1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/kernel.h> 20 #include <linux/bio.h> 21 #include <linux/buffer_head.h> 22 #include <linux/file.h> 23 #include <linux/fs.h> 24 #include <linux/pagemap.h> 25 #include <linux/highmem.h> 26 #include <linux/time.h> 27 #include <linux/init.h> 28 #include <linux/string.h> 29 #include <linux/backing-dev.h> 30 #include <linux/mpage.h> 31 #include <linux/swap.h> 32 #include <linux/writeback.h> 33 #include <linux/statfs.h> 34 #include <linux/compat.h> 35 #include <linux/bit_spinlock.h> 36 #include <linux/xattr.h> 37 #include <linux/posix_acl.h> 38 #include <linux/falloc.h> 39 #include <linux/slab.h> 40 #include "compat.h" 41 #include "ctree.h" 42 #include "disk-io.h" 43 #include "transaction.h" 44 #include "btrfs_inode.h" 45 #include "ioctl.h" 46 #include "print-tree.h" 47 #include "volumes.h" 48 #include "ordered-data.h" 49 #include "xattr.h" 50 #include "tree-log.h" 51 #include "compression.h" 52 #include "locking.h" 53 54 struct btrfs_iget_args { 55 u64 ino; 56 struct btrfs_root *root; 57 }; 58 59 static const struct inode_operations btrfs_dir_inode_operations; 60 static const struct inode_operations btrfs_symlink_inode_operations; 61 static const struct inode_operations btrfs_dir_ro_inode_operations; 62 static const struct inode_operations btrfs_special_inode_operations; 63 static const struct inode_operations btrfs_file_inode_operations; 64 static const struct address_space_operations btrfs_aops; 65 static const struct address_space_operations btrfs_symlink_aops; 66 static const struct file_operations btrfs_dir_file_operations; 67 static struct extent_io_ops btrfs_extent_io_ops; 68 69 static struct kmem_cache *btrfs_inode_cachep; 70 struct kmem_cache *btrfs_trans_handle_cachep; 71 struct kmem_cache *btrfs_transaction_cachep; 72 struct kmem_cache *btrfs_path_cachep; 73 74 #define S_SHIFT 12 75 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = { 76 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE, 77 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR, 78 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV, 79 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV, 80 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO, 81 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK, 82 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK, 83 }; 84 85 static void btrfs_truncate(struct inode *inode); 86 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end); 87 static noinline int cow_file_range(struct inode *inode, 88 struct page *locked_page, 89 u64 start, u64 end, int *page_started, 90 unsigned long *nr_written, int unlock); 91 92 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans, 93 struct inode *inode, struct inode *dir) 94 { 95 int err; 96 97 err = btrfs_init_acl(trans, inode, dir); 98 if (!err) 99 err = btrfs_xattr_security_init(trans, inode, dir); 100 return err; 101 } 102 103 /* 104 * this does all the hard work for inserting an inline extent into 105 * the btree. The caller should have done a btrfs_drop_extents so that 106 * no overlapping inline items exist in the btree 107 */ 108 static noinline int insert_inline_extent(struct btrfs_trans_handle *trans, 109 struct btrfs_root *root, struct inode *inode, 110 u64 start, size_t size, size_t compressed_size, 111 struct page **compressed_pages) 112 { 113 struct btrfs_key key; 114 struct btrfs_path *path; 115 struct extent_buffer *leaf; 116 struct page *page = NULL; 117 char *kaddr; 118 unsigned long ptr; 119 struct btrfs_file_extent_item *ei; 120 int err = 0; 121 int ret; 122 size_t cur_size = size; 123 size_t datasize; 124 unsigned long offset; 125 int use_compress = 0; 126 127 if (compressed_size && compressed_pages) { 128 use_compress = 1; 129 cur_size = compressed_size; 130 } 131 132 path = btrfs_alloc_path(); 133 if (!path) 134 return -ENOMEM; 135 136 path->leave_spinning = 1; 137 btrfs_set_trans_block_group(trans, inode); 138 139 key.objectid = inode->i_ino; 140 key.offset = start; 141 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY); 142 datasize = btrfs_file_extent_calc_inline_size(cur_size); 143 144 inode_add_bytes(inode, size); 145 ret = btrfs_insert_empty_item(trans, root, path, &key, 146 datasize); 147 BUG_ON(ret); 148 if (ret) { 149 err = ret; 150 goto fail; 151 } 152 leaf = path->nodes[0]; 153 ei = btrfs_item_ptr(leaf, path->slots[0], 154 struct btrfs_file_extent_item); 155 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 156 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE); 157 btrfs_set_file_extent_encryption(leaf, ei, 0); 158 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 159 btrfs_set_file_extent_ram_bytes(leaf, ei, size); 160 ptr = btrfs_file_extent_inline_start(ei); 161 162 if (use_compress) { 163 struct page *cpage; 164 int i = 0; 165 while (compressed_size > 0) { 166 cpage = compressed_pages[i]; 167 cur_size = min_t(unsigned long, compressed_size, 168 PAGE_CACHE_SIZE); 169 170 kaddr = kmap_atomic(cpage, KM_USER0); 171 write_extent_buffer(leaf, kaddr, ptr, cur_size); 172 kunmap_atomic(kaddr, KM_USER0); 173 174 i++; 175 ptr += cur_size; 176 compressed_size -= cur_size; 177 } 178 btrfs_set_file_extent_compression(leaf, ei, 179 BTRFS_COMPRESS_ZLIB); 180 } else { 181 page = find_get_page(inode->i_mapping, 182 start >> PAGE_CACHE_SHIFT); 183 btrfs_set_file_extent_compression(leaf, ei, 0); 184 kaddr = kmap_atomic(page, KM_USER0); 185 offset = start & (PAGE_CACHE_SIZE - 1); 186 write_extent_buffer(leaf, kaddr + offset, ptr, size); 187 kunmap_atomic(kaddr, KM_USER0); 188 page_cache_release(page); 189 } 190 btrfs_mark_buffer_dirty(leaf); 191 btrfs_free_path(path); 192 193 /* 194 * we're an inline extent, so nobody can 195 * extend the file past i_size without locking 196 * a page we already have locked. 197 * 198 * We must do any isize and inode updates 199 * before we unlock the pages. Otherwise we 200 * could end up racing with unlink. 201 */ 202 BTRFS_I(inode)->disk_i_size = inode->i_size; 203 btrfs_update_inode(trans, root, inode); 204 205 return 0; 206 fail: 207 btrfs_free_path(path); 208 return err; 209 } 210 211 212 /* 213 * conditionally insert an inline extent into the file. This 214 * does the checks required to make sure the data is small enough 215 * to fit as an inline extent. 216 */ 217 static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans, 218 struct btrfs_root *root, 219 struct inode *inode, u64 start, u64 end, 220 size_t compressed_size, 221 struct page **compressed_pages) 222 { 223 u64 isize = i_size_read(inode); 224 u64 actual_end = min(end + 1, isize); 225 u64 inline_len = actual_end - start; 226 u64 aligned_end = (end + root->sectorsize - 1) & 227 ~((u64)root->sectorsize - 1); 228 u64 hint_byte; 229 u64 data_len = inline_len; 230 int ret; 231 232 if (compressed_size) 233 data_len = compressed_size; 234 235 if (start > 0 || 236 actual_end >= PAGE_CACHE_SIZE || 237 data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) || 238 (!compressed_size && 239 (actual_end & (root->sectorsize - 1)) == 0) || 240 end + 1 < isize || 241 data_len > root->fs_info->max_inline) { 242 return 1; 243 } 244 245 ret = btrfs_drop_extents(trans, inode, start, aligned_end, 246 &hint_byte, 1); 247 BUG_ON(ret); 248 249 if (isize > actual_end) 250 inline_len = min_t(u64, isize, actual_end); 251 ret = insert_inline_extent(trans, root, inode, start, 252 inline_len, compressed_size, 253 compressed_pages); 254 BUG_ON(ret); 255 btrfs_delalloc_release_metadata(inode, end + 1 - start); 256 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0); 257 return 0; 258 } 259 260 struct async_extent { 261 u64 start; 262 u64 ram_size; 263 u64 compressed_size; 264 struct page **pages; 265 unsigned long nr_pages; 266 struct list_head list; 267 }; 268 269 struct async_cow { 270 struct inode *inode; 271 struct btrfs_root *root; 272 struct page *locked_page; 273 u64 start; 274 u64 end; 275 struct list_head extents; 276 struct btrfs_work work; 277 }; 278 279 static noinline int add_async_extent(struct async_cow *cow, 280 u64 start, u64 ram_size, 281 u64 compressed_size, 282 struct page **pages, 283 unsigned long nr_pages) 284 { 285 struct async_extent *async_extent; 286 287 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS); 288 async_extent->start = start; 289 async_extent->ram_size = ram_size; 290 async_extent->compressed_size = compressed_size; 291 async_extent->pages = pages; 292 async_extent->nr_pages = nr_pages; 293 list_add_tail(&async_extent->list, &cow->extents); 294 return 0; 295 } 296 297 /* 298 * we create compressed extents in two phases. The first 299 * phase compresses a range of pages that have already been 300 * locked (both pages and state bits are locked). 301 * 302 * This is done inside an ordered work queue, and the compression 303 * is spread across many cpus. The actual IO submission is step 304 * two, and the ordered work queue takes care of making sure that 305 * happens in the same order things were put onto the queue by 306 * writepages and friends. 307 * 308 * If this code finds it can't get good compression, it puts an 309 * entry onto the work queue to write the uncompressed bytes. This 310 * makes sure that both compressed inodes and uncompressed inodes 311 * are written in the same order that pdflush sent them down. 312 */ 313 static noinline int compress_file_range(struct inode *inode, 314 struct page *locked_page, 315 u64 start, u64 end, 316 struct async_cow *async_cow, 317 int *num_added) 318 { 319 struct btrfs_root *root = BTRFS_I(inode)->root; 320 struct btrfs_trans_handle *trans; 321 u64 num_bytes; 322 u64 orig_start; 323 u64 disk_num_bytes; 324 u64 blocksize = root->sectorsize; 325 u64 actual_end; 326 u64 isize = i_size_read(inode); 327 int ret = 0; 328 struct page **pages = NULL; 329 unsigned long nr_pages; 330 unsigned long nr_pages_ret = 0; 331 unsigned long total_compressed = 0; 332 unsigned long total_in = 0; 333 unsigned long max_compressed = 128 * 1024; 334 unsigned long max_uncompressed = 128 * 1024; 335 int i; 336 int will_compress; 337 338 orig_start = start; 339 340 actual_end = min_t(u64, isize, end + 1); 341 again: 342 will_compress = 0; 343 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1; 344 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE); 345 346 /* 347 * we don't want to send crud past the end of i_size through 348 * compression, that's just a waste of CPU time. So, if the 349 * end of the file is before the start of our current 350 * requested range of bytes, we bail out to the uncompressed 351 * cleanup code that can deal with all of this. 352 * 353 * It isn't really the fastest way to fix things, but this is a 354 * very uncommon corner. 355 */ 356 if (actual_end <= start) 357 goto cleanup_and_bail_uncompressed; 358 359 total_compressed = actual_end - start; 360 361 /* we want to make sure that amount of ram required to uncompress 362 * an extent is reasonable, so we limit the total size in ram 363 * of a compressed extent to 128k. This is a crucial number 364 * because it also controls how easily we can spread reads across 365 * cpus for decompression. 366 * 367 * We also want to make sure the amount of IO required to do 368 * a random read is reasonably small, so we limit the size of 369 * a compressed extent to 128k. 370 */ 371 total_compressed = min(total_compressed, max_uncompressed); 372 num_bytes = (end - start + blocksize) & ~(blocksize - 1); 373 num_bytes = max(blocksize, num_bytes); 374 disk_num_bytes = num_bytes; 375 total_in = 0; 376 ret = 0; 377 378 /* 379 * we do compression for mount -o compress and when the 380 * inode has not been flagged as nocompress. This flag can 381 * change at any time if we discover bad compression ratios. 382 */ 383 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) && 384 (btrfs_test_opt(root, COMPRESS) || 385 (BTRFS_I(inode)->force_compress))) { 386 WARN_ON(pages); 387 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS); 388 389 ret = btrfs_zlib_compress_pages(inode->i_mapping, start, 390 total_compressed, pages, 391 nr_pages, &nr_pages_ret, 392 &total_in, 393 &total_compressed, 394 max_compressed); 395 396 if (!ret) { 397 unsigned long offset = total_compressed & 398 (PAGE_CACHE_SIZE - 1); 399 struct page *page = pages[nr_pages_ret - 1]; 400 char *kaddr; 401 402 /* zero the tail end of the last page, we might be 403 * sending it down to disk 404 */ 405 if (offset) { 406 kaddr = kmap_atomic(page, KM_USER0); 407 memset(kaddr + offset, 0, 408 PAGE_CACHE_SIZE - offset); 409 kunmap_atomic(kaddr, KM_USER0); 410 } 411 will_compress = 1; 412 } 413 } 414 if (start == 0) { 415 trans = btrfs_join_transaction(root, 1); 416 BUG_ON(!trans); 417 btrfs_set_trans_block_group(trans, inode); 418 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 419 420 /* lets try to make an inline extent */ 421 if (ret || total_in < (actual_end - start)) { 422 /* we didn't compress the entire range, try 423 * to make an uncompressed inline extent. 424 */ 425 ret = cow_file_range_inline(trans, root, inode, 426 start, end, 0, NULL); 427 } else { 428 /* try making a compressed inline extent */ 429 ret = cow_file_range_inline(trans, root, inode, 430 start, end, 431 total_compressed, pages); 432 } 433 if (ret == 0) { 434 /* 435 * inline extent creation worked, we don't need 436 * to create any more async work items. Unlock 437 * and free up our temp pages. 438 */ 439 extent_clear_unlock_delalloc(inode, 440 &BTRFS_I(inode)->io_tree, 441 start, end, NULL, 442 EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY | 443 EXTENT_CLEAR_DELALLOC | 444 EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK); 445 446 btrfs_end_transaction(trans, root); 447 goto free_pages_out; 448 } 449 btrfs_end_transaction(trans, root); 450 } 451 452 if (will_compress) { 453 /* 454 * we aren't doing an inline extent round the compressed size 455 * up to a block size boundary so the allocator does sane 456 * things 457 */ 458 total_compressed = (total_compressed + blocksize - 1) & 459 ~(blocksize - 1); 460 461 /* 462 * one last check to make sure the compression is really a 463 * win, compare the page count read with the blocks on disk 464 */ 465 total_in = (total_in + PAGE_CACHE_SIZE - 1) & 466 ~(PAGE_CACHE_SIZE - 1); 467 if (total_compressed >= total_in) { 468 will_compress = 0; 469 } else { 470 disk_num_bytes = total_compressed; 471 num_bytes = total_in; 472 } 473 } 474 if (!will_compress && pages) { 475 /* 476 * the compression code ran but failed to make things smaller, 477 * free any pages it allocated and our page pointer array 478 */ 479 for (i = 0; i < nr_pages_ret; i++) { 480 WARN_ON(pages[i]->mapping); 481 page_cache_release(pages[i]); 482 } 483 kfree(pages); 484 pages = NULL; 485 total_compressed = 0; 486 nr_pages_ret = 0; 487 488 /* flag the file so we don't compress in the future */ 489 if (!btrfs_test_opt(root, FORCE_COMPRESS) && 490 !(BTRFS_I(inode)->force_compress)) { 491 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS; 492 } 493 } 494 if (will_compress) { 495 *num_added += 1; 496 497 /* the async work queues will take care of doing actual 498 * allocation on disk for these compressed pages, 499 * and will submit them to the elevator. 500 */ 501 add_async_extent(async_cow, start, num_bytes, 502 total_compressed, pages, nr_pages_ret); 503 504 if (start + num_bytes < end && start + num_bytes < actual_end) { 505 start += num_bytes; 506 pages = NULL; 507 cond_resched(); 508 goto again; 509 } 510 } else { 511 cleanup_and_bail_uncompressed: 512 /* 513 * No compression, but we still need to write the pages in 514 * the file we've been given so far. redirty the locked 515 * page if it corresponds to our extent and set things up 516 * for the async work queue to run cow_file_range to do 517 * the normal delalloc dance 518 */ 519 if (page_offset(locked_page) >= start && 520 page_offset(locked_page) <= end) { 521 __set_page_dirty_nobuffers(locked_page); 522 /* unlocked later on in the async handlers */ 523 } 524 add_async_extent(async_cow, start, end - start + 1, 0, NULL, 0); 525 *num_added += 1; 526 } 527 528 out: 529 return 0; 530 531 free_pages_out: 532 for (i = 0; i < nr_pages_ret; i++) { 533 WARN_ON(pages[i]->mapping); 534 page_cache_release(pages[i]); 535 } 536 kfree(pages); 537 538 goto out; 539 } 540 541 /* 542 * phase two of compressed writeback. This is the ordered portion 543 * of the code, which only gets called in the order the work was 544 * queued. We walk all the async extents created by compress_file_range 545 * and send them down to the disk. 546 */ 547 static noinline int submit_compressed_extents(struct inode *inode, 548 struct async_cow *async_cow) 549 { 550 struct async_extent *async_extent; 551 u64 alloc_hint = 0; 552 struct btrfs_trans_handle *trans; 553 struct btrfs_key ins; 554 struct extent_map *em; 555 struct btrfs_root *root = BTRFS_I(inode)->root; 556 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 557 struct extent_io_tree *io_tree; 558 int ret = 0; 559 560 if (list_empty(&async_cow->extents)) 561 return 0; 562 563 564 while (!list_empty(&async_cow->extents)) { 565 async_extent = list_entry(async_cow->extents.next, 566 struct async_extent, list); 567 list_del(&async_extent->list); 568 569 io_tree = &BTRFS_I(inode)->io_tree; 570 571 retry: 572 /* did the compression code fall back to uncompressed IO? */ 573 if (!async_extent->pages) { 574 int page_started = 0; 575 unsigned long nr_written = 0; 576 577 lock_extent(io_tree, async_extent->start, 578 async_extent->start + 579 async_extent->ram_size - 1, GFP_NOFS); 580 581 /* allocate blocks */ 582 ret = cow_file_range(inode, async_cow->locked_page, 583 async_extent->start, 584 async_extent->start + 585 async_extent->ram_size - 1, 586 &page_started, &nr_written, 0); 587 588 /* 589 * if page_started, cow_file_range inserted an 590 * inline extent and took care of all the unlocking 591 * and IO for us. Otherwise, we need to submit 592 * all those pages down to the drive. 593 */ 594 if (!page_started && !ret) 595 extent_write_locked_range(io_tree, 596 inode, async_extent->start, 597 async_extent->start + 598 async_extent->ram_size - 1, 599 btrfs_get_extent, 600 WB_SYNC_ALL); 601 kfree(async_extent); 602 cond_resched(); 603 continue; 604 } 605 606 lock_extent(io_tree, async_extent->start, 607 async_extent->start + async_extent->ram_size - 1, 608 GFP_NOFS); 609 610 trans = btrfs_join_transaction(root, 1); 611 ret = btrfs_reserve_extent(trans, root, 612 async_extent->compressed_size, 613 async_extent->compressed_size, 614 0, alloc_hint, 615 (u64)-1, &ins, 1); 616 btrfs_end_transaction(trans, root); 617 618 if (ret) { 619 int i; 620 for (i = 0; i < async_extent->nr_pages; i++) { 621 WARN_ON(async_extent->pages[i]->mapping); 622 page_cache_release(async_extent->pages[i]); 623 } 624 kfree(async_extent->pages); 625 async_extent->nr_pages = 0; 626 async_extent->pages = NULL; 627 unlock_extent(io_tree, async_extent->start, 628 async_extent->start + 629 async_extent->ram_size - 1, GFP_NOFS); 630 goto retry; 631 } 632 633 /* 634 * here we're doing allocation and writeback of the 635 * compressed pages 636 */ 637 btrfs_drop_extent_cache(inode, async_extent->start, 638 async_extent->start + 639 async_extent->ram_size - 1, 0); 640 641 em = alloc_extent_map(GFP_NOFS); 642 em->start = async_extent->start; 643 em->len = async_extent->ram_size; 644 em->orig_start = em->start; 645 646 em->block_start = ins.objectid; 647 em->block_len = ins.offset; 648 em->bdev = root->fs_info->fs_devices->latest_bdev; 649 set_bit(EXTENT_FLAG_PINNED, &em->flags); 650 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 651 652 while (1) { 653 write_lock(&em_tree->lock); 654 ret = add_extent_mapping(em_tree, em); 655 write_unlock(&em_tree->lock); 656 if (ret != -EEXIST) { 657 free_extent_map(em); 658 break; 659 } 660 btrfs_drop_extent_cache(inode, async_extent->start, 661 async_extent->start + 662 async_extent->ram_size - 1, 0); 663 } 664 665 ret = btrfs_add_ordered_extent(inode, async_extent->start, 666 ins.objectid, 667 async_extent->ram_size, 668 ins.offset, 669 BTRFS_ORDERED_COMPRESSED); 670 BUG_ON(ret); 671 672 /* 673 * clear dirty, set writeback and unlock the pages. 674 */ 675 extent_clear_unlock_delalloc(inode, 676 &BTRFS_I(inode)->io_tree, 677 async_extent->start, 678 async_extent->start + 679 async_extent->ram_size - 1, 680 NULL, EXTENT_CLEAR_UNLOCK_PAGE | 681 EXTENT_CLEAR_UNLOCK | 682 EXTENT_CLEAR_DELALLOC | 683 EXTENT_CLEAR_DIRTY | EXTENT_SET_WRITEBACK); 684 685 ret = btrfs_submit_compressed_write(inode, 686 async_extent->start, 687 async_extent->ram_size, 688 ins.objectid, 689 ins.offset, async_extent->pages, 690 async_extent->nr_pages); 691 692 BUG_ON(ret); 693 alloc_hint = ins.objectid + ins.offset; 694 kfree(async_extent); 695 cond_resched(); 696 } 697 698 return 0; 699 } 700 701 static u64 get_extent_allocation_hint(struct inode *inode, u64 start, 702 u64 num_bytes) 703 { 704 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 705 struct extent_map *em; 706 u64 alloc_hint = 0; 707 708 read_lock(&em_tree->lock); 709 em = search_extent_mapping(em_tree, start, num_bytes); 710 if (em) { 711 /* 712 * if block start isn't an actual block number then find the 713 * first block in this inode and use that as a hint. If that 714 * block is also bogus then just don't worry about it. 715 */ 716 if (em->block_start >= EXTENT_MAP_LAST_BYTE) { 717 free_extent_map(em); 718 em = search_extent_mapping(em_tree, 0, 0); 719 if (em && em->block_start < EXTENT_MAP_LAST_BYTE) 720 alloc_hint = em->block_start; 721 if (em) 722 free_extent_map(em); 723 } else { 724 alloc_hint = em->block_start; 725 free_extent_map(em); 726 } 727 } 728 read_unlock(&em_tree->lock); 729 730 return alloc_hint; 731 } 732 733 /* 734 * when extent_io.c finds a delayed allocation range in the file, 735 * the call backs end up in this code. The basic idea is to 736 * allocate extents on disk for the range, and create ordered data structs 737 * in ram to track those extents. 738 * 739 * locked_page is the page that writepage had locked already. We use 740 * it to make sure we don't do extra locks or unlocks. 741 * 742 * *page_started is set to one if we unlock locked_page and do everything 743 * required to start IO on it. It may be clean and already done with 744 * IO when we return. 745 */ 746 static noinline int cow_file_range(struct inode *inode, 747 struct page *locked_page, 748 u64 start, u64 end, int *page_started, 749 unsigned long *nr_written, 750 int unlock) 751 { 752 struct btrfs_root *root = BTRFS_I(inode)->root; 753 struct btrfs_trans_handle *trans; 754 u64 alloc_hint = 0; 755 u64 num_bytes; 756 unsigned long ram_size; 757 u64 disk_num_bytes; 758 u64 cur_alloc_size; 759 u64 blocksize = root->sectorsize; 760 u64 actual_end; 761 u64 isize = i_size_read(inode); 762 struct btrfs_key ins; 763 struct extent_map *em; 764 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 765 int ret = 0; 766 767 trans = btrfs_join_transaction(root, 1); 768 BUG_ON(!trans); 769 btrfs_set_trans_block_group(trans, inode); 770 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 771 772 actual_end = min_t(u64, isize, end + 1); 773 774 num_bytes = (end - start + blocksize) & ~(blocksize - 1); 775 num_bytes = max(blocksize, num_bytes); 776 disk_num_bytes = num_bytes; 777 ret = 0; 778 779 if (start == 0) { 780 /* lets try to make an inline extent */ 781 ret = cow_file_range_inline(trans, root, inode, 782 start, end, 0, NULL); 783 if (ret == 0) { 784 extent_clear_unlock_delalloc(inode, 785 &BTRFS_I(inode)->io_tree, 786 start, end, NULL, 787 EXTENT_CLEAR_UNLOCK_PAGE | 788 EXTENT_CLEAR_UNLOCK | 789 EXTENT_CLEAR_DELALLOC | 790 EXTENT_CLEAR_DIRTY | 791 EXTENT_SET_WRITEBACK | 792 EXTENT_END_WRITEBACK); 793 794 *nr_written = *nr_written + 795 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE; 796 *page_started = 1; 797 ret = 0; 798 goto out; 799 } 800 } 801 802 BUG_ON(disk_num_bytes > 803 btrfs_super_total_bytes(&root->fs_info->super_copy)); 804 805 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes); 806 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0); 807 808 while (disk_num_bytes > 0) { 809 unsigned long op; 810 811 cur_alloc_size = disk_num_bytes; 812 ret = btrfs_reserve_extent(trans, root, cur_alloc_size, 813 root->sectorsize, 0, alloc_hint, 814 (u64)-1, &ins, 1); 815 BUG_ON(ret); 816 817 em = alloc_extent_map(GFP_NOFS); 818 em->start = start; 819 em->orig_start = em->start; 820 ram_size = ins.offset; 821 em->len = ins.offset; 822 823 em->block_start = ins.objectid; 824 em->block_len = ins.offset; 825 em->bdev = root->fs_info->fs_devices->latest_bdev; 826 set_bit(EXTENT_FLAG_PINNED, &em->flags); 827 828 while (1) { 829 write_lock(&em_tree->lock); 830 ret = add_extent_mapping(em_tree, em); 831 write_unlock(&em_tree->lock); 832 if (ret != -EEXIST) { 833 free_extent_map(em); 834 break; 835 } 836 btrfs_drop_extent_cache(inode, start, 837 start + ram_size - 1, 0); 838 } 839 840 cur_alloc_size = ins.offset; 841 ret = btrfs_add_ordered_extent(inode, start, ins.objectid, 842 ram_size, cur_alloc_size, 0); 843 BUG_ON(ret); 844 845 if (root->root_key.objectid == 846 BTRFS_DATA_RELOC_TREE_OBJECTID) { 847 ret = btrfs_reloc_clone_csums(inode, start, 848 cur_alloc_size); 849 BUG_ON(ret); 850 } 851 852 if (disk_num_bytes < cur_alloc_size) 853 break; 854 855 /* we're not doing compressed IO, don't unlock the first 856 * page (which the caller expects to stay locked), don't 857 * clear any dirty bits and don't set any writeback bits 858 * 859 * Do set the Private2 bit so we know this page was properly 860 * setup for writepage 861 */ 862 op = unlock ? EXTENT_CLEAR_UNLOCK_PAGE : 0; 863 op |= EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC | 864 EXTENT_SET_PRIVATE2; 865 866 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree, 867 start, start + ram_size - 1, 868 locked_page, op); 869 disk_num_bytes -= cur_alloc_size; 870 num_bytes -= cur_alloc_size; 871 alloc_hint = ins.objectid + ins.offset; 872 start += cur_alloc_size; 873 } 874 out: 875 ret = 0; 876 btrfs_end_transaction(trans, root); 877 878 return ret; 879 } 880 881 /* 882 * work queue call back to started compression on a file and pages 883 */ 884 static noinline void async_cow_start(struct btrfs_work *work) 885 { 886 struct async_cow *async_cow; 887 int num_added = 0; 888 async_cow = container_of(work, struct async_cow, work); 889 890 compress_file_range(async_cow->inode, async_cow->locked_page, 891 async_cow->start, async_cow->end, async_cow, 892 &num_added); 893 if (num_added == 0) 894 async_cow->inode = NULL; 895 } 896 897 /* 898 * work queue call back to submit previously compressed pages 899 */ 900 static noinline void async_cow_submit(struct btrfs_work *work) 901 { 902 struct async_cow *async_cow; 903 struct btrfs_root *root; 904 unsigned long nr_pages; 905 906 async_cow = container_of(work, struct async_cow, work); 907 908 root = async_cow->root; 909 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >> 910 PAGE_CACHE_SHIFT; 911 912 atomic_sub(nr_pages, &root->fs_info->async_delalloc_pages); 913 914 if (atomic_read(&root->fs_info->async_delalloc_pages) < 915 5 * 1042 * 1024 && 916 waitqueue_active(&root->fs_info->async_submit_wait)) 917 wake_up(&root->fs_info->async_submit_wait); 918 919 if (async_cow->inode) 920 submit_compressed_extents(async_cow->inode, async_cow); 921 } 922 923 static noinline void async_cow_free(struct btrfs_work *work) 924 { 925 struct async_cow *async_cow; 926 async_cow = container_of(work, struct async_cow, work); 927 kfree(async_cow); 928 } 929 930 static int cow_file_range_async(struct inode *inode, struct page *locked_page, 931 u64 start, u64 end, int *page_started, 932 unsigned long *nr_written) 933 { 934 struct async_cow *async_cow; 935 struct btrfs_root *root = BTRFS_I(inode)->root; 936 unsigned long nr_pages; 937 u64 cur_end; 938 int limit = 10 * 1024 * 1042; 939 940 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED, 941 1, 0, NULL, GFP_NOFS); 942 while (start < end) { 943 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS); 944 async_cow->inode = inode; 945 async_cow->root = root; 946 async_cow->locked_page = locked_page; 947 async_cow->start = start; 948 949 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) 950 cur_end = end; 951 else 952 cur_end = min(end, start + 512 * 1024 - 1); 953 954 async_cow->end = cur_end; 955 INIT_LIST_HEAD(&async_cow->extents); 956 957 async_cow->work.func = async_cow_start; 958 async_cow->work.ordered_func = async_cow_submit; 959 async_cow->work.ordered_free = async_cow_free; 960 async_cow->work.flags = 0; 961 962 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >> 963 PAGE_CACHE_SHIFT; 964 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages); 965 966 btrfs_queue_worker(&root->fs_info->delalloc_workers, 967 &async_cow->work); 968 969 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) { 970 wait_event(root->fs_info->async_submit_wait, 971 (atomic_read(&root->fs_info->async_delalloc_pages) < 972 limit)); 973 } 974 975 while (atomic_read(&root->fs_info->async_submit_draining) && 976 atomic_read(&root->fs_info->async_delalloc_pages)) { 977 wait_event(root->fs_info->async_submit_wait, 978 (atomic_read(&root->fs_info->async_delalloc_pages) == 979 0)); 980 } 981 982 *nr_written += nr_pages; 983 start = cur_end + 1; 984 } 985 *page_started = 1; 986 return 0; 987 } 988 989 static noinline int csum_exist_in_range(struct btrfs_root *root, 990 u64 bytenr, u64 num_bytes) 991 { 992 int ret; 993 struct btrfs_ordered_sum *sums; 994 LIST_HEAD(list); 995 996 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr, 997 bytenr + num_bytes - 1, &list); 998 if (ret == 0 && list_empty(&list)) 999 return 0; 1000 1001 while (!list_empty(&list)) { 1002 sums = list_entry(list.next, struct btrfs_ordered_sum, list); 1003 list_del(&sums->list); 1004 kfree(sums); 1005 } 1006 return 1; 1007 } 1008 1009 /* 1010 * when nowcow writeback call back. This checks for snapshots or COW copies 1011 * of the extents that exist in the file, and COWs the file as required. 