xref: /openbmc/linux/fs/btrfs/inode.c (revision e29dc460)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/kernel.h>
7 #include <linux/bio.h>
8 #include <linux/buffer_head.h>
9 #include <linux/file.h>
10 #include <linux/fs.h>
11 #include <linux/pagemap.h>
12 #include <linux/highmem.h>
13 #include <linux/time.h>
14 #include <linux/init.h>
15 #include <linux/string.h>
16 #include <linux/backing-dev.h>
17 #include <linux/mpage.h>
18 #include <linux/swap.h>
19 #include <linux/writeback.h>
20 #include <linux/compat.h>
21 #include <linux/bit_spinlock.h>
22 #include <linux/xattr.h>
23 #include <linux/posix_acl.h>
24 #include <linux/falloc.h>
25 #include <linux/slab.h>
26 #include <linux/ratelimit.h>
27 #include <linux/mount.h>
28 #include <linux/btrfs.h>
29 #include <linux/blkdev.h>
30 #include <linux/posix_acl_xattr.h>
31 #include <linux/uio.h>
32 #include <linux/magic.h>
33 #include <linux/iversion.h>
34 #include <asm/unaligned.h>
35 #include "ctree.h"
36 #include "disk-io.h"
37 #include "transaction.h"
38 #include "btrfs_inode.h"
39 #include "print-tree.h"
40 #include "ordered-data.h"
41 #include "xattr.h"
42 #include "tree-log.h"
43 #include "volumes.h"
44 #include "compression.h"
45 #include "locking.h"
46 #include "free-space-cache.h"
47 #include "inode-map.h"
48 #include "backref.h"
49 #include "props.h"
50 #include "qgroup.h"
51 #include "dedupe.h"
52 
53 struct btrfs_iget_args {
54 	struct btrfs_key *location;
55 	struct btrfs_root *root;
56 };
57 
58 struct btrfs_dio_data {
59 	u64 reserve;
60 	u64 unsubmitted_oe_range_start;
61 	u64 unsubmitted_oe_range_end;
62 	int overwrite;
63 };
64 
65 static const struct inode_operations btrfs_dir_inode_operations;
66 static const struct inode_operations btrfs_symlink_inode_operations;
67 static const struct inode_operations btrfs_dir_ro_inode_operations;
68 static const struct inode_operations btrfs_special_inode_operations;
69 static const struct inode_operations btrfs_file_inode_operations;
70 static const struct address_space_operations btrfs_aops;
71 static const struct address_space_operations btrfs_symlink_aops;
72 static const struct file_operations btrfs_dir_file_operations;
73 static const struct extent_io_ops btrfs_extent_io_ops;
74 
75 static struct kmem_cache *btrfs_inode_cachep;
76 struct kmem_cache *btrfs_trans_handle_cachep;
77 struct kmem_cache *btrfs_path_cachep;
78 struct kmem_cache *btrfs_free_space_cachep;
79 
80 #define S_SHIFT 12
81 static const unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
82 	[S_IFREG >> S_SHIFT]	= BTRFS_FT_REG_FILE,
83 	[S_IFDIR >> S_SHIFT]	= BTRFS_FT_DIR,
84 	[S_IFCHR >> S_SHIFT]	= BTRFS_FT_CHRDEV,
85 	[S_IFBLK >> S_SHIFT]	= BTRFS_FT_BLKDEV,
86 	[S_IFIFO >> S_SHIFT]	= BTRFS_FT_FIFO,
87 	[S_IFSOCK >> S_SHIFT]	= BTRFS_FT_SOCK,
88 	[S_IFLNK >> S_SHIFT]	= BTRFS_FT_SYMLINK,
89 };
90 
91 static int btrfs_setsize(struct inode *inode, struct iattr *attr);
92 static int btrfs_truncate(struct inode *inode, bool skip_writeback);
93 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
94 static noinline int cow_file_range(struct inode *inode,
95 				   struct page *locked_page,
96 				   u64 start, u64 end, u64 delalloc_end,
97 				   int *page_started, unsigned long *nr_written,
98 				   int unlock, struct btrfs_dedupe_hash *hash);
99 static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len,
100 				       u64 orig_start, u64 block_start,
101 				       u64 block_len, u64 orig_block_len,
102 				       u64 ram_bytes, int compress_type,
103 				       int type);
104 
105 static void __endio_write_update_ordered(struct inode *inode,
106 					 const u64 offset, const u64 bytes,
107 					 const bool uptodate);
108 
109 /*
110  * Cleanup all submitted ordered extents in specified range to handle errors
111  * from the fill_dellaloc() callback.
112  *
113  * NOTE: caller must ensure that when an error happens, it can not call
114  * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING
115  * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata
116  * to be released, which we want to happen only when finishing the ordered
117  * extent (btrfs_finish_ordered_io()). Also note that the caller of the
118  * fill_delalloc() callback already does proper cleanup for the first page of
119  * the range, that is, it invokes the callback writepage_end_io_hook() for the
120  * range of the first page.
121  */
122 static inline void btrfs_cleanup_ordered_extents(struct inode *inode,
123 						 const u64 offset,
124 						 const u64 bytes)
125 {
126 	unsigned long index = offset >> PAGE_SHIFT;
127 	unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT;
128 	struct page *page;
129 
130 	while (index <= end_index) {
131 		page = find_get_page(inode->i_mapping, index);
132 		index++;
133 		if (!page)
134 			continue;
135 		ClearPagePrivate2(page);
136 		put_page(page);
137 	}
138 	return __endio_write_update_ordered(inode, offset + PAGE_SIZE,
139 					    bytes - PAGE_SIZE, false);
140 }
141 
142 static int btrfs_dirty_inode(struct inode *inode);
143 
144 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
145 void btrfs_test_inode_set_ops(struct inode *inode)
146 {
147 	BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
148 }
149 #endif
150 
151 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
152 				     struct inode *inode,  struct inode *dir,
153 				     const struct qstr *qstr)
154 {
155 	int err;
156 
157 	err = btrfs_init_acl(trans, inode, dir);
158 	if (!err)
159 		err = btrfs_xattr_security_init(trans, inode, dir, qstr);
160 	return err;
161 }
162 
163 /*
164  * this does all the hard work for inserting an inline extent into
165  * the btree.  The caller should have done a btrfs_drop_extents so that
166  * no overlapping inline items exist in the btree
167  */
168 static int insert_inline_extent(struct btrfs_trans_handle *trans,
169 				struct btrfs_path *path, int extent_inserted,
170 				struct btrfs_root *root, struct inode *inode,
171 				u64 start, size_t size, size_t compressed_size,
172 				int compress_type,
173 				struct page **compressed_pages)
174 {
175 	struct extent_buffer *leaf;
176 	struct page *page = NULL;
177 	char *kaddr;
178 	unsigned long ptr;
179 	struct btrfs_file_extent_item *ei;
180 	int ret;
181 	size_t cur_size = size;
182 	unsigned long offset;
183 
184 	if (compressed_size && compressed_pages)
185 		cur_size = compressed_size;
186 
187 	inode_add_bytes(inode, size);
188 
189 	if (!extent_inserted) {
190 		struct btrfs_key key;
191 		size_t datasize;
192 
193 		key.objectid = btrfs_ino(BTRFS_I(inode));
194 		key.offset = start;
195 		key.type = BTRFS_EXTENT_DATA_KEY;
196 
197 		datasize = btrfs_file_extent_calc_inline_size(cur_size);
198 		path->leave_spinning = 1;
199 		ret = btrfs_insert_empty_item(trans, root, path, &key,
200 					      datasize);
201 		if (ret)
202 			goto fail;
203 	}
204 	leaf = path->nodes[0];
205 	ei = btrfs_item_ptr(leaf, path->slots[0],
206 			    struct btrfs_file_extent_item);
207 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
208 	btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
209 	btrfs_set_file_extent_encryption(leaf, ei, 0);
210 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
211 	btrfs_set_file_extent_ram_bytes(leaf, ei, size);
212 	ptr = btrfs_file_extent_inline_start(ei);
213 
214 	if (compress_type != BTRFS_COMPRESS_NONE) {
215 		struct page *cpage;
216 		int i = 0;
217 		while (compressed_size > 0) {
218 			cpage = compressed_pages[i];
219 			cur_size = min_t(unsigned long, compressed_size,
220 				       PAGE_SIZE);
221 
222 			kaddr = kmap_atomic(cpage);
223 			write_extent_buffer(leaf, kaddr, ptr, cur_size);
224 			kunmap_atomic(kaddr);
225 
226 			i++;
227 			ptr += cur_size;
228 			compressed_size -= cur_size;
229 		}
230 		btrfs_set_file_extent_compression(leaf, ei,
231 						  compress_type);
232 	} else {
233 		page = find_get_page(inode->i_mapping,
234 				     start >> PAGE_SHIFT);
235 		btrfs_set_file_extent_compression(leaf, ei, 0);
236 		kaddr = kmap_atomic(page);
237 		offset = start & (PAGE_SIZE - 1);
238 		write_extent_buffer(leaf, kaddr + offset, ptr, size);
239 		kunmap_atomic(kaddr);
240 		put_page(page);
241 	}
242 	btrfs_mark_buffer_dirty(leaf);
243 	btrfs_release_path(path);
244 
245 	/*
246 	 * we're an inline extent, so nobody can
247 	 * extend the file past i_size without locking
248 	 * a page we already have locked.
249 	 *
250 	 * We must do any isize and inode updates
251 	 * before we unlock the pages.  Otherwise we
252 	 * could end up racing with unlink.
253 	 */
254 	BTRFS_I(inode)->disk_i_size = inode->i_size;
255 	ret = btrfs_update_inode(trans, root, inode);
256 
257 fail:
258 	return ret;
259 }
260 
261 
262 /*
263  * conditionally insert an inline extent into the file.  This
264  * does the checks required to make sure the data is small enough
265  * to fit as an inline extent.
266  */
267 static noinline int cow_file_range_inline(struct inode *inode, u64 start,
268 					  u64 end, size_t compressed_size,
269 					  int compress_type,
270 					  struct page **compressed_pages)
271 {
272 	struct btrfs_root *root = BTRFS_I(inode)->root;
273 	struct btrfs_fs_info *fs_info = root->fs_info;
274 	struct btrfs_trans_handle *trans;
275 	u64 isize = i_size_read(inode);
276 	u64 actual_end = min(end + 1, isize);
277 	u64 inline_len = actual_end - start;
278 	u64 aligned_end = ALIGN(end, fs_info->sectorsize);
279 	u64 data_len = inline_len;
280 	int ret;
281 	struct btrfs_path *path;
282 	int extent_inserted = 0;
283 	u32 extent_item_size;
284 
285 	if (compressed_size)
286 		data_len = compressed_size;
287 
288 	if (start > 0 ||
289 	    actual_end > fs_info->sectorsize ||
290 	    data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) ||
291 	    (!compressed_size &&
292 	    (actual_end & (fs_info->sectorsize - 1)) == 0) ||
293 	    end + 1 < isize ||
294 	    data_len > fs_info->max_inline) {
295 		return 1;
296 	}
297 
298 	path = btrfs_alloc_path();
299 	if (!path)
300 		return -ENOMEM;
301 
302 	trans = btrfs_join_transaction(root);
303 	if (IS_ERR(trans)) {
304 		btrfs_free_path(path);
305 		return PTR_ERR(trans);
306 	}
307 	trans->block_rsv = &BTRFS_I(inode)->block_rsv;
308 
309 	if (compressed_size && compressed_pages)
310 		extent_item_size = btrfs_file_extent_calc_inline_size(
311 		   compressed_size);
312 	else
313 		extent_item_size = btrfs_file_extent_calc_inline_size(
314 		    inline_len);
315 
316 	ret = __btrfs_drop_extents(trans, root, inode, path,
317 				   start, aligned_end, NULL,
318 				   1, 1, extent_item_size, &extent_inserted);
319 	if (ret) {
320 		btrfs_abort_transaction(trans, ret);
321 		goto out;
322 	}
323 
324 	if (isize > actual_end)
325 		inline_len = min_t(u64, isize, actual_end);
326 	ret = insert_inline_extent(trans, path, extent_inserted,
327 				   root, inode, start,
328 				   inline_len, compressed_size,
329 				   compress_type, compressed_pages);
330 	if (ret && ret != -ENOSPC) {
331 		btrfs_abort_transaction(trans, ret);
332 		goto out;
333 	} else if (ret == -ENOSPC) {
334 		ret = 1;
335 		goto out;
336 	}
337 
338 	set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
339 	btrfs_drop_extent_cache(BTRFS_I(inode), start, aligned_end - 1, 0);
340 out:
341 	/*
342 	 * Don't forget to free the reserved space, as for inlined extent
343 	 * it won't count as data extent, free them directly here.
344 	 * And at reserve time, it's always aligned to page size, so
345 	 * just free one page here.
346 	 */
347 	btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE);
348 	btrfs_free_path(path);
349 	btrfs_end_transaction(trans);
350 	return ret;
351 }
352 
353 struct async_extent {
354 	u64 start;
355 	u64 ram_size;
356 	u64 compressed_size;
357 	struct page **pages;
358 	unsigned long nr_pages;
359 	int compress_type;
360 	struct list_head list;
361 };
362 
363 struct async_cow {
364 	struct inode *inode;
365 	struct btrfs_root *root;
366 	struct page *locked_page;
367 	u64 start;
368 	u64 end;
369 	unsigned int write_flags;
370 	struct list_head extents;
371 	struct btrfs_work work;
372 };
373 
374 static noinline int add_async_extent(struct async_cow *cow,
375 				     u64 start, u64 ram_size,
376 				     u64 compressed_size,
377 				     struct page **pages,
378 				     unsigned long nr_pages,
379 				     int compress_type)
380 {
381 	struct async_extent *async_extent;
382 
383 	async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
384 	BUG_ON(!async_extent); /* -ENOMEM */
385 	async_extent->start = start;
386 	async_extent->ram_size = ram_size;
387 	async_extent->compressed_size = compressed_size;
388 	async_extent->pages = pages;
389 	async_extent->nr_pages = nr_pages;
390 	async_extent->compress_type = compress_type;
391 	list_add_tail(&async_extent->list, &cow->extents);
392 	return 0;
393 }
394 
395 static inline int inode_need_compress(struct inode *inode, u64 start, u64 end)
396 {
397 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
398 
399 	/* force compress */
400 	if (btrfs_test_opt(fs_info, FORCE_COMPRESS))
401 		return 1;
402 	/* defrag ioctl */
403 	if (BTRFS_I(inode)->defrag_compress)
404 		return 1;
405 	/* bad compression ratios */
406 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
407 		return 0;
408 	if (btrfs_test_opt(fs_info, COMPRESS) ||
409 	    BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS ||
410 	    BTRFS_I(inode)->prop_compress)
411 		return btrfs_compress_heuristic(inode, start, end);
412 	return 0;
413 }
414 
415 static inline void inode_should_defrag(struct btrfs_inode *inode,
416 		u64 start, u64 end, u64 num_bytes, u64 small_write)
417 {
418 	/* If this is a small write inside eof, kick off a defrag */
419 	if (num_bytes < small_write &&
420 	    (start > 0 || end + 1 < inode->disk_i_size))
421 		btrfs_add_inode_defrag(NULL, inode);
422 }
423 
424 /*
425  * we create compressed extents in two phases.  The first
426  * phase compresses a range of pages that have already been
427  * locked (both pages and state bits are locked).
428  *
429  * This is done inside an ordered work queue, and the compression
430  * is spread across many cpus.  The actual IO submission is step
431  * two, and the ordered work queue takes care of making sure that
432  * happens in the same order things were put onto the queue by
433  * writepages and friends.
434  *
435  * If this code finds it can't get good compression, it puts an
436  * entry onto the work queue to write the uncompressed bytes.  This
437  * makes sure that both compressed inodes and uncompressed inodes
438  * are written in the same order that the flusher thread sent them
439  * down.
440  */
441 static noinline void compress_file_range(struct inode *inode,
442 					struct page *locked_page,
443 					u64 start, u64 end,
444 					struct async_cow *async_cow,
445 					int *num_added)
446 {
447 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
448 	u64 blocksize = fs_info->sectorsize;
449 	u64 actual_end;
450 	u64 isize = i_size_read(inode);
451 	int ret = 0;
452 	struct page **pages = NULL;
453 	unsigned long nr_pages;
454 	unsigned long total_compressed = 0;
455 	unsigned long total_in = 0;
456 	int i;
457 	int will_compress;
458 	int compress_type = fs_info->compress_type;
459 	int redirty = 0;
460 
461 	inode_should_defrag(BTRFS_I(inode), start, end, end - start + 1,
462 			SZ_16K);
463 
464 	actual_end = min_t(u64, isize, end + 1);
465 again:
466 	will_compress = 0;
467 	nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
468 	BUILD_BUG_ON((BTRFS_MAX_COMPRESSED % PAGE_SIZE) != 0);
469 	nr_pages = min_t(unsigned long, nr_pages,
470 			BTRFS_MAX_COMPRESSED / PAGE_SIZE);
471 
472 	/*
473 	 * we don't want to send crud past the end of i_size through
474 	 * compression, that's just a waste of CPU time.  So, if the
475 	 * end of the file is before the start of our current
476 	 * requested range of bytes, we bail out to the uncompressed
477 	 * cleanup code that can deal with all of this.
478 	 *
479 	 * It isn't really the fastest way to fix things, but this is a
480 	 * very uncommon corner.
481 	 */
482 	if (actual_end <= start)
483 		goto cleanup_and_bail_uncompressed;
484 
485 	total_compressed = actual_end - start;
486 
487 	/*
488 	 * skip compression for a small file range(<=blocksize) that
489 	 * isn't an inline extent, since it doesn't save disk space at all.
490 	 */
491 	if (total_compressed <= blocksize &&
492 	   (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
493 		goto cleanup_and_bail_uncompressed;
494 
495 	total_compressed = min_t(unsigned long, total_compressed,
496 			BTRFS_MAX_UNCOMPRESSED);
497 	total_in = 0;
498 	ret = 0;
499 
500 	/*
501 	 * we do compression for mount -o compress and when the
502 	 * inode has not been flagged as nocompress.  This flag can
503 	 * change at any time if we discover bad compression ratios.
504 	 */
505 	if (inode_need_compress(inode, start, end)) {
506 		WARN_ON(pages);
507 		pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
508 		if (!pages) {
509 			/* just bail out to the uncompressed code */
510 			goto cont;
511 		}
512 
513 		if (BTRFS_I(inode)->defrag_compress)
514 			compress_type = BTRFS_I(inode)->defrag_compress;
515 		else if (BTRFS_I(inode)->prop_compress)
516 			compress_type = BTRFS_I(inode)->prop_compress;
517 
518 		/*
519 		 * we need to call clear_page_dirty_for_io on each
520 		 * page in the range.  Otherwise applications with the file
521 		 * mmap'd can wander in and change the page contents while
522 		 * we are compressing them.
523 		 *
524 		 * If the compression fails for any reason, we set the pages
525 		 * dirty again later on.
526 		 *
527 		 * Note that the remaining part is redirtied, the start pointer
528 		 * has moved, the end is the original one.
529 		 */
530 		if (!redirty) {
531 			extent_range_clear_dirty_for_io(inode, start, end);
532 			redirty = 1;
533 		}
534 
535 		/* Compression level is applied here and only here */
536 		ret = btrfs_compress_pages(
537 			compress_type | (fs_info->compress_level << 4),
538 					   inode->i_mapping, start,
539 					   pages,
540 					   &nr_pages,
541 					   &total_in,
542 					   &total_compressed);
543 
544 		if (!ret) {
545 			unsigned long offset = total_compressed &
546 				(PAGE_SIZE - 1);
547 			struct page *page = pages[nr_pages - 1];
548 			char *kaddr;
549 
550 			/* zero the tail end of the last page, we might be
551 			 * sending it down to disk
552 			 */
553 			if (offset) {
554 				kaddr = kmap_atomic(page);
555 				memset(kaddr + offset, 0,
556 				       PAGE_SIZE - offset);
557 				kunmap_atomic(kaddr);
558 			}
559 			will_compress = 1;
560 		}
561 	}
562 cont:
563 	if (start == 0) {
564 		/* lets try to make an inline extent */
565 		if (ret || total_in < actual_end) {
566 			/* we didn't compress the entire range, try
567 			 * to make an uncompressed inline extent.
568 			 */
569 			ret = cow_file_range_inline(inode, start, end, 0,
570 						    BTRFS_COMPRESS_NONE, NULL);
571 		} else {
572 			/* try making a compressed inline extent */
573 			ret = cow_file_range_inline(inode, start, end,
574 						    total_compressed,
575 						    compress_type, pages);
576 		}
577 		if (ret <= 0) {
578 			unsigned long clear_flags = EXTENT_DELALLOC |
579 				EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
580 				EXTENT_DO_ACCOUNTING;
581 			unsigned long page_error_op;
582 
583 			page_error_op = ret < 0 ? PAGE_SET_ERROR : 0;
584 
585 			/*
586 			 * inline extent creation worked or returned error,
587 			 * we don't need to create any more async work items.
588 			 * Unlock and free up our temp pages.
589 			 *
590 			 * We use DO_ACCOUNTING here because we need the
591 			 * delalloc_release_metadata to be done _after_ we drop
592 			 * our outstanding extent for clearing delalloc for this
593 			 * range.
594 			 */
595 			extent_clear_unlock_delalloc(inode, start, end, end,
596 						     NULL, clear_flags,
597 						     PAGE_UNLOCK |
598 						     PAGE_CLEAR_DIRTY |
599 						     PAGE_SET_WRITEBACK |
600 						     page_error_op |
601 						     PAGE_END_WRITEBACK);
602 			goto free_pages_out;
603 		}
604 	}
605 
606 	if (will_compress) {
607 		/*
608 		 * we aren't doing an inline extent round the compressed size
609 		 * up to a block size boundary so the allocator does sane
610 		 * things
611 		 */
612 		total_compressed = ALIGN(total_compressed, blocksize);
613 
614 		/*
615 		 * one last check to make sure the compression is really a
616 		 * win, compare the page count read with the blocks on disk,
617 		 * compression must free at least one sector size
618 		 */
619 		total_in = ALIGN(total_in, PAGE_SIZE);
620 		if (total_compressed + blocksize <= total_in) {
621 			*num_added += 1;
622 
623 			/*
624 			 * The async work queues will take care of doing actual
625 			 * allocation on disk for these compressed pages, and
626 			 * will submit them to the elevator.
627 			 */
628 			add_async_extent(async_cow, start, total_in,
629 					total_compressed, pages, nr_pages,
630 					compress_type);
631 
632 			if (start + total_in < end) {
633 				start += total_in;
634 				pages = NULL;
635 				cond_resched();
636 				goto again;
637 			}
638 			return;
639 		}
640 	}
641 	if (pages) {
642 		/*
643 		 * the compression code ran but failed to make things smaller,
644 		 * free any pages it allocated and our page pointer array
645 		 */
646 		for (i = 0; i < nr_pages; i++) {
647 			WARN_ON(pages[i]->mapping);
648 			put_page(pages[i]);
649 		}
650 		kfree(pages);
651 		pages = NULL;
652 		total_compressed = 0;
653 		nr_pages = 0;
654 
655 		/* flag the file so we don't compress in the future */
656 		if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) &&
657 		    !(BTRFS_I(inode)->prop_compress)) {
658 			BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
659 		}
660 	}
661 cleanup_and_bail_uncompressed:
662 	/*
663 	 * No compression, but we still need to write the pages in the file
664 	 * we've been given so far.  redirty the locked page if it corresponds
665 	 * to our extent and set things up for the async work queue to run
666 	 * cow_file_range to do the normal delalloc dance.
667 	 */
668 	if (page_offset(locked_page) >= start &&
669 	    page_offset(locked_page) <= end)
670 		__set_page_dirty_nobuffers(locked_page);
671 		/* unlocked later on in the async handlers */
672 
673 	if (redirty)
674 		extent_range_redirty_for_io(inode, start, end);
675 	add_async_extent(async_cow, start, end - start + 1, 0, NULL, 0,
676 			 BTRFS_COMPRESS_NONE);
677 	*num_added += 1;
678 
679 	return;
680 
681 free_pages_out:
682 	for (i = 0; i < nr_pages; i++) {
683 		WARN_ON(pages[i]->mapping);
684 		put_page(pages[i]);
685 	}
686 	kfree(pages);
687 }
688 
689 static void free_async_extent_pages(struct async_extent *async_extent)
690 {
691 	int i;
692 
693 	if (!async_extent->pages)
694 		return;
695 
696 	for (i = 0; i < async_extent->nr_pages; i++) {
697 		WARN_ON(async_extent->pages[i]->mapping);
698 		put_page(async_extent->pages[i]);
699 	}
700 	kfree(async_extent->pages);
701 	async_extent->nr_pages = 0;
702 	async_extent->pages = NULL;
703 }
704 
705 /*
706  * phase two of compressed writeback.  This is the ordered portion
707  * of the code, which only gets called in the order the work was
708  * queued.  We walk all the async extents created by compress_file_range
709  * and send them down to the disk.
710  */
711 static noinline void submit_compressed_extents(struct inode *inode,
712 					      struct async_cow *async_cow)
713 {
714 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
715 	struct async_extent *async_extent;
716 	u64 alloc_hint = 0;
717 	struct btrfs_key ins;
718 	struct extent_map *em;
719 	struct btrfs_root *root = BTRFS_I(inode)->root;
720 	struct extent_io_tree *io_tree;
721 	int ret = 0;
722 
723 again:
724 	while (!list_empty(&async_cow->extents)) {
725 		async_extent = list_entry(async_cow->extents.next,
726 					  struct async_extent, list);
727 		list_del(&async_extent->list);
728 
729 		io_tree = &BTRFS_I(inode)->io_tree;
730 
731 retry:
732 		/* did the compression code fall back to uncompressed IO? */
733 		if (!async_extent->pages) {
734 			int page_started = 0;
735 			unsigned long nr_written = 0;
736 
737 			lock_extent(io_tree, async_extent->start,
738 					 async_extent->start +
739 					 async_extent->ram_size - 1);
740 
741 			/* allocate blocks */
742 			ret = cow_file_range(inode, async_cow->locked_page,
743 					     async_extent->start,
744 					     async_extent->start +
745 					     async_extent->ram_size - 1,
746 					     async_extent->start +
747 					     async_extent->ram_size - 1,
748 					     &page_started, &nr_written, 0,
749 					     NULL);
750 
751 			/* JDM XXX */
752 
753 			/*
754 			 * if page_started, cow_file_range inserted an
755 			 * inline extent and took care of all the unlocking
756 			 * and IO for us.  Otherwise, we need to submit
757 			 * all those pages down to the drive.
758 			 */
759 			if (!page_started && !ret)
760 				extent_write_locked_range(inode,
761 						  async_extent->start,
762 						  async_extent->start +
763 						  async_extent->ram_size - 1,
764 						  WB_SYNC_ALL);
765 			else if (ret)
766 				unlock_page(async_cow->locked_page);
767 			kfree(async_extent);
768 			cond_resched();
769 			continue;
770 		}
771 
772 		lock_extent(io_tree, async_extent->start,
773 			    async_extent->start + async_extent->ram_size - 1);
774 
775 		ret = btrfs_reserve_extent(root, async_extent->ram_size,
776 					   async_extent->compressed_size,
777 					   async_extent->compressed_size,
778 					   0, alloc_hint, &ins, 1, 1);
779 		if (ret) {
780 			free_async_extent_pages(async_extent);
781 
782 			if (ret == -ENOSPC) {
783 				unlock_extent(io_tree, async_extent->start,
784 					      async_extent->start +
785 					      async_extent->ram_size - 1);
786 
787 				/*
788 				 * we need to redirty the pages if we decide to
789 				 * fallback to uncompressed IO, otherwise we
790 				 * will not submit these pages down to lower
791 				 * layers.
792 				 */
793 				extent_range_redirty_for_io(inode,
794 						async_extent->start,
795 						async_extent->start +
796 						async_extent->ram_size - 1);
797 
798 				goto retry;
799 			}
800 			goto out_free;
801 		}
802 		/*
803 		 * here we're doing allocation and writeback of the
804 		 * compressed pages
805 		 */
806 		em = create_io_em(inode, async_extent->start,
807 				  async_extent->ram_size, /* len */
808 				  async_extent->start, /* orig_start */
809 				  ins.objectid, /* block_start */
810 				  ins.offset, /* block_len */
811 				  ins.offset, /* orig_block_len */
812 				  async_extent->ram_size, /* ram_bytes */
813 				  async_extent->compress_type,
814 				  BTRFS_ORDERED_COMPRESSED);
815 		if (IS_ERR(em))
816 			/* ret value is not necessary due to void function */
817 			goto out_free_reserve;
818 		free_extent_map(em);
819 
820 		ret = btrfs_add_ordered_extent_compress(inode,
821 						async_extent->start,
822 						ins.objectid,
823 						async_extent->ram_size,
824 						ins.offset,
825 						BTRFS_ORDERED_COMPRESSED,
826 						async_extent->compress_type);
827 		if (ret) {
828 			btrfs_drop_extent_cache(BTRFS_I(inode),
829 						async_extent->start,
830 						async_extent->start +
831 						async_extent->ram_size - 1, 0);
832 			goto out_free_reserve;
833 		}
834 		btrfs_dec_block_group_reservations(fs_info, ins.objectid);
835 
836 		/*
837 		 * clear dirty, set writeback and unlock the pages.
838 		 */
839 		extent_clear_unlock_delalloc(inode, async_extent->start,
840 				async_extent->start +
841 				async_extent->ram_size - 1,
842 				async_extent->start +
843 				async_extent->ram_size - 1,
844 				NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
845 				PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
846 				PAGE_SET_WRITEBACK);
847 		if (btrfs_submit_compressed_write(inode,
848 				    async_extent->start,
849 				    async_extent->ram_size,
850 				    ins.objectid,
851 				    ins.offset, async_extent->pages,
852 				    async_extent->nr_pages,
853 				    async_cow->write_flags)) {
854 			struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
855 			struct page *p = async_extent->pages[0];
856 			const u64 start = async_extent->start;
857 			const u64 end = start + async_extent->ram_size - 1;
858 
859 			p->mapping = inode->i_mapping;
860 			tree->ops->writepage_end_io_hook(p, start, end,
861 							 NULL, 0);
862 			p->mapping = NULL;
863 			extent_clear_unlock_delalloc(inode, start, end, end,
864 						     NULL, 0,
865 						     PAGE_END_WRITEBACK |
866 						     PAGE_SET_ERROR);
867 			free_async_extent_pages(async_extent);
868 		}
869 		alloc_hint = ins.objectid + ins.offset;
870 		kfree(async_extent);
871 		cond_resched();
872 	}
873 	return;
874 out_free_reserve:
875 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
876 	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
877 out_free:
878 	extent_clear_unlock_delalloc(inode, async_extent->start,
879 				     async_extent->start +
880 				     async_extent->ram_size - 1,
881 				     async_extent->start +
882 				     async_extent->ram_size - 1,
883 				     NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
884 				     EXTENT_DELALLOC_NEW |
885 				     EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
886 				     PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
887 				     PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
888 				     PAGE_SET_ERROR);
889 	free_async_extent_pages(async_extent);
890 	kfree(async_extent);
891 	goto again;
892 }
893 
894 static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
895 				      u64 num_bytes)
896 {
897 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
898 	struct extent_map *em;
899 	u64 alloc_hint = 0;
900 
901 	read_lock(&em_tree->lock);
902 	em = search_extent_mapping(em_tree, start, num_bytes);
903 	if (em) {
904 		/*
905 		 * if block start isn't an actual block number then find the
906 		 * first block in this inode and use that as a hint.  If that
907 		 * block is also bogus then just don't worry about it.
908 		 */
909 		if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
910 			free_extent_map(em);
911 			em = search_extent_mapping(em_tree, 0, 0);
912 			if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
913 				alloc_hint = em->block_start;
914 			if (em)
915 				free_extent_map(em);
916 		} else {
917 			alloc_hint = em->block_start;
918 			free_extent_map(em);
919 		}
920 	}
921 	read_unlock(&em_tree->lock);
922 
923 	return alloc_hint;
924 }
925 
926 /*
927  * when extent_io.c finds a delayed allocation range in the file,
928  * the call backs end up in this code.  The basic idea is to
929  * allocate extents on disk for the range, and create ordered data structs
930  * in ram to track those extents.
931  *
932  * locked_page is the page that writepage had locked already.  We use
933  * it to make sure we don't do extra locks or unlocks.
934  *
935  * *page_started is set to one if we unlock locked_page and do everything
936  * required to start IO on it.  It may be clean and already done with
937  * IO when we return.
938  */
939 static noinline int cow_file_range(struct inode *inode,
940 				   struct page *locked_page,
941 				   u64 start, u64 end, u64 delalloc_end,
942 				   int *page_started, unsigned long *nr_written,
943 				   int unlock, struct btrfs_dedupe_hash *hash)
944 {
945 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
946 	struct btrfs_root *root = BTRFS_I(inode)->root;
947 	u64 alloc_hint = 0;
948 	u64 num_bytes;
949 	unsigned long ram_size;
950 	u64 cur_alloc_size = 0;
951 	u64 blocksize = fs_info->sectorsize;
952 	struct btrfs_key ins;
953 	struct extent_map *em;
954 	unsigned clear_bits;
955 	unsigned long page_ops;
956 	bool extent_reserved = false;
957 	int ret = 0;
958 
959 	if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
960 		WARN_ON_ONCE(1);
961 		ret = -EINVAL;
962 		goto out_unlock;
963 	}
964 
965 	num_bytes = ALIGN(end - start + 1, blocksize);
966 	num_bytes = max(blocksize,  num_bytes);
967 	ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy));
968 
969 	inode_should_defrag(BTRFS_I(inode), start, end, num_bytes, SZ_64K);
970 
971 	if (start == 0) {
972 		/* lets try to make an inline extent */
973 		ret = cow_file_range_inline(inode, start, end, 0,
974 					    BTRFS_COMPRESS_NONE, NULL);
975 		if (ret == 0) {
976 			/*
977 			 * We use DO_ACCOUNTING here because we need the
978 			 * delalloc_release_metadata to be run _after_ we drop
979 			 * our outstanding extent for clearing delalloc for this
980 			 * range.
981 			 */
982 			extent_clear_unlock_delalloc(inode, start, end,
983 				     delalloc_end, NULL,
984 				     EXTENT_LOCKED | EXTENT_DELALLOC |
985 				     EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
986 				     EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
987 				     PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
988 				     PAGE_END_WRITEBACK);
989 			*nr_written = *nr_written +
990 			     (end - start + PAGE_SIZE) / PAGE_SIZE;
991 			*page_started = 1;
992 			goto out;
993 		} else if (ret < 0) {
994 			goto out_unlock;
995 		}
996 	}
997 
998 	alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
999 	btrfs_drop_extent_cache(BTRFS_I(inode), start,
1000 			start + num_bytes - 1, 0);
1001 
1002 	while (num_bytes > 0) {
1003 		cur_alloc_size = num_bytes;
1004 		ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size,
1005 					   fs_info->sectorsize, 0, alloc_hint,
1006 					   &ins, 1, 1);
1007 		if (ret < 0)
1008 			goto out_unlock;
1009 		cur_alloc_size = ins.offset;
1010 		extent_reserved = true;
1011 
1012 		ram_size = ins.offset;
1013 		em = create_io_em(inode, start, ins.offset, /* len */
1014 				  start, /* orig_start */
1015 				  ins.objectid, /* block_start */
1016 				  ins.offset, /* block_len */
1017 				  ins.offset, /* orig_block_len */
1018 				  ram_size, /* ram_bytes */
1019 				  BTRFS_COMPRESS_NONE, /* compress_type */
1020 				  BTRFS_ORDERED_REGULAR /* type */);
1021 		if (IS_ERR(em))
1022 			goto out_reserve;
1023 		free_extent_map(em);
1024 
1025 		ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
1026 					       ram_size, cur_alloc_size, 0);
1027 		if (ret)
1028 			goto out_drop_extent_cache;
1029 
1030 		if (root->root_key.objectid ==
1031 		    BTRFS_DATA_RELOC_TREE_OBJECTID) {
1032 			ret = btrfs_reloc_clone_csums(inode, start,
1033 						      cur_alloc_size);
1034 			/*
1035 			 * Only drop cache here, and process as normal.
1036 			 *
1037 			 * We must not allow extent_clear_unlock_delalloc()
1038 			 * at out_unlock label to free meta of this ordered
1039 			 * extent, as its meta should be freed by
1040 			 * btrfs_finish_ordered_io().
1041 			 *
1042 			 * So we must continue until @start is increased to
1043 			 * skip current ordered extent.
1044 			 */
1045 			if (ret)
1046 				btrfs_drop_extent_cache(BTRFS_I(inode), start,
1047 						start + ram_size - 1, 0);
1048 		}
1049 
1050 		btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1051 
1052 		/* we're not doing compressed IO, don't unlock the first
1053 		 * page (which the caller expects to stay locked), don't
1054 		 * clear any dirty bits and don't set any writeback bits
1055 		 *
1056 		 * Do set the Private2 bit so we know this page was properly
1057 		 * setup for writepage
1058 		 */
1059 		page_ops = unlock ? PAGE_UNLOCK : 0;
1060 		page_ops |= PAGE_SET_PRIVATE2;
1061 
1062 		extent_clear_unlock_delalloc(inode, start,
1063 					     start + ram_size - 1,
1064 					     delalloc_end, locked_page,
1065 					     EXTENT_LOCKED | EXTENT_DELALLOC,
1066 					     page_ops);
1067 		if (num_bytes < cur_alloc_size)
1068 			num_bytes = 0;
1069 		else
1070 			num_bytes -= cur_alloc_size;
1071 		alloc_hint = ins.objectid + ins.offset;
1072 		start += cur_alloc_size;
1073 		extent_reserved = false;
1074 
1075 		/*
1076 		 * btrfs_reloc_clone_csums() error, since start is increased
1077 		 * extent_clear_unlock_delalloc() at out_unlock label won't
1078 		 * free metadata of current ordered extent, we're OK to exit.
1079 		 */
1080 		if (ret)
1081 			goto out_unlock;
1082 	}
1083 out:
1084 	return ret;
1085 
1086 out_drop_extent_cache:
1087 	btrfs_drop_extent_cache(BTRFS_I(inode), start, start + ram_size - 1, 0);
1088 out_reserve:
1089 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1090 	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
1091 out_unlock:
1092 	clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
1093 		EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV;
1094 	page_ops = PAGE_UNLOCK | PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
1095 		PAGE_END_WRITEBACK;
1096 	/*
1097 	 * If we reserved an extent for our delalloc range (or a subrange) and
1098 	 * failed to create the respective ordered extent, then it means that
1099 	 * when we reserved the extent we decremented the extent's size from
1100 	 * the data space_info's bytes_may_use counter and incremented the
1101 	 * space_info's bytes_reserved counter by the same amount. We must make
1102 	 * sure extent_clear_unlock_delalloc() does not try to decrement again
1103 	 * the data space_info's bytes_may_use counter, therefore we do not pass
1104 	 * it the flag EXTENT_CLEAR_DATA_RESV.
1105 	 */
1106 	if (extent_reserved) {
1107 		extent_clear_unlock_delalloc(inode, start,
1108 					     start + cur_alloc_size,
1109 					     start + cur_alloc_size,
1110 					     locked_page,
1111 					     clear_bits,
1112 					     page_ops);
1113 		start += cur_alloc_size;
1114 		if (start >= end)
1115 			goto out;
1116 	}
1117 	extent_clear_unlock_delalloc(inode, start, end, delalloc_end,
1118 				     locked_page,
1119 				     clear_bits | EXTENT_CLEAR_DATA_RESV,
1120 				     page_ops);
1121 	goto out;
1122 }
1123 
1124 /*
1125  * work queue call back to started compression on a file and pages
1126  */
1127 static noinline void async_cow_start(struct btrfs_work *work)
1128 {
1129 	struct async_cow *async_cow;
1130 	int num_added = 0;
1131 	async_cow = container_of(work, struct async_cow, work);
1132 
1133 	compress_file_range(async_cow->inode, async_cow->locked_page,
1134 			    async_cow->start, async_cow->end, async_cow,
1135 			    &num_added);
1136 	if (num_added == 0) {
1137 		btrfs_add_delayed_iput(async_cow->inode);
1138 		async_cow->inode = NULL;
1139 	}
1140 }
1141 
1142 /*
1143  * work queue call back to submit previously compressed pages
1144  */
1145 static noinline void async_cow_submit(struct btrfs_work *work)
1146 {
1147 	struct btrfs_fs_info *fs_info;
1148 	struct async_cow *async_cow;
1149 	struct btrfs_root *root;
1150 	unsigned long nr_pages;
1151 
1152 	async_cow = container_of(work, struct async_cow, work);
1153 
1154 	root = async_cow->root;
1155 	fs_info = root->fs_info;
1156 	nr_pages = (async_cow->end - async_cow->start + PAGE_SIZE) >>
1157 		PAGE_SHIFT;
1158 
1159 	/*
1160 	 * atomic_sub_return implies a barrier for waitqueue_active
1161 	 */
1162 	if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) <
1163 	    5 * SZ_1M &&
1164 	    waitqueue_active(&fs_info->async_submit_wait))
1165 		wake_up(&fs_info->async_submit_wait);
1166 
1167 	if (async_cow->inode)
1168 		submit_compressed_extents(async_cow->inode, async_cow);
1169 }
1170 
1171 static noinline void async_cow_free(struct btrfs_work *work)
1172 {
1173 	struct async_cow *async_cow;
1174 	async_cow = container_of(work, struct async_cow, work);
1175 	if (async_cow->inode)
1176 		btrfs_add_delayed_iput(async_cow->inode);
1177 	kfree(async_cow);
1178 }
1179 
1180 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1181 				u64 start, u64 end, int *page_started,
1182 				unsigned long *nr_written,
1183 				unsigned int write_flags)
1184 {
1185 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1186 	struct async_cow *async_cow;
1187 	struct btrfs_root *root = BTRFS_I(inode)->root;
1188 	unsigned long nr_pages;
1189 	u64 cur_end;
1190 
1191 	clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
1192 			 1, 0, NULL);
1193 	while (start < end) {
1194 		async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
1195 		BUG_ON(!async_cow); /* -ENOMEM */
1196 		async_cow->inode = igrab(inode);
1197 		async_cow->root = root;
1198 		async_cow->locked_page = locked_page;
1199 		async_cow->start = start;
1200 		async_cow->write_flags = write_flags;
1201 
1202 		if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS &&
1203 		    !btrfs_test_opt(fs_info, FORCE_COMPRESS))
1204 			cur_end = end;
1205 		else
1206 			cur_end = min(end, start + SZ_512K - 1);
1207 
1208 		async_cow->end = cur_end;
1209 		INIT_LIST_HEAD(&async_cow->extents);
1210 
1211 		btrfs_init_work(&async_cow->work,
1212 				btrfs_delalloc_helper,
1213 				async_cow_start, async_cow_submit,
1214 				async_cow_free);
1215 
1216 		nr_pages = (cur_end - start + PAGE_SIZE) >>
1217 			PAGE_SHIFT;
1218 		atomic_add(nr_pages, &fs_info->async_delalloc_pages);
1219 
1220 		btrfs_queue_work(fs_info->delalloc_workers, &async_cow->work);
1221 
1222 		*nr_written += nr_pages;
1223 		start = cur_end + 1;
1224 	}
1225 	*page_started = 1;
1226 	return 0;
1227 }
1228 
1229 static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info,
1230 					u64 bytenr, u64 num_bytes)
1231 {
1232 	int ret;
1233 	struct btrfs_ordered_sum *sums;
1234 	LIST_HEAD(list);
1235 
1236 	ret = btrfs_lookup_csums_range(fs_info->csum_root, bytenr,
1237 				       bytenr + num_bytes - 1, &list, 0);
1238 	if (ret == 0 && list_empty(&list))
1239 		return 0;
1240 
1241 	while (!list_empty(&list)) {
1242 		sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1243 		list_del(&sums->list);
1244 		kfree(sums);
1245 	}
1246 	if (ret < 0)
1247 		return ret;
1248 	return 1;
1249 }
1250 
1251 /*
1252  * when nowcow writeback call back.  This checks for snapshots or COW copies
1253  * of the extents that exist in the file, and COWs the file as required.
1254  *
1255  * If no cow copies or snapshots exist, we write directly to the existing
1256  * blocks on disk
1257  */
1258 static noinline int run_delalloc_nocow(struct inode *inode,
1259 				       struct page *locked_page,
1260 			      u64 start, u64 end, int *page_started, int force,
1261 			      unsigned long *nr_written)
1262 {
1263 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1264 	struct btrfs_root *root = BTRFS_I(inode)->root;
1265 	struct extent_buffer *leaf;
1266 	struct btrfs_path *path;
1267 	struct btrfs_file_extent_item *fi;
1268 	struct btrfs_key found_key;
1269 	struct extent_map *em;
1270 	u64 cow_start;
1271 	u64 cur_offset;
1272 	u64 extent_end;
1273 	u64 extent_offset;
1274 	u64 disk_bytenr;
1275 	u64 num_bytes;
1276 	u64 disk_num_bytes;
1277 	u64 ram_bytes;
1278 	int extent_type;
1279 	int ret, err;
1280 	int type;
1281 	int nocow;
1282 	int check_prev = 1;
1283 	bool nolock;
1284 	u64 ino = btrfs_ino(BTRFS_I(inode));
1285 
1286 	path = btrfs_alloc_path();
1287 	if (!path) {
1288 		extent_clear_unlock_delalloc(inode, start, end, end,
1289 					     locked_page,
1290 					     EXTENT_LOCKED | EXTENT_DELALLOC |
1291 					     EXTENT_DO_ACCOUNTING |
1292 					     EXTENT_DEFRAG, PAGE_UNLOCK |
1293 					     PAGE_CLEAR_DIRTY |
1294 					     PAGE_SET_WRITEBACK |
1295 					     PAGE_END_WRITEBACK);
1296 		return -ENOMEM;
1297 	}
1298 
1299 	nolock = btrfs_is_free_space_inode(BTRFS_I(inode));
1300 
1301 	cow_start = (u64)-1;
1302 	cur_offset = start;
1303 	while (1) {
1304 		ret = btrfs_lookup_file_extent(NULL, root, path, ino,
1305 					       cur_offset, 0);
1306 		if (ret < 0)
1307 			goto error;
1308 		if (ret > 0 && path->slots[0] > 0 && check_prev) {
1309 			leaf = path->nodes[0];
1310 			btrfs_item_key_to_cpu(leaf, &found_key,
1311 					      path->slots[0] - 1);
1312 			if (found_key.objectid == ino &&
1313 			    found_key.type == BTRFS_EXTENT_DATA_KEY)
1314 				path->slots[0]--;
1315 		}
1316 		check_prev = 0;
1317 next_slot:
1318 		leaf = path->nodes[0];
1319 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1320 			ret = btrfs_next_leaf(root, path);
1321 			if (ret < 0) {
1322 				if (cow_start != (u64)-1)
1323 					cur_offset = cow_start;
1324 				goto error;
1325 			}
1326 			if (ret > 0)
1327 				break;
1328 			leaf = path->nodes[0];
1329 		}
1330 
1331 		nocow = 0;
1332 		disk_bytenr = 0;
1333 		num_bytes = 0;
1334 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1335 
1336 		if (found_key.objectid > ino)
1337 			break;
1338 		if (WARN_ON_ONCE(found_key.objectid < ino) ||
1339 		    found_key.type < BTRFS_EXTENT_DATA_KEY) {
1340 			path->slots[0]++;
1341 			goto next_slot;
1342 		}
1343 		if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
1344 		    found_key.offset > end)
1345 			break;
1346 
1347 		if (found_key.offset > cur_offset) {
1348 			extent_end = found_key.offset;
1349 			extent_type = 0;
1350 			goto out_check;
1351 		}
1352 
1353 		fi = btrfs_item_ptr(leaf, path->slots[0],
1354 				    struct btrfs_file_extent_item);
1355 		extent_type = btrfs_file_extent_type(leaf, fi);
1356 
1357 		ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1358 		if (extent_type == BTRFS_FILE_EXTENT_REG ||
1359 		    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1360 			disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1361 			extent_offset = btrfs_file_extent_offset(leaf, fi);
1362 			extent_end = found_key.offset +
1363 				btrfs_file_extent_num_bytes(leaf, fi);
1364 			disk_num_bytes =
1365 				btrfs_file_extent_disk_num_bytes(leaf, fi);
1366 			if (extent_end <= start) {
1367 				path->slots[0]++;
1368 				goto next_slot;
1369 			}
1370 			if (disk_bytenr == 0)
1371 				goto out_check;
1372 			if (btrfs_file_extent_compression(leaf, fi) ||
1373 			    btrfs_file_extent_encryption(leaf, fi) ||
1374 			    btrfs_file_extent_other_encoding(leaf, fi))
1375 				goto out_check;
1376 			if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1377 				goto out_check;
1378 			if (btrfs_extent_readonly(fs_info, disk_bytenr))
1379 				goto out_check;
1380 			ret = btrfs_cross_ref_exist(root, ino,
1381 						    found_key.offset -
1382 						    extent_offset, disk_bytenr);
1383 			if (ret) {
1384 				/*
1385 				 * ret could be -EIO if the above fails to read
1386 				 * metadata.
