xref: /openbmc/linux/fs/btrfs/inode.c (revision e2afb7de)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/statfs.h>
34 #include <linux/compat.h>
35 #include <linux/aio.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/xattr.h>
38 #include <linux/posix_acl.h>
39 #include <linux/falloc.h>
40 #include <linux/slab.h>
41 #include <linux/ratelimit.h>
42 #include <linux/mount.h>
43 #include <linux/btrfs.h>
44 #include <linux/blkdev.h>
45 #include <linux/posix_acl_xattr.h>
46 #include "ctree.h"
47 #include "disk-io.h"
48 #include "transaction.h"
49 #include "btrfs_inode.h"
50 #include "print-tree.h"
51 #include "ordered-data.h"
52 #include "xattr.h"
53 #include "tree-log.h"
54 #include "volumes.h"
55 #include "compression.h"
56 #include "locking.h"
57 #include "free-space-cache.h"
58 #include "inode-map.h"
59 #include "backref.h"
60 #include "hash.h"
61 #include "props.h"
62 
63 struct btrfs_iget_args {
64 	struct btrfs_key *location;
65 	struct btrfs_root *root;
66 };
67 
68 static const struct inode_operations btrfs_dir_inode_operations;
69 static const struct inode_operations btrfs_symlink_inode_operations;
70 static const struct inode_operations btrfs_dir_ro_inode_operations;
71 static const struct inode_operations btrfs_special_inode_operations;
72 static const struct inode_operations btrfs_file_inode_operations;
73 static const struct address_space_operations btrfs_aops;
74 static const struct address_space_operations btrfs_symlink_aops;
75 static const struct file_operations btrfs_dir_file_operations;
76 static struct extent_io_ops btrfs_extent_io_ops;
77 
78 static struct kmem_cache *btrfs_inode_cachep;
79 static struct kmem_cache *btrfs_delalloc_work_cachep;
80 struct kmem_cache *btrfs_trans_handle_cachep;
81 struct kmem_cache *btrfs_transaction_cachep;
82 struct kmem_cache *btrfs_path_cachep;
83 struct kmem_cache *btrfs_free_space_cachep;
84 
85 #define S_SHIFT 12
86 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
87 	[S_IFREG >> S_SHIFT]	= BTRFS_FT_REG_FILE,
88 	[S_IFDIR >> S_SHIFT]	= BTRFS_FT_DIR,
89 	[S_IFCHR >> S_SHIFT]	= BTRFS_FT_CHRDEV,
90 	[S_IFBLK >> S_SHIFT]	= BTRFS_FT_BLKDEV,
91 	[S_IFIFO >> S_SHIFT]	= BTRFS_FT_FIFO,
92 	[S_IFSOCK >> S_SHIFT]	= BTRFS_FT_SOCK,
93 	[S_IFLNK >> S_SHIFT]	= BTRFS_FT_SYMLINK,
94 };
95 
96 static int btrfs_setsize(struct inode *inode, struct iattr *attr);
97 static int btrfs_truncate(struct inode *inode);
98 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
99 static noinline int cow_file_range(struct inode *inode,
100 				   struct page *locked_page,
101 				   u64 start, u64 end, int *page_started,
102 				   unsigned long *nr_written, int unlock);
103 static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
104 					   u64 len, u64 orig_start,
105 					   u64 block_start, u64 block_len,
106 					   u64 orig_block_len, u64 ram_bytes,
107 					   int type);
108 
109 static int btrfs_dirty_inode(struct inode *inode);
110 
111 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
112 				     struct inode *inode,  struct inode *dir,
113 				     const struct qstr *qstr)
114 {
115 	int err;
116 
117 	err = btrfs_init_acl(trans, inode, dir);
118 	if (!err)
119 		err = btrfs_xattr_security_init(trans, inode, dir, qstr);
120 	return err;
121 }
122 
123 /*
124  * this does all the hard work for inserting an inline extent into
125  * the btree.  The caller should have done a btrfs_drop_extents so that
126  * no overlapping inline items exist in the btree
127  */
128 static int insert_inline_extent(struct btrfs_trans_handle *trans,
129 				struct btrfs_path *path, int extent_inserted,
130 				struct btrfs_root *root, struct inode *inode,
131 				u64 start, size_t size, size_t compressed_size,
132 				int compress_type,
133 				struct page **compressed_pages)
134 {
135 	struct extent_buffer *leaf;
136 	struct page *page = NULL;
137 	char *kaddr;
138 	unsigned long ptr;
139 	struct btrfs_file_extent_item *ei;
140 	int err = 0;
141 	int ret;
142 	size_t cur_size = size;
143 	unsigned long offset;
144 
145 	if (compressed_size && compressed_pages)
146 		cur_size = compressed_size;
147 
148 	inode_add_bytes(inode, size);
149 
150 	if (!extent_inserted) {
151 		struct btrfs_key key;
152 		size_t datasize;
153 
154 		key.objectid = btrfs_ino(inode);
155 		key.offset = start;
156 		key.type = BTRFS_EXTENT_DATA_KEY;
157 
158 		datasize = btrfs_file_extent_calc_inline_size(cur_size);
159 		path->leave_spinning = 1;
160 		ret = btrfs_insert_empty_item(trans, root, path, &key,
161 					      datasize);
162 		if (ret) {
163 			err = ret;
164 			goto fail;
165 		}
166 	}
167 	leaf = path->nodes[0];
168 	ei = btrfs_item_ptr(leaf, path->slots[0],
169 			    struct btrfs_file_extent_item);
170 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
171 	btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
172 	btrfs_set_file_extent_encryption(leaf, ei, 0);
173 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
174 	btrfs_set_file_extent_ram_bytes(leaf, ei, size);
175 	ptr = btrfs_file_extent_inline_start(ei);
176 
177 	if (compress_type != BTRFS_COMPRESS_NONE) {
178 		struct page *cpage;
179 		int i = 0;
180 		while (compressed_size > 0) {
181 			cpage = compressed_pages[i];
182 			cur_size = min_t(unsigned long, compressed_size,
183 				       PAGE_CACHE_SIZE);
184 
185 			kaddr = kmap_atomic(cpage);
186 			write_extent_buffer(leaf, kaddr, ptr, cur_size);
187 			kunmap_atomic(kaddr);
188 
189 			i++;
190 			ptr += cur_size;
191 			compressed_size -= cur_size;
192 		}
193 		btrfs_set_file_extent_compression(leaf, ei,
194 						  compress_type);
195 	} else {
196 		page = find_get_page(inode->i_mapping,
197 				     start >> PAGE_CACHE_SHIFT);
198 		btrfs_set_file_extent_compression(leaf, ei, 0);
199 		kaddr = kmap_atomic(page);
200 		offset = start & (PAGE_CACHE_SIZE - 1);
201 		write_extent_buffer(leaf, kaddr + offset, ptr, size);
202 		kunmap_atomic(kaddr);
203 		page_cache_release(page);
204 	}
205 	btrfs_mark_buffer_dirty(leaf);
206 	btrfs_release_path(path);
207 
208 	/*
209 	 * we're an inline extent, so nobody can
210 	 * extend the file past i_size without locking
211 	 * a page we already have locked.
212 	 *
213 	 * We must do any isize and inode updates
214 	 * before we unlock the pages.  Otherwise we
215 	 * could end up racing with unlink.
216 	 */
217 	BTRFS_I(inode)->disk_i_size = inode->i_size;
218 	ret = btrfs_update_inode(trans, root, inode);
219 
220 	return ret;
221 fail:
222 	return err;
223 }
224 
225 
226 /*
227  * conditionally insert an inline extent into the file.  This
228  * does the checks required to make sure the data is small enough
229  * to fit as an inline extent.
230  */
231 static noinline int cow_file_range_inline(struct btrfs_root *root,
232 					  struct inode *inode, u64 start,
233 					  u64 end, size_t compressed_size,
234 					  int compress_type,
235 					  struct page **compressed_pages)
236 {
237 	struct btrfs_trans_handle *trans;
238 	u64 isize = i_size_read(inode);
239 	u64 actual_end = min(end + 1, isize);
240 	u64 inline_len = actual_end - start;
241 	u64 aligned_end = ALIGN(end, root->sectorsize);
242 	u64 data_len = inline_len;
243 	int ret;
244 	struct btrfs_path *path;
245 	int extent_inserted = 0;
246 	u32 extent_item_size;
247 
248 	if (compressed_size)
249 		data_len = compressed_size;
250 
251 	if (start > 0 ||
252 	    actual_end > PAGE_CACHE_SIZE ||
253 	    data_len > BTRFS_MAX_INLINE_DATA_SIZE(root) ||
254 	    (!compressed_size &&
255 	    (actual_end & (root->sectorsize - 1)) == 0) ||
256 	    end + 1 < isize ||
257 	    data_len > root->fs_info->max_inline) {
258 		return 1;
259 	}
260 
261 	path = btrfs_alloc_path();
262 	if (!path)
263 		return -ENOMEM;
264 
265 	trans = btrfs_join_transaction(root);
266 	if (IS_ERR(trans)) {
267 		btrfs_free_path(path);
268 		return PTR_ERR(trans);
269 	}
270 	trans->block_rsv = &root->fs_info->delalloc_block_rsv;
271 
272 	if (compressed_size && compressed_pages)
273 		extent_item_size = btrfs_file_extent_calc_inline_size(
274 		   compressed_size);
275 	else
276 		extent_item_size = btrfs_file_extent_calc_inline_size(
277 		    inline_len);
278 
279 	ret = __btrfs_drop_extents(trans, root, inode, path,
280 				   start, aligned_end, NULL,
281 				   1, 1, extent_item_size, &extent_inserted);
282 	if (ret) {
283 		btrfs_abort_transaction(trans, root, ret);
284 		goto out;
285 	}
286 
287 	if (isize > actual_end)
288 		inline_len = min_t(u64, isize, actual_end);
289 	ret = insert_inline_extent(trans, path, extent_inserted,
290 				   root, inode, start,
291 				   inline_len, compressed_size,
292 				   compress_type, compressed_pages);
293 	if (ret && ret != -ENOSPC) {
294 		btrfs_abort_transaction(trans, root, ret);
295 		goto out;
296 	} else if (ret == -ENOSPC) {
297 		ret = 1;
298 		goto out;
299 	}
300 
301 	set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
302 	btrfs_delalloc_release_metadata(inode, end + 1 - start);
303 	btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
304 out:
305 	btrfs_free_path(path);
306 	btrfs_end_transaction(trans, root);
307 	return ret;
308 }
309 
310 struct async_extent {
311 	u64 start;
312 	u64 ram_size;
313 	u64 compressed_size;
314 	struct page **pages;
315 	unsigned long nr_pages;
316 	int compress_type;
317 	struct list_head list;
318 };
319 
320 struct async_cow {
321 	struct inode *inode;
322 	struct btrfs_root *root;
323 	struct page *locked_page;
324 	u64 start;
325 	u64 end;
326 	struct list_head extents;
327 	struct btrfs_work work;
328 };
329 
330 static noinline int add_async_extent(struct async_cow *cow,
331 				     u64 start, u64 ram_size,
332 				     u64 compressed_size,
333 				     struct page **pages,
334 				     unsigned long nr_pages,
335 				     int compress_type)
336 {
337 	struct async_extent *async_extent;
338 
339 	async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
340 	BUG_ON(!async_extent); /* -ENOMEM */
341 	async_extent->start = start;
342 	async_extent->ram_size = ram_size;
343 	async_extent->compressed_size = compressed_size;
344 	async_extent->pages = pages;
345 	async_extent->nr_pages = nr_pages;
346 	async_extent->compress_type = compress_type;
347 	list_add_tail(&async_extent->list, &cow->extents);
348 	return 0;
349 }
350 
351 static inline int inode_need_compress(struct inode *inode)
352 {
353 	struct btrfs_root *root = BTRFS_I(inode)->root;
354 
355 	/* force compress */
356 	if (btrfs_test_opt(root, FORCE_COMPRESS))
357 		return 1;
358 	/* bad compression ratios */
359 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
360 		return 0;
361 	if (btrfs_test_opt(root, COMPRESS) ||
362 	    BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS ||
363 	    BTRFS_I(inode)->force_compress)
364 		return 1;
365 	return 0;
366 }
367 
368 /*
369  * we create compressed extents in two phases.  The first
370  * phase compresses a range of pages that have already been
371  * locked (both pages and state bits are locked).
372  *
373  * This is done inside an ordered work queue, and the compression
374  * is spread across many cpus.  The actual IO submission is step
375  * two, and the ordered work queue takes care of making sure that
376  * happens in the same order things were put onto the queue by
377  * writepages and friends.
378  *
379  * If this code finds it can't get good compression, it puts an
380  * entry onto the work queue to write the uncompressed bytes.  This
381  * makes sure that both compressed inodes and uncompressed inodes
382  * are written in the same order that the flusher thread sent them
383  * down.
384  */
385 static noinline int compress_file_range(struct inode *inode,
386 					struct page *locked_page,
387 					u64 start, u64 end,
388 					struct async_cow *async_cow,
389 					int *num_added)
390 {
391 	struct btrfs_root *root = BTRFS_I(inode)->root;
392 	u64 num_bytes;
393 	u64 blocksize = root->sectorsize;
394 	u64 actual_end;
395 	u64 isize = i_size_read(inode);
396 	int ret = 0;
397 	struct page **pages = NULL;
398 	unsigned long nr_pages;
399 	unsigned long nr_pages_ret = 0;
400 	unsigned long total_compressed = 0;
401 	unsigned long total_in = 0;
402 	unsigned long max_compressed = 128 * 1024;
403 	unsigned long max_uncompressed = 128 * 1024;
404 	int i;
405 	int will_compress;
406 	int compress_type = root->fs_info->compress_type;
407 	int redirty = 0;
408 
409 	/* if this is a small write inside eof, kick off a defrag */
410 	if ((end - start + 1) < 16 * 1024 &&
411 	    (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
412 		btrfs_add_inode_defrag(NULL, inode);
413 
414 	/*
415 	 * skip compression for a small file range(<=blocksize) that
416 	 * isn't an inline extent, since it dosen't save disk space at all.
417 	 */
418 	if ((end - start + 1) <= blocksize &&
419 	    (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
420 		goto cleanup_and_bail_uncompressed;
421 
422 	actual_end = min_t(u64, isize, end + 1);
423 again:
424 	will_compress = 0;
425 	nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
426 	nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
427 
428 	/*
429 	 * we don't want to send crud past the end of i_size through
430 	 * compression, that's just a waste of CPU time.  So, if the
431 	 * end of the file is before the start of our current
432 	 * requested range of bytes, we bail out to the uncompressed
433 	 * cleanup code that can deal with all of this.
434 	 *
435 	 * It isn't really the fastest way to fix things, but this is a
436 	 * very uncommon corner.
437 	 */
438 	if (actual_end <= start)
439 		goto cleanup_and_bail_uncompressed;
440 
441 	total_compressed = actual_end - start;
442 
443 	/* we want to make sure that amount of ram required to uncompress
444 	 * an extent is reasonable, so we limit the total size in ram
445 	 * of a compressed extent to 128k.  This is a crucial number
446 	 * because it also controls how easily we can spread reads across
447 	 * cpus for decompression.
448 	 *
449 	 * We also want to make sure the amount of IO required to do
450 	 * a random read is reasonably small, so we limit the size of
451 	 * a compressed extent to 128k.
452 	 */
453 	total_compressed = min(total_compressed, max_uncompressed);
454 	num_bytes = ALIGN(end - start + 1, blocksize);
455 	num_bytes = max(blocksize,  num_bytes);
456 	total_in = 0;
457 	ret = 0;
458 
459 	/*
460 	 * we do compression for mount -o compress and when the
461 	 * inode has not been flagged as nocompress.  This flag can
462 	 * change at any time if we discover bad compression ratios.
463 	 */
464 	if (inode_need_compress(inode)) {
465 		WARN_ON(pages);
466 		pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
467 		if (!pages) {
468 			/* just bail out to the uncompressed code */
469 			goto cont;
470 		}
471 
472 		if (BTRFS_I(inode)->force_compress)
473 			compress_type = BTRFS_I(inode)->force_compress;
474 
475 		/*
476 		 * we need to call clear_page_dirty_for_io on each
477 		 * page in the range.  Otherwise applications with the file
478 		 * mmap'd can wander in and change the page contents while
479 		 * we are compressing them.
480 		 *
481 		 * If the compression fails for any reason, we set the pages
482 		 * dirty again later on.
483 		 */
484 		extent_range_clear_dirty_for_io(inode, start, end);
485 		redirty = 1;
486 		ret = btrfs_compress_pages(compress_type,
487 					   inode->i_mapping, start,
488 					   total_compressed, pages,
489 					   nr_pages, &nr_pages_ret,
490 					   &total_in,
491 					   &total_compressed,
492 					   max_compressed);
493 
494 		if (!ret) {
495 			unsigned long offset = total_compressed &
496 				(PAGE_CACHE_SIZE - 1);
497 			struct page *page = pages[nr_pages_ret - 1];
498 			char *kaddr;
499 
500 			/* zero the tail end of the last page, we might be
501 			 * sending it down to disk
502 			 */
503 			if (offset) {
504 				kaddr = kmap_atomic(page);
505 				memset(kaddr + offset, 0,
506 				       PAGE_CACHE_SIZE - offset);
507 				kunmap_atomic(kaddr);
508 			}
509 			will_compress = 1;
510 		}
511 	}
512 cont:
513 	if (start == 0) {
514 		/* lets try to make an inline extent */
515 		if (ret || total_in < (actual_end - start)) {
516 			/* we didn't compress the entire range, try
517 			 * to make an uncompressed inline extent.
518 			 */
519 			ret = cow_file_range_inline(root, inode, start, end,
520 						    0, 0, NULL);
521 		} else {
522 			/* try making a compressed inline extent */
523 			ret = cow_file_range_inline(root, inode, start, end,
524 						    total_compressed,
525 						    compress_type, pages);
526 		}
527 		if (ret <= 0) {
528 			unsigned long clear_flags = EXTENT_DELALLOC |
529 				EXTENT_DEFRAG;
530 			clear_flags |= (ret < 0) ? EXTENT_DO_ACCOUNTING : 0;
531 
532 			/*
533 			 * inline extent creation worked or returned error,
534 			 * we don't need to create any more async work items.
535 			 * Unlock and free up our temp pages.
536 			 */
537 			extent_clear_unlock_delalloc(inode, start, end, NULL,
538 						     clear_flags, PAGE_UNLOCK |
539 						     PAGE_CLEAR_DIRTY |
540 						     PAGE_SET_WRITEBACK |
541 						     PAGE_END_WRITEBACK);
542 			goto free_pages_out;
543 		}
544 	}
545 
546 	if (will_compress) {
547 		/*
548 		 * we aren't doing an inline extent round the compressed size
549 		 * up to a block size boundary so the allocator does sane
550 		 * things
551 		 */
552 		total_compressed = ALIGN(total_compressed, blocksize);
553 
554 		/*
555 		 * one last check to make sure the compression is really a
556 		 * win, compare the page count read with the blocks on disk
557 		 */
558 		total_in = ALIGN(total_in, PAGE_CACHE_SIZE);
559 		if (total_compressed >= total_in) {
560 			will_compress = 0;
561 		} else {
562 			num_bytes = total_in;
563 		}
564 	}
565 	if (!will_compress && pages) {
566 		/*
567 		 * the compression code ran but failed to make things smaller,
568 		 * free any pages it allocated and our page pointer array
569 		 */
570 		for (i = 0; i < nr_pages_ret; i++) {
571 			WARN_ON(pages[i]->mapping);
572 			page_cache_release(pages[i]);
573 		}
574 		kfree(pages);
575 		pages = NULL;
576 		total_compressed = 0;
577 		nr_pages_ret = 0;
578 
579 		/* flag the file so we don't compress in the future */
580 		if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
581 		    !(BTRFS_I(inode)->force_compress)) {
582 			BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
583 		}
584 	}
585 	if (will_compress) {
586 		*num_added += 1;
587 
588 		/* the async work queues will take care of doing actual
589 		 * allocation on disk for these compressed pages,
590 		 * and will submit them to the elevator.
591 		 */
592 		add_async_extent(async_cow, start, num_bytes,
593 				 total_compressed, pages, nr_pages_ret,
594 				 compress_type);
595 
596 		if (start + num_bytes < end) {
597 			start += num_bytes;
598 			pages = NULL;
599 			cond_resched();
600 			goto again;
601 		}
602 	} else {
603 cleanup_and_bail_uncompressed:
604 		/*
605 		 * No compression, but we still need to write the pages in
606 		 * the file we've been given so far.  redirty the locked
607 		 * page if it corresponds to our extent and set things up
608 		 * for the async work queue to run cow_file_range to do
609 		 * the normal delalloc dance
610 		 */
611 		if (page_offset(locked_page) >= start &&
612 		    page_offset(locked_page) <= end) {
613 			__set_page_dirty_nobuffers(locked_page);
614 			/* unlocked later on in the async handlers */
615 		}
616 		if (redirty)
617 			extent_range_redirty_for_io(inode, start, end);
618 		add_async_extent(async_cow, start, end - start + 1,
619 				 0, NULL, 0, BTRFS_COMPRESS_NONE);
620 		*num_added += 1;
621 	}
622 
623 out:
624 	return ret;
625 
626 free_pages_out:
627 	for (i = 0; i < nr_pages_ret; i++) {
628 		WARN_ON(pages[i]->mapping);
629 		page_cache_release(pages[i]);
630 	}
631 	kfree(pages);
632 
633 	goto out;
634 }
635 
636 /*
637  * phase two of compressed writeback.  This is the ordered portion
638  * of the code, which only gets called in the order the work was
639  * queued.  We walk all the async extents created by compress_file_range
640  * and send them down to the disk.
641  */
642 static noinline int submit_compressed_extents(struct inode *inode,
643 					      struct async_cow *async_cow)
644 {
645 	struct async_extent *async_extent;
646 	u64 alloc_hint = 0;
647 	struct btrfs_key ins;
648 	struct extent_map *em;
649 	struct btrfs_root *root = BTRFS_I(inode)->root;
650 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
651 	struct extent_io_tree *io_tree;
652 	int ret = 0;
653 
654 	if (list_empty(&async_cow->extents))
655 		return 0;
656 
657 again:
658 	while (!list_empty(&async_cow->extents)) {
659 		async_extent = list_entry(async_cow->extents.next,
660 					  struct async_extent, list);
661 		list_del(&async_extent->list);
662 
663 		io_tree = &BTRFS_I(inode)->io_tree;
664 
665 retry:
666 		/* did the compression code fall back to uncompressed IO? */
667 		if (!async_extent->pages) {
668 			int page_started = 0;
669 			unsigned long nr_written = 0;
670 
671 			lock_extent(io_tree, async_extent->start,
672 					 async_extent->start +
673 					 async_extent->ram_size - 1);
674 
675 			/* allocate blocks */
676 			ret = cow_file_range(inode, async_cow->locked_page,
677 					     async_extent->start,
678 					     async_extent->start +
679 					     async_extent->ram_size - 1,
680 					     &page_started, &nr_written, 0);
681 
682 			/* JDM XXX */
683 
684 			/*
685 			 * if page_started, cow_file_range inserted an
686 			 * inline extent and took care of all the unlocking
687 			 * and IO for us.  Otherwise, we need to submit
688 			 * all those pages down to the drive.
689 			 */
690 			if (!page_started && !ret)
691 				extent_write_locked_range(io_tree,
692 						  inode, async_extent->start,
693 						  async_extent->start +
694 						  async_extent->ram_size - 1,
695 						  btrfs_get_extent,
696 						  WB_SYNC_ALL);
697 			else if (ret)
698 				unlock_page(async_cow->locked_page);
699 			kfree(async_extent);
700 			cond_resched();
701 			continue;
702 		}
703 
704 		lock_extent(io_tree, async_extent->start,
705 			    async_extent->start + async_extent->ram_size - 1);
706 
707 		ret = btrfs_reserve_extent(root,
708 					   async_extent->compressed_size,
709 					   async_extent->compressed_size,
710 					   0, alloc_hint, &ins, 1, 1);
711 		if (ret) {
712 			int i;
713 
714 			for (i = 0; i < async_extent->nr_pages; i++) {
715 				WARN_ON(async_extent->pages[i]->mapping);
716 				page_cache_release(async_extent->pages[i]);
717 			}
718 			kfree(async_extent->pages);
719 			async_extent->nr_pages = 0;
720 			async_extent->pages = NULL;
721 
722 			if (ret == -ENOSPC) {
723 				unlock_extent(io_tree, async_extent->start,
724 					      async_extent->start +
725 					      async_extent->ram_size - 1);
726 
727 				/*
728 				 * we need to redirty the pages if we decide to
729 				 * fallback to uncompressed IO, otherwise we
730 				 * will not submit these pages down to lower
731 				 * layers.
732 				 */
733 				extent_range_redirty_for_io(inode,
734 						async_extent->start,
735 						async_extent->start +
736 						async_extent->ram_size - 1);
737 
738 				goto retry;
739 			}
740 			goto out_free;
741 		}
742 
743 		/*
744 		 * here we're doing allocation and writeback of the
745 		 * compressed pages
746 		 */
747 		btrfs_drop_extent_cache(inode, async_extent->start,
748 					async_extent->start +
749 					async_extent->ram_size - 1, 0);
750 
751 		em = alloc_extent_map();
752 		if (!em) {
753 			ret = -ENOMEM;
754 			goto out_free_reserve;
755 		}
756 		em->start = async_extent->start;
757 		em->len = async_extent->ram_size;
758 		em->orig_start = em->start;
759 		em->mod_start = em->start;
760 		em->mod_len = em->len;
761 
762 		em->block_start = ins.objectid;
763 		em->block_len = ins.offset;
764 		em->orig_block_len = ins.offset;
765 		em->ram_bytes = async_extent->ram_size;
766 		em->bdev = root->fs_info->fs_devices->latest_bdev;
767 		em->compress_type = async_extent->compress_type;
768 		set_bit(EXTENT_FLAG_PINNED, &em->flags);
769 		set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
770 		em->generation = -1;
771 
772 		while (1) {
773 			write_lock(&em_tree->lock);
774 			ret = add_extent_mapping(em_tree, em, 1);
775 			write_unlock(&em_tree->lock);
776 			if (ret != -EEXIST) {
777 				free_extent_map(em);
778 				break;
779 			}
780 			btrfs_drop_extent_cache(inode, async_extent->start,
781 						async_extent->start +
782 						async_extent->ram_size - 1, 0);
783 		}
784 
785 		if (ret)
786 			goto out_free_reserve;
787 
788 		ret = btrfs_add_ordered_extent_compress(inode,
789 						async_extent->start,
790 						ins.objectid,
791 						async_extent->ram_size,
792 						ins.offset,
793 						BTRFS_ORDERED_COMPRESSED,
794 						async_extent->compress_type);
795 		if (ret) {
796 			btrfs_drop_extent_cache(inode, async_extent->start,
797 						async_extent->start +
798 						async_extent->ram_size - 1, 0);
799 			goto out_free_reserve;
800 		}
801 
802 		/*
803 		 * clear dirty, set writeback and unlock the pages.
804 		 */
805 		extent_clear_unlock_delalloc(inode, async_extent->start,
806 				async_extent->start +
807 				async_extent->ram_size - 1,
808 				NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
809 				PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
810 				PAGE_SET_WRITEBACK);
811 		ret = btrfs_submit_compressed_write(inode,
812 				    async_extent->start,
813 				    async_extent->ram_size,
814 				    ins.objectid,
815 				    ins.offset, async_extent->pages,
816 				    async_extent->nr_pages);
817 		alloc_hint = ins.objectid + ins.offset;
818 		kfree(async_extent);
819 		if (ret)
820 			goto out;
821 		cond_resched();
822 	}
823 	ret = 0;
824 out:
825 	return ret;
826 out_free_reserve:
827 	btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
828 out_free:
829 	extent_clear_unlock_delalloc(inode, async_extent->start,
830 				     async_extent->start +
831 				     async_extent->ram_size - 1,
832 				     NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
833 				     EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
834 				     PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
835 				     PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK);
836 	kfree(async_extent);
837 	goto again;
838 }
839 
840 static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
841 				      u64 num_bytes)
842 {
843 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
844 	struct extent_map *em;
845 	u64 alloc_hint = 0;
846 
847 	read_lock(&em_tree->lock);
848 	em = search_extent_mapping(em_tree, start, num_bytes);
849 	if (em) {
850 		/*
851 		 * if block start isn't an actual block number then find the
852 		 * first block in this inode and use that as a hint.  If that
853 		 * block is also bogus then just don't worry about it.
854 		 */
855 		if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
856 			free_extent_map(em);
857 			em = search_extent_mapping(em_tree, 0, 0);
858 			if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
859 				alloc_hint = em->block_start;
860 			if (em)
861 				free_extent_map(em);
862 		} else {
863 			alloc_hint = em->block_start;
864 			free_extent_map(em);
865 		}
866 	}
867 	read_unlock(&em_tree->lock);
868 
869 	return alloc_hint;
870 }
871 
872 /*
873  * when extent_io.c finds a delayed allocation range in the file,
874  * the call backs end up in this code.  The basic idea is to
875  * allocate extents on disk for the range, and create ordered data structs
876  * in ram to track those extents.
877  *
878  * locked_page is the page that writepage had locked already.  We use
879  * it to make sure we don't do extra locks or unlocks.
880  *
881  * *page_started is set to one if we unlock locked_page and do everything
882  * required to start IO on it.  It may be clean and already done with
883  * IO when we return.
884  */
885 static noinline int cow_file_range(struct inode *inode,
886 				   struct page *locked_page,
887 				   u64 start, u64 end, int *page_started,
888 				   unsigned long *nr_written,
889 				   int unlock)
890 {
891 	struct btrfs_root *root = BTRFS_I(inode)->root;
892 	u64 alloc_hint = 0;
893 	u64 num_bytes;
894 	unsigned long ram_size;
895 	u64 disk_num_bytes;
896 	u64 cur_alloc_size;
897 	u64 blocksize = root->sectorsize;
898 	struct btrfs_key ins;
899 	struct extent_map *em;
900 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
901 	int ret = 0;
902 
903 	if (btrfs_is_free_space_inode(inode)) {
904 		WARN_ON_ONCE(1);
905 		ret = -EINVAL;
906 		goto out_unlock;
907 	}
908 
909 	num_bytes = ALIGN(end - start + 1, blocksize);
910 	num_bytes = max(blocksize,  num_bytes);
911 	disk_num_bytes = num_bytes;
912 
913 	/* if this is a small write inside eof, kick off defrag */
914 	if (num_bytes < 64 * 1024 &&
915 	    (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
916 		btrfs_add_inode_defrag(NULL, inode);
917 
918 	if (start == 0) {
919 		/* lets try to make an inline extent */
920 		ret = cow_file_range_inline(root, inode, start, end, 0, 0,
921 					    NULL);
922 		if (ret == 0) {
923 			extent_clear_unlock_delalloc(inode, start, end, NULL,
924 				     EXTENT_LOCKED | EXTENT_DELALLOC |
925 				     EXTENT_DEFRAG, PAGE_UNLOCK |
926 				     PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
927 				     PAGE_END_WRITEBACK);
928 
929 			*nr_written = *nr_written +
930 			     (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
931 			*page_started = 1;
932 			goto out;
933 		} else if (ret < 0) {
934 			goto out_unlock;
935 		}
936 	}
937 
938 	BUG_ON(disk_num_bytes >
939 	       btrfs_super_total_bytes(root->fs_info->super_copy));
940 
941 	alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
942 	btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
943 
944 	while (disk_num_bytes > 0) {
945 		unsigned long op;
946 
947 		cur_alloc_size = disk_num_bytes;
948 		ret = btrfs_reserve_extent(root, cur_alloc_size,
949 					   root->sectorsize, 0, alloc_hint,
950 					   &ins, 1, 1);
951 		if (ret < 0)
952 			goto out_unlock;
953 
954 		em = alloc_extent_map();
955 		if (!em) {
956 			ret = -ENOMEM;
957 			goto out_reserve;
958 		}
959 		em->start = start;
960 		em->orig_start = em->start;
961 		ram_size = ins.offset;
962 		em->len = ins.offset;
963 		em->mod_start = em->start;
964 		em->mod_len = em->len;
965 
966 		em->block_start = ins.objectid;
967 		em->block_len = ins.offset;
968 		em->orig_block_len = ins.offset;
969 		em->ram_bytes = ram_size;
970 		em->bdev = root->fs_info->fs_devices->latest_bdev;
971 		set_bit(EXTENT_FLAG_PINNED, &em->flags);
972 		em->generation = -1;
973 
974 		while (1) {
975 			write_lock(&em_tree->lock);
976 			ret = add_extent_mapping(em_tree, em, 1);
977 			write_unlock(&em_tree->lock);
978 			if (ret != -EEXIST) {
979 				free_extent_map(em);
980 				break;
981 			}
982 			btrfs_drop_extent_cache(inode, start,
983 						start + ram_size - 1, 0);
984 		}
985 		if (ret)
986 			goto out_reserve;
987 
988 		cur_alloc_size = ins.offset;
989 		ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
990 					       ram_size, cur_alloc_size, 0);
991 		if (ret)
992 			goto out_drop_extent_cache;
993 
994 		if (root->root_key.objectid ==
995 		    BTRFS_DATA_RELOC_TREE_OBJECTID) {
996 			ret = btrfs_reloc_clone_csums(inode, start,
997 						      cur_alloc_size);
998 			if (ret)
999 				goto out_drop_extent_cache;
1000 		}
1001 
1002 		if (disk_num_bytes < cur_alloc_size)
1003 			break;
1004 
1005 		/* we're not doing compressed IO, don't unlock the first
1006 		 * page (which the caller expects to stay locked), don't
1007 		 * clear any dirty bits and don't set any writeback bits
1008 		 *
1009 		 * Do set the Private2 bit so we know this page was properly
1010 		 * setup for writepage
1011 		 */
1012 		op = unlock ? PAGE_UNLOCK : 0;
1013 		op |= PAGE_SET_PRIVATE2;
1014 
1015 		extent_clear_unlock_delalloc(inode, start,
1016 					     start + ram_size - 1, locked_page,
1017 					     EXTENT_LOCKED | EXTENT_DELALLOC,
1018 					     op);
1019 		disk_num_bytes -= cur_alloc_size;
1020 		num_bytes -= cur_alloc_size;
1021 		alloc_hint = ins.objectid + ins.offset;
1022 		start += cur_alloc_size;
1023 	}
1024 out:
1025 	return ret;
1026 
1027 out_drop_extent_cache:
1028 	btrfs_drop_extent_cache(inode, start, start + ram_size - 1, 0);
1029 out_reserve:
1030 	btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
1031 out_unlock:
1032 	extent_clear_unlock_delalloc(inode, start, end, locked_page,
1033 				     EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
1034 				     EXTENT_DELALLOC | EXTENT_DEFRAG,
1035 				     PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
1036 				     PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK);
1037 	goto out;
1038 }
1039 
1040 /*
1041  * work queue call back to started compression on a file and pages
1042  */
1043 static noinline void async_cow_start(struct btrfs_work *work)
1044 {
1045 	struct async_cow *async_cow;
1046 	int num_added = 0;
1047 	async_cow = container_of(work, struct async_cow, work);
1048 
1049 	compress_file_range(async_cow->inode, async_cow->locked_page,
1050 			    async_cow->start, async_cow->end, async_cow,
1051 			    &num_added);
1052 	if (num_added == 0) {
1053 		btrfs_add_delayed_iput(async_cow->inode);
1054 		async_cow->inode = NULL;
1055 	}
1056 }
1057 
1058 /*
1059  * work queue call back to submit previously compressed pages
1060  */
1061 static noinline void async_cow_submit(struct btrfs_work *work)
1062 {
1063 	struct async_cow *async_cow;
1064 	struct btrfs_root *root;
1065 	unsigned long nr_pages;
1066 
1067 	async_cow = container_of(work, struct async_cow, work);
1068 
1069 	root = async_cow->root;
1070 	nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
1071 		PAGE_CACHE_SHIFT;
1072 
1073 	if (atomic_sub_return(nr_pages, &root->fs_info->async_delalloc_pages) <
1074 	    5 * 1024 * 1024 &&
1075 	    waitqueue_active(&root->fs_info->async_submit_wait))
1076 		wake_up(&root->fs_info->async_submit_wait);
1077 
1078 	if (async_cow->inode)
1079 		submit_compressed_extents(async_cow->inode, async_cow);
1080 }
1081 
1082 static noinline void async_cow_free(struct btrfs_work *work)
1083 {
1084 	struct async_cow *async_cow;
1085 	async_cow = container_of(work, struct async_cow, work);
1086 	if (async_cow->inode)
1087 		btrfs_add_delayed_iput(async_cow->inode);
1088 	kfree(async_cow);
1089 }
1090 
1091 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1092 				u64 start, u64 end, int *page_started,
1093 				unsigned long *nr_written)
1094 {
1095 	struct async_cow *async_cow;
1096 	struct btrfs_root *root = BTRFS_I(inode)->root;
1097 	unsigned long nr_pages;
1098 	u64 cur_end;
1099 	int limit = 10 * 1024 * 1024;
1100 
1101 	clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
1102 			 1, 0, NULL, GFP_NOFS);
1103 	while (start < end) {
1104 		async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
1105 		BUG_ON(!async_cow); /* -ENOMEM */
1106 		async_cow->inode = igrab(inode);
1107 		async_cow->root = root;
1108 		async_cow->locked_page = locked_page;
1109 		async_cow->start = start;
1110 
1111 		if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS &&
1112 		    !btrfs_test_opt(root, FORCE_COMPRESS))
1113 			cur_end = end;
1114 		else
1115 			cur_end = min(end, start + 512 * 1024 - 1);
1116 
1117 		async_cow->end = cur_end;
1118 		INIT_LIST_HEAD(&async_cow->extents);
1119 
1120 		btrfs_init_work(&async_cow->work,
1121 				btrfs_delalloc_helper,
1122 				async_cow_start, async_cow_submit,
1123 				async_cow_free);
1124 
1125 		nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
1126 			PAGE_CACHE_SHIFT;
1127 		atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
1128 
1129 		btrfs_queue_work(root->fs_info->delalloc_workers,
1130 				 &async_cow->work);
1131 
1132 		if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
1133 			wait_event(root->fs_info->async_submit_wait,
1134 			   (atomic_read(&root->fs_info->async_delalloc_pages) <
1135 			    limit));
1136 		}
1137 
1138 		while (atomic_read(&root->fs_info->async_submit_draining) &&
1139 		      atomic_read(&root->fs_info->async_delalloc_pages)) {
1140 			wait_event(root->fs_info->async_submit_wait,
1141 			  (atomic_read(&root->fs_info->async_delalloc_pages) ==
1142 			   0));
1143 		}
1144 
1145 		*nr_written += nr_pages;
1146 		start = cur_end + 1;
1147 	}
1148 	*page_started = 1;
1149 	return 0;
1150 }
1151 
1152 static noinline int csum_exist_in_range(struct btrfs_root *root,
1153 					u64 bytenr, u64 num_bytes)
1154 {
1155 	int ret;
1156 	struct btrfs_ordered_sum *sums;
1157 	LIST_HEAD(list);
1158 
1159 	ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
1160 				       bytenr + num_bytes - 1, &list, 0);
1161 	if (ret == 0 && list_empty(&list))
1162 		return 0;
1163 
1164 	while (!list_empty(&list)) {
1165 		sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1166 		list_del(&sums->list);
1167 		kfree(sums);
1168 	}
1169 	return 1;
1170 }
1171 
1172 /*
1173  * when nowcow writeback call back.  This checks for snapshots or COW copies
1174  * of the extents that exist in the file, and COWs the file as required.
