1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/kernel.h> 7 #include <linux/bio.h> 8 #include <linux/buffer_head.h> 9 #include <linux/file.h> 10 #include <linux/fs.h> 11 #include <linux/pagemap.h> 12 #include <linux/highmem.h> 13 #include <linux/time.h> 14 #include <linux/init.h> 15 #include <linux/string.h> 16 #include <linux/backing-dev.h> 17 #include <linux/writeback.h> 18 #include <linux/compat.h> 19 #include <linux/xattr.h> 20 #include <linux/posix_acl.h> 21 #include <linux/falloc.h> 22 #include <linux/slab.h> 23 #include <linux/ratelimit.h> 24 #include <linux/btrfs.h> 25 #include <linux/blkdev.h> 26 #include <linux/posix_acl_xattr.h> 27 #include <linux/uio.h> 28 #include <linux/magic.h> 29 #include <linux/iversion.h> 30 #include <linux/swap.h> 31 #include <asm/unaligned.h> 32 #include "ctree.h" 33 #include "disk-io.h" 34 #include "transaction.h" 35 #include "btrfs_inode.h" 36 #include "print-tree.h" 37 #include "ordered-data.h" 38 #include "xattr.h" 39 #include "tree-log.h" 40 #include "volumes.h" 41 #include "compression.h" 42 #include "locking.h" 43 #include "free-space-cache.h" 44 #include "inode-map.h" 45 #include "backref.h" 46 #include "props.h" 47 #include "qgroup.h" 48 #include "dedupe.h" 49 50 struct btrfs_iget_args { 51 struct btrfs_key *location; 52 struct btrfs_root *root; 53 }; 54 55 struct btrfs_dio_data { 56 u64 reserve; 57 u64 unsubmitted_oe_range_start; 58 u64 unsubmitted_oe_range_end; 59 int overwrite; 60 }; 61 62 static const struct inode_operations btrfs_dir_inode_operations; 63 static const struct inode_operations btrfs_symlink_inode_operations; 64 static const struct inode_operations btrfs_dir_ro_inode_operations; 65 static const struct inode_operations btrfs_special_inode_operations; 66 static const struct inode_operations btrfs_file_inode_operations; 67 static const struct address_space_operations btrfs_aops; 68 static const struct file_operations btrfs_dir_file_operations; 69 static const struct extent_io_ops btrfs_extent_io_ops; 70 71 static struct kmem_cache *btrfs_inode_cachep; 72 struct kmem_cache *btrfs_trans_handle_cachep; 73 struct kmem_cache *btrfs_path_cachep; 74 struct kmem_cache *btrfs_free_space_cachep; 75 76 #define S_SHIFT 12 77 static const unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = { 78 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE, 79 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR, 80 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV, 81 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV, 82 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO, 83 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK, 84 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK, 85 }; 86 87 static int btrfs_setsize(struct inode *inode, struct iattr *attr); 88 static int btrfs_truncate(struct inode *inode, bool skip_writeback); 89 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent); 90 static noinline int cow_file_range(struct inode *inode, 91 struct page *locked_page, 92 u64 start, u64 end, u64 delalloc_end, 93 int *page_started, unsigned long *nr_written, 94 int unlock, struct btrfs_dedupe_hash *hash); 95 static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len, 96 u64 orig_start, u64 block_start, 97 u64 block_len, u64 orig_block_len, 98 u64 ram_bytes, int compress_type, 99 int type); 100 101 static void __endio_write_update_ordered(struct inode *inode, 102 const u64 offset, const u64 bytes, 103 const bool uptodate); 104 105 /* 106 * Cleanup all submitted ordered extents in specified range to handle errors 107 * from the btrfs_run_delalloc_range() callback. 108 * 109 * NOTE: caller must ensure that when an error happens, it can not call 110 * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING 111 * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata 112 * to be released, which we want to happen only when finishing the ordered 113 * extent (btrfs_finish_ordered_io()). 114 */ 115 static inline void btrfs_cleanup_ordered_extents(struct inode *inode, 116 struct page *locked_page, 117 u64 offset, u64 bytes) 118 { 119 unsigned long index = offset >> PAGE_SHIFT; 120 unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT; 121 u64 page_start = page_offset(locked_page); 122 u64 page_end = page_start + PAGE_SIZE - 1; 123 124 struct page *page; 125 126 while (index <= end_index) { 127 page = find_get_page(inode->i_mapping, index); 128 index++; 129 if (!page) 130 continue; 131 ClearPagePrivate2(page); 132 put_page(page); 133 } 134 135 /* 136 * In case this page belongs to the delalloc range being instantiated 137 * then skip it, since the first page of a range is going to be 138 * properly cleaned up by the caller of run_delalloc_range 139 */ 140 if (page_start >= offset && page_end <= (offset + bytes - 1)) { 141 offset += PAGE_SIZE; 142 bytes -= PAGE_SIZE; 143 } 144 145 return __endio_write_update_ordered(inode, offset, bytes, false); 146 } 147 148 static int btrfs_dirty_inode(struct inode *inode); 149 150 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 151 void btrfs_test_inode_set_ops(struct inode *inode) 152 { 153 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 154 } 155 #endif 156 157 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans, 158 struct inode *inode, struct inode *dir, 159 const struct qstr *qstr) 160 { 161 int err; 162 163 err = btrfs_init_acl(trans, inode, dir); 164 if (!err) 165 err = btrfs_xattr_security_init(trans, inode, dir, qstr); 166 return err; 167 } 168 169 /* 170 * this does all the hard work for inserting an inline extent into 171 * the btree. The caller should have done a btrfs_drop_extents so that 172 * no overlapping inline items exist in the btree 173 */ 174 static int insert_inline_extent(struct btrfs_trans_handle *trans, 175 struct btrfs_path *path, int extent_inserted, 176 struct btrfs_root *root, struct inode *inode, 177 u64 start, size_t size, size_t compressed_size, 178 int compress_type, 179 struct page **compressed_pages) 180 { 181 struct extent_buffer *leaf; 182 struct page *page = NULL; 183 char *kaddr; 184 unsigned long ptr; 185 struct btrfs_file_extent_item *ei; 186 int ret; 187 size_t cur_size = size; 188 unsigned long offset; 189 190 if (compressed_size && compressed_pages) 191 cur_size = compressed_size; 192 193 inode_add_bytes(inode, size); 194 195 if (!extent_inserted) { 196 struct btrfs_key key; 197 size_t datasize; 198 199 key.objectid = btrfs_ino(BTRFS_I(inode)); 200 key.offset = start; 201 key.type = BTRFS_EXTENT_DATA_KEY; 202 203 datasize = btrfs_file_extent_calc_inline_size(cur_size); 204 path->leave_spinning = 1; 205 ret = btrfs_insert_empty_item(trans, root, path, &key, 206 datasize); 207 if (ret) 208 goto fail; 209 } 210 leaf = path->nodes[0]; 211 ei = btrfs_item_ptr(leaf, path->slots[0], 212 struct btrfs_file_extent_item); 213 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 214 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE); 215 btrfs_set_file_extent_encryption(leaf, ei, 0); 216 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 217 btrfs_set_file_extent_ram_bytes(leaf, ei, size); 218 ptr = btrfs_file_extent_inline_start(ei); 219 220 if (compress_type != BTRFS_COMPRESS_NONE) { 221 struct page *cpage; 222 int i = 0; 223 while (compressed_size > 0) { 224 cpage = compressed_pages[i]; 225 cur_size = min_t(unsigned long, compressed_size, 226 PAGE_SIZE); 227 228 kaddr = kmap_atomic(cpage); 229 write_extent_buffer(leaf, kaddr, ptr, cur_size); 230 kunmap_atomic(kaddr); 231 232 i++; 233 ptr += cur_size; 234 compressed_size -= cur_size; 235 } 236 btrfs_set_file_extent_compression(leaf, ei, 237 compress_type); 238 } else { 239 page = find_get_page(inode->i_mapping, 240 start >> PAGE_SHIFT); 241 btrfs_set_file_extent_compression(leaf, ei, 0); 242 kaddr = kmap_atomic(page); 243 offset = offset_in_page(start); 244 write_extent_buffer(leaf, kaddr + offset, ptr, size); 245 kunmap_atomic(kaddr); 246 put_page(page); 247 } 248 btrfs_mark_buffer_dirty(leaf); 249 btrfs_release_path(path); 250 251 /* 252 * we're an inline extent, so nobody can 253 * extend the file past i_size without locking 254 * a page we already have locked. 255 * 256 * We must do any isize and inode updates 257 * before we unlock the pages. Otherwise we 258 * could end up racing with unlink. 259 */ 260 BTRFS_I(inode)->disk_i_size = inode->i_size; 261 ret = btrfs_update_inode(trans, root, inode); 262 263 fail: 264 return ret; 265 } 266 267 268 /* 269 * conditionally insert an inline extent into the file. This 270 * does the checks required to make sure the data is small enough 271 * to fit as an inline extent. 272 */ 273 static noinline int cow_file_range_inline(struct inode *inode, u64 start, 274 u64 end, size_t compressed_size, 275 int compress_type, 276 struct page **compressed_pages) 277 { 278 struct btrfs_root *root = BTRFS_I(inode)->root; 279 struct btrfs_fs_info *fs_info = root->fs_info; 280 struct btrfs_trans_handle *trans; 281 u64 isize = i_size_read(inode); 282 u64 actual_end = min(end + 1, isize); 283 u64 inline_len = actual_end - start; 284 u64 aligned_end = ALIGN(end, fs_info->sectorsize); 285 u64 data_len = inline_len; 286 int ret; 287 struct btrfs_path *path; 288 int extent_inserted = 0; 289 u32 extent_item_size; 290 291 if (compressed_size) 292 data_len = compressed_size; 293 294 if (start > 0 || 295 actual_end > fs_info->sectorsize || 296 data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) || 297 (!compressed_size && 298 (actual_end & (fs_info->sectorsize - 1)) == 0) || 299 end + 1 < isize || 300 data_len > fs_info->max_inline) { 301 return 1; 302 } 303 304 path = btrfs_alloc_path(); 305 if (!path) 306 return -ENOMEM; 307 308 trans = btrfs_join_transaction(root); 309 if (IS_ERR(trans)) { 310 btrfs_free_path(path); 311 return PTR_ERR(trans); 312 } 313 trans->block_rsv = &BTRFS_I(inode)->block_rsv; 314 315 if (compressed_size && compressed_pages) 316 extent_item_size = btrfs_file_extent_calc_inline_size( 317 compressed_size); 318 else 319 extent_item_size = btrfs_file_extent_calc_inline_size( 320 inline_len); 321 322 ret = __btrfs_drop_extents(trans, root, inode, path, 323 start, aligned_end, NULL, 324 1, 1, extent_item_size, &extent_inserted); 325 if (ret) { 326 btrfs_abort_transaction(trans, ret); 327 goto out; 328 } 329 330 if (isize > actual_end) 331 inline_len = min_t(u64, isize, actual_end); 332 ret = insert_inline_extent(trans, path, extent_inserted, 333 root, inode, start, 334 inline_len, compressed_size, 335 compress_type, compressed_pages); 336 if (ret && ret != -ENOSPC) { 337 btrfs_abort_transaction(trans, ret); 338 goto out; 339 } else if (ret == -ENOSPC) { 340 ret = 1; 341 goto out; 342 } 343 344 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 345 btrfs_drop_extent_cache(BTRFS_I(inode), start, aligned_end - 1, 0); 346 out: 347 /* 348 * Don't forget to free the reserved space, as for inlined extent 349 * it won't count as data extent, free them directly here. 350 * And at reserve time, it's always aligned to page size, so 351 * just free one page here. 352 */ 353 btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE); 354 btrfs_free_path(path); 355 btrfs_end_transaction(trans); 356 return ret; 357 } 358 359 struct async_extent { 360 u64 start; 361 u64 ram_size; 362 u64 compressed_size; 363 struct page **pages; 364 unsigned long nr_pages; 365 int compress_type; 366 struct list_head list; 367 }; 368 369 struct async_cow { 370 struct inode *inode; 371 struct btrfs_fs_info *fs_info; 372 struct page *locked_page; 373 u64 start; 374 u64 end; 375 unsigned int write_flags; 376 struct list_head extents; 377 struct btrfs_work work; 378 }; 379 380 static noinline int add_async_extent(struct async_cow *cow, 381 u64 start, u64 ram_size, 382 u64 compressed_size, 383 struct page **pages, 384 unsigned long nr_pages, 385 int compress_type) 386 { 387 struct async_extent *async_extent; 388 389 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS); 390 BUG_ON(!async_extent); /* -ENOMEM */ 391 async_extent->start = start; 392 async_extent->ram_size = ram_size; 393 async_extent->compressed_size = compressed_size; 394 async_extent->pages = pages; 395 async_extent->nr_pages = nr_pages; 396 async_extent->compress_type = compress_type; 397 list_add_tail(&async_extent->list, &cow->extents); 398 return 0; 399 } 400 401 static inline int inode_need_compress(struct inode *inode, u64 start, u64 end) 402 { 403 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 404 405 /* force compress */ 406 if (btrfs_test_opt(fs_info, FORCE_COMPRESS)) 407 return 1; 408 /* defrag ioctl */ 409 if (BTRFS_I(inode)->defrag_compress) 410 return 1; 411 /* bad compression ratios */ 412 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) 413 return 0; 414 if (btrfs_test_opt(fs_info, COMPRESS) || 415 BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS || 416 BTRFS_I(inode)->prop_compress) 417 return btrfs_compress_heuristic(inode, start, end); 418 return 0; 419 } 420 421 static inline void inode_should_defrag(struct btrfs_inode *inode, 422 u64 start, u64 end, u64 num_bytes, u64 small_write) 423 { 424 /* If this is a small write inside eof, kick off a defrag */ 425 if (num_bytes < small_write && 426 (start > 0 || end + 1 < inode->disk_i_size)) 427 btrfs_add_inode_defrag(NULL, inode); 428 } 429 430 /* 431 * we create compressed extents in two phases. The first 432 * phase compresses a range of pages that have already been 433 * locked (both pages and state bits are locked). 434 * 435 * This is done inside an ordered work queue, and the compression 436 * is spread across many cpus. The actual IO submission is step 437 * two, and the ordered work queue takes care of making sure that 438 * happens in the same order things were put onto the queue by 439 * writepages and friends. 440 * 441 * If this code finds it can't get good compression, it puts an 442 * entry onto the work queue to write the uncompressed bytes. This 443 * makes sure that both compressed inodes and uncompressed inodes 444 * are written in the same order that the flusher thread sent them 445 * down. 446 */ 447 static noinline void compress_file_range(struct inode *inode, 448 struct page *locked_page, 449 u64 start, u64 end, 450 struct async_cow *async_cow, 451 int *num_added) 452 { 453 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 454 u64 blocksize = fs_info->sectorsize; 455 u64 actual_end; 456 int ret = 0; 457 struct page **pages = NULL; 458 unsigned long nr_pages; 459 unsigned long total_compressed = 0; 460 unsigned long total_in = 0; 461 int i; 462 int will_compress; 463 int compress_type = fs_info->compress_type; 464 int redirty = 0; 465 466 inode_should_defrag(BTRFS_I(inode), start, end, end - start + 1, 467 SZ_16K); 468 469 actual_end = min_t(u64, i_size_read(inode), end + 1); 470 again: 471 will_compress = 0; 472 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1; 473 BUILD_BUG_ON((BTRFS_MAX_COMPRESSED % PAGE_SIZE) != 0); 474 nr_pages = min_t(unsigned long, nr_pages, 475 BTRFS_MAX_COMPRESSED / PAGE_SIZE); 476 477 /* 478 * we don't want to send crud past the end of i_size through 479 * compression, that's just a waste of CPU time. So, if the 480 * end of the file is before the start of our current 481 * requested range of bytes, we bail out to the uncompressed 482 * cleanup code that can deal with all of this. 483 * 484 * It isn't really the fastest way to fix things, but this is a 485 * very uncommon corner. 486 */ 487 if (actual_end <= start) 488 goto cleanup_and_bail_uncompressed; 489 490 total_compressed = actual_end - start; 491 492 /* 493 * skip compression for a small file range(<=blocksize) that 494 * isn't an inline extent, since it doesn't save disk space at all. 495 */ 496 if (total_compressed <= blocksize && 497 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size)) 498 goto cleanup_and_bail_uncompressed; 499 500 total_compressed = min_t(unsigned long, total_compressed, 501 BTRFS_MAX_UNCOMPRESSED); 502 total_in = 0; 503 ret = 0; 504 505 /* 506 * we do compression for mount -o compress and when the 507 * inode has not been flagged as nocompress. This flag can 508 * change at any time if we discover bad compression ratios. 509 */ 510 if (inode_need_compress(inode, start, end)) { 511 WARN_ON(pages); 512 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS); 513 if (!pages) { 514 /* just bail out to the uncompressed code */ 515 nr_pages = 0; 516 goto cont; 517 } 518 519 if (BTRFS_I(inode)->defrag_compress) 520 compress_type = BTRFS_I(inode)->defrag_compress; 521 else if (BTRFS_I(inode)->prop_compress) 522 compress_type = BTRFS_I(inode)->prop_compress; 523 524 /* 525 * we need to call clear_page_dirty_for_io on each 526 * page in the range. Otherwise applications with the file 527 * mmap'd can wander in and change the page contents while 528 * we are compressing them. 529 * 530 * If the compression fails for any reason, we set the pages 531 * dirty again later on. 532 * 533 * Note that the remaining part is redirtied, the start pointer 534 * has moved, the end is the original one. 535 */ 536 if (!redirty) { 537 extent_range_clear_dirty_for_io(inode, start, end); 538 redirty = 1; 539 } 540 541 /* Compression level is applied here and only here */ 542 ret = btrfs_compress_pages( 543 compress_type | (fs_info->compress_level << 4), 544 inode->i_mapping, start, 545 pages, 546 &nr_pages, 547 &total_in, 548 &total_compressed); 549 550 if (!ret) { 551 unsigned long offset = offset_in_page(total_compressed); 552 struct page *page = pages[nr_pages - 1]; 553 char *kaddr; 554 555 /* zero the tail end of the last page, we might be 556 * sending it down to disk 557 */ 558 if (offset) { 559 kaddr = kmap_atomic(page); 560 memset(kaddr + offset, 0, 561 PAGE_SIZE - offset); 562 kunmap_atomic(kaddr); 563 } 564 will_compress = 1; 565 } 566 } 567 cont: 568 if (start == 0) { 569 /* lets try to make an inline extent */ 570 if (ret || total_in < actual_end) { 571 /* we didn't compress the entire range, try 572 * to make an uncompressed inline extent. 573 */ 574 ret = cow_file_range_inline(inode, start, end, 0, 575 BTRFS_COMPRESS_NONE, NULL); 576 } else { 577 /* try making a compressed inline extent */ 578 ret = cow_file_range_inline(inode, start, end, 579 total_compressed, 580 compress_type, pages); 581 } 582 if (ret <= 0) { 583 unsigned long clear_flags = EXTENT_DELALLOC | 584 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG | 585 EXTENT_DO_ACCOUNTING; 586 unsigned long page_error_op; 587 588 page_error_op = ret < 0 ? PAGE_SET_ERROR : 0; 589 590 /* 591 * inline extent creation worked or returned error, 592 * we don't need to create any more async work items. 593 * Unlock and free up our temp pages. 594 * 595 * We use DO_ACCOUNTING here because we need the 596 * delalloc_release_metadata to be done _after_ we drop 597 * our outstanding extent for clearing delalloc for this 598 * range. 599 */ 600 extent_clear_unlock_delalloc(inode, start, end, end, 601 NULL, clear_flags, 602 PAGE_UNLOCK | 603 PAGE_CLEAR_DIRTY | 604 PAGE_SET_WRITEBACK | 605 page_error_op | 606 PAGE_END_WRITEBACK); 607 goto free_pages_out; 608 } 609 } 610 611 if (will_compress) { 612 /* 613 * we aren't doing an inline extent round the compressed size 614 * up to a block size boundary so the allocator does sane 615 * things 616 */ 617 total_compressed = ALIGN(total_compressed, blocksize); 618 619 /* 620 * one last check to make sure the compression is really a 621 * win, compare the page count read with the blocks on disk, 622 * compression must free at least one sector size 623 */ 624 total_in = ALIGN(total_in, PAGE_SIZE); 625 if (total_compressed + blocksize <= total_in) { 626 *num_added += 1; 627 628 /* 629 * The async work queues will take care of doing actual 630 * allocation on disk for these compressed pages, and 631 * will submit them to the elevator. 632 */ 633 add_async_extent(async_cow, start, total_in, 634 total_compressed, pages, nr_pages, 635 compress_type); 636 637 if (start + total_in < end) { 638 start += total_in; 639 pages = NULL; 640 cond_resched(); 641 goto again; 642 } 643 return; 644 } 645 } 646 if (pages) { 647 /* 648 * the compression code ran but failed to make things smaller, 649 * free any pages it allocated and our page pointer array 650 */ 651 for (i = 0; i < nr_pages; i++) { 652 WARN_ON(pages[i]->mapping); 653 put_page(pages[i]); 654 } 655 kfree(pages); 656 pages = NULL; 657 total_compressed = 0; 658 nr_pages = 0; 659 660 /* flag the file so we don't compress in the future */ 661 if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) && 662 !(BTRFS_I(inode)->prop_compress)) { 663 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS; 664 } 665 } 666 cleanup_and_bail_uncompressed: 667 /* 668 * No compression, but we still need to write the pages in the file 669 * we've been given so far. redirty the locked page if it corresponds 670 * to our extent and set things up for the async work queue to run 671 * cow_file_range to do the normal delalloc dance. 672 */ 673 if (page_offset(locked_page) >= start && 674 page_offset(locked_page) <= end) 675 __set_page_dirty_nobuffers(locked_page); 676 /* unlocked later on in the async handlers */ 677 678 if (redirty) 679 extent_range_redirty_for_io(inode, start, end); 680 add_async_extent(async_cow, start, end - start + 1, 0, NULL, 0, 681 BTRFS_COMPRESS_NONE); 682 *num_added += 1; 683 684 return; 685 686 free_pages_out: 687 for (i = 0; i < nr_pages; i++) { 688 WARN_ON(pages[i]->mapping); 689 put_page(pages[i]); 690 } 691 kfree(pages); 692 } 693 694 static void free_async_extent_pages(struct async_extent *async_extent) 695 { 696 int i; 697 698 if (!async_extent->pages) 699 return; 700 701 for (i = 0; i < async_extent->nr_pages; i++) { 702 WARN_ON(async_extent->pages[i]->mapping); 703 put_page(async_extent->pages[i]); 704 } 705 kfree(async_extent->pages); 706 async_extent->nr_pages = 0; 707 async_extent->pages = NULL; 708 } 709 710 /* 711 * phase two of compressed writeback. This is the ordered portion 712 * of the code, which only gets called in the order the work was 713 * queued. We walk all the async extents created by compress_file_range 714 * and send them down to the disk. 715 */ 716 static noinline void submit_compressed_extents(struct async_cow *async_cow) 717 { 718 struct inode *inode = async_cow->inode; 719 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 720 struct async_extent *async_extent; 721 u64 alloc_hint = 0; 722 struct btrfs_key ins; 723 struct extent_map *em; 724 struct btrfs_root *root = BTRFS_I(inode)->root; 725 struct extent_io_tree *io_tree; 726 int ret = 0; 727 728 again: 729 while (!list_empty(&async_cow->extents)) { 730 async_extent = list_entry(async_cow->extents.next, 731 struct async_extent, list); 732 list_del(&async_extent->list); 733 734 io_tree = &BTRFS_I(inode)->io_tree; 735 736 retry: 737 /* did the compression code fall back to uncompressed IO? */ 738 if (!async_extent->pages) { 739 int page_started = 0; 740 unsigned long nr_written = 0; 741 742 lock_extent(io_tree, async_extent->start, 743 async_extent->start + 744 async_extent->ram_size - 1); 745 746 /* allocate blocks */ 747 ret = cow_file_range(inode, async_cow->locked_page, 748 async_extent->start, 749 async_extent->start + 750 async_extent->ram_size - 1, 751 async_extent->start + 752 async_extent->ram_size - 1, 753 &page_started, &nr_written, 0, 754 NULL); 755 756 /* JDM XXX */ 757 758 /* 759 * if page_started, cow_file_range inserted an 760 * inline extent and took care of all the unlocking 761 * and IO for us. Otherwise, we need to submit 762 * all those pages down to the drive. 763 */ 764 if (!page_started && !ret) 765 extent_write_locked_range(inode, 766 async_extent->start, 767 async_extent->start + 768 async_extent->ram_size - 1, 769 WB_SYNC_ALL); 770 else if (ret) 771 unlock_page(async_cow->locked_page); 772 kfree(async_extent); 773 cond_resched(); 774 continue; 775 } 776 777 lock_extent(io_tree, async_extent->start, 778 async_extent->start + async_extent->ram_size - 1); 779 780 ret = btrfs_reserve_extent(root, async_extent->ram_size, 781 async_extent->compressed_size, 782 async_extent->compressed_size, 783 0, alloc_hint, &ins, 1, 1); 784 if (ret) { 785 free_async_extent_pages(async_extent); 786 787 if (ret == -ENOSPC) { 788 unlock_extent(io_tree, async_extent->start, 789 async_extent->start + 790 async_extent->ram_size - 1); 791 792 /* 793 * we need to redirty the pages if we decide to 794 * fallback to uncompressed IO, otherwise we 795 * will not submit these pages down to lower 796 * layers. 797 */ 798 extent_range_redirty_for_io(inode, 799 async_extent->start, 800 async_extent->start + 801 async_extent->ram_size - 1); 802 803 goto retry; 804 } 805 goto out_free; 806 } 807 /* 808 * here we're doing allocation and writeback of the 809 * compressed pages 810 */ 811 em = create_io_em(inode, async_extent->start, 812 async_extent->ram_size, /* len */ 813 async_extent->start, /* orig_start */ 814 ins.objectid, /* block_start */ 815 ins.offset, /* block_len */ 816 ins.offset, /* orig_block_len */ 817 async_extent->ram_size, /* ram_bytes */ 818 async_extent->compress_type, 819 BTRFS_ORDERED_COMPRESSED); 820 if (IS_ERR(em)) 821 /* ret value is not necessary due to void function */ 822 goto out_free_reserve; 823 free_extent_map(em); 824 825 ret = btrfs_add_ordered_extent_compress(inode, 826 async_extent->start, 827 ins.objectid, 828 async_extent->ram_size, 829 ins.offset, 830 BTRFS_ORDERED_COMPRESSED, 831 async_extent->compress_type); 832 if (ret) { 833 btrfs_drop_extent_cache(BTRFS_I(inode), 834 async_extent->start, 835 async_extent->start + 836 async_extent->ram_size - 1, 0); 837 goto out_free_reserve; 838 } 839 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 840 841 /* 842 * clear dirty, set writeback and unlock the pages. 843 */ 844 extent_clear_unlock_delalloc(inode, async_extent->start, 845 async_extent->start + 846 async_extent->ram_size - 1, 847 async_extent->start + 848 async_extent->ram_size - 1, 849 NULL, EXTENT_LOCKED | EXTENT_DELALLOC, 850 PAGE_UNLOCK | PAGE_CLEAR_DIRTY | 851 PAGE_SET_WRITEBACK); 852 if (btrfs_submit_compressed_write(inode, 853 async_extent->start, 854 async_extent->ram_size, 855 ins.objectid, 856 ins.offset, async_extent->pages, 857 async_extent->nr_pages, 858 async_cow->write_flags)) { 859 struct page *p = async_extent->pages[0]; 860 const u64 start = async_extent->start; 861 const u64 end = start + async_extent->ram_size - 1; 862 863 p->mapping = inode->i_mapping; 864 btrfs_writepage_endio_finish_ordered(p, start, end, 0); 865 866 p->mapping = NULL; 867 extent_clear_unlock_delalloc(inode, start, end, end, 868 NULL, 0, 869 PAGE_END_WRITEBACK | 870 PAGE_SET_ERROR); 871 free_async_extent_pages(async_extent); 872 } 873 alloc_hint = ins.objectid + ins.offset; 874 kfree(async_extent); 875 cond_resched(); 876 } 877 return; 878 out_free_reserve: 879 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 880 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1); 881 out_free: 882 extent_clear_unlock_delalloc(inode, async_extent->start, 883 async_extent->start + 884 async_extent->ram_size - 1, 885 async_extent->start + 886 async_extent->ram_size - 1, 887 NULL, EXTENT_LOCKED | EXTENT_DELALLOC | 888 EXTENT_DELALLOC_NEW | 889 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING, 890 PAGE_UNLOCK | PAGE_CLEAR_DIRTY | 891 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK | 892 PAGE_SET_ERROR); 893 free_async_extent_pages(async_extent); 894 kfree(async_extent); 895 goto again; 896 } 897 898 static u64 get_extent_allocation_hint(struct inode *inode, u64 start, 899 u64 num_bytes) 900 { 901 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 902 struct extent_map *em; 903 u64 alloc_hint = 0; 904 905 read_lock(&em_tree->lock); 906 em = search_extent_mapping(em_tree, start, num_bytes); 907 if (em) { 908 /* 909 * if block start isn't an actual block number then find the 910 * first block in this inode and use that as a hint. If that 911 * block is also bogus then just don't worry about it. 912 */ 913 if (em->block_start >= EXTENT_MAP_LAST_BYTE) { 914 free_extent_map(em); 915 em = search_extent_mapping(em_tree, 0, 0); 916 if (em && em->block_start < EXTENT_MAP_LAST_BYTE) 917 alloc_hint = em->block_start; 918 if (em) 919 free_extent_map(em); 920 } else { 921 alloc_hint = em->block_start; 922 free_extent_map(em); 923 } 924 } 925 read_unlock(&em_tree->lock); 926 927 return alloc_hint; 928 } 929 930 /* 931 * when extent_io.c finds a delayed allocation range in the file, 932 * the call backs end up in this code. The basic idea is to 933 * allocate extents on disk for the range, and create ordered data structs 934 * in ram to track those extents. 