (scanned >= 8) 3745 break; 3746 } 3747 /* we hit the end of the leaf before we found an xattr or 3748 * something larger than an xattr. We have to assume the inode 3749 * has acls 3750 */ 3751 if (*first_xattr_slot == -1) 3752 *first_xattr_slot = slot; 3753 return 1; 3754 } 3755 3756 /* 3757 * read an inode from the btree into the in-memory inode 3758 */ 3759 static int btrfs_read_locked_inode(struct inode *inode) 3760 { 3761 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3762 struct btrfs_path *path; 3763 struct extent_buffer *leaf; 3764 struct btrfs_inode_item *inode_item; 3765 struct btrfs_root *root = BTRFS_I(inode)->root; 3766 struct btrfs_key location; 3767 unsigned long ptr; 3768 int maybe_acls; 3769 u32 rdev; 3770 int ret; 3771 bool filled = false; 3772 int first_xattr_slot; 3773 3774 ret = btrfs_fill_inode(inode, &rdev); 3775 if (!ret) 3776 filled = true; 3777 3778 path = btrfs_alloc_path(); 3779 if (!path) { 3780 ret = -ENOMEM; 3781 goto make_bad; 3782 } 3783 3784 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location)); 3785 3786 ret = btrfs_lookup_inode(NULL, root, path, &location, 0); 3787 if (ret) { 3788 if (ret > 0) 3789 ret = -ENOENT; 3790 goto make_bad; 3791 } 3792 3793 leaf = path->nodes[0]; 3794 3795 if (filled) 3796 goto cache_index; 3797 3798 inode_item = btrfs_item_ptr(leaf, path->slots[0], 3799 struct btrfs_inode_item); 3800 inode->i_mode = btrfs_inode_mode(leaf, inode_item); 3801 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item)); 3802 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item)); 3803 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item)); 3804 btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item)); 3805 3806 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime); 3807 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime); 3808 3809 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime); 3810 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime); 3811 3812 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime); 3813 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime); 3814 3815 BTRFS_I(inode)->i_otime.tv_sec = 3816 btrfs_timespec_sec(leaf, &inode_item->otime); 3817 BTRFS_I(inode)->i_otime.tv_nsec = 3818 btrfs_timespec_nsec(leaf, &inode_item->otime); 3819 3820 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item)); 3821 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item); 3822 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item); 3823 3824 inode_set_iversion_queried(inode, 3825 btrfs_inode_sequence(leaf, inode_item)); 3826 inode->i_generation = BTRFS_I(inode)->generation; 3827 inode->i_rdev = 0; 3828 rdev = btrfs_inode_rdev(leaf, inode_item); 3829 3830 BTRFS_I(inode)->index_cnt = (u64)-1; 3831 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item); 3832 3833 cache_index: 3834 /* 3835 * If we were modified in the current generation and evicted from memory 3836 * and then re-read we need to do a full sync since we don't have any 3837 * idea about which extents were modified before we were evicted from 3838 * cache. 3839 * 3840 * This is required for both inode re-read from disk and delayed inode 3841 * in delayed_nodes_tree. 3842 */ 3843 if (BTRFS_I(inode)->last_trans == fs_info->generation) 3844 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 3845 &BTRFS_I(inode)->runtime_flags); 3846 3847 /* 3848 * We don't persist the id of the transaction where an unlink operation 3849 * against the inode was last made. So here we assume the inode might 3850 * have been evicted, and therefore the exact value of last_unlink_trans 3851 * lost, and set it to last_trans to avoid metadata inconsistencies 3852 * between the inode and its parent if the inode is fsync'ed and the log 3853 * replayed. For example, in the scenario: 3854 * 3855 * touch mydir/foo 3856 * ln mydir/foo mydir/bar 3857 * sync 3858 * unlink mydir/bar 3859 * echo 2 > /proc/sys/vm/drop_caches # evicts inode 3860 * xfs_io -c fsync mydir/foo 3861 * <power failure> 3862 * mount fs, triggers fsync log replay 3863 * 3864 * We must make sure that when we fsync our inode foo we also log its 3865 * parent inode, otherwise after log replay the parent still has the 3866 * dentry with the "bar" name but our inode foo has a link count of 1 3867 * and doesn't have an inode ref with the name "bar" anymore. 3868 * 3869 * Setting last_unlink_trans to last_trans is a pessimistic approach, 3870 * but it guarantees correctness at the expense of occasional full 3871 * transaction commits on fsync if our inode is a directory, or if our 3872 * inode is not a directory, logging its parent unnecessarily. 3873 */ 3874 BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans; 3875 3876 path->slots[0]++; 3877 if (inode->i_nlink != 1 || 3878 path->slots[0] >= btrfs_header_nritems(leaf)) 3879 goto cache_acl; 3880 3881 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]); 3882 if (location.objectid != btrfs_ino(BTRFS_I(inode))) 3883 goto cache_acl; 3884 3885 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 3886 if (location.type == BTRFS_INODE_REF_KEY) { 3887 struct btrfs_inode_ref *ref; 3888 3889 ref = (struct btrfs_inode_ref *)ptr; 3890 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref); 3891 } else if (location.type == BTRFS_INODE_EXTREF_KEY) { 3892 struct btrfs_inode_extref *extref; 3893 3894 extref = (struct btrfs_inode_extref *)ptr; 3895 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf, 3896 extref); 3897 } 3898 cache_acl: 3899 /* 3900 * try to precache a NULL acl entry for files that don't have 3901 * any xattrs or acls 3902 */ 3903 maybe_acls = acls_after_inode_item(leaf, path->slots[0], 3904 btrfs_ino(BTRFS_I(inode)), &first_xattr_slot); 3905 if (first_xattr_slot != -1) { 3906 path->slots[0] = first_xattr_slot; 3907 ret = btrfs_load_inode_props(inode, path); 3908 if (ret) 3909 btrfs_err(fs_info, 3910 "error loading props for ino %llu (root %llu): %d", 3911 btrfs_ino(BTRFS_I(inode)), 3912 root->root_key.objectid, ret); 3913 } 3914 btrfs_free_path(path); 3915 3916 if (!maybe_acls) 3917 cache_no_acl(inode); 3918 3919 switch (inode->i_mode & S_IFMT) { 3920 case S_IFREG: 3921 inode->i_mapping->a_ops = &btrfs_aops; 3922 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 3923 inode->i_fop = &btrfs_file_operations; 3924 inode->i_op = &btrfs_file_inode_operations; 3925 break; 3926 case S_IFDIR: 3927 inode->i_fop = &btrfs_dir_file_operations; 3928 inode->i_op = &btrfs_dir_inode_operations; 3929 break; 3930 case S_IFLNK: 3931 inode->i_op = &btrfs_symlink_inode_operations; 3932 inode_nohighmem(inode); 3933 inode->i_mapping->a_ops = &btrfs_symlink_aops; 3934 break; 3935 default: 3936 inode->i_op = &btrfs_special_inode_operations; 3937 init_special_inode(inode, inode->i_mode, rdev); 3938 break; 3939 } 3940 3941 btrfs_update_iflags(inode); 3942 return 0; 3943 3944 make_bad: 3945 btrfs_free_path(path); 3946 make_bad_inode(inode); 3947 return ret; 3948 } 3949 3950 /* 3951 * given a leaf and an inode, copy the inode fields into the leaf 3952 */ 3953 static void fill_inode_item(struct btrfs_trans_handle *trans, 3954 struct extent_buffer *leaf, 3955 struct btrfs_inode_item *item, 3956 struct inode *inode) 3957 { 3958 struct btrfs_map_token token; 3959 3960 btrfs_init_map_token(&token); 3961 3962 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token); 3963 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token); 3964 btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size, 3965 &token); 3966 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token); 3967 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token); 3968 3969 btrfs_set_token_timespec_sec(leaf, &item->atime, 3970 inode->i_atime.tv_sec, &token); 3971 btrfs_set_token_timespec_nsec(leaf, &item->atime, 3972 inode->i_atime.tv_nsec, &token); 3973 3974 btrfs_set_token_timespec_sec(leaf, &item->mtime, 3975 inode->i_mtime.tv_sec, &token); 3976 btrfs_set_token_timespec_nsec(leaf, &item->mtime, 3977 inode->i_mtime.tv_nsec, &token); 3978 3979 btrfs_set_token_timespec_sec(leaf, &item->ctime, 3980 inode->i_ctime.tv_sec, &token); 3981 btrfs_set_token_timespec_nsec(leaf, &item->ctime, 3982 inode->i_ctime.tv_nsec, &token); 3983 3984 btrfs_set_token_timespec_sec(leaf, &item->otime, 3985 BTRFS_I(inode)->i_otime.tv_sec, &token); 3986 btrfs_set_token_timespec_nsec(leaf, &item->otime, 3987 BTRFS_I(inode)->i_otime.tv_nsec, &token); 3988 3989 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode), 3990 &token); 3991 btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation, 3992 &token); 3993 btrfs_set_token_inode_sequence(leaf, item, inode_peek_iversion(inode), 3994 &token); 3995 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token); 3996 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token); 3997 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token); 3998 btrfs_set_token_inode_block_group(leaf, item, 0, &token); 3999 } 4000 4001 /* 4002 * copy everything in the in-memory inode into the btree. 4003 */ 4004 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans, 4005 struct btrfs_root *root, struct inode *inode) 4006 { 4007 struct btrfs_inode_item *inode_item; 4008 struct btrfs_path *path; 4009 struct extent_buffer *leaf; 4010 int ret; 4011 4012 path = btrfs_alloc_path(); 4013 if (!path) 4014 return -ENOMEM; 4015 4016 path->leave_spinning = 1; 4017 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location, 4018 1); 4019 if (ret) { 4020 if (ret > 0) 4021 ret = -ENOENT; 4022 goto failed; 4023 } 4024 4025 leaf = path->nodes[0]; 4026 inode_item = btrfs_item_ptr(leaf, path->slots[0], 4027 struct btrfs_inode_item); 4028 4029 fill_inode_item(trans, leaf, inode_item, inode); 4030 btrfs_mark_buffer_dirty(leaf); 4031 btrfs_set_inode_last_trans(trans, inode); 4032 ret = 0; 4033 failed: 4034 btrfs_free_path(path); 4035 return ret; 4036 } 4037 4038 /* 4039 * copy everything in the in-memory inode into the btree. 4040 */ 4041 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans, 4042 struct btrfs_root *root, struct inode *inode) 4043 { 4044 struct btrfs_fs_info *fs_info = root->fs_info; 4045 int ret; 4046 4047 /* 4048 * If the inode is a free space inode, we can deadlock during commit 4049 * if we put it into the delayed code. 4050 * 4051 * The data relocation inode should also be directly updated 4052 * without delay 4053 */ 4054 if (!btrfs_is_free_space_inode(BTRFS_I(inode)) 4055 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID 4056 && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) { 4057 btrfs_update_root_times(trans, root); 4058 4059 ret = btrfs_delayed_update_inode(trans, root, inode); 4060 if (!ret) 4061 btrfs_set_inode_last_trans(trans, inode); 4062 return ret; 4063 } 4064 4065 return btrfs_update_inode_item(trans, root, inode); 4066 } 4067 4068 noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans, 4069 struct btrfs_root *root, 4070 struct inode *inode) 4071 { 4072 int ret; 4073 4074 ret = btrfs_update_inode(trans, root, inode); 4075 if (ret == -ENOSPC) 4076 return btrfs_update_inode_item(trans, root, inode); 4077 return ret; 4078 } 4079 4080 /* 4081 * unlink helper that gets used here in inode.c and in the tree logging 4082 * recovery code. It remove a link in a directory with a given name, and 4083 * also drops the back refs in the inode to the directory 4084 */ 4085 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans, 4086 struct btrfs_root *root, 4087 struct btrfs_inode *dir, 4088 struct btrfs_inode *inode, 4089 const char *name, int name_len) 4090 { 4091 struct btrfs_fs_info *fs_info = root->fs_info; 4092 struct btrfs_path *path; 4093 int ret = 0; 4094 struct extent_buffer *leaf; 4095 struct btrfs_dir_item *di; 4096 struct btrfs_key key; 4097 u64 index; 4098 u64 ino = btrfs_ino(inode); 4099 u64 dir_ino = btrfs_ino(dir); 4100 4101 path = btrfs_alloc_path(); 4102 if (!path) { 4103 ret = -ENOMEM; 4104 goto out; 4105 } 4106 4107 path->leave_spinning = 1; 4108 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 4109 name, name_len, -1); 4110 if (IS_ERR(di)) { 4111 ret = PTR_ERR(di); 4112 goto err; 4113 } 4114 if (!di) { 4115 ret = -ENOENT; 4116 goto err; 4117 } 4118 leaf = path->nodes[0]; 4119 btrfs_dir_item_key_to_cpu(leaf, di, &key); 4120 ret = btrfs_delete_one_dir_name(trans, root, path, di); 4121 if (ret) 4122 goto err; 4123 btrfs_release_path(path); 4124 4125 /* 4126 * If we don't have dir index, we have to get it by looking up 4127 * the inode ref, since we get the inode ref, remove it directly, 4128 * it is unnecessary to do delayed deletion. 4129 * 4130 * But if we have dir index, needn't search inode ref to get it. 4131 * Since the inode ref is close to the inode item, it is better 4132 * that we delay to delete it, and just do this deletion when 4133 * we update the inode item. 4134 */ 4135 if (inode->dir_index) { 4136 ret = btrfs_delayed_delete_inode_ref(inode); 4137 if (!ret) { 4138 index = inode->dir_index; 4139 goto skip_backref; 4140 } 4141 } 4142 4143 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino, 4144 dir_ino, &index); 4145 if (ret) { 4146 btrfs_info(fs_info, 4147 "failed to delete reference to %.*s, inode %llu parent %llu", 4148 name_len, name, ino, dir_ino); 4149 btrfs_abort_transaction(trans, ret); 4150 goto err; 4151 } 4152 skip_backref: 4153 ret = btrfs_delete_delayed_dir_index(trans, fs_info, dir, index); 4154 if (ret) { 4155 btrfs_abort_transaction(trans, ret); 4156 goto err; 4157 } 4158 4159 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, inode, 4160 dir_ino); 4161 if (ret != 0 && ret != -ENOENT) { 4162 btrfs_abort_transaction(trans, ret); 4163 goto err; 4164 } 4165 4166 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, dir, 4167 index); 4168 if (ret == -ENOENT) 4169 ret = 0; 4170 else if (ret) 4171 btrfs_abort_transaction(trans, ret); 4172 err: 4173 btrfs_free_path(path); 4174 if (ret) 4175 goto out; 4176 4177 btrfs_i_size_write(dir, dir->vfs_inode.i_size - name_len * 2); 4178 inode_inc_iversion(&inode->vfs_inode); 4179 inode_inc_iversion(&dir->vfs_inode); 4180 inode->vfs_inode.i_ctime = dir->vfs_inode.i_mtime = 4181 dir->vfs_inode.i_ctime = current_time(&inode->vfs_inode); 4182 ret = btrfs_update_inode(trans, root, &dir->vfs_inode); 4183 out: 4184 return ret; 4185 } 4186 4187 int btrfs_unlink_inode(struct btrfs_trans_handle *trans, 4188 struct btrfs_root *root, 4189 struct btrfs_inode *dir, struct btrfs_inode *inode, 4190 const char *name, int name_len) 4191 { 4192 int ret; 4193 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len); 4194 if (!ret) { 4195 drop_nlink(&inode->vfs_inode); 4196 ret = btrfs_update_inode(trans, root, &inode->vfs_inode); 4197 } 4198 return ret; 4199 } 4200 4201 /* 4202 * helper to start transaction for unlink and rmdir. 4203 * 4204 * unlink and rmdir are special in btrfs, they do not always free space, so 4205 * if we cannot make our reservations the normal way try and see if there is 4206 * plenty of slack room in the global reserve to migrate, otherwise we cannot 4207 * allow the unlink to occur. 4208 */ 4209 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir) 4210 { 4211 struct btrfs_root *root = BTRFS_I(dir)->root; 4212 4213 /* 4214 * 1 for the possible orphan item 4215 * 1 for the dir item 4216 * 1 for the dir index 4217 * 1 for the inode ref 4218 * 1 for the inode 4219 */ 4220 return btrfs_start_transaction_fallback_global_rsv(root, 5, 5); 4221 } 4222 4223 static int btrfs_unlink(struct inode *dir, struct dentry *dentry) 4224 { 4225 struct btrfs_root *root = BTRFS_I(dir)->root; 4226 struct btrfs_trans_handle *trans; 4227 struct inode *inode = d_inode(dentry); 4228 int ret; 4229 4230 trans = __unlink_start_trans(dir); 4231 if (IS_ERR(trans)) 4232 return PTR_ERR(trans); 4233 4234 btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)), 4235 0); 4236 4237 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir), 4238 BTRFS_I(d_inode(dentry)), dentry->d_name.name, 4239 dentry->d_name.len); 4240 if (ret) 4241 goto out; 4242 4243 if (inode->i_nlink == 0) { 4244 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 4245 if (ret) 4246 goto out; 4247 } 4248 4249 out: 4250 btrfs_end_transaction(trans); 4251 btrfs_btree_balance_dirty(root->fs_info); 4252 return ret; 4253 } 4254 4255 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans, 4256 struct btrfs_root *root, 4257 struct inode *dir, u64 objectid, 4258 const char *name, int name_len) 4259 { 4260 struct btrfs_fs_info *fs_info = root->fs_info; 4261 struct btrfs_path *path; 4262 struct extent_buffer *leaf; 4263 struct btrfs_dir_item *di; 4264 struct btrfs_key key; 4265 u64 index; 4266 int ret; 4267 u64 dir_ino = btrfs_ino(BTRFS_I(dir)); 4268 4269 path = btrfs_alloc_path(); 4270 if (!path) 4271 return -ENOMEM; 4272 4273 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 4274 name, name_len, -1); 4275 if (IS_ERR_OR_NULL(di)) { 4276 if (!di) 4277 ret = -ENOENT; 4278 else 4279 ret = PTR_ERR(di); 4280 goto out; 4281 } 4282 4283 leaf = path->nodes[0]; 4284 btrfs_dir_item_key_to_cpu(leaf, di, &key); 4285 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid); 4286 ret = btrfs_delete_one_dir_name(trans, root, path, di); 4287 if (ret) { 4288 btrfs_abort_transaction(trans, ret); 4289 goto out; 4290 } 4291 btrfs_release_path(path); 4292 4293 ret = btrfs_del_root_ref(trans, fs_info, objectid, 4294 root->root_key.objectid, dir_ino, 4295 &index, name, name_len); 4296 if (ret < 0) { 4297 if (ret != -ENOENT) { 4298 btrfs_abort_transaction(trans, ret); 4299 goto out; 4300 } 4301 di = btrfs_search_dir_index_item(root, path, dir_ino, 4302 name, name_len); 4303 if (IS_ERR_OR_NULL(di)) { 4304 if (!di) 4305 ret = -ENOENT; 4306 else 4307 ret = PTR_ERR(di); 4308 btrfs_abort_transaction(trans, ret); 4309 goto out; 4310 } 4311 4312 leaf = path->nodes[0]; 4313 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 4314 btrfs_release_path(path); 4315 index = key.offset; 4316 } 4317 btrfs_release_path(path); 4318 4319 ret = btrfs_delete_delayed_dir_index(trans, fs_info, BTRFS_I(dir), index); 4320 if (ret) { 4321 btrfs_abort_transaction(trans, ret); 4322 goto out; 4323 } 4324 4325 btrfs_i_size_write(BTRFS_I(dir), dir->i_size - name_len * 2); 4326 inode_inc_iversion(dir); 4327 dir->i_mtime = dir->i_ctime = current_time(dir); 4328 ret = btrfs_update_inode_fallback(trans, root, dir); 4329 if (ret) 4330 btrfs_abort_transaction(trans, ret); 4331 out: 4332 btrfs_free_path(path); 4333 return ret; 4334 } 4335 4336 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry) 4337 { 4338 struct inode *inode = d_inode(dentry); 4339 int err = 0; 4340 struct btrfs_root *root = BTRFS_I(dir)->root; 4341 struct btrfs_trans_handle *trans; 4342 u64 last_unlink_trans; 4343 4344 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE) 4345 return -ENOTEMPTY; 4346 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID) 4347 return -EPERM; 4348 4349 trans = __unlink_start_trans(dir); 4350 if (IS_ERR(trans)) 4351 return PTR_ERR(trans); 4352 4353 if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 4354 err = btrfs_unlink_subvol(trans, root, dir, 4355 BTRFS_I(inode)->location.objectid, 4356 dentry->d_name.name, 4357 dentry->d_name.len); 4358 goto out; 4359 } 4360 4361 err = btrfs_orphan_add(trans, BTRFS_I(inode)); 4362 if (err) 4363 goto out; 4364 4365 last_unlink_trans = BTRFS_I(inode)->last_unlink_trans; 4366 4367 /* now the directory is empty */ 4368 err = btrfs_unlink_inode(trans, root, BTRFS_I(dir), 4369 BTRFS_I(d_inode(dentry)), dentry->d_name.name, 4370 dentry->d_name.len); 4371 if (!err) { 4372 btrfs_i_size_write(BTRFS_I(inode), 0); 4373 /* 4374 * Propagate the last_unlink_trans value of the deleted dir to 4375 * its parent directory. This is to prevent an unrecoverable 4376 * log tree in the case we do something like this: 4377 * 1) create dir foo 4378 * 2) create snapshot under dir foo 4379 * 3) delete the snapshot 4380 * 4) rmdir foo 4381 * 5) mkdir foo 4382 * 6) fsync foo or some file inside foo 4383 */ 4384 if (last_unlink_trans >= trans->transid) 4385 BTRFS_I(dir)->last_unlink_trans = last_unlink_trans; 4386 } 4387 out: 4388 btrfs_end_transaction(trans); 4389 btrfs_btree_balance_dirty(root->fs_info); 4390 4391 return err; 4392 } 4393 4394 static int truncate_space_check(struct btrfs_trans_handle *trans, 4395 struct btrfs_root *root, 4396 u64 bytes_deleted) 4397 { 4398 struct btrfs_fs_info *fs_info = root->fs_info; 4399 int ret; 4400 4401 /* 4402 * This is only used to apply pressure to the enospc system, we don't 4403 * intend to use this reservation at all. 4404 */ 4405 bytes_deleted = btrfs_csum_bytes_to_leaves(fs_info, bytes_deleted); 4406 bytes_deleted *= fs_info->nodesize; 4407 ret = btrfs_block_rsv_add(root, &fs_info->trans_block_rsv, 4408 bytes_deleted, BTRFS_RESERVE_NO_FLUSH); 4409 if (!ret) { 4410 trace_btrfs_space_reservation(fs_info, "transaction", 4411 trans->transid, 4412 bytes_deleted, 1); 4413 trans->bytes_reserved += bytes_deleted; 4414 } 4415 return ret; 4416 4417 } 4418 4419 /* 4420 * Return this if we need to call truncate_block for the last bit of the 4421 * truncate. 4422 */ 4423 #define NEED_TRUNCATE_BLOCK 1 4424 4425 /* 4426 * this can truncate away extent items, csum items and directory items. 4427 * It starts at a high offset and removes keys until it can't find 4428 * any higher than new_size 4429 * 4430 * csum items that cross the new i_size are truncated to the new size 4431 * as well. 4432 * 4433 * min_type is the minimum key type to truncate down to. If set to 0, this 4434 * will kill all the items on this inode, including the INODE_ITEM_KEY. 4435 */ 4436 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans, 4437 struct btrfs_root *root, 4438 struct inode *inode, 4439 u64 new_size, u32 min_type) 4440 { 4441 struct btrfs_fs_info *fs_info = root->fs_info; 4442 struct btrfs_path *path; 4443 struct extent_buffer *leaf; 4444 struct btrfs_file_extent_item *fi; 4445 struct btrfs_key key; 4446 struct btrfs_key found_key; 4447 u64 extent_start = 0; 4448 u64 extent_num_bytes = 0; 4449 u64 extent_offset = 0; 4450 u64 item_end = 0; 4451 u64 last_size = new_size; 4452 u32 found_type = (u8)-1; 4453 int found_extent; 4454 int del_item; 4455 int pending_del_nr = 0; 4456 int pending_del_slot = 0; 4457 int extent_type = -1; 4458 int ret; 4459 int err = 0; 4460 u64 ino = btrfs_ino(BTRFS_I(inode)); 4461 u64 bytes_deleted = 0; 4462 bool be_nice = false; 4463 bool should_throttle = false; 4464 bool should_end = false; 4465 4466 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY); 4467 4468 /* 4469 * for non-free space inodes and ref cows, we want to back off from 4470 * time to time 4471 */ 4472 if (!btrfs_is_free_space_inode(BTRFS_I(inode)) && 4473 test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 4474 be_nice = true; 4475 4476 path = btrfs_alloc_path(); 4477 if (!path) 4478 return -ENOMEM; 4479 path->reada = READA_BACK; 4480 4481 /* 4482 * We want to drop from the next block forward in case this new size is 4483 * not block aligned since we will be keeping the last block of the 4484 * extent just the way it is. 4485 */ 4486 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) || 4487 root == fs_info->tree_root) 4488 btrfs_drop_extent_cache(BTRFS_I(inode), ALIGN(new_size, 4489 fs_info->sectorsize), 4490 (u64)-1, 0); 4491 4492 /* 4493 * This function is also used to drop the items in the log tree before 4494 * we relog the inode, so if root != BTRFS_I(inode)->root, it means 4495 * it is used to drop the loged items. So we shouldn't kill the delayed 4496 * items. 4497 */ 4498 if (min_type == 0 && root == BTRFS_I(inode)->root) 4499 btrfs_kill_delayed_inode_items(BTRFS_I(inode)); 4500 4501 key.objectid = ino; 4502 key.offset = (u64)-1; 4503 key.type = (u8)-1; 4504 4505 search_again: 4506 /* 4507 * with a 16K leaf size and 128MB extents, you can actually queue 4508 * up a huge file in a single leaf. Most of the time that 4509 * bytes_deleted is > 0, it will be huge by the time we get here 4510 */ 4511 if (be_nice && bytes_deleted > SZ_32M) { 4512 if (btrfs_should_end_transaction(trans)) { 4513 err = -EAGAIN; 4514 goto error; 4515 } 4516 } 4517 4518 4519 path->leave_spinning = 1; 4520 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 4521 if (ret < 0) { 4522 err = ret; 4523 goto out; 4524 } 4525 4526 if (ret > 0) { 4527 /* there are no items in the tree for us to truncate, we're 4528 * done 4529 */ 4530 if (path->slots[0] == 0) 4531 goto out; 4532 path->slots[0]--; 4533 } 4534 4535 while (1) { 4536 fi = NULL; 4537 leaf = path->nodes[0]; 4538 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 4539 found_type = found_key.type; 4540 4541 if (found_key.objectid != ino) 4542 break; 4543 4544 if (found_type < min_type) 4545 break; 4546 4547 item_end = found_key.offset; 4548 if (found_type == BTRFS_EXTENT_DATA_KEY) { 4549 fi = btrfs_item_ptr(leaf, path->slots[0], 4550 struct btrfs_file_extent_item); 4551 extent_type = btrfs_file_extent_type(leaf, fi); 4552 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 4553 item_end += 4554 btrfs_file_extent_num_bytes(leaf, fi); 4555 4556 trace_btrfs_truncate_show_fi_regular( 4557 BTRFS_I(inode), leaf, fi, 4558 found_key.offset); 4559 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 4560 item_end += btrfs_file_extent_inline_len(leaf, 4561 path->slots[0], fi); 4562 4563 trace_btrfs_truncate_show_fi_inline( 4564 BTRFS_I(inode), leaf, fi, path->slots[0], 4565 found_key.offset); 4566 } 4567 item_end--; 4568 } 4569 if (found_type > min_type) { 4570 del_item = 1; 4571 } else { 4572 if (item_end < new_size) 4573 break; 4574 if (found_key.offset >= new_size) 4575 del_item = 1; 4576 else 4577 del_item = 0; 4578 } 4579 found_extent = 0; 4580 /* FIXME, shrink the extent if the ref count is only 1 */ 4581 if (found_type != BTRFS_EXTENT_DATA_KEY) 4582 goto delete; 4583 4584 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 4585 u64 num_dec; 4586 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi); 4587 if (!del_item) { 4588 u64 orig_num_bytes = 4589 btrfs_file_extent_num_bytes(leaf, fi); 4590 extent_num_bytes = ALIGN(new_size - 4591 found_key.offset, 4592 fs_info->sectorsize); 4593 btrfs_set_file_extent_num_bytes(leaf, fi, 4594 extent_num_bytes); 4595 num_dec = (orig_num_bytes - 4596 extent_num_bytes); 4597 if (test_bit(BTRFS_ROOT_REF_COWS, 4598 &root->state) && 4599 extent_start != 0) 4600 inode_sub_bytes(inode, num_dec); 4601 btrfs_mark_buffer_dirty(leaf); 4602 } else { 4603 extent_num_bytes = 4604 btrfs_file_extent_disk_num_bytes(leaf, 4605 fi); 4606 extent_offset = found_key.offset - 4607 btrfs_file_extent_offset(leaf, fi); 4608 4609 /* FIXME blocksize != 4096 */ 4610 num_dec = btrfs_file_extent_num_bytes(leaf, fi); 4611 if (extent_start != 0) { 4612 found_extent = 1; 4613 if (test_bit(BTRFS_ROOT_REF_COWS, 4614 &root->state)) 4615 inode_sub_bytes(inode, num_dec); 4616 } 4617 } 4618 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 4619 /* 4620 * we can't truncate inline items that have had 4621 * special encodings 4622 */ 4623 if (!del_item && 4624 btrfs_file_extent_encryption(leaf, fi) == 0 && 4625 btrfs_file_extent_other_encoding(leaf, fi) == 0 && 4626 btrfs_file_extent_compression(leaf, fi) == 0) { 4627 u32 size = (u32)(new_size - found_key.offset); 4628 4629 btrfs_set_file_extent_ram_bytes(leaf, fi, size); 4630 size = btrfs_file_extent_calc_inline_size(size); 4631 btrfs_truncate_item(root->fs_info, path, size, 1); 4632 } else if (!del_item) { 4633 /* 4634 * We have to bail so the last_size is set to 4635 * just before this extent. 