1387 				 */
1388 				if (ret < 0) {
1389 					if (cow_start != (u64)-1)
1390 						cur_offset = cow_start;
1391 					goto error;
1392 				}
1393 
1394 				WARN_ON_ONCE(nolock);
1395 				goto out_check;
1396 			}
1397 			disk_bytenr += extent_offset;
1398 			disk_bytenr += cur_offset - found_key.offset;
1399 			num_bytes = min(end + 1, extent_end) - cur_offset;
1400 			/*
1401 			 * if there are pending snapshots for this root,
1402 			 * we fall into common COW way.
1403 			 */
1404 			if (!nolock) {
1405 				err = btrfs_start_write_no_snapshotting(root);
1406 				if (!err)
1407 					goto out_check;
1408 			}
1409 			/*
1410 			 * force cow if csum exists in the range.
1411 			 * this ensure that csum for a given extent are
1412 			 * either valid or do not exist.
1413 			 */
1414 			ret = csum_exist_in_range(fs_info, disk_bytenr,
1415 						  num_bytes);
1416 			if (ret) {
1417 				if (!nolock)
1418 					btrfs_end_write_no_snapshotting(root);
1419 
1420 				/*
1421 				 * ret could be -EIO if the above fails to read
1422 				 * metadata.
1423 				 */
1424 				if (ret < 0) {
1425 					if (cow_start != (u64)-1)
1426 						cur_offset = cow_start;
1427 					goto error;
1428 				}
1429 				WARN_ON_ONCE(nolock);
1430 				goto out_check;
1431 			}
1432 			if (!btrfs_inc_nocow_writers(fs_info, disk_bytenr)) {
1433 				if (!nolock)
1434 					btrfs_end_write_no_snapshotting(root);
1435 				goto out_check;
1436 			}
1437 			nocow = 1;
1438 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1439 			extent_end = found_key.offset +
1440 				btrfs_file_extent_inline_len(leaf,
1441 						     path->slots[0], fi);
1442 			extent_end = ALIGN(extent_end,
1443 					   fs_info->sectorsize);
1444 		} else {
1445 			BUG_ON(1);
1446 		}
1447 out_check:
1448 		if (extent_end <= start) {
1449 			path->slots[0]++;
1450 			if (!nolock && nocow)
1451 				btrfs_end_write_no_snapshotting(root);
1452 			if (nocow)
1453 				btrfs_dec_nocow_writers(fs_info, disk_bytenr);
1454 			goto next_slot;
1455 		}
1456 		if (!nocow) {
1457 			if (cow_start == (u64)-1)
1458 				cow_start = cur_offset;
1459 			cur_offset = extent_end;
1460 			if (cur_offset > end)
1461 				break;
1462 			path->slots[0]++;
1463 			goto next_slot;
1464 		}
1465 
1466 		btrfs_release_path(path);
1467 		if (cow_start != (u64)-1) {
1468 			ret = cow_file_range(inode, locked_page,
1469 					     cow_start, found_key.offset - 1,
1470 					     end, page_started, nr_written, 1,
1471 					     NULL);
1472 			if (ret) {
1473 				if (!nolock && nocow)
1474 					btrfs_end_write_no_snapshotting(root);
1475 				if (nocow)
1476 					btrfs_dec_nocow_writers(fs_info,
1477 								disk_bytenr);
1478 				goto error;
1479 			}
1480 			cow_start = (u64)-1;
1481 		}
1482 
1483 		if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1484 			u64 orig_start = found_key.offset - extent_offset;
1485 
1486 			em = create_io_em(inode, cur_offset, num_bytes,
1487 					  orig_start,
1488 					  disk_bytenr, /* block_start */
1489 					  num_bytes, /* block_len */
1490 					  disk_num_bytes, /* orig_block_len */
1491 					  ram_bytes, BTRFS_COMPRESS_NONE,
1492 					  BTRFS_ORDERED_PREALLOC);
1493 			if (IS_ERR(em)) {
1494 				if (!nolock && nocow)
1495 					btrfs_end_write_no_snapshotting(root);
1496 				if (nocow)
1497 					btrfs_dec_nocow_writers(fs_info,
1498 								disk_bytenr);
1499 				ret = PTR_ERR(em);
1500 				goto error;
1501 			}
1502 			free_extent_map(em);
1503 		}
1504 
1505 		if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1506 			type = BTRFS_ORDERED_PREALLOC;
1507 		} else {
1508 			type = BTRFS_ORDERED_NOCOW;
1509 		}
1510 
1511 		ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1512 					       num_bytes, num_bytes, type);
1513 		if (nocow)
1514 			btrfs_dec_nocow_writers(fs_info, disk_bytenr);
1515 		BUG_ON(ret); /* -ENOMEM */
1516 
1517 		if (root->root_key.objectid ==
1518 		    BTRFS_DATA_RELOC_TREE_OBJECTID)
1519 			/*
1520 			 * Error handled later, as we must prevent
1521 			 * extent_clear_unlock_delalloc() in error handler
1522 			 * from freeing metadata of created ordered extent.
1523 			 */
1524 			ret = btrfs_reloc_clone_csums(inode, cur_offset,
1525 						      num_bytes);
1526 
1527 		extent_clear_unlock_delalloc(inode, cur_offset,
1528 					     cur_offset + num_bytes - 1, end,
1529 					     locked_page, EXTENT_LOCKED |
1530 					     EXTENT_DELALLOC |
1531 					     EXTENT_CLEAR_DATA_RESV,
1532 					     PAGE_UNLOCK | PAGE_SET_PRIVATE2);
1533 
1534 		if (!nolock && nocow)
1535 			btrfs_end_write_no_snapshotting(root);
1536 		cur_offset = extent_end;
1537 
1538 		/*
1539 		 * btrfs_reloc_clone_csums() error, now we're OK to call error
1540 		 * handler, as metadata for created ordered extent will only
1541 		 * be freed by btrfs_finish_ordered_io().
1542 		 */
1543 		if (ret)
1544 			goto error;
1545 		if (cur_offset > end)
1546 			break;
1547 	}
1548 	btrfs_release_path(path);
1549 
1550 	if (cur_offset <= end && cow_start == (u64)-1) {
1551 		cow_start = cur_offset;
1552 		cur_offset = end;
1553 	}
1554 
1555 	if (cow_start != (u64)-1) {
1556 		ret = cow_file_range(inode, locked_page, cow_start, end, end,
1557 				     page_started, nr_written, 1, NULL);
1558 		if (ret)
1559 			goto error;
1560 	}
1561 
1562 error:
1563 	if (ret && cur_offset < end)
1564 		extent_clear_unlock_delalloc(inode, cur_offset, end, end,
1565 					     locked_page, EXTENT_LOCKED |
1566 					     EXTENT_DELALLOC | EXTENT_DEFRAG |
1567 					     EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1568 					     PAGE_CLEAR_DIRTY |
1569 					     PAGE_SET_WRITEBACK |
1570 					     PAGE_END_WRITEBACK);
1571 	btrfs_free_path(path);
1572 	return ret;
1573 }
1574 
1575 static inline int need_force_cow(struct inode *inode, u64 start, u64 end)
1576 {
1577 
1578 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
1579 	    !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC))
1580 		return 0;
1581 
1582 	/*
1583 	 * @defrag_bytes is a hint value, no spinlock held here,
1584 	 * if is not zero, it means the file is defragging.
1585 	 * Force cow if given extent needs to be defragged.
1586 	 */
1587 	if (BTRFS_I(inode)->defrag_bytes &&
1588 	    test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
1589 			   EXTENT_DEFRAG, 0, NULL))
1590 		return 1;
1591 
1592 	return 0;
1593 }
1594 
1595 /*
1596  * extent_io.c call back to do delayed allocation processing
1597  */
1598 static int run_delalloc_range(void *private_data, struct page *locked_page,
1599 			      u64 start, u64 end, int *page_started,
1600 			      unsigned long *nr_written,
1601 			      struct writeback_control *wbc)
1602 {
1603 	struct inode *inode = private_data;
1604 	int ret;
1605 	int force_cow = need_force_cow(inode, start, end);
1606 	unsigned int write_flags = wbc_to_write_flags(wbc);
1607 
1608 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) {
1609 		ret = run_delalloc_nocow(inode, locked_page, start, end,
1610 					 page_started, 1, nr_written);
1611 	} else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) {
1612 		ret = run_delalloc_nocow(inode, locked_page, start, end,
1613 					 page_started, 0, nr_written);
1614 	} else if (!inode_need_compress(inode, start, end)) {
1615 		ret = cow_file_range(inode, locked_page, start, end, end,
1616 				      page_started, nr_written, 1, NULL);
1617 	} else {
1618 		set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1619 			&BTRFS_I(inode)->runtime_flags);
1620 		ret = cow_file_range_async(inode, locked_page, start, end,
1621 					   page_started, nr_written,
1622 					   write_flags);
1623 	}
1624 	if (ret)
1625 		btrfs_cleanup_ordered_extents(inode, start, end - start + 1);
1626 	return ret;
1627 }
1628 
1629 static void btrfs_split_extent_hook(void *private_data,
1630 				    struct extent_state *orig, u64 split)
1631 {
1632 	struct inode *inode = private_data;
1633 	u64 size;
1634 
1635 	/* not delalloc, ignore it */
1636 	if (!(orig->state & EXTENT_DELALLOC))
1637 		return;
1638 
1639 	size = orig->end - orig->start + 1;
1640 	if (size > BTRFS_MAX_EXTENT_SIZE) {
1641 		u32 num_extents;
1642 		u64 new_size;
1643 
1644 		/*
1645 		 * See the explanation in btrfs_merge_extent_hook, the same
1646 		 * applies here, just in reverse.
1647 		 */
1648 		new_size = orig->end - split + 1;
1649 		num_extents = count_max_extents(new_size);
1650 		new_size = split - orig->start;
1651 		num_extents += count_max_extents(new_size);
1652 		if (count_max_extents(size) >= num_extents)
1653 			return;
1654 	}
1655 
1656 	spin_lock(&BTRFS_I(inode)->lock);
1657 	btrfs_mod_outstanding_extents(BTRFS_I(inode), 1);
1658 	spin_unlock(&BTRFS_I(inode)->lock);
1659 }
1660 
1661 /*
1662  * extent_io.c merge_extent_hook, used to track merged delayed allocation
1663  * extents so we can keep track of new extents that are just merged onto old
1664  * extents, such as when we are doing sequential writes, so we can properly
1665  * account for the metadata space we'll need.
1666  */
1667 static void btrfs_merge_extent_hook(void *private_data,
1668 				    struct extent_state *new,
1669 				    struct extent_state *other)
1670 {
1671 	struct inode *inode = private_data;
1672 	u64 new_size, old_size;
1673 	u32 num_extents;
1674 
1675 	/* not delalloc, ignore it */
1676 	if (!(other->state & EXTENT_DELALLOC))
1677 		return;
1678 
1679 	if (new->start > other->start)
1680 		new_size = new->end - other->start + 1;
1681 	else
1682 		new_size = other->end - new->start + 1;
1683 
1684 	/* we're not bigger than the max, unreserve the space and go */
1685 	if (new_size <= BTRFS_MAX_EXTENT_SIZE) {
1686 		spin_lock(&BTRFS_I(inode)->lock);
1687 		btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
1688 		spin_unlock(&BTRFS_I(inode)->lock);
1689 		return;
1690 	}
1691 
1692 	/*
1693 	 * We have to add up either side to figure out how many extents were
1694 	 * accounted for before we merged into one big extent.  If the number of
1695 	 * extents we accounted for is <= the amount we need for the new range
1696 	 * then we can return, otherwise drop.  Think of it like this
1697 	 *
1698 	 * [ 4k][MAX_SIZE]
1699 	 *
1700 	 * So we've grown the extent by a MAX_SIZE extent, this would mean we
1701 	 * need 2 outstanding extents, on one side we have 1 and the other side
1702 	 * we have 1 so they are == and we can return.  But in this case
1703 	 *
1704 	 * [MAX_SIZE+4k][MAX_SIZE+4k]
1705 	 *
1706 	 * Each range on their own accounts for 2 extents, but merged together
1707 	 * they are only 3 extents worth of accounting, so we need to drop in
1708 	 * this case.
1709 	 */
1710 	old_size = other->end - other->start + 1;
1711 	num_extents = count_max_extents(old_size);
1712 	old_size = new->end - new->start + 1;
1713 	num_extents += count_max_extents(old_size);
1714 	if (count_max_extents(new_size) >= num_extents)
1715 		return;
1716 
1717 	spin_lock(&BTRFS_I(inode)->lock);
1718 	btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
1719 	spin_unlock(&BTRFS_I(inode)->lock);
1720 }
1721 
1722 static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1723 				      struct inode *inode)
1724 {
1725 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1726 
1727 	spin_lock(&root->delalloc_lock);
1728 	if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1729 		list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1730 			      &root->delalloc_inodes);
1731 		set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1732 			&BTRFS_I(inode)->runtime_flags);
1733 		root->nr_delalloc_inodes++;
1734 		if (root->nr_delalloc_inodes == 1) {
1735 			spin_lock(&fs_info->delalloc_root_lock);
1736 			BUG_ON(!list_empty(&root->delalloc_root));
1737 			list_add_tail(&root->delalloc_root,
1738 				      &fs_info->delalloc_roots);
1739 			spin_unlock(&fs_info->delalloc_root_lock);
1740 		}
1741 	}
1742 	spin_unlock(&root->delalloc_lock);
1743 }
1744 
1745 
1746 void __btrfs_del_delalloc_inode(struct btrfs_root *root,
1747 				struct btrfs_inode *inode)
1748 {
1749 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
1750 
1751 	if (!list_empty(&inode->delalloc_inodes)) {
1752 		list_del_init(&inode->delalloc_inodes);
1753 		clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1754 			  &inode->runtime_flags);
1755 		root->nr_delalloc_inodes--;
1756 		if (!root->nr_delalloc_inodes) {
1757 			spin_lock(&fs_info->delalloc_root_lock);
1758 			BUG_ON(list_empty(&root->delalloc_root));
1759 			list_del_init(&root->delalloc_root);
1760 			spin_unlock(&fs_info->delalloc_root_lock);
1761 		}
1762 	}
1763 }
1764 
1765 static void btrfs_del_delalloc_inode(struct btrfs_root *root,
1766 				     struct btrfs_inode *inode)
1767 {
1768 	spin_lock(&root->delalloc_lock);
1769 	__btrfs_del_delalloc_inode(root, inode);
1770 	spin_unlock(&root->delalloc_lock);
1771 }
1772 
1773 /*
1774  * extent_io.c set_bit_hook, used to track delayed allocation
1775  * bytes in this file, and to maintain the list of inodes that
1776  * have pending delalloc work to be done.
1777  */
1778 static void btrfs_set_bit_hook(void *private_data,
1779 			       struct extent_state *state, unsigned *bits)
1780 {
1781 	struct inode *inode = private_data;
1782 
1783 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1784 
1785 	if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC))
1786 		WARN_ON(1);
1787 	/*
1788 	 * set_bit and clear bit hooks normally require _irqsave/restore
1789 	 * but in this case, we are only testing for the DELALLOC
1790 	 * bit, which is only set or cleared with irqs on
1791 	 */
1792 	if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1793 		struct btrfs_root *root = BTRFS_I(inode)->root;
1794 		u64 len = state->end + 1 - state->start;
1795 		u32 num_extents = count_max_extents(len);
1796 		bool do_list = !btrfs_is_free_space_inode(BTRFS_I(inode));
1797 
1798 		spin_lock(&BTRFS_I(inode)->lock);
1799 		btrfs_mod_outstanding_extents(BTRFS_I(inode), num_extents);
1800 		spin_unlock(&BTRFS_I(inode)->lock);
1801 
1802 		/* For sanity tests */
1803 		if (btrfs_is_testing(fs_info))
1804 			return;
1805 
1806 		percpu_counter_add_batch(&fs_info->delalloc_bytes, len,
1807 					 fs_info->delalloc_batch);
1808 		spin_lock(&BTRFS_I(inode)->lock);
1809 		BTRFS_I(inode)->delalloc_bytes += len;
1810 		if (*bits & EXTENT_DEFRAG)
1811 			BTRFS_I(inode)->defrag_bytes += len;
1812 		if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1813 					 &BTRFS_I(inode)->runtime_flags))
1814 			btrfs_add_delalloc_inodes(root, inode);
1815 		spin_unlock(&BTRFS_I(inode)->lock);
1816 	}
1817 
1818 	if (!(state->state & EXTENT_DELALLOC_NEW) &&
1819 	    (*bits & EXTENT_DELALLOC_NEW)) {
1820 		spin_lock(&BTRFS_I(inode)->lock);
1821 		BTRFS_I(inode)->new_delalloc_bytes += state->end + 1 -
1822 			state->start;
1823 		spin_unlock(&BTRFS_I(inode)->lock);
1824 	}
1825 }
1826 
1827 /*
1828  * extent_io.c clear_bit_hook, see set_bit_hook for why
1829  */
1830 static void btrfs_clear_bit_hook(void *private_data,
1831 				 struct extent_state *state,
1832 				 unsigned *bits)
1833 {
1834 	struct btrfs_inode *inode = BTRFS_I((struct inode *)private_data);
1835 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
1836 	u64 len = state->end + 1 - state->start;
1837 	u32 num_extents = count_max_extents(len);
1838 
1839 	if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG)) {
1840 		spin_lock(&inode->lock);
1841 		inode->defrag_bytes -= len;
1842 		spin_unlock(&inode->lock);
1843 	}
1844 
1845 	/*
1846 	 * set_bit and clear bit hooks normally require _irqsave/restore
1847 	 * but in this case, we are only testing for the DELALLOC
1848 	 * bit, which is only set or cleared with irqs on
1849 	 */
1850 	if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1851 		struct btrfs_root *root = inode->root;
1852 		bool do_list = !btrfs_is_free_space_inode(inode);
1853 
1854 		spin_lock(&inode->lock);
1855 		btrfs_mod_outstanding_extents(inode, -num_extents);
1856 		spin_unlock(&inode->lock);
1857 
1858 		/*
1859 		 * We don't reserve metadata space for space cache inodes so we
1860 		 * don't need to call dellalloc_release_metadata if there is an
1861 		 * error.
1862 		 */
1863 		if (*bits & EXTENT_CLEAR_META_RESV &&
1864 		    root != fs_info->tree_root)
1865 			btrfs_delalloc_release_metadata(inode, len, false);
1866 
1867 		/* For sanity tests. */
1868 		if (btrfs_is_testing(fs_info))
1869 			return;
1870 
1871 		if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID &&
1872 		    do_list && !(state->state & EXTENT_NORESERVE) &&
1873 		    (*bits & EXTENT_CLEAR_DATA_RESV))
1874 			btrfs_free_reserved_data_space_noquota(
1875 					&inode->vfs_inode,
1876 					state->start, len);
1877 
1878 		percpu_counter_add_batch(&fs_info->delalloc_bytes, -len,
1879 					 fs_info->delalloc_batch);
1880 		spin_lock(&inode->lock);
1881 		inode->delalloc_bytes -= len;
1882 		if (do_list && inode->delalloc_bytes == 0 &&
1883 		    test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1884 					&inode->runtime_flags))
1885 			btrfs_del_delalloc_inode(root, inode);
1886 		spin_unlock(&inode->lock);
1887 	}
1888 
1889 	if ((state->state & EXTENT_DELALLOC_NEW) &&
1890 	    (*bits & EXTENT_DELALLOC_NEW)) {
1891 		spin_lock(&inode->lock);
1892 		ASSERT(inode->new_delalloc_bytes >= len);
1893 		inode->new_delalloc_bytes -= len;
1894 		spin_unlock(&inode->lock);
1895 	}
1896 }
1897 
1898 /*
1899  * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1900  * we don't create bios that span stripes or chunks
1901  *
1902  * return 1 if page cannot be merged to bio
1903  * return 0 if page can be merged to bio
1904  * return error otherwise
1905  */
1906 int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
1907 			 size_t size, struct bio *bio,
1908 			 unsigned long bio_flags)
1909 {
1910 	struct inode *inode = page->mapping->host;
1911 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1912 	u64 logical = (u64)bio->bi_iter.bi_sector << 9;
1913 	u64 length = 0;
1914 	u64 map_length;
1915 	int ret;
1916 
1917 	if (bio_flags & EXTENT_BIO_COMPRESSED)
1918 		return 0;
1919 
1920 	length = bio->bi_iter.bi_size;
1921 	map_length = length;
1922 	ret = btrfs_map_block(fs_info, btrfs_op(bio), logical, &map_length,
1923 			      NULL, 0);
1924 	if (ret < 0)
1925 		return ret;
1926 	if (map_length < length + size)
1927 		return 1;
1928 	return 0;
1929 }
1930 
1931 /*
1932  * in order to insert checksums into the metadata in large chunks,
1933  * we wait until bio submission time.   All the pages in the bio are
1934  * checksummed and sums are attached onto the ordered extent record.
1935  *
1936  * At IO completion time the cums attached on the ordered extent record
1937  * are inserted into the btree
1938  */
1939 static blk_status_t btrfs_submit_bio_start(void *private_data, struct bio *bio,
1940 				    u64 bio_offset)
1941 {
1942 	struct inode *inode = private_data;
1943 	blk_status_t ret = 0;
1944 
1945 	ret = btrfs_csum_one_bio(inode, bio, 0, 0);
1946 	BUG_ON(ret); /* -ENOMEM */
1947 	return 0;
1948 }
1949 
1950 /*
1951  * in order to insert checksums into the metadata in large chunks,
1952  * we wait until bio submission time.   All the pages in the bio are
1953  * checksummed and sums are attached onto the ordered extent record.
1954  *
1955  * At IO completion time the cums attached on the ordered extent record
1956  * are inserted into the btree
1957  */
1958 static blk_status_t btrfs_submit_bio_done(void *private_data, struct bio *bio,
1959 			  int mirror_num)
1960 {
1961 	struct inode *inode = private_data;
1962 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1963 	blk_status_t ret;
1964 
1965 	ret = btrfs_map_bio(fs_info, bio, mirror_num, 1);
1966 	if (ret) {
1967 		bio->bi_status = ret;
1968 		bio_endio(bio);
1969 	}
1970 	return ret;
1971 }
1972 
1973 /*
1974  * extent_io.c submission hook. This does the right thing for csum calculation
1975  * on write, or reading the csums from the tree before a read.
1976  *
1977  * Rules about async/sync submit,
1978  * a) read:				sync submit
1979  *
1980  * b) write without checksum:		sync submit
1981  *
1982  * c) write with checksum:
1983  *    c-1) if bio is issued by fsync:	sync submit
1984  *         (sync_writers != 0)
1985  *
1986  *    c-2) if root is reloc root:	sync submit
1987  *         (only in case of buffered IO)
1988  *
1989  *    c-3) otherwise:			async submit
1990  */
1991 static blk_status_t btrfs_submit_bio_hook(void *private_data, struct bio *bio,
1992 				 int mirror_num, unsigned long bio_flags,
1993 				 u64 bio_offset)
1994 {
1995 	struct inode *inode = private_data;
1996 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1997 	struct btrfs_root *root = BTRFS_I(inode)->root;
1998 	enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA;
1999 	blk_status_t ret = 0;
2000 	int skip_sum;
2001 	int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
2002 
2003 	skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
2004 
2005 	if (btrfs_is_free_space_inode(BTRFS_I(inode)))
2006 		metadata = BTRFS_WQ_ENDIO_FREE_SPACE;
2007 
2008 	if (bio_op(bio) != REQ_OP_WRITE) {
2009 		ret = btrfs_bio_wq_end_io(fs_info, bio, metadata);
2010 		if (ret)
2011 			goto out;
2012 
2013 		if (bio_flags & EXTENT_BIO_COMPRESSED) {
2014 			ret = btrfs_submit_compressed_read(inode, bio,
2015 							   mirror_num,
2016 							   bio_flags);
2017 			goto out;
2018 		} else if (!skip_sum) {
2019 			ret = btrfs_lookup_bio_sums(inode, bio, NULL);
2020 			if (ret)
2021 				goto out;
2022 		}
2023 		goto mapit;
2024 	} else if (async && !skip_sum) {
2025 		/* csum items have already been cloned */
2026 		if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
2027 			goto mapit;
2028 		/* we're doing a write, do the async checksumming */
2029 		ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, bio_flags,
2030 					  bio_offset, inode,
2031 					  btrfs_submit_bio_start,
2032 					  btrfs_submit_bio_done);
2033 		goto out;
2034 	} else if (!skip_sum) {
2035 		ret = btrfs_csum_one_bio(inode, bio, 0, 0);
2036 		if (ret)
2037 			goto out;
2038 	}
2039 
2040 mapit:
2041 	ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
2042 
2043 out:
2044 	if (ret) {
2045 		bio->bi_status = ret;
2046 		bio_endio(bio);
2047 	}
2048 	return ret;
2049 }
2050 
2051 /*
2052  * given a list of ordered sums record them in the inode.  This happens
2053  * at IO completion time based on sums calculated at bio submission time.
2054  */
2055 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
2056 			     struct inode *inode, struct list_head *list)
2057 {
2058 	struct btrfs_ordered_sum *sum;
2059 	int ret;
2060 
2061 	list_for_each_entry(sum, list, list) {
2062 		trans->adding_csums = true;
2063 		ret = btrfs_csum_file_blocks(trans,
2064 		       BTRFS_I(inode)->root->fs_info->csum_root, sum);
2065 		trans->adding_csums = false;
2066 		if (ret)
2067 			return ret;
2068 	}
2069 	return 0;
2070 }
2071 
2072 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
2073 			      unsigned int extra_bits,
2074 			      struct extent_state **cached_state, int dedupe)
2075 {
2076 	WARN_ON((end & (PAGE_SIZE - 1)) == 0);
2077 	return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
2078 				   extra_bits, cached_state);
2079 }
2080 
2081 /* see btrfs_writepage_start_hook for details on why this is required */
2082 struct btrfs_writepage_fixup {
2083 	struct page *page;
2084 	struct btrfs_work work;
2085 };
2086 
2087 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
2088 {
2089 	struct btrfs_writepage_fixup *fixup;
2090 	struct btrfs_ordered_extent *ordered;
2091 	struct extent_state *cached_state = NULL;
2092 	struct extent_changeset *data_reserved = NULL;
2093 	struct page *page;
2094 	struct inode *inode;
2095 	u64 page_start;
2096 	u64 page_end;
2097 	int ret;
2098 
2099 	fixup = container_of(work, struct btrfs_writepage_fixup, work);
2100 	page = fixup->page;
2101 again:
2102 	lock_page(page);
2103 	if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
2104 		ClearPageChecked(page);
2105 		goto out_page;
2106 	}
2107 
2108 	inode = page->mapping->host;
2109 	page_start = page_offset(page);
2110 	page_end = page_offset(page) + PAGE_SIZE - 1;
2111 
2112 	lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end,
2113 			 &cached_state);
2114 
2115 	/* already ordered? We're done */
2116 	if (PagePrivate2(page))
2117 		goto out;
2118 
2119 	ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
2120 					PAGE_SIZE);
2121 	if (ordered) {
2122 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
2123 				     page_end, &cached_state);
2124 		unlock_page(page);
2125 		btrfs_start_ordered_extent(inode, ordered, 1);
2126 		btrfs_put_ordered_extent(ordered);
2127 		goto again;
2128 	}
2129 
2130 	ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
2131 					   PAGE_SIZE);
2132 	if (ret) {
2133 		mapping_set_error(page->mapping, ret);
2134 		end_extent_writepage(page, ret, page_start, page_end);
2135 		ClearPageChecked(page);
2136 		goto out;
2137 	 }
2138 
2139 	ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0,
2140 					&cached_state, 0);
2141 	if (ret) {
2142 		mapping_set_error(page->mapping, ret);
2143 		end_extent_writepage(page, ret, page_start, page_end);
2144 		ClearPageChecked(page);
2145 		goto out;
2146 	}
2147 
2148 	ClearPageChecked(page);
2149 	set_page_dirty(page);
2150 	btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE, false);
2151 out:
2152 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
2153 			     &cached_state);
2154 out_page:
2155 	unlock_page(page);
2156 	put_page(page);
2157 	kfree(fixup);
2158 	extent_changeset_free(data_reserved);
2159 }
2160 
2161 /*
2162  * There are a few paths in the higher layers of the kernel that directly
2163  * set the page dirty bit without asking the filesystem if it is a
2164  * good idea.  This causes problems because we want to make sure COW
2165  * properly happens and the data=ordered rules are followed.
2166  *
2167  * In our case any range that doesn't have the ORDERED bit set
2168  * hasn't been properly setup for IO.  We kick off an async process
2169  * to fix it up.  The async helper will wait for ordered extents, set
2170  * the delalloc bit and make it safe to write the page.
2171  */
2172 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
2173 {
2174 	struct inode *inode = page->mapping->host;
2175 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2176 	struct btrfs_writepage_fixup *fixup;
2177 
2178 	/* this page is properly in the ordered list */
2179 	if (TestClearPagePrivate2(page))
2180 		return 0;
2181 
2182 	if (PageChecked(page))
2183 		return -EAGAIN;
2184 
2185 	fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2186 	if (!fixup)
2187 		return -EAGAIN;
2188 
2189 	SetPageChecked(page);
2190 	get_page(page);
2191 	btrfs_init_work(&fixup->work, btrfs_fixup_helper,
2192 			btrfs_writepage_fixup_worker, NULL, NULL);
2193 	fixup->page = page;
2194 	btrfs_queue_work(fs_info->fixup_workers, &fixup->work);
2195 	return -EBUSY;
2196 }
2197 
2198 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2199 				       struct inode *inode, u64 file_pos,
2200 				       u64 disk_bytenr, u64 disk_num_bytes,
2201 				       u64 num_bytes, u64 ram_bytes,
2202 				       u8 compression, u8 encryption,
2203 				       u16 other_encoding, int extent_type)
2204 {
2205 	struct btrfs_root *root = BTRFS_I(inode)->root;
2206 	struct btrfs_file_extent_item *fi;
2207 	struct btrfs_path *path;
2208 	struct extent_buffer *leaf;
2209 	struct btrfs_key ins;
2210 	u64 qg_released;
2211 	int extent_inserted = 0;
2212 	int ret;
2213 
2214 	path = btrfs_alloc_path();
2215 	if (!path)
2216 		return -ENOMEM;
2217 
2218 	/*
2219 	 * we may be replacing one extent in the tree with another.
2220 	 * The new extent is pinned in the extent map, and we don't want
2221 	 * to drop it from the cache until it is completely in the btree.
2222 	 *
2223 	 * So, tell btrfs_drop_extents to leave this extent in the cache.
2224 	 * the caller is expected to unpin it and allow it to be merged
2225 	 * with the others.
2226 	 */
2227 	ret = __btrfs_drop_extents(trans, root, inode, path, file_pos,
2228 				   file_pos + num_bytes, NULL, 0,
2229 				   1, sizeof(*fi), &extent_inserted);
2230 	if (ret)
2231 		goto out;
2232 
2233 	if (!extent_inserted) {
2234 		ins.objectid = btrfs_ino(BTRFS_I(inode));
2235 		ins.offset = file_pos;
2236 		ins.type = BTRFS_EXTENT_DATA_KEY;
2237 
2238 		path->leave_spinning = 1;
2239 		ret = btrfs_insert_empty_item(trans, root, path, &ins,
2240 					      sizeof(*fi));
2241 		if (ret)
2242 			goto out;
2243 	}
2244 	leaf = path->nodes[0];
2245 	fi = btrfs_item_ptr(leaf, path->slots[0],
2246 			    struct btrfs_file_extent_item);
2247 	btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2248 	btrfs_set_file_extent_type(leaf, fi, extent_type);
2249 	btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
2250 	btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
2251 	btrfs_set_file_extent_offset(leaf, fi, 0);
2252 	btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2253 	btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
2254 	btrfs_set_file_extent_compression(leaf, fi, compression);
2255 	btrfs_set_file_extent_encryption(leaf, fi, encryption);
2256 	btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
2257 
2258 	btrfs_mark_buffer_dirty(leaf);
2259 	btrfs_release_path(path);
2260 
2261 	inode_add_bytes(inode, num_bytes);
2262 
2263 	ins.objectid = disk_bytenr;
2264 	ins.offset = disk_num_bytes;
2265 	ins.type = BTRFS_EXTENT_ITEM_KEY;
2266 
2267 	/*
2268 	 * Release the reserved range from inode dirty range map, as it is
2269 	 * already moved into delayed_ref_head
2270 	 */
2271 	ret = btrfs_qgroup_release_data(inode, file_pos, ram_bytes);
2272 	if (ret < 0)
2273 		goto out;
2274 	qg_released = ret;
2275 	ret = btrfs_alloc_reserved_file_extent(trans, root,
2276 					       btrfs_ino(BTRFS_I(inode)),
2277 					       file_pos, qg_released, &ins);
2278 out:
2279 	btrfs_free_path(path);
2280 
2281 	return ret;
2282 }
2283 
2284 /* snapshot-aware defrag */
2285 struct sa_defrag_extent_backref {
2286 	struct rb_node node;
2287 	struct old_sa_defrag_extent *old;
2288 	u64 root_id;
2289 	u64 inum;
2290 	u64 file_pos;
2291 	u64 extent_offset;
2292 	u64 num_bytes;
2293 	u64 generation;
2294 };
2295 
2296 struct old_sa_defrag_extent {
2297 	struct list_head list;
2298 	struct new_sa_defrag_extent *new;
2299 
2300 	u64 extent_offset;
2301 	u64 bytenr;
2302 	u64 offset;
2303 	u64 len;
2304 	int count;
2305 };
2306 
2307 struct new_sa_defrag_extent {
2308 	struct rb_root root;
2309 	struct list_head head;
2310 	struct btrfs_path *path;
2311 	struct inode *inode;
2312 	u64 file_pos;
2313 	u64 len;
2314 	u64 bytenr;
2315 	u64 disk_len;
2316 	u8 compress_type;
2317 };
2318 
2319 static int backref_comp(struct sa_defrag_extent_backref *b1,
2320 			struct sa_defrag_extent_backref *b2)
2321 {
2322 	if (b1->root_id < b2->root_id)
2323 		return -1;
2324 	else if (b1->root_id > b2->root_id)
2325 		return 1;
2326 
2327 	if (b1->inum < b2->inum)
2328 		return -1;
2329 	else if (b1->inum > b2->inum)
2330 		return 1;
2331 
2332 	if (b1->file_pos < b2->file_pos)
2333 		return -1;
2334 	else if (b1->file_pos > b2->file_pos)
2335 		return 1;
2336 
2337 	/*
2338 	 * [------------------------------] ===> (a range of space)
2339 	 *     |<--->|   |<---->| =============> (fs/file tree A)
2340 	 * |<---------------------------->| ===> (fs/file tree B)
2341 	 *
2342 	 * A range of space can refer to two file extents in one tree while
2343 	 * refer to only one file extent in another tree.
2344 	 *
2345 	 * So we may process a disk offset more than one time(two extents in A)
2346 	 * and locate at the same extent(one extent in B), then insert two same
2347 	 * backrefs(both refer to the extent in B).
2348 	 */
2349 	return 0;
2350 }
2351 
2352 static void backref_insert(struct rb_root *root,
2353 			   struct sa_defrag_extent_backref *backref)
2354 {
2355 	struct rb_node **p = &root->rb_node;
2356 	struct rb_node *parent = NULL;
2357 	struct sa_defrag_extent_backref *entry;
2358 	int ret;
2359 
2360 	while (*p) {
2361 		parent = *p;
2362 		entry = rb_entry(parent, struct sa_defrag_extent_backref, node);
2363 
2364 		ret = backref_comp(backref, entry);
2365 		if (ret < 0)
2366 			p = &(*p)->rb_left;
2367 		else
2368 			p = &(*p)->rb_right;
2369 	}
2370 
2371 	rb_link_node(&backref->node, parent, p);
2372 	rb_insert_color(&backref->node, root);
2373 }
2374 
2375 /*
2376  * Note the backref might has changed, and in this case we just return 0.
2377  */
2378 static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id,
2379 				       void *ctx)
2380 {
2381 	struct btrfs_file_extent_item *extent;
2382 	struct old_sa_defrag_extent *old = ctx;
2383 	struct new_sa_defrag_extent *new = old->new;
2384 	struct btrfs_path *path = new->path;
2385 	struct btrfs_key key;
2386 	struct btrfs_root *root;
2387 	struct sa_defrag_extent_backref *backref;
2388 	struct extent_buffer *leaf;
2389 	struct inode *inode = new->inode;
2390 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2391 	int slot;
2392 	int ret;
2393 	u64 extent_offset;
2394 	u64 num_bytes;
2395 
2396 	if (BTRFS_I(inode)->root->root_key.objectid == root_id &&
2397 	    inum == btrfs_ino(BTRFS_I(inode)))
2398 		return 0;
2399 
2400 	key.objectid = root_id;
2401 	key.type = BTRFS_ROOT_ITEM_KEY;
2402 	key.offset = (u64)-1;
2403 
2404 	root = btrfs_read_fs_root_no_name(fs_info, &key);
2405 	if (IS_ERR(root)) {
2406 		if (PTR_ERR(root) == -ENOENT)
2407 			return 0;
2408 		WARN_ON(1);
2409 		btrfs_debug(fs_info, "inum=%llu, offset=%llu, root_id=%llu",
2410 			 inum, offset, root_id);
2411 		return PTR_ERR(root);
2412 	}
2413 
2414 	key.objectid = inum;
2415 	key.type = BTRFS_EXTENT_DATA_KEY;
2416 	if (offset > (u64)-1 << 32)
2417 		key.offset = 0;
2418 	else
2419 		key.offset = offset;
2420 
2421 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2422 	if (WARN_ON(ret < 0))
2423 		return ret;
2424 	ret = 0;
2425 
2426 	while (1) {
2427 		cond_resched();
2428 
2429 		leaf = path->nodes[0];
2430 		slot = path->slots[0];
2431 
2432 		if (slot >= btrfs_header_nritems(leaf)) {
2433 			ret = btrfs_next_leaf(root, path);
2434 			if (ret < 0) {
2435 				goto out;
2436 			} else if (ret > 0) {
2437 				ret = 0;
2438 				goto out;
2439 			}
2440 			continue;
2441 		}
2442 
2443 		path->slots[0]++;
2444 
2445 		btrfs_item_key_to_cpu(leaf, &key, slot);
2446 
2447 		if (key.objectid > inum)
2448 			goto out;
2449 
2450 		if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY)
2451 			continue;
2452 
2453 		extent = btrfs_item_ptr(leaf, slot,
2454 					struct btrfs_file_extent_item);
2455 
2456 		if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr)
2457 			continue;
2458 
2459 		/*
2460 		 * 'offset' refers to the exact key.offset,
2461 		 * NOT the 'offset' field in btrfs_extent_data_ref, ie.
2462 		 * (key.offset - extent_offset).
2463 		 */
2464 		if (key.offset != offset)
2465 			continue;
2466 
2467 		extent_offset = btrfs_file_extent_offset(leaf, extent);
2468 		num_bytes = btrfs_file_extent_num_bytes(leaf, extent);
2469 
2470 		if (extent_offset >= old->extent_offset + old->offset +
2471 		    old->len || extent_offset + num_bytes <=
2472 		    old->extent_offset + old->offset)
2473 			continue;
2474 		break;
2475 	}
2476 
2477 	backref = kmalloc(sizeof(*backref), GFP_NOFS);
2478 	if (!backref) {
2479 		ret = -ENOENT;
2480 		goto out;
2481 	}
2482 
2483 	backref->root_id = root_id;
2484 	backref->inum = inum;
2485 	backref->file_pos = offset;
2486 	backref->num_bytes = num_bytes;
2487 	backref->extent_offset = extent_offset;
2488 	backref->generation = btrfs_file_extent_generation(leaf, extent);
2489 	backref->old = old;
2490 	backref_insert(&new->root, backref);
2491 	old->count++;
2492 out:
2493 	btrfs_release_path(path);
2494 	WARN_ON(ret);
2495 	return ret;
2496 }
2497 
2498 static noinline bool record_extent_backrefs(struct btrfs_path *path,
2499 				   struct new_sa_defrag_extent *new)
2500 {
2501 	struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
2502 	struct old_sa_defrag_extent *old, *tmp;
2503 	int ret;
2504 
2505 	new->path = path;
2506 
2507 	list_for_each_entry_safe(old, tmp, &new->head, list) {
2508 		ret = iterate_inodes_from_logical(old->bytenr +
2509 						  old->extent_offset, fs_info,
2510 						  path, record_one_backref,
2511 						  old, false);
2512 		if (ret < 0 && ret != -ENOENT)
2513 			return false;
2514 
2515 		/* no backref to be processed for this extent */
2516 		if (!old->count) {
2517 			list_del(&old->list);
2518 			kfree(old);
2519 		}
2520 	}
2521 
2522 	if (list_empty(&new->head))
2523 		return false;
2524 
2525 	return true;
2526 }
2527 
2528 static int relink_is_mergable(struct extent_buffer *leaf,
2529 			      struct btrfs_file_extent_item *fi,
2530 			      struct new_sa_defrag_extent *new)
2531 {
2532 	if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr)
2533 		return 0;
2534 
2535 	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2536 		return 0;
2537 
2538 	if (btrfs_file_extent_compression(leaf, fi) != new->compress_type)
2539 		return 0;
2540 
2541 	if (btrfs_file_extent_encryption(leaf, fi) ||
2542 	    btrfs_file_extent_other_encoding(leaf, fi))
2543 		return 0;
2544 
2545 	return 1;
2546 }
2547 
2548 /*
2549  * Note the backref might has changed, and in this case we just return 0.