935 * 936 * locked_page is the page that writepage had locked already. We use 937 * it to make sure we don't do extra locks or unlocks. 938 * 939 * *page_started is set to one if we unlock locked_page and do everything 940 * required to start IO on it. It may be clean and already done with 941 * IO when we return. 942 */ 943 static noinline int cow_file_range(struct inode *inode, 944 struct page *locked_page, 945 u64 start, u64 end, u64 delalloc_end, 946 int *page_started, unsigned long *nr_written, 947 int unlock, struct btrfs_dedupe_hash *hash) 948 { 949 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 950 struct btrfs_root *root = BTRFS_I(inode)->root; 951 u64 alloc_hint = 0; 952 u64 num_bytes; 953 unsigned long ram_size; 954 u64 cur_alloc_size = 0; 955 u64 blocksize = fs_info->sectorsize; 956 struct btrfs_key ins; 957 struct extent_map *em; 958 unsigned clear_bits; 959 unsigned long page_ops; 960 bool extent_reserved = false; 961 int ret = 0; 962 963 if (btrfs_is_free_space_inode(BTRFS_I(inode))) { 964 WARN_ON_ONCE(1); 965 ret = -EINVAL; 966 goto out_unlock; 967 } 968 969 num_bytes = ALIGN(end - start + 1, blocksize); 970 num_bytes = max(blocksize, num_bytes); 971 ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy)); 972 973 inode_should_defrag(BTRFS_I(inode), start, end, num_bytes, SZ_64K); 974 975 if (start == 0) { 976 /* lets try to make an inline extent */ 977 ret = cow_file_range_inline(inode, start, end, 0, 978 BTRFS_COMPRESS_NONE, NULL); 979 if (ret == 0) { 980 /* 981 * We use DO_ACCOUNTING here because we need the 982 * delalloc_release_metadata to be run _after_ we drop 983 * our outstanding extent for clearing delalloc for this 984 * range. 985 */ 986 extent_clear_unlock_delalloc(inode, start, end, 987 delalloc_end, NULL, 988 EXTENT_LOCKED | EXTENT_DELALLOC | 989 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG | 990 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK | 991 PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK | 992 PAGE_END_WRITEBACK); 993 *nr_written = *nr_written + 994 (end - start + PAGE_SIZE) / PAGE_SIZE; 995 *page_started = 1; 996 goto out; 997 } else if (ret < 0) { 998 goto out_unlock; 999 } 1000 } 1001 1002 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes); 1003 btrfs_drop_extent_cache(BTRFS_I(inode), start, 1004 start + num_bytes - 1, 0); 1005 1006 while (num_bytes > 0) { 1007 cur_alloc_size = num_bytes; 1008 ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size, 1009 fs_info->sectorsize, 0, alloc_hint, 1010 &ins, 1, 1); 1011 if (ret < 0) 1012 goto out_unlock; 1013 cur_alloc_size = ins.offset; 1014 extent_reserved = true; 1015 1016 ram_size = ins.offset; 1017 em = create_io_em(inode, start, ins.offset, /* len */ 1018 start, /* orig_start */ 1019 ins.objectid, /* block_start */ 1020 ins.offset, /* block_len */ 1021 ins.offset, /* orig_block_len */ 1022 ram_size, /* ram_bytes */ 1023 BTRFS_COMPRESS_NONE, /* compress_type */ 1024 BTRFS_ORDERED_REGULAR /* type */); 1025 if (IS_ERR(em)) { 1026 ret = PTR_ERR(em); 1027 goto out_reserve; 1028 } 1029 free_extent_map(em); 1030 1031 ret = btrfs_add_ordered_extent(inode, start, ins.objectid, 1032 ram_size, cur_alloc_size, 0); 1033 if (ret) 1034 goto out_drop_extent_cache; 1035 1036 if (root->root_key.objectid == 1037 BTRFS_DATA_RELOC_TREE_OBJECTID) { 1038 ret = btrfs_reloc_clone_csums(inode, start, 1039 cur_alloc_size); 1040 /* 1041 * Only drop cache here, and process as normal. 1042 * 1043 * We must not allow extent_clear_unlock_delalloc() 1044 * at out_unlock label to free meta of this ordered 1045 * extent, as its meta should be freed by 1046 * btrfs_finish_ordered_io(). 1047 * 1048 * So we must continue until @start is increased to 1049 * skip current ordered extent. 1050 */ 1051 if (ret) 1052 btrfs_drop_extent_cache(BTRFS_I(inode), start, 1053 start + ram_size - 1, 0); 1054 } 1055 1056 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1057 1058 /* we're not doing compressed IO, don't unlock the first 1059 * page (which the caller expects to stay locked), don't 1060 * clear any dirty bits and don't set any writeback bits 1061 * 1062 * Do set the Private2 bit so we know this page was properly 1063 * setup for writepage 1064 */ 1065 page_ops = unlock ? PAGE_UNLOCK : 0; 1066 page_ops |= PAGE_SET_PRIVATE2; 1067 1068 extent_clear_unlock_delalloc(inode, start, 1069 start + ram_size - 1, 1070 delalloc_end, locked_page, 1071 EXTENT_LOCKED | EXTENT_DELALLOC, 1072 page_ops); 1073 if (num_bytes < cur_alloc_size) 1074 num_bytes = 0; 1075 else 1076 num_bytes -= cur_alloc_size; 1077 alloc_hint = ins.objectid + ins.offset; 1078 start += cur_alloc_size; 1079 extent_reserved = false; 1080 1081 /* 1082 * btrfs_reloc_clone_csums() error, since start is increased 1083 * extent_clear_unlock_delalloc() at out_unlock label won't 1084 * free metadata of current ordered extent, we're OK to exit. 1085 */ 1086 if (ret) 1087 goto out_unlock; 1088 } 1089 out: 1090 return ret; 1091 1092 out_drop_extent_cache: 1093 btrfs_drop_extent_cache(BTRFS_I(inode), start, start + ram_size - 1, 0); 1094 out_reserve: 1095 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1096 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1); 1097 out_unlock: 1098 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW | 1099 EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV; 1100 page_ops = PAGE_UNLOCK | PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK | 1101 PAGE_END_WRITEBACK; 1102 /* 1103 * If we reserved an extent for our delalloc range (or a subrange) and 1104 * failed to create the respective ordered extent, then it means that 1105 * when we reserved the extent we decremented the extent's size from 1106 * the data space_info's bytes_may_use counter and incremented the 1107 * space_info's bytes_reserved counter by the same amount. We must make 1108 * sure extent_clear_unlock_delalloc() does not try to decrement again 1109 * the data space_info's bytes_may_use counter, therefore we do not pass 1110 * it the flag EXTENT_CLEAR_DATA_RESV. 1111 */ 1112 if (extent_reserved) { 1113 extent_clear_unlock_delalloc(inode, start, 1114 start + cur_alloc_size, 1115 start + cur_alloc_size, 1116 locked_page, 1117 clear_bits, 1118 page_ops); 1119 start += cur_alloc_size; 1120 if (start >= end) 1121 goto out; 1122 } 1123 extent_clear_unlock_delalloc(inode, start, end, delalloc_end, 1124 locked_page, 1125 clear_bits | EXTENT_CLEAR_DATA_RESV, 1126 page_ops); 1127 goto out; 1128 } 1129 1130 /* 1131 * work queue call back to started compression on a file and pages 1132 */ 1133 static noinline void async_cow_start(struct btrfs_work *work) 1134 { 1135 struct async_cow *async_cow; 1136 int num_added = 0; 1137 async_cow = container_of(work, struct async_cow, work); 1138 1139 compress_file_range(async_cow->inode, async_cow->locked_page, 1140 async_cow->start, async_cow->end, async_cow, 1141 &num_added); 1142 if (num_added == 0) { 1143 btrfs_add_delayed_iput(async_cow->inode); 1144 async_cow->inode = NULL; 1145 } 1146 } 1147 1148 /* 1149 * work queue call back to submit previously compressed pages 1150 */ 1151 static noinline void async_cow_submit(struct btrfs_work *work) 1152 { 1153 struct btrfs_fs_info *fs_info; 1154 struct async_cow *async_cow; 1155 unsigned long nr_pages; 1156 1157 async_cow = container_of(work, struct async_cow, work); 1158 1159 fs_info = async_cow->fs_info; 1160 nr_pages = (async_cow->end - async_cow->start + PAGE_SIZE) >> 1161 PAGE_SHIFT; 1162 1163 /* atomic_sub_return implies a barrier */ 1164 if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) < 1165 5 * SZ_1M) 1166 cond_wake_up_nomb(&fs_info->async_submit_wait); 1167 1168 /* 1169 * ->inode could be NULL if async_cow_start has failed to compress, 1170 * in which case we don't have anything to submit, yet we need to 1171 * always adjust ->async_delalloc_pages as its paired with the init 1172 * happening in cow_file_range_async 1173 */ 1174 if (async_cow->inode) 1175 submit_compressed_extents(async_cow); 1176 } 1177 1178 static noinline void async_cow_free(struct btrfs_work *work) 1179 { 1180 struct async_cow *async_cow; 1181 async_cow = container_of(work, struct async_cow, work); 1182 if (async_cow->inode) 1183 btrfs_add_delayed_iput(async_cow->inode); 1184 kfree(async_cow); 1185 } 1186 1187 static int cow_file_range_async(struct inode *inode, struct page *locked_page, 1188 u64 start, u64 end, int *page_started, 1189 unsigned long *nr_written, 1190 unsigned int write_flags) 1191 { 1192 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1193 struct async_cow *async_cow; 1194 unsigned long nr_pages; 1195 u64 cur_end; 1196 1197 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED, 1198 1, 0, NULL); 1199 while (start < end) { 1200 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS); 1201 BUG_ON(!async_cow); /* -ENOMEM */ 1202 /* 1203 * igrab is called higher up in the call chain, take only the 1204 * lightweight reference for the callback lifetime 1205 */ 1206 ihold(inode); 1207 async_cow->inode = inode; 1208 async_cow->fs_info = fs_info; 1209 async_cow->locked_page = locked_page; 1210 async_cow->start = start; 1211 async_cow->write_flags = write_flags; 1212 1213 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS && 1214 !btrfs_test_opt(fs_info, FORCE_COMPRESS)) 1215 cur_end = end; 1216 else 1217 cur_end = min(end, start + SZ_512K - 1); 1218 1219 async_cow->end = cur_end; 1220 INIT_LIST_HEAD(&async_cow->extents); 1221 1222 btrfs_init_work(&async_cow->work, 1223 btrfs_delalloc_helper, 1224 async_cow_start, async_cow_submit, 1225 async_cow_free); 1226 1227 nr_pages = (cur_end - start + PAGE_SIZE) >> 1228 PAGE_SHIFT; 1229 atomic_add(nr_pages, &fs_info->async_delalloc_pages); 1230 1231 btrfs_queue_work(fs_info->delalloc_workers, &async_cow->work); 1232 1233 *nr_written += nr_pages; 1234 start = cur_end + 1; 1235 } 1236 *page_started = 1; 1237 return 0; 1238 } 1239 1240 static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info, 1241 u64 bytenr, u64 num_bytes) 1242 { 1243 int ret; 1244 struct btrfs_ordered_sum *sums; 1245 LIST_HEAD(list); 1246 1247 ret = btrfs_lookup_csums_range(fs_info->csum_root, bytenr, 1248 bytenr + num_bytes - 1, &list, 0); 1249 if (ret == 0 && list_empty(&list)) 1250 return 0; 1251 1252 while (!list_empty(&list)) { 1253 sums = list_entry(list.next, struct btrfs_ordered_sum, list); 1254 list_del(&sums->list); 1255 kfree(sums); 1256 } 1257 if (ret < 0) 1258 return ret; 1259 return 1; 1260 } 1261 1262 /* 1263 * when nowcow writeback call back. This checks for snapshots or COW copies 1264 * of the extents that exist in the file, and COWs the file as required. 1265 * 1266 * If no cow copies or snapshots exist, we write directly to the existing 1267 * blocks on disk 1268 */ 1269 static noinline int run_delalloc_nocow(struct inode *inode, 1270 struct page *locked_page, 1271 u64 start, u64 end, int *page_started, int force, 1272 unsigned long *nr_written) 1273 { 1274 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1275 struct btrfs_root *root = BTRFS_I(inode)->root; 1276 struct extent_buffer *leaf; 1277 struct btrfs_path *path; 1278 struct btrfs_file_extent_item *fi; 1279 struct btrfs_key found_key; 1280 struct extent_map *em; 1281 u64 cow_start; 1282 u64 cur_offset; 1283 u64 extent_end; 1284 u64 extent_offset; 1285 u64 disk_bytenr; 1286 u64 num_bytes; 1287 u64 disk_num_bytes; 1288 u64 ram_bytes; 1289 int extent_type; 1290 int ret; 1291 int type; 1292 int nocow; 1293 int check_prev = 1; 1294 bool nolock; 1295 u64 ino = btrfs_ino(BTRFS_I(inode)); 1296 1297 path = btrfs_alloc_path(); 1298 if (!path) { 1299 extent_clear_unlock_delalloc(inode, start, end, end, 1300 locked_page, 1301 EXTENT_LOCKED | EXTENT_DELALLOC | 1302 EXTENT_DO_ACCOUNTING | 1303 EXTENT_DEFRAG, PAGE_UNLOCK | 1304 PAGE_CLEAR_DIRTY | 1305 PAGE_SET_WRITEBACK | 1306 PAGE_END_WRITEBACK); 1307 return -ENOMEM; 1308 } 1309 1310 nolock = btrfs_is_free_space_inode(BTRFS_I(inode)); 1311 1312 cow_start = (u64)-1; 1313 cur_offset = start; 1314 while (1) { 1315 ret = btrfs_lookup_file_extent(NULL, root, path, ino, 1316 cur_offset, 0); 1317 if (ret < 0) 1318 goto error; 1319 if (ret > 0 && path->slots[0] > 0 && check_prev) { 1320 leaf = path->nodes[0]; 1321 btrfs_item_key_to_cpu(leaf, &found_key, 1322 path->slots[0] - 1); 1323 if (found_key.objectid == ino && 1324 found_key.type == BTRFS_EXTENT_DATA_KEY) 1325 path->slots[0]--; 1326 } 1327 check_prev = 0; 1328 next_slot: 1329 leaf = path->nodes[0]; 1330 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 1331 ret = btrfs_next_leaf(root, path); 1332 if (ret < 0) { 1333 if (cow_start != (u64)-1) 1334 cur_offset = cow_start; 1335 goto error; 1336 } 1337 if (ret > 0) 1338 break; 1339 leaf = path->nodes[0]; 1340 } 1341 1342 nocow = 0; 1343 disk_bytenr = 0; 1344 num_bytes = 0; 1345 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1346 1347 if (found_key.objectid > ino) 1348 break; 1349 if (WARN_ON_ONCE(found_key.objectid < ino) || 1350 found_key.type < BTRFS_EXTENT_DATA_KEY) { 1351 path->slots[0]++; 1352 goto next_slot; 1353 } 1354 if (found_key.type > BTRFS_EXTENT_DATA_KEY || 1355 found_key.offset > end) 1356 break; 1357 1358 if (found_key.offset > cur_offset) { 1359 extent_end = found_key.offset; 1360 extent_type = 0; 1361 goto out_check; 1362 } 1363 1364 fi = btrfs_item_ptr(leaf, path->slots[0], 1365 struct btrfs_file_extent_item); 1366 extent_type = btrfs_file_extent_type(leaf, fi); 1367 1368 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 1369 if (extent_type == BTRFS_FILE_EXTENT_REG || 1370 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1371 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1372 extent_offset = btrfs_file_extent_offset(leaf, fi); 1373 extent_end = found_key.offset + 1374 btrfs_file_extent_num_bytes(leaf, fi); 1375 disk_num_bytes = 1376 btrfs_file_extent_disk_num_bytes(leaf, fi); 1377 if (extent_end <= start) { 1378 path->slots[0]++; 1379 goto next_slot; 1380 } 1381 if (disk_bytenr == 0) 1382 goto out_check; 1383 if (btrfs_file_extent_compression(leaf, fi) || 1384 btrfs_file_extent_encryption(leaf, fi) || 1385 btrfs_file_extent_other_encoding(leaf, fi)) 1386 goto out_check; 1387 /* 1388 * Do the same check as in btrfs_cross_ref_exist but 1389 * without the unnecessary search. 1390 */ 1391 if (!nolock && 1392 btrfs_file_extent_generation(leaf, fi) <= 1393 btrfs_root_last_snapshot(&root->root_item)) 1394 goto out_check; 1395 if (extent_type == BTRFS_FILE_EXTENT_REG && !force) 1396 goto out_check; 1397 if (btrfs_extent_readonly(fs_info, disk_bytenr)) 1398 goto out_check; 1399 ret = btrfs_cross_ref_exist(root, ino, 1400 found_key.offset - 1401 extent_offset, disk_bytenr); 1402 if (ret) { 1403 /* 1404 * ret could be -EIO if the above fails to read 1405 * metadata. 1406 */ 1407 if (ret < 0) { 1408 if (cow_start != (u64)-1) 1409 cur_offset = cow_start; 1410 goto error; 1411 } 1412 1413 WARN_ON_ONCE(nolock); 1414 goto out_check; 1415 } 1416 disk_bytenr += extent_offset; 1417 disk_bytenr += cur_offset - found_key.offset; 1418 num_bytes = min(end + 1, extent_end) - cur_offset; 1419 /* 1420 * if there are pending snapshots for this root, 1421 * we fall into common COW way. 1422 */ 1423 if (!nolock && atomic_read(&root->snapshot_force_cow)) 1424 goto out_check; 1425 /* 1426 * force cow if csum exists in the range. 1427 * this ensure that csum for a given extent are 1428 * either valid or do not exist. 1429 */ 1430 ret = csum_exist_in_range(fs_info, disk_bytenr, 1431 num_bytes); 1432 if (ret) { 1433 /* 1434 * ret could be -EIO if the above fails to read 1435 * metadata. 1436 */ 1437 if (ret < 0) { 1438 if (cow_start != (u64)-1) 1439 cur_offset = cow_start; 1440 goto error; 1441 } 1442 WARN_ON_ONCE(nolock); 1443 goto out_check; 1444 } 1445 if (!btrfs_inc_nocow_writers(fs_info, disk_bytenr)) 1446 goto out_check; 1447 nocow = 1; 1448 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 1449 extent_end = found_key.offset + 1450 btrfs_file_extent_ram_bytes(leaf, fi); 1451 extent_end = ALIGN(extent_end, 1452 fs_info->sectorsize); 1453 } else { 1454 BUG_ON(1); 1455 } 1456 out_check: 1457 if (extent_end <= start) { 1458 path->slots[0]++; 1459 if (nocow) 1460 btrfs_dec_nocow_writers(fs_info, disk_bytenr); 1461 goto next_slot; 1462 } 1463 if (!nocow) { 1464 if (cow_start == (u64)-1) 1465 cow_start = cur_offset; 1466 cur_offset = extent_end; 1467 if (cur_offset > end) 1468 break; 1469 path->slots[0]++; 1470 goto next_slot; 1471 } 1472 1473 btrfs_release_path(path); 1474 if (cow_start != (u64)-1) { 1475 ret = cow_file_range(inode, locked_page, 1476 cow_start, found_key.offset - 1, 1477 end, page_started, nr_written, 1, 1478 NULL); 1479 if (ret) { 1480 if (nocow) 1481 btrfs_dec_nocow_writers(fs_info, 1482 disk_bytenr); 1483 goto error; 1484 } 1485 cow_start = (u64)-1; 1486 } 1487 1488 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1489 u64 orig_start = found_key.offset - extent_offset; 1490 1491 em = create_io_em(inode, cur_offset, num_bytes, 1492 orig_start, 1493 disk_bytenr, /* block_start */ 1494 num_bytes, /* block_len */ 1495 disk_num_bytes, /* orig_block_len */ 1496 ram_bytes, BTRFS_COMPRESS_NONE, 1497 BTRFS_ORDERED_PREALLOC); 1498 if (IS_ERR(em)) { 1499 if (nocow) 1500 btrfs_dec_nocow_writers(fs_info, 1501 disk_bytenr); 1502 ret = PTR_ERR(em); 1503 goto error; 1504 } 1505 free_extent_map(em); 1506 } 1507 1508 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1509 type = BTRFS_ORDERED_PREALLOC; 1510 } else { 1511 type = BTRFS_ORDERED_NOCOW; 1512 } 1513 1514 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr, 1515 num_bytes, num_bytes, type); 1516 if (nocow) 1517 btrfs_dec_nocow_writers(fs_info, disk_bytenr); 1518 BUG_ON(ret); /* -ENOMEM */ 1519 1520 if (root->root_key.objectid == 1521 BTRFS_DATA_RELOC_TREE_OBJECTID) 1522 /* 1523 * Error handled later, as we must prevent 1524 * extent_clear_unlock_delalloc() in error handler 1525 * from freeing metadata of created ordered extent. 1526 */ 1527 ret = btrfs_reloc_clone_csums(inode, cur_offset, 1528 num_bytes); 1529 1530 extent_clear_unlock_delalloc(inode, cur_offset, 1531 cur_offset + num_bytes - 1, end, 1532 locked_page, EXTENT_LOCKED | 1533 EXTENT_DELALLOC | 1534 EXTENT_CLEAR_DATA_RESV, 1535 PAGE_UNLOCK | PAGE_SET_PRIVATE2); 1536 1537 cur_offset = extent_end; 1538 1539 /* 1540 * btrfs_reloc_clone_csums() error, now we're OK to call error 1541 * handler, as metadata for created ordered extent will only 1542 * be freed by btrfs_finish_ordered_io(). 1543 */ 1544 if (ret) 1545 goto error; 1546 if (cur_offset > end) 1547 break; 1548 } 1549 btrfs_release_path(path); 1550 1551 if (cur_offset <= end && cow_start == (u64)-1) 1552 cow_start = cur_offset; 1553 1554 if (cow_start != (u64)-1) { 1555 cur_offset = end; 1556 ret = cow_file_range(inode, locked_page, cow_start, end, end, 1557 page_started, nr_written, 1, NULL); 1558 if (ret) 1559 goto error; 1560 } 1561 1562 error: 1563 if (ret && cur_offset < end) 1564 extent_clear_unlock_delalloc(inode, cur_offset, end, end, 1565 locked_page, EXTENT_LOCKED | 1566 EXTENT_DELALLOC | EXTENT_DEFRAG | 1567 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK | 1568 PAGE_CLEAR_DIRTY | 1569 PAGE_SET_WRITEBACK | 1570 PAGE_END_WRITEBACK); 1571 btrfs_free_path(path); 1572 return ret; 1573 } 1574 1575 static inline int need_force_cow(struct inode *inode, u64 start, u64 end) 1576 { 1577 1578 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) && 1579 !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)) 1580 return 0; 1581 1582 /* 1583 * @defrag_bytes is a hint value, no spinlock held here, 1584 * if is not zero, it means the file is defragging. 1585 * Force cow if given extent needs to be defragged. 1586 */ 1587 if (BTRFS_I(inode)->defrag_bytes && 1588 test_range_bit(&BTRFS_I(inode)->io_tree, start, end, 1589 EXTENT_DEFRAG, 0, NULL)) 1590 return 1; 1591 1592 return 0; 1593 } 1594 1595 /* 1596 * Function to process delayed allocation (create CoW) for ranges which are 1597 * being touched for the first time. 1598 */ 1599 int btrfs_run_delalloc_range(struct inode *inode, struct page *locked_page, 1600 u64 start, u64 end, int *page_started, unsigned long *nr_written, 1601 struct writeback_control *wbc) 1602 { 1603 int ret; 1604 int force_cow = need_force_cow(inode, start, end); 1605 unsigned int write_flags = wbc_to_write_flags(wbc); 1606 1607 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) { 1608 ret = run_delalloc_nocow(inode, locked_page, start, end, 1609 page_started, 1, nr_written); 1610 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) { 1611 ret = run_delalloc_nocow(inode, locked_page, start, end, 1612 page_started, 0, nr_written); 1613 } else if (!inode_need_compress(inode, start, end)) { 1614 ret = cow_file_range(inode, locked_page, start, end, end, 1615 page_started, nr_written, 1, NULL); 1616 } else { 1617 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 1618 &BTRFS_I(inode)->runtime_flags); 1619 ret = cow_file_range_async(inode, locked_page, start, end, 1620 page_started, nr_written, 1621 write_flags); 1622 } 1623 if (ret) 1624 btrfs_cleanup_ordered_extents(inode, locked_page, start, 1625 end - start + 1); 1626 return ret; 1627 } 1628 1629 void btrfs_split_delalloc_extent(struct inode *inode, 1630 struct extent_state *orig, u64 split) 1631 { 1632 u64 size; 1633 1634 /* not delalloc, ignore it */ 1635 if (!(orig->state & EXTENT_DELALLOC)) 1636 return; 1637 1638 size = orig->end - orig->start + 1; 1639 if (size > BTRFS_MAX_EXTENT_SIZE) { 1640 u32 num_extents; 1641 u64 new_size; 1642 1643 /* 1644 * See the explanation in btrfs_merge_delalloc_extent, the same 1645 * applies here, just in reverse. 1646 */ 1647 new_size = orig->end - split + 1; 1648 num_extents = count_max_extents(new_size); 1649 new_size = split - orig->start; 1650 num_extents += count_max_extents(new_size); 1651 if (count_max_extents(size) >= num_extents) 1652 return; 1653 } 1654 1655 spin_lock(&BTRFS_I(inode)->lock); 1656 btrfs_mod_outstanding_extents(BTRFS_I(inode), 1); 1657 spin_unlock(&BTRFS_I(inode)->lock); 1658 } 1659 1660 /* 1661 * Handle merged delayed allocation extents so we can keep track of new extents 1662 * that are just merged onto old extents, such as when we are doing sequential 1663 * writes, so we can properly account for the metadata space we'll need. 1664 */ 1665 void btrfs_merge_delalloc_extent(struct inode *inode, struct extent_state *new, 1666 struct extent_state *other) 1667 { 1668 u64 new_size, old_size; 1669 u32 num_extents; 1670 1671 /* not delalloc, ignore it */ 1672 if (!(other->state & EXTENT_DELALLOC)) 1673 return; 1674 1675 if (new->start > other->start) 1676 new_size = new->end - other->start + 1; 1677 else 1678 new_size = other->end - new->start + 1; 1679 1680 /* we're not bigger than the max, unreserve the space and go */ 1681 if (new_size <= BTRFS_MAX_EXTENT_SIZE) { 1682 spin_lock(&BTRFS_I(inode)->lock); 1683 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1); 1684 spin_unlock(&BTRFS_I(inode)->lock); 1685 return; 1686 } 1687 1688 /* 1689 * We have to add up either side to figure out how many extents were 1690 * accounted for before we merged into one big extent. If the number of 1691 * extents we accounted for is <= the amount we need for the new range 1692 * then we can return, otherwise drop. Think of it like this 1693 * 1694 * [ 4k][MAX_SIZE] 1695 * 1696 * So we've grown the extent by a MAX_SIZE extent, this would mean we 1697 * need 2 outstanding extents, on one side we have 1 and the other side 1698 * we have 1 so they are == and we can return. But in this case 1699 * 1700 * [MAX_SIZE+4k][MAX_SIZE+4k] 1701 * 1702 * Each range on their own accounts for 2 extents, but merged together 1703 * they are only 3 extents worth of accounting, so we need to drop in 1704 * this case. 1705 */ 1706 old_size = other->end - other->start + 1; 1707 num_extents = count_max_extents(old_size); 1708 old_size = new->end - new->start + 1; 1709 num_extents += count_max_extents(old_size); 1710 if (count_max_extents(new_size) >= num_extents) 1711 return; 1712 1713 spin_lock(&BTRFS_I(inode)->lock); 1714 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1); 1715 spin_unlock(&BTRFS_I(inode)->lock); 1716 } 1717 1718 static void btrfs_add_delalloc_inodes(struct btrfs_root *root, 1719 struct inode *inode) 1720 { 1721 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1722 1723 spin_lock(&root->delalloc_lock); 1724 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) { 1725 list_add_tail(&BTRFS_I(inode)->delalloc_inodes, 1726 &root->delalloc_inodes); 1727 set_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1728 &BTRFS_I(inode)->runtime_flags); 1729 root->nr_delalloc_inodes++; 1730 if (root->nr_delalloc_inodes == 1) { 1731 spin_lock(&fs_info->delalloc_root_lock); 1732 BUG_ON(!list_empty(&root->delalloc_root)); 1733 list_add_tail(&root->delalloc_root, 1734 &fs_info->delalloc_roots); 1735 spin_unlock(&fs_info->delalloc_root_lock); 1736 } 1737 } 1738 spin_unlock(&root->delalloc_lock); 1739 } 1740 1741 1742 void __btrfs_del_delalloc_inode(struct btrfs_root *root, 1743 struct btrfs_inode *inode) 1744 { 1745 struct btrfs_fs_info *fs_info = root->fs_info; 1746 1747 if (!list_empty(&inode->delalloc_inodes)) { 1748 list_del_init(&inode->delalloc_inodes); 1749 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1750 &inode->runtime_flags); 1751 root->nr_delalloc_inodes--; 1752 if (!root->nr_delalloc_inodes) { 1753 ASSERT(list_empty(&root->delalloc_inodes)); 1754 spin_lock(&fs_info->delalloc_root_lock); 1755 BUG_ON(list_empty(&root->delalloc_root)); 1756 list_del_init(&root->delalloc_root); 1757 spin_unlock(&fs_info->delalloc_root_lock); 1758 } 1759 } 1760 } 1761 1762 static void btrfs_del_delalloc_inode(struct btrfs_root *root, 1763 struct btrfs_inode *inode) 1764 { 1765 spin_lock(&root->delalloc_lock); 1766 __btrfs_del_delalloc_inode(root, inode); 1767 spin_unlock(&root->delalloc_lock); 1768 } 1769 1770 /* 1771 * Properly track delayed allocation bytes in the inode and to maintain the 1772 * list of inodes that have pending delalloc work to be done. 1773 */ 1774 void btrfs_set_delalloc_extent(struct inode *inode, struct extent_state *state, 1775 unsigned *bits) 1776 { 1777 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1778 1779 if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC)) 1780 WARN_ON(1); 1781 /* 1782 * set_bit and clear bit hooks normally require _irqsave/restore 1783 * but in this case, we are only testing for the DELALLOC 1784 * bit, which is only set or cleared with irqs on 1785 */ 1786 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) { 1787 struct btrfs_root *root = BTRFS_I(inode)->root; 1788 u64 len = state->end + 1 - state->start; 1789 u32 num_extents = count_max_extents(len); 1790 bool do_list = !btrfs_is_free_space_inode(BTRFS_I(inode)); 1791 1792 spin_lock(&BTRFS_I(inode)->lock); 1793 btrfs_mod_outstanding_extents(BTRFS_I(inode), num_extents); 1794 spin_unlock(&BTRFS_I(inode)->lock); 1795 1796 /* For sanity tests */ 1797 if (btrfs_is_testing(fs_info)) 1798 return; 1799 1800 percpu_counter_add_batch(&fs_info->delalloc_bytes, len, 1801 fs_info->delalloc_batch); 1802 spin_lock(&BTRFS_I(inode)->lock); 1803 BTRFS_I(inode)->delalloc_bytes += len; 1804 if (*bits & EXTENT_DEFRAG) 1805 BTRFS_I(inode)->defrag_bytes += len; 1806 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1807 &BTRFS_I(inode)->runtime_flags)) 1808 btrfs_add_delalloc_inodes(root, inode); 1809 spin_unlock(&BTRFS_I(inode)->lock); 1810 } 1811 1812 if (!