4636 */ 4637 err = NEED_TRUNCATE_BLOCK; 4638 break; 4639 } 4640 4641 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 4642 inode_sub_bytes(inode, item_end + 1 - new_size); 4643 } 4644 delete: 4645 if (del_item) 4646 last_size = found_key.offset; 4647 else 4648 last_size = new_size; 4649 if (del_item) { 4650 if (!pending_del_nr) { 4651 /* no pending yet, add ourselves */ 4652 pending_del_slot = path->slots[0]; 4653 pending_del_nr = 1; 4654 } else if (pending_del_nr && 4655 path->slots[0] + 1 == pending_del_slot) { 4656 /* hop on the pending chunk */ 4657 pending_del_nr++; 4658 pending_del_slot = path->slots[0]; 4659 } else { 4660 BUG(); 4661 } 4662 } else { 4663 break; 4664 } 4665 should_throttle = false; 4666 4667 if (found_extent && 4668 (test_bit(BTRFS_ROOT_REF_COWS, &root->state) || 4669 root == fs_info->tree_root)) { 4670 btrfs_set_path_blocking(path); 4671 bytes_deleted += extent_num_bytes; 4672 ret = btrfs_free_extent(trans, root, extent_start, 4673 extent_num_bytes, 0, 4674 btrfs_header_owner(leaf), 4675 ino, extent_offset); 4676 BUG_ON(ret); 4677 if (btrfs_should_throttle_delayed_refs(trans, fs_info)) 4678 btrfs_async_run_delayed_refs(fs_info, 4679 trans->delayed_ref_updates * 2, 4680 trans->transid, 0); 4681 if (be_nice) { 4682 if (truncate_space_check(trans, root, 4683 extent_num_bytes)) { 4684 should_end = true; 4685 } 4686 if (btrfs_should_throttle_delayed_refs(trans, 4687 fs_info)) 4688 should_throttle = true; 4689 } 4690 } 4691 4692 if (found_type == BTRFS_INODE_ITEM_KEY) 4693 break; 4694 4695 if (path->slots[0] == 0 || 4696 path->slots[0] != pending_del_slot || 4697 should_throttle || should_end) { 4698 if (pending_del_nr) { 4699 ret = btrfs_del_items(trans, root, path, 4700 pending_del_slot, 4701 pending_del_nr); 4702 if (ret) { 4703 btrfs_abort_transaction(trans, ret); 4704 goto error; 4705 } 4706 pending_del_nr = 0; 4707 } 4708 btrfs_release_path(path); 4709 if (should_throttle) { 4710 unsigned long updates = trans->delayed_ref_updates; 4711 if (updates) { 4712 trans->delayed_ref_updates = 0; 4713 ret = btrfs_run_delayed_refs(trans, 4714 fs_info, 4715 updates * 2); 4716 if (ret && !err) 4717 err = ret; 4718 } 4719 } 4720 /* 4721 * if we failed to refill our space rsv, bail out 4722 * and let the transaction restart 4723 */ 4724 if (should_end) { 4725 err = -EAGAIN; 4726 goto error; 4727 } 4728 goto search_again; 4729 } else { 4730 path->slots[0]--; 4731 } 4732 } 4733 out: 4734 if (pending_del_nr) { 4735 ret = btrfs_del_items(trans, root, path, pending_del_slot, 4736 pending_del_nr); 4737 if (ret) 4738 btrfs_abort_transaction(trans, ret); 4739 } 4740 error: 4741 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 4742 ASSERT(last_size >= new_size); 4743 if (!err && last_size > new_size) 4744 last_size = new_size; 4745 btrfs_ordered_update_i_size(inode, last_size, NULL); 4746 } 4747 4748 btrfs_free_path(path); 4749 4750 if (be_nice && bytes_deleted > SZ_32M) { 4751 unsigned long updates = trans->delayed_ref_updates; 4752 if (updates) { 4753 trans->delayed_ref_updates = 0; 4754 ret = btrfs_run_delayed_refs(trans, fs_info, 4755 updates * 2); 4756 if (ret && !err) 4757 err = ret; 4758 } 4759 } 4760 return err; 4761 } 4762 4763 /* 4764 * btrfs_truncate_block - read, zero a chunk and write a block 4765 * @inode - inode that we're zeroing 4766 * @from - the offset to start zeroing 4767 * @len - the length to zero, 0 to zero the entire range respective to the 4768 * offset 4769 * @front - zero up to the offset instead of from the offset on 4770 * 4771 * This will find the block for the "from" offset and cow the block and zero the 4772 * part we want to zero. This is used with truncate and hole punching. 4773 */ 4774 int btrfs_truncate_block(struct inode *inode, loff_t from, loff_t len, 4775 int front) 4776 { 4777 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4778 struct address_space *mapping = inode->i_mapping; 4779 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 4780 struct btrfs_ordered_extent *ordered; 4781 struct extent_state *cached_state = NULL; 4782 struct extent_changeset *data_reserved = NULL; 4783 char *kaddr; 4784 u32 blocksize = fs_info->sectorsize; 4785 pgoff_t index = from >> PAGE_SHIFT; 4786 unsigned offset = from & (blocksize - 1); 4787 struct page *page; 4788 gfp_t mask = btrfs_alloc_write_mask(mapping); 4789 int ret = 0; 4790 u64 block_start; 4791 u64 block_end; 4792 4793 if (IS_ALIGNED(offset, blocksize) && 4794 (!len || IS_ALIGNED(len, blocksize))) 4795 goto out; 4796 4797 block_start = round_down(from, blocksize); 4798 block_end = block_start + blocksize - 1; 4799 4800 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, 4801 block_start, blocksize); 4802 if (ret) 4803 goto out; 4804 4805 again: 4806 page = find_or_create_page(mapping, index, mask); 4807 if (!page) { 4808 btrfs_delalloc_release_space(inode, data_reserved, 4809 block_start, blocksize); 4810 btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize); 4811 ret = -ENOMEM; 4812 goto out; 4813 } 4814 4815 if (!PageUptodate(page)) { 4816 ret = btrfs_readpage(NULL, page); 4817 lock_page(page); 4818 if (page->mapping != mapping) { 4819 unlock_page(page); 4820 put_page(page); 4821 goto again; 4822 } 4823 if (!PageUptodate(page)) { 4824 ret = -EIO; 4825 goto out_unlock; 4826 } 4827 } 4828 wait_on_page_writeback(page); 4829 4830 lock_extent_bits(io_tree, block_start, block_end, &cached_state); 4831 set_page_extent_mapped(page); 4832 4833 ordered = btrfs_lookup_ordered_extent(inode, block_start); 4834 if (ordered) { 4835 unlock_extent_cached(io_tree, block_start, block_end, 4836 &cached_state); 4837 unlock_page(page); 4838 put_page(page); 4839 btrfs_start_ordered_extent(inode, ordered, 1); 4840 btrfs_put_ordered_extent(ordered); 4841 goto again; 4842 } 4843 4844 clear_extent_bit(&BTRFS_I(inode)->io_tree, block_start, block_end, 4845 EXTENT_DIRTY | EXTENT_DELALLOC | 4846 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 4847 0, 0, &cached_state); 4848 4849 ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0, 4850 &cached_state, 0); 4851 if (ret) { 4852 unlock_extent_cached(io_tree, block_start, block_end, 4853 &cached_state); 4854 goto out_unlock; 4855 } 4856 4857 if (offset != blocksize) { 4858 if (!len) 4859 len = blocksize - offset; 4860 kaddr = kmap(page); 4861 if (front) 4862 memset(kaddr + (block_start - page_offset(page)), 4863 0, offset); 4864 else 4865 memset(kaddr + (block_start - page_offset(page)) + offset, 4866 0, len); 4867 flush_dcache_page(page); 4868 kunmap(page); 4869 } 4870 ClearPageChecked(page); 4871 set_page_dirty(page); 4872 unlock_extent_cached(io_tree, block_start, block_end, &cached_state); 4873 4874 out_unlock: 4875 if (ret) 4876 btrfs_delalloc_release_space(inode, data_reserved, block_start, 4877 blocksize); 4878 btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize); 4879 unlock_page(page); 4880 put_page(page); 4881 out: 4882 extent_changeset_free(data_reserved); 4883 return ret; 4884 } 4885 4886 static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode, 4887 u64 offset, u64 len) 4888 { 4889 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4890 struct btrfs_trans_handle *trans; 4891 int ret; 4892 4893 /* 4894 * Still need to make sure the inode looks like it's been updated so 4895 * that any holes get logged if we fsync. 4896 */ 4897 if (btrfs_fs_incompat(fs_info, NO_HOLES)) { 4898 BTRFS_I(inode)->last_trans = fs_info->generation; 4899 BTRFS_I(inode)->last_sub_trans = root->log_transid; 4900 BTRFS_I(inode)->last_log_commit = root->last_log_commit; 4901 return 0; 4902 } 4903 4904 /* 4905 * 1 - for the one we're dropping 4906 * 1 - for the one we're adding 4907 * 1 - for updating the inode. 4908 */ 4909 trans = btrfs_start_transaction(root, 3); 4910 if (IS_ERR(trans)) 4911 return PTR_ERR(trans); 4912 4913 ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1); 4914 if (ret) { 4915 btrfs_abort_transaction(trans, ret); 4916 btrfs_end_transaction(trans); 4917 return ret; 4918 } 4919 4920 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(BTRFS_I(inode)), 4921 offset, 0, 0, len, 0, len, 0, 0, 0); 4922 if (ret) 4923 btrfs_abort_transaction(trans, ret); 4924 else 4925 btrfs_update_inode(trans, root, inode); 4926 btrfs_end_transaction(trans); 4927 return ret; 4928 } 4929 4930 /* 4931 * This function puts in dummy file extents for the area we're creating a hole 4932 * for. So if we are truncating this file to a larger size we need to insert 4933 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for 4934 * the range between oldsize and size 4935 */ 4936 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size) 4937 { 4938 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4939 struct btrfs_root *root = BTRFS_I(inode)->root; 4940 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 4941 struct extent_map *em = NULL; 4942 struct extent_state *cached_state = NULL; 4943 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 4944 u64 hole_start = ALIGN(oldsize, fs_info->sectorsize); 4945 u64 block_end = ALIGN(size, fs_info->sectorsize); 4946 u64 last_byte; 4947 u64 cur_offset; 4948 u64 hole_size; 4949 int err = 0; 4950 4951 /* 4952 * If our size started in the middle of a block we need to zero out the 4953 * rest of the block before we expand the i_size, otherwise we could 4954 * expose stale data. 4955 */ 4956 err = btrfs_truncate_block(inode, oldsize, 0, 0); 4957 if (err) 4958 return err; 4959 4960 if (size <= hole_start) 4961 return 0; 4962 4963 while (1) { 4964 struct btrfs_ordered_extent *ordered; 4965 4966 lock_extent_bits(io_tree, hole_start, block_end - 1, 4967 &cached_state); 4968 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), hole_start, 4969 block_end - hole_start); 4970 if (!ordered) 4971 break; 4972 unlock_extent_cached(io_tree, hole_start, block_end - 1, 4973 &cached_state); 4974 btrfs_start_ordered_extent(inode, ordered, 1); 4975 btrfs_put_ordered_extent(ordered); 4976 } 4977 4978 cur_offset = hole_start; 4979 while (1) { 4980 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset, 4981 block_end - cur_offset, 0); 4982 if (IS_ERR(em)) { 4983 err = PTR_ERR(em); 4984 em = NULL; 4985 break; 4986 } 4987 last_byte = min(extent_map_end(em), block_end); 4988 last_byte = ALIGN(last_byte, fs_info->sectorsize); 4989 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) { 4990 struct extent_map *hole_em; 4991 hole_size = last_byte - cur_offset; 4992 4993 err = maybe_insert_hole(root, inode, cur_offset, 4994 hole_size); 4995 if (err) 4996 break; 4997 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset, 4998 cur_offset + hole_size - 1, 0); 4999 hole_em = alloc_extent_map(); 5000 if (!hole_em) { 5001 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 5002 &BTRFS_I(inode)->runtime_flags); 5003 goto next; 5004 } 5005 hole_em->start = cur_offset; 5006 hole_em->len = hole_size; 5007 hole_em->orig_start = cur_offset; 5008 5009 hole_em->block_start = EXTENT_MAP_HOLE; 5010 hole_em->block_len = 0; 5011 hole_em->orig_block_len = 0; 5012 hole_em->ram_bytes = hole_size; 5013 hole_em->bdev = fs_info->fs_devices->latest_bdev; 5014 hole_em->compress_type = BTRFS_COMPRESS_NONE; 5015 hole_em->generation = fs_info->generation; 5016 5017 while (1) { 5018 write_lock(&em_tree->lock); 5019 err = add_extent_mapping(em_tree, hole_em, 1); 5020 write_unlock(&em_tree->lock); 5021 if (err != -EEXIST) 5022 break; 5023 btrfs_drop_extent_cache(BTRFS_I(inode), 5024 cur_offset, 5025 cur_offset + 5026 hole_size - 1, 0); 5027 } 5028 free_extent_map(hole_em); 5029 } 5030 next: 5031 free_extent_map(em); 5032 em = NULL; 5033 cur_offset = last_byte; 5034 if (cur_offset >= block_end) 5035 break; 5036 } 5037 free_extent_map(em); 5038 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state); 5039 return err; 5040 } 5041 5042 static int btrfs_setsize(struct inode *inode, struct iattr *attr) 5043 { 5044 struct btrfs_root *root = BTRFS_I(inode)->root; 5045 struct btrfs_trans_handle *trans; 5046 loff_t oldsize = i_size_read(inode); 5047 loff_t newsize = attr->ia_size; 5048 int mask = attr->ia_valid; 5049 int ret; 5050 5051 /* 5052 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a 5053 * special case where we need to update the times despite not having 5054 * these flags set. For all other operations the VFS set these flags 5055 * explicitly if it wants a timestamp update. 5056 */ 5057 if (newsize != oldsize) { 5058 inode_inc_iversion(inode); 5059 if (!(mask & (ATTR_CTIME | ATTR_MTIME))) 5060 inode->i_ctime = inode->i_mtime = 5061 current_time(inode); 5062 } 5063 5064 if (newsize > oldsize) { 5065 /* 5066 * Don't do an expanding truncate while snapshotting is ongoing. 5067 * This is to ensure the snapshot captures a fully consistent 5068 * state of this file - if the snapshot captures this expanding 5069 * truncation, it must capture all writes that happened before 5070 * this truncation. 5071 */ 5072 btrfs_wait_for_snapshot_creation(root); 5073 ret = btrfs_cont_expand(inode, oldsize, newsize); 5074 if (ret) { 5075 btrfs_end_write_no_snapshotting(root); 5076 return ret; 5077 } 5078 5079 trans = btrfs_start_transaction(root, 1); 5080 if (IS_ERR(trans)) { 5081 btrfs_end_write_no_snapshotting(root); 5082 return PTR_ERR(trans); 5083 } 5084 5085 i_size_write(inode, newsize); 5086 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL); 5087 pagecache_isize_extended(inode, oldsize, newsize); 5088 ret = btrfs_update_inode(trans, root, inode); 5089 btrfs_end_write_no_snapshotting(root); 5090 btrfs_end_transaction(trans); 5091 } else { 5092 5093 /* 5094 * We're truncating a file that used to have good data down to 5095 * zero. Make sure it gets into the ordered flush list so that 5096 * any new writes get down to disk quickly. 5097 */ 5098 if (newsize == 0) 5099 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE, 5100 &BTRFS_I(inode)->runtime_flags); 5101 5102 /* 5103 * 1 for the orphan item we're going to add 5104 * 1 for the orphan item deletion. 5105 */ 5106 trans = btrfs_start_transaction(root, 2); 5107 if (IS_ERR(trans)) 5108 return PTR_ERR(trans); 5109 5110 /* 5111 * We need to do this in case we fail at _any_ point during the 5112 * actual truncate. Once we do the truncate_setsize we could 5113 * invalidate pages which forces any outstanding ordered io to 5114 * be instantly completed which will give us extents that need 5115 * to be truncated. If we fail to get an orphan inode down we 5116 * could have left over extents that were never meant to live, 5117 * so we need to guarantee from this point on that everything 5118 * will be consistent. 5119 */ 5120 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 5121 btrfs_end_transaction(trans); 5122 if (ret) 5123 return ret; 5124 5125 /* we don't support swapfiles, so vmtruncate shouldn't fail */ 5126 truncate_setsize(inode, newsize); 5127 5128 /* Disable nonlocked read DIO to avoid the end less truncate */ 5129 btrfs_inode_block_unlocked_dio(BTRFS_I(inode)); 5130 inode_dio_wait(inode); 5131 btrfs_inode_resume_unlocked_dio(BTRFS_I(inode)); 5132 5133 ret = btrfs_truncate(inode); 5134 if (ret && inode->i_nlink) { 5135 int err; 5136 5137 /* To get a stable disk_i_size */ 5138 err = btrfs_wait_ordered_range(inode, 0, (u64)-1); 5139 if (err) { 5140 btrfs_orphan_del(NULL, BTRFS_I(inode)); 5141 return err; 5142 } 5143 5144 /* 5145 * failed to truncate, disk_i_size is only adjusted down 5146 * as we remove extents, so it should represent the true 5147 * size of the inode, so reset the in memory size and 5148 * delete our orphan entry. 5149 */ 5150 trans = btrfs_join_transaction(root); 5151 if (IS_ERR(trans)) { 5152 btrfs_orphan_del(NULL, BTRFS_I(inode)); 5153 return ret; 5154 } 5155 i_size_write(inode, BTRFS_I(inode)->disk_i_size); 5156 err = btrfs_orphan_del(trans, BTRFS_I(inode)); 5157 if (err) 5158 btrfs_abort_transaction(trans, err); 5159 btrfs_end_transaction(trans); 5160 } 5161 } 5162 5163 return ret; 5164 } 5165 5166 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr) 5167 { 5168 struct inode *inode = d_inode(dentry); 5169 struct btrfs_root *root = BTRFS_I(inode)->root; 5170 int err; 5171 5172 if (btrfs_root_readonly(root)) 5173 return -EROFS; 5174 5175 err = setattr_prepare(dentry, attr); 5176 if (err) 5177 return err; 5178 5179 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 5180 err = btrfs_setsize(inode, attr); 5181 if (err) 5182 return err; 5183 } 5184 5185 if (attr->ia_valid) { 5186 setattr_copy(inode, attr); 5187 inode_inc_iversion(inode); 5188 err = btrfs_dirty_inode(inode); 5189 5190 if (!err && attr->ia_valid & ATTR_MODE) 5191 err = posix_acl_chmod(inode, inode->i_mode); 5192 } 5193 5194 return err; 5195 } 5196 5197 /* 5198 * While truncating the inode pages during eviction, we get the VFS calling 5199 * btrfs_invalidatepage() against each page of the inode. This is slow because 5200 * the calls to btrfs_invalidatepage() result in a huge amount of calls to 5201 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting 5202 * extent_state structures over and over, wasting lots of time. 5203 * 5204 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all 5205 * those expensive operations on a per page basis and do only the ordered io 5206 * finishing, while we release here the extent_map and extent_state structures, 5207 * without the excessive merging and splitting. 5208 */ 5209 static void evict_inode_truncate_pages(struct inode *inode) 5210 { 5211 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 5212 struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree; 5213 struct rb_node *node; 5214 5215 ASSERT(inode->i_state & I_FREEING); 5216 truncate_inode_pages_final(&inode->i_data); 5217 5218 write_lock(&map_tree->lock); 5219 while (!RB_EMPTY_ROOT(&map_tree->map)) { 5220 struct extent_map *em; 5221 5222 node = rb_first(&map_tree->map); 5223 em = rb_entry(node, struct extent_map, rb_node); 5224 clear_bit(EXTENT_FLAG_PINNED, &em->flags); 5225 clear_bit(EXTENT_FLAG_LOGGING, &em->flags); 5226 remove_extent_mapping(map_tree, em); 5227 free_extent_map(em); 5228 if (need_resched()) { 5229 write_unlock(&map_tree->lock); 5230 cond_resched(); 5231 write_lock(&map_tree->lock); 5232 } 5233 } 5234 write_unlock(&map_tree->lock); 5235 5236 /* 5237 * Keep looping until we have no more ranges in the io tree. 5238 * We can have ongoing bios started by readpages (called from readahead) 5239 * that have their endio callback (extent_io.c:end_bio_extent_readpage) 5240 * still in progress (unlocked the pages in the bio but did not yet 5241 * unlocked the ranges in the io tree). Therefore this means some 5242 * ranges can still be locked and eviction started because before 5243 * submitting those bios, which are executed by a separate task (work 5244 * queue kthread), inode references (inode->i_count) were not taken 5245 * (which would be dropped in the end io callback of each bio). 5246 * Therefore here we effectively end up waiting for those bios and 5247 * anyone else holding locked ranges without having bumped the inode's 5248 * reference count - if we don't do it, when they access the inode's 5249 * io_tree to unlock a range it may be too late, leading to an 5250 * use-after-free issue. 5251 */ 5252 spin_lock(&io_tree->lock); 5253 while (!RB_EMPTY_ROOT(&io_tree->state)) { 5254 struct extent_state *state; 5255 struct extent_state *cached_state = NULL; 5256 u64 start; 5257 u64 end; 5258 5259 node = rb_first(&io_tree->state); 5260 state = rb_entry(node, struct extent_state, rb_node); 5261 start = state->start; 5262 end = state->end; 5263 spin_unlock(&io_tree->lock); 5264 5265 lock_extent_bits(io_tree, start, end, &cached_state); 5266 5267 /* 5268 * If still has DELALLOC flag, the extent didn't reach disk, 5269 * and its reserved space won't be freed by delayed_ref. 5270 * So we need to free its reserved space here. 5271 * (Refer to comment in btrfs_invalidatepage, case 2) 5272 * 5273 * Note, end is the bytenr of last byte, so we need + 1 here. 5274 */ 5275 if (state->state & EXTENT_DELALLOC) 5276 btrfs_qgroup_free_data(inode, NULL, start, end - start + 1); 5277 5278 clear_extent_bit(io_tree, start, end, 5279 EXTENT_LOCKED | EXTENT_DIRTY | 5280 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | 5281 EXTENT_DEFRAG, 1, 1, &cached_state); 5282 5283 cond_resched(); 5284 spin_lock(&io_tree->lock); 5285 } 5286 spin_unlock(&io_tree->lock); 5287 } 5288 5289 void btrfs_evict_inode(struct inode *inode) 5290 { 5291 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5292 struct btrfs_trans_handle *trans; 5293 struct btrfs_root *root = BTRFS_I(inode)->root; 5294 struct btrfs_block_rsv *rsv, *global_rsv; 5295 int steal_from_global = 0; 5296 u64 min_size; 5297 int ret; 5298 5299 trace_btrfs_inode_evict(inode); 5300 5301 if (!root) { 5302 clear_inode(inode); 5303 return; 5304 } 5305 5306 min_size = btrfs_calc_trunc_metadata_size(fs_info, 1); 5307 5308 evict_inode_truncate_pages(inode); 5309 5310 if (inode->i_nlink && 5311 ((btrfs_root_refs(&root->root_item) != 0 && 5312 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) || 5313 btrfs_is_free_space_inode(BTRFS_I(inode)))) 5314 goto no_delete; 5315 5316 if (is_bad_inode(inode)) { 5317 btrfs_orphan_del(NULL, BTRFS_I(inode)); 5318 goto no_delete; 5319 } 5320 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */ 5321 if (!special_file(inode->i_mode)) 5322 btrfs_wait_ordered_range(inode, 0, (u64)-1); 5323 5324 btrfs_free_io_failure_record(BTRFS_I(inode), 0, (u64)-1); 5325 5326 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) { 5327 BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 5328 &BTRFS_I(inode)->runtime_flags)); 5329 goto no_delete; 5330 } 5331 5332 if (inode->i_nlink > 0) { 5333 BUG_ON(btrfs_root_refs(&root->root_item) != 0 && 5334 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID); 5335 goto no_delete; 5336 } 5337 5338 ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode)); 5339 if (ret) { 5340 btrfs_orphan_del(NULL, BTRFS_I(inode)); 5341 goto no_delete; 5342 } 5343 5344 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP); 5345 if (!rsv) { 5346 btrfs_orphan_del(NULL, BTRFS_I(inode)); 5347 goto no_delete; 5348 } 5349 rsv->size = min_size; 5350 rsv->failfast = 1; 5351 global_rsv = &fs_info->global_block_rsv; 5352 5353 btrfs_i_size_write(BTRFS_I(inode), 0); 5354 5355 /* 5356 * This is a bit simpler than btrfs_truncate since we've already 5357 * reserved our space for our orphan item in the unlink, so we just 5358 * need to reserve some slack space in case we add bytes and update 5359 * inode item when doing the truncate. 5360 */ 5361 while (1) { 5362 ret = btrfs_block_rsv_refill(root, rsv, min_size, 5363 BTRFS_RESERVE_FLUSH_LIMIT); 5364 5365 /* 5366 * Try and steal from the global reserve since we will 5367 * likely not use this space anyway, we want to try as 5368 * hard as possible to get this to work. 5369 */ 5370 if (ret) 5371 steal_from_global++; 5372 else 5373 steal_from_global = 0; 5374 ret = 0; 5375 5376 /* 5377 * steal_from_global == 0: we reserved stuff, hooray! 5378 * steal_from_global == 1: we didn't reserve stuff, boo! 5379 * steal_from_global == 2: we've committed, still not a lot of 5380 * room but maybe we'll have room in the global reserve this 5381 * time. 5382 * steal_from_global == 3: abandon all hope! 5383 */ 5384 if (steal_from_global > 2) { 5385 btrfs_warn(fs_info, 5386 "Could not get space for a delete, will truncate on mount %d", 5387 ret); 5388 btrfs_orphan_del(NULL, BTRFS_I(inode)); 5389 btrfs_free_block_rsv(fs_info, rsv); 5390 goto no_delete; 5391 } 5392 5393 trans = btrfs_join_transaction(root); 5394 if (IS_ERR(trans)) { 5395 btrfs_orphan_del(NULL, BTRFS_I(inode)); 5396 btrfs_free_block_rsv(fs_info, rsv); 5397 goto no_delete; 5398 } 5399 5400 /* 5401 * We can't just steal from the global reserve, we need to make 5402 * sure there is room to do it, if not we need to commit and try 5403 * again. 5404 */ 5405 if (steal_from_global) { 5406 if (!btrfs_check_space_for_delayed_refs(trans, fs_info)) 5407 ret = btrfs_block_rsv_migrate(global_rsv, rsv, 5408 min_size, 0); 5409 else 5410 ret = -ENOSPC; 5411 } 5412 5413 /* 5414 * Couldn't steal from the global reserve, we have too much 5415 * pending stuff built up, commit the transaction and try it 5416 * again. 5417 */ 5418 if (ret) { 5419 ret = btrfs_commit_transaction(trans); 5420 if (ret) { 5421 btrfs_orphan_del(NULL, BTRFS_I(inode)); 5422 btrfs_free_block_rsv(fs_info, rsv); 5423 goto no_delete; 5424 } 5425 continue; 5426 } else { 5427 steal_from_global = 0; 5428 } 5429 5430 trans->block_rsv = rsv; 5431 5432 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0); 5433 if (ret != -ENOSPC && ret != -EAGAIN) 5434 break; 5435 5436 trans->block_rsv = &fs_info->trans_block_rsv; 5437 btrfs_end_transaction(trans); 5438 trans = NULL; 5439 btrfs_btree_balance_dirty(fs_info); 5440 } 5441 5442 btrfs_free_block_rsv(fs_info, rsv); 5443 5444 /* 5445 * Errors here aren't a big deal, it just means we leave orphan items 5446 * in the tree. They will be cleaned up on the next mount. 5447 */ 5448 if (ret == 0) { 5449 trans->block_rsv = root->orphan_block_rsv; 5450 btrfs_orphan_del(trans, BTRFS_I(inode)); 5451 } else { 5452 btrfs_orphan_del(NULL, BTRFS_I(inode)); 5453 } 5454 5455 trans->block_rsv = &fs_info->trans_block_rsv; 5456 if (!(root == fs_info->tree_root || 5457 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)) 5458 btrfs_return_ino(root, btrfs_ino(BTRFS_I(inode))); 5459 5460 btrfs_end_transaction(trans); 5461 btrfs_btree_balance_dirty(fs_info); 5462 no_delete: 5463 btrfs_remove_delayed_node(BTRFS_I(inode)); 5464 clear_inode(inode); 5465 } 5466 5467 /* 5468 * this returns the key found in the dir entry in the location pointer. 