1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/kernel.h> 20 #include <linux/bio.h> 21 #include <linux/buffer_head.h> 22 #include <linux/file.h> 23 #include <linux/fs.h> 24 #include <linux/pagemap.h> 25 #include <linux/highmem.h> 26 #include <linux/time.h> 27 #include <linux/init.h> 28 #include <linux/string.h> 29 #include <linux/backing-dev.h> 30 #include <linux/mpage.h> 31 #include <linux/swap.h> 32 #include <linux/writeback.h> 33 #include <linux/statfs.h> 34 #include <linux/compat.h> 35 #include <linux/aio.h> 36 #include <linux/bit_spinlock.h> 37 #include <linux/xattr.h> 38 #include <linux/posix_acl.h> 39 #include <linux/falloc.h> 40 #include <linux/slab.h> 41 #include <linux/ratelimit.h> 42 #include <linux/mount.h> 43 #include <linux/btrfs.h> 44 #include <linux/blkdev.h> 45 #include <linux/posix_acl_xattr.h> 46 #include "ctree.h" 47 #include "disk-io.h" 48 #include "transaction.h" 49 #include "btrfs_inode.h" 50 #include "print-tree.h" 51 #include "ordered-data.h" 52 #include "xattr.h" 53 #include "tree-log.h" 54 #include "volumes.h" 55 #include "compression.h" 56 #include "locking.h" 57 #include "free-space-cache.h" 58 #include "inode-map.h" 59 #include "backref.h" 60 #include "hash.h" 61 #include "props.h" 62 63 struct btrfs_iget_args { 64 struct btrfs_key *location; 65 struct btrfs_root *root; 66 }; 67 68 static const struct inode_operations btrfs_dir_inode_operations; 69 static const struct inode_operations btrfs_symlink_inode_operations; 70 static const struct inode_operations btrfs_dir_ro_inode_operations; 71 static const struct inode_operations btrfs_special_inode_operations; 72 static const struct inode_operations btrfs_file_inode_operations; 73 static const struct address_space_operations btrfs_aops; 74 static const struct address_space_operations btrfs_symlink_aops; 75 static const struct file_operations btrfs_dir_file_operations; 76 static struct extent_io_ops btrfs_extent_io_ops; 77 78 static struct kmem_cache *btrfs_inode_cachep; 79 static struct kmem_cache *btrfs_delalloc_work_cachep; 80 struct kmem_cache *btrfs_trans_handle_cachep; 81 struct kmem_cache *btrfs_transaction_cachep; 82 struct kmem_cache *btrfs_path_cachep; 83 struct kmem_cache *btrfs_free_space_cachep; 84 85 #define S_SHIFT 12 86 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = { 87 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE, 88 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR, 89 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV, 90 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV, 91 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO, 92 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK, 93 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK, 94 }; 95 96 static int btrfs_setsize(struct inode *inode, struct iattr *attr); 97 static int btrfs_truncate(struct inode *inode); 98 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent); 99 static noinline int cow_file_range(struct inode *inode, 100 struct page *locked_page, 101 u64 start, u64 end, int *page_started, 102 unsigned long *nr_written, int unlock); 103 static struct extent_map *create_pinned_em(struct inode *inode, u64 start, 104 u64 len, u64 orig_start, 105 u64 block_start, u64 block_len, 106 u64 orig_block_len, u64 ram_bytes, 107 int type); 108 109 static int btrfs_dirty_inode(struct inode *inode); 110 111 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans, 112 struct inode *inode, struct inode *dir, 113 const struct qstr *qstr) 114 { 115 int err; 116 117 err = btrfs_init_acl(trans, inode, dir); 118 if (!err) 119 err = btrfs_xattr_security_init(trans, inode, dir, qstr); 120 return err; 121 } 122 123 /* 124 * this does all the hard work for inserting an inline extent into 125 * the btree. The caller should have done a btrfs_drop_extents so that 126 * no overlapping inline items exist in the btree 127 */ 128 static int insert_inline_extent(struct btrfs_trans_handle *trans, 129 struct btrfs_path *path, int extent_inserted, 130 struct btrfs_root *root, struct inode *inode, 131 u64 start, size_t size, size_t compressed_size, 132 int compress_type, 133 struct page **compressed_pages) 134 { 135 struct extent_buffer *leaf; 136 struct page *page = NULL; 137 char *kaddr; 138 unsigned long ptr; 139 struct btrfs_file_extent_item *ei; 140 int err = 0; 141 int ret; 142 size_t cur_size = size; 143 unsigned long offset; 144 145 if (compressed_size && compressed_pages) 146 cur_size = compressed_size; 147 148 inode_add_bytes(inode, size); 149 150 if (!extent_inserted) { 151 struct btrfs_key key; 152 size_t datasize; 153 154 key.objectid = btrfs_ino(inode); 155 key.offset = start; 156 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY); 157 158 datasize = btrfs_file_extent_calc_inline_size(cur_size); 159 path->leave_spinning = 1; 160 ret = btrfs_insert_empty_item(trans, root, path, &key, 161 datasize); 162 if (ret) { 163 err = ret; 164 goto fail; 165 } 166 } 167 leaf = path->nodes[0]; 168 ei = btrfs_item_ptr(leaf, path->slots[0], 169 struct btrfs_file_extent_item); 170 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 171 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE); 172 btrfs_set_file_extent_encryption(leaf, ei, 0); 173 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 174 btrfs_set_file_extent_ram_bytes(leaf, ei, size); 175 ptr = btrfs_file_extent_inline_start(ei); 176 177 if (compress_type != BTRFS_COMPRESS_NONE) { 178 struct page *cpage; 179 int i = 0; 180 while (compressed_size > 0) { 181 cpage = compressed_pages[i]; 182 cur_size = min_t(unsigned long, compressed_size, 183 PAGE_CACHE_SIZE); 184 185 kaddr = kmap_atomic(cpage); 186 write_extent_buffer(leaf, kaddr, ptr, cur_size); 187 kunmap_atomic(kaddr); 188 189 i++; 190 ptr += cur_size; 191 compressed_size -= cur_size; 192 } 193 btrfs_set_file_extent_compression(leaf, ei, 194 compress_type); 195 } else { 196 page = find_get_page(inode->i_mapping, 197 start >> PAGE_CACHE_SHIFT); 198 btrfs_set_file_extent_compression(leaf, ei, 0); 199 kaddr = kmap_atomic(page); 200 offset = start & (PAGE_CACHE_SIZE - 1); 201 write_extent_buffer(leaf, kaddr + offset, ptr, size); 202 kunmap_atomic(kaddr); 203 page_cache_release(page); 204 } 205 btrfs_mark_buffer_dirty(leaf); 206 btrfs_release_path(path); 207 208 /* 209 * we're an inline extent, so nobody can 210 * extend the file past i_size without locking 211 * a page we already have locked. 212 * 213 * We must do any isize and inode updates 214 * before we unlock the pages. Otherwise we 215 * could end up racing with unlink. 216 */ 217 BTRFS_I(inode)->disk_i_size = inode->i_size; 218 ret = btrfs_update_inode(trans, root, inode); 219 220 return ret; 221 fail: 222 return err; 223 } 224 225 226 /* 227 * conditionally insert an inline extent into the file. This 228 * does the checks required to make sure the data is small enough 229 * to fit as an inline extent. 230 */ 231 static noinline int cow_file_range_inline(struct btrfs_root *root, 232 struct inode *inode, u64 start, 233 u64 end, size_t compressed_size, 234 int compress_type, 235 struct page **compressed_pages) 236 { 237 struct btrfs_trans_handle *trans; 238 u64 isize = i_size_read(inode); 239 u64 actual_end = min(end + 1, isize); 240 u64 inline_len = actual_end - start; 241 u64 aligned_end = ALIGN(end, root->sectorsize); 242 u64 data_len = inline_len; 243 int ret; 244 struct btrfs_path *path; 245 int extent_inserted = 0; 246 u32 extent_item_size; 247 248 if (compressed_size) 249 data_len = compressed_size; 250 251 if (start > 0 || 252 actual_end >= PAGE_CACHE_SIZE || 253 data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) || 254 (!compressed_size && 255 (actual_end & (root->sectorsize - 1)) == 0) || 256 end + 1 < isize || 257 data_len > root->fs_info->max_inline) { 258 return 1; 259 } 260 261 path = btrfs_alloc_path(); 262 if (!path) 263 return -ENOMEM; 264 265 trans = btrfs_join_transaction(root); 266 if (IS_ERR(trans)) { 267 btrfs_free_path(path); 268 return PTR_ERR(trans); 269 } 270 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 271 272 if (compressed_size && compressed_pages) 273 extent_item_size = btrfs_file_extent_calc_inline_size( 274 compressed_size); 275 else 276 extent_item_size = btrfs_file_extent_calc_inline_size( 277 inline_len); 278 279 ret = __btrfs_drop_extents(trans, root, inode, path, 280 start, aligned_end, NULL, 281 1, 1, extent_item_size, &extent_inserted); 282 if (ret) { 283 btrfs_abort_transaction(trans, root, ret); 284 goto out; 285 } 286 287 if (isize > actual_end) 288 inline_len = min_t(u64, isize, actual_end); 289 ret = insert_inline_extent(trans, path, extent_inserted, 290 root, inode, start, 291 inline_len, compressed_size, 292 compress_type, compressed_pages); 293 if (ret && ret != -ENOSPC) { 294 btrfs_abort_transaction(trans, root, ret); 295 goto out; 296 } else if (ret == -ENOSPC) { 297 ret = 1; 298 goto out; 299 } 300 301 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 302 btrfs_delalloc_release_metadata(inode, end + 1 - start); 303 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0); 304 out: 305 btrfs_free_path(path); 306 btrfs_end_transaction(trans, root); 307 return ret; 308 } 309 310 struct async_extent { 311 u64 start; 312 u64 ram_size; 313 u64 compressed_size; 314 struct page **pages; 315 unsigned long nr_pages; 316 int compress_type; 317 struct list_head list; 318 }; 319 320 struct async_cow { 321 struct inode *inode; 322 struct btrfs_root *root; 323 struct page *locked_page; 324 u64 start; 325 u64 end; 326 struct list_head extents; 327 struct btrfs_work work; 328 }; 329 330 static noinline int add_async_extent(struct async_cow *cow, 331 u64 start, u64 ram_size, 332 u64 compressed_size, 333 struct page **pages, 334 unsigned long nr_pages, 335 int compress_type) 336 { 337 struct async_extent *async_extent; 338 339 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS); 340 BUG_ON(!async_extent); /* -ENOMEM */ 341 async_extent->start = start; 342 async_extent->ram_size = ram_size; 343 async_extent->compressed_size = compressed_size; 344 async_extent->pages = pages; 345 async_extent->nr_pages = nr_pages; 346 async_extent->compress_type = compress_type; 347 list_add_tail(&async_extent->list, &cow->extents); 348 return 0; 349 } 350 351 /* 352 * we create compressed extents in two phases. The first 353 * phase compresses a range of pages that have already been 354 * locked (both pages and state bits are locked). 355 * 356 * This is done inside an ordered work queue, and the compression 357 * is spread across many cpus. The actual IO submission is step 358 * two, and the ordered work queue takes care of making sure that 359 * happens in the same order things were put onto the queue by 360 * writepages and friends. 361 * 362 * If this code finds it can't get good compression, it puts an 363 * entry onto the work queue to write the uncompressed bytes. This 364 * makes sure that both compressed inodes and uncompressed inodes 365 * are written in the same order that the flusher thread sent them 366 * down. 367 */ 368 static noinline int compress_file_range(struct inode *inode, 369 struct page *locked_page, 370 u64 start, u64 end, 371 struct async_cow *async_cow, 372 int *num_added) 373 { 374 struct btrfs_root *root = BTRFS_I(inode)->root; 375 u64 num_bytes; 376 u64 blocksize = root->sectorsize; 377 u64 actual_end; 378 u64 isize = i_size_read(inode); 379 int ret = 0; 380 struct page **pages = NULL; 381 unsigned long nr_pages; 382 unsigned long nr_pages_ret = 0; 383 unsigned long total_compressed = 0; 384 unsigned long total_in = 0; 385 unsigned long max_compressed = 128 * 1024; 386 unsigned long max_uncompressed = 128 * 1024; 387 int i; 388 int will_compress; 389 int compress_type = root->fs_info->compress_type; 390 int redirty = 0; 391 392 /* if this is a small write inside eof, kick off a defrag */ 393 if ((end - start + 1) < 16 * 1024 && 394 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size)) 395 btrfs_add_inode_defrag(NULL, inode); 396 397 /* 398 * skip compression for a small file range(<=blocksize) that 399 * isn't an inline extent, since it dosen't save disk space at all. 400 */ 401 if ((end - start + 1) <= blocksize && 402 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size)) 403 goto cleanup_and_bail_uncompressed; 404 405 actual_end = min_t(u64, isize, end + 1); 406 again: 407 will_compress = 0; 408 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1; 409 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE); 410 411 /* 412 * we don't want to send crud past the end of i_size through 413 * compression, that's just a waste of CPU time. So, if the 414 * end of the file is before the start of our current 415 * requested range of bytes, we bail out to the uncompressed 416 * cleanup code that can deal with all of this. 417 * 418 * It isn't really the fastest way to fix things, but this is a 419 * very uncommon corner. 420 */ 421 if (actual_end <= start) 422 goto cleanup_and_bail_uncompressed; 423 424 total_compressed = actual_end - start; 425 426 /* we want to make sure that amount of ram required to uncompress 427 * an extent is reasonable, so we limit the total size in ram 428 * of a compressed extent to 128k. This is a crucial number 429 * because it also controls how easily we can spread reads across 430 * cpus for decompression. 431 * 432 * We also want to make sure the amount of IO required to do 433 * a random read is reasonably small, so we limit the size of 434 * a compressed extent to 128k. 435 */ 436 total_compressed = min(total_compressed, max_uncompressed); 437 num_bytes = ALIGN(end - start + 1, blocksize); 438 num_bytes = max(blocksize, num_bytes); 439 total_in = 0; 440 ret = 0; 441 442 /* 443 * we do compression for mount -o compress and when the 444 * inode has not been flagged as nocompress. This flag can 445 * change at any time if we discover bad compression ratios. 446 */ 447 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) && 448 (btrfs_test_opt(root, COMPRESS) || 449 (BTRFS_I(inode)->force_compress) || 450 (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))) { 451 WARN_ON(pages); 452 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS); 453 if (!pages) { 454 /* just bail out to the uncompressed code */ 455 goto cont; 456 } 457 458 if (BTRFS_I(inode)->force_compress) 459 compress_type = BTRFS_I(inode)->force_compress; 460 461 /* 462 * we need to call clear_page_dirty_for_io on each 463 * page in the range. Otherwise applications with the file 464 * mmap'd can wander in and change the page contents while 465 * we are compressing them. 466 * 467 * If the compression fails for any reason, we set the pages 468 * dirty again later on. 469 */ 470 extent_range_clear_dirty_for_io(inode, start, end); 471 redirty = 1; 472 ret = btrfs_compress_pages(compress_type, 473 inode->i_mapping, start, 474 total_compressed, pages, 475 nr_pages, &nr_pages_ret, 476 &total_in, 477 &total_compressed, 478 max_compressed); 479 480 if (!ret) { 481 unsigned long offset = total_compressed & 482 (PAGE_CACHE_SIZE - 1); 483 struct page *page = pages[nr_pages_ret - 1]; 484 char *kaddr; 485 486 /* zero the tail end of the last page, we might be 487 * sending it down to disk 488 */ 489 if (offset) { 490 kaddr = kmap_atomic(page); 491 memset(kaddr + offset, 0, 492 PAGE_CACHE_SIZE - offset); 493 kunmap_atomic(kaddr); 494 } 495 will_compress = 1; 496 } 497 } 498 cont: 499 if (start == 0) { 500 /* lets try to make an inline extent */ 501 if (ret || total_in < (actual_end - start)) { 502 /* we didn't compress the entire range, try 503 * to make an uncompressed inline extent. 504 */ 505 ret = cow_file_range_inline(root, inode, start, end, 506 0, 0, NULL); 507 } else { 508 /* try making a compressed inline extent */ 509 ret = cow_file_range_inline(root, inode, start, end, 510 total_compressed, 511 compress_type, pages); 512 } 513 if (ret <= 0) { 514 unsigned long clear_flags = EXTENT_DELALLOC | 515 EXTENT_DEFRAG; 516 clear_flags |= (ret < 0) ? EXTENT_DO_ACCOUNTING : 0; 517 518 /* 519 * inline extent creation worked or returned error, 520 * we don't need to create any more async work items. 521 * Unlock and free up our temp pages. 522 */ 523 extent_clear_unlock_delalloc(inode, start, end, NULL, 524 clear_flags, PAGE_UNLOCK | 525 PAGE_CLEAR_DIRTY | 526 PAGE_SET_WRITEBACK | 527 PAGE_END_WRITEBACK); 528 goto free_pages_out; 529 } 530 } 531 532 if (will_compress) { 533 /* 534 * we aren't doing an inline extent round the compressed size 535 * up to a block size boundary so the allocator does sane 536 * things 537 */ 538 total_compressed = ALIGN(total_compressed, blocksize); 539 540 /* 541 * one last check to make sure the compression is really a 542 * win, compare the page count read with the blocks on disk 543 */ 544 total_in = ALIGN(total_in, PAGE_CACHE_SIZE); 545 if (total_compressed >= total_in) { 546 will_compress = 0; 547 } else { 548 num_bytes = total_in; 549 } 550 } 551 if (!will_compress && pages) { 552 /* 553 * the compression code ran but failed to make things smaller, 554 * free any pages it allocated and our page pointer array 555 */ 556 for (i = 0; i < nr_pages_ret; i++) { 557 WARN_ON(pages[i]->mapping); 558 page_cache_release(pages[i]); 559 } 560 kfree(pages); 561 pages = NULL; 562 total_compressed = 0; 563 nr_pages_ret = 0; 564 565 /* flag the file so we don't compress in the future */ 566 if (!btrfs_test_opt(root, FORCE_COMPRESS) && 567 !(BTRFS_I(inode)->force_compress)) { 568 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS; 569 } 570 } 571 if (will_compress) { 572 *num_added += 1; 573 574 /* the async work queues will take care of doing actual 575 * allocation on disk for these compressed pages, 576 * and will submit them to the elevator. 577 */ 578 add_async_extent(async_cow, start, num_bytes, 579 total_compressed, pages, nr_pages_ret, 580 compress_type); 581 582 if (start + num_bytes < end) { 583 start += num_bytes; 584 pages = NULL; 585 cond_resched(); 586 goto again; 587 } 588 } else { 589 cleanup_and_bail_uncompressed: 590 /* 591 * No compression, but we still need to write the pages in 592 * the file we've been given so far. redirty the locked 593 * page if it corresponds to our extent and set things up 594 * for the async work queue to run cow_file_range to do 595 * the normal delalloc dance 596 */ 597 if (page_offset(locked_page) >= start && 598 page_offset(locked_page) <= end) { 599 __set_page_dirty_nobuffers(locked_page); 600 /* unlocked later on in the async handlers */ 601 } 602 if (redirty) 603 extent_range_redirty_for_io(inode, start, end); 604 add_async_extent(async_cow, start, end - start + 1, 605 0, NULL, 0, BTRFS_COMPRESS_NONE); 606 *num_added += 1; 607 } 608 609 out: 610 return ret; 611 612 free_pages_out: 613 for (i = 0; i < nr_pages_ret; i++) { 614 WARN_ON(pages[i]->mapping); 615 page_cache_release(pages[i]); 616 } 617 kfree(pages); 618 619 goto out; 620 } 621 622 /* 623 * phase two of compressed writeback. This is the ordered portion 624 * of the code, which only gets called in the order the work was 625 * queued. We walk all the async extents created by compress_file_range 626 * and send them down to the disk. 627 */ 628 static noinline int submit_compressed_extents(struct inode *inode, 629 struct async_cow *async_cow) 630 { 631 struct async_extent *async_extent; 632 u64 alloc_hint = 0; 633 struct btrfs_key ins; 634 struct extent_map *em; 635 struct btrfs_root *root = BTRFS_I(inode)->root; 636 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 637 struct extent_io_tree *io_tree; 638 int ret = 0; 639 640 if (list_empty(&async_cow->extents)) 641 return 0; 642 643 again: 644 while (!list_empty(&async_cow->extents)) { 645 async_extent = list_entry(async_cow->extents.next, 646 struct async_extent, list); 647 list_del(&async_extent->list); 648 649 io_tree = &BTRFS_I(inode)->io_tree; 650 651 retry: 652 /* did the compression code fall back to uncompressed IO? */ 653 if (!async_extent->pages) { 654 int page_started = 0; 655 unsigned long nr_written = 0; 656 657 lock_extent(io_tree, async_extent->start, 658 async_extent->start + 659 async_extent->ram_size - 1); 660 661 /* allocate blocks */ 662 ret = cow_file_range(inode, async_cow->locked_page, 663 async_extent->start, 664 async_extent->start + 665 async_extent->ram_size - 1, 666 &page_started, &nr_written, 0); 667 668 /* JDM XXX */ 669 670 /* 671 * if page_started, cow_file_range inserted an 672 * inline extent and took care of all the unlocking 673 * and IO for us. Otherwise, we need to submit 674 * all those pages down to the drive. 675 */ 676 if (!page_started && !ret) 677 extent_write_locked_range(io_tree, 678 inode, async_extent->start, 679 async_extent->start + 680 async_extent->ram_size - 1, 681 btrfs_get_extent, 682 WB_SYNC_ALL); 683 else if (ret) 684 unlock_page(async_cow->locked_page); 685 kfree(async_extent); 686 cond_resched(); 687 continue; 688 } 689 690 lock_extent(io_tree, async_extent->start, 691 async_extent->start + async_extent->ram_size - 1); 692 693 ret = btrfs_reserve_extent(root, 694 async_extent->compressed_size, 695 async_extent->compressed_size, 696 0, alloc_hint, &ins, 1, 1); 697 if (ret) { 698 int i; 699 700 for (i = 0; i < async_extent->nr_pages; i++) { 701 WARN_ON(async_extent->pages[i]->mapping); 702 page_cache_release(async_extent->pages[i]); 703 } 704 kfree(async_extent->pages); 705 async_extent->nr_pages = 0; 706 async_extent->pages = NULL; 707 708 if (ret == -ENOSPC) { 709 unlock_extent(io_tree, async_extent->start, 710 async_extent->start + 711 async_extent->ram_size - 1); 712 goto retry; 713 } 714 goto out_free; 715 } 716 717 /* 718 * here we're doing allocation and writeback of the 719 * compressed pages 720 */ 721 btrfs_drop_extent_cache(inode, async_extent->start, 722 async_extent->start + 723 async_extent->ram_size - 1, 0); 724 725 em = alloc_extent_map(); 726 if (!em) { 727 ret = -ENOMEM; 728 goto out_free_reserve; 729 } 730 em->start = async_extent->start; 731 em->len = async_extent->ram_size; 732 em->orig_start = em->start; 733 em->mod_start = em->start; 734 em->mod_len = em->len; 735 736 em->block_start = ins.objectid; 737 em->block_len = ins.offset; 738 em->orig_block_len = ins.offset; 739 em->ram_bytes = async_extent->ram_size; 740 em->bdev = root->fs_info->fs_devices->latest_bdev; 741 em->compress_type = async_extent->compress_type; 742 set_bit(EXTENT_FLAG_PINNED, &em->flags); 743 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 744 em->generation = -1; 745 746 while (1) { 747 write_lock(&em_tree->lock); 748 ret = add_extent_mapping(em_tree, em, 1); 749 write_unlock(&em_tree->lock); 750 if (ret != -EEXIST) { 751 free_extent_map(em); 752 break; 753 } 754 btrfs_drop_extent_cache(inode, async_extent->start, 755 async_extent->start + 756 async_extent->ram_size - 1, 0); 757 } 758 759 if (ret) 760 goto out_free_reserve; 761 762 ret = btrfs_add_ordered_extent_compress(inode, 763 async_extent->start, 764 ins.objectid, 765 async_extent->ram_size, 766 ins.offset, 767 BTRFS_ORDERED_COMPRESSED, 768 async_extent->compress_type); 769 if (ret) 770 goto out_free_reserve; 771 772 /* 773 * clear dirty, set writeback and unlock the pages. 774 */ 775 extent_clear_unlock_delalloc(inode, async_extent->start, 776 async_extent->start + 777 async_extent->ram_size - 1, 778 NULL, EXTENT_LOCKED | EXTENT_DELALLOC, 779 PAGE_UNLOCK | PAGE_CLEAR_DIRTY | 780 PAGE_SET_WRITEBACK); 781 ret = btrfs_submit_compressed_write(inode, 782 async_extent->start, 783 async_extent->ram_size, 784 ins.objectid, 785 ins.offset, async_extent->pages, 786 async_extent->nr_pages); 787 alloc_hint = ins.objectid + ins.offset; 788 kfree(async_extent); 789 if (ret) 790 goto out; 791 cond_resched(); 792 } 793 ret = 0; 794 out: 795 return ret; 796 out_free_reserve: 797 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1); 798 out_free: 799 extent_clear_unlock_delalloc(inode, async_extent->start, 800 async_extent->start + 801 async_extent->ram_size - 1, 802 NULL, EXTENT_LOCKED | EXTENT_DELALLOC | 803 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING, 804 PAGE_UNLOCK | PAGE_CLEAR_DIRTY | 805 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK); 806 kfree(async_extent); 807 goto again; 808 } 809 810 static u64 get_extent_allocation_hint(struct inode *inode, u64 start, 811 u64 num_bytes) 812 { 813 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 814 struct extent_map *em; 815 u64 alloc_hint = 0; 816 817 read_lock(&em_tree->lock); 818 em = search_extent_mapping(em_tree, start, num_bytes); 819 if (em) { 820 /* 821 * if block start isn't an actual block number then find the 822 * first block in this inode and use that as a hint. If that 823 * block is also bogus then just don't worry about it. 824 */ 825 if (em->block_start >= EXTENT_MAP_LAST_BYTE) { 826 free_extent_map(em); 827 em = search_extent_mapping(em_tree, 0, 0); 828 if (em && em->block_start < EXTENT_MAP_LAST_BYTE) 829 alloc_hint = em->block_start; 830 if (em) 831 free_extent_map(em); 832 } else { 833 alloc_hint = em->block_start; 834 free_extent_map(em); 835 } 836 } 837 read_unlock(&em_tree->lock); 838 839 return alloc_hint; 840 } 841 842 /* 843 * when extent_io.c finds a delayed allocation range in the file, 844 * the call backs end up in this code. The basic idea is to 845 * allocate extents on disk for the range, and create ordered data structs 846 * in ram to track those extents. 847 * 848 * locked_page is the page that writepage had locked already. We use 849 * it to make sure we don't do extra locks or unlocks. 850 * 851 * *page_started is set to one if we unlock locked_page and do everything 852 * required to start IO on it. It may be clean and already done with 853 * IO when we return. 854 */ 855 static noinline int cow_file_range(struct inode *inode, 856 struct page *locked_page, 857 u64 start, u64 end, int *page_started, 858 unsigned long *nr_written, 859 int unlock) 860 { 861 struct btrfs_root *root = BTRFS_I(inode)->root; 862 u64 alloc_hint = 0; 863 u64 num_bytes; 864 unsigned long ram_size; 865 u64 disk_num_bytes; 866 u64 cur_alloc_size; 867 u64 blocksize = root->sectorsize; 868 struct btrfs_key ins; 869 struct extent_map *em; 870 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 871 int ret = 0; 872 873 if (btrfs_is_free_space_inode(inode)) { 874 WARN_ON_ONCE(1); 875 ret = -EINVAL; 876 goto out_unlock; 877 } 878 879 num_bytes = ALIGN(end - start + 1, blocksize); 880 num_bytes = max(blocksize, num_bytes); 881 disk_num_bytes = num_bytes; 882 883 /* if this is a small write inside eof, kick off defrag */ 884 if (num_bytes < 64 * 1024 && 885 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size)) 886 btrfs_add_inode_defrag(NULL, inode); 887 888 if (start == 0) { 889 /* lets try to make an inline extent */ 890 ret = cow_file_range_inline(root, inode, start, end, 0, 0, 891 NULL); 892 if (ret == 0) { 893 extent_clear_unlock_delalloc(inode, start, end, NULL, 894 EXTENT_LOCKED | EXTENT_DELALLOC | 895 EXTENT_DEFRAG, PAGE_UNLOCK | 896 PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK | 897 PAGE_END_WRITEBACK); 898 899 *nr_written = *nr_written + 900 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE; 901 *page_started = 1; 902 goto out; 903 } else if (ret < 0) { 904 goto out_unlock; 905 } 906 } 907 908 BUG_ON(disk_num_bytes > 909 btrfs_super_total_bytes(root->fs_info->super_copy)); 910 911 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes); 912 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0); 913 914 while (disk_num_bytes > 0) { 915 unsigned long op; 916 917 cur_alloc_size = disk_num_bytes; 918 ret = btrfs_reserve_extent(root, cur_alloc_size, 919 root->sectorsize, 0, alloc_hint, 920 &ins, 1, 1); 921 if (ret < 0) 922 goto out_unlock; 923 924 em = alloc_extent_map(); 925 if (!em) { 926 ret = -ENOMEM; 927 goto out_reserve; 928 } 929 em->start = start; 930 em->orig_start = em->start; 931 ram_size = ins.offset; 932 em->len = ins.offset; 933 em->mod_start = em->start; 934 em->mod_len = em->len; 935 936 em->block_start = ins.objectid; 937 em->block_len = ins.offset; 938 em->orig_block_len = ins.offset; 939 em->ram_bytes = ram_size; 940 em->bdev = root->fs_info->fs_devices->latest_bdev; 941 set_bit(EXTENT_FLAG_PINNED, &em->flags); 942 em->generation = -1; 943 944 while (1) { 945 write_lock(&em_tree->lock); 946 ret = add_extent_mapping(em_tree, em, 1); 947 write_unlock(&em_tree->lock); 948 if (ret != -EEXIST) { 949 free_extent_map(em); 950 break; 951 } 952 btrfs_drop_extent_cache(inode, start, 953 start + ram_size - 1, 0); 954 } 955 if (ret) 956 goto out_reserve; 957 958 cur_alloc_size = ins.offset; 959 ret = btrfs_add_ordered_extent(inode, start, ins.objectid, 960 ram_size, cur_alloc_size, 0); 961 if (ret) 962 goto out_reserve; 963 964 if (root->root_key.objectid == 965 BTRFS_DATA_RELOC_TREE_OBJECTID) { 966 ret = btrfs_reloc_clone_csums(inode, start, 967 cur_alloc_size); 968 if (ret) 969 goto out_reserve; 970 } 971 972 if (disk_num_bytes < cur_alloc_size) 973 break; 974 975 /* we're not doing compressed IO, don't unlock the first 976 * page (which the caller expects to stay locked), don't 977 * clear any dirty bits and don't set any writeback bits 978 * 979 * Do set the Private2 bit so we know this page was properly 980 * setup for writepage 981 */ 982 op = unlock ? PAGE_UNLOCK : 0; 983 op |= PAGE_SET_PRIVATE2; 984 985 extent_clear_unlock_delalloc(inode, start, 986 start + ram_size - 1, locked_page, 987 EXTENT_LOCKED | EXTENT_DELALLOC, 988 op); 989 disk_num_bytes -= cur_alloc_size; 990 num_bytes -= cur_alloc_size; 991 alloc_hint = ins.objectid + ins.offset; 992 start += cur_alloc_size; 993 } 994 out: 995 return ret; 996 997 out_reserve: 998 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1); 999 out_unlock: 1000 extent_clear_unlock_delalloc(inode, start, end, locked_page, 1001 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING | 1002 EXTENT_DELALLOC | EXTENT_DEFRAG, 1003 PAGE_UNLOCK | PAGE_CLEAR_DIRTY | 1004 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK); 1005 goto out; 1006 } 1007 1008 /* 1009 * work queue call back to started compression on a file and pages 1010 */ 1011 static noinline void async_cow_start(struct btrfs_work *work) 1012 { 1013 struct async_cow *async_cow; 1014 int num_added = 0; 1015 async_cow = container_of(work, struct async_cow, work); 1016 1017 compress_file_range(async_cow->inode, async_cow->locked_page, 1018 async_cow->start, async_cow->end, async_cow, 1019 &num_added); 1020 if (num_added == 0) { 1021 btrfs_add_delayed_iput(async_cow->inode); 1022 async_cow->inode = NULL; 1023 } 1024 } 1025 1026 /* 1027 * work queue call back to submit previously compressed pages 1028 */ 1029 static noinline void async_cow_submit(struct btrfs_work *work) 1030 { 1031 struct async_cow *async_cow; 1032 struct btrfs_root *root; 1033 unsigned long nr_pages; 1034 1035 async_cow = container_of(work, struct async_cow, work); 1036 1037 root = async_cow->root; 1038 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >> 1039 PAGE_CACHE_SHIFT; 1040 1041 if (atomic_sub_return(nr_pages, &root->fs_info->async_delalloc_pages) < 1042 5 * 1024 * 1024 && 1043 waitqueue_active(&root->fs_info->async_submit_wait)) 1044 wake_up(&root->fs_info->async_submit_wait); 1045 1046 if (async_cow->inode) 1047 submit_compressed_extents(async_cow->inode, async_cow); 1048 } 1049 1050 static noinline void async_cow_free(struct btrfs_work *work) 1051 { 1052 struct async_cow *async_cow; 1053 async_cow = container_of(work, struct async_cow, work); 1054 if (async_cow->inode) 1055 btrfs_add_delayed_iput(async_cow->inode); 1056 kfree(async_cow); 1057 } 1058 1059 static int cow_file_range_async(struct inode *inode, struct page *locked_page, 1060 u64 start, u64 end, int *page_started, 1061 unsigned long *nr_written) 1062 { 1063 struct async_cow *async_cow; 1064 struct btrfs_root *root = BTRFS_I(inode)->root; 1065 unsigned long nr_pages; 1066 u64 cur_end; 1067 int limit = 10 * 1024 * 1024; 1068 1069 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED, 1070 1, 0, NULL, GFP_NOFS); 1071 while (start < end) { 1072 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS); 1073 BUG_ON(!async_cow); /* -ENOMEM */ 1074 async_cow->inode = igrab(inode); 1075 async_cow->root = root; 1076 async_cow->locked_page = locked_page; 1077 async_cow->start = start; 1078 1079 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) 1080 cur_end = end; 1081 else 1082 cur_end = min(end, start + 512 * 1024 - 1); 1083 1084 async_cow->end = cur_end; 1085 INIT_LIST_HEAD(&async_cow->extents); 1086 1087 btrfs_init_work(&async_cow->work, async_cow_start, 1088 async_cow_submit, async_cow_free); 1089 1090 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >> 1091 PAGE_CACHE_SHIFT; 1092 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages); 1093 1094 btrfs_queue_work(root->fs_info->delalloc_workers, 1095 &async_cow->work); 1096 1097 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) { 1098 wait_event(root->fs_info->async_submit_wait, 1099 (atomic_read(&root->fs_info->async_delalloc_pages) < 1100 limit)); 1101 } 1102 1103 while (atomic_read(&root->fs_info->async_submit_draining) && 1104 atomic_read(&root->fs_info->async_delalloc_pages)) { 1105 wait_event(root->fs_info->async_submit_wait, 1106 (atomic_read(&root->fs_info->async_delalloc_pages) == 1107 0)); 1108 } 1109 1110 *nr_written += nr_pages; 1111 start = cur_end + 1; 1112 } 1113 *page_started = 1; 1114 return 0; 1115 } 1116 1117 static noinline int csum_exist_in_range(struct btrfs_root *root, 1118 u64 bytenr, u64 num_bytes) 1119 { 1120 int ret; 1121 struct btrfs_ordered_sum *sums; 1122 LIST_HEAD(list); 1123 1124 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr, 1125 bytenr + num_bytes - 1, &list, 0); 1126 if (ret == 0 && list_empty(&list)) 1127 return 0; 1128 1129 while (!list_empty(&list)) { 1130 sums = list_entry(list.next, struct btrfs_ordered_sum, list); 1131 list_del(&sums->list); 1132 kfree(sums); 1133 } 1134 return 1; 1135 } 1136 1137 /* 1138 * when nowcow writeback call back. This checks for snapshots or COW copies 1139 * of the extents that exist in the file, and COWs the file as required. 