(state->state & EXTENT_DELALLOC_NEW) && 1813 (*bits & EXTENT_DELALLOC_NEW)) { 1814 spin_lock(&BTRFS_I(inode)->lock); 1815 BTRFS_I(inode)->new_delalloc_bytes += state->end + 1 - 1816 state->start; 1817 spin_unlock(&BTRFS_I(inode)->lock); 1818 } 1819 } 1820 1821 /* 1822 * Once a range is no longer delalloc this function ensures that proper 1823 * accounting happens. 1824 */ 1825 void btrfs_clear_delalloc_extent(struct inode *vfs_inode, 1826 struct extent_state *state, unsigned *bits) 1827 { 1828 struct btrfs_inode *inode = BTRFS_I(vfs_inode); 1829 struct btrfs_fs_info *fs_info = btrfs_sb(vfs_inode->i_sb); 1830 u64 len = state->end + 1 - state->start; 1831 u32 num_extents = count_max_extents(len); 1832 1833 if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG)) { 1834 spin_lock(&inode->lock); 1835 inode->defrag_bytes -= len; 1836 spin_unlock(&inode->lock); 1837 } 1838 1839 /* 1840 * set_bit and clear bit hooks normally require _irqsave/restore 1841 * but in this case, we are only testing for the DELALLOC 1842 * bit, which is only set or cleared with irqs on 1843 */ 1844 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) { 1845 struct btrfs_root *root = inode->root; 1846 bool do_list = !btrfs_is_free_space_inode(inode); 1847 1848 spin_lock(&inode->lock); 1849 btrfs_mod_outstanding_extents(inode, -num_extents); 1850 spin_unlock(&inode->lock); 1851 1852 /* 1853 * We don't reserve metadata space for space cache inodes so we 1854 * don't need to call delalloc_release_metadata if there is an 1855 * error. 1856 */ 1857 if (*bits & EXTENT_CLEAR_META_RESV && 1858 root != fs_info->tree_root) 1859 btrfs_delalloc_release_metadata(inode, len, false); 1860 1861 /* For sanity tests. */ 1862 if (btrfs_is_testing(fs_info)) 1863 return; 1864 1865 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID && 1866 do_list && !(state->state & EXTENT_NORESERVE) && 1867 (*bits & EXTENT_CLEAR_DATA_RESV)) 1868 btrfs_free_reserved_data_space_noquota( 1869 &inode->vfs_inode, 1870 state->start, len); 1871 1872 percpu_counter_add_batch(&fs_info->delalloc_bytes, -len, 1873 fs_info->delalloc_batch); 1874 spin_lock(&inode->lock); 1875 inode->delalloc_bytes -= len; 1876 if (do_list && inode->delalloc_bytes == 0 && 1877 test_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1878 &inode->runtime_flags)) 1879 btrfs_del_delalloc_inode(root, inode); 1880 spin_unlock(&inode->lock); 1881 } 1882 1883 if ((state->state & EXTENT_DELALLOC_NEW) && 1884 (*bits & EXTENT_DELALLOC_NEW)) { 1885 spin_lock(&inode->lock); 1886 ASSERT(inode->new_delalloc_bytes >= len); 1887 inode->new_delalloc_bytes -= len; 1888 spin_unlock(&inode->lock); 1889 } 1890 } 1891 1892 /* 1893 * btrfs_bio_fits_in_stripe - Checks whether the size of the given bio will fit 1894 * in a chunk's stripe. This function ensures that bios do not span a 1895 * stripe/chunk 1896 * 1897 * @page - The page we are about to add to the bio 1898 * @size - size we want to add to the bio 1899 * @bio - bio we want to ensure is smaller than a stripe 1900 * @bio_flags - flags of the bio 1901 * 1902 * return 1 if page cannot be added to the bio 1903 * return 0 if page can be added to the bio 1904 * return error otherwise 1905 */ 1906 int btrfs_bio_fits_in_stripe(struct page *page, size_t size, struct bio *bio, 1907 unsigned long bio_flags) 1908 { 1909 struct inode *inode = page->mapping->host; 1910 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1911 u64 logical = (u64)bio->bi_iter.bi_sector << 9; 1912 u64 length = 0; 1913 u64 map_length; 1914 int ret; 1915 1916 if (bio_flags & EXTENT_BIO_COMPRESSED) 1917 return 0; 1918 1919 length = bio->bi_iter.bi_size; 1920 map_length = length; 1921 ret = btrfs_map_block(fs_info, btrfs_op(bio), logical, &map_length, 1922 NULL, 0); 1923 if (ret < 0) 1924 return ret; 1925 if (map_length < length + size) 1926 return 1; 1927 return 0; 1928 } 1929 1930 /* 1931 * in order to insert checksums into the metadata in large chunks, 1932 * we wait until bio submission time. All the pages in the bio are 1933 * checksummed and sums are attached onto the ordered extent record. 1934 * 1935 * At IO completion time the cums attached on the ordered extent record 1936 * are inserted into the btree 1937 */ 1938 static blk_status_t btrfs_submit_bio_start(void *private_data, struct bio *bio, 1939 u64 bio_offset) 1940 { 1941 struct inode *inode = private_data; 1942 blk_status_t ret = 0; 1943 1944 ret = btrfs_csum_one_bio(inode, bio, 0, 0); 1945 BUG_ON(ret); /* -ENOMEM */ 1946 return 0; 1947 } 1948 1949 /* 1950 * extent_io.c submission hook. This does the right thing for csum calculation 1951 * on write, or reading the csums from the tree before a read. 1952 * 1953 * Rules about async/sync submit, 1954 * a) read: sync submit 1955 * 1956 * b) write without checksum: sync submit 1957 * 1958 * c) write with checksum: 1959 * c-1) if bio is issued by fsync: sync submit 1960 * (sync_writers != 0) 1961 * 1962 * c-2) if root is reloc root: sync submit 1963 * (only in case of buffered IO) 1964 * 1965 * c-3) otherwise: async submit 1966 */ 1967 static blk_status_t btrfs_submit_bio_hook(void *private_data, struct bio *bio, 1968 int mirror_num, unsigned long bio_flags, 1969 u64 bio_offset) 1970 { 1971 struct inode *inode = private_data; 1972 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1973 struct btrfs_root *root = BTRFS_I(inode)->root; 1974 enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA; 1975 blk_status_t ret = 0; 1976 int skip_sum; 1977 int async = !atomic_read(&BTRFS_I(inode)->sync_writers); 1978 1979 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 1980 1981 if (btrfs_is_free_space_inode(BTRFS_I(inode))) 1982 metadata = BTRFS_WQ_ENDIO_FREE_SPACE; 1983 1984 if (bio_op(bio) != REQ_OP_WRITE) { 1985 ret = btrfs_bio_wq_end_io(fs_info, bio, metadata); 1986 if (ret) 1987 goto out; 1988 1989 if (bio_flags & EXTENT_BIO_COMPRESSED) { 1990 ret = btrfs_submit_compressed_read(inode, bio, 1991 mirror_num, 1992 bio_flags); 1993 goto out; 1994 } else if (!skip_sum) { 1995 ret = btrfs_lookup_bio_sums(inode, bio, NULL); 1996 if (ret) 1997 goto out; 1998 } 1999 goto mapit; 2000 } else if (async && !skip_sum) { 2001 /* csum items have already been cloned */ 2002 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) 2003 goto mapit; 2004 /* we're doing a write, do the async checksumming */ 2005 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, bio_flags, 2006 bio_offset, inode, 2007 btrfs_submit_bio_start); 2008 goto out; 2009 } else if (!skip_sum) { 2010 ret = btrfs_csum_one_bio(inode, bio, 0, 0); 2011 if (ret) 2012 goto out; 2013 } 2014 2015 mapit: 2016 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0); 2017 2018 out: 2019 if (ret) { 2020 bio->bi_status = ret; 2021 bio_endio(bio); 2022 } 2023 return ret; 2024 } 2025 2026 /* 2027 * given a list of ordered sums record them in the inode. This happens 2028 * at IO completion time based on sums calculated at bio submission time. 2029 */ 2030 static noinline int add_pending_csums(struct btrfs_trans_handle *trans, 2031 struct inode *inode, struct list_head *list) 2032 { 2033 struct btrfs_ordered_sum *sum; 2034 int ret; 2035 2036 list_for_each_entry(sum, list, list) { 2037 trans->adding_csums = true; 2038 ret = btrfs_csum_file_blocks(trans, 2039 BTRFS_I(inode)->root->fs_info->csum_root, sum); 2040 trans->adding_csums = false; 2041 if (ret) 2042 return ret; 2043 } 2044 return 0; 2045 } 2046 2047 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end, 2048 unsigned int extra_bits, 2049 struct extent_state **cached_state, int dedupe) 2050 { 2051 WARN_ON(PAGE_ALIGNED(end)); 2052 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end, 2053 extra_bits, cached_state); 2054 } 2055 2056 /* see btrfs_writepage_start_hook for details on why this is required */ 2057 struct btrfs_writepage_fixup { 2058 struct page *page; 2059 struct btrfs_work work; 2060 }; 2061 2062 static void btrfs_writepage_fixup_worker(struct btrfs_work *work) 2063 { 2064 struct btrfs_writepage_fixup *fixup; 2065 struct btrfs_ordered_extent *ordered; 2066 struct extent_state *cached_state = NULL; 2067 struct extent_changeset *data_reserved = NULL; 2068 struct page *page; 2069 struct inode *inode; 2070 u64 page_start; 2071 u64 page_end; 2072 int ret; 2073 2074 fixup = container_of(work, struct btrfs_writepage_fixup, work); 2075 page = fixup->page; 2076 again: 2077 lock_page(page); 2078 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) { 2079 ClearPageChecked(page); 2080 goto out_page; 2081 } 2082 2083 inode = page->mapping->host; 2084 page_start = page_offset(page); 2085 page_end = page_offset(page) + PAGE_SIZE - 1; 2086 2087 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 2088 &cached_state); 2089 2090 /* already ordered? We're done */ 2091 if (PagePrivate2(page)) 2092 goto out; 2093 2094 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start, 2095 PAGE_SIZE); 2096 if (ordered) { 2097 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, 2098 page_end, &cached_state); 2099 unlock_page(page); 2100 btrfs_start_ordered_extent(inode, ordered, 1); 2101 btrfs_put_ordered_extent(ordered); 2102 goto again; 2103 } 2104 2105 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start, 2106 PAGE_SIZE); 2107 if (ret) { 2108 mapping_set_error(page->mapping, ret); 2109 end_extent_writepage(page, ret, page_start, page_end); 2110 ClearPageChecked(page); 2111 goto out; 2112 } 2113 2114 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0, 2115 &cached_state, 0); 2116 if (ret) { 2117 mapping_set_error(page->mapping, ret); 2118 end_extent_writepage(page, ret, page_start, page_end); 2119 ClearPageChecked(page); 2120 goto out; 2121 } 2122 2123 ClearPageChecked(page); 2124 set_page_dirty(page); 2125 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE, false); 2126 out: 2127 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end, 2128 &cached_state); 2129 out_page: 2130 unlock_page(page); 2131 put_page(page); 2132 kfree(fixup); 2133 extent_changeset_free(data_reserved); 2134 } 2135 2136 /* 2137 * There are a few paths in the higher layers of the kernel that directly 2138 * set the page dirty bit without asking the filesystem if it is a 2139 * good idea. This causes problems because we want to make sure COW 2140 * properly happens and the data=ordered rules are followed. 2141 * 2142 * In our case any range that doesn't have the ORDERED bit set 2143 * hasn't been properly setup for IO. We kick off an async process 2144 * to fix it up. The async helper will wait for ordered extents, set 2145 * the delalloc bit and make it safe to write the page. 2146 */ 2147 int btrfs_writepage_cow_fixup(struct page *page, u64 start, u64 end) 2148 { 2149 struct inode *inode = page->mapping->host; 2150 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2151 struct btrfs_writepage_fixup *fixup; 2152 2153 /* this page is properly in the ordered list */ 2154 if (TestClearPagePrivate2(page)) 2155 return 0; 2156 2157 if (PageChecked(page)) 2158 return -EAGAIN; 2159 2160 fixup = kzalloc(sizeof(*fixup), GFP_NOFS); 2161 if (!fixup) 2162 return -EAGAIN; 2163 2164 SetPageChecked(page); 2165 get_page(page); 2166 btrfs_init_work(&fixup->work, btrfs_fixup_helper, 2167 btrfs_writepage_fixup_worker, NULL, NULL); 2168 fixup->page = page; 2169 btrfs_queue_work(fs_info->fixup_workers, &fixup->work); 2170 return -EBUSY; 2171 } 2172 2173 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans, 2174 struct inode *inode, u64 file_pos, 2175 u64 disk_bytenr, u64 disk_num_bytes, 2176 u64 num_bytes, u64 ram_bytes, 2177 u8 compression, u8 encryption, 2178 u16 other_encoding, int extent_type) 2179 { 2180 struct btrfs_root *root = BTRFS_I(inode)->root; 2181 struct btrfs_file_extent_item *fi; 2182 struct btrfs_path *path; 2183 struct extent_buffer *leaf; 2184 struct btrfs_key ins; 2185 u64 qg_released; 2186 int extent_inserted = 0; 2187 int ret; 2188 2189 path = btrfs_alloc_path(); 2190 if (!path) 2191 return -ENOMEM; 2192 2193 /* 2194 * we may be replacing one extent in the tree with another. 2195 * The new extent is pinned in the extent map, and we don't want 2196 * to drop it from the cache until it is completely in the btree. 2197 * 2198 * So, tell btrfs_drop_extents to leave this extent in the cache. 2199 * the caller is expected to unpin it and allow it to be merged 2200 * with the others. 2201 */ 2202 ret = __btrfs_drop_extents(trans, root, inode, path, file_pos, 2203 file_pos + num_bytes, NULL, 0, 2204 1, sizeof(*fi), &extent_inserted); 2205 if (ret) 2206 goto out; 2207 2208 if (!extent_inserted) { 2209 ins.objectid = btrfs_ino(BTRFS_I(inode)); 2210 ins.offset = file_pos; 2211 ins.type = BTRFS_EXTENT_DATA_KEY; 2212 2213 path->leave_spinning = 1; 2214 ret = btrfs_insert_empty_item(trans, root, path, &ins, 2215 sizeof(*fi)); 2216 if (ret) 2217 goto out; 2218 } 2219 leaf = path->nodes[0]; 2220 fi = btrfs_item_ptr(leaf, path->slots[0], 2221 struct btrfs_file_extent_item); 2222 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 2223 btrfs_set_file_extent_type(leaf, fi, extent_type); 2224 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr); 2225 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes); 2226 btrfs_set_file_extent_offset(leaf, fi, 0); 2227 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 2228 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes); 2229 btrfs_set_file_extent_compression(leaf, fi, compression); 2230 btrfs_set_file_extent_encryption(leaf, fi, encryption); 2231 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding); 2232 2233 btrfs_mark_buffer_dirty(leaf); 2234 btrfs_release_path(path); 2235 2236 inode_add_bytes(inode, num_bytes); 2237 2238 ins.objectid = disk_bytenr; 2239 ins.offset = disk_num_bytes; 2240 ins.type = BTRFS_EXTENT_ITEM_KEY; 2241 2242 /* 2243 * Release the reserved range from inode dirty range map, as it is 2244 * already moved into delayed_ref_head 2245 */ 2246 ret = btrfs_qgroup_release_data(inode, file_pos, ram_bytes); 2247 if (ret < 0) 2248 goto out; 2249 qg_released = ret; 2250 ret = btrfs_alloc_reserved_file_extent(trans, root, 2251 btrfs_ino(BTRFS_I(inode)), 2252 file_pos, qg_released, &ins); 2253 out: 2254 btrfs_free_path(path); 2255 2256 return ret; 2257 } 2258 2259 /* snapshot-aware defrag */ 2260 struct sa_defrag_extent_backref { 2261 struct rb_node node; 2262 struct old_sa_defrag_extent *old; 2263 u64 root_id; 2264 u64 inum; 2265 u64 file_pos; 2266 u64 extent_offset; 2267 u64 num_bytes; 2268 u64 generation; 2269 }; 2270 2271 struct old_sa_defrag_extent { 2272 struct list_head list; 2273 struct new_sa_defrag_extent *new; 2274 2275 u64 extent_offset; 2276 u64 bytenr; 2277 u64 offset; 2278 u64 len; 2279 int count; 2280 }; 2281 2282 struct new_sa_defrag_extent { 2283 struct rb_root root; 2284 struct list_head head; 2285 struct btrfs_path *path; 2286 struct inode *inode; 2287 u64 file_pos; 2288 u64 len; 2289 u64 bytenr; 2290 u64 disk_len; 2291 u8 compress_type; 2292 }; 2293 2294 static int backref_comp(struct sa_defrag_extent_backref *b1, 2295 struct sa_defrag_extent_backref *b2) 2296 { 2297 if (b1->root_id < b2->root_id) 2298 return -1; 2299 else if (b1->root_id > b2->root_id) 2300 return 1; 2301 2302 if (b1->inum < b2->inum) 2303 return -1; 2304 else if (b1->inum > b2->inum) 2305 return 1; 2306 2307 if (b1->file_pos < b2->file_pos) 2308 return -1; 2309 else if (b1->file_pos > b2->file_pos) 2310 return 1; 2311 2312 /* 2313 * [------------------------------] ===> (a range of space) 2314 * |<--->| |<---->| =============> (fs/file tree A) 2315 * |<---------------------------->| ===> (fs/file tree B) 2316 * 2317 * A range of space can refer to two file extents in one tree while 2318 * refer to only one file extent in another tree. 2319 * 2320 * So we may process a disk offset more than one time(two extents in A) 2321 * and locate at the same extent(one extent in B), then insert two same 2322 * backrefs(both refer to the extent in B). 2323 */ 2324 return 0; 2325 } 2326 2327 static void backref_insert(struct rb_root *root, 2328 struct sa_defrag_extent_backref *backref) 2329 { 2330 struct rb_node **p = &root->rb_node; 2331 struct rb_node *parent = NULL; 2332 struct sa_defrag_extent_backref *entry; 2333 int ret; 2334 2335 while (*p) { 2336 parent = *p; 2337 entry = rb_entry(parent, struct sa_defrag_extent_backref, node); 2338 2339 ret = backref_comp(backref, entry); 2340 if (ret < 0) 2341 p = &(*p)->rb_left; 2342 else 2343 p = &(*p)->rb_right; 2344 } 2345 2346 rb_link_node(&backref->node, parent, p); 2347 rb_insert_color(&backref->node, root); 2348 } 2349 2350 /* 2351 * Note the backref might has changed, and in this case we just return 0. 2352 */ 2353 static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id, 2354 void *ctx) 2355 { 2356 struct btrfs_file_extent_item *extent; 2357 struct old_sa_defrag_extent *old = ctx; 2358 struct new_sa_defrag_extent *new = old->new; 2359 struct btrfs_path *path = new->path; 2360 struct btrfs_key key; 2361 struct btrfs_root *root; 2362 struct sa_defrag_extent_backref *backref; 2363 struct extent_buffer *leaf; 2364 struct inode *inode = new->inode; 2365 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2366 int slot; 2367 int ret; 2368 u64 extent_offset; 2369 u64 num_bytes; 2370 2371 if (BTRFS_I(inode)->root->root_key.objectid == root_id && 2372 inum == btrfs_ino(BTRFS_I(inode))) 2373 return 0; 2374 2375 key.objectid = root_id; 2376 key.type = BTRFS_ROOT_ITEM_KEY; 2377 key.offset = (u64)-1; 2378 2379 root = btrfs_read_fs_root_no_name(fs_info, &key); 2380 if (IS_ERR(root)) { 2381 if (PTR_ERR(root) == -ENOENT) 2382 return 0; 2383 WARN_ON(1); 2384 btrfs_debug(fs_info, "inum=%llu, offset=%llu, root_id=%llu", 2385 inum, offset, root_id); 2386 return PTR_ERR(root); 2387 } 2388 2389 key.objectid = inum; 2390 key.type = BTRFS_EXTENT_DATA_KEY; 2391 if (offset > (u64)-1 << 32) 2392 key.offset = 0; 2393 else 2394 key.offset = offset; 2395 2396 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2397 if (WARN_ON(ret < 0)) 2398 return ret; 2399 ret = 0; 2400 2401 while (1) { 2402 cond_resched(); 2403 2404 leaf = path->nodes[0]; 2405 slot = path->slots[0]; 2406 2407 if (slot >= btrfs_header_nritems(leaf)) { 2408 ret = btrfs_next_leaf(root, path); 2409 if (ret < 0) { 2410 goto out; 2411 } else if (ret > 0) { 2412 ret = 0; 2413 goto out; 2414 } 2415 continue; 2416 } 2417 2418 path->slots[0]++; 2419 2420 btrfs_item_key_to_cpu(leaf, &key, slot); 2421 2422 if (key.objectid > inum) 2423 goto out; 2424 2425 if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY) 2426 continue; 2427 2428 extent = btrfs_item_ptr(leaf, slot, 2429 struct btrfs_file_extent_item); 2430 2431 if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr) 2432 continue; 2433 2434 /* 2435 * 'offset' refers to the exact key.offset, 2436 * NOT the 'offset' field in btrfs_extent_data_ref, ie. 2437 * (key.offset - extent_offset). 2438 */ 2439 if (key.offset != offset) 2440 continue; 2441 2442 extent_offset = btrfs_file_extent_offset(leaf, extent); 2443 num_bytes = btrfs_file_extent_num_bytes(leaf, extent); 2444 2445 if (extent_offset >= old->extent_offset + old->offset + 2446 old->len || extent_offset + num_bytes <= 2447 old->extent_offset + old->offset) 2448 continue; 2449 break; 2450 } 2451 2452 backref = kmalloc(sizeof(*backref), GFP_NOFS); 2453 if (!backref) { 2454 ret = -ENOENT; 2455 goto out; 2456 } 2457 2458 backref->root_id = root_id; 2459 backref->inum = inum; 2460 backref->file_pos = offset; 2461 backref->num_bytes = num_bytes; 2462 backref->extent_offset = extent_offset; 2463 backref->generation = btrfs_file_extent_generation(leaf, extent); 2464 backref->old = old; 2465 backref_insert(&new->root, backref); 2466 old->count++; 2467 out: 2468 btrfs_release_path(path); 2469 WARN_ON(ret); 2470 return ret; 2471 } 2472 2473 static noinline bool record_extent_backrefs(struct btrfs_path *path, 2474 struct new_sa_defrag_extent *new) 2475 { 2476 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb); 2477 struct old_sa_defrag_extent *old, *tmp; 2478 int ret; 2479 2480 new->path = path; 2481 2482 list_for_each_entry_safe(old, tmp, &new->head, list) { 2483 ret = iterate_inodes_from_logical(old->bytenr + 2484 old->extent_offset, fs_info, 2485 path, record_one_backref, 2486 old, false); 2487 if (ret < 0 && ret != -ENOENT) 2488 return false; 2489 2490 /* no backref to be processed for this extent */ 2491 if (!old->count) { 2492 list_del(&old->list); 2493 kfree(old); 2494 } 2495 } 2496 2497 if (list_empty(&new->head)) 2498 return false; 2499 2500 return true; 2501 } 2502 2503 static int relink_is_mergable(struct extent_buffer *leaf, 2504 struct btrfs_file_extent_item *fi, 2505 struct new_sa_defrag_extent *new) 2506 { 2507 if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr) 2508 return 0; 2509 2510 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG) 2511 return 0; 2512 2513 if (btrfs_file_extent_compression(leaf, fi) != new->compress_type) 2514 return 0; 2515 2516 if (btrfs_file_extent_encryption(leaf, fi) || 2517 btrfs_file_extent_other_encoding(leaf, fi)) 2518 return 0; 2519 2520 return 1; 2521 } 2522 2523 /* 2524 * Note the backref might has changed, and in this case we just return 0. 2525 */ 2526 static noinline int relink_extent_backref(struct btrfs_path *path, 2527 struct sa_defrag_extent_backref *prev, 2528 struct sa_defrag_extent_backref *backref) 2529 { 2530 struct btrfs_file_extent_item *extent; 2531 struct btrfs_file_extent_item *item; 2532 struct btrfs_ordered_extent *ordered; 2533 struct btrfs_trans_handle *trans; 2534 struct btrfs_root *root; 2535 struct btrfs_key key; 2536 struct extent_buffer *leaf; 2537 struct old_sa_defrag_extent *old = backref->old; 2538 struct new_sa_defrag_extent *new = old->new; 2539 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb); 2540 struct inode *inode; 2541 struct extent_state *cached = NULL; 2542 int ret = 0; 2543 u64 start; 2544 u64 len; 2545 u64 lock_start; 2546 u64 lock_end; 2547 bool merge = false; 2548 int index; 2549 2550 if (prev && prev->root_id == backref->root_id && 2551 prev->inum == backref->inum && 2552 prev->file_pos + prev->num_bytes == backref->file_pos) 2553 merge = true; 2554 2555 /* step 1: get root */ 2556 key.objectid = backref->root_id; 2557 key.type = BTRFS_ROOT_ITEM_KEY; 2558 key.offset = (u64)-1; 2559 2560 index = srcu_read_lock(&fs_info->subvol_srcu); 2561 2562 root = btrfs_read_fs_root_no_name(fs_info, &key); 2563 if (IS_ERR(root)) { 2564 srcu_read_unlock(&fs_info->subvol_srcu, index); 2565 if (PTR_ERR(root) == -ENOENT) 2566 return 0; 2567 return PTR_ERR(root); 2568 } 2569 2570 if (btrfs_root_readonly(root)) { 2571 srcu_read_unlock(&fs_info->subvol_srcu, index); 2572 return 0; 2573 } 2574 2575 /* step 2: get inode */ 2576 key.objectid = backref->inum; 2577 key.type = BTRFS_INODE_ITEM_KEY; 2578 key.offset = 0; 2579 2580 inode = btrfs_iget(fs_info->sb, &key, root, NULL); 2581 if (IS_ERR(inode)) { 2582 srcu_read_unlock(&fs_info->subvol_srcu, index); 2583 return 0; 2584 } 2585 2586 srcu_read_unlock(&fs_info->subvol_srcu, index); 2587 2588 /* step 3: relink backref */ 2589 lock_start = backref->file_pos; 2590 lock_end = backref->file_pos + backref->num_bytes - 1; 2591 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end, 2592 &cached); 2593 2594 ordered = btrfs_lookup_first_ordered_extent(inode, lock_end); 2595 if (ordered) { 2596 btrfs_put_ordered_extent(ordered); 2597 goto out_unlock; 2598 } 2599 2600 trans = btrfs_join_transaction(root); 2601 if (IS_ERR(trans)) { 2602 ret = PTR_ERR(trans); 2603 goto out_unlock; 2604 } 2605 2606 key.objectid = backref->inum; 2607 key.type = BTRFS_EXTENT_DATA_KEY; 2608 key.offset = backref->file_pos; 2609 2610 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2611 if (ret < 0) { 2612 goto out_free_path; 2613 } else if (ret > 0) { 2614 ret = 0; 2615 goto out_free_path; 2616 } 2617 2618 extent = btrfs_item_ptr(path->nodes[0], path->slots[0], 2619 struct btrfs_file_extent_item); 2620 2621 if (btrfs_file_extent_generation(path->nodes[0], extent) != 2622 backref->generation) 2623 goto out_free_path; 2624 2625 btrfs_release_path(path); 2626 2627 start = backref->file_pos; 2628 if (backref->extent_offset < old->extent_offset + old->offset) 2629 start += old->extent_offset + old->offset - 2630 backref->extent_offset; 2631 2632 len = min(backref->extent_offset + backref->num_bytes, 2633 old->extent_offset + old->offset + old->len); 2634 len -= max(backref->extent_offset, old->extent_offset + old->offset); 2635 2636 ret = btrfs_drop_extents(trans, root, inode, start, 2637 start + len, 1); 2638 if (ret) 2639 goto out_free_path; 2640 again: 2641 key.objectid = btrfs_ino(BTRFS_I(inode)); 2642 key.type = BTRFS_EXTENT_DATA_KEY; 2643 key.offset = start; 2644 2645 path->leave_spinning = 1; 2646 if (merge) { 2647 struct btrfs_file_extent_item *fi; 2648 u64 extent_len; 2649 struct btrfs_key found_key; 2650 2651 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2652 if (ret < 0) 2653 goto out_free_path; 2654 2655 path->slots[0]--; 2656 leaf = path->nodes[0]; 2657 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 2658 2659 fi = btrfs_item_ptr(leaf, path->slots[0], 2660 struct btrfs_file_extent_item); 2661 extent_len = btrfs_file_extent_num_bytes(leaf, fi); 2662 2663 if (extent_len + found_key.offset == start && 2664 relink_is_mergable(leaf, fi, new)) { 2665 btrfs_set_file_extent_num_bytes(leaf, fi, 2666 extent_len + len); 2667 btrfs_mark_buffer_dirty(leaf); 2668 inode_add_bytes(inode, len); 2669 2670 ret = 1; 2671 goto out_free_path; 2672 } else { 2673 merge = false; 2674 btrfs_release_path(path); 2675 goto again; 2676 } 2677 } 2678 2679 ret = btrfs_insert_empty_item(trans, root, path, &key, 2680 sizeof(*extent)); 2681 if (ret) { 2682 btrfs_abort_transaction(trans, ret); 2683 goto out_free_path; 2684 } 2685 2686 leaf = path->nodes[0]; 2687 item = btrfs_item_ptr(leaf, path->slots[0], 