1175  *
1176  * If no cow copies or snapshots exist, we write directly to the existing
1177  * blocks on disk
1178  */
1179 static noinline int run_delalloc_nocow(struct inode *inode,
1180 				       struct page *locked_page,
1181 			      u64 start, u64 end, int *page_started, int force,
1182 			      unsigned long *nr_written)
1183 {
1184 	struct btrfs_root *root = BTRFS_I(inode)->root;
1185 	struct btrfs_trans_handle *trans;
1186 	struct extent_buffer *leaf;
1187 	struct btrfs_path *path;
1188 	struct btrfs_file_extent_item *fi;
1189 	struct btrfs_key found_key;
1190 	u64 cow_start;
1191 	u64 cur_offset;
1192 	u64 extent_end;
1193 	u64 extent_offset;
1194 	u64 disk_bytenr;
1195 	u64 num_bytes;
1196 	u64 disk_num_bytes;
1197 	u64 ram_bytes;
1198 	int extent_type;
1199 	int ret, err;
1200 	int type;
1201 	int nocow;
1202 	int check_prev = 1;
1203 	bool nolock;
1204 	u64 ino = btrfs_ino(inode);
1205 
1206 	path = btrfs_alloc_path();
1207 	if (!path) {
1208 		extent_clear_unlock_delalloc(inode, start, end, locked_page,
1209 					     EXTENT_LOCKED | EXTENT_DELALLOC |
1210 					     EXTENT_DO_ACCOUNTING |
1211 					     EXTENT_DEFRAG, PAGE_UNLOCK |
1212 					     PAGE_CLEAR_DIRTY |
1213 					     PAGE_SET_WRITEBACK |
1214 					     PAGE_END_WRITEBACK);
1215 		return -ENOMEM;
1216 	}
1217 
1218 	nolock = btrfs_is_free_space_inode(inode);
1219 
1220 	if (nolock)
1221 		trans = btrfs_join_transaction_nolock(root);
1222 	else
1223 		trans = btrfs_join_transaction(root);
1224 
1225 	if (IS_ERR(trans)) {
1226 		extent_clear_unlock_delalloc(inode, start, end, locked_page,
1227 					     EXTENT_LOCKED | EXTENT_DELALLOC |
1228 					     EXTENT_DO_ACCOUNTING |
1229 					     EXTENT_DEFRAG, PAGE_UNLOCK |
1230 					     PAGE_CLEAR_DIRTY |
1231 					     PAGE_SET_WRITEBACK |
1232 					     PAGE_END_WRITEBACK);
1233 		btrfs_free_path(path);
1234 		return PTR_ERR(trans);
1235 	}
1236 
1237 	trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1238 
1239 	cow_start = (u64)-1;
1240 	cur_offset = start;
1241 	while (1) {
1242 		ret = btrfs_lookup_file_extent(trans, root, path, ino,
1243 					       cur_offset, 0);
1244 		if (ret < 0)
1245 			goto error;
1246 		if (ret > 0 && path->slots[0] > 0 && check_prev) {
1247 			leaf = path->nodes[0];
1248 			btrfs_item_key_to_cpu(leaf, &found_key,
1249 					      path->slots[0] - 1);
1250 			if (found_key.objectid == ino &&
1251 			    found_key.type == BTRFS_EXTENT_DATA_KEY)
1252 				path->slots[0]--;
1253 		}
1254 		check_prev = 0;
1255 next_slot:
1256 		leaf = path->nodes[0];
1257 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1258 			ret = btrfs_next_leaf(root, path);
1259 			if (ret < 0)
1260 				goto error;
1261 			if (ret > 0)
1262 				break;
1263 			leaf = path->nodes[0];
1264 		}
1265 
1266 		nocow = 0;
1267 		disk_bytenr = 0;
1268 		num_bytes = 0;
1269 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1270 
1271 		if (found_key.objectid > ino ||
1272 		    found_key.type > BTRFS_EXTENT_DATA_KEY ||
1273 		    found_key.offset > end)
1274 			break;
1275 
1276 		if (found_key.offset > cur_offset) {
1277 			extent_end = found_key.offset;
1278 			extent_type = 0;
1279 			goto out_check;
1280 		}
1281 
1282 		fi = btrfs_item_ptr(leaf, path->slots[0],
1283 				    struct btrfs_file_extent_item);
1284 		extent_type = btrfs_file_extent_type(leaf, fi);
1285 
1286 		ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1287 		if (extent_type == BTRFS_FILE_EXTENT_REG ||
1288 		    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1289 			disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1290 			extent_offset = btrfs_file_extent_offset(leaf, fi);
1291 			extent_end = found_key.offset +
1292 				btrfs_file_extent_num_bytes(leaf, fi);
1293 			disk_num_bytes =
1294 				btrfs_file_extent_disk_num_bytes(leaf, fi);
1295 			if (extent_end <= start) {
1296 				path->slots[0]++;
1297 				goto next_slot;
1298 			}
1299 			if (disk_bytenr == 0)
1300 				goto out_check;
1301 			if (btrfs_file_extent_compression(leaf, fi) ||
1302 			    btrfs_file_extent_encryption(leaf, fi) ||
1303 			    btrfs_file_extent_other_encoding(leaf, fi))
1304 				goto out_check;
1305 			if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1306 				goto out_check;
1307 			if (btrfs_extent_readonly(root, disk_bytenr))
1308 				goto out_check;
1309 			if (btrfs_cross_ref_exist(trans, root, ino,
1310 						  found_key.offset -
1311 						  extent_offset, disk_bytenr))
1312 				goto out_check;
1313 			disk_bytenr += extent_offset;
1314 			disk_bytenr += cur_offset - found_key.offset;
1315 			num_bytes = min(end + 1, extent_end) - cur_offset;
1316 			/*
1317 			 * if there are pending snapshots for this root,
1318 			 * we fall into common COW way.
1319 			 */
1320 			if (!nolock) {
1321 				err = btrfs_start_nocow_write(root);
1322 				if (!err)
1323 					goto out_check;
1324 			}
1325 			/*
1326 			 * force cow if csum exists in the range.
1327 			 * this ensure that csum for a given extent are
1328 			 * either valid or do not exist.
1329 			 */
1330 			if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1331 				goto out_check;
1332 			nocow = 1;
1333 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1334 			extent_end = found_key.offset +
1335 				btrfs_file_extent_inline_len(leaf,
1336 						     path->slots[0], fi);
1337 			extent_end = ALIGN(extent_end, root->sectorsize);
1338 		} else {
1339 			BUG_ON(1);
1340 		}
1341 out_check:
1342 		if (extent_end <= start) {
1343 			path->slots[0]++;
1344 			if (!nolock && nocow)
1345 				btrfs_end_nocow_write(root);
1346 			goto next_slot;
1347 		}
1348 		if (!nocow) {
1349 			if (cow_start == (u64)-1)
1350 				cow_start = cur_offset;
1351 			cur_offset = extent_end;
1352 			if (cur_offset > end)
1353 				break;
1354 			path->slots[0]++;
1355 			goto next_slot;
1356 		}
1357 
1358 		btrfs_release_path(path);
1359 		if (cow_start != (u64)-1) {
1360 			ret = cow_file_range(inode, locked_page,
1361 					     cow_start, found_key.offset - 1,
1362 					     page_started, nr_written, 1);
1363 			if (ret) {
1364 				if (!nolock && nocow)
1365 					btrfs_end_nocow_write(root);
1366 				goto error;
1367 			}
1368 			cow_start = (u64)-1;
1369 		}
1370 
1371 		if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1372 			struct extent_map *em;
1373 			struct extent_map_tree *em_tree;
1374 			em_tree = &BTRFS_I(inode)->extent_tree;
1375 			em = alloc_extent_map();
1376 			BUG_ON(!em); /* -ENOMEM */
1377 			em->start = cur_offset;
1378 			em->orig_start = found_key.offset - extent_offset;
1379 			em->len = num_bytes;
1380 			em->block_len = num_bytes;
1381 			em->block_start = disk_bytenr;
1382 			em->orig_block_len = disk_num_bytes;
1383 			em->ram_bytes = ram_bytes;
1384 			em->bdev = root->fs_info->fs_devices->latest_bdev;
1385 			em->mod_start = em->start;
1386 			em->mod_len = em->len;
1387 			set_bit(EXTENT_FLAG_PINNED, &em->flags);
1388 			set_bit(EXTENT_FLAG_FILLING, &em->flags);
1389 			em->generation = -1;
1390 			while (1) {
1391 				write_lock(&em_tree->lock);
1392 				ret = add_extent_mapping(em_tree, em, 1);
1393 				write_unlock(&em_tree->lock);
1394 				if (ret != -EEXIST) {
1395 					free_extent_map(em);
1396 					break;
1397 				}
1398 				btrfs_drop_extent_cache(inode, em->start,
1399 						em->start + em->len - 1, 0);
1400 			}
1401 			type = BTRFS_ORDERED_PREALLOC;
1402 		} else {
1403 			type = BTRFS_ORDERED_NOCOW;
1404 		}
1405 
1406 		ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1407 					       num_bytes, num_bytes, type);
1408 		BUG_ON(ret); /* -ENOMEM */
1409 
1410 		if (root->root_key.objectid ==
1411 		    BTRFS_DATA_RELOC_TREE_OBJECTID) {
1412 			ret = btrfs_reloc_clone_csums(inode, cur_offset,
1413 						      num_bytes);
1414 			if (ret) {
1415 				if (!nolock && nocow)
1416 					btrfs_end_nocow_write(root);
1417 				goto error;
1418 			}
1419 		}
1420 
1421 		extent_clear_unlock_delalloc(inode, cur_offset,
1422 					     cur_offset + num_bytes - 1,
1423 					     locked_page, EXTENT_LOCKED |
1424 					     EXTENT_DELALLOC, PAGE_UNLOCK |
1425 					     PAGE_SET_PRIVATE2);
1426 		if (!nolock && nocow)
1427 			btrfs_end_nocow_write(root);
1428 		cur_offset = extent_end;
1429 		if (cur_offset > end)
1430 			break;
1431 	}
1432 	btrfs_release_path(path);
1433 
1434 	if (cur_offset <= end && cow_start == (u64)-1) {
1435 		cow_start = cur_offset;
1436 		cur_offset = end;
1437 	}
1438 
1439 	if (cow_start != (u64)-1) {
1440 		ret = cow_file_range(inode, locked_page, cow_start, end,
1441 				     page_started, nr_written, 1);
1442 		if (ret)
1443 			goto error;
1444 	}
1445 
1446 error:
1447 	err = btrfs_end_transaction(trans, root);
1448 	if (!ret)
1449 		ret = err;
1450 
1451 	if (ret && cur_offset < end)
1452 		extent_clear_unlock_delalloc(inode, cur_offset, end,
1453 					     locked_page, EXTENT_LOCKED |
1454 					     EXTENT_DELALLOC | EXTENT_DEFRAG |
1455 					     EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1456 					     PAGE_CLEAR_DIRTY |
1457 					     PAGE_SET_WRITEBACK |
1458 					     PAGE_END_WRITEBACK);
1459 	btrfs_free_path(path);
1460 	return ret;
1461 }
1462 
1463 static inline int need_force_cow(struct inode *inode, u64 start, u64 end)
1464 {
1465 
1466 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
1467 	    !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC))
1468 		return 0;
1469 
1470 	/*
1471 	 * @defrag_bytes is a hint value, no spinlock held here,
1472 	 * if is not zero, it means the file is defragging.
1473 	 * Force cow if given extent needs to be defragged.
1474 	 */
1475 	if (BTRFS_I(inode)->defrag_bytes &&
1476 	    test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
1477 			   EXTENT_DEFRAG, 0, NULL))
1478 		return 1;
1479 
1480 	return 0;
1481 }
1482 
1483 /*
1484  * extent_io.c call back to do delayed allocation processing
1485  */
1486 static int run_delalloc_range(struct inode *inode, struct page *locked_page,
1487 			      u64 start, u64 end, int *page_started,
1488 			      unsigned long *nr_written)
1489 {
1490 	int ret;
1491 	int force_cow = need_force_cow(inode, start, end);
1492 
1493 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) {
1494 		ret = run_delalloc_nocow(inode, locked_page, start, end,
1495 					 page_started, 1, nr_written);
1496 	} else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) {
1497 		ret = run_delalloc_nocow(inode, locked_page, start, end,
1498 					 page_started, 0, nr_written);
1499 	} else if (!inode_need_compress(inode)) {
1500 		ret = cow_file_range(inode, locked_page, start, end,
1501 				      page_started, nr_written, 1);
1502 	} else {
1503 		set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1504 			&BTRFS_I(inode)->runtime_flags);
1505 		ret = cow_file_range_async(inode, locked_page, start, end,
1506 					   page_started, nr_written);
1507 	}
1508 	return ret;
1509 }
1510 
1511 static void btrfs_split_extent_hook(struct inode *inode,
1512 				    struct extent_state *orig, u64 split)
1513 {
1514 	/* not delalloc, ignore it */
1515 	if (!(orig->state & EXTENT_DELALLOC))
1516 		return;
1517 
1518 	spin_lock(&BTRFS_I(inode)->lock);
1519 	BTRFS_I(inode)->outstanding_extents++;
1520 	spin_unlock(&BTRFS_I(inode)->lock);
1521 }
1522 
1523 /*
1524  * extent_io.c merge_extent_hook, used to track merged delayed allocation
1525  * extents so we can keep track of new extents that are just merged onto old
1526  * extents, such as when we are doing sequential writes, so we can properly
1527  * account for the metadata space we'll need.
1528  */
1529 static void btrfs_merge_extent_hook(struct inode *inode,
1530 				    struct extent_state *new,
1531 				    struct extent_state *other)
1532 {
1533 	/* not delalloc, ignore it */
1534 	if (!(other->state & EXTENT_DELALLOC))
1535 		return;
1536 
1537 	spin_lock(&BTRFS_I(inode)->lock);
1538 	BTRFS_I(inode)->outstanding_extents--;
1539 	spin_unlock(&BTRFS_I(inode)->lock);
1540 }
1541 
1542 static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1543 				      struct inode *inode)
1544 {
1545 	spin_lock(&root->delalloc_lock);
1546 	if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1547 		list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1548 			      &root->delalloc_inodes);
1549 		set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1550 			&BTRFS_I(inode)->runtime_flags);
1551 		root->nr_delalloc_inodes++;
1552 		if (root->nr_delalloc_inodes == 1) {
1553 			spin_lock(&root->fs_info->delalloc_root_lock);
1554 			BUG_ON(!list_empty(&root->delalloc_root));
1555 			list_add_tail(&root->delalloc_root,
1556 				      &root->fs_info->delalloc_roots);
1557 			spin_unlock(&root->fs_info->delalloc_root_lock);
1558 		}
1559 	}
1560 	spin_unlock(&root->delalloc_lock);
1561 }
1562 
1563 static void btrfs_del_delalloc_inode(struct btrfs_root *root,
1564 				     struct inode *inode)
1565 {
1566 	spin_lock(&root->delalloc_lock);
1567 	if (!list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1568 		list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1569 		clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1570 			  &BTRFS_I(inode)->runtime_flags);
1571 		root->nr_delalloc_inodes--;
1572 		if (!root->nr_delalloc_inodes) {
1573 			spin_lock(&root->fs_info->delalloc_root_lock);
1574 			BUG_ON(list_empty(&root->delalloc_root));
1575 			list_del_init(&root->delalloc_root);
1576 			spin_unlock(&root->fs_info->delalloc_root_lock);
1577 		}
1578 	}
1579 	spin_unlock(&root->delalloc_lock);
1580 }
1581 
1582 /*
1583  * extent_io.c set_bit_hook, used to track delayed allocation
1584  * bytes in this file, and to maintain the list of inodes that
1585  * have pending delalloc work to be done.
1586  */
1587 static void btrfs_set_bit_hook(struct inode *inode,
1588 			       struct extent_state *state, unsigned long *bits)
1589 {
1590 
1591 	if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC))
1592 		WARN_ON(1);
1593 	/*
1594 	 * set_bit and clear bit hooks normally require _irqsave/restore
1595 	 * but in this case, we are only testing for the DELALLOC
1596 	 * bit, which is only set or cleared with irqs on
1597 	 */
1598 	if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1599 		struct btrfs_root *root = BTRFS_I(inode)->root;
1600 		u64 len = state->end + 1 - state->start;
1601 		bool do_list = !btrfs_is_free_space_inode(inode);
1602 
1603 		if (*bits & EXTENT_FIRST_DELALLOC) {
1604 			*bits &= ~EXTENT_FIRST_DELALLOC;
1605 		} else {
1606 			spin_lock(&BTRFS_I(inode)->lock);
1607 			BTRFS_I(inode)->outstanding_extents++;
1608 			spin_unlock(&BTRFS_I(inode)->lock);
1609 		}
1610 
1611 		__percpu_counter_add(&root->fs_info->delalloc_bytes, len,
1612 				     root->fs_info->delalloc_batch);
1613 		spin_lock(&BTRFS_I(inode)->lock);
1614 		BTRFS_I(inode)->delalloc_bytes += len;
1615 		if (*bits & EXTENT_DEFRAG)
1616 			BTRFS_I(inode)->defrag_bytes += len;
1617 		if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1618 					 &BTRFS_I(inode)->runtime_flags))
1619 			btrfs_add_delalloc_inodes(root, inode);
1620 		spin_unlock(&BTRFS_I(inode)->lock);
1621 	}
1622 }
1623 
1624 /*
1625  * extent_io.c clear_bit_hook, see set_bit_hook for why
1626  */
1627 static void btrfs_clear_bit_hook(struct inode *inode,
1628 				 struct extent_state *state,
1629 				 unsigned long *bits)
1630 {
1631 	u64 len = state->end + 1 - state->start;
1632 
1633 	spin_lock(&BTRFS_I(inode)->lock);
1634 	if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG))
1635 		BTRFS_I(inode)->defrag_bytes -= len;
1636 	spin_unlock(&BTRFS_I(inode)->lock);
1637 
1638 	/*
1639 	 * set_bit and clear bit hooks normally require _irqsave/restore
1640 	 * but in this case, we are only testing for the DELALLOC
1641 	 * bit, which is only set or cleared with irqs on
1642 	 */
1643 	if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1644 		struct btrfs_root *root = BTRFS_I(inode)->root;
1645 		bool do_list = !btrfs_is_free_space_inode(inode);
1646 
1647 		if (*bits & EXTENT_FIRST_DELALLOC) {
1648 			*bits &= ~EXTENT_FIRST_DELALLOC;
1649 		} else if (!(*bits & EXTENT_DO_ACCOUNTING)) {
1650 			spin_lock(&BTRFS_I(inode)->lock);
1651 			BTRFS_I(inode)->outstanding_extents--;
1652 			spin_unlock(&BTRFS_I(inode)->lock);
1653 		}
1654 
1655 		/*
1656 		 * We don't reserve metadata space for space cache inodes so we
1657 		 * don't need to call dellalloc_release_metadata if there is an
1658 		 * error.
1659 		 */
1660 		if (*bits & EXTENT_DO_ACCOUNTING &&
1661 		    root != root->fs_info->tree_root)
1662 			btrfs_delalloc_release_metadata(inode, len);
1663 
1664 		if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
1665 		    && do_list && !(state->state & EXTENT_NORESERVE))
1666 			btrfs_free_reserved_data_space(inode, len);
1667 
1668 		__percpu_counter_add(&root->fs_info->delalloc_bytes, -len,
1669 				     root->fs_info->delalloc_batch);
1670 		spin_lock(&BTRFS_I(inode)->lock);
1671 		BTRFS_I(inode)->delalloc_bytes -= len;
1672 		if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
1673 		    test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1674 			     &BTRFS_I(inode)->runtime_flags))
1675 			btrfs_del_delalloc_inode(root, inode);
1676 		spin_unlock(&BTRFS_I(inode)->lock);
1677 	}
1678 }
1679 
1680 /*
1681  * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1682  * we don't create bios that span stripes or chunks
1683  */
1684 int btrfs_merge_bio_hook(int rw, struct page *page, unsigned long offset,
1685 			 size_t size, struct bio *bio,
1686 			 unsigned long bio_flags)
1687 {
1688 	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1689 	u64 logical = (u64)bio->bi_iter.bi_sector << 9;
1690 	u64 length = 0;
1691 	u64 map_length;
1692 	int ret;
1693 
1694 	if (bio_flags & EXTENT_BIO_COMPRESSED)
1695 		return 0;
1696 
1697 	length = bio->bi_iter.bi_size;
1698 	map_length = length;
1699 	ret = btrfs_map_block(root->fs_info, rw, logical,
1700 			      &map_length, NULL, 0);
1701 	/* Will always return 0 with map_multi == NULL */
1702 	BUG_ON(ret < 0);
1703 	if (map_length < length + size)
1704 		return 1;
1705 	return 0;
1706 }
1707 
1708 /*
1709  * in order to insert checksums into the metadata in large chunks,
1710  * we wait until bio submission time.   All the pages in the bio are
1711  * checksummed and sums are attached onto the ordered extent record.
1712  *
1713  * At IO completion time the cums attached on the ordered extent record
1714  * are inserted into the btree
1715  */
1716 static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1717 				    struct bio *bio, int mirror_num,
1718 				    unsigned long bio_flags,
1719 				    u64 bio_offset)
1720 {
1721 	struct btrfs_root *root = BTRFS_I(inode)->root;
1722 	int ret = 0;
1723 
1724 	ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1725 	BUG_ON(ret); /* -ENOMEM */
1726 	return 0;
1727 }
1728 
1729 /*
1730  * in order to insert checksums into the metadata in large chunks,
1731  * we wait until bio submission time.   All the pages in the bio are
1732  * checksummed and sums are attached onto the ordered extent record.
1733  *
1734  * At IO completion time the cums attached on the ordered extent record
1735  * are inserted into the btree
1736  */
1737 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
1738 			  int mirror_num, unsigned long bio_flags,
1739 			  u64 bio_offset)
1740 {
1741 	struct btrfs_root *root = BTRFS_I(inode)->root;
1742 	int ret;
1743 
1744 	ret = btrfs_map_bio(root, rw, bio, mirror_num, 1);
1745 	if (ret)
1746 		bio_endio(bio, ret);
1747 	return ret;
1748 }
1749 
1750 /*
1751  * extent_io.c submission hook. This does the right thing for csum calculation
1752  * on write, or reading the csums from the tree before a read
1753  */
1754 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
1755 			  int mirror_num, unsigned long bio_flags,
1756 			  u64 bio_offset)
1757 {
1758 	struct btrfs_root *root = BTRFS_I(inode)->root;
1759 	int ret = 0;
1760 	int skip_sum;
1761 	int metadata = 0;
1762 	int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
1763 
1764 	skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
1765 
1766 	if (btrfs_is_free_space_inode(inode))
1767 		metadata = 2;
1768 
1769 	if (!(rw & REQ_WRITE)) {
1770 		ret = btrfs_bio_wq_end_io(root->fs_info, bio, metadata);
1771 		if (ret)
1772 			goto out;
1773 
1774 		if (bio_flags & EXTENT_BIO_COMPRESSED) {
1775 			ret = btrfs_submit_compressed_read(inode, bio,
1776 							   mirror_num,
1777 							   bio_flags);
1778 			goto out;
1779 		} else if (!skip_sum) {
1780 			ret = btrfs_lookup_bio_sums(root, inode, bio, NULL);
1781 			if (ret)
1782 				goto out;
1783 		}
1784 		goto mapit;
1785 	} else if (async && !skip_sum) {
1786 		/* csum items have already been cloned */
1787 		if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1788 			goto mapit;
1789 		/* we're doing a write, do the async checksumming */
1790 		ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1791 				   inode, rw, bio, mirror_num,
1792 				   bio_flags, bio_offset,
1793 				   __btrfs_submit_bio_start,
1794 				   __btrfs_submit_bio_done);
1795 		goto out;
1796 	} else if (!skip_sum) {
1797 		ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1798 		if (ret)
1799 			goto out;
1800 	}
1801 
1802 mapit:
1803 	ret = btrfs_map_bio(root, rw, bio, mirror_num, 0);
1804 
1805 out:
1806 	if (ret < 0)
1807 		bio_endio(bio, ret);
1808 	return ret;
1809 }
1810 
1811 /*
1812  * given a list of ordered sums record them in the inode.  This happens
1813  * at IO completion time based on sums calculated at bio submission time.
1814  */
1815 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
1816 			     struct inode *inode, u64 file_offset,
1817 			     struct list_head *list)
1818 {
1819 	struct btrfs_ordered_sum *sum;
1820 
1821 	list_for_each_entry(sum, list, list) {
1822 		trans->adding_csums = 1;
1823 		btrfs_csum_file_blocks(trans,
1824 		       BTRFS_I(inode)->root->fs_info->csum_root, sum);
1825 		trans->adding_csums = 0;
1826 	}
1827 	return 0;
1828 }
1829 
1830 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1831 			      struct extent_state **cached_state)
1832 {
1833 	WARN_ON((end & (PAGE_CACHE_SIZE - 1)) == 0);
1834 	return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
1835 				   cached_state, GFP_NOFS);
1836 }
1837 
1838 /* see btrfs_writepage_start_hook for details on why this is required */
1839 struct btrfs_writepage_fixup {
1840 	struct page *page;
1841 	struct btrfs_work work;
1842 };
1843 
1844 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
1845 {
1846 	struct btrfs_writepage_fixup *fixup;
1847 	struct btrfs_ordered_extent *ordered;
1848 	struct extent_state *cached_state = NULL;
1849 	struct page *page;
1850 	struct inode *inode;
1851 	u64 page_start;
1852 	u64 page_end;
1853 	int ret;
1854 
1855 	fixup = container_of(work, struct btrfs_writepage_fixup, work);
1856 	page = fixup->page;
1857 again:
1858 	lock_page(page);
1859 	if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1860 		ClearPageChecked(page);
1861 		goto out_page;
1862 	}
1863 
1864 	inode = page->mapping->host;
1865 	page_start = page_offset(page);
1866 	page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1867 
1868 	lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0,
1869 			 &cached_state);
1870 
1871 	/* already ordered? We're done */
1872 	if (PagePrivate2(page))
1873 		goto out;
1874 
1875 	ordered = btrfs_lookup_ordered_extent(inode, page_start);
1876 	if (ordered) {
1877 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
1878 				     page_end, &cached_state, GFP_NOFS);
1879 		unlock_page(page);
1880 		btrfs_start_ordered_extent(inode, ordered, 1);
1881 		btrfs_put_ordered_extent(ordered);
1882 		goto again;
1883 	}
1884 
1885 	ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
1886 	if (ret) {
1887 		mapping_set_error(page->mapping, ret);
1888 		end_extent_writepage(page, ret, page_start, page_end);
1889 		ClearPageChecked(page);
1890 		goto out;
1891 	 }
1892 
1893 	btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
1894 	ClearPageChecked(page);
1895 	set_page_dirty(page);
1896 out:
1897 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
1898 			     &cached_state, GFP_NOFS);
1899 out_page:
1900 	unlock_page(page);
1901 	page_cache_release(page);
1902 	kfree(fixup);
1903 }
1904 
1905 /*
1906  * There are a few paths in the higher layers of the kernel that directly
1907  * set the page dirty bit without asking the filesystem if it is a
1908  * good idea.  This causes problems because we want to make sure COW
1909  * properly happens and the data=ordered rules are followed.
1910  *
1911  * In our case any range that doesn't have the ORDERED bit set
1912  * hasn't been properly setup for IO.  We kick off an async process
1913  * to fix it up.  The async helper will wait for ordered extents, set
1914  * the delalloc bit and make it safe to write the page.
1915  */
1916 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
1917 {
1918 	struct inode *inode = page->mapping->host;
1919 	struct btrfs_writepage_fixup *fixup;
1920 	struct btrfs_root *root = BTRFS_I(inode)->root;
1921 
1922 	/* this page is properly in the ordered list */
1923 	if (TestClearPagePrivate2(page))
1924 		return 0;
1925 
1926 	if (PageChecked(page))
1927 		return -EAGAIN;
1928 
1929 	fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1930 	if (!fixup)
1931 		return -EAGAIN;
1932 
1933 	SetPageChecked(page);
1934 	page_cache_get(page);
1935 	btrfs_init_work(&fixup->work, btrfs_fixup_helper,
1936 			btrfs_writepage_fixup_worker, NULL, NULL);
1937 	fixup->page = page;
1938 	btrfs_queue_work(root->fs_info->fixup_workers, &fixup->work);
1939 	return -EBUSY;
1940 }
1941 
1942 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1943 				       struct inode *inode, u64 file_pos,
1944 				       u64 disk_bytenr, u64 disk_num_bytes,
1945 				       u64 num_bytes, u64 ram_bytes,
1946 				       u8 compression, u8 encryption,
1947 				       u16 other_encoding, int extent_type)
1948 {
1949 	struct btrfs_root *root = BTRFS_I(inode)->root;
1950 	struct btrfs_file_extent_item *fi;
1951 	struct btrfs_path *path;
1952 	struct extent_buffer *leaf;
1953 	struct btrfs_key ins;
1954 	int extent_inserted = 0;
1955 	int ret;
1956 
1957 	path = btrfs_alloc_path();
1958 	if (!path)
1959 		return -ENOMEM;
1960 
1961 	/*
1962 	 * we may be replacing one extent in the tree with another.
1963 	 * The new extent is pinned in the extent map, and we don't want
1964 	 * to drop it from the cache until it is completely in the btree.
1965 	 *
1966 	 * So, tell btrfs_drop_extents to leave this extent in the cache.
1967 	 * the caller is expected to unpin it and allow it to be merged
1968 	 * with the others.
1969 	 */
1970 	ret = __btrfs_drop_extents(trans, root, inode, path, file_pos,
1971 				   file_pos + num_bytes, NULL, 0,
1972 				   1, sizeof(*fi), &extent_inserted);
1973 	if (ret)
1974 		goto out;
1975 
1976 	if (!extent_inserted) {
1977 		ins.objectid = btrfs_ino(inode);
1978 		ins.offset = file_pos;
1979 		ins.type = BTRFS_EXTENT_DATA_KEY;
1980 
1981 		path->leave_spinning = 1;
1982 		ret = btrfs_insert_empty_item(trans, root, path, &ins,
1983 					      sizeof(*fi));
1984 		if (ret)
1985 			goto out;
1986 	}
1987 	leaf = path->nodes[0];
1988 	fi = btrfs_item_ptr(leaf, path->slots[0],
1989 			    struct btrfs_file_extent_item);
1990 	btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1991 	btrfs_set_file_extent_type(leaf, fi, extent_type);
1992 	btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1993 	btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1994 	btrfs_set_file_extent_offset(leaf, fi, 0);
1995 	btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1996 	btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1997 	btrfs_set_file_extent_compression(leaf, fi, compression);
1998 	btrfs_set_file_extent_encryption(leaf, fi, encryption);
1999 	btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
2000 
2001 	btrfs_mark_buffer_dirty(leaf);
2002 	btrfs_release_path(path);
2003 
2004 	inode_add_bytes(inode, num_bytes);
2005 
2006 	ins.objectid = disk_bytenr;
2007 	ins.offset = disk_num_bytes;
2008 	ins.type = BTRFS_EXTENT_ITEM_KEY;
2009 	ret = btrfs_alloc_reserved_file_extent(trans, root,
2010 					root->root_key.objectid,
2011 					btrfs_ino(inode), file_pos, &ins);
2012 out:
2013 	btrfs_free_path(path);
2014 
2015 	return ret;
2016 }
2017 
2018 /* snapshot-aware defrag */
2019 struct sa_defrag_extent_backref {
2020 	struct rb_node node;
2021 	struct old_sa_defrag_extent *old;
2022 	u64 root_id;
2023 	u64 inum;
2024 	u64 file_pos;
2025 	u64 extent_offset;
2026 	u64 num_bytes;
2027 	u64 generation;
2028 };
2029 
2030 struct old_sa_defrag_extent {
2031 	struct list_head list;
2032 	struct new_sa_defrag_extent *new;
2033 
2034 	u64 extent_offset;
2035 	u64 bytenr;
2036 	u64 offset;
2037 	u64 len;
2038 	int count;
2039 };
2040 
2041 struct new_sa_defrag_extent {
2042 	struct rb_root root;
2043 	struct list_head head;
2044 	struct btrfs_path *path;
2045 	struct inode *inode;
2046 	u64 file_pos;
2047 	u64 len;
2048 	u64 bytenr;
2049 	u64 disk_len;
2050 	u8 compress_type;
2051 };
2052 
2053 static int backref_comp(struct sa_defrag_extent_backref *b1,
2054 			struct sa_defrag_extent_backref *b2)
2055 {
2056 	if (b1->root_id < b2->root_id)
2057 		return -1;
2058 	else if (b1->root_id > b2->root_id)
2059 		return 1;
2060 
2061 	if (b1->inum < b2->inum)
2062 		return -1;
2063 	else if (b1->inum > b2->inum)
2064 		return 1;
2065 
2066 	if (b1->file_pos < b2->file_pos)
2067 		return -1;
2068 	else if (b1->file_pos > b2->file_pos)
2069 		return 1;
2070 
2071 	/*
2072 	 * [------------------------------] ===> (a range of space)
2073 	 *     |<--->|   |<---->| =============> (fs/file tree A)
2074 	 * |<---------------------------->| ===> (fs/file tree B)
2075 	 *
2076 	 * A range of space can refer to two file extents in one tree while
2077 	 * refer to only one file extent in another tree.
2078 	 *
2079 	 * So we may process a disk offset more than one time(two extents in A)
2080 	 * and locate at the same extent(one extent in B), then insert two same
2081 	 * backrefs(both refer to the extent in B).
2082 	 */
2083 	return 0;
2084 }
2085 
2086 static void backref_insert(struct rb_root *root,
2087 			   struct sa_defrag_extent_backref *backref)
2088 {
2089 	struct rb_node **p = &root->rb_node;
2090 	struct rb_node *parent = NULL;
2091 	struct sa_defrag_extent_backref *entry;
2092 	int ret;
2093 
2094 	while (*p) {
2095 		parent = *p;
2096 		entry = rb_entry(parent, struct sa_defrag_extent_backref, node);
2097 
2098 		ret = backref_comp(backref, entry);
2099 		if (ret < 0)
2100 			p = &(*p)->rb_left;
2101 		else
2102 			p = &(*p)->rb_right;
2103 	}
2104 
2105 	rb_link_node(&backref->node, parent, p);
2106 	rb_insert_color(&backref->node, root);
2107 }
2108 
2109 /*
2110  * Note the backref might has changed, and in this case we just return 0.
2111  */
2112 static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id,
2113 				       void *ctx)
2114 {
2115 	struct btrfs_file_extent_item *extent;
2116 	struct btrfs_fs_info *fs_info;
2117 	struct old_sa_defrag_extent *old = ctx;
2118 	struct new_sa_defrag_extent *new = old->new;
2119 	struct btrfs_path *path = new->path;
2120 	struct btrfs_key key;
2121 	struct btrfs_root *root;
2122 	struct sa_defrag_extent_backref *backref;
2123 	struct extent_buffer *leaf;
2124 	struct inode *inode = new->inode;
2125 	int slot;
2126 	int ret;
2127 	u64 extent_offset;
2128 	u64 num_bytes;
2129 
2130 	if (BTRFS_I(inode)->root->root_key.objectid == root_id &&
2131 	    inum == btrfs_ino(inode))
2132 		return 0;
2133 
2134 	key.objectid = root_id;
2135 	key.type = BTRFS_ROOT_ITEM_KEY;
2136 	key.offset = (u64)-1;
2137 
2138 	fs_info = BTRFS_I(inode)->root->fs_info;
2139 	root = btrfs_read_fs_root_no_name(fs_info, &key);
2140 	if (IS_ERR(root)) {
2141 		if (PTR_ERR(root) == -ENOENT)
2142 			return 0;
2143 		WARN_ON(1);
2144 		pr_debug("inum=%llu, offset=%llu, root_id=%llu\n",
2145 			 inum, offset, root_id);
2146 		return PTR_ERR(root);
2147 	}
2148 
2149 	key.objectid = inum;
2150 	key.type = BTRFS_EXTENT_DATA_KEY;
2151 	if (offset > (u64)-1 << 32)
2152 		key.offset = 0;
2153 	else
2154 		key.offset = offset;
2155 
2156 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2157 	if (WARN_ON(ret < 0))
2158 		return ret;
2159 	ret = 0;
2160 
2161 	while (1) {
2162 		cond_resched();
2163 
2164 		leaf = path->nodes[0];
2165 		slot = path->slots[0];
2166 
2167 		if (slot >= btrfs_header_nritems(leaf)) {
2168 			ret = btrfs_next_leaf(root, path);
2169 			if (ret < 0) {
2170 				goto out;
2171 			} else if (ret > 0) {
2172 				ret = 0;
2173 				goto out;
2174 			}
2175 			continue;
2176 		}
2177 
2178 		path->slots[0]++;
2179 
2180 		btrfs_item_key_to_cpu(leaf, &key, slot);
2181 
2182 		if (key.objectid > inum)
2183 			goto out;
2184 
2185 		if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY)
2186 			continue;
2187 
2188 		extent = btrfs_item_ptr(leaf, slot,
2189 					struct btrfs_file_extent_item);
2190 
2191 		if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr)
2192 			continue;
2193 
2194 		/*
2195 		 * 'offset' refers to the exact key.offset,
2196 		 * NOT the 'offset' field in btrfs_extent_data_ref, ie.
2197 		 * (key.offset - extent_offset).
2198 		 */
2199 		if (key.offset != offset)
2200 			continue;
2201 
2202 		extent_offset = btrfs_file_extent_offset(leaf, extent);
2203 		num_bytes = btrfs_file_extent_num_bytes(leaf, extent);
2204 
2205 		if (extent_offset >= old->extent_offset + old->offset +
2206 		    old->len || extent_offset + num_bytes <=
2207 		    old->extent_offset + old->offset)
2208 			continue;
2209 		break;
2210 	}
2211 
2212 	backref = kmalloc(sizeof(*backref), GFP_NOFS);
2213 	if (!backref) {
2214 		ret = -ENOENT;
2215 		goto out;
2216 	}
2217 
2218 	backref->root_id = root_id;
2219 	backref->inum = inum;
2220 	backref->file_pos = offset;
2221 	backref->num_bytes = num_bytes;
2222 	backref->extent_offset = extent_offset;
2223 	backref->generation = btrfs_file_extent_generation(leaf, extent);
2224 	backref->old = old;
2225 	backref_insert(&new->root, backref);
2226 	old->count++;
2227 out:
2228 	btrfs_release_path(path);
2229 	WARN_ON(ret);
2230 	return ret;
2231 }
2232 
2233 static noinline bool record_extent_backrefs(struct btrfs_path *path,
2234 				   struct new_sa_defrag_extent *new)
2235 {
2236 	struct btrfs_fs_info *fs_info = BTRFS_I(new->inode)->root->fs_info;
2237 	struct old_sa_defrag_extent *old, *tmp;
2238 	int ret;
2239 
2240 	new->path = path;
2241 
2242 	list_for_each_entry_safe(old, tmp, &new->head, list) {
2243 		ret = iterate_inodes_from_logical(old->bytenr +
2244 						  old->extent_offset, fs_info,
2245 						  path, record_one_backref,
2246 						  old);
2247 		if (ret < 0 && ret != -ENOENT)
2248 			return false;
2249 
2250 		/* no backref to be processed for this extent */
2251 		if (!old->count) {
2252 			list_del(&old->list);
2253 			kfree(old);
2254 		}
2255 	}
2256 
2257 	if (list_empty(&new->head))
2258 		return false;
2259 
2260 	return true;
2261 }
2262 
2263 static int relink_is_mergable(struct extent_buffer *leaf,
2264 			      struct btrfs_file_extent_item *fi,
2265 			      struct new_sa_defrag_extent *new)
2266 {
2267 	if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr)
2268 		return 0;
2269 
2270 	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2271 		return 0;
2272 
2273 	if (btrfs_file_extent_compression(leaf, fi) != new->compress_type)
2274 		return 0;
2275 
2276 	if (btrfs_file_extent_encryption(leaf, fi) ||
2277 	    btrfs_file_extent_other_encoding(leaf, fi))
2278 		return 0;
2279 
2280 	return 1;
2281 }
2282 
2283 /*
2284  * Note the backref might has changed, and in this case we just return 0.