1012 * 1013 * If no cow copies or snapshots exist, we write directly to the existing 1014 * blocks on disk 1015 */ 1016 static noinline int run_delalloc_nocow(struct inode *inode, 1017 struct page *locked_page, 1018 u64 start, u64 end, int *page_started, int force, 1019 unsigned long *nr_written) 1020 { 1021 struct btrfs_root *root = BTRFS_I(inode)->root; 1022 struct btrfs_trans_handle *trans; 1023 struct extent_buffer *leaf; 1024 struct btrfs_path *path; 1025 struct btrfs_file_extent_item *fi; 1026 struct btrfs_key found_key; 1027 u64 cow_start; 1028 u64 cur_offset; 1029 u64 extent_end; 1030 u64 extent_offset; 1031 u64 disk_bytenr; 1032 u64 num_bytes; 1033 int extent_type; 1034 int ret; 1035 int type; 1036 int nocow; 1037 int check_prev = 1; 1038 1039 path = btrfs_alloc_path(); 1040 BUG_ON(!path); 1041 trans = btrfs_join_transaction(root, 1); 1042 BUG_ON(!trans); 1043 1044 cow_start = (u64)-1; 1045 cur_offset = start; 1046 while (1) { 1047 ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino, 1048 cur_offset, 0); 1049 BUG_ON(ret < 0); 1050 if (ret > 0 && path->slots[0] > 0 && check_prev) { 1051 leaf = path->nodes[0]; 1052 btrfs_item_key_to_cpu(leaf, &found_key, 1053 path->slots[0] - 1); 1054 if (found_key.objectid == inode->i_ino && 1055 found_key.type == BTRFS_EXTENT_DATA_KEY) 1056 path->slots[0]--; 1057 } 1058 check_prev = 0; 1059 next_slot: 1060 leaf = path->nodes[0]; 1061 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 1062 ret = btrfs_next_leaf(root, path); 1063 if (ret < 0) 1064 BUG_ON(1); 1065 if (ret > 0) 1066 break; 1067 leaf = path->nodes[0]; 1068 } 1069 1070 nocow = 0; 1071 disk_bytenr = 0; 1072 num_bytes = 0; 1073 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1074 1075 if (found_key.objectid > inode->i_ino || 1076 found_key.type > BTRFS_EXTENT_DATA_KEY || 1077 found_key.offset > end) 1078 break; 1079 1080 if (found_key.offset > cur_offset) { 1081 extent_end = found_key.offset; 1082 extent_type = 0; 1083 goto out_check; 1084 } 1085 1086 fi = btrfs_item_ptr(leaf, path->slots[0], 1087 struct btrfs_file_extent_item); 1088 extent_type = btrfs_file_extent_type(leaf, fi); 1089 1090 if (extent_type == BTRFS_FILE_EXTENT_REG || 1091 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1092 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1093 extent_offset = btrfs_file_extent_offset(leaf, fi); 1094 extent_end = found_key.offset + 1095 btrfs_file_extent_num_bytes(leaf, fi); 1096 if (extent_end <= start) { 1097 path->slots[0]++; 1098 goto next_slot; 1099 } 1100 if (disk_bytenr == 0) 1101 goto out_check; 1102 if (btrfs_file_extent_compression(leaf, fi) || 1103 btrfs_file_extent_encryption(leaf, fi) || 1104 btrfs_file_extent_other_encoding(leaf, fi)) 1105 goto out_check; 1106 if (extent_type == BTRFS_FILE_EXTENT_REG && !force) 1107 goto out_check; 1108 if (btrfs_extent_readonly(root, disk_bytenr)) 1109 goto out_check; 1110 if (btrfs_cross_ref_exist(trans, root, inode->i_ino, 1111 found_key.offset - 1112 extent_offset, disk_bytenr)) 1113 goto out_check; 1114 disk_bytenr += extent_offset; 1115 disk_bytenr += cur_offset - found_key.offset; 1116 num_bytes = min(end + 1, extent_end) - cur_offset; 1117 /* 1118 * force cow if csum exists in the range. 1119 * this ensure that csum for a given extent are 1120 * either valid or do not exist. 1121 */ 1122 if (csum_exist_in_range(root, disk_bytenr, num_bytes)) 1123 goto out_check; 1124 nocow = 1; 1125 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 1126 extent_end = found_key.offset + 1127 btrfs_file_extent_inline_len(leaf, fi); 1128 extent_end = ALIGN(extent_end, root->sectorsize); 1129 } else { 1130 BUG_ON(1); 1131 } 1132 out_check: 1133 if (extent_end <= start) { 1134 path->slots[0]++; 1135 goto next_slot; 1136 } 1137 if (!nocow) { 1138 if (cow_start == (u64)-1) 1139 cow_start = cur_offset; 1140 cur_offset = extent_end; 1141 if (cur_offset > end) 1142 break; 1143 path->slots[0]++; 1144 goto next_slot; 1145 } 1146 1147 btrfs_release_path(root, path); 1148 if (cow_start != (u64)-1) { 1149 ret = cow_file_range(inode, locked_page, cow_start, 1150 found_key.offset - 1, page_started, 1151 nr_written, 1); 1152 BUG_ON(ret); 1153 cow_start = (u64)-1; 1154 } 1155 1156 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1157 struct extent_map *em; 1158 struct extent_map_tree *em_tree; 1159 em_tree = &BTRFS_I(inode)->extent_tree; 1160 em = alloc_extent_map(GFP_NOFS); 1161 em->start = cur_offset; 1162 em->orig_start = em->start; 1163 em->len = num_bytes; 1164 em->block_len = num_bytes; 1165 em->block_start = disk_bytenr; 1166 em->bdev = root->fs_info->fs_devices->latest_bdev; 1167 set_bit(EXTENT_FLAG_PINNED, &em->flags); 1168 while (1) { 1169 write_lock(&em_tree->lock); 1170 ret = add_extent_mapping(em_tree, em); 1171 write_unlock(&em_tree->lock); 1172 if (ret != -EEXIST) { 1173 free_extent_map(em); 1174 break; 1175 } 1176 btrfs_drop_extent_cache(inode, em->start, 1177 em->start + em->len - 1, 0); 1178 } 1179 type = BTRFS_ORDERED_PREALLOC; 1180 } else { 1181 type = BTRFS_ORDERED_NOCOW; 1182 } 1183 1184 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr, 1185 num_bytes, num_bytes, type); 1186 BUG_ON(ret); 1187 1188 if (root->root_key.objectid == 1189 BTRFS_DATA_RELOC_TREE_OBJECTID) { 1190 ret = btrfs_reloc_clone_csums(inode, cur_offset, 1191 num_bytes); 1192 BUG_ON(ret); 1193 } 1194 1195 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree, 1196 cur_offset, cur_offset + num_bytes - 1, 1197 locked_page, EXTENT_CLEAR_UNLOCK_PAGE | 1198 EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC | 1199 EXTENT_SET_PRIVATE2); 1200 cur_offset = extent_end; 1201 if (cur_offset > end) 1202 break; 1203 } 1204 btrfs_release_path(root, path); 1205 1206 if (cur_offset <= end && cow_start == (u64)-1) 1207 cow_start = cur_offset; 1208 if (cow_start != (u64)-1) { 1209 ret = cow_file_range(inode, locked_page, cow_start, end, 1210 page_started, nr_written, 1); 1211 BUG_ON(ret); 1212 } 1213 1214 ret = btrfs_end_transaction(trans, root); 1215 BUG_ON(ret); 1216 btrfs_free_path(path); 1217 return 0; 1218 } 1219 1220 /* 1221 * extent_io.c call back to do delayed allocation processing 1222 */ 1223 static int run_delalloc_range(struct inode *inode, struct page *locked_page, 1224 u64 start, u64 end, int *page_started, 1225 unsigned long *nr_written) 1226 { 1227 int ret; 1228 struct btrfs_root *root = BTRFS_I(inode)->root; 1229 1230 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) 1231 ret = run_delalloc_nocow(inode, locked_page, start, end, 1232 page_started, 1, nr_written); 1233 else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC) 1234 ret = run_delalloc_nocow(inode, locked_page, start, end, 1235 page_started, 0, nr_written); 1236 else if (!btrfs_test_opt(root, COMPRESS) && 1237 !(BTRFS_I(inode)->force_compress)) 1238 ret = cow_file_range(inode, locked_page, start, end, 1239 page_started, nr_written, 1); 1240 else 1241 ret = cow_file_range_async(inode, locked_page, start, end, 1242 page_started, nr_written); 1243 return ret; 1244 } 1245 1246 static int btrfs_split_extent_hook(struct inode *inode, 1247 struct extent_state *orig, u64 split) 1248 { 1249 /* not delalloc, ignore it */ 1250 if (!(orig->state & EXTENT_DELALLOC)) 1251 return 0; 1252 1253 atomic_inc(&BTRFS_I(inode)->outstanding_extents); 1254 return 0; 1255 } 1256 1257 /* 1258 * extent_io.c merge_extent_hook, used to track merged delayed allocation 1259 * extents so we can keep track of new extents that are just merged onto old 1260 * extents, such as when we are doing sequential writes, so we can properly 1261 * account for the metadata space we'll need. 1262 */ 1263 static int btrfs_merge_extent_hook(struct inode *inode, 1264 struct extent_state *new, 1265 struct extent_state *other) 1266 { 1267 /* not delalloc, ignore it */ 1268 if (!(other->state & EXTENT_DELALLOC)) 1269 return 0; 1270 1271 atomic_dec(&BTRFS_I(inode)->outstanding_extents); 1272 return 0; 1273 } 1274 1275 /* 1276 * extent_io.c set_bit_hook, used to track delayed allocation 1277 * bytes in this file, and to maintain the list of inodes that 1278 * have pending delalloc work to be done. 1279 */ 1280 static int btrfs_set_bit_hook(struct inode *inode, 1281 struct extent_state *state, int *bits) 1282 { 1283 1284 /* 1285 * set_bit and clear bit hooks normally require _irqsave/restore 1286 * but in this case, we are only testeing for the DELALLOC 1287 * bit, which is only set or cleared with irqs on 1288 */ 1289 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) { 1290 struct btrfs_root *root = BTRFS_I(inode)->root; 1291 u64 len = state->end + 1 - state->start; 1292 1293 if (*bits & EXTENT_FIRST_DELALLOC) 1294 *bits &= ~EXTENT_FIRST_DELALLOC; 1295 else 1296 atomic_inc(&BTRFS_I(inode)->outstanding_extents); 1297 1298 spin_lock(&root->fs_info->delalloc_lock); 1299 BTRFS_I(inode)->delalloc_bytes += len; 1300 root->fs_info->delalloc_bytes += len; 1301 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) { 1302 list_add_tail(&BTRFS_I(inode)->delalloc_inodes, 1303 &root->fs_info->delalloc_inodes); 1304 } 1305 spin_unlock(&root->fs_info->delalloc_lock); 1306 } 1307 return 0; 1308 } 1309 1310 /* 1311 * extent_io.c clear_bit_hook, see set_bit_hook for why 1312 */ 1313 static int btrfs_clear_bit_hook(struct inode *inode, 1314 struct extent_state *state, int *bits) 1315 { 1316 /* 1317 * set_bit and clear bit hooks normally require _irqsave/restore 1318 * but in this case, we are only testeing for the DELALLOC 1319 * bit, which is only set or cleared with irqs on 1320 */ 1321 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) { 1322 struct btrfs_root *root = BTRFS_I(inode)->root; 1323 u64 len = state->end + 1 - state->start; 1324 1325 if (*bits & EXTENT_FIRST_DELALLOC) 1326 *bits &= ~EXTENT_FIRST_DELALLOC; 1327 else if (!(*bits & EXTENT_DO_ACCOUNTING)) 1328 atomic_dec(&BTRFS_I(inode)->outstanding_extents); 1329 1330 if (*bits & EXTENT_DO_ACCOUNTING) 1331 btrfs_delalloc_release_metadata(inode, len); 1332 1333 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) 1334 btrfs_free_reserved_data_space(inode, len); 1335 1336 spin_lock(&root->fs_info->delalloc_lock); 1337 root->fs_info->delalloc_bytes -= len; 1338 BTRFS_I(inode)->delalloc_bytes -= len; 1339 1340 if (BTRFS_I(inode)->delalloc_bytes == 0 && 1341 !list_empty(&BTRFS_I(inode)->delalloc_inodes)) { 1342 list_del_init(&BTRFS_I(inode)->delalloc_inodes); 1343 } 1344 spin_unlock(&root->fs_info->delalloc_lock); 1345 } 1346 return 0; 1347 } 1348 1349 /* 1350 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure 1351 * we don't create bios that span stripes or chunks 1352 */ 1353 int btrfs_merge_bio_hook(struct page *page, unsigned long offset, 1354 size_t size, struct bio *bio, 1355 unsigned long bio_flags) 1356 { 1357 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; 1358 struct btrfs_mapping_tree *map_tree; 1359 u64 logical = (u64)bio->bi_sector << 9; 1360 u64 length = 0; 1361 u64 map_length; 1362 int ret; 1363 1364 if (bio_flags & EXTENT_BIO_COMPRESSED) 1365 return 0; 1366 1367 length = bio->bi_size; 1368 map_tree = &root->fs_info->mapping_tree; 1369 map_length = length; 1370 ret = btrfs_map_block(map_tree, READ, logical, 1371 &map_length, NULL, 0); 1372 1373 if (map_length < length + size) 1374 return 1; 1375 return 0; 1376 } 1377 1378 /* 1379 * in order to insert checksums into the metadata in large chunks, 1380 * we wait until bio submission time. All the pages in the bio are 1381 * checksummed and sums are attached onto the ordered extent record. 1382 * 1383 * At IO completion time the cums attached on the ordered extent record 1384 * are inserted into the btree 1385 */ 1386 static int __btrfs_submit_bio_start(struct inode *inode, int rw, 1387 struct bio *bio, int mirror_num, 1388 unsigned long bio_flags, 1389 u64 bio_offset) 1390 { 1391 struct btrfs_root *root = BTRFS_I(inode)->root; 1392 int ret = 0; 1393 1394 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0); 1395 BUG_ON(ret); 1396 return 0; 1397 } 1398 1399 /* 1400 * in order to insert checksums into the metadata in large chunks, 1401 * we wait until bio submission time. All the pages in the bio are 1402 * checksummed and sums are attached onto the ordered extent record. 1403 * 1404 * At IO completion time the cums attached on the ordered extent record 1405 * are inserted into the btree 1406 */ 1407 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio, 1408 int mirror_num, unsigned long bio_flags, 1409 u64 bio_offset) 1410 { 1411 struct btrfs_root *root = BTRFS_I(inode)->root; 1412 return btrfs_map_bio(root, rw, bio, mirror_num, 1); 1413 } 1414 1415 /* 1416 * extent_io.c submission hook. This does the right thing for csum calculation 1417 * on write, or reading the csums from the tree before a read 1418 */ 1419 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio, 1420 int mirror_num, unsigned long bio_flags, 1421 u64 bio_offset) 1422 { 1423 struct btrfs_root *root = BTRFS_I(inode)->root; 1424 int ret = 0; 1425 int skip_sum; 1426 1427 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 1428 1429 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0); 1430 BUG_ON(ret); 1431 1432 if (!(rw & REQ_WRITE)) { 1433 if (bio_flags & EXTENT_BIO_COMPRESSED) { 1434 return btrfs_submit_compressed_read(inode, bio, 1435 mirror_num, bio_flags); 1436 } else if (!skip_sum) 1437 btrfs_lookup_bio_sums(root, inode, bio, NULL); 1438 goto mapit; 1439 } else if (!skip_sum) { 1440 /* csum items have already been cloned */ 1441 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) 1442 goto mapit; 1443 /* we're doing a write, do the async checksumming */ 1444 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info, 1445 inode, rw, bio, mirror_num, 1446 bio_flags, bio_offset, 1447 __btrfs_submit_bio_start, 1448 __btrfs_submit_bio_done); 1449 } 1450 1451 mapit: 1452 return btrfs_map_bio(root, rw, bio, mirror_num, 0); 1453 } 1454 1455 /* 1456 * given a list of ordered sums record them in the inode. This happens 1457 * at IO completion time based on sums calculated at bio submission time. 1458 */ 1459 static noinline int add_pending_csums(struct btrfs_trans_handle *trans, 1460 struct inode *inode, u64 file_offset, 1461 struct list_head *list) 1462 { 1463 struct btrfs_ordered_sum *sum; 1464 1465 btrfs_set_trans_block_group(trans, inode); 1466 1467 list_for_each_entry(sum, list, list) { 1468 btrfs_csum_file_blocks(trans, 1469 BTRFS_I(inode)->root->fs_info->csum_root, sum); 1470 } 1471 return 0; 1472 } 1473 1474 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end, 1475 struct extent_state **cached_state) 1476 { 1477 if ((end & (PAGE_CACHE_SIZE - 1)) == 0) 1478 WARN_ON(1); 1479 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end, 1480 cached_state, GFP_NOFS); 1481 } 1482 1483 /* see btrfs_writepage_start_hook for details on why this is required */ 1484 struct btrfs_writepage_fixup { 1485 struct page *page; 1486 struct btrfs_work work; 1487 }; 1488 1489 static void btrfs_writepage_fixup_worker(struct btrfs_work *work) 1490 { 1491 struct btrfs_writepage_fixup *fixup; 1492 struct btrfs_ordered_extent *ordered; 1493 struct extent_state *cached_state = NULL; 1494 struct page *page; 1495 struct inode *inode; 1496 u64 page_start; 1497 u64 page_end; 1498 1499 fixup = container_of(work, struct btrfs_writepage_fixup, work); 1500 page = fixup->page; 1501 again: 1502 lock_page(page); 1503 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) { 1504 ClearPageChecked(page); 1505 goto out_page; 1506 } 1507 1508 inode = page->mapping->host; 1509 page_start = page_offset(page); 1510 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1; 1511 1512 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0, 1513 &cached_state, GFP_NOFS); 1514 1515 /* already ordered? We're done */ 1516 if (PagePrivate2(page)) 1517 goto out; 1518 1519 ordered = btrfs_lookup_ordered_extent(inode, page_start); 1520 if (ordered) { 1521 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, 1522 page_end, &cached_state, GFP_NOFS); 1523 unlock_page(page); 1524 btrfs_start_ordered_extent(inode, ordered, 1); 1525 goto again; 1526 } 1527 1528 BUG(); 1529 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state); 1530 ClearPageChecked(page); 1531 out: 1532 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end, 1533 &cached_state, GFP_NOFS); 1534 out_page: 1535 unlock_page(page); 1536 page_cache_release(page); 1537 } 1538 1539 /* 1540 * There are a few paths in the higher layers of the kernel that directly 1541 * set the page dirty bit without asking the filesystem if it is a 1542 * good idea. This causes problems because we want to make sure COW 1543 * properly happens and the data=ordered rules are followed. 1544 * 1545 * In our case any range that doesn't have the ORDERED bit set 1546 * hasn't been properly setup for IO. We kick off an async process 1547 * to fix it up. The async helper will wait for ordered extents, set 1548 * the delalloc bit and make it safe to write the page. 1549 */ 1550 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end) 1551 { 1552 struct inode *inode = page->mapping->host; 1553 struct btrfs_writepage_fixup *fixup; 1554 struct btrfs_root *root = BTRFS_I(inode)->root; 1555 1556 /* this page is properly in the ordered list */ 1557 if (TestClearPagePrivate2(page)) 1558 return 0; 1559 1560 if (PageChecked(page)) 1561 return -EAGAIN; 1562 1563 fixup = kzalloc(sizeof(*fixup), GFP_NOFS); 1564 if (!fixup) 1565 return -EAGAIN; 1566 1567 SetPageChecked(page); 1568 page_cache_get(page); 1569 fixup->work.func = btrfs_writepage_fixup_worker; 1570 fixup->page = page; 1571 btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work); 1572 return -EAGAIN; 1573 } 1574 1575 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans, 1576 struct inode *inode, u64 file_pos, 1577 u64 disk_bytenr, u64 disk_num_bytes, 1578 u64 num_bytes, u64 ram_bytes, 1579 u8 compression, u8 encryption, 1580 u16 other_encoding, int extent_type) 1581 { 1582 struct btrfs_root *root = BTRFS_I(inode)->root; 1583 struct btrfs_file_extent_item *fi; 1584 struct btrfs_path *path; 1585 struct extent_buffer *leaf; 1586 struct btrfs_key ins; 1587 u64 hint; 1588 int ret; 1589 1590 path = btrfs_alloc_path(); 1591 BUG_ON(!path); 1592 1593 path->leave_spinning = 1; 1594 1595 /* 1596 * we may be replacing one extent in the tree with another. 1597 * The new extent is pinned in the extent map, and we don't want 1598 * to drop it from the cache until it is completely in the btree. 1599 * 1600 * So, tell btrfs_drop_extents to leave this extent in the cache. 1601 * the caller is expected to unpin it and allow it to be merged 1602 * with the others. 1603 */ 1604 ret = btrfs_drop_extents(trans, inode, file_pos, file_pos + num_bytes, 1605 &hint, 0); 1606 BUG_ON(ret); 1607 1608 ins.objectid = inode->i_ino; 1609 ins.offset = file_pos; 1610 ins.type = BTRFS_EXTENT_DATA_KEY; 1611 ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi)); 1612 BUG_ON(ret); 1613 leaf = path->nodes[0]; 1614 fi = btrfs_item_ptr(leaf, path->slots[0], 1615 struct btrfs_file_extent_item); 1616 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1617 btrfs_set_file_extent_type(leaf, fi, extent_type); 1618 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr); 1619 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes); 1620 btrfs_set_file_extent_offset(leaf, fi, 0); 1621 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 1622 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes); 1623 btrfs_set_file_extent_compression(leaf, fi, compression); 1624 btrfs_set_file_extent_encryption(leaf, fi, encryption); 1625 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding); 1626 1627 btrfs_unlock_up_safe(path, 1); 1628 btrfs_set_lock_blocking(leaf); 1629 1630 btrfs_mark_buffer_dirty(leaf); 1631 1632 inode_add_bytes(inode, num_bytes); 1633 1634 ins.objectid = disk_bytenr; 1635 ins.offset = disk_num_bytes; 1636 ins.type = BTRFS_EXTENT_ITEM_KEY; 1637 ret = btrfs_alloc_reserved_file_extent(trans, root, 1638 root->root_key.objectid, 1639 inode->i_ino, file_pos, &ins); 1640 BUG_ON(ret); 1641 btrfs_free_path(path); 1642 1643 return 0; 1644 } 1645 1646 /* 1647 * helper function for btrfs_finish_ordered_io, this 1648 * just reads in some of the csum leaves to prime them into ram 1649 * before we start the transaction. It limits the amount of btree 1650 * reads required while inside the transaction. 1651 */ 1652 /* as ordered data IO finishes, this gets called so we can finish 1653 * an ordered extent if the range of bytes in the file it covers are 1654 * fully written. 1655 */ 1656 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end) 1657 { 1658 struct btrfs_root *root = BTRFS_I(inode)->root; 1659 struct btrfs_trans_handle *trans = NULL; 1660 struct btrfs_ordered_extent *ordered_extent = NULL; 1661 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 1662 struct extent_state *cached_state = NULL; 1663 int compressed = 0; 1664 int ret; 1665 1666 ret = btrfs_dec_test_ordered_pending(inode, &ordered_extent, start, 1667 end - start + 1); 1668 if (!ret) 1669 return 0; 1670 BUG_ON(!ordered_extent); 1671 1672 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) { 1673 BUG_ON(!list_empty(&ordered_extent->list)); 1674 ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent); 1675 if (!ret) { 1676 trans = btrfs_join_transaction(root, 1); 1677 btrfs_set_trans_block_group(trans, inode); 1678 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 1679 ret = btrfs_update_inode(trans, root, inode); 1680 BUG_ON(ret); 1681 } 1682 goto out; 1683 } 1684 1685 lock_extent_bits(io_tree, ordered_extent->file_offset, 1686 ordered_extent->file_offset + ordered_extent->len - 1, 1687 0, &cached_state, GFP_NOFS); 1688 1689 trans = btrfs_join_transaction(root, 1); 1690 btrfs_set_trans_block_group(trans, inode); 1691 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 1692 1693 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags)) 1694 compressed = 1; 1695 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 1696 BUG_ON(compressed); 1697 ret = btrfs_mark_extent_written(trans, inode, 1698 ordered_extent->file_offset, 1699 ordered_extent->file_offset + 1700 ordered_extent->len); 1701 BUG_ON(ret); 1702 } else { 1703 ret = insert_reserved_file_extent(trans, inode, 1704 ordered_extent->file_offset, 1705 ordered_extent->start, 1706 ordered_extent->disk_len, 1707 ordered_extent->len, 1708 ordered_extent->len, 1709 compressed, 0, 0, 1710 BTRFS_FILE_EXTENT_REG); 1711 unpin_extent_cache(&BTRFS_I(inode)->extent_tree, 1712 ordered_extent->file_offset, 1713 ordered_extent->len); 1714 BUG_ON(ret); 1715 } 1716 unlock_extent_cached(io_tree, ordered_extent->file_offset, 1717 ordered_extent->file_offset + 1718 ordered_extent->len - 1, &cached_state, GFP_NOFS); 1719 1720 add_pending_csums(trans, inode, ordered_extent->file_offset, 1721 &ordered_extent->list); 1722 1723 btrfs_ordered_update_i_size(inode, 0, ordered_extent); 1724 ret = btrfs_update_inode(trans, root, inode); 1725 BUG_ON(ret); 1726 out: 1727 btrfs_delalloc_release_metadata(inode, ordered_extent->len); 1728 if (trans) 1729 btrfs_end_transaction(trans, root); 1730 /* once for us */ 1731 btrfs_put_ordered_extent(ordered_extent); 1732 /* once for the tree */ 1733 btrfs_put_ordered_extent(ordered_extent); 1734 1735 return 0; 1736 } 1737 1738 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end, 1739 struct extent_state *state, int uptodate) 1740 { 1741 ClearPagePrivate2(page); 1742 return btrfs_finish_ordered_io(page->mapping->host, start, end); 1743 } 1744 1745 /* 1746 * When IO fails, either with EIO or csum verification fails, we 1747 * try other mirrors that might have a good copy of the data. This 1748 * io_failure_record is used to record state as we go through all the 1749 * mirrors. If another mirror has good data, the page is set up to date 1750 * and things continue. If a good mirror can't be found, the original 1751 * bio end_io callback is called to indicate things have failed. 