1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/kernel.h> 7 #include <linux/bio.h> 8 #include <linux/buffer_head.h> 9 #include <linux/file.h> 10 #include <linux/fs.h> 11 #include <linux/pagemap.h> 12 #include <linux/highmem.h> 13 #include <linux/time.h> 14 #include <linux/init.h> 15 #include <linux/string.h> 16 #include <linux/backing-dev.h> 17 #include <linux/mpage.h> 18 #include <linux/swap.h> 19 #include <linux/writeback.h> 20 #include <linux/compat.h> 21 #include <linux/bit_spinlock.h> 22 #include <linux/xattr.h> 23 #include <linux/posix_acl.h> 24 #include <linux/falloc.h> 25 #include <linux/slab.h> 26 #include <linux/ratelimit.h> 27 #include <linux/mount.h> 28 #include <linux/btrfs.h> 29 #include <linux/blkdev.h> 30 #include <linux/posix_acl_xattr.h> 31 #include <linux/uio.h> 32 #include <linux/magic.h> 33 #include <linux/iversion.h> 34 #include <asm/unaligned.h> 35 #include "ctree.h" 36 #include "disk-io.h" 37 #include "transaction.h" 38 #include "btrfs_inode.h" 39 #include "print-tree.h" 40 #include "ordered-data.h" 41 #include "xattr.h" 42 #include "tree-log.h" 43 #include "volumes.h" 44 #include "compression.h" 45 #include "locking.h" 46 #include "free-space-cache.h" 47 #include "inode-map.h" 48 #include "backref.h" 49 #include "props.h" 50 #include "qgroup.h" 51 #include "dedupe.h" 52 53 struct btrfs_iget_args { 54 struct btrfs_key *location; 55 struct btrfs_root *root; 56 }; 57 58 struct btrfs_dio_data { 59 u64 reserve; 60 u64 unsubmitted_oe_range_start; 61 u64 unsubmitted_oe_range_end; 62 int overwrite; 63 }; 64 65 static const struct inode_operations btrfs_dir_inode_operations; 66 static const struct inode_operations btrfs_symlink_inode_operations; 67 static const struct inode_operations btrfs_dir_ro_inode_operations; 68 static const struct inode_operations btrfs_special_inode_operations; 69 static const struct inode_operations btrfs_file_inode_operations; 70 static const struct address_space_operations btrfs_aops; 71 static const struct address_space_operations btrfs_symlink_aops; 72 static const struct file_operations btrfs_dir_file_operations; 73 static const struct extent_io_ops btrfs_extent_io_ops; 74 75 static struct kmem_cache *btrfs_inode_cachep; 76 struct kmem_cache *btrfs_trans_handle_cachep; 77 struct kmem_cache *btrfs_path_cachep; 78 struct kmem_cache *btrfs_free_space_cachep; 79 80 #define S_SHIFT 12 81 static const unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = { 82 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE, 83 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR, 84 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV, 85 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV, 86 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO, 87 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK, 88 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK, 89 }; 90 91 static int btrfs_setsize(struct inode *inode, struct iattr *attr); 92 static int btrfs_truncate(struct inode *inode, bool skip_writeback); 93 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent); 94 static noinline int cow_file_range(struct inode *inode, 95 struct page *locked_page, 96 u64 start, u64 end, u64 delalloc_end, 97 int *page_started, unsigned long *nr_written, 98 int unlock, struct btrfs_dedupe_hash *hash); 99 static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len, 100 u64 orig_start, u64 block_start, 101 u64 block_len, u64 orig_block_len, 102 u64 ram_bytes, int compress_type, 103 int type); 104 105 static void __endio_write_update_ordered(struct inode *inode, 106 const u64 offset, const u64 bytes, 107 const bool uptodate); 108 109 /* 110 * Cleanup all submitted ordered extents in specified range to handle errors 111 * from the fill_dellaloc() callback. 112 * 113 * NOTE: caller must ensure that when an error happens, it can not call 114 * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING 115 * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata 116 * to be released, which we want to happen only when finishing the ordered 117 * extent (btrfs_finish_ordered_io()). Also note that the caller of the 118 * fill_delalloc() callback already does proper cleanup for the first page of 119 * the range, that is, it invokes the callback writepage_end_io_hook() for the 120 * range of the first page. 121 */ 122 static inline void btrfs_cleanup_ordered_extents(struct inode *inode, 123 const u64 offset, 124 const u64 bytes) 125 { 126 unsigned long index = offset >> PAGE_SHIFT; 127 unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT; 128 struct page *page; 129 130 while (index <= end_index) { 131 page = find_get_page(inode->i_mapping, index); 132 index++; 133 if (!page) 134 continue; 135 ClearPagePrivate2(page); 136 put_page(page); 137 } 138 return __endio_write_update_ordered(inode, offset + PAGE_SIZE, 139 bytes - PAGE_SIZE, false); 140 } 141 142 static int btrfs_dirty_inode(struct inode *inode); 143 144 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 145 void btrfs_test_inode_set_ops(struct inode *inode) 146 { 147 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 148 } 149 #endif 150 151 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans, 152 struct inode *inode, struct inode *dir, 153 const struct qstr *qstr) 154 { 155 int err; 156 157 err = btrfs_init_acl(trans, inode, dir); 158 if (!err) 159 err = btrfs_xattr_security_init(trans, inode, dir, qstr); 160 return err; 161 } 162 163 /* 164 * this does all the hard work for inserting an inline extent into 165 * the btree. The caller should have done a btrfs_drop_extents so that 166 * no overlapping inline items exist in the btree 167 */ 168 static int insert_inline_extent(struct btrfs_trans_handle *trans, 169 struct btrfs_path *path, int extent_inserted, 170 struct btrfs_root *root, struct inode *inode, 171 u64 start, size_t size, size_t compressed_size, 172 int compress_type, 173 struct page **compressed_pages) 174 { 175 struct extent_buffer *leaf; 176 struct page *page = NULL; 177 char *kaddr; 178 unsigned long ptr; 179 struct btrfs_file_extent_item *ei; 180 int ret; 181 size_t cur_size = size; 182 unsigned long offset; 183 184 if (compressed_size && compressed_pages) 185 cur_size = compressed_size; 186 187 inode_add_bytes(inode, size); 188 189 if (!extent_inserted) { 190 struct btrfs_key key; 191 size_t datasize; 192 193 key.objectid = btrfs_ino(BTRFS_I(inode)); 194 key.offset = start; 195 key.type = BTRFS_EXTENT_DATA_KEY; 196 197 datasize = btrfs_file_extent_calc_inline_size(cur_size); 198 path->leave_spinning = 1; 199 ret = btrfs_insert_empty_item(trans, root, path, &key, 200 datasize); 201 if (ret) 202 goto fail; 203 } 204 leaf = path->nodes[0]; 205 ei = btrfs_item_ptr(leaf, path->slots[0], 206 struct btrfs_file_extent_item); 207 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 208 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE); 209 btrfs_set_file_extent_encryption(leaf, ei, 0); 210 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 211 btrfs_set_file_extent_ram_bytes(leaf, ei, size); 212 ptr = btrfs_file_extent_inline_start(ei); 213 214 if (compress_type != BTRFS_COMPRESS_NONE) { 215 struct page *cpage; 216 int i = 0; 217 while (compressed_size > 0) { 218 cpage = compressed_pages[i]; 219 cur_size = min_t(unsigned long, compressed_size, 220 PAGE_SIZE); 221 222 kaddr = kmap_atomic(cpage); 223 write_extent_buffer(leaf, kaddr, ptr, cur_size); 224 kunmap_atomic(kaddr); 225 226 i++; 227 ptr += cur_size; 228 compressed_size -= cur_size; 229 } 230 btrfs_set_file_extent_compression(leaf, ei, 231 compress_type); 232 } else { 233 page = find_get_page(inode->i_mapping, 234 start >> PAGE_SHIFT); 235 btrfs_set_file_extent_compression(leaf, ei, 0); 236 kaddr = kmap_atomic(page); 237 offset = start & (PAGE_SIZE - 1); 238 write_extent_buffer(leaf, kaddr + offset, ptr, size); 239 kunmap_atomic(kaddr); 240 put_page(page); 241 } 242 btrfs_mark_buffer_dirty(leaf); 243 btrfs_release_path(path); 244 245 /* 246 * we're an inline extent, so nobody can 247 * extend the file past i_size without locking 248 * a page we already have locked. 249 * 250 * We must do any isize and inode updates 251 * before we unlock the pages. Otherwise we 252 * could end up racing with unlink. 253 */ 254 BTRFS_I(inode)->disk_i_size = inode->i_size; 255 ret = btrfs_update_inode(trans, root, inode); 256 257 fail: 258 return ret; 259 } 260 261 262 /* 263 * conditionally insert an inline extent into the file. This 264 * does the checks required to make sure the data is small enough 265 * to fit as an inline extent. 266 */ 267 static noinline int cow_file_range_inline(struct inode *inode, u64 start, 268 u64 end, size_t compressed_size, 269 int compress_type, 270 struct page **compressed_pages) 271 { 272 struct btrfs_root *root = BTRFS_I(inode)->root; 273 struct btrfs_fs_info *fs_info = root->fs_info; 274 struct btrfs_trans_handle *trans; 275 u64 isize = i_size_read(inode); 276 u64 actual_end = min(end + 1, isize); 277 u64 inline_len = actual_end - start; 278 u64 aligned_end = ALIGN(end, fs_info->sectorsize); 279 u64 data_len = inline_len; 280 int ret; 281 struct btrfs_path *path; 282 int extent_inserted = 0; 283 u32 extent_item_size; 284 285 if (compressed_size) 286 data_len = compressed_size; 287 288 if (start > 0 || 289 actual_end > fs_info->sectorsize || 290 data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) || 291 (!compressed_size && 292 (actual_end & (fs_info->sectorsize - 1)) == 0) || 293 end + 1 < isize || 294 data_len > fs_info->max_inline) { 295 return 1; 296 } 297 298 path = btrfs_alloc_path(); 299 if (!path) 300 return -ENOMEM; 301 302 trans = btrfs_join_transaction(root); 303 if (IS_ERR(trans)) { 304 btrfs_free_path(path); 305 return PTR_ERR(trans); 306 } 307 trans->block_rsv = &BTRFS_I(inode)->block_rsv; 308 309 if (compressed_size && compressed_pages) 310 extent_item_size = btrfs_file_extent_calc_inline_size( 311 compressed_size); 312 else 313 extent_item_size = btrfs_file_extent_calc_inline_size( 314 inline_len); 315 316 ret = __btrfs_drop_extents(trans, root, inode, path, 317 start, aligned_end, NULL, 318 1, 1, extent_item_size, &extent_inserted); 319 if (ret) { 320 btrfs_abort_transaction(trans, ret); 321 goto out; 322 } 323 324 if (isize > actual_end) 325 inline_len = min_t(u64, isize, actual_end); 326 ret = insert_inline_extent(trans, path, extent_inserted, 327 root, inode, start, 328 inline_len, compressed_size, 329 compress_type, compressed_pages); 330 if (ret && ret != -ENOSPC) { 331 btrfs_abort_transaction(trans, ret); 332 goto out; 333 } else if (ret == -ENOSPC) { 334 ret = 1; 335 goto out; 336 } 337 338 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 339 btrfs_drop_extent_cache(BTRFS_I(inode), start, aligned_end - 1, 0); 340 out: 341 /* 342 * Don't forget to free the reserved space, as for inlined extent 343 * it won't count as data extent, free them directly here. 344 * And at reserve time, it's always aligned to page size, so 345 * just free one page here. 346 */ 347 btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE); 348 btrfs_free_path(path); 349 btrfs_end_transaction(trans); 350 return ret; 351 } 352 353 struct async_extent { 354 u64 start; 355 u64 ram_size; 356 u64 compressed_size; 357 struct page **pages; 358 unsigned long nr_pages; 359 int compress_type; 360 struct list_head list; 361 }; 362 363 struct async_cow { 364 struct inode *inode; 365 struct btrfs_root *root; 366 struct page *locked_page; 367 u64 start; 368 u64 end; 369 unsigned int write_flags; 370 struct list_head extents; 371 struct btrfs_work work; 372 }; 373 374 static noinline int add_async_extent(struct async_cow *cow, 375 u64 start, u64 ram_size, 376 u64 compressed_size, 377 struct page **pages, 378 unsigned long nr_pages, 379 int compress_type) 380 { 381 struct async_extent *async_extent; 382 383 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS); 384 BUG_ON(!async_extent); /* -ENOMEM */ 385 async_extent->start = start; 386 async_extent->ram_size = ram_size; 387 async_extent->compressed_size = compressed_size; 388 async_extent->pages = pages; 389 async_extent->nr_pages = nr_pages; 390 async_extent->compress_type = compress_type; 391 list_add_tail(&async_extent->list, &cow->extents); 392 return 0; 393 } 394 395 static inline int inode_need_compress(struct inode *inode, u64 start, u64 end) 396 { 397 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 398 399 /* force compress */ 400 if (btrfs_test_opt(fs_info, FORCE_COMPRESS)) 401 return 1; 402 /* defrag ioctl */ 403 if (BTRFS_I(inode)->defrag_compress) 404 return 1; 405 /* bad compression ratios */ 406 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) 407 return 0; 408 if (btrfs_test_opt(fs_info, COMPRESS) || 409 BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS || 410 BTRFS_I(inode)->prop_compress) 411 return btrfs_compress_heuristic(inode, start, end); 412 return 0; 413 } 414 415 static inline void inode_should_defrag(struct btrfs_inode *inode, 416 u64 start, u64 end, u64 num_bytes, u64 small_write) 417 { 418 /* If this is a small write inside eof, kick off a defrag */ 419 if (num_bytes < small_write && 420 (start > 0 || end + 1 < inode->disk_i_size)) 421 btrfs_add_inode_defrag(NULL, inode); 422 } 423 424 /* 425 * we create compressed extents in two phases. The first 426 * phase compresses a range of pages that have already been 427 * locked (both pages and state bits are locked). 428 * 429 * This is done inside an ordered work queue, and the compression 430 * is spread across many cpus. The actual IO submission is step 431 * two, and the ordered work queue takes care of making sure that 432 * happens in the same order things were put onto the queue by 433 * writepages and friends. 434 * 435 * If this code finds it can't get good compression, it puts an 436 * entry onto the work queue to write the uncompressed bytes. This 437 * makes sure that both compressed inodes and uncompressed inodes 438 * are written in the same order that the flusher thread sent them 439 * down. 440 */ 441 static noinline void compress_file_range(struct inode *inode, 442 struct page *locked_page, 443 u64 start, u64 end, 444 struct async_cow *async_cow, 445 int *num_added) 446 { 447 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 448 u64 blocksize = fs_info->sectorsize; 449 u64 actual_end; 450 u64 isize = i_size_read(inode); 451 int ret = 0; 452 struct page **pages = NULL; 453 unsigned long nr_pages; 454 unsigned long total_compressed = 0; 455 unsigned long total_in = 0; 456 int i; 457 int will_compress; 458 int compress_type = fs_info->compress_type; 459 int redirty = 0; 460 461 inode_should_defrag(BTRFS_I(inode), start, end, end - start + 1, 462 SZ_16K); 463 464 actual_end = min_t(u64, isize, end + 1); 465 again: 466 will_compress = 0; 467 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1; 468 BUILD_BUG_ON((BTRFS_MAX_COMPRESSED % PAGE_SIZE) != 0); 469 nr_pages = min_t(unsigned long, nr_pages, 470 BTRFS_MAX_COMPRESSED / PAGE_SIZE); 471 472 /* 473 * we don't want to send crud past the end of i_size through 474 * compression, that's just a waste of CPU time. So, if the 475 * end of the file is before the start of our current 476 * requested range of bytes, we bail out to the uncompressed 477 * cleanup code that can deal with all of this. 478 * 479 * It isn't really the fastest way to fix things, but this is a 480 * very uncommon corner. 481 */ 482 if (actual_end <= start) 483 goto cleanup_and_bail_uncompressed; 484 485 total_compressed = actual_end - start; 486 487 /* 488 * skip compression for a small file range(<=blocksize) that 489 * isn't an inline extent, since it doesn't save disk space at all. 490 */ 491 if (total_compressed <= blocksize && 492 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size)) 493 goto cleanup_and_bail_uncompressed; 494 495 total_compressed = min_t(unsigned long, total_compressed, 496 BTRFS_MAX_UNCOMPRESSED); 497 total_in = 0; 498 ret = 0; 499 500 /* 501 * we do compression for mount -o compress and when the 502 * inode has not been flagged as nocompress. This flag can 503 * change at any time if we discover bad compression ratios. 504 */ 505 if (inode_need_compress(inode, start, end)) { 506 WARN_ON(pages); 507 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS); 508 if (!pages) { 509 /* just bail out to the uncompressed code */ 510 goto cont; 511 } 512 513 if (BTRFS_I(inode)->defrag_compress) 514 compress_type = BTRFS_I(inode)->defrag_compress; 515 else if (BTRFS_I(inode)->prop_compress) 516 compress_type = BTRFS_I(inode)->prop_compress; 517 518 /* 519 * we need to call clear_page_dirty_for_io on each 520 * page in the range. Otherwise applications with the file 521 * mmap'd can wander in and change the page contents while 522 * we are compressing them. 523 * 524 * If the compression fails for any reason, we set the pages 525 * dirty again later on. 526 * 527 * Note that the remaining part is redirtied, the start pointer 528 * has moved, the end is the original one. 529 */ 530 if (!redirty) { 531 extent_range_clear_dirty_for_io(inode, start, end); 532 redirty = 1; 533 } 534 535 /* Compression level is applied here and only here */ 536 ret = btrfs_compress_pages( 537 compress_type | (fs_info->compress_level << 4), 538 inode->i_mapping, start, 539 pages, 540 &nr_pages, 541 &total_in, 542 &total_compressed); 543 544 if (!ret) { 545 unsigned long offset = total_compressed & 546 (PAGE_SIZE - 1); 547 struct page *page = pages[nr_pages - 1]; 548 char *kaddr; 549 550 /* zero the tail end of the last page, we might be 551 * sending it down to disk 552 */ 553 if (offset) { 554 kaddr = kmap_atomic(page); 555 memset(kaddr + offset, 0, 556 PAGE_SIZE - offset); 557 kunmap_atomic(kaddr); 558 } 559 will_compress = 1; 560 } 561 } 562 cont: 563 if (start == 0) { 564 /* lets try to make an inline extent */ 565 if (ret || total_in < actual_end) { 566 /* we didn't compress the entire range, try 567 * to make an uncompressed inline extent. 568 */ 569 ret = cow_file_range_inline(inode, start, end, 0, 570 BTRFS_COMPRESS_NONE, NULL); 571 } else { 572 /* try making a compressed inline extent */ 573 ret = cow_file_range_inline(inode, start, end, 574 total_compressed, 575 compress_type, pages); 576 } 577 if (ret <= 0) { 578 unsigned long clear_flags = EXTENT_DELALLOC | 579 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG | 580 EXTENT_DO_ACCOUNTING; 581 unsigned long page_error_op; 582 583 page_error_op = ret < 0 ? PAGE_SET_ERROR : 0; 584 585 /* 586 * inline extent creation worked or returned error, 587 * we don't need to create any more async work items. 588 * Unlock and free up our temp pages. 589 * 590 * We use DO_ACCOUNTING here because we need the 591 * delalloc_release_metadata to be done _after_ we drop 592 * our outstanding extent for clearing delalloc for this 593 * range. 594 */ 595 extent_clear_unlock_delalloc(inode, start, end, end, 596 NULL, clear_flags, 597 PAGE_UNLOCK | 598 PAGE_CLEAR_DIRTY | 599 PAGE_SET_WRITEBACK | 600 page_error_op | 601 PAGE_END_WRITEBACK); 602 goto free_pages_out; 603 } 604 } 605 606 if (will_compress) { 607 /* 608 * we aren't doing an inline extent round the compressed size 609 * up to a block size boundary so the allocator does sane 610 * things 611 */ 612 total_compressed = ALIGN(total_compressed, blocksize); 613 614 /* 615 * one last check to make sure the compression is really a 616 * win, compare the page count read with the blocks on disk, 617 * compression must free at least one sector size 618 */ 619 total_in = ALIGN(total_in, PAGE_SIZE); 620 if (total_compressed + blocksize <= total_in) { 621 *num_added += 1; 622 623 /* 624 * The async work queues will take care of doing actual 625 * allocation on disk for these compressed pages, and 626 * will submit them to the elevator. 627 */ 628 add_async_extent(async_cow, start, total_in, 629 total_compressed, pages, nr_pages, 630 compress_type); 631 632 if (start + total_in < end) { 633 start += total_in; 634 pages = NULL; 635 cond_resched(); 636 goto again; 637 } 638 return; 639 } 640 } 641 if (pages) { 642 /* 643 * the compression code ran but failed to make things smaller, 644 * free any pages it allocated and our page pointer array 645 */ 646 for (i = 0; i < nr_pages; i++) { 647 WARN_ON(pages[i]->mapping); 648 put_page(pages[i]); 649 } 650 kfree(pages); 651 pages = NULL; 652 total_compressed = 0; 653 nr_pages = 0; 654 655 /* flag the file so we don't compress in the future */ 656 if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) && 657 !(BTRFS_I(inode)->prop_compress)) { 658 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS; 659 } 660 } 661 cleanup_and_bail_uncompressed: 662 /* 663 * No compression, but we still need to write the pages in the file 664 * we've been given so far. redirty the locked page if it corresponds 665 * to our extent and set things up for the async work queue to run 666 * cow_file_range to do the normal delalloc dance. 667 */ 668 if (page_offset(locked_page) >= start && 669 page_offset(locked_page) <= end) 670 __set_page_dirty_nobuffers(locked_page); 671 /* unlocked later on in the async handlers */ 672 673 if (redirty) 674 extent_range_redirty_for_io(inode, start, end); 675 add_async_extent(async_cow, start, end - start + 1, 0, NULL, 0, 676 BTRFS_COMPRESS_NONE); 677 *num_added += 1; 678 679 return; 680 681 free_pages_out: 682 for (i = 0; i < nr_pages; i++) { 683 WARN_ON(pages[i]->mapping); 684 put_page(pages[i]); 685 } 686 kfree(pages); 687 } 688 689 static void free_async_extent_pages(struct async_extent *async_extent) 690 { 691 int i; 692 693 if (!async_extent->pages) 694 return; 695 696 for (i = 0; i < async_extent->nr_pages; i++) { 697 WARN_ON(async_extent->pages[i]->mapping); 698 put_page(async_extent->pages[i]); 699 } 700 kfree(async_extent->pages); 701 async_extent->nr_pages = 0; 702 async_extent->pages = NULL; 703 } 704 705 /* 706 * phase two of compressed writeback. This is the ordered portion 707 * of the code, which only gets called in the order the work was 708 * queued. We walk all the async extents created by compress_file_range 709 * and send them down to the disk. 710 */ 711 static noinline void submit_compressed_extents(struct inode *inode, 712 struct async_cow *async_cow) 713 { 714 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 715 struct async_extent *async_extent; 716 u64 alloc_hint = 0; 717 struct btrfs_key ins; 718 struct extent_map *em; 719 struct btrfs_root *root = BTRFS_I(inode)->root; 720 struct extent_io_tree *io_tree; 721 int ret = 0; 722 723 again: 724 while (!list_empty(&async_cow->extents)) { 725 async_extent = list_entry(async_cow->extents.next, 726 struct async_extent, list); 727 list_del(&async_extent->list); 728 729 io_tree = &BTRFS_I(inode)->io_tree; 730 731 retry: 732 /* did the compression code fall back to uncompressed IO? */ 733 if (!async_extent->pages) { 734 int page_started = 0; 735 unsigned long nr_written = 0; 736 737 lock_extent(io_tree, async_extent->start, 738 async_extent->start + 739 async_extent->ram_size - 1); 740 741 /* allocate blocks */ 742 ret = cow_file_range(inode, async_cow->locked_page, 743 async_extent->start, 744 async_extent->start + 745 async_extent->ram_size - 1, 746 async_extent->start + 747 async_extent->ram_size - 1, 748 &page_started, &nr_written, 0, 749 NULL); 750 751 /* JDM XXX */ 752 753 /* 754 * if page_started, cow_file_range inserted an 755 * inline extent and took care of all the unlocking 756 * and IO for us. Otherwise, we need to submit 757 * all those pages down to the drive. 758 */ 759 if (!page_started && !ret) 760 extent_write_locked_range(inode, 761 async_extent->start, 762 async_extent->start + 763 async_extent->ram_size - 1, 764 WB_SYNC_ALL); 765 else if (ret) 766 unlock_page(async_cow->locked_page); 767 kfree(async_extent); 768 cond_resched(); 769 continue; 770 } 771 772 lock_extent(io_tree, async_extent->start, 773 async_extent->start + async_extent->ram_size - 1); 774 775 ret = btrfs_reserve_extent(root, async_extent->ram_size, 776 async_extent->compressed_size, 777 async_extent->compressed_size, 778 0, alloc_hint, &ins, 1, 1); 779 if (ret) { 780 free_async_extent_pages(async_extent); 781 782 if (ret == -ENOSPC) { 783 unlock_extent(io_tree, async_extent->start, 784 async_extent->start + 785 async_extent->ram_size - 1); 786 787 /* 788 * we need to redirty the pages if we decide to 789 * fallback to uncompressed IO, otherwise we 790 * will not submit these pages down to lower 791 * layers. 792 */ 793 extent_range_redirty_for_io(inode, 794 async_extent->start, 795 async_extent->start + 796 async_extent->ram_size - 1); 797 798 goto retry; 799 } 800 goto out_free; 801 } 802 /* 803 * here we're doing allocation and writeback of the 804 * compressed pages 805 */ 806 em = create_io_em(inode, async_extent->start, 807 async_extent->ram_size, /* len */ 808 async_extent->start, /* orig_start */ 809 ins.objectid, /* block_start */ 810 ins.offset, /* block_len */ 811 ins.offset, /* orig_block_len */ 812 async_extent->ram_size, /* ram_bytes */ 813 async_extent->compress_type, 814 BTRFS_ORDERED_COMPRESSED); 815 if (IS_ERR(em)) 816 /* ret value is not necessary due to void function */ 817 goto out_free_reserve; 818 free_extent_map(em); 819 820 ret = btrfs_add_ordered_extent_compress(inode, 821 async_extent->start, 822 ins.objectid, 823 async_extent->ram_size, 824 ins.offset, 825 BTRFS_ORDERED_COMPRESSED, 826 async_extent->compress_type); 827 if (ret) { 828 btrfs_drop_extent_cache(BTRFS_I(inode), 829 async_extent->start, 830 async_extent->start + 831 async_extent->ram_size - 1, 0); 832 goto out_free_reserve; 833 } 834 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 835 836 /* 837 * clear dirty, set writeback and unlock the pages. 838 */ 839 extent_clear_unlock_delalloc(inode, async_extent->start, 840 async_extent->start + 841 async_extent->ram_size - 1, 842 async_extent->start + 843 async_extent->ram_size - 1, 844 NULL, EXTENT_LOCKED | EXTENT_DELALLOC, 845 PAGE_UNLOCK | PAGE_CLEAR_DIRTY | 846 PAGE_SET_WRITEBACK); 847 if (btrfs_submit_compressed_write(inode, 848 async_extent->start, 849 async_extent->ram_size, 850 ins.objectid, 851 ins.offset, async_extent->pages, 852 async_extent->nr_pages, 853 async_cow->write_flags)) { 854 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 855 struct page *p = async_extent->pages[0]; 856 const u64 start = async_extent->start; 857 const u64 end = start + async_extent->ram_size - 1; 858 859 p->mapping = inode->i_mapping; 860 tree->ops->writepage_end_io_hook(p, start, end, 861 NULL, 0); 862 p->mapping = NULL; 863 extent_clear_unlock_delalloc(inode, start, end, end, 864 NULL, 0, 865 PAGE_END_WRITEBACK | 866 PAGE_SET_ERROR); 867 free_async_extent_pages(async_extent); 868 } 869 alloc_hint = ins.objectid + ins.offset; 870 kfree(async_extent); 871 cond_resched(); 872 } 873 return; 874 out_free_reserve: 875 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 876 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1); 877 out_free: 878 extent_clear_unlock_delalloc(inode, async_extent->start, 879 async_extent->start + 880 async_extent->ram_size - 1, 881 async_extent->start + 882 async_extent->ram_size - 1, 883 NULL, EXTENT_LOCKED | EXTENT_DELALLOC | 884 EXTENT_DELALLOC_NEW | 885 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING, 886 PAGE_UNLOCK | PAGE_CLEAR_DIRTY | 887 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK | 888 PAGE_SET_ERROR); 889 free_async_extent_pages(async_extent); 890 kfree(async_extent); 891 goto again; 892 } 893 894 static u64 get_extent_allocation_hint(struct inode *inode, u64 start, 895 u64 num_bytes) 896 { 897 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 898 struct extent_map *em; 899 u64 alloc_hint = 0; 900 901 read_lock(&em_tree->lock); 902 em = search_extent_mapping(em_tree, start, num_bytes); 903 if (em) { 904 /* 905 * if block start isn't an actual block number then find the 906 * first block in this inode and use that as a hint. If that 907 * block is also bogus then just don't worry about it. 908 */ 909 if (em->block_start >= EXTENT_MAP_LAST_BYTE) { 910 free_extent_map(em); 911 em = search_extent_mapping(em_tree, 0, 0); 912 if (em && em->block_start < EXTENT_MAP_LAST_BYTE) 913 alloc_hint = em->block_start; 914 if (em) 915 free_extent_map(em); 916 } else { 917 alloc_hint = em->block_start; 918 free_extent_map(em); 919 } 920 } 921 read_unlock(&em_tree->lock); 922 923 return alloc_hint; 924 } 925 926 /* 927 * when extent_io.c finds a delayed allocation range in the file, 928 * the call backs end up in this code. The basic idea is to 929 * allocate extents on disk for the range, and create ordered data structs 930 * in ram to track those extents. 931 * 932 * locked_page is the page that writepage had locked already. We use 933 * it to make sure we don't do extra locks or unlocks. 934 * 935 * *page_started is set to one if we unlock locked_page and do everything 936 * required to start IO on it. It may be clean and already done with 937 * IO when we return. 938 */ 939 static noinline int cow_file_range(struct inode *inode, 940 struct page *locked_page, 941 u64 start, u64 end, u64 delalloc_end, 942 int *page_started, unsigned long *nr_written, 943 int unlock, struct btrfs_dedupe_hash *hash) 944 { 945 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 946 struct btrfs_root *root = BTRFS_I(inode)->root; 947 u64 alloc_hint = 0; 948 u64 num_bytes; 949 unsigned long ram_size; 950 u64 cur_alloc_size = 0; 951 u64 blocksize = fs_info->sectorsize; 952 struct btrfs_key ins; 953 struct extent_map *em; 954 unsigned clear_bits; 955 unsigned long page_ops; 956 bool extent_reserved = false; 957 int ret = 0; 958 959 if (btrfs_is_free_space_inode(BTRFS_I(inode))) { 960 WARN_ON_ONCE(1); 961 ret = -EINVAL; 962 goto out_unlock; 963 } 964 965 num_bytes = ALIGN(end - start + 1, blocksize); 966 num_bytes = max(blocksize, num_bytes); 967 ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy)); 968 969 inode_should_defrag(BTRFS_I(inode), start, end, num_bytes, SZ_64K); 970 971 if (start == 0) { 972 /* lets try to make an inline extent */ 973 ret = cow_file_range_inline(inode, start, end, 0, 974 BTRFS_COMPRESS_NONE, NULL); 975 if (ret == 0) { 976 /* 977 * We use DO_ACCOUNTING here because we need the 978 * delalloc_release_metadata to be run _after_ we drop 979 * our outstanding extent for clearing delalloc for this 980 * range. 981 */ 982 extent_clear_unlock_delalloc(inode, start, end, 983 delalloc_end, NULL, 984 EXTENT_LOCKED | EXTENT_DELALLOC | 985 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG | 986 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK | 987 PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK | 988 PAGE_END_WRITEBACK); 989 *nr_written = *nr_written + 990 (end - start + PAGE_SIZE) / PAGE_SIZE; 991 *page_started = 1; 992 goto out; 993 } else if (ret < 0) { 994 goto out_unlock; 995 } 996 } 997 998 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes); 999 btrfs_drop_extent_cache(BTRFS_I(inode), start, 1000 start + num_bytes - 1, 0); 1001 1002 while (num_bytes > 0) { 1003 cur_alloc_size = num_bytes; 1004 ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size, 1005 fs_info->sectorsize, 0, alloc_hint, 1006 &ins, 1, 1); 1007 if (ret < 0) 1008 goto out_unlock; 1009 cur_alloc_size = ins.offset; 1010 extent_reserved = true; 1011 1012 ram_size = ins.offset; 1013 em = create_io_em(inode, start, ins.offset, /* len */ 1014 start, /* orig_start */ 1015 ins.objectid, /* block_start */ 1016 ins.offset, /* block_len */ 1017 ins.offset, /* orig_block_len */ 1018 ram_size, /* ram_bytes */ 1019 BTRFS_COMPRESS_NONE, /* compress_type */ 1020 BTRFS_ORDERED_REGULAR /* type */); 1021 if (IS_ERR(em)) 1022 goto out_reserve; 1023 free_extent_map(em); 1024 1025 ret = btrfs_add_ordered_extent(inode, start, ins.objectid, 1026 ram_size, cur_alloc_size, 0); 1027 if (ret) 1028 goto out_drop_extent_cache; 1029 1030 if (root->root_key.objectid == 1031 BTRFS_DATA_RELOC_TREE_OBJECTID) { 1032 ret = btrfs_reloc_clone_csums(inode, start, 1033 cur_alloc_size); 1034 /* 1035 * Only drop cache here, and process as normal. 1036 * 1037 * We must not allow extent_clear_unlock_delalloc() 1038 * at out_unlock label to free meta of this ordered 1039 * extent, as its meta should be freed by 1040 * btrfs_finish_ordered_io(). 1041 * 1042 * So we must continue until @start is increased to 1043 * skip current ordered extent. 1044 */ 1045 if (ret) 1046 btrfs_drop_extent_cache(BTRFS_I(inode), start, 1047 start + ram_size - 1, 0); 1048 } 1049 1050 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1051 1052 /* we're not doing compressed IO, don't unlock the first 1053 * page (which the caller expects to stay locked), don't 1054 * clear any dirty bits and don't set any writeback bits 1055 * 1056 * Do set the Private2 bit so we know this page was properly 1057 * setup for writepage 1058 */ 1059 page_ops = unlock ? PAGE_UNLOCK : 0; 1060 page_ops |= PAGE_SET_PRIVATE2; 1061 1062 extent_clear_unlock_delalloc(inode, start, 1063 start + ram_size - 1, 1064 delalloc_end, locked_page, 1065 EXTENT_LOCKED | EXTENT_DELALLOC, 1066 page_ops); 1067 if (num_bytes < cur_alloc_size) 1068 num_bytes = 0; 1069 else 1070 num_bytes -= cur_alloc_size; 1071 alloc_hint = ins.objectid + ins.offset; 1072 start += cur_alloc_size; 1073 extent_reserved = false; 1074 1075 /* 1076 * btrfs_reloc_clone_csums() error, since start is increased 1077 * extent_clear_unlock_delalloc() at out_unlock label won't 1078 * free metadata of current ordered extent, we're OK to exit. 1079 */ 1080 if (ret) 1081 goto out_unlock; 1082 } 1083 out: 1084 return ret; 1085 1086 out_drop_extent_cache: 1087 btrfs_drop_extent_cache(BTRFS_I(inode), start, start + ram_size - 1, 0); 1088 out_reserve: 1089 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1090 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1); 1091 out_unlock: 1092 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW | 1093 EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV; 1094 page_ops = PAGE_UNLOCK | PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK | 1095 PAGE_END_WRITEBACK; 1096 /* 1097 * If we reserved an extent for our delalloc range (or a subrange) and 1098 * failed to create the respective ordered extent, then it means that 1099 * when we reserved the extent we decremented the extent's size from 1100 * the data space_info's bytes_may_use counter and incremented the 1101 * space_info's bytes_reserved counter by the same amount. We must make 1102 * sure extent_clear_unlock_delalloc() does not try to decrement again 1103 * the data space_info's bytes_may_use counter, therefore we do not pass 1104 * it the flag EXTENT_CLEAR_DATA_RESV. 1105 */ 1106 if (extent_reserved) { 1107 extent_clear_unlock_delalloc(inode, start, 1108 start + cur_alloc_size, 1109 start + cur_alloc_size, 1110 locked_page, 1111 clear_bits, 1112 page_ops); 1113 start += cur_alloc_size; 1114 if (start >= end) 1115 goto out; 1116 } 1117 extent_clear_unlock_delalloc(inode, start, end, delalloc_end, 1118 locked_page, 1119 clear_bits | EXTENT_CLEAR_DATA_RESV, 1120 page_ops); 1121 goto out; 1122 } 1123 1124 /* 1125 * work queue call back to started compression on a file and pages 1126 */ 1127 static noinline void async_cow_start(struct btrfs_work *work) 1128 { 1129 struct async_cow *async_cow; 1130 int num_added = 0; 1131 async_cow = container_of(work, struct async_cow, work); 1132 1133 compress_file_range(async_cow->inode, async_cow->locked_page, 1134 async_cow->start, async_cow->end, async_cow, 1135 &num_added); 1136 if (num_added == 0) { 1137 btrfs_add_delayed_iput(async_cow->inode); 1138 async_cow->inode = NULL; 1139 } 1140 } 1141 1142 /* 1143 * work queue call back to submit previously compressed pages 1144 */ 1145 static noinline void async_cow_submit(struct btrfs_work *work) 1146 { 1147 struct btrfs_fs_info *fs_info; 1148 struct async_cow *async_cow; 1149 struct btrfs_root *root; 1150 unsigned long nr_pages; 1151 1152 async_cow = container_of(work, struct async_cow, work); 1153 1154 root = async_cow->root; 1155 fs_info = root->fs_info; 1156 nr_pages = (async_cow->end - async_cow->start + PAGE_SIZE) >> 1157 PAGE_SHIFT; 1158 1159 /* 1160 * atomic_sub_return implies a barrier for waitqueue_active 1161 */ 1162 if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) < 1163 5 * SZ_1M && 1164 waitqueue_active(&fs_info->async_submit_wait)) 1165 wake_up(&fs_info->async_submit_wait); 1166 1167 if (async_cow->inode) 1168 submit_compressed_extents(async_cow->inode, async_cow); 1169 } 1170 1171 static noinline void async_cow_free(struct btrfs_work *work) 1172 { 1173 struct async_cow *async_cow; 1174 async_cow = container_of(work, struct async_cow, work); 1175 if (async_cow->inode) 1176 btrfs_add_delayed_iput(async_cow->inode); 1177 kfree(async_cow); 1178 } 1179 1180 static int cow_file_range_async(struct inode *inode, struct page *locked_page, 1181 u64 start, u64 end, int *page_started, 1182 unsigned long *nr_written, 1183 unsigned int write_flags) 1184 { 1185 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1186 struct async_cow *async_cow; 1187 struct btrfs_root *root = BTRFS_I(inode)->root; 1188 unsigned long nr_pages; 1189 u64 cur_end; 1190 1191 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED, 1192 1, 0, NULL); 1193 while (start < end) { 1194 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS); 1195 BUG_ON(!async_cow); /* -ENOMEM */ 1196 async_cow->inode = igrab(inode); 1197 async_cow->root = root; 1198 async_cow->locked_page = locked_page; 1199 async_cow->start = start; 1200 async_cow->write_flags = write_flags; 1201 1202 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS && 1203 !btrfs_test_opt(fs_info, FORCE_COMPRESS)) 1204 cur_end = end; 1205 else 1206 cur_end = min(end, start + SZ_512K - 1); 1207 1208 async_cow->end = cur_end; 1209 INIT_LIST_HEAD(&async_cow->extents); 1210 1211 btrfs_init_work(&async_cow->work, 1212 btrfs_delalloc_helper, 1213 async_cow_start, async_cow_submit, 1214 async_cow_free); 1215 1216 nr_pages = (cur_end - start + PAGE_SIZE) >> 1217 PAGE_SHIFT; 1218 atomic_add(nr_pages, &fs_info->async_delalloc_pages); 1219 1220 btrfs_queue_work(fs_info->delalloc_workers, &async_cow->work); 1221 1222 *nr_written += nr_pages; 1223 start = cur_end + 1; 1224 } 1225 *page_started = 1; 1226 return 0; 1227 } 1228 1229 static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info, 1230 u64 bytenr, u64 num_bytes) 1231 { 1232 int ret; 1233 struct btrfs_ordered_sum *sums; 1234 LIST_HEAD(list); 1235 1236 ret = btrfs_lookup_csums_range(fs_info->csum_root, bytenr, 1237 bytenr + num_bytes - 1, &list, 0); 1238 if (ret == 0 && list_empty(&list)) 1239 return 0; 1240 1241 while (!list_empty(&list)) { 1242 sums = list_entry(list.next, struct btrfs_ordered_sum, list); 1243 list_del(&sums->list); 1244 kfree(sums); 1245 } 1246 if (ret < 0) 1247 return ret; 1248 return 1; 1249 } 1250 1251 /* 1252 * when nowcow writeback call back. This checks for snapshots or COW copies 1253 * of the extents that exist in the file, and COWs the file as required. 