2285  */
2286 static noinline int relink_extent_backref(struct btrfs_path *path,
2287 				 struct sa_defrag_extent_backref *prev,
2288 				 struct sa_defrag_extent_backref *backref)
2289 {
2290 	struct btrfs_file_extent_item *extent;
2291 	struct btrfs_file_extent_item *item;
2292 	struct btrfs_ordered_extent *ordered;
2293 	struct btrfs_trans_handle *trans;
2294 	struct btrfs_fs_info *fs_info;
2295 	struct btrfs_root *root;
2296 	struct btrfs_key key;
2297 	struct extent_buffer *leaf;
2298 	struct old_sa_defrag_extent *old = backref->old;
2299 	struct new_sa_defrag_extent *new = old->new;
2300 	struct inode *src_inode = new->inode;
2301 	struct inode *inode;
2302 	struct extent_state *cached = NULL;
2303 	int ret = 0;
2304 	u64 start;
2305 	u64 len;
2306 	u64 lock_start;
2307 	u64 lock_end;
2308 	bool merge = false;
2309 	int index;
2310 
2311 	if (prev && prev->root_id == backref->root_id &&
2312 	    prev->inum == backref->inum &&
2313 	    prev->file_pos + prev->num_bytes == backref->file_pos)
2314 		merge = true;
2315 
2316 	/* step 1: get root */
2317 	key.objectid = backref->root_id;
2318 	key.type = BTRFS_ROOT_ITEM_KEY;
2319 	key.offset = (u64)-1;
2320 
2321 	fs_info = BTRFS_I(src_inode)->root->fs_info;
2322 	index = srcu_read_lock(&fs_info->subvol_srcu);
2323 
2324 	root = btrfs_read_fs_root_no_name(fs_info, &key);
2325 	if (IS_ERR(root)) {
2326 		srcu_read_unlock(&fs_info->subvol_srcu, index);
2327 		if (PTR_ERR(root) == -ENOENT)
2328 			return 0;
2329 		return PTR_ERR(root);
2330 	}
2331 
2332 	if (btrfs_root_readonly(root)) {
2333 		srcu_read_unlock(&fs_info->subvol_srcu, index);
2334 		return 0;
2335 	}
2336 
2337 	/* step 2: get inode */
2338 	key.objectid = backref->inum;
2339 	key.type = BTRFS_INODE_ITEM_KEY;
2340 	key.offset = 0;
2341 
2342 	inode = btrfs_iget(fs_info->sb, &key, root, NULL);
2343 	if (IS_ERR(inode)) {
2344 		srcu_read_unlock(&fs_info->subvol_srcu, index);
2345 		return 0;
2346 	}
2347 
2348 	srcu_read_unlock(&fs_info->subvol_srcu, index);
2349 
2350 	/* step 3: relink backref */
2351 	lock_start = backref->file_pos;
2352 	lock_end = backref->file_pos + backref->num_bytes - 1;
2353 	lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2354 			 0, &cached);
2355 
2356 	ordered = btrfs_lookup_first_ordered_extent(inode, lock_end);
2357 	if (ordered) {
2358 		btrfs_put_ordered_extent(ordered);
2359 		goto out_unlock;
2360 	}
2361 
2362 	trans = btrfs_join_transaction(root);
2363 	if (IS_ERR(trans)) {
2364 		ret = PTR_ERR(trans);
2365 		goto out_unlock;
2366 	}
2367 
2368 	key.objectid = backref->inum;
2369 	key.type = BTRFS_EXTENT_DATA_KEY;
2370 	key.offset = backref->file_pos;
2371 
2372 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2373 	if (ret < 0) {
2374 		goto out_free_path;
2375 	} else if (ret > 0) {
2376 		ret = 0;
2377 		goto out_free_path;
2378 	}
2379 
2380 	extent = btrfs_item_ptr(path->nodes[0], path->slots[0],
2381 				struct btrfs_file_extent_item);
2382 
2383 	if (btrfs_file_extent_generation(path->nodes[0], extent) !=
2384 	    backref->generation)
2385 		goto out_free_path;
2386 
2387 	btrfs_release_path(path);
2388 
2389 	start = backref->file_pos;
2390 	if (backref->extent_offset < old->extent_offset + old->offset)
2391 		start += old->extent_offset + old->offset -
2392 			 backref->extent_offset;
2393 
2394 	len = min(backref->extent_offset + backref->num_bytes,
2395 		  old->extent_offset + old->offset + old->len);
2396 	len -= max(backref->extent_offset, old->extent_offset + old->offset);
2397 
2398 	ret = btrfs_drop_extents(trans, root, inode, start,
2399 				 start + len, 1);
2400 	if (ret)
2401 		goto out_free_path;
2402 again:
2403 	key.objectid = btrfs_ino(inode);
2404 	key.type = BTRFS_EXTENT_DATA_KEY;
2405 	key.offset = start;
2406 
2407 	path->leave_spinning = 1;
2408 	if (merge) {
2409 		struct btrfs_file_extent_item *fi;
2410 		u64 extent_len;
2411 		struct btrfs_key found_key;
2412 
2413 		ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2414 		if (ret < 0)
2415 			goto out_free_path;
2416 
2417 		path->slots[0]--;
2418 		leaf = path->nodes[0];
2419 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2420 
2421 		fi = btrfs_item_ptr(leaf, path->slots[0],
2422 				    struct btrfs_file_extent_item);
2423 		extent_len = btrfs_file_extent_num_bytes(leaf, fi);
2424 
2425 		if (extent_len + found_key.offset == start &&
2426 		    relink_is_mergable(leaf, fi, new)) {
2427 			btrfs_set_file_extent_num_bytes(leaf, fi,
2428 							extent_len + len);
2429 			btrfs_mark_buffer_dirty(leaf);
2430 			inode_add_bytes(inode, len);
2431 
2432 			ret = 1;
2433 			goto out_free_path;
2434 		} else {
2435 			merge = false;
2436 			btrfs_release_path(path);
2437 			goto again;
2438 		}
2439 	}
2440 
2441 	ret = btrfs_insert_empty_item(trans, root, path, &key,
2442 					sizeof(*extent));
2443 	if (ret) {
2444 		btrfs_abort_transaction(trans, root, ret);
2445 		goto out_free_path;
2446 	}
2447 
2448 	leaf = path->nodes[0];
2449 	item = btrfs_item_ptr(leaf, path->slots[0],
2450 				struct btrfs_file_extent_item);
2451 	btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr);
2452 	btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len);
2453 	btrfs_set_file_extent_offset(leaf, item, start - new->file_pos);
2454 	btrfs_set_file_extent_num_bytes(leaf, item, len);
2455 	btrfs_set_file_extent_ram_bytes(leaf, item, new->len);
2456 	btrfs_set_file_extent_generation(leaf, item, trans->transid);
2457 	btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
2458 	btrfs_set_file_extent_compression(leaf, item, new->compress_type);
2459 	btrfs_set_file_extent_encryption(leaf, item, 0);
2460 	btrfs_set_file_extent_other_encoding(leaf, item, 0);
2461 
2462 	btrfs_mark_buffer_dirty(leaf);
2463 	inode_add_bytes(inode, len);
2464 	btrfs_release_path(path);
2465 
2466 	ret = btrfs_inc_extent_ref(trans, root, new->bytenr,
2467 			new->disk_len, 0,
2468 			backref->root_id, backref->inum,
2469 			new->file_pos, 0);	/* start - extent_offset */
2470 	if (ret) {
2471 		btrfs_abort_transaction(trans, root, ret);
2472 		goto out_free_path;
2473 	}
2474 
2475 	ret = 1;
2476 out_free_path:
2477 	btrfs_release_path(path);
2478 	path->leave_spinning = 0;
2479 	btrfs_end_transaction(trans, root);
2480 out_unlock:
2481 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2482 			     &cached, GFP_NOFS);
2483 	iput(inode);
2484 	return ret;
2485 }
2486 
2487 static void free_sa_defrag_extent(struct new_sa_defrag_extent *new)
2488 {
2489 	struct old_sa_defrag_extent *old, *tmp;
2490 
2491 	if (!new)
2492 		return;
2493 
2494 	list_for_each_entry_safe(old, tmp, &new->head, list) {
2495 		list_del(&old->list);
2496 		kfree(old);
2497 	}
2498 	kfree(new);
2499 }
2500 
2501 static void relink_file_extents(struct new_sa_defrag_extent *new)
2502 {
2503 	struct btrfs_path *path;
2504 	struct sa_defrag_extent_backref *backref;
2505 	struct sa_defrag_extent_backref *prev = NULL;
2506 	struct inode *inode;
2507 	struct btrfs_root *root;
2508 	struct rb_node *node;
2509 	int ret;
2510 
2511 	inode = new->inode;
2512 	root = BTRFS_I(inode)->root;
2513 
2514 	path = btrfs_alloc_path();
2515 	if (!path)
2516 		return;
2517 
2518 	if (!record_extent_backrefs(path, new)) {
2519 		btrfs_free_path(path);
2520 		goto out;
2521 	}
2522 	btrfs_release_path(path);
2523 
2524 	while (1) {
2525 		node = rb_first(&new->root);
2526 		if (!node)
2527 			break;
2528 		rb_erase(node, &new->root);
2529 
2530 		backref = rb_entry(node, struct sa_defrag_extent_backref, node);
2531 
2532 		ret = relink_extent_backref(path, prev, backref);
2533 		WARN_ON(ret < 0);
2534 
2535 		kfree(prev);
2536 
2537 		if (ret == 1)
2538 			prev = backref;
2539 		else
2540 			prev = NULL;
2541 		cond_resched();
2542 	}
2543 	kfree(prev);
2544 
2545 	btrfs_free_path(path);
2546 out:
2547 	free_sa_defrag_extent(new);
2548 
2549 	atomic_dec(&root->fs_info->defrag_running);
2550 	wake_up(&root->fs_info->transaction_wait);
2551 }
2552 
2553 static struct new_sa_defrag_extent *
2554 record_old_file_extents(struct inode *inode,
2555 			struct btrfs_ordered_extent *ordered)
2556 {
2557 	struct btrfs_root *root = BTRFS_I(inode)->root;
2558 	struct btrfs_path *path;
2559 	struct btrfs_key key;
2560 	struct old_sa_defrag_extent *old;
2561 	struct new_sa_defrag_extent *new;
2562 	int ret;
2563 
2564 	new = kmalloc(sizeof(*new), GFP_NOFS);
2565 	if (!new)
2566 		return NULL;
2567 
2568 	new->inode = inode;
2569 	new->file_pos = ordered->file_offset;
2570 	new->len = ordered->len;
2571 	new->bytenr = ordered->start;
2572 	new->disk_len = ordered->disk_len;
2573 	new->compress_type = ordered->compress_type;
2574 	new->root = RB_ROOT;
2575 	INIT_LIST_HEAD(&new->head);
2576 
2577 	path = btrfs_alloc_path();
2578 	if (!path)
2579 		goto out_kfree;
2580 
2581 	key.objectid = btrfs_ino(inode);
2582 	key.type = BTRFS_EXTENT_DATA_KEY;
2583 	key.offset = new->file_pos;
2584 
2585 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2586 	if (ret < 0)
2587 		goto out_free_path;
2588 	if (ret > 0 && path->slots[0] > 0)
2589 		path->slots[0]--;
2590 
2591 	/* find out all the old extents for the file range */
2592 	while (1) {
2593 		struct btrfs_file_extent_item *extent;
2594 		struct extent_buffer *l;
2595 		int slot;
2596 		u64 num_bytes;
2597 		u64 offset;
2598 		u64 end;
2599 		u64 disk_bytenr;
2600 		u64 extent_offset;
2601 
2602 		l = path->nodes[0];
2603 		slot = path->slots[0];
2604 
2605 		if (slot >= btrfs_header_nritems(l)) {
2606 			ret = btrfs_next_leaf(root, path);
2607 			if (ret < 0)
2608 				goto out_free_path;
2609 			else if (ret > 0)
2610 				break;
2611 			continue;
2612 		}
2613 
2614 		btrfs_item_key_to_cpu(l, &key, slot);
2615 
2616 		if (key.objectid != btrfs_ino(inode))
2617 			break;
2618 		if (key.type != BTRFS_EXTENT_DATA_KEY)
2619 			break;
2620 		if (key.offset >= new->file_pos + new->len)
2621 			break;
2622 
2623 		extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item);
2624 
2625 		num_bytes = btrfs_file_extent_num_bytes(l, extent);
2626 		if (key.offset + num_bytes < new->file_pos)
2627 			goto next;
2628 
2629 		disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent);
2630 		if (!disk_bytenr)
2631 			goto next;
2632 
2633 		extent_offset = btrfs_file_extent_offset(l, extent);
2634 
2635 		old = kmalloc(sizeof(*old), GFP_NOFS);
2636 		if (!old)
2637 			goto out_free_path;
2638 
2639 		offset = max(new->file_pos, key.offset);
2640 		end = min(new->file_pos + new->len, key.offset + num_bytes);
2641 
2642 		old->bytenr = disk_bytenr;
2643 		old->extent_offset = extent_offset;
2644 		old->offset = offset - key.offset;
2645 		old->len = end - offset;
2646 		old->new = new;
2647 		old->count = 0;
2648 		list_add_tail(&old->list, &new->head);
2649 next:
2650 		path->slots[0]++;
2651 		cond_resched();
2652 	}
2653 
2654 	btrfs_free_path(path);
2655 	atomic_inc(&root->fs_info->defrag_running);
2656 
2657 	return new;
2658 
2659 out_free_path:
2660 	btrfs_free_path(path);
2661 out_kfree:
2662 	free_sa_defrag_extent(new);
2663 	return NULL;
2664 }
2665 
2666 static void btrfs_release_delalloc_bytes(struct btrfs_root *root,
2667 					 u64 start, u64 len)
2668 {
2669 	struct btrfs_block_group_cache *cache;
2670 
2671 	cache = btrfs_lookup_block_group(root->fs_info, start);
2672 	ASSERT(cache);
2673 
2674 	spin_lock(&cache->lock);
2675 	cache->delalloc_bytes -= len;
2676 	spin_unlock(&cache->lock);
2677 
2678 	btrfs_put_block_group(cache);
2679 }
2680 
2681 /* as ordered data IO finishes, this gets called so we can finish
2682  * an ordered extent if the range of bytes in the file it covers are
2683  * fully written.
2684  */
2685 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
2686 {
2687 	struct inode *inode = ordered_extent->inode;
2688 	struct btrfs_root *root = BTRFS_I(inode)->root;
2689 	struct btrfs_trans_handle *trans = NULL;
2690 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2691 	struct extent_state *cached_state = NULL;
2692 	struct new_sa_defrag_extent *new = NULL;
2693 	int compress_type = 0;
2694 	int ret = 0;
2695 	u64 logical_len = ordered_extent->len;
2696 	bool nolock;
2697 	bool truncated = false;
2698 
2699 	nolock = btrfs_is_free_space_inode(inode);
2700 
2701 	if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
2702 		ret = -EIO;
2703 		goto out;
2704 	}
2705 
2706 	btrfs_free_io_failure_record(inode, ordered_extent->file_offset,
2707 				     ordered_extent->file_offset +
2708 				     ordered_extent->len - 1);
2709 
2710 	if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
2711 		truncated = true;
2712 		logical_len = ordered_extent->truncated_len;
2713 		/* Truncated the entire extent, don't bother adding */
2714 		if (!logical_len)
2715 			goto out;
2716 	}
2717 
2718 	if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
2719 		BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
2720 		btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2721 		if (nolock)
2722 			trans = btrfs_join_transaction_nolock(root);
2723 		else
2724 			trans = btrfs_join_transaction(root);
2725 		if (IS_ERR(trans)) {
2726 			ret = PTR_ERR(trans);
2727 			trans = NULL;
2728 			goto out;
2729 		}
2730 		trans->block_rsv = &root->fs_info->delalloc_block_rsv;
2731 		ret = btrfs_update_inode_fallback(trans, root, inode);
2732 		if (ret) /* -ENOMEM or corruption */
2733 			btrfs_abort_transaction(trans, root, ret);
2734 		goto out;
2735 	}
2736 
2737 	lock_extent_bits(io_tree, ordered_extent->file_offset,
2738 			 ordered_extent->file_offset + ordered_extent->len - 1,
2739 			 0, &cached_state);
2740 
2741 	ret = test_range_bit(io_tree, ordered_extent->file_offset,
2742 			ordered_extent->file_offset + ordered_extent->len - 1,
2743 			EXTENT_DEFRAG, 1, cached_state);
2744 	if (ret) {
2745 		u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
2746 		if (0 && last_snapshot >= BTRFS_I(inode)->generation)
2747 			/* the inode is shared */
2748 			new = record_old_file_extents(inode, ordered_extent);
2749 
2750 		clear_extent_bit(io_tree, ordered_extent->file_offset,
2751 			ordered_extent->file_offset + ordered_extent->len - 1,
2752 			EXTENT_DEFRAG, 0, 0, &cached_state, GFP_NOFS);
2753 	}
2754 
2755 	if (nolock)
2756 		trans = btrfs_join_transaction_nolock(root);
2757 	else
2758 		trans = btrfs_join_transaction(root);
2759 	if (IS_ERR(trans)) {
2760 		ret = PTR_ERR(trans);
2761 		trans = NULL;
2762 		goto out_unlock;
2763 	}
2764 
2765 	trans->block_rsv = &root->fs_info->delalloc_block_rsv;
2766 
2767 	if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
2768 		compress_type = ordered_extent->compress_type;
2769 	if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
2770 		BUG_ON(compress_type);
2771 		ret = btrfs_mark_extent_written(trans, inode,
2772 						ordered_extent->file_offset,
2773 						ordered_extent->file_offset +
2774 						logical_len);
2775 	} else {
2776 		BUG_ON(root == root->fs_info->tree_root);
2777 		ret = insert_reserved_file_extent(trans, inode,
2778 						ordered_extent->file_offset,
2779 						ordered_extent->start,
2780 						ordered_extent->disk_len,
2781 						logical_len, logical_len,
2782 						compress_type, 0, 0,
2783 						BTRFS_FILE_EXTENT_REG);
2784 		if (!ret)
2785 			btrfs_release_delalloc_bytes(root,
2786 						     ordered_extent->start,
2787 						     ordered_extent->disk_len);
2788 	}
2789 	unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
2790 			   ordered_extent->file_offset, ordered_extent->len,
2791 			   trans->transid);
2792 	if (ret < 0) {
2793 		btrfs_abort_transaction(trans, root, ret);
2794 		goto out_unlock;
2795 	}
2796 
2797 	add_pending_csums(trans, inode, ordered_extent->file_offset,
2798 			  &ordered_extent->list);
2799 
2800 	btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2801 	ret = btrfs_update_inode_fallback(trans, root, inode);
2802 	if (ret) { /* -ENOMEM or corruption */
2803 		btrfs_abort_transaction(trans, root, ret);
2804 		goto out_unlock;
2805 	}
2806 	ret = 0;
2807 out_unlock:
2808 	unlock_extent_cached(io_tree, ordered_extent->file_offset,
2809 			     ordered_extent->file_offset +
2810 			     ordered_extent->len - 1, &cached_state, GFP_NOFS);
2811 out:
2812 	if (root != root->fs_info->tree_root)
2813 		btrfs_delalloc_release_metadata(inode, ordered_extent->len);
2814 	if (trans)
2815 		btrfs_end_transaction(trans, root);
2816 
2817 	if (ret || truncated) {
2818 		u64 start, end;
2819 
2820 		if (truncated)
2821 			start = ordered_extent->file_offset + logical_len;
2822 		else
2823 			start = ordered_extent->file_offset;
2824 		end = ordered_extent->file_offset + ordered_extent->len - 1;
2825 		clear_extent_uptodate(io_tree, start, end, NULL, GFP_NOFS);
2826 
2827 		/* Drop the cache for the part of the extent we didn't write. */
2828 		btrfs_drop_extent_cache(inode, start, end, 0);
2829 
2830 		/*
2831 		 * If the ordered extent had an IOERR or something else went
2832 		 * wrong we need to return the space for this ordered extent
2833 		 * back to the allocator.  We only free the extent in the
2834 		 * truncated case if we didn't write out the extent at all.
2835 		 */
2836 		if ((ret || !logical_len) &&
2837 		    !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
2838 		    !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags))
2839 			btrfs_free_reserved_extent(root, ordered_extent->start,
2840 						   ordered_extent->disk_len, 1);
2841 	}
2842 
2843 
2844 	/*
2845 	 * This needs to be done to make sure anybody waiting knows we are done
2846 	 * updating everything for this ordered extent.
2847 	 */
2848 	btrfs_remove_ordered_extent(inode, ordered_extent);
2849 
2850 	/* for snapshot-aware defrag */
2851 	if (new) {
2852 		if (ret) {
2853 			free_sa_defrag_extent(new);
2854 			atomic_dec(&root->fs_info->defrag_running);
2855 		} else {
2856 			relink_file_extents(new);
2857 		}
2858 	}
2859 
2860 	/* once for us */
2861 	btrfs_put_ordered_extent(ordered_extent);
2862 	/* once for the tree */
2863 	btrfs_put_ordered_extent(ordered_extent);
2864 
2865 	return ret;
2866 }
2867 
2868 static void finish_ordered_fn(struct btrfs_work *work)
2869 {
2870 	struct btrfs_ordered_extent *ordered_extent;
2871 	ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
2872 	btrfs_finish_ordered_io(ordered_extent);
2873 }
2874 
2875 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
2876 				struct extent_state *state, int uptodate)
2877 {
2878 	struct inode *inode = page->mapping->host;
2879 	struct btrfs_root *root = BTRFS_I(inode)->root;
2880 	struct btrfs_ordered_extent *ordered_extent = NULL;
2881 	struct btrfs_workqueue *wq;
2882 	btrfs_work_func_t func;
2883 
2884 	trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
2885 
2886 	ClearPagePrivate2(page);
2887 	if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
2888 					    end - start + 1, uptodate))
2889 		return 0;
2890 
2891 	if (btrfs_is_free_space_inode(inode)) {
2892 		wq = root->fs_info->endio_freespace_worker;
2893 		func = btrfs_freespace_write_helper;
2894 	} else {
2895 		wq = root->fs_info->endio_write_workers;
2896 		func = btrfs_endio_write_helper;
2897 	}
2898 
2899 	btrfs_init_work(&ordered_extent->work, func, finish_ordered_fn, NULL,
2900 			NULL);
2901 	btrfs_queue_work(wq, &ordered_extent->work);
2902 
2903 	return 0;
2904 }
2905 
2906 static int __readpage_endio_check(struct inode *inode,
2907 				  struct btrfs_io_bio *io_bio,
2908 				  int icsum, struct page *page,
2909 				  int pgoff, u64 start, size_t len)
2910 {
2911 	char *kaddr;
2912 	u32 csum_expected;
2913 	u32 csum = ~(u32)0;
2914 	static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
2915 				      DEFAULT_RATELIMIT_BURST);
2916 
2917 	csum_expected = *(((u32 *)io_bio->csum) + icsum);
2918 
2919 	kaddr = kmap_atomic(page);
2920 	csum = btrfs_csum_data(kaddr + pgoff, csum,  len);
2921 	btrfs_csum_final(csum, (char *)&csum);
2922 	if (csum != csum_expected)
2923 		goto zeroit;
2924 
2925 	kunmap_atomic(kaddr);
2926 	return 0;
2927 zeroit:
2928 	if (__ratelimit(&_rs))
2929 		btrfs_info(BTRFS_I(inode)->root->fs_info,
2930 			   "csum failed ino %llu off %llu csum %u expected csum %u",
2931 			   btrfs_ino(inode), start, csum, csum_expected);
2932 	memset(kaddr + pgoff, 1, len);
2933 	flush_dcache_page(page);
2934 	kunmap_atomic(kaddr);
2935 	if (csum_expected == 0)
2936 		return 0;
2937 	return -EIO;
2938 }
2939 
2940 /*
2941  * when reads are done, we need to check csums to verify the data is correct
2942  * if there's a match, we allow the bio to finish.  If not, the code in
2943  * extent_io.c will try to find good copies for us.
2944  */
2945 static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
2946 				      u64 phy_offset, struct page *page,
2947 				      u64 start, u64 end, int mirror)
2948 {
2949 	size_t offset = start - page_offset(page);
2950 	struct inode *inode = page->mapping->host;
2951 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2952 	struct btrfs_root *root = BTRFS_I(inode)->root;
2953 
2954 	if (PageChecked(page)) {
2955 		ClearPageChecked(page);
2956 		return 0;
2957 	}
2958 
2959 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
2960 		return 0;
2961 
2962 	if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
2963 	    test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
2964 		clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
2965 				  GFP_NOFS);
2966 		return 0;
2967 	}
2968 
2969 	phy_offset >>= inode->i_sb->s_blocksize_bits;
2970 	return __readpage_endio_check(inode, io_bio, phy_offset, page, offset,
2971 				      start, (size_t)(end - start + 1));
2972 }
2973 
2974 struct delayed_iput {
2975 	struct list_head list;
2976 	struct inode *inode;
2977 };
2978 
2979 /* JDM: If this is fs-wide, why can't we add a pointer to
2980  * btrfs_inode instead and avoid the allocation? */
2981 void btrfs_add_delayed_iput(struct inode *inode)
2982 {
2983 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2984 	struct delayed_iput *delayed;
2985 
2986 	if (atomic_add_unless(&inode->i_count, -1, 1))
2987 		return;
2988 
2989 	delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
2990 	delayed->inode = inode;
2991 
2992 	spin_lock(&fs_info->delayed_iput_lock);
2993 	list_add_tail(&delayed->list, &fs_info->delayed_iputs);
2994 	spin_unlock(&fs_info->delayed_iput_lock);
2995 }
2996 
2997 void btrfs_run_delayed_iputs(struct btrfs_root *root)
2998 {
2999 	LIST_HEAD(list);
3000 	struct btrfs_fs_info *fs_info = root->fs_info;
3001 	struct delayed_iput *delayed;
3002 	int empty;
3003 
3004 	spin_lock(&fs_info->delayed_iput_lock);
3005 	empty = list_empty(&fs_info->delayed_iputs);
3006 	spin_unlock(&fs_info->delayed_iput_lock);
3007 	if (empty)
3008 		return;
3009 
3010 	spin_lock(&fs_info->delayed_iput_lock);
3011 	list_splice_init(&fs_info->delayed_iputs, &list);
3012 	spin_unlock(&fs_info->delayed_iput_lock);
3013 
3014 	while (!list_empty(&list)) {
3015 		delayed = list_entry(list.next, struct delayed_iput, list);
3016 		list_del(&delayed->list);
3017 		iput(delayed->inode);
3018 		kfree(delayed);
3019 	}
3020 }
3021 
3022 /*
3023  * This is called in transaction commit time. If there are no orphan
3024  * files in the subvolume, it removes orphan item and frees block_rsv
3025  * structure.
3026  */
3027 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
3028 			      struct btrfs_root *root)
3029 {
3030 	struct btrfs_block_rsv *block_rsv;
3031 	int ret;
3032 
3033 	if (atomic_read(&root->orphan_inodes) ||
3034 	    root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
3035 		return;
3036 
3037 	spin_lock(&root->orphan_lock);
3038 	if (atomic_read(&root->orphan_inodes)) {
3039 		spin_unlock(&root->orphan_lock);
3040 		return;
3041 	}
3042 
3043 	if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) {
3044 		spin_unlock(&root->orphan_lock);
3045 		return;
3046 	}
3047 
3048 	block_rsv = root->orphan_block_rsv;
3049 	root->orphan_block_rsv = NULL;
3050 	spin_unlock(&root->orphan_lock);
3051 
3052 	if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state) &&
3053 	    btrfs_root_refs(&root->root_item) > 0) {
3054 		ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
3055 					    root->root_key.objectid);
3056 		if (ret)
3057 			btrfs_abort_transaction(trans, root, ret);
3058 		else
3059 			clear_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED,
3060 				  &root->state);
3061 	}
3062 
3063 	if (block_rsv) {
3064 		WARN_ON(block_rsv->size > 0);
3065 		btrfs_free_block_rsv(root, block_rsv);
3066 	}
3067 }
3068 
3069 /*
3070  * This creates an orphan entry for the given inode in case something goes
3071  * wrong in the middle of an unlink/truncate.
3072  *
3073  * NOTE: caller of this function should reserve 5 units of metadata for
3074  *	 this function.
3075  */
3076 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
3077 {
3078 	struct btrfs_root *root = BTRFS_I(inode)->root;
3079 	struct btrfs_block_rsv *block_rsv = NULL;
3080 	int reserve = 0;
3081 	int insert = 0;
3082 	int ret;
3083 
3084 	if (!root->orphan_block_rsv) {
3085 		block_rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
3086 		if (!block_rsv)
3087 			return -ENOMEM;
3088 	}
3089 
3090 	spin_lock(&root->orphan_lock);
3091 	if (!root->orphan_block_rsv) {
3092 		root->orphan_block_rsv = block_rsv;
3093 	} else if (block_rsv) {
3094 		btrfs_free_block_rsv(root, block_rsv);
3095 		block_rsv = NULL;
3096 	}
3097 
3098 	if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3099 			      &BTRFS_I(inode)->runtime_flags)) {
3100 #if 0
3101 		/*
3102 		 * For proper ENOSPC handling, we should do orphan
3103 		 * cleanup when mounting. But this introduces backward
3104 		 * compatibility issue.
3105 		 */
3106 		if (!xchg(&root->orphan_item_inserted, 1))
3107 			insert = 2;
3108 		else
3109 			insert = 1;
3110 #endif
3111 		insert = 1;
3112 		atomic_inc(&root->orphan_inodes);
3113 	}
3114 
3115 	if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3116 			      &BTRFS_I(inode)->runtime_flags))
3117 		reserve = 1;
3118 	spin_unlock(&root->orphan_lock);
3119 
3120 	/* grab metadata reservation from transaction handle */
3121 	if (reserve) {
3122 		ret = btrfs_orphan_reserve_metadata(trans, inode);
3123 		BUG_ON(ret); /* -ENOSPC in reservation; Logic error? JDM */
3124 	}
3125 
3126 	/* insert an orphan item to track this unlinked/truncated file */
3127 	if (insert >= 1) {
3128 		ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
3129 		if (ret) {
3130 			atomic_dec(&root->orphan_inodes);
3131 			if (reserve) {
3132 				clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3133 					  &BTRFS_I(inode)->runtime_flags);
3134 				btrfs_orphan_release_metadata(inode);
3135 			}
3136 			if (ret != -EEXIST) {
3137 				clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3138 					  &BTRFS_I(inode)->runtime_flags);
3139 				btrfs_abort_transaction(trans, root, ret);
3140 				return ret;
3141 			}
3142 		}
3143 		ret = 0;
3144 	}
3145 
3146 	/* insert an orphan item to track subvolume contains orphan files */
3147 	if (insert >= 2) {
3148 		ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
3149 					       root->root_key.objectid);
3150 		if (ret && ret != -EEXIST) {
3151 			btrfs_abort_transaction(trans, root, ret);
3152 			return ret;
3153 		}
3154 	}
3155 	return 0;
3156 }
3157 
3158 /*
3159  * We have done the truncate/delete so we can go ahead and remove the orphan
3160  * item for this particular inode.
3161  */
3162 static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3163 			    struct inode *inode)
3164 {
3165 	struct btrfs_root *root = BTRFS_I(inode)->root;
3166 	int delete_item = 0;
3167 	int release_rsv = 0;
3168 	int ret = 0;
3169 
3170 	spin_lock(&root->orphan_lock);
3171 	if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3172 			       &BTRFS_I(inode)->runtime_flags))
3173 		delete_item = 1;
3174 
3175 	if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3176 			       &BTRFS_I(inode)->runtime_flags))
3177 		release_rsv = 1;
3178 	spin_unlock(&root->orphan_lock);
3179 
3180 	if (delete_item) {
3181 		atomic_dec(&root->orphan_inodes);
3182 		if (trans)
3183 			ret = btrfs_del_orphan_item(trans, root,
3184 						    btrfs_ino(inode));
3185 	}
3186 
3187 	if (release_rsv)
3188 		btrfs_orphan_release_metadata(inode);
3189 
3190 	return ret;
3191 }
3192 
3193 /*
3194  * this cleans up any orphans that may be left on the list from the last use
3195  * of this root.
3196  */
3197 int btrfs_orphan_cleanup(struct btrfs_root *root)
3198 {
3199 	struct btrfs_path *path;
3200 	struct extent_buffer *leaf;
3201 	struct btrfs_key key, found_key;
3202 	struct btrfs_trans_handle *trans;
3203 	struct inode *inode;
3204 	u64 last_objectid = 0;
3205 	int ret = 0, nr_unlink = 0, nr_truncate = 0;
3206 
3207 	if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
3208 		return 0;
3209 
3210 	path = btrfs_alloc_path();
3211 	if (!path) {
3212 		ret = -ENOMEM;
3213 		goto out;
3214 	}
3215 	path->reada = -1;
3216 
3217 	key.objectid = BTRFS_ORPHAN_OBJECTID;
3218 	key.type = BTRFS_ORPHAN_ITEM_KEY;
3219 	key.offset = (u64)-1;
3220 
3221 	while (1) {
3222 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3223 		if (ret < 0)
3224 			goto out;
3225 
3226 		/*
3227 		 * if ret == 0 means we found what we were searching for, which
3228 		 * is weird, but possible, so only screw with path if we didn't
3229 		 * find the key and see if we have stuff that matches
3230 		 */
3231 		if (ret > 0) {
3232 			ret = 0;
3233 			if (path->slots[0] == 0)
3234 				break;
3235 			path->slots[0]--;
3236 		}
3237 
3238 		/* pull out the item */
3239 		leaf = path->nodes[0];
3240 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3241 
3242 		/* make sure the item matches what we want */
3243 		if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3244 			break;
3245 		if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
3246 			break;
3247 
3248 		/* release the path since we're done with it */
3249 		btrfs_release_path(path);
3250 
3251 		/*
3252 		 * this is where we are basically btrfs_lookup, without the
3253 		 * crossing root thing.  we store the inode number in the
3254 		 * offset of the orphan item.
3255 		 */
3256 
3257 		if (found_key.offset == last_objectid) {
3258 			btrfs_err(root->fs_info,
3259 				"Error removing orphan entry, stopping orphan cleanup");
3260 			ret = -EINVAL;
3261 			goto out;
3262 		}
3263 
3264 		last_objectid = found_key.offset;
3265 
3266 		found_key.objectid = found_key.offset;
3267 		found_key.type = BTRFS_INODE_ITEM_KEY;
3268 		found_key.offset = 0;
3269 		inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
3270 		ret = PTR_ERR_OR_ZERO(inode);
3271 		if (ret && ret != -ESTALE)
3272 			goto out;
3273 
3274 		if (ret == -ESTALE && root == root->fs_info->tree_root) {
3275 			struct btrfs_root *dead_root;
3276 			struct btrfs_fs_info *fs_info = root->fs_info;
3277 			int is_dead_root = 0;
3278 
3279 			/*
3280 			 * this is an orphan in the tree root. Currently these
3281 			 * could come from 2 sources:
3282 			 *  a) a snapshot deletion in progress
3283 			 *  b) a free space cache inode
3284 			 * We need to distinguish those two, as the snapshot
3285 			 * orphan must not get deleted.
3286 			 * find_dead_roots already ran before us, so if this
3287 			 * is a snapshot deletion, we should find the root
3288 			 * in the dead_roots list
3289 			 */
3290 			spin_lock(&fs_info->trans_lock);
3291 			list_for_each_entry(dead_root, &fs_info->dead_roots,
3292 					    root_list) {
3293 				if (dead_root->root_key.objectid ==
3294 				    found_key.objectid) {
3295 					is_dead_root = 1;
3296 					break;
3297 				}
3298 			}
3299 			spin_unlock(&fs_info->trans_lock);
3300 			if (is_dead_root) {
3301 				/* prevent this orphan from being found again */
3302 				key.offset = found_key.objectid - 1;
3303 				continue;
3304 			}
3305 		}
3306 		/*
3307 		 * Inode is already gone but the orphan item is still there,
3308 		 * kill the orphan item.
3309 		 */
3310 		if (ret == -ESTALE) {
3311 			trans = btrfs_start_transaction(root, 1);
3312 			if (IS_ERR(trans)) {
3313 				ret = PTR_ERR(trans);
3314 				goto out;
3315 			}
3316 			btrfs_debug(root->fs_info, "auto deleting %Lu",
3317 				found_key.objectid);
3318 			ret = btrfs_del_orphan_item(trans, root,
3319 						    found_key.objectid);
3320 			btrfs_end_transaction(trans, root);
3321 			if (ret)
3322 				goto out;
3323 			continue;
3324 		}
3325 
3326 		/*
3327 		 * add this inode to the orphan list so btrfs_orphan_del does
3328 		 * the proper thing when we hit it
3329 		 */
3330 		set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3331 			&BTRFS_I(inode)->runtime_flags);
3332 		atomic_inc(&root->orphan_inodes);
3333 
3334 		/* if we have links, this was a truncate, lets do that */
3335 		if (inode->i_nlink) {
3336 			if (WARN_ON(!S_ISREG(inode->i_mode))) {
3337 				iput(inode);
3338 				continue;
3339 			}
3340 			nr_truncate++;
3341 
3342 			/* 1 for the orphan item deletion. */
3343 			trans = btrfs_start_transaction(root, 1);
3344 			if (IS_ERR(trans)) {
3345 				iput(inode);
3346 				ret = PTR_ERR(trans);
3347 				goto out;
3348 			}
3349 			ret = btrfs_orphan_add(trans, inode);
3350 			btrfs_end_transaction(trans, root);
3351 			if (ret) {
3352 				iput(inode);
3353 				goto out;
3354 			}
3355 
3356 			ret = btrfs_truncate(inode);
3357 			if (ret)
3358 				btrfs_orphan_del(NULL, inode);
3359 		} else {
3360 			nr_unlink++;
3361 		}
3362 
3363 		/* this will do delete_inode and everything for us */
3364 		iput(inode);
3365 		if (ret)
3366 			goto out;
3367 	}
3368 	/* release the path since we're done with it */
3369 	btrfs_release_path(path);
3370 
3371 	root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3372 
3373 	if (root->orphan_block_rsv)
3374 		btrfs_block_rsv_release(root, root->orphan_block_rsv,
3375 					(u64)-1);
3376 
3377 	if (root->orphan_block_rsv ||
3378 	    test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
3379 		trans = btrfs_join_transaction(root);
3380 		if (!IS_ERR(trans))
3381 			btrfs_end_transaction(trans, root);
3382 	}
3383 
3384 	if (nr_unlink)
3385 		btrfs_debug(root->fs_info, "unlinked %d orphans", nr_unlink);
3386 	if (nr_truncate)
3387 		btrfs_debug(root->fs_info, "truncated %d orphans", nr_truncate);
3388 
3389 out:
3390 	if (ret)
3391 		btrfs_crit(root->fs_info,
3392 			"could not do orphan cleanup %d", ret);
3393 	btrfs_free_path(path);
3394 	return ret;
3395 }
3396 
3397 /*
3398  * very simple check to peek ahead in the leaf looking for xattrs.  If we
3399  * don't find any xattrs, we know there can't be any acls.
3400  *
3401  * slot is the slot the inode is in, objectid is the objectid of the inode
3402  */
3403 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
3404 					  int slot, u64 objectid,
3405 					  int *first_xattr_slot)
3406 {
3407 	u32 nritems = btrfs_header_nritems(leaf);
3408 	struct btrfs_key found_key;
3409 	static u64 xattr_access = 0;
3410 	static u64 xattr_default = 0;
3411 	int scanned = 0;
3412 
3413 	if (!xattr_access) {
3414 		xattr_access = btrfs_name_hash(POSIX_ACL_XATTR_ACCESS,
3415 					strlen(POSIX_ACL_XATTR_ACCESS));
3416 		xattr_default = btrfs_name_hash(POSIX_ACL_XATTR_DEFAULT,
3417 					strlen(POSIX_ACL_XATTR_DEFAULT));
3418 	}
3419 
3420 	slot++;
3421 	*first_xattr_slot = -1;
3422 	while (slot < nritems) {
3423 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3424 
3425 		/* we found a different objectid, there must not be acls */
3426 		if (found_key.objectid != objectid)
3427 			return 0;
3428 
3429 		/* we found an xattr, assume we've got an acl */
3430 		if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
3431 			if (*first_xattr_slot == -1)
3432 				*first_xattr_slot = slot;
3433 			if (found_key.offset == xattr_access ||
3434 			    found_key.offset == xattr_default)
3435 				return 1;
3436 		}
3437 
3438 		/*
3439 		 * we found a key greater than an xattr key, there can't
3440 		 * be any acls later on
3441 		 */
3442 		if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3443 			return 0;
3444 
3445 		slot++;
3446 		scanned++;
3447 
3448 		/*
3449 		 * it goes inode, inode backrefs, xattrs, extents,
3450 		 * so if there are a ton of hard links to an inode there can
3451 		 * be a lot of backrefs.  Don't waste time searching too hard,
3452 		 * this is just an optimization
3453 		 */
3454 		if (scanned >= 8)
3455 			break;
3456 	}
3457 	/* we hit the end of the leaf before we found an xattr or
3458 	 * something larger than an xattr.  We have to assume the inode
3459 	 * has acls
3460 	 */
3461 	if (*first_xattr_slot == -1)
3462 		*first_xattr_slot = slot;
3463 	return 1;
3464 }
3465 
3466 /*
3467  * read an inode from the btree into the in-memory inode
3468  */
3469 static void btrfs_read_locked_inode(struct inode *inode)
3470 {
3471 	struct btrfs_path *path;
3472 	struct extent_buffer *leaf;
3473 	struct btrfs_inode_item *inode_item;
3474 	struct btrfs_timespec *tspec;
3475 	struct btrfs_root *root = BTRFS_I(inode)->root;
3476 	struct btrfs_key location;
3477 	unsigned long ptr;
3478 	int maybe_acls;
3479 	u32 rdev;
3480 	int ret;
3481 	bool filled = false;
3482 	int first_xattr_slot;
3483 
3484 	ret = btrfs_fill_inode(inode, &rdev);
3485 	if (!ret)
3486 		filled = true;
3487 
3488 	path = btrfs_alloc_path();
3489 	if (!path)
3490 		goto make_bad;
3491 
3492 	memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
3493 
3494 	ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
3495 	if (ret)
3496 		goto make_bad;
3497 
3498 	leaf = path->nodes[0];
3499 
3500 	if (filled)
3501 		goto cache_index;
3502 
3503 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
3504 				    struct btrfs_inode_item);
3505 	inode->i_mode = btrfs_inode_mode(leaf, inode_item);
3506 	set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
3507 	i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3508 	i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
3509 	btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
3510 
3511 	tspec = btrfs_inode_atime(inode_item);
3512 	inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
3513 	inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
3514 
3515 	tspec = btrfs_inode_mtime(inode_item);
3516 	inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
3517 	inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
3518 
3519 	tspec = btrfs_inode_ctime(inode_item);
3520 	inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
3521 	inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
3522 
3523 	inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
3524 	BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
3525 	BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3526 
3527 	/*
3528 	 * If we were modified in the current generation and evicted from memory
3529 	 * and then re-read we need to do a full sync since we don't have any
3530 	 * idea about which extents were modified before we were evicted from
3531 	 * cache.
3532 	 */
3533 	if (BTRFS_I(inode)->last_trans == root->fs_info->generation)
3534 		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3535 			&BTRFS_I(inode)->runtime_flags);
3536 
3537 	inode->i_version = btrfs_inode_sequence(leaf, inode_item);
3538 	inode->i_generation = BTRFS_I(inode)->generation;
3539 	inode->i_rdev = 0;
3540 	rdev = btrfs_inode_rdev(leaf, inode_item);
3541 
3542 	BTRFS_I(inode)->index_cnt = (u64)-1;
3543 	BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
3544 
3545 cache_index:
3546 	path->slots[0]++;
3547 	if (inode->i_nlink != 1 ||
3548 	    path->slots[0] >= btrfs_header_nritems(leaf))
3549 		goto cache_acl;
3550 
3551 	btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
3552 	if (location.objectid != btrfs_ino(inode))
3553 		goto cache_acl;
3554 
3555 	ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3556 	if (location.type == BTRFS_INODE_REF_KEY) {
3557 		struct btrfs_inode_ref *ref;
3558 
3559 		ref = (struct btrfs_inode_ref *)ptr;
3560 		BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3561 	} else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3562 		struct btrfs_inode_extref *extref;
3563 
3564 		extref = (struct btrfs_inode_extref *)ptr;
3565 		BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3566 								     extref);
3567 	}
3568 cache_acl:
3569 	/*
3570 	 * try to precache a NULL acl entry for files that don't have
3571 	 * any xattrs or acls
3572 	 */
3573 	maybe_acls = acls_after_inode_item(leaf, path->slots[0],
3574 					   btrfs_ino(inode), &first_xattr_slot);
3575 	if (first_xattr_slot != -1) {
3576 		path->slots[0] = first_xattr_slot;
3577 		ret = btrfs_load_inode_props(inode, path);
3578 		if (ret)
3579 			btrfs_err(root->fs_info,
3580 				  "error loading props for ino %llu (root %llu): %d",
3581 				  btrfs_ino(inode),
3582 				  root->root_key.objectid, ret);
3583 	}
3584 	btrfs_free_path(path);
3585 
3586 	if (!maybe_acls)
3587 		cache_no_acl(inode);
3588 
3589 	switch (inode->i_mode & S_IFMT) {
3590 	case S_IFREG:
3591 		inode->i_mapping->a_ops = &btrfs_aops;
3592 		inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
3593 		BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
3594 		inode->i_fop = &btrfs_file_operations;
3595 		inode->i_op = &btrfs_file_inode_operations;
3596 		break;
3597 	case S_IFDIR:
3598 		inode->i_fop = &btrfs_dir_file_operations;
3599 		if (root == root->fs_info->tree_root)
3600 			inode->i_op = &btrfs_dir_ro_inode_operations;
3601 		else
3602 			inode->i_op = &btrfs_dir_inode_operations;
3603 		break;
3604 	case S_IFLNK:
3605 		inode->i_op = &btrfs_symlink_inode_operations;
3606 		inode->i_mapping->a_ops = &btrfs_symlink_aops;
3607 		inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
3608 		break;
3609 	default:
3610 		inode->i_op = &btrfs_special_inode_operations;
3611 		init_special_inode(inode, inode->i_mode, rdev);
3612 		break;
3613 	}
3614 
3615 	btrfs_update_iflags(inode);
3616 	return;
3617 
3618 make_bad:
3619 	btrfs_free_path(path);
3620 	make_bad_inode(inode);
3621 }
3622 
3623 /*
3624  * given a leaf and an inode, copy the inode fields into the leaf
3625  */
3626 static void fill_inode_item(struct btrfs_trans_handle *trans,
3627 			    struct extent_buffer *leaf,
3628 			    struct btrfs_inode_item *item,
3629 			    struct inode *inode)
3630 {
3631 	struct btrfs_map_token token;
3632 
3633 	btrfs_init_map_token(&token);
3634 
3635 	btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3636 	btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3637 	btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size,
3638 				   &token);
3639 	btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3640 	btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3641 
3642 	btrfs_set_token_timespec_sec(leaf, btrfs_inode_atime(item),
3643 				     inode->i_atime.tv_sec, &token);
3644 	btrfs_set_token_timespec_nsec(leaf, btrfs_inode_atime(item),
3645 				      inode->i_atime.tv_nsec, &token);
3646 
3647 	btrfs_set_token_timespec_sec(leaf, btrfs_inode_mtime(item),
3648 				     inode->i_mtime.tv_sec, &token);
3649 	btrfs_set_token_timespec_nsec(leaf, btrfs_inode_mtime(item),
3650 				      inode->i_mtime.tv_nsec, &token);
3651 
3652 	btrfs_set_token_timespec_sec(leaf, btrfs_inode_ctime(item),
3653 				     inode->i_ctime.tv_sec, &token);
3654 	btrfs_set_token_timespec_nsec(leaf, btrfs_inode_ctime(item),
3655 				      inode->i_ctime.tv_nsec, &token);
3656 
3657 	btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3658 				     &token);
3659 	btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation,
3660 					 &token);
3661 	btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
3662 	btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3663 	btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3664 	btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3665 	btrfs_set_token_inode_block_group(leaf, item, 0, &token);
3666 }
3667 
3668 /*
3669  * copy everything in the in-memory inode into the btree.
