xref: /openbmc/linux/fs/btrfs/inode.c (revision e109a01f)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <crypto/hash.h>
7 #include <linux/kernel.h>
8 #include <linux/bio.h>
9 #include <linux/blk-cgroup.h>
10 #include <linux/file.h>
11 #include <linux/fs.h>
12 #include <linux/pagemap.h>
13 #include <linux/highmem.h>
14 #include <linux/time.h>
15 #include <linux/init.h>
16 #include <linux/string.h>
17 #include <linux/backing-dev.h>
18 #include <linux/writeback.h>
19 #include <linux/compat.h>
20 #include <linux/xattr.h>
21 #include <linux/posix_acl.h>
22 #include <linux/falloc.h>
23 #include <linux/slab.h>
24 #include <linux/ratelimit.h>
25 #include <linux/btrfs.h>
26 #include <linux/blkdev.h>
27 #include <linux/posix_acl_xattr.h>
28 #include <linux/uio.h>
29 #include <linux/magic.h>
30 #include <linux/iversion.h>
31 #include <linux/swap.h>
32 #include <linux/migrate.h>
33 #include <linux/sched/mm.h>
34 #include <linux/iomap.h>
35 #include <asm/unaligned.h>
36 #include <linux/fsverity.h>
37 #include "misc.h"
38 #include "ctree.h"
39 #include "disk-io.h"
40 #include "transaction.h"
41 #include "btrfs_inode.h"
42 #include "print-tree.h"
43 #include "ordered-data.h"
44 #include "xattr.h"
45 #include "tree-log.h"
46 #include "bio.h"
47 #include "compression.h"
48 #include "locking.h"
49 #include "free-space-cache.h"
50 #include "props.h"
51 #include "qgroup.h"
52 #include "delalloc-space.h"
53 #include "block-group.h"
54 #include "space-info.h"
55 #include "zoned.h"
56 #include "subpage.h"
57 #include "inode-item.h"
58 #include "fs.h"
59 #include "accessors.h"
60 #include "extent-tree.h"
61 #include "root-tree.h"
62 #include "defrag.h"
63 #include "dir-item.h"
64 #include "file-item.h"
65 #include "uuid-tree.h"
66 #include "ioctl.h"
67 #include "file.h"
68 #include "acl.h"
69 #include "relocation.h"
70 #include "verity.h"
71 #include "super.h"
72 #include "orphan.h"
73 #include "backref.h"
74 
75 struct btrfs_iget_args {
76 	u64 ino;
77 	struct btrfs_root *root;
78 };
79 
80 struct btrfs_dio_data {
81 	ssize_t submitted;
82 	struct extent_changeset *data_reserved;
83 	struct btrfs_ordered_extent *ordered;
84 	bool data_space_reserved;
85 	bool nocow_done;
86 };
87 
88 struct btrfs_dio_private {
89 	/* Range of I/O */
90 	u64 file_offset;
91 	u32 bytes;
92 
93 	/* This must be last */
94 	struct btrfs_bio bbio;
95 };
96 
97 static struct bio_set btrfs_dio_bioset;
98 
99 struct btrfs_rename_ctx {
100 	/* Output field. Stores the index number of the old directory entry. */
101 	u64 index;
102 };
103 
104 /*
105  * Used by data_reloc_print_warning_inode() to pass needed info for filename
106  * resolution and output of error message.
107  */
108 struct data_reloc_warn {
109 	struct btrfs_path path;
110 	struct btrfs_fs_info *fs_info;
111 	u64 extent_item_size;
112 	u64 logical;
113 	int mirror_num;
114 };
115 
116 static const struct inode_operations btrfs_dir_inode_operations;
117 static const struct inode_operations btrfs_symlink_inode_operations;
118 static const struct inode_operations btrfs_special_inode_operations;
119 static const struct inode_operations btrfs_file_inode_operations;
120 static const struct address_space_operations btrfs_aops;
121 static const struct file_operations btrfs_dir_file_operations;
122 
123 static struct kmem_cache *btrfs_inode_cachep;
124 
125 static int btrfs_setsize(struct inode *inode, struct iattr *attr);
126 static int btrfs_truncate(struct btrfs_inode *inode, bool skip_writeback);
127 
128 static noinline int run_delalloc_cow(struct btrfs_inode *inode,
129 				     struct page *locked_page, u64 start,
130 				     u64 end, struct writeback_control *wbc,
131 				     bool pages_dirty);
132 static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start,
133 				       u64 len, u64 orig_start, u64 block_start,
134 				       u64 block_len, u64 orig_block_len,
135 				       u64 ram_bytes, int compress_type,
136 				       int type);
137 
138 static int data_reloc_print_warning_inode(u64 inum, u64 offset, u64 num_bytes,
139 					  u64 root, void *warn_ctx)
140 {
141 	struct data_reloc_warn *warn = warn_ctx;
142 	struct btrfs_fs_info *fs_info = warn->fs_info;
143 	struct extent_buffer *eb;
144 	struct btrfs_inode_item *inode_item;
145 	struct inode_fs_paths *ipath = NULL;
146 	struct btrfs_root *local_root;
147 	struct btrfs_key key;
148 	unsigned int nofs_flag;
149 	u32 nlink;
150 	int ret;
151 
152 	local_root = btrfs_get_fs_root(fs_info, root, true);
153 	if (IS_ERR(local_root)) {
154 		ret = PTR_ERR(local_root);
155 		goto err;
156 	}
157 
158 	/* This makes the path point to (inum INODE_ITEM ioff). */
159 	key.objectid = inum;
160 	key.type = BTRFS_INODE_ITEM_KEY;
161 	key.offset = 0;
162 
163 	ret = btrfs_search_slot(NULL, local_root, &key, &warn->path, 0, 0);
164 	if (ret) {
165 		btrfs_put_root(local_root);
166 		btrfs_release_path(&warn->path);
167 		goto err;
168 	}
169 
170 	eb = warn->path.nodes[0];
171 	inode_item = btrfs_item_ptr(eb, warn->path.slots[0], struct btrfs_inode_item);
172 	nlink = btrfs_inode_nlink(eb, inode_item);
173 	btrfs_release_path(&warn->path);
174 
175 	nofs_flag = memalloc_nofs_save();
176 	ipath = init_ipath(4096, local_root, &warn->path);
177 	memalloc_nofs_restore(nofs_flag);
178 	if (IS_ERR(ipath)) {
179 		btrfs_put_root(local_root);
180 		ret = PTR_ERR(ipath);
181 		ipath = NULL;
182 		/*
183 		 * -ENOMEM, not a critical error, just output an generic error
184 		 * without filename.
185 		 */
186 		btrfs_warn(fs_info,
187 "checksum error at logical %llu mirror %u root %llu, inode %llu offset %llu",
188 			   warn->logical, warn->mirror_num, root, inum, offset);
189 		return ret;
190 	}
191 	ret = paths_from_inode(inum, ipath);
192 	if (ret < 0)
193 		goto err;
194 
195 	/*
196 	 * We deliberately ignore the bit ipath might have been too small to
197 	 * hold all of the paths here
198 	 */
199 	for (int i = 0; i < ipath->fspath->elem_cnt; i++) {
200 		btrfs_warn(fs_info,
201 "checksum error at logical %llu mirror %u root %llu inode %llu offset %llu length %u links %u (path: %s)",
202 			   warn->logical, warn->mirror_num, root, inum, offset,
203 			   fs_info->sectorsize, nlink,
204 			   (char *)(unsigned long)ipath->fspath->val[i]);
205 	}
206 
207 	btrfs_put_root(local_root);
208 	free_ipath(ipath);
209 	return 0;
210 
211 err:
212 	btrfs_warn(fs_info,
213 "checksum error at logical %llu mirror %u root %llu inode %llu offset %llu, path resolving failed with ret=%d",
214 		   warn->logical, warn->mirror_num, root, inum, offset, ret);
215 
216 	free_ipath(ipath);
217 	return ret;
218 }
219 
220 /*
221  * Do extra user-friendly error output (e.g. lookup all the affected files).
222  *
223  * Return true if we succeeded doing the backref lookup.
224  * Return false if such lookup failed, and has to fallback to the old error message.
225  */
226 static void print_data_reloc_error(const struct btrfs_inode *inode, u64 file_off,
227 				   const u8 *csum, const u8 *csum_expected,
228 				   int mirror_num)
229 {
230 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
231 	struct btrfs_path path = { 0 };
232 	struct btrfs_key found_key = { 0 };
233 	struct extent_buffer *eb;
234 	struct btrfs_extent_item *ei;
235 	const u32 csum_size = fs_info->csum_size;
236 	u64 logical;
237 	u64 flags;
238 	u32 item_size;
239 	int ret;
240 
241 	mutex_lock(&fs_info->reloc_mutex);
242 	logical = btrfs_get_reloc_bg_bytenr(fs_info);
243 	mutex_unlock(&fs_info->reloc_mutex);
244 
245 	if (logical == U64_MAX) {
246 		btrfs_warn_rl(fs_info, "has data reloc tree but no running relocation");
247 		btrfs_warn_rl(fs_info,
248 "csum failed root %lld ino %llu off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
249 			inode->root->root_key.objectid, btrfs_ino(inode), file_off,
250 			CSUM_FMT_VALUE(csum_size, csum),
251 			CSUM_FMT_VALUE(csum_size, csum_expected),
252 			mirror_num);
253 		return;
254 	}
255 
256 	logical += file_off;
257 	btrfs_warn_rl(fs_info,
258 "csum failed root %lld ino %llu off %llu logical %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
259 			inode->root->root_key.objectid,
260 			btrfs_ino(inode), file_off, logical,
261 			CSUM_FMT_VALUE(csum_size, csum),
262 			CSUM_FMT_VALUE(csum_size, csum_expected),
263 			mirror_num);
264 
265 	ret = extent_from_logical(fs_info, logical, &path, &found_key, &flags);
266 	if (ret < 0) {
267 		btrfs_err_rl(fs_info, "failed to lookup extent item for logical %llu: %d",
268 			     logical, ret);
269 		return;
270 	}
271 	eb = path.nodes[0];
272 	ei = btrfs_item_ptr(eb, path.slots[0], struct btrfs_extent_item);
273 	item_size = btrfs_item_size(eb, path.slots[0]);
274 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
275 		unsigned long ptr = 0;
276 		u64 ref_root;
277 		u8 ref_level;
278 
279 		while (true) {
280 			ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
281 						      item_size, &ref_root,
282 						      &ref_level);
283 			if (ret < 0) {
284 				btrfs_warn_rl(fs_info,
285 				"failed to resolve tree backref for logical %llu: %d",
286 					      logical, ret);
287 				break;
288 			}
289 			if (ret > 0)
290 				break;
291 
292 			btrfs_warn_rl(fs_info,
293 "csum error at logical %llu mirror %u: metadata %s (level %d) in tree %llu",
294 				logical, mirror_num,
295 				(ref_level ? "node" : "leaf"),
296 				ref_level, ref_root);
297 		}
298 		btrfs_release_path(&path);
299 	} else {
300 		struct btrfs_backref_walk_ctx ctx = { 0 };
301 		struct data_reloc_warn reloc_warn = { 0 };
302 
303 		btrfs_release_path(&path);
304 
305 		ctx.bytenr = found_key.objectid;
306 		ctx.extent_item_pos = logical - found_key.objectid;
307 		ctx.fs_info = fs_info;
308 
309 		reloc_warn.logical = logical;
310 		reloc_warn.extent_item_size = found_key.offset;
311 		reloc_warn.mirror_num = mirror_num;
312 		reloc_warn.fs_info = fs_info;
313 
314 		iterate_extent_inodes(&ctx, true,
315 				      data_reloc_print_warning_inode, &reloc_warn);
316 	}
317 }
318 
319 static void __cold btrfs_print_data_csum_error(struct btrfs_inode *inode,
320 		u64 logical_start, u8 *csum, u8 *csum_expected, int mirror_num)
321 {
322 	struct btrfs_root *root = inode->root;
323 	const u32 csum_size = root->fs_info->csum_size;
324 
325 	/* For data reloc tree, it's better to do a backref lookup instead. */
326 	if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
327 		return print_data_reloc_error(inode, logical_start, csum,
328 					      csum_expected, mirror_num);
329 
330 	/* Output without objectid, which is more meaningful */
331 	if (root->root_key.objectid >= BTRFS_LAST_FREE_OBJECTID) {
332 		btrfs_warn_rl(root->fs_info,
333 "csum failed root %lld ino %lld off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
334 			root->root_key.objectid, btrfs_ino(inode),
335 			logical_start,
336 			CSUM_FMT_VALUE(csum_size, csum),
337 			CSUM_FMT_VALUE(csum_size, csum_expected),
338 			mirror_num);
339 	} else {
340 		btrfs_warn_rl(root->fs_info,
341 "csum failed root %llu ino %llu off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
342 			root->root_key.objectid, btrfs_ino(inode),
343 			logical_start,
344 			CSUM_FMT_VALUE(csum_size, csum),
345 			CSUM_FMT_VALUE(csum_size, csum_expected),
346 			mirror_num);
347 	}
348 }
349 
350 /*
351  * btrfs_inode_lock - lock inode i_rwsem based on arguments passed
352  *
353  * ilock_flags can have the following bit set:
354  *
355  * BTRFS_ILOCK_SHARED - acquire a shared lock on the inode
356  * BTRFS_ILOCK_TRY - try to acquire the lock, if fails on first attempt
357  *		     return -EAGAIN
358  * BTRFS_ILOCK_MMAP - acquire a write lock on the i_mmap_lock
359  */
360 int btrfs_inode_lock(struct btrfs_inode *inode, unsigned int ilock_flags)
361 {
362 	if (ilock_flags & BTRFS_ILOCK_SHARED) {
363 		if (ilock_flags & BTRFS_ILOCK_TRY) {
364 			if (!inode_trylock_shared(&inode->vfs_inode))
365 				return -EAGAIN;
366 			else
367 				return 0;
368 		}
369 		inode_lock_shared(&inode->vfs_inode);
370 	} else {
371 		if (ilock_flags & BTRFS_ILOCK_TRY) {
372 			if (!inode_trylock(&inode->vfs_inode))
373 				return -EAGAIN;
374 			else
375 				return 0;
376 		}
377 		inode_lock(&inode->vfs_inode);
378 	}
379 	if (ilock_flags & BTRFS_ILOCK_MMAP)
380 		down_write(&inode->i_mmap_lock);
381 	return 0;
382 }
383 
384 /*
385  * btrfs_inode_unlock - unock inode i_rwsem
386  *
387  * ilock_flags should contain the same bits set as passed to btrfs_inode_lock()
388  * to decide whether the lock acquired is shared or exclusive.
389  */
390 void btrfs_inode_unlock(struct btrfs_inode *inode, unsigned int ilock_flags)
391 {
392 	if (ilock_flags & BTRFS_ILOCK_MMAP)
393 		up_write(&inode->i_mmap_lock);
394 	if (ilock_flags & BTRFS_ILOCK_SHARED)
395 		inode_unlock_shared(&inode->vfs_inode);
396 	else
397 		inode_unlock(&inode->vfs_inode);
398 }
399 
400 /*
401  * Cleanup all submitted ordered extents in specified range to handle errors
402  * from the btrfs_run_delalloc_range() callback.
403  *
404  * NOTE: caller must ensure that when an error happens, it can not call
405  * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING
406  * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata
407  * to be released, which we want to happen only when finishing the ordered
408  * extent (btrfs_finish_ordered_io()).
409  */
410 static inline void btrfs_cleanup_ordered_extents(struct btrfs_inode *inode,
411 						 struct page *locked_page,
412 						 u64 offset, u64 bytes)
413 {
414 	unsigned long index = offset >> PAGE_SHIFT;
415 	unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT;
416 	u64 page_start = 0, page_end = 0;
417 	struct page *page;
418 
419 	if (locked_page) {
420 		page_start = page_offset(locked_page);
421 		page_end = page_start + PAGE_SIZE - 1;
422 	}
423 
424 	while (index <= end_index) {
425 		/*
426 		 * For locked page, we will call btrfs_mark_ordered_io_finished
427 		 * through btrfs_mark_ordered_io_finished() on it
428 		 * in run_delalloc_range() for the error handling, which will
429 		 * clear page Ordered and run the ordered extent accounting.
430 		 *
431 		 * Here we can't just clear the Ordered bit, or
432 		 * btrfs_mark_ordered_io_finished() would skip the accounting
433 		 * for the page range, and the ordered extent will never finish.
434 		 */
435 		if (locked_page && index == (page_start >> PAGE_SHIFT)) {
436 			index++;
437 			continue;
438 		}
439 		page = find_get_page(inode->vfs_inode.i_mapping, index);
440 		index++;
441 		if (!page)
442 			continue;
443 
444 		/*
445 		 * Here we just clear all Ordered bits for every page in the
446 		 * range, then btrfs_mark_ordered_io_finished() will handle
447 		 * the ordered extent accounting for the range.
448 		 */
449 		btrfs_page_clamp_clear_ordered(inode->root->fs_info, page,
450 					       offset, bytes);
451 		put_page(page);
452 	}
453 
454 	if (locked_page) {
455 		/* The locked page covers the full range, nothing needs to be done */
456 		if (bytes + offset <= page_start + PAGE_SIZE)
457 			return;
458 		/*
459 		 * In case this page belongs to the delalloc range being
460 		 * instantiated then skip it, since the first page of a range is
461 		 * going to be properly cleaned up by the caller of
462 		 * run_delalloc_range
463 		 */
464 		if (page_start >= offset && page_end <= (offset + bytes - 1)) {
465 			bytes = offset + bytes - page_offset(locked_page) - PAGE_SIZE;
466 			offset = page_offset(locked_page) + PAGE_SIZE;
467 		}
468 	}
469 
470 	return btrfs_mark_ordered_io_finished(inode, NULL, offset, bytes, false);
471 }
472 
473 static int btrfs_dirty_inode(struct btrfs_inode *inode);
474 
475 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
476 				     struct btrfs_new_inode_args *args)
477 {
478 	int err;
479 
480 	if (args->default_acl) {
481 		err = __btrfs_set_acl(trans, args->inode, args->default_acl,
482 				      ACL_TYPE_DEFAULT);
483 		if (err)
484 			return err;
485 	}
486 	if (args->acl) {
487 		err = __btrfs_set_acl(trans, args->inode, args->acl, ACL_TYPE_ACCESS);
488 		if (err)
489 			return err;
490 	}
491 	if (!args->default_acl && !args->acl)
492 		cache_no_acl(args->inode);
493 	return btrfs_xattr_security_init(trans, args->inode, args->dir,
494 					 &args->dentry->d_name);
495 }
496 
497 /*
498  * this does all the hard work for inserting an inline extent into
499  * the btree.  The caller should have done a btrfs_drop_extents so that
500  * no overlapping inline items exist in the btree
501  */
502 static int insert_inline_extent(struct btrfs_trans_handle *trans,
503 				struct btrfs_path *path,
504 				struct btrfs_inode *inode, bool extent_inserted,
505 				size_t size, size_t compressed_size,
506 				int compress_type,
507 				struct page **compressed_pages,
508 				bool update_i_size)
509 {
510 	struct btrfs_root *root = inode->root;
511 	struct extent_buffer *leaf;
512 	struct page *page = NULL;
513 	char *kaddr;
514 	unsigned long ptr;
515 	struct btrfs_file_extent_item *ei;
516 	int ret;
517 	size_t cur_size = size;
518 	u64 i_size;
519 
520 	ASSERT((compressed_size > 0 && compressed_pages) ||
521 	       (compressed_size == 0 && !compressed_pages));
522 
523 	if (compressed_size && compressed_pages)
524 		cur_size = compressed_size;
525 
526 	if (!extent_inserted) {
527 		struct btrfs_key key;
528 		size_t datasize;
529 
530 		key.objectid = btrfs_ino(inode);
531 		key.offset = 0;
532 		key.type = BTRFS_EXTENT_DATA_KEY;
533 
534 		datasize = btrfs_file_extent_calc_inline_size(cur_size);
535 		ret = btrfs_insert_empty_item(trans, root, path, &key,
536 					      datasize);
537 		if (ret)
538 			goto fail;
539 	}
540 	leaf = path->nodes[0];
541 	ei = btrfs_item_ptr(leaf, path->slots[0],
542 			    struct btrfs_file_extent_item);
543 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
544 	btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
545 	btrfs_set_file_extent_encryption(leaf, ei, 0);
546 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
547 	btrfs_set_file_extent_ram_bytes(leaf, ei, size);
548 	ptr = btrfs_file_extent_inline_start(ei);
549 
550 	if (compress_type != BTRFS_COMPRESS_NONE) {
551 		struct page *cpage;
552 		int i = 0;
553 		while (compressed_size > 0) {
554 			cpage = compressed_pages[i];
555 			cur_size = min_t(unsigned long, compressed_size,
556 				       PAGE_SIZE);
557 
558 			kaddr = kmap_local_page(cpage);
559 			write_extent_buffer(leaf, kaddr, ptr, cur_size);
560 			kunmap_local(kaddr);
561 
562 			i++;
563 			ptr += cur_size;
564 			compressed_size -= cur_size;
565 		}
566 		btrfs_set_file_extent_compression(leaf, ei,
567 						  compress_type);
568 	} else {
569 		page = find_get_page(inode->vfs_inode.i_mapping, 0);
570 		btrfs_set_file_extent_compression(leaf, ei, 0);
571 		kaddr = kmap_local_page(page);
572 		write_extent_buffer(leaf, kaddr, ptr, size);
573 		kunmap_local(kaddr);
574 		put_page(page);
575 	}
576 	btrfs_mark_buffer_dirty(trans, leaf);
577 	btrfs_release_path(path);
578 
579 	/*
580 	 * We align size to sectorsize for inline extents just for simplicity
581 	 * sake.
582 	 */
583 	ret = btrfs_inode_set_file_extent_range(inode, 0,
584 					ALIGN(size, root->fs_info->sectorsize));
585 	if (ret)
586 		goto fail;
587 
588 	/*
589 	 * We're an inline extent, so nobody can extend the file past i_size
590 	 * without locking a page we already have locked.
591 	 *
592 	 * We must do any i_size and inode updates before we unlock the pages.
593 	 * Otherwise we could end up racing with unlink.
594 	 */
595 	i_size = i_size_read(&inode->vfs_inode);
596 	if (update_i_size && size > i_size) {
597 		i_size_write(&inode->vfs_inode, size);
598 		i_size = size;
599 	}
600 	inode->disk_i_size = i_size;
601 
602 fail:
603 	return ret;
604 }
605 
606 
607 /*
608  * conditionally insert an inline extent into the file.  This
609  * does the checks required to make sure the data is small enough
610  * to fit as an inline extent.
611  */
612 static noinline int cow_file_range_inline(struct btrfs_inode *inode, u64 size,
613 					  size_t compressed_size,
614 					  int compress_type,
615 					  struct page **compressed_pages,
616 					  bool update_i_size)
617 {
618 	struct btrfs_drop_extents_args drop_args = { 0 };
619 	struct btrfs_root *root = inode->root;
620 	struct btrfs_fs_info *fs_info = root->fs_info;
621 	struct btrfs_trans_handle *trans;
622 	u64 data_len = (compressed_size ?: size);
623 	int ret;
624 	struct btrfs_path *path;
625 
626 	/*
627 	 * We can create an inline extent if it ends at or beyond the current
628 	 * i_size, is no larger than a sector (decompressed), and the (possibly
629 	 * compressed) data fits in a leaf and the configured maximum inline
630 	 * size.
631 	 */
632 	if (size < i_size_read(&inode->vfs_inode) ||
633 	    size > fs_info->sectorsize ||
634 	    data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) ||
635 	    data_len > fs_info->max_inline)
636 		return 1;
637 
638 	path = btrfs_alloc_path();
639 	if (!path)
640 		return -ENOMEM;
641 
642 	trans = btrfs_join_transaction(root);
643 	if (IS_ERR(trans)) {
644 		btrfs_free_path(path);
645 		return PTR_ERR(trans);
646 	}
647 	trans->block_rsv = &inode->block_rsv;
648 
649 	drop_args.path = path;
650 	drop_args.start = 0;
651 	drop_args.end = fs_info->sectorsize;
652 	drop_args.drop_cache = true;
653 	drop_args.replace_extent = true;
654 	drop_args.extent_item_size = btrfs_file_extent_calc_inline_size(data_len);
655 	ret = btrfs_drop_extents(trans, root, inode, &drop_args);
656 	if (ret) {
657 		btrfs_abort_transaction(trans, ret);
658 		goto out;
659 	}
660 
661 	ret = insert_inline_extent(trans, path, inode, drop_args.extent_inserted,
662 				   size, compressed_size, compress_type,
663 				   compressed_pages, update_i_size);
664 	if (ret && ret != -ENOSPC) {
665 		btrfs_abort_transaction(trans, ret);
666 		goto out;
667 	} else if (ret == -ENOSPC) {
668 		ret = 1;
669 		goto out;
670 	}
671 
672 	btrfs_update_inode_bytes(inode, size, drop_args.bytes_found);
673 	ret = btrfs_update_inode(trans, root, inode);
674 	if (ret && ret != -ENOSPC) {
675 		btrfs_abort_transaction(trans, ret);
676 		goto out;
677 	} else if (ret == -ENOSPC) {
678 		ret = 1;
679 		goto out;
680 	}
681 
682 	btrfs_set_inode_full_sync(inode);
683 out:
684 	/*
685 	 * Don't forget to free the reserved space, as for inlined extent
686 	 * it won't count as data extent, free them directly here.
687 	 * And at reserve time, it's always aligned to page size, so
688 	 * just free one page here.
689 	 */
690 	btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE, NULL);
691 	btrfs_free_path(path);
692 	btrfs_end_transaction(trans);
693 	return ret;
694 }
695 
696 struct async_extent {
697 	u64 start;
698 	u64 ram_size;
699 	u64 compressed_size;
700 	struct page **pages;
701 	unsigned long nr_pages;
702 	int compress_type;
703 	struct list_head list;
704 };
705 
706 struct async_chunk {
707 	struct btrfs_inode *inode;
708 	struct page *locked_page;
709 	u64 start;
710 	u64 end;
711 	blk_opf_t write_flags;
712 	struct list_head extents;
713 	struct cgroup_subsys_state *blkcg_css;
714 	struct btrfs_work work;
715 	struct async_cow *async_cow;
716 };
717 
718 struct async_cow {
719 	atomic_t num_chunks;
720 	struct async_chunk chunks[];
721 };
722 
723 static noinline int add_async_extent(struct async_chunk *cow,
724 				     u64 start, u64 ram_size,
725 				     u64 compressed_size,
726 				     struct page **pages,
727 				     unsigned long nr_pages,
728 				     int compress_type)
729 {
730 	struct async_extent *async_extent;
731 
732 	async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
733 	if (!async_extent)
734 		return -ENOMEM;
735 	async_extent->start = start;
736 	async_extent->ram_size = ram_size;
737 	async_extent->compressed_size = compressed_size;
738 	async_extent->pages = pages;
739 	async_extent->nr_pages = nr_pages;
740 	async_extent->compress_type = compress_type;
741 	list_add_tail(&async_extent->list, &cow->extents);
742 	return 0;
743 }
744 
745 /*
746  * Check if the inode needs to be submitted to compression, based on mount
747  * options, defragmentation, properties or heuristics.
748  */
749 static inline int inode_need_compress(struct btrfs_inode *inode, u64 start,
750 				      u64 end)
751 {
752 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
753 
754 	if (!btrfs_inode_can_compress(inode)) {
755 		WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
756 			KERN_ERR "BTRFS: unexpected compression for ino %llu\n",
757 			btrfs_ino(inode));
758 		return 0;
759 	}
760 	/*
761 	 * Special check for subpage.
762 	 *
763 	 * We lock the full page then run each delalloc range in the page, thus
764 	 * for the following case, we will hit some subpage specific corner case:
765 	 *
766 	 * 0		32K		64K
767 	 * |	|///////|	|///////|
768 	 *		\- A		\- B
769 	 *
770 	 * In above case, both range A and range B will try to unlock the full
771 	 * page [0, 64K), causing the one finished later will have page
772 	 * unlocked already, triggering various page lock requirement BUG_ON()s.
773 	 *
774 	 * So here we add an artificial limit that subpage compression can only
775 	 * if the range is fully page aligned.
776 	 *
777 	 * In theory we only need to ensure the first page is fully covered, but
778 	 * the tailing partial page will be locked until the full compression
779 	 * finishes, delaying the write of other range.
780 	 *
781 	 * TODO: Make btrfs_run_delalloc_range() to lock all delalloc range
782 	 * first to prevent any submitted async extent to unlock the full page.
783 	 * By this, we can ensure for subpage case that only the last async_cow
784 	 * will unlock the full page.
785 	 */
786 	if (fs_info->sectorsize < PAGE_SIZE) {
787 		if (!PAGE_ALIGNED(start) ||
788 		    !PAGE_ALIGNED(end + 1))
789 			return 0;
790 	}
791 
792 	/* force compress */
793 	if (btrfs_test_opt(fs_info, FORCE_COMPRESS))
794 		return 1;
795 	/* defrag ioctl */
796 	if (inode->defrag_compress)
797 		return 1;
798 	/* bad compression ratios */
799 	if (inode->flags & BTRFS_INODE_NOCOMPRESS)
800 		return 0;
801 	if (btrfs_test_opt(fs_info, COMPRESS) ||
802 	    inode->flags & BTRFS_INODE_COMPRESS ||
803 	    inode->prop_compress)
804 		return btrfs_compress_heuristic(&inode->vfs_inode, start, end);
805 	return 0;
806 }
807 
808 static inline void inode_should_defrag(struct btrfs_inode *inode,
809 		u64 start, u64 end, u64 num_bytes, u32 small_write)
810 {
811 	/* If this is a small write inside eof, kick off a defrag */
812 	if (num_bytes < small_write &&
813 	    (start > 0 || end + 1 < inode->disk_i_size))
814 		btrfs_add_inode_defrag(NULL, inode, small_write);
815 }
816 
817 /*
818  * Work queue call back to started compression on a file and pages.
819  *
820  * This is done inside an ordered work queue, and the compression is spread
821  * across many cpus.  The actual IO submission is step two, and the ordered work
822  * queue takes care of making sure that happens in the same order things were
823  * put onto the queue by writepages and friends.
824  *
825  * If this code finds it can't get good compression, it puts an entry onto the
826  * work queue to write the uncompressed bytes.  This makes sure that both
827  * compressed inodes and uncompressed inodes are written in the same order that
828  * the flusher thread sent them down.
829  */
830 static void compress_file_range(struct btrfs_work *work)
831 {
832 	struct async_chunk *async_chunk =
833 		container_of(work, struct async_chunk, work);
834 	struct btrfs_inode *inode = async_chunk->inode;
835 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
836 	struct address_space *mapping = inode->vfs_inode.i_mapping;
837 	u64 blocksize = fs_info->sectorsize;
838 	u64 start = async_chunk->start;
839 	u64 end = async_chunk->end;
840 	u64 actual_end;
841 	u64 i_size;
842 	int ret = 0;
843 	struct page **pages;
844 	unsigned long nr_pages;
845 	unsigned long total_compressed = 0;
846 	unsigned long total_in = 0;
847 	unsigned int poff;
848 	int i;
849 	int compress_type = fs_info->compress_type;
850 
851 	inode_should_defrag(inode, start, end, end - start + 1, SZ_16K);
852 
853 	/*
854 	 * We need to call clear_page_dirty_for_io on each page in the range.
855 	 * Otherwise applications with the file mmap'd can wander in and change
856 	 * the page contents while we are compressing them.
857 	 */
858 	extent_range_clear_dirty_for_io(&inode->vfs_inode, start, end);
859 
860 	/*
861 	 * We need to save i_size before now because it could change in between
862 	 * us evaluating the size and assigning it.  This is because we lock and
863 	 * unlock the page in truncate and fallocate, and then modify the i_size
864 	 * later on.
865 	 *
866 	 * The barriers are to emulate READ_ONCE, remove that once i_size_read
867 	 * does that for us.
868 	 */
869 	barrier();
870 	i_size = i_size_read(&inode->vfs_inode);
871 	barrier();
872 	actual_end = min_t(u64, i_size, end + 1);
873 again:
874 	pages = NULL;
875 	nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
876 	nr_pages = min_t(unsigned long, nr_pages, BTRFS_MAX_COMPRESSED_PAGES);
877 
878 	/*
879 	 * we don't want to send crud past the end of i_size through
880 	 * compression, that's just a waste of CPU time.  So, if the
881 	 * end of the file is before the start of our current
882 	 * requested range of bytes, we bail out to the uncompressed
883 	 * cleanup code that can deal with all of this.
884 	 *
885 	 * It isn't really the fastest way to fix things, but this is a
886 	 * very uncommon corner.
887 	 */
888 	if (actual_end <= start)
889 		goto cleanup_and_bail_uncompressed;
890 
891 	total_compressed = actual_end - start;
892 
893 	/*
894 	 * Skip compression for a small file range(<=blocksize) that
895 	 * isn't an inline extent, since it doesn't save disk space at all.
896 	 */
897 	if (total_compressed <= blocksize &&
898 	   (start > 0 || end + 1 < inode->disk_i_size))
899 		goto cleanup_and_bail_uncompressed;
900 
901 	/*
902 	 * For subpage case, we require full page alignment for the sector
903 	 * aligned range.
904 	 * Thus we must also check against @actual_end, not just @end.
905 	 */
906 	if (blocksize < PAGE_SIZE) {
907 		if (!PAGE_ALIGNED(start) ||
908 		    !PAGE_ALIGNED(round_up(actual_end, blocksize)))
909 			goto cleanup_and_bail_uncompressed;
910 	}
911 
912 	total_compressed = min_t(unsigned long, total_compressed,
913 			BTRFS_MAX_UNCOMPRESSED);
914 	total_in = 0;
915 	ret = 0;
916 
917 	/*
918 	 * We do compression for mount -o compress and when the inode has not
919 	 * been flagged as NOCOMPRESS.  This flag can change at any time if we
920 	 * discover bad compression ratios.
921 	 */
922 	if (!inode_need_compress(inode, start, end))
923 		goto cleanup_and_bail_uncompressed;
924 
925 	pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
926 	if (!pages) {
927 		/*
928 		 * Memory allocation failure is not a fatal error, we can fall
929 		 * back to uncompressed code.
930 		 */
931 		goto cleanup_and_bail_uncompressed;
932 	}
933 
934 	if (inode->defrag_compress)
935 		compress_type = inode->defrag_compress;
936 	else if (inode->prop_compress)
937 		compress_type = inode->prop_compress;
938 
939 	/* Compression level is applied here. */
940 	ret = btrfs_compress_pages(compress_type | (fs_info->compress_level << 4),
941 				   mapping, start, pages, &nr_pages, &total_in,
942 				   &total_compressed);
943 	if (ret)
944 		goto mark_incompressible;
945 
946 	/*
947 	 * Zero the tail end of the last page, as we might be sending it down
948 	 * to disk.
949 	 */
950 	poff = offset_in_page(total_compressed);
951 	if (poff)
952 		memzero_page(pages[nr_pages - 1], poff, PAGE_SIZE - poff);
953 
954 	/*
955 	 * Try to create an inline extent.
956 	 *
957 	 * If we didn't compress the entire range, try to create an uncompressed
958 	 * inline extent, else a compressed one.
959 	 *
960 	 * Check cow_file_range() for why we don't even try to create inline
961 	 * extent for the subpage case.
962 	 */
963 	if (start == 0 && fs_info->sectorsize == PAGE_SIZE) {
964 		if (total_in < actual_end) {
965 			ret = cow_file_range_inline(inode, actual_end, 0,
966 						    BTRFS_COMPRESS_NONE, NULL,
967 						    false);
968 		} else {
969 			ret = cow_file_range_inline(inode, actual_end,
970 						    total_compressed,
971 						    compress_type, pages,
972 						    false);
973 		}
974 		if (ret <= 0) {
975 			unsigned long clear_flags = EXTENT_DELALLOC |
976 				EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
977 				EXTENT_DO_ACCOUNTING;
978 
979 			if (ret < 0)
980 				mapping_set_error(mapping, -EIO);
981 
982 			/*
983 			 * inline extent creation worked or returned error,
984 			 * we don't need to create any more async work items.
985 			 * Unlock and free up our temp pages.
986 			 *
987 			 * We use DO_ACCOUNTING here because we need the
988 			 * delalloc_release_metadata to be done _after_ we drop
989 			 * our outstanding extent for clearing delalloc for this
990 			 * range.
991 			 */
992 			extent_clear_unlock_delalloc(inode, start, end,
993 						     NULL,
994 						     clear_flags,
995 						     PAGE_UNLOCK |
996 						     PAGE_START_WRITEBACK |
997 						     PAGE_END_WRITEBACK);
998 			goto free_pages;
999 		}
1000 	}
1001 
1002 	/*
1003 	 * We aren't doing an inline extent. Round the compressed size up to a
1004 	 * block size boundary so the allocator does sane things.
1005 	 */
1006 	total_compressed = ALIGN(total_compressed, blocksize);
1007 
1008 	/*
1009 	 * One last check to make sure the compression is really a win, compare
1010 	 * the page count read with the blocks on disk, compression must free at
1011 	 * least one sector.
1012 	 */
1013 	total_in = round_up(total_in, fs_info->sectorsize);
1014 	if (total_compressed + blocksize > total_in)
1015 		goto mark_incompressible;
1016 
1017 	/*
1018 	 * The async work queues will take care of doing actual allocation on
1019 	 * disk for these compressed pages, and will submit the bios.
1020 	 */
1021 	ret = add_async_extent(async_chunk, start, total_in, total_compressed, pages,
1022 			       nr_pages, compress_type);
1023 	BUG_ON(ret);
1024 	if (start + total_in < end) {
1025 		start += total_in;
1026 		cond_resched();
1027 		goto again;
1028 	}
1029 	return;
1030 
1031 mark_incompressible:
1032 	if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) && !inode->prop_compress)
1033 		inode->flags |= BTRFS_INODE_NOCOMPRESS;
1034 cleanup_and_bail_uncompressed:
1035 	ret = add_async_extent(async_chunk, start, end - start + 1, 0, NULL, 0,
1036 			       BTRFS_COMPRESS_NONE);
1037 	BUG_ON(ret);
1038 free_pages:
1039 	if (pages) {
1040 		for (i = 0; i < nr_pages; i++) {
1041 			WARN_ON(pages[i]->mapping);
1042 			put_page(pages[i]);
1043 		}
1044 		kfree(pages);
1045 	}
1046 }
1047 
1048 static void free_async_extent_pages(struct async_extent *async_extent)
1049 {
1050 	int i;
1051 
1052 	if (!async_extent->pages)
1053 		return;
1054 
1055 	for (i = 0; i < async_extent->nr_pages; i++) {
1056 		WARN_ON(async_extent->pages[i]->mapping);
1057 		put_page(async_extent->pages[i]);
1058 	}
1059 	kfree(async_extent->pages);
1060 	async_extent->nr_pages = 0;
1061 	async_extent->pages = NULL;
1062 }
1063 
1064 static void submit_uncompressed_range(struct btrfs_inode *inode,
1065 				      struct async_extent *async_extent,
1066 				      struct page *locked_page)
1067 {
1068 	u64 start = async_extent->start;
1069 	u64 end = async_extent->start + async_extent->ram_size - 1;
1070 	int ret;
1071 	struct writeback_control wbc = {
1072 		.sync_mode		= WB_SYNC_ALL,
1073 		.range_start		= start,
1074 		.range_end		= end,
1075 		.no_cgroup_owner	= 1,
1076 	};
1077 
1078 	wbc_attach_fdatawrite_inode(&wbc, &inode->vfs_inode);
1079 	ret = run_delalloc_cow(inode, locked_page, start, end, &wbc, false);
1080 	wbc_detach_inode(&wbc);
1081 	if (ret < 0) {
1082 		btrfs_cleanup_ordered_extents(inode, locked_page, start, end - start + 1);
1083 		if (locked_page) {
1084 			const u64 page_start = page_offset(locked_page);
1085 
1086 			set_page_writeback(locked_page);
1087 			end_page_writeback(locked_page);
1088 			btrfs_mark_ordered_io_finished(inode, locked_page,
1089 						       page_start, PAGE_SIZE,
1090 						       !ret);
1091 			mapping_set_error(locked_page->mapping, ret);
1092 			unlock_page(locked_page);
1093 		}
1094 	}
1095 }
1096 
1097 static void submit_one_async_extent(struct async_chunk *async_chunk,
1098 				    struct async_extent *async_extent,
1099 				    u64 *alloc_hint)
1100 {
1101 	struct btrfs_inode *inode = async_chunk->inode;
1102 	struct extent_io_tree *io_tree = &inode->io_tree;
1103 	struct btrfs_root *root = inode->root;
1104 	struct btrfs_fs_info *fs_info = root->fs_info;
1105 	struct btrfs_ordered_extent *ordered;
1106 	struct btrfs_key ins;
1107 	struct page *locked_page = NULL;
1108 	struct extent_map *em;
1109 	int ret = 0;
1110 	u64 start = async_extent->start;
1111 	u64 end = async_extent->start + async_extent->ram_size - 1;
1112 
1113 	if (async_chunk->blkcg_css)
1114 		kthread_associate_blkcg(async_chunk->blkcg_css);
1115 
1116 	/*
1117 	 * If async_chunk->locked_page is in the async_extent range, we need to
1118 	 * handle it.
1119 	 */
1120 	if (async_chunk->locked_page) {
1121 		u64 locked_page_start = page_offset(async_chunk->locked_page);
1122 		u64 locked_page_end = locked_page_start + PAGE_SIZE - 1;
1123 
1124 		if (!(start >= locked_page_end || end <= locked_page_start))
1125 			locked_page = async_chunk->locked_page;
1126 	}
1127 	lock_extent(io_tree, start, end, NULL);
1128 
1129 	if (async_extent->compress_type == BTRFS_COMPRESS_NONE) {
1130 		submit_uncompressed_range(inode, async_extent, locked_page);
1131 		goto done;
1132 	}
1133 
1134 	ret = btrfs_reserve_extent(root, async_extent->ram_size,
1135 				   async_extent->compressed_size,
1136 				   async_extent->compressed_size,
1137 				   0, *alloc_hint, &ins, 1, 1);
1138 	if (ret) {
1139 		/*
1140 		 * We can't reserve contiguous space for the compressed size.
1141 		 * Unlikely, but it's possible that we could have enough
1142 		 * non-contiguous space for the uncompressed size instead.  So
1143 		 * fall back to uncompressed.
1144 		 */
1145 		submit_uncompressed_range(inode, async_extent, locked_page);
1146 		goto done;
1147 	}
1148 
1149 	/* Here we're doing allocation and writeback of the compressed pages */
1150 	em = create_io_em(inode, start,
1151 			  async_extent->ram_size,	/* len */
1152 			  start,			/* orig_start */
1153 			  ins.objectid,			/* block_start */
1154 			  ins.offset,			/* block_len */
1155 			  ins.offset,			/* orig_block_len */
1156 			  async_extent->ram_size,	/* ram_bytes */
1157 			  async_extent->compress_type,
1158 			  BTRFS_ORDERED_COMPRESSED);
1159 	if (IS_ERR(em)) {
1160 		ret = PTR_ERR(em);
1161 		goto out_free_reserve;
1162 	}
1163 	free_extent_map(em);
1164 
1165 	ordered = btrfs_alloc_ordered_extent(inode, start,	/* file_offset */
1166 				       async_extent->ram_size,	/* num_bytes */
1167 				       async_extent->ram_size,	/* ram_bytes */
1168 				       ins.objectid,		/* disk_bytenr */
1169 				       ins.offset,		/* disk_num_bytes */
1170 				       0,			/* offset */
1171 				       1 << BTRFS_ORDERED_COMPRESSED,
1172 				       async_extent->compress_type);
1173 	if (IS_ERR(ordered)) {
1174 		btrfs_drop_extent_map_range(inode, start, end, false);
1175 		ret = PTR_ERR(ordered);
1176 		goto out_free_reserve;
1177 	}
1178 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1179 
1180 	/* Clear dirty, set writeback and unlock the pages. */
1181 	extent_clear_unlock_delalloc(inode, start, end,
1182 			NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
1183 			PAGE_UNLOCK | PAGE_START_WRITEBACK);
1184 	btrfs_submit_compressed_write(ordered,
1185 			    async_extent->pages,	/* compressed_pages */
1186 			    async_extent->nr_pages,
1187 			    async_chunk->write_flags, true);
1188 	*alloc_hint = ins.objectid + ins.offset;
1189 done:
1190 	if (async_chunk->blkcg_css)
1191 		kthread_associate_blkcg(NULL);
1192 	kfree(async_extent);
1193 	return;
1194 
1195 out_free_reserve:
1196 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1197 	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
1198 	mapping_set_error(inode->vfs_inode.i_mapping, -EIO);
1199 	extent_clear_unlock_delalloc(inode, start, end,
1200 				     NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
1201 				     EXTENT_DELALLOC_NEW |
1202 				     EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
1203 				     PAGE_UNLOCK | PAGE_START_WRITEBACK |
1204 				     PAGE_END_WRITEBACK);
1205 	free_async_extent_pages(async_extent);
1206 	if (async_chunk->blkcg_css)
1207 		kthread_associate_blkcg(NULL);
1208 	btrfs_debug(fs_info,
1209 "async extent submission failed root=%lld inode=%llu start=%llu len=%llu ret=%d",
1210 		    root->root_key.objectid, btrfs_ino(inode), start,
1211 		    async_extent->ram_size, ret);
1212 	kfree(async_extent);
1213 }
1214 
1215 static u64 get_extent_allocation_hint(struct btrfs_inode *inode, u64 start,
1216 				      u64 num_bytes)
1217 {
1218 	struct extent_map_tree *em_tree = &inode->extent_tree;
1219 	struct extent_map *em;
1220 	u64 alloc_hint = 0;
1221 
1222 	read_lock(&em_tree->lock);
1223 	em = search_extent_mapping(em_tree, start, num_bytes);
1224 	if (em) {
1225 		/*
1226 		 * if block start isn't an actual block number then find the
1227 		 * first block in this inode and use that as a hint.  If that
1228 		 * block is also bogus then just don't worry about it.
1229 		 */
1230 		if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1231 			free_extent_map(em);
1232 			em = search_extent_mapping(em_tree, 0, 0);
1233 			if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
1234 				alloc_hint = em->block_start;
1235 			if (em)
1236 				free_extent_map(em);
1237 		} else {
1238 			alloc_hint = em->block_start;
1239 			free_extent_map(em);
1240 		}
1241 	}
1242 	read_unlock(&em_tree->lock);
1243 
1244 	return alloc_hint;
1245 }
1246 
1247 /*
1248  * when extent_io.c finds a delayed allocation range in the file,
1249  * the call backs end up in this code.  The basic idea is to
1250  * allocate extents on disk for the range, and create ordered data structs
1251  * in ram to track those extents.
1252  *
1253  * locked_page is the page that writepage had locked already.  We use
1254  * it to make sure we don't do extra locks or unlocks.
1255  *
1256  * When this function fails, it unlocks all pages except @locked_page.
1257  *
1258  * When this function successfully creates an inline extent, it returns 1 and
1259  * unlocks all pages including locked_page and starts I/O on them.
1260  * (In reality inline extents are limited to a single page, so locked_page is
1261  * the only page handled anyway).
1262  *
1263  * When this function succeed and creates a normal extent, the page locking
1264  * status depends on the passed in flags:
1265  *
1266  * - If @keep_locked is set, all pages are kept locked.
1267  * - Else all pages except for @locked_page are unlocked.
1268  *
1269  * When a failure happens in the second or later iteration of the
1270  * while-loop, the ordered extents created in previous iterations are kept
1271  * intact. So, the caller must clean them up by calling
1272  * btrfs_cleanup_ordered_extents(). See btrfs_run_delalloc_range() for
1273  * example.
1274  */
1275 static noinline int cow_file_range(struct btrfs_inode *inode,
1276 				   struct page *locked_page, u64 start, u64 end,
1277 				   u64 *done_offset,
1278 				   bool keep_locked, bool no_inline)
1279 {
1280 	struct btrfs_root *root = inode->root;
1281 	struct btrfs_fs_info *fs_info = root->fs_info;
1282 	u64 alloc_hint = 0;
1283 	u64 orig_start = start;
1284 	u64 num_bytes;
1285 	unsigned long ram_size;
1286 	u64 cur_alloc_size = 0;
1287 	u64 min_alloc_size;
1288 	u64 blocksize = fs_info->sectorsize;
1289 	struct btrfs_key ins;
1290 	struct extent_map *em;
1291 	unsigned clear_bits;
1292 	unsigned long page_ops;
1293 	bool extent_reserved = false;
1294 	int ret = 0;
1295 
1296 	if (btrfs_is_free_space_inode(inode)) {
1297 		ret = -EINVAL;
1298 		goto out_unlock;
1299 	}
1300 
1301 	num_bytes = ALIGN(end - start + 1, blocksize);
1302 	num_bytes = max(blocksize,  num_bytes);
1303 	ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy));
1304 
1305 	inode_should_defrag(inode, start, end, num_bytes, SZ_64K);
1306 
1307 	/*
1308 	 * Due to the page size limit, for subpage we can only trigger the
1309 	 * writeback for the dirty sectors of page, that means data writeback
1310 	 * is doing more writeback than what we want.
1311 	 *
1312 	 * This is especially unexpected for some call sites like fallocate,
1313 	 * where we only increase i_size after everything is done.
1314 	 * This means we can trigger inline extent even if we didn't want to.
1315 	 * So here we skip inline extent creation completely.
1316 	 */
1317 	if (start == 0 && fs_info->sectorsize == PAGE_SIZE && !no_inline) {
1318 		u64 actual_end = min_t(u64, i_size_read(&inode->vfs_inode),
1319 				       end + 1);
1320 
1321 		/* lets try to make an inline extent */
1322 		ret = cow_file_range_inline(inode, actual_end, 0,
1323 					    BTRFS_COMPRESS_NONE, NULL, false);
1324 		if (ret == 0) {
1325 			/*
1326 			 * We use DO_ACCOUNTING here because we need the
1327 			 * delalloc_release_metadata to be run _after_ we drop
1328 			 * our outstanding extent for clearing delalloc for this
1329 			 * range.
1330 			 */
1331 			extent_clear_unlock_delalloc(inode, start, end,
1332 				     locked_page,
1333 				     EXTENT_LOCKED | EXTENT_DELALLOC |
1334 				     EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
1335 				     EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1336 				     PAGE_START_WRITEBACK | PAGE_END_WRITEBACK);
1337 			/*
1338 			 * locked_page is locked by the caller of
1339 			 * writepage_delalloc(), not locked by
1340 			 * __process_pages_contig().
1341 			 *
1342 			 * We can't let __process_pages_contig() to unlock it,
1343 			 * as it doesn't have any subpage::writers recorded.
1344 			 *
1345 			 * Here we manually unlock the page, since the caller
1346 			 * can't determine if it's an inline extent or a
1347 			 * compressed extent.
1348 			 */
1349 			unlock_page(locked_page);
1350 			ret = 1;
1351 			goto done;
1352 		} else if (ret < 0) {
1353 			goto out_unlock;
1354 		}
1355 	}
1356 
1357 	alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
1358 
1359 	/*
1360 	 * Relocation relies on the relocated extents to have exactly the same
1361 	 * size as the original extents. Normally writeback for relocation data
1362 	 * extents follows a NOCOW path because relocation preallocates the
1363 	 * extents. However, due to an operation such as scrub turning a block
1364 	 * group to RO mode, it may fallback to COW mode, so we must make sure
1365 	 * an extent allocated during COW has exactly the requested size and can
1366 	 * not be split into smaller extents, otherwise relocation breaks and
1367 	 * fails during the stage where it updates the bytenr of file extent
1368 	 * items.
1369 	 */
1370 	if (btrfs_is_data_reloc_root(root))
1371 		min_alloc_size = num_bytes;
1372 	else
1373 		min_alloc_size = fs_info->sectorsize;
1374 
1375 	while (num_bytes > 0) {
1376 		struct btrfs_ordered_extent *ordered;
1377 
1378 		cur_alloc_size = num_bytes;
1379 		ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size,
1380 					   min_alloc_size, 0, alloc_hint,
1381 					   &ins, 1, 1);
1382 		if (ret == -EAGAIN) {
1383 			/*
1384 			 * btrfs_reserve_extent only returns -EAGAIN for zoned
1385 			 * file systems, which is an indication that there are
1386 			 * no active zones to allocate from at the moment.
1387 			 *
1388 			 * If this is the first loop iteration, wait for at
1389 			 * least one zone to finish before retrying the
1390 			 * allocation.  Otherwise ask the caller to write out
1391 			 * the already allocated blocks before coming back to
1392 			 * us, or return -ENOSPC if it can't handle retries.