1254 * 1255 * If no cow copies or snapshots exist, we write directly to the existing 1256 * blocks on disk 1257 */ 1258 static noinline int run_delalloc_nocow(struct inode *inode, 1259 struct page *locked_page, 1260 u64 start, u64 end, int *page_started, int force, 1261 unsigned long *nr_written) 1262 { 1263 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1264 struct btrfs_root *root = BTRFS_I(inode)->root; 1265 struct extent_buffer *leaf; 1266 struct btrfs_path *path; 1267 struct btrfs_file_extent_item *fi; 1268 struct btrfs_key found_key; 1269 struct extent_map *em; 1270 u64 cow_start; 1271 u64 cur_offset; 1272 u64 extent_end; 1273 u64 extent_offset; 1274 u64 disk_bytenr; 1275 u64 num_bytes; 1276 u64 disk_num_bytes; 1277 u64 ram_bytes; 1278 int extent_type; 1279 int ret, err; 1280 int type; 1281 int nocow; 1282 int check_prev = 1; 1283 bool nolock; 1284 u64 ino = btrfs_ino(BTRFS_I(inode)); 1285 1286 path = btrfs_alloc_path(); 1287 if (!path) { 1288 extent_clear_unlock_delalloc(inode, start, end, end, 1289 locked_page, 1290 EXTENT_LOCKED | EXTENT_DELALLOC | 1291 EXTENT_DO_ACCOUNTING | 1292 EXTENT_DEFRAG, PAGE_UNLOCK | 1293 PAGE_CLEAR_DIRTY | 1294 PAGE_SET_WRITEBACK | 1295 PAGE_END_WRITEBACK); 1296 return -ENOMEM; 1297 } 1298 1299 nolock = btrfs_is_free_space_inode(BTRFS_I(inode)); 1300 1301 cow_start = (u64)-1; 1302 cur_offset = start; 1303 while (1) { 1304 ret = btrfs_lookup_file_extent(NULL, root, path, ino, 1305 cur_offset, 0); 1306 if (ret < 0) 1307 goto error; 1308 if (ret > 0 && path->slots[0] > 0 && check_prev) { 1309 leaf = path->nodes[0]; 1310 btrfs_item_key_to_cpu(leaf, &found_key, 1311 path->slots[0] - 1); 1312 if (found_key.objectid == ino && 1313 found_key.type == BTRFS_EXTENT_DATA_KEY) 1314 path->slots[0]--; 1315 } 1316 check_prev = 0; 1317 next_slot: 1318 leaf = path->nodes[0]; 1319 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 1320 ret = btrfs_next_leaf(root, path); 1321 if (ret < 0) { 1322 if (cow_start != (u64)-1) 1323 cur_offset = cow_start; 1324 goto error; 1325 } 1326 if (ret > 0) 1327 break; 1328 leaf = path->nodes[0]; 1329 } 1330 1331 nocow = 0; 1332 disk_bytenr = 0; 1333 num_bytes = 0; 1334 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1335 1336 if (found_key.objectid > ino) 1337 break; 1338 if (WARN_ON_ONCE(found_key.objectid < ino) || 1339 found_key.type < BTRFS_EXTENT_DATA_KEY) { 1340 path->slots[0]++; 1341 goto next_slot; 1342 } 1343 if (found_key.type > BTRFS_EXTENT_DATA_KEY || 1344 found_key.offset > end) 1345 break; 1346 1347 if (found_key.offset > cur_offset) { 1348 extent_end = found_key.offset; 1349 extent_type = 0; 1350 goto out_check; 1351 } 1352 1353 fi = btrfs_item_ptr(leaf, path->slots[0], 1354 struct btrfs_file_extent_item); 1355 extent_type = btrfs_file_extent_type(leaf, fi); 1356 1357 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 1358 if (extent_type == BTRFS_FILE_EXTENT_REG || 1359 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1360 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1361 extent_offset = btrfs_file_extent_offset(leaf, fi); 1362 extent_end = found_key.offset + 1363 btrfs_file_extent_num_bytes(leaf, fi); 1364 disk_num_bytes = 1365 btrfs_file_extent_disk_num_bytes(leaf, fi); 1366 if (extent_end <= start) { 1367 path->slots[0]++; 1368 goto next_slot; 1369 } 1370 if (disk_bytenr == 0) 1371 goto out_check; 1372 if (btrfs_file_extent_compression(leaf, fi) || 1373 btrfs_file_extent_encryption(leaf, fi) || 1374 btrfs_file_extent_other_encoding(leaf, fi)) 1375 goto out_check; 1376 if (extent_type == BTRFS_FILE_EXTENT_REG && !force) 1377 goto out_check; 1378 if (btrfs_extent_readonly(fs_info, disk_bytenr)) 1379 goto out_check; 1380 ret = btrfs_cross_ref_exist(root, ino, 1381 found_key.offset - 1382 extent_offset, disk_bytenr); 1383 if (ret) { 1384 /* 1385 * ret could be -EIO if the above fails to read 1386 * metadata. 1387 */ 1388 if (ret < 0) { 1389 if (cow_start != (u64)-1) 1390 cur_offset = cow_start; 1391 goto error; 1392 } 1393 1394 WARN_ON_ONCE(nolock); 1395 goto out_check; 1396 } 1397 disk_bytenr += extent_offset; 1398 disk_bytenr += cur_offset - found_key.offset; 1399 num_bytes = min(end + 1, extent_end) - cur_offset; 1400 /* 1401 * if there are pending snapshots for this root, 1402 * we fall into common COW way. 1403 */ 1404 if (!nolock) { 1405 err = btrfs_start_write_no_snapshotting(root); 1406 if (!err) 1407 goto out_check; 1408 } 1409 /* 1410 * force cow if csum exists in the range. 1411 * this ensure that csum for a given extent are 1412 * either valid or do not exist. 1413 */ 1414 ret = csum_exist_in_range(fs_info, disk_bytenr, 1415 num_bytes); 1416 if (ret) { 1417 if (!nolock) 1418 btrfs_end_write_no_snapshotting(root); 1419 1420 /* 1421 * ret could be -EIO if the above fails to read 1422 * metadata. 1423 */ 1424 if (ret < 0) { 1425 if (cow_start != (u64)-1) 1426 cur_offset = cow_start; 1427 goto error; 1428 } 1429 WARN_ON_ONCE(nolock); 1430 goto out_check; 1431 } 1432 if (!btrfs_inc_nocow_writers(fs_info, disk_bytenr)) { 1433 if (!nolock) 1434 btrfs_end_write_no_snapshotting(root); 1435 goto out_check; 1436 } 1437 nocow = 1; 1438 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 1439 extent_end = found_key.offset + 1440 btrfs_file_extent_inline_len(leaf, 1441 path->slots[0], fi); 1442 extent_end = ALIGN(extent_end, 1443 fs_info->sectorsize); 1444 } else { 1445 BUG_ON(1); 1446 } 1447 out_check: 1448 if (extent_end <= start) { 1449 path->slots[0]++; 1450 if (!nolock && nocow) 1451 btrfs_end_write_no_snapshotting(root); 1452 if (nocow) 1453 btrfs_dec_nocow_writers(fs_info, disk_bytenr); 1454 goto next_slot; 1455 } 1456 if (!nocow) { 1457 if (cow_start == (u64)-1) 1458 cow_start = cur_offset; 1459 cur_offset = extent_end; 1460 if (cur_offset > end) 1461 break; 1462 path->slots[0]++; 1463 goto next_slot; 1464 } 1465 1466 btrfs_release_path(path); 1467 if (cow_start != (u64)-1) { 1468 ret = cow_file_range(inode, locked_page, 1469 cow_start, found_key.offset - 1, 1470 end, page_started, nr_written, 1, 1471 NULL); 1472 if (ret) { 1473 if (!nolock && nocow) 1474 btrfs_end_write_no_snapshotting(root); 1475 if (nocow) 1476 btrfs_dec_nocow_writers(fs_info, 1477 disk_bytenr); 1478 goto error; 1479 } 1480 cow_start = (u64)-1; 1481 } 1482 1483 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1484 u64 orig_start = found_key.offset - extent_offset; 1485 1486 em = create_io_em(inode, cur_offset, num_bytes, 1487 orig_start, 1488 disk_bytenr, /* block_start */ 1489 num_bytes, /* block_len */ 1490 disk_num_bytes, /* orig_block_len */ 1491 ram_bytes, BTRFS_COMPRESS_NONE, 1492 BTRFS_ORDERED_PREALLOC); 1493 if (IS_ERR(em)) { 1494 if (!nolock && nocow) 1495 btrfs_end_write_no_snapshotting(root); 1496 if (nocow) 1497 btrfs_dec_nocow_writers(fs_info, 1498 disk_bytenr); 1499 ret = PTR_ERR(em); 1500 goto error; 1501 } 1502 free_extent_map(em); 1503 } 1504 1505 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1506 type = BTRFS_ORDERED_PREALLOC; 1507 } else { 1508 type = BTRFS_ORDERED_NOCOW; 1509 } 1510 1511 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr, 1512 num_bytes, num_bytes, type); 1513 if (nocow) 1514 btrfs_dec_nocow_writers(fs_info, disk_bytenr); 1515 BUG_ON(ret); /* -ENOMEM */ 1516 1517 if (root->root_key.objectid == 1518 BTRFS_DATA_RELOC_TREE_OBJECTID) 1519 /* 1520 * Error handled later, as we must prevent 1521 * extent_clear_unlock_delalloc() in error handler 1522 * from freeing metadata of created ordered extent. 1523 */ 1524 ret = btrfs_reloc_clone_csums(inode, cur_offset, 1525 num_bytes); 1526 1527 extent_clear_unlock_delalloc(inode, cur_offset, 1528 cur_offset + num_bytes - 1, end, 1529 locked_page, EXTENT_LOCKED | 1530 EXTENT_DELALLOC | 1531 EXTENT_CLEAR_DATA_RESV, 1532 PAGE_UNLOCK | PAGE_SET_PRIVATE2); 1533 1534 if (!nolock && nocow) 1535 btrfs_end_write_no_snapshotting(root); 1536 cur_offset = extent_end; 1537 1538 /* 1539 * btrfs_reloc_clone_csums() error, now we're OK to call error 1540 * handler, as metadata for created ordered extent will only 1541 * be freed by btrfs_finish_ordered_io(). 1542 */ 1543 if (ret) 1544 goto error; 1545 if (cur_offset > end) 1546 break; 1547 } 1548 btrfs_release_path(path); 1549 1550 if (cur_offset <= end && cow_start == (u64)-1) { 1551 cow_start = cur_offset; 1552 cur_offset = end; 1553 } 1554 1555 if (cow_start != (u64)-1) { 1556 ret = cow_file_range(inode, locked_page, cow_start, end, end, 1557 page_started, nr_written, 1, NULL); 1558 if (ret) 1559 goto error; 1560 } 1561 1562 error: 1563 if (ret && cur_offset < end) 1564 extent_clear_unlock_delalloc(inode, cur_offset, end, end, 1565 locked_page, EXTENT_LOCKED | 1566 EXTENT_DELALLOC | EXTENT_DEFRAG | 1567 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK | 1568 PAGE_CLEAR_DIRTY | 1569 PAGE_SET_WRITEBACK | 1570 PAGE_END_WRITEBACK); 1571 btrfs_free_path(path); 1572 return ret; 1573 } 1574 1575 static inline int need_force_cow(struct inode *inode, u64 start, u64 end) 1576 { 1577 1578 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) && 1579 !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)) 1580 return 0; 1581 1582 /* 1583 * @defrag_bytes is a hint value, no spinlock held here, 1584 * if is not zero, it means the file is defragging. 1585 * Force cow if given extent needs to be defragged. 1586 */ 1587 if (BTRFS_I(inode)->defrag_bytes && 1588 test_range_bit(&BTRFS_I(inode)->io_tree, start, end, 1589 EXTENT_DEFRAG, 0, NULL)) 1590 return 1; 1591 1592 return 0; 1593 } 1594 1595 /* 1596 * extent_io.c call back to do delayed allocation processing 1597 */ 1598 static int run_delalloc_range(void *private_data, struct page *locked_page, 1599 u64 start, u64 end, int *page_started, 1600 unsigned long *nr_written, 1601 struct writeback_control *wbc) 1602 { 1603 struct inode *inode = private_data; 1604 int ret; 1605 int force_cow = need_force_cow(inode, start, end); 1606 unsigned int write_flags = wbc_to_write_flags(wbc); 1607 1608 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) { 1609 ret = run_delalloc_nocow(inode, locked_page, start, end, 1610 page_started, 1, nr_written); 1611 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) { 1612 ret = run_delalloc_nocow(inode, locked_page, start, end, 1613 page_started, 0, nr_written); 1614 } else if (!inode_need_compress(inode, start, end)) { 1615 ret = cow_file_range(inode, locked_page, start, end, end, 1616 page_started, nr_written, 1, NULL); 1617 } else { 1618 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 1619 &BTRFS_I(inode)->runtime_flags); 1620 ret = cow_file_range_async(inode, locked_page, start, end, 1621 page_started, nr_written, 1622 write_flags); 1623 } 1624 if (ret) 1625 btrfs_cleanup_ordered_extents(inode, start, end - start + 1); 1626 return ret; 1627 } 1628 1629 static void btrfs_split_extent_hook(void *private_data, 1630 struct extent_state *orig, u64 split) 1631 { 1632 struct inode *inode = private_data; 1633 u64 size; 1634 1635 /* not delalloc, ignore it */ 1636 if (!(orig->state & EXTENT_DELALLOC)) 1637 return; 1638 1639 size = orig->end - orig->start + 1; 1640 if (size > BTRFS_MAX_EXTENT_SIZE) { 1641 u32 num_extents; 1642 u64 new_size; 1643 1644 /* 1645 * See the explanation in btrfs_merge_extent_hook, the same 1646 * applies here, just in reverse. 1647 */ 1648 new_size = orig->end - split + 1; 1649 num_extents = count_max_extents(new_size); 1650 new_size = split - orig->start; 1651 num_extents += count_max_extents(new_size); 1652 if (count_max_extents(size) >= num_extents) 1653 return; 1654 } 1655 1656 spin_lock(&BTRFS_I(inode)->lock); 1657 btrfs_mod_outstanding_extents(BTRFS_I(inode), 1); 1658 spin_unlock(&BTRFS_I(inode)->lock); 1659 } 1660 1661 /* 1662 * extent_io.c merge_extent_hook, used to track merged delayed allocation 1663 * extents so we can keep track of new extents that are just merged onto old 1664 * extents, such as when we are doing sequential writes, so we can properly 1665 * account for the metadata space we'll need. 1666 */ 1667 static void btrfs_merge_extent_hook(void *private_data, 1668 struct extent_state *new, 1669 struct extent_state *other) 1670 { 1671 struct inode *inode = private_data; 1672 u64 new_size, old_size; 1673 u32 num_extents; 1674 1675 /* not delalloc, ignore it */ 1676 if (!(other->state & EXTENT_DELALLOC)) 1677 return; 1678 1679 if (new->start > other->start) 1680 new_size = new->end - other->start + 1; 1681 else 1682 new_size = other->end - new->start + 1; 1683 1684 /* we're not bigger than the max, unreserve the space and go */ 1685 if (new_size <= BTRFS_MAX_EXTENT_SIZE) { 1686 spin_lock(&BTRFS_I(inode)->lock); 1687 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1); 1688 spin_unlock(&BTRFS_I(inode)->lock); 1689 return; 1690 } 1691 1692 /* 1693 * We have to add up either side to figure out how many extents were 1694 * accounted for before we merged into one big extent. If the number of 1695 * extents we accounted for is <= the amount we need for the new range 1696 * then we can return, otherwise drop. Think of it like this 1697 * 1698 * [ 4k][MAX_SIZE] 1699 * 1700 * So we've grown the extent by a MAX_SIZE extent, this would mean we 1701 * need 2 outstanding extents, on one side we have 1 and the other side 1702 * we have 1 so they are == and we can return. But in this case 1703 * 1704 * [MAX_SIZE+4k][MAX_SIZE+4k] 1705 * 1706 * Each range on their own accounts for 2 extents, but merged together 1707 * they are only 3 extents worth of accounting, so we need to drop in 1708 * this case. 1709 */ 1710 old_size = other->end - other->start + 1; 1711 num_extents = count_max_extents(old_size); 1712 old_size = new->end - new->start + 1; 1713 num_extents += count_max_extents(old_size); 1714 if (count_max_extents(new_size) >= num_extents) 1715 return; 1716 1717 spin_lock(&BTRFS_I(inode)->lock); 1718 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1); 1719 spin_unlock(&BTRFS_I(inode)->lock); 1720 } 1721 1722 static void btrfs_add_delalloc_inodes(struct btrfs_root *root, 1723 struct inode *inode) 1724 { 1725 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1726 1727 spin_lock(&root->delalloc_lock); 1728 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) { 1729 list_add_tail(&BTRFS_I(inode)->delalloc_inodes, 1730 &root->delalloc_inodes); 1731 set_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1732 &BTRFS_I(inode)->runtime_flags); 1733 root->nr_delalloc_inodes++; 1734 if (root->nr_delalloc_inodes == 1) { 1735 spin_lock(&fs_info->delalloc_root_lock); 1736 BUG_ON(!list_empty(&root->delalloc_root)); 1737 list_add_tail(&root->delalloc_root, 1738 &fs_info->delalloc_roots); 1739 spin_unlock(&fs_info->delalloc_root_lock); 1740 } 1741 } 1742 spin_unlock(&root->delalloc_lock); 1743 } 1744 1745 1746 void __btrfs_del_delalloc_inode(struct btrfs_root *root, 1747 struct btrfs_inode *inode) 1748 { 1749 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb); 1750 1751 if (!list_empty(&inode->delalloc_inodes)) { 1752 list_del_init(&inode->delalloc_inodes); 1753 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1754 &inode->runtime_flags); 1755 root->nr_delalloc_inodes--; 1756 if (!root->nr_delalloc_inodes) { 1757 spin_lock(&fs_info->delalloc_root_lock); 1758 BUG_ON(list_empty(&root->delalloc_root)); 1759 list_del_init(&root->delalloc_root); 1760 spin_unlock(&fs_info->delalloc_root_lock); 1761 } 1762 } 1763 } 1764 1765 static void btrfs_del_delalloc_inode(struct btrfs_root *root, 1766 struct btrfs_inode *inode) 1767 { 1768 spin_lock(&root->delalloc_lock); 1769 __btrfs_del_delalloc_inode(root, inode); 1770 spin_unlock(&root->delalloc_lock); 1771 } 1772 1773 /* 1774 * extent_io.c set_bit_hook, used to track delayed allocation 1775 * bytes in this file, and to maintain the list of inodes that 1776 * have pending delalloc work to be done. 1777 */ 1778 static void btrfs_set_bit_hook(void *private_data, 1779 struct extent_state *state, unsigned *bits) 1780 { 1781 struct inode *inode = private_data; 1782 1783 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1784 1785 if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC)) 1786 WARN_ON(1); 1787 /* 1788 * set_bit and clear bit hooks normally require _irqsave/restore 1789 * but in this case, we are only testing for the DELALLOC 1790 * bit, which is only set or cleared with irqs on 1791 */ 1792 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) { 1793 struct btrfs_root *root = BTRFS_I(inode)->root; 1794 u64 len = state->end + 1 - state->start; 1795 u32 num_extents = count_max_extents(len); 1796 bool do_list = !btrfs_is_free_space_inode(BTRFS_I(inode)); 1797 1798 spin_lock(&BTRFS_I(inode)->lock); 1799 btrfs_mod_outstanding_extents(BTRFS_I(inode), num_extents); 1800 spin_unlock(&BTRFS_I(inode)->lock); 1801 1802 /* For sanity tests */ 1803 if (btrfs_is_testing(fs_info)) 1804 return; 1805 1806 percpu_counter_add_batch(&fs_info->delalloc_bytes, len, 1807 fs_info->delalloc_batch); 1808 spin_lock(&BTRFS_I(inode)->lock); 1809 BTRFS_I(inode)->delalloc_bytes += len; 1810 if (*bits & EXTENT_DEFRAG) 1811 BTRFS_I(inode)->defrag_bytes += len; 1812 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1813 &BTRFS_I(inode)->runtime_flags)) 1814 btrfs_add_delalloc_inodes(root, inode); 1815 spin_unlock(&BTRFS_I(inode)->lock); 1816 } 1817 1818 if (!(state->state & EXTENT_DELALLOC_NEW) && 1819 (*bits & EXTENT_DELALLOC_NEW)) { 1820 spin_lock(&BTRFS_I(inode)->lock); 1821 BTRFS_I(inode)->new_delalloc_bytes += state->end + 1 - 1822 state->start; 1823 spin_unlock(&BTRFS_I(inode)->lock); 1824 } 1825 } 1826 1827 /* 1828 * extent_io.c clear_bit_hook, see set_bit_hook for why 1829 */ 1830 static void btrfs_clear_bit_hook(void *private_data, 1831 struct extent_state *state, 1832 unsigned *bits) 1833 { 1834 struct btrfs_inode *inode = BTRFS_I((struct inode *)private_data); 1835 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb); 1836 u64 len = state->end + 1 - state->start; 1837 u32 num_extents = count_max_extents(len); 1838 1839 if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG)) { 1840 spin_lock(&inode->lock); 1841 inode->defrag_bytes -= len; 1842 spin_unlock(&inode->lock); 1843 } 1844 1845 /* 1846 * set_bit and clear bit hooks normally require _irqsave/restore 1847 * but in this case, we are only testing for the DELALLOC 1848 * bit, which is only set or cleared with irqs on 1849 */ 1850 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) { 1851 struct btrfs_root *root = inode->root; 1852 bool do_list = !btrfs_is_free_space_inode(inode); 1853 1854 spin_lock(&inode->lock); 1855 btrfs_mod_outstanding_extents(inode, -num_extents); 1856 spin_unlock(&inode->lock); 1857 1858 /* 1859 * We don't reserve metadata space for space cache inodes so we 1860 * don't need to call dellalloc_release_metadata if there is an 1861 * error. 1862 */ 1863 if (*bits & EXTENT_CLEAR_META_RESV && 1864 root != fs_info->tree_root) 1865 btrfs_delalloc_release_metadata(inode, len, false); 1866 1867 /* For sanity tests. */ 1868 if (btrfs_is_testing(fs_info)) 1869 return; 1870 1871 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID && 1872 do_list && !(state->state & EXTENT_NORESERVE) && 1873 (*bits & EXTENT_CLEAR_DATA_RESV)) 1874 btrfs_free_reserved_data_space_noquota( 1875 &inode->vfs_inode, 1876 state->start, len); 1877 1878 percpu_counter_add_batch(&fs_info->delalloc_bytes, -len, 1879 fs_info->delalloc_batch); 1880 spin_lock(&inode->lock); 1881 inode->delalloc_bytes -= len; 1882 if (do_list && inode->delalloc_bytes == 0 && 1883 test_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1884 &inode->runtime_flags)) 1885 btrfs_del_delalloc_inode(root, inode); 1886 spin_unlock(&inode->lock); 1887 } 1888 1889 if ((state->state & EXTENT_DELALLOC_NEW) && 1890 (*bits & EXTENT_DELALLOC_NEW)) { 1891 spin_lock(&inode->lock); 1892 ASSERT(inode->new_delalloc_bytes >= len); 1893 inode->new_delalloc_bytes -= len; 1894 spin_unlock(&inode->lock); 1895 } 1896 } 1897 1898 /* 1899 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure 1900 * we don't create bios that span stripes or chunks 1901 * 1902 * return 1 if page cannot be merged to bio 1903 * return 0 if page can be merged to bio 1904 * return error otherwise 1905 */ 1906 int btrfs_merge_bio_hook(struct page *page, unsigned long offset, 1907 size_t size, struct bio *bio, 1908 unsigned long bio_flags) 1909 { 1910 struct inode *inode = page->mapping->host; 1911 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1912 u64 logical = (u64)bio->bi_iter.bi_sector << 9; 1913 u64 length = 0; 1914 u64 map_length; 1915 int ret; 1916 1917 if (bio_flags & EXTENT_BIO_COMPRESSED) 1918 return 0; 1919 1920 length = bio->bi_iter.bi_size; 1921 map_length = length; 1922 ret = btrfs_map_block(fs_info, btrfs_op(bio), logical, &map_length, 1923 NULL, 0); 1924 if (ret < 0) 1925 return ret; 1926 if (map_length < length + size) 1927 return 1; 1928 return 0; 1929 } 1930 1931 /* 1932 * in order to insert checksums into the metadata in large chunks, 1933 * we wait until bio submission time. All the pages in the bio are 1934 * checksummed and sums are attached onto the ordered extent record. 1935 * 1936 * At IO completion time the cums attached on the ordered extent record 1937 * are inserted into the btree 1938 */ 1939 static blk_status_t btrfs_submit_bio_start(void *private_data, struct bio *bio, 1940 u64 bio_offset) 1941 { 1942 struct inode *inode = private_data; 1943 blk_status_t ret = 0; 1944 1945 ret = btrfs_csum_one_bio(inode, bio, 0, 0); 1946 BUG_ON(ret); /* -ENOMEM */ 1947 return 0; 1948 } 1949 1950 /* 1951 * in order to insert checksums into the metadata in large chunks, 1952 * we wait until bio submission time. All the pages in the bio are 1953 * checksummed and sums are attached onto the ordered extent record. 1954 * 1955 * At IO completion time the cums attached on the ordered extent record 1956 * are inserted into the btree 1957 */ 1958 static blk_status_t btrfs_submit_bio_done(void *private_data, struct bio *bio, 1959 int mirror_num) 1960 { 1961 struct inode *inode = private_data; 1962 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1963 blk_status_t ret; 1964 1965 ret = btrfs_map_bio(fs_info, bio, mirror_num, 1); 1966 if (ret) { 1967 bio->bi_status = ret; 1968 bio_endio(bio); 1969 } 1970 return ret; 1971 } 1972 1973 /* 1974 * extent_io.c submission hook. This does the right thing for csum calculation 1975 * on write, or reading the csums from the tree before a read. 1976 * 1977 * Rules about async/sync submit, 1978 * a) read: sync submit 1979 * 1980 * b) write without checksum: sync submit 1981 * 1982 * c) write with checksum: 1983 * c-1) if bio is issued by fsync: sync submit 1984 * (sync_writers != 0) 1985 * 1986 * c-2) if root is reloc root: sync submit 1987 * (only in case of buffered IO) 1988 * 1989 * c-3) otherwise: async submit 1990 */ 1991 static blk_status_t btrfs_submit_bio_hook(void *private_data, struct bio *bio, 1992 int mirror_num, unsigned long bio_flags, 1993 u64 bio_offset) 1994 { 1995 struct inode *inode = private_data; 1996 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1997 struct btrfs_root *root = BTRFS_I(inode)->root; 1998 enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA; 1999 blk_status_t ret = 0; 2000 int skip_sum; 2001 int async = !atomic_read(&BTRFS_I(inode)->sync_writers); 2002 2003 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 2004 2005 if (btrfs_is_free_space_inode(BTRFS_I(inode))) 2006 metadata = BTRFS_WQ_ENDIO_FREE_SPACE; 2007 2008 if (bio_op(bio) != REQ_OP_WRITE) { 2009 ret = btrfs_bio_wq_end_io(fs_info, bio, metadata); 2010 if (ret) 2011 goto out; 2012 2013 if (bio_flags & EXTENT_BIO_COMPRESSED) { 2014 ret = btrfs_submit_compressed_read(inode, bio, 2015 mirror_num, 2016 bio_flags); 2017 goto out; 2018 } else if (!skip_sum) { 2019 ret = btrfs_lookup_bio_sums(inode, bio, NULL); 2020 if (ret) 2021 goto out; 2022 } 2023 goto mapit; 2024 } else if (async && !skip_sum) { 2025 /* csum items have already been cloned */ 2026 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) 2027 goto mapit; 2028 /* we're doing a write, do the async checksumming */ 2029 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, bio_flags, 2030 bio_offset, inode, 2031 btrfs_submit_bio_start, 2032 btrfs_submit_bio_done); 2033 goto out; 2034 } else if (!skip_sum) { 2035 ret = btrfs_csum_one_bio(inode, bio, 0, 0); 2036 if (ret) 2037 goto out; 2038 } 2039 2040 mapit: 2041 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0); 2042 2043 out: 2044 if (ret) { 2045 bio->bi_status = ret; 2046 bio_endio(bio); 2047 } 2048 return ret; 2049 } 2050 2051 /* 2052 * given a list of ordered sums record them in the inode. This happens 2053 * at IO completion time based on sums calculated at bio submission time. 2054 */ 2055 static noinline int add_pending_csums(struct btrfs_trans_handle *trans, 2056 struct inode *inode, struct list_head *list) 2057 { 2058 struct btrfs_ordered_sum *sum; 2059 int ret; 2060 2061 list_for_each_entry(sum, list, list) { 2062 trans->adding_csums = true; 2063 ret = btrfs_csum_file_blocks(trans, 2064 BTRFS_I(inode)->root->fs_info->csum_root, sum); 2065 trans->adding_csums = false; 2066 if (ret) 2067 return ret; 2068 } 2069 return 0; 2070 } 2071 2072 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end, 2073 unsigned int extra_bits, 2074 struct extent_state **cached_state, int dedupe) 2075 { 2076 WARN_ON((end & (PAGE_SIZE - 1)) == 0); 2077 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end, 2078 extra_bits, cached_state); 2079 } 2080 2081 /* see btrfs_writepage_start_hook for details on why this is required */ 2082 struct btrfs_writepage_fixup { 2083 struct page *page; 2084 struct btrfs_work work; 2085 }; 2086 2087 static void btrfs_writepage_fixup_worker(struct btrfs_work *work) 2088 { 2089 struct btrfs_writepage_fixup *fixup; 2090 struct btrfs_ordered_extent *ordered; 2091 struct extent_state *cached_state = NULL; 2092 struct extent_changeset *data_reserved = NULL; 2093 struct page *page; 2094 struct inode *inode; 2095 u64 page_start; 2096 u64 page_end; 2097 int ret; 2098 2099 fixup = container_of(work, struct btrfs_writepage_fixup, work); 2100 page = fixup->page; 2101 again: 2102 lock_page(page); 2103 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) { 2104 ClearPageChecked(page); 2105 goto out_page; 2106 } 2107 2108 inode = page->mapping->host; 2109 page_start = page_offset(page); 2110 page_end = page_offset(page) + PAGE_SIZE - 1; 2111 2112 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 2113 &cached_state); 2114 2115 /* already ordered? We're done */ 2116 if (PagePrivate2(page)) 2117 goto out; 2118 2119 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start, 2120 PAGE_SIZE); 2121 if (ordered) { 2122 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, 2123 page_end, &cached_state); 2124 unlock_page(page); 2125 btrfs_start_ordered_extent(inode, ordered, 1); 2126 btrfs_put_ordered_extent(ordered); 2127 goto again; 2128 } 2129 2130 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start, 2131 PAGE_SIZE); 2132 if (ret) { 2133 mapping_set_error(page->mapping, ret); 2134 end_extent_writepage(page, ret, page_start, page_end); 2135 ClearPageChecked(page); 2136 goto out; 2137 } 2138 2139 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0, 2140 &cached_state, 0); 2141 if (ret) { 2142 mapping_set_error(page->mapping, ret); 2143 end_extent_writepage(page, ret, page_start, page_end); 2144 ClearPageChecked(page); 2145 goto out; 2146 } 2147 2148 ClearPageChecked(page); 2149 set_page_dirty(page); 2150 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE, false); 2151 out: 2152 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end, 2153 &cached_state); 2154 out_page: 2155 unlock_page(page); 2156 put_page(page); 2157 kfree(fixup); 2158 extent_changeset_free(data_reserved); 2159 } 2160 2161 /* 2162 * There are a few paths in the higher layers of the kernel that directly 2163 * set the page dirty bit without asking the filesystem if it is a 2164 * good idea. This causes problems because we want to make sure COW 2165 * properly happens and the data=ordered rules are followed. 2166 * 2167 * In our case any range that doesn't have the ORDERED bit set 2168 * hasn't been properly setup for IO. We kick off an async process 2169 * to fix it up. The async helper will wait for ordered extents, set 2170 * the delalloc bit and make it safe to write the page. 2171 */ 2172 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end) 2173 { 2174 struct inode *inode = page->mapping->host; 2175 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2176 struct btrfs_writepage_fixup *fixup; 2177 2178 /* this page is properly in the ordered list */ 2179 if (TestClearPagePrivate2(page)) 2180 return 0; 2181 2182 if (PageChecked(page)) 2183 return -EAGAIN; 2184 2185 fixup = kzalloc(sizeof(*fixup), GFP_NOFS); 2186 if (!fixup) 2187 return -EAGAIN; 2188 2189 SetPageChecked(page); 2190 get_page(page); 2191 btrfs_init_work(&fixup->work, btrfs_fixup_helper, 2192 btrfs_writepage_fixup_worker, NULL, NULL); 2193 fixup->page = page; 2194 btrfs_queue_work(fs_info->fixup_workers, &fixup->work); 2195 return -EBUSY; 2196 } 2197 2198 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans, 2199 struct inode *inode, u64 file_pos, 2200 u64 disk_bytenr, u64 disk_num_bytes, 2201 u64 num_bytes, u64 ram_bytes, 2202 u8 compression, u8 encryption, 2203 u16 other_encoding, int extent_type) 2204 { 2205 struct btrfs_root *root = BTRFS_I(inode)->root; 2206 struct btrfs_file_extent_item *fi; 2207 struct btrfs_path *path; 2208 struct extent_buffer *leaf; 2209 struct btrfs_key ins; 2210 u64 qg_released; 2211 int extent_inserted = 0; 2212 int ret; 2213 2214 path = btrfs_alloc_path(); 2215 if (!path) 2216 return -ENOMEM; 2217 2218 /* 2219 * we may be replacing one extent in the tree with another. 2220 * The new extent is pinned in the extent map, and we don't want 2221 * to drop it from the cache until it is completely in the btree. 2222 * 2223 * So, tell btrfs_drop_extents to leave this extent in the cache. 2224 * the caller is expected to unpin it and allow it to be merged 2225 * with the others. 2226 */ 2227 ret = __btrfs_drop_extents(trans, root, inode, path, file_pos, 2228 file_pos + num_bytes, NULL, 0, 2229 1, sizeof(*fi), &extent_inserted); 2230 if (ret) 2231 goto out; 2232 2233 if (!extent_inserted) { 2234 ins.objectid = btrfs_ino(BTRFS_I(inode)); 2235 ins.offset = file_pos; 2236 ins.type = BTRFS_EXTENT_DATA_KEY; 2237 2238 path->leave_spinning = 1; 2239 ret = btrfs_insert_empty_item(trans, root, path, &ins, 2240 sizeof(*fi)); 2241 if (ret) 2242 goto out; 2243 } 2244 leaf = path->nodes[0]; 2245 fi = btrfs_item_ptr(leaf, path->slots[0], 2246 struct btrfs_file_extent_item); 2247 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 2248 btrfs_set_file_extent_type(leaf, fi, extent_type); 2249 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr); 2250 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes); 2251 btrfs_set_file_extent_offset(leaf, fi, 0); 2252 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 2253 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes); 2254 btrfs_set_file_extent_compression(leaf, fi, compression); 2255 btrfs_set_file_extent_encryption(leaf, fi, encryption); 2256 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding); 2257 2258 btrfs_mark_buffer_dirty(leaf); 2259 btrfs_release_path(path); 2260 2261 inode_add_bytes(inode, num_bytes); 2262 2263 ins.objectid = disk_bytenr; 2264 ins.offset = disk_num_bytes; 2265 ins.type = BTRFS_EXTENT_ITEM_KEY; 2266 2267 /* 2268 * Release the reserved range from inode dirty range map, as it is 2269 * already moved into delayed_ref_head 2270 */ 2271 ret = btrfs_qgroup_release_data(inode, file_pos, ram_bytes); 2272 if (ret < 0) 2273 goto out; 2274 qg_released = ret; 2275 ret = btrfs_alloc_reserved_file_extent(trans, root, 2276 btrfs_ino(BTRFS_I(inode)), 2277 file_pos, qg_released, &ins); 2278 out: 2279 btrfs_free_path(path); 2280 2281 return ret; 2282 } 2283 2284 /* snapshot-aware defrag */ 2285 struct sa_defrag_extent_backref { 2286 struct rb_node node; 2287 struct old_sa_defrag_extent *old; 2288 u64 root_id; 2289 u64 inum; 2290 u64 file_pos; 2291 u64 extent_offset; 2292 u64 num_bytes; 2293 u64 generation; 2294 }; 2295 2296 struct old_sa_defrag_extent { 2297 struct list_head list; 2298 struct new_sa_defrag_extent *new; 2299 2300 u64 extent_offset; 2301 u64 bytenr; 2302 u64 offset; 2303 u64 len; 2304 int count; 2305 }; 2306 2307 struct new_sa_defrag_extent { 2308 struct rb_root root; 2309 struct list_head head; 2310 struct btrfs_path *path; 2311 struct inode *inode; 2312 u64 file_pos; 2313 u64 len; 2314 u64 bytenr; 2315 u64 disk_len; 2316 u8 compress_type; 2317 }; 2318 2319 static int backref_comp(struct sa_defrag_extent_backref *b1, 2320 struct sa_defrag_extent_backref *b2) 2321 { 2322 if (b1->root_id < b2->root_id) 2323 return -1; 2324 else if (b1->root_id > b2->root_id) 2325 return 1; 2326 2327 if (b1->inum < b2->inum) 2328 return -1; 2329 else if (b1->inum > b2->inum) 2330 return 1; 2331 2332 if (b1->file_pos < b2->file_pos) 2333 return -1; 2334 else if (b1->file_pos > b2->file_pos) 2335 return 1; 2336 2337 /* 2338 * [------------------------------] ===> (a range of space) 2339 * |<--->| |<---->| =============> (fs/file tree A) 2340 * |<---------------------------->| ===> (fs/file tree B) 2341 * 2342 * A range of space can refer to two file extents in one tree while 2343 * refer to only one file extent in another tree. 2344 * 2345 * So we may process a disk offset more than one time(two extents in A) 2346 * and locate at the same extent(one extent in B), then insert two same 2347 * backrefs(both refer to the extent in B). 2348 */ 2349 return 0; 2350 } 2351 2352 static void backref_insert(struct rb_root *root, 2353 struct sa_defrag_extent_backref *backref) 2354 { 2355 struct rb_node **p = &root->rb_node; 2356 struct rb_node *parent = NULL; 2357 struct sa_defrag_extent_backref *entry; 2358 int ret; 2359 2360 while (*p) { 2361 parent = *p; 2362 entry = rb_entry(parent, struct sa_defrag_extent_backref, node); 2363 2364 ret = backref_comp(backref, entry); 2365 if (ret < 0) 2366 p = &(*p)->rb_left; 2367 else 2368 p = &(*p)->rb_right; 2369 } 2370 2371 rb_link_node(&backref->node, parent, p); 2372 rb_insert_color(&backref->node, root); 2373 } 2374 2375 /* 2376 * Note the backref might has changed, and in this case we just return 0. 2377 */ 2378 static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id, 2379 void *ctx) 2380 { 2381 struct btrfs_file_extent_item *extent; 2382 struct old_sa_defrag_extent *old = ctx; 2383 struct new_sa_defrag_extent *new = old->new; 2384 struct btrfs_path *path = new->path; 2385 struct btrfs_key key; 2386 struct btrfs_root *root; 2387 struct sa_defrag_extent_backref *backref; 2388 struct extent_buffer *leaf; 2389 struct inode *inode = new->inode; 2390 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2391 int slot; 2392 int ret; 2393 u64 extent_offset; 2394 u64 num_bytes; 2395 2396 if (BTRFS_I(inode)->root->root_key.objectid == root_id && 2397 inum == btrfs_ino(BTRFS_I(inode))) 2398 return 0; 2399 2400 key.objectid = root_id; 2401 key.type = BTRFS_ROOT_ITEM_KEY; 2402 key.offset = (u64)-1; 2403 2404 root = btrfs_read_fs_root_no_name(fs_info, &key); 2405 if (IS_ERR(root)) { 2406 if (PTR_ERR(root) == -ENOENT) 2407 return 0; 2408 WARN_ON(1); 2409 btrfs_debug(fs_info, "inum=%llu, offset=%llu, root_id=%llu", 2410 inum, offset, root_id); 2411 return PTR_ERR(root); 2412 } 2413 2414 key.objectid = inum; 2415 key.type = BTRFS_EXTENT_DATA_KEY; 2416 if (offset > (u64)-1 << 32) 2417 key.offset = 0; 2418 else 2419 key.offset = offset; 2420 2421 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2422 if (WARN_ON(ret < 0)) 2423 return ret; 2424 ret = 0; 2425 2426 while (1) { 2427 cond_resched(); 2428 2429 leaf = path->nodes[0]; 2430 slot = path->slots[0]; 2431 2432 if (slot >= btrfs_header_nritems(leaf)) { 2433 ret = btrfs_next_leaf(root, path); 2434 if (ret < 0) { 2435 goto out; 2436 } else if (ret > 0) { 2437 ret = 0; 2438 goto out; 2439 } 2440 continue; 2441 } 2442 2443 path->slots[0]++; 2444 2445 btrfs_item_key_to_cpu(leaf, &key, slot); 2446 2447 if (key.objectid > inum) 2448 goto out; 2449 2450 if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY) 2451 continue; 2452 2453 extent = btrfs_item_ptr(leaf, slot, 2454 struct btrfs_file_extent_item); 2455 2456 if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr) 2457 continue; 2458 2459 /* 2460 * 'offset' refers to the exact key.offset, 2461 * NOT the 'offset' field in btrfs_extent_data_ref, ie. 2462 * (key.offset - extent_offset). 2463 */ 2464 if (key.offset != offset) 2465 continue; 2466 2467 extent_offset = btrfs_file_extent_offset(leaf, extent); 2468 num_bytes = btrfs_file_extent_num_bytes(leaf, extent); 2469 2470 if (extent_offset >= old->extent_offset + old->offset + 2471 old->len || extent_offset + num_bytes <= 2472 old->extent_offset + old->offset) 2473 continue; 2474 break; 2475 } 2476 2477 backref = kmalloc(sizeof(*backref), GFP_NOFS); 2478 if (!backref) { 2479 ret = -ENOENT; 2480 goto out; 2481 } 2482 2483 backref->root_id = root_id; 2484 backref->inum = inum; 2485 backref->file_pos = offset; 2486 backref->num_bytes = num_bytes; 2487 backref->extent_offset = extent_offset; 2488 backref->generation = btrfs_file_extent_generation(leaf, extent); 2489 backref->old = old; 2490 backref_insert(&new->root, backref); 2491 old->count++; 2492 out: 2493 btrfs_release_path(path); 2494 WARN_ON(ret); 2495 return ret; 2496 } 2497 2498 static noinline bool record_extent_backrefs(struct btrfs_path *path, 2499 struct new_sa_defrag_extent *new) 2500 { 2501 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb); 2502 struct old_sa_defrag_extent *old, *tmp; 2503 int ret; 2504 2505 new->path = path; 2506 2507 list_for_each_entry_safe(old, tmp, &new->head, list) { 2508 ret = iterate_inodes_from_logical(old->bytenr + 2509 old->extent_offset, fs_info, 2510 path, record_one_backref, 2511 old, false); 2512 if (ret < 0 && ret != -ENOENT) 2513 return false; 2514 2515 /* no backref to be processed for this extent */ 2516 if (!old->count) { 2517 list_del(&old->list); 2518 kfree(old); 2519 } 2520 } 2521 2522 if (list_empty(&new->head)) 2523 return false; 2524 2525 return true; 2526 } 2527 2528 static int relink_is_mergable(struct extent_buffer *leaf, 2529 struct btrfs_file_extent_item *fi, 2530 struct new_sa_defrag_extent *new) 2531 { 2532 if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr) 2533 return 0; 2534 2535 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG) 2536 return 0; 2537 2538 if (btrfs_file_extent_compression(leaf, fi) != new->compress_type) 2539 return 0; 2540 2541 if (btrfs_file_extent_encryption(leaf, fi) || 2542 btrfs_file_extent_other_encoding(leaf, fi)) 2543 return 0; 2544 2545 return 1; 2546 } 2547 2548 /* 2549 * Note the backref might has changed, and in this case we just return 0. 