3670  */
3671 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
3672 				struct btrfs_root *root, struct inode *inode)
3673 {
3674 	struct btrfs_inode_item *inode_item;
3675 	struct btrfs_path *path;
3676 	struct extent_buffer *leaf;
3677 	int ret;
3678 
3679 	path = btrfs_alloc_path();
3680 	if (!path)
3681 		return -ENOMEM;
3682 
3683 	path->leave_spinning = 1;
3684 	ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
3685 				 1);
3686 	if (ret) {
3687 		if (ret > 0)
3688 			ret = -ENOENT;
3689 		goto failed;
3690 	}
3691 
3692 	leaf = path->nodes[0];
3693 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
3694 				    struct btrfs_inode_item);
3695 
3696 	fill_inode_item(trans, leaf, inode_item, inode);
3697 	btrfs_mark_buffer_dirty(leaf);
3698 	btrfs_set_inode_last_trans(trans, inode);
3699 	ret = 0;
3700 failed:
3701 	btrfs_free_path(path);
3702 	return ret;
3703 }
3704 
3705 /*
3706  * copy everything in the in-memory inode into the btree.
3707  */
3708 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
3709 				struct btrfs_root *root, struct inode *inode)
3710 {
3711 	int ret;
3712 
3713 	/*
3714 	 * If the inode is a free space inode, we can deadlock during commit
3715 	 * if we put it into the delayed code.
3716 	 *
3717 	 * The data relocation inode should also be directly updated
3718 	 * without delay
3719 	 */
3720 	if (!btrfs_is_free_space_inode(inode)
3721 	    && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
3722 	    && !root->fs_info->log_root_recovering) {
3723 		btrfs_update_root_times(trans, root);
3724 
3725 		ret = btrfs_delayed_update_inode(trans, root, inode);
3726 		if (!ret)
3727 			btrfs_set_inode_last_trans(trans, inode);
3728 		return ret;
3729 	}
3730 
3731 	return btrfs_update_inode_item(trans, root, inode);
3732 }
3733 
3734 noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3735 					 struct btrfs_root *root,
3736 					 struct inode *inode)
3737 {
3738 	int ret;
3739 
3740 	ret = btrfs_update_inode(trans, root, inode);
3741 	if (ret == -ENOSPC)
3742 		return btrfs_update_inode_item(trans, root, inode);
3743 	return ret;
3744 }
3745 
3746 /*
3747  * unlink helper that gets used here in inode.c and in the tree logging
3748  * recovery code.  It remove a link in a directory with a given name, and
3749  * also drops the back refs in the inode to the directory
3750  */
3751 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3752 				struct btrfs_root *root,
3753 				struct inode *dir, struct inode *inode,
3754 				const char *name, int name_len)
3755 {
3756 	struct btrfs_path *path;
3757 	int ret = 0;
3758 	struct extent_buffer *leaf;
3759 	struct btrfs_dir_item *di;
3760 	struct btrfs_key key;
3761 	u64 index;
3762 	u64 ino = btrfs_ino(inode);
3763 	u64 dir_ino = btrfs_ino(dir);
3764 
3765 	path = btrfs_alloc_path();
3766 	if (!path) {
3767 		ret = -ENOMEM;
3768 		goto out;
3769 	}
3770 
3771 	path->leave_spinning = 1;
3772 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
3773 				    name, name_len, -1);
3774 	if (IS_ERR(di)) {
3775 		ret = PTR_ERR(di);
3776 		goto err;
3777 	}
3778 	if (!di) {
3779 		ret = -ENOENT;
3780 		goto err;
3781 	}
3782 	leaf = path->nodes[0];
3783 	btrfs_dir_item_key_to_cpu(leaf, di, &key);
3784 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
3785 	if (ret)
3786 		goto err;
3787 	btrfs_release_path(path);
3788 
3789 	/*
3790 	 * If we don't have dir index, we have to get it by looking up
3791 	 * the inode ref, since we get the inode ref, remove it directly,
3792 	 * it is unnecessary to do delayed deletion.
3793 	 *
3794 	 * But if we have dir index, needn't search inode ref to get it.
3795 	 * Since the inode ref is close to the inode item, it is better
3796 	 * that we delay to delete it, and just do this deletion when
3797 	 * we update the inode item.
3798 	 */
3799 	if (BTRFS_I(inode)->dir_index) {
3800 		ret = btrfs_delayed_delete_inode_ref(inode);
3801 		if (!ret) {
3802 			index = BTRFS_I(inode)->dir_index;
3803 			goto skip_backref;
3804 		}
3805 	}
3806 
3807 	ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
3808 				  dir_ino, &index);
3809 	if (ret) {
3810 		btrfs_info(root->fs_info,
3811 			"failed to delete reference to %.*s, inode %llu parent %llu",
3812 			name_len, name, ino, dir_ino);
3813 		btrfs_abort_transaction(trans, root, ret);
3814 		goto err;
3815 	}
3816 skip_backref:
3817 	ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
3818 	if (ret) {
3819 		btrfs_abort_transaction(trans, root, ret);
3820 		goto err;
3821 	}
3822 
3823 	ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
3824 					 inode, dir_ino);
3825 	if (ret != 0 && ret != -ENOENT) {
3826 		btrfs_abort_transaction(trans, root, ret);
3827 		goto err;
3828 	}
3829 
3830 	ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
3831 					   dir, index);
3832 	if (ret == -ENOENT)
3833 		ret = 0;
3834 	else if (ret)
3835 		btrfs_abort_transaction(trans, root, ret);
3836 err:
3837 	btrfs_free_path(path);
3838 	if (ret)
3839 		goto out;
3840 
3841 	btrfs_i_size_write(dir, dir->i_size - name_len * 2);
3842 	inode_inc_iversion(inode);
3843 	inode_inc_iversion(dir);
3844 	inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
3845 	ret = btrfs_update_inode(trans, root, dir);
3846 out:
3847 	return ret;
3848 }
3849 
3850 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3851 		       struct btrfs_root *root,
3852 		       struct inode *dir, struct inode *inode,
3853 		       const char *name, int name_len)
3854 {
3855 	int ret;
3856 	ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
3857 	if (!ret) {
3858 		drop_nlink(inode);
3859 		ret = btrfs_update_inode(trans, root, inode);
3860 	}
3861 	return ret;
3862 }
3863 
3864 /*
3865  * helper to start transaction for unlink and rmdir.
3866  *
3867  * unlink and rmdir are special in btrfs, they do not always free space, so
3868  * if we cannot make our reservations the normal way try and see if there is
3869  * plenty of slack room in the global reserve to migrate, otherwise we cannot
3870  * allow the unlink to occur.
3871  */
3872 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
3873 {
3874 	struct btrfs_trans_handle *trans;
3875 	struct btrfs_root *root = BTRFS_I(dir)->root;
3876 	int ret;
3877 
3878 	/*
3879 	 * 1 for the possible orphan item
3880 	 * 1 for the dir item
3881 	 * 1 for the dir index
3882 	 * 1 for the inode ref
3883 	 * 1 for the inode
3884 	 */
3885 	trans = btrfs_start_transaction(root, 5);
3886 	if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
3887 		return trans;
3888 
3889 	if (PTR_ERR(trans) == -ENOSPC) {
3890 		u64 num_bytes = btrfs_calc_trans_metadata_size(root, 5);
3891 
3892 		trans = btrfs_start_transaction(root, 0);
3893 		if (IS_ERR(trans))
3894 			return trans;
3895 		ret = btrfs_cond_migrate_bytes(root->fs_info,
3896 					       &root->fs_info->trans_block_rsv,
3897 					       num_bytes, 5);
3898 		if (ret) {
3899 			btrfs_end_transaction(trans, root);
3900 			return ERR_PTR(ret);
3901 		}
3902 		trans->block_rsv = &root->fs_info->trans_block_rsv;
3903 		trans->bytes_reserved = num_bytes;
3904 	}
3905 	return trans;
3906 }
3907 
3908 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
3909 {
3910 	struct btrfs_root *root = BTRFS_I(dir)->root;
3911 	struct btrfs_trans_handle *trans;
3912 	struct inode *inode = dentry->d_inode;
3913 	int ret;
3914 
3915 	trans = __unlink_start_trans(dir);
3916 	if (IS_ERR(trans))
3917 		return PTR_ERR(trans);
3918 
3919 	btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
3920 
3921 	ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3922 				 dentry->d_name.name, dentry->d_name.len);
3923 	if (ret)
3924 		goto out;
3925 
3926 	if (inode->i_nlink == 0) {
3927 		ret = btrfs_orphan_add(trans, inode);
3928 		if (ret)
3929 			goto out;
3930 	}
3931 
3932 out:
3933 	btrfs_end_transaction(trans, root);
3934 	btrfs_btree_balance_dirty(root);
3935 	return ret;
3936 }
3937 
3938 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
3939 			struct btrfs_root *root,
3940 			struct inode *dir, u64 objectid,
3941 			const char *name, int name_len)
3942 {
3943 	struct btrfs_path *path;
3944 	struct extent_buffer *leaf;
3945 	struct btrfs_dir_item *di;
3946 	struct btrfs_key key;
3947 	u64 index;
3948 	int ret;
3949 	u64 dir_ino = btrfs_ino(dir);
3950 
3951 	path = btrfs_alloc_path();
3952 	if (!path)
3953 		return -ENOMEM;
3954 
3955 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
3956 				   name, name_len, -1);
3957 	if (IS_ERR_OR_NULL(di)) {
3958 		if (!di)
3959 			ret = -ENOENT;
3960 		else
3961 			ret = PTR_ERR(di);
3962 		goto out;
3963 	}
3964 
3965 	leaf = path->nodes[0];
3966 	btrfs_dir_item_key_to_cpu(leaf, di, &key);
3967 	WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
3968 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
3969 	if (ret) {
3970 		btrfs_abort_transaction(trans, root, ret);
3971 		goto out;
3972 	}
3973 	btrfs_release_path(path);
3974 
3975 	ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
3976 				 objectid, root->root_key.objectid,
3977 				 dir_ino, &index, name, name_len);
3978 	if (ret < 0) {
3979 		if (ret != -ENOENT) {
3980 			btrfs_abort_transaction(trans, root, ret);
3981 			goto out;
3982 		}
3983 		di = btrfs_search_dir_index_item(root, path, dir_ino,
3984 						 name, name_len);
3985 		if (IS_ERR_OR_NULL(di)) {
3986 			if (!di)
3987 				ret = -ENOENT;
3988 			else
3989 				ret = PTR_ERR(di);
3990 			btrfs_abort_transaction(trans, root, ret);
3991 			goto out;
3992 		}
3993 
3994 		leaf = path->nodes[0];
3995 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3996 		btrfs_release_path(path);
3997 		index = key.offset;
3998 	}
3999 	btrfs_release_path(path);
4000 
4001 	ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
4002 	if (ret) {
4003 		btrfs_abort_transaction(trans, root, ret);
4004 		goto out;
4005 	}
4006 
4007 	btrfs_i_size_write(dir, dir->i_size - name_len * 2);
4008 	inode_inc_iversion(dir);
4009 	dir->i_mtime = dir->i_ctime = CURRENT_TIME;
4010 	ret = btrfs_update_inode_fallback(trans, root, dir);
4011 	if (ret)
4012 		btrfs_abort_transaction(trans, root, ret);
4013 out:
4014 	btrfs_free_path(path);
4015 	return ret;
4016 }
4017 
4018 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4019 {
4020 	struct inode *inode = dentry->d_inode;
4021 	int err = 0;
4022 	struct btrfs_root *root = BTRFS_I(dir)->root;
4023 	struct btrfs_trans_handle *trans;
4024 
4025 	if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
4026 		return -ENOTEMPTY;
4027 	if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID)
4028 		return -EPERM;
4029 
4030 	trans = __unlink_start_trans(dir);
4031 	if (IS_ERR(trans))
4032 		return PTR_ERR(trans);
4033 
4034 	if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4035 		err = btrfs_unlink_subvol(trans, root, dir,
4036 					  BTRFS_I(inode)->location.objectid,
4037 					  dentry->d_name.name,
4038 					  dentry->d_name.len);
4039 		goto out;
4040 	}
4041 
4042 	err = btrfs_orphan_add(trans, inode);
4043 	if (err)
4044 		goto out;
4045 
4046 	/* now the directory is empty */
4047 	err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
4048 				 dentry->d_name.name, dentry->d_name.len);
4049 	if (!err)
4050 		btrfs_i_size_write(inode, 0);
4051 out:
4052 	btrfs_end_transaction(trans, root);
4053 	btrfs_btree_balance_dirty(root);
4054 
4055 	return err;
4056 }
4057 
4058 /*
4059  * this can truncate away extent items, csum items and directory items.
4060  * It starts at a high offset and removes keys until it can't find
4061  * any higher than new_size
4062  *
4063  * csum items that cross the new i_size are truncated to the new size
4064  * as well.
4065  *
4066  * min_type is the minimum key type to truncate down to.  If set to 0, this
4067  * will kill all the items on this inode, including the INODE_ITEM_KEY.
4068  */
4069 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
4070 			       struct btrfs_root *root,
4071 			       struct inode *inode,
4072 			       u64 new_size, u32 min_type)
4073 {
4074 	struct btrfs_path *path;
4075 	struct extent_buffer *leaf;
4076 	struct btrfs_file_extent_item *fi;
4077 	struct btrfs_key key;
4078 	struct btrfs_key found_key;
4079 	u64 extent_start = 0;
4080 	u64 extent_num_bytes = 0;
4081 	u64 extent_offset = 0;
4082 	u64 item_end = 0;
4083 	u64 last_size = (u64)-1;
4084 	u32 found_type = (u8)-1;
4085 	int found_extent;
4086 	int del_item;
4087 	int pending_del_nr = 0;
4088 	int pending_del_slot = 0;
4089 	int extent_type = -1;
4090 	int ret;
4091 	int err = 0;
4092 	u64 ino = btrfs_ino(inode);
4093 
4094 	BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
4095 
4096 	path = btrfs_alloc_path();
4097 	if (!path)
4098 		return -ENOMEM;
4099 	path->reada = -1;
4100 
4101 	/*
4102 	 * We want to drop from the next block forward in case this new size is
4103 	 * not block aligned since we will be keeping the last block of the
4104 	 * extent just the way it is.
4105 	 */
4106 	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4107 	    root == root->fs_info->tree_root)
4108 		btrfs_drop_extent_cache(inode, ALIGN(new_size,
4109 					root->sectorsize), (u64)-1, 0);
4110 
4111 	/*
4112 	 * This function is also used to drop the items in the log tree before
4113 	 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
4114 	 * it is used to drop the loged items. So we shouldn't kill the delayed
4115 	 * items.
4116 	 */
4117 	if (min_type == 0 && root == BTRFS_I(inode)->root)
4118 		btrfs_kill_delayed_inode_items(inode);
4119 
4120 	key.objectid = ino;
4121 	key.offset = (u64)-1;
4122 	key.type = (u8)-1;
4123 
4124 search_again:
4125 	path->leave_spinning = 1;
4126 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
4127 	if (ret < 0) {
4128 		err = ret;
4129 		goto out;
4130 	}
4131 
4132 	if (ret > 0) {
4133 		/* there are no items in the tree for us to truncate, we're
4134 		 * done
4135 		 */
4136 		if (path->slots[0] == 0)
4137 			goto out;
4138 		path->slots[0]--;
4139 	}
4140 
4141 	while (1) {
4142 		fi = NULL;
4143 		leaf = path->nodes[0];
4144 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4145 		found_type = found_key.type;
4146 
4147 		if (found_key.objectid != ino)
4148 			break;
4149 
4150 		if (found_type < min_type)
4151 			break;
4152 
4153 		item_end = found_key.offset;
4154 		if (found_type == BTRFS_EXTENT_DATA_KEY) {
4155 			fi = btrfs_item_ptr(leaf, path->slots[0],
4156 					    struct btrfs_file_extent_item);
4157 			extent_type = btrfs_file_extent_type(leaf, fi);
4158 			if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4159 				item_end +=
4160 				    btrfs_file_extent_num_bytes(leaf, fi);
4161 			} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4162 				item_end += btrfs_file_extent_inline_len(leaf,
4163 							 path->slots[0], fi);
4164 			}
4165 			item_end--;
4166 		}
4167 		if (found_type > min_type) {
4168 			del_item = 1;
4169 		} else {
4170 			if (item_end < new_size)
4171 				break;
4172 			if (found_key.offset >= new_size)
4173 				del_item = 1;
4174 			else
4175 				del_item = 0;
4176 		}
4177 		found_extent = 0;
4178 		/* FIXME, shrink the extent if the ref count is only 1 */
4179 		if (found_type != BTRFS_EXTENT_DATA_KEY)
4180 			goto delete;
4181 
4182 		if (del_item)
4183 			last_size = found_key.offset;
4184 		else
4185 			last_size = new_size;
4186 
4187 		if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4188 			u64 num_dec;
4189 			extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
4190 			if (!del_item) {
4191 				u64 orig_num_bytes =
4192 					btrfs_file_extent_num_bytes(leaf, fi);
4193 				extent_num_bytes = ALIGN(new_size -
4194 						found_key.offset,
4195 						root->sectorsize);
4196 				btrfs_set_file_extent_num_bytes(leaf, fi,
4197 							 extent_num_bytes);
4198 				num_dec = (orig_num_bytes -
4199 					   extent_num_bytes);
4200 				if (test_bit(BTRFS_ROOT_REF_COWS,
4201 					     &root->state) &&
4202 				    extent_start != 0)
4203 					inode_sub_bytes(inode, num_dec);
4204 				btrfs_mark_buffer_dirty(leaf);
4205 			} else {
4206 				extent_num_bytes =
4207 					btrfs_file_extent_disk_num_bytes(leaf,
4208 									 fi);
4209 				extent_offset = found_key.offset -
4210 					btrfs_file_extent_offset(leaf, fi);
4211 
4212 				/* FIXME blocksize != 4096 */
4213 				num_dec = btrfs_file_extent_num_bytes(leaf, fi);
4214 				if (extent_start != 0) {
4215 					found_extent = 1;
4216 					if (test_bit(BTRFS_ROOT_REF_COWS,
4217 						     &root->state))
4218 						inode_sub_bytes(inode, num_dec);
4219 				}
4220 			}
4221 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4222 			/*
4223 			 * we can't truncate inline items that have had
4224 			 * special encodings
4225 			 */
4226 			if (!del_item &&
4227 			    btrfs_file_extent_compression(leaf, fi) == 0 &&
4228 			    btrfs_file_extent_encryption(leaf, fi) == 0 &&
4229 			    btrfs_file_extent_other_encoding(leaf, fi) == 0) {
4230 				u32 size = new_size - found_key.offset;
4231 
4232 				if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4233 					inode_sub_bytes(inode, item_end + 1 -
4234 							new_size);
4235 
4236 				/*
4237 				 * update the ram bytes to properly reflect
4238 				 * the new size of our item
4239 				 */
4240 				btrfs_set_file_extent_ram_bytes(leaf, fi, size);
4241 				size =
4242 				    btrfs_file_extent_calc_inline_size(size);
4243 				btrfs_truncate_item(root, path, size, 1);
4244 			} else if (test_bit(BTRFS_ROOT_REF_COWS,
4245 					    &root->state)) {
4246 				inode_sub_bytes(inode, item_end + 1 -
4247 						found_key.offset);
4248 			}
4249 		}
4250 delete:
4251 		if (del_item) {
4252 			if (!pending_del_nr) {
4253 				/* no pending yet, add ourselves */
4254 				pending_del_slot = path->slots[0];
4255 				pending_del_nr = 1;
4256 			} else if (pending_del_nr &&
4257 				   path->slots[0] + 1 == pending_del_slot) {
4258 				/* hop on the pending chunk */
4259 				pending_del_nr++;
4260 				pending_del_slot = path->slots[0];
4261 			} else {
4262 				BUG();
4263 			}
4264 		} else {
4265 			break;
4266 		}
4267 		if (found_extent &&
4268 		    (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4269 		     root == root->fs_info->tree_root)) {
4270 			btrfs_set_path_blocking(path);
4271 			ret = btrfs_free_extent(trans, root, extent_start,
4272 						extent_num_bytes, 0,
4273 						btrfs_header_owner(leaf),
4274 						ino, extent_offset, 0);
4275 			BUG_ON(ret);
4276 		}
4277 
4278 		if (found_type == BTRFS_INODE_ITEM_KEY)
4279 			break;
4280 
4281 		if (path->slots[0] == 0 ||
4282 		    path->slots[0] != pending_del_slot) {
4283 			if (pending_del_nr) {
4284 				ret = btrfs_del_items(trans, root, path,
4285 						pending_del_slot,
4286 						pending_del_nr);
4287 				if (ret) {
4288 					btrfs_abort_transaction(trans,
4289 								root, ret);
4290 					goto error;
4291 				}
4292 				pending_del_nr = 0;
4293 			}
4294 			btrfs_release_path(path);
4295 			goto search_again;
4296 		} else {
4297 			path->slots[0]--;
4298 		}
4299 	}
4300 out:
4301 	if (pending_del_nr) {
4302 		ret = btrfs_del_items(trans, root, path, pending_del_slot,
4303 				      pending_del_nr);
4304 		if (ret)
4305 			btrfs_abort_transaction(trans, root, ret);
4306 	}
4307 error:
4308 	if (last_size != (u64)-1 &&
4309 	    root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
4310 		btrfs_ordered_update_i_size(inode, last_size, NULL);
4311 	btrfs_free_path(path);
4312 	return err;
4313 }
4314 
4315 /*
4316  * btrfs_truncate_page - read, zero a chunk and write a page
4317  * @inode - inode that we're zeroing
4318  * @from - the offset to start zeroing
4319  * @len - the length to zero, 0 to zero the entire range respective to the
4320  *	offset
4321  * @front - zero up to the offset instead of from the offset on
4322  *
4323  * This will find the page for the "from" offset and cow the page and zero the
4324  * part we want to zero.  This is used with truncate and hole punching.
4325  */
4326 int btrfs_truncate_page(struct inode *inode, loff_t from, loff_t len,
4327 			int front)
4328 {
4329 	struct address_space *mapping = inode->i_mapping;
4330 	struct btrfs_root *root = BTRFS_I(inode)->root;
4331 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4332 	struct btrfs_ordered_extent *ordered;
4333 	struct extent_state *cached_state = NULL;
4334 	char *kaddr;
4335 	u32 blocksize = root->sectorsize;
4336 	pgoff_t index = from >> PAGE_CACHE_SHIFT;
4337 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
4338 	struct page *page;
4339 	gfp_t mask = btrfs_alloc_write_mask(mapping);
4340 	int ret = 0;
4341 	u64 page_start;
4342 	u64 page_end;
4343 
4344 	if ((offset & (blocksize - 1)) == 0 &&
4345 	    (!len || ((len & (blocksize - 1)) == 0)))
4346 		goto out;
4347 	ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
4348 	if (ret)
4349 		goto out;
4350 
4351 again:
4352 	page = find_or_create_page(mapping, index, mask);
4353 	if (!page) {
4354 		btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
4355 		ret = -ENOMEM;
4356 		goto out;
4357 	}
4358 
4359 	page_start = page_offset(page);
4360 	page_end = page_start + PAGE_CACHE_SIZE - 1;
4361 
4362 	if (!PageUptodate(page)) {
4363 		ret = btrfs_readpage(NULL, page);
4364 		lock_page(page);
4365 		if (page->mapping != mapping) {
4366 			unlock_page(page);
4367 			page_cache_release(page);
4368 			goto again;
4369 		}
4370 		if (!PageUptodate(page)) {
4371 			ret = -EIO;
4372 			goto out_unlock;
4373 		}
4374 	}
4375 	wait_on_page_writeback(page);
4376 
4377 	lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
4378 	set_page_extent_mapped(page);
4379 
4380 	ordered = btrfs_lookup_ordered_extent(inode, page_start);
4381 	if (ordered) {
4382 		unlock_extent_cached(io_tree, page_start, page_end,
4383 				     &cached_state, GFP_NOFS);
4384 		unlock_page(page);
4385 		page_cache_release(page);
4386 		btrfs_start_ordered_extent(inode, ordered, 1);
4387 		btrfs_put_ordered_extent(ordered);
4388 		goto again;
4389 	}
4390 
4391 	clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
4392 			  EXTENT_DIRTY | EXTENT_DELALLOC |
4393 			  EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
4394 			  0, 0, &cached_state, GFP_NOFS);
4395 
4396 	ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
4397 					&cached_state);
4398 	if (ret) {
4399 		unlock_extent_cached(io_tree, page_start, page_end,
4400 				     &cached_state, GFP_NOFS);
4401 		goto out_unlock;
4402 	}
4403 
4404 	if (offset != PAGE_CACHE_SIZE) {
4405 		if (!len)
4406 			len = PAGE_CACHE_SIZE - offset;
4407 		kaddr = kmap(page);
4408 		if (front)
4409 			memset(kaddr, 0, offset);
4410 		else
4411 			memset(kaddr + offset, 0, len);
4412 		flush_dcache_page(page);
4413 		kunmap(page);
4414 	}
4415 	ClearPageChecked(page);
4416 	set_page_dirty(page);
4417 	unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
4418 			     GFP_NOFS);
4419 
4420 out_unlock:
4421 	if (ret)
4422 		btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
4423 	unlock_page(page);
4424 	page_cache_release(page);
4425 out:
4426 	return ret;
4427 }
4428 
4429 static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode,
4430 			     u64 offset, u64 len)
4431 {
4432 	struct btrfs_trans_handle *trans;
4433 	int ret;
4434 
4435 	/*
4436 	 * Still need to make sure the inode looks like it's been updated so
4437 	 * that any holes get logged if we fsync.
4438 	 */
4439 	if (btrfs_fs_incompat(root->fs_info, NO_HOLES)) {
4440 		BTRFS_I(inode)->last_trans = root->fs_info->generation;
4441 		BTRFS_I(inode)->last_sub_trans = root->log_transid;
4442 		BTRFS_I(inode)->last_log_commit = root->last_log_commit;
4443 		return 0;
4444 	}
4445 
4446 	/*
4447 	 * 1 - for the one we're dropping
4448 	 * 1 - for the one we're adding
4449 	 * 1 - for updating the inode.
4450 	 */
4451 	trans = btrfs_start_transaction(root, 3);
4452 	if (IS_ERR(trans))
4453 		return PTR_ERR(trans);
4454 
4455 	ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1);
4456 	if (ret) {
4457 		btrfs_abort_transaction(trans, root, ret);
4458 		btrfs_end_transaction(trans, root);
4459 		return ret;
4460 	}
4461 
4462 	ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset,
4463 				       0, 0, len, 0, len, 0, 0, 0);
4464 	if (ret)
4465 		btrfs_abort_transaction(trans, root, ret);
4466 	else
4467 		btrfs_update_inode(trans, root, inode);
4468 	btrfs_end_transaction(trans, root);
4469 	return ret;
4470 }
4471 
4472 /*
4473  * This function puts in dummy file extents for the area we're creating a hole
4474  * for.  So if we are truncating this file to a larger size we need to insert
4475  * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4476  * the range between oldsize and size
4477  */
4478 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
4479 {
4480 	struct btrfs_root *root = BTRFS_I(inode)->root;
4481 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4482 	struct extent_map *em = NULL;
4483 	struct extent_state *cached_state = NULL;
4484 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4485 	u64 hole_start = ALIGN(oldsize, root->sectorsize);
4486 	u64 block_end = ALIGN(size, root->sectorsize);
4487 	u64 last_byte;
4488 	u64 cur_offset;
4489 	u64 hole_size;
4490 	int err = 0;
4491 
4492 	/*
4493 	 * If our size started in the middle of a page we need to zero out the
4494 	 * rest of the page before we expand the i_size, otherwise we could
4495 	 * expose stale data.
4496 	 */
4497 	err = btrfs_truncate_page(inode, oldsize, 0, 0);
4498 	if (err)
4499 		return err;
4500 
4501 	if (size <= hole_start)
4502 		return 0;
4503 
4504 	while (1) {
4505 		struct btrfs_ordered_extent *ordered;
4506 
4507 		lock_extent_bits(io_tree, hole_start, block_end - 1, 0,
4508 				 &cached_state);
4509 		ordered = btrfs_lookup_ordered_range(inode, hole_start,
4510 						     block_end - hole_start);
4511 		if (!ordered)
4512 			break;
4513 		unlock_extent_cached(io_tree, hole_start, block_end - 1,
4514 				     &cached_state, GFP_NOFS);
4515 		btrfs_start_ordered_extent(inode, ordered, 1);
4516 		btrfs_put_ordered_extent(ordered);
4517 	}
4518 
4519 	cur_offset = hole_start;
4520 	while (1) {
4521 		em = btrfs_get_extent(inode, NULL, 0, cur_offset,
4522 				block_end - cur_offset, 0);
4523 		if (IS_ERR(em)) {
4524 			err = PTR_ERR(em);
4525 			em = NULL;
4526 			break;
4527 		}
4528 		last_byte = min(extent_map_end(em), block_end);
4529 		last_byte = ALIGN(last_byte , root->sectorsize);
4530 		if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
4531 			struct extent_map *hole_em;
4532 			hole_size = last_byte - cur_offset;
4533 
4534 			err = maybe_insert_hole(root, inode, cur_offset,
4535 						hole_size);
4536 			if (err)
4537 				break;
4538 			btrfs_drop_extent_cache(inode, cur_offset,
4539 						cur_offset + hole_size - 1, 0);
4540 			hole_em = alloc_extent_map();
4541 			if (!hole_em) {
4542 				set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4543 					&BTRFS_I(inode)->runtime_flags);
4544 				goto next;
4545 			}
4546 			hole_em->start = cur_offset;
4547 			hole_em->len = hole_size;
4548 			hole_em->orig_start = cur_offset;
4549 
4550 			hole_em->block_start = EXTENT_MAP_HOLE;
4551 			hole_em->block_len = 0;
4552 			hole_em->orig_block_len = 0;
4553 			hole_em->ram_bytes = hole_size;
4554 			hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
4555 			hole_em->compress_type = BTRFS_COMPRESS_NONE;
4556 			hole_em->generation = root->fs_info->generation;
4557 
4558 			while (1) {
4559 				write_lock(&em_tree->lock);
4560 				err = add_extent_mapping(em_tree, hole_em, 1);
4561 				write_unlock(&em_tree->lock);
4562 				if (err != -EEXIST)
4563 					break;
4564 				btrfs_drop_extent_cache(inode, cur_offset,
4565 							cur_offset +
4566 							hole_size - 1, 0);
4567 			}
4568 			free_extent_map(hole_em);
4569 		}
4570 next:
4571 		free_extent_map(em);
4572 		em = NULL;
4573 		cur_offset = last_byte;
4574 		if (cur_offset >= block_end)
4575 			break;
4576 	}
4577 	free_extent_map(em);
4578 	unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
4579 			     GFP_NOFS);
4580 	return err;
4581 }
4582 
4583 static int btrfs_setsize(struct inode *inode, struct iattr *attr)
4584 {
4585 	struct btrfs_root *root = BTRFS_I(inode)->root;
4586 	struct btrfs_trans_handle *trans;
4587 	loff_t oldsize = i_size_read(inode);
4588 	loff_t newsize = attr->ia_size;
4589 	int mask = attr->ia_valid;
4590 	int ret;
4591 
4592 	/*
4593 	 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
4594 	 * special case where we need to update the times despite not having
4595 	 * these flags set.  For all other operations the VFS set these flags
4596 	 * explicitly if it wants a timestamp update.
4597 	 */
4598 	if (newsize != oldsize) {
4599 		inode_inc_iversion(inode);
4600 		if (!(mask & (ATTR_CTIME | ATTR_MTIME)))
4601 			inode->i_ctime = inode->i_mtime =
4602 				current_fs_time(inode->i_sb);
4603 	}
4604 
4605 	if (newsize > oldsize) {
4606 		truncate_pagecache(inode, newsize);
4607 		ret = btrfs_cont_expand(inode, oldsize, newsize);
4608 		if (ret)
4609 			return ret;
4610 
4611 		trans = btrfs_start_transaction(root, 1);
4612 		if (IS_ERR(trans))
4613 			return PTR_ERR(trans);
4614 
4615 		i_size_write(inode, newsize);
4616 		btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
4617 		ret = btrfs_update_inode(trans, root, inode);
4618 		btrfs_end_transaction(trans, root);
4619 	} else {
4620 
4621 		/*
4622 		 * We're truncating a file that used to have good data down to
4623 		 * zero. Make sure it gets into the ordered flush list so that
4624 		 * any new writes get down to disk quickly.
4625 		 */
4626 		if (newsize == 0)
4627 			set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
4628 				&BTRFS_I(inode)->runtime_flags);
4629 
4630 		/*
4631 		 * 1 for the orphan item we're going to add
4632 		 * 1 for the orphan item deletion.
4633 		 */
4634 		trans = btrfs_start_transaction(root, 2);
4635 		if (IS_ERR(trans))
4636 			return PTR_ERR(trans);
4637 
4638 		/*
4639 		 * We need to do this in case we fail at _any_ point during the
4640 		 * actual truncate.  Once we do the truncate_setsize we could
4641 		 * invalidate pages which forces any outstanding ordered io to
4642 		 * be instantly completed which will give us extents that need
4643 		 * to be truncated.  If we fail to get an orphan inode down we
4644 		 * could have left over extents that were never meant to live,
4645 		 * so we need to garuntee from this point on that everything
4646 		 * will be consistent.
4647 		 */
4648 		ret = btrfs_orphan_add(trans, inode);
4649 		btrfs_end_transaction(trans, root);
4650 		if (ret)
4651 			return ret;
4652 
4653 		/* we don't support swapfiles, so vmtruncate shouldn't fail */
4654 		truncate_setsize(inode, newsize);
4655 
4656 		/* Disable nonlocked read DIO to avoid the end less truncate */
4657 		btrfs_inode_block_unlocked_dio(inode);
4658 		inode_dio_wait(inode);
4659 		btrfs_inode_resume_unlocked_dio(inode);
4660 
4661 		ret = btrfs_truncate(inode);
4662 		if (ret && inode->i_nlink) {
4663 			int err;
4664 
4665 			/*
4666 			 * failed to truncate, disk_i_size is only adjusted down
4667 			 * as we remove extents, so it should represent the true
4668 			 * size of the inode, so reset the in memory size and
4669 			 * delete our orphan entry.
4670 			 */
4671 			trans = btrfs_join_transaction(root);
4672 			if (IS_ERR(trans)) {
4673 				btrfs_orphan_del(NULL, inode);
4674 				return ret;
4675 			}
4676 			i_size_write(inode, BTRFS_I(inode)->disk_i_size);
4677 			err = btrfs_orphan_del(trans, inode);
4678 			if (err)
4679 				btrfs_abort_transaction(trans, root, err);
4680 			btrfs_end_transaction(trans, root);
4681 		}
4682 	}
4683 
4684 	return ret;
4685 }
4686 
4687 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
4688 {
4689 	struct inode *inode = dentry->d_inode;
4690 	struct btrfs_root *root = BTRFS_I(inode)->root;
4691 	int err;
4692 
4693 	if (btrfs_root_readonly(root))
4694 		return -EROFS;
4695 
4696 	err = inode_change_ok(inode, attr);
4697 	if (err)
4698 		return err;
4699 
4700 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
4701 		err = btrfs_setsize(inode, attr);
4702 		if (err)
4703 			return err;
4704 	}
4705 
4706 	if (attr->ia_valid) {
4707 		setattr_copy(inode, attr);
4708 		inode_inc_iversion(inode);
4709 		err = btrfs_dirty_inode(inode);
4710 
4711 		if (!err && attr->ia_valid & ATTR_MODE)
4712 			err = posix_acl_chmod(inode, inode->i_mode);
4713 	}
4714 
4715 	return err;
4716 }
4717 
4718 /*
4719  * While truncating the inode pages during eviction, we get the VFS calling
4720  * btrfs_invalidatepage() against each page of the inode. This is slow because
4721  * the calls to btrfs_invalidatepage() result in a huge amount of calls to
4722  * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
4723  * extent_state structures over and over, wasting lots of time.
4724  *
4725  * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
4726  * those expensive operations on a per page basis and do only the ordered io
4727  * finishing, while we release here the extent_map and extent_state structures,
4728  * without the excessive merging and splitting.
4729  */
4730 static void evict_inode_truncate_pages(struct inode *inode)
4731 {
4732 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4733 	struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
4734 	struct rb_node *node;
4735 
4736 	ASSERT(inode->i_state & I_FREEING);
4737 	truncate_inode_pages_final(&inode->i_data);
4738 
4739 	write_lock(&map_tree->lock);
4740 	while (!RB_EMPTY_ROOT(&map_tree->map)) {
4741 		struct extent_map *em;
4742 
4743 		node = rb_first(&map_tree->map);
4744 		em = rb_entry(node, struct extent_map, rb_node);
4745 		clear_bit(EXTENT_FLAG_PINNED, &em->flags);
4746 		clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
4747 		remove_extent_mapping(map_tree, em);
4748 		free_extent_map(em);
4749 		if (need_resched()) {
4750 			write_unlock(&map_tree->lock);
4751 			cond_resched();
4752 			write_lock(&map_tree->lock);
4753 		}
4754 	}
4755 	write_unlock(&map_tree->lock);
4756 
4757 	spin_lock(&io_tree->lock);
4758 	while (!RB_EMPTY_ROOT(&io_tree->state)) {
4759 		struct extent_state *state;
4760 		struct extent_state *cached_state = NULL;
4761 
4762 		node = rb_first(&io_tree->state);
4763 		state = rb_entry(node, struct extent_state, rb_node);
4764 		atomic_inc(&state->refs);
4765 		spin_unlock(&io_tree->lock);
4766 
4767 		lock_extent_bits(io_tree, state->start, state->end,
4768 				 0, &cached_state);
4769 		clear_extent_bit(io_tree, state->start, state->end,
4770 				 EXTENT_LOCKED | EXTENT_DIRTY |
4771 				 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
4772 				 EXTENT_DEFRAG, 1, 1,
4773 				 &cached_state, GFP_NOFS);
4774 		free_extent_state(state);
4775 
4776 		cond_resched();
4777 		spin_lock(&io_tree->lock);
4778 	}
4779 	spin_unlock(&io_tree->lock);
4780 }
4781 
4782 void btrfs_evict_inode(struct inode *inode)
4783 {
4784 	struct btrfs_trans_handle *trans;
4785 	struct btrfs_root *root = BTRFS_I(inode)->root;
4786 	struct btrfs_block_rsv *rsv, *global_rsv;
4787 	u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
4788 	int ret;
4789 
4790 	trace_btrfs_inode_evict(inode);
4791 
4792 	evict_inode_truncate_pages(inode);
4793 
4794 	if (inode->i_nlink &&
4795 	    ((btrfs_root_refs(&root->root_item) != 0 &&
4796 	      root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
4797 	     btrfs_is_free_space_inode(inode)))
4798 		goto no_delete;
4799 
4800 	if (is_bad_inode(inode)) {
4801 		btrfs_orphan_del(NULL, inode);
4802 		goto no_delete;
4803 	}
4804 	/* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
4805 	btrfs_wait_ordered_range(inode, 0, (u64)-1);
4806 
4807 	btrfs_free_io_failure_record(inode, 0, (u64)-1);
4808 
4809 	if (root->fs_info->log_root_recovering) {
4810 		BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
4811 				 &BTRFS_I(inode)->runtime_flags));
4812 		goto no_delete;
4813 	}
4814 
4815 	if (inode->i_nlink > 0) {
4816 		BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
4817 		       root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
4818 		goto no_delete;
4819 	}
4820 
4821 	ret = btrfs_commit_inode_delayed_inode(inode);
4822 	if (ret) {
4823 		btrfs_orphan_del(NULL, inode);
4824 		goto no_delete;
4825 	}
4826 
4827 	rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
4828 	if (!rsv) {
4829 		btrfs_orphan_del(NULL, inode);
4830 		goto no_delete;
4831 	}
4832 	rsv->size = min_size;
4833 	rsv->failfast = 1;
4834 	global_rsv = &root->fs_info->global_block_rsv;
4835 
4836 	btrfs_i_size_write(inode, 0);
4837 
4838 	/*
4839 	 * This is a bit simpler than btrfs_truncate since we've already
4840 	 * reserved our space for our orphan item in the unlink, so we just
4841 	 * need to reserve some slack space in case we add bytes and update
4842 	 * inode item when doing the truncate.