2550  */
2551 static noinline int relink_extent_backref(struct btrfs_path *path,
2552 				 struct sa_defrag_extent_backref *prev,
2553 				 struct sa_defrag_extent_backref *backref)
2554 {
2555 	struct btrfs_file_extent_item *extent;
2556 	struct btrfs_file_extent_item *item;
2557 	struct btrfs_ordered_extent *ordered;
2558 	struct btrfs_trans_handle *trans;
2559 	struct btrfs_root *root;
2560 	struct btrfs_key key;
2561 	struct extent_buffer *leaf;
2562 	struct old_sa_defrag_extent *old = backref->old;
2563 	struct new_sa_defrag_extent *new = old->new;
2564 	struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
2565 	struct inode *inode;
2566 	struct extent_state *cached = NULL;
2567 	int ret = 0;
2568 	u64 start;
2569 	u64 len;
2570 	u64 lock_start;
2571 	u64 lock_end;
2572 	bool merge = false;
2573 	int index;
2574 
2575 	if (prev && prev->root_id == backref->root_id &&
2576 	    prev->inum == backref->inum &&
2577 	    prev->file_pos + prev->num_bytes == backref->file_pos)
2578 		merge = true;
2579 
2580 	/* step 1: get root */
2581 	key.objectid = backref->root_id;
2582 	key.type = BTRFS_ROOT_ITEM_KEY;
2583 	key.offset = (u64)-1;
2584 
2585 	index = srcu_read_lock(&fs_info->subvol_srcu);
2586 
2587 	root = btrfs_read_fs_root_no_name(fs_info, &key);
2588 	if (IS_ERR(root)) {
2589 		srcu_read_unlock(&fs_info->subvol_srcu, index);
2590 		if (PTR_ERR(root) == -ENOENT)
2591 			return 0;
2592 		return PTR_ERR(root);
2593 	}
2594 
2595 	if (btrfs_root_readonly(root)) {
2596 		srcu_read_unlock(&fs_info->subvol_srcu, index);
2597 		return 0;
2598 	}
2599 
2600 	/* step 2: get inode */
2601 	key.objectid = backref->inum;
2602 	key.type = BTRFS_INODE_ITEM_KEY;
2603 	key.offset = 0;
2604 
2605 	inode = btrfs_iget(fs_info->sb, &key, root, NULL);
2606 	if (IS_ERR(inode)) {
2607 		srcu_read_unlock(&fs_info->subvol_srcu, index);
2608 		return 0;
2609 	}
2610 
2611 	srcu_read_unlock(&fs_info->subvol_srcu, index);
2612 
2613 	/* step 3: relink backref */
2614 	lock_start = backref->file_pos;
2615 	lock_end = backref->file_pos + backref->num_bytes - 1;
2616 	lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2617 			 &cached);
2618 
2619 	ordered = btrfs_lookup_first_ordered_extent(inode, lock_end);
2620 	if (ordered) {
2621 		btrfs_put_ordered_extent(ordered);
2622 		goto out_unlock;
2623 	}
2624 
2625 	trans = btrfs_join_transaction(root);
2626 	if (IS_ERR(trans)) {
2627 		ret = PTR_ERR(trans);
2628 		goto out_unlock;
2629 	}
2630 
2631 	key.objectid = backref->inum;
2632 	key.type = BTRFS_EXTENT_DATA_KEY;
2633 	key.offset = backref->file_pos;
2634 
2635 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2636 	if (ret < 0) {
2637 		goto out_free_path;
2638 	} else if (ret > 0) {
2639 		ret = 0;
2640 		goto out_free_path;
2641 	}
2642 
2643 	extent = btrfs_item_ptr(path->nodes[0], path->slots[0],
2644 				struct btrfs_file_extent_item);
2645 
2646 	if (btrfs_file_extent_generation(path->nodes[0], extent) !=
2647 	    backref->generation)
2648 		goto out_free_path;
2649 
2650 	btrfs_release_path(path);
2651 
2652 	start = backref->file_pos;
2653 	if (backref->extent_offset < old->extent_offset + old->offset)
2654 		start += old->extent_offset + old->offset -
2655 			 backref->extent_offset;
2656 
2657 	len = min(backref->extent_offset + backref->num_bytes,
2658 		  old->extent_offset + old->offset + old->len);
2659 	len -= max(backref->extent_offset, old->extent_offset + old->offset);
2660 
2661 	ret = btrfs_drop_extents(trans, root, inode, start,
2662 				 start + len, 1);
2663 	if (ret)
2664 		goto out_free_path;
2665 again:
2666 	key.objectid = btrfs_ino(BTRFS_I(inode));
2667 	key.type = BTRFS_EXTENT_DATA_KEY;
2668 	key.offset = start;
2669 
2670 	path->leave_spinning = 1;
2671 	if (merge) {
2672 		struct btrfs_file_extent_item *fi;
2673 		u64 extent_len;
2674 		struct btrfs_key found_key;
2675 
2676 		ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2677 		if (ret < 0)
2678 			goto out_free_path;
2679 
2680 		path->slots[0]--;
2681 		leaf = path->nodes[0];
2682 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2683 
2684 		fi = btrfs_item_ptr(leaf, path->slots[0],
2685 				    struct btrfs_file_extent_item);
2686 		extent_len = btrfs_file_extent_num_bytes(leaf, fi);
2687 
2688 		if (extent_len + found_key.offset == start &&
2689 		    relink_is_mergable(leaf, fi, new)) {
2690 			btrfs_set_file_extent_num_bytes(leaf, fi,
2691 							extent_len + len);
2692 			btrfs_mark_buffer_dirty(leaf);
2693 			inode_add_bytes(inode, len);
2694 
2695 			ret = 1;
2696 			goto out_free_path;
2697 		} else {
2698 			merge = false;
2699 			btrfs_release_path(path);
2700 			goto again;
2701 		}
2702 	}
2703 
2704 	ret = btrfs_insert_empty_item(trans, root, path, &key,
2705 					sizeof(*extent));
2706 	if (ret) {
2707 		btrfs_abort_transaction(trans, ret);
2708 		goto out_free_path;
2709 	}
2710 
2711 	leaf = path->nodes[0];
2712 	item = btrfs_item_ptr(leaf, path->slots[0],
2713 				struct btrfs_file_extent_item);
2714 	btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr);
2715 	btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len);
2716 	btrfs_set_file_extent_offset(leaf, item, start - new->file_pos);
2717 	btrfs_set_file_extent_num_bytes(leaf, item, len);
2718 	btrfs_set_file_extent_ram_bytes(leaf, item, new->len);
2719 	btrfs_set_file_extent_generation(leaf, item, trans->transid);
2720 	btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
2721 	btrfs_set_file_extent_compression(leaf, item, new->compress_type);
2722 	btrfs_set_file_extent_encryption(leaf, item, 0);
2723 	btrfs_set_file_extent_other_encoding(leaf, item, 0);
2724 
2725 	btrfs_mark_buffer_dirty(leaf);
2726 	inode_add_bytes(inode, len);
2727 	btrfs_release_path(path);
2728 
2729 	ret = btrfs_inc_extent_ref(trans, root, new->bytenr,
2730 			new->disk_len, 0,
2731 			backref->root_id, backref->inum,
2732 			new->file_pos);	/* start - extent_offset */
2733 	if (ret) {
2734 		btrfs_abort_transaction(trans, ret);
2735 		goto out_free_path;
2736 	}
2737 
2738 	ret = 1;
2739 out_free_path:
2740 	btrfs_release_path(path);
2741 	path->leave_spinning = 0;
2742 	btrfs_end_transaction(trans);
2743 out_unlock:
2744 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2745 			     &cached);
2746 	iput(inode);
2747 	return ret;
2748 }
2749 
2750 static void free_sa_defrag_extent(struct new_sa_defrag_extent *new)
2751 {
2752 	struct old_sa_defrag_extent *old, *tmp;
2753 
2754 	if (!new)
2755 		return;
2756 
2757 	list_for_each_entry_safe(old, tmp, &new->head, list) {
2758 		kfree(old);
2759 	}
2760 	kfree(new);
2761 }
2762 
2763 static void relink_file_extents(struct new_sa_defrag_extent *new)
2764 {
2765 	struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
2766 	struct btrfs_path *path;
2767 	struct sa_defrag_extent_backref *backref;
2768 	struct sa_defrag_extent_backref *prev = NULL;
2769 	struct inode *inode;
2770 	struct rb_node *node;
2771 	int ret;
2772 
2773 	inode = new->inode;
2774 
2775 	path = btrfs_alloc_path();
2776 	if (!path)
2777 		return;
2778 
2779 	if (!record_extent_backrefs(path, new)) {
2780 		btrfs_free_path(path);
2781 		goto out;
2782 	}
2783 	btrfs_release_path(path);
2784 
2785 	while (1) {
2786 		node = rb_first(&new->root);
2787 		if (!node)
2788 			break;
2789 		rb_erase(node, &new->root);
2790 
2791 		backref = rb_entry(node, struct sa_defrag_extent_backref, node);
2792 
2793 		ret = relink_extent_backref(path, prev, backref);
2794 		WARN_ON(ret < 0);
2795 
2796 		kfree(prev);
2797 
2798 		if (ret == 1)
2799 			prev = backref;
2800 		else
2801 			prev = NULL;
2802 		cond_resched();
2803 	}
2804 	kfree(prev);
2805 
2806 	btrfs_free_path(path);
2807 out:
2808 	free_sa_defrag_extent(new);
2809 
2810 	atomic_dec(&fs_info->defrag_running);
2811 	wake_up(&fs_info->transaction_wait);
2812 }
2813 
2814 static struct new_sa_defrag_extent *
2815 record_old_file_extents(struct inode *inode,
2816 			struct btrfs_ordered_extent *ordered)
2817 {
2818 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2819 	struct btrfs_root *root = BTRFS_I(inode)->root;
2820 	struct btrfs_path *path;
2821 	struct btrfs_key key;
2822 	struct old_sa_defrag_extent *old;
2823 	struct new_sa_defrag_extent *new;
2824 	int ret;
2825 
2826 	new = kmalloc(sizeof(*new), GFP_NOFS);
2827 	if (!new)
2828 		return NULL;
2829 
2830 	new->inode = inode;
2831 	new->file_pos = ordered->file_offset;
2832 	new->len = ordered->len;
2833 	new->bytenr = ordered->start;
2834 	new->disk_len = ordered->disk_len;
2835 	new->compress_type = ordered->compress_type;
2836 	new->root = RB_ROOT;
2837 	INIT_LIST_HEAD(&new->head);
2838 
2839 	path = btrfs_alloc_path();
2840 	if (!path)
2841 		goto out_kfree;
2842 
2843 	key.objectid = btrfs_ino(BTRFS_I(inode));
2844 	key.type = BTRFS_EXTENT_DATA_KEY;
2845 	key.offset = new->file_pos;
2846 
2847 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2848 	if (ret < 0)
2849 		goto out_free_path;
2850 	if (ret > 0 && path->slots[0] > 0)
2851 		path->slots[0]--;
2852 
2853 	/* find out all the old extents for the file range */
2854 	while (1) {
2855 		struct btrfs_file_extent_item *extent;
2856 		struct extent_buffer *l;
2857 		int slot;
2858 		u64 num_bytes;
2859 		u64 offset;
2860 		u64 end;
2861 		u64 disk_bytenr;
2862 		u64 extent_offset;
2863 
2864 		l = path->nodes[0];
2865 		slot = path->slots[0];
2866 
2867 		if (slot >= btrfs_header_nritems(l)) {
2868 			ret = btrfs_next_leaf(root, path);
2869 			if (ret < 0)
2870 				goto out_free_path;
2871 			else if (ret > 0)
2872 				break;
2873 			continue;
2874 		}
2875 
2876 		btrfs_item_key_to_cpu(l, &key, slot);
2877 
2878 		if (key.objectid != btrfs_ino(BTRFS_I(inode)))
2879 			break;
2880 		if (key.type != BTRFS_EXTENT_DATA_KEY)
2881 			break;
2882 		if (key.offset >= new->file_pos + new->len)
2883 			break;
2884 
2885 		extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item);
2886 
2887 		num_bytes = btrfs_file_extent_num_bytes(l, extent);
2888 		if (key.offset + num_bytes < new->file_pos)
2889 			goto next;
2890 
2891 		disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent);
2892 		if (!disk_bytenr)
2893 			goto next;
2894 
2895 		extent_offset = btrfs_file_extent_offset(l, extent);
2896 
2897 		old = kmalloc(sizeof(*old), GFP_NOFS);
2898 		if (!old)
2899 			goto out_free_path;
2900 
2901 		offset = max(new->file_pos, key.offset);
2902 		end = min(new->file_pos + new->len, key.offset + num_bytes);
2903 
2904 		old->bytenr = disk_bytenr;
2905 		old->extent_offset = extent_offset;
2906 		old->offset = offset - key.offset;
2907 		old->len = end - offset;
2908 		old->new = new;
2909 		old->count = 0;
2910 		list_add_tail(&old->list, &new->head);
2911 next:
2912 		path->slots[0]++;
2913 		cond_resched();
2914 	}
2915 
2916 	btrfs_free_path(path);
2917 	atomic_inc(&fs_info->defrag_running);
2918 
2919 	return new;
2920 
2921 out_free_path:
2922 	btrfs_free_path(path);
2923 out_kfree:
2924 	free_sa_defrag_extent(new);
2925 	return NULL;
2926 }
2927 
2928 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info,
2929 					 u64 start, u64 len)
2930 {
2931 	struct btrfs_block_group_cache *cache;
2932 
2933 	cache = btrfs_lookup_block_group(fs_info, start);
2934 	ASSERT(cache);
2935 
2936 	spin_lock(&cache->lock);
2937 	cache->delalloc_bytes -= len;
2938 	spin_unlock(&cache->lock);
2939 
2940 	btrfs_put_block_group(cache);
2941 }
2942 
2943 /* as ordered data IO finishes, this gets called so we can finish
2944  * an ordered extent if the range of bytes in the file it covers are
2945  * fully written.
2946  */
2947 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
2948 {
2949 	struct inode *inode = ordered_extent->inode;
2950 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2951 	struct btrfs_root *root = BTRFS_I(inode)->root;
2952 	struct btrfs_trans_handle *trans = NULL;
2953 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2954 	struct extent_state *cached_state = NULL;
2955 	struct new_sa_defrag_extent *new = NULL;
2956 	int compress_type = 0;
2957 	int ret = 0;
2958 	u64 logical_len = ordered_extent->len;
2959 	bool nolock;
2960 	bool truncated = false;
2961 	bool range_locked = false;
2962 	bool clear_new_delalloc_bytes = false;
2963 
2964 	if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
2965 	    !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) &&
2966 	    !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags))
2967 		clear_new_delalloc_bytes = true;
2968 
2969 	nolock = btrfs_is_free_space_inode(BTRFS_I(inode));
2970 
2971 	if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
2972 		ret = -EIO;
2973 		goto out;
2974 	}
2975 
2976 	btrfs_free_io_failure_record(BTRFS_I(inode),
2977 			ordered_extent->file_offset,
2978 			ordered_extent->file_offset +
2979 			ordered_extent->len - 1);
2980 
2981 	if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
2982 		truncated = true;
2983 		logical_len = ordered_extent->truncated_len;
2984 		/* Truncated the entire extent, don't bother adding */
2985 		if (!logical_len)
2986 			goto out;
2987 	}
2988 
2989 	if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
2990 		BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
2991 
2992 		/*
2993 		 * For mwrite(mmap + memset to write) case, we still reserve
2994 		 * space for NOCOW range.
2995 		 * As NOCOW won't cause a new delayed ref, just free the space
2996 		 */
2997 		btrfs_qgroup_free_data(inode, NULL, ordered_extent->file_offset,
2998 				       ordered_extent->len);
2999 		btrfs_ordered_update_i_size(inode, 0, ordered_extent);
3000 		if (nolock)
3001 			trans = btrfs_join_transaction_nolock(root);
3002 		else
3003 			trans = btrfs_join_transaction(root);
3004 		if (IS_ERR(trans)) {
3005 			ret = PTR_ERR(trans);
3006 			trans = NULL;
3007 			goto out;
3008 		}
3009 		trans->block_rsv = &BTRFS_I(inode)->block_rsv;
3010 		ret = btrfs_update_inode_fallback(trans, root, inode);
3011 		if (ret) /* -ENOMEM or corruption */
3012 			btrfs_abort_transaction(trans, ret);
3013 		goto out;
3014 	}
3015 
3016 	range_locked = true;
3017 	lock_extent_bits(io_tree, ordered_extent->file_offset,
3018 			 ordered_extent->file_offset + ordered_extent->len - 1,
3019 			 &cached_state);
3020 
3021 	ret = test_range_bit(io_tree, ordered_extent->file_offset,
3022 			ordered_extent->file_offset + ordered_extent->len - 1,
3023 			EXTENT_DEFRAG, 0, cached_state);
3024 	if (ret) {
3025 		u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
3026 		if (0 && last_snapshot >= BTRFS_I(inode)->generation)
3027 			/* the inode is shared */
3028 			new = record_old_file_extents(inode, ordered_extent);
3029 
3030 		clear_extent_bit(io_tree, ordered_extent->file_offset,
3031 			ordered_extent->file_offset + ordered_extent->len - 1,
3032 			EXTENT_DEFRAG, 0, 0, &cached_state);
3033 	}
3034 
3035 	if (nolock)
3036 		trans = btrfs_join_transaction_nolock(root);
3037 	else
3038 		trans = btrfs_join_transaction(root);
3039 	if (IS_ERR(trans)) {
3040 		ret = PTR_ERR(trans);
3041 		trans = NULL;
3042 		goto out;
3043 	}
3044 
3045 	trans->block_rsv = &BTRFS_I(inode)->block_rsv;
3046 
3047 	if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
3048 		compress_type = ordered_extent->compress_type;
3049 	if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
3050 		BUG_ON(compress_type);
3051 		btrfs_qgroup_free_data(inode, NULL, ordered_extent->file_offset,
3052 				       ordered_extent->len);
3053 		ret = btrfs_mark_extent_written(trans, BTRFS_I(inode),
3054 						ordered_extent->file_offset,
3055 						ordered_extent->file_offset +
3056 						logical_len);
3057 	} else {
3058 		BUG_ON(root == fs_info->tree_root);
3059 		ret = insert_reserved_file_extent(trans, inode,
3060 						ordered_extent->file_offset,
3061 						ordered_extent->start,
3062 						ordered_extent->disk_len,
3063 						logical_len, logical_len,
3064 						compress_type, 0, 0,
3065 						BTRFS_FILE_EXTENT_REG);
3066 		if (!ret)
3067 			btrfs_release_delalloc_bytes(fs_info,
3068 						     ordered_extent->start,
3069 						     ordered_extent->disk_len);
3070 	}
3071 	unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
3072 			   ordered_extent->file_offset, ordered_extent->len,
3073 			   trans->transid);
3074 	if (ret < 0) {
3075 		btrfs_abort_transaction(trans, ret);
3076 		goto out;
3077 	}
3078 
3079 	ret = add_pending_csums(trans, inode, &ordered_extent->list);
3080 	if (ret) {
3081 		btrfs_abort_transaction(trans, ret);
3082 		goto out;
3083 	}
3084 
3085 	btrfs_ordered_update_i_size(inode, 0, ordered_extent);
3086 	ret = btrfs_update_inode_fallback(trans, root, inode);
3087 	if (ret) { /* -ENOMEM or corruption */
3088 		btrfs_abort_transaction(trans, ret);
3089 		goto out;
3090 	}
3091 	ret = 0;
3092 out:
3093 	if (range_locked || clear_new_delalloc_bytes) {
3094 		unsigned int clear_bits = 0;
3095 
3096 		if (range_locked)
3097 			clear_bits |= EXTENT_LOCKED;
3098 		if (clear_new_delalloc_bytes)
3099 			clear_bits |= EXTENT_DELALLOC_NEW;
3100 		clear_extent_bit(&BTRFS_I(inode)->io_tree,
3101 				 ordered_extent->file_offset,
3102 				 ordered_extent->file_offset +
3103 				 ordered_extent->len - 1,
3104 				 clear_bits,
3105 				 (clear_bits & EXTENT_LOCKED) ? 1 : 0,
3106 				 0, &cached_state);
3107 	}
3108 
3109 	if (trans)
3110 		btrfs_end_transaction(trans);
3111 
3112 	if (ret || truncated) {
3113 		u64 start, end;
3114 
3115 		if (truncated)
3116 			start = ordered_extent->file_offset + logical_len;
3117 		else
3118 			start = ordered_extent->file_offset;
3119 		end = ordered_extent->file_offset + ordered_extent->len - 1;
3120 		clear_extent_uptodate(io_tree, start, end, NULL);
3121 
3122 		/* Drop the cache for the part of the extent we didn't write. */
3123 		btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 0);
3124 
3125 		/*
3126 		 * If the ordered extent had an IOERR or something else went
3127 		 * wrong we need to return the space for this ordered extent
3128 		 * back to the allocator.  We only free the extent in the
3129 		 * truncated case if we didn't write out the extent at all.
3130 		 */
3131 		if ((ret || !logical_len) &&
3132 		    !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3133 		    !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags))
3134 			btrfs_free_reserved_extent(fs_info,
3135 						   ordered_extent->start,
3136 						   ordered_extent->disk_len, 1);
3137 	}
3138 
3139 
3140 	/*
3141 	 * This needs to be done to make sure anybody waiting knows we are done
3142 	 * updating everything for this ordered extent.
3143 	 */
3144 	btrfs_remove_ordered_extent(inode, ordered_extent);
3145 
3146 	/* for snapshot-aware defrag */
3147 	if (new) {
3148 		if (ret) {
3149 			free_sa_defrag_extent(new);
3150 			atomic_dec(&fs_info->defrag_running);
3151 		} else {
3152 			relink_file_extents(new);
3153 		}
3154 	}
3155 
3156 	/* once for us */
3157 	btrfs_put_ordered_extent(ordered_extent);
3158 	/* once for the tree */
3159 	btrfs_put_ordered_extent(ordered_extent);
3160 
3161 	return ret;
3162 }
3163 
3164 static void finish_ordered_fn(struct btrfs_work *work)
3165 {
3166 	struct btrfs_ordered_extent *ordered_extent;
3167 	ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
3168 	btrfs_finish_ordered_io(ordered_extent);
3169 }
3170 
3171 static void btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
3172 				struct extent_state *state, int uptodate)
3173 {
3174 	struct inode *inode = page->mapping->host;
3175 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3176 	struct btrfs_ordered_extent *ordered_extent = NULL;
3177 	struct btrfs_workqueue *wq;
3178 	btrfs_work_func_t func;
3179 
3180 	trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
3181 
3182 	ClearPagePrivate2(page);
3183 	if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
3184 					    end - start + 1, uptodate))
3185 		return;
3186 
3187 	if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
3188 		wq = fs_info->endio_freespace_worker;
3189 		func = btrfs_freespace_write_helper;
3190 	} else {
3191 		wq = fs_info->endio_write_workers;
3192 		func = btrfs_endio_write_helper;
3193 	}
3194 
3195 	btrfs_init_work(&ordered_extent->work, func, finish_ordered_fn, NULL,
3196 			NULL);
3197 	btrfs_queue_work(wq, &ordered_extent->work);
3198 }
3199 
3200 static int __readpage_endio_check(struct inode *inode,
3201 				  struct btrfs_io_bio *io_bio,
3202 				  int icsum, struct page *page,
3203 				  int pgoff, u64 start, size_t len)
3204 {
3205 	char *kaddr;
3206 	u32 csum_expected;
3207 	u32 csum = ~(u32)0;
3208 
3209 	csum_expected = *(((u32 *)io_bio->csum) + icsum);
3210 
3211 	kaddr = kmap_atomic(page);
3212 	csum = btrfs_csum_data(kaddr + pgoff, csum,  len);
3213 	btrfs_csum_final(csum, (u8 *)&csum);
3214 	if (csum != csum_expected)
3215 		goto zeroit;
3216 
3217 	kunmap_atomic(kaddr);
3218 	return 0;
3219 zeroit:
3220 	btrfs_print_data_csum_error(BTRFS_I(inode), start, csum, csum_expected,
3221 				    io_bio->mirror_num);
3222 	memset(kaddr + pgoff, 1, len);
3223 	flush_dcache_page(page);
3224 	kunmap_atomic(kaddr);
3225 	return -EIO;
3226 }
3227 
3228 /*
3229  * when reads are done, we need to check csums to verify the data is correct
3230  * if there's a match, we allow the bio to finish.  If not, the code in
3231  * extent_io.c will try to find good copies for us.
3232  */
3233 static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
3234 				      u64 phy_offset, struct page *page,
3235 				      u64 start, u64 end, int mirror)
3236 {
3237 	size_t offset = start - page_offset(page);
3238 	struct inode *inode = page->mapping->host;
3239 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3240 	struct btrfs_root *root = BTRFS_I(inode)->root;
3241 
3242 	if (PageChecked(page)) {
3243 		ClearPageChecked(page);
3244 		return 0;
3245 	}
3246 
3247 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
3248 		return 0;
3249 
3250 	if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
3251 	    test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
3252 		clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM);
3253 		return 0;
3254 	}
3255 
3256 	phy_offset >>= inode->i_sb->s_blocksize_bits;
3257 	return __readpage_endio_check(inode, io_bio, phy_offset, page, offset,
3258 				      start, (size_t)(end - start + 1));
3259 }
3260 
3261 /*
3262  * btrfs_add_delayed_iput - perform a delayed iput on @inode
3263  *
3264  * @inode: The inode we want to perform iput on
3265  *
3266  * This function uses the generic vfs_inode::i_count to track whether we should
3267  * just decrement it (in case it's > 1) or if this is the last iput then link
3268  * the inode to the delayed iput machinery. Delayed iputs are processed at
3269  * transaction commit time/superblock commit/cleaner kthread.
3270  */
3271 void btrfs_add_delayed_iput(struct inode *inode)
3272 {
3273 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3274 	struct btrfs_inode *binode = BTRFS_I(inode);
3275 
3276 	if (atomic_add_unless(&inode->i_count, -1, 1))
3277 		return;
3278 
3279 	spin_lock(&fs_info->delayed_iput_lock);
3280 	ASSERT(list_empty(&binode->delayed_iput));
3281 	list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs);
3282 	spin_unlock(&fs_info->delayed_iput_lock);
3283 }
3284 
3285 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info)
3286 {
3287 
3288 	spin_lock(&fs_info->delayed_iput_lock);
3289 	while (!list_empty(&fs_info->delayed_iputs)) {
3290 		struct btrfs_inode *inode;
3291 
3292 		inode = list_first_entry(&fs_info->delayed_iputs,
3293 				struct btrfs_inode, delayed_iput);
3294 		list_del_init(&inode->delayed_iput);
3295 		spin_unlock(&fs_info->delayed_iput_lock);
3296 		iput(&inode->vfs_inode);
3297 		spin_lock(&fs_info->delayed_iput_lock);
3298 	}
3299 	spin_unlock(&fs_info->delayed_iput_lock);
3300 }
3301 
3302 /*
3303  * This is called in transaction commit time. If there are no orphan
3304  * files in the subvolume, it removes orphan item and frees block_rsv
3305  * structure.
3306  */
3307 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
3308 			      struct btrfs_root *root)
3309 {
3310 	struct btrfs_fs_info *fs_info = root->fs_info;
3311 	struct btrfs_block_rsv *block_rsv;
3312 	int ret;
3313 
3314 	if (atomic_read(&root->orphan_inodes) ||
3315 	    root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
3316 		return;
3317 
3318 	spin_lock(&root->orphan_lock);
3319 	if (atomic_read(&root->orphan_inodes)) {
3320 		spin_unlock(&root->orphan_lock);
3321 		return;
3322 	}
3323 
3324 	if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) {
3325 		spin_unlock(&root->orphan_lock);
3326 		return;
3327 	}
3328 
3329 	block_rsv = root->orphan_block_rsv;
3330 	root->orphan_block_rsv = NULL;
3331 	spin_unlock(&root->orphan_lock);
3332 
3333 	if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state) &&
3334 	    btrfs_root_refs(&root->root_item) > 0) {
3335 		ret = btrfs_del_orphan_item(trans, fs_info->tree_root,
3336 					    root->root_key.objectid);
3337 		if (ret)
3338 			btrfs_abort_transaction(trans, ret);
3339 		else
3340 			clear_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED,
3341 				  &root->state);
3342 	}
3343 
3344 	if (block_rsv) {
3345 		WARN_ON(block_rsv->size > 0);
3346 		btrfs_free_block_rsv(fs_info, block_rsv);
3347 	}
3348 }
3349 
3350 /*
3351  * This creates an orphan entry for the given inode in case something goes
3352  * wrong in the middle of an unlink/truncate.
3353  *
3354  * NOTE: caller of this function should reserve 5 units of metadata for
3355  *	 this function.
3356  */
3357 int btrfs_orphan_add(struct btrfs_trans_handle *trans,
3358 		struct btrfs_inode *inode)
3359 {
3360 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
3361 	struct btrfs_root *root = inode->root;
3362 	struct btrfs_block_rsv *block_rsv = NULL;
3363 	int reserve = 0;
3364 	bool insert = false;
3365 	int ret;
3366 
3367 	if (!root->orphan_block_rsv) {
3368 		block_rsv = btrfs_alloc_block_rsv(fs_info,
3369 						  BTRFS_BLOCK_RSV_TEMP);
3370 		if (!block_rsv)
3371 			return -ENOMEM;
3372 	}
3373 
3374 	if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3375 			      &inode->runtime_flags))
3376 		insert = true;
3377 
3378 	if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3379 			      &inode->runtime_flags))
3380 		reserve = 1;
3381 
3382 	spin_lock(&root->orphan_lock);
3383 	/* If someone has created ->orphan_block_rsv, be happy to use it. */
3384 	if (!root->orphan_block_rsv) {
3385 		root->orphan_block_rsv = block_rsv;
3386 	} else if (block_rsv) {
3387 		btrfs_free_block_rsv(fs_info, block_rsv);
3388 		block_rsv = NULL;
3389 	}
3390 
3391 	if (insert)
3392 		atomic_inc(&root->orphan_inodes);
3393 	spin_unlock(&root->orphan_lock);
3394 
3395 	/* grab metadata reservation from transaction handle */
3396 	if (reserve) {
3397 		ret = btrfs_orphan_reserve_metadata(trans, inode);
3398 		ASSERT(!ret);
3399 		if (ret) {
3400 			/*
3401 			 * dec doesn't need spin_lock as ->orphan_block_rsv
3402 			 * would be released only if ->orphan_inodes is
3403 			 * zero.
3404 			 */
3405 			atomic_dec(&root->orphan_inodes);
3406 			clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3407 				  &inode->runtime_flags);
3408 			if (insert)
3409 				clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3410 					  &inode->runtime_flags);
3411 			return ret;
3412 		}
3413 	}
3414 
3415 	/* insert an orphan item to track this unlinked/truncated file */
3416 	if (insert) {
3417 		ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
3418 		if (ret) {
3419 			if (reserve) {
3420 				clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3421 					  &inode->runtime_flags);
3422 				btrfs_orphan_release_metadata(inode);
3423 			}
3424 			/*
3425 			 * btrfs_orphan_commit_root may race with us and set
3426 			 * ->orphan_block_rsv to zero, in order to avoid that,
3427 			 * decrease ->orphan_inodes after everything is done.
3428 			 */
3429 			atomic_dec(&root->orphan_inodes);
3430 			if (ret != -EEXIST) {
3431 				clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3432 					  &inode->runtime_flags);
3433 				btrfs_abort_transaction(trans, ret);
3434 				return ret;
3435 			}
3436 		}
3437 		ret = 0;
3438 	}
3439 
3440 	return 0;
3441 }
3442 
3443 /*
3444  * We have done the truncate/delete so we can go ahead and remove the orphan
3445  * item for this particular inode.
3446  */
3447 static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3448 			    struct btrfs_inode *inode)
3449 {
3450 	struct btrfs_root *root = inode->root;
3451 	int delete_item = 0;
3452 	int ret = 0;
3453 
3454 	if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3455 			       &inode->runtime_flags))
3456 		delete_item = 1;
3457 
3458 	if (delete_item && trans)
3459 		ret = btrfs_del_orphan_item(trans, root, btrfs_ino(inode));
3460 
3461 	if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3462 			       &inode->runtime_flags))
3463 		btrfs_orphan_release_metadata(inode);
3464 
3465 	/*
3466 	 * btrfs_orphan_commit_root may race with us and set ->orphan_block_rsv
3467 	 * to zero, in order to avoid that, decrease ->orphan_inodes after
3468 	 * everything is done.
3469 	 */
3470 	if (delete_item)
3471 		atomic_dec(&root->orphan_inodes);
3472 
3473 	return ret;
3474 }
3475 
3476 /*
3477  * this cleans up any orphans that may be left on the list from the last use
3478  * of this root.
3479  */
3480 int btrfs_orphan_cleanup(struct btrfs_root *root)
3481 {
3482 	struct btrfs_fs_info *fs_info = root->fs_info;
3483 	struct btrfs_path *path;
3484 	struct extent_buffer *leaf;
3485 	struct btrfs_key key, found_key;
3486 	struct btrfs_trans_handle *trans;
3487 	struct inode *inode;
3488 	u64 last_objectid = 0;
3489 	int ret = 0, nr_unlink = 0, nr_truncate = 0;
3490 
3491 	if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
3492 		return 0;
3493 
3494 	path = btrfs_alloc_path();
3495 	if (!path) {
3496 		ret = -ENOMEM;
3497 		goto out;
3498 	}
3499 	path->reada = READA_BACK;
3500 
3501 	key.objectid = BTRFS_ORPHAN_OBJECTID;
3502 	key.type = BTRFS_ORPHAN_ITEM_KEY;
3503 	key.offset = (u64)-1;
3504 
3505 	while (1) {
3506 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3507 		if (ret < 0)
3508 			goto out;
3509 
3510 		/*
3511 		 * if ret == 0 means we found what we were searching for, which
3512 		 * is weird, but possible, so only screw with path if we didn't
3513 		 * find the key and see if we have stuff that matches
3514 		 */
3515 		if (ret > 0) {
3516 			ret = 0;
3517 			if (path->slots[0] == 0)
3518 				break;
3519 			path->slots[0]--;
3520 		}
3521 
3522 		/* pull out the item */
3523 		leaf = path->nodes[0];
3524 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3525 
3526 		/* make sure the item matches what we want */
3527 		if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3528 			break;
3529 		if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
3530 			break;
3531 
3532 		/* release the path since we're done with it */
3533 		btrfs_release_path(path);
3534 
3535 		/*
3536 		 * this is where we are basically btrfs_lookup, without the
3537 		 * crossing root thing.  we store the inode number in the
3538 		 * offset of the orphan item.
3539 		 */
3540 
3541 		if (found_key.offset == last_objectid) {
3542 			btrfs_err(fs_info,
3543 				  "Error removing orphan entry, stopping orphan cleanup");
3544 			ret = -EINVAL;
3545 			goto out;
3546 		}
3547 
3548 		last_objectid = found_key.offset;
3549 
3550 		found_key.objectid = found_key.offset;
3551 		found_key.type = BTRFS_INODE_ITEM_KEY;
3552 		found_key.offset = 0;
3553 		inode = btrfs_iget(fs_info->sb, &found_key, root, NULL);
3554 		ret = PTR_ERR_OR_ZERO(inode);
3555 		if (ret && ret != -ENOENT)
3556 			goto out;
3557 
3558 		if (ret == -ENOENT && root == fs_info->tree_root) {
3559 			struct btrfs_root *dead_root;
3560 			struct btrfs_fs_info *fs_info = root->fs_info;
3561 			int is_dead_root = 0;
3562 
3563 			/*
3564 			 * this is an orphan in the tree root. Currently these
3565 			 * could come from 2 sources:
3566 			 *  a) a snapshot deletion in progress
3567 			 *  b) a free space cache inode
3568 			 * We need to distinguish those two, as the snapshot
3569 			 * orphan must not get deleted.
3570 			 * find_dead_roots already ran before us, so if this
3571 			 * is a snapshot deletion, we should find the root
3572 			 * in the dead_roots list
3573 			 */
3574 			spin_lock(&fs_info->trans_lock);
3575 			list_for_each_entry(dead_root, &fs_info->dead_roots,
3576 					    root_list) {
3577 				if (dead_root->root_key.objectid ==
3578 				    found_key.objectid) {
3579 					is_dead_root = 1;
3580 					break;
3581 				}
3582 			}
3583 			spin_unlock(&fs_info->trans_lock);
3584 			if (is_dead_root) {
3585 				/* prevent this orphan from being found again */
3586 				key.offset = found_key.objectid - 1;
3587 				continue;
3588 			}
3589 		}
3590 		/*
3591 		 * Inode is already gone but the orphan item is still there,
3592 		 * kill the orphan item.
3593 		 */
3594 		if (ret == -ENOENT) {
3595 			trans = btrfs_start_transaction(root, 1);
3596 			if (IS_ERR(trans)) {
3597 				ret = PTR_ERR(trans);
3598 				goto out;
3599 			}
3600 			btrfs_debug(fs_info, "auto deleting %Lu",
3601 				    found_key.objectid);
3602 			ret = btrfs_del_orphan_item(trans, root,
3603 						    found_key.objectid);
3604 			btrfs_end_transaction(trans);
3605 			if (ret)
3606 				goto out;
3607 			continue;
3608 		}
3609 
3610 		/*
3611 		 * add this inode to the orphan list so btrfs_orphan_del does
3612 		 * the proper thing when we hit it
3613 		 */
3614 		set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3615 			&BTRFS_I(inode)->runtime_flags);
3616 		atomic_inc(&root->orphan_inodes);
3617 
3618 		/* if we have links, this was a truncate, lets do that */
3619 		if (inode->i_nlink) {
3620 			if (WARN_ON(!S_ISREG(inode->i_mode))) {
3621 				iput(inode);
3622 				continue;
3623 			}
3624 			nr_truncate++;
3625 
3626 			/* 1 for the orphan item deletion. */
3627 			trans = btrfs_start_transaction(root, 1);
3628 			if (IS_ERR(trans)) {
3629 				iput(inode);
3630 				ret = PTR_ERR(trans);
3631 				goto out;
3632 			}
3633 			ret = btrfs_orphan_add(trans, BTRFS_I(inode));
3634 			btrfs_end_transaction(trans);
3635 			if (ret) {
3636 				iput(inode);
3637 				goto out;
3638 			}
3639 
3640 			ret = btrfs_truncate(inode, false);
3641 			if (ret)
3642 				btrfs_orphan_del(NULL, BTRFS_I(inode));
3643 		} else {
3644 			nr_unlink++;
3645 		}
3646 
3647 		/* this will do delete_inode and everything for us */
3648 		iput(inode);
3649 		if (ret)
3650 			goto out;
3651 	}
3652 	/* release the path since we're done with it */
3653 	btrfs_release_path(path);
3654 
3655 	root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3656 
3657 	if (root->orphan_block_rsv)
3658 		btrfs_block_rsv_release(fs_info, root->orphan_block_rsv,
3659 					(u64)-1);
3660 
3661 	if (root->orphan_block_rsv ||
3662 	    test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
3663 		trans = btrfs_join_transaction(root);
3664 		if (!IS_ERR(trans))
3665 			btrfs_end_transaction(trans);
3666 	}
3667 
3668 	if (nr_unlink)
3669 		btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink);
3670 	if (nr_truncate)
3671 		btrfs_debug(fs_info, "truncated %d orphans", nr_truncate);
3672 
3673 out:
3674 	if (ret)
3675 		btrfs_err(fs_info, "could not do orphan cleanup %d", ret);
3676 	btrfs_free_path(path);
3677 	return ret;
3678 }
3679 
3680 /*
3681  * very simple check to peek ahead in the leaf looking for xattrs.  If we
3682  * don't find any xattrs, we know there can't be any acls.
3683  *
3684  * slot is the slot the inode is in, objectid is the objectid of the inode
3685  */
3686 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
3687 					  int slot, u64 objectid,
3688 					  int *first_xattr_slot)
3689 {
3690 	u32 nritems = btrfs_header_nritems(leaf);
3691 	struct btrfs_key found_key;
3692 	static u64 xattr_access = 0;
3693 	static u64 xattr_default = 0;
3694 	int scanned = 0;
3695 
3696 	if (!xattr_access) {
3697 		xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
3698 					strlen(XATTR_NAME_POSIX_ACL_ACCESS));
3699 		xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
3700 					strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
3701 	}
3702 
3703 	slot++;
3704 	*first_xattr_slot = -1;
3705 	while (slot < nritems) {
3706 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3707 
3708 		/* we found a different objectid, there must not be acls */
3709 		if (found_key.objectid != objectid)
3710 			return 0;
3711 
3712 		/* we found an xattr, assume we've got an acl */
3713 		if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
3714 			if (*first_xattr_slot == -1)
3715 				*first_xattr_slot = slot;
3716 			if (found_key.offset == xattr_access ||
3717 			    found_key.offset == xattr_default)
3718 				return 1;
3719 		}
3720 
3721 		/*
3722 		 * we found a key greater than an xattr key, there can't
3723 		 * be any acls later on
3724 		 */
3725 		if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3726 			return 0;
3727 
3728 		slot++;
3729 		scanned++;
3730 
3731 		/*
3732 		 * it goes inode, inode backrefs, xattrs, extents,
3733 		 * so if there are a ton of hard links to an inode there can
3734 		 * be a lot of backrefs.  Don't waste time searching too hard,
3735 		 * this is just an optimization
3736 		 */
3737 		if (scanned >= 8)
3738 			break;
3739 	}
3740 	/* we hit the end of the leaf before we found an xattr or
3741 	 * something larger than an xattr.  We have to assume the inode
3742 	 * has acls
3743 	 */
3744 	if (*first_xattr_slot == -1)
3745 		*first_xattr_slot = slot;
3746 	return 1;
3747 }
3748 
3749 /*
3750  * read an inode from the btree into the in-memory inode
3751  */
3752 static int btrfs_read_locked_inode(struct inode *inode)
3753 {
3754 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3755 	struct btrfs_path *path;
3756 	struct extent_buffer *leaf;
3757 	struct btrfs_inode_item *inode_item;
3758 	struct btrfs_root *root = BTRFS_I(inode)->root;
3759 	struct btrfs_key location;
3760 	unsigned long ptr;
3761 	int maybe_acls;
3762 	u32 rdev;
3763 	int ret;
3764 	bool filled = false;
3765 	int first_xattr_slot;
3766 
3767 	ret = btrfs_fill_inode(inode, &rdev);
3768 	if (!ret)
3769 		filled = true;
3770 
3771 	path = btrfs_alloc_path();
3772 	if (!path) {
3773 		ret = -ENOMEM;
3774 		goto make_bad;
3775 	}
3776 
3777 	memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
3778 
3779 	ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
3780 	if (ret) {
3781 		if (ret > 0)
3782 			ret = -ENOENT;
3783 		goto make_bad;
3784 	}
3785 
3786 	leaf = path->nodes[0];
3787 
3788 	if (filled)
3789 		goto cache_index;
3790 
3791 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
3792 				    struct btrfs_inode_item);
3793 	inode->i_mode = btrfs_inode_mode(leaf, inode_item);
3794 	set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
3795 	i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3796 	i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
3797 	btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item));
3798 
3799 	inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime);
3800 	inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime);
3801 
3802 	inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime);
3803 	inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime);
3804 
3805 	inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime);
3806 	inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime);
3807 
3808 	BTRFS_I(inode)->i_otime.tv_sec =
3809 		btrfs_timespec_sec(leaf, &inode_item->otime);
3810 	BTRFS_I(inode)->i_otime.tv_nsec =
3811 		btrfs_timespec_nsec(leaf, &inode_item->otime);
3812 
3813 	inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
3814 	BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
3815 	BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3816 
3817 	inode_set_iversion_queried(inode,
3818 				   btrfs_inode_sequence(leaf, inode_item));
3819 	inode->i_generation = BTRFS_I(inode)->generation;
3820 	inode->i_rdev = 0;
3821 	rdev = btrfs_inode_rdev(leaf, inode_item);
3822 
3823 	BTRFS_I(inode)->index_cnt = (u64)-1;
3824 	BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
3825 
3826 cache_index:
3827 	/*
3828 	 * If we were modified in the current generation and evicted from memory
3829 	 * and then re-read we need to do a full sync since we don't have any
3830 	 * idea about which extents were modified before we were evicted from
3831 	 * cache.
3832 	 *
3833 	 * This is required for both inode re-read from disk and delayed inode
3834 	 * in delayed_nodes_tree.
3835 	 */
3836 	if (BTRFS_I(inode)->last_trans == fs_info->generation)
3837 		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3838 			&BTRFS_I(inode)->runtime_flags);
3839 
3840 	/*
3841 	 * We don't persist the id of the transaction where an unlink operation
3842 	 * against the inode was last made. So here we assume the inode might
3843 	 * have been evicted, and therefore the exact value of last_unlink_trans
3844 	 * lost, and set it to last_trans to avoid metadata inconsistencies
3845 	 * between the inode and its parent if the inode is fsync'ed and the log
3846 	 * replayed. For example, in the scenario:
3847 	 *
3848 	 * touch mydir/foo
3849 	 * ln mydir/foo mydir/bar
3850 	 * sync
3851 	 * unlink mydir/bar
3852 	 * echo 2 > /proc/sys/vm/drop_caches   # evicts inode
3853 	 * xfs_io -c fsync mydir/foo
3854 	 * <power failure>
3855 	 * mount fs, triggers fsync log replay
3856 	 *
3857 	 * We must make sure that when we fsync our inode foo we also log its
3858 	 * parent inode, otherwise after log replay the parent still has the
3859 	 * dentry with the "bar" name but our inode foo has a link count of 1
3860 	 * and doesn't have an inode ref with the name "bar" anymore.
3861 	 *
3862 	 * Setting last_unlink_trans to last_trans is a pessimistic approach,
3863 	 * but it guarantees correctness at the expense of occasional full
3864 	 * transaction commits on fsync if our inode is a directory, or if our
3865 	 * inode is not a directory, logging its parent unnecessarily.
3866 	 */
3867 	BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
3868 
3869 	path->slots[0]++;
3870 	if (inode->i_nlink != 1 ||
3871 	    path->slots[0] >= btrfs_header_nritems(leaf))
3872 		goto cache_acl;
3873 
3874 	btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
3875 	if (location.objectid != btrfs_ino(BTRFS_I(inode)))
3876 		goto cache_acl;
3877 
3878 	ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3879 	if (location.type == BTRFS_INODE_REF_KEY) {
3880 		struct btrfs_inode_ref *ref;
3881 
3882 		ref = (struct btrfs_inode_ref *)ptr;
3883 		BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3884 	} else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3885 		struct btrfs_inode_extref *extref;
3886 
3887 		extref = (struct btrfs_inode_extref *)ptr;
3888 		BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3889 								     extref);
3890 	}
3891 cache_acl:
3892 	/*
3893 	 * try to precache a NULL acl entry for files that don't have
3894 	 * any xattrs or acls
3895 	 */
3896 	maybe_acls = acls_after_inode_item(leaf, path->slots[0],
3897 			btrfs_ino(BTRFS_I(inode)), &first_xattr_slot);
3898 	if (first_xattr_slot != -1) {
3899 		path->slots[0] = first_xattr_slot;
3900 		ret = btrfs_load_inode_props(inode, path);
3901 		if (ret)
3902 			btrfs_err(fs_info,
3903 				  "error loading props for ino %llu (root %llu): %d",
3904 				  btrfs_ino(BTRFS_I(inode)),
3905 				  root->root_key.objectid, ret);
3906 	}
3907 	btrfs_free_path(path);
3908 
3909 	if (!maybe_acls)
3910 		cache_no_acl(inode);
3911 
3912 	switch (inode->i_mode & S_IFMT) {
3913 	case S_IFREG:
3914 		inode->i_mapping->a_ops = &btrfs_aops;
3915 		BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
3916 		inode->i_fop = &btrfs_file_operations;
3917 		inode->i_op = &btrfs_file_inode_operations;
3918 		break;
3919 	case S_IFDIR:
3920 		inode->i_fop = &btrfs_dir_file_operations;
3921 		inode->i_op = &btrfs_dir_inode_operations;
3922 		break;
3923 	case S_IFLNK:
3924 		inode->i_op = &btrfs_symlink_inode_operations;
3925 		inode_nohighmem(inode);
3926 		inode->i_mapping->a_ops = &btrfs_symlink_aops;
3927 		break;
3928 	default:
3929 		inode->i_op = &btrfs_special_inode_operations;
3930 		init_special_inode(inode, inode->i_mode, rdev);
3931 		break;
3932 	}
3933 
3934 	btrfs_update_iflags(inode);
3935 	return 0;
3936 
3937 make_bad:
3938 	btrfs_free_path(path);
3939 	make_bad_inode(inode);
3940 	return ret;
3941 }
3942 
3943 /*
3944  * given a leaf and an inode, copy the inode fields into the leaf
3945  */
3946 static void fill_inode_item(struct btrfs_trans_handle *trans,
3947 			    struct extent_buffer *leaf,
3948 			    struct btrfs_inode_item *item,
3949 			    struct inode *inode)
3950 {
3951 	struct btrfs_map_token token;
3952 
3953 	btrfs_init_map_token(&token);
3954 
3955 	btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3956 	btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3957 	btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size,
3958 				   &token);
3959 	btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3960 	btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3961 
3962 	btrfs_set_token_timespec_sec(leaf, &item->atime,
3963 				     inode->i_atime.tv_sec, &token);
3964 	btrfs_set_token_timespec_nsec(leaf, &item->atime,
3965 				      inode->i_atime.tv_nsec, &token);
3966 
3967 	btrfs_set_token_timespec_sec(leaf, &item->mtime,
3968 				     inode->i_mtime.tv_sec, &token);
3969 	btrfs_set_token_timespec_nsec(leaf, &item->mtime,
3970 				      inode->i_mtime.tv_nsec, &token);
3971 
3972 	btrfs_set_token_timespec_sec(leaf, &item->ctime,
3973 				     inode->i_ctime.tv_sec, &token);
3974 	btrfs_set_token_timespec_nsec(leaf, &item->ctime,
3975 				      inode->i_ctime.tv_nsec, &token);
3976 
3977 	btrfs_set_token_timespec_sec(leaf, &item->otime,
3978 				     BTRFS_I(inode)->i_otime.tv_sec, &token);
3979 	btrfs_set_token_timespec_nsec(leaf, &item->otime,
3980 				      BTRFS_I(inode)->i_otime.tv_nsec, &token);
3981 
3982 	btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3983 				     &token);
3984 	btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation,
3985 					 &token);
3986 	btrfs_set_token_inode_sequence(leaf, item, inode_peek_iversion(inode),
3987 				       &token);
3988 	btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3989 	btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3990 	btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3991 	btrfs_set_token_inode_block_group(leaf, item, 0, &token);
3992 }
3993 
3994 /*
3995  * copy everything in the in-memory inode into the btree.
3996  */
3997 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
3998 				struct btrfs_root *root, struct inode *inode)
3999 {
4000 	struct btrfs_inode_item *inode_item;
4001 	struct btrfs_path *path;
4002 	struct extent_buffer *leaf;
4003 	int ret;
4004 
4005 	path = btrfs_alloc_path();
4006 	if (!path)
4007 		return -ENOMEM;
4008 
4009 	path->leave_spinning = 1;
4010 	ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
4011 				 1);
4012 	if (ret) {
4013 		if (ret > 0)
4014 			ret = -ENOENT;
4015 		goto failed;
4016 	}
4017 
4018 	leaf = path->nodes[0];
4019 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
4020 				    struct btrfs_inode_item);
4021 
4022 	fill_inode_item(trans, leaf, inode_item, inode);
4023 	btrfs_mark_buffer_dirty(leaf);
4024 	btrfs_set_inode_last_trans(trans, inode);
4025 	ret = 0;
4026 failed:
4027 	btrfs_free_path(path);
4028 	return ret;
4029 }
4030 
4031 /*
4032  * copy everything in the in-memory inode into the btree.
4033  */
4034 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
4035 				struct btrfs_root *root, struct inode *inode)
4036 {
4037 	struct btrfs_fs_info *fs_info = root->fs_info;
4038 	int ret;
4039 
4040 	/*
4041 	 * If the inode is a free space inode, we can deadlock during commit
4042 	 * if we put it into the delayed code.