1140 * 1141 * If no cow copies or snapshots exist, we write directly to the existing 1142 * blocks on disk 1143 */ 1144 static noinline int run_delalloc_nocow(struct inode *inode, 1145 struct page *locked_page, 1146 u64 start, u64 end, int *page_started, int force, 1147 unsigned long *nr_written) 1148 { 1149 struct btrfs_root *root = BTRFS_I(inode)->root; 1150 struct btrfs_trans_handle *trans; 1151 struct extent_buffer *leaf; 1152 struct btrfs_path *path; 1153 struct btrfs_file_extent_item *fi; 1154 struct btrfs_key found_key; 1155 u64 cow_start; 1156 u64 cur_offset; 1157 u64 extent_end; 1158 u64 extent_offset; 1159 u64 disk_bytenr; 1160 u64 num_bytes; 1161 u64 disk_num_bytes; 1162 u64 ram_bytes; 1163 int extent_type; 1164 int ret, err; 1165 int type; 1166 int nocow; 1167 int check_prev = 1; 1168 bool nolock; 1169 u64 ino = btrfs_ino(inode); 1170 1171 path = btrfs_alloc_path(); 1172 if (!path) { 1173 extent_clear_unlock_delalloc(inode, start, end, locked_page, 1174 EXTENT_LOCKED | EXTENT_DELALLOC | 1175 EXTENT_DO_ACCOUNTING | 1176 EXTENT_DEFRAG, PAGE_UNLOCK | 1177 PAGE_CLEAR_DIRTY | 1178 PAGE_SET_WRITEBACK | 1179 PAGE_END_WRITEBACK); 1180 return -ENOMEM; 1181 } 1182 1183 nolock = btrfs_is_free_space_inode(inode); 1184 1185 if (nolock) 1186 trans = btrfs_join_transaction_nolock(root); 1187 else 1188 trans = btrfs_join_transaction(root); 1189 1190 if (IS_ERR(trans)) { 1191 extent_clear_unlock_delalloc(inode, start, end, locked_page, 1192 EXTENT_LOCKED | EXTENT_DELALLOC | 1193 EXTENT_DO_ACCOUNTING | 1194 EXTENT_DEFRAG, PAGE_UNLOCK | 1195 PAGE_CLEAR_DIRTY | 1196 PAGE_SET_WRITEBACK | 1197 PAGE_END_WRITEBACK); 1198 btrfs_free_path(path); 1199 return PTR_ERR(trans); 1200 } 1201 1202 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 1203 1204 cow_start = (u64)-1; 1205 cur_offset = start; 1206 while (1) { 1207 ret = btrfs_lookup_file_extent(trans, root, path, ino, 1208 cur_offset, 0); 1209 if (ret < 0) 1210 goto error; 1211 if (ret > 0 && path->slots[0] > 0 && check_prev) { 1212 leaf = path->nodes[0]; 1213 btrfs_item_key_to_cpu(leaf, &found_key, 1214 path->slots[0] - 1); 1215 if (found_key.objectid == ino && 1216 found_key.type == BTRFS_EXTENT_DATA_KEY) 1217 path->slots[0]--; 1218 } 1219 check_prev = 0; 1220 next_slot: 1221 leaf = path->nodes[0]; 1222 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 1223 ret = btrfs_next_leaf(root, path); 1224 if (ret < 0) 1225 goto error; 1226 if (ret > 0) 1227 break; 1228 leaf = path->nodes[0]; 1229 } 1230 1231 nocow = 0; 1232 disk_bytenr = 0; 1233 num_bytes = 0; 1234 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1235 1236 if (found_key.objectid > ino || 1237 found_key.type > BTRFS_EXTENT_DATA_KEY || 1238 found_key.offset > end) 1239 break; 1240 1241 if (found_key.offset > cur_offset) { 1242 extent_end = found_key.offset; 1243 extent_type = 0; 1244 goto out_check; 1245 } 1246 1247 fi = btrfs_item_ptr(leaf, path->slots[0], 1248 struct btrfs_file_extent_item); 1249 extent_type = btrfs_file_extent_type(leaf, fi); 1250 1251 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 1252 if (extent_type == BTRFS_FILE_EXTENT_REG || 1253 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1254 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1255 extent_offset = btrfs_file_extent_offset(leaf, fi); 1256 extent_end = found_key.offset + 1257 btrfs_file_extent_num_bytes(leaf, fi); 1258 disk_num_bytes = 1259 btrfs_file_extent_disk_num_bytes(leaf, fi); 1260 if (extent_end <= start) { 1261 path->slots[0]++; 1262 goto next_slot; 1263 } 1264 if (disk_bytenr == 0) 1265 goto out_check; 1266 if (btrfs_file_extent_compression(leaf, fi) || 1267 btrfs_file_extent_encryption(leaf, fi) || 1268 btrfs_file_extent_other_encoding(leaf, fi)) 1269 goto out_check; 1270 if (extent_type == BTRFS_FILE_EXTENT_REG && !force) 1271 goto out_check; 1272 if (btrfs_extent_readonly(root, disk_bytenr)) 1273 goto out_check; 1274 if (btrfs_cross_ref_exist(trans, root, ino, 1275 found_key.offset - 1276 extent_offset, disk_bytenr)) 1277 goto out_check; 1278 disk_bytenr += extent_offset; 1279 disk_bytenr += cur_offset - found_key.offset; 1280 num_bytes = min(end + 1, extent_end) - cur_offset; 1281 /* 1282 * if there are pending snapshots for this root, 1283 * we fall into common COW way. 1284 */ 1285 if (!nolock) { 1286 err = btrfs_start_nocow_write(root); 1287 if (!err) 1288 goto out_check; 1289 } 1290 /* 1291 * force cow if csum exists in the range. 1292 * this ensure that csum for a given extent are 1293 * either valid or do not exist. 1294 */ 1295 if (csum_exist_in_range(root, disk_bytenr, num_bytes)) 1296 goto out_check; 1297 nocow = 1; 1298 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 1299 extent_end = found_key.offset + 1300 btrfs_file_extent_inline_len(leaf, 1301 path->slots[0], fi); 1302 extent_end = ALIGN(extent_end, root->sectorsize); 1303 } else { 1304 BUG_ON(1); 1305 } 1306 out_check: 1307 if (extent_end <= start) { 1308 path->slots[0]++; 1309 if (!nolock && nocow) 1310 btrfs_end_nocow_write(root); 1311 goto next_slot; 1312 } 1313 if (!nocow) { 1314 if (cow_start == (u64)-1) 1315 cow_start = cur_offset; 1316 cur_offset = extent_end; 1317 if (cur_offset > end) 1318 break; 1319 path->slots[0]++; 1320 goto next_slot; 1321 } 1322 1323 btrfs_release_path(path); 1324 if (cow_start != (u64)-1) { 1325 ret = cow_file_range(inode, locked_page, 1326 cow_start, found_key.offset - 1, 1327 page_started, nr_written, 1); 1328 if (ret) { 1329 if (!nolock && nocow) 1330 btrfs_end_nocow_write(root); 1331 goto error; 1332 } 1333 cow_start = (u64)-1; 1334 } 1335 1336 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1337 struct extent_map *em; 1338 struct extent_map_tree *em_tree; 1339 em_tree = &BTRFS_I(inode)->extent_tree; 1340 em = alloc_extent_map(); 1341 BUG_ON(!em); /* -ENOMEM */ 1342 em->start = cur_offset; 1343 em->orig_start = found_key.offset - extent_offset; 1344 em->len = num_bytes; 1345 em->block_len = num_bytes; 1346 em->block_start = disk_bytenr; 1347 em->orig_block_len = disk_num_bytes; 1348 em->ram_bytes = ram_bytes; 1349 em->bdev = root->fs_info->fs_devices->latest_bdev; 1350 em->mod_start = em->start; 1351 em->mod_len = em->len; 1352 set_bit(EXTENT_FLAG_PINNED, &em->flags); 1353 set_bit(EXTENT_FLAG_FILLING, &em->flags); 1354 em->generation = -1; 1355 while (1) { 1356 write_lock(&em_tree->lock); 1357 ret = add_extent_mapping(em_tree, em, 1); 1358 write_unlock(&em_tree->lock); 1359 if (ret != -EEXIST) { 1360 free_extent_map(em); 1361 break; 1362 } 1363 btrfs_drop_extent_cache(inode, em->start, 1364 em->start + em->len - 1, 0); 1365 } 1366 type = BTRFS_ORDERED_PREALLOC; 1367 } else { 1368 type = BTRFS_ORDERED_NOCOW; 1369 } 1370 1371 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr, 1372 num_bytes, num_bytes, type); 1373 BUG_ON(ret); /* -ENOMEM */ 1374 1375 if (root->root_key.objectid == 1376 BTRFS_DATA_RELOC_TREE_OBJECTID) { 1377 ret = btrfs_reloc_clone_csums(inode, cur_offset, 1378 num_bytes); 1379 if (ret) { 1380 if (!nolock && nocow) 1381 btrfs_end_nocow_write(root); 1382 goto error; 1383 } 1384 } 1385 1386 extent_clear_unlock_delalloc(inode, cur_offset, 1387 cur_offset + num_bytes - 1, 1388 locked_page, EXTENT_LOCKED | 1389 EXTENT_DELALLOC, PAGE_UNLOCK | 1390 PAGE_SET_PRIVATE2); 1391 if (!nolock && nocow) 1392 btrfs_end_nocow_write(root); 1393 cur_offset = extent_end; 1394 if (cur_offset > end) 1395 break; 1396 } 1397 btrfs_release_path(path); 1398 1399 if (cur_offset <= end && cow_start == (u64)-1) { 1400 cow_start = cur_offset; 1401 cur_offset = end; 1402 } 1403 1404 if (cow_start != (u64)-1) { 1405 ret = cow_file_range(inode, locked_page, cow_start, end, 1406 page_started, nr_written, 1); 1407 if (ret) 1408 goto error; 1409 } 1410 1411 error: 1412 err = btrfs_end_transaction(trans, root); 1413 if (!ret) 1414 ret = err; 1415 1416 if (ret && cur_offset < end) 1417 extent_clear_unlock_delalloc(inode, cur_offset, end, 1418 locked_page, EXTENT_LOCKED | 1419 EXTENT_DELALLOC | EXTENT_DEFRAG | 1420 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK | 1421 PAGE_CLEAR_DIRTY | 1422 PAGE_SET_WRITEBACK | 1423 PAGE_END_WRITEBACK); 1424 btrfs_free_path(path); 1425 return ret; 1426 } 1427 1428 /* 1429 * extent_io.c call back to do delayed allocation processing 1430 */ 1431 static int run_delalloc_range(struct inode *inode, struct page *locked_page, 1432 u64 start, u64 end, int *page_started, 1433 unsigned long *nr_written) 1434 { 1435 int ret; 1436 struct btrfs_root *root = BTRFS_I(inode)->root; 1437 1438 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) { 1439 ret = run_delalloc_nocow(inode, locked_page, start, end, 1440 page_started, 1, nr_written); 1441 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC) { 1442 ret = run_delalloc_nocow(inode, locked_page, start, end, 1443 page_started, 0, nr_written); 1444 } else if (!btrfs_test_opt(root, COMPRESS) && 1445 !(BTRFS_I(inode)->force_compress) && 1446 !(BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS)) { 1447 ret = cow_file_range(inode, locked_page, start, end, 1448 page_started, nr_written, 1); 1449 } else { 1450 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 1451 &BTRFS_I(inode)->runtime_flags); 1452 ret = cow_file_range_async(inode, locked_page, start, end, 1453 page_started, nr_written); 1454 } 1455 return ret; 1456 } 1457 1458 static void btrfs_split_extent_hook(struct inode *inode, 1459 struct extent_state *orig, u64 split) 1460 { 1461 /* not delalloc, ignore it */ 1462 if (!(orig->state & EXTENT_DELALLOC)) 1463 return; 1464 1465 spin_lock(&BTRFS_I(inode)->lock); 1466 BTRFS_I(inode)->outstanding_extents++; 1467 spin_unlock(&BTRFS_I(inode)->lock); 1468 } 1469 1470 /* 1471 * extent_io.c merge_extent_hook, used to track merged delayed allocation 1472 * extents so we can keep track of new extents that are just merged onto old 1473 * extents, such as when we are doing sequential writes, so we can properly 1474 * account for the metadata space we'll need. 1475 */ 1476 static void btrfs_merge_extent_hook(struct inode *inode, 1477 struct extent_state *new, 1478 struct extent_state *other) 1479 { 1480 /* not delalloc, ignore it */ 1481 if (!(other->state & EXTENT_DELALLOC)) 1482 return; 1483 1484 spin_lock(&BTRFS_I(inode)->lock); 1485 BTRFS_I(inode)->outstanding_extents--; 1486 spin_unlock(&BTRFS_I(inode)->lock); 1487 } 1488 1489 static void btrfs_add_delalloc_inodes(struct btrfs_root *root, 1490 struct inode *inode) 1491 { 1492 spin_lock(&root->delalloc_lock); 1493 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) { 1494 list_add_tail(&BTRFS_I(inode)->delalloc_inodes, 1495 &root->delalloc_inodes); 1496 set_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1497 &BTRFS_I(inode)->runtime_flags); 1498 root->nr_delalloc_inodes++; 1499 if (root->nr_delalloc_inodes == 1) { 1500 spin_lock(&root->fs_info->delalloc_root_lock); 1501 BUG_ON(!list_empty(&root->delalloc_root)); 1502 list_add_tail(&root->delalloc_root, 1503 &root->fs_info->delalloc_roots); 1504 spin_unlock(&root->fs_info->delalloc_root_lock); 1505 } 1506 } 1507 spin_unlock(&root->delalloc_lock); 1508 } 1509 1510 static void btrfs_del_delalloc_inode(struct btrfs_root *root, 1511 struct inode *inode) 1512 { 1513 spin_lock(&root->delalloc_lock); 1514 if (!list_empty(&BTRFS_I(inode)->delalloc_inodes)) { 1515 list_del_init(&BTRFS_I(inode)->delalloc_inodes); 1516 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1517 &BTRFS_I(inode)->runtime_flags); 1518 root->nr_delalloc_inodes--; 1519 if (!root->nr_delalloc_inodes) { 1520 spin_lock(&root->fs_info->delalloc_root_lock); 1521 BUG_ON(list_empty(&root->delalloc_root)); 1522 list_del_init(&root->delalloc_root); 1523 spin_unlock(&root->fs_info->delalloc_root_lock); 1524 } 1525 } 1526 spin_unlock(&root->delalloc_lock); 1527 } 1528 1529 /* 1530 * extent_io.c set_bit_hook, used to track delayed allocation 1531 * bytes in this file, and to maintain the list of inodes that 1532 * have pending delalloc work to be done. 1533 */ 1534 static void btrfs_set_bit_hook(struct inode *inode, 1535 struct extent_state *state, unsigned long *bits) 1536 { 1537 1538 /* 1539 * set_bit and clear bit hooks normally require _irqsave/restore 1540 * but in this case, we are only testing for the DELALLOC 1541 * bit, which is only set or cleared with irqs on 1542 */ 1543 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) { 1544 struct btrfs_root *root = BTRFS_I(inode)->root; 1545 u64 len = state->end + 1 - state->start; 1546 bool do_list = !btrfs_is_free_space_inode(inode); 1547 1548 if (*bits & EXTENT_FIRST_DELALLOC) { 1549 *bits &= ~EXTENT_FIRST_DELALLOC; 1550 } else { 1551 spin_lock(&BTRFS_I(inode)->lock); 1552 BTRFS_I(inode)->outstanding_extents++; 1553 spin_unlock(&BTRFS_I(inode)->lock); 1554 } 1555 1556 __percpu_counter_add(&root->fs_info->delalloc_bytes, len, 1557 root->fs_info->delalloc_batch); 1558 spin_lock(&BTRFS_I(inode)->lock); 1559 BTRFS_I(inode)->delalloc_bytes += len; 1560 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1561 &BTRFS_I(inode)->runtime_flags)) 1562 btrfs_add_delalloc_inodes(root, inode); 1563 spin_unlock(&BTRFS_I(inode)->lock); 1564 } 1565 } 1566 1567 /* 1568 * extent_io.c clear_bit_hook, see set_bit_hook for why 1569 */ 1570 static void btrfs_clear_bit_hook(struct inode *inode, 1571 struct extent_state *state, 1572 unsigned long *bits) 1573 { 1574 /* 1575 * set_bit and clear bit hooks normally require _irqsave/restore 1576 * but in this case, we are only testing for the DELALLOC 1577 * bit, which is only set or cleared with irqs on 1578 */ 1579 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) { 1580 struct btrfs_root *root = BTRFS_I(inode)->root; 1581 u64 len = state->end + 1 - state->start; 1582 bool do_list = !btrfs_is_free_space_inode(inode); 1583 1584 if (*bits & EXTENT_FIRST_DELALLOC) { 1585 *bits &= ~EXTENT_FIRST_DELALLOC; 1586 } else if (!(*bits & EXTENT_DO_ACCOUNTING)) { 1587 spin_lock(&BTRFS_I(inode)->lock); 1588 BTRFS_I(inode)->outstanding_extents--; 1589 spin_unlock(&BTRFS_I(inode)->lock); 1590 } 1591 1592 /* 1593 * We don't reserve metadata space for space cache inodes so we 1594 * don't need to call dellalloc_release_metadata if there is an 1595 * error. 1596 */ 1597 if (*bits & EXTENT_DO_ACCOUNTING && 1598 root != root->fs_info->tree_root) 1599 btrfs_delalloc_release_metadata(inode, len); 1600 1601 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID 1602 && do_list && !(state->state & EXTENT_NORESERVE)) 1603 btrfs_free_reserved_data_space(inode, len); 1604 1605 __percpu_counter_add(&root->fs_info->delalloc_bytes, -len, 1606 root->fs_info->delalloc_batch); 1607 spin_lock(&BTRFS_I(inode)->lock); 1608 BTRFS_I(inode)->delalloc_bytes -= len; 1609 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 && 1610 test_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1611 &BTRFS_I(inode)->runtime_flags)) 1612 btrfs_del_delalloc_inode(root, inode); 1613 spin_unlock(&BTRFS_I(inode)->lock); 1614 } 1615 } 1616 1617 /* 1618 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure 1619 * we don't create bios that span stripes or chunks 1620 */ 1621 int btrfs_merge_bio_hook(int rw, struct page *page, unsigned long offset, 1622 size_t size, struct bio *bio, 1623 unsigned long bio_flags) 1624 { 1625 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; 1626 u64 logical = (u64)bio->bi_iter.bi_sector << 9; 1627 u64 length = 0; 1628 u64 map_length; 1629 int ret; 1630 1631 if (bio_flags & EXTENT_BIO_COMPRESSED) 1632 return 0; 1633 1634 length = bio->bi_iter.bi_size; 1635 map_length = length; 1636 ret = btrfs_map_block(root->fs_info, rw, logical, 1637 &map_length, NULL, 0); 1638 /* Will always return 0 with map_multi == NULL */ 1639 BUG_ON(ret < 0); 1640 if (map_length < length + size) 1641 return 1; 1642 return 0; 1643 } 1644 1645 /* 1646 * in order to insert checksums into the metadata in large chunks, 1647 * we wait until bio submission time. All the pages in the bio are 1648 * checksummed and sums are attached onto the ordered extent record. 1649 * 1650 * At IO completion time the cums attached on the ordered extent record 1651 * are inserted into the btree 1652 */ 1653 static int __btrfs_submit_bio_start(struct inode *inode, int rw, 1654 struct bio *bio, int mirror_num, 1655 unsigned long bio_flags, 1656 u64 bio_offset) 1657 { 1658 struct btrfs_root *root = BTRFS_I(inode)->root; 1659 int ret = 0; 1660 1661 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0); 1662 BUG_ON(ret); /* -ENOMEM */ 1663 return 0; 1664 } 1665 1666 /* 1667 * in order to insert checksums into the metadata in large chunks, 1668 * we wait until bio submission time. All the pages in the bio are 1669 * checksummed and sums are attached onto the ordered extent record. 1670 * 1671 * At IO completion time the cums attached on the ordered extent record 1672 * are inserted into the btree 1673 */ 1674 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio, 1675 int mirror_num, unsigned long bio_flags, 1676 u64 bio_offset) 1677 { 1678 struct btrfs_root *root = BTRFS_I(inode)->root; 1679 int ret; 1680 1681 ret = btrfs_map_bio(root, rw, bio, mirror_num, 1); 1682 if (ret) 1683 bio_endio(bio, ret); 1684 return ret; 1685 } 1686 1687 /* 1688 * extent_io.c submission hook. This does the right thing for csum calculation 1689 * on write, or reading the csums from the tree before a read 1690 */ 1691 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio, 1692 int mirror_num, unsigned long bio_flags, 1693 u64 bio_offset) 1694 { 1695 struct btrfs_root *root = BTRFS_I(inode)->root; 1696 int ret = 0; 1697 int skip_sum; 1698 int metadata = 0; 1699 int async = !atomic_read(&BTRFS_I(inode)->sync_writers); 1700 1701 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 1702 1703 if (btrfs_is_free_space_inode(inode)) 1704 metadata = 2; 1705 1706 if (!(rw & REQ_WRITE)) { 1707 ret = btrfs_bio_wq_end_io(root->fs_info, bio, metadata); 1708 if (ret) 1709 goto out; 1710 1711 if (bio_flags & EXTENT_BIO_COMPRESSED) { 1712 ret = btrfs_submit_compressed_read(inode, bio, 1713 mirror_num, 1714 bio_flags); 1715 goto out; 1716 } else if (!skip_sum) { 1717 ret = btrfs_lookup_bio_sums(root, inode, bio, NULL); 1718 if (ret) 1719 goto out; 1720 } 1721 goto mapit; 1722 } else if (async && !skip_sum) { 1723 /* csum items have already been cloned */ 1724 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) 1725 goto mapit; 1726 /* we're doing a write, do the async checksumming */ 1727 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info, 1728 inode, rw, bio, mirror_num, 1729 bio_flags, bio_offset, 1730 __btrfs_submit_bio_start, 1731 __btrfs_submit_bio_done); 1732 goto out; 1733 } else if (!skip_sum) { 1734 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0); 1735 if (ret) 1736 goto out; 1737 } 1738 1739 mapit: 1740 ret = btrfs_map_bio(root, rw, bio, mirror_num, 0); 1741 1742 out: 1743 if (ret < 0) 1744 bio_endio(bio, ret); 1745 return ret; 1746 } 1747 1748 /* 1749 * given a list of ordered sums record them in the inode. This happens 1750 * at IO completion time based on sums calculated at bio submission time. 1751 */ 1752 static noinline int add_pending_csums(struct btrfs_trans_handle *trans, 1753 struct inode *inode, u64 file_offset, 1754 struct list_head *list) 1755 { 1756 struct btrfs_ordered_sum *sum; 1757 1758 list_for_each_entry(sum, list, list) { 1759 trans->adding_csums = 1; 1760 btrfs_csum_file_blocks(trans, 1761 BTRFS_I(inode)->root->fs_info->csum_root, sum); 1762 trans->adding_csums = 0; 1763 } 1764 return 0; 1765 } 1766 1767 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end, 1768 struct extent_state **cached_state) 1769 { 1770 WARN_ON((end & (PAGE_CACHE_SIZE - 1)) == 0); 1771 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end, 1772 cached_state, GFP_NOFS); 1773 } 1774 1775 /* see btrfs_writepage_start_hook for details on why this is required */ 1776 struct btrfs_writepage_fixup { 1777 struct page *page; 1778 struct btrfs_work work; 1779 }; 1780 1781 static void btrfs_writepage_fixup_worker(struct btrfs_work *work) 1782 { 1783 struct btrfs_writepage_fixup *fixup; 1784 struct btrfs_ordered_extent *ordered; 1785 struct extent_state *cached_state = NULL; 1786 struct page *page; 1787 struct inode *inode; 1788 u64 page_start; 1789 u64 page_end; 1790 int ret; 1791 1792 fixup = container_of(work, struct btrfs_writepage_fixup, work); 1793 page = fixup->page; 1794 again: 1795 lock_page(page); 1796 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) { 1797 ClearPageChecked(page); 1798 goto out_page; 1799 } 1800 1801 inode = page->mapping->host; 1802 page_start = page_offset(page); 1803 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1; 1804 1805 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0, 1806 &cached_state); 1807 1808 /* already ordered? We're done */ 1809 if (PagePrivate2(page)) 1810 goto out; 1811 1812 ordered = btrfs_lookup_ordered_extent(inode, page_start); 1813 if (ordered) { 1814 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, 1815 page_end, &cached_state, GFP_NOFS); 1816 unlock_page(page); 1817 btrfs_start_ordered_extent(inode, ordered, 1); 1818 btrfs_put_ordered_extent(ordered); 1819 goto again; 1820 } 1821 1822 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE); 1823 if (ret) { 1824 mapping_set_error(page->mapping, ret); 1825 end_extent_writepage(page, ret, page_start, page_end); 1826 ClearPageChecked(page); 1827 goto out; 1828 } 1829 1830 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state); 1831 ClearPageChecked(page); 1832 set_page_dirty(page); 1833 out: 1834 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end, 1835 &cached_state, GFP_NOFS); 1836 out_page: 1837 unlock_page(page); 1838 page_cache_release(page); 1839 kfree(fixup); 1840 } 1841 1842 /* 1843 * There are a few paths in the higher layers of the kernel that directly 1844 * set the page dirty bit without asking the filesystem if it is a 1845 * good idea. This causes problems because we want to make sure COW 1846 * properly happens and the data=ordered rules are followed. 1847 * 1848 * In our case any range that doesn't have the ORDERED bit set 1849 * hasn't been properly setup for IO. We kick off an async process 1850 * to fix it up. The async helper will wait for ordered extents, set 1851 * the delalloc bit and make it safe to write the page. 1852 */ 1853 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end) 1854 { 1855 struct inode *inode = page->mapping->host; 1856 struct btrfs_writepage_fixup *fixup; 1857 struct btrfs_root *root = BTRFS_I(inode)->root; 1858 1859 /* this page is properly in the ordered list */ 1860 if (TestClearPagePrivate2(page)) 1861 return 0; 1862 1863 if (PageChecked(page)) 1864 return -EAGAIN; 1865 1866 fixup = kzalloc(sizeof(*fixup), GFP_NOFS); 1867 if (!fixup) 1868 return -EAGAIN; 1869 1870 SetPageChecked(page); 1871 page_cache_get(page); 1872 btrfs_init_work(&fixup->work, btrfs_writepage_fixup_worker, NULL, NULL); 1873 fixup->page = page; 1874 btrfs_queue_work(root->fs_info->fixup_workers, &fixup->work); 1875 return -EBUSY; 1876 } 1877 1878 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans, 1879 struct inode *inode, u64 file_pos, 1880 u64 disk_bytenr, u64 disk_num_bytes, 1881 u64 num_bytes, u64 ram_bytes, 1882 u8 compression, u8 encryption, 1883 u16 other_encoding, int extent_type) 1884 { 1885 struct btrfs_root *root = BTRFS_I(inode)->root; 1886 struct btrfs_file_extent_item *fi; 1887 struct btrfs_path *path; 1888 struct extent_buffer *leaf; 1889 struct btrfs_key ins; 1890 int extent_inserted = 0; 1891 int ret; 1892 1893 path = btrfs_alloc_path(); 1894 if (!path) 1895 return -ENOMEM; 1896 1897 /* 1898 * we may be replacing one extent in the tree with another. 1899 * The new extent is pinned in the extent map, and we don't want 1900 * to drop it from the cache until it is completely in the btree. 1901 * 1902 * So, tell btrfs_drop_extents to leave this extent in the cache. 1903 * the caller is expected to unpin it and allow it to be merged 1904 * with the others. 1905 */ 1906 ret = __btrfs_drop_extents(trans, root, inode, path, file_pos, 1907 file_pos + num_bytes, NULL, 0, 1908 1, sizeof(*fi), &extent_inserted); 1909 if (ret) 1910 goto out; 1911 1912 if (!extent_inserted) { 1913 ins.objectid = btrfs_ino(inode); 1914 ins.offset = file_pos; 1915 ins.type = BTRFS_EXTENT_DATA_KEY; 1916 1917 path->leave_spinning = 1; 1918 ret = btrfs_insert_empty_item(trans, root, path, &ins, 1919 sizeof(*fi)); 1920 if (ret) 1921 goto out; 1922 } 1923 leaf = path->nodes[0]; 1924 fi = btrfs_item_ptr(leaf, path->slots[0], 1925 struct btrfs_file_extent_item); 1926 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1927 btrfs_set_file_extent_type(leaf, fi, extent_type); 1928 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr); 1929 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes); 1930 btrfs_set_file_extent_offset(leaf, fi, 0); 1931 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 1932 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes); 1933 btrfs_set_file_extent_compression(leaf, fi, compression); 1934 btrfs_set_file_extent_encryption(leaf, fi, encryption); 1935 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding); 1936 1937 btrfs_mark_buffer_dirty(leaf); 1938 btrfs_release_path(path); 1939 1940 inode_add_bytes(inode, num_bytes); 1941 1942 ins.objectid = disk_bytenr; 1943 ins.offset = disk_num_bytes; 1944 ins.type = BTRFS_EXTENT_ITEM_KEY; 1945 ret = btrfs_alloc_reserved_file_extent(trans, root, 1946 root->root_key.objectid, 1947 btrfs_ino(inode), file_pos, &ins); 1948 out: 1949 btrfs_free_path(path); 1950 1951 return ret; 1952 } 1953 1954 /* snapshot-aware defrag */ 1955 struct sa_defrag_extent_backref { 1956 struct rb_node node; 1957 struct old_sa_defrag_extent *old; 1958 u64 root_id; 1959 u64 inum; 1960 u64 file_pos; 1961 u64 extent_offset; 1962 u64 num_bytes; 1963 u64 generation; 1964 }; 1965 1966 struct old_sa_defrag_extent { 1967 struct list_head list; 1968 struct new_sa_defrag_extent *new; 1969 1970 u64 extent_offset; 1971 u64 bytenr; 1972 u64 offset; 1973 u64 len; 1974 int count; 1975 }; 1976 1977 struct new_sa_defrag_extent { 1978 struct rb_root root; 1979 struct list_head head; 1980 struct btrfs_path *path; 1981 struct inode *inode; 1982 u64 file_pos; 1983 u64 len; 1984 u64 bytenr; 1985 u64 disk_len; 1986 u8 compress_type; 1987 }; 1988 1989 static int backref_comp(struct sa_defrag_extent_backref *b1, 1990 struct sa_defrag_extent_backref *b2) 1991 { 1992 if (b1->root_id < b2->root_id) 1993 return -1; 1994 else if (b1->root_id > b2->root_id) 1995 return 1; 1996 1997 if (b1->inum < b2->inum) 1998 return -1; 1999 else if (b1->inum > b2->inum) 2000 return 1; 2001 2002 if (b1->file_pos < b2->file_pos) 2003 return -1; 2004 else if (b1->file_pos > b2->file_pos) 2005 return 1; 2006 2007 /* 2008 * [------------------------------] ===> (a range of space) 2009 * |<--->| |<---->| =============> (fs/file tree A) 2010 * |<---------------------------->| ===> (fs/file tree B) 2011 * 2012 * A range of space can refer to two file extents in one tree while 2013 * refer to only one file extent in another tree. 2014 * 2015 * So we may process a disk offset more than one time(two extents in A) 2016 * and locate at the same extent(one extent in B), then insert two same 2017 * backrefs(both refer to the extent in B). 2018 */ 2019 return 0; 2020 } 2021 2022 static void backref_insert(struct rb_root *root, 2023 struct sa_defrag_extent_backref *backref) 2024 { 2025 struct rb_node **p = &root->rb_node; 2026 struct rb_node *parent = NULL; 2027 struct sa_defrag_extent_backref *entry; 2028 int ret; 2029 2030 while (*p) { 2031 parent = *p; 2032 entry = rb_entry(parent, struct sa_defrag_extent_backref, node); 2033 2034 ret = backref_comp(backref, entry); 2035 if (ret < 0) 2036 p = &(*p)->rb_left; 2037 else 2038 p = &(*p)->rb_right; 2039 } 2040 2041 rb_link_node(&backref->node, parent, p); 2042 rb_insert_color(&backref->node, root); 2043 } 2044 2045 /* 2046 * Note the backref might has changed, and in this case we just return 0. 2047 */ 2048 static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id, 2049 void *ctx) 2050 { 2051 struct btrfs_file_extent_item *extent; 2052 struct btrfs_fs_info *fs_info; 2053 struct old_sa_defrag_extent *old = ctx; 2054 struct new_sa_defrag_extent *new = old->new; 2055 struct btrfs_path *path = new->path; 2056 struct btrfs_key key; 2057 struct btrfs_root *root; 2058 struct sa_defrag_extent_backref *backref; 2059 struct extent_buffer *leaf; 2060 struct inode *inode = new->inode; 2061 int slot; 2062 int ret; 2063 u64 extent_offset; 2064 u64 num_bytes; 2065 2066 if (BTRFS_I(inode)->root->root_key.objectid == root_id && 2067 inum == btrfs_ino(inode)) 2068 return 0; 2069 2070 key.objectid = root_id; 2071 key.type = BTRFS_ROOT_ITEM_KEY; 2072 key.offset = (u64)-1; 2073 2074 fs_info = BTRFS_I(inode)->root->fs_info; 2075 root = btrfs_read_fs_root_no_name(fs_info, &key); 2076 if (IS_ERR(root)) { 2077 if (PTR_ERR(root) == -ENOENT) 2078 return 0; 2079 WARN_ON(1); 2080 pr_debug("inum=%llu, offset=%llu, root_id=%llu\n", 2081 inum, offset, root_id); 2082 return PTR_ERR(root); 2083 } 2084 2085 key.objectid = inum; 2086 key.type = BTRFS_EXTENT_DATA_KEY; 2087 if (offset > (u64)-1 << 32) 2088 key.offset = 0; 2089 else 2090 key.offset = offset; 2091 2092 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2093 if (WARN_ON(ret < 0)) 2094 return ret; 2095 ret = 0; 2096 2097 while (1) { 2098 cond_resched(); 2099 2100 leaf = path->nodes[0]; 2101 slot = path->slots[0]; 2102 2103 if (slot >= btrfs_header_nritems(leaf)) { 2104 ret = btrfs_next_leaf(root, path); 2105 if (ret < 0) { 2106 goto out; 2107 } else if (ret > 0) { 2108 ret = 0; 2109 goto out; 2110 } 2111 continue; 2112 } 2113 2114 path->slots[0]++; 2115 2116 btrfs_item_key_to_cpu(leaf, &key, slot); 2117 2118 if (key.objectid > inum) 2119 goto out; 2120 2121 if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY) 2122 continue; 2123 2124 extent = btrfs_item_ptr(leaf, slot, 2125 struct btrfs_file_extent_item); 2126 2127 if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr) 2128 continue; 2129 2130 /* 2131 * 'offset' refers to the exact key.offset, 2132 * NOT the 'offset' field in btrfs_extent_data_ref, ie. 2133 * (key.offset - extent_offset). 2134 */ 2135 if (key.offset != offset) 2136 continue; 2137 2138 extent_offset = btrfs_file_extent_offset(leaf, extent); 2139 num_bytes = btrfs_file_extent_num_bytes(leaf, extent); 2140 2141 if (extent_offset >= old->extent_offset + old->offset + 2142 old->len || extent_offset + num_bytes <= 2143 old->extent_offset + old->offset) 2144 continue; 2145 break; 2146 } 2147 2148 backref = kmalloc(sizeof(*backref), GFP_NOFS); 2149 if (!backref) { 2150 ret = -ENOENT; 2151 goto out; 2152 } 2153 2154 backref->root_id = root_id; 2155 backref->inum = inum; 2156 backref->file_pos = offset; 2157 backref->num_bytes = num_bytes; 2158 backref->extent_offset = extent_offset; 2159 backref->generation = btrfs_file_extent_generation(leaf, extent); 2160 backref->old = old; 2161 backref_insert(&new->root, backref); 2162 old->count++; 2163 out: 2164 btrfs_release_path(path); 2165 WARN_ON(ret); 2166 return ret; 2167 } 2168 2169 static noinline bool record_extent_backrefs(struct btrfs_path *path, 2170 struct new_sa_defrag_extent *new) 2171 { 2172 struct btrfs_fs_info *fs_info = BTRFS_I(new->inode)->root->fs_info; 2173 struct old_sa_defrag_extent *old, *tmp; 2174 int ret; 2175 2176 new->path = path; 2177 2178 list_for_each_entry_safe(old, tmp, &new->head, list) { 2179 ret = iterate_inodes_from_logical(old->bytenr + 2180 old->extent_offset, fs_info, 2181 path, record_one_backref, 2182 old); 2183 if (ret < 0 && ret != -ENOENT) 2184 return false; 2185 2186 /* no backref to be processed for this extent */ 2187 if (!old->count) { 2188 list_del(&old->list); 2189 kfree(old); 2190 } 2191 } 2192 2193 if (list_empty(&new->head)) 2194 return false; 2195 2196 return true; 2197 } 2198 2199 static int relink_is_mergable(struct extent_buffer *leaf, 2200 struct btrfs_file_extent_item *fi, 2201 struct new_sa_defrag_extent *new) 2202 { 2203 if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr) 2204 return 0; 2205 2206 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG) 2207 return 0; 2208 2209 if (btrfs_file_extent_compression(leaf, fi) != new->compress_type) 2210 return 0; 2211 2212 if (btrfs_file_extent_encryption(leaf, fi) || 2213 btrfs_file_extent_other_encoding(leaf, fi)) 2214 return 0; 2215 2216 return 1; 2217 } 2218 2219 /* 2220 * Note the backref might has changed, and in this case we just return 0. 