1393 			 */
1394 			ASSERT(btrfs_is_zoned(fs_info));
1395 			if (start == orig_start) {
1396 				wait_on_bit_io(&inode->root->fs_info->flags,
1397 					       BTRFS_FS_NEED_ZONE_FINISH,
1398 					       TASK_UNINTERRUPTIBLE);
1399 				continue;
1400 			}
1401 			if (done_offset) {
1402 				*done_offset = start - 1;
1403 				return 0;
1404 			}
1405 			ret = -ENOSPC;
1406 		}
1407 		if (ret < 0)
1408 			goto out_unlock;
1409 		cur_alloc_size = ins.offset;
1410 		extent_reserved = true;
1411 
1412 		ram_size = ins.offset;
1413 		em = create_io_em(inode, start, ins.offset, /* len */
1414 				  start, /* orig_start */
1415 				  ins.objectid, /* block_start */
1416 				  ins.offset, /* block_len */
1417 				  ins.offset, /* orig_block_len */
1418 				  ram_size, /* ram_bytes */
1419 				  BTRFS_COMPRESS_NONE, /* compress_type */
1420 				  BTRFS_ORDERED_REGULAR /* type */);
1421 		if (IS_ERR(em)) {
1422 			ret = PTR_ERR(em);
1423 			goto out_reserve;
1424 		}
1425 		free_extent_map(em);
1426 
1427 		ordered = btrfs_alloc_ordered_extent(inode, start, ram_size,
1428 					ram_size, ins.objectid, cur_alloc_size,
1429 					0, 1 << BTRFS_ORDERED_REGULAR,
1430 					BTRFS_COMPRESS_NONE);
1431 		if (IS_ERR(ordered)) {
1432 			ret = PTR_ERR(ordered);
1433 			goto out_drop_extent_cache;
1434 		}
1435 
1436 		if (btrfs_is_data_reloc_root(root)) {
1437 			ret = btrfs_reloc_clone_csums(ordered);
1438 
1439 			/*
1440 			 * Only drop cache here, and process as normal.
1441 			 *
1442 			 * We must not allow extent_clear_unlock_delalloc()
1443 			 * at out_unlock label to free meta of this ordered
1444 			 * extent, as its meta should be freed by
1445 			 * btrfs_finish_ordered_io().
1446 			 *
1447 			 * So we must continue until @start is increased to
1448 			 * skip current ordered extent.
1449 			 */
1450 			if (ret)
1451 				btrfs_drop_extent_map_range(inode, start,
1452 							    start + ram_size - 1,
1453 							    false);
1454 		}
1455 		btrfs_put_ordered_extent(ordered);
1456 
1457 		btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1458 
1459 		/*
1460 		 * We're not doing compressed IO, don't unlock the first page
1461 		 * (which the caller expects to stay locked), don't clear any
1462 		 * dirty bits and don't set any writeback bits
1463 		 *
1464 		 * Do set the Ordered (Private2) bit so we know this page was
1465 		 * properly setup for writepage.
1466 		 */
1467 		page_ops = (keep_locked ? 0 : PAGE_UNLOCK);
1468 		page_ops |= PAGE_SET_ORDERED;
1469 
1470 		extent_clear_unlock_delalloc(inode, start, start + ram_size - 1,
1471 					     locked_page,
1472 					     EXTENT_LOCKED | EXTENT_DELALLOC,
1473 					     page_ops);
1474 		if (num_bytes < cur_alloc_size)
1475 			num_bytes = 0;
1476 		else
1477 			num_bytes -= cur_alloc_size;
1478 		alloc_hint = ins.objectid + ins.offset;
1479 		start += cur_alloc_size;
1480 		extent_reserved = false;
1481 
1482 		/*
1483 		 * btrfs_reloc_clone_csums() error, since start is increased
1484 		 * extent_clear_unlock_delalloc() at out_unlock label won't
1485 		 * free metadata of current ordered extent, we're OK to exit.
1486 		 */
1487 		if (ret)
1488 			goto out_unlock;
1489 	}
1490 done:
1491 	if (done_offset)
1492 		*done_offset = end;
1493 	return ret;
1494 
1495 out_drop_extent_cache:
1496 	btrfs_drop_extent_map_range(inode, start, start + ram_size - 1, false);
1497 out_reserve:
1498 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1499 	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
1500 out_unlock:
1501 	/*
1502 	 * Now, we have three regions to clean up:
1503 	 *
1504 	 * |-------(1)----|---(2)---|-------------(3)----------|
1505 	 * `- orig_start  `- start  `- start + cur_alloc_size  `- end
1506 	 *
1507 	 * We process each region below.
1508 	 */
1509 
1510 	clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
1511 		EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV;
1512 	page_ops = PAGE_UNLOCK | PAGE_START_WRITEBACK | PAGE_END_WRITEBACK;
1513 
1514 	/*
1515 	 * For the range (1). We have already instantiated the ordered extents
1516 	 * for this region. They are cleaned up by
1517 	 * btrfs_cleanup_ordered_extents() in e.g,
1518 	 * btrfs_run_delalloc_range(). EXTENT_LOCKED | EXTENT_DELALLOC are
1519 	 * already cleared in the above loop. And, EXTENT_DELALLOC_NEW |
1520 	 * EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV are handled by the cleanup
1521 	 * function.
1522 	 *
1523 	 * However, in case of @keep_locked, we still need to unlock the pages
1524 	 * (except @locked_page) to ensure all the pages are unlocked.
1525 	 */
1526 	if (keep_locked && orig_start < start) {
1527 		if (!locked_page)
1528 			mapping_set_error(inode->vfs_inode.i_mapping, ret);
1529 		extent_clear_unlock_delalloc(inode, orig_start, start - 1,
1530 					     locked_page, 0, page_ops);
1531 	}
1532 
1533 	/*
1534 	 * For the range (2). If we reserved an extent for our delalloc range
1535 	 * (or a subrange) and failed to create the respective ordered extent,
1536 	 * then it means that when we reserved the extent we decremented the
1537 	 * extent's size from the data space_info's bytes_may_use counter and
1538 	 * incremented the space_info's bytes_reserved counter by the same
1539 	 * amount. We must make sure extent_clear_unlock_delalloc() does not try
1540 	 * to decrement again the data space_info's bytes_may_use counter,
1541 	 * therefore we do not pass it the flag EXTENT_CLEAR_DATA_RESV.
1542 	 */
1543 	if (extent_reserved) {
1544 		extent_clear_unlock_delalloc(inode, start,
1545 					     start + cur_alloc_size - 1,
1546 					     locked_page,
1547 					     clear_bits,
1548 					     page_ops);
1549 		start += cur_alloc_size;
1550 	}
1551 
1552 	/*
1553 	 * For the range (3). We never touched the region. In addition to the
1554 	 * clear_bits above, we add EXTENT_CLEAR_DATA_RESV to release the data
1555 	 * space_info's bytes_may_use counter, reserved in
1556 	 * btrfs_check_data_free_space().
1557 	 */
1558 	if (start < end) {
1559 		clear_bits |= EXTENT_CLEAR_DATA_RESV;
1560 		extent_clear_unlock_delalloc(inode, start, end, locked_page,
1561 					     clear_bits, page_ops);
1562 	}
1563 	return ret;
1564 }
1565 
1566 /*
1567  * Phase two of compressed writeback.  This is the ordered portion of the code,
1568  * which only gets called in the order the work was queued.  We walk all the
1569  * async extents created by compress_file_range and send them down to the disk.
1570  */
1571 static noinline void submit_compressed_extents(struct btrfs_work *work)
1572 {
1573 	struct async_chunk *async_chunk = container_of(work, struct async_chunk,
1574 						     work);
1575 	struct btrfs_fs_info *fs_info = btrfs_work_owner(work);
1576 	struct async_extent *async_extent;
1577 	unsigned long nr_pages;
1578 	u64 alloc_hint = 0;
1579 
1580 	nr_pages = (async_chunk->end - async_chunk->start + PAGE_SIZE) >>
1581 		PAGE_SHIFT;
1582 
1583 	while (!list_empty(&async_chunk->extents)) {
1584 		async_extent = list_entry(async_chunk->extents.next,
1585 					  struct async_extent, list);
1586 		list_del(&async_extent->list);
1587 		submit_one_async_extent(async_chunk, async_extent, &alloc_hint);
1588 	}
1589 
1590 	/* atomic_sub_return implies a barrier */
1591 	if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) <
1592 	    5 * SZ_1M)
1593 		cond_wake_up_nomb(&fs_info->async_submit_wait);
1594 }
1595 
1596 static noinline void async_cow_free(struct btrfs_work *work)
1597 {
1598 	struct async_chunk *async_chunk;
1599 	struct async_cow *async_cow;
1600 
1601 	async_chunk = container_of(work, struct async_chunk, work);
1602 	btrfs_add_delayed_iput(async_chunk->inode);
1603 	if (async_chunk->blkcg_css)
1604 		css_put(async_chunk->blkcg_css);
1605 
1606 	async_cow = async_chunk->async_cow;
1607 	if (atomic_dec_and_test(&async_cow->num_chunks))
1608 		kvfree(async_cow);
1609 }
1610 
1611 static bool run_delalloc_compressed(struct btrfs_inode *inode,
1612 				    struct page *locked_page, u64 start,
1613 				    u64 end, struct writeback_control *wbc)
1614 {
1615 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1616 	struct cgroup_subsys_state *blkcg_css = wbc_blkcg_css(wbc);
1617 	struct async_cow *ctx;
1618 	struct async_chunk *async_chunk;
1619 	unsigned long nr_pages;
1620 	u64 num_chunks = DIV_ROUND_UP(end - start, SZ_512K);
1621 	int i;
1622 	unsigned nofs_flag;
1623 	const blk_opf_t write_flags = wbc_to_write_flags(wbc);
1624 
1625 	nofs_flag = memalloc_nofs_save();
1626 	ctx = kvmalloc(struct_size(ctx, chunks, num_chunks), GFP_KERNEL);
1627 	memalloc_nofs_restore(nofs_flag);
1628 	if (!ctx)
1629 		return false;
1630 
1631 	unlock_extent(&inode->io_tree, start, end, NULL);
1632 	set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, &inode->runtime_flags);
1633 
1634 	async_chunk = ctx->chunks;
1635 	atomic_set(&ctx->num_chunks, num_chunks);
1636 
1637 	for (i = 0; i < num_chunks; i++) {
1638 		u64 cur_end = min(end, start + SZ_512K - 1);
1639 
1640 		/*
1641 		 * igrab is called higher up in the call chain, take only the
1642 		 * lightweight reference for the callback lifetime
1643 		 */
1644 		ihold(&inode->vfs_inode);
1645 		async_chunk[i].async_cow = ctx;
1646 		async_chunk[i].inode = inode;
1647 		async_chunk[i].start = start;
1648 		async_chunk[i].end = cur_end;
1649 		async_chunk[i].write_flags = write_flags;
1650 		INIT_LIST_HEAD(&async_chunk[i].extents);
1651 
1652 		/*
1653 		 * The locked_page comes all the way from writepage and its
1654 		 * the original page we were actually given.  As we spread
1655 		 * this large delalloc region across multiple async_chunk
1656 		 * structs, only the first struct needs a pointer to locked_page
1657 		 *
1658 		 * This way we don't need racey decisions about who is supposed
1659 		 * to unlock it.
1660 		 */
1661 		if (locked_page) {
1662 			/*
1663 			 * Depending on the compressibility, the pages might or
1664 			 * might not go through async.  We want all of them to
1665 			 * be accounted against wbc once.  Let's do it here
1666 			 * before the paths diverge.  wbc accounting is used
1667 			 * only for foreign writeback detection and doesn't
1668 			 * need full accuracy.  Just account the whole thing
1669 			 * against the first page.
1670 			 */
1671 			wbc_account_cgroup_owner(wbc, locked_page,
1672 						 cur_end - start);
1673 			async_chunk[i].locked_page = locked_page;
1674 			locked_page = NULL;
1675 		} else {
1676 			async_chunk[i].locked_page = NULL;
1677 		}
1678 
1679 		if (blkcg_css != blkcg_root_css) {
1680 			css_get(blkcg_css);
1681 			async_chunk[i].blkcg_css = blkcg_css;
1682 			async_chunk[i].write_flags |= REQ_BTRFS_CGROUP_PUNT;
1683 		} else {
1684 			async_chunk[i].blkcg_css = NULL;
1685 		}
1686 
1687 		btrfs_init_work(&async_chunk[i].work, compress_file_range,
1688 				submit_compressed_extents, async_cow_free);
1689 
1690 		nr_pages = DIV_ROUND_UP(cur_end - start, PAGE_SIZE);
1691 		atomic_add(nr_pages, &fs_info->async_delalloc_pages);
1692 
1693 		btrfs_queue_work(fs_info->delalloc_workers, &async_chunk[i].work);
1694 
1695 		start = cur_end + 1;
1696 	}
1697 	return true;
1698 }
1699 
1700 /*
1701  * Run the delalloc range from start to end, and write back any dirty pages
1702  * covered by the range.
1703  */
1704 static noinline int run_delalloc_cow(struct btrfs_inode *inode,
1705 				     struct page *locked_page, u64 start,
1706 				     u64 end, struct writeback_control *wbc,
1707 				     bool pages_dirty)
1708 {
1709 	u64 done_offset = end;
1710 	int ret;
1711 
1712 	while (start <= end) {
1713 		ret = cow_file_range(inode, locked_page, start, end, &done_offset,
1714 				     true, false);
1715 		if (ret)
1716 			return ret;
1717 		extent_write_locked_range(&inode->vfs_inode, locked_page, start,
1718 					  done_offset, wbc, pages_dirty);
1719 		start = done_offset + 1;
1720 	}
1721 
1722 	return 1;
1723 }
1724 
1725 static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info,
1726 					u64 bytenr, u64 num_bytes, bool nowait)
1727 {
1728 	struct btrfs_root *csum_root = btrfs_csum_root(fs_info, bytenr);
1729 	struct btrfs_ordered_sum *sums;
1730 	int ret;
1731 	LIST_HEAD(list);
1732 
1733 	ret = btrfs_lookup_csums_list(csum_root, bytenr, bytenr + num_bytes - 1,
1734 				      &list, 0, nowait);
1735 	if (ret == 0 && list_empty(&list))
1736 		return 0;
1737 
1738 	while (!list_empty(&list)) {
1739 		sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1740 		list_del(&sums->list);
1741 		kfree(sums);
1742 	}
1743 	if (ret < 0)
1744 		return ret;
1745 	return 1;
1746 }
1747 
1748 static int fallback_to_cow(struct btrfs_inode *inode, struct page *locked_page,
1749 			   const u64 start, const u64 end)
1750 {
1751 	const bool is_space_ino = btrfs_is_free_space_inode(inode);
1752 	const bool is_reloc_ino = btrfs_is_data_reloc_root(inode->root);
1753 	const u64 range_bytes = end + 1 - start;
1754 	struct extent_io_tree *io_tree = &inode->io_tree;
1755 	u64 range_start = start;
1756 	u64 count;
1757 	int ret;
1758 
1759 	/*
1760 	 * If EXTENT_NORESERVE is set it means that when the buffered write was
1761 	 * made we had not enough available data space and therefore we did not
1762 	 * reserve data space for it, since we though we could do NOCOW for the
1763 	 * respective file range (either there is prealloc extent or the inode
1764 	 * has the NOCOW bit set).
1765 	 *
1766 	 * However when we need to fallback to COW mode (because for example the
1767 	 * block group for the corresponding extent was turned to RO mode by a
1768 	 * scrub or relocation) we need to do the following:
1769 	 *
1770 	 * 1) We increment the bytes_may_use counter of the data space info.
1771 	 *    If COW succeeds, it allocates a new data extent and after doing
1772 	 *    that it decrements the space info's bytes_may_use counter and
1773 	 *    increments its bytes_reserved counter by the same amount (we do
1774 	 *    this at btrfs_add_reserved_bytes()). So we need to increment the
1775 	 *    bytes_may_use counter to compensate (when space is reserved at
1776 	 *    buffered write time, the bytes_may_use counter is incremented);
1777 	 *
1778 	 * 2) We clear the EXTENT_NORESERVE bit from the range. We do this so
1779 	 *    that if the COW path fails for any reason, it decrements (through
1780 	 *    extent_clear_unlock_delalloc()) the bytes_may_use counter of the
1781 	 *    data space info, which we incremented in the step above.
1782 	 *
1783 	 * If we need to fallback to cow and the inode corresponds to a free
1784 	 * space cache inode or an inode of the data relocation tree, we must
1785 	 * also increment bytes_may_use of the data space_info for the same
1786 	 * reason. Space caches and relocated data extents always get a prealloc
1787 	 * extent for them, however scrub or balance may have set the block
1788 	 * group that contains that extent to RO mode and therefore force COW
1789 	 * when starting writeback.
1790 	 */
1791 	count = count_range_bits(io_tree, &range_start, end, range_bytes,
1792 				 EXTENT_NORESERVE, 0, NULL);
1793 	if (count > 0 || is_space_ino || is_reloc_ino) {
1794 		u64 bytes = count;
1795 		struct btrfs_fs_info *fs_info = inode->root->fs_info;
1796 		struct btrfs_space_info *sinfo = fs_info->data_sinfo;
1797 
1798 		if (is_space_ino || is_reloc_ino)
1799 			bytes = range_bytes;
1800 
1801 		spin_lock(&sinfo->lock);
1802 		btrfs_space_info_update_bytes_may_use(fs_info, sinfo, bytes);
1803 		spin_unlock(&sinfo->lock);
1804 
1805 		if (count > 0)
1806 			clear_extent_bit(io_tree, start, end, EXTENT_NORESERVE,
1807 					 NULL);
1808 	}
1809 
1810 	/*
1811 	 * Don't try to create inline extents, as a mix of inline extent that
1812 	 * is written out and unlocked directly and a normal NOCOW extent
1813 	 * doesn't work.
1814 	 */
1815 	ret = cow_file_range(inode, locked_page, start, end, NULL, false, true);
1816 	ASSERT(ret != 1);
1817 	return ret;
1818 }
1819 
1820 struct can_nocow_file_extent_args {
1821 	/* Input fields. */
1822 
1823 	/* Start file offset of the range we want to NOCOW. */
1824 	u64 start;
1825 	/* End file offset (inclusive) of the range we want to NOCOW. */
1826 	u64 end;
1827 	bool writeback_path;
1828 	bool strict;
1829 	/*
1830 	 * Free the path passed to can_nocow_file_extent() once it's not needed
1831 	 * anymore.
1832 	 */
1833 	bool free_path;
1834 
1835 	/* Output fields. Only set when can_nocow_file_extent() returns 1. */
1836 
1837 	u64 disk_bytenr;
1838 	u64 disk_num_bytes;
1839 	u64 extent_offset;
1840 	/* Number of bytes that can be written to in NOCOW mode. */
1841 	u64 num_bytes;
1842 };
1843 
1844 /*
1845  * Check if we can NOCOW the file extent that the path points to.
1846  * This function may return with the path released, so the caller should check
1847  * if path->nodes[0] is NULL or not if it needs to use the path afterwards.
1848  *
1849  * Returns: < 0 on error
1850  *            0 if we can not NOCOW
1851  *            1 if we can NOCOW
1852  */
1853 static int can_nocow_file_extent(struct btrfs_path *path,
1854 				 struct btrfs_key *key,
1855 				 struct btrfs_inode *inode,
1856 				 struct can_nocow_file_extent_args *args)
1857 {
1858 	const bool is_freespace_inode = btrfs_is_free_space_inode(inode);
1859 	struct extent_buffer *leaf = path->nodes[0];
1860 	struct btrfs_root *root = inode->root;
1861 	struct btrfs_file_extent_item *fi;
1862 	u64 extent_end;
1863 	u8 extent_type;
1864 	int can_nocow = 0;
1865 	int ret = 0;
1866 	bool nowait = path->nowait;
1867 
1868 	fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
1869 	extent_type = btrfs_file_extent_type(leaf, fi);
1870 
1871 	if (extent_type == BTRFS_FILE_EXTENT_INLINE)
1872 		goto out;
1873 
1874 	/* Can't access these fields unless we know it's not an inline extent. */
1875 	args->disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1876 	args->disk_num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1877 	args->extent_offset = btrfs_file_extent_offset(leaf, fi);
1878 
1879 	if (!(inode->flags & BTRFS_INODE_NODATACOW) &&
1880 	    extent_type == BTRFS_FILE_EXTENT_REG)
1881 		goto out;
1882 
1883 	/*
1884 	 * If the extent was created before the generation where the last snapshot
1885 	 * for its subvolume was created, then this implies the extent is shared,
1886 	 * hence we must COW.
1887 	 */
1888 	if (!args->strict &&
1889 	    btrfs_file_extent_generation(leaf, fi) <=
1890 	    btrfs_root_last_snapshot(&root->root_item))
1891 		goto out;
1892 
1893 	/* An explicit hole, must COW. */
1894 	if (args->disk_bytenr == 0)
1895 		goto out;
1896 
1897 	/* Compressed/encrypted/encoded extents must be COWed. */
1898 	if (btrfs_file_extent_compression(leaf, fi) ||
1899 	    btrfs_file_extent_encryption(leaf, fi) ||
1900 	    btrfs_file_extent_other_encoding(leaf, fi))
1901 		goto out;
1902 
1903 	extent_end = btrfs_file_extent_end(path);
1904 
1905 	/*
1906 	 * The following checks can be expensive, as they need to take other
1907 	 * locks and do btree or rbtree searches, so release the path to avoid
1908 	 * blocking other tasks for too long.
1909 	 */
1910 	btrfs_release_path(path);
1911 
1912 	ret = btrfs_cross_ref_exist(root, btrfs_ino(inode),
1913 				    key->offset - args->extent_offset,
1914 				    args->disk_bytenr, args->strict, path);
1915 	WARN_ON_ONCE(ret > 0 && is_freespace_inode);
1916 	if (ret != 0)
1917 		goto out;
1918 
1919 	if (args->free_path) {
1920 		/*
1921 		 * We don't need the path anymore, plus through the
1922 		 * csum_exist_in_range() call below we will end up allocating
1923 		 * another path. So free the path to avoid unnecessary extra
1924 		 * memory usage.
1925 		 */
1926 		btrfs_free_path(path);
1927 		path = NULL;
1928 	}
1929 
1930 	/* If there are pending snapshots for this root, we must COW. */
1931 	if (args->writeback_path && !is_freespace_inode &&
1932 	    atomic_read(&root->snapshot_force_cow))
1933 		goto out;
1934 
1935 	args->disk_bytenr += args->extent_offset;
1936 	args->disk_bytenr += args->start - key->offset;
1937 	args->num_bytes = min(args->end + 1, extent_end) - args->start;
1938 
1939 	/*
1940 	 * Force COW if csums exist in the range. This ensures that csums for a
1941 	 * given extent are either valid or do not exist.
1942 	 */
1943 	ret = csum_exist_in_range(root->fs_info, args->disk_bytenr, args->num_bytes,
1944 				  nowait);
1945 	WARN_ON_ONCE(ret > 0 && is_freespace_inode);
1946 	if (ret != 0)
1947 		goto out;
1948 
1949 	can_nocow = 1;
1950  out:
1951 	if (args->free_path && path)
1952 		btrfs_free_path(path);
1953 
1954 	return ret < 0 ? ret : can_nocow;
1955 }
1956 
1957 /*
1958  * when nowcow writeback call back.  This checks for snapshots or COW copies
1959  * of the extents that exist in the file, and COWs the file as required.
1960  *
1961  * If no cow copies or snapshots exist, we write directly to the existing
1962  * blocks on disk
1963  */
1964 static noinline int run_delalloc_nocow(struct btrfs_inode *inode,
1965 				       struct page *locked_page,
1966 				       const u64 start, const u64 end)
1967 {
1968 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1969 	struct btrfs_root *root = inode->root;
1970 	struct btrfs_path *path;
1971 	u64 cow_start = (u64)-1;
1972 	u64 cur_offset = start;
1973 	int ret;
1974 	bool check_prev = true;
1975 	u64 ino = btrfs_ino(inode);
1976 	struct can_nocow_file_extent_args nocow_args = { 0 };
1977 
1978 	/*
1979 	 * Normally on a zoned device we're only doing COW writes, but in case
1980 	 * of relocation on a zoned filesystem serializes I/O so that we're only
1981 	 * writing sequentially and can end up here as well.
1982 	 */
1983 	ASSERT(!btrfs_is_zoned(fs_info) || btrfs_is_data_reloc_root(root));
1984 
1985 	path = btrfs_alloc_path();
1986 	if (!path) {
1987 		ret = -ENOMEM;
1988 		goto error;
1989 	}
1990 
1991 	nocow_args.end = end;
1992 	nocow_args.writeback_path = true;
1993 
1994 	while (1) {
1995 		struct btrfs_block_group *nocow_bg = NULL;
1996 		struct btrfs_ordered_extent *ordered;
1997 		struct btrfs_key found_key;
1998 		struct btrfs_file_extent_item *fi;
1999 		struct extent_buffer *leaf;
2000 		u64 extent_end;
2001 		u64 ram_bytes;
2002 		u64 nocow_end;
2003 		int extent_type;
2004 		bool is_prealloc;
2005 
2006 		ret = btrfs_lookup_file_extent(NULL, root, path, ino,
2007 					       cur_offset, 0);
2008 		if (ret < 0)
2009 			goto error;
2010 
2011 		/*
2012 		 * If there is no extent for our range when doing the initial
2013 		 * search, then go back to the previous slot as it will be the
2014 		 * one containing the search offset
2015 		 */
2016 		if (ret > 0 && path->slots[0] > 0 && check_prev) {
2017 			leaf = path->nodes[0];
2018 			btrfs_item_key_to_cpu(leaf, &found_key,
2019 					      path->slots[0] - 1);
2020 			if (found_key.objectid == ino &&
2021 			    found_key.type == BTRFS_EXTENT_DATA_KEY)
2022 				path->slots[0]--;
2023 		}
2024 		check_prev = false;
2025 next_slot:
2026 		/* Go to next leaf if we have exhausted the current one */
2027 		leaf = path->nodes[0];
2028 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2029 			ret = btrfs_next_leaf(root, path);
2030 			if (ret < 0)
2031 				goto error;
2032 			if (ret > 0)
2033 				break;
2034 			leaf = path->nodes[0];
2035 		}
2036 
2037 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2038 
2039 		/* Didn't find anything for our INO */
2040 		if (found_key.objectid > ino)
2041 			break;
2042 		/*
2043 		 * Keep searching until we find an EXTENT_ITEM or there are no
2044 		 * more extents for this inode
2045 		 */
2046 		if (WARN_ON_ONCE(found_key.objectid < ino) ||
2047 		    found_key.type < BTRFS_EXTENT_DATA_KEY) {
2048 			path->slots[0]++;
2049 			goto next_slot;
2050 		}
2051 
2052 		/* Found key is not EXTENT_DATA_KEY or starts after req range */
2053 		if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
2054 		    found_key.offset > end)
2055 			break;
2056 
2057 		/*
2058 		 * If the found extent starts after requested offset, then
2059 		 * adjust extent_end to be right before this extent begins
2060 		 */
2061 		if (found_key.offset > cur_offset) {
2062 			extent_end = found_key.offset;
2063 			extent_type = 0;
2064 			goto must_cow;
2065 		}
2066 
2067 		/*
2068 		 * Found extent which begins before our range and potentially
2069 		 * intersect it
2070 		 */
2071 		fi = btrfs_item_ptr(leaf, path->slots[0],
2072 				    struct btrfs_file_extent_item);
2073 		extent_type = btrfs_file_extent_type(leaf, fi);
2074 		/* If this is triggered then we have a memory corruption. */
2075 		ASSERT(extent_type < BTRFS_NR_FILE_EXTENT_TYPES);
2076 		if (WARN_ON(extent_type >= BTRFS_NR_FILE_EXTENT_TYPES)) {
2077 			ret = -EUCLEAN;
2078 			goto error;
2079 		}
2080 		ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
2081 		extent_end = btrfs_file_extent_end(path);
2082 
2083 		/*
2084 		 * If the extent we got ends before our current offset, skip to
2085 		 * the next extent.
2086 		 */
2087 		if (extent_end <= cur_offset) {
2088 			path->slots[0]++;
2089 			goto next_slot;
2090 		}
2091 
2092 		nocow_args.start = cur_offset;
2093 		ret = can_nocow_file_extent(path, &found_key, inode, &nocow_args);
2094 		if (ret < 0)
2095 			goto error;
2096 		if (ret == 0)
2097 			goto must_cow;
2098 
2099 		ret = 0;
2100 		nocow_bg = btrfs_inc_nocow_writers(fs_info, nocow_args.disk_bytenr);
2101 		if (!nocow_bg) {
2102 must_cow:
2103 			/*
2104 			 * If we can't perform NOCOW writeback for the range,
2105 			 * then record the beginning of the range that needs to
2106 			 * be COWed.  It will be written out before the next
2107 			 * NOCOW range if we find one, or when exiting this
2108 			 * loop.
2109 			 */
2110 			if (cow_start == (u64)-1)
2111 				cow_start = cur_offset;
2112 			cur_offset = extent_end;
2113 			if (cur_offset > end)
2114 				break;
2115 			if (!path->nodes[0])
2116 				continue;
2117 			path->slots[0]++;
2118 			goto next_slot;
2119 		}
2120 
2121 		/*
2122 		 * COW range from cow_start to found_key.offset - 1. As the key
2123 		 * will contain the beginning of the first extent that can be
2124 		 * NOCOW, following one which needs to be COW'ed
2125 		 */
2126 		if (cow_start != (u64)-1) {
2127 			ret = fallback_to_cow(inode, locked_page,
2128 					      cow_start, found_key.offset - 1);
2129 			cow_start = (u64)-1;
2130 			if (ret) {
2131 				btrfs_dec_nocow_writers(nocow_bg);
2132 				goto error;
2133 			}
2134 		}
2135 
2136 		nocow_end = cur_offset + nocow_args.num_bytes - 1;
2137 		is_prealloc = extent_type == BTRFS_FILE_EXTENT_PREALLOC;
2138 		if (is_prealloc) {
2139 			u64 orig_start = found_key.offset - nocow_args.extent_offset;
2140 			struct extent_map *em;
2141 
2142 			em = create_io_em(inode, cur_offset, nocow_args.num_bytes,
2143 					  orig_start,
2144 					  nocow_args.disk_bytenr, /* block_start */
2145 					  nocow_args.num_bytes, /* block_len */
2146 					  nocow_args.disk_num_bytes, /* orig_block_len */
2147 					  ram_bytes, BTRFS_COMPRESS_NONE,
2148 					  BTRFS_ORDERED_PREALLOC);
2149 			if (IS_ERR(em)) {
2150 				btrfs_dec_nocow_writers(nocow_bg);
2151 				ret = PTR_ERR(em);
2152 				goto error;
2153 			}
2154 			free_extent_map(em);
2155 		}
2156 
2157 		ordered = btrfs_alloc_ordered_extent(inode, cur_offset,
2158 				nocow_args.num_bytes, nocow_args.num_bytes,
2159 				nocow_args.disk_bytenr, nocow_args.num_bytes, 0,
2160 				is_prealloc
2161 				? (1 << BTRFS_ORDERED_PREALLOC)
2162 				: (1 << BTRFS_ORDERED_NOCOW),
2163 				BTRFS_COMPRESS_NONE);
2164 		btrfs_dec_nocow_writers(nocow_bg);
2165 		if (IS_ERR(ordered)) {
2166 			if (is_prealloc) {
2167 				btrfs_drop_extent_map_range(inode, cur_offset,
2168 							    nocow_end, false);
2169 			}
2170 			ret = PTR_ERR(ordered);
2171 			goto error;
2172 		}
2173 
2174 		if (btrfs_is_data_reloc_root(root))
2175 			/*
2176 			 * Error handled later, as we must prevent
2177 			 * extent_clear_unlock_delalloc() in error handler
2178 			 * from freeing metadata of created ordered extent.
2179 			 */
2180 			ret = btrfs_reloc_clone_csums(ordered);
2181 		btrfs_put_ordered_extent(ordered);
2182 
2183 		extent_clear_unlock_delalloc(inode, cur_offset, nocow_end,
2184 					     locked_page, EXTENT_LOCKED |
2185 					     EXTENT_DELALLOC |
2186 					     EXTENT_CLEAR_DATA_RESV,
2187 					     PAGE_UNLOCK | PAGE_SET_ORDERED);
2188 
2189 		cur_offset = extent_end;
2190 
2191 		/*
2192 		 * btrfs_reloc_clone_csums() error, now we're OK to call error
2193 		 * handler, as metadata for created ordered extent will only
2194 		 * be freed by btrfs_finish_ordered_io().
2195 		 */
2196 		if (ret)
2197 			goto error;
2198 		if (cur_offset > end)
2199 			break;
2200 	}
2201 	btrfs_release_path(path);
2202 
2203 	if (cur_offset <= end && cow_start == (u64)-1)
2204 		cow_start = cur_offset;
2205 
2206 	if (cow_start != (u64)-1) {
2207 		cur_offset = end;
2208 		ret = fallback_to_cow(inode, locked_page, cow_start, end);
2209 		cow_start = (u64)-1;
2210 		if (ret)
2211 			goto error;
2212 	}
2213 
2214 	btrfs_free_path(path);
2215 	return 0;
2216 
2217 error:
2218 	/*
2219 	 * If an error happened while a COW region is outstanding, cur_offset
2220 	 * needs to be reset to cow_start to ensure the COW region is unlocked
2221 	 * as well.
2222 	 */
2223 	if (cow_start != (u64)-1)
2224 		cur_offset = cow_start;
2225 	if (cur_offset < end)
2226 		extent_clear_unlock_delalloc(inode, cur_offset, end,
2227 					     locked_page, EXTENT_LOCKED |
2228 					     EXTENT_DELALLOC | EXTENT_DEFRAG |
2229 					     EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
2230 					     PAGE_START_WRITEBACK |
2231 					     PAGE_END_WRITEBACK);
2232 	btrfs_free_path(path);
2233 	return ret;
2234 }
2235 
2236 static bool should_nocow(struct btrfs_inode *inode, u64 start, u64 end)
2237 {
2238 	if (inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)) {
2239 		if (inode->defrag_bytes &&
2240 		    test_range_bit(&inode->io_tree, start, end, EXTENT_DEFRAG,
2241 				   0, NULL))
2242 			return false;
2243 		return true;
2244 	}
2245 	return false;
2246 }
2247 
2248 /*
2249  * Function to process delayed allocation (create CoW) for ranges which are
2250  * being touched for the first time.
2251  */
2252 int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct page *locked_page,
2253 			     u64 start, u64 end, struct writeback_control *wbc)
2254 {
2255 	const bool zoned = btrfs_is_zoned(inode->root->fs_info);
2256 	int ret;
2257 
2258 	/*
2259 	 * The range must cover part of the @locked_page, or a return of 1
2260 	 * can confuse the caller.
2261 	 */
2262 	ASSERT(!(end <= page_offset(locked_page) ||
2263 		 start >= page_offset(locked_page) + PAGE_SIZE));
2264 
2265 	if (should_nocow(inode, start, end)) {
2266 		ret = run_delalloc_nocow(inode, locked_page, start, end);
2267 		goto out;
2268 	}
2269 
2270 	if (btrfs_inode_can_compress(inode) &&
2271 	    inode_need_compress(inode, start, end) &&
2272 	    run_delalloc_compressed(inode, locked_page, start, end, wbc))
2273 		return 1;
2274 
2275 	if (zoned)
2276 		ret = run_delalloc_cow(inode, locked_page, start, end, wbc,
2277 				       true);
2278 	else
2279 		ret = cow_file_range(inode, locked_page, start, end, NULL,
2280 				     false, false);
2281 
2282 out:
2283 	if (ret < 0)
2284 		btrfs_cleanup_ordered_extents(inode, locked_page, start,
2285 					      end - start + 1);
2286 	return ret;
2287 }
2288 
2289 void btrfs_split_delalloc_extent(struct btrfs_inode *inode,
2290 				 struct extent_state *orig, u64 split)
2291 {
2292 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
2293 	u64 size;
2294 
2295 	/* not delalloc, ignore it */
2296 	if (!(orig->state & EXTENT_DELALLOC))
2297 		return;
2298 
2299 	size = orig->end - orig->start + 1;
2300 	if (size > fs_info->max_extent_size) {
2301 		u32 num_extents;
2302 		u64 new_size;
2303 
2304 		/*
2305 		 * See the explanation in btrfs_merge_delalloc_extent, the same
2306 		 * applies here, just in reverse.
2307 		 */
2308 		new_size = orig->end - split + 1;
2309 		num_extents = count_max_extents(fs_info, new_size);
2310 		new_size = split - orig->start;
2311 		num_extents += count_max_extents(fs_info, new_size);
2312 		if (count_max_extents(fs_info, size) >= num_extents)
2313 			return;
2314 	}
2315 
2316 	spin_lock(&inode->lock);
2317 	btrfs_mod_outstanding_extents(inode, 1);
2318 	spin_unlock(&inode->lock);
2319 }
2320 
2321 /*
2322  * Handle merged delayed allocation extents so we can keep track of new extents
2323  * that are just merged onto old extents, such as when we are doing sequential
2324  * writes, so we can properly account for the metadata space we'll need.
2325  */
2326 void btrfs_merge_delalloc_extent(struct btrfs_inode *inode, struct extent_state *new,
2327 				 struct extent_state *other)
2328 {
2329 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
2330 	u64 new_size, old_size;
2331 	u32 num_extents;
2332 
2333 	/* not delalloc, ignore it */
2334 	if (!(other->state & EXTENT_DELALLOC))
2335 		return;
2336 
2337 	if (new->start > other->start)
2338 		new_size = new->end - other->start + 1;
2339 	else
2340 		new_size = other->end - new->start + 1;
2341 
2342 	/* we're not bigger than the max, unreserve the space and go */
2343 	if (new_size <= fs_info->max_extent_size) {
2344 		spin_lock(&inode->lock);
2345 		btrfs_mod_outstanding_extents(inode, -1);
2346 		spin_unlock(&inode->lock);
2347 		return;
2348 	}
2349 
2350 	/*
2351 	 * We have to add up either side to figure out how many extents were
2352 	 * accounted for before we merged into one big extent.  If the number of
2353 	 * extents we accounted for is <= the amount we need for the new range
2354 	 * then we can return, otherwise drop.  Think of it like this
2355 	 *
2356 	 * [ 4k][MAX_SIZE]
2357 	 *
2358 	 * So we've grown the extent by a MAX_SIZE extent, this would mean we
2359 	 * need 2 outstanding extents, on one side we have 1 and the other side
2360 	 * we have 1 so they are == and we can return.  But in this case
2361 	 *
2362 	 * [MAX_SIZE+4k][MAX_SIZE+4k]
2363 	 *
2364 	 * Each range on their own accounts for 2 extents, but merged together
2365 	 * they are only 3 extents worth of accounting, so we need to drop in
2366 	 * this case.
2367 	 */
2368 	old_size = other->end - other->start + 1;
2369 	num_extents = count_max_extents(fs_info, old_size);
2370 	old_size = new->end - new->start + 1;
2371 	num_extents += count_max_extents(fs_info, old_size);
2372 	if (count_max_extents(fs_info, new_size) >= num_extents)
2373 		return;
2374 
2375 	spin_lock(&inode->lock);
2376 	btrfs_mod_outstanding_extents(inode, -1);
2377 	spin_unlock(&inode->lock);
2378 }
2379 
2380 static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
2381 				      struct btrfs_inode *inode)
2382 {
2383 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
2384 
2385 	spin_lock(&root->delalloc_lock);
2386 	if (list_empty(&inode->delalloc_inodes)) {
2387 		list_add_tail(&inode->delalloc_inodes, &root->delalloc_inodes);
2388 		set_bit(BTRFS_INODE_IN_DELALLOC_LIST, &inode->runtime_flags);
2389 		root->nr_delalloc_inodes++;
2390 		if (root->nr_delalloc_inodes == 1) {
2391 			spin_lock(&fs_info->delalloc_root_lock);
2392 			BUG_ON(!list_empty(&root->delalloc_root));
2393 			list_add_tail(&root->delalloc_root,
2394 				      &fs_info->delalloc_roots);
2395 			spin_unlock(&fs_info->delalloc_root_lock);
2396 		}
2397 	}
2398 	spin_unlock(&root->delalloc_lock);
2399 }
2400 
2401 void __btrfs_del_delalloc_inode(struct btrfs_root *root,
2402 				struct btrfs_inode *inode)
2403 {
2404 	struct btrfs_fs_info *fs_info = root->fs_info;
2405 
2406 	if (!list_empty(&inode->delalloc_inodes)) {
2407 		list_del_init(&inode->delalloc_inodes);
2408 		clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
2409 			  &inode->runtime_flags);
2410 		root->nr_delalloc_inodes--;
2411 		if (!root->nr_delalloc_inodes) {
2412 			ASSERT(list_empty(&root->delalloc_inodes));
2413 			spin_lock(&fs_info->delalloc_root_lock);
2414 			BUG_ON(list_empty(&root->delalloc_root));
2415 			list_del_init(&root->delalloc_root);
2416 			spin_unlock(&fs_info->delalloc_root_lock);
2417 		}
2418 	}
2419 }
2420 
2421 static void btrfs_del_delalloc_inode(struct btrfs_root *root,
2422 				     struct btrfs_inode *inode)
2423 {
2424 	spin_lock(&root->delalloc_lock);
2425 	__btrfs_del_delalloc_inode(root, inode);
2426 	spin_unlock(&root->delalloc_lock);
2427 }
2428 
2429 /*
2430  * Properly track delayed allocation bytes in the inode and to maintain the
2431  * list of inodes that have pending delalloc work to be done.
2432  */
2433 void btrfs_set_delalloc_extent(struct btrfs_inode *inode, struct extent_state *state,
2434 			       u32 bits)
2435 {
2436 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
2437 
2438 	if ((bits & EXTENT_DEFRAG) && !(bits & EXTENT_DELALLOC))
2439 		WARN_ON(1);
2440 	/*
2441 	 * set_bit and clear bit hooks normally require _irqsave/restore
2442 	 * but in this case, we are only testing for the DELALLOC
2443 	 * bit, which is only set or cleared with irqs on
2444 	 */
2445 	if (!(state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
2446 		struct btrfs_root *root = inode->root;
2447 		u64 len = state->end + 1 - state->start;
2448 		u32 num_extents = count_max_extents(fs_info, len);
2449 		bool do_list = !btrfs_is_free_space_inode(inode);
2450 
2451 		spin_lock(&inode->lock);
2452 		btrfs_mod_outstanding_extents(inode, num_extents);
2453 		spin_unlock(&inode->lock);
2454 
2455 		/* For sanity tests */
2456 		if (btrfs_is_testing(fs_info))
2457 			return;
2458 
2459 		percpu_counter_add_batch(&fs_info->delalloc_bytes, len,
2460 					 fs_info->delalloc_batch);
2461 		spin_lock(&inode->lock);
2462 		inode->delalloc_bytes += len;
2463 		if (bits & EXTENT_DEFRAG)
2464 			inode->defrag_bytes += len;
2465 		if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
2466 					 &inode->runtime_flags))
2467 			btrfs_add_delalloc_inodes(root, inode);
2468 		spin_unlock(&inode->lock);
2469 	}
2470 
2471 	if (!(state->state & EXTENT_DELALLOC_NEW) &&
2472 	    (bits & EXTENT_DELALLOC_NEW)) {
2473 		spin_lock(&inode->lock);
2474 		inode->new_delalloc_bytes += state->end + 1 - state->start;
2475 		spin_unlock(&inode->lock);
2476 	}
2477 }
2478 
2479 /*
2480  * Once a range is no longer delalloc this function ensures that proper
2481  * accounting happens.
2482  */
2483 void btrfs_clear_delalloc_extent(struct btrfs_inode *inode,
2484 				 struct extent_state *state, u32 bits)
2485 {
2486 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
2487 	u64 len = state->end + 1 - state->start;
2488 	u32 num_extents = count_max_extents(fs_info, len);
2489 
2490 	if ((state->state & EXTENT_DEFRAG) && (bits & EXTENT_DEFRAG)) {
2491 		spin_lock(&inode->lock);
2492 		inode->defrag_bytes -= len;
2493 		spin_unlock(&inode->lock);
2494 	}
2495 
2496 	/*
2497 	 * set_bit and clear bit hooks normally require _irqsave/restore
2498 	 * but in this case, we are only testing for the DELALLOC
2499 	 * bit, which is only set or cleared with irqs on
2500 	 */
2501 	if ((state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
2502 		struct btrfs_root *root = inode->root;
2503 		bool do_list = !btrfs_is_free_space_inode(inode);
2504 
2505 		spin_lock(&inode->lock);
2506 		btrfs_mod_outstanding_extents(inode, -num_extents);
2507 		spin_unlock(&inode->lock);
2508 
2509 		/*
2510 		 * We don't reserve metadata space for space cache inodes so we
2511 		 * don't need to call delalloc_release_metadata if there is an
2512 		 * error.
2513 		 */
2514 		if (bits & EXTENT_CLEAR_META_RESV &&
2515 		    root != fs_info->tree_root)
2516 			btrfs_delalloc_release_metadata(inode, len, true);
2517 
2518 		/* For sanity tests. */
2519 		if (btrfs_is_testing(fs_info))
2520 			return;
2521 
2522 		if (!btrfs_is_data_reloc_root(root) &&
2523 		    do_list && !(state->state & EXTENT_NORESERVE) &&
2524 		    (bits & EXTENT_CLEAR_DATA_RESV))
2525 			btrfs_free_reserved_data_space_noquota(fs_info, len);
2526 
2527 		percpu_counter_add_batch(&fs_info->delalloc_bytes, -len,
2528 					 fs_info->delalloc_batch);
2529 		spin_lock(&inode->lock);
2530 		inode->delalloc_bytes -= len;
2531 		if (do_list && inode->delalloc_bytes == 0 &&
2532 		    test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
2533 					&inode->runtime_flags))
2534 			btrfs_del_delalloc_inode(root, inode);
2535 		spin_unlock(&inode->lock);
2536 	}
2537 
2538 	if ((state->state & EXTENT_DELALLOC_NEW) &&
2539 	    (bits & EXTENT_DELALLOC_NEW)) {
2540 		spin_lock(&inode->lock);
2541 		ASSERT(inode->new_delalloc_bytes >= len);
2542 		inode->new_delalloc_bytes -= len;
2543 		if (bits & EXTENT_ADD_INODE_BYTES)
2544 			inode_add_bytes(&inode->vfs_inode, len);
2545 		spin_unlock(&inode->lock);
2546 	}
2547 }
2548 
2549 static int btrfs_extract_ordered_extent(struct btrfs_bio *bbio,
2550 					struct btrfs_ordered_extent *ordered)
2551 {
2552 	u64 start = (u64)bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT;
2553 	u64 len = bbio->bio.bi_iter.bi_size;
2554 	struct btrfs_ordered_extent *new;
2555 	int ret;
2556 
2557 	/* Must always be called for the beginning of an ordered extent. */
2558 	if (WARN_ON_ONCE(start != ordered->disk_bytenr))
2559 		return -EINVAL;
2560 
2561 	/* No need to split if the ordered extent covers the entire bio. */
2562 	if (ordered->disk_num_bytes == len) {
2563 		refcount_inc(&ordered->refs);
2564 		bbio->ordered = ordered;
2565 		return 0;
2566 	}
2567 
2568 	/*
2569 	 * Don't split the extent_map for NOCOW extents, as we're writing into
2570 	 * a pre-existing one.
2571 	 */
2572 	if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags)) {
2573 		ret = split_extent_map(bbio->inode, bbio->file_offset,
2574 				       ordered->num_bytes, len,
2575 				       ordered->disk_bytenr);
2576 		if (ret)
2577 			return ret;
2578 	}
2579 
2580 	new = btrfs_split_ordered_extent(ordered, len);
2581 	if (IS_ERR(new))
2582 		return PTR_ERR(new);
2583 	bbio->ordered = new;
2584 	return 0;
2585 }
2586 
2587 /*
2588  * given a list of ordered sums record them in the inode.  This happens
2589  * at IO completion time based on sums calculated at bio submission time.
2590  */
2591 static int add_pending_csums(struct btrfs_trans_handle *trans,
2592 			     struct list_head *list)
2593 {
2594 	struct btrfs_ordered_sum *sum;
2595 	struct btrfs_root *csum_root = NULL;
2596 	int ret;
2597 
2598 	list_for_each_entry(sum, list, list) {
2599 		trans->adding_csums = true;
2600 		if (!csum_root)
2601 			csum_root = btrfs_csum_root(trans->fs_info,
2602 						    sum->logical);
2603 		ret = btrfs_csum_file_blocks(trans, csum_root, sum);
2604 		trans->adding_csums = false;
2605 		if (ret)
2606 			return ret;
2607 	}
2608 	return 0;
2609 }
2610 
2611 static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode,
2612 					 const u64 start,
2613 					 const u64 len,
2614 					 struct extent_state **cached_state)
2615 {
2616 	u64 search_start = start;
2617 	const u64 end = start + len - 1;
2618 
2619 	while (search_start < end) {
2620 		const u64 search_len = end - search_start + 1;
2621 		struct extent_map *em;
2622 		u64 em_len;
2623 		int ret = 0;
2624 
2625 		em = btrfs_get_extent(inode, NULL, 0, search_start, search_len);
2626 		if (IS_ERR(em))
2627 			return PTR_ERR(em);
2628 
2629 		if (em->block_start != EXTENT_MAP_HOLE)
2630 			goto next;
2631 
2632 		em_len = em->len;
2633 		if (em->start < search_start)
2634 			em_len -= search_start - em->start;
2635 		if (em_len > search_len)
2636 			em_len = search_len;
2637 
2638 		ret = set_extent_bit(&inode->io_tree, search_start,
2639 				     search_start + em_len - 1,
2640 				     EXTENT_DELALLOC_NEW, cached_state);
2641 next:
2642 		search_start = extent_map_end(em);
2643 		free_extent_map(em);
2644 		if (ret)
2645 			return ret;
2646 	}
2647 	return 0;
2648 }
2649 
2650 int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
2651 			      unsigned int extra_bits,
2652 			      struct extent_state **cached_state)
2653 {
2654 	WARN_ON(PAGE_ALIGNED(end));
2655 
2656 	if (start >= i_size_read(&inode->vfs_inode) &&
2657 	    !(inode->flags & BTRFS_INODE_PREALLOC)) {
2658 		/*
2659 		 * There can't be any extents following eof in this case so just
2660 		 * set the delalloc new bit for the range directly.
2661 		 */
2662 		extra_bits |= EXTENT_DELALLOC_NEW;
2663 	} else {
2664 		int ret;
2665 
2666 		ret = btrfs_find_new_delalloc_bytes(inode, start,
2667 						    end + 1 - start,
2668 						    cached_state);
2669 		if (ret)
2670 			return ret;
2671 	}
2672 
2673 	return set_extent_bit(&inode->io_tree, start, end,
2674 			      EXTENT_DELALLOC | extra_bits, cached_state);
2675 }
2676 
2677 /* see btrfs_writepage_start_hook for details on why this is required */
2678 struct btrfs_writepage_fixup {
2679 	struct page *page;
2680 	struct btrfs_inode *inode;
2681 	struct btrfs_work work;
2682 };
2683 
2684 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
2685 {
2686 	struct btrfs_writepage_fixup *fixup =
2687 		container_of(work, struct btrfs_writepage_fixup, work);
2688 	struct btrfs_ordered_extent *ordered;
2689 	struct extent_state *cached_state = NULL;
2690 	struct extent_changeset *data_reserved = NULL;
2691 	struct page *page = fixup->page;
2692 	struct btrfs_inode *inode = fixup->inode;
2693 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
2694 	u64 page_start = page_offset(page);
2695 	u64 page_end = page_offset(page) + PAGE_SIZE - 1;
2696 	int ret = 0;
2697 	bool free_delalloc_space = true;
2698 
2699 	/*
2700 	 * This is similar to page_mkwrite, we need to reserve the space before
2701 	 * we take the page lock.
2702 	 */
2703 	ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
2704 					   PAGE_SIZE);
2705 again:
2706 	lock_page(page);
2707 
2708 	/*
2709 	 * Before we queued this fixup, we took a reference on the page.
2710 	 * page->mapping may go NULL, but it shouldn't be moved to a different
2711 	 * address space.
2712 	 */
2713 	if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
2714 		/*
2715 		 * Unfortunately this is a little tricky, either
2716 		 *
2717 		 * 1) We got here and our page had already been dealt with and
2718 		 *    we reserved our space, thus ret == 0, so we need to just
2719 		 *    drop our space reservation and bail.  This can happen the
2720 		 *    first time we come into the fixup worker, or could happen
2721 		 *    while waiting for the ordered extent.
2722 		 * 2) Our page was already dealt with, but we happened to get an
2723 		 *    ENOSPC above from the btrfs_delalloc_reserve_space.  In
2724 		 *    this case we obviously don't have anything to release, but
2725 		 *    because the page was already dealt with we don't want to
2726 		 *    mark the page with an error, so make sure we're resetting
2727 		 *    ret to 0.  This is why we have this check _before_ the ret
2728 		 *    check, because we do not want to have a surprise ENOSPC
2729 		 *    when the page was already properly dealt with.
2730 		 */
2731 		if (!ret) {
2732 			btrfs_delalloc_release_extents(inode, PAGE_SIZE);
2733 			btrfs_delalloc_release_space(inode, data_reserved,
2734 						     page_start, PAGE_SIZE,
2735 						     true);
2736 		}
2737 		ret = 0;
2738 		goto out_page;
2739 	}
2740 
2741 	/*
2742 	 * We can't mess with the page state unless it is locked, so now that
2743 	 * it is locked bail if we failed to make our space reservation.
2744 	 */
2745 	if (ret)
2746 		goto out_page;
2747 
2748 	lock_extent(&inode->io_tree, page_start, page_end, &cached_state);
2749 
2750 	/* already ordered? We're done */
2751 	if (PageOrdered(page))
2752 		goto out_reserved;
2753 
2754 	ordered = btrfs_lookup_ordered_range(inode, page_start, PAGE_SIZE);
2755 	if (ordered) {
2756 		unlock_extent(&inode->io_tree, page_start, page_end,
2757 			      &cached_state);
2758 		unlock_page(page);
2759 		btrfs_start_ordered_extent(ordered);
2760 		btrfs_put_ordered_extent(ordered);
2761 		goto again;
2762 	}
2763 
2764 	ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0,
2765 					&cached_state);
2766 	if (ret)
2767 		goto out_reserved;
2768 
2769 	/*
2770 	 * Everything went as planned, we're now the owner of a dirty page with
2771 	 * delayed allocation bits set and space reserved for our COW
2772 	 * destination.