1752 */ 1753 struct io_failure_record { 1754 struct page *page; 1755 u64 start; 1756 u64 len; 1757 u64 logical; 1758 unsigned long bio_flags; 1759 int last_mirror; 1760 }; 1761 1762 static int btrfs_io_failed_hook(struct bio *failed_bio, 1763 struct page *page, u64 start, u64 end, 1764 struct extent_state *state) 1765 { 1766 struct io_failure_record *failrec = NULL; 1767 u64 private; 1768 struct extent_map *em; 1769 struct inode *inode = page->mapping->host; 1770 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; 1771 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 1772 struct bio *bio; 1773 int num_copies; 1774 int ret; 1775 int rw; 1776 u64 logical; 1777 1778 ret = get_state_private(failure_tree, start, &private); 1779 if (ret) { 1780 failrec = kmalloc(sizeof(*failrec), GFP_NOFS); 1781 if (!failrec) 1782 return -ENOMEM; 1783 failrec->start = start; 1784 failrec->len = end - start + 1; 1785 failrec->last_mirror = 0; 1786 failrec->bio_flags = 0; 1787 1788 read_lock(&em_tree->lock); 1789 em = lookup_extent_mapping(em_tree, start, failrec->len); 1790 if (em->start > start || em->start + em->len < start) { 1791 free_extent_map(em); 1792 em = NULL; 1793 } 1794 read_unlock(&em_tree->lock); 1795 1796 if (!em || IS_ERR(em)) { 1797 kfree(failrec); 1798 return -EIO; 1799 } 1800 logical = start - em->start; 1801 logical = em->block_start + logical; 1802 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 1803 logical = em->block_start; 1804 failrec->bio_flags = EXTENT_BIO_COMPRESSED; 1805 } 1806 failrec->logical = logical; 1807 free_extent_map(em); 1808 set_extent_bits(failure_tree, start, end, EXTENT_LOCKED | 1809 EXTENT_DIRTY, GFP_NOFS); 1810 set_state_private(failure_tree, start, 1811 (u64)(unsigned long)failrec); 1812 } else { 1813 failrec = (struct io_failure_record *)(unsigned long)private; 1814 } 1815 num_copies = btrfs_num_copies( 1816 &BTRFS_I(inode)->root->fs_info->mapping_tree, 1817 failrec->logical, failrec->len); 1818 failrec->last_mirror++; 1819 if (!state) { 1820 spin_lock(&BTRFS_I(inode)->io_tree.lock); 1821 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree, 1822 failrec->start, 1823 EXTENT_LOCKED); 1824 if (state && state->start != failrec->start) 1825 state = NULL; 1826 spin_unlock(&BTRFS_I(inode)->io_tree.lock); 1827 } 1828 if (!state || failrec->last_mirror > num_copies) { 1829 set_state_private(failure_tree, failrec->start, 0); 1830 clear_extent_bits(failure_tree, failrec->start, 1831 failrec->start + failrec->len - 1, 1832 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS); 1833 kfree(failrec); 1834 return -EIO; 1835 } 1836 bio = bio_alloc(GFP_NOFS, 1); 1837 bio->bi_private = state; 1838 bio->bi_end_io = failed_bio->bi_end_io; 1839 bio->bi_sector = failrec->logical >> 9; 1840 bio->bi_bdev = failed_bio->bi_bdev; 1841 bio->bi_size = 0; 1842 1843 bio_add_page(bio, page, failrec->len, start - page_offset(page)); 1844 if (failed_bio->bi_rw & REQ_WRITE) 1845 rw = WRITE; 1846 else 1847 rw = READ; 1848 1849 BTRFS_I(inode)->io_tree.ops->submit_bio_hook(inode, rw, bio, 1850 failrec->last_mirror, 1851 failrec->bio_flags, 0); 1852 return 0; 1853 } 1854 1855 /* 1856 * each time an IO finishes, we do a fast check in the IO failure tree 1857 * to see if we need to process or clean up an io_failure_record 1858 */ 1859 static int btrfs_clean_io_failures(struct inode *inode, u64 start) 1860 { 1861 u64 private; 1862 u64 private_failure; 1863 struct io_failure_record *failure; 1864 int ret; 1865 1866 private = 0; 1867 if (count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private, 1868 (u64)-1, 1, EXTENT_DIRTY)) { 1869 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree, 1870 start, &private_failure); 1871 if (ret == 0) { 1872 failure = (struct io_failure_record *)(unsigned long) 1873 private_failure; 1874 set_state_private(&BTRFS_I(inode)->io_failure_tree, 1875 failure->start, 0); 1876 clear_extent_bits(&BTRFS_I(inode)->io_failure_tree, 1877 failure->start, 1878 failure->start + failure->len - 1, 1879 EXTENT_DIRTY | EXTENT_LOCKED, 1880 GFP_NOFS); 1881 kfree(failure); 1882 } 1883 } 1884 return 0; 1885 } 1886 1887 /* 1888 * when reads are done, we need to check csums to verify the data is correct 1889 * if there's a match, we allow the bio to finish. If not, we go through 1890 * the io_failure_record routines to find good copies 1891 */ 1892 static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end, 1893 struct extent_state *state) 1894 { 1895 size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT); 1896 struct inode *inode = page->mapping->host; 1897 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 1898 char *kaddr; 1899 u64 private = ~(u32)0; 1900 int ret; 1901 struct btrfs_root *root = BTRFS_I(inode)->root; 1902 u32 csum = ~(u32)0; 1903 1904 if (PageChecked(page)) { 1905 ClearPageChecked(page); 1906 goto good; 1907 } 1908 1909 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) 1910 return 0; 1911 1912 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID && 1913 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) { 1914 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM, 1915 GFP_NOFS); 1916 return 0; 1917 } 1918 1919 if (state && state->start == start) { 1920 private = state->private; 1921 ret = 0; 1922 } else { 1923 ret = get_state_private(io_tree, start, &private); 1924 } 1925 kaddr = kmap_atomic(page, KM_USER0); 1926 if (ret) 1927 goto zeroit; 1928 1929 csum = btrfs_csum_data(root, kaddr + offset, csum, end - start + 1); 1930 btrfs_csum_final(csum, (char *)&csum); 1931 if (csum != private) 1932 goto zeroit; 1933 1934 kunmap_atomic(kaddr, KM_USER0); 1935 good: 1936 /* if the io failure tree for this inode is non-empty, 1937 * check to see if we've recovered from a failed IO 1938 */ 1939 btrfs_clean_io_failures(inode, start); 1940 return 0; 1941 1942 zeroit: 1943 if (printk_ratelimit()) { 1944 printk(KERN_INFO "btrfs csum failed ino %lu off %llu csum %u " 1945 "private %llu\n", page->mapping->host->i_ino, 1946 (unsigned long long)start, csum, 1947 (unsigned long long)private); 1948 } 1949 memset(kaddr + offset, 1, end - start + 1); 1950 flush_dcache_page(page); 1951 kunmap_atomic(kaddr, KM_USER0); 1952 if (private == 0) 1953 return 0; 1954 return -EIO; 1955 } 1956 1957 struct delayed_iput { 1958 struct list_head list; 1959 struct inode *inode; 1960 }; 1961 1962 void btrfs_add_delayed_iput(struct inode *inode) 1963 { 1964 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 1965 struct delayed_iput *delayed; 1966 1967 if (atomic_add_unless(&inode->i_count, -1, 1)) 1968 return; 1969 1970 delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL); 1971 delayed->inode = inode; 1972 1973 spin_lock(&fs_info->delayed_iput_lock); 1974 list_add_tail(&delayed->list, &fs_info->delayed_iputs); 1975 spin_unlock(&fs_info->delayed_iput_lock); 1976 } 1977 1978 void btrfs_run_delayed_iputs(struct btrfs_root *root) 1979 { 1980 LIST_HEAD(list); 1981 struct btrfs_fs_info *fs_info = root->fs_info; 1982 struct delayed_iput *delayed; 1983 int empty; 1984 1985 spin_lock(&fs_info->delayed_iput_lock); 1986 empty = list_empty(&fs_info->delayed_iputs); 1987 spin_unlock(&fs_info->delayed_iput_lock); 1988 if (empty) 1989 return; 1990 1991 down_read(&root->fs_info->cleanup_work_sem); 1992 spin_lock(&fs_info->delayed_iput_lock); 1993 list_splice_init(&fs_info->delayed_iputs, &list); 1994 spin_unlock(&fs_info->delayed_iput_lock); 1995 1996 while (!list_empty(&list)) { 1997 delayed = list_entry(list.next, struct delayed_iput, list); 1998 list_del(&delayed->list); 1999 iput(delayed->inode); 2000 kfree(delayed); 2001 } 2002 up_read(&root->fs_info->cleanup_work_sem); 2003 } 2004 2005 /* 2006 * calculate extra metadata reservation when snapshotting a subvolume 2007 * contains orphan files. 2008 */ 2009 void btrfs_orphan_pre_snapshot(struct btrfs_trans_handle *trans, 2010 struct btrfs_pending_snapshot *pending, 2011 u64 *bytes_to_reserve) 2012 { 2013 struct btrfs_root *root; 2014 struct btrfs_block_rsv *block_rsv; 2015 u64 num_bytes; 2016 int index; 2017 2018 root = pending->root; 2019 if (!root->orphan_block_rsv || list_empty(&root->orphan_list)) 2020 return; 2021 2022 block_rsv = root->orphan_block_rsv; 2023 2024 /* orphan block reservation for the snapshot */ 2025 num_bytes = block_rsv->size; 2026 2027 /* 2028 * after the snapshot is created, COWing tree blocks may use more 2029 * space than it frees. So we should make sure there is enough 2030 * reserved space. 2031 */ 2032 index = trans->transid & 0x1; 2033 if (block_rsv->reserved + block_rsv->freed[index] < block_rsv->size) { 2034 num_bytes += block_rsv->size - 2035 (block_rsv->reserved + block_rsv->freed[index]); 2036 } 2037 2038 *bytes_to_reserve += num_bytes; 2039 } 2040 2041 void btrfs_orphan_post_snapshot(struct btrfs_trans_handle *trans, 2042 struct btrfs_pending_snapshot *pending) 2043 { 2044 struct btrfs_root *root = pending->root; 2045 struct btrfs_root *snap = pending->snap; 2046 struct btrfs_block_rsv *block_rsv; 2047 u64 num_bytes; 2048 int index; 2049 int ret; 2050 2051 if (!root->orphan_block_rsv || list_empty(&root->orphan_list)) 2052 return; 2053 2054 /* refill source subvolume's orphan block reservation */ 2055 block_rsv = root->orphan_block_rsv; 2056 index = trans->transid & 0x1; 2057 if (block_rsv->reserved + block_rsv->freed[index] < block_rsv->size) { 2058 num_bytes = block_rsv->size - 2059 (block_rsv->reserved + block_rsv->freed[index]); 2060 ret = btrfs_block_rsv_migrate(&pending->block_rsv, 2061 root->orphan_block_rsv, 2062 num_bytes); 2063 BUG_ON(ret); 2064 } 2065 2066 /* setup orphan block reservation for the snapshot */ 2067 block_rsv = btrfs_alloc_block_rsv(snap); 2068 BUG_ON(!block_rsv); 2069 2070 btrfs_add_durable_block_rsv(root->fs_info, block_rsv); 2071 snap->orphan_block_rsv = block_rsv; 2072 2073 num_bytes = root->orphan_block_rsv->size; 2074 ret = btrfs_block_rsv_migrate(&pending->block_rsv, 2075 block_rsv, num_bytes); 2076 BUG_ON(ret); 2077 2078 #if 0 2079 /* insert orphan item for the snapshot */ 2080 WARN_ON(!root->orphan_item_inserted); 2081 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root, 2082 snap->root_key.objectid); 2083 BUG_ON(ret); 2084 snap->orphan_item_inserted = 1; 2085 #endif 2086 } 2087 2088 enum btrfs_orphan_cleanup_state { 2089 ORPHAN_CLEANUP_STARTED = 1, 2090 ORPHAN_CLEANUP_DONE = 2, 2091 }; 2092 2093 /* 2094 * This is called in transaction commmit time. If there are no orphan 2095 * files in the subvolume, it removes orphan item and frees block_rsv 2096 * structure. 2097 */ 2098 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans, 2099 struct btrfs_root *root) 2100 { 2101 int ret; 2102 2103 if (!list_empty(&root->orphan_list) || 2104 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) 2105 return; 2106 2107 if (root->orphan_item_inserted && 2108 btrfs_root_refs(&root->root_item) > 0) { 2109 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root, 2110 root->root_key.objectid); 2111 BUG_ON(ret); 2112 root->orphan_item_inserted = 0; 2113 } 2114 2115 if (root->orphan_block_rsv) { 2116 WARN_ON(root->orphan_block_rsv->size > 0); 2117 btrfs_free_block_rsv(root, root->orphan_block_rsv); 2118 root->orphan_block_rsv = NULL; 2119 } 2120 } 2121 2122 /* 2123 * This creates an orphan entry for the given inode in case something goes 2124 * wrong in the middle of an unlink/truncate. 2125 * 2126 * NOTE: caller of this function should reserve 5 units of metadata for 2127 * this function. 2128 */ 2129 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode) 2130 { 2131 struct btrfs_root *root = BTRFS_I(inode)->root; 2132 struct btrfs_block_rsv *block_rsv = NULL; 2133 int reserve = 0; 2134 int insert = 0; 2135 int ret; 2136 2137 if (!root->orphan_block_rsv) { 2138 block_rsv = btrfs_alloc_block_rsv(root); 2139 BUG_ON(!block_rsv); 2140 } 2141 2142 spin_lock(&root->orphan_lock); 2143 if (!root->orphan_block_rsv) { 2144 root->orphan_block_rsv = block_rsv; 2145 } else if (block_rsv) { 2146 btrfs_free_block_rsv(root, block_rsv); 2147 block_rsv = NULL; 2148 } 2149 2150 if (list_empty(&BTRFS_I(inode)->i_orphan)) { 2151 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list); 2152 #if 0 2153 /* 2154 * For proper ENOSPC handling, we should do orphan 2155 * cleanup when mounting. But this introduces backward 2156 * compatibility issue. 2157 */ 2158 if (!xchg(&root->orphan_item_inserted, 1)) 2159 insert = 2; 2160 else 2161 insert = 1; 2162 #endif 2163 insert = 1; 2164 } else { 2165 WARN_ON(!BTRFS_I(inode)->orphan_meta_reserved); 2166 } 2167 2168 if (!BTRFS_I(inode)->orphan_meta_reserved) { 2169 BTRFS_I(inode)->orphan_meta_reserved = 1; 2170 reserve = 1; 2171 } 2172 spin_unlock(&root->orphan_lock); 2173 2174 if (block_rsv) 2175 btrfs_add_durable_block_rsv(root->fs_info, block_rsv); 2176 2177 /* grab metadata reservation from transaction handle */ 2178 if (reserve) { 2179 ret = btrfs_orphan_reserve_metadata(trans, inode); 2180 BUG_ON(ret); 2181 } 2182 2183 /* insert an orphan item to track this unlinked/truncated file */ 2184 if (insert >= 1) { 2185 ret = btrfs_insert_orphan_item(trans, root, inode->i_ino); 2186 BUG_ON(ret); 2187 } 2188 2189 /* insert an orphan item to track subvolume contains orphan files */ 2190 if (insert >= 2) { 2191 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root, 2192 root->root_key.objectid); 2193 BUG_ON(ret); 2194 } 2195 return 0; 2196 } 2197 2198 /* 2199 * We have done the truncate/delete so we can go ahead and remove the orphan 2200 * item for this particular inode. 2201 */ 2202 int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode) 2203 { 2204 struct btrfs_root *root = BTRFS_I(inode)->root; 2205 int delete_item = 0; 2206 int release_rsv = 0; 2207 int ret = 0; 2208 2209 spin_lock(&root->orphan_lock); 2210 if (!list_empty(&BTRFS_I(inode)->i_orphan)) { 2211 list_del_init(&BTRFS_I(inode)->i_orphan); 2212 delete_item = 1; 2213 } 2214 2215 if (BTRFS_I(inode)->orphan_meta_reserved) { 2216 BTRFS_I(inode)->orphan_meta_reserved = 0; 2217 release_rsv = 1; 2218 } 2219 spin_unlock(&root->orphan_lock); 2220 2221 if (trans && delete_item) { 2222 ret = btrfs_del_orphan_item(trans, root, inode->i_ino); 2223 BUG_ON(ret); 2224 } 2225 2226 if (release_rsv) 2227 btrfs_orphan_release_metadata(inode); 2228 2229 return 0; 2230 } 2231 2232 /* 2233 * this cleans up any orphans that may be left on the list from the last use 2234 * of this root. 2235 */ 2236 void btrfs_orphan_cleanup(struct btrfs_root *root) 2237 { 2238 struct btrfs_path *path; 2239 struct extent_buffer *leaf; 2240 struct btrfs_item *item; 2241 struct btrfs_key key, found_key; 2242 struct btrfs_trans_handle *trans; 2243 struct inode *inode; 2244 int ret = 0, nr_unlink = 0, nr_truncate = 0; 2245 2246 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED)) 2247 return; 2248 2249 path = btrfs_alloc_path(); 2250 BUG_ON(!path); 2251 path->reada = -1; 2252 2253 key.objectid = BTRFS_ORPHAN_OBJECTID; 2254 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY); 2255 key.offset = (u64)-1; 2256 2257 while (1) { 2258 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2259 if (ret < 0) { 2260 printk(KERN_ERR "Error searching slot for orphan: %d" 2261 "\n", ret); 2262 break; 2263 } 2264 2265 /* 2266 * if ret == 0 means we found what we were searching for, which 2267 * is weird, but possible, so only screw with path if we didnt 2268 * find the key and see if we have stuff that matches 2269 */ 2270 if (ret > 0) { 2271 if (path->slots[0] == 0) 2272 break; 2273 path->slots[0]--; 2274 } 2275 2276 /* pull out the item */ 2277 leaf = path->nodes[0]; 2278 item = btrfs_item_nr(leaf, path->slots[0]); 2279 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 2280 2281 /* make sure the item matches what we want */ 2282 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID) 2283 break; 2284 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY) 2285 break; 2286 2287 /* release the path since we're done with it */ 2288 btrfs_release_path(root, path); 2289 2290 /* 2291 * this is where we are basically btrfs_lookup, without the 2292 * crossing root thing. we store the inode number in the 2293 * offset of the orphan item. 2294 */ 2295 found_key.objectid = found_key.offset; 2296 found_key.type = BTRFS_INODE_ITEM_KEY; 2297 found_key.offset = 0; 2298 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL); 2299 BUG_ON(IS_ERR(inode)); 2300 2301 /* 2302 * add this inode to the orphan list so btrfs_orphan_del does 2303 * the proper thing when we hit it 2304 */ 2305 spin_lock(&root->orphan_lock); 2306 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list); 2307 spin_unlock(&root->orphan_lock); 2308 2309 /* 2310 * if this is a bad inode, means we actually succeeded in 2311 * removing the inode, but not the orphan record, which means 2312 * we need to manually delete the orphan since iput will just 2313 * do a destroy_inode 2314 */ 2315 if (is_bad_inode(inode)) { 2316 trans = btrfs_start_transaction(root, 0); 2317 btrfs_orphan_del(trans, inode); 2318 btrfs_end_transaction(trans, root); 2319 iput(inode); 2320 continue; 2321 } 2322 2323 /* if we have links, this was a truncate, lets do that */ 2324 if (inode->i_nlink) { 2325 nr_truncate++; 2326 btrfs_truncate(inode); 2327 } else { 2328 nr_unlink++; 2329 } 2330 2331 /* this will do delete_inode and everything for us */ 2332 iput(inode); 2333 } 2334 btrfs_free_path(path); 2335 2336 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE; 2337 2338 if (root->orphan_block_rsv) 2339 btrfs_block_rsv_release(root, root->orphan_block_rsv, 2340 (u64)-1); 2341 2342 if (root->orphan_block_rsv || root->orphan_item_inserted) { 2343 trans = btrfs_join_transaction(root, 1); 2344 btrfs_end_transaction(trans, root); 2345 } 2346 2347 if (nr_unlink) 2348 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink); 2349 if (nr_truncate) 2350 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate); 2351 } 2352 2353 /* 2354 * very simple check to peek ahead in the leaf looking for xattrs. If we 2355 * don't find any xattrs, we know there can't be any acls. 2356 * 2357 * slot is the slot the inode is in, objectid is the objectid of the inode 2358 */ 2359 static noinline int acls_after_inode_item(struct extent_buffer *leaf, 2360 int slot, u64 objectid) 2361 { 2362 u32 nritems = btrfs_header_nritems(leaf); 2363 struct btrfs_key found_key; 2364 int scanned = 0; 2365 2366 slot++; 2367 while (slot < nritems) { 2368 btrfs_item_key_to_cpu(leaf, &found_key, slot); 2369 2370 /* we found a different objectid, there must not be acls */ 2371 if (found_key.objectid != objectid) 2372 return 0; 2373 2374 /* we found an xattr, assume we've got an acl */ 2375 if (found_key.type == BTRFS_XATTR_ITEM_KEY) 2376 return 1; 2377 2378 /* 2379 * we found a key greater than an xattr key, there can't 2380 * be any acls later on 2381 */ 2382 if (found_key.type > BTRFS_XATTR_ITEM_KEY) 2383 return 0; 2384 2385 slot++; 2386 scanned++; 2387 2388 /* 2389 * it goes inode, inode backrefs, xattrs, extents, 2390 * so if there are a ton of hard links to an inode there can 2391 * be a lot of backrefs. Don't waste time searching too hard, 2392 * this is just an optimization 2393 */ 2394 if (scanned >= 8) 2395 break; 2396 } 2397 /* we hit the end of the leaf before we found an xattr or 2398 * something larger than an xattr. We have to assume the inode 2399 * has acls 2400 */ 2401 return 1; 2402 } 2403 2404 /* 2405 * read an inode from the btree into the in-memory inode 2406 */ 2407 static void btrfs_read_locked_inode(struct inode *inode) 2408 { 2409 struct btrfs_path *path; 2410 struct extent_buffer *leaf; 2411 struct btrfs_inode_item *inode_item; 2412 struct btrfs_timespec *tspec; 2413 struct btrfs_root *root = BTRFS_I(inode)->root; 2414 struct btrfs_key location; 2415 int maybe_acls; 2416 u64 alloc_group_block; 2417 u32 rdev; 2418 int ret; 2419 2420 path = btrfs_alloc_path(); 2421 BUG_ON(!path); 2422 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location)); 2423 2424 ret = btrfs_lookup_inode(NULL, root, path, &location, 0); 2425 if (ret) 2426 goto make_bad; 2427 2428 leaf = path->nodes[0]; 2429 inode_item = btrfs_item_ptr(leaf, path->slots[0], 2430 struct btrfs_inode_item); 2431 2432 inode->i_mode = btrfs_inode_mode(leaf, inode_item); 2433 inode->i_nlink = btrfs_inode_nlink(leaf, inode_item); 2434 inode->i_uid = btrfs_inode_uid(leaf, inode_item); 2435 inode->i_gid = btrfs_inode_gid(leaf, inode_item); 2436 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item)); 2437 2438 tspec = btrfs_inode_atime(inode_item); 2439 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec); 2440 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec); 2441 2442 tspec = btrfs_inode_mtime(inode_item); 2443 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec); 2444 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec); 2445 2446 tspec = btrfs_inode_ctime(inode_item); 2447 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec); 2448 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec); 2449 2450 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item)); 2451 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item); 2452 BTRFS_I(inode)->sequence = btrfs_inode_sequence(leaf, inode_item); 2453 inode->i_generation = BTRFS_I(inode)->generation; 2454 inode->i_rdev = 0; 2455 rdev = btrfs_inode_rdev(leaf, inode_item); 2456 2457 BTRFS_I(inode)->index_cnt = (u64)-1; 2458 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item); 2459 2460 alloc_group_block = btrfs_inode_block_group(leaf, inode_item); 2461 2462 /* 2463 * try to precache a NULL acl entry for files that don't have 2464 * any xattrs or acls 2465 */ 2466 maybe_acls = acls_after_inode_item(leaf, path->slots[0], inode->i_ino); 2467 if (!maybe_acls) 2468 cache_no_acl(inode); 2469 2470 BTRFS_I(inode)->block_group = btrfs_find_block_group(root, 0, 2471 alloc_group_block, 0); 2472 btrfs_free_path(path); 2473 inode_item = NULL; 2474 2475 switch (inode->i_mode & S_IFMT) { 2476 case S_IFREG: 2477 inode->i_mapping->a_ops = &btrfs_aops; 2478 inode->i_mapping->backing_dev_info = &root->fs_info->bdi; 2479 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 2480 inode->i_fop = &btrfs_file_operations; 2481 inode->i_op = &btrfs_file_inode_operations; 2482 break; 2483 case S_IFDIR: 2484 inode->i_fop = &btrfs_dir_file_operations; 2485 if (root == root->fs_info->tree_root) 2486 inode->i_op = &btrfs_dir_ro_inode_operations; 2487 else 2488 inode->i_op = &btrfs_dir_inode_operations; 2489 break; 2490 case S_IFLNK: 2491 inode->i_op = &btrfs_symlink_inode_operations; 2492 inode->i_mapping->a_ops = &btrfs_symlink_aops; 2493 inode->i_mapping->backing_dev_info = &root->fs_info->bdi; 2494 break; 2495 default: 2496 inode->i_op = &btrfs_special_inode_operations; 2497 init_special_inode(inode, inode->i_mode, rdev); 2498 break; 2499 } 2500 2501 btrfs_update_iflags(inode); 2502 return; 2503 2504 make_bad: 2505 btrfs_free_path(path); 2506 make_bad_inode(inode); 2507 } 2508 2509 /* 2510 * given a leaf and an inode, copy the inode fields into the leaf 2511 */ 2512 static void fill_inode_item(struct btrfs_trans_handle *trans, 2513 struct extent_buffer *leaf, 2514 struct btrfs_inode_item *item, 2515 struct inode *inode) 2516 { 2517 btrfs_set_inode_uid(leaf, item, inode->i_uid); 2518 btrfs_set_inode_gid(leaf, item, inode->i_gid); 2519 btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size); 2520 btrfs_set_inode_mode(leaf, item, inode->i_mode); 2521 btrfs_set_inode_nlink(leaf, item, inode->i_nlink); 2522 2523 btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item), 2524 inode->i_atime.tv_sec); 2525 btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item), 2526 inode->i_atime.tv_nsec); 2527 2528 btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item), 2529 inode->i_mtime.tv_sec); 2530 btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item), 2531 inode->i_mtime.tv_nsec); 2532 2533 btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item), 2534 inode->i_ctime.tv_sec); 2535 btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item), 2536 inode->i_ctime.tv_nsec); 2537 2538 btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode)); 2539 btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation); 2540 btrfs_set_inode_sequence(leaf, item, BTRFS_I(inode)->sequence); 2541 btrfs_set_inode_transid(leaf, item, trans->transid); 2542 btrfs_set_inode_rdev(leaf, item, inode->i_rdev); 2543 btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags); 2544 btrfs_set_inode_block_group(leaf, item, BTRFS_I(inode)->block_group); 2545 } 2546 2547 /* 2548 * copy everything in the in-memory inode into the btree. 