2221 */ 2222 static noinline int relink_extent_backref(struct btrfs_path *path, 2223 struct sa_defrag_extent_backref *prev, 2224 struct sa_defrag_extent_backref *backref) 2225 { 2226 struct btrfs_file_extent_item *extent; 2227 struct btrfs_file_extent_item *item; 2228 struct btrfs_ordered_extent *ordered; 2229 struct btrfs_trans_handle *trans; 2230 struct btrfs_fs_info *fs_info; 2231 struct btrfs_root *root; 2232 struct btrfs_key key; 2233 struct extent_buffer *leaf; 2234 struct old_sa_defrag_extent *old = backref->old; 2235 struct new_sa_defrag_extent *new = old->new; 2236 struct inode *src_inode = new->inode; 2237 struct inode *inode; 2238 struct extent_state *cached = NULL; 2239 int ret = 0; 2240 u64 start; 2241 u64 len; 2242 u64 lock_start; 2243 u64 lock_end; 2244 bool merge = false; 2245 int index; 2246 2247 if (prev && prev->root_id == backref->root_id && 2248 prev->inum == backref->inum && 2249 prev->file_pos + prev->num_bytes == backref->file_pos) 2250 merge = true; 2251 2252 /* step 1: get root */ 2253 key.objectid = backref->root_id; 2254 key.type = BTRFS_ROOT_ITEM_KEY; 2255 key.offset = (u64)-1; 2256 2257 fs_info = BTRFS_I(src_inode)->root->fs_info; 2258 index = srcu_read_lock(&fs_info->subvol_srcu); 2259 2260 root = btrfs_read_fs_root_no_name(fs_info, &key); 2261 if (IS_ERR(root)) { 2262 srcu_read_unlock(&fs_info->subvol_srcu, index); 2263 if (PTR_ERR(root) == -ENOENT) 2264 return 0; 2265 return PTR_ERR(root); 2266 } 2267 2268 if (btrfs_root_readonly(root)) { 2269 srcu_read_unlock(&fs_info->subvol_srcu, index); 2270 return 0; 2271 } 2272 2273 /* step 2: get inode */ 2274 key.objectid = backref->inum; 2275 key.type = BTRFS_INODE_ITEM_KEY; 2276 key.offset = 0; 2277 2278 inode = btrfs_iget(fs_info->sb, &key, root, NULL); 2279 if (IS_ERR(inode)) { 2280 srcu_read_unlock(&fs_info->subvol_srcu, index); 2281 return 0; 2282 } 2283 2284 srcu_read_unlock(&fs_info->subvol_srcu, index); 2285 2286 /* step 3: relink backref */ 2287 lock_start = backref->file_pos; 2288 lock_end = backref->file_pos + backref->num_bytes - 1; 2289 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end, 2290 0, &cached); 2291 2292 ordered = btrfs_lookup_first_ordered_extent(inode, lock_end); 2293 if (ordered) { 2294 btrfs_put_ordered_extent(ordered); 2295 goto out_unlock; 2296 } 2297 2298 trans = btrfs_join_transaction(root); 2299 if (IS_ERR(trans)) { 2300 ret = PTR_ERR(trans); 2301 goto out_unlock; 2302 } 2303 2304 key.objectid = backref->inum; 2305 key.type = BTRFS_EXTENT_DATA_KEY; 2306 key.offset = backref->file_pos; 2307 2308 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2309 if (ret < 0) { 2310 goto out_free_path; 2311 } else if (ret > 0) { 2312 ret = 0; 2313 goto out_free_path; 2314 } 2315 2316 extent = btrfs_item_ptr(path->nodes[0], path->slots[0], 2317 struct btrfs_file_extent_item); 2318 2319 if (btrfs_file_extent_generation(path->nodes[0], extent) != 2320 backref->generation) 2321 goto out_free_path; 2322 2323 btrfs_release_path(path); 2324 2325 start = backref->file_pos; 2326 if (backref->extent_offset < old->extent_offset + old->offset) 2327 start += old->extent_offset + old->offset - 2328 backref->extent_offset; 2329 2330 len = min(backref->extent_offset + backref->num_bytes, 2331 old->extent_offset + old->offset + old->len); 2332 len -= max(backref->extent_offset, old->extent_offset + old->offset); 2333 2334 ret = btrfs_drop_extents(trans, root, inode, start, 2335 start + len, 1); 2336 if (ret) 2337 goto out_free_path; 2338 again: 2339 key.objectid = btrfs_ino(inode); 2340 key.type = BTRFS_EXTENT_DATA_KEY; 2341 key.offset = start; 2342 2343 path->leave_spinning = 1; 2344 if (merge) { 2345 struct btrfs_file_extent_item *fi; 2346 u64 extent_len; 2347 struct btrfs_key found_key; 2348 2349 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2350 if (ret < 0) 2351 goto out_free_path; 2352 2353 path->slots[0]--; 2354 leaf = path->nodes[0]; 2355 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 2356 2357 fi = btrfs_item_ptr(leaf, path->slots[0], 2358 struct btrfs_file_extent_item); 2359 extent_len = btrfs_file_extent_num_bytes(leaf, fi); 2360 2361 if (extent_len + found_key.offset == start && 2362 relink_is_mergable(leaf, fi, new)) { 2363 btrfs_set_file_extent_num_bytes(leaf, fi, 2364 extent_len + len); 2365 btrfs_mark_buffer_dirty(leaf); 2366 inode_add_bytes(inode, len); 2367 2368 ret = 1; 2369 goto out_free_path; 2370 } else { 2371 merge = false; 2372 btrfs_release_path(path); 2373 goto again; 2374 } 2375 } 2376 2377 ret = btrfs_insert_empty_item(trans, root, path, &key, 2378 sizeof(*extent)); 2379 if (ret) { 2380 btrfs_abort_transaction(trans, root, ret); 2381 goto out_free_path; 2382 } 2383 2384 leaf = path->nodes[0]; 2385 item = btrfs_item_ptr(leaf, path->slots[0], 2386 struct btrfs_file_extent_item); 2387 btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr); 2388 btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len); 2389 btrfs_set_file_extent_offset(leaf, item, start - new->file_pos); 2390 btrfs_set_file_extent_num_bytes(leaf, item, len); 2391 btrfs_set_file_extent_ram_bytes(leaf, item, new->len); 2392 btrfs_set_file_extent_generation(leaf, item, trans->transid); 2393 btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG); 2394 btrfs_set_file_extent_compression(leaf, item, new->compress_type); 2395 btrfs_set_file_extent_encryption(leaf, item, 0); 2396 btrfs_set_file_extent_other_encoding(leaf, item, 0); 2397 2398 btrfs_mark_buffer_dirty(leaf); 2399 inode_add_bytes(inode, len); 2400 btrfs_release_path(path); 2401 2402 ret = btrfs_inc_extent_ref(trans, root, new->bytenr, 2403 new->disk_len, 0, 2404 backref->root_id, backref->inum, 2405 new->file_pos, 0); /* start - extent_offset */ 2406 if (ret) { 2407 btrfs_abort_transaction(trans, root, ret); 2408 goto out_free_path; 2409 } 2410 2411 ret = 1; 2412 out_free_path: 2413 btrfs_release_path(path); 2414 path->leave_spinning = 0; 2415 btrfs_end_transaction(trans, root); 2416 out_unlock: 2417 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end, 2418 &cached, GFP_NOFS); 2419 iput(inode); 2420 return ret; 2421 } 2422 2423 static void free_sa_defrag_extent(struct new_sa_defrag_extent *new) 2424 { 2425 struct old_sa_defrag_extent *old, *tmp; 2426 2427 if (!new) 2428 return; 2429 2430 list_for_each_entry_safe(old, tmp, &new->head, list) { 2431 list_del(&old->list); 2432 kfree(old); 2433 } 2434 kfree(new); 2435 } 2436 2437 static void relink_file_extents(struct new_sa_defrag_extent *new) 2438 { 2439 struct btrfs_path *path; 2440 struct sa_defrag_extent_backref *backref; 2441 struct sa_defrag_extent_backref *prev = NULL; 2442 struct inode *inode; 2443 struct btrfs_root *root; 2444 struct rb_node *node; 2445 int ret; 2446 2447 inode = new->inode; 2448 root = BTRFS_I(inode)->root; 2449 2450 path = btrfs_alloc_path(); 2451 if (!path) 2452 return; 2453 2454 if (!record_extent_backrefs(path, new)) { 2455 btrfs_free_path(path); 2456 goto out; 2457 } 2458 btrfs_release_path(path); 2459 2460 while (1) { 2461 node = rb_first(&new->root); 2462 if (!node) 2463 break; 2464 rb_erase(node, &new->root); 2465 2466 backref = rb_entry(node, struct sa_defrag_extent_backref, node); 2467 2468 ret = relink_extent_backref(path, prev, backref); 2469 WARN_ON(ret < 0); 2470 2471 kfree(prev); 2472 2473 if (ret == 1) 2474 prev = backref; 2475 else 2476 prev = NULL; 2477 cond_resched(); 2478 } 2479 kfree(prev); 2480 2481 btrfs_free_path(path); 2482 out: 2483 free_sa_defrag_extent(new); 2484 2485 atomic_dec(&root->fs_info->defrag_running); 2486 wake_up(&root->fs_info->transaction_wait); 2487 } 2488 2489 static struct new_sa_defrag_extent * 2490 record_old_file_extents(struct inode *inode, 2491 struct btrfs_ordered_extent *ordered) 2492 { 2493 struct btrfs_root *root = BTRFS_I(inode)->root; 2494 struct btrfs_path *path; 2495 struct btrfs_key key; 2496 struct old_sa_defrag_extent *old; 2497 struct new_sa_defrag_extent *new; 2498 int ret; 2499 2500 new = kmalloc(sizeof(*new), GFP_NOFS); 2501 if (!new) 2502 return NULL; 2503 2504 new->inode = inode; 2505 new->file_pos = ordered->file_offset; 2506 new->len = ordered->len; 2507 new->bytenr = ordered->start; 2508 new->disk_len = ordered->disk_len; 2509 new->compress_type = ordered->compress_type; 2510 new->root = RB_ROOT; 2511 INIT_LIST_HEAD(&new->head); 2512 2513 path = btrfs_alloc_path(); 2514 if (!path) 2515 goto out_kfree; 2516 2517 key.objectid = btrfs_ino(inode); 2518 key.type = BTRFS_EXTENT_DATA_KEY; 2519 key.offset = new->file_pos; 2520 2521 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2522 if (ret < 0) 2523 goto out_free_path; 2524 if (ret > 0 && path->slots[0] > 0) 2525 path->slots[0]--; 2526 2527 /* find out all the old extents for the file range */ 2528 while (1) { 2529 struct btrfs_file_extent_item *extent; 2530 struct extent_buffer *l; 2531 int slot; 2532 u64 num_bytes; 2533 u64 offset; 2534 u64 end; 2535 u64 disk_bytenr; 2536 u64 extent_offset; 2537 2538 l = path->nodes[0]; 2539 slot = path->slots[0]; 2540 2541 if (slot >= btrfs_header_nritems(l)) { 2542 ret = btrfs_next_leaf(root, path); 2543 if (ret < 0) 2544 goto out_free_path; 2545 else if (ret > 0) 2546 break; 2547 continue; 2548 } 2549 2550 btrfs_item_key_to_cpu(l, &key, slot); 2551 2552 if (key.objectid != btrfs_ino(inode)) 2553 break; 2554 if (key.type != BTRFS_EXTENT_DATA_KEY) 2555 break; 2556 if (key.offset >= new->file_pos + new->len) 2557 break; 2558 2559 extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item); 2560 2561 num_bytes = btrfs_file_extent_num_bytes(l, extent); 2562 if (key.offset + num_bytes < new->file_pos) 2563 goto next; 2564 2565 disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent); 2566 if (!disk_bytenr) 2567 goto next; 2568 2569 extent_offset = btrfs_file_extent_offset(l, extent); 2570 2571 old = kmalloc(sizeof(*old), GFP_NOFS); 2572 if (!old) 2573 goto out_free_path; 2574 2575 offset = max(new->file_pos, key.offset); 2576 end = min(new->file_pos + new->len, key.offset + num_bytes); 2577 2578 old->bytenr = disk_bytenr; 2579 old->extent_offset = extent_offset; 2580 old->offset = offset - key.offset; 2581 old->len = end - offset; 2582 old->new = new; 2583 old->count = 0; 2584 list_add_tail(&old->list, &new->head); 2585 next: 2586 path->slots[0]++; 2587 cond_resched(); 2588 } 2589 2590 btrfs_free_path(path); 2591 atomic_inc(&root->fs_info->defrag_running); 2592 2593 return new; 2594 2595 out_free_path: 2596 btrfs_free_path(path); 2597 out_kfree: 2598 free_sa_defrag_extent(new); 2599 return NULL; 2600 } 2601 2602 static void btrfs_release_delalloc_bytes(struct btrfs_root *root, 2603 u64 start, u64 len) 2604 { 2605 struct btrfs_block_group_cache *cache; 2606 2607 cache = btrfs_lookup_block_group(root->fs_info, start); 2608 ASSERT(cache); 2609 2610 spin_lock(&cache->lock); 2611 cache->delalloc_bytes -= len; 2612 spin_unlock(&cache->lock); 2613 2614 btrfs_put_block_group(cache); 2615 } 2616 2617 /* as ordered data IO finishes, this gets called so we can finish 2618 * an ordered extent if the range of bytes in the file it covers are 2619 * fully written. 2620 */ 2621 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent) 2622 { 2623 struct inode *inode = ordered_extent->inode; 2624 struct btrfs_root *root = BTRFS_I(inode)->root; 2625 struct btrfs_trans_handle *trans = NULL; 2626 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 2627 struct extent_state *cached_state = NULL; 2628 struct new_sa_defrag_extent *new = NULL; 2629 int compress_type = 0; 2630 int ret = 0; 2631 u64 logical_len = ordered_extent->len; 2632 bool nolock; 2633 bool truncated = false; 2634 2635 nolock = btrfs_is_free_space_inode(inode); 2636 2637 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) { 2638 ret = -EIO; 2639 goto out; 2640 } 2641 2642 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) { 2643 truncated = true; 2644 logical_len = ordered_extent->truncated_len; 2645 /* Truncated the entire extent, don't bother adding */ 2646 if (!logical_len) 2647 goto out; 2648 } 2649 2650 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) { 2651 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */ 2652 btrfs_ordered_update_i_size(inode, 0, ordered_extent); 2653 if (nolock) 2654 trans = btrfs_join_transaction_nolock(root); 2655 else 2656 trans = btrfs_join_transaction(root); 2657 if (IS_ERR(trans)) { 2658 ret = PTR_ERR(trans); 2659 trans = NULL; 2660 goto out; 2661 } 2662 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 2663 ret = btrfs_update_inode_fallback(trans, root, inode); 2664 if (ret) /* -ENOMEM or corruption */ 2665 btrfs_abort_transaction(trans, root, ret); 2666 goto out; 2667 } 2668 2669 lock_extent_bits(io_tree, ordered_extent->file_offset, 2670 ordered_extent->file_offset + ordered_extent->len - 1, 2671 0, &cached_state); 2672 2673 ret = test_range_bit(io_tree, ordered_extent->file_offset, 2674 ordered_extent->file_offset + ordered_extent->len - 1, 2675 EXTENT_DEFRAG, 1, cached_state); 2676 if (ret) { 2677 u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item); 2678 if (0 && last_snapshot >= BTRFS_I(inode)->generation) 2679 /* the inode is shared */ 2680 new = record_old_file_extents(inode, ordered_extent); 2681 2682 clear_extent_bit(io_tree, ordered_extent->file_offset, 2683 ordered_extent->file_offset + ordered_extent->len - 1, 2684 EXTENT_DEFRAG, 0, 0, &cached_state, GFP_NOFS); 2685 } 2686 2687 if (nolock) 2688 trans = btrfs_join_transaction_nolock(root); 2689 else 2690 trans = btrfs_join_transaction(root); 2691 if (IS_ERR(trans)) { 2692 ret = PTR_ERR(trans); 2693 trans = NULL; 2694 goto out_unlock; 2695 } 2696 2697 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 2698 2699 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags)) 2700 compress_type = ordered_extent->compress_type; 2701 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 2702 BUG_ON(compress_type); 2703 ret = btrfs_mark_extent_written(trans, inode, 2704 ordered_extent->file_offset, 2705 ordered_extent->file_offset + 2706 logical_len); 2707 } else { 2708 BUG_ON(root == root->fs_info->tree_root); 2709 ret = insert_reserved_file_extent(trans, inode, 2710 ordered_extent->file_offset, 2711 ordered_extent->start, 2712 ordered_extent->disk_len, 2713 logical_len, logical_len, 2714 compress_type, 0, 0, 2715 BTRFS_FILE_EXTENT_REG); 2716 if (!ret) 2717 btrfs_release_delalloc_bytes(root, 2718 ordered_extent->start, 2719 ordered_extent->disk_len); 2720 } 2721 unpin_extent_cache(&BTRFS_I(inode)->extent_tree, 2722 ordered_extent->file_offset, ordered_extent->len, 2723 trans->transid); 2724 if (ret < 0) { 2725 btrfs_abort_transaction(trans, root, ret); 2726 goto out_unlock; 2727 } 2728 2729 add_pending_csums(trans, inode, ordered_extent->file_offset, 2730 &ordered_extent->list); 2731 2732 btrfs_ordered_update_i_size(inode, 0, ordered_extent); 2733 ret = btrfs_update_inode_fallback(trans, root, inode); 2734 if (ret) { /* -ENOMEM or corruption */ 2735 btrfs_abort_transaction(trans, root, ret); 2736 goto out_unlock; 2737 } 2738 ret = 0; 2739 out_unlock: 2740 unlock_extent_cached(io_tree, ordered_extent->file_offset, 2741 ordered_extent->file_offset + 2742 ordered_extent->len - 1, &cached_state, GFP_NOFS); 2743 out: 2744 if (root != root->fs_info->tree_root) 2745 btrfs_delalloc_release_metadata(inode, ordered_extent->len); 2746 if (trans) 2747 btrfs_end_transaction(trans, root); 2748 2749 if (ret || truncated) { 2750 u64 start, end; 2751 2752 if (truncated) 2753 start = ordered_extent->file_offset + logical_len; 2754 else 2755 start = ordered_extent->file_offset; 2756 end = ordered_extent->file_offset + ordered_extent->len - 1; 2757 clear_extent_uptodate(io_tree, start, end, NULL, GFP_NOFS); 2758 2759 /* Drop the cache for the part of the extent we didn't write. */ 2760 btrfs_drop_extent_cache(inode, start, end, 0); 2761 2762 /* 2763 * If the ordered extent had an IOERR or something else went 2764 * wrong we need to return the space for this ordered extent 2765 * back to the allocator. We only free the extent in the 2766 * truncated case if we didn't write out the extent at all. 2767 */ 2768 if ((ret || !logical_len) && 2769 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) && 2770 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) 2771 btrfs_free_reserved_extent(root, ordered_extent->start, 2772 ordered_extent->disk_len, 1); 2773 } 2774 2775 2776 /* 2777 * This needs to be done to make sure anybody waiting knows we are done 2778 * updating everything for this ordered extent. 2779 */ 2780 btrfs_remove_ordered_extent(inode, ordered_extent); 2781 2782 /* for snapshot-aware defrag */ 2783 if (new) { 2784 if (ret) { 2785 free_sa_defrag_extent(new); 2786 atomic_dec(&root->fs_info->defrag_running); 2787 } else { 2788 relink_file_extents(new); 2789 } 2790 } 2791 2792 /* once for us */ 2793 btrfs_put_ordered_extent(ordered_extent); 2794 /* once for the tree */ 2795 btrfs_put_ordered_extent(ordered_extent); 2796 2797 return ret; 2798 } 2799 2800 static void finish_ordered_fn(struct btrfs_work *work) 2801 { 2802 struct btrfs_ordered_extent *ordered_extent; 2803 ordered_extent = container_of(work, struct btrfs_ordered_extent, work); 2804 btrfs_finish_ordered_io(ordered_extent); 2805 } 2806 2807 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end, 2808 struct extent_state *state, int uptodate) 2809 { 2810 struct inode *inode = page->mapping->host; 2811 struct btrfs_root *root = BTRFS_I(inode)->root; 2812 struct btrfs_ordered_extent *ordered_extent = NULL; 2813 struct btrfs_workqueue *workers; 2814 2815 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate); 2816 2817 ClearPagePrivate2(page); 2818 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start, 2819 end - start + 1, uptodate)) 2820 return 0; 2821 2822 btrfs_init_work(&ordered_extent->work, finish_ordered_fn, NULL, NULL); 2823 2824 if (btrfs_is_free_space_inode(inode)) 2825 workers = root->fs_info->endio_freespace_worker; 2826 else 2827 workers = root->fs_info->endio_write_workers; 2828 btrfs_queue_work(workers, &ordered_extent->work); 2829 2830 return 0; 2831 } 2832 2833 /* 2834 * when reads are done, we need to check csums to verify the data is correct 2835 * if there's a match, we allow the bio to finish. If not, the code in 2836 * extent_io.c will try to find good copies for us. 2837 */ 2838 static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio, 2839 u64 phy_offset, struct page *page, 2840 u64 start, u64 end, int mirror) 2841 { 2842 size_t offset = start - page_offset(page); 2843 struct inode *inode = page->mapping->host; 2844 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 2845 char *kaddr; 2846 struct btrfs_root *root = BTRFS_I(inode)->root; 2847 u32 csum_expected; 2848 u32 csum = ~(u32)0; 2849 static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL, 2850 DEFAULT_RATELIMIT_BURST); 2851 2852 if (PageChecked(page)) { 2853 ClearPageChecked(page); 2854 goto good; 2855 } 2856 2857 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) 2858 goto good; 2859 2860 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID && 2861 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) { 2862 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM, 2863 GFP_NOFS); 2864 return 0; 2865 } 2866 2867 phy_offset >>= inode->i_sb->s_blocksize_bits; 2868 csum_expected = *(((u32 *)io_bio->csum) + phy_offset); 2869 2870 kaddr = kmap_atomic(page); 2871 csum = btrfs_csum_data(kaddr + offset, csum, end - start + 1); 2872 btrfs_csum_final(csum, (char *)&csum); 2873 if (csum != csum_expected) 2874 goto zeroit; 2875 2876 kunmap_atomic(kaddr); 2877 good: 2878 return 0; 2879 2880 zeroit: 2881 if (__ratelimit(&_rs)) 2882 btrfs_info(root->fs_info, "csum failed ino %llu off %llu csum %u expected csum %u", 2883 btrfs_ino(page->mapping->host), start, csum, csum_expected); 2884 memset(kaddr + offset, 1, end - start + 1); 2885 flush_dcache_page(page); 2886 kunmap_atomic(kaddr); 2887 if (csum_expected == 0) 2888 return 0; 2889 return -EIO; 2890 } 2891 2892 struct delayed_iput { 2893 struct list_head list; 2894 struct inode *inode; 2895 }; 2896 2897 /* JDM: If this is fs-wide, why can't we add a pointer to 2898 * btrfs_inode instead and avoid the allocation? */ 2899 void btrfs_add_delayed_iput(struct inode *inode) 2900 { 2901 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 2902 struct delayed_iput *delayed; 2903 2904 if (atomic_add_unless(&inode->i_count, -1, 1)) 2905 return; 2906 2907 delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL); 2908 delayed->inode = inode; 2909 2910 spin_lock(&fs_info->delayed_iput_lock); 2911 list_add_tail(&delayed->list, &fs_info->delayed_iputs); 2912 spin_unlock(&fs_info->delayed_iput_lock); 2913 } 2914 2915 void btrfs_run_delayed_iputs(struct btrfs_root *root) 2916 { 2917 LIST_HEAD(list); 2918 struct btrfs_fs_info *fs_info = root->fs_info; 2919 struct delayed_iput *delayed; 2920 int empty; 2921 2922 spin_lock(&fs_info->delayed_iput_lock); 2923 empty = list_empty(&fs_info->delayed_iputs); 2924 spin_unlock(&fs_info->delayed_iput_lock); 2925 if (empty) 2926 return; 2927 2928 spin_lock(&fs_info->delayed_iput_lock); 2929 list_splice_init(&fs_info->delayed_iputs, &list); 2930 spin_unlock(&fs_info->delayed_iput_lock); 2931 2932 while (!list_empty(&list)) { 2933 delayed = list_entry(list.next, struct delayed_iput, list); 2934 list_del(&delayed->list); 2935 iput(delayed->inode); 2936 kfree(delayed); 2937 } 2938 } 2939 2940 /* 2941 * This is called in transaction commit time. If there are no orphan 2942 * files in the subvolume, it removes orphan item and frees block_rsv 2943 * structure. 2944 */ 2945 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans, 2946 struct btrfs_root *root) 2947 { 2948 struct btrfs_block_rsv *block_rsv; 2949 int ret; 2950 2951 if (atomic_read(&root->orphan_inodes) || 2952 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) 2953 return; 2954 2955 spin_lock(&root->orphan_lock); 2956 if (atomic_read(&root->orphan_inodes)) { 2957 spin_unlock(&root->orphan_lock); 2958 return; 2959 } 2960 2961 if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) { 2962 spin_unlock(&root->orphan_lock); 2963 return; 2964 } 2965 2966 block_rsv = root->orphan_block_rsv; 2967 root->orphan_block_rsv = NULL; 2968 spin_unlock(&root->orphan_lock); 2969 2970 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state) && 2971 btrfs_root_refs(&root->root_item) > 0) { 2972 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root, 2973 root->root_key.objectid); 2974 if (ret) 2975 btrfs_abort_transaction(trans, root, ret); 2976 else 2977 clear_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, 2978 &root->state); 2979 } 2980 2981 if (block_rsv) { 2982 WARN_ON(block_rsv->size > 0); 2983 btrfs_free_block_rsv(root, block_rsv); 2984 } 2985 } 2986 2987 /* 2988 * This creates an orphan entry for the given inode in case something goes 2989 * wrong in the middle of an unlink/truncate. 2990 * 2991 * NOTE: caller of this function should reserve 5 units of metadata for 2992 * this function. 2993 */ 2994 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode) 2995 { 2996 struct btrfs_root *root = BTRFS_I(inode)->root; 2997 struct btrfs_block_rsv *block_rsv = NULL; 2998 int reserve = 0; 2999 int insert = 0; 3000 int ret; 3001 3002 if (!root->orphan_block_rsv) { 3003 block_rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP); 3004 if (!block_rsv) 3005 return -ENOMEM; 3006 } 3007 3008 spin_lock(&root->orphan_lock); 3009 if (!root->orphan_block_rsv) { 3010 root->orphan_block_rsv = block_rsv; 3011 } else if (block_rsv) { 3012 btrfs_free_block_rsv(root, block_rsv); 3013 block_rsv = NULL; 3014 } 3015 3016 if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 3017 &BTRFS_I(inode)->runtime_flags)) { 3018 #if 0 3019 /* 3020 * For proper ENOSPC handling, we should do orphan 3021 * cleanup when mounting. But this introduces backward 3022 * compatibility issue. 3023 */ 3024 if (!xchg(&root->orphan_item_inserted, 1)) 3025 insert = 2; 3026 else 3027 insert = 1; 3028 #endif 3029 insert = 1; 3030 atomic_inc(&root->orphan_inodes); 3031 } 3032 3033 if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED, 3034 &BTRFS_I(inode)->runtime_flags)) 3035 reserve = 1; 3036 spin_unlock(&root->orphan_lock); 3037 3038 /* grab metadata reservation from transaction handle */ 3039 if (reserve) { 3040 ret = btrfs_orphan_reserve_metadata(trans, inode); 3041 BUG_ON(ret); /* -ENOSPC in reservation; Logic error? JDM */ 3042 } 3043 3044 /* insert an orphan item to track this unlinked/truncated file */ 3045 if (insert >= 1) { 3046 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode)); 3047 if (ret) { 3048 atomic_dec(&root->orphan_inodes); 3049 if (reserve) { 3050 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED, 3051 &BTRFS_I(inode)->runtime_flags); 3052 btrfs_orphan_release_metadata(inode); 3053 } 3054 if (ret != -EEXIST) { 3055 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 3056 &BTRFS_I(inode)->runtime_flags); 3057 btrfs_abort_transaction(trans, root, ret); 3058 return ret; 3059 } 3060 } 3061 ret = 0; 3062 } 3063 3064 /* insert an orphan item to track subvolume contains orphan files */ 3065 if (insert >= 2) { 3066 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root, 3067 root->root_key.objectid); 3068 if (ret && ret != -EEXIST) { 3069 btrfs_abort_transaction(trans, root, ret); 3070 return ret; 3071 } 3072 } 3073 return 0; 3074 } 3075 3076 /* 3077 * We have done the truncate/delete so we can go ahead and remove the orphan 3078 * item for this particular inode. 3079 */ 3080 static int btrfs_orphan_del(struct btrfs_trans_handle *trans, 3081 struct inode *inode) 3082 { 3083 struct btrfs_root *root = BTRFS_I(inode)->root; 3084 int delete_item = 0; 3085 int release_rsv = 0; 3086 int ret = 0; 3087 3088 spin_lock(&root->orphan_lock); 3089 if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 3090 &BTRFS_I(inode)->runtime_flags)) 3091 delete_item = 1; 3092 3093 if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED, 3094 &BTRFS_I(inode)->runtime_flags)) 3095 release_rsv = 1; 3096 spin_unlock(&root->orphan_lock); 3097 3098 if (delete_item) { 3099 atomic_dec(&root->orphan_inodes); 3100 if (trans) 3101 ret = btrfs_del_orphan_item(trans, root, 3102 btrfs_ino(inode)); 3103 } 3104 3105 if (release_rsv) 3106 btrfs_orphan_release_metadata(inode); 3107 3108 return ret; 3109 } 3110 3111 /* 3112 * this cleans up any orphans that may be left on the list from the last use 3113 * of this root. 3114 */ 3115 int btrfs_orphan_cleanup(struct btrfs_root *root) 3116 { 3117 struct btrfs_path *path; 3118 struct extent_buffer *leaf; 3119 struct btrfs_key key, found_key; 3120 struct btrfs_trans_handle *trans; 3121 struct inode *inode; 3122 u64 last_objectid = 0; 3123 int ret = 0, nr_unlink = 0, nr_truncate = 0; 3124 3125 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED)) 3126 return 0; 3127 3128 path = btrfs_alloc_path(); 3129 if (!path) { 3130 ret = -ENOMEM; 3131 goto out; 3132 } 3133 path->reada = -1; 3134 3135 key.objectid = BTRFS_ORPHAN_OBJECTID; 3136 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY); 3137 key.offset = (u64)-1; 3138 3139 while (1) { 3140 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3141 if (ret < 0) 3142 goto out; 3143 3144 /* 3145 * if ret == 0 means we found what we were searching for, which 3146 * is weird, but possible, so only screw with path if we didn't 3147 * find the key and see if we have stuff that matches 3148 */ 3149 if (ret > 0) { 3150 ret = 0; 3151 if (path->slots[0] == 0) 3152 break; 3153 path->slots[0]--; 3154 } 3155 3156 /* pull out the item */ 3157 leaf = path->nodes[0]; 3158 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 3159 3160 /* make sure the item matches what we want */ 3161 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID) 3162 break; 3163 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY) 3164 break; 3165 3166 /* release the path since we're done with it */ 3167 btrfs_release_path(path); 3168 3169 /* 3170 * this is where we are basically btrfs_lookup, without the 3171 * crossing root thing. we store the inode number in the 3172 * offset of the orphan item. 3173 */ 3174 3175 if (found_key.offset == last_objectid) { 3176 btrfs_err(root->fs_info, 3177 "Error removing orphan entry, stopping orphan cleanup"); 3178 ret = -EINVAL; 3179 goto out; 3180 } 3181 3182 last_objectid = found_key.offset; 3183 3184 found_key.objectid = found_key.offset; 3185 found_key.type = BTRFS_INODE_ITEM_KEY; 3186 found_key.offset = 0; 3187 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL); 3188 ret = PTR_ERR_OR_ZERO(inode); 3189 if (ret && ret != -ESTALE) 3190 goto out; 3191 3192 if (ret == -ESTALE && root == root->fs_info->tree_root) { 3193 struct btrfs_root *dead_root; 3194 struct btrfs_fs_info *fs_info = root->fs_info; 3195 int is_dead_root = 0; 3196 3197 /* 3198 * this is an orphan in the tree root. Currently these 3199 * could come from 2 sources: 3200 * a) a snapshot deletion in progress 3201 * b) a free space cache inode 3202 * We need to distinguish those two, as the snapshot 3203 * orphan must not get deleted. 3204 * find_dead_roots already ran before us, so if this 3205 * is a snapshot deletion, we should find the root 3206 * in the dead_roots list 3207 */ 3208 spin_lock(&fs_info->trans_lock); 3209 list_for_each_entry(dead_root, &fs_info->dead_roots, 3210 root_list) { 3211 if (dead_root->root_key.objectid == 3212 found_key.objectid) { 3213 is_dead_root = 1; 3214 break; 3215 } 3216 } 3217 spin_unlock(&fs_info->trans_lock); 3218 if (is_dead_root) { 3219 /* prevent this orphan from being found again */ 3220 key.offset = found_key.objectid - 1; 3221 continue; 3222 } 3223 } 3224 /* 3225 * Inode is already gone but the orphan item is still there, 3226 * kill the orphan item. 3227 */ 3228 if (ret == -ESTALE) { 3229 trans = btrfs_start_transaction(root, 1); 3230 if (IS_ERR(trans)) { 3231 ret = PTR_ERR(trans); 3232 goto out; 3233 } 3234 btrfs_debug(root->fs_info, "auto deleting %Lu", 3235 found_key.objectid); 3236 ret = btrfs_del_orphan_item(trans, root, 3237 found_key.objectid); 3238 btrfs_end_transaction(trans, root); 3239 if (ret) 3240 goto out; 3241 continue; 3242 } 3243 3244 /* 3245 * add this inode to the orphan list so btrfs_orphan_del does 3246 * the proper thing when we hit it 3247 */ 3248 set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 3249 &BTRFS_I(inode)->runtime_flags); 3250 atomic_inc(&root->orphan_inodes); 3251 3252 /* if we have links, this was a truncate, lets do that */ 3253 if (inode->i_nlink) { 3254 if (WARN_ON(!S_ISREG(inode->i_mode))) { 3255 iput(inode); 3256 continue; 3257 } 3258 nr_truncate++; 3259 3260 /* 1 for the orphan item deletion. */ 3261 trans = btrfs_start_transaction(root, 1); 3262 if (IS_ERR(trans)) { 3263 iput(inode); 3264 ret = PTR_ERR(trans); 3265 goto out; 3266 } 3267 ret = btrfs_orphan_add(trans, inode); 3268 btrfs_end_transaction(trans, root); 3269 if (ret) { 3270 iput(inode); 3271 goto out; 3272 } 3273 3274 ret = btrfs_truncate(inode); 3275 if (ret) 3276 btrfs_orphan_del(NULL, inode); 3277 } else { 3278 nr_unlink++; 3279 } 3280 3281 /* this will do delete_inode and everything for us */ 3282 iput(inode); 3283 if (ret) 3284 goto out; 3285 } 3286 /* release the path since we're done with it */ 3287 btrfs_release_path(path); 3288 3289 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE; 3290 3291 if (root->orphan_block_rsv) 3292 btrfs_block_rsv_release(root, root->orphan_block_rsv, 3293 (u64)-1); 3294 3295 if (root->orphan_block_rsv || 3296 test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) { 3297 trans = btrfs_join_transaction(root); 3298 if (!IS_ERR(trans)) 3299 btrfs_end_transaction(trans, root); 3300 } 3301 3302 if (nr_unlink) 3303 btrfs_debug(root->fs_info, "unlinked %d orphans", nr_unlink); 3304 if (nr_truncate) 3305 btrfs_debug(root->fs_info, "truncated %d orphans", nr_truncate); 3306 3307 out: 3308 if (ret) 3309 btrfs_crit(root->fs_info, 3310 "could not do orphan cleanup %d", ret); 3311 btrfs_free_path(path); 3312 return ret; 3313 } 3314 3315 /* 3316 * very simple check to peek ahead in the leaf looking for xattrs. If we 3317 * don't find any xattrs, we know there can't be any acls. 3318 * 3319 * slot is the slot the inode is in, objectid is the objectid of the inode 3320 */ 3321 static noinline int acls_after_inode_item(struct extent_buffer *leaf, 3322 int slot, u64 objectid, 3323 int *first_xattr_slot) 3324 { 3325 u32 nritems = btrfs_header_nritems(leaf); 3326 struct btrfs_key found_key; 3327 static u64 xattr_access = 0; 3328 static u64 xattr_default = 0; 3329 int scanned = 0; 3330 3331 if (!xattr_access) { 3332 xattr_access = btrfs_name_hash(POSIX_ACL_XATTR_ACCESS, 3333 strlen(POSIX_ACL_XATTR_ACCESS)); 3334 xattr_default = btrfs_name_hash(POSIX_ACL_XATTR_DEFAULT, 3335 strlen(POSIX_ACL_XATTR_DEFAULT)); 3336 } 3337 3338 slot++; 3339 *first_xattr_slot = -1; 3340 while (slot < nritems) { 3341 btrfs_item_key_to_cpu(leaf, &found_key, slot); 3342 3343 /* we found a different objectid, there must not be acls */ 3344 if (found_key.objectid != objectid) 3345 return 0; 3346 3347 /* we found an xattr, assume we've got an acl */ 3348 if (found_key.type == BTRFS_XATTR_ITEM_KEY) { 3349 if (*first_xattr_slot == -1) 3350 *first_xattr_slot = slot; 3351 if (found_key.offset == xattr_access || 3352 found_key.offset == xattr_default) 3353 return 1; 3354 } 3355 3356 /* 3357 * we found a key greater than an xattr key, there can't 3358 * be any acls later on 3359 */ 3360 if (found_key.type > BTRFS_XATTR_ITEM_KEY) 3361 return 0; 3362 3363 slot++; 3364 scanned++; 3365 3366 /* 3367 * it goes inode, inode backrefs, xattrs, extents, 3368 * so if there are a ton of hard links to an inode there can 3369 * be a lot of backrefs. Don't waste time searching too hard, 3370 * this is just an optimization 3371 */ 3372 if (scanned >= 8) 3373 break; 3374 } 3375 /* we hit the end of the leaf before we found an xattr or 3376 * something larger than an xattr. We have to assume the inode 3377 * has acls 3378 */ 3379 if (*first_xattr_slot == -1) 3380 *first_xattr_slot = slot; 3381 return 1; 3382 } 3383 3384 /* 3385 * read an inode from the btree into the in-memory inode 3386 */ 3387 static void btrfs_read_locked_inode(struct inode *inode) 3388 { 3389 struct btrfs_path *path; 3390 struct extent_buffer *leaf; 3391 struct btrfs_inode_item *inode_item; 3392 struct btrfs_timespec *tspec; 3393 struct btrfs_root *root = BTRFS_I(inode)->root; 3394 struct btrfs_key location; 3395 unsigned long ptr; 3396 int maybe_acls; 3397 u32 rdev; 3398 int ret; 3399 bool filled = false; 3400 int first_xattr_slot; 3401 3402 ret = btrfs_fill_inode(inode, &rdev); 3403 if (!ret) 3404 filled = true; 3405 3406 path = btrfs_alloc_path(); 3407 if (!path) 3408 goto make_bad; 3409 3410 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location)); 3411 3412 ret = btrfs_lookup_inode(NULL, root, path, &location, 0); 3413 if (ret) 3414 goto make_bad; 3415 3416 leaf = path->nodes[0]; 3417 3418 if (filled) 3419 goto cache_index; 3420 3421 inode_item = btrfs_item_ptr(leaf, path->slots[0], 3422 struct btrfs_inode_item); 3423 inode->i_mode = btrfs_inode_mode(leaf, inode_item); 3424 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item)); 3425 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item)); 3426 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item)); 3427 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item)); 3428 3429 tspec = btrfs_inode_atime(inode_item); 3430 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec); 3431 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec); 3432 3433 tspec = btrfs_inode_mtime(inode_item); 3434 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec); 3435 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec); 3436 3437 tspec = btrfs_inode_ctime(inode_item); 3438 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec); 3439 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec); 3440 3441 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item)); 3442 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item); 3443 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item); 3444 3445 /* 3446 * If we were modified in the current generation and evicted from memory 3447 * and then re-read we need to do a full sync since we don't have any 3448 * idea about which extents were modified before we were evicted from 3449 * cache. 