2688 struct btrfs_file_extent_item); 2689 btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr); 2690 btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len); 2691 btrfs_set_file_extent_offset(leaf, item, start - new->file_pos); 2692 btrfs_set_file_extent_num_bytes(leaf, item, len); 2693 btrfs_set_file_extent_ram_bytes(leaf, item, new->len); 2694 btrfs_set_file_extent_generation(leaf, item, trans->transid); 2695 btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG); 2696 btrfs_set_file_extent_compression(leaf, item, new->compress_type); 2697 btrfs_set_file_extent_encryption(leaf, item, 0); 2698 btrfs_set_file_extent_other_encoding(leaf, item, 0); 2699 2700 btrfs_mark_buffer_dirty(leaf); 2701 inode_add_bytes(inode, len); 2702 btrfs_release_path(path); 2703 2704 ret = btrfs_inc_extent_ref(trans, root, new->bytenr, 2705 new->disk_len, 0, 2706 backref->root_id, backref->inum, 2707 new->file_pos); /* start - extent_offset */ 2708 if (ret) { 2709 btrfs_abort_transaction(trans, ret); 2710 goto out_free_path; 2711 } 2712 2713 ret = 1; 2714 out_free_path: 2715 btrfs_release_path(path); 2716 path->leave_spinning = 0; 2717 btrfs_end_transaction(trans); 2718 out_unlock: 2719 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end, 2720 &cached); 2721 iput(inode); 2722 return ret; 2723 } 2724 2725 static void free_sa_defrag_extent(struct new_sa_defrag_extent *new) 2726 { 2727 struct old_sa_defrag_extent *old, *tmp; 2728 2729 if (!new) 2730 return; 2731 2732 list_for_each_entry_safe(old, tmp, &new->head, list) { 2733 kfree(old); 2734 } 2735 kfree(new); 2736 } 2737 2738 static void relink_file_extents(struct new_sa_defrag_extent *new) 2739 { 2740 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb); 2741 struct btrfs_path *path; 2742 struct sa_defrag_extent_backref *backref; 2743 struct sa_defrag_extent_backref *prev = NULL; 2744 struct rb_node *node; 2745 int ret; 2746 2747 path = btrfs_alloc_path(); 2748 if (!path) 2749 return; 2750 2751 if (!record_extent_backrefs(path, new)) { 2752 btrfs_free_path(path); 2753 goto out; 2754 } 2755 btrfs_release_path(path); 2756 2757 while (1) { 2758 node = rb_first(&new->root); 2759 if (!node) 2760 break; 2761 rb_erase(node, &new->root); 2762 2763 backref = rb_entry(node, struct sa_defrag_extent_backref, node); 2764 2765 ret = relink_extent_backref(path, prev, backref); 2766 WARN_ON(ret < 0); 2767 2768 kfree(prev); 2769 2770 if (ret == 1) 2771 prev = backref; 2772 else 2773 prev = NULL; 2774 cond_resched(); 2775 } 2776 kfree(prev); 2777 2778 btrfs_free_path(path); 2779 out: 2780 free_sa_defrag_extent(new); 2781 2782 atomic_dec(&fs_info->defrag_running); 2783 wake_up(&fs_info->transaction_wait); 2784 } 2785 2786 static struct new_sa_defrag_extent * 2787 record_old_file_extents(struct inode *inode, 2788 struct btrfs_ordered_extent *ordered) 2789 { 2790 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2791 struct btrfs_root *root = BTRFS_I(inode)->root; 2792 struct btrfs_path *path; 2793 struct btrfs_key key; 2794 struct old_sa_defrag_extent *old; 2795 struct new_sa_defrag_extent *new; 2796 int ret; 2797 2798 new = kmalloc(sizeof(*new), GFP_NOFS); 2799 if (!new) 2800 return NULL; 2801 2802 new->inode = inode; 2803 new->file_pos = ordered->file_offset; 2804 new->len = ordered->len; 2805 new->bytenr = ordered->start; 2806 new->disk_len = ordered->disk_len; 2807 new->compress_type = ordered->compress_type; 2808 new->root = RB_ROOT; 2809 INIT_LIST_HEAD(&new->head); 2810 2811 path = btrfs_alloc_path(); 2812 if (!path) 2813 goto out_kfree; 2814 2815 key.objectid = btrfs_ino(BTRFS_I(inode)); 2816 key.type = BTRFS_EXTENT_DATA_KEY; 2817 key.offset = new->file_pos; 2818 2819 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2820 if (ret < 0) 2821 goto out_free_path; 2822 if (ret > 0 && path->slots[0] > 0) 2823 path->slots[0]--; 2824 2825 /* find out all the old extents for the file range */ 2826 while (1) { 2827 struct btrfs_file_extent_item *extent; 2828 struct extent_buffer *l; 2829 int slot; 2830 u64 num_bytes; 2831 u64 offset; 2832 u64 end; 2833 u64 disk_bytenr; 2834 u64 extent_offset; 2835 2836 l = path->nodes[0]; 2837 slot = path->slots[0]; 2838 2839 if (slot >= btrfs_header_nritems(l)) { 2840 ret = btrfs_next_leaf(root, path); 2841 if (ret < 0) 2842 goto out_free_path; 2843 else if (ret > 0) 2844 break; 2845 continue; 2846 } 2847 2848 btrfs_item_key_to_cpu(l, &key, slot); 2849 2850 if (key.objectid != btrfs_ino(BTRFS_I(inode))) 2851 break; 2852 if (key.type != BTRFS_EXTENT_DATA_KEY) 2853 break; 2854 if (key.offset >= new->file_pos + new->len) 2855 break; 2856 2857 extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item); 2858 2859 num_bytes = btrfs_file_extent_num_bytes(l, extent); 2860 if (key.offset + num_bytes < new->file_pos) 2861 goto next; 2862 2863 disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent); 2864 if (!disk_bytenr) 2865 goto next; 2866 2867 extent_offset = btrfs_file_extent_offset(l, extent); 2868 2869 old = kmalloc(sizeof(*old), GFP_NOFS); 2870 if (!old) 2871 goto out_free_path; 2872 2873 offset = max(new->file_pos, key.offset); 2874 end = min(new->file_pos + new->len, key.offset + num_bytes); 2875 2876 old->bytenr = disk_bytenr; 2877 old->extent_offset = extent_offset; 2878 old->offset = offset - key.offset; 2879 old->len = end - offset; 2880 old->new = new; 2881 old->count = 0; 2882 list_add_tail(&old->list, &new->head); 2883 next: 2884 path->slots[0]++; 2885 cond_resched(); 2886 } 2887 2888 btrfs_free_path(path); 2889 atomic_inc(&fs_info->defrag_running); 2890 2891 return new; 2892 2893 out_free_path: 2894 btrfs_free_path(path); 2895 out_kfree: 2896 free_sa_defrag_extent(new); 2897 return NULL; 2898 } 2899 2900 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info, 2901 u64 start, u64 len) 2902 { 2903 struct btrfs_block_group_cache *cache; 2904 2905 cache = btrfs_lookup_block_group(fs_info, start); 2906 ASSERT(cache); 2907 2908 spin_lock(&cache->lock); 2909 cache->delalloc_bytes -= len; 2910 spin_unlock(&cache->lock); 2911 2912 btrfs_put_block_group(cache); 2913 } 2914 2915 /* as ordered data IO finishes, this gets called so we can finish 2916 * an ordered extent if the range of bytes in the file it covers are 2917 * fully written. 2918 */ 2919 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent) 2920 { 2921 struct inode *inode = ordered_extent->inode; 2922 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2923 struct btrfs_root *root = BTRFS_I(inode)->root; 2924 struct btrfs_trans_handle *trans = NULL; 2925 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 2926 struct extent_state *cached_state = NULL; 2927 struct new_sa_defrag_extent *new = NULL; 2928 int compress_type = 0; 2929 int ret = 0; 2930 u64 logical_len = ordered_extent->len; 2931 bool nolock; 2932 bool truncated = false; 2933 bool range_locked = false; 2934 bool clear_new_delalloc_bytes = false; 2935 bool clear_reserved_extent = true; 2936 2937 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) && 2938 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) && 2939 !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags)) 2940 clear_new_delalloc_bytes = true; 2941 2942 nolock = btrfs_is_free_space_inode(BTRFS_I(inode)); 2943 2944 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) { 2945 ret = -EIO; 2946 goto out; 2947 } 2948 2949 btrfs_free_io_failure_record(BTRFS_I(inode), 2950 ordered_extent->file_offset, 2951 ordered_extent->file_offset + 2952 ordered_extent->len - 1); 2953 2954 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) { 2955 truncated = true; 2956 logical_len = ordered_extent->truncated_len; 2957 /* Truncated the entire extent, don't bother adding */ 2958 if (!logical_len) 2959 goto out; 2960 } 2961 2962 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) { 2963 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */ 2964 2965 /* 2966 * For mwrite(mmap + memset to write) case, we still reserve 2967 * space for NOCOW range. 2968 * As NOCOW won't cause a new delayed ref, just free the space 2969 */ 2970 btrfs_qgroup_free_data(inode, NULL, ordered_extent->file_offset, 2971 ordered_extent->len); 2972 btrfs_ordered_update_i_size(inode, 0, ordered_extent); 2973 if (nolock) 2974 trans = btrfs_join_transaction_nolock(root); 2975 else 2976 trans = btrfs_join_transaction(root); 2977 if (IS_ERR(trans)) { 2978 ret = PTR_ERR(trans); 2979 trans = NULL; 2980 goto out; 2981 } 2982 trans->block_rsv = &BTRFS_I(inode)->block_rsv; 2983 ret = btrfs_update_inode_fallback(trans, root, inode); 2984 if (ret) /* -ENOMEM or corruption */ 2985 btrfs_abort_transaction(trans, ret); 2986 goto out; 2987 } 2988 2989 range_locked = true; 2990 lock_extent_bits(io_tree, ordered_extent->file_offset, 2991 ordered_extent->file_offset + ordered_extent->len - 1, 2992 &cached_state); 2993 2994 ret = test_range_bit(io_tree, ordered_extent->file_offset, 2995 ordered_extent->file_offset + ordered_extent->len - 1, 2996 EXTENT_DEFRAG, 0, cached_state); 2997 if (ret) { 2998 u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item); 2999 if (0 && last_snapshot >= BTRFS_I(inode)->generation) 3000 /* the inode is shared */ 3001 new = record_old_file_extents(inode, ordered_extent); 3002 3003 clear_extent_bit(io_tree, ordered_extent->file_offset, 3004 ordered_extent->file_offset + ordered_extent->len - 1, 3005 EXTENT_DEFRAG, 0, 0, &cached_state); 3006 } 3007 3008 if (nolock) 3009 trans = btrfs_join_transaction_nolock(root); 3010 else 3011 trans = btrfs_join_transaction(root); 3012 if (IS_ERR(trans)) { 3013 ret = PTR_ERR(trans); 3014 trans = NULL; 3015 goto out; 3016 } 3017 3018 trans->block_rsv = &BTRFS_I(inode)->block_rsv; 3019 3020 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags)) 3021 compress_type = ordered_extent->compress_type; 3022 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 3023 BUG_ON(compress_type); 3024 btrfs_qgroup_free_data(inode, NULL, ordered_extent->file_offset, 3025 ordered_extent->len); 3026 ret = btrfs_mark_extent_written(trans, BTRFS_I(inode), 3027 ordered_extent->file_offset, 3028 ordered_extent->file_offset + 3029 logical_len); 3030 } else { 3031 BUG_ON(root == fs_info->tree_root); 3032 ret = insert_reserved_file_extent(trans, inode, 3033 ordered_extent->file_offset, 3034 ordered_extent->start, 3035 ordered_extent->disk_len, 3036 logical_len, logical_len, 3037 compress_type, 0, 0, 3038 BTRFS_FILE_EXTENT_REG); 3039 if (!ret) { 3040 clear_reserved_extent = false; 3041 btrfs_release_delalloc_bytes(fs_info, 3042 ordered_extent->start, 3043 ordered_extent->disk_len); 3044 } 3045 } 3046 unpin_extent_cache(&BTRFS_I(inode)->extent_tree, 3047 ordered_extent->file_offset, ordered_extent->len, 3048 trans->transid); 3049 if (ret < 0) { 3050 btrfs_abort_transaction(trans, ret); 3051 goto out; 3052 } 3053 3054 ret = add_pending_csums(trans, inode, &ordered_extent->list); 3055 if (ret) { 3056 btrfs_abort_transaction(trans, ret); 3057 goto out; 3058 } 3059 3060 btrfs_ordered_update_i_size(inode, 0, ordered_extent); 3061 ret = btrfs_update_inode_fallback(trans, root, inode); 3062 if (ret) { /* -ENOMEM or corruption */ 3063 btrfs_abort_transaction(trans, ret); 3064 goto out; 3065 } 3066 ret = 0; 3067 out: 3068 if (range_locked || clear_new_delalloc_bytes) { 3069 unsigned int clear_bits = 0; 3070 3071 if (range_locked) 3072 clear_bits |= EXTENT_LOCKED; 3073 if (clear_new_delalloc_bytes) 3074 clear_bits |= EXTENT_DELALLOC_NEW; 3075 clear_extent_bit(&BTRFS_I(inode)->io_tree, 3076 ordered_extent->file_offset, 3077 ordered_extent->file_offset + 3078 ordered_extent->len - 1, 3079 clear_bits, 3080 (clear_bits & EXTENT_LOCKED) ? 1 : 0, 3081 0, &cached_state); 3082 } 3083 3084 if (trans) 3085 btrfs_end_transaction(trans); 3086 3087 if (ret || truncated) { 3088 u64 start, end; 3089 3090 if (truncated) 3091 start = ordered_extent->file_offset + logical_len; 3092 else 3093 start = ordered_extent->file_offset; 3094 end = ordered_extent->file_offset + ordered_extent->len - 1; 3095 clear_extent_uptodate(io_tree, start, end, NULL); 3096 3097 /* Drop the cache for the part of the extent we didn't write. */ 3098 btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 0); 3099 3100 /* 3101 * If the ordered extent had an IOERR or something else went 3102 * wrong we need to return the space for this ordered extent 3103 * back to the allocator. We only free the extent in the 3104 * truncated case if we didn't write out the extent at all. 3105 * 3106 * If we made it past insert_reserved_file_extent before we 3107 * errored out then we don't need to do this as the accounting 3108 * has already been done. 3109 */ 3110 if ((ret || !logical_len) && 3111 clear_reserved_extent && 3112 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) && 3113 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) 3114 btrfs_free_reserved_extent(fs_info, 3115 ordered_extent->start, 3116 ordered_extent->disk_len, 1); 3117 } 3118 3119 3120 /* 3121 * This needs to be done to make sure anybody waiting knows we are done 3122 * updating everything for this ordered extent. 3123 */ 3124 btrfs_remove_ordered_extent(inode, ordered_extent); 3125 3126 /* for snapshot-aware defrag */ 3127 if (new) { 3128 if (ret) { 3129 free_sa_defrag_extent(new); 3130 atomic_dec(&fs_info->defrag_running); 3131 } else { 3132 relink_file_extents(new); 3133 } 3134 } 3135 3136 /* once for us */ 3137 btrfs_put_ordered_extent(ordered_extent); 3138 /* once for the tree */ 3139 btrfs_put_ordered_extent(ordered_extent); 3140 3141 return ret; 3142 } 3143 3144 static void finish_ordered_fn(struct btrfs_work *work) 3145 { 3146 struct btrfs_ordered_extent *ordered_extent; 3147 ordered_extent = container_of(work, struct btrfs_ordered_extent, work); 3148 btrfs_finish_ordered_io(ordered_extent); 3149 } 3150 3151 void btrfs_writepage_endio_finish_ordered(struct page *page, u64 start, 3152 u64 end, int uptodate) 3153 { 3154 struct inode *inode = page->mapping->host; 3155 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3156 struct btrfs_ordered_extent *ordered_extent = NULL; 3157 struct btrfs_workqueue *wq; 3158 btrfs_work_func_t func; 3159 3160 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate); 3161 3162 ClearPagePrivate2(page); 3163 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start, 3164 end - start + 1, uptodate)) 3165 return; 3166 3167 if (btrfs_is_free_space_inode(BTRFS_I(inode))) { 3168 wq = fs_info->endio_freespace_worker; 3169 func = btrfs_freespace_write_helper; 3170 } else { 3171 wq = fs_info->endio_write_workers; 3172 func = btrfs_endio_write_helper; 3173 } 3174 3175 btrfs_init_work(&ordered_extent->work, func, finish_ordered_fn, NULL, 3176 NULL); 3177 btrfs_queue_work(wq, &ordered_extent->work); 3178 } 3179 3180 static int __readpage_endio_check(struct inode *inode, 3181 struct btrfs_io_bio *io_bio, 3182 int icsum, struct page *page, 3183 int pgoff, u64 start, size_t len) 3184 { 3185 char *kaddr; 3186 u32 csum_expected; 3187 u32 csum = ~(u32)0; 3188 3189 csum_expected = *(((u32 *)io_bio->csum) + icsum); 3190 3191 kaddr = kmap_atomic(page); 3192 csum = btrfs_csum_data(kaddr + pgoff, csum, len); 3193 btrfs_csum_final(csum, (u8 *)&csum); 3194 if (csum != csum_expected) 3195 goto zeroit; 3196 3197 kunmap_atomic(kaddr); 3198 return 0; 3199 zeroit: 3200 btrfs_print_data_csum_error(BTRFS_I(inode), start, csum, csum_expected, 3201 io_bio->mirror_num); 3202 memset(kaddr + pgoff, 1, len); 3203 flush_dcache_page(page); 3204 kunmap_atomic(kaddr); 3205 return -EIO; 3206 } 3207 3208 /* 3209 * when reads are done, we need to check csums to verify the data is correct 3210 * if there's a match, we allow the bio to finish. If not, the code in 3211 * extent_io.c will try to find good copies for us. 3212 */ 3213 static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio, 3214 u64 phy_offset, struct page *page, 3215 u64 start, u64 end, int mirror) 3216 { 3217 size_t offset = start - page_offset(page); 3218 struct inode *inode = page->mapping->host; 3219 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 3220 struct btrfs_root *root = BTRFS_I(inode)->root; 3221 3222 if (PageChecked(page)) { 3223 ClearPageChecked(page); 3224 return 0; 3225 } 3226 3227 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) 3228 return 0; 3229 3230 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID && 3231 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) { 3232 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM); 3233 return 0; 3234 } 3235 3236 phy_offset >>= inode->i_sb->s_blocksize_bits; 3237 return __readpage_endio_check(inode, io_bio, phy_offset, page, offset, 3238 start, (size_t)(end - start + 1)); 3239 } 3240 3241 /* 3242 * btrfs_add_delayed_iput - perform a delayed iput on @inode 3243 * 3244 * @inode: The inode we want to perform iput on 3245 * 3246 * This function uses the generic vfs_inode::i_count to track whether we should 3247 * just decrement it (in case it's > 1) or if this is the last iput then link 3248 * the inode to the delayed iput machinery. Delayed iputs are processed at 3249 * transaction commit time/superblock commit/cleaner kthread. 3250 */ 3251 void btrfs_add_delayed_iput(struct inode *inode) 3252 { 3253 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3254 struct btrfs_inode *binode = BTRFS_I(inode); 3255 3256 if (atomic_add_unless(&inode->i_count, -1, 1)) 3257 return; 3258 3259 atomic_inc(&fs_info->nr_delayed_iputs); 3260 spin_lock(&fs_info->delayed_iput_lock); 3261 ASSERT(list_empty(&binode->delayed_iput)); 3262 list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs); 3263 spin_unlock(&fs_info->delayed_iput_lock); 3264 if (!test_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags)) 3265 wake_up_process(fs_info->cleaner_kthread); 3266 } 3267 3268 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info) 3269 { 3270 3271 spin_lock(&fs_info->delayed_iput_lock); 3272 while (!list_empty(&fs_info->delayed_iputs)) { 3273 struct btrfs_inode *inode; 3274 3275 inode = list_first_entry(&fs_info->delayed_iputs, 3276 struct btrfs_inode, delayed_iput); 3277 list_del_init(&inode->delayed_iput); 3278 spin_unlock(&fs_info->delayed_iput_lock); 3279 iput(&inode->vfs_inode); 3280 if (atomic_dec_and_test(&fs_info->nr_delayed_iputs)) 3281 wake_up(&fs_info->delayed_iputs_wait); 3282 spin_lock(&fs_info->delayed_iput_lock); 3283 } 3284 spin_unlock(&fs_info->delayed_iput_lock); 3285 } 3286 3287 /** 3288 * btrfs_wait_on_delayed_iputs - wait on the delayed iputs to be done running 3289 * @fs_info - the fs_info for this fs 3290 * @return - EINTR if we were killed, 0 if nothing's pending 3291 * 3292 * This will wait on any delayed iputs that are currently running with KILLABLE 3293 * set. Once they are all done running we will return, unless we are killed in 3294 * which case we return EINTR. This helps in user operations like fallocate etc 3295 * that might get blocked on the iputs. 3296 */ 3297 int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info) 3298 { 3299 int ret = wait_event_killable(fs_info->delayed_iputs_wait, 3300 atomic_read(&fs_info->nr_delayed_iputs) == 0); 3301 if (ret) 3302 return -EINTR; 3303 return 0; 3304 } 3305 3306 /* 3307 * This creates an orphan entry for the given inode in case something goes wrong 3308 * in the middle of an unlink. 3309 */ 3310 int btrfs_orphan_add(struct btrfs_trans_handle *trans, 3311 struct btrfs_inode *inode) 3312 { 3313 int ret; 3314 3315 ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode)); 3316 if (ret && ret != -EEXIST) { 3317 btrfs_abort_transaction(trans, ret); 3318 return ret; 3319 } 3320 3321 return 0; 3322 } 3323 3324 /* 3325 * We have done the delete so we can go ahead and remove the orphan item for 3326 * this particular inode. 3327 */ 3328 static int btrfs_orphan_del(struct btrfs_trans_handle *trans, 3329 struct btrfs_inode *inode) 3330 { 3331 return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode)); 3332 } 3333 3334 /* 3335 * this cleans up any orphans that may be left on the list from the last use 3336 * of this root. 3337 */ 3338 int btrfs_orphan_cleanup(struct btrfs_root *root) 3339 { 3340 struct btrfs_fs_info *fs_info = root->fs_info; 3341 struct btrfs_path *path; 3342 struct extent_buffer *leaf; 3343 struct btrfs_key key, found_key; 3344 struct btrfs_trans_handle *trans; 3345 struct inode *inode; 3346 u64 last_objectid = 0; 3347 int ret = 0, nr_unlink = 0; 3348 3349 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED)) 3350 return 0; 3351 3352 path = btrfs_alloc_path(); 3353 if (!path) { 3354 ret = -ENOMEM; 3355 goto out; 3356 } 3357 path->reada = READA_BACK; 3358 3359 key.objectid = BTRFS_ORPHAN_OBJECTID; 3360 key.type = BTRFS_ORPHAN_ITEM_KEY; 3361 key.offset = (u64)-1; 3362 3363 while (1) { 3364 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3365 if (ret < 0) 3366 goto out; 3367 3368 /* 3369 * if ret == 0 means we found what we were searching for, which 3370 * is weird, but possible, so only screw with path if we didn't 3371 * find the key and see if we have stuff that matches 3372 */ 3373 if (ret > 0) { 3374 ret = 0; 3375 if (path->slots[0] == 0) 3376 break; 3377 path->slots[0]--; 3378 } 3379 3380 /* pull out the item */ 3381 leaf = path->nodes[0]; 3382 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 3383 3384 /* make sure the item matches what we want */ 3385 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID) 3386 break; 3387 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY) 3388 break; 3389 3390 /* release the path since we're done with it */ 3391 btrfs_release_path(path); 3392 3393 /* 3394 * this is where we are basically btrfs_lookup, without the 3395 * crossing root thing. we store the inode number in the 3396 * offset of the orphan item. 3397 */ 3398 3399 if (found_key.offset == last_objectid) { 3400 btrfs_err(fs_info, 3401 "Error removing orphan entry, stopping orphan cleanup"); 3402 ret = -EINVAL; 3403 goto out; 3404 } 3405 3406 last_objectid = found_key.offset; 3407 3408 found_key.objectid = found_key.offset; 3409 found_key.type = BTRFS_INODE_ITEM_KEY; 3410 found_key.offset = 0; 3411 inode = btrfs_iget(fs_info->sb, &found_key, root, NULL); 3412 ret = PTR_ERR_OR_ZERO(inode); 3413 if (ret && ret != -ENOENT) 3414 goto out; 3415 3416 if (ret == -ENOENT && root == fs_info->tree_root) { 3417 struct btrfs_root *dead_root; 3418 struct btrfs_fs_info *fs_info = root->fs_info; 3419 int is_dead_root = 0; 3420 3421 /* 3422 * this is an orphan in the tree root. Currently these 3423 * could come from 2 sources: 3424 * a) a snapshot deletion in progress 3425 * b) a free space cache inode 3426 * We need to distinguish those two, as the snapshot 3427 * orphan must not get deleted. 3428 * find_dead_roots already ran before us, so if this 3429 * is a snapshot deletion, we should find the root 3430 * in the dead_roots list 3431 */ 3432 spin_lock(&fs_info->trans_lock); 3433 list_for_each_entry(dead_root, &fs_info->dead_roots, 3434 root_list) { 3435 if (dead_root->root_key.objectid == 3436 found_key.objectid) { 3437 is_dead_root = 1; 3438 break; 3439 } 3440 } 3441 spin_unlock(&fs_info->trans_lock); 3442 if (is_dead_root) { 3443 /* prevent this orphan from being found again */ 3444 key.offset = found_key.objectid - 1; 3445 continue; 3446 } 3447 3448 } 3449 3450 /* 3451 * If we have an inode with links, there are a couple of 3452 * possibilities. Old kernels (before v3.12) used to create an 3453 * orphan item for truncate indicating that there were possibly 3454 * extent items past i_size that needed to be deleted. In v3.12, 3455 * truncate was changed to update i_size in sync with the extent 3456 * items, but the (useless) orphan item was still created. Since 3457 * v4.18, we don't create the orphan item for truncate at all. 3458 * 3459 * So, this item could mean that we need to do a truncate, but 3460 * only if this filesystem was last used on a pre-v3.12 kernel 3461 * and was not cleanly unmounted. The odds of that are quite 3462 * slim, and it's a pain to do the truncate now, so just delete 3463 * the orphan item. 3464 * 3465 * It's also possible that this orphan item was supposed to be 3466 * deleted but wasn't. The inode number may have been reused, 3467 * but either way, we can delete the orphan item. 3468 */ 3469 if (ret == -ENOENT || inode->i_nlink) { 3470 if (!ret) 3471 iput(inode); 3472 trans = btrfs_start_transaction(root, 1); 3473 if (IS_ERR(trans)) { 3474 ret = PTR_ERR(trans); 3475 goto out; 3476 } 3477 btrfs_debug(fs_info, "auto deleting %Lu", 3478 found_key.objectid); 3479 ret = btrfs_del_orphan_item(trans, root, 3480 found_key.objectid); 3481 btrfs_end_transaction(trans); 3482 if (ret) 3483 goto out; 3484 continue; 3485 } 3486 3487 nr_unlink++; 3488 3489 /* this will do delete_inode and everything for us */ 3490 iput(inode); 3491 } 3492 /* release the path since we're done with it */ 3493 btrfs_release_path(path); 3494 3495 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE; 3496 3497 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) { 3498 trans = btrfs_join_transaction(root); 3499 if (!IS_ERR(trans)) 3500 btrfs_end_transaction(trans); 3501 } 3502 3503 if (nr_unlink) 3504 btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink); 3505 3506 out: 3507 if (ret) 3508 btrfs_err(fs_info, "could not do orphan cleanup %d", ret); 3509 btrfs_free_path(path); 3510 return ret; 3511 } 3512 3513 /* 3514 * very simple check to peek ahead in the leaf looking for xattrs. If we 3515 * don't find any xattrs, we know there can't be any acls. 3516 * 3517 * slot is the slot the inode is in, objectid is the objectid of the inode 3518 */ 3519 static noinline int acls_after_inode_item(struct extent_buffer *leaf, 3520 int slot, u64 objectid, 3521 int *first_xattr_slot) 3522 { 3523 u32 nritems = btrfs_header_nritems(leaf); 3524 struct btrfs_key found_key; 3525 static u64 xattr_access = 0; 3526 static u64 xattr_default = 0; 3527 int scanned = 0; 3528 3529 if (!xattr_access) { 3530 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS, 3531 strlen(XATTR_NAME_POSIX_ACL_ACCESS)); 3532 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT, 3533 strlen(XATTR_NAME_POSIX_ACL_DEFAULT)); 3534 } 3535 3536 slot++; 3537 *first_xattr_slot = -1; 3538 while (slot < nritems) { 3539 btrfs_item_key_to_cpu(leaf, &found_key, slot); 3540 3541 /* we found a different objectid, there must not be acls */ 3542 if (found_key.objectid != objectid) 3543 return 0; 3544 3545 /* we found an xattr, assume we've got an acl */ 3546 if (found_key.type == BTRFS_XATTR_ITEM_KEY) { 3547 if (*first_xattr_slot == -1) 3548 *first_xattr_slot = slot; 3549 if (found_key.offset == xattr_access || 3550 found_key.offset == xattr_default) 3551 return 1; 3552 } 3553 3554 /* 3555 * we found a key greater than an xattr key, there can't 3556 * be any acls later on 3557 */ 3558 if (found_key.type > BTRFS_XATTR_ITEM_KEY) 3559 return 0; 3560 3561 slot++; 3562 scanned++; 3563 3564 /* 3565 * it goes inode, inode backrefs, xattrs, extents, 3566 * so if there are a ton of hard links to an inode there can 3567 * be a lot of backrefs. Don't waste time searching too hard, 3568 * this is just an optimization 3569 */ 3570 if (scanned >= 8) 3571 break; 3572 } 3573 /* we hit the end of the leaf before we found an xattr or 3574 * something larger than an xattr. We have to assume the inode 3575 * has acls 3576 */ 3577 if (*first_xattr_slot == -1) 3578 *first_xattr_slot = slot; 3579 return 1; 3580 } 3581 3582 /* 3583 * read an inode from the btree into the in-memory inode 3584 */ 3585 static int btrfs_read_locked_inode(struct inode *inode, 3586 struct btrfs_path *in_path) 3587 { 3588 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3589 struct btrfs_path *path = in_path; 3590 struct extent_buffer *leaf; 3591 struct btrfs_inode_item *inode_item; 3592 struct btrfs_root *root = BTRFS_I(inode)->root; 3593 struct btrfs_key location; 3594 unsigned long ptr; 3595 int maybe_acls; 3596 u32 rdev; 3597 int ret; 3598 bool filled = false; 3599 int first_xattr_slot; 3600 3601 ret = btrfs_fill_inode(inode, &rdev); 3602 if (!ret) 3603 filled = true; 3604 3605 if (!path) { 3606 path = btrfs_alloc_path(); 3607 if (!path) 3608 return -ENOMEM; 3609 } 3610 3611 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location)); 3612 3613 ret = btrfs_lookup_inode(NULL, root, path, &location, 0); 3614 if (ret) { 3615 if (path != in_path) 3616 btrfs_free_path(path); 3617 return ret; 3618 } 3619 3620 leaf = path->nodes[0]; 3621 3622 if (filled) 3623 goto cache_index; 3624 3625 inode_item = btrfs_item_ptr(leaf, path->slots[0], 3626 struct btrfs_inode_item); 3627 inode->i_mode = btrfs_inode_mode(leaf, inode_item); 3628 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item)); 3629 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item)); 3630 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item)); 3631 btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item)); 3632 3633 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime); 3634 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime); 3635 3636 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime); 3637 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime); 3638 3639 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime); 3640 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime); 3641 3642 BTRFS_I(inode)->i_otime.tv_sec = 3643 btrfs_timespec_sec(leaf, &inode_item->otime); 3644 BTRFS_I(inode)->i_otime.tv_nsec = 3645 btrfs_timespec_nsec(leaf, &inode_item->otime); 3646 3647 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item)); 3648 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item); 3649 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item); 3650 3651 inode_set_iversion_queried(inode, 3652 btrfs_inode_sequence(leaf, inode_item)); 3653 inode->i_generation = BTRFS_I(inode)->generation; 3654 inode->i_rdev = 0; 3655 rdev = btrfs_inode_rdev(leaf, inode_item); 3656 3657 BTRFS_I(inode)->index_cnt = (u64)-1; 3658 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item); 3659 3660 cache_index: 3661 /* 3662 * If we were modified in the current generation and evicted from memory 3663 * and then re-read we need to do a full sync since we don't have any 3664 * idea about which extents were modified before we were evicted from 3665 * cache. 