5469 * If no dir entries were found, location->objectid is 0. 5470 */ 5471 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry, 5472 struct btrfs_key *location) 5473 { 5474 const char *name = dentry->d_name.name; 5475 int namelen = dentry->d_name.len; 5476 struct btrfs_dir_item *di; 5477 struct btrfs_path *path; 5478 struct btrfs_root *root = BTRFS_I(dir)->root; 5479 int ret = 0; 5480 5481 path = btrfs_alloc_path(); 5482 if (!path) 5483 return -ENOMEM; 5484 5485 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(BTRFS_I(dir)), 5486 name, namelen, 0); 5487 if (IS_ERR(di)) 5488 ret = PTR_ERR(di); 5489 5490 if (IS_ERR_OR_NULL(di)) 5491 goto out_err; 5492 5493 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location); 5494 if (location->type != BTRFS_INODE_ITEM_KEY && 5495 location->type != BTRFS_ROOT_ITEM_KEY) { 5496 btrfs_warn(root->fs_info, 5497 "%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))", 5498 __func__, name, btrfs_ino(BTRFS_I(dir)), 5499 location->objectid, location->type, location->offset); 5500 goto out_err; 5501 } 5502 out: 5503 btrfs_free_path(path); 5504 return ret; 5505 out_err: 5506 location->objectid = 0; 5507 goto out; 5508 } 5509 5510 /* 5511 * when we hit a tree root in a directory, the btrfs part of the inode 5512 * needs to be changed to reflect the root directory of the tree root. This 5513 * is kind of like crossing a mount point. 5514 */ 5515 static int fixup_tree_root_location(struct btrfs_fs_info *fs_info, 5516 struct inode *dir, 5517 struct dentry *dentry, 5518 struct btrfs_key *location, 5519 struct btrfs_root **sub_root) 5520 { 5521 struct btrfs_path *path; 5522 struct btrfs_root *new_root; 5523 struct btrfs_root_ref *ref; 5524 struct extent_buffer *leaf; 5525 struct btrfs_key key; 5526 int ret; 5527 int err = 0; 5528 5529 path = btrfs_alloc_path(); 5530 if (!path) { 5531 err = -ENOMEM; 5532 goto out; 5533 } 5534 5535 err = -ENOENT; 5536 key.objectid = BTRFS_I(dir)->root->root_key.objectid; 5537 key.type = BTRFS_ROOT_REF_KEY; 5538 key.offset = location->objectid; 5539 5540 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 5541 if (ret) { 5542 if (ret < 0) 5543 err = ret; 5544 goto out; 5545 } 5546 5547 leaf = path->nodes[0]; 5548 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); 5549 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(BTRFS_I(dir)) || 5550 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len) 5551 goto out; 5552 5553 ret = memcmp_extent_buffer(leaf, dentry->d_name.name, 5554 (unsigned long)(ref + 1), 5555 dentry->d_name.len); 5556 if (ret) 5557 goto out; 5558 5559 btrfs_release_path(path); 5560 5561 new_root = btrfs_read_fs_root_no_name(fs_info, location); 5562 if (IS_ERR(new_root)) { 5563 err = PTR_ERR(new_root); 5564 goto out; 5565 } 5566 5567 *sub_root = new_root; 5568 location->objectid = btrfs_root_dirid(&new_root->root_item); 5569 location->type = BTRFS_INODE_ITEM_KEY; 5570 location->offset = 0; 5571 err = 0; 5572 out: 5573 btrfs_free_path(path); 5574 return err; 5575 } 5576 5577 static void inode_tree_add(struct inode *inode) 5578 { 5579 struct btrfs_root *root = BTRFS_I(inode)->root; 5580 struct btrfs_inode *entry; 5581 struct rb_node **p; 5582 struct rb_node *parent; 5583 struct rb_node *new = &BTRFS_I(inode)->rb_node; 5584 u64 ino = btrfs_ino(BTRFS_I(inode)); 5585 5586 if (inode_unhashed(inode)) 5587 return; 5588 parent = NULL; 5589 spin_lock(&root->inode_lock); 5590 p = &root->inode_tree.rb_node; 5591 while (*p) { 5592 parent = *p; 5593 entry = rb_entry(parent, struct btrfs_inode, rb_node); 5594 5595 if (ino < btrfs_ino(BTRFS_I(&entry->vfs_inode))) 5596 p = &parent->rb_left; 5597 else if (ino > btrfs_ino(BTRFS_I(&entry->vfs_inode))) 5598 p = &parent->rb_right; 5599 else { 5600 WARN_ON(!(entry->vfs_inode.i_state & 5601 (I_WILL_FREE | I_FREEING))); 5602 rb_replace_node(parent, new, &root->inode_tree); 5603 RB_CLEAR_NODE(parent); 5604 spin_unlock(&root->inode_lock); 5605 return; 5606 } 5607 } 5608 rb_link_node(new, parent, p); 5609 rb_insert_color(new, &root->inode_tree); 5610 spin_unlock(&root->inode_lock); 5611 } 5612 5613 static void inode_tree_del(struct inode *inode) 5614 { 5615 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5616 struct btrfs_root *root = BTRFS_I(inode)->root; 5617 int empty = 0; 5618 5619 spin_lock(&root->inode_lock); 5620 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) { 5621 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree); 5622 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node); 5623 empty = RB_EMPTY_ROOT(&root->inode_tree); 5624 } 5625 spin_unlock(&root->inode_lock); 5626 5627 if (empty && btrfs_root_refs(&root->root_item) == 0) { 5628 synchronize_srcu(&fs_info->subvol_srcu); 5629 spin_lock(&root->inode_lock); 5630 empty = RB_EMPTY_ROOT(&root->inode_tree); 5631 spin_unlock(&root->inode_lock); 5632 if (empty) 5633 btrfs_add_dead_root(root); 5634 } 5635 } 5636 5637 void btrfs_invalidate_inodes(struct btrfs_root *root) 5638 { 5639 struct btrfs_fs_info *fs_info = root->fs_info; 5640 struct rb_node *node; 5641 struct rb_node *prev; 5642 struct btrfs_inode *entry; 5643 struct inode *inode; 5644 u64 objectid = 0; 5645 5646 if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 5647 WARN_ON(btrfs_root_refs(&root->root_item) != 0); 5648 5649 spin_lock(&root->inode_lock); 5650 again: 5651 node = root->inode_tree.rb_node; 5652 prev = NULL; 5653 while (node) { 5654 prev = node; 5655 entry = rb_entry(node, struct btrfs_inode, rb_node); 5656 5657 if (objectid < btrfs_ino(BTRFS_I(&entry->vfs_inode))) 5658 node = node->rb_left; 5659 else if (objectid > btrfs_ino(BTRFS_I(&entry->vfs_inode))) 5660 node = node->rb_right; 5661 else 5662 break; 5663 } 5664 if (!node) { 5665 while (prev) { 5666 entry = rb_entry(prev, struct btrfs_inode, rb_node); 5667 if (objectid <= btrfs_ino(BTRFS_I(&entry->vfs_inode))) { 5668 node = prev; 5669 break; 5670 } 5671 prev = rb_next(prev); 5672 } 5673 } 5674 while (node) { 5675 entry = rb_entry(node, struct btrfs_inode, rb_node); 5676 objectid = btrfs_ino(BTRFS_I(&entry->vfs_inode)) + 1; 5677 inode = igrab(&entry->vfs_inode); 5678 if (inode) { 5679 spin_unlock(&root->inode_lock); 5680 if (atomic_read(&inode->i_count) > 1) 5681 d_prune_aliases(inode); 5682 /* 5683 * btrfs_drop_inode will have it removed from 5684 * the inode cache when its usage count 5685 * hits zero. 5686 */ 5687 iput(inode); 5688 cond_resched(); 5689 spin_lock(&root->inode_lock); 5690 goto again; 5691 } 5692 5693 if (cond_resched_lock(&root->inode_lock)) 5694 goto again; 5695 5696 node = rb_next(node); 5697 } 5698 spin_unlock(&root->inode_lock); 5699 } 5700 5701 static int btrfs_init_locked_inode(struct inode *inode, void *p) 5702 { 5703 struct btrfs_iget_args *args = p; 5704 inode->i_ino = args->location->objectid; 5705 memcpy(&BTRFS_I(inode)->location, args->location, 5706 sizeof(*args->location)); 5707 BTRFS_I(inode)->root = args->root; 5708 return 0; 5709 } 5710 5711 static int btrfs_find_actor(struct inode *inode, void *opaque) 5712 { 5713 struct btrfs_iget_args *args = opaque; 5714 return args->location->objectid == BTRFS_I(inode)->location.objectid && 5715 args->root == BTRFS_I(inode)->root; 5716 } 5717 5718 static struct inode *btrfs_iget_locked(struct super_block *s, 5719 struct btrfs_key *location, 5720 struct btrfs_root *root) 5721 { 5722 struct inode *inode; 5723 struct btrfs_iget_args args; 5724 unsigned long hashval = btrfs_inode_hash(location->objectid, root); 5725 5726 args.location = location; 5727 args.root = root; 5728 5729 inode = iget5_locked(s, hashval, btrfs_find_actor, 5730 btrfs_init_locked_inode, 5731 (void *)&args); 5732 return inode; 5733 } 5734 5735 /* Get an inode object given its location and corresponding root. 5736 * Returns in *is_new if the inode was read from disk 5737 */ 5738 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location, 5739 struct btrfs_root *root, int *new) 5740 { 5741 struct inode *inode; 5742 5743 inode = btrfs_iget_locked(s, location, root); 5744 if (!inode) 5745 return ERR_PTR(-ENOMEM); 5746 5747 if (inode->i_state & I_NEW) { 5748 int ret; 5749 5750 ret = btrfs_read_locked_inode(inode); 5751 if (!is_bad_inode(inode)) { 5752 inode_tree_add(inode); 5753 unlock_new_inode(inode); 5754 if (new) 5755 *new = 1; 5756 } else { 5757 unlock_new_inode(inode); 5758 iput(inode); 5759 ASSERT(ret < 0); 5760 inode = ERR_PTR(ret < 0 ? ret : -ESTALE); 5761 } 5762 } 5763 5764 return inode; 5765 } 5766 5767 static struct inode *new_simple_dir(struct super_block *s, 5768 struct btrfs_key *key, 5769 struct btrfs_root *root) 5770 { 5771 struct inode *inode = new_inode(s); 5772 5773 if (!inode) 5774 return ERR_PTR(-ENOMEM); 5775 5776 BTRFS_I(inode)->root = root; 5777 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key)); 5778 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags); 5779 5780 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID; 5781 inode->i_op = &btrfs_dir_ro_inode_operations; 5782 inode->i_opflags &= ~IOP_XATTR; 5783 inode->i_fop = &simple_dir_operations; 5784 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO; 5785 inode->i_mtime = current_time(inode); 5786 inode->i_atime = inode->i_mtime; 5787 inode->i_ctime = inode->i_mtime; 5788 BTRFS_I(inode)->i_otime = inode->i_mtime; 5789 5790 return inode; 5791 } 5792 5793 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry) 5794 { 5795 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 5796 struct inode *inode; 5797 struct btrfs_root *root = BTRFS_I(dir)->root; 5798 struct btrfs_root *sub_root = root; 5799 struct btrfs_key location; 5800 int index; 5801 int ret = 0; 5802 5803 if (dentry->d_name.len > BTRFS_NAME_LEN) 5804 return ERR_PTR(-ENAMETOOLONG); 5805 5806 ret = btrfs_inode_by_name(dir, dentry, &location); 5807 if (ret < 0) 5808 return ERR_PTR(ret); 5809 5810 if (location.objectid == 0) 5811 return ERR_PTR(-ENOENT); 5812 5813 if (location.type == BTRFS_INODE_ITEM_KEY) { 5814 inode = btrfs_iget(dir->i_sb, &location, root, NULL); 5815 return inode; 5816 } 5817 5818 index = srcu_read_lock(&fs_info->subvol_srcu); 5819 ret = fixup_tree_root_location(fs_info, dir, dentry, 5820 &location, &sub_root); 5821 if (ret < 0) { 5822 if (ret != -ENOENT) 5823 inode = ERR_PTR(ret); 5824 else 5825 inode = new_simple_dir(dir->i_sb, &location, sub_root); 5826 } else { 5827 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL); 5828 } 5829 srcu_read_unlock(&fs_info->subvol_srcu, index); 5830 5831 if (!IS_ERR(inode) && root != sub_root) { 5832 down_read(&fs_info->cleanup_work_sem); 5833 if (!sb_rdonly(inode->i_sb)) 5834 ret = btrfs_orphan_cleanup(sub_root); 5835 up_read(&fs_info->cleanup_work_sem); 5836 if (ret) { 5837 iput(inode); 5838 inode = ERR_PTR(ret); 5839 } 5840 } 5841 5842 return inode; 5843 } 5844 5845 static int btrfs_dentry_delete(const struct dentry *dentry) 5846 { 5847 struct btrfs_root *root; 5848 struct inode *inode = d_inode(dentry); 5849 5850 if (!inode && !IS_ROOT(dentry)) 5851 inode = d_inode(dentry->d_parent); 5852 5853 if (inode) { 5854 root = BTRFS_I(inode)->root; 5855 if (btrfs_root_refs(&root->root_item) == 0) 5856 return 1; 5857 5858 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 5859 return 1; 5860 } 5861 return 0; 5862 } 5863 5864 static void btrfs_dentry_release(struct dentry *dentry) 5865 { 5866 kfree(dentry->d_fsdata); 5867 } 5868 5869 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry, 5870 unsigned int flags) 5871 { 5872 struct inode *inode; 5873 5874 inode = btrfs_lookup_dentry(dir, dentry); 5875 if (IS_ERR(inode)) { 5876 if (PTR_ERR(inode) == -ENOENT) 5877 inode = NULL; 5878 else 5879 return ERR_CAST(inode); 5880 } 5881 5882 return d_splice_alias(inode, dentry); 5883 } 5884 5885 unsigned char btrfs_filetype_table[] = { 5886 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK 5887 }; 5888 5889 /* 5890 * All this infrastructure exists because dir_emit can fault, and we are holding 5891 * the tree lock when doing readdir. For now just allocate a buffer and copy 5892 * our information into that, and then dir_emit from the buffer. This is 5893 * similar to what NFS does, only we don't keep the buffer around in pagecache 5894 * because I'm afraid I'll mess that up. Long term we need to make filldir do 5895 * copy_to_user_inatomic so we don't have to worry about page faulting under the 5896 * tree lock. 5897 */ 5898 static int btrfs_opendir(struct inode *inode, struct file *file) 5899 { 5900 struct btrfs_file_private *private; 5901 5902 private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL); 5903 if (!private) 5904 return -ENOMEM; 5905 private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL); 5906 if (!private->filldir_buf) { 5907 kfree(private); 5908 return -ENOMEM; 5909 } 5910 file->private_data = private; 5911 return 0; 5912 } 5913 5914 struct dir_entry { 5915 u64 ino; 5916 u64 offset; 5917 unsigned type; 5918 int name_len; 5919 }; 5920 5921 static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx) 5922 { 5923 while (entries--) { 5924 struct dir_entry *entry = addr; 5925 char *name = (char *)(entry + 1); 5926 5927 ctx->pos = entry->offset; 5928 if (!dir_emit(ctx, name, entry->name_len, entry->ino, 5929 entry->type)) 5930 return 1; 5931 addr += sizeof(struct dir_entry) + entry->name_len; 5932 ctx->pos++; 5933 } 5934 return 0; 5935 } 5936 5937 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx) 5938 { 5939 struct inode *inode = file_inode(file); 5940 struct btrfs_root *root = BTRFS_I(inode)->root; 5941 struct btrfs_file_private *private = file->private_data; 5942 struct btrfs_dir_item *di; 5943 struct btrfs_key key; 5944 struct btrfs_key found_key; 5945 struct btrfs_path *path; 5946 void *addr; 5947 struct list_head ins_list; 5948 struct list_head del_list; 5949 int ret; 5950 struct extent_buffer *leaf; 5951 int slot; 5952 char *name_ptr; 5953 int name_len; 5954 int entries = 0; 5955 int total_len = 0; 5956 bool put = false; 5957 struct btrfs_key location; 5958 5959 if (!dir_emit_dots(file, ctx)) 5960 return 0; 5961 5962 path = btrfs_alloc_path(); 5963 if (!path) 5964 return -ENOMEM; 5965 5966 addr = private->filldir_buf; 5967 path->reada = READA_FORWARD; 5968 5969 INIT_LIST_HEAD(&ins_list); 5970 INIT_LIST_HEAD(&del_list); 5971 put = btrfs_readdir_get_delayed_items(inode, &ins_list, &del_list); 5972 5973 again: 5974 key.type = BTRFS_DIR_INDEX_KEY; 5975 key.offset = ctx->pos; 5976 key.objectid = btrfs_ino(BTRFS_I(inode)); 5977 5978 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5979 if (ret < 0) 5980 goto err; 5981 5982 while (1) { 5983 struct dir_entry *entry; 5984 5985 leaf = path->nodes[0]; 5986 slot = path->slots[0]; 5987 if (slot >= btrfs_header_nritems(leaf)) { 5988 ret = btrfs_next_leaf(root, path); 5989 if (ret < 0) 5990 goto err; 5991 else if (ret > 0) 5992 break; 5993 continue; 5994 } 5995 5996 btrfs_item_key_to_cpu(leaf, &found_key, slot); 5997 5998 if (found_key.objectid != key.objectid) 5999 break; 6000 if (found_key.type != BTRFS_DIR_INDEX_KEY) 6001 break; 6002 if (found_key.offset < ctx->pos) 6003 goto next; 6004 if (btrfs_should_delete_dir_index(&del_list, found_key.offset)) 6005 goto next; 6006 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item); 6007 name_len = btrfs_dir_name_len(leaf, di); 6008 if ((total_len + sizeof(struct dir_entry) + name_len) >= 6009 PAGE_SIZE) { 6010 btrfs_release_path(path); 6011 ret = btrfs_filldir(private->filldir_buf, entries, ctx); 6012 if (ret) 6013 goto nopos; 6014 addr = private->filldir_buf; 6015 entries = 0; 6016 total_len = 0; 6017 goto again; 6018 } 6019 6020 entry = addr; 6021 entry->name_len = name_len; 6022 name_ptr = (char *)(entry + 1); 6023 read_extent_buffer(leaf, name_ptr, (unsigned long)(di + 1), 6024 name_len); 6025 entry->type = btrfs_filetype_table[btrfs_dir_type(leaf, di)]; 6026 btrfs_dir_item_key_to_cpu(leaf, di, &location); 6027 entry->ino = location.objectid; 6028 entry->offset = found_key.offset; 6029 entries++; 6030 addr += sizeof(struct dir_entry) + name_len; 6031 total_len += sizeof(struct dir_entry) + name_len; 6032 next: 6033 path->slots[0]++; 6034 } 6035 btrfs_release_path(path); 6036 6037 ret = btrfs_filldir(private->filldir_buf, entries, ctx); 6038 if (ret) 6039 goto nopos; 6040 6041 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list); 6042 if (ret) 6043 goto nopos; 6044 6045 /* 6046 * Stop new entries from being returned after we return the last 6047 * entry. 6048 * 6049 * New directory entries are assigned a strictly increasing 6050 * offset. This means that new entries created during readdir 6051 * are *guaranteed* to be seen in the future by that readdir. 6052 * This has broken buggy programs which operate on names as 6053 * they're returned by readdir. Until we re-use freed offsets 6054 * we have this hack to stop new entries from being returned 6055 * under the assumption that they'll never reach this huge 6056 * offset. 6057 * 6058 * This is being careful not to overflow 32bit loff_t unless the 6059 * last entry requires it because doing so has broken 32bit apps 6060 * in the past. 6061 */ 6062 if (ctx->pos >= INT_MAX) 6063 ctx->pos = LLONG_MAX; 6064 else 6065 ctx->pos = INT_MAX; 6066 nopos: 6067 ret = 0; 6068 err: 6069 if (put) 6070 btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list); 6071 btrfs_free_path(path); 6072 return ret; 6073 } 6074 6075 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc) 6076 { 6077 struct btrfs_root *root = BTRFS_I(inode)->root; 6078 struct btrfs_trans_handle *trans; 6079 int ret = 0; 6080 bool nolock = false; 6081 6082 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags)) 6083 return 0; 6084 6085 if (btrfs_fs_closing(root->fs_info) && 6086 btrfs_is_free_space_inode(BTRFS_I(inode))) 6087 nolock = true; 6088 6089 if (wbc->sync_mode == WB_SYNC_ALL) { 6090 if (nolock) 6091 trans = btrfs_join_transaction_nolock(root); 6092 else 6093 trans = btrfs_join_transaction(root); 6094 if (IS_ERR(trans)) 6095 return PTR_ERR(trans); 6096 ret = btrfs_commit_transaction(trans); 6097 } 6098 return ret; 6099 } 6100 6101 /* 6102 * This is somewhat expensive, updating the tree every time the 6103 * inode changes. But, it is most likely to find the inode in cache. 6104 * FIXME, needs more benchmarking...there are no reasons other than performance 6105 * to keep or drop this code. 6106 */ 6107 static int btrfs_dirty_inode(struct inode *inode) 6108 { 6109 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 6110 struct btrfs_root *root = BTRFS_I(inode)->root; 6111 struct btrfs_trans_handle *trans; 6112 int ret; 6113 6114 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags)) 6115 return 0; 6116 6117 trans = btrfs_join_transaction(root); 6118 if (IS_ERR(trans)) 6119 return PTR_ERR(trans); 6120 6121 ret = btrfs_update_inode(trans, root, inode); 6122 if (ret && ret == -ENOSPC) { 6123 /* whoops, lets try again with the full transaction */ 6124 btrfs_end_transaction(trans); 6125 trans = btrfs_start_transaction(root, 1); 6126 if (IS_ERR(trans)) 6127 return PTR_ERR(trans); 6128 6129 ret = btrfs_update_inode(trans, root, inode); 6130 } 6131 btrfs_end_transaction(trans); 6132 if (BTRFS_I(inode)->delayed_node) 6133 btrfs_balance_delayed_items(fs_info); 6134 6135 return ret; 6136 } 6137 6138 /* 6139 * This is a copy of file_update_time. We need this so we can return error on 6140 * ENOSPC for updating the inode in the case of file write and mmap writes. 6141 */ 6142 static int btrfs_update_time(struct inode *inode, struct timespec *now, 6143 int flags) 6144 { 6145 struct btrfs_root *root = BTRFS_I(inode)->root; 6146 bool dirty = flags & ~S_VERSION; 6147 6148 if (btrfs_root_readonly(root)) 6149 return -EROFS; 6150 6151 if (flags & S_VERSION) 6152 dirty |= inode_maybe_inc_iversion(inode, dirty); 6153 if (flags & S_CTIME) 6154 inode->i_ctime = *now; 6155 if (flags & S_MTIME) 6156 inode->i_mtime = *now; 6157 if (flags & S_ATIME) 6158 inode->i_atime = *now; 6159 return dirty ? btrfs_dirty_inode(inode) : 0; 6160 } 6161 6162 /* 6163 * find the highest existing sequence number in a directory 6164 * and then set the in-memory index_cnt variable to reflect 6165 * free sequence numbers 6166 */ 6167 static int btrfs_set_inode_index_count(struct btrfs_inode *inode) 6168 { 6169 struct btrfs_root *root = inode->root; 6170 struct btrfs_key key, found_key; 6171 struct btrfs_path *path; 6172 struct extent_buffer *leaf; 6173 int ret; 6174 6175 key.objectid = btrfs_ino(inode); 6176 key.type = BTRFS_DIR_INDEX_KEY; 6177 key.offset = (u64)-1; 6178 6179 path = btrfs_alloc_path(); 6180 if (!path) 6181 return -ENOMEM; 6182 6183 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 6184 if (ret < 0) 6185 goto out; 6186 /* FIXME: we should be able to handle this */ 6187 if (ret == 0) 6188 goto out; 6189 ret = 0; 6190 6191 /* 6192 * MAGIC NUMBER EXPLANATION: 6193 * since we search a directory based on f_pos we have to start at 2 6194 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody 6195 * else has to start at 2 6196 */ 6197 if (path->slots[0] == 0) { 6198 inode->index_cnt = 2; 6199 goto out; 6200 } 6201 6202 path->slots[0]--; 6203 6204 leaf = path->nodes[0]; 6205 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6206 6207 if (found_key.objectid != btrfs_ino(inode) || 6208 found_key.type != BTRFS_DIR_INDEX_KEY) { 6209 inode->index_cnt = 2; 6210 goto out; 6211 } 6212 6213 inode->index_cnt = found_key.offset + 1; 6214 out: 6215 btrfs_free_path(path); 6216 return ret; 6217 } 6218 6219 /* 6220 * helper to find a free sequence number in a given directory. This current 6221 * code is very simple, later versions will do smarter things in the btree 6222 */ 6223 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index) 6224 { 6225 int ret = 0; 6226 6227 if (dir->index_cnt == (u64)-1) { 6228 ret = btrfs_inode_delayed_dir_index_count(dir); 6229 if (ret) { 6230 ret = btrfs_set_inode_index_count(dir); 6231 if (ret) 6232 return ret; 6233 } 6234 } 6235 6236 *index = dir->index_cnt; 6237 dir->index_cnt++; 6238 6239 return ret; 6240 } 6241 6242 static int btrfs_insert_inode_locked(struct inode *inode) 6243 { 6244 struct btrfs_iget_args args; 6245 args.location = &BTRFS_I(inode)->location; 6246 args.root = BTRFS_I(inode)->root; 6247 6248 return insert_inode_locked4(inode, 6249 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root), 6250 btrfs_find_actor, &args); 6251 } 6252 6253 /* 6254 * Inherit flags from the parent inode. 6255 * 6256 * Currently only the compression flags and the cow flags are inherited. 6257 */ 6258 static void btrfs_inherit_iflags(struct inode *inode, struct inode *dir) 6259 { 6260 unsigned int flags; 6261 6262 if (!dir) 6263 return; 6264 6265 flags = BTRFS_I(dir)->flags; 6266 6267 if (flags & BTRFS_INODE_NOCOMPRESS) { 6268 BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS; 6269 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS; 6270 } else if (flags & BTRFS_INODE_COMPRESS) { 6271 BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS; 6272 BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS; 6273 } 6274 6275 if (flags & BTRFS_INODE_NODATACOW) { 6276 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW; 6277 if (S_ISREG(inode->i_mode)) 6278 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; 6279 } 6280 6281 btrfs_update_iflags(inode); 6282 } 6283 6284 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans, 6285 struct btrfs_root *root, 6286 struct inode *dir, 6287 const char *name, int name_len, 6288 u64 ref_objectid, u64 objectid, 6289 umode_t mode, u64 *index) 6290 { 6291 struct btrfs_fs_info *fs_info = root->fs_info; 6292 struct inode *inode; 6293 struct btrfs_inode_item *inode_item; 6294 struct btrfs_key *location; 6295 struct btrfs_path *path; 6296 struct btrfs_inode_ref *ref; 6297 struct btrfs_key key[2]; 6298 u32 sizes[2]; 6299 int nitems = name ? 2 : 1; 6300 unsigned long ptr; 6301 int ret; 6302 6303 path = btrfs_alloc_path(); 6304 if (!path) 6305 return ERR_PTR(-ENOMEM); 6306 6307 inode = new_inode(fs_info->sb); 6308 if (!inode) { 6309 btrfs_free_path(path); 6310 return ERR_PTR(-ENOMEM); 6311 } 6312 6313 /* 6314 * O_TMPFILE, set link count to 0, so that after this point, 6315 * we fill in an inode item with the correct link count. 6316 */ 6317 if (!name) 6318 set_nlink(inode, 0); 6319 6320 /* 6321 * we have to initialize this early, so we can reclaim the inode 6322 * number if we fail afterwards in this function. 6323 */ 6324 inode->i_ino = objectid; 6325 6326 if (dir && name) { 6327 trace_btrfs_inode_request(dir); 6328 6329 ret = btrfs_set_inode_index(BTRFS_I(dir), index); 6330 if (ret) { 6331 btrfs_free_path(path); 6332 iput(inode); 6333 return ERR_PTR(ret); 6334 } 6335 } else if (dir) { 6336 *index = 0; 6337 } 6338 /* 6339 * index_cnt is ignored for everything but a dir, 6340 * btrfs_set_inode_index_count has an explanation for the magic 6341 * number 6342 */ 6343 BTRFS_I(inode)->index_cnt = 2; 6344 BTRFS_I(inode)->dir_index = *index; 6345 BTRFS_I(inode)->root = root; 6346 BTRFS_I(inode)->generation = trans->transid; 6347 inode->i_generation = BTRFS_I(inode)->generation; 6348 6349 /* 6350 * We could have gotten an inode number from somebody who was fsynced 6351 * and then removed in this same transaction, so let's just set full 6352 * sync since it will be a full sync anyway and this will blow away the 6353 * old info in the log. 6354 */ 6355 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 6356 6357 key[0].objectid = objectid; 6358 key[0].type = BTRFS_INODE_ITEM_KEY; 6359 key[0].offset = 0; 6360 6361 sizes[0] = sizeof(struct btrfs_inode_item); 6362 6363 if (name) { 6364 /* 6365 * Start new inodes with an inode_ref. This is slightly more 6366 * efficient for small numbers of hard links since they will 6367 * be packed into one item. Extended refs will kick in if we 6368 * add more hard links than can fit in the ref item. 6369 */ 6370 key[1].objectid = objectid; 6371 key[1].type = BTRFS_INODE_REF_KEY; 6372 key[1].offset = ref_objectid; 6373 6374 sizes[1] = name_len + sizeof(*ref); 6375 } 6376 6377 location = &BTRFS_I(inode)->location; 6378 location->objectid = objectid; 6379 location->offset = 0; 6380 location->type = BTRFS_INODE_ITEM_KEY; 6381 6382 ret = btrfs_insert_inode_locked(inode); 6383 if (ret < 0) 6384 goto fail; 6385 6386 path->leave_spinning = 1; 6387 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems); 6388 if (ret != 0) 6389 goto fail_unlock; 6390 6391 inode_init_owner(inode, dir, mode); 6392 inode_set_bytes(inode, 0); 6393 6394 inode->i_mtime = current_time(inode); 6395 inode->i_atime = inode->i_mtime; 6396 inode->i_ctime = inode->i_mtime; 6397 BTRFS_I(inode)->i_otime = inode->i_mtime; 6398 6399 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0], 6400 struct btrfs_inode_item); 6401 memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item, 6402 sizeof(*inode_item)); 6403 fill_inode_item(trans, path->nodes[0], inode_item, inode); 6404 6405 if (name) { 6406 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1, 6407 struct btrfs_inode_ref); 6408 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len); 6409 btrfs_set_inode_ref_index(path->nodes[0], ref, *index); 6410 ptr = (unsigned long)(ref + 1); 6411 write_extent_buffer(path->nodes[0], name, ptr, name_len); 6412 } 6413 6414 btrfs_mark_buffer_dirty(path->nodes[0]); 6415 btrfs_free_path(path); 6416 6417 btrfs_inherit_iflags(inode, dir); 6418 6419 if (S_ISREG(mode)) { 6420 if (btrfs_test_opt(fs_info, NODATASUM)) 6421 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; 6422 if (btrfs_test_opt(fs_info, NODATACOW)) 6423 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW | 6424 BTRFS_INODE_NODATASUM; 6425 } 6426 6427 inode_tree_add(inode); 6428 6429 trace_btrfs_inode_new(inode); 6430 btrfs_set_inode_last_trans(trans, inode); 6431 6432 btrfs_update_root_times(trans, root); 6433 6434 ret = btrfs_inode_inherit_props(trans, inode, dir); 6435 if (ret) 6436 btrfs_err(fs_info, 6437 "error inheriting props for ino %llu (root %llu): %d", 6438 btrfs_ino(BTRFS_I(inode)), root->root_key.objectid, ret); 6439 6440 return inode; 6441 6442 fail_unlock: 6443 unlock_new_inode(inode); 6444 fail: 6445 if (dir && name) 6446 BTRFS_I(dir)->index_cnt--; 6447 btrfs_free_path(path); 6448 iput(inode); 6449 return ERR_PTR(ret); 6450 } 6451 6452 static inline u8 btrfs_inode_type(struct inode *inode) 6453 { 6454 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT]; 6455 } 6456 6457 /* 6458 * utility function to add 'inode' into 'parent_inode' with 6459 * a give name and a given sequence number. 