3450 */ 3451 if (BTRFS_I(inode)->last_trans == root->fs_info->generation) 3452 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 3453 &BTRFS_I(inode)->runtime_flags); 3454 3455 inode->i_version = btrfs_inode_sequence(leaf, inode_item); 3456 inode->i_generation = BTRFS_I(inode)->generation; 3457 inode->i_rdev = 0; 3458 rdev = btrfs_inode_rdev(leaf, inode_item); 3459 3460 BTRFS_I(inode)->index_cnt = (u64)-1; 3461 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item); 3462 3463 cache_index: 3464 path->slots[0]++; 3465 if (inode->i_nlink != 1 || 3466 path->slots[0] >= btrfs_header_nritems(leaf)) 3467 goto cache_acl; 3468 3469 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]); 3470 if (location.objectid != btrfs_ino(inode)) 3471 goto cache_acl; 3472 3473 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 3474 if (location.type == BTRFS_INODE_REF_KEY) { 3475 struct btrfs_inode_ref *ref; 3476 3477 ref = (struct btrfs_inode_ref *)ptr; 3478 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref); 3479 } else if (location.type == BTRFS_INODE_EXTREF_KEY) { 3480 struct btrfs_inode_extref *extref; 3481 3482 extref = (struct btrfs_inode_extref *)ptr; 3483 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf, 3484 extref); 3485 } 3486 cache_acl: 3487 /* 3488 * try to precache a NULL acl entry for files that don't have 3489 * any xattrs or acls 3490 */ 3491 maybe_acls = acls_after_inode_item(leaf, path->slots[0], 3492 btrfs_ino(inode), &first_xattr_slot); 3493 if (first_xattr_slot != -1) { 3494 path->slots[0] = first_xattr_slot; 3495 ret = btrfs_load_inode_props(inode, path); 3496 if (ret) 3497 btrfs_err(root->fs_info, 3498 "error loading props for ino %llu (root %llu): %d", 3499 btrfs_ino(inode), 3500 root->root_key.objectid, ret); 3501 } 3502 btrfs_free_path(path); 3503 3504 if (!maybe_acls) 3505 cache_no_acl(inode); 3506 3507 switch (inode->i_mode & S_IFMT) { 3508 case S_IFREG: 3509 inode->i_mapping->a_ops = &btrfs_aops; 3510 inode->i_mapping->backing_dev_info = &root->fs_info->bdi; 3511 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 3512 inode->i_fop = &btrfs_file_operations; 3513 inode->i_op = &btrfs_file_inode_operations; 3514 break; 3515 case S_IFDIR: 3516 inode->i_fop = &btrfs_dir_file_operations; 3517 if (root == root->fs_info->tree_root) 3518 inode->i_op = &btrfs_dir_ro_inode_operations; 3519 else 3520 inode->i_op = &btrfs_dir_inode_operations; 3521 break; 3522 case S_IFLNK: 3523 inode->i_op = &btrfs_symlink_inode_operations; 3524 inode->i_mapping->a_ops = &btrfs_symlink_aops; 3525 inode->i_mapping->backing_dev_info = &root->fs_info->bdi; 3526 break; 3527 default: 3528 inode->i_op = &btrfs_special_inode_operations; 3529 init_special_inode(inode, inode->i_mode, rdev); 3530 break; 3531 } 3532 3533 btrfs_update_iflags(inode); 3534 return; 3535 3536 make_bad: 3537 btrfs_free_path(path); 3538 make_bad_inode(inode); 3539 } 3540 3541 /* 3542 * given a leaf and an inode, copy the inode fields into the leaf 3543 */ 3544 static void fill_inode_item(struct btrfs_trans_handle *trans, 3545 struct extent_buffer *leaf, 3546 struct btrfs_inode_item *item, 3547 struct inode *inode) 3548 { 3549 struct btrfs_map_token token; 3550 3551 btrfs_init_map_token(&token); 3552 3553 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token); 3554 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token); 3555 btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size, 3556 &token); 3557 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token); 3558 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token); 3559 3560 btrfs_set_token_timespec_sec(leaf, btrfs_inode_atime(item), 3561 inode->i_atime.tv_sec, &token); 3562 btrfs_set_token_timespec_nsec(leaf, btrfs_inode_atime(item), 3563 inode->i_atime.tv_nsec, &token); 3564 3565 btrfs_set_token_timespec_sec(leaf, btrfs_inode_mtime(item), 3566 inode->i_mtime.tv_sec, &token); 3567 btrfs_set_token_timespec_nsec(leaf, btrfs_inode_mtime(item), 3568 inode->i_mtime.tv_nsec, &token); 3569 3570 btrfs_set_token_timespec_sec(leaf, btrfs_inode_ctime(item), 3571 inode->i_ctime.tv_sec, &token); 3572 btrfs_set_token_timespec_nsec(leaf, btrfs_inode_ctime(item), 3573 inode->i_ctime.tv_nsec, &token); 3574 3575 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode), 3576 &token); 3577 btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation, 3578 &token); 3579 btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token); 3580 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token); 3581 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token); 3582 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token); 3583 btrfs_set_token_inode_block_group(leaf, item, 0, &token); 3584 } 3585 3586 /* 3587 * copy everything in the in-memory inode into the btree. 3588 */ 3589 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans, 3590 struct btrfs_root *root, struct inode *inode) 3591 { 3592 struct btrfs_inode_item *inode_item; 3593 struct btrfs_path *path; 3594 struct extent_buffer *leaf; 3595 int ret; 3596 3597 path = btrfs_alloc_path(); 3598 if (!path) 3599 return -ENOMEM; 3600 3601 path->leave_spinning = 1; 3602 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location, 3603 1); 3604 if (ret) { 3605 if (ret > 0) 3606 ret = -ENOENT; 3607 goto failed; 3608 } 3609 3610 leaf = path->nodes[0]; 3611 inode_item = btrfs_item_ptr(leaf, path->slots[0], 3612 struct btrfs_inode_item); 3613 3614 fill_inode_item(trans, leaf, inode_item, inode); 3615 btrfs_mark_buffer_dirty(leaf); 3616 btrfs_set_inode_last_trans(trans, inode); 3617 ret = 0; 3618 failed: 3619 btrfs_free_path(path); 3620 return ret; 3621 } 3622 3623 /* 3624 * copy everything in the in-memory inode into the btree. 3625 */ 3626 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans, 3627 struct btrfs_root *root, struct inode *inode) 3628 { 3629 int ret; 3630 3631 /* 3632 * If the inode is a free space inode, we can deadlock during commit 3633 * if we put it into the delayed code. 3634 * 3635 * The data relocation inode should also be directly updated 3636 * without delay 3637 */ 3638 if (!btrfs_is_free_space_inode(inode) 3639 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) { 3640 btrfs_update_root_times(trans, root); 3641 3642 ret = btrfs_delayed_update_inode(trans, root, inode); 3643 if (!ret) 3644 btrfs_set_inode_last_trans(trans, inode); 3645 return ret; 3646 } 3647 3648 return btrfs_update_inode_item(trans, root, inode); 3649 } 3650 3651 noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans, 3652 struct btrfs_root *root, 3653 struct inode *inode) 3654 { 3655 int ret; 3656 3657 ret = btrfs_update_inode(trans, root, inode); 3658 if (ret == -ENOSPC) 3659 return btrfs_update_inode_item(trans, root, inode); 3660 return ret; 3661 } 3662 3663 /* 3664 * unlink helper that gets used here in inode.c and in the tree logging 3665 * recovery code. It remove a link in a directory with a given name, and 3666 * also drops the back refs in the inode to the directory 3667 */ 3668 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans, 3669 struct btrfs_root *root, 3670 struct inode *dir, struct inode *inode, 3671 const char *name, int name_len) 3672 { 3673 struct btrfs_path *path; 3674 int ret = 0; 3675 struct extent_buffer *leaf; 3676 struct btrfs_dir_item *di; 3677 struct btrfs_key key; 3678 u64 index; 3679 u64 ino = btrfs_ino(inode); 3680 u64 dir_ino = btrfs_ino(dir); 3681 3682 path = btrfs_alloc_path(); 3683 if (!path) { 3684 ret = -ENOMEM; 3685 goto out; 3686 } 3687 3688 path->leave_spinning = 1; 3689 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 3690 name, name_len, -1); 3691 if (IS_ERR(di)) { 3692 ret = PTR_ERR(di); 3693 goto err; 3694 } 3695 if (!di) { 3696 ret = -ENOENT; 3697 goto err; 3698 } 3699 leaf = path->nodes[0]; 3700 btrfs_dir_item_key_to_cpu(leaf, di, &key); 3701 ret = btrfs_delete_one_dir_name(trans, root, path, di); 3702 if (ret) 3703 goto err; 3704 btrfs_release_path(path); 3705 3706 /* 3707 * If we don't have dir index, we have to get it by looking up 3708 * the inode ref, since we get the inode ref, remove it directly, 3709 * it is unnecessary to do delayed deletion. 3710 * 3711 * But if we have dir index, needn't search inode ref to get it. 3712 * Since the inode ref is close to the inode item, it is better 3713 * that we delay to delete it, and just do this deletion when 3714 * we update the inode item. 3715 */ 3716 if (BTRFS_I(inode)->dir_index) { 3717 ret = btrfs_delayed_delete_inode_ref(inode); 3718 if (!ret) { 3719 index = BTRFS_I(inode)->dir_index; 3720 goto skip_backref; 3721 } 3722 } 3723 3724 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino, 3725 dir_ino, &index); 3726 if (ret) { 3727 btrfs_info(root->fs_info, 3728 "failed to delete reference to %.*s, inode %llu parent %llu", 3729 name_len, name, ino, dir_ino); 3730 btrfs_abort_transaction(trans, root, ret); 3731 goto err; 3732 } 3733 skip_backref: 3734 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index); 3735 if (ret) { 3736 btrfs_abort_transaction(trans, root, ret); 3737 goto err; 3738 } 3739 3740 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, 3741 inode, dir_ino); 3742 if (ret != 0 && ret != -ENOENT) { 3743 btrfs_abort_transaction(trans, root, ret); 3744 goto err; 3745 } 3746 3747 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, 3748 dir, index); 3749 if (ret == -ENOENT) 3750 ret = 0; 3751 else if (ret) 3752 btrfs_abort_transaction(trans, root, ret); 3753 err: 3754 btrfs_free_path(path); 3755 if (ret) 3756 goto out; 3757 3758 btrfs_i_size_write(dir, dir->i_size - name_len * 2); 3759 inode_inc_iversion(inode); 3760 inode_inc_iversion(dir); 3761 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME; 3762 ret = btrfs_update_inode(trans, root, dir); 3763 out: 3764 return ret; 3765 } 3766 3767 int btrfs_unlink_inode(struct btrfs_trans_handle *trans, 3768 struct btrfs_root *root, 3769 struct inode *dir, struct inode *inode, 3770 const char *name, int name_len) 3771 { 3772 int ret; 3773 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len); 3774 if (!ret) { 3775 drop_nlink(inode); 3776 ret = btrfs_update_inode(trans, root, inode); 3777 } 3778 return ret; 3779 } 3780 3781 /* 3782 * helper to start transaction for unlink and rmdir. 3783 * 3784 * unlink and rmdir are special in btrfs, they do not always free space, so 3785 * if we cannot make our reservations the normal way try and see if there is 3786 * plenty of slack room in the global reserve to migrate, otherwise we cannot 3787 * allow the unlink to occur. 3788 */ 3789 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir) 3790 { 3791 struct btrfs_trans_handle *trans; 3792 struct btrfs_root *root = BTRFS_I(dir)->root; 3793 int ret; 3794 3795 /* 3796 * 1 for the possible orphan item 3797 * 1 for the dir item 3798 * 1 for the dir index 3799 * 1 for the inode ref 3800 * 1 for the inode 3801 */ 3802 trans = btrfs_start_transaction(root, 5); 3803 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC) 3804 return trans; 3805 3806 if (PTR_ERR(trans) == -ENOSPC) { 3807 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 5); 3808 3809 trans = btrfs_start_transaction(root, 0); 3810 if (IS_ERR(trans)) 3811 return trans; 3812 ret = btrfs_cond_migrate_bytes(root->fs_info, 3813 &root->fs_info->trans_block_rsv, 3814 num_bytes, 5); 3815 if (ret) { 3816 btrfs_end_transaction(trans, root); 3817 return ERR_PTR(ret); 3818 } 3819 trans->block_rsv = &root->fs_info->trans_block_rsv; 3820 trans->bytes_reserved = num_bytes; 3821 } 3822 return trans; 3823 } 3824 3825 static int btrfs_unlink(struct inode *dir, struct dentry *dentry) 3826 { 3827 struct btrfs_root *root = BTRFS_I(dir)->root; 3828 struct btrfs_trans_handle *trans; 3829 struct inode *inode = dentry->d_inode; 3830 int ret; 3831 3832 trans = __unlink_start_trans(dir); 3833 if (IS_ERR(trans)) 3834 return PTR_ERR(trans); 3835 3836 btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0); 3837 3838 ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode, 3839 dentry->d_name.name, dentry->d_name.len); 3840 if (ret) 3841 goto out; 3842 3843 if (inode->i_nlink == 0) { 3844 ret = btrfs_orphan_add(trans, inode); 3845 if (ret) 3846 goto out; 3847 } 3848 3849 out: 3850 btrfs_end_transaction(trans, root); 3851 btrfs_btree_balance_dirty(root); 3852 return ret; 3853 } 3854 3855 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans, 3856 struct btrfs_root *root, 3857 struct inode *dir, u64 objectid, 3858 const char *name, int name_len) 3859 { 3860 struct btrfs_path *path; 3861 struct extent_buffer *leaf; 3862 struct btrfs_dir_item *di; 3863 struct btrfs_key key; 3864 u64 index; 3865 int ret; 3866 u64 dir_ino = btrfs_ino(dir); 3867 3868 path = btrfs_alloc_path(); 3869 if (!path) 3870 return -ENOMEM; 3871 3872 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 3873 name, name_len, -1); 3874 if (IS_ERR_OR_NULL(di)) { 3875 if (!di) 3876 ret = -ENOENT; 3877 else 3878 ret = PTR_ERR(di); 3879 goto out; 3880 } 3881 3882 leaf = path->nodes[0]; 3883 btrfs_dir_item_key_to_cpu(leaf, di, &key); 3884 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid); 3885 ret = btrfs_delete_one_dir_name(trans, root, path, di); 3886 if (ret) { 3887 btrfs_abort_transaction(trans, root, ret); 3888 goto out; 3889 } 3890 btrfs_release_path(path); 3891 3892 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root, 3893 objectid, root->root_key.objectid, 3894 dir_ino, &index, name, name_len); 3895 if (ret < 0) { 3896 if (ret != -ENOENT) { 3897 btrfs_abort_transaction(trans, root, ret); 3898 goto out; 3899 } 3900 di = btrfs_search_dir_index_item(root, path, dir_ino, 3901 name, name_len); 3902 if (IS_ERR_OR_NULL(di)) { 3903 if (!di) 3904 ret = -ENOENT; 3905 else 3906 ret = PTR_ERR(di); 3907 btrfs_abort_transaction(trans, root, ret); 3908 goto out; 3909 } 3910 3911 leaf = path->nodes[0]; 3912 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 3913 btrfs_release_path(path); 3914 index = key.offset; 3915 } 3916 btrfs_release_path(path); 3917 3918 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index); 3919 if (ret) { 3920 btrfs_abort_transaction(trans, root, ret); 3921 goto out; 3922 } 3923 3924 btrfs_i_size_write(dir, dir->i_size - name_len * 2); 3925 inode_inc_iversion(dir); 3926 dir->i_mtime = dir->i_ctime = CURRENT_TIME; 3927 ret = btrfs_update_inode_fallback(trans, root, dir); 3928 if (ret) 3929 btrfs_abort_transaction(trans, root, ret); 3930 out: 3931 btrfs_free_path(path); 3932 return ret; 3933 } 3934 3935 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry) 3936 { 3937 struct inode *inode = dentry->d_inode; 3938 int err = 0; 3939 struct btrfs_root *root = BTRFS_I(dir)->root; 3940 struct btrfs_trans_handle *trans; 3941 3942 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE) 3943 return -ENOTEMPTY; 3944 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) 3945 return -EPERM; 3946 3947 trans = __unlink_start_trans(dir); 3948 if (IS_ERR(trans)) 3949 return PTR_ERR(trans); 3950 3951 if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 3952 err = btrfs_unlink_subvol(trans, root, dir, 3953 BTRFS_I(inode)->location.objectid, 3954 dentry->d_name.name, 3955 dentry->d_name.len); 3956 goto out; 3957 } 3958 3959 err = btrfs_orphan_add(trans, inode); 3960 if (err) 3961 goto out; 3962 3963 /* now the directory is empty */ 3964 err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode, 3965 dentry->d_name.name, dentry->d_name.len); 3966 if (!err) 3967 btrfs_i_size_write(inode, 0); 3968 out: 3969 btrfs_end_transaction(trans, root); 3970 btrfs_btree_balance_dirty(root); 3971 3972 return err; 3973 } 3974 3975 /* 3976 * this can truncate away extent items, csum items and directory items. 3977 * It starts at a high offset and removes keys until it can't find 3978 * any higher than new_size 3979 * 3980 * csum items that cross the new i_size are truncated to the new size 3981 * as well. 3982 * 3983 * min_type is the minimum key type to truncate down to. If set to 0, this 3984 * will kill all the items on this inode, including the INODE_ITEM_KEY. 3985 */ 3986 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans, 3987 struct btrfs_root *root, 3988 struct inode *inode, 3989 u64 new_size, u32 min_type) 3990 { 3991 struct btrfs_path *path; 3992 struct extent_buffer *leaf; 3993 struct btrfs_file_extent_item *fi; 3994 struct btrfs_key key; 3995 struct btrfs_key found_key; 3996 u64 extent_start = 0; 3997 u64 extent_num_bytes = 0; 3998 u64 extent_offset = 0; 3999 u64 item_end = 0; 4000 u64 last_size = (u64)-1; 4001 u32 found_type = (u8)-1; 4002 int found_extent; 4003 int del_item; 4004 int pending_del_nr = 0; 4005 int pending_del_slot = 0; 4006 int extent_type = -1; 4007 int ret; 4008 int err = 0; 4009 u64 ino = btrfs_ino(inode); 4010 4011 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY); 4012 4013 path = btrfs_alloc_path(); 4014 if (!path) 4015 return -ENOMEM; 4016 path->reada = -1; 4017 4018 /* 4019 * We want to drop from the next block forward in case this new size is 4020 * not block aligned since we will be keeping the last block of the 4021 * extent just the way it is. 4022 */ 4023 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) || 4024 root == root->fs_info->tree_root) 4025 btrfs_drop_extent_cache(inode, ALIGN(new_size, 4026 root->sectorsize), (u64)-1, 0); 4027 4028 /* 4029 * This function is also used to drop the items in the log tree before 4030 * we relog the inode, so if root != BTRFS_I(inode)->root, it means 4031 * it is used to drop the loged items. So we shouldn't kill the delayed 4032 * items. 4033 */ 4034 if (min_type == 0 && root == BTRFS_I(inode)->root) 4035 btrfs_kill_delayed_inode_items(inode); 4036 4037 key.objectid = ino; 4038 key.offset = (u64)-1; 4039 key.type = (u8)-1; 4040 4041 search_again: 4042 path->leave_spinning = 1; 4043 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 4044 if (ret < 0) { 4045 err = ret; 4046 goto out; 4047 } 4048 4049 if (ret > 0) { 4050 /* there are no items in the tree for us to truncate, we're 4051 * done 4052 */ 4053 if (path->slots[0] == 0) 4054 goto out; 4055 path->slots[0]--; 4056 } 4057 4058 while (1) { 4059 fi = NULL; 4060 leaf = path->nodes[0]; 4061 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 4062 found_type = btrfs_key_type(&found_key); 4063 4064 if (found_key.objectid != ino) 4065 break; 4066 4067 if (found_type < min_type) 4068 break; 4069 4070 item_end = found_key.offset; 4071 if (found_type == BTRFS_EXTENT_DATA_KEY) { 4072 fi = btrfs_item_ptr(leaf, path->slots[0], 4073 struct btrfs_file_extent_item); 4074 extent_type = btrfs_file_extent_type(leaf, fi); 4075 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 4076 item_end += 4077 btrfs_file_extent_num_bytes(leaf, fi); 4078 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 4079 item_end += btrfs_file_extent_inline_len(leaf, 4080 path->slots[0], fi); 4081 } 4082 item_end--; 4083 } 4084 if (found_type > min_type) { 4085 del_item = 1; 4086 } else { 4087 if (item_end < new_size) 4088 break; 4089 if (found_key.offset >= new_size) 4090 del_item = 1; 4091 else 4092 del_item = 0; 4093 } 4094 found_extent = 0; 4095 /* FIXME, shrink the extent if the ref count is only 1 */ 4096 if (found_type != BTRFS_EXTENT_DATA_KEY) 4097 goto delete; 4098 4099 if (del_item) 4100 last_size = found_key.offset; 4101 else 4102 last_size = new_size; 4103 4104 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 4105 u64 num_dec; 4106 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi); 4107 if (!del_item) { 4108 u64 orig_num_bytes = 4109 btrfs_file_extent_num_bytes(leaf, fi); 4110 extent_num_bytes = ALIGN(new_size - 4111 found_key.offset, 4112 root->sectorsize); 4113 btrfs_set_file_extent_num_bytes(leaf, fi, 4114 extent_num_bytes); 4115 num_dec = (orig_num_bytes - 4116 extent_num_bytes); 4117 if (test_bit(BTRFS_ROOT_REF_COWS, 4118 &root->state) && 4119 extent_start != 0) 4120 inode_sub_bytes(inode, num_dec); 4121 btrfs_mark_buffer_dirty(leaf); 4122 } else { 4123 extent_num_bytes = 4124 btrfs_file_extent_disk_num_bytes(leaf, 4125 fi); 4126 extent_offset = found_key.offset - 4127 btrfs_file_extent_offset(leaf, fi); 4128 4129 /* FIXME blocksize != 4096 */ 4130 num_dec = btrfs_file_extent_num_bytes(leaf, fi); 4131 if (extent_start != 0) { 4132 found_extent = 1; 4133 if (test_bit(BTRFS_ROOT_REF_COWS, 4134 &root->state)) 4135 inode_sub_bytes(inode, num_dec); 4136 } 4137 } 4138 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 4139 /* 4140 * we can't truncate inline items that have had 4141 * special encodings 4142 */ 4143 if (!del_item && 4144 btrfs_file_extent_compression(leaf, fi) == 0 && 4145 btrfs_file_extent_encryption(leaf, fi) == 0 && 4146 btrfs_file_extent_other_encoding(leaf, fi) == 0) { 4147 u32 size = new_size - found_key.offset; 4148 4149 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 4150 inode_sub_bytes(inode, item_end + 1 - 4151 new_size); 4152 4153 /* 4154 * update the ram bytes to properly reflect 4155 * the new size of our item 4156 */ 4157 btrfs_set_file_extent_ram_bytes(leaf, fi, size); 4158 size = 4159 btrfs_file_extent_calc_inline_size(size); 4160 btrfs_truncate_item(root, path, size, 1); 4161 } else if (test_bit(BTRFS_ROOT_REF_COWS, 4162 &root->state)) { 4163 inode_sub_bytes(inode, item_end + 1 - 4164 found_key.offset); 4165 } 4166 } 4167 delete: 4168 if (del_item) { 4169 if (!pending_del_nr) { 4170 /* no pending yet, add ourselves */ 4171 pending_del_slot = path->slots[0]; 4172 pending_del_nr = 1; 4173 } else if (pending_del_nr && 4174 path->slots[0] + 1 == pending_del_slot) { 4175 /* hop on the pending chunk */ 4176 pending_del_nr++; 4177 pending_del_slot = path->slots[0]; 4178 } else { 4179 BUG(); 4180 } 4181 } else { 4182 break; 4183 } 4184 if (found_extent && 4185 (test_bit(BTRFS_ROOT_REF_COWS, &root->state) || 4186 root == root->fs_info->tree_root)) { 4187 btrfs_set_path_blocking(path); 4188 ret = btrfs_free_extent(trans, root, extent_start, 4189 extent_num_bytes, 0, 4190 btrfs_header_owner(leaf), 4191 ino, extent_offset, 0); 4192 BUG_ON(ret); 4193 } 4194 4195 if (found_type == BTRFS_INODE_ITEM_KEY) 4196 break; 4197 4198 if (path->slots[0] == 0 || 4199 path->slots[0] != pending_del_slot) { 4200 if (pending_del_nr) { 4201 ret = btrfs_del_items(trans, root, path, 4202 pending_del_slot, 4203 pending_del_nr); 4204 if (ret) { 4205 btrfs_abort_transaction(trans, 4206 root, ret); 4207 goto error; 4208 } 4209 pending_del_nr = 0; 4210 } 4211 btrfs_release_path(path); 4212 goto search_again; 4213 } else { 4214 path->slots[0]--; 4215 } 4216 } 4217 out: 4218 if (pending_del_nr) { 4219 ret = btrfs_del_items(trans, root, path, pending_del_slot, 4220 pending_del_nr); 4221 if (ret) 4222 btrfs_abort_transaction(trans, root, ret); 4223 } 4224 error: 4225 if (last_size != (u64)-1) 4226 btrfs_ordered_update_i_size(inode, last_size, NULL); 4227 btrfs_free_path(path); 4228 return err; 4229 } 4230 4231 /* 4232 * btrfs_truncate_page - read, zero a chunk and write a page 4233 * @inode - inode that we're zeroing 4234 * @from - the offset to start zeroing 4235 * @len - the length to zero, 0 to zero the entire range respective to the 4236 * offset 4237 * @front - zero up to the offset instead of from the offset on 4238 * 4239 * This will find the page for the "from" offset and cow the page and zero the 4240 * part we want to zero. This is used with truncate and hole punching. 4241 */ 4242 int btrfs_truncate_page(struct inode *inode, loff_t from, loff_t len, 4243 int front) 4244 { 4245 struct address_space *mapping = inode->i_mapping; 4246 struct btrfs_root *root = BTRFS_I(inode)->root; 4247 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 4248 struct btrfs_ordered_extent *ordered; 4249 struct extent_state *cached_state = NULL; 4250 char *kaddr; 4251 u32 blocksize = root->sectorsize; 4252 pgoff_t index = from >> PAGE_CACHE_SHIFT; 4253 unsigned offset = from & (PAGE_CACHE_SIZE-1); 4254 struct page *page; 4255 gfp_t mask = btrfs_alloc_write_mask(mapping); 4256 int ret = 0; 4257 u64 page_start; 4258 u64 page_end; 4259 4260 if ((offset & (blocksize - 1)) == 0 && 4261 (!len || ((len & (blocksize - 1)) == 0))) 4262 goto out; 4263 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE); 4264 if (ret) 4265 goto out; 4266 4267 again: 4268 page = find_or_create_page(mapping, index, mask); 4269 if (!page) { 4270 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE); 4271 ret = -ENOMEM; 4272 goto out; 4273 } 4274 4275 page_start = page_offset(page); 4276 page_end = page_start + PAGE_CACHE_SIZE - 1; 4277 4278 if (!PageUptodate(page)) { 4279 ret = btrfs_readpage(NULL, page); 4280 lock_page(page); 4281 if (page->mapping != mapping) { 4282 unlock_page(page); 4283 page_cache_release(page); 4284 goto again; 4285 } 4286 if (!PageUptodate(page)) { 4287 ret = -EIO; 4288 goto out_unlock; 4289 } 4290 } 4291 wait_on_page_writeback(page); 4292 4293 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state); 4294 set_page_extent_mapped(page); 4295 4296 ordered = btrfs_lookup_ordered_extent(inode, page_start); 4297 if (ordered) { 4298 unlock_extent_cached(io_tree, page_start, page_end, 4299 &cached_state, GFP_NOFS); 4300 unlock_page(page); 4301 page_cache_release(page); 4302 btrfs_start_ordered_extent(inode, ordered, 1); 4303 btrfs_put_ordered_extent(ordered); 4304 goto again; 4305 } 4306 4307 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end, 4308 EXTENT_DIRTY | EXTENT_DELALLOC | 4309 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 4310 0, 0, &cached_state, GFP_NOFS); 4311 4312 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 4313 &cached_state); 4314 if (ret) { 4315 unlock_extent_cached(io_tree, page_start, page_end, 4316 &cached_state, GFP_NOFS); 4317 goto out_unlock; 4318 } 4319 4320 if (offset != PAGE_CACHE_SIZE) { 4321 if (!len) 4322 len = PAGE_CACHE_SIZE - offset; 4323 kaddr = kmap(page); 4324 if (front) 4325 memset(kaddr, 0, offset); 4326 else 4327 memset(kaddr + offset, 0, len); 4328 flush_dcache_page(page); 4329 kunmap(page); 4330 } 4331 ClearPageChecked(page); 4332 set_page_dirty(page); 4333 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, 4334 GFP_NOFS); 4335 4336 out_unlock: 4337 if (ret) 4338 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE); 4339 unlock_page(page); 4340 page_cache_release(page); 4341 out: 4342 return ret; 4343 } 4344 4345 static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode, 4346 u64 offset, u64 len) 4347 { 4348 struct btrfs_trans_handle *trans; 4349 int ret; 4350 4351 /* 4352 * Still need to make sure the inode looks like it's been updated so 4353 * that any holes get logged if we fsync. 4354 */ 4355 if (btrfs_fs_incompat(root->fs_info, NO_HOLES)) { 4356 BTRFS_I(inode)->last_trans = root->fs_info->generation; 4357 BTRFS_I(inode)->last_sub_trans = root->log_transid; 4358 BTRFS_I(inode)->last_log_commit = root->last_log_commit; 4359 return 0; 4360 } 4361 4362 /* 4363 * 1 - for the one we're dropping 4364 * 1 - for the one we're adding 4365 * 1 - for updating the inode. 4366 */ 4367 trans = btrfs_start_transaction(root, 3); 4368 if (IS_ERR(trans)) 4369 return PTR_ERR(trans); 4370 4371 ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1); 4372 if (ret) { 4373 btrfs_abort_transaction(trans, root, ret); 4374 btrfs_end_transaction(trans, root); 4375 return ret; 4376 } 4377 4378 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset, 4379 0, 0, len, 0, len, 0, 0, 0); 4380 if (ret) 4381 btrfs_abort_transaction(trans, root, ret); 4382 else 4383 btrfs_update_inode(trans, root, inode); 4384 btrfs_end_transaction(trans, root); 4385 return ret; 4386 } 4387 4388 /* 4389 * This function puts in dummy file extents for the area we're creating a hole 4390 * for. So if we are truncating this file to a larger size we need to insert 4391 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for 4392 * the range between oldsize and size 4393 */ 4394 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size) 4395 { 4396 struct btrfs_root *root = BTRFS_I(inode)->root; 4397 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 4398 struct extent_map *em = NULL; 4399 struct extent_state *cached_state = NULL; 4400 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 4401 u64 hole_start = ALIGN(oldsize, root->sectorsize); 4402 u64 block_end = ALIGN(size, root->sectorsize); 4403 u64 last_byte; 4404 u64 cur_offset; 4405 u64 hole_size; 4406 int err = 0; 4407 4408 /* 4409 * If our size started in the middle of a page we need to zero out the 4410 * rest of the page before we expand the i_size, otherwise we could 4411 * expose stale data. 4412 */ 4413 err = btrfs_truncate_page(inode, oldsize, 0, 0); 4414 if (err) 4415 return err; 4416 4417 if (size <= hole_start) 4418 return 0; 4419 4420 while (1) { 4421 struct btrfs_ordered_extent *ordered; 4422 4423 lock_extent_bits(io_tree, hole_start, block_end - 1, 0, 4424 &cached_state); 4425 ordered = btrfs_lookup_ordered_range(inode, hole_start, 4426 block_end - hole_start); 4427 if (!ordered) 4428 break; 4429 unlock_extent_cached(io_tree, hole_start, block_end - 1, 4430 &cached_state, GFP_NOFS); 4431 btrfs_start_ordered_extent(inode, ordered, 1); 4432 btrfs_put_ordered_extent(ordered); 4433 } 4434 4435 cur_offset = hole_start; 4436 while (1) { 4437 em = btrfs_get_extent(inode, NULL, 0, cur_offset, 4438 block_end - cur_offset, 0); 4439 if (IS_ERR(em)) { 4440 err = PTR_ERR(em); 4441 em = NULL; 4442 break; 4443 } 4444 last_byte = min(extent_map_end(em), block_end); 4445 last_byte = ALIGN(last_byte , root->sectorsize); 4446 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) { 4447 struct extent_map *hole_em; 4448 hole_size = last_byte - cur_offset; 4449 4450 err = maybe_insert_hole(root, inode, cur_offset, 4451 hole_size); 4452 if (err) 4453 break; 4454 btrfs_drop_extent_cache(inode, cur_offset, 4455 cur_offset + hole_size - 1, 0); 4456 hole_em = alloc_extent_map(); 4457 if (!hole_em) { 4458 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 4459 &BTRFS_I(inode)->runtime_flags); 4460 goto next; 4461 } 4462 hole_em->start = cur_offset; 4463 hole_em->len = hole_size; 4464 hole_em->orig_start = cur_offset; 4465 4466 hole_em->block_start = EXTENT_MAP_HOLE; 4467 hole_em->block_len = 0; 4468 hole_em->orig_block_len = 0; 4469 hole_em->ram_bytes = hole_size; 4470 hole_em->bdev = root->fs_info->fs_devices->latest_bdev; 4471 hole_em->compress_type = BTRFS_COMPRESS_NONE; 4472 hole_em->generation = root->fs_info->generation; 4473 4474 while (1) { 4475 write_lock(&em_tree->lock); 4476 err = add_extent_mapping(em_tree, hole_em, 1); 4477 write_unlock(&em_tree->lock); 4478 if (err != -EEXIST) 4479 break; 4480 btrfs_drop_extent_cache(inode, cur_offset, 4481 cur_offset + 4482 hole_size - 1, 0); 4483 } 4484 free_extent_map(hole_em); 4485 } 4486 next: 4487 free_extent_map(em); 4488 em = NULL; 4489 cur_offset = last_byte; 4490 if (cur_offset >= block_end) 4491 break; 4492 } 4493 free_extent_map(em); 4494 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state, 4495 GFP_NOFS); 4496 return err; 4497 } 4498 4499 static int btrfs_setsize(struct inode *inode, struct iattr *attr) 4500 { 4501 struct btrfs_root *root = BTRFS_I(inode)->root; 4502 struct btrfs_trans_handle *trans; 4503 loff_t oldsize = i_size_read(inode); 4504 loff_t newsize = attr->ia_size; 4505 int mask = attr->ia_valid; 4506 int ret; 4507 4508 /* 4509 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a 4510 * special case where we need to update the times despite not having 4511 * these flags set. For all other operations the VFS set these flags 4512 * explicitly if it wants a timestamp update. 4513 */ 4514 if (newsize != oldsize) { 4515 inode_inc_iversion(inode); 4516 if (!(mask & (ATTR_CTIME | ATTR_MTIME))) 4517 inode->i_ctime = inode->i_mtime = 4518 current_fs_time(inode->i_sb); 4519 } 4520 4521 if (newsize > oldsize) { 4522 truncate_pagecache(inode, newsize); 4523 ret = btrfs_cont_expand(inode, oldsize, newsize); 4524 if (ret) 4525 return ret; 4526 4527 trans = btrfs_start_transaction(root, 1); 4528 if (IS_ERR(trans)) 4529 return PTR_ERR(trans); 4530 4531 i_size_write(inode, newsize); 4532 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL); 4533 ret = btrfs_update_inode(trans, root, inode); 4534 btrfs_end_transaction(trans, root); 4535 } else { 4536 4537 /* 4538 * We're truncating a file that used to have good data down to 4539 * zero. Make sure it gets into the ordered flush list so that 4540 * any new writes get down to disk quickly. 4541 */ 4542 if (newsize == 0) 4543 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE, 4544 &BTRFS_I(inode)->runtime_flags); 4545 4546 /* 4547 * 1 for the orphan item we're going to add 4548 * 1 for the orphan item deletion. 