3666 * 3667 * This is required for both inode re-read from disk and delayed inode 3668 * in delayed_nodes_tree. 3669 */ 3670 if (BTRFS_I(inode)->last_trans == fs_info->generation) 3671 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 3672 &BTRFS_I(inode)->runtime_flags); 3673 3674 /* 3675 * We don't persist the id of the transaction where an unlink operation 3676 * against the inode was last made. So here we assume the inode might 3677 * have been evicted, and therefore the exact value of last_unlink_trans 3678 * lost, and set it to last_trans to avoid metadata inconsistencies 3679 * between the inode and its parent if the inode is fsync'ed and the log 3680 * replayed. For example, in the scenario: 3681 * 3682 * touch mydir/foo 3683 * ln mydir/foo mydir/bar 3684 * sync 3685 * unlink mydir/bar 3686 * echo 2 > /proc/sys/vm/drop_caches # evicts inode 3687 * xfs_io -c fsync mydir/foo 3688 * <power failure> 3689 * mount fs, triggers fsync log replay 3690 * 3691 * We must make sure that when we fsync our inode foo we also log its 3692 * parent inode, otherwise after log replay the parent still has the 3693 * dentry with the "bar" name but our inode foo has a link count of 1 3694 * and doesn't have an inode ref with the name "bar" anymore. 3695 * 3696 * Setting last_unlink_trans to last_trans is a pessimistic approach, 3697 * but it guarantees correctness at the expense of occasional full 3698 * transaction commits on fsync if our inode is a directory, or if our 3699 * inode is not a directory, logging its parent unnecessarily. 3700 */ 3701 BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans; 3702 /* 3703 * Similar reasoning for last_link_trans, needs to be set otherwise 3704 * for a case like the following: 3705 * 3706 * mkdir A 3707 * touch foo 3708 * ln foo A/bar 3709 * echo 2 > /proc/sys/vm/drop_caches 3710 * fsync foo 3711 * <power failure> 3712 * 3713 * Would result in link bar and directory A not existing after the power 3714 * failure. 3715 */ 3716 BTRFS_I(inode)->last_link_trans = BTRFS_I(inode)->last_trans; 3717 3718 path->slots[0]++; 3719 if (inode->i_nlink != 1 || 3720 path->slots[0] >= btrfs_header_nritems(leaf)) 3721 goto cache_acl; 3722 3723 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]); 3724 if (location.objectid != btrfs_ino(BTRFS_I(inode))) 3725 goto cache_acl; 3726 3727 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 3728 if (location.type == BTRFS_INODE_REF_KEY) { 3729 struct btrfs_inode_ref *ref; 3730 3731 ref = (struct btrfs_inode_ref *)ptr; 3732 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref); 3733 } else if (location.type == BTRFS_INODE_EXTREF_KEY) { 3734 struct btrfs_inode_extref *extref; 3735 3736 extref = (struct btrfs_inode_extref *)ptr; 3737 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf, 3738 extref); 3739 } 3740 cache_acl: 3741 /* 3742 * try to precache a NULL acl entry for files that don't have 3743 * any xattrs or acls 3744 */ 3745 maybe_acls = acls_after_inode_item(leaf, path->slots[0], 3746 btrfs_ino(BTRFS_I(inode)), &first_xattr_slot); 3747 if (first_xattr_slot != -1) { 3748 path->slots[0] = first_xattr_slot; 3749 ret = btrfs_load_inode_props(inode, path); 3750 if (ret) 3751 btrfs_err(fs_info, 3752 "error loading props for ino %llu (root %llu): %d", 3753 btrfs_ino(BTRFS_I(inode)), 3754 root->root_key.objectid, ret); 3755 } 3756 if (path != in_path) 3757 btrfs_free_path(path); 3758 3759 if (!maybe_acls) 3760 cache_no_acl(inode); 3761 3762 switch (inode->i_mode & S_IFMT) { 3763 case S_IFREG: 3764 inode->i_mapping->a_ops = &btrfs_aops; 3765 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 3766 inode->i_fop = &btrfs_file_operations; 3767 inode->i_op = &btrfs_file_inode_operations; 3768 break; 3769 case S_IFDIR: 3770 inode->i_fop = &btrfs_dir_file_operations; 3771 inode->i_op = &btrfs_dir_inode_operations; 3772 break; 3773 case S_IFLNK: 3774 inode->i_op = &btrfs_symlink_inode_operations; 3775 inode_nohighmem(inode); 3776 inode->i_mapping->a_ops = &btrfs_aops; 3777 break; 3778 default: 3779 inode->i_op = &btrfs_special_inode_operations; 3780 init_special_inode(inode, inode->i_mode, rdev); 3781 break; 3782 } 3783 3784 btrfs_sync_inode_flags_to_i_flags(inode); 3785 return 0; 3786 } 3787 3788 /* 3789 * given a leaf and an inode, copy the inode fields into the leaf 3790 */ 3791 static void fill_inode_item(struct btrfs_trans_handle *trans, 3792 struct extent_buffer *leaf, 3793 struct btrfs_inode_item *item, 3794 struct inode *inode) 3795 { 3796 struct btrfs_map_token token; 3797 3798 btrfs_init_map_token(&token); 3799 3800 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token); 3801 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token); 3802 btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size, 3803 &token); 3804 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token); 3805 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token); 3806 3807 btrfs_set_token_timespec_sec(leaf, &item->atime, 3808 inode->i_atime.tv_sec, &token); 3809 btrfs_set_token_timespec_nsec(leaf, &item->atime, 3810 inode->i_atime.tv_nsec, &token); 3811 3812 btrfs_set_token_timespec_sec(leaf, &item->mtime, 3813 inode->i_mtime.tv_sec, &token); 3814 btrfs_set_token_timespec_nsec(leaf, &item->mtime, 3815 inode->i_mtime.tv_nsec, &token); 3816 3817 btrfs_set_token_timespec_sec(leaf, &item->ctime, 3818 inode->i_ctime.tv_sec, &token); 3819 btrfs_set_token_timespec_nsec(leaf, &item->ctime, 3820 inode->i_ctime.tv_nsec, &token); 3821 3822 btrfs_set_token_timespec_sec(leaf, &item->otime, 3823 BTRFS_I(inode)->i_otime.tv_sec, &token); 3824 btrfs_set_token_timespec_nsec(leaf, &item->otime, 3825 BTRFS_I(inode)->i_otime.tv_nsec, &token); 3826 3827 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode), 3828 &token); 3829 btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation, 3830 &token); 3831 btrfs_set_token_inode_sequence(leaf, item, inode_peek_iversion(inode), 3832 &token); 3833 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token); 3834 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token); 3835 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token); 3836 btrfs_set_token_inode_block_group(leaf, item, 0, &token); 3837 } 3838 3839 /* 3840 * copy everything in the in-memory inode into the btree. 3841 */ 3842 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans, 3843 struct btrfs_root *root, struct inode *inode) 3844 { 3845 struct btrfs_inode_item *inode_item; 3846 struct btrfs_path *path; 3847 struct extent_buffer *leaf; 3848 int ret; 3849 3850 path = btrfs_alloc_path(); 3851 if (!path) 3852 return -ENOMEM; 3853 3854 path->leave_spinning = 1; 3855 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location, 3856 1); 3857 if (ret) { 3858 if (ret > 0) 3859 ret = -ENOENT; 3860 goto failed; 3861 } 3862 3863 leaf = path->nodes[0]; 3864 inode_item = btrfs_item_ptr(leaf, path->slots[0], 3865 struct btrfs_inode_item); 3866 3867 fill_inode_item(trans, leaf, inode_item, inode); 3868 btrfs_mark_buffer_dirty(leaf); 3869 btrfs_set_inode_last_trans(trans, inode); 3870 ret = 0; 3871 failed: 3872 btrfs_free_path(path); 3873 return ret; 3874 } 3875 3876 /* 3877 * copy everything in the in-memory inode into the btree. 3878 */ 3879 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans, 3880 struct btrfs_root *root, struct inode *inode) 3881 { 3882 struct btrfs_fs_info *fs_info = root->fs_info; 3883 int ret; 3884 3885 /* 3886 * If the inode is a free space inode, we can deadlock during commit 3887 * if we put it into the delayed code. 3888 * 3889 * The data relocation inode should also be directly updated 3890 * without delay 3891 */ 3892 if (!btrfs_is_free_space_inode(BTRFS_I(inode)) 3893 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID 3894 && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) { 3895 btrfs_update_root_times(trans, root); 3896 3897 ret = btrfs_delayed_update_inode(trans, root, inode); 3898 if (!ret) 3899 btrfs_set_inode_last_trans(trans, inode); 3900 return ret; 3901 } 3902 3903 return btrfs_update_inode_item(trans, root, inode); 3904 } 3905 3906 noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans, 3907 struct btrfs_root *root, 3908 struct inode *inode) 3909 { 3910 int ret; 3911 3912 ret = btrfs_update_inode(trans, root, inode); 3913 if (ret == -ENOSPC) 3914 return btrfs_update_inode_item(trans, root, inode); 3915 return ret; 3916 } 3917 3918 /* 3919 * unlink helper that gets used here in inode.c and in the tree logging 3920 * recovery code. It remove a link in a directory with a given name, and 3921 * also drops the back refs in the inode to the directory 3922 */ 3923 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans, 3924 struct btrfs_root *root, 3925 struct btrfs_inode *dir, 3926 struct btrfs_inode *inode, 3927 const char *name, int name_len) 3928 { 3929 struct btrfs_fs_info *fs_info = root->fs_info; 3930 struct btrfs_path *path; 3931 int ret = 0; 3932 struct extent_buffer *leaf; 3933 struct btrfs_dir_item *di; 3934 struct btrfs_key key; 3935 u64 index; 3936 u64 ino = btrfs_ino(inode); 3937 u64 dir_ino = btrfs_ino(dir); 3938 3939 path = btrfs_alloc_path(); 3940 if (!path) { 3941 ret = -ENOMEM; 3942 goto out; 3943 } 3944 3945 path->leave_spinning = 1; 3946 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 3947 name, name_len, -1); 3948 if (IS_ERR_OR_NULL(di)) { 3949 ret = di ? PTR_ERR(di) : -ENOENT; 3950 goto err; 3951 } 3952 leaf = path->nodes[0]; 3953 btrfs_dir_item_key_to_cpu(leaf, di, &key); 3954 ret = btrfs_delete_one_dir_name(trans, root, path, di); 3955 if (ret) 3956 goto err; 3957 btrfs_release_path(path); 3958 3959 /* 3960 * If we don't have dir index, we have to get it by looking up 3961 * the inode ref, since we get the inode ref, remove it directly, 3962 * it is unnecessary to do delayed deletion. 3963 * 3964 * But if we have dir index, needn't search inode ref to get it. 3965 * Since the inode ref is close to the inode item, it is better 3966 * that we delay to delete it, and just do this deletion when 3967 * we update the inode item. 3968 */ 3969 if (inode->dir_index) { 3970 ret = btrfs_delayed_delete_inode_ref(inode); 3971 if (!ret) { 3972 index = inode->dir_index; 3973 goto skip_backref; 3974 } 3975 } 3976 3977 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino, 3978 dir_ino, &index); 3979 if (ret) { 3980 btrfs_info(fs_info, 3981 "failed to delete reference to %.*s, inode %llu parent %llu", 3982 name_len, name, ino, dir_ino); 3983 btrfs_abort_transaction(trans, ret); 3984 goto err; 3985 } 3986 skip_backref: 3987 ret = btrfs_delete_delayed_dir_index(trans, dir, index); 3988 if (ret) { 3989 btrfs_abort_transaction(trans, ret); 3990 goto err; 3991 } 3992 3993 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, inode, 3994 dir_ino); 3995 if (ret != 0 && ret != -ENOENT) { 3996 btrfs_abort_transaction(trans, ret); 3997 goto err; 3998 } 3999 4000 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, dir, 4001 index); 4002 if (ret == -ENOENT) 4003 ret = 0; 4004 else if (ret) 4005 btrfs_abort_transaction(trans, ret); 4006 err: 4007 btrfs_free_path(path); 4008 if (ret) 4009 goto out; 4010 4011 btrfs_i_size_write(dir, dir->vfs_inode.i_size - name_len * 2); 4012 inode_inc_iversion(&inode->vfs_inode); 4013 inode_inc_iversion(&dir->vfs_inode); 4014 inode->vfs_inode.i_ctime = dir->vfs_inode.i_mtime = 4015 dir->vfs_inode.i_ctime = current_time(&inode->vfs_inode); 4016 ret = btrfs_update_inode(trans, root, &dir->vfs_inode); 4017 out: 4018 return ret; 4019 } 4020 4021 int btrfs_unlink_inode(struct btrfs_trans_handle *trans, 4022 struct btrfs_root *root, 4023 struct btrfs_inode *dir, struct btrfs_inode *inode, 4024 const char *name, int name_len) 4025 { 4026 int ret; 4027 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len); 4028 if (!ret) { 4029 drop_nlink(&inode->vfs_inode); 4030 ret = btrfs_update_inode(trans, root, &inode->vfs_inode); 4031 } 4032 return ret; 4033 } 4034 4035 /* 4036 * helper to start transaction for unlink and rmdir. 4037 * 4038 * unlink and rmdir are special in btrfs, they do not always free space, so 4039 * if we cannot make our reservations the normal way try and see if there is 4040 * plenty of slack room in the global reserve to migrate, otherwise we cannot 4041 * allow the unlink to occur. 4042 */ 4043 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir) 4044 { 4045 struct btrfs_root *root = BTRFS_I(dir)->root; 4046 4047 /* 4048 * 1 for the possible orphan item 4049 * 1 for the dir item 4050 * 1 for the dir index 4051 * 1 for the inode ref 4052 * 1 for the inode 4053 */ 4054 return btrfs_start_transaction_fallback_global_rsv(root, 5, 5); 4055 } 4056 4057 static int btrfs_unlink(struct inode *dir, struct dentry *dentry) 4058 { 4059 struct btrfs_root *root = BTRFS_I(dir)->root; 4060 struct btrfs_trans_handle *trans; 4061 struct inode *inode = d_inode(dentry); 4062 int ret; 4063 4064 trans = __unlink_start_trans(dir); 4065 if (IS_ERR(trans)) 4066 return PTR_ERR(trans); 4067 4068 btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)), 4069 0); 4070 4071 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir), 4072 BTRFS_I(d_inode(dentry)), dentry->d_name.name, 4073 dentry->d_name.len); 4074 if (ret) 4075 goto out; 4076 4077 if (inode->i_nlink == 0) { 4078 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 4079 if (ret) 4080 goto out; 4081 } 4082 4083 out: 4084 btrfs_end_transaction(trans); 4085 btrfs_btree_balance_dirty(root->fs_info); 4086 return ret; 4087 } 4088 4089 static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans, 4090 struct inode *dir, u64 objectid, 4091 const char *name, int name_len) 4092 { 4093 struct btrfs_root *root = BTRFS_I(dir)->root; 4094 struct btrfs_path *path; 4095 struct extent_buffer *leaf; 4096 struct btrfs_dir_item *di; 4097 struct btrfs_key key; 4098 u64 index; 4099 int ret; 4100 u64 dir_ino = btrfs_ino(BTRFS_I(dir)); 4101 4102 path = btrfs_alloc_path(); 4103 if (!path) 4104 return -ENOMEM; 4105 4106 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 4107 name, name_len, -1); 4108 if (IS_ERR_OR_NULL(di)) { 4109 ret = di ? PTR_ERR(di) : -ENOENT; 4110 goto out; 4111 } 4112 4113 leaf = path->nodes[0]; 4114 btrfs_dir_item_key_to_cpu(leaf, di, &key); 4115 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid); 4116 ret = btrfs_delete_one_dir_name(trans, root, path, di); 4117 if (ret) { 4118 btrfs_abort_transaction(trans, ret); 4119 goto out; 4120 } 4121 btrfs_release_path(path); 4122 4123 ret = btrfs_del_root_ref(trans, objectid, root->root_key.objectid, 4124 dir_ino, &index, name, name_len); 4125 if (ret < 0) { 4126 if (ret != -ENOENT) { 4127 btrfs_abort_transaction(trans, ret); 4128 goto out; 4129 } 4130 di = btrfs_search_dir_index_item(root, path, dir_ino, 4131 name, name_len); 4132 if (IS_ERR_OR_NULL(di)) { 4133 if (!di) 4134 ret = -ENOENT; 4135 else 4136 ret = PTR_ERR(di); 4137 btrfs_abort_transaction(trans, ret); 4138 goto out; 4139 } 4140 4141 leaf = path->nodes[0]; 4142 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 4143 index = key.offset; 4144 } 4145 btrfs_release_path(path); 4146 4147 ret = btrfs_delete_delayed_dir_index(trans, BTRFS_I(dir), index); 4148 if (ret) { 4149 btrfs_abort_transaction(trans, ret); 4150 goto out; 4151 } 4152 4153 btrfs_i_size_write(BTRFS_I(dir), dir->i_size - name_len * 2); 4154 inode_inc_iversion(dir); 4155 dir->i_mtime = dir->i_ctime = current_time(dir); 4156 ret = btrfs_update_inode_fallback(trans, root, dir); 4157 if (ret) 4158 btrfs_abort_transaction(trans, ret); 4159 out: 4160 btrfs_free_path(path); 4161 return ret; 4162 } 4163 4164 /* 4165 * Helper to check if the subvolume references other subvolumes or if it's 4166 * default. 4167 */ 4168 static noinline int may_destroy_subvol(struct btrfs_root *root) 4169 { 4170 struct btrfs_fs_info *fs_info = root->fs_info; 4171 struct btrfs_path *path; 4172 struct btrfs_dir_item *di; 4173 struct btrfs_key key; 4174 u64 dir_id; 4175 int ret; 4176 4177 path = btrfs_alloc_path(); 4178 if (!path) 4179 return -ENOMEM; 4180 4181 /* Make sure this root isn't set as the default subvol */ 4182 dir_id = btrfs_super_root_dir(fs_info->super_copy); 4183 di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path, 4184 dir_id, "default", 7, 0); 4185 if (di && !IS_ERR(di)) { 4186 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key); 4187 if (key.objectid == root->root_key.objectid) { 4188 ret = -EPERM; 4189 btrfs_err(fs_info, 4190 "deleting default subvolume %llu is not allowed", 4191 key.objectid); 4192 goto out; 4193 } 4194 btrfs_release_path(path); 4195 } 4196 4197 key.objectid = root->root_key.objectid; 4198 key.type = BTRFS_ROOT_REF_KEY; 4199 key.offset = (u64)-1; 4200 4201 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 4202 if (ret < 0) 4203 goto out; 4204 BUG_ON(ret == 0); 4205 4206 ret = 0; 4207 if (path->slots[0] > 0) { 4208 path->slots[0]--; 4209 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 4210 if (key.objectid == root->root_key.objectid && 4211 key.type == BTRFS_ROOT_REF_KEY) 4212 ret = -ENOTEMPTY; 4213 } 4214 out: 4215 btrfs_free_path(path); 4216 return ret; 4217 } 4218 4219 /* Delete all dentries for inodes belonging to the root */ 4220 static void btrfs_prune_dentries(struct btrfs_root *root) 4221 { 4222 struct btrfs_fs_info *fs_info = root->fs_info; 4223 struct rb_node *node; 4224 struct rb_node *prev; 4225 struct btrfs_inode *entry; 4226 struct inode *inode; 4227 u64 objectid = 0; 4228 4229 if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 4230 WARN_ON(btrfs_root_refs(&root->root_item) != 0); 4231 4232 spin_lock(&root->inode_lock); 4233 again: 4234 node = root->inode_tree.rb_node; 4235 prev = NULL; 4236 while (node) { 4237 prev = node; 4238 entry = rb_entry(node, struct btrfs_inode, rb_node); 4239 4240 if (objectid < btrfs_ino(entry)) 4241 node = node->rb_left; 4242 else if (objectid > btrfs_ino(entry)) 4243 node = node->rb_right; 4244 else 4245 break; 4246 } 4247 if (!node) { 4248 while (prev) { 4249 entry = rb_entry(prev, struct btrfs_inode, rb_node); 4250 if (objectid <= btrfs_ino(entry)) { 4251 node = prev; 4252 break; 4253 } 4254 prev = rb_next(prev); 4255 } 4256 } 4257 while (node) { 4258 entry = rb_entry(node, struct btrfs_inode, rb_node); 4259 objectid = btrfs_ino(entry) + 1; 4260 inode = igrab(&entry->vfs_inode); 4261 if (inode) { 4262 spin_unlock(&root->inode_lock); 4263 if (atomic_read(&inode->i_count) > 1) 4264 d_prune_aliases(inode); 4265 /* 4266 * btrfs_drop_inode will have it removed from the inode 4267 * cache when its usage count hits zero. 4268 */ 4269 iput(inode); 4270 cond_resched(); 4271 spin_lock(&root->inode_lock); 4272 goto again; 4273 } 4274 4275 if (cond_resched_lock(&root->inode_lock)) 4276 goto again; 4277 4278 node = rb_next(node); 4279 } 4280 spin_unlock(&root->inode_lock); 4281 } 4282 4283 int btrfs_delete_subvolume(struct inode *dir, struct dentry *dentry) 4284 { 4285 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb); 4286 struct btrfs_root *root = BTRFS_I(dir)->root; 4287 struct inode *inode = d_inode(dentry); 4288 struct btrfs_root *dest = BTRFS_I(inode)->root; 4289 struct btrfs_trans_handle *trans; 4290 struct btrfs_block_rsv block_rsv; 4291 u64 root_flags; 4292 int ret; 4293 int err; 4294 4295 /* 4296 * Don't allow to delete a subvolume with send in progress. This is 4297 * inside the inode lock so the error handling that has to drop the bit 4298 * again is not run concurrently. 4299 */ 4300 spin_lock(&dest->root_item_lock); 4301 if (dest->send_in_progress) { 4302 spin_unlock(&dest->root_item_lock); 4303 btrfs_warn(fs_info, 4304 "attempt to delete subvolume %llu during send", 4305 dest->root_key.objectid); 4306 return -EPERM; 4307 } 4308 root_flags = btrfs_root_flags(&dest->root_item); 4309 btrfs_set_root_flags(&dest->root_item, 4310 root_flags | BTRFS_ROOT_SUBVOL_DEAD); 4311 spin_unlock(&dest->root_item_lock); 4312 4313 down_write(&fs_info->subvol_sem); 4314 4315 err = may_destroy_subvol(dest); 4316 if (err) 4317 goto out_up_write; 4318 4319 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP); 4320 /* 4321 * One for dir inode, 4322 * two for dir entries, 4323 * two for root ref/backref. 4324 */ 4325 err = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true); 4326 if (err) 4327 goto out_up_write; 4328 4329 trans = btrfs_start_transaction(root, 0); 4330 if (IS_ERR(trans)) { 4331 err = PTR_ERR(trans); 4332 goto out_release; 4333 } 4334 trans->block_rsv = &block_rsv; 4335 trans->bytes_reserved = block_rsv.size; 4336 4337 btrfs_record_snapshot_destroy(trans, BTRFS_I(dir)); 4338 4339 ret = btrfs_unlink_subvol(trans, dir, dest->root_key.objectid, 4340 dentry->d_name.name, dentry->d_name.len); 4341 if (ret) { 4342 err = ret; 4343 btrfs_abort_transaction(trans, ret); 4344 goto out_end_trans; 4345 } 4346 4347 btrfs_record_root_in_trans(trans, dest); 4348 4349 memset(&dest->root_item.drop_progress, 0, 4350 sizeof(dest->root_item.drop_progress)); 4351 dest->root_item.drop_level = 0; 4352 btrfs_set_root_refs(&dest->root_item, 0); 4353 4354 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) { 4355 ret = btrfs_insert_orphan_item(trans, 4356 fs_info->tree_root, 4357 dest->root_key.objectid); 4358 if (ret) { 4359 btrfs_abort_transaction(trans, ret); 4360 err = ret; 4361 goto out_end_trans; 4362 } 4363 } 4364 4365 ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid, 4366 BTRFS_UUID_KEY_SUBVOL, 4367 dest->root_key.objectid); 4368 if (ret && ret != -ENOENT) { 4369 btrfs_abort_transaction(trans, ret); 4370 err = ret; 4371 goto out_end_trans; 4372 } 4373 if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) { 4374 ret = btrfs_uuid_tree_remove(trans, 4375 dest->root_item.received_uuid, 4376 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 4377 dest->root_key.objectid); 4378 if (ret && ret != -ENOENT) { 4379 btrfs_abort_transaction(trans, ret); 4380 err = ret; 4381 goto out_end_trans; 4382 } 4383 } 4384 4385 out_end_trans: 4386 trans->block_rsv = NULL; 4387 trans->bytes_reserved = 0; 4388 ret = btrfs_end_transaction(trans); 4389 if (ret && !err) 4390 err = ret; 4391 inode->i_flags |= S_DEAD; 4392 out_release: 4393 btrfs_subvolume_release_metadata(fs_info, &block_rsv); 4394 out_up_write: 4395 up_write(&fs_info->subvol_sem); 4396 if (err) { 4397 spin_lock(&dest->root_item_lock); 4398 root_flags = btrfs_root_flags(&dest->root_item); 4399 btrfs_set_root_flags(&dest->root_item, 4400 root_flags & ~BTRFS_ROOT_SUBVOL_DEAD); 4401 spin_unlock(&dest->root_item_lock); 4402 } else { 4403 d_invalidate(dentry); 4404 btrfs_prune_dentries(dest); 4405 ASSERT(dest->send_in_progress == 0); 4406 4407 /* the last ref */ 4408 if (dest->ino_cache_inode) { 4409 iput(dest->ino_cache_inode); 4410 dest->ino_cache_inode = NULL; 4411 } 4412 } 4413 4414 return err; 4415 } 4416 4417 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry) 4418 { 4419 struct inode *inode = d_inode(dentry); 4420 int err = 0; 4421 struct btrfs_root *root = BTRFS_I(dir)->root; 4422 struct btrfs_trans_handle *trans; 4423 u64 last_unlink_trans; 4424 4425 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE) 4426 return -ENOTEMPTY; 4427 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID) 4428 return btrfs_delete_subvolume(dir, dentry); 4429 4430 trans = __unlink_start_trans(dir); 4431 if (IS_ERR(trans)) 4432 return PTR_ERR(trans); 4433 4434 if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 4435 err = btrfs_unlink_subvol(trans, dir, 4436 BTRFS_I(inode)->location.objectid, 4437 dentry->d_name.name, 4438 dentry->d_name.len); 4439 goto out; 4440 } 4441 4442 err = btrfs_orphan_add(trans, BTRFS_I(inode)); 4443 if (err) 4444 goto out; 4445 4446 last_unlink_trans = BTRFS_I(inode)->last_unlink_trans; 4447 4448 /* now the directory is empty */ 4449 err = btrfs_unlink_inode(trans, root, BTRFS_I(dir), 4450 BTRFS_I(d_inode(dentry)), dentry->d_name.name, 4451 dentry->d_name.len); 4452 if (!err) { 4453 btrfs_i_size_write(BTRFS_I(inode), 0); 4454 /* 4455 * Propagate the last_unlink_trans value of the deleted dir to 4456 * its parent directory. This is to prevent an unrecoverable 4457 * log tree in the case we do something like this: 4458 * 1) create dir foo 4459 * 2) create snapshot under dir foo 4460 * 3) delete the snapshot 4461 * 4) rmdir foo 4462 * 5) mkdir foo 4463 * 6) fsync foo or some file inside foo 4464 */ 4465 if (last_unlink_trans >= trans->transid) 4466 BTRFS_I(dir)->last_unlink_trans = last_unlink_trans; 4467 } 4468 out: 4469 btrfs_end_transaction(trans); 4470 btrfs_btree_balance_dirty(root->fs_info); 4471 4472 return err; 4473 } 4474 4475 /* 4476 * Return this if we need to call truncate_block for the last bit of the 4477 * truncate. 