4043 	 *
4044 	 * The data relocation inode should also be directly updated
4045 	 * without delay
4046 	 */
4047 	if (!btrfs_is_free_space_inode(BTRFS_I(inode))
4048 	    && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
4049 	    && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
4050 		btrfs_update_root_times(trans, root);
4051 
4052 		ret = btrfs_delayed_update_inode(trans, root, inode);
4053 		if (!ret)
4054 			btrfs_set_inode_last_trans(trans, inode);
4055 		return ret;
4056 	}
4057 
4058 	return btrfs_update_inode_item(trans, root, inode);
4059 }
4060 
4061 noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
4062 					 struct btrfs_root *root,
4063 					 struct inode *inode)
4064 {
4065 	int ret;
4066 
4067 	ret = btrfs_update_inode(trans, root, inode);
4068 	if (ret == -ENOSPC)
4069 		return btrfs_update_inode_item(trans, root, inode);
4070 	return ret;
4071 }
4072 
4073 /*
4074  * unlink helper that gets used here in inode.c and in the tree logging
4075  * recovery code.  It remove a link in a directory with a given name, and
4076  * also drops the back refs in the inode to the directory
4077  */
4078 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4079 				struct btrfs_root *root,
4080 				struct btrfs_inode *dir,
4081 				struct btrfs_inode *inode,
4082 				const char *name, int name_len)
4083 {
4084 	struct btrfs_fs_info *fs_info = root->fs_info;
4085 	struct btrfs_path *path;
4086 	int ret = 0;
4087 	struct extent_buffer *leaf;
4088 	struct btrfs_dir_item *di;
4089 	struct btrfs_key key;
4090 	u64 index;
4091 	u64 ino = btrfs_ino(inode);
4092 	u64 dir_ino = btrfs_ino(dir);
4093 
4094 	path = btrfs_alloc_path();
4095 	if (!path) {
4096 		ret = -ENOMEM;
4097 		goto out;
4098 	}
4099 
4100 	path->leave_spinning = 1;
4101 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4102 				    name, name_len, -1);
4103 	if (IS_ERR(di)) {
4104 		ret = PTR_ERR(di);
4105 		goto err;
4106 	}
4107 	if (!di) {
4108 		ret = -ENOENT;
4109 		goto err;
4110 	}
4111 	leaf = path->nodes[0];
4112 	btrfs_dir_item_key_to_cpu(leaf, di, &key);
4113 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
4114 	if (ret)
4115 		goto err;
4116 	btrfs_release_path(path);
4117 
4118 	/*
4119 	 * If we don't have dir index, we have to get it by looking up
4120 	 * the inode ref, since we get the inode ref, remove it directly,
4121 	 * it is unnecessary to do delayed deletion.
4122 	 *
4123 	 * But if we have dir index, needn't search inode ref to get it.
4124 	 * Since the inode ref is close to the inode item, it is better
4125 	 * that we delay to delete it, and just do this deletion when
4126 	 * we update the inode item.
4127 	 */
4128 	if (inode->dir_index) {
4129 		ret = btrfs_delayed_delete_inode_ref(inode);
4130 		if (!ret) {
4131 			index = inode->dir_index;
4132 			goto skip_backref;
4133 		}
4134 	}
4135 
4136 	ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
4137 				  dir_ino, &index);
4138 	if (ret) {
4139 		btrfs_info(fs_info,
4140 			"failed to delete reference to %.*s, inode %llu parent %llu",
4141 			name_len, name, ino, dir_ino);
4142 		btrfs_abort_transaction(trans, ret);
4143 		goto err;
4144 	}
4145 skip_backref:
4146 	ret = btrfs_delete_delayed_dir_index(trans, fs_info, dir, index);
4147 	if (ret) {
4148 		btrfs_abort_transaction(trans, ret);
4149 		goto err;
4150 	}
4151 
4152 	ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, inode,
4153 			dir_ino);
4154 	if (ret != 0 && ret != -ENOENT) {
4155 		btrfs_abort_transaction(trans, ret);
4156 		goto err;
4157 	}
4158 
4159 	ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, dir,
4160 			index);
4161 	if (ret == -ENOENT)
4162 		ret = 0;
4163 	else if (ret)
4164 		btrfs_abort_transaction(trans, ret);
4165 err:
4166 	btrfs_free_path(path);
4167 	if (ret)
4168 		goto out;
4169 
4170 	btrfs_i_size_write(dir, dir->vfs_inode.i_size - name_len * 2);
4171 	inode_inc_iversion(&inode->vfs_inode);
4172 	inode_inc_iversion(&dir->vfs_inode);
4173 	inode->vfs_inode.i_ctime = dir->vfs_inode.i_mtime =
4174 		dir->vfs_inode.i_ctime = current_time(&inode->vfs_inode);
4175 	ret = btrfs_update_inode(trans, root, &dir->vfs_inode);
4176 out:
4177 	return ret;
4178 }
4179 
4180 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4181 		       struct btrfs_root *root,
4182 		       struct btrfs_inode *dir, struct btrfs_inode *inode,
4183 		       const char *name, int name_len)
4184 {
4185 	int ret;
4186 	ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
4187 	if (!ret) {
4188 		drop_nlink(&inode->vfs_inode);
4189 		ret = btrfs_update_inode(trans, root, &inode->vfs_inode);
4190 	}
4191 	return ret;
4192 }
4193 
4194 /*
4195  * helper to start transaction for unlink and rmdir.
4196  *
4197  * unlink and rmdir are special in btrfs, they do not always free space, so
4198  * if we cannot make our reservations the normal way try and see if there is
4199  * plenty of slack room in the global reserve to migrate, otherwise we cannot
4200  * allow the unlink to occur.
4201  */
4202 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
4203 {
4204 	struct btrfs_root *root = BTRFS_I(dir)->root;
4205 
4206 	/*
4207 	 * 1 for the possible orphan item
4208 	 * 1 for the dir item
4209 	 * 1 for the dir index
4210 	 * 1 for the inode ref
4211 	 * 1 for the inode
4212 	 */
4213 	return btrfs_start_transaction_fallback_global_rsv(root, 5, 5);
4214 }
4215 
4216 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4217 {
4218 	struct btrfs_root *root = BTRFS_I(dir)->root;
4219 	struct btrfs_trans_handle *trans;
4220 	struct inode *inode = d_inode(dentry);
4221 	int ret;
4222 
4223 	trans = __unlink_start_trans(dir);
4224 	if (IS_ERR(trans))
4225 		return PTR_ERR(trans);
4226 
4227 	btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4228 			0);
4229 
4230 	ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
4231 			BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4232 			dentry->d_name.len);
4233 	if (ret)
4234 		goto out;
4235 
4236 	if (inode->i_nlink == 0) {
4237 		ret = btrfs_orphan_add(trans, BTRFS_I(inode));
4238 		if (ret)
4239 			goto out;
4240 	}
4241 
4242 out:
4243 	btrfs_end_transaction(trans);
4244 	btrfs_btree_balance_dirty(root->fs_info);
4245 	return ret;
4246 }
4247 
4248 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
4249 			struct btrfs_root *root,
4250 			struct inode *dir, u64 objectid,
4251 			const char *name, int name_len)
4252 {
4253 	struct btrfs_fs_info *fs_info = root->fs_info;
4254 	struct btrfs_path *path;
4255 	struct extent_buffer *leaf;
4256 	struct btrfs_dir_item *di;
4257 	struct btrfs_key key;
4258 	u64 index;
4259 	int ret;
4260 	u64 dir_ino = btrfs_ino(BTRFS_I(dir));
4261 
4262 	path = btrfs_alloc_path();
4263 	if (!path)
4264 		return -ENOMEM;
4265 
4266 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4267 				   name, name_len, -1);
4268 	if (IS_ERR_OR_NULL(di)) {
4269 		if (!di)
4270 			ret = -ENOENT;
4271 		else
4272 			ret = PTR_ERR(di);
4273 		goto out;
4274 	}
4275 
4276 	leaf = path->nodes[0];
4277 	btrfs_dir_item_key_to_cpu(leaf, di, &key);
4278 	WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4279 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
4280 	if (ret) {
4281 		btrfs_abort_transaction(trans, ret);
4282 		goto out;
4283 	}
4284 	btrfs_release_path(path);
4285 
4286 	ret = btrfs_del_root_ref(trans, fs_info, objectid,
4287 				 root->root_key.objectid, dir_ino,
4288 				 &index, name, name_len);
4289 	if (ret < 0) {
4290 		if (ret != -ENOENT) {
4291 			btrfs_abort_transaction(trans, ret);
4292 			goto out;
4293 		}
4294 		di = btrfs_search_dir_index_item(root, path, dir_ino,
4295 						 name, name_len);
4296 		if (IS_ERR_OR_NULL(di)) {
4297 			if (!di)
4298 				ret = -ENOENT;
4299 			else
4300 				ret = PTR_ERR(di);
4301 			btrfs_abort_transaction(trans, ret);
4302 			goto out;
4303 		}
4304 
4305 		leaf = path->nodes[0];
4306 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4307 		btrfs_release_path(path);
4308 		index = key.offset;
4309 	}
4310 	btrfs_release_path(path);
4311 
4312 	ret = btrfs_delete_delayed_dir_index(trans, fs_info, BTRFS_I(dir), index);
4313 	if (ret) {
4314 		btrfs_abort_transaction(trans, ret);
4315 		goto out;
4316 	}
4317 
4318 	btrfs_i_size_write(BTRFS_I(dir), dir->i_size - name_len * 2);
4319 	inode_inc_iversion(dir);
4320 	dir->i_mtime = dir->i_ctime = current_time(dir);
4321 	ret = btrfs_update_inode_fallback(trans, root, dir);
4322 	if (ret)
4323 		btrfs_abort_transaction(trans, ret);
4324 out:
4325 	btrfs_free_path(path);
4326 	return ret;
4327 }
4328 
4329 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4330 {
4331 	struct inode *inode = d_inode(dentry);
4332 	int err = 0;
4333 	struct btrfs_root *root = BTRFS_I(dir)->root;
4334 	struct btrfs_trans_handle *trans;
4335 	u64 last_unlink_trans;
4336 
4337 	if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
4338 		return -ENOTEMPTY;
4339 	if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID)
4340 		return -EPERM;
4341 
4342 	trans = __unlink_start_trans(dir);
4343 	if (IS_ERR(trans))
4344 		return PTR_ERR(trans);
4345 
4346 	if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4347 		err = btrfs_unlink_subvol(trans, root, dir,
4348 					  BTRFS_I(inode)->location.objectid,
4349 					  dentry->d_name.name,
4350 					  dentry->d_name.len);
4351 		goto out;
4352 	}
4353 
4354 	err = btrfs_orphan_add(trans, BTRFS_I(inode));
4355 	if (err)
4356 		goto out;
4357 
4358 	last_unlink_trans = BTRFS_I(inode)->last_unlink_trans;
4359 
4360 	/* now the directory is empty */
4361 	err = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
4362 			BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4363 			dentry->d_name.len);
4364 	if (!err) {
4365 		btrfs_i_size_write(BTRFS_I(inode), 0);
4366 		/*
4367 		 * Propagate the last_unlink_trans value of the deleted dir to
4368 		 * its parent directory. This is to prevent an unrecoverable
4369 		 * log tree in the case we do something like this:
4370 		 * 1) create dir foo
4371 		 * 2) create snapshot under dir foo
4372 		 * 3) delete the snapshot
4373 		 * 4) rmdir foo
4374 		 * 5) mkdir foo
4375 		 * 6) fsync foo or some file inside foo
4376 		 */
4377 		if (last_unlink_trans >= trans->transid)
4378 			BTRFS_I(dir)->last_unlink_trans = last_unlink_trans;
4379 	}
4380 out:
4381 	btrfs_end_transaction(trans);
4382 	btrfs_btree_balance_dirty(root->fs_info);
4383 
4384 	return err;
4385 }
4386 
4387 static int truncate_space_check(struct btrfs_trans_handle *trans,
4388 				struct btrfs_root *root,
4389 				u64 bytes_deleted)
4390 {
4391 	struct btrfs_fs_info *fs_info = root->fs_info;
4392 	int ret;
4393 
4394 	/*
4395 	 * This is only used to apply pressure to the enospc system, we don't
4396 	 * intend to use this reservation at all.
4397 	 */
4398 	bytes_deleted = btrfs_csum_bytes_to_leaves(fs_info, bytes_deleted);
4399 	bytes_deleted *= fs_info->nodesize;
4400 	ret = btrfs_block_rsv_add(root, &fs_info->trans_block_rsv,
4401 				  bytes_deleted, BTRFS_RESERVE_NO_FLUSH);
4402 	if (!ret) {
4403 		trace_btrfs_space_reservation(fs_info, "transaction",
4404 					      trans->transid,
4405 					      bytes_deleted, 1);
4406 		trans->bytes_reserved += bytes_deleted;
4407 	}
4408 	return ret;
4409 
4410 }
4411 
4412 /*
4413  * Return this if we need to call truncate_block for the last bit of the
4414  * truncate.
4415  */
4416 #define NEED_TRUNCATE_BLOCK 1
4417 
4418 /*
4419  * this can truncate away extent items, csum items and directory items.
4420  * It starts at a high offset and removes keys until it can't find
4421  * any higher than new_size
4422  *
4423  * csum items that cross the new i_size are truncated to the new size
4424  * as well.
4425  *
4426  * min_type is the minimum key type to truncate down to.  If set to 0, this
4427  * will kill all the items on this inode, including the INODE_ITEM_KEY.
4428  */
4429 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
4430 			       struct btrfs_root *root,
4431 			       struct inode *inode,
4432 			       u64 new_size, u32 min_type)
4433 {
4434 	struct btrfs_fs_info *fs_info = root->fs_info;
4435 	struct btrfs_path *path;
4436 	struct extent_buffer *leaf;
4437 	struct btrfs_file_extent_item *fi;
4438 	struct btrfs_key key;
4439 	struct btrfs_key found_key;
4440 	u64 extent_start = 0;
4441 	u64 extent_num_bytes = 0;
4442 	u64 extent_offset = 0;
4443 	u64 item_end = 0;
4444 	u64 last_size = new_size;
4445 	u32 found_type = (u8)-1;
4446 	int found_extent;
4447 	int del_item;
4448 	int pending_del_nr = 0;
4449 	int pending_del_slot = 0;
4450 	int extent_type = -1;
4451 	int ret;
4452 	int err = 0;
4453 	u64 ino = btrfs_ino(BTRFS_I(inode));
4454 	u64 bytes_deleted = 0;
4455 	bool be_nice = false;
4456 	bool should_throttle = false;
4457 	bool should_end = false;
4458 
4459 	BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
4460 
4461 	/*
4462 	 * for non-free space inodes and ref cows, we want to back off from
4463 	 * time to time
4464 	 */
4465 	if (!btrfs_is_free_space_inode(BTRFS_I(inode)) &&
4466 	    test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4467 		be_nice = true;
4468 
4469 	path = btrfs_alloc_path();
4470 	if (!path)
4471 		return -ENOMEM;
4472 	path->reada = READA_BACK;
4473 
4474 	/*
4475 	 * We want to drop from the next block forward in case this new size is
4476 	 * not block aligned since we will be keeping the last block of the
4477 	 * extent just the way it is.
4478 	 */
4479 	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4480 	    root == fs_info->tree_root)
4481 		btrfs_drop_extent_cache(BTRFS_I(inode), ALIGN(new_size,
4482 					fs_info->sectorsize),
4483 					(u64)-1, 0);
4484 
4485 	/*
4486 	 * This function is also used to drop the items in the log tree before
4487 	 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
4488 	 * it is used to drop the loged items. So we shouldn't kill the delayed
4489 	 * items.
4490 	 */
4491 	if (min_type == 0 && root == BTRFS_I(inode)->root)
4492 		btrfs_kill_delayed_inode_items(BTRFS_I(inode));
4493 
4494 	key.objectid = ino;
4495 	key.offset = (u64)-1;
4496 	key.type = (u8)-1;
4497 
4498 search_again:
4499 	/*
4500 	 * with a 16K leaf size and 128MB extents, you can actually queue
4501 	 * up a huge file in a single leaf.  Most of the time that
4502 	 * bytes_deleted is > 0, it will be huge by the time we get here
4503 	 */
4504 	if (be_nice && bytes_deleted > SZ_32M) {
4505 		if (btrfs_should_end_transaction(trans)) {
4506 			err = -EAGAIN;
4507 			goto error;
4508 		}
4509 	}
4510 
4511 
4512 	path->leave_spinning = 1;
4513 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
4514 	if (ret < 0) {
4515 		err = ret;
4516 		goto out;
4517 	}
4518 
4519 	if (ret > 0) {
4520 		/* there are no items in the tree for us to truncate, we're
4521 		 * done
4522 		 */
4523 		if (path->slots[0] == 0)
4524 			goto out;
4525 		path->slots[0]--;
4526 	}
4527 
4528 	while (1) {
4529 		fi = NULL;
4530 		leaf = path->nodes[0];
4531 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4532 		found_type = found_key.type;
4533 
4534 		if (found_key.objectid != ino)
4535 			break;
4536 
4537 		if (found_type < min_type)
4538 			break;
4539 
4540 		item_end = found_key.offset;
4541 		if (found_type == BTRFS_EXTENT_DATA_KEY) {
4542 			fi = btrfs_item_ptr(leaf, path->slots[0],
4543 					    struct btrfs_file_extent_item);
4544 			extent_type = btrfs_file_extent_type(leaf, fi);
4545 			if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4546 				item_end +=
4547 				    btrfs_file_extent_num_bytes(leaf, fi);
4548 
4549 				trace_btrfs_truncate_show_fi_regular(
4550 					BTRFS_I(inode), leaf, fi,
4551 					found_key.offset);
4552 			} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4553 				item_end += btrfs_file_extent_inline_len(leaf,
4554 							 path->slots[0], fi);
4555 
4556 				trace_btrfs_truncate_show_fi_inline(
4557 					BTRFS_I(inode), leaf, fi, path->slots[0],
4558 					found_key.offset);
4559 			}
4560 			item_end--;
4561 		}
4562 		if (found_type > min_type) {
4563 			del_item = 1;
4564 		} else {
4565 			if (item_end < new_size)
4566 				break;
4567 			if (found_key.offset >= new_size)
4568 				del_item = 1;
4569 			else
4570 				del_item = 0;
4571 		}
4572 		found_extent = 0;
4573 		/* FIXME, shrink the extent if the ref count is only 1 */
4574 		if (found_type != BTRFS_EXTENT_DATA_KEY)
4575 			goto delete;
4576 
4577 		if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4578 			u64 num_dec;
4579 			extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
4580 			if (!del_item) {
4581 				u64 orig_num_bytes =
4582 					btrfs_file_extent_num_bytes(leaf, fi);
4583 				extent_num_bytes = ALIGN(new_size -
4584 						found_key.offset,
4585 						fs_info->sectorsize);
4586 				btrfs_set_file_extent_num_bytes(leaf, fi,
4587 							 extent_num_bytes);
4588 				num_dec = (orig_num_bytes -
4589 					   extent_num_bytes);
4590 				if (test_bit(BTRFS_ROOT_REF_COWS,
4591 					     &root->state) &&
4592 				    extent_start != 0)
4593 					inode_sub_bytes(inode, num_dec);
4594 				btrfs_mark_buffer_dirty(leaf);
4595 			} else {
4596 				extent_num_bytes =
4597 					btrfs_file_extent_disk_num_bytes(leaf,
4598 									 fi);
4599 				extent_offset = found_key.offset -
4600 					btrfs_file_extent_offset(leaf, fi);
4601 
4602 				/* FIXME blocksize != 4096 */
4603 				num_dec = btrfs_file_extent_num_bytes(leaf, fi);
4604 				if (extent_start != 0) {
4605 					found_extent = 1;
4606 					if (test_bit(BTRFS_ROOT_REF_COWS,
4607 						     &root->state))
4608 						inode_sub_bytes(inode, num_dec);
4609 				}
4610 			}
4611 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4612 			/*
4613 			 * we can't truncate inline items that have had
4614 			 * special encodings
4615 			 */
4616 			if (!del_item &&
4617 			    btrfs_file_extent_encryption(leaf, fi) == 0 &&
4618 			    btrfs_file_extent_other_encoding(leaf, fi) == 0 &&
4619 			    btrfs_file_extent_compression(leaf, fi) == 0) {
4620 				u32 size = (u32)(new_size - found_key.offset);
4621 
4622 				btrfs_set_file_extent_ram_bytes(leaf, fi, size);
4623 				size = btrfs_file_extent_calc_inline_size(size);
4624 				btrfs_truncate_item(root->fs_info, path, size, 1);
4625 			} else if (!del_item) {
4626 				/*
4627 				 * We have to bail so the last_size is set to
4628 				 * just before this extent.
4629 				 */
4630 				err = NEED_TRUNCATE_BLOCK;
4631 				break;
4632 			}
4633 
4634 			if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4635 				inode_sub_bytes(inode, item_end + 1 - new_size);
4636 		}
4637 delete:
4638 		if (del_item)
4639 			last_size = found_key.offset;
4640 		else
4641 			last_size = new_size;
4642 		if (del_item) {
4643 			if (!pending_del_nr) {
4644 				/* no pending yet, add ourselves */
4645 				pending_del_slot = path->slots[0];
4646 				pending_del_nr = 1;
4647 			} else if (pending_del_nr &&
4648 				   path->slots[0] + 1 == pending_del_slot) {
4649 				/* hop on the pending chunk */
4650 				pending_del_nr++;
4651 				pending_del_slot = path->slots[0];
4652 			} else {
4653 				BUG();
4654 			}
4655 		} else {
4656 			break;
4657 		}
4658 		should_throttle = false;
4659 
4660 		if (found_extent &&
4661 		    (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4662 		     root == fs_info->tree_root)) {
4663 			btrfs_set_path_blocking(path);
4664 			bytes_deleted += extent_num_bytes;
4665 			ret = btrfs_free_extent(trans, root, extent_start,
4666 						extent_num_bytes, 0,
4667 						btrfs_header_owner(leaf),
4668 						ino, extent_offset);
4669 			BUG_ON(ret);
4670 			if (btrfs_should_throttle_delayed_refs(trans, fs_info))
4671 				btrfs_async_run_delayed_refs(fs_info,
4672 					trans->delayed_ref_updates * 2,
4673 					trans->transid, 0);
4674 			if (be_nice) {
4675 				if (truncate_space_check(trans, root,
4676 							 extent_num_bytes)) {
4677 					should_end = true;
4678 				}
4679 				if (btrfs_should_throttle_delayed_refs(trans,
4680 								       fs_info))
4681 					should_throttle = true;
4682 			}
4683 		}
4684 
4685 		if (found_type == BTRFS_INODE_ITEM_KEY)
4686 			break;
4687 
4688 		if (path->slots[0] == 0 ||
4689 		    path->slots[0] != pending_del_slot ||
4690 		    should_throttle || should_end) {
4691 			if (pending_del_nr) {
4692 				ret = btrfs_del_items(trans, root, path,
4693 						pending_del_slot,
4694 						pending_del_nr);
4695 				if (ret) {
4696 					btrfs_abort_transaction(trans, ret);
4697 					goto error;
4698 				}
4699 				pending_del_nr = 0;
4700 			}
4701 			btrfs_release_path(path);
4702 			if (should_throttle) {
4703 				unsigned long updates = trans->delayed_ref_updates;
4704 				if (updates) {
4705 					trans->delayed_ref_updates = 0;
4706 					ret = btrfs_run_delayed_refs(trans,
4707 								   updates * 2);
4708 					if (ret && !err)
4709 						err = ret;
4710 				}
4711 			}
4712 			/*
4713 			 * if we failed to refill our space rsv, bail out
4714 			 * and let the transaction restart
4715 			 */
4716 			if (should_end) {
4717 				err = -EAGAIN;
4718 				goto error;
4719 			}
4720 			goto search_again;
4721 		} else {
4722 			path->slots[0]--;
4723 		}
4724 	}
4725 out:
4726 	if (pending_del_nr) {
4727 		ret = btrfs_del_items(trans, root, path, pending_del_slot,
4728 				      pending_del_nr);
4729 		if (ret)
4730 			btrfs_abort_transaction(trans, ret);
4731 	}
4732 error:
4733 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
4734 		ASSERT(last_size >= new_size);
4735 		if (!err && last_size > new_size)
4736 			last_size = new_size;
4737 		btrfs_ordered_update_i_size(inode, last_size, NULL);
4738 	}
4739 
4740 	btrfs_free_path(path);
4741 
4742 	if (be_nice && bytes_deleted > SZ_32M) {
4743 		unsigned long updates = trans->delayed_ref_updates;
4744 		if (updates) {
4745 			trans->delayed_ref_updates = 0;
4746 			ret = btrfs_run_delayed_refs(trans, updates * 2);
4747 			if (ret && !err)
4748 				err = ret;
4749 		}
4750 	}
4751 	return err;
4752 }
4753 
4754 /*
4755  * btrfs_truncate_block - read, zero a chunk and write a block
4756  * @inode - inode that we're zeroing
4757  * @from - the offset to start zeroing
4758  * @len - the length to zero, 0 to zero the entire range respective to the
4759  *	offset
4760  * @front - zero up to the offset instead of from the offset on
4761  *
4762  * This will find the block for the "from" offset and cow the block and zero the
4763  * part we want to zero.  This is used with truncate and hole punching.
4764  */
4765 int btrfs_truncate_block(struct inode *inode, loff_t from, loff_t len,
4766 			int front)
4767 {
4768 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4769 	struct address_space *mapping = inode->i_mapping;
4770 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4771 	struct btrfs_ordered_extent *ordered;
4772 	struct extent_state *cached_state = NULL;
4773 	struct extent_changeset *data_reserved = NULL;
4774 	char *kaddr;
4775 	u32 blocksize = fs_info->sectorsize;
4776 	pgoff_t index = from >> PAGE_SHIFT;
4777 	unsigned offset = from & (blocksize - 1);
4778 	struct page *page;
4779 	gfp_t mask = btrfs_alloc_write_mask(mapping);
4780 	int ret = 0;
4781 	u64 block_start;
4782 	u64 block_end;
4783 
4784 	if (IS_ALIGNED(offset, blocksize) &&
4785 	    (!len || IS_ALIGNED(len, blocksize)))
4786 		goto out;
4787 
4788 	block_start = round_down(from, blocksize);
4789 	block_end = block_start + blocksize - 1;
4790 
4791 	ret = btrfs_delalloc_reserve_space(inode, &data_reserved,
4792 					   block_start, blocksize);
4793 	if (ret)
4794 		goto out;
4795 
4796 again:
4797 	page = find_or_create_page(mapping, index, mask);
4798 	if (!page) {
4799 		btrfs_delalloc_release_space(inode, data_reserved,
4800 					     block_start, blocksize, true);
4801 		btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize, true);
4802 		ret = -ENOMEM;
4803 		goto out;
4804 	}
4805 
4806 	if (!PageUptodate(page)) {
4807 		ret = btrfs_readpage(NULL, page);
4808 		lock_page(page);
4809 		if (page->mapping != mapping) {
4810 			unlock_page(page);
4811 			put_page(page);
4812 			goto again;
4813 		}
4814 		if (!PageUptodate(page)) {
4815 			ret = -EIO;
4816 			goto out_unlock;
4817 		}
4818 	}
4819 	wait_on_page_writeback(page);
4820 
4821 	lock_extent_bits(io_tree, block_start, block_end, &cached_state);
4822 	set_page_extent_mapped(page);
4823 
4824 	ordered = btrfs_lookup_ordered_extent(inode, block_start);
4825 	if (ordered) {
4826 		unlock_extent_cached(io_tree, block_start, block_end,
4827 				     &cached_state);
4828 		unlock_page(page);
4829 		put_page(page);
4830 		btrfs_start_ordered_extent(inode, ordered, 1);
4831 		btrfs_put_ordered_extent(ordered);
4832 		goto again;
4833 	}
4834 
4835 	clear_extent_bit(&BTRFS_I(inode)->io_tree, block_start, block_end,
4836 			  EXTENT_DIRTY | EXTENT_DELALLOC |
4837 			  EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
4838 			  0, 0, &cached_state);
4839 
4840 	ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0,
4841 					&cached_state, 0);
4842 	if (ret) {
4843 		unlock_extent_cached(io_tree, block_start, block_end,
4844 				     &cached_state);
4845 		goto out_unlock;
4846 	}
4847 
4848 	if (offset != blocksize) {
4849 		if (!len)
4850 			len = blocksize - offset;
4851 		kaddr = kmap(page);
4852 		if (front)
4853 			memset(kaddr + (block_start - page_offset(page)),
4854 				0, offset);
4855 		else
4856 			memset(kaddr + (block_start - page_offset(page)) +  offset,
4857 				0, len);
4858 		flush_dcache_page(page);
4859 		kunmap(page);
4860 	}
4861 	ClearPageChecked(page);
4862 	set_page_dirty(page);
4863 	unlock_extent_cached(io_tree, block_start, block_end, &cached_state);
4864 
4865 out_unlock:
4866 	if (ret)
4867 		btrfs_delalloc_release_space(inode, data_reserved, block_start,
4868 					     blocksize, true);
4869 	btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize, (ret != 0));
4870 	unlock_page(page);
4871 	put_page(page);
4872 out:
4873 	extent_changeset_free(data_reserved);
4874 	return ret;
4875 }
4876 
4877 static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode,
4878 			     u64 offset, u64 len)
4879 {
4880 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4881 	struct btrfs_trans_handle *trans;
4882 	int ret;
4883 
4884 	/*
4885 	 * Still need to make sure the inode looks like it's been updated so
4886 	 * that any holes get logged if we fsync.
4887 	 */
4888 	if (btrfs_fs_incompat(fs_info, NO_HOLES)) {
4889 		BTRFS_I(inode)->last_trans = fs_info->generation;
4890 		BTRFS_I(inode)->last_sub_trans = root->log_transid;
4891 		BTRFS_I(inode)->last_log_commit = root->last_log_commit;
4892 		return 0;
4893 	}
4894 
4895 	/*
4896 	 * 1 - for the one we're dropping
4897 	 * 1 - for the one we're adding
4898 	 * 1 - for updating the inode.
4899 	 */
4900 	trans = btrfs_start_transaction(root, 3);
4901 	if (IS_ERR(trans))
4902 		return PTR_ERR(trans);
4903 
4904 	ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1);
4905 	if (ret) {
4906 		btrfs_abort_transaction(trans, ret);
4907 		btrfs_end_transaction(trans);
4908 		return ret;
4909 	}
4910 
4911 	ret = btrfs_insert_file_extent(trans, root, btrfs_ino(BTRFS_I(inode)),
4912 			offset, 0, 0, len, 0, len, 0, 0, 0);
4913 	if (ret)
4914 		btrfs_abort_transaction(trans, ret);
4915 	else
4916 		btrfs_update_inode(trans, root, inode);
4917 	btrfs_end_transaction(trans);
4918 	return ret;
4919 }
4920 
4921 /*
4922  * This function puts in dummy file extents for the area we're creating a hole
4923  * for.  So if we are truncating this file to a larger size we need to insert
4924  * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4925  * the range between oldsize and size
4926  */
4927 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
4928 {
4929 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4930 	struct btrfs_root *root = BTRFS_I(inode)->root;
4931 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4932 	struct extent_map *em = NULL;
4933 	struct extent_state *cached_state = NULL;
4934 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4935 	u64 hole_start = ALIGN(oldsize, fs_info->sectorsize);
4936 	u64 block_end = ALIGN(size, fs_info->sectorsize);
4937 	u64 last_byte;
4938 	u64 cur_offset;
4939 	u64 hole_size;
4940 	int err = 0;
4941 
4942 	/*
4943 	 * If our size started in the middle of a block we need to zero out the
4944 	 * rest of the block before we expand the i_size, otherwise we could
4945 	 * expose stale data.
4946 	 */
4947 	err = btrfs_truncate_block(inode, oldsize, 0, 0);
4948 	if (err)
4949 		return err;
4950 
4951 	if (size <= hole_start)
4952 		return 0;
4953 
4954 	while (1) {
4955 		struct btrfs_ordered_extent *ordered;
4956 
4957 		lock_extent_bits(io_tree, hole_start, block_end - 1,
4958 				 &cached_state);
4959 		ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), hole_start,
4960 						     block_end - hole_start);
4961 		if (!ordered)
4962 			break;
4963 		unlock_extent_cached(io_tree, hole_start, block_end - 1,
4964 				     &cached_state);
4965 		btrfs_start_ordered_extent(inode, ordered, 1);
4966 		btrfs_put_ordered_extent(ordered);
4967 	}
4968 
4969 	cur_offset = hole_start;
4970 	while (1) {
4971 		em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset,
4972 				block_end - cur_offset, 0);
4973 		if (IS_ERR(em)) {
4974 			err = PTR_ERR(em);
4975 			em = NULL;
4976 			break;
4977 		}
4978 		last_byte = min(extent_map_end(em), block_end);
4979 		last_byte = ALIGN(last_byte, fs_info->sectorsize);
4980 		if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
4981 			struct extent_map *hole_em;
4982 			hole_size = last_byte - cur_offset;
4983 
4984 			err = maybe_insert_hole(root, inode, cur_offset,
4985 						hole_size);
4986 			if (err)
4987 				break;
4988 			btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
4989 						cur_offset + hole_size - 1, 0);
4990 			hole_em = alloc_extent_map();
4991 			if (!hole_em) {
4992 				set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4993 					&BTRFS_I(inode)->runtime_flags);
4994 				goto next;
4995 			}
4996 			hole_em->start = cur_offset;
4997 			hole_em->len = hole_size;
4998 			hole_em->orig_start = cur_offset;
4999 
5000 			hole_em->block_start = EXTENT_MAP_HOLE;
5001 			hole_em->block_len = 0;
5002 			hole_em->orig_block_len = 0;
5003 			hole_em->ram_bytes = hole_size;
5004 			hole_em->bdev = fs_info->fs_devices->latest_bdev;
5005 			hole_em->compress_type = BTRFS_COMPRESS_NONE;
5006 			hole_em->generation = fs_info->generation;
5007 
5008 			while (1) {
5009 				write_lock(&em_tree->lock);
5010 				err = add_extent_mapping(em_tree, hole_em, 1);
5011 				write_unlock(&em_tree->lock);
5012 				if (err != -EEXIST)
5013 					break;
5014 				btrfs_drop_extent_cache(BTRFS_I(inode),
5015 							cur_offset,
5016 							cur_offset +
5017 							hole_size - 1, 0);
5018 			}
5019 			free_extent_map(hole_em);
5020 		}
5021 next:
5022 		free_extent_map(em);
5023 		em = NULL;
5024 		cur_offset = last_byte;
5025 		if (cur_offset >= block_end)
5026 			break;
5027 	}
5028 	free_extent_map(em);
5029 	unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state);
5030 	return err;
5031 }
5032 
5033 static int btrfs_setsize(struct inode *inode, struct iattr *attr)
5034 {
5035 	struct btrfs_root *root = BTRFS_I(inode)->root;
5036 	struct btrfs_trans_handle *trans;
5037 	loff_t oldsize = i_size_read(inode);
5038 	loff_t newsize = attr->ia_size;
5039 	int mask = attr->ia_valid;
5040 	int ret;
5041 
5042 	/*
5043 	 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
5044 	 * special case where we need to update the times despite not having
5045 	 * these flags set.  For all other operations the VFS set these flags
5046 	 * explicitly if it wants a timestamp update.
5047 	 */
5048 	if (newsize != oldsize) {
5049 		inode_inc_iversion(inode);
5050 		if (!(mask & (ATTR_CTIME | ATTR_MTIME)))
5051 			inode->i_ctime = inode->i_mtime =
5052 				current_time(inode);
5053 	}
5054 
5055 	if (newsize > oldsize) {
5056 		/*
5057 		 * Don't do an expanding truncate while snapshotting is ongoing.
5058 		 * This is to ensure the snapshot captures a fully consistent
5059 		 * state of this file - if the snapshot captures this expanding
5060 		 * truncation, it must capture all writes that happened before
5061 		 * this truncation.
5062 		 */
5063 		btrfs_wait_for_snapshot_creation(root);
5064 		ret = btrfs_cont_expand(inode, oldsize, newsize);
5065 		if (ret) {
5066 			btrfs_end_write_no_snapshotting(root);
5067 			return ret;
5068 		}
5069 
5070 		trans = btrfs_start_transaction(root, 1);
5071 		if (IS_ERR(trans)) {
5072 			btrfs_end_write_no_snapshotting(root);
5073 			return PTR_ERR(trans);
5074 		}
5075 
5076 		i_size_write(inode, newsize);
5077 		btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
5078 		pagecache_isize_extended(inode, oldsize, newsize);
5079 		ret = btrfs_update_inode(trans, root, inode);
5080 		btrfs_end_write_no_snapshotting(root);
5081 		btrfs_end_transaction(trans);
5082 	} else {
5083 
5084 		/*
5085 		 * We're truncating a file that used to have good data down to
5086 		 * zero. Make sure it gets into the ordered flush list so that
5087 		 * any new writes get down to disk quickly.
5088 		 */
5089 		if (newsize == 0)
5090 			set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
5091 				&BTRFS_I(inode)->runtime_flags);
5092 
5093 		/*
5094 		 * 1 for the orphan item we're going to add
5095 		 * 1 for the orphan item deletion.
5096 		 */
5097 		trans = btrfs_start_transaction(root, 2);
5098 		if (IS_ERR(trans))
5099 			return PTR_ERR(trans);
5100 
5101 		/*
5102 		 * We need to do this in case we fail at _any_ point during the
5103 		 * actual truncate.  Once we do the truncate_setsize we could
5104 		 * invalidate pages which forces any outstanding ordered io to
5105 		 * be instantly completed which will give us extents that need
5106 		 * to be truncated.  If we fail to get an orphan inode down we
5107 		 * could have left over extents that were never meant to live,
5108 		 * so we need to guarantee from this point on that everything
5109 		 * will be consistent.
5110 		 */
5111 		ret = btrfs_orphan_add(trans, BTRFS_I(inode));
5112 		btrfs_end_transaction(trans);
5113 		if (ret)
5114 			return ret;
5115 
5116 		/* we don't support swapfiles, so vmtruncate shouldn't fail */
5117 		truncate_setsize(inode, newsize);
5118 
5119 		/* Disable nonlocked read DIO to avoid the end less truncate */
5120 		btrfs_inode_block_unlocked_dio(BTRFS_I(inode));
5121 		inode_dio_wait(inode);
5122 		btrfs_inode_resume_unlocked_dio(BTRFS_I(inode));
5123 
5124 		ret = btrfs_truncate(inode, newsize == oldsize);
5125 		if (ret && inode->i_nlink) {
5126 			int err;
5127 
5128 			/* To get a stable disk_i_size */
5129 			err = btrfs_wait_ordered_range(inode, 0, (u64)-1);
5130 			if (err) {
5131 				btrfs_orphan_del(NULL, BTRFS_I(inode));
5132 				return err;
5133 			}
5134 
5135 			/*
5136 			 * failed to truncate, disk_i_size is only adjusted down
5137 			 * as we remove extents, so it should represent the true
5138 			 * size of the inode, so reset the in memory size and
5139 			 * delete our orphan entry.
5140 			 */
5141 			trans = btrfs_join_transaction(root);
5142 			if (IS_ERR(trans)) {
5143 				btrfs_orphan_del(NULL, BTRFS_I(inode));
5144 				return ret;
5145 			}
5146 			i_size_write(inode, BTRFS_I(inode)->disk_i_size);
5147 			err = btrfs_orphan_del(trans, BTRFS_I(inode));
5148 			if (err)
5149 				btrfs_abort_transaction(trans, err);
5150 			btrfs_end_transaction(trans);
5151 		}
5152 	}
5153 
5154 	return ret;
5155 }
5156 
5157 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
5158 {
5159 	struct inode *inode = d_inode(dentry);
5160 	struct btrfs_root *root = BTRFS_I(inode)->root;
5161 	int err;
5162 
5163 	if (btrfs_root_readonly(root))
5164 		return -EROFS;
5165 
5166 	err = setattr_prepare(dentry, attr);
5167 	if (err)
5168 		return err;
5169 
5170 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
5171 		err = btrfs_setsize(inode, attr);
5172 		if (err)
5173 			return err;
5174 	}
5175 
5176 	if (attr->ia_valid) {
5177 		setattr_copy(inode, attr);
5178 		inode_inc_iversion(inode);
5179 		err = btrfs_dirty_inode(inode);
5180 
5181 		if (!err && attr->ia_valid & ATTR_MODE)
5182 			err = posix_acl_chmod(inode, inode->i_mode);
5183 	}
5184 
5185 	return err;
5186 }
5187 
5188 /*
5189  * While truncating the inode pages during eviction, we get the VFS calling
5190  * btrfs_invalidatepage() against each page of the inode. This is slow because
5191  * the calls to btrfs_invalidatepage() result in a huge amount of calls to
5192  * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
5193  * extent_state structures over and over, wasting lots of time.
5194  *
5195  * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
5196  * those expensive operations on a per page basis and do only the ordered io
5197  * finishing, while we release here the extent_map and extent_state structures,
5198  * without the excessive merging and splitting.
5199  */
5200 static void evict_inode_truncate_pages(struct inode *inode)
5201 {
5202 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5203 	struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
5204 	struct rb_node *node;
5205 
5206 	ASSERT(inode->i_state & I_FREEING);
5207 	truncate_inode_pages_final(&inode->i_data);
5208 
5209 	write_lock(&map_tree->lock);
5210 	while (!RB_EMPTY_ROOT(&map_tree->map)) {
5211 		struct extent_map *em;
5212 
5213 		node = rb_first(&map_tree->map);
5214 		em = rb_entry(node, struct extent_map, rb_node);
5215 		clear_bit(EXTENT_FLAG_PINNED, &em->flags);
5216 		clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
5217 		remove_extent_mapping(map_tree, em);
5218 		free_extent_map(em);
5219 		if (need_resched()) {
5220 			write_unlock(&map_tree->lock);
5221 			cond_resched();
5222 			write_lock(&map_tree->lock);
5223 		}
5224 	}
5225 	write_unlock(&map_tree->lock);
5226 
5227 	/*
5228 	 * Keep looping until we have no more ranges in the io tree.
5229 	 * We can have ongoing bios started by readpages (called from readahead)
5230 	 * that have their endio callback (extent_io.c:end_bio_extent_readpage)
5231 	 * still in progress (unlocked the pages in the bio but did not yet
5232 	 * unlocked the ranges in the io tree). Therefore this means some
5233 	 * ranges can still be locked and eviction started because before
5234 	 * submitting those bios, which are executed by a separate task (work
5235 	 * queue kthread), inode references (inode->i_count) were not taken
5236 	 * (which would be dropped in the end io callback of each bio).
5237 	 * Therefore here we effectively end up waiting for those bios and
5238 	 * anyone else holding locked ranges without having bumped the inode's
5239 	 * reference count - if we don't do it, when they access the inode's
5240 	 * io_tree to unlock a range it may be too late, leading to an
5241 	 * use-after-free issue.
5242 	 */
5243 	spin_lock(&io_tree->lock);
5244 	while (!RB_EMPTY_ROOT(&io_tree->state)) {
5245 		struct extent_state *state;
5246 		struct extent_state *cached_state = NULL;
5247 		u64 start;
5248 		u64 end;
5249 
5250 		node = rb_first(&io_tree->state);
5251 		state = rb_entry(node, struct extent_state, rb_node);
5252 		start = state->start;
5253 		end = state->end;
5254 		spin_unlock(&io_tree->lock);
5255 
5256 		lock_extent_bits(io_tree, start, end, &cached_state);
5257 
5258 		/*
5259 		 * If still has DELALLOC flag, the extent didn't reach disk,
5260 		 * and its reserved space won't be freed by delayed_ref.
5261 		 * So we need to free its reserved space here.
5262 		 * (Refer to comment in btrfs_invalidatepage, case 2)
5263 		 *
5264 		 * Note, end is the bytenr of last byte, so we need + 1 here.
5265 		 */
5266 		if (state->state & EXTENT_DELALLOC)
5267 			btrfs_qgroup_free_data(inode, NULL, start, end - start + 1);
5268 
5269 		clear_extent_bit(io_tree, start, end,
5270 				 EXTENT_LOCKED | EXTENT_DIRTY |
5271 				 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
5272 				 EXTENT_DEFRAG, 1, 1, &cached_state);
5273 
5274 		cond_resched();
5275 		spin_lock(&io_tree->lock);
5276 	}
5277 	spin_unlock(&io_tree->lock);
5278 }
5279 
5280 void btrfs_evict_inode(struct inode *inode)
5281 {
5282 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5283 	struct btrfs_trans_handle *trans;
5284 	struct btrfs_root *root = BTRFS_I(inode)->root;
5285 	struct btrfs_block_rsv *rsv, *global_rsv;
5286 	int steal_from_global = 0;
5287 	u64 min_size;
5288 	int ret;
5289 
5290 	trace_btrfs_inode_evict(inode);
5291 
5292 	if (!root) {
5293 		clear_inode(inode);
5294 		return;
5295 	}
5296 
5297 	min_size = btrfs_calc_trunc_metadata_size(fs_info, 1);
5298 
5299 	evict_inode_truncate_pages(inode);
5300 
5301 	if (inode->i_nlink &&
5302 	    ((btrfs_root_refs(&root->root_item) != 0 &&
5303 	      root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
5304 	     btrfs_is_free_space_inode(BTRFS_I(inode))))
5305 		goto no_delete;
5306 
5307 	if (is_bad_inode(inode)) {
5308 		btrfs_orphan_del(NULL, BTRFS_I(inode));
5309 		goto no_delete;
5310 	}
5311 	/* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
5312 	if (!special_file(inode->i_mode))
5313 		btrfs_wait_ordered_range(inode, 0, (u64)-1);
5314 
5315 	btrfs_free_io_failure_record(BTRFS_I(inode), 0, (u64)-1);
5316 
5317 	if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
5318 		BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
5319 				 &BTRFS_I(inode)->runtime_flags));
5320 		goto no_delete;
5321 	}
5322 
5323 	if (inode->i_nlink > 0) {
5324 		BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5325 		       root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
5326 		goto no_delete;
5327 	}
5328 
5329 	ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode));
5330 	if (ret) {
5331 		btrfs_orphan_del(NULL, BTRFS_I(inode));
5332 		goto no_delete;
5333 	}
5334 
5335 	rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
5336 	if (!rsv) {
5337 		btrfs_orphan_del(NULL, BTRFS_I(inode));
5338 		goto no_delete;
5339 	}
5340 	rsv->size = min_size;
5341 	rsv->failfast = 1;
5342 	global_rsv = &fs_info->global_block_rsv;
5343 
5344 	btrfs_i_size_write(BTRFS_I(inode), 0);
5345 
5346 	/*
5347 	 * This is a bit simpler than btrfs_truncate since we've already
5348 	 * reserved our space for our orphan item in the unlink, so we just
5349 	 * need to reserve some slack space in case we add bytes and update
5350 	 * inode item when doing the truncate.
5351 	 */
5352 	while (1) {
5353 		ret = btrfs_block_rsv_refill(root, rsv, min_size,
5354 					     BTRFS_RESERVE_FLUSH_LIMIT);
5355 
5356 		/*
5357 		 * Try and steal from the global reserve since we will
5358 		 * likely not use this space anyway, we want to try as
5359 		 * hard as possible to get this to work.
5360 		 */
5361 		if (ret)
5362 			steal_from_global++;
5363 		else
5364 			steal_from_global = 0;
5365 		ret = 0;
5366 
5367 		/*
5368 		 * steal_from_global == 0: we reserved stuff, hooray!
5369 		 * steal_from_global == 1: we didn't reserve stuff, boo!
5370 		 * steal_from_global == 2: we've committed, still not a lot of
5371 		 * room but maybe we'll have room in the global reserve this
5372 		 * time.
5373 		 * steal_from_global == 3: abandon all hope!