2773 	 *
2774 	 * The page was dirty when we started, nothing should have cleaned it.
2775 	 */
2776 	BUG_ON(!PageDirty(page));
2777 	free_delalloc_space = false;
2778 out_reserved:
2779 	btrfs_delalloc_release_extents(inode, PAGE_SIZE);
2780 	if (free_delalloc_space)
2781 		btrfs_delalloc_release_space(inode, data_reserved, page_start,
2782 					     PAGE_SIZE, true);
2783 	unlock_extent(&inode->io_tree, page_start, page_end, &cached_state);
2784 out_page:
2785 	if (ret) {
2786 		/*
2787 		 * We hit ENOSPC or other errors.  Update the mapping and page
2788 		 * to reflect the errors and clean the page.
2789 		 */
2790 		mapping_set_error(page->mapping, ret);
2791 		btrfs_mark_ordered_io_finished(inode, page, page_start,
2792 					       PAGE_SIZE, !ret);
2793 		clear_page_dirty_for_io(page);
2794 	}
2795 	btrfs_page_clear_checked(fs_info, page, page_start, PAGE_SIZE);
2796 	unlock_page(page);
2797 	put_page(page);
2798 	kfree(fixup);
2799 	extent_changeset_free(data_reserved);
2800 	/*
2801 	 * As a precaution, do a delayed iput in case it would be the last iput
2802 	 * that could need flushing space. Recursing back to fixup worker would
2803 	 * deadlock.
2804 	 */
2805 	btrfs_add_delayed_iput(inode);
2806 }
2807 
2808 /*
2809  * There are a few paths in the higher layers of the kernel that directly
2810  * set the page dirty bit without asking the filesystem if it is a
2811  * good idea.  This causes problems because we want to make sure COW
2812  * properly happens and the data=ordered rules are followed.
2813  *
2814  * In our case any range that doesn't have the ORDERED bit set
2815  * hasn't been properly setup for IO.  We kick off an async process
2816  * to fix it up.  The async helper will wait for ordered extents, set
2817  * the delalloc bit and make it safe to write the page.
2818  */
2819 int btrfs_writepage_cow_fixup(struct page *page)
2820 {
2821 	struct inode *inode = page->mapping->host;
2822 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2823 	struct btrfs_writepage_fixup *fixup;
2824 
2825 	/* This page has ordered extent covering it already */
2826 	if (PageOrdered(page))
2827 		return 0;
2828 
2829 	/*
2830 	 * PageChecked is set below when we create a fixup worker for this page,
2831 	 * don't try to create another one if we're already PageChecked()
2832 	 *
2833 	 * The extent_io writepage code will redirty the page if we send back
2834 	 * EAGAIN.
2835 	 */
2836 	if (PageChecked(page))
2837 		return -EAGAIN;
2838 
2839 	fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2840 	if (!fixup)
2841 		return -EAGAIN;
2842 
2843 	/*
2844 	 * We are already holding a reference to this inode from
2845 	 * write_cache_pages.  We need to hold it because the space reservation
2846 	 * takes place outside of the page lock, and we can't trust
2847 	 * page->mapping outside of the page lock.
2848 	 */
2849 	ihold(inode);
2850 	btrfs_page_set_checked(fs_info, page, page_offset(page), PAGE_SIZE);
2851 	get_page(page);
2852 	btrfs_init_work(&fixup->work, btrfs_writepage_fixup_worker, NULL, NULL);
2853 	fixup->page = page;
2854 	fixup->inode = BTRFS_I(inode);
2855 	btrfs_queue_work(fs_info->fixup_workers, &fixup->work);
2856 
2857 	return -EAGAIN;
2858 }
2859 
2860 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2861 				       struct btrfs_inode *inode, u64 file_pos,
2862 				       struct btrfs_file_extent_item *stack_fi,
2863 				       const bool update_inode_bytes,
2864 				       u64 qgroup_reserved)
2865 {
2866 	struct btrfs_root *root = inode->root;
2867 	const u64 sectorsize = root->fs_info->sectorsize;
2868 	struct btrfs_path *path;
2869 	struct extent_buffer *leaf;
2870 	struct btrfs_key ins;
2871 	u64 disk_num_bytes = btrfs_stack_file_extent_disk_num_bytes(stack_fi);
2872 	u64 disk_bytenr = btrfs_stack_file_extent_disk_bytenr(stack_fi);
2873 	u64 offset = btrfs_stack_file_extent_offset(stack_fi);
2874 	u64 num_bytes = btrfs_stack_file_extent_num_bytes(stack_fi);
2875 	u64 ram_bytes = btrfs_stack_file_extent_ram_bytes(stack_fi);
2876 	struct btrfs_drop_extents_args drop_args = { 0 };
2877 	int ret;
2878 
2879 	path = btrfs_alloc_path();
2880 	if (!path)
2881 		return -ENOMEM;
2882 
2883 	/*
2884 	 * we may be replacing one extent in the tree with another.
2885 	 * The new extent is pinned in the extent map, and we don't want
2886 	 * to drop it from the cache until it is completely in the btree.
2887 	 *
2888 	 * So, tell btrfs_drop_extents to leave this extent in the cache.
2889 	 * the caller is expected to unpin it and allow it to be merged
2890 	 * with the others.
2891 	 */
2892 	drop_args.path = path;
2893 	drop_args.start = file_pos;
2894 	drop_args.end = file_pos + num_bytes;
2895 	drop_args.replace_extent = true;
2896 	drop_args.extent_item_size = sizeof(*stack_fi);
2897 	ret = btrfs_drop_extents(trans, root, inode, &drop_args);
2898 	if (ret)
2899 		goto out;
2900 
2901 	if (!drop_args.extent_inserted) {
2902 		ins.objectid = btrfs_ino(inode);
2903 		ins.offset = file_pos;
2904 		ins.type = BTRFS_EXTENT_DATA_KEY;
2905 
2906 		ret = btrfs_insert_empty_item(trans, root, path, &ins,
2907 					      sizeof(*stack_fi));
2908 		if (ret)
2909 			goto out;
2910 	}
2911 	leaf = path->nodes[0];
2912 	btrfs_set_stack_file_extent_generation(stack_fi, trans->transid);
2913 	write_extent_buffer(leaf, stack_fi,
2914 			btrfs_item_ptr_offset(leaf, path->slots[0]),
2915 			sizeof(struct btrfs_file_extent_item));
2916 
2917 	btrfs_mark_buffer_dirty(trans, leaf);
2918 	btrfs_release_path(path);
2919 
2920 	/*
2921 	 * If we dropped an inline extent here, we know the range where it is
2922 	 * was not marked with the EXTENT_DELALLOC_NEW bit, so we update the
2923 	 * number of bytes only for that range containing the inline extent.
2924 	 * The remaining of the range will be processed when clearning the
2925 	 * EXTENT_DELALLOC_BIT bit through the ordered extent completion.
2926 	 */
2927 	if (file_pos == 0 && !IS_ALIGNED(drop_args.bytes_found, sectorsize)) {
2928 		u64 inline_size = round_down(drop_args.bytes_found, sectorsize);
2929 
2930 		inline_size = drop_args.bytes_found - inline_size;
2931 		btrfs_update_inode_bytes(inode, sectorsize, inline_size);
2932 		drop_args.bytes_found -= inline_size;
2933 		num_bytes -= sectorsize;
2934 	}
2935 
2936 	if (update_inode_bytes)
2937 		btrfs_update_inode_bytes(inode, num_bytes, drop_args.bytes_found);
2938 
2939 	ins.objectid = disk_bytenr;
2940 	ins.offset = disk_num_bytes;
2941 	ins.type = BTRFS_EXTENT_ITEM_KEY;
2942 
2943 	ret = btrfs_inode_set_file_extent_range(inode, file_pos, ram_bytes);
2944 	if (ret)
2945 		goto out;
2946 
2947 	ret = btrfs_alloc_reserved_file_extent(trans, root, btrfs_ino(inode),
2948 					       file_pos - offset,
2949 					       qgroup_reserved, &ins);
2950 out:
2951 	btrfs_free_path(path);
2952 
2953 	return ret;
2954 }
2955 
2956 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info,
2957 					 u64 start, u64 len)
2958 {
2959 	struct btrfs_block_group *cache;
2960 
2961 	cache = btrfs_lookup_block_group(fs_info, start);
2962 	ASSERT(cache);
2963 
2964 	spin_lock(&cache->lock);
2965 	cache->delalloc_bytes -= len;
2966 	spin_unlock(&cache->lock);
2967 
2968 	btrfs_put_block_group(cache);
2969 }
2970 
2971 static int insert_ordered_extent_file_extent(struct btrfs_trans_handle *trans,
2972 					     struct btrfs_ordered_extent *oe)
2973 {
2974 	struct btrfs_file_extent_item stack_fi;
2975 	bool update_inode_bytes;
2976 	u64 num_bytes = oe->num_bytes;
2977 	u64 ram_bytes = oe->ram_bytes;
2978 
2979 	memset(&stack_fi, 0, sizeof(stack_fi));
2980 	btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_REG);
2981 	btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, oe->disk_bytenr);
2982 	btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi,
2983 						   oe->disk_num_bytes);
2984 	btrfs_set_stack_file_extent_offset(&stack_fi, oe->offset);
2985 	if (test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags)) {
2986 		num_bytes = oe->truncated_len;
2987 		ram_bytes = num_bytes;
2988 	}
2989 	btrfs_set_stack_file_extent_num_bytes(&stack_fi, num_bytes);
2990 	btrfs_set_stack_file_extent_ram_bytes(&stack_fi, ram_bytes);
2991 	btrfs_set_stack_file_extent_compression(&stack_fi, oe->compress_type);
2992 	/* Encryption and other encoding is reserved and all 0 */
2993 
2994 	/*
2995 	 * For delalloc, when completing an ordered extent we update the inode's
2996 	 * bytes when clearing the range in the inode's io tree, so pass false
2997 	 * as the argument 'update_inode_bytes' to insert_reserved_file_extent(),
2998 	 * except if the ordered extent was truncated.
2999 	 */
3000 	update_inode_bytes = test_bit(BTRFS_ORDERED_DIRECT, &oe->flags) ||
3001 			     test_bit(BTRFS_ORDERED_ENCODED, &oe->flags) ||
3002 			     test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags);
3003 
3004 	return insert_reserved_file_extent(trans, BTRFS_I(oe->inode),
3005 					   oe->file_offset, &stack_fi,
3006 					   update_inode_bytes, oe->qgroup_rsv);
3007 }
3008 
3009 /*
3010  * As ordered data IO finishes, this gets called so we can finish
3011  * an ordered extent if the range of bytes in the file it covers are
3012  * fully written.
3013  */
3014 int btrfs_finish_one_ordered(struct btrfs_ordered_extent *ordered_extent)
3015 {
3016 	struct btrfs_inode *inode = BTRFS_I(ordered_extent->inode);
3017 	struct btrfs_root *root = inode->root;
3018 	struct btrfs_fs_info *fs_info = root->fs_info;
3019 	struct btrfs_trans_handle *trans = NULL;
3020 	struct extent_io_tree *io_tree = &inode->io_tree;
3021 	struct extent_state *cached_state = NULL;
3022 	u64 start, end;
3023 	int compress_type = 0;
3024 	int ret = 0;
3025 	u64 logical_len = ordered_extent->num_bytes;
3026 	bool freespace_inode;
3027 	bool truncated = false;
3028 	bool clear_reserved_extent = true;
3029 	unsigned int clear_bits = EXTENT_DEFRAG;
3030 
3031 	start = ordered_extent->file_offset;
3032 	end = start + ordered_extent->num_bytes - 1;
3033 
3034 	if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3035 	    !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) &&
3036 	    !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags) &&
3037 	    !test_bit(BTRFS_ORDERED_ENCODED, &ordered_extent->flags))
3038 		clear_bits |= EXTENT_DELALLOC_NEW;
3039 
3040 	freespace_inode = btrfs_is_free_space_inode(inode);
3041 	if (!freespace_inode)
3042 		btrfs_lockdep_acquire(fs_info, btrfs_ordered_extent);
3043 
3044 	if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
3045 		ret = -EIO;
3046 		goto out;
3047 	}
3048 
3049 	if (btrfs_is_zoned(fs_info))
3050 		btrfs_zone_finish_endio(fs_info, ordered_extent->disk_bytenr,
3051 					ordered_extent->disk_num_bytes);
3052 
3053 	if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
3054 		truncated = true;
3055 		logical_len = ordered_extent->truncated_len;
3056 		/* Truncated the entire extent, don't bother adding */
3057 		if (!logical_len)
3058 			goto out;
3059 	}
3060 
3061 	if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
3062 		BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
3063 
3064 		btrfs_inode_safe_disk_i_size_write(inode, 0);
3065 		if (freespace_inode)
3066 			trans = btrfs_join_transaction_spacecache(root);
3067 		else
3068 			trans = btrfs_join_transaction(root);
3069 		if (IS_ERR(trans)) {
3070 			ret = PTR_ERR(trans);
3071 			trans = NULL;
3072 			goto out;
3073 		}
3074 		trans->block_rsv = &inode->block_rsv;
3075 		ret = btrfs_update_inode_fallback(trans, root, inode);
3076 		if (ret) /* -ENOMEM or corruption */
3077 			btrfs_abort_transaction(trans, ret);
3078 		goto out;
3079 	}
3080 
3081 	clear_bits |= EXTENT_LOCKED;
3082 	lock_extent(io_tree, start, end, &cached_state);
3083 
3084 	if (freespace_inode)
3085 		trans = btrfs_join_transaction_spacecache(root);
3086 	else
3087 		trans = btrfs_join_transaction(root);
3088 	if (IS_ERR(trans)) {
3089 		ret = PTR_ERR(trans);
3090 		trans = NULL;
3091 		goto out;
3092 	}
3093 
3094 	trans->block_rsv = &inode->block_rsv;
3095 
3096 	if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
3097 		compress_type = ordered_extent->compress_type;
3098 	if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
3099 		BUG_ON(compress_type);
3100 		ret = btrfs_mark_extent_written(trans, inode,
3101 						ordered_extent->file_offset,
3102 						ordered_extent->file_offset +
3103 						logical_len);
3104 		btrfs_zoned_release_data_reloc_bg(fs_info, ordered_extent->disk_bytenr,
3105 						  ordered_extent->disk_num_bytes);
3106 	} else {
3107 		BUG_ON(root == fs_info->tree_root);
3108 		ret = insert_ordered_extent_file_extent(trans, ordered_extent);
3109 		if (!ret) {
3110 			clear_reserved_extent = false;
3111 			btrfs_release_delalloc_bytes(fs_info,
3112 						ordered_extent->disk_bytenr,
3113 						ordered_extent->disk_num_bytes);
3114 		}
3115 	}
3116 	unpin_extent_cache(&inode->extent_tree, ordered_extent->file_offset,
3117 			   ordered_extent->num_bytes, trans->transid);
3118 	if (ret < 0) {
3119 		btrfs_abort_transaction(trans, ret);
3120 		goto out;
3121 	}
3122 
3123 	ret = add_pending_csums(trans, &ordered_extent->list);
3124 	if (ret) {
3125 		btrfs_abort_transaction(trans, ret);
3126 		goto out;
3127 	}
3128 
3129 	/*
3130 	 * If this is a new delalloc range, clear its new delalloc flag to
3131 	 * update the inode's number of bytes. This needs to be done first
3132 	 * before updating the inode item.
3133 	 */
3134 	if ((clear_bits & EXTENT_DELALLOC_NEW) &&
3135 	    !test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags))
3136 		clear_extent_bit(&inode->io_tree, start, end,
3137 				 EXTENT_DELALLOC_NEW | EXTENT_ADD_INODE_BYTES,
3138 				 &cached_state);
3139 
3140 	btrfs_inode_safe_disk_i_size_write(inode, 0);
3141 	ret = btrfs_update_inode_fallback(trans, root, inode);
3142 	if (ret) { /* -ENOMEM or corruption */
3143 		btrfs_abort_transaction(trans, ret);
3144 		goto out;
3145 	}
3146 	ret = 0;
3147 out:
3148 	clear_extent_bit(&inode->io_tree, start, end, clear_bits,
3149 			 &cached_state);
3150 
3151 	if (trans)
3152 		btrfs_end_transaction(trans);
3153 
3154 	if (ret || truncated) {
3155 		u64 unwritten_start = start;
3156 
3157 		/*
3158 		 * If we failed to finish this ordered extent for any reason we
3159 		 * need to make sure BTRFS_ORDERED_IOERR is set on the ordered
3160 		 * extent, and mark the inode with the error if it wasn't
3161 		 * already set.  Any error during writeback would have already
3162 		 * set the mapping error, so we need to set it if we're the ones
3163 		 * marking this ordered extent as failed.
3164 		 */
3165 		if (ret && !test_and_set_bit(BTRFS_ORDERED_IOERR,
3166 					     &ordered_extent->flags))
3167 			mapping_set_error(ordered_extent->inode->i_mapping, -EIO);
3168 
3169 		if (truncated)
3170 			unwritten_start += logical_len;
3171 		clear_extent_uptodate(io_tree, unwritten_start, end, NULL);
3172 
3173 		/*
3174 		 * Drop extent maps for the part of the extent we didn't write.
3175 		 *
3176 		 * We have an exception here for the free_space_inode, this is
3177 		 * because when we do btrfs_get_extent() on the free space inode
3178 		 * we will search the commit root.  If this is a new block group
3179 		 * we won't find anything, and we will trip over the assert in
3180 		 * writepage where we do ASSERT(em->block_start !=
3181 		 * EXTENT_MAP_HOLE).
3182 		 *
3183 		 * Theoretically we could also skip this for any NOCOW extent as
3184 		 * we don't mess with the extent map tree in the NOCOW case, but
3185 		 * for now simply skip this if we are the free space inode.
3186 		 */
3187 		if (!btrfs_is_free_space_inode(inode))
3188 			btrfs_drop_extent_map_range(inode, unwritten_start,
3189 						    end, false);
3190 
3191 		/*
3192 		 * If the ordered extent had an IOERR or something else went
3193 		 * wrong we need to return the space for this ordered extent
3194 		 * back to the allocator.  We only free the extent in the
3195 		 * truncated case if we didn't write out the extent at all.
3196 		 *
3197 		 * If we made it past insert_reserved_file_extent before we
3198 		 * errored out then we don't need to do this as the accounting
3199 		 * has already been done.
3200 		 */
3201 		if ((ret || !logical_len) &&
3202 		    clear_reserved_extent &&
3203 		    !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3204 		    !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
3205 			/*
3206 			 * Discard the range before returning it back to the
3207 			 * free space pool
3208 			 */
3209 			if (ret && btrfs_test_opt(fs_info, DISCARD_SYNC))
3210 				btrfs_discard_extent(fs_info,
3211 						ordered_extent->disk_bytenr,
3212 						ordered_extent->disk_num_bytes,
3213 						NULL);
3214 			btrfs_free_reserved_extent(fs_info,
3215 					ordered_extent->disk_bytenr,
3216 					ordered_extent->disk_num_bytes, 1);
3217 			/*
3218 			 * Actually free the qgroup rsv which was released when
3219 			 * the ordered extent was created.
3220 			 */
3221 			btrfs_qgroup_free_refroot(fs_info, inode->root->root_key.objectid,
3222 						  ordered_extent->qgroup_rsv,
3223 						  BTRFS_QGROUP_RSV_DATA);
3224 		}
3225 	}
3226 
3227 	/*
3228 	 * This needs to be done to make sure anybody waiting knows we are done
3229 	 * updating everything for this ordered extent.
3230 	 */
3231 	btrfs_remove_ordered_extent(inode, ordered_extent);
3232 
3233 	/* once for us */
3234 	btrfs_put_ordered_extent(ordered_extent);
3235 	/* once for the tree */
3236 	btrfs_put_ordered_extent(ordered_extent);
3237 
3238 	return ret;
3239 }
3240 
3241 int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered)
3242 {
3243 	if (btrfs_is_zoned(btrfs_sb(ordered->inode->i_sb)) &&
3244 	    !test_bit(BTRFS_ORDERED_IOERR, &ordered->flags))
3245 		btrfs_finish_ordered_zoned(ordered);
3246 	return btrfs_finish_one_ordered(ordered);
3247 }
3248 
3249 /*
3250  * Verify the checksum for a single sector without any extra action that depend
3251  * on the type of I/O.
3252  */
3253 int btrfs_check_sector_csum(struct btrfs_fs_info *fs_info, struct page *page,
3254 			    u32 pgoff, u8 *csum, const u8 * const csum_expected)
3255 {
3256 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
3257 	char *kaddr;
3258 
3259 	ASSERT(pgoff + fs_info->sectorsize <= PAGE_SIZE);
3260 
3261 	shash->tfm = fs_info->csum_shash;
3262 
3263 	kaddr = kmap_local_page(page) + pgoff;
3264 	crypto_shash_digest(shash, kaddr, fs_info->sectorsize, csum);
3265 	kunmap_local(kaddr);
3266 
3267 	if (memcmp(csum, csum_expected, fs_info->csum_size))
3268 		return -EIO;
3269 	return 0;
3270 }
3271 
3272 /*
3273  * Verify the checksum of a single data sector.
3274  *
3275  * @bbio:	btrfs_io_bio which contains the csum
3276  * @dev:	device the sector is on
3277  * @bio_offset:	offset to the beginning of the bio (in bytes)
3278  * @bv:		bio_vec to check
3279  *
3280  * Check if the checksum on a data block is valid.  When a checksum mismatch is
3281  * detected, report the error and fill the corrupted range with zero.
3282  *
3283  * Return %true if the sector is ok or had no checksum to start with, else %false.
3284  */
3285 bool btrfs_data_csum_ok(struct btrfs_bio *bbio, struct btrfs_device *dev,
3286 			u32 bio_offset, struct bio_vec *bv)
3287 {
3288 	struct btrfs_inode *inode = bbio->inode;
3289 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
3290 	u64 file_offset = bbio->file_offset + bio_offset;
3291 	u64 end = file_offset + bv->bv_len - 1;
3292 	u8 *csum_expected;
3293 	u8 csum[BTRFS_CSUM_SIZE];
3294 
3295 	ASSERT(bv->bv_len == fs_info->sectorsize);
3296 
3297 	if (!bbio->csum)
3298 		return true;
3299 
3300 	if (btrfs_is_data_reloc_root(inode->root) &&
3301 	    test_range_bit(&inode->io_tree, file_offset, end, EXTENT_NODATASUM,
3302 			   1, NULL)) {
3303 		/* Skip the range without csum for data reloc inode */
3304 		clear_extent_bits(&inode->io_tree, file_offset, end,
3305 				  EXTENT_NODATASUM);
3306 		return true;
3307 	}
3308 
3309 	csum_expected = bbio->csum + (bio_offset >> fs_info->sectorsize_bits) *
3310 				fs_info->csum_size;
3311 	if (btrfs_check_sector_csum(fs_info, bv->bv_page, bv->bv_offset, csum,
3312 				    csum_expected))
3313 		goto zeroit;
3314 	return true;
3315 
3316 zeroit:
3317 	btrfs_print_data_csum_error(inode, file_offset, csum, csum_expected,
3318 				    bbio->mirror_num);
3319 	if (dev)
3320 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS);
3321 	memzero_bvec(bv);
3322 	return false;
3323 }
3324 
3325 /*
3326  * btrfs_add_delayed_iput - perform a delayed iput on @inode
3327  *
3328  * @inode: The inode we want to perform iput on
3329  *
3330  * This function uses the generic vfs_inode::i_count to track whether we should
3331  * just decrement it (in case it's > 1) or if this is the last iput then link
3332  * the inode to the delayed iput machinery. Delayed iputs are processed at
3333  * transaction commit time/superblock commit/cleaner kthread.
3334  */
3335 void btrfs_add_delayed_iput(struct btrfs_inode *inode)
3336 {
3337 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
3338 	unsigned long flags;
3339 
3340 	if (atomic_add_unless(&inode->vfs_inode.i_count, -1, 1))
3341 		return;
3342 
3343 	atomic_inc(&fs_info->nr_delayed_iputs);
3344 	/*
3345 	 * Need to be irq safe here because we can be called from either an irq
3346 	 * context (see bio.c and btrfs_put_ordered_extent()) or a non-irq
3347 	 * context.
3348 	 */
3349 	spin_lock_irqsave(&fs_info->delayed_iput_lock, flags);
3350 	ASSERT(list_empty(&inode->delayed_iput));
3351 	list_add_tail(&inode->delayed_iput, &fs_info->delayed_iputs);
3352 	spin_unlock_irqrestore(&fs_info->delayed_iput_lock, flags);
3353 	if (!test_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags))
3354 		wake_up_process(fs_info->cleaner_kthread);
3355 }
3356 
3357 static void run_delayed_iput_locked(struct btrfs_fs_info *fs_info,
3358 				    struct btrfs_inode *inode)
3359 {
3360 	list_del_init(&inode->delayed_iput);
3361 	spin_unlock_irq(&fs_info->delayed_iput_lock);
3362 	iput(&inode->vfs_inode);
3363 	if (atomic_dec_and_test(&fs_info->nr_delayed_iputs))
3364 		wake_up(&fs_info->delayed_iputs_wait);
3365 	spin_lock_irq(&fs_info->delayed_iput_lock);
3366 }
3367 
3368 static void btrfs_run_delayed_iput(struct btrfs_fs_info *fs_info,
3369 				   struct btrfs_inode *inode)
3370 {
3371 	if (!list_empty(&inode->delayed_iput)) {
3372 		spin_lock_irq(&fs_info->delayed_iput_lock);
3373 		if (!list_empty(&inode->delayed_iput))
3374 			run_delayed_iput_locked(fs_info, inode);
3375 		spin_unlock_irq(&fs_info->delayed_iput_lock);
3376 	}
3377 }
3378 
3379 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info)
3380 {
3381 	/*
3382 	 * btrfs_put_ordered_extent() can run in irq context (see bio.c), which
3383 	 * calls btrfs_add_delayed_iput() and that needs to lock
3384 	 * fs_info->delayed_iput_lock. So we need to disable irqs here to
3385 	 * prevent a deadlock.
3386 	 */
3387 	spin_lock_irq(&fs_info->delayed_iput_lock);
3388 	while (!list_empty(&fs_info->delayed_iputs)) {
3389 		struct btrfs_inode *inode;
3390 
3391 		inode = list_first_entry(&fs_info->delayed_iputs,
3392 				struct btrfs_inode, delayed_iput);
3393 		run_delayed_iput_locked(fs_info, inode);
3394 		if (need_resched()) {
3395 			spin_unlock_irq(&fs_info->delayed_iput_lock);
3396 			cond_resched();
3397 			spin_lock_irq(&fs_info->delayed_iput_lock);
3398 		}
3399 	}
3400 	spin_unlock_irq(&fs_info->delayed_iput_lock);
3401 }
3402 
3403 /*
3404  * Wait for flushing all delayed iputs
3405  *
3406  * @fs_info:  the filesystem
3407  *
3408  * This will wait on any delayed iputs that are currently running with KILLABLE
3409  * set.  Once they are all done running we will return, unless we are killed in
3410  * which case we return EINTR. This helps in user operations like fallocate etc
3411  * that might get blocked on the iputs.
3412  *
3413  * Return EINTR if we were killed, 0 if nothing's pending
3414  */
3415 int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info)
3416 {
3417 	int ret = wait_event_killable(fs_info->delayed_iputs_wait,
3418 			atomic_read(&fs_info->nr_delayed_iputs) == 0);
3419 	if (ret)
3420 		return -EINTR;
3421 	return 0;
3422 }
3423 
3424 /*
3425  * This creates an orphan entry for the given inode in case something goes wrong
3426  * in the middle of an unlink.
3427  */
3428 int btrfs_orphan_add(struct btrfs_trans_handle *trans,
3429 		     struct btrfs_inode *inode)
3430 {
3431 	int ret;
3432 
3433 	ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode));
3434 	if (ret && ret != -EEXIST) {
3435 		btrfs_abort_transaction(trans, ret);
3436 		return ret;
3437 	}
3438 
3439 	return 0;
3440 }
3441 
3442 /*
3443  * We have done the delete so we can go ahead and remove the orphan item for
3444  * this particular inode.
3445  */
3446 static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3447 			    struct btrfs_inode *inode)
3448 {
3449 	return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode));
3450 }
3451 
3452 /*
3453  * this cleans up any orphans that may be left on the list from the last use
3454  * of this root.
3455  */
3456 int btrfs_orphan_cleanup(struct btrfs_root *root)
3457 {
3458 	struct btrfs_fs_info *fs_info = root->fs_info;
3459 	struct btrfs_path *path;
3460 	struct extent_buffer *leaf;
3461 	struct btrfs_key key, found_key;
3462 	struct btrfs_trans_handle *trans;
3463 	struct inode *inode;
3464 	u64 last_objectid = 0;
3465 	int ret = 0, nr_unlink = 0;
3466 
3467 	if (test_and_set_bit(BTRFS_ROOT_ORPHAN_CLEANUP, &root->state))
3468 		return 0;
3469 
3470 	path = btrfs_alloc_path();
3471 	if (!path) {
3472 		ret = -ENOMEM;
3473 		goto out;
3474 	}
3475 	path->reada = READA_BACK;
3476 
3477 	key.objectid = BTRFS_ORPHAN_OBJECTID;
3478 	key.type = BTRFS_ORPHAN_ITEM_KEY;
3479 	key.offset = (u64)-1;
3480 
3481 	while (1) {
3482 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3483 		if (ret < 0)
3484 			goto out;
3485 
3486 		/*
3487 		 * if ret == 0 means we found what we were searching for, which
3488 		 * is weird, but possible, so only screw with path if we didn't
3489 		 * find the key and see if we have stuff that matches
3490 		 */
3491 		if (ret > 0) {
3492 			ret = 0;
3493 			if (path->slots[0] == 0)
3494 				break;
3495 			path->slots[0]--;
3496 		}
3497 
3498 		/* pull out the item */
3499 		leaf = path->nodes[0];
3500 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3501 
3502 		/* make sure the item matches what we want */
3503 		if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3504 			break;
3505 		if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
3506 			break;
3507 
3508 		/* release the path since we're done with it */
3509 		btrfs_release_path(path);
3510 
3511 		/*
3512 		 * this is where we are basically btrfs_lookup, without the
3513 		 * crossing root thing.  we store the inode number in the
3514 		 * offset of the orphan item.
3515 		 */
3516 
3517 		if (found_key.offset == last_objectid) {
3518 			/*
3519 			 * We found the same inode as before. This means we were
3520 			 * not able to remove its items via eviction triggered
3521 			 * by an iput(). A transaction abort may have happened,
3522 			 * due to -ENOSPC for example, so try to grab the error
3523 			 * that lead to a transaction abort, if any.
3524 			 */
3525 			btrfs_err(fs_info,
3526 				  "Error removing orphan entry, stopping orphan cleanup");
3527 			ret = BTRFS_FS_ERROR(fs_info) ?: -EINVAL;
3528 			goto out;
3529 		}
3530 
3531 		last_objectid = found_key.offset;
3532 
3533 		found_key.objectid = found_key.offset;
3534 		found_key.type = BTRFS_INODE_ITEM_KEY;
3535 		found_key.offset = 0;
3536 		inode = btrfs_iget(fs_info->sb, last_objectid, root);
3537 		if (IS_ERR(inode)) {
3538 			ret = PTR_ERR(inode);
3539 			inode = NULL;
3540 			if (ret != -ENOENT)
3541 				goto out;
3542 		}
3543 
3544 		if (!inode && root == fs_info->tree_root) {
3545 			struct btrfs_root *dead_root;
3546 			int is_dead_root = 0;
3547 
3548 			/*
3549 			 * This is an orphan in the tree root. Currently these
3550 			 * could come from 2 sources:
3551 			 *  a) a root (snapshot/subvolume) deletion in progress
3552 			 *  b) a free space cache inode
3553 			 * We need to distinguish those two, as the orphan item
3554 			 * for a root must not get deleted before the deletion
3555 			 * of the snapshot/subvolume's tree completes.
3556 			 *
3557 			 * btrfs_find_orphan_roots() ran before us, which has
3558 			 * found all deleted roots and loaded them into
3559 			 * fs_info->fs_roots_radix. So here we can find if an
3560 			 * orphan item corresponds to a deleted root by looking
3561 			 * up the root from that radix tree.
3562 			 */
3563 
3564 			spin_lock(&fs_info->fs_roots_radix_lock);
3565 			dead_root = radix_tree_lookup(&fs_info->fs_roots_radix,
3566 							 (unsigned long)found_key.objectid);
3567 			if (dead_root && btrfs_root_refs(&dead_root->root_item) == 0)
3568 				is_dead_root = 1;
3569 			spin_unlock(&fs_info->fs_roots_radix_lock);
3570 
3571 			if (is_dead_root) {
3572 				/* prevent this orphan from being found again */
3573 				key.offset = found_key.objectid - 1;
3574 				continue;
3575 			}
3576 
3577 		}
3578 
3579 		/*
3580 		 * If we have an inode with links, there are a couple of
3581 		 * possibilities:
3582 		 *
3583 		 * 1. We were halfway through creating fsverity metadata for the
3584 		 * file. In that case, the orphan item represents incomplete
3585 		 * fsverity metadata which must be cleaned up with
3586 		 * btrfs_drop_verity_items and deleting the orphan item.
3587 
3588 		 * 2. Old kernels (before v3.12) used to create an
3589 		 * orphan item for truncate indicating that there were possibly
3590 		 * extent items past i_size that needed to be deleted. In v3.12,
3591 		 * truncate was changed to update i_size in sync with the extent
3592 		 * items, but the (useless) orphan item was still created. Since
3593 		 * v4.18, we don't create the orphan item for truncate at all.
3594 		 *
3595 		 * So, this item could mean that we need to do a truncate, but
3596 		 * only if this filesystem was last used on a pre-v3.12 kernel
3597 		 * and was not cleanly unmounted. The odds of that are quite
3598 		 * slim, and it's a pain to do the truncate now, so just delete
3599 		 * the orphan item.
3600 		 *
3601 		 * It's also possible that this orphan item was supposed to be
3602 		 * deleted but wasn't. The inode number may have been reused,
3603 		 * but either way, we can delete the orphan item.
3604 		 */
3605 		if (!inode || inode->i_nlink) {
3606 			if (inode) {
3607 				ret = btrfs_drop_verity_items(BTRFS_I(inode));
3608 				iput(inode);
3609 				inode = NULL;
3610 				if (ret)
3611 					goto out;
3612 			}
3613 			trans = btrfs_start_transaction(root, 1);
3614 			if (IS_ERR(trans)) {
3615 				ret = PTR_ERR(trans);
3616 				goto out;
3617 			}
3618 			btrfs_debug(fs_info, "auto deleting %Lu",
3619 				    found_key.objectid);
3620 			ret = btrfs_del_orphan_item(trans, root,
3621 						    found_key.objectid);
3622 			btrfs_end_transaction(trans);
3623 			if (ret)
3624 				goto out;
3625 			continue;
3626 		}
3627 
3628 		nr_unlink++;
3629 
3630 		/* this will do delete_inode and everything for us */
3631 		iput(inode);
3632 	}
3633 	/* release the path since we're done with it */
3634 	btrfs_release_path(path);
3635 
3636 	if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
3637 		trans = btrfs_join_transaction(root);
3638 		if (!IS_ERR(trans))
3639 			btrfs_end_transaction(trans);
3640 	}
3641 
3642 	if (nr_unlink)
3643 		btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink);
3644 
3645 out:
3646 	if (ret)
3647 		btrfs_err(fs_info, "could not do orphan cleanup %d", ret);
3648 	btrfs_free_path(path);
3649 	return ret;
3650 }
3651 
3652 /*
3653  * very simple check to peek ahead in the leaf looking for xattrs.  If we
3654  * don't find any xattrs, we know there can't be any acls.
3655  *
3656  * slot is the slot the inode is in, objectid is the objectid of the inode
3657  */
3658 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
3659 					  int slot, u64 objectid,
3660 					  int *first_xattr_slot)
3661 {
3662 	u32 nritems = btrfs_header_nritems(leaf);
3663 	struct btrfs_key found_key;
3664 	static u64 xattr_access = 0;
3665 	static u64 xattr_default = 0;
3666 	int scanned = 0;
3667 
3668 	if (!xattr_access) {
3669 		xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
3670 					strlen(XATTR_NAME_POSIX_ACL_ACCESS));
3671 		xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
3672 					strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
3673 	}
3674 
3675 	slot++;
3676 	*first_xattr_slot = -1;
3677 	while (slot < nritems) {
3678 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3679 
3680 		/* we found a different objectid, there must not be acls */
3681 		if (found_key.objectid != objectid)
3682 			return 0;
3683 
3684 		/* we found an xattr, assume we've got an acl */
3685 		if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
3686 			if (*first_xattr_slot == -1)
3687 				*first_xattr_slot = slot;
3688 			if (found_key.offset == xattr_access ||
3689 			    found_key.offset == xattr_default)
3690 				return 1;
3691 		}
3692 
3693 		/*
3694 		 * we found a key greater than an xattr key, there can't
3695 		 * be any acls later on
3696 		 */
3697 		if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3698 			return 0;
3699 
3700 		slot++;
3701 		scanned++;
3702 
3703 		/*
3704 		 * it goes inode, inode backrefs, xattrs, extents,
3705 		 * so if there are a ton of hard links to an inode there can
3706 		 * be a lot of backrefs.  Don't waste time searching too hard,
3707 		 * this is just an optimization
3708 		 */
3709 		if (scanned >= 8)
3710 			break;
3711 	}
3712 	/* we hit the end of the leaf before we found an xattr or
3713 	 * something larger than an xattr.  We have to assume the inode
3714 	 * has acls
3715 	 */
3716 	if (*first_xattr_slot == -1)
3717 		*first_xattr_slot = slot;
3718 	return 1;
3719 }
3720 
3721 /*
3722  * read an inode from the btree into the in-memory inode
3723  */
3724 static int btrfs_read_locked_inode(struct inode *inode,
3725 				   struct btrfs_path *in_path)
3726 {
3727 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3728 	struct btrfs_path *path = in_path;
3729 	struct extent_buffer *leaf;
3730 	struct btrfs_inode_item *inode_item;
3731 	struct btrfs_root *root = BTRFS_I(inode)->root;
3732 	struct btrfs_key location;
3733 	unsigned long ptr;
3734 	int maybe_acls;
3735 	u32 rdev;
3736 	int ret;
3737 	bool filled = false;
3738 	int first_xattr_slot;
3739 
3740 	ret = btrfs_fill_inode(inode, &rdev);
3741 	if (!ret)
3742 		filled = true;
3743 
3744 	if (!path) {
3745 		path = btrfs_alloc_path();
3746 		if (!path)
3747 			return -ENOMEM;
3748 	}
3749 
3750 	memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
3751 
3752 	ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
3753 	if (ret) {
3754 		if (path != in_path)
3755 			btrfs_free_path(path);
3756 		return ret;
3757 	}
3758 
3759 	leaf = path->nodes[0];
3760 
3761 	if (filled)
3762 		goto cache_index;
3763 
3764 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
3765 				    struct btrfs_inode_item);
3766 	inode->i_mode = btrfs_inode_mode(leaf, inode_item);
3767 	set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
3768 	i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3769 	i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
3770 	btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item));
3771 	btrfs_inode_set_file_extent_range(BTRFS_I(inode), 0,
3772 			round_up(i_size_read(inode), fs_info->sectorsize));
3773 
3774 	inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime);
3775 	inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime);
3776 
3777 	inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime);
3778 	inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime);
3779 
3780 	inode_set_ctime(inode, btrfs_timespec_sec(leaf, &inode_item->ctime),
3781 			btrfs_timespec_nsec(leaf, &inode_item->ctime));
3782 
3783 	BTRFS_I(inode)->i_otime.tv_sec =
3784 		btrfs_timespec_sec(leaf, &inode_item->otime);
3785 	BTRFS_I(inode)->i_otime.tv_nsec =
3786 		btrfs_timespec_nsec(leaf, &inode_item->otime);
3787 
3788 	inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
3789 	BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
3790 	BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3791 
3792 	inode_set_iversion_queried(inode,
3793 				   btrfs_inode_sequence(leaf, inode_item));
3794 	inode->i_generation = BTRFS_I(inode)->generation;
3795 	inode->i_rdev = 0;
3796 	rdev = btrfs_inode_rdev(leaf, inode_item);
3797 
3798 	BTRFS_I(inode)->index_cnt = (u64)-1;
3799 	btrfs_inode_split_flags(btrfs_inode_flags(leaf, inode_item),
3800 				&BTRFS_I(inode)->flags, &BTRFS_I(inode)->ro_flags);
3801 
3802 cache_index:
3803 	/*
3804 	 * If we were modified in the current generation and evicted from memory
3805 	 * and then re-read we need to do a full sync since we don't have any
3806 	 * idea about which extents were modified before we were evicted from
3807 	 * cache.
3808 	 *
3809 	 * This is required for both inode re-read from disk and delayed inode
3810 	 * in delayed_nodes_tree.
3811 	 */
3812 	if (BTRFS_I(inode)->last_trans == fs_info->generation)
3813 		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3814 			&BTRFS_I(inode)->runtime_flags);
3815 
3816 	/*
3817 	 * We don't persist the id of the transaction where an unlink operation
3818 	 * against the inode was last made. So here we assume the inode might
3819 	 * have been evicted, and therefore the exact value of last_unlink_trans
3820 	 * lost, and set it to last_trans to avoid metadata inconsistencies
3821 	 * between the inode and its parent if the inode is fsync'ed and the log
3822 	 * replayed. For example, in the scenario:
3823 	 *
3824 	 * touch mydir/foo
3825 	 * ln mydir/foo mydir/bar
3826 	 * sync
3827 	 * unlink mydir/bar
3828 	 * echo 2 > /proc/sys/vm/drop_caches   # evicts inode
3829 	 * xfs_io -c fsync mydir/foo
3830 	 * <power failure>
3831 	 * mount fs, triggers fsync log replay
3832 	 *
3833 	 * We must make sure that when we fsync our inode foo we also log its
3834 	 * parent inode, otherwise after log replay the parent still has the
3835 	 * dentry with the "bar" name but our inode foo has a link count of 1
3836 	 * and doesn't have an inode ref with the name "bar" anymore.
3837 	 *
3838 	 * Setting last_unlink_trans to last_trans is a pessimistic approach,
3839 	 * but it guarantees correctness at the expense of occasional full
3840 	 * transaction commits on fsync if our inode is a directory, or if our
3841 	 * inode is not a directory, logging its parent unnecessarily.
3842 	 */
3843 	BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
3844 
3845 	/*
3846 	 * Same logic as for last_unlink_trans. We don't persist the generation
3847 	 * of the last transaction where this inode was used for a reflink
3848 	 * operation, so after eviction and reloading the inode we must be
3849 	 * pessimistic and assume the last transaction that modified the inode.
3850 	 */
3851 	BTRFS_I(inode)->last_reflink_trans = BTRFS_I(inode)->last_trans;
3852 
3853 	path->slots[0]++;
3854 	if (inode->i_nlink != 1 ||
3855 	    path->slots[0] >= btrfs_header_nritems(leaf))
3856 		goto cache_acl;
3857 
3858 	btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
3859 	if (location.objectid != btrfs_ino(BTRFS_I(inode)))
3860 		goto cache_acl;
3861 
3862 	ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3863 	if (location.type == BTRFS_INODE_REF_KEY) {
3864 		struct btrfs_inode_ref *ref;
3865 
3866 		ref = (struct btrfs_inode_ref *)ptr;
3867 		BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3868 	} else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3869 		struct btrfs_inode_extref *extref;
3870 
3871 		extref = (struct btrfs_inode_extref *)ptr;
3872 		BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3873 								     extref);
3874 	}
3875 cache_acl:
3876 	/*
3877 	 * try to precache a NULL acl entry for files that don't have
3878 	 * any xattrs or acls
3879 	 */
3880 	maybe_acls = acls_after_inode_item(leaf, path->slots[0],
3881 			btrfs_ino(BTRFS_I(inode)), &first_xattr_slot);
3882 	if (first_xattr_slot != -1) {
3883 		path->slots[0] = first_xattr_slot;
3884 		ret = btrfs_load_inode_props(inode, path);
3885 		if (ret)
3886 			btrfs_err(fs_info,
3887 				  "error loading props for ino %llu (root %llu): %d",
3888 				  btrfs_ino(BTRFS_I(inode)),
3889 				  root->root_key.objectid, ret);
3890 	}
3891 	if (path != in_path)
3892 		btrfs_free_path(path);
3893 
3894 	if (!maybe_acls)
3895 		cache_no_acl(inode);
3896 
3897 	switch (inode->i_mode & S_IFMT) {
3898 	case S_IFREG:
3899 		inode->i_mapping->a_ops = &btrfs_aops;
3900 		inode->i_fop = &btrfs_file_operations;
3901 		inode->i_op = &btrfs_file_inode_operations;
3902 		break;
3903 	case S_IFDIR:
3904 		inode->i_fop = &btrfs_dir_file_operations;
3905 		inode->i_op = &btrfs_dir_inode_operations;
3906 		break;
3907 	case S_IFLNK:
3908 		inode->i_op = &btrfs_symlink_inode_operations;
3909 		inode_nohighmem(inode);
3910 		inode->i_mapping->a_ops = &btrfs_aops;
3911 		break;
3912 	default:
3913 		inode->i_op = &btrfs_special_inode_operations;
3914 		init_special_inode(inode, inode->i_mode, rdev);
3915 		break;
3916 	}
3917 
3918 	btrfs_sync_inode_flags_to_i_flags(inode);
3919 	return 0;
3920 }
3921 
3922 /*
3923  * given a leaf and an inode, copy the inode fields into the leaf
3924  */
3925 static void fill_inode_item(struct btrfs_trans_handle *trans,
3926 			    struct extent_buffer *leaf,
3927 			    struct btrfs_inode_item *item,
3928 			    struct inode *inode)
3929 {
3930 	struct btrfs_map_token token;
3931 	u64 flags;
3932 
3933 	btrfs_init_map_token(&token, leaf);
3934 
3935 	btrfs_set_token_inode_uid(&token, item, i_uid_read(inode));
3936 	btrfs_set_token_inode_gid(&token, item, i_gid_read(inode));
3937 	btrfs_set_token_inode_size(&token, item, BTRFS_I(inode)->disk_i_size);
3938 	btrfs_set_token_inode_mode(&token, item, inode->i_mode);
3939 	btrfs_set_token_inode_nlink(&token, item, inode->i_nlink);
3940 
3941 	btrfs_set_token_timespec_sec(&token, &item->atime,
3942 				     inode->i_atime.tv_sec);
3943 	btrfs_set_token_timespec_nsec(&token, &item->atime,
3944 				      inode->i_atime.tv_nsec);
3945 
3946 	btrfs_set_token_timespec_sec(&token, &item->mtime,
3947 				     inode->i_mtime.tv_sec);
3948 	btrfs_set_token_timespec_nsec(&token, &item->mtime,
3949 				      inode->i_mtime.tv_nsec);
3950 
3951 	btrfs_set_token_timespec_sec(&token, &item->ctime,
3952 				     inode_get_ctime(inode).tv_sec);
3953 	btrfs_set_token_timespec_nsec(&token, &item->ctime,
3954 				      inode_get_ctime(inode).tv_nsec);
3955 
3956 	btrfs_set_token_timespec_sec(&token, &item->otime,
3957 				     BTRFS_I(inode)->i_otime.tv_sec);
3958 	btrfs_set_token_timespec_nsec(&token, &item->otime,
3959 				      BTRFS_I(inode)->i_otime.tv_nsec);
3960 
3961 	btrfs_set_token_inode_nbytes(&token, item, inode_get_bytes(inode));
3962 	btrfs_set_token_inode_generation(&token, item,
3963 					 BTRFS_I(inode)->generation);
3964 	btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode));
3965 	btrfs_set_token_inode_transid(&token, item, trans->transid);
3966 	btrfs_set_token_inode_rdev(&token, item, inode->i_rdev);
3967 	flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags,
3968 					  BTRFS_I(inode)->ro_flags);
3969 	btrfs_set_token_inode_flags(&token, item, flags);
3970 	btrfs_set_token_inode_block_group(&token, item, 0);
3971 }
3972 
3973 /*
3974  * copy everything in the in-memory inode into the btree.
3975  */
3976 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
3977 				struct btrfs_root *root,
3978 				struct btrfs_inode *inode)
3979 {
3980 	struct btrfs_inode_item *inode_item;
3981 	struct btrfs_path *path;
3982 	struct extent_buffer *leaf;
3983 	int ret;
3984 
3985 	path = btrfs_alloc_path();
3986 	if (!path)
3987 		return -ENOMEM;
3988 
3989 	ret = btrfs_lookup_inode(trans, root, path, &inode->location, 1);
3990 	if (ret) {
3991 		if (ret > 0)
3992 			ret = -ENOENT;
3993 		goto failed;
3994 	}
3995 
3996 	leaf = path->nodes[0];
3997 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
3998 				    struct btrfs_inode_item);
3999 
4000 	fill_inode_item(trans, leaf, inode_item, &inode->vfs_inode);
4001 	btrfs_mark_buffer_dirty(trans, leaf);
4002 	btrfs_set_inode_last_trans(trans, inode);
4003 	ret = 0;
4004 failed:
4005 	btrfs_free_path(path);
4006 	return ret;
4007 }
4008 
4009 /*
4010  * copy everything in the in-memory inode into the btree.
4011  */
4012 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
4013 				struct btrfs_root *root,
4014 				struct btrfs_inode *inode)
4015 {
4016 	struct btrfs_fs_info *fs_info = root->fs_info;
4017 	int ret;
4018 
4019 	/*
4020 	 * If the inode is a free space inode, we can deadlock during commit
4021 	 * if we put it into the delayed code.
4022 	 *
4023 	 * The data relocation inode should also be directly updated
4024 	 * without delay
4025 	 */
4026 	if (!btrfs_is_free_space_inode(inode)
4027 	    && !btrfs_is_data_reloc_root(root)
4028 	    && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
4029 		btrfs_update_root_times(trans, root);
4030 
4031 		ret = btrfs_delayed_update_inode(trans, root, inode);
4032 		if (!ret)
4033 			btrfs_set_inode_last_trans(trans, inode);
4034 		return ret;
4035 	}
4036 
4037 	return btrfs_update_inode_item(trans, root, inode);
4038 }
4039 
4040 int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
4041 				struct btrfs_root *root, struct btrfs_inode *inode)
4042 {
4043 	int ret;
4044 
4045 	ret = btrfs_update_inode(trans, root, inode);
4046 	if (ret == -ENOSPC)
4047 		return btrfs_update_inode_item(trans, root, inode);
4048 	return ret;
4049 }
4050 
4051 /*
4052  * unlink helper that gets used here in inode.c and in the tree logging
4053  * recovery code.  It remove a link in a directory with a given name, and
4054  * also drops the back refs in the inode to the directory
4055  */
4056 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4057 				struct btrfs_inode *dir,
4058 				struct btrfs_inode *inode,
4059 				const struct fscrypt_str *name,
4060 				struct btrfs_rename_ctx *rename_ctx)
4061 {
4062 	struct btrfs_root *root = dir->root;
4063 	struct btrfs_fs_info *fs_info = root->fs_info;
4064 	struct btrfs_path *path;
4065 	int ret = 0;
4066 	struct btrfs_dir_item *di;
4067 	u64 index;
4068 	u64 ino = btrfs_ino(inode);
4069 	u64 dir_ino = btrfs_ino(dir);
4070 
4071 	path = btrfs_alloc_path();
4072 	if (!path) {
4073 		ret = -ENOMEM;
4074 		goto out;
4075 	}
4076 
4077 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino, name, -1);
4078 	if (IS_ERR_OR_NULL(di)) {
4079 		ret = di ? PTR_ERR(di) : -ENOENT;
4080 		goto err;
4081 	}
4082 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
4083 	if (ret)
4084 		goto err;
4085 	btrfs_release_path(path);
4086 
4087 	/*
4088 	 * If we don't have dir index, we have to get it by looking up
4089 	 * the inode ref, since we get the inode ref, remove it directly,
4090 	 * it is unnecessary to do delayed deletion.
4091 	 *
4092 	 * But if we have dir index, needn't search inode ref to get it.
4093 	 * Since the inode ref is close to the inode item, it is better
4094 	 * that we delay to delete it, and just do this deletion when
4095 	 * we update the inode item.
4096 	 */
4097 	if (inode->dir_index) {
4098 		ret = btrfs_delayed_delete_inode_ref(inode);
4099 		if (!ret) {
4100 			index = inode->dir_index;
4101 			goto skip_backref;
4102 		}
4103 	}
4104 
4105 	ret = btrfs_del_inode_ref(trans, root, name, ino, dir_ino, &index);
4106 	if (ret) {
4107 		btrfs_info(fs_info,
4108 			"failed to delete reference to %.*s, inode %llu parent %llu",
4109 			name->len, name->name, ino, dir_ino);
4110 		btrfs_abort_transaction(trans, ret);
4111 		goto err;
4112 	}
4113 skip_backref:
4114 	if (rename_ctx)
4115 		rename_ctx->index = index;
4116 
4117 	ret = btrfs_delete_delayed_dir_index(trans, dir, index);
4118 	if (ret) {
4119 		btrfs_abort_transaction(trans, ret);
4120 		goto err;
4121 	}
4122 
4123 	/*
4124 	 * If we are in a rename context, we don't need to update anything in the
4125 	 * log. That will be done later during the rename by btrfs_log_new_name().