6460 * if 'add_backref' is true, also insert a backref from the 6461 * inode to the parent directory. 6462 */ 6463 int btrfs_add_link(struct btrfs_trans_handle *trans, 6464 struct btrfs_inode *parent_inode, struct btrfs_inode *inode, 6465 const char *name, int name_len, int add_backref, u64 index) 6466 { 6467 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb); 6468 int ret = 0; 6469 struct btrfs_key key; 6470 struct btrfs_root *root = parent_inode->root; 6471 u64 ino = btrfs_ino(inode); 6472 u64 parent_ino = btrfs_ino(parent_inode); 6473 6474 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6475 memcpy(&key, &inode->root->root_key, sizeof(key)); 6476 } else { 6477 key.objectid = ino; 6478 key.type = BTRFS_INODE_ITEM_KEY; 6479 key.offset = 0; 6480 } 6481 6482 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6483 ret = btrfs_add_root_ref(trans, fs_info, key.objectid, 6484 root->root_key.objectid, parent_ino, 6485 index, name, name_len); 6486 } else if (add_backref) { 6487 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino, 6488 parent_ino, index); 6489 } 6490 6491 /* Nothing to clean up yet */ 6492 if (ret) 6493 return ret; 6494 6495 ret = btrfs_insert_dir_item(trans, root, name, name_len, 6496 parent_inode, &key, 6497 btrfs_inode_type(&inode->vfs_inode), index); 6498 if (ret == -EEXIST || ret == -EOVERFLOW) 6499 goto fail_dir_item; 6500 else if (ret) { 6501 btrfs_abort_transaction(trans, ret); 6502 return ret; 6503 } 6504 6505 btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size + 6506 name_len * 2); 6507 inode_inc_iversion(&parent_inode->vfs_inode); 6508 parent_inode->vfs_inode.i_mtime = parent_inode->vfs_inode.i_ctime = 6509 current_time(&parent_inode->vfs_inode); 6510 ret = btrfs_update_inode(trans, root, &parent_inode->vfs_inode); 6511 if (ret) 6512 btrfs_abort_transaction(trans, ret); 6513 return ret; 6514 6515 fail_dir_item: 6516 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6517 u64 local_index; 6518 int err; 6519 err = btrfs_del_root_ref(trans, fs_info, key.objectid, 6520 root->root_key.objectid, parent_ino, 6521 &local_index, name, name_len); 6522 6523 } else if (add_backref) { 6524 u64 local_index; 6525 int err; 6526 6527 err = btrfs_del_inode_ref(trans, root, name, name_len, 6528 ino, parent_ino, &local_index); 6529 } 6530 return ret; 6531 } 6532 6533 static int btrfs_add_nondir(struct btrfs_trans_handle *trans, 6534 struct btrfs_inode *dir, struct dentry *dentry, 6535 struct btrfs_inode *inode, int backref, u64 index) 6536 { 6537 int err = btrfs_add_link(trans, dir, inode, 6538 dentry->d_name.name, dentry->d_name.len, 6539 backref, index); 6540 if (err > 0) 6541 err = -EEXIST; 6542 return err; 6543 } 6544 6545 static int btrfs_mknod(struct inode *dir, struct dentry *dentry, 6546 umode_t mode, dev_t rdev) 6547 { 6548 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 6549 struct btrfs_trans_handle *trans; 6550 struct btrfs_root *root = BTRFS_I(dir)->root; 6551 struct inode *inode = NULL; 6552 int err; 6553 int drop_inode = 0; 6554 u64 objectid; 6555 u64 index = 0; 6556 6557 /* 6558 * 2 for inode item and ref 6559 * 2 for dir items 6560 * 1 for xattr if selinux is on 6561 */ 6562 trans = btrfs_start_transaction(root, 5); 6563 if (IS_ERR(trans)) 6564 return PTR_ERR(trans); 6565 6566 err = btrfs_find_free_ino(root, &objectid); 6567 if (err) 6568 goto out_unlock; 6569 6570 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 6571 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid, 6572 mode, &index); 6573 if (IS_ERR(inode)) { 6574 err = PTR_ERR(inode); 6575 goto out_unlock; 6576 } 6577 6578 /* 6579 * If the active LSM wants to access the inode during 6580 * d_instantiate it needs these. Smack checks to see 6581 * if the filesystem supports xattrs by looking at the 6582 * ops vector. 6583 */ 6584 inode->i_op = &btrfs_special_inode_operations; 6585 init_special_inode(inode, inode->i_mode, rdev); 6586 6587 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 6588 if (err) 6589 goto out_unlock_inode; 6590 6591 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode), 6592 0, index); 6593 if (err) { 6594 goto out_unlock_inode; 6595 } else { 6596 btrfs_update_inode(trans, root, inode); 6597 unlock_new_inode(inode); 6598 d_instantiate(dentry, inode); 6599 } 6600 6601 out_unlock: 6602 btrfs_end_transaction(trans); 6603 btrfs_btree_balance_dirty(fs_info); 6604 if (drop_inode) { 6605 inode_dec_link_count(inode); 6606 iput(inode); 6607 } 6608 return err; 6609 6610 out_unlock_inode: 6611 drop_inode = 1; 6612 unlock_new_inode(inode); 6613 goto out_unlock; 6614 6615 } 6616 6617 static int btrfs_create(struct inode *dir, struct dentry *dentry, 6618 umode_t mode, bool excl) 6619 { 6620 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 6621 struct btrfs_trans_handle *trans; 6622 struct btrfs_root *root = BTRFS_I(dir)->root; 6623 struct inode *inode = NULL; 6624 int drop_inode_on_err = 0; 6625 int err; 6626 u64 objectid; 6627 u64 index = 0; 6628 6629 /* 6630 * 2 for inode item and ref 6631 * 2 for dir items 6632 * 1 for xattr if selinux is on 6633 */ 6634 trans = btrfs_start_transaction(root, 5); 6635 if (IS_ERR(trans)) 6636 return PTR_ERR(trans); 6637 6638 err = btrfs_find_free_ino(root, &objectid); 6639 if (err) 6640 goto out_unlock; 6641 6642 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 6643 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid, 6644 mode, &index); 6645 if (IS_ERR(inode)) { 6646 err = PTR_ERR(inode); 6647 goto out_unlock; 6648 } 6649 drop_inode_on_err = 1; 6650 /* 6651 * If the active LSM wants to access the inode during 6652 * d_instantiate it needs these. Smack checks to see 6653 * if the filesystem supports xattrs by looking at the 6654 * ops vector. 6655 */ 6656 inode->i_fop = &btrfs_file_operations; 6657 inode->i_op = &btrfs_file_inode_operations; 6658 inode->i_mapping->a_ops = &btrfs_aops; 6659 6660 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 6661 if (err) 6662 goto out_unlock_inode; 6663 6664 err = btrfs_update_inode(trans, root, inode); 6665 if (err) 6666 goto out_unlock_inode; 6667 6668 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode), 6669 0, index); 6670 if (err) 6671 goto out_unlock_inode; 6672 6673 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 6674 unlock_new_inode(inode); 6675 d_instantiate(dentry, inode); 6676 6677 out_unlock: 6678 btrfs_end_transaction(trans); 6679 if (err && drop_inode_on_err) { 6680 inode_dec_link_count(inode); 6681 iput(inode); 6682 } 6683 btrfs_btree_balance_dirty(fs_info); 6684 return err; 6685 6686 out_unlock_inode: 6687 unlock_new_inode(inode); 6688 goto out_unlock; 6689 6690 } 6691 6692 static int btrfs_link(struct dentry *old_dentry, struct inode *dir, 6693 struct dentry *dentry) 6694 { 6695 struct btrfs_trans_handle *trans = NULL; 6696 struct btrfs_root *root = BTRFS_I(dir)->root; 6697 struct inode *inode = d_inode(old_dentry); 6698 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 6699 u64 index; 6700 int err; 6701 int drop_inode = 0; 6702 6703 /* do not allow sys_link's with other subvols of the same device */ 6704 if (root->objectid != BTRFS_I(inode)->root->objectid) 6705 return -EXDEV; 6706 6707 if (inode->i_nlink >= BTRFS_LINK_MAX) 6708 return -EMLINK; 6709 6710 err = btrfs_set_inode_index(BTRFS_I(dir), &index); 6711 if (err) 6712 goto fail; 6713 6714 /* 6715 * 2 items for inode and inode ref 6716 * 2 items for dir items 6717 * 1 item for parent inode 6718 */ 6719 trans = btrfs_start_transaction(root, 5); 6720 if (IS_ERR(trans)) { 6721 err = PTR_ERR(trans); 6722 trans = NULL; 6723 goto fail; 6724 } 6725 6726 /* There are several dir indexes for this inode, clear the cache. */ 6727 BTRFS_I(inode)->dir_index = 0ULL; 6728 inc_nlink(inode); 6729 inode_inc_iversion(inode); 6730 inode->i_ctime = current_time(inode); 6731 ihold(inode); 6732 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags); 6733 6734 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode), 6735 1, index); 6736 6737 if (err) { 6738 drop_inode = 1; 6739 } else { 6740 struct dentry *parent = dentry->d_parent; 6741 err = btrfs_update_inode(trans, root, inode); 6742 if (err) 6743 goto fail; 6744 if (inode->i_nlink == 1) { 6745 /* 6746 * If new hard link count is 1, it's a file created 6747 * with open(2) O_TMPFILE flag. 6748 */ 6749 err = btrfs_orphan_del(trans, BTRFS_I(inode)); 6750 if (err) 6751 goto fail; 6752 } 6753 d_instantiate(dentry, inode); 6754 btrfs_log_new_name(trans, BTRFS_I(inode), NULL, parent); 6755 } 6756 6757 fail: 6758 if (trans) 6759 btrfs_end_transaction(trans); 6760 if (drop_inode) { 6761 inode_dec_link_count(inode); 6762 iput(inode); 6763 } 6764 btrfs_btree_balance_dirty(fs_info); 6765 return err; 6766 } 6767 6768 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 6769 { 6770 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 6771 struct inode *inode = NULL; 6772 struct btrfs_trans_handle *trans; 6773 struct btrfs_root *root = BTRFS_I(dir)->root; 6774 int err = 0; 6775 int drop_on_err = 0; 6776 u64 objectid = 0; 6777 u64 index = 0; 6778 6779 /* 6780 * 2 items for inode and ref 6781 * 2 items for dir items 6782 * 1 for xattr if selinux is on 6783 */ 6784 trans = btrfs_start_transaction(root, 5); 6785 if (IS_ERR(trans)) 6786 return PTR_ERR(trans); 6787 6788 err = btrfs_find_free_ino(root, &objectid); 6789 if (err) 6790 goto out_fail; 6791 6792 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 6793 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid, 6794 S_IFDIR | mode, &index); 6795 if (IS_ERR(inode)) { 6796 err = PTR_ERR(inode); 6797 goto out_fail; 6798 } 6799 6800 drop_on_err = 1; 6801 /* these must be set before we unlock the inode */ 6802 inode->i_op = &btrfs_dir_inode_operations; 6803 inode->i_fop = &btrfs_dir_file_operations; 6804 6805 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 6806 if (err) 6807 goto out_fail_inode; 6808 6809 btrfs_i_size_write(BTRFS_I(inode), 0); 6810 err = btrfs_update_inode(trans, root, inode); 6811 if (err) 6812 goto out_fail_inode; 6813 6814 err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), 6815 dentry->d_name.name, 6816 dentry->d_name.len, 0, index); 6817 if (err) 6818 goto out_fail_inode; 6819 6820 d_instantiate(dentry, inode); 6821 /* 6822 * mkdir is special. We're unlocking after we call d_instantiate 6823 * to avoid a race with nfsd calling d_instantiate. 6824 */ 6825 unlock_new_inode(inode); 6826 drop_on_err = 0; 6827 6828 out_fail: 6829 btrfs_end_transaction(trans); 6830 if (drop_on_err) { 6831 inode_dec_link_count(inode); 6832 iput(inode); 6833 } 6834 btrfs_btree_balance_dirty(fs_info); 6835 return err; 6836 6837 out_fail_inode: 6838 unlock_new_inode(inode); 6839 goto out_fail; 6840 } 6841 6842 static noinline int uncompress_inline(struct btrfs_path *path, 6843 struct page *page, 6844 size_t pg_offset, u64 extent_offset, 6845 struct btrfs_file_extent_item *item) 6846 { 6847 int ret; 6848 struct extent_buffer *leaf = path->nodes[0]; 6849 char *tmp; 6850 size_t max_size; 6851 unsigned long inline_size; 6852 unsigned long ptr; 6853 int compress_type; 6854 6855 WARN_ON(pg_offset != 0); 6856 compress_type = btrfs_file_extent_compression(leaf, item); 6857 max_size = btrfs_file_extent_ram_bytes(leaf, item); 6858 inline_size = btrfs_file_extent_inline_item_len(leaf, 6859 btrfs_item_nr(path->slots[0])); 6860 tmp = kmalloc(inline_size, GFP_NOFS); 6861 if (!tmp) 6862 return -ENOMEM; 6863 ptr = btrfs_file_extent_inline_start(item); 6864 6865 read_extent_buffer(leaf, tmp, ptr, inline_size); 6866 6867 max_size = min_t(unsigned long, PAGE_SIZE, max_size); 6868 ret = btrfs_decompress(compress_type, tmp, page, 6869 extent_offset, inline_size, max_size); 6870 6871 /* 6872 * decompression code contains a memset to fill in any space between the end 6873 * of the uncompressed data and the end of max_size in case the decompressed 6874 * data ends up shorter than ram_bytes. That doesn't cover the hole between 6875 * the end of an inline extent and the beginning of the next block, so we 6876 * cover that region here. 6877 */ 6878 6879 if (max_size + pg_offset < PAGE_SIZE) { 6880 char *map = kmap(page); 6881 memset(map + pg_offset + max_size, 0, PAGE_SIZE - max_size - pg_offset); 6882 kunmap(page); 6883 } 6884 kfree(tmp); 6885 return ret; 6886 } 6887 6888 /* 6889 * a bit scary, this does extent mapping from logical file offset to the disk. 6890 * the ugly parts come from merging extents from the disk with the in-ram 6891 * representation. This gets more complex because of the data=ordered code, 6892 * where the in-ram extents might be locked pending data=ordered completion. 6893 * 6894 * This also copies inline extents directly into the page. 6895 */ 6896 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode, 6897 struct page *page, 6898 size_t pg_offset, u64 start, u64 len, 6899 int create) 6900 { 6901 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb); 6902 int ret; 6903 int err = 0; 6904 u64 extent_start = 0; 6905 u64 extent_end = 0; 6906 u64 objectid = btrfs_ino(inode); 6907 u32 found_type; 6908 struct btrfs_path *path = NULL; 6909 struct btrfs_root *root = inode->root; 6910 struct btrfs_file_extent_item *item; 6911 struct extent_buffer *leaf; 6912 struct btrfs_key found_key; 6913 struct extent_map *em = NULL; 6914 struct extent_map_tree *em_tree = &inode->extent_tree; 6915 struct extent_io_tree *io_tree = &inode->io_tree; 6916 const bool new_inline = !page || create; 6917 6918 read_lock(&em_tree->lock); 6919 em = lookup_extent_mapping(em_tree, start, len); 6920 if (em) 6921 em->bdev = fs_info->fs_devices->latest_bdev; 6922 read_unlock(&em_tree->lock); 6923 6924 if (em) { 6925 if (em->start > start || em->start + em->len <= start) 6926 free_extent_map(em); 6927 else if (em->block_start == EXTENT_MAP_INLINE && page) 6928 free_extent_map(em); 6929 else 6930 goto out; 6931 } 6932 em = alloc_extent_map(); 6933 if (!em) { 6934 err = -ENOMEM; 6935 goto out; 6936 } 6937 em->bdev = fs_info->fs_devices->latest_bdev; 6938 em->start = EXTENT_MAP_HOLE; 6939 em->orig_start = EXTENT_MAP_HOLE; 6940 em->len = (u64)-1; 6941 em->block_len = (u64)-1; 6942 6943 if (!path) { 6944 path = btrfs_alloc_path(); 6945 if (!path) { 6946 err = -ENOMEM; 6947 goto out; 6948 } 6949 /* 6950 * Chances are we'll be called again, so go ahead and do 6951 * readahead 6952 */ 6953 path->reada = READA_FORWARD; 6954 } 6955 6956 ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0); 6957 if (ret < 0) { 6958 err = ret; 6959 goto out; 6960 } 6961 6962 if (ret != 0) { 6963 if (path->slots[0] == 0) 6964 goto not_found; 6965 path->slots[0]--; 6966 } 6967 6968 leaf = path->nodes[0]; 6969 item = btrfs_item_ptr(leaf, path->slots[0], 6970 struct btrfs_file_extent_item); 6971 /* are we inside the extent that was found? */ 6972 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6973 found_type = found_key.type; 6974 if (found_key.objectid != objectid || 6975 found_type != BTRFS_EXTENT_DATA_KEY) { 6976 /* 6977 * If we backup past the first extent we want to move forward 6978 * and see if there is an extent in front of us, otherwise we'll 6979 * say there is a hole for our whole search range which can 6980 * cause problems. 6981 */ 6982 extent_end = start; 6983 goto next; 6984 } 6985 6986 found_type = btrfs_file_extent_type(leaf, item); 6987 extent_start = found_key.offset; 6988 if (found_type == BTRFS_FILE_EXTENT_REG || 6989 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 6990 extent_end = extent_start + 6991 btrfs_file_extent_num_bytes(leaf, item); 6992 6993 trace_btrfs_get_extent_show_fi_regular(inode, leaf, item, 6994 extent_start); 6995 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 6996 size_t size; 6997 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item); 6998 extent_end = ALIGN(extent_start + size, 6999 fs_info->sectorsize); 7000 7001 trace_btrfs_get_extent_show_fi_inline(inode, leaf, item, 7002 path->slots[0], 7003 extent_start); 7004 } 7005 next: 7006 if (start >= extent_end) { 7007 path->slots[0]++; 7008 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 7009 ret = btrfs_next_leaf(root, path); 7010 if (ret < 0) { 7011 err = ret; 7012 goto out; 7013 } 7014 if (ret > 0) 7015 goto not_found; 7016 leaf = path->nodes[0]; 7017 } 7018 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 7019 if (found_key.objectid != objectid || 7020 found_key.type != BTRFS_EXTENT_DATA_KEY) 7021 goto not_found; 7022 if (start + len <= found_key.offset) 7023 goto not_found; 7024 if (start > found_key.offset) 7025 goto next; 7026 em->start = start; 7027 em->orig_start = start; 7028 em->len = found_key.offset - start; 7029 goto not_found_em; 7030 } 7031 7032 btrfs_extent_item_to_extent_map(inode, path, item, 7033 new_inline, em); 7034 7035 if (found_type == BTRFS_FILE_EXTENT_REG || 7036 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 7037 goto insert; 7038 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 7039 unsigned long ptr; 7040 char *map; 7041 size_t size; 7042 size_t extent_offset; 7043 size_t copy_size; 7044 7045 if (new_inline) 7046 goto out; 7047 7048 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item); 7049 extent_offset = page_offset(page) + pg_offset - extent_start; 7050 copy_size = min_t(u64, PAGE_SIZE - pg_offset, 7051 size - extent_offset); 7052 em->start = extent_start + extent_offset; 7053 em->len = ALIGN(copy_size, fs_info->sectorsize); 7054 em->orig_block_len = em->len; 7055 em->orig_start = em->start; 7056 ptr = btrfs_file_extent_inline_start(item) + extent_offset; 7057 if (!PageUptodate(page)) { 7058 if (btrfs_file_extent_compression(leaf, item) != 7059 BTRFS_COMPRESS_NONE) { 7060 ret = uncompress_inline(path, page, pg_offset, 7061 extent_offset, item); 7062 if (ret) { 7063 err = ret; 7064 goto out; 7065 } 7066 } else { 7067 map = kmap(page); 7068 read_extent_buffer(leaf, map + pg_offset, ptr, 7069 copy_size); 7070 if (pg_offset + copy_size < PAGE_SIZE) { 7071 memset(map + pg_offset + copy_size, 0, 7072 PAGE_SIZE - pg_offset - 7073 copy_size); 7074 } 7075 kunmap(page); 7076 } 7077 flush_dcache_page(page); 7078 } 7079 set_extent_uptodate(io_tree, em->start, 7080 extent_map_end(em) - 1, NULL, GFP_NOFS); 7081 goto insert; 7082 } 7083 not_found: 7084 em->start = start; 7085 em->orig_start = start; 7086 em->len = len; 7087 not_found_em: 7088 em->block_start = EXTENT_MAP_HOLE; 7089 insert: 7090 btrfs_release_path(path); 7091 if (em->start > start || extent_map_end(em) <= start) { 7092 btrfs_err(fs_info, 7093 "bad extent! em: [%llu %llu] passed [%llu %llu]", 7094 em->start, em->len, start, len); 7095 err = -EIO; 7096 goto out; 7097 } 7098 7099 err = 0; 7100 write_lock(&em_tree->lock); 7101 err = btrfs_add_extent_mapping(em_tree, &em, start, len); 7102 write_unlock(&em_tree->lock); 7103 out: 7104 7105 trace_btrfs_get_extent(root, inode, em); 7106 7107 btrfs_free_path(path); 7108 if (err) { 7109 free_extent_map(em); 7110 return ERR_PTR(err); 7111 } 7112 BUG_ON(!em); /* Error is always set */ 7113 return em; 7114 } 7115 7116 struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode, 7117 struct page *page, 7118 size_t pg_offset, u64 start, u64 len, 7119 int create) 7120 { 7121 struct extent_map *em; 7122 struct extent_map *hole_em = NULL; 7123 u64 range_start = start; 7124 u64 end; 7125 u64 found; 7126 u64 found_end; 7127 int err = 0; 7128 7129 em = btrfs_get_extent(inode, page, pg_offset, start, len, create); 7130 if (IS_ERR(em)) 7131 return em; 7132 /* 7133 * If our em maps to: 7134 * - a hole or 7135 * - a pre-alloc extent, 7136 * there might actually be delalloc bytes behind it. 7137 */ 7138 if (em->block_start != EXTENT_MAP_HOLE && 7139 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 7140 return em; 7141 else 7142 hole_em = em; 7143 7144 /* check to see if we've wrapped (len == -1 or similar) */ 7145 end = start + len; 7146 if (end < start) 7147 end = (u64)-1; 7148 else 7149 end -= 1; 7150 7151 em = NULL; 7152 7153 /* ok, we didn't find anything, lets look for delalloc */ 7154 found = count_range_bits(&inode->io_tree, &range_start, 7155 end, len, EXTENT_DELALLOC, 1); 7156 found_end = range_start + found; 7157 if (found_end < range_start) 7158 found_end = (u64)-1; 7159 7160 /* 7161 * we didn't find anything useful, return 7162 * the original results from get_extent() 7163 */ 7164 if (range_start > end || found_end <= start) { 7165 em = hole_em; 7166 hole_em = NULL; 7167 goto out; 7168 } 7169 7170 /* adjust the range_start to make sure it doesn't 7171 * go backwards from the start they passed in 7172 */ 7173 range_start = max(start, range_start); 7174 found = found_end - range_start; 7175 7176 if (found > 0) { 7177 u64 hole_start = start; 7178 u64 hole_len = len; 7179 7180 em = alloc_extent_map(); 7181 if (!em) { 7182 err = -ENOMEM; 7183 goto out; 7184 } 7185 /* 7186 * when btrfs_get_extent can't find anything it 7187 * returns one huge hole 7188 * 7189 * make sure what it found really fits our range, and 7190 * adjust to make sure it is based on the start from 7191 * the caller 7192 */ 7193 if (hole_em) { 7194 u64 calc_end = extent_map_end(hole_em); 7195 7196 if (calc_end <= start || (hole_em->start > end)) { 7197 free_extent_map(hole_em); 7198 hole_em = NULL; 7199 } else { 7200 hole_start = max(hole_em->start, start); 7201 hole_len = calc_end - hole_start; 7202 } 7203 } 7204 em->bdev = NULL; 7205 if (hole_em && range_start > hole_start) { 7206 /* our hole starts before our delalloc, so we 7207 * have to return just the parts of the hole 7208 * that go until the delalloc starts 7209 */ 7210 em->len = min(hole_len, 7211 range_start - hole_start); 7212 em->start = hole_start; 7213 em->orig_start = hole_start; 7214 /* 7215 * don't adjust block start at all, 7216 * it is fixed at EXTENT_MAP_HOLE 7217 */ 7218 em->block_start = hole_em->block_start; 7219 em->block_len = hole_len; 7220 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags)) 7221 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 7222 } else { 7223 em->start = range_start; 7224 em->len = found; 7225 em->orig_start = range_start; 7226 em->block_start = EXTENT_MAP_DELALLOC; 7227 em->block_len = found; 7228 } 7229 } else { 7230 return hole_em; 7231 } 7232 out: 7233 7234 free_extent_map(hole_em); 7235 if (err) { 7236 free_extent_map(em); 7237 return ERR_PTR(err); 7238 } 7239 return em; 7240 } 7241 7242 static struct extent_map *btrfs_create_dio_extent(struct inode *inode, 7243 const u64 start, 7244 const u64 len, 7245 const u64 orig_start, 7246 const u64 block_start, 7247 const u64 block_len, 7248 const u64 orig_block_len, 7249 const u64 ram_bytes, 7250 const int type) 7251 { 7252 struct extent_map *em = NULL; 7253 int ret; 7254 7255 if (type != BTRFS_ORDERED_NOCOW) { 7256 em = create_io_em(inode, start, len, orig_start, 7257 block_start, block_len, orig_block_len, 7258 ram_bytes, 7259 BTRFS_COMPRESS_NONE, /* compress_type */ 7260 type); 7261 if (IS_ERR(em)) 7262 goto out; 7263 } 7264 ret = btrfs_add_ordered_extent_dio(inode, start, block_start, 7265 len, block_len, type); 7266 if (ret) { 7267 if (em) { 7268 free_extent_map(em); 7269 btrfs_drop_extent_cache(BTRFS_I(inode), start, 7270 start + len - 1, 0); 7271 } 7272 em = ERR_PTR(ret); 7273 } 7274 out: 7275 7276 return em; 7277 } 7278 7279 static struct extent_map *btrfs_new_extent_direct(struct inode *inode, 7280 u64 start, u64 len) 7281 { 7282 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7283 struct btrfs_root *root = BTRFS_I(inode)->root; 7284 struct extent_map *em; 7285 struct btrfs_key ins; 7286 u64 alloc_hint; 7287 int ret; 7288 7289 alloc_hint = get_extent_allocation_hint(inode, start, len); 7290 ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize, 7291 0, alloc_hint, &ins, 1, 1); 7292 if (ret) 7293 return ERR_PTR(ret); 7294 7295 em = btrfs_create_dio_extent(inode, start, ins.offset, start, 7296 ins.objectid, ins.offset, ins.offset, 7297 ins.offset, BTRFS_ORDERED_REGULAR); 7298 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 7299 if (IS_ERR(em)) 7300 btrfs_free_reserved_extent(fs_info, ins.objectid, 7301 ins.offset, 1); 7302 7303 return em; 7304 } 7305 7306 /* 7307 * returns 1 when the nocow is safe, < 1 on error, 0 if the 7308 * block must be cow'd 7309 */ 7310 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len, 7311 u64 *orig_start, u64 *orig_block_len, 7312 u64 *ram_bytes) 7313 { 7314 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7315 struct btrfs_path *path; 7316 int ret; 7317 struct extent_buffer *leaf; 7318 struct btrfs_root *root = BTRFS_I(inode)->root; 7319 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 7320 struct btrfs_file_extent_item *fi; 7321 struct btrfs_key key; 7322 u64 disk_bytenr; 7323 u64 