5374 		 */
5375 		if (steal_from_global > 2) {
5376 			btrfs_warn(fs_info,
5377 				   "Could not get space for a delete, will truncate on mount %d",
5378 				   ret);
5379 			btrfs_orphan_del(NULL, BTRFS_I(inode));
5380 			btrfs_free_block_rsv(fs_info, rsv);
5381 			goto no_delete;
5382 		}
5383 
5384 		trans = btrfs_join_transaction(root);
5385 		if (IS_ERR(trans)) {
5386 			btrfs_orphan_del(NULL, BTRFS_I(inode));
5387 			btrfs_free_block_rsv(fs_info, rsv);
5388 			goto no_delete;
5389 		}
5390 
5391 		/*
5392 		 * We can't just steal from the global reserve, we need to make
5393 		 * sure there is room to do it, if not we need to commit and try
5394 		 * again.
5395 		 */
5396 		if (steal_from_global) {
5397 			if (!btrfs_check_space_for_delayed_refs(trans, fs_info))
5398 				ret = btrfs_block_rsv_migrate(global_rsv, rsv,
5399 							      min_size, 0);
5400 			else
5401 				ret = -ENOSPC;
5402 		}
5403 
5404 		/*
5405 		 * Couldn't steal from the global reserve, we have too much
5406 		 * pending stuff built up, commit the transaction and try it
5407 		 * again.
5408 		 */
5409 		if (ret) {
5410 			ret = btrfs_commit_transaction(trans);
5411 			if (ret) {
5412 				btrfs_orphan_del(NULL, BTRFS_I(inode));
5413 				btrfs_free_block_rsv(fs_info, rsv);
5414 				goto no_delete;
5415 			}
5416 			continue;
5417 		} else {
5418 			steal_from_global = 0;
5419 		}
5420 
5421 		trans->block_rsv = rsv;
5422 
5423 		ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
5424 		if (ret != -ENOSPC && ret != -EAGAIN)
5425 			break;
5426 
5427 		trans->block_rsv = &fs_info->trans_block_rsv;
5428 		btrfs_end_transaction(trans);
5429 		trans = NULL;
5430 		btrfs_btree_balance_dirty(fs_info);
5431 	}
5432 
5433 	btrfs_free_block_rsv(fs_info, rsv);
5434 
5435 	/*
5436 	 * Errors here aren't a big deal, it just means we leave orphan items
5437 	 * in the tree.  They will be cleaned up on the next mount.
5438 	 */
5439 	if (ret == 0) {
5440 		trans->block_rsv = root->orphan_block_rsv;
5441 		btrfs_orphan_del(trans, BTRFS_I(inode));
5442 	} else {
5443 		btrfs_orphan_del(NULL, BTRFS_I(inode));
5444 	}
5445 
5446 	trans->block_rsv = &fs_info->trans_block_rsv;
5447 	if (!(root == fs_info->tree_root ||
5448 	      root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
5449 		btrfs_return_ino(root, btrfs_ino(BTRFS_I(inode)));
5450 
5451 	btrfs_end_transaction(trans);
5452 	btrfs_btree_balance_dirty(fs_info);
5453 no_delete:
5454 	btrfs_remove_delayed_node(BTRFS_I(inode));
5455 	clear_inode(inode);
5456 }
5457 
5458 /*
5459  * this returns the key found in the dir entry in the location pointer.
5460  * If no dir entries were found, returns -ENOENT.
5461  * If found a corrupted location in dir entry, returns -EUCLEAN.
5462  */
5463 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
5464 			       struct btrfs_key *location)
5465 {
5466 	const char *name = dentry->d_name.name;
5467 	int namelen = dentry->d_name.len;
5468 	struct btrfs_dir_item *di;
5469 	struct btrfs_path *path;
5470 	struct btrfs_root *root = BTRFS_I(dir)->root;
5471 	int ret = 0;
5472 
5473 	path = btrfs_alloc_path();
5474 	if (!path)
5475 		return -ENOMEM;
5476 
5477 	di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(BTRFS_I(dir)),
5478 			name, namelen, 0);
5479 	if (!di) {
5480 		ret = -ENOENT;
5481 		goto out;
5482 	}
5483 	if (IS_ERR(di)) {
5484 		ret = PTR_ERR(di);
5485 		goto out;
5486 	}
5487 
5488 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
5489 	if (location->type != BTRFS_INODE_ITEM_KEY &&
5490 	    location->type != BTRFS_ROOT_ITEM_KEY) {
5491 		ret = -EUCLEAN;
5492 		btrfs_warn(root->fs_info,
5493 "%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))",
5494 			   __func__, name, btrfs_ino(BTRFS_I(dir)),
5495 			   location->objectid, location->type, location->offset);
5496 	}
5497 out:
5498 	btrfs_free_path(path);
5499 	return ret;
5500 }
5501 
5502 /*
5503  * when we hit a tree root in a directory, the btrfs part of the inode
5504  * needs to be changed to reflect the root directory of the tree root.  This
5505  * is kind of like crossing a mount point.
5506  */
5507 static int fixup_tree_root_location(struct btrfs_fs_info *fs_info,
5508 				    struct inode *dir,
5509 				    struct dentry *dentry,
5510 				    struct btrfs_key *location,
5511 				    struct btrfs_root **sub_root)
5512 {
5513 	struct btrfs_path *path;
5514 	struct btrfs_root *new_root;
5515 	struct btrfs_root_ref *ref;
5516 	struct extent_buffer *leaf;
5517 	struct btrfs_key key;
5518 	int ret;
5519 	int err = 0;
5520 
5521 	path = btrfs_alloc_path();
5522 	if (!path) {
5523 		err = -ENOMEM;
5524 		goto out;
5525 	}
5526 
5527 	err = -ENOENT;
5528 	key.objectid = BTRFS_I(dir)->root->root_key.objectid;
5529 	key.type = BTRFS_ROOT_REF_KEY;
5530 	key.offset = location->objectid;
5531 
5532 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
5533 	if (ret) {
5534 		if (ret < 0)
5535 			err = ret;
5536 		goto out;
5537 	}
5538 
5539 	leaf = path->nodes[0];
5540 	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
5541 	if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(BTRFS_I(dir)) ||
5542 	    btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
5543 		goto out;
5544 
5545 	ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
5546 				   (unsigned long)(ref + 1),
5547 				   dentry->d_name.len);
5548 	if (ret)
5549 		goto out;
5550 
5551 	btrfs_release_path(path);
5552 
5553 	new_root = btrfs_read_fs_root_no_name(fs_info, location);
5554 	if (IS_ERR(new_root)) {
5555 		err = PTR_ERR(new_root);
5556 		goto out;
5557 	}
5558 
5559 	*sub_root = new_root;
5560 	location->objectid = btrfs_root_dirid(&new_root->root_item);
5561 	location->type = BTRFS_INODE_ITEM_KEY;
5562 	location->offset = 0;
5563 	err = 0;
5564 out:
5565 	btrfs_free_path(path);
5566 	return err;
5567 }
5568 
5569 static void inode_tree_add(struct inode *inode)
5570 {
5571 	struct btrfs_root *root = BTRFS_I(inode)->root;
5572 	struct btrfs_inode *entry;
5573 	struct rb_node **p;
5574 	struct rb_node *parent;
5575 	struct rb_node *new = &BTRFS_I(inode)->rb_node;
5576 	u64 ino = btrfs_ino(BTRFS_I(inode));
5577 
5578 	if (inode_unhashed(inode))
5579 		return;
5580 	parent = NULL;
5581 	spin_lock(&root->inode_lock);
5582 	p = &root->inode_tree.rb_node;
5583 	while (*p) {
5584 		parent = *p;
5585 		entry = rb_entry(parent, struct btrfs_inode, rb_node);
5586 
5587 		if (ino < btrfs_ino(BTRFS_I(&entry->vfs_inode)))
5588 			p = &parent->rb_left;
5589 		else if (ino > btrfs_ino(BTRFS_I(&entry->vfs_inode)))
5590 			p = &parent->rb_right;
5591 		else {
5592 			WARN_ON(!(entry->vfs_inode.i_state &
5593 				  (I_WILL_FREE | I_FREEING)));
5594 			rb_replace_node(parent, new, &root->inode_tree);
5595 			RB_CLEAR_NODE(parent);
5596 			spin_unlock(&root->inode_lock);
5597 			return;
5598 		}
5599 	}
5600 	rb_link_node(new, parent, p);
5601 	rb_insert_color(new, &root->inode_tree);
5602 	spin_unlock(&root->inode_lock);
5603 }
5604 
5605 static void inode_tree_del(struct inode *inode)
5606 {
5607 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5608 	struct btrfs_root *root = BTRFS_I(inode)->root;
5609 	int empty = 0;
5610 
5611 	spin_lock(&root->inode_lock);
5612 	if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5613 		rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5614 		RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
5615 		empty = RB_EMPTY_ROOT(&root->inode_tree);
5616 	}
5617 	spin_unlock(&root->inode_lock);
5618 
5619 	if (empty && btrfs_root_refs(&root->root_item) == 0) {
5620 		synchronize_srcu(&fs_info->subvol_srcu);
5621 		spin_lock(&root->inode_lock);
5622 		empty = RB_EMPTY_ROOT(&root->inode_tree);
5623 		spin_unlock(&root->inode_lock);
5624 		if (empty)
5625 			btrfs_add_dead_root(root);
5626 	}
5627 }
5628 
5629 void btrfs_invalidate_inodes(struct btrfs_root *root)
5630 {
5631 	struct btrfs_fs_info *fs_info = root->fs_info;
5632 	struct rb_node *node;
5633 	struct rb_node *prev;
5634 	struct btrfs_inode *entry;
5635 	struct inode *inode;
5636 	u64 objectid = 0;
5637 
5638 	if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
5639 		WARN_ON(btrfs_root_refs(&root->root_item) != 0);
5640 
5641 	spin_lock(&root->inode_lock);
5642 again:
5643 	node = root->inode_tree.rb_node;
5644 	prev = NULL;
5645 	while (node) {
5646 		prev = node;
5647 		entry = rb_entry(node, struct btrfs_inode, rb_node);
5648 
5649 		if (objectid < btrfs_ino(BTRFS_I(&entry->vfs_inode)))
5650 			node = node->rb_left;
5651 		else if (objectid > btrfs_ino(BTRFS_I(&entry->vfs_inode)))
5652 			node = node->rb_right;
5653 		else
5654 			break;
5655 	}
5656 	if (!node) {
5657 		while (prev) {
5658 			entry = rb_entry(prev, struct btrfs_inode, rb_node);
5659 			if (objectid <= btrfs_ino(BTRFS_I(&entry->vfs_inode))) {
5660 				node = prev;
5661 				break;
5662 			}
5663 			prev = rb_next(prev);
5664 		}
5665 	}
5666 	while (node) {
5667 		entry = rb_entry(node, struct btrfs_inode, rb_node);
5668 		objectid = btrfs_ino(BTRFS_I(&entry->vfs_inode)) + 1;
5669 		inode = igrab(&entry->vfs_inode);
5670 		if (inode) {
5671 			spin_unlock(&root->inode_lock);
5672 			if (atomic_read(&inode->i_count) > 1)
5673 				d_prune_aliases(inode);
5674 			/*
5675 			 * btrfs_drop_inode will have it removed from
5676 			 * the inode cache when its usage count
5677 			 * hits zero.
5678 			 */
5679 			iput(inode);
5680 			cond_resched();
5681 			spin_lock(&root->inode_lock);
5682 			goto again;
5683 		}
5684 
5685 		if (cond_resched_lock(&root->inode_lock))
5686 			goto again;
5687 
5688 		node = rb_next(node);
5689 	}
5690 	spin_unlock(&root->inode_lock);
5691 }
5692 
5693 static int btrfs_init_locked_inode(struct inode *inode, void *p)
5694 {
5695 	struct btrfs_iget_args *args = p;
5696 	inode->i_ino = args->location->objectid;
5697 	memcpy(&BTRFS_I(inode)->location, args->location,
5698 	       sizeof(*args->location));
5699 	BTRFS_I(inode)->root = args->root;
5700 	return 0;
5701 }
5702 
5703 static int btrfs_find_actor(struct inode *inode, void *opaque)
5704 {
5705 	struct btrfs_iget_args *args = opaque;
5706 	return args->location->objectid == BTRFS_I(inode)->location.objectid &&
5707 		args->root == BTRFS_I(inode)->root;
5708 }
5709 
5710 static struct inode *btrfs_iget_locked(struct super_block *s,
5711 				       struct btrfs_key *location,
5712 				       struct btrfs_root *root)
5713 {
5714 	struct inode *inode;
5715 	struct btrfs_iget_args args;
5716 	unsigned long hashval = btrfs_inode_hash(location->objectid, root);
5717 
5718 	args.location = location;
5719 	args.root = root;
5720 
5721 	inode = iget5_locked(s, hashval, btrfs_find_actor,
5722 			     btrfs_init_locked_inode,
5723 			     (void *)&args);
5724 	return inode;
5725 }
5726 
5727 /* Get an inode object given its location and corresponding root.
5728  * Returns in *is_new if the inode was read from disk
5729  */
5730 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
5731 			 struct btrfs_root *root, int *new)
5732 {
5733 	struct inode *inode;
5734 
5735 	inode = btrfs_iget_locked(s, location, root);
5736 	if (!inode)
5737 		return ERR_PTR(-ENOMEM);
5738 
5739 	if (inode->i_state & I_NEW) {
5740 		int ret;
5741 
5742 		ret = btrfs_read_locked_inode(inode);
5743 		if (!is_bad_inode(inode)) {
5744 			inode_tree_add(inode);
5745 			unlock_new_inode(inode);
5746 			if (new)
5747 				*new = 1;
5748 		} else {
5749 			unlock_new_inode(inode);
5750 			iput(inode);
5751 			ASSERT(ret < 0);
5752 			inode = ERR_PTR(ret < 0 ? ret : -ESTALE);
5753 		}
5754 	}
5755 
5756 	return inode;
5757 }
5758 
5759 static struct inode *new_simple_dir(struct super_block *s,
5760 				    struct btrfs_key *key,
5761 				    struct btrfs_root *root)
5762 {
5763 	struct inode *inode = new_inode(s);
5764 
5765 	if (!inode)
5766 		return ERR_PTR(-ENOMEM);
5767 
5768 	BTRFS_I(inode)->root = root;
5769 	memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
5770 	set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
5771 
5772 	inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
5773 	inode->i_op = &btrfs_dir_ro_inode_operations;
5774 	inode->i_opflags &= ~IOP_XATTR;
5775 	inode->i_fop = &simple_dir_operations;
5776 	inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
5777 	inode->i_mtime = current_time(inode);
5778 	inode->i_atime = inode->i_mtime;
5779 	inode->i_ctime = inode->i_mtime;
5780 	BTRFS_I(inode)->i_otime = inode->i_mtime;
5781 
5782 	return inode;
5783 }
5784 
5785 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
5786 {
5787 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
5788 	struct inode *inode;
5789 	struct btrfs_root *root = BTRFS_I(dir)->root;
5790 	struct btrfs_root *sub_root = root;
5791 	struct btrfs_key location;
5792 	int index;
5793 	int ret = 0;
5794 
5795 	if (dentry->d_name.len > BTRFS_NAME_LEN)
5796 		return ERR_PTR(-ENAMETOOLONG);
5797 
5798 	ret = btrfs_inode_by_name(dir, dentry, &location);
5799 	if (ret < 0)
5800 		return ERR_PTR(ret);
5801 
5802 	if (location.type == BTRFS_INODE_ITEM_KEY) {
5803 		inode = btrfs_iget(dir->i_sb, &location, root, NULL);
5804 		return inode;
5805 	}
5806 
5807 	index = srcu_read_lock(&fs_info->subvol_srcu);
5808 	ret = fixup_tree_root_location(fs_info, dir, dentry,
5809 				       &location, &sub_root);
5810 	if (ret < 0) {
5811 		if (ret != -ENOENT)
5812 			inode = ERR_PTR(ret);
5813 		else
5814 			inode = new_simple_dir(dir->i_sb, &location, sub_root);
5815 	} else {
5816 		inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
5817 	}
5818 	srcu_read_unlock(&fs_info->subvol_srcu, index);
5819 
5820 	if (!IS_ERR(inode) && root != sub_root) {
5821 		down_read(&fs_info->cleanup_work_sem);
5822 		if (!sb_rdonly(inode->i_sb))
5823 			ret = btrfs_orphan_cleanup(sub_root);
5824 		up_read(&fs_info->cleanup_work_sem);
5825 		if (ret) {
5826 			iput(inode);
5827 			inode = ERR_PTR(ret);
5828 		}
5829 	}
5830 
5831 	return inode;
5832 }
5833 
5834 static int btrfs_dentry_delete(const struct dentry *dentry)
5835 {
5836 	struct btrfs_root *root;
5837 	struct inode *inode = d_inode(dentry);
5838 
5839 	if (!inode && !IS_ROOT(dentry))
5840 		inode = d_inode(dentry->d_parent);
5841 
5842 	if (inode) {
5843 		root = BTRFS_I(inode)->root;
5844 		if (btrfs_root_refs(&root->root_item) == 0)
5845 			return 1;
5846 
5847 		if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5848 			return 1;
5849 	}
5850 	return 0;
5851 }
5852 
5853 static void btrfs_dentry_release(struct dentry *dentry)
5854 {
5855 	kfree(dentry->d_fsdata);
5856 }
5857 
5858 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
5859 				   unsigned int flags)
5860 {
5861 	struct inode *inode;
5862 
5863 	inode = btrfs_lookup_dentry(dir, dentry);
5864 	if (IS_ERR(inode)) {
5865 		if (PTR_ERR(inode) == -ENOENT)
5866 			inode = NULL;
5867 		else
5868 			return ERR_CAST(inode);
5869 	}
5870 
5871 	return d_splice_alias(inode, dentry);
5872 }
5873 
5874 unsigned char btrfs_filetype_table[] = {
5875 	DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
5876 };
5877 
5878 /*
5879  * All this infrastructure exists because dir_emit can fault, and we are holding
5880  * the tree lock when doing readdir.  For now just allocate a buffer and copy
5881  * our information into that, and then dir_emit from the buffer.  This is
5882  * similar to what NFS does, only we don't keep the buffer around in pagecache
5883  * because I'm afraid I'll mess that up.  Long term we need to make filldir do
5884  * copy_to_user_inatomic so we don't have to worry about page faulting under the
5885  * tree lock.
5886  */
5887 static int btrfs_opendir(struct inode *inode, struct file *file)
5888 {
5889 	struct btrfs_file_private *private;
5890 
5891 	private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL);
5892 	if (!private)
5893 		return -ENOMEM;
5894 	private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL);
5895 	if (!private->filldir_buf) {
5896 		kfree(private);
5897 		return -ENOMEM;
5898 	}
5899 	file->private_data = private;
5900 	return 0;
5901 }
5902 
5903 struct dir_entry {
5904 	u64 ino;
5905 	u64 offset;
5906 	unsigned type;
5907 	int name_len;
5908 };
5909 
5910 static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx)
5911 {
5912 	while (entries--) {
5913 		struct dir_entry *entry = addr;
5914 		char *name = (char *)(entry + 1);
5915 
5916 		ctx->pos = get_unaligned(&entry->offset);
5917 		if (!dir_emit(ctx, name, get_unaligned(&entry->name_len),
5918 					 get_unaligned(&entry->ino),
5919 					 get_unaligned(&entry->type)))
5920 			return 1;
5921 		addr += sizeof(struct dir_entry) +
5922 			get_unaligned(&entry->name_len);
5923 		ctx->pos++;
5924 	}
5925 	return 0;
5926 }
5927 
5928 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
5929 {
5930 	struct inode *inode = file_inode(file);
5931 	struct btrfs_root *root = BTRFS_I(inode)->root;
5932 	struct btrfs_file_private *private = file->private_data;
5933 	struct btrfs_dir_item *di;
5934 	struct btrfs_key key;
5935 	struct btrfs_key found_key;
5936 	struct btrfs_path *path;
5937 	void *addr;
5938 	struct list_head ins_list;
5939 	struct list_head del_list;
5940 	int ret;
5941 	struct extent_buffer *leaf;
5942 	int slot;
5943 	char *name_ptr;
5944 	int name_len;
5945 	int entries = 0;
5946 	int total_len = 0;
5947 	bool put = false;
5948 	struct btrfs_key location;
5949 
5950 	if (!dir_emit_dots(file, ctx))
5951 		return 0;
5952 
5953 	path = btrfs_alloc_path();
5954 	if (!path)
5955 		return -ENOMEM;
5956 
5957 	addr = private->filldir_buf;
5958 	path->reada = READA_FORWARD;
5959 
5960 	INIT_LIST_HEAD(&ins_list);
5961 	INIT_LIST_HEAD(&del_list);
5962 	put = btrfs_readdir_get_delayed_items(inode, &ins_list, &del_list);
5963 
5964 again:
5965 	key.type = BTRFS_DIR_INDEX_KEY;
5966 	key.offset = ctx->pos;
5967 	key.objectid = btrfs_ino(BTRFS_I(inode));
5968 
5969 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5970 	if (ret < 0)
5971 		goto err;
5972 
5973 	while (1) {
5974 		struct dir_entry *entry;
5975 
5976 		leaf = path->nodes[0];
5977 		slot = path->slots[0];
5978 		if (slot >= btrfs_header_nritems(leaf)) {
5979 			ret = btrfs_next_leaf(root, path);
5980 			if (ret < 0)
5981 				goto err;
5982 			else if (ret > 0)
5983 				break;
5984 			continue;
5985 		}
5986 
5987 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
5988 
5989 		if (found_key.objectid != key.objectid)
5990 			break;
5991 		if (found_key.type != BTRFS_DIR_INDEX_KEY)
5992 			break;
5993 		if (found_key.offset < ctx->pos)
5994 			goto next;
5995 		if (btrfs_should_delete_dir_index(&del_list, found_key.offset))
5996 			goto next;
5997 		di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
5998 		name_len = btrfs_dir_name_len(leaf, di);
5999 		if ((total_len + sizeof(struct dir_entry) + name_len) >=
6000 		    PAGE_SIZE) {
6001 			btrfs_release_path(path);
6002 			ret = btrfs_filldir(private->filldir_buf, entries, ctx);
6003 			if (ret)
6004 				goto nopos;
6005 			addr = private->filldir_buf;
6006 			entries = 0;
6007 			total_len = 0;
6008 			goto again;
6009 		}
6010 
6011 		entry = addr;
6012 		put_unaligned(name_len, &entry->name_len);
6013 		name_ptr = (char *)(entry + 1);
6014 		read_extent_buffer(leaf, name_ptr, (unsigned long)(di + 1),
6015 				   name_len);
6016 		put_unaligned(btrfs_filetype_table[btrfs_dir_type(leaf, di)],
6017 				&entry->type);
6018 		btrfs_dir_item_key_to_cpu(leaf, di, &location);
6019 		put_unaligned(location.objectid, &entry->ino);
6020 		put_unaligned(found_key.offset, &entry->offset);
6021 		entries++;
6022 		addr += sizeof(struct dir_entry) + name_len;
6023 		total_len += sizeof(struct dir_entry) + name_len;
6024 next:
6025 		path->slots[0]++;
6026 	}
6027 	btrfs_release_path(path);
6028 
6029 	ret = btrfs_filldir(private->filldir_buf, entries, ctx);
6030 	if (ret)
6031 		goto nopos;
6032 
6033 	ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
6034 	if (ret)
6035 		goto nopos;
6036 
6037 	/*
6038 	 * Stop new entries from being returned after we return the last
6039 	 * entry.
6040 	 *
6041 	 * New directory entries are assigned a strictly increasing
6042 	 * offset.  This means that new entries created during readdir
6043 	 * are *guaranteed* to be seen in the future by that readdir.
6044 	 * This has broken buggy programs which operate on names as
6045 	 * they're returned by readdir.  Until we re-use freed offsets
6046 	 * we have this hack to stop new entries from being returned
6047 	 * under the assumption that they'll never reach this huge
6048 	 * offset.
6049 	 *
6050 	 * This is being careful not to overflow 32bit loff_t unless the
6051 	 * last entry requires it because doing so has broken 32bit apps
6052 	 * in the past.
6053 	 */
6054 	if (ctx->pos >= INT_MAX)
6055 		ctx->pos = LLONG_MAX;
6056 	else
6057 		ctx->pos = INT_MAX;
6058 nopos:
6059 	ret = 0;
6060 err:
6061 	if (put)
6062 		btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list);
6063 	btrfs_free_path(path);
6064 	return ret;
6065 }
6066 
6067 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
6068 {
6069 	struct btrfs_root *root = BTRFS_I(inode)->root;
6070 	struct btrfs_trans_handle *trans;
6071 	int ret = 0;
6072 	bool nolock = false;
6073 
6074 	if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
6075 		return 0;
6076 
6077 	if (btrfs_fs_closing(root->fs_info) &&
6078 			btrfs_is_free_space_inode(BTRFS_I(inode)))
6079 		nolock = true;
6080 
6081 	if (wbc->sync_mode == WB_SYNC_ALL) {
6082 		if (nolock)
6083 			trans = btrfs_join_transaction_nolock(root);
6084 		else
6085 			trans = btrfs_join_transaction(root);
6086 		if (IS_ERR(trans))
6087 			return PTR_ERR(trans);
6088 		ret = btrfs_commit_transaction(trans);
6089 	}
6090 	return ret;
6091 }
6092 
6093 /*
6094  * This is somewhat expensive, updating the tree every time the
6095  * inode changes.  But, it is most likely to find the inode in cache.
6096  * FIXME, needs more benchmarking...there are no reasons other than performance
6097  * to keep or drop this code.
6098  */
6099 static int btrfs_dirty_inode(struct inode *inode)
6100 {
6101 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
6102 	struct btrfs_root *root = BTRFS_I(inode)->root;
6103 	struct btrfs_trans_handle *trans;
6104 	int ret;
6105 
6106 	if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
6107 		return 0;
6108 
6109 	trans = btrfs_join_transaction(root);
6110 	if (IS_ERR(trans))
6111 		return PTR_ERR(trans);
6112 
6113 	ret = btrfs_update_inode(trans, root, inode);
6114 	if (ret && ret == -ENOSPC) {
6115 		/* whoops, lets try again with the full transaction */
6116 		btrfs_end_transaction(trans);
6117 		trans = btrfs_start_transaction(root, 1);
6118 		if (IS_ERR(trans))
6119 			return PTR_ERR(trans);
6120 
6121 		ret = btrfs_update_inode(trans, root, inode);
6122 	}
6123 	btrfs_end_transaction(trans);
6124 	if (BTRFS_I(inode)->delayed_node)
6125 		btrfs_balance_delayed_items(fs_info);
6126 
6127 	return ret;
6128 }
6129 
6130 /*
6131  * This is a copy of file_update_time.  We need this so we can return error on
6132  * ENOSPC for updating the inode in the case of file write and mmap writes.
6133  */
6134 static int btrfs_update_time(struct inode *inode, struct timespec *now,
6135 			     int flags)
6136 {
6137 	struct btrfs_root *root = BTRFS_I(inode)->root;
6138 	bool dirty = flags & ~S_VERSION;
6139 
6140 	if (btrfs_root_readonly(root))
6141 		return -EROFS;
6142 
6143 	if (flags & S_VERSION)
6144 		dirty |= inode_maybe_inc_iversion(inode, dirty);
6145 	if (flags & S_CTIME)
6146 		inode->i_ctime = *now;
6147 	if (flags & S_MTIME)
6148 		inode->i_mtime = *now;
6149 	if (flags & S_ATIME)
6150 		inode->i_atime = *now;
6151 	return dirty ? btrfs_dirty_inode(inode) : 0;
6152 }
6153 
6154 /*
6155  * find the highest existing sequence number in a directory
6156  * and then set the in-memory index_cnt variable to reflect
6157  * free sequence numbers
6158  */
6159 static int btrfs_set_inode_index_count(struct btrfs_inode *inode)
6160 {
6161 	struct btrfs_root *root = inode->root;
6162 	struct btrfs_key key, found_key;
6163 	struct btrfs_path *path;
6164 	struct extent_buffer *leaf;
6165 	int ret;
6166 
6167 	key.objectid = btrfs_ino(inode);
6168 	key.type = BTRFS_DIR_INDEX_KEY;
6169 	key.offset = (u64)-1;
6170 
6171 	path = btrfs_alloc_path();
6172 	if (!path)
6173 		return -ENOMEM;
6174 
6175 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6176 	if (ret < 0)
6177 		goto out;
6178 	/* FIXME: we should be able to handle this */
6179 	if (ret == 0)
6180 		goto out;
6181 	ret = 0;
6182 
6183 	/*
6184 	 * MAGIC NUMBER EXPLANATION:
6185 	 * since we search a directory based on f_pos we have to start at 2
6186 	 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
6187 	 * else has to start at 2
6188 	 */
6189 	if (path->slots[0] == 0) {
6190 		inode->index_cnt = 2;
6191 		goto out;
6192 	}
6193 
6194 	path->slots[0]--;
6195 
6196 	leaf = path->nodes[0];
6197 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6198 
6199 	if (found_key.objectid != btrfs_ino(inode) ||
6200 	    found_key.type != BTRFS_DIR_INDEX_KEY) {
6201 		inode->index_cnt = 2;
6202 		goto out;
6203 	}
6204 
6205 	inode->index_cnt = found_key.offset + 1;
6206 out:
6207 	btrfs_free_path(path);
6208 	return ret;
6209 }
6210 
6211 /*
6212  * helper to find a free sequence number in a given directory.  This current
6213  * code is very simple, later versions will do smarter things in the btree
6214  */
6215 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index)
6216 {
6217 	int ret = 0;
6218 
6219 	if (dir->index_cnt == (u64)-1) {
6220 		ret = btrfs_inode_delayed_dir_index_count(dir);
6221 		if (ret) {
6222 			ret = btrfs_set_inode_index_count(dir);
6223 			if (ret)
6224 				return ret;
6225 		}
6226 	}
6227 
6228 	*index = dir->index_cnt;
6229 	dir->index_cnt++;
6230 
6231 	return ret;
6232 }
6233 
6234 static int btrfs_insert_inode_locked(struct inode *inode)
6235 {
6236 	struct btrfs_iget_args args;
6237 	args.location = &BTRFS_I(inode)->location;
6238 	args.root = BTRFS_I(inode)->root;
6239 
6240 	return insert_inode_locked4(inode,
6241 		   btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
6242 		   btrfs_find_actor, &args);
6243 }
6244 
6245 /*
6246  * Inherit flags from the parent inode.
6247  *
6248  * Currently only the compression flags and the cow flags are inherited.
6249  */
6250 static void btrfs_inherit_iflags(struct inode *inode, struct inode *dir)
6251 {
6252 	unsigned int flags;
6253 
6254 	if (!dir)
6255 		return;
6256 
6257 	flags = BTRFS_I(dir)->flags;
6258 
6259 	if (flags & BTRFS_INODE_NOCOMPRESS) {
6260 		BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS;
6261 		BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
6262 	} else if (flags & BTRFS_INODE_COMPRESS) {
6263 		BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS;
6264 		BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS;
6265 	}
6266 
6267 	if (flags & BTRFS_INODE_NODATACOW) {
6268 		BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
6269 		if (S_ISREG(inode->i_mode))
6270 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6271 	}
6272 
6273 	btrfs_update_iflags(inode);
6274 }
6275 
6276 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
6277 				     struct btrfs_root *root,
6278 				     struct inode *dir,
6279 				     const char *name, int name_len,
6280 				     u64 ref_objectid, u64 objectid,
6281 				     umode_t mode, u64 *index)
6282 {
6283 	struct btrfs_fs_info *fs_info = root->fs_info;
6284 	struct inode *inode;
6285 	struct btrfs_inode_item *inode_item;
6286 	struct btrfs_key *location;
6287 	struct btrfs_path *path;
6288 	struct btrfs_inode_ref *ref;
6289 	struct btrfs_key key[2];
6290 	u32 sizes[2];
6291 	int nitems = name ? 2 : 1;
6292 	unsigned long ptr;
6293 	int ret;
6294 
6295 	path = btrfs_alloc_path();
6296 	if (!path)
6297 		return ERR_PTR(-ENOMEM);
6298 
6299 	inode = new_inode(fs_info->sb);
6300 	if (!inode) {
6301 		btrfs_free_path(path);
6302 		return ERR_PTR(-ENOMEM);
6303 	}
6304 
6305 	/*
6306 	 * O_TMPFILE, set link count to 0, so that after this point,
6307 	 * we fill in an inode item with the correct link count.
6308 	 */
6309 	if (!name)
6310 		set_nlink(inode, 0);
6311 
6312 	/*
6313 	 * we have to initialize this early, so we can reclaim the inode
6314 	 * number if we fail afterwards in this function.
6315 	 */
6316 	inode->i_ino = objectid;
6317 
6318 	if (dir && name) {
6319 		trace_btrfs_inode_request(dir);
6320 
6321 		ret = btrfs_set_inode_index(BTRFS_I(dir), index);
6322 		if (ret) {
6323 			btrfs_free_path(path);
6324 			iput(inode);
6325 			return ERR_PTR(ret);
6326 		}
6327 	} else if (dir) {
6328 		*index = 0;
6329 	}
6330 	/*
6331 	 * index_cnt is ignored for everything but a dir,
6332 	 * btrfs_set_inode_index_count has an explanation for the magic
6333 	 * number
6334 	 */
6335 	BTRFS_I(inode)->index_cnt = 2;
6336 	BTRFS_I(inode)->dir_index = *index;
6337 	BTRFS_I(inode)->root = root;
6338 	BTRFS_I(inode)->generation = trans->transid;
6339 	inode->i_generation = BTRFS_I(inode)->generation;
6340 
6341 	/*
6342 	 * We could have gotten an inode number from somebody who was fsynced
6343 	 * and then removed in this same transaction, so let's just set full
6344 	 * sync since it will be a full sync anyway and this will blow away the
6345 	 * old info in the log.
6346 	 */
6347 	set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
6348 
6349 	key[0].objectid = objectid;
6350 	key[0].type = BTRFS_INODE_ITEM_KEY;
6351 	key[0].offset = 0;
6352 
6353 	sizes[0] = sizeof(struct btrfs_inode_item);
6354 
6355 	if (name) {
6356 		/*
6357 		 * Start new inodes with an inode_ref. This is slightly more
6358 		 * efficient for small numbers of hard links since they will
6359 		 * be packed into one item. Extended refs will kick in if we
6360 		 * add more hard links than can fit in the ref item.
6361 		 */
6362 		key[1].objectid = objectid;
6363 		key[1].type = BTRFS_INODE_REF_KEY;
6364 		key[1].offset = ref_objectid;
6365 
6366 		sizes[1] = name_len + sizeof(*ref);
6367 	}
6368 
6369 	location = &BTRFS_I(inode)->location;
6370 	location->objectid = objectid;
6371 	location->offset = 0;
6372 	location->type = BTRFS_INODE_ITEM_KEY;
6373 
6374 	ret = btrfs_insert_inode_locked(inode);
6375 	if (ret < 0)
6376 		goto fail;
6377 
6378 	path->leave_spinning = 1;
6379 	ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems);
6380 	if (ret != 0)
6381 		goto fail_unlock;
6382 
6383 	inode_init_owner(inode, dir, mode);
6384 	inode_set_bytes(inode, 0);
6385 
6386 	inode->i_mtime = current_time(inode);
6387 	inode->i_atime = inode->i_mtime;
6388 	inode->i_ctime = inode->i_mtime;
6389 	BTRFS_I(inode)->i_otime = inode->i_mtime;
6390 
6391 	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6392 				  struct btrfs_inode_item);
6393 	memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item,
6394 			     sizeof(*inode_item));
6395 	fill_inode_item(trans, path->nodes[0], inode_item, inode);
6396 
6397 	if (name) {
6398 		ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6399 				     struct btrfs_inode_ref);
6400 		btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
6401 		btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
6402 		ptr = (unsigned long)(ref + 1);
6403 		write_extent_buffer(path->nodes[0], name, ptr, name_len);
6404 	}
6405 
6406 	btrfs_mark_buffer_dirty(path->nodes[0]);
6407 	btrfs_free_path(path);
6408 
6409 	btrfs_inherit_iflags(inode, dir);
6410 
6411 	if (S_ISREG(mode)) {
6412 		if (btrfs_test_opt(fs_info, NODATASUM))
6413 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6414 		if (btrfs_test_opt(fs_info, NODATACOW))
6415 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6416 				BTRFS_INODE_NODATASUM;
6417 	}
6418 
6419 	inode_tree_add(inode);
6420 
6421 	trace_btrfs_inode_new(inode);
6422 	btrfs_set_inode_last_trans(trans, inode);
6423 
6424 	btrfs_update_root_times(trans, root);
6425 
6426 	ret = btrfs_inode_inherit_props(trans, inode, dir);
6427 	if (ret)
6428 		btrfs_err(fs_info,
6429 			  "error inheriting props for ino %llu (root %llu): %d",
6430 			btrfs_ino(BTRFS_I(inode)), root->root_key.objectid, ret);
6431 
6432 	return inode;
6433 
6434 fail_unlock:
6435 	unlock_new_inode(inode);
6436 fail:
6437 	if (dir && name)
6438 		BTRFS_I(dir)->index_cnt--;
6439 	btrfs_free_path(path);
6440 	iput(inode);
6441 	return ERR_PTR(ret);
6442 }
6443 
6444 static inline u8 btrfs_inode_type(struct inode *inode)
6445 {
6446 	return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
6447 }
6448 
6449 /*
6450  * utility function to add 'inode' into 'parent_inode' with
6451  * a give name and a given sequence number.
6452  * if 'add_backref' is true, also insert a backref from the
6453  * inode to the parent directory.
6454  */
6455 int btrfs_add_link(struct btrfs_trans_handle *trans,
6456 		   struct btrfs_inode *parent_inode, struct btrfs_inode *inode,
6457 		   const char *name, int name_len, int add_backref, u64 index)
6458 {
6459 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
6460 	int ret = 0;
6461 	struct btrfs_key key;
6462 	struct btrfs_root *root = parent_inode->root;
6463 	u64 ino = btrfs_ino(inode);
6464 	u64 parent_ino = btrfs_ino(parent_inode);
6465 
6466 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6467 		memcpy(&key, &inode->root->root_key, sizeof(key));
6468 	} else {
6469 		key.objectid = ino;
6470 		key.type = BTRFS_INODE_ITEM_KEY;
6471 		key.offset = 0;
6472 	}
6473 
6474 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6475 		ret = btrfs_add_root_ref(trans, fs_info, key.objectid,
6476 					 root->root_key.objectid, parent_ino,
6477 					 index, name, name_len);
6478 	} else if (add_backref) {
6479 		ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
6480 					     parent_ino, index);
6481 	}
6482 
6483 	/* Nothing to clean up yet */
6484 	if (ret)
6485 		return ret;
6486 
6487 	ret = btrfs_insert_dir_item(trans, root, name, name_len,
6488 				    parent_inode, &key,
6489 				    btrfs_inode_type(&inode->vfs_inode), index);
6490 	if (ret == -EEXIST || ret == -EOVERFLOW)
6491 		goto fail_dir_item;
6492 	else if (ret) {
6493 		btrfs_abort_transaction(trans, ret);
6494 		return ret;
6495 	}
6496 
6497 	btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size +
6498 			   name_len * 2);
6499 	inode_inc_iversion(&parent_inode->vfs_inode);
6500 	parent_inode->vfs_inode.i_mtime = parent_inode->vfs_inode.i_ctime =
6501 		current_time(&parent_inode->vfs_inode);
6502 	ret = btrfs_update_inode(trans, root, &parent_inode->vfs_inode);
6503 	if (ret)
6504 		btrfs_abort_transaction(trans, ret);
6505 	return ret;
6506 
6507 fail_dir_item:
6508 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6509 		u64 local_index;
6510 		int err;
6511 		err = btrfs_del_root_ref(trans, fs_info, key.objectid,
6512 					 root->root_key.objectid, parent_ino,
6513 					 &local_index, name, name_len);
6514 
6515 	} else if (add_backref) {
6516 		u64 local_index;
6517 		int err;
6518 
6519 		err = btrfs_del_inode_ref(trans, root, name, name_len,
6520 					  ino, parent_ino, &local_index);
6521 	}
6522 	return ret;
6523 }
6524 
6525 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
6526 			    struct btrfs_inode *dir, struct dentry *dentry,
6527 			    struct btrfs_inode *inode, int backref, u64 index)
6528 {
6529 	int err = btrfs_add_link(trans, dir, inode,
6530 				 dentry->d_name.name, dentry->d_name.len,
6531 				 backref, index);
6532 	if (err > 0)
6533 		err = -EEXIST;
6534 	return err;
6535 }
6536 
6537 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
6538 			umode_t mode, dev_t rdev)
6539 {
6540 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6541 	struct btrfs_trans_handle *trans;
6542 	struct btrfs_root *root = BTRFS_I(dir)->root;
6543 	struct inode *inode = NULL;
6544 	int err;
6545 	int drop_inode = 0;
6546 	u64 objectid;
6547 	u64 index = 0;
6548 
6549 	/*
6550 	 * 2 for inode item and ref
6551 	 * 2 for dir items
6552 	 * 1 for xattr if selinux is on
6553 	 */
6554 	trans = btrfs_start_transaction(root, 5);
6555 	if (IS_ERR(trans))
6556 		return PTR_ERR(trans);
6557 
6558 	err = btrfs_find_free_ino(root, &objectid);
6559 	if (err)
6560 		goto out_unlock;
6561 
6562 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6563 			dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6564 			mode, &index);
6565 	if (IS_ERR(inode)) {
6566 		err = PTR_ERR(inode);
6567 		goto out_unlock;
6568 	}
6569 
6570 	/*
6571 	* If the active LSM wants to access the inode during
6572 	* d_instantiate it needs these. Smack checks to see
6573 	* if the filesystem supports xattrs by looking at the
6574 	* ops vector.
6575 	*/
6576 	inode->i_op = &btrfs_special_inode_operations;
6577 	init_special_inode(inode, inode->i_mode, rdev);
6578 
6579 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6580 	if (err)
6581 		goto out_unlock_inode;
6582 
6583 	err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6584 			0, index);
6585 	if (err) {
6586 		goto out_unlock_inode;
6587 	} else {
6588 		btrfs_update_inode(trans, root, inode);
6589 		d_instantiate_new(dentry, inode);
6590 	}
6591 
6592 out_unlock:
6593 	btrfs_end_transaction(trans);
6594 	btrfs_btree_balance_dirty(fs_info);
6595 	if (drop_inode) {
6596 		inode_dec_link_count(inode);
6597 		iput(inode);
6598 	}
6599 	return err;
6600 
6601 out_unlock_inode:
6602 	drop_inode = 1;
6603 	unlock_new_inode(inode);
6604 	goto out_unlock;
6605 
6606 }
6607 
6608 static int btrfs_create(struct inode *dir, struct dentry *dentry,
6609 			umode_t mode, bool excl)
6610 {
6611 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6612 	struct btrfs_trans_handle *trans;
6613 	struct btrfs_root *root = BTRFS_I(dir)->root;
6614 	struct inode *inode = NULL;
6615 	int drop_inode_on_err = 0;
6616 	int err;
6617 	u64 objectid;
6618 	u64 index = 0;
6619 
6620 	/*
6621 	 * 2 for inode item and ref
6622 	 * 2 for dir items
6623 	 * 1 for xattr if selinux is on
6624 	 */
6625 	trans = btrfs_start_transaction(root, 5);
6626 	if (IS_ERR(trans))
6627 		return PTR_ERR(trans);
6628 
6629 	err = btrfs_find_free_ino(root, &objectid);
6630 	if (err)
6631 		goto out_unlock;
6632 
6633 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6634 			dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6635 			mode, &index);
6636 	if (IS_ERR(inode)) {
6637 		err = PTR_ERR(inode);
6638 		goto out_unlock;
6639 	}
6640 	drop_inode_on_err = 1;
6641 	/*
6642 	* If the active LSM wants to access the inode during
6643 	* d_instantiate it needs these. Smack checks to see
6644 	* if the filesystem supports xattrs by looking at the
6645 	* ops vector.
6646 	*/
6647 	inode->i_fop = &btrfs_file_operations;
6648 	inode->i_op = &btrfs_file_inode_operations;
6649 	inode->i_mapping->a_ops = &btrfs_aops;
6650 
6651 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6652 	if (err)
6653 		goto out_unlock_inode;
6654 
6655 	err = btrfs_update_inode(trans, root, inode);
6656 	if (err)
6657 		goto out_unlock_inode;
6658 
6659 	err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6660 			0, index);
6661 	if (err)
6662 		goto out_unlock_inode;
6663 
6664 	BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
6665 	d_instantiate_new(dentry, inode);
6666 
6667 out_unlock:
6668 	btrfs_end_transaction(trans);
6669 	if (err && drop_inode_on_err) {
6670 		inode_dec_link_count(inode);
6671 		iput(inode);
6672 	}
6673 	btrfs_btree_balance_dirty(fs_info);
6674 	return err;
6675 
6676 out_unlock_inode:
6677 	unlock_new_inode(inode);
6678 	goto out_unlock;
6679 
6680 }
6681 
6682 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6683 		      struct dentry *dentry)
6684 {
6685 	struct btrfs_trans_handle *trans = NULL;
6686 	struct btrfs_root *root = BTRFS_I(dir)->root;
6687 	struct inode *inode = d_inode(old_dentry);
6688 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
6689 	u64 index;
6690 	int err;
6691 	int drop_inode = 0;
6692 
6693 	/* do not allow sys_link's with other subvols of the same device */
6694 	if (root->objectid != BTRFS_I(inode)->root->objectid)
6695 		return -EXDEV;
6696 
6697 	if (inode->i_nlink >= BTRFS_LINK_MAX)
6698 		return -EMLINK;
6699 
6700 	err = btrfs_set_inode_index(BTRFS_I(dir), &index);
6701 	if (err)
6702 		goto fail;
6703 
6704 	/*
6705 	 * 2 items for inode and inode ref
6706 	 * 2 items for dir items
6707 	 * 1 item for parent inode
6708 	 */
6709 	trans = btrfs_start_transaction(root, 5);
6710 	if (IS_ERR(trans)) {
6711 		err = PTR_ERR(trans);
6712 		trans = NULL;
6713 		goto fail;
6714 	}
6715 
6716 	/* There are several dir indexes for this inode, clear the cache. */
6717 	BTRFS_I(inode)->dir_index = 0ULL;
6718 	inc_nlink(inode);
6719 	inode_inc_iversion(inode);
6720 	inode->i_ctime = current_time(inode);
6721 	ihold(inode);
6722 	set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
6723 
6724 	err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6725 			1, index);
6726 
6727 	if (err) {
6728 		drop_inode = 1;
6729 	} else {
6730 		struct dentry *parent = dentry->d_parent;
6731 		err = btrfs_update_inode(trans, root, inode);
6732 		if (err)
6733 			goto fail;
6734 		if (inode->i_nlink == 1) {
6735 			/*
6736 			 * If new hard link count is 1, it's a file created
6737 			 * with open(2) O_TMPFILE flag.