2549 */ 2550 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans, 2551 struct btrfs_root *root, struct inode *inode) 2552 { 2553 struct btrfs_inode_item *inode_item; 2554 struct btrfs_path *path; 2555 struct extent_buffer *leaf; 2556 int ret; 2557 2558 path = btrfs_alloc_path(); 2559 BUG_ON(!path); 2560 path->leave_spinning = 1; 2561 ret = btrfs_lookup_inode(trans, root, path, 2562 &BTRFS_I(inode)->location, 1); 2563 if (ret) { 2564 if (ret > 0) 2565 ret = -ENOENT; 2566 goto failed; 2567 } 2568 2569 btrfs_unlock_up_safe(path, 1); 2570 leaf = path->nodes[0]; 2571 inode_item = btrfs_item_ptr(leaf, path->slots[0], 2572 struct btrfs_inode_item); 2573 2574 fill_inode_item(trans, leaf, inode_item, inode); 2575 btrfs_mark_buffer_dirty(leaf); 2576 btrfs_set_inode_last_trans(trans, inode); 2577 ret = 0; 2578 failed: 2579 btrfs_free_path(path); 2580 return ret; 2581 } 2582 2583 2584 /* 2585 * unlink helper that gets used here in inode.c and in the tree logging 2586 * recovery code. It remove a link in a directory with a given name, and 2587 * also drops the back refs in the inode to the directory 2588 */ 2589 int btrfs_unlink_inode(struct btrfs_trans_handle *trans, 2590 struct btrfs_root *root, 2591 struct inode *dir, struct inode *inode, 2592 const char *name, int name_len) 2593 { 2594 struct btrfs_path *path; 2595 int ret = 0; 2596 struct extent_buffer *leaf; 2597 struct btrfs_dir_item *di; 2598 struct btrfs_key key; 2599 u64 index; 2600 2601 path = btrfs_alloc_path(); 2602 if (!path) { 2603 ret = -ENOMEM; 2604 goto err; 2605 } 2606 2607 path->leave_spinning = 1; 2608 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino, 2609 name, name_len, -1); 2610 if (IS_ERR(di)) { 2611 ret = PTR_ERR(di); 2612 goto err; 2613 } 2614 if (!di) { 2615 ret = -ENOENT; 2616 goto err; 2617 } 2618 leaf = path->nodes[0]; 2619 btrfs_dir_item_key_to_cpu(leaf, di, &key); 2620 ret = btrfs_delete_one_dir_name(trans, root, path, di); 2621 if (ret) 2622 goto err; 2623 btrfs_release_path(root, path); 2624 2625 ret = btrfs_del_inode_ref(trans, root, name, name_len, 2626 inode->i_ino, 2627 dir->i_ino, &index); 2628 if (ret) { 2629 printk(KERN_INFO "btrfs failed to delete reference to %.*s, " 2630 "inode %lu parent %lu\n", name_len, name, 2631 inode->i_ino, dir->i_ino); 2632 goto err; 2633 } 2634 2635 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino, 2636 index, name, name_len, -1); 2637 if (IS_ERR(di)) { 2638 ret = PTR_ERR(di); 2639 goto err; 2640 } 2641 if (!di) { 2642 ret = -ENOENT; 2643 goto err; 2644 } 2645 ret = btrfs_delete_one_dir_name(trans, root, path, di); 2646 btrfs_release_path(root, path); 2647 2648 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, 2649 inode, dir->i_ino); 2650 BUG_ON(ret != 0 && ret != -ENOENT); 2651 2652 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, 2653 dir, index); 2654 BUG_ON(ret); 2655 err: 2656 btrfs_free_path(path); 2657 if (ret) 2658 goto out; 2659 2660 btrfs_i_size_write(dir, dir->i_size - name_len * 2); 2661 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME; 2662 btrfs_update_inode(trans, root, dir); 2663 btrfs_drop_nlink(inode); 2664 ret = btrfs_update_inode(trans, root, inode); 2665 out: 2666 return ret; 2667 } 2668 2669 /* helper to check if there is any shared block in the path */ 2670 static int check_path_shared(struct btrfs_root *root, 2671 struct btrfs_path *path) 2672 { 2673 struct extent_buffer *eb; 2674 int level; 2675 int ret; 2676 u64 refs = 1; 2677 2678 for (level = 0; level < BTRFS_MAX_LEVEL; level++) { 2679 if (!path->nodes[level]) 2680 break; 2681 eb = path->nodes[level]; 2682 if (!btrfs_block_can_be_shared(root, eb)) 2683 continue; 2684 ret = btrfs_lookup_extent_info(NULL, root, eb->start, eb->len, 2685 &refs, NULL); 2686 if (refs > 1) 2687 return 1; 2688 } 2689 return 0; 2690 } 2691 2692 /* 2693 * helper to start transaction for unlink and rmdir. 2694 * 2695 * unlink and rmdir are special in btrfs, they do not always free space. 2696 * so in enospc case, we should make sure they will free space before 2697 * allowing them to use the global metadata reservation. 2698 */ 2699 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir, 2700 struct dentry *dentry) 2701 { 2702 struct btrfs_trans_handle *trans; 2703 struct btrfs_root *root = BTRFS_I(dir)->root; 2704 struct btrfs_path *path; 2705 struct btrfs_inode_ref *ref; 2706 struct btrfs_dir_item *di; 2707 struct inode *inode = dentry->d_inode; 2708 u64 index; 2709 int check_link = 1; 2710 int err = -ENOSPC; 2711 int ret; 2712 2713 trans = btrfs_start_transaction(root, 10); 2714 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC) 2715 return trans; 2716 2717 if (inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 2718 return ERR_PTR(-ENOSPC); 2719 2720 /* check if there is someone else holds reference */ 2721 if (S_ISDIR(inode->i_mode) && atomic_read(&inode->i_count) > 1) 2722 return ERR_PTR(-ENOSPC); 2723 2724 if (atomic_read(&inode->i_count) > 2) 2725 return ERR_PTR(-ENOSPC); 2726 2727 if (xchg(&root->fs_info->enospc_unlink, 1)) 2728 return ERR_PTR(-ENOSPC); 2729 2730 path = btrfs_alloc_path(); 2731 if (!path) { 2732 root->fs_info->enospc_unlink = 0; 2733 return ERR_PTR(-ENOMEM); 2734 } 2735 2736 trans = btrfs_start_transaction(root, 0); 2737 if (IS_ERR(trans)) { 2738 btrfs_free_path(path); 2739 root->fs_info->enospc_unlink = 0; 2740 return trans; 2741 } 2742 2743 path->skip_locking = 1; 2744 path->search_commit_root = 1; 2745 2746 ret = btrfs_lookup_inode(trans, root, path, 2747 &BTRFS_I(dir)->location, 0); 2748 if (ret < 0) { 2749 err = ret; 2750 goto out; 2751 } 2752 if (ret == 0) { 2753 if (check_path_shared(root, path)) 2754 goto out; 2755 } else { 2756 check_link = 0; 2757 } 2758 btrfs_release_path(root, path); 2759 2760 ret = btrfs_lookup_inode(trans, root, path, 2761 &BTRFS_I(inode)->location, 0); 2762 if (ret < 0) { 2763 err = ret; 2764 goto out; 2765 } 2766 if (ret == 0) { 2767 if (check_path_shared(root, path)) 2768 goto out; 2769 } else { 2770 check_link = 0; 2771 } 2772 btrfs_release_path(root, path); 2773 2774 if (ret == 0 && S_ISREG(inode->i_mode)) { 2775 ret = btrfs_lookup_file_extent(trans, root, path, 2776 inode->i_ino, (u64)-1, 0); 2777 if (ret < 0) { 2778 err = ret; 2779 goto out; 2780 } 2781 BUG_ON(ret == 0); 2782 if (check_path_shared(root, path)) 2783 goto out; 2784 btrfs_release_path(root, path); 2785 } 2786 2787 if (!check_link) { 2788 err = 0; 2789 goto out; 2790 } 2791 2792 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino, 2793 dentry->d_name.name, dentry->d_name.len, 0); 2794 if (IS_ERR(di)) { 2795 err = PTR_ERR(di); 2796 goto out; 2797 } 2798 if (di) { 2799 if (check_path_shared(root, path)) 2800 goto out; 2801 } else { 2802 err = 0; 2803 goto out; 2804 } 2805 btrfs_release_path(root, path); 2806 2807 ref = btrfs_lookup_inode_ref(trans, root, path, 2808 dentry->d_name.name, dentry->d_name.len, 2809 inode->i_ino, dir->i_ino, 0); 2810 if (IS_ERR(ref)) { 2811 err = PTR_ERR(ref); 2812 goto out; 2813 } 2814 BUG_ON(!ref); 2815 if (check_path_shared(root, path)) 2816 goto out; 2817 index = btrfs_inode_ref_index(path->nodes[0], ref); 2818 btrfs_release_path(root, path); 2819 2820 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino, index, 2821 dentry->d_name.name, dentry->d_name.len, 0); 2822 if (IS_ERR(di)) { 2823 err = PTR_ERR(di); 2824 goto out; 2825 } 2826 BUG_ON(ret == -ENOENT); 2827 if (check_path_shared(root, path)) 2828 goto out; 2829 2830 err = 0; 2831 out: 2832 btrfs_free_path(path); 2833 if (err) { 2834 btrfs_end_transaction(trans, root); 2835 root->fs_info->enospc_unlink = 0; 2836 return ERR_PTR(err); 2837 } 2838 2839 trans->block_rsv = &root->fs_info->global_block_rsv; 2840 return trans; 2841 } 2842 2843 static void __unlink_end_trans(struct btrfs_trans_handle *trans, 2844 struct btrfs_root *root) 2845 { 2846 if (trans->block_rsv == &root->fs_info->global_block_rsv) { 2847 BUG_ON(!root->fs_info->enospc_unlink); 2848 root->fs_info->enospc_unlink = 0; 2849 } 2850 btrfs_end_transaction_throttle(trans, root); 2851 } 2852 2853 static int btrfs_unlink(struct inode *dir, struct dentry *dentry) 2854 { 2855 struct btrfs_root *root = BTRFS_I(dir)->root; 2856 struct btrfs_trans_handle *trans; 2857 struct inode *inode = dentry->d_inode; 2858 int ret; 2859 unsigned long nr = 0; 2860 2861 trans = __unlink_start_trans(dir, dentry); 2862 if (IS_ERR(trans)) 2863 return PTR_ERR(trans); 2864 2865 btrfs_set_trans_block_group(trans, dir); 2866 2867 btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0); 2868 2869 ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode, 2870 dentry->d_name.name, dentry->d_name.len); 2871 BUG_ON(ret); 2872 2873 if (inode->i_nlink == 0) { 2874 ret = btrfs_orphan_add(trans, inode); 2875 BUG_ON(ret); 2876 } 2877 2878 nr = trans->blocks_used; 2879 __unlink_end_trans(trans, root); 2880 btrfs_btree_balance_dirty(root, nr); 2881 return ret; 2882 } 2883 2884 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans, 2885 struct btrfs_root *root, 2886 struct inode *dir, u64 objectid, 2887 const char *name, int name_len) 2888 { 2889 struct btrfs_path *path; 2890 struct extent_buffer *leaf; 2891 struct btrfs_dir_item *di; 2892 struct btrfs_key key; 2893 u64 index; 2894 int ret; 2895 2896 path = btrfs_alloc_path(); 2897 if (!path) 2898 return -ENOMEM; 2899 2900 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino, 2901 name, name_len, -1); 2902 BUG_ON(!di || IS_ERR(di)); 2903 2904 leaf = path->nodes[0]; 2905 btrfs_dir_item_key_to_cpu(leaf, di, &key); 2906 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid); 2907 ret = btrfs_delete_one_dir_name(trans, root, path, di); 2908 BUG_ON(ret); 2909 btrfs_release_path(root, path); 2910 2911 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root, 2912 objectid, root->root_key.objectid, 2913 dir->i_ino, &index, name, name_len); 2914 if (ret < 0) { 2915 BUG_ON(ret != -ENOENT); 2916 di = btrfs_search_dir_index_item(root, path, dir->i_ino, 2917 name, name_len); 2918 BUG_ON(!di || IS_ERR(di)); 2919 2920 leaf = path->nodes[0]; 2921 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2922 btrfs_release_path(root, path); 2923 index = key.offset; 2924 } 2925 2926 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino, 2927 index, name, name_len, -1); 2928 BUG_ON(!di || IS_ERR(di)); 2929 2930 leaf = path->nodes[0]; 2931 btrfs_dir_item_key_to_cpu(leaf, di, &key); 2932 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid); 2933 ret = btrfs_delete_one_dir_name(trans, root, path, di); 2934 BUG_ON(ret); 2935 btrfs_release_path(root, path); 2936 2937 btrfs_i_size_write(dir, dir->i_size - name_len * 2); 2938 dir->i_mtime = dir->i_ctime = CURRENT_TIME; 2939 ret = btrfs_update_inode(trans, root, dir); 2940 BUG_ON(ret); 2941 2942 btrfs_free_path(path); 2943 return 0; 2944 } 2945 2946 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry) 2947 { 2948 struct inode *inode = dentry->d_inode; 2949 int err = 0; 2950 struct btrfs_root *root = BTRFS_I(dir)->root; 2951 struct btrfs_trans_handle *trans; 2952 unsigned long nr = 0; 2953 2954 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE || 2955 inode->i_ino == BTRFS_FIRST_FREE_OBJECTID) 2956 return -ENOTEMPTY; 2957 2958 trans = __unlink_start_trans(dir, dentry); 2959 if (IS_ERR(trans)) 2960 return PTR_ERR(trans); 2961 2962 btrfs_set_trans_block_group(trans, dir); 2963 2964 if (unlikely(inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 2965 err = btrfs_unlink_subvol(trans, root, dir, 2966 BTRFS_I(inode)->location.objectid, 2967 dentry->d_name.name, 2968 dentry->d_name.len); 2969 goto out; 2970 } 2971 2972 err = btrfs_orphan_add(trans, inode); 2973 if (err) 2974 goto out; 2975 2976 /* now the directory is empty */ 2977 err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode, 2978 dentry->d_name.name, dentry->d_name.len); 2979 if (!err) 2980 btrfs_i_size_write(inode, 0); 2981 out: 2982 nr = trans->blocks_used; 2983 __unlink_end_trans(trans, root); 2984 btrfs_btree_balance_dirty(root, nr); 2985 2986 return err; 2987 } 2988 2989 #if 0 2990 /* 2991 * when truncating bytes in a file, it is possible to avoid reading 2992 * the leaves that contain only checksum items. This can be the 2993 * majority of the IO required to delete a large file, but it must 2994 * be done carefully. 2995 * 2996 * The keys in the level just above the leaves are checked to make sure 2997 * the lowest key in a given leaf is a csum key, and starts at an offset 2998 * after the new size. 2999 * 3000 * Then the key for the next leaf is checked to make sure it also has 3001 * a checksum item for the same file. If it does, we know our target leaf 3002 * contains only checksum items, and it can be safely freed without reading 3003 * it. 3004 * 3005 * This is just an optimization targeted at large files. It may do 3006 * nothing. It will return 0 unless things went badly. 3007 */ 3008 static noinline int drop_csum_leaves(struct btrfs_trans_handle *trans, 3009 struct btrfs_root *root, 3010 struct btrfs_path *path, 3011 struct inode *inode, u64 new_size) 3012 { 3013 struct btrfs_key key; 3014 int ret; 3015 int nritems; 3016 struct btrfs_key found_key; 3017 struct btrfs_key other_key; 3018 struct btrfs_leaf_ref *ref; 3019 u64 leaf_gen; 3020 u64 leaf_start; 3021 3022 path->lowest_level = 1; 3023 key.objectid = inode->i_ino; 3024 key.type = BTRFS_CSUM_ITEM_KEY; 3025 key.offset = new_size; 3026 again: 3027 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 3028 if (ret < 0) 3029 goto out; 3030 3031 if (path->nodes[1] == NULL) { 3032 ret = 0; 3033 goto out; 3034 } 3035 ret = 0; 3036 btrfs_node_key_to_cpu(path->nodes[1], &found_key, path->slots[1]); 3037 nritems = btrfs_header_nritems(path->nodes[1]); 3038 3039 if (!nritems) 3040 goto out; 3041 3042 if (path->slots[1] >= nritems) 3043 goto next_node; 3044 3045 /* did we find a key greater than anything we want to delete? */ 3046 if (found_key.objectid > inode->i_ino || 3047 (found_key.objectid == inode->i_ino && found_key.type > key.type)) 3048 goto out; 3049 3050 /* we check the next key in the node to make sure the leave contains 3051 * only checksum items. This comparison doesn't work if our 3052 * leaf is the last one in the node 3053 */ 3054 if (path->slots[1] + 1 >= nritems) { 3055 next_node: 3056 /* search forward from the last key in the node, this 3057 * will bring us into the next node in the tree 3058 */ 3059 btrfs_node_key_to_cpu(path->nodes[1], &found_key, nritems - 1); 3060 3061 /* unlikely, but we inc below, so check to be safe */ 3062 if (found_key.offset == (u64)-1) 3063 goto out; 3064 3065 /* search_forward needs a path with locks held, do the 3066 * search again for the original key. It is possible 3067 * this will race with a balance and return a path that 3068 * we could modify, but this drop is just an optimization 3069 * and is allowed to miss some leaves. 3070 */ 3071 btrfs_release_path(root, path); 3072 found_key.offset++; 3073 3074 /* setup a max key for search_forward */ 3075 other_key.offset = (u64)-1; 3076 other_key.type = key.type; 3077 other_key.objectid = key.objectid; 3078 3079 path->keep_locks = 1; 3080 ret = btrfs_search_forward(root, &found_key, &other_key, 3081 path, 0, 0); 3082 path->keep_locks = 0; 3083 if (ret || found_key.objectid != key.objectid || 3084 found_key.type != key.type) { 3085 ret = 0; 3086 goto out; 3087 } 3088 3089 key.offset = found_key.offset; 3090 btrfs_release_path(root, path); 3091 cond_resched(); 3092 goto again; 3093 } 3094 3095 /* we know there's one more slot after us in the tree, 3096 * read that key so we can verify it is also a checksum item 3097 */ 3098 btrfs_node_key_to_cpu(path->nodes[1], &other_key, path->slots[1] + 1); 3099 3100 if (found_key.objectid < inode->i_ino) 3101 goto next_key; 3102 3103 if (found_key.type != key.type || found_key.offset < new_size) 3104 goto next_key; 3105 3106 /* 3107 * if the key for the next leaf isn't a csum key from this objectid, 3108 * we can't be sure there aren't good items inside this leaf. 3109 * Bail out 3110 */ 3111 if (other_key.objectid != inode->i_ino || other_key.type != key.type) 3112 goto out; 3113 3114 leaf_start = btrfs_node_blockptr(path->nodes[1], path->slots[1]); 3115 leaf_gen = btrfs_node_ptr_generation(path->nodes[1], path->slots[1]); 3116 /* 3117 * it is safe to delete this leaf, it contains only 3118 * csum items from this inode at an offset >= new_size 3119 */ 3120 ret = btrfs_del_leaf(trans, root, path, leaf_start); 3121 BUG_ON(ret); 3122 3123 if (root->ref_cows && leaf_gen < trans->transid) { 3124 ref = btrfs_alloc_leaf_ref(root, 0); 3125 if (ref) { 3126 ref->root_gen = root->root_key.offset; 3127 ref->bytenr = leaf_start; 3128 ref->owner = 0; 3129 ref->generation = leaf_gen; 3130 ref->nritems = 0; 3131 3132 btrfs_sort_leaf_ref(ref); 3133 3134 ret = btrfs_add_leaf_ref(root, ref, 0); 3135 WARN_ON(ret); 3136 btrfs_free_leaf_ref(root, ref); 3137 } else { 3138 WARN_ON(1); 3139 } 3140 } 3141 next_key: 3142 btrfs_release_path(root, path); 3143 3144 if (other_key.objectid == inode->i_ino && 3145 other_key.type == key.type && other_key.offset > key.offset) { 3146 key.offset = other_key.offset; 3147 cond_resched(); 3148 goto again; 3149 } 3150 ret = 0; 3151 out: 3152 /* fixup any changes we've made to the path */ 3153 path->lowest_level = 0; 3154 path->keep_locks = 0; 3155 btrfs_release_path(root, path); 3156 return ret; 3157 } 3158 3159 #endif 3160 3161 /* 3162 * this can truncate away extent items, csum items and directory items. 3163 * It starts at a high offset and removes keys until it can't find 3164 * any higher than new_size 3165 * 3166 * csum items that cross the new i_size are truncated to the new size 3167 * as well. 3168 * 3169 * min_type is the minimum key type to truncate down to. If set to 0, this 3170 * will kill all the items on this inode, including the INODE_ITEM_KEY. 3171 */ 3172 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans, 3173 struct btrfs_root *root, 3174 struct inode *inode, 3175 u64 new_size, u32 min_type) 3176 { 3177 struct btrfs_path *path; 3178 struct extent_buffer *leaf; 3179 struct btrfs_file_extent_item *fi; 3180 struct btrfs_key key; 3181 struct btrfs_key found_key; 3182 u64 extent_start = 0; 3183 u64 extent_num_bytes = 0; 3184 u64 extent_offset = 0; 3185 u64 item_end = 0; 3186 u64 mask = root->sectorsize - 1; 3187 u32 found_type = (u8)-1; 3188 int found_extent; 3189 int del_item; 3190 int pending_del_nr = 0; 3191 int pending_del_slot = 0; 3192 int extent_type = -1; 3193 int encoding; 3194 int ret; 3195 int err = 0; 3196 3197 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY); 3198 3199 if (root->ref_cows) 3200 btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0); 3201 3202 path = btrfs_alloc_path(); 3203 BUG_ON(!path); 3204 path->reada = -1; 3205 3206 key.objectid = inode->i_ino; 3207 key.offset = (u64)-1; 3208 key.type = (u8)-1; 3209 3210 search_again: 3211 path->leave_spinning = 1; 3212 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 3213 if (ret < 0) { 3214 err = ret; 3215 goto out; 3216 } 3217 3218 if (ret > 0) { 3219 /* there are no items in the tree for us to truncate, we're 3220 * done 3221 */ 3222 if (path->slots[0] == 0) 3223 goto out; 3224 path->slots[0]--; 3225 } 3226 3227 while (1) { 3228 fi = NULL; 3229 leaf = path->nodes[0]; 3230 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 3231 found_type = btrfs_key_type(&found_key); 3232 encoding = 0; 3233 3234 if (found_key.objectid != inode->i_ino) 3235 break; 3236 3237 if (found_type < min_type) 3238 break; 3239 3240 item_end = found_key.offset; 3241 if (found_type == BTRFS_EXTENT_DATA_KEY) { 3242 fi = btrfs_item_ptr(leaf, path->slots[0], 3243 struct btrfs_file_extent_item); 3244 extent_type = btrfs_file_extent_type(leaf, fi); 3245 encoding = btrfs_file_extent_compression(leaf, fi); 3246 encoding |= btrfs_file_extent_encryption(leaf, fi); 3247 encoding |= btrfs_file_extent_other_encoding(leaf, fi); 3248 3249 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 3250 item_end += 3251 btrfs_file_extent_num_bytes(leaf, fi); 3252 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 3253 item_end += btrfs_file_extent_inline_len(leaf, 3254 fi); 3255 } 3256 item_end--; 3257 } 3258 if (found_type > min_type) { 3259 del_item = 1; 3260 } else { 3261 if (item_end < new_size) 3262 break; 3263 if (found_key.offset >= new_size) 3264 del_item = 1; 3265 else 3266 del_item = 0; 3267 } 3268 found_extent = 0; 3269 /* FIXME, shrink the extent if the ref count is only 1 */ 3270 if (found_type != BTRFS_EXTENT_DATA_KEY) 3271 goto delete; 3272 3273 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 3274 u64 num_dec; 3275 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi); 3276 if (!del_item && !encoding) { 3277 u64 orig_num_bytes = 3278 btrfs_file_extent_num_bytes(leaf, fi); 3279 extent_num_bytes = new_size - 3280 found_key.offset + root->sectorsize - 1; 3281 extent_num_bytes = extent_num_bytes & 3282 ~((u64)root->sectorsize - 1); 3283 btrfs_set_file_extent_num_bytes(leaf, fi, 3284 extent_num_bytes); 3285 num_dec = (orig_num_bytes - 3286 extent_num_bytes); 3287 if (root->ref_cows && extent_start != 0) 3288 inode_sub_bytes(inode, num_dec); 3289 btrfs_mark_buffer_dirty(leaf); 3290 } else { 3291 extent_num_bytes = 3292 btrfs_file_extent_disk_num_bytes(leaf, 3293 fi); 3294 extent_offset = found_key.offset - 3295 btrfs_file_extent_offset(leaf, fi); 3296 3297 /* FIXME blocksize != 4096 */ 3298 num_dec = btrfs_file_extent_num_bytes(leaf, fi); 3299 if (extent_start != 0) { 3300 found_extent = 1; 3301 if (root->ref_cows) 3302 inode_sub_bytes(inode, num_dec); 3303 } 3304 } 3305 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 3306 /* 3307 * we can't truncate inline items that have had 3308 * special encodings 3309 */ 3310 if (!del_item && 3311 btrfs_file_extent_compression(leaf, fi) == 0 && 3312 btrfs_file_extent_encryption(leaf, fi) == 0 && 3313 btrfs_file_extent_other_encoding(leaf, fi) == 0) { 3314 u32 size = new_size - found_key.offset; 3315 3316 if (root->ref_cows) { 3317 inode_sub_bytes(inode, item_end + 1 - 3318 new_size); 3319 } 3320 size = 3321 btrfs_file_extent_calc_inline_size(size); 3322 ret = btrfs_truncate_item(trans, root, path, 3323 size, 1); 3324 BUG_ON(ret); 3325 } else if (root->ref_cows) { 3326 inode_sub_bytes(inode, item_end + 1 - 3327 found_key.offset); 3328 } 3329 } 3330 delete: 3331 if (del_item) { 3332 if (!pending_del_nr) { 3333 /* no pending yet, add ourselves */ 3334 pending_del_slot = path->slots[0]; 3335 pending_del_nr = 1; 3336 } else if (pending_del_nr && 3337 path->slots[0] + 1 == pending_del_slot) { 3338 /* hop on the pending chunk */ 3339 pending_del_nr++; 3340 pending_del_slot = path->slots[0]; 3341 } else { 3342 BUG(); 3343 } 3344 } else { 3345 break; 3346 } 3347 if (found_extent && root->ref_cows) { 3348 btrfs_set_path_blocking(path); 3349 ret = btrfs_free_extent(trans, root, extent_start, 3350 extent_num_bytes, 0, 3351 btrfs_header_owner(leaf), 3352 inode->i_ino, extent_offset); 3353 BUG_ON(ret); 3354 } 3355 3356 if (found_type == BTRFS_INODE_ITEM_KEY) 3357 break; 3358 3359 if (path->slots[0] == 0 || 3360 path->slots[0] != pending_del_slot) { 3361 if (root->ref_cows) { 3362 err = -EAGAIN; 3363 goto out; 3364 } 3365 if (pending_del_nr) { 3366 ret = btrfs_del_items(trans, root, path, 3367 pending_del_slot, 3368 pending_del_nr); 3369 BUG_ON(ret); 3370 pending_del_nr = 0; 3371 } 3372 btrfs_release_path(root, path); 3373 goto search_again; 3374 } else { 3375 path->slots[0]--; 3376 } 3377 } 3378 out: 3379 if (pending_del_nr) { 3380 ret = btrfs_del_items(trans, root, path, pending_del_slot, 3381 pending_del_nr); 3382 BUG_ON(ret); 3383 } 3384 btrfs_free_path(path); 3385 return err; 3386 } 3387 3388 /* 3389 * taken from block_truncate_page, but does cow as it zeros out 3390 * any bytes left in the last page in the file. 3391 */ 3392 static int btrfs_truncate_page(struct address_space *mapping, loff_t from) 3393 { 3394 struct inode *inode = mapping->host; 3395 struct btrfs_root *root = BTRFS_I(inode)->root; 3396 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 3397 struct btrfs_ordered_extent *ordered; 3398 struct extent_state *cached_state = NULL; 3399 char *kaddr; 3400 u32 blocksize = root->sectorsize; 3401 pgoff_t index = from >> PAGE_CACHE_SHIFT; 3402 unsigned offset = from & (PAGE_CACHE_SIZE-1); 3403 struct page *page; 3404 int ret = 0; 3405 u64 page_start; 3406 u64 page_end; 3407 3408 if ((offset & (blocksize - 1)) == 0) 3409 goto out; 3410 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE); 3411 if (ret) 3412 goto out; 3413 3414 ret = -ENOMEM; 3415 again: 3416 page = grab_cache_page(mapping, index); 3417 if (!page) { 3418 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE); 3419 goto out; 3420 } 3421 3422 page_start = page_offset(page); 3423 page_end = page_start + PAGE_CACHE_SIZE - 1; 3424 3425 if (!PageUptodate(page)) { 3426 ret = btrfs_readpage(NULL, page); 3427 lock_page(page); 3428 if (page->mapping != mapping) { 3429 unlock_page(page); 3430 page_cache_release(page); 3431 goto again; 3432 } 3433 if (!PageUptodate(page)) { 3434 ret = -EIO; 3435 goto out_unlock; 3436 } 3437 } 3438 wait_on_page_writeback(page); 3439 3440 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state, 3441 GFP_NOFS); 3442 set_page_extent_mapped(page); 3443 3444 ordered = btrfs_lookup_ordered_extent(inode, page_start); 3445 if (ordered) { 3446 unlock_extent_cached(io_tree, page_start, page_end, 3447 &cached_state, GFP_NOFS); 3448 unlock_page(page); 3449 page_cache_release(page); 3450 btrfs_start_ordered_extent(inode, ordered, 1); 3451 btrfs_put_ordered_extent(ordered); 3452 goto again; 3453 } 3454 3455 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end, 3456 EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING, 3457 0, 0, &cached_state, GFP_NOFS); 3458 3459 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 3460 &cached_state); 3461 if (ret) { 3462 unlock_extent_cached(io_tree, page_start, page_end, 3463 &cached_state, GFP_NOFS); 3464 goto out_unlock; 3465 } 3466 3467 ret = 0; 3468 if (offset != PAGE_CACHE_SIZE) { 3469 kaddr = kmap(page); 3470 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset); 3471 flush_dcache_page(page); 3472 kunmap(page); 3473 } 3474 ClearPageChecked(page); 3475 set_page_dirty(page); 3476 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, 3477 GFP_NOFS); 3478 3479 out_unlock: 3480 if (ret) 3481 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE); 3482 unlock_page(page); 3483 page_cache_release(page); 3484 out: 3485 return ret; 3486 } 3487 3488 int btrfs_cont_expand(struct inode *inode, loff_t size) 3489 { 3490 struct btrfs_trans_handle *trans; 3491 struct btrfs_root *root = BTRFS_I(inode)->root; 3492 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 3493 struct extent_map *em = NULL; 