backref_offset; 7324 u64 extent_end; 7325 u64 num_bytes; 7326 int slot; 7327 int found_type; 7328 bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW); 7329 7330 path = btrfs_alloc_path(); 7331 if (!path) 7332 return -ENOMEM; 7333 7334 ret = btrfs_lookup_file_extent(NULL, root, path, 7335 btrfs_ino(BTRFS_I(inode)), offset, 0); 7336 if (ret < 0) 7337 goto out; 7338 7339 slot = path->slots[0]; 7340 if (ret == 1) { 7341 if (slot == 0) { 7342 /* can't find the item, must cow */ 7343 ret = 0; 7344 goto out; 7345 } 7346 slot--; 7347 } 7348 ret = 0; 7349 leaf = path->nodes[0]; 7350 btrfs_item_key_to_cpu(leaf, &key, slot); 7351 if (key.objectid != btrfs_ino(BTRFS_I(inode)) || 7352 key.type != BTRFS_EXTENT_DATA_KEY) { 7353 /* not our file or wrong item type, must cow */ 7354 goto out; 7355 } 7356 7357 if (key.offset > offset) { 7358 /* Wrong offset, must cow */ 7359 goto out; 7360 } 7361 7362 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 7363 found_type = btrfs_file_extent_type(leaf, fi); 7364 if (found_type != BTRFS_FILE_EXTENT_REG && 7365 found_type != BTRFS_FILE_EXTENT_PREALLOC) { 7366 /* not a regular extent, must cow */ 7367 goto out; 7368 } 7369 7370 if (!nocow && found_type == BTRFS_FILE_EXTENT_REG) 7371 goto out; 7372 7373 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 7374 if (extent_end <= offset) 7375 goto out; 7376 7377 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 7378 if (disk_bytenr == 0) 7379 goto out; 7380 7381 if (btrfs_file_extent_compression(leaf, fi) || 7382 btrfs_file_extent_encryption(leaf, fi) || 7383 btrfs_file_extent_other_encoding(leaf, fi)) 7384 goto out; 7385 7386 backref_offset = btrfs_file_extent_offset(leaf, fi); 7387 7388 if (orig_start) { 7389 *orig_start = key.offset - backref_offset; 7390 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi); 7391 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 7392 } 7393 7394 if (btrfs_extent_readonly(fs_info, disk_bytenr)) 7395 goto out; 7396 7397 num_bytes = min(offset + *len, extent_end) - offset; 7398 if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) { 7399 u64 range_end; 7400 7401 range_end = round_up(offset + num_bytes, 7402 root->fs_info->sectorsize) - 1; 7403 ret = test_range_bit(io_tree, offset, range_end, 7404 EXTENT_DELALLOC, 0, NULL); 7405 if (ret) { 7406 ret = -EAGAIN; 7407 goto out; 7408 } 7409 } 7410 7411 btrfs_release_path(path); 7412 7413 /* 7414 * look for other files referencing this extent, if we 7415 * find any we must cow 7416 */ 7417 7418 ret = btrfs_cross_ref_exist(root, btrfs_ino(BTRFS_I(inode)), 7419 key.offset - backref_offset, disk_bytenr); 7420 if (ret) { 7421 ret = 0; 7422 goto out; 7423 } 7424 7425 /* 7426 * adjust disk_bytenr and num_bytes to cover just the bytes 7427 * in this extent we are about to write. If there 7428 * are any csums in that range we have to cow in order 7429 * to keep the csums correct 7430 */ 7431 disk_bytenr += backref_offset; 7432 disk_bytenr += offset - key.offset; 7433 if (csum_exist_in_range(fs_info, disk_bytenr, num_bytes)) 7434 goto out; 7435 /* 7436 * all of the above have passed, it is safe to overwrite this extent 7437 * without cow 7438 */ 7439 *len = num_bytes; 7440 ret = 1; 7441 out: 7442 btrfs_free_path(path); 7443 return ret; 7444 } 7445 7446 bool btrfs_page_exists_in_range(struct inode *inode, loff_t start, loff_t end) 7447 { 7448 struct radix_tree_root *root = &inode->i_mapping->page_tree; 7449 bool found = false; 7450 void **pagep = NULL; 7451 struct page *page = NULL; 7452 unsigned long start_idx; 7453 unsigned long end_idx; 7454 7455 start_idx = start >> PAGE_SHIFT; 7456 7457 /* 7458 * end is the last byte in the last page. end == start is legal 7459 */ 7460 end_idx = end >> PAGE_SHIFT; 7461 7462 rcu_read_lock(); 7463 7464 /* Most of the code in this while loop is lifted from 7465 * find_get_page. It's been modified to begin searching from a 7466 * page and return just the first page found in that range. If the 7467 * found idx is less than or equal to the end idx then we know that 7468 * a page exists. If no pages are found or if those pages are 7469 * outside of the range then we're fine (yay!) */ 7470 while (page == NULL && 7471 radix_tree_gang_lookup_slot(root, &pagep, NULL, start_idx, 1)) { 7472 page = radix_tree_deref_slot(pagep); 7473 if (unlikely(!page)) 7474 break; 7475 7476 if (radix_tree_exception(page)) { 7477 if (radix_tree_deref_retry(page)) { 7478 page = NULL; 7479 continue; 7480 } 7481 /* 7482 * Otherwise, shmem/tmpfs must be storing a swap entry 7483 * here as an exceptional entry: so return it without 7484 * attempting to raise page count. 7485 */ 7486 page = NULL; 7487 break; /* TODO: Is this relevant for this use case? */ 7488 } 7489 7490 if (!page_cache_get_speculative(page)) { 7491 page = NULL; 7492 continue; 7493 } 7494 7495 /* 7496 * Has the page moved? 7497 * This is part of the lockless pagecache protocol. See 7498 * include/linux/pagemap.h for details. 7499 */ 7500 if (unlikely(page != *pagep)) { 7501 put_page(page); 7502 page = NULL; 7503 } 7504 } 7505 7506 if (page) { 7507 if (page->index <= end_idx) 7508 found = true; 7509 put_page(page); 7510 } 7511 7512 rcu_read_unlock(); 7513 return found; 7514 } 7515 7516 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend, 7517 struct extent_state **cached_state, int writing) 7518 { 7519 struct btrfs_ordered_extent *ordered; 7520 int ret = 0; 7521 7522 while (1) { 7523 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7524 cached_state); 7525 /* 7526 * We're concerned with the entire range that we're going to be 7527 * doing DIO to, so we need to make sure there's no ordered 7528 * extents in this range. 7529 */ 7530 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart, 7531 lockend - lockstart + 1); 7532 7533 /* 7534 * We need to make sure there are no buffered pages in this 7535 * range either, we could have raced between the invalidate in 7536 * generic_file_direct_write and locking the extent. The 7537 * invalidate needs to happen so that reads after a write do not 7538 * get stale data. 7539 */ 7540 if (!ordered && 7541 (!writing || 7542 !btrfs_page_exists_in_range(inode, lockstart, lockend))) 7543 break; 7544 7545 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7546 cached_state); 7547 7548 if (ordered) { 7549 /* 7550 * If we are doing a DIO read and the ordered extent we 7551 * found is for a buffered write, we can not wait for it 7552 * to complete and retry, because if we do so we can 7553 * deadlock with concurrent buffered writes on page 7554 * locks. This happens only if our DIO read covers more 7555 * than one extent map, if at this point has already 7556 * created an ordered extent for a previous extent map 7557 * and locked its range in the inode's io tree, and a 7558 * concurrent write against that previous extent map's 7559 * range and this range started (we unlock the ranges 7560 * in the io tree only when the bios complete and 7561 * buffered writes always lock pages before attempting 7562 * to lock range in the io tree). 7563 */ 7564 if (writing || 7565 test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) 7566 btrfs_start_ordered_extent(inode, ordered, 1); 7567 else 7568 ret = -ENOTBLK; 7569 btrfs_put_ordered_extent(ordered); 7570 } else { 7571 /* 7572 * We could trigger writeback for this range (and wait 7573 * for it to complete) and then invalidate the pages for 7574 * this range (through invalidate_inode_pages2_range()), 7575 * but that can lead us to a deadlock with a concurrent 7576 * call to readpages() (a buffered read or a defrag call 7577 * triggered a readahead) on a page lock due to an 7578 * ordered dio extent we created before but did not have 7579 * yet a corresponding bio submitted (whence it can not 7580 * complete), which makes readpages() wait for that 7581 * ordered extent to complete while holding a lock on 7582 * that page. 7583 */ 7584 ret = -ENOTBLK; 7585 } 7586 7587 if (ret) 7588 break; 7589 7590 cond_resched(); 7591 } 7592 7593 return ret; 7594 } 7595 7596 /* The callers of this must take lock_extent() */ 7597 static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len, 7598 u64 orig_start, u64 block_start, 7599 u64 block_len, u64 orig_block_len, 7600 u64 ram_bytes, int compress_type, 7601 int type) 7602 { 7603 struct extent_map_tree *em_tree; 7604 struct extent_map *em; 7605 struct btrfs_root *root = BTRFS_I(inode)->root; 7606 int ret; 7607 7608 ASSERT(type == BTRFS_ORDERED_PREALLOC || 7609 type == BTRFS_ORDERED_COMPRESSED || 7610 type == BTRFS_ORDERED_NOCOW || 7611 type == BTRFS_ORDERED_REGULAR); 7612 7613 em_tree = &BTRFS_I(inode)->extent_tree; 7614 em = alloc_extent_map(); 7615 if (!em) 7616 return ERR_PTR(-ENOMEM); 7617 7618 em->start = start; 7619 em->orig_start = orig_start; 7620 em->len = len; 7621 em->block_len = block_len; 7622 em->block_start = block_start; 7623 em->bdev = root->fs_info->fs_devices->latest_bdev; 7624 em->orig_block_len = orig_block_len; 7625 em->ram_bytes = ram_bytes; 7626 em->generation = -1; 7627 set_bit(EXTENT_FLAG_PINNED, &em->flags); 7628 if (type == BTRFS_ORDERED_PREALLOC) { 7629 set_bit(EXTENT_FLAG_FILLING, &em->flags); 7630 } else if (type == BTRFS_ORDERED_COMPRESSED) { 7631 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 7632 em->compress_type = compress_type; 7633 } 7634 7635 do { 7636 btrfs_drop_extent_cache(BTRFS_I(inode), em->start, 7637 em->start + em->len - 1, 0); 7638 write_lock(&em_tree->lock); 7639 ret = add_extent_mapping(em_tree, em, 1); 7640 write_unlock(&em_tree->lock); 7641 /* 7642 * The caller has taken lock_extent(), who could race with us 7643 * to add em? 7644 */ 7645 } while (ret == -EEXIST); 7646 7647 if (ret) { 7648 free_extent_map(em); 7649 return ERR_PTR(ret); 7650 } 7651 7652 /* em got 2 refs now, callers needs to do free_extent_map once. */ 7653 return em; 7654 } 7655 7656 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock, 7657 struct buffer_head *bh_result, int create) 7658 { 7659 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7660 struct extent_map *em; 7661 struct extent_state *cached_state = NULL; 7662 struct btrfs_dio_data *dio_data = NULL; 7663 u64 start = iblock << inode->i_blkbits; 7664 u64 lockstart, lockend; 7665 u64 len = bh_result->b_size; 7666 int unlock_bits = EXTENT_LOCKED; 7667 int ret = 0; 7668 7669 if (create) 7670 unlock_bits |= EXTENT_DIRTY; 7671 else 7672 len = min_t(u64, len, fs_info->sectorsize); 7673 7674 lockstart = start; 7675 lockend = start + len - 1; 7676 7677 if (current->journal_info) { 7678 /* 7679 * Need to pull our outstanding extents and set journal_info to NULL so 7680 * that anything that needs to check if there's a transaction doesn't get 7681 * confused. 7682 */ 7683 dio_data = current->journal_info; 7684 current->journal_info = NULL; 7685 } 7686 7687 /* 7688 * If this errors out it's because we couldn't invalidate pagecache for 7689 * this range and we need to fallback to buffered. 7690 */ 7691 if (lock_extent_direct(inode, lockstart, lockend, &cached_state, 7692 create)) { 7693 ret = -ENOTBLK; 7694 goto err; 7695 } 7696 7697 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len, 0); 7698 if (IS_ERR(em)) { 7699 ret = PTR_ERR(em); 7700 goto unlock_err; 7701 } 7702 7703 /* 7704 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered 7705 * io. INLINE is special, and we could probably kludge it in here, but 7706 * it's still buffered so for safety lets just fall back to the generic 7707 * buffered path. 7708 * 7709 * For COMPRESSED we _have_ to read the entire extent in so we can 7710 * decompress it, so there will be buffering required no matter what we 7711 * do, so go ahead and fallback to buffered. 7712 * 7713 * We return -ENOTBLK because that's what makes DIO go ahead and go back 7714 * to buffered IO. Don't blame me, this is the price we pay for using 7715 * the generic code. 7716 */ 7717 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) || 7718 em->block_start == EXTENT_MAP_INLINE) { 7719 free_extent_map(em); 7720 ret = -ENOTBLK; 7721 goto unlock_err; 7722 } 7723 7724 /* Just a good old fashioned hole, return */ 7725 if (!create && (em->block_start == EXTENT_MAP_HOLE || 7726 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) { 7727 free_extent_map(em); 7728 goto unlock_err; 7729 } 7730 7731 /* 7732 * We don't allocate a new extent in the following cases 7733 * 7734 * 1) The inode is marked as NODATACOW. In this case we'll just use the 7735 * existing extent. 7736 * 2) The extent is marked as PREALLOC. We're good to go here and can 7737 * just use the extent. 7738 * 7739 */ 7740 if (!create) { 7741 len = min(len, em->len - (start - em->start)); 7742 lockstart = start + len; 7743 goto unlock; 7744 } 7745 7746 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) || 7747 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) && 7748 em->block_start != EXTENT_MAP_HOLE)) { 7749 int type; 7750 u64 block_start, orig_start, orig_block_len, ram_bytes; 7751 7752 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 7753 type = BTRFS_ORDERED_PREALLOC; 7754 else 7755 type = BTRFS_ORDERED_NOCOW; 7756 len = min(len, em->len - (start - em->start)); 7757 block_start = em->block_start + (start - em->start); 7758 7759 if (can_nocow_extent(inode, start, &len, &orig_start, 7760 &orig_block_len, &ram_bytes) == 1 && 7761 btrfs_inc_nocow_writers(fs_info, block_start)) { 7762 struct extent_map *em2; 7763 7764 em2 = btrfs_create_dio_extent(inode, start, len, 7765 orig_start, block_start, 7766 len, orig_block_len, 7767 ram_bytes, type); 7768 btrfs_dec_nocow_writers(fs_info, block_start); 7769 if (type == BTRFS_ORDERED_PREALLOC) { 7770 free_extent_map(em); 7771 em = em2; 7772 } 7773 if (em2 && IS_ERR(em2)) { 7774 ret = PTR_ERR(em2); 7775 goto unlock_err; 7776 } 7777 /* 7778 * For inode marked NODATACOW or extent marked PREALLOC, 7779 * use the existing or preallocated extent, so does not 7780 * need to adjust btrfs_space_info's bytes_may_use. 7781 */ 7782 btrfs_free_reserved_data_space_noquota(inode, 7783 start, len); 7784 goto unlock; 7785 } 7786 } 7787 7788 /* 7789 * this will cow the extent, reset the len in case we changed 7790 * it above 7791 */ 7792 len = bh_result->b_size; 7793 free_extent_map(em); 7794 em = btrfs_new_extent_direct(inode, start, len); 7795 if (IS_ERR(em)) { 7796 ret = PTR_ERR(em); 7797 goto unlock_err; 7798 } 7799 len = min(len, em->len - (start - em->start)); 7800 unlock: 7801 bh_result->b_blocknr = (em->block_start + (start - em->start)) >> 7802 inode->i_blkbits; 7803 bh_result->b_size = len; 7804 bh_result->b_bdev = em->bdev; 7805 set_buffer_mapped(bh_result); 7806 if (create) { 7807 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 7808 set_buffer_new(bh_result); 7809 7810 /* 7811 * Need to update the i_size under the extent lock so buffered 7812 * readers will get the updated i_size when we unlock. 7813 */ 7814 if (!dio_data->overwrite && start + len > i_size_read(inode)) 7815 i_size_write(inode, start + len); 7816 7817 WARN_ON(dio_data->reserve < len); 7818 dio_data->reserve -= len; 7819 dio_data->unsubmitted_oe_range_end = start + len; 7820 current->journal_info = dio_data; 7821 } 7822 7823 /* 7824 * In the case of write we need to clear and unlock the entire range, 7825 * in the case of read we need to unlock only the end area that we 7826 * aren't using if there is any left over space. 7827 */ 7828 if (lockstart < lockend) { 7829 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, 7830 lockend, unlock_bits, 1, 0, 7831 &cached_state); 7832 } else { 7833 free_extent_state(cached_state); 7834 } 7835 7836 free_extent_map(em); 7837 7838 return 0; 7839 7840 unlock_err: 7841 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7842 unlock_bits, 1, 0, &cached_state); 7843 err: 7844 if (dio_data) 7845 current->journal_info = dio_data; 7846 return ret; 7847 } 7848 7849 static inline blk_status_t submit_dio_repair_bio(struct inode *inode, 7850 struct bio *bio, 7851 int mirror_num) 7852 { 7853 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7854 blk_status_t ret; 7855 7856 BUG_ON(bio_op(bio) == REQ_OP_WRITE); 7857 7858 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DIO_REPAIR); 7859 if (ret) 7860 return ret; 7861 7862 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0); 7863 7864 return ret; 7865 } 7866 7867 static int btrfs_check_dio_repairable(struct inode *inode, 7868 struct bio *failed_bio, 7869 struct io_failure_record *failrec, 7870 int failed_mirror) 7871 { 7872 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7873 int num_copies; 7874 7875 num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len); 7876 if (num_copies == 1) { 7877 /* 7878 * we only have a single copy of the data, so don't bother with 7879 * all the retry and error correction code that follows. no 7880 * matter what the error is, it is very likely to persist. 7881 */ 7882 btrfs_debug(fs_info, 7883 "Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d", 7884 num_copies, failrec->this_mirror, failed_mirror); 7885 return 0; 7886 } 7887 7888 failrec->failed_mirror = failed_mirror; 7889 failrec->this_mirror++; 7890 if (failrec->this_mirror == failed_mirror) 7891 failrec->this_mirror++; 7892 7893 if (failrec->this_mirror > num_copies) { 7894 btrfs_debug(fs_info, 7895 "Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d", 7896 num_copies, failrec->this_mirror, failed_mirror); 7897 return 0; 7898 } 7899 7900 return 1; 7901 } 7902 7903 static blk_status_t dio_read_error(struct inode *inode, struct bio *failed_bio, 7904 struct page *page, unsigned int pgoff, 7905 u64 start, u64 end, int failed_mirror, 7906 bio_end_io_t *repair_endio, void *repair_arg) 7907 { 7908 struct io_failure_record *failrec; 7909 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 7910 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; 7911 struct bio *bio; 7912 int isector; 7913 unsigned int read_mode = 0; 7914 int segs; 7915 int ret; 7916 blk_status_t status; 7917 struct bio_vec bvec; 7918 7919 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE); 7920 7921 ret = btrfs_get_io_failure_record(inode, start, end, &failrec); 7922 if (ret) 7923 return errno_to_blk_status(ret); 7924 7925 ret = btrfs_check_dio_repairable(inode, failed_bio, failrec, 7926 failed_mirror); 7927 if (!ret) { 7928 free_io_failure(failure_tree, io_tree, failrec); 7929 return BLK_STS_IOERR; 7930 } 7931 7932 segs = bio_segments(failed_bio); 7933 bio_get_first_bvec(failed_bio, &bvec); 7934 if (segs > 1 || 7935 (bvec.bv_len > btrfs_inode_sectorsize(inode))) 7936 read_mode |= REQ_FAILFAST_DEV; 7937 7938 isector = start - btrfs_io_bio(failed_bio)->logical; 7939 isector >>= inode->i_sb->s_blocksize_bits; 7940 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page, 7941 pgoff, isector, repair_endio, repair_arg); 7942 bio_set_op_attrs(bio, REQ_OP_READ, read_mode); 7943 7944 btrfs_debug(BTRFS_I(inode)->root->fs_info, 7945 "repair DIO read error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d", 7946 read_mode, failrec->this_mirror, failrec->in_validation); 7947 7948 status = submit_dio_repair_bio(inode, bio, failrec->this_mirror); 7949 if (status) { 7950 free_io_failure(failure_tree, io_tree, failrec); 7951 bio_put(bio); 7952 } 7953 7954 return status; 7955 } 7956 7957 struct btrfs_retry_complete { 7958 struct completion done; 7959 struct inode *inode; 7960 u64 start; 7961 int uptodate; 7962 }; 7963 7964 static void btrfs_retry_endio_nocsum(struct bio *bio) 7965 { 7966 struct btrfs_retry_complete *done = bio->bi_private; 7967 struct inode *inode = done->inode; 7968 struct bio_vec *bvec; 7969 struct extent_io_tree *io_tree, *failure_tree; 7970 int i; 7971 7972 if (bio->bi_status) 7973 goto end; 7974 7975 ASSERT(bio->bi_vcnt == 1); 7976 io_tree = &BTRFS_I(inode)->io_tree; 7977 failure_tree = &BTRFS_I(inode)->io_failure_tree; 7978 ASSERT(bio_first_bvec_all(bio)->bv_len == btrfs_inode_sectorsize(inode)); 7979 7980 done->uptodate = 1; 7981 ASSERT(!bio_flagged(bio, BIO_CLONED)); 7982 bio_for_each_segment_all(bvec, bio, i) 7983 clean_io_failure(BTRFS_I(inode)->root->fs_info, failure_tree, 7984 io_tree, done->start, bvec->bv_page, 7985 btrfs_ino(BTRFS_I(inode)), 0); 7986 end: 7987 complete(&done->done); 7988 bio_put(bio); 7989 } 7990 7991 static blk_status_t __btrfs_correct_data_nocsum(struct inode *inode, 7992 struct btrfs_io_bio *io_bio) 7993 { 7994 struct btrfs_fs_info *fs_info; 7995 struct bio_vec bvec; 7996 struct bvec_iter iter; 7997 struct btrfs_retry_complete done; 7998 u64 start; 7999 unsigned int pgoff; 8000 u32 sectorsize; 8001 int nr_sectors; 8002 blk_status_t ret; 8003 blk_status_t err = BLK_STS_OK; 8004 8005 fs_info = BTRFS_I(inode)->root->fs_info; 8006 sectorsize = fs_info->sectorsize; 8007 8008 start = io_bio->logical; 8009 done.inode = inode; 8010 io_bio->bio.bi_iter = io_bio->iter; 8011 8012 bio_for_each_segment(bvec, &io_bio->bio, iter) { 8013 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len); 8014 pgoff = bvec.bv_offset; 8015 8016 next_block_or_try_again: 8017 done.uptodate = 0; 8018 done.start = start; 8019 init_completion(&done.done); 8020 8021 ret = dio_read_error(inode, &io_bio->bio, bvec.bv_page, 8022 pgoff, start, start + sectorsize - 1, 8023 io_bio->mirror_num, 8024 btrfs_retry_endio_nocsum, &done); 8025 if (ret) { 8026 err = ret; 8027 goto next; 8028 } 8029 8030 wait_for_completion_io(&done.done); 8031 8032 if (!done.uptodate) { 8033 /* We might have another mirror, so try again */ 8034 goto next_block_or_try_again; 8035 } 8036 8037 next: 8038 start += sectorsize; 8039 8040 nr_sectors--; 8041 if (nr_sectors) { 8042 pgoff += sectorsize; 8043 ASSERT(pgoff < PAGE_SIZE); 8044 goto next_block_or_try_again; 8045 } 8046 } 8047 8048 return err; 8049 } 8050 8051 static void btrfs_retry_endio(struct bio *bio) 8052 { 8053 struct btrfs_retry_complete *done = bio->bi_private; 8054 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio); 8055 struct extent_io_tree *io_tree, *failure_tree; 8056 struct inode *inode = done->inode; 8057 struct bio_vec *bvec; 8058 int uptodate; 8059 int ret; 8060 int i; 8061 8062 if (bio->bi_status) 8063 goto end; 8064 8065 uptodate = 1; 8066 8067 ASSERT(bio->bi_vcnt == 1); 8068 ASSERT(bio_first_bvec_all(bio)->bv_len == btrfs_inode_sectorsize(done->inode)); 8069 8070 io_tree = &BTRFS_I(inode)->io_tree; 8071 failure_tree = &BTRFS_I(inode)->io_failure_tree; 8072 8073 ASSERT(!bio_flagged(bio, BIO_CLONED)); 8074 bio_for_each_segment_all(bvec, bio, i) { 8075 ret = __readpage_endio_check(inode, io_bio, i, bvec->bv_page, 8076 bvec->bv_offset, done->start, 8077 bvec->bv_len); 8078 if (!ret) 8079 clean_io_failure(BTRFS_I(inode)->root->fs_info, 8080 failure_tree, io_tree, done->start, 8081 bvec->bv_page, 8082 btrfs_ino(BTRFS_I(inode)), 8083 bvec->bv_offset); 8084 else 8085 uptodate = 0; 8086 } 8087 8088 done->uptodate = uptodate; 8089 end: 8090 complete(&done->done); 8091 bio_put(bio); 8092 } 8093 8094 static blk_status_t __btrfs_subio_endio_read(struct inode *inode, 8095 struct btrfs_io_bio *io_bio, blk_status_t err) 8096 { 8097 struct btrfs_fs_info *fs_info; 8098 struct bio_vec bvec; 8099 struct bvec_iter iter; 8100 struct btrfs_retry_complete done; 8101 u64 start; 8102 u64 offset = 0; 8103 u32 sectorsize; 8104 int nr_sectors; 8105 unsigned int pgoff; 8106 int csum_pos; 8107 bool uptodate = (err == 0); 8108 int ret; 8109 blk_status_t status; 8110 8111 fs_info = BTRFS_I(inode)->root->fs_info; 8112 sectorsize = fs_info->sectorsize; 8113 8114 err = BLK_STS_OK; 8115 start = io_bio->logical; 8116 done.inode = inode; 8117 io_bio->bio.bi_iter = io_bio->iter; 8118 8119 bio_for_each_segment(bvec, &io_bio->bio, iter) { 8120 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len); 8121 8122 pgoff = bvec.bv_offset; 8123 next_block: 8124 if (uptodate) { 8125 csum_pos = BTRFS_BYTES_TO_BLKS(fs_info, offset); 8126 ret = __readpage_endio_check(inode, io_bio, csum_pos, 8127 bvec.bv_page, pgoff, start, sectorsize); 8128 if (likely(!ret)) 8129 goto next; 8130 } 8131 try_again: 8132 done.uptodate = 0; 8133 done.start = start; 8134 init_completion(&done.done); 8135 8136 status = dio_read_error(inode, &io_bio->bio, bvec.bv_page, 8137 pgoff, start, start + sectorsize - 1, 8138 io_bio->mirror_num, btrfs_retry_endio, 8139 &done); 8140 if (status) { 8141 err = status; 8142 goto next; 8143 } 8144 8145 wait_for_completion_io(&done.done); 8146 8147 if (!done.uptodate) { 8148 /* We might have another mirror, so try again */ 8149 goto try_again; 8150 } 8151 next: 8152 offset += sectorsize; 8153 start += sectorsize; 8154 8155 ASSERT(nr_sectors); 8156 8157 nr_sectors--; 8158 if (nr_sectors) { 8159 pgoff += sectorsize; 8160 ASSERT(pgoff < PAGE_SIZE); 8161 goto next_block; 8162 } 8163 } 8164 8165 return err; 8166 } 8167 8168 static blk_status_t btrfs_subio_endio_read(struct inode *inode, 8169 struct btrfs_io_bio *io_bio, blk_status_t err) 8170 { 8171 bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 8172 8173 if (skip_csum) { 8174 if (unlikely(err)) 8175 return __btrfs_correct_data_nocsum(inode, io_bio); 8176 else 8177 return BLK_STS_OK; 8178 } else { 8179 return __btrfs_subio_endio_read(inode, io_bio, err); 8180 } 8181 } 8182 8183 static void btrfs_endio_direct_read(struct bio *bio) 8184 { 8185 struct btrfs_dio_private *dip = bio->bi_private; 8186 struct inode *inode = dip->inode; 8187 struct bio *dio_bio; 8188 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio); 8189 blk_status_t err = bio->bi_status; 8190 8191 if (dip->flags & BTRFS_DIO_ORIG_BIO_SUBMITTED) 8192 err = btrfs_subio_endio_read(inode, io_bio, err); 8193 8194 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset, 8195 dip->logical_offset + dip->bytes - 1); 8196 dio_bio = dip->dio_bio; 8197 8198 kfree(dip); 8199 8200 dio_bio->bi_status = err; 8201 dio_end_io(dio_bio); 8202 8203 if (io_bio->end_io) 8204 io_bio->end_io(io_bio, blk_status_to_errno(err)); 8205 bio_put(bio); 8206 } 8207 8208 static void __endio_write_update_ordered(struct inode *inode, 8209 const u64 offset, const u64 bytes, 8210 const bool uptodate) 8211 { 8212 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8213 struct btrfs_ordered_extent *ordered = NULL; 8214 struct btrfs_workqueue *wq; 8215 btrfs_work_func_t func; 8216 u64 ordered_offset = offset; 8217 u64 ordered_bytes = bytes; 8218 u64 last_offset; 8219 int ret; 8220 8221 if (btrfs_is_free_space_inode(BTRFS_I(inode))) { 8222 wq = fs_info->endio_freespace_worker; 8223 func = btrfs_freespace_write_helper; 8224 } else { 8225 wq = fs_info->endio_write_workers; 8226 func = btrfs_endio_write_helper; 8227 } 8228 8229 again: 8230 last_offset = ordered_offset; 8231 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered, 8232 &ordered_offset, 8233 ordered_bytes, 8234 uptodate); 8235 if (!ret) 8236 goto out_test; 8237 8238 btrfs_init_work(&ordered->work, func, finish_ordered_fn, NULL, NULL); 8239 btrfs_queue_work(wq, &ordered->work); 8240 out_test: 8241 /* 8242 * If btrfs_dec_test_ordered_pending does not find any ordered extent 8243 * in the range, we can exit. 8244 */ 8245 if (ordered_offset == last_offset) 8246 return; 8247 /* 8248 * our bio might span multiple ordered extents. If we haven't 8249 * completed the accounting for the whole dio, go back and try again 8250 */ 8251 if (ordered_offset < offset + bytes) { 8252 ordered_bytes = offset + bytes - ordered_offset; 8253 ordered = NULL; 8254 goto again; 8255 } 8256 } 8257 8258 static void btrfs_endio_direct_write(struct bio *bio) 8259 { 8260 struct btrfs_dio_private *dip = bio->bi_private; 8261 struct bio *dio_bio = dip->dio_bio; 8262 8263 __endio_write_update_ordered(dip->inode, dip->logical_offset, 8264 dip->bytes, !bio->bi_status); 8265 8266 kfree(dip); 8267 8268 dio_bio->bi_status = bio->bi_status; 8269 dio_end_io(dio_bio); 8270 bio_put(bio); 8271 } 8272 8273 static blk_status_t __btrfs_submit_bio_start_direct_io(void *private_data, 8274 struct bio *bio, int mirror_num, 8275 unsigned long bio_flags, u64 offset) 8276 { 8277 struct inode *inode = private_data; 8278 blk_status_t ret; 8279 ret = btrfs_csum_one_bio(inode, bio, offset, 1); 8280 BUG_ON(ret); /* -ENOMEM */ 8281 return 0; 8282 } 8283 8284 static void btrfs_end_dio_bio(struct bio *bio) 8285 { 8286 struct btrfs_dio_private *dip = bio->bi_private; 8287 blk_status_t err = bio->bi_status; 8288 8289 if (err) 8290 btrfs_warn(BTRFS_I(dip->inode)->root->fs_info, 8291 "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d", 8292 btrfs_ino(BTRFS_I(dip->inode)), bio_op(bio), 8293 bio->bi_opf, 8294 (unsigned long long)bio->bi_iter.bi_sector, 8295 bio->bi_iter.bi_size, err); 8296 8297 if (dip->subio_endio) 8298 err = dip->subio_endio(dip->inode, btrfs_io_bio(bio), err); 8299 8300 if (err) { 8301 dip->errors = 1; 8302 8303 /* 8304 * before atomic variable goto zero, we must make sure 8305 * dip->errors is perceived to be set. 8306 */ 8307 smp_mb__before_atomic(); 8308 } 8309 8310 /* if there are more bios still pending for this dio, just exit */ 8311 if (!atomic_dec_and_test(&dip->pending_bios)) 8312 goto out; 8313 8314 if (dip->errors) { 8315 bio_io_error(dip->orig_bio); 8316 } else { 8317 dip->dio_bio->bi_status = BLK_STS_OK; 8318 bio_endio(dip->orig_bio); 8319 } 8320 out: 8321 bio_put(bio); 8322 } 8323 8324 static inline blk_status_t btrfs_lookup_and_bind_dio_csum(struct inode *inode, 8325 struct btrfs_dio_private *dip, 8326 struct bio *bio, 8327 u64 file_offset) 8328 { 8329 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio); 8330 struct btrfs_io_bio *orig_io_bio = btrfs_io_bio(dip->orig_bio); 8331 blk_status_t ret; 8332 8333 /* 8334 * We load all the csum data we need when we submit 8335 * the first bio to reduce the csum tree search and 8336 * contention. 