6738 			 */
6739 			err = btrfs_orphan_del(trans, BTRFS_I(inode));
6740 			if (err)
6741 				goto fail;
6742 		}
6743 		d_instantiate(dentry, inode);
6744 		btrfs_log_new_name(trans, BTRFS_I(inode), NULL, parent);
6745 	}
6746 
6747 fail:
6748 	if (trans)
6749 		btrfs_end_transaction(trans);
6750 	if (drop_inode) {
6751 		inode_dec_link_count(inode);
6752 		iput(inode);
6753 	}
6754 	btrfs_btree_balance_dirty(fs_info);
6755 	return err;
6756 }
6757 
6758 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
6759 {
6760 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6761 	struct inode *inode = NULL;
6762 	struct btrfs_trans_handle *trans;
6763 	struct btrfs_root *root = BTRFS_I(dir)->root;
6764 	int err = 0;
6765 	int drop_on_err = 0;
6766 	u64 objectid = 0;
6767 	u64 index = 0;
6768 
6769 	/*
6770 	 * 2 items for inode and ref
6771 	 * 2 items for dir items
6772 	 * 1 for xattr if selinux is on
6773 	 */
6774 	trans = btrfs_start_transaction(root, 5);
6775 	if (IS_ERR(trans))
6776 		return PTR_ERR(trans);
6777 
6778 	err = btrfs_find_free_ino(root, &objectid);
6779 	if (err)
6780 		goto out_fail;
6781 
6782 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6783 			dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6784 			S_IFDIR | mode, &index);
6785 	if (IS_ERR(inode)) {
6786 		err = PTR_ERR(inode);
6787 		goto out_fail;
6788 	}
6789 
6790 	drop_on_err = 1;
6791 	/* these must be set before we unlock the inode */
6792 	inode->i_op = &btrfs_dir_inode_operations;
6793 	inode->i_fop = &btrfs_dir_file_operations;
6794 
6795 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6796 	if (err)
6797 		goto out_fail_inode;
6798 
6799 	btrfs_i_size_write(BTRFS_I(inode), 0);
6800 	err = btrfs_update_inode(trans, root, inode);
6801 	if (err)
6802 		goto out_fail_inode;
6803 
6804 	err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
6805 			dentry->d_name.name,
6806 			dentry->d_name.len, 0, index);
6807 	if (err)
6808 		goto out_fail_inode;
6809 
6810 	d_instantiate_new(dentry, inode);
6811 	drop_on_err = 0;
6812 
6813 out_fail:
6814 	btrfs_end_transaction(trans);
6815 	if (drop_on_err) {
6816 		inode_dec_link_count(inode);
6817 		iput(inode);
6818 	}
6819 	btrfs_btree_balance_dirty(fs_info);
6820 	return err;
6821 
6822 out_fail_inode:
6823 	unlock_new_inode(inode);
6824 	goto out_fail;
6825 }
6826 
6827 static noinline int uncompress_inline(struct btrfs_path *path,
6828 				      struct page *page,
6829 				      size_t pg_offset, u64 extent_offset,
6830 				      struct btrfs_file_extent_item *item)
6831 {
6832 	int ret;
6833 	struct extent_buffer *leaf = path->nodes[0];
6834 	char *tmp;
6835 	size_t max_size;
6836 	unsigned long inline_size;
6837 	unsigned long ptr;
6838 	int compress_type;
6839 
6840 	WARN_ON(pg_offset != 0);
6841 	compress_type = btrfs_file_extent_compression(leaf, item);
6842 	max_size = btrfs_file_extent_ram_bytes(leaf, item);
6843 	inline_size = btrfs_file_extent_inline_item_len(leaf,
6844 					btrfs_item_nr(path->slots[0]));
6845 	tmp = kmalloc(inline_size, GFP_NOFS);
6846 	if (!tmp)
6847 		return -ENOMEM;
6848 	ptr = btrfs_file_extent_inline_start(item);
6849 
6850 	read_extent_buffer(leaf, tmp, ptr, inline_size);
6851 
6852 	max_size = min_t(unsigned long, PAGE_SIZE, max_size);
6853 	ret = btrfs_decompress(compress_type, tmp, page,
6854 			       extent_offset, inline_size, max_size);
6855 
6856 	/*
6857 	 * decompression code contains a memset to fill in any space between the end
6858 	 * of the uncompressed data and the end of max_size in case the decompressed
6859 	 * data ends up shorter than ram_bytes.  That doesn't cover the hole between
6860 	 * the end of an inline extent and the beginning of the next block, so we
6861 	 * cover that region here.
6862 	 */
6863 
6864 	if (max_size + pg_offset < PAGE_SIZE) {
6865 		char *map = kmap(page);
6866 		memset(map + pg_offset + max_size, 0, PAGE_SIZE - max_size - pg_offset);
6867 		kunmap(page);
6868 	}
6869 	kfree(tmp);
6870 	return ret;
6871 }
6872 
6873 /*
6874  * a bit scary, this does extent mapping from logical file offset to the disk.
6875  * the ugly parts come from merging extents from the disk with the in-ram
6876  * representation.  This gets more complex because of the data=ordered code,
6877  * where the in-ram extents might be locked pending data=ordered completion.
6878  *
6879  * This also copies inline extents directly into the page.
6880  */
6881 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode,
6882 		struct page *page,
6883 	    size_t pg_offset, u64 start, u64 len,
6884 		int create)
6885 {
6886 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
6887 	int ret;
6888 	int err = 0;
6889 	u64 extent_start = 0;
6890 	u64 extent_end = 0;
6891 	u64 objectid = btrfs_ino(inode);
6892 	u32 found_type;
6893 	struct btrfs_path *path = NULL;
6894 	struct btrfs_root *root = inode->root;
6895 	struct btrfs_file_extent_item *item;
6896 	struct extent_buffer *leaf;
6897 	struct btrfs_key found_key;
6898 	struct extent_map *em = NULL;
6899 	struct extent_map_tree *em_tree = &inode->extent_tree;
6900 	struct extent_io_tree *io_tree = &inode->io_tree;
6901 	const bool new_inline = !page || create;
6902 
6903 	read_lock(&em_tree->lock);
6904 	em = lookup_extent_mapping(em_tree, start, len);
6905 	if (em)
6906 		em->bdev = fs_info->fs_devices->latest_bdev;
6907 	read_unlock(&em_tree->lock);
6908 
6909 	if (em) {
6910 		if (em->start > start || em->start + em->len <= start)
6911 			free_extent_map(em);
6912 		else if (em->block_start == EXTENT_MAP_INLINE && page)
6913 			free_extent_map(em);
6914 		else
6915 			goto out;
6916 	}
6917 	em = alloc_extent_map();
6918 	if (!em) {
6919 		err = -ENOMEM;
6920 		goto out;
6921 	}
6922 	em->bdev = fs_info->fs_devices->latest_bdev;
6923 	em->start = EXTENT_MAP_HOLE;
6924 	em->orig_start = EXTENT_MAP_HOLE;
6925 	em->len = (u64)-1;
6926 	em->block_len = (u64)-1;
6927 
6928 	if (!path) {
6929 		path = btrfs_alloc_path();
6930 		if (!path) {
6931 			err = -ENOMEM;
6932 			goto out;
6933 		}
6934 		/*
6935 		 * Chances are we'll be called again, so go ahead and do
6936 		 * readahead
6937 		 */
6938 		path->reada = READA_FORWARD;
6939 	}
6940 
6941 	ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0);
6942 	if (ret < 0) {
6943 		err = ret;
6944 		goto out;
6945 	}
6946 
6947 	if (ret != 0) {
6948 		if (path->slots[0] == 0)
6949 			goto not_found;
6950 		path->slots[0]--;
6951 	}
6952 
6953 	leaf = path->nodes[0];
6954 	item = btrfs_item_ptr(leaf, path->slots[0],
6955 			      struct btrfs_file_extent_item);
6956 	/* are we inside the extent that was found? */
6957 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6958 	found_type = found_key.type;
6959 	if (found_key.objectid != objectid ||
6960 	    found_type != BTRFS_EXTENT_DATA_KEY) {
6961 		/*
6962 		 * If we backup past the first extent we want to move forward
6963 		 * and see if there is an extent in front of us, otherwise we'll
6964 		 * say there is a hole for our whole search range which can
6965 		 * cause problems.
6966 		 */
6967 		extent_end = start;
6968 		goto next;
6969 	}
6970 
6971 	found_type = btrfs_file_extent_type(leaf, item);
6972 	extent_start = found_key.offset;
6973 	if (found_type == BTRFS_FILE_EXTENT_REG ||
6974 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
6975 		extent_end = extent_start +
6976 		       btrfs_file_extent_num_bytes(leaf, item);
6977 
6978 		trace_btrfs_get_extent_show_fi_regular(inode, leaf, item,
6979 						       extent_start);
6980 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6981 		size_t size;
6982 		size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
6983 		extent_end = ALIGN(extent_start + size,
6984 				   fs_info->sectorsize);
6985 
6986 		trace_btrfs_get_extent_show_fi_inline(inode, leaf, item,
6987 						      path->slots[0],
6988 						      extent_start);
6989 	}
6990 next:
6991 	if (start >= extent_end) {
6992 		path->slots[0]++;
6993 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6994 			ret = btrfs_next_leaf(root, path);
6995 			if (ret < 0) {
6996 				err = ret;
6997 				goto out;
6998 			}
6999 			if (ret > 0)
7000 				goto not_found;
7001 			leaf = path->nodes[0];
7002 		}
7003 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
7004 		if (found_key.objectid != objectid ||
7005 		    found_key.type != BTRFS_EXTENT_DATA_KEY)
7006 			goto not_found;
7007 		if (start + len <= found_key.offset)
7008 			goto not_found;
7009 		if (start > found_key.offset)
7010 			goto next;
7011 		em->start = start;
7012 		em->orig_start = start;
7013 		em->len = found_key.offset - start;
7014 		goto not_found_em;
7015 	}
7016 
7017 	btrfs_extent_item_to_extent_map(inode, path, item,
7018 			new_inline, em);
7019 
7020 	if (found_type == BTRFS_FILE_EXTENT_REG ||
7021 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7022 		goto insert;
7023 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
7024 		unsigned long ptr;
7025 		char *map;
7026 		size_t size;
7027 		size_t extent_offset;
7028 		size_t copy_size;
7029 
7030 		if (new_inline)
7031 			goto out;
7032 
7033 		size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
7034 		extent_offset = page_offset(page) + pg_offset - extent_start;
7035 		copy_size = min_t(u64, PAGE_SIZE - pg_offset,
7036 				  size - extent_offset);
7037 		em->start = extent_start + extent_offset;
7038 		em->len = ALIGN(copy_size, fs_info->sectorsize);
7039 		em->orig_block_len = em->len;
7040 		em->orig_start = em->start;
7041 		ptr = btrfs_file_extent_inline_start(item) + extent_offset;
7042 		if (!PageUptodate(page)) {
7043 			if (btrfs_file_extent_compression(leaf, item) !=
7044 			    BTRFS_COMPRESS_NONE) {
7045 				ret = uncompress_inline(path, page, pg_offset,
7046 							extent_offset, item);
7047 				if (ret) {
7048 					err = ret;
7049 					goto out;
7050 				}
7051 			} else {
7052 				map = kmap(page);
7053 				read_extent_buffer(leaf, map + pg_offset, ptr,
7054 						   copy_size);
7055 				if (pg_offset + copy_size < PAGE_SIZE) {
7056 					memset(map + pg_offset + copy_size, 0,
7057 					       PAGE_SIZE - pg_offset -
7058 					       copy_size);
7059 				}
7060 				kunmap(page);
7061 			}
7062 			flush_dcache_page(page);
7063 		}
7064 		set_extent_uptodate(io_tree, em->start,
7065 				    extent_map_end(em) - 1, NULL, GFP_NOFS);
7066 		goto insert;
7067 	}
7068 not_found:
7069 	em->start = start;
7070 	em->orig_start = start;
7071 	em->len = len;
7072 not_found_em:
7073 	em->block_start = EXTENT_MAP_HOLE;
7074 insert:
7075 	btrfs_release_path(path);
7076 	if (em->start > start || extent_map_end(em) <= start) {
7077 		btrfs_err(fs_info,
7078 			  "bad extent! em: [%llu %llu] passed [%llu %llu]",
7079 			  em->start, em->len, start, len);
7080 		err = -EIO;
7081 		goto out;
7082 	}
7083 
7084 	err = 0;
7085 	write_lock(&em_tree->lock);
7086 	err = btrfs_add_extent_mapping(em_tree, &em, start, len);
7087 	write_unlock(&em_tree->lock);
7088 out:
7089 
7090 	trace_btrfs_get_extent(root, inode, em);
7091 
7092 	btrfs_free_path(path);
7093 	if (err) {
7094 		free_extent_map(em);
7095 		return ERR_PTR(err);
7096 	}
7097 	BUG_ON(!em); /* Error is always set */
7098 	return em;
7099 }
7100 
7101 struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode,
7102 		struct page *page,
7103 		size_t pg_offset, u64 start, u64 len,
7104 		int create)
7105 {
7106 	struct extent_map *em;
7107 	struct extent_map *hole_em = NULL;
7108 	u64 range_start = start;
7109 	u64 end;
7110 	u64 found;
7111 	u64 found_end;
7112 	int err = 0;
7113 
7114 	em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
7115 	if (IS_ERR(em))
7116 		return em;
7117 	/*
7118 	 * If our em maps to:
7119 	 * - a hole or
7120 	 * - a pre-alloc extent,
7121 	 * there might actually be delalloc bytes behind it.
7122 	 */
7123 	if (em->block_start != EXTENT_MAP_HOLE &&
7124 	    !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7125 		return em;
7126 	else
7127 		hole_em = em;
7128 
7129 	/* check to see if we've wrapped (len == -1 or similar) */
7130 	end = start + len;
7131 	if (end < start)
7132 		end = (u64)-1;
7133 	else
7134 		end -= 1;
7135 
7136 	em = NULL;
7137 
7138 	/* ok, we didn't find anything, lets look for delalloc */
7139 	found = count_range_bits(&inode->io_tree, &range_start,
7140 				 end, len, EXTENT_DELALLOC, 1);
7141 	found_end = range_start + found;
7142 	if (found_end < range_start)
7143 		found_end = (u64)-1;
7144 
7145 	/*
7146 	 * we didn't find anything useful, return
7147 	 * the original results from get_extent()
7148 	 */
7149 	if (range_start > end || found_end <= start) {
7150 		em = hole_em;
7151 		hole_em = NULL;
7152 		goto out;
7153 	}
7154 
7155 	/* adjust the range_start to make sure it doesn't
7156 	 * go backwards from the start they passed in
7157 	 */
7158 	range_start = max(start, range_start);
7159 	found = found_end - range_start;
7160 
7161 	if (found > 0) {
7162 		u64 hole_start = start;
7163 		u64 hole_len = len;
7164 
7165 		em = alloc_extent_map();
7166 		if (!em) {
7167 			err = -ENOMEM;
7168 			goto out;
7169 		}
7170 		/*
7171 		 * when btrfs_get_extent can't find anything it
7172 		 * returns one huge hole
7173 		 *
7174 		 * make sure what it found really fits our range, and
7175 		 * adjust to make sure it is based on the start from
7176 		 * the caller
7177 		 */
7178 		if (hole_em) {
7179 			u64 calc_end = extent_map_end(hole_em);
7180 
7181 			if (calc_end <= start || (hole_em->start > end)) {
7182 				free_extent_map(hole_em);
7183 				hole_em = NULL;
7184 			} else {
7185 				hole_start = max(hole_em->start, start);
7186 				hole_len = calc_end - hole_start;
7187 			}
7188 		}
7189 		em->bdev = NULL;
7190 		if (hole_em && range_start > hole_start) {
7191 			/* our hole starts before our delalloc, so we
7192 			 * have to return just the parts of the hole
7193 			 * that go until  the delalloc starts
7194 			 */
7195 			em->len = min(hole_len,
7196 				      range_start - hole_start);
7197 			em->start = hole_start;
7198 			em->orig_start = hole_start;
7199 			/*
7200 			 * don't adjust block start at all,
7201 			 * it is fixed at EXTENT_MAP_HOLE
7202 			 */
7203 			em->block_start = hole_em->block_start;
7204 			em->block_len = hole_len;
7205 			if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
7206 				set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
7207 		} else {
7208 			em->start = range_start;
7209 			em->len = found;
7210 			em->orig_start = range_start;
7211 			em->block_start = EXTENT_MAP_DELALLOC;
7212 			em->block_len = found;
7213 		}
7214 	} else {
7215 		return hole_em;
7216 	}
7217 out:
7218 
7219 	free_extent_map(hole_em);
7220 	if (err) {
7221 		free_extent_map(em);
7222 		return ERR_PTR(err);
7223 	}
7224 	return em;
7225 }
7226 
7227 static struct extent_map *btrfs_create_dio_extent(struct inode *inode,
7228 						  const u64 start,
7229 						  const u64 len,
7230 						  const u64 orig_start,
7231 						  const u64 block_start,
7232 						  const u64 block_len,
7233 						  const u64 orig_block_len,
7234 						  const u64 ram_bytes,
7235 						  const int type)
7236 {
7237 	struct extent_map *em = NULL;
7238 	int ret;
7239 
7240 	if (type != BTRFS_ORDERED_NOCOW) {
7241 		em = create_io_em(inode, start, len, orig_start,
7242 				  block_start, block_len, orig_block_len,
7243 				  ram_bytes,
7244 				  BTRFS_COMPRESS_NONE, /* compress_type */
7245 				  type);
7246 		if (IS_ERR(em))
7247 			goto out;
7248 	}
7249 	ret = btrfs_add_ordered_extent_dio(inode, start, block_start,
7250 					   len, block_len, type);
7251 	if (ret) {
7252 		if (em) {
7253 			free_extent_map(em);
7254 			btrfs_drop_extent_cache(BTRFS_I(inode), start,
7255 						start + len - 1, 0);
7256 		}
7257 		em = ERR_PTR(ret);
7258 	}
7259  out:
7260 
7261 	return em;
7262 }
7263 
7264 static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
7265 						  u64 start, u64 len)
7266 {
7267 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7268 	struct btrfs_root *root = BTRFS_I(inode)->root;
7269 	struct extent_map *em;
7270 	struct btrfs_key ins;
7271 	u64 alloc_hint;
7272 	int ret;
7273 
7274 	alloc_hint = get_extent_allocation_hint(inode, start, len);
7275 	ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize,
7276 				   0, alloc_hint, &ins, 1, 1);
7277 	if (ret)
7278 		return ERR_PTR(ret);
7279 
7280 	em = btrfs_create_dio_extent(inode, start, ins.offset, start,
7281 				     ins.objectid, ins.offset, ins.offset,
7282 				     ins.offset, BTRFS_ORDERED_REGULAR);
7283 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
7284 	if (IS_ERR(em))
7285 		btrfs_free_reserved_extent(fs_info, ins.objectid,
7286 					   ins.offset, 1);
7287 
7288 	return em;
7289 }
7290 
7291 /*
7292  * returns 1 when the nocow is safe, < 1 on error, 0 if the
7293  * block must be cow'd
7294  */
7295 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7296 			      u64 *orig_start, u64 *orig_block_len,
7297 			      u64 *ram_bytes)
7298 {
7299 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7300 	struct btrfs_path *path;
7301 	int ret;
7302 	struct extent_buffer *leaf;
7303 	struct btrfs_root *root = BTRFS_I(inode)->root;
7304 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7305 	struct btrfs_file_extent_item *fi;
7306 	struct btrfs_key key;
7307 	u64 disk_bytenr;
7308 	u64 backref_offset;
7309 	u64 extent_end;
7310 	u64 num_bytes;
7311 	int slot;
7312 	int found_type;
7313 	bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
7314 
7315 	path = btrfs_alloc_path();
7316 	if (!path)
7317 		return -ENOMEM;
7318 
7319 	ret = btrfs_lookup_file_extent(NULL, root, path,
7320 			btrfs_ino(BTRFS_I(inode)), offset, 0);
7321 	if (ret < 0)
7322 		goto out;
7323 
7324 	slot = path->slots[0];
7325 	if (ret == 1) {
7326 		if (slot == 0) {
7327 			/* can't find the item, must cow */
7328 			ret = 0;
7329 			goto out;
7330 		}
7331 		slot--;
7332 	}
7333 	ret = 0;
7334 	leaf = path->nodes[0];
7335 	btrfs_item_key_to_cpu(leaf, &key, slot);
7336 	if (key.objectid != btrfs_ino(BTRFS_I(inode)) ||
7337 	    key.type != BTRFS_EXTENT_DATA_KEY) {
7338 		/* not our file or wrong item type, must cow */
7339 		goto out;
7340 	}
7341 
7342 	if (key.offset > offset) {
7343 		/* Wrong offset, must cow */
7344 		goto out;
7345 	}
7346 
7347 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
7348 	found_type = btrfs_file_extent_type(leaf, fi);
7349 	if (found_type != BTRFS_FILE_EXTENT_REG &&
7350 	    found_type != BTRFS_FILE_EXTENT_PREALLOC) {
7351 		/* not a regular extent, must cow */
7352 		goto out;
7353 	}
7354 
7355 	if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
7356 		goto out;
7357 
7358 	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
7359 	if (extent_end <= offset)
7360 		goto out;
7361 
7362 	disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
7363 	if (disk_bytenr == 0)
7364 		goto out;
7365 
7366 	if (btrfs_file_extent_compression(leaf, fi) ||
7367 	    btrfs_file_extent_encryption(leaf, fi) ||
7368 	    btrfs_file_extent_other_encoding(leaf, fi))
7369 		goto out;
7370 
7371 	backref_offset = btrfs_file_extent_offset(leaf, fi);
7372 
7373 	if (orig_start) {
7374 		*orig_start = key.offset - backref_offset;
7375 		*orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
7376 		*ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
7377 	}
7378 
7379 	if (btrfs_extent_readonly(fs_info, disk_bytenr))
7380 		goto out;
7381 
7382 	num_bytes = min(offset + *len, extent_end) - offset;
7383 	if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7384 		u64 range_end;
7385 
7386 		range_end = round_up(offset + num_bytes,
7387 				     root->fs_info->sectorsize) - 1;
7388 		ret = test_range_bit(io_tree, offset, range_end,
7389 				     EXTENT_DELALLOC, 0, NULL);
7390 		if (ret) {
7391 			ret = -EAGAIN;
7392 			goto out;
7393 		}
7394 	}
7395 
7396 	btrfs_release_path(path);
7397 
7398 	/*
7399 	 * look for other files referencing this extent, if we
7400 	 * find any we must cow
7401 	 */
7402 
7403 	ret = btrfs_cross_ref_exist(root, btrfs_ino(BTRFS_I(inode)),
7404 				    key.offset - backref_offset, disk_bytenr);
7405 	if (ret) {
7406 		ret = 0;
7407 		goto out;
7408 	}
7409 
7410 	/*
7411 	 * adjust disk_bytenr and num_bytes to cover just the bytes
7412 	 * in this extent we are about to write.  If there
7413 	 * are any csums in that range we have to cow in order
7414 	 * to keep the csums correct
7415 	 */
7416 	disk_bytenr += backref_offset;
7417 	disk_bytenr += offset - key.offset;
7418 	if (csum_exist_in_range(fs_info, disk_bytenr, num_bytes))
7419 		goto out;
7420 	/*
7421 	 * all of the above have passed, it is safe to overwrite this extent
7422 	 * without cow
7423 	 */
7424 	*len = num_bytes;
7425 	ret = 1;
7426 out:
7427 	btrfs_free_path(path);
7428 	return ret;
7429 }
7430 
7431 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
7432 			      struct extent_state **cached_state, int writing)
7433 {
7434 	struct btrfs_ordered_extent *ordered;
7435 	int ret = 0;
7436 
7437 	while (1) {
7438 		lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7439 				 cached_state);
7440 		/*
7441 		 * We're concerned with the entire range that we're going to be
7442 		 * doing DIO to, so we need to make sure there's no ordered
7443 		 * extents in this range.
7444 		 */
7445 		ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart,
7446 						     lockend - lockstart + 1);
7447 
7448 		/*
7449 		 * We need to make sure there are no buffered pages in this
7450 		 * range either, we could have raced between the invalidate in
7451 		 * generic_file_direct_write and locking the extent.  The
7452 		 * invalidate needs to happen so that reads after a write do not
7453 		 * get stale data.
7454 		 */
7455 		if (!ordered &&
7456 		    (!writing || !filemap_range_has_page(inode->i_mapping,
7457 							 lockstart, lockend)))
7458 			break;
7459 
7460 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7461 				     cached_state);
7462 
7463 		if (ordered) {
7464 			/*
7465 			 * If we are doing a DIO read and the ordered extent we
7466 			 * found is for a buffered write, we can not wait for it
7467 			 * to complete and retry, because if we do so we can
7468 			 * deadlock with concurrent buffered writes on page
7469 			 * locks. This happens only if our DIO read covers more
7470 			 * than one extent map, if at this point has already
7471 			 * created an ordered extent for a previous extent map
7472 			 * and locked its range in the inode's io tree, and a
7473 			 * concurrent write against that previous extent map's
7474 			 * range and this range started (we unlock the ranges
7475 			 * in the io tree only when the bios complete and
7476 			 * buffered writes always lock pages before attempting
7477 			 * to lock range in the io tree).
7478 			 */
7479 			if (writing ||
7480 			    test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags))
7481 				btrfs_start_ordered_extent(inode, ordered, 1);
7482 			else
7483 				ret = -ENOTBLK;
7484 			btrfs_put_ordered_extent(ordered);
7485 		} else {
7486 			/*
7487 			 * We could trigger writeback for this range (and wait
7488 			 * for it to complete) and then invalidate the pages for
7489 			 * this range (through invalidate_inode_pages2_range()),
7490 			 * but that can lead us to a deadlock with a concurrent
7491 			 * call to readpages() (a buffered read or a defrag call
7492 			 * triggered a readahead) on a page lock due to an
7493 			 * ordered dio extent we created before but did not have
7494 			 * yet a corresponding bio submitted (whence it can not
7495 			 * complete), which makes readpages() wait for that
7496 			 * ordered extent to complete while holding a lock on
7497 			 * that page.
7498 			 */
7499 			ret = -ENOTBLK;
7500 		}
7501 
7502 		if (ret)
7503 			break;
7504 
7505 		cond_resched();
7506 	}
7507 
7508 	return ret;
7509 }
7510 
7511 /* The callers of this must take lock_extent() */
7512 static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len,
7513 				       u64 orig_start, u64 block_start,
7514 				       u64 block_len, u64 orig_block_len,
7515 				       u64 ram_bytes, int compress_type,
7516 				       int type)
7517 {
7518 	struct extent_map_tree *em_tree;
7519 	struct extent_map *em;
7520 	struct btrfs_root *root = BTRFS_I(inode)->root;
7521 	int ret;
7522 
7523 	ASSERT(type == BTRFS_ORDERED_PREALLOC ||
7524 	       type == BTRFS_ORDERED_COMPRESSED ||
7525 	       type == BTRFS_ORDERED_NOCOW ||
7526 	       type == BTRFS_ORDERED_REGULAR);
7527 
7528 	em_tree = &BTRFS_I(inode)->extent_tree;
7529 	em = alloc_extent_map();
7530 	if (!em)
7531 		return ERR_PTR(-ENOMEM);
7532 
7533 	em->start = start;
7534 	em->orig_start = orig_start;
7535 	em->len = len;
7536 	em->block_len = block_len;
7537 	em->block_start = block_start;
7538 	em->bdev = root->fs_info->fs_devices->latest_bdev;
7539 	em->orig_block_len = orig_block_len;
7540 	em->ram_bytes = ram_bytes;
7541 	em->generation = -1;
7542 	set_bit(EXTENT_FLAG_PINNED, &em->flags);
7543 	if (type == BTRFS_ORDERED_PREALLOC) {
7544 		set_bit(EXTENT_FLAG_FILLING, &em->flags);
7545 	} else if (type == BTRFS_ORDERED_COMPRESSED) {
7546 		set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
7547 		em->compress_type = compress_type;
7548 	}
7549 
7550 	do {
7551 		btrfs_drop_extent_cache(BTRFS_I(inode), em->start,
7552 				em->start + em->len - 1, 0);
7553 		write_lock(&em_tree->lock);
7554 		ret = add_extent_mapping(em_tree, em, 1);
7555 		write_unlock(&em_tree->lock);
7556 		/*
7557 		 * The caller has taken lock_extent(), who could race with us
7558 		 * to add em?
7559 		 */
7560 	} while (ret == -EEXIST);
7561 
7562 	if (ret) {
7563 		free_extent_map(em);
7564 		return ERR_PTR(ret);
7565 	}
7566 
7567 	/* em got 2 refs now, callers needs to do free_extent_map once. */
7568 	return em;
7569 }
7570 
7571 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
7572 				   struct buffer_head *bh_result, int create)
7573 {
7574 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7575 	struct extent_map *em;
7576 	struct extent_state *cached_state = NULL;
7577 	struct btrfs_dio_data *dio_data = NULL;
7578 	u64 start = iblock << inode->i_blkbits;
7579 	u64 lockstart, lockend;
7580 	u64 len = bh_result->b_size;
7581 	int unlock_bits = EXTENT_LOCKED;
7582 	int ret = 0;
7583 
7584 	if (create)
7585 		unlock_bits |= EXTENT_DIRTY;
7586 	else
7587 		len = min_t(u64, len, fs_info->sectorsize);
7588 
7589 	lockstart = start;
7590 	lockend = start + len - 1;
7591 
7592 	if (current->journal_info) {
7593 		/*
7594 		 * Need to pull our outstanding extents and set journal_info to NULL so
7595 		 * that anything that needs to check if there's a transaction doesn't get
7596 		 * confused.
7597 		 */
7598 		dio_data = current->journal_info;
7599 		current->journal_info = NULL;
7600 	}
7601 
7602 	/*
7603 	 * If this errors out it's because we couldn't invalidate pagecache for
7604 	 * this range and we need to fallback to buffered.
7605 	 */
7606 	if (lock_extent_direct(inode, lockstart, lockend, &cached_state,
7607 			       create)) {
7608 		ret = -ENOTBLK;
7609 		goto err;
7610 	}
7611 
7612 	em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len, 0);
7613 	if (IS_ERR(em)) {
7614 		ret = PTR_ERR(em);
7615 		goto unlock_err;
7616 	}
7617 
7618 	/*
7619 	 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7620 	 * io.  INLINE is special, and we could probably kludge it in here, but
7621 	 * it's still buffered so for safety lets just fall back to the generic
7622 	 * buffered path.
7623 	 *
7624 	 * For COMPRESSED we _have_ to read the entire extent in so we can
7625 	 * decompress it, so there will be buffering required no matter what we
7626 	 * do, so go ahead and fallback to buffered.
7627 	 *
7628 	 * We return -ENOTBLK because that's what makes DIO go ahead and go back
7629 	 * to buffered IO.  Don't blame me, this is the price we pay for using
7630 	 * the generic code.
7631 	 */
7632 	if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7633 	    em->block_start == EXTENT_MAP_INLINE) {
7634 		free_extent_map(em);
7635 		ret = -ENOTBLK;
7636 		goto unlock_err;
7637 	}
7638 
7639 	/* Just a good old fashioned hole, return */
7640 	if (!create && (em->block_start == EXTENT_MAP_HOLE ||
7641 			test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
7642 		free_extent_map(em);
7643 		goto unlock_err;
7644 	}
7645 
7646 	/*
7647 	 * We don't allocate a new extent in the following cases
7648 	 *
7649 	 * 1) The inode is marked as NODATACOW.  In this case we'll just use the
7650 	 * existing extent.
7651 	 * 2) The extent is marked as PREALLOC.  We're good to go here and can
7652 	 * just use the extent.
7653 	 *
7654 	 */
7655 	if (!create) {
7656 		len = min(len, em->len - (start - em->start));
7657 		lockstart = start + len;
7658 		goto unlock;
7659 	}
7660 
7661 	if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7662 	    ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7663 	     em->block_start != EXTENT_MAP_HOLE)) {
7664 		int type;
7665 		u64 block_start, orig_start, orig_block_len, ram_bytes;
7666 
7667 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7668 			type = BTRFS_ORDERED_PREALLOC;
7669 		else
7670 			type = BTRFS_ORDERED_NOCOW;
7671 		len = min(len, em->len - (start - em->start));
7672 		block_start = em->block_start + (start - em->start);
7673 
7674 		if (can_nocow_extent(inode, start, &len, &orig_start,
7675 				     &orig_block_len, &ram_bytes) == 1 &&
7676 		    btrfs_inc_nocow_writers(fs_info, block_start)) {
7677 			struct extent_map *em2;
7678 
7679 			em2 = btrfs_create_dio_extent(inode, start, len,
7680 						      orig_start, block_start,
7681 						      len, orig_block_len,
7682 						      ram_bytes, type);
7683 			btrfs_dec_nocow_writers(fs_info, block_start);
7684 			if (type == BTRFS_ORDERED_PREALLOC) {
7685 				free_extent_map(em);
7686 				em = em2;
7687 			}
7688 			if (em2 && IS_ERR(em2)) {
7689 				ret = PTR_ERR(em2);
7690 				goto unlock_err;
7691 			}
7692 			/*
7693 			 * For inode marked NODATACOW or extent marked PREALLOC,
7694 			 * use the existing or preallocated extent, so does not
7695 			 * need to adjust btrfs_space_info's bytes_may_use.
7696 			 */
7697 			btrfs_free_reserved_data_space_noquota(inode,
7698 					start, len);
7699 			goto unlock;
7700 		}
7701 	}
7702 
7703 	/*
7704 	 * this will cow the extent, reset the len in case we changed
7705 	 * it above
7706 	 */
7707 	len = bh_result->b_size;
7708 	free_extent_map(em);
7709 	em = btrfs_new_extent_direct(inode, start, len);
7710 	if (IS_ERR(em)) {
7711 		ret = PTR_ERR(em);
7712 		goto unlock_err;
7713 	}
7714 	len = min(len, em->len - (start - em->start));
7715 unlock:
7716 	bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7717 		inode->i_blkbits;
7718 	bh_result->b_size = len;
7719 	bh_result->b_bdev = em->bdev;
7720 	set_buffer_mapped(bh_result);
7721 	if (create) {
7722 		if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7723 			set_buffer_new(bh_result);
7724 
7725 		/*
7726 		 * Need to update the i_size under the extent lock so buffered
7727 		 * readers will get the updated i_size when we unlock.
7728 		 */
7729 		if (!dio_data->overwrite && start + len > i_size_read(inode))
7730 			i_size_write(inode, start + len);
7731 
7732 		WARN_ON(dio_data->reserve < len);
7733 		dio_data->reserve -= len;
7734 		dio_data->unsubmitted_oe_range_end = start + len;
7735 		current->journal_info = dio_data;
7736 	}
7737 
7738 	/*
7739 	 * In the case of write we need to clear and unlock the entire range,
7740 	 * in the case of read we need to unlock only the end area that we
7741 	 * aren't using if there is any left over space.
7742 	 */
7743 	if (lockstart < lockend) {
7744 		clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
7745 				 lockend, unlock_bits, 1, 0,
7746 				 &cached_state);
7747 	} else {
7748 		free_extent_state(cached_state);
7749 	}
7750 
7751 	free_extent_map(em);
7752 
7753 	return 0;
7754 
7755 unlock_err:
7756 	clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7757 			 unlock_bits, 1, 0, &cached_state);
7758 err:
7759 	if (dio_data)
7760 		current->journal_info = dio_data;
7761 	return ret;
7762 }
7763 
7764 static inline blk_status_t submit_dio_repair_bio(struct inode *inode,
7765 						 struct bio *bio,
7766 						 int mirror_num)
7767 {
7768 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7769 	blk_status_t ret;
7770 
7771 	BUG_ON(bio_op(bio) == REQ_OP_WRITE);
7772 
7773 	ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DIO_REPAIR);
7774 	if (ret)
7775 		return ret;
7776 
7777 	ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
7778 
7779 	return ret;
7780 }
7781 
7782 static int btrfs_check_dio_repairable(struct inode *inode,
7783 				      struct bio *failed_bio,
7784 				      struct io_failure_record *failrec,
7785 				      int failed_mirror)
7786 {
7787 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7788 	int num_copies;
7789 
7790 	num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
7791 	if (num_copies == 1) {
7792 		/*
7793 		 * we only have a single copy of the data, so don't bother with
7794 		 * all the retry and error correction code that follows. no
7795 		 * matter what the error is, it is very likely to persist.
7796 		 */
7797 		btrfs_debug(fs_info,
7798 			"Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
7799 			num_copies, failrec->this_mirror, failed_mirror);
7800 		return 0;
7801 	}
7802 
7803 	failrec->failed_mirror = failed_mirror;
7804 	failrec->this_mirror++;
7805 	if (failrec->this_mirror == failed_mirror)
7806 		failrec->this_mirror++;
7807 
7808 	if (failrec->this_mirror > num_copies) {
7809 		btrfs_debug(fs_info,
7810 			"Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
7811 			num_copies, failrec->this_mirror, failed_mirror);
7812 		return 0;
7813 	}
7814 
7815 	return 1;
7816 }
7817 
7818 static blk_status_t dio_read_error(struct inode *inode, struct bio *failed_bio,
7819 				   struct page *page, unsigned int pgoff,
7820 				   u64 start, u64 end, int failed_mirror,
7821 				   bio_end_io_t *repair_endio, void *repair_arg)
7822 {
7823 	struct io_failure_record *failrec;
7824 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7825 	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
7826 	struct bio *bio;
7827 	int isector;
7828 	unsigned int read_mode = 0;
7829 	int segs;
7830 	int ret;
7831 	blk_status_t status;
7832 	struct bio_vec bvec;
7833 
7834 	BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
7835 
7836 	ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
7837 	if (ret)
7838 		return errno_to_blk_status(ret);
7839 
7840 	ret = btrfs_check_dio_repairable(inode, failed_bio, failrec,
7841 					 failed_mirror);
7842 	if (!ret) {
7843 		free_io_failure(failure_tree, io_tree, failrec);
7844 		return BLK_STS_IOERR;
7845 	}
7846 
7847 	segs = bio_segments(failed_bio);
7848 	bio_get_first_bvec(failed_bio, &bvec);
7849 	if (segs > 1 ||
7850 	    (bvec.bv_len > btrfs_inode_sectorsize(inode)))
7851 		read_mode |= REQ_FAILFAST_DEV;
7852 
7853 	isector = start - btrfs_io_bio(failed_bio)->logical;
7854 	isector >>= inode->i_sb->s_blocksize_bits;
7855 	bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
7856 				pgoff, isector, repair_endio, repair_arg);
7857 	bio_set_op_attrs(bio, REQ_OP_READ, read_mode);
7858 
7859 	btrfs_debug(BTRFS_I(inode)->root->fs_info,
7860 		    "repair DIO read error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d",
7861 		    read_mode, failrec->this_mirror, failrec->in_validation);
7862 
7863 	status = submit_dio_repair_bio(inode, bio, failrec->this_mirror);
7864 	if (status) {
7865 		free_io_failure(failure_tree, io_tree, failrec);
7866 		bio_put(bio);
7867 	}
7868 
7869 	return status;
7870 }
7871 
7872 struct btrfs_retry_complete {
7873 	struct completion done;
7874 	struct inode *inode;
7875 	u64 start;
7876 	int uptodate;
7877 };
7878 
7879 static void btrfs_retry_endio_nocsum(struct bio *bio)
7880 {
7881 	struct btrfs_retry_complete *done = bio->bi_private;
7882 	struct inode *inode = done->inode;
7883 	struct bio_vec *bvec;
7884 	struct extent_io_tree *io_tree, *failure_tree;
7885 	int i;
7886 
7887 	if (bio->bi_status)
7888 		goto end;
7889 
7890 	ASSERT(bio->bi_vcnt == 1);
7891 	io_tree = &BTRFS_I(inode)->io_tree;
7892 	failure_tree = &BTRFS_I(inode)->io_failure_tree;
7893 	ASSERT(bio_first_bvec_all(bio)->bv_len == btrfs_inode_sectorsize(inode));
7894 
7895 	done->uptodate = 1;
7896 	ASSERT(!bio_flagged(bio, BIO_CLONED));
7897 	bio_for_each_segment_all(bvec, bio, i)
7898 		clean_io_failure(BTRFS_I(inode)->root->fs_info, failure_tree,
7899 				 io_tree, done->start, bvec->bv_page,
7900 				 btrfs_ino(BTRFS_I(inode)), 0);
7901 end:
7902 	complete(&done->done);
7903 	bio_put(bio);
7904 }
7905 
7906 static blk_status_t __btrfs_correct_data_nocsum(struct inode *inode,
7907 						struct btrfs_io_bio *io_bio)
7908 {
7909 	struct btrfs_fs_info *fs_info;
7910 	struct bio_vec bvec;
7911 	struct bvec_iter iter;
7912 	struct btrfs_retry_complete done;
7913 	u64 start;
7914 	unsigned int pgoff;
7915 	u32 sectorsize;
7916 	int nr_sectors;
7917 	blk_status_t ret;
7918 	blk_status_t err = BLK_STS_OK;
7919 
7920 	fs_info = BTRFS_I(inode)->root->fs_info;
7921 	sectorsize = fs_info->sectorsize;
7922 
7923 	start = io_bio->logical;
7924 	done.inode = inode;
7925 	io_bio->bio.bi_iter = io_bio->iter;
7926 
7927 	bio_for_each_segment(bvec, &io_bio->bio, iter) {
7928 		nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len);
7929 		pgoff = bvec.bv_offset;
7930 
7931 next_block_or_try_again:
7932 		done.uptodate = 0;
7933 		done.start = start;
7934 		init_completion(&done.done);
7935 
7936 		ret = dio_read_error(inode, &io_bio->bio, bvec.bv_page,
7937 				pgoff, start, start + sectorsize - 1,
7938 				io_bio->mirror_num,
7939 				btrfs_retry_endio_nocsum, &done);
7940 		if (ret) {
7941 			err = ret;
7942 			goto next;
7943 		}
7944 
7945 		wait_for_completion_io(&done.done);
7946 
7947 		if (!done.uptodate) {
7948 			/* We might have another mirror, so try again */
7949 			goto next_block_or_try_again;
7950 		}
7951 
7952 next:
7953 		start += sectorsize;
7954 
7955 		nr_sectors--;
7956 		if (nr_sectors) {
7957 			pgoff += sectorsize;
7958 			ASSERT(pgoff < PAGE_SIZE);
7959 			goto next_block_or_try_again;
7960 		}
7961 	}
7962 
7963 	return err;
7964 }
7965 
7966 static void btrfs_retry_endio(struct bio *bio)
7967 {
7968 	struct btrfs_retry_complete *done = bio->bi_private;
7969 	struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
7970 	struct extent_io_tree *io_tree, *failure_tree;
7971 	struct inode *inode = done->inode;
7972 	struct bio_vec *bvec;
7973 	int uptodate;
7974 	int ret;
7975 	int i;
7976 
7977 	if (bio->bi_status)
7978 		goto end;
7979 
7980 	uptodate = 1;
7981 
7982 	ASSERT(bio->bi_vcnt == 1);
7983 	ASSERT(bio_first_bvec_all(bio)->bv_len == btrfs_inode_sectorsize(done->inode));
7984 
7985 	io_tree = &BTRFS_I(inode)->io_tree;
7986 	failure_tree = &BTRFS_I(inode)->io_failure_tree;
7987 
7988 	ASSERT(!bio_flagged(bio, BIO_CLONED));
7989 	bio_for_each_segment_all(bvec, bio, i) {
7990 		ret = __readpage_endio_check(inode, io_bio, i, bvec->bv_page,
7991 					     bvec->bv_offset, done->start,
7992 					     bvec->bv_len);
7993 		if (!ret)
7994 			clean_io_failure(BTRFS_I(inode)->root->fs_info,
7995 					 failure_tree, io_tree, done->start,
7996 					 bvec->bv_page,
7997 					 btrfs_ino(BTRFS_I(inode)),
7998 					 bvec->bv_offset);
7999 		else
8000 			uptodate = 0;
8001 	}
8002 
8003 	done->uptodate = uptodate;
8004 end:
8005 	complete(&done->done);
8006 	bio_put(bio);
8007 }
8008 
8009 static blk_status_t __btrfs_subio_endio_read(struct inode *inode,
8010 		struct btrfs_io_bio *io_bio, blk_status_t err)
8011 {
8012 	struct btrfs_fs_info *fs_info;
8013 	struct bio_vec bvec;
8014 	struct bvec_iter iter;
8015 	struct btrfs_retry_complete done;
8016 	u64 start;
8017 	u64 offset = 0;
8018 	u32 sectorsize;
8019 	int nr_sectors;
8020 	unsigned int pgoff;
8021 	int csum_pos;
8022 	bool uptodate = (err == 0);
8023 	int ret;
8024 	blk_status_t status;
8025 
8026 	fs_info = BTRFS_I(inode)->root->fs_info;
8027 	sectorsize = fs_info->sectorsize;
8028 
8029 	err = BLK_STS_OK;
8030 	start = io_bio->logical;
8031 	done.inode = inode;
8032 	io_bio->bio.bi_iter = io_bio->iter;
8033 
8034 	bio_for_each_segment(bvec, &io_bio->bio, iter) {
8035 		nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len);
8036 
8037 		pgoff = bvec.bv_offset;
8038 next_block:
8039 		if (uptodate) {
8040 			csum_pos = BTRFS_BYTES_TO_BLKS(fs_info, offset);
8041 			ret = __readpage_endio_check(inode, io_bio, csum_pos,
8042 					bvec.bv_page, pgoff, start, sectorsize);
8043 			if (likely(!ret))
8044 				goto next;
8045 		}
8046 try_again:
8047 		done.uptodate = 0;
8048 		done.start = start;
8049 		init_completion(&done.done);
8050 
8051 		status = dio_read_error(inode, &io_bio->bio, bvec.bv_page,
8052 					pgoff, start, start + sectorsize - 1,
8053 					io_bio->mirror_num, btrfs_retry_endio,
8054 					&done);
8055 		if (status) {
8056 			err = status;
8057 			goto next;
8058 		}
8059 
8060 		wait_for_completion_io(&done.done);
8061 
8062 		if (!done.uptodate) {
8063 			/* We might have another mirror, so try again */
8064 			goto try_again;
8065 		}
8066 next:
8067 		offset += sectorsize;
8068 		start += sectorsize;
8069 
8070 		ASSERT(nr_sectors);
8071 
8072 		nr_sectors--;
8073 		if (nr_sectors) {
8074 			pgoff += sectorsize;
8075 			ASSERT(pgoff < PAGE_SIZE);
8076 			goto next_block;
8077 		}
8078 	}
8079 
8080 	return err;
8081 }
8082 
8083 static blk_status_t btrfs_subio_endio_read(struct inode *inode,
8084 		struct btrfs_io_bio *io_bio, blk_status_t err)
8085 {
8086 	bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
8087 
8088 	if (skip_csum) {
8089 		if (unlikely(err))
8090 			return __btrfs_correct_data_nocsum(inode, io_bio);
8091 		else
8092 			return BLK_STS_OK;
8093 	} else {
8094 		return __btrfs_subio_endio_read(inode, io_bio, err);
8095 	}
8096 }
8097 
8098 static void btrfs_endio_direct_read(struct bio *bio)
8099 {
8100 	struct btrfs_dio_private *dip = bio->bi_private;
8101 	struct inode *inode = dip->inode;
8102 	struct bio *dio_bio;
8103 	struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8104 	blk_status_t err = bio->bi_status;
8105 
8106 	if (dip->flags & BTRFS_DIO_ORIG_BIO_SUBMITTED)
8107 		err = btrfs_subio_endio_read(inode, io_bio, err);
8108 
8109 	unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
8110 		      dip->logical_offset + dip->bytes - 1);
8111 	dio_bio = dip->dio_bio;
8112 
8113 	kfree(dip);
8114 
8115 	dio_bio->bi_status = err;
8116 	dio_end_io(dio_bio);
8117 
8118 	if (io_bio->end_io)
8119 		io_bio->end_io(io_bio, blk_status_to_errno(err));
8120 	bio_put(bio);
8121 }
8122 
8123 static void __endio_write_update_ordered(struct inode *inode,
8124 					 const u64 offset, const u64 bytes,
8125 					 const bool uptodate)
8126 {
8127 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8128 	struct btrfs_ordered_extent *ordered = NULL;
8129 	struct btrfs_workqueue *wq;
8130 	btrfs_work_func_t func;
8131 	u64 ordered_offset = offset;
8132 	u64 ordered_bytes = bytes;
8133 	u64 last_offset;
8134 	int ret;
8135 
8136 	if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
8137 		wq = fs_info->endio_freespace_worker;
8138 		func = btrfs_freespace_write_helper;
8139 	} else {
8140 		wq = fs_info->endio_write_workers;
8141 		func = btrfs_endio_write_helper;
8142 	}
8143 
8144 again:
8145 	last_offset = ordered_offset;
8146 	ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
8147 						   &ordered_offset,
8148 						   ordered_bytes,
8149 						   uptodate);
8150 	if (!ret)
8151 		goto out_test;
8152 
8153 	btrfs_init_work(&ordered->work, func, finish_ordered_fn, NULL, NULL);
8154 	btrfs_queue_work(wq, &ordered->work);
8155 out_test:
8156 	/*
8157 	 * If btrfs_dec_test_ordered_pending does not find any ordered extent
8158 	 * in the range, we can exit.