4126 	 * Besides that, doing it here would only cause extra unnecessary btree
4127 	 * operations on the log tree, increasing latency for applications.
4128 	 */
4129 	if (!rename_ctx) {
4130 		btrfs_del_inode_ref_in_log(trans, root, name, inode, dir_ino);
4131 		btrfs_del_dir_entries_in_log(trans, root, name, dir, index);
4132 	}
4133 
4134 	/*
4135 	 * If we have a pending delayed iput we could end up with the final iput
4136 	 * being run in btrfs-cleaner context.  If we have enough of these built
4137 	 * up we can end up burning a lot of time in btrfs-cleaner without any
4138 	 * way to throttle the unlinks.  Since we're currently holding a ref on
4139 	 * the inode we can run the delayed iput here without any issues as the
4140 	 * final iput won't be done until after we drop the ref we're currently
4141 	 * holding.
4142 	 */
4143 	btrfs_run_delayed_iput(fs_info, inode);
4144 err:
4145 	btrfs_free_path(path);
4146 	if (ret)
4147 		goto out;
4148 
4149 	btrfs_i_size_write(dir, dir->vfs_inode.i_size - name->len * 2);
4150 	inode_inc_iversion(&inode->vfs_inode);
4151 	inode_set_ctime_current(&inode->vfs_inode);
4152 	inode_inc_iversion(&dir->vfs_inode);
4153 	inode_set_ctime_current(&inode->vfs_inode);
4154 	dir->vfs_inode.i_mtime = inode_set_ctime_current(&dir->vfs_inode);
4155 	ret = btrfs_update_inode(trans, root, dir);
4156 out:
4157 	return ret;
4158 }
4159 
4160 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4161 		       struct btrfs_inode *dir, struct btrfs_inode *inode,
4162 		       const struct fscrypt_str *name)
4163 {
4164 	int ret;
4165 
4166 	ret = __btrfs_unlink_inode(trans, dir, inode, name, NULL);
4167 	if (!ret) {
4168 		drop_nlink(&inode->vfs_inode);
4169 		ret = btrfs_update_inode(trans, inode->root, inode);
4170 	}
4171 	return ret;
4172 }
4173 
4174 /*
4175  * helper to start transaction for unlink and rmdir.
4176  *
4177  * unlink and rmdir are special in btrfs, they do not always free space, so
4178  * if we cannot make our reservations the normal way try and see if there is
4179  * plenty of slack room in the global reserve to migrate, otherwise we cannot
4180  * allow the unlink to occur.
4181  */
4182 static struct btrfs_trans_handle *__unlink_start_trans(struct btrfs_inode *dir)
4183 {
4184 	struct btrfs_root *root = dir->root;
4185 
4186 	return btrfs_start_transaction_fallback_global_rsv(root,
4187 						   BTRFS_UNLINK_METADATA_UNITS);
4188 }
4189 
4190 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4191 {
4192 	struct btrfs_trans_handle *trans;
4193 	struct inode *inode = d_inode(dentry);
4194 	int ret;
4195 	struct fscrypt_name fname;
4196 
4197 	ret = fscrypt_setup_filename(dir, &dentry->d_name, 1, &fname);
4198 	if (ret)
4199 		return ret;
4200 
4201 	/* This needs to handle no-key deletions later on */
4202 
4203 	trans = __unlink_start_trans(BTRFS_I(dir));
4204 	if (IS_ERR(trans)) {
4205 		ret = PTR_ERR(trans);
4206 		goto fscrypt_free;
4207 	}
4208 
4209 	btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4210 				false);
4211 
4212 	ret = btrfs_unlink_inode(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4213 				 &fname.disk_name);
4214 	if (ret)
4215 		goto end_trans;
4216 
4217 	if (inode->i_nlink == 0) {
4218 		ret = btrfs_orphan_add(trans, BTRFS_I(inode));
4219 		if (ret)
4220 			goto end_trans;
4221 	}
4222 
4223 end_trans:
4224 	btrfs_end_transaction(trans);
4225 	btrfs_btree_balance_dirty(BTRFS_I(dir)->root->fs_info);
4226 fscrypt_free:
4227 	fscrypt_free_filename(&fname);
4228 	return ret;
4229 }
4230 
4231 static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
4232 			       struct btrfs_inode *dir, struct dentry *dentry)
4233 {
4234 	struct btrfs_root *root = dir->root;
4235 	struct btrfs_inode *inode = BTRFS_I(d_inode(dentry));
4236 	struct btrfs_path *path;
4237 	struct extent_buffer *leaf;
4238 	struct btrfs_dir_item *di;
4239 	struct btrfs_key key;
4240 	u64 index;
4241 	int ret;
4242 	u64 objectid;
4243 	u64 dir_ino = btrfs_ino(dir);
4244 	struct fscrypt_name fname;
4245 
4246 	ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 1, &fname);
4247 	if (ret)
4248 		return ret;
4249 
4250 	/* This needs to handle no-key deletions later on */
4251 
4252 	if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) {
4253 		objectid = inode->root->root_key.objectid;
4254 	} else if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
4255 		objectid = inode->location.objectid;
4256 	} else {
4257 		WARN_ON(1);
4258 		fscrypt_free_filename(&fname);
4259 		return -EINVAL;
4260 	}
4261 
4262 	path = btrfs_alloc_path();
4263 	if (!path) {
4264 		ret = -ENOMEM;
4265 		goto out;
4266 	}
4267 
4268 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4269 				   &fname.disk_name, -1);
4270 	if (IS_ERR_OR_NULL(di)) {
4271 		ret = di ? PTR_ERR(di) : -ENOENT;
4272 		goto out;
4273 	}
4274 
4275 	leaf = path->nodes[0];
4276 	btrfs_dir_item_key_to_cpu(leaf, di, &key);
4277 	WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4278 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
4279 	if (ret) {
4280 		btrfs_abort_transaction(trans, ret);
4281 		goto out;
4282 	}
4283 	btrfs_release_path(path);
4284 
4285 	/*
4286 	 * This is a placeholder inode for a subvolume we didn't have a
4287 	 * reference to at the time of the snapshot creation.  In the meantime
4288 	 * we could have renamed the real subvol link into our snapshot, so
4289 	 * depending on btrfs_del_root_ref to return -ENOENT here is incorrect.
4290 	 * Instead simply lookup the dir_index_item for this entry so we can
4291 	 * remove it.  Otherwise we know we have a ref to the root and we can
4292 	 * call btrfs_del_root_ref, and it _shouldn't_ fail.
4293 	 */
4294 	if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
4295 		di = btrfs_search_dir_index_item(root, path, dir_ino, &fname.disk_name);
4296 		if (IS_ERR_OR_NULL(di)) {
4297 			if (!di)
4298 				ret = -ENOENT;
4299 			else
4300 				ret = PTR_ERR(di);
4301 			btrfs_abort_transaction(trans, ret);
4302 			goto out;
4303 		}
4304 
4305 		leaf = path->nodes[0];
4306 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4307 		index = key.offset;
4308 		btrfs_release_path(path);
4309 	} else {
4310 		ret = btrfs_del_root_ref(trans, objectid,
4311 					 root->root_key.objectid, dir_ino,
4312 					 &index, &fname.disk_name);
4313 		if (ret) {
4314 			btrfs_abort_transaction(trans, ret);
4315 			goto out;
4316 		}
4317 	}
4318 
4319 	ret = btrfs_delete_delayed_dir_index(trans, dir, index);
4320 	if (ret) {
4321 		btrfs_abort_transaction(trans, ret);
4322 		goto out;
4323 	}
4324 
4325 	btrfs_i_size_write(dir, dir->vfs_inode.i_size - fname.disk_name.len * 2);
4326 	inode_inc_iversion(&dir->vfs_inode);
4327 	dir->vfs_inode.i_mtime = inode_set_ctime_current(&dir->vfs_inode);
4328 	ret = btrfs_update_inode_fallback(trans, root, dir);
4329 	if (ret)
4330 		btrfs_abort_transaction(trans, ret);
4331 out:
4332 	btrfs_free_path(path);
4333 	fscrypt_free_filename(&fname);
4334 	return ret;
4335 }
4336 
4337 /*
4338  * Helper to check if the subvolume references other subvolumes or if it's
4339  * default.
4340  */
4341 static noinline int may_destroy_subvol(struct btrfs_root *root)
4342 {
4343 	struct btrfs_fs_info *fs_info = root->fs_info;
4344 	struct btrfs_path *path;
4345 	struct btrfs_dir_item *di;
4346 	struct btrfs_key key;
4347 	struct fscrypt_str name = FSTR_INIT("default", 7);
4348 	u64 dir_id;
4349 	int ret;
4350 
4351 	path = btrfs_alloc_path();
4352 	if (!path)
4353 		return -ENOMEM;
4354 
4355 	/* Make sure this root isn't set as the default subvol */
4356 	dir_id = btrfs_super_root_dir(fs_info->super_copy);
4357 	di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path,
4358 				   dir_id, &name, 0);
4359 	if (di && !IS_ERR(di)) {
4360 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
4361 		if (key.objectid == root->root_key.objectid) {
4362 			ret = -EPERM;
4363 			btrfs_err(fs_info,
4364 				  "deleting default subvolume %llu is not allowed",
4365 				  key.objectid);
4366 			goto out;
4367 		}
4368 		btrfs_release_path(path);
4369 	}
4370 
4371 	key.objectid = root->root_key.objectid;
4372 	key.type = BTRFS_ROOT_REF_KEY;
4373 	key.offset = (u64)-1;
4374 
4375 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4376 	if (ret < 0)
4377 		goto out;
4378 	if (ret == 0) {
4379 		/*
4380 		 * Key with offset -1 found, there would have to exist a root
4381 		 * with such id, but this is out of valid range.
4382 		 */
4383 		ret = -EUCLEAN;
4384 		goto out;
4385 	}
4386 
4387 	ret = 0;
4388 	if (path->slots[0] > 0) {
4389 		path->slots[0]--;
4390 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
4391 		if (key.objectid == root->root_key.objectid &&
4392 		    key.type == BTRFS_ROOT_REF_KEY)
4393 			ret = -ENOTEMPTY;
4394 	}
4395 out:
4396 	btrfs_free_path(path);
4397 	return ret;
4398 }
4399 
4400 /* Delete all dentries for inodes belonging to the root */
4401 static void btrfs_prune_dentries(struct btrfs_root *root)
4402 {
4403 	struct btrfs_fs_info *fs_info = root->fs_info;
4404 	struct rb_node *node;
4405 	struct rb_node *prev;
4406 	struct btrfs_inode *entry;
4407 	struct inode *inode;
4408 	u64 objectid = 0;
4409 
4410 	if (!BTRFS_FS_ERROR(fs_info))
4411 		WARN_ON(btrfs_root_refs(&root->root_item) != 0);
4412 
4413 	spin_lock(&root->inode_lock);
4414 again:
4415 	node = root->inode_tree.rb_node;
4416 	prev = NULL;
4417 	while (node) {
4418 		prev = node;
4419 		entry = rb_entry(node, struct btrfs_inode, rb_node);
4420 
4421 		if (objectid < btrfs_ino(entry))
4422 			node = node->rb_left;
4423 		else if (objectid > btrfs_ino(entry))
4424 			node = node->rb_right;
4425 		else
4426 			break;
4427 	}
4428 	if (!node) {
4429 		while (prev) {
4430 			entry = rb_entry(prev, struct btrfs_inode, rb_node);
4431 			if (objectid <= btrfs_ino(entry)) {
4432 				node = prev;
4433 				break;
4434 			}
4435 			prev = rb_next(prev);
4436 		}
4437 	}
4438 	while (node) {
4439 		entry = rb_entry(node, struct btrfs_inode, rb_node);
4440 		objectid = btrfs_ino(entry) + 1;
4441 		inode = igrab(&entry->vfs_inode);
4442 		if (inode) {
4443 			spin_unlock(&root->inode_lock);
4444 			if (atomic_read(&inode->i_count) > 1)
4445 				d_prune_aliases(inode);
4446 			/*
4447 			 * btrfs_drop_inode will have it removed from the inode
4448 			 * cache when its usage count hits zero.
4449 			 */
4450 			iput(inode);
4451 			cond_resched();
4452 			spin_lock(&root->inode_lock);
4453 			goto again;
4454 		}
4455 
4456 		if (cond_resched_lock(&root->inode_lock))
4457 			goto again;
4458 
4459 		node = rb_next(node);
4460 	}
4461 	spin_unlock(&root->inode_lock);
4462 }
4463 
4464 int btrfs_delete_subvolume(struct btrfs_inode *dir, struct dentry *dentry)
4465 {
4466 	struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
4467 	struct btrfs_root *root = dir->root;
4468 	struct inode *inode = d_inode(dentry);
4469 	struct btrfs_root *dest = BTRFS_I(inode)->root;
4470 	struct btrfs_trans_handle *trans;
4471 	struct btrfs_block_rsv block_rsv;
4472 	u64 root_flags;
4473 	u64 qgroup_reserved = 0;
4474 	int ret;
4475 
4476 	down_write(&fs_info->subvol_sem);
4477 
4478 	/*
4479 	 * Don't allow to delete a subvolume with send in progress. This is
4480 	 * inside the inode lock so the error handling that has to drop the bit
4481 	 * again is not run concurrently.
4482 	 */
4483 	spin_lock(&dest->root_item_lock);
4484 	if (dest->send_in_progress) {
4485 		spin_unlock(&dest->root_item_lock);
4486 		btrfs_warn(fs_info,
4487 			   "attempt to delete subvolume %llu during send",
4488 			   dest->root_key.objectid);
4489 		ret = -EPERM;
4490 		goto out_up_write;
4491 	}
4492 	if (atomic_read(&dest->nr_swapfiles)) {
4493 		spin_unlock(&dest->root_item_lock);
4494 		btrfs_warn(fs_info,
4495 			   "attempt to delete subvolume %llu with active swapfile",
4496 			   root->root_key.objectid);
4497 		ret = -EPERM;
4498 		goto out_up_write;
4499 	}
4500 	root_flags = btrfs_root_flags(&dest->root_item);
4501 	btrfs_set_root_flags(&dest->root_item,
4502 			     root_flags | BTRFS_ROOT_SUBVOL_DEAD);
4503 	spin_unlock(&dest->root_item_lock);
4504 
4505 	ret = may_destroy_subvol(dest);
4506 	if (ret)
4507 		goto out_undead;
4508 
4509 	btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
4510 	/*
4511 	 * One for dir inode,
4512 	 * two for dir entries,
4513 	 * two for root ref/backref.
4514 	 */
4515 	ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true);
4516 	if (ret)
4517 		goto out_undead;
4518 	qgroup_reserved = block_rsv.qgroup_rsv_reserved;
4519 
4520 	trans = btrfs_start_transaction(root, 0);
4521 	if (IS_ERR(trans)) {
4522 		ret = PTR_ERR(trans);
4523 		goto out_release;
4524 	}
4525 	ret = btrfs_record_root_in_trans(trans, root);
4526 	if (ret) {
4527 		btrfs_abort_transaction(trans, ret);
4528 		goto out_end_trans;
4529 	}
4530 	btrfs_qgroup_convert_reserved_meta(root, qgroup_reserved);
4531 	qgroup_reserved = 0;
4532 	trans->block_rsv = &block_rsv;
4533 	trans->bytes_reserved = block_rsv.size;
4534 
4535 	btrfs_record_snapshot_destroy(trans, dir);
4536 
4537 	ret = btrfs_unlink_subvol(trans, dir, dentry);
4538 	if (ret) {
4539 		btrfs_abort_transaction(trans, ret);
4540 		goto out_end_trans;
4541 	}
4542 
4543 	ret = btrfs_record_root_in_trans(trans, dest);
4544 	if (ret) {
4545 		btrfs_abort_transaction(trans, ret);
4546 		goto out_end_trans;
4547 	}
4548 
4549 	memset(&dest->root_item.drop_progress, 0,
4550 		sizeof(dest->root_item.drop_progress));
4551 	btrfs_set_root_drop_level(&dest->root_item, 0);
4552 	btrfs_set_root_refs(&dest->root_item, 0);
4553 
4554 	if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) {
4555 		ret = btrfs_insert_orphan_item(trans,
4556 					fs_info->tree_root,
4557 					dest->root_key.objectid);
4558 		if (ret) {
4559 			btrfs_abort_transaction(trans, ret);
4560 			goto out_end_trans;
4561 		}
4562 	}
4563 
4564 	ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid,
4565 				  BTRFS_UUID_KEY_SUBVOL,
4566 				  dest->root_key.objectid);
4567 	if (ret && ret != -ENOENT) {
4568 		btrfs_abort_transaction(trans, ret);
4569 		goto out_end_trans;
4570 	}
4571 	if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) {
4572 		ret = btrfs_uuid_tree_remove(trans,
4573 					  dest->root_item.received_uuid,
4574 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4575 					  dest->root_key.objectid);
4576 		if (ret && ret != -ENOENT) {
4577 			btrfs_abort_transaction(trans, ret);
4578 			goto out_end_trans;
4579 		}
4580 	}
4581 
4582 	free_anon_bdev(dest->anon_dev);
4583 	dest->anon_dev = 0;
4584 out_end_trans:
4585 	trans->block_rsv = NULL;
4586 	trans->bytes_reserved = 0;
4587 	ret = btrfs_end_transaction(trans);
4588 	inode->i_flags |= S_DEAD;
4589 out_release:
4590 	btrfs_block_rsv_release(fs_info, &block_rsv, (u64)-1, NULL);
4591 	if (qgroup_reserved)
4592 		btrfs_qgroup_free_meta_prealloc(root, qgroup_reserved);
4593 out_undead:
4594 	if (ret) {
4595 		spin_lock(&dest->root_item_lock);
4596 		root_flags = btrfs_root_flags(&dest->root_item);
4597 		btrfs_set_root_flags(&dest->root_item,
4598 				root_flags & ~BTRFS_ROOT_SUBVOL_DEAD);
4599 		spin_unlock(&dest->root_item_lock);
4600 	}
4601 out_up_write:
4602 	up_write(&fs_info->subvol_sem);
4603 	if (!ret) {
4604 		d_invalidate(dentry);
4605 		btrfs_prune_dentries(dest);
4606 		ASSERT(dest->send_in_progress == 0);
4607 	}
4608 
4609 	return ret;
4610 }
4611 
4612 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4613 {
4614 	struct inode *inode = d_inode(dentry);
4615 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
4616 	int err = 0;
4617 	struct btrfs_trans_handle *trans;
4618 	u64 last_unlink_trans;
4619 	struct fscrypt_name fname;
4620 
4621 	if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
4622 		return -ENOTEMPTY;
4623 	if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID) {
4624 		if (unlikely(btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))) {
4625 			btrfs_err(fs_info,
4626 			"extent tree v2 doesn't support snapshot deletion yet");
4627 			return -EOPNOTSUPP;
4628 		}
4629 		return btrfs_delete_subvolume(BTRFS_I(dir), dentry);
4630 	}
4631 
4632 	err = fscrypt_setup_filename(dir, &dentry->d_name, 1, &fname);
4633 	if (err)
4634 		return err;
4635 
4636 	/* This needs to handle no-key deletions later on */
4637 
4638 	trans = __unlink_start_trans(BTRFS_I(dir));
4639 	if (IS_ERR(trans)) {
4640 		err = PTR_ERR(trans);
4641 		goto out_notrans;
4642 	}
4643 
4644 	if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4645 		err = btrfs_unlink_subvol(trans, BTRFS_I(dir), dentry);
4646 		goto out;
4647 	}
4648 
4649 	err = btrfs_orphan_add(trans, BTRFS_I(inode));
4650 	if (err)
4651 		goto out;
4652 
4653 	last_unlink_trans = BTRFS_I(inode)->last_unlink_trans;
4654 
4655 	/* now the directory is empty */
4656 	err = btrfs_unlink_inode(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4657 				 &fname.disk_name);
4658 	if (!err) {
4659 		btrfs_i_size_write(BTRFS_I(inode), 0);
4660 		/*
4661 		 * Propagate the last_unlink_trans value of the deleted dir to
4662 		 * its parent directory. This is to prevent an unrecoverable
4663 		 * log tree in the case we do something like this:
4664 		 * 1) create dir foo
4665 		 * 2) create snapshot under dir foo
4666 		 * 3) delete the snapshot
4667 		 * 4) rmdir foo
4668 		 * 5) mkdir foo
4669 		 * 6) fsync foo or some file inside foo
4670 		 */
4671 		if (last_unlink_trans >= trans->transid)
4672 			BTRFS_I(dir)->last_unlink_trans = last_unlink_trans;
4673 	}
4674 out:
4675 	btrfs_end_transaction(trans);
4676 out_notrans:
4677 	btrfs_btree_balance_dirty(fs_info);
4678 	fscrypt_free_filename(&fname);
4679 
4680 	return err;
4681 }
4682 
4683 /*
4684  * btrfs_truncate_block - read, zero a chunk and write a block
4685  * @inode - inode that we're zeroing
4686  * @from - the offset to start zeroing
4687  * @len - the length to zero, 0 to zero the entire range respective to the
4688  *	offset
4689  * @front - zero up to the offset instead of from the offset on
4690  *
4691  * This will find the block for the "from" offset and cow the block and zero the
4692  * part we want to zero.  This is used with truncate and hole punching.
4693  */
4694 int btrfs_truncate_block(struct btrfs_inode *inode, loff_t from, loff_t len,
4695 			 int front)
4696 {
4697 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
4698 	struct address_space *mapping = inode->vfs_inode.i_mapping;
4699 	struct extent_io_tree *io_tree = &inode->io_tree;
4700 	struct btrfs_ordered_extent *ordered;
4701 	struct extent_state *cached_state = NULL;
4702 	struct extent_changeset *data_reserved = NULL;
4703 	bool only_release_metadata = false;
4704 	u32 blocksize = fs_info->sectorsize;
4705 	pgoff_t index = from >> PAGE_SHIFT;
4706 	unsigned offset = from & (blocksize - 1);
4707 	struct page *page;
4708 	gfp_t mask = btrfs_alloc_write_mask(mapping);
4709 	size_t write_bytes = blocksize;
4710 	int ret = 0;
4711 	u64 block_start;
4712 	u64 block_end;
4713 
4714 	if (IS_ALIGNED(offset, blocksize) &&
4715 	    (!len || IS_ALIGNED(len, blocksize)))
4716 		goto out;
4717 
4718 	block_start = round_down(from, blocksize);
4719 	block_end = block_start + blocksize - 1;
4720 
4721 	ret = btrfs_check_data_free_space(inode, &data_reserved, block_start,
4722 					  blocksize, false);
4723 	if (ret < 0) {
4724 		if (btrfs_check_nocow_lock(inode, block_start, &write_bytes, false) > 0) {
4725 			/* For nocow case, no need to reserve data space */
4726 			only_release_metadata = true;
4727 		} else {
4728 			goto out;
4729 		}
4730 	}
4731 	ret = btrfs_delalloc_reserve_metadata(inode, blocksize, blocksize, false);
4732 	if (ret < 0) {
4733 		if (!only_release_metadata)
4734 			btrfs_free_reserved_data_space(inode, data_reserved,
4735 						       block_start, blocksize);
4736 		goto out;
4737 	}
4738 again:
4739 	page = find_or_create_page(mapping, index, mask);
4740 	if (!page) {
4741 		btrfs_delalloc_release_space(inode, data_reserved, block_start,
4742 					     blocksize, true);
4743 		btrfs_delalloc_release_extents(inode, blocksize);
4744 		ret = -ENOMEM;
4745 		goto out;
4746 	}
4747 
4748 	if (!PageUptodate(page)) {
4749 		ret = btrfs_read_folio(NULL, page_folio(page));
4750 		lock_page(page);
4751 		if (page->mapping != mapping) {
4752 			unlock_page(page);
4753 			put_page(page);
4754 			goto again;
4755 		}
4756 		if (!PageUptodate(page)) {
4757 			ret = -EIO;
4758 			goto out_unlock;
4759 		}
4760 	}
4761 
4762 	/*
4763 	 * We unlock the page after the io is completed and then re-lock it
4764 	 * above.  release_folio() could have come in between that and cleared
4765 	 * PagePrivate(), but left the page in the mapping.  Set the page mapped
4766 	 * here to make sure it's properly set for the subpage stuff.
4767 	 */
4768 	ret = set_page_extent_mapped(page);
4769 	if (ret < 0)
4770 		goto out_unlock;
4771 
4772 	wait_on_page_writeback(page);
4773 
4774 	lock_extent(io_tree, block_start, block_end, &cached_state);
4775 
4776 	ordered = btrfs_lookup_ordered_extent(inode, block_start);
4777 	if (ordered) {
4778 		unlock_extent(io_tree, block_start, block_end, &cached_state);
4779 		unlock_page(page);
4780 		put_page(page);
4781 		btrfs_start_ordered_extent(ordered);
4782 		btrfs_put_ordered_extent(ordered);
4783 		goto again;
4784 	}
4785 
4786 	clear_extent_bit(&inode->io_tree, block_start, block_end,
4787 			 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
4788 			 &cached_state);
4789 
4790 	ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0,
4791 					&cached_state);
4792 	if (ret) {
4793 		unlock_extent(io_tree, block_start, block_end, &cached_state);
4794 		goto out_unlock;
4795 	}
4796 
4797 	if (offset != blocksize) {
4798 		if (!len)
4799 			len = blocksize - offset;
4800 		if (front)
4801 			memzero_page(page, (block_start - page_offset(page)),
4802 				     offset);
4803 		else
4804 			memzero_page(page, (block_start - page_offset(page)) + offset,
4805 				     len);
4806 	}
4807 	btrfs_page_clear_checked(fs_info, page, block_start,
4808 				 block_end + 1 - block_start);
4809 	btrfs_page_set_dirty(fs_info, page, block_start, block_end + 1 - block_start);
4810 	unlock_extent(io_tree, block_start, block_end, &cached_state);
4811 
4812 	if (only_release_metadata)
4813 		set_extent_bit(&inode->io_tree, block_start, block_end,
4814 			       EXTENT_NORESERVE, NULL);
4815 
4816 out_unlock:
4817 	if (ret) {
4818 		if (only_release_metadata)
4819 			btrfs_delalloc_release_metadata(inode, blocksize, true);
4820 		else
4821 			btrfs_delalloc_release_space(inode, data_reserved,
4822 					block_start, blocksize, true);
4823 	}
4824 	btrfs_delalloc_release_extents(inode, blocksize);
4825 	unlock_page(page);
4826 	put_page(page);
4827 out:
4828 	if (only_release_metadata)
4829 		btrfs_check_nocow_unlock(inode);
4830 	extent_changeset_free(data_reserved);
4831 	return ret;
4832 }
4833 
4834 static int maybe_insert_hole(struct btrfs_root *root, struct btrfs_inode *inode,
4835 			     u64 offset, u64 len)
4836 {
4837 	struct btrfs_fs_info *fs_info = root->fs_info;
4838 	struct btrfs_trans_handle *trans;
4839 	struct btrfs_drop_extents_args drop_args = { 0 };
4840 	int ret;
4841 
4842 	/*
4843 	 * If NO_HOLES is enabled, we don't need to do anything.
4844 	 * Later, up in the call chain, either btrfs_set_inode_last_sub_trans()
4845 	 * or btrfs_update_inode() will be called, which guarantee that the next
4846 	 * fsync will know this inode was changed and needs to be logged.
4847 	 */
4848 	if (btrfs_fs_incompat(fs_info, NO_HOLES))
4849 		return 0;
4850 
4851 	/*
4852 	 * 1 - for the one we're dropping
4853 	 * 1 - for the one we're adding
4854 	 * 1 - for updating the inode.
4855 	 */
4856 	trans = btrfs_start_transaction(root, 3);
4857 	if (IS_ERR(trans))
4858 		return PTR_ERR(trans);
4859 
4860 	drop_args.start = offset;
4861 	drop_args.end = offset + len;
4862 	drop_args.drop_cache = true;
4863 
4864 	ret = btrfs_drop_extents(trans, root, inode, &drop_args);
4865 	if (ret) {
4866 		btrfs_abort_transaction(trans, ret);
4867 		btrfs_end_transaction(trans);
4868 		return ret;
4869 	}
4870 
4871 	ret = btrfs_insert_hole_extent(trans, root, btrfs_ino(inode), offset, len);
4872 	if (ret) {
4873 		btrfs_abort_transaction(trans, ret);
4874 	} else {
4875 		btrfs_update_inode_bytes(inode, 0, drop_args.bytes_found);
4876 		btrfs_update_inode(trans, root, inode);
4877 	}
4878 	btrfs_end_transaction(trans);
4879 	return ret;
4880 }
4881 
4882 /*
4883  * This function puts in dummy file extents for the area we're creating a hole
4884  * for.  So if we are truncating this file to a larger size we need to insert
4885  * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4886  * the range between oldsize and size
4887  */
4888 int btrfs_cont_expand(struct btrfs_inode *inode, loff_t oldsize, loff_t size)
4889 {
4890 	struct btrfs_root *root = inode->root;
4891 	struct btrfs_fs_info *fs_info = root->fs_info;
4892 	struct extent_io_tree *io_tree = &inode->io_tree;
4893 	struct extent_map *em = NULL;
4894 	struct extent_state *cached_state = NULL;
4895 	u64 hole_start = ALIGN(oldsize, fs_info->sectorsize);
4896 	u64 block_end = ALIGN(size, fs_info->sectorsize);
4897 	u64 last_byte;
4898 	u64 cur_offset;
4899 	u64 hole_size;
4900 	int err = 0;
4901 
4902 	/*
4903 	 * If our size started in the middle of a block we need to zero out the
4904 	 * rest of the block before we expand the i_size, otherwise we could
4905 	 * expose stale data.
4906 	 */
4907 	err = btrfs_truncate_block(inode, oldsize, 0, 0);
4908 	if (err)
4909 		return err;
4910 
4911 	if (size <= hole_start)
4912 		return 0;
4913 
4914 	btrfs_lock_and_flush_ordered_range(inode, hole_start, block_end - 1,
4915 					   &cached_state);
4916 	cur_offset = hole_start;
4917 	while (1) {
4918 		em = btrfs_get_extent(inode, NULL, 0, cur_offset,
4919 				      block_end - cur_offset);
4920 		if (IS_ERR(em)) {
4921 			err = PTR_ERR(em);
4922 			em = NULL;
4923 			break;
4924 		}
4925 		last_byte = min(extent_map_end(em), block_end);
4926 		last_byte = ALIGN(last_byte, fs_info->sectorsize);
4927 		hole_size = last_byte - cur_offset;
4928 
4929 		if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
4930 			struct extent_map *hole_em;
4931 
4932 			err = maybe_insert_hole(root, inode, cur_offset,
4933 						hole_size);
4934 			if (err)
4935 				break;
4936 
4937 			err = btrfs_inode_set_file_extent_range(inode,
4938 							cur_offset, hole_size);
4939 			if (err)
4940 				break;
4941 
4942 			hole_em = alloc_extent_map();
4943 			if (!hole_em) {
4944 				btrfs_drop_extent_map_range(inode, cur_offset,
4945 						    cur_offset + hole_size - 1,
4946 						    false);
4947 				btrfs_set_inode_full_sync(inode);
4948 				goto next;
4949 			}
4950 			hole_em->start = cur_offset;
4951 			hole_em->len = hole_size;
4952 			hole_em->orig_start = cur_offset;
4953 
4954 			hole_em->block_start = EXTENT_MAP_HOLE;
4955 			hole_em->block_len = 0;
4956 			hole_em->orig_block_len = 0;
4957 			hole_em->ram_bytes = hole_size;
4958 			hole_em->compress_type = BTRFS_COMPRESS_NONE;
4959 			hole_em->generation = fs_info->generation;
4960 
4961 			err = btrfs_replace_extent_map_range(inode, hole_em, true);
4962 			free_extent_map(hole_em);
4963 		} else {
4964 			err = btrfs_inode_set_file_extent_range(inode,
4965 							cur_offset, hole_size);
4966 			if (err)
4967 				break;
4968 		}
4969 next:
4970 		free_extent_map(em);
4971 		em = NULL;
4972 		cur_offset = last_byte;
4973 		if (cur_offset >= block_end)
4974 			break;
4975 	}
4976 	free_extent_map(em);
4977 	unlock_extent(io_tree, hole_start, block_end - 1, &cached_state);
4978 	return err;
4979 }
4980 
4981 static int btrfs_setsize(struct inode *inode, struct iattr *attr)
4982 {
4983 	struct btrfs_root *root = BTRFS_I(inode)->root;
4984 	struct btrfs_trans_handle *trans;
4985 	loff_t oldsize = i_size_read(inode);
4986 	loff_t newsize = attr->ia_size;
4987 	int mask = attr->ia_valid;
4988 	int ret;
4989 
4990 	/*
4991 	 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
4992 	 * special case where we need to update the times despite not having
4993 	 * these flags set.  For all other operations the VFS set these flags
4994 	 * explicitly if it wants a timestamp update.
4995 	 */
4996 	if (newsize != oldsize) {
4997 		inode_inc_iversion(inode);
4998 		if (!(mask & (ATTR_CTIME | ATTR_MTIME))) {
4999 			inode->i_mtime = inode_set_ctime_current(inode);
5000 		}
5001 	}
5002 
5003 	if (newsize > oldsize) {
5004 		/*
5005 		 * Don't do an expanding truncate while snapshotting is ongoing.
5006 		 * This is to ensure the snapshot captures a fully consistent
5007 		 * state of this file - if the snapshot captures this expanding
5008 		 * truncation, it must capture all writes that happened before
5009 		 * this truncation.
5010 		 */
5011 		btrfs_drew_write_lock(&root->snapshot_lock);
5012 		ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, newsize);
5013 		if (ret) {
5014 			btrfs_drew_write_unlock(&root->snapshot_lock);
5015 			return ret;
5016 		}
5017 
5018 		trans = btrfs_start_transaction(root, 1);
5019 		if (IS_ERR(trans)) {
5020 			btrfs_drew_write_unlock(&root->snapshot_lock);
5021 			return PTR_ERR(trans);
5022 		}
5023 
5024 		i_size_write(inode, newsize);
5025 		btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
5026 		pagecache_isize_extended(inode, oldsize, newsize);
5027 		ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
5028 		btrfs_drew_write_unlock(&root->snapshot_lock);
5029 		btrfs_end_transaction(trans);
5030 	} else {
5031 		struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5032 
5033 		if (btrfs_is_zoned(fs_info)) {
5034 			ret = btrfs_wait_ordered_range(inode,
5035 					ALIGN(newsize, fs_info->sectorsize),
5036 					(u64)-1);
5037 			if (ret)
5038 				return ret;
5039 		}
5040 
5041 		/*
5042 		 * We're truncating a file that used to have good data down to
5043 		 * zero. Make sure any new writes to the file get on disk
5044 		 * on close.
5045 		 */
5046 		if (newsize == 0)
5047 			set_bit(BTRFS_INODE_FLUSH_ON_CLOSE,
5048 				&BTRFS_I(inode)->runtime_flags);
5049 
5050 		truncate_setsize(inode, newsize);
5051 
5052 		inode_dio_wait(inode);
5053 
5054 		ret = btrfs_truncate(BTRFS_I(inode), newsize == oldsize);
5055 		if (ret && inode->i_nlink) {
5056 			int err;
5057 
5058 			/*
5059 			 * Truncate failed, so fix up the in-memory size. We
5060 			 * adjusted disk_i_size down as we removed extents, so
5061 			 * wait for disk_i_size to be stable and then update the
5062 			 * in-memory size to match.
5063 			 */
5064 			err = btrfs_wait_ordered_range(inode, 0, (u64)-1);
5065 			if (err)
5066 				return err;
5067 			i_size_write(inode, BTRFS_I(inode)->disk_i_size);
5068 		}
5069 	}
5070 
5071 	return ret;
5072 }
5073 
5074 static int btrfs_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
5075 			 struct iattr *attr)
5076 {
5077 	struct inode *inode = d_inode(dentry);
5078 	struct btrfs_root *root = BTRFS_I(inode)->root;
5079 	int err;
5080 
5081 	if (btrfs_root_readonly(root))
5082 		return -EROFS;
5083 
5084 	err = setattr_prepare(idmap, dentry, attr);
5085 	if (err)
5086 		return err;
5087 
5088 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
5089 		err = btrfs_setsize(inode, attr);
5090 		if (err)
5091 			return err;
5092 	}
5093 
5094 	if (attr->ia_valid) {
5095 		setattr_copy(idmap, inode, attr);
5096 		inode_inc_iversion(inode);
5097 		err = btrfs_dirty_inode(BTRFS_I(inode));
5098 
5099 		if (!err && attr->ia_valid & ATTR_MODE)
5100 			err = posix_acl_chmod(idmap, dentry, inode->i_mode);
5101 	}
5102 
5103 	return err;
5104 }
5105 
5106 /*
5107  * While truncating the inode pages during eviction, we get the VFS
5108  * calling btrfs_invalidate_folio() against each folio of the inode. This
5109  * is slow because the calls to btrfs_invalidate_folio() result in a
5110  * huge amount of calls to lock_extent() and clear_extent_bit(),
5111  * which keep merging and splitting extent_state structures over and over,
5112  * wasting lots of time.
5113  *
5114  * Therefore if the inode is being evicted, let btrfs_invalidate_folio()
5115  * skip all those expensive operations on a per folio basis and do only
5116  * the ordered io finishing, while we release here the extent_map and
5117  * extent_state structures, without the excessive merging and splitting.
5118  */
5119 static void evict_inode_truncate_pages(struct inode *inode)
5120 {
5121 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5122 	struct rb_node *node;
5123 
5124 	ASSERT(inode->i_state & I_FREEING);
5125 	truncate_inode_pages_final(&inode->i_data);
5126 
5127 	btrfs_drop_extent_map_range(BTRFS_I(inode), 0, (u64)-1, false);
5128 
5129 	/*
5130 	 * Keep looping until we have no more ranges in the io tree.
5131 	 * We can have ongoing bios started by readahead that have
5132 	 * their endio callback (extent_io.c:end_bio_extent_readpage)
5133 	 * still in progress (unlocked the pages in the bio but did not yet
5134 	 * unlocked the ranges in the io tree). Therefore this means some
5135 	 * ranges can still be locked and eviction started because before
5136 	 * submitting those bios, which are executed by a separate task (work
5137 	 * queue kthread), inode references (inode->i_count) were not taken
5138 	 * (which would be dropped in the end io callback of each bio).
5139 	 * Therefore here we effectively end up waiting for those bios and
5140 	 * anyone else holding locked ranges without having bumped the inode's
5141 	 * reference count - if we don't do it, when they access the inode's
5142 	 * io_tree to unlock a range it may be too late, leading to an
5143 	 * use-after-free issue.
5144 	 */
5145 	spin_lock(&io_tree->lock);
5146 	while (!RB_EMPTY_ROOT(&io_tree->state)) {
5147 		struct extent_state *state;
5148 		struct extent_state *cached_state = NULL;
5149 		u64 start;
5150 		u64 end;
5151 		unsigned state_flags;
5152 
5153 		node = rb_first(&io_tree->state);
5154 		state = rb_entry(node, struct extent_state, rb_node);
5155 		start = state->start;
5156 		end = state->end;
5157 		state_flags = state->state;
5158 		spin_unlock(&io_tree->lock);
5159 
5160 		lock_extent(io_tree, start, end, &cached_state);
5161 
5162 		/*
5163 		 * If still has DELALLOC flag, the extent didn't reach disk,
5164 		 * and its reserved space won't be freed by delayed_ref.
5165 		 * So we need to free its reserved space here.
5166 		 * (Refer to comment in btrfs_invalidate_folio, case 2)
5167 		 *
5168 		 * Note, end is the bytenr of last byte, so we need + 1 here.
5169 		 */
5170 		if (state_flags & EXTENT_DELALLOC)
5171 			btrfs_qgroup_free_data(BTRFS_I(inode), NULL, start,
5172 					       end - start + 1, NULL);
5173 
5174 		clear_extent_bit(io_tree, start, end,
5175 				 EXTENT_CLEAR_ALL_BITS | EXTENT_DO_ACCOUNTING,
5176 				 &cached_state);
5177 
5178 		cond_resched();
5179 		spin_lock(&io_tree->lock);
5180 	}
5181 	spin_unlock(&io_tree->lock);
5182 }
5183 
5184 static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root,
5185 							struct btrfs_block_rsv *rsv)
5186 {
5187 	struct btrfs_fs_info *fs_info = root->fs_info;
5188 	struct btrfs_trans_handle *trans;
5189 	u64 delayed_refs_extra = btrfs_calc_delayed_ref_bytes(fs_info, 1);
5190 	int ret;
5191 
5192 	/*
5193 	 * Eviction should be taking place at some place safe because of our
5194 	 * delayed iputs.  However the normal flushing code will run delayed
5195 	 * iputs, so we cannot use FLUSH_ALL otherwise we'll deadlock.
5196 	 *
5197 	 * We reserve the delayed_refs_extra here again because we can't use
5198 	 * btrfs_start_transaction(root, 0) for the same deadlocky reason as
5199 	 * above.  We reserve our extra bit here because we generate a ton of
5200 	 * delayed refs activity by truncating.
5201 	 *
5202 	 * BTRFS_RESERVE_FLUSH_EVICT will steal from the global_rsv if it can,
5203 	 * if we fail to make this reservation we can re-try without the
5204 	 * delayed_refs_extra so we can make some forward progress.
5205 	 */
5206 	ret = btrfs_block_rsv_refill(fs_info, rsv, rsv->size + delayed_refs_extra,
5207 				     BTRFS_RESERVE_FLUSH_EVICT);
5208 	if (ret) {
5209 		ret = btrfs_block_rsv_refill(fs_info, rsv, rsv->size,
5210 					     BTRFS_RESERVE_FLUSH_EVICT);
5211 		if (ret) {
5212 			btrfs_warn(fs_info,
5213 				   "could not allocate space for delete; will truncate on mount");
5214 			return ERR_PTR(-ENOSPC);
5215 		}
5216 		delayed_refs_extra = 0;
5217 	}
5218 
5219 	trans = btrfs_join_transaction(root);
5220 	if (IS_ERR(trans))
5221 		return trans;
5222 
5223 	if (delayed_refs_extra) {
5224 		trans->block_rsv = &fs_info->trans_block_rsv;
5225 		trans->bytes_reserved = delayed_refs_extra;
5226 		btrfs_block_rsv_migrate(rsv, trans->block_rsv,
5227 					delayed_refs_extra, true);
5228 	}
5229 	return trans;
5230 }
5231 
5232 void btrfs_evict_inode(struct inode *inode)
5233 {
5234 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5235 	struct btrfs_trans_handle *trans;
5236 	struct btrfs_root *root = BTRFS_I(inode)->root;
5237 	struct btrfs_block_rsv *rsv = NULL;
5238 	int ret;
5239 
5240 	trace_btrfs_inode_evict(inode);
5241 
5242 	if (!root) {
5243 		fsverity_cleanup_inode(inode);
5244 		clear_inode(inode);
5245 		return;
5246 	}
5247 
5248 	evict_inode_truncate_pages(inode);
5249 
5250 	if (inode->i_nlink &&
5251 	    ((btrfs_root_refs(&root->root_item) != 0 &&
5252 	      root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
5253 	     btrfs_is_free_space_inode(BTRFS_I(inode))))
5254 		goto out;
5255 
5256 	if (is_bad_inode(inode))
5257 		goto out;
5258 
5259 	if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
5260 		goto out;
5261 
5262 	if (inode->i_nlink > 0) {
5263 		BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5264 		       root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
5265 		goto out;
5266 	}
5267 
5268 	/*
5269 	 * This makes sure the inode item in tree is uptodate and the space for
5270 	 * the inode update is released.
5271 	 */
5272 	ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode));
5273 	if (ret)
5274 		goto out;
5275 
5276 	/*
5277 	 * This drops any pending insert or delete operations we have for this
5278 	 * inode.  We could have a delayed dir index deletion queued up, but
5279 	 * we're removing the inode completely so that'll be taken care of in
5280 	 * the truncate.
5281 	 */
5282 	btrfs_kill_delayed_inode_items(BTRFS_I(inode));
5283 
5284 	rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
5285 	if (!rsv)
5286 		goto out;
5287 	rsv->size = btrfs_calc_metadata_size(fs_info, 1);
5288 	rsv->failfast = true;
5289 
5290 	btrfs_i_size_write(BTRFS_I(inode), 0);
5291 
5292 	while (1) {
5293 		struct btrfs_truncate_control control = {
5294 			.inode = BTRFS_I(inode),
5295 			.ino = btrfs_ino(BTRFS_I(inode)),
5296 			.new_size = 0,
5297 			.min_type = 0,
5298 		};
5299 
5300 		trans = evict_refill_and_join(root, rsv);
5301 		if (IS_ERR(trans))
5302 			goto out;
5303 
5304 		trans->block_rsv = rsv;
5305 
5306 		ret = btrfs_truncate_inode_items(trans, root, &control);
5307 		trans->block_rsv = &fs_info->trans_block_rsv;
5308 		btrfs_end_transaction(trans);
5309 		/*
5310 		 * We have not added new delayed items for our inode after we
5311 		 * have flushed its delayed items, so no need to throttle on
5312 		 * delayed items. However we have modified extent buffers.
5313 		 */
5314 		btrfs_btree_balance_dirty_nodelay(fs_info);
5315 		if (ret && ret != -ENOSPC && ret != -EAGAIN)
5316 			goto out;
5317 		else if (!ret)
5318 			break;
5319 	}
5320 
5321 	/*
5322 	 * Errors here aren't a big deal, it just means we leave orphan items in
5323 	 * the tree. They will be cleaned up on the next mount. If the inode
5324 	 * number gets reused, cleanup deletes the orphan item without doing
5325 	 * anything, and unlink reuses the existing orphan item.
5326 	 *
5327 	 * If it turns out that we are dropping too many of these, we might want
5328 	 * to add a mechanism for retrying these after a commit.
5329 	 */
5330 	trans = evict_refill_and_join(root, rsv);
5331 	if (!IS_ERR(trans)) {
5332 		trans->block_rsv = rsv;
5333 		btrfs_orphan_del(trans, BTRFS_I(inode));
5334 		trans->block_rsv = &fs_info->trans_block_rsv;
5335 		btrfs_end_transaction(trans);
5336 	}
5337 
5338 out:
5339 	btrfs_free_block_rsv(fs_info, rsv);
5340 	/*
5341 	 * If we didn't successfully delete, the orphan item will still be in
5342 	 * the tree and we'll retry on the next mount. Again, we might also want
5343 	 * to retry these periodically in the future.
5344 	 */
5345 	btrfs_remove_delayed_node(BTRFS_I(inode));
5346 	fsverity_cleanup_inode(inode);
5347 	clear_inode(inode);
5348 }
5349 
5350 /*
5351  * Return the key found in the dir entry in the location pointer, fill @type
5352  * with BTRFS_FT_*, and return 0.
5353  *
5354  * If no dir entries were found, returns -ENOENT.
5355  * If found a corrupted location in dir entry, returns -EUCLEAN.
5356  */
5357 static int btrfs_inode_by_name(struct btrfs_inode *dir, struct dentry *dentry,
5358 			       struct btrfs_key *location, u8 *type)
5359 {
5360 	struct btrfs_dir_item *di;
5361 	struct btrfs_path *path;
5362 	struct btrfs_root *root = dir->root;
5363 	int ret = 0;
5364 	struct fscrypt_name fname;
5365 
5366 	path = btrfs_alloc_path();
5367 	if (!path)
5368 		return -ENOMEM;
5369 
5370 	ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 1, &fname);
5371 	if (ret < 0)
5372 		goto out;
5373 	/*
5374 	 * fscrypt_setup_filename() should never return a positive value, but
5375 	 * gcc on sparc/parisc thinks it can, so assert that doesn't happen.
5376 	 */
5377 	ASSERT(ret == 0);
5378 
5379 	/* This needs to handle no-key deletions later on */
5380 
5381 	di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir),
5382 				   &fname.disk_name, 0);
5383 	if (IS_ERR_OR_NULL(di)) {
5384 		ret = di ? PTR_ERR(di) : -ENOENT;
5385 		goto out;
5386 	}
5387 
5388 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
5389 	if (location->type != BTRFS_INODE_ITEM_KEY &&
5390 	    location->type != BTRFS_ROOT_ITEM_KEY) {
5391 		ret = -EUCLEAN;
5392 		btrfs_warn(root->fs_info,
5393 "%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))",
5394 			   __func__, fname.disk_name.name, btrfs_ino(dir),
5395 			   location->objectid, location->type, location->offset);
5396 	}
5397 	if (!ret)
5398 		*type = btrfs_dir_ftype(path->nodes[0], di);
5399 out:
5400 	fscrypt_free_filename(&fname);
5401 	btrfs_free_path(path);
5402 	return ret;
5403 }
5404 
5405 /*
5406  * when we hit a tree root in a directory, the btrfs part of the inode
5407  * needs to be changed to reflect the root directory of the tree root.  This
5408  * is kind of like crossing a mount point.
5409  */
5410 static int fixup_tree_root_location(struct btrfs_fs_info *fs_info,
5411 				    struct btrfs_inode *dir,
5412 				    struct dentry *dentry,
5413 				    struct btrfs_key *location,
5414 				    struct btrfs_root **sub_root)
5415 {
5416 	struct btrfs_path *path;
5417 	struct btrfs_root *new_root;
5418 	struct btrfs_root_ref *ref;
5419 	struct extent_buffer *leaf;
5420 	struct btrfs_key key;
5421 	int ret;
5422 	int err = 0;
5423 	struct fscrypt_name fname;
5424 
5425 	ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 0, &fname);
5426 	if (ret)
5427 		return ret;
5428 
5429 	path = btrfs_alloc_path();
5430 	if (!path) {
5431 		err = -ENOMEM;
5432 		goto out;
5433 	}
5434 
5435 	err = -ENOENT;
5436 	key.objectid = dir->root->root_key.objectid;
5437 	key.type = BTRFS_ROOT_REF_KEY;
5438 	key.offset = location->objectid;
5439 
5440 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
5441 	if (ret) {
5442 		if (ret < 0)
5443 			err = ret;
5444 		goto out;
5445 	}
5446 
5447 	leaf = path->nodes[0];
5448 	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
5449 	if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
5450 	    btrfs_root_ref_name_len(leaf, ref) != fname.disk_name.len)
5451 		goto out;
5452 
5453 	ret = memcmp_extent_buffer(leaf, fname.disk_name.name,
5454 				   (unsigned long)(ref + 1), fname.disk_name.len);
5455 	if (ret)
5456 		goto out;
5457 
5458 	btrfs_release_path(path);
5459 
5460 	new_root = btrfs_get_fs_root(fs_info, location->objectid, true);
5461 	if (IS_ERR(new_root)) {
5462 		err = PTR_ERR(new_root);
5463 		goto out;
5464 	}
5465 
5466 	*sub_root = new_root;
5467 	location->objectid = btrfs_root_dirid(&new_root->root_item);
5468 	location->type = BTRFS_INODE_ITEM_KEY;
5469 	location->offset = 0;
5470 	err = 0;
5471 out:
5472 	btrfs_free_path(path);
5473 	fscrypt_free_filename(&fname);
5474 	return err;
5475 }
5476 
5477 static void inode_tree_add(struct btrfs_inode *inode)
5478 {
5479 	struct btrfs_root *root = inode->root;
5480 	struct btrfs_inode *entry;
5481 	struct rb_node **p;
5482 	struct rb_node *parent;
5483 	struct rb_node *new = &inode->rb_node;
5484 	u64 ino = btrfs_ino(inode);
5485 
5486 	if (inode_unhashed(&inode->vfs_inode))
5487 		return;
5488 	parent = NULL;
5489 	spin_lock(&root->inode_lock);
5490 	p = &root->inode_tree.rb_node;
5491 	while (*p) {
5492 		parent = *p;
5493 		entry = rb_entry(parent, struct btrfs_inode, rb_node);
5494 
5495 		if (ino < btrfs_ino(entry))
5496 			p = &parent->rb_left;
5497 		else if (ino > btrfs_ino(entry))
5498 			p = &parent->rb_right;
5499 		else {
5500 			WARN_ON(!(entry->vfs_inode.i_state &
5501 				  (I_WILL_FREE | I_FREEING)));
5502 			rb_replace_node(parent, new, &root->inode_tree);
5503 			RB_CLEAR_NODE(parent);
5504 			spin_unlock(&root->inode_lock);
5505 			return;
5506 		}
5507 	}
5508 	rb_link_node(new, parent, p);
5509 	rb_insert_color(new, &root->inode_tree);
5510 	spin_unlock(&root->inode_lock);
5511 }
5512 
5513 static void inode_tree_del(struct btrfs_inode *inode)
5514 {
5515 	struct btrfs_root *root = inode->root;
5516 	int empty = 0;
5517 
5518 	spin_lock(&root->inode_lock);
5519 	if (!RB_EMPTY_NODE(&inode->rb_node)) {
5520 		rb_erase(&inode->rb_node, &root->inode_tree);
5521 		RB_CLEAR_NODE(&inode->rb_node);
5522 		empty = RB_EMPTY_ROOT(&root->inode_tree);
5523 	}
5524 	spin_unlock(&root->inode_lock);
5525 
5526 	if (empty && btrfs_root_refs(&root->root_item) == 0) {
5527 		spin_lock(&root->inode_lock);
5528 		empty = RB_EMPTY_ROOT(&root->inode_tree);
5529 		spin_unlock(&root->inode_lock);
5530 		if (empty)
5531 			btrfs_add_dead_root(root);
5532 	}
5533 }
5534 
5535 
5536 static int btrfs_init_locked_inode(struct inode *inode, void *p)
5537 {
5538 	struct btrfs_iget_args *args = p;
5539 
5540 	inode->i_ino = args->ino;
5541 	BTRFS_I(inode)->location.objectid = args->ino;
5542 	BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY;
5543 	BTRFS_I(inode)->location.offset = 0;
5544 	BTRFS_I(inode)->root = btrfs_grab_root(args->root);
5545 	BUG_ON(args->root && !BTRFS_I(inode)->root);
5546 
5547 	if (args->root && args->root == args->root->fs_info->tree_root &&
5548 	    args->ino != BTRFS_BTREE_INODE_OBJECTID)
5549 		set_bit(BTRFS_INODE_FREE_SPACE_INODE,
5550 			&BTRFS_I(inode)->runtime_flags);
5551 	return 0;
5552 }
5553 
5554 static int btrfs_find_actor(struct inode *inode, void *opaque)
5555 {
5556 	struct btrfs_iget_args *args = opaque;
5557 
5558 	return args->ino == BTRFS_I(inode)->location.objectid &&
5559 		args->root == BTRFS_I(inode)->root;
5560 }
5561 
5562 static struct inode *btrfs_iget_locked(struct super_block *s, u64 ino,
5563 				       struct btrfs_root *root)
5564 {
5565 	struct inode *inode;
5566 	struct btrfs_iget_args args;
5567 	unsigned long hashval = btrfs_inode_hash(ino, root);
5568 
5569 	args.ino = ino;
5570 	args.root = root;
5571 
5572 	inode = iget5_locked(s, hashval, btrfs_find_actor,
5573 			     btrfs_init_locked_inode,
5574 			     (void *)&args);
5575 	return inode;
5576 }
5577 
5578 /*
5579  * Get an inode object given its inode number and corresponding root.