8337 */ 8338 if (dip->logical_offset == file_offset) { 8339 ret = btrfs_lookup_bio_sums_dio(inode, dip->orig_bio, 8340 file_offset); 8341 if (ret) 8342 return ret; 8343 } 8344 8345 if (bio == dip->orig_bio) 8346 return 0; 8347 8348 file_offset -= dip->logical_offset; 8349 file_offset >>= inode->i_sb->s_blocksize_bits; 8350 io_bio->csum = (u8 *)(((u32 *)orig_io_bio->csum) + file_offset); 8351 8352 return 0; 8353 } 8354 8355 static inline blk_status_t 8356 __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode, u64 file_offset, 8357 int async_submit) 8358 { 8359 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8360 struct btrfs_dio_private *dip = bio->bi_private; 8361 bool write = bio_op(bio) == REQ_OP_WRITE; 8362 blk_status_t ret; 8363 8364 /* Check btrfs_submit_bio_hook() for rules about async submit. */ 8365 if (async_submit) 8366 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers); 8367 8368 if (!write) { 8369 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA); 8370 if (ret) 8371 goto err; 8372 } 8373 8374 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) 8375 goto map; 8376 8377 if (write && async_submit) { 8378 ret = btrfs_wq_submit_bio(fs_info, bio, 0, 0, 8379 file_offset, inode, 8380 __btrfs_submit_bio_start_direct_io, 8381 __btrfs_submit_bio_done); 8382 goto err; 8383 } else if (write) { 8384 /* 8385 * If we aren't doing async submit, calculate the csum of the 8386 * bio now. 8387 */ 8388 ret = btrfs_csum_one_bio(inode, bio, file_offset, 1); 8389 if (ret) 8390 goto err; 8391 } else { 8392 ret = btrfs_lookup_and_bind_dio_csum(inode, dip, bio, 8393 file_offset); 8394 if (ret) 8395 goto err; 8396 } 8397 map: 8398 ret = btrfs_map_bio(fs_info, bio, 0, 0); 8399 err: 8400 return ret; 8401 } 8402 8403 static int btrfs_submit_direct_hook(struct btrfs_dio_private *dip) 8404 { 8405 struct inode *inode = dip->inode; 8406 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8407 struct bio *bio; 8408 struct bio *orig_bio = dip->orig_bio; 8409 u64 start_sector = orig_bio->bi_iter.bi_sector; 8410 u64 file_offset = dip->logical_offset; 8411 u64 map_length; 8412 int async_submit = 0; 8413 u64 submit_len; 8414 int clone_offset = 0; 8415 int clone_len; 8416 int ret; 8417 blk_status_t status; 8418 8419 map_length = orig_bio->bi_iter.bi_size; 8420 submit_len = map_length; 8421 ret = btrfs_map_block(fs_info, btrfs_op(orig_bio), start_sector << 9, 8422 &map_length, NULL, 0); 8423 if (ret) 8424 return -EIO; 8425 8426 if (map_length >= submit_len) { 8427 bio = orig_bio; 8428 dip->flags |= BTRFS_DIO_ORIG_BIO_SUBMITTED; 8429 goto submit; 8430 } 8431 8432 /* async crcs make it difficult to collect full stripe writes. */ 8433 if (btrfs_data_alloc_profile(fs_info) & BTRFS_BLOCK_GROUP_RAID56_MASK) 8434 async_submit = 0; 8435 else 8436 async_submit = 1; 8437 8438 /* bio split */ 8439 ASSERT(map_length <= INT_MAX); 8440 atomic_inc(&dip->pending_bios); 8441 do { 8442 clone_len = min_t(int, submit_len, map_length); 8443 8444 /* 8445 * This will never fail as it's passing GPF_NOFS and 8446 * the allocation is backed by btrfs_bioset. 8447 */ 8448 bio = btrfs_bio_clone_partial(orig_bio, clone_offset, 8449 clone_len); 8450 bio->bi_private = dip; 8451 bio->bi_end_io = btrfs_end_dio_bio; 8452 btrfs_io_bio(bio)->logical = file_offset; 8453 8454 ASSERT(submit_len >= clone_len); 8455 submit_len -= clone_len; 8456 if (submit_len == 0) 8457 break; 8458 8459 /* 8460 * Increase the count before we submit the bio so we know 8461 * the end IO handler won't happen before we increase the 8462 * count. Otherwise, the dip might get freed before we're 8463 * done setting it up. 8464 */ 8465 atomic_inc(&dip->pending_bios); 8466 8467 status = __btrfs_submit_dio_bio(bio, inode, file_offset, 8468 async_submit); 8469 if (status) { 8470 bio_put(bio); 8471 atomic_dec(&dip->pending_bios); 8472 goto out_err; 8473 } 8474 8475 clone_offset += clone_len; 8476 start_sector += clone_len >> 9; 8477 file_offset += clone_len; 8478 8479 map_length = submit_len; 8480 ret = btrfs_map_block(fs_info, btrfs_op(orig_bio), 8481 start_sector << 9, &map_length, NULL, 0); 8482 if (ret) 8483 goto out_err; 8484 } while (submit_len > 0); 8485 8486 submit: 8487 status = __btrfs_submit_dio_bio(bio, inode, file_offset, async_submit); 8488 if (!status) 8489 return 0; 8490 8491 bio_put(bio); 8492 out_err: 8493 dip->errors = 1; 8494 /* 8495 * before atomic variable goto zero, we must 8496 * make sure dip->errors is perceived to be set. 8497 */ 8498 smp_mb__before_atomic(); 8499 if (atomic_dec_and_test(&dip->pending_bios)) 8500 bio_io_error(dip->orig_bio); 8501 8502 /* bio_end_io() will handle error, so we needn't return it */ 8503 return 0; 8504 } 8505 8506 static void btrfs_submit_direct(struct bio *dio_bio, struct inode *inode, 8507 loff_t file_offset) 8508 { 8509 struct btrfs_dio_private *dip = NULL; 8510 struct bio *bio = NULL; 8511 struct btrfs_io_bio *io_bio; 8512 bool write = (bio_op(dio_bio) == REQ_OP_WRITE); 8513 int ret = 0; 8514 8515 bio = btrfs_bio_clone(dio_bio); 8516 8517 dip = kzalloc(sizeof(*dip), GFP_NOFS); 8518 if (!dip) { 8519 ret = -ENOMEM; 8520 goto free_ordered; 8521 } 8522 8523 dip->private = dio_bio->bi_private; 8524 dip->inode = inode; 8525 dip->logical_offset = file_offset; 8526 dip->bytes = dio_bio->bi_iter.bi_size; 8527 dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9; 8528 bio->bi_private = dip; 8529 dip->orig_bio = bio; 8530 dip->dio_bio = dio_bio; 8531 atomic_set(&dip->pending_bios, 0); 8532 io_bio = btrfs_io_bio(bio); 8533 io_bio->logical = file_offset; 8534 8535 if (write) { 8536 bio->bi_end_io = btrfs_endio_direct_write; 8537 } else { 8538 bio->bi_end_io = btrfs_endio_direct_read; 8539 dip->subio_endio = btrfs_subio_endio_read; 8540 } 8541 8542 /* 8543 * Reset the range for unsubmitted ordered extents (to a 0 length range) 8544 * even if we fail to submit a bio, because in such case we do the 8545 * corresponding error handling below and it must not be done a second 8546 * time by btrfs_direct_IO(). 8547 */ 8548 if (write) { 8549 struct btrfs_dio_data *dio_data = current->journal_info; 8550 8551 dio_data->unsubmitted_oe_range_end = dip->logical_offset + 8552 dip->bytes; 8553 dio_data->unsubmitted_oe_range_start = 8554 dio_data->unsubmitted_oe_range_end; 8555 } 8556 8557 ret = btrfs_submit_direct_hook(dip); 8558 if (!ret) 8559 return; 8560 8561 if (io_bio->end_io) 8562 io_bio->end_io(io_bio, ret); 8563 8564 free_ordered: 8565 /* 8566 * If we arrived here it means either we failed to submit the dip 8567 * or we either failed to clone the dio_bio or failed to allocate the 8568 * dip. If we cloned the dio_bio and allocated the dip, we can just 8569 * call bio_endio against our io_bio so that we get proper resource 8570 * cleanup if we fail to submit the dip, otherwise, we must do the 8571 * same as btrfs_endio_direct_[write|read] because we can't call these 8572 * callbacks - they require an allocated dip and a clone of dio_bio. 8573 */ 8574 if (bio && dip) { 8575 bio_io_error(bio); 8576 /* 8577 * The end io callbacks free our dip, do the final put on bio 8578 * and all the cleanup and final put for dio_bio (through 8579 * dio_end_io()). 8580 */ 8581 dip = NULL; 8582 bio = NULL; 8583 } else { 8584 if (write) 8585 __endio_write_update_ordered(inode, 8586 file_offset, 8587 dio_bio->bi_iter.bi_size, 8588 false); 8589 else 8590 unlock_extent(&BTRFS_I(inode)->io_tree, file_offset, 8591 file_offset + dio_bio->bi_iter.bi_size - 1); 8592 8593 dio_bio->bi_status = BLK_STS_IOERR; 8594 /* 8595 * Releases and cleans up our dio_bio, no need to bio_put() 8596 * nor bio_endio()/bio_io_error() against dio_bio. 8597 */ 8598 dio_end_io(dio_bio); 8599 } 8600 if (bio) 8601 bio_put(bio); 8602 kfree(dip); 8603 } 8604 8605 static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info, 8606 const struct iov_iter *iter, loff_t offset) 8607 { 8608 int seg; 8609 int i; 8610 unsigned int blocksize_mask = fs_info->sectorsize - 1; 8611 ssize_t retval = -EINVAL; 8612 8613 if (offset & blocksize_mask) 8614 goto out; 8615 8616 if (iov_iter_alignment(iter) & blocksize_mask) 8617 goto out; 8618 8619 /* If this is a write we don't need to check anymore */ 8620 if (iov_iter_rw(iter) != READ || !iter_is_iovec(iter)) 8621 return 0; 8622 /* 8623 * Check to make sure we don't have duplicate iov_base's in this 8624 * iovec, if so return EINVAL, otherwise we'll get csum errors 8625 * when reading back. 8626 */ 8627 for (seg = 0; seg < iter->nr_segs; seg++) { 8628 for (i = seg + 1; i < iter->nr_segs; i++) { 8629 if (iter->iov[seg].iov_base == iter->iov[i].iov_base) 8630 goto out; 8631 } 8632 } 8633 retval = 0; 8634 out: 8635 return retval; 8636 } 8637 8638 static ssize_t btrfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 8639 { 8640 struct file *file = iocb->ki_filp; 8641 struct inode *inode = file->f_mapping->host; 8642 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8643 struct btrfs_dio_data dio_data = { 0 }; 8644 struct extent_changeset *data_reserved = NULL; 8645 loff_t offset = iocb->ki_pos; 8646 size_t count = 0; 8647 int flags = 0; 8648 bool wakeup = true; 8649 bool relock = false; 8650 ssize_t ret; 8651 8652 if (check_direct_IO(fs_info, iter, offset)) 8653 return 0; 8654 8655 inode_dio_begin(inode); 8656 8657 /* 8658 * The generic stuff only does filemap_write_and_wait_range, which 8659 * isn't enough if we've written compressed pages to this area, so 8660 * we need to flush the dirty pages again to make absolutely sure 8661 * that any outstanding dirty pages are on disk. 8662 */ 8663 count = iov_iter_count(iter); 8664 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 8665 &BTRFS_I(inode)->runtime_flags)) 8666 filemap_fdatawrite_range(inode->i_mapping, offset, 8667 offset + count - 1); 8668 8669 if (iov_iter_rw(iter) == WRITE) { 8670 /* 8671 * If the write DIO is beyond the EOF, we need update 8672 * the isize, but it is protected by i_mutex. So we can 8673 * not unlock the i_mutex at this case. 8674 */ 8675 if (offset + count <= inode->i_size) { 8676 dio_data.overwrite = 1; 8677 inode_unlock(inode); 8678 relock = true; 8679 } else if (iocb->ki_flags & IOCB_NOWAIT) { 8680 ret = -EAGAIN; 8681 goto out; 8682 } 8683 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, 8684 offset, count); 8685 if (ret) 8686 goto out; 8687 8688 /* 8689 * We need to know how many extents we reserved so that we can 8690 * do the accounting properly if we go over the number we 8691 * originally calculated. Abuse current->journal_info for this. 8692 */ 8693 dio_data.reserve = round_up(count, 8694 fs_info->sectorsize); 8695 dio_data.unsubmitted_oe_range_start = (u64)offset; 8696 dio_data.unsubmitted_oe_range_end = (u64)offset; 8697 current->journal_info = &dio_data; 8698 down_read(&BTRFS_I(inode)->dio_sem); 8699 } else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK, 8700 &BTRFS_I(inode)->runtime_flags)) { 8701 inode_dio_end(inode); 8702 flags = DIO_LOCKING | DIO_SKIP_HOLES; 8703 wakeup = false; 8704 } 8705 8706 ret = __blockdev_direct_IO(iocb, inode, 8707 fs_info->fs_devices->latest_bdev, 8708 iter, btrfs_get_blocks_direct, NULL, 8709 btrfs_submit_direct, flags); 8710 if (iov_iter_rw(iter) == WRITE) { 8711 up_read(&BTRFS_I(inode)->dio_sem); 8712 current->journal_info = NULL; 8713 if (ret < 0 && ret != -EIOCBQUEUED) { 8714 if (dio_data.reserve) 8715 btrfs_delalloc_release_space(inode, data_reserved, 8716 offset, dio_data.reserve); 8717 /* 8718 * On error we might have left some ordered extents 8719 * without submitting corresponding bios for them, so 8720 * cleanup them up to avoid other tasks getting them 8721 * and waiting for them to complete forever. 8722 */ 8723 if (dio_data.unsubmitted_oe_range_start < 8724 dio_data.unsubmitted_oe_range_end) 8725 __endio_write_update_ordered(inode, 8726 dio_data.unsubmitted_oe_range_start, 8727 dio_data.unsubmitted_oe_range_end - 8728 dio_data.unsubmitted_oe_range_start, 8729 false); 8730 } else if (ret >= 0 && (size_t)ret < count) 8731 btrfs_delalloc_release_space(inode, data_reserved, 8732 offset, count - (size_t)ret); 8733 btrfs_delalloc_release_extents(BTRFS_I(inode), count); 8734 } 8735 out: 8736 if (wakeup) 8737 inode_dio_end(inode); 8738 if (relock) 8739 inode_lock(inode); 8740 8741 extent_changeset_free(data_reserved); 8742 return ret; 8743 } 8744 8745 #define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC) 8746 8747 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 8748 __u64 start, __u64 len) 8749 { 8750 int ret; 8751 8752 ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS); 8753 if (ret) 8754 return ret; 8755 8756 return extent_fiemap(inode, fieinfo, start, len); 8757 } 8758 8759 int btrfs_readpage(struct file *file, struct page *page) 8760 { 8761 struct extent_io_tree *tree; 8762 tree = &BTRFS_I(page->mapping->host)->io_tree; 8763 return extent_read_full_page(tree, page, btrfs_get_extent, 0); 8764 } 8765 8766 static int btrfs_writepage(struct page *page, struct writeback_control *wbc) 8767 { 8768 struct inode *inode = page->mapping->host; 8769 int ret; 8770 8771 if (current->flags & PF_MEMALLOC) { 8772 redirty_page_for_writepage(wbc, page); 8773 unlock_page(page); 8774 return 0; 8775 } 8776 8777 /* 8778 * If we are under memory pressure we will call this directly from the 8779 * VM, we need to make sure we have the inode referenced for the ordered 8780 * extent. If not just return like we didn't do anything. 8781 */ 8782 if (!igrab(inode)) { 8783 redirty_page_for_writepage(wbc, page); 8784 return AOP_WRITEPAGE_ACTIVATE; 8785 } 8786 ret = extent_write_full_page(page, wbc); 8787 btrfs_add_delayed_iput(inode); 8788 return ret; 8789 } 8790 8791 static int btrfs_writepages(struct address_space *mapping, 8792 struct writeback_control *wbc) 8793 { 8794 struct extent_io_tree *tree; 8795 8796 tree = &BTRFS_I(mapping->host)->io_tree; 8797 return extent_writepages(tree, mapping, wbc); 8798 } 8799 8800 static int 8801 btrfs_readpages(struct file *file, struct address_space *mapping, 8802 struct list_head *pages, unsigned nr_pages) 8803 { 8804 struct extent_io_tree *tree; 8805 tree = &BTRFS_I(mapping->host)->io_tree; 8806 return extent_readpages(tree, mapping, pages, nr_pages); 8807 } 8808 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags) 8809 { 8810 struct extent_io_tree *tree; 8811 struct extent_map_tree *map; 8812 int ret; 8813 8814 tree = &BTRFS_I(page->mapping->host)->io_tree; 8815 map = &BTRFS_I(page->mapping->host)->extent_tree; 8816 ret = try_release_extent_mapping(map, tree, page, gfp_flags); 8817 if (ret == 1) { 8818 ClearPagePrivate(page); 8819 set_page_private(page, 0); 8820 put_page(page); 8821 } 8822 return ret; 8823 } 8824 8825 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags) 8826 { 8827 if (PageWriteback(page) || PageDirty(page)) 8828 return 0; 8829 return __btrfs_releasepage(page, gfp_flags); 8830 } 8831 8832 static void btrfs_invalidatepage(struct page *page, unsigned int offset, 8833 unsigned int length) 8834 { 8835 struct inode *inode = page->mapping->host; 8836 struct extent_io_tree *tree; 8837 struct btrfs_ordered_extent *ordered; 8838 struct extent_state *cached_state = NULL; 8839 u64 page_start = page_offset(page); 8840 u64 page_end = page_start + PAGE_SIZE - 1; 8841 u64 start; 8842 u64 end; 8843 int inode_evicting = inode->i_state & I_FREEING; 8844 8845 /* 8846 * we have the page locked, so new writeback can't start, 8847 * and the dirty bit won't be cleared while we are here. 8848 * 8849 * Wait for IO on this page so that we can safely clear 8850 * the PagePrivate2 bit and do ordered accounting 8851 */ 8852 wait_on_page_writeback(page); 8853 8854 tree = &BTRFS_I(inode)->io_tree; 8855 if (offset) { 8856 btrfs_releasepage(page, GFP_NOFS); 8857 return; 8858 } 8859 8860 if (!inode_evicting) 8861 lock_extent_bits(tree, page_start, page_end, &cached_state); 8862 again: 8863 start = page_start; 8864 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start, 8865 page_end - start + 1); 8866 if (ordered) { 8867 end = min(page_end, ordered->file_offset + ordered->len - 1); 8868 /* 8869 * IO on this page will never be started, so we need 8870 * to account for any ordered extents now 8871 */ 8872 if (!inode_evicting) 8873 clear_extent_bit(tree, start, end, 8874 EXTENT_DIRTY | EXTENT_DELALLOC | 8875 EXTENT_DELALLOC_NEW | 8876 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING | 8877 EXTENT_DEFRAG, 1, 0, &cached_state); 8878 /* 8879 * whoever cleared the private bit is responsible 8880 * for the finish_ordered_io 8881 */ 8882 if (TestClearPagePrivate2(page)) { 8883 struct btrfs_ordered_inode_tree *tree; 8884 u64 new_len; 8885 8886 tree = &BTRFS_I(inode)->ordered_tree; 8887 8888 spin_lock_irq(&tree->lock); 8889 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags); 8890 new_len = start - ordered->file_offset; 8891 if (new_len < ordered->truncated_len) 8892 ordered->truncated_len = new_len; 8893 spin_unlock_irq(&tree->lock); 8894 8895 if (btrfs_dec_test_ordered_pending(inode, &ordered, 8896 start, 8897 end - start + 1, 1)) 8898 btrfs_finish_ordered_io(ordered); 8899 } 8900 btrfs_put_ordered_extent(ordered); 8901 if (!inode_evicting) { 8902 cached_state = NULL; 8903 lock_extent_bits(tree, start, end, 8904 &cached_state); 8905 } 8906 8907 start = end + 1; 8908 if (start < page_end) 8909 goto again; 8910 } 8911 8912 /* 8913 * Qgroup reserved space handler 8914 * Page here will be either 8915 * 1) Already written to disk 8916 * In this case, its reserved space is released from data rsv map 8917 * and will be freed by delayed_ref handler finally. 8918 * So even we call qgroup_free_data(), it won't decrease reserved 8919 * space. 8920 * 2) Not written to disk 8921 * This means the reserved space should be freed here. However, 8922 * if a truncate invalidates the page (by clearing PageDirty) 8923 * and the page is accounted for while allocating extent 8924 * in btrfs_check_data_free_space() we let delayed_ref to 8925 * free the entire extent. 8926 */ 8927 if (PageDirty(page)) 8928 btrfs_qgroup_free_data(inode, NULL, page_start, PAGE_SIZE); 8929 if (!inode_evicting) { 8930 clear_extent_bit(tree, page_start, page_end, 8931 EXTENT_LOCKED | EXTENT_DIRTY | 8932 EXTENT_DELALLOC | EXTENT_DELALLOC_NEW | 8933 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1, 8934 &cached_state); 8935 8936 __btrfs_releasepage(page, GFP_NOFS); 8937 } 8938 8939 ClearPageChecked(page); 8940 if (PagePrivate(page)) { 8941 ClearPagePrivate(page); 8942 set_page_private(page, 0); 8943 put_page(page); 8944 } 8945 } 8946 8947 /* 8948 * btrfs_page_mkwrite() is not allowed to change the file size as it gets 8949 * called from a page fault handler when a page is first dirtied. Hence we must 8950 * be careful to check for EOF conditions here. We set the page up correctly 8951 * for a written page which means we get ENOSPC checking when writing into 8952 * holes and correct delalloc and unwritten extent mapping on filesystems that 8953 * support these features. 8954 * 8955 * We are not allowed to take the i_mutex here so we have to play games to 8956 * protect against truncate races as the page could now be beyond EOF. Because 8957 * vmtruncate() writes the inode size before removing pages, once we have the 8958 * page lock we can determine safely if the page is beyond EOF. If it is not 8959 * beyond EOF, then the page is guaranteed safe against truncation until we 8960 * unlock the page. 8961 */ 8962 int btrfs_page_mkwrite(struct vm_fault *vmf) 8963 { 8964 struct page *page = vmf->page; 8965 struct inode *inode = file_inode(vmf->vma->vm_file); 8966 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8967 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 8968 struct btrfs_ordered_extent *ordered; 8969 struct extent_state *cached_state = NULL; 8970 struct extent_changeset *data_reserved = NULL; 8971 char *kaddr; 8972 unsigned long zero_start; 8973 loff_t size; 8974 int ret; 8975 int reserved = 0; 8976 u64 reserved_space; 8977 u64 page_start; 8978 u64 page_end; 8979 u64 end; 8980 8981 reserved_space = PAGE_SIZE; 8982 8983 sb_start_pagefault(inode->i_sb); 8984 page_start = page_offset(page); 8985 page_end = page_start + PAGE_SIZE - 1; 8986 end = page_end; 8987 8988 /* 8989 * Reserving delalloc space after obtaining the page lock can lead to 8990 * deadlock. For example, if a dirty page is locked by this function 8991 * and the call to btrfs_delalloc_reserve_space() ends up triggering 8992 * dirty page write out, then the btrfs_writepage() function could 8993 * end up waiting indefinitely to get a lock on the page currently 8994 * being processed by btrfs_page_mkwrite() function. 8995 */ 8996 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start, 8997 reserved_space); 8998 if (!ret) { 8999 ret = file_update_time(vmf->vma->vm_file); 9000 reserved = 1; 9001 } 9002 if (ret) { 9003 if (ret == -ENOMEM) 9004 ret = VM_FAULT_OOM; 9005 else /* -ENOSPC, -EIO, etc */ 9006 ret = VM_FAULT_SIGBUS; 9007 if (reserved) 9008 goto out; 9009 goto out_noreserve; 9010 } 9011 9012 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */ 9013 again: 9014 lock_page(page); 9015 size = i_size_read(inode); 9016 9017 if ((page->mapping != inode->i_mapping) || 9018 (page_start >= size)) { 9019 /* page got truncated out from underneath us */ 9020 goto out_unlock; 9021 } 9022 wait_on_page_writeback(page); 9023 9024 lock_extent_bits(io_tree, page_start, page_end, &cached_state); 9025 set_page_extent_mapped(page); 9026 9027 /* 9028 * we can't set the delalloc bits if there are pending ordered 9029 * extents. Drop our locks and wait for them to finish 9030 */ 9031 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start, 9032 PAGE_SIZE); 9033 if (ordered) { 9034 unlock_extent_cached(io_tree, page_start, page_end, 9035 &cached_state); 9036 unlock_page(page); 9037 btrfs_start_ordered_extent(inode, ordered, 1); 9038 btrfs_put_ordered_extent(ordered); 9039 goto again; 9040 } 9041 9042 if (page->index == ((size - 1) >> PAGE_SHIFT)) { 9043 reserved_space = round_up(size - page_start, 9044 fs_info->sectorsize); 9045 if (reserved_space < PAGE_SIZE) { 9046 end = page_start + reserved_space - 1; 9047 btrfs_delalloc_release_space(inode, data_reserved, 9048 page_start, PAGE_SIZE - reserved_space); 9049 } 9050 } 9051 9052 /* 9053 * page_mkwrite gets called when the page is firstly dirtied after it's 9054 * faulted in, but write(2) could also dirty a page and set delalloc 9055 * bits, thus in this case for space account reason, we still need to 9056 * clear any delalloc bits within this page range since we have to 9057 * reserve data&meta space before lock_page() (see above comments). 