2550 */ 2551 static noinline int relink_extent_backref(struct btrfs_path *path, 2552 struct sa_defrag_extent_backref *prev, 2553 struct sa_defrag_extent_backref *backref) 2554 { 2555 struct btrfs_file_extent_item *extent; 2556 struct btrfs_file_extent_item *item; 2557 struct btrfs_ordered_extent *ordered; 2558 struct btrfs_trans_handle *trans; 2559 struct btrfs_root *root; 2560 struct btrfs_key key; 2561 struct extent_buffer *leaf; 2562 struct old_sa_defrag_extent *old = backref->old; 2563 struct new_sa_defrag_extent *new = old->new; 2564 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb); 2565 struct inode *inode; 2566 struct extent_state *cached = NULL; 2567 int ret = 0; 2568 u64 start; 2569 u64 len; 2570 u64 lock_start; 2571 u64 lock_end; 2572 bool merge = false; 2573 int index; 2574 2575 if (prev && prev->root_id == backref->root_id && 2576 prev->inum == backref->inum && 2577 prev->file_pos + prev->num_bytes == backref->file_pos) 2578 merge = true; 2579 2580 /* step 1: get root */ 2581 key.objectid = backref->root_id; 2582 key.type = BTRFS_ROOT_ITEM_KEY; 2583 key.offset = (u64)-1; 2584 2585 index = srcu_read_lock(&fs_info->subvol_srcu); 2586 2587 root = btrfs_read_fs_root_no_name(fs_info, &key); 2588 if (IS_ERR(root)) { 2589 srcu_read_unlock(&fs_info->subvol_srcu, index); 2590 if (PTR_ERR(root) == -ENOENT) 2591 return 0; 2592 return PTR_ERR(root); 2593 } 2594 2595 if (btrfs_root_readonly(root)) { 2596 srcu_read_unlock(&fs_info->subvol_srcu, index); 2597 return 0; 2598 } 2599 2600 /* step 2: get inode */ 2601 key.objectid = backref->inum; 2602 key.type = BTRFS_INODE_ITEM_KEY; 2603 key.offset = 0; 2604 2605 inode = btrfs_iget(fs_info->sb, &key, root, NULL); 2606 if (IS_ERR(inode)) { 2607 srcu_read_unlock(&fs_info->subvol_srcu, index); 2608 return 0; 2609 } 2610 2611 srcu_read_unlock(&fs_info->subvol_srcu, index); 2612 2613 /* step 3: relink backref */ 2614 lock_start = backref->file_pos; 2615 lock_end = backref->file_pos + backref->num_bytes - 1; 2616 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end, 2617 &cached); 2618 2619 ordered = btrfs_lookup_first_ordered_extent(inode, lock_end); 2620 if (ordered) { 2621 btrfs_put_ordered_extent(ordered); 2622 goto out_unlock; 2623 } 2624 2625 trans = btrfs_join_transaction(root); 2626 if (IS_ERR(trans)) { 2627 ret = PTR_ERR(trans); 2628 goto out_unlock; 2629 } 2630 2631 key.objectid = backref->inum; 2632 key.type = BTRFS_EXTENT_DATA_KEY; 2633 key.offset = backref->file_pos; 2634 2635 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2636 if (ret < 0) { 2637 goto out_free_path; 2638 } else if (ret > 0) { 2639 ret = 0; 2640 goto out_free_path; 2641 } 2642 2643 extent = btrfs_item_ptr(path->nodes[0], path->slots[0], 2644 struct btrfs_file_extent_item); 2645 2646 if (btrfs_file_extent_generation(path->nodes[0], extent) != 2647 backref->generation) 2648 goto out_free_path; 2649 2650 btrfs_release_path(path); 2651 2652 start = backref->file_pos; 2653 if (backref->extent_offset < old->extent_offset + old->offset) 2654 start += old->extent_offset + old->offset - 2655 backref->extent_offset; 2656 2657 len = min(backref->extent_offset + backref->num_bytes, 2658 old->extent_offset + old->offset + old->len); 2659 len -= max(backref->extent_offset, old->extent_offset + old->offset); 2660 2661 ret = btrfs_drop_extents(trans, root, inode, start, 2662 start + len, 1); 2663 if (ret) 2664 goto out_free_path; 2665 again: 2666 key.objectid = btrfs_ino(BTRFS_I(inode)); 2667 key.type = BTRFS_EXTENT_DATA_KEY; 2668 key.offset = start; 2669 2670 path->leave_spinning = 1; 2671 if (merge) { 2672 struct btrfs_file_extent_item *fi; 2673 u64 extent_len; 2674 struct btrfs_key found_key; 2675 2676 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2677 if (ret < 0) 2678 goto out_free_path; 2679 2680 path->slots[0]--; 2681 leaf = path->nodes[0]; 2682 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 2683 2684 fi = btrfs_item_ptr(leaf, path->slots[0], 2685 struct btrfs_file_extent_item); 2686 extent_len = btrfs_file_extent_num_bytes(leaf, fi); 2687 2688 if (extent_len + found_key.offset == start && 2689 relink_is_mergable(leaf, fi, new)) { 2690 btrfs_set_file_extent_num_bytes(leaf, fi, 2691 extent_len + len); 2692 btrfs_mark_buffer_dirty(leaf); 2693 inode_add_bytes(inode, len); 2694 2695 ret = 1; 2696 goto out_free_path; 2697 } else { 2698 merge = false; 2699 btrfs_release_path(path); 2700 goto again; 2701 } 2702 } 2703 2704 ret = btrfs_insert_empty_item(trans, root, path, &key, 2705 sizeof(*extent)); 2706 if (ret) { 2707 btrfs_abort_transaction(trans, ret); 2708 goto out_free_path; 2709 } 2710 2711 leaf = path->nodes[0]; 2712 item = btrfs_item_ptr(leaf, path->slots[0], 2713 struct btrfs_file_extent_item); 2714 btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr); 2715 btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len); 2716 btrfs_set_file_extent_offset(leaf, item, start - new->file_pos); 2717 btrfs_set_file_extent_num_bytes(leaf, item, len); 2718 btrfs_set_file_extent_ram_bytes(leaf, item, new->len); 2719 btrfs_set_file_extent_generation(leaf, item, trans->transid); 2720 btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG); 2721 btrfs_set_file_extent_compression(leaf, item, new->compress_type); 2722 btrfs_set_file_extent_encryption(leaf, item, 0); 2723 btrfs_set_file_extent_other_encoding(leaf, item, 0); 2724 2725 btrfs_mark_buffer_dirty(leaf); 2726 inode_add_bytes(inode, len); 2727 btrfs_release_path(path); 2728 2729 ret = btrfs_inc_extent_ref(trans, root, new->bytenr, 2730 new->disk_len, 0, 2731 backref->root_id, backref->inum, 2732 new->file_pos); /* start - extent_offset */ 2733 if (ret) { 2734 btrfs_abort_transaction(trans, ret); 2735 goto out_free_path; 2736 } 2737 2738 ret = 1; 2739 out_free_path: 2740 btrfs_release_path(path); 2741 path->leave_spinning = 0; 2742 btrfs_end_transaction(trans); 2743 out_unlock: 2744 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end, 2745 &cached); 2746 iput(inode); 2747 return ret; 2748 } 2749 2750 static void free_sa_defrag_extent(struct new_sa_defrag_extent *new) 2751 { 2752 struct old_sa_defrag_extent *old, *tmp; 2753 2754 if (!new) 2755 return; 2756 2757 list_for_each_entry_safe(old, tmp, &new->head, list) { 2758 kfree(old); 2759 } 2760 kfree(new); 2761 } 2762 2763 static void relink_file_extents(struct new_sa_defrag_extent *new) 2764 { 2765 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb); 2766 struct btrfs_path *path; 2767 struct sa_defrag_extent_backref *backref; 2768 struct sa_defrag_extent_backref *prev = NULL; 2769 struct inode *inode; 2770 struct rb_node *node; 2771 int ret; 2772 2773 inode = new->inode; 2774 2775 path = btrfs_alloc_path(); 2776 if (!path) 2777 return; 2778 2779 if (!record_extent_backrefs(path, new)) { 2780 btrfs_free_path(path); 2781 goto out; 2782 } 2783 btrfs_release_path(path); 2784 2785 while (1) { 2786 node = rb_first(&new->root); 2787 if (!node) 2788 break; 2789 rb_erase(node, &new->root); 2790 2791 backref = rb_entry(node, struct sa_defrag_extent_backref, node); 2792 2793 ret = relink_extent_backref(path, prev, backref); 2794 WARN_ON(ret < 0); 2795 2796 kfree(prev); 2797 2798 if (ret == 1) 2799 prev = backref; 2800 else 2801 prev = NULL; 2802 cond_resched(); 2803 } 2804 kfree(prev); 2805 2806 btrfs_free_path(path); 2807 out: 2808 free_sa_defrag_extent(new); 2809 2810 atomic_dec(&fs_info->defrag_running); 2811 wake_up(&fs_info->transaction_wait); 2812 } 2813 2814 static struct new_sa_defrag_extent * 2815 record_old_file_extents(struct inode *inode, 2816 struct btrfs_ordered_extent *ordered) 2817 { 2818 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2819 struct btrfs_root *root = BTRFS_I(inode)->root; 2820 struct btrfs_path *path; 2821 struct btrfs_key key; 2822 struct old_sa_defrag_extent *old; 2823 struct new_sa_defrag_extent *new; 2824 int ret; 2825 2826 new = kmalloc(sizeof(*new), GFP_NOFS); 2827 if (!new) 2828 return NULL; 2829 2830 new->inode = inode; 2831 new->file_pos = ordered->file_offset; 2832 new->len = ordered->len; 2833 new->bytenr = ordered->start; 2834 new->disk_len = ordered->disk_len; 2835 new->compress_type = ordered->compress_type; 2836 new->root = RB_ROOT; 2837 INIT_LIST_HEAD(&new->head); 2838 2839 path = btrfs_alloc_path(); 2840 if (!path) 2841 goto out_kfree; 2842 2843 key.objectid = btrfs_ino(BTRFS_I(inode)); 2844 key.type = BTRFS_EXTENT_DATA_KEY; 2845 key.offset = new->file_pos; 2846 2847 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2848 if (ret < 0) 2849 goto out_free_path; 2850 if (ret > 0 && path->slots[0] > 0) 2851 path->slots[0]--; 2852 2853 /* find out all the old extents for the file range */ 2854 while (1) { 2855 struct btrfs_file_extent_item *extent; 2856 struct extent_buffer *l; 2857 int slot; 2858 u64 num_bytes; 2859 u64 offset; 2860 u64 end; 2861 u64 disk_bytenr; 2862 u64 extent_offset; 2863 2864 l = path->nodes[0]; 2865 slot = path->slots[0]; 2866 2867 if (slot >= btrfs_header_nritems(l)) { 2868 ret = btrfs_next_leaf(root, path); 2869 if (ret < 0) 2870 goto out_free_path; 2871 else if (ret > 0) 2872 break; 2873 continue; 2874 } 2875 2876 btrfs_item_key_to_cpu(l, &key, slot); 2877 2878 if (key.objectid != btrfs_ino(BTRFS_I(inode))) 2879 break; 2880 if (key.type != BTRFS_EXTENT_DATA_KEY) 2881 break; 2882 if (key.offset >= new->file_pos + new->len) 2883 break; 2884 2885 extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item); 2886 2887 num_bytes = btrfs_file_extent_num_bytes(l, extent); 2888 if (key.offset + num_bytes < new->file_pos) 2889 goto next; 2890 2891 disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent); 2892 if (!disk_bytenr) 2893 goto next; 2894 2895 extent_offset = btrfs_file_extent_offset(l, extent); 2896 2897 old = kmalloc(sizeof(*old), GFP_NOFS); 2898 if (!old) 2899 goto out_free_path; 2900 2901 offset = max(new->file_pos, key.offset); 2902 end = min(new->file_pos + new->len, key.offset + num_bytes); 2903 2904 old->bytenr = disk_bytenr; 2905 old->extent_offset = extent_offset; 2906 old->offset = offset - key.offset; 2907 old->len = end - offset; 2908 old->new = new; 2909 old->count = 0; 2910 list_add_tail(&old->list, &new->head); 2911 next: 2912 path->slots[0]++; 2913 cond_resched(); 2914 } 2915 2916 btrfs_free_path(path); 2917 atomic_inc(&fs_info->defrag_running); 2918 2919 return new; 2920 2921 out_free_path: 2922 btrfs_free_path(path); 2923 out_kfree: 2924 free_sa_defrag_extent(new); 2925 return NULL; 2926 } 2927 2928 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info, 2929 u64 start, u64 len) 2930 { 2931 struct btrfs_block_group_cache *cache; 2932 2933 cache = btrfs_lookup_block_group(fs_info, start); 2934 ASSERT(cache); 2935 2936 spin_lock(&cache->lock); 2937 cache->delalloc_bytes -= len; 2938 spin_unlock(&cache->lock); 2939 2940 btrfs_put_block_group(cache); 2941 } 2942 2943 /* as ordered data IO finishes, this gets called so we can finish 2944 * an ordered extent if the range of bytes in the file it covers are 2945 * fully written. 2946 */ 2947 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent) 2948 { 2949 struct inode *inode = ordered_extent->inode; 2950 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2951 struct btrfs_root *root = BTRFS_I(inode)->root; 2952 struct btrfs_trans_handle *trans = NULL; 2953 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 2954 struct extent_state *cached_state = NULL; 2955 struct new_sa_defrag_extent *new = NULL; 2956 int compress_type = 0; 2957 int ret = 0; 2958 u64 logical_len = ordered_extent->len; 2959 bool nolock; 2960 bool truncated = false; 2961 bool range_locked = false; 2962 bool clear_new_delalloc_bytes = false; 2963 2964 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) && 2965 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) && 2966 !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags)) 2967 clear_new_delalloc_bytes = true; 2968 2969 nolock = btrfs_is_free_space_inode(BTRFS_I(inode)); 2970 2971 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) { 2972 ret = -EIO; 2973 goto out; 2974 } 2975 2976 btrfs_free_io_failure_record(BTRFS_I(inode), 2977 ordered_extent->file_offset, 2978 ordered_extent->file_offset + 2979 ordered_extent->len - 1); 2980 2981 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) { 2982 truncated = true; 2983 logical_len = ordered_extent->truncated_len; 2984 /* Truncated the entire extent, don't bother adding */ 2985 if (!logical_len) 2986 goto out; 2987 } 2988 2989 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) { 2990 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */ 2991 2992 /* 2993 * For mwrite(mmap + memset to write) case, we still reserve 2994 * space for NOCOW range. 2995 * As NOCOW won't cause a new delayed ref, just free the space 2996 */ 2997 btrfs_qgroup_free_data(inode, NULL, ordered_extent->file_offset, 2998 ordered_extent->len); 2999 btrfs_ordered_update_i_size(inode, 0, ordered_extent); 3000 if (nolock) 3001 trans = btrfs_join_transaction_nolock(root); 3002 else 3003 trans = btrfs_join_transaction(root); 3004 if (IS_ERR(trans)) { 3005 ret = PTR_ERR(trans); 3006 trans = NULL; 3007 goto out; 3008 } 3009 trans->block_rsv = &BTRFS_I(inode)->block_rsv; 3010 ret = btrfs_update_inode_fallback(trans, root, inode); 3011 if (ret) /* -ENOMEM or corruption */ 3012 btrfs_abort_transaction(trans, ret); 3013 goto out; 3014 } 3015 3016 range_locked = true; 3017 lock_extent_bits(io_tree, ordered_extent->file_offset, 3018 ordered_extent->file_offset + ordered_extent->len - 1, 3019 &cached_state); 3020 3021 ret = test_range_bit(io_tree, ordered_extent->file_offset, 3022 ordered_extent->file_offset + ordered_extent->len - 1, 3023 EXTENT_DEFRAG, 0, cached_state); 3024 if (ret) { 3025 u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item); 3026 if (0 && last_snapshot >= BTRFS_I(inode)->generation) 3027 /* the inode is shared */ 3028 new = record_old_file_extents(inode, ordered_extent); 3029 3030 clear_extent_bit(io_tree, ordered_extent->file_offset, 3031 ordered_extent->file_offset + ordered_extent->len - 1, 3032 EXTENT_DEFRAG, 0, 0, &cached_state); 3033 } 3034 3035 if (nolock) 3036 trans = btrfs_join_transaction_nolock(root); 3037 else 3038 trans = btrfs_join_transaction(root); 3039 if (IS_ERR(trans)) { 3040 ret = PTR_ERR(trans); 3041 trans = NULL; 3042 goto out; 3043 } 3044 3045 trans->block_rsv = &BTRFS_I(inode)->block_rsv; 3046 3047 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags)) 3048 compress_type = ordered_extent->compress_type; 3049 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 3050 BUG_ON(compress_type); 3051 btrfs_qgroup_free_data(inode, NULL, ordered_extent->file_offset, 3052 ordered_extent->len); 3053 ret = btrfs_mark_extent_written(trans, BTRFS_I(inode), 3054 ordered_extent->file_offset, 3055 ordered_extent->file_offset + 3056 logical_len); 3057 } else { 3058 BUG_ON(root == fs_info->tree_root); 3059 ret = insert_reserved_file_extent(trans, inode, 3060 ordered_extent->file_offset, 3061 ordered_extent->start, 3062 ordered_extent->disk_len, 3063 logical_len, logical_len, 3064 compress_type, 0, 0, 3065 BTRFS_FILE_EXTENT_REG); 3066 if (!ret) 3067 btrfs_release_delalloc_bytes(fs_info, 3068 ordered_extent->start, 3069 ordered_extent->disk_len); 3070 } 3071 unpin_extent_cache(&BTRFS_I(inode)->extent_tree, 3072 ordered_extent->file_offset, ordered_extent->len, 3073 trans->transid); 3074 if (ret < 0) { 3075 btrfs_abort_transaction(trans, ret); 3076 goto out; 3077 } 3078 3079 ret = add_pending_csums(trans, inode, &ordered_extent->list); 3080 if (ret) { 3081 btrfs_abort_transaction(trans, ret); 3082 goto out; 3083 } 3084 3085 btrfs_ordered_update_i_size(inode, 0, ordered_extent); 3086 ret = btrfs_update_inode_fallback(trans, root, inode); 3087 if (ret) { /* -ENOMEM or corruption */ 3088 btrfs_abort_transaction(trans, ret); 3089 goto out; 3090 } 3091 ret = 0; 3092 out: 3093 if (range_locked || clear_new_delalloc_bytes) { 3094 unsigned int clear_bits = 0; 3095 3096 if (range_locked) 3097 clear_bits |= EXTENT_LOCKED; 3098 if (clear_new_delalloc_bytes) 3099 clear_bits |= EXTENT_DELALLOC_NEW; 3100 clear_extent_bit(&BTRFS_I(inode)->io_tree, 3101 ordered_extent->file_offset, 3102 ordered_extent->file_offset + 3103 ordered_extent->len - 1, 3104 clear_bits, 3105 (clear_bits & EXTENT_LOCKED) ? 1 : 0, 3106 0, &cached_state); 3107 } 3108 3109 if (trans) 3110 btrfs_end_transaction(trans); 3111 3112 if (ret || truncated) { 3113 u64 start, end; 3114 3115 if (truncated) 3116 start = ordered_extent->file_offset + logical_len; 3117 else 3118 start = ordered_extent->file_offset; 3119 end = ordered_extent->file_offset + ordered_extent->len - 1; 3120 clear_extent_uptodate(io_tree, start, end, NULL); 3121 3122 /* Drop the cache for the part of the extent we didn't write. */ 3123 btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 0); 3124 3125 /* 3126 * If the ordered extent had an IOERR or something else went 3127 * wrong we need to return the space for this ordered extent 3128 * back to the allocator. We only free the extent in the 3129 * truncated case if we didn't write out the extent at all. 3130 */ 3131 if ((ret || !logical_len) && 3132 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) && 3133 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) 3134 btrfs_free_reserved_extent(fs_info, 3135 ordered_extent->start, 3136 ordered_extent->disk_len, 1); 3137 } 3138 3139 3140 /* 3141 * This needs to be done to make sure anybody waiting knows we are done 3142 * updating everything for this ordered extent. 3143 */ 3144 btrfs_remove_ordered_extent(inode, ordered_extent); 3145 3146 /* for snapshot-aware defrag */ 3147 if (new) { 3148 if (ret) { 3149 free_sa_defrag_extent(new); 3150 atomic_dec(&fs_info->defrag_running); 3151 } else { 3152 relink_file_extents(new); 3153 } 3154 } 3155 3156 /* once for us */ 3157 btrfs_put_ordered_extent(ordered_extent); 3158 /* once for the tree */ 3159 btrfs_put_ordered_extent(ordered_extent); 3160 3161 return ret; 3162 } 3163 3164 static void finish_ordered_fn(struct btrfs_work *work) 3165 { 3166 struct btrfs_ordered_extent *ordered_extent; 3167 ordered_extent = container_of(work, struct btrfs_ordered_extent, work); 3168 btrfs_finish_ordered_io(ordered_extent); 3169 } 3170 3171 static void btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end, 3172 struct extent_state *state, int uptodate) 3173 { 3174 struct inode *inode = page->mapping->host; 3175 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3176 struct btrfs_ordered_extent *ordered_extent = NULL; 3177 struct btrfs_workqueue *wq; 3178 btrfs_work_func_t func; 3179 3180 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate); 3181 3182 ClearPagePrivate2(page); 3183 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start, 3184 end - start + 1, uptodate)) 3185 return; 3186 3187 if (btrfs_is_free_space_inode(BTRFS_I(inode))) { 3188 wq = fs_info->endio_freespace_worker; 3189 func = btrfs_freespace_write_helper; 3190 } else { 3191 wq = fs_info->endio_write_workers; 3192 func = btrfs_endio_write_helper; 3193 } 3194 3195 btrfs_init_work(&ordered_extent->work, func, finish_ordered_fn, NULL, 3196 NULL); 3197 btrfs_queue_work(wq, &ordered_extent->work); 3198 } 3199 3200 static int __readpage_endio_check(struct inode *inode, 3201 struct btrfs_io_bio *io_bio, 3202 int icsum, struct page *page, 3203 int pgoff, u64 start, size_t len) 3204 { 3205 char *kaddr; 3206 u32 csum_expected; 3207 u32 csum = ~(u32)0; 3208 3209 csum_expected = *(((u32 *)io_bio->csum) + icsum); 3210 3211 kaddr = kmap_atomic(page); 3212 csum = btrfs_csum_data(kaddr + pgoff, csum, len); 3213 btrfs_csum_final(csum, (u8 *)&csum); 3214 if (csum != csum_expected) 3215 goto zeroit; 3216 3217 kunmap_atomic(kaddr); 3218 return 0; 3219 zeroit: 3220 btrfs_print_data_csum_error(BTRFS_I(inode), start, csum, csum_expected, 3221 io_bio->mirror_num); 3222 memset(kaddr + pgoff, 1, len); 3223 flush_dcache_page(page); 3224 kunmap_atomic(kaddr); 3225 return -EIO; 3226 } 3227 3228 /* 3229 * when reads are done, we need to check csums to verify the data is correct 3230 * if there's a match, we allow the bio to finish. If not, the code in 3231 * extent_io.c will try to find good copies for us. 3232 */ 3233 static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio, 3234 u64 phy_offset, struct page *page, 3235 u64 start, u64 end, int mirror) 3236 { 3237 size_t offset = start - page_offset(page); 3238 struct inode *inode = page->mapping->host; 3239 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 3240 struct btrfs_root *root = BTRFS_I(inode)->root; 3241 3242 if (PageChecked(page)) { 3243 ClearPageChecked(page); 3244 return 0; 3245 } 3246 3247 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) 3248 return 0; 3249 3250 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID && 3251 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) { 3252 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM); 3253 return 0; 3254 } 3255 3256 phy_offset >>= inode->i_sb->s_blocksize_bits; 3257 return __readpage_endio_check(inode, io_bio, phy_offset, page, offset, 3258 start, (size_t)(end - start + 1)); 3259 } 3260 3261 /* 3262 * btrfs_add_delayed_iput - perform a delayed iput on @inode 3263 * 3264 * @inode: The inode we want to perform iput on 3265 * 3266 * This function uses the generic vfs_inode::i_count to track whether we should 3267 * just decrement it (in case it's > 1) or if this is the last iput then link 3268 * the inode to the delayed iput machinery. Delayed iputs are processed at 3269 * transaction commit time/superblock commit/cleaner kthread. 3270 */ 3271 void btrfs_add_delayed_iput(struct inode *inode) 3272 { 3273 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3274 struct btrfs_inode *binode = BTRFS_I(inode); 3275 3276 if (atomic_add_unless(&inode->i_count, -1, 1)) 3277 return; 3278 3279 spin_lock(&fs_info->delayed_iput_lock); 3280 ASSERT(list_empty(&binode->delayed_iput)); 3281 list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs); 3282 spin_unlock(&fs_info->delayed_iput_lock); 3283 } 3284 3285 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info) 3286 { 3287 3288 spin_lock(&fs_info->delayed_iput_lock); 3289 while (!list_empty(&fs_info->delayed_iputs)) { 3290 struct btrfs_inode *inode; 3291 3292 inode = list_first_entry(&fs_info->delayed_iputs, 3293 struct btrfs_inode, delayed_iput); 3294 list_del_init(&inode->delayed_iput); 3295 spin_unlock(&fs_info->delayed_iput_lock); 3296 iput(&inode->vfs_inode); 3297 spin_lock(&fs_info->delayed_iput_lock); 3298 } 3299 spin_unlock(&fs_info->delayed_iput_lock); 3300 } 3301 3302 /* 3303 * This is called in transaction commit time. If there are no orphan 3304 * files in the subvolume, it removes orphan item and frees block_rsv 3305 * structure. 3306 */ 3307 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans, 3308 struct btrfs_root *root) 3309 { 3310 struct btrfs_fs_info *fs_info = root->fs_info; 3311 struct btrfs_block_rsv *block_rsv; 3312 int ret; 3313 3314 if (atomic_read(&root->orphan_inodes) || 3315 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) 3316 return; 3317 3318 spin_lock(&root->orphan_lock); 3319 if (atomic_read(&root->orphan_inodes)) { 3320 spin_unlock(&root->orphan_lock); 3321 return; 3322 } 3323 3324 if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) { 3325 spin_unlock(&root->orphan_lock); 3326 return; 3327 } 3328 3329 block_rsv = root->orphan_block_rsv; 3330 root->orphan_block_rsv = NULL; 3331 spin_unlock(&root->orphan_lock); 3332 3333 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state) && 3334 btrfs_root_refs(&root->root_item) > 0) { 3335 ret = btrfs_del_orphan_item(trans, fs_info->tree_root, 3336 root->root_key.objectid); 3337 if (ret) 3338 btrfs_abort_transaction(trans, ret); 3339 else 3340 clear_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, 3341 &root->state); 3342 } 3343 3344 if (block_rsv) { 3345 WARN_ON(block_rsv->size > 0); 3346 btrfs_free_block_rsv(fs_info, block_rsv); 3347 } 3348 } 3349 3350 /* 3351 * This creates an orphan entry for the given inode in case something goes 3352 * wrong in the middle of an unlink/truncate. 3353 * 3354 * NOTE: caller of this function should reserve 5 units of metadata for 3355 * this function. 3356 */ 3357 int btrfs_orphan_add(struct btrfs_trans_handle *trans, 3358 struct btrfs_inode *inode) 3359 { 3360 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb); 3361 struct btrfs_root *root = inode->root; 3362 struct btrfs_block_rsv *block_rsv = NULL; 3363 int reserve = 0; 3364 bool insert = false; 3365 int ret; 3366 3367 if (!root->orphan_block_rsv) { 3368 block_rsv = btrfs_alloc_block_rsv(fs_info, 3369 BTRFS_BLOCK_RSV_TEMP); 3370 if (!block_rsv) 3371 return -ENOMEM; 3372 } 3373 3374 if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 3375 &inode->runtime_flags)) 3376 insert = true; 3377 3378 if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED, 3379 &inode->runtime_flags)) 3380 reserve = 1; 3381 3382 spin_lock(&root->orphan_lock); 3383 /* If someone has created ->orphan_block_rsv, be happy to use it. */ 3384 if (!root->orphan_block_rsv) { 3385 root->orphan_block_rsv = block_rsv; 3386 } else if (block_rsv) { 3387 btrfs_free_block_rsv(fs_info, block_rsv); 3388 block_rsv = NULL; 3389 } 3390 3391 if (insert) 3392 atomic_inc(&root->orphan_inodes); 3393 spin_unlock(&root->orphan_lock); 3394 3395 /* grab metadata reservation from transaction handle */ 3396 if (reserve) { 3397 ret = btrfs_orphan_reserve_metadata(trans, inode); 3398 ASSERT(!ret); 3399 if (ret) { 3400 /* 3401 * dec doesn't need spin_lock as ->orphan_block_rsv 3402 * would be released only if ->orphan_inodes is 3403 * zero. 3404 */ 3405 atomic_dec(&root->orphan_inodes); 3406 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED, 3407 &inode->runtime_flags); 3408 if (insert) 3409 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 3410 &inode->runtime_flags); 3411 return ret; 3412 } 3413 } 3414 3415 /* insert an orphan item to track this unlinked/truncated file */ 3416 if (insert) { 3417 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode)); 3418 if (ret) { 3419 if (reserve) { 3420 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED, 3421 &inode->runtime_flags); 3422 btrfs_orphan_release_metadata(inode); 3423 } 3424 /* 3425 * btrfs_orphan_commit_root may race with us and set 3426 * ->orphan_block_rsv to zero, in order to avoid that, 3427 * decrease ->orphan_inodes after everything is done. 3428 */ 3429 atomic_dec(&root->orphan_inodes); 3430 if (ret != -EEXIST) { 3431 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 3432 &inode->runtime_flags); 3433 btrfs_abort_transaction(trans, ret); 3434 return ret; 3435 } 3436 } 3437 ret = 0; 3438 } 3439 3440 return 0; 3441 } 3442 3443 /* 3444 * We have done the truncate/delete so we can go ahead and remove the orphan 3445 * item for this particular inode. 3446 */ 3447 static int btrfs_orphan_del(struct btrfs_trans_handle *trans, 3448 struct btrfs_inode *inode) 3449 { 3450 struct btrfs_root *root = inode->root; 3451 int delete_item = 0; 3452 int ret = 0; 3453 3454 if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 3455 &inode->runtime_flags)) 3456 delete_item = 1; 3457 3458 if (delete_item && trans) 3459 ret = btrfs_del_orphan_item(trans, root, btrfs_ino(inode)); 3460 3461 if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED, 3462 &inode->runtime_flags)) 3463 btrfs_orphan_release_metadata(inode); 3464 3465 /* 3466 * btrfs_orphan_commit_root may race with us and set ->orphan_block_rsv 3467 * to zero, in order to avoid that, decrease ->orphan_inodes after 3468 * everything is done. 3469 */ 3470 if (delete_item) 3471 atomic_dec(&root->orphan_inodes); 3472 3473 return ret; 3474 } 3475 3476 /* 3477 * this cleans up any orphans that may be left on the list from the last use 3478 * of this root. 3479 */ 3480 int btrfs_orphan_cleanup(struct btrfs_root *root) 3481 { 3482 struct btrfs_fs_info *fs_info = root->fs_info; 3483 struct btrfs_path *path; 3484 struct extent_buffer *leaf; 3485 struct btrfs_key key, found_key; 3486 struct btrfs_trans_handle *trans; 3487 struct inode *inode; 3488 u64 last_objectid = 0; 3489 int ret = 0, nr_unlink = 0, nr_truncate = 0; 3490 3491 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED)) 3492 return 0; 3493 3494 path = btrfs_alloc_path(); 3495 if (!path) { 3496 ret = -ENOMEM; 3497 goto out; 3498 } 3499 path->reada = READA_BACK; 3500 3501 key.objectid = BTRFS_ORPHAN_OBJECTID; 3502 key.type = BTRFS_ORPHAN_ITEM_KEY; 3503 key.offset = (u64)-1; 3504 3505 while (1) { 3506 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3507 if (ret < 0) 3508 goto out; 3509 3510 /* 3511 * if ret == 0 means we found what we were searching for, which 3512 * is weird, but possible, so only screw with path if we didn't 3513 * find the key and see if we have stuff that matches 3514 */ 3515 if (ret > 0) { 3516 ret = 0; 3517 if (path->slots[0] == 0) 3518 break; 3519 path->slots[0]--; 3520 } 3521 3522 /* pull out the item */ 3523 leaf = path->nodes[0]; 3524 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 3525 3526 /* make sure the item matches what we want */ 3527 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID) 3528 break; 3529 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY) 3530 break; 3531 3532 /* release the path since we're done with it */ 3533 btrfs_release_path(path); 3534 3535 /* 3536 * this is where we are basically btrfs_lookup, without the 3537 * crossing root thing. we store the inode number in the 3538 * offset of the orphan item. 3539 */ 3540 3541 if (found_key.offset == last_objectid) { 3542 btrfs_err(fs_info, 3543 "Error removing orphan entry, stopping orphan cleanup"); 3544 ret = -EINVAL; 3545 goto out; 3546 } 3547 3548 last_objectid = found_key.offset; 3549 3550 found_key.objectid = found_key.offset; 3551 found_key.type = BTRFS_INODE_ITEM_KEY; 3552 found_key.offset = 0; 3553 inode = btrfs_iget(fs_info->sb, &found_key, root, NULL); 3554 ret = PTR_ERR_OR_ZERO(inode); 3555 if (ret && ret != -ENOENT) 3556 goto out; 3557 3558 if (ret == -ENOENT && root == fs_info->tree_root) { 3559 struct btrfs_root *dead_root; 3560 struct btrfs_fs_info *fs_info = root->fs_info; 3561 int is_dead_root = 0; 3562 3563 /* 3564 * this is an orphan in the tree root. Currently these 3565 * could come from 2 sources: 3566 * a) a snapshot deletion in progress 3567 * b) a free space cache inode 3568 * We need to distinguish those two, as the snapshot 3569 * orphan must not get deleted. 3570 * find_dead_roots already ran before us, so if this 3571 * is a snapshot deletion, we should find the root 3572 * in the dead_roots list 3573 */ 3574 spin_lock(&fs_info->trans_lock); 3575 list_for_each_entry(dead_root, &fs_info->dead_roots, 3576 root_list) { 3577 if (dead_root->root_key.objectid == 3578 found_key.objectid) { 3579 is_dead_root = 1; 3580 break; 3581 } 3582 } 3583 spin_unlock(&fs_info->trans_lock); 3584 if (is_dead_root) { 3585 /* prevent this orphan from being found again */ 3586 key.offset = found_key.objectid - 1; 3587 continue; 3588 } 3589 } 3590 /* 3591 * Inode is already gone but the orphan item is still there, 3592 * kill the orphan item. 3593 */ 3594 if (ret == -ENOENT) { 3595 trans = btrfs_start_transaction(root, 1); 3596 if (IS_ERR(trans)) { 3597 ret = PTR_ERR(trans); 3598 goto out; 3599 } 3600 btrfs_debug(fs_info, "auto deleting %Lu", 3601 found_key.objectid); 3602 ret = btrfs_del_orphan_item(trans, root, 3603 found_key.objectid); 3604 btrfs_end_transaction(trans); 3605 if (ret) 3606 goto out; 3607 continue; 3608 } 3609 3610 /* 3611 * add this inode to the orphan list so btrfs_orphan_del does 3612 * the proper thing when we hit it 3613 */ 3614 set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 3615 &BTRFS_I(inode)->runtime_flags); 3616 atomic_inc(&root->orphan_inodes); 3617 3618 /* if we have links, this was a truncate, lets do that */ 3619 if (inode->i_nlink) { 3620 if (WARN_ON(!S_ISREG(inode->i_mode))) { 3621 iput(inode); 3622 continue; 3623 } 3624 nr_truncate++; 3625 3626 /* 1 for the orphan item deletion. */ 3627 trans = btrfs_start_transaction(root, 1); 3628 if (IS_ERR(trans)) { 3629 iput(inode); 3630 ret = PTR_ERR(trans); 3631 goto out; 3632 } 3633 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 3634 btrfs_end_transaction(trans); 3635 if (ret) { 3636 iput(inode); 3637 goto out; 3638 } 3639 3640 ret = btrfs_truncate(inode, false); 3641 if (ret) 3642 btrfs_orphan_del(NULL, BTRFS_I(inode)); 3643 } else { 3644 nr_unlink++; 3645 } 3646 3647 /* this will do delete_inode and everything for us */ 3648 iput(inode); 3649 if (ret) 3650 goto out; 3651 } 3652 /* release the path since we're done with it */ 3653 btrfs_release_path(path); 3654 3655 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE; 3656 3657 if (root->orphan_block_rsv) 3658 btrfs_block_rsv_release(fs_info, root->orphan_block_rsv, 3659 (u64)-1); 3660 3661 if (root->orphan_block_rsv || 3662 test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) { 3663 trans = btrfs_join_transaction(root); 3664 if (!IS_ERR(trans)) 3665 btrfs_end_transaction(trans); 3666 } 3667 3668 if (nr_unlink) 3669 btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink); 3670 if (nr_truncate) 3671 btrfs_debug(fs_info, "truncated %d orphans", nr_truncate); 3672 3673 out: 3674 if (ret) 3675 btrfs_err(fs_info, "could not do orphan cleanup %d", ret); 3676 btrfs_free_path(path); 3677 return ret; 3678 } 3679 3680 /* 3681 * very simple check to peek ahead in the leaf looking for xattrs. If we 3682 * don't find any xattrs, we know there can't be any acls. 3683 * 3684 * slot is the slot the inode is in, objectid is the objectid of the inode 3685 */ 3686 static noinline int acls_after_inode_item(struct extent_buffer *leaf, 3687 int slot, u64 objectid, 3688 int *first_xattr_slot) 3689 { 3690 u32 nritems = btrfs_header_nritems(leaf); 3691 struct btrfs_key found_key; 3692 static u64 xattr_access = 0; 3693 static u64 xattr_default = 0; 3694 int scanned = 0; 3695 3696 if (!xattr_access) { 3697 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS, 3698 strlen(XATTR_NAME_POSIX_ACL_ACCESS)); 3699 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT, 3700 strlen(XATTR_NAME_POSIX_ACL_DEFAULT)); 3701 } 3702 3703 slot++; 3704 *first_xattr_slot = -1; 3705 while (slot < nritems) { 3706 btrfs_item_key_to_cpu(leaf, &found_key, slot); 3707 3708 /* we found a different objectid, there must not be acls */ 3709 if (found_key.objectid != objectid) 3710 return 0; 3711 3712 /* we found an xattr, assume we've got an acl */ 3713 if (found_key.type == BTRFS_XATTR_ITEM_KEY) { 3714 if (*first_xattr_slot == -1) 3715 *first_xattr_slot = slot; 3716 if (found_key.offset == xattr_access || 3717 found_key.offset == xattr_default) 3718 return 1; 3719 } 3720 3721 /* 3722 * we found a key greater than an xattr key, there can't 3723 * be any acls later on 3724 */ 3725 if (found_key.type > BTRFS_XATTR_ITEM_KEY) 3726 return 0; 3727 3728 slot++; 3729 scanned++; 3730 3731 /* 3732 * it goes inode, inode backrefs, xattrs, extents, 3733 * so if there are a ton of hard links to an inode there can 3734 * be a lot of backrefs. Don't waste time searching too hard, 3735 * this is just an optimization 3736 */ 3737 if (scanned >= 8) 3738 break; 3739 } 3740 /* we hit the end of the leaf before we found an xattr or 3741 * something larger than an xattr. We have to assume the inode 3742 * has acls 3743 */ 3744 if (*first_xattr_slot == -1) 3745 *first_xattr_slot = slot; 3746 return 1; 3747 } 3748 3749 /* 3750 * read an inode from the btree into the in-memory inode 3751 */ 3752 static int btrfs_read_locked_inode(struct inode *inode) 3753 { 3754 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3755 struct btrfs_path *path; 3756 struct extent_buffer *leaf; 3757 struct btrfs_inode_item *inode_item; 3758 struct btrfs_root *root = BTRFS_I(inode)->root; 3759 struct btrfs_key location; 3760 unsigned long ptr; 3761 int maybe_acls; 3762 u32 rdev; 3763 int ret; 3764 bool filled = false; 3765 int first_xattr_slot; 3766 3767 ret = btrfs_fill_inode(inode, &rdev); 3768 if (!ret) 3769 filled = true; 3770 3771 path = btrfs_alloc_path(); 3772 if (!path) { 3773 ret = -ENOMEM; 3774 goto make_bad; 3775 } 3776 3777 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location)); 3778 3779 ret = btrfs_lookup_inode(NULL, root, path, &location, 0); 3780 if (ret) { 3781 if (ret > 0) 3782 ret = -ENOENT; 3783 goto make_bad; 3784 } 3785 3786 leaf = path->nodes[0]; 3787 3788 if (filled) 3789 goto cache_index; 3790 3791 inode_item = btrfs_item_ptr(leaf, path->slots[0], 3792 struct btrfs_inode_item); 3793 inode->i_mode = btrfs_inode_mode(leaf, inode_item); 3794 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item)); 3795 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item)); 3796 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item)); 3797 btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item)); 3798 3799 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime); 3800 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime); 3801 3802 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime); 3803 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime); 3804 3805 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime); 3806 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime); 3807 3808 BTRFS_I(inode)->i_otime.tv_sec = 3809 btrfs_timespec_sec(leaf, &inode_item->otime); 3810 BTRFS_I(inode)->i_otime.tv_nsec = 3811 btrfs_timespec_nsec(leaf, &inode_item->otime); 3812 3813 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item)); 3814 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item); 3815 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item); 3816 3817 inode_set_iversion_queried(inode, 3818 btrfs_inode_sequence(leaf, inode_item)); 3819 inode->i_generation = BTRFS_I(inode)->generation; 3820 inode->i_rdev = 0; 3821 rdev = btrfs_inode_rdev(leaf, inode_item); 3822 3823 BTRFS_I(inode)->index_cnt = (u64)-1; 3824 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item); 3825 3826 cache_index: 3827 /* 3828 * If we were modified in the current generation and evicted from memory 3829 * and then re-read we need to do a full sync since we don't have any 3830 * idea about which extents were modified before we were evicted from 3831 * cache. 3832 * 3833 * This is required for both inode re-read from disk and delayed inode 3834 * in delayed_nodes_tree. 3835 */ 3836 if (BTRFS_I(inode)->last_trans == fs_info->generation) 3837 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 3838 &BTRFS_I(inode)->runtime_flags); 3839 3840 /* 3841 * We don't persist the id of the transaction where an unlink operation 3842 * against the inode was last made. So here we assume the inode might 3843 * have been evicted, and therefore the exact value of last_unlink_trans 3844 * lost, and set it to last_trans to avoid metadata inconsistencies 3845 * between the inode and its parent if the inode is fsync'ed and the log 3846 * replayed. For example, in the scenario: 3847 * 3848 * touch mydir/foo 3849 * ln mydir/foo mydir/bar 3850 * sync 3851 * unlink mydir/bar 3852 * echo 2 > /proc/sys/vm/drop_caches # evicts inode 3853 * xfs_io -c fsync mydir/foo 3854 * <power failure> 3855 * mount fs, triggers fsync log replay 3856 * 3857 * We must make sure that when we fsync our inode foo we also log its 3858 * parent inode, otherwise after log replay the parent still has the 3859 * dentry with the "bar" name but our inode foo has a link count of 1 3860 * and doesn't have an inode ref with the name "bar" anymore. 3861 * 3862 * Setting last_unlink_trans to last_trans is a pessimistic approach, 3863 * but it guarantees correctness at the expense of occasional full 3864 * transaction commits on fsync if our inode is a directory, or if our 3865 * inode is not a directory, logging its parent unnecessarily. 3866 */ 3867 BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans; 3868 3869 path->slots[0]++; 3870 if (inode->i_nlink != 1 || 3871 path->slots[0] >= btrfs_header_nritems(leaf)) 3872 goto cache_acl; 3873 3874 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]); 3875 if (location.objectid != btrfs_ino(BTRFS_I(inode))) 3876 goto cache_acl; 3877 3878 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 3879 if (location.type == BTRFS_INODE_REF_KEY) { 3880 struct btrfs_inode_ref *ref; 3881 3882 ref = (struct btrfs_inode_ref *)ptr; 3883 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref); 3884 } else if (location.type == BTRFS_INODE_EXTREF_KEY) { 3885 struct btrfs_inode_extref *extref; 3886 3887 extref = (struct btrfs_inode_extref *)ptr; 3888 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf, 3889 extref); 3890 } 3891 cache_acl: 3892 /* 3893 * try to precache a NULL acl entry for files that don't have 3894 * any xattrs or acls 3895 */ 3896 maybe_acls = acls_after_inode_item(leaf, path->slots[0], 3897 btrfs_ino(BTRFS_I(inode)), &first_xattr_slot); 3898 if (first_xattr_slot != -1) { 3899 path->slots[0] = first_xattr_slot; 3900 ret = btrfs_load_inode_props(inode, path); 3901 if (ret) 3902 btrfs_err(fs_info, 3903 "error loading props for ino %llu (root %llu): %d", 3904 btrfs_ino(BTRFS_I(inode)), 3905 root->root_key.objectid, ret); 3906 } 3907 btrfs_free_path(path); 3908 3909 if (!maybe_acls) 3910 cache_no_acl(inode); 3911 3912 switch (inode->i_mode & S_IFMT) { 3913 case S_IFREG: 3914 inode->i_mapping->a_ops = &btrfs_aops; 3915 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 3916 inode->i_fop = &btrfs_file_operations; 3917 inode->i_op = &btrfs_file_inode_operations; 3918 break; 3919 case S_IFDIR: 3920 inode->i_fop = &btrfs_dir_file_operations; 3921 inode->i_op = &btrfs_dir_inode_operations; 3922 break; 3923 case S_IFLNK: 3924 inode->i_op = &btrfs_symlink_inode_operations; 3925 inode_nohighmem(inode); 3926 inode->i_mapping->a_ops = &btrfs_symlink_aops; 3927 break; 3928 default: 3929 inode->i_op = &btrfs_special_inode_operations; 3930 init_special_inode(inode, inode->i_mode, rdev); 3931 break; 3932 } 3933 3934 btrfs_update_iflags(inode); 3935 return 0; 3936 3937 make_bad: 3938 btrfs_free_path(path); 3939 make_bad_inode(inode); 3940 return ret; 3941 } 3942 3943 /* 3944 * given a leaf and an inode, copy the inode fields into the leaf 3945 */ 3946 static void fill_inode_item(struct btrfs_trans_handle *trans, 3947 struct extent_buffer *leaf, 3948 struct btrfs_inode_item *item, 3949 struct inode *inode) 3950 { 3951 struct btrfs_map_token token; 3952 3953 btrfs_init_map_token(&token); 3954 3955 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token); 3956 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token); 3957 btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size, 3958 &token); 3959 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token); 3960 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token); 3961 3962 btrfs_set_token_timespec_sec(leaf, &item->atime, 3963 inode->i_atime.tv_sec, &token); 3964 btrfs_set_token_timespec_nsec(leaf, &item->atime, 3965 inode->i_atime.tv_nsec, &token); 3966 3967 btrfs_set_token_timespec_sec(leaf, &item->mtime, 3968 inode->i_mtime.tv_sec, &token); 3969 btrfs_set_token_timespec_nsec(leaf, &item->mtime, 3970 inode->i_mtime.tv_nsec, &token); 3971 3972 btrfs_set_token_timespec_sec(leaf, &item->ctime, 3973 inode->i_ctime.tv_sec, &token); 3974 btrfs_set_token_timespec_nsec(leaf, &item->ctime, 3975 inode->i_ctime.tv_nsec, &token); 3976 3977 btrfs_set_token_timespec_sec(leaf, &item->otime, 3978 BTRFS_I(inode)->i_otime.tv_sec, &token); 3979 btrfs_set_token_timespec_nsec(leaf, &item->otime, 3980 BTRFS_I(inode)->i_otime.tv_nsec, &token); 3981 3982 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode), 3983 &token); 3984 btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation, 3985 &token); 3986 btrfs_set_token_inode_sequence(leaf, item, inode_peek_iversion(inode), 3987 &token); 3988 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token); 3989 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token); 3990 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token); 3991 btrfs_set_token_inode_block_group(leaf, item, 0, &token); 3992 } 3993 3994 /* 3995 * copy everything in the in-memory inode into the btree. 