5580  * Path can be preallocated to prevent recursing back to iget through
5581  * allocator. NULL is also valid but may require an additional allocation
5582  * later.
5583  */
5584 struct inode *btrfs_iget_path(struct super_block *s, u64 ino,
5585 			      struct btrfs_root *root, struct btrfs_path *path)
5586 {
5587 	struct inode *inode;
5588 
5589 	inode = btrfs_iget_locked(s, ino, root);
5590 	if (!inode)
5591 		return ERR_PTR(-ENOMEM);
5592 
5593 	if (inode->i_state & I_NEW) {
5594 		int ret;
5595 
5596 		ret = btrfs_read_locked_inode(inode, path);
5597 		if (!ret) {
5598 			inode_tree_add(BTRFS_I(inode));
5599 			unlock_new_inode(inode);
5600 		} else {
5601 			iget_failed(inode);
5602 			/*
5603 			 * ret > 0 can come from btrfs_search_slot called by
5604 			 * btrfs_read_locked_inode, this means the inode item
5605 			 * was not found.
5606 			 */
5607 			if (ret > 0)
5608 				ret = -ENOENT;
5609 			inode = ERR_PTR(ret);
5610 		}
5611 	}
5612 
5613 	return inode;
5614 }
5615 
5616 struct inode *btrfs_iget(struct super_block *s, u64 ino, struct btrfs_root *root)
5617 {
5618 	return btrfs_iget_path(s, ino, root, NULL);
5619 }
5620 
5621 static struct inode *new_simple_dir(struct inode *dir,
5622 				    struct btrfs_key *key,
5623 				    struct btrfs_root *root)
5624 {
5625 	struct inode *inode = new_inode(dir->i_sb);
5626 
5627 	if (!inode)
5628 		return ERR_PTR(-ENOMEM);
5629 
5630 	BTRFS_I(inode)->root = btrfs_grab_root(root);
5631 	memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
5632 	set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
5633 
5634 	inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
5635 	/*
5636 	 * We only need lookup, the rest is read-only and there's no inode
5637 	 * associated with the dentry
5638 	 */
5639 	inode->i_op = &simple_dir_inode_operations;
5640 	inode->i_opflags &= ~IOP_XATTR;
5641 	inode->i_fop = &simple_dir_operations;
5642 	inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
5643 	inode->i_mtime = inode_set_ctime_current(inode);
5644 	inode->i_atime = dir->i_atime;
5645 	BTRFS_I(inode)->i_otime = inode->i_mtime;
5646 	inode->i_uid = dir->i_uid;
5647 	inode->i_gid = dir->i_gid;
5648 
5649 	return inode;
5650 }
5651 
5652 static_assert(BTRFS_FT_UNKNOWN == FT_UNKNOWN);
5653 static_assert(BTRFS_FT_REG_FILE == FT_REG_FILE);
5654 static_assert(BTRFS_FT_DIR == FT_DIR);
5655 static_assert(BTRFS_FT_CHRDEV == FT_CHRDEV);
5656 static_assert(BTRFS_FT_BLKDEV == FT_BLKDEV);
5657 static_assert(BTRFS_FT_FIFO == FT_FIFO);
5658 static_assert(BTRFS_FT_SOCK == FT_SOCK);
5659 static_assert(BTRFS_FT_SYMLINK == FT_SYMLINK);
5660 
5661 static inline u8 btrfs_inode_type(struct inode *inode)
5662 {
5663 	return fs_umode_to_ftype(inode->i_mode);
5664 }
5665 
5666 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
5667 {
5668 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
5669 	struct inode *inode;
5670 	struct btrfs_root *root = BTRFS_I(dir)->root;
5671 	struct btrfs_root *sub_root = root;
5672 	struct btrfs_key location = { 0 };
5673 	u8 di_type = 0;
5674 	int ret = 0;
5675 
5676 	if (dentry->d_name.len > BTRFS_NAME_LEN)
5677 		return ERR_PTR(-ENAMETOOLONG);
5678 
5679 	ret = btrfs_inode_by_name(BTRFS_I(dir), dentry, &location, &di_type);
5680 	if (ret < 0)
5681 		return ERR_PTR(ret);
5682 
5683 	if (location.type == BTRFS_INODE_ITEM_KEY) {
5684 		inode = btrfs_iget(dir->i_sb, location.objectid, root);
5685 		if (IS_ERR(inode))
5686 			return inode;
5687 
5688 		/* Do extra check against inode mode with di_type */
5689 		if (btrfs_inode_type(inode) != di_type) {
5690 			btrfs_crit(fs_info,
5691 "inode mode mismatch with dir: inode mode=0%o btrfs type=%u dir type=%u",
5692 				  inode->i_mode, btrfs_inode_type(inode),
5693 				  di_type);
5694 			iput(inode);
5695 			return ERR_PTR(-EUCLEAN);
5696 		}
5697 		return inode;
5698 	}
5699 
5700 	ret = fixup_tree_root_location(fs_info, BTRFS_I(dir), dentry,
5701 				       &location, &sub_root);
5702 	if (ret < 0) {
5703 		if (ret != -ENOENT)
5704 			inode = ERR_PTR(ret);
5705 		else
5706 			inode = new_simple_dir(dir, &location, root);
5707 	} else {
5708 		inode = btrfs_iget(dir->i_sb, location.objectid, sub_root);
5709 		btrfs_put_root(sub_root);
5710 
5711 		if (IS_ERR(inode))
5712 			return inode;
5713 
5714 		down_read(&fs_info->cleanup_work_sem);
5715 		if (!sb_rdonly(inode->i_sb))
5716 			ret = btrfs_orphan_cleanup(sub_root);
5717 		up_read(&fs_info->cleanup_work_sem);
5718 		if (ret) {
5719 			iput(inode);
5720 			inode = ERR_PTR(ret);
5721 		}
5722 	}
5723 
5724 	return inode;
5725 }
5726 
5727 static int btrfs_dentry_delete(const struct dentry *dentry)
5728 {
5729 	struct btrfs_root *root;
5730 	struct inode *inode = d_inode(dentry);
5731 
5732 	if (!inode && !IS_ROOT(dentry))
5733 		inode = d_inode(dentry->d_parent);
5734 
5735 	if (inode) {
5736 		root = BTRFS_I(inode)->root;
5737 		if (btrfs_root_refs(&root->root_item) == 0)
5738 			return 1;
5739 
5740 		if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5741 			return 1;
5742 	}
5743 	return 0;
5744 }
5745 
5746 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
5747 				   unsigned int flags)
5748 {
5749 	struct inode *inode = btrfs_lookup_dentry(dir, dentry);
5750 
5751 	if (inode == ERR_PTR(-ENOENT))
5752 		inode = NULL;
5753 	return d_splice_alias(inode, dentry);
5754 }
5755 
5756 /*
5757  * Find the highest existing sequence number in a directory and then set the
5758  * in-memory index_cnt variable to the first free sequence number.
5759  */
5760 static int btrfs_set_inode_index_count(struct btrfs_inode *inode)
5761 {
5762 	struct btrfs_root *root = inode->root;
5763 	struct btrfs_key key, found_key;
5764 	struct btrfs_path *path;
5765 	struct extent_buffer *leaf;
5766 	int ret;
5767 
5768 	key.objectid = btrfs_ino(inode);
5769 	key.type = BTRFS_DIR_INDEX_KEY;
5770 	key.offset = (u64)-1;
5771 
5772 	path = btrfs_alloc_path();
5773 	if (!path)
5774 		return -ENOMEM;
5775 
5776 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5777 	if (ret < 0)
5778 		goto out;
5779 	/* FIXME: we should be able to handle this */
5780 	if (ret == 0)
5781 		goto out;
5782 	ret = 0;
5783 
5784 	if (path->slots[0] == 0) {
5785 		inode->index_cnt = BTRFS_DIR_START_INDEX;
5786 		goto out;
5787 	}
5788 
5789 	path->slots[0]--;
5790 
5791 	leaf = path->nodes[0];
5792 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5793 
5794 	if (found_key.objectid != btrfs_ino(inode) ||
5795 	    found_key.type != BTRFS_DIR_INDEX_KEY) {
5796 		inode->index_cnt = BTRFS_DIR_START_INDEX;
5797 		goto out;
5798 	}
5799 
5800 	inode->index_cnt = found_key.offset + 1;
5801 out:
5802 	btrfs_free_path(path);
5803 	return ret;
5804 }
5805 
5806 static int btrfs_get_dir_last_index(struct btrfs_inode *dir, u64 *index)
5807 {
5808 	int ret = 0;
5809 
5810 	btrfs_inode_lock(dir, 0);
5811 	if (dir->index_cnt == (u64)-1) {
5812 		ret = btrfs_inode_delayed_dir_index_count(dir);
5813 		if (ret) {
5814 			ret = btrfs_set_inode_index_count(dir);
5815 			if (ret)
5816 				goto out;
5817 		}
5818 	}
5819 
5820 	/* index_cnt is the index number of next new entry, so decrement it. */
5821 	*index = dir->index_cnt - 1;
5822 out:
5823 	btrfs_inode_unlock(dir, 0);
5824 
5825 	return ret;
5826 }
5827 
5828 /*
5829  * All this infrastructure exists because dir_emit can fault, and we are holding
5830  * the tree lock when doing readdir.  For now just allocate a buffer and copy
5831  * our information into that, and then dir_emit from the buffer.  This is
5832  * similar to what NFS does, only we don't keep the buffer around in pagecache
5833  * because I'm afraid I'll mess that up.  Long term we need to make filldir do
5834  * copy_to_user_inatomic so we don't have to worry about page faulting under the
5835  * tree lock.
5836  */
5837 static int btrfs_opendir(struct inode *inode, struct file *file)
5838 {
5839 	struct btrfs_file_private *private;
5840 	u64 last_index;
5841 	int ret;
5842 
5843 	ret = btrfs_get_dir_last_index(BTRFS_I(inode), &last_index);
5844 	if (ret)
5845 		return ret;
5846 
5847 	private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL);
5848 	if (!private)
5849 		return -ENOMEM;
5850 	private->last_index = last_index;
5851 	private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL);
5852 	if (!private->filldir_buf) {
5853 		kfree(private);
5854 		return -ENOMEM;
5855 	}
5856 	file->private_data = private;
5857 	return 0;
5858 }
5859 
5860 static loff_t btrfs_dir_llseek(struct file *file, loff_t offset, int whence)
5861 {
5862 	struct btrfs_file_private *private = file->private_data;
5863 	int ret;
5864 
5865 	ret = btrfs_get_dir_last_index(BTRFS_I(file_inode(file)),
5866 				       &private->last_index);
5867 	if (ret)
5868 		return ret;
5869 
5870 	return generic_file_llseek(file, offset, whence);
5871 }
5872 
5873 struct dir_entry {
5874 	u64 ino;
5875 	u64 offset;
5876 	unsigned type;
5877 	int name_len;
5878 };
5879 
5880 static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx)
5881 {
5882 	while (entries--) {
5883 		struct dir_entry *entry = addr;
5884 		char *name = (char *)(entry + 1);
5885 
5886 		ctx->pos = get_unaligned(&entry->offset);
5887 		if (!dir_emit(ctx, name, get_unaligned(&entry->name_len),
5888 					 get_unaligned(&entry->ino),
5889 					 get_unaligned(&entry->type)))
5890 			return 1;
5891 		addr += sizeof(struct dir_entry) +
5892 			get_unaligned(&entry->name_len);
5893 		ctx->pos++;
5894 	}
5895 	return 0;
5896 }
5897 
5898 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
5899 {
5900 	struct inode *inode = file_inode(file);
5901 	struct btrfs_root *root = BTRFS_I(inode)->root;
5902 	struct btrfs_file_private *private = file->private_data;
5903 	struct btrfs_dir_item *di;
5904 	struct btrfs_key key;
5905 	struct btrfs_key found_key;
5906 	struct btrfs_path *path;
5907 	void *addr;
5908 	LIST_HEAD(ins_list);
5909 	LIST_HEAD(del_list);
5910 	int ret;
5911 	char *name_ptr;
5912 	int name_len;
5913 	int entries = 0;
5914 	int total_len = 0;
5915 	bool put = false;
5916 	struct btrfs_key location;
5917 
5918 	if (!dir_emit_dots(file, ctx))
5919 		return 0;
5920 
5921 	path = btrfs_alloc_path();
5922 	if (!path)
5923 		return -ENOMEM;
5924 
5925 	addr = private->filldir_buf;
5926 	path->reada = READA_FORWARD;
5927 
5928 	put = btrfs_readdir_get_delayed_items(inode, private->last_index,
5929 					      &ins_list, &del_list);
5930 
5931 again:
5932 	key.type = BTRFS_DIR_INDEX_KEY;
5933 	key.offset = ctx->pos;
5934 	key.objectid = btrfs_ino(BTRFS_I(inode));
5935 
5936 	btrfs_for_each_slot(root, &key, &found_key, path, ret) {
5937 		struct dir_entry *entry;
5938 		struct extent_buffer *leaf = path->nodes[0];
5939 		u8 ftype;
5940 
5941 		if (found_key.objectid != key.objectid)
5942 			break;
5943 		if (found_key.type != BTRFS_DIR_INDEX_KEY)
5944 			break;
5945 		if (found_key.offset < ctx->pos)
5946 			continue;
5947 		if (found_key.offset > private->last_index)
5948 			break;
5949 		if (btrfs_should_delete_dir_index(&del_list, found_key.offset))
5950 			continue;
5951 		di = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dir_item);
5952 		name_len = btrfs_dir_name_len(leaf, di);
5953 		if ((total_len + sizeof(struct dir_entry) + name_len) >=
5954 		    PAGE_SIZE) {
5955 			btrfs_release_path(path);
5956 			ret = btrfs_filldir(private->filldir_buf, entries, ctx);
5957 			if (ret)
5958 				goto nopos;
5959 			addr = private->filldir_buf;
5960 			entries = 0;
5961 			total_len = 0;
5962 			goto again;
5963 		}
5964 
5965 		ftype = btrfs_dir_flags_to_ftype(btrfs_dir_flags(leaf, di));
5966 		entry = addr;
5967 		name_ptr = (char *)(entry + 1);
5968 		read_extent_buffer(leaf, name_ptr,
5969 				   (unsigned long)(di + 1), name_len);
5970 		put_unaligned(name_len, &entry->name_len);
5971 		put_unaligned(fs_ftype_to_dtype(ftype), &entry->type);
5972 		btrfs_dir_item_key_to_cpu(leaf, di, &location);
5973 		put_unaligned(location.objectid, &entry->ino);
5974 		put_unaligned(found_key.offset, &entry->offset);
5975 		entries++;
5976 		addr += sizeof(struct dir_entry) + name_len;
5977 		total_len += sizeof(struct dir_entry) + name_len;
5978 	}
5979 	/* Catch error encountered during iteration */
5980 	if (ret < 0)
5981 		goto err;
5982 
5983 	btrfs_release_path(path);
5984 
5985 	ret = btrfs_filldir(private->filldir_buf, entries, ctx);
5986 	if (ret)
5987 		goto nopos;
5988 
5989 	ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
5990 	if (ret)
5991 		goto nopos;
5992 
5993 	/*
5994 	 * Stop new entries from being returned after we return the last
5995 	 * entry.
5996 	 *
5997 	 * New directory entries are assigned a strictly increasing
5998 	 * offset.  This means that new entries created during readdir
5999 	 * are *guaranteed* to be seen in the future by that readdir.
6000 	 * This has broken buggy programs which operate on names as
6001 	 * they're returned by readdir.  Until we re-use freed offsets
6002 	 * we have this hack to stop new entries from being returned
6003 	 * under the assumption that they'll never reach this huge
6004 	 * offset.
6005 	 *
6006 	 * This is being careful not to overflow 32bit loff_t unless the
6007 	 * last entry requires it because doing so has broken 32bit apps
6008 	 * in the past.
6009 	 */
6010 	if (ctx->pos >= INT_MAX)
6011 		ctx->pos = LLONG_MAX;
6012 	else
6013 		ctx->pos = INT_MAX;
6014 nopos:
6015 	ret = 0;
6016 err:
6017 	if (put)
6018 		btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list);
6019 	btrfs_free_path(path);
6020 	return ret;
6021 }
6022 
6023 /*
6024  * This is somewhat expensive, updating the tree every time the
6025  * inode changes.  But, it is most likely to find the inode in cache.
6026  * FIXME, needs more benchmarking...there are no reasons other than performance
6027  * to keep or drop this code.
6028  */
6029 static int btrfs_dirty_inode(struct btrfs_inode *inode)
6030 {
6031 	struct btrfs_root *root = inode->root;
6032 	struct btrfs_fs_info *fs_info = root->fs_info;
6033 	struct btrfs_trans_handle *trans;
6034 	int ret;
6035 
6036 	if (test_bit(BTRFS_INODE_DUMMY, &inode->runtime_flags))
6037 		return 0;
6038 
6039 	trans = btrfs_join_transaction(root);
6040 	if (IS_ERR(trans))
6041 		return PTR_ERR(trans);
6042 
6043 	ret = btrfs_update_inode(trans, root, inode);
6044 	if (ret && (ret == -ENOSPC || ret == -EDQUOT)) {
6045 		/* whoops, lets try again with the full transaction */
6046 		btrfs_end_transaction(trans);
6047 		trans = btrfs_start_transaction(root, 1);
6048 		if (IS_ERR(trans))
6049 			return PTR_ERR(trans);
6050 
6051 		ret = btrfs_update_inode(trans, root, inode);
6052 	}
6053 	btrfs_end_transaction(trans);
6054 	if (inode->delayed_node)
6055 		btrfs_balance_delayed_items(fs_info);
6056 
6057 	return ret;
6058 }
6059 
6060 /*
6061  * This is a copy of file_update_time.  We need this so we can return error on
6062  * ENOSPC for updating the inode in the case of file write and mmap writes.
6063  */
6064 static int btrfs_update_time(struct inode *inode, int flags)
6065 {
6066 	struct btrfs_root *root = BTRFS_I(inode)->root;
6067 	bool dirty = flags & ~S_VERSION;
6068 
6069 	if (btrfs_root_readonly(root))
6070 		return -EROFS;
6071 
6072 	dirty = inode_update_timestamps(inode, flags);
6073 	return dirty ? btrfs_dirty_inode(BTRFS_I(inode)) : 0;
6074 }
6075 
6076 /*
6077  * helper to find a free sequence number in a given directory.  This current
6078  * code is very simple, later versions will do smarter things in the btree
6079  */
6080 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index)
6081 {
6082 	int ret = 0;
6083 
6084 	if (dir->index_cnt == (u64)-1) {
6085 		ret = btrfs_inode_delayed_dir_index_count(dir);
6086 		if (ret) {
6087 			ret = btrfs_set_inode_index_count(dir);
6088 			if (ret)
6089 				return ret;
6090 		}
6091 	}
6092 
6093 	*index = dir->index_cnt;
6094 	dir->index_cnt++;
6095 
6096 	return ret;
6097 }
6098 
6099 static int btrfs_insert_inode_locked(struct inode *inode)
6100 {
6101 	struct btrfs_iget_args args;
6102 
6103 	args.ino = BTRFS_I(inode)->location.objectid;
6104 	args.root = BTRFS_I(inode)->root;
6105 
6106 	return insert_inode_locked4(inode,
6107 		   btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
6108 		   btrfs_find_actor, &args);
6109 }
6110 
6111 int btrfs_new_inode_prepare(struct btrfs_new_inode_args *args,
6112 			    unsigned int *trans_num_items)
6113 {
6114 	struct inode *dir = args->dir;
6115 	struct inode *inode = args->inode;
6116 	int ret;
6117 
6118 	if (!args->orphan) {
6119 		ret = fscrypt_setup_filename(dir, &args->dentry->d_name, 0,
6120 					     &args->fname);
6121 		if (ret)
6122 			return ret;
6123 	}
6124 
6125 	ret = posix_acl_create(dir, &inode->i_mode, &args->default_acl, &args->acl);
6126 	if (ret) {
6127 		fscrypt_free_filename(&args->fname);
6128 		return ret;
6129 	}
6130 
6131 	/* 1 to add inode item */
6132 	*trans_num_items = 1;
6133 	/* 1 to add compression property */
6134 	if (BTRFS_I(dir)->prop_compress)
6135 		(*trans_num_items)++;
6136 	/* 1 to add default ACL xattr */
6137 	if (args->default_acl)
6138 		(*trans_num_items)++;
6139 	/* 1 to add access ACL xattr */
6140 	if (args->acl)
6141 		(*trans_num_items)++;
6142 #ifdef CONFIG_SECURITY
6143 	/* 1 to add LSM xattr */
6144 	if (dir->i_security)
6145 		(*trans_num_items)++;
6146 #endif
6147 	if (args->orphan) {
6148 		/* 1 to add orphan item */
6149 		(*trans_num_items)++;
6150 	} else {
6151 		/*
6152 		 * 1 to add dir item
6153 		 * 1 to add dir index
6154 		 * 1 to update parent inode item
6155 		 *
6156 		 * No need for 1 unit for the inode ref item because it is
6157 		 * inserted in a batch together with the inode item at
6158 		 * btrfs_create_new_inode().
6159 		 */
6160 		*trans_num_items += 3;
6161 	}
6162 	return 0;
6163 }
6164 
6165 void btrfs_new_inode_args_destroy(struct btrfs_new_inode_args *args)
6166 {
6167 	posix_acl_release(args->acl);
6168 	posix_acl_release(args->default_acl);
6169 	fscrypt_free_filename(&args->fname);
6170 }
6171 
6172 /*
6173  * Inherit flags from the parent inode.
6174  *
6175  * Currently only the compression flags and the cow flags are inherited.
6176  */
6177 static void btrfs_inherit_iflags(struct btrfs_inode *inode, struct btrfs_inode *dir)
6178 {
6179 	unsigned int flags;
6180 
6181 	flags = dir->flags;
6182 
6183 	if (flags & BTRFS_INODE_NOCOMPRESS) {
6184 		inode->flags &= ~BTRFS_INODE_COMPRESS;
6185 		inode->flags |= BTRFS_INODE_NOCOMPRESS;
6186 	} else if (flags & BTRFS_INODE_COMPRESS) {
6187 		inode->flags &= ~BTRFS_INODE_NOCOMPRESS;
6188 		inode->flags |= BTRFS_INODE_COMPRESS;
6189 	}
6190 
6191 	if (flags & BTRFS_INODE_NODATACOW) {
6192 		inode->flags |= BTRFS_INODE_NODATACOW;
6193 		if (S_ISREG(inode->vfs_inode.i_mode))
6194 			inode->flags |= BTRFS_INODE_NODATASUM;
6195 	}
6196 
6197 	btrfs_sync_inode_flags_to_i_flags(&inode->vfs_inode);
6198 }
6199 
6200 int btrfs_create_new_inode(struct btrfs_trans_handle *trans,
6201 			   struct btrfs_new_inode_args *args)
6202 {
6203 	struct inode *dir = args->dir;
6204 	struct inode *inode = args->inode;
6205 	const struct fscrypt_str *name = args->orphan ? NULL : &args->fname.disk_name;
6206 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6207 	struct btrfs_root *root;
6208 	struct btrfs_inode_item *inode_item;
6209 	struct btrfs_key *location;
6210 	struct btrfs_path *path;
6211 	u64 objectid;
6212 	struct btrfs_inode_ref *ref;
6213 	struct btrfs_key key[2];
6214 	u32 sizes[2];
6215 	struct btrfs_item_batch batch;
6216 	unsigned long ptr;
6217 	int ret;
6218 
6219 	path = btrfs_alloc_path();
6220 	if (!path)
6221 		return -ENOMEM;
6222 
6223 	if (!args->subvol)
6224 		BTRFS_I(inode)->root = btrfs_grab_root(BTRFS_I(dir)->root);
6225 	root = BTRFS_I(inode)->root;
6226 
6227 	ret = btrfs_get_free_objectid(root, &objectid);
6228 	if (ret)
6229 		goto out;
6230 	inode->i_ino = objectid;
6231 
6232 	if (args->orphan) {
6233 		/*
6234 		 * O_TMPFILE, set link count to 0, so that after this point, we
6235 		 * fill in an inode item with the correct link count.
6236 		 */
6237 		set_nlink(inode, 0);
6238 	} else {
6239 		trace_btrfs_inode_request(dir);
6240 
6241 		ret = btrfs_set_inode_index(BTRFS_I(dir), &BTRFS_I(inode)->dir_index);
6242 		if (ret)
6243 			goto out;
6244 	}
6245 	/* index_cnt is ignored for everything but a dir. */
6246 	BTRFS_I(inode)->index_cnt = BTRFS_DIR_START_INDEX;
6247 	BTRFS_I(inode)->generation = trans->transid;
6248 	inode->i_generation = BTRFS_I(inode)->generation;
6249 
6250 	/*
6251 	 * Subvolumes don't inherit flags from their parent directory.
6252 	 * Originally this was probably by accident, but we probably can't
6253 	 * change it now without compatibility issues.
6254 	 */
6255 	if (!args->subvol)
6256 		btrfs_inherit_iflags(BTRFS_I(inode), BTRFS_I(dir));
6257 
6258 	if (S_ISREG(inode->i_mode)) {
6259 		if (btrfs_test_opt(fs_info, NODATASUM))
6260 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6261 		if (btrfs_test_opt(fs_info, NODATACOW))
6262 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6263 				BTRFS_INODE_NODATASUM;
6264 	}
6265 
6266 	location = &BTRFS_I(inode)->location;
6267 	location->objectid = objectid;
6268 	location->offset = 0;
6269 	location->type = BTRFS_INODE_ITEM_KEY;
6270 
6271 	ret = btrfs_insert_inode_locked(inode);
6272 	if (ret < 0) {
6273 		if (!args->orphan)
6274 			BTRFS_I(dir)->index_cnt--;
6275 		goto out;
6276 	}
6277 
6278 	/*
6279 	 * We could have gotten an inode number from somebody who was fsynced
6280 	 * and then removed in this same transaction, so let's just set full
6281 	 * sync since it will be a full sync anyway and this will blow away the
6282 	 * old info in the log.
6283 	 */
6284 	btrfs_set_inode_full_sync(BTRFS_I(inode));
6285 
6286 	key[0].objectid = objectid;
6287 	key[0].type = BTRFS_INODE_ITEM_KEY;
6288 	key[0].offset = 0;
6289 
6290 	sizes[0] = sizeof(struct btrfs_inode_item);
6291 
6292 	if (!args->orphan) {
6293 		/*
6294 		 * Start new inodes with an inode_ref. This is slightly more
6295 		 * efficient for small numbers of hard links since they will
6296 		 * be packed into one item. Extended refs will kick in if we
6297 		 * add more hard links than can fit in the ref item.
6298 		 */
6299 		key[1].objectid = objectid;
6300 		key[1].type = BTRFS_INODE_REF_KEY;
6301 		if (args->subvol) {
6302 			key[1].offset = objectid;
6303 			sizes[1] = 2 + sizeof(*ref);
6304 		} else {
6305 			key[1].offset = btrfs_ino(BTRFS_I(dir));
6306 			sizes[1] = name->len + sizeof(*ref);
6307 		}
6308 	}
6309 
6310 	batch.keys = &key[0];
6311 	batch.data_sizes = &sizes[0];
6312 	batch.total_data_size = sizes[0] + (args->orphan ? 0 : sizes[1]);
6313 	batch.nr = args->orphan ? 1 : 2;
6314 	ret = btrfs_insert_empty_items(trans, root, path, &batch);
6315 	if (ret != 0) {
6316 		btrfs_abort_transaction(trans, ret);
6317 		goto discard;
6318 	}
6319 
6320 	inode->i_mtime = inode_set_ctime_current(inode);
6321 	inode->i_atime = inode->i_mtime;
6322 	BTRFS_I(inode)->i_otime = inode->i_mtime;
6323 
6324 	/*
6325 	 * We're going to fill the inode item now, so at this point the inode
6326 	 * must be fully initialized.
6327 	 */
6328 
6329 	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6330 				  struct btrfs_inode_item);
6331 	memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item,
6332 			     sizeof(*inode_item));
6333 	fill_inode_item(trans, path->nodes[0], inode_item, inode);
6334 
6335 	if (!args->orphan) {
6336 		ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6337 				     struct btrfs_inode_ref);
6338 		ptr = (unsigned long)(ref + 1);
6339 		if (args->subvol) {
6340 			btrfs_set_inode_ref_name_len(path->nodes[0], ref, 2);
6341 			btrfs_set_inode_ref_index(path->nodes[0], ref, 0);
6342 			write_extent_buffer(path->nodes[0], "..", ptr, 2);
6343 		} else {
6344 			btrfs_set_inode_ref_name_len(path->nodes[0], ref,
6345 						     name->len);
6346 			btrfs_set_inode_ref_index(path->nodes[0], ref,
6347 						  BTRFS_I(inode)->dir_index);
6348 			write_extent_buffer(path->nodes[0], name->name, ptr,
6349 					    name->len);
6350 		}
6351 	}
6352 
6353 	btrfs_mark_buffer_dirty(trans, path->nodes[0]);
6354 	/*
6355 	 * We don't need the path anymore, plus inheriting properties, adding
6356 	 * ACLs, security xattrs, orphan item or adding the link, will result in
6357 	 * allocating yet another path. So just free our path.
6358 	 */
6359 	btrfs_free_path(path);
6360 	path = NULL;
6361 
6362 	if (args->subvol) {
6363 		struct inode *parent;
6364 
6365 		/*
6366 		 * Subvolumes inherit properties from their parent subvolume,
6367 		 * not the directory they were created in.
6368 		 */
6369 		parent = btrfs_iget(fs_info->sb, BTRFS_FIRST_FREE_OBJECTID,
6370 				    BTRFS_I(dir)->root);
6371 		if (IS_ERR(parent)) {
6372 			ret = PTR_ERR(parent);
6373 		} else {
6374 			ret = btrfs_inode_inherit_props(trans, inode, parent);
6375 			iput(parent);
6376 		}
6377 	} else {
6378 		ret = btrfs_inode_inherit_props(trans, inode, dir);
6379 	}
6380 	if (ret) {
6381 		btrfs_err(fs_info,
6382 			  "error inheriting props for ino %llu (root %llu): %d",
6383 			  btrfs_ino(BTRFS_I(inode)), root->root_key.objectid,
6384 			  ret);
6385 	}
6386 
6387 	/*
6388 	 * Subvolumes don't inherit ACLs or get passed to the LSM. This is
6389 	 * probably a bug.
6390 	 */
6391 	if (!args->subvol) {
6392 		ret = btrfs_init_inode_security(trans, args);
6393 		if (ret) {
6394 			btrfs_abort_transaction(trans, ret);
6395 			goto discard;
6396 		}
6397 	}
6398 
6399 	inode_tree_add(BTRFS_I(inode));
6400 
6401 	trace_btrfs_inode_new(inode);
6402 	btrfs_set_inode_last_trans(trans, BTRFS_I(inode));
6403 
6404 	btrfs_update_root_times(trans, root);
6405 
6406 	if (args->orphan) {
6407 		ret = btrfs_orphan_add(trans, BTRFS_I(inode));
6408 	} else {
6409 		ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name,
6410 				     0, BTRFS_I(inode)->dir_index);
6411 	}
6412 	if (ret) {
6413 		btrfs_abort_transaction(trans, ret);
6414 		goto discard;
6415 	}
6416 
6417 	return 0;
6418 
6419 discard:
6420 	/*
6421 	 * discard_new_inode() calls iput(), but the caller owns the reference
6422 	 * to the inode.
6423 	 */
6424 	ihold(inode);
6425 	discard_new_inode(inode);
6426 out:
6427 	btrfs_free_path(path);
6428 	return ret;
6429 }
6430 
6431 /*
6432  * utility function to add 'inode' into 'parent_inode' with
6433  * a give name and a given sequence number.
6434  * if 'add_backref' is true, also insert a backref from the
6435  * inode to the parent directory.
6436  */
6437 int btrfs_add_link(struct btrfs_trans_handle *trans,
6438 		   struct btrfs_inode *parent_inode, struct btrfs_inode *inode,
6439 		   const struct fscrypt_str *name, int add_backref, u64 index)
6440 {
6441 	int ret = 0;
6442 	struct btrfs_key key;
6443 	struct btrfs_root *root = parent_inode->root;
6444 	u64 ino = btrfs_ino(inode);
6445 	u64 parent_ino = btrfs_ino(parent_inode);
6446 
6447 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6448 		memcpy(&key, &inode->root->root_key, sizeof(key));
6449 	} else {
6450 		key.objectid = ino;
6451 		key.type = BTRFS_INODE_ITEM_KEY;
6452 		key.offset = 0;
6453 	}
6454 
6455 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6456 		ret = btrfs_add_root_ref(trans, key.objectid,
6457 					 root->root_key.objectid, parent_ino,
6458 					 index, name);
6459 	} else if (add_backref) {
6460 		ret = btrfs_insert_inode_ref(trans, root, name,
6461 					     ino, parent_ino, index);
6462 	}
6463 
6464 	/* Nothing to clean up yet */
6465 	if (ret)
6466 		return ret;
6467 
6468 	ret = btrfs_insert_dir_item(trans, name, parent_inode, &key,
6469 				    btrfs_inode_type(&inode->vfs_inode), index);
6470 	if (ret == -EEXIST || ret == -EOVERFLOW)
6471 		goto fail_dir_item;
6472 	else if (ret) {
6473 		btrfs_abort_transaction(trans, ret);
6474 		return ret;
6475 	}
6476 
6477 	btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size +
6478 			   name->len * 2);
6479 	inode_inc_iversion(&parent_inode->vfs_inode);
6480 	/*
6481 	 * If we are replaying a log tree, we do not want to update the mtime
6482 	 * and ctime of the parent directory with the current time, since the
6483 	 * log replay procedure is responsible for setting them to their correct
6484 	 * values (the ones it had when the fsync was done).
6485 	 */
6486 	if (!test_bit(BTRFS_FS_LOG_RECOVERING, &root->fs_info->flags))
6487 		parent_inode->vfs_inode.i_mtime =
6488 			inode_set_ctime_current(&parent_inode->vfs_inode);
6489 
6490 	ret = btrfs_update_inode(trans, root, parent_inode);
6491 	if (ret)
6492 		btrfs_abort_transaction(trans, ret);
6493 	return ret;
6494 
6495 fail_dir_item:
6496 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6497 		u64 local_index;
6498 		int err;
6499 		err = btrfs_del_root_ref(trans, key.objectid,
6500 					 root->root_key.objectid, parent_ino,
6501 					 &local_index, name);
6502 		if (err)
6503 			btrfs_abort_transaction(trans, err);
6504 	} else if (add_backref) {
6505 		u64 local_index;
6506 		int err;
6507 
6508 		err = btrfs_del_inode_ref(trans, root, name, ino, parent_ino,
6509 					  &local_index);
6510 		if (err)
6511 			btrfs_abort_transaction(trans, err);
6512 	}
6513 
6514 	/* Return the original error code */
6515 	return ret;
6516 }
6517 
6518 static int btrfs_create_common(struct inode *dir, struct dentry *dentry,
6519 			       struct inode *inode)
6520 {
6521 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6522 	struct btrfs_root *root = BTRFS_I(dir)->root;
6523 	struct btrfs_new_inode_args new_inode_args = {
6524 		.dir = dir,
6525 		.dentry = dentry,
6526 		.inode = inode,
6527 	};
6528 	unsigned int trans_num_items;
6529 	struct btrfs_trans_handle *trans;
6530 	int err;
6531 
6532 	err = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
6533 	if (err)
6534 		goto out_inode;
6535 
6536 	trans = btrfs_start_transaction(root, trans_num_items);
6537 	if (IS_ERR(trans)) {
6538 		err = PTR_ERR(trans);
6539 		goto out_new_inode_args;
6540 	}
6541 
6542 	err = btrfs_create_new_inode(trans, &new_inode_args);
6543 	if (!err)
6544 		d_instantiate_new(dentry, inode);
6545 
6546 	btrfs_end_transaction(trans);
6547 	btrfs_btree_balance_dirty(fs_info);
6548 out_new_inode_args:
6549 	btrfs_new_inode_args_destroy(&new_inode_args);
6550 out_inode:
6551 	if (err)
6552 		iput(inode);
6553 	return err;
6554 }
6555 
6556 static int btrfs_mknod(struct mnt_idmap *idmap, struct inode *dir,
6557 		       struct dentry *dentry, umode_t mode, dev_t rdev)
6558 {
6559 	struct inode *inode;
6560 
6561 	inode = new_inode(dir->i_sb);
6562 	if (!inode)
6563 		return -ENOMEM;
6564 	inode_init_owner(idmap, inode, dir, mode);
6565 	inode->i_op = &btrfs_special_inode_operations;
6566 	init_special_inode(inode, inode->i_mode, rdev);
6567 	return btrfs_create_common(dir, dentry, inode);
6568 }
6569 
6570 static int btrfs_create(struct mnt_idmap *idmap, struct inode *dir,
6571 			struct dentry *dentry, umode_t mode, bool excl)
6572 {
6573 	struct inode *inode;
6574 
6575 	inode = new_inode(dir->i_sb);
6576 	if (!inode)
6577 		return -ENOMEM;
6578 	inode_init_owner(idmap, inode, dir, mode);
6579 	inode->i_fop = &btrfs_file_operations;
6580 	inode->i_op = &btrfs_file_inode_operations;
6581 	inode->i_mapping->a_ops = &btrfs_aops;
6582 	return btrfs_create_common(dir, dentry, inode);
6583 }
6584 
6585 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6586 		      struct dentry *dentry)
6587 {
6588 	struct btrfs_trans_handle *trans = NULL;
6589 	struct btrfs_root *root = BTRFS_I(dir)->root;
6590 	struct inode *inode = d_inode(old_dentry);
6591 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
6592 	struct fscrypt_name fname;
6593 	u64 index;
6594 	int err;
6595 	int drop_inode = 0;
6596 
6597 	/* do not allow sys_link's with other subvols of the same device */
6598 	if (root->root_key.objectid != BTRFS_I(inode)->root->root_key.objectid)
6599 		return -EXDEV;
6600 
6601 	if (inode->i_nlink >= BTRFS_LINK_MAX)
6602 		return -EMLINK;
6603 
6604 	err = fscrypt_setup_filename(dir, &dentry->d_name, 0, &fname);
6605 	if (err)
6606 		goto fail;
6607 
6608 	err = btrfs_set_inode_index(BTRFS_I(dir), &index);
6609 	if (err)
6610 		goto fail;
6611 
6612 	/*
6613 	 * 2 items for inode and inode ref
6614 	 * 2 items for dir items
6615 	 * 1 item for parent inode
6616 	 * 1 item for orphan item deletion if O_TMPFILE
6617 	 */
6618 	trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6);
6619 	if (IS_ERR(trans)) {
6620 		err = PTR_ERR(trans);
6621 		trans = NULL;
6622 		goto fail;
6623 	}
6624 
6625 	/* There are several dir indexes for this inode, clear the cache. */
6626 	BTRFS_I(inode)->dir_index = 0ULL;
6627 	inc_nlink(inode);
6628 	inode_inc_iversion(inode);
6629 	inode_set_ctime_current(inode);
6630 	ihold(inode);
6631 	set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
6632 
6633 	err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
6634 			     &fname.disk_name, 1, index);
6635 
6636 	if (err) {
6637 		drop_inode = 1;
6638 	} else {
6639 		struct dentry *parent = dentry->d_parent;
6640 
6641 		err = btrfs_update_inode(trans, root, BTRFS_I(inode));
6642 		if (err)
6643 			goto fail;
6644 		if (inode->i_nlink == 1) {
6645 			/*
6646 			 * If new hard link count is 1, it's a file created
6647 			 * with open(2) O_TMPFILE flag.
6648 			 */
6649 			err = btrfs_orphan_del(trans, BTRFS_I(inode));
6650 			if (err)
6651 				goto fail;
6652 		}
6653 		d_instantiate(dentry, inode);
6654 		btrfs_log_new_name(trans, old_dentry, NULL, 0, parent);
6655 	}
6656 
6657 fail:
6658 	fscrypt_free_filename(&fname);
6659 	if (trans)
6660 		btrfs_end_transaction(trans);
6661 	if (drop_inode) {
6662 		inode_dec_link_count(inode);
6663 		iput(inode);
6664 	}
6665 	btrfs_btree_balance_dirty(fs_info);
6666 	return err;
6667 }
6668 
6669 static int btrfs_mkdir(struct mnt_idmap *idmap, struct inode *dir,
6670 		       struct dentry *dentry, umode_t mode)
6671 {
6672 	struct inode *inode;
6673 
6674 	inode = new_inode(dir->i_sb);
6675 	if (!inode)
6676 		return -ENOMEM;
6677 	inode_init_owner(idmap, inode, dir, S_IFDIR | mode);
6678 	inode->i_op = &btrfs_dir_inode_operations;
6679 	inode->i_fop = &btrfs_dir_file_operations;
6680 	return btrfs_create_common(dir, dentry, inode);
6681 }
6682 
6683 static noinline int uncompress_inline(struct btrfs_path *path,
6684 				      struct page *page,
6685 				      struct btrfs_file_extent_item *item)
6686 {
6687 	int ret;
6688 	struct extent_buffer *leaf = path->nodes[0];
6689 	char *tmp;
6690 	size_t max_size;
6691 	unsigned long inline_size;
6692 	unsigned long ptr;
6693 	int compress_type;
6694 
6695 	compress_type = btrfs_file_extent_compression(leaf, item);
6696 	max_size = btrfs_file_extent_ram_bytes(leaf, item);
6697 	inline_size = btrfs_file_extent_inline_item_len(leaf, path->slots[0]);
6698 	tmp = kmalloc(inline_size, GFP_NOFS);
6699 	if (!tmp)
6700 		return -ENOMEM;
6701 	ptr = btrfs_file_extent_inline_start(item);
6702 
6703 	read_extent_buffer(leaf, tmp, ptr, inline_size);
6704 
6705 	max_size = min_t(unsigned long, PAGE_SIZE, max_size);
6706 	ret = btrfs_decompress(compress_type, tmp, page, 0, inline_size, max_size);
6707 
6708 	/*
6709 	 * decompression code contains a memset to fill in any space between the end
6710 	 * of the uncompressed data and the end of max_size in case the decompressed
6711 	 * data ends up shorter than ram_bytes.  That doesn't cover the hole between
6712 	 * the end of an inline extent and the beginning of the next block, so we
6713 	 * cover that region here.
6714 	 */
6715 
6716 	if (max_size < PAGE_SIZE)
6717 		memzero_page(page, max_size, PAGE_SIZE - max_size);
6718 	kfree(tmp);
6719 	return ret;
6720 }
6721 
6722 static int read_inline_extent(struct btrfs_inode *inode, struct btrfs_path *path,
6723 			      struct page *page)
6724 {
6725 	struct btrfs_file_extent_item *fi;
6726 	void *kaddr;
6727 	size_t copy_size;
6728 
6729 	if (!page || PageUptodate(page))
6730 		return 0;
6731 
6732 	ASSERT(page_offset(page) == 0);
6733 
6734 	fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
6735 			    struct btrfs_file_extent_item);
6736 	if (btrfs_file_extent_compression(path->nodes[0], fi) != BTRFS_COMPRESS_NONE)
6737 		return uncompress_inline(path, page, fi);
6738 
6739 	copy_size = min_t(u64, PAGE_SIZE,
6740 			  btrfs_file_extent_ram_bytes(path->nodes[0], fi));
6741 	kaddr = kmap_local_page(page);
6742 	read_extent_buffer(path->nodes[0], kaddr,
6743 			   btrfs_file_extent_inline_start(fi), copy_size);
6744 	kunmap_local(kaddr);
6745 	if (copy_size < PAGE_SIZE)
6746 		memzero_page(page, copy_size, PAGE_SIZE - copy_size);
6747 	return 0;
6748 }
6749 
6750 /*
6751  * Lookup the first extent overlapping a range in a file.
6752  *
6753  * @inode:	file to search in
6754  * @page:	page to read extent data into if the extent is inline
6755  * @pg_offset:	offset into @page to copy to
6756  * @start:	file offset
6757  * @len:	length of range starting at @start
6758  *
6759  * Return the first &struct extent_map which overlaps the given range, reading
6760  * it from the B-tree and caching it if necessary. Note that there may be more
6761  * extents which overlap the given range after the returned extent_map.
6762  *
6763  * If @page is not NULL and the extent is inline, this also reads the extent
6764  * data directly into the page and marks the extent up to date in the io_tree.
6765  *
6766  * Return: ERR_PTR on error, non-NULL extent_map on success.
6767  */
6768 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode,
6769 				    struct page *page, size_t pg_offset,
6770 				    u64 start, u64 len)
6771 {
6772 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
6773 	int ret = 0;
6774 	u64 extent_start = 0;
6775 	u64 extent_end = 0;
6776 	u64 objectid = btrfs_ino(inode);
6777 	int extent_type = -1;
6778 	struct btrfs_path *path = NULL;
6779 	struct btrfs_root *root = inode->root;
6780 	struct btrfs_file_extent_item *item;
6781 	struct extent_buffer *leaf;
6782 	struct btrfs_key found_key;
6783 	struct extent_map *em = NULL;
6784 	struct extent_map_tree *em_tree = &inode->extent_tree;
6785 
6786 	read_lock(&em_tree->lock);
6787 	em = lookup_extent_mapping(em_tree, start, len);
6788 	read_unlock(&em_tree->lock);
6789 
6790 	if (em) {
6791 		if (em->start > start || em->start + em->len <= start)
6792 			free_extent_map(em);
6793 		else if (em->block_start == EXTENT_MAP_INLINE && page)
6794 			free_extent_map(em);
6795 		else
6796 			goto out;
6797 	}
6798 	em = alloc_extent_map();
6799 	if (!em) {
6800 		ret = -ENOMEM;
6801 		goto out;
6802 	}
6803 	em->start = EXTENT_MAP_HOLE;
6804 	em->orig_start = EXTENT_MAP_HOLE;
6805 	em->len = (u64)-1;
6806 	em->block_len = (u64)-1;
6807 
6808 	path = btrfs_alloc_path();
6809 	if (!path) {
6810 		ret = -ENOMEM;
6811 		goto out;
6812 	}
6813 
6814 	/* Chances are we'll be called again, so go ahead and do readahead */
6815 	path->reada = READA_FORWARD;
6816 
6817 	/*
6818 	 * The same explanation in load_free_space_cache applies here as well,
6819 	 * we only read when we're loading the free space cache, and at that
6820 	 * point the commit_root has everything we need.
6821 	 */
6822 	if (btrfs_is_free_space_inode(inode)) {
6823 		path->search_commit_root = 1;
6824 		path->skip_locking = 1;
6825 	}
6826 
6827 	ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0);
6828 	if (ret < 0) {
6829 		goto out;
6830 	} else if (ret > 0) {
6831 		if (path->slots[0] == 0)
6832 			goto not_found;
6833 		path->slots[0]--;
6834 		ret = 0;
6835 	}
6836 
6837 	leaf = path->nodes[0];
6838 	item = btrfs_item_ptr(leaf, path->slots[0],
6839 			      struct btrfs_file_extent_item);
6840 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6841 	if (found_key.objectid != objectid ||
6842 	    found_key.type != BTRFS_EXTENT_DATA_KEY) {
6843 		/*
6844 		 * If we backup past the first extent we want to move forward
6845 		 * and see if there is an extent in front of us, otherwise we'll
6846 		 * say there is a hole for our whole search range which can
6847 		 * cause problems.
6848 		 */
6849 		extent_end = start;
6850 		goto next;
6851 	}
6852 
6853 	extent_type = btrfs_file_extent_type(leaf, item);
6854 	extent_start = found_key.offset;
6855 	extent_end = btrfs_file_extent_end(path);
6856 	if (extent_type == BTRFS_FILE_EXTENT_REG ||
6857 	    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
6858 		/* Only regular file could have regular/prealloc extent */
6859 		if (!S_ISREG(inode->vfs_inode.i_mode)) {
6860 			ret = -EUCLEAN;
6861 			btrfs_crit(fs_info,
6862 		"regular/prealloc extent found for non-regular inode %llu",
6863 				   btrfs_ino(inode));
6864 			goto out;
6865 		}
6866 		trace_btrfs_get_extent_show_fi_regular(inode, leaf, item,
6867 						       extent_start);
6868 	} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
6869 		trace_btrfs_get_extent_show_fi_inline(inode, leaf, item,
6870 						      path->slots[0],
6871 						      extent_start);
6872 	}
6873 next:
6874 	if (start >= extent_end) {
6875 		path->slots[0]++;
6876 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6877 			ret = btrfs_next_leaf(root, path);
6878 			if (ret < 0)
6879 				goto out;
6880 			else if (ret > 0)
6881 				goto not_found;
6882 
6883 			leaf = path->nodes[0];
6884 		}
6885 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6886 		if (found_key.objectid != objectid ||
6887 		    found_key.type != BTRFS_EXTENT_DATA_KEY)
6888 			goto not_found;
6889 		if (start + len <= found_key.offset)
6890 			goto not_found;
6891 		if (start > found_key.offset)
6892 			goto next;
6893 
6894 		/* New extent overlaps with existing one */
6895 		em->start = start;
6896 		em->orig_start = start;
6897 		em->len = found_key.offset - start;
6898 		em->block_start = EXTENT_MAP_HOLE;
6899 		goto insert;
6900 	}
6901 
6902 	btrfs_extent_item_to_extent_map(inode, path, item, em);
6903 
6904 	if (extent_type == BTRFS_FILE_EXTENT_REG ||
6905 	    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
6906 		goto insert;
6907 	} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
6908 		/*
6909 		 * Inline extent can only exist at file offset 0. This is
6910 		 * ensured by tree-checker and inline extent creation path.
6911 		 * Thus all members representing file offsets should be zero.
6912 		 */
6913 		ASSERT(pg_offset == 0);
6914 		ASSERT(extent_start == 0);
6915 		ASSERT(em->start == 0);
6916 
6917 		/*
6918 		 * btrfs_extent_item_to_extent_map() should have properly
6919 		 * initialized em members already.
6920 		 *
6921 		 * Other members are not utilized for inline extents.