4549 */ 4550 trans = btrfs_start_transaction(root, 2); 4551 if (IS_ERR(trans)) 4552 return PTR_ERR(trans); 4553 4554 /* 4555 * We need to do this in case we fail at _any_ point during the 4556 * actual truncate. Once we do the truncate_setsize we could 4557 * invalidate pages which forces any outstanding ordered io to 4558 * be instantly completed which will give us extents that need 4559 * to be truncated. If we fail to get an orphan inode down we 4560 * could have left over extents that were never meant to live, 4561 * so we need to garuntee from this point on that everything 4562 * will be consistent. 4563 */ 4564 ret = btrfs_orphan_add(trans, inode); 4565 btrfs_end_transaction(trans, root); 4566 if (ret) 4567 return ret; 4568 4569 /* we don't support swapfiles, so vmtruncate shouldn't fail */ 4570 truncate_setsize(inode, newsize); 4571 4572 /* Disable nonlocked read DIO to avoid the end less truncate */ 4573 btrfs_inode_block_unlocked_dio(inode); 4574 inode_dio_wait(inode); 4575 btrfs_inode_resume_unlocked_dio(inode); 4576 4577 ret = btrfs_truncate(inode); 4578 if (ret && inode->i_nlink) { 4579 int err; 4580 4581 /* 4582 * failed to truncate, disk_i_size is only adjusted down 4583 * as we remove extents, so it should represent the true 4584 * size of the inode, so reset the in memory size and 4585 * delete our orphan entry. 4586 */ 4587 trans = btrfs_join_transaction(root); 4588 if (IS_ERR(trans)) { 4589 btrfs_orphan_del(NULL, inode); 4590 return ret; 4591 } 4592 i_size_write(inode, BTRFS_I(inode)->disk_i_size); 4593 err = btrfs_orphan_del(trans, inode); 4594 if (err) 4595 btrfs_abort_transaction(trans, root, err); 4596 btrfs_end_transaction(trans, root); 4597 } 4598 } 4599 4600 return ret; 4601 } 4602 4603 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr) 4604 { 4605 struct inode *inode = dentry->d_inode; 4606 struct btrfs_root *root = BTRFS_I(inode)->root; 4607 int err; 4608 4609 if (btrfs_root_readonly(root)) 4610 return -EROFS; 4611 4612 err = inode_change_ok(inode, attr); 4613 if (err) 4614 return err; 4615 4616 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 4617 err = btrfs_setsize(inode, attr); 4618 if (err) 4619 return err; 4620 } 4621 4622 if (attr->ia_valid) { 4623 setattr_copy(inode, attr); 4624 inode_inc_iversion(inode); 4625 err = btrfs_dirty_inode(inode); 4626 4627 if (!err && attr->ia_valid & ATTR_MODE) 4628 err = posix_acl_chmod(inode, inode->i_mode); 4629 } 4630 4631 return err; 4632 } 4633 4634 /* 4635 * While truncating the inode pages during eviction, we get the VFS calling 4636 * btrfs_invalidatepage() against each page of the inode. This is slow because 4637 * the calls to btrfs_invalidatepage() result in a huge amount of calls to 4638 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting 4639 * extent_state structures over and over, wasting lots of time. 4640 * 4641 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all 4642 * those expensive operations on a per page basis and do only the ordered io 4643 * finishing, while we release here the extent_map and extent_state structures, 4644 * without the excessive merging and splitting. 4645 */ 4646 static void evict_inode_truncate_pages(struct inode *inode) 4647 { 4648 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 4649 struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree; 4650 struct rb_node *node; 4651 4652 ASSERT(inode->i_state & I_FREEING); 4653 truncate_inode_pages_final(&inode->i_data); 4654 4655 write_lock(&map_tree->lock); 4656 while (!RB_EMPTY_ROOT(&map_tree->map)) { 4657 struct extent_map *em; 4658 4659 node = rb_first(&map_tree->map); 4660 em = rb_entry(node, struct extent_map, rb_node); 4661 clear_bit(EXTENT_FLAG_PINNED, &em->flags); 4662 clear_bit(EXTENT_FLAG_LOGGING, &em->flags); 4663 remove_extent_mapping(map_tree, em); 4664 free_extent_map(em); 4665 } 4666 write_unlock(&map_tree->lock); 4667 4668 spin_lock(&io_tree->lock); 4669 while (!RB_EMPTY_ROOT(&io_tree->state)) { 4670 struct extent_state *state; 4671 struct extent_state *cached_state = NULL; 4672 4673 node = rb_first(&io_tree->state); 4674 state = rb_entry(node, struct extent_state, rb_node); 4675 atomic_inc(&state->refs); 4676 spin_unlock(&io_tree->lock); 4677 4678 lock_extent_bits(io_tree, state->start, state->end, 4679 0, &cached_state); 4680 clear_extent_bit(io_tree, state->start, state->end, 4681 EXTENT_LOCKED | EXTENT_DIRTY | 4682 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | 4683 EXTENT_DEFRAG, 1, 1, 4684 &cached_state, GFP_NOFS); 4685 free_extent_state(state); 4686 4687 spin_lock(&io_tree->lock); 4688 } 4689 spin_unlock(&io_tree->lock); 4690 } 4691 4692 void btrfs_evict_inode(struct inode *inode) 4693 { 4694 struct btrfs_trans_handle *trans; 4695 struct btrfs_root *root = BTRFS_I(inode)->root; 4696 struct btrfs_block_rsv *rsv, *global_rsv; 4697 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1); 4698 int ret; 4699 4700 trace_btrfs_inode_evict(inode); 4701 4702 evict_inode_truncate_pages(inode); 4703 4704 if (inode->i_nlink && 4705 ((btrfs_root_refs(&root->root_item) != 0 && 4706 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) || 4707 btrfs_is_free_space_inode(inode))) 4708 goto no_delete; 4709 4710 if (is_bad_inode(inode)) { 4711 btrfs_orphan_del(NULL, inode); 4712 goto no_delete; 4713 } 4714 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */ 4715 btrfs_wait_ordered_range(inode, 0, (u64)-1); 4716 4717 if (root->fs_info->log_root_recovering) { 4718 BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 4719 &BTRFS_I(inode)->runtime_flags)); 4720 goto no_delete; 4721 } 4722 4723 if (inode->i_nlink > 0) { 4724 BUG_ON(btrfs_root_refs(&root->root_item) != 0 && 4725 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID); 4726 goto no_delete; 4727 } 4728 4729 ret = btrfs_commit_inode_delayed_inode(inode); 4730 if (ret) { 4731 btrfs_orphan_del(NULL, inode); 4732 goto no_delete; 4733 } 4734 4735 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP); 4736 if (!rsv) { 4737 btrfs_orphan_del(NULL, inode); 4738 goto no_delete; 4739 } 4740 rsv->size = min_size; 4741 rsv->failfast = 1; 4742 global_rsv = &root->fs_info->global_block_rsv; 4743 4744 btrfs_i_size_write(inode, 0); 4745 4746 /* 4747 * This is a bit simpler than btrfs_truncate since we've already 4748 * reserved our space for our orphan item in the unlink, so we just 4749 * need to reserve some slack space in case we add bytes and update 4750 * inode item when doing the truncate. 4751 */ 4752 while (1) { 4753 ret = btrfs_block_rsv_refill(root, rsv, min_size, 4754 BTRFS_RESERVE_FLUSH_LIMIT); 4755 4756 /* 4757 * Try and steal from the global reserve since we will 4758 * likely not use this space anyway, we want to try as 4759 * hard as possible to get this to work. 4760 */ 4761 if (ret) 4762 ret = btrfs_block_rsv_migrate(global_rsv, rsv, min_size); 4763 4764 if (ret) { 4765 btrfs_warn(root->fs_info, 4766 "Could not get space for a delete, will truncate on mount %d", 4767 ret); 4768 btrfs_orphan_del(NULL, inode); 4769 btrfs_free_block_rsv(root, rsv); 4770 goto no_delete; 4771 } 4772 4773 trans = btrfs_join_transaction(root); 4774 if (IS_ERR(trans)) { 4775 btrfs_orphan_del(NULL, inode); 4776 btrfs_free_block_rsv(root, rsv); 4777 goto no_delete; 4778 } 4779 4780 trans->block_rsv = rsv; 4781 4782 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0); 4783 if (ret != -ENOSPC) 4784 break; 4785 4786 trans->block_rsv = &root->fs_info->trans_block_rsv; 4787 btrfs_end_transaction(trans, root); 4788 trans = NULL; 4789 btrfs_btree_balance_dirty(root); 4790 } 4791 4792 btrfs_free_block_rsv(root, rsv); 4793 4794 /* 4795 * Errors here aren't a big deal, it just means we leave orphan items 4796 * in the tree. They will be cleaned up on the next mount. 4797 */ 4798 if (ret == 0) { 4799 trans->block_rsv = root->orphan_block_rsv; 4800 btrfs_orphan_del(trans, inode); 4801 } else { 4802 btrfs_orphan_del(NULL, inode); 4803 } 4804 4805 trans->block_rsv = &root->fs_info->trans_block_rsv; 4806 if (!(root == root->fs_info->tree_root || 4807 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)) 4808 btrfs_return_ino(root, btrfs_ino(inode)); 4809 4810 btrfs_end_transaction(trans, root); 4811 btrfs_btree_balance_dirty(root); 4812 no_delete: 4813 btrfs_remove_delayed_node(inode); 4814 clear_inode(inode); 4815 return; 4816 } 4817 4818 /* 4819 * this returns the key found in the dir entry in the location pointer. 4820 * If no dir entries were found, location->objectid is 0. 4821 */ 4822 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry, 4823 struct btrfs_key *location) 4824 { 4825 const char *name = dentry->d_name.name; 4826 int namelen = dentry->d_name.len; 4827 struct btrfs_dir_item *di; 4828 struct btrfs_path *path; 4829 struct btrfs_root *root = BTRFS_I(dir)->root; 4830 int ret = 0; 4831 4832 path = btrfs_alloc_path(); 4833 if (!path) 4834 return -ENOMEM; 4835 4836 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name, 4837 namelen, 0); 4838 if (IS_ERR(di)) 4839 ret = PTR_ERR(di); 4840 4841 if (IS_ERR_OR_NULL(di)) 4842 goto out_err; 4843 4844 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location); 4845 out: 4846 btrfs_free_path(path); 4847 return ret; 4848 out_err: 4849 location->objectid = 0; 4850 goto out; 4851 } 4852 4853 /* 4854 * when we hit a tree root in a directory, the btrfs part of the inode 4855 * needs to be changed to reflect the root directory of the tree root. This 4856 * is kind of like crossing a mount point. 4857 */ 4858 static int fixup_tree_root_location(struct btrfs_root *root, 4859 struct inode *dir, 4860 struct dentry *dentry, 4861 struct btrfs_key *location, 4862 struct btrfs_root **sub_root) 4863 { 4864 struct btrfs_path *path; 4865 struct btrfs_root *new_root; 4866 struct btrfs_root_ref *ref; 4867 struct extent_buffer *leaf; 4868 int ret; 4869 int err = 0; 4870 4871 path = btrfs_alloc_path(); 4872 if (!path) { 4873 err = -ENOMEM; 4874 goto out; 4875 } 4876 4877 err = -ENOENT; 4878 ret = btrfs_find_item(root->fs_info->tree_root, path, 4879 BTRFS_I(dir)->root->root_key.objectid, 4880 location->objectid, BTRFS_ROOT_REF_KEY, NULL); 4881 if (ret) { 4882 if (ret < 0) 4883 err = ret; 4884 goto out; 4885 } 4886 4887 leaf = path->nodes[0]; 4888 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); 4889 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) || 4890 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len) 4891 goto out; 4892 4893 ret = memcmp_extent_buffer(leaf, dentry->d_name.name, 4894 (unsigned long)(ref + 1), 4895 dentry->d_name.len); 4896 if (ret) 4897 goto out; 4898 4899 btrfs_release_path(path); 4900 4901 new_root = btrfs_read_fs_root_no_name(root->fs_info, location); 4902 if (IS_ERR(new_root)) { 4903 err = PTR_ERR(new_root); 4904 goto out; 4905 } 4906 4907 *sub_root = new_root; 4908 location->objectid = btrfs_root_dirid(&new_root->root_item); 4909 location->type = BTRFS_INODE_ITEM_KEY; 4910 location->offset = 0; 4911 err = 0; 4912 out: 4913 btrfs_free_path(path); 4914 return err; 4915 } 4916 4917 static void inode_tree_add(struct inode *inode) 4918 { 4919 struct btrfs_root *root = BTRFS_I(inode)->root; 4920 struct btrfs_inode *entry; 4921 struct rb_node **p; 4922 struct rb_node *parent; 4923 struct rb_node *new = &BTRFS_I(inode)->rb_node; 4924 u64 ino = btrfs_ino(inode); 4925 4926 if (inode_unhashed(inode)) 4927 return; 4928 parent = NULL; 4929 spin_lock(&root->inode_lock); 4930 p = &root->inode_tree.rb_node; 4931 while (*p) { 4932 parent = *p; 4933 entry = rb_entry(parent, struct btrfs_inode, rb_node); 4934 4935 if (ino < btrfs_ino(&entry->vfs_inode)) 4936 p = &parent->rb_left; 4937 else if (ino > btrfs_ino(&entry->vfs_inode)) 4938 p = &parent->rb_right; 4939 else { 4940 WARN_ON(!(entry->vfs_inode.i_state & 4941 (I_WILL_FREE | I_FREEING))); 4942 rb_replace_node(parent, new, &root->inode_tree); 4943 RB_CLEAR_NODE(parent); 4944 spin_unlock(&root->inode_lock); 4945 return; 4946 } 4947 } 4948 rb_link_node(new, parent, p); 4949 rb_insert_color(new, &root->inode_tree); 4950 spin_unlock(&root->inode_lock); 4951 } 4952 4953 static void inode_tree_del(struct inode *inode) 4954 { 4955 struct btrfs_root *root = BTRFS_I(inode)->root; 4956 int empty = 0; 4957 4958 spin_lock(&root->inode_lock); 4959 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) { 4960 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree); 4961 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node); 4962 empty = RB_EMPTY_ROOT(&root->inode_tree); 4963 } 4964 spin_unlock(&root->inode_lock); 4965 4966 if (empty && btrfs_root_refs(&root->root_item) == 0) { 4967 synchronize_srcu(&root->fs_info->subvol_srcu); 4968 spin_lock(&root->inode_lock); 4969 empty = RB_EMPTY_ROOT(&root->inode_tree); 4970 spin_unlock(&root->inode_lock); 4971 if (empty) 4972 btrfs_add_dead_root(root); 4973 } 4974 } 4975 4976 void btrfs_invalidate_inodes(struct btrfs_root *root) 4977 { 4978 struct rb_node *node; 4979 struct rb_node *prev; 4980 struct btrfs_inode *entry; 4981 struct inode *inode; 4982 u64 objectid = 0; 4983 4984 if (!test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) 4985 WARN_ON(btrfs_root_refs(&root->root_item) != 0); 4986 4987 spin_lock(&root->inode_lock); 4988 again: 4989 node = root->inode_tree.rb_node; 4990 prev = NULL; 4991 while (node) { 4992 prev = node; 4993 entry = rb_entry(node, struct btrfs_inode, rb_node); 4994 4995 if (objectid < btrfs_ino(&entry->vfs_inode)) 4996 node = node->rb_left; 4997 else if (objectid > btrfs_ino(&entry->vfs_inode)) 4998 node = node->rb_right; 4999 else 5000 break; 5001 } 5002 if (!node) { 5003 while (prev) { 5004 entry = rb_entry(prev, struct btrfs_inode, rb_node); 5005 if (objectid <= btrfs_ino(&entry->vfs_inode)) { 5006 node = prev; 5007 break; 5008 } 5009 prev = rb_next(prev); 5010 } 5011 } 5012 while (node) { 5013 entry = rb_entry(node, struct btrfs_inode, rb_node); 5014 objectid = btrfs_ino(&entry->vfs_inode) + 1; 5015 inode = igrab(&entry->vfs_inode); 5016 if (inode) { 5017 spin_unlock(&root->inode_lock); 5018 if (atomic_read(&inode->i_count) > 1) 5019 d_prune_aliases(inode); 5020 /* 5021 * btrfs_drop_inode will have it removed from 5022 * the inode cache when its usage count 5023 * hits zero. 5024 */ 5025 iput(inode); 5026 cond_resched(); 5027 spin_lock(&root->inode_lock); 5028 goto again; 5029 } 5030 5031 if (cond_resched_lock(&root->inode_lock)) 5032 goto again; 5033 5034 node = rb_next(node); 5035 } 5036 spin_unlock(&root->inode_lock); 5037 } 5038 5039 static int btrfs_init_locked_inode(struct inode *inode, void *p) 5040 { 5041 struct btrfs_iget_args *args = p; 5042 inode->i_ino = args->location->objectid; 5043 memcpy(&BTRFS_I(inode)->location, args->location, 5044 sizeof(*args->location)); 5045 BTRFS_I(inode)->root = args->root; 5046 return 0; 5047 } 5048 5049 static int btrfs_find_actor(struct inode *inode, void *opaque) 5050 { 5051 struct btrfs_iget_args *args = opaque; 5052 return args->location->objectid == BTRFS_I(inode)->location.objectid && 5053 args->root == BTRFS_I(inode)->root; 5054 } 5055 5056 static struct inode *btrfs_iget_locked(struct super_block *s, 5057 struct btrfs_key *location, 5058 struct btrfs_root *root) 5059 { 5060 struct inode *inode; 5061 struct btrfs_iget_args args; 5062 unsigned long hashval = btrfs_inode_hash(location->objectid, root); 5063 5064 args.location = location; 5065 args.root = root; 5066 5067 inode = iget5_locked(s, hashval, btrfs_find_actor, 5068 btrfs_init_locked_inode, 5069 (void *)&args); 5070 return inode; 5071 } 5072 5073 /* Get an inode object given its location and corresponding root. 5074 * Returns in *is_new if the inode was read from disk 5075 */ 5076 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location, 5077 struct btrfs_root *root, int *new) 5078 { 5079 struct inode *inode; 5080 5081 inode = btrfs_iget_locked(s, location, root); 5082 if (!inode) 5083 return ERR_PTR(-ENOMEM); 5084 5085 if (inode->i_state & I_NEW) { 5086 btrfs_read_locked_inode(inode); 5087 if (!is_bad_inode(inode)) { 5088 inode_tree_add(inode); 5089 unlock_new_inode(inode); 5090 if (new) 5091 *new = 1; 5092 } else { 5093 unlock_new_inode(inode); 5094 iput(inode); 5095 inode = ERR_PTR(-ESTALE); 5096 } 5097 } 5098 5099 return inode; 5100 } 5101 5102 static struct inode *new_simple_dir(struct super_block *s, 5103 struct btrfs_key *key, 5104 struct btrfs_root *root) 5105 { 5106 struct inode *inode = new_inode(s); 5107 5108 if (!inode) 5109 return ERR_PTR(-ENOMEM); 5110 5111 BTRFS_I(inode)->root = root; 5112 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key)); 5113 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags); 5114 5115 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID; 5116 inode->i_op = &btrfs_dir_ro_inode_operations; 5117 inode->i_fop = &simple_dir_operations; 5118 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO; 5119 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME; 5120 5121 return inode; 5122 } 5123 5124 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry) 5125 { 5126 struct inode *inode; 5127 struct btrfs_root *root = BTRFS_I(dir)->root; 5128 struct btrfs_root *sub_root = root; 5129 struct btrfs_key location; 5130 int index; 5131 int ret = 0; 5132 5133 if (dentry->d_name.len > BTRFS_NAME_LEN) 5134 return ERR_PTR(-ENAMETOOLONG); 5135 5136 ret = btrfs_inode_by_name(dir, dentry, &location); 5137 if (ret < 0) 5138 return ERR_PTR(ret); 5139 5140 if (location.objectid == 0) 5141 return ERR_PTR(-ENOENT); 5142 5143 if (location.type == BTRFS_INODE_ITEM_KEY) { 5144 inode = btrfs_iget(dir->i_sb, &location, root, NULL); 5145 return inode; 5146 } 5147 5148 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY); 5149 5150 index = srcu_read_lock(&root->fs_info->subvol_srcu); 5151 ret = fixup_tree_root_location(root, dir, dentry, 5152 &location, &sub_root); 5153 if (ret < 0) { 5154 if (ret != -ENOENT) 5155 inode = ERR_PTR(ret); 5156 else 5157 inode = new_simple_dir(dir->i_sb, &location, sub_root); 5158 } else { 5159 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL); 5160 } 5161 srcu_read_unlock(&root->fs_info->subvol_srcu, index); 5162 5163 if (!IS_ERR(inode) && root != sub_root) { 5164 down_read(&root->fs_info->cleanup_work_sem); 5165 if (!(inode->i_sb->s_flags & MS_RDONLY)) 5166 ret = btrfs_orphan_cleanup(sub_root); 5167 up_read(&root->fs_info->cleanup_work_sem); 5168 if (ret) { 5169 iput(inode); 5170 inode = ERR_PTR(ret); 5171 } 5172 } 5173 5174 return inode; 5175 } 5176 5177 static int btrfs_dentry_delete(const struct dentry *dentry) 5178 { 5179 struct btrfs_root *root; 5180 struct inode *inode = dentry->d_inode; 5181 5182 if (!inode && !IS_ROOT(dentry)) 5183 inode = dentry->d_parent->d_inode; 5184 5185 if (inode) { 5186 root = BTRFS_I(inode)->root; 5187 if (btrfs_root_refs(&root->root_item) == 0) 5188 return 1; 5189 5190 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 5191 return 1; 5192 } 5193 return 0; 5194 } 5195 5196 static void btrfs_dentry_release(struct dentry *dentry) 5197 { 5198 kfree(dentry->d_fsdata); 5199 } 5200 5201 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry, 5202 unsigned int flags) 5203 { 5204 struct inode *inode; 5205 5206 inode = btrfs_lookup_dentry(dir, dentry); 5207 if (IS_ERR(inode)) { 5208 if (PTR_ERR(inode) == -ENOENT) 5209 inode = NULL; 5210 else 5211 return ERR_CAST(inode); 5212 } 5213 5214 return d_materialise_unique(dentry, inode); 5215 } 5216 5217 unsigned char btrfs_filetype_table[] = { 5218 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK 5219 }; 5220 5221 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx) 5222 { 5223 struct inode *inode = file_inode(file); 5224 struct btrfs_root *root = BTRFS_I(inode)->root; 5225 struct btrfs_item *item; 5226 struct btrfs_dir_item *di; 5227 struct btrfs_key key; 5228 struct btrfs_key found_key; 5229 struct btrfs_path *path; 5230 struct list_head ins_list; 5231 struct list_head del_list; 5232 int ret; 5233 struct extent_buffer *leaf; 5234 int slot; 5235 unsigned char d_type; 5236 int over = 0; 5237 u32 di_cur; 5238 u32 di_total; 5239 u32 di_len; 5240 int key_type = BTRFS_DIR_INDEX_KEY; 5241 char tmp_name[32]; 5242 char *name_ptr; 5243 int name_len; 5244 int is_curr = 0; /* ctx->pos points to the current index? */ 5245 5246 /* FIXME, use a real flag for deciding about the key type */ 5247 if (root->fs_info->tree_root == root) 5248 key_type = BTRFS_DIR_ITEM_KEY; 5249 5250 if (!dir_emit_dots(file, ctx)) 5251 return 0; 5252 5253 path = btrfs_alloc_path(); 5254 if (!path) 5255 return -ENOMEM; 5256 5257 path->reada = 1; 5258 5259 if (key_type == BTRFS_DIR_INDEX_KEY) { 5260 INIT_LIST_HEAD(&ins_list); 5261 INIT_LIST_HEAD(&del_list); 5262 btrfs_get_delayed_items(inode, &ins_list, &del_list); 5263 } 5264 5265 btrfs_set_key_type(&key, key_type); 5266 key.offset = ctx->pos; 5267 key.objectid = btrfs_ino(inode); 5268 5269 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5270 if (ret < 0) 5271 goto err; 5272 5273 while (1) { 5274 leaf = path->nodes[0]; 5275 slot = path->slots[0]; 5276 if (slot >= btrfs_header_nritems(leaf)) { 5277 ret = btrfs_next_leaf(root, path); 5278 if (ret < 0) 5279 goto err; 5280 else if (ret > 0) 5281 break; 5282 continue; 5283 } 5284 5285 item = btrfs_item_nr(slot); 5286 btrfs_item_key_to_cpu(leaf, &found_key, slot); 5287 5288 if (found_key.objectid != key.objectid) 5289 break; 5290 if (btrfs_key_type(&found_key) != key_type) 5291 break; 5292 if (found_key.offset < ctx->pos) 5293 goto next; 5294 if (key_type == BTRFS_DIR_INDEX_KEY && 5295 btrfs_should_delete_dir_index(&del_list, 5296 found_key.offset)) 5297 goto next; 5298 5299 ctx->pos = found_key.offset; 5300 is_curr = 1; 5301 5302 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item); 5303 di_cur = 0; 5304 di_total = btrfs_item_size(leaf, item); 5305 5306 while (di_cur < di_total) { 5307 struct btrfs_key location; 5308 5309 if (verify_dir_item(root, leaf, di)) 5310 break; 5311 5312 name_len = btrfs_dir_name_len(leaf, di); 5313 if (name_len <= sizeof(tmp_name)) { 5314 name_ptr = tmp_name; 5315 } else { 5316 name_ptr = kmalloc(name_len, GFP_NOFS); 5317 if (!name_ptr) { 5318 ret = -ENOMEM; 5319 goto err; 5320 } 5321 } 5322 read_extent_buffer(leaf, name_ptr, 5323 (unsigned long)(di + 1), name_len); 5324 5325 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)]; 5326 btrfs_dir_item_key_to_cpu(leaf, di, &location); 5327 5328 5329 /* is this a reference to our own snapshot? If so 5330 * skip it. 5331 * 5332 * In contrast to old kernels, we insert the snapshot's 5333 * dir item and dir index after it has been created, so 5334 * we won't find a reference to our own snapshot. We 5335 * still keep the following code for backward 5336 * compatibility. 5337 */ 5338 if (location.type == BTRFS_ROOT_ITEM_KEY && 5339 location.objectid == root->root_key.objectid) { 5340 over = 0; 5341 goto skip; 5342 } 5343 over = !dir_emit(ctx, name_ptr, name_len, 5344 location.objectid, d_type); 5345 5346 skip: 5347 if (name_ptr != tmp_name) 5348 kfree(name_ptr); 5349 5350 if (over) 5351 goto nopos; 5352 di_len = btrfs_dir_name_len(leaf, di) + 5353 btrfs_dir_data_len(leaf, di) + sizeof(*di); 5354 di_cur += di_len; 5355 di = (struct btrfs_dir_item *)((char *)di + di_len); 5356 } 5357 next: 5358 path->slots[0]++; 5359 } 5360 5361 if (key_type == BTRFS_DIR_INDEX_KEY) { 5362 if (is_curr) 5363 ctx->pos++; 5364 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list); 5365 if (ret) 5366 goto nopos; 5367 } 5368 5369 /* Reached end of directory/root. Bump pos past the last item. */ 5370 ctx->pos++; 5371 5372 /* 5373 * Stop new entries from being returned after we return the last 5374 * entry. 5375 * 5376 * New directory entries are assigned a strictly increasing 5377 * offset. This means that new entries created during readdir 5378 * are *guaranteed* to be seen in the future by that readdir. 5379 * This has broken buggy programs which operate on names as 5380 * they're returned by readdir. Until we re-use freed offsets 5381 * we have this hack to stop new entries from being returned 5382 * under the assumption that they'll never reach this huge 5383 * offset. 5384 * 5385 * This is being careful not to overflow 32bit loff_t unless the 5386 * last entry requires it because doing so has broken 32bit apps 5387 * in the past. 5388 */ 5389 if (key_type == BTRFS_DIR_INDEX_KEY) { 5390 if (ctx->pos >= INT_MAX) 5391 ctx->pos = LLONG_MAX; 5392 else 5393 ctx->pos = INT_MAX; 5394 } 5395 nopos: 5396 ret = 0; 5397 err: 5398 if (key_type == BTRFS_DIR_INDEX_KEY) 5399 btrfs_put_delayed_items(&ins_list, &del_list); 5400 btrfs_free_path(path); 5401 return ret; 5402 } 5403 5404 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc) 5405 { 5406 struct btrfs_root *root = BTRFS_I(inode)->root; 5407 struct btrfs_trans_handle *trans; 5408 int ret = 0; 5409 bool nolock = false; 5410 5411 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags)) 5412 return 0; 5413 5414 if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(inode)) 5415 nolock = true; 5416 5417 if (wbc->sync_mode == WB_SYNC_ALL) { 5418 if (nolock) 5419 trans = btrfs_join_transaction_nolock(root); 5420 else 5421 trans = btrfs_join_transaction(root); 5422 if (IS_ERR(trans)) 5423 return PTR_ERR(trans); 5424 ret = btrfs_commit_transaction(trans, root); 5425 } 5426 return ret; 5427 } 5428 5429 /* 5430 * This is somewhat expensive, updating the tree every time the 5431 * inode changes. But, it is most likely to find the inode in cache. 5432 * FIXME, needs more benchmarking...there are no reasons other than performance 5433 * to keep or drop this code. 5434 */ 5435 static int btrfs_dirty_inode(struct inode *inode) 5436 { 5437 struct btrfs_root *root = BTRFS_I(inode)->root; 5438 struct btrfs_trans_handle *trans; 5439 int ret; 5440 5441 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags)) 5442 return 0; 5443 5444 trans = btrfs_join_transaction(root); 5445 if (IS_ERR(trans)) 5446 return PTR_ERR(trans); 5447 5448 ret = btrfs_update_inode(trans, root, inode); 5449 if (ret && ret == -ENOSPC) { 5450 /* whoops, lets try again with the full transaction */ 5451 btrfs_end_transaction(trans, root); 5452 trans = btrfs_start_transaction(root, 1); 5453 if (IS_ERR(trans)) 5454 return PTR_ERR(trans); 5455 5456 ret = btrfs_update_inode(trans, root, inode); 5457 } 5458 btrfs_end_transaction(trans, root); 5459 if (BTRFS_I(inode)->delayed_node) 5460 btrfs_balance_delayed_items(root); 5461 5462 return ret; 5463 } 5464 5465 /* 5466 * This is a copy of file_update_time. We need this so we can return error on 5467 * ENOSPC for updating the inode in the case of file write and mmap writes. 5468 */ 5469 static int btrfs_update_time(struct inode *inode, struct timespec *now, 5470 int flags) 5471 { 5472 struct btrfs_root *root = BTRFS_I(inode)->root; 5473 5474 if (btrfs_root_readonly(root)) 5475 return -EROFS; 5476 5477 if (flags & S_VERSION) 5478 inode_inc_iversion(inode); 5479 if (flags & S_CTIME) 5480 inode->i_ctime = *now; 5481 if (flags & S_MTIME) 5482 inode->i_mtime = *now; 5483 if (flags & S_ATIME) 5484 inode->i_atime = *now; 5485 return btrfs_dirty_inode(inode); 5486 } 5487 5488 /* 5489 * find the highest existing sequence number in a directory 5490 * and then set the in-memory index_cnt variable to reflect 5491 * free sequence numbers 5492 */ 5493 static int btrfs_set_inode_index_count(struct inode *inode) 5494 { 5495 struct btrfs_root *root = BTRFS_I(inode)->root; 5496 struct btrfs_key key, found_key; 5497 struct btrfs_path *path; 5498 struct extent_buffer *leaf; 5499 int ret; 5500 5501 key.objectid = btrfs_ino(inode); 5502 btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY); 5503 key.offset = (u64)-1; 5504 5505 path = btrfs_alloc_path(); 5506 if (!path) 5507 return -ENOMEM; 5508 5509 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5510 if (ret < 0) 5511 goto out; 5512 /* FIXME: we should be able to handle this */ 5513 if (ret == 0) 5514 goto out; 5515 ret = 0; 5516 5517 /* 5518 * MAGIC NUMBER EXPLANATION: 5519 * since we search a directory based on f_pos we have to start at 2 5520 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody 5521 * else has to start at 2 5522 */ 5523 if (path->slots[0] == 0) { 5524 BTRFS_I(inode)->index_cnt = 2; 5525 goto out; 5526 } 5527 5528 path->slots[0]--; 5529 5530 leaf = path->nodes[0]; 5531 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 5532 5533 if (found_key.objectid != btrfs_ino(inode) || 5534 btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) { 5535 BTRFS_I(inode)->index_cnt = 2; 5536 goto out; 5537 } 5538 5539 BTRFS_I(inode)->index_cnt = found_key.offset + 1; 5540 out: 5541 btrfs_free_path(path); 5542 return ret; 5543 } 5544 5545 /* 5546 * helper to find a free sequence number in a given directory. This current 5547 * code is very simple, later versions will do smarter things in the btree 5548 */ 5549 int btrfs_set_inode_index(struct inode *dir, u64 *index) 5550 { 5551 int ret = 0; 5552 5553 if (BTRFS_I(dir)->index_cnt == (u64)-1) { 5554 ret = btrfs_inode_delayed_dir_index_count(dir); 5555 if (ret) { 5556 ret = btrfs_set_inode_index_count(dir); 5557 if (ret) 5558 return ret; 5559 } 5560 } 5561 5562 *index = BTRFS_I(dir)->index_cnt; 5563 BTRFS_I(dir)->index_cnt++; 5564 5565 return ret; 5566 } 5567 5568 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans, 5569 struct btrfs_root *root, 5570 struct inode *dir, 5571 const char *name, int name_len, 5572 u64 ref_objectid, u64 objectid, 5573 umode_t mode, u64 *index) 5574 { 5575 struct inode *inode; 5576 struct btrfs_inode_item *inode_item; 5577 struct btrfs_key *location; 5578 struct btrfs_path *path; 5579 struct btrfs_inode_ref *ref; 5580 struct btrfs_key key[2]; 5581 u32 sizes[2]; 5582 int nitems = name ? 2 : 1; 5583 unsigned long ptr; 5584 int ret; 5585 5586 path = btrfs_alloc_path(); 5587 if (!path) 5588 return ERR_PTR(-ENOMEM); 5589 5590 inode = new_inode(root->fs_info->sb); 5591 if (!inode) { 5592 btrfs_free_path(path); 5593 return ERR_PTR(-ENOMEM); 5594 } 5595 5596 /* 5597 * we have to initialize this early, so we can reclaim the inode 5598 * number if we fail afterwards in this function. 5599 */ 5600 inode->i_ino = objectid; 5601 5602 if (dir && name) { 5603 trace_btrfs_inode_request(dir); 5604 5605 ret = btrfs_set_inode_index(dir, index); 5606 if (ret) { 5607 btrfs_free_path(path); 5608 iput(inode); 5609 return ERR_PTR(ret); 5610 } 5611 } else if (dir) { 5612 *index = 0; 5613 } 5614 /* 5615 * index_cnt is ignored for everything but a dir, 5616 * btrfs_get_inode_index_count has an explanation for the magic 5617 * number 5618 */ 5619 BTRFS_I(inode)->index_cnt = 2; 5620 BTRFS_I(inode)->dir_index = *index; 5621 BTRFS_I(inode)->root = root; 5622 BTRFS_I(inode)->generation = trans->transid; 5623 inode->i_generation = BTRFS_I(inode)->generation; 5624 5625 /* 5626 * We could have gotten an inode number from somebody who was fsynced 5627 * and then removed in this same transaction, so let's just set full 5628 * sync since it will be a full sync anyway and this will blow away the 5629 * old info in the log. 5630 */ 5631 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 5632 5633 key[0].objectid = objectid; 5634 btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY); 5635 key[0].offset = 0; 5636 5637 sizes[0] = sizeof(struct btrfs_inode_item); 5638 5639 if (name) { 5640 /* 5641 * Start new inodes with an inode_ref. This is slightly more 5642 * efficient for small numbers of hard links since they will 5643 * be packed into one item. Extended refs will kick in if we 5644 * add more hard links than can fit in the ref item. 5645 */ 5646 key[1].objectid = objectid; 5647 btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY); 5648 key[1].offset = ref_objectid; 5649 5650 sizes[1] = name_len + sizeof(*ref); 5651 } 5652 5653 path->leave_spinning = 1; 5654 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems); 5655 if (ret != 0) 5656 goto fail; 5657 5658 inode_init_owner(inode, dir, mode); 5659 inode_set_bytes(inode, 0); 5660 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME; 5661 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0], 5662 struct btrfs_inode_item); 5663 memset_extent_buffer(path->nodes[0], 0, (unsigned long)inode_item, 5664 sizeof(*inode_item)); 5665 fill_inode_item(trans, path->nodes[0], inode_item, inode); 5666 5667 if (name) { 5668 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1, 5669 struct btrfs_inode_ref); 5670 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len); 5671 btrfs_set_inode_ref_index(path->nodes[0], ref, *index); 5672 ptr = (unsigned long)(ref + 1); 5673 write_extent_buffer(path->nodes[0], name, ptr, name_len); 5674 } 5675 5676 btrfs_mark_buffer_dirty(path->nodes[0]); 5677 btrfs_free_path(path); 5678 5679 location = &BTRFS_I(inode)->location; 5680 location->objectid = objectid; 5681 location->offset = 0; 5682 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY); 5683 5684 btrfs_inherit_iflags(inode, dir); 5685 5686 if (S_ISREG(mode)) { 5687 if (btrfs_test_opt(root, NODATASUM)) 5688 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; 5689 if (btrfs_test_opt(root, NODATACOW)) 5690 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW | 5691 BTRFS_INODE_NODATASUM; 5692 } 5693 5694 btrfs_insert_inode_hash(inode); 5695 inode_tree_add(inode); 5696 5697 trace_btrfs_inode_new(inode); 5698 btrfs_set_inode_last_trans(trans, inode); 5699 5700 btrfs_update_root_times(trans, root); 5701 5702 ret = btrfs_inode_inherit_props(trans, inode, dir); 5703 if (ret) 5704 btrfs_err(root->fs_info, 5705 "error inheriting props for ino %llu (root %llu): %d", 5706 btrfs_ino(inode), root->root_key.objectid, ret); 5707 5708 return inode; 5709 fail: 5710 if (dir && name) 5711 BTRFS_I(dir)->index_cnt--; 5712 btrfs_free_path(path); 5713 iput(inode); 5714 return ERR_PTR(ret); 5715 } 5716 5717 static inline u8 btrfs_inode_type(struct inode *inode) 5718 { 5719 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT]; 5720 } 5721 5722 /* 5723 * utility function to add 'inode' into 'parent_inode' with 5724 * a give name and a given sequence number. 