4843 	 */
4844 	while (1) {
4845 		ret = btrfs_block_rsv_refill(root, rsv, min_size,
4846 					     BTRFS_RESERVE_FLUSH_LIMIT);
4847 
4848 		/*
4849 		 * Try and steal from the global reserve since we will
4850 		 * likely not use this space anyway, we want to try as
4851 		 * hard as possible to get this to work.
4852 		 */
4853 		if (ret)
4854 			ret = btrfs_block_rsv_migrate(global_rsv, rsv, min_size);
4855 
4856 		if (ret) {
4857 			btrfs_warn(root->fs_info,
4858 				"Could not get space for a delete, will truncate on mount %d",
4859 				ret);
4860 			btrfs_orphan_del(NULL, inode);
4861 			btrfs_free_block_rsv(root, rsv);
4862 			goto no_delete;
4863 		}
4864 
4865 		trans = btrfs_join_transaction(root);
4866 		if (IS_ERR(trans)) {
4867 			btrfs_orphan_del(NULL, inode);
4868 			btrfs_free_block_rsv(root, rsv);
4869 			goto no_delete;
4870 		}
4871 
4872 		trans->block_rsv = rsv;
4873 
4874 		ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
4875 		if (ret != -ENOSPC)
4876 			break;
4877 
4878 		trans->block_rsv = &root->fs_info->trans_block_rsv;
4879 		btrfs_end_transaction(trans, root);
4880 		trans = NULL;
4881 		btrfs_btree_balance_dirty(root);
4882 	}
4883 
4884 	btrfs_free_block_rsv(root, rsv);
4885 
4886 	/*
4887 	 * Errors here aren't a big deal, it just means we leave orphan items
4888 	 * in the tree.  They will be cleaned up on the next mount.
4889 	 */
4890 	if (ret == 0) {
4891 		trans->block_rsv = root->orphan_block_rsv;
4892 		btrfs_orphan_del(trans, inode);
4893 	} else {
4894 		btrfs_orphan_del(NULL, inode);
4895 	}
4896 
4897 	trans->block_rsv = &root->fs_info->trans_block_rsv;
4898 	if (!(root == root->fs_info->tree_root ||
4899 	      root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
4900 		btrfs_return_ino(root, btrfs_ino(inode));
4901 
4902 	btrfs_end_transaction(trans, root);
4903 	btrfs_btree_balance_dirty(root);
4904 no_delete:
4905 	btrfs_remove_delayed_node(inode);
4906 	clear_inode(inode);
4907 	return;
4908 }
4909 
4910 /*
4911  * this returns the key found in the dir entry in the location pointer.
4912  * If no dir entries were found, location->objectid is 0.
4913  */
4914 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
4915 			       struct btrfs_key *location)
4916 {
4917 	const char *name = dentry->d_name.name;
4918 	int namelen = dentry->d_name.len;
4919 	struct btrfs_dir_item *di;
4920 	struct btrfs_path *path;
4921 	struct btrfs_root *root = BTRFS_I(dir)->root;
4922 	int ret = 0;
4923 
4924 	path = btrfs_alloc_path();
4925 	if (!path)
4926 		return -ENOMEM;
4927 
4928 	di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name,
4929 				    namelen, 0);
4930 	if (IS_ERR(di))
4931 		ret = PTR_ERR(di);
4932 
4933 	if (IS_ERR_OR_NULL(di))
4934 		goto out_err;
4935 
4936 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
4937 out:
4938 	btrfs_free_path(path);
4939 	return ret;
4940 out_err:
4941 	location->objectid = 0;
4942 	goto out;
4943 }
4944 
4945 /*
4946  * when we hit a tree root in a directory, the btrfs part of the inode
4947  * needs to be changed to reflect the root directory of the tree root.  This
4948  * is kind of like crossing a mount point.
4949  */
4950 static int fixup_tree_root_location(struct btrfs_root *root,
4951 				    struct inode *dir,
4952 				    struct dentry *dentry,
4953 				    struct btrfs_key *location,
4954 				    struct btrfs_root **sub_root)
4955 {
4956 	struct btrfs_path *path;
4957 	struct btrfs_root *new_root;
4958 	struct btrfs_root_ref *ref;
4959 	struct extent_buffer *leaf;
4960 	int ret;
4961 	int err = 0;
4962 
4963 	path = btrfs_alloc_path();
4964 	if (!path) {
4965 		err = -ENOMEM;
4966 		goto out;
4967 	}
4968 
4969 	err = -ENOENT;
4970 	ret = btrfs_find_item(root->fs_info->tree_root, path,
4971 				BTRFS_I(dir)->root->root_key.objectid,
4972 				location->objectid, BTRFS_ROOT_REF_KEY, NULL);
4973 	if (ret) {
4974 		if (ret < 0)
4975 			err = ret;
4976 		goto out;
4977 	}
4978 
4979 	leaf = path->nodes[0];
4980 	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
4981 	if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
4982 	    btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
4983 		goto out;
4984 
4985 	ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
4986 				   (unsigned long)(ref + 1),
4987 				   dentry->d_name.len);
4988 	if (ret)
4989 		goto out;
4990 
4991 	btrfs_release_path(path);
4992 
4993 	new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
4994 	if (IS_ERR(new_root)) {
4995 		err = PTR_ERR(new_root);
4996 		goto out;
4997 	}
4998 
4999 	*sub_root = new_root;
5000 	location->objectid = btrfs_root_dirid(&new_root->root_item);
5001 	location->type = BTRFS_INODE_ITEM_KEY;
5002 	location->offset = 0;
5003 	err = 0;
5004 out:
5005 	btrfs_free_path(path);
5006 	return err;
5007 }
5008 
5009 static void inode_tree_add(struct inode *inode)
5010 {
5011 	struct btrfs_root *root = BTRFS_I(inode)->root;
5012 	struct btrfs_inode *entry;
5013 	struct rb_node **p;
5014 	struct rb_node *parent;
5015 	struct rb_node *new = &BTRFS_I(inode)->rb_node;
5016 	u64 ino = btrfs_ino(inode);
5017 
5018 	if (inode_unhashed(inode))
5019 		return;
5020 	parent = NULL;
5021 	spin_lock(&root->inode_lock);
5022 	p = &root->inode_tree.rb_node;
5023 	while (*p) {
5024 		parent = *p;
5025 		entry = rb_entry(parent, struct btrfs_inode, rb_node);
5026 
5027 		if (ino < btrfs_ino(&entry->vfs_inode))
5028 			p = &parent->rb_left;
5029 		else if (ino > btrfs_ino(&entry->vfs_inode))
5030 			p = &parent->rb_right;
5031 		else {
5032 			WARN_ON(!(entry->vfs_inode.i_state &
5033 				  (I_WILL_FREE | I_FREEING)));
5034 			rb_replace_node(parent, new, &root->inode_tree);
5035 			RB_CLEAR_NODE(parent);
5036 			spin_unlock(&root->inode_lock);
5037 			return;
5038 		}
5039 	}
5040 	rb_link_node(new, parent, p);
5041 	rb_insert_color(new, &root->inode_tree);
5042 	spin_unlock(&root->inode_lock);
5043 }
5044 
5045 static void inode_tree_del(struct inode *inode)
5046 {
5047 	struct btrfs_root *root = BTRFS_I(inode)->root;
5048 	int empty = 0;
5049 
5050 	spin_lock(&root->inode_lock);
5051 	if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5052 		rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5053 		RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
5054 		empty = RB_EMPTY_ROOT(&root->inode_tree);
5055 	}
5056 	spin_unlock(&root->inode_lock);
5057 
5058 	if (empty && btrfs_root_refs(&root->root_item) == 0) {
5059 		synchronize_srcu(&root->fs_info->subvol_srcu);
5060 		spin_lock(&root->inode_lock);
5061 		empty = RB_EMPTY_ROOT(&root->inode_tree);
5062 		spin_unlock(&root->inode_lock);
5063 		if (empty)
5064 			btrfs_add_dead_root(root);
5065 	}
5066 }
5067 
5068 void btrfs_invalidate_inodes(struct btrfs_root *root)
5069 {
5070 	struct rb_node *node;
5071 	struct rb_node *prev;
5072 	struct btrfs_inode *entry;
5073 	struct inode *inode;
5074 	u64 objectid = 0;
5075 
5076 	if (!test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
5077 		WARN_ON(btrfs_root_refs(&root->root_item) != 0);
5078 
5079 	spin_lock(&root->inode_lock);
5080 again:
5081 	node = root->inode_tree.rb_node;
5082 	prev = NULL;
5083 	while (node) {
5084 		prev = node;
5085 		entry = rb_entry(node, struct btrfs_inode, rb_node);
5086 
5087 		if (objectid < btrfs_ino(&entry->vfs_inode))
5088 			node = node->rb_left;
5089 		else if (objectid > btrfs_ino(&entry->vfs_inode))
5090 			node = node->rb_right;
5091 		else
5092 			break;
5093 	}
5094 	if (!node) {
5095 		while (prev) {
5096 			entry = rb_entry(prev, struct btrfs_inode, rb_node);
5097 			if (objectid <= btrfs_ino(&entry->vfs_inode)) {
5098 				node = prev;
5099 				break;
5100 			}
5101 			prev = rb_next(prev);
5102 		}
5103 	}
5104 	while (node) {
5105 		entry = rb_entry(node, struct btrfs_inode, rb_node);
5106 		objectid = btrfs_ino(&entry->vfs_inode) + 1;
5107 		inode = igrab(&entry->vfs_inode);
5108 		if (inode) {
5109 			spin_unlock(&root->inode_lock);
5110 			if (atomic_read(&inode->i_count) > 1)
5111 				d_prune_aliases(inode);
5112 			/*
5113 			 * btrfs_drop_inode will have it removed from
5114 			 * the inode cache when its usage count
5115 			 * hits zero.
5116 			 */
5117 			iput(inode);
5118 			cond_resched();
5119 			spin_lock(&root->inode_lock);
5120 			goto again;
5121 		}
5122 
5123 		if (cond_resched_lock(&root->inode_lock))
5124 			goto again;
5125 
5126 		node = rb_next(node);
5127 	}
5128 	spin_unlock(&root->inode_lock);
5129 }
5130 
5131 static int btrfs_init_locked_inode(struct inode *inode, void *p)
5132 {
5133 	struct btrfs_iget_args *args = p;
5134 	inode->i_ino = args->location->objectid;
5135 	memcpy(&BTRFS_I(inode)->location, args->location,
5136 	       sizeof(*args->location));
5137 	BTRFS_I(inode)->root = args->root;
5138 	return 0;
5139 }
5140 
5141 static int btrfs_find_actor(struct inode *inode, void *opaque)
5142 {
5143 	struct btrfs_iget_args *args = opaque;
5144 	return args->location->objectid == BTRFS_I(inode)->location.objectid &&
5145 		args->root == BTRFS_I(inode)->root;
5146 }
5147 
5148 static struct inode *btrfs_iget_locked(struct super_block *s,
5149 				       struct btrfs_key *location,
5150 				       struct btrfs_root *root)
5151 {
5152 	struct inode *inode;
5153 	struct btrfs_iget_args args;
5154 	unsigned long hashval = btrfs_inode_hash(location->objectid, root);
5155 
5156 	args.location = location;
5157 	args.root = root;
5158 
5159 	inode = iget5_locked(s, hashval, btrfs_find_actor,
5160 			     btrfs_init_locked_inode,
5161 			     (void *)&args);
5162 	return inode;
5163 }
5164 
5165 /* Get an inode object given its location and corresponding root.
5166  * Returns in *is_new if the inode was read from disk
5167  */
5168 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
5169 			 struct btrfs_root *root, int *new)
5170 {
5171 	struct inode *inode;
5172 
5173 	inode = btrfs_iget_locked(s, location, root);
5174 	if (!inode)
5175 		return ERR_PTR(-ENOMEM);
5176 
5177 	if (inode->i_state & I_NEW) {
5178 		btrfs_read_locked_inode(inode);
5179 		if (!is_bad_inode(inode)) {
5180 			inode_tree_add(inode);
5181 			unlock_new_inode(inode);
5182 			if (new)
5183 				*new = 1;
5184 		} else {
5185 			unlock_new_inode(inode);
5186 			iput(inode);
5187 			inode = ERR_PTR(-ESTALE);
5188 		}
5189 	}
5190 
5191 	return inode;
5192 }
5193 
5194 static struct inode *new_simple_dir(struct super_block *s,
5195 				    struct btrfs_key *key,
5196 				    struct btrfs_root *root)
5197 {
5198 	struct inode *inode = new_inode(s);
5199 
5200 	if (!inode)
5201 		return ERR_PTR(-ENOMEM);
5202 
5203 	BTRFS_I(inode)->root = root;
5204 	memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
5205 	set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
5206 
5207 	inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
5208 	inode->i_op = &btrfs_dir_ro_inode_operations;
5209 	inode->i_fop = &simple_dir_operations;
5210 	inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
5211 	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
5212 
5213 	return inode;
5214 }
5215 
5216 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
5217 {
5218 	struct inode *inode;
5219 	struct btrfs_root *root = BTRFS_I(dir)->root;
5220 	struct btrfs_root *sub_root = root;
5221 	struct btrfs_key location;
5222 	int index;
5223 	int ret = 0;
5224 
5225 	if (dentry->d_name.len > BTRFS_NAME_LEN)
5226 		return ERR_PTR(-ENAMETOOLONG);
5227 
5228 	ret = btrfs_inode_by_name(dir, dentry, &location);
5229 	if (ret < 0)
5230 		return ERR_PTR(ret);
5231 
5232 	if (location.objectid == 0)
5233 		return ERR_PTR(-ENOENT);
5234 
5235 	if (location.type == BTRFS_INODE_ITEM_KEY) {
5236 		inode = btrfs_iget(dir->i_sb, &location, root, NULL);
5237 		return inode;
5238 	}
5239 
5240 	BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
5241 
5242 	index = srcu_read_lock(&root->fs_info->subvol_srcu);
5243 	ret = fixup_tree_root_location(root, dir, dentry,
5244 				       &location, &sub_root);
5245 	if (ret < 0) {
5246 		if (ret != -ENOENT)
5247 			inode = ERR_PTR(ret);
5248 		else
5249 			inode = new_simple_dir(dir->i_sb, &location, sub_root);
5250 	} else {
5251 		inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
5252 	}
5253 	srcu_read_unlock(&root->fs_info->subvol_srcu, index);
5254 
5255 	if (!IS_ERR(inode) && root != sub_root) {
5256 		down_read(&root->fs_info->cleanup_work_sem);
5257 		if (!(inode->i_sb->s_flags & MS_RDONLY))
5258 			ret = btrfs_orphan_cleanup(sub_root);
5259 		up_read(&root->fs_info->cleanup_work_sem);
5260 		if (ret) {
5261 			iput(inode);
5262 			inode = ERR_PTR(ret);
5263 		}
5264 	}
5265 
5266 	return inode;
5267 }
5268 
5269 static int btrfs_dentry_delete(const struct dentry *dentry)
5270 {
5271 	struct btrfs_root *root;
5272 	struct inode *inode = dentry->d_inode;
5273 
5274 	if (!inode && !IS_ROOT(dentry))
5275 		inode = dentry->d_parent->d_inode;
5276 
5277 	if (inode) {
5278 		root = BTRFS_I(inode)->root;
5279 		if (btrfs_root_refs(&root->root_item) == 0)
5280 			return 1;
5281 
5282 		if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5283 			return 1;
5284 	}
5285 	return 0;
5286 }
5287 
5288 static void btrfs_dentry_release(struct dentry *dentry)
5289 {
5290 	kfree(dentry->d_fsdata);
5291 }
5292 
5293 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
5294 				   unsigned int flags)
5295 {
5296 	struct inode *inode;
5297 
5298 	inode = btrfs_lookup_dentry(dir, dentry);
5299 	if (IS_ERR(inode)) {
5300 		if (PTR_ERR(inode) == -ENOENT)
5301 			inode = NULL;
5302 		else
5303 			return ERR_CAST(inode);
5304 	}
5305 
5306 	return d_materialise_unique(dentry, inode);
5307 }
5308 
5309 unsigned char btrfs_filetype_table[] = {
5310 	DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
5311 };
5312 
5313 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
5314 {
5315 	struct inode *inode = file_inode(file);
5316 	struct btrfs_root *root = BTRFS_I(inode)->root;
5317 	struct btrfs_item *item;
5318 	struct btrfs_dir_item *di;
5319 	struct btrfs_key key;
5320 	struct btrfs_key found_key;
5321 	struct btrfs_path *path;
5322 	struct list_head ins_list;
5323 	struct list_head del_list;
5324 	int ret;
5325 	struct extent_buffer *leaf;
5326 	int slot;
5327 	unsigned char d_type;
5328 	int over = 0;
5329 	u32 di_cur;
5330 	u32 di_total;
5331 	u32 di_len;
5332 	int key_type = BTRFS_DIR_INDEX_KEY;
5333 	char tmp_name[32];
5334 	char *name_ptr;
5335 	int name_len;
5336 	int is_curr = 0;	/* ctx->pos points to the current index? */
5337 
5338 	/* FIXME, use a real flag for deciding about the key type */
5339 	if (root->fs_info->tree_root == root)
5340 		key_type = BTRFS_DIR_ITEM_KEY;
5341 
5342 	if (!dir_emit_dots(file, ctx))
5343 		return 0;
5344 
5345 	path = btrfs_alloc_path();
5346 	if (!path)
5347 		return -ENOMEM;
5348 
5349 	path->reada = 1;
5350 
5351 	if (key_type == BTRFS_DIR_INDEX_KEY) {
5352 		INIT_LIST_HEAD(&ins_list);
5353 		INIT_LIST_HEAD(&del_list);
5354 		btrfs_get_delayed_items(inode, &ins_list, &del_list);
5355 	}
5356 
5357 	key.type = key_type;
5358 	key.offset = ctx->pos;
5359 	key.objectid = btrfs_ino(inode);
5360 
5361 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5362 	if (ret < 0)
5363 		goto err;
5364 
5365 	while (1) {
5366 		leaf = path->nodes[0];
5367 		slot = path->slots[0];
5368 		if (slot >= btrfs_header_nritems(leaf)) {
5369 			ret = btrfs_next_leaf(root, path);
5370 			if (ret < 0)
5371 				goto err;
5372 			else if (ret > 0)
5373 				break;
5374 			continue;
5375 		}
5376 
5377 		item = btrfs_item_nr(slot);
5378 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
5379 
5380 		if (found_key.objectid != key.objectid)
5381 			break;
5382 		if (found_key.type != key_type)
5383 			break;
5384 		if (found_key.offset < ctx->pos)
5385 			goto next;
5386 		if (key_type == BTRFS_DIR_INDEX_KEY &&
5387 		    btrfs_should_delete_dir_index(&del_list,
5388 						  found_key.offset))
5389 			goto next;
5390 
5391 		ctx->pos = found_key.offset;
5392 		is_curr = 1;
5393 
5394 		di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
5395 		di_cur = 0;
5396 		di_total = btrfs_item_size(leaf, item);
5397 
5398 		while (di_cur < di_total) {
5399 			struct btrfs_key location;
5400 
5401 			if (verify_dir_item(root, leaf, di))
5402 				break;
5403 
5404 			name_len = btrfs_dir_name_len(leaf, di);
5405 			if (name_len <= sizeof(tmp_name)) {
5406 				name_ptr = tmp_name;
5407 			} else {
5408 				name_ptr = kmalloc(name_len, GFP_NOFS);
5409 				if (!name_ptr) {
5410 					ret = -ENOMEM;
5411 					goto err;
5412 				}
5413 			}
5414 			read_extent_buffer(leaf, name_ptr,
5415 					   (unsigned long)(di + 1), name_len);
5416 
5417 			d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
5418 			btrfs_dir_item_key_to_cpu(leaf, di, &location);
5419 
5420 
5421 			/* is this a reference to our own snapshot? If so
5422 			 * skip it.
5423 			 *
5424 			 * In contrast to old kernels, we insert the snapshot's
5425 			 * dir item and dir index after it has been created, so
5426 			 * we won't find a reference to our own snapshot. We
5427 			 * still keep the following code for backward
5428 			 * compatibility.
5429 			 */
5430 			if (location.type == BTRFS_ROOT_ITEM_KEY &&
5431 			    location.objectid == root->root_key.objectid) {
5432 				over = 0;
5433 				goto skip;
5434 			}
5435 			over = !dir_emit(ctx, name_ptr, name_len,
5436 				       location.objectid, d_type);
5437 
5438 skip:
5439 			if (name_ptr != tmp_name)
5440 				kfree(name_ptr);
5441 
5442 			if (over)
5443 				goto nopos;
5444 			di_len = btrfs_dir_name_len(leaf, di) +
5445 				 btrfs_dir_data_len(leaf, di) + sizeof(*di);
5446 			di_cur += di_len;
5447 			di = (struct btrfs_dir_item *)((char *)di + di_len);
5448 		}
5449 next:
5450 		path->slots[0]++;
5451 	}
5452 
5453 	if (key_type == BTRFS_DIR_INDEX_KEY) {
5454 		if (is_curr)
5455 			ctx->pos++;
5456 		ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
5457 		if (ret)
5458 			goto nopos;
5459 	}
5460 
5461 	/* Reached end of directory/root. Bump pos past the last item. */
5462 	ctx->pos++;
5463 
5464 	/*
5465 	 * Stop new entries from being returned after we return the last
5466 	 * entry.
5467 	 *
5468 	 * New directory entries are assigned a strictly increasing
5469 	 * offset.  This means that new entries created during readdir
5470 	 * are *guaranteed* to be seen in the future by that readdir.
5471 	 * This has broken buggy programs which operate on names as
5472 	 * they're returned by readdir.  Until we re-use freed offsets
5473 	 * we have this hack to stop new entries from being returned
5474 	 * under the assumption that they'll never reach this huge
5475 	 * offset.
5476 	 *
5477 	 * This is being careful not to overflow 32bit loff_t unless the
5478 	 * last entry requires it because doing so has broken 32bit apps
5479 	 * in the past.
5480 	 */
5481 	if (key_type == BTRFS_DIR_INDEX_KEY) {
5482 		if (ctx->pos >= INT_MAX)
5483 			ctx->pos = LLONG_MAX;
5484 		else
5485 			ctx->pos = INT_MAX;
5486 	}
5487 nopos:
5488 	ret = 0;
5489 err:
5490 	if (key_type == BTRFS_DIR_INDEX_KEY)
5491 		btrfs_put_delayed_items(&ins_list, &del_list);
5492 	btrfs_free_path(path);
5493 	return ret;
5494 }
5495 
5496 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
5497 {
5498 	struct btrfs_root *root = BTRFS_I(inode)->root;
5499 	struct btrfs_trans_handle *trans;
5500 	int ret = 0;
5501 	bool nolock = false;
5502 
5503 	if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
5504 		return 0;
5505 
5506 	if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(inode))
5507 		nolock = true;
5508 
5509 	if (wbc->sync_mode == WB_SYNC_ALL) {
5510 		if (nolock)
5511 			trans = btrfs_join_transaction_nolock(root);
5512 		else
5513 			trans = btrfs_join_transaction(root);
5514 		if (IS_ERR(trans))
5515 			return PTR_ERR(trans);
5516 		ret = btrfs_commit_transaction(trans, root);
5517 	}
5518 	return ret;
5519 }
5520 
5521 /*
5522  * This is somewhat expensive, updating the tree every time the
5523  * inode changes.  But, it is most likely to find the inode in cache.
5524  * FIXME, needs more benchmarking...there are no reasons other than performance
5525  * to keep or drop this code.
5526  */
5527 static int btrfs_dirty_inode(struct inode *inode)
5528 {
5529 	struct btrfs_root *root = BTRFS_I(inode)->root;
5530 	struct btrfs_trans_handle *trans;
5531 	int ret;
5532 
5533 	if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
5534 		return 0;
5535 
5536 	trans = btrfs_join_transaction(root);
5537 	if (IS_ERR(trans))
5538 		return PTR_ERR(trans);
5539 
5540 	ret = btrfs_update_inode(trans, root, inode);
5541 	if (ret && ret == -ENOSPC) {
5542 		/* whoops, lets try again with the full transaction */
5543 		btrfs_end_transaction(trans, root);
5544 		trans = btrfs_start_transaction(root, 1);
5545 		if (IS_ERR(trans))
5546 			return PTR_ERR(trans);
5547 
5548 		ret = btrfs_update_inode(trans, root, inode);
5549 	}
5550 	btrfs_end_transaction(trans, root);
5551 	if (BTRFS_I(inode)->delayed_node)
5552 		btrfs_balance_delayed_items(root);
5553 
5554 	return ret;
5555 }
5556 
5557 /*
5558  * This is a copy of file_update_time.  We need this so we can return error on
5559  * ENOSPC for updating the inode in the case of file write and mmap writes.
5560  */
5561 static int btrfs_update_time(struct inode *inode, struct timespec *now,
5562 			     int flags)
5563 {
5564 	struct btrfs_root *root = BTRFS_I(inode)->root;
5565 
5566 	if (btrfs_root_readonly(root))
5567 		return -EROFS;
5568 
5569 	if (flags & S_VERSION)
5570 		inode_inc_iversion(inode);
5571 	if (flags & S_CTIME)
5572 		inode->i_ctime = *now;
5573 	if (flags & S_MTIME)
5574 		inode->i_mtime = *now;
5575 	if (flags & S_ATIME)
5576 		inode->i_atime = *now;
5577 	return btrfs_dirty_inode(inode);
5578 }
5579 
5580 /*
5581  * find the highest existing sequence number in a directory
5582  * and then set the in-memory index_cnt variable to reflect
5583  * free sequence numbers
5584  */
5585 static int btrfs_set_inode_index_count(struct inode *inode)
5586 {
5587 	struct btrfs_root *root = BTRFS_I(inode)->root;
5588 	struct btrfs_key key, found_key;
5589 	struct btrfs_path *path;
5590 	struct extent_buffer *leaf;
5591 	int ret;
5592 
5593 	key.objectid = btrfs_ino(inode);
5594 	key.type = BTRFS_DIR_INDEX_KEY;
5595 	key.offset = (u64)-1;
5596 
5597 	path = btrfs_alloc_path();
5598 	if (!path)
5599 		return -ENOMEM;
5600 
5601 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5602 	if (ret < 0)
5603 		goto out;
5604 	/* FIXME: we should be able to handle this */
5605 	if (ret == 0)
5606 		goto out;
5607 	ret = 0;
5608 
5609 	/*
5610 	 * MAGIC NUMBER EXPLANATION:
5611 	 * since we search a directory based on f_pos we have to start at 2
5612 	 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
5613 	 * else has to start at 2
5614 	 */
5615 	if (path->slots[0] == 0) {
5616 		BTRFS_I(inode)->index_cnt = 2;
5617 		goto out;
5618 	}
5619 
5620 	path->slots[0]--;
5621 
5622 	leaf = path->nodes[0];
5623 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5624 
5625 	if (found_key.objectid != btrfs_ino(inode) ||
5626 	    found_key.type != BTRFS_DIR_INDEX_KEY) {
5627 		BTRFS_I(inode)->index_cnt = 2;
5628 		goto out;
5629 	}
5630 
5631 	BTRFS_I(inode)->index_cnt = found_key.offset + 1;
5632 out:
5633 	btrfs_free_path(path);
5634 	return ret;
5635 }
5636 
5637 /*
5638  * helper to find a free sequence number in a given directory.  This current
5639  * code is very simple, later versions will do smarter things in the btree
5640  */
5641 int btrfs_set_inode_index(struct inode *dir, u64 *index)
5642 {
5643 	int ret = 0;
5644 
5645 	if (BTRFS_I(dir)->index_cnt == (u64)-1) {
5646 		ret = btrfs_inode_delayed_dir_index_count(dir);
5647 		if (ret) {
5648 			ret = btrfs_set_inode_index_count(dir);
5649 			if (ret)
5650 				return ret;
5651 		}
5652 	}
5653 
5654 	*index = BTRFS_I(dir)->index_cnt;
5655 	BTRFS_I(dir)->index_cnt++;
5656 
5657 	return ret;
5658 }
5659 
5660 static int btrfs_insert_inode_locked(struct inode *inode)
5661 {
5662 	struct btrfs_iget_args args;
5663 	args.location = &BTRFS_I(inode)->location;
5664 	args.root = BTRFS_I(inode)->root;
5665 
5666 	return insert_inode_locked4(inode,
5667 		   btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
5668 		   btrfs_find_actor, &args);
5669 }
5670 
5671 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
5672 				     struct btrfs_root *root,
5673 				     struct inode *dir,
5674 				     const char *name, int name_len,
5675 				     u64 ref_objectid, u64 objectid,
5676 				     umode_t mode, u64 *index)
5677 {
5678 	struct inode *inode;
5679 	struct btrfs_inode_item *inode_item;
5680 	struct btrfs_key *location;
5681 	struct btrfs_path *path;
5682 	struct btrfs_inode_ref *ref;
5683 	struct btrfs_key key[2];
5684 	u32 sizes[2];
5685 	int nitems = name ? 2 : 1;
5686 	unsigned long ptr;
5687 	int ret;
5688 
5689 	path = btrfs_alloc_path();
5690 	if (!path)
5691 		return ERR_PTR(-ENOMEM);
5692 
5693 	inode = new_inode(root->fs_info->sb);
5694 	if (!inode) {
5695 		btrfs_free_path(path);
5696 		return ERR_PTR(-ENOMEM);
5697 	}
5698 
5699 	/*
5700 	 * O_TMPFILE, set link count to 0, so that after this point,
5701 	 * we fill in an inode item with the correct link count.
5702 	 */
5703 	if (!name)
5704 		set_nlink(inode, 0);
5705 
5706 	/*
5707 	 * we have to initialize this early, so we can reclaim the inode
5708 	 * number if we fail afterwards in this function.
5709 	 */
5710 	inode->i_ino = objectid;
5711 
5712 	if (dir && name) {
5713 		trace_btrfs_inode_request(dir);
5714 
5715 		ret = btrfs_set_inode_index(dir, index);
5716 		if (ret) {
5717 			btrfs_free_path(path);
5718 			iput(inode);
5719 			return ERR_PTR(ret);
5720 		}
5721 	} else if (dir) {
5722 		*index = 0;
5723 	}
5724 	/*
5725 	 * index_cnt is ignored for everything but a dir,
5726 	 * btrfs_get_inode_index_count has an explanation for the magic
5727 	 * number
5728 	 */
5729 	BTRFS_I(inode)->index_cnt = 2;
5730 	BTRFS_I(inode)->dir_index = *index;
5731 	BTRFS_I(inode)->root = root;
5732 	BTRFS_I(inode)->generation = trans->transid;
5733 	inode->i_generation = BTRFS_I(inode)->generation;
5734 
5735 	/*
5736 	 * We could have gotten an inode number from somebody who was fsynced
5737 	 * and then removed in this same transaction, so let's just set full
5738 	 * sync since it will be a full sync anyway and this will blow away the
5739 	 * old info in the log.
5740 	 */
5741 	set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
5742 
5743 	key[0].objectid = objectid;
5744 	key[0].type = BTRFS_INODE_ITEM_KEY;
5745 	key[0].offset = 0;
5746 
5747 	sizes[0] = sizeof(struct btrfs_inode_item);
5748 
5749 	if (name) {
5750 		/*
5751 		 * Start new inodes with an inode_ref. This is slightly more
5752 		 * efficient for small numbers of hard links since they will
5753 		 * be packed into one item. Extended refs will kick in if we
5754 		 * add more hard links than can fit in the ref item.
5755 		 */
5756 		key[1].objectid = objectid;
5757 		key[1].type = BTRFS_INODE_REF_KEY;
5758 		key[1].offset = ref_objectid;
5759 
5760 		sizes[1] = name_len + sizeof(*ref);
5761 	}
5762 
5763 	location = &BTRFS_I(inode)->location;
5764 	location->objectid = objectid;
5765 	location->offset = 0;
5766 	location->type = BTRFS_INODE_ITEM_KEY;
5767 
5768 	ret = btrfs_insert_inode_locked(inode);
5769 	if (ret < 0)
5770 		goto fail;
5771 
5772 	path->leave_spinning = 1;
5773 	ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems);
5774 	if (ret != 0)
5775 		goto fail_unlock;
5776 
5777 	inode_init_owner(inode, dir, mode);
5778 	inode_set_bytes(inode, 0);
5779 	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
5780 	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
5781 				  struct btrfs_inode_item);
5782 	memset_extent_buffer(path->nodes[0], 0, (unsigned long)inode_item,
5783 			     sizeof(*inode_item));
5784 	fill_inode_item(trans, path->nodes[0], inode_item, inode);
5785 
5786 	if (name) {
5787 		ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
5788 				     struct btrfs_inode_ref);
5789 		btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
5790 		btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
5791 		ptr = (unsigned long)(ref + 1);
5792 		write_extent_buffer(path->nodes[0], name, ptr, name_len);
5793 	}
5794 
5795 	btrfs_mark_buffer_dirty(path->nodes[0]);
5796 	btrfs_free_path(path);
5797 
5798 	btrfs_inherit_iflags(inode, dir);
5799 
5800 	if (S_ISREG(mode)) {
5801 		if (btrfs_test_opt(root, NODATASUM))
5802 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
5803 		if (btrfs_test_opt(root, NODATACOW))
5804 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
5805 				BTRFS_INODE_NODATASUM;
5806 	}
5807 
5808 	inode_tree_add(inode);
5809 
5810 	trace_btrfs_inode_new(inode);
5811 	btrfs_set_inode_last_trans(trans, inode);
5812 
5813 	btrfs_update_root_times(trans, root);
5814 
5815 	ret = btrfs_inode_inherit_props(trans, inode, dir);
5816 	if (ret)
5817 		btrfs_err(root->fs_info,
5818 			  "error inheriting props for ino %llu (root %llu): %d",
5819 			  btrfs_ino(inode), root->root_key.objectid, ret);
5820 
5821 	return inode;
5822 
5823 fail_unlock:
5824 	unlock_new_inode(inode);
5825 fail:
5826 	if (dir && name)
5827 		BTRFS_I(dir)->index_cnt--;
5828 	btrfs_free_path(path);
5829 	iput(inode);
5830 	return ERR_PTR(ret);
5831 }
5832 
5833 static inline u8 btrfs_inode_type(struct inode *inode)
5834 {
5835 	return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
5836 }
5837 
5838 /*
5839  * utility function to add 'inode' into 'parent_inode' with
5840  * a give name and a given sequence number.
5841  * if 'add_backref' is true, also insert a backref from the
5842  * inode to the parent directory.
5843  */
5844 int btrfs_add_link(struct btrfs_trans_handle *trans,
5845 		   struct inode *parent_inode, struct inode *inode,
5846 		   const char *name, int name_len, int add_backref, u64 index)
5847 {
5848 	int ret = 0;
5849 	struct btrfs_key key;
5850 	struct btrfs_root *root = BTRFS_I(parent_inode)->root;
5851 	u64 ino = btrfs_ino(inode);
5852 	u64 parent_ino = btrfs_ino(parent_inode);
5853 
5854 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
5855 		memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
5856 	} else {
5857 		key.objectid = ino;
5858 		key.type = BTRFS_INODE_ITEM_KEY;
5859 		key.offset = 0;
5860 	}
5861 
5862 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
5863 		ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
5864 					 key.objectid, root->root_key.objectid,
5865 					 parent_ino, index, name, name_len);
5866 	} else if (add_backref) {
5867 		ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
5868 					     parent_ino, index);
5869 	}
5870 
5871 	/* Nothing to clean up yet */
5872 	if (ret)
5873 		return ret;
5874 
5875 	ret = btrfs_insert_dir_item(trans, root, name, name_len,
5876 				    parent_inode, &key,
5877 				    btrfs_inode_type(inode), index);
5878 	if (ret == -EEXIST || ret == -EOVERFLOW)
5879 		goto fail_dir_item;
5880 	else if (ret) {
5881 		btrfs_abort_transaction(trans, root, ret);
5882 		return ret;
5883 	}
5884 
5885 	btrfs_i_size_write(parent_inode, parent_inode->i_size +
5886 			   name_len * 2);
5887 	inode_inc_iversion(parent_inode);
5888 	parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
5889 	ret = btrfs_update_inode(trans, root, parent_inode);
5890 	if (ret)
5891 		btrfs_abort_transaction(trans, root, ret);
5892 	return ret;
5893 
5894 fail_dir_item:
5895 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
5896 		u64 local_index;
5897 		int err;
5898 		err = btrfs_del_root_ref(trans, root->fs_info->tree_root,
5899 				 key.objectid, root->root_key.objectid,
5900 				 parent_ino, &local_index, name, name_len);
5901 
5902 	} else if (add_backref) {
5903 		u64 local_index;
5904 		int err;
5905 
5906 		err = btrfs_del_inode_ref(trans, root, name, name_len,
5907 					  ino, parent_ino, &local_index);
5908 	}
5909 	return ret;
5910 }
5911 
5912 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
5913 			    struct inode *dir, struct dentry *dentry,
5914 			    struct inode *inode, int backref, u64 index)
5915 {
5916 	int err = btrfs_add_link(trans, dir, inode,
5917 				 dentry->d_name.name, dentry->d_name.len,
5918 				 backref, index);
5919 	if (err > 0)
5920 		err = -EEXIST;
5921 	return err;
5922 }
5923 
5924 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
5925 			umode_t mode, dev_t rdev)
5926 {
5927 	struct btrfs_trans_handle *trans;
5928 	struct btrfs_root *root = BTRFS_I(dir)->root;
5929 	struct inode *inode = NULL;
5930 	int err;
5931 	int drop_inode = 0;
5932 	u64 objectid;
5933 	u64 index = 0;
5934 
5935 	if (!new_valid_dev(rdev))
5936 		return -EINVAL;
5937 
5938 	/*
5939 	 * 2 for inode item and ref
5940 	 * 2 for dir items
5941 	 * 1 for xattr if selinux is on
5942 	 */
5943 	trans = btrfs_start_transaction(root, 5);
5944 	if (IS_ERR(trans))
5945 		return PTR_ERR(trans);
5946 
5947 	err = btrfs_find_free_ino(root, &objectid);
5948 	if (err)
5949 		goto out_unlock;
5950 
5951 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
5952 				dentry->d_name.len, btrfs_ino(dir), objectid,
5953 				mode, &index);
5954 	if (IS_ERR(inode)) {
5955 		err = PTR_ERR(inode);
5956 		goto out_unlock;
5957 	}
5958 
5959 	/*
5960 	* If the active LSM wants to access the inode during
5961 	* d_instantiate it needs these. Smack checks to see
5962 	* if the filesystem supports xattrs by looking at the
5963 	* ops vector.
5964 	*/
5965 	inode->i_op = &btrfs_special_inode_operations;
5966 	init_special_inode(inode, inode->i_mode, rdev);
5967 
5968 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
5969 	if (err)
5970 		goto out_unlock_inode;
5971 
5972 	err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
5973 	if (err) {
5974 		goto out_unlock_inode;
5975 	} else {
5976 		btrfs_update_inode(trans, root, inode);
5977 		unlock_new_inode(inode);
5978 		d_instantiate(dentry, inode);
5979 	}
5980 
5981 out_unlock:
5982 	btrfs_end_transaction(trans, root);
5983 	btrfs_balance_delayed_items(root);
5984 	btrfs_btree_balance_dirty(root);
5985 	if (drop_inode) {
5986 		inode_dec_link_count(inode);
5987 		iput(inode);
5988 	}
5989 	return err;
5990 
5991 out_unlock_inode:
5992 	drop_inode = 1;
5993 	unlock_new_inode(inode);
5994 	goto out_unlock;
5995 
5996 }
5997 
5998 static int btrfs_create(struct inode *dir, struct dentry *dentry,
5999 			umode_t mode, bool excl)
6000 {
6001 	struct btrfs_trans_handle *trans;
6002 	struct btrfs_root *root = BTRFS_I(dir)->root;
6003 	struct inode *inode = NULL;
6004 	int drop_inode_on_err = 0;
6005 	int err;
6006 	u64 objectid;
6007 	u64 index = 0;
6008 
6009 	/*
6010 	 * 2 for inode item and ref
6011 	 * 2 for dir items
6012 	 * 1 for xattr if selinux is on
6013 	 */
6014 	trans = btrfs_start_transaction(root, 5);
6015 	if (IS_ERR(trans))
6016 		return PTR_ERR(trans);
6017 
6018 	err = btrfs_find_free_ino(root, &objectid);
6019 	if (err)
6020 		goto out_unlock;
6021 
6022 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6023 				dentry->d_name.len, btrfs_ino(dir), objectid,
6024 				mode, &index);
6025 	if (IS_ERR(inode)) {
6026 		err = PTR_ERR(inode);
6027 		goto out_unlock;
6028 	}
6029 	drop_inode_on_err = 1;
6030 	/*
6031 	* If the active LSM wants to access the inode during
6032 	* d_instantiate it needs these. Smack checks to see
6033 	* if the filesystem supports xattrs by looking at the
6034 	* ops vector.