3494 struct extent_state *cached_state = NULL; 3495 u64 mask = root->sectorsize - 1; 3496 u64 hole_start = (inode->i_size + mask) & ~mask; 3497 u64 block_end = (size + mask) & ~mask; 3498 u64 last_byte; 3499 u64 cur_offset; 3500 u64 hole_size; 3501 int err = 0; 3502 3503 if (size <= hole_start) 3504 return 0; 3505 3506 while (1) { 3507 struct btrfs_ordered_extent *ordered; 3508 btrfs_wait_ordered_range(inode, hole_start, 3509 block_end - hole_start); 3510 lock_extent_bits(io_tree, hole_start, block_end - 1, 0, 3511 &cached_state, GFP_NOFS); 3512 ordered = btrfs_lookup_ordered_extent(inode, hole_start); 3513 if (!ordered) 3514 break; 3515 unlock_extent_cached(io_tree, hole_start, block_end - 1, 3516 &cached_state, GFP_NOFS); 3517 btrfs_put_ordered_extent(ordered); 3518 } 3519 3520 cur_offset = hole_start; 3521 while (1) { 3522 em = btrfs_get_extent(inode, NULL, 0, cur_offset, 3523 block_end - cur_offset, 0); 3524 BUG_ON(IS_ERR(em) || !em); 3525 last_byte = min(extent_map_end(em), block_end); 3526 last_byte = (last_byte + mask) & ~mask; 3527 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) { 3528 u64 hint_byte = 0; 3529 hole_size = last_byte - cur_offset; 3530 3531 trans = btrfs_start_transaction(root, 2); 3532 if (IS_ERR(trans)) { 3533 err = PTR_ERR(trans); 3534 break; 3535 } 3536 btrfs_set_trans_block_group(trans, inode); 3537 3538 err = btrfs_drop_extents(trans, inode, cur_offset, 3539 cur_offset + hole_size, 3540 &hint_byte, 1); 3541 BUG_ON(err); 3542 3543 err = btrfs_insert_file_extent(trans, root, 3544 inode->i_ino, cur_offset, 0, 3545 0, hole_size, 0, hole_size, 3546 0, 0, 0); 3547 BUG_ON(err); 3548 3549 btrfs_drop_extent_cache(inode, hole_start, 3550 last_byte - 1, 0); 3551 3552 btrfs_end_transaction(trans, root); 3553 } 3554 free_extent_map(em); 3555 em = NULL; 3556 cur_offset = last_byte; 3557 if (cur_offset >= block_end) 3558 break; 3559 } 3560 3561 free_extent_map(em); 3562 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state, 3563 GFP_NOFS); 3564 return err; 3565 } 3566 3567 static int btrfs_setattr_size(struct inode *inode, struct iattr *attr) 3568 { 3569 struct btrfs_root *root = BTRFS_I(inode)->root; 3570 struct btrfs_trans_handle *trans; 3571 unsigned long nr; 3572 int ret; 3573 3574 if (attr->ia_size == inode->i_size) 3575 return 0; 3576 3577 if (attr->ia_size > inode->i_size) { 3578 unsigned long limit; 3579 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur; 3580 if (attr->ia_size > inode->i_sb->s_maxbytes) 3581 return -EFBIG; 3582 if (limit != RLIM_INFINITY && attr->ia_size > limit) { 3583 send_sig(SIGXFSZ, current, 0); 3584 return -EFBIG; 3585 } 3586 } 3587 3588 trans = btrfs_start_transaction(root, 5); 3589 if (IS_ERR(trans)) 3590 return PTR_ERR(trans); 3591 3592 btrfs_set_trans_block_group(trans, inode); 3593 3594 ret = btrfs_orphan_add(trans, inode); 3595 BUG_ON(ret); 3596 3597 nr = trans->blocks_used; 3598 btrfs_end_transaction(trans, root); 3599 btrfs_btree_balance_dirty(root, nr); 3600 3601 if (attr->ia_size > inode->i_size) { 3602 ret = btrfs_cont_expand(inode, attr->ia_size); 3603 if (ret) { 3604 btrfs_truncate(inode); 3605 return ret; 3606 } 3607 3608 i_size_write(inode, attr->ia_size); 3609 btrfs_ordered_update_i_size(inode, inode->i_size, NULL); 3610 3611 trans = btrfs_start_transaction(root, 0); 3612 BUG_ON(IS_ERR(trans)); 3613 btrfs_set_trans_block_group(trans, inode); 3614 trans->block_rsv = root->orphan_block_rsv; 3615 BUG_ON(!trans->block_rsv); 3616 3617 ret = btrfs_update_inode(trans, root, inode); 3618 BUG_ON(ret); 3619 if (inode->i_nlink > 0) { 3620 ret = btrfs_orphan_del(trans, inode); 3621 BUG_ON(ret); 3622 } 3623 nr = trans->blocks_used; 3624 btrfs_end_transaction(trans, root); 3625 btrfs_btree_balance_dirty(root, nr); 3626 return 0; 3627 } 3628 3629 /* 3630 * We're truncating a file that used to have good data down to 3631 * zero. Make sure it gets into the ordered flush list so that 3632 * any new writes get down to disk quickly. 3633 */ 3634 if (attr->ia_size == 0) 3635 BTRFS_I(inode)->ordered_data_close = 1; 3636 3637 /* we don't support swapfiles, so vmtruncate shouldn't fail */ 3638 ret = vmtruncate(inode, attr->ia_size); 3639 BUG_ON(ret); 3640 3641 return 0; 3642 } 3643 3644 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr) 3645 { 3646 struct inode *inode = dentry->d_inode; 3647 int err; 3648 3649 err = inode_change_ok(inode, attr); 3650 if (err) 3651 return err; 3652 3653 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 3654 err = btrfs_setattr_size(inode, attr); 3655 if (err) 3656 return err; 3657 } 3658 3659 if (attr->ia_valid) { 3660 setattr_copy(inode, attr); 3661 mark_inode_dirty(inode); 3662 3663 if (attr->ia_valid & ATTR_MODE) 3664 err = btrfs_acl_chmod(inode); 3665 } 3666 3667 return err; 3668 } 3669 3670 void btrfs_evict_inode(struct inode *inode) 3671 { 3672 struct btrfs_trans_handle *trans; 3673 struct btrfs_root *root = BTRFS_I(inode)->root; 3674 unsigned long nr; 3675 int ret; 3676 3677 truncate_inode_pages(&inode->i_data, 0); 3678 if (inode->i_nlink && btrfs_root_refs(&root->root_item) != 0) 3679 goto no_delete; 3680 3681 if (is_bad_inode(inode)) { 3682 btrfs_orphan_del(NULL, inode); 3683 goto no_delete; 3684 } 3685 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */ 3686 btrfs_wait_ordered_range(inode, 0, (u64)-1); 3687 3688 if (root->fs_info->log_root_recovering) { 3689 BUG_ON(!list_empty(&BTRFS_I(inode)->i_orphan)); 3690 goto no_delete; 3691 } 3692 3693 if (inode->i_nlink > 0) { 3694 BUG_ON(btrfs_root_refs(&root->root_item) != 0); 3695 goto no_delete; 3696 } 3697 3698 btrfs_i_size_write(inode, 0); 3699 3700 while (1) { 3701 trans = btrfs_start_transaction(root, 0); 3702 BUG_ON(IS_ERR(trans)); 3703 btrfs_set_trans_block_group(trans, inode); 3704 trans->block_rsv = root->orphan_block_rsv; 3705 3706 ret = btrfs_block_rsv_check(trans, root, 3707 root->orphan_block_rsv, 0, 5); 3708 if (ret) { 3709 BUG_ON(ret != -EAGAIN); 3710 ret = btrfs_commit_transaction(trans, root); 3711 BUG_ON(ret); 3712 continue; 3713 } 3714 3715 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0); 3716 if (ret != -EAGAIN) 3717 break; 3718 3719 nr = trans->blocks_used; 3720 btrfs_end_transaction(trans, root); 3721 trans = NULL; 3722 btrfs_btree_balance_dirty(root, nr); 3723 3724 } 3725 3726 if (ret == 0) { 3727 ret = btrfs_orphan_del(trans, inode); 3728 BUG_ON(ret); 3729 } 3730 3731 nr = trans->blocks_used; 3732 btrfs_end_transaction(trans, root); 3733 btrfs_btree_balance_dirty(root, nr); 3734 no_delete: 3735 end_writeback(inode); 3736 return; 3737 } 3738 3739 /* 3740 * this returns the key found in the dir entry in the location pointer. 3741 * If no dir entries were found, location->objectid is 0. 3742 */ 3743 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry, 3744 struct btrfs_key *location) 3745 { 3746 const char *name = dentry->d_name.name; 3747 int namelen = dentry->d_name.len; 3748 struct btrfs_dir_item *di; 3749 struct btrfs_path *path; 3750 struct btrfs_root *root = BTRFS_I(dir)->root; 3751 int ret = 0; 3752 3753 path = btrfs_alloc_path(); 3754 BUG_ON(!path); 3755 3756 di = btrfs_lookup_dir_item(NULL, root, path, dir->i_ino, name, 3757 namelen, 0); 3758 if (IS_ERR(di)) 3759 ret = PTR_ERR(di); 3760 3761 if (!di || IS_ERR(di)) 3762 goto out_err; 3763 3764 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location); 3765 out: 3766 btrfs_free_path(path); 3767 return ret; 3768 out_err: 3769 location->objectid = 0; 3770 goto out; 3771 } 3772 3773 /* 3774 * when we hit a tree root in a directory, the btrfs part of the inode 3775 * needs to be changed to reflect the root directory of the tree root. This 3776 * is kind of like crossing a mount point. 3777 */ 3778 static int fixup_tree_root_location(struct btrfs_root *root, 3779 struct inode *dir, 3780 struct dentry *dentry, 3781 struct btrfs_key *location, 3782 struct btrfs_root **sub_root) 3783 { 3784 struct btrfs_path *path; 3785 struct btrfs_root *new_root; 3786 struct btrfs_root_ref *ref; 3787 struct extent_buffer *leaf; 3788 int ret; 3789 int err = 0; 3790 3791 path = btrfs_alloc_path(); 3792 if (!path) { 3793 err = -ENOMEM; 3794 goto out; 3795 } 3796 3797 err = -ENOENT; 3798 ret = btrfs_find_root_ref(root->fs_info->tree_root, path, 3799 BTRFS_I(dir)->root->root_key.objectid, 3800 location->objectid); 3801 if (ret) { 3802 if (ret < 0) 3803 err = ret; 3804 goto out; 3805 } 3806 3807 leaf = path->nodes[0]; 3808 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); 3809 if (btrfs_root_ref_dirid(leaf, ref) != dir->i_ino || 3810 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len) 3811 goto out; 3812 3813 ret = memcmp_extent_buffer(leaf, dentry->d_name.name, 3814 (unsigned long)(ref + 1), 3815 dentry->d_name.len); 3816 if (ret) 3817 goto out; 3818 3819 btrfs_release_path(root->fs_info->tree_root, path); 3820 3821 new_root = btrfs_read_fs_root_no_name(root->fs_info, location); 3822 if (IS_ERR(new_root)) { 3823 err = PTR_ERR(new_root); 3824 goto out; 3825 } 3826 3827 if (btrfs_root_refs(&new_root->root_item) == 0) { 3828 err = -ENOENT; 3829 goto out; 3830 } 3831 3832 *sub_root = new_root; 3833 location->objectid = btrfs_root_dirid(&new_root->root_item); 3834 location->type = BTRFS_INODE_ITEM_KEY; 3835 location->offset = 0; 3836 err = 0; 3837 out: 3838 btrfs_free_path(path); 3839 return err; 3840 } 3841 3842 static void inode_tree_add(struct inode *inode) 3843 { 3844 struct btrfs_root *root = BTRFS_I(inode)->root; 3845 struct btrfs_inode *entry; 3846 struct rb_node **p; 3847 struct rb_node *parent; 3848 again: 3849 p = &root->inode_tree.rb_node; 3850 parent = NULL; 3851 3852 if (hlist_unhashed(&inode->i_hash)) 3853 return; 3854 3855 spin_lock(&root->inode_lock); 3856 while (*p) { 3857 parent = *p; 3858 entry = rb_entry(parent, struct btrfs_inode, rb_node); 3859 3860 if (inode->i_ino < entry->vfs_inode.i_ino) 3861 p = &parent->rb_left; 3862 else if (inode->i_ino > entry->vfs_inode.i_ino) 3863 p = &parent->rb_right; 3864 else { 3865 WARN_ON(!(entry->vfs_inode.i_state & 3866 (I_WILL_FREE | I_FREEING))); 3867 rb_erase(parent, &root->inode_tree); 3868 RB_CLEAR_NODE(parent); 3869 spin_unlock(&root->inode_lock); 3870 goto again; 3871 } 3872 } 3873 rb_link_node(&BTRFS_I(inode)->rb_node, parent, p); 3874 rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree); 3875 spin_unlock(&root->inode_lock); 3876 } 3877 3878 static void inode_tree_del(struct inode *inode) 3879 { 3880 struct btrfs_root *root = BTRFS_I(inode)->root; 3881 int empty = 0; 3882 3883 spin_lock(&root->inode_lock); 3884 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) { 3885 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree); 3886 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node); 3887 empty = RB_EMPTY_ROOT(&root->inode_tree); 3888 } 3889 spin_unlock(&root->inode_lock); 3890 3891 if (empty && btrfs_root_refs(&root->root_item) == 0) { 3892 synchronize_srcu(&root->fs_info->subvol_srcu); 3893 spin_lock(&root->inode_lock); 3894 empty = RB_EMPTY_ROOT(&root->inode_tree); 3895 spin_unlock(&root->inode_lock); 3896 if (empty) 3897 btrfs_add_dead_root(root); 3898 } 3899 } 3900 3901 int btrfs_invalidate_inodes(struct btrfs_root *root) 3902 { 3903 struct rb_node *node; 3904 struct rb_node *prev; 3905 struct btrfs_inode *entry; 3906 struct inode *inode; 3907 u64 objectid = 0; 3908 3909 WARN_ON(btrfs_root_refs(&root->root_item) != 0); 3910 3911 spin_lock(&root->inode_lock); 3912 again: 3913 node = root->inode_tree.rb_node; 3914 prev = NULL; 3915 while (node) { 3916 prev = node; 3917 entry = rb_entry(node, struct btrfs_inode, rb_node); 3918 3919 if (objectid < entry->vfs_inode.i_ino) 3920 node = node->rb_left; 3921 else if (objectid > entry->vfs_inode.i_ino) 3922 node = node->rb_right; 3923 else 3924 break; 3925 } 3926 if (!node) { 3927 while (prev) { 3928 entry = rb_entry(prev, struct btrfs_inode, rb_node); 3929 if (objectid <= entry->vfs_inode.i_ino) { 3930 node = prev; 3931 break; 3932 } 3933 prev = rb_next(prev); 3934 } 3935 } 3936 while (node) { 3937 entry = rb_entry(node, struct btrfs_inode, rb_node); 3938 objectid = entry->vfs_inode.i_ino + 1; 3939 inode = igrab(&entry->vfs_inode); 3940 if (inode) { 3941 spin_unlock(&root->inode_lock); 3942 if (atomic_read(&inode->i_count) > 1) 3943 d_prune_aliases(inode); 3944 /* 3945 * btrfs_drop_inode will have it removed from 3946 * the inode cache when its usage count 3947 * hits zero. 3948 */ 3949 iput(inode); 3950 cond_resched(); 3951 spin_lock(&root->inode_lock); 3952 goto again; 3953 } 3954 3955 if (cond_resched_lock(&root->inode_lock)) 3956 goto again; 3957 3958 node = rb_next(node); 3959 } 3960 spin_unlock(&root->inode_lock); 3961 return 0; 3962 } 3963 3964 static int btrfs_init_locked_inode(struct inode *inode, void *p) 3965 { 3966 struct btrfs_iget_args *args = p; 3967 inode->i_ino = args->ino; 3968 BTRFS_I(inode)->root = args->root; 3969 btrfs_set_inode_space_info(args->root, inode); 3970 return 0; 3971 } 3972 3973 static int btrfs_find_actor(struct inode *inode, void *opaque) 3974 { 3975 struct btrfs_iget_args *args = opaque; 3976 return args->ino == inode->i_ino && 3977 args->root == BTRFS_I(inode)->root; 3978 } 3979 3980 static struct inode *btrfs_iget_locked(struct super_block *s, 3981 u64 objectid, 3982 struct btrfs_root *root) 3983 { 3984 struct inode *inode; 3985 struct btrfs_iget_args args; 3986 args.ino = objectid; 3987 args.root = root; 3988 3989 inode = iget5_locked(s, objectid, btrfs_find_actor, 3990 btrfs_init_locked_inode, 3991 (void *)&args); 3992 return inode; 3993 } 3994 3995 /* Get an inode object given its location and corresponding root. 3996 * Returns in *is_new if the inode was read from disk 3997 */ 3998 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location, 3999 struct btrfs_root *root, int *new) 4000 { 4001 struct inode *inode; 4002 4003 inode = btrfs_iget_locked(s, location->objectid, root); 4004 if (!inode) 4005 return ERR_PTR(-ENOMEM); 4006 4007 if (inode->i_state & I_NEW) { 4008 BTRFS_I(inode)->root = root; 4009 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location)); 4010 btrfs_read_locked_inode(inode); 4011 4012 inode_tree_add(inode); 4013 unlock_new_inode(inode); 4014 if (new) 4015 *new = 1; 4016 } 4017 4018 return inode; 4019 } 4020 4021 static struct inode *new_simple_dir(struct super_block *s, 4022 struct btrfs_key *key, 4023 struct btrfs_root *root) 4024 { 4025 struct inode *inode = new_inode(s); 4026 4027 if (!inode) 4028 return ERR_PTR(-ENOMEM); 4029 4030 BTRFS_I(inode)->root = root; 4031 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key)); 4032 BTRFS_I(inode)->dummy_inode = 1; 4033 4034 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID; 4035 inode->i_op = &simple_dir_inode_operations; 4036 inode->i_fop = &simple_dir_operations; 4037 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO; 4038 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME; 4039 4040 return inode; 4041 } 4042 4043 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry) 4044 { 4045 struct inode *inode; 4046 struct btrfs_root *root = BTRFS_I(dir)->root; 4047 struct btrfs_root *sub_root = root; 4048 struct btrfs_key location; 4049 int index; 4050 int ret; 4051 4052 dentry->d_op = &btrfs_dentry_operations; 4053 4054 if (dentry->d_name.len > BTRFS_NAME_LEN) 4055 return ERR_PTR(-ENAMETOOLONG); 4056 4057 ret = btrfs_inode_by_name(dir, dentry, &location); 4058 4059 if (ret < 0) 4060 return ERR_PTR(ret); 4061 4062 if (location.objectid == 0) 4063 return NULL; 4064 4065 if (location.type == BTRFS_INODE_ITEM_KEY) { 4066 inode = btrfs_iget(dir->i_sb, &location, root, NULL); 4067 return inode; 4068 } 4069 4070 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY); 4071 4072 index = srcu_read_lock(&root->fs_info->subvol_srcu); 4073 ret = fixup_tree_root_location(root, dir, dentry, 4074 &location, &sub_root); 4075 if (ret < 0) { 4076 if (ret != -ENOENT) 4077 inode = ERR_PTR(ret); 4078 else 4079 inode = new_simple_dir(dir->i_sb, &location, sub_root); 4080 } else { 4081 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL); 4082 } 4083 srcu_read_unlock(&root->fs_info->subvol_srcu, index); 4084 4085 if (root != sub_root) { 4086 down_read(&root->fs_info->cleanup_work_sem); 4087 if (!(inode->i_sb->s_flags & MS_RDONLY)) 4088 btrfs_orphan_cleanup(sub_root); 4089 up_read(&root->fs_info->cleanup_work_sem); 4090 } 4091 4092 return inode; 4093 } 4094 4095 static int btrfs_dentry_delete(struct dentry *dentry) 4096 { 4097 struct btrfs_root *root; 4098 4099 if (!dentry->d_inode && !IS_ROOT(dentry)) 4100 dentry = dentry->d_parent; 4101 4102 if (dentry->d_inode) { 4103 root = BTRFS_I(dentry->d_inode)->root; 4104 if (btrfs_root_refs(&root->root_item) == 0) 4105 return 1; 4106 } 4107 return 0; 4108 } 4109 4110 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry, 4111 struct nameidata *nd) 4112 { 4113 struct inode *inode; 4114 4115 inode = btrfs_lookup_dentry(dir, dentry); 4116 if (IS_ERR(inode)) 4117 return ERR_CAST(inode); 4118 4119 return d_splice_alias(inode, dentry); 4120 } 4121 4122 static unsigned char btrfs_filetype_table[] = { 4123 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK 4124 }; 4125 4126 static int btrfs_real_readdir(struct file *filp, void *dirent, 4127 filldir_t filldir) 4128 { 4129 struct inode *inode = filp->f_dentry->d_inode; 4130 struct btrfs_root *root = BTRFS_I(inode)->root; 4131 struct btrfs_item *item; 4132 struct btrfs_dir_item *di; 4133 struct btrfs_key key; 4134 struct btrfs_key found_key; 4135 struct btrfs_path *path; 4136 int ret; 4137 u32 nritems; 4138 struct extent_buffer *leaf; 4139 int slot; 4140 int advance; 4141 unsigned char d_type; 4142 int over = 0; 4143 u32 di_cur; 4144 u32 di_total; 4145 u32 di_len; 4146 int key_type = BTRFS_DIR_INDEX_KEY; 4147 char tmp_name[32]; 4148 char *name_ptr; 4149 int name_len; 4150 4151 /* FIXME, use a real flag for deciding about the key type */ 4152 if (root->fs_info->tree_root == root) 4153 key_type = BTRFS_DIR_ITEM_KEY; 4154 4155 /* special case for "." */ 4156 if (filp->f_pos == 0) { 4157 over = filldir(dirent, ".", 1, 4158 1, inode->i_ino, 4159 DT_DIR); 4160 if (over) 4161 return 0; 4162 filp->f_pos = 1; 4163 } 4164 /* special case for .., just use the back ref */ 4165 if (filp->f_pos == 1) { 4166 u64 pino = parent_ino(filp->f_path.dentry); 4167 over = filldir(dirent, "..", 2, 4168 2, pino, DT_DIR); 4169 if (over) 4170 return 0; 4171 filp->f_pos = 2; 4172 } 4173 path = btrfs_alloc_path(); 4174 path->reada = 2; 4175 4176 btrfs_set_key_type(&key, key_type); 4177 key.offset = filp->f_pos; 4178 key.objectid = inode->i_ino; 4179 4180 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4181 if (ret < 0) 4182 goto err; 4183 advance = 0; 4184 4185 while (1) { 4186 leaf = path->nodes[0]; 4187 nritems = btrfs_header_nritems(leaf); 4188 slot = path->slots[0]; 4189 if (advance || slot >= nritems) { 4190 if (slot >= nritems - 1) { 4191 ret = btrfs_next_leaf(root, path); 4192 if (ret) 4193 break; 4194 leaf = path->nodes[0]; 4195 nritems = btrfs_header_nritems(leaf); 4196 slot = path->slots[0]; 4197 } else { 4198 slot++; 4199 path->slots[0]++; 4200 } 4201 } 4202 4203 advance = 1; 4204 item = btrfs_item_nr(leaf, slot); 4205 btrfs_item_key_to_cpu(leaf, &found_key, slot); 4206 4207 if (found_key.objectid != key.objectid) 4208 break; 4209 if (btrfs_key_type(&found_key) != key_type) 4210 break; 4211 if (found_key.offset < filp->f_pos) 4212 continue; 4213 4214 filp->f_pos = found_key.offset; 4215 4216 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item); 4217 di_cur = 0; 4218 di_total = btrfs_item_size(leaf, item); 4219 4220 while (di_cur < di_total) { 4221 struct btrfs_key location; 4222 4223 name_len = btrfs_dir_name_len(leaf, di); 4224 if (name_len <= sizeof(tmp_name)) { 4225 name_ptr = tmp_name; 4226 } else { 4227 name_ptr = kmalloc(name_len, GFP_NOFS); 4228 if (!name_ptr) { 4229 ret = -ENOMEM; 4230 goto err; 4231 } 4232 } 4233 read_extent_buffer(leaf, name_ptr, 4234 (unsigned long)(di + 1), name_len); 4235 4236 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)]; 4237 btrfs_dir_item_key_to_cpu(leaf, di, &location); 4238 4239 /* is this a reference to our own snapshot? If so 4240 * skip it 4241 */ 4242 if (location.type == BTRFS_ROOT_ITEM_KEY && 4243 location.objectid == root->root_key.objectid) { 4244 over = 0; 4245 goto skip; 4246 } 4247 over = filldir(dirent, name_ptr, name_len, 4248 found_key.offset, location.objectid, 4249 d_type); 4250 4251 skip: 4252 if (name_ptr != tmp_name) 4253 kfree(name_ptr); 4254 4255 if (over) 4256 goto nopos; 4257 di_len = btrfs_dir_name_len(leaf, di) + 4258 btrfs_dir_data_len(leaf, di) + sizeof(*di); 4259 di_cur += di_len; 4260 di = (struct btrfs_dir_item *)((char *)di + di_len); 4261 } 4262 } 4263 4264 /* Reached end of directory/root. Bump pos past the last item. */ 4265 if (key_type == BTRFS_DIR_INDEX_KEY) 4266 /* 4267 * 32-bit glibc will use getdents64, but then strtol - 4268 * so the last number we can serve is this. 4269 */ 4270 filp->f_pos = 0x7fffffff; 4271 else 4272 filp->f_pos++; 4273 nopos: 4274 ret = 0; 4275 err: 4276 btrfs_free_path(path); 4277 return ret; 4278 } 4279 4280 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc) 4281 { 4282 struct btrfs_root *root = BTRFS_I(inode)->root; 4283 struct btrfs_trans_handle *trans; 4284 int ret = 0; 4285 4286 if (BTRFS_I(inode)->dummy_inode) 4287 return 0; 4288 4289 if (wbc->sync_mode == WB_SYNC_ALL) { 4290 trans = btrfs_join_transaction(root, 1); 4291 btrfs_set_trans_block_group(trans, inode); 4292 ret = btrfs_commit_transaction(trans, root); 4293 } 4294 return ret; 4295 } 4296 4297 /* 4298 * This is somewhat expensive, updating the tree every time the 4299 * inode changes. But, it is most likely to find the inode in cache. 4300 * FIXME, needs more benchmarking...there are no reasons other than performance 4301 * to keep or drop this code. 4302 */ 4303 void btrfs_dirty_inode(struct inode *inode) 4304 { 4305 struct btrfs_root *root = BTRFS_I(inode)->root; 4306 struct btrfs_trans_handle *trans; 4307 int ret; 4308 4309 if (BTRFS_I(inode)->dummy_inode) 4310 return; 4311 4312 trans = btrfs_join_transaction(root, 1); 4313 btrfs_set_trans_block_group(trans, inode); 4314 4315 ret = btrfs_update_inode(trans, root, inode); 4316 if (ret && ret == -ENOSPC) { 4317 /* whoops, lets try again with the full transaction */ 4318 btrfs_end_transaction(trans, root); 4319 trans = btrfs_start_transaction(root, 1); 4320 if (IS_ERR(trans)) { 4321 if (printk_ratelimit()) { 4322 printk(KERN_ERR "btrfs: fail to " 4323 "dirty inode %lu error %ld\n", 4324 inode->i_ino, PTR_ERR(trans)); 4325 } 4326 return; 4327 } 4328 btrfs_set_trans_block_group(trans, inode); 4329 4330 ret = btrfs_update_inode(trans, root, inode); 4331 if (ret) { 4332 if (printk_ratelimit()) { 4333 printk(KERN_ERR "btrfs: fail to " 4334 "dirty inode %lu error %d\n", 4335 inode->i_ino, ret); 4336 } 4337 } 4338 } 4339 btrfs_end_transaction(trans, root); 4340 } 4341 4342 /* 4343 * find the highest existing sequence number in a directory 4344 * and then set the in-memory index_cnt variable to reflect 4345 * free sequence numbers 4346 */ 4347 static int btrfs_set_inode_index_count(struct inode *inode) 4348 { 4349 struct btrfs_root *root = BTRFS_I(inode)->root; 4350 struct btrfs_key key, found_key; 4351 struct btrfs_path *path; 4352 struct extent_buffer *leaf; 4353 int ret; 4354 4355 key.objectid = inode->i_ino; 4356 btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY); 4357 key.offset = (u64)-1; 4358 4359 path = btrfs_alloc_path(); 4360 if (!path) 4361 return -ENOMEM; 4362 4363 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4364 if (ret < 0) 4365 goto out; 4366 /* FIXME: we should be able to handle this */ 4367 if (ret == 0) 4368 goto out; 4369 ret = 0; 4370 4371 /* 4372 * MAGIC NUMBER EXPLANATION: 4373 * since we search a directory based on f_pos we have to start at 2 4374 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody 4375 * else has to start at 2 4376 */ 4377 if (path->slots[0] == 0) { 4378 BTRFS_I(inode)->index_cnt = 2; 4379 goto out; 4380 } 4381 4382 path->slots[0]--; 4383 4384 leaf = path->nodes[0]; 4385 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 4386 4387 if (found_key.objectid != inode->i_ino || 4388 btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) { 4389 BTRFS_I(inode)->index_cnt = 2; 4390 goto out; 4391 } 4392 4393 BTRFS_I(inode)->index_cnt = found_key.offset + 1; 4394 out: 4395 btrfs_free_path(path); 4396 return ret; 4397 } 4398 4399 /* 4400 * helper to find a free sequence number in a given directory. This current 4401 * code is very simple, later versions will do smarter things in the btree 4402 */ 4403 int btrfs_set_inode_index(struct inode *dir, u64 *index) 4404 { 4405 int ret = 0; 4406 4407 if (BTRFS_I(dir)->index_cnt == (u64)-1) { 4408 ret = btrfs_set_inode_index_count(dir); 4409 if (ret) 4410 return ret; 4411 } 4412 4413 *index = BTRFS_I(dir)->index_cnt; 4414 BTRFS_I(dir)->index_cnt++; 4415 4416 return ret; 4417 } 4418 4419 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans, 4420 struct btrfs_root *root, 4421 struct inode *dir, 4422 const char *name, int name_len, 4423 u64 ref_objectid, u64 objectid, 4424 u64 alloc_hint, int mode, u64 *index) 4425 { 4426 struct inode *inode; 4427 struct btrfs_inode_item *inode_item; 4428 struct btrfs_key *location; 4429 struct btrfs_path *path; 4430 struct btrfs_inode_ref *ref; 4431 struct btrfs_key key[2]; 4432 u32 sizes[2]; 4433 unsigned long ptr; 4434 int ret; 4435 int owner; 4436 4437 path = btrfs_alloc_path(); 4438 BUG_ON(!path); 4439 4440 inode = new_inode(root->fs_info->sb); 4441 if (!inode) 4442 return ERR_PTR(-ENOMEM); 4443 4444 if (dir) { 4445 ret = btrfs_set_inode_index(dir, index); 4446 if (ret) { 4447 iput(inode); 4448 return ERR_PTR(ret); 4449 } 4450 } 4451 /* 4452 * index_cnt is ignored for everything but a dir, 4453 * btrfs_get_inode_index_count has an explanation for the magic 4454 * number 4455 */ 4456 BTRFS_I(inode)->index_cnt = 2; 4457 BTRFS_I(inode)->root = root; 4458 BTRFS_I(inode)->generation = trans->transid; 4459 btrfs_set_inode_space_info(root, inode); 4460 4461 if (mode & S_IFDIR) 4462 owner = 0; 4463 else 4464 owner = 1; 4465 BTRFS_I(inode)->block_group = 4466 btrfs_find_block_group(root, 0, alloc_hint, owner); 4467 4468 key[0].objectid = objectid; 4469 btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY); 4470 key[0].offset = 0; 4471 4472 key[1].objectid = objectid; 4473 btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY); 4474 key[1].offset = ref_objectid; 4475 4476 sizes[0] = sizeof(struct btrfs_inode_item); 4477 sizes[1] = name_len + sizeof(*ref); 4478 4479 path->leave_spinning = 1; 4480 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2); 4481 if (ret != 0) 4482 goto fail; 4483 4484 inode_init_owner(inode, dir, mode); 4485 inode->i_ino = objectid; 4486 inode_set_bytes(inode, 0); 4487 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME; 4488 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0], 4489 struct btrfs_inode_item); 4490 fill_inode_item(trans, path->nodes[0], inode_item, inode); 4491 4492 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1, 4493 struct btrfs_inode_ref); 4494 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len); 4495 btrfs_set_inode_ref_index(path->nodes[0], ref, *index); 4496 ptr = (unsigned long)(ref + 1); 4497 write_extent_buffer(path->nodes[0], name, ptr, name_len); 4498 4499 btrfs_mark_buffer_dirty(path->nodes[0]); 4500 btrfs_free_path(path); 4501 4502 location = &BTRFS_I(inode)->location; 4503 location->objectid = objectid; 4504 location->offset = 0; 4505 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY); 4506 4507 btrfs_inherit_iflags(inode, dir); 4508 4509 if ((mode & S_IFREG)) { 4510 if (btrfs_test_opt(root, NODATASUM)) 4511 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; 4512 if (btrfs_test_opt(root, NODATACOW)) 4513 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW; 4514 } 4515 4516 insert_inode_hash(inode); 4517 inode_tree_add(inode); 4518 return inode; 4519 fail: 4520 if (dir) 4521 BTRFS_I(dir)->index_cnt--; 4522 btrfs_free_path(path); 4523 iput(inode); 4524 return ERR_PTR(ret); 4525 } 4526 4527 static inline u8 btrfs_inode_type(struct inode *inode) 4528 { 4529 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT]; 4530 } 4531 4532 /* 4533 * utility function to add 'inode' into 'parent_inode' with 4534 * a give name and a given sequence number. 