3996 */ 3997 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans, 3998 struct btrfs_root *root, struct inode *inode) 3999 { 4000 struct btrfs_inode_item *inode_item; 4001 struct btrfs_path *path; 4002 struct extent_buffer *leaf; 4003 int ret; 4004 4005 path = btrfs_alloc_path(); 4006 if (!path) 4007 return -ENOMEM; 4008 4009 path->leave_spinning = 1; 4010 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location, 4011 1); 4012 if (ret) { 4013 if (ret > 0) 4014 ret = -ENOENT; 4015 goto failed; 4016 } 4017 4018 leaf = path->nodes[0]; 4019 inode_item = btrfs_item_ptr(leaf, path->slots[0], 4020 struct btrfs_inode_item); 4021 4022 fill_inode_item(trans, leaf, inode_item, inode); 4023 btrfs_mark_buffer_dirty(leaf); 4024 btrfs_set_inode_last_trans(trans, inode); 4025 ret = 0; 4026 failed: 4027 btrfs_free_path(path); 4028 return ret; 4029 } 4030 4031 /* 4032 * copy everything in the in-memory inode into the btree. 4033 */ 4034 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans, 4035 struct btrfs_root *root, struct inode *inode) 4036 { 4037 struct btrfs_fs_info *fs_info = root->fs_info; 4038 int ret; 4039 4040 /* 4041 * If the inode is a free space inode, we can deadlock during commit 4042 * if we put it into the delayed code. 4043 * 4044 * The data relocation inode should also be directly updated 4045 * without delay 4046 */ 4047 if (!btrfs_is_free_space_inode(BTRFS_I(inode)) 4048 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID 4049 && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) { 4050 btrfs_update_root_times(trans, root); 4051 4052 ret = btrfs_delayed_update_inode(trans, root, inode); 4053 if (!ret) 4054 btrfs_set_inode_last_trans(trans, inode); 4055 return ret; 4056 } 4057 4058 return btrfs_update_inode_item(trans, root, inode); 4059 } 4060 4061 noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans, 4062 struct btrfs_root *root, 4063 struct inode *inode) 4064 { 4065 int ret; 4066 4067 ret = btrfs_update_inode(trans, root, inode); 4068 if (ret == -ENOSPC) 4069 return btrfs_update_inode_item(trans, root, inode); 4070 return ret; 4071 } 4072 4073 /* 4074 * unlink helper that gets used here in inode.c and in the tree logging 4075 * recovery code. It remove a link in a directory with a given name, and 4076 * also drops the back refs in the inode to the directory 4077 */ 4078 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans, 4079 struct btrfs_root *root, 4080 struct btrfs_inode *dir, 4081 struct btrfs_inode *inode, 4082 const char *name, int name_len) 4083 { 4084 struct btrfs_fs_info *fs_info = root->fs_info; 4085 struct btrfs_path *path; 4086 int ret = 0; 4087 struct extent_buffer *leaf; 4088 struct btrfs_dir_item *di; 4089 struct btrfs_key key; 4090 u64 index; 4091 u64 ino = btrfs_ino(inode); 4092 u64 dir_ino = btrfs_ino(dir); 4093 4094 path = btrfs_alloc_path(); 4095 if (!path) { 4096 ret = -ENOMEM; 4097 goto out; 4098 } 4099 4100 path->leave_spinning = 1; 4101 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 4102 name, name_len, -1); 4103 if (IS_ERR(di)) { 4104 ret = PTR_ERR(di); 4105 goto err; 4106 } 4107 if (!di) { 4108 ret = -ENOENT; 4109 goto err; 4110 } 4111 leaf = path->nodes[0]; 4112 btrfs_dir_item_key_to_cpu(leaf, di, &key); 4113 ret = btrfs_delete_one_dir_name(trans, root, path, di); 4114 if (ret) 4115 goto err; 4116 btrfs_release_path(path); 4117 4118 /* 4119 * If we don't have dir index, we have to get it by looking up 4120 * the inode ref, since we get the inode ref, remove it directly, 4121 * it is unnecessary to do delayed deletion. 4122 * 4123 * But if we have dir index, needn't search inode ref to get it. 4124 * Since the inode ref is close to the inode item, it is better 4125 * that we delay to delete it, and just do this deletion when 4126 * we update the inode item. 4127 */ 4128 if (inode->dir_index) { 4129 ret = btrfs_delayed_delete_inode_ref(inode); 4130 if (!ret) { 4131 index = inode->dir_index; 4132 goto skip_backref; 4133 } 4134 } 4135 4136 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino, 4137 dir_ino, &index); 4138 if (ret) { 4139 btrfs_info(fs_info, 4140 "failed to delete reference to %.*s, inode %llu parent %llu", 4141 name_len, name, ino, dir_ino); 4142 btrfs_abort_transaction(trans, ret); 4143 goto err; 4144 } 4145 skip_backref: 4146 ret = btrfs_delete_delayed_dir_index(trans, fs_info, dir, index); 4147 if (ret) { 4148 btrfs_abort_transaction(trans, ret); 4149 goto err; 4150 } 4151 4152 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, inode, 4153 dir_ino); 4154 if (ret != 0 && ret != -ENOENT) { 4155 btrfs_abort_transaction(trans, ret); 4156 goto err; 4157 } 4158 4159 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, dir, 4160 index); 4161 if (ret == -ENOENT) 4162 ret = 0; 4163 else if (ret) 4164 btrfs_abort_transaction(trans, ret); 4165 err: 4166 btrfs_free_path(path); 4167 if (ret) 4168 goto out; 4169 4170 btrfs_i_size_write(dir, dir->vfs_inode.i_size - name_len * 2); 4171 inode_inc_iversion(&inode->vfs_inode); 4172 inode_inc_iversion(&dir->vfs_inode); 4173 inode->vfs_inode.i_ctime = dir->vfs_inode.i_mtime = 4174 dir->vfs_inode.i_ctime = current_time(&inode->vfs_inode); 4175 ret = btrfs_update_inode(trans, root, &dir->vfs_inode); 4176 out: 4177 return ret; 4178 } 4179 4180 int btrfs_unlink_inode(struct btrfs_trans_handle *trans, 4181 struct btrfs_root *root, 4182 struct btrfs_inode *dir, struct btrfs_inode *inode, 4183 const char *name, int name_len) 4184 { 4185 int ret; 4186 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len); 4187 if (!ret) { 4188 drop_nlink(&inode->vfs_inode); 4189 ret = btrfs_update_inode(trans, root, &inode->vfs_inode); 4190 } 4191 return ret; 4192 } 4193 4194 /* 4195 * helper to start transaction for unlink and rmdir. 4196 * 4197 * unlink and rmdir are special in btrfs, they do not always free space, so 4198 * if we cannot make our reservations the normal way try and see if there is 4199 * plenty of slack room in the global reserve to migrate, otherwise we cannot 4200 * allow the unlink to occur. 4201 */ 4202 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir) 4203 { 4204 struct btrfs_root *root = BTRFS_I(dir)->root; 4205 4206 /* 4207 * 1 for the possible orphan item 4208 * 1 for the dir item 4209 * 1 for the dir index 4210 * 1 for the inode ref 4211 * 1 for the inode 4212 */ 4213 return btrfs_start_transaction_fallback_global_rsv(root, 5, 5); 4214 } 4215 4216 static int btrfs_unlink(struct inode *dir, struct dentry *dentry) 4217 { 4218 struct btrfs_root *root = BTRFS_I(dir)->root; 4219 struct btrfs_trans_handle *trans; 4220 struct inode *inode = d_inode(dentry); 4221 int ret; 4222 4223 trans = __unlink_start_trans(dir); 4224 if (IS_ERR(trans)) 4225 return PTR_ERR(trans); 4226 4227 btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)), 4228 0); 4229 4230 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir), 4231 BTRFS_I(d_inode(dentry)), dentry->d_name.name, 4232 dentry->d_name.len); 4233 if (ret) 4234 goto out; 4235 4236 if (inode->i_nlink == 0) { 4237 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 4238 if (ret) 4239 goto out; 4240 } 4241 4242 out: 4243 btrfs_end_transaction(trans); 4244 btrfs_btree_balance_dirty(root->fs_info); 4245 return ret; 4246 } 4247 4248 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans, 4249 struct btrfs_root *root, 4250 struct inode *dir, u64 objectid, 4251 const char *name, int name_len) 4252 { 4253 struct btrfs_fs_info *fs_info = root->fs_info; 4254 struct btrfs_path *path; 4255 struct extent_buffer *leaf; 4256 struct btrfs_dir_item *di; 4257 struct btrfs_key key; 4258 u64 index; 4259 int ret; 4260 u64 dir_ino = btrfs_ino(BTRFS_I(dir)); 4261 4262 path = btrfs_alloc_path(); 4263 if (!path) 4264 return -ENOMEM; 4265 4266 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 4267 name, name_len, -1); 4268 if (IS_ERR_OR_NULL(di)) { 4269 if (!di) 4270 ret = -ENOENT; 4271 else 4272 ret = PTR_ERR(di); 4273 goto out; 4274 } 4275 4276 leaf = path->nodes[0]; 4277 btrfs_dir_item_key_to_cpu(leaf, di, &key); 4278 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid); 4279 ret = btrfs_delete_one_dir_name(trans, root, path, di); 4280 if (ret) { 4281 btrfs_abort_transaction(trans, ret); 4282 goto out; 4283 } 4284 btrfs_release_path(path); 4285 4286 ret = btrfs_del_root_ref(trans, fs_info, objectid, 4287 root->root_key.objectid, dir_ino, 4288 &index, name, name_len); 4289 if (ret < 0) { 4290 if (ret != -ENOENT) { 4291 btrfs_abort_transaction(trans, ret); 4292 goto out; 4293 } 4294 di = btrfs_search_dir_index_item(root, path, dir_ino, 4295 name, name_len); 4296 if (IS_ERR_OR_NULL(di)) { 4297 if (!di) 4298 ret = -ENOENT; 4299 else 4300 ret = PTR_ERR(di); 4301 btrfs_abort_transaction(trans, ret); 4302 goto out; 4303 } 4304 4305 leaf = path->nodes[0]; 4306 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 4307 btrfs_release_path(path); 4308 index = key.offset; 4309 } 4310 btrfs_release_path(path); 4311 4312 ret = btrfs_delete_delayed_dir_index(trans, fs_info, BTRFS_I(dir), index); 4313 if (ret) { 4314 btrfs_abort_transaction(trans, ret); 4315 goto out; 4316 } 4317 4318 btrfs_i_size_write(BTRFS_I(dir), dir->i_size - name_len * 2); 4319 inode_inc_iversion(dir); 4320 dir->i_mtime = dir->i_ctime = current_time(dir); 4321 ret = btrfs_update_inode_fallback(trans, root, dir); 4322 if (ret) 4323 btrfs_abort_transaction(trans, ret); 4324 out: 4325 btrfs_free_path(path); 4326 return ret; 4327 } 4328 4329 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry) 4330 { 4331 struct inode *inode = d_inode(dentry); 4332 int err = 0; 4333 struct btrfs_root *root = BTRFS_I(dir)->root; 4334 struct btrfs_trans_handle *trans; 4335 u64 last_unlink_trans; 4336 4337 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE) 4338 return -ENOTEMPTY; 4339 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID) 4340 return -EPERM; 4341 4342 trans = __unlink_start_trans(dir); 4343 if (IS_ERR(trans)) 4344 return PTR_ERR(trans); 4345 4346 if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 4347 err = btrfs_unlink_subvol(trans, root, dir, 4348 BTRFS_I(inode)->location.objectid, 4349 dentry->d_name.name, 4350 dentry->d_name.len); 4351 goto out; 4352 } 4353 4354 err = btrfs_orphan_add(trans, BTRFS_I(inode)); 4355 if (err) 4356 goto out; 4357 4358 last_unlink_trans = BTRFS_I(inode)->last_unlink_trans; 4359 4360 /* now the directory is empty */ 4361 err = btrfs_unlink_inode(trans, root, BTRFS_I(dir), 4362 BTRFS_I(d_inode(dentry)), dentry->d_name.name, 4363 dentry->d_name.len); 4364 if (!err) { 4365 btrfs_i_size_write(BTRFS_I(inode), 0); 4366 /* 4367 * Propagate the last_unlink_trans value of the deleted dir to 4368 * its parent directory. This is to prevent an unrecoverable 4369 * log tree in the case we do something like this: 4370 * 1) create dir foo 4371 * 2) create snapshot under dir foo 4372 * 3) delete the snapshot 4373 * 4) rmdir foo 4374 * 5) mkdir foo 4375 * 6) fsync foo or some file inside foo 4376 */ 4377 if (last_unlink_trans >= trans->transid) 4378 BTRFS_I(dir)->last_unlink_trans = last_unlink_trans; 4379 } 4380 out: 4381 btrfs_end_transaction(trans); 4382 btrfs_btree_balance_dirty(root->fs_info); 4383 4384 return err; 4385 } 4386 4387 static int truncate_space_check(struct btrfs_trans_handle *trans, 4388 struct btrfs_root *root, 4389 u64 bytes_deleted) 4390 { 4391 struct btrfs_fs_info *fs_info = root->fs_info; 4392 int ret; 4393 4394 /* 4395 * This is only used to apply pressure to the enospc system, we don't 4396 * intend to use this reservation at all. 4397 */ 4398 bytes_deleted = btrfs_csum_bytes_to_leaves(fs_info, bytes_deleted); 4399 bytes_deleted *= fs_info->nodesize; 4400 ret = btrfs_block_rsv_add(root, &fs_info->trans_block_rsv, 4401 bytes_deleted, BTRFS_RESERVE_NO_FLUSH); 4402 if (!ret) { 4403 trace_btrfs_space_reservation(fs_info, "transaction", 4404 trans->transid, 4405 bytes_deleted, 1); 4406 trans->bytes_reserved += bytes_deleted; 4407 } 4408 return ret; 4409 4410 } 4411 4412 /* 4413 * Return this if we need to call truncate_block for the last bit of the 4414 * truncate. 4415 */ 4416 #define NEED_TRUNCATE_BLOCK 1 4417 4418 /* 4419 * this can truncate away extent items, csum items and directory items. 4420 * It starts at a high offset and removes keys until it can't find 4421 * any higher than new_size 4422 * 4423 * csum items that cross the new i_size are truncated to the new size 4424 * as well. 4425 * 4426 * min_type is the minimum key type to truncate down to. If set to 0, this 4427 * will kill all the items on this inode, including the INODE_ITEM_KEY. 4428 */ 4429 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans, 4430 struct btrfs_root *root, 4431 struct inode *inode, 4432 u64 new_size, u32 min_type) 4433 { 4434 struct btrfs_fs_info *fs_info = root->fs_info; 4435 struct btrfs_path *path; 4436 struct extent_buffer *leaf; 4437 struct btrfs_file_extent_item *fi; 4438 struct btrfs_key key; 4439 struct btrfs_key found_key; 4440 u64 extent_start = 0; 4441 u64 extent_num_bytes = 0; 4442 u64 extent_offset = 0; 4443 u64 item_end = 0; 4444 u64 last_size = new_size; 4445 u32 found_type = (u8)-1; 4446 int found_extent; 4447 int del_item; 4448 int pending_del_nr = 0; 4449 int pending_del_slot = 0; 4450 int extent_type = -1; 4451 int ret; 4452 int err = 0; 4453 u64 ino = btrfs_ino(BTRFS_I(inode)); 4454 u64 bytes_deleted = 0; 4455 bool be_nice = false; 4456 bool should_throttle = false; 4457 bool should_end = false; 4458 4459 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY); 4460 4461 /* 4462 * for non-free space inodes and ref cows, we want to back off from 4463 * time to time 4464 */ 4465 if (!btrfs_is_free_space_inode(BTRFS_I(inode)) && 4466 test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 4467 be_nice = true; 4468 4469 path = btrfs_alloc_path(); 4470 if (!path) 4471 return -ENOMEM; 4472 path->reada = READA_BACK; 4473 4474 /* 4475 * We want to drop from the next block forward in case this new size is 4476 * not block aligned since we will be keeping the last block of the 4477 * extent just the way it is. 4478 */ 4479 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) || 4480 root == fs_info->tree_root) 4481 btrfs_drop_extent_cache(BTRFS_I(inode), ALIGN(new_size, 4482 fs_info->sectorsize), 4483 (u64)-1, 0); 4484 4485 /* 4486 * This function is also used to drop the items in the log tree before 4487 * we relog the inode, so if root != BTRFS_I(inode)->root, it means 4488 * it is used to drop the loged items. So we shouldn't kill the delayed 4489 * items. 4490 */ 4491 if (min_type == 0 && root == BTRFS_I(inode)->root) 4492 btrfs_kill_delayed_inode_items(BTRFS_I(inode)); 4493 4494 key.objectid = ino; 4495 key.offset = (u64)-1; 4496 key.type = (u8)-1; 4497 4498 search_again: 4499 /* 4500 * with a 16K leaf size and 128MB extents, you can actually queue 4501 * up a huge file in a single leaf. Most of the time that 4502 * bytes_deleted is > 0, it will be huge by the time we get here 4503 */ 4504 if (be_nice && bytes_deleted > SZ_32M) { 4505 if (btrfs_should_end_transaction(trans)) { 4506 err = -EAGAIN; 4507 goto error; 4508 } 4509 } 4510 4511 4512 path->leave_spinning = 1; 4513 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 4514 if (ret < 0) { 4515 err = ret; 4516 goto out; 4517 } 4518 4519 if (ret > 0) { 4520 /* there are no items in the tree for us to truncate, we're 4521 * done 4522 */ 4523 if (path->slots[0] == 0) 4524 goto out; 4525 path->slots[0]--; 4526 } 4527 4528 while (1) { 4529 fi = NULL; 4530 leaf = path->nodes[0]; 4531 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 4532 found_type = found_key.type; 4533 4534 if (found_key.objectid != ino) 4535 break; 4536 4537 if (found_type < min_type) 4538 break; 4539 4540 item_end = found_key.offset; 4541 if (found_type == BTRFS_EXTENT_DATA_KEY) { 4542 fi = btrfs_item_ptr(leaf, path->slots[0], 4543 struct btrfs_file_extent_item); 4544 extent_type = btrfs_file_extent_type(leaf, fi); 4545 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 4546 item_end += 4547 btrfs_file_extent_num_bytes(leaf, fi); 4548 4549 trace_btrfs_truncate_show_fi_regular( 4550 BTRFS_I(inode), leaf, fi, 4551 found_key.offset); 4552 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 4553 item_end += btrfs_file_extent_inline_len(leaf, 4554 path->slots[0], fi); 4555 4556 trace_btrfs_truncate_show_fi_inline( 4557 BTRFS_I(inode), leaf, fi, path->slots[0], 4558 found_key.offset); 4559 } 4560 item_end--; 4561 } 4562 if (found_type > min_type) { 4563 del_item = 1; 4564 } else { 4565 if (item_end < new_size) 4566 break; 4567 if (found_key.offset >= new_size) 4568 del_item = 1; 4569 else 4570 del_item = 0; 4571 } 4572 found_extent = 0; 4573 /* FIXME, shrink the extent if the ref count is only 1 */ 4574 if (found_type != BTRFS_EXTENT_DATA_KEY) 4575 goto delete; 4576 4577 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 4578 u64 num_dec; 4579 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi); 4580 if (!del_item) { 4581 u64 orig_num_bytes = 4582 btrfs_file_extent_num_bytes(leaf, fi); 4583 extent_num_bytes = ALIGN(new_size - 4584 found_key.offset, 4585 fs_info->sectorsize); 4586 btrfs_set_file_extent_num_bytes(leaf, fi, 4587 extent_num_bytes); 4588 num_dec = (orig_num_bytes - 4589 extent_num_bytes); 4590 if (test_bit(BTRFS_ROOT_REF_COWS, 4591 &root->state) && 4592 extent_start != 0) 4593 inode_sub_bytes(inode, num_dec); 4594 btrfs_mark_buffer_dirty(leaf); 4595 } else { 4596 extent_num_bytes = 4597 btrfs_file_extent_disk_num_bytes(leaf, 4598 fi); 4599 extent_offset = found_key.offset - 4600 btrfs_file_extent_offset(leaf, fi); 4601 4602 /* FIXME blocksize != 4096 */ 4603 num_dec = btrfs_file_extent_num_bytes(leaf, fi); 4604 if (extent_start != 0) { 4605 found_extent = 1; 4606 if (test_bit(BTRFS_ROOT_REF_COWS, 4607 &root->state)) 4608 inode_sub_bytes(inode, num_dec); 4609 } 4610 } 4611 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 4612 /* 4613 * we can't truncate inline items that have had 4614 * special encodings 4615 */ 4616 if (!del_item && 4617 btrfs_file_extent_encryption(leaf, fi) == 0 && 4618 btrfs_file_extent_other_encoding(leaf, fi) == 0 && 4619 btrfs_file_extent_compression(leaf, fi) == 0) { 4620 u32 size = (u32)(new_size - found_key.offset); 4621 4622 btrfs_set_file_extent_ram_bytes(leaf, fi, size); 4623 size = btrfs_file_extent_calc_inline_size(size); 4624 btrfs_truncate_item(root->fs_info, path, size, 1); 4625 } else if (!del_item) { 4626 /* 4627 * We have to bail so the last_size is set to 4628 * just before this extent. 4629 */ 4630 err = NEED_TRUNCATE_BLOCK; 4631 break; 4632 } 4633 4634 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 4635 inode_sub_bytes(inode, item_end + 1 - new_size); 4636 } 4637 delete: 4638 if (del_item) 4639 last_size = found_key.offset; 4640 else 4641 last_size = new_size; 4642 if (del_item) { 4643 if (!pending_del_nr) { 4644 /* no pending yet, add ourselves */ 4645 pending_del_slot = path->slots[0]; 4646 pending_del_nr = 1; 4647 } else if (pending_del_nr && 4648 path->slots[0] + 1 == pending_del_slot) { 4649 /* hop on the pending chunk */ 4650 pending_del_nr++; 4651 pending_del_slot = path->slots[0]; 4652 } else { 4653 BUG(); 4654 } 4655 } else { 4656 break; 4657 } 4658 should_throttle = false; 4659 4660 if (found_extent && 4661 (test_bit(BTRFS_ROOT_REF_COWS, &root->state) || 4662 root == fs_info->tree_root)) { 4663 btrfs_set_path_blocking(path); 4664 bytes_deleted += extent_num_bytes; 4665 ret = btrfs_free_extent(trans, root, extent_start, 4666 extent_num_bytes, 0, 4667 btrfs_header_owner(leaf), 4668 ino, extent_offset); 4669 BUG_ON(ret); 4670 if (btrfs_should_throttle_delayed_refs(trans, fs_info)) 4671 btrfs_async_run_delayed_refs(fs_info, 4672 trans->delayed_ref_updates * 2, 4673 trans->transid, 0); 4674 if (be_nice) { 4675 if (truncate_space_check(trans, root, 4676 extent_num_bytes)) { 4677 should_end = true; 4678 } 4679 if (btrfs_should_throttle_delayed_refs(trans, 4680 fs_info)) 4681 should_throttle = true; 4682 } 4683 } 4684 4685 if (found_type == BTRFS_INODE_ITEM_KEY) 4686 break; 4687 4688 if (path->slots[0] == 0 || 4689 path->slots[0] != pending_del_slot || 4690 should_throttle || should_end) { 4691 if (pending_del_nr) { 4692 ret = btrfs_del_items(trans, root, path, 4693 pending_del_slot, 4694 pending_del_nr); 4695 if (ret) { 4696 btrfs_abort_transaction(trans, ret); 4697 goto error; 4698 } 4699 pending_del_nr = 0; 4700 } 4701 btrfs_release_path(path); 4702 if (should_throttle) { 4703 unsigned long updates = trans->delayed_ref_updates; 4704 if (updates) { 4705 trans->delayed_ref_updates = 0; 4706 ret = btrfs_run_delayed_refs(trans, 4707 updates * 2); 4708 if (ret && !err) 4709 err = ret; 4710 } 4711 } 4712 /* 4713 * if we failed to refill our space rsv, bail out 4714 * and let the transaction restart 4715 */ 4716 if (should_end) { 4717 err = -EAGAIN; 4718 goto error; 4719 } 4720 goto search_again; 4721 } else { 4722 path->slots[0]--; 4723 } 4724 } 4725 out: 4726 if (pending_del_nr) { 4727 ret = btrfs_del_items(trans, root, path, pending_del_slot, 4728 pending_del_nr); 4729 if (ret) 4730 btrfs_abort_transaction(trans, ret); 4731 } 4732 error: 4733 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 4734 ASSERT(last_size >= new_size); 4735 if (!err && last_size > new_size) 4736 last_size = new_size; 4737 btrfs_ordered_update_i_size(inode, last_size, NULL); 4738 } 4739 4740 btrfs_free_path(path); 4741 4742 if (be_nice && bytes_deleted > SZ_32M) { 4743 unsigned long updates = trans->delayed_ref_updates; 4744 if (updates) { 4745 trans->delayed_ref_updates = 0; 4746 ret = btrfs_run_delayed_refs(trans, updates * 2); 4747 if (ret && !err) 4748 err = ret; 4749 } 4750 } 4751 return err; 4752 } 4753 4754 /* 4755 * btrfs_truncate_block - read, zero a chunk and write a block 4756 * @inode - inode that we're zeroing 4757 * @from - the offset to start zeroing 4758 * @len - the length to zero, 0 to zero the entire range respective to the 4759 * offset 4760 * @front - zero up to the offset instead of from the offset on 4761 * 4762 * This will find the block for the "from" offset and cow the block and zero the 4763 * part we want to zero. This is used with truncate and hole punching. 4764 */ 4765 int btrfs_truncate_block(struct inode *inode, loff_t from, loff_t len, 4766 int front) 4767 { 4768 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4769 struct address_space *mapping = inode->i_mapping; 4770 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 4771 struct btrfs_ordered_extent *ordered; 4772 struct extent_state *cached_state = NULL; 4773 struct extent_changeset *data_reserved = NULL; 4774 char *kaddr; 4775 u32 blocksize = fs_info->sectorsize; 4776 pgoff_t index = from >> PAGE_SHIFT; 4777 unsigned offset = from & (blocksize - 1); 4778 struct page *page; 4779 gfp_t mask = btrfs_alloc_write_mask(mapping); 4780 int ret = 0; 4781 u64 block_start; 4782 u64 block_end; 4783 4784 if (IS_ALIGNED(offset, blocksize) && 4785 (!len || IS_ALIGNED(len, blocksize))) 4786 goto out; 4787 4788 block_start = round_down(from, blocksize); 4789 block_end = block_start + blocksize - 1; 4790 4791 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, 4792 block_start, blocksize); 4793 if (ret) 4794 goto out; 4795 4796 again: 4797 page = find_or_create_page(mapping, index, mask); 4798 if (!page) { 4799 btrfs_delalloc_release_space(inode, data_reserved, 4800 block_start, blocksize, true); 4801 btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize, true); 4802 ret = -ENOMEM; 4803 goto out; 4804 } 4805 4806 if (!PageUptodate(page)) { 4807 ret = btrfs_readpage(NULL, page); 4808 lock_page(page); 4809 if (page->mapping != mapping) { 4810 unlock_page(page); 4811 put_page(page); 4812 goto again; 4813 } 4814 if (!PageUptodate(page)) { 4815 ret = -EIO; 4816 goto out_unlock; 4817 } 4818 } 4819 wait_on_page_writeback(page); 4820 4821 lock_extent_bits(io_tree, block_start, block_end, &cached_state); 4822 set_page_extent_mapped(page); 4823 4824 ordered = btrfs_lookup_ordered_extent(inode, block_start); 4825 if (ordered) { 4826 unlock_extent_cached(io_tree, block_start, block_end, 4827 &cached_state); 4828 unlock_page(page); 4829 put_page(page); 4830 btrfs_start_ordered_extent(inode, ordered, 1); 4831 btrfs_put_ordered_extent(ordered); 4832 goto again; 4833 } 4834 4835 clear_extent_bit(&BTRFS_I(inode)->io_tree, block_start, block_end, 4836 EXTENT_DIRTY | EXTENT_DELALLOC | 4837 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 4838 0, 0, &cached_state); 4839 4840 ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0, 4841 &cached_state, 0); 4842 if (ret) { 4843 unlock_extent_cached(io_tree, block_start, block_end, 4844 &cached_state); 4845 goto out_unlock; 4846 } 4847 4848 if (offset != blocksize) { 4849 if (!len) 4850 len = blocksize - offset; 4851 kaddr = kmap(page); 4852 if (front) 4853 memset(kaddr + (block_start - page_offset(page)), 4854 0, offset); 4855 else 4856 memset(kaddr + (block_start - page_offset(page)) + offset, 4857 0, len); 4858 flush_dcache_page(page); 4859 kunmap(page); 4860 } 4861 ClearPageChecked(page); 4862 set_page_dirty(page); 4863 unlock_extent_cached(io_tree, block_start, block_end, &cached_state); 4864 4865 out_unlock: 4866 if (ret) 4867 btrfs_delalloc_release_space(inode, data_reserved, block_start, 4868 blocksize, true); 4869 btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize, (ret != 0)); 4870 unlock_page(page); 4871 put_page(page); 4872 out: 4873 extent_changeset_free(data_reserved); 4874 return ret; 4875 } 4876 4877 static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode, 4878 u64 offset, u64 len) 4879 { 4880 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4881 struct btrfs_trans_handle *trans; 4882 int ret; 4883 4884 /* 4885 * Still need to make sure the inode looks like it's been updated so 4886 * that any holes get logged if we fsync. 4887 */ 4888 if (btrfs_fs_incompat(fs_info, NO_HOLES)) { 4889 BTRFS_I(inode)->last_trans = fs_info->generation; 4890 BTRFS_I(inode)->last_sub_trans = root->log_transid; 4891 BTRFS_I(inode)->last_log_commit = root->last_log_commit; 4892 return 0; 4893 } 4894 4895 /* 4896 * 1 - for the one we're dropping 4897 * 1 - for the one we're adding 4898 * 1 - for updating the inode. 4899 */ 4900 trans = btrfs_start_transaction(root, 3); 4901 if (IS_ERR(trans)) 4902 return PTR_ERR(trans); 4903 4904 ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1); 4905 if (ret) { 4906 btrfs_abort_transaction(trans, ret); 4907 btrfs_end_transaction(trans); 4908 return ret; 4909 } 4910 4911 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(BTRFS_I(inode)), 4912 offset, 0, 0, len, 0, len, 0, 0, 0); 4913 if (ret) 4914 btrfs_abort_transaction(trans, ret); 4915 else 4916 btrfs_update_inode(trans, root, inode); 4917 btrfs_end_transaction(trans); 4918 return ret; 4919 } 4920 4921 /* 4922 * This function puts in dummy file extents for the area we're creating a hole 4923 * for. So if we are truncating this file to a larger size we need to insert 4924 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for 4925 * the range between oldsize and size 4926 */ 4927 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size) 4928 { 4929 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4930 struct btrfs_root *root = BTRFS_I(inode)->root; 4931 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 4932 struct extent_map *em = NULL; 4933 struct extent_state *cached_state = NULL; 4934 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 4935 u64 hole_start = ALIGN(oldsize, fs_info->sectorsize); 4936 u64 block_end = ALIGN(size, fs_info->sectorsize); 4937 u64 last_byte; 4938 u64 cur_offset; 4939 u64 hole_size; 4940 int err = 0; 4941 4942 /* 4943 * If our size started in the middle of a block we need to zero out the 4944 * rest of the block before we expand the i_size, otherwise we could 4945 * expose stale data. 4946 */ 4947 err = btrfs_truncate_block(inode, oldsize, 0, 0); 4948 if (err) 4949 return err; 4950 4951 if (size <= hole_start) 4952 return 0; 4953 4954 while (1) { 4955 struct btrfs_ordered_extent *ordered; 4956 4957 lock_extent_bits(io_tree, hole_start, block_end - 1, 4958 &cached_state); 4959 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), hole_start, 4960 block_end - hole_start); 4961 if (!ordered) 4962 break; 4963 unlock_extent_cached(io_tree, hole_start, block_end - 1, 4964 &cached_state); 4965 btrfs_start_ordered_extent(inode, ordered, 1); 4966 btrfs_put_ordered_extent(ordered); 4967 } 4968 4969 cur_offset = hole_start; 4970 while (1) { 4971 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset, 4972 block_end - cur_offset, 0); 4973 if (IS_ERR(em)) { 4974 err = PTR_ERR(em); 4975 em = NULL; 4976 break; 4977 } 4978 last_byte = min(extent_map_end(em), block_end); 4979 last_byte = ALIGN(last_byte, fs_info->sectorsize); 4980 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) { 4981 struct extent_map *hole_em; 4982 hole_size = last_byte - cur_offset; 4983 4984 err = maybe_insert_hole(root, inode, cur_offset, 4985 hole_size); 4986 if (err) 4987 break; 4988 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset, 4989 cur_offset + hole_size - 1, 0); 4990 hole_em = alloc_extent_map(); 4991 if (!hole_em) { 4992 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 4993 &BTRFS_I(inode)->runtime_flags); 4994 goto next; 4995 } 4996 hole_em->start = cur_offset; 4997 hole_em->len = hole_size; 4998 hole_em->orig_start = cur_offset; 4999 5000 hole_em->block_start = EXTENT_MAP_HOLE; 5001 hole_em->block_len = 0; 5002 hole_em->orig_block_len = 0; 5003 hole_em->ram_bytes = hole_size; 5004 hole_em->bdev = fs_info->fs_devices->latest_bdev; 5005 hole_em->compress_type = BTRFS_COMPRESS_NONE; 5006 hole_em->generation = fs_info->generation; 5007 5008 while (1) { 5009 write_lock(&em_tree->lock); 5010 err = add_extent_mapping(em_tree, hole_em, 1); 5011 write_unlock(&em_tree->lock); 5012 if (err != -EEXIST) 5013 break; 5014 btrfs_drop_extent_cache(BTRFS_I(inode), 5015 cur_offset, 5016 cur_offset + 5017 hole_size - 1, 0); 5018 } 5019 free_extent_map(hole_em); 5020 } 5021 next: 5022 free_extent_map(em); 5023 em = NULL; 5024 cur_offset = last_byte; 5025 if (cur_offset >= block_end) 5026 break; 5027 } 5028 free_extent_map(em); 5029 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state); 5030 return err; 5031 } 5032 5033 static int btrfs_setsize(struct inode *inode, struct iattr *attr) 5034 { 5035 struct btrfs_root *root = BTRFS_I(inode)->root; 5036 struct btrfs_trans_handle *trans; 5037 loff_t oldsize = i_size_read(inode); 5038 loff_t newsize = attr->ia_size; 5039 int mask = attr->ia_valid; 5040 int ret; 5041 5042 /* 5043 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a 5044 * special case where we need to update the times despite not having 5045 * these flags set. For all other operations the VFS set these flags 5046 * explicitly if it wants a timestamp update. 5047 */ 5048 if (newsize != oldsize) { 5049 inode_inc_iversion(inode); 5050 if (!(mask & (ATTR_CTIME | ATTR_MTIME))) 5051 inode->i_ctime = inode->i_mtime = 5052 current_time(inode); 5053 } 5054 5055 if (newsize > oldsize) { 5056 /* 5057 * Don't do an expanding truncate while snapshotting is ongoing. 5058 * This is to ensure the snapshot captures a fully consistent 5059 * state of this file - if the snapshot captures this expanding 5060 * truncation, it must capture all writes that happened before 5061 * this truncation. 5062 */ 5063 btrfs_wait_for_snapshot_creation(root); 5064 ret = btrfs_cont_expand(inode, oldsize, newsize); 5065 if (ret) { 5066 btrfs_end_write_no_snapshotting(root); 5067 return ret; 5068 } 5069 5070 trans = btrfs_start_transaction(root, 1); 5071 if (IS_ERR(trans)) { 5072 btrfs_end_write_no_snapshotting(root); 5073 return PTR_ERR(trans); 5074 } 5075 5076 i_size_write(inode, newsize); 5077 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL); 5078 pagecache_isize_extended(inode, oldsize, newsize); 5079 ret = btrfs_update_inode(trans, root, inode); 5080 btrfs_end_write_no_snapshotting(root); 5081 btrfs_end_transaction(trans); 5082 } else { 5083 5084 /* 5085 * We're truncating a file that used to have good data down to 5086 * zero. Make sure it gets into the ordered flush list so that 5087 * any new writes get down to disk quickly. 5088 */ 5089 if (newsize == 0) 5090 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE, 5091 &BTRFS_I(inode)->runtime_flags); 5092 5093 /* 5094 * 1 for the orphan item we're going to add 5095 * 1 for the orphan item deletion. 5096 */ 5097 trans = btrfs_start_transaction(root, 2); 5098 if (IS_ERR(trans)) 5099 return PTR_ERR(trans); 5100 5101 /* 5102 * We need to do this in case we fail at _any_ point during the 5103 * actual truncate. Once we do the truncate_setsize we could 5104 * invalidate pages which forces any outstanding ordered io to 5105 * be instantly completed which will give us extents that need 5106 * to be truncated. If we fail to get an orphan inode down we 5107 * could have left over extents that were never meant to live, 5108 * so we need to guarantee from this point on that everything 5109 * will be consistent. 5110 */ 5111 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 5112 btrfs_end_transaction(trans); 5113 if (ret) 5114 return ret; 5115 5116 /* we don't support swapfiles, so vmtruncate shouldn't fail */ 5117 truncate_setsize(inode, newsize); 5118 5119 /* Disable nonlocked read DIO to avoid the end less truncate */ 5120 btrfs_inode_block_unlocked_dio(BTRFS_I(inode)); 5121 inode_dio_wait(inode); 5122 btrfs_inode_resume_unlocked_dio(BTRFS_I(inode)); 5123 5124 ret = btrfs_truncate(inode, newsize == oldsize); 5125 if (ret && inode->i_nlink) { 5126 int err; 5127 5128 /* To get a stable disk_i_size */ 5129 err = btrfs_wait_ordered_range(inode, 0, (u64)-1); 5130 if (err) { 5131 btrfs_orphan_del(NULL, BTRFS_I(inode)); 5132 return err; 5133 } 5134 5135 /* 5136 * failed to truncate, disk_i_size is only adjusted down 5137 * as we remove extents, so it should represent the true 5138 * size of the inode, so reset the in memory size and 5139 * delete our orphan entry. 5140 */ 5141 trans = btrfs_join_transaction(root); 5142 if (IS_ERR(trans)) { 5143 btrfs_orphan_del(NULL, BTRFS_I(inode)); 5144 return ret; 5145 } 5146 i_size_write(inode, BTRFS_I(inode)->disk_i_size); 5147 err = btrfs_orphan_del(trans, BTRFS_I(inode)); 5148 if (err) 5149 btrfs_abort_transaction(trans, err); 5150 btrfs_end_transaction(trans); 5151 } 5152 } 5153 5154 return ret; 5155 } 5156 5157 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr) 5158 { 5159 struct inode *inode = d_inode(dentry); 5160 struct btrfs_root *root = BTRFS_I(inode)->root; 5161 int err; 5162 5163 if (btrfs_root_readonly(root)) 5164 return -EROFS; 5165 5166 err = setattr_prepare(dentry, attr); 5167 if (err) 5168 return err; 5169 5170 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 5171 err = btrfs_setsize(inode, attr); 5172 if (err) 5173 return err; 5174 } 5175 5176 if (attr->ia_valid) { 5177 setattr_copy(inode, attr); 5178 inode_inc_iversion(inode); 5179 err = btrfs_dirty_inode(inode); 5180 5181 if (!err && attr->ia_valid & ATTR_MODE) 5182 err = posix_acl_chmod(inode, inode->i_mode); 5183 } 5184 5185 return err; 5186 } 5187 5188 /* 5189 * While truncating the inode pages during eviction, we get the VFS calling 5190 * btrfs_invalidatepage() against each page of the inode. This is slow because 5191 * the calls to btrfs_invalidatepage() result in a huge amount of calls to 5192 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting 5193 * extent_state structures over and over, wasting lots of time. 5194 * 5195 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all 5196 * those expensive operations on a per page basis and do only the ordered io 5197 * finishing, while we release here the extent_map and extent_state structures, 5198 * without the excessive merging and splitting. 5199 */ 5200 static void evict_inode_truncate_pages(struct inode *inode) 5201 { 5202 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 5203 struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree; 5204 struct rb_node *node; 5205 5206 ASSERT(inode->i_state & I_FREEING); 5207 truncate_inode_pages_final(&inode->i_data); 5208 5209 write_lock(&map_tree->lock); 5210 while (!RB_EMPTY_ROOT(&map_tree->map)) { 5211 struct extent_map *em; 5212 5213 node = rb_first(&map_tree->map); 5214 em = rb_entry(node, struct extent_map, rb_node); 5215 clear_bit(EXTENT_FLAG_PINNED, &em->flags); 5216 clear_bit(EXTENT_FLAG_LOGGING, &em->flags); 5217 remove_extent_mapping(map_tree, em); 5218 free_extent_map(em); 5219 if (need_resched()) { 5220 write_unlock(&map_tree->lock); 5221 cond_resched(); 5222 write_lock(&map_tree->lock); 5223 } 5224 } 5225 write_unlock(&map_tree->lock); 5226 5227 /* 5228 * Keep looping until we have no more ranges in the io tree. 5229 * We can have ongoing bios started by readpages (called from readahead) 5230 * that have their endio callback (extent_io.c:end_bio_extent_readpage) 5231 * still in progress (unlocked the pages in the bio but did not yet 5232 * unlocked the ranges in the io tree). Therefore this means some 5233 * ranges can still be locked and eviction started because before 5234 * submitting those bios, which are executed by a separate task (work 5235 * queue kthread), inode references (inode->i_count) were not taken 5236 * (which would be dropped in the end io callback of each bio). 5237 * Therefore here we effectively end up waiting for those bios and 5238 * anyone else holding locked ranges without having bumped the inode's 5239 * reference count - if we don't do it, when they access the inode's 5240 * io_tree to unlock a range it may be too late, leading to an 5241 * use-after-free issue. 5242 */ 5243 spin_lock(&io_tree->lock); 5244 while (!RB_EMPTY_ROOT(&io_tree->state)) { 5245 struct extent_state *state; 5246 struct extent_state *cached_state = NULL; 5247 u64 start; 5248 u64 end; 5249 5250 node = rb_first(&io_tree->state); 5251 state = rb_entry(node, struct extent_state, rb_node); 5252 start = state->start; 5253 end = state->end; 5254 spin_unlock(&io_tree->lock); 5255 5256 lock_extent_bits(io_tree, start, end, &cached_state); 5257 5258 /* 5259 * If still has DELALLOC flag, the extent didn't reach disk, 5260 * and its reserved space won't be freed by delayed_ref. 5261 * So we need to free its reserved space here. 5262 * (Refer to comment in btrfs_invalidatepage, case 2) 5263 * 5264 * Note, end is the bytenr of last byte, so we need + 1 here. 5265 */ 5266 if (state->state & EXTENT_DELALLOC) 5267 btrfs_qgroup_free_data(inode, NULL, start, end - start + 1); 5268 5269 clear_extent_bit(io_tree, start, end, 5270 EXTENT_LOCKED | EXTENT_DIRTY | 5271 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | 5272 EXTENT_DEFRAG, 1, 1, &cached_state); 5273 5274 cond_resched(); 5275 spin_lock(&io_tree->lock); 5276 } 5277 spin_unlock(&io_tree->lock); 5278 } 5279 5280 void btrfs_evict_inode(struct inode *inode) 5281 { 5282 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5283 struct btrfs_trans_handle *trans; 5284 struct btrfs_root *root = BTRFS_I(inode)->root; 5285 struct btrfs_block_rsv *rsv, *global_rsv; 5286 int steal_from_global = 0; 5287 u64 min_size; 5288 int ret; 5289 5290 trace_btrfs_inode_evict(inode); 5291 5292 if (!root) { 5293 clear_inode(inode); 5294 return; 5295 } 5296 5297 min_size = btrfs_calc_trunc_metadata_size(fs_info, 1); 5298 5299 evict_inode_truncate_pages(inode); 5300 5301 if (inode->i_nlink && 5302 ((btrfs_root_refs(&root->root_item) != 0 && 5303 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) || 5304 btrfs_is_free_space_inode(BTRFS_I(inode)))) 5305 goto no_delete; 5306 5307 if (is_bad_inode(inode)) { 5308 btrfs_orphan_del(NULL, BTRFS_I(inode)); 5309 goto no_delete; 5310 } 5311 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */ 5312 if (!special_file(inode->i_mode)) 5313 btrfs_wait_ordered_range(inode, 0, (u64)-1); 5314 5315 btrfs_free_io_failure_record(BTRFS_I(inode), 0, (u64)-1); 5316 5317 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) { 5318 BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 5319 &BTRFS_I(inode)->runtime_flags)); 5320 goto no_delete; 5321 } 5322 5323 if (inode->i_nlink > 0) { 5324 BUG_ON(btrfs_root_refs(&root->root_item) != 0 && 5325 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID); 5326 goto no_delete; 5327 } 5328 5329 ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode)); 5330 if (ret) { 5331 btrfs_orphan_del(NULL, BTRFS_I(inode)); 5332 goto no_delete; 5333 } 5334 5335 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP); 5336 if (!rsv) { 5337 btrfs_orphan_del(NULL, BTRFS_I(inode)); 5338 goto no_delete; 5339 } 5340 rsv->size = min_size; 5341 rsv->failfast = 1; 5342 global_rsv = &fs_info->global_block_rsv; 5343 5344 btrfs_i_size_write(BTRFS_I(inode), 0); 5345 5346 /* 5347 * This is a bit simpler than btrfs_truncate since we've already 5348 * reserved our space for our orphan item in the unlink, so we just 5349 * need to reserve some slack space in case we add bytes and update 5350 * inode item when doing the truncate. 