8159 	 */
8160 	if (ordered_offset == last_offset)
8161 		return;
8162 	/*
8163 	 * our bio might span multiple ordered extents.  If we haven't
8164 	 * completed the accounting for the whole dio, go back and try again
8165 	 */
8166 	if (ordered_offset < offset + bytes) {
8167 		ordered_bytes = offset + bytes - ordered_offset;
8168 		ordered = NULL;
8169 		goto again;
8170 	}
8171 }
8172 
8173 static void btrfs_endio_direct_write(struct bio *bio)
8174 {
8175 	struct btrfs_dio_private *dip = bio->bi_private;
8176 	struct bio *dio_bio = dip->dio_bio;
8177 
8178 	__endio_write_update_ordered(dip->inode, dip->logical_offset,
8179 				     dip->bytes, !bio->bi_status);
8180 
8181 	kfree(dip);
8182 
8183 	dio_bio->bi_status = bio->bi_status;
8184 	dio_end_io(dio_bio);
8185 	bio_put(bio);
8186 }
8187 
8188 static blk_status_t btrfs_submit_bio_start_direct_io(void *private_data,
8189 				    struct bio *bio, u64 offset)
8190 {
8191 	struct inode *inode = private_data;
8192 	blk_status_t ret;
8193 	ret = btrfs_csum_one_bio(inode, bio, offset, 1);
8194 	BUG_ON(ret); /* -ENOMEM */
8195 	return 0;
8196 }
8197 
8198 static void btrfs_end_dio_bio(struct bio *bio)
8199 {
8200 	struct btrfs_dio_private *dip = bio->bi_private;
8201 	blk_status_t err = bio->bi_status;
8202 
8203 	if (err)
8204 		btrfs_warn(BTRFS_I(dip->inode)->root->fs_info,
8205 			   "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d",
8206 			   btrfs_ino(BTRFS_I(dip->inode)), bio_op(bio),
8207 			   bio->bi_opf,
8208 			   (unsigned long long)bio->bi_iter.bi_sector,
8209 			   bio->bi_iter.bi_size, err);
8210 
8211 	if (dip->subio_endio)
8212 		err = dip->subio_endio(dip->inode, btrfs_io_bio(bio), err);
8213 
8214 	if (err) {
8215 		/*
8216 		 * We want to perceive the errors flag being set before
8217 		 * decrementing the reference count. We don't need a barrier
8218 		 * since atomic operations with a return value are fully
8219 		 * ordered as per atomic_t.txt
8220 		 */
8221 		dip->errors = 1;
8222 	}
8223 
8224 	/* if there are more bios still pending for this dio, just exit */
8225 	if (!atomic_dec_and_test(&dip->pending_bios))
8226 		goto out;
8227 
8228 	if (dip->errors) {
8229 		bio_io_error(dip->orig_bio);
8230 	} else {
8231 		dip->dio_bio->bi_status = BLK_STS_OK;
8232 		bio_endio(dip->orig_bio);
8233 	}
8234 out:
8235 	bio_put(bio);
8236 }
8237 
8238 static inline blk_status_t btrfs_lookup_and_bind_dio_csum(struct inode *inode,
8239 						 struct btrfs_dio_private *dip,
8240 						 struct bio *bio,
8241 						 u64 file_offset)
8242 {
8243 	struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8244 	struct btrfs_io_bio *orig_io_bio = btrfs_io_bio(dip->orig_bio);
8245 	blk_status_t ret;
8246 
8247 	/*
8248 	 * We load all the csum data we need when we submit
8249 	 * the first bio to reduce the csum tree search and
8250 	 * contention.
8251 	 */
8252 	if (dip->logical_offset == file_offset) {
8253 		ret = btrfs_lookup_bio_sums_dio(inode, dip->orig_bio,
8254 						file_offset);
8255 		if (ret)
8256 			return ret;
8257 	}
8258 
8259 	if (bio == dip->orig_bio)
8260 		return 0;
8261 
8262 	file_offset -= dip->logical_offset;
8263 	file_offset >>= inode->i_sb->s_blocksize_bits;
8264 	io_bio->csum = (u8 *)(((u32 *)orig_io_bio->csum) + file_offset);
8265 
8266 	return 0;
8267 }
8268 
8269 static inline blk_status_t btrfs_submit_dio_bio(struct bio *bio,
8270 		struct inode *inode, u64 file_offset, int async_submit)
8271 {
8272 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8273 	struct btrfs_dio_private *dip = bio->bi_private;
8274 	bool write = bio_op(bio) == REQ_OP_WRITE;
8275 	blk_status_t ret;
8276 
8277 	/* Check btrfs_submit_bio_hook() for rules about async submit. */
8278 	if (async_submit)
8279 		async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
8280 
8281 	if (!write) {
8282 		ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
8283 		if (ret)
8284 			goto err;
8285 	}
8286 
8287 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
8288 		goto map;
8289 
8290 	if (write && async_submit) {
8291 		ret = btrfs_wq_submit_bio(fs_info, bio, 0, 0,
8292 					  file_offset, inode,
8293 					  btrfs_submit_bio_start_direct_io,
8294 					  btrfs_submit_bio_done);
8295 		goto err;
8296 	} else if (write) {
8297 		/*
8298 		 * If we aren't doing async submit, calculate the csum of the
8299 		 * bio now.
8300 		 */
8301 		ret = btrfs_csum_one_bio(inode, bio, file_offset, 1);
8302 		if (ret)
8303 			goto err;
8304 	} else {
8305 		ret = btrfs_lookup_and_bind_dio_csum(inode, dip, bio,
8306 						     file_offset);
8307 		if (ret)
8308 			goto err;
8309 	}
8310 map:
8311 	ret = btrfs_map_bio(fs_info, bio, 0, 0);
8312 err:
8313 	return ret;
8314 }
8315 
8316 static int btrfs_submit_direct_hook(struct btrfs_dio_private *dip)
8317 {
8318 	struct inode *inode = dip->inode;
8319 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8320 	struct bio *bio;
8321 	struct bio *orig_bio = dip->orig_bio;
8322 	u64 start_sector = orig_bio->bi_iter.bi_sector;
8323 	u64 file_offset = dip->logical_offset;
8324 	u64 map_length;
8325 	int async_submit = 0;
8326 	u64 submit_len;
8327 	int clone_offset = 0;
8328 	int clone_len;
8329 	int ret;
8330 	blk_status_t status;
8331 
8332 	map_length = orig_bio->bi_iter.bi_size;
8333 	submit_len = map_length;
8334 	ret = btrfs_map_block(fs_info, btrfs_op(orig_bio), start_sector << 9,
8335 			      &map_length, NULL, 0);
8336 	if (ret)
8337 		return -EIO;
8338 
8339 	if (map_length >= submit_len) {
8340 		bio = orig_bio;
8341 		dip->flags |= BTRFS_DIO_ORIG_BIO_SUBMITTED;
8342 		goto submit;
8343 	}
8344 
8345 	/* async crcs make it difficult to collect full stripe writes. */
8346 	if (btrfs_data_alloc_profile(fs_info) & BTRFS_BLOCK_GROUP_RAID56_MASK)
8347 		async_submit = 0;
8348 	else
8349 		async_submit = 1;
8350 
8351 	/* bio split */
8352 	ASSERT(map_length <= INT_MAX);
8353 	atomic_inc(&dip->pending_bios);
8354 	do {
8355 		clone_len = min_t(int, submit_len, map_length);
8356 
8357 		/*
8358 		 * This will never fail as it's passing GPF_NOFS and
8359 		 * the allocation is backed by btrfs_bioset.
8360 		 */
8361 		bio = btrfs_bio_clone_partial(orig_bio, clone_offset,
8362 					      clone_len);
8363 		bio->bi_private = dip;
8364 		bio->bi_end_io = btrfs_end_dio_bio;
8365 		btrfs_io_bio(bio)->logical = file_offset;
8366 
8367 		ASSERT(submit_len >= clone_len);
8368 		submit_len -= clone_len;
8369 		if (submit_len == 0)
8370 			break;
8371 
8372 		/*
8373 		 * Increase the count before we submit the bio so we know
8374 		 * the end IO handler won't happen before we increase the
8375 		 * count. Otherwise, the dip might get freed before we're
8376 		 * done setting it up.
8377 		 */
8378 		atomic_inc(&dip->pending_bios);
8379 
8380 		status = btrfs_submit_dio_bio(bio, inode, file_offset,
8381 						async_submit);
8382 		if (status) {
8383 			bio_put(bio);
8384 			atomic_dec(&dip->pending_bios);
8385 			goto out_err;
8386 		}
8387 
8388 		clone_offset += clone_len;
8389 		start_sector += clone_len >> 9;
8390 		file_offset += clone_len;
8391 
8392 		map_length = submit_len;
8393 		ret = btrfs_map_block(fs_info, btrfs_op(orig_bio),
8394 				      start_sector << 9, &map_length, NULL, 0);
8395 		if (ret)
8396 			goto out_err;
8397 	} while (submit_len > 0);
8398 
8399 submit:
8400 	status = btrfs_submit_dio_bio(bio, inode, file_offset, async_submit);
8401 	if (!status)
8402 		return 0;
8403 
8404 	bio_put(bio);
8405 out_err:
8406 	dip->errors = 1;
8407 	/*
8408 	 * Before atomic variable goto zero, we must  make sure dip->errors is
8409 	 * perceived to be set. This ordering is ensured by the fact that an
8410 	 * atomic operations with a return value are fully ordered as per
8411 	 * atomic_t.txt
8412 	 */
8413 	if (atomic_dec_and_test(&dip->pending_bios))
8414 		bio_io_error(dip->orig_bio);
8415 
8416 	/* bio_end_io() will handle error, so we needn't return it */
8417 	return 0;
8418 }
8419 
8420 static void btrfs_submit_direct(struct bio *dio_bio, struct inode *inode,
8421 				loff_t file_offset)
8422 {
8423 	struct btrfs_dio_private *dip = NULL;
8424 	struct bio *bio = NULL;
8425 	struct btrfs_io_bio *io_bio;
8426 	bool write = (bio_op(dio_bio) == REQ_OP_WRITE);
8427 	int ret = 0;
8428 
8429 	bio = btrfs_bio_clone(dio_bio);
8430 
8431 	dip = kzalloc(sizeof(*dip), GFP_NOFS);
8432 	if (!dip) {
8433 		ret = -ENOMEM;
8434 		goto free_ordered;
8435 	}
8436 
8437 	dip->private = dio_bio->bi_private;
8438 	dip->inode = inode;
8439 	dip->logical_offset = file_offset;
8440 	dip->bytes = dio_bio->bi_iter.bi_size;
8441 	dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9;
8442 	bio->bi_private = dip;
8443 	dip->orig_bio = bio;
8444 	dip->dio_bio = dio_bio;
8445 	atomic_set(&dip->pending_bios, 0);
8446 	io_bio = btrfs_io_bio(bio);
8447 	io_bio->logical = file_offset;
8448 
8449 	if (write) {
8450 		bio->bi_end_io = btrfs_endio_direct_write;
8451 	} else {
8452 		bio->bi_end_io = btrfs_endio_direct_read;
8453 		dip->subio_endio = btrfs_subio_endio_read;
8454 	}
8455 
8456 	/*
8457 	 * Reset the range for unsubmitted ordered extents (to a 0 length range)
8458 	 * even if we fail to submit a bio, because in such case we do the
8459 	 * corresponding error handling below and it must not be done a second
8460 	 * time by btrfs_direct_IO().
8461 	 */
8462 	if (write) {
8463 		struct btrfs_dio_data *dio_data = current->journal_info;
8464 
8465 		dio_data->unsubmitted_oe_range_end = dip->logical_offset +
8466 			dip->bytes;
8467 		dio_data->unsubmitted_oe_range_start =
8468 			dio_data->unsubmitted_oe_range_end;
8469 	}
8470 
8471 	ret = btrfs_submit_direct_hook(dip);
8472 	if (!ret)
8473 		return;
8474 
8475 	if (io_bio->end_io)
8476 		io_bio->end_io(io_bio, ret);
8477 
8478 free_ordered:
8479 	/*
8480 	 * If we arrived here it means either we failed to submit the dip
8481 	 * or we either failed to clone the dio_bio or failed to allocate the
8482 	 * dip. If we cloned the dio_bio and allocated the dip, we can just
8483 	 * call bio_endio against our io_bio so that we get proper resource
8484 	 * cleanup if we fail to submit the dip, otherwise, we must do the
8485 	 * same as btrfs_endio_direct_[write|read] because we can't call these
8486 	 * callbacks - they require an allocated dip and a clone of dio_bio.
8487 	 */
8488 	if (bio && dip) {
8489 		bio_io_error(bio);
8490 		/*
8491 		 * The end io callbacks free our dip, do the final put on bio
8492 		 * and all the cleanup and final put for dio_bio (through
8493 		 * dio_end_io()).
8494 		 */
8495 		dip = NULL;
8496 		bio = NULL;
8497 	} else {
8498 		if (write)
8499 			__endio_write_update_ordered(inode,
8500 						file_offset,
8501 						dio_bio->bi_iter.bi_size,
8502 						false);
8503 		else
8504 			unlock_extent(&BTRFS_I(inode)->io_tree, file_offset,
8505 			      file_offset + dio_bio->bi_iter.bi_size - 1);
8506 
8507 		dio_bio->bi_status = BLK_STS_IOERR;
8508 		/*
8509 		 * Releases and cleans up our dio_bio, no need to bio_put()
8510 		 * nor bio_endio()/bio_io_error() against dio_bio.
8511 		 */
8512 		dio_end_io(dio_bio);
8513 	}
8514 	if (bio)
8515 		bio_put(bio);
8516 	kfree(dip);
8517 }
8518 
8519 static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info,
8520 			       const struct iov_iter *iter, loff_t offset)
8521 {
8522 	int seg;
8523 	int i;
8524 	unsigned int blocksize_mask = fs_info->sectorsize - 1;
8525 	ssize_t retval = -EINVAL;
8526 
8527 	if (offset & blocksize_mask)
8528 		goto out;
8529 
8530 	if (iov_iter_alignment(iter) & blocksize_mask)
8531 		goto out;
8532 
8533 	/* If this is a write we don't need to check anymore */
8534 	if (iov_iter_rw(iter) != READ || !iter_is_iovec(iter))
8535 		return 0;
8536 	/*
8537 	 * Check to make sure we don't have duplicate iov_base's in this
8538 	 * iovec, if so return EINVAL, otherwise we'll get csum errors
8539 	 * when reading back.
8540 	 */
8541 	for (seg = 0; seg < iter->nr_segs; seg++) {
8542 		for (i = seg + 1; i < iter->nr_segs; i++) {
8543 			if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
8544 				goto out;
8545 		}
8546 	}
8547 	retval = 0;
8548 out:
8549 	return retval;
8550 }
8551 
8552 static ssize_t btrfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
8553 {
8554 	struct file *file = iocb->ki_filp;
8555 	struct inode *inode = file->f_mapping->host;
8556 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8557 	struct btrfs_dio_data dio_data = { 0 };
8558 	struct extent_changeset *data_reserved = NULL;
8559 	loff_t offset = iocb->ki_pos;
8560 	size_t count = 0;
8561 	int flags = 0;
8562 	bool wakeup = true;
8563 	bool relock = false;
8564 	ssize_t ret;
8565 
8566 	if (check_direct_IO(fs_info, iter, offset))
8567 		return 0;
8568 
8569 	inode_dio_begin(inode);
8570 
8571 	/*
8572 	 * The generic stuff only does filemap_write_and_wait_range, which
8573 	 * isn't enough if we've written compressed pages to this area, so
8574 	 * we need to flush the dirty pages again to make absolutely sure
8575 	 * that any outstanding dirty pages are on disk.
8576 	 */
8577 	count = iov_iter_count(iter);
8578 	if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
8579 		     &BTRFS_I(inode)->runtime_flags))
8580 		filemap_fdatawrite_range(inode->i_mapping, offset,
8581 					 offset + count - 1);
8582 
8583 	if (iov_iter_rw(iter) == WRITE) {
8584 		/*
8585 		 * If the write DIO is beyond the EOF, we need update
8586 		 * the isize, but it is protected by i_mutex. So we can
8587 		 * not unlock the i_mutex at this case.
8588 		 */
8589 		if (offset + count <= inode->i_size) {
8590 			dio_data.overwrite = 1;
8591 			inode_unlock(inode);
8592 			relock = true;
8593 		} else if (iocb->ki_flags & IOCB_NOWAIT) {
8594 			ret = -EAGAIN;
8595 			goto out;
8596 		}
8597 		ret = btrfs_delalloc_reserve_space(inode, &data_reserved,
8598 						   offset, count);
8599 		if (ret)
8600 			goto out;
8601 
8602 		/*
8603 		 * We need to know how many extents we reserved so that we can
8604 		 * do the accounting properly if we go over the number we
8605 		 * originally calculated.  Abuse current->journal_info for this.
8606 		 */
8607 		dio_data.reserve = round_up(count,
8608 					    fs_info->sectorsize);
8609 		dio_data.unsubmitted_oe_range_start = (u64)offset;
8610 		dio_data.unsubmitted_oe_range_end = (u64)offset;
8611 		current->journal_info = &dio_data;
8612 		down_read(&BTRFS_I(inode)->dio_sem);
8613 	} else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK,
8614 				     &BTRFS_I(inode)->runtime_flags)) {
8615 		inode_dio_end(inode);
8616 		flags = DIO_LOCKING | DIO_SKIP_HOLES;
8617 		wakeup = false;
8618 	}
8619 
8620 	ret = __blockdev_direct_IO(iocb, inode,
8621 				   fs_info->fs_devices->latest_bdev,
8622 				   iter, btrfs_get_blocks_direct, NULL,
8623 				   btrfs_submit_direct, flags);
8624 	if (iov_iter_rw(iter) == WRITE) {
8625 		up_read(&BTRFS_I(inode)->dio_sem);
8626 		current->journal_info = NULL;
8627 		if (ret < 0 && ret != -EIOCBQUEUED) {
8628 			if (dio_data.reserve)
8629 				btrfs_delalloc_release_space(inode, data_reserved,
8630 					offset, dio_data.reserve, true);
8631 			/*
8632 			 * On error we might have left some ordered extents
8633 			 * without submitting corresponding bios for them, so
8634 			 * cleanup them up to avoid other tasks getting them
8635 			 * and waiting for them to complete forever.
8636 			 */
8637 			if (dio_data.unsubmitted_oe_range_start <
8638 			    dio_data.unsubmitted_oe_range_end)
8639 				__endio_write_update_ordered(inode,
8640 					dio_data.unsubmitted_oe_range_start,
8641 					dio_data.unsubmitted_oe_range_end -
8642 					dio_data.unsubmitted_oe_range_start,
8643 					false);
8644 		} else if (ret >= 0 && (size_t)ret < count)
8645 			btrfs_delalloc_release_space(inode, data_reserved,
8646 					offset, count - (size_t)ret, true);
8647 		btrfs_delalloc_release_extents(BTRFS_I(inode), count, false);
8648 	}
8649 out:
8650 	if (wakeup)
8651 		inode_dio_end(inode);
8652 	if (relock)
8653 		inode_lock(inode);
8654 
8655 	extent_changeset_free(data_reserved);
8656 	return ret;
8657 }
8658 
8659 #define BTRFS_FIEMAP_FLAGS	(FIEMAP_FLAG_SYNC)
8660 
8661 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
8662 		__u64 start, __u64 len)
8663 {
8664 	int	ret;
8665 
8666 	ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS);
8667 	if (ret)
8668 		return ret;
8669 
8670 	return extent_fiemap(inode, fieinfo, start, len);
8671 }
8672 
8673 int btrfs_readpage(struct file *file, struct page *page)
8674 {
8675 	struct extent_io_tree *tree;
8676 	tree = &BTRFS_I(page->mapping->host)->io_tree;
8677 	return extent_read_full_page(tree, page, btrfs_get_extent, 0);
8678 }
8679 
8680 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
8681 {
8682 	struct inode *inode = page->mapping->host;
8683 	int ret;
8684 
8685 	if (current->flags & PF_MEMALLOC) {
8686 		redirty_page_for_writepage(wbc, page);
8687 		unlock_page(page);
8688 		return 0;
8689 	}
8690 
8691 	/*
8692 	 * If we are under memory pressure we will call this directly from the
8693 	 * VM, we need to make sure we have the inode referenced for the ordered
8694 	 * extent.  If not just return like we didn't do anything.
8695 	 */
8696 	if (!igrab(inode)) {
8697 		redirty_page_for_writepage(wbc, page);
8698 		return AOP_WRITEPAGE_ACTIVATE;
8699 	}
8700 	ret = extent_write_full_page(page, wbc);
8701 	btrfs_add_delayed_iput(inode);
8702 	return ret;
8703 }
8704 
8705 static int btrfs_writepages(struct address_space *mapping,
8706 			    struct writeback_control *wbc)
8707 {
8708 	struct extent_io_tree *tree;
8709 
8710 	tree = &BTRFS_I(mapping->host)->io_tree;
8711 	return extent_writepages(tree, mapping, wbc);
8712 }
8713 
8714 static int
8715 btrfs_readpages(struct file *file, struct address_space *mapping,
8716 		struct list_head *pages, unsigned nr_pages)
8717 {
8718 	struct extent_io_tree *tree;
8719 	tree = &BTRFS_I(mapping->host)->io_tree;
8720 	return extent_readpages(tree, mapping, pages, nr_pages);
8721 }
8722 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8723 {
8724 	struct extent_io_tree *tree;
8725 	struct extent_map_tree *map;
8726 	int ret;
8727 
8728 	tree = &BTRFS_I(page->mapping->host)->io_tree;
8729 	map = &BTRFS_I(page->mapping->host)->extent_tree;
8730 	ret = try_release_extent_mapping(map, tree, page, gfp_flags);
8731 	if (ret == 1) {
8732 		ClearPagePrivate(page);
8733 		set_page_private(page, 0);
8734 		put_page(page);
8735 	}
8736 	return ret;
8737 }
8738 
8739 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8740 {
8741 	if (PageWriteback(page) || PageDirty(page))
8742 		return 0;
8743 	return __btrfs_releasepage(page, gfp_flags);
8744 }
8745 
8746 static void btrfs_invalidatepage(struct page *page, unsigned int offset,
8747 				 unsigned int length)
8748 {
8749 	struct inode *inode = page->mapping->host;
8750 	struct extent_io_tree *tree;
8751 	struct btrfs_ordered_extent *ordered;
8752 	struct extent_state *cached_state = NULL;
8753 	u64 page_start = page_offset(page);
8754 	u64 page_end = page_start + PAGE_SIZE - 1;
8755 	u64 start;
8756 	u64 end;
8757 	int inode_evicting = inode->i_state & I_FREEING;
8758 
8759 	/*
8760 	 * we have the page locked, so new writeback can't start,
8761 	 * and the dirty bit won't be cleared while we are here.
8762 	 *
8763 	 * Wait for IO on this page so that we can safely clear
8764 	 * the PagePrivate2 bit and do ordered accounting
8765 	 */
8766 	wait_on_page_writeback(page);
8767 
8768 	tree = &BTRFS_I(inode)->io_tree;
8769 	if (offset) {
8770 		btrfs_releasepage(page, GFP_NOFS);
8771 		return;
8772 	}
8773 
8774 	if (!inode_evicting)
8775 		lock_extent_bits(tree, page_start, page_end, &cached_state);
8776 again:
8777 	start = page_start;
8778 	ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
8779 					page_end - start + 1);
8780 	if (ordered) {
8781 		end = min(page_end, ordered->file_offset + ordered->len - 1);
8782 		/*
8783 		 * IO on this page will never be started, so we need
8784 		 * to account for any ordered extents now
8785 		 */
8786 		if (!inode_evicting)
8787 			clear_extent_bit(tree, start, end,
8788 					 EXTENT_DIRTY | EXTENT_DELALLOC |
8789 					 EXTENT_DELALLOC_NEW |
8790 					 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
8791 					 EXTENT_DEFRAG, 1, 0, &cached_state);
8792 		/*
8793 		 * whoever cleared the private bit is responsible
8794 		 * for the finish_ordered_io
8795 		 */
8796 		if (TestClearPagePrivate2(page)) {
8797 			struct btrfs_ordered_inode_tree *tree;
8798 			u64 new_len;
8799 
8800 			tree = &BTRFS_I(inode)->ordered_tree;
8801 
8802 			spin_lock_irq(&tree->lock);
8803 			set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
8804 			new_len = start - ordered->file_offset;
8805 			if (new_len < ordered->truncated_len)
8806 				ordered->truncated_len = new_len;
8807 			spin_unlock_irq(&tree->lock);
8808 
8809 			if (btrfs_dec_test_ordered_pending(inode, &ordered,
8810 							   start,
8811 							   end - start + 1, 1))
8812 				btrfs_finish_ordered_io(ordered);
8813 		}
8814 		btrfs_put_ordered_extent(ordered);
8815 		if (!inode_evicting) {
8816 			cached_state = NULL;
8817 			lock_extent_bits(tree, start, end,
8818 					 &cached_state);
8819 		}
8820 
8821 		start = end + 1;
8822 		if (start < page_end)
8823 			goto again;
8824 	}
8825 
8826 	/*
8827 	 * Qgroup reserved space handler
8828 	 * Page here will be either
8829 	 * 1) Already written to disk
8830 	 *    In this case, its reserved space is released from data rsv map
8831 	 *    and will be freed by delayed_ref handler finally.
8832 	 *    So even we call qgroup_free_data(), it won't decrease reserved
8833 	 *    space.
8834 	 * 2) Not written to disk
8835 	 *    This means the reserved space should be freed here. However,
8836 	 *    if a truncate invalidates the page (by clearing PageDirty)
8837 	 *    and the page is accounted for while allocating extent
8838 	 *    in btrfs_check_data_free_space() we let delayed_ref to
8839 	 *    free the entire extent.
8840 	 */
8841 	if (PageDirty(page))
8842 		btrfs_qgroup_free_data(inode, NULL, page_start, PAGE_SIZE);
8843 	if (!inode_evicting) {
8844 		clear_extent_bit(tree, page_start, page_end,
8845 				 EXTENT_LOCKED | EXTENT_DIRTY |
8846 				 EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
8847 				 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1,
8848 				 &cached_state);
8849 
8850 		__btrfs_releasepage(page, GFP_NOFS);
8851 	}
8852 
8853 	ClearPageChecked(page);
8854 	if (PagePrivate(page)) {
8855 		ClearPagePrivate(page);
8856 		set_page_private(page, 0);
8857 		put_page(page);
8858 	}
8859 }
8860 
8861 /*
8862  * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8863  * called from a page fault handler when a page is first dirtied. Hence we must
8864  * be careful to check for EOF conditions here. We set the page up correctly
8865  * for a written page which means we get ENOSPC checking when writing into
8866  * holes and correct delalloc and unwritten extent mapping on filesystems that
8867  * support these features.
8868  *
8869  * We are not allowed to take the i_mutex here so we have to play games to
8870  * protect against truncate races as the page could now be beyond EOF.  Because
8871  * vmtruncate() writes the inode size before removing pages, once we have the
8872  * page lock we can determine safely if the page is beyond EOF. If it is not
8873  * beyond EOF, then the page is guaranteed safe against truncation until we
8874  * unlock the page.
8875  */
8876 int btrfs_page_mkwrite(struct vm_fault *vmf)
8877 {
8878 	struct page *page = vmf->page;
8879 	struct inode *inode = file_inode(vmf->vma->vm_file);
8880 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8881 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8882 	struct btrfs_ordered_extent *ordered;
8883 	struct extent_state *cached_state = NULL;
8884 	struct extent_changeset *data_reserved = NULL;
8885 	char *kaddr;
8886 	unsigned long zero_start;
8887 	loff_t size;
8888 	int ret;
8889 	int reserved = 0;
8890 	u64 reserved_space;
8891 	u64 page_start;
8892 	u64 page_end;
8893 	u64 end;
8894 
8895 	reserved_space = PAGE_SIZE;
8896 
8897 	sb_start_pagefault(inode->i_sb);
8898 	page_start = page_offset(page);
8899 	page_end = page_start + PAGE_SIZE - 1;
8900 	end = page_end;
8901 
8902 	/*
8903 	 * Reserving delalloc space after obtaining the page lock can lead to
8904 	 * deadlock. For example, if a dirty page is locked by this function
8905 	 * and the call to btrfs_delalloc_reserve_space() ends up triggering
8906 	 * dirty page write out, then the btrfs_writepage() function could
8907 	 * end up waiting indefinitely to get a lock on the page currently
8908 	 * being processed by btrfs_page_mkwrite() function.
8909 	 */
8910 	ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
8911 					   reserved_space);
8912 	if (!ret) {
8913 		ret = file_update_time(vmf->vma->vm_file);
8914 		reserved = 1;
8915 	}
8916 	if (ret) {
8917 		if (ret == -ENOMEM)
8918 			ret = VM_FAULT_OOM;
8919 		else /* -ENOSPC, -EIO, etc */
8920 			ret = VM_FAULT_SIGBUS;
8921 		if (reserved)
8922 			goto out;
8923 		goto out_noreserve;
8924 	}
8925 
8926 	ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
8927 again:
8928 	lock_page(page);
8929 	size = i_size_read(inode);
8930 
8931 	if ((page->mapping != inode->i_mapping) ||
8932 	    (page_start >= size)) {
8933 		/* page got truncated out from underneath us */
8934 		goto out_unlock;
8935 	}
8936 	wait_on_page_writeback(page);
8937 
8938 	lock_extent_bits(io_tree, page_start, page_end, &cached_state);
8939 	set_page_extent_mapped(page);
8940 
8941 	/*
8942 	 * we can't set the delalloc bits if there are pending ordered
8943 	 * extents.  Drop our locks and wait for them to finish
8944 	 */
8945 	ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
8946 			PAGE_SIZE);
8947 	if (ordered) {
8948 		unlock_extent_cached(io_tree, page_start, page_end,
8949 				     &cached_state);
8950 		unlock_page(page);
8951 		btrfs_start_ordered_extent(inode, ordered, 1);
8952 		btrfs_put_ordered_extent(ordered);
8953 		goto again;
8954 	}
8955 
8956 	if (page->index == ((size - 1) >> PAGE_SHIFT)) {
8957 		reserved_space = round_up(size - page_start,
8958 					  fs_info->sectorsize);
8959 		if (reserved_space < PAGE_SIZE) {
8960 			end = page_start + reserved_space - 1;
8961 			btrfs_delalloc_release_space(inode, data_reserved,
8962 					page_start, PAGE_SIZE - reserved_space,
8963 					true);
8964 		}
8965 	}
8966 
8967 	/*
8968 	 * page_mkwrite gets called when the page is firstly dirtied after it's
8969 	 * faulted in, but write(2) could also dirty a page and set delalloc
8970 	 * bits, thus in this case for space account reason, we still need to
8971 	 * clear any delalloc bits within this page range since we have to
8972 	 * reserve data&meta space before lock_page() (see above comments).
8973 	 */
8974 	clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end,
8975 			  EXTENT_DIRTY | EXTENT_DELALLOC |
8976 			  EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
8977 			  0, 0, &cached_state);
8978 
8979 	ret = btrfs_set_extent_delalloc(inode, page_start, end, 0,
8980 					&cached_state, 0);
8981 	if (ret) {
8982 		unlock_extent_cached(io_tree, page_start, page_end,
8983 				     &cached_state);
8984 		ret = VM_FAULT_SIGBUS;
8985 		goto out_unlock;
8986 	}
8987 	ret = 0;
8988 
8989 	/* page is wholly or partially inside EOF */
8990 	if (page_start + PAGE_SIZE > size)
8991 		zero_start = size & ~PAGE_MASK;
8992 	else
8993 		zero_start = PAGE_SIZE;
8994 
8995 	if (zero_start != PAGE_SIZE) {
8996 		kaddr = kmap(page);
8997 		memset(kaddr + zero_start, 0, PAGE_SIZE - zero_start);
8998 		flush_dcache_page(page);
8999 		kunmap(page);
9000 	}
9001 	ClearPageChecked(page);
9002 	set_page_dirty(page);
9003 	SetPageUptodate(page);
9004 
9005 	BTRFS_I(inode)->last_trans = fs_info->generation;
9006 	BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
9007 	BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
9008 
9009 	unlock_extent_cached(io_tree, page_start, page_end, &cached_state);
9010 
9011 out_unlock:
9012 	if (!ret) {
9013 		btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE, true);
9014 		sb_end_pagefault(inode->i_sb);
9015 		extent_changeset_free(data_reserved);
9016 		return VM_FAULT_LOCKED;
9017 	}
9018 	unlock_page(page);
9019 out:
9020 	btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE, (ret != 0));
9021 	btrfs_delalloc_release_space(inode, data_reserved, page_start,
9022 				     reserved_space, (ret != 0));
9023 out_noreserve:
9024 	sb_end_pagefault(inode->i_sb);
9025 	extent_changeset_free(data_reserved);
9026 	return ret;
9027 }
9028 
9029 static int btrfs_truncate(struct inode *inode, bool skip_writeback)
9030 {
9031 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9032 	struct btrfs_root *root = BTRFS_I(inode)->root;
9033 	struct btrfs_block_rsv *rsv;
9034 	int ret = 0;
9035 	int err = 0;
9036 	struct btrfs_trans_handle *trans;
9037 	u64 mask = fs_info->sectorsize - 1;
9038 	u64 min_size = btrfs_calc_trunc_metadata_size(fs_info, 1);
9039 
9040 	if (!skip_writeback) {
9041 		ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
9042 					       (u64)-1);
9043 		if (ret)
9044 			return ret;
9045 	}
9046 
9047 	/*
9048 	 * Yes ladies and gentlemen, this is indeed ugly.  The fact is we have
9049 	 * 3 things going on here
9050 	 *
9051 	 * 1) We need to reserve space for our orphan item and the space to
9052 	 * delete our orphan item.  Lord knows we don't want to have a dangling
9053 	 * orphan item because we didn't reserve space to remove it.
9054 	 *
9055 	 * 2) We need to reserve space to update our inode.
9056 	 *
9057 	 * 3) We need to have something to cache all the space that is going to
9058 	 * be free'd up by the truncate operation, but also have some slack
9059 	 * space reserved in case it uses space during the truncate (thank you
9060 	 * very much snapshotting).
9061 	 *
9062 	 * And we need these to all be separate.  The fact is we can use a lot of
9063 	 * space doing the truncate, and we have no earthly idea how much space
9064 	 * we will use, so we need the truncate reservation to be separate so it
9065 	 * doesn't end up using space reserved for updating the inode or
9066 	 * removing the orphan item.  We also need to be able to stop the
9067 	 * transaction and start a new one, which means we need to be able to
9068 	 * update the inode several times, and we have no idea of knowing how
9069 	 * many times that will be, so we can't just reserve 1 item for the
9070 	 * entirety of the operation, so that has to be done separately as well.
9071 	 * Then there is the orphan item, which does indeed need to be held on
9072 	 * to for the whole operation, and we need nobody to touch this reserved
9073 	 * space except the orphan code.
9074 	 *
9075 	 * So that leaves us with
9076 	 *
9077 	 * 1) root->orphan_block_rsv - for the orphan deletion.
9078 	 * 2) rsv - for the truncate reservation, which we will steal from the
9079 	 * transaction reservation.
9080 	 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
9081 	 * updating the inode.
9082 	 */
9083 	rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
9084 	if (!rsv)
9085 		return -ENOMEM;
9086 	rsv->size = min_size;
9087 	rsv->failfast = 1;
9088 
9089 	/*
9090 	 * 1 for the truncate slack space
9091 	 * 1 for updating the inode.
9092 	 */
9093 	trans = btrfs_start_transaction(root, 2);
9094 	if (IS_ERR(trans)) {
9095 		err = PTR_ERR(trans);
9096 		goto out;
9097 	}
9098 
9099 	/* Migrate the slack space for the truncate to our reserve */
9100 	ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
9101 				      min_size, 0);
9102 	BUG_ON(ret);
9103 
9104 	/*
9105 	 * So if we truncate and then write and fsync we normally would just
9106 	 * write the extents that changed, which is a problem if we need to
9107 	 * first truncate that entire inode.  So set this flag so we write out
9108 	 * all of the extents in the inode to the sync log so we're completely
9109 	 * safe.
9110 	 */
9111 	set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
9112 	trans->block_rsv = rsv;
9113 
9114 	while (1) {
9115 		ret = btrfs_truncate_inode_items(trans, root, inode,
9116 						 inode->i_size,
9117 						 BTRFS_EXTENT_DATA_KEY);
9118 		trans->block_rsv = &fs_info->trans_block_rsv;
9119 		if (ret != -ENOSPC && ret != -EAGAIN) {
9120 			if (ret < 0)
9121 				err = ret;
9122 			break;
9123 		}
9124 
9125 		ret = btrfs_update_inode(trans, root, inode);
9126 		if (ret) {
9127 			err = ret;
9128 			break;
9129 		}
9130 
9131 		btrfs_end_transaction(trans);
9132 		btrfs_btree_balance_dirty(fs_info);
9133 
9134 		trans = btrfs_start_transaction(root, 2);
9135 		if (IS_ERR(trans)) {
9136 			ret = err = PTR_ERR(trans);
9137 			trans = NULL;
9138 			break;
9139 		}
9140 
9141 		btrfs_block_rsv_release(fs_info, rsv, -1);
9142 		ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
9143 					      rsv, min_size, 0);
9144 		BUG_ON(ret);	/* shouldn't happen */
9145 		trans->block_rsv = rsv;
9146 	}
9147 
9148 	/*
9149 	 * We can't call btrfs_truncate_block inside a trans handle as we could
9150 	 * deadlock with freeze, if we got NEED_TRUNCATE_BLOCK then we know
9151 	 * we've truncated everything except the last little bit, and can do
9152 	 * btrfs_truncate_block and then update the disk_i_size.
9153 	 */
9154 	if (ret == NEED_TRUNCATE_BLOCK) {
9155 		btrfs_end_transaction(trans);
9156 		btrfs_btree_balance_dirty(fs_info);
9157 
9158 		ret = btrfs_truncate_block(inode, inode->i_size, 0, 0);
9159 		if (ret)
9160 			goto out;
9161 		trans = btrfs_start_transaction(root, 1);
9162 		if (IS_ERR(trans)) {
9163 			ret = PTR_ERR(trans);
9164 			goto out;
9165 		}
9166 		btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
9167 	}
9168 
9169 	if (ret == 0 && inode->i_nlink > 0) {
9170 		trans->block_rsv = root->orphan_block_rsv;
9171 		ret = btrfs_orphan_del(trans, BTRFS_I(inode));
9172 		if (ret)
9173 			err = ret;
9174 	}
9175 
9176 	if (trans) {
9177 		trans->block_rsv = &fs_info->trans_block_rsv;
9178 		ret = btrfs_update_inode(trans, root, inode);
9179 		if (ret && !err)
9180 			err = ret;
9181 
9182 		ret = btrfs_end_transaction(trans);
9183 		btrfs_btree_balance_dirty(fs_info);
9184 	}
9185 out:
9186 	btrfs_free_block_rsv(fs_info, rsv);
9187 
9188 	if (ret && !err)
9189 		err = ret;
9190 
9191 	return err;
9192 }
9193 
9194 /*
9195  * create a new subvolume directory/inode (helper for the ioctl).
9196  */
9197 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
9198 			     struct btrfs_root *new_root,
9199 			     struct btrfs_root *parent_root,
9200 			     u64 new_dirid)
9201 {
9202 	struct inode *inode;
9203 	int err;
9204 	u64 index = 0;
9205 
9206 	inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
9207 				new_dirid, new_dirid,
9208 				S_IFDIR | (~current_umask() & S_IRWXUGO),
9209 				&index);
9210 	if (IS_ERR(inode))
9211 		return PTR_ERR(inode);
9212 	inode->i_op = &btrfs_dir_inode_operations;
9213 	inode->i_fop = &btrfs_dir_file_operations;
9214 
9215 	set_nlink(inode, 1);
9216 	btrfs_i_size_write(BTRFS_I(inode), 0);
9217 	unlock_new_inode(inode);
9218 
9219 	err = btrfs_subvol_inherit_props(trans, new_root, parent_root);
9220 	if (err)
9221 		btrfs_err(new_root->fs_info,
9222 			  "error inheriting subvolume %llu properties: %d",
9223 			  new_root->root_key.objectid, err);
9224 
9225 	err = btrfs_update_inode(trans, new_root, inode);
9226 
9227 	iput(inode);
9228 	return err;
9229 }
9230 
9231 struct inode *btrfs_alloc_inode(struct super_block *sb)
9232 {
9233 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
9234 	struct btrfs_inode *ei;
9235 	struct inode *inode;
9236 
9237 	ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_KERNEL);
9238 	if (!ei)
9239 		return NULL;
9240 
9241 	ei->root = NULL;
9242 	ei->generation = 0;
9243 	ei->last_trans = 0;
9244 	ei->last_sub_trans = 0;
9245 	ei->logged_trans = 0;
9246 	ei->delalloc_bytes = 0;
9247 	ei->new_delalloc_bytes = 0;
9248 	ei->defrag_bytes = 0;
9249 	ei->disk_i_size = 0;
9250 	ei->flags = 0;
9251 	ei->csum_bytes = 0;
9252 	ei->index_cnt = (u64)-1;
9253 	ei->dir_index = 0;
9254 	ei->last_unlink_trans = 0;
9255 	ei->last_log_commit = 0;
9256 
9257 	spin_lock_init(&ei->lock);
9258 	ei->outstanding_extents = 0;
9259 	if (sb->s_magic != BTRFS_TEST_MAGIC)
9260 		btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv,
9261 					      BTRFS_BLOCK_RSV_DELALLOC);
9262 	ei->runtime_flags = 0;
9263 	ei->prop_compress = BTRFS_COMPRESS_NONE;
9264 	ei->defrag_compress = BTRFS_COMPRESS_NONE;
9265 
9266 	ei->delayed_node = NULL;
9267 
9268 	ei->i_otime.tv_sec = 0;
9269 	ei->i_otime.tv_nsec = 0;
9270 
9271 	inode = &ei->vfs_inode;
9272 	extent_map_tree_init(&ei->extent_tree);
9273 	extent_io_tree_init(&ei->io_tree, inode);
9274 	extent_io_tree_init(&ei->io_failure_tree, inode);
9275 	ei->io_tree.track_uptodate = 1;
9276 	ei->io_failure_tree.track_uptodate = 1;
9277 	atomic_set(&ei->sync_writers, 0);
9278 	mutex_init(&ei->log_mutex);
9279 	mutex_init(&ei->delalloc_mutex);
9280 	btrfs_ordered_inode_tree_init(&ei->ordered_tree);
9281 	INIT_LIST_HEAD(&ei->delalloc_inodes);
9282 	INIT_LIST_HEAD(&ei->delayed_iput);
9283 	RB_CLEAR_NODE(&ei->rb_node);
9284 	init_rwsem(&ei->dio_sem);
9285 
9286 	return inode;
9287 }
9288 
9289 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
9290 void btrfs_test_destroy_inode(struct inode *inode)
9291 {
9292 	btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
9293 	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9294 }
9295 #endif
9296 
9297 static void btrfs_i_callback(struct rcu_head *head)
9298 {
9299 	struct inode *inode = container_of(head, struct inode, i_rcu);
9300 	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9301 }
9302 
9303 void btrfs_destroy_inode(struct inode *inode)
9304 {
9305 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9306 	struct btrfs_ordered_extent *ordered;
9307 	struct btrfs_root *root = BTRFS_I(inode)->root;
9308 
9309 	WARN_ON(!hlist_empty(&inode->i_dentry));
9310 	WARN_ON(inode->i_data.nrpages);
9311 	WARN_ON(BTRFS_I(inode)->block_rsv.reserved);
9312 	WARN_ON(BTRFS_I(inode)->block_rsv.size);
9313 	WARN_ON(BTRFS_I(inode)->outstanding_extents);
9314 	WARN_ON(BTRFS_I(inode)->delalloc_bytes);
9315 	WARN_ON(BTRFS_I(inode)->new_delalloc_bytes);
9316 	WARN_ON(BTRFS_I(inode)->csum_bytes);
9317 	WARN_ON(BTRFS_I(inode)->defrag_bytes);
9318 
9319 	/*
9320 	 * This can happen where we create an inode, but somebody else also
9321 	 * created the same inode and we need to destroy the one we already
9322 	 * created.
9323 	 */
9324 	if (!root)
9325 		goto free;
9326 
9327 	if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
9328 		     &BTRFS_I(inode)->runtime_flags)) {
9329 		btrfs_info(fs_info, "inode %llu still on the orphan list",
9330 			   btrfs_ino(BTRFS_I(inode)));
9331 		atomic_dec(&root->orphan_inodes);
9332 	}
9333 
9334 	while (1) {
9335 		ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
9336 		if (!ordered)
9337 			break;
9338 		else {
9339 			btrfs_err(fs_info,
9340 				  "found ordered extent %llu %llu on inode cleanup",
9341 				  ordered->file_offset, ordered->len);
9342 			btrfs_remove_ordered_extent(inode, ordered);
9343 			btrfs_put_ordered_extent(ordered);
9344 			btrfs_put_ordered_extent(ordered);
9345 		}
9346 	}
9347 	btrfs_qgroup_check_reserved_leak(inode);
9348 	inode_tree_del(inode);
9349 	btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
9350 free:
9351 	call_rcu(&inode->i_rcu, btrfs_i_callback);
9352 }
9353 
9354 int btrfs_drop_inode(struct inode *inode)
9355 {
9356 	struct btrfs_root *root = BTRFS_I(inode)->root;
9357 
9358 	if (root == NULL)
9359 		return 1;
9360 
9361 	/* the snap/subvol tree is on deleting */
9362 	if (btrfs_root_refs(&root->root_item) == 0)
9363 		return 1;
9364 	else
9365 		return generic_drop_inode(inode);
9366 }
9367 
9368 static void init_once(void *foo)
9369 {
9370 	struct btrfs_inode *ei = (struct btrfs_inode *) foo;
9371 
9372 	inode_init_once(&ei->vfs_inode);
9373 }
9374 
9375 void __cold btrfs_destroy_cachep(void)
9376 {
9377 	/*
9378 	 * Make sure all delayed rcu free inodes are flushed before we
9379 	 * destroy cache.