6035 	*/
6036 	inode->i_fop = &btrfs_file_operations;
6037 	inode->i_op = &btrfs_file_inode_operations;
6038 	inode->i_mapping->a_ops = &btrfs_aops;
6039 	inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
6040 
6041 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6042 	if (err)
6043 		goto out_unlock_inode;
6044 
6045 	err = btrfs_update_inode(trans, root, inode);
6046 	if (err)
6047 		goto out_unlock_inode;
6048 
6049 	err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
6050 	if (err)
6051 		goto out_unlock_inode;
6052 
6053 	BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
6054 	unlock_new_inode(inode);
6055 	d_instantiate(dentry, inode);
6056 
6057 out_unlock:
6058 	btrfs_end_transaction(trans, root);
6059 	if (err && drop_inode_on_err) {
6060 		inode_dec_link_count(inode);
6061 		iput(inode);
6062 	}
6063 	btrfs_balance_delayed_items(root);
6064 	btrfs_btree_balance_dirty(root);
6065 	return err;
6066 
6067 out_unlock_inode:
6068 	unlock_new_inode(inode);
6069 	goto out_unlock;
6070 
6071 }
6072 
6073 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6074 		      struct dentry *dentry)
6075 {
6076 	struct btrfs_trans_handle *trans;
6077 	struct btrfs_root *root = BTRFS_I(dir)->root;
6078 	struct inode *inode = old_dentry->d_inode;
6079 	u64 index;
6080 	int err;
6081 	int drop_inode = 0;
6082 
6083 	/* do not allow sys_link's with other subvols of the same device */
6084 	if (root->objectid != BTRFS_I(inode)->root->objectid)
6085 		return -EXDEV;
6086 
6087 	if (inode->i_nlink >= BTRFS_LINK_MAX)
6088 		return -EMLINK;
6089 
6090 	err = btrfs_set_inode_index(dir, &index);
6091 	if (err)
6092 		goto fail;
6093 
6094 	/*
6095 	 * 2 items for inode and inode ref
6096 	 * 2 items for dir items
6097 	 * 1 item for parent inode
6098 	 */
6099 	trans = btrfs_start_transaction(root, 5);
6100 	if (IS_ERR(trans)) {
6101 		err = PTR_ERR(trans);
6102 		goto fail;
6103 	}
6104 
6105 	/* There are several dir indexes for this inode, clear the cache. */
6106 	BTRFS_I(inode)->dir_index = 0ULL;
6107 	inc_nlink(inode);
6108 	inode_inc_iversion(inode);
6109 	inode->i_ctime = CURRENT_TIME;
6110 	ihold(inode);
6111 	set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
6112 
6113 	err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
6114 
6115 	if (err) {
6116 		drop_inode = 1;
6117 	} else {
6118 		struct dentry *parent = dentry->d_parent;
6119 		err = btrfs_update_inode(trans, root, inode);
6120 		if (err)
6121 			goto fail;
6122 		if (inode->i_nlink == 1) {
6123 			/*
6124 			 * If new hard link count is 1, it's a file created
6125 			 * with open(2) O_TMPFILE flag.
6126 			 */
6127 			err = btrfs_orphan_del(trans, inode);
6128 			if (err)
6129 				goto fail;
6130 		}
6131 		d_instantiate(dentry, inode);
6132 		btrfs_log_new_name(trans, inode, NULL, parent);
6133 	}
6134 
6135 	btrfs_end_transaction(trans, root);
6136 	btrfs_balance_delayed_items(root);
6137 fail:
6138 	if (drop_inode) {
6139 		inode_dec_link_count(inode);
6140 		iput(inode);
6141 	}
6142 	btrfs_btree_balance_dirty(root);
6143 	return err;
6144 }
6145 
6146 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
6147 {
6148 	struct inode *inode = NULL;
6149 	struct btrfs_trans_handle *trans;
6150 	struct btrfs_root *root = BTRFS_I(dir)->root;
6151 	int err = 0;
6152 	int drop_on_err = 0;
6153 	u64 objectid = 0;
6154 	u64 index = 0;
6155 
6156 	/*
6157 	 * 2 items for inode and ref
6158 	 * 2 items for dir items
6159 	 * 1 for xattr if selinux is on
6160 	 */
6161 	trans = btrfs_start_transaction(root, 5);
6162 	if (IS_ERR(trans))
6163 		return PTR_ERR(trans);
6164 
6165 	err = btrfs_find_free_ino(root, &objectid);
6166 	if (err)
6167 		goto out_fail;
6168 
6169 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6170 				dentry->d_name.len, btrfs_ino(dir), objectid,
6171 				S_IFDIR | mode, &index);
6172 	if (IS_ERR(inode)) {
6173 		err = PTR_ERR(inode);
6174 		goto out_fail;
6175 	}
6176 
6177 	drop_on_err = 1;
6178 	/* these must be set before we unlock the inode */
6179 	inode->i_op = &btrfs_dir_inode_operations;
6180 	inode->i_fop = &btrfs_dir_file_operations;
6181 
6182 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6183 	if (err)
6184 		goto out_fail_inode;
6185 
6186 	btrfs_i_size_write(inode, 0);
6187 	err = btrfs_update_inode(trans, root, inode);
6188 	if (err)
6189 		goto out_fail_inode;
6190 
6191 	err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
6192 			     dentry->d_name.len, 0, index);
6193 	if (err)
6194 		goto out_fail_inode;
6195 
6196 	d_instantiate(dentry, inode);
6197 	/*
6198 	 * mkdir is special.  We're unlocking after we call d_instantiate
6199 	 * to avoid a race with nfsd calling d_instantiate.
6200 	 */
6201 	unlock_new_inode(inode);
6202 	drop_on_err = 0;
6203 
6204 out_fail:
6205 	btrfs_end_transaction(trans, root);
6206 	if (drop_on_err)
6207 		iput(inode);
6208 	btrfs_balance_delayed_items(root);
6209 	btrfs_btree_balance_dirty(root);
6210 	return err;
6211 
6212 out_fail_inode:
6213 	unlock_new_inode(inode);
6214 	goto out_fail;
6215 }
6216 
6217 /* Find next extent map of a given extent map, caller needs to ensure locks */
6218 static struct extent_map *next_extent_map(struct extent_map *em)
6219 {
6220 	struct rb_node *next;
6221 
6222 	next = rb_next(&em->rb_node);
6223 	if (!next)
6224 		return NULL;
6225 	return container_of(next, struct extent_map, rb_node);
6226 }
6227 
6228 static struct extent_map *prev_extent_map(struct extent_map *em)
6229 {
6230 	struct rb_node *prev;
6231 
6232 	prev = rb_prev(&em->rb_node);
6233 	if (!prev)
6234 		return NULL;
6235 	return container_of(prev, struct extent_map, rb_node);
6236 }
6237 
6238 /* helper for btfs_get_extent.  Given an existing extent in the tree,
6239  * the existing extent is the nearest extent to map_start,
6240  * and an extent that you want to insert, deal with overlap and insert
6241  * the best fitted new extent into the tree.
6242  */
6243 static int merge_extent_mapping(struct extent_map_tree *em_tree,
6244 				struct extent_map *existing,
6245 				struct extent_map *em,
6246 				u64 map_start)
6247 {
6248 	struct extent_map *prev;
6249 	struct extent_map *next;
6250 	u64 start;
6251 	u64 end;
6252 	u64 start_diff;
6253 
6254 	BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
6255 
6256 	if (existing->start > map_start) {
6257 		next = existing;
6258 		prev = prev_extent_map(next);
6259 	} else {
6260 		prev = existing;
6261 		next = next_extent_map(prev);
6262 	}
6263 
6264 	start = prev ? extent_map_end(prev) : em->start;
6265 	start = max_t(u64, start, em->start);
6266 	end = next ? next->start : extent_map_end(em);
6267 	end = min_t(u64, end, extent_map_end(em));
6268 	start_diff = start - em->start;
6269 	em->start = start;
6270 	em->len = end - start;
6271 	if (em->block_start < EXTENT_MAP_LAST_BYTE &&
6272 	    !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
6273 		em->block_start += start_diff;
6274 		em->block_len -= start_diff;
6275 	}
6276 	return add_extent_mapping(em_tree, em, 0);
6277 }
6278 
6279 static noinline int uncompress_inline(struct btrfs_path *path,
6280 				      struct inode *inode, struct page *page,
6281 				      size_t pg_offset, u64 extent_offset,
6282 				      struct btrfs_file_extent_item *item)
6283 {
6284 	int ret;
6285 	struct extent_buffer *leaf = path->nodes[0];
6286 	char *tmp;
6287 	size_t max_size;
6288 	unsigned long inline_size;
6289 	unsigned long ptr;
6290 	int compress_type;
6291 
6292 	WARN_ON(pg_offset != 0);
6293 	compress_type = btrfs_file_extent_compression(leaf, item);
6294 	max_size = btrfs_file_extent_ram_bytes(leaf, item);
6295 	inline_size = btrfs_file_extent_inline_item_len(leaf,
6296 					btrfs_item_nr(path->slots[0]));
6297 	tmp = kmalloc(inline_size, GFP_NOFS);
6298 	if (!tmp)
6299 		return -ENOMEM;
6300 	ptr = btrfs_file_extent_inline_start(item);
6301 
6302 	read_extent_buffer(leaf, tmp, ptr, inline_size);
6303 
6304 	max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
6305 	ret = btrfs_decompress(compress_type, tmp, page,
6306 			       extent_offset, inline_size, max_size);
6307 	kfree(tmp);
6308 	return ret;
6309 }
6310 
6311 /*
6312  * a bit scary, this does extent mapping from logical file offset to the disk.
6313  * the ugly parts come from merging extents from the disk with the in-ram
6314  * representation.  This gets more complex because of the data=ordered code,
6315  * where the in-ram extents might be locked pending data=ordered completion.
6316  *
6317  * This also copies inline extents directly into the page.
6318  */
6319 
6320 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
6321 				    size_t pg_offset, u64 start, u64 len,
6322 				    int create)
6323 {
6324 	int ret;
6325 	int err = 0;
6326 	u64 extent_start = 0;
6327 	u64 extent_end = 0;
6328 	u64 objectid = btrfs_ino(inode);
6329 	u32 found_type;
6330 	struct btrfs_path *path = NULL;
6331 	struct btrfs_root *root = BTRFS_I(inode)->root;
6332 	struct btrfs_file_extent_item *item;
6333 	struct extent_buffer *leaf;
6334 	struct btrfs_key found_key;
6335 	struct extent_map *em = NULL;
6336 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
6337 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
6338 	struct btrfs_trans_handle *trans = NULL;
6339 	const bool new_inline = !page || create;
6340 
6341 again:
6342 	read_lock(&em_tree->lock);
6343 	em = lookup_extent_mapping(em_tree, start, len);
6344 	if (em)
6345 		em->bdev = root->fs_info->fs_devices->latest_bdev;
6346 	read_unlock(&em_tree->lock);
6347 
6348 	if (em) {
6349 		if (em->start > start || em->start + em->len <= start)
6350 			free_extent_map(em);
6351 		else if (em->block_start == EXTENT_MAP_INLINE && page)
6352 			free_extent_map(em);
6353 		else
6354 			goto out;
6355 	}
6356 	em = alloc_extent_map();
6357 	if (!em) {
6358 		err = -ENOMEM;
6359 		goto out;
6360 	}
6361 	em->bdev = root->fs_info->fs_devices->latest_bdev;
6362 	em->start = EXTENT_MAP_HOLE;
6363 	em->orig_start = EXTENT_MAP_HOLE;
6364 	em->len = (u64)-1;
6365 	em->block_len = (u64)-1;
6366 
6367 	if (!path) {
6368 		path = btrfs_alloc_path();
6369 		if (!path) {
6370 			err = -ENOMEM;
6371 			goto out;
6372 		}
6373 		/*
6374 		 * Chances are we'll be called again, so go ahead and do
6375 		 * readahead
6376 		 */
6377 		path->reada = 1;
6378 	}
6379 
6380 	ret = btrfs_lookup_file_extent(trans, root, path,
6381 				       objectid, start, trans != NULL);
6382 	if (ret < 0) {
6383 		err = ret;
6384 		goto out;
6385 	}
6386 
6387 	if (ret != 0) {
6388 		if (path->slots[0] == 0)
6389 			goto not_found;
6390 		path->slots[0]--;
6391 	}
6392 
6393 	leaf = path->nodes[0];
6394 	item = btrfs_item_ptr(leaf, path->slots[0],
6395 			      struct btrfs_file_extent_item);
6396 	/* are we inside the extent that was found? */
6397 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6398 	found_type = found_key.type;
6399 	if (found_key.objectid != objectid ||
6400 	    found_type != BTRFS_EXTENT_DATA_KEY) {
6401 		/*
6402 		 * If we backup past the first extent we want to move forward
6403 		 * and see if there is an extent in front of us, otherwise we'll
6404 		 * say there is a hole for our whole search range which can
6405 		 * cause problems.
6406 		 */
6407 		extent_end = start;
6408 		goto next;
6409 	}
6410 
6411 	found_type = btrfs_file_extent_type(leaf, item);
6412 	extent_start = found_key.offset;
6413 	if (found_type == BTRFS_FILE_EXTENT_REG ||
6414 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
6415 		extent_end = extent_start +
6416 		       btrfs_file_extent_num_bytes(leaf, item);
6417 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6418 		size_t size;
6419 		size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
6420 		extent_end = ALIGN(extent_start + size, root->sectorsize);
6421 	}
6422 next:
6423 	if (start >= extent_end) {
6424 		path->slots[0]++;
6425 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6426 			ret = btrfs_next_leaf(root, path);
6427 			if (ret < 0) {
6428 				err = ret;
6429 				goto out;
6430 			}
6431 			if (ret > 0)
6432 				goto not_found;
6433 			leaf = path->nodes[0];
6434 		}
6435 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6436 		if (found_key.objectid != objectid ||
6437 		    found_key.type != BTRFS_EXTENT_DATA_KEY)
6438 			goto not_found;
6439 		if (start + len <= found_key.offset)
6440 			goto not_found;
6441 		if (start > found_key.offset)
6442 			goto next;
6443 		em->start = start;
6444 		em->orig_start = start;
6445 		em->len = found_key.offset - start;
6446 		goto not_found_em;
6447 	}
6448 
6449 	btrfs_extent_item_to_extent_map(inode, path, item, new_inline, em);
6450 
6451 	if (found_type == BTRFS_FILE_EXTENT_REG ||
6452 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
6453 		goto insert;
6454 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6455 		unsigned long ptr;
6456 		char *map;
6457 		size_t size;
6458 		size_t extent_offset;
6459 		size_t copy_size;
6460 
6461 		if (new_inline)
6462 			goto out;
6463 
6464 		size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
6465 		extent_offset = page_offset(page) + pg_offset - extent_start;
6466 		copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
6467 				size - extent_offset);
6468 		em->start = extent_start + extent_offset;
6469 		em->len = ALIGN(copy_size, root->sectorsize);
6470 		em->orig_block_len = em->len;
6471 		em->orig_start = em->start;
6472 		ptr = btrfs_file_extent_inline_start(item) + extent_offset;
6473 		if (create == 0 && !PageUptodate(page)) {
6474 			if (btrfs_file_extent_compression(leaf, item) !=
6475 			    BTRFS_COMPRESS_NONE) {
6476 				ret = uncompress_inline(path, inode, page,
6477 							pg_offset,
6478 							extent_offset, item);
6479 				if (ret) {
6480 					err = ret;
6481 					goto out;
6482 				}
6483 			} else {
6484 				map = kmap(page);
6485 				read_extent_buffer(leaf, map + pg_offset, ptr,
6486 						   copy_size);
6487 				if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
6488 					memset(map + pg_offset + copy_size, 0,
6489 					       PAGE_CACHE_SIZE - pg_offset -
6490 					       copy_size);
6491 				}
6492 				kunmap(page);
6493 			}
6494 			flush_dcache_page(page);
6495 		} else if (create && PageUptodate(page)) {
6496 			BUG();
6497 			if (!trans) {
6498 				kunmap(page);
6499 				free_extent_map(em);
6500 				em = NULL;
6501 
6502 				btrfs_release_path(path);
6503 				trans = btrfs_join_transaction(root);
6504 
6505 				if (IS_ERR(trans))
6506 					return ERR_CAST(trans);
6507 				goto again;
6508 			}
6509 			map = kmap(page);
6510 			write_extent_buffer(leaf, map + pg_offset, ptr,
6511 					    copy_size);
6512 			kunmap(page);
6513 			btrfs_mark_buffer_dirty(leaf);
6514 		}
6515 		set_extent_uptodate(io_tree, em->start,
6516 				    extent_map_end(em) - 1, NULL, GFP_NOFS);
6517 		goto insert;
6518 	}
6519 not_found:
6520 	em->start = start;
6521 	em->orig_start = start;
6522 	em->len = len;
6523 not_found_em:
6524 	em->block_start = EXTENT_MAP_HOLE;
6525 	set_bit(EXTENT_FLAG_VACANCY, &em->flags);
6526 insert:
6527 	btrfs_release_path(path);
6528 	if (em->start > start || extent_map_end(em) <= start) {
6529 		btrfs_err(root->fs_info, "bad extent! em: [%llu %llu] passed [%llu %llu]",
6530 			em->start, em->len, start, len);
6531 		err = -EIO;
6532 		goto out;
6533 	}
6534 
6535 	err = 0;
6536 	write_lock(&em_tree->lock);
6537 	ret = add_extent_mapping(em_tree, em, 0);
6538 	/* it is possible that someone inserted the extent into the tree
6539 	 * while we had the lock dropped.  It is also possible that
6540 	 * an overlapping map exists in the tree
6541 	 */
6542 	if (ret == -EEXIST) {
6543 		struct extent_map *existing;
6544 
6545 		ret = 0;
6546 
6547 		existing = search_extent_mapping(em_tree, start, len);
6548 		/*
6549 		 * existing will always be non-NULL, since there must be
6550 		 * extent causing the -EEXIST.
6551 		 */
6552 		if (start >= extent_map_end(existing) ||
6553 		    start <= existing->start) {
6554 			/*
6555 			 * The existing extent map is the one nearest to
6556 			 * the [start, start + len) range which overlaps
6557 			 */
6558 			err = merge_extent_mapping(em_tree, existing,
6559 						   em, start);
6560 			free_extent_map(existing);
6561 			if (err) {
6562 				free_extent_map(em);
6563 				em = NULL;
6564 			}
6565 		} else {
6566 			free_extent_map(em);
6567 			em = existing;
6568 			err = 0;
6569 		}
6570 	}
6571 	write_unlock(&em_tree->lock);
6572 out:
6573 
6574 	trace_btrfs_get_extent(root, em);
6575 
6576 	if (path)
6577 		btrfs_free_path(path);
6578 	if (trans) {
6579 		ret = btrfs_end_transaction(trans, root);
6580 		if (!err)
6581 			err = ret;
6582 	}
6583 	if (err) {
6584 		free_extent_map(em);
6585 		return ERR_PTR(err);
6586 	}
6587 	BUG_ON(!em); /* Error is always set */
6588 	return em;
6589 }
6590 
6591 struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
6592 					   size_t pg_offset, u64 start, u64 len,
6593 					   int create)
6594 {
6595 	struct extent_map *em;
6596 	struct extent_map *hole_em = NULL;
6597 	u64 range_start = start;
6598 	u64 end;
6599 	u64 found;
6600 	u64 found_end;
6601 	int err = 0;
6602 
6603 	em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
6604 	if (IS_ERR(em))
6605 		return em;
6606 	if (em) {
6607 		/*
6608 		 * if our em maps to
6609 		 * -  a hole or
6610 		 * -  a pre-alloc extent,
6611 		 * there might actually be delalloc bytes behind it.
6612 		 */
6613 		if (em->block_start != EXTENT_MAP_HOLE &&
6614 		    !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
6615 			return em;
6616 		else
6617 			hole_em = em;
6618 	}
6619 
6620 	/* check to see if we've wrapped (len == -1 or similar) */
6621 	end = start + len;
6622 	if (end < start)
6623 		end = (u64)-1;
6624 	else
6625 		end -= 1;
6626 
6627 	em = NULL;
6628 
6629 	/* ok, we didn't find anything, lets look for delalloc */
6630 	found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
6631 				 end, len, EXTENT_DELALLOC, 1);
6632 	found_end = range_start + found;
6633 	if (found_end < range_start)
6634 		found_end = (u64)-1;
6635 
6636 	/*
6637 	 * we didn't find anything useful, return
6638 	 * the original results from get_extent()
6639 	 */
6640 	if (range_start > end || found_end <= start) {
6641 		em = hole_em;
6642 		hole_em = NULL;
6643 		goto out;
6644 	}
6645 
6646 	/* adjust the range_start to make sure it doesn't
6647 	 * go backwards from the start they passed in
6648 	 */
6649 	range_start = max(start, range_start);
6650 	found = found_end - range_start;
6651 
6652 	if (found > 0) {
6653 		u64 hole_start = start;
6654 		u64 hole_len = len;
6655 
6656 		em = alloc_extent_map();
6657 		if (!em) {
6658 			err = -ENOMEM;
6659 			goto out;
6660 		}
6661 		/*
6662 		 * when btrfs_get_extent can't find anything it
6663 		 * returns one huge hole
6664 		 *
6665 		 * make sure what it found really fits our range, and
6666 		 * adjust to make sure it is based on the start from
6667 		 * the caller
6668 		 */
6669 		if (hole_em) {
6670 			u64 calc_end = extent_map_end(hole_em);
6671 
6672 			if (calc_end <= start || (hole_em->start > end)) {
6673 				free_extent_map(hole_em);
6674 				hole_em = NULL;
6675 			} else {
6676 				hole_start = max(hole_em->start, start);
6677 				hole_len = calc_end - hole_start;
6678 			}
6679 		}
6680 		em->bdev = NULL;
6681 		if (hole_em && range_start > hole_start) {
6682 			/* our hole starts before our delalloc, so we
6683 			 * have to return just the parts of the hole
6684 			 * that go until  the delalloc starts
6685 			 */
6686 			em->len = min(hole_len,
6687 				      range_start - hole_start);
6688 			em->start = hole_start;
6689 			em->orig_start = hole_start;
6690 			/*
6691 			 * don't adjust block start at all,
6692 			 * it is fixed at EXTENT_MAP_HOLE
6693 			 */
6694 			em->block_start = hole_em->block_start;
6695 			em->block_len = hole_len;
6696 			if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
6697 				set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
6698 		} else {
6699 			em->start = range_start;
6700 			em->len = found;
6701 			em->orig_start = range_start;
6702 			em->block_start = EXTENT_MAP_DELALLOC;
6703 			em->block_len = found;
6704 		}
6705 	} else if (hole_em) {
6706 		return hole_em;
6707 	}
6708 out:
6709 
6710 	free_extent_map(hole_em);
6711 	if (err) {
6712 		free_extent_map(em);
6713 		return ERR_PTR(err);
6714 	}
6715 	return em;
6716 }
6717 
6718 static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
6719 						  u64 start, u64 len)
6720 {
6721 	struct btrfs_root *root = BTRFS_I(inode)->root;
6722 	struct extent_map *em;
6723 	struct btrfs_key ins;
6724 	u64 alloc_hint;
6725 	int ret;
6726 
6727 	alloc_hint = get_extent_allocation_hint(inode, start, len);
6728 	ret = btrfs_reserve_extent(root, len, root->sectorsize, 0,
6729 				   alloc_hint, &ins, 1, 1);
6730 	if (ret)
6731 		return ERR_PTR(ret);
6732 
6733 	em = create_pinned_em(inode, start, ins.offset, start, ins.objectid,
6734 			      ins.offset, ins.offset, ins.offset, 0);
6735 	if (IS_ERR(em)) {
6736 		btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
6737 		return em;
6738 	}
6739 
6740 	ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
6741 					   ins.offset, ins.offset, 0);
6742 	if (ret) {
6743 		btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
6744 		free_extent_map(em);
6745 		return ERR_PTR(ret);
6746 	}
6747 
6748 	return em;
6749 }
6750 
6751 /*
6752  * returns 1 when the nocow is safe, < 1 on error, 0 if the
6753  * block must be cow'd
6754  */
6755 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
6756 			      u64 *orig_start, u64 *orig_block_len,
6757 			      u64 *ram_bytes)
6758 {
6759 	struct btrfs_trans_handle *trans;
6760 	struct btrfs_path *path;
6761 	int ret;
6762 	struct extent_buffer *leaf;
6763 	struct btrfs_root *root = BTRFS_I(inode)->root;
6764 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
6765 	struct btrfs_file_extent_item *fi;
6766 	struct btrfs_key key;
6767 	u64 disk_bytenr;
6768 	u64 backref_offset;
6769 	u64 extent_end;
6770 	u64 num_bytes;
6771 	int slot;
6772 	int found_type;
6773 	bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
6774 
6775 	path = btrfs_alloc_path();
6776 	if (!path)
6777 		return -ENOMEM;
6778 
6779 	ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode),
6780 				       offset, 0);
6781 	if (ret < 0)
6782 		goto out;
6783 
6784 	slot = path->slots[0];
6785 	if (ret == 1) {
6786 		if (slot == 0) {
6787 			/* can't find the item, must cow */
6788 			ret = 0;
6789 			goto out;
6790 		}
6791 		slot--;
6792 	}
6793 	ret = 0;
6794 	leaf = path->nodes[0];
6795 	btrfs_item_key_to_cpu(leaf, &key, slot);
6796 	if (key.objectid != btrfs_ino(inode) ||
6797 	    key.type != BTRFS_EXTENT_DATA_KEY) {
6798 		/* not our file or wrong item type, must cow */
6799 		goto out;
6800 	}
6801 
6802 	if (key.offset > offset) {
6803 		/* Wrong offset, must cow */
6804 		goto out;
6805 	}
6806 
6807 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
6808 	found_type = btrfs_file_extent_type(leaf, fi);
6809 	if (found_type != BTRFS_FILE_EXTENT_REG &&
6810 	    found_type != BTRFS_FILE_EXTENT_PREALLOC) {
6811 		/* not a regular extent, must cow */
6812 		goto out;
6813 	}
6814 
6815 	if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
6816 		goto out;
6817 
6818 	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
6819 	if (extent_end <= offset)
6820 		goto out;
6821 
6822 	disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
6823 	if (disk_bytenr == 0)
6824 		goto out;
6825 
6826 	if (btrfs_file_extent_compression(leaf, fi) ||
6827 	    btrfs_file_extent_encryption(leaf, fi) ||
6828 	    btrfs_file_extent_other_encoding(leaf, fi))
6829 		goto out;
6830 
6831 	backref_offset = btrfs_file_extent_offset(leaf, fi);
6832 
6833 	if (orig_start) {
6834 		*orig_start = key.offset - backref_offset;
6835 		*orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
6836 		*ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
6837 	}
6838 
6839 	if (btrfs_extent_readonly(root, disk_bytenr))
6840 		goto out;
6841 
6842 	num_bytes = min(offset + *len, extent_end) - offset;
6843 	if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) {
6844 		u64 range_end;
6845 
6846 		range_end = round_up(offset + num_bytes, root->sectorsize) - 1;
6847 		ret = test_range_bit(io_tree, offset, range_end,
6848 				     EXTENT_DELALLOC, 0, NULL);
6849 		if (ret) {
6850 			ret = -EAGAIN;
6851 			goto out;
6852 		}
6853 	}
6854 
6855 	btrfs_release_path(path);
6856 
6857 	/*
6858 	 * look for other files referencing this extent, if we
6859 	 * find any we must cow
6860 	 */
6861 	trans = btrfs_join_transaction(root);
6862 	if (IS_ERR(trans)) {
6863 		ret = 0;
6864 		goto out;
6865 	}
6866 
6867 	ret = btrfs_cross_ref_exist(trans, root, btrfs_ino(inode),
6868 				    key.offset - backref_offset, disk_bytenr);
6869 	btrfs_end_transaction(trans, root);
6870 	if (ret) {
6871 		ret = 0;
6872 		goto out;
6873 	}
6874 
6875 	/*
6876 	 * adjust disk_bytenr and num_bytes to cover just the bytes
6877 	 * in this extent we are about to write.  If there
6878 	 * are any csums in that range we have to cow in order
6879 	 * to keep the csums correct
6880 	 */
6881 	disk_bytenr += backref_offset;
6882 	disk_bytenr += offset - key.offset;
6883 	if (csum_exist_in_range(root, disk_bytenr, num_bytes))
6884 				goto out;
6885 	/*
6886 	 * all of the above have passed, it is safe to overwrite this extent
6887 	 * without cow
6888 	 */
6889 	*len = num_bytes;
6890 	ret = 1;
6891 out:
6892 	btrfs_free_path(path);
6893 	return ret;
6894 }
6895 
6896 bool btrfs_page_exists_in_range(struct inode *inode, loff_t start, loff_t end)
6897 {
6898 	struct radix_tree_root *root = &inode->i_mapping->page_tree;
6899 	int found = false;
6900 	void **pagep = NULL;
6901 	struct page *page = NULL;
6902 	int start_idx;
6903 	int end_idx;
6904 
6905 	start_idx = start >> PAGE_CACHE_SHIFT;
6906 
6907 	/*
6908 	 * end is the last byte in the last page.  end == start is legal
6909 	 */
6910 	end_idx = end >> PAGE_CACHE_SHIFT;
6911 
6912 	rcu_read_lock();
6913 
6914 	/* Most of the code in this while loop is lifted from
6915 	 * find_get_page.  It's been modified to begin searching from a
6916 	 * page and return just the first page found in that range.  If the
6917 	 * found idx is less than or equal to the end idx then we know that
6918 	 * a page exists.  If no pages are found or if those pages are
6919 	 * outside of the range then we're fine (yay!) */
6920 	while (page == NULL &&
6921 	       radix_tree_gang_lookup_slot(root, &pagep, NULL, start_idx, 1)) {
6922 		page = radix_tree_deref_slot(pagep);
6923 		if (unlikely(!page))
6924 			break;
6925 
6926 		if (radix_tree_exception(page)) {
6927 			if (radix_tree_deref_retry(page)) {
6928 				page = NULL;
6929 				continue;
6930 			}
6931 			/*
6932 			 * Otherwise, shmem/tmpfs must be storing a swap entry
6933 			 * here as an exceptional entry: so return it without
6934 			 * attempting to raise page count.
6935 			 */
6936 			page = NULL;
6937 			break; /* TODO: Is this relevant for this use case? */
6938 		}
6939 
6940 		if (!page_cache_get_speculative(page)) {
6941 			page = NULL;
6942 			continue;
6943 		}
6944 
6945 		/*
6946 		 * Has the page moved?
6947 		 * This is part of the lockless pagecache protocol. See
6948 		 * include/linux/pagemap.h for details.
6949 		 */
6950 		if (unlikely(page != *pagep)) {
6951 			page_cache_release(page);
6952 			page = NULL;
6953 		}
6954 	}
6955 
6956 	if (page) {
6957 		if (page->index <= end_idx)
6958 			found = true;
6959 		page_cache_release(page);
6960 	}
6961 
6962 	rcu_read_unlock();
6963 	return found;
6964 }
6965 
6966 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
6967 			      struct extent_state **cached_state, int writing)
6968 {
6969 	struct btrfs_ordered_extent *ordered;
6970 	int ret = 0;
6971 
6972 	while (1) {
6973 		lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6974 				 0, cached_state);
6975 		/*
6976 		 * We're concerned with the entire range that we're going to be
6977 		 * doing DIO to, so we need to make sure theres no ordered
6978 		 * extents in this range.
6979 		 */
6980 		ordered = btrfs_lookup_ordered_range(inode, lockstart,
6981 						     lockend - lockstart + 1);
6982 
6983 		/*
6984 		 * We need to make sure there are no buffered pages in this
6985 		 * range either, we could have raced between the invalidate in
6986 		 * generic_file_direct_write and locking the extent.  The
6987 		 * invalidate needs to happen so that reads after a write do not
6988 		 * get stale data.
6989 		 */
6990 		if (!ordered &&
6991 		    (!writing ||
6992 		     !btrfs_page_exists_in_range(inode, lockstart, lockend)))
6993 			break;
6994 
6995 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6996 				     cached_state, GFP_NOFS);
6997 
6998 		if (ordered) {
6999 			btrfs_start_ordered_extent(inode, ordered, 1);
7000 			btrfs_put_ordered_extent(ordered);
7001 		} else {
7002 			/* Screw you mmap */
7003 			ret = filemap_write_and_wait_range(inode->i_mapping,
7004 							   lockstart,
7005 							   lockend);
7006 			if (ret)
7007 				break;
7008 
7009 			/*
7010 			 * If we found a page that couldn't be invalidated just
7011 			 * fall back to buffered.
7012 			 */
7013 			ret = invalidate_inode_pages2_range(inode->i_mapping,
7014 					lockstart >> PAGE_CACHE_SHIFT,
7015 					lockend >> PAGE_CACHE_SHIFT);
7016 			if (ret)
7017 				break;
7018 		}
7019 
7020 		cond_resched();
7021 	}
7022 
7023 	return ret;
7024 }
7025 
7026 static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
7027 					   u64 len, u64 orig_start,
7028 					   u64 block_start, u64 block_len,
7029 					   u64 orig_block_len, u64 ram_bytes,
7030 					   int type)
7031 {
7032 	struct extent_map_tree *em_tree;
7033 	struct extent_map *em;
7034 	struct btrfs_root *root = BTRFS_I(inode)->root;
7035 	int ret;
7036 
7037 	em_tree = &BTRFS_I(inode)->extent_tree;
7038 	em = alloc_extent_map();
7039 	if (!em)
7040 		return ERR_PTR(-ENOMEM);
7041 
7042 	em->start = start;
7043 	em->orig_start = orig_start;
7044 	em->mod_start = start;
7045 	em->mod_len = len;
7046 	em->len = len;
7047 	em->block_len = block_len;
7048 	em->block_start = block_start;
7049 	em->bdev = root->fs_info->fs_devices->latest_bdev;
7050 	em->orig_block_len = orig_block_len;
7051 	em->ram_bytes = ram_bytes;
7052 	em->generation = -1;
7053 	set_bit(EXTENT_FLAG_PINNED, &em->flags);
7054 	if (type == BTRFS_ORDERED_PREALLOC)
7055 		set_bit(EXTENT_FLAG_FILLING, &em->flags);
7056 
7057 	do {
7058 		btrfs_drop_extent_cache(inode, em->start,
7059 				em->start + em->len - 1, 0);
7060 		write_lock(&em_tree->lock);
7061 		ret = add_extent_mapping(em_tree, em, 1);
7062 		write_unlock(&em_tree->lock);
7063 	} while (ret == -EEXIST);
7064 
7065 	if (ret) {
7066 		free_extent_map(em);
7067 		return ERR_PTR(ret);
7068 	}
7069 
7070 	return em;
7071 }
7072 
7073 
7074 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
7075 				   struct buffer_head *bh_result, int create)
7076 {
7077 	struct extent_map *em;
7078 	struct btrfs_root *root = BTRFS_I(inode)->root;
7079 	struct extent_state *cached_state = NULL;
7080 	u64 start = iblock << inode->i_blkbits;
7081 	u64 lockstart, lockend;
7082 	u64 len = bh_result->b_size;
7083 	int unlock_bits = EXTENT_LOCKED;
7084 	int ret = 0;
7085 
7086 	if (create)
7087 		unlock_bits |= EXTENT_DELALLOC | EXTENT_DIRTY;
7088 	else
7089 		len = min_t(u64, len, root->sectorsize);
7090 
7091 	lockstart = start;
7092 	lockend = start + len - 1;
7093 
7094 	/*
7095 	 * If this errors out it's because we couldn't invalidate pagecache for
7096 	 * this range and we need to fallback to buffered.
7097 	 */
7098 	if (lock_extent_direct(inode, lockstart, lockend, &cached_state, create))
7099 		return -ENOTBLK;
7100 
7101 	em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
7102 	if (IS_ERR(em)) {
7103 		ret = PTR_ERR(em);
7104 		goto unlock_err;
7105 	}
7106 
7107 	/*
7108 	 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7109 	 * io.  INLINE is special, and we could probably kludge it in here, but
7110 	 * it's still buffered so for safety lets just fall back to the generic
7111 	 * buffered path.
7112 	 *
7113 	 * For COMPRESSED we _have_ to read the entire extent in so we can
7114 	 * decompress it, so there will be buffering required no matter what we
7115 	 * do, so go ahead and fallback to buffered.
7116 	 *
7117 	 * We return -ENOTBLK because thats what makes DIO go ahead and go back
7118 	 * to buffered IO.  Don't blame me, this is the price we pay for using
7119 	 * the generic code.
7120 	 */
7121 	if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7122 	    em->block_start == EXTENT_MAP_INLINE) {
7123 		free_extent_map(em);
7124 		ret = -ENOTBLK;
7125 		goto unlock_err;
7126 	}
7127 
7128 	/* Just a good old fashioned hole, return */
7129 	if (!create && (em->block_start == EXTENT_MAP_HOLE ||
7130 			test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
7131 		free_extent_map(em);
7132 		goto unlock_err;
7133 	}
7134 
7135 	/*
7136 	 * We don't allocate a new extent in the following cases
7137 	 *
7138 	 * 1) The inode is marked as NODATACOW.  In this case we'll just use the
7139 	 * existing extent.
7140 	 * 2) The extent is marked as PREALLOC.  We're good to go here and can
7141 	 * just use the extent.
7142 	 *
7143 	 */
7144 	if (!create) {
7145 		len = min(len, em->len - (start - em->start));
7146 		lockstart = start + len;
7147 		goto unlock;
7148 	}
7149 
7150 	if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7151 	    ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7152 	     em->block_start != EXTENT_MAP_HOLE)) {
7153 		int type;
7154 		int ret;
7155 		u64 block_start, orig_start, orig_block_len, ram_bytes;
7156 
7157 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7158 			type = BTRFS_ORDERED_PREALLOC;
7159 		else
7160 			type = BTRFS_ORDERED_NOCOW;
7161 		len = min(len, em->len - (start - em->start));
7162 		block_start = em->block_start + (start - em->start);
7163 
7164 		if (can_nocow_extent(inode, start, &len, &orig_start,
7165 				     &orig_block_len, &ram_bytes) == 1) {
7166 			if (type == BTRFS_ORDERED_PREALLOC) {
7167 				free_extent_map(em);
7168 				em = create_pinned_em(inode, start, len,
7169 						       orig_start,
7170 						       block_start, len,
7171 						       orig_block_len,
7172 						       ram_bytes, type);
7173 				if (IS_ERR(em)) {
7174 					ret = PTR_ERR(em);
7175 					goto unlock_err;
7176 				}
7177 			}
7178 
7179 			ret = btrfs_add_ordered_extent_dio(inode, start,
7180 					   block_start, len, len, type);
7181 			if (ret) {
7182 				free_extent_map(em);
7183 				goto unlock_err;
7184 			}
7185 			goto unlock;
7186 		}
7187 	}
7188 
7189 	/*
7190 	 * this will cow the extent, reset the len in case we changed
7191 	 * it above
7192 	 */
7193 	len = bh_result->b_size;
7194 	free_extent_map(em);
7195 	em = btrfs_new_extent_direct(inode, start, len);
7196 	if (IS_ERR(em)) {
7197 		ret = PTR_ERR(em);
7198 		goto unlock_err;
7199 	}
7200 	len = min(len, em->len - (start - em->start));
7201 unlock:
7202 	bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7203 		inode->i_blkbits;
7204 	bh_result->b_size = len;
7205 	bh_result->b_bdev = em->bdev;
7206 	set_buffer_mapped(bh_result);
7207 	if (create) {
7208 		if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7209 			set_buffer_new(bh_result);
7210 
7211 		/*
7212 		 * Need to update the i_size under the extent lock so buffered
7213 		 * readers will get the updated i_size when we unlock.
7214 		 */
7215 		if (start + len > i_size_read(inode))
7216 			i_size_write(inode, start + len);
7217 
7218 		spin_lock(&BTRFS_I(inode)->lock);
7219 		BTRFS_I(inode)->outstanding_extents++;
7220 		spin_unlock(&BTRFS_I(inode)->lock);
7221 
7222 		ret = set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
7223 				     lockstart + len - 1, EXTENT_DELALLOC, NULL,
7224 				     &cached_state, GFP_NOFS);
7225 		BUG_ON(ret);
7226 	}
7227 
7228 	/*
7229 	 * In the case of write we need to clear and unlock the entire range,
7230 	 * in the case of read we need to unlock only the end area that we
7231 	 * aren't using if there is any left over space.
7232 	 */
7233 	if (lockstart < lockend) {
7234 		clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
7235 				 lockend, unlock_bits, 1, 0,
7236 				 &cached_state, GFP_NOFS);
7237 	} else {
7238 		free_extent_state(cached_state);
7239 	}
7240 
7241 	free_extent_map(em);
7242 
7243 	return 0;
7244 
7245 unlock_err:
7246 	clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7247 			 unlock_bits, 1, 0, &cached_state, GFP_NOFS);
7248 	return ret;
7249 }
7250 
7251 static inline int submit_dio_repair_bio(struct inode *inode, struct bio *bio,
7252 					int rw, int mirror_num)
7253 {
7254 	struct btrfs_root *root = BTRFS_I(inode)->root;
7255 	int ret;
7256 
7257 	BUG_ON(rw & REQ_WRITE);
7258 
7259 	bio_get(bio);
7260 
7261 	ret = btrfs_bio_wq_end_io(root->fs_info, bio,
7262 				  BTRFS_WQ_ENDIO_DIO_REPAIR);
7263 	if (ret)
7264 		goto err;
7265 
7266 	ret = btrfs_map_bio(root, rw, bio, mirror_num, 0);
7267 err:
7268 	bio_put(bio);
7269 	return ret;
7270 }
7271 
7272 static int btrfs_check_dio_repairable(struct inode *inode,
7273 				      struct bio *failed_bio,
7274 				      struct io_failure_record *failrec,
7275 				      int failed_mirror)
7276 {
7277 	int num_copies;
7278 
7279 	num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info,
7280 				      failrec->logical, failrec->len);
7281 	if (num_copies == 1) {
7282 		/*
7283 		 * we only have a single copy of the data, so don't bother with
7284 		 * all the retry and error correction code that follows. no
7285 		 * matter what the error is, it is very likely to persist.