5725 * if 'add_backref' is true, also insert a backref from the 5726 * inode to the parent directory. 5727 */ 5728 int btrfs_add_link(struct btrfs_trans_handle *trans, 5729 struct inode *parent_inode, struct inode *inode, 5730 const char *name, int name_len, int add_backref, u64 index) 5731 { 5732 int ret = 0; 5733 struct btrfs_key key; 5734 struct btrfs_root *root = BTRFS_I(parent_inode)->root; 5735 u64 ino = btrfs_ino(inode); 5736 u64 parent_ino = btrfs_ino(parent_inode); 5737 5738 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 5739 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key)); 5740 } else { 5741 key.objectid = ino; 5742 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY); 5743 key.offset = 0; 5744 } 5745 5746 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 5747 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root, 5748 key.objectid, root->root_key.objectid, 5749 parent_ino, index, name, name_len); 5750 } else if (add_backref) { 5751 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino, 5752 parent_ino, index); 5753 } 5754 5755 /* Nothing to clean up yet */ 5756 if (ret) 5757 return ret; 5758 5759 ret = btrfs_insert_dir_item(trans, root, name, name_len, 5760 parent_inode, &key, 5761 btrfs_inode_type(inode), index); 5762 if (ret == -EEXIST || ret == -EOVERFLOW) 5763 goto fail_dir_item; 5764 else if (ret) { 5765 btrfs_abort_transaction(trans, root, ret); 5766 return ret; 5767 } 5768 5769 btrfs_i_size_write(parent_inode, parent_inode->i_size + 5770 name_len * 2); 5771 inode_inc_iversion(parent_inode); 5772 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME; 5773 ret = btrfs_update_inode(trans, root, parent_inode); 5774 if (ret) 5775 btrfs_abort_transaction(trans, root, ret); 5776 return ret; 5777 5778 fail_dir_item: 5779 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 5780 u64 local_index; 5781 int err; 5782 err = btrfs_del_root_ref(trans, root->fs_info->tree_root, 5783 key.objectid, root->root_key.objectid, 5784 parent_ino, &local_index, name, name_len); 5785 5786 } else if (add_backref) { 5787 u64 local_index; 5788 int err; 5789 5790 err = btrfs_del_inode_ref(trans, root, name, name_len, 5791 ino, parent_ino, &local_index); 5792 } 5793 return ret; 5794 } 5795 5796 static int btrfs_add_nondir(struct btrfs_trans_handle *trans, 5797 struct inode *dir, struct dentry *dentry, 5798 struct inode *inode, int backref, u64 index) 5799 { 5800 int err = btrfs_add_link(trans, dir, inode, 5801 dentry->d_name.name, dentry->d_name.len, 5802 backref, index); 5803 if (err > 0) 5804 err = -EEXIST; 5805 return err; 5806 } 5807 5808 static int btrfs_mknod(struct inode *dir, struct dentry *dentry, 5809 umode_t mode, dev_t rdev) 5810 { 5811 struct btrfs_trans_handle *trans; 5812 struct btrfs_root *root = BTRFS_I(dir)->root; 5813 struct inode *inode = NULL; 5814 int err; 5815 int drop_inode = 0; 5816 u64 objectid; 5817 u64 index = 0; 5818 5819 if (!new_valid_dev(rdev)) 5820 return -EINVAL; 5821 5822 /* 5823 * 2 for inode item and ref 5824 * 2 for dir items 5825 * 1 for xattr if selinux is on 5826 */ 5827 trans = btrfs_start_transaction(root, 5); 5828 if (IS_ERR(trans)) 5829 return PTR_ERR(trans); 5830 5831 err = btrfs_find_free_ino(root, &objectid); 5832 if (err) 5833 goto out_unlock; 5834 5835 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 5836 dentry->d_name.len, btrfs_ino(dir), objectid, 5837 mode, &index); 5838 if (IS_ERR(inode)) { 5839 err = PTR_ERR(inode); 5840 goto out_unlock; 5841 } 5842 5843 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 5844 if (err) { 5845 drop_inode = 1; 5846 goto out_unlock; 5847 } 5848 5849 /* 5850 * If the active LSM wants to access the inode during 5851 * d_instantiate it needs these. Smack checks to see 5852 * if the filesystem supports xattrs by looking at the 5853 * ops vector. 5854 */ 5855 5856 inode->i_op = &btrfs_special_inode_operations; 5857 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index); 5858 if (err) 5859 drop_inode = 1; 5860 else { 5861 init_special_inode(inode, inode->i_mode, rdev); 5862 btrfs_update_inode(trans, root, inode); 5863 d_instantiate(dentry, inode); 5864 } 5865 out_unlock: 5866 btrfs_end_transaction(trans, root); 5867 btrfs_balance_delayed_items(root); 5868 btrfs_btree_balance_dirty(root); 5869 if (drop_inode) { 5870 inode_dec_link_count(inode); 5871 iput(inode); 5872 } 5873 return err; 5874 } 5875 5876 static int btrfs_create(struct inode *dir, struct dentry *dentry, 5877 umode_t mode, bool excl) 5878 { 5879 struct btrfs_trans_handle *trans; 5880 struct btrfs_root *root = BTRFS_I(dir)->root; 5881 struct inode *inode = NULL; 5882 int drop_inode_on_err = 0; 5883 int err; 5884 u64 objectid; 5885 u64 index = 0; 5886 5887 /* 5888 * 2 for inode item and ref 5889 * 2 for dir items 5890 * 1 for xattr if selinux is on 5891 */ 5892 trans = btrfs_start_transaction(root, 5); 5893 if (IS_ERR(trans)) 5894 return PTR_ERR(trans); 5895 5896 err = btrfs_find_free_ino(root, &objectid); 5897 if (err) 5898 goto out_unlock; 5899 5900 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 5901 dentry->d_name.len, btrfs_ino(dir), objectid, 5902 mode, &index); 5903 if (IS_ERR(inode)) { 5904 err = PTR_ERR(inode); 5905 goto out_unlock; 5906 } 5907 drop_inode_on_err = 1; 5908 5909 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 5910 if (err) 5911 goto out_unlock; 5912 5913 err = btrfs_update_inode(trans, root, inode); 5914 if (err) 5915 goto out_unlock; 5916 5917 /* 5918 * If the active LSM wants to access the inode during 5919 * d_instantiate it needs these. Smack checks to see 5920 * if the filesystem supports xattrs by looking at the 5921 * ops vector. 5922 */ 5923 inode->i_fop = &btrfs_file_operations; 5924 inode->i_op = &btrfs_file_inode_operations; 5925 5926 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index); 5927 if (err) 5928 goto out_unlock; 5929 5930 inode->i_mapping->a_ops = &btrfs_aops; 5931 inode->i_mapping->backing_dev_info = &root->fs_info->bdi; 5932 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 5933 d_instantiate(dentry, inode); 5934 5935 out_unlock: 5936 btrfs_end_transaction(trans, root); 5937 if (err && drop_inode_on_err) { 5938 inode_dec_link_count(inode); 5939 iput(inode); 5940 } 5941 btrfs_balance_delayed_items(root); 5942 btrfs_btree_balance_dirty(root); 5943 return err; 5944 } 5945 5946 static int btrfs_link(struct dentry *old_dentry, struct inode *dir, 5947 struct dentry *dentry) 5948 { 5949 struct btrfs_trans_handle *trans; 5950 struct btrfs_root *root = BTRFS_I(dir)->root; 5951 struct inode *inode = old_dentry->d_inode; 5952 u64 index; 5953 int err; 5954 int drop_inode = 0; 5955 5956 /* do not allow sys_link's with other subvols of the same device */ 5957 if (root->objectid != BTRFS_I(inode)->root->objectid) 5958 return -EXDEV; 5959 5960 if (inode->i_nlink >= BTRFS_LINK_MAX) 5961 return -EMLINK; 5962 5963 err = btrfs_set_inode_index(dir, &index); 5964 if (err) 5965 goto fail; 5966 5967 /* 5968 * 2 items for inode and inode ref 5969 * 2 items for dir items 5970 * 1 item for parent inode 5971 */ 5972 trans = btrfs_start_transaction(root, 5); 5973 if (IS_ERR(trans)) { 5974 err = PTR_ERR(trans); 5975 goto fail; 5976 } 5977 5978 /* There are several dir indexes for this inode, clear the cache. */ 5979 BTRFS_I(inode)->dir_index = 0ULL; 5980 inc_nlink(inode); 5981 inode_inc_iversion(inode); 5982 inode->i_ctime = CURRENT_TIME; 5983 ihold(inode); 5984 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags); 5985 5986 err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index); 5987 5988 if (err) { 5989 drop_inode = 1; 5990 } else { 5991 struct dentry *parent = dentry->d_parent; 5992 err = btrfs_update_inode(trans, root, inode); 5993 if (err) 5994 goto fail; 5995 if (inode->i_nlink == 1) { 5996 /* 5997 * If new hard link count is 1, it's a file created 5998 * with open(2) O_TMPFILE flag. 5999 */ 6000 err = btrfs_orphan_del(trans, inode); 6001 if (err) 6002 goto fail; 6003 } 6004 d_instantiate(dentry, inode); 6005 btrfs_log_new_name(trans, inode, NULL, parent); 6006 } 6007 6008 btrfs_end_transaction(trans, root); 6009 btrfs_balance_delayed_items(root); 6010 fail: 6011 if (drop_inode) { 6012 inode_dec_link_count(inode); 6013 iput(inode); 6014 } 6015 btrfs_btree_balance_dirty(root); 6016 return err; 6017 } 6018 6019 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 6020 { 6021 struct inode *inode = NULL; 6022 struct btrfs_trans_handle *trans; 6023 struct btrfs_root *root = BTRFS_I(dir)->root; 6024 int err = 0; 6025 int drop_on_err = 0; 6026 u64 objectid = 0; 6027 u64 index = 0; 6028 6029 /* 6030 * 2 items for inode and ref 6031 * 2 items for dir items 6032 * 1 for xattr if selinux is on 6033 */ 6034 trans = btrfs_start_transaction(root, 5); 6035 if (IS_ERR(trans)) 6036 return PTR_ERR(trans); 6037 6038 err = btrfs_find_free_ino(root, &objectid); 6039 if (err) 6040 goto out_fail; 6041 6042 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 6043 dentry->d_name.len, btrfs_ino(dir), objectid, 6044 S_IFDIR | mode, &index); 6045 if (IS_ERR(inode)) { 6046 err = PTR_ERR(inode); 6047 goto out_fail; 6048 } 6049 6050 drop_on_err = 1; 6051 6052 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 6053 if (err) 6054 goto out_fail; 6055 6056 inode->i_op = &btrfs_dir_inode_operations; 6057 inode->i_fop = &btrfs_dir_file_operations; 6058 6059 btrfs_i_size_write(inode, 0); 6060 err = btrfs_update_inode(trans, root, inode); 6061 if (err) 6062 goto out_fail; 6063 6064 err = btrfs_add_link(trans, dir, inode, dentry->d_name.name, 6065 dentry->d_name.len, 0, index); 6066 if (err) 6067 goto out_fail; 6068 6069 d_instantiate(dentry, inode); 6070 drop_on_err = 0; 6071 6072 out_fail: 6073 btrfs_end_transaction(trans, root); 6074 if (drop_on_err) 6075 iput(inode); 6076 btrfs_balance_delayed_items(root); 6077 btrfs_btree_balance_dirty(root); 6078 return err; 6079 } 6080 6081 /* helper for btfs_get_extent. Given an existing extent in the tree, 6082 * and an extent that you want to insert, deal with overlap and insert 6083 * the new extent into the tree. 6084 */ 6085 static int merge_extent_mapping(struct extent_map_tree *em_tree, 6086 struct extent_map *existing, 6087 struct extent_map *em, 6088 u64 map_start, u64 map_len) 6089 { 6090 u64 start_diff; 6091 6092 BUG_ON(map_start < em->start || map_start >= extent_map_end(em)); 6093 start_diff = map_start - em->start; 6094 em->start = map_start; 6095 em->len = map_len; 6096 if (em->block_start < EXTENT_MAP_LAST_BYTE && 6097 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 6098 em->block_start += start_diff; 6099 em->block_len -= start_diff; 6100 } 6101 return add_extent_mapping(em_tree, em, 0); 6102 } 6103 6104 static noinline int uncompress_inline(struct btrfs_path *path, 6105 struct inode *inode, struct page *page, 6106 size_t pg_offset, u64 extent_offset, 6107 struct btrfs_file_extent_item *item) 6108 { 6109 int ret; 6110 struct extent_buffer *leaf = path->nodes[0]; 6111 char *tmp; 6112 size_t max_size; 6113 unsigned long inline_size; 6114 unsigned long ptr; 6115 int compress_type; 6116 6117 WARN_ON(pg_offset != 0); 6118 compress_type = btrfs_file_extent_compression(leaf, item); 6119 max_size = btrfs_file_extent_ram_bytes(leaf, item); 6120 inline_size = btrfs_file_extent_inline_item_len(leaf, 6121 btrfs_item_nr(path->slots[0])); 6122 tmp = kmalloc(inline_size, GFP_NOFS); 6123 if (!tmp) 6124 return -ENOMEM; 6125 ptr = btrfs_file_extent_inline_start(item); 6126 6127 read_extent_buffer(leaf, tmp, ptr, inline_size); 6128 6129 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size); 6130 ret = btrfs_decompress(compress_type, tmp, page, 6131 extent_offset, inline_size, max_size); 6132 kfree(tmp); 6133 return ret; 6134 } 6135 6136 /* 6137 * a bit scary, this does extent mapping from logical file offset to the disk. 6138 * the ugly parts come from merging extents from the disk with the in-ram 6139 * representation. This gets more complex because of the data=ordered code, 6140 * where the in-ram extents might be locked pending data=ordered completion. 6141 * 6142 * This also copies inline extents directly into the page. 6143 */ 6144 6145 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page, 6146 size_t pg_offset, u64 start, u64 len, 6147 int create) 6148 { 6149 int ret; 6150 int err = 0; 6151 u64 extent_start = 0; 6152 u64 extent_end = 0; 6153 u64 objectid = btrfs_ino(inode); 6154 u32 found_type; 6155 struct btrfs_path *path = NULL; 6156 struct btrfs_root *root = BTRFS_I(inode)->root; 6157 struct btrfs_file_extent_item *item; 6158 struct extent_buffer *leaf; 6159 struct btrfs_key found_key; 6160 struct extent_map *em = NULL; 6161 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 6162 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 6163 struct btrfs_trans_handle *trans = NULL; 6164 const bool new_inline = !page || create; 6165 6166 again: 6167 read_lock(&em_tree->lock); 6168 em = lookup_extent_mapping(em_tree, start, len); 6169 if (em) 6170 em->bdev = root->fs_info->fs_devices->latest_bdev; 6171 read_unlock(&em_tree->lock); 6172 6173 if (em) { 6174 if (em->start > start || em->start + em->len <= start) 6175 free_extent_map(em); 6176 else if (em->block_start == EXTENT_MAP_INLINE && page) 6177 free_extent_map(em); 6178 else 6179 goto out; 6180 } 6181 em = alloc_extent_map(); 6182 if (!em) { 6183 err = -ENOMEM; 6184 goto out; 6185 } 6186 em->bdev = root->fs_info->fs_devices->latest_bdev; 6187 em->start = EXTENT_MAP_HOLE; 6188 em->orig_start = EXTENT_MAP_HOLE; 6189 em->len = (u64)-1; 6190 em->block_len = (u64)-1; 6191 6192 if (!path) { 6193 path = btrfs_alloc_path(); 6194 if (!path) { 6195 err = -ENOMEM; 6196 goto out; 6197 } 6198 /* 6199 * Chances are we'll be called again, so go ahead and do 6200 * readahead 6201 */ 6202 path->reada = 1; 6203 } 6204 6205 ret = btrfs_lookup_file_extent(trans, root, path, 6206 objectid, start, trans != NULL); 6207 if (ret < 0) { 6208 err = ret; 6209 goto out; 6210 } 6211 6212 if (ret != 0) { 6213 if (path->slots[0] == 0) 6214 goto not_found; 6215 path->slots[0]--; 6216 } 6217 6218 leaf = path->nodes[0]; 6219 item = btrfs_item_ptr(leaf, path->slots[0], 6220 struct btrfs_file_extent_item); 6221 /* are we inside the extent that was found? */ 6222 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6223 found_type = btrfs_key_type(&found_key); 6224 if (found_key.objectid != objectid || 6225 found_type != BTRFS_EXTENT_DATA_KEY) { 6226 /* 6227 * If we backup past the first extent we want to move forward 6228 * and see if there is an extent in front of us, otherwise we'll 6229 * say there is a hole for our whole search range which can 6230 * cause problems. 6231 */ 6232 extent_end = start; 6233 goto next; 6234 } 6235 6236 found_type = btrfs_file_extent_type(leaf, item); 6237 extent_start = found_key.offset; 6238 if (found_type == BTRFS_FILE_EXTENT_REG || 6239 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 6240 extent_end = extent_start + 6241 btrfs_file_extent_num_bytes(leaf, item); 6242 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 6243 size_t size; 6244 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item); 6245 extent_end = ALIGN(extent_start + size, root->sectorsize); 6246 } 6247 next: 6248 if (start >= extent_end) { 6249 path->slots[0]++; 6250 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 6251 ret = btrfs_next_leaf(root, path); 6252 if (ret < 0) { 6253 err = ret; 6254 goto out; 6255 } 6256 if (ret > 0) 6257 goto not_found; 6258 leaf = path->nodes[0]; 6259 } 6260 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6261 if (found_key.objectid != objectid || 6262 found_key.type != BTRFS_EXTENT_DATA_KEY) 6263 goto not_found; 6264 if (start + len <= found_key.offset) 6265 goto not_found; 6266 em->start = start; 6267 em->orig_start = start; 6268 em->len = found_key.offset - start; 6269 goto not_found_em; 6270 } 6271 6272 btrfs_extent_item_to_extent_map(inode, path, item, new_inline, em); 6273 6274 if (found_type == BTRFS_FILE_EXTENT_REG || 6275 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 6276 goto insert; 6277 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 6278 unsigned long ptr; 6279 char *map; 6280 size_t size; 6281 size_t extent_offset; 6282 size_t copy_size; 6283 6284 if (new_inline) 6285 goto out; 6286 6287 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item); 6288 extent_offset = page_offset(page) + pg_offset - extent_start; 6289 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset, 6290 size - extent_offset); 6291 em->start = extent_start + extent_offset; 6292 em->len = ALIGN(copy_size, root->sectorsize); 6293 em->orig_block_len = em->len; 6294 em->orig_start = em->start; 6295 ptr = btrfs_file_extent_inline_start(item) + extent_offset; 6296 if (create == 0 && !PageUptodate(page)) { 6297 if (btrfs_file_extent_compression(leaf, item) != 6298 BTRFS_COMPRESS_NONE) { 6299 ret = uncompress_inline(path, inode, page, 6300 pg_offset, 6301 extent_offset, item); 6302 if (ret) { 6303 err = ret; 6304 goto out; 6305 } 6306 } else { 6307 map = kmap(page); 6308 read_extent_buffer(leaf, map + pg_offset, ptr, 6309 copy_size); 6310 if (pg_offset + copy_size < PAGE_CACHE_SIZE) { 6311 memset(map + pg_offset + copy_size, 0, 6312 PAGE_CACHE_SIZE - pg_offset - 6313 copy_size); 6314 } 6315 kunmap(page); 6316 } 6317 flush_dcache_page(page); 6318 } else if (create && PageUptodate(page)) { 6319 BUG(); 6320 if (!trans) { 6321 kunmap(page); 6322 free_extent_map(em); 6323 em = NULL; 6324 6325 btrfs_release_path(path); 6326 trans = btrfs_join_transaction(root); 6327 6328 if (IS_ERR(trans)) 6329 return ERR_CAST(trans); 6330 goto again; 6331 } 6332 map = kmap(page); 6333 write_extent_buffer(leaf, map + pg_offset, ptr, 6334 copy_size); 6335 kunmap(page); 6336 btrfs_mark_buffer_dirty(leaf); 6337 } 6338 set_extent_uptodate(io_tree, em->start, 6339 extent_map_end(em) - 1, NULL, GFP_NOFS); 6340 goto insert; 6341 } 6342 not_found: 6343 em->start = start; 6344 em->orig_start = start; 6345 em->len = len; 6346 not_found_em: 6347 em->block_start = EXTENT_MAP_HOLE; 6348 set_bit(EXTENT_FLAG_VACANCY, &em->flags); 6349 insert: 6350 btrfs_release_path(path); 6351 if (em->start > start || extent_map_end(em) <= start) { 6352 btrfs_err(root->fs_info, "bad extent! em: [%llu %llu] passed [%llu %llu]", 6353 em->start, em->len, start, len); 6354 err = -EIO; 6355 goto out; 6356 } 6357 6358 err = 0; 6359 write_lock(&em_tree->lock); 6360 ret = add_extent_mapping(em_tree, em, 0); 6361 /* it is possible that someone inserted the extent into the tree 6362 * while we had the lock dropped. It is also possible that 6363 * an overlapping map exists in the tree 6364 */ 6365 if (ret == -EEXIST) { 6366 struct extent_map *existing; 6367 6368 ret = 0; 6369 6370 existing = lookup_extent_mapping(em_tree, start, len); 6371 if (existing && (existing->start > start || 6372 existing->start + existing->len <= start)) { 6373 free_extent_map(existing); 6374 existing = NULL; 6375 } 6376 if (!existing) { 6377 existing = lookup_extent_mapping(em_tree, em->start, 6378 em->len); 6379 if (existing) { 6380 err = merge_extent_mapping(em_tree, existing, 6381 em, start, 6382 root->sectorsize); 6383 free_extent_map(existing); 6384 if (err) { 6385 free_extent_map(em); 6386 em = NULL; 6387 } 6388 } else { 6389 err = -EIO; 6390 free_extent_map(em); 6391 em = NULL; 6392 } 6393 } else { 6394 free_extent_map(em); 6395 em = existing; 6396 err = 0; 6397 } 6398 } 6399 write_unlock(&em_tree->lock); 6400 out: 6401 6402 trace_btrfs_get_extent(root, em); 6403 6404 if (path) 6405 btrfs_free_path(path); 6406 if (trans) { 6407 ret = btrfs_end_transaction(trans, root); 6408 if (!err) 6409 err = ret; 6410 } 6411 if (err) { 6412 free_extent_map(em); 6413 return ERR_PTR(err); 6414 } 6415 BUG_ON(!em); /* Error is always set */ 6416 return em; 6417 } 6418 6419 struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page, 6420 size_t pg_offset, u64 start, u64 len, 6421 int create) 6422 { 6423 struct extent_map *em; 6424 struct extent_map *hole_em = NULL; 6425 u64 range_start = start; 6426 u64 end; 6427 u64 found; 6428 u64 found_end; 6429 int err = 0; 6430 6431 em = btrfs_get_extent(inode, page, pg_offset, start, len, create); 6432 if (IS_ERR(em)) 6433 return em; 6434 if (em) { 6435 /* 6436 * if our em maps to 6437 * - a hole or 6438 * - a pre-alloc extent, 6439 * there might actually be delalloc bytes behind it. 6440 */ 6441 if (em->block_start != EXTENT_MAP_HOLE && 6442 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 6443 return em; 6444 else 6445 hole_em = em; 6446 } 6447 6448 /* check to see if we've wrapped (len == -1 or similar) */ 6449 end = start + len; 6450 if (end < start) 6451 end = (u64)-1; 6452 else 6453 end -= 1; 6454 6455 em = NULL; 6456 6457 /* ok, we didn't find anything, lets look for delalloc */ 6458 found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start, 6459 end, len, EXTENT_DELALLOC, 1); 6460 found_end = range_start + found; 6461 if (found_end < range_start) 6462 found_end = (u64)-1; 6463 6464 /* 6465 * we didn't find anything useful, return 6466 * the original results from get_extent() 6467 */ 6468 if (range_start > end || found_end <= start) { 6469 em = hole_em; 6470 hole_em = NULL; 6471 goto out; 6472 } 6473 6474 /* adjust the range_start to make sure it doesn't 6475 * go backwards from the start they passed in 6476 */ 6477 range_start = max(start, range_start); 6478 found = found_end - range_start; 6479 6480 if (found > 0) { 6481 u64 hole_start = start; 6482 u64 hole_len = len; 6483 6484 em = alloc_extent_map(); 6485 if (!em) { 6486 err = -ENOMEM; 6487 goto out; 6488 } 6489 /* 6490 * when btrfs_get_extent can't find anything it 6491 * returns one huge hole 6492 * 6493 * make sure what it found really fits our range, and 6494 * adjust to make sure it is based on the start from 6495 * the caller 6496 */ 6497 if (hole_em) { 6498 u64 calc_end = extent_map_end(hole_em); 6499 6500 if (calc_end <= start || (hole_em->start > end)) { 6501 free_extent_map(hole_em); 6502 hole_em = NULL; 6503 } else { 6504 hole_start = max(hole_em->start, start); 6505 hole_len = calc_end - hole_start; 6506 } 6507 } 6508 em->bdev = NULL; 6509 if (hole_em && range_start > hole_start) { 6510 /* our hole starts before our delalloc, so we 6511 * have to return just the parts of the hole 6512 * that go until the delalloc starts 6513 */ 6514 em->len = min(hole_len, 6515 range_start - hole_start); 6516 em->start = hole_start; 6517 em->orig_start = hole_start; 6518 /* 6519 * don't adjust block start at all, 6520 * it is fixed at EXTENT_MAP_HOLE 6521 */ 6522 em->block_start = hole_em->block_start; 6523 em->block_len = hole_len; 6524 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags)) 6525 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 6526 } else { 6527 em->start = range_start; 6528 em->len = found; 6529 em->orig_start = range_start; 6530 em->block_start = EXTENT_MAP_DELALLOC; 6531 em->block_len = found; 6532 } 6533 } else if (hole_em) { 6534 return hole_em; 6535 } 6536 out: 6537 6538 free_extent_map(hole_em); 6539 if (err) { 6540 free_extent_map(em); 6541 return ERR_PTR(err); 6542 } 6543 return em; 6544 } 6545 6546 static struct extent_map *btrfs_new_extent_direct(struct inode *inode, 6547 u64 start, u64 len) 6548 { 6549 struct btrfs_root *root = BTRFS_I(inode)->root; 6550 struct extent_map *em; 6551 struct btrfs_key ins; 6552 u64 alloc_hint; 6553 int ret; 6554 6555 alloc_hint = get_extent_allocation_hint(inode, start, len); 6556 ret = btrfs_reserve_extent(root, len, root->sectorsize, 0, 6557 alloc_hint, &ins, 1, 1); 6558 if (ret) 6559 return ERR_PTR(ret); 6560 6561 em = create_pinned_em(inode, start, ins.offset, start, ins.objectid, 6562 ins.offset, ins.offset, ins.offset, 0); 6563 if (IS_ERR(em)) { 6564 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1); 6565 return em; 6566 } 6567 6568 ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid, 6569 ins.offset, ins.offset, 0); 6570 if (ret) { 6571 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1); 6572 free_extent_map(em); 6573 return ERR_PTR(ret); 6574 } 6575 6576 return em; 6577 } 6578 6579 /* 6580 * returns 1 when the nocow is safe, < 1 on error, 0 if the 6581 * block must be cow'd 6582 */ 6583 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len, 6584 u64 *orig_start, u64 *orig_block_len, 6585 u64 *ram_bytes) 6586 { 6587 struct btrfs_trans_handle *trans; 6588 struct btrfs_path *path; 6589 int ret; 6590 struct extent_buffer *leaf; 6591 struct btrfs_root *root = BTRFS_I(inode)->root; 6592 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 6593 struct btrfs_file_extent_item *fi; 6594 struct btrfs_key key; 6595 u64 disk_bytenr; 6596 u64 backref_offset; 6597 u64 extent_end; 6598 u64 num_bytes; 6599 int slot; 6600 int found_type; 6601 bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW); 6602 6603 path = btrfs_alloc_path(); 6604 if (!path) 6605 return -ENOMEM; 6606 6607 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), 6608 offset, 0); 6609 if (ret < 0) 6610 goto out; 6611 6612 slot = path->slots[0]; 6613 if (ret == 1) { 6614 if (slot == 0) { 6615 /* can't find the item, must cow */ 6616 ret = 0; 6617 goto out; 6618 } 6619 slot--; 6620 } 6621 ret = 0; 6622 leaf = path->nodes[0]; 6623 btrfs_item_key_to_cpu(leaf, &key, slot); 6624 if (key.objectid != btrfs_ino(inode) || 6625 key.type != BTRFS_EXTENT_DATA_KEY) { 6626 /* not our file or wrong item type, must cow */ 6627 goto out; 6628 } 6629 6630 if (key.offset > offset) { 6631 /* Wrong offset, must cow */ 6632 goto out; 6633 } 6634 6635 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 6636 found_type = btrfs_file_extent_type(leaf, fi); 6637 if (found_type != BTRFS_FILE_EXTENT_REG && 6638 found_type != BTRFS_FILE_EXTENT_PREALLOC) { 6639 /* not a regular extent, must cow */ 6640 goto out; 6641 } 6642 6643 if (!nocow && found_type == BTRFS_FILE_EXTENT_REG) 6644 goto out; 6645 6646 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 6647 if (extent_end <= offset) 6648 goto out; 6649 6650 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 6651 if (disk_bytenr == 0) 6652 goto out; 6653 6654 if (btrfs_file_extent_compression(leaf, fi) || 6655 btrfs_file_extent_encryption(leaf, fi) || 6656 btrfs_file_extent_other_encoding(leaf, fi)) 6657 goto out; 6658 6659 backref_offset = btrfs_file_extent_offset(leaf, fi); 6660 6661 if (orig_start) { 6662 *orig_start = key.offset - backref_offset; 6663 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi); 6664 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 6665 } 6666 6667 if (btrfs_extent_readonly(root, disk_bytenr)) 6668 goto out; 6669 6670 num_bytes = min(offset + *len, extent_end) - offset; 6671 if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) { 6672 u64 range_end; 6673 6674 range_end = round_up(offset + num_bytes, root->sectorsize) - 1; 6675 ret = test_range_bit(io_tree, offset, range_end, 6676 EXTENT_DELALLOC, 0, NULL); 6677 if (ret) { 6678 ret = -EAGAIN; 6679 goto out; 6680 } 6681 } 6682 6683 btrfs_release_path(path); 6684 6685 /* 6686 * look for other files referencing this extent, if we 6687 * find any we must cow 6688 */ 6689 trans = btrfs_join_transaction(root); 6690 if (IS_ERR(trans)) { 6691 ret = 0; 6692 goto out; 6693 } 6694 6695 ret = btrfs_cross_ref_exist(trans, root, btrfs_ino(inode), 6696 key.offset - backref_offset, disk_bytenr); 6697 btrfs_end_transaction(trans, root); 6698 if (ret) { 6699 ret = 0; 6700 goto out; 6701 } 6702 6703 /* 6704 * adjust disk_bytenr and num_bytes to cover just the bytes 6705 * in this extent we are about to write. If there 6706 * are any csums in that range we have to cow in order 6707 * to keep the csums correct 6708 */ 6709 disk_bytenr += backref_offset; 6710 disk_bytenr += offset - key.offset; 6711 if (csum_exist_in_range(root, disk_bytenr, num_bytes)) 6712 goto out; 6713 /* 6714 * all of the above have passed, it is safe to overwrite this extent 6715 * without cow 6716 */ 6717 *len = num_bytes; 6718 ret = 1; 6719 out: 6720 btrfs_free_path(path); 6721 return ret; 6722 } 6723 6724 bool btrfs_page_exists_in_range(struct inode *inode, loff_t start, loff_t end) 6725 { 6726 struct radix_tree_root *root = &inode->i_mapping->page_tree; 6727 int found = false; 6728 void **pagep = NULL; 6729 struct page *page = NULL; 6730 int start_idx; 6731 int end_idx; 6732 6733 start_idx = start >> PAGE_CACHE_SHIFT; 6734 6735 /* 6736 * end is the last byte in the last page. end == start is legal 6737 */ 6738 end_idx = end >> PAGE_CACHE_SHIFT; 6739 6740 rcu_read_lock(); 6741 6742 /* Most of the code in this while loop is lifted from 6743 * find_get_page. It's been modified to begin searching from a 6744 * page and return just the first page found in that range. If the 6745 * found idx is less than or equal to the end idx then we know that 6746 * a page exists. If no pages are found or if those pages are 6747 * outside of the range then we're fine (yay!) */ 6748 while (page == NULL && 6749 radix_tree_gang_lookup_slot(root, &pagep, NULL, start_idx, 1)) { 6750 page = radix_tree_deref_slot(pagep); 6751 if (unlikely(!page)) 6752 break; 6753 6754 if (radix_tree_exception(page)) { 6755 if (radix_tree_deref_retry(page)) { 6756 page = NULL; 6757 continue; 6758 } 6759 /* 6760 * Otherwise, shmem/tmpfs must be storing a swap entry 6761 * here as an exceptional entry: so return it without 6762 * attempting to raise page count. 6763 */ 6764 page = NULL; 6765 break; /* TODO: Is this relevant for this use case? */ 6766 } 6767 6768 if (!page_cache_get_speculative(page)) { 6769 page = NULL; 6770 continue; 6771 } 6772 6773 /* 6774 * Has the page moved? 6775 * This is part of the lockless pagecache protocol. See 6776 * include/linux/pagemap.h for details. 6777 */ 6778 if (unlikely(page != *pagep)) { 6779 page_cache_release(page); 6780 page = NULL; 6781 } 6782 } 6783 6784 if (page) { 6785 if (page->index <= end_idx) 6786 found = true; 6787 page_cache_release(page); 6788 } 6789 6790 rcu_read_unlock(); 6791 return found; 6792 } 6793 6794 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend, 6795 struct extent_state **cached_state, int writing) 6796 { 6797 struct btrfs_ordered_extent *ordered; 6798 int ret = 0; 6799 6800 while (1) { 6801 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 6802 0, cached_state); 6803 /* 6804 * We're concerned with the entire range that we're going to be 6805 * doing DIO to, so we need to make sure theres no ordered 6806 * extents in this range. 6807 */ 6808 ordered = btrfs_lookup_ordered_range(inode, lockstart, 6809 lockend - lockstart + 1); 6810 6811 /* 6812 * We need to make sure there are no buffered pages in this 6813 * range either, we could have raced between the invalidate in 6814 * generic_file_direct_write and locking the extent. The 6815 * invalidate needs to happen so that reads after a write do not 6816 * get stale data. 6817 */ 6818 if (!ordered && 6819 (!writing || 6820 !btrfs_page_exists_in_range(inode, lockstart, lockend))) 6821 break; 6822 6823 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, 6824 cached_state, GFP_NOFS); 6825 6826 if (ordered) { 6827 btrfs_start_ordered_extent(inode, ordered, 1); 6828 btrfs_put_ordered_extent(ordered); 6829 } else { 6830 /* Screw you mmap */ 6831 ret = filemap_write_and_wait_range(inode->i_mapping, 6832 lockstart, 6833 lockend); 6834 if (ret) 6835 break; 6836 6837 /* 6838 * If we found a page that couldn't be invalidated just 6839 * fall back to buffered. 6840 */ 6841 ret = invalidate_inode_pages2_range(inode->i_mapping, 6842 lockstart >> PAGE_CACHE_SHIFT, 6843 lockend >> PAGE_CACHE_SHIFT); 6844 if (ret) 6845 break; 6846 } 6847 6848 cond_resched(); 6849 } 6850 6851 return ret; 6852 } 6853 6854 static struct extent_map *create_pinned_em(struct inode *inode, u64 start, 6855 u64 len, u64 orig_start, 6856 u64 block_start, u64 block_len, 6857 u64 orig_block_len, u64 ram_bytes, 6858 int type) 6859 { 6860 struct extent_map_tree *em_tree; 6861 struct extent_map *em; 6862 struct btrfs_root *root = BTRFS_I(inode)->root; 6863 int ret; 6864 6865 em_tree = &BTRFS_I(inode)->extent_tree; 6866 em = alloc_extent_map(); 6867 if (!em) 6868 return ERR_PTR(-ENOMEM); 6869 6870 em->start = start; 6871 em->orig_start = orig_start; 6872 em->mod_start = start; 6873 em->mod_len = len; 6874 em->len = len; 6875 em->block_len = block_len; 6876 em->block_start = block_start; 6877 em->bdev = root->fs_info->fs_devices->latest_bdev; 6878 em->orig_block_len = orig_block_len; 6879 em->ram_bytes = ram_bytes; 6880 em->generation = -1; 6881 set_bit(EXTENT_FLAG_PINNED, &em->flags); 6882 if (type == BTRFS_ORDERED_PREALLOC) 6883 set_bit(EXTENT_FLAG_FILLING, &em->flags); 6884 6885 do { 6886 btrfs_drop_extent_cache(inode, em->start, 6887 em->start + em->len - 1, 0); 6888 write_lock(&em_tree->lock); 6889 ret = add_extent_mapping(em_tree, em, 1); 6890 write_unlock(&em_tree->lock); 6891 } while (ret == -EEXIST); 6892 6893 if (ret) { 6894 free_extent_map(em); 6895 return ERR_PTR(ret); 6896 } 6897 6898 return em; 6899 } 6900 6901 6902 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock, 6903 struct buffer_head *bh_result, int create) 6904 { 6905 struct extent_map *em; 6906 struct btrfs_root *root = BTRFS_I(inode)->root; 6907 struct extent_state *cached_state = NULL; 6908 u64 start = iblock << inode->i_blkbits; 6909 u64 lockstart, lockend; 6910 u64 len = bh_result->b_size; 6911 int unlock_bits = EXTENT_LOCKED; 6912 int ret = 0; 6913 6914 if (create) 6915 unlock_bits |= EXTENT_DELALLOC | EXTENT_DIRTY; 6916 else 6917 len = min_t(u64, len, root->sectorsize); 6918 6919 lockstart = start; 6920 lockend = start + len - 1; 6921 6922 /* 6923 * If this errors out it's because we couldn't invalidate pagecache for 6924 * this range and we need to fallback to buffered. 