6922 		 */
6923 		ASSERT(em->block_start == EXTENT_MAP_INLINE);
6924 		ASSERT(em->len == fs_info->sectorsize);
6925 
6926 		ret = read_inline_extent(inode, path, page);
6927 		if (ret < 0)
6928 			goto out;
6929 		goto insert;
6930 	}
6931 not_found:
6932 	em->start = start;
6933 	em->orig_start = start;
6934 	em->len = len;
6935 	em->block_start = EXTENT_MAP_HOLE;
6936 insert:
6937 	ret = 0;
6938 	btrfs_release_path(path);
6939 	if (em->start > start || extent_map_end(em) <= start) {
6940 		btrfs_err(fs_info,
6941 			  "bad extent! em: [%llu %llu] passed [%llu %llu]",
6942 			  em->start, em->len, start, len);
6943 		ret = -EIO;
6944 		goto out;
6945 	}
6946 
6947 	write_lock(&em_tree->lock);
6948 	ret = btrfs_add_extent_mapping(fs_info, em_tree, &em, start, len);
6949 	write_unlock(&em_tree->lock);
6950 out:
6951 	btrfs_free_path(path);
6952 
6953 	trace_btrfs_get_extent(root, inode, em);
6954 
6955 	if (ret) {
6956 		free_extent_map(em);
6957 		return ERR_PTR(ret);
6958 	}
6959 	return em;
6960 }
6961 
6962 static struct extent_map *btrfs_create_dio_extent(struct btrfs_inode *inode,
6963 						  struct btrfs_dio_data *dio_data,
6964 						  const u64 start,
6965 						  const u64 len,
6966 						  const u64 orig_start,
6967 						  const u64 block_start,
6968 						  const u64 block_len,
6969 						  const u64 orig_block_len,
6970 						  const u64 ram_bytes,
6971 						  const int type)
6972 {
6973 	struct extent_map *em = NULL;
6974 	struct btrfs_ordered_extent *ordered;
6975 
6976 	if (type != BTRFS_ORDERED_NOCOW) {
6977 		em = create_io_em(inode, start, len, orig_start, block_start,
6978 				  block_len, orig_block_len, ram_bytes,
6979 				  BTRFS_COMPRESS_NONE, /* compress_type */
6980 				  type);
6981 		if (IS_ERR(em))
6982 			goto out;
6983 	}
6984 	ordered = btrfs_alloc_ordered_extent(inode, start, len, len,
6985 					     block_start, block_len, 0,
6986 					     (1 << type) |
6987 					     (1 << BTRFS_ORDERED_DIRECT),
6988 					     BTRFS_COMPRESS_NONE);
6989 	if (IS_ERR(ordered)) {
6990 		if (em) {
6991 			free_extent_map(em);
6992 			btrfs_drop_extent_map_range(inode, start,
6993 						    start + len - 1, false);
6994 		}
6995 		em = ERR_CAST(ordered);
6996 	} else {
6997 		ASSERT(!dio_data->ordered);
6998 		dio_data->ordered = ordered;
6999 	}
7000  out:
7001 
7002 	return em;
7003 }
7004 
7005 static struct extent_map *btrfs_new_extent_direct(struct btrfs_inode *inode,
7006 						  struct btrfs_dio_data *dio_data,
7007 						  u64 start, u64 len)
7008 {
7009 	struct btrfs_root *root = inode->root;
7010 	struct btrfs_fs_info *fs_info = root->fs_info;
7011 	struct extent_map *em;
7012 	struct btrfs_key ins;
7013 	u64 alloc_hint;
7014 	int ret;
7015 
7016 	alloc_hint = get_extent_allocation_hint(inode, start, len);
7017 again:
7018 	ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize,
7019 				   0, alloc_hint, &ins, 1, 1);
7020 	if (ret == -EAGAIN) {
7021 		ASSERT(btrfs_is_zoned(fs_info));
7022 		wait_on_bit_io(&inode->root->fs_info->flags, BTRFS_FS_NEED_ZONE_FINISH,
7023 			       TASK_UNINTERRUPTIBLE);
7024 		goto again;
7025 	}
7026 	if (ret)
7027 		return ERR_PTR(ret);
7028 
7029 	em = btrfs_create_dio_extent(inode, dio_data, start, ins.offset, start,
7030 				     ins.objectid, ins.offset, ins.offset,
7031 				     ins.offset, BTRFS_ORDERED_REGULAR);
7032 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
7033 	if (IS_ERR(em))
7034 		btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset,
7035 					   1);
7036 
7037 	return em;
7038 }
7039 
7040 static bool btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr)
7041 {
7042 	struct btrfs_block_group *block_group;
7043 	bool readonly = false;
7044 
7045 	block_group = btrfs_lookup_block_group(fs_info, bytenr);
7046 	if (!block_group || block_group->ro)
7047 		readonly = true;
7048 	if (block_group)
7049 		btrfs_put_block_group(block_group);
7050 	return readonly;
7051 }
7052 
7053 /*
7054  * Check if we can do nocow write into the range [@offset, @offset + @len)
7055  *
7056  * @offset:	File offset
7057  * @len:	The length to write, will be updated to the nocow writeable
7058  *		range
7059  * @orig_start:	(optional) Return the original file offset of the file extent
7060  * @orig_len:	(optional) Return the original on-disk length of the file extent
7061  * @ram_bytes:	(optional) Return the ram_bytes of the file extent
7062  * @strict:	if true, omit optimizations that might force us into unnecessary
7063  *		cow. e.g., don't trust generation number.
7064  *
7065  * Return:
7066  * >0	and update @len if we can do nocow write
7067  *  0	if we can't do nocow write
7068  * <0	if error happened
7069  *
7070  * NOTE: This only checks the file extents, caller is responsible to wait for
7071  *	 any ordered extents.
7072  */
7073 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7074 			      u64 *orig_start, u64 *orig_block_len,
7075 			      u64 *ram_bytes, bool nowait, bool strict)
7076 {
7077 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7078 	struct can_nocow_file_extent_args nocow_args = { 0 };
7079 	struct btrfs_path *path;
7080 	int ret;
7081 	struct extent_buffer *leaf;
7082 	struct btrfs_root *root = BTRFS_I(inode)->root;
7083 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7084 	struct btrfs_file_extent_item *fi;
7085 	struct btrfs_key key;
7086 	int found_type;
7087 
7088 	path = btrfs_alloc_path();
7089 	if (!path)
7090 		return -ENOMEM;
7091 	path->nowait = nowait;
7092 
7093 	ret = btrfs_lookup_file_extent(NULL, root, path,
7094 			btrfs_ino(BTRFS_I(inode)), offset, 0);
7095 	if (ret < 0)
7096 		goto out;
7097 
7098 	if (ret == 1) {
7099 		if (path->slots[0] == 0) {
7100 			/* can't find the item, must cow */
7101 			ret = 0;
7102 			goto out;
7103 		}
7104 		path->slots[0]--;
7105 	}
7106 	ret = 0;
7107 	leaf = path->nodes[0];
7108 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
7109 	if (key.objectid != btrfs_ino(BTRFS_I(inode)) ||
7110 	    key.type != BTRFS_EXTENT_DATA_KEY) {
7111 		/* not our file or wrong item type, must cow */
7112 		goto out;
7113 	}
7114 
7115 	if (key.offset > offset) {
7116 		/* Wrong offset, must cow */
7117 		goto out;
7118 	}
7119 
7120 	if (btrfs_file_extent_end(path) <= offset)
7121 		goto out;
7122 
7123 	fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
7124 	found_type = btrfs_file_extent_type(leaf, fi);
7125 	if (ram_bytes)
7126 		*ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
7127 
7128 	nocow_args.start = offset;
7129 	nocow_args.end = offset + *len - 1;
7130 	nocow_args.strict = strict;
7131 	nocow_args.free_path = true;
7132 
7133 	ret = can_nocow_file_extent(path, &key, BTRFS_I(inode), &nocow_args);
7134 	/* can_nocow_file_extent() has freed the path. */
7135 	path = NULL;
7136 
7137 	if (ret != 1) {
7138 		/* Treat errors as not being able to NOCOW. */
7139 		ret = 0;
7140 		goto out;
7141 	}
7142 
7143 	ret = 0;
7144 	if (btrfs_extent_readonly(fs_info, nocow_args.disk_bytenr))
7145 		goto out;
7146 
7147 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7148 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7149 		u64 range_end;
7150 
7151 		range_end = round_up(offset + nocow_args.num_bytes,
7152 				     root->fs_info->sectorsize) - 1;
7153 		ret = test_range_bit(io_tree, offset, range_end,
7154 				     EXTENT_DELALLOC, 0, NULL);
7155 		if (ret) {
7156 			ret = -EAGAIN;
7157 			goto out;
7158 		}
7159 	}
7160 
7161 	if (orig_start)
7162 		*orig_start = key.offset - nocow_args.extent_offset;
7163 	if (orig_block_len)
7164 		*orig_block_len = nocow_args.disk_num_bytes;
7165 
7166 	*len = nocow_args.num_bytes;
7167 	ret = 1;
7168 out:
7169 	btrfs_free_path(path);
7170 	return ret;
7171 }
7172 
7173 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
7174 			      struct extent_state **cached_state,
7175 			      unsigned int iomap_flags)
7176 {
7177 	const bool writing = (iomap_flags & IOMAP_WRITE);
7178 	const bool nowait = (iomap_flags & IOMAP_NOWAIT);
7179 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7180 	struct btrfs_ordered_extent *ordered;
7181 	int ret = 0;
7182 
7183 	while (1) {
7184 		if (nowait) {
7185 			if (!try_lock_extent(io_tree, lockstart, lockend,
7186 					     cached_state))
7187 				return -EAGAIN;
7188 		} else {
7189 			lock_extent(io_tree, lockstart, lockend, cached_state);
7190 		}
7191 		/*
7192 		 * We're concerned with the entire range that we're going to be
7193 		 * doing DIO to, so we need to make sure there's no ordered
7194 		 * extents in this range.
7195 		 */
7196 		ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart,
7197 						     lockend - lockstart + 1);
7198 
7199 		/*
7200 		 * We need to make sure there are no buffered pages in this
7201 		 * range either, we could have raced between the invalidate in
7202 		 * generic_file_direct_write and locking the extent.  The
7203 		 * invalidate needs to happen so that reads after a write do not
7204 		 * get stale data.
7205 		 */
7206 		if (!ordered &&
7207 		    (!writing || !filemap_range_has_page(inode->i_mapping,
7208 							 lockstart, lockend)))
7209 			break;
7210 
7211 		unlock_extent(io_tree, lockstart, lockend, cached_state);
7212 
7213 		if (ordered) {
7214 			if (nowait) {
7215 				btrfs_put_ordered_extent(ordered);
7216 				ret = -EAGAIN;
7217 				break;
7218 			}
7219 			/*
7220 			 * If we are doing a DIO read and the ordered extent we
7221 			 * found is for a buffered write, we can not wait for it
7222 			 * to complete and retry, because if we do so we can
7223 			 * deadlock with concurrent buffered writes on page
7224 			 * locks. This happens only if our DIO read covers more
7225 			 * than one extent map, if at this point has already
7226 			 * created an ordered extent for a previous extent map
7227 			 * and locked its range in the inode's io tree, and a
7228 			 * concurrent write against that previous extent map's
7229 			 * range and this range started (we unlock the ranges
7230 			 * in the io tree only when the bios complete and
7231 			 * buffered writes always lock pages before attempting
7232 			 * to lock range in the io tree).
7233 			 */
7234 			if (writing ||
7235 			    test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags))
7236 				btrfs_start_ordered_extent(ordered);
7237 			else
7238 				ret = nowait ? -EAGAIN : -ENOTBLK;
7239 			btrfs_put_ordered_extent(ordered);
7240 		} else {
7241 			/*
7242 			 * We could trigger writeback for this range (and wait
7243 			 * for it to complete) and then invalidate the pages for
7244 			 * this range (through invalidate_inode_pages2_range()),
7245 			 * but that can lead us to a deadlock with a concurrent
7246 			 * call to readahead (a buffered read or a defrag call
7247 			 * triggered a readahead) on a page lock due to an
7248 			 * ordered dio extent we created before but did not have
7249 			 * yet a corresponding bio submitted (whence it can not
7250 			 * complete), which makes readahead wait for that
7251 			 * ordered extent to complete while holding a lock on
7252 			 * that page.
7253 			 */
7254 			ret = nowait ? -EAGAIN : -ENOTBLK;
7255 		}
7256 
7257 		if (ret)
7258 			break;
7259 
7260 		cond_resched();
7261 	}
7262 
7263 	return ret;
7264 }
7265 
7266 /* The callers of this must take lock_extent() */
7267 static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start,
7268 				       u64 len, u64 orig_start, u64 block_start,
7269 				       u64 block_len, u64 orig_block_len,
7270 				       u64 ram_bytes, int compress_type,
7271 				       int type)
7272 {
7273 	struct extent_map *em;
7274 	int ret;
7275 
7276 	ASSERT(type == BTRFS_ORDERED_PREALLOC ||
7277 	       type == BTRFS_ORDERED_COMPRESSED ||
7278 	       type == BTRFS_ORDERED_NOCOW ||
7279 	       type == BTRFS_ORDERED_REGULAR);
7280 
7281 	em = alloc_extent_map();
7282 	if (!em)
7283 		return ERR_PTR(-ENOMEM);
7284 
7285 	em->start = start;
7286 	em->orig_start = orig_start;
7287 	em->len = len;
7288 	em->block_len = block_len;
7289 	em->block_start = block_start;
7290 	em->orig_block_len = orig_block_len;
7291 	em->ram_bytes = ram_bytes;
7292 	em->generation = -1;
7293 	set_bit(EXTENT_FLAG_PINNED, &em->flags);
7294 	if (type == BTRFS_ORDERED_PREALLOC) {
7295 		set_bit(EXTENT_FLAG_FILLING, &em->flags);
7296 	} else if (type == BTRFS_ORDERED_COMPRESSED) {
7297 		set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
7298 		em->compress_type = compress_type;
7299 	}
7300 
7301 	ret = btrfs_replace_extent_map_range(inode, em, true);
7302 	if (ret) {
7303 		free_extent_map(em);
7304 		return ERR_PTR(ret);
7305 	}
7306 
7307 	/* em got 2 refs now, callers needs to do free_extent_map once. */
7308 	return em;
7309 }
7310 
7311 
7312 static int btrfs_get_blocks_direct_write(struct extent_map **map,
7313 					 struct inode *inode,
7314 					 struct btrfs_dio_data *dio_data,
7315 					 u64 start, u64 *lenp,
7316 					 unsigned int iomap_flags)
7317 {
7318 	const bool nowait = (iomap_flags & IOMAP_NOWAIT);
7319 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7320 	struct extent_map *em = *map;
7321 	int type;
7322 	u64 block_start, orig_start, orig_block_len, ram_bytes;
7323 	struct btrfs_block_group *bg;
7324 	bool can_nocow = false;
7325 	bool space_reserved = false;
7326 	u64 len = *lenp;
7327 	u64 prev_len;
7328 	int ret = 0;
7329 
7330 	/*
7331 	 * We don't allocate a new extent in the following cases
7332 	 *
7333 	 * 1) The inode is marked as NODATACOW. In this case we'll just use the
7334 	 * existing extent.
7335 	 * 2) The extent is marked as PREALLOC. We're good to go here and can
7336 	 * just use the extent.
7337 	 *
7338 	 */
7339 	if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7340 	    ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7341 	     em->block_start != EXTENT_MAP_HOLE)) {
7342 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7343 			type = BTRFS_ORDERED_PREALLOC;
7344 		else
7345 			type = BTRFS_ORDERED_NOCOW;
7346 		len = min(len, em->len - (start - em->start));
7347 		block_start = em->block_start + (start - em->start);
7348 
7349 		if (can_nocow_extent(inode, start, &len, &orig_start,
7350 				     &orig_block_len, &ram_bytes, false, false) == 1) {
7351 			bg = btrfs_inc_nocow_writers(fs_info, block_start);
7352 			if (bg)
7353 				can_nocow = true;
7354 		}
7355 	}
7356 
7357 	prev_len = len;
7358 	if (can_nocow) {
7359 		struct extent_map *em2;
7360 
7361 		/* We can NOCOW, so only need to reserve metadata space. */
7362 		ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len, len,
7363 						      nowait);
7364 		if (ret < 0) {
7365 			/* Our caller expects us to free the input extent map. */
7366 			free_extent_map(em);
7367 			*map = NULL;
7368 			btrfs_dec_nocow_writers(bg);
7369 			if (nowait && (ret == -ENOSPC || ret == -EDQUOT))
7370 				ret = -EAGAIN;
7371 			goto out;
7372 		}
7373 		space_reserved = true;
7374 
7375 		em2 = btrfs_create_dio_extent(BTRFS_I(inode), dio_data, start, len,
7376 					      orig_start, block_start,
7377 					      len, orig_block_len,
7378 					      ram_bytes, type);
7379 		btrfs_dec_nocow_writers(bg);
7380 		if (type == BTRFS_ORDERED_PREALLOC) {
7381 			free_extent_map(em);
7382 			*map = em2;
7383 			em = em2;
7384 		}
7385 
7386 		if (IS_ERR(em2)) {
7387 			ret = PTR_ERR(em2);
7388 			goto out;
7389 		}
7390 
7391 		dio_data->nocow_done = true;
7392 	} else {
7393 		/* Our caller expects us to free the input extent map. */
7394 		free_extent_map(em);
7395 		*map = NULL;
7396 
7397 		if (nowait) {
7398 			ret = -EAGAIN;
7399 			goto out;
7400 		}
7401 
7402 		/*
7403 		 * If we could not allocate data space before locking the file
7404 		 * range and we can't do a NOCOW write, then we have to fail.
7405 		 */
7406 		if (!dio_data->data_space_reserved) {
7407 			ret = -ENOSPC;
7408 			goto out;
7409 		}
7410 
7411 		/*
7412 		 * We have to COW and we have already reserved data space before,
7413 		 * so now we reserve only metadata.
7414 		 */
7415 		ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len, len,
7416 						      false);
7417 		if (ret < 0)
7418 			goto out;
7419 		space_reserved = true;
7420 
7421 		em = btrfs_new_extent_direct(BTRFS_I(inode), dio_data, start, len);
7422 		if (IS_ERR(em)) {
7423 			ret = PTR_ERR(em);
7424 			goto out;
7425 		}
7426 		*map = em;
7427 		len = min(len, em->len - (start - em->start));
7428 		if (len < prev_len)
7429 			btrfs_delalloc_release_metadata(BTRFS_I(inode),
7430 							prev_len - len, true);
7431 	}
7432 
7433 	/*
7434 	 * We have created our ordered extent, so we can now release our reservation
7435 	 * for an outstanding extent.
7436 	 */
7437 	btrfs_delalloc_release_extents(BTRFS_I(inode), prev_len);
7438 
7439 	/*
7440 	 * Need to update the i_size under the extent lock so buffered
7441 	 * readers will get the updated i_size when we unlock.
7442 	 */
7443 	if (start + len > i_size_read(inode))
7444 		i_size_write(inode, start + len);
7445 out:
7446 	if (ret && space_reserved) {
7447 		btrfs_delalloc_release_extents(BTRFS_I(inode), len);
7448 		btrfs_delalloc_release_metadata(BTRFS_I(inode), len, true);
7449 	}
7450 	*lenp = len;
7451 	return ret;
7452 }
7453 
7454 static int btrfs_dio_iomap_begin(struct inode *inode, loff_t start,
7455 		loff_t length, unsigned int flags, struct iomap *iomap,
7456 		struct iomap *srcmap)
7457 {
7458 	struct iomap_iter *iter = container_of(iomap, struct iomap_iter, iomap);
7459 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7460 	struct extent_map *em;
7461 	struct extent_state *cached_state = NULL;
7462 	struct btrfs_dio_data *dio_data = iter->private;
7463 	u64 lockstart, lockend;
7464 	const bool write = !!(flags & IOMAP_WRITE);
7465 	int ret = 0;
7466 	u64 len = length;
7467 	const u64 data_alloc_len = length;
7468 	bool unlock_extents = false;
7469 
7470 	/*
7471 	 * We could potentially fault if we have a buffer > PAGE_SIZE, and if
7472 	 * we're NOWAIT we may submit a bio for a partial range and return
7473 	 * EIOCBQUEUED, which would result in an errant short read.
7474 	 *
7475 	 * The best way to handle this would be to allow for partial completions
7476 	 * of iocb's, so we could submit the partial bio, return and fault in
7477 	 * the rest of the pages, and then submit the io for the rest of the
7478 	 * range.  However we don't have that currently, so simply return
7479 	 * -EAGAIN at this point so that the normal path is used.
7480 	 */
7481 	if (!write && (flags & IOMAP_NOWAIT) && length > PAGE_SIZE)
7482 		return -EAGAIN;
7483 
7484 	/*
7485 	 * Cap the size of reads to that usually seen in buffered I/O as we need
7486 	 * to allocate a contiguous array for the checksums.
7487 	 */
7488 	if (!write)
7489 		len = min_t(u64, len, fs_info->sectorsize * BTRFS_MAX_BIO_SECTORS);
7490 
7491 	lockstart = start;
7492 	lockend = start + len - 1;
7493 
7494 	/*
7495 	 * iomap_dio_rw() only does filemap_write_and_wait_range(), which isn't
7496 	 * enough if we've written compressed pages to this area, so we need to
7497 	 * flush the dirty pages again to make absolutely sure that any
7498 	 * outstanding dirty pages are on disk - the first flush only starts
7499 	 * compression on the data, while keeping the pages locked, so by the
7500 	 * time the second flush returns we know bios for the compressed pages
7501 	 * were submitted and finished, and the pages no longer under writeback.
7502 	 *
7503 	 * If we have a NOWAIT request and we have any pages in the range that
7504 	 * are locked, likely due to compression still in progress, we don't want
7505 	 * to block on page locks. We also don't want to block on pages marked as
7506 	 * dirty or under writeback (same as for the non-compression case).
7507 	 * iomap_dio_rw() did the same check, but after that and before we got
7508 	 * here, mmap'ed writes may have happened or buffered reads started
7509 	 * (readpage() and readahead(), which lock pages), as we haven't locked
7510 	 * the file range yet.
7511 	 */
7512 	if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
7513 		     &BTRFS_I(inode)->runtime_flags)) {
7514 		if (flags & IOMAP_NOWAIT) {
7515 			if (filemap_range_needs_writeback(inode->i_mapping,
7516 							  lockstart, lockend))
7517 				return -EAGAIN;
7518 		} else {
7519 			ret = filemap_fdatawrite_range(inode->i_mapping, start,
7520 						       start + length - 1);
7521 			if (ret)
7522 				return ret;
7523 		}
7524 	}
7525 
7526 	memset(dio_data, 0, sizeof(*dio_data));
7527 
7528 	/*
7529 	 * We always try to allocate data space and must do it before locking
7530 	 * the file range, to avoid deadlocks with concurrent writes to the same
7531 	 * range if the range has several extents and the writes don't expand the
7532 	 * current i_size (the inode lock is taken in shared mode). If we fail to
7533 	 * allocate data space here we continue and later, after locking the
7534 	 * file range, we fail with ENOSPC only if we figure out we can not do a
7535 	 * NOCOW write.
7536 	 */
7537 	if (write && !(flags & IOMAP_NOWAIT)) {
7538 		ret = btrfs_check_data_free_space(BTRFS_I(inode),
7539 						  &dio_data->data_reserved,
7540 						  start, data_alloc_len, false);
7541 		if (!ret)
7542 			dio_data->data_space_reserved = true;
7543 		else if (ret && !(BTRFS_I(inode)->flags &
7544 				  (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)))
7545 			goto err;
7546 	}
7547 
7548 	/*
7549 	 * If this errors out it's because we couldn't invalidate pagecache for
7550 	 * this range and we need to fallback to buffered IO, or we are doing a
7551 	 * NOWAIT read/write and we need to block.
7552 	 */
7553 	ret = lock_extent_direct(inode, lockstart, lockend, &cached_state, flags);
7554 	if (ret < 0)
7555 		goto err;
7556 
7557 	em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len);
7558 	if (IS_ERR(em)) {
7559 		ret = PTR_ERR(em);
7560 		goto unlock_err;
7561 	}
7562 
7563 	/*
7564 	 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7565 	 * io.  INLINE is special, and we could probably kludge it in here, but
7566 	 * it's still buffered so for safety lets just fall back to the generic
7567 	 * buffered path.
7568 	 *
7569 	 * For COMPRESSED we _have_ to read the entire extent in so we can
7570 	 * decompress it, so there will be buffering required no matter what we
7571 	 * do, so go ahead and fallback to buffered.
7572 	 *
7573 	 * We return -ENOTBLK because that's what makes DIO go ahead and go back
7574 	 * to buffered IO.  Don't blame me, this is the price we pay for using
7575 	 * the generic code.
7576 	 */
7577 	if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7578 	    em->block_start == EXTENT_MAP_INLINE) {
7579 		free_extent_map(em);
7580 		/*
7581 		 * If we are in a NOWAIT context, return -EAGAIN in order to
7582 		 * fallback to buffered IO. This is not only because we can
7583 		 * block with buffered IO (no support for NOWAIT semantics at
7584 		 * the moment) but also to avoid returning short reads to user
7585 		 * space - this happens if we were able to read some data from
7586 		 * previous non-compressed extents and then when we fallback to
7587 		 * buffered IO, at btrfs_file_read_iter() by calling
7588 		 * filemap_read(), we fail to fault in pages for the read buffer,
7589 		 * in which case filemap_read() returns a short read (the number
7590 		 * of bytes previously read is > 0, so it does not return -EFAULT).
7591 		 */
7592 		ret = (flags & IOMAP_NOWAIT) ? -EAGAIN : -ENOTBLK;
7593 		goto unlock_err;
7594 	}
7595 
7596 	len = min(len, em->len - (start - em->start));
7597 
7598 	/*
7599 	 * If we have a NOWAIT request and the range contains multiple extents
7600 	 * (or a mix of extents and holes), then we return -EAGAIN to make the
7601 	 * caller fallback to a context where it can do a blocking (without
7602 	 * NOWAIT) request. This way we avoid doing partial IO and returning
7603 	 * success to the caller, which is not optimal for writes and for reads
7604 	 * it can result in unexpected behaviour for an application.
7605 	 *
7606 	 * When doing a read, because we use IOMAP_DIO_PARTIAL when calling
7607 	 * iomap_dio_rw(), we can end up returning less data then what the caller
7608 	 * asked for, resulting in an unexpected, and incorrect, short read.
7609 	 * That is, the caller asked to read N bytes and we return less than that,
7610 	 * which is wrong unless we are crossing EOF. This happens if we get a
7611 	 * page fault error when trying to fault in pages for the buffer that is
7612 	 * associated to the struct iov_iter passed to iomap_dio_rw(), and we
7613 	 * have previously submitted bios for other extents in the range, in
7614 	 * which case iomap_dio_rw() may return us EIOCBQUEUED if not all of
7615 	 * those bios have completed by the time we get the page fault error,
7616 	 * which we return back to our caller - we should only return EIOCBQUEUED
7617 	 * after we have submitted bios for all the extents in the range.
7618 	 */
7619 	if ((flags & IOMAP_NOWAIT) && len < length) {
7620 		free_extent_map(em);
7621 		ret = -EAGAIN;
7622 		goto unlock_err;
7623 	}
7624 
7625 	if (write) {
7626 		ret = btrfs_get_blocks_direct_write(&em, inode, dio_data,
7627 						    start, &len, flags);
7628 		if (ret < 0)
7629 			goto unlock_err;
7630 		unlock_extents = true;
7631 		/* Recalc len in case the new em is smaller than requested */
7632 		len = min(len, em->len - (start - em->start));
7633 		if (dio_data->data_space_reserved) {
7634 			u64 release_offset;
7635 			u64 release_len = 0;
7636 
7637 			if (dio_data->nocow_done) {
7638 				release_offset = start;
7639 				release_len = data_alloc_len;
7640 			} else if (len < data_alloc_len) {
7641 				release_offset = start + len;
7642 				release_len = data_alloc_len - len;
7643 			}
7644 
7645 			if (release_len > 0)
7646 				btrfs_free_reserved_data_space(BTRFS_I(inode),
7647 							       dio_data->data_reserved,
7648 							       release_offset,
7649 							       release_len);
7650 		}
7651 	} else {
7652 		/*
7653 		 * We need to unlock only the end area that we aren't using.
7654 		 * The rest is going to be unlocked by the endio routine.
7655 		 */
7656 		lockstart = start + len;
7657 		if (lockstart < lockend)
7658 			unlock_extents = true;
7659 	}
7660 
7661 	if (unlock_extents)
7662 		unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7663 			      &cached_state);
7664 	else
7665 		free_extent_state(cached_state);
7666 
7667 	/*
7668 	 * Translate extent map information to iomap.
7669 	 * We trim the extents (and move the addr) even though iomap code does
7670 	 * that, since we have locked only the parts we are performing I/O in.
7671 	 */
7672 	if ((em->block_start == EXTENT_MAP_HOLE) ||
7673 	    (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) && !write)) {
7674 		iomap->addr = IOMAP_NULL_ADDR;
7675 		iomap->type = IOMAP_HOLE;
7676 	} else {
7677 		iomap->addr = em->block_start + (start - em->start);
7678 		iomap->type = IOMAP_MAPPED;
7679 	}
7680 	iomap->offset = start;
7681 	iomap->bdev = fs_info->fs_devices->latest_dev->bdev;
7682 	iomap->length = len;
7683 	free_extent_map(em);
7684 
7685 	return 0;
7686 
7687 unlock_err:
7688 	unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7689 		      &cached_state);
7690 err:
7691 	if (dio_data->data_space_reserved) {
7692 		btrfs_free_reserved_data_space(BTRFS_I(inode),
7693 					       dio_data->data_reserved,
7694 					       start, data_alloc_len);
7695 		extent_changeset_free(dio_data->data_reserved);
7696 	}
7697 
7698 	return ret;
7699 }
7700 
7701 static int btrfs_dio_iomap_end(struct inode *inode, loff_t pos, loff_t length,
7702 		ssize_t written, unsigned int flags, struct iomap *iomap)
7703 {
7704 	struct iomap_iter *iter = container_of(iomap, struct iomap_iter, iomap);
7705 	struct btrfs_dio_data *dio_data = iter->private;
7706 	size_t submitted = dio_data->submitted;
7707 	const bool write = !!(flags & IOMAP_WRITE);
7708 	int ret = 0;
7709 
7710 	if (!write && (iomap->type == IOMAP_HOLE)) {
7711 		/* If reading from a hole, unlock and return */
7712 		unlock_extent(&BTRFS_I(inode)->io_tree, pos, pos + length - 1,
7713 			      NULL);
7714 		return 0;
7715 	}
7716 
7717 	if (submitted < length) {
7718 		pos += submitted;
7719 		length -= submitted;
7720 		if (write)
7721 			btrfs_finish_ordered_extent(dio_data->ordered, NULL,
7722 						    pos, length, false);
7723 		else
7724 			unlock_extent(&BTRFS_I(inode)->io_tree, pos,
7725 				      pos + length - 1, NULL);
7726 		ret = -ENOTBLK;
7727 	}
7728 	if (write) {
7729 		btrfs_put_ordered_extent(dio_data->ordered);
7730 		dio_data->ordered = NULL;
7731 	}
7732 
7733 	if (write)
7734 		extent_changeset_free(dio_data->data_reserved);
7735 	return ret;
7736 }
7737 
7738 static void btrfs_dio_end_io(struct btrfs_bio *bbio)
7739 {
7740 	struct btrfs_dio_private *dip =
7741 		container_of(bbio, struct btrfs_dio_private, bbio);
7742 	struct btrfs_inode *inode = bbio->inode;
7743 	struct bio *bio = &bbio->bio;
7744 
7745 	if (bio->bi_status) {
7746 		btrfs_warn(inode->root->fs_info,
7747 		"direct IO failed ino %llu op 0x%0x offset %#llx len %u err no %d",
7748 			   btrfs_ino(inode), bio->bi_opf,
7749 			   dip->file_offset, dip->bytes, bio->bi_status);
7750 	}
7751 
7752 	if (btrfs_op(bio) == BTRFS_MAP_WRITE) {
7753 		btrfs_finish_ordered_extent(bbio->ordered, NULL,
7754 					    dip->file_offset, dip->bytes,
7755 					    !bio->bi_status);
7756 	} else {
7757 		unlock_extent(&inode->io_tree, dip->file_offset,
7758 			      dip->file_offset + dip->bytes - 1, NULL);
7759 	}
7760 
7761 	bbio->bio.bi_private = bbio->private;
7762 	iomap_dio_bio_end_io(bio);
7763 }
7764 
7765 static void btrfs_dio_submit_io(const struct iomap_iter *iter, struct bio *bio,
7766 				loff_t file_offset)
7767 {
7768 	struct btrfs_bio *bbio = btrfs_bio(bio);
7769 	struct btrfs_dio_private *dip =
7770 		container_of(bbio, struct btrfs_dio_private, bbio);
7771 	struct btrfs_dio_data *dio_data = iter->private;
7772 
7773 	btrfs_bio_init(bbio, BTRFS_I(iter->inode)->root->fs_info,
7774 		       btrfs_dio_end_io, bio->bi_private);
7775 	bbio->inode = BTRFS_I(iter->inode);
7776 	bbio->file_offset = file_offset;
7777 
7778 	dip->file_offset = file_offset;
7779 	dip->bytes = bio->bi_iter.bi_size;
7780 
7781 	dio_data->submitted += bio->bi_iter.bi_size;
7782 
7783 	/*
7784 	 * Check if we are doing a partial write.  If we are, we need to split
7785 	 * the ordered extent to match the submitted bio.  Hang on to the
7786 	 * remaining unfinishable ordered_extent in dio_data so that it can be
7787 	 * cancelled in iomap_end to avoid a deadlock wherein faulting the
7788 	 * remaining pages is blocked on the outstanding ordered extent.
7789 	 */
7790 	if (iter->flags & IOMAP_WRITE) {
7791 		int ret;
7792 
7793 		ret = btrfs_extract_ordered_extent(bbio, dio_data->ordered);
7794 		if (ret) {
7795 			btrfs_finish_ordered_extent(dio_data->ordered, NULL,
7796 						    file_offset, dip->bytes,
7797 						    !ret);
7798 			bio->bi_status = errno_to_blk_status(ret);
7799 			iomap_dio_bio_end_io(bio);
7800 			return;
7801 		}
7802 	}
7803 
7804 	btrfs_submit_bio(bbio, 0);
7805 }
7806 
7807 static const struct iomap_ops btrfs_dio_iomap_ops = {
7808 	.iomap_begin            = btrfs_dio_iomap_begin,
7809 	.iomap_end              = btrfs_dio_iomap_end,
7810 };
7811 
7812 static const struct iomap_dio_ops btrfs_dio_ops = {
7813 	.submit_io		= btrfs_dio_submit_io,
7814 	.bio_set		= &btrfs_dio_bioset,
7815 };
7816 
7817 ssize_t btrfs_dio_read(struct kiocb *iocb, struct iov_iter *iter, size_t done_before)
7818 {
7819 	struct btrfs_dio_data data = { 0 };
7820 
7821 	return iomap_dio_rw(iocb, iter, &btrfs_dio_iomap_ops, &btrfs_dio_ops,
7822 			    IOMAP_DIO_PARTIAL, &data, done_before);
7823 }
7824 
7825 struct iomap_dio *btrfs_dio_write(struct kiocb *iocb, struct iov_iter *iter,
7826 				  size_t done_before)
7827 {
7828 	struct btrfs_dio_data data = { 0 };
7829 
7830 	return __iomap_dio_rw(iocb, iter, &btrfs_dio_iomap_ops, &btrfs_dio_ops,
7831 			    IOMAP_DIO_PARTIAL, &data, done_before);
7832 }
7833 
7834 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
7835 			u64 start, u64 len)
7836 {
7837 	struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
7838 	int	ret;
7839 
7840 	ret = fiemap_prep(inode, fieinfo, start, &len, 0);
7841 	if (ret)
7842 		return ret;
7843 
7844 	/*
7845 	 * fiemap_prep() called filemap_write_and_wait() for the whole possible
7846 	 * file range (0 to LLONG_MAX), but that is not enough if we have
7847 	 * compression enabled. The first filemap_fdatawrite_range() only kicks
7848 	 * in the compression of data (in an async thread) and will return
7849 	 * before the compression is done and writeback is started. A second
7850 	 * filemap_fdatawrite_range() is needed to wait for the compression to
7851 	 * complete and writeback to start. We also need to wait for ordered
7852 	 * extents to complete, because our fiemap implementation uses mainly
7853 	 * file extent items to list the extents, searching for extent maps
7854 	 * only for file ranges with holes or prealloc extents to figure out
7855 	 * if we have delalloc in those ranges.
7856 	 */
7857 	if (fieinfo->fi_flags & FIEMAP_FLAG_SYNC) {
7858 		ret = btrfs_wait_ordered_range(inode, 0, LLONG_MAX);
7859 		if (ret)
7860 			return ret;
7861 	}
7862 
7863 	btrfs_inode_lock(btrfs_inode, BTRFS_ILOCK_SHARED);
7864 
7865 	/*
7866 	 * We did an initial flush to avoid holding the inode's lock while
7867 	 * triggering writeback and waiting for the completion of IO and ordered
7868 	 * extents. Now after we locked the inode we do it again, because it's
7869 	 * possible a new write may have happened in between those two steps.
7870 	 */
7871 	if (fieinfo->fi_flags & FIEMAP_FLAG_SYNC) {
7872 		ret = btrfs_wait_ordered_range(inode, 0, LLONG_MAX);
7873 		if (ret) {
7874 			btrfs_inode_unlock(btrfs_inode, BTRFS_ILOCK_SHARED);
7875 			return ret;
7876 		}
7877 	}
7878 
7879 	ret = extent_fiemap(btrfs_inode, fieinfo, start, len);
7880 	btrfs_inode_unlock(btrfs_inode, BTRFS_ILOCK_SHARED);
7881 
7882 	return ret;
7883 }
7884 
7885 static int btrfs_writepages(struct address_space *mapping,
7886 			    struct writeback_control *wbc)
7887 {
7888 	return extent_writepages(mapping, wbc);
7889 }
7890 
7891 static void btrfs_readahead(struct readahead_control *rac)
7892 {
7893 	extent_readahead(rac);
7894 }
7895 
7896 /*
7897  * For release_folio() and invalidate_folio() we have a race window where
7898  * folio_end_writeback() is called but the subpage spinlock is not yet released.
7899  * If we continue to release/invalidate the page, we could cause use-after-free
7900  * for subpage spinlock.  So this function is to spin and wait for subpage
7901  * spinlock.
7902  */
7903 static void wait_subpage_spinlock(struct page *page)
7904 {
7905 	struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
7906 	struct btrfs_subpage *subpage;
7907 
7908 	if (!btrfs_is_subpage(fs_info, page))
7909 		return;
7910 
7911 	ASSERT(PagePrivate(page) && page->private);
7912 	subpage = (struct btrfs_subpage *)page->private;
7913 
7914 	/*
7915 	 * This may look insane as we just acquire the spinlock and release it,
7916 	 * without doing anything.  But we just want to make sure no one is
7917 	 * still holding the subpage spinlock.
7918 	 * And since the page is not dirty nor writeback, and we have page
7919 	 * locked, the only possible way to hold a spinlock is from the endio
7920 	 * function to clear page writeback.
7921 	 *
7922 	 * Here we just acquire the spinlock so that all existing callers
7923 	 * should exit and we're safe to release/invalidate the page.
7924 	 */
7925 	spin_lock_irq(&subpage->lock);
7926 	spin_unlock_irq(&subpage->lock);
7927 }
7928 
7929 static bool __btrfs_release_folio(struct folio *folio, gfp_t gfp_flags)
7930 {
7931 	int ret = try_release_extent_mapping(&folio->page, gfp_flags);
7932 
7933 	if (ret == 1) {
7934 		wait_subpage_spinlock(&folio->page);
7935 		clear_page_extent_mapped(&folio->page);
7936 	}
7937 	return ret;
7938 }
7939 
7940 static bool btrfs_release_folio(struct folio *folio, gfp_t gfp_flags)
7941 {
7942 	if (folio_test_writeback(folio) || folio_test_dirty(folio))
7943 		return false;
7944 	return __btrfs_release_folio(folio, gfp_flags);
7945 }
7946 
7947 #ifdef CONFIG_MIGRATION
7948 static int btrfs_migrate_folio(struct address_space *mapping,
7949 			     struct folio *dst, struct folio *src,
7950 			     enum migrate_mode mode)
7951 {
7952 	int ret = filemap_migrate_folio(mapping, dst, src, mode);
7953 
7954 	if (ret != MIGRATEPAGE_SUCCESS)
7955 		return ret;
7956 
7957 	if (folio_test_ordered(src)) {
7958 		folio_clear_ordered(src);
7959 		folio_set_ordered(dst);
7960 	}
7961 
7962 	return MIGRATEPAGE_SUCCESS;
7963 }
7964 #else
7965 #define btrfs_migrate_folio NULL
7966 #endif
7967 
7968 static void btrfs_invalidate_folio(struct folio *folio, size_t offset,
7969 				 size_t length)
7970 {
7971 	struct btrfs_inode *inode = BTRFS_I(folio->mapping->host);
7972 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
7973 	struct extent_io_tree *tree = &inode->io_tree;
7974 	struct extent_state *cached_state = NULL;
7975 	u64 page_start = folio_pos(folio);
7976 	u64 page_end = page_start + folio_size(folio) - 1;
7977 	u64 cur;
7978 	int inode_evicting = inode->vfs_inode.i_state & I_FREEING;
7979 
7980 	/*
7981 	 * We have folio locked so no new ordered extent can be created on this
7982 	 * page, nor bio can be submitted for this folio.
7983 	 *
7984 	 * But already submitted bio can still be finished on this folio.
7985 	 * Furthermore, endio function won't skip folio which has Ordered
7986 	 * (Private2) already cleared, so it's possible for endio and
7987 	 * invalidate_folio to do the same ordered extent accounting twice
7988 	 * on one folio.
7989 	 *
7990 	 * So here we wait for any submitted bios to finish, so that we won't
7991 	 * do double ordered extent accounting on the same folio.
7992 	 */
7993 	folio_wait_writeback(folio);
7994 	wait_subpage_spinlock(&folio->page);
7995 
7996 	/*
7997 	 * For subpage case, we have call sites like
7998 	 * btrfs_punch_hole_lock_range() which passes range not aligned to
7999 	 * sectorsize.
8000 	 * If the range doesn't cover the full folio, we don't need to and
8001 	 * shouldn't clear page extent mapped, as folio->private can still
8002 	 * record subpage dirty bits for other part of the range.
8003 	 *
8004 	 * For cases that invalidate the full folio even the range doesn't
8005 	 * cover the full folio, like invalidating the last folio, we're
8006 	 * still safe to wait for ordered extent to finish.
8007 	 */
8008 	if (!(offset == 0 && length == folio_size(folio))) {
8009 		btrfs_release_folio(folio, GFP_NOFS);
8010 		return;
8011 	}
8012 
8013 	if (!inode_evicting)
8014 		lock_extent(tree, page_start, page_end, &cached_state);
8015 
8016 	cur = page_start;
8017 	while (cur < page_end) {
8018 		struct btrfs_ordered_extent *ordered;
8019 		u64 range_end;
8020 		u32 range_len;
8021 		u32 extra_flags = 0;
8022 
8023 		ordered = btrfs_lookup_first_ordered_range(inode, cur,
8024 							   page_end + 1 - cur);
8025 		if (!ordered) {
8026 			range_end = page_end;
8027 			/*
8028 			 * No ordered extent covering this range, we are safe
8029 			 * to delete all extent states in the range.
8030 			 */
8031 			extra_flags = EXTENT_CLEAR_ALL_BITS;
8032 			goto next;
8033 		}
8034 		if (ordered->file_offset > cur) {
8035 			/*
8036 			 * There is a range between [cur, oe->file_offset) not
8037 			 * covered by any ordered extent.
8038 			 * We are safe to delete all extent states, and handle
8039 			 * the ordered extent in the next iteration.
8040 			 */
8041 			range_end = ordered->file_offset - 1;
8042 			extra_flags = EXTENT_CLEAR_ALL_BITS;
8043 			goto next;
8044 		}
8045 
8046 		range_end = min(ordered->file_offset + ordered->num_bytes - 1,
8047 				page_end);
8048 		ASSERT(range_end + 1 - cur < U32_MAX);
8049 		range_len = range_end + 1 - cur;
8050 		if (!btrfs_page_test_ordered(fs_info, &folio->page, cur, range_len)) {
8051 			/*
8052 			 * If Ordered (Private2) is cleared, it means endio has
8053 			 * already been executed for the range.
8054 			 * We can't delete the extent states as
8055 			 * btrfs_finish_ordered_io() may still use some of them.
8056 			 */
8057 			goto next;
8058 		}
8059 		btrfs_page_clear_ordered(fs_info, &folio->page, cur, range_len);
8060 
8061 		/*
8062 		 * IO on this page will never be started, so we need to account
8063 		 * for any ordered extents now. Don't clear EXTENT_DELALLOC_NEW
8064 		 * here, must leave that up for the ordered extent completion.
8065 		 *
8066 		 * This will also unlock the range for incoming
8067 		 * btrfs_finish_ordered_io().
8068 		 */
8069 		if (!inode_evicting)
8070 			clear_extent_bit(tree, cur, range_end,
8071 					 EXTENT_DELALLOC |
8072 					 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
8073 					 EXTENT_DEFRAG, &cached_state);
8074 
8075 		spin_lock_irq(&inode->ordered_tree.lock);
8076 		set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
8077 		ordered->truncated_len = min(ordered->truncated_len,
8078 					     cur - ordered->file_offset);
8079 		spin_unlock_irq(&inode->ordered_tree.lock);
8080 
8081 		/*
8082 		 * If the ordered extent has finished, we're safe to delete all
8083 		 * the extent states of the range, otherwise
8084 		 * btrfs_finish_ordered_io() will get executed by endio for
8085 		 * other pages, so we can't delete extent states.
8086 		 */
8087 		if (btrfs_dec_test_ordered_pending(inode, &ordered,
8088 						   cur, range_end + 1 - cur)) {
8089 			btrfs_finish_ordered_io(ordered);
8090 			/*
8091 			 * The ordered extent has finished, now we're again
8092 			 * safe to delete all extent states of the range.
8093 			 */
8094 			extra_flags = EXTENT_CLEAR_ALL_BITS;
8095 		}
8096 next:
8097 		if (ordered)
8098 			btrfs_put_ordered_extent(ordered);
8099 		/*
8100 		 * Qgroup reserved space handler
8101 		 * Sector(s) here will be either:
8102 		 *
8103 		 * 1) Already written to disk or bio already finished
8104 		 *    Then its QGROUP_RESERVED bit in io_tree is already cleared.
8105 		 *    Qgroup will be handled by its qgroup_record then.
8106 		 *    btrfs_qgroup_free_data() call will do nothing here.
8107 		 *
8108 		 * 2) Not written to disk yet
8109 		 *    Then btrfs_qgroup_free_data() call will clear the
8110 		 *    QGROUP_RESERVED bit of its io_tree, and free the qgroup
8111 		 *    reserved data space.
8112 		 *    Since the IO will never happen for this page.
8113 		 */
8114 		btrfs_qgroup_free_data(inode, NULL, cur, range_end + 1 - cur, NULL);
8115 		if (!inode_evicting) {
8116 			clear_extent_bit(tree, cur, range_end, EXTENT_LOCKED |
8117 				 EXTENT_DELALLOC | EXTENT_UPTODATE |
8118 				 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG |
8119 				 extra_flags, &cached_state);
8120 		}
8121 		cur = range_end + 1;
8122 	}
8123 	/*
8124 	 * We have iterated through all ordered extents of the page, the page
8125 	 * should not have Ordered (Private2) anymore, or the above iteration
8126 	 * did something wrong.
8127 	 */
8128 	ASSERT(!folio_test_ordered(folio));
8129 	btrfs_page_clear_checked(fs_info, &folio->page, folio_pos(folio), folio_size(folio));
8130 	if (!inode_evicting)
8131 		__btrfs_release_folio(folio, GFP_NOFS);
8132 	clear_page_extent_mapped(&folio->page);
8133 }
8134 
8135 /*
8136  * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8137  * called from a page fault handler when a page is first dirtied. Hence we must
8138  * be careful to check for EOF conditions here. We set the page up correctly
8139  * for a written page which means we get ENOSPC checking when writing into
8140  * holes and correct delalloc and unwritten extent mapping on filesystems that
8141  * support these features.
8142  *
8143  * We are not allowed to take the i_mutex here so we have to play games to
8144  * protect against truncate races as the page could now be beyond EOF.  Because
8145  * truncate_setsize() writes the inode size before removing pages, once we have
8146  * the page lock we can determine safely if the page is beyond EOF. If it is not
8147  * beyond EOF, then the page is guaranteed safe against truncation until we
8148  * unlock the page.
8149  */
8150 vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf)
8151 {
8152 	struct page *page = vmf->page;
8153 	struct inode *inode = file_inode(vmf->vma->vm_file);
8154 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8155 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8156 	struct btrfs_ordered_extent *ordered;
8157 	struct extent_state *cached_state = NULL;
8158 	struct extent_changeset *data_reserved = NULL;
8159 	unsigned long zero_start;
8160 	loff_t size;
8161 	vm_fault_t ret;
8162 	int ret2;
8163 	int reserved = 0;
8164 	u64 reserved_space;
8165 	u64 page_start;
8166 	u64 page_end;
8167 	u64 end;
8168 
8169 	reserved_space = PAGE_SIZE;
8170 
8171 	sb_start_pagefault(inode->i_sb);
8172 	page_start = page_offset(page);
8173 	page_end = page_start + PAGE_SIZE - 1;
8174 	end = page_end;
8175 
8176 	/*
8177 	 * Reserving delalloc space after obtaining the page lock can lead to
8178 	 * deadlock. For example, if a dirty page is locked by this function
8179 	 * and the call to btrfs_delalloc_reserve_space() ends up triggering
8180 	 * dirty page write out, then the btrfs_writepages() function could
8181 	 * end up waiting indefinitely to get a lock on the page currently
8182 	 * being processed by btrfs_page_mkwrite() function.
8183 	 */
8184 	ret2 = btrfs_delalloc_reserve_space(BTRFS_I(inode), &data_reserved,
8185 					    page_start, reserved_space);
8186 	if (!ret2) {
8187 		ret2 = file_update_time(vmf->vma->vm_file);
8188 		reserved = 1;
8189 	}
8190 	if (ret2) {
8191 		ret = vmf_error(ret2);
8192 		if (reserved)
8193 			goto out;
8194 		goto out_noreserve;
8195 	}
8196 
8197 	ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
8198 again:
8199 	down_read(&BTRFS_I(inode)->i_mmap_lock);
8200 	lock_page(page);
8201 	size = i_size_read(inode);
8202 
8203 	if ((page->mapping != inode->i_mapping) ||
8204 	    (page_start >= size)) {
8205 		/* page got truncated out from underneath us */
8206 		goto out_unlock;
8207 	}
8208 	wait_on_page_writeback(page);
8209 
8210 	lock_extent(io_tree, page_start, page_end, &cached_state);
8211 	ret2 = set_page_extent_mapped(page);
8212 	if (ret2 < 0) {
8213 		ret = vmf_error(ret2);
8214 		unlock_extent(io_tree, page_start, page_end, &cached_state);
8215 		goto out_unlock;
8216 	}
8217 
8218 	/*
8219 	 * we can't set the delalloc bits if there are pending ordered
8220 	 * extents.  Drop our locks and wait for them to finish
8221 	 */
8222 	ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
8223 			PAGE_SIZE);
8224 	if (ordered) {
8225 		unlock_extent(io_tree, page_start, page_end, &cached_state);
8226 		unlock_page(page);
8227 		up_read(&BTRFS_I(inode)->i_mmap_lock);
8228 		btrfs_start_ordered_extent(ordered);
8229 		btrfs_put_ordered_extent(ordered);
8230 		goto again;
8231 	}
8232 
8233 	if (page->index == ((size - 1) >> PAGE_SHIFT)) {
8234 		reserved_space = round_up(size - page_start,
8235 					  fs_info->sectorsize);
8236 		if (reserved_space < PAGE_SIZE) {
8237 			end = page_start + reserved_space - 1;
8238 			btrfs_delalloc_release_space(BTRFS_I(inode),
8239 					data_reserved, page_start,
8240 					PAGE_SIZE - reserved_space, true);
8241 		}
8242 	}
8243 
8244 	/*
8245 	 * page_mkwrite gets called when the page is firstly dirtied after it's
8246 	 * faulted in, but write(2) could also dirty a page and set delalloc
8247 	 * bits, thus in this case for space account reason, we still need to
8248 	 * clear any delalloc bits within this page range since we have to
8249 	 * reserve data&meta space before lock_page() (see above comments).
8250 	 */
8251 	clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end,
8252 			  EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
8253 			  EXTENT_DEFRAG, &cached_state);
8254 
8255 	ret2 = btrfs_set_extent_delalloc(BTRFS_I(inode), page_start, end, 0,
8256 					&cached_state);
8257 	if (ret2) {
8258 		unlock_extent(io_tree, page_start, page_end, &cached_state);
8259 		ret = VM_FAULT_SIGBUS;
8260 		goto out_unlock;
8261 	}
8262 
8263 	/* page is wholly or partially inside EOF */
8264 	if (page_start + PAGE_SIZE > size)
8265 		zero_start = offset_in_page(size);
8266 	else
8267 		zero_start = PAGE_SIZE;
8268 
8269 	if (zero_start != PAGE_SIZE)
8270 		memzero_page(page, zero_start, PAGE_SIZE - zero_start);
8271 
8272 	btrfs_page_clear_checked(fs_info, page, page_start, PAGE_SIZE);
8273 	btrfs_page_set_dirty(fs_info, page, page_start, end + 1 - page_start);
8274 	btrfs_page_set_uptodate(fs_info, page, page_start, end + 1 - page_start);
8275 
8276 	btrfs_set_inode_last_sub_trans(BTRFS_I(inode));
8277 
8278 	unlock_extent(io_tree, page_start, page_end, &cached_state);
8279 	up_read(&BTRFS_I(inode)->i_mmap_lock);
8280 
8281 	btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
8282 	sb_end_pagefault(inode->i_sb);
8283 	extent_changeset_free(data_reserved);
8284 	return VM_FAULT_LOCKED;
8285 
8286 out_unlock:
8287 	unlock_page(page);
8288 	up_read(&BTRFS_I(inode)->i_mmap_lock);
8289 out:
8290 	btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
8291 	btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved, page_start,
8292 				     reserved_space, (ret != 0));
8293 out_noreserve:
8294 	sb_end_pagefault(inode->i_sb);
8295 	extent_changeset_free(data_reserved);
8296 	return ret;
8297 }
8298 
8299 static int btrfs_truncate(struct btrfs_inode *inode, bool skip_writeback)
8300 {
8301 	struct btrfs_truncate_control control = {
8302 		.inode = inode,
8303 		.ino = btrfs_ino(inode),
8304 		.min_type = BTRFS_EXTENT_DATA_KEY,
8305 		.clear_extent_range = true,
8306 	};
8307 	struct btrfs_root *root = inode->root;
8308 	struct btrfs_fs_info *fs_info = root->fs_info;
8309 	struct btrfs_block_rsv *rsv;
8310 	int ret;
8311 	struct btrfs_trans_handle *trans;
8312 	u64 mask = fs_info->sectorsize - 1;
8313 	const u64 min_size = btrfs_calc_metadata_size(fs_info, 1);
8314 
8315 	if (!skip_writeback) {
8316 		ret = btrfs_wait_ordered_range(&inode->vfs_inode,
8317 					       inode->vfs_inode.i_size & (~mask),
8318 					       (u64)-1);
8319 		if (ret)
8320 			return ret;
8321 	}
8322 
8323 	/*
8324 	 * Yes ladies and gentlemen, this is indeed ugly.  We have a couple of
8325 	 * things going on here:
8326 	 *
8327 	 * 1) We need to reserve space to update our inode.