5351 */ 5352 while (1) { 5353 ret = btrfs_block_rsv_refill(root, rsv, min_size, 5354 BTRFS_RESERVE_FLUSH_LIMIT); 5355 5356 /* 5357 * Try and steal from the global reserve since we will 5358 * likely not use this space anyway, we want to try as 5359 * hard as possible to get this to work. 5360 */ 5361 if (ret) 5362 steal_from_global++; 5363 else 5364 steal_from_global = 0; 5365 ret = 0; 5366 5367 /* 5368 * steal_from_global == 0: we reserved stuff, hooray! 5369 * steal_from_global == 1: we didn't reserve stuff, boo! 5370 * steal_from_global == 2: we've committed, still not a lot of 5371 * room but maybe we'll have room in the global reserve this 5372 * time. 5373 * steal_from_global == 3: abandon all hope! 5374 */ 5375 if (steal_from_global > 2) { 5376 btrfs_warn(fs_info, 5377 "Could not get space for a delete, will truncate on mount %d", 5378 ret); 5379 btrfs_orphan_del(NULL, BTRFS_I(inode)); 5380 btrfs_free_block_rsv(fs_info, rsv); 5381 goto no_delete; 5382 } 5383 5384 trans = btrfs_join_transaction(root); 5385 if (IS_ERR(trans)) { 5386 btrfs_orphan_del(NULL, BTRFS_I(inode)); 5387 btrfs_free_block_rsv(fs_info, rsv); 5388 goto no_delete; 5389 } 5390 5391 /* 5392 * We can't just steal from the global reserve, we need to make 5393 * sure there is room to do it, if not we need to commit and try 5394 * again. 5395 */ 5396 if (steal_from_global) { 5397 if (!btrfs_check_space_for_delayed_refs(trans, fs_info)) 5398 ret = btrfs_block_rsv_migrate(global_rsv, rsv, 5399 min_size, 0); 5400 else 5401 ret = -ENOSPC; 5402 } 5403 5404 /* 5405 * Couldn't steal from the global reserve, we have too much 5406 * pending stuff built up, commit the transaction and try it 5407 * again. 5408 */ 5409 if (ret) { 5410 ret = btrfs_commit_transaction(trans); 5411 if (ret) { 5412 btrfs_orphan_del(NULL, BTRFS_I(inode)); 5413 btrfs_free_block_rsv(fs_info, rsv); 5414 goto no_delete; 5415 } 5416 continue; 5417 } else { 5418 steal_from_global = 0; 5419 } 5420 5421 trans->block_rsv = rsv; 5422 5423 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0); 5424 if (ret != -ENOSPC && ret != -EAGAIN) 5425 break; 5426 5427 trans->block_rsv = &fs_info->trans_block_rsv; 5428 btrfs_end_transaction(trans); 5429 trans = NULL; 5430 btrfs_btree_balance_dirty(fs_info); 5431 } 5432 5433 btrfs_free_block_rsv(fs_info, rsv); 5434 5435 /* 5436 * Errors here aren't a big deal, it just means we leave orphan items 5437 * in the tree. They will be cleaned up on the next mount. 5438 */ 5439 if (ret == 0) { 5440 trans->block_rsv = root->orphan_block_rsv; 5441 btrfs_orphan_del(trans, BTRFS_I(inode)); 5442 } else { 5443 btrfs_orphan_del(NULL, BTRFS_I(inode)); 5444 } 5445 5446 trans->block_rsv = &fs_info->trans_block_rsv; 5447 if (!(root == fs_info->tree_root || 5448 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)) 5449 btrfs_return_ino(root, btrfs_ino(BTRFS_I(inode))); 5450 5451 btrfs_end_transaction(trans); 5452 btrfs_btree_balance_dirty(fs_info); 5453 no_delete: 5454 btrfs_remove_delayed_node(BTRFS_I(inode)); 5455 clear_inode(inode); 5456 } 5457 5458 /* 5459 * this returns the key found in the dir entry in the location pointer. 5460 * If no dir entries were found, returns -ENOENT. 5461 * If found a corrupted location in dir entry, returns -EUCLEAN. 5462 */ 5463 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry, 5464 struct btrfs_key *location) 5465 { 5466 const char *name = dentry->d_name.name; 5467 int namelen = dentry->d_name.len; 5468 struct btrfs_dir_item *di; 5469 struct btrfs_path *path; 5470 struct btrfs_root *root = BTRFS_I(dir)->root; 5471 int ret = 0; 5472 5473 path = btrfs_alloc_path(); 5474 if (!path) 5475 return -ENOMEM; 5476 5477 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(BTRFS_I(dir)), 5478 name, namelen, 0); 5479 if (!di) { 5480 ret = -ENOENT; 5481 goto out; 5482 } 5483 if (IS_ERR(di)) { 5484 ret = PTR_ERR(di); 5485 goto out; 5486 } 5487 5488 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location); 5489 if (location->type != BTRFS_INODE_ITEM_KEY && 5490 location->type != BTRFS_ROOT_ITEM_KEY) { 5491 ret = -EUCLEAN; 5492 btrfs_warn(root->fs_info, 5493 "%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))", 5494 __func__, name, btrfs_ino(BTRFS_I(dir)), 5495 location->objectid, location->type, location->offset); 5496 } 5497 out: 5498 btrfs_free_path(path); 5499 return ret; 5500 } 5501 5502 /* 5503 * when we hit a tree root in a directory, the btrfs part of the inode 5504 * needs to be changed to reflect the root directory of the tree root. This 5505 * is kind of like crossing a mount point. 5506 */ 5507 static int fixup_tree_root_location(struct btrfs_fs_info *fs_info, 5508 struct inode *dir, 5509 struct dentry *dentry, 5510 struct btrfs_key *location, 5511 struct btrfs_root **sub_root) 5512 { 5513 struct btrfs_path *path; 5514 struct btrfs_root *new_root; 5515 struct btrfs_root_ref *ref; 5516 struct extent_buffer *leaf; 5517 struct btrfs_key key; 5518 int ret; 5519 int err = 0; 5520 5521 path = btrfs_alloc_path(); 5522 if (!path) { 5523 err = -ENOMEM; 5524 goto out; 5525 } 5526 5527 err = -ENOENT; 5528 key.objectid = BTRFS_I(dir)->root->root_key.objectid; 5529 key.type = BTRFS_ROOT_REF_KEY; 5530 key.offset = location->objectid; 5531 5532 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 5533 if (ret) { 5534 if (ret < 0) 5535 err = ret; 5536 goto out; 5537 } 5538 5539 leaf = path->nodes[0]; 5540 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); 5541 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(BTRFS_I(dir)) || 5542 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len) 5543 goto out; 5544 5545 ret = memcmp_extent_buffer(leaf, dentry->d_name.name, 5546 (unsigned long)(ref + 1), 5547 dentry->d_name.len); 5548 if (ret) 5549 goto out; 5550 5551 btrfs_release_path(path); 5552 5553 new_root = btrfs_read_fs_root_no_name(fs_info, location); 5554 if (IS_ERR(new_root)) { 5555 err = PTR_ERR(new_root); 5556 goto out; 5557 } 5558 5559 *sub_root = new_root; 5560 location->objectid = btrfs_root_dirid(&new_root->root_item); 5561 location->type = BTRFS_INODE_ITEM_KEY; 5562 location->offset = 0; 5563 err = 0; 5564 out: 5565 btrfs_free_path(path); 5566 return err; 5567 } 5568 5569 static void inode_tree_add(struct inode *inode) 5570 { 5571 struct btrfs_root *root = BTRFS_I(inode)->root; 5572 struct btrfs_inode *entry; 5573 struct rb_node **p; 5574 struct rb_node *parent; 5575 struct rb_node *new = &BTRFS_I(inode)->rb_node; 5576 u64 ino = btrfs_ino(BTRFS_I(inode)); 5577 5578 if (inode_unhashed(inode)) 5579 return; 5580 parent = NULL; 5581 spin_lock(&root->inode_lock); 5582 p = &root->inode_tree.rb_node; 5583 while (*p) { 5584 parent = *p; 5585 entry = rb_entry(parent, struct btrfs_inode, rb_node); 5586 5587 if (ino < btrfs_ino(BTRFS_I(&entry->vfs_inode))) 5588 p = &parent->rb_left; 5589 else if (ino > btrfs_ino(BTRFS_I(&entry->vfs_inode))) 5590 p = &parent->rb_right; 5591 else { 5592 WARN_ON(!(entry->vfs_inode.i_state & 5593 (I_WILL_FREE | I_FREEING))); 5594 rb_replace_node(parent, new, &root->inode_tree); 5595 RB_CLEAR_NODE(parent); 5596 spin_unlock(&root->inode_lock); 5597 return; 5598 } 5599 } 5600 rb_link_node(new, parent, p); 5601 rb_insert_color(new, &root->inode_tree); 5602 spin_unlock(&root->inode_lock); 5603 } 5604 5605 static void inode_tree_del(struct inode *inode) 5606 { 5607 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5608 struct btrfs_root *root = BTRFS_I(inode)->root; 5609 int empty = 0; 5610 5611 spin_lock(&root->inode_lock); 5612 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) { 5613 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree); 5614 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node); 5615 empty = RB_EMPTY_ROOT(&root->inode_tree); 5616 } 5617 spin_unlock(&root->inode_lock); 5618 5619 if (empty && btrfs_root_refs(&root->root_item) == 0) { 5620 synchronize_srcu(&fs_info->subvol_srcu); 5621 spin_lock(&root->inode_lock); 5622 empty = RB_EMPTY_ROOT(&root->inode_tree); 5623 spin_unlock(&root->inode_lock); 5624 if (empty) 5625 btrfs_add_dead_root(root); 5626 } 5627 } 5628 5629 void btrfs_invalidate_inodes(struct btrfs_root *root) 5630 { 5631 struct btrfs_fs_info *fs_info = root->fs_info; 5632 struct rb_node *node; 5633 struct rb_node *prev; 5634 struct btrfs_inode *entry; 5635 struct inode *inode; 5636 u64 objectid = 0; 5637 5638 if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 5639 WARN_ON(btrfs_root_refs(&root->root_item) != 0); 5640 5641 spin_lock(&root->inode_lock); 5642 again: 5643 node = root->inode_tree.rb_node; 5644 prev = NULL; 5645 while (node) { 5646 prev = node; 5647 entry = rb_entry(node, struct btrfs_inode, rb_node); 5648 5649 if (objectid < btrfs_ino(BTRFS_I(&entry->vfs_inode))) 5650 node = node->rb_left; 5651 else if (objectid > btrfs_ino(BTRFS_I(&entry->vfs_inode))) 5652 node = node->rb_right; 5653 else 5654 break; 5655 } 5656 if (!node) { 5657 while (prev) { 5658 entry = rb_entry(prev, struct btrfs_inode, rb_node); 5659 if (objectid <= btrfs_ino(BTRFS_I(&entry->vfs_inode))) { 5660 node = prev; 5661 break; 5662 } 5663 prev = rb_next(prev); 5664 } 5665 } 5666 while (node) { 5667 entry = rb_entry(node, struct btrfs_inode, rb_node); 5668 objectid = btrfs_ino(BTRFS_I(&entry->vfs_inode)) + 1; 5669 inode = igrab(&entry->vfs_inode); 5670 if (inode) { 5671 spin_unlock(&root->inode_lock); 5672 if (atomic_read(&inode->i_count) > 1) 5673 d_prune_aliases(inode); 5674 /* 5675 * btrfs_drop_inode will have it removed from 5676 * the inode cache when its usage count 5677 * hits zero. 5678 */ 5679 iput(inode); 5680 cond_resched(); 5681 spin_lock(&root->inode_lock); 5682 goto again; 5683 } 5684 5685 if (cond_resched_lock(&root->inode_lock)) 5686 goto again; 5687 5688 node = rb_next(node); 5689 } 5690 spin_unlock(&root->inode_lock); 5691 } 5692 5693 static int btrfs_init_locked_inode(struct inode *inode, void *p) 5694 { 5695 struct btrfs_iget_args *args = p; 5696 inode->i_ino = args->location->objectid; 5697 memcpy(&BTRFS_I(inode)->location, args->location, 5698 sizeof(*args->location)); 5699 BTRFS_I(inode)->root = args->root; 5700 return 0; 5701 } 5702 5703 static int btrfs_find_actor(struct inode *inode, void *opaque) 5704 { 5705 struct btrfs_iget_args *args = opaque; 5706 return args->location->objectid == BTRFS_I(inode)->location.objectid && 5707 args->root == BTRFS_I(inode)->root; 5708 } 5709 5710 static struct inode *btrfs_iget_locked(struct super_block *s, 5711 struct btrfs_key *location, 5712 struct btrfs_root *root) 5713 { 5714 struct inode *inode; 5715 struct btrfs_iget_args args; 5716 unsigned long hashval = btrfs_inode_hash(location->objectid, root); 5717 5718 args.location = location; 5719 args.root = root; 5720 5721 inode = iget5_locked(s, hashval, btrfs_find_actor, 5722 btrfs_init_locked_inode, 5723 (void *)&args); 5724 return inode; 5725 } 5726 5727 /* Get an inode object given its location and corresponding root. 5728 * Returns in *is_new if the inode was read from disk 5729 */ 5730 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location, 5731 struct btrfs_root *root, int *new) 5732 { 5733 struct inode *inode; 5734 5735 inode = btrfs_iget_locked(s, location, root); 5736 if (!inode) 5737 return ERR_PTR(-ENOMEM); 5738 5739 if (inode->i_state & I_NEW) { 5740 int ret; 5741 5742 ret = btrfs_read_locked_inode(inode); 5743 if (!is_bad_inode(inode)) { 5744 inode_tree_add(inode); 5745 unlock_new_inode(inode); 5746 if (new) 5747 *new = 1; 5748 } else { 5749 unlock_new_inode(inode); 5750 iput(inode); 5751 ASSERT(ret < 0); 5752 inode = ERR_PTR(ret < 0 ? ret : -ESTALE); 5753 } 5754 } 5755 5756 return inode; 5757 } 5758 5759 static struct inode *new_simple_dir(struct super_block *s, 5760 struct btrfs_key *key, 5761 struct btrfs_root *root) 5762 { 5763 struct inode *inode = new_inode(s); 5764 5765 if (!inode) 5766 return ERR_PTR(-ENOMEM); 5767 5768 BTRFS_I(inode)->root = root; 5769 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key)); 5770 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags); 5771 5772 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID; 5773 inode->i_op = &btrfs_dir_ro_inode_operations; 5774 inode->i_opflags &= ~IOP_XATTR; 5775 inode->i_fop = &simple_dir_operations; 5776 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO; 5777 inode->i_mtime = current_time(inode); 5778 inode->i_atime = inode->i_mtime; 5779 inode->i_ctime = inode->i_mtime; 5780 BTRFS_I(inode)->i_otime = inode->i_mtime; 5781 5782 return inode; 5783 } 5784 5785 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry) 5786 { 5787 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 5788 struct inode *inode; 5789 struct btrfs_root *root = BTRFS_I(dir)->root; 5790 struct btrfs_root *sub_root = root; 5791 struct btrfs_key location; 5792 int index; 5793 int ret = 0; 5794 5795 if (dentry->d_name.len > BTRFS_NAME_LEN) 5796 return ERR_PTR(-ENAMETOOLONG); 5797 5798 ret = btrfs_inode_by_name(dir, dentry, &location); 5799 if (ret < 0) 5800 return ERR_PTR(ret); 5801 5802 if (location.type == BTRFS_INODE_ITEM_KEY) { 5803 inode = btrfs_iget(dir->i_sb, &location, root, NULL); 5804 return inode; 5805 } 5806 5807 index = srcu_read_lock(&fs_info->subvol_srcu); 5808 ret = fixup_tree_root_location(fs_info, dir, dentry, 5809 &location, &sub_root); 5810 if (ret < 0) { 5811 if (ret != -ENOENT) 5812 inode = ERR_PTR(ret); 5813 else 5814 inode = new_simple_dir(dir->i_sb, &location, sub_root); 5815 } else { 5816 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL); 5817 } 5818 srcu_read_unlock(&fs_info->subvol_srcu, index); 5819 5820 if (!IS_ERR(inode) && root != sub_root) { 5821 down_read(&fs_info->cleanup_work_sem); 5822 if (!sb_rdonly(inode->i_sb)) 5823 ret = btrfs_orphan_cleanup(sub_root); 5824 up_read(&fs_info->cleanup_work_sem); 5825 if (ret) { 5826 iput(inode); 5827 inode = ERR_PTR(ret); 5828 } 5829 } 5830 5831 return inode; 5832 } 5833 5834 static int btrfs_dentry_delete(const struct dentry *dentry) 5835 { 5836 struct btrfs_root *root; 5837 struct inode *inode = d_inode(dentry); 5838 5839 if (!inode && !IS_ROOT(dentry)) 5840 inode = d_inode(dentry->d_parent); 5841 5842 if (inode) { 5843 root = BTRFS_I(inode)->root; 5844 if (btrfs_root_refs(&root->root_item) == 0) 5845 return 1; 5846 5847 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 5848 return 1; 5849 } 5850 return 0; 5851 } 5852 5853 static void btrfs_dentry_release(struct dentry *dentry) 5854 { 5855 kfree(dentry->d_fsdata); 5856 } 5857 5858 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry, 5859 unsigned int flags) 5860 { 5861 struct inode *inode; 5862 5863 inode = btrfs_lookup_dentry(dir, dentry); 5864 if (IS_ERR(inode)) { 5865 if (PTR_ERR(inode) == -ENOENT) 5866 inode = NULL; 5867 else 5868 return ERR_CAST(inode); 5869 } 5870 5871 return d_splice_alias(inode, dentry); 5872 } 5873 5874 unsigned char btrfs_filetype_table[] = { 5875 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK 5876 }; 5877 5878 /* 5879 * All this infrastructure exists because dir_emit can fault, and we are holding 5880 * the tree lock when doing readdir. For now just allocate a buffer and copy 5881 * our information into that, and then dir_emit from the buffer. This is 5882 * similar to what NFS does, only we don't keep the buffer around in pagecache 5883 * because I'm afraid I'll mess that up. Long term we need to make filldir do 5884 * copy_to_user_inatomic so we don't have to worry about page faulting under the 5885 * tree lock. 5886 */ 5887 static int btrfs_opendir(struct inode *inode, struct file *file) 5888 { 5889 struct btrfs_file_private *private; 5890 5891 private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL); 5892 if (!private) 5893 return -ENOMEM; 5894 private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL); 5895 if (!private->filldir_buf) { 5896 kfree(private); 5897 return -ENOMEM; 5898 } 5899 file->private_data = private; 5900 return 0; 5901 } 5902 5903 struct dir_entry { 5904 u64 ino; 5905 u64 offset; 5906 unsigned type; 5907 int name_len; 5908 }; 5909 5910 static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx) 5911 { 5912 while (entries--) { 5913 struct dir_entry *entry = addr; 5914 char *name = (char *)(entry + 1); 5915 5916 ctx->pos = get_unaligned(&entry->offset); 5917 if (!dir_emit(ctx, name, get_unaligned(&entry->name_len), 5918 get_unaligned(&entry->ino), 5919 get_unaligned(&entry->type))) 5920 return 1; 5921 addr += sizeof(struct dir_entry) + 5922 get_unaligned(&entry->name_len); 5923 ctx->pos++; 5924 } 5925 return 0; 5926 } 5927 5928 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx) 5929 { 5930 struct inode *inode = file_inode(file); 5931 struct btrfs_root *root = BTRFS_I(inode)->root; 5932 struct btrfs_file_private *private = file->private_data; 5933 struct btrfs_dir_item *di; 5934 struct btrfs_key key; 5935 struct btrfs_key found_key; 5936 struct btrfs_path *path; 5937 void *addr; 5938 struct list_head ins_list; 5939 struct list_head del_list; 5940 int ret; 5941 struct extent_buffer *leaf; 5942 int slot; 5943 char *name_ptr; 5944 int name_len; 5945 int entries = 0; 5946 int total_len = 0; 5947 bool put = false; 5948 struct btrfs_key location; 5949 5950 if (!dir_emit_dots(file, ctx)) 5951 return 0; 5952 5953 path = btrfs_alloc_path(); 5954 if (!path) 5955 return -ENOMEM; 5956 5957 addr = private->filldir_buf; 5958 path->reada = READA_FORWARD; 5959 5960 INIT_LIST_HEAD(&ins_list); 5961 INIT_LIST_HEAD(&del_list); 5962 put = btrfs_readdir_get_delayed_items(inode, &ins_list, &del_list); 5963 5964 again: 5965 key.type = BTRFS_DIR_INDEX_KEY; 5966 key.offset = ctx->pos; 5967 key.objectid = btrfs_ino(BTRFS_I(inode)); 5968 5969 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5970 if (ret < 0) 5971 goto err; 5972 5973 while (1) { 5974 struct dir_entry *entry; 5975 5976 leaf = path->nodes[0]; 5977 slot = path->slots[0]; 5978 if (slot >= btrfs_header_nritems(leaf)) { 5979 ret = btrfs_next_leaf(root, path); 5980 if (ret < 0) 5981 goto err; 5982 else if (ret > 0) 5983 break; 5984 continue; 5985 } 5986 5987 btrfs_item_key_to_cpu(leaf, &found_key, slot); 5988 5989 if (found_key.objectid != key.objectid) 5990 break; 5991 if (found_key.type != BTRFS_DIR_INDEX_KEY) 5992 break; 5993 if (found_key.offset < ctx->pos) 5994 goto next; 5995 if (btrfs_should_delete_dir_index(&del_list, found_key.offset)) 5996 goto next; 5997 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item); 5998 name_len = btrfs_dir_name_len(leaf, di); 5999 if ((total_len + sizeof(struct dir_entry) + name_len) >= 6000 PAGE_SIZE) { 6001 btrfs_release_path(path); 6002 ret = btrfs_filldir(private->filldir_buf, entries, ctx); 6003 if (ret) 6004 goto nopos; 6005 addr = private->filldir_buf; 6006 entries = 0; 6007 total_len = 0; 6008 goto again; 6009 } 6010 6011 entry = addr; 6012 put_unaligned(name_len, &entry->name_len); 6013 name_ptr = (char *)(entry + 1); 6014 read_extent_buffer(leaf, name_ptr, (unsigned long)(di + 1), 6015 name_len); 6016 put_unaligned(btrfs_filetype_table[btrfs_dir_type(leaf, di)], 6017 &entry->type); 6018 btrfs_dir_item_key_to_cpu(leaf, di, &location); 6019 put_unaligned(location.objectid, &entry->ino); 6020 put_unaligned(found_key.offset, &entry->offset); 6021 entries++; 6022 addr += sizeof(struct dir_entry) + name_len; 6023 total_len += sizeof(struct dir_entry) + name_len; 6024 next: 6025 path->slots[0]++; 6026 } 6027 btrfs_release_path(path); 6028 6029 ret = btrfs_filldir(private->filldir_buf, entries, ctx); 6030 if (ret) 6031 goto nopos; 6032 6033 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list); 6034 if (ret) 6035 goto nopos; 6036 6037 /* 6038 * Stop new entries from being returned after we return the last 6039 * entry. 6040 * 6041 * New directory entries are assigned a strictly increasing 6042 * offset. This means that new entries created during readdir 6043 * are *guaranteed* to be seen in the future by that readdir. 6044 * This has broken buggy programs which operate on names as 6045 * they're returned by readdir. Until we re-use freed offsets 6046 * we have this hack to stop new entries from being returned 6047 * under the assumption that they'll never reach this huge 6048 * offset. 6049 * 6050 * This is being careful not to overflow 32bit loff_t unless the 6051 * last entry requires it because doing so has broken 32bit apps 6052 * in the past. 6053 */ 6054 if (ctx->pos >= INT_MAX) 6055 ctx->pos = LLONG_MAX; 6056 else 6057 ctx->pos = INT_MAX; 6058 nopos: 6059 ret = 0; 6060 err: 6061 if (put) 6062 btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list); 6063 btrfs_free_path(path); 6064 return ret; 6065 } 6066 6067 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc) 6068 { 6069 struct btrfs_root *root = BTRFS_I(inode)->root; 6070 struct btrfs_trans_handle *trans; 6071 int ret = 0; 6072 bool nolock = false; 6073 6074 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags)) 6075 return 0; 6076 6077 if (btrfs_fs_closing(root->fs_info) && 6078 btrfs_is_free_space_inode(BTRFS_I(inode))) 6079 nolock = true; 6080 6081 if (wbc->sync_mode == WB_SYNC_ALL) { 6082 if (nolock) 6083 trans = btrfs_join_transaction_nolock(root); 6084 else 6085 trans = btrfs_join_transaction(root); 6086 if (IS_ERR(trans)) 6087 return PTR_ERR(trans); 6088 ret = btrfs_commit_transaction(trans); 6089 } 6090 return ret; 6091 } 6092 6093 /* 6094 * This is somewhat expensive, updating the tree every time the 6095 * inode changes. But, it is most likely to find the inode in cache. 6096 * FIXME, needs more benchmarking...there are no reasons other than performance 6097 * to keep or drop this code. 6098 */ 6099 static int btrfs_dirty_inode(struct inode *inode) 6100 { 6101 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 6102 struct btrfs_root *root = BTRFS_I(inode)->root; 6103 struct btrfs_trans_handle *trans; 6104 int ret; 6105 6106 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags)) 6107 return 0; 6108 6109 trans = btrfs_join_transaction(root); 6110 if (IS_ERR(trans)) 6111 return PTR_ERR(trans); 6112 6113 ret = btrfs_update_inode(trans, root, inode); 6114 if (ret && ret == -ENOSPC) { 6115 /* whoops, lets try again with the full transaction */ 6116 btrfs_end_transaction(trans); 6117 trans = btrfs_start_transaction(root, 1); 6118 if (IS_ERR(trans)) 6119 return PTR_ERR(trans); 6120 6121 ret = btrfs_update_inode(trans, root, inode); 6122 } 6123 btrfs_end_transaction(trans); 6124 if (BTRFS_I(inode)->delayed_node) 6125 btrfs_balance_delayed_items(fs_info); 6126 6127 return ret; 6128 } 6129 6130 /* 6131 * This is a copy of file_update_time. We need this so we can return error on 6132 * ENOSPC for updating the inode in the case of file write and mmap writes. 6133 */ 6134 static int btrfs_update_time(struct inode *inode, struct timespec *now, 6135 int flags) 6136 { 6137 struct btrfs_root *root = BTRFS_I(inode)->root; 6138 bool dirty = flags & ~S_VERSION; 6139 6140 if (btrfs_root_readonly(root)) 6141 return -EROFS; 6142 6143 if (flags & S_VERSION) 6144 dirty |= inode_maybe_inc_iversion(inode, dirty); 6145 if (flags & S_CTIME) 6146 inode->i_ctime = *now; 6147 if (flags & S_MTIME) 6148 inode->i_mtime = *now; 6149 if (flags & S_ATIME) 6150 inode->i_atime = *now; 6151 return dirty ? btrfs_dirty_inode(inode) : 0; 6152 } 6153 6154 /* 6155 * find the highest existing sequence number in a directory 6156 * and then set the in-memory index_cnt variable to reflect 6157 * free sequence numbers 6158 */ 6159 static int btrfs_set_inode_index_count(struct btrfs_inode *inode) 6160 { 6161 struct btrfs_root *root = inode->root; 6162 struct btrfs_key key, found_key; 6163 struct btrfs_path *path; 6164 struct extent_buffer *leaf; 6165 int ret; 6166 6167 key.objectid = btrfs_ino(inode); 6168 key.type = BTRFS_DIR_INDEX_KEY; 6169 key.offset = (u64)-1; 6170 6171 path = btrfs_alloc_path(); 6172 if (!path) 6173 return -ENOMEM; 6174 6175 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 6176 if (ret < 0) 6177 goto out; 6178 /* FIXME: we should be able to handle this */ 6179 if (ret == 0) 6180 goto out; 6181 ret = 0; 6182 6183 /* 6184 * MAGIC NUMBER EXPLANATION: 6185 * since we search a directory based on f_pos we have to start at 2 6186 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody 6187 * else has to start at 2 6188 */ 6189 if (path->slots[0] == 0) { 6190 inode->index_cnt = 2; 6191 goto out; 6192 } 6193 6194 path->slots[0]--; 6195 6196 leaf = path->nodes[0]; 6197 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6198 6199 if (found_key.objectid != btrfs_ino(inode) || 6200 found_key.type != BTRFS_DIR_INDEX_KEY) { 6201 inode->index_cnt = 2; 6202 goto out; 6203 } 6204 6205 inode->index_cnt = found_key.offset + 1; 6206 out: 6207 btrfs_free_path(path); 6208 return ret; 6209 } 6210 6211 /* 6212 * helper to find a free sequence number in a given directory. This current 6213 * code is very simple, later versions will do smarter things in the btree 6214 */ 6215 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index) 6216 { 6217 int ret = 0; 6218 6219 if (dir->index_cnt == (u64)-1) { 6220 ret = btrfs_inode_delayed_dir_index_count(dir); 6221 if (ret) { 6222 ret = btrfs_set_inode_index_count(dir); 6223 if (ret) 6224 return ret; 6225 } 6226 } 6227 6228 *index = dir->index_cnt; 6229 dir->index_cnt++; 6230 6231 return ret; 6232 } 6233 6234 static int btrfs_insert_inode_locked(struct inode *inode) 6235 { 6236 struct btrfs_iget_args args; 6237 args.location = &BTRFS_I(inode)->location; 6238 args.root = BTRFS_I(inode)->root; 6239 6240 return insert_inode_locked4(inode, 6241 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root), 6242 btrfs_find_actor, &args); 6243 } 6244 6245 /* 6246 * Inherit flags from the parent inode. 6247 * 6248 * Currently only the compression flags and the cow flags are inherited. 6249 */ 6250 static void btrfs_inherit_iflags(struct inode *inode, struct inode *dir) 6251 { 6252 unsigned int flags; 6253 6254 if (!dir) 6255 return; 6256 6257 flags = BTRFS_I(dir)->flags; 6258 6259 if (flags & BTRFS_INODE_NOCOMPRESS) { 6260 BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS; 6261 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS; 6262 } else if (flags & BTRFS_INODE_COMPRESS) { 6263 BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS; 6264 BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS; 6265 } 6266 6267 if (flags & BTRFS_INODE_NODATACOW) { 6268 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW; 6269 if (S_ISREG(inode->i_mode)) 6270 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; 6271 } 6272 6273 btrfs_update_iflags(inode); 6274 } 6275 6276 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans, 6277 struct btrfs_root *root, 6278 struct inode *dir, 6279 const char *name, int name_len, 6280 u64 ref_objectid, u64 objectid, 6281 umode_t mode, u64 *index) 6282 { 6283 struct btrfs_fs_info *fs_info = root->fs_info; 6284 struct inode *inode; 6285 struct btrfs_inode_item *inode_item; 6286 struct btrfs_key *location; 6287 struct btrfs_path *path; 6288 struct btrfs_inode_ref *ref; 6289 struct btrfs_key key[2]; 6290 u32 sizes[2]; 6291 int nitems = name ? 2 : 1; 6292 unsigned long ptr; 6293 int ret; 6294 6295 path = btrfs_alloc_path(); 6296 if (!path) 6297 return ERR_PTR(-ENOMEM); 6298 6299 inode = new_inode(fs_info->sb); 6300 if (!inode) { 6301 btrfs_free_path(path); 6302 return ERR_PTR(-ENOMEM); 6303 } 6304 6305 /* 6306 * O_TMPFILE, set link count to 0, so that after this point, 6307 * we fill in an inode item with the correct link count. 6308 */ 6309 if (!name) 6310 set_nlink(inode, 0); 6311 6312 /* 6313 * we have to initialize this early, so we can reclaim the inode 6314 * number if we fail afterwards in this function. 6315 */ 6316 inode->i_ino = objectid; 6317 6318 if (dir && name) { 6319 trace_btrfs_inode_request(dir); 6320 6321 ret = btrfs_set_inode_index(BTRFS_I(dir), index); 6322 if (ret) { 6323 btrfs_free_path(path); 6324 iput(inode); 6325 return ERR_PTR(ret); 6326 } 6327 } else if (dir) { 6328 *index = 0; 6329 } 6330 /* 6331 * index_cnt is ignored for everything but a dir, 6332 * btrfs_set_inode_index_count has an explanation for the magic 6333 * number 6334 */ 6335 BTRFS_I(inode)->index_cnt = 2; 6336 BTRFS_I(inode)->dir_index = *index; 6337 BTRFS_I(inode)->root = root; 6338 BTRFS_I(inode)->generation = trans->transid; 6339 inode->i_generation = BTRFS_I(inode)->generation; 6340 6341 /* 6342 * We could have gotten an inode number from somebody who was fsynced 6343 * and then removed in this same transaction, so let's just set full 6344 * sync since it will be a full sync anyway and this will blow away the 6345 * old info in the log. 6346 */ 6347 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 6348 6349 key[0].objectid = objectid; 6350 key[0].type = BTRFS_INODE_ITEM_KEY; 6351 key[0].offset = 0; 6352 6353 sizes[0] = sizeof(struct btrfs_inode_item); 6354 6355 if (name) { 6356 /* 6357 * Start new inodes with an inode_ref. This is slightly more 6358 * efficient for small numbers of hard links since they will 6359 * be packed into one item. Extended refs will kick in if we 6360 * add more hard links than can fit in the ref item. 6361 */ 6362 key[1].objectid = objectid; 6363 key[1].type = BTRFS_INODE_REF_KEY; 6364 key[1].offset = ref_objectid; 6365 6366 sizes[1] = name_len + sizeof(*ref); 6367 } 6368 6369 location = &BTRFS_I(inode)->location; 6370 location->objectid = objectid; 6371 location->offset = 0; 6372 location->type = BTRFS_INODE_ITEM_KEY; 6373 6374 ret = btrfs_insert_inode_locked(inode); 6375 if (ret < 0) 6376 goto fail; 6377 6378 path->leave_spinning = 1; 6379 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems); 6380 if (ret != 0) 6381 goto fail_unlock; 6382 6383 inode_init_owner(inode, dir, mode); 6384 inode_set_bytes(inode, 0); 6385 6386 inode->i_mtime = current_time(inode); 6387 inode->i_atime = inode->i_mtime; 6388 inode->i_ctime = inode->i_mtime; 6389 BTRFS_I(inode)->i_otime = inode->i_mtime; 6390 6391 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0], 6392 struct btrfs_inode_item); 6393 memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item, 6394 sizeof(*inode_item)); 6395 fill_inode_item(trans, path->nodes[0], inode_item, inode); 6396 6397 if (name) { 6398 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1, 6399 struct btrfs_inode_ref); 6400 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len); 6401 btrfs_set_inode_ref_index(path->nodes[0], ref, *index); 6402 ptr = (unsigned long)(ref + 1); 6403 write_extent_buffer(path->nodes[0], name, ptr, name_len); 6404 } 6405 6406 btrfs_mark_buffer_dirty(path->nodes[0]); 6407 btrfs_free_path(path); 6408 6409 btrfs_inherit_iflags(inode, dir); 6410 6411 if (S_ISREG(mode)) { 6412 if (btrfs_test_opt(fs_info, NODATASUM)) 6413 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; 6414 if (btrfs_test_opt(fs_info, NODATACOW)) 6415 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW | 6416 BTRFS_INODE_NODATASUM; 6417 } 6418 6419 inode_tree_add(inode); 6420 6421 trace_btrfs_inode_new(inode); 6422 btrfs_set_inode_last_trans(trans, inode); 6423 6424 btrfs_update_root_times(trans, root); 6425 6426 ret = btrfs_inode_inherit_props(trans, inode, dir); 6427 if (ret) 6428 btrfs_err(fs_info, 6429 "error inheriting props for ino %llu (root %llu): %d", 6430 btrfs_ino(BTRFS_I(inode)), root->root_key.objectid, ret); 6431 6432 return inode; 6433 6434 fail_unlock: 6435 unlock_new_inode(inode); 6436 fail: 6437 if (dir && name) 6438 BTRFS_I(dir)->index_cnt--; 6439 btrfs_free_path(path); 6440 iput(inode); 6441 return ERR_PTR(ret); 6442 } 6443 6444 static inline u8 btrfs_inode_type(struct inode *inode) 6445 { 6446 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT]; 6447 } 6448 6449 /* 6450 * utility function to add 'inode' into 'parent_inode' with 6451 * a give name and a given sequence number. 6452 * if 'add_backref' is true, also insert a backref from the 6453 * inode to the parent directory. 6454 */ 6455 int btrfs_add_link(struct btrfs_trans_handle *trans, 6456 struct btrfs_inode *parent_inode, struct btrfs_inode *inode, 6457 const char *name, int name_len, int add_backref, u64 index) 6458 { 6459 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb); 6460 int ret = 0; 6461 struct btrfs_key key; 6462 struct btrfs_root *root = parent_inode->root; 6463 u64 ino = btrfs_ino(inode); 6464 u64 parent_ino = btrfs_ino(parent_inode); 6465 6466 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6467 memcpy(&key, &inode->root->root_key, sizeof(key)); 6468 } else { 6469 key.objectid = ino; 6470 key.type = BTRFS_INODE_ITEM_KEY; 6471 key.offset = 0; 6472 } 6473 6474 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6475 ret = btrfs_add_root_ref(trans, fs_info, key.objectid, 6476 root->root_key.objectid, parent_ino, 6477 index, name, name_len); 6478 } else if (add_backref) { 6479 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino, 6480 parent_ino, index); 6481 } 6482 6483 /* Nothing to clean up yet */ 6484 if (ret) 6485 return ret; 6486 6487 ret = btrfs_insert_dir_item(trans, root, name, name_len, 6488 parent_inode, &key, 6489 btrfs_inode_type(&inode->vfs_inode), index); 6490 if (ret == -EEXIST || ret == -EOVERFLOW) 6491 goto fail_dir_item; 6492 else if (ret) { 6493 btrfs_abort_transaction(trans, ret); 6494 return ret; 6495 } 6496 6497 btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size + 6498 name_len * 2); 6499 inode_inc_iversion(&parent_inode->vfs_inode); 6500 parent_inode->vfs_inode.i_mtime = parent_inode->vfs_inode.i_ctime = 6501 current_time(&parent_inode->vfs_inode); 6502 ret = btrfs_update_inode(trans, root, &parent_inode->vfs_inode); 6503 if (ret) 6504 btrfs_abort_transaction(trans, ret); 6505 return ret; 6506 6507 fail_dir_item: 6508 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6509 u64 local_index; 6510 int err; 6511 err = btrfs_del_root_ref(trans, fs_info, key.objectid, 6512 root->root_key.objectid, parent_ino, 6513 &local_index, name, name_len); 6514 6515 } else if (add_backref) { 6516 u64 local_index; 6517 int err; 6518 6519 err = btrfs_del_inode_ref(trans, root, name, name_len, 6520 ino, parent_ino, &local_index); 6521 } 6522 return ret; 6523 } 6524 6525 static int btrfs_add_nondir(struct btrfs_trans_handle *trans, 6526 struct btrfs_inode *dir, struct dentry *dentry, 6527 struct btrfs_inode *inode, int backref, u64 index) 6528 { 6529 int err = btrfs_add_link(trans, dir, inode, 6530 dentry->d_name.name, dentry->d_name.len, 6531 backref, index); 6532 if (err > 0) 6533 err = -EEXIST; 6534 return err; 6535 } 6536 6537 static int btrfs_mknod(struct inode *dir, struct dentry *dentry, 6538 umode_t mode, dev_t rdev) 6539 { 6540 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 6541 struct btrfs_trans_handle *trans; 6542 struct btrfs_root *root = BTRFS_I(dir)->root; 6543 struct inode *inode = NULL; 6544 int err; 6545 int drop_inode = 0; 6546 u64 objectid; 6547 u64 index = 0; 6548 6549 /* 6550 * 2 for inode item and ref 6551 * 2 for dir items 6552 * 1 for xattr if selinux is on 6553 */ 6554 trans = btrfs_start_transaction(root, 5); 6555 if (IS_ERR(trans)) 6556 return PTR_ERR(trans); 6557 6558 err = btrfs_find_free_ino(root, &objectid); 6559 if (err) 6560 goto out_unlock; 6561 6562 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 6563 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid, 6564 mode, &index); 6565 if (IS_ERR(inode)) { 6566 err = PTR_ERR(inode); 6567 goto out_unlock; 6568 } 6569 6570 /* 6571 * If the active LSM wants to access the inode during 6572 * d_instantiate it needs these. Smack checks to see 6573 * if the filesystem supports xattrs by looking at the 6574 * ops vector. 6575 */ 6576 inode->i_op = &btrfs_special_inode_operations; 6577 init_special_inode(inode, inode->i_mode, rdev); 6578 6579 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 6580 if (err) 6581 goto out_unlock_inode; 6582 6583 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode), 6584 0, index); 6585 if (err) { 6586 goto out_unlock_inode; 6587 } else { 6588 btrfs_update_inode(trans, root, inode); 6589 d_instantiate_new(dentry, inode); 6590 } 6591 6592 out_unlock: 6593 btrfs_end_transaction(trans); 6594 btrfs_btree_balance_dirty(fs_info); 6595 if (drop_inode) { 6596 inode_dec_link_count(inode); 6597 iput(inode); 6598 } 6599 return err; 6600 6601 out_unlock_inode: 6602 drop_inode = 1; 6603 unlock_new_inode(inode); 6604 goto out_unlock; 6605 6606 } 6607 6608 static int btrfs_create(struct inode *dir, struct dentry *dentry, 6609 umode_t mode, bool excl) 6610 { 6611 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 6612 struct btrfs_trans_handle *trans; 6613 struct btrfs_root *root = BTRFS_I(dir)->root; 6614 struct inode *inode = NULL; 6615 int drop_inode_on_err = 0; 6616 int err; 6617 u64 objectid; 6618 u64 index = 0; 6619 6620 /* 6621 * 2 for inode item and ref 6622 * 2 for dir items 6623 * 1 for xattr if selinux is on 6624 */ 6625 trans = btrfs_start_transaction(root, 5); 6626 if (IS_ERR(trans)) 6627 return PTR_ERR(trans); 6628 6629 err = btrfs_find_free_ino(root, &objectid); 6630 if (err) 6631 goto out_unlock; 6632 6633 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 6634 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid, 6635 mode, &index); 6636 if (IS_ERR(inode)) { 6637 err = PTR_ERR(inode); 6638 goto out_unlock; 6639 } 6640 drop_inode_on_err = 1; 6641 /* 6642 * If the active LSM wants to access the inode during 6643 * d_instantiate it needs these. Smack checks to see 6644 * if the filesystem supports xattrs by looking at the 6645 * ops vector. 