6925 */ 6926 if (lock_extent_direct(inode, lockstart, lockend, &cached_state, create)) 6927 return -ENOTBLK; 6928 6929 em = btrfs_get_extent(inode, NULL, 0, start, len, 0); 6930 if (IS_ERR(em)) { 6931 ret = PTR_ERR(em); 6932 goto unlock_err; 6933 } 6934 6935 /* 6936 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered 6937 * io. INLINE is special, and we could probably kludge it in here, but 6938 * it's still buffered so for safety lets just fall back to the generic 6939 * buffered path. 6940 * 6941 * For COMPRESSED we _have_ to read the entire extent in so we can 6942 * decompress it, so there will be buffering required no matter what we 6943 * do, so go ahead and fallback to buffered. 6944 * 6945 * We return -ENOTBLK because thats what makes DIO go ahead and go back 6946 * to buffered IO. Don't blame me, this is the price we pay for using 6947 * the generic code. 6948 */ 6949 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) || 6950 em->block_start == EXTENT_MAP_INLINE) { 6951 free_extent_map(em); 6952 ret = -ENOTBLK; 6953 goto unlock_err; 6954 } 6955 6956 /* Just a good old fashioned hole, return */ 6957 if (!create && (em->block_start == EXTENT_MAP_HOLE || 6958 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) { 6959 free_extent_map(em); 6960 goto unlock_err; 6961 } 6962 6963 /* 6964 * We don't allocate a new extent in the following cases 6965 * 6966 * 1) The inode is marked as NODATACOW. In this case we'll just use the 6967 * existing extent. 6968 * 2) The extent is marked as PREALLOC. We're good to go here and can 6969 * just use the extent. 6970 * 6971 */ 6972 if (!create) { 6973 len = min(len, em->len - (start - em->start)); 6974 lockstart = start + len; 6975 goto unlock; 6976 } 6977 6978 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) || 6979 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) && 6980 em->block_start != EXTENT_MAP_HOLE)) { 6981 int type; 6982 int ret; 6983 u64 block_start, orig_start, orig_block_len, ram_bytes; 6984 6985 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 6986 type = BTRFS_ORDERED_PREALLOC; 6987 else 6988 type = BTRFS_ORDERED_NOCOW; 6989 len = min(len, em->len - (start - em->start)); 6990 block_start = em->block_start + (start - em->start); 6991 6992 if (can_nocow_extent(inode, start, &len, &orig_start, 6993 &orig_block_len, &ram_bytes) == 1) { 6994 if (type == BTRFS_ORDERED_PREALLOC) { 6995 free_extent_map(em); 6996 em = create_pinned_em(inode, start, len, 6997 orig_start, 6998 block_start, len, 6999 orig_block_len, 7000 ram_bytes, type); 7001 if (IS_ERR(em)) 7002 goto unlock_err; 7003 } 7004 7005 ret = btrfs_add_ordered_extent_dio(inode, start, 7006 block_start, len, len, type); 7007 if (ret) { 7008 free_extent_map(em); 7009 goto unlock_err; 7010 } 7011 goto unlock; 7012 } 7013 } 7014 7015 /* 7016 * this will cow the extent, reset the len in case we changed 7017 * it above 7018 */ 7019 len = bh_result->b_size; 7020 free_extent_map(em); 7021 em = btrfs_new_extent_direct(inode, start, len); 7022 if (IS_ERR(em)) { 7023 ret = PTR_ERR(em); 7024 goto unlock_err; 7025 } 7026 len = min(len, em->len - (start - em->start)); 7027 unlock: 7028 bh_result->b_blocknr = (em->block_start + (start - em->start)) >> 7029 inode->i_blkbits; 7030 bh_result->b_size = len; 7031 bh_result->b_bdev = em->bdev; 7032 set_buffer_mapped(bh_result); 7033 if (create) { 7034 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 7035 set_buffer_new(bh_result); 7036 7037 /* 7038 * Need to update the i_size under the extent lock so buffered 7039 * readers will get the updated i_size when we unlock. 7040 */ 7041 if (start + len > i_size_read(inode)) 7042 i_size_write(inode, start + len); 7043 7044 spin_lock(&BTRFS_I(inode)->lock); 7045 BTRFS_I(inode)->outstanding_extents++; 7046 spin_unlock(&BTRFS_I(inode)->lock); 7047 7048 ret = set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, 7049 lockstart + len - 1, EXTENT_DELALLOC, NULL, 7050 &cached_state, GFP_NOFS); 7051 BUG_ON(ret); 7052 } 7053 7054 /* 7055 * In the case of write we need to clear and unlock the entire range, 7056 * in the case of read we need to unlock only the end area that we 7057 * aren't using if there is any left over space. 7058 */ 7059 if (lockstart < lockend) { 7060 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, 7061 lockend, unlock_bits, 1, 0, 7062 &cached_state, GFP_NOFS); 7063 } else { 7064 free_extent_state(cached_state); 7065 } 7066 7067 free_extent_map(em); 7068 7069 return 0; 7070 7071 unlock_err: 7072 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7073 unlock_bits, 1, 0, &cached_state, GFP_NOFS); 7074 return ret; 7075 } 7076 7077 static void btrfs_endio_direct_read(struct bio *bio, int err) 7078 { 7079 struct btrfs_dio_private *dip = bio->bi_private; 7080 struct bio_vec *bvec; 7081 struct inode *inode = dip->inode; 7082 struct btrfs_root *root = BTRFS_I(inode)->root; 7083 struct bio *dio_bio; 7084 u32 *csums = (u32 *)dip->csum; 7085 u64 start; 7086 int i; 7087 7088 start = dip->logical_offset; 7089 bio_for_each_segment_all(bvec, bio, i) { 7090 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) { 7091 struct page *page = bvec->bv_page; 7092 char *kaddr; 7093 u32 csum = ~(u32)0; 7094 unsigned long flags; 7095 7096 local_irq_save(flags); 7097 kaddr = kmap_atomic(page); 7098 csum = btrfs_csum_data(kaddr + bvec->bv_offset, 7099 csum, bvec->bv_len); 7100 btrfs_csum_final(csum, (char *)&csum); 7101 kunmap_atomic(kaddr); 7102 local_irq_restore(flags); 7103 7104 flush_dcache_page(bvec->bv_page); 7105 if (csum != csums[i]) { 7106 btrfs_err(root->fs_info, "csum failed ino %llu off %llu csum %u expected csum %u", 7107 btrfs_ino(inode), start, csum, 7108 csums[i]); 7109 err = -EIO; 7110 } 7111 } 7112 7113 start += bvec->bv_len; 7114 } 7115 7116 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset, 7117 dip->logical_offset + dip->bytes - 1); 7118 dio_bio = dip->dio_bio; 7119 7120 kfree(dip); 7121 7122 /* If we had a csum failure make sure to clear the uptodate flag */ 7123 if (err) 7124 clear_bit(BIO_UPTODATE, &dio_bio->bi_flags); 7125 dio_end_io(dio_bio, err); 7126 bio_put(bio); 7127 } 7128 7129 static void btrfs_endio_direct_write(struct bio *bio, int err) 7130 { 7131 struct btrfs_dio_private *dip = bio->bi_private; 7132 struct inode *inode = dip->inode; 7133 struct btrfs_root *root = BTRFS_I(inode)->root; 7134 struct btrfs_ordered_extent *ordered = NULL; 7135 u64 ordered_offset = dip->logical_offset; 7136 u64 ordered_bytes = dip->bytes; 7137 struct bio *dio_bio; 7138 int ret; 7139 7140 if (err) 7141 goto out_done; 7142 again: 7143 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered, 7144 &ordered_offset, 7145 ordered_bytes, !err); 7146 if (!ret) 7147 goto out_test; 7148 7149 btrfs_init_work(&ordered->work, finish_ordered_fn, NULL, NULL); 7150 btrfs_queue_work(root->fs_info->endio_write_workers, 7151 &ordered->work); 7152 out_test: 7153 /* 7154 * our bio might span multiple ordered extents. If we haven't 7155 * completed the accounting for the whole dio, go back and try again 7156 */ 7157 if (ordered_offset < dip->logical_offset + dip->bytes) { 7158 ordered_bytes = dip->logical_offset + dip->bytes - 7159 ordered_offset; 7160 ordered = NULL; 7161 goto again; 7162 } 7163 out_done: 7164 dio_bio = dip->dio_bio; 7165 7166 kfree(dip); 7167 7168 /* If we had an error make sure to clear the uptodate flag */ 7169 if (err) 7170 clear_bit(BIO_UPTODATE, &dio_bio->bi_flags); 7171 dio_end_io(dio_bio, err); 7172 bio_put(bio); 7173 } 7174 7175 static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw, 7176 struct bio *bio, int mirror_num, 7177 unsigned long bio_flags, u64 offset) 7178 { 7179 int ret; 7180 struct btrfs_root *root = BTRFS_I(inode)->root; 7181 ret = btrfs_csum_one_bio(root, inode, bio, offset, 1); 7182 BUG_ON(ret); /* -ENOMEM */ 7183 return 0; 7184 } 7185 7186 static void btrfs_end_dio_bio(struct bio *bio, int err) 7187 { 7188 struct btrfs_dio_private *dip = bio->bi_private; 7189 7190 if (err) { 7191 btrfs_err(BTRFS_I(dip->inode)->root->fs_info, 7192 "direct IO failed ino %llu rw %lu sector %#Lx len %u err no %d", 7193 btrfs_ino(dip->inode), bio->bi_rw, 7194 (unsigned long long)bio->bi_iter.bi_sector, 7195 bio->bi_iter.bi_size, err); 7196 dip->errors = 1; 7197 7198 /* 7199 * before atomic variable goto zero, we must make sure 7200 * dip->errors is perceived to be set. 7201 */ 7202 smp_mb__before_atomic(); 7203 } 7204 7205 /* if there are more bios still pending for this dio, just exit */ 7206 if (!atomic_dec_and_test(&dip->pending_bios)) 7207 goto out; 7208 7209 if (dip->errors) { 7210 bio_io_error(dip->orig_bio); 7211 } else { 7212 set_bit(BIO_UPTODATE, &dip->dio_bio->bi_flags); 7213 bio_endio(dip->orig_bio, 0); 7214 } 7215 out: 7216 bio_put(bio); 7217 } 7218 7219 static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev, 7220 u64 first_sector, gfp_t gfp_flags) 7221 { 7222 int nr_vecs = bio_get_nr_vecs(bdev); 7223 return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags); 7224 } 7225 7226 static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode, 7227 int rw, u64 file_offset, int skip_sum, 7228 int async_submit) 7229 { 7230 struct btrfs_dio_private *dip = bio->bi_private; 7231 int write = rw & REQ_WRITE; 7232 struct btrfs_root *root = BTRFS_I(inode)->root; 7233 int ret; 7234 7235 if (async_submit) 7236 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers); 7237 7238 bio_get(bio); 7239 7240 if (!write) { 7241 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0); 7242 if (ret) 7243 goto err; 7244 } 7245 7246 if (skip_sum) 7247 goto map; 7248 7249 if (write && async_submit) { 7250 ret = btrfs_wq_submit_bio(root->fs_info, 7251 inode, rw, bio, 0, 0, 7252 file_offset, 7253 __btrfs_submit_bio_start_direct_io, 7254 __btrfs_submit_bio_done); 7255 goto err; 7256 } else if (write) { 7257 /* 7258 * If we aren't doing async submit, calculate the csum of the 7259 * bio now. 7260 */ 7261 ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1); 7262 if (ret) 7263 goto err; 7264 } else if (!skip_sum) { 7265 ret = btrfs_lookup_bio_sums_dio(root, inode, dip, bio, 7266 file_offset); 7267 if (ret) 7268 goto err; 7269 } 7270 7271 map: 7272 ret = btrfs_map_bio(root, rw, bio, 0, async_submit); 7273 err: 7274 bio_put(bio); 7275 return ret; 7276 } 7277 7278 static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip, 7279 int skip_sum) 7280 { 7281 struct inode *inode = dip->inode; 7282 struct btrfs_root *root = BTRFS_I(inode)->root; 7283 struct bio *bio; 7284 struct bio *orig_bio = dip->orig_bio; 7285 struct bio_vec *bvec = orig_bio->bi_io_vec; 7286 u64 start_sector = orig_bio->bi_iter.bi_sector; 7287 u64 file_offset = dip->logical_offset; 7288 u64 submit_len = 0; 7289 u64 map_length; 7290 int nr_pages = 0; 7291 int ret = 0; 7292 int async_submit = 0; 7293 7294 map_length = orig_bio->bi_iter.bi_size; 7295 ret = btrfs_map_block(root->fs_info, rw, start_sector << 9, 7296 &map_length, NULL, 0); 7297 if (ret) { 7298 bio_put(orig_bio); 7299 return -EIO; 7300 } 7301 7302 if (map_length >= orig_bio->bi_iter.bi_size) { 7303 bio = orig_bio; 7304 goto submit; 7305 } 7306 7307 /* async crcs make it difficult to collect full stripe writes. */ 7308 if (btrfs_get_alloc_profile(root, 1) & 7309 (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6)) 7310 async_submit = 0; 7311 else 7312 async_submit = 1; 7313 7314 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS); 7315 if (!bio) 7316 return -ENOMEM; 7317 bio->bi_private = dip; 7318 bio->bi_end_io = btrfs_end_dio_bio; 7319 atomic_inc(&dip->pending_bios); 7320 7321 while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) { 7322 if (unlikely(map_length < submit_len + bvec->bv_len || 7323 bio_add_page(bio, bvec->bv_page, bvec->bv_len, 7324 bvec->bv_offset) < bvec->bv_len)) { 7325 /* 7326 * inc the count before we submit the bio so 7327 * we know the end IO handler won't happen before 7328 * we inc the count. Otherwise, the dip might get freed 7329 * before we're done setting it up 7330 */ 7331 atomic_inc(&dip->pending_bios); 7332 ret = __btrfs_submit_dio_bio(bio, inode, rw, 7333 file_offset, skip_sum, 7334 async_submit); 7335 if (ret) { 7336 bio_put(bio); 7337 atomic_dec(&dip->pending_bios); 7338 goto out_err; 7339 } 7340 7341 start_sector += submit_len >> 9; 7342 file_offset += submit_len; 7343 7344 submit_len = 0; 7345 nr_pages = 0; 7346 7347 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, 7348 start_sector, GFP_NOFS); 7349 if (!bio) 7350 goto out_err; 7351 bio->bi_private = dip; 7352 bio->bi_end_io = btrfs_end_dio_bio; 7353 7354 map_length = orig_bio->bi_iter.bi_size; 7355 ret = btrfs_map_block(root->fs_info, rw, 7356 start_sector << 9, 7357 &map_length, NULL, 0); 7358 if (ret) { 7359 bio_put(bio); 7360 goto out_err; 7361 } 7362 } else { 7363 submit_len += bvec->bv_len; 7364 nr_pages++; 7365 bvec++; 7366 } 7367 } 7368 7369 submit: 7370 ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum, 7371 async_submit); 7372 if (!ret) 7373 return 0; 7374 7375 bio_put(bio); 7376 out_err: 7377 dip->errors = 1; 7378 /* 7379 * before atomic variable goto zero, we must 7380 * make sure dip->errors is perceived to be set. 7381 */ 7382 smp_mb__before_atomic(); 7383 if (atomic_dec_and_test(&dip->pending_bios)) 7384 bio_io_error(dip->orig_bio); 7385 7386 /* bio_end_io() will handle error, so we needn't return it */ 7387 return 0; 7388 } 7389 7390 static void btrfs_submit_direct(int rw, struct bio *dio_bio, 7391 struct inode *inode, loff_t file_offset) 7392 { 7393 struct btrfs_root *root = BTRFS_I(inode)->root; 7394 struct btrfs_dio_private *dip; 7395 struct bio *io_bio; 7396 int skip_sum; 7397 int sum_len; 7398 int write = rw & REQ_WRITE; 7399 int ret = 0; 7400 u16 csum_size; 7401 7402 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 7403 7404 io_bio = btrfs_bio_clone(dio_bio, GFP_NOFS); 7405 if (!io_bio) { 7406 ret = -ENOMEM; 7407 goto free_ordered; 7408 } 7409 7410 if (!skip_sum && !write) { 7411 csum_size = btrfs_super_csum_size(root->fs_info->super_copy); 7412 sum_len = dio_bio->bi_iter.bi_size >> 7413 inode->i_sb->s_blocksize_bits; 7414 sum_len *= csum_size; 7415 } else { 7416 sum_len = 0; 7417 } 7418 7419 dip = kmalloc(sizeof(*dip) + sum_len, GFP_NOFS); 7420 if (!dip) { 7421 ret = -ENOMEM; 7422 goto free_io_bio; 7423 } 7424 7425 dip->private = dio_bio->bi_private; 7426 dip->inode = inode; 7427 dip->logical_offset = file_offset; 7428 dip->bytes = dio_bio->bi_iter.bi_size; 7429 dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9; 7430 io_bio->bi_private = dip; 7431 dip->errors = 0; 7432 dip->orig_bio = io_bio; 7433 dip->dio_bio = dio_bio; 7434 atomic_set(&dip->pending_bios, 0); 7435 7436 if (write) 7437 io_bio->bi_end_io = btrfs_endio_direct_write; 7438 else 7439 io_bio->bi_end_io = btrfs_endio_direct_read; 7440 7441 ret = btrfs_submit_direct_hook(rw, dip, skip_sum); 7442 if (!ret) 7443 return; 7444 7445 free_io_bio: 7446 bio_put(io_bio); 7447 7448 free_ordered: 7449 /* 7450 * If this is a write, we need to clean up the reserved space and kill 7451 * the ordered extent. 7452 */ 7453 if (write) { 7454 struct btrfs_ordered_extent *ordered; 7455 ordered = btrfs_lookup_ordered_extent(inode, file_offset); 7456 if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) && 7457 !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags)) 7458 btrfs_free_reserved_extent(root, ordered->start, 7459 ordered->disk_len, 1); 7460 btrfs_put_ordered_extent(ordered); 7461 btrfs_put_ordered_extent(ordered); 7462 } 7463 bio_endio(dio_bio, ret); 7464 } 7465 7466 static ssize_t check_direct_IO(struct btrfs_root *root, int rw, struct kiocb *iocb, 7467 const struct iov_iter *iter, loff_t offset) 7468 { 7469 int seg; 7470 int i; 7471 unsigned blocksize_mask = root->sectorsize - 1; 7472 ssize_t retval = -EINVAL; 7473 7474 if (offset & blocksize_mask) 7475 goto out; 7476 7477 if (iov_iter_alignment(iter) & blocksize_mask) 7478 goto out; 7479 7480 /* If this is a write we don't need to check anymore */ 7481 if (rw & WRITE) 7482 return 0; 7483 /* 7484 * Check to make sure we don't have duplicate iov_base's in this 7485 * iovec, if so return EINVAL, otherwise we'll get csum errors 7486 * when reading back. 7487 */ 7488 for (seg = 0; seg < iter->nr_segs; seg++) { 7489 for (i = seg + 1; i < iter->nr_segs; i++) { 7490 if (iter->iov[seg].iov_base == iter->iov[i].iov_base) 7491 goto out; 7492 } 7493 } 7494 retval = 0; 7495 out: 7496 return retval; 7497 } 7498 7499 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb, 7500 struct iov_iter *iter, loff_t offset) 7501 { 7502 struct file *file = iocb->ki_filp; 7503 struct inode *inode = file->f_mapping->host; 7504 size_t count = 0; 7505 int flags = 0; 7506 bool wakeup = true; 7507 bool relock = false; 7508 ssize_t ret; 7509 7510 if (check_direct_IO(BTRFS_I(inode)->root, rw, iocb, iter, offset)) 7511 return 0; 7512 7513 atomic_inc(&inode->i_dio_count); 7514 smp_mb__after_atomic(); 7515 7516 /* 7517 * The generic stuff only does filemap_write_and_wait_range, which 7518 * isn't enough if we've written compressed pages to this area, so 7519 * we need to flush the dirty pages again to make absolutely sure 7520 * that any outstanding dirty pages are on disk. 7521 */ 7522 count = iov_iter_count(iter); 7523 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 7524 &BTRFS_I(inode)->runtime_flags)) 7525 filemap_fdatawrite_range(inode->i_mapping, offset, count); 7526 7527 if (rw & WRITE) { 7528 /* 7529 * If the write DIO is beyond the EOF, we need update 7530 * the isize, but it is protected by i_mutex. So we can 7531 * not unlock the i_mutex at this case. 7532 */ 7533 if (offset + count <= inode->i_size) { 7534 mutex_unlock(&inode->i_mutex); 7535 relock = true; 7536 } 7537 ret = btrfs_delalloc_reserve_space(inode, count); 7538 if (ret) 7539 goto out; 7540 } else if (unlikely(test_bit(BTRFS_INODE_READDIO_NEED_LOCK, 7541 &BTRFS_I(inode)->runtime_flags))) { 7542 inode_dio_done(inode); 7543 flags = DIO_LOCKING | DIO_SKIP_HOLES; 7544 wakeup = false; 7545 } 7546 7547 ret = __blockdev_direct_IO(rw, iocb, inode, 7548 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev, 7549 iter, offset, btrfs_get_blocks_direct, NULL, 7550 btrfs_submit_direct, flags); 7551 if (rw & WRITE) { 7552 if (ret < 0 && ret != -EIOCBQUEUED) 7553 btrfs_delalloc_release_space(inode, count); 7554 else if (ret >= 0 && (size_t)ret < count) 7555 btrfs_delalloc_release_space(inode, 7556 count - (size_t)ret); 7557 else 7558 btrfs_delalloc_release_metadata(inode, 0); 7559 } 7560 out: 7561 if (wakeup) 7562 inode_dio_done(inode); 7563 if (relock) 7564 mutex_lock(&inode->i_mutex); 7565 7566 return ret; 7567 } 7568 7569 #define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC) 7570 7571 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 7572 __u64 start, __u64 len) 7573 { 7574 int ret; 7575 7576 ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS); 7577 if (ret) 7578 return ret; 7579 7580 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap); 7581 } 7582 7583 int btrfs_readpage(struct file *file, struct page *page) 7584 { 7585 struct extent_io_tree *tree; 7586 tree = &BTRFS_I(page->mapping->host)->io_tree; 7587 return extent_read_full_page(tree, page, btrfs_get_extent, 0); 7588 } 7589 7590 static int btrfs_writepage(struct page *page, struct writeback_control *wbc) 7591 { 7592 struct extent_io_tree *tree; 7593 7594 7595 if (current->flags & PF_MEMALLOC) { 7596 redirty_page_for_writepage(wbc, page); 7597 unlock_page(page); 7598 return 0; 7599 } 7600 tree = &BTRFS_I(page->mapping->host)->io_tree; 7601 return extent_write_full_page(tree, page, btrfs_get_extent, wbc); 7602 } 7603 7604 static int btrfs_writepages(struct address_space *mapping, 7605 struct writeback_control *wbc) 7606 { 7607 struct extent_io_tree *tree; 7608 7609 tree = &BTRFS_I(mapping->host)->io_tree; 7610 return extent_writepages(tree, mapping, btrfs_get_extent, wbc); 7611 } 7612 7613 static int 7614 btrfs_readpages(struct file *file, struct address_space *mapping, 7615 struct list_head *pages, unsigned nr_pages) 7616 { 7617 struct extent_io_tree *tree; 7618 tree = &BTRFS_I(mapping->host)->io_tree; 7619 return extent_readpages(tree, mapping, pages, nr_pages, 7620 btrfs_get_extent); 7621 } 7622 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags) 7623 { 7624 struct extent_io_tree *tree; 7625 struct extent_map_tree *map; 7626 int ret; 7627 7628 tree = &BTRFS_I(page->mapping->host)->io_tree; 7629 map = &BTRFS_I(page->mapping->host)->extent_tree; 7630 ret = try_release_extent_mapping(map, tree, page, gfp_flags); 7631 if (ret == 1) { 7632 ClearPagePrivate(page); 7633 set_page_private(page, 0); 7634 page_cache_release(page); 7635 } 7636 return ret; 7637 } 7638 7639 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags) 7640 { 7641 if (PageWriteback(page) || PageDirty(page)) 7642 return 0; 7643 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS); 7644 } 7645 7646 static void btrfs_invalidatepage(struct page *page, unsigned int offset, 7647 unsigned int length) 7648 { 7649 struct inode *inode = page->mapping->host; 7650 struct extent_io_tree *tree; 7651 struct btrfs_ordered_extent *ordered; 7652 struct extent_state *cached_state = NULL; 7653 u64 page_start = page_offset(page); 7654 u64 page_end = page_start + PAGE_CACHE_SIZE - 1; 7655 int inode_evicting = inode->i_state & I_FREEING; 7656 7657 /* 7658 * we have the page locked, so new writeback can't start, 7659 * and the dirty bit won't be cleared while we are here. 7660 * 7661 * Wait for IO on this page so that we can safely clear 7662 * the PagePrivate2 bit and do ordered accounting 7663 */ 7664 wait_on_page_writeback(page); 7665 7666 tree = &BTRFS_I(inode)->io_tree; 7667 if (offset) { 7668 btrfs_releasepage(page, GFP_NOFS); 7669 return; 7670 } 7671 7672 if (!inode_evicting) 7673 lock_extent_bits(tree, page_start, page_end, 0, &cached_state); 7674 ordered = btrfs_lookup_ordered_extent(inode, page_start); 7675 if (ordered) { 7676 /* 7677 * IO on this page will never be started, so we need 7678 * to account for any ordered extents now 7679 */ 7680 if (!inode_evicting) 7681 clear_extent_bit(tree, page_start, page_end, 7682 EXTENT_DIRTY | EXTENT_DELALLOC | 7683 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING | 7684 EXTENT_DEFRAG, 1, 0, &cached_state, 7685 GFP_NOFS); 7686 /* 7687 * whoever cleared the private bit is responsible 7688 * for the finish_ordered_io 7689 */ 7690 if (TestClearPagePrivate2(page)) { 7691 struct btrfs_ordered_inode_tree *tree; 7692 u64 new_len; 7693 7694 tree = &BTRFS_I(inode)->ordered_tree; 7695 7696 spin_lock_irq(&tree->lock); 7697 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags); 7698 new_len = page_start - ordered->file_offset; 7699 if (new_len < ordered->truncated_len) 7700 ordered->truncated_len = new_len; 7701 spin_unlock_irq(&tree->lock); 7702 7703 if (btrfs_dec_test_ordered_pending(inode, &ordered, 7704 page_start, 7705 PAGE_CACHE_SIZE, 1)) 7706 btrfs_finish_ordered_io(ordered); 7707 } 7708 btrfs_put_ordered_extent(ordered); 7709 if (!inode_evicting) { 7710 cached_state = NULL; 7711 lock_extent_bits(tree, page_start, page_end, 0, 7712 &cached_state); 7713 } 7714 } 7715 7716 if (!inode_evicting) { 7717 clear_extent_bit(tree, page_start, page_end, 7718 EXTENT_LOCKED | EXTENT_DIRTY | 7719 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | 7720 EXTENT_DEFRAG, 1, 1, 7721 &cached_state, GFP_NOFS); 7722 7723 __btrfs_releasepage(page, GFP_NOFS); 7724 } 7725 7726 ClearPageChecked(page); 7727 if (PagePrivate(page)) { 7728 ClearPagePrivate(page); 7729 set_page_private(page, 0); 7730 page_cache_release(page); 7731 } 7732 } 7733 7734 /* 7735 * btrfs_page_mkwrite() is not allowed to change the file size as it gets 7736 * called from a page fault handler when a page is first dirtied. Hence we must 7737 * be careful to check for EOF conditions here. We set the page up correctly 7738 * for a written page which means we get ENOSPC checking when writing into 7739 * holes and correct delalloc and unwritten extent mapping on filesystems that 7740 * support these features. 7741 * 7742 * We are not allowed to take the i_mutex here so we have to play games to 7743 * protect against truncate races as the page could now be beyond EOF. Because 7744 * vmtruncate() writes the inode size before removing pages, once we have the 7745 * page lock we can determine safely if the page is beyond EOF. If it is not 7746 * beyond EOF, then the page is guaranteed safe against truncation until we 7747 * unlock the page. 7748 */ 7749 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf) 7750 { 7751 struct page *page = vmf->page; 7752 struct inode *inode = file_inode(vma->vm_file); 7753 struct btrfs_root *root = BTRFS_I(inode)->root; 7754 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 7755 struct btrfs_ordered_extent *ordered; 7756 struct extent_state *cached_state = NULL; 7757 char *kaddr; 7758 unsigned long zero_start; 7759 loff_t size; 7760 int ret; 7761 int reserved = 0; 7762 u64 page_start; 7763 u64 page_end; 7764 7765 sb_start_pagefault(inode->i_sb); 7766 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE); 7767 if (!ret) { 7768 ret = file_update_time(vma->vm_file); 7769 reserved = 1; 7770 } 7771 if (ret) { 7772 if (ret == -ENOMEM) 7773 ret = VM_FAULT_OOM; 7774 else /* -ENOSPC, -EIO, etc */ 7775 ret = VM_FAULT_SIGBUS; 7776 if (reserved) 7777 goto out; 7778 goto out_noreserve; 7779 } 7780 7781 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */ 7782 again: 7783 lock_page(page); 7784 size = i_size_read(inode); 7785 page_start = page_offset(page); 7786 page_end = page_start + PAGE_CACHE_SIZE - 1; 7787 7788 if ((page->mapping != inode->i_mapping) || 7789 (page_start >= size)) { 7790 /* page got truncated out from underneath us */ 7791 goto out_unlock; 7792 } 7793 wait_on_page_writeback(page); 7794 7795 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state); 7796 set_page_extent_mapped(page); 7797 7798 /* 7799 * we can't set the delalloc bits if there are pending ordered 7800 * extents. Drop our locks and wait for them to finish 7801 */ 7802 ordered = btrfs_lookup_ordered_extent(inode, page_start); 7803 if (ordered) { 7804 unlock_extent_cached(io_tree, page_start, page_end, 7805 &cached_state, GFP_NOFS); 7806 unlock_page(page); 7807 btrfs_start_ordered_extent(inode, ordered, 1); 7808 btrfs_put_ordered_extent(ordered); 7809 goto again; 7810 } 7811 7812 /* 7813 * XXX - page_mkwrite gets called every time the page is dirtied, even 7814 * if it was already dirty, so for space accounting reasons we need to 7815 * clear any delalloc bits for the range we are fixing to save. There 7816 * is probably a better way to do this, but for now keep consistent with 7817 * prepare_pages in the normal write path. 7818 */ 7819 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end, 7820 EXTENT_DIRTY | EXTENT_DELALLOC | 7821 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 7822 0, 0, &cached_state, GFP_NOFS); 7823 7824 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 7825 &cached_state); 7826 if (ret) { 7827 unlock_extent_cached(io_tree, page_start, page_end, 7828 &cached_state, GFP_NOFS); 7829 ret = VM_FAULT_SIGBUS; 7830 goto out_unlock; 7831 } 7832 ret = 0; 7833 7834 /* page is wholly or partially inside EOF */ 7835 if (page_start + PAGE_CACHE_SIZE > size) 7836 zero_start = size & ~PAGE_CACHE_MASK; 7837 else 7838 zero_start = PAGE_CACHE_SIZE; 7839 7840 if (zero_start != PAGE_CACHE_SIZE) { 7841 kaddr = kmap(page); 7842 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start); 7843 flush_dcache_page(page); 7844 kunmap(page); 7845 } 7846 ClearPageChecked(page); 7847 set_page_dirty(page); 7848 SetPageUptodate(page); 7849 7850 BTRFS_I(inode)->last_trans = root->fs_info->generation; 7851 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid; 7852 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit; 7853 7854 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS); 7855 7856 out_unlock: 7857 if (!ret) { 7858 sb_end_pagefault(inode->i_sb); 7859 return VM_FAULT_LOCKED; 7860 } 7861 unlock_page(page); 7862 out: 7863 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE); 7864 out_noreserve: 7865 sb_end_pagefault(inode->i_sb); 7866 return ret; 7867 } 7868 7869 static int btrfs_truncate(struct inode *inode) 7870 { 7871 struct btrfs_root *root = BTRFS_I(inode)->root; 7872 struct btrfs_block_rsv *rsv; 7873 int ret = 0; 7874 int err = 0; 7875 struct btrfs_trans_handle *trans; 7876 u64 mask = root->sectorsize - 1; 7877 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1); 7878 7879 ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask), 7880 (u64)-1); 7881 if (ret) 7882 return ret; 7883 7884 /* 7885 * Yes ladies and gentelment, this is indeed ugly. The fact is we have 7886 * 3 things going on here 7887 * 7888 * 1) We need to reserve space for our orphan item and the space to 7889 * delete our orphan item. Lord knows we don't want to have a dangling 7890 * orphan item because we didn't reserve space to remove it. 7891 * 7892 * 2) We need to reserve space to update our inode. 7893 * 7894 * 3) We need to have something to cache all the space that is going to 7895 * be free'd up by the truncate operation, but also have some slack 7896 * space reserved in case it uses space during the truncate (thank you 7897 * very much snapshotting). 7898 * 7899 * And we need these to all be seperate. The fact is we can use alot of 7900 * space doing the truncate, and we have no earthly idea how much space 7901 * we will use, so we need the truncate reservation to be seperate so it 7902 * doesn't end up using space reserved for updating the inode or 7903 * removing the orphan item. We also need to be able to stop the 7904 * transaction and start a new one, which means we need to be able to 7905 * update the inode several times, and we have no idea of knowing how 7906 * many times that will be, so we can't just reserve 1 item for the 7907 * entirety of the opration, so that has to be done seperately as well. 7908 * Then there is the orphan item, which does indeed need to be held on 7909 * to for the whole operation, and we need nobody to touch this reserved 7910 * space except the orphan code. 7911 * 7912 * So that leaves us with 7913 * 7914 * 1) root->orphan_block_rsv - for the orphan deletion. 7915 * 2) rsv - for the truncate reservation, which we will steal from the 7916 * transaction reservation. 7917 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for 7918 * updating the inode. 7919 */ 7920 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP); 7921 if (!rsv) 7922 return -ENOMEM; 7923 rsv->size = min_size; 7924 rsv->failfast = 1; 7925 7926 /* 7927 * 1 for the truncate slack space 7928 * 1 for updating the inode. 7929 */ 7930 trans = btrfs_start_transaction(root, 2); 7931 if (IS_ERR(trans)) { 7932 err = PTR_ERR(trans); 7933 goto out; 7934 } 7935 7936 /* Migrate the slack space for the truncate to our reserve */ 7937 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv, 7938 min_size); 7939 BUG_ON(ret); 7940 7941 /* 7942 * setattr is responsible for setting the ordered_data_close flag, 7943 * but that is only tested during the last file release. That 7944 * could happen well after the next commit, leaving a great big 7945 * window where new writes may get lost if someone chooses to write 7946 * to this file after truncating to zero 7947 * 7948 * The inode doesn't have any dirty data here, and so if we commit 7949 * this is a noop. If someone immediately starts writing to the inode 7950 * it is very likely we'll catch some of their writes in this 7951 * transaction, and the commit will find this file on the ordered 7952 * data list with good things to send down. 7953 * 7954 * This is a best effort solution, there is still a window where 7955 * using truncate to replace the contents of the file will 7956 * end up with a zero length file after a crash. 7957 */ 7958 if (inode->i_size == 0 && test_bit(BTRFS_INODE_ORDERED_DATA_CLOSE, 7959 &BTRFS_I(inode)->runtime_flags)) 7960 btrfs_add_ordered_operation(trans, root, inode); 7961 7962 /* 7963 * So if we truncate and then write and fsync we normally would just 7964 * write the extents that changed, which is a problem if we need to 7965 * first truncate that entire inode. So set this flag so we write out 7966 * all of the extents in the inode to the sync log so we're completely 7967 * safe. 7968 */ 7969 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 7970 trans->block_rsv = rsv; 7971 7972 while (1) { 7973 ret = btrfs_truncate_inode_items(trans, root, inode, 7974 inode->i_size, 7975 BTRFS_EXTENT_DATA_KEY); 7976 if (ret != -ENOSPC) { 7977 err = ret; 7978 break; 7979 } 7980 7981 trans->block_rsv = &root->fs_info->trans_block_rsv; 7982 ret = btrfs_update_inode(trans, root, inode); 7983 if (ret) { 7984 err = ret; 7985 break; 7986 } 7987 7988 btrfs_end_transaction(trans, root); 7989 btrfs_btree_balance_dirty(root); 7990 7991 trans = btrfs_start_transaction(root, 2); 7992 if (IS_ERR(trans)) { 7993 ret = err = PTR_ERR(trans); 7994 trans = NULL; 7995 break; 7996 } 7997 7998 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, 7999 rsv, min_size); 8000 BUG_ON(ret); /* shouldn't happen */ 8001 trans->block_rsv = rsv; 8002 } 8003 8004 if (ret == 0 && inode->i_nlink > 0) { 8005 trans->block_rsv = root->orphan_block_rsv; 8006 ret = btrfs_orphan_del(trans, inode); 8007 if (ret) 8008 err = ret; 8009 } 8010 8011 if (trans) { 8012 trans->block_rsv = &root->fs_info->trans_block_rsv; 8013 ret = btrfs_update_inode(trans, root, inode); 8014 if (ret && !err) 8015 err = ret; 8016 8017 ret = btrfs_end_transaction(trans, root); 8018 btrfs_btree_balance_dirty(root); 8019 } 8020 8021 out: 8022 btrfs_free_block_rsv(root, rsv); 8023 8024 if (ret && !err) 8025 err = ret; 8026 8027 return err; 8028 } 8029 8030 /* 8031 * create a new subvolume directory/inode (helper for the ioctl). 