4535 * if 'add_backref' is true, also insert a backref from the 4536 * inode to the parent directory. 4537 */ 4538 int btrfs_add_link(struct btrfs_trans_handle *trans, 4539 struct inode *parent_inode, struct inode *inode, 4540 const char *name, int name_len, int add_backref, u64 index) 4541 { 4542 int ret = 0; 4543 struct btrfs_key key; 4544 struct btrfs_root *root = BTRFS_I(parent_inode)->root; 4545 4546 if (unlikely(inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) { 4547 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key)); 4548 } else { 4549 key.objectid = inode->i_ino; 4550 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY); 4551 key.offset = 0; 4552 } 4553 4554 if (unlikely(inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) { 4555 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root, 4556 key.objectid, root->root_key.objectid, 4557 parent_inode->i_ino, 4558 index, name, name_len); 4559 } else if (add_backref) { 4560 ret = btrfs_insert_inode_ref(trans, root, 4561 name, name_len, inode->i_ino, 4562 parent_inode->i_ino, index); 4563 } 4564 4565 if (ret == 0) { 4566 ret = btrfs_insert_dir_item(trans, root, name, name_len, 4567 parent_inode->i_ino, &key, 4568 btrfs_inode_type(inode), index); 4569 BUG_ON(ret); 4570 4571 btrfs_i_size_write(parent_inode, parent_inode->i_size + 4572 name_len * 2); 4573 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME; 4574 ret = btrfs_update_inode(trans, root, parent_inode); 4575 } 4576 return ret; 4577 } 4578 4579 static int btrfs_add_nondir(struct btrfs_trans_handle *trans, 4580 struct dentry *dentry, struct inode *inode, 4581 int backref, u64 index) 4582 { 4583 int err = btrfs_add_link(trans, dentry->d_parent->d_inode, 4584 inode, dentry->d_name.name, 4585 dentry->d_name.len, backref, index); 4586 if (!err) { 4587 d_instantiate(dentry, inode); 4588 return 0; 4589 } 4590 if (err > 0) 4591 err = -EEXIST; 4592 return err; 4593 } 4594 4595 static int btrfs_mknod(struct inode *dir, struct dentry *dentry, 4596 int mode, dev_t rdev) 4597 { 4598 struct btrfs_trans_handle *trans; 4599 struct btrfs_root *root = BTRFS_I(dir)->root; 4600 struct inode *inode = NULL; 4601 int err; 4602 int drop_inode = 0; 4603 u64 objectid; 4604 unsigned long nr = 0; 4605 u64 index = 0; 4606 4607 if (!new_valid_dev(rdev)) 4608 return -EINVAL; 4609 4610 err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid); 4611 if (err) 4612 return err; 4613 4614 /* 4615 * 2 for inode item and ref 4616 * 2 for dir items 4617 * 1 for xattr if selinux is on 4618 */ 4619 trans = btrfs_start_transaction(root, 5); 4620 if (IS_ERR(trans)) 4621 return PTR_ERR(trans); 4622 4623 btrfs_set_trans_block_group(trans, dir); 4624 4625 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 4626 dentry->d_name.len, 4627 dentry->d_parent->d_inode->i_ino, objectid, 4628 BTRFS_I(dir)->block_group, mode, &index); 4629 err = PTR_ERR(inode); 4630 if (IS_ERR(inode)) 4631 goto out_unlock; 4632 4633 err = btrfs_init_inode_security(trans, inode, dir); 4634 if (err) { 4635 drop_inode = 1; 4636 goto out_unlock; 4637 } 4638 4639 btrfs_set_trans_block_group(trans, inode); 4640 err = btrfs_add_nondir(trans, dentry, inode, 0, index); 4641 if (err) 4642 drop_inode = 1; 4643 else { 4644 inode->i_op = &btrfs_special_inode_operations; 4645 init_special_inode(inode, inode->i_mode, rdev); 4646 btrfs_update_inode(trans, root, inode); 4647 } 4648 btrfs_update_inode_block_group(trans, inode); 4649 btrfs_update_inode_block_group(trans, dir); 4650 out_unlock: 4651 nr = trans->blocks_used; 4652 btrfs_end_transaction_throttle(trans, root); 4653 btrfs_btree_balance_dirty(root, nr); 4654 if (drop_inode) { 4655 inode_dec_link_count(inode); 4656 iput(inode); 4657 } 4658 return err; 4659 } 4660 4661 static int btrfs_create(struct inode *dir, struct dentry *dentry, 4662 int mode, struct nameidata *nd) 4663 { 4664 struct btrfs_trans_handle *trans; 4665 struct btrfs_root *root = BTRFS_I(dir)->root; 4666 struct inode *inode = NULL; 4667 int drop_inode = 0; 4668 int err; 4669 unsigned long nr = 0; 4670 u64 objectid; 4671 u64 index = 0; 4672 4673 err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid); 4674 if (err) 4675 return err; 4676 /* 4677 * 2 for inode item and ref 4678 * 2 for dir items 4679 * 1 for xattr if selinux is on 4680 */ 4681 trans = btrfs_start_transaction(root, 5); 4682 if (IS_ERR(trans)) 4683 return PTR_ERR(trans); 4684 4685 btrfs_set_trans_block_group(trans, dir); 4686 4687 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 4688 dentry->d_name.len, 4689 dentry->d_parent->d_inode->i_ino, 4690 objectid, BTRFS_I(dir)->block_group, mode, 4691 &index); 4692 err = PTR_ERR(inode); 4693 if (IS_ERR(inode)) 4694 goto out_unlock; 4695 4696 err = btrfs_init_inode_security(trans, inode, dir); 4697 if (err) { 4698 drop_inode = 1; 4699 goto out_unlock; 4700 } 4701 4702 btrfs_set_trans_block_group(trans, inode); 4703 err = btrfs_add_nondir(trans, dentry, inode, 0, index); 4704 if (err) 4705 drop_inode = 1; 4706 else { 4707 inode->i_mapping->a_ops = &btrfs_aops; 4708 inode->i_mapping->backing_dev_info = &root->fs_info->bdi; 4709 inode->i_fop = &btrfs_file_operations; 4710 inode->i_op = &btrfs_file_inode_operations; 4711 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 4712 } 4713 btrfs_update_inode_block_group(trans, inode); 4714 btrfs_update_inode_block_group(trans, dir); 4715 out_unlock: 4716 nr = trans->blocks_used; 4717 btrfs_end_transaction_throttle(trans, root); 4718 if (drop_inode) { 4719 inode_dec_link_count(inode); 4720 iput(inode); 4721 } 4722 btrfs_btree_balance_dirty(root, nr); 4723 return err; 4724 } 4725 4726 static int btrfs_link(struct dentry *old_dentry, struct inode *dir, 4727 struct dentry *dentry) 4728 { 4729 struct btrfs_trans_handle *trans; 4730 struct btrfs_root *root = BTRFS_I(dir)->root; 4731 struct inode *inode = old_dentry->d_inode; 4732 u64 index; 4733 unsigned long nr = 0; 4734 int err; 4735 int drop_inode = 0; 4736 4737 if (inode->i_nlink == 0) 4738 return -ENOENT; 4739 4740 /* do not allow sys_link's with other subvols of the same device */ 4741 if (root->objectid != BTRFS_I(inode)->root->objectid) 4742 return -EPERM; 4743 4744 btrfs_inc_nlink(inode); 4745 4746 err = btrfs_set_inode_index(dir, &index); 4747 if (err) 4748 goto fail; 4749 4750 /* 4751 * 1 item for inode ref 4752 * 2 items for dir items 4753 */ 4754 trans = btrfs_start_transaction(root, 3); 4755 if (IS_ERR(trans)) { 4756 err = PTR_ERR(trans); 4757 goto fail; 4758 } 4759 4760 btrfs_set_trans_block_group(trans, dir); 4761 atomic_inc(&inode->i_count); 4762 4763 err = btrfs_add_nondir(trans, dentry, inode, 1, index); 4764 4765 if (err) { 4766 drop_inode = 1; 4767 } else { 4768 btrfs_update_inode_block_group(trans, dir); 4769 err = btrfs_update_inode(trans, root, inode); 4770 BUG_ON(err); 4771 btrfs_log_new_name(trans, inode, NULL, dentry->d_parent); 4772 } 4773 4774 nr = trans->blocks_used; 4775 btrfs_end_transaction_throttle(trans, root); 4776 fail: 4777 if (drop_inode) { 4778 inode_dec_link_count(inode); 4779 iput(inode); 4780 } 4781 btrfs_btree_balance_dirty(root, nr); 4782 return err; 4783 } 4784 4785 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, int mode) 4786 { 4787 struct inode *inode = NULL; 4788 struct btrfs_trans_handle *trans; 4789 struct btrfs_root *root = BTRFS_I(dir)->root; 4790 int err = 0; 4791 int drop_on_err = 0; 4792 u64 objectid = 0; 4793 u64 index = 0; 4794 unsigned long nr = 1; 4795 4796 err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid); 4797 if (err) 4798 return err; 4799 4800 /* 4801 * 2 items for inode and ref 4802 * 2 items for dir items 4803 * 1 for xattr if selinux is on 4804 */ 4805 trans = btrfs_start_transaction(root, 5); 4806 if (IS_ERR(trans)) 4807 return PTR_ERR(trans); 4808 btrfs_set_trans_block_group(trans, dir); 4809 4810 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 4811 dentry->d_name.len, 4812 dentry->d_parent->d_inode->i_ino, objectid, 4813 BTRFS_I(dir)->block_group, S_IFDIR | mode, 4814 &index); 4815 if (IS_ERR(inode)) { 4816 err = PTR_ERR(inode); 4817 goto out_fail; 4818 } 4819 4820 drop_on_err = 1; 4821 4822 err = btrfs_init_inode_security(trans, inode, dir); 4823 if (err) 4824 goto out_fail; 4825 4826 inode->i_op = &btrfs_dir_inode_operations; 4827 inode->i_fop = &btrfs_dir_file_operations; 4828 btrfs_set_trans_block_group(trans, inode); 4829 4830 btrfs_i_size_write(inode, 0); 4831 err = btrfs_update_inode(trans, root, inode); 4832 if (err) 4833 goto out_fail; 4834 4835 err = btrfs_add_link(trans, dentry->d_parent->d_inode, 4836 inode, dentry->d_name.name, 4837 dentry->d_name.len, 0, index); 4838 if (err) 4839 goto out_fail; 4840 4841 d_instantiate(dentry, inode); 4842 drop_on_err = 0; 4843 btrfs_update_inode_block_group(trans, inode); 4844 btrfs_update_inode_block_group(trans, dir); 4845 4846 out_fail: 4847 nr = trans->blocks_used; 4848 btrfs_end_transaction_throttle(trans, root); 4849 if (drop_on_err) 4850 iput(inode); 4851 btrfs_btree_balance_dirty(root, nr); 4852 return err; 4853 } 4854 4855 /* helper for btfs_get_extent. Given an existing extent in the tree, 4856 * and an extent that you want to insert, deal with overlap and insert 4857 * the new extent into the tree. 4858 */ 4859 static int merge_extent_mapping(struct extent_map_tree *em_tree, 4860 struct extent_map *existing, 4861 struct extent_map *em, 4862 u64 map_start, u64 map_len) 4863 { 4864 u64 start_diff; 4865 4866 BUG_ON(map_start < em->start || map_start >= extent_map_end(em)); 4867 start_diff = map_start - em->start; 4868 em->start = map_start; 4869 em->len = map_len; 4870 if (em->block_start < EXTENT_MAP_LAST_BYTE && 4871 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 4872 em->block_start += start_diff; 4873 em->block_len -= start_diff; 4874 } 4875 return add_extent_mapping(em_tree, em); 4876 } 4877 4878 static noinline int uncompress_inline(struct btrfs_path *path, 4879 struct inode *inode, struct page *page, 4880 size_t pg_offset, u64 extent_offset, 4881 struct btrfs_file_extent_item *item) 4882 { 4883 int ret; 4884 struct extent_buffer *leaf = path->nodes[0]; 4885 char *tmp; 4886 size_t max_size; 4887 unsigned long inline_size; 4888 unsigned long ptr; 4889 4890 WARN_ON(pg_offset != 0); 4891 max_size = btrfs_file_extent_ram_bytes(leaf, item); 4892 inline_size = btrfs_file_extent_inline_item_len(leaf, 4893 btrfs_item_nr(leaf, path->slots[0])); 4894 tmp = kmalloc(inline_size, GFP_NOFS); 4895 ptr = btrfs_file_extent_inline_start(item); 4896 4897 read_extent_buffer(leaf, tmp, ptr, inline_size); 4898 4899 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size); 4900 ret = btrfs_zlib_decompress(tmp, page, extent_offset, 4901 inline_size, max_size); 4902 if (ret) { 4903 char *kaddr = kmap_atomic(page, KM_USER0); 4904 unsigned long copy_size = min_t(u64, 4905 PAGE_CACHE_SIZE - pg_offset, 4906 max_size - extent_offset); 4907 memset(kaddr + pg_offset, 0, copy_size); 4908 kunmap_atomic(kaddr, KM_USER0); 4909 } 4910 kfree(tmp); 4911 return 0; 4912 } 4913 4914 /* 4915 * a bit scary, this does extent mapping from logical file offset to the disk. 4916 * the ugly parts come from merging extents from the disk with the in-ram 4917 * representation. This gets more complex because of the data=ordered code, 4918 * where the in-ram extents might be locked pending data=ordered completion. 4919 * 4920 * This also copies inline extents directly into the page. 4921 */ 4922 4923 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page, 4924 size_t pg_offset, u64 start, u64 len, 4925 int create) 4926 { 4927 int ret; 4928 int err = 0; 4929 u64 bytenr; 4930 u64 extent_start = 0; 4931 u64 extent_end = 0; 4932 u64 objectid = inode->i_ino; 4933 u32 found_type; 4934 struct btrfs_path *path = NULL; 4935 struct btrfs_root *root = BTRFS_I(inode)->root; 4936 struct btrfs_file_extent_item *item; 4937 struct extent_buffer *leaf; 4938 struct btrfs_key found_key; 4939 struct extent_map *em = NULL; 4940 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 4941 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 4942 struct btrfs_trans_handle *trans = NULL; 4943 int compressed; 4944 4945 again: 4946 read_lock(&em_tree->lock); 4947 em = lookup_extent_mapping(em_tree, start, len); 4948 if (em) 4949 em->bdev = root->fs_info->fs_devices->latest_bdev; 4950 read_unlock(&em_tree->lock); 4951 4952 if (em) { 4953 if (em->start > start || em->start + em->len <= start) 4954 free_extent_map(em); 4955 else if (em->block_start == EXTENT_MAP_INLINE && page) 4956 free_extent_map(em); 4957 else 4958 goto out; 4959 } 4960 em = alloc_extent_map(GFP_NOFS); 4961 if (!em) { 4962 err = -ENOMEM; 4963 goto out; 4964 } 4965 em->bdev = root->fs_info->fs_devices->latest_bdev; 4966 em->start = EXTENT_MAP_HOLE; 4967 em->orig_start = EXTENT_MAP_HOLE; 4968 em->len = (u64)-1; 4969 em->block_len = (u64)-1; 4970 4971 if (!path) { 4972 path = btrfs_alloc_path(); 4973 BUG_ON(!path); 4974 } 4975 4976 ret = btrfs_lookup_file_extent(trans, root, path, 4977 objectid, start, trans != NULL); 4978 if (ret < 0) { 4979 err = ret; 4980 goto out; 4981 } 4982 4983 if (ret != 0) { 4984 if (path->slots[0] == 0) 4985 goto not_found; 4986 path->slots[0]--; 4987 } 4988 4989 leaf = path->nodes[0]; 4990 item = btrfs_item_ptr(leaf, path->slots[0], 4991 struct btrfs_file_extent_item); 4992 /* are we inside the extent that was found? */ 4993 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 4994 found_type = btrfs_key_type(&found_key); 4995 if (found_key.objectid != objectid || 4996 found_type != BTRFS_EXTENT_DATA_KEY) { 4997 goto not_found; 4998 } 4999 5000 found_type = btrfs_file_extent_type(leaf, item); 5001 extent_start = found_key.offset; 5002 compressed = btrfs_file_extent_compression(leaf, item); 5003 if (found_type == BTRFS_FILE_EXTENT_REG || 5004 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 5005 extent_end = extent_start + 5006 btrfs_file_extent_num_bytes(leaf, item); 5007 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 5008 size_t size; 5009 size = btrfs_file_extent_inline_len(leaf, item); 5010 extent_end = (extent_start + size + root->sectorsize - 1) & 5011 ~((u64)root->sectorsize - 1); 5012 } 5013 5014 if (start >= extent_end) { 5015 path->slots[0]++; 5016 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 5017 ret = btrfs_next_leaf(root, path); 5018 if (ret < 0) { 5019 err = ret; 5020 goto out; 5021 } 5022 if (ret > 0) 5023 goto not_found; 5024 leaf = path->nodes[0]; 5025 } 5026 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 5027 if (found_key.objectid != objectid || 5028 found_key.type != BTRFS_EXTENT_DATA_KEY) 5029 goto not_found; 5030 if (start + len <= found_key.offset) 5031 goto not_found; 5032 em->start = start; 5033 em->len = found_key.offset - start; 5034 goto not_found_em; 5035 } 5036 5037 if (found_type == BTRFS_FILE_EXTENT_REG || 5038 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 5039 em->start = extent_start; 5040 em->len = extent_end - extent_start; 5041 em->orig_start = extent_start - 5042 btrfs_file_extent_offset(leaf, item); 5043 bytenr = btrfs_file_extent_disk_bytenr(leaf, item); 5044 if (bytenr == 0) { 5045 em->block_start = EXTENT_MAP_HOLE; 5046 goto insert; 5047 } 5048 if (compressed) { 5049 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 5050 em->block_start = bytenr; 5051 em->block_len = btrfs_file_extent_disk_num_bytes(leaf, 5052 item); 5053 } else { 5054 bytenr += btrfs_file_extent_offset(leaf, item); 5055 em->block_start = bytenr; 5056 em->block_len = em->len; 5057 if (found_type == BTRFS_FILE_EXTENT_PREALLOC) 5058 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 5059 } 5060 goto insert; 5061 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 5062 unsigned long ptr; 5063 char *map; 5064 size_t size; 5065 size_t extent_offset; 5066 size_t copy_size; 5067 5068 em->block_start = EXTENT_MAP_INLINE; 5069 if (!page || create) { 5070 em->start = extent_start; 5071 em->len = extent_end - extent_start; 5072 goto out; 5073 } 5074 5075 size = btrfs_file_extent_inline_len(leaf, item); 5076 extent_offset = page_offset(page) + pg_offset - extent_start; 5077 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset, 5078 size - extent_offset); 5079 em->start = extent_start + extent_offset; 5080 em->len = (copy_size + root->sectorsize - 1) & 5081 ~((u64)root->sectorsize - 1); 5082 em->orig_start = EXTENT_MAP_INLINE; 5083 if (compressed) 5084 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 5085 ptr = btrfs_file_extent_inline_start(item) + extent_offset; 5086 if (create == 0 && !PageUptodate(page)) { 5087 if (btrfs_file_extent_compression(leaf, item) == 5088 BTRFS_COMPRESS_ZLIB) { 5089 ret = uncompress_inline(path, inode, page, 5090 pg_offset, 5091 extent_offset, item); 5092 BUG_ON(ret); 5093 } else { 5094 map = kmap(page); 5095 read_extent_buffer(leaf, map + pg_offset, ptr, 5096 copy_size); 5097 if (pg_offset + copy_size < PAGE_CACHE_SIZE) { 5098 memset(map + pg_offset + copy_size, 0, 5099 PAGE_CACHE_SIZE - pg_offset - 5100 copy_size); 5101 } 5102 kunmap(page); 5103 } 5104 flush_dcache_page(page); 5105 } else if (create && PageUptodate(page)) { 5106 WARN_ON(1); 5107 if (!trans) { 5108 kunmap(page); 5109 free_extent_map(em); 5110 em = NULL; 5111 btrfs_release_path(root, path); 5112 trans = btrfs_join_transaction(root, 1); 5113 goto again; 5114 } 5115 map = kmap(page); 5116 write_extent_buffer(leaf, map + pg_offset, ptr, 5117 copy_size); 5118 kunmap(page); 5119 btrfs_mark_buffer_dirty(leaf); 5120 } 5121 set_extent_uptodate(io_tree, em->start, 5122 extent_map_end(em) - 1, GFP_NOFS); 5123 goto insert; 5124 } else { 5125 printk(KERN_ERR "btrfs unknown found_type %d\n", found_type); 5126 WARN_ON(1); 5127 } 5128 not_found: 5129 em->start = start; 5130 em->len = len; 5131 not_found_em: 5132 em->block_start = EXTENT_MAP_HOLE; 5133 set_bit(EXTENT_FLAG_VACANCY, &em->flags); 5134 insert: 5135 btrfs_release_path(root, path); 5136 if (em->start > start || extent_map_end(em) <= start) { 5137 printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed " 5138 "[%llu %llu]\n", (unsigned long long)em->start, 5139 (unsigned long long)em->len, 5140 (unsigned long long)start, 5141 (unsigned long long)len); 5142 err = -EIO; 5143 goto out; 5144 } 5145 5146 err = 0; 5147 write_lock(&em_tree->lock); 5148 ret = add_extent_mapping(em_tree, em); 5149 /* it is possible that someone inserted the extent into the tree 5150 * while we had the lock dropped. It is also possible that 5151 * an overlapping map exists in the tree 5152 */ 5153 if (ret == -EEXIST) { 5154 struct extent_map *existing; 5155 5156 ret = 0; 5157 5158 existing = lookup_extent_mapping(em_tree, start, len); 5159 if (existing && (existing->start > start || 5160 existing->start + existing->len <= start)) { 5161 free_extent_map(existing); 5162 existing = NULL; 5163 } 5164 if (!existing) { 5165 existing = lookup_extent_mapping(em_tree, em->start, 5166 em->len); 5167 if (existing) { 5168 err = merge_extent_mapping(em_tree, existing, 5169 em, start, 5170 root->sectorsize); 5171 free_extent_map(existing); 5172 if (err) { 5173 free_extent_map(em); 5174 em = NULL; 5175 } 5176 } else { 5177 err = -EIO; 5178 free_extent_map(em); 5179 em = NULL; 5180 } 5181 } else { 5182 free_extent_map(em); 5183 em = existing; 5184 err = 0; 5185 } 5186 } 5187 write_unlock(&em_tree->lock); 5188 out: 5189 if (path) 5190 btrfs_free_path(path); 5191 if (trans) { 5192 ret = btrfs_end_transaction(trans, root); 5193 if (!err) 5194 err = ret; 5195 } 5196 if (err) { 5197 free_extent_map(em); 5198 return ERR_PTR(err); 5199 } 5200 return em; 5201 } 5202 5203 static struct extent_map *btrfs_new_extent_direct(struct inode *inode, 5204 u64 start, u64 len) 5205 { 5206 struct btrfs_root *root = BTRFS_I(inode)->root; 5207 struct btrfs_trans_handle *trans; 5208 struct extent_map *em; 5209 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 5210 struct btrfs_key ins; 5211 u64 alloc_hint; 5212 int ret; 5213 5214 btrfs_drop_extent_cache(inode, start, start + len - 1, 0); 5215 5216 trans = btrfs_join_transaction(root, 0); 5217 if (!trans) 5218 return ERR_PTR(-ENOMEM); 5219 5220 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 5221 5222 alloc_hint = get_extent_allocation_hint(inode, start, len); 5223 ret = btrfs_reserve_extent(trans, root, len, root->sectorsize, 0, 5224 alloc_hint, (u64)-1, &ins, 1); 5225 if (ret) { 5226 em = ERR_PTR(ret); 5227 goto out; 5228 } 5229 5230 em = alloc_extent_map(GFP_NOFS); 5231 if (!em) { 5232 em = ERR_PTR(-ENOMEM); 5233 goto out; 5234 } 5235 5236 em->start = start; 5237 em->orig_start = em->start; 5238 em->len = ins.offset; 5239 5240 em->block_start = ins.objectid; 5241 em->block_len = ins.offset; 5242 em->bdev = root->fs_info->fs_devices->latest_bdev; 5243 set_bit(EXTENT_FLAG_PINNED, &em->flags); 5244 5245 while (1) { 5246 write_lock(&em_tree->lock); 5247 ret = add_extent_mapping(em_tree, em); 5248 write_unlock(&em_tree->lock); 5249 if (ret != -EEXIST) 5250 break; 5251 btrfs_drop_extent_cache(inode, start, start + em->len - 1, 0); 5252 } 5253 5254 ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid, 5255 ins.offset, ins.offset, 0); 5256 if (ret) { 5257 btrfs_free_reserved_extent(root, ins.objectid, ins.offset); 5258 em = ERR_PTR(ret); 5259 } 5260 out: 5261 btrfs_end_transaction(trans, root); 5262 return em; 5263 } 5264 5265 /* 5266 * returns 1 when the nocow is safe, < 1 on error, 0 if the 5267 * block must be cow'd 5268 */ 5269 static noinline int can_nocow_odirect(struct btrfs_trans_handle *trans, 5270 struct inode *inode, u64 offset, u64 len) 5271 { 5272 struct btrfs_path *path; 5273 int ret; 5274 struct extent_buffer *leaf; 5275 struct btrfs_root *root = BTRFS_I(inode)->root; 5276 struct btrfs_file_extent_item *fi; 5277 struct btrfs_key key; 5278 u64 disk_bytenr; 5279 u64 backref_offset; 5280 u64 extent_end; 5281 u64 num_bytes; 5282 int slot; 5283 int found_type; 5284 5285 path = btrfs_alloc_path(); 5286 if (!path) 5287 return -ENOMEM; 5288 5289 ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino, 5290 offset, 0); 5291 if (ret < 0) 5292 goto out; 5293 5294 slot = path->slots[0]; 5295 if (ret == 1) { 5296 if (slot == 0) { 5297 /* can't find the item, must cow */ 5298 ret = 0; 5299 goto out; 5300 } 5301 slot--; 5302 } 5303 ret = 0; 5304 leaf = path->nodes[0]; 5305 btrfs_item_key_to_cpu(leaf, &key, slot); 5306 if (key.objectid != inode->i_ino || 5307 key.type != BTRFS_EXTENT_DATA_KEY) { 5308 /* not our file or wrong item type, must cow */ 5309 goto out; 5310 } 5311 5312 if (key.offset > offset) { 5313 /* Wrong offset, must cow */ 5314 goto out; 5315 } 5316 5317 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 5318 found_type = btrfs_file_extent_type(leaf, fi); 5319 if (found_type != BTRFS_FILE_EXTENT_REG && 5320 found_type != BTRFS_FILE_EXTENT_PREALLOC) { 5321 /* not a regular extent, must cow */ 5322 goto out; 5323 } 5324 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 5325 backref_offset = btrfs_file_extent_offset(leaf, fi); 5326 5327 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 5328 if (extent_end < offset + len) { 5329 /* extent doesn't include our full range, must cow */ 5330 goto out; 5331 } 5332 5333 if (btrfs_extent_readonly(root, disk_bytenr)) 5334 goto out; 5335 5336 /* 5337 * look for other files referencing this extent, if we 5338 * find any we must cow 5339 */ 5340 if (btrfs_cross_ref_exist(trans, root, inode->i_ino, 5341 key.offset - backref_offset, disk_bytenr)) 5342 goto out; 5343 5344 /* 5345 * adjust disk_bytenr and num_bytes to cover just the bytes 5346 * in this extent we are about to write. If there 5347 * are any csums in that range we have to cow in order 5348 * to keep the csums correct 5349 */ 5350 disk_bytenr += backref_offset; 5351 disk_bytenr += offset - key.offset; 5352 num_bytes = min(offset + len, extent_end) - offset; 5353 if (csum_exist_in_range(root, disk_bytenr, num_bytes)) 5354 goto out; 5355 /* 5356 * all of the above have passed, it is safe to overwrite this extent 5357 * without cow 5358 */ 5359 ret = 1; 5360 out: 5361 btrfs_free_path(path); 5362 return ret; 5363 } 5364 5365 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock, 5366 struct buffer_head *bh_result, int create) 5367 { 5368 struct extent_map *em; 5369 struct btrfs_root *root = BTRFS_I(inode)->root; 5370 u64 start = iblock << inode->i_blkbits; 5371 u64 len = bh_result->b_size; 5372 struct btrfs_trans_handle *trans; 5373 5374 em = btrfs_get_extent(inode, NULL, 0, start, len, 0); 5375 if (IS_ERR(em)) 5376 return PTR_ERR(em); 5377 5378 /* 5379 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered 5380 * io. INLINE is special, and we could probably kludge it in here, but 5381 * it's still buffered so for safety lets just fall back to the generic 5382 * buffered path. 5383 * 5384 * For COMPRESSED we _have_ to read the entire extent in so we can 5385 * decompress it, so there will be buffering required no matter what we 5386 * do, so go ahead and fallback to buffered. 