9380 	 */
9381 	rcu_barrier();
9382 	kmem_cache_destroy(btrfs_inode_cachep);
9383 	kmem_cache_destroy(btrfs_trans_handle_cachep);
9384 	kmem_cache_destroy(btrfs_path_cachep);
9385 	kmem_cache_destroy(btrfs_free_space_cachep);
9386 }
9387 
9388 int __init btrfs_init_cachep(void)
9389 {
9390 	btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
9391 			sizeof(struct btrfs_inode), 0,
9392 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT,
9393 			init_once);
9394 	if (!btrfs_inode_cachep)
9395 		goto fail;
9396 
9397 	btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
9398 			sizeof(struct btrfs_trans_handle), 0,
9399 			SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL);
9400 	if (!btrfs_trans_handle_cachep)
9401 		goto fail;
9402 
9403 	btrfs_path_cachep = kmem_cache_create("btrfs_path",
9404 			sizeof(struct btrfs_path), 0,
9405 			SLAB_MEM_SPREAD, NULL);
9406 	if (!btrfs_path_cachep)
9407 		goto fail;
9408 
9409 	btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
9410 			sizeof(struct btrfs_free_space), 0,
9411 			SLAB_MEM_SPREAD, NULL);
9412 	if (!btrfs_free_space_cachep)
9413 		goto fail;
9414 
9415 	return 0;
9416 fail:
9417 	btrfs_destroy_cachep();
9418 	return -ENOMEM;
9419 }
9420 
9421 static int btrfs_getattr(const struct path *path, struct kstat *stat,
9422 			 u32 request_mask, unsigned int flags)
9423 {
9424 	u64 delalloc_bytes;
9425 	struct inode *inode = d_inode(path->dentry);
9426 	u32 blocksize = inode->i_sb->s_blocksize;
9427 	u32 bi_flags = BTRFS_I(inode)->flags;
9428 
9429 	stat->result_mask |= STATX_BTIME;
9430 	stat->btime.tv_sec = BTRFS_I(inode)->i_otime.tv_sec;
9431 	stat->btime.tv_nsec = BTRFS_I(inode)->i_otime.tv_nsec;
9432 	if (bi_flags & BTRFS_INODE_APPEND)
9433 		stat->attributes |= STATX_ATTR_APPEND;
9434 	if (bi_flags & BTRFS_INODE_COMPRESS)
9435 		stat->attributes |= STATX_ATTR_COMPRESSED;
9436 	if (bi_flags & BTRFS_INODE_IMMUTABLE)
9437 		stat->attributes |= STATX_ATTR_IMMUTABLE;
9438 	if (bi_flags & BTRFS_INODE_NODUMP)
9439 		stat->attributes |= STATX_ATTR_NODUMP;
9440 
9441 	stat->attributes_mask |= (STATX_ATTR_APPEND |
9442 				  STATX_ATTR_COMPRESSED |
9443 				  STATX_ATTR_IMMUTABLE |
9444 				  STATX_ATTR_NODUMP);
9445 
9446 	generic_fillattr(inode, stat);
9447 	stat->dev = BTRFS_I(inode)->root->anon_dev;
9448 
9449 	spin_lock(&BTRFS_I(inode)->lock);
9450 	delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes;
9451 	spin_unlock(&BTRFS_I(inode)->lock);
9452 	stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
9453 			ALIGN(delalloc_bytes, blocksize)) >> 9;
9454 	return 0;
9455 }
9456 
9457 static int btrfs_rename_exchange(struct inode *old_dir,
9458 			      struct dentry *old_dentry,
9459 			      struct inode *new_dir,
9460 			      struct dentry *new_dentry)
9461 {
9462 	struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
9463 	struct btrfs_trans_handle *trans;
9464 	struct btrfs_root *root = BTRFS_I(old_dir)->root;
9465 	struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9466 	struct inode *new_inode = new_dentry->d_inode;
9467 	struct inode *old_inode = old_dentry->d_inode;
9468 	struct timespec ctime = current_time(old_inode);
9469 	struct dentry *parent;
9470 	u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
9471 	u64 new_ino = btrfs_ino(BTRFS_I(new_inode));
9472 	u64 old_idx = 0;
9473 	u64 new_idx = 0;
9474 	u64 root_objectid;
9475 	int ret;
9476 	bool root_log_pinned = false;
9477 	bool dest_log_pinned = false;
9478 
9479 	/* we only allow rename subvolume link between subvolumes */
9480 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9481 		return -EXDEV;
9482 
9483 	/* close the race window with snapshot create/destroy ioctl */
9484 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9485 		down_read(&fs_info->subvol_sem);
9486 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
9487 		down_read(&fs_info->subvol_sem);
9488 
9489 	/*
9490 	 * We want to reserve the absolute worst case amount of items.  So if
9491 	 * both inodes are subvols and we need to unlink them then that would
9492 	 * require 4 item modifications, but if they are both normal inodes it
9493 	 * would require 5 item modifications, so we'll assume their normal
9494 	 * inodes.  So 5 * 2 is 10, plus 2 for the new links, so 12 total items
9495 	 * should cover the worst case number of items we'll modify.
9496 	 */
9497 	trans = btrfs_start_transaction(root, 12);
9498 	if (IS_ERR(trans)) {
9499 		ret = PTR_ERR(trans);
9500 		goto out_notrans;
9501 	}
9502 
9503 	/*
9504 	 * We need to find a free sequence number both in the source and
9505 	 * in the destination directory for the exchange.
9506 	 */
9507 	ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx);
9508 	if (ret)
9509 		goto out_fail;
9510 	ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx);
9511 	if (ret)
9512 		goto out_fail;
9513 
9514 	BTRFS_I(old_inode)->dir_index = 0ULL;
9515 	BTRFS_I(new_inode)->dir_index = 0ULL;
9516 
9517 	/* Reference for the source. */
9518 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9519 		/* force full log commit if subvolume involved. */
9520 		btrfs_set_log_full_commit(fs_info, trans);
9521 	} else {
9522 		btrfs_pin_log_trans(root);
9523 		root_log_pinned = true;
9524 		ret = btrfs_insert_inode_ref(trans, dest,
9525 					     new_dentry->d_name.name,
9526 					     new_dentry->d_name.len,
9527 					     old_ino,
9528 					     btrfs_ino(BTRFS_I(new_dir)),
9529 					     old_idx);
9530 		if (ret)
9531 			goto out_fail;
9532 	}
9533 
9534 	/* And now for the dest. */
9535 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9536 		/* force full log commit if subvolume involved. */
9537 		btrfs_set_log_full_commit(fs_info, trans);
9538 	} else {
9539 		btrfs_pin_log_trans(dest);
9540 		dest_log_pinned = true;
9541 		ret = btrfs_insert_inode_ref(trans, root,
9542 					     old_dentry->d_name.name,
9543 					     old_dentry->d_name.len,
9544 					     new_ino,
9545 					     btrfs_ino(BTRFS_I(old_dir)),
9546 					     new_idx);
9547 		if (ret)
9548 			goto out_fail;
9549 	}
9550 
9551 	/* Update inode version and ctime/mtime. */
9552 	inode_inc_iversion(old_dir);
9553 	inode_inc_iversion(new_dir);
9554 	inode_inc_iversion(old_inode);
9555 	inode_inc_iversion(new_inode);
9556 	old_dir->i_ctime = old_dir->i_mtime = ctime;
9557 	new_dir->i_ctime = new_dir->i_mtime = ctime;
9558 	old_inode->i_ctime = ctime;
9559 	new_inode->i_ctime = ctime;
9560 
9561 	if (old_dentry->d_parent != new_dentry->d_parent) {
9562 		btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9563 				BTRFS_I(old_inode), 1);
9564 		btrfs_record_unlink_dir(trans, BTRFS_I(new_dir),
9565 				BTRFS_I(new_inode), 1);
9566 	}
9567 
9568 	/* src is a subvolume */
9569 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9570 		root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
9571 		ret = btrfs_unlink_subvol(trans, root, old_dir,
9572 					  root_objectid,
9573 					  old_dentry->d_name.name,
9574 					  old_dentry->d_name.len);
9575 	} else { /* src is an inode */
9576 		ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
9577 					   BTRFS_I(old_dentry->d_inode),
9578 					   old_dentry->d_name.name,
9579 					   old_dentry->d_name.len);
9580 		if (!ret)
9581 			ret = btrfs_update_inode(trans, root, old_inode);
9582 	}
9583 	if (ret) {
9584 		btrfs_abort_transaction(trans, ret);
9585 		goto out_fail;
9586 	}
9587 
9588 	/* dest is a subvolume */
9589 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9590 		root_objectid = BTRFS_I(new_inode)->root->root_key.objectid;
9591 		ret = btrfs_unlink_subvol(trans, dest, new_dir,
9592 					  root_objectid,
9593 					  new_dentry->d_name.name,
9594 					  new_dentry->d_name.len);
9595 	} else { /* dest is an inode */
9596 		ret = __btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
9597 					   BTRFS_I(new_dentry->d_inode),
9598 					   new_dentry->d_name.name,
9599 					   new_dentry->d_name.len);
9600 		if (!ret)
9601 			ret = btrfs_update_inode(trans, dest, new_inode);
9602 	}
9603 	if (ret) {
9604 		btrfs_abort_transaction(trans, ret);
9605 		goto out_fail;
9606 	}
9607 
9608 	ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
9609 			     new_dentry->d_name.name,
9610 			     new_dentry->d_name.len, 0, old_idx);
9611 	if (ret) {
9612 		btrfs_abort_transaction(trans, ret);
9613 		goto out_fail;
9614 	}
9615 
9616 	ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode),
9617 			     old_dentry->d_name.name,
9618 			     old_dentry->d_name.len, 0, new_idx);
9619 	if (ret) {
9620 		btrfs_abort_transaction(trans, ret);
9621 		goto out_fail;
9622 	}
9623 
9624 	if (old_inode->i_nlink == 1)
9625 		BTRFS_I(old_inode)->dir_index = old_idx;
9626 	if (new_inode->i_nlink == 1)
9627 		BTRFS_I(new_inode)->dir_index = new_idx;
9628 
9629 	if (root_log_pinned) {
9630 		parent = new_dentry->d_parent;
9631 		btrfs_log_new_name(trans, BTRFS_I(old_inode), BTRFS_I(old_dir),
9632 				parent);
9633 		btrfs_end_log_trans(root);
9634 		root_log_pinned = false;
9635 	}
9636 	if (dest_log_pinned) {
9637 		parent = old_dentry->d_parent;
9638 		btrfs_log_new_name(trans, BTRFS_I(new_inode), BTRFS_I(new_dir),
9639 				parent);
9640 		btrfs_end_log_trans(dest);
9641 		dest_log_pinned = false;
9642 	}
9643 out_fail:
9644 	/*
9645 	 * If we have pinned a log and an error happened, we unpin tasks
9646 	 * trying to sync the log and force them to fallback to a transaction
9647 	 * commit if the log currently contains any of the inodes involved in
9648 	 * this rename operation (to ensure we do not persist a log with an
9649 	 * inconsistent state for any of these inodes or leading to any
9650 	 * inconsistencies when replayed). If the transaction was aborted, the
9651 	 * abortion reason is propagated to userspace when attempting to commit
9652 	 * the transaction. If the log does not contain any of these inodes, we
9653 	 * allow the tasks to sync it.
9654 	 */
9655 	if (ret && (root_log_pinned || dest_log_pinned)) {
9656 		if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
9657 		    btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
9658 		    btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
9659 		    (new_inode &&
9660 		     btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
9661 			btrfs_set_log_full_commit(fs_info, trans);
9662 
9663 		if (root_log_pinned) {
9664 			btrfs_end_log_trans(root);
9665 			root_log_pinned = false;
9666 		}
9667 		if (dest_log_pinned) {
9668 			btrfs_end_log_trans(dest);
9669 			dest_log_pinned = false;
9670 		}
9671 	}
9672 	ret = btrfs_end_transaction(trans);
9673 out_notrans:
9674 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
9675 		up_read(&fs_info->subvol_sem);
9676 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9677 		up_read(&fs_info->subvol_sem);
9678 
9679 	return ret;
9680 }
9681 
9682 static int btrfs_whiteout_for_rename(struct btrfs_trans_handle *trans,
9683 				     struct btrfs_root *root,
9684 				     struct inode *dir,
9685 				     struct dentry *dentry)
9686 {
9687 	int ret;
9688 	struct inode *inode;
9689 	u64 objectid;
9690 	u64 index;
9691 
9692 	ret = btrfs_find_free_ino(root, &objectid);
9693 	if (ret)
9694 		return ret;
9695 
9696 	inode = btrfs_new_inode(trans, root, dir,
9697 				dentry->d_name.name,
9698 				dentry->d_name.len,
9699 				btrfs_ino(BTRFS_I(dir)),
9700 				objectid,
9701 				S_IFCHR | WHITEOUT_MODE,
9702 				&index);
9703 
9704 	if (IS_ERR(inode)) {
9705 		ret = PTR_ERR(inode);
9706 		return ret;
9707 	}
9708 
9709 	inode->i_op = &btrfs_special_inode_operations;
9710 	init_special_inode(inode, inode->i_mode,
9711 		WHITEOUT_DEV);
9712 
9713 	ret = btrfs_init_inode_security(trans, inode, dir,
9714 				&dentry->d_name);
9715 	if (ret)
9716 		goto out;
9717 
9718 	ret = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
9719 				BTRFS_I(inode), 0, index);
9720 	if (ret)
9721 		goto out;
9722 
9723 	ret = btrfs_update_inode(trans, root, inode);
9724 out:
9725 	unlock_new_inode(inode);
9726 	if (ret)
9727 		inode_dec_link_count(inode);
9728 	iput(inode);
9729 
9730 	return ret;
9731 }
9732 
9733 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
9734 			   struct inode *new_dir, struct dentry *new_dentry,
9735 			   unsigned int flags)
9736 {
9737 	struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
9738 	struct btrfs_trans_handle *trans;
9739 	unsigned int trans_num_items;
9740 	struct btrfs_root *root = BTRFS_I(old_dir)->root;
9741 	struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9742 	struct inode *new_inode = d_inode(new_dentry);
9743 	struct inode *old_inode = d_inode(old_dentry);
9744 	u64 index = 0;
9745 	u64 root_objectid;
9746 	int ret;
9747 	u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
9748 	bool log_pinned = false;
9749 
9750 	if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
9751 		return -EPERM;
9752 
9753 	/* we only allow rename subvolume link between subvolumes */
9754 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9755 		return -EXDEV;
9756 
9757 	if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
9758 	    (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID))
9759 		return -ENOTEMPTY;
9760 
9761 	if (S_ISDIR(old_inode->i_mode) && new_inode &&
9762 	    new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
9763 		return -ENOTEMPTY;
9764 
9765 
9766 	/* check for collisions, even if the  name isn't there */
9767 	ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
9768 			     new_dentry->d_name.name,
9769 			     new_dentry->d_name.len);
9770 
9771 	if (ret) {
9772 		if (ret == -EEXIST) {
9773 			/* we shouldn't get
9774 			 * eexist without a new_inode */
9775 			if (WARN_ON(!new_inode)) {
9776 				return ret;
9777 			}
9778 		} else {
9779 			/* maybe -EOVERFLOW */
9780 			return ret;
9781 		}
9782 	}
9783 	ret = 0;
9784 
9785 	/*
9786 	 * we're using rename to replace one file with another.  Start IO on it
9787 	 * now so  we don't add too much work to the end of the transaction
9788 	 */
9789 	if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
9790 		filemap_flush(old_inode->i_mapping);
9791 
9792 	/* close the racy window with snapshot create/destroy ioctl */
9793 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9794 		down_read(&fs_info->subvol_sem);
9795 	/*
9796 	 * We want to reserve the absolute worst case amount of items.  So if
9797 	 * both inodes are subvols and we need to unlink them then that would
9798 	 * require 4 item modifications, but if they are both normal inodes it
9799 	 * would require 5 item modifications, so we'll assume they are normal
9800 	 * inodes.  So 5 * 2 is 10, plus 1 for the new link, so 11 total items
9801 	 * should cover the worst case number of items we'll modify.
9802 	 * If our rename has the whiteout flag, we need more 5 units for the
9803 	 * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item
9804 	 * when selinux is enabled).
9805 	 */
9806 	trans_num_items = 11;
9807 	if (flags & RENAME_WHITEOUT)
9808 		trans_num_items += 5;
9809 	trans = btrfs_start_transaction(root, trans_num_items);
9810 	if (IS_ERR(trans)) {
9811 		ret = PTR_ERR(trans);
9812 		goto out_notrans;
9813 	}
9814 
9815 	if (dest != root)
9816 		btrfs_record_root_in_trans(trans, dest);
9817 
9818 	ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index);
9819 	if (ret)
9820 		goto out_fail;
9821 
9822 	BTRFS_I(old_inode)->dir_index = 0ULL;
9823 	if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9824 		/* force full log commit if subvolume involved. */
9825 		btrfs_set_log_full_commit(fs_info, trans);
9826 	} else {
9827 		btrfs_pin_log_trans(root);
9828 		log_pinned = true;
9829 		ret = btrfs_insert_inode_ref(trans, dest,
9830 					     new_dentry->d_name.name,
9831 					     new_dentry->d_name.len,
9832 					     old_ino,
9833 					     btrfs_ino(BTRFS_I(new_dir)), index);
9834 		if (ret)
9835 			goto out_fail;
9836 	}
9837 
9838 	inode_inc_iversion(old_dir);
9839 	inode_inc_iversion(new_dir);
9840 	inode_inc_iversion(old_inode);
9841 	old_dir->i_ctime = old_dir->i_mtime =
9842 	new_dir->i_ctime = new_dir->i_mtime =
9843 	old_inode->i_ctime = current_time(old_dir);
9844 
9845 	if (old_dentry->d_parent != new_dentry->d_parent)
9846 		btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9847 				BTRFS_I(old_inode), 1);
9848 
9849 	if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9850 		root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
9851 		ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
9852 					old_dentry->d_name.name,
9853 					old_dentry->d_name.len);
9854 	} else {
9855 		ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
9856 					BTRFS_I(d_inode(old_dentry)),
9857 					old_dentry->d_name.name,
9858 					old_dentry->d_name.len);
9859 		if (!ret)
9860 			ret = btrfs_update_inode(trans, root, old_inode);
9861 	}
9862 	if (ret) {
9863 		btrfs_abort_transaction(trans, ret);
9864 		goto out_fail;
9865 	}
9866 
9867 	if (new_inode) {
9868 		inode_inc_iversion(new_inode);
9869 		new_inode->i_ctime = current_time(new_inode);
9870 		if (unlikely(btrfs_ino(BTRFS_I(new_inode)) ==
9871 			     BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
9872 			root_objectid = BTRFS_I(new_inode)->location.objectid;
9873 			ret = btrfs_unlink_subvol(trans, dest, new_dir,
9874 						root_objectid,
9875 						new_dentry->d_name.name,
9876 						new_dentry->d_name.len);
9877 			BUG_ON(new_inode->i_nlink == 0);
9878 		} else {
9879 			ret = btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
9880 						 BTRFS_I(d_inode(new_dentry)),
9881 						 new_dentry->d_name.name,
9882 						 new_dentry->d_name.len);
9883 		}
9884 		if (!ret && new_inode->i_nlink == 0)
9885 			ret = btrfs_orphan_add(trans,
9886 					BTRFS_I(d_inode(new_dentry)));
9887 		if (ret) {
9888 			btrfs_abort_transaction(trans, ret);
9889 			goto out_fail;
9890 		}
9891 	}
9892 
9893 	ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
9894 			     new_dentry->d_name.name,
9895 			     new_dentry->d_name.len, 0, index);
9896 	if (ret) {
9897 		btrfs_abort_transaction(trans, ret);
9898 		goto out_fail;
9899 	}
9900 
9901 	if (old_inode->i_nlink == 1)
9902 		BTRFS_I(old_inode)->dir_index = index;
9903 
9904 	if (log_pinned) {
9905 		struct dentry *parent = new_dentry->d_parent;
9906 
9907 		btrfs_log_new_name(trans, BTRFS_I(old_inode), BTRFS_I(old_dir),
9908 				parent);
9909 		btrfs_end_log_trans(root);
9910 		log_pinned = false;
9911 	}
9912 
9913 	if (flags & RENAME_WHITEOUT) {
9914 		ret = btrfs_whiteout_for_rename(trans, root, old_dir,
9915 						old_dentry);
9916 
9917 		if (ret) {
9918 			btrfs_abort_transaction(trans, ret);
9919 			goto out_fail;
9920 		}
9921 	}
9922 out_fail:
9923 	/*
9924 	 * If we have pinned the log and an error happened, we unpin tasks
9925 	 * trying to sync the log and force them to fallback to a transaction
9926 	 * commit if the log currently contains any of the inodes involved in
9927 	 * this rename operation (to ensure we do not persist a log with an
9928 	 * inconsistent state for any of these inodes or leading to any
9929 	 * inconsistencies when replayed). If the transaction was aborted, the
9930 	 * abortion reason is propagated to userspace when attempting to commit
9931 	 * the transaction. If the log does not contain any of these inodes, we
9932 	 * allow the tasks to sync it.
9933 	 */
9934 	if (ret && log_pinned) {
9935 		if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
9936 		    btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
9937 		    btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
9938 		    (new_inode &&
9939 		     btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
9940 			btrfs_set_log_full_commit(fs_info, trans);
9941 
9942 		btrfs_end_log_trans(root);
9943 		log_pinned = false;
9944 	}
9945 	btrfs_end_transaction(trans);
9946 out_notrans:
9947 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9948 		up_read(&fs_info->subvol_sem);
9949 
9950 	return ret;
9951 }
9952 
9953 static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry,
9954 			 struct inode *new_dir, struct dentry *new_dentry,
9955 			 unsigned int flags)
9956 {
9957 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
9958 		return -EINVAL;
9959 
9960 	if (flags & RENAME_EXCHANGE)
9961 		return btrfs_rename_exchange(old_dir, old_dentry, new_dir,
9962 					  new_dentry);
9963 
9964 	return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry, flags);
9965 }
9966 
9967 static void btrfs_run_delalloc_work(struct btrfs_work *work)
9968 {
9969 	struct btrfs_delalloc_work *delalloc_work;
9970 	struct inode *inode;
9971 
9972 	delalloc_work = container_of(work, struct btrfs_delalloc_work,
9973 				     work);
9974 	inode = delalloc_work->inode;
9975 	filemap_flush(inode->i_mapping);
9976 	if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
9977 				&BTRFS_I(inode)->runtime_flags))
9978 		filemap_flush(inode->i_mapping);
9979 
9980 	if (delalloc_work->delay_iput)
9981 		btrfs_add_delayed_iput(inode);
9982 	else
9983 		iput(inode);
9984 	complete(&delalloc_work->completion);
9985 }
9986 
9987 struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode,
9988 						    int delay_iput)
9989 {
9990 	struct btrfs_delalloc_work *work;
9991 
9992 	work = kmalloc(sizeof(*work), GFP_NOFS);
9993 	if (!work)
9994 		return NULL;
9995 
9996 	init_completion(&work->completion);
9997 	INIT_LIST_HEAD(&work->list);
9998 	work->inode = inode;
9999 	work->delay_iput = delay_iput;
10000 	WARN_ON_ONCE(!inode);
10001 	btrfs_init_work(&work->work, btrfs_flush_delalloc_helper,
10002 			btrfs_run_delalloc_work, NULL, NULL);
10003 
10004 	return work;
10005 }
10006 
10007 void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work)
10008 {
10009 	wait_for_completion(&work->completion);
10010 	kfree(work);
10011 }
10012 
10013 /*
10014  * some fairly slow code that needs optimization. This walks the list
10015  * of all the inodes with pending delalloc and forces them to disk.
10016  */
10017 static int __start_delalloc_inodes(struct btrfs_root *root, int delay_iput,
10018 				   int nr)
10019 {
10020 	struct btrfs_inode *binode;
10021 	struct inode *inode;
10022 	struct btrfs_delalloc_work *work, *next;
10023 	struct list_head works;
10024 	struct list_head splice;
10025 	int ret = 0;
10026 
10027 	INIT_LIST_HEAD(&works);
10028 	INIT_LIST_HEAD(&splice);
10029 
10030 	mutex_lock(&root->delalloc_mutex);
10031 	spin_lock(&root->delalloc_lock);
10032 	list_splice_init(&root->delalloc_inodes, &splice);
10033 	while (!list_empty(&splice)) {
10034 		binode = list_entry(splice.next, struct btrfs_inode,
10035 				    delalloc_inodes);
10036 
10037 		list_move_tail(&binode->delalloc_inodes,
10038 			       &root->delalloc_inodes);
10039 		inode = igrab(&binode->vfs_inode);
10040 		if (!inode) {
10041 			cond_resched_lock(&root->delalloc_lock);
10042 			continue;
10043 		}
10044 		spin_unlock(&root->delalloc_lock);
10045 
10046 		work = btrfs_alloc_delalloc_work(inode, delay_iput);
10047 		if (!work) {
10048 			if (delay_iput)
10049 				btrfs_add_delayed_iput(inode);
10050 			else
10051 				iput(inode);
10052 			ret = -ENOMEM;
10053 			goto out;
10054 		}
10055 		list_add_tail(&work->list, &works);
10056 		btrfs_queue_work(root->fs_info->flush_workers,
10057 				 &work->work);
10058 		ret++;
10059 		if (nr != -1 && ret >= nr)
10060 			goto out;
10061 		cond_resched();
10062 		spin_lock(&root->delalloc_lock);
10063 	}
10064 	spin_unlock(&root->delalloc_lock);
10065 
10066 out:
10067 	list_for_each_entry_safe(work, next, &works, list) {
10068 		list_del_init(&work->list);
10069 		btrfs_wait_and_free_delalloc_work(work);
10070 	}
10071 
10072 	if (!list_empty_careful(&splice)) {
10073 		spin_lock(&root->delalloc_lock);
10074 		list_splice_tail(&splice, &root->delalloc_inodes);
10075 		spin_unlock(&root->delalloc_lock);
10076 	}
10077 	mutex_unlock(&root->delalloc_mutex);
10078 	return ret;
10079 }
10080 
10081 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
10082 {
10083 	struct btrfs_fs_info *fs_info = root->fs_info;
10084 	int ret;
10085 
10086 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
10087 		return -EROFS;
10088 
10089 	ret = __start_delalloc_inodes(root, delay_iput, -1);
10090 	if (ret > 0)
10091 		ret = 0;
10092 	return ret;
10093 }
10094 
10095 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int delay_iput,
10096 			       int nr)
10097 {
10098 	struct btrfs_root *root;
10099 	struct list_head splice;
10100 	int ret;
10101 
10102 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
10103 		return -EROFS;
10104 
10105 	INIT_LIST_HEAD(&splice);
10106 
10107 	mutex_lock(&fs_info->delalloc_root_mutex);
10108 	spin_lock(&fs_info->delalloc_root_lock);
10109 	list_splice_init(&fs_info->delalloc_roots, &splice);
10110 	while (!list_empty(&splice) && nr) {
10111 		root = list_first_entry(&splice, struct btrfs_root,
10112 					delalloc_root);
10113 		root = btrfs_grab_fs_root(root);
10114 		BUG_ON(!root);
10115 		list_move_tail(&root->delalloc_root,
10116 			       &fs_info->delalloc_roots);
10117 		spin_unlock(&fs_info->delalloc_root_lock);
10118 
10119 		ret = __start_delalloc_inodes(root, delay_iput, nr);
10120 		btrfs_put_fs_root(root);
10121 		if (ret < 0)
10122 			goto out;
10123 
10124 		if (nr != -1) {
10125 			nr -= ret;
10126 			WARN_ON(nr < 0);
10127 		}
10128 		spin_lock(&fs_info->delalloc_root_lock);
10129 	}
10130 	spin_unlock(&fs_info->delalloc_root_lock);
10131 
10132 	ret = 0;
10133 out:
10134 	if (!list_empty_careful(&splice)) {
10135 		spin_lock(&fs_info->delalloc_root_lock);
10136 		list_splice_tail(&splice, &fs_info->delalloc_roots);
10137 		spin_unlock(&fs_info->delalloc_root_lock);
10138 	}
10139 	mutex_unlock(&fs_info->delalloc_root_mutex);
10140 	return ret;
10141 }
10142 
10143 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
10144 			 const char *symname)
10145 {
10146 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
10147 	struct btrfs_trans_handle *trans;
10148 	struct btrfs_root *root = BTRFS_I(dir)->root;
10149 	struct btrfs_path *path;
10150 	struct btrfs_key key;
10151 	struct inode *inode = NULL;
10152 	int err;
10153 	int drop_inode = 0;
10154 	u64 objectid;
10155 	u64 index = 0;
10156 	int name_len;
10157 	int datasize;
10158 	unsigned long ptr;
10159 	struct btrfs_file_extent_item *ei;
10160 	struct extent_buffer *leaf;
10161 
10162 	name_len = strlen(symname);
10163 	if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info))
10164 		return -ENAMETOOLONG;
10165 
10166 	/*
10167 	 * 2 items for inode item and ref
10168 	 * 2 items for dir items
10169 	 * 1 item for updating parent inode item
10170 	 * 1 item for the inline extent item
10171 	 * 1 item for xattr if selinux is on
10172 	 */
10173 	trans = btrfs_start_transaction(root, 7);
10174 	if (IS_ERR(trans))
10175 		return PTR_ERR(trans);
10176 
10177 	err = btrfs_find_free_ino(root, &objectid);
10178 	if (err)
10179 		goto out_unlock;
10180 
10181 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
10182 				dentry->d_name.len, btrfs_ino(BTRFS_I(dir)),
10183 				objectid, S_IFLNK|S_IRWXUGO, &index);
10184 	if (IS_ERR(inode)) {
10185 		err = PTR_ERR(inode);
10186 		goto out_unlock;
10187 	}
10188 
10189 	/*
10190 	* If the active LSM wants to access the inode during
10191 	* d_instantiate it needs these. Smack checks to see
10192 	* if the filesystem supports xattrs by looking at the
10193 	* ops vector.
10194 	*/
10195 	inode->i_fop = &btrfs_file_operations;
10196 	inode->i_op = &btrfs_file_inode_operations;
10197 	inode->i_mapping->a_ops = &btrfs_aops;
10198 	BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10199 
10200 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
10201 	if (err)
10202 		goto out_unlock_inode;
10203 
10204 	path = btrfs_alloc_path();
10205 	if (!path) {
10206 		err = -ENOMEM;
10207 		goto out_unlock_inode;
10208 	}
10209 	key.objectid = btrfs_ino(BTRFS_I(inode));
10210 	key.offset = 0;
10211 	key.type = BTRFS_EXTENT_DATA_KEY;
10212 	datasize = btrfs_file_extent_calc_inline_size(name_len);
10213 	err = btrfs_insert_empty_item(trans, root, path, &key,
10214 				      datasize);
10215 	if (err) {
10216 		btrfs_free_path(path);
10217 		goto out_unlock_inode;
10218 	}
10219 	leaf = path->nodes[0];
10220 	ei = btrfs_item_ptr(leaf, path->slots[0],
10221 			    struct btrfs_file_extent_item);
10222 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
10223 	btrfs_set_file_extent_type(leaf, ei,
10224 				   BTRFS_FILE_EXTENT_INLINE);
10225 	btrfs_set_file_extent_encryption(leaf, ei, 0);
10226 	btrfs_set_file_extent_compression(leaf, ei, 0);
10227 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
10228 	btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
10229 
10230 	ptr = btrfs_file_extent_inline_start(ei);
10231 	write_extent_buffer(leaf, symname, ptr, name_len);
10232 	btrfs_mark_buffer_dirty(leaf);
10233 	btrfs_free_path(path);
10234 
10235 	inode->i_op = &btrfs_symlink_inode_operations;
10236 	inode_nohighmem(inode);
10237 	inode->i_mapping->a_ops = &btrfs_symlink_aops;
10238 	inode_set_bytes(inode, name_len);
10239 	btrfs_i_size_write(BTRFS_I(inode), name_len);
10240 	err = btrfs_update_inode(trans, root, inode);
10241 	/*
10242 	 * Last step, add directory indexes for our symlink inode. This is the
10243 	 * last step to avoid extra cleanup of these indexes if an error happens
10244 	 * elsewhere above.
10245 	 */
10246 	if (!err)
10247 		err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
10248 				BTRFS_I(inode), 0, index);
10249 	if (err) {
10250 		drop_inode = 1;
10251 		goto out_unlock_inode;
10252 	}
10253 
10254 	d_instantiate_new(dentry, inode);
10255 
10256 out_unlock:
10257 	btrfs_end_transaction(trans);
10258 	if (drop_inode) {
10259 		inode_dec_link_count(inode);
10260 		iput(inode);
10261 	}
10262 	btrfs_btree_balance_dirty(fs_info);
10263 	return err;
10264 
10265 out_unlock_inode:
10266 	drop_inode = 1;
10267 	unlock_new_inode(inode);
10268 	goto out_unlock;
10269 }
10270 
10271 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
10272 				       u64 start, u64 num_bytes, u64 min_size,
10273 				       loff_t actual_len, u64 *alloc_hint,
10274 				       struct btrfs_trans_handle *trans)
10275 {
10276 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
10277 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
10278 	struct extent_map *em;
10279 	struct btrfs_root *root = BTRFS_I(inode)->root;
10280 	struct btrfs_key ins;
10281 	u64 cur_offset = start;
10282 	u64 i_size;
10283 	u64 cur_bytes;
10284 	u64 last_alloc = (u64)-1;
10285 	int ret = 0;
10286 	bool own_trans = true;
10287 	u64 end = start + num_bytes - 1;
10288 
10289 	if (trans)
10290 		own_trans = false;
10291 	while (num_bytes > 0) {
10292 		if (own_trans) {
10293 			trans = btrfs_start_transaction(root, 3);
10294 			if (IS_ERR(trans)) {
10295 				ret = PTR_ERR(trans);
10296 				break;
10297 			}
10298 		}
10299 
10300 		cur_bytes = min_t(u64, num_bytes, SZ_256M);
10301 		cur_bytes = max(cur_bytes, min_size);
10302 		/*
10303 		 * If we are severely fragmented we could end up with really
10304 		 * small allocations, so if the allocator is returning small
10305 		 * chunks lets make its job easier by only searching for those
10306 		 * sized chunks.
10307 		 */
10308 		cur_bytes = min(cur_bytes, last_alloc);
10309 		ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes,
10310 				min_size, 0, *alloc_hint, &ins, 1, 0);
10311 		if (ret) {
10312 			if (own_trans)
10313 				btrfs_end_transaction(trans);
10314 			break;
10315 		}
10316 		btrfs_dec_block_group_reservations(fs_info, ins.objectid);
10317 
10318 		last_alloc = ins.offset;
10319 		ret = insert_reserved_file_extent(trans, inode,
10320 						  cur_offset, ins.objectid,
10321 						  ins.offset, ins.offset,
10322 						  ins.offset, 0, 0, 0,
10323 						  BTRFS_FILE_EXTENT_PREALLOC);
10324 		if (ret) {
10325 			btrfs_free_reserved_extent(fs_info, ins.objectid,
10326 						   ins.offset, 0);
10327 			btrfs_abort_transaction(trans, ret);
10328 			if (own_trans)
10329 				btrfs_end_transaction(trans);
10330 			break;
10331 		}
10332 
10333 		btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
10334 					cur_offset + ins.offset -1, 0);
10335 
10336 		em = alloc_extent_map();
10337 		if (!em) {
10338 			set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
10339 				&BTRFS_I(inode)->runtime_flags);
10340 			goto next;
10341 		}
10342 
10343 		em->start = cur_offset;
10344 		em->orig_start = cur_offset;
10345 		em->len = ins.offset;
10346 		em->block_start = ins.objectid;
10347 		em->block_len = ins.offset;
10348 		em->orig_block_len = ins.offset;
10349 		em->ram_bytes = ins.offset;
10350 		em->bdev = fs_info->fs_devices->latest_bdev;
10351 		set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
10352 		em->generation = trans->transid;
10353 
10354 		while (1) {
10355 			write_lock(&em_tree->lock);
10356 			ret = add_extent_mapping(em_tree, em, 1);
10357 			write_unlock(&em_tree->lock);
10358 			if (ret != -EEXIST)
10359 				break;
10360 			btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
10361 						cur_offset + ins.offset - 1,
10362 						0);
10363 		}
10364 		free_extent_map(em);
10365 next:
10366 		num_bytes -= ins.offset;
10367 		cur_offset += ins.offset;
10368 		*alloc_hint = ins.objectid + ins.offset;
10369 
10370 		inode_inc_iversion(inode);
10371 		inode->i_ctime = current_time(inode);
10372 		BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
10373 		if (!(mode & FALLOC_FL_KEEP_SIZE) &&
10374 		    (actual_len > inode->i_size) &&
10375 		    (cur_offset > inode->i_size)) {
10376 			if (cur_offset > actual_len)
10377 				i_size = actual_len;
10378 			else
10379 				i_size = cur_offset;
10380 			i_size_write(inode, i_size);
10381 			btrfs_ordered_update_i_size(inode, i_size, NULL);
10382 		}
10383 
10384 		ret = btrfs_update_inode(trans, root, inode);
10385 
10386 		if (ret) {
10387 			btrfs_abort_transaction(trans, ret);
10388 			if (own_trans)
10389 				btrfs_end_transaction(trans);
10390 			break;
10391 		}
10392 
10393 		if (own_trans)
10394 			btrfs_end_transaction(trans);
10395 	}
10396 	if (cur_offset < end)
10397 		btrfs_free_reserved_data_space(inode, NULL, cur_offset,
10398 			end - cur_offset + 1);
10399 	return ret;
10400 }
10401 
10402 int btrfs_prealloc_file_range(struct inode *inode, int mode,
10403 			      u64 start, u64 num_bytes, u64 min_size,
10404 			      loff_t actual_len, u64 *alloc_hint)
10405 {
10406 	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10407 					   min_size, actual_len, alloc_hint,
10408 					   NULL);
10409 }
10410 
10411 int btrfs_prealloc_file_range_trans(struct inode *inode,
10412 				    struct btrfs_trans_handle *trans, int mode,
10413 				    u64 start, u64 num_bytes, u64 min_size,
10414 				    loff_t actual_len, u64 *alloc_hint)
10415 {
10416 	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10417 					   min_size, actual_len, alloc_hint, trans);
10418 }
10419 
10420 static int btrfs_set_page_dirty(struct page *page)
10421 {
10422 	return __set_page_dirty_nobuffers(page);
10423 }
10424 
10425 static int btrfs_permission(struct inode *inode, int mask)
10426 {
10427 	struct btrfs_root *root = BTRFS_I(inode)->root;
10428 	umode_t mode = inode->i_mode;
10429 
10430 	if (mask & MAY_WRITE &&
10431 	    (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
10432 		if (btrfs_root_readonly(root))
10433 			return -EROFS;
10434 		if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
10435 			return -EACCES;
10436 	}
10437 	return generic_permission(inode, mask);
10438 }
10439 
10440 static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
10441 {
10442 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
10443 	struct btrfs_trans_handle *trans;
10444 	struct btrfs_root *root = BTRFS_I(dir)->root;
10445 	struct inode *inode = NULL;
10446 	u64 objectid;
10447 	u64 index;
10448 	int ret = 0;
10449 
10450 	/*
10451 	 * 5 units required for adding orphan entry
10452 	 */
10453 	trans = btrfs_start_transaction(root, 5);
10454 	if (IS_ERR(trans))
10455 		return PTR_ERR(trans);
10456 
10457 	ret = btrfs_find_free_ino(root, &objectid);
10458 	if (ret)
10459 		goto out;
10460 
10461 	inode = btrfs_new_inode(trans, root, dir, NULL, 0,
10462 			btrfs_ino(BTRFS_I(dir)), objectid, mode, &index);
10463 	if (IS_ERR(inode)) {
10464 		ret = PTR_ERR(inode);
10465 		inode = NULL;
10466 		goto out;
10467 	}
10468 
10469 	inode->i_fop = &btrfs_file_operations;
10470 	inode->i_op = &btrfs_file_inode_operations;
10471 
10472 	inode->i_mapping->a_ops = &btrfs_aops;
10473 	BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10474 
10475 	ret = btrfs_init_inode_security(trans, inode, dir, NULL);
10476 	if (ret)
10477 		goto out_inode;
10478 
10479 	ret = btrfs_update_inode(trans, root, inode);
10480 	if (ret)
10481 		goto out_inode;
10482 	ret = btrfs_orphan_add(trans, BTRFS_I(inode));
10483 	if (ret)
10484 		goto out_inode;
10485 
10486 	/*
10487 	 * We set number of links to 0 in btrfs_new_inode(), and here we set
10488 	 * it to 1 because d_tmpfile() will issue a warning if the count is 0,
10489 	 * through:
10490 	 *
10491 	 *    d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
10492 	 */
10493 	set_nlink(inode, 1);
10494 	unlock_new_inode(inode);
10495 	d_tmpfile(dentry, inode);
10496 	mark_inode_dirty(inode);
10497 
10498 out:
10499 	btrfs_end_transaction(trans);
10500 	if (ret)
10501 		iput(inode);
10502 	btrfs_btree_balance_dirty(fs_info);
10503 	return ret;
10504 
10505 out_inode:
10506 	unlock_new_inode(inode);
10507 	goto out;
10508 
10509 }
10510 
10511 __attribute__((const))
10512 static int btrfs_readpage_io_failed_hook(struct page *page, int failed_mirror)
10513 {
10514 	return -EAGAIN;
10515 }
10516 
10517 static struct btrfs_fs_info *iotree_fs_info(void *private_data)
10518 {
10519 	struct inode *inode = private_data;
10520 	return btrfs_sb(inode->i_sb);
10521 }
10522 
10523 static void btrfs_check_extent_io_range(void *private_data, const char *caller,
10524 					u64 start, u64 end)
10525 {
10526 	struct inode *inode = private_data;
10527 	u64 isize;
10528 
10529 	isize = i_size_read(inode);
10530 	if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
10531 		btrfs_debug_rl(BTRFS_I(inode)->root->fs_info,
10532 		    "%s: ino %llu isize %llu odd range [%llu,%llu]",
10533 			caller, btrfs_ino(BTRFS_I(inode)), isize, start, end);
10534 	}
10535 }
10536 
10537 void btrfs_set_range_writeback(void *private_data, u64 start, u64 end)
10538 {
10539 	struct inode *inode = private_data;
10540 	unsigned long index = start >> PAGE_SHIFT;
10541 	unsigned long end_index = end >> PAGE_SHIFT;
10542 	struct page *page;
10543 
10544 	while (index <= end_index) {
10545 		page = find_get_page(inode->i_mapping, index);
10546 		ASSERT(page); /* Pages should be in the extent_io_tree */
10547 		set_page_writeback(page);
10548 		put_page(page);
10549 		index++;
10550 	}
10551 }
10552 
10553 static const struct inode_operations btrfs_dir_inode_operations = {
10554 	.getattr	= btrfs_getattr,
10555 	.lookup		= btrfs_lookup,
10556 	.create		= btrfs_create,
10557 	.unlink		= btrfs_unlink,
10558 	.link		= btrfs_link,
10559 	.mkdir		= btrfs_mkdir,
10560 	.rmdir		= btrfs_rmdir,
10561 	.rename		= btrfs_rename2,
10562 	.symlink	= btrfs_symlink,
10563 	.setattr	= btrfs_setattr,
10564 	.mknod		= btrfs_mknod,
10565 	.listxattr	= btrfs_listxattr,
10566 	.permission	= btrfs_permission,
10567 	.get_acl	= btrfs_get_acl,
10568 	.set_acl	= btrfs_set_acl,
10569 	.update_time	= btrfs_update_time,
10570 	.tmpfile        = btrfs_tmpfile,
10571 };
10572 static const struct inode_operations btrfs_dir_ro_inode_operations = {
10573 	.lookup		= btrfs_lookup,
10574 	.permission	= btrfs_permission,
10575 	.update_time	= btrfs_update_time,
10576 };
10577 
10578 static const struct file_operations btrfs_dir_file_operations = {
10579 	.llseek		= generic_file_llseek,
10580 	.read		= generic_read_dir,
10581 	.iterate_shared	= btrfs_real_readdir,
10582 	.open		= btrfs_opendir,
10583 	.unlocked_ioctl	= btrfs_ioctl,
10584 #ifdef CONFIG_COMPAT
10585 	.compat_ioctl	= btrfs_compat_ioctl,
10586 #endif
10587 	.release        = btrfs_release_file,
10588 	.fsync		= btrfs_sync_file,
10589 };
10590 
10591 static const struct extent_io_ops btrfs_extent_io_ops = {
10592 	/* mandatory callbacks */
10593 	.submit_bio_hook = btrfs_submit_bio_hook,
10594 	.readpage_end_io_hook = btrfs_readpage_end_io_hook,
10595 	.merge_bio_hook = btrfs_merge_bio_hook,
10596 	.readpage_io_failed_hook = btrfs_readpage_io_failed_hook,
10597 	.tree_fs_info = iotree_fs_info,
10598 	.set_range_writeback = btrfs_set_range_writeback,
10599 
10600 	/* optional callbacks */
10601 	.fill_delalloc = run_delalloc_range,
10602 	.writepage_end_io_hook = btrfs_writepage_end_io_hook,
10603 	.writepage_start_hook = btrfs_writepage_start_hook,
10604 	.set_bit_hook = btrfs_set_bit_hook,
10605 	.clear_bit_hook = btrfs_clear_bit_hook,
10606 	.merge_extent_hook = btrfs_merge_extent_hook,
10607 	.split_extent_hook = btrfs_split_extent_hook,
10608 	.check_extent_io_range = btrfs_check_extent_io_range,
10609 };
10610 
10611 /*
10612  * btrfs doesn't support the bmap operation because swapfiles
10613  * use bmap to make a mapping of extents in the file.  They assume
10614  * these extents won't change over the life of the file and they
10615  * use the bmap result to do IO directly to the drive.
10616  *
10617  * the btrfs bmap call would return logical addresses that aren't
10618  * suitable for IO and they also will change frequently as COW
10619  * operations happen.  So, swapfile + btrfs == corruption.
10620  *
10621  * For now we're avoiding this by dropping bmap.
10622  */
10623 static const struct address_space_operations btrfs_aops = {
10624 	.readpage	= btrfs_readpage,
10625 	.writepage	= btrfs_writepage,
10626 	.writepages	= btrfs_writepages,
10627 	.readpages	= btrfs_readpages,
10628 	.direct_IO	= btrfs_direct_IO,
10629 	.invalidatepage = btrfs_invalidatepage,
10630 	.releasepage	= btrfs_releasepage,
10631 	.set_page_dirty	= btrfs_set_page_dirty,
10632 	.error_remove_page = generic_error_remove_page,
10633 };
10634 
10635 static const struct address_space_operations btrfs_symlink_aops = {
10636 	.readpage	= btrfs_readpage,
10637 	.writepage	= btrfs_writepage,
10638 	.invalidatepage = btrfs_invalidatepage,
10639 	.releasepage	= btrfs_releasepage,
10640 };
10641 
10642 static const struct inode_operations btrfs_file_inode_operations = {
10643 	.getattr	= btrfs_getattr,
10644 	.setattr	= btrfs_setattr,
10645 	.listxattr      = btrfs_listxattr,
10646 	.permission	= btrfs_permission,
10647 	.fiemap		= btrfs_fiemap,
10648 	.get_acl	= btrfs_get_acl,
10649 	.set_acl	= btrfs_set_acl,
10650 	.update_time	= btrfs_update_time,
10651 };
10652 static const struct inode_operations btrfs_special_inode_operations = {
10653 	.getattr	= btrfs_getattr,
10654 	.setattr	= btrfs_setattr,
10655 	.permission	= btrfs_permission,
10656 	.listxattr	= btrfs_listxattr,
10657 	.get_acl	= btrfs_get_acl,
10658 	.set_acl	= btrfs_set_acl,
10659 	.update_time	= btrfs_update_time,
10660 };
10661 static const struct inode_operations btrfs_symlink_inode_operations = {
10662 	.get_link	= page_get_link,
10663 	.getattr	= btrfs_getattr,
10664 	.setattr	= btrfs_setattr,
10665 	.permission	= btrfs_permission,
10666 	.listxattr	= btrfs_listxattr,
10667 	.update_time	= btrfs_update_time,
10668 };
10669 
10670 const struct dentry_operations btrfs_dentry_operations = {
10671 	.d_delete	= btrfs_dentry_delete,
10672 	.d_release	= btrfs_dentry_release,
10673 };
10674