8328 	 *
8329 	 * 2) We need to have something to cache all the space that is going to
8330 	 * be free'd up by the truncate operation, but also have some slack
8331 	 * space reserved in case it uses space during the truncate (thank you
8332 	 * very much snapshotting).
8333 	 *
8334 	 * And we need these to be separate.  The fact is we can use a lot of
8335 	 * space doing the truncate, and we have no earthly idea how much space
8336 	 * we will use, so we need the truncate reservation to be separate so it
8337 	 * doesn't end up using space reserved for updating the inode.  We also
8338 	 * need to be able to stop the transaction and start a new one, which
8339 	 * means we need to be able to update the inode several times, and we
8340 	 * have no idea of knowing how many times that will be, so we can't just
8341 	 * reserve 1 item for the entirety of the operation, so that has to be
8342 	 * done separately as well.
8343 	 *
8344 	 * So that leaves us with
8345 	 *
8346 	 * 1) rsv - for the truncate reservation, which we will steal from the
8347 	 * transaction reservation.
8348 	 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for
8349 	 * updating the inode.
8350 	 */
8351 	rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
8352 	if (!rsv)
8353 		return -ENOMEM;
8354 	rsv->size = min_size;
8355 	rsv->failfast = true;
8356 
8357 	/*
8358 	 * 1 for the truncate slack space
8359 	 * 1 for updating the inode.
8360 	 */
8361 	trans = btrfs_start_transaction(root, 2);
8362 	if (IS_ERR(trans)) {
8363 		ret = PTR_ERR(trans);
8364 		goto out;
8365 	}
8366 
8367 	/* Migrate the slack space for the truncate to our reserve */
8368 	ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
8369 				      min_size, false);
8370 	/*
8371 	 * We have reserved 2 metadata units when we started the transaction and
8372 	 * min_size matches 1 unit, so this should never fail, but if it does,
8373 	 * it's not critical we just fail truncation.
8374 	 */
8375 	if (WARN_ON(ret)) {
8376 		btrfs_end_transaction(trans);
8377 		goto out;
8378 	}
8379 
8380 	trans->block_rsv = rsv;
8381 
8382 	while (1) {
8383 		struct extent_state *cached_state = NULL;
8384 		const u64 new_size = inode->vfs_inode.i_size;
8385 		const u64 lock_start = ALIGN_DOWN(new_size, fs_info->sectorsize);
8386 
8387 		control.new_size = new_size;
8388 		lock_extent(&inode->io_tree, lock_start, (u64)-1, &cached_state);
8389 		/*
8390 		 * We want to drop from the next block forward in case this new
8391 		 * size is not block aligned since we will be keeping the last
8392 		 * block of the extent just the way it is.
8393 		 */
8394 		btrfs_drop_extent_map_range(inode,
8395 					    ALIGN(new_size, fs_info->sectorsize),
8396 					    (u64)-1, false);
8397 
8398 		ret = btrfs_truncate_inode_items(trans, root, &control);
8399 
8400 		inode_sub_bytes(&inode->vfs_inode, control.sub_bytes);
8401 		btrfs_inode_safe_disk_i_size_write(inode, control.last_size);
8402 
8403 		unlock_extent(&inode->io_tree, lock_start, (u64)-1, &cached_state);
8404 
8405 		trans->block_rsv = &fs_info->trans_block_rsv;
8406 		if (ret != -ENOSPC && ret != -EAGAIN)
8407 			break;
8408 
8409 		ret = btrfs_update_inode(trans, root, inode);
8410 		if (ret)
8411 			break;
8412 
8413 		btrfs_end_transaction(trans);
8414 		btrfs_btree_balance_dirty(fs_info);
8415 
8416 		trans = btrfs_start_transaction(root, 2);
8417 		if (IS_ERR(trans)) {
8418 			ret = PTR_ERR(trans);
8419 			trans = NULL;
8420 			break;
8421 		}
8422 
8423 		btrfs_block_rsv_release(fs_info, rsv, -1, NULL);
8424 		ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
8425 					      rsv, min_size, false);
8426 		/*
8427 		 * We have reserved 2 metadata units when we started the
8428 		 * transaction and min_size matches 1 unit, so this should never
8429 		 * fail, but if it does, it's not critical we just fail truncation.
8430 		 */
8431 		if (WARN_ON(ret))
8432 			break;
8433 
8434 		trans->block_rsv = rsv;
8435 	}
8436 
8437 	/*
8438 	 * We can't call btrfs_truncate_block inside a trans handle as we could
8439 	 * deadlock with freeze, if we got BTRFS_NEED_TRUNCATE_BLOCK then we
8440 	 * know we've truncated everything except the last little bit, and can
8441 	 * do btrfs_truncate_block and then update the disk_i_size.
8442 	 */
8443 	if (ret == BTRFS_NEED_TRUNCATE_BLOCK) {
8444 		btrfs_end_transaction(trans);
8445 		btrfs_btree_balance_dirty(fs_info);
8446 
8447 		ret = btrfs_truncate_block(inode, inode->vfs_inode.i_size, 0, 0);
8448 		if (ret)
8449 			goto out;
8450 		trans = btrfs_start_transaction(root, 1);
8451 		if (IS_ERR(trans)) {
8452 			ret = PTR_ERR(trans);
8453 			goto out;
8454 		}
8455 		btrfs_inode_safe_disk_i_size_write(inode, 0);
8456 	}
8457 
8458 	if (trans) {
8459 		int ret2;
8460 
8461 		trans->block_rsv = &fs_info->trans_block_rsv;
8462 		ret2 = btrfs_update_inode(trans, root, inode);
8463 		if (ret2 && !ret)
8464 			ret = ret2;
8465 
8466 		ret2 = btrfs_end_transaction(trans);
8467 		if (ret2 && !ret)
8468 			ret = ret2;
8469 		btrfs_btree_balance_dirty(fs_info);
8470 	}
8471 out:
8472 	btrfs_free_block_rsv(fs_info, rsv);
8473 	/*
8474 	 * So if we truncate and then write and fsync we normally would just
8475 	 * write the extents that changed, which is a problem if we need to
8476 	 * first truncate that entire inode.  So set this flag so we write out
8477 	 * all of the extents in the inode to the sync log so we're completely
8478 	 * safe.
8479 	 *
8480 	 * If no extents were dropped or trimmed we don't need to force the next
8481 	 * fsync to truncate all the inode's items from the log and re-log them
8482 	 * all. This means the truncate operation did not change the file size,
8483 	 * or changed it to a smaller size but there was only an implicit hole
8484 	 * between the old i_size and the new i_size, and there were no prealloc
8485 	 * extents beyond i_size to drop.
8486 	 */
8487 	if (control.extents_found > 0)
8488 		btrfs_set_inode_full_sync(inode);
8489 
8490 	return ret;
8491 }
8492 
8493 struct inode *btrfs_new_subvol_inode(struct mnt_idmap *idmap,
8494 				     struct inode *dir)
8495 {
8496 	struct inode *inode;
8497 
8498 	inode = new_inode(dir->i_sb);
8499 	if (inode) {
8500 		/*
8501 		 * Subvolumes don't inherit the sgid bit or the parent's gid if
8502 		 * the parent's sgid bit is set. This is probably a bug.
8503 		 */
8504 		inode_init_owner(idmap, inode, NULL,
8505 				 S_IFDIR | (~current_umask() & S_IRWXUGO));
8506 		inode->i_op = &btrfs_dir_inode_operations;
8507 		inode->i_fop = &btrfs_dir_file_operations;
8508 	}
8509 	return inode;
8510 }
8511 
8512 struct inode *btrfs_alloc_inode(struct super_block *sb)
8513 {
8514 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
8515 	struct btrfs_inode *ei;
8516 	struct inode *inode;
8517 
8518 	ei = alloc_inode_sb(sb, btrfs_inode_cachep, GFP_KERNEL);
8519 	if (!ei)
8520 		return NULL;
8521 
8522 	ei->root = NULL;
8523 	ei->generation = 0;
8524 	ei->last_trans = 0;
8525 	ei->last_sub_trans = 0;
8526 	ei->logged_trans = 0;
8527 	ei->delalloc_bytes = 0;
8528 	ei->new_delalloc_bytes = 0;
8529 	ei->defrag_bytes = 0;
8530 	ei->disk_i_size = 0;
8531 	ei->flags = 0;
8532 	ei->ro_flags = 0;
8533 	ei->csum_bytes = 0;
8534 	ei->index_cnt = (u64)-1;
8535 	ei->dir_index = 0;
8536 	ei->last_unlink_trans = 0;
8537 	ei->last_reflink_trans = 0;
8538 	ei->last_log_commit = 0;
8539 
8540 	spin_lock_init(&ei->lock);
8541 	ei->outstanding_extents = 0;
8542 	if (sb->s_magic != BTRFS_TEST_MAGIC)
8543 		btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv,
8544 					      BTRFS_BLOCK_RSV_DELALLOC);
8545 	ei->runtime_flags = 0;
8546 	ei->prop_compress = BTRFS_COMPRESS_NONE;
8547 	ei->defrag_compress = BTRFS_COMPRESS_NONE;
8548 
8549 	ei->delayed_node = NULL;
8550 
8551 	ei->i_otime.tv_sec = 0;
8552 	ei->i_otime.tv_nsec = 0;
8553 
8554 	inode = &ei->vfs_inode;
8555 	extent_map_tree_init(&ei->extent_tree);
8556 	extent_io_tree_init(fs_info, &ei->io_tree, IO_TREE_INODE_IO);
8557 	ei->io_tree.inode = ei;
8558 	extent_io_tree_init(fs_info, &ei->file_extent_tree,
8559 			    IO_TREE_INODE_FILE_EXTENT);
8560 	mutex_init(&ei->log_mutex);
8561 	btrfs_ordered_inode_tree_init(&ei->ordered_tree);
8562 	INIT_LIST_HEAD(&ei->delalloc_inodes);
8563 	INIT_LIST_HEAD(&ei->delayed_iput);
8564 	RB_CLEAR_NODE(&ei->rb_node);
8565 	init_rwsem(&ei->i_mmap_lock);
8566 
8567 	return inode;
8568 }
8569 
8570 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
8571 void btrfs_test_destroy_inode(struct inode *inode)
8572 {
8573 	btrfs_drop_extent_map_range(BTRFS_I(inode), 0, (u64)-1, false);
8574 	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8575 }
8576 #endif
8577 
8578 void btrfs_free_inode(struct inode *inode)
8579 {
8580 	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8581 }
8582 
8583 void btrfs_destroy_inode(struct inode *vfs_inode)
8584 {
8585 	struct btrfs_ordered_extent *ordered;
8586 	struct btrfs_inode *inode = BTRFS_I(vfs_inode);
8587 	struct btrfs_root *root = inode->root;
8588 	bool freespace_inode;
8589 
8590 	WARN_ON(!hlist_empty(&vfs_inode->i_dentry));
8591 	WARN_ON(vfs_inode->i_data.nrpages);
8592 	WARN_ON(inode->block_rsv.reserved);
8593 	WARN_ON(inode->block_rsv.size);
8594 	WARN_ON(inode->outstanding_extents);
8595 	if (!S_ISDIR(vfs_inode->i_mode)) {
8596 		WARN_ON(inode->delalloc_bytes);
8597 		WARN_ON(inode->new_delalloc_bytes);
8598 	}
8599 	WARN_ON(inode->csum_bytes);
8600 	WARN_ON(inode->defrag_bytes);
8601 
8602 	/*
8603 	 * This can happen where we create an inode, but somebody else also
8604 	 * created the same inode and we need to destroy the one we already
8605 	 * created.
8606 	 */
8607 	if (!root)
8608 		return;
8609 
8610 	/*
8611 	 * If this is a free space inode do not take the ordered extents lockdep
8612 	 * map.
8613 	 */
8614 	freespace_inode = btrfs_is_free_space_inode(inode);
8615 
8616 	while (1) {
8617 		ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
8618 		if (!ordered)
8619 			break;
8620 		else {
8621 			btrfs_err(root->fs_info,
8622 				  "found ordered extent %llu %llu on inode cleanup",
8623 				  ordered->file_offset, ordered->num_bytes);
8624 
8625 			if (!freespace_inode)
8626 				btrfs_lockdep_acquire(root->fs_info, btrfs_ordered_extent);
8627 
8628 			btrfs_remove_ordered_extent(inode, ordered);
8629 			btrfs_put_ordered_extent(ordered);
8630 			btrfs_put_ordered_extent(ordered);
8631 		}
8632 	}
8633 	btrfs_qgroup_check_reserved_leak(inode);
8634 	inode_tree_del(inode);
8635 	btrfs_drop_extent_map_range(inode, 0, (u64)-1, false);
8636 	btrfs_inode_clear_file_extent_range(inode, 0, (u64)-1);
8637 	btrfs_put_root(inode->root);
8638 }
8639 
8640 int btrfs_drop_inode(struct inode *inode)
8641 {
8642 	struct btrfs_root *root = BTRFS_I(inode)->root;
8643 
8644 	if (root == NULL)
8645 		return 1;
8646 
8647 	/* the snap/subvol tree is on deleting */
8648 	if (btrfs_root_refs(&root->root_item) == 0)
8649 		return 1;
8650 	else
8651 		return generic_drop_inode(inode);
8652 }
8653 
8654 static void init_once(void *foo)
8655 {
8656 	struct btrfs_inode *ei = foo;
8657 
8658 	inode_init_once(&ei->vfs_inode);
8659 }
8660 
8661 void __cold btrfs_destroy_cachep(void)
8662 {
8663 	/*
8664 	 * Make sure all delayed rcu free inodes are flushed before we
8665 	 * destroy cache.
8666 	 */
8667 	rcu_barrier();
8668 	bioset_exit(&btrfs_dio_bioset);
8669 	kmem_cache_destroy(btrfs_inode_cachep);
8670 }
8671 
8672 int __init btrfs_init_cachep(void)
8673 {
8674 	btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
8675 			sizeof(struct btrfs_inode), 0,
8676 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT,
8677 			init_once);
8678 	if (!btrfs_inode_cachep)
8679 		goto fail;
8680 
8681 	if (bioset_init(&btrfs_dio_bioset, BIO_POOL_SIZE,
8682 			offsetof(struct btrfs_dio_private, bbio.bio),
8683 			BIOSET_NEED_BVECS))
8684 		goto fail;
8685 
8686 	return 0;
8687 fail:
8688 	btrfs_destroy_cachep();
8689 	return -ENOMEM;
8690 }
8691 
8692 static int btrfs_getattr(struct mnt_idmap *idmap,
8693 			 const struct path *path, struct kstat *stat,
8694 			 u32 request_mask, unsigned int flags)
8695 {
8696 	u64 delalloc_bytes;
8697 	u64 inode_bytes;
8698 	struct inode *inode = d_inode(path->dentry);
8699 	u32 blocksize = btrfs_sb(inode->i_sb)->sectorsize;
8700 	u32 bi_flags = BTRFS_I(inode)->flags;
8701 	u32 bi_ro_flags = BTRFS_I(inode)->ro_flags;
8702 
8703 	stat->result_mask |= STATX_BTIME;
8704 	stat->btime.tv_sec = BTRFS_I(inode)->i_otime.tv_sec;
8705 	stat->btime.tv_nsec = BTRFS_I(inode)->i_otime.tv_nsec;
8706 	if (bi_flags & BTRFS_INODE_APPEND)
8707 		stat->attributes |= STATX_ATTR_APPEND;
8708 	if (bi_flags & BTRFS_INODE_COMPRESS)
8709 		stat->attributes |= STATX_ATTR_COMPRESSED;
8710 	if (bi_flags & BTRFS_INODE_IMMUTABLE)
8711 		stat->attributes |= STATX_ATTR_IMMUTABLE;
8712 	if (bi_flags & BTRFS_INODE_NODUMP)
8713 		stat->attributes |= STATX_ATTR_NODUMP;
8714 	if (bi_ro_flags & BTRFS_INODE_RO_VERITY)
8715 		stat->attributes |= STATX_ATTR_VERITY;
8716 
8717 	stat->attributes_mask |= (STATX_ATTR_APPEND |
8718 				  STATX_ATTR_COMPRESSED |
8719 				  STATX_ATTR_IMMUTABLE |
8720 				  STATX_ATTR_NODUMP);
8721 
8722 	generic_fillattr(idmap, request_mask, inode, stat);
8723 	stat->dev = BTRFS_I(inode)->root->anon_dev;
8724 
8725 	spin_lock(&BTRFS_I(inode)->lock);
8726 	delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes;
8727 	inode_bytes = inode_get_bytes(inode);
8728 	spin_unlock(&BTRFS_I(inode)->lock);
8729 	stat->blocks = (ALIGN(inode_bytes, blocksize) +
8730 			ALIGN(delalloc_bytes, blocksize)) >> SECTOR_SHIFT;
8731 	return 0;
8732 }
8733 
8734 static int btrfs_rename_exchange(struct inode *old_dir,
8735 			      struct dentry *old_dentry,
8736 			      struct inode *new_dir,
8737 			      struct dentry *new_dentry)
8738 {
8739 	struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
8740 	struct btrfs_trans_handle *trans;
8741 	unsigned int trans_num_items;
8742 	struct btrfs_root *root = BTRFS_I(old_dir)->root;
8743 	struct btrfs_root *dest = BTRFS_I(new_dir)->root;
8744 	struct inode *new_inode = new_dentry->d_inode;
8745 	struct inode *old_inode = old_dentry->d_inode;
8746 	struct btrfs_rename_ctx old_rename_ctx;
8747 	struct btrfs_rename_ctx new_rename_ctx;
8748 	u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
8749 	u64 new_ino = btrfs_ino(BTRFS_I(new_inode));
8750 	u64 old_idx = 0;
8751 	u64 new_idx = 0;
8752 	int ret;
8753 	int ret2;
8754 	bool need_abort = false;
8755 	struct fscrypt_name old_fname, new_fname;
8756 	struct fscrypt_str *old_name, *new_name;
8757 
8758 	/*
8759 	 * For non-subvolumes allow exchange only within one subvolume, in the
8760 	 * same inode namespace. Two subvolumes (represented as directory) can
8761 	 * be exchanged as they're a logical link and have a fixed inode number.
8762 	 */
8763 	if (root != dest &&
8764 	    (old_ino != BTRFS_FIRST_FREE_OBJECTID ||
8765 	     new_ino != BTRFS_FIRST_FREE_OBJECTID))
8766 		return -EXDEV;
8767 
8768 	ret = fscrypt_setup_filename(old_dir, &old_dentry->d_name, 0, &old_fname);
8769 	if (ret)
8770 		return ret;
8771 
8772 	ret = fscrypt_setup_filename(new_dir, &new_dentry->d_name, 0, &new_fname);
8773 	if (ret) {
8774 		fscrypt_free_filename(&old_fname);
8775 		return ret;
8776 	}
8777 
8778 	old_name = &old_fname.disk_name;
8779 	new_name = &new_fname.disk_name;
8780 
8781 	/* close the race window with snapshot create/destroy ioctl */
8782 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID ||
8783 	    new_ino == BTRFS_FIRST_FREE_OBJECTID)
8784 		down_read(&fs_info->subvol_sem);
8785 
8786 	/*
8787 	 * For each inode:
8788 	 * 1 to remove old dir item
8789 	 * 1 to remove old dir index
8790 	 * 1 to add new dir item
8791 	 * 1 to add new dir index
8792 	 * 1 to update parent inode
8793 	 *
8794 	 * If the parents are the same, we only need to account for one
8795 	 */
8796 	trans_num_items = (old_dir == new_dir ? 9 : 10);
8797 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
8798 		/*
8799 		 * 1 to remove old root ref
8800 		 * 1 to remove old root backref
8801 		 * 1 to add new root ref
8802 		 * 1 to add new root backref
8803 		 */
8804 		trans_num_items += 4;
8805 	} else {
8806 		/*
8807 		 * 1 to update inode item
8808 		 * 1 to remove old inode ref
8809 		 * 1 to add new inode ref
8810 		 */
8811 		trans_num_items += 3;
8812 	}
8813 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
8814 		trans_num_items += 4;
8815 	else
8816 		trans_num_items += 3;
8817 	trans = btrfs_start_transaction(root, trans_num_items);
8818 	if (IS_ERR(trans)) {
8819 		ret = PTR_ERR(trans);
8820 		goto out_notrans;
8821 	}
8822 
8823 	if (dest != root) {
8824 		ret = btrfs_record_root_in_trans(trans, dest);
8825 		if (ret)
8826 			goto out_fail;
8827 	}
8828 
8829 	/*
8830 	 * We need to find a free sequence number both in the source and
8831 	 * in the destination directory for the exchange.
8832 	 */
8833 	ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx);
8834 	if (ret)
8835 		goto out_fail;
8836 	ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx);
8837 	if (ret)
8838 		goto out_fail;
8839 
8840 	BTRFS_I(old_inode)->dir_index = 0ULL;
8841 	BTRFS_I(new_inode)->dir_index = 0ULL;
8842 
8843 	/* Reference for the source. */
8844 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
8845 		/* force full log commit if subvolume involved. */
8846 		btrfs_set_log_full_commit(trans);
8847 	} else {
8848 		ret = btrfs_insert_inode_ref(trans, dest, new_name, old_ino,
8849 					     btrfs_ino(BTRFS_I(new_dir)),
8850 					     old_idx);
8851 		if (ret)
8852 			goto out_fail;
8853 		need_abort = true;
8854 	}
8855 
8856 	/* And now for the dest. */
8857 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
8858 		/* force full log commit if subvolume involved. */
8859 		btrfs_set_log_full_commit(trans);
8860 	} else {
8861 		ret = btrfs_insert_inode_ref(trans, root, old_name, new_ino,
8862 					     btrfs_ino(BTRFS_I(old_dir)),
8863 					     new_idx);
8864 		if (ret) {
8865 			if (need_abort)
8866 				btrfs_abort_transaction(trans, ret);
8867 			goto out_fail;
8868 		}
8869 	}
8870 
8871 	/* Update inode version and ctime/mtime. */
8872 	inode_inc_iversion(old_dir);
8873 	inode_inc_iversion(new_dir);
8874 	inode_inc_iversion(old_inode);
8875 	inode_inc_iversion(new_inode);
8876 	simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
8877 
8878 	if (old_dentry->d_parent != new_dentry->d_parent) {
8879 		btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
8880 					BTRFS_I(old_inode), true);
8881 		btrfs_record_unlink_dir(trans, BTRFS_I(new_dir),
8882 					BTRFS_I(new_inode), true);
8883 	}
8884 
8885 	/* src is a subvolume */
8886 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
8887 		ret = btrfs_unlink_subvol(trans, BTRFS_I(old_dir), old_dentry);
8888 	} else { /* src is an inode */
8889 		ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir),
8890 					   BTRFS_I(old_dentry->d_inode),
8891 					   old_name, &old_rename_ctx);
8892 		if (!ret)
8893 			ret = btrfs_update_inode(trans, root, BTRFS_I(old_inode));
8894 	}
8895 	if (ret) {
8896 		btrfs_abort_transaction(trans, ret);
8897 		goto out_fail;
8898 	}
8899 
8900 	/* dest is a subvolume */
8901 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
8902 		ret = btrfs_unlink_subvol(trans, BTRFS_I(new_dir), new_dentry);
8903 	} else { /* dest is an inode */
8904 		ret = __btrfs_unlink_inode(trans, BTRFS_I(new_dir),
8905 					   BTRFS_I(new_dentry->d_inode),
8906 					   new_name, &new_rename_ctx);
8907 		if (!ret)
8908 			ret = btrfs_update_inode(trans, dest, BTRFS_I(new_inode));
8909 	}
8910 	if (ret) {
8911 		btrfs_abort_transaction(trans, ret);
8912 		goto out_fail;
8913 	}
8914 
8915 	ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
8916 			     new_name, 0, old_idx);
8917 	if (ret) {
8918 		btrfs_abort_transaction(trans, ret);
8919 		goto out_fail;
8920 	}
8921 
8922 	ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode),
8923 			     old_name, 0, new_idx);
8924 	if (ret) {
8925 		btrfs_abort_transaction(trans, ret);
8926 		goto out_fail;
8927 	}
8928 
8929 	if (old_inode->i_nlink == 1)
8930 		BTRFS_I(old_inode)->dir_index = old_idx;
8931 	if (new_inode->i_nlink == 1)
8932 		BTRFS_I(new_inode)->dir_index = new_idx;
8933 
8934 	/*
8935 	 * Now pin the logs of the roots. We do it to ensure that no other task
8936 	 * can sync the logs while we are in progress with the rename, because
8937 	 * that could result in an inconsistency in case any of the inodes that
8938 	 * are part of this rename operation were logged before.
8939 	 */
8940 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
8941 		btrfs_pin_log_trans(root);
8942 	if (new_ino != BTRFS_FIRST_FREE_OBJECTID)
8943 		btrfs_pin_log_trans(dest);
8944 
8945 	/* Do the log updates for all inodes. */
8946 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
8947 		btrfs_log_new_name(trans, old_dentry, BTRFS_I(old_dir),
8948 				   old_rename_ctx.index, new_dentry->d_parent);
8949 	if (new_ino != BTRFS_FIRST_FREE_OBJECTID)
8950 		btrfs_log_new_name(trans, new_dentry, BTRFS_I(new_dir),
8951 				   new_rename_ctx.index, old_dentry->d_parent);
8952 
8953 	/* Now unpin the logs. */
8954 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
8955 		btrfs_end_log_trans(root);
8956 	if (new_ino != BTRFS_FIRST_FREE_OBJECTID)
8957 		btrfs_end_log_trans(dest);
8958 out_fail:
8959 	ret2 = btrfs_end_transaction(trans);
8960 	ret = ret ? ret : ret2;
8961 out_notrans:
8962 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID ||
8963 	    old_ino == BTRFS_FIRST_FREE_OBJECTID)
8964 		up_read(&fs_info->subvol_sem);
8965 
8966 	fscrypt_free_filename(&new_fname);
8967 	fscrypt_free_filename(&old_fname);
8968 	return ret;
8969 }
8970 
8971 static struct inode *new_whiteout_inode(struct mnt_idmap *idmap,
8972 					struct inode *dir)
8973 {
8974 	struct inode *inode;
8975 
8976 	inode = new_inode(dir->i_sb);
8977 	if (inode) {
8978 		inode_init_owner(idmap, inode, dir,
8979 				 S_IFCHR | WHITEOUT_MODE);
8980 		inode->i_op = &btrfs_special_inode_operations;
8981 		init_special_inode(inode, inode->i_mode, WHITEOUT_DEV);
8982 	}
8983 	return inode;
8984 }
8985 
8986 static int btrfs_rename(struct mnt_idmap *idmap,
8987 			struct inode *old_dir, struct dentry *old_dentry,
8988 			struct inode *new_dir, struct dentry *new_dentry,
8989 			unsigned int flags)
8990 {
8991 	struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
8992 	struct btrfs_new_inode_args whiteout_args = {
8993 		.dir = old_dir,
8994 		.dentry = old_dentry,
8995 	};
8996 	struct btrfs_trans_handle *trans;
8997 	unsigned int trans_num_items;
8998 	struct btrfs_root *root = BTRFS_I(old_dir)->root;
8999 	struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9000 	struct inode *new_inode = d_inode(new_dentry);
9001 	struct inode *old_inode = d_inode(old_dentry);
9002 	struct btrfs_rename_ctx rename_ctx;
9003 	u64 index = 0;
9004 	int ret;
9005 	int ret2;
9006 	u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
9007 	struct fscrypt_name old_fname, new_fname;
9008 
9009 	if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
9010 		return -EPERM;
9011 
9012 	/* we only allow rename subvolume link between subvolumes */
9013 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9014 		return -EXDEV;
9015 
9016 	if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
9017 	    (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID))
9018 		return -ENOTEMPTY;
9019 
9020 	if (S_ISDIR(old_inode->i_mode) && new_inode &&
9021 	    new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
9022 		return -ENOTEMPTY;
9023 
9024 	ret = fscrypt_setup_filename(old_dir, &old_dentry->d_name, 0, &old_fname);
9025 	if (ret)
9026 		return ret;
9027 
9028 	ret = fscrypt_setup_filename(new_dir, &new_dentry->d_name, 0, &new_fname);
9029 	if (ret) {
9030 		fscrypt_free_filename(&old_fname);
9031 		return ret;
9032 	}
9033 
9034 	/* check for collisions, even if the  name isn't there */
9035 	ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino, &new_fname.disk_name);
9036 	if (ret) {
9037 		if (ret == -EEXIST) {
9038 			/* we shouldn't get
9039 			 * eexist without a new_inode */
9040 			if (WARN_ON(!new_inode)) {
9041 				goto out_fscrypt_names;
9042 			}
9043 		} else {
9044 			/* maybe -EOVERFLOW */
9045 			goto out_fscrypt_names;
9046 		}
9047 	}
9048 	ret = 0;
9049 
9050 	/*
9051 	 * we're using rename to replace one file with another.  Start IO on it
9052 	 * now so  we don't add too much work to the end of the transaction
9053 	 */
9054 	if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
9055 		filemap_flush(old_inode->i_mapping);
9056 
9057 	if (flags & RENAME_WHITEOUT) {
9058 		whiteout_args.inode = new_whiteout_inode(idmap, old_dir);
9059 		if (!whiteout_args.inode) {
9060 			ret = -ENOMEM;
9061 			goto out_fscrypt_names;
9062 		}
9063 		ret = btrfs_new_inode_prepare(&whiteout_args, &trans_num_items);
9064 		if (ret)
9065 			goto out_whiteout_inode;
9066 	} else {
9067 		/* 1 to update the old parent inode. */
9068 		trans_num_items = 1;
9069 	}
9070 
9071 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9072 		/* Close the race window with snapshot create/destroy ioctl */
9073 		down_read(&fs_info->subvol_sem);
9074 		/*
9075 		 * 1 to remove old root ref
9076 		 * 1 to remove old root backref
9077 		 * 1 to add new root ref
9078 		 * 1 to add new root backref
9079 		 */
9080 		trans_num_items += 4;
9081 	} else {
9082 		/*
9083 		 * 1 to update inode
9084 		 * 1 to remove old inode ref
9085 		 * 1 to add new inode ref
9086 		 */
9087 		trans_num_items += 3;
9088 	}
9089 	/*
9090 	 * 1 to remove old dir item
9091 	 * 1 to remove old dir index
9092 	 * 1 to add new dir item
9093 	 * 1 to add new dir index
9094 	 */
9095 	trans_num_items += 4;
9096 	/* 1 to update new parent inode if it's not the same as the old parent */
9097 	if (new_dir != old_dir)
9098 		trans_num_items++;
9099 	if (new_inode) {
9100 		/*
9101 		 * 1 to update inode
9102 		 * 1 to remove inode ref
9103 		 * 1 to remove dir item
9104 		 * 1 to remove dir index
9105 		 * 1 to possibly add orphan item
9106 		 */
9107 		trans_num_items += 5;
9108 	}
9109 	trans = btrfs_start_transaction(root, trans_num_items);
9110 	if (IS_ERR(trans)) {
9111 		ret = PTR_ERR(trans);
9112 		goto out_notrans;
9113 	}
9114 
9115 	if (dest != root) {
9116 		ret = btrfs_record_root_in_trans(trans, dest);
9117 		if (ret)
9118 			goto out_fail;
9119 	}
9120 
9121 	ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index);
9122 	if (ret)
9123 		goto out_fail;
9124 
9125 	BTRFS_I(old_inode)->dir_index = 0ULL;
9126 	if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9127 		/* force full log commit if subvolume involved. */
9128 		btrfs_set_log_full_commit(trans);
9129 	} else {
9130 		ret = btrfs_insert_inode_ref(trans, dest, &new_fname.disk_name,
9131 					     old_ino, btrfs_ino(BTRFS_I(new_dir)),
9132 					     index);
9133 		if (ret)
9134 			goto out_fail;
9135 	}
9136 
9137 	inode_inc_iversion(old_dir);
9138 	inode_inc_iversion(new_dir);
9139 	inode_inc_iversion(old_inode);
9140 	simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
9141 
9142 	if (old_dentry->d_parent != new_dentry->d_parent)
9143 		btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9144 					BTRFS_I(old_inode), true);
9145 
9146 	if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9147 		ret = btrfs_unlink_subvol(trans, BTRFS_I(old_dir), old_dentry);
9148 	} else {
9149 		ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir),
9150 					   BTRFS_I(d_inode(old_dentry)),
9151 					   &old_fname.disk_name, &rename_ctx);
9152 		if (!ret)
9153 			ret = btrfs_update_inode(trans, root, BTRFS_I(old_inode));
9154 	}
9155 	if (ret) {
9156 		btrfs_abort_transaction(trans, ret);
9157 		goto out_fail;
9158 	}
9159 
9160 	if (new_inode) {
9161 		inode_inc_iversion(new_inode);
9162 		if (unlikely(btrfs_ino(BTRFS_I(new_inode)) ==
9163 			     BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
9164 			ret = btrfs_unlink_subvol(trans, BTRFS_I(new_dir), new_dentry);
9165 			BUG_ON(new_inode->i_nlink == 0);
9166 		} else {
9167 			ret = btrfs_unlink_inode(trans, BTRFS_I(new_dir),
9168 						 BTRFS_I(d_inode(new_dentry)),
9169 						 &new_fname.disk_name);
9170 		}
9171 		if (!ret && new_inode->i_nlink == 0)
9172 			ret = btrfs_orphan_add(trans,
9173 					BTRFS_I(d_inode(new_dentry)));
9174 		if (ret) {
9175 			btrfs_abort_transaction(trans, ret);
9176 			goto out_fail;
9177 		}
9178 	}
9179 
9180 	ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
9181 			     &new_fname.disk_name, 0, index);
9182 	if (ret) {
9183 		btrfs_abort_transaction(trans, ret);
9184 		goto out_fail;
9185 	}
9186 
9187 	if (old_inode->i_nlink == 1)
9188 		BTRFS_I(old_inode)->dir_index = index;
9189 
9190 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
9191 		btrfs_log_new_name(trans, old_dentry, BTRFS_I(old_dir),
9192 				   rename_ctx.index, new_dentry->d_parent);
9193 
9194 	if (flags & RENAME_WHITEOUT) {
9195 		ret = btrfs_create_new_inode(trans, &whiteout_args);
9196 		if (ret) {
9197 			btrfs_abort_transaction(trans, ret);
9198 			goto out_fail;
9199 		} else {
9200 			unlock_new_inode(whiteout_args.inode);
9201 			iput(whiteout_args.inode);
9202 			whiteout_args.inode = NULL;
9203 		}
9204 	}
9205 out_fail:
9206 	ret2 = btrfs_end_transaction(trans);
9207 	ret = ret ? ret : ret2;
9208 out_notrans:
9209 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9210 		up_read(&fs_info->subvol_sem);
9211 	if (flags & RENAME_WHITEOUT)
9212 		btrfs_new_inode_args_destroy(&whiteout_args);
9213 out_whiteout_inode:
9214 	if (flags & RENAME_WHITEOUT)
9215 		iput(whiteout_args.inode);
9216 out_fscrypt_names:
9217 	fscrypt_free_filename(&old_fname);
9218 	fscrypt_free_filename(&new_fname);
9219 	return ret;
9220 }
9221 
9222 static int btrfs_rename2(struct mnt_idmap *idmap, struct inode *old_dir,
9223 			 struct dentry *old_dentry, struct inode *new_dir,
9224 			 struct dentry *new_dentry, unsigned int flags)
9225 {
9226 	int ret;
9227 
9228 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
9229 		return -EINVAL;
9230 
9231 	if (flags & RENAME_EXCHANGE)
9232 		ret = btrfs_rename_exchange(old_dir, old_dentry, new_dir,
9233 					    new_dentry);
9234 	else
9235 		ret = btrfs_rename(idmap, old_dir, old_dentry, new_dir,
9236 				   new_dentry, flags);
9237 
9238 	btrfs_btree_balance_dirty(BTRFS_I(new_dir)->root->fs_info);
9239 
9240 	return ret;
9241 }
9242 
9243 struct btrfs_delalloc_work {
9244 	struct inode *inode;
9245 	struct completion completion;
9246 	struct list_head list;
9247 	struct btrfs_work work;
9248 };
9249 
9250 static void btrfs_run_delalloc_work(struct btrfs_work *work)
9251 {
9252 	struct btrfs_delalloc_work *delalloc_work;
9253 	struct inode *inode;
9254 
9255 	delalloc_work = container_of(work, struct btrfs_delalloc_work,
9256 				     work);
9257 	inode = delalloc_work->inode;
9258 	filemap_flush(inode->i_mapping);
9259 	if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
9260 				&BTRFS_I(inode)->runtime_flags))
9261 		filemap_flush(inode->i_mapping);
9262 
9263 	iput(inode);
9264 	complete(&delalloc_work->completion);
9265 }
9266 
9267 static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode)
9268 {
9269 	struct btrfs_delalloc_work *work;
9270 
9271 	work = kmalloc(sizeof(*work), GFP_NOFS);
9272 	if (!work)
9273 		return NULL;
9274 
9275 	init_completion(&work->completion);
9276 	INIT_LIST_HEAD(&work->list);
9277 	work->inode = inode;
9278 	btrfs_init_work(&work->work, btrfs_run_delalloc_work, NULL, NULL);
9279 
9280 	return work;
9281 }
9282 
9283 /*
9284  * some fairly slow code that needs optimization. This walks the list
9285  * of all the inodes with pending delalloc and forces them to disk.
9286  */
9287 static int start_delalloc_inodes(struct btrfs_root *root,
9288 				 struct writeback_control *wbc, bool snapshot,
9289 				 bool in_reclaim_context)
9290 {
9291 	struct btrfs_inode *binode;
9292 	struct inode *inode;
9293 	struct btrfs_delalloc_work *work, *next;
9294 	LIST_HEAD(works);
9295 	LIST_HEAD(splice);
9296 	int ret = 0;
9297 	bool full_flush = wbc->nr_to_write == LONG_MAX;
9298 
9299 	mutex_lock(&root->delalloc_mutex);
9300 	spin_lock(&root->delalloc_lock);
9301 	list_splice_init(&root->delalloc_inodes, &splice);
9302 	while (!list_empty(&splice)) {
9303 		binode = list_entry(splice.next, struct btrfs_inode,
9304 				    delalloc_inodes);
9305 
9306 		list_move_tail(&binode->delalloc_inodes,
9307 			       &root->delalloc_inodes);
9308 
9309 		if (in_reclaim_context &&
9310 		    test_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &binode->runtime_flags))
9311 			continue;
9312 
9313 		inode = igrab(&binode->vfs_inode);
9314 		if (!inode) {
9315 			cond_resched_lock(&root->delalloc_lock);
9316 			continue;
9317 		}
9318 		spin_unlock(&root->delalloc_lock);
9319 
9320 		if (snapshot)
9321 			set_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
9322 				&binode->runtime_flags);
9323 		if (full_flush) {
9324 			work = btrfs_alloc_delalloc_work(inode);
9325 			if (!work) {
9326 				iput(inode);
9327 				ret = -ENOMEM;
9328 				goto out;
9329 			}
9330 			list_add_tail(&work->list, &works);
9331 			btrfs_queue_work(root->fs_info->flush_workers,
9332 					 &work->work);
9333 		} else {
9334 			ret = filemap_fdatawrite_wbc(inode->i_mapping, wbc);
9335 			btrfs_add_delayed_iput(BTRFS_I(inode));
9336 			if (ret || wbc->nr_to_write <= 0)
9337 				goto out;
9338 		}
9339 		cond_resched();
9340 		spin_lock(&root->delalloc_lock);
9341 	}
9342 	spin_unlock(&root->delalloc_lock);
9343 
9344 out:
9345 	list_for_each_entry_safe(work, next, &works, list) {
9346 		list_del_init(&work->list);
9347 		wait_for_completion(&work->completion);
9348 		kfree(work);
9349 	}
9350 
9351 	if (!list_empty(&splice)) {
9352 		spin_lock(&root->delalloc_lock);
9353 		list_splice_tail(&splice, &root->delalloc_inodes);
9354 		spin_unlock(&root->delalloc_lock);
9355 	}
9356 	mutex_unlock(&root->delalloc_mutex);
9357 	return ret;
9358 }
9359 
9360 int btrfs_start_delalloc_snapshot(struct btrfs_root *root, bool in_reclaim_context)
9361 {
9362 	struct writeback_control wbc = {
9363 		.nr_to_write = LONG_MAX,
9364 		.sync_mode = WB_SYNC_NONE,
9365 		.range_start = 0,
9366 		.range_end = LLONG_MAX,
9367 	};
9368 	struct btrfs_fs_info *fs_info = root->fs_info;
9369 
9370 	if (BTRFS_FS_ERROR(fs_info))
9371 		return -EROFS;
9372 
9373 	return start_delalloc_inodes(root, &wbc, true, in_reclaim_context);
9374 }
9375 
9376 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, long nr,
9377 			       bool in_reclaim_context)
9378 {
9379 	struct writeback_control wbc = {
9380 		.nr_to_write = nr,
9381 		.sync_mode = WB_SYNC_NONE,
9382 		.range_start = 0,
9383 		.range_end = LLONG_MAX,
9384 	};
9385 	struct btrfs_root *root;
9386 	LIST_HEAD(splice);
9387 	int ret;
9388 
9389 	if (BTRFS_FS_ERROR(fs_info))
9390 		return -EROFS;
9391 
9392 	mutex_lock(&fs_info->delalloc_root_mutex);
9393 	spin_lock(&fs_info->delalloc_root_lock);
9394 	list_splice_init(&fs_info->delalloc_roots, &splice);
9395 	while (!list_empty(&splice)) {
9396 		/*
9397 		 * Reset nr_to_write here so we know that we're doing a full
9398 		 * flush.
9399 		 */
9400 		if (nr == LONG_MAX)
9401 			wbc.nr_to_write = LONG_MAX;
9402 
9403 		root = list_first_entry(&splice, struct btrfs_root,
9404 					delalloc_root);
9405 		root = btrfs_grab_root(root);
9406 		BUG_ON(!root);
9407 		list_move_tail(&root->delalloc_root,
9408 			       &fs_info->delalloc_roots);
9409 		spin_unlock(&fs_info->delalloc_root_lock);
9410 
9411 		ret = start_delalloc_inodes(root, &wbc, false, in_reclaim_context);
9412 		btrfs_put_root(root);
9413 		if (ret < 0 || wbc.nr_to_write <= 0)
9414 			goto out;
9415 		spin_lock(&fs_info->delalloc_root_lock);
9416 	}
9417 	spin_unlock(&fs_info->delalloc_root_lock);
9418 
9419 	ret = 0;
9420 out:
9421 	if (!list_empty(&splice)) {
9422 		spin_lock(&fs_info->delalloc_root_lock);
9423 		list_splice_tail(&splice, &fs_info->delalloc_roots);
9424 		spin_unlock(&fs_info->delalloc_root_lock);
9425 	}
9426 	mutex_unlock(&fs_info->delalloc_root_mutex);
9427 	return ret;
9428 }
9429 
9430 static int btrfs_symlink(struct mnt_idmap *idmap, struct inode *dir,
9431 			 struct dentry *dentry, const char *symname)
9432 {
9433 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
9434 	struct btrfs_trans_handle *trans;
9435 	struct btrfs_root *root = BTRFS_I(dir)->root;
9436 	struct btrfs_path *path;
9437 	struct btrfs_key key;
9438 	struct inode *inode;
9439 	struct btrfs_new_inode_args new_inode_args = {
9440 		.dir = dir,
9441 		.dentry = dentry,
9442 	};
9443 	unsigned int trans_num_items;
9444 	int err;
9445 	int name_len;
9446 	int datasize;
9447 	unsigned long ptr;
9448 	struct btrfs_file_extent_item *ei;
9449 	struct extent_buffer *leaf;
9450 
9451 	name_len = strlen(symname);
9452 	if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info))
9453 		return -ENAMETOOLONG;
9454 
9455 	inode = new_inode(dir->i_sb);
9456 	if (!inode)
9457 		return -ENOMEM;
9458 	inode_init_owner(idmap, inode, dir, S_IFLNK | S_IRWXUGO);
9459 	inode->i_op = &btrfs_symlink_inode_operations;
9460 	inode_nohighmem(inode);
9461 	inode->i_mapping->a_ops = &btrfs_aops;
9462 	btrfs_i_size_write(BTRFS_I(inode), name_len);
9463 	inode_set_bytes(inode, name_len);
9464 
9465 	new_inode_args.inode = inode;
9466 	err = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
9467 	if (err)
9468 		goto out_inode;
9469 	/* 1 additional item for the inline extent */
9470 	trans_num_items++;
9471 
9472 	trans = btrfs_start_transaction(root, trans_num_items);
9473 	if (IS_ERR(trans)) {
9474 		err = PTR_ERR(trans);
9475 		goto out_new_inode_args;
9476 	}
9477 
9478 	err = btrfs_create_new_inode(trans, &new_inode_args);
9479 	if (err)
9480 		goto out;
9481 
9482 	path = btrfs_alloc_path();
9483 	if (!path) {
9484 		err = -ENOMEM;
9485 		btrfs_abort_transaction(trans, err);
9486 		discard_new_inode(inode);
9487 		inode = NULL;
9488 		goto out;
9489 	}
9490 	key.objectid = btrfs_ino(BTRFS_I(inode));
9491 	key.offset = 0;
9492 	key.type = BTRFS_EXTENT_DATA_KEY;
9493 	datasize = btrfs_file_extent_calc_inline_size(name_len);
9494 	err = btrfs_insert_empty_item(trans, root, path, &key,
9495 				      datasize);
9496 	if (err) {
9497 		btrfs_abort_transaction(trans, err);
9498 		btrfs_free_path(path);
9499 		discard_new_inode(inode);
9500 		inode = NULL;
9501 		goto out;
9502 	}
9503 	leaf = path->nodes[0];
9504 	ei = btrfs_item_ptr(leaf, path->slots[0],
9505 			    struct btrfs_file_extent_item);
9506 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
9507 	btrfs_set_file_extent_type(leaf, ei,
9508 				   BTRFS_FILE_EXTENT_INLINE);
9509 	btrfs_set_file_extent_encryption(leaf, ei, 0);
9510 	btrfs_set_file_extent_compression(leaf, ei, 0);
9511 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
9512 	btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
9513 
9514 	ptr = btrfs_file_extent_inline_start(ei);
9515 	write_extent_buffer(leaf, symname, ptr, name_len);
9516 	btrfs_mark_buffer_dirty(trans, leaf);
9517 	btrfs_free_path(path);
9518 
9519 	d_instantiate_new(dentry, inode);
9520 	err = 0;
9521 out:
9522 	btrfs_end_transaction(trans);
9523 	btrfs_btree_balance_dirty(fs_info);
9524 out_new_inode_args:
9525 	btrfs_new_inode_args_destroy(&new_inode_args);
9526 out_inode:
9527 	if (err)
9528 		iput(inode);
9529 	return err;
9530 }
9531 
9532 static struct btrfs_trans_handle *insert_prealloc_file_extent(
9533 				       struct btrfs_trans_handle *trans_in,
9534 				       struct btrfs_inode *inode,
9535 				       struct btrfs_key *ins,
9536 				       u64 file_offset)
9537 {
9538 	struct btrfs_file_extent_item stack_fi;
9539 	struct btrfs_replace_extent_info extent_info;
9540 	struct btrfs_trans_handle *trans = trans_in;
9541 	struct btrfs_path *path;
9542 	u64 start = ins->objectid;
9543 	u64 len = ins->offset;
9544 	u64 qgroup_released = 0;
9545 	int ret;
9546 
9547 	memset(&stack_fi, 0, sizeof(stack_fi));
9548 
9549 	btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_PREALLOC);
9550 	btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, start);
9551 	btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi, len);
9552 	btrfs_set_stack_file_extent_num_bytes(&stack_fi, len);
9553 	btrfs_set_stack_file_extent_ram_bytes(&stack_fi, len);
9554 	btrfs_set_stack_file_extent_compression(&stack_fi, BTRFS_COMPRESS_NONE);
9555 	/* Encryption and other encoding is reserved and all 0 */
9556 
9557 	ret = btrfs_qgroup_release_data(inode, file_offset, len, &qgroup_released);
9558 	if (ret < 0)
9559 		return ERR_PTR(ret);
9560 
9561 	if (trans) {
9562 		ret = insert_reserved_file_extent(trans, inode,
9563 						  file_offset, &stack_fi,
9564 						  true, qgroup_released);
9565 		if (ret)
9566 			goto free_qgroup;
9567 		return trans;
9568 	}
9569 
9570 	extent_info.disk_offset = start;
9571 	extent_info.disk_len = len;
9572 	extent_info.data_offset = 0;
9573 	extent_info.data_len = len;
9574 	extent_info.file_offset = file_offset;
9575 	extent_info.extent_buf = (char *)&stack_fi;
9576 	extent_info.is_new_extent = true;
9577 	extent_info.update_times = true;
9578 	extent_info.qgroup_reserved = qgroup_released;
9579 	extent_info.insertions = 0;
9580 
9581 	path = btrfs_alloc_path();
9582 	if (!path) {
9583 		ret = -ENOMEM;
9584 		goto free_qgroup;
9585 	}
9586 
9587 	ret = btrfs_replace_file_extents(inode, path, file_offset,
9588 				     file_offset + len - 1, &extent_info,
9589 				     &trans);
9590 	btrfs_free_path(path);
9591 	if (ret)
9592 		goto free_qgroup;
9593 	return trans;
9594 
9595 free_qgroup:
9596 	/*
9597 	 * We have released qgroup data range at the beginning of the function,
9598 	 * and normally qgroup_released bytes will be freed when committing
9599 	 * transaction.
9600 	 * But if we error out early, we have to free what we have released
9601 	 * or we leak qgroup data reservation.
9602 	 */
9603 	btrfs_qgroup_free_refroot(inode->root->fs_info,
9604 			inode->root->root_key.objectid, qgroup_released,
9605 			BTRFS_QGROUP_RSV_DATA);
9606 	return ERR_PTR(ret);
9607 }
9608 
9609 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
9610 				       u64 start, u64 num_bytes, u64 min_size,
9611 				       loff_t actual_len, u64 *alloc_hint,
9612 				       struct btrfs_trans_handle *trans)
9613 {
9614 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9615 	struct extent_map *em;
9616 	struct btrfs_root *root = BTRFS_I(inode)->root;
9617 	struct btrfs_key ins;
9618 	u64 cur_offset = start;
9619 	u64 clear_offset = start;
9620 	u64 i_size;
9621 	u64 cur_bytes;
9622 	u64 last_alloc = (u64)-1;
9623 	int ret = 0;
9624 	bool own_trans = true;
9625 	u64 end = start + num_bytes - 1;
9626 
9627 	if (trans)
9628 		own_trans = false;
9629 	while (num_bytes > 0) {
9630 		cur_bytes = min_t(u64, num_bytes, SZ_256M);
9631 		cur_bytes = max(cur_bytes, min_size);
9632 		/*
9633 		 * If we are severely fragmented we could end up with really
9634 		 * small allocations, so if the allocator is returning small
9635 		 * chunks lets make its job easier by only searching for those
9636 		 * sized chunks.
9637 		 */
9638 		cur_bytes = min(cur_bytes, last_alloc);
9639 		ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes,
9640 				min_size, 0, *alloc_hint, &ins, 1, 0);
9641 		if (ret)
9642 			break;
9643 
9644 		/*
9645 		 * We've reserved this space, and thus converted it from
9646 		 * ->bytes_may_use to ->bytes_reserved.  Any error that happens
9647 		 * from here on out we will only need to clear our reservation
9648 		 * for the remaining unreserved area, so advance our
9649 		 * clear_offset by our extent size.
9650 		 */
9651 		clear_offset += ins.offset;
9652 
9653 		last_alloc = ins.offset;
9654 		trans = insert_prealloc_file_extent(trans, BTRFS_I(inode),
9655 						    &ins, cur_offset);
9656 		/*
9657 		 * Now that we inserted the prealloc extent we can finally
9658 		 * decrement the number of reservations in the block group.
9659 		 * If we did it before, we could race with relocation and have
9660 		 * relocation miss the reserved extent, making it fail later.