5387 * 5388 * We return -ENOTBLK because thats what makes DIO go ahead and go back 5389 * to buffered IO. Don't blame me, this is the price we pay for using 5390 * the generic code. 5391 */ 5392 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) || 5393 em->block_start == EXTENT_MAP_INLINE) { 5394 free_extent_map(em); 5395 return -ENOTBLK; 5396 } 5397 5398 /* Just a good old fashioned hole, return */ 5399 if (!create && (em->block_start == EXTENT_MAP_HOLE || 5400 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) { 5401 free_extent_map(em); 5402 /* DIO will do one hole at a time, so just unlock a sector */ 5403 unlock_extent(&BTRFS_I(inode)->io_tree, start, 5404 start + root->sectorsize - 1, GFP_NOFS); 5405 return 0; 5406 } 5407 5408 /* 5409 * We don't allocate a new extent in the following cases 5410 * 5411 * 1) The inode is marked as NODATACOW. In this case we'll just use the 5412 * existing extent. 5413 * 2) The extent is marked as PREALLOC. We're good to go here and can 5414 * just use the extent. 5415 * 5416 */ 5417 if (!create) { 5418 len = em->len - (start - em->start); 5419 goto map; 5420 } 5421 5422 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) || 5423 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) && 5424 em->block_start != EXTENT_MAP_HOLE)) { 5425 int type; 5426 int ret; 5427 u64 block_start; 5428 5429 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 5430 type = BTRFS_ORDERED_PREALLOC; 5431 else 5432 type = BTRFS_ORDERED_NOCOW; 5433 len = min(len, em->len - (start - em->start)); 5434 block_start = em->block_start + (start - em->start); 5435 5436 /* 5437 * we're not going to log anything, but we do need 5438 * to make sure the current transaction stays open 5439 * while we look for nocow cross refs 5440 */ 5441 trans = btrfs_join_transaction(root, 0); 5442 if (!trans) 5443 goto must_cow; 5444 5445 if (can_nocow_odirect(trans, inode, start, len) == 1) { 5446 ret = btrfs_add_ordered_extent_dio(inode, start, 5447 block_start, len, len, type); 5448 btrfs_end_transaction(trans, root); 5449 if (ret) { 5450 free_extent_map(em); 5451 return ret; 5452 } 5453 goto unlock; 5454 } 5455 btrfs_end_transaction(trans, root); 5456 } 5457 must_cow: 5458 /* 5459 * this will cow the extent, reset the len in case we changed 5460 * it above 5461 */ 5462 len = bh_result->b_size; 5463 free_extent_map(em); 5464 em = btrfs_new_extent_direct(inode, start, len); 5465 if (IS_ERR(em)) 5466 return PTR_ERR(em); 5467 len = min(len, em->len - (start - em->start)); 5468 unlock: 5469 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, start + len - 1, 5470 EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DIRTY, 1, 5471 0, NULL, GFP_NOFS); 5472 map: 5473 bh_result->b_blocknr = (em->block_start + (start - em->start)) >> 5474 inode->i_blkbits; 5475 bh_result->b_size = len; 5476 bh_result->b_bdev = em->bdev; 5477 set_buffer_mapped(bh_result); 5478 if (create && !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 5479 set_buffer_new(bh_result); 5480 5481 free_extent_map(em); 5482 5483 return 0; 5484 } 5485 5486 struct btrfs_dio_private { 5487 struct inode *inode; 5488 u64 logical_offset; 5489 u64 disk_bytenr; 5490 u64 bytes; 5491 u32 *csums; 5492 void *private; 5493 }; 5494 5495 static void btrfs_endio_direct_read(struct bio *bio, int err) 5496 { 5497 struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1; 5498 struct bio_vec *bvec = bio->bi_io_vec; 5499 struct btrfs_dio_private *dip = bio->bi_private; 5500 struct inode *inode = dip->inode; 5501 struct btrfs_root *root = BTRFS_I(inode)->root; 5502 u64 start; 5503 u32 *private = dip->csums; 5504 5505 start = dip->logical_offset; 5506 do { 5507 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) { 5508 struct page *page = bvec->bv_page; 5509 char *kaddr; 5510 u32 csum = ~(u32)0; 5511 unsigned long flags; 5512 5513 local_irq_save(flags); 5514 kaddr = kmap_atomic(page, KM_IRQ0); 5515 csum = btrfs_csum_data(root, kaddr + bvec->bv_offset, 5516 csum, bvec->bv_len); 5517 btrfs_csum_final(csum, (char *)&csum); 5518 kunmap_atomic(kaddr, KM_IRQ0); 5519 local_irq_restore(flags); 5520 5521 flush_dcache_page(bvec->bv_page); 5522 if (csum != *private) { 5523 printk(KERN_ERR "btrfs csum failed ino %lu off" 5524 " %llu csum %u private %u\n", 5525 inode->i_ino, (unsigned long long)start, 5526 csum, *private); 5527 err = -EIO; 5528 } 5529 } 5530 5531 start += bvec->bv_len; 5532 private++; 5533 bvec++; 5534 } while (bvec <= bvec_end); 5535 5536 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset, 5537 dip->logical_offset + dip->bytes - 1, GFP_NOFS); 5538 bio->bi_private = dip->private; 5539 5540 kfree(dip->csums); 5541 kfree(dip); 5542 dio_end_io(bio, err); 5543 } 5544 5545 static void btrfs_endio_direct_write(struct bio *bio, int err) 5546 { 5547 struct btrfs_dio_private *dip = bio->bi_private; 5548 struct inode *inode = dip->inode; 5549 struct btrfs_root *root = BTRFS_I(inode)->root; 5550 struct btrfs_trans_handle *trans; 5551 struct btrfs_ordered_extent *ordered = NULL; 5552 struct extent_state *cached_state = NULL; 5553 int ret; 5554 5555 if (err) 5556 goto out_done; 5557 5558 ret = btrfs_dec_test_ordered_pending(inode, &ordered, 5559 dip->logical_offset, dip->bytes); 5560 if (!ret) 5561 goto out_done; 5562 5563 BUG_ON(!ordered); 5564 5565 trans = btrfs_join_transaction(root, 1); 5566 if (!trans) { 5567 err = -ENOMEM; 5568 goto out; 5569 } 5570 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 5571 5572 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags)) { 5573 ret = btrfs_ordered_update_i_size(inode, 0, ordered); 5574 if (!ret) 5575 ret = btrfs_update_inode(trans, root, inode); 5576 err = ret; 5577 goto out; 5578 } 5579 5580 lock_extent_bits(&BTRFS_I(inode)->io_tree, ordered->file_offset, 5581 ordered->file_offset + ordered->len - 1, 0, 5582 &cached_state, GFP_NOFS); 5583 5584 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags)) { 5585 ret = btrfs_mark_extent_written(trans, inode, 5586 ordered->file_offset, 5587 ordered->file_offset + 5588 ordered->len); 5589 if (ret) { 5590 err = ret; 5591 goto out_unlock; 5592 } 5593 } else { 5594 ret = insert_reserved_file_extent(trans, inode, 5595 ordered->file_offset, 5596 ordered->start, 5597 ordered->disk_len, 5598 ordered->len, 5599 ordered->len, 5600 0, 0, 0, 5601 BTRFS_FILE_EXTENT_REG); 5602 unpin_extent_cache(&BTRFS_I(inode)->extent_tree, 5603 ordered->file_offset, ordered->len); 5604 if (ret) { 5605 err = ret; 5606 WARN_ON(1); 5607 goto out_unlock; 5608 } 5609 } 5610 5611 add_pending_csums(trans, inode, ordered->file_offset, &ordered->list); 5612 btrfs_ordered_update_i_size(inode, 0, ordered); 5613 btrfs_update_inode(trans, root, inode); 5614 out_unlock: 5615 unlock_extent_cached(&BTRFS_I(inode)->io_tree, ordered->file_offset, 5616 ordered->file_offset + ordered->len - 1, 5617 &cached_state, GFP_NOFS); 5618 out: 5619 btrfs_delalloc_release_metadata(inode, ordered->len); 5620 btrfs_end_transaction(trans, root); 5621 btrfs_put_ordered_extent(ordered); 5622 btrfs_put_ordered_extent(ordered); 5623 out_done: 5624 bio->bi_private = dip->private; 5625 5626 kfree(dip->csums); 5627 kfree(dip); 5628 dio_end_io(bio, err); 5629 } 5630 5631 static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw, 5632 struct bio *bio, int mirror_num, 5633 unsigned long bio_flags, u64 offset) 5634 { 5635 int ret; 5636 struct btrfs_root *root = BTRFS_I(inode)->root; 5637 ret = btrfs_csum_one_bio(root, inode, bio, offset, 1); 5638 BUG_ON(ret); 5639 return 0; 5640 } 5641 5642 static void btrfs_submit_direct(int rw, struct bio *bio, struct inode *inode, 5643 loff_t file_offset) 5644 { 5645 struct btrfs_root *root = BTRFS_I(inode)->root; 5646 struct btrfs_dio_private *dip; 5647 struct bio_vec *bvec = bio->bi_io_vec; 5648 u64 start; 5649 int skip_sum; 5650 int write = rw & REQ_WRITE; 5651 int ret = 0; 5652 5653 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 5654 5655 dip = kmalloc(sizeof(*dip), GFP_NOFS); 5656 if (!dip) { 5657 ret = -ENOMEM; 5658 goto free_ordered; 5659 } 5660 dip->csums = NULL; 5661 5662 if (!skip_sum) { 5663 dip->csums = kmalloc(sizeof(u32) * bio->bi_vcnt, GFP_NOFS); 5664 if (!dip->csums) { 5665 ret = -ENOMEM; 5666 goto free_ordered; 5667 } 5668 } 5669 5670 dip->private = bio->bi_private; 5671 dip->inode = inode; 5672 dip->logical_offset = file_offset; 5673 5674 start = dip->logical_offset; 5675 dip->bytes = 0; 5676 do { 5677 dip->bytes += bvec->bv_len; 5678 bvec++; 5679 } while (bvec <= (bio->bi_io_vec + bio->bi_vcnt - 1)); 5680 5681 dip->disk_bytenr = (u64)bio->bi_sector << 9; 5682 bio->bi_private = dip; 5683 5684 if (write) 5685 bio->bi_end_io = btrfs_endio_direct_write; 5686 else 5687 bio->bi_end_io = btrfs_endio_direct_read; 5688 5689 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0); 5690 if (ret) 5691 goto out_err; 5692 5693 if (write && !skip_sum) { 5694 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info, 5695 inode, rw, bio, 0, 0, 5696 dip->logical_offset, 5697 __btrfs_submit_bio_start_direct_io, 5698 __btrfs_submit_bio_done); 5699 if (ret) 5700 goto out_err; 5701 return; 5702 } else if (!skip_sum) 5703 btrfs_lookup_bio_sums_dio(root, inode, bio, 5704 dip->logical_offset, dip->csums); 5705 5706 ret = btrfs_map_bio(root, rw, bio, 0, 1); 5707 if (ret) 5708 goto out_err; 5709 return; 5710 out_err: 5711 kfree(dip->csums); 5712 kfree(dip); 5713 free_ordered: 5714 /* 5715 * If this is a write, we need to clean up the reserved space and kill 5716 * the ordered extent. 5717 */ 5718 if (write) { 5719 struct btrfs_ordered_extent *ordered; 5720 ordered = btrfs_lookup_ordered_extent(inode, 5721 dip->logical_offset); 5722 if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) && 5723 !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags)) 5724 btrfs_free_reserved_extent(root, ordered->start, 5725 ordered->disk_len); 5726 btrfs_put_ordered_extent(ordered); 5727 btrfs_put_ordered_extent(ordered); 5728 } 5729 bio_endio(bio, ret); 5730 } 5731 5732 static ssize_t check_direct_IO(struct btrfs_root *root, int rw, struct kiocb *iocb, 5733 const struct iovec *iov, loff_t offset, 5734 unsigned long nr_segs) 5735 { 5736 int seg; 5737 size_t size; 5738 unsigned long addr; 5739 unsigned blocksize_mask = root->sectorsize - 1; 5740 ssize_t retval = -EINVAL; 5741 loff_t end = offset; 5742 5743 if (offset & blocksize_mask) 5744 goto out; 5745 5746 /* Check the memory alignment. Blocks cannot straddle pages */ 5747 for (seg = 0; seg < nr_segs; seg++) { 5748 addr = (unsigned long)iov[seg].iov_base; 5749 size = iov[seg].iov_len; 5750 end += size; 5751 if ((addr & blocksize_mask) || (size & blocksize_mask)) 5752 goto out; 5753 } 5754 retval = 0; 5755 out: 5756 return retval; 5757 } 5758 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb, 5759 const struct iovec *iov, loff_t offset, 5760 unsigned long nr_segs) 5761 { 5762 struct file *file = iocb->ki_filp; 5763 struct inode *inode = file->f_mapping->host; 5764 struct btrfs_ordered_extent *ordered; 5765 struct extent_state *cached_state = NULL; 5766 u64 lockstart, lockend; 5767 ssize_t ret; 5768 int writing = rw & WRITE; 5769 int write_bits = 0; 5770 size_t count = iov_length(iov, nr_segs); 5771 5772 if (check_direct_IO(BTRFS_I(inode)->root, rw, iocb, iov, 5773 offset, nr_segs)) { 5774 return 0; 5775 } 5776 5777 lockstart = offset; 5778 lockend = offset + count - 1; 5779 5780 if (writing) { 5781 ret = btrfs_delalloc_reserve_space(inode, count); 5782 if (ret) 5783 goto out; 5784 } 5785 5786 while (1) { 5787 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 5788 0, &cached_state, GFP_NOFS); 5789 /* 5790 * We're concerned with the entire range that we're going to be 5791 * doing DIO to, so we need to make sure theres no ordered 5792 * extents in this range. 5793 */ 5794 ordered = btrfs_lookup_ordered_range(inode, lockstart, 5795 lockend - lockstart + 1); 5796 if (!ordered) 5797 break; 5798 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, 5799 &cached_state, GFP_NOFS); 5800 btrfs_start_ordered_extent(inode, ordered, 1); 5801 btrfs_put_ordered_extent(ordered); 5802 cond_resched(); 5803 } 5804 5805 /* 5806 * we don't use btrfs_set_extent_delalloc because we don't want 5807 * the dirty or uptodate bits 5808 */ 5809 if (writing) { 5810 write_bits = EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING; 5811 ret = set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend, 5812 EXTENT_DELALLOC, 0, NULL, &cached_state, 5813 GFP_NOFS); 5814 if (ret) { 5815 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, 5816 lockend, EXTENT_LOCKED | write_bits, 5817 1, 0, &cached_state, GFP_NOFS); 5818 goto out; 5819 } 5820 } 5821 5822 free_extent_state(cached_state); 5823 cached_state = NULL; 5824 5825 ret = __blockdev_direct_IO(rw, iocb, inode, 5826 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev, 5827 iov, offset, nr_segs, btrfs_get_blocks_direct, NULL, 5828 btrfs_submit_direct, 0); 5829 5830 if (ret < 0 && ret != -EIOCBQUEUED) { 5831 clear_extent_bit(&BTRFS_I(inode)->io_tree, offset, 5832 offset + iov_length(iov, nr_segs) - 1, 5833 EXTENT_LOCKED | write_bits, 1, 0, 5834 &cached_state, GFP_NOFS); 5835 } else if (ret >= 0 && ret < iov_length(iov, nr_segs)) { 5836 /* 5837 * We're falling back to buffered, unlock the section we didn't 5838 * do IO on. 5839 */ 5840 clear_extent_bit(&BTRFS_I(inode)->io_tree, offset + ret, 5841 offset + iov_length(iov, nr_segs) - 1, 5842 EXTENT_LOCKED | write_bits, 1, 0, 5843 &cached_state, GFP_NOFS); 5844 } 5845 out: 5846 free_extent_state(cached_state); 5847 return ret; 5848 } 5849 5850 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 5851 __u64 start, __u64 len) 5852 { 5853 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent); 5854 } 5855 5856 int btrfs_readpage(struct file *file, struct page *page) 5857 { 5858 struct extent_io_tree *tree; 5859 tree = &BTRFS_I(page->mapping->host)->io_tree; 5860 return extent_read_full_page(tree, page, btrfs_get_extent); 5861 } 5862 5863 static int btrfs_writepage(struct page *page, struct writeback_control *wbc) 5864 { 5865 struct extent_io_tree *tree; 5866 5867 5868 if (current->flags & PF_MEMALLOC) { 5869 redirty_page_for_writepage(wbc, page); 5870 unlock_page(page); 5871 return 0; 5872 } 5873 tree = &BTRFS_I(page->mapping->host)->io_tree; 5874 return extent_write_full_page(tree, page, btrfs_get_extent, wbc); 5875 } 5876 5877 int btrfs_writepages(struct address_space *mapping, 5878 struct writeback_control *wbc) 5879 { 5880 struct extent_io_tree *tree; 5881 5882 tree = &BTRFS_I(mapping->host)->io_tree; 5883 return extent_writepages(tree, mapping, btrfs_get_extent, wbc); 5884 } 5885 5886 static int 5887 btrfs_readpages(struct file *file, struct address_space *mapping, 5888 struct list_head *pages, unsigned nr_pages) 5889 { 5890 struct extent_io_tree *tree; 5891 tree = &BTRFS_I(mapping->host)->io_tree; 5892 return extent_readpages(tree, mapping, pages, nr_pages, 5893 btrfs_get_extent); 5894 } 5895 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags) 5896 { 5897 struct extent_io_tree *tree; 5898 struct extent_map_tree *map; 5899 int ret; 5900 5901 tree = &BTRFS_I(page->mapping->host)->io_tree; 5902 map = &BTRFS_I(page->mapping->host)->extent_tree; 5903 ret = try_release_extent_mapping(map, tree, page, gfp_flags); 5904 if (ret == 1) { 5905 ClearPagePrivate(page); 5906 set_page_private(page, 0); 5907 page_cache_release(page); 5908 } 5909 return ret; 5910 } 5911 5912 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags) 5913 { 5914 if (PageWriteback(page) || PageDirty(page)) 5915 return 0; 5916 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS); 5917 } 5918 5919 static void btrfs_invalidatepage(struct page *page, unsigned long offset) 5920 { 5921 struct extent_io_tree *tree; 5922 struct btrfs_ordered_extent *ordered; 5923 struct extent_state *cached_state = NULL; 5924 u64 page_start = page_offset(page); 5925 u64 page_end = page_start + PAGE_CACHE_SIZE - 1; 5926 5927 5928 /* 5929 * we have the page locked, so new writeback can't start, 5930 * and the dirty bit won't be cleared while we are here. 5931 * 5932 * Wait for IO on this page so that we can safely clear 5933 * the PagePrivate2 bit and do ordered accounting 5934 */ 5935 wait_on_page_writeback(page); 5936 5937 tree = &BTRFS_I(page->mapping->host)->io_tree; 5938 if (offset) { 5939 btrfs_releasepage(page, GFP_NOFS); 5940 return; 5941 } 5942 lock_extent_bits(tree, page_start, page_end, 0, &cached_state, 5943 GFP_NOFS); 5944 ordered = btrfs_lookup_ordered_extent(page->mapping->host, 5945 page_offset(page)); 5946 if (ordered) { 5947 /* 5948 * IO on this page will never be started, so we need 5949 * to account for any ordered extents now 5950 */ 5951 clear_extent_bit(tree, page_start, page_end, 5952 EXTENT_DIRTY | EXTENT_DELALLOC | 5953 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING, 1, 0, 5954 &cached_state, GFP_NOFS); 5955 /* 5956 * whoever cleared the private bit is responsible 5957 * for the finish_ordered_io 5958 */ 5959 if (TestClearPagePrivate2(page)) { 5960 btrfs_finish_ordered_io(page->mapping->host, 5961 page_start, page_end); 5962 } 5963 btrfs_put_ordered_extent(ordered); 5964 cached_state = NULL; 5965 lock_extent_bits(tree, page_start, page_end, 0, &cached_state, 5966 GFP_NOFS); 5967 } 5968 clear_extent_bit(tree, page_start, page_end, 5969 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC | 5970 EXTENT_DO_ACCOUNTING, 1, 1, &cached_state, GFP_NOFS); 5971 __btrfs_releasepage(page, GFP_NOFS); 5972 5973 ClearPageChecked(page); 5974 if (PagePrivate(page)) { 5975 ClearPagePrivate(page); 5976 set_page_private(page, 0); 5977 page_cache_release(page); 5978 } 5979 } 5980 5981 /* 5982 * btrfs_page_mkwrite() is not allowed to change the file size as it gets 5983 * called from a page fault handler when a page is first dirtied. Hence we must 5984 * be careful to check for EOF conditions here. We set the page up correctly 5985 * for a written page which means we get ENOSPC checking when writing into 5986 * holes and correct delalloc and unwritten extent mapping on filesystems that 5987 * support these features. 5988 * 5989 * We are not allowed to take the i_mutex here so we have to play games to 5990 * protect against truncate races as the page could now be beyond EOF. Because 5991 * vmtruncate() writes the inode size before removing pages, once we have the 5992 * page lock we can determine safely if the page is beyond EOF. If it is not 5993 * beyond EOF, then the page is guaranteed safe against truncation until we 5994 * unlock the page. 5995 */ 5996 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf) 5997 { 5998 struct page *page = vmf->page; 5999 struct inode *inode = fdentry(vma->vm_file)->d_inode; 6000 struct btrfs_root *root = BTRFS_I(inode)->root; 6001 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 6002 struct btrfs_ordered_extent *ordered; 6003 struct extent_state *cached_state = NULL; 6004 char *kaddr; 6005 unsigned long zero_start; 6006 loff_t size; 6007 int ret; 6008 u64 page_start; 6009 u64 page_end; 6010 6011 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE); 6012 if (ret) { 6013 if (ret == -ENOMEM) 6014 ret = VM_FAULT_OOM; 6015 else /* -ENOSPC, -EIO, etc */ 6016 ret = VM_FAULT_SIGBUS; 6017 goto out; 6018 } 6019 6020 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */ 6021 again: 6022 lock_page(page); 6023 size = i_size_read(inode); 6024 page_start = page_offset(page); 6025 page_end = page_start + PAGE_CACHE_SIZE - 1; 6026 6027 if ((page->mapping != inode->i_mapping) || 6028 (page_start >= size)) { 6029 /* page got truncated out from underneath us */ 6030 goto out_unlock; 6031 } 6032 wait_on_page_writeback(page); 6033 6034 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state, 6035 GFP_NOFS); 6036 set_page_extent_mapped(page); 6037 6038 /* 6039 * we can't set the delalloc bits if there are pending ordered 6040 * extents. Drop our locks and wait for them to finish 6041 */ 6042 ordered = btrfs_lookup_ordered_extent(inode, page_start); 6043 if (ordered) { 6044 unlock_extent_cached(io_tree, page_start, page_end, 6045 &cached_state, GFP_NOFS); 6046 unlock_page(page); 6047 btrfs_start_ordered_extent(inode, ordered, 1); 6048 btrfs_put_ordered_extent(ordered); 6049 goto again; 6050 } 6051 6052 /* 6053 * XXX - page_mkwrite gets called every time the page is dirtied, even 6054 * if it was already dirty, so for space accounting reasons we need to 6055 * clear any delalloc bits for the range we are fixing to save. There 6056 * is probably a better way to do this, but for now keep consistent with 6057 * prepare_pages in the normal write path. 6058 */ 6059 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end, 6060 EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING, 6061 0, 0, &cached_state, GFP_NOFS); 6062 6063 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 6064 &cached_state); 6065 if (ret) { 6066 unlock_extent_cached(io_tree, page_start, page_end, 6067 &cached_state, GFP_NOFS); 6068 ret = VM_FAULT_SIGBUS; 6069 goto out_unlock; 6070 } 6071 ret = 0; 6072 6073 /* page is wholly or partially inside EOF */ 6074 if (page_start + PAGE_CACHE_SIZE > size) 6075 zero_start = size & ~PAGE_CACHE_MASK; 6076 else 6077 zero_start = PAGE_CACHE_SIZE; 6078 6079 if (zero_start != PAGE_CACHE_SIZE) { 6080 kaddr = kmap(page); 6081 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start); 6082 flush_dcache_page(page); 6083 kunmap(page); 6084 } 6085 ClearPageChecked(page); 6086 set_page_dirty(page); 6087 SetPageUptodate(page); 6088 6089 BTRFS_I(inode)->last_trans = root->fs_info->generation; 6090 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid; 6091 6092 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS); 6093 6094 out_unlock: 6095 if (!ret) 6096 return VM_FAULT_LOCKED; 6097 unlock_page(page); 6098 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE); 6099 out: 6100 return ret; 6101 } 6102 6103 static void btrfs_truncate(struct inode *inode) 6104 { 6105 struct btrfs_root *root = BTRFS_I(inode)->root; 6106 int ret; 6107 struct btrfs_trans_handle *trans; 6108 unsigned long nr; 6109 u64 mask = root->sectorsize - 1; 6110 6111 if (!S_ISREG(inode->i_mode)) { 6112 WARN_ON(1); 6113 return; 6114 } 6115 6116 ret = btrfs_truncate_page(inode->i_mapping, inode->i_size); 6117 if (ret) 6118 return; 6119 6120 btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1); 6121 btrfs_ordered_update_i_size(inode, inode->i_size, NULL); 6122 6123 trans = btrfs_start_transaction(root, 0); 6124 BUG_ON(IS_ERR(trans)); 6125 btrfs_set_trans_block_group(trans, inode); 6126 trans->block_rsv = root->orphan_block_rsv; 6127 6128 /* 6129 * setattr is responsible for setting the ordered_data_close flag, 6130 * but that is only tested during the last file release. That 6131 * could happen well after the next commit, leaving a great big 6132 * window where new writes may get lost if someone chooses to write 6133 * to this file after truncating to zero 6134 * 6135 * The inode doesn't have any dirty data here, and so if we commit 6136 * this is a noop. If someone immediately starts writing to the inode 6137 * it is very likely we'll catch some of their writes in this 6138 * transaction, and the commit will find this file on the ordered 6139 * data list with good things to send down. 6140 * 6141 * This is a best effort solution, there is still a window where 6142 * using truncate to replace the contents of the file will 6143 * end up with a zero length file after a crash. 6144 */ 6145 if (inode->i_size == 0 && BTRFS_I(inode)->ordered_data_close) 6146 btrfs_add_ordered_operation(trans, root, inode); 6147 6148 while (1) { 6149 if (!trans) { 6150 trans = btrfs_start_transaction(root, 0); 6151 BUG_ON(IS_ERR(trans)); 6152 btrfs_set_trans_block_group(trans, inode); 6153 trans->block_rsv = root->orphan_block_rsv; 6154 } 6155 6156 ret = btrfs_block_rsv_check(trans, root, 6157 root->orphan_block_rsv, 0, 5); 6158 if (ret) { 6159 BUG_ON(ret != -EAGAIN); 6160 ret = btrfs_commit_transaction(trans, root); 6161 BUG_ON(ret); 6162 trans = NULL; 6163 continue; 6164 } 6165 6166 ret = btrfs_truncate_inode_items(trans, root, inode, 6167 inode->i_size, 6168 BTRFS_EXTENT_DATA_KEY); 6169 if (ret != -EAGAIN) 6170 break; 6171 6172 ret = btrfs_update_inode(trans, root, inode); 6173 BUG_ON(ret); 6174 6175 nr = trans->blocks_used; 6176 btrfs_end_transaction(trans, root); 6177 trans = NULL; 6178 btrfs_btree_balance_dirty(root, nr); 6179 } 6180 6181 if (ret == 0 && inode->i_nlink > 0) { 6182 ret = btrfs_orphan_del(trans, inode); 6183 BUG_ON(ret); 6184 } 6185 6186 ret = btrfs_update_inode(trans, root, inode); 6187 BUG_ON(ret); 6188 6189 nr = trans->blocks_used; 6190 ret = btrfs_end_transaction_throttle(trans, root); 6191 BUG_ON(ret); 6192 btrfs_btree_balance_dirty(root, nr); 6193 } 6194 6195 /* 6196 * create a new subvolume directory/inode (helper for the ioctl). 