4478 */ 4479 #define NEED_TRUNCATE_BLOCK 1 4480 4481 /* 4482 * this can truncate away extent items, csum items and directory items. 4483 * It starts at a high offset and removes keys until it can't find 4484 * any higher than new_size 4485 * 4486 * csum items that cross the new i_size are truncated to the new size 4487 * as well. 4488 * 4489 * min_type is the minimum key type to truncate down to. If set to 0, this 4490 * will kill all the items on this inode, including the INODE_ITEM_KEY. 4491 */ 4492 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans, 4493 struct btrfs_root *root, 4494 struct inode *inode, 4495 u64 new_size, u32 min_type) 4496 { 4497 struct btrfs_fs_info *fs_info = root->fs_info; 4498 struct btrfs_path *path; 4499 struct extent_buffer *leaf; 4500 struct btrfs_file_extent_item *fi; 4501 struct btrfs_key key; 4502 struct btrfs_key found_key; 4503 u64 extent_start = 0; 4504 u64 extent_num_bytes = 0; 4505 u64 extent_offset = 0; 4506 u64 item_end = 0; 4507 u64 last_size = new_size; 4508 u32 found_type = (u8)-1; 4509 int found_extent; 4510 int del_item; 4511 int pending_del_nr = 0; 4512 int pending_del_slot = 0; 4513 int extent_type = -1; 4514 int ret; 4515 u64 ino = btrfs_ino(BTRFS_I(inode)); 4516 u64 bytes_deleted = 0; 4517 bool be_nice = false; 4518 bool should_throttle = false; 4519 4520 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY); 4521 4522 /* 4523 * for non-free space inodes and ref cows, we want to back off from 4524 * time to time 4525 */ 4526 if (!btrfs_is_free_space_inode(BTRFS_I(inode)) && 4527 test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 4528 be_nice = true; 4529 4530 path = btrfs_alloc_path(); 4531 if (!path) 4532 return -ENOMEM; 4533 path->reada = READA_BACK; 4534 4535 /* 4536 * We want to drop from the next block forward in case this new size is 4537 * not block aligned since we will be keeping the last block of the 4538 * extent just the way it is. 4539 */ 4540 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) || 4541 root == fs_info->tree_root) 4542 btrfs_drop_extent_cache(BTRFS_I(inode), ALIGN(new_size, 4543 fs_info->sectorsize), 4544 (u64)-1, 0); 4545 4546 /* 4547 * This function is also used to drop the items in the log tree before 4548 * we relog the inode, so if root != BTRFS_I(inode)->root, it means 4549 * it is used to drop the logged items. So we shouldn't kill the delayed 4550 * items. 4551 */ 4552 if (min_type == 0 && root == BTRFS_I(inode)->root) 4553 btrfs_kill_delayed_inode_items(BTRFS_I(inode)); 4554 4555 key.objectid = ino; 4556 key.offset = (u64)-1; 4557 key.type = (u8)-1; 4558 4559 search_again: 4560 /* 4561 * with a 16K leaf size and 128MB extents, you can actually queue 4562 * up a huge file in a single leaf. Most of the time that 4563 * bytes_deleted is > 0, it will be huge by the time we get here 4564 */ 4565 if (be_nice && bytes_deleted > SZ_32M && 4566 btrfs_should_end_transaction(trans)) { 4567 ret = -EAGAIN; 4568 goto out; 4569 } 4570 4571 path->leave_spinning = 1; 4572 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 4573 if (ret < 0) 4574 goto out; 4575 4576 if (ret > 0) { 4577 ret = 0; 4578 /* there are no items in the tree for us to truncate, we're 4579 * done 4580 */ 4581 if (path->slots[0] == 0) 4582 goto out; 4583 path->slots[0]--; 4584 } 4585 4586 while (1) { 4587 fi = NULL; 4588 leaf = path->nodes[0]; 4589 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 4590 found_type = found_key.type; 4591 4592 if (found_key.objectid != ino) 4593 break; 4594 4595 if (found_type < min_type) 4596 break; 4597 4598 item_end = found_key.offset; 4599 if (found_type == BTRFS_EXTENT_DATA_KEY) { 4600 fi = btrfs_item_ptr(leaf, path->slots[0], 4601 struct btrfs_file_extent_item); 4602 extent_type = btrfs_file_extent_type(leaf, fi); 4603 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 4604 item_end += 4605 btrfs_file_extent_num_bytes(leaf, fi); 4606 4607 trace_btrfs_truncate_show_fi_regular( 4608 BTRFS_I(inode), leaf, fi, 4609 found_key.offset); 4610 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 4611 item_end += btrfs_file_extent_ram_bytes(leaf, 4612 fi); 4613 4614 trace_btrfs_truncate_show_fi_inline( 4615 BTRFS_I(inode), leaf, fi, path->slots[0], 4616 found_key.offset); 4617 } 4618 item_end--; 4619 } 4620 if (found_type > min_type) { 4621 del_item = 1; 4622 } else { 4623 if (item_end < new_size) 4624 break; 4625 if (found_key.offset >= new_size) 4626 del_item = 1; 4627 else 4628 del_item = 0; 4629 } 4630 found_extent = 0; 4631 /* FIXME, shrink the extent if the ref count is only 1 */ 4632 if (found_type != BTRFS_EXTENT_DATA_KEY) 4633 goto delete; 4634 4635 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 4636 u64 num_dec; 4637 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi); 4638 if (!del_item) { 4639 u64 orig_num_bytes = 4640 btrfs_file_extent_num_bytes(leaf, fi); 4641 extent_num_bytes = ALIGN(new_size - 4642 found_key.offset, 4643 fs_info->sectorsize); 4644 btrfs_set_file_extent_num_bytes(leaf, fi, 4645 extent_num_bytes); 4646 num_dec = (orig_num_bytes - 4647 extent_num_bytes); 4648 if (test_bit(BTRFS_ROOT_REF_COWS, 4649 &root->state) && 4650 extent_start != 0) 4651 inode_sub_bytes(inode, num_dec); 4652 btrfs_mark_buffer_dirty(leaf); 4653 } else { 4654 extent_num_bytes = 4655 btrfs_file_extent_disk_num_bytes(leaf, 4656 fi); 4657 extent_offset = found_key.offset - 4658 btrfs_file_extent_offset(leaf, fi); 4659 4660 /* FIXME blocksize != 4096 */ 4661 num_dec = btrfs_file_extent_num_bytes(leaf, fi); 4662 if (extent_start != 0) { 4663 found_extent = 1; 4664 if (test_bit(BTRFS_ROOT_REF_COWS, 4665 &root->state)) 4666 inode_sub_bytes(inode, num_dec); 4667 } 4668 } 4669 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 4670 /* 4671 * we can't truncate inline items that have had 4672 * special encodings 4673 */ 4674 if (!del_item && 4675 btrfs_file_extent_encryption(leaf, fi) == 0 && 4676 btrfs_file_extent_other_encoding(leaf, fi) == 0 && 4677 btrfs_file_extent_compression(leaf, fi) == 0) { 4678 u32 size = (u32)(new_size - found_key.offset); 4679 4680 btrfs_set_file_extent_ram_bytes(leaf, fi, size); 4681 size = btrfs_file_extent_calc_inline_size(size); 4682 btrfs_truncate_item(root->fs_info, path, size, 1); 4683 } else if (!del_item) { 4684 /* 4685 * We have to bail so the last_size is set to 4686 * just before this extent. 4687 */ 4688 ret = NEED_TRUNCATE_BLOCK; 4689 break; 4690 } 4691 4692 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 4693 inode_sub_bytes(inode, item_end + 1 - new_size); 4694 } 4695 delete: 4696 if (del_item) 4697 last_size = found_key.offset; 4698 else 4699 last_size = new_size; 4700 if (del_item) { 4701 if (!pending_del_nr) { 4702 /* no pending yet, add ourselves */ 4703 pending_del_slot = path->slots[0]; 4704 pending_del_nr = 1; 4705 } else if (pending_del_nr && 4706 path->slots[0] + 1 == pending_del_slot) { 4707 /* hop on the pending chunk */ 4708 pending_del_nr++; 4709 pending_del_slot = path->slots[0]; 4710 } else { 4711 BUG(); 4712 } 4713 } else { 4714 break; 4715 } 4716 should_throttle = false; 4717 4718 if (found_extent && 4719 (test_bit(BTRFS_ROOT_REF_COWS, &root->state) || 4720 root == fs_info->tree_root)) { 4721 btrfs_set_path_blocking(path); 4722 bytes_deleted += extent_num_bytes; 4723 ret = btrfs_free_extent(trans, root, extent_start, 4724 extent_num_bytes, 0, 4725 btrfs_header_owner(leaf), 4726 ino, extent_offset); 4727 if (ret) { 4728 btrfs_abort_transaction(trans, ret); 4729 break; 4730 } 4731 if (be_nice) { 4732 if (btrfs_should_throttle_delayed_refs(trans)) 4733 should_throttle = true; 4734 } 4735 } 4736 4737 if (found_type == BTRFS_INODE_ITEM_KEY) 4738 break; 4739 4740 if (path->slots[0] == 0 || 4741 path->slots[0] != pending_del_slot || 4742 should_throttle) { 4743 if (pending_del_nr) { 4744 ret = btrfs_del_items(trans, root, path, 4745 pending_del_slot, 4746 pending_del_nr); 4747 if (ret) { 4748 btrfs_abort_transaction(trans, ret); 4749 break; 4750 } 4751 pending_del_nr = 0; 4752 } 4753 btrfs_release_path(path); 4754 4755 /* 4756 * We can generate a lot of delayed refs, so we need to 4757 * throttle every once and a while and make sure we're 4758 * adding enough space to keep up with the work we are 4759 * generating. Since we hold a transaction here we 4760 * can't flush, and we don't want to FLUSH_LIMIT because 4761 * we could have generated too many delayed refs to 4762 * actually allocate, so just bail if we're short and 4763 * let the normal reservation dance happen higher up. 4764 */ 4765 if (should_throttle) { 4766 ret = btrfs_delayed_refs_rsv_refill(fs_info, 4767 BTRFS_RESERVE_NO_FLUSH); 4768 if (ret) { 4769 ret = -EAGAIN; 4770 break; 4771 } 4772 } 4773 goto search_again; 4774 } else { 4775 path->slots[0]--; 4776 } 4777 } 4778 out: 4779 if (ret >= 0 && pending_del_nr) { 4780 int err; 4781 4782 err = btrfs_del_items(trans, root, path, pending_del_slot, 4783 pending_del_nr); 4784 if (err) { 4785 btrfs_abort_transaction(trans, err); 4786 ret = err; 4787 } 4788 } 4789 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 4790 ASSERT(last_size >= new_size); 4791 if (!ret && last_size > new_size) 4792 last_size = new_size; 4793 btrfs_ordered_update_i_size(inode, last_size, NULL); 4794 } 4795 4796 btrfs_free_path(path); 4797 return ret; 4798 } 4799 4800 /* 4801 * btrfs_truncate_block - read, zero a chunk and write a block 4802 * @inode - inode that we're zeroing 4803 * @from - the offset to start zeroing 4804 * @len - the length to zero, 0 to zero the entire range respective to the 4805 * offset 4806 * @front - zero up to the offset instead of from the offset on 4807 * 4808 * This will find the block for the "from" offset and cow the block and zero the 4809 * part we want to zero. This is used with truncate and hole punching. 4810 */ 4811 int btrfs_truncate_block(struct inode *inode, loff_t from, loff_t len, 4812 int front) 4813 { 4814 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4815 struct address_space *mapping = inode->i_mapping; 4816 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 4817 struct btrfs_ordered_extent *ordered; 4818 struct extent_state *cached_state = NULL; 4819 struct extent_changeset *data_reserved = NULL; 4820 char *kaddr; 4821 u32 blocksize = fs_info->sectorsize; 4822 pgoff_t index = from >> PAGE_SHIFT; 4823 unsigned offset = from & (blocksize - 1); 4824 struct page *page; 4825 gfp_t mask = btrfs_alloc_write_mask(mapping); 4826 int ret = 0; 4827 u64 block_start; 4828 u64 block_end; 4829 4830 if (IS_ALIGNED(offset, blocksize) && 4831 (!len || IS_ALIGNED(len, blocksize))) 4832 goto out; 4833 4834 block_start = round_down(from, blocksize); 4835 block_end = block_start + blocksize - 1; 4836 4837 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, 4838 block_start, blocksize); 4839 if (ret) 4840 goto out; 4841 4842 again: 4843 page = find_or_create_page(mapping, index, mask); 4844 if (!page) { 4845 btrfs_delalloc_release_space(inode, data_reserved, 4846 block_start, blocksize, true); 4847 btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize, true); 4848 ret = -ENOMEM; 4849 goto out; 4850 } 4851 4852 if (!PageUptodate(page)) { 4853 ret = btrfs_readpage(NULL, page); 4854 lock_page(page); 4855 if (page->mapping != mapping) { 4856 unlock_page(page); 4857 put_page(page); 4858 goto again; 4859 } 4860 if (!PageUptodate(page)) { 4861 ret = -EIO; 4862 goto out_unlock; 4863 } 4864 } 4865 wait_on_page_writeback(page); 4866 4867 lock_extent_bits(io_tree, block_start, block_end, &cached_state); 4868 set_page_extent_mapped(page); 4869 4870 ordered = btrfs_lookup_ordered_extent(inode, block_start); 4871 if (ordered) { 4872 unlock_extent_cached(io_tree, block_start, block_end, 4873 &cached_state); 4874 unlock_page(page); 4875 put_page(page); 4876 btrfs_start_ordered_extent(inode, ordered, 1); 4877 btrfs_put_ordered_extent(ordered); 4878 goto again; 4879 } 4880 4881 clear_extent_bit(&BTRFS_I(inode)->io_tree, block_start, block_end, 4882 EXTENT_DIRTY | EXTENT_DELALLOC | 4883 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 4884 0, 0, &cached_state); 4885 4886 ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0, 4887 &cached_state, 0); 4888 if (ret) { 4889 unlock_extent_cached(io_tree, block_start, block_end, 4890 &cached_state); 4891 goto out_unlock; 4892 } 4893 4894 if (offset != blocksize) { 4895 if (!len) 4896 len = blocksize - offset; 4897 kaddr = kmap(page); 4898 if (front) 4899 memset(kaddr + (block_start - page_offset(page)), 4900 0, offset); 4901 else 4902 memset(kaddr + (block_start - page_offset(page)) + offset, 4903 0, len); 4904 flush_dcache_page(page); 4905 kunmap(page); 4906 } 4907 ClearPageChecked(page); 4908 set_page_dirty(page); 4909 unlock_extent_cached(io_tree, block_start, block_end, &cached_state); 4910 4911 out_unlock: 4912 if (ret) 4913 btrfs_delalloc_release_space(inode, data_reserved, block_start, 4914 blocksize, true); 4915 btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize, (ret != 0)); 4916 unlock_page(page); 4917 put_page(page); 4918 out: 4919 extent_changeset_free(data_reserved); 4920 return ret; 4921 } 4922 4923 static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode, 4924 u64 offset, u64 len) 4925 { 4926 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4927 struct btrfs_trans_handle *trans; 4928 int ret; 4929 4930 /* 4931 * Still need to make sure the inode looks like it's been updated so 4932 * that any holes get logged if we fsync. 4933 */ 4934 if (btrfs_fs_incompat(fs_info, NO_HOLES)) { 4935 BTRFS_I(inode)->last_trans = fs_info->generation; 4936 BTRFS_I(inode)->last_sub_trans = root->log_transid; 4937 BTRFS_I(inode)->last_log_commit = root->last_log_commit; 4938 return 0; 4939 } 4940 4941 /* 4942 * 1 - for the one we're dropping 4943 * 1 - for the one we're adding 4944 * 1 - for updating the inode. 4945 */ 4946 trans = btrfs_start_transaction(root, 3); 4947 if (IS_ERR(trans)) 4948 return PTR_ERR(trans); 4949 4950 ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1); 4951 if (ret) { 4952 btrfs_abort_transaction(trans, ret); 4953 btrfs_end_transaction(trans); 4954 return ret; 4955 } 4956 4957 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(BTRFS_I(inode)), 4958 offset, 0, 0, len, 0, len, 0, 0, 0); 4959 if (ret) 4960 btrfs_abort_transaction(trans, ret); 4961 else 4962 btrfs_update_inode(trans, root, inode); 4963 btrfs_end_transaction(trans); 4964 return ret; 4965 } 4966 4967 /* 4968 * This function puts in dummy file extents for the area we're creating a hole 4969 * for. So if we are truncating this file to a larger size we need to insert 4970 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for 4971 * the range between oldsize and size 4972 */ 4973 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size) 4974 { 4975 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4976 struct btrfs_root *root = BTRFS_I(inode)->root; 4977 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 4978 struct extent_map *em = NULL; 4979 struct extent_state *cached_state = NULL; 4980 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 4981 u64 hole_start = ALIGN(oldsize, fs_info->sectorsize); 4982 u64 block_end = ALIGN(size, fs_info->sectorsize); 4983 u64 last_byte; 4984 u64 cur_offset; 4985 u64 hole_size; 4986 int err = 0; 4987 4988 /* 4989 * If our size started in the middle of a block we need to zero out the 4990 * rest of the block before we expand the i_size, otherwise we could 4991 * expose stale data. 4992 */ 4993 err = btrfs_truncate_block(inode, oldsize, 0, 0); 4994 if (err) 4995 return err; 4996 4997 if (size <= hole_start) 4998 return 0; 4999 5000 while (1) { 5001 struct btrfs_ordered_extent *ordered; 5002 5003 lock_extent_bits(io_tree, hole_start, block_end - 1, 5004 &cached_state); 5005 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), hole_start, 5006 block_end - hole_start); 5007 if (!ordered) 5008 break; 5009 unlock_extent_cached(io_tree, hole_start, block_end - 1, 5010 &cached_state); 5011 btrfs_start_ordered_extent(inode, ordered, 1); 5012 btrfs_put_ordered_extent(ordered); 5013 } 5014 5015 cur_offset = hole_start; 5016 while (1) { 5017 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset, 5018 block_end - cur_offset, 0); 5019 if (IS_ERR(em)) { 5020 err = PTR_ERR(em); 5021 em = NULL; 5022 break; 5023 } 5024 last_byte = min(extent_map_end(em), block_end); 5025 last_byte = ALIGN(last_byte, fs_info->sectorsize); 5026 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) { 5027 struct extent_map *hole_em; 5028 hole_size = last_byte - cur_offset; 5029 5030 err = maybe_insert_hole(root, inode, cur_offset, 5031 hole_size); 5032 if (err) 5033 break; 5034 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset, 5035 cur_offset + hole_size - 1, 0); 5036 hole_em = alloc_extent_map(); 5037 if (!hole_em) { 5038 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 5039 &BTRFS_I(inode)->runtime_flags); 5040 goto next; 5041 } 5042 hole_em->start = cur_offset; 5043 hole_em->len = hole_size; 5044 hole_em->orig_start = cur_offset; 5045 5046 hole_em->block_start = EXTENT_MAP_HOLE; 5047 hole_em->block_len = 0; 5048 hole_em->orig_block_len = 0; 5049 hole_em->ram_bytes = hole_size; 5050 hole_em->bdev = fs_info->fs_devices->latest_bdev; 5051 hole_em->compress_type = BTRFS_COMPRESS_NONE; 5052 hole_em->generation = fs_info->generation; 5053 5054 while (1) { 5055 write_lock(&em_tree->lock); 5056 err = add_extent_mapping(em_tree, hole_em, 1); 5057 write_unlock(&em_tree->lock); 5058 if (err != -EEXIST) 5059 break; 5060 btrfs_drop_extent_cache(BTRFS_I(inode), 5061 cur_offset, 5062 cur_offset + 5063 hole_size - 1, 0); 5064 } 5065 free_extent_map(hole_em); 5066 } 5067 next: 5068 free_extent_map(em); 5069 em = NULL; 5070 cur_offset = last_byte; 5071 if (cur_offset >= block_end) 5072 break; 5073 } 5074 free_extent_map(em); 5075 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state); 5076 return err; 5077 } 5078 5079 static int btrfs_setsize(struct inode *inode, struct iattr *attr) 5080 { 5081 struct btrfs_root *root = BTRFS_I(inode)->root; 5082 struct btrfs_trans_handle *trans; 5083 loff_t oldsize = i_size_read(inode); 5084 loff_t newsize = attr->ia_size; 5085 int mask = attr->ia_valid; 5086 int ret; 5087 5088 /* 5089 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a 5090 * special case where we need to update the times despite not having 5091 * these flags set. For all other operations the VFS set these flags 5092 * explicitly if it wants a timestamp update. 5093 */ 5094 if (newsize != oldsize) { 5095 inode_inc_iversion(inode); 5096 if (!(mask & (ATTR_CTIME | ATTR_MTIME))) 5097 inode->i_ctime = inode->i_mtime = 5098 current_time(inode); 5099 } 5100 5101 if (newsize > oldsize) { 5102 /* 5103 * Don't do an expanding truncate while snapshotting is ongoing. 5104 * This is to ensure the snapshot captures a fully consistent 5105 * state of this file - if the snapshot captures this expanding 5106 * truncation, it must capture all writes that happened before 5107 * this truncation. 5108 */ 5109 btrfs_wait_for_snapshot_creation(root); 5110 ret = btrfs_cont_expand(inode, oldsize, newsize); 5111 if (ret) { 5112 btrfs_end_write_no_snapshotting(root); 5113 return ret; 5114 } 5115 5116 trans = btrfs_start_transaction(root, 1); 5117 if (IS_ERR(trans)) { 5118 btrfs_end_write_no_snapshotting(root); 5119 return PTR_ERR(trans); 5120 } 5121 5122 i_size_write(inode, newsize); 5123 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL); 5124 pagecache_isize_extended(inode, oldsize, newsize); 5125 ret = btrfs_update_inode(trans, root, inode); 5126 btrfs_end_write_no_snapshotting(root); 5127 btrfs_end_transaction(trans); 5128 } else { 5129 5130 /* 5131 * We're truncating a file that used to have good data down to 5132 * zero. Make sure it gets into the ordered flush list so that 5133 * any new writes get down to disk quickly. 5134 */ 5135 if (newsize == 0) 5136 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE, 5137 &BTRFS_I(inode)->runtime_flags); 5138 5139 truncate_setsize(inode, newsize); 5140 5141 /* Disable nonlocked read DIO to avoid the endless truncate */ 5142 btrfs_inode_block_unlocked_dio(BTRFS_I(inode)); 5143 inode_dio_wait(inode); 5144 btrfs_inode_resume_unlocked_dio(BTRFS_I(inode)); 5145 5146 ret = btrfs_truncate(inode, newsize == oldsize); 5147 if (ret && inode->i_nlink) { 5148 int err; 5149 5150 /* 5151 * Truncate failed, so fix up the in-memory size. We 5152 * adjusted disk_i_size down as we removed extents, so 5153 * wait for disk_i_size to be stable and then update the 5154 * in-memory size to match. 5155 */ 5156 err = btrfs_wait_ordered_range(inode, 0, (u64)-1); 5157 if (err) 5158 return err; 5159 i_size_write(inode, BTRFS_I(inode)->disk_i_size); 5160 } 5161 } 5162 5163 return ret; 5164 } 5165 5166 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr) 5167 { 5168 struct inode *inode = d_inode(dentry); 5169 struct btrfs_root *root = BTRFS_I(inode)->root; 5170 int err; 5171 5172 if (btrfs_root_readonly(root)) 5173 return -EROFS; 5174 5175 err = setattr_prepare(dentry, attr); 5176 if (err) 5177 return err; 5178 5179 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 5180 err = btrfs_setsize(inode, attr); 5181 if (err) 5182 return err; 5183 } 5184 5185 if (attr->ia_valid) { 5186 setattr_copy(inode, attr); 5187 inode_inc_iversion(inode); 5188 err = btrfs_dirty_inode(inode); 5189 5190 if (!err && attr->ia_valid & ATTR_MODE) 5191 err = posix_acl_chmod(inode, inode->i_mode); 5192 } 5193 5194 return err; 5195 } 5196 5197 /* 5198 * While truncating the inode pages during eviction, we get the VFS calling 5199 * btrfs_invalidatepage() against each page of the inode. This is slow because 5200 * the calls to btrfs_invalidatepage() result in a huge amount of calls to 5201 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting 5202 * extent_state structures over and over, wasting lots of time. 5203 * 5204 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all 5205 * those expensive operations on a per page basis and do only the ordered io 5206 * finishing, while we release here the extent_map and extent_state structures, 5207 * without the excessive merging and splitting. 5208 */ 5209 static void evict_inode_truncate_pages(struct inode *inode) 5210 { 5211 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 5212 struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree; 5213 struct rb_node *node; 5214 5215 ASSERT(inode->i_state & I_FREEING); 5216 truncate_inode_pages_final(&inode->i_data); 5217 5218 write_lock(&map_tree->lock); 5219 while (!RB_EMPTY_ROOT(&map_tree->map.rb_root)) { 5220 struct extent_map *em; 5221 5222 node = rb_first_cached(&map_tree->map); 5223 em = rb_entry(node, struct extent_map, rb_node); 5224 clear_bit(EXTENT_FLAG_PINNED, &em->flags); 5225 clear_bit(EXTENT_FLAG_LOGGING, &em->flags); 5226 remove_extent_mapping(map_tree, em); 5227 free_extent_map(em); 5228 if (need_resched()) { 5229 write_unlock(&map_tree->lock); 5230 cond_resched(); 5231 write_lock(&map_tree->lock); 5232 } 5233 } 5234 write_unlock(&map_tree->lock); 5235 5236 /* 5237 * Keep looping until we have no more ranges in the io tree. 5238 * We can have ongoing bios started by readpages (called from readahead) 5239 * that have their endio callback (extent_io.c:end_bio_extent_readpage) 5240 * still in progress (unlocked the pages in the bio but did not yet 5241 * unlocked the ranges in the io tree). Therefore this means some 5242 * ranges can still be locked and eviction started because before 5243 * submitting those bios, which are executed by a separate task (work 5244 * queue kthread), inode references (inode->i_count) were not taken 5245 * (which would be dropped in the end io callback of each bio). 5246 * Therefore here we effectively end up waiting for those bios and 5247 * anyone else holding locked ranges without having bumped the inode's 5248 * reference count - if we don't do it, when they access the inode's 5249 * io_tree to unlock a range it may be too late, leading to an 5250 * use-after-free issue. 5251 */ 5252 spin_lock(&io_tree->lock); 5253 while (!RB_EMPTY_ROOT(&io_tree->state)) { 5254 struct extent_state *state; 5255 struct extent_state *cached_state = NULL; 5256 u64 start; 5257 u64 end; 5258 unsigned state_flags; 5259 5260 node = rb_first(&io_tree->state); 5261 state = rb_entry(node, struct extent_state, rb_node); 5262 start = state->start; 5263 end = state->end; 5264 state_flags = state->state; 5265 spin_unlock(&io_tree->lock); 5266 5267 lock_extent_bits(io_tree, start, end, &cached_state); 5268 5269 /* 5270 * If still has DELALLOC flag, the extent didn't reach disk, 5271 * and its reserved space won't be freed by delayed_ref. 5272 * So we need to free its reserved space here. 5273 * (Refer to comment in btrfs_invalidatepage, case 2) 5274 * 5275 * Note, end is the bytenr of last byte, so we need + 1 here. 5276 */ 5277 if (state_flags & EXTENT_DELALLOC) 5278 btrfs_qgroup_free_data(inode, NULL, start, end - start + 1); 5279 5280 clear_extent_bit(io_tree, start, end, 5281 EXTENT_LOCKED | EXTENT_DIRTY | 5282 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | 5283 EXTENT_DEFRAG, 1, 1, &cached_state); 5284 5285 cond_resched(); 5286 spin_lock(&io_tree->lock); 5287 } 5288 spin_unlock(&io_tree->lock); 5289 } 5290 5291 static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root, 5292 struct btrfs_block_rsv *rsv) 5293 { 5294 struct btrfs_fs_info *fs_info = root->fs_info; 5295 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 5296 u64 delayed_refs_extra = btrfs_calc_trans_metadata_size(fs_info, 1); 5297 int failures = 0; 5298 5299 for (;;) { 5300 struct btrfs_trans_handle *trans; 5301 int ret; 5302 5303 ret = btrfs_block_rsv_refill(root, rsv, 5304 rsv->size + delayed_refs_extra, 5305 BTRFS_RESERVE_FLUSH_LIMIT); 5306 5307 if (ret && ++failures > 2) { 5308 btrfs_warn(fs_info, 5309 "could not allocate space for a delete; will truncate on mount"); 5310 return ERR_PTR(-ENOSPC); 5311 } 5312 5313 /* 5314 * Evict can generate a large amount of delayed refs without 5315 * having a way to add space back since we exhaust our temporary 5316 * block rsv. We aren't allowed to do FLUSH_ALL in this case 5317 * because we could deadlock with so many things in the flushing 5318 * code, so we have to try and hold some extra space to 5319 * compensate for our delayed ref generation. If we can't get 5320 * that space then we need see if we can steal our minimum from 5321 * the global reserve. We will be ratelimited by the amount of 5322 * space we have for the delayed refs rsv, so we'll end up 5323 * committing and trying again. 