6646 */ 6647 inode->i_fop = &btrfs_file_operations; 6648 inode->i_op = &btrfs_file_inode_operations; 6649 inode->i_mapping->a_ops = &btrfs_aops; 6650 6651 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 6652 if (err) 6653 goto out_unlock_inode; 6654 6655 err = btrfs_update_inode(trans, root, inode); 6656 if (err) 6657 goto out_unlock_inode; 6658 6659 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode), 6660 0, index); 6661 if (err) 6662 goto out_unlock_inode; 6663 6664 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 6665 d_instantiate_new(dentry, inode); 6666 6667 out_unlock: 6668 btrfs_end_transaction(trans); 6669 if (err && drop_inode_on_err) { 6670 inode_dec_link_count(inode); 6671 iput(inode); 6672 } 6673 btrfs_btree_balance_dirty(fs_info); 6674 return err; 6675 6676 out_unlock_inode: 6677 unlock_new_inode(inode); 6678 goto out_unlock; 6679 6680 } 6681 6682 static int btrfs_link(struct dentry *old_dentry, struct inode *dir, 6683 struct dentry *dentry) 6684 { 6685 struct btrfs_trans_handle *trans = NULL; 6686 struct btrfs_root *root = BTRFS_I(dir)->root; 6687 struct inode *inode = d_inode(old_dentry); 6688 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 6689 u64 index; 6690 int err; 6691 int drop_inode = 0; 6692 6693 /* do not allow sys_link's with other subvols of the same device */ 6694 if (root->objectid != BTRFS_I(inode)->root->objectid) 6695 return -EXDEV; 6696 6697 if (inode->i_nlink >= BTRFS_LINK_MAX) 6698 return -EMLINK; 6699 6700 err = btrfs_set_inode_index(BTRFS_I(dir), &index); 6701 if (err) 6702 goto fail; 6703 6704 /* 6705 * 2 items for inode and inode ref 6706 * 2 items for dir items 6707 * 1 item for parent inode 6708 */ 6709 trans = btrfs_start_transaction(root, 5); 6710 if (IS_ERR(trans)) { 6711 err = PTR_ERR(trans); 6712 trans = NULL; 6713 goto fail; 6714 } 6715 6716 /* There are several dir indexes for this inode, clear the cache. */ 6717 BTRFS_I(inode)->dir_index = 0ULL; 6718 inc_nlink(inode); 6719 inode_inc_iversion(inode); 6720 inode->i_ctime = current_time(inode); 6721 ihold(inode); 6722 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags); 6723 6724 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode), 6725 1, index); 6726 6727 if (err) { 6728 drop_inode = 1; 6729 } else { 6730 struct dentry *parent = dentry->d_parent; 6731 err = btrfs_update_inode(trans, root, inode); 6732 if (err) 6733 goto fail; 6734 if (inode->i_nlink == 1) { 6735 /* 6736 * If new hard link count is 1, it's a file created 6737 * with open(2) O_TMPFILE flag. 6738 */ 6739 err = btrfs_orphan_del(trans, BTRFS_I(inode)); 6740 if (err) 6741 goto fail; 6742 } 6743 d_instantiate(dentry, inode); 6744 btrfs_log_new_name(trans, BTRFS_I(inode), NULL, parent); 6745 } 6746 6747 fail: 6748 if (trans) 6749 btrfs_end_transaction(trans); 6750 if (drop_inode) { 6751 inode_dec_link_count(inode); 6752 iput(inode); 6753 } 6754 btrfs_btree_balance_dirty(fs_info); 6755 return err; 6756 } 6757 6758 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 6759 { 6760 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 6761 struct inode *inode = NULL; 6762 struct btrfs_trans_handle *trans; 6763 struct btrfs_root *root = BTRFS_I(dir)->root; 6764 int err = 0; 6765 int drop_on_err = 0; 6766 u64 objectid = 0; 6767 u64 index = 0; 6768 6769 /* 6770 * 2 items for inode and ref 6771 * 2 items for dir items 6772 * 1 for xattr if selinux is on 6773 */ 6774 trans = btrfs_start_transaction(root, 5); 6775 if (IS_ERR(trans)) 6776 return PTR_ERR(trans); 6777 6778 err = btrfs_find_free_ino(root, &objectid); 6779 if (err) 6780 goto out_fail; 6781 6782 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 6783 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid, 6784 S_IFDIR | mode, &index); 6785 if (IS_ERR(inode)) { 6786 err = PTR_ERR(inode); 6787 goto out_fail; 6788 } 6789 6790 drop_on_err = 1; 6791 /* these must be set before we unlock the inode */ 6792 inode->i_op = &btrfs_dir_inode_operations; 6793 inode->i_fop = &btrfs_dir_file_operations; 6794 6795 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 6796 if (err) 6797 goto out_fail_inode; 6798 6799 btrfs_i_size_write(BTRFS_I(inode), 0); 6800 err = btrfs_update_inode(trans, root, inode); 6801 if (err) 6802 goto out_fail_inode; 6803 6804 err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), 6805 dentry->d_name.name, 6806 dentry->d_name.len, 0, index); 6807 if (err) 6808 goto out_fail_inode; 6809 6810 d_instantiate_new(dentry, inode); 6811 drop_on_err = 0; 6812 6813 out_fail: 6814 btrfs_end_transaction(trans); 6815 if (drop_on_err) { 6816 inode_dec_link_count(inode); 6817 iput(inode); 6818 } 6819 btrfs_btree_balance_dirty(fs_info); 6820 return err; 6821 6822 out_fail_inode: 6823 unlock_new_inode(inode); 6824 goto out_fail; 6825 } 6826 6827 static noinline int uncompress_inline(struct btrfs_path *path, 6828 struct page *page, 6829 size_t pg_offset, u64 extent_offset, 6830 struct btrfs_file_extent_item *item) 6831 { 6832 int ret; 6833 struct extent_buffer *leaf = path->nodes[0]; 6834 char *tmp; 6835 size_t max_size; 6836 unsigned long inline_size; 6837 unsigned long ptr; 6838 int compress_type; 6839 6840 WARN_ON(pg_offset != 0); 6841 compress_type = btrfs_file_extent_compression(leaf, item); 6842 max_size = btrfs_file_extent_ram_bytes(leaf, item); 6843 inline_size = btrfs_file_extent_inline_item_len(leaf, 6844 btrfs_item_nr(path->slots[0])); 6845 tmp = kmalloc(inline_size, GFP_NOFS); 6846 if (!tmp) 6847 return -ENOMEM; 6848 ptr = btrfs_file_extent_inline_start(item); 6849 6850 read_extent_buffer(leaf, tmp, ptr, inline_size); 6851 6852 max_size = min_t(unsigned long, PAGE_SIZE, max_size); 6853 ret = btrfs_decompress(compress_type, tmp, page, 6854 extent_offset, inline_size, max_size); 6855 6856 /* 6857 * decompression code contains a memset to fill in any space between the end 6858 * of the uncompressed data and the end of max_size in case the decompressed 6859 * data ends up shorter than ram_bytes. That doesn't cover the hole between 6860 * the end of an inline extent and the beginning of the next block, so we 6861 * cover that region here. 6862 */ 6863 6864 if (max_size + pg_offset < PAGE_SIZE) { 6865 char *map = kmap(page); 6866 memset(map + pg_offset + max_size, 0, PAGE_SIZE - max_size - pg_offset); 6867 kunmap(page); 6868 } 6869 kfree(tmp); 6870 return ret; 6871 } 6872 6873 /* 6874 * a bit scary, this does extent mapping from logical file offset to the disk. 6875 * the ugly parts come from merging extents from the disk with the in-ram 6876 * representation. This gets more complex because of the data=ordered code, 6877 * where the in-ram extents might be locked pending data=ordered completion. 6878 * 6879 * This also copies inline extents directly into the page. 6880 */ 6881 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode, 6882 struct page *page, 6883 size_t pg_offset, u64 start, u64 len, 6884 int create) 6885 { 6886 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb); 6887 int ret; 6888 int err = 0; 6889 u64 extent_start = 0; 6890 u64 extent_end = 0; 6891 u64 objectid = btrfs_ino(inode); 6892 u32 found_type; 6893 struct btrfs_path *path = NULL; 6894 struct btrfs_root *root = inode->root; 6895 struct btrfs_file_extent_item *item; 6896 struct extent_buffer *leaf; 6897 struct btrfs_key found_key; 6898 struct extent_map *em = NULL; 6899 struct extent_map_tree *em_tree = &inode->extent_tree; 6900 struct extent_io_tree *io_tree = &inode->io_tree; 6901 const bool new_inline = !page || create; 6902 6903 read_lock(&em_tree->lock); 6904 em = lookup_extent_mapping(em_tree, start, len); 6905 if (em) 6906 em->bdev = fs_info->fs_devices->latest_bdev; 6907 read_unlock(&em_tree->lock); 6908 6909 if (em) { 6910 if (em->start > start || em->start + em->len <= start) 6911 free_extent_map(em); 6912 else if (em->block_start == EXTENT_MAP_INLINE && page) 6913 free_extent_map(em); 6914 else 6915 goto out; 6916 } 6917 em = alloc_extent_map(); 6918 if (!em) { 6919 err = -ENOMEM; 6920 goto out; 6921 } 6922 em->bdev = fs_info->fs_devices->latest_bdev; 6923 em->start = EXTENT_MAP_HOLE; 6924 em->orig_start = EXTENT_MAP_HOLE; 6925 em->len = (u64)-1; 6926 em->block_len = (u64)-1; 6927 6928 if (!path) { 6929 path = btrfs_alloc_path(); 6930 if (!path) { 6931 err = -ENOMEM; 6932 goto out; 6933 } 6934 /* 6935 * Chances are we'll be called again, so go ahead and do 6936 * readahead 6937 */ 6938 path->reada = READA_FORWARD; 6939 } 6940 6941 ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0); 6942 if (ret < 0) { 6943 err = ret; 6944 goto out; 6945 } 6946 6947 if (ret != 0) { 6948 if (path->slots[0] == 0) 6949 goto not_found; 6950 path->slots[0]--; 6951 } 6952 6953 leaf = path->nodes[0]; 6954 item = btrfs_item_ptr(leaf, path->slots[0], 6955 struct btrfs_file_extent_item); 6956 /* are we inside the extent that was found? */ 6957 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6958 found_type = found_key.type; 6959 if (found_key.objectid != objectid || 6960 found_type != BTRFS_EXTENT_DATA_KEY) { 6961 /* 6962 * If we backup past the first extent we want to move forward 6963 * and see if there is an extent in front of us, otherwise we'll 6964 * say there is a hole for our whole search range which can 6965 * cause problems. 6966 */ 6967 extent_end = start; 6968 goto next; 6969 } 6970 6971 found_type = btrfs_file_extent_type(leaf, item); 6972 extent_start = found_key.offset; 6973 if (found_type == BTRFS_FILE_EXTENT_REG || 6974 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 6975 extent_end = extent_start + 6976 btrfs_file_extent_num_bytes(leaf, item); 6977 6978 trace_btrfs_get_extent_show_fi_regular(inode, leaf, item, 6979 extent_start); 6980 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 6981 size_t size; 6982 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item); 6983 extent_end = ALIGN(extent_start + size, 6984 fs_info->sectorsize); 6985 6986 trace_btrfs_get_extent_show_fi_inline(inode, leaf, item, 6987 path->slots[0], 6988 extent_start); 6989 } 6990 next: 6991 if (start >= extent_end) { 6992 path->slots[0]++; 6993 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 6994 ret = btrfs_next_leaf(root, path); 6995 if (ret < 0) { 6996 err = ret; 6997 goto out; 6998 } 6999 if (ret > 0) 7000 goto not_found; 7001 leaf = path->nodes[0]; 7002 } 7003 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 7004 if (found_key.objectid != objectid || 7005 found_key.type != BTRFS_EXTENT_DATA_KEY) 7006 goto not_found; 7007 if (start + len <= found_key.offset) 7008 goto not_found; 7009 if (start > found_key.offset) 7010 goto next; 7011 em->start = start; 7012 em->orig_start = start; 7013 em->len = found_key.offset - start; 7014 goto not_found_em; 7015 } 7016 7017 btrfs_extent_item_to_extent_map(inode, path, item, 7018 new_inline, em); 7019 7020 if (found_type == BTRFS_FILE_EXTENT_REG || 7021 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 7022 goto insert; 7023 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 7024 unsigned long ptr; 7025 char *map; 7026 size_t size; 7027 size_t extent_offset; 7028 size_t copy_size; 7029 7030 if (new_inline) 7031 goto out; 7032 7033 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item); 7034 extent_offset = page_offset(page) + pg_offset - extent_start; 7035 copy_size = min_t(u64, PAGE_SIZE - pg_offset, 7036 size - extent_offset); 7037 em->start = extent_start + extent_offset; 7038 em->len = ALIGN(copy_size, fs_info->sectorsize); 7039 em->orig_block_len = em->len; 7040 em->orig_start = em->start; 7041 ptr = btrfs_file_extent_inline_start(item) + extent_offset; 7042 if (!PageUptodate(page)) { 7043 if (btrfs_file_extent_compression(leaf, item) != 7044 BTRFS_COMPRESS_NONE) { 7045 ret = uncompress_inline(path, page, pg_offset, 7046 extent_offset, item); 7047 if (ret) { 7048 err = ret; 7049 goto out; 7050 } 7051 } else { 7052 map = kmap(page); 7053 read_extent_buffer(leaf, map + pg_offset, ptr, 7054 copy_size); 7055 if (pg_offset + copy_size < PAGE_SIZE) { 7056 memset(map + pg_offset + copy_size, 0, 7057 PAGE_SIZE - pg_offset - 7058 copy_size); 7059 } 7060 kunmap(page); 7061 } 7062 flush_dcache_page(page); 7063 } 7064 set_extent_uptodate(io_tree, em->start, 7065 extent_map_end(em) - 1, NULL, GFP_NOFS); 7066 goto insert; 7067 } 7068 not_found: 7069 em->start = start; 7070 em->orig_start = start; 7071 em->len = len; 7072 not_found_em: 7073 em->block_start = EXTENT_MAP_HOLE; 7074 insert: 7075 btrfs_release_path(path); 7076 if (em->start > start || extent_map_end(em) <= start) { 7077 btrfs_err(fs_info, 7078 "bad extent! em: [%llu %llu] passed [%llu %llu]", 7079 em->start, em->len, start, len); 7080 err = -EIO; 7081 goto out; 7082 } 7083 7084 err = 0; 7085 write_lock(&em_tree->lock); 7086 err = btrfs_add_extent_mapping(em_tree, &em, start, len); 7087 write_unlock(&em_tree->lock); 7088 out: 7089 7090 trace_btrfs_get_extent(root, inode, em); 7091 7092 btrfs_free_path(path); 7093 if (err) { 7094 free_extent_map(em); 7095 return ERR_PTR(err); 7096 } 7097 BUG_ON(!em); /* Error is always set */ 7098 return em; 7099 } 7100 7101 struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode, 7102 struct page *page, 7103 size_t pg_offset, u64 start, u64 len, 7104 int create) 7105 { 7106 struct extent_map *em; 7107 struct extent_map *hole_em = NULL; 7108 u64 range_start = start; 7109 u64 end; 7110 u64 found; 7111 u64 found_end; 7112 int err = 0; 7113 7114 em = btrfs_get_extent(inode, page, pg_offset, start, len, create); 7115 if (IS_ERR(em)) 7116 return em; 7117 /* 7118 * If our em maps to: 7119 * - a hole or 7120 * - a pre-alloc extent, 7121 * there might actually be delalloc bytes behind it. 7122 */ 7123 if (em->block_start != EXTENT_MAP_HOLE && 7124 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 7125 return em; 7126 else 7127 hole_em = em; 7128 7129 /* check to see if we've wrapped (len == -1 or similar) */ 7130 end = start + len; 7131 if (end < start) 7132 end = (u64)-1; 7133 else 7134 end -= 1; 7135 7136 em = NULL; 7137 7138 /* ok, we didn't find anything, lets look for delalloc */ 7139 found = count_range_bits(&inode->io_tree, &range_start, 7140 end, len, EXTENT_DELALLOC, 1); 7141 found_end = range_start + found; 7142 if (found_end < range_start) 7143 found_end = (u64)-1; 7144 7145 /* 7146 * we didn't find anything useful, return 7147 * the original results from get_extent() 7148 */ 7149 if (range_start > end || found_end <= start) { 7150 em = hole_em; 7151 hole_em = NULL; 7152 goto out; 7153 } 7154 7155 /* adjust the range_start to make sure it doesn't 7156 * go backwards from the start they passed in 7157 */ 7158 range_start = max(start, range_start); 7159 found = found_end - range_start; 7160 7161 if (found > 0) { 7162 u64 hole_start = start; 7163 u64 hole_len = len; 7164 7165 em = alloc_extent_map(); 7166 if (!em) { 7167 err = -ENOMEM; 7168 goto out; 7169 } 7170 /* 7171 * when btrfs_get_extent can't find anything it 7172 * returns one huge hole 7173 * 7174 * make sure what it found really fits our range, and 7175 * adjust to make sure it is based on the start from 7176 * the caller 7177 */ 7178 if (hole_em) { 7179 u64 calc_end = extent_map_end(hole_em); 7180 7181 if (calc_end <= start || (hole_em->start > end)) { 7182 free_extent_map(hole_em); 7183 hole_em = NULL; 7184 } else { 7185 hole_start = max(hole_em->start, start); 7186 hole_len = calc_end - hole_start; 7187 } 7188 } 7189 em->bdev = NULL; 7190 if (hole_em && range_start > hole_start) { 7191 /* our hole starts before our delalloc, so we 7192 * have to return just the parts of the hole 7193 * that go until the delalloc starts 7194 */ 7195 em->len = min(hole_len, 7196 range_start - hole_start); 7197 em->start = hole_start; 7198 em->orig_start = hole_start; 7199 /* 7200 * don't adjust block start at all, 7201 * it is fixed at EXTENT_MAP_HOLE 7202 */ 7203 em->block_start = hole_em->block_start; 7204 em->block_len = hole_len; 7205 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags)) 7206 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 7207 } else { 7208 em->start = range_start; 7209 em->len = found; 7210 em->orig_start = range_start; 7211 em->block_start = EXTENT_MAP_DELALLOC; 7212 em->block_len = found; 7213 } 7214 } else { 7215 return hole_em; 7216 } 7217 out: 7218 7219 free_extent_map(hole_em); 7220 if (err) { 7221 free_extent_map(em); 7222 return ERR_PTR(err); 7223 } 7224 return em; 7225 } 7226 7227 static struct extent_map *btrfs_create_dio_extent(struct inode *inode, 7228 const u64 start, 7229 const u64 len, 7230 const u64 orig_start, 7231 const u64 block_start, 7232 const u64 block_len, 7233 const u64 orig_block_len, 7234 const u64 ram_bytes, 7235 const int type) 7236 { 7237 struct extent_map *em = NULL; 7238 int ret; 7239 7240 if (type != BTRFS_ORDERED_NOCOW) { 7241 em = create_io_em(inode, start, len, orig_start, 7242 block_start, block_len, orig_block_len, 7243 ram_bytes, 7244 BTRFS_COMPRESS_NONE, /* compress_type */ 7245 type); 7246 if (IS_ERR(em)) 7247 goto out; 7248 } 7249 ret = btrfs_add_ordered_extent_dio(inode, start, block_start, 7250 len, block_len, type); 7251 if (ret) { 7252 if (em) { 7253 free_extent_map(em); 7254 btrfs_drop_extent_cache(BTRFS_I(inode), start, 7255 start + len - 1, 0); 7256 } 7257 em = ERR_PTR(ret); 7258 } 7259 out: 7260 7261 return em; 7262 } 7263 7264 static struct extent_map *btrfs_new_extent_direct(struct inode *inode, 7265 u64 start, u64 len) 7266 { 7267 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7268 struct btrfs_root *root = BTRFS_I(inode)->root; 7269 struct extent_map *em; 7270 struct btrfs_key ins; 7271 u64 alloc_hint; 7272 int ret; 7273 7274 alloc_hint = get_extent_allocation_hint(inode, start, len); 7275 ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize, 7276 0, alloc_hint, &ins, 1, 1); 7277 if (ret) 7278 return ERR_PTR(ret); 7279 7280 em = btrfs_create_dio_extent(inode, start, ins.offset, start, 7281 ins.objectid, ins.offset, ins.offset, 7282 ins.offset, BTRFS_ORDERED_REGULAR); 7283 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 7284 if (IS_ERR(em)) 7285 btrfs_free_reserved_extent(fs_info, ins.objectid, 7286 ins.offset, 1); 7287 7288 return em; 7289 } 7290 7291 /* 7292 * returns 1 when the nocow is safe, < 1 on error, 0 if the 7293 * block must be cow'd 7294 */ 7295 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len, 7296 u64 *orig_start, u64 *orig_block_len, 7297 u64 *ram_bytes) 7298 { 7299 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7300 struct btrfs_path *path; 7301 int ret; 7302 struct extent_buffer *leaf; 7303 struct btrfs_root *root = BTRFS_I(inode)->root; 7304 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 7305 struct btrfs_file_extent_item *fi; 7306 struct btrfs_key key; 7307 u64 disk_bytenr; 7308 u64 backref_offset; 7309 u64 extent_end; 7310 u64 num_bytes; 7311 int slot; 7312 int found_type; 7313 bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW); 7314 7315 path = btrfs_alloc_path(); 7316 if (!path) 7317 return -ENOMEM; 7318 7319 ret = btrfs_lookup_file_extent(NULL, root, path, 7320 btrfs_ino(BTRFS_I(inode)), offset, 0); 7321 if (ret < 0) 7322 goto out; 7323 7324 slot = path->slots[0]; 7325 if (ret == 1) { 7326 if (slot == 0) { 7327 /* can't find the item, must cow */ 7328 ret = 0; 7329 goto out; 7330 } 7331 slot--; 7332 } 7333 ret = 0; 7334 leaf = path->nodes[0]; 7335 btrfs_item_key_to_cpu(leaf, &key, slot); 7336 if (key.objectid != btrfs_ino(BTRFS_I(inode)) || 7337 key.type != BTRFS_EXTENT_DATA_KEY) { 7338 /* not our file or wrong item type, must cow */ 7339 goto out; 7340 } 7341 7342 if (key.offset > offset) { 7343 /* Wrong offset, must cow */ 7344 goto out; 7345 } 7346 7347 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 7348 found_type = btrfs_file_extent_type(leaf, fi); 7349 if (found_type != BTRFS_FILE_EXTENT_REG && 7350 found_type != BTRFS_FILE_EXTENT_PREALLOC) { 7351 /* not a regular extent, must cow */ 7352 goto out; 7353 } 7354 7355 if (!nocow && found_type == BTRFS_FILE_EXTENT_REG) 7356 goto out; 7357 7358 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 7359 if (extent_end <= offset) 7360 goto out; 7361 7362 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 7363 if (disk_bytenr == 0) 7364 goto out; 7365 7366 if (btrfs_file_extent_compression(leaf, fi) || 7367 btrfs_file_extent_encryption(leaf, fi) || 7368 btrfs_file_extent_other_encoding(leaf, fi)) 7369 goto out; 7370 7371 backref_offset = btrfs_file_extent_offset(leaf, fi); 7372 7373 if (orig_start) { 7374 *orig_start = key.offset - backref_offset; 7375 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi); 7376 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 7377 } 7378 7379 if (btrfs_extent_readonly(fs_info, disk_bytenr)) 7380 goto out; 7381 7382 num_bytes = min(offset + *len, extent_end) - offset; 7383 if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) { 7384 u64 range_end; 7385 7386 range_end = round_up(offset + num_bytes, 7387 root->fs_info->sectorsize) - 1; 7388 ret = test_range_bit(io_tree, offset, range_end, 7389 EXTENT_DELALLOC, 0, NULL); 7390 if (ret) { 7391 ret = -EAGAIN; 7392 goto out; 7393 } 7394 } 7395 7396 btrfs_release_path(path); 7397 7398 /* 7399 * look for other files referencing this extent, if we 7400 * find any we must cow 7401 */ 7402 7403 ret = btrfs_cross_ref_exist(root, btrfs_ino(BTRFS_I(inode)), 7404 key.offset - backref_offset, disk_bytenr); 7405 if (ret) { 7406 ret = 0; 7407 goto out; 7408 } 7409 7410 /* 7411 * adjust disk_bytenr and num_bytes to cover just the bytes 7412 * in this extent we are about to write. If there 7413 * are any csums in that range we have to cow in order 7414 * to keep the csums correct 7415 */ 7416 disk_bytenr += backref_offset; 7417 disk_bytenr += offset - key.offset; 7418 if (csum_exist_in_range(fs_info, disk_bytenr, num_bytes)) 7419 goto out; 7420 /* 7421 * all of the above have passed, it is safe to overwrite this extent 7422 * without cow 7423 */ 7424 *len = num_bytes; 7425 ret = 1; 7426 out: 7427 btrfs_free_path(path); 7428 return ret; 7429 } 7430 7431 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend, 7432 struct extent_state **cached_state, int writing) 7433 { 7434 struct btrfs_ordered_extent *ordered; 7435 int ret = 0; 7436 7437 while (1) { 7438 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7439 cached_state); 7440 /* 7441 * We're concerned with the entire range that we're going to be 7442 * doing DIO to, so we need to make sure there's no ordered 7443 * extents in this range. 7444 */ 7445 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart, 7446 lockend - lockstart + 1); 7447 7448 /* 7449 * We need to make sure there are no buffered pages in this 7450 * range either, we could have raced between the invalidate in 7451 * generic_file_direct_write and locking the extent. The 7452 * invalidate needs to happen so that reads after a write do not 7453 * get stale data. 7454 */ 7455 if (!ordered && 7456 (!writing || !filemap_range_has_page(inode->i_mapping, 7457 lockstart, lockend))) 7458 break; 7459 7460 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7461 cached_state); 7462 7463 if (ordered) { 7464 /* 7465 * If we are doing a DIO read and the ordered extent we 7466 * found is for a buffered write, we can not wait for it 7467 * to complete and retry, because if we do so we can 7468 * deadlock with concurrent buffered writes on page 7469 * locks. This happens only if our DIO read covers more 7470 * than one extent map, if at this point has already 7471 * created an ordered extent for a previous extent map 7472 * and locked its range in the inode's io tree, and a 7473 * concurrent write against that previous extent map's 7474 * range and this range started (we unlock the ranges 7475 * in the io tree only when the bios complete and 7476 * buffered writes always lock pages before attempting 7477 * to lock range in the io tree). 7478 */ 7479 if (writing || 7480 test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) 7481 btrfs_start_ordered_extent(inode, ordered, 1); 7482 else 7483 ret = -ENOTBLK; 7484 btrfs_put_ordered_extent(ordered); 7485 } else { 7486 /* 7487 * We could trigger writeback for this range (and wait 7488 * for it to complete) and then invalidate the pages for 7489 * this range (through invalidate_inode_pages2_range()), 7490 * but that can lead us to a deadlock with a concurrent 7491 * call to readpages() (a buffered read or a defrag call 7492 * triggered a readahead) on a page lock due to an 7493 * ordered dio extent we created before but did not have 7494 * yet a corresponding bio submitted (whence it can not 7495 * complete), which makes readpages() wait for that 7496 * ordered extent to complete while holding a lock on 7497 * that page. 7498 */ 7499 ret = -ENOTBLK; 7500 } 7501 7502 if (ret) 7503 break; 7504 7505 cond_resched(); 7506 } 7507 7508 return ret; 7509 } 7510 7511 /* The callers of this must take lock_extent() */ 7512 static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len, 7513 u64 orig_start, u64 block_start, 7514 u64 block_len, u64 orig_block_len, 7515 u64 ram_bytes, int compress_type, 7516 int type) 7517 { 7518 struct extent_map_tree *em_tree; 7519 struct extent_map *em; 7520 struct btrfs_root *root = BTRFS_I(inode)->root; 7521 int ret; 7522 7523 ASSERT(type == BTRFS_ORDERED_PREALLOC || 7524 type == BTRFS_ORDERED_COMPRESSED || 7525 type == BTRFS_ORDERED_NOCOW || 7526 type == BTRFS_ORDERED_REGULAR); 7527 7528 em_tree = &BTRFS_I(inode)->extent_tree; 7529 em = alloc_extent_map(); 7530 if (!em) 7531 return ERR_PTR(-ENOMEM); 7532 7533 em->start = start; 7534 em->orig_start = orig_start; 7535 em->len = len; 7536 em->block_len = block_len; 7537 em->block_start = block_start; 7538 em->bdev = root->fs_info->fs_devices->latest_bdev; 7539 em->orig_block_len = orig_block_len; 7540 em->ram_bytes = ram_bytes; 7541 em->generation = -1; 7542 set_bit(EXTENT_FLAG_PINNED, &em->flags); 7543 if (type == BTRFS_ORDERED_PREALLOC) { 7544 set_bit(EXTENT_FLAG_FILLING, &em->flags); 7545 } else if (type == BTRFS_ORDERED_COMPRESSED) { 7546 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 7547 em->compress_type = compress_type; 7548 } 7549 7550 do { 7551 btrfs_drop_extent_cache(BTRFS_I(inode), em->start, 7552 em->start + em->len - 1, 0); 7553 write_lock(&em_tree->lock); 7554 ret = add_extent_mapping(em_tree, em, 1); 7555 write_unlock(&em_tree->lock); 7556 /* 7557 * The caller has taken lock_extent(), who could race with us 7558 * to add em? 7559 */ 7560 } while (ret == -EEXIST); 7561 7562 if (ret) { 7563 free_extent_map(em); 7564 return ERR_PTR(ret); 7565 } 7566 7567 /* em got 2 refs now, callers needs to do free_extent_map once. */ 7568 return em; 7569 } 7570 7571 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock, 7572 struct buffer_head *bh_result, int create) 7573 { 7574 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7575 struct extent_map *em; 7576 struct extent_state *cached_state = NULL; 7577 struct btrfs_dio_data *dio_data = NULL; 7578 u64 start = iblock << inode->i_blkbits; 7579 u64 lockstart, lockend; 7580 u64 len = bh_result->b_size; 7581 int unlock_bits = EXTENT_LOCKED; 7582 int ret = 0; 7583 7584 if (create) 7585 unlock_bits |= EXTENT_DIRTY; 7586 else 7587 len = min_t(u64, len, fs_info->sectorsize); 7588 7589 lockstart = start; 7590 lockend = start + len - 1; 7591 7592 if (current->journal_info) { 7593 /* 7594 * Need to pull our outstanding extents and set journal_info to NULL so 7595 * that anything that needs to check if there's a transaction doesn't get 7596 * confused. 7597 */ 7598 dio_data = current->journal_info; 7599 current->journal_info = NULL; 7600 } 7601 7602 /* 7603 * If this errors out it's because we couldn't invalidate pagecache for 7604 * this range and we need to fallback to buffered. 7605 */ 7606 if (lock_extent_direct(inode, lockstart, lockend, &cached_state, 7607 create)) { 7608 ret = -ENOTBLK; 7609 goto err; 7610 } 7611 7612 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len, 0); 7613 if (IS_ERR(em)) { 7614 ret = PTR_ERR(em); 7615 goto unlock_err; 7616 } 7617 7618 /* 7619 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered 7620 * io. INLINE is special, and we could probably kludge it in here, but 7621 * it's still buffered so for safety lets just fall back to the generic 7622 * buffered path. 7623 * 7624 * For COMPRESSED we _have_ to read the entire extent in so we can 7625 * decompress it, so there will be buffering required no matter what we 7626 * do, so go ahead and fallback to buffered. 7627 * 7628 * We return -ENOTBLK because that's what makes DIO go ahead and go back 7629 * to buffered IO. Don't blame me, this is the price we pay for using 7630 * the generic code. 7631 */ 7632 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) || 7633 em->block_start == EXTENT_MAP_INLINE) { 7634 free_extent_map(em); 7635 ret = -ENOTBLK; 7636 goto unlock_err; 7637 } 7638 7639 /* Just a good old fashioned hole, return */ 7640 if (!create && (em->block_start == EXTENT_MAP_HOLE || 7641 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) { 7642 free_extent_map(em); 7643 goto unlock_err; 7644 } 7645 7646 /* 7647 * We don't allocate a new extent in the following cases 7648 * 7649 * 1) The inode is marked as NODATACOW. In this case we'll just use the 7650 * existing extent. 7651 * 2) The extent is marked as PREALLOC. We're good to go here and can 7652 * just use the extent. 7653 * 7654 */ 7655 if (!create) { 7656 len = min(len, em->len - (start - em->start)); 7657 lockstart = start + len; 7658 goto unlock; 7659 } 7660 7661 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) || 7662 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) && 7663 em->block_start != EXTENT_MAP_HOLE)) { 7664 int type; 7665 u64 block_start, orig_start, orig_block_len, ram_bytes; 7666 7667 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 7668 type = BTRFS_ORDERED_PREALLOC; 7669 else 7670 type = BTRFS_ORDERED_NOCOW; 7671 len = min(len, em->len - (start - em->start)); 7672 block_start = em->block_start + (start - em->start); 7673 7674 if (can_nocow_extent(inode, start, &len, &orig_start, 7675 &orig_block_len, &ram_bytes) == 1 && 7676 btrfs_inc_nocow_writers(fs_info, block_start)) { 7677 struct extent_map *em2; 7678 7679 em2 = btrfs_create_dio_extent(inode, start, len, 7680 orig_start, block_start, 7681 len, orig_block_len, 7682 ram_bytes, type); 7683 btrfs_dec_nocow_writers(fs_info, block_start); 7684 if (type == BTRFS_ORDERED_PREALLOC) { 7685 free_extent_map(em); 7686 em = em2; 7687 } 7688 if (em2 && IS_ERR(em2)) { 7689 ret = PTR_ERR(em2); 7690 goto unlock_err; 7691 } 7692 /* 7693 * For inode marked NODATACOW or extent marked PREALLOC, 7694 * use the existing or preallocated extent, so does not 7695 * need to adjust btrfs_space_info's bytes_may_use. 7696 */ 7697 btrfs_free_reserved_data_space_noquota(inode, 7698 start, len); 7699 goto unlock; 7700 } 7701 } 7702 7703 /* 7704 * this will cow the extent, reset the len in case we changed 7705 * it above 7706 */ 7707 len = bh_result->b_size; 7708 free_extent_map(em); 7709 em = btrfs_new_extent_direct(inode, start, len); 7710 if (IS_ERR(em)) { 7711 ret = PTR_ERR(em); 7712 goto unlock_err; 7713 } 7714 len = min(len, em->len - (start - em->start)); 7715 unlock: 7716 bh_result->b_blocknr = (em->block_start + (start - em->start)) >> 7717 inode->i_blkbits; 7718 bh_result->b_size = len; 7719 bh_result->b_bdev = em->bdev; 7720 set_buffer_mapped(bh_result); 7721 if (create) { 7722 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 7723 set_buffer_new(bh_result); 7724 7725 /* 7726 * Need to update the i_size under the extent lock so buffered 7727 * readers will get the updated i_size when we unlock. 7728 */ 7729 if (!dio_data->overwrite && start + len > i_size_read(inode)) 7730 i_size_write(inode, start + len); 7731 7732 WARN_ON(dio_data->reserve < len); 7733 dio_data->reserve -= len; 7734 dio_data->unsubmitted_oe_range_end = start + len; 7735 current->journal_info = dio_data; 7736 } 7737 7738 /* 7739 * In the case of write we need to clear and unlock the entire range, 7740 * in the case of read we need to unlock only the end area that we 7741 * aren't using if there is any left over space. 7742 */ 7743 if (lockstart < lockend) { 7744 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, 7745 lockend, unlock_bits, 1, 0, 7746 &cached_state); 7747 } else { 7748 free_extent_state(cached_state); 7749 } 7750 7751 free_extent_map(em); 7752 7753 return 0; 7754 7755 unlock_err: 7756 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7757 unlock_bits, 1, 0, &cached_state); 7758 err: 7759 if (dio_data) 7760 current->journal_info = dio_data; 7761 return ret; 7762 } 7763 7764 static inline blk_status_t submit_dio_repair_bio(struct inode *inode, 7765 struct bio *bio, 7766 int mirror_num) 7767 { 7768 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7769 blk_status_t ret; 7770 7771 BUG_ON(bio_op(bio) == REQ_OP_WRITE); 7772 7773 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DIO_REPAIR); 7774 if (ret) 7775 return ret; 7776 7777 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0); 7778 7779 return ret; 7780 } 7781 7782 static int btrfs_check_dio_repairable(struct inode *inode, 7783 struct bio *failed_bio, 7784 struct io_failure_record *failrec, 7785 int failed_mirror) 7786 { 7787 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7788 int num_copies; 7789 7790 num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len); 7791 if (num_copies == 1) { 7792 /* 7793 * we only have a single copy of the data, so don't bother with 7794 * all the retry and error correction code that follows. no 7795 * matter what the error is, it is very likely to persist. 7796 */ 7797 btrfs_debug(fs_info, 7798 "Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d", 7799 num_copies, failrec->this_mirror, failed_mirror); 7800 return 0; 7801 } 7802 7803 failrec->failed_mirror = failed_mirror; 7804 failrec->this_mirror++; 7805 if (failrec->this_mirror == failed_mirror) 7806 failrec->this_mirror++; 7807 7808 if (failrec->this_mirror > num_copies) { 7809 btrfs_debug(fs_info, 7810 "Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d", 7811 num_copies, failrec->this_mirror, failed_mirror); 7812 return 0; 7813 } 7814 7815 return 1; 7816 } 7817 7818 static blk_status_t dio_read_error(struct inode *inode, struct bio *failed_bio, 7819 struct page *page, unsigned int pgoff, 7820 u64 start, u64 end, int failed_mirror, 7821 bio_end_io_t *repair_endio, void *repair_arg) 7822 { 7823 struct io_failure_record *failrec; 7824 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 7825 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; 7826 struct bio *bio; 7827 int isector; 7828 unsigned int read_mode = 0; 7829 int segs; 7830 int ret; 7831 blk_status_t status; 7832 struct bio_vec bvec; 7833 7834 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE); 7835 7836 ret = btrfs_get_io_failure_record(inode, start, end, &failrec); 7837 if (ret) 7838 return errno_to_blk_status(ret); 7839 7840 ret = btrfs_check_dio_repairable(inode, failed_bio, failrec, 7841 failed_mirror); 7842 if (!ret) { 7843 free_io_failure(failure_tree, io_tree, failrec); 7844 return BLK_STS_IOERR; 7845 } 7846 7847 segs = bio_segments(failed_bio); 7848 bio_get_first_bvec(failed_bio, &bvec); 7849 if (segs > 1 || 7850 (bvec.bv_len > btrfs_inode_sectorsize(inode))) 7851 read_mode |= REQ_FAILFAST_DEV; 7852 7853 isector = start - btrfs_io_bio(failed_bio)->logical; 7854 isector >>= inode->i_sb->s_blocksize_bits; 7855 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page, 7856 pgoff, isector, repair_endio, repair_arg); 7857 bio_set_op_attrs(bio, REQ_OP_READ, read_mode); 7858 7859 btrfs_debug(BTRFS_I(inode)->root->fs_info, 7860 "repair DIO read error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d", 7861 read_mode, failrec->this_mirror, failrec->in_validation); 7862 7863 status = submit_dio_repair_bio(inode, bio, failrec->this_mirror); 7864 if (status) { 7865 free_io_failure(failure_tree, io_tree, failrec); 7866 bio_put(bio); 7867 } 7868 7869 return status; 7870 } 7871 7872 struct btrfs_retry_complete { 7873 struct completion done; 7874 struct inode *inode; 7875 u64 start; 7876 int uptodate; 7877 }; 7878 7879 static void btrfs_retry_endio_nocsum(struct bio *bio) 7880 { 7881 struct btrfs_retry_complete *done = bio->bi_private; 7882 struct inode *inode = done->inode; 7883 struct bio_vec *bvec; 7884 struct extent_io_tree *io_tree, *failure_tree; 7885 int i; 7886 7887 if (bio->bi_status) 7888 goto end; 7889 7890 ASSERT(bio->bi_vcnt == 1); 7891 io_tree = &BTRFS_I(inode)->io_tree; 7892 failure_tree = &BTRFS_I(inode)->io_failure_tree; 7893 ASSERT(bio_first_bvec_all(bio)->bv_len == btrfs_inode_sectorsize(inode)); 7894 7895 done->uptodate = 1; 7896 ASSERT(!bio_flagged(bio, BIO_CLONED)); 7897 bio_for_each_segment_all(bvec, bio, i) 7898 clean_io_failure(BTRFS_I(inode)->root->fs_info, failure_tree, 7899 io_tree, done->start, bvec->bv_page, 7900 btrfs_ino(BTRFS_I(inode)), 0); 7901 end: 7902 complete(&done->done); 7903 bio_put(bio); 7904 } 7905 7906 static blk_status_t __btrfs_correct_data_nocsum(struct inode *inode, 7907 struct btrfs_io_bio *io_bio) 7908 { 7909 struct btrfs_fs_info *fs_info; 7910 struct bio_vec bvec; 7911 struct bvec_iter iter; 7912 struct btrfs_retry_complete done; 7913 u64 start; 7914 unsigned int pgoff; 7915 u32 sectorsize; 7916 int nr_sectors; 7917 blk_status_t ret; 7918 blk_status_t err = BLK_STS_OK; 7919 7920 fs_info = BTRFS_I(inode)->root->fs_info; 7921 sectorsize = fs_info->sectorsize; 7922 7923 start = io_bio->logical; 7924 done.inode = inode; 7925 io_bio->bio.bi_iter = io_bio->iter; 7926 7927 bio_for_each_segment(bvec, &io_bio->bio, iter) { 7928 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len); 7929 pgoff = bvec.bv_offset; 7930 7931 next_block_or_try_again: 7932 done.uptodate = 0; 7933 done.start = start; 7934 init_completion(&done.done); 7935 7936 ret = dio_read_error(inode, &io_bio->bio, bvec.bv_page, 7937 pgoff, start, start + sectorsize - 1, 7938 io_bio->mirror_num, 7939 btrfs_retry_endio_nocsum, &done); 7940 if (ret) { 7941 err = ret; 7942 goto next; 7943 } 7944 7945 wait_for_completion_io(&done.done); 7946 7947 if (!done.uptodate) { 7948 /* We might have another mirror, so try again */ 7949 goto next_block_or_try_again; 7950 } 7951 7952 next: 7953 start += sectorsize; 7954 7955 nr_sectors--; 7956 if (nr_sectors) { 7957 pgoff += sectorsize; 7958 ASSERT(pgoff < PAGE_SIZE); 7959 goto next_block_or_try_again; 7960 } 7961 } 7962 7963 return err; 7964 } 7965 7966 static void btrfs_retry_endio(struct bio *bio) 7967 { 7968 struct btrfs_retry_complete *done = bio->bi_private; 7969 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio); 7970 struct extent_io_tree *io_tree, *failure_tree; 7971 struct inode *inode = done->inode; 7972 struct bio_vec *bvec; 7973 int uptodate; 7974 int ret; 7975 int i; 7976 7977 if (bio->bi_status) 7978 goto end; 7979 7980 uptodate = 1; 7981 7982 ASSERT(bio->bi_vcnt == 1); 7983 ASSERT(bio_first_bvec_all(bio)->bv_len == btrfs_inode_sectorsize(done->inode)); 7984 7985 io_tree = &BTRFS_I(inode)->io_tree; 7986 failure_tree = &BTRFS_I(inode)->io_failure_tree; 7987 7988 ASSERT(!bio_flagged(bio, BIO_CLONED)); 7989 bio_for_each_segment_all(bvec, bio, i) { 7990 ret = __readpage_endio_check(inode, io_bio, i, bvec->bv_page, 7991 bvec->bv_offset, done->start, 7992 bvec->bv_len); 7993 if (!ret) 7994 clean_io_failure(BTRFS_I(inode)->root->fs_info, 7995 failure_tree, io_tree, done->start, 7996 bvec->bv_page, 7997 btrfs_ino(BTRFS_I(inode)), 7998 bvec->bv_offset); 7999 else 8000 uptodate = 0; 8001 } 8002 8003 done->uptodate = uptodate; 8004 end: 8005 complete(&done->done); 8006 bio_put(bio); 8007 } 8008 8009 static blk_status_t __btrfs_subio_endio_read(struct inode *inode, 8010 struct btrfs_io_bio *io_bio, blk_status_t err) 8011 { 8012 struct btrfs_fs_info *fs_info; 8013 struct bio_vec bvec; 8014 struct bvec_iter iter; 8015 struct btrfs_retry_complete done; 8016 u64 start; 8017 u64 offset = 0; 8018 u32 sectorsize; 8019 int nr_sectors; 8020 unsigned int pgoff; 8021 int csum_pos; 8022 bool uptodate = (err == 0); 8023 int ret; 8024 blk_status_t status; 8025 8026 fs_info = BTRFS_I(inode)->root->fs_info; 8027 sectorsize = fs_info->sectorsize; 8028 8029 err = BLK_STS_OK; 8030 start = io_bio->logical; 8031 done.inode = inode; 8032 io_bio->bio.bi_iter = io_bio->iter; 8033 8034 bio_for_each_segment(bvec, &io_bio->bio, iter) { 8035 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len); 8036 8037 pgoff = bvec.bv_offset; 8038 next_block: 8039 if (uptodate) { 8040 csum_pos = BTRFS_BYTES_TO_BLKS(fs_info, offset); 8041 ret = __readpage_endio_check(inode, io_bio, csum_pos, 8042 bvec.bv_page, pgoff, start, sectorsize); 8043 if (likely(!ret)) 8044 goto next; 8045 } 8046 try_again: 8047 done.uptodate = 0; 8048 done.start = start; 8049 init_completion(&done.done); 8050 8051 status = dio_read_error(inode, &io_bio->bio, bvec.bv_page, 8052 pgoff, start, start + sectorsize - 1, 8053 io_bio->mirror_num, btrfs_retry_endio, 8054 &done); 8055 if (status) { 8056 err = status; 8057 goto next; 8058 } 8059 8060 wait_for_completion_io(&done.done); 8061 8062 if (!done.uptodate) { 8063 /* We might have another mirror, so try again */ 8064 goto try_again; 8065 } 8066 next: 8067 offset += sectorsize; 8068 start += sectorsize; 8069 8070 ASSERT(nr_sectors); 8071 8072 nr_sectors--; 8073 if (nr_sectors) { 8074 pgoff += sectorsize; 8075 ASSERT(pgoff < PAGE_SIZE); 8076 goto next_block; 8077 } 8078 } 8079 8080 return err; 8081 } 8082 8083 static blk_status_t btrfs_subio_endio_read(struct inode *inode, 8084 struct btrfs_io_bio *io_bio, blk_status_t err) 8085 { 8086 bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 8087 8088 if (skip_csum) { 8089 if (unlikely(err)) 8090 return __btrfs_correct_data_nocsum(inode, io_bio); 8091 else 8092 return BLK_STS_OK; 8093 } else { 8094 return __btrfs_subio_endio_read(inode, io_bio, err); 8095 } 8096 } 8097 8098 static void btrfs_endio_direct_read(struct bio *bio) 8099 { 8100 struct btrfs_dio_private *dip = bio->bi_private; 8101 struct inode *inode = dip->inode; 8102 struct bio *dio_bio; 8103 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio); 8104 blk_status_t err = bio->bi_status; 8105 8106 if (dip->flags & BTRFS_DIO_ORIG_BIO_SUBMITTED) 8107 err = btrfs_subio_endio_read(inode, io_bio, err); 8108 8109 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset, 8110 dip->logical_offset + dip->bytes - 1); 8111 dio_bio = dip->dio_bio; 8112 8113 kfree(dip); 8114 8115 dio_bio->bi_status = err; 8116 dio_end_io(dio_bio); 8117 8118 if (io_bio->end_io) 8119 io_bio->end_io(io_bio, blk_status_to_errno(err)); 8120 bio_put(bio); 8121 } 8122 8123 static void __endio_write_update_ordered(struct inode *inode, 8124 const u64 offset, const u64 bytes, 8125 const bool uptodate) 8126 { 8127 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8128 struct btrfs_ordered_extent *ordered = NULL; 8129 struct btrfs_workqueue *wq; 8130 btrfs_work_func_t func; 8131 u64 ordered_offset = offset; 8132 u64 ordered_bytes = bytes; 8133 u64 last_offset; 8134 int ret; 8135 8136 if (btrfs_is_free_space_inode(BTRFS_I(inode))) { 8137 wq = fs_info->endio_freespace_worker; 8138 func = btrfs_freespace_write_helper; 8139 } else { 8140 wq = fs_info->endio_write_workers; 8141 func = btrfs_endio_write_helper; 8142 } 8143 8144 again: 8145 last_offset = ordered_offset; 8146 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered, 8147 &ordered_offset, 8148 ordered_bytes, 8149 uptodate); 8150 if (!ret) 8151 goto out_test; 8152 8153 btrfs_init_work(&ordered->work, func, finish_ordered_fn, NULL, NULL); 8154 btrfs_queue_work(wq, &ordered->work); 8155 out_test: 8156 /* 8157 * If btrfs_dec_test_ordered_pending does not find any ordered extent 8158 * in the range, we can exit. 8159 */ 8160 if (ordered_offset == last_offset) 8161 return; 8162 /* 8163 * our bio might span multiple ordered extents. If we haven't 8164 * completed the accounting for the whole dio, go back and try again 8165 */ 8166 if (ordered_offset < offset + bytes) { 8167 ordered_bytes = offset + bytes - ordered_offset; 8168 ordered = NULL; 8169 goto again; 8170 } 8171 } 8172 8173 static void btrfs_endio_direct_write(struct bio *bio) 8174 { 8175 struct btrfs_dio_private *dip = bio->bi_private; 8176 struct bio *dio_bio = dip->dio_bio; 8177 8178 __endio_write_update_ordered(dip->inode, dip->logical_offset, 8179 dip->bytes, !bio->bi_status); 8180 8181 kfree(dip); 8182 8183 dio_bio->bi_status = bio->bi_status; 8184 dio_end_io(dio_bio); 8185 bio_put(bio); 8186 } 8187 8188 static blk_status_t btrfs_submit_bio_start_direct_io(void *private_data, 8189 struct bio *bio, u64 offset) 8190 { 8191 struct inode *inode = private_data; 8192 blk_status_t ret; 8193 ret = btrfs_csum_one_bio(inode, bio, offset, 1); 8194 BUG_ON(ret); /* -ENOMEM */ 8195 return 0; 8196 } 8197 8198 static void btrfs_end_dio_bio(struct bio *bio) 8199 { 8200 struct btrfs_dio_private *dip = bio->bi_private; 8201 blk_status_t err = bio->bi_status; 8202 8203 if (err) 8204 btrfs_warn(BTRFS_I(dip->inode)->root->fs_info, 8205 "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d", 8206 btrfs_ino(BTRFS_I(dip->inode)), bio_op(bio), 8207 bio->bi_opf, 8208 (unsigned long long)bio->bi_iter.bi_sector, 8209 bio->bi_iter.bi_size, err); 8210 8211 if (dip->subio_endio) 8212 err = dip->subio_endio(dip->inode, btrfs_io_bio(bio), err); 8213 8214 if (err) { 8215 /* 8216 * We want to perceive the errors flag being set before 8217 * decrementing the reference count. We don't need a barrier 8218 * since atomic operations with a return value are fully 8219 * ordered as per atomic_t.txt 8220 */ 8221 dip->errors = 1; 8222 } 8223 8224 /* if there are more bios still pending for this dio, just exit */ 8225 if (!atomic_dec_and_test(&dip->pending_bios)) 8226 goto out; 8227 8228 if (dip->errors) { 8229 bio_io_error(dip->orig_bio); 8230 } else { 8231 dip->dio_bio->bi_status = BLK_STS_OK; 8232 bio_endio(dip->orig_bio); 8233 } 8234 out: 8235 bio_put(bio); 8236 } 8237 8238 static inline blk_status_t btrfs_lookup_and_bind_dio_csum(struct inode *inode, 8239 struct btrfs_dio_private *dip, 8240 struct bio *bio, 8241 u64 file_offset) 8242 { 8243 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio); 8244 struct btrfs_io_bio *orig_io_bio = btrfs_io_bio(dip->orig_bio); 8245 blk_status_t ret; 8246 8247 /* 8248 * We load all the csum data we need when we submit 8249 * the first bio to reduce the csum tree search and 8250 * contention. 