9661 		 */
9662 		btrfs_dec_block_group_reservations(fs_info, ins.objectid);
9663 		if (IS_ERR(trans)) {
9664 			ret = PTR_ERR(trans);
9665 			btrfs_free_reserved_extent(fs_info, ins.objectid,
9666 						   ins.offset, 0);
9667 			break;
9668 		}
9669 
9670 		em = alloc_extent_map();
9671 		if (!em) {
9672 			btrfs_drop_extent_map_range(BTRFS_I(inode), cur_offset,
9673 					    cur_offset + ins.offset - 1, false);
9674 			btrfs_set_inode_full_sync(BTRFS_I(inode));
9675 			goto next;
9676 		}
9677 
9678 		em->start = cur_offset;
9679 		em->orig_start = cur_offset;
9680 		em->len = ins.offset;
9681 		em->block_start = ins.objectid;
9682 		em->block_len = ins.offset;
9683 		em->orig_block_len = ins.offset;
9684 		em->ram_bytes = ins.offset;
9685 		set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
9686 		em->generation = trans->transid;
9687 
9688 		ret = btrfs_replace_extent_map_range(BTRFS_I(inode), em, true);
9689 		free_extent_map(em);
9690 next:
9691 		num_bytes -= ins.offset;
9692 		cur_offset += ins.offset;
9693 		*alloc_hint = ins.objectid + ins.offset;
9694 
9695 		inode_inc_iversion(inode);
9696 		inode_set_ctime_current(inode);
9697 		BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
9698 		if (!(mode & FALLOC_FL_KEEP_SIZE) &&
9699 		    (actual_len > inode->i_size) &&
9700 		    (cur_offset > inode->i_size)) {
9701 			if (cur_offset > actual_len)
9702 				i_size = actual_len;
9703 			else
9704 				i_size = cur_offset;
9705 			i_size_write(inode, i_size);
9706 			btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
9707 		}
9708 
9709 		ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
9710 
9711 		if (ret) {
9712 			btrfs_abort_transaction(trans, ret);
9713 			if (own_trans)
9714 				btrfs_end_transaction(trans);
9715 			break;
9716 		}
9717 
9718 		if (own_trans) {
9719 			btrfs_end_transaction(trans);
9720 			trans = NULL;
9721 		}
9722 	}
9723 	if (clear_offset < end)
9724 		btrfs_free_reserved_data_space(BTRFS_I(inode), NULL, clear_offset,
9725 			end - clear_offset + 1);
9726 	return ret;
9727 }
9728 
9729 int btrfs_prealloc_file_range(struct inode *inode, int mode,
9730 			      u64 start, u64 num_bytes, u64 min_size,
9731 			      loff_t actual_len, u64 *alloc_hint)
9732 {
9733 	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9734 					   min_size, actual_len, alloc_hint,
9735 					   NULL);
9736 }
9737 
9738 int btrfs_prealloc_file_range_trans(struct inode *inode,
9739 				    struct btrfs_trans_handle *trans, int mode,
9740 				    u64 start, u64 num_bytes, u64 min_size,
9741 				    loff_t actual_len, u64 *alloc_hint)
9742 {
9743 	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9744 					   min_size, actual_len, alloc_hint, trans);
9745 }
9746 
9747 static int btrfs_permission(struct mnt_idmap *idmap,
9748 			    struct inode *inode, int mask)
9749 {
9750 	struct btrfs_root *root = BTRFS_I(inode)->root;
9751 	umode_t mode = inode->i_mode;
9752 
9753 	if (mask & MAY_WRITE &&
9754 	    (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
9755 		if (btrfs_root_readonly(root))
9756 			return -EROFS;
9757 		if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
9758 			return -EACCES;
9759 	}
9760 	return generic_permission(idmap, inode, mask);
9761 }
9762 
9763 static int btrfs_tmpfile(struct mnt_idmap *idmap, struct inode *dir,
9764 			 struct file *file, umode_t mode)
9765 {
9766 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
9767 	struct btrfs_trans_handle *trans;
9768 	struct btrfs_root *root = BTRFS_I(dir)->root;
9769 	struct inode *inode;
9770 	struct btrfs_new_inode_args new_inode_args = {
9771 		.dir = dir,
9772 		.dentry = file->f_path.dentry,
9773 		.orphan = true,
9774 	};
9775 	unsigned int trans_num_items;
9776 	int ret;
9777 
9778 	inode = new_inode(dir->i_sb);
9779 	if (!inode)
9780 		return -ENOMEM;
9781 	inode_init_owner(idmap, inode, dir, mode);
9782 	inode->i_fop = &btrfs_file_operations;
9783 	inode->i_op = &btrfs_file_inode_operations;
9784 	inode->i_mapping->a_ops = &btrfs_aops;
9785 
9786 	new_inode_args.inode = inode;
9787 	ret = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
9788 	if (ret)
9789 		goto out_inode;
9790 
9791 	trans = btrfs_start_transaction(root, trans_num_items);
9792 	if (IS_ERR(trans)) {
9793 		ret = PTR_ERR(trans);
9794 		goto out_new_inode_args;
9795 	}
9796 
9797 	ret = btrfs_create_new_inode(trans, &new_inode_args);
9798 
9799 	/*
9800 	 * We set number of links to 0 in btrfs_create_new_inode(), and here we
9801 	 * set it to 1 because d_tmpfile() will issue a warning if the count is
9802 	 * 0, through:
9803 	 *
9804 	 *    d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
9805 	 */
9806 	set_nlink(inode, 1);
9807 
9808 	if (!ret) {
9809 		d_tmpfile(file, inode);
9810 		unlock_new_inode(inode);
9811 		mark_inode_dirty(inode);
9812 	}
9813 
9814 	btrfs_end_transaction(trans);
9815 	btrfs_btree_balance_dirty(fs_info);
9816 out_new_inode_args:
9817 	btrfs_new_inode_args_destroy(&new_inode_args);
9818 out_inode:
9819 	if (ret)
9820 		iput(inode);
9821 	return finish_open_simple(file, ret);
9822 }
9823 
9824 void btrfs_set_range_writeback(struct btrfs_inode *inode, u64 start, u64 end)
9825 {
9826 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
9827 	unsigned long index = start >> PAGE_SHIFT;
9828 	unsigned long end_index = end >> PAGE_SHIFT;
9829 	struct page *page;
9830 	u32 len;
9831 
9832 	ASSERT(end + 1 - start <= U32_MAX);
9833 	len = end + 1 - start;
9834 	while (index <= end_index) {
9835 		page = find_get_page(inode->vfs_inode.i_mapping, index);
9836 		ASSERT(page); /* Pages should be in the extent_io_tree */
9837 
9838 		btrfs_page_set_writeback(fs_info, page, start, len);
9839 		put_page(page);
9840 		index++;
9841 	}
9842 }
9843 
9844 int btrfs_encoded_io_compression_from_extent(struct btrfs_fs_info *fs_info,
9845 					     int compress_type)
9846 {
9847 	switch (compress_type) {
9848 	case BTRFS_COMPRESS_NONE:
9849 		return BTRFS_ENCODED_IO_COMPRESSION_NONE;
9850 	case BTRFS_COMPRESS_ZLIB:
9851 		return BTRFS_ENCODED_IO_COMPRESSION_ZLIB;
9852 	case BTRFS_COMPRESS_LZO:
9853 		/*
9854 		 * The LZO format depends on the sector size. 64K is the maximum
9855 		 * sector size that we support.
9856 		 */
9857 		if (fs_info->sectorsize < SZ_4K || fs_info->sectorsize > SZ_64K)
9858 			return -EINVAL;
9859 		return BTRFS_ENCODED_IO_COMPRESSION_LZO_4K +
9860 		       (fs_info->sectorsize_bits - 12);
9861 	case BTRFS_COMPRESS_ZSTD:
9862 		return BTRFS_ENCODED_IO_COMPRESSION_ZSTD;
9863 	default:
9864 		return -EUCLEAN;
9865 	}
9866 }
9867 
9868 static ssize_t btrfs_encoded_read_inline(
9869 				struct kiocb *iocb,
9870 				struct iov_iter *iter, u64 start,
9871 				u64 lockend,
9872 				struct extent_state **cached_state,
9873 				u64 extent_start, size_t count,
9874 				struct btrfs_ioctl_encoded_io_args *encoded,
9875 				bool *unlocked)
9876 {
9877 	struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
9878 	struct btrfs_root *root = inode->root;
9879 	struct btrfs_fs_info *fs_info = root->fs_info;
9880 	struct extent_io_tree *io_tree = &inode->io_tree;
9881 	struct btrfs_path *path;
9882 	struct extent_buffer *leaf;
9883 	struct btrfs_file_extent_item *item;
9884 	u64 ram_bytes;
9885 	unsigned long ptr;
9886 	void *tmp;
9887 	ssize_t ret;
9888 
9889 	path = btrfs_alloc_path();
9890 	if (!path) {
9891 		ret = -ENOMEM;
9892 		goto out;
9893 	}
9894 	ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode),
9895 				       extent_start, 0);
9896 	if (ret) {
9897 		if (ret > 0) {
9898 			/* The extent item disappeared? */
9899 			ret = -EIO;
9900 		}
9901 		goto out;
9902 	}
9903 	leaf = path->nodes[0];
9904 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
9905 
9906 	ram_bytes = btrfs_file_extent_ram_bytes(leaf, item);
9907 	ptr = btrfs_file_extent_inline_start(item);
9908 
9909 	encoded->len = min_t(u64, extent_start + ram_bytes,
9910 			     inode->vfs_inode.i_size) - iocb->ki_pos;
9911 	ret = btrfs_encoded_io_compression_from_extent(fs_info,
9912 				 btrfs_file_extent_compression(leaf, item));
9913 	if (ret < 0)
9914 		goto out;
9915 	encoded->compression = ret;
9916 	if (encoded->compression) {
9917 		size_t inline_size;
9918 
9919 		inline_size = btrfs_file_extent_inline_item_len(leaf,
9920 								path->slots[0]);
9921 		if (inline_size > count) {
9922 			ret = -ENOBUFS;
9923 			goto out;
9924 		}
9925 		count = inline_size;
9926 		encoded->unencoded_len = ram_bytes;
9927 		encoded->unencoded_offset = iocb->ki_pos - extent_start;
9928 	} else {
9929 		count = min_t(u64, count, encoded->len);
9930 		encoded->len = count;
9931 		encoded->unencoded_len = count;
9932 		ptr += iocb->ki_pos - extent_start;
9933 	}
9934 
9935 	tmp = kmalloc(count, GFP_NOFS);
9936 	if (!tmp) {
9937 		ret = -ENOMEM;
9938 		goto out;
9939 	}
9940 	read_extent_buffer(leaf, tmp, ptr, count);
9941 	btrfs_release_path(path);
9942 	unlock_extent(io_tree, start, lockend, cached_state);
9943 	btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
9944 	*unlocked = true;
9945 
9946 	ret = copy_to_iter(tmp, count, iter);
9947 	if (ret != count)
9948 		ret = -EFAULT;
9949 	kfree(tmp);
9950 out:
9951 	btrfs_free_path(path);
9952 	return ret;
9953 }
9954 
9955 struct btrfs_encoded_read_private {
9956 	wait_queue_head_t wait;
9957 	atomic_t pending;
9958 	blk_status_t status;
9959 };
9960 
9961 static void btrfs_encoded_read_endio(struct btrfs_bio *bbio)
9962 {
9963 	struct btrfs_encoded_read_private *priv = bbio->private;
9964 
9965 	if (bbio->bio.bi_status) {
9966 		/*
9967 		 * The memory barrier implied by the atomic_dec_return() here
9968 		 * pairs with the memory barrier implied by the
9969 		 * atomic_dec_return() or io_wait_event() in
9970 		 * btrfs_encoded_read_regular_fill_pages() to ensure that this
9971 		 * write is observed before the load of status in
9972 		 * btrfs_encoded_read_regular_fill_pages().
9973 		 */
9974 		WRITE_ONCE(priv->status, bbio->bio.bi_status);
9975 	}
9976 	if (!atomic_dec_return(&priv->pending))
9977 		wake_up(&priv->wait);
9978 	bio_put(&bbio->bio);
9979 }
9980 
9981 int btrfs_encoded_read_regular_fill_pages(struct btrfs_inode *inode,
9982 					  u64 file_offset, u64 disk_bytenr,
9983 					  u64 disk_io_size, struct page **pages)
9984 {
9985 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
9986 	struct btrfs_encoded_read_private priv = {
9987 		.pending = ATOMIC_INIT(1),
9988 	};
9989 	unsigned long i = 0;
9990 	struct btrfs_bio *bbio;
9991 
9992 	init_waitqueue_head(&priv.wait);
9993 
9994 	bbio = btrfs_bio_alloc(BIO_MAX_VECS, REQ_OP_READ, fs_info,
9995 			       btrfs_encoded_read_endio, &priv);
9996 	bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT;
9997 	bbio->inode = inode;
9998 
9999 	do {
10000 		size_t bytes = min_t(u64, disk_io_size, PAGE_SIZE);
10001 
10002 		if (bio_add_page(&bbio->bio, pages[i], bytes, 0) < bytes) {
10003 			atomic_inc(&priv.pending);
10004 			btrfs_submit_bio(bbio, 0);
10005 
10006 			bbio = btrfs_bio_alloc(BIO_MAX_VECS, REQ_OP_READ, fs_info,
10007 					       btrfs_encoded_read_endio, &priv);
10008 			bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT;
10009 			bbio->inode = inode;
10010 			continue;
10011 		}
10012 
10013 		i++;
10014 		disk_bytenr += bytes;
10015 		disk_io_size -= bytes;
10016 	} while (disk_io_size);
10017 
10018 	atomic_inc(&priv.pending);
10019 	btrfs_submit_bio(bbio, 0);
10020 
10021 	if (atomic_dec_return(&priv.pending))
10022 		io_wait_event(priv.wait, !atomic_read(&priv.pending));
10023 	/* See btrfs_encoded_read_endio() for ordering. */
10024 	return blk_status_to_errno(READ_ONCE(priv.status));
10025 }
10026 
10027 static ssize_t btrfs_encoded_read_regular(struct kiocb *iocb,
10028 					  struct iov_iter *iter,
10029 					  u64 start, u64 lockend,
10030 					  struct extent_state **cached_state,
10031 					  u64 disk_bytenr, u64 disk_io_size,
10032 					  size_t count, bool compressed,
10033 					  bool *unlocked)
10034 {
10035 	struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
10036 	struct extent_io_tree *io_tree = &inode->io_tree;
10037 	struct page **pages;
10038 	unsigned long nr_pages, i;
10039 	u64 cur;
10040 	size_t page_offset;
10041 	ssize_t ret;
10042 
10043 	nr_pages = DIV_ROUND_UP(disk_io_size, PAGE_SIZE);
10044 	pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
10045 	if (!pages)
10046 		return -ENOMEM;
10047 	ret = btrfs_alloc_page_array(nr_pages, pages);
10048 	if (ret) {
10049 		ret = -ENOMEM;
10050 		goto out;
10051 		}
10052 
10053 	ret = btrfs_encoded_read_regular_fill_pages(inode, start, disk_bytenr,
10054 						    disk_io_size, pages);
10055 	if (ret)
10056 		goto out;
10057 
10058 	unlock_extent(io_tree, start, lockend, cached_state);
10059 	btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
10060 	*unlocked = true;
10061 
10062 	if (compressed) {
10063 		i = 0;
10064 		page_offset = 0;
10065 	} else {
10066 		i = (iocb->ki_pos - start) >> PAGE_SHIFT;
10067 		page_offset = (iocb->ki_pos - start) & (PAGE_SIZE - 1);
10068 	}
10069 	cur = 0;
10070 	while (cur < count) {
10071 		size_t bytes = min_t(size_t, count - cur,
10072 				     PAGE_SIZE - page_offset);
10073 
10074 		if (copy_page_to_iter(pages[i], page_offset, bytes,
10075 				      iter) != bytes) {
10076 			ret = -EFAULT;
10077 			goto out;
10078 		}
10079 		i++;
10080 		cur += bytes;
10081 		page_offset = 0;
10082 	}
10083 	ret = count;
10084 out:
10085 	for (i = 0; i < nr_pages; i++) {
10086 		if (pages[i])
10087 			__free_page(pages[i]);
10088 	}
10089 	kfree(pages);
10090 	return ret;
10091 }
10092 
10093 ssize_t btrfs_encoded_read(struct kiocb *iocb, struct iov_iter *iter,
10094 			   struct btrfs_ioctl_encoded_io_args *encoded)
10095 {
10096 	struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
10097 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
10098 	struct extent_io_tree *io_tree = &inode->io_tree;
10099 	ssize_t ret;
10100 	size_t count = iov_iter_count(iter);
10101 	u64 start, lockend, disk_bytenr, disk_io_size;
10102 	struct extent_state *cached_state = NULL;
10103 	struct extent_map *em;
10104 	bool unlocked = false;
10105 
10106 	file_accessed(iocb->ki_filp);
10107 
10108 	btrfs_inode_lock(inode, BTRFS_ILOCK_SHARED);
10109 
10110 	if (iocb->ki_pos >= inode->vfs_inode.i_size) {
10111 		btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
10112 		return 0;
10113 	}
10114 	start = ALIGN_DOWN(iocb->ki_pos, fs_info->sectorsize);
10115 	/*
10116 	 * We don't know how long the extent containing iocb->ki_pos is, but if
10117 	 * it's compressed we know that it won't be longer than this.
10118 	 */
10119 	lockend = start + BTRFS_MAX_UNCOMPRESSED - 1;
10120 
10121 	for (;;) {
10122 		struct btrfs_ordered_extent *ordered;
10123 
10124 		ret = btrfs_wait_ordered_range(&inode->vfs_inode, start,
10125 					       lockend - start + 1);
10126 		if (ret)
10127 			goto out_unlock_inode;
10128 		lock_extent(io_tree, start, lockend, &cached_state);
10129 		ordered = btrfs_lookup_ordered_range(inode, start,
10130 						     lockend - start + 1);
10131 		if (!ordered)
10132 			break;
10133 		btrfs_put_ordered_extent(ordered);
10134 		unlock_extent(io_tree, start, lockend, &cached_state);
10135 		cond_resched();
10136 	}
10137 
10138 	em = btrfs_get_extent(inode, NULL, 0, start, lockend - start + 1);
10139 	if (IS_ERR(em)) {
10140 		ret = PTR_ERR(em);
10141 		goto out_unlock_extent;
10142 	}
10143 
10144 	if (em->block_start == EXTENT_MAP_INLINE) {
10145 		u64 extent_start = em->start;
10146 
10147 		/*
10148 		 * For inline extents we get everything we need out of the
10149 		 * extent item.
10150 		 */
10151 		free_extent_map(em);
10152 		em = NULL;
10153 		ret = btrfs_encoded_read_inline(iocb, iter, start, lockend,
10154 						&cached_state, extent_start,
10155 						count, encoded, &unlocked);
10156 		goto out;
10157 	}
10158 
10159 	/*
10160 	 * We only want to return up to EOF even if the extent extends beyond
10161 	 * that.
10162 	 */
10163 	encoded->len = min_t(u64, extent_map_end(em),
10164 			     inode->vfs_inode.i_size) - iocb->ki_pos;
10165 	if (em->block_start == EXTENT_MAP_HOLE ||
10166 	    test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
10167 		disk_bytenr = EXTENT_MAP_HOLE;
10168 		count = min_t(u64, count, encoded->len);
10169 		encoded->len = count;
10170 		encoded->unencoded_len = count;
10171 	} else if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
10172 		disk_bytenr = em->block_start;
10173 		/*
10174 		 * Bail if the buffer isn't large enough to return the whole
10175 		 * compressed extent.
10176 		 */
10177 		if (em->block_len > count) {
10178 			ret = -ENOBUFS;
10179 			goto out_em;
10180 		}
10181 		disk_io_size = em->block_len;
10182 		count = em->block_len;
10183 		encoded->unencoded_len = em->ram_bytes;
10184 		encoded->unencoded_offset = iocb->ki_pos - em->orig_start;
10185 		ret = btrfs_encoded_io_compression_from_extent(fs_info,
10186 							     em->compress_type);
10187 		if (ret < 0)
10188 			goto out_em;
10189 		encoded->compression = ret;
10190 	} else {
10191 		disk_bytenr = em->block_start + (start - em->start);
10192 		if (encoded->len > count)
10193 			encoded->len = count;
10194 		/*
10195 		 * Don't read beyond what we locked. This also limits the page
10196 		 * allocations that we'll do.
10197 		 */
10198 		disk_io_size = min(lockend + 1, iocb->ki_pos + encoded->len) - start;
10199 		count = start + disk_io_size - iocb->ki_pos;
10200 		encoded->len = count;
10201 		encoded->unencoded_len = count;
10202 		disk_io_size = ALIGN(disk_io_size, fs_info->sectorsize);
10203 	}
10204 	free_extent_map(em);
10205 	em = NULL;
10206 
10207 	if (disk_bytenr == EXTENT_MAP_HOLE) {
10208 		unlock_extent(io_tree, start, lockend, &cached_state);
10209 		btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
10210 		unlocked = true;
10211 		ret = iov_iter_zero(count, iter);
10212 		if (ret != count)
10213 			ret = -EFAULT;
10214 	} else {
10215 		ret = btrfs_encoded_read_regular(iocb, iter, start, lockend,
10216 						 &cached_state, disk_bytenr,
10217 						 disk_io_size, count,
10218 						 encoded->compression,
10219 						 &unlocked);
10220 	}
10221 
10222 out:
10223 	if (ret >= 0)
10224 		iocb->ki_pos += encoded->len;
10225 out_em:
10226 	free_extent_map(em);
10227 out_unlock_extent:
10228 	if (!unlocked)
10229 		unlock_extent(io_tree, start, lockend, &cached_state);
10230 out_unlock_inode:
10231 	if (!unlocked)
10232 		btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
10233 	return ret;
10234 }
10235 
10236 ssize_t btrfs_do_encoded_write(struct kiocb *iocb, struct iov_iter *from,
10237 			       const struct btrfs_ioctl_encoded_io_args *encoded)
10238 {
10239 	struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
10240 	struct btrfs_root *root = inode->root;
10241 	struct btrfs_fs_info *fs_info = root->fs_info;
10242 	struct extent_io_tree *io_tree = &inode->io_tree;
10243 	struct extent_changeset *data_reserved = NULL;
10244 	struct extent_state *cached_state = NULL;
10245 	struct btrfs_ordered_extent *ordered;
10246 	int compression;
10247 	size_t orig_count;
10248 	u64 start, end;
10249 	u64 num_bytes, ram_bytes, disk_num_bytes;
10250 	unsigned long nr_pages, i;
10251 	struct page **pages;
10252 	struct btrfs_key ins;
10253 	bool extent_reserved = false;
10254 	struct extent_map *em;
10255 	ssize_t ret;
10256 
10257 	switch (encoded->compression) {
10258 	case BTRFS_ENCODED_IO_COMPRESSION_ZLIB:
10259 		compression = BTRFS_COMPRESS_ZLIB;
10260 		break;
10261 	case BTRFS_ENCODED_IO_COMPRESSION_ZSTD:
10262 		compression = BTRFS_COMPRESS_ZSTD;
10263 		break;
10264 	case BTRFS_ENCODED_IO_COMPRESSION_LZO_4K:
10265 	case BTRFS_ENCODED_IO_COMPRESSION_LZO_8K:
10266 	case BTRFS_ENCODED_IO_COMPRESSION_LZO_16K:
10267 	case BTRFS_ENCODED_IO_COMPRESSION_LZO_32K:
10268 	case BTRFS_ENCODED_IO_COMPRESSION_LZO_64K:
10269 		/* The sector size must match for LZO. */
10270 		if (encoded->compression -
10271 		    BTRFS_ENCODED_IO_COMPRESSION_LZO_4K + 12 !=
10272 		    fs_info->sectorsize_bits)
10273 			return -EINVAL;
10274 		compression = BTRFS_COMPRESS_LZO;
10275 		break;
10276 	default:
10277 		return -EINVAL;
10278 	}
10279 	if (encoded->encryption != BTRFS_ENCODED_IO_ENCRYPTION_NONE)
10280 		return -EINVAL;
10281 
10282 	/*
10283 	 * Compressed extents should always have checksums, so error out if we
10284 	 * have a NOCOW file or inode was created while mounted with NODATASUM.
10285 	 */
10286 	if (inode->flags & BTRFS_INODE_NODATASUM)
10287 		return -EINVAL;
10288 
10289 	orig_count = iov_iter_count(from);
10290 
10291 	/* The extent size must be sane. */
10292 	if (encoded->unencoded_len > BTRFS_MAX_UNCOMPRESSED ||
10293 	    orig_count > BTRFS_MAX_COMPRESSED || orig_count == 0)
10294 		return -EINVAL;
10295 
10296 	/*
10297 	 * The compressed data must be smaller than the decompressed data.
10298 	 *
10299 	 * It's of course possible for data to compress to larger or the same
10300 	 * size, but the buffered I/O path falls back to no compression for such
10301 	 * data, and we don't want to break any assumptions by creating these
10302 	 * extents.
10303 	 *
10304 	 * Note that this is less strict than the current check we have that the
10305 	 * compressed data must be at least one sector smaller than the
10306 	 * decompressed data. We only want to enforce the weaker requirement
10307 	 * from old kernels that it is at least one byte smaller.
10308 	 */
10309 	if (orig_count >= encoded->unencoded_len)
10310 		return -EINVAL;
10311 
10312 	/* The extent must start on a sector boundary. */
10313 	start = iocb->ki_pos;
10314 	if (!IS_ALIGNED(start, fs_info->sectorsize))
10315 		return -EINVAL;
10316 
10317 	/*
10318 	 * The extent must end on a sector boundary. However, we allow a write
10319 	 * which ends at or extends i_size to have an unaligned length; we round
10320 	 * up the extent size and set i_size to the unaligned end.
10321 	 */
10322 	if (start + encoded->len < inode->vfs_inode.i_size &&
10323 	    !IS_ALIGNED(start + encoded->len, fs_info->sectorsize))
10324 		return -EINVAL;
10325 
10326 	/* Finally, the offset in the unencoded data must be sector-aligned. */
10327 	if (!IS_ALIGNED(encoded->unencoded_offset, fs_info->sectorsize))
10328 		return -EINVAL;
10329 
10330 	num_bytes = ALIGN(encoded->len, fs_info->sectorsize);
10331 	ram_bytes = ALIGN(encoded->unencoded_len, fs_info->sectorsize);
10332 	end = start + num_bytes - 1;
10333 
10334 	/*
10335 	 * If the extent cannot be inline, the compressed data on disk must be
10336 	 * sector-aligned. For convenience, we extend it with zeroes if it
10337 	 * isn't.
10338 	 */
10339 	disk_num_bytes = ALIGN(orig_count, fs_info->sectorsize);
10340 	nr_pages = DIV_ROUND_UP(disk_num_bytes, PAGE_SIZE);
10341 	pages = kvcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL_ACCOUNT);
10342 	if (!pages)
10343 		return -ENOMEM;
10344 	for (i = 0; i < nr_pages; i++) {
10345 		size_t bytes = min_t(size_t, PAGE_SIZE, iov_iter_count(from));
10346 		char *kaddr;
10347 
10348 		pages[i] = alloc_page(GFP_KERNEL_ACCOUNT);
10349 		if (!pages[i]) {
10350 			ret = -ENOMEM;
10351 			goto out_pages;
10352 		}
10353 		kaddr = kmap_local_page(pages[i]);
10354 		if (copy_from_iter(kaddr, bytes, from) != bytes) {
10355 			kunmap_local(kaddr);
10356 			ret = -EFAULT;
10357 			goto out_pages;
10358 		}
10359 		if (bytes < PAGE_SIZE)
10360 			memset(kaddr + bytes, 0, PAGE_SIZE - bytes);
10361 		kunmap_local(kaddr);
10362 	}
10363 
10364 	for (;;) {
10365 		struct btrfs_ordered_extent *ordered;
10366 
10367 		ret = btrfs_wait_ordered_range(&inode->vfs_inode, start, num_bytes);
10368 		if (ret)
10369 			goto out_pages;
10370 		ret = invalidate_inode_pages2_range(inode->vfs_inode.i_mapping,
10371 						    start >> PAGE_SHIFT,
10372 						    end >> PAGE_SHIFT);
10373 		if (ret)
10374 			goto out_pages;
10375 		lock_extent(io_tree, start, end, &cached_state);
10376 		ordered = btrfs_lookup_ordered_range(inode, start, num_bytes);
10377 		if (!ordered &&
10378 		    !filemap_range_has_page(inode->vfs_inode.i_mapping, start, end))
10379 			break;
10380 		if (ordered)
10381 			btrfs_put_ordered_extent(ordered);
10382 		unlock_extent(io_tree, start, end, &cached_state);
10383 		cond_resched();
10384 	}
10385 
10386 	/*
10387 	 * We don't use the higher-level delalloc space functions because our
10388 	 * num_bytes and disk_num_bytes are different.
10389 	 */
10390 	ret = btrfs_alloc_data_chunk_ondemand(inode, disk_num_bytes);
10391 	if (ret)
10392 		goto out_unlock;
10393 	ret = btrfs_qgroup_reserve_data(inode, &data_reserved, start, num_bytes);
10394 	if (ret)
10395 		goto out_free_data_space;
10396 	ret = btrfs_delalloc_reserve_metadata(inode, num_bytes, disk_num_bytes,
10397 					      false);
10398 	if (ret)
10399 		goto out_qgroup_free_data;
10400 
10401 	/* Try an inline extent first. */
10402 	if (start == 0 && encoded->unencoded_len == encoded->len &&
10403 	    encoded->unencoded_offset == 0) {
10404 		ret = cow_file_range_inline(inode, encoded->len, orig_count,
10405 					    compression, pages, true);
10406 		if (ret <= 0) {
10407 			if (ret == 0)
10408 				ret = orig_count;
10409 			goto out_delalloc_release;
10410 		}
10411 	}
10412 
10413 	ret = btrfs_reserve_extent(root, disk_num_bytes, disk_num_bytes,
10414 				   disk_num_bytes, 0, 0, &ins, 1, 1);
10415 	if (ret)
10416 		goto out_delalloc_release;
10417 	extent_reserved = true;
10418 
10419 	em = create_io_em(inode, start, num_bytes,
10420 			  start - encoded->unencoded_offset, ins.objectid,
10421 			  ins.offset, ins.offset, ram_bytes, compression,
10422 			  BTRFS_ORDERED_COMPRESSED);
10423 	if (IS_ERR(em)) {
10424 		ret = PTR_ERR(em);
10425 		goto out_free_reserved;
10426 	}
10427 	free_extent_map(em);
10428 
10429 	ordered = btrfs_alloc_ordered_extent(inode, start, num_bytes, ram_bytes,
10430 				       ins.objectid, ins.offset,
10431 				       encoded->unencoded_offset,
10432 				       (1 << BTRFS_ORDERED_ENCODED) |
10433 				       (1 << BTRFS_ORDERED_COMPRESSED),
10434 				       compression);
10435 	if (IS_ERR(ordered)) {
10436 		btrfs_drop_extent_map_range(inode, start, end, false);
10437 		ret = PTR_ERR(ordered);
10438 		goto out_free_reserved;
10439 	}
10440 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
10441 
10442 	if (start + encoded->len > inode->vfs_inode.i_size)
10443 		i_size_write(&inode->vfs_inode, start + encoded->len);
10444 
10445 	unlock_extent(io_tree, start, end, &cached_state);
10446 
10447 	btrfs_delalloc_release_extents(inode, num_bytes);
10448 
10449 	btrfs_submit_compressed_write(ordered, pages, nr_pages, 0, false);
10450 	ret = orig_count;
10451 	goto out;
10452 
10453 out_free_reserved:
10454 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
10455 	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
10456 out_delalloc_release:
10457 	btrfs_delalloc_release_extents(inode, num_bytes);
10458 	btrfs_delalloc_release_metadata(inode, disk_num_bytes, ret < 0);
10459 out_qgroup_free_data:
10460 	if (ret < 0)
10461 		btrfs_qgroup_free_data(inode, data_reserved, start, num_bytes, NULL);
10462 out_free_data_space:
10463 	/*
10464 	 * If btrfs_reserve_extent() succeeded, then we already decremented
10465 	 * bytes_may_use.
10466 	 */
10467 	if (!extent_reserved)
10468 		btrfs_free_reserved_data_space_noquota(fs_info, disk_num_bytes);
10469 out_unlock:
10470 	unlock_extent(io_tree, start, end, &cached_state);
10471 out_pages:
10472 	for (i = 0; i < nr_pages; i++) {
10473 		if (pages[i])
10474 			__free_page(pages[i]);
10475 	}
10476 	kvfree(pages);
10477 out:
10478 	if (ret >= 0)
10479 		iocb->ki_pos += encoded->len;
10480 	return ret;
10481 }
10482 
10483 #ifdef CONFIG_SWAP
10484 /*
10485  * Add an entry indicating a block group or device which is pinned by a
10486  * swapfile. Returns 0 on success, 1 if there is already an entry for it, or a
10487  * negative errno on failure.
10488  */
10489 static int btrfs_add_swapfile_pin(struct inode *inode, void *ptr,
10490 				  bool is_block_group)
10491 {
10492 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10493 	struct btrfs_swapfile_pin *sp, *entry;
10494 	struct rb_node **p;
10495 	struct rb_node *parent = NULL;
10496 
10497 	sp = kmalloc(sizeof(*sp), GFP_NOFS);
10498 	if (!sp)
10499 		return -ENOMEM;
10500 	sp->ptr = ptr;
10501 	sp->inode = inode;
10502 	sp->is_block_group = is_block_group;
10503 	sp->bg_extent_count = 1;
10504 
10505 	spin_lock(&fs_info->swapfile_pins_lock);
10506 	p = &fs_info->swapfile_pins.rb_node;
10507 	while (*p) {
10508 		parent = *p;
10509 		entry = rb_entry(parent, struct btrfs_swapfile_pin, node);
10510 		if (sp->ptr < entry->ptr ||
10511 		    (sp->ptr == entry->ptr && sp->inode < entry->inode)) {
10512 			p = &(*p)->rb_left;
10513 		} else if (sp->ptr > entry->ptr ||
10514 			   (sp->ptr == entry->ptr && sp->inode > entry->inode)) {
10515 			p = &(*p)->rb_right;
10516 		} else {
10517 			if (is_block_group)
10518 				entry->bg_extent_count++;
10519 			spin_unlock(&fs_info->swapfile_pins_lock);
10520 			kfree(sp);
10521 			return 1;
10522 		}
10523 	}
10524 	rb_link_node(&sp->node, parent, p);
10525 	rb_insert_color(&sp->node, &fs_info->swapfile_pins);
10526 	spin_unlock(&fs_info->swapfile_pins_lock);
10527 	return 0;
10528 }
10529 
10530 /* Free all of the entries pinned by this swapfile. */
10531 static void btrfs_free_swapfile_pins(struct inode *inode)
10532 {
10533 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10534 	struct btrfs_swapfile_pin *sp;
10535 	struct rb_node *node, *next;
10536 
10537 	spin_lock(&fs_info->swapfile_pins_lock);
10538 	node = rb_first(&fs_info->swapfile_pins);
10539 	while (node) {
10540 		next = rb_next(node);
10541 		sp = rb_entry(node, struct btrfs_swapfile_pin, node);
10542 		if (sp->inode == inode) {
10543 			rb_erase(&sp->node, &fs_info->swapfile_pins);
10544 			if (sp->is_block_group) {
10545 				btrfs_dec_block_group_swap_extents(sp->ptr,
10546 							   sp->bg_extent_count);
10547 				btrfs_put_block_group(sp->ptr);
10548 			}
10549 			kfree(sp);
10550 		}
10551 		node = next;
10552 	}
10553 	spin_unlock(&fs_info->swapfile_pins_lock);
10554 }
10555 
10556 struct btrfs_swap_info {
10557 	u64 start;
10558 	u64 block_start;
10559 	u64 block_len;
10560 	u64 lowest_ppage;
10561 	u64 highest_ppage;
10562 	unsigned long nr_pages;
10563 	int nr_extents;
10564 };
10565 
10566 static int btrfs_add_swap_extent(struct swap_info_struct *sis,
10567 				 struct btrfs_swap_info *bsi)
10568 {
10569 	unsigned long nr_pages;
10570 	unsigned long max_pages;
10571 	u64 first_ppage, first_ppage_reported, next_ppage;
10572 	int ret;
10573 
10574 	/*
10575 	 * Our swapfile may have had its size extended after the swap header was
10576 	 * written. In that case activating the swapfile should not go beyond
10577 	 * the max size set in the swap header.
10578 	 */
10579 	if (bsi->nr_pages >= sis->max)
10580 		return 0;
10581 
10582 	max_pages = sis->max - bsi->nr_pages;
10583 	first_ppage = PAGE_ALIGN(bsi->block_start) >> PAGE_SHIFT;
10584 	next_ppage = PAGE_ALIGN_DOWN(bsi->block_start + bsi->block_len) >> PAGE_SHIFT;
10585 
10586 	if (first_ppage >= next_ppage)
10587 		return 0;
10588 	nr_pages = next_ppage - first_ppage;
10589 	nr_pages = min(nr_pages, max_pages);
10590 
10591 	first_ppage_reported = first_ppage;
10592 	if (bsi->start == 0)
10593 		first_ppage_reported++;
10594 	if (bsi->lowest_ppage > first_ppage_reported)
10595 		bsi->lowest_ppage = first_ppage_reported;
10596 	if (bsi->highest_ppage < (next_ppage - 1))
10597 		bsi->highest_ppage = next_ppage - 1;
10598 
10599 	ret = add_swap_extent(sis, bsi->nr_pages, nr_pages, first_ppage);
10600 	if (ret < 0)
10601 		return ret;
10602 	bsi->nr_extents += ret;
10603 	bsi->nr_pages += nr_pages;
10604 	return 0;
10605 }
10606 
10607 static void btrfs_swap_deactivate(struct file *file)
10608 {
10609 	struct inode *inode = file_inode(file);
10610 
10611 	btrfs_free_swapfile_pins(inode);
10612 	atomic_dec(&BTRFS_I(inode)->root->nr_swapfiles);
10613 }
10614 
10615 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
10616 			       sector_t *span)
10617 {
10618 	struct inode *inode = file_inode(file);
10619 	struct btrfs_root *root = BTRFS_I(inode)->root;
10620 	struct btrfs_fs_info *fs_info = root->fs_info;
10621 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
10622 	struct extent_state *cached_state = NULL;
10623 	struct extent_map *em = NULL;
10624 	struct btrfs_device *device = NULL;
10625 	struct btrfs_swap_info bsi = {
10626 		.lowest_ppage = (sector_t)-1ULL,
10627 	};
10628 	int ret = 0;
10629 	u64 isize;
10630 	u64 start;
10631 
10632 	/*
10633 	 * If the swap file was just created, make sure delalloc is done. If the
10634 	 * file changes again after this, the user is doing something stupid and
10635 	 * we don't really care.
10636 	 */
10637 	ret = btrfs_wait_ordered_range(inode, 0, (u64)-1);
10638 	if (ret)
10639 		return ret;
10640 
10641 	/*
10642 	 * The inode is locked, so these flags won't change after we check them.
10643 	 */
10644 	if (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS) {
10645 		btrfs_warn(fs_info, "swapfile must not be compressed");
10646 		return -EINVAL;
10647 	}
10648 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)) {
10649 		btrfs_warn(fs_info, "swapfile must not be copy-on-write");
10650 		return -EINVAL;
10651 	}
10652 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
10653 		btrfs_warn(fs_info, "swapfile must not be checksummed");
10654 		return -EINVAL;
10655 	}
10656 
10657 	/*
10658 	 * Balance or device remove/replace/resize can move stuff around from
10659 	 * under us. The exclop protection makes sure they aren't running/won't
10660 	 * run concurrently while we are mapping the swap extents, and
10661 	 * fs_info->swapfile_pins prevents them from running while the swap
10662 	 * file is active and moving the extents. Note that this also prevents
10663 	 * a concurrent device add which isn't actually necessary, but it's not
10664 	 * really worth the trouble to allow it.
10665 	 */
10666 	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_SWAP_ACTIVATE)) {
10667 		btrfs_warn(fs_info,
10668 	   "cannot activate swapfile while exclusive operation is running");
10669 		return -EBUSY;
10670 	}
10671 
10672 	/*
10673 	 * Prevent snapshot creation while we are activating the swap file.
10674 	 * We do not want to race with snapshot creation. If snapshot creation
10675 	 * already started before we bumped nr_swapfiles from 0 to 1 and
10676 	 * completes before the first write into the swap file after it is
10677 	 * activated, than that write would fallback to COW.
10678 	 */
10679 	if (!btrfs_drew_try_write_lock(&root->snapshot_lock)) {
10680 		btrfs_exclop_finish(fs_info);
10681 		btrfs_warn(fs_info,
10682 	   "cannot activate swapfile because snapshot creation is in progress");
10683 		return -EINVAL;
10684 	}
10685 	/*
10686 	 * Snapshots can create extents which require COW even if NODATACOW is
10687 	 * set. We use this counter to prevent snapshots. We must increment it
10688 	 * before walking the extents because we don't want a concurrent
10689 	 * snapshot to run after we've already checked the extents.
10690 	 *
10691 	 * It is possible that subvolume is marked for deletion but still not
10692 	 * removed yet. To prevent this race, we check the root status before
10693 	 * activating the swapfile.
10694 	 */
10695 	spin_lock(&root->root_item_lock);
10696 	if (btrfs_root_dead(root)) {
10697 		spin_unlock(&root->root_item_lock);
10698 
10699 		btrfs_exclop_finish(fs_info);
10700 		btrfs_warn(fs_info,
10701 		"cannot activate swapfile because subvolume %llu is being deleted",
10702 			root->root_key.objectid);
10703 		return -EPERM;
10704 	}
10705 	atomic_inc(&root->nr_swapfiles);
10706 	spin_unlock(&root->root_item_lock);
10707 
10708 	isize = ALIGN_DOWN(inode->i_size, fs_info->sectorsize);
10709 
10710 	lock_extent(io_tree, 0, isize - 1, &cached_state);
10711 	start = 0;
10712 	while (start < isize) {
10713 		u64 logical_block_start, physical_block_start;
10714 		struct btrfs_block_group *bg;
10715 		u64 len = isize - start;
10716 
10717 		em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len);
10718 		if (IS_ERR(em)) {
10719 			ret = PTR_ERR(em);
10720 			goto out;
10721 		}
10722 
10723 		if (em->block_start == EXTENT_MAP_HOLE) {
10724 			btrfs_warn(fs_info, "swapfile must not have holes");
10725 			ret = -EINVAL;
10726 			goto out;
10727 		}
10728 		if (em->block_start == EXTENT_MAP_INLINE) {
10729 			/*
10730 			 * It's unlikely we'll ever actually find ourselves
10731 			 * here, as a file small enough to fit inline won't be
10732 			 * big enough to store more than the swap header, but in
10733 			 * case something changes in the future, let's catch it
10734 			 * here rather than later.
10735 			 */
10736 			btrfs_warn(fs_info, "swapfile must not be inline");
10737 			ret = -EINVAL;
10738 			goto out;
10739 		}
10740 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
10741 			btrfs_warn(fs_info, "swapfile must not be compressed");
10742 			ret = -EINVAL;
10743 			goto out;
10744 		}
10745 
10746 		logical_block_start = em->block_start + (start - em->start);
10747 		len = min(len, em->len - (start - em->start));
10748 		free_extent_map(em);
10749 		em = NULL;
10750 
10751 		ret = can_nocow_extent(inode, start, &len, NULL, NULL, NULL, false, true);
10752 		if (ret < 0) {
10753 			goto out;
10754 		} else if (ret) {
10755 			ret = 0;
10756 		} else {
10757 			btrfs_warn(fs_info,
10758 				   "swapfile must not be copy-on-write");
10759 			ret = -EINVAL;
10760 			goto out;
10761 		}
10762 
10763 		em = btrfs_get_chunk_map(fs_info, logical_block_start, len);
10764 		if (IS_ERR(em)) {
10765 			ret = PTR_ERR(em);
10766 			goto out;
10767 		}
10768 
10769 		if (em->map_lookup->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
10770 			btrfs_warn(fs_info,
10771 				   "swapfile must have single data profile");
10772 			ret = -EINVAL;
10773 			goto out;
10774 		}
10775 
10776 		if (device == NULL) {
10777 			device = em->map_lookup->stripes[0].dev;
10778 			ret = btrfs_add_swapfile_pin(inode, device, false);
10779 			if (ret == 1)
10780 				ret = 0;
10781 			else if (ret)
10782 				goto out;
10783 		} else if (device != em->map_lookup->stripes[0].dev) {
10784 			btrfs_warn(fs_info, "swapfile must be on one device");
10785 			ret = -EINVAL;
10786 			goto out;
10787 		}
10788 
10789 		physical_block_start = (em->map_lookup->stripes[0].physical +
10790 					(logical_block_start - em->start));
10791 		len = min(len, em->len - (logical_block_start - em->start));
10792 		free_extent_map(em);
10793 		em = NULL;
10794 
10795 		bg = btrfs_lookup_block_group(fs_info, logical_block_start);
10796 		if (!bg) {
10797 			btrfs_warn(fs_info,
10798 			   "could not find block group containing swapfile");
10799 			ret = -EINVAL;
10800 			goto out;
10801 		}
10802 
10803 		if (!btrfs_inc_block_group_swap_extents(bg)) {
10804 			btrfs_warn(fs_info,
10805 			   "block group for swapfile at %llu is read-only%s",
10806 			   bg->start,
10807 			   atomic_read(&fs_info->scrubs_running) ?
10808 				       " (scrub running)" : "");
10809 			btrfs_put_block_group(bg);
10810 			ret = -EINVAL;
10811 			goto out;
10812 		}
10813 
10814 		ret = btrfs_add_swapfile_pin(inode, bg, true);
10815 		if (ret) {
10816 			btrfs_put_block_group(bg);
10817 			if (ret == 1)
10818 				ret = 0;
10819 			else
10820 				goto out;
10821 		}
10822 
10823 		if (bsi.block_len &&
10824 		    bsi.block_start + bsi.block_len == physical_block_start) {
10825 			bsi.block_len += len;
10826 		} else {
10827 			if (bsi.block_len) {
10828 				ret = btrfs_add_swap_extent(sis, &bsi);
10829 				if (ret)
10830 					goto out;
10831 			}
10832 			bsi.start = start;
10833 			bsi.block_start = physical_block_start;
10834 			bsi.block_len = len;
10835 		}
10836 
10837 		start += len;
10838 	}
10839 
10840 	if (bsi.block_len)
10841 		ret = btrfs_add_swap_extent(sis, &bsi);
10842 
10843 out:
10844 	if (!IS_ERR_OR_NULL(em))
10845 		free_extent_map(em);
10846 
10847 	unlock_extent(io_tree, 0, isize - 1, &cached_state);
10848 
10849 	if (ret)
10850 		btrfs_swap_deactivate(file);
10851 
10852 	btrfs_drew_write_unlock(&root->snapshot_lock);
10853 
10854 	btrfs_exclop_finish(fs_info);
10855 
10856 	if (ret)
10857 		return ret;
10858 
10859 	if (device)
10860 		sis->bdev = device->bdev;
10861 	*span = bsi.highest_ppage - bsi.lowest_ppage + 1;
10862 	sis->max = bsi.nr_pages;
10863 	sis->pages = bsi.nr_pages - 1;
10864 	sis->highest_bit = bsi.nr_pages - 1;
10865 	return bsi.nr_extents;
10866 }
10867 #else
10868 static void btrfs_swap_deactivate(struct file *file)
10869 {
10870 }
10871 
10872 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
10873 			       sector_t *span)
10874 {
10875 	return -EOPNOTSUPP;
10876 }
10877 #endif
10878 
10879 /*
10880  * Update the number of bytes used in the VFS' inode. When we replace extents in
10881  * a range (clone, dedupe, fallocate's zero range), we must update the number of
10882  * bytes used by the inode in an atomic manner, so that concurrent stat(2) calls
10883  * always get a correct value.
10884  */
10885 void btrfs_update_inode_bytes(struct btrfs_inode *inode,
10886 			      const u64 add_bytes,
10887 			      const u64 del_bytes)
10888 {
10889 	if (add_bytes == del_bytes)
10890 		return;
10891 
10892 	spin_lock(&inode->lock);
10893 	if (del_bytes > 0)
10894 		inode_sub_bytes(&inode->vfs_inode, del_bytes);
10895 	if (add_bytes > 0)
10896 		inode_add_bytes(&inode->vfs_inode, add_bytes);
10897 	spin_unlock(&inode->lock);
10898 }
10899 
10900 /*
10901  * Verify that there are no ordered extents for a given file range.
10902  *
10903  * @inode:   The target inode.
10904  * @start:   Start offset of the file range, should be sector size aligned.
10905  * @end:     End offset (inclusive) of the file range, its value +1 should be
10906  *           sector size aligned.
10907  *
10908  * This should typically be used for cases where we locked an inode's VFS lock in
10909  * exclusive mode, we have also locked the inode's i_mmap_lock in exclusive mode,
10910  * we have flushed all delalloc in the range, we have waited for all ordered
10911  * extents in the range to complete and finally we have locked the file range in
10912  * the inode's io_tree.
10913  */
10914 void btrfs_assert_inode_range_clean(struct btrfs_inode *inode, u64 start, u64 end)
10915 {
10916 	struct btrfs_root *root = inode->root;
10917 	struct btrfs_ordered_extent *ordered;
10918 
10919 	if (!IS_ENABLED(CONFIG_BTRFS_ASSERT))
10920 		return;
10921 
10922 	ordered = btrfs_lookup_first_ordered_range(inode, start, end + 1 - start);
10923 	if (ordered) {
10924 		btrfs_err(root->fs_info,
10925 "found unexpected ordered extent in file range [%llu, %llu] for inode %llu root %llu (ordered range [%llu, %llu])",
10926 			  start, end, btrfs_ino(inode), root->root_key.objectid,
10927 			  ordered->file_offset,
10928 			  ordered->file_offset + ordered->num_bytes - 1);
10929 		btrfs_put_ordered_extent(ordered);
10930 	}
10931 
10932 	ASSERT(ordered == NULL);
10933 }
10934 
10935 static const struct inode_operations btrfs_dir_inode_operations = {
10936 	.getattr	= btrfs_getattr,
10937 	.lookup		= btrfs_lookup,
10938 	.create		= btrfs_create,
10939 	.unlink		= btrfs_unlink,
10940 	.link		= btrfs_link,
10941 	.mkdir		= btrfs_mkdir,
10942 	.rmdir		= btrfs_rmdir,
10943 	.rename		= btrfs_rename2,
10944 	.symlink	= btrfs_symlink,
10945 	.setattr	= btrfs_setattr,
10946 	.mknod		= btrfs_mknod,
10947 	.listxattr	= btrfs_listxattr,
10948 	.permission	= btrfs_permission,
10949 	.get_inode_acl	= btrfs_get_acl,
10950 	.set_acl	= btrfs_set_acl,
10951 	.update_time	= btrfs_update_time,
10952 	.tmpfile        = btrfs_tmpfile,
10953 	.fileattr_get	= btrfs_fileattr_get,
10954 	.fileattr_set	= btrfs_fileattr_set,
10955 };
10956 
10957 static const struct file_operations btrfs_dir_file_operations = {
10958 	.llseek		= btrfs_dir_llseek,
10959 	.read		= generic_read_dir,
10960 	.iterate_shared	= btrfs_real_readdir,
10961 	.open		= btrfs_opendir,
10962 	.unlocked_ioctl	= btrfs_ioctl,
10963 #ifdef CONFIG_COMPAT
10964 	.compat_ioctl	= btrfs_compat_ioctl,
10965 #endif
10966 	.release        = btrfs_release_file,
10967 	.fsync		= btrfs_sync_file,
10968 };
10969 
10970 /*
10971  * btrfs doesn't support the bmap operation because swapfiles
10972  * use bmap to make a mapping of extents in the file.  They assume
10973  * these extents won't change over the life of the file and they
10974  * use the bmap result to do IO directly to the drive.
10975  *
10976  * the btrfs bmap call would return logical addresses that aren't
10977  * suitable for IO and they also will change frequently as COW
10978  * operations happen.  So, swapfile + btrfs == corruption.
10979  *
10980  * For now we're avoiding this by dropping bmap.
10981  */
10982 static const struct address_space_operations btrfs_aops = {
10983 	.read_folio	= btrfs_read_folio,
10984 	.writepages	= btrfs_writepages,
10985 	.readahead	= btrfs_readahead,
10986 	.invalidate_folio = btrfs_invalidate_folio,
10987 	.release_folio	= btrfs_release_folio,
10988 	.migrate_folio	= btrfs_migrate_folio,
10989 	.dirty_folio	= filemap_dirty_folio,
10990 	.error_remove_page = generic_error_remove_page,
10991 	.swap_activate	= btrfs_swap_activate,
10992 	.swap_deactivate = btrfs_swap_deactivate,
10993 };
10994 
10995 static const struct inode_operations btrfs_file_inode_operations = {
10996 	.getattr	= btrfs_getattr,
10997 	.setattr	= btrfs_setattr,
10998 	.listxattr      = btrfs_listxattr,
10999 	.permission	= btrfs_permission,
11000 	.fiemap		= btrfs_fiemap,
11001 	.get_inode_acl	= btrfs_get_acl,
11002 	.set_acl	= btrfs_set_acl,
11003 	.update_time	= btrfs_update_time,
11004 	.fileattr_get	= btrfs_fileattr_get,
11005 	.fileattr_set	= btrfs_fileattr_set,
11006 };
11007 static const struct inode_operations btrfs_special_inode_operations = {
11008 	.getattr	= btrfs_getattr,
11009 	.setattr	= btrfs_setattr,
11010 	.permission	= btrfs_permission,
11011 	.listxattr	= btrfs_listxattr,
11012 	.get_inode_acl	= btrfs_get_acl,
11013 	.set_acl	= btrfs_set_acl,
11014 	.update_time	= btrfs_update_time,
11015 };
11016 static const struct inode_operations btrfs_symlink_inode_operations = {
11017 	.get_link	= page_get_link,
11018 	.getattr	= btrfs_getattr,
11019 	.setattr	= btrfs_setattr,
11020 	.permission	= btrfs_permission,
11021 	.listxattr	= btrfs_listxattr,
11022 	.update_time	= btrfs_update_time,
11023 };
11024 
11025 const struct dentry_operations btrfs_dentry_operations = {
11026 	.d_delete	= btrfs_dentry_delete,
11027 };
11028