9058 */ 9059 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end, 9060 EXTENT_DIRTY | EXTENT_DELALLOC | 9061 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 9062 0, 0, &cached_state); 9063 9064 ret = btrfs_set_extent_delalloc(inode, page_start, end, 0, 9065 &cached_state, 0); 9066 if (ret) { 9067 unlock_extent_cached(io_tree, page_start, page_end, 9068 &cached_state); 9069 ret = VM_FAULT_SIGBUS; 9070 goto out_unlock; 9071 } 9072 ret = 0; 9073 9074 /* page is wholly or partially inside EOF */ 9075 if (page_start + PAGE_SIZE > size) 9076 zero_start = size & ~PAGE_MASK; 9077 else 9078 zero_start = PAGE_SIZE; 9079 9080 if (zero_start != PAGE_SIZE) { 9081 kaddr = kmap(page); 9082 memset(kaddr + zero_start, 0, PAGE_SIZE - zero_start); 9083 flush_dcache_page(page); 9084 kunmap(page); 9085 } 9086 ClearPageChecked(page); 9087 set_page_dirty(page); 9088 SetPageUptodate(page); 9089 9090 BTRFS_I(inode)->last_trans = fs_info->generation; 9091 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid; 9092 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit; 9093 9094 unlock_extent_cached(io_tree, page_start, page_end, &cached_state); 9095 9096 out_unlock: 9097 if (!ret) { 9098 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE); 9099 sb_end_pagefault(inode->i_sb); 9100 extent_changeset_free(data_reserved); 9101 return VM_FAULT_LOCKED; 9102 } 9103 unlock_page(page); 9104 out: 9105 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE); 9106 btrfs_delalloc_release_space(inode, data_reserved, page_start, 9107 reserved_space); 9108 out_noreserve: 9109 sb_end_pagefault(inode->i_sb); 9110 extent_changeset_free(data_reserved); 9111 return ret; 9112 } 9113 9114 static int btrfs_truncate(struct inode *inode) 9115 { 9116 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 9117 struct btrfs_root *root = BTRFS_I(inode)->root; 9118 struct btrfs_block_rsv *rsv; 9119 int ret = 0; 9120 int err = 0; 9121 struct btrfs_trans_handle *trans; 9122 u64 mask = fs_info->sectorsize - 1; 9123 u64 min_size = btrfs_calc_trunc_metadata_size(fs_info, 1); 9124 9125 ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask), 9126 (u64)-1); 9127 if (ret) 9128 return ret; 9129 9130 /* 9131 * Yes ladies and gentlemen, this is indeed ugly. The fact is we have 9132 * 3 things going on here 9133 * 9134 * 1) We need to reserve space for our orphan item and the space to 9135 * delete our orphan item. Lord knows we don't want to have a dangling 9136 * orphan item because we didn't reserve space to remove it. 9137 * 9138 * 2) We need to reserve space to update our inode. 9139 * 9140 * 3) We need to have something to cache all the space that is going to 9141 * be free'd up by the truncate operation, but also have some slack 9142 * space reserved in case it uses space during the truncate (thank you 9143 * very much snapshotting). 9144 * 9145 * And we need these to all be separate. The fact is we can use a lot of 9146 * space doing the truncate, and we have no earthly idea how much space 9147 * we will use, so we need the truncate reservation to be separate so it 9148 * doesn't end up using space reserved for updating the inode or 9149 * removing the orphan item. We also need to be able to stop the 9150 * transaction and start a new one, which means we need to be able to 9151 * update the inode several times, and we have no idea of knowing how 9152 * many times that will be, so we can't just reserve 1 item for the 9153 * entirety of the operation, so that has to be done separately as well. 9154 * Then there is the orphan item, which does indeed need to be held on 9155 * to for the whole operation, and we need nobody to touch this reserved 9156 * space except the orphan code. 9157 * 9158 * So that leaves us with 9159 * 9160 * 1) root->orphan_block_rsv - for the orphan deletion. 9161 * 2) rsv - for the truncate reservation, which we will steal from the 9162 * transaction reservation. 9163 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for 9164 * updating the inode. 9165 */ 9166 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP); 9167 if (!rsv) 9168 return -ENOMEM; 9169 rsv->size = min_size; 9170 rsv->failfast = 1; 9171 9172 /* 9173 * 1 for the truncate slack space 9174 * 1 for updating the inode. 9175 */ 9176 trans = btrfs_start_transaction(root, 2); 9177 if (IS_ERR(trans)) { 9178 err = PTR_ERR(trans); 9179 goto out; 9180 } 9181 9182 /* Migrate the slack space for the truncate to our reserve */ 9183 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv, 9184 min_size, 0); 9185 BUG_ON(ret); 9186 9187 /* 9188 * So if we truncate and then write and fsync we normally would just 9189 * write the extents that changed, which is a problem if we need to 9190 * first truncate that entire inode. So set this flag so we write out 9191 * all of the extents in the inode to the sync log so we're completely 9192 * safe. 9193 */ 9194 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 9195 trans->block_rsv = rsv; 9196 9197 while (1) { 9198 ret = btrfs_truncate_inode_items(trans, root, inode, 9199 inode->i_size, 9200 BTRFS_EXTENT_DATA_KEY); 9201 trans->block_rsv = &fs_info->trans_block_rsv; 9202 if (ret != -ENOSPC && ret != -EAGAIN) { 9203 err = ret; 9204 break; 9205 } 9206 9207 ret = btrfs_update_inode(trans, root, inode); 9208 if (ret) { 9209 err = ret; 9210 break; 9211 } 9212 9213 btrfs_end_transaction(trans); 9214 btrfs_btree_balance_dirty(fs_info); 9215 9216 trans = btrfs_start_transaction(root, 2); 9217 if (IS_ERR(trans)) { 9218 ret = err = PTR_ERR(trans); 9219 trans = NULL; 9220 break; 9221 } 9222 9223 btrfs_block_rsv_release(fs_info, rsv, -1); 9224 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, 9225 rsv, min_size, 0); 9226 BUG_ON(ret); /* shouldn't happen */ 9227 trans->block_rsv = rsv; 9228 } 9229 9230 /* 9231 * We can't call btrfs_truncate_block inside a trans handle as we could 9232 * deadlock with freeze, if we got NEED_TRUNCATE_BLOCK then we know 9233 * we've truncated everything except the last little bit, and can do 9234 * btrfs_truncate_block and then update the disk_i_size. 9235 */ 9236 if (ret == NEED_TRUNCATE_BLOCK) { 9237 btrfs_end_transaction(trans); 9238 btrfs_btree_balance_dirty(fs_info); 9239 9240 ret = btrfs_truncate_block(inode, inode->i_size, 0, 0); 9241 if (ret) 9242 goto out; 9243 trans = btrfs_start_transaction(root, 1); 9244 if (IS_ERR(trans)) { 9245 ret = PTR_ERR(trans); 9246 goto out; 9247 } 9248 btrfs_ordered_update_i_size(inode, inode->i_size, NULL); 9249 } 9250 9251 if (ret == 0 && inode->i_nlink > 0) { 9252 trans->block_rsv = root->orphan_block_rsv; 9253 ret = btrfs_orphan_del(trans, BTRFS_I(inode)); 9254 if (ret) 9255 err = ret; 9256 } 9257 9258 if (trans) { 9259 trans->block_rsv = &fs_info->trans_block_rsv; 9260 ret = btrfs_update_inode(trans, root, inode); 9261 if (ret && !err) 9262 err = ret; 9263 9264 ret = btrfs_end_transaction(trans); 9265 btrfs_btree_balance_dirty(fs_info); 9266 } 9267 out: 9268 btrfs_free_block_rsv(fs_info, rsv); 9269 9270 if (ret && !err) 9271 err = ret; 9272 9273 return err; 9274 } 9275 9276 /* 9277 * create a new subvolume directory/inode (helper for the ioctl). 9278 */ 9279 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans, 9280 struct btrfs_root *new_root, 9281 struct btrfs_root *parent_root, 9282 u64 new_dirid) 9283 { 9284 struct inode *inode; 9285 int err; 9286 u64 index = 0; 9287 9288 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, 9289 new_dirid, new_dirid, 9290 S_IFDIR | (~current_umask() & S_IRWXUGO), 9291 &index); 9292 if (IS_ERR(inode)) 9293 return PTR_ERR(inode); 9294 inode->i_op = &btrfs_dir_inode_operations; 9295 inode->i_fop = &btrfs_dir_file_operations; 9296 9297 set_nlink(inode, 1); 9298 btrfs_i_size_write(BTRFS_I(inode), 0); 9299 unlock_new_inode(inode); 9300 9301 err = btrfs_subvol_inherit_props(trans, new_root, parent_root); 9302 if (err) 9303 btrfs_err(new_root->fs_info, 9304 "error inheriting subvolume %llu properties: %d", 9305 new_root->root_key.objectid, err); 9306 9307 err = btrfs_update_inode(trans, new_root, inode); 9308 9309 iput(inode); 9310 return err; 9311 } 9312 9313 struct inode *btrfs_alloc_inode(struct super_block *sb) 9314 { 9315 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 9316 struct btrfs_inode *ei; 9317 struct inode *inode; 9318 9319 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_KERNEL); 9320 if (!ei) 9321 return NULL; 9322 9323 ei->root = NULL; 9324 ei->generation = 0; 9325 ei->last_trans = 0; 9326 ei->last_sub_trans = 0; 9327 ei->logged_trans = 0; 9328 ei->delalloc_bytes = 0; 9329 ei->new_delalloc_bytes = 0; 9330 ei->defrag_bytes = 0; 9331 ei->disk_i_size = 0; 9332 ei->flags = 0; 9333 ei->csum_bytes = 0; 9334 ei->index_cnt = (u64)-1; 9335 ei->dir_index = 0; 9336 ei->last_unlink_trans = 0; 9337 ei->last_log_commit = 0; 9338 ei->delayed_iput_count = 0; 9339 9340 spin_lock_init(&ei->lock); 9341 ei->outstanding_extents = 0; 9342 if (sb->s_magic != BTRFS_TEST_MAGIC) 9343 btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv, 9344 BTRFS_BLOCK_RSV_DELALLOC); 9345 ei->runtime_flags = 0; 9346 ei->prop_compress = BTRFS_COMPRESS_NONE; 9347 ei->defrag_compress = BTRFS_COMPRESS_NONE; 9348 9349 ei->delayed_node = NULL; 9350 9351 ei->i_otime.tv_sec = 0; 9352 ei->i_otime.tv_nsec = 0; 9353 9354 inode = &ei->vfs_inode; 9355 extent_map_tree_init(&ei->extent_tree); 9356 extent_io_tree_init(&ei->io_tree, inode); 9357 extent_io_tree_init(&ei->io_failure_tree, inode); 9358 ei->io_tree.track_uptodate = 1; 9359 ei->io_failure_tree.track_uptodate = 1; 9360 atomic_set(&ei->sync_writers, 0); 9361 mutex_init(&ei->log_mutex); 9362 mutex_init(&ei->delalloc_mutex); 9363 btrfs_ordered_inode_tree_init(&ei->ordered_tree); 9364 INIT_LIST_HEAD(&ei->delalloc_inodes); 9365 INIT_LIST_HEAD(&ei->delayed_iput); 9366 RB_CLEAR_NODE(&ei->rb_node); 9367 init_rwsem(&ei->dio_sem); 9368 9369 return inode; 9370 } 9371 9372 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 9373 void btrfs_test_destroy_inode(struct inode *inode) 9374 { 9375 btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0); 9376 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 9377 } 9378 #endif 9379 9380 static void btrfs_i_callback(struct rcu_head *head) 9381 { 9382 struct inode *inode = container_of(head, struct inode, i_rcu); 9383 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 9384 } 9385 9386 void btrfs_destroy_inode(struct inode *inode) 9387 { 9388 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 9389 struct btrfs_ordered_extent *ordered; 9390 struct btrfs_root *root = BTRFS_I(inode)->root; 9391 9392 WARN_ON(!hlist_empty(&inode->i_dentry)); 9393 WARN_ON(inode->i_data.nrpages); 9394 WARN_ON(BTRFS_I(inode)->block_rsv.reserved); 9395 WARN_ON(BTRFS_I(inode)->block_rsv.size); 9396 WARN_ON(BTRFS_I(inode)->outstanding_extents); 9397 WARN_ON(BTRFS_I(inode)->delalloc_bytes); 9398 WARN_ON(BTRFS_I(inode)->new_delalloc_bytes); 9399 WARN_ON(BTRFS_I(inode)->csum_bytes); 9400 WARN_ON(BTRFS_I(inode)->defrag_bytes); 9401 9402 /* 9403 * This can happen where we create an inode, but somebody else also 9404 * created the same inode and we need to destroy the one we already 9405 * created. 9406 */ 9407 if (!root) 9408 goto free; 9409 9410 if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 9411 &BTRFS_I(inode)->runtime_flags)) { 9412 btrfs_info(fs_info, "inode %llu still on the orphan list", 9413 btrfs_ino(BTRFS_I(inode))); 9414 atomic_dec(&root->orphan_inodes); 9415 } 9416 9417 while (1) { 9418 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1); 9419 if (!ordered) 9420 break; 9421 else { 9422 btrfs_err(fs_info, 9423 "found ordered extent %llu %llu on inode cleanup", 9424 ordered->file_offset, ordered->len); 9425 btrfs_remove_ordered_extent(inode, ordered); 9426 btrfs_put_ordered_extent(ordered); 9427 btrfs_put_ordered_extent(ordered); 9428 } 9429 } 9430 btrfs_qgroup_check_reserved_leak(inode); 9431 inode_tree_del(inode); 9432 btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0); 9433 free: 9434 call_rcu(&inode->i_rcu, btrfs_i_callback); 9435 } 9436 9437 int btrfs_drop_inode(struct inode *inode) 9438 { 9439 struct btrfs_root *root = BTRFS_I(inode)->root; 9440 9441 if (root == NULL) 9442 return 1; 9443 9444 /* the snap/subvol tree is on deleting */ 9445 if (btrfs_root_refs(&root->root_item) == 0) 9446 return 1; 9447 else 9448 return generic_drop_inode(inode); 9449 } 9450 9451 static void init_once(void *foo) 9452 { 9453 struct btrfs_inode *ei = (struct btrfs_inode *) foo; 9454 9455 inode_init_once(&ei->vfs_inode); 9456 } 9457 9458 void btrfs_destroy_cachep(void) 9459 { 9460 /* 9461 * Make sure all delayed rcu free inodes are flushed before we 9462 * destroy cache. 9463 */ 9464 rcu_barrier(); 9465 kmem_cache_destroy(btrfs_inode_cachep); 9466 kmem_cache_destroy(btrfs_trans_handle_cachep); 9467 kmem_cache_destroy(btrfs_path_cachep); 9468 kmem_cache_destroy(btrfs_free_space_cachep); 9469 } 9470 9471 int __init btrfs_init_cachep(void) 9472 { 9473 btrfs_inode_cachep = kmem_cache_create("btrfs_inode", 9474 sizeof(struct btrfs_inode), 0, 9475 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT, 9476 init_once); 9477 if (!btrfs_inode_cachep) 9478 goto fail; 9479 9480 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle", 9481 sizeof(struct btrfs_trans_handle), 0, 9482 SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL); 9483 if (!btrfs_trans_handle_cachep) 9484 goto fail; 9485 9486 btrfs_path_cachep = kmem_cache_create("btrfs_path", 9487 sizeof(struct btrfs_path), 0, 9488 SLAB_MEM_SPREAD, NULL); 9489 if (!btrfs_path_cachep) 9490 goto fail; 9491 9492 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space", 9493 sizeof(struct btrfs_free_space), 0, 9494 SLAB_MEM_SPREAD, NULL); 9495 if (!btrfs_free_space_cachep) 9496 goto fail; 9497 9498 return 0; 9499 fail: 9500 btrfs_destroy_cachep(); 9501 return -ENOMEM; 9502 } 9503 9504 static int btrfs_getattr(const struct path *path, struct kstat *stat, 9505 u32 request_mask, unsigned int flags) 9506 { 9507 u64 delalloc_bytes; 9508 struct inode *inode = d_inode(path->dentry); 9509 u32 blocksize = inode->i_sb->s_blocksize; 9510 u32 bi_flags = BTRFS_I(inode)->flags; 9511 9512 stat->result_mask |= STATX_BTIME; 9513 stat->btime.tv_sec = BTRFS_I(inode)->i_otime.tv_sec; 9514 stat->btime.tv_nsec = BTRFS_I(inode)->i_otime.tv_nsec; 9515 if (bi_flags & BTRFS_INODE_APPEND) 9516 stat->attributes |= STATX_ATTR_APPEND; 9517 if (bi_flags & BTRFS_INODE_COMPRESS) 9518 stat->attributes |= STATX_ATTR_COMPRESSED; 9519 if (bi_flags & BTRFS_INODE_IMMUTABLE) 9520 stat->attributes |= STATX_ATTR_IMMUTABLE; 9521 if (bi_flags & BTRFS_INODE_NODUMP) 9522 stat->attributes |= STATX_ATTR_NODUMP; 9523 9524 stat->attributes_mask |= (STATX_ATTR_APPEND | 9525 STATX_ATTR_COMPRESSED | 9526 STATX_ATTR_IMMUTABLE | 9527 STATX_ATTR_NODUMP); 9528 9529 generic_fillattr(inode, stat); 9530 stat->dev = BTRFS_I(inode)->root->anon_dev; 9531 9532 spin_lock(&BTRFS_I(inode)->lock); 9533 delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes; 9534 spin_unlock(&BTRFS_I(inode)->lock); 9535 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) + 9536 ALIGN(delalloc_bytes, blocksize)) >> 9; 9537 return 0; 9538 } 9539 9540 static int btrfs_rename_exchange(struct inode *old_dir, 9541 struct dentry *old_dentry, 9542 struct inode *new_dir, 9543 struct dentry *new_dentry) 9544 { 9545 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb); 9546 struct btrfs_trans_handle *trans; 9547 struct btrfs_root *root = BTRFS_I(old_dir)->root; 9548 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 9549 struct inode *new_inode = new_dentry->d_inode; 9550 struct inode *old_inode = old_dentry->d_inode; 9551 struct timespec ctime = current_time(old_inode); 9552 struct dentry *parent; 9553 u64 old_ino = btrfs_ino(BTRFS_I(old_inode)); 9554 u64 new_ino = btrfs_ino(BTRFS_I(new_inode)); 9555 u64 old_idx = 0; 9556 u64 new_idx = 0; 9557 u64 root_objectid; 9558 int ret; 9559 bool root_log_pinned = false; 9560 bool dest_log_pinned = false; 9561 9562 /* we only allow rename subvolume link between subvolumes */ 9563 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest) 9564 return -EXDEV; 9565 9566 /* close the race window with snapshot create/destroy ioctl */ 9567 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 9568 down_read(&fs_info->subvol_sem); 9569 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) 9570 down_read(&fs_info->subvol_sem); 9571 9572 /* 9573 * We want to reserve the absolute worst case amount of items. So if 9574 * both inodes are subvols and we need to unlink them then that would 9575 * require 4 item modifications, but if they are both normal inodes it 9576 * would require 5 item modifications, so we'll assume their normal 9577 * inodes. So 5 * 2 is 10, plus 2 for the new links, so 12 total items 9578 * should cover the worst case number of items we'll modify. 9579 */ 9580 trans = btrfs_start_transaction(root, 12); 9581 if (IS_ERR(trans)) { 9582 ret = PTR_ERR(trans); 9583 goto out_notrans; 9584 } 9585 9586 /* 9587 * We need to find a free sequence number both in the source and 9588 * in the destination directory for the exchange. 9589 */ 9590 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx); 9591 if (ret) 9592 goto out_fail; 9593 ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx); 9594 if (ret) 9595 goto out_fail; 9596 9597 BTRFS_I(old_inode)->dir_index = 0ULL; 9598 BTRFS_I(new_inode)->dir_index = 0ULL; 9599 9600 /* Reference for the source. */ 9601 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 9602 /* force full log commit if subvolume involved. */ 9603 btrfs_set_log_full_commit(fs_info, trans); 9604 } else { 9605 btrfs_pin_log_trans(root); 9606 root_log_pinned = true; 9607 ret = btrfs_insert_inode_ref(trans, dest, 9608 new_dentry->d_name.name, 9609 new_dentry->d_name.len, 9610 old_ino, 9611 btrfs_ino(BTRFS_I(new_dir)), 9612 old_idx); 9613 if (ret) 9614 goto out_fail; 9615 } 9616 9617 /* And now for the dest. */ 9618 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) { 9619 /* force full log commit if subvolume involved. */ 9620 btrfs_set_log_full_commit(fs_info, trans); 9621 } else { 9622 btrfs_pin_log_trans(dest); 9623 dest_log_pinned = true; 9624 ret = btrfs_insert_inode_ref(trans, root, 9625 old_dentry->d_name.name, 9626 old_dentry->d_name.len, 9627 new_ino, 9628 btrfs_ino(BTRFS_I(old_dir)), 9629 new_idx); 9630 if (ret) 9631 goto out_fail; 9632 } 9633 9634 /* Update inode version and ctime/mtime. */ 9635 inode_inc_iversion(old_dir); 9636 inode_inc_iversion(new_dir); 9637 inode_inc_iversion(old_inode); 9638 inode_inc_iversion(new_inode); 9639 old_dir->i_ctime = old_dir->i_mtime = ctime; 9640 new_dir->i_ctime = new_dir->i_mtime = ctime; 9641 old_inode->i_ctime = ctime; 9642 new_inode->i_ctime = ctime; 9643 9644 if (old_dentry->d_parent != new_dentry->d_parent) { 9645 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir), 9646 BTRFS_I(old_inode), 1); 9647 btrfs_record_unlink_dir(trans, BTRFS_I(new_dir), 9648 BTRFS_I(new_inode), 1); 9649 } 9650 9651 /* src is a subvolume */ 9652 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 9653 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid; 9654 ret = btrfs_unlink_subvol(trans, root, old_dir, 9655 root_objectid, 9656 old_dentry->d_name.name, 9657 old_dentry->d_name.len); 9658 } else { /* src is an inode */ 9659 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir), 9660 BTRFS_I(old_dentry->d_inode), 9661 old_dentry->d_name.name, 9662 old_dentry->d_name.len); 9663 if (!ret) 9664 ret = btrfs_update_inode(trans, root, old_inode); 9665 } 9666 if (ret) { 9667 btrfs_abort_transaction(trans, ret); 9668 goto out_fail; 9669 } 9670 9671 /* dest is a subvolume */ 9672 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) { 9673 root_objectid = BTRFS_I(new_inode)->root->root_key.objectid; 9674 ret = btrfs_unlink_subvol(trans, dest, new_dir, 9675 root_objectid, 9676 new_dentry->d_name.name, 9677 new_dentry->d_name.len); 9678 } else { /* dest is an inode */ 9679 ret = __btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir), 9680 BTRFS_I(new_dentry->d_inode), 9681 new_dentry->d_name.name, 9682 new_dentry->d_name.len); 9683 if (!ret) 9684 ret = btrfs_update_inode(trans, dest, new_inode); 9685 } 9686 if (ret) { 9687 btrfs_abort_transaction(trans, ret); 9688 goto out_fail; 9689 } 9690 9691 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode), 9692 new_dentry->d_name.name, 9693 new_dentry->d_name.len, 0, old_idx); 9694 if (ret) { 9695 btrfs_abort_transaction(trans, ret); 9696 goto out_fail; 9697 } 9698 9699 ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode), 9700 old_dentry->d_name.name, 9701 old_dentry->d_name.len, 0, new_idx); 9702 if (ret) { 9703 btrfs_abort_transaction(trans, ret); 9704 goto out_fail; 9705 } 9706 9707 if (old_inode->i_nlink == 1) 9708 BTRFS_I(old_inode)->dir_index = old_idx; 9709 if (new_inode->i_nlink == 1) 9710 BTRFS_I(new_inode)->dir_index = new_idx; 9711 9712 if (root_log_pinned) { 9713 parent = new_dentry->d_parent; 9714 btrfs_log_new_name(trans, BTRFS_I(old_inode), BTRFS_I(old_dir), 9715 parent); 9716 btrfs_end_log_trans(root); 9717 root_log_pinned = false; 9718 } 9719 if (dest_log_pinned) { 9720 parent = old_dentry->d_parent; 9721 btrfs_log_new_name(trans, BTRFS_I(new_inode), BTRFS_I(new_dir), 9722 parent); 9723 btrfs_end_log_trans(dest); 9724 dest_log_pinned = false; 9725 } 9726 out_fail: 9727 /* 9728 * If we have pinned a log and an error happened, we unpin tasks 9729 * trying to sync the log and force them to fallback to a transaction 9730 * commit if the log currently contains any of the inodes involved in 9731 * this rename operation (to ensure we do not persist a log with an 9732 * inconsistent state for any of these inodes or leading to any 9733 * inconsistencies when replayed). If the transaction was aborted, the 9734 * abortion reason is propagated to userspace when attempting to commit 9735 * the transaction. If the log does not contain any of these inodes, we 9736 * allow the tasks to sync it. 9737 */ 9738 if (ret && (root_log_pinned || dest_log_pinned)) { 9739 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) || 9740 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) || 9741 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) || 9742 (new_inode && 9743 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation))) 9744 btrfs_set_log_full_commit(fs_info, trans); 9745 9746 if (root_log_pinned) { 9747 btrfs_end_log_trans(root); 9748 root_log_pinned = false; 9749 } 9750 if (dest_log_pinned) { 9751 btrfs_end_log_trans(dest); 9752 dest_log_pinned = false; 9753 } 9754 } 9755 ret = btrfs_end_transaction(trans); 9756 out_notrans: 9757 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) 9758 up_read(&fs_info->subvol_sem); 9759 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 9760 up_read(&fs_info->subvol_sem); 9761 9762 return ret; 9763 } 9764 9765 static int btrfs_whiteout_for_rename(struct btrfs_trans_handle *trans, 9766 struct btrfs_root *root, 9767 struct inode *dir, 9768 struct dentry *dentry) 9769 { 9770 int ret; 9771 struct inode *inode; 9772 u64 objectid; 9773 u64 index; 9774 9775 ret = btrfs_find_free_ino(root, &objectid); 9776 if (ret) 9777 return ret; 9778 9779 inode = btrfs_new_inode(trans, root, dir, 9780 dentry->d_name.name, 9781 dentry->d_name.len, 9782 btrfs_ino(BTRFS_I(dir)), 9783 objectid, 9784 S_IFCHR | WHITEOUT_MODE, 9785 &index); 9786 9787 if (IS_ERR(inode)) { 9788 ret = PTR_ERR(inode); 9789 return ret; 9790 } 9791 9792 inode->i_op = &btrfs_special_inode_operations; 9793 init_special_inode(inode, inode->i_mode, 9794 WHITEOUT_DEV); 9795 9796 ret = btrfs_init_inode_security(trans, inode, dir, 9797 &dentry->d_name); 9798 if (ret) 9799 goto out; 9800 9801 ret = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, 9802 BTRFS_I(inode), 0, index); 9803 if (ret) 9804 goto out; 9805 9806 ret = btrfs_update_inode(trans, root, inode); 9807 out: 9808 unlock_new_inode(inode); 9809 if (ret) 9810 inode_dec_link_count(inode); 9811 iput(inode); 9812 9813 return ret; 9814 } 9815 9816 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry, 9817 struct inode *new_dir, struct dentry *new_dentry, 9818 unsigned int flags) 9819 { 9820 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb); 9821 struct btrfs_trans_handle *trans; 9822 unsigned int trans_num_items; 9823 struct btrfs_root *root = BTRFS_I(old_dir)->root; 9824 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 9825 struct inode *new_inode = d_inode(new_dentry); 9826 struct inode *old_inode = d_inode(old_dentry); 9827 u64 index = 0; 9828 u64 root_objectid; 9829 int ret; 9830 u64 old_ino = btrfs_ino(BTRFS_I(old_inode)); 9831 bool log_pinned = false; 9832 9833 if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 9834 return -EPERM; 9835 9836 /* we only allow rename subvolume link between subvolumes */ 9837 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest) 9838 return -EXDEV; 9839 9840 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID || 9841 (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID)) 9842 return -ENOTEMPTY; 9843 9844 if (S_ISDIR(old_inode->i_mode) && new_inode && 9845 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) 9846 return -ENOTEMPTY; 9847 9848 9849 /* check for collisions, even if the name isn't there */ 9850 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino, 9851 new_dentry->d_name.name, 9852 new_dentry->d_name.len); 9853 9854 if (ret) { 9855 if (ret == -EEXIST) { 9856 /* we shouldn't get 9857 * eexist without a new_inode */ 9858 if (WARN_ON(!new_inode)) { 9859 return ret; 9860 } 9861 } else { 9862 /* maybe -EOVERFLOW */ 9863 return ret; 9864 } 9865 } 9866 ret = 0; 9867 9868 /* 9869 * we're using rename to replace one file with another. Start IO on it 9870 * now so we don't add too much work to the end of the transaction 9871 */ 9872 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size) 9873 filemap_flush(old_inode->i_mapping); 9874 9875 /* close the racy window with snapshot create/destroy ioctl */ 9876 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 9877 down_read(&fs_info->subvol_sem); 9878 /* 9879 * We want to reserve the absolute worst case amount of items. So if 9880 * both inodes are subvols and we need to unlink them then that would 9881 * require 4 item modifications, but if they are both normal inodes it 9882 * would require 5 item modifications, so we'll assume they are normal 9883 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items 9884 * should cover the worst case number of items we'll modify. 9885 * If our rename has the whiteout flag, we need more 5 units for the 9886 * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item 9887 * when selinux is enabled). 