8251 */ 8252 if (dip->logical_offset == file_offset) { 8253 ret = btrfs_lookup_bio_sums_dio(inode, dip->orig_bio, 8254 file_offset); 8255 if (ret) 8256 return ret; 8257 } 8258 8259 if (bio == dip->orig_bio) 8260 return 0; 8261 8262 file_offset -= dip->logical_offset; 8263 file_offset >>= inode->i_sb->s_blocksize_bits; 8264 io_bio->csum = (u8 *)(((u32 *)orig_io_bio->csum) + file_offset); 8265 8266 return 0; 8267 } 8268 8269 static inline blk_status_t btrfs_submit_dio_bio(struct bio *bio, 8270 struct inode *inode, u64 file_offset, int async_submit) 8271 { 8272 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8273 struct btrfs_dio_private *dip = bio->bi_private; 8274 bool write = bio_op(bio) == REQ_OP_WRITE; 8275 blk_status_t ret; 8276 8277 /* Check btrfs_submit_bio_hook() for rules about async submit. */ 8278 if (async_submit) 8279 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers); 8280 8281 if (!write) { 8282 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA); 8283 if (ret) 8284 goto err; 8285 } 8286 8287 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) 8288 goto map; 8289 8290 if (write && async_submit) { 8291 ret = btrfs_wq_submit_bio(fs_info, bio, 0, 0, 8292 file_offset, inode, 8293 btrfs_submit_bio_start_direct_io, 8294 btrfs_submit_bio_done); 8295 goto err; 8296 } else if (write) { 8297 /* 8298 * If we aren't doing async submit, calculate the csum of the 8299 * bio now. 8300 */ 8301 ret = btrfs_csum_one_bio(inode, bio, file_offset, 1); 8302 if (ret) 8303 goto err; 8304 } else { 8305 ret = btrfs_lookup_and_bind_dio_csum(inode, dip, bio, 8306 file_offset); 8307 if (ret) 8308 goto err; 8309 } 8310 map: 8311 ret = btrfs_map_bio(fs_info, bio, 0, 0); 8312 err: 8313 return ret; 8314 } 8315 8316 static int btrfs_submit_direct_hook(struct btrfs_dio_private *dip) 8317 { 8318 struct inode *inode = dip->inode; 8319 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8320 struct bio *bio; 8321 struct bio *orig_bio = dip->orig_bio; 8322 u64 start_sector = orig_bio->bi_iter.bi_sector; 8323 u64 file_offset = dip->logical_offset; 8324 u64 map_length; 8325 int async_submit = 0; 8326 u64 submit_len; 8327 int clone_offset = 0; 8328 int clone_len; 8329 int ret; 8330 blk_status_t status; 8331 8332 map_length = orig_bio->bi_iter.bi_size; 8333 submit_len = map_length; 8334 ret = btrfs_map_block(fs_info, btrfs_op(orig_bio), start_sector << 9, 8335 &map_length, NULL, 0); 8336 if (ret) 8337 return -EIO; 8338 8339 if (map_length >= submit_len) { 8340 bio = orig_bio; 8341 dip->flags |= BTRFS_DIO_ORIG_BIO_SUBMITTED; 8342 goto submit; 8343 } 8344 8345 /* async crcs make it difficult to collect full stripe writes. */ 8346 if (btrfs_data_alloc_profile(fs_info) & BTRFS_BLOCK_GROUP_RAID56_MASK) 8347 async_submit = 0; 8348 else 8349 async_submit = 1; 8350 8351 /* bio split */ 8352 ASSERT(map_length <= INT_MAX); 8353 atomic_inc(&dip->pending_bios); 8354 do { 8355 clone_len = min_t(int, submit_len, map_length); 8356 8357 /* 8358 * This will never fail as it's passing GPF_NOFS and 8359 * the allocation is backed by btrfs_bioset. 8360 */ 8361 bio = btrfs_bio_clone_partial(orig_bio, clone_offset, 8362 clone_len); 8363 bio->bi_private = dip; 8364 bio->bi_end_io = btrfs_end_dio_bio; 8365 btrfs_io_bio(bio)->logical = file_offset; 8366 8367 ASSERT(submit_len >= clone_len); 8368 submit_len -= clone_len; 8369 if (submit_len == 0) 8370 break; 8371 8372 /* 8373 * Increase the count before we submit the bio so we know 8374 * the end IO handler won't happen before we increase the 8375 * count. Otherwise, the dip might get freed before we're 8376 * done setting it up. 8377 */ 8378 atomic_inc(&dip->pending_bios); 8379 8380 status = btrfs_submit_dio_bio(bio, inode, file_offset, 8381 async_submit); 8382 if (status) { 8383 bio_put(bio); 8384 atomic_dec(&dip->pending_bios); 8385 goto out_err; 8386 } 8387 8388 clone_offset += clone_len; 8389 start_sector += clone_len >> 9; 8390 file_offset += clone_len; 8391 8392 map_length = submit_len; 8393 ret = btrfs_map_block(fs_info, btrfs_op(orig_bio), 8394 start_sector << 9, &map_length, NULL, 0); 8395 if (ret) 8396 goto out_err; 8397 } while (submit_len > 0); 8398 8399 submit: 8400 status = btrfs_submit_dio_bio(bio, inode, file_offset, async_submit); 8401 if (!status) 8402 return 0; 8403 8404 bio_put(bio); 8405 out_err: 8406 dip->errors = 1; 8407 /* 8408 * Before atomic variable goto zero, we must make sure dip->errors is 8409 * perceived to be set. This ordering is ensured by the fact that an 8410 * atomic operations with a return value are fully ordered as per 8411 * atomic_t.txt 8412 */ 8413 if (atomic_dec_and_test(&dip->pending_bios)) 8414 bio_io_error(dip->orig_bio); 8415 8416 /* bio_end_io() will handle error, so we needn't return it */ 8417 return 0; 8418 } 8419 8420 static void btrfs_submit_direct(struct bio *dio_bio, struct inode *inode, 8421 loff_t file_offset) 8422 { 8423 struct btrfs_dio_private *dip = NULL; 8424 struct bio *bio = NULL; 8425 struct btrfs_io_bio *io_bio; 8426 bool write = (bio_op(dio_bio) == REQ_OP_WRITE); 8427 int ret = 0; 8428 8429 bio = btrfs_bio_clone(dio_bio); 8430 8431 dip = kzalloc(sizeof(*dip), GFP_NOFS); 8432 if (!dip) { 8433 ret = -ENOMEM; 8434 goto free_ordered; 8435 } 8436 8437 dip->private = dio_bio->bi_private; 8438 dip->inode = inode; 8439 dip->logical_offset = file_offset; 8440 dip->bytes = dio_bio->bi_iter.bi_size; 8441 dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9; 8442 bio->bi_private = dip; 8443 dip->orig_bio = bio; 8444 dip->dio_bio = dio_bio; 8445 atomic_set(&dip->pending_bios, 0); 8446 io_bio = btrfs_io_bio(bio); 8447 io_bio->logical = file_offset; 8448 8449 if (write) { 8450 bio->bi_end_io = btrfs_endio_direct_write; 8451 } else { 8452 bio->bi_end_io = btrfs_endio_direct_read; 8453 dip->subio_endio = btrfs_subio_endio_read; 8454 } 8455 8456 /* 8457 * Reset the range for unsubmitted ordered extents (to a 0 length range) 8458 * even if we fail to submit a bio, because in such case we do the 8459 * corresponding error handling below and it must not be done a second 8460 * time by btrfs_direct_IO(). 8461 */ 8462 if (write) { 8463 struct btrfs_dio_data *dio_data = current->journal_info; 8464 8465 dio_data->unsubmitted_oe_range_end = dip->logical_offset + 8466 dip->bytes; 8467 dio_data->unsubmitted_oe_range_start = 8468 dio_data->unsubmitted_oe_range_end; 8469 } 8470 8471 ret = btrfs_submit_direct_hook(dip); 8472 if (!ret) 8473 return; 8474 8475 if (io_bio->end_io) 8476 io_bio->end_io(io_bio, ret); 8477 8478 free_ordered: 8479 /* 8480 * If we arrived here it means either we failed to submit the dip 8481 * or we either failed to clone the dio_bio or failed to allocate the 8482 * dip. If we cloned the dio_bio and allocated the dip, we can just 8483 * call bio_endio against our io_bio so that we get proper resource 8484 * cleanup if we fail to submit the dip, otherwise, we must do the 8485 * same as btrfs_endio_direct_[write|read] because we can't call these 8486 * callbacks - they require an allocated dip and a clone of dio_bio. 8487 */ 8488 if (bio && dip) { 8489 bio_io_error(bio); 8490 /* 8491 * The end io callbacks free our dip, do the final put on bio 8492 * and all the cleanup and final put for dio_bio (through 8493 * dio_end_io()). 8494 */ 8495 dip = NULL; 8496 bio = NULL; 8497 } else { 8498 if (write) 8499 __endio_write_update_ordered(inode, 8500 file_offset, 8501 dio_bio->bi_iter.bi_size, 8502 false); 8503 else 8504 unlock_extent(&BTRFS_I(inode)->io_tree, file_offset, 8505 file_offset + dio_bio->bi_iter.bi_size - 1); 8506 8507 dio_bio->bi_status = BLK_STS_IOERR; 8508 /* 8509 * Releases and cleans up our dio_bio, no need to bio_put() 8510 * nor bio_endio()/bio_io_error() against dio_bio. 8511 */ 8512 dio_end_io(dio_bio); 8513 } 8514 if (bio) 8515 bio_put(bio); 8516 kfree(dip); 8517 } 8518 8519 static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info, 8520 const struct iov_iter *iter, loff_t offset) 8521 { 8522 int seg; 8523 int i; 8524 unsigned int blocksize_mask = fs_info->sectorsize - 1; 8525 ssize_t retval = -EINVAL; 8526 8527 if (offset & blocksize_mask) 8528 goto out; 8529 8530 if (iov_iter_alignment(iter) & blocksize_mask) 8531 goto out; 8532 8533 /* If this is a write we don't need to check anymore */ 8534 if (iov_iter_rw(iter) != READ || !iter_is_iovec(iter)) 8535 return 0; 8536 /* 8537 * Check to make sure we don't have duplicate iov_base's in this 8538 * iovec, if so return EINVAL, otherwise we'll get csum errors 8539 * when reading back. 8540 */ 8541 for (seg = 0; seg < iter->nr_segs; seg++) { 8542 for (i = seg + 1; i < iter->nr_segs; i++) { 8543 if (iter->iov[seg].iov_base == iter->iov[i].iov_base) 8544 goto out; 8545 } 8546 } 8547 retval = 0; 8548 out: 8549 return retval; 8550 } 8551 8552 static ssize_t btrfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 8553 { 8554 struct file *file = iocb->ki_filp; 8555 struct inode *inode = file->f_mapping->host; 8556 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8557 struct btrfs_dio_data dio_data = { 0 }; 8558 struct extent_changeset *data_reserved = NULL; 8559 loff_t offset = iocb->ki_pos; 8560 size_t count = 0; 8561 int flags = 0; 8562 bool wakeup = true; 8563 bool relock = false; 8564 ssize_t ret; 8565 8566 if (check_direct_IO(fs_info, iter, offset)) 8567 return 0; 8568 8569 inode_dio_begin(inode); 8570 8571 /* 8572 * The generic stuff only does filemap_write_and_wait_range, which 8573 * isn't enough if we've written compressed pages to this area, so 8574 * we need to flush the dirty pages again to make absolutely sure 8575 * that any outstanding dirty pages are on disk. 8576 */ 8577 count = iov_iter_count(iter); 8578 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 8579 &BTRFS_I(inode)->runtime_flags)) 8580 filemap_fdatawrite_range(inode->i_mapping, offset, 8581 offset + count - 1); 8582 8583 if (iov_iter_rw(iter) == WRITE) { 8584 /* 8585 * If the write DIO is beyond the EOF, we need update 8586 * the isize, but it is protected by i_mutex. So we can 8587 * not unlock the i_mutex at this case. 8588 */ 8589 if (offset + count <= inode->i_size) { 8590 dio_data.overwrite = 1; 8591 inode_unlock(inode); 8592 relock = true; 8593 } else if (iocb->ki_flags & IOCB_NOWAIT) { 8594 ret = -EAGAIN; 8595 goto out; 8596 } 8597 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, 8598 offset, count); 8599 if (ret) 8600 goto out; 8601 8602 /* 8603 * We need to know how many extents we reserved so that we can 8604 * do the accounting properly if we go over the number we 8605 * originally calculated. Abuse current->journal_info for this. 8606 */ 8607 dio_data.reserve = round_up(count, 8608 fs_info->sectorsize); 8609 dio_data.unsubmitted_oe_range_start = (u64)offset; 8610 dio_data.unsubmitted_oe_range_end = (u64)offset; 8611 current->journal_info = &dio_data; 8612 down_read(&BTRFS_I(inode)->dio_sem); 8613 } else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK, 8614 &BTRFS_I(inode)->runtime_flags)) { 8615 inode_dio_end(inode); 8616 flags = DIO_LOCKING | DIO_SKIP_HOLES; 8617 wakeup = false; 8618 } 8619 8620 ret = __blockdev_direct_IO(iocb, inode, 8621 fs_info->fs_devices->latest_bdev, 8622 iter, btrfs_get_blocks_direct, NULL, 8623 btrfs_submit_direct, flags); 8624 if (iov_iter_rw(iter) == WRITE) { 8625 up_read(&BTRFS_I(inode)->dio_sem); 8626 current->journal_info = NULL; 8627 if (ret < 0 && ret != -EIOCBQUEUED) { 8628 if (dio_data.reserve) 8629 btrfs_delalloc_release_space(inode, data_reserved, 8630 offset, dio_data.reserve, true); 8631 /* 8632 * On error we might have left some ordered extents 8633 * without submitting corresponding bios for them, so 8634 * cleanup them up to avoid other tasks getting them 8635 * and waiting for them to complete forever. 8636 */ 8637 if (dio_data.unsubmitted_oe_range_start < 8638 dio_data.unsubmitted_oe_range_end) 8639 __endio_write_update_ordered(inode, 8640 dio_data.unsubmitted_oe_range_start, 8641 dio_data.unsubmitted_oe_range_end - 8642 dio_data.unsubmitted_oe_range_start, 8643 false); 8644 } else if (ret >= 0 && (size_t)ret < count) 8645 btrfs_delalloc_release_space(inode, data_reserved, 8646 offset, count - (size_t)ret, true); 8647 btrfs_delalloc_release_extents(BTRFS_I(inode), count, false); 8648 } 8649 out: 8650 if (wakeup) 8651 inode_dio_end(inode); 8652 if (relock) 8653 inode_lock(inode); 8654 8655 extent_changeset_free(data_reserved); 8656 return ret; 8657 } 8658 8659 #define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC) 8660 8661 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 8662 __u64 start, __u64 len) 8663 { 8664 int ret; 8665 8666 ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS); 8667 if (ret) 8668 return ret; 8669 8670 return extent_fiemap(inode, fieinfo, start, len); 8671 } 8672 8673 int btrfs_readpage(struct file *file, struct page *page) 8674 { 8675 struct extent_io_tree *tree; 8676 tree = &BTRFS_I(page->mapping->host)->io_tree; 8677 return extent_read_full_page(tree, page, btrfs_get_extent, 0); 8678 } 8679 8680 static int btrfs_writepage(struct page *page, struct writeback_control *wbc) 8681 { 8682 struct inode *inode = page->mapping->host; 8683 int ret; 8684 8685 if (current->flags & PF_MEMALLOC) { 8686 redirty_page_for_writepage(wbc, page); 8687 unlock_page(page); 8688 return 0; 8689 } 8690 8691 /* 8692 * If we are under memory pressure we will call this directly from the 8693 * VM, we need to make sure we have the inode referenced for the ordered 8694 * extent. If not just return like we didn't do anything. 8695 */ 8696 if (!igrab(inode)) { 8697 redirty_page_for_writepage(wbc, page); 8698 return AOP_WRITEPAGE_ACTIVATE; 8699 } 8700 ret = extent_write_full_page(page, wbc); 8701 btrfs_add_delayed_iput(inode); 8702 return ret; 8703 } 8704 8705 static int btrfs_writepages(struct address_space *mapping, 8706 struct writeback_control *wbc) 8707 { 8708 struct extent_io_tree *tree; 8709 8710 tree = &BTRFS_I(mapping->host)->io_tree; 8711 return extent_writepages(tree, mapping, wbc); 8712 } 8713 8714 static int 8715 btrfs_readpages(struct file *file, struct address_space *mapping, 8716 struct list_head *pages, unsigned nr_pages) 8717 { 8718 struct extent_io_tree *tree; 8719 tree = &BTRFS_I(mapping->host)->io_tree; 8720 return extent_readpages(tree, mapping, pages, nr_pages); 8721 } 8722 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags) 8723 { 8724 struct extent_io_tree *tree; 8725 struct extent_map_tree *map; 8726 int ret; 8727 8728 tree = &BTRFS_I(page->mapping->host)->io_tree; 8729 map = &BTRFS_I(page->mapping->host)->extent_tree; 8730 ret = try_release_extent_mapping(map, tree, page, gfp_flags); 8731 if (ret == 1) { 8732 ClearPagePrivate(page); 8733 set_page_private(page, 0); 8734 put_page(page); 8735 } 8736 return ret; 8737 } 8738 8739 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags) 8740 { 8741 if (PageWriteback(page) || PageDirty(page)) 8742 return 0; 8743 return __btrfs_releasepage(page, gfp_flags); 8744 } 8745 8746 static void btrfs_invalidatepage(struct page *page, unsigned int offset, 8747 unsigned int length) 8748 { 8749 struct inode *inode = page->mapping->host; 8750 struct extent_io_tree *tree; 8751 struct btrfs_ordered_extent *ordered; 8752 struct extent_state *cached_state = NULL; 8753 u64 page_start = page_offset(page); 8754 u64 page_end = page_start + PAGE_SIZE - 1; 8755 u64 start; 8756 u64 end; 8757 int inode_evicting = inode->i_state & I_FREEING; 8758 8759 /* 8760 * we have the page locked, so new writeback can't start, 8761 * and the dirty bit won't be cleared while we are here. 8762 * 8763 * Wait for IO on this page so that we can safely clear 8764 * the PagePrivate2 bit and do ordered accounting 8765 */ 8766 wait_on_page_writeback(page); 8767 8768 tree = &BTRFS_I(inode)->io_tree; 8769 if (offset) { 8770 btrfs_releasepage(page, GFP_NOFS); 8771 return; 8772 } 8773 8774 if (!inode_evicting) 8775 lock_extent_bits(tree, page_start, page_end, &cached_state); 8776 again: 8777 start = page_start; 8778 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start, 8779 page_end - start + 1); 8780 if (ordered) { 8781 end = min(page_end, ordered->file_offset + ordered->len - 1); 8782 /* 8783 * IO on this page will never be started, so we need 8784 * to account for any ordered extents now 8785 */ 8786 if (!inode_evicting) 8787 clear_extent_bit(tree, start, end, 8788 EXTENT_DIRTY | EXTENT_DELALLOC | 8789 EXTENT_DELALLOC_NEW | 8790 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING | 8791 EXTENT_DEFRAG, 1, 0, &cached_state); 8792 /* 8793 * whoever cleared the private bit is responsible 8794 * for the finish_ordered_io 8795 */ 8796 if (TestClearPagePrivate2(page)) { 8797 struct btrfs_ordered_inode_tree *tree; 8798 u64 new_len; 8799 8800 tree = &BTRFS_I(inode)->ordered_tree; 8801 8802 spin_lock_irq(&tree->lock); 8803 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags); 8804 new_len = start - ordered->file_offset; 8805 if (new_len < ordered->truncated_len) 8806 ordered->truncated_len = new_len; 8807 spin_unlock_irq(&tree->lock); 8808 8809 if (btrfs_dec_test_ordered_pending(inode, &ordered, 8810 start, 8811 end - start + 1, 1)) 8812 btrfs_finish_ordered_io(ordered); 8813 } 8814 btrfs_put_ordered_extent(ordered); 8815 if (!inode_evicting) { 8816 cached_state = NULL; 8817 lock_extent_bits(tree, start, end, 8818 &cached_state); 8819 } 8820 8821 start = end + 1; 8822 if (start < page_end) 8823 goto again; 8824 } 8825 8826 /* 8827 * Qgroup reserved space handler 8828 * Page here will be either 8829 * 1) Already written to disk 8830 * In this case, its reserved space is released from data rsv map 8831 * and will be freed by delayed_ref handler finally. 8832 * So even we call qgroup_free_data(), it won't decrease reserved 8833 * space. 8834 * 2) Not written to disk 8835 * This means the reserved space should be freed here. However, 8836 * if a truncate invalidates the page (by clearing PageDirty) 8837 * and the page is accounted for while allocating extent 8838 * in btrfs_check_data_free_space() we let delayed_ref to 8839 * free the entire extent. 8840 */ 8841 if (PageDirty(page)) 8842 btrfs_qgroup_free_data(inode, NULL, page_start, PAGE_SIZE); 8843 if (!inode_evicting) { 8844 clear_extent_bit(tree, page_start, page_end, 8845 EXTENT_LOCKED | EXTENT_DIRTY | 8846 EXTENT_DELALLOC | EXTENT_DELALLOC_NEW | 8847 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1, 8848 &cached_state); 8849 8850 __btrfs_releasepage(page, GFP_NOFS); 8851 } 8852 8853 ClearPageChecked(page); 8854 if (PagePrivate(page)) { 8855 ClearPagePrivate(page); 8856 set_page_private(page, 0); 8857 put_page(page); 8858 } 8859 } 8860 8861 /* 8862 * btrfs_page_mkwrite() is not allowed to change the file size as it gets 8863 * called from a page fault handler when a page is first dirtied. Hence we must 8864 * be careful to check for EOF conditions here. We set the page up correctly 8865 * for a written page which means we get ENOSPC checking when writing into 8866 * holes and correct delalloc and unwritten extent mapping on filesystems that 8867 * support these features. 8868 * 8869 * We are not allowed to take the i_mutex here so we have to play games to 8870 * protect against truncate races as the page could now be beyond EOF. Because 8871 * vmtruncate() writes the inode size before removing pages, once we have the 8872 * page lock we can determine safely if the page is beyond EOF. If it is not 8873 * beyond EOF, then the page is guaranteed safe against truncation until we 8874 * unlock the page. 8875 */ 8876 int btrfs_page_mkwrite(struct vm_fault *vmf) 8877 { 8878 struct page *page = vmf->page; 8879 struct inode *inode = file_inode(vmf->vma->vm_file); 8880 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8881 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 8882 struct btrfs_ordered_extent *ordered; 8883 struct extent_state *cached_state = NULL; 8884 struct extent_changeset *data_reserved = NULL; 8885 char *kaddr; 8886 unsigned long zero_start; 8887 loff_t size; 8888 int ret; 8889 int reserved = 0; 8890 u64 reserved_space; 8891 u64 page_start; 8892 u64 page_end; 8893 u64 end; 8894 8895 reserved_space = PAGE_SIZE; 8896 8897 sb_start_pagefault(inode->i_sb); 8898 page_start = page_offset(page); 8899 page_end = page_start + PAGE_SIZE - 1; 8900 end = page_end; 8901 8902 /* 8903 * Reserving delalloc space after obtaining the page lock can lead to 8904 * deadlock. For example, if a dirty page is locked by this function 8905 * and the call to btrfs_delalloc_reserve_space() ends up triggering 8906 * dirty page write out, then the btrfs_writepage() function could 8907 * end up waiting indefinitely to get a lock on the page currently 8908 * being processed by btrfs_page_mkwrite() function. 8909 */ 8910 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start, 8911 reserved_space); 8912 if (!ret) { 8913 ret = file_update_time(vmf->vma->vm_file); 8914 reserved = 1; 8915 } 8916 if (ret) { 8917 if (ret == -ENOMEM) 8918 ret = VM_FAULT_OOM; 8919 else /* -ENOSPC, -EIO, etc */ 8920 ret = VM_FAULT_SIGBUS; 8921 if (reserved) 8922 goto out; 8923 goto out_noreserve; 8924 } 8925 8926 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */ 8927 again: 8928 lock_page(page); 8929 size = i_size_read(inode); 8930 8931 if ((page->mapping != inode->i_mapping) || 8932 (page_start >= size)) { 8933 /* page got truncated out from underneath us */ 8934 goto out_unlock; 8935 } 8936 wait_on_page_writeback(page); 8937 8938 lock_extent_bits(io_tree, page_start, page_end, &cached_state); 8939 set_page_extent_mapped(page); 8940 8941 /* 8942 * we can't set the delalloc bits if there are pending ordered 8943 * extents. Drop our locks and wait for them to finish 8944 */ 8945 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start, 8946 PAGE_SIZE); 8947 if (ordered) { 8948 unlock_extent_cached(io_tree, page_start, page_end, 8949 &cached_state); 8950 unlock_page(page); 8951 btrfs_start_ordered_extent(inode, ordered, 1); 8952 btrfs_put_ordered_extent(ordered); 8953 goto again; 8954 } 8955 8956 if (page->index == ((size - 1) >> PAGE_SHIFT)) { 8957 reserved_space = round_up(size - page_start, 8958 fs_info->sectorsize); 8959 if (reserved_space < PAGE_SIZE) { 8960 end = page_start + reserved_space - 1; 8961 btrfs_delalloc_release_space(inode, data_reserved, 8962 page_start, PAGE_SIZE - reserved_space, 8963 true); 8964 } 8965 } 8966 8967 /* 8968 * page_mkwrite gets called when the page is firstly dirtied after it's 8969 * faulted in, but write(2) could also dirty a page and set delalloc 8970 * bits, thus in this case for space account reason, we still need to 8971 * clear any delalloc bits within this page range since we have to 8972 * reserve data&meta space before lock_page() (see above comments). 8973 */ 8974 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end, 8975 EXTENT_DIRTY | EXTENT_DELALLOC | 8976 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 8977 0, 0, &cached_state); 8978 8979 ret = btrfs_set_extent_delalloc(inode, page_start, end, 0, 8980 &cached_state, 0); 8981 if (ret) { 8982 unlock_extent_cached(io_tree, page_start, page_end, 8983 &cached_state); 8984 ret = VM_FAULT_SIGBUS; 8985 goto out_unlock; 8986 } 8987 ret = 0; 8988 8989 /* page is wholly or partially inside EOF */ 8990 if (page_start + PAGE_SIZE > size) 8991 zero_start = size & ~PAGE_MASK; 8992 else 8993 zero_start = PAGE_SIZE; 8994 8995 if (zero_start != PAGE_SIZE) { 8996 kaddr = kmap(page); 8997 memset(kaddr + zero_start, 0, PAGE_SIZE - zero_start); 8998 flush_dcache_page(page); 8999 kunmap(page); 9000 } 9001 ClearPageChecked(page); 9002 set_page_dirty(page); 9003 SetPageUptodate(page); 9004 9005 BTRFS_I(inode)->last_trans = fs_info->generation; 9006 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid; 9007 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit; 9008 9009 unlock_extent_cached(io_tree, page_start, page_end, &cached_state); 9010 9011 out_unlock: 9012 if (!ret) { 9013 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE, true); 9014 sb_end_pagefault(inode->i_sb); 9015 extent_changeset_free(data_reserved); 9016 return VM_FAULT_LOCKED; 9017 } 9018 unlock_page(page); 9019 out: 9020 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE, (ret != 0)); 9021 btrfs_delalloc_release_space(inode, data_reserved, page_start, 9022 reserved_space, (ret != 0)); 9023 out_noreserve: 9024 sb_end_pagefault(inode->i_sb); 9025 extent_changeset_free(data_reserved); 9026 return ret; 9027 } 9028 9029 static int btrfs_truncate(struct inode *inode, bool skip_writeback) 9030 { 9031 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 9032 struct btrfs_root *root = BTRFS_I(inode)->root; 9033 struct btrfs_block_rsv *rsv; 9034 int ret = 0; 9035 int err = 0; 9036 struct btrfs_trans_handle *trans; 9037 u64 mask = fs_info->sectorsize - 1; 9038 u64 min_size = btrfs_calc_trunc_metadata_size(fs_info, 1); 9039 9040 if (!skip_writeback) { 9041 ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask), 9042 (u64)-1); 9043 if (ret) 9044 return ret; 9045 } 9046 9047 /* 9048 * Yes ladies and gentlemen, this is indeed ugly. The fact is we have 9049 * 3 things going on here 9050 * 9051 * 1) We need to reserve space for our orphan item and the space to 9052 * delete our orphan item. Lord knows we don't want to have a dangling 9053 * orphan item because we didn't reserve space to remove it. 9054 * 9055 * 2) We need to reserve space to update our inode. 9056 * 9057 * 3) We need to have something to cache all the space that is going to 9058 * be free'd up by the truncate operation, but also have some slack 9059 * space reserved in case it uses space during the truncate (thank you 9060 * very much snapshotting). 9061 * 9062 * And we need these to all be separate. The fact is we can use a lot of 9063 * space doing the truncate, and we have no earthly idea how much space 9064 * we will use, so we need the truncate reservation to be separate so it 9065 * doesn't end up using space reserved for updating the inode or 9066 * removing the orphan item. We also need to be able to stop the 9067 * transaction and start a new one, which means we need to be able to 9068 * update the inode several times, and we have no idea of knowing how 9069 * many times that will be, so we can't just reserve 1 item for the 9070 * entirety of the operation, so that has to be done separately as well. 9071 * Then there is the orphan item, which does indeed need to be held on 9072 * to for the whole operation, and we need nobody to touch this reserved 9073 * space except the orphan code. 9074 * 9075 * So that leaves us with 9076 * 9077 * 1) root->orphan_block_rsv - for the orphan deletion. 9078 * 2) rsv - for the truncate reservation, which we will steal from the 9079 * transaction reservation. 9080 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for 9081 * updating the inode. 9082 */ 9083 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP); 9084 if (!rsv) 9085 return -ENOMEM; 9086 rsv->size = min_size; 9087 rsv->failfast = 1; 9088 9089 /* 9090 * 1 for the truncate slack space 9091 * 1 for updating the inode. 9092 */ 9093 trans = btrfs_start_transaction(root, 2); 9094 if (IS_ERR(trans)) { 9095 err = PTR_ERR(trans); 9096 goto out; 9097 } 9098 9099 /* Migrate the slack space for the truncate to our reserve */ 9100 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv, 9101 min_size, 0); 9102 BUG_ON(ret); 9103 9104 /* 9105 * So if we truncate and then write and fsync we normally would just 9106 * write the extents that changed, which is a problem if we need to 9107 * first truncate that entire inode. So set this flag so we write out 9108 * all of the extents in the inode to the sync log so we're completely 9109 * safe. 9110 */ 9111 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 9112 trans->block_rsv = rsv; 9113 9114 while (1) { 9115 ret = btrfs_truncate_inode_items(trans, root, inode, 9116 inode->i_size, 9117 BTRFS_EXTENT_DATA_KEY); 9118 trans->block_rsv = &fs_info->trans_block_rsv; 9119 if (ret != -ENOSPC && ret != -EAGAIN) { 9120 if (ret < 0) 9121 err = ret; 9122 break; 9123 } 9124 9125 ret = btrfs_update_inode(trans, root, inode); 9126 if (ret) { 9127 err = ret; 9128 break; 9129 } 9130 9131 btrfs_end_transaction(trans); 9132 btrfs_btree_balance_dirty(fs_info); 9133 9134 trans = btrfs_start_transaction(root, 2); 9135 if (IS_ERR(trans)) { 9136 ret = err = PTR_ERR(trans); 9137 trans = NULL; 9138 break; 9139 } 9140 9141 btrfs_block_rsv_release(fs_info, rsv, -1); 9142 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, 9143 rsv, min_size, 0); 9144 BUG_ON(ret); /* shouldn't happen */ 9145 trans->block_rsv = rsv; 9146 } 9147 9148 /* 9149 * We can't call btrfs_truncate_block inside a trans handle as we could 9150 * deadlock with freeze, if we got NEED_TRUNCATE_BLOCK then we know 9151 * we've truncated everything except the last little bit, and can do 9152 * btrfs_truncate_block and then update the disk_i_size. 9153 */ 9154 if (ret == NEED_TRUNCATE_BLOCK) { 9155 btrfs_end_transaction(trans); 9156 btrfs_btree_balance_dirty(fs_info); 9157 9158 ret = btrfs_truncate_block(inode, inode->i_size, 0, 0); 9159 if (ret) 9160 goto out; 9161 trans = btrfs_start_transaction(root, 1); 9162 if (IS_ERR(trans)) { 9163 ret = PTR_ERR(trans); 9164 goto out; 9165 } 9166 btrfs_ordered_update_i_size(inode, inode->i_size, NULL); 9167 } 9168 9169 if (ret == 0 && inode->i_nlink > 0) { 9170 trans->block_rsv = root->orphan_block_rsv; 9171 ret = btrfs_orphan_del(trans, BTRFS_I(inode)); 9172 if (ret) 9173 err = ret; 9174 } 9175 9176 if (trans) { 9177 trans->block_rsv = &fs_info->trans_block_rsv; 9178 ret = btrfs_update_inode(trans, root, inode); 9179 if (ret && !err) 9180 err = ret; 9181 9182 ret = btrfs_end_transaction(trans); 9183 btrfs_btree_balance_dirty(fs_info); 9184 } 9185 out: 9186 btrfs_free_block_rsv(fs_info, rsv); 9187 9188 if (ret && !err) 9189 err = ret; 9190 9191 return err; 9192 } 9193 9194 /* 9195 * create a new subvolume directory/inode (helper for the ioctl). 9196 */ 9197 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans, 9198 struct btrfs_root *new_root, 9199 struct btrfs_root *parent_root, 9200 u64 new_dirid) 9201 { 9202 struct inode *inode; 9203 int err; 9204 u64 index = 0; 9205 9206 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, 9207 new_dirid, new_dirid, 9208 S_IFDIR | (~current_umask() & S_IRWXUGO), 9209 &index); 9210 if (IS_ERR(inode)) 9211 return PTR_ERR(inode); 9212 inode->i_op = &btrfs_dir_inode_operations; 9213 inode->i_fop = &btrfs_dir_file_operations; 9214 9215 set_nlink(inode, 1); 9216 btrfs_i_size_write(BTRFS_I(inode), 0); 9217 unlock_new_inode(inode); 9218 9219 err = btrfs_subvol_inherit_props(trans, new_root, parent_root); 9220 if (err) 9221 btrfs_err(new_root->fs_info, 9222 "error inheriting subvolume %llu properties: %d", 9223 new_root->root_key.objectid, err); 9224 9225 err = btrfs_update_inode(trans, new_root, inode); 9226 9227 iput(inode); 9228 return err; 9229 } 9230 9231 struct inode *btrfs_alloc_inode(struct super_block *sb) 9232 { 9233 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 9234 struct btrfs_inode *ei; 9235 struct inode *inode; 9236 9237 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_KERNEL); 9238 if (!ei) 9239 return NULL; 9240 9241 ei->root = NULL; 9242 ei->generation = 0; 9243 ei->last_trans = 0; 9244 ei->last_sub_trans = 0; 9245 ei->logged_trans = 0; 9246 ei->delalloc_bytes = 0; 9247 ei->new_delalloc_bytes = 0; 9248 ei->defrag_bytes = 0; 9249 ei->disk_i_size = 0; 9250 ei->flags = 0; 9251 ei->csum_bytes = 0; 9252 ei->index_cnt = (u64)-1; 9253 ei->dir_index = 0; 9254 ei->last_unlink_trans = 0; 9255 ei->last_log_commit = 0; 9256 9257 spin_lock_init(&ei->lock); 9258 ei->outstanding_extents = 0; 9259 if (sb->s_magic != BTRFS_TEST_MAGIC) 9260 btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv, 9261 BTRFS_BLOCK_RSV_DELALLOC); 9262 ei->runtime_flags = 0; 9263 ei->prop_compress = BTRFS_COMPRESS_NONE; 9264 ei->defrag_compress = BTRFS_COMPRESS_NONE; 9265 9266 ei->delayed_node = NULL; 9267 9268 ei->i_otime.tv_sec = 0; 9269 ei->i_otime.tv_nsec = 0; 9270 9271 inode = &ei->vfs_inode; 9272 extent_map_tree_init(&ei->extent_tree); 9273 extent_io_tree_init(&ei->io_tree, inode); 9274 extent_io_tree_init(&ei->io_failure_tree, inode); 9275 ei->io_tree.track_uptodate = 1; 9276 ei->io_failure_tree.track_uptodate = 1; 9277 atomic_set(&ei->sync_writers, 0); 9278 mutex_init(&ei->log_mutex); 9279 mutex_init(&ei->delalloc_mutex); 9280 btrfs_ordered_inode_tree_init(&ei->ordered_tree); 9281 INIT_LIST_HEAD(&ei->delalloc_inodes); 9282 INIT_LIST_HEAD(&ei->delayed_iput); 9283 RB_CLEAR_NODE(&ei->rb_node); 9284 init_rwsem(&ei->dio_sem); 9285 9286 return inode; 9287 } 9288 9289 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 9290 void btrfs_test_destroy_inode(struct inode *inode) 9291 { 9292 btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0); 9293 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 9294 } 9295 #endif 9296 9297 static void btrfs_i_callback(struct rcu_head *head) 9298 { 9299 struct inode *inode = container_of(head, struct inode, i_rcu); 9300 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 9301 } 9302 9303 void btrfs_destroy_inode(struct inode *inode) 9304 { 9305 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 9306 struct btrfs_ordered_extent *ordered; 9307 struct btrfs_root *root = BTRFS_I(inode)->root; 9308 9309 WARN_ON(!hlist_empty(&inode->i_dentry)); 9310 WARN_ON(inode->i_data.nrpages); 9311 WARN_ON(BTRFS_I(inode)->block_rsv.reserved); 9312 WARN_ON(BTRFS_I(inode)->block_rsv.size); 9313 WARN_ON(BTRFS_I(inode)->outstanding_extents); 9314 WARN_ON(BTRFS_I(inode)->delalloc_bytes); 9315 WARN_ON(BTRFS_I(inode)->new_delalloc_bytes); 9316 WARN_ON(BTRFS_I(inode)->csum_bytes); 9317 WARN_ON(BTRFS_I(inode)->defrag_bytes); 9318 9319 /* 9320 * This can happen where we create an inode, but somebody else also 9321 * created the same inode and we need to destroy the one we already 9322 * created. 9323 */ 9324 if (!root) 9325 goto free; 9326 9327 if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 9328 &BTRFS_I(inode)->runtime_flags)) { 9329 btrfs_info(fs_info, "inode %llu still on the orphan list", 9330 btrfs_ino(BTRFS_I(inode))); 9331 atomic_dec(&root->orphan_inodes); 9332 } 9333 9334 while (1) { 9335 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1); 9336 if (!ordered) 9337 break; 9338 else { 9339 btrfs_err(fs_info, 9340 "found ordered extent %llu %llu on inode cleanup", 9341 ordered->file_offset, ordered->len); 9342 btrfs_remove_ordered_extent(inode, ordered); 9343 btrfs_put_ordered_extent(ordered); 9344 btrfs_put_ordered_extent(ordered); 9345 } 9346 } 9347 btrfs_qgroup_check_reserved_leak(inode); 9348 inode_tree_del(inode); 9349 btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0); 9350 free: 9351 call_rcu(&inode->i_rcu, btrfs_i_callback); 9352 } 9353 9354 int btrfs_drop_inode(struct inode *inode) 9355 { 9356 struct btrfs_root *root = BTRFS_I(inode)->root; 9357 9358 if (root == NULL) 9359 return 1; 9360 9361 /* the snap/subvol tree is on deleting */ 9362 if (btrfs_root_refs(&root->root_item) == 0) 9363 return 1; 9364 else 9365 return generic_drop_inode(inode); 9366 } 9367 9368 static void init_once(void *foo) 9369 { 9370 struct btrfs_inode *ei = (struct btrfs_inode *) foo; 9371 9372 inode_init_once(&ei->vfs_inode); 9373 } 9374 9375 void __cold btrfs_destroy_cachep(void) 9376 { 9377 /* 9378 * Make sure all delayed rcu free inodes are flushed before we 9379 * destroy cache. 