7286 		 */
7287 		pr_debug("Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n",
7288 			 num_copies, failrec->this_mirror, failed_mirror);
7289 		return 0;
7290 	}
7291 
7292 	failrec->failed_mirror = failed_mirror;
7293 	failrec->this_mirror++;
7294 	if (failrec->this_mirror == failed_mirror)
7295 		failrec->this_mirror++;
7296 
7297 	if (failrec->this_mirror > num_copies) {
7298 		pr_debug("Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n",
7299 			 num_copies, failrec->this_mirror, failed_mirror);
7300 		return 0;
7301 	}
7302 
7303 	return 1;
7304 }
7305 
7306 static int dio_read_error(struct inode *inode, struct bio *failed_bio,
7307 			  struct page *page, u64 start, u64 end,
7308 			  int failed_mirror, bio_end_io_t *repair_endio,
7309 			  void *repair_arg)
7310 {
7311 	struct io_failure_record *failrec;
7312 	struct bio *bio;
7313 	int isector;
7314 	int read_mode;
7315 	int ret;
7316 
7317 	BUG_ON(failed_bio->bi_rw & REQ_WRITE);
7318 
7319 	ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
7320 	if (ret)
7321 		return ret;
7322 
7323 	ret = btrfs_check_dio_repairable(inode, failed_bio, failrec,
7324 					 failed_mirror);
7325 	if (!ret) {
7326 		free_io_failure(inode, failrec);
7327 		return -EIO;
7328 	}
7329 
7330 	if (failed_bio->bi_vcnt > 1)
7331 		read_mode = READ_SYNC | REQ_FAILFAST_DEV;
7332 	else
7333 		read_mode = READ_SYNC;
7334 
7335 	isector = start - btrfs_io_bio(failed_bio)->logical;
7336 	isector >>= inode->i_sb->s_blocksize_bits;
7337 	bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
7338 				      0, isector, repair_endio, repair_arg);
7339 	if (!bio) {
7340 		free_io_failure(inode, failrec);
7341 		return -EIO;
7342 	}
7343 
7344 	btrfs_debug(BTRFS_I(inode)->root->fs_info,
7345 		    "Repair DIO Read Error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d\n",
7346 		    read_mode, failrec->this_mirror, failrec->in_validation);
7347 
7348 	ret = submit_dio_repair_bio(inode, bio, read_mode,
7349 				    failrec->this_mirror);
7350 	if (ret) {
7351 		free_io_failure(inode, failrec);
7352 		bio_put(bio);
7353 	}
7354 
7355 	return ret;
7356 }
7357 
7358 struct btrfs_retry_complete {
7359 	struct completion done;
7360 	struct inode *inode;
7361 	u64 start;
7362 	int uptodate;
7363 };
7364 
7365 static void btrfs_retry_endio_nocsum(struct bio *bio, int err)
7366 {
7367 	struct btrfs_retry_complete *done = bio->bi_private;
7368 	struct bio_vec *bvec;
7369 	int i;
7370 
7371 	if (err)
7372 		goto end;
7373 
7374 	done->uptodate = 1;
7375 	bio_for_each_segment_all(bvec, bio, i)
7376 		clean_io_failure(done->inode, done->start, bvec->bv_page, 0);
7377 end:
7378 	complete(&done->done);
7379 	bio_put(bio);
7380 }
7381 
7382 static int __btrfs_correct_data_nocsum(struct inode *inode,
7383 				       struct btrfs_io_bio *io_bio)
7384 {
7385 	struct bio_vec *bvec;
7386 	struct btrfs_retry_complete done;
7387 	u64 start;
7388 	int i;
7389 	int ret;
7390 
7391 	start = io_bio->logical;
7392 	done.inode = inode;
7393 
7394 	bio_for_each_segment_all(bvec, &io_bio->bio, i) {
7395 try_again:
7396 		done.uptodate = 0;
7397 		done.start = start;
7398 		init_completion(&done.done);
7399 
7400 		ret = dio_read_error(inode, &io_bio->bio, bvec->bv_page, start,
7401 				     start + bvec->bv_len - 1,
7402 				     io_bio->mirror_num,
7403 				     btrfs_retry_endio_nocsum, &done);
7404 		if (ret)
7405 			return ret;
7406 
7407 		wait_for_completion(&done.done);
7408 
7409 		if (!done.uptodate) {
7410 			/* We might have another mirror, so try again */
7411 			goto try_again;
7412 		}
7413 
7414 		start += bvec->bv_len;
7415 	}
7416 
7417 	return 0;
7418 }
7419 
7420 static void btrfs_retry_endio(struct bio *bio, int err)
7421 {
7422 	struct btrfs_retry_complete *done = bio->bi_private;
7423 	struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
7424 	struct bio_vec *bvec;
7425 	int uptodate;
7426 	int ret;
7427 	int i;
7428 
7429 	if (err)
7430 		goto end;
7431 
7432 	uptodate = 1;
7433 	bio_for_each_segment_all(bvec, bio, i) {
7434 		ret = __readpage_endio_check(done->inode, io_bio, i,
7435 					     bvec->bv_page, 0,
7436 					     done->start, bvec->bv_len);
7437 		if (!ret)
7438 			clean_io_failure(done->inode, done->start,
7439 					 bvec->bv_page, 0);
7440 		else
7441 			uptodate = 0;
7442 	}
7443 
7444 	done->uptodate = uptodate;
7445 end:
7446 	complete(&done->done);
7447 	bio_put(bio);
7448 }
7449 
7450 static int __btrfs_subio_endio_read(struct inode *inode,
7451 				    struct btrfs_io_bio *io_bio, int err)
7452 {
7453 	struct bio_vec *bvec;
7454 	struct btrfs_retry_complete done;
7455 	u64 start;
7456 	u64 offset = 0;
7457 	int i;
7458 	int ret;
7459 
7460 	err = 0;
7461 	start = io_bio->logical;
7462 	done.inode = inode;
7463 
7464 	bio_for_each_segment_all(bvec, &io_bio->bio, i) {
7465 		ret = __readpage_endio_check(inode, io_bio, i, bvec->bv_page,
7466 					     0, start, bvec->bv_len);
7467 		if (likely(!ret))
7468 			goto next;
7469 try_again:
7470 		done.uptodate = 0;
7471 		done.start = start;
7472 		init_completion(&done.done);
7473 
7474 		ret = dio_read_error(inode, &io_bio->bio, bvec->bv_page, start,
7475 				     start + bvec->bv_len - 1,
7476 				     io_bio->mirror_num,
7477 				     btrfs_retry_endio, &done);
7478 		if (ret) {
7479 			err = ret;
7480 			goto next;
7481 		}
7482 
7483 		wait_for_completion(&done.done);
7484 
7485 		if (!done.uptodate) {
7486 			/* We might have another mirror, so try again */
7487 			goto try_again;
7488 		}
7489 next:
7490 		offset += bvec->bv_len;
7491 		start += bvec->bv_len;
7492 	}
7493 
7494 	return err;
7495 }
7496 
7497 static int btrfs_subio_endio_read(struct inode *inode,
7498 				  struct btrfs_io_bio *io_bio, int err)
7499 {
7500 	bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
7501 
7502 	if (skip_csum) {
7503 		if (unlikely(err))
7504 			return __btrfs_correct_data_nocsum(inode, io_bio);
7505 		else
7506 			return 0;
7507 	} else {
7508 		return __btrfs_subio_endio_read(inode, io_bio, err);
7509 	}
7510 }
7511 
7512 static void btrfs_endio_direct_read(struct bio *bio, int err)
7513 {
7514 	struct btrfs_dio_private *dip = bio->bi_private;
7515 	struct inode *inode = dip->inode;
7516 	struct bio *dio_bio;
7517 	struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
7518 
7519 	if (dip->flags & BTRFS_DIO_ORIG_BIO_SUBMITTED)
7520 		err = btrfs_subio_endio_read(inode, io_bio, err);
7521 
7522 	unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
7523 		      dip->logical_offset + dip->bytes - 1);
7524 	dio_bio = dip->dio_bio;
7525 
7526 	kfree(dip);
7527 
7528 	/* If we had a csum failure make sure to clear the uptodate flag */
7529 	if (err)
7530 		clear_bit(BIO_UPTODATE, &dio_bio->bi_flags);
7531 	dio_end_io(dio_bio, err);
7532 
7533 	if (io_bio->end_io)
7534 		io_bio->end_io(io_bio, err);
7535 	bio_put(bio);
7536 }
7537 
7538 static void btrfs_endio_direct_write(struct bio *bio, int err)
7539 {
7540 	struct btrfs_dio_private *dip = bio->bi_private;
7541 	struct inode *inode = dip->inode;
7542 	struct btrfs_root *root = BTRFS_I(inode)->root;
7543 	struct btrfs_ordered_extent *ordered = NULL;
7544 	u64 ordered_offset = dip->logical_offset;
7545 	u64 ordered_bytes = dip->bytes;
7546 	struct bio *dio_bio;
7547 	int ret;
7548 
7549 	if (err)
7550 		goto out_done;
7551 again:
7552 	ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
7553 						   &ordered_offset,
7554 						   ordered_bytes, !err);
7555 	if (!ret)
7556 		goto out_test;
7557 
7558 	btrfs_init_work(&ordered->work, btrfs_endio_write_helper,
7559 			finish_ordered_fn, NULL, NULL);
7560 	btrfs_queue_work(root->fs_info->endio_write_workers,
7561 			 &ordered->work);
7562 out_test:
7563 	/*
7564 	 * our bio might span multiple ordered extents.  If we haven't
7565 	 * completed the accounting for the whole dio, go back and try again
7566 	 */
7567 	if (ordered_offset < dip->logical_offset + dip->bytes) {
7568 		ordered_bytes = dip->logical_offset + dip->bytes -
7569 			ordered_offset;
7570 		ordered = NULL;
7571 		goto again;
7572 	}
7573 out_done:
7574 	dio_bio = dip->dio_bio;
7575 
7576 	kfree(dip);
7577 
7578 	/* If we had an error make sure to clear the uptodate flag */
7579 	if (err)
7580 		clear_bit(BIO_UPTODATE, &dio_bio->bi_flags);
7581 	dio_end_io(dio_bio, err);
7582 	bio_put(bio);
7583 }
7584 
7585 static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
7586 				    struct bio *bio, int mirror_num,
7587 				    unsigned long bio_flags, u64 offset)
7588 {
7589 	int ret;
7590 	struct btrfs_root *root = BTRFS_I(inode)->root;
7591 	ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
7592 	BUG_ON(ret); /* -ENOMEM */
7593 	return 0;
7594 }
7595 
7596 static void btrfs_end_dio_bio(struct bio *bio, int err)
7597 {
7598 	struct btrfs_dio_private *dip = bio->bi_private;
7599 
7600 	if (err)
7601 		btrfs_warn(BTRFS_I(dip->inode)->root->fs_info,
7602 			   "direct IO failed ino %llu rw %lu sector %#Lx len %u err no %d",
7603 			   btrfs_ino(dip->inode), bio->bi_rw,
7604 			   (unsigned long long)bio->bi_iter.bi_sector,
7605 			   bio->bi_iter.bi_size, err);
7606 
7607 	if (dip->subio_endio)
7608 		err = dip->subio_endio(dip->inode, btrfs_io_bio(bio), err);
7609 
7610 	if (err) {
7611 		dip->errors = 1;
7612 
7613 		/*
7614 		 * before atomic variable goto zero, we must make sure
7615 		 * dip->errors is perceived to be set.
7616 		 */
7617 		smp_mb__before_atomic();
7618 	}
7619 
7620 	/* if there are more bios still pending for this dio, just exit */
7621 	if (!atomic_dec_and_test(&dip->pending_bios))
7622 		goto out;
7623 
7624 	if (dip->errors) {
7625 		bio_io_error(dip->orig_bio);
7626 	} else {
7627 		set_bit(BIO_UPTODATE, &dip->dio_bio->bi_flags);
7628 		bio_endio(dip->orig_bio, 0);
7629 	}
7630 out:
7631 	bio_put(bio);
7632 }
7633 
7634 static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
7635 				       u64 first_sector, gfp_t gfp_flags)
7636 {
7637 	int nr_vecs = bio_get_nr_vecs(bdev);
7638 	return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags);
7639 }
7640 
7641 static inline int btrfs_lookup_and_bind_dio_csum(struct btrfs_root *root,
7642 						 struct inode *inode,
7643 						 struct btrfs_dio_private *dip,
7644 						 struct bio *bio,
7645 						 u64 file_offset)
7646 {
7647 	struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
7648 	struct btrfs_io_bio *orig_io_bio = btrfs_io_bio(dip->orig_bio);
7649 	int ret;
7650 
7651 	/*
7652 	 * We load all the csum data we need when we submit
7653 	 * the first bio to reduce the csum tree search and
7654 	 * contention.
7655 	 */
7656 	if (dip->logical_offset == file_offset) {
7657 		ret = btrfs_lookup_bio_sums_dio(root, inode, dip->orig_bio,
7658 						file_offset);
7659 		if (ret)
7660 			return ret;
7661 	}
7662 
7663 	if (bio == dip->orig_bio)
7664 		return 0;
7665 
7666 	file_offset -= dip->logical_offset;
7667 	file_offset >>= inode->i_sb->s_blocksize_bits;
7668 	io_bio->csum = (u8 *)(((u32 *)orig_io_bio->csum) + file_offset);
7669 
7670 	return 0;
7671 }
7672 
7673 static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
7674 					 int rw, u64 file_offset, int skip_sum,
7675 					 int async_submit)
7676 {
7677 	struct btrfs_dio_private *dip = bio->bi_private;
7678 	int write = rw & REQ_WRITE;
7679 	struct btrfs_root *root = BTRFS_I(inode)->root;
7680 	int ret;
7681 
7682 	if (async_submit)
7683 		async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
7684 
7685 	bio_get(bio);
7686 
7687 	if (!write) {
7688 		ret = btrfs_bio_wq_end_io(root->fs_info, bio,
7689 				BTRFS_WQ_ENDIO_DATA);
7690 		if (ret)
7691 			goto err;
7692 	}
7693 
7694 	if (skip_sum)
7695 		goto map;
7696 
7697 	if (write && async_submit) {
7698 		ret = btrfs_wq_submit_bio(root->fs_info,
7699 				   inode, rw, bio, 0, 0,
7700 				   file_offset,
7701 				   __btrfs_submit_bio_start_direct_io,
7702 				   __btrfs_submit_bio_done);
7703 		goto err;
7704 	} else if (write) {
7705 		/*
7706 		 * If we aren't doing async submit, calculate the csum of the
7707 		 * bio now.
7708 		 */
7709 		ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1);
7710 		if (ret)
7711 			goto err;
7712 	} else {
7713 		ret = btrfs_lookup_and_bind_dio_csum(root, inode, dip, bio,
7714 						     file_offset);
7715 		if (ret)
7716 			goto err;
7717 	}
7718 map:
7719 	ret = btrfs_map_bio(root, rw, bio, 0, async_submit);
7720 err:
7721 	bio_put(bio);
7722 	return ret;
7723 }
7724 
7725 static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
7726 				    int skip_sum)
7727 {
7728 	struct inode *inode = dip->inode;
7729 	struct btrfs_root *root = BTRFS_I(inode)->root;
7730 	struct bio *bio;
7731 	struct bio *orig_bio = dip->orig_bio;
7732 	struct bio_vec *bvec = orig_bio->bi_io_vec;
7733 	u64 start_sector = orig_bio->bi_iter.bi_sector;
7734 	u64 file_offset = dip->logical_offset;
7735 	u64 submit_len = 0;
7736 	u64 map_length;
7737 	int nr_pages = 0;
7738 	int ret;
7739 	int async_submit = 0;
7740 
7741 	map_length = orig_bio->bi_iter.bi_size;
7742 	ret = btrfs_map_block(root->fs_info, rw, start_sector << 9,
7743 			      &map_length, NULL, 0);
7744 	if (ret)
7745 		return -EIO;
7746 
7747 	if (map_length >= orig_bio->bi_iter.bi_size) {
7748 		bio = orig_bio;
7749 		dip->flags |= BTRFS_DIO_ORIG_BIO_SUBMITTED;
7750 		goto submit;
7751 	}
7752 
7753 	/* async crcs make it difficult to collect full stripe writes. */
7754 	if (btrfs_get_alloc_profile(root, 1) &
7755 	    (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6))
7756 		async_submit = 0;
7757 	else
7758 		async_submit = 1;
7759 
7760 	bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
7761 	if (!bio)
7762 		return -ENOMEM;
7763 
7764 	bio->bi_private = dip;
7765 	bio->bi_end_io = btrfs_end_dio_bio;
7766 	btrfs_io_bio(bio)->logical = file_offset;
7767 	atomic_inc(&dip->pending_bios);
7768 
7769 	while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
7770 		if (map_length < submit_len + bvec->bv_len ||
7771 		    bio_add_page(bio, bvec->bv_page, bvec->bv_len,
7772 				 bvec->bv_offset) < bvec->bv_len) {
7773 			/*
7774 			 * inc the count before we submit the bio so
7775 			 * we know the end IO handler won't happen before
7776 			 * we inc the count. Otherwise, the dip might get freed
7777 			 * before we're done setting it up
7778 			 */
7779 			atomic_inc(&dip->pending_bios);
7780 			ret = __btrfs_submit_dio_bio(bio, inode, rw,
7781 						     file_offset, skip_sum,
7782 						     async_submit);
7783 			if (ret) {
7784 				bio_put(bio);
7785 				atomic_dec(&dip->pending_bios);
7786 				goto out_err;
7787 			}
7788 
7789 			start_sector += submit_len >> 9;
7790 			file_offset += submit_len;
7791 
7792 			submit_len = 0;
7793 			nr_pages = 0;
7794 
7795 			bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
7796 						  start_sector, GFP_NOFS);
7797 			if (!bio)
7798 				goto out_err;
7799 			bio->bi_private = dip;
7800 			bio->bi_end_io = btrfs_end_dio_bio;
7801 			btrfs_io_bio(bio)->logical = file_offset;
7802 
7803 			map_length = orig_bio->bi_iter.bi_size;
7804 			ret = btrfs_map_block(root->fs_info, rw,
7805 					      start_sector << 9,
7806 					      &map_length, NULL, 0);
7807 			if (ret) {
7808 				bio_put(bio);
7809 				goto out_err;
7810 			}
7811 		} else {
7812 			submit_len += bvec->bv_len;
7813 			nr_pages++;
7814 			bvec++;
7815 		}
7816 	}
7817 
7818 submit:
7819 	ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
7820 				     async_submit);
7821 	if (!ret)
7822 		return 0;
7823 
7824 	bio_put(bio);
7825 out_err:
7826 	dip->errors = 1;
7827 	/*
7828 	 * before atomic variable goto zero, we must
7829 	 * make sure dip->errors is perceived to be set.
7830 	 */
7831 	smp_mb__before_atomic();
7832 	if (atomic_dec_and_test(&dip->pending_bios))
7833 		bio_io_error(dip->orig_bio);
7834 
7835 	/* bio_end_io() will handle error, so we needn't return it */
7836 	return 0;
7837 }
7838 
7839 static void btrfs_submit_direct(int rw, struct bio *dio_bio,
7840 				struct inode *inode, loff_t file_offset)
7841 {
7842 	struct btrfs_root *root = BTRFS_I(inode)->root;
7843 	struct btrfs_dio_private *dip;
7844 	struct bio *io_bio;
7845 	struct btrfs_io_bio *btrfs_bio;
7846 	int skip_sum;
7847 	int write = rw & REQ_WRITE;
7848 	int ret = 0;
7849 
7850 	skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
7851 
7852 	io_bio = btrfs_bio_clone(dio_bio, GFP_NOFS);
7853 	if (!io_bio) {
7854 		ret = -ENOMEM;
7855 		goto free_ordered;
7856 	}
7857 
7858 	dip = kzalloc(sizeof(*dip), GFP_NOFS);
7859 	if (!dip) {
7860 		ret = -ENOMEM;
7861 		goto free_io_bio;
7862 	}
7863 
7864 	dip->private = dio_bio->bi_private;
7865 	dip->inode = inode;
7866 	dip->logical_offset = file_offset;
7867 	dip->bytes = dio_bio->bi_iter.bi_size;
7868 	dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9;
7869 	io_bio->bi_private = dip;
7870 	dip->orig_bio = io_bio;
7871 	dip->dio_bio = dio_bio;
7872 	atomic_set(&dip->pending_bios, 0);
7873 	btrfs_bio = btrfs_io_bio(io_bio);
7874 	btrfs_bio->logical = file_offset;
7875 
7876 	if (write) {
7877 		io_bio->bi_end_io = btrfs_endio_direct_write;
7878 	} else {
7879 		io_bio->bi_end_io = btrfs_endio_direct_read;
7880 		dip->subio_endio = btrfs_subio_endio_read;
7881 	}
7882 
7883 	ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
7884 	if (!ret)
7885 		return;
7886 
7887 	if (btrfs_bio->end_io)
7888 		btrfs_bio->end_io(btrfs_bio, ret);
7889 free_io_bio:
7890 	bio_put(io_bio);
7891 
7892 free_ordered:
7893 	/*
7894 	 * If this is a write, we need to clean up the reserved space and kill
7895 	 * the ordered extent.
7896 	 */
7897 	if (write) {
7898 		struct btrfs_ordered_extent *ordered;
7899 		ordered = btrfs_lookup_ordered_extent(inode, file_offset);
7900 		if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) &&
7901 		    !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags))
7902 			btrfs_free_reserved_extent(root, ordered->start,
7903 						   ordered->disk_len, 1);
7904 		btrfs_put_ordered_extent(ordered);
7905 		btrfs_put_ordered_extent(ordered);
7906 	}
7907 	bio_endio(dio_bio, ret);
7908 }
7909 
7910 static ssize_t check_direct_IO(struct btrfs_root *root, int rw, struct kiocb *iocb,
7911 			const struct iov_iter *iter, loff_t offset)
7912 {
7913 	int seg;
7914 	int i;
7915 	unsigned blocksize_mask = root->sectorsize - 1;
7916 	ssize_t retval = -EINVAL;
7917 
7918 	if (offset & blocksize_mask)
7919 		goto out;
7920 
7921 	if (iov_iter_alignment(iter) & blocksize_mask)
7922 		goto out;
7923 
7924 	/* If this is a write we don't need to check anymore */
7925 	if (rw & WRITE)
7926 		return 0;
7927 	/*
7928 	 * Check to make sure we don't have duplicate iov_base's in this
7929 	 * iovec, if so return EINVAL, otherwise we'll get csum errors
7930 	 * when reading back.
7931 	 */
7932 	for (seg = 0; seg < iter->nr_segs; seg++) {
7933 		for (i = seg + 1; i < iter->nr_segs; i++) {
7934 			if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
7935 				goto out;
7936 		}
7937 	}
7938 	retval = 0;
7939 out:
7940 	return retval;
7941 }
7942 
7943 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
7944 			struct iov_iter *iter, loff_t offset)
7945 {
7946 	struct file *file = iocb->ki_filp;
7947 	struct inode *inode = file->f_mapping->host;
7948 	size_t count = 0;
7949 	int flags = 0;
7950 	bool wakeup = true;
7951 	bool relock = false;
7952 	ssize_t ret;
7953 
7954 	if (check_direct_IO(BTRFS_I(inode)->root, rw, iocb, iter, offset))
7955 		return 0;
7956 
7957 	atomic_inc(&inode->i_dio_count);
7958 	smp_mb__after_atomic();
7959 
7960 	/*
7961 	 * The generic stuff only does filemap_write_and_wait_range, which
7962 	 * isn't enough if we've written compressed pages to this area, so
7963 	 * we need to flush the dirty pages again to make absolutely sure
7964 	 * that any outstanding dirty pages are on disk.
7965 	 */
7966 	count = iov_iter_count(iter);
7967 	if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
7968 		     &BTRFS_I(inode)->runtime_flags))
7969 		filemap_fdatawrite_range(inode->i_mapping, offset,
7970 					 offset + count - 1);
7971 
7972 	if (rw & WRITE) {
7973 		/*
7974 		 * If the write DIO is beyond the EOF, we need update
7975 		 * the isize, but it is protected by i_mutex. So we can
7976 		 * not unlock the i_mutex at this case.
7977 		 */
7978 		if (offset + count <= inode->i_size) {
7979 			mutex_unlock(&inode->i_mutex);
7980 			relock = true;
7981 		}
7982 		ret = btrfs_delalloc_reserve_space(inode, count);
7983 		if (ret)
7984 			goto out;
7985 	} else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK,
7986 				     &BTRFS_I(inode)->runtime_flags)) {
7987 		inode_dio_done(inode);
7988 		flags = DIO_LOCKING | DIO_SKIP_HOLES;
7989 		wakeup = false;
7990 	}
7991 
7992 	ret = __blockdev_direct_IO(rw, iocb, inode,
7993 			BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
7994 			iter, offset, btrfs_get_blocks_direct, NULL,
7995 			btrfs_submit_direct, flags);
7996 	if (rw & WRITE) {
7997 		if (ret < 0 && ret != -EIOCBQUEUED)
7998 			btrfs_delalloc_release_space(inode, count);
7999 		else if (ret >= 0 && (size_t)ret < count)
8000 			btrfs_delalloc_release_space(inode,
8001 						     count - (size_t)ret);
8002 		else
8003 			btrfs_delalloc_release_metadata(inode, 0);
8004 	}
8005 out:
8006 	if (wakeup)
8007 		inode_dio_done(inode);
8008 	if (relock)
8009 		mutex_lock(&inode->i_mutex);
8010 
8011 	return ret;
8012 }
8013 
8014 #define BTRFS_FIEMAP_FLAGS	(FIEMAP_FLAG_SYNC)
8015 
8016 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
8017 		__u64 start, __u64 len)
8018 {
8019 	int	ret;
8020 
8021 	ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS);
8022 	if (ret)
8023 		return ret;
8024 
8025 	return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
8026 }
8027 
8028 int btrfs_readpage(struct file *file, struct page *page)
8029 {
8030 	struct extent_io_tree *tree;
8031 	tree = &BTRFS_I(page->mapping->host)->io_tree;
8032 	return extent_read_full_page(tree, page, btrfs_get_extent, 0);
8033 }
8034 
8035 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
8036 {
8037 	struct extent_io_tree *tree;
8038 
8039 
8040 	if (current->flags & PF_MEMALLOC) {
8041 		redirty_page_for_writepage(wbc, page);
8042 		unlock_page(page);
8043 		return 0;
8044 	}
8045 	tree = &BTRFS_I(page->mapping->host)->io_tree;
8046 	return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
8047 }
8048 
8049 static int btrfs_writepages(struct address_space *mapping,
8050 			    struct writeback_control *wbc)
8051 {
8052 	struct extent_io_tree *tree;
8053 
8054 	tree = &BTRFS_I(mapping->host)->io_tree;
8055 	return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
8056 }
8057 
8058 static int
8059 btrfs_readpages(struct file *file, struct address_space *mapping,
8060 		struct list_head *pages, unsigned nr_pages)
8061 {
8062 	struct extent_io_tree *tree;
8063 	tree = &BTRFS_I(mapping->host)->io_tree;
8064 	return extent_readpages(tree, mapping, pages, nr_pages,
8065 				btrfs_get_extent);
8066 }
8067 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8068 {
8069 	struct extent_io_tree *tree;
8070 	struct extent_map_tree *map;
8071 	int ret;
8072 
8073 	tree = &BTRFS_I(page->mapping->host)->io_tree;
8074 	map = &BTRFS_I(page->mapping->host)->extent_tree;
8075 	ret = try_release_extent_mapping(map, tree, page, gfp_flags);
8076 	if (ret == 1) {
8077 		ClearPagePrivate(page);
8078 		set_page_private(page, 0);
8079 		page_cache_release(page);
8080 	}
8081 	return ret;
8082 }
8083 
8084 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8085 {
8086 	if (PageWriteback(page) || PageDirty(page))
8087 		return 0;
8088 	return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
8089 }
8090 
8091 static void btrfs_invalidatepage(struct page *page, unsigned int offset,
8092 				 unsigned int length)
8093 {
8094 	struct inode *inode = page->mapping->host;
8095 	struct extent_io_tree *tree;
8096 	struct btrfs_ordered_extent *ordered;
8097 	struct extent_state *cached_state = NULL;
8098 	u64 page_start = page_offset(page);
8099 	u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
8100 	int inode_evicting = inode->i_state & I_FREEING;
8101 
8102 	/*
8103 	 * we have the page locked, so new writeback can't start,
8104 	 * and the dirty bit won't be cleared while we are here.
8105 	 *
8106 	 * Wait for IO on this page so that we can safely clear
8107 	 * the PagePrivate2 bit and do ordered accounting
8108 	 */
8109 	wait_on_page_writeback(page);
8110 
8111 	tree = &BTRFS_I(inode)->io_tree;
8112 	if (offset) {
8113 		btrfs_releasepage(page, GFP_NOFS);
8114 		return;
8115 	}
8116 
8117 	if (!inode_evicting)
8118 		lock_extent_bits(tree, page_start, page_end, 0, &cached_state);
8119 	ordered = btrfs_lookup_ordered_extent(inode, page_start);
8120 	if (ordered) {
8121 		/*
8122 		 * IO on this page will never be started, so we need
8123 		 * to account for any ordered extents now
8124 		 */
8125 		if (!inode_evicting)
8126 			clear_extent_bit(tree, page_start, page_end,
8127 					 EXTENT_DIRTY | EXTENT_DELALLOC |
8128 					 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
8129 					 EXTENT_DEFRAG, 1, 0, &cached_state,
8130 					 GFP_NOFS);
8131 		/*
8132 		 * whoever cleared the private bit is responsible
8133 		 * for the finish_ordered_io
8134 		 */
8135 		if (TestClearPagePrivate2(page)) {
8136 			struct btrfs_ordered_inode_tree *tree;
8137 			u64 new_len;
8138 
8139 			tree = &BTRFS_I(inode)->ordered_tree;
8140 
8141 			spin_lock_irq(&tree->lock);
8142 			set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
8143 			new_len = page_start - ordered->file_offset;
8144 			if (new_len < ordered->truncated_len)
8145 				ordered->truncated_len = new_len;
8146 			spin_unlock_irq(&tree->lock);
8147 
8148 			if (btrfs_dec_test_ordered_pending(inode, &ordered,
8149 							   page_start,
8150 							   PAGE_CACHE_SIZE, 1))
8151 				btrfs_finish_ordered_io(ordered);
8152 		}
8153 		btrfs_put_ordered_extent(ordered);
8154 		if (!inode_evicting) {
8155 			cached_state = NULL;
8156 			lock_extent_bits(tree, page_start, page_end, 0,
8157 					 &cached_state);
8158 		}
8159 	}
8160 
8161 	if (!inode_evicting) {
8162 		clear_extent_bit(tree, page_start, page_end,
8163 				 EXTENT_LOCKED | EXTENT_DIRTY |
8164 				 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
8165 				 EXTENT_DEFRAG, 1, 1,
8166 				 &cached_state, GFP_NOFS);
8167 
8168 		__btrfs_releasepage(page, GFP_NOFS);
8169 	}
8170 
8171 	ClearPageChecked(page);
8172 	if (PagePrivate(page)) {
8173 		ClearPagePrivate(page);
8174 		set_page_private(page, 0);
8175 		page_cache_release(page);
8176 	}
8177 }
8178 
8179 /*
8180  * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8181  * called from a page fault handler when a page is first dirtied. Hence we must
8182  * be careful to check for EOF conditions here. We set the page up correctly
8183  * for a written page which means we get ENOSPC checking when writing into
8184  * holes and correct delalloc and unwritten extent mapping on filesystems that
8185  * support these features.
8186  *
8187  * We are not allowed to take the i_mutex here so we have to play games to
8188  * protect against truncate races as the page could now be beyond EOF.  Because
8189  * vmtruncate() writes the inode size before removing pages, once we have the
8190  * page lock we can determine safely if the page is beyond EOF. If it is not
8191  * beyond EOF, then the page is guaranteed safe against truncation until we
8192  * unlock the page.
8193  */
8194 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
8195 {
8196 	struct page *page = vmf->page;
8197 	struct inode *inode = file_inode(vma->vm_file);
8198 	struct btrfs_root *root = BTRFS_I(inode)->root;
8199 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8200 	struct btrfs_ordered_extent *ordered;
8201 	struct extent_state *cached_state = NULL;
8202 	char *kaddr;
8203 	unsigned long zero_start;
8204 	loff_t size;
8205 	int ret;
8206 	int reserved = 0;
8207 	u64 page_start;
8208 	u64 page_end;
8209 
8210 	sb_start_pagefault(inode->i_sb);
8211 	ret  = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
8212 	if (!ret) {
8213 		ret = file_update_time(vma->vm_file);
8214 		reserved = 1;
8215 	}
8216 	if (ret) {
8217 		if (ret == -ENOMEM)
8218 			ret = VM_FAULT_OOM;
8219 		else /* -ENOSPC, -EIO, etc */
8220 			ret = VM_FAULT_SIGBUS;
8221 		if (reserved)
8222 			goto out;
8223 		goto out_noreserve;
8224 	}
8225 
8226 	ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
8227 again:
8228 	lock_page(page);
8229 	size = i_size_read(inode);
8230 	page_start = page_offset(page);
8231 	page_end = page_start + PAGE_CACHE_SIZE - 1;
8232 
8233 	if ((page->mapping != inode->i_mapping) ||
8234 	    (page_start >= size)) {
8235 		/* page got truncated out from underneath us */
8236 		goto out_unlock;
8237 	}
8238 	wait_on_page_writeback(page);
8239 
8240 	lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
8241 	set_page_extent_mapped(page);
8242 
8243 	/*
8244 	 * we can't set the delalloc bits if there are pending ordered
8245 	 * extents.  Drop our locks and wait for them to finish
8246 	 */
8247 	ordered = btrfs_lookup_ordered_extent(inode, page_start);
8248 	if (ordered) {
8249 		unlock_extent_cached(io_tree, page_start, page_end,
8250 				     &cached_state, GFP_NOFS);
8251 		unlock_page(page);
8252 		btrfs_start_ordered_extent(inode, ordered, 1);
8253 		btrfs_put_ordered_extent(ordered);
8254 		goto again;
8255 	}
8256 
8257 	/*
8258 	 * XXX - page_mkwrite gets called every time the page is dirtied, even
8259 	 * if it was already dirty, so for space accounting reasons we need to
8260 	 * clear any delalloc bits for the range we are fixing to save.  There
8261 	 * is probably a better way to do this, but for now keep consistent with
8262 	 * prepare_pages in the normal write path.
8263 	 */
8264 	clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
8265 			  EXTENT_DIRTY | EXTENT_DELALLOC |
8266 			  EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
8267 			  0, 0, &cached_state, GFP_NOFS);
8268 
8269 	ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
8270 					&cached_state);
8271 	if (ret) {
8272 		unlock_extent_cached(io_tree, page_start, page_end,
8273 				     &cached_state, GFP_NOFS);
8274 		ret = VM_FAULT_SIGBUS;
8275 		goto out_unlock;
8276 	}
8277 	ret = 0;
8278 
8279 	/* page is wholly or partially inside EOF */
8280 	if (page_start + PAGE_CACHE_SIZE > size)
8281 		zero_start = size & ~PAGE_CACHE_MASK;
8282 	else
8283 		zero_start = PAGE_CACHE_SIZE;
8284 
8285 	if (zero_start != PAGE_CACHE_SIZE) {
8286 		kaddr = kmap(page);
8287 		memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
8288 		flush_dcache_page(page);
8289 		kunmap(page);
8290 	}
8291 	ClearPageChecked(page);
8292 	set_page_dirty(page);
8293 	SetPageUptodate(page);
8294 
8295 	BTRFS_I(inode)->last_trans = root->fs_info->generation;
8296 	BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
8297 	BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
8298 
8299 	unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
8300 
8301 out_unlock:
8302 	if (!ret) {
8303 		sb_end_pagefault(inode->i_sb);
8304 		return VM_FAULT_LOCKED;
8305 	}
8306 	unlock_page(page);
8307 out:
8308 	btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
8309 out_noreserve:
8310 	sb_end_pagefault(inode->i_sb);
8311 	return ret;
8312 }
8313 
8314 static int btrfs_truncate(struct inode *inode)
8315 {
8316 	struct btrfs_root *root = BTRFS_I(inode)->root;
8317 	struct btrfs_block_rsv *rsv;
8318 	int ret = 0;
8319 	int err = 0;
8320 	struct btrfs_trans_handle *trans;
8321 	u64 mask = root->sectorsize - 1;
8322 	u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
8323 
8324 	ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
8325 				       (u64)-1);
8326 	if (ret)
8327 		return ret;
8328 
8329 	/*
8330 	 * Yes ladies and gentelment, this is indeed ugly.  The fact is we have
8331 	 * 3 things going on here
8332 	 *
8333 	 * 1) We need to reserve space for our orphan item and the space to
8334 	 * delete our orphan item.  Lord knows we don't want to have a dangling
8335 	 * orphan item because we didn't reserve space to remove it.
8336 	 *
8337 	 * 2) We need to reserve space to update our inode.
8338 	 *
8339 	 * 3) We need to have something to cache all the space that is going to
8340 	 * be free'd up by the truncate operation, but also have some slack
8341 	 * space reserved in case it uses space during the truncate (thank you
8342 	 * very much snapshotting).
8343 	 *
8344 	 * And we need these to all be seperate.  The fact is we can use alot of
8345 	 * space doing the truncate, and we have no earthly idea how much space
8346 	 * we will use, so we need the truncate reservation to be seperate so it
8347 	 * doesn't end up using space reserved for updating the inode or
8348 	 * removing the orphan item.  We also need to be able to stop the
8349 	 * transaction and start a new one, which means we need to be able to
8350 	 * update the inode several times, and we have no idea of knowing how
8351 	 * many times that will be, so we can't just reserve 1 item for the
8352 	 * entirety of the opration, so that has to be done seperately as well.
8353 	 * Then there is the orphan item, which does indeed need to be held on
8354 	 * to for the whole operation, and we need nobody to touch this reserved
8355 	 * space except the orphan code.
8356 	 *
8357 	 * So that leaves us with
8358 	 *
8359 	 * 1) root->orphan_block_rsv - for the orphan deletion.
8360 	 * 2) rsv - for the truncate reservation, which we will steal from the
8361 	 * transaction reservation.
8362 	 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
8363 	 * updating the inode.
8364 	 */
8365 	rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
8366 	if (!rsv)
8367 		return -ENOMEM;
8368 	rsv->size = min_size;
8369 	rsv->failfast = 1;
8370 
8371 	/*
8372 	 * 1 for the truncate slack space
8373 	 * 1 for updating the inode.
8374 	 */
8375 	trans = btrfs_start_transaction(root, 2);
8376 	if (IS_ERR(trans)) {
8377 		err = PTR_ERR(trans);
8378 		goto out;
8379 	}
8380 
8381 	/* Migrate the slack space for the truncate to our reserve */
8382 	ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
8383 				      min_size);
8384 	BUG_ON(ret);
8385 
8386 	/*
8387 	 * So if we truncate and then write and fsync we normally would just
8388 	 * write the extents that changed, which is a problem if we need to
8389 	 * first truncate that entire inode.  So set this flag so we write out
8390 	 * all of the extents in the inode to the sync log so we're completely
8391 	 * safe.
8392 	 */
8393 	set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
8394 	trans->block_rsv = rsv;
8395 
8396 	while (1) {
8397 		ret = btrfs_truncate_inode_items(trans, root, inode,
8398 						 inode->i_size,
8399 						 BTRFS_EXTENT_DATA_KEY);
8400 		if (ret != -ENOSPC) {
8401 			err = ret;
8402 			break;
8403 		}
8404 
8405 		trans->block_rsv = &root->fs_info->trans_block_rsv;
8406 		ret = btrfs_update_inode(trans, root, inode);
8407 		if (ret) {
8408 			err = ret;
8409 			break;
8410 		}
8411 
8412 		btrfs_end_transaction(trans, root);
8413 		btrfs_btree_balance_dirty(root);
8414 
8415 		trans = btrfs_start_transaction(root, 2);
8416 		if (IS_ERR(trans)) {
8417 			ret = err = PTR_ERR(trans);
8418 			trans = NULL;
8419 			break;
8420 		}
8421 
8422 		ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
8423 					      rsv, min_size);
8424 		BUG_ON(ret);	/* shouldn't happen */
8425 		trans->block_rsv = rsv;
8426 	}
8427 
8428 	if (ret == 0 && inode->i_nlink > 0) {
8429 		trans->block_rsv = root->orphan_block_rsv;
8430 		ret = btrfs_orphan_del(trans, inode);
8431 		if (ret)
8432 			err = ret;
8433 	}
8434 
8435 	if (trans) {
8436 		trans->block_rsv = &root->fs_info->trans_block_rsv;
8437 		ret = btrfs_update_inode(trans, root, inode);
8438 		if (ret && !err)
8439 			err = ret;
8440 
8441 		ret = btrfs_end_transaction(trans, root);
8442 		btrfs_btree_balance_dirty(root);
8443 	}
8444 
8445 out:
8446 	btrfs_free_block_rsv(root, rsv);
8447 
8448 	if (ret && !err)
8449 		err = ret;
8450 
8451 	return err;
8452 }
8453 
8454 /*
8455  * create a new subvolume directory/inode (helper for the ioctl).