6197 */ 6198 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans, 6199 struct btrfs_root *new_root, 6200 u64 new_dirid, u64 alloc_hint) 6201 { 6202 struct inode *inode; 6203 int err; 6204 u64 index = 0; 6205 6206 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, new_dirid, 6207 new_dirid, alloc_hint, S_IFDIR | 0700, &index); 6208 if (IS_ERR(inode)) 6209 return PTR_ERR(inode); 6210 inode->i_op = &btrfs_dir_inode_operations; 6211 inode->i_fop = &btrfs_dir_file_operations; 6212 6213 inode->i_nlink = 1; 6214 btrfs_i_size_write(inode, 0); 6215 6216 err = btrfs_update_inode(trans, new_root, inode); 6217 BUG_ON(err); 6218 6219 iput(inode); 6220 return 0; 6221 } 6222 6223 /* helper function for file defrag and space balancing. This 6224 * forces readahead on a given range of bytes in an inode 6225 */ 6226 unsigned long btrfs_force_ra(struct address_space *mapping, 6227 struct file_ra_state *ra, struct file *file, 6228 pgoff_t offset, pgoff_t last_index) 6229 { 6230 pgoff_t req_size = last_index - offset + 1; 6231 6232 page_cache_sync_readahead(mapping, ra, file, offset, req_size); 6233 return offset + req_size; 6234 } 6235 6236 struct inode *btrfs_alloc_inode(struct super_block *sb) 6237 { 6238 struct btrfs_inode *ei; 6239 struct inode *inode; 6240 6241 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS); 6242 if (!ei) 6243 return NULL; 6244 6245 ei->root = NULL; 6246 ei->space_info = NULL; 6247 ei->generation = 0; 6248 ei->sequence = 0; 6249 ei->last_trans = 0; 6250 ei->last_sub_trans = 0; 6251 ei->logged_trans = 0; 6252 ei->delalloc_bytes = 0; 6253 ei->reserved_bytes = 0; 6254 ei->disk_i_size = 0; 6255 ei->flags = 0; 6256 ei->index_cnt = (u64)-1; 6257 ei->last_unlink_trans = 0; 6258 6259 spin_lock_init(&ei->accounting_lock); 6260 atomic_set(&ei->outstanding_extents, 0); 6261 ei->reserved_extents = 0; 6262 6263 ei->ordered_data_close = 0; 6264 ei->orphan_meta_reserved = 0; 6265 ei->dummy_inode = 0; 6266 ei->force_compress = 0; 6267 6268 inode = &ei->vfs_inode; 6269 extent_map_tree_init(&ei->extent_tree, GFP_NOFS); 6270 extent_io_tree_init(&ei->io_tree, &inode->i_data, GFP_NOFS); 6271 extent_io_tree_init(&ei->io_failure_tree, &inode->i_data, GFP_NOFS); 6272 mutex_init(&ei->log_mutex); 6273 btrfs_ordered_inode_tree_init(&ei->ordered_tree); 6274 INIT_LIST_HEAD(&ei->i_orphan); 6275 INIT_LIST_HEAD(&ei->delalloc_inodes); 6276 INIT_LIST_HEAD(&ei->ordered_operations); 6277 RB_CLEAR_NODE(&ei->rb_node); 6278 6279 return inode; 6280 } 6281 6282 void btrfs_destroy_inode(struct inode *inode) 6283 { 6284 struct btrfs_ordered_extent *ordered; 6285 struct btrfs_root *root = BTRFS_I(inode)->root; 6286 6287 WARN_ON(!list_empty(&inode->i_dentry)); 6288 WARN_ON(inode->i_data.nrpages); 6289 WARN_ON(atomic_read(&BTRFS_I(inode)->outstanding_extents)); 6290 WARN_ON(BTRFS_I(inode)->reserved_extents); 6291 6292 /* 6293 * This can happen where we create an inode, but somebody else also 6294 * created the same inode and we need to destroy the one we already 6295 * created. 6296 */ 6297 if (!root) 6298 goto free; 6299 6300 /* 6301 * Make sure we're properly removed from the ordered operation 6302 * lists. 6303 */ 6304 smp_mb(); 6305 if (!list_empty(&BTRFS_I(inode)->ordered_operations)) { 6306 spin_lock(&root->fs_info->ordered_extent_lock); 6307 list_del_init(&BTRFS_I(inode)->ordered_operations); 6308 spin_unlock(&root->fs_info->ordered_extent_lock); 6309 } 6310 6311 spin_lock(&root->orphan_lock); 6312 if (!list_empty(&BTRFS_I(inode)->i_orphan)) { 6313 printk(KERN_INFO "BTRFS: inode %lu still on the orphan list\n", 6314 inode->i_ino); 6315 list_del_init(&BTRFS_I(inode)->i_orphan); 6316 } 6317 spin_unlock(&root->orphan_lock); 6318 6319 while (1) { 6320 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1); 6321 if (!ordered) 6322 break; 6323 else { 6324 printk(KERN_ERR "btrfs found ordered " 6325 "extent %llu %llu on inode cleanup\n", 6326 (unsigned long long)ordered->file_offset, 6327 (unsigned long long)ordered->len); 6328 btrfs_remove_ordered_extent(inode, ordered); 6329 btrfs_put_ordered_extent(ordered); 6330 btrfs_put_ordered_extent(ordered); 6331 } 6332 } 6333 inode_tree_del(inode); 6334 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0); 6335 free: 6336 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 6337 } 6338 6339 int btrfs_drop_inode(struct inode *inode) 6340 { 6341 struct btrfs_root *root = BTRFS_I(inode)->root; 6342 6343 if (btrfs_root_refs(&root->root_item) == 0) 6344 return 1; 6345 else 6346 return generic_drop_inode(inode); 6347 } 6348 6349 static void init_once(void *foo) 6350 { 6351 struct btrfs_inode *ei = (struct btrfs_inode *) foo; 6352 6353 inode_init_once(&ei->vfs_inode); 6354 } 6355 6356 void btrfs_destroy_cachep(void) 6357 { 6358 if (btrfs_inode_cachep) 6359 kmem_cache_destroy(btrfs_inode_cachep); 6360 if (btrfs_trans_handle_cachep) 6361 kmem_cache_destroy(btrfs_trans_handle_cachep); 6362 if (btrfs_transaction_cachep) 6363 kmem_cache_destroy(btrfs_transaction_cachep); 6364 if (btrfs_path_cachep) 6365 kmem_cache_destroy(btrfs_path_cachep); 6366 } 6367 6368 int btrfs_init_cachep(void) 6369 { 6370 btrfs_inode_cachep = kmem_cache_create("btrfs_inode_cache", 6371 sizeof(struct btrfs_inode), 0, 6372 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once); 6373 if (!btrfs_inode_cachep) 6374 goto fail; 6375 6376 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle_cache", 6377 sizeof(struct btrfs_trans_handle), 0, 6378 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 6379 if (!btrfs_trans_handle_cachep) 6380 goto fail; 6381 6382 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction_cache", 6383 sizeof(struct btrfs_transaction), 0, 6384 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 6385 if (!btrfs_transaction_cachep) 6386 goto fail; 6387 6388 btrfs_path_cachep = kmem_cache_create("btrfs_path_cache", 6389 sizeof(struct btrfs_path), 0, 6390 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 6391 if (!btrfs_path_cachep) 6392 goto fail; 6393 6394 return 0; 6395 fail: 6396 btrfs_destroy_cachep(); 6397 return -ENOMEM; 6398 } 6399 6400 static int btrfs_getattr(struct vfsmount *mnt, 6401 struct dentry *dentry, struct kstat *stat) 6402 { 6403 struct inode *inode = dentry->d_inode; 6404 generic_fillattr(inode, stat); 6405 stat->dev = BTRFS_I(inode)->root->anon_super.s_dev; 6406 stat->blksize = PAGE_CACHE_SIZE; 6407 stat->blocks = (inode_get_bytes(inode) + 6408 BTRFS_I(inode)->delalloc_bytes) >> 9; 6409 return 0; 6410 } 6411 6412 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry, 6413 struct inode *new_dir, struct dentry *new_dentry) 6414 { 6415 struct btrfs_trans_handle *trans; 6416 struct btrfs_root *root = BTRFS_I(old_dir)->root; 6417 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 6418 struct inode *new_inode = new_dentry->d_inode; 6419 struct inode *old_inode = old_dentry->d_inode; 6420 struct timespec ctime = CURRENT_TIME; 6421 u64 index = 0; 6422 u64 root_objectid; 6423 int ret; 6424 6425 if (new_dir->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 6426 return -EPERM; 6427 6428 /* we only allow rename subvolume link between subvolumes */ 6429 if (old_inode->i_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest) 6430 return -EXDEV; 6431 6432 if (old_inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID || 6433 (new_inode && new_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) 6434 return -ENOTEMPTY; 6435 6436 if (S_ISDIR(old_inode->i_mode) && new_inode && 6437 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) 6438 return -ENOTEMPTY; 6439 /* 6440 * we're using rename to replace one file with another. 6441 * and the replacement file is large. Start IO on it now so 6442 * we don't add too much work to the end of the transaction 6443 */ 6444 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size && 6445 old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT) 6446 filemap_flush(old_inode->i_mapping); 6447 6448 /* close the racy window with snapshot create/destroy ioctl */ 6449 if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID) 6450 down_read(&root->fs_info->subvol_sem); 6451 /* 6452 * We want to reserve the absolute worst case amount of items. So if 6453 * both inodes are subvols and we need to unlink them then that would 6454 * require 4 item modifications, but if they are both normal inodes it 6455 * would require 5 item modifications, so we'll assume their normal 6456 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items 6457 * should cover the worst case number of items we'll modify. 6458 */ 6459 trans = btrfs_start_transaction(root, 20); 6460 if (IS_ERR(trans)) 6461 return PTR_ERR(trans); 6462 6463 btrfs_set_trans_block_group(trans, new_dir); 6464 6465 if (dest != root) 6466 btrfs_record_root_in_trans(trans, dest); 6467 6468 ret = btrfs_set_inode_index(new_dir, &index); 6469 if (ret) 6470 goto out_fail; 6471 6472 if (unlikely(old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) { 6473 /* force full log commit if subvolume involved. */ 6474 root->fs_info->last_trans_log_full_commit = trans->transid; 6475 } else { 6476 ret = btrfs_insert_inode_ref(trans, dest, 6477 new_dentry->d_name.name, 6478 new_dentry->d_name.len, 6479 old_inode->i_ino, 6480 new_dir->i_ino, index); 6481 if (ret) 6482 goto out_fail; 6483 /* 6484 * this is an ugly little race, but the rename is required 6485 * to make sure that if we crash, the inode is either at the 6486 * old name or the new one. pinning the log transaction lets 6487 * us make sure we don't allow a log commit to come in after 6488 * we unlink the name but before we add the new name back in. 6489 */ 6490 btrfs_pin_log_trans(root); 6491 } 6492 /* 6493 * make sure the inode gets flushed if it is replacing 6494 * something. 6495 */ 6496 if (new_inode && new_inode->i_size && 6497 old_inode && S_ISREG(old_inode->i_mode)) { 6498 btrfs_add_ordered_operation(trans, root, old_inode); 6499 } 6500 6501 old_dir->i_ctime = old_dir->i_mtime = ctime; 6502 new_dir->i_ctime = new_dir->i_mtime = ctime; 6503 old_inode->i_ctime = ctime; 6504 6505 if (old_dentry->d_parent != new_dentry->d_parent) 6506 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1); 6507 6508 if (unlikely(old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) { 6509 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid; 6510 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid, 6511 old_dentry->d_name.name, 6512 old_dentry->d_name.len); 6513 } else { 6514 btrfs_inc_nlink(old_dentry->d_inode); 6515 ret = btrfs_unlink_inode(trans, root, old_dir, 6516 old_dentry->d_inode, 6517 old_dentry->d_name.name, 6518 old_dentry->d_name.len); 6519 } 6520 BUG_ON(ret); 6521 6522 if (new_inode) { 6523 new_inode->i_ctime = CURRENT_TIME; 6524 if (unlikely(new_inode->i_ino == 6525 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 6526 root_objectid = BTRFS_I(new_inode)->location.objectid; 6527 ret = btrfs_unlink_subvol(trans, dest, new_dir, 6528 root_objectid, 6529 new_dentry->d_name.name, 6530 new_dentry->d_name.len); 6531 BUG_ON(new_inode->i_nlink == 0); 6532 } else { 6533 ret = btrfs_unlink_inode(trans, dest, new_dir, 6534 new_dentry->d_inode, 6535 new_dentry->d_name.name, 6536 new_dentry->d_name.len); 6537 } 6538 BUG_ON(ret); 6539 if (new_inode->i_nlink == 0) { 6540 ret = btrfs_orphan_add(trans, new_dentry->d_inode); 6541 BUG_ON(ret); 6542 } 6543 } 6544 6545 ret = btrfs_add_link(trans, new_dir, old_inode, 6546 new_dentry->d_name.name, 6547 new_dentry->d_name.len, 0, index); 6548 BUG_ON(ret); 6549 6550 if (old_inode->i_ino != BTRFS_FIRST_FREE_OBJECTID) { 6551 btrfs_log_new_name(trans, old_inode, old_dir, 6552 new_dentry->d_parent); 6553 btrfs_end_log_trans(root); 6554 } 6555 out_fail: 6556 btrfs_end_transaction_throttle(trans, root); 6557 6558 if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID) 6559 up_read(&root->fs_info->subvol_sem); 6560 6561 return ret; 6562 } 6563 6564 /* 6565 * some fairly slow code that needs optimization. This walks the list 6566 * of all the inodes with pending delalloc and forces them to disk. 6567 */ 6568 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput) 6569 { 6570 struct list_head *head = &root->fs_info->delalloc_inodes; 6571 struct btrfs_inode *binode; 6572 struct inode *inode; 6573 6574 if (root->fs_info->sb->s_flags & MS_RDONLY) 6575 return -EROFS; 6576 6577 spin_lock(&root->fs_info->delalloc_lock); 6578 while (!list_empty(head)) { 6579 binode = list_entry(head->next, struct btrfs_inode, 6580 delalloc_inodes); 6581 inode = igrab(&binode->vfs_inode); 6582 if (!inode) 6583 list_del_init(&binode->delalloc_inodes); 6584 spin_unlock(&root->fs_info->delalloc_lock); 6585 if (inode) { 6586 filemap_flush(inode->i_mapping); 6587 if (delay_iput) 6588 btrfs_add_delayed_iput(inode); 6589 else 6590 iput(inode); 6591 } 6592 cond_resched(); 6593 spin_lock(&root->fs_info->delalloc_lock); 6594 } 6595 spin_unlock(&root->fs_info->delalloc_lock); 6596 6597 /* the filemap_flush will queue IO into the worker threads, but 6598 * we have to make sure the IO is actually started and that 6599 * ordered extents get created before we return 6600 */ 6601 atomic_inc(&root->fs_info->async_submit_draining); 6602 while (atomic_read(&root->fs_info->nr_async_submits) || 6603 atomic_read(&root->fs_info->async_delalloc_pages)) { 6604 wait_event(root->fs_info->async_submit_wait, 6605 (atomic_read(&root->fs_info->nr_async_submits) == 0 && 6606 atomic_read(&root->fs_info->async_delalloc_pages) == 0)); 6607 } 6608 atomic_dec(&root->fs_info->async_submit_draining); 6609 return 0; 6610 } 6611 6612 int btrfs_start_one_delalloc_inode(struct btrfs_root *root, int delay_iput) 6613 { 6614 struct btrfs_inode *binode; 6615 struct inode *inode = NULL; 6616 6617 spin_lock(&root->fs_info->delalloc_lock); 6618 while (!list_empty(&root->fs_info->delalloc_inodes)) { 6619 binode = list_entry(root->fs_info->delalloc_inodes.next, 6620 struct btrfs_inode, delalloc_inodes); 6621 inode = igrab(&binode->vfs_inode); 6622 if (inode) { 6623 list_move_tail(&binode->delalloc_inodes, 6624 &root->fs_info->delalloc_inodes); 6625 break; 6626 } 6627 6628 list_del_init(&binode->delalloc_inodes); 6629 cond_resched_lock(&root->fs_info->delalloc_lock); 6630 } 6631 spin_unlock(&root->fs_info->delalloc_lock); 6632 6633 if (inode) { 6634 write_inode_now(inode, 0); 6635 if (delay_iput) 6636 btrfs_add_delayed_iput(inode); 6637 else 6638 iput(inode); 6639 return 1; 6640 } 6641 return 0; 6642 } 6643 6644 static int btrfs_symlink(struct inode *dir, struct dentry *dentry, 6645 const char *symname) 6646 { 6647 struct btrfs_trans_handle *trans; 6648 struct btrfs_root *root = BTRFS_I(dir)->root; 6649 struct btrfs_path *path; 6650 struct btrfs_key key; 6651 struct inode *inode = NULL; 6652 int err; 6653 int drop_inode = 0; 6654 u64 objectid; 6655 u64 index = 0 ; 6656 int name_len; 6657 int datasize; 6658 unsigned long ptr; 6659 struct btrfs_file_extent_item *ei; 6660 struct extent_buffer *leaf; 6661 unsigned long nr = 0; 6662 6663 name_len = strlen(symname) + 1; 6664 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root)) 6665 return -ENAMETOOLONG; 6666 6667 err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid); 6668 if (err) 6669 return err; 6670 /* 6671 * 2 items for inode item and ref 6672 * 2 items for dir items 6673 * 1 item for xattr if selinux is on 6674 */ 6675 trans = btrfs_start_transaction(root, 5); 6676 if (IS_ERR(trans)) 6677 return PTR_ERR(trans); 6678 6679 btrfs_set_trans_block_group(trans, dir); 6680 6681 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 6682 dentry->d_name.len, 6683 dentry->d_parent->d_inode->i_ino, objectid, 6684 BTRFS_I(dir)->block_group, S_IFLNK|S_IRWXUGO, 6685 &index); 6686 err = PTR_ERR(inode); 6687 if (IS_ERR(inode)) 6688 goto out_unlock; 6689 6690 err = btrfs_init_inode_security(trans, inode, dir); 6691 if (err) { 6692 drop_inode = 1; 6693 goto out_unlock; 6694 } 6695 6696 btrfs_set_trans_block_group(trans, inode); 6697 err = btrfs_add_nondir(trans, dentry, inode, 0, index); 6698 if (err) 6699 drop_inode = 1; 6700 else { 6701 inode->i_mapping->a_ops = &btrfs_aops; 6702 inode->i_mapping->backing_dev_info = &root->fs_info->bdi; 6703 inode->i_fop = &btrfs_file_operations; 6704 inode->i_op = &btrfs_file_inode_operations; 6705 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 6706 } 6707 btrfs_update_inode_block_group(trans, inode); 6708 btrfs_update_inode_block_group(trans, dir); 6709 if (drop_inode) 6710 goto out_unlock; 6711 6712 path = btrfs_alloc_path(); 6713 BUG_ON(!path); 6714 key.objectid = inode->i_ino; 6715 key.offset = 0; 6716 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY); 6717 datasize = btrfs_file_extent_calc_inline_size(name_len); 6718 err = btrfs_insert_empty_item(trans, root, path, &key, 6719 datasize); 6720 if (err) { 6721 drop_inode = 1; 6722 goto out_unlock; 6723 } 6724 leaf = path->nodes[0]; 6725 ei = btrfs_item_ptr(leaf, path->slots[0], 6726 struct btrfs_file_extent_item); 6727 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 6728 btrfs_set_file_extent_type(leaf, ei, 6729 BTRFS_FILE_EXTENT_INLINE); 6730 btrfs_set_file_extent_encryption(leaf, ei, 0); 6731 btrfs_set_file_extent_compression(leaf, ei, 0); 6732 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 6733 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len); 6734 6735 ptr = btrfs_file_extent_inline_start(ei); 6736 write_extent_buffer(leaf, symname, ptr, name_len); 6737 btrfs_mark_buffer_dirty(leaf); 6738 btrfs_free_path(path); 6739 6740 inode->i_op = &btrfs_symlink_inode_operations; 6741 inode->i_mapping->a_ops = &btrfs_symlink_aops; 6742 inode->i_mapping->backing_dev_info = &root->fs_info->bdi; 6743 inode_set_bytes(inode, name_len); 6744 btrfs_i_size_write(inode, name_len - 1); 6745 err = btrfs_update_inode(trans, root, inode); 6746 if (err) 6747 drop_inode = 1; 6748 6749 out_unlock: 6750 nr = trans->blocks_used; 6751 btrfs_end_transaction_throttle(trans, root); 6752 if (drop_inode) { 6753 inode_dec_link_count(inode); 6754 iput(inode); 6755 } 6756 btrfs_btree_balance_dirty(root, nr); 6757 return err; 6758 } 6759 6760 int btrfs_prealloc_file_range(struct inode *inode, int mode, 6761 u64 start, u64 num_bytes, u64 min_size, 6762 loff_t actual_len, u64 *alloc_hint) 6763 { 6764 struct btrfs_trans_handle *trans; 6765 struct btrfs_root *root = BTRFS_I(inode)->root; 6766 struct btrfs_key ins; 6767 u64 cur_offset = start; 6768 int ret = 0; 6769 6770 while (num_bytes > 0) { 6771 trans = btrfs_start_transaction(root, 3); 6772 if (IS_ERR(trans)) { 6773 ret = PTR_ERR(trans); 6774 break; 6775 } 6776 6777 ret = btrfs_reserve_extent(trans, root, num_bytes, min_size, 6778 0, *alloc_hint, (u64)-1, &ins, 1); 6779 if (ret) { 6780 btrfs_end_transaction(trans, root); 6781 break; 6782 } 6783 6784 ret = insert_reserved_file_extent(trans, inode, 6785 cur_offset, ins.objectid, 6786 ins.offset, ins.offset, 6787 ins.offset, 0, 0, 0, 6788 BTRFS_FILE_EXTENT_PREALLOC); 6789 BUG_ON(ret); 6790 btrfs_drop_extent_cache(inode, cur_offset, 6791 cur_offset + ins.offset -1, 0); 6792 6793 num_bytes -= ins.offset; 6794 cur_offset += ins.offset; 6795 *alloc_hint = ins.objectid + ins.offset; 6796 6797 inode->i_ctime = CURRENT_TIME; 6798 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC; 6799 if (!(mode & FALLOC_FL_KEEP_SIZE) && 6800 (actual_len > inode->i_size) && 6801 (cur_offset > inode->i_size)) { 6802 if (cur_offset > actual_len) 6803 i_size_write(inode, actual_len); 6804 else 6805 i_size_write(inode, cur_offset); 6806 i_size_write(inode, cur_offset); 6807 btrfs_ordered_update_i_size(inode, cur_offset, NULL); 6808 } 6809 6810 ret = btrfs_update_inode(trans, root, inode); 6811 BUG_ON(ret); 6812 6813 btrfs_end_transaction(trans, root); 6814 } 6815 return ret; 6816 } 6817 6818 static long btrfs_fallocate(struct inode *inode, int mode, 6819 loff_t offset, loff_t len) 6820 { 6821 struct extent_state *cached_state = NULL; 6822 u64 cur_offset; 6823 u64 last_byte; 6824 u64 alloc_start; 6825 u64 alloc_end; 6826 u64 alloc_hint = 0; 6827 u64 locked_end; 6828 u64 mask = BTRFS_I(inode)->root->sectorsize - 1; 6829 struct extent_map *em; 6830 int ret; 6831 6832 alloc_start = offset & ~mask; 6833 alloc_end = (offset + len + mask) & ~mask; 6834 6835 /* 6836 * wait for ordered IO before we have any locks. We'll loop again 6837 * below with the locks held. 6838 */ 6839 btrfs_wait_ordered_range(inode, alloc_start, alloc_end - alloc_start); 6840 6841 mutex_lock(&inode->i_mutex); 6842 if (alloc_start > inode->i_size) { 6843 ret = btrfs_cont_expand(inode, alloc_start); 6844 if (ret) 6845 goto out; 6846 } 6847 6848 ret = btrfs_check_data_free_space(inode, alloc_end - alloc_start); 6849 if (ret) 6850 goto out; 6851 6852 locked_end = alloc_end - 1; 6853 while (1) { 6854 struct btrfs_ordered_extent *ordered; 6855 6856 /* the extent lock is ordered inside the running 6857 * transaction 6858 */ 6859 lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start, 6860 locked_end, 0, &cached_state, GFP_NOFS); 6861 ordered = btrfs_lookup_first_ordered_extent(inode, 6862 alloc_end - 1); 6863 if (ordered && 6864 ordered->file_offset + ordered->len > alloc_start && 6865 ordered->file_offset < alloc_end) { 6866 btrfs_put_ordered_extent(ordered); 6867 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 6868 alloc_start, locked_end, 6869 &cached_state, GFP_NOFS); 6870 /* 6871 * we can't wait on the range with the transaction 6872 * running or with the extent lock held 6873 */ 6874 btrfs_wait_ordered_range(inode, alloc_start, 6875 alloc_end - alloc_start); 6876 } else { 6877 if (ordered) 6878 btrfs_put_ordered_extent(ordered); 6879 break; 6880 } 6881 } 6882 6883 cur_offset = alloc_start; 6884 while (1) { 6885 em = btrfs_get_extent(inode, NULL, 0, cur_offset, 6886 alloc_end - cur_offset, 0); 6887 BUG_ON(IS_ERR(em) || !em); 6888 last_byte = min(extent_map_end(em), alloc_end); 6889 last_byte = (last_byte + mask) & ~mask; 6890 if (em->block_start == EXTENT_MAP_HOLE || 6891 (cur_offset >= inode->i_size && 6892 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) { 6893 ret = btrfs_prealloc_file_range(inode, mode, cur_offset, 6894 last_byte - cur_offset, 6895 1 << inode->i_blkbits, 6896 offset + len, 6897 &alloc_hint); 6898 if (ret < 0) { 6899 free_extent_map(em); 6900 break; 6901 } 6902 } 6903 free_extent_map(em); 6904 6905 cur_offset = last_byte; 6906 if (cur_offset >= alloc_end) { 6907 ret = 0; 6908 break; 6909 } 6910 } 6911 unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end, 6912 &cached_state, GFP_NOFS); 6913 6914 btrfs_free_reserved_data_space(inode, alloc_end - alloc_start); 6915 out: 6916 mutex_unlock(&inode->i_mutex); 6917 return ret; 6918 } 6919 6920 static int btrfs_set_page_dirty(struct page *page) 6921 { 6922 return __set_page_dirty_nobuffers(page); 6923 } 6924 6925 static int btrfs_permission(struct inode *inode, int mask) 6926 { 6927 if ((BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) && (mask & MAY_WRITE)) 6928 return -EACCES; 6929 return generic_permission(inode, mask, btrfs_check_acl); 6930 } 6931 6932 static const struct inode_operations btrfs_dir_inode_operations = { 6933 .getattr = btrfs_getattr, 6934 .lookup = btrfs_lookup, 6935 .create = btrfs_create, 6936 .unlink = btrfs_unlink, 6937 .link = btrfs_link, 6938 .mkdir = btrfs_mkdir, 6939 .rmdir = btrfs_rmdir, 6940 .rename = btrfs_rename, 6941 .symlink = btrfs_symlink, 6942 .setattr = btrfs_setattr, 6943 .mknod = btrfs_mknod, 6944 .setxattr = btrfs_setxattr, 6945 .getxattr = btrfs_getxattr, 6946 .listxattr = btrfs_listxattr, 6947 .removexattr = btrfs_removexattr, 6948 .permission = btrfs_permission, 6949 }; 6950 static const struct inode_operations btrfs_dir_ro_inode_operations = { 6951 .lookup = btrfs_lookup, 6952 .permission = btrfs_permission, 6953 }; 6954 6955 static const struct file_operations btrfs_dir_file_operations = { 6956 .llseek = generic_file_llseek, 6957 .read = generic_read_dir, 6958 .readdir = btrfs_real_readdir, 6959 .unlocked_ioctl = btrfs_ioctl, 6960 #ifdef CONFIG_COMPAT 6961 .compat_ioctl = btrfs_ioctl, 6962 #endif 6963 .release = btrfs_release_file, 6964 .fsync = btrfs_sync_file, 6965 }; 6966 6967 static struct extent_io_ops btrfs_extent_io_ops = { 6968 .fill_delalloc = run_delalloc_range, 6969 .submit_bio_hook = btrfs_submit_bio_hook, 6970 .merge_bio_hook = btrfs_merge_bio_hook, 6971 .readpage_end_io_hook = btrfs_readpage_end_io_hook, 6972 .writepage_end_io_hook = btrfs_writepage_end_io_hook, 6973 .writepage_start_hook = btrfs_writepage_start_hook, 6974 .readpage_io_failed_hook = btrfs_io_failed_hook, 6975 .set_bit_hook = btrfs_set_bit_hook, 6976 .clear_bit_hook = btrfs_clear_bit_hook, 6977 .merge_extent_hook = btrfs_merge_extent_hook, 6978 .split_extent_hook = btrfs_split_extent_hook, 6979 }; 6980 6981 /* 6982 * btrfs doesn't support the bmap operation because swapfiles 6983 * use bmap to make a mapping of extents in the file. They assume 6984 * these extents won't change over the life of the file and they 6985 * use the bmap result to do IO directly to the drive. 6986 * 6987 * the btrfs bmap call would return logical addresses that aren't 6988 * suitable for IO and they also will change frequently as COW 6989 * operations happen. So, swapfile + btrfs == corruption. 6990 * 6991 * For now we're avoiding this by dropping bmap. 6992 */ 6993 static const struct address_space_operations btrfs_aops = { 6994 .readpage = btrfs_readpage, 6995 .writepage = btrfs_writepage, 6996 .writepages = btrfs_writepages, 6997 .readpages = btrfs_readpages, 6998 .sync_page = block_sync_page, 6999 .direct_IO = btrfs_direct_IO, 7000 .invalidatepage = btrfs_invalidatepage, 7001 .releasepage = btrfs_releasepage, 7002 .set_page_dirty = btrfs_set_page_dirty, 7003 .error_remove_page = generic_error_remove_page, 7004 }; 7005 7006 static const struct address_space_operations btrfs_symlink_aops = { 7007 .readpage = btrfs_readpage, 7008 .writepage = btrfs_writepage, 7009 .invalidatepage = btrfs_invalidatepage, 7010 .releasepage = btrfs_releasepage, 7011 }; 7012 7013 static const struct inode_operations btrfs_file_inode_operations = { 7014 .truncate = btrfs_truncate, 7015 .getattr = btrfs_getattr, 7016 .setattr = btrfs_setattr, 7017 .setxattr = btrfs_setxattr, 7018 .getxattr = btrfs_getxattr, 7019 .listxattr = btrfs_listxattr, 7020 .removexattr = btrfs_removexattr, 7021 .permission = btrfs_permission, 7022 .fallocate = btrfs_fallocate, 7023 .fiemap = btrfs_fiemap, 7024 }; 7025 static const struct inode_operations btrfs_special_inode_operations = { 7026 .getattr = btrfs_getattr, 7027 .setattr = btrfs_setattr, 7028 .permission = btrfs_permission, 7029 .setxattr = btrfs_setxattr, 7030 .getxattr = btrfs_getxattr, 7031 .listxattr = btrfs_listxattr, 7032 .removexattr = btrfs_removexattr, 7033 }; 7034 static const struct inode_operations btrfs_symlink_inode_operations = { 7035 .readlink = generic_readlink, 7036 .follow_link = page_follow_link_light, 7037 .put_link = page_put_link, 7038 .permission = btrfs_permission, 7039 .setxattr = btrfs_setxattr, 7040 .getxattr = btrfs_getxattr, 7041 .listxattr = btrfs_listxattr, 7042 .removexattr = btrfs_removexattr, 7043 }; 7044 7045 const struct dentry_operations btrfs_dentry_operations = { 7046 .d_delete = btrfs_dentry_delete, 7047 }; 7048