9888 */ 9889 trans_num_items = 11; 9890 if (flags & RENAME_WHITEOUT) 9891 trans_num_items += 5; 9892 trans = btrfs_start_transaction(root, trans_num_items); 9893 if (IS_ERR(trans)) { 9894 ret = PTR_ERR(trans); 9895 goto out_notrans; 9896 } 9897 9898 if (dest != root) 9899 btrfs_record_root_in_trans(trans, dest); 9900 9901 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index); 9902 if (ret) 9903 goto out_fail; 9904 9905 BTRFS_I(old_inode)->dir_index = 0ULL; 9906 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 9907 /* force full log commit if subvolume involved. */ 9908 btrfs_set_log_full_commit(fs_info, trans); 9909 } else { 9910 btrfs_pin_log_trans(root); 9911 log_pinned = true; 9912 ret = btrfs_insert_inode_ref(trans, dest, 9913 new_dentry->d_name.name, 9914 new_dentry->d_name.len, 9915 old_ino, 9916 btrfs_ino(BTRFS_I(new_dir)), index); 9917 if (ret) 9918 goto out_fail; 9919 } 9920 9921 inode_inc_iversion(old_dir); 9922 inode_inc_iversion(new_dir); 9923 inode_inc_iversion(old_inode); 9924 old_dir->i_ctime = old_dir->i_mtime = 9925 new_dir->i_ctime = new_dir->i_mtime = 9926 old_inode->i_ctime = current_time(old_dir); 9927 9928 if (old_dentry->d_parent != new_dentry->d_parent) 9929 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir), 9930 BTRFS_I(old_inode), 1); 9931 9932 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 9933 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid; 9934 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid, 9935 old_dentry->d_name.name, 9936 old_dentry->d_name.len); 9937 } else { 9938 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir), 9939 BTRFS_I(d_inode(old_dentry)), 9940 old_dentry->d_name.name, 9941 old_dentry->d_name.len); 9942 if (!ret) 9943 ret = btrfs_update_inode(trans, root, old_inode); 9944 } 9945 if (ret) { 9946 btrfs_abort_transaction(trans, ret); 9947 goto out_fail; 9948 } 9949 9950 if (new_inode) { 9951 inode_inc_iversion(new_inode); 9952 new_inode->i_ctime = current_time(new_inode); 9953 if (unlikely(btrfs_ino(BTRFS_I(new_inode)) == 9954 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 9955 root_objectid = BTRFS_I(new_inode)->location.objectid; 9956 ret = btrfs_unlink_subvol(trans, dest, new_dir, 9957 root_objectid, 9958 new_dentry->d_name.name, 9959 new_dentry->d_name.len); 9960 BUG_ON(new_inode->i_nlink == 0); 9961 } else { 9962 ret = btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir), 9963 BTRFS_I(d_inode(new_dentry)), 9964 new_dentry->d_name.name, 9965 new_dentry->d_name.len); 9966 } 9967 if (!ret && new_inode->i_nlink == 0) 9968 ret = btrfs_orphan_add(trans, 9969 BTRFS_I(d_inode(new_dentry))); 9970 if (ret) { 9971 btrfs_abort_transaction(trans, ret); 9972 goto out_fail; 9973 } 9974 } 9975 9976 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode), 9977 new_dentry->d_name.name, 9978 new_dentry->d_name.len, 0, index); 9979 if (ret) { 9980 btrfs_abort_transaction(trans, ret); 9981 goto out_fail; 9982 } 9983 9984 if (old_inode->i_nlink == 1) 9985 BTRFS_I(old_inode)->dir_index = index; 9986 9987 if (log_pinned) { 9988 struct dentry *parent = new_dentry->d_parent; 9989 9990 btrfs_log_new_name(trans, BTRFS_I(old_inode), BTRFS_I(old_dir), 9991 parent); 9992 btrfs_end_log_trans(root); 9993 log_pinned = false; 9994 } 9995 9996 if (flags & RENAME_WHITEOUT) { 9997 ret = btrfs_whiteout_for_rename(trans, root, old_dir, 9998 old_dentry); 9999 10000 if (ret) { 10001 btrfs_abort_transaction(trans, ret); 10002 goto out_fail; 10003 } 10004 } 10005 out_fail: 10006 /* 10007 * If we have pinned the log and an error happened, we unpin tasks 10008 * trying to sync the log and force them to fallback to a transaction 10009 * commit if the log currently contains any of the inodes involved in 10010 * this rename operation (to ensure we do not persist a log with an 10011 * inconsistent state for any of these inodes or leading to any 10012 * inconsistencies when replayed). If the transaction was aborted, the 10013 * abortion reason is propagated to userspace when attempting to commit 10014 * the transaction. If the log does not contain any of these inodes, we 10015 * allow the tasks to sync it. 10016 */ 10017 if (ret && log_pinned) { 10018 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) || 10019 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) || 10020 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) || 10021 (new_inode && 10022 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation))) 10023 btrfs_set_log_full_commit(fs_info, trans); 10024 10025 btrfs_end_log_trans(root); 10026 log_pinned = false; 10027 } 10028 btrfs_end_transaction(trans); 10029 out_notrans: 10030 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 10031 up_read(&fs_info->subvol_sem); 10032 10033 return ret; 10034 } 10035 10036 static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry, 10037 struct inode *new_dir, struct dentry *new_dentry, 10038 unsigned int flags) 10039 { 10040 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 10041 return -EINVAL; 10042 10043 if (flags & RENAME_EXCHANGE) 10044 return btrfs_rename_exchange(old_dir, old_dentry, new_dir, 10045 new_dentry); 10046 10047 return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry, flags); 10048 } 10049 10050 static void btrfs_run_delalloc_work(struct btrfs_work *work) 10051 { 10052 struct btrfs_delalloc_work *delalloc_work; 10053 struct inode *inode; 10054 10055 delalloc_work = container_of(work, struct btrfs_delalloc_work, 10056 work); 10057 inode = delalloc_work->inode; 10058 filemap_flush(inode->i_mapping); 10059 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 10060 &BTRFS_I(inode)->runtime_flags)) 10061 filemap_flush(inode->i_mapping); 10062 10063 if (delalloc_work->delay_iput) 10064 btrfs_add_delayed_iput(inode); 10065 else 10066 iput(inode); 10067 complete(&delalloc_work->completion); 10068 } 10069 10070 struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode, 10071 int delay_iput) 10072 { 10073 struct btrfs_delalloc_work *work; 10074 10075 work = kmalloc(sizeof(*work), GFP_NOFS); 10076 if (!work) 10077 return NULL; 10078 10079 init_completion(&work->completion); 10080 INIT_LIST_HEAD(&work->list); 10081 work->inode = inode; 10082 work->delay_iput = delay_iput; 10083 WARN_ON_ONCE(!inode); 10084 btrfs_init_work(&work->work, btrfs_flush_delalloc_helper, 10085 btrfs_run_delalloc_work, NULL, NULL); 10086 10087 return work; 10088 } 10089 10090 void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work) 10091 { 10092 wait_for_completion(&work->completion); 10093 kfree(work); 10094 } 10095 10096 /* 10097 * some fairly slow code that needs optimization. This walks the list 10098 * of all the inodes with pending delalloc and forces them to disk. 10099 */ 10100 static int __start_delalloc_inodes(struct btrfs_root *root, int delay_iput, 10101 int nr) 10102 { 10103 struct btrfs_inode *binode; 10104 struct inode *inode; 10105 struct btrfs_delalloc_work *work, *next; 10106 struct list_head works; 10107 struct list_head splice; 10108 int ret = 0; 10109 10110 INIT_LIST_HEAD(&works); 10111 INIT_LIST_HEAD(&splice); 10112 10113 mutex_lock(&root->delalloc_mutex); 10114 spin_lock(&root->delalloc_lock); 10115 list_splice_init(&root->delalloc_inodes, &splice); 10116 while (!list_empty(&splice)) { 10117 binode = list_entry(splice.next, struct btrfs_inode, 10118 delalloc_inodes); 10119 10120 list_move_tail(&binode->delalloc_inodes, 10121 &root->delalloc_inodes); 10122 inode = igrab(&binode->vfs_inode); 10123 if (!inode) { 10124 cond_resched_lock(&root->delalloc_lock); 10125 continue; 10126 } 10127 spin_unlock(&root->delalloc_lock); 10128 10129 work = btrfs_alloc_delalloc_work(inode, delay_iput); 10130 if (!work) { 10131 if (delay_iput) 10132 btrfs_add_delayed_iput(inode); 10133 else 10134 iput(inode); 10135 ret = -ENOMEM; 10136 goto out; 10137 } 10138 list_add_tail(&work->list, &works); 10139 btrfs_queue_work(root->fs_info->flush_workers, 10140 &work->work); 10141 ret++; 10142 if (nr != -1 && ret >= nr) 10143 goto out; 10144 cond_resched(); 10145 spin_lock(&root->delalloc_lock); 10146 } 10147 spin_unlock(&root->delalloc_lock); 10148 10149 out: 10150 list_for_each_entry_safe(work, next, &works, list) { 10151 list_del_init(&work->list); 10152 btrfs_wait_and_free_delalloc_work(work); 10153 } 10154 10155 if (!list_empty_careful(&splice)) { 10156 spin_lock(&root->delalloc_lock); 10157 list_splice_tail(&splice, &root->delalloc_inodes); 10158 spin_unlock(&root->delalloc_lock); 10159 } 10160 mutex_unlock(&root->delalloc_mutex); 10161 return ret; 10162 } 10163 10164 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput) 10165 { 10166 struct btrfs_fs_info *fs_info = root->fs_info; 10167 int ret; 10168 10169 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 10170 return -EROFS; 10171 10172 ret = __start_delalloc_inodes(root, delay_iput, -1); 10173 if (ret > 0) 10174 ret = 0; 10175 return ret; 10176 } 10177 10178 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int delay_iput, 10179 int nr) 10180 { 10181 struct btrfs_root *root; 10182 struct list_head splice; 10183 int ret; 10184 10185 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 10186 return -EROFS; 10187 10188 INIT_LIST_HEAD(&splice); 10189 10190 mutex_lock(&fs_info->delalloc_root_mutex); 10191 spin_lock(&fs_info->delalloc_root_lock); 10192 list_splice_init(&fs_info->delalloc_roots, &splice); 10193 while (!list_empty(&splice) && nr) { 10194 root = list_first_entry(&splice, struct btrfs_root, 10195 delalloc_root); 10196 root = btrfs_grab_fs_root(root); 10197 BUG_ON(!root); 10198 list_move_tail(&root->delalloc_root, 10199 &fs_info->delalloc_roots); 10200 spin_unlock(&fs_info->delalloc_root_lock); 10201 10202 ret = __start_delalloc_inodes(root, delay_iput, nr); 10203 btrfs_put_fs_root(root); 10204 if (ret < 0) 10205 goto out; 10206 10207 if (nr != -1) { 10208 nr -= ret; 10209 WARN_ON(nr < 0); 10210 } 10211 spin_lock(&fs_info->delalloc_root_lock); 10212 } 10213 spin_unlock(&fs_info->delalloc_root_lock); 10214 10215 ret = 0; 10216 out: 10217 if (!list_empty_careful(&splice)) { 10218 spin_lock(&fs_info->delalloc_root_lock); 10219 list_splice_tail(&splice, &fs_info->delalloc_roots); 10220 spin_unlock(&fs_info->delalloc_root_lock); 10221 } 10222 mutex_unlock(&fs_info->delalloc_root_mutex); 10223 return ret; 10224 } 10225 10226 static int btrfs_symlink(struct inode *dir, struct dentry *dentry, 10227 const char *symname) 10228 { 10229 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 10230 struct btrfs_trans_handle *trans; 10231 struct btrfs_root *root = BTRFS_I(dir)->root; 10232 struct btrfs_path *path; 10233 struct btrfs_key key; 10234 struct inode *inode = NULL; 10235 int err; 10236 int drop_inode = 0; 10237 u64 objectid; 10238 u64 index = 0; 10239 int name_len; 10240 int datasize; 10241 unsigned long ptr; 10242 struct btrfs_file_extent_item *ei; 10243 struct extent_buffer *leaf; 10244 10245 name_len = strlen(symname); 10246 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info)) 10247 return -ENAMETOOLONG; 10248 10249 /* 10250 * 2 items for inode item and ref 10251 * 2 items for dir items 10252 * 1 item for updating parent inode item 10253 * 1 item for the inline extent item 10254 * 1 item for xattr if selinux is on 10255 */ 10256 trans = btrfs_start_transaction(root, 7); 10257 if (IS_ERR(trans)) 10258 return PTR_ERR(trans); 10259 10260 err = btrfs_find_free_ino(root, &objectid); 10261 if (err) 10262 goto out_unlock; 10263 10264 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 10265 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), 10266 objectid, S_IFLNK|S_IRWXUGO, &index); 10267 if (IS_ERR(inode)) { 10268 err = PTR_ERR(inode); 10269 goto out_unlock; 10270 } 10271 10272 /* 10273 * If the active LSM wants to access the inode during 10274 * d_instantiate it needs these. Smack checks to see 10275 * if the filesystem supports xattrs by looking at the 10276 * ops vector. 10277 */ 10278 inode->i_fop = &btrfs_file_operations; 10279 inode->i_op = &btrfs_file_inode_operations; 10280 inode->i_mapping->a_ops = &btrfs_aops; 10281 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 10282 10283 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 10284 if (err) 10285 goto out_unlock_inode; 10286 10287 path = btrfs_alloc_path(); 10288 if (!path) { 10289 err = -ENOMEM; 10290 goto out_unlock_inode; 10291 } 10292 key.objectid = btrfs_ino(BTRFS_I(inode)); 10293 key.offset = 0; 10294 key.type = BTRFS_EXTENT_DATA_KEY; 10295 datasize = btrfs_file_extent_calc_inline_size(name_len); 10296 err = btrfs_insert_empty_item(trans, root, path, &key, 10297 datasize); 10298 if (err) { 10299 btrfs_free_path(path); 10300 goto out_unlock_inode; 10301 } 10302 leaf = path->nodes[0]; 10303 ei = btrfs_item_ptr(leaf, path->slots[0], 10304 struct btrfs_file_extent_item); 10305 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 10306 btrfs_set_file_extent_type(leaf, ei, 10307 BTRFS_FILE_EXTENT_INLINE); 10308 btrfs_set_file_extent_encryption(leaf, ei, 0); 10309 btrfs_set_file_extent_compression(leaf, ei, 0); 10310 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 10311 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len); 10312 10313 ptr = btrfs_file_extent_inline_start(ei); 10314 write_extent_buffer(leaf, symname, ptr, name_len); 10315 btrfs_mark_buffer_dirty(leaf); 10316 btrfs_free_path(path); 10317 10318 inode->i_op = &btrfs_symlink_inode_operations; 10319 inode_nohighmem(inode); 10320 inode->i_mapping->a_ops = &btrfs_symlink_aops; 10321 inode_set_bytes(inode, name_len); 10322 btrfs_i_size_write(BTRFS_I(inode), name_len); 10323 err = btrfs_update_inode(trans, root, inode); 10324 /* 10325 * Last step, add directory indexes for our symlink inode. This is the 10326 * last step to avoid extra cleanup of these indexes if an error happens 10327 * elsewhere above. 10328 */ 10329 if (!err) 10330 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, 10331 BTRFS_I(inode), 0, index); 10332 if (err) { 10333 drop_inode = 1; 10334 goto out_unlock_inode; 10335 } 10336 10337 unlock_new_inode(inode); 10338 d_instantiate(dentry, inode); 10339 10340 out_unlock: 10341 btrfs_end_transaction(trans); 10342 if (drop_inode) { 10343 inode_dec_link_count(inode); 10344 iput(inode); 10345 } 10346 btrfs_btree_balance_dirty(fs_info); 10347 return err; 10348 10349 out_unlock_inode: 10350 drop_inode = 1; 10351 unlock_new_inode(inode); 10352 goto out_unlock; 10353 } 10354 10355 static int __btrfs_prealloc_file_range(struct inode *inode, int mode, 10356 u64 start, u64 num_bytes, u64 min_size, 10357 loff_t actual_len, u64 *alloc_hint, 10358 struct btrfs_trans_handle *trans) 10359 { 10360 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 10361 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 10362 struct extent_map *em; 10363 struct btrfs_root *root = BTRFS_I(inode)->root; 10364 struct btrfs_key ins; 10365 u64 cur_offset = start; 10366 u64 i_size; 10367 u64 cur_bytes; 10368 u64 last_alloc = (u64)-1; 10369 int ret = 0; 10370 bool own_trans = true; 10371 u64 end = start + num_bytes - 1; 10372 10373 if (trans) 10374 own_trans = false; 10375 while (num_bytes > 0) { 10376 if (own_trans) { 10377 trans = btrfs_start_transaction(root, 3); 10378 if (IS_ERR(trans)) { 10379 ret = PTR_ERR(trans); 10380 break; 10381 } 10382 } 10383 10384 cur_bytes = min_t(u64, num_bytes, SZ_256M); 10385 cur_bytes = max(cur_bytes, min_size); 10386 /* 10387 * If we are severely fragmented we could end up with really 10388 * small allocations, so if the allocator is returning small 10389 * chunks lets make its job easier by only searching for those 10390 * sized chunks. 10391 */ 10392 cur_bytes = min(cur_bytes, last_alloc); 10393 ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes, 10394 min_size, 0, *alloc_hint, &ins, 1, 0); 10395 if (ret) { 10396 if (own_trans) 10397 btrfs_end_transaction(trans); 10398 break; 10399 } 10400 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 10401 10402 last_alloc = ins.offset; 10403 ret = insert_reserved_file_extent(trans, inode, 10404 cur_offset, ins.objectid, 10405 ins.offset, ins.offset, 10406 ins.offset, 0, 0, 0, 10407 BTRFS_FILE_EXTENT_PREALLOC); 10408 if (ret) { 10409 btrfs_free_reserved_extent(fs_info, ins.objectid, 10410 ins.offset, 0); 10411 btrfs_abort_transaction(trans, ret); 10412 if (own_trans) 10413 btrfs_end_transaction(trans); 10414 break; 10415 } 10416 10417 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset, 10418 cur_offset + ins.offset -1, 0); 10419 10420 em = alloc_extent_map(); 10421 if (!em) { 10422 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 10423 &BTRFS_I(inode)->runtime_flags); 10424 goto next; 10425 } 10426 10427 em->start = cur_offset; 10428 em->orig_start = cur_offset; 10429 em->len = ins.offset; 10430 em->block_start = ins.objectid; 10431 em->block_len = ins.offset; 10432 em->orig_block_len = ins.offset; 10433 em->ram_bytes = ins.offset; 10434 em->bdev = fs_info->fs_devices->latest_bdev; 10435 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 10436 em->generation = trans->transid; 10437 10438 while (1) { 10439 write_lock(&em_tree->lock); 10440 ret = add_extent_mapping(em_tree, em, 1); 10441 write_unlock(&em_tree->lock); 10442 if (ret != -EEXIST) 10443 break; 10444 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset, 10445 cur_offset + ins.offset - 1, 10446 0); 10447 } 10448 free_extent_map(em); 10449 next: 10450 num_bytes -= ins.offset; 10451 cur_offset += ins.offset; 10452 *alloc_hint = ins.objectid + ins.offset; 10453 10454 inode_inc_iversion(inode); 10455 inode->i_ctime = current_time(inode); 10456 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC; 10457 if (!(mode & FALLOC_FL_KEEP_SIZE) && 10458 (actual_len > inode->i_size) && 10459 (cur_offset > inode->i_size)) { 10460 if (cur_offset > actual_len) 10461 i_size = actual_len; 10462 else 10463 i_size = cur_offset; 10464 i_size_write(inode, i_size); 10465 btrfs_ordered_update_i_size(inode, i_size, NULL); 10466 } 10467 10468 ret = btrfs_update_inode(trans, root, inode); 10469 10470 if (ret) { 10471 btrfs_abort_transaction(trans, ret); 10472 if (own_trans) 10473 btrfs_end_transaction(trans); 10474 break; 10475 } 10476 10477 if (own_trans) 10478 btrfs_end_transaction(trans); 10479 } 10480 if (cur_offset < end) 10481 btrfs_free_reserved_data_space(inode, NULL, cur_offset, 10482 end - cur_offset + 1); 10483 return ret; 10484 } 10485 10486 int btrfs_prealloc_file_range(struct inode *inode, int mode, 10487 u64 start, u64 num_bytes, u64 min_size, 10488 loff_t actual_len, u64 *alloc_hint) 10489 { 10490 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 10491 min_size, actual_len, alloc_hint, 10492 NULL); 10493 } 10494 10495 int btrfs_prealloc_file_range_trans(struct inode *inode, 10496 struct btrfs_trans_handle *trans, int mode, 10497 u64 start, u64 num_bytes, u64 min_size, 10498 loff_t actual_len, u64 *alloc_hint) 10499 { 10500 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 10501 min_size, actual_len, alloc_hint, trans); 10502 } 10503 10504 static int btrfs_set_page_dirty(struct page *page) 10505 { 10506 return __set_page_dirty_nobuffers(page); 10507 } 10508 10509 static int btrfs_permission(struct inode *inode, int mask) 10510 { 10511 struct btrfs_root *root = BTRFS_I(inode)->root; 10512 umode_t mode = inode->i_mode; 10513 10514 if (mask & MAY_WRITE && 10515 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) { 10516 if (btrfs_root_readonly(root)) 10517 return -EROFS; 10518 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) 10519 return -EACCES; 10520 } 10521 return generic_permission(inode, mask); 10522 } 10523 10524 static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode) 10525 { 10526 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 10527 struct btrfs_trans_handle *trans; 10528 struct btrfs_root *root = BTRFS_I(dir)->root; 10529 struct inode *inode = NULL; 10530 u64 objectid; 10531 u64 index; 10532 int ret = 0; 10533 10534 /* 10535 * 5 units required for adding orphan entry 10536 */ 10537 trans = btrfs_start_transaction(root, 5); 10538 if (IS_ERR(trans)) 10539 return PTR_ERR(trans); 10540 10541 ret = btrfs_find_free_ino(root, &objectid); 10542 if (ret) 10543 goto out; 10544 10545 inode = btrfs_new_inode(trans, root, dir, NULL, 0, 10546 btrfs_ino(BTRFS_I(dir)), objectid, mode, &index); 10547 if (IS_ERR(inode)) { 10548 ret = PTR_ERR(inode); 10549 inode = NULL; 10550 goto out; 10551 } 10552 10553 inode->i_fop = &btrfs_file_operations; 10554 inode->i_op = &btrfs_file_inode_operations; 10555 10556 inode->i_mapping->a_ops = &btrfs_aops; 10557 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 10558 10559 ret = btrfs_init_inode_security(trans, inode, dir, NULL); 10560 if (ret) 10561 goto out_inode; 10562 10563 ret = btrfs_update_inode(trans, root, inode); 10564 if (ret) 10565 goto out_inode; 10566 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 10567 if (ret) 10568 goto out_inode; 10569 10570 /* 10571 * We set number of links to 0 in btrfs_new_inode(), and here we set 10572 * it to 1 because d_tmpfile() will issue a warning if the count is 0, 10573 * through: 10574 * 10575 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink() 10576 */ 10577 set_nlink(inode, 1); 10578 unlock_new_inode(inode); 10579 d_tmpfile(dentry, inode); 10580 mark_inode_dirty(inode); 10581 10582 out: 10583 btrfs_end_transaction(trans); 10584 if (ret) 10585 iput(inode); 10586 btrfs_btree_balance_dirty(fs_info); 10587 return ret; 10588 10589 out_inode: 10590 unlock_new_inode(inode); 10591 goto out; 10592 10593 } 10594 10595 __attribute__((const)) 10596 static int btrfs_readpage_io_failed_hook(struct page *page, int failed_mirror) 10597 { 10598 return -EAGAIN; 10599 } 10600 10601 static struct btrfs_fs_info *iotree_fs_info(void *private_data) 10602 { 10603 struct inode *inode = private_data; 10604 return btrfs_sb(inode->i_sb); 10605 } 10606 10607 static void btrfs_check_extent_io_range(void *private_data, const char *caller, 10608 u64 start, u64 end) 10609 { 10610 struct inode *inode = private_data; 10611 u64 isize; 10612 10613 isize = i_size_read(inode); 10614 if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) { 10615 btrfs_debug_rl(BTRFS_I(inode)->root->fs_info, 10616 "%s: ino %llu isize %llu odd range [%llu,%llu]", 10617 caller, btrfs_ino(BTRFS_I(inode)), isize, start, end); 10618 } 10619 } 10620 10621 void btrfs_set_range_writeback(void *private_data, u64 start, u64 end) 10622 { 10623 struct inode *inode = private_data; 10624 unsigned long index = start >> PAGE_SHIFT; 10625 unsigned long end_index = end >> PAGE_SHIFT; 10626 struct page *page; 10627 10628 while (index <= end_index) { 10629 page = find_get_page(inode->i_mapping, index); 10630 ASSERT(page); /* Pages should be in the extent_io_tree */ 10631 set_page_writeback(page); 10632 put_page(page); 10633 index++; 10634 } 10635 } 10636 10637 static const struct inode_operations btrfs_dir_inode_operations = { 10638 .getattr = btrfs_getattr, 10639 .lookup = btrfs_lookup, 10640 .create = btrfs_create, 10641 .unlink = btrfs_unlink, 10642 .link = btrfs_link, 10643 .mkdir = btrfs_mkdir, 10644 .rmdir = btrfs_rmdir, 10645 .rename = btrfs_rename2, 10646 .symlink = btrfs_symlink, 10647 .setattr = btrfs_setattr, 10648 .mknod = btrfs_mknod, 10649 .listxattr = btrfs_listxattr, 10650 .permission = btrfs_permission, 10651 .get_acl = btrfs_get_acl, 10652 .set_acl = btrfs_set_acl, 10653 .update_time = btrfs_update_time, 10654 .tmpfile = btrfs_tmpfile, 10655 }; 10656 static const struct inode_operations btrfs_dir_ro_inode_operations = { 10657 .lookup = btrfs_lookup, 10658 .permission = btrfs_permission, 10659 .update_time = btrfs_update_time, 10660 }; 10661 10662 static const struct file_operations btrfs_dir_file_operations = { 10663 .llseek = generic_file_llseek, 10664 .read = generic_read_dir, 10665 .iterate_shared = btrfs_real_readdir, 10666 .open = btrfs_opendir, 10667 .unlocked_ioctl = btrfs_ioctl, 10668 #ifdef CONFIG_COMPAT 10669 .compat_ioctl = btrfs_compat_ioctl, 10670 #endif 10671 .release = btrfs_release_file, 10672 .fsync = btrfs_sync_file, 10673 }; 10674 10675 static const struct extent_io_ops btrfs_extent_io_ops = { 10676 /* mandatory callbacks */ 10677 .submit_bio_hook = btrfs_submit_bio_hook, 10678 .readpage_end_io_hook = btrfs_readpage_end_io_hook, 10679 .merge_bio_hook = btrfs_merge_bio_hook, 10680 .readpage_io_failed_hook = btrfs_readpage_io_failed_hook, 10681 .tree_fs_info = iotree_fs_info, 10682 .set_range_writeback = btrfs_set_range_writeback, 10683 10684 /* optional callbacks */ 10685 .fill_delalloc = run_delalloc_range, 10686 .writepage_end_io_hook = btrfs_writepage_end_io_hook, 10687 .writepage_start_hook = btrfs_writepage_start_hook, 10688 .set_bit_hook = btrfs_set_bit_hook, 10689 .clear_bit_hook = btrfs_clear_bit_hook, 10690 .merge_extent_hook = btrfs_merge_extent_hook, 10691 .split_extent_hook = btrfs_split_extent_hook, 10692 .check_extent_io_range = btrfs_check_extent_io_range, 10693 }; 10694 10695 /* 10696 * btrfs doesn't support the bmap operation because swapfiles 10697 * use bmap to make a mapping of extents in the file. They assume 10698 * these extents won't change over the life of the file and they 10699 * use the bmap result to do IO directly to the drive. 10700 * 10701 * the btrfs bmap call would return logical addresses that aren't 10702 * suitable for IO and they also will change frequently as COW 10703 * operations happen. So, swapfile + btrfs == corruption. 10704 * 10705 * For now we're avoiding this by dropping bmap. 10706 */ 10707 static const struct address_space_operations btrfs_aops = { 10708 .readpage = btrfs_readpage, 10709 .writepage = btrfs_writepage, 10710 .writepages = btrfs_writepages, 10711 .readpages = btrfs_readpages, 10712 .direct_IO = btrfs_direct_IO, 10713 .invalidatepage = btrfs_invalidatepage, 10714 .releasepage = btrfs_releasepage, 10715 .set_page_dirty = btrfs_set_page_dirty, 10716 .error_remove_page = generic_error_remove_page, 10717 }; 10718 10719 static const struct address_space_operations btrfs_symlink_aops = { 10720 .readpage = btrfs_readpage, 10721 .writepage = btrfs_writepage, 10722 .invalidatepage = btrfs_invalidatepage, 10723 .releasepage = btrfs_releasepage, 10724 }; 10725 10726 static const struct inode_operations btrfs_file_inode_operations = { 10727 .getattr = btrfs_getattr, 10728 .setattr = btrfs_setattr, 10729 .listxattr = btrfs_listxattr, 10730 .permission = btrfs_permission, 10731 .fiemap = btrfs_fiemap, 10732 .get_acl = btrfs_get_acl, 10733 .set_acl = btrfs_set_acl, 10734 .update_time = btrfs_update_time, 10735 }; 10736 static const struct inode_operations btrfs_special_inode_operations = { 10737 .getattr = btrfs_getattr, 10738 .setattr = btrfs_setattr, 10739 .permission = btrfs_permission, 10740 .listxattr = btrfs_listxattr, 10741 .get_acl = btrfs_get_acl, 10742 .set_acl = btrfs_set_acl, 10743 .update_time = btrfs_update_time, 10744 }; 10745 static const struct inode_operations btrfs_symlink_inode_operations = { 10746 .get_link = page_get_link, 10747 .getattr = btrfs_getattr, 10748 .setattr = btrfs_setattr, 10749 .permission = btrfs_permission, 10750 .listxattr = btrfs_listxattr, 10751 .update_time = btrfs_update_time, 10752 }; 10753 10754 const struct dentry_operations btrfs_dentry_operations = { 10755 .d_delete = btrfs_dentry_delete, 10756 .d_release = btrfs_dentry_release, 10757 }; 10758