8032 */ 8033 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans, 8034 struct btrfs_root *new_root, 8035 struct btrfs_root *parent_root, 8036 u64 new_dirid) 8037 { 8038 struct inode *inode; 8039 int err; 8040 u64 index = 0; 8041 8042 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, 8043 new_dirid, new_dirid, 8044 S_IFDIR | (~current_umask() & S_IRWXUGO), 8045 &index); 8046 if (IS_ERR(inode)) 8047 return PTR_ERR(inode); 8048 inode->i_op = &btrfs_dir_inode_operations; 8049 inode->i_fop = &btrfs_dir_file_operations; 8050 8051 set_nlink(inode, 1); 8052 btrfs_i_size_write(inode, 0); 8053 8054 err = btrfs_subvol_inherit_props(trans, new_root, parent_root); 8055 if (err) 8056 btrfs_err(new_root->fs_info, 8057 "error inheriting subvolume %llu properties: %d", 8058 new_root->root_key.objectid, err); 8059 8060 err = btrfs_update_inode(trans, new_root, inode); 8061 8062 iput(inode); 8063 return err; 8064 } 8065 8066 struct inode *btrfs_alloc_inode(struct super_block *sb) 8067 { 8068 struct btrfs_inode *ei; 8069 struct inode *inode; 8070 8071 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS); 8072 if (!ei) 8073 return NULL; 8074 8075 ei->root = NULL; 8076 ei->generation = 0; 8077 ei->last_trans = 0; 8078 ei->last_sub_trans = 0; 8079 ei->logged_trans = 0; 8080 ei->delalloc_bytes = 0; 8081 ei->disk_i_size = 0; 8082 ei->flags = 0; 8083 ei->csum_bytes = 0; 8084 ei->index_cnt = (u64)-1; 8085 ei->dir_index = 0; 8086 ei->last_unlink_trans = 0; 8087 ei->last_log_commit = 0; 8088 8089 spin_lock_init(&ei->lock); 8090 ei->outstanding_extents = 0; 8091 ei->reserved_extents = 0; 8092 8093 ei->runtime_flags = 0; 8094 ei->force_compress = BTRFS_COMPRESS_NONE; 8095 8096 ei->delayed_node = NULL; 8097 8098 inode = &ei->vfs_inode; 8099 extent_map_tree_init(&ei->extent_tree); 8100 extent_io_tree_init(&ei->io_tree, &inode->i_data); 8101 extent_io_tree_init(&ei->io_failure_tree, &inode->i_data); 8102 ei->io_tree.track_uptodate = 1; 8103 ei->io_failure_tree.track_uptodate = 1; 8104 atomic_set(&ei->sync_writers, 0); 8105 mutex_init(&ei->log_mutex); 8106 mutex_init(&ei->delalloc_mutex); 8107 btrfs_ordered_inode_tree_init(&ei->ordered_tree); 8108 INIT_LIST_HEAD(&ei->delalloc_inodes); 8109 INIT_LIST_HEAD(&ei->ordered_operations); 8110 RB_CLEAR_NODE(&ei->rb_node); 8111 8112 return inode; 8113 } 8114 8115 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 8116 void btrfs_test_destroy_inode(struct inode *inode) 8117 { 8118 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0); 8119 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 8120 } 8121 #endif 8122 8123 static void btrfs_i_callback(struct rcu_head *head) 8124 { 8125 struct inode *inode = container_of(head, struct inode, i_rcu); 8126 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 8127 } 8128 8129 void btrfs_destroy_inode(struct inode *inode) 8130 { 8131 struct btrfs_ordered_extent *ordered; 8132 struct btrfs_root *root = BTRFS_I(inode)->root; 8133 8134 WARN_ON(!hlist_empty(&inode->i_dentry)); 8135 WARN_ON(inode->i_data.nrpages); 8136 WARN_ON(BTRFS_I(inode)->outstanding_extents); 8137 WARN_ON(BTRFS_I(inode)->reserved_extents); 8138 WARN_ON(BTRFS_I(inode)->delalloc_bytes); 8139 WARN_ON(BTRFS_I(inode)->csum_bytes); 8140 8141 /* 8142 * This can happen where we create an inode, but somebody else also 8143 * created the same inode and we need to destroy the one we already 8144 * created. 8145 */ 8146 if (!root) 8147 goto free; 8148 8149 /* 8150 * Make sure we're properly removed from the ordered operation 8151 * lists. 8152 */ 8153 smp_mb(); 8154 if (!list_empty(&BTRFS_I(inode)->ordered_operations)) { 8155 spin_lock(&root->fs_info->ordered_root_lock); 8156 list_del_init(&BTRFS_I(inode)->ordered_operations); 8157 spin_unlock(&root->fs_info->ordered_root_lock); 8158 } 8159 8160 if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 8161 &BTRFS_I(inode)->runtime_flags)) { 8162 btrfs_info(root->fs_info, "inode %llu still on the orphan list", 8163 btrfs_ino(inode)); 8164 atomic_dec(&root->orphan_inodes); 8165 } 8166 8167 while (1) { 8168 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1); 8169 if (!ordered) 8170 break; 8171 else { 8172 btrfs_err(root->fs_info, "found ordered extent %llu %llu on inode cleanup", 8173 ordered->file_offset, ordered->len); 8174 btrfs_remove_ordered_extent(inode, ordered); 8175 btrfs_put_ordered_extent(ordered); 8176 btrfs_put_ordered_extent(ordered); 8177 } 8178 } 8179 inode_tree_del(inode); 8180 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0); 8181 free: 8182 call_rcu(&inode->i_rcu, btrfs_i_callback); 8183 } 8184 8185 int btrfs_drop_inode(struct inode *inode) 8186 { 8187 struct btrfs_root *root = BTRFS_I(inode)->root; 8188 8189 if (root == NULL) 8190 return 1; 8191 8192 /* the snap/subvol tree is on deleting */ 8193 if (btrfs_root_refs(&root->root_item) == 0) 8194 return 1; 8195 else 8196 return generic_drop_inode(inode); 8197 } 8198 8199 static void init_once(void *foo) 8200 { 8201 struct btrfs_inode *ei = (struct btrfs_inode *) foo; 8202 8203 inode_init_once(&ei->vfs_inode); 8204 } 8205 8206 void btrfs_destroy_cachep(void) 8207 { 8208 /* 8209 * Make sure all delayed rcu free inodes are flushed before we 8210 * destroy cache. 8211 */ 8212 rcu_barrier(); 8213 if (btrfs_inode_cachep) 8214 kmem_cache_destroy(btrfs_inode_cachep); 8215 if (btrfs_trans_handle_cachep) 8216 kmem_cache_destroy(btrfs_trans_handle_cachep); 8217 if (btrfs_transaction_cachep) 8218 kmem_cache_destroy(btrfs_transaction_cachep); 8219 if (btrfs_path_cachep) 8220 kmem_cache_destroy(btrfs_path_cachep); 8221 if (btrfs_free_space_cachep) 8222 kmem_cache_destroy(btrfs_free_space_cachep); 8223 if (btrfs_delalloc_work_cachep) 8224 kmem_cache_destroy(btrfs_delalloc_work_cachep); 8225 } 8226 8227 int btrfs_init_cachep(void) 8228 { 8229 btrfs_inode_cachep = kmem_cache_create("btrfs_inode", 8230 sizeof(struct btrfs_inode), 0, 8231 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once); 8232 if (!btrfs_inode_cachep) 8233 goto fail; 8234 8235 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle", 8236 sizeof(struct btrfs_trans_handle), 0, 8237 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 8238 if (!btrfs_trans_handle_cachep) 8239 goto fail; 8240 8241 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction", 8242 sizeof(struct btrfs_transaction), 0, 8243 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 8244 if (!btrfs_transaction_cachep) 8245 goto fail; 8246 8247 btrfs_path_cachep = kmem_cache_create("btrfs_path", 8248 sizeof(struct btrfs_path), 0, 8249 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 8250 if (!btrfs_path_cachep) 8251 goto fail; 8252 8253 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space", 8254 sizeof(struct btrfs_free_space), 0, 8255 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 8256 if (!btrfs_free_space_cachep) 8257 goto fail; 8258 8259 btrfs_delalloc_work_cachep = kmem_cache_create("btrfs_delalloc_work", 8260 sizeof(struct btrfs_delalloc_work), 0, 8261 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, 8262 NULL); 8263 if (!btrfs_delalloc_work_cachep) 8264 goto fail; 8265 8266 return 0; 8267 fail: 8268 btrfs_destroy_cachep(); 8269 return -ENOMEM; 8270 } 8271 8272 static int btrfs_getattr(struct vfsmount *mnt, 8273 struct dentry *dentry, struct kstat *stat) 8274 { 8275 u64 delalloc_bytes; 8276 struct inode *inode = dentry->d_inode; 8277 u32 blocksize = inode->i_sb->s_blocksize; 8278 8279 generic_fillattr(inode, stat); 8280 stat->dev = BTRFS_I(inode)->root->anon_dev; 8281 stat->blksize = PAGE_CACHE_SIZE; 8282 8283 spin_lock(&BTRFS_I(inode)->lock); 8284 delalloc_bytes = BTRFS_I(inode)->delalloc_bytes; 8285 spin_unlock(&BTRFS_I(inode)->lock); 8286 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) + 8287 ALIGN(delalloc_bytes, blocksize)) >> 9; 8288 return 0; 8289 } 8290 8291 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry, 8292 struct inode *new_dir, struct dentry *new_dentry) 8293 { 8294 struct btrfs_trans_handle *trans; 8295 struct btrfs_root *root = BTRFS_I(old_dir)->root; 8296 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 8297 struct inode *new_inode = new_dentry->d_inode; 8298 struct inode *old_inode = old_dentry->d_inode; 8299 struct timespec ctime = CURRENT_TIME; 8300 u64 index = 0; 8301 u64 root_objectid; 8302 int ret; 8303 u64 old_ino = btrfs_ino(old_inode); 8304 8305 if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 8306 return -EPERM; 8307 8308 /* we only allow rename subvolume link between subvolumes */ 8309 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest) 8310 return -EXDEV; 8311 8312 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID || 8313 (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID)) 8314 return -ENOTEMPTY; 8315 8316 if (S_ISDIR(old_inode->i_mode) && new_inode && 8317 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) 8318 return -ENOTEMPTY; 8319 8320 8321 /* check for collisions, even if the name isn't there */ 8322 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino, 8323 new_dentry->d_name.name, 8324 new_dentry->d_name.len); 8325 8326 if (ret) { 8327 if (ret == -EEXIST) { 8328 /* we shouldn't get 8329 * eexist without a new_inode */ 8330 if (WARN_ON(!new_inode)) { 8331 return ret; 8332 } 8333 } else { 8334 /* maybe -EOVERFLOW */ 8335 return ret; 8336 } 8337 } 8338 ret = 0; 8339 8340 /* 8341 * we're using rename to replace one file with another. 8342 * and the replacement file is large. Start IO on it now so 8343 * we don't add too much work to the end of the transaction 8344 */ 8345 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size && 8346 old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT) 8347 filemap_flush(old_inode->i_mapping); 8348 8349 /* close the racy window with snapshot create/destroy ioctl */ 8350 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 8351 down_read(&root->fs_info->subvol_sem); 8352 /* 8353 * We want to reserve the absolute worst case amount of items. So if 8354 * both inodes are subvols and we need to unlink them then that would 8355 * require 4 item modifications, but if they are both normal inodes it 8356 * would require 5 item modifications, so we'll assume their normal 8357 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items 8358 * should cover the worst case number of items we'll modify. 8359 */ 8360 trans = btrfs_start_transaction(root, 11); 8361 if (IS_ERR(trans)) { 8362 ret = PTR_ERR(trans); 8363 goto out_notrans; 8364 } 8365 8366 if (dest != root) 8367 btrfs_record_root_in_trans(trans, dest); 8368 8369 ret = btrfs_set_inode_index(new_dir, &index); 8370 if (ret) 8371 goto out_fail; 8372 8373 BTRFS_I(old_inode)->dir_index = 0ULL; 8374 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 8375 /* force full log commit if subvolume involved. */ 8376 btrfs_set_log_full_commit(root->fs_info, trans); 8377 } else { 8378 ret = btrfs_insert_inode_ref(trans, dest, 8379 new_dentry->d_name.name, 8380 new_dentry->d_name.len, 8381 old_ino, 8382 btrfs_ino(new_dir), index); 8383 if (ret) 8384 goto out_fail; 8385 /* 8386 * this is an ugly little race, but the rename is required 8387 * to make sure that if we crash, the inode is either at the 8388 * old name or the new one. pinning the log transaction lets 8389 * us make sure we don't allow a log commit to come in after 8390 * we unlink the name but before we add the new name back in. 8391 */ 8392 btrfs_pin_log_trans(root); 8393 } 8394 /* 8395 * make sure the inode gets flushed if it is replacing 8396 * something. 8397 */ 8398 if (new_inode && new_inode->i_size && S_ISREG(old_inode->i_mode)) 8399 btrfs_add_ordered_operation(trans, root, old_inode); 8400 8401 inode_inc_iversion(old_dir); 8402 inode_inc_iversion(new_dir); 8403 inode_inc_iversion(old_inode); 8404 old_dir->i_ctime = old_dir->i_mtime = ctime; 8405 new_dir->i_ctime = new_dir->i_mtime = ctime; 8406 old_inode->i_ctime = ctime; 8407 8408 if (old_dentry->d_parent != new_dentry->d_parent) 8409 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1); 8410 8411 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 8412 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid; 8413 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid, 8414 old_dentry->d_name.name, 8415 old_dentry->d_name.len); 8416 } else { 8417 ret = __btrfs_unlink_inode(trans, root, old_dir, 8418 old_dentry->d_inode, 8419 old_dentry->d_name.name, 8420 old_dentry->d_name.len); 8421 if (!ret) 8422 ret = btrfs_update_inode(trans, root, old_inode); 8423 } 8424 if (ret) { 8425 btrfs_abort_transaction(trans, root, ret); 8426 goto out_fail; 8427 } 8428 8429 if (new_inode) { 8430 inode_inc_iversion(new_inode); 8431 new_inode->i_ctime = CURRENT_TIME; 8432 if (unlikely(btrfs_ino(new_inode) == 8433 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 8434 root_objectid = BTRFS_I(new_inode)->location.objectid; 8435 ret = btrfs_unlink_subvol(trans, dest, new_dir, 8436 root_objectid, 8437 new_dentry->d_name.name, 8438 new_dentry->d_name.len); 8439 BUG_ON(new_inode->i_nlink == 0); 8440 } else { 8441 ret = btrfs_unlink_inode(trans, dest, new_dir, 8442 new_dentry->d_inode, 8443 new_dentry->d_name.name, 8444 new_dentry->d_name.len); 8445 } 8446 if (!ret && new_inode->i_nlink == 0) 8447 ret = btrfs_orphan_add(trans, new_dentry->d_inode); 8448 if (ret) { 8449 btrfs_abort_transaction(trans, root, ret); 8450 goto out_fail; 8451 } 8452 } 8453 8454 ret = btrfs_add_link(trans, new_dir, old_inode, 8455 new_dentry->d_name.name, 8456 new_dentry->d_name.len, 0, index); 8457 if (ret) { 8458 btrfs_abort_transaction(trans, root, ret); 8459 goto out_fail; 8460 } 8461 8462 if (old_inode->i_nlink == 1) 8463 BTRFS_I(old_inode)->dir_index = index; 8464 8465 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) { 8466 struct dentry *parent = new_dentry->d_parent; 8467 btrfs_log_new_name(trans, old_inode, old_dir, parent); 8468 btrfs_end_log_trans(root); 8469 } 8470 out_fail: 8471 btrfs_end_transaction(trans, root); 8472 out_notrans: 8473 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 8474 up_read(&root->fs_info->subvol_sem); 8475 8476 return ret; 8477 } 8478 8479 static void btrfs_run_delalloc_work(struct btrfs_work *work) 8480 { 8481 struct btrfs_delalloc_work *delalloc_work; 8482 struct inode *inode; 8483 8484 delalloc_work = container_of(work, struct btrfs_delalloc_work, 8485 work); 8486 inode = delalloc_work->inode; 8487 if (delalloc_work->wait) { 8488 btrfs_wait_ordered_range(inode, 0, (u64)-1); 8489 } else { 8490 filemap_flush(inode->i_mapping); 8491 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 8492 &BTRFS_I(inode)->runtime_flags)) 8493 filemap_flush(inode->i_mapping); 8494 } 8495 8496 if (delalloc_work->delay_iput) 8497 btrfs_add_delayed_iput(inode); 8498 else 8499 iput(inode); 8500 complete(&delalloc_work->completion); 8501 } 8502 8503 struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode, 8504 int wait, int delay_iput) 8505 { 8506 struct btrfs_delalloc_work *work; 8507 8508 work = kmem_cache_zalloc(btrfs_delalloc_work_cachep, GFP_NOFS); 8509 if (!work) 8510 return NULL; 8511 8512 init_completion(&work->completion); 8513 INIT_LIST_HEAD(&work->list); 8514 work->inode = inode; 8515 work->wait = wait; 8516 work->delay_iput = delay_iput; 8517 btrfs_init_work(&work->work, btrfs_run_delalloc_work, NULL, NULL); 8518 8519 return work; 8520 } 8521 8522 void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work) 8523 { 8524 wait_for_completion(&work->completion); 8525 kmem_cache_free(btrfs_delalloc_work_cachep, work); 8526 } 8527 8528 /* 8529 * some fairly slow code that needs optimization. This walks the list 8530 * of all the inodes with pending delalloc and forces them to disk. 8531 */ 8532 static int __start_delalloc_inodes(struct btrfs_root *root, int delay_iput, 8533 int nr) 8534 { 8535 struct btrfs_inode *binode; 8536 struct inode *inode; 8537 struct btrfs_delalloc_work *work, *next; 8538 struct list_head works; 8539 struct list_head splice; 8540 int ret = 0; 8541 8542 INIT_LIST_HEAD(&works); 8543 INIT_LIST_HEAD(&splice); 8544 8545 mutex_lock(&root->delalloc_mutex); 8546 spin_lock(&root->delalloc_lock); 8547 list_splice_init(&root->delalloc_inodes, &splice); 8548 while (!list_empty(&splice)) { 8549 binode = list_entry(splice.next, struct btrfs_inode, 8550 delalloc_inodes); 8551 8552 list_move_tail(&binode->delalloc_inodes, 8553 &root->delalloc_inodes); 8554 inode = igrab(&binode->vfs_inode); 8555 if (!inode) { 8556 cond_resched_lock(&root->delalloc_lock); 8557 continue; 8558 } 8559 spin_unlock(&root->delalloc_lock); 8560 8561 work = btrfs_alloc_delalloc_work(inode, 0, delay_iput); 8562 if (unlikely(!work)) { 8563 if (delay_iput) 8564 btrfs_add_delayed_iput(inode); 8565 else 8566 iput(inode); 8567 ret = -ENOMEM; 8568 goto out; 8569 } 8570 list_add_tail(&work->list, &works); 8571 btrfs_queue_work(root->fs_info->flush_workers, 8572 &work->work); 8573 ret++; 8574 if (nr != -1 && ret >= nr) 8575 goto out; 8576 cond_resched(); 8577 spin_lock(&root->delalloc_lock); 8578 } 8579 spin_unlock(&root->delalloc_lock); 8580 8581 out: 8582 list_for_each_entry_safe(work, next, &works, list) { 8583 list_del_init(&work->list); 8584 btrfs_wait_and_free_delalloc_work(work); 8585 } 8586 8587 if (!list_empty_careful(&splice)) { 8588 spin_lock(&root->delalloc_lock); 8589 list_splice_tail(&splice, &root->delalloc_inodes); 8590 spin_unlock(&root->delalloc_lock); 8591 } 8592 mutex_unlock(&root->delalloc_mutex); 8593 return ret; 8594 } 8595 8596 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput) 8597 { 8598 int ret; 8599 8600 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) 8601 return -EROFS; 8602 8603 ret = __start_delalloc_inodes(root, delay_iput, -1); 8604 if (ret > 0) 8605 ret = 0; 8606 /* 8607 * the filemap_flush will queue IO into the worker threads, but 8608 * we have to make sure the IO is actually started and that 8609 * ordered extents get created before we return 8610 */ 8611 atomic_inc(&root->fs_info->async_submit_draining); 8612 while (atomic_read(&root->fs_info->nr_async_submits) || 8613 atomic_read(&root->fs_info->async_delalloc_pages)) { 8614 wait_event(root->fs_info->async_submit_wait, 8615 (atomic_read(&root->fs_info->nr_async_submits) == 0 && 8616 atomic_read(&root->fs_info->async_delalloc_pages) == 0)); 8617 } 8618 atomic_dec(&root->fs_info->async_submit_draining); 8619 return ret; 8620 } 8621 8622 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int delay_iput, 8623 int nr) 8624 { 8625 struct btrfs_root *root; 8626 struct list_head splice; 8627 int ret; 8628 8629 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 8630 return -EROFS; 8631 8632 INIT_LIST_HEAD(&splice); 8633 8634 mutex_lock(&fs_info->delalloc_root_mutex); 8635 spin_lock(&fs_info->delalloc_root_lock); 8636 list_splice_init(&fs_info->delalloc_roots, &splice); 8637 while (!list_empty(&splice) && nr) { 8638 root = list_first_entry(&splice, struct btrfs_root, 8639 delalloc_root); 8640 root = btrfs_grab_fs_root(root); 8641 BUG_ON(!root); 8642 list_move_tail(&root->delalloc_root, 8643 &fs_info->delalloc_roots); 8644 spin_unlock(&fs_info->delalloc_root_lock); 8645 8646 ret = __start_delalloc_inodes(root, delay_iput, nr); 8647 btrfs_put_fs_root(root); 8648 if (ret < 0) 8649 goto out; 8650 8651 if (nr != -1) { 8652 nr -= ret; 8653 WARN_ON(nr < 0); 8654 } 8655 spin_lock(&fs_info->delalloc_root_lock); 8656 } 8657 spin_unlock(&fs_info->delalloc_root_lock); 8658 8659 ret = 0; 8660 atomic_inc(&fs_info->async_submit_draining); 8661 while (atomic_read(&fs_info->nr_async_submits) || 8662 atomic_read(&fs_info->async_delalloc_pages)) { 8663 wait_event(fs_info->async_submit_wait, 8664 (atomic_read(&fs_info->nr_async_submits) == 0 && 8665 atomic_read(&fs_info->async_delalloc_pages) == 0)); 8666 } 8667 atomic_dec(&fs_info->async_submit_draining); 8668 out: 8669 if (!list_empty_careful(&splice)) { 8670 spin_lock(&fs_info->delalloc_root_lock); 8671 list_splice_tail(&splice, &fs_info->delalloc_roots); 8672 spin_unlock(&fs_info->delalloc_root_lock); 8673 } 8674 mutex_unlock(&fs_info->delalloc_root_mutex); 8675 return ret; 8676 } 8677 8678 static int btrfs_symlink(struct inode *dir, struct dentry *dentry, 8679 const char *symname) 8680 { 8681 struct btrfs_trans_handle *trans; 8682 struct btrfs_root *root = BTRFS_I(dir)->root; 8683 struct btrfs_path *path; 8684 struct btrfs_key key; 8685 struct inode *inode = NULL; 8686 int err; 8687 int drop_inode = 0; 8688 u64 objectid; 8689 u64 index = 0; 8690 int name_len; 8691 int datasize; 8692 unsigned long ptr; 8693 struct btrfs_file_extent_item *ei; 8694 struct extent_buffer *leaf; 8695 8696 name_len = strlen(symname); 8697 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root)) 8698 return -ENAMETOOLONG; 8699 8700 /* 8701 * 2 items for inode item and ref 8702 * 2 items for dir items 8703 * 1 item for xattr if selinux is on 8704 */ 8705 trans = btrfs_start_transaction(root, 5); 8706 if (IS_ERR(trans)) 8707 return PTR_ERR(trans); 8708 8709 err = btrfs_find_free_ino(root, &objectid); 8710 if (err) 8711 goto out_unlock; 8712 8713 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 8714 dentry->d_name.len, btrfs_ino(dir), objectid, 8715 S_IFLNK|S_IRWXUGO, &index); 8716 if (IS_ERR(inode)) { 8717 err = PTR_ERR(inode); 8718 goto out_unlock; 8719 } 8720 8721 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 8722 if (err) { 8723 drop_inode = 1; 8724 goto out_unlock; 8725 } 8726 8727 /* 8728 * If the active LSM wants to access the inode during 8729 * d_instantiate it needs these. Smack checks to see 8730 * if the filesystem supports xattrs by looking at the 8731 * ops vector. 8732 */ 8733 inode->i_fop = &btrfs_file_operations; 8734 inode->i_op = &btrfs_file_inode_operations; 8735 8736 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index); 8737 if (err) 8738 drop_inode = 1; 8739 else { 8740 inode->i_mapping->a_ops = &btrfs_aops; 8741 inode->i_mapping->backing_dev_info = &root->fs_info->bdi; 8742 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 8743 } 8744 if (drop_inode) 8745 goto out_unlock; 8746 8747 path = btrfs_alloc_path(); 8748 if (!path) { 8749 err = -ENOMEM; 8750 drop_inode = 1; 8751 goto out_unlock; 8752 } 8753 key.objectid = btrfs_ino(inode); 8754 key.offset = 0; 8755 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY); 8756 datasize = btrfs_file_extent_calc_inline_size(name_len); 8757 err = btrfs_insert_empty_item(trans, root, path, &key, 8758 datasize); 8759 if (err) { 8760 drop_inode = 1; 8761 btrfs_free_path(path); 8762 goto out_unlock; 8763 } 8764 leaf = path->nodes[0]; 8765 ei = btrfs_item_ptr(leaf, path->slots[0], 8766 struct btrfs_file_extent_item); 8767 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 8768 btrfs_set_file_extent_type(leaf, ei, 8769 BTRFS_FILE_EXTENT_INLINE); 8770 btrfs_set_file_extent_encryption(leaf, ei, 0); 8771 btrfs_set_file_extent_compression(leaf, ei, 0); 8772 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 8773 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len); 8774 8775 ptr = btrfs_file_extent_inline_start(ei); 8776 write_extent_buffer(leaf, symname, ptr, name_len); 8777 btrfs_mark_buffer_dirty(leaf); 8778 btrfs_free_path(path); 8779 8780 inode->i_op = &btrfs_symlink_inode_operations; 8781 inode->i_mapping->a_ops = &btrfs_symlink_aops; 8782 inode->i_mapping->backing_dev_info = &root->fs_info->bdi; 8783 inode_set_bytes(inode, name_len); 8784 btrfs_i_size_write(inode, name_len); 8785 err = btrfs_update_inode(trans, root, inode); 8786 if (err) 8787 drop_inode = 1; 8788 8789 out_unlock: 8790 if (!err) 8791 d_instantiate(dentry, inode); 8792 btrfs_end_transaction(trans, root); 8793 if (drop_inode) { 8794 inode_dec_link_count(inode); 8795 iput(inode); 8796 } 8797 btrfs_btree_balance_dirty(root); 8798 return err; 8799 } 8800 8801 static int __btrfs_prealloc_file_range(struct inode *inode, int mode, 8802 u64 start, u64 num_bytes, u64 min_size, 8803 loff_t actual_len, u64 *alloc_hint, 8804 struct btrfs_trans_handle *trans) 8805 { 8806 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 8807 struct extent_map *em; 8808 struct btrfs_root *root = BTRFS_I(inode)->root; 8809 struct btrfs_key ins; 8810 u64 cur_offset = start; 8811 u64 i_size; 8812 u64 cur_bytes; 8813 int ret = 0; 8814 bool own_trans = true; 8815 8816 if (trans) 8817 own_trans = false; 8818 while (num_bytes > 0) { 8819 if (own_trans) { 8820 trans = btrfs_start_transaction(root, 3); 8821 if (IS_ERR(trans)) { 8822 ret = PTR_ERR(trans); 8823 break; 8824 } 8825 } 8826 8827 cur_bytes = min(num_bytes, 256ULL * 1024 * 1024); 8828 cur_bytes = max(cur_bytes, min_size); 8829 ret = btrfs_reserve_extent(root, cur_bytes, min_size, 0, 8830 *alloc_hint, &ins, 1, 0); 8831 if (ret) { 8832 if (own_trans) 8833 btrfs_end_transaction(trans, root); 8834 break; 8835 } 8836 8837 ret = insert_reserved_file_extent(trans, inode, 8838 cur_offset, ins.objectid, 8839 ins.offset, ins.offset, 8840 ins.offset, 0, 0, 0, 8841 BTRFS_FILE_EXTENT_PREALLOC); 8842 if (ret) { 8843 btrfs_free_reserved_extent(root, ins.objectid, 8844 ins.offset, 0); 8845 btrfs_abort_transaction(trans, root, ret); 8846 if (own_trans) 8847 btrfs_end_transaction(trans, root); 8848 break; 8849 } 8850 btrfs_drop_extent_cache(inode, cur_offset, 8851 cur_offset + ins.offset -1, 0); 8852 8853 em = alloc_extent_map(); 8854 if (!em) { 8855 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 8856 &BTRFS_I(inode)->runtime_flags); 8857 goto next; 8858 } 8859 8860 em->start = cur_offset; 8861 em->orig_start = cur_offset; 8862 em->len = ins.offset; 8863 em->block_start = ins.objectid; 8864 em->block_len = ins.offset; 8865 em->orig_block_len = ins.offset; 8866 em->ram_bytes = ins.offset; 8867 em->bdev = root->fs_info->fs_devices->latest_bdev; 8868 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 8869 em->generation = trans->transid; 8870 8871 while (1) { 8872 write_lock(&em_tree->lock); 8873 ret = add_extent_mapping(em_tree, em, 1); 8874 write_unlock(&em_tree->lock); 8875 if (ret != -EEXIST) 8876 break; 8877 btrfs_drop_extent_cache(inode, cur_offset, 8878 cur_offset + ins.offset - 1, 8879 0); 8880 } 8881 free_extent_map(em); 8882 next: 8883 num_bytes -= ins.offset; 8884 cur_offset += ins.offset; 8885 *alloc_hint = ins.objectid + ins.offset; 8886 8887 inode_inc_iversion(inode); 8888 inode->i_ctime = CURRENT_TIME; 8889 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC; 8890 if (!(mode & FALLOC_FL_KEEP_SIZE) && 8891 (actual_len > inode->i_size) && 8892 (cur_offset > inode->i_size)) { 8893 if (cur_offset > actual_len) 8894 i_size = actual_len; 8895 else 8896 i_size = cur_offset; 8897 i_size_write(inode, i_size); 8898 btrfs_ordered_update_i_size(inode, i_size, NULL); 8899 } 8900 8901 ret = btrfs_update_inode(trans, root, inode); 8902 8903 if (ret) { 8904 btrfs_abort_transaction(trans, root, ret); 8905 if (own_trans) 8906 btrfs_end_transaction(trans, root); 8907 break; 8908 } 8909 8910 if (own_trans) 8911 btrfs_end_transaction(trans, root); 8912 } 8913 return ret; 8914 } 8915 8916 int btrfs_prealloc_file_range(struct inode *inode, int mode, 8917 u64 start, u64 num_bytes, u64 min_size, 8918 loff_t actual_len, u64 *alloc_hint) 8919 { 8920 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 8921 min_size, actual_len, alloc_hint, 8922 NULL); 8923 } 8924 8925 int btrfs_prealloc_file_range_trans(struct inode *inode, 8926 struct btrfs_trans_handle *trans, int mode, 8927 u64 start, u64 num_bytes, u64 min_size, 8928 loff_t actual_len, u64 *alloc_hint) 8929 { 8930 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 8931 min_size, actual_len, alloc_hint, trans); 8932 } 8933 8934 static int btrfs_set_page_dirty(struct page *page) 8935 { 8936 return __set_page_dirty_nobuffers(page); 8937 } 8938 8939 static int btrfs_permission(struct inode *inode, int mask) 8940 { 8941 struct btrfs_root *root = BTRFS_I(inode)->root; 8942 umode_t mode = inode->i_mode; 8943 8944 if (mask & MAY_WRITE && 8945 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) { 8946 if (btrfs_root_readonly(root)) 8947 return -EROFS; 8948 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) 8949 return -EACCES; 8950 } 8951 return generic_permission(inode, mask); 8952 } 8953 8954 static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode) 8955 { 8956 struct btrfs_trans_handle *trans; 8957 struct btrfs_root *root = BTRFS_I(dir)->root; 8958 struct inode *inode = NULL; 8959 u64 objectid; 8960 u64 index; 8961 int ret = 0; 8962 8963 /* 8964 * 5 units required for adding orphan entry 8965 */ 8966 trans = btrfs_start_transaction(root, 5); 8967 if (IS_ERR(trans)) 8968 return PTR_ERR(trans); 8969 8970 ret = btrfs_find_free_ino(root, &objectid); 8971 if (ret) 8972 goto out; 8973 8974 inode = btrfs_new_inode(trans, root, dir, NULL, 0, 8975 btrfs_ino(dir), objectid, mode, &index); 8976 if (IS_ERR(inode)) { 8977 ret = PTR_ERR(inode); 8978 inode = NULL; 8979 goto out; 8980 } 8981 8982 ret = btrfs_init_inode_security(trans, inode, dir, NULL); 8983 if (ret) 8984 goto out; 8985 8986 ret = btrfs_update_inode(trans, root, inode); 8987 if (ret) 8988 goto out; 8989 8990 inode->i_fop = &btrfs_file_operations; 8991 inode->i_op = &btrfs_file_inode_operations; 8992 8993 inode->i_mapping->a_ops = &btrfs_aops; 8994 inode->i_mapping->backing_dev_info = &root->fs_info->bdi; 8995 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 8996 8997 ret = btrfs_orphan_add(trans, inode); 8998 if (ret) 8999 goto out; 9000 9001 d_tmpfile(dentry, inode); 9002 mark_inode_dirty(inode); 9003 9004 out: 9005 btrfs_end_transaction(trans, root); 9006 if (ret) 9007 iput(inode); 9008 btrfs_balance_delayed_items(root); 9009 btrfs_btree_balance_dirty(root); 9010 9011 return ret; 9012 } 9013 9014 static const struct inode_operations btrfs_dir_inode_operations = { 9015 .getattr = btrfs_getattr, 9016 .lookup = btrfs_lookup, 9017 .create = btrfs_create, 9018 .unlink = btrfs_unlink, 9019 .link = btrfs_link, 9020 .mkdir = btrfs_mkdir, 9021 .rmdir = btrfs_rmdir, 9022 .rename = btrfs_rename, 9023 .symlink = btrfs_symlink, 9024 .setattr = btrfs_setattr, 9025 .mknod = btrfs_mknod, 9026 .setxattr = btrfs_setxattr, 9027 .getxattr = btrfs_getxattr, 9028 .listxattr = btrfs_listxattr, 9029 .removexattr = btrfs_removexattr, 9030 .permission = btrfs_permission, 9031 .get_acl = btrfs_get_acl, 9032 .set_acl = btrfs_set_acl, 9033 .update_time = btrfs_update_time, 9034 .tmpfile = btrfs_tmpfile, 9035 }; 9036 static const struct inode_operations btrfs_dir_ro_inode_operations = { 9037 .lookup = btrfs_lookup, 9038 .permission = btrfs_permission, 9039 .get_acl = btrfs_get_acl, 9040 .set_acl = btrfs_set_acl, 9041 .update_time = btrfs_update_time, 9042 }; 9043 9044 static const struct file_operations btrfs_dir_file_operations = { 9045 .llseek = generic_file_llseek, 9046 .read = generic_read_dir, 9047 .iterate = btrfs_real_readdir, 9048 .unlocked_ioctl = btrfs_ioctl, 9049 #ifdef CONFIG_COMPAT 9050 .compat_ioctl = btrfs_ioctl, 9051 #endif 9052 .release = btrfs_release_file, 9053 .fsync = btrfs_sync_file, 9054 }; 9055 9056 static struct extent_io_ops btrfs_extent_io_ops = { 9057 .fill_delalloc = run_delalloc_range, 9058 .submit_bio_hook = btrfs_submit_bio_hook, 9059 .merge_bio_hook = btrfs_merge_bio_hook, 9060 .readpage_end_io_hook = btrfs_readpage_end_io_hook, 9061 .writepage_end_io_hook = btrfs_writepage_end_io_hook, 9062 .writepage_start_hook = btrfs_writepage_start_hook, 9063 .set_bit_hook = btrfs_set_bit_hook, 9064 .clear_bit_hook = btrfs_clear_bit_hook, 9065 .merge_extent_hook = btrfs_merge_extent_hook, 9066 .split_extent_hook = btrfs_split_extent_hook, 9067 }; 9068 9069 /* 9070 * btrfs doesn't support the bmap operation because swapfiles 9071 * use bmap to make a mapping of extents in the file. They assume 9072 * these extents won't change over the life of the file and they 9073 * use the bmap result to do IO directly to the drive. 9074 * 9075 * the btrfs bmap call would return logical addresses that aren't 9076 * suitable for IO and they also will change frequently as COW 9077 * operations happen. So, swapfile + btrfs == corruption. 9078 * 9079 * For now we're avoiding this by dropping bmap. 9080 */ 9081 static const struct address_space_operations btrfs_aops = { 9082 .readpage = btrfs_readpage, 9083 .writepage = btrfs_writepage, 9084 .writepages = btrfs_writepages, 9085 .readpages = btrfs_readpages, 9086 .direct_IO = btrfs_direct_IO, 9087 .invalidatepage = btrfs_invalidatepage, 9088 .releasepage = btrfs_releasepage, 9089 .set_page_dirty = btrfs_set_page_dirty, 9090 .error_remove_page = generic_error_remove_page, 9091 }; 9092 9093 static const struct address_space_operations btrfs_symlink_aops = { 9094 .readpage = btrfs_readpage, 9095 .writepage = btrfs_writepage, 9096 .invalidatepage = btrfs_invalidatepage, 9097 .releasepage = btrfs_releasepage, 9098 }; 9099 9100 static const struct inode_operations btrfs_file_inode_operations = { 9101 .getattr = btrfs_getattr, 9102 .setattr = btrfs_setattr, 9103 .setxattr = btrfs_setxattr, 9104 .getxattr = btrfs_getxattr, 9105 .listxattr = btrfs_listxattr, 9106 .removexattr = btrfs_removexattr, 9107 .permission = btrfs_permission, 9108 .fiemap = btrfs_fiemap, 9109 .get_acl = btrfs_get_acl, 9110 .set_acl = btrfs_set_acl, 9111 .update_time = btrfs_update_time, 9112 }; 9113 static const struct inode_operations btrfs_special_inode_operations = { 9114 .getattr = btrfs_getattr, 9115 .setattr = btrfs_setattr, 9116 .permission = btrfs_permission, 9117 .setxattr = btrfs_setxattr, 9118 .getxattr = btrfs_getxattr, 9119 .listxattr = btrfs_listxattr, 9120 .removexattr = btrfs_removexattr, 9121 .get_acl = btrfs_get_acl, 9122 .set_acl = btrfs_set_acl, 9123 .update_time = btrfs_update_time, 9124 }; 9125 static const struct inode_operations btrfs_symlink_inode_operations = { 9126 .readlink = generic_readlink, 9127 .follow_link = page_follow_link_light, 9128 .put_link = page_put_link, 9129 .getattr = btrfs_getattr, 9130 .setattr = btrfs_setattr, 9131 .permission = btrfs_permission, 9132 .setxattr = btrfs_setxattr, 9133 .getxattr = btrfs_getxattr, 9134 .listxattr = btrfs_listxattr, 9135 .removexattr = btrfs_removexattr, 9136 .update_time = btrfs_update_time, 9137 }; 9138 9139 const struct dentry_operations btrfs_dentry_operations = { 9140 .d_delete = btrfs_dentry_delete, 9141 .d_release = btrfs_dentry_release, 9142 }; 9143