8456  */
8457 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
8458 			     struct btrfs_root *new_root,
8459 			     struct btrfs_root *parent_root,
8460 			     u64 new_dirid)
8461 {
8462 	struct inode *inode;
8463 	int err;
8464 	u64 index = 0;
8465 
8466 	inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
8467 				new_dirid, new_dirid,
8468 				S_IFDIR | (~current_umask() & S_IRWXUGO),
8469 				&index);
8470 	if (IS_ERR(inode))
8471 		return PTR_ERR(inode);
8472 	inode->i_op = &btrfs_dir_inode_operations;
8473 	inode->i_fop = &btrfs_dir_file_operations;
8474 
8475 	set_nlink(inode, 1);
8476 	btrfs_i_size_write(inode, 0);
8477 	unlock_new_inode(inode);
8478 
8479 	err = btrfs_subvol_inherit_props(trans, new_root, parent_root);
8480 	if (err)
8481 		btrfs_err(new_root->fs_info,
8482 			  "error inheriting subvolume %llu properties: %d",
8483 			  new_root->root_key.objectid, err);
8484 
8485 	err = btrfs_update_inode(trans, new_root, inode);
8486 
8487 	iput(inode);
8488 	return err;
8489 }
8490 
8491 struct inode *btrfs_alloc_inode(struct super_block *sb)
8492 {
8493 	struct btrfs_inode *ei;
8494 	struct inode *inode;
8495 
8496 	ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
8497 	if (!ei)
8498 		return NULL;
8499 
8500 	ei->root = NULL;
8501 	ei->generation = 0;
8502 	ei->last_trans = 0;
8503 	ei->last_sub_trans = 0;
8504 	ei->logged_trans = 0;
8505 	ei->delalloc_bytes = 0;
8506 	ei->defrag_bytes = 0;
8507 	ei->disk_i_size = 0;
8508 	ei->flags = 0;
8509 	ei->csum_bytes = 0;
8510 	ei->index_cnt = (u64)-1;
8511 	ei->dir_index = 0;
8512 	ei->last_unlink_trans = 0;
8513 	ei->last_log_commit = 0;
8514 
8515 	spin_lock_init(&ei->lock);
8516 	ei->outstanding_extents = 0;
8517 	ei->reserved_extents = 0;
8518 
8519 	ei->runtime_flags = 0;
8520 	ei->force_compress = BTRFS_COMPRESS_NONE;
8521 
8522 	ei->delayed_node = NULL;
8523 
8524 	inode = &ei->vfs_inode;
8525 	extent_map_tree_init(&ei->extent_tree);
8526 	extent_io_tree_init(&ei->io_tree, &inode->i_data);
8527 	extent_io_tree_init(&ei->io_failure_tree, &inode->i_data);
8528 	ei->io_tree.track_uptodate = 1;
8529 	ei->io_failure_tree.track_uptodate = 1;
8530 	atomic_set(&ei->sync_writers, 0);
8531 	mutex_init(&ei->log_mutex);
8532 	mutex_init(&ei->delalloc_mutex);
8533 	btrfs_ordered_inode_tree_init(&ei->ordered_tree);
8534 	INIT_LIST_HEAD(&ei->delalloc_inodes);
8535 	RB_CLEAR_NODE(&ei->rb_node);
8536 
8537 	return inode;
8538 }
8539 
8540 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
8541 void btrfs_test_destroy_inode(struct inode *inode)
8542 {
8543 	btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
8544 	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8545 }
8546 #endif
8547 
8548 static void btrfs_i_callback(struct rcu_head *head)
8549 {
8550 	struct inode *inode = container_of(head, struct inode, i_rcu);
8551 	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8552 }
8553 
8554 void btrfs_destroy_inode(struct inode *inode)
8555 {
8556 	struct btrfs_ordered_extent *ordered;
8557 	struct btrfs_root *root = BTRFS_I(inode)->root;
8558 
8559 	WARN_ON(!hlist_empty(&inode->i_dentry));
8560 	WARN_ON(inode->i_data.nrpages);
8561 	WARN_ON(BTRFS_I(inode)->outstanding_extents);
8562 	WARN_ON(BTRFS_I(inode)->reserved_extents);
8563 	WARN_ON(BTRFS_I(inode)->delalloc_bytes);
8564 	WARN_ON(BTRFS_I(inode)->csum_bytes);
8565 	WARN_ON(BTRFS_I(inode)->defrag_bytes);
8566 
8567 	/*
8568 	 * This can happen where we create an inode, but somebody else also
8569 	 * created the same inode and we need to destroy the one we already
8570 	 * created.
8571 	 */
8572 	if (!root)
8573 		goto free;
8574 
8575 	if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
8576 		     &BTRFS_I(inode)->runtime_flags)) {
8577 		btrfs_info(root->fs_info, "inode %llu still on the orphan list",
8578 			btrfs_ino(inode));
8579 		atomic_dec(&root->orphan_inodes);
8580 	}
8581 
8582 	while (1) {
8583 		ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
8584 		if (!ordered)
8585 			break;
8586 		else {
8587 			btrfs_err(root->fs_info, "found ordered extent %llu %llu on inode cleanup",
8588 				ordered->file_offset, ordered->len);
8589 			btrfs_remove_ordered_extent(inode, ordered);
8590 			btrfs_put_ordered_extent(ordered);
8591 			btrfs_put_ordered_extent(ordered);
8592 		}
8593 	}
8594 	inode_tree_del(inode);
8595 	btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
8596 free:
8597 	call_rcu(&inode->i_rcu, btrfs_i_callback);
8598 }
8599 
8600 int btrfs_drop_inode(struct inode *inode)
8601 {
8602 	struct btrfs_root *root = BTRFS_I(inode)->root;
8603 
8604 	if (root == NULL)
8605 		return 1;
8606 
8607 	/* the snap/subvol tree is on deleting */
8608 	if (btrfs_root_refs(&root->root_item) == 0)
8609 		return 1;
8610 	else
8611 		return generic_drop_inode(inode);
8612 }
8613 
8614 static void init_once(void *foo)
8615 {
8616 	struct btrfs_inode *ei = (struct btrfs_inode *) foo;
8617 
8618 	inode_init_once(&ei->vfs_inode);
8619 }
8620 
8621 void btrfs_destroy_cachep(void)
8622 {
8623 	/*
8624 	 * Make sure all delayed rcu free inodes are flushed before we
8625 	 * destroy cache.
8626 	 */
8627 	rcu_barrier();
8628 	if (btrfs_inode_cachep)
8629 		kmem_cache_destroy(btrfs_inode_cachep);
8630 	if (btrfs_trans_handle_cachep)
8631 		kmem_cache_destroy(btrfs_trans_handle_cachep);
8632 	if (btrfs_transaction_cachep)
8633 		kmem_cache_destroy(btrfs_transaction_cachep);
8634 	if (btrfs_path_cachep)
8635 		kmem_cache_destroy(btrfs_path_cachep);
8636 	if (btrfs_free_space_cachep)
8637 		kmem_cache_destroy(btrfs_free_space_cachep);
8638 	if (btrfs_delalloc_work_cachep)
8639 		kmem_cache_destroy(btrfs_delalloc_work_cachep);
8640 }
8641 
8642 int btrfs_init_cachep(void)
8643 {
8644 	btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
8645 			sizeof(struct btrfs_inode), 0,
8646 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
8647 	if (!btrfs_inode_cachep)
8648 		goto fail;
8649 
8650 	btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
8651 			sizeof(struct btrfs_trans_handle), 0,
8652 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
8653 	if (!btrfs_trans_handle_cachep)
8654 		goto fail;
8655 
8656 	btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction",
8657 			sizeof(struct btrfs_transaction), 0,
8658 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
8659 	if (!btrfs_transaction_cachep)
8660 		goto fail;
8661 
8662 	btrfs_path_cachep = kmem_cache_create("btrfs_path",
8663 			sizeof(struct btrfs_path), 0,
8664 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
8665 	if (!btrfs_path_cachep)
8666 		goto fail;
8667 
8668 	btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
8669 			sizeof(struct btrfs_free_space), 0,
8670 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
8671 	if (!btrfs_free_space_cachep)
8672 		goto fail;
8673 
8674 	btrfs_delalloc_work_cachep = kmem_cache_create("btrfs_delalloc_work",
8675 			sizeof(struct btrfs_delalloc_work), 0,
8676 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
8677 			NULL);
8678 	if (!btrfs_delalloc_work_cachep)
8679 		goto fail;
8680 
8681 	return 0;
8682 fail:
8683 	btrfs_destroy_cachep();
8684 	return -ENOMEM;
8685 }
8686 
8687 static int btrfs_getattr(struct vfsmount *mnt,
8688 			 struct dentry *dentry, struct kstat *stat)
8689 {
8690 	u64 delalloc_bytes;
8691 	struct inode *inode = dentry->d_inode;
8692 	u32 blocksize = inode->i_sb->s_blocksize;
8693 
8694 	generic_fillattr(inode, stat);
8695 	stat->dev = BTRFS_I(inode)->root->anon_dev;
8696 	stat->blksize = PAGE_CACHE_SIZE;
8697 
8698 	spin_lock(&BTRFS_I(inode)->lock);
8699 	delalloc_bytes = BTRFS_I(inode)->delalloc_bytes;
8700 	spin_unlock(&BTRFS_I(inode)->lock);
8701 	stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
8702 			ALIGN(delalloc_bytes, blocksize)) >> 9;
8703 	return 0;
8704 }
8705 
8706 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
8707 			   struct inode *new_dir, struct dentry *new_dentry)
8708 {
8709 	struct btrfs_trans_handle *trans;
8710 	struct btrfs_root *root = BTRFS_I(old_dir)->root;
8711 	struct btrfs_root *dest = BTRFS_I(new_dir)->root;
8712 	struct inode *new_inode = new_dentry->d_inode;
8713 	struct inode *old_inode = old_dentry->d_inode;
8714 	struct timespec ctime = CURRENT_TIME;
8715 	u64 index = 0;
8716 	u64 root_objectid;
8717 	int ret;
8718 	u64 old_ino = btrfs_ino(old_inode);
8719 
8720 	if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
8721 		return -EPERM;
8722 
8723 	/* we only allow rename subvolume link between subvolumes */
8724 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
8725 		return -EXDEV;
8726 
8727 	if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
8728 	    (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID))
8729 		return -ENOTEMPTY;
8730 
8731 	if (S_ISDIR(old_inode->i_mode) && new_inode &&
8732 	    new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
8733 		return -ENOTEMPTY;
8734 
8735 
8736 	/* check for collisions, even if the  name isn't there */
8737 	ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
8738 			     new_dentry->d_name.name,
8739 			     new_dentry->d_name.len);
8740 
8741 	if (ret) {
8742 		if (ret == -EEXIST) {
8743 			/* we shouldn't get
8744 			 * eexist without a new_inode */
8745 			if (WARN_ON(!new_inode)) {
8746 				return ret;
8747 			}
8748 		} else {
8749 			/* maybe -EOVERFLOW */
8750 			return ret;
8751 		}
8752 	}
8753 	ret = 0;
8754 
8755 	/*
8756 	 * we're using rename to replace one file with another.  Start IO on it
8757 	 * now so  we don't add too much work to the end of the transaction
8758 	 */
8759 	if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
8760 		filemap_flush(old_inode->i_mapping);
8761 
8762 	/* close the racy window with snapshot create/destroy ioctl */
8763 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
8764 		down_read(&root->fs_info->subvol_sem);
8765 	/*
8766 	 * We want to reserve the absolute worst case amount of items.  So if
8767 	 * both inodes are subvols and we need to unlink them then that would
8768 	 * require 4 item modifications, but if they are both normal inodes it
8769 	 * would require 5 item modifications, so we'll assume their normal
8770 	 * inodes.  So 5 * 2 is 10, plus 1 for the new link, so 11 total items
8771 	 * should cover the worst case number of items we'll modify.
8772 	 */
8773 	trans = btrfs_start_transaction(root, 11);
8774 	if (IS_ERR(trans)) {
8775                 ret = PTR_ERR(trans);
8776                 goto out_notrans;
8777         }
8778 
8779 	if (dest != root)
8780 		btrfs_record_root_in_trans(trans, dest);
8781 
8782 	ret = btrfs_set_inode_index(new_dir, &index);
8783 	if (ret)
8784 		goto out_fail;
8785 
8786 	BTRFS_I(old_inode)->dir_index = 0ULL;
8787 	if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
8788 		/* force full log commit if subvolume involved. */
8789 		btrfs_set_log_full_commit(root->fs_info, trans);
8790 	} else {
8791 		ret = btrfs_insert_inode_ref(trans, dest,
8792 					     new_dentry->d_name.name,
8793 					     new_dentry->d_name.len,
8794 					     old_ino,
8795 					     btrfs_ino(new_dir), index);
8796 		if (ret)
8797 			goto out_fail;
8798 		/*
8799 		 * this is an ugly little race, but the rename is required
8800 		 * to make sure that if we crash, the inode is either at the
8801 		 * old name or the new one.  pinning the log transaction lets
8802 		 * us make sure we don't allow a log commit to come in after
8803 		 * we unlink the name but before we add the new name back in.
8804 		 */
8805 		btrfs_pin_log_trans(root);
8806 	}
8807 
8808 	inode_inc_iversion(old_dir);
8809 	inode_inc_iversion(new_dir);
8810 	inode_inc_iversion(old_inode);
8811 	old_dir->i_ctime = old_dir->i_mtime = ctime;
8812 	new_dir->i_ctime = new_dir->i_mtime = ctime;
8813 	old_inode->i_ctime = ctime;
8814 
8815 	if (old_dentry->d_parent != new_dentry->d_parent)
8816 		btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
8817 
8818 	if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
8819 		root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
8820 		ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
8821 					old_dentry->d_name.name,
8822 					old_dentry->d_name.len);
8823 	} else {
8824 		ret = __btrfs_unlink_inode(trans, root, old_dir,
8825 					old_dentry->d_inode,
8826 					old_dentry->d_name.name,
8827 					old_dentry->d_name.len);
8828 		if (!ret)
8829 			ret = btrfs_update_inode(trans, root, old_inode);
8830 	}
8831 	if (ret) {
8832 		btrfs_abort_transaction(trans, root, ret);
8833 		goto out_fail;
8834 	}
8835 
8836 	if (new_inode) {
8837 		inode_inc_iversion(new_inode);
8838 		new_inode->i_ctime = CURRENT_TIME;
8839 		if (unlikely(btrfs_ino(new_inode) ==
8840 			     BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
8841 			root_objectid = BTRFS_I(new_inode)->location.objectid;
8842 			ret = btrfs_unlink_subvol(trans, dest, new_dir,
8843 						root_objectid,
8844 						new_dentry->d_name.name,
8845 						new_dentry->d_name.len);
8846 			BUG_ON(new_inode->i_nlink == 0);
8847 		} else {
8848 			ret = btrfs_unlink_inode(trans, dest, new_dir,
8849 						 new_dentry->d_inode,
8850 						 new_dentry->d_name.name,
8851 						 new_dentry->d_name.len);
8852 		}
8853 		if (!ret && new_inode->i_nlink == 0)
8854 			ret = btrfs_orphan_add(trans, new_dentry->d_inode);
8855 		if (ret) {
8856 			btrfs_abort_transaction(trans, root, ret);
8857 			goto out_fail;
8858 		}
8859 	}
8860 
8861 	ret = btrfs_add_link(trans, new_dir, old_inode,
8862 			     new_dentry->d_name.name,
8863 			     new_dentry->d_name.len, 0, index);
8864 	if (ret) {
8865 		btrfs_abort_transaction(trans, root, ret);
8866 		goto out_fail;
8867 	}
8868 
8869 	if (old_inode->i_nlink == 1)
8870 		BTRFS_I(old_inode)->dir_index = index;
8871 
8872 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID) {
8873 		struct dentry *parent = new_dentry->d_parent;
8874 		btrfs_log_new_name(trans, old_inode, old_dir, parent);
8875 		btrfs_end_log_trans(root);
8876 	}
8877 out_fail:
8878 	btrfs_end_transaction(trans, root);
8879 out_notrans:
8880 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
8881 		up_read(&root->fs_info->subvol_sem);
8882 
8883 	return ret;
8884 }
8885 
8886 static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry,
8887 			 struct inode *new_dir, struct dentry *new_dentry,
8888 			 unsigned int flags)
8889 {
8890 	if (flags & ~RENAME_NOREPLACE)
8891 		return -EINVAL;
8892 
8893 	return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry);
8894 }
8895 
8896 static void btrfs_run_delalloc_work(struct btrfs_work *work)
8897 {
8898 	struct btrfs_delalloc_work *delalloc_work;
8899 	struct inode *inode;
8900 
8901 	delalloc_work = container_of(work, struct btrfs_delalloc_work,
8902 				     work);
8903 	inode = delalloc_work->inode;
8904 	if (delalloc_work->wait) {
8905 		btrfs_wait_ordered_range(inode, 0, (u64)-1);
8906 	} else {
8907 		filemap_flush(inode->i_mapping);
8908 		if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
8909 			     &BTRFS_I(inode)->runtime_flags))
8910 			filemap_flush(inode->i_mapping);
8911 	}
8912 
8913 	if (delalloc_work->delay_iput)
8914 		btrfs_add_delayed_iput(inode);
8915 	else
8916 		iput(inode);
8917 	complete(&delalloc_work->completion);
8918 }
8919 
8920 struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode,
8921 						    int wait, int delay_iput)
8922 {
8923 	struct btrfs_delalloc_work *work;
8924 
8925 	work = kmem_cache_zalloc(btrfs_delalloc_work_cachep, GFP_NOFS);
8926 	if (!work)
8927 		return NULL;
8928 
8929 	init_completion(&work->completion);
8930 	INIT_LIST_HEAD(&work->list);
8931 	work->inode = inode;
8932 	work->wait = wait;
8933 	work->delay_iput = delay_iput;
8934 	WARN_ON_ONCE(!inode);
8935 	btrfs_init_work(&work->work, btrfs_flush_delalloc_helper,
8936 			btrfs_run_delalloc_work, NULL, NULL);
8937 
8938 	return work;
8939 }
8940 
8941 void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work)
8942 {
8943 	wait_for_completion(&work->completion);
8944 	kmem_cache_free(btrfs_delalloc_work_cachep, work);
8945 }
8946 
8947 /*
8948  * some fairly slow code that needs optimization. This walks the list
8949  * of all the inodes with pending delalloc and forces them to disk.
8950  */
8951 static int __start_delalloc_inodes(struct btrfs_root *root, int delay_iput,
8952 				   int nr)
8953 {
8954 	struct btrfs_inode *binode;
8955 	struct inode *inode;
8956 	struct btrfs_delalloc_work *work, *next;
8957 	struct list_head works;
8958 	struct list_head splice;
8959 	int ret = 0;
8960 
8961 	INIT_LIST_HEAD(&works);
8962 	INIT_LIST_HEAD(&splice);
8963 
8964 	mutex_lock(&root->delalloc_mutex);
8965 	spin_lock(&root->delalloc_lock);
8966 	list_splice_init(&root->delalloc_inodes, &splice);
8967 	while (!list_empty(&splice)) {
8968 		binode = list_entry(splice.next, struct btrfs_inode,
8969 				    delalloc_inodes);
8970 
8971 		list_move_tail(&binode->delalloc_inodes,
8972 			       &root->delalloc_inodes);
8973 		inode = igrab(&binode->vfs_inode);
8974 		if (!inode) {
8975 			cond_resched_lock(&root->delalloc_lock);
8976 			continue;
8977 		}
8978 		spin_unlock(&root->delalloc_lock);
8979 
8980 		work = btrfs_alloc_delalloc_work(inode, 0, delay_iput);
8981 		if (!work) {
8982 			if (delay_iput)
8983 				btrfs_add_delayed_iput(inode);
8984 			else
8985 				iput(inode);
8986 			ret = -ENOMEM;
8987 			goto out;
8988 		}
8989 		list_add_tail(&work->list, &works);
8990 		btrfs_queue_work(root->fs_info->flush_workers,
8991 				 &work->work);
8992 		ret++;
8993 		if (nr != -1 && ret >= nr)
8994 			goto out;
8995 		cond_resched();
8996 		spin_lock(&root->delalloc_lock);
8997 	}
8998 	spin_unlock(&root->delalloc_lock);
8999 
9000 out:
9001 	list_for_each_entry_safe(work, next, &works, list) {
9002 		list_del_init(&work->list);
9003 		btrfs_wait_and_free_delalloc_work(work);
9004 	}
9005 
9006 	if (!list_empty_careful(&splice)) {
9007 		spin_lock(&root->delalloc_lock);
9008 		list_splice_tail(&splice, &root->delalloc_inodes);
9009 		spin_unlock(&root->delalloc_lock);
9010 	}
9011 	mutex_unlock(&root->delalloc_mutex);
9012 	return ret;
9013 }
9014 
9015 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
9016 {
9017 	int ret;
9018 
9019 	if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
9020 		return -EROFS;
9021 
9022 	ret = __start_delalloc_inodes(root, delay_iput, -1);
9023 	if (ret > 0)
9024 		ret = 0;
9025 	/*
9026 	 * the filemap_flush will queue IO into the worker threads, but
9027 	 * we have to make sure the IO is actually started and that
9028 	 * ordered extents get created before we return
9029 	 */
9030 	atomic_inc(&root->fs_info->async_submit_draining);
9031 	while (atomic_read(&root->fs_info->nr_async_submits) ||
9032 	      atomic_read(&root->fs_info->async_delalloc_pages)) {
9033 		wait_event(root->fs_info->async_submit_wait,
9034 		   (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
9035 		    atomic_read(&root->fs_info->async_delalloc_pages) == 0));
9036 	}
9037 	atomic_dec(&root->fs_info->async_submit_draining);
9038 	return ret;
9039 }
9040 
9041 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int delay_iput,
9042 			       int nr)
9043 {
9044 	struct btrfs_root *root;
9045 	struct list_head splice;
9046 	int ret;
9047 
9048 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
9049 		return -EROFS;
9050 
9051 	INIT_LIST_HEAD(&splice);
9052 
9053 	mutex_lock(&fs_info->delalloc_root_mutex);
9054 	spin_lock(&fs_info->delalloc_root_lock);
9055 	list_splice_init(&fs_info->delalloc_roots, &splice);
9056 	while (!list_empty(&splice) && nr) {
9057 		root = list_first_entry(&splice, struct btrfs_root,
9058 					delalloc_root);
9059 		root = btrfs_grab_fs_root(root);
9060 		BUG_ON(!root);
9061 		list_move_tail(&root->delalloc_root,
9062 			       &fs_info->delalloc_roots);
9063 		spin_unlock(&fs_info->delalloc_root_lock);
9064 
9065 		ret = __start_delalloc_inodes(root, delay_iput, nr);
9066 		btrfs_put_fs_root(root);
9067 		if (ret < 0)
9068 			goto out;
9069 
9070 		if (nr != -1) {
9071 			nr -= ret;
9072 			WARN_ON(nr < 0);
9073 		}
9074 		spin_lock(&fs_info->delalloc_root_lock);
9075 	}
9076 	spin_unlock(&fs_info->delalloc_root_lock);
9077 
9078 	ret = 0;
9079 	atomic_inc(&fs_info->async_submit_draining);
9080 	while (atomic_read(&fs_info->nr_async_submits) ||
9081 	      atomic_read(&fs_info->async_delalloc_pages)) {
9082 		wait_event(fs_info->async_submit_wait,
9083 		   (atomic_read(&fs_info->nr_async_submits) == 0 &&
9084 		    atomic_read(&fs_info->async_delalloc_pages) == 0));
9085 	}
9086 	atomic_dec(&fs_info->async_submit_draining);
9087 out:
9088 	if (!list_empty_careful(&splice)) {
9089 		spin_lock(&fs_info->delalloc_root_lock);
9090 		list_splice_tail(&splice, &fs_info->delalloc_roots);
9091 		spin_unlock(&fs_info->delalloc_root_lock);
9092 	}
9093 	mutex_unlock(&fs_info->delalloc_root_mutex);
9094 	return ret;
9095 }
9096 
9097 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
9098 			 const char *symname)
9099 {
9100 	struct btrfs_trans_handle *trans;
9101 	struct btrfs_root *root = BTRFS_I(dir)->root;
9102 	struct btrfs_path *path;
9103 	struct btrfs_key key;
9104 	struct inode *inode = NULL;
9105 	int err;
9106 	int drop_inode = 0;
9107 	u64 objectid;
9108 	u64 index = 0;
9109 	int name_len;
9110 	int datasize;
9111 	unsigned long ptr;
9112 	struct btrfs_file_extent_item *ei;
9113 	struct extent_buffer *leaf;
9114 
9115 	name_len = strlen(symname);
9116 	if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
9117 		return -ENAMETOOLONG;
9118 
9119 	/*
9120 	 * 2 items for inode item and ref
9121 	 * 2 items for dir items
9122 	 * 1 item for xattr if selinux is on
9123 	 */
9124 	trans = btrfs_start_transaction(root, 5);
9125 	if (IS_ERR(trans))
9126 		return PTR_ERR(trans);
9127 
9128 	err = btrfs_find_free_ino(root, &objectid);
9129 	if (err)
9130 		goto out_unlock;
9131 
9132 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
9133 				dentry->d_name.len, btrfs_ino(dir), objectid,
9134 				S_IFLNK|S_IRWXUGO, &index);
9135 	if (IS_ERR(inode)) {
9136 		err = PTR_ERR(inode);
9137 		goto out_unlock;
9138 	}
9139 
9140 	/*
9141 	* If the active LSM wants to access the inode during
9142 	* d_instantiate it needs these. Smack checks to see
9143 	* if the filesystem supports xattrs by looking at the
9144 	* ops vector.
9145 	*/
9146 	inode->i_fop = &btrfs_file_operations;
9147 	inode->i_op = &btrfs_file_inode_operations;
9148 	inode->i_mapping->a_ops = &btrfs_aops;
9149 	inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
9150 	BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
9151 
9152 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
9153 	if (err)
9154 		goto out_unlock_inode;
9155 
9156 	err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
9157 	if (err)
9158 		goto out_unlock_inode;
9159 
9160 	path = btrfs_alloc_path();
9161 	if (!path) {
9162 		err = -ENOMEM;
9163 		goto out_unlock_inode;
9164 	}
9165 	key.objectid = btrfs_ino(inode);
9166 	key.offset = 0;
9167 	key.type = BTRFS_EXTENT_DATA_KEY;
9168 	datasize = btrfs_file_extent_calc_inline_size(name_len);
9169 	err = btrfs_insert_empty_item(trans, root, path, &key,
9170 				      datasize);
9171 	if (err) {
9172 		btrfs_free_path(path);
9173 		goto out_unlock_inode;
9174 	}
9175 	leaf = path->nodes[0];
9176 	ei = btrfs_item_ptr(leaf, path->slots[0],
9177 			    struct btrfs_file_extent_item);
9178 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
9179 	btrfs_set_file_extent_type(leaf, ei,
9180 				   BTRFS_FILE_EXTENT_INLINE);
9181 	btrfs_set_file_extent_encryption(leaf, ei, 0);
9182 	btrfs_set_file_extent_compression(leaf, ei, 0);
9183 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
9184 	btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
9185 
9186 	ptr = btrfs_file_extent_inline_start(ei);
9187 	write_extent_buffer(leaf, symname, ptr, name_len);
9188 	btrfs_mark_buffer_dirty(leaf);
9189 	btrfs_free_path(path);
9190 
9191 	inode->i_op = &btrfs_symlink_inode_operations;
9192 	inode->i_mapping->a_ops = &btrfs_symlink_aops;
9193 	inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
9194 	inode_set_bytes(inode, name_len);
9195 	btrfs_i_size_write(inode, name_len);
9196 	err = btrfs_update_inode(trans, root, inode);
9197 	if (err) {
9198 		drop_inode = 1;
9199 		goto out_unlock_inode;
9200 	}
9201 
9202 	unlock_new_inode(inode);
9203 	d_instantiate(dentry, inode);
9204 
9205 out_unlock:
9206 	btrfs_end_transaction(trans, root);
9207 	if (drop_inode) {
9208 		inode_dec_link_count(inode);
9209 		iput(inode);
9210 	}
9211 	btrfs_btree_balance_dirty(root);
9212 	return err;
9213 
9214 out_unlock_inode:
9215 	drop_inode = 1;
9216 	unlock_new_inode(inode);
9217 	goto out_unlock;
9218 }
9219 
9220 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
9221 				       u64 start, u64 num_bytes, u64 min_size,
9222 				       loff_t actual_len, u64 *alloc_hint,
9223 				       struct btrfs_trans_handle *trans)
9224 {
9225 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
9226 	struct extent_map *em;
9227 	struct btrfs_root *root = BTRFS_I(inode)->root;
9228 	struct btrfs_key ins;
9229 	u64 cur_offset = start;
9230 	u64 i_size;
9231 	u64 cur_bytes;
9232 	int ret = 0;
9233 	bool own_trans = true;
9234 
9235 	if (trans)
9236 		own_trans = false;
9237 	while (num_bytes > 0) {
9238 		if (own_trans) {
9239 			trans = btrfs_start_transaction(root, 3);
9240 			if (IS_ERR(trans)) {
9241 				ret = PTR_ERR(trans);
9242 				break;
9243 			}
9244 		}
9245 
9246 		cur_bytes = min(num_bytes, 256ULL * 1024 * 1024);
9247 		cur_bytes = max(cur_bytes, min_size);
9248 		ret = btrfs_reserve_extent(root, cur_bytes, min_size, 0,
9249 					   *alloc_hint, &ins, 1, 0);
9250 		if (ret) {
9251 			if (own_trans)
9252 				btrfs_end_transaction(trans, root);
9253 			break;
9254 		}
9255 
9256 		ret = insert_reserved_file_extent(trans, inode,
9257 						  cur_offset, ins.objectid,
9258 						  ins.offset, ins.offset,
9259 						  ins.offset, 0, 0, 0,
9260 						  BTRFS_FILE_EXTENT_PREALLOC);
9261 		if (ret) {
9262 			btrfs_free_reserved_extent(root, ins.objectid,
9263 						   ins.offset, 0);
9264 			btrfs_abort_transaction(trans, root, ret);
9265 			if (own_trans)
9266 				btrfs_end_transaction(trans, root);
9267 			break;
9268 		}
9269 		btrfs_drop_extent_cache(inode, cur_offset,
9270 					cur_offset + ins.offset -1, 0);
9271 
9272 		em = alloc_extent_map();
9273 		if (!em) {
9274 			set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
9275 				&BTRFS_I(inode)->runtime_flags);
9276 			goto next;
9277 		}
9278 
9279 		em->start = cur_offset;
9280 		em->orig_start = cur_offset;
9281 		em->len = ins.offset;
9282 		em->block_start = ins.objectid;
9283 		em->block_len = ins.offset;
9284 		em->orig_block_len = ins.offset;
9285 		em->ram_bytes = ins.offset;
9286 		em->bdev = root->fs_info->fs_devices->latest_bdev;
9287 		set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
9288 		em->generation = trans->transid;
9289 
9290 		while (1) {
9291 			write_lock(&em_tree->lock);
9292 			ret = add_extent_mapping(em_tree, em, 1);
9293 			write_unlock(&em_tree->lock);
9294 			if (ret != -EEXIST)
9295 				break;
9296 			btrfs_drop_extent_cache(inode, cur_offset,
9297 						cur_offset + ins.offset - 1,
9298 						0);
9299 		}
9300 		free_extent_map(em);
9301 next:
9302 		num_bytes -= ins.offset;
9303 		cur_offset += ins.offset;
9304 		*alloc_hint = ins.objectid + ins.offset;
9305 
9306 		inode_inc_iversion(inode);
9307 		inode->i_ctime = CURRENT_TIME;
9308 		BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
9309 		if (!(mode & FALLOC_FL_KEEP_SIZE) &&
9310 		    (actual_len > inode->i_size) &&
9311 		    (cur_offset > inode->i_size)) {
9312 			if (cur_offset > actual_len)
9313 				i_size = actual_len;
9314 			else
9315 				i_size = cur_offset;
9316 			i_size_write(inode, i_size);
9317 			btrfs_ordered_update_i_size(inode, i_size, NULL);
9318 		}
9319 
9320 		ret = btrfs_update_inode(trans, root, inode);
9321 
9322 		if (ret) {
9323 			btrfs_abort_transaction(trans, root, ret);
9324 			if (own_trans)
9325 				btrfs_end_transaction(trans, root);
9326 			break;
9327 		}
9328 
9329 		if (own_trans)
9330 			btrfs_end_transaction(trans, root);
9331 	}
9332 	return ret;
9333 }
9334 
9335 int btrfs_prealloc_file_range(struct inode *inode, int mode,
9336 			      u64 start, u64 num_bytes, u64 min_size,
9337 			      loff_t actual_len, u64 *alloc_hint)
9338 {
9339 	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9340 					   min_size, actual_len, alloc_hint,
9341 					   NULL);
9342 }
9343 
9344 int btrfs_prealloc_file_range_trans(struct inode *inode,
9345 				    struct btrfs_trans_handle *trans, int mode,
9346 				    u64 start, u64 num_bytes, u64 min_size,
9347 				    loff_t actual_len, u64 *alloc_hint)
9348 {
9349 	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9350 					   min_size, actual_len, alloc_hint, trans);
9351 }
9352 
9353 static int btrfs_set_page_dirty(struct page *page)
9354 {
9355 	return __set_page_dirty_nobuffers(page);
9356 }
9357 
9358 static int btrfs_permission(struct inode *inode, int mask)
9359 {
9360 	struct btrfs_root *root = BTRFS_I(inode)->root;
9361 	umode_t mode = inode->i_mode;
9362 
9363 	if (mask & MAY_WRITE &&
9364 	    (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
9365 		if (btrfs_root_readonly(root))
9366 			return -EROFS;
9367 		if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
9368 			return -EACCES;
9369 	}
9370 	return generic_permission(inode, mask);
9371 }
9372 
9373 static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
9374 {
9375 	struct btrfs_trans_handle *trans;
9376 	struct btrfs_root *root = BTRFS_I(dir)->root;
9377 	struct inode *inode = NULL;
9378 	u64 objectid;
9379 	u64 index;
9380 	int ret = 0;
9381 
9382 	/*
9383 	 * 5 units required for adding orphan entry
9384 	 */
9385 	trans = btrfs_start_transaction(root, 5);
9386 	if (IS_ERR(trans))
9387 		return PTR_ERR(trans);
9388 
9389 	ret = btrfs_find_free_ino(root, &objectid);
9390 	if (ret)
9391 		goto out;
9392 
9393 	inode = btrfs_new_inode(trans, root, dir, NULL, 0,
9394 				btrfs_ino(dir), objectid, mode, &index);
9395 	if (IS_ERR(inode)) {
9396 		ret = PTR_ERR(inode);
9397 		inode = NULL;
9398 		goto out;
9399 	}
9400 
9401 	inode->i_fop = &btrfs_file_operations;
9402 	inode->i_op = &btrfs_file_inode_operations;
9403 
9404 	inode->i_mapping->a_ops = &btrfs_aops;
9405 	inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
9406 	BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
9407 
9408 	ret = btrfs_init_inode_security(trans, inode, dir, NULL);
9409 	if (ret)
9410 		goto out_inode;
9411 
9412 	ret = btrfs_update_inode(trans, root, inode);
9413 	if (ret)
9414 		goto out_inode;
9415 	ret = btrfs_orphan_add(trans, inode);
9416 	if (ret)
9417 		goto out_inode;
9418 
9419 	/*
9420 	 * We set number of links to 0 in btrfs_new_inode(), and here we set
9421 	 * it to 1 because d_tmpfile() will issue a warning if the count is 0,
9422 	 * through:
9423 	 *
9424 	 *    d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
9425 	 */
9426 	set_nlink(inode, 1);
9427 	unlock_new_inode(inode);
9428 	d_tmpfile(dentry, inode);
9429 	mark_inode_dirty(inode);
9430 
9431 out:
9432 	btrfs_end_transaction(trans, root);
9433 	if (ret)
9434 		iput(inode);
9435 	btrfs_balance_delayed_items(root);
9436 	btrfs_btree_balance_dirty(root);
9437 	return ret;
9438 
9439 out_inode:
9440 	unlock_new_inode(inode);
9441 	goto out;
9442 
9443 }
9444 
9445 static const struct inode_operations btrfs_dir_inode_operations = {
9446 	.getattr	= btrfs_getattr,
9447 	.lookup		= btrfs_lookup,
9448 	.create		= btrfs_create,
9449 	.unlink		= btrfs_unlink,
9450 	.link		= btrfs_link,
9451 	.mkdir		= btrfs_mkdir,
9452 	.rmdir		= btrfs_rmdir,
9453 	.rename2	= btrfs_rename2,
9454 	.symlink	= btrfs_symlink,
9455 	.setattr	= btrfs_setattr,
9456 	.mknod		= btrfs_mknod,
9457 	.setxattr	= btrfs_setxattr,
9458 	.getxattr	= btrfs_getxattr,
9459 	.listxattr	= btrfs_listxattr,
9460 	.removexattr	= btrfs_removexattr,
9461 	.permission	= btrfs_permission,
9462 	.get_acl	= btrfs_get_acl,
9463 	.set_acl	= btrfs_set_acl,
9464 	.update_time	= btrfs_update_time,
9465 	.tmpfile        = btrfs_tmpfile,
9466 };
9467 static const struct inode_operations btrfs_dir_ro_inode_operations = {
9468 	.lookup		= btrfs_lookup,
9469 	.permission	= btrfs_permission,
9470 	.get_acl	= btrfs_get_acl,
9471 	.set_acl	= btrfs_set_acl,
9472 	.update_time	= btrfs_update_time,
9473 };
9474 
9475 static const struct file_operations btrfs_dir_file_operations = {
9476 	.llseek		= generic_file_llseek,
9477 	.read		= generic_read_dir,
9478 	.iterate	= btrfs_real_readdir,
9479 	.unlocked_ioctl	= btrfs_ioctl,
9480 #ifdef CONFIG_COMPAT
9481 	.compat_ioctl	= btrfs_ioctl,
9482 #endif
9483 	.release        = btrfs_release_file,
9484 	.fsync		= btrfs_sync_file,
9485 };
9486 
9487 static struct extent_io_ops btrfs_extent_io_ops = {
9488 	.fill_delalloc = run_delalloc_range,
9489 	.submit_bio_hook = btrfs_submit_bio_hook,
9490 	.merge_bio_hook = btrfs_merge_bio_hook,
9491 	.readpage_end_io_hook = btrfs_readpage_end_io_hook,
9492 	.writepage_end_io_hook = btrfs_writepage_end_io_hook,
9493 	.writepage_start_hook = btrfs_writepage_start_hook,
9494 	.set_bit_hook = btrfs_set_bit_hook,
9495 	.clear_bit_hook = btrfs_clear_bit_hook,
9496 	.merge_extent_hook = btrfs_merge_extent_hook,
9497 	.split_extent_hook = btrfs_split_extent_hook,
9498 };
9499 
9500 /*
9501  * btrfs doesn't support the bmap operation because swapfiles
9502  * use bmap to make a mapping of extents in the file.  They assume
9503  * these extents won't change over the life of the file and they
9504  * use the bmap result to do IO directly to the drive.
9505  *
9506  * the btrfs bmap call would return logical addresses that aren't
9507  * suitable for IO and they also will change frequently as COW
9508  * operations happen.  So, swapfile + btrfs == corruption.
9509  *
9510  * For now we're avoiding this by dropping bmap.
9511  */
9512 static const struct address_space_operations btrfs_aops = {
9513 	.readpage	= btrfs_readpage,
9514 	.writepage	= btrfs_writepage,
9515 	.writepages	= btrfs_writepages,
9516 	.readpages	= btrfs_readpages,
9517 	.direct_IO	= btrfs_direct_IO,
9518 	.invalidatepage = btrfs_invalidatepage,
9519 	.releasepage	= btrfs_releasepage,
9520 	.set_page_dirty	= btrfs_set_page_dirty,
9521 	.error_remove_page = generic_error_remove_page,
9522 };
9523 
9524 static const struct address_space_operations btrfs_symlink_aops = {
9525 	.readpage	= btrfs_readpage,
9526 	.writepage	= btrfs_writepage,
9527 	.invalidatepage = btrfs_invalidatepage,
9528 	.releasepage	= btrfs_releasepage,
9529 };
9530 
9531 static const struct inode_operations btrfs_file_inode_operations = {
9532 	.getattr	= btrfs_getattr,
9533 	.setattr	= btrfs_setattr,
9534 	.setxattr	= btrfs_setxattr,
9535 	.getxattr	= btrfs_getxattr,
9536 	.listxattr      = btrfs_listxattr,
9537 	.removexattr	= btrfs_removexattr,
9538 	.permission	= btrfs_permission,
9539 	.fiemap		= btrfs_fiemap,
9540 	.get_acl	= btrfs_get_acl,
9541 	.set_acl	= btrfs_set_acl,
9542 	.update_time	= btrfs_update_time,
9543 };
9544 static const struct inode_operations btrfs_special_inode_operations = {
9545 	.getattr	= btrfs_getattr,
9546 	.setattr	= btrfs_setattr,
9547 	.permission	= btrfs_permission,
9548 	.setxattr	= btrfs_setxattr,
9549 	.getxattr	= btrfs_getxattr,
9550 	.listxattr	= btrfs_listxattr,
9551 	.removexattr	= btrfs_removexattr,
9552 	.get_acl	= btrfs_get_acl,
9553 	.set_acl	= btrfs_set_acl,
9554 	.update_time	= btrfs_update_time,
9555 };
9556 static const struct inode_operations btrfs_symlink_inode_operations = {
9557 	.readlink	= generic_readlink,
9558 	.follow_link	= page_follow_link_light,
9559 	.put_link	= page_put_link,
9560 	.getattr	= btrfs_getattr,
9561 	.setattr	= btrfs_setattr,
9562 	.permission	= btrfs_permission,
9563 	.setxattr	= btrfs_setxattr,
9564 	.getxattr	= btrfs_getxattr,
9565 	.listxattr	= btrfs_listxattr,
9566 	.removexattr	= btrfs_removexattr,
9567 	.update_time	= btrfs_update_time,
9568 };
9569 
9570 const struct dentry_operations btrfs_dentry_operations = {
9571 	.d_delete	= btrfs_dentry_delete,
9572 	.d_release	= btrfs_dentry_release,
9573 };
9574