9380 */ 9381 rcu_barrier(); 9382 kmem_cache_destroy(btrfs_inode_cachep); 9383 kmem_cache_destroy(btrfs_trans_handle_cachep); 9384 kmem_cache_destroy(btrfs_path_cachep); 9385 kmem_cache_destroy(btrfs_free_space_cachep); 9386 } 9387 9388 int __init btrfs_init_cachep(void) 9389 { 9390 btrfs_inode_cachep = kmem_cache_create("btrfs_inode", 9391 sizeof(struct btrfs_inode), 0, 9392 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT, 9393 init_once); 9394 if (!btrfs_inode_cachep) 9395 goto fail; 9396 9397 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle", 9398 sizeof(struct btrfs_trans_handle), 0, 9399 SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL); 9400 if (!btrfs_trans_handle_cachep) 9401 goto fail; 9402 9403 btrfs_path_cachep = kmem_cache_create("btrfs_path", 9404 sizeof(struct btrfs_path), 0, 9405 SLAB_MEM_SPREAD, NULL); 9406 if (!btrfs_path_cachep) 9407 goto fail; 9408 9409 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space", 9410 sizeof(struct btrfs_free_space), 0, 9411 SLAB_MEM_SPREAD, NULL); 9412 if (!btrfs_free_space_cachep) 9413 goto fail; 9414 9415 return 0; 9416 fail: 9417 btrfs_destroy_cachep(); 9418 return -ENOMEM; 9419 } 9420 9421 static int btrfs_getattr(const struct path *path, struct kstat *stat, 9422 u32 request_mask, unsigned int flags) 9423 { 9424 u64 delalloc_bytes; 9425 struct inode *inode = d_inode(path->dentry); 9426 u32 blocksize = inode->i_sb->s_blocksize; 9427 u32 bi_flags = BTRFS_I(inode)->flags; 9428 9429 stat->result_mask |= STATX_BTIME; 9430 stat->btime.tv_sec = BTRFS_I(inode)->i_otime.tv_sec; 9431 stat->btime.tv_nsec = BTRFS_I(inode)->i_otime.tv_nsec; 9432 if (bi_flags & BTRFS_INODE_APPEND) 9433 stat->attributes |= STATX_ATTR_APPEND; 9434 if (bi_flags & BTRFS_INODE_COMPRESS) 9435 stat->attributes |= STATX_ATTR_COMPRESSED; 9436 if (bi_flags & BTRFS_INODE_IMMUTABLE) 9437 stat->attributes |= STATX_ATTR_IMMUTABLE; 9438 if (bi_flags & BTRFS_INODE_NODUMP) 9439 stat->attributes |= STATX_ATTR_NODUMP; 9440 9441 stat->attributes_mask |= (STATX_ATTR_APPEND | 9442 STATX_ATTR_COMPRESSED | 9443 STATX_ATTR_IMMUTABLE | 9444 STATX_ATTR_NODUMP); 9445 9446 generic_fillattr(inode, stat); 9447 stat->dev = BTRFS_I(inode)->root->anon_dev; 9448 9449 spin_lock(&BTRFS_I(inode)->lock); 9450 delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes; 9451 spin_unlock(&BTRFS_I(inode)->lock); 9452 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) + 9453 ALIGN(delalloc_bytes, blocksize)) >> 9; 9454 return 0; 9455 } 9456 9457 static int btrfs_rename_exchange(struct inode *old_dir, 9458 struct dentry *old_dentry, 9459 struct inode *new_dir, 9460 struct dentry *new_dentry) 9461 { 9462 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb); 9463 struct btrfs_trans_handle *trans; 9464 struct btrfs_root *root = BTRFS_I(old_dir)->root; 9465 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 9466 struct inode *new_inode = new_dentry->d_inode; 9467 struct inode *old_inode = old_dentry->d_inode; 9468 struct timespec ctime = current_time(old_inode); 9469 struct dentry *parent; 9470 u64 old_ino = btrfs_ino(BTRFS_I(old_inode)); 9471 u64 new_ino = btrfs_ino(BTRFS_I(new_inode)); 9472 u64 old_idx = 0; 9473 u64 new_idx = 0; 9474 u64 root_objectid; 9475 int ret; 9476 bool root_log_pinned = false; 9477 bool dest_log_pinned = false; 9478 9479 /* we only allow rename subvolume link between subvolumes */ 9480 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest) 9481 return -EXDEV; 9482 9483 /* close the race window with snapshot create/destroy ioctl */ 9484 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 9485 down_read(&fs_info->subvol_sem); 9486 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) 9487 down_read(&fs_info->subvol_sem); 9488 9489 /* 9490 * We want to reserve the absolute worst case amount of items. So if 9491 * both inodes are subvols and we need to unlink them then that would 9492 * require 4 item modifications, but if they are both normal inodes it 9493 * would require 5 item modifications, so we'll assume their normal 9494 * inodes. So 5 * 2 is 10, plus 2 for the new links, so 12 total items 9495 * should cover the worst case number of items we'll modify. 9496 */ 9497 trans = btrfs_start_transaction(root, 12); 9498 if (IS_ERR(trans)) { 9499 ret = PTR_ERR(trans); 9500 goto out_notrans; 9501 } 9502 9503 /* 9504 * We need to find a free sequence number both in the source and 9505 * in the destination directory for the exchange. 9506 */ 9507 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx); 9508 if (ret) 9509 goto out_fail; 9510 ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx); 9511 if (ret) 9512 goto out_fail; 9513 9514 BTRFS_I(old_inode)->dir_index = 0ULL; 9515 BTRFS_I(new_inode)->dir_index = 0ULL; 9516 9517 /* Reference for the source. */ 9518 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 9519 /* force full log commit if subvolume involved. */ 9520 btrfs_set_log_full_commit(fs_info, trans); 9521 } else { 9522 btrfs_pin_log_trans(root); 9523 root_log_pinned = true; 9524 ret = btrfs_insert_inode_ref(trans, dest, 9525 new_dentry->d_name.name, 9526 new_dentry->d_name.len, 9527 old_ino, 9528 btrfs_ino(BTRFS_I(new_dir)), 9529 old_idx); 9530 if (ret) 9531 goto out_fail; 9532 } 9533 9534 /* And now for the dest. */ 9535 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) { 9536 /* force full log commit if subvolume involved. */ 9537 btrfs_set_log_full_commit(fs_info, trans); 9538 } else { 9539 btrfs_pin_log_trans(dest); 9540 dest_log_pinned = true; 9541 ret = btrfs_insert_inode_ref(trans, root, 9542 old_dentry->d_name.name, 9543 old_dentry->d_name.len, 9544 new_ino, 9545 btrfs_ino(BTRFS_I(old_dir)), 9546 new_idx); 9547 if (ret) 9548 goto out_fail; 9549 } 9550 9551 /* Update inode version and ctime/mtime. */ 9552 inode_inc_iversion(old_dir); 9553 inode_inc_iversion(new_dir); 9554 inode_inc_iversion(old_inode); 9555 inode_inc_iversion(new_inode); 9556 old_dir->i_ctime = old_dir->i_mtime = ctime; 9557 new_dir->i_ctime = new_dir->i_mtime = ctime; 9558 old_inode->i_ctime = ctime; 9559 new_inode->i_ctime = ctime; 9560 9561 if (old_dentry->d_parent != new_dentry->d_parent) { 9562 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir), 9563 BTRFS_I(old_inode), 1); 9564 btrfs_record_unlink_dir(trans, BTRFS_I(new_dir), 9565 BTRFS_I(new_inode), 1); 9566 } 9567 9568 /* src is a subvolume */ 9569 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 9570 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid; 9571 ret = btrfs_unlink_subvol(trans, root, old_dir, 9572 root_objectid, 9573 old_dentry->d_name.name, 9574 old_dentry->d_name.len); 9575 } else { /* src is an inode */ 9576 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir), 9577 BTRFS_I(old_dentry->d_inode), 9578 old_dentry->d_name.name, 9579 old_dentry->d_name.len); 9580 if (!ret) 9581 ret = btrfs_update_inode(trans, root, old_inode); 9582 } 9583 if (ret) { 9584 btrfs_abort_transaction(trans, ret); 9585 goto out_fail; 9586 } 9587 9588 /* dest is a subvolume */ 9589 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) { 9590 root_objectid = BTRFS_I(new_inode)->root->root_key.objectid; 9591 ret = btrfs_unlink_subvol(trans, dest, new_dir, 9592 root_objectid, 9593 new_dentry->d_name.name, 9594 new_dentry->d_name.len); 9595 } else { /* dest is an inode */ 9596 ret = __btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir), 9597 BTRFS_I(new_dentry->d_inode), 9598 new_dentry->d_name.name, 9599 new_dentry->d_name.len); 9600 if (!ret) 9601 ret = btrfs_update_inode(trans, dest, new_inode); 9602 } 9603 if (ret) { 9604 btrfs_abort_transaction(trans, ret); 9605 goto out_fail; 9606 } 9607 9608 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode), 9609 new_dentry->d_name.name, 9610 new_dentry->d_name.len, 0, old_idx); 9611 if (ret) { 9612 btrfs_abort_transaction(trans, ret); 9613 goto out_fail; 9614 } 9615 9616 ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode), 9617 old_dentry->d_name.name, 9618 old_dentry->d_name.len, 0, new_idx); 9619 if (ret) { 9620 btrfs_abort_transaction(trans, ret); 9621 goto out_fail; 9622 } 9623 9624 if (old_inode->i_nlink == 1) 9625 BTRFS_I(old_inode)->dir_index = old_idx; 9626 if (new_inode->i_nlink == 1) 9627 BTRFS_I(new_inode)->dir_index = new_idx; 9628 9629 if (root_log_pinned) { 9630 parent = new_dentry->d_parent; 9631 btrfs_log_new_name(trans, BTRFS_I(old_inode), BTRFS_I(old_dir), 9632 parent); 9633 btrfs_end_log_trans(root); 9634 root_log_pinned = false; 9635 } 9636 if (dest_log_pinned) { 9637 parent = old_dentry->d_parent; 9638 btrfs_log_new_name(trans, BTRFS_I(new_inode), BTRFS_I(new_dir), 9639 parent); 9640 btrfs_end_log_trans(dest); 9641 dest_log_pinned = false; 9642 } 9643 out_fail: 9644 /* 9645 * If we have pinned a log and an error happened, we unpin tasks 9646 * trying to sync the log and force them to fallback to a transaction 9647 * commit if the log currently contains any of the inodes involved in 9648 * this rename operation (to ensure we do not persist a log with an 9649 * inconsistent state for any of these inodes or leading to any 9650 * inconsistencies when replayed). If the transaction was aborted, the 9651 * abortion reason is propagated to userspace when attempting to commit 9652 * the transaction. If the log does not contain any of these inodes, we 9653 * allow the tasks to sync it. 9654 */ 9655 if (ret && (root_log_pinned || dest_log_pinned)) { 9656 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) || 9657 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) || 9658 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) || 9659 (new_inode && 9660 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation))) 9661 btrfs_set_log_full_commit(fs_info, trans); 9662 9663 if (root_log_pinned) { 9664 btrfs_end_log_trans(root); 9665 root_log_pinned = false; 9666 } 9667 if (dest_log_pinned) { 9668 btrfs_end_log_trans(dest); 9669 dest_log_pinned = false; 9670 } 9671 } 9672 ret = btrfs_end_transaction(trans); 9673 out_notrans: 9674 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) 9675 up_read(&fs_info->subvol_sem); 9676 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 9677 up_read(&fs_info->subvol_sem); 9678 9679 return ret; 9680 } 9681 9682 static int btrfs_whiteout_for_rename(struct btrfs_trans_handle *trans, 9683 struct btrfs_root *root, 9684 struct inode *dir, 9685 struct dentry *dentry) 9686 { 9687 int ret; 9688 struct inode *inode; 9689 u64 objectid; 9690 u64 index; 9691 9692 ret = btrfs_find_free_ino(root, &objectid); 9693 if (ret) 9694 return ret; 9695 9696 inode = btrfs_new_inode(trans, root, dir, 9697 dentry->d_name.name, 9698 dentry->d_name.len, 9699 btrfs_ino(BTRFS_I(dir)), 9700 objectid, 9701 S_IFCHR | WHITEOUT_MODE, 9702 &index); 9703 9704 if (IS_ERR(inode)) { 9705 ret = PTR_ERR(inode); 9706 return ret; 9707 } 9708 9709 inode->i_op = &btrfs_special_inode_operations; 9710 init_special_inode(inode, inode->i_mode, 9711 WHITEOUT_DEV); 9712 9713 ret = btrfs_init_inode_security(trans, inode, dir, 9714 &dentry->d_name); 9715 if (ret) 9716 goto out; 9717 9718 ret = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, 9719 BTRFS_I(inode), 0, index); 9720 if (ret) 9721 goto out; 9722 9723 ret = btrfs_update_inode(trans, root, inode); 9724 out: 9725 unlock_new_inode(inode); 9726 if (ret) 9727 inode_dec_link_count(inode); 9728 iput(inode); 9729 9730 return ret; 9731 } 9732 9733 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry, 9734 struct inode *new_dir, struct dentry *new_dentry, 9735 unsigned int flags) 9736 { 9737 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb); 9738 struct btrfs_trans_handle *trans; 9739 unsigned int trans_num_items; 9740 struct btrfs_root *root = BTRFS_I(old_dir)->root; 9741 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 9742 struct inode *new_inode = d_inode(new_dentry); 9743 struct inode *old_inode = d_inode(old_dentry); 9744 u64 index = 0; 9745 u64 root_objectid; 9746 int ret; 9747 u64 old_ino = btrfs_ino(BTRFS_I(old_inode)); 9748 bool log_pinned = false; 9749 9750 if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 9751 return -EPERM; 9752 9753 /* we only allow rename subvolume link between subvolumes */ 9754 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest) 9755 return -EXDEV; 9756 9757 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID || 9758 (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID)) 9759 return -ENOTEMPTY; 9760 9761 if (S_ISDIR(old_inode->i_mode) && new_inode && 9762 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) 9763 return -ENOTEMPTY; 9764 9765 9766 /* check for collisions, even if the name isn't there */ 9767 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino, 9768 new_dentry->d_name.name, 9769 new_dentry->d_name.len); 9770 9771 if (ret) { 9772 if (ret == -EEXIST) { 9773 /* we shouldn't get 9774 * eexist without a new_inode */ 9775 if (WARN_ON(!new_inode)) { 9776 return ret; 9777 } 9778 } else { 9779 /* maybe -EOVERFLOW */ 9780 return ret; 9781 } 9782 } 9783 ret = 0; 9784 9785 /* 9786 * we're using rename to replace one file with another. Start IO on it 9787 * now so we don't add too much work to the end of the transaction 9788 */ 9789 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size) 9790 filemap_flush(old_inode->i_mapping); 9791 9792 /* close the racy window with snapshot create/destroy ioctl */ 9793 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 9794 down_read(&fs_info->subvol_sem); 9795 /* 9796 * We want to reserve the absolute worst case amount of items. So if 9797 * both inodes are subvols and we need to unlink them then that would 9798 * require 4 item modifications, but if they are both normal inodes it 9799 * would require 5 item modifications, so we'll assume they are normal 9800 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items 9801 * should cover the worst case number of items we'll modify. 9802 * If our rename has the whiteout flag, we need more 5 units for the 9803 * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item 9804 * when selinux is enabled). 9805 */ 9806 trans_num_items = 11; 9807 if (flags & RENAME_WHITEOUT) 9808 trans_num_items += 5; 9809 trans = btrfs_start_transaction(root, trans_num_items); 9810 if (IS_ERR(trans)) { 9811 ret = PTR_ERR(trans); 9812 goto out_notrans; 9813 } 9814 9815 if (dest != root) 9816 btrfs_record_root_in_trans(trans, dest); 9817 9818 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index); 9819 if (ret) 9820 goto out_fail; 9821 9822 BTRFS_I(old_inode)->dir_index = 0ULL; 9823 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 9824 /* force full log commit if subvolume involved. */ 9825 btrfs_set_log_full_commit(fs_info, trans); 9826 } else { 9827 btrfs_pin_log_trans(root); 9828 log_pinned = true; 9829 ret = btrfs_insert_inode_ref(trans, dest, 9830 new_dentry->d_name.name, 9831 new_dentry->d_name.len, 9832 old_ino, 9833 btrfs_ino(BTRFS_I(new_dir)), index); 9834 if (ret) 9835 goto out_fail; 9836 } 9837 9838 inode_inc_iversion(old_dir); 9839 inode_inc_iversion(new_dir); 9840 inode_inc_iversion(old_inode); 9841 old_dir->i_ctime = old_dir->i_mtime = 9842 new_dir->i_ctime = new_dir->i_mtime = 9843 old_inode->i_ctime = current_time(old_dir); 9844 9845 if (old_dentry->d_parent != new_dentry->d_parent) 9846 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir), 9847 BTRFS_I(old_inode), 1); 9848 9849 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 9850 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid; 9851 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid, 9852 old_dentry->d_name.name, 9853 old_dentry->d_name.len); 9854 } else { 9855 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir), 9856 BTRFS_I(d_inode(old_dentry)), 9857 old_dentry->d_name.name, 9858 old_dentry->d_name.len); 9859 if (!ret) 9860 ret = btrfs_update_inode(trans, root, old_inode); 9861 } 9862 if (ret) { 9863 btrfs_abort_transaction(trans, ret); 9864 goto out_fail; 9865 } 9866 9867 if (new_inode) { 9868 inode_inc_iversion(new_inode); 9869 new_inode->i_ctime = current_time(new_inode); 9870 if (unlikely(btrfs_ino(BTRFS_I(new_inode)) == 9871 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 9872 root_objectid = BTRFS_I(new_inode)->location.objectid; 9873 ret = btrfs_unlink_subvol(trans, dest, new_dir, 9874 root_objectid, 9875 new_dentry->d_name.name, 9876 new_dentry->d_name.len); 9877 BUG_ON(new_inode->i_nlink == 0); 9878 } else { 9879 ret = btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir), 9880 BTRFS_I(d_inode(new_dentry)), 9881 new_dentry->d_name.name, 9882 new_dentry->d_name.len); 9883 } 9884 if (!ret && new_inode->i_nlink == 0) 9885 ret = btrfs_orphan_add(trans, 9886 BTRFS_I(d_inode(new_dentry))); 9887 if (ret) { 9888 btrfs_abort_transaction(trans, ret); 9889 goto out_fail; 9890 } 9891 } 9892 9893 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode), 9894 new_dentry->d_name.name, 9895 new_dentry->d_name.len, 0, index); 9896 if (ret) { 9897 btrfs_abort_transaction(trans, ret); 9898 goto out_fail; 9899 } 9900 9901 if (old_inode->i_nlink == 1) 9902 BTRFS_I(old_inode)->dir_index = index; 9903 9904 if (log_pinned) { 9905 struct dentry *parent = new_dentry->d_parent; 9906 9907 btrfs_log_new_name(trans, BTRFS_I(old_inode), BTRFS_I(old_dir), 9908 parent); 9909 btrfs_end_log_trans(root); 9910 log_pinned = false; 9911 } 9912 9913 if (flags & RENAME_WHITEOUT) { 9914 ret = btrfs_whiteout_for_rename(trans, root, old_dir, 9915 old_dentry); 9916 9917 if (ret) { 9918 btrfs_abort_transaction(trans, ret); 9919 goto out_fail; 9920 } 9921 } 9922 out_fail: 9923 /* 9924 * If we have pinned the log and an error happened, we unpin tasks 9925 * trying to sync the log and force them to fallback to a transaction 9926 * commit if the log currently contains any of the inodes involved in 9927 * this rename operation (to ensure we do not persist a log with an 9928 * inconsistent state for any of these inodes or leading to any 9929 * inconsistencies when replayed). If the transaction was aborted, the 9930 * abortion reason is propagated to userspace when attempting to commit 9931 * the transaction. If the log does not contain any of these inodes, we 9932 * allow the tasks to sync it. 9933 */ 9934 if (ret && log_pinned) { 9935 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) || 9936 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) || 9937 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) || 9938 (new_inode && 9939 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation))) 9940 btrfs_set_log_full_commit(fs_info, trans); 9941 9942 btrfs_end_log_trans(root); 9943 log_pinned = false; 9944 } 9945 btrfs_end_transaction(trans); 9946 out_notrans: 9947 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 9948 up_read(&fs_info->subvol_sem); 9949 9950 return ret; 9951 } 9952 9953 static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry, 9954 struct inode *new_dir, struct dentry *new_dentry, 9955 unsigned int flags) 9956 { 9957 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 9958 return -EINVAL; 9959 9960 if (flags & RENAME_EXCHANGE) 9961 return btrfs_rename_exchange(old_dir, old_dentry, new_dir, 9962 new_dentry); 9963 9964 return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry, flags); 9965 } 9966 9967 static void btrfs_run_delalloc_work(struct btrfs_work *work) 9968 { 9969 struct btrfs_delalloc_work *delalloc_work; 9970 struct inode *inode; 9971 9972 delalloc_work = container_of(work, struct btrfs_delalloc_work, 9973 work); 9974 inode = delalloc_work->inode; 9975 filemap_flush(inode->i_mapping); 9976 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 9977 &BTRFS_I(inode)->runtime_flags)) 9978 filemap_flush(inode->i_mapping); 9979 9980 if (delalloc_work->delay_iput) 9981 btrfs_add_delayed_iput(inode); 9982 else 9983 iput(inode); 9984 complete(&delalloc_work->completion); 9985 } 9986 9987 struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode, 9988 int delay_iput) 9989 { 9990 struct btrfs_delalloc_work *work; 9991 9992 work = kmalloc(sizeof(*work), GFP_NOFS); 9993 if (!work) 9994 return NULL; 9995 9996 init_completion(&work->completion); 9997 INIT_LIST_HEAD(&work->list); 9998 work->inode = inode; 9999 work->delay_iput = delay_iput; 10000 WARN_ON_ONCE(!inode); 10001 btrfs_init_work(&work->work, btrfs_flush_delalloc_helper, 10002 btrfs_run_delalloc_work, NULL, NULL); 10003 10004 return work; 10005 } 10006 10007 void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work) 10008 { 10009 wait_for_completion(&work->completion); 10010 kfree(work); 10011 } 10012 10013 /* 10014 * some fairly slow code that needs optimization. This walks the list 10015 * of all the inodes with pending delalloc and forces them to disk. 10016 */ 10017 static int __start_delalloc_inodes(struct btrfs_root *root, int delay_iput, 10018 int nr) 10019 { 10020 struct btrfs_inode *binode; 10021 struct inode *inode; 10022 struct btrfs_delalloc_work *work, *next; 10023 struct list_head works; 10024 struct list_head splice; 10025 int ret = 0; 10026 10027 INIT_LIST_HEAD(&works); 10028 INIT_LIST_HEAD(&splice); 10029 10030 mutex_lock(&root->delalloc_mutex); 10031 spin_lock(&root->delalloc_lock); 10032 list_splice_init(&root->delalloc_inodes, &splice); 10033 while (!list_empty(&splice)) { 10034 binode = list_entry(splice.next, struct btrfs_inode, 10035 delalloc_inodes); 10036 10037 list_move_tail(&binode->delalloc_inodes, 10038 &root->delalloc_inodes); 10039 inode = igrab(&binode->vfs_inode); 10040 if (!inode) { 10041 cond_resched_lock(&root->delalloc_lock); 10042 continue; 10043 } 10044 spin_unlock(&root->delalloc_lock); 10045 10046 work = btrfs_alloc_delalloc_work(inode, delay_iput); 10047 if (!work) { 10048 if (delay_iput) 10049 btrfs_add_delayed_iput(inode); 10050 else 10051 iput(inode); 10052 ret = -ENOMEM; 10053 goto out; 10054 } 10055 list_add_tail(&work->list, &works); 10056 btrfs_queue_work(root->fs_info->flush_workers, 10057 &work->work); 10058 ret++; 10059 if (nr != -1 && ret >= nr) 10060 goto out; 10061 cond_resched(); 10062 spin_lock(&root->delalloc_lock); 10063 } 10064 spin_unlock(&root->delalloc_lock); 10065 10066 out: 10067 list_for_each_entry_safe(work, next, &works, list) { 10068 list_del_init(&work->list); 10069 btrfs_wait_and_free_delalloc_work(work); 10070 } 10071 10072 if (!list_empty_careful(&splice)) { 10073 spin_lock(&root->delalloc_lock); 10074 list_splice_tail(&splice, &root->delalloc_inodes); 10075 spin_unlock(&root->delalloc_lock); 10076 } 10077 mutex_unlock(&root->delalloc_mutex); 10078 return ret; 10079 } 10080 10081 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput) 10082 { 10083 struct btrfs_fs_info *fs_info = root->fs_info; 10084 int ret; 10085 10086 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 10087 return -EROFS; 10088 10089 ret = __start_delalloc_inodes(root, delay_iput, -1); 10090 if (ret > 0) 10091 ret = 0; 10092 return ret; 10093 } 10094 10095 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int delay_iput, 10096 int nr) 10097 { 10098 struct btrfs_root *root; 10099 struct list_head splice; 10100 int ret; 10101 10102 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 10103 return -EROFS; 10104 10105 INIT_LIST_HEAD(&splice); 10106 10107 mutex_lock(&fs_info->delalloc_root_mutex); 10108 spin_lock(&fs_info->delalloc_root_lock); 10109 list_splice_init(&fs_info->delalloc_roots, &splice); 10110 while (!list_empty(&splice) && nr) { 10111 root = list_first_entry(&splice, struct btrfs_root, 10112 delalloc_root); 10113 root = btrfs_grab_fs_root(root); 10114 BUG_ON(!root); 10115 list_move_tail(&root->delalloc_root, 10116 &fs_info->delalloc_roots); 10117 spin_unlock(&fs_info->delalloc_root_lock); 10118 10119 ret = __start_delalloc_inodes(root, delay_iput, nr); 10120 btrfs_put_fs_root(root); 10121 if (ret < 0) 10122 goto out; 10123 10124 if (nr != -1) { 10125 nr -= ret; 10126 WARN_ON(nr < 0); 10127 } 10128 spin_lock(&fs_info->delalloc_root_lock); 10129 } 10130 spin_unlock(&fs_info->delalloc_root_lock); 10131 10132 ret = 0; 10133 out: 10134 if (!list_empty_careful(&splice)) { 10135 spin_lock(&fs_info->delalloc_root_lock); 10136 list_splice_tail(&splice, &fs_info->delalloc_roots); 10137 spin_unlock(&fs_info->delalloc_root_lock); 10138 } 10139 mutex_unlock(&fs_info->delalloc_root_mutex); 10140 return ret; 10141 } 10142 10143 static int btrfs_symlink(struct inode *dir, struct dentry *dentry, 10144 const char *symname) 10145 { 10146 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 10147 struct btrfs_trans_handle *trans; 10148 struct btrfs_root *root = BTRFS_I(dir)->root; 10149 struct btrfs_path *path; 10150 struct btrfs_key key; 10151 struct inode *inode = NULL; 10152 int err; 10153 int drop_inode = 0; 10154 u64 objectid; 10155 u64 index = 0; 10156 int name_len; 10157 int datasize; 10158 unsigned long ptr; 10159 struct btrfs_file_extent_item *ei; 10160 struct extent_buffer *leaf; 10161 10162 name_len = strlen(symname); 10163 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info)) 10164 return -ENAMETOOLONG; 10165 10166 /* 10167 * 2 items for inode item and ref 10168 * 2 items for dir items 10169 * 1 item for updating parent inode item 10170 * 1 item for the inline extent item 10171 * 1 item for xattr if selinux is on 10172 */ 10173 trans = btrfs_start_transaction(root, 7); 10174 if (IS_ERR(trans)) 10175 return PTR_ERR(trans); 10176 10177 err = btrfs_find_free_ino(root, &objectid); 10178 if (err) 10179 goto out_unlock; 10180 10181 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 10182 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), 10183 objectid, S_IFLNK|S_IRWXUGO, &index); 10184 if (IS_ERR(inode)) { 10185 err = PTR_ERR(inode); 10186 goto out_unlock; 10187 } 10188 10189 /* 10190 * If the active LSM wants to access the inode during 10191 * d_instantiate it needs these. Smack checks to see 10192 * if the filesystem supports xattrs by looking at the 10193 * ops vector. 10194 */ 10195 inode->i_fop = &btrfs_file_operations; 10196 inode->i_op = &btrfs_file_inode_operations; 10197 inode->i_mapping->a_ops = &btrfs_aops; 10198 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 10199 10200 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 10201 if (err) 10202 goto out_unlock_inode; 10203 10204 path = btrfs_alloc_path(); 10205 if (!path) { 10206 err = -ENOMEM; 10207 goto out_unlock_inode; 10208 } 10209 key.objectid = btrfs_ino(BTRFS_I(inode)); 10210 key.offset = 0; 10211 key.type = BTRFS_EXTENT_DATA_KEY; 10212 datasize = btrfs_file_extent_calc_inline_size(name_len); 10213 err = btrfs_insert_empty_item(trans, root, path, &key, 10214 datasize); 10215 if (err) { 10216 btrfs_free_path(path); 10217 goto out_unlock_inode; 10218 } 10219 leaf = path->nodes[0]; 10220 ei = btrfs_item_ptr(leaf, path->slots[0], 10221 struct btrfs_file_extent_item); 10222 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 10223 btrfs_set_file_extent_type(leaf, ei, 10224 BTRFS_FILE_EXTENT_INLINE); 10225 btrfs_set_file_extent_encryption(leaf, ei, 0); 10226 btrfs_set_file_extent_compression(leaf, ei, 0); 10227 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 10228 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len); 10229 10230 ptr = btrfs_file_extent_inline_start(ei); 10231 write_extent_buffer(leaf, symname, ptr, name_len); 10232 btrfs_mark_buffer_dirty(leaf); 10233 btrfs_free_path(path); 10234 10235 inode->i_op = &btrfs_symlink_inode_operations; 10236 inode_nohighmem(inode); 10237 inode->i_mapping->a_ops = &btrfs_symlink_aops; 10238 inode_set_bytes(inode, name_len); 10239 btrfs_i_size_write(BTRFS_I(inode), name_len); 10240 err = btrfs_update_inode(trans, root, inode); 10241 /* 10242 * Last step, add directory indexes for our symlink inode. This is the 10243 * last step to avoid extra cleanup of these indexes if an error happens 10244 * elsewhere above. 10245 */ 10246 if (!err) 10247 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, 10248 BTRFS_I(inode), 0, index); 10249 if (err) { 10250 drop_inode = 1; 10251 goto out_unlock_inode; 10252 } 10253 10254 d_instantiate_new(dentry, inode); 10255 10256 out_unlock: 10257 btrfs_end_transaction(trans); 10258 if (drop_inode) { 10259 inode_dec_link_count(inode); 10260 iput(inode); 10261 } 10262 btrfs_btree_balance_dirty(fs_info); 10263 return err; 10264 10265 out_unlock_inode: 10266 drop_inode = 1; 10267 unlock_new_inode(inode); 10268 goto out_unlock; 10269 } 10270 10271 static int __btrfs_prealloc_file_range(struct inode *inode, int mode, 10272 u64 start, u64 num_bytes, u64 min_size, 10273 loff_t actual_len, u64 *alloc_hint, 10274 struct btrfs_trans_handle *trans) 10275 { 10276 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 10277 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 10278 struct extent_map *em; 10279 struct btrfs_root *root = BTRFS_I(inode)->root; 10280 struct btrfs_key ins; 10281 u64 cur_offset = start; 10282 u64 i_size; 10283 u64 cur_bytes; 10284 u64 last_alloc = (u64)-1; 10285 int ret = 0; 10286 bool own_trans = true; 10287 u64 end = start + num_bytes - 1; 10288 10289 if (trans) 10290 own_trans = false; 10291 while (num_bytes > 0) { 10292 if (own_trans) { 10293 trans = btrfs_start_transaction(root, 3); 10294 if (IS_ERR(trans)) { 10295 ret = PTR_ERR(trans); 10296 break; 10297 } 10298 } 10299 10300 cur_bytes = min_t(u64, num_bytes, SZ_256M); 10301 cur_bytes = max(cur_bytes, min_size); 10302 /* 10303 * If we are severely fragmented we could end up with really 10304 * small allocations, so if the allocator is returning small 10305 * chunks lets make its job easier by only searching for those 10306 * sized chunks. 10307 */ 10308 cur_bytes = min(cur_bytes, last_alloc); 10309 ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes, 10310 min_size, 0, *alloc_hint, &ins, 1, 0); 10311 if (ret) { 10312 if (own_trans) 10313 btrfs_end_transaction(trans); 10314 break; 10315 } 10316 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 10317 10318 last_alloc = ins.offset; 10319 ret = insert_reserved_file_extent(trans, inode, 10320 cur_offset, ins.objectid, 10321 ins.offset, ins.offset, 10322 ins.offset, 0, 0, 0, 10323 BTRFS_FILE_EXTENT_PREALLOC); 10324 if (ret) { 10325 btrfs_free_reserved_extent(fs_info, ins.objectid, 10326 ins.offset, 0); 10327 btrfs_abort_transaction(trans, ret); 10328 if (own_trans) 10329 btrfs_end_transaction(trans); 10330 break; 10331 } 10332 10333 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset, 10334 cur_offset + ins.offset -1, 0); 10335 10336 em = alloc_extent_map(); 10337 if (!em) { 10338 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 10339 &BTRFS_I(inode)->runtime_flags); 10340 goto next; 10341 } 10342 10343 em->start = cur_offset; 10344 em->orig_start = cur_offset; 10345 em->len = ins.offset; 10346 em->block_start = ins.objectid; 10347 em->block_len = ins.offset; 10348 em->orig_block_len = ins.offset; 10349 em->ram_bytes = ins.offset; 10350 em->bdev = fs_info->fs_devices->latest_bdev; 10351 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 10352 em->generation = trans->transid; 10353 10354 while (1) { 10355 write_lock(&em_tree->lock); 10356 ret = add_extent_mapping(em_tree, em, 1); 10357 write_unlock(&em_tree->lock); 10358 if (ret != -EEXIST) 10359 break; 10360 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset, 10361 cur_offset + ins.offset - 1, 10362 0); 10363 } 10364 free_extent_map(em); 10365 next: 10366 num_bytes -= ins.offset; 10367 cur_offset += ins.offset; 10368 *alloc_hint = ins.objectid + ins.offset; 10369 10370 inode_inc_iversion(inode); 10371 inode->i_ctime = current_time(inode); 10372 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC; 10373 if (!(mode & FALLOC_FL_KEEP_SIZE) && 10374 (actual_len > inode->i_size) && 10375 (cur_offset > inode->i_size)) { 10376 if (cur_offset > actual_len) 10377 i_size = actual_len; 10378 else 10379 i_size = cur_offset; 10380 i_size_write(inode, i_size); 10381 btrfs_ordered_update_i_size(inode, i_size, NULL); 10382 } 10383 10384 ret = btrfs_update_inode(trans, root, inode); 10385 10386 if (ret) { 10387 btrfs_abort_transaction(trans, ret); 10388 if (own_trans) 10389 btrfs_end_transaction(trans); 10390 break; 10391 } 10392 10393 if (own_trans) 10394 btrfs_end_transaction(trans); 10395 } 10396 if (cur_offset < end) 10397 btrfs_free_reserved_data_space(inode, NULL, cur_offset, 10398 end - cur_offset + 1); 10399 return ret; 10400 } 10401 10402 int btrfs_prealloc_file_range(struct inode *inode, int mode, 10403 u64 start, u64 num_bytes, u64 min_size, 10404 loff_t actual_len, u64 *alloc_hint) 10405 { 10406 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 10407 min_size, actual_len, alloc_hint, 10408 NULL); 10409 } 10410 10411 int btrfs_prealloc_file_range_trans(struct inode *inode, 10412 struct btrfs_trans_handle *trans, int mode, 10413 u64 start, u64 num_bytes, u64 min_size, 10414 loff_t actual_len, u64 *alloc_hint) 10415 { 10416 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 10417 min_size, actual_len, alloc_hint, trans); 10418 } 10419 10420 static int btrfs_set_page_dirty(struct page *page) 10421 { 10422 return __set_page_dirty_nobuffers(page); 10423 } 10424 10425 static int btrfs_permission(struct inode *inode, int mask) 10426 { 10427 struct btrfs_root *root = BTRFS_I(inode)->root; 10428 umode_t mode = inode->i_mode; 10429 10430 if (mask & MAY_WRITE && 10431 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) { 10432 if (btrfs_root_readonly(root)) 10433 return -EROFS; 10434 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) 10435 return -EACCES; 10436 } 10437 return generic_permission(inode, mask); 10438 } 10439 10440 static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode) 10441 { 10442 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 10443 struct btrfs_trans_handle *trans; 10444 struct btrfs_root *root = BTRFS_I(dir)->root; 10445 struct inode *inode = NULL; 10446 u64 objectid; 10447 u64 index; 10448 int ret = 0; 10449 10450 /* 10451 * 5 units required for adding orphan entry 10452 */ 10453 trans = btrfs_start_transaction(root, 5); 10454 if (IS_ERR(trans)) 10455 return PTR_ERR(trans); 10456 10457 ret = btrfs_find_free_ino(root, &objectid); 10458 if (ret) 10459 goto out; 10460 10461 inode = btrfs_new_inode(trans, root, dir, NULL, 0, 10462 btrfs_ino(BTRFS_I(dir)), objectid, mode, &index); 10463 if (IS_ERR(inode)) { 10464 ret = PTR_ERR(inode); 10465 inode = NULL; 10466 goto out; 10467 } 10468 10469 inode->i_fop = &btrfs_file_operations; 10470 inode->i_op = &btrfs_file_inode_operations; 10471 10472 inode->i_mapping->a_ops = &btrfs_aops; 10473 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 10474 10475 ret = btrfs_init_inode_security(trans, inode, dir, NULL); 10476 if (ret) 10477 goto out_inode; 10478 10479 ret = btrfs_update_inode(trans, root, inode); 10480 if (ret) 10481 goto out_inode; 10482 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 10483 if (ret) 10484 goto out_inode; 10485 10486 /* 10487 * We set number of links to 0 in btrfs_new_inode(), and here we set 10488 * it to 1 because d_tmpfile() will issue a warning if the count is 0, 10489 * through: 10490 * 10491 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink() 10492 */ 10493 set_nlink(inode, 1); 10494 unlock_new_inode(inode); 10495 d_tmpfile(dentry, inode); 10496 mark_inode_dirty(inode); 10497 10498 out: 10499 btrfs_end_transaction(trans); 10500 if (ret) 10501 iput(inode); 10502 btrfs_btree_balance_dirty(fs_info); 10503 return ret; 10504 10505 out_inode: 10506 unlock_new_inode(inode); 10507 goto out; 10508 10509 } 10510 10511 __attribute__((const)) 10512 static int btrfs_readpage_io_failed_hook(struct page *page, int failed_mirror) 10513 { 10514 return -EAGAIN; 10515 } 10516 10517 static struct btrfs_fs_info *iotree_fs_info(void *private_data) 10518 { 10519 struct inode *inode = private_data; 10520 return btrfs_sb(inode->i_sb); 10521 } 10522 10523 static void btrfs_check_extent_io_range(void *private_data, const char *caller, 10524 u64 start, u64 end) 10525 { 10526 struct inode *inode = private_data; 10527 u64 isize; 10528 10529 isize = i_size_read(inode); 10530 if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) { 10531 btrfs_debug_rl(BTRFS_I(inode)->root->fs_info, 10532 "%s: ino %llu isize %llu odd range [%llu,%llu]", 10533 caller, btrfs_ino(BTRFS_I(inode)), isize, start, end); 10534 } 10535 } 10536 10537 void btrfs_set_range_writeback(void *private_data, u64 start, u64 end) 10538 { 10539 struct inode *inode = private_data; 10540 unsigned long index = start >> PAGE_SHIFT; 10541 unsigned long end_index = end >> PAGE_SHIFT; 10542 struct page *page; 10543 10544 while (index <= end_index) { 10545 page = find_get_page(inode->i_mapping, index); 10546 ASSERT(page); /* Pages should be in the extent_io_tree */ 10547 set_page_writeback(page); 10548 put_page(page); 10549 index++; 10550 } 10551 } 10552 10553 static const struct inode_operations btrfs_dir_inode_operations = { 10554 .getattr = btrfs_getattr, 10555 .lookup = btrfs_lookup, 10556 .create = btrfs_create, 10557 .unlink = btrfs_unlink, 10558 .link = btrfs_link, 10559 .mkdir = btrfs_mkdir, 10560 .rmdir = btrfs_rmdir, 10561 .rename = btrfs_rename2, 10562 .symlink = btrfs_symlink, 10563 .setattr = btrfs_setattr, 10564 .mknod = btrfs_mknod, 10565 .listxattr = btrfs_listxattr, 10566 .permission = btrfs_permission, 10567 .get_acl = btrfs_get_acl, 10568 .set_acl = btrfs_set_acl, 10569 .update_time = btrfs_update_time, 10570 .tmpfile = btrfs_tmpfile, 10571 }; 10572 static const struct inode_operations btrfs_dir_ro_inode_operations = { 10573 .lookup = btrfs_lookup, 10574 .permission = btrfs_permission, 10575 .update_time = btrfs_update_time, 10576 }; 10577 10578 static const struct file_operations btrfs_dir_file_operations = { 10579 .llseek = generic_file_llseek, 10580 .read = generic_read_dir, 10581 .iterate_shared = btrfs_real_readdir, 10582 .open = btrfs_opendir, 10583 .unlocked_ioctl = btrfs_ioctl, 10584 #ifdef CONFIG_COMPAT 10585 .compat_ioctl = btrfs_compat_ioctl, 10586 #endif 10587 .release = btrfs_release_file, 10588 .fsync = btrfs_sync_file, 10589 }; 10590 10591 static const struct extent_io_ops btrfs_extent_io_ops = { 10592 /* mandatory callbacks */ 10593 .submit_bio_hook = btrfs_submit_bio_hook, 10594 .readpage_end_io_hook = btrfs_readpage_end_io_hook, 10595 .merge_bio_hook = btrfs_merge_bio_hook, 10596 .readpage_io_failed_hook = btrfs_readpage_io_failed_hook, 10597 .tree_fs_info = iotree_fs_info, 10598 .set_range_writeback = btrfs_set_range_writeback, 10599 10600 /* optional callbacks */ 10601 .fill_delalloc = run_delalloc_range, 10602 .writepage_end_io_hook = btrfs_writepage_end_io_hook, 10603 .writepage_start_hook = btrfs_writepage_start_hook, 10604 .set_bit_hook = btrfs_set_bit_hook, 10605 .clear_bit_hook = btrfs_clear_bit_hook, 10606 .merge_extent_hook = btrfs_merge_extent_hook, 10607 .split_extent_hook = btrfs_split_extent_hook, 10608 .check_extent_io_range = btrfs_check_extent_io_range, 10609 }; 10610 10611 /* 10612 * btrfs doesn't support the bmap operation because swapfiles 10613 * use bmap to make a mapping of extents in the file. They assume 10614 * these extents won't change over the life of the file and they 10615 * use the bmap result to do IO directly to the drive. 10616 * 10617 * the btrfs bmap call would return logical addresses that aren't 10618 * suitable for IO and they also will change frequently as COW 10619 * operations happen. So, swapfile + btrfs == corruption. 10620 * 10621 * For now we're avoiding this by dropping bmap. 10622 */ 10623 static const struct address_space_operations btrfs_aops = { 10624 .readpage = btrfs_readpage, 10625 .writepage = btrfs_writepage, 10626 .writepages = btrfs_writepages, 10627 .readpages = btrfs_readpages, 10628 .direct_IO = btrfs_direct_IO, 10629 .invalidatepage = btrfs_invalidatepage, 10630 .releasepage = btrfs_releasepage, 10631 .set_page_dirty = btrfs_set_page_dirty, 10632 .error_remove_page = generic_error_remove_page, 10633 }; 10634 10635 static const struct address_space_operations btrfs_symlink_aops = { 10636 .readpage = btrfs_readpage, 10637 .writepage = btrfs_writepage, 10638 .invalidatepage = btrfs_invalidatepage, 10639 .releasepage = btrfs_releasepage, 10640 }; 10641 10642 static const struct inode_operations btrfs_file_inode_operations = { 10643 .getattr = btrfs_getattr, 10644 .setattr = btrfs_setattr, 10645 .listxattr = btrfs_listxattr, 10646 .permission = btrfs_permission, 10647 .fiemap = btrfs_fiemap, 10648 .get_acl = btrfs_get_acl, 10649 .set_acl = btrfs_set_acl, 10650 .update_time = btrfs_update_time, 10651 }; 10652 static const struct inode_operations btrfs_special_inode_operations = { 10653 .getattr = btrfs_getattr, 10654 .setattr = btrfs_setattr, 10655 .permission = btrfs_permission, 10656 .listxattr = btrfs_listxattr, 10657 .get_acl = btrfs_get_acl, 10658 .set_acl = btrfs_set_acl, 10659 .update_time = btrfs_update_time, 10660 }; 10661 static const struct inode_operations btrfs_symlink_inode_operations = { 10662 .get_link = page_get_link, 10663 .getattr = btrfs_getattr, 10664 .setattr = btrfs_setattr, 10665 .permission = btrfs_permission, 10666 .listxattr = btrfs_listxattr, 10667 .update_time = btrfs_update_time, 10668 }; 10669 10670 const struct dentry_operations btrfs_dentry_operations = { 10671 .d_delete = btrfs_dentry_delete, 10672 .d_release = btrfs_dentry_release, 10673 }; 10674