5324 */ 5325 trans = btrfs_join_transaction(root); 5326 if (IS_ERR(trans) || !ret) { 5327 if (!IS_ERR(trans)) { 5328 trans->block_rsv = &fs_info->trans_block_rsv; 5329 trans->bytes_reserved = delayed_refs_extra; 5330 btrfs_block_rsv_migrate(rsv, trans->block_rsv, 5331 delayed_refs_extra, 1); 5332 } 5333 return trans; 5334 } 5335 5336 /* 5337 * Try to steal from the global reserve if there is space for 5338 * it. 5339 */ 5340 if (!btrfs_check_space_for_delayed_refs(fs_info) && 5341 !btrfs_block_rsv_migrate(global_rsv, rsv, rsv->size, 0)) 5342 return trans; 5343 5344 /* If not, commit and try again. */ 5345 ret = btrfs_commit_transaction(trans); 5346 if (ret) 5347 return ERR_PTR(ret); 5348 } 5349 } 5350 5351 void btrfs_evict_inode(struct inode *inode) 5352 { 5353 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5354 struct btrfs_trans_handle *trans; 5355 struct btrfs_root *root = BTRFS_I(inode)->root; 5356 struct btrfs_block_rsv *rsv; 5357 int ret; 5358 5359 trace_btrfs_inode_evict(inode); 5360 5361 if (!root) { 5362 clear_inode(inode); 5363 return; 5364 } 5365 5366 evict_inode_truncate_pages(inode); 5367 5368 if (inode->i_nlink && 5369 ((btrfs_root_refs(&root->root_item) != 0 && 5370 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) || 5371 btrfs_is_free_space_inode(BTRFS_I(inode)))) 5372 goto no_delete; 5373 5374 if (is_bad_inode(inode)) 5375 goto no_delete; 5376 5377 btrfs_free_io_failure_record(BTRFS_I(inode), 0, (u64)-1); 5378 5379 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) 5380 goto no_delete; 5381 5382 if (inode->i_nlink > 0) { 5383 BUG_ON(btrfs_root_refs(&root->root_item) != 0 && 5384 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID); 5385 goto no_delete; 5386 } 5387 5388 ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode)); 5389 if (ret) 5390 goto no_delete; 5391 5392 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP); 5393 if (!rsv) 5394 goto no_delete; 5395 rsv->size = btrfs_calc_trunc_metadata_size(fs_info, 1); 5396 rsv->failfast = 1; 5397 5398 btrfs_i_size_write(BTRFS_I(inode), 0); 5399 5400 while (1) { 5401 trans = evict_refill_and_join(root, rsv); 5402 if (IS_ERR(trans)) 5403 goto free_rsv; 5404 5405 trans->block_rsv = rsv; 5406 5407 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0); 5408 trans->block_rsv = &fs_info->trans_block_rsv; 5409 btrfs_end_transaction(trans); 5410 btrfs_btree_balance_dirty(fs_info); 5411 if (ret && ret != -ENOSPC && ret != -EAGAIN) 5412 goto free_rsv; 5413 else if (!ret) 5414 break; 5415 } 5416 5417 /* 5418 * Errors here aren't a big deal, it just means we leave orphan items in 5419 * the tree. They will be cleaned up on the next mount. If the inode 5420 * number gets reused, cleanup deletes the orphan item without doing 5421 * anything, and unlink reuses the existing orphan item. 5422 * 5423 * If it turns out that we are dropping too many of these, we might want 5424 * to add a mechanism for retrying these after a commit. 5425 */ 5426 trans = evict_refill_and_join(root, rsv); 5427 if (!IS_ERR(trans)) { 5428 trans->block_rsv = rsv; 5429 btrfs_orphan_del(trans, BTRFS_I(inode)); 5430 trans->block_rsv = &fs_info->trans_block_rsv; 5431 btrfs_end_transaction(trans); 5432 } 5433 5434 if (!(root == fs_info->tree_root || 5435 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)) 5436 btrfs_return_ino(root, btrfs_ino(BTRFS_I(inode))); 5437 5438 free_rsv: 5439 btrfs_free_block_rsv(fs_info, rsv); 5440 no_delete: 5441 /* 5442 * If we didn't successfully delete, the orphan item will still be in 5443 * the tree and we'll retry on the next mount. Again, we might also want 5444 * to retry these periodically in the future. 5445 */ 5446 btrfs_remove_delayed_node(BTRFS_I(inode)); 5447 clear_inode(inode); 5448 } 5449 5450 /* 5451 * this returns the key found in the dir entry in the location pointer. 5452 * If no dir entries were found, returns -ENOENT. 5453 * If found a corrupted location in dir entry, returns -EUCLEAN. 5454 */ 5455 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry, 5456 struct btrfs_key *location) 5457 { 5458 const char *name = dentry->d_name.name; 5459 int namelen = dentry->d_name.len; 5460 struct btrfs_dir_item *di; 5461 struct btrfs_path *path; 5462 struct btrfs_root *root = BTRFS_I(dir)->root; 5463 int ret = 0; 5464 5465 path = btrfs_alloc_path(); 5466 if (!path) 5467 return -ENOMEM; 5468 5469 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(BTRFS_I(dir)), 5470 name, namelen, 0); 5471 if (IS_ERR_OR_NULL(di)) { 5472 ret = di ? PTR_ERR(di) : -ENOENT; 5473 goto out; 5474 } 5475 5476 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location); 5477 if (location->type != BTRFS_INODE_ITEM_KEY && 5478 location->type != BTRFS_ROOT_ITEM_KEY) { 5479 ret = -EUCLEAN; 5480 btrfs_warn(root->fs_info, 5481 "%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))", 5482 __func__, name, btrfs_ino(BTRFS_I(dir)), 5483 location->objectid, location->type, location->offset); 5484 } 5485 out: 5486 btrfs_free_path(path); 5487 return ret; 5488 } 5489 5490 /* 5491 * when we hit a tree root in a directory, the btrfs part of the inode 5492 * needs to be changed to reflect the root directory of the tree root. This 5493 * is kind of like crossing a mount point. 5494 */ 5495 static int fixup_tree_root_location(struct btrfs_fs_info *fs_info, 5496 struct inode *dir, 5497 struct dentry *dentry, 5498 struct btrfs_key *location, 5499 struct btrfs_root **sub_root) 5500 { 5501 struct btrfs_path *path; 5502 struct btrfs_root *new_root; 5503 struct btrfs_root_ref *ref; 5504 struct extent_buffer *leaf; 5505 struct btrfs_key key; 5506 int ret; 5507 int err = 0; 5508 5509 path = btrfs_alloc_path(); 5510 if (!path) { 5511 err = -ENOMEM; 5512 goto out; 5513 } 5514 5515 err = -ENOENT; 5516 key.objectid = BTRFS_I(dir)->root->root_key.objectid; 5517 key.type = BTRFS_ROOT_REF_KEY; 5518 key.offset = location->objectid; 5519 5520 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 5521 if (ret) { 5522 if (ret < 0) 5523 err = ret; 5524 goto out; 5525 } 5526 5527 leaf = path->nodes[0]; 5528 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); 5529 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(BTRFS_I(dir)) || 5530 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len) 5531 goto out; 5532 5533 ret = memcmp_extent_buffer(leaf, dentry->d_name.name, 5534 (unsigned long)(ref + 1), 5535 dentry->d_name.len); 5536 if (ret) 5537 goto out; 5538 5539 btrfs_release_path(path); 5540 5541 new_root = btrfs_read_fs_root_no_name(fs_info, location); 5542 if (IS_ERR(new_root)) { 5543 err = PTR_ERR(new_root); 5544 goto out; 5545 } 5546 5547 *sub_root = new_root; 5548 location->objectid = btrfs_root_dirid(&new_root->root_item); 5549 location->type = BTRFS_INODE_ITEM_KEY; 5550 location->offset = 0; 5551 err = 0; 5552 out: 5553 btrfs_free_path(path); 5554 return err; 5555 } 5556 5557 static void inode_tree_add(struct inode *inode) 5558 { 5559 struct btrfs_root *root = BTRFS_I(inode)->root; 5560 struct btrfs_inode *entry; 5561 struct rb_node **p; 5562 struct rb_node *parent; 5563 struct rb_node *new = &BTRFS_I(inode)->rb_node; 5564 u64 ino = btrfs_ino(BTRFS_I(inode)); 5565 5566 if (inode_unhashed(inode)) 5567 return; 5568 parent = NULL; 5569 spin_lock(&root->inode_lock); 5570 p = &root->inode_tree.rb_node; 5571 while (*p) { 5572 parent = *p; 5573 entry = rb_entry(parent, struct btrfs_inode, rb_node); 5574 5575 if (ino < btrfs_ino(entry)) 5576 p = &parent->rb_left; 5577 else if (ino > btrfs_ino(entry)) 5578 p = &parent->rb_right; 5579 else { 5580 WARN_ON(!(entry->vfs_inode.i_state & 5581 (I_WILL_FREE | I_FREEING))); 5582 rb_replace_node(parent, new, &root->inode_tree); 5583 RB_CLEAR_NODE(parent); 5584 spin_unlock(&root->inode_lock); 5585 return; 5586 } 5587 } 5588 rb_link_node(new, parent, p); 5589 rb_insert_color(new, &root->inode_tree); 5590 spin_unlock(&root->inode_lock); 5591 } 5592 5593 static void inode_tree_del(struct inode *inode) 5594 { 5595 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5596 struct btrfs_root *root = BTRFS_I(inode)->root; 5597 int empty = 0; 5598 5599 spin_lock(&root->inode_lock); 5600 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) { 5601 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree); 5602 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node); 5603 empty = RB_EMPTY_ROOT(&root->inode_tree); 5604 } 5605 spin_unlock(&root->inode_lock); 5606 5607 if (empty && btrfs_root_refs(&root->root_item) == 0) { 5608 synchronize_srcu(&fs_info->subvol_srcu); 5609 spin_lock(&root->inode_lock); 5610 empty = RB_EMPTY_ROOT(&root->inode_tree); 5611 spin_unlock(&root->inode_lock); 5612 if (empty) 5613 btrfs_add_dead_root(root); 5614 } 5615 } 5616 5617 5618 static int btrfs_init_locked_inode(struct inode *inode, void *p) 5619 { 5620 struct btrfs_iget_args *args = p; 5621 inode->i_ino = args->location->objectid; 5622 memcpy(&BTRFS_I(inode)->location, args->location, 5623 sizeof(*args->location)); 5624 BTRFS_I(inode)->root = args->root; 5625 return 0; 5626 } 5627 5628 static int btrfs_find_actor(struct inode *inode, void *opaque) 5629 { 5630 struct btrfs_iget_args *args = opaque; 5631 return args->location->objectid == BTRFS_I(inode)->location.objectid && 5632 args->root == BTRFS_I(inode)->root; 5633 } 5634 5635 static struct inode *btrfs_iget_locked(struct super_block *s, 5636 struct btrfs_key *location, 5637 struct btrfs_root *root) 5638 { 5639 struct inode *inode; 5640 struct btrfs_iget_args args; 5641 unsigned long hashval = btrfs_inode_hash(location->objectid, root); 5642 5643 args.location = location; 5644 args.root = root; 5645 5646 inode = iget5_locked(s, hashval, btrfs_find_actor, 5647 btrfs_init_locked_inode, 5648 (void *)&args); 5649 return inode; 5650 } 5651 5652 /* Get an inode object given its location and corresponding root. 5653 * Returns in *is_new if the inode was read from disk 5654 */ 5655 struct inode *btrfs_iget_path(struct super_block *s, struct btrfs_key *location, 5656 struct btrfs_root *root, int *new, 5657 struct btrfs_path *path) 5658 { 5659 struct inode *inode; 5660 5661 inode = btrfs_iget_locked(s, location, root); 5662 if (!inode) 5663 return ERR_PTR(-ENOMEM); 5664 5665 if (inode->i_state & I_NEW) { 5666 int ret; 5667 5668 ret = btrfs_read_locked_inode(inode, path); 5669 if (!ret) { 5670 inode_tree_add(inode); 5671 unlock_new_inode(inode); 5672 if (new) 5673 *new = 1; 5674 } else { 5675 iget_failed(inode); 5676 /* 5677 * ret > 0 can come from btrfs_search_slot called by 5678 * btrfs_read_locked_inode, this means the inode item 5679 * was not found. 5680 */ 5681 if (ret > 0) 5682 ret = -ENOENT; 5683 inode = ERR_PTR(ret); 5684 } 5685 } 5686 5687 return inode; 5688 } 5689 5690 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location, 5691 struct btrfs_root *root, int *new) 5692 { 5693 return btrfs_iget_path(s, location, root, new, NULL); 5694 } 5695 5696 static struct inode *new_simple_dir(struct super_block *s, 5697 struct btrfs_key *key, 5698 struct btrfs_root *root) 5699 { 5700 struct inode *inode = new_inode(s); 5701 5702 if (!inode) 5703 return ERR_PTR(-ENOMEM); 5704 5705 BTRFS_I(inode)->root = root; 5706 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key)); 5707 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags); 5708 5709 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID; 5710 inode->i_op = &btrfs_dir_ro_inode_operations; 5711 inode->i_opflags &= ~IOP_XATTR; 5712 inode->i_fop = &simple_dir_operations; 5713 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO; 5714 inode->i_mtime = current_time(inode); 5715 inode->i_atime = inode->i_mtime; 5716 inode->i_ctime = inode->i_mtime; 5717 BTRFS_I(inode)->i_otime = inode->i_mtime; 5718 5719 return inode; 5720 } 5721 5722 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry) 5723 { 5724 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 5725 struct inode *inode; 5726 struct btrfs_root *root = BTRFS_I(dir)->root; 5727 struct btrfs_root *sub_root = root; 5728 struct btrfs_key location; 5729 int index; 5730 int ret = 0; 5731 5732 if (dentry->d_name.len > BTRFS_NAME_LEN) 5733 return ERR_PTR(-ENAMETOOLONG); 5734 5735 ret = btrfs_inode_by_name(dir, dentry, &location); 5736 if (ret < 0) 5737 return ERR_PTR(ret); 5738 5739 if (location.type == BTRFS_INODE_ITEM_KEY) { 5740 inode = btrfs_iget(dir->i_sb, &location, root, NULL); 5741 return inode; 5742 } 5743 5744 index = srcu_read_lock(&fs_info->subvol_srcu); 5745 ret = fixup_tree_root_location(fs_info, dir, dentry, 5746 &location, &sub_root); 5747 if (ret < 0) { 5748 if (ret != -ENOENT) 5749 inode = ERR_PTR(ret); 5750 else 5751 inode = new_simple_dir(dir->i_sb, &location, sub_root); 5752 } else { 5753 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL); 5754 } 5755 srcu_read_unlock(&fs_info->subvol_srcu, index); 5756 5757 if (!IS_ERR(inode) && root != sub_root) { 5758 down_read(&fs_info->cleanup_work_sem); 5759 if (!sb_rdonly(inode->i_sb)) 5760 ret = btrfs_orphan_cleanup(sub_root); 5761 up_read(&fs_info->cleanup_work_sem); 5762 if (ret) { 5763 iput(inode); 5764 inode = ERR_PTR(ret); 5765 } 5766 } 5767 5768 return inode; 5769 } 5770 5771 static int btrfs_dentry_delete(const struct dentry *dentry) 5772 { 5773 struct btrfs_root *root; 5774 struct inode *inode = d_inode(dentry); 5775 5776 if (!inode && !IS_ROOT(dentry)) 5777 inode = d_inode(dentry->d_parent); 5778 5779 if (inode) { 5780 root = BTRFS_I(inode)->root; 5781 if (btrfs_root_refs(&root->root_item) == 0) 5782 return 1; 5783 5784 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 5785 return 1; 5786 } 5787 return 0; 5788 } 5789 5790 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry, 5791 unsigned int flags) 5792 { 5793 struct inode *inode = btrfs_lookup_dentry(dir, dentry); 5794 5795 if (inode == ERR_PTR(-ENOENT)) 5796 inode = NULL; 5797 return d_splice_alias(inode, dentry); 5798 } 5799 5800 unsigned char btrfs_filetype_table[] = { 5801 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK 5802 }; 5803 5804 /* 5805 * All this infrastructure exists because dir_emit can fault, and we are holding 5806 * the tree lock when doing readdir. For now just allocate a buffer and copy 5807 * our information into that, and then dir_emit from the buffer. This is 5808 * similar to what NFS does, only we don't keep the buffer around in pagecache 5809 * because I'm afraid I'll mess that up. Long term we need to make filldir do 5810 * copy_to_user_inatomic so we don't have to worry about page faulting under the 5811 * tree lock. 5812 */ 5813 static int btrfs_opendir(struct inode *inode, struct file *file) 5814 { 5815 struct btrfs_file_private *private; 5816 5817 private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL); 5818 if (!private) 5819 return -ENOMEM; 5820 private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL); 5821 if (!private->filldir_buf) { 5822 kfree(private); 5823 return -ENOMEM; 5824 } 5825 file->private_data = private; 5826 return 0; 5827 } 5828 5829 struct dir_entry { 5830 u64 ino; 5831 u64 offset; 5832 unsigned type; 5833 int name_len; 5834 }; 5835 5836 static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx) 5837 { 5838 while (entries--) { 5839 struct dir_entry *entry = addr; 5840 char *name = (char *)(entry + 1); 5841 5842 ctx->pos = get_unaligned(&entry->offset); 5843 if (!dir_emit(ctx, name, get_unaligned(&entry->name_len), 5844 get_unaligned(&entry->ino), 5845 get_unaligned(&entry->type))) 5846 return 1; 5847 addr += sizeof(struct dir_entry) + 5848 get_unaligned(&entry->name_len); 5849 ctx->pos++; 5850 } 5851 return 0; 5852 } 5853 5854 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx) 5855 { 5856 struct inode *inode = file_inode(file); 5857 struct btrfs_root *root = BTRFS_I(inode)->root; 5858 struct btrfs_file_private *private = file->private_data; 5859 struct btrfs_dir_item *di; 5860 struct btrfs_key key; 5861 struct btrfs_key found_key; 5862 struct btrfs_path *path; 5863 void *addr; 5864 struct list_head ins_list; 5865 struct list_head del_list; 5866 int ret; 5867 struct extent_buffer *leaf; 5868 int slot; 5869 char *name_ptr; 5870 int name_len; 5871 int entries = 0; 5872 int total_len = 0; 5873 bool put = false; 5874 struct btrfs_key location; 5875 5876 if (!dir_emit_dots(file, ctx)) 5877 return 0; 5878 5879 path = btrfs_alloc_path(); 5880 if (!path) 5881 return -ENOMEM; 5882 5883 addr = private->filldir_buf; 5884 path->reada = READA_FORWARD; 5885 5886 INIT_LIST_HEAD(&ins_list); 5887 INIT_LIST_HEAD(&del_list); 5888 put = btrfs_readdir_get_delayed_items(inode, &ins_list, &del_list); 5889 5890 again: 5891 key.type = BTRFS_DIR_INDEX_KEY; 5892 key.offset = ctx->pos; 5893 key.objectid = btrfs_ino(BTRFS_I(inode)); 5894 5895 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5896 if (ret < 0) 5897 goto err; 5898 5899 while (1) { 5900 struct dir_entry *entry; 5901 5902 leaf = path->nodes[0]; 5903 slot = path->slots[0]; 5904 if (slot >= btrfs_header_nritems(leaf)) { 5905 ret = btrfs_next_leaf(root, path); 5906 if (ret < 0) 5907 goto err; 5908 else if (ret > 0) 5909 break; 5910 continue; 5911 } 5912 5913 btrfs_item_key_to_cpu(leaf, &found_key, slot); 5914 5915 if (found_key.objectid != key.objectid) 5916 break; 5917 if (found_key.type != BTRFS_DIR_INDEX_KEY) 5918 break; 5919 if (found_key.offset < ctx->pos) 5920 goto next; 5921 if (btrfs_should_delete_dir_index(&del_list, found_key.offset)) 5922 goto next; 5923 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item); 5924 name_len = btrfs_dir_name_len(leaf, di); 5925 if ((total_len + sizeof(struct dir_entry) + name_len) >= 5926 PAGE_SIZE) { 5927 btrfs_release_path(path); 5928 ret = btrfs_filldir(private->filldir_buf, entries, ctx); 5929 if (ret) 5930 goto nopos; 5931 addr = private->filldir_buf; 5932 entries = 0; 5933 total_len = 0; 5934 goto again; 5935 } 5936 5937 entry = addr; 5938 put_unaligned(name_len, &entry->name_len); 5939 name_ptr = (char *)(entry + 1); 5940 read_extent_buffer(leaf, name_ptr, (unsigned long)(di + 1), 5941 name_len); 5942 put_unaligned(btrfs_filetype_table[btrfs_dir_type(leaf, di)], 5943 &entry->type); 5944 btrfs_dir_item_key_to_cpu(leaf, di, &location); 5945 put_unaligned(location.objectid, &entry->ino); 5946 put_unaligned(found_key.offset, &entry->offset); 5947 entries++; 5948 addr += sizeof(struct dir_entry) + name_len; 5949 total_len += sizeof(struct dir_entry) + name_len; 5950 next: 5951 path->slots[0]++; 5952 } 5953 btrfs_release_path(path); 5954 5955 ret = btrfs_filldir(private->filldir_buf, entries, ctx); 5956 if (ret) 5957 goto nopos; 5958 5959 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list); 5960 if (ret) 5961 goto nopos; 5962 5963 /* 5964 * Stop new entries from being returned after we return the last 5965 * entry. 5966 * 5967 * New directory entries are assigned a strictly increasing 5968 * offset. This means that new entries created during readdir 5969 * are *guaranteed* to be seen in the future by that readdir. 5970 * This has broken buggy programs which operate on names as 5971 * they're returned by readdir. Until we re-use freed offsets 5972 * we have this hack to stop new entries from being returned 5973 * under the assumption that they'll never reach this huge 5974 * offset. 5975 * 5976 * This is being careful not to overflow 32bit loff_t unless the 5977 * last entry requires it because doing so has broken 32bit apps 5978 * in the past. 5979 */ 5980 if (ctx->pos >= INT_MAX) 5981 ctx->pos = LLONG_MAX; 5982 else 5983 ctx->pos = INT_MAX; 5984 nopos: 5985 ret = 0; 5986 err: 5987 if (put) 5988 btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list); 5989 btrfs_free_path(path); 5990 return ret; 5991 } 5992 5993 /* 5994 * This is somewhat expensive, updating the tree every time the 5995 * inode changes. But, it is most likely to find the inode in cache. 5996 * FIXME, needs more benchmarking...there are no reasons other than performance 5997 * to keep or drop this code. 5998 */ 5999 static int btrfs_dirty_inode(struct inode *inode) 6000 { 6001 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 6002 struct btrfs_root *root = BTRFS_I(inode)->root; 6003 struct btrfs_trans_handle *trans; 6004 int ret; 6005 6006 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags)) 6007 return 0; 6008 6009 trans = btrfs_join_transaction(root); 6010 if (IS_ERR(trans)) 6011 return PTR_ERR(trans); 6012 6013 ret = btrfs_update_inode(trans, root, inode); 6014 if (ret && ret == -ENOSPC) { 6015 /* whoops, lets try again with the full transaction */ 6016 btrfs_end_transaction(trans); 6017 trans = btrfs_start_transaction(root, 1); 6018 if (IS_ERR(trans)) 6019 return PTR_ERR(trans); 6020 6021 ret = btrfs_update_inode(trans, root, inode); 6022 } 6023 btrfs_end_transaction(trans); 6024 if (BTRFS_I(inode)->delayed_node) 6025 btrfs_balance_delayed_items(fs_info); 6026 6027 return ret; 6028 } 6029 6030 /* 6031 * This is a copy of file_update_time. We need this so we can return error on 6032 * ENOSPC for updating the inode in the case of file write and mmap writes. 6033 */ 6034 static int btrfs_update_time(struct inode *inode, struct timespec64 *now, 6035 int flags) 6036 { 6037 struct btrfs_root *root = BTRFS_I(inode)->root; 6038 bool dirty = flags & ~S_VERSION; 6039 6040 if (btrfs_root_readonly(root)) 6041 return -EROFS; 6042 6043 if (flags & S_VERSION) 6044 dirty |= inode_maybe_inc_iversion(inode, dirty); 6045 if (flags & S_CTIME) 6046 inode->i_ctime = *now; 6047 if (flags & S_MTIME) 6048 inode->i_mtime = *now; 6049 if (flags & S_ATIME) 6050 inode->i_atime = *now; 6051 return dirty ? btrfs_dirty_inode(inode) : 0; 6052 } 6053 6054 /* 6055 * find the highest existing sequence number in a directory 6056 * and then set the in-memory index_cnt variable to reflect 6057 * free sequence numbers 6058 */ 6059 static int btrfs_set_inode_index_count(struct btrfs_inode *inode) 6060 { 6061 struct btrfs_root *root = inode->root; 6062 struct btrfs_key key, found_key; 6063 struct btrfs_path *path; 6064 struct extent_buffer *leaf; 6065 int ret; 6066 6067 key.objectid = btrfs_ino(inode); 6068 key.type = BTRFS_DIR_INDEX_KEY; 6069 key.offset = (u64)-1; 6070 6071 path = btrfs_alloc_path(); 6072 if (!path) 6073 return -ENOMEM; 6074 6075 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 6076 if (ret < 0) 6077 goto out; 6078 /* FIXME: we should be able to handle this */ 6079 if (ret == 0) 6080 goto out; 6081 ret = 0; 6082 6083 /* 6084 * MAGIC NUMBER EXPLANATION: 6085 * since we search a directory based on f_pos we have to start at 2 6086 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody 6087 * else has to start at 2 6088 */ 6089 if (path->slots[0] == 0) { 6090 inode->index_cnt = 2; 6091 goto out; 6092 } 6093 6094 path->slots[0]--; 6095 6096 leaf = path->nodes[0]; 6097 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6098 6099 if (found_key.objectid != btrfs_ino(inode) || 6100 found_key.type != BTRFS_DIR_INDEX_KEY) { 6101 inode->index_cnt = 2; 6102 goto out; 6103 } 6104 6105 inode->index_cnt = found_key.offset + 1; 6106 out: 6107 btrfs_free_path(path); 6108 return ret; 6109 } 6110 6111 /* 6112 * helper to find a free sequence number in a given directory. This current 6113 * code is very simple, later versions will do smarter things in the btree 6114 */ 6115 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index) 6116 { 6117 int ret = 0; 6118 6119 if (dir->index_cnt == (u64)-1) { 6120 ret = btrfs_inode_delayed_dir_index_count(dir); 6121 if (ret) { 6122 ret = btrfs_set_inode_index_count(dir); 6123 if (ret) 6124 return ret; 6125 } 6126 } 6127 6128 *index = dir->index_cnt; 6129 dir->index_cnt++; 6130 6131 return ret; 6132 } 6133 6134 static int btrfs_insert_inode_locked(struct inode *inode) 6135 { 6136 struct btrfs_iget_args args; 6137 args.location = &BTRFS_I(inode)->location; 6138 args.root = BTRFS_I(inode)->root; 6139 6140 return insert_inode_locked4(inode, 6141 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root), 6142 btrfs_find_actor, &args); 6143 } 6144 6145 /* 6146 * Inherit flags from the parent inode. 6147 * 6148 * Currently only the compression flags and the cow flags are inherited. 6149 */ 6150 static void btrfs_inherit_iflags(struct inode *inode, struct inode *dir) 6151 { 6152 unsigned int flags; 6153 6154 if (!dir) 6155 return; 6156 6157 flags = BTRFS_I(dir)->flags; 6158 6159 if (flags & BTRFS_INODE_NOCOMPRESS) { 6160 BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS; 6161 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS; 6162 } else if (flags & BTRFS_INODE_COMPRESS) { 6163 BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS; 6164 BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS; 6165 } 6166 6167 if (flags & BTRFS_INODE_NODATACOW) { 6168 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW; 6169 if (S_ISREG(inode->i_mode)) 6170 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; 6171 } 6172 6173 btrfs_sync_inode_flags_to_i_flags(inode); 6174 } 6175 6176 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans, 6177 struct btrfs_root *root, 6178 struct inode *dir, 6179 const char *name, int name_len, 6180 u64 ref_objectid, u64 objectid, 6181 umode_t mode, u64 *index) 6182 { 6183 struct btrfs_fs_info *fs_info = root->fs_info; 6184 struct inode *inode; 6185 struct btrfs_inode_item *inode_item; 6186 struct btrfs_key *location; 6187 struct btrfs_path *path; 6188 struct btrfs_inode_ref *ref; 6189 struct btrfs_key key[2]; 6190 u32 sizes[2]; 6191 int nitems = name ? 2 : 1; 6192 unsigned long ptr; 6193 int ret; 6194 6195 path = btrfs_alloc_path(); 6196 if (!path) 6197 return ERR_PTR(-ENOMEM); 6198 6199 inode = new_inode(fs_info->sb); 6200 if (!inode) { 6201 btrfs_free_path(path); 6202 return ERR_PTR(-ENOMEM); 6203 } 6204 6205 /* 6206 * O_TMPFILE, set link count to 0, so that after this point, 6207 * we fill in an inode item with the correct link count. 6208 */ 6209 if (!name) 6210 set_nlink(inode, 0); 6211 6212 /* 6213 * we have to initialize this early, so we can reclaim the inode 6214 * number if we fail afterwards in this function. 6215 */ 6216 inode->i_ino = objectid; 6217 6218 if (dir && name) { 6219 trace_btrfs_inode_request(dir); 6220 6221 ret = btrfs_set_inode_index(BTRFS_I(dir), index); 6222 if (ret) { 6223 btrfs_free_path(path); 6224 iput(inode); 6225 return ERR_PTR(ret); 6226 } 6227 } else if (dir) { 6228 *index = 0; 6229 } 6230 /* 6231 * index_cnt is ignored for everything but a dir, 6232 * btrfs_set_inode_index_count has an explanation for the magic 6233 * number 6234 */ 6235 BTRFS_I(inode)->index_cnt = 2; 6236 BTRFS_I(inode)->dir_index = *index; 6237 BTRFS_I(inode)->root = root; 6238 BTRFS_I(inode)->generation = trans->transid; 6239 inode->i_generation = BTRFS_I(inode)->generation; 6240 6241 /* 6242 * We could have gotten an inode number from somebody who was fsynced 6243 * and then removed in this same transaction, so let's just set full 6244 * sync since it will be a full sync anyway and this will blow away the 6245 * old info in the log. 6246 */ 6247 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 6248 6249 key[0].objectid = objectid; 6250 key[0].type = BTRFS_INODE_ITEM_KEY; 6251 key[0].offset = 0; 6252 6253 sizes[0] = sizeof(struct btrfs_inode_item); 6254 6255 if (name) { 6256 /* 6257 * Start new inodes with an inode_ref. This is slightly more 6258 * efficient for small numbers of hard links since they will 6259 * be packed into one item. Extended refs will kick in if we 6260 * add more hard links than can fit in the ref item. 6261 */ 6262 key[1].objectid = objectid; 6263 key[1].type = BTRFS_INODE_REF_KEY; 6264 key[1].offset = ref_objectid; 6265 6266 sizes[1] = name_len + sizeof(*ref); 6267 } 6268 6269 location = &BTRFS_I(inode)->location; 6270 location->objectid = objectid; 6271 location->offset = 0; 6272 location->type = BTRFS_INODE_ITEM_KEY; 6273 6274 ret = btrfs_insert_inode_locked(inode); 6275 if (ret < 0) { 6276 iput(inode); 6277 goto fail; 6278 } 6279 6280 path->leave_spinning = 1; 6281 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems); 6282 if (ret != 0) 6283 goto fail_unlock; 6284 6285 inode_init_owner(inode, dir, mode); 6286 inode_set_bytes(inode, 0); 6287 6288 inode->i_mtime = current_time(inode); 6289 inode->i_atime = inode->i_mtime; 6290 inode->i_ctime = inode->i_mtime; 6291 BTRFS_I(inode)->i_otime = inode->i_mtime; 6292 6293 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0], 6294 struct btrfs_inode_item); 6295 memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item, 6296 sizeof(*inode_item)); 6297 fill_inode_item(trans, path->nodes[0], inode_item, inode); 6298 6299 if (name) { 6300 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1, 6301 struct btrfs_inode_ref); 6302 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len); 6303 btrfs_set_inode_ref_index(path->nodes[0], ref, *index); 6304 ptr = (unsigned long)(ref + 1); 6305 write_extent_buffer(path->nodes[0], name, ptr, name_len); 6306 } 6307 6308 btrfs_mark_buffer_dirty(path->nodes[0]); 6309 btrfs_free_path(path); 6310 6311 btrfs_inherit_iflags(inode, dir); 6312 6313 if (S_ISREG(mode)) { 6314 if (btrfs_test_opt(fs_info, NODATASUM)) 6315 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; 6316 if (btrfs_test_opt(fs_info, NODATACOW)) 6317 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW | 6318 BTRFS_INODE_NODATASUM; 6319 } 6320 6321 inode_tree_add(inode); 6322 6323 trace_btrfs_inode_new(inode); 6324 btrfs_set_inode_last_trans(trans, inode); 6325 6326 btrfs_update_root_times(trans, root); 6327 6328 ret = btrfs_inode_inherit_props(trans, inode, dir); 6329 if (ret) 6330 btrfs_err(fs_info, 6331 "error inheriting props for ino %llu (root %llu): %d", 6332 btrfs_ino(BTRFS_I(inode)), root->root_key.objectid, ret); 6333 6334 return inode; 6335 6336 fail_unlock: 6337 discard_new_inode(inode); 6338 fail: 6339 if (dir && name) 6340 BTRFS_I(dir)->index_cnt--; 6341 btrfs_free_path(path); 6342 return ERR_PTR(ret); 6343 } 6344 6345 static inline u8 btrfs_inode_type(struct inode *inode) 6346 { 6347 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT]; 6348 } 6349 6350 /* 6351 * utility function to add 'inode' into 'parent_inode' with 6352 * a give name and a given sequence number. 6353 * if 'add_backref' is true, also insert a backref from the 6354 * inode to the parent directory. 6355 */ 6356 int btrfs_add_link(struct btrfs_trans_handle *trans, 6357 struct btrfs_inode *parent_inode, struct btrfs_inode *inode, 6358 const char *name, int name_len, int add_backref, u64 index) 6359 { 6360 int ret = 0; 6361 struct btrfs_key key; 6362 struct btrfs_root *root = parent_inode->root; 6363 u64 ino = btrfs_ino(inode); 6364 u64 parent_ino = btrfs_ino(parent_inode); 6365 6366 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6367 memcpy(&key, &inode->root->root_key, sizeof(key)); 6368 } else { 6369 key.objectid = ino; 6370 key.type = BTRFS_INODE_ITEM_KEY; 6371 key.offset = 0; 6372 } 6373 6374 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6375 ret = btrfs_add_root_ref(trans, key.objectid, 6376 root->root_key.objectid, parent_ino, 6377 index, name, name_len); 6378 } else if (add_backref) { 6379 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino, 6380 parent_ino, index); 6381 } 6382 6383 /* Nothing to clean up yet */ 6384 if (ret) 6385 return ret; 6386 6387 ret = btrfs_insert_dir_item(trans, name, name_len, parent_inode, &key, 6388 btrfs_inode_type(&inode->vfs_inode), index); 6389 if (ret == -EEXIST || ret == -EOVERFLOW) 6390 goto fail_dir_item; 6391 else if (ret) { 6392 btrfs_abort_transaction(trans, ret); 6393 return ret; 6394 } 6395 6396 btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size + 6397 name_len * 2); 6398 inode_inc_iversion(&parent_inode->vfs_inode); 6399 parent_inode->vfs_inode.i_mtime = parent_inode->vfs_inode.i_ctime = 6400 current_time(&parent_inode->vfs_inode); 6401 ret = btrfs_update_inode(trans, root, &parent_inode->vfs_inode); 6402 if (ret) 6403 btrfs_abort_transaction(trans, ret); 6404 return ret; 6405 6406 fail_dir_item: 6407 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6408 u64 local_index; 6409 int err; 6410 err = btrfs_del_root_ref(trans, key.objectid, 6411 root->root_key.objectid, parent_ino, 6412 &local_index, name, name_len); 6413 if (err) 6414 btrfs_abort_transaction(trans, err); 6415 } else if (add_backref) { 6416 u64 local_index; 6417 int err; 6418 6419 err = btrfs_del_inode_ref(trans, root, name, name_len, 6420 ino, parent_ino, &local_index); 6421 if (err) 6422 btrfs_abort_transaction(trans, err); 6423 } 6424 6425 /* Return the original error code */ 6426 return ret; 6427 } 6428 6429 static int btrfs_add_nondir(struct btrfs_trans_handle *trans, 6430 struct btrfs_inode *dir, struct dentry *dentry, 6431 struct btrfs_inode *inode, int backref, u64 index) 6432 { 6433 int err = btrfs_add_link(trans, dir, inode, 6434 dentry->d_name.name, dentry->d_name.len, 6435 backref, index); 6436 if (err > 0) 6437 err = -EEXIST; 6438 return err; 6439 } 6440 6441 static int btrfs_mknod(struct inode *dir, struct dentry *dentry, 6442 umode_t mode, dev_t rdev) 6443 { 6444 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 6445 struct btrfs_trans_handle *trans; 6446 struct btrfs_root *root = BTRFS_I(dir)->root; 6447 struct inode *inode = NULL; 6448 int err; 6449 u64 objectid; 6450 u64 index = 0; 6451 6452 /* 6453 * 2 for inode item and ref 6454 * 2 for dir items 6455 * 1 for xattr if selinux is on 6456 */ 6457 trans = btrfs_start_transaction(root, 5); 6458 if (IS_ERR(trans)) 6459 return PTR_ERR(trans); 6460 6461 err = btrfs_find_free_ino(root, &objectid); 6462 if (err) 6463 goto out_unlock; 6464 6465 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 6466 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid, 6467 mode, &index); 6468 if (IS_ERR(inode)) { 6469 err = PTR_ERR(inode); 6470 inode = NULL; 6471 goto out_unlock; 6472 } 6473 6474 /* 6475 * If the active LSM wants to access the inode during 6476 * d_instantiate it needs these. Smack checks to see 6477 * if the filesystem supports xattrs by looking at the 6478 * ops vector. 6479 */ 6480 inode->i_op = &btrfs_special_inode_operations; 6481 init_special_inode(inode, inode->i_mode, rdev); 6482 6483 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 6484 if (err) 6485 goto out_unlock; 6486 6487 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode), 6488 0, index); 6489 if (err) 6490 goto out_unlock; 6491 6492 btrfs_update_inode(trans, root, inode); 6493 d_instantiate_new(dentry, inode); 6494 6495 out_unlock: 6496 btrfs_end_transaction(trans); 6497 btrfs_btree_balance_dirty(fs_info); 6498 if (err && inode) { 6499 inode_dec_link_count(inode); 6500 discard_new_inode(inode); 6501 } 6502 return err; 6503 } 6504 6505 static int btrfs_create(struct inode *dir, struct dentry *dentry, 6506 umode_t mode, bool excl) 6507 { 6508 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 6509 struct btrfs_trans_handle *trans; 6510 struct btrfs_root *root = BTRFS_I(dir)->root; 6511 struct inode *inode = NULL; 6512 int err; 6513 u64 objectid; 6514 u64 index = 0; 6515 6516 /* 6517 * 2 for inode item and ref 6518 * 2 for dir items 6519 * 1 for xattr if selinux is on 6520 */ 6521 trans = btrfs_start_transaction(root, 5); 6522 if (IS_ERR(trans)) 6523 return PTR_ERR(trans); 6524 6525 err = btrfs_find_free_ino(root, &objectid); 6526 if (err) 6527 goto out_unlock; 6528 6529 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 6530 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid, 6531 mode, &index); 6532 if (IS_ERR(inode)) { 6533 err = PTR_ERR(inode); 6534 inode = NULL; 6535 goto out_unlock; 6536 } 6537 /* 6538 * If the active LSM wants to access the inode during 6539 * d_instantiate it needs these. Smack checks to see 6540 * if the filesystem supports xattrs by looking at the 6541 * ops vector. 6542 */ 6543 inode->i_fop = &btrfs_file_operations; 6544 inode->i_op = &btrfs_file_inode_operations; 6545 inode->i_mapping->a_ops = &btrfs_aops; 6546 6547 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 6548 if (err) 6549 goto out_unlock; 6550 6551 err = btrfs_update_inode(trans, root, inode); 6552 if (err) 6553 goto out_unlock; 6554 6555 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode), 6556 0, index); 6557 if (err) 6558 goto out_unlock; 6559 6560 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 6561 d_instantiate_new(dentry, inode); 6562 6563 out_unlock: 6564 btrfs_end_transaction(trans); 6565 if (err && inode) { 6566 inode_dec_link_count(inode); 6567 discard_new_inode(inode); 6568 } 6569 btrfs_btree_balance_dirty(fs_info); 6570 return err; 6571 } 6572 6573 static int btrfs_link(struct dentry *old_dentry, struct inode *dir, 6574 struct dentry *dentry) 6575 { 6576 struct btrfs_trans_handle *trans = NULL; 6577 struct btrfs_root *root = BTRFS_I(dir)->root; 6578 struct inode *inode = d_inode(old_dentry); 6579 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 6580 u64 index; 6581 int err; 6582 int drop_inode = 0; 6583 6584 /* do not allow sys_link's with other subvols of the same device */ 6585 if (root->root_key.objectid != BTRFS_I(inode)->root->root_key.objectid) 6586 return -EXDEV; 6587 6588 if (inode->i_nlink >= BTRFS_LINK_MAX) 6589 return -EMLINK; 6590 6591 err = btrfs_set_inode_index(BTRFS_I(dir), &index); 6592 if (err) 6593 goto fail; 6594 6595 /* 6596 * 2 items for inode and inode ref 6597 * 2 items for dir items 6598 * 1 item for parent inode 6599 * 1 item for orphan item deletion if O_TMPFILE 6600 */ 6601 trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6); 6602 if (IS_ERR(trans)) { 6603 err = PTR_ERR(trans); 6604 trans = NULL; 6605 goto fail; 6606 } 6607 6608 /* There are several dir indexes for this inode, clear the cache. */ 6609 BTRFS_I(inode)->dir_index = 0ULL; 6610 inc_nlink(inode); 6611 inode_inc_iversion(inode); 6612 inode->i_ctime = current_time(inode); 6613 ihold(inode); 6614 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags); 6615 6616 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode), 6617 1, index); 6618 6619 if (err) { 6620 drop_inode = 1; 6621 } else { 6622 struct dentry *parent = dentry->d_parent; 6623 int ret; 6624 6625 err = btrfs_update_inode(trans, root, inode); 6626 if (err) 6627 goto fail; 6628 if (inode->i_nlink == 1) { 6629 /* 6630 * If new hard link count is 1, it's a file created 6631 * with open(2) O_TMPFILE flag. 6632 */ 6633 err = btrfs_orphan_del(trans, BTRFS_I(inode)); 6634 if (err) 6635 goto fail; 6636 } 6637 BTRFS_I(inode)->last_link_trans = trans->transid; 6638 d_instantiate(dentry, inode); 6639 ret = btrfs_log_new_name(trans, BTRFS_I(inode), NULL, parent, 6640 true, NULL); 6641 if (ret == BTRFS_NEED_TRANS_COMMIT) { 6642 err = btrfs_commit_transaction(trans); 6643 trans = NULL; 6644 } 6645 } 6646 6647 fail: 6648 if (trans) 6649 btrfs_end_transaction(trans); 6650 if (drop_inode) { 6651 inode_dec_link_count(inode); 6652 iput(inode); 6653 } 6654 btrfs_btree_balance_dirty(fs_info); 6655 return err; 6656 } 6657 6658 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 6659 { 6660 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 6661 struct inode *inode = NULL; 6662 struct btrfs_trans_handle *trans; 6663 struct btrfs_root *root = BTRFS_I(dir)->root; 6664 int err = 0; 6665 u64 objectid = 0; 6666 u64 index = 0; 6667 6668 /* 6669 * 2 items for inode and ref 6670 * 2 items for dir items 6671 * 1 for xattr if selinux is on 6672 */ 6673 trans = btrfs_start_transaction(root, 5); 6674 if (IS_ERR(trans)) 6675 return PTR_ERR(trans); 6676 6677 err = btrfs_find_free_ino(root, &objectid); 6678 if (err) 6679 goto out_fail; 6680 6681 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 6682 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid, 6683 S_IFDIR | mode, &index); 6684 if (IS_ERR(inode)) { 6685 err = PTR_ERR(inode); 6686 inode = NULL; 6687 goto out_fail; 6688 } 6689 6690 /* these must be set before we unlock the inode */ 6691 inode->i_op = &btrfs_dir_inode_operations; 6692 inode->i_fop = &btrfs_dir_file_operations; 6693 6694 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 6695 if (err) 6696 goto out_fail; 6697 6698 btrfs_i_size_write(BTRFS_I(inode), 0); 6699 err = btrfs_update_inode(trans, root, inode); 6700 if (err) 6701 goto out_fail; 6702 6703 err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), 6704 dentry->d_name.name, 6705 dentry->d_name.len, 0, index); 6706 if (err) 6707 goto out_fail; 6708 6709 d_instantiate_new(dentry, inode); 6710 6711 out_fail: 6712 btrfs_end_transaction(trans); 6713 if (err && inode) { 6714 inode_dec_link_count(inode); 6715 discard_new_inode(inode); 6716 } 6717 btrfs_btree_balance_dirty(fs_info); 6718 return err; 6719 } 6720 6721 static noinline int uncompress_inline(struct btrfs_path *path, 6722 struct page *page, 6723 size_t pg_offset, u64 extent_offset, 6724 struct btrfs_file_extent_item *item) 6725 { 6726 int ret; 6727 struct extent_buffer *leaf = path->nodes[0]; 6728 char *tmp; 6729 size_t max_size; 6730 unsigned long inline_size; 6731 unsigned long ptr; 6732 int compress_type; 6733 6734 WARN_ON(pg_offset != 0); 6735 compress_type = btrfs_file_extent_compression(leaf, item); 6736 max_size = btrfs_file_extent_ram_bytes(leaf, item); 6737 inline_size = btrfs_file_extent_inline_item_len(leaf, 6738 btrfs_item_nr(path->slots[0])); 6739 tmp = kmalloc(inline_size, GFP_NOFS); 6740 if (!tmp) 6741 return -ENOMEM; 6742 ptr = btrfs_file_extent_inline_start(item); 6743 6744 read_extent_buffer(leaf, tmp, ptr, inline_size); 6745 6746 max_size = min_t(unsigned long, PAGE_SIZE, max_size); 6747 ret = btrfs_decompress(compress_type, tmp, page, 6748 extent_offset, inline_size, max_size); 6749 6750 /* 6751 * decompression code contains a memset to fill in any space between the end 6752 * of the uncompressed data and the end of max_size in case the decompressed 6753 * data ends up shorter than ram_bytes. That doesn't cover the hole between 6754 * the end of an inline extent and the beginning of the next block, so we 6755 * cover that region here. 6756 */ 6757 6758 if (max_size + pg_offset < PAGE_SIZE) { 6759 char *map = kmap(page); 6760 memset(map + pg_offset + max_size, 0, PAGE_SIZE - max_size - pg_offset); 6761 kunmap(page); 6762 } 6763 kfree(tmp); 6764 return ret; 6765 } 6766 6767 /* 6768 * a bit scary, this does extent mapping from logical file offset to the disk. 6769 * the ugly parts come from merging extents from the disk with the in-ram 6770 * representation. This gets more complex because of the data=ordered code, 6771 * where the in-ram extents might be locked pending data=ordered completion. 6772 * 6773 * This also copies inline extents directly into the page. 6774 */ 6775 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode, 6776 struct page *page, 6777 size_t pg_offset, u64 start, u64 len, 6778 int create) 6779 { 6780 struct btrfs_fs_info *fs_info = inode->root->fs_info; 6781 int ret; 6782 int err = 0; 6783 u64 extent_start = 0; 6784 u64 extent_end = 0; 6785 u64 objectid = btrfs_ino(inode); 6786 u8 extent_type; 6787 struct btrfs_path *path = NULL; 6788 struct btrfs_root *root = inode->root; 6789 struct btrfs_file_extent_item *item; 6790 struct extent_buffer *leaf; 6791 struct btrfs_key found_key; 6792 struct extent_map *em = NULL; 6793 struct extent_map_tree *em_tree = &inode->extent_tree; 6794 struct extent_io_tree *io_tree = &inode->io_tree; 6795 const bool new_inline = !page || create; 6796 6797 read_lock(&em_tree->lock); 6798 em = lookup_extent_mapping(em_tree, start, len); 6799 if (em) 6800 em->bdev = fs_info->fs_devices->latest_bdev; 6801 read_unlock(&em_tree->lock); 6802 6803 if (em) { 6804 if (em->start > start || em->start + em->len <= start) 6805 free_extent_map(em); 6806 else if (em->block_start == EXTENT_MAP_INLINE && page) 6807 free_extent_map(em); 6808 else 6809 goto out; 6810 } 6811 em = alloc_extent_map(); 6812 if (!em) { 6813 err = -ENOMEM; 6814 goto out; 6815 } 6816 em->bdev = fs_info->fs_devices->latest_bdev; 6817 em->start = EXTENT_MAP_HOLE; 6818 em->orig_start = EXTENT_MAP_HOLE; 6819 em->len = (u64)-1; 6820 em->block_len = (u64)-1; 6821 6822 path = btrfs_alloc_path(); 6823 if (!path) { 6824 err = -ENOMEM; 6825 goto out; 6826 } 6827 6828 /* Chances are we'll be called again, so go ahead and do readahead */ 6829 path->reada = READA_FORWARD; 6830 6831 /* 6832 * Unless we're going to uncompress the inline extent, no sleep would 6833 * happen. 6834 */ 6835 path->leave_spinning = 1; 6836 6837 ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0); 6838 if (ret < 0) { 6839 err = ret; 6840 goto out; 6841 } else if (ret > 0) { 6842 if (path->slots[0] == 0) 6843 goto not_found; 6844 path->slots[0]--; 6845 } 6846 6847 leaf = path->nodes[0]; 6848 item = btrfs_item_ptr(leaf, path->slots[0], 6849 struct btrfs_file_extent_item); 6850 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6851 if (found_key.objectid != objectid || 6852 found_key.type != BTRFS_EXTENT_DATA_KEY) { 6853 /* 6854 * If we backup past the first extent we want to move forward 6855 * and see if there is an extent in front of us, otherwise we'll 6856 * say there is a hole for our whole search range which can 6857 * cause problems. 6858 */ 6859 extent_end = start; 6860 goto next; 6861 } 6862 6863 extent_type = btrfs_file_extent_type(leaf, item); 6864 extent_start = found_key.offset; 6865 if (extent_type == BTRFS_FILE_EXTENT_REG || 6866 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 6867 extent_end = extent_start + 6868 btrfs_file_extent_num_bytes(leaf, item); 6869 6870 trace_btrfs_get_extent_show_fi_regular(inode, leaf, item, 6871 extent_start); 6872 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 6873 size_t size; 6874 6875 size = btrfs_file_extent_ram_bytes(leaf, item); 6876 extent_end = ALIGN(extent_start + size, 6877 fs_info->sectorsize); 6878 6879 trace_btrfs_get_extent_show_fi_inline(inode, leaf, item, 6880 path->slots[0], 6881 extent_start); 6882 } 6883 next: 6884 if (start >= extent_end) { 6885 path->slots[0]++; 6886 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 6887 ret = btrfs_next_leaf(root, path); 6888 if (ret < 0) { 6889 err = ret; 6890 goto out; 6891 } else if (ret > 0) { 6892 goto not_found; 6893 } 6894 leaf = path->nodes[0]; 6895 } 6896 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6897 if (found_key.objectid != objectid || 6898 found_key.type != BTRFS_EXTENT_DATA_KEY) 6899 goto not_found; 6900 if (start + len <= found_key.offset) 6901 goto not_found; 6902 if (start > found_key.offset) 6903 goto next; 6904 6905 /* New extent overlaps with existing one */ 6906 em->start = start; 6907 em->orig_start = start; 6908 em->len = found_key.offset - start; 6909 em->block_start = EXTENT_MAP_HOLE; 6910 goto insert; 6911 } 6912 6913 btrfs_extent_item_to_extent_map(inode, path, item, 6914 new_inline, em); 6915 6916 if (extent_type == BTRFS_FILE_EXTENT_REG || 6917 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 6918 goto insert; 6919 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 6920 unsigned long ptr; 6921 char *map; 6922 size_t size; 6923 size_t extent_offset; 6924 size_t copy_size; 6925 6926 if (new_inline) 6927 goto out; 6928 6929 size = btrfs_file_extent_ram_bytes(leaf, item); 6930 extent_offset = page_offset(page) + pg_offset - extent_start; 6931 copy_size = min_t(u64, PAGE_SIZE - pg_offset, 6932 size - extent_offset); 6933 em->start = extent_start + extent_offset; 6934 em->len = ALIGN(copy_size, fs_info->sectorsize); 6935 em->orig_block_len = em->len; 6936 em->orig_start = em->start; 6937 ptr = btrfs_file_extent_inline_start(item) + extent_offset; 6938 6939 btrfs_set_path_blocking(path); 6940 if (!PageUptodate(page)) { 6941 if (btrfs_file_extent_compression(leaf, item) != 6942 BTRFS_COMPRESS_NONE) { 6943 ret = uncompress_inline(path, page, pg_offset, 6944 extent_offset, item); 6945 if (ret) { 6946 err = ret; 6947 goto out; 6948 } 6949 } else { 6950 map = kmap(page); 6951 read_extent_buffer(leaf, map + pg_offset, ptr, 6952 copy_size); 6953 if (pg_offset + copy_size < PAGE_SIZE) { 6954 memset(map + pg_offset + copy_size, 0, 6955 PAGE_SIZE - pg_offset - 6956 copy_size); 6957 } 6958 kunmap(page); 6959 } 6960 flush_dcache_page(page); 6961 } 6962 set_extent_uptodate(io_tree, em->start, 6963 extent_map_end(em) - 1, NULL, GFP_NOFS); 6964 goto insert; 6965 } 6966 not_found: 6967 em->start = start; 6968 em->orig_start = start; 6969 em->len = len; 6970 em->block_start = EXTENT_MAP_HOLE; 6971 insert: 6972 btrfs_release_path(path); 6973 if (em->start > start || extent_map_end(em) <= start) { 6974 btrfs_err(fs_info, 6975 "bad extent! em: [%llu %llu] passed [%llu %llu]", 6976 em->start, em->len, start, len); 6977 err = -EIO; 6978 goto out; 6979 } 6980 6981 err = 0; 6982 write_lock(&em_tree->lock); 6983 err = btrfs_add_extent_mapping(fs_info, em_tree, &em, start, len); 6984 write_unlock(&em_tree->lock); 6985 out: 6986 btrfs_free_path(path); 6987 6988 trace_btrfs_get_extent(root, inode, em); 6989 6990 if (err) { 6991 free_extent_map(em); 6992 return ERR_PTR(err); 6993 } 6994 BUG_ON(!em); /* Error is always set */ 6995 return em; 6996 } 6997 6998 struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode, 6999 u64 start, u64 len) 7000 { 7001 struct extent_map *em; 7002 struct extent_map *hole_em = NULL; 7003 u64 delalloc_start = start; 7004 u64 end; 7005 u64 delalloc_len; 7006 u64 delalloc_end; 7007 int err = 0; 7008 7009 em = btrfs_get_extent(inode, NULL, 0, start, len, 0); 7010 if (IS_ERR(em)) 7011 return em; 7012 /* 7013 * If our em maps to: 7014 * - a hole or 7015 * - a pre-alloc extent, 7016 * there might actually be delalloc bytes behind it. 7017 */ 7018 if (em->block_start != EXTENT_MAP_HOLE && 7019 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 7020 return em; 7021 else 7022 hole_em = em; 7023 7024 /* check to see if we've wrapped (len == -1 or similar) */ 7025 end = start + len; 7026 if (end < start) 7027 end = (u64)-1; 7028 else 7029 end -= 1; 7030 7031 em = NULL; 7032 7033 /* ok, we didn't find anything, lets look for delalloc */ 7034 delalloc_len = count_range_bits(&inode->io_tree, &delalloc_start, 7035 end, len, EXTENT_DELALLOC, 1); 7036 delalloc_end = delalloc_start + delalloc_len; 7037 if (delalloc_end < delalloc_start) 7038 delalloc_end = (u64)-1; 7039 7040 /* 7041 * We didn't find anything useful, return the original results from 7042 * get_extent() 7043 */ 7044 if (delalloc_start > end || delalloc_end <= start) { 7045 em = hole_em; 7046 hole_em = NULL; 7047 goto out; 7048 } 7049 7050 /* 7051 * Adjust the delalloc_start to make sure it doesn't go backwards from 7052 * the start they passed in 7053 */ 7054 delalloc_start = max(start, delalloc_start); 7055 delalloc_len = delalloc_end - delalloc_start; 7056 7057 if (delalloc_len > 0) { 7058 u64 hole_start; 7059 u64 hole_len; 7060 const u64 hole_end = extent_map_end(hole_em); 7061 7062 em = alloc_extent_map(); 7063 if (!em) { 7064 err = -ENOMEM; 7065 goto out; 7066 } 7067 em->bdev = NULL; 7068 7069 ASSERT(hole_em); 7070 /* 7071 * When btrfs_get_extent can't find anything it returns one 7072 * huge hole 7073 * 7074 * Make sure what it found really fits our range, and adjust to 7075 * make sure it is based on the start from the caller 7076 */ 7077 if (hole_end <= start || hole_em->start > end) { 7078 free_extent_map(hole_em); 7079 hole_em = NULL; 7080 } else { 7081 hole_start = max(hole_em->start, start); 7082 hole_len = hole_end - hole_start; 7083 } 7084 7085 if (hole_em && delalloc_start > hole_start) { 7086 /* 7087 * Our hole starts before our delalloc, so we have to 7088 * return just the parts of the hole that go until the 7089 * delalloc starts 7090 */ 7091 em->len = min(hole_len, delalloc_start - hole_start); 7092 em->start = hole_start; 7093 em->orig_start = hole_start; 7094 /* 7095 * Don't adjust block start at all, it is fixed at 7096 * EXTENT_MAP_HOLE 7097 */ 7098 em->block_start = hole_em->block_start; 7099 em->block_len = hole_len; 7100 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags)) 7101 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 7102 } else { 7103 /* 7104 * Hole is out of passed range or it starts after 7105 * delalloc range 7106 */ 7107 em->start = delalloc_start; 7108 em->len = delalloc_len; 7109 em->orig_start = delalloc_start; 7110 em->block_start = EXTENT_MAP_DELALLOC; 7111 em->block_len = delalloc_len; 7112 } 7113 } else { 7114 return hole_em; 7115 } 7116 out: 7117 7118 free_extent_map(hole_em); 7119 if (err) { 7120 free_extent_map(em); 7121 return ERR_PTR(err); 7122 } 7123 return em; 7124 } 7125 7126 static struct extent_map *btrfs_create_dio_extent(struct inode *inode, 7127 const u64 start, 7128 const u64 len, 7129 const u64 orig_start, 7130 const u64 block_start, 7131 const u64 block_len, 7132 const u64 orig_block_len, 7133 const u64 ram_bytes, 7134 const int type) 7135 { 7136 struct extent_map *em = NULL; 7137 int ret; 7138 7139 if (type != BTRFS_ORDERED_NOCOW) { 7140 em = create_io_em(inode, start, len, orig_start, 7141 block_start, block_len, orig_block_len, 7142 ram_bytes, 7143 BTRFS_COMPRESS_NONE, /* compress_type */ 7144 type); 7145 if (IS_ERR(em)) 7146 goto out; 7147 } 7148 ret = btrfs_add_ordered_extent_dio(inode, start, block_start, 7149 len, block_len, type); 7150 if (ret) { 7151 if (em) { 7152 free_extent_map(em); 7153 btrfs_drop_extent_cache(BTRFS_I(inode), start, 7154 start + len - 1, 0); 7155 } 7156 em = ERR_PTR(ret); 7157 } 7158 out: 7159 7160 return em; 7161 } 7162 7163 static struct extent_map *btrfs_new_extent_direct(struct inode *inode, 7164 u64 start, u64 len) 7165 { 7166 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7167 struct btrfs_root *root = BTRFS_I(inode)->root; 7168 struct extent_map *em; 7169 struct btrfs_key ins; 7170 u64 alloc_hint; 7171 int ret; 7172 7173 alloc_hint = get_extent_allocation_hint(inode, start, len); 7174 ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize, 7175 0, alloc_hint, &ins, 1, 1); 7176 if (ret) 7177 return ERR_PTR(ret); 7178 7179 em = btrfs_create_dio_extent(inode, start, ins.offset, start, 7180 ins.objectid, ins.offset, ins.offset, 7181 ins.offset, BTRFS_ORDERED_REGULAR); 7182 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 7183 if (IS_ERR(em)) 7184 btrfs_free_reserved_extent(fs_info, ins.objectid, 7185 ins.offset, 1); 7186 7187 return em; 7188 } 7189 7190 /* 7191 * returns 1 when the nocow is safe, < 1 on error, 0 if the 7192 * block must be cow'd 7193 */ 7194 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len, 7195 u64 *orig_start, u64 *orig_block_len, 7196 u64 *ram_bytes) 7197 { 7198 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7199 struct btrfs_path *path; 7200 int ret; 7201 struct extent_buffer *leaf; 7202 struct btrfs_root *root = BTRFS_I(inode)->root; 7203 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 7204 struct btrfs_file_extent_item *fi; 7205 struct btrfs_key key; 7206 u64 disk_bytenr; 7207 u64 backref_offset; 7208 u64 extent_end; 7209 u64 num_bytes; 7210 int slot; 7211 int found_type; 7212 bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW); 7213 7214 path = btrfs_alloc_path(); 7215 if (!path) 7216 return -ENOMEM; 7217 7218 ret = btrfs_lookup_file_extent(NULL, root, path, 7219 btrfs_ino(BTRFS_I(inode)), offset, 0); 7220 if (ret < 0) 7221 goto out; 7222 7223 slot = path->slots[0]; 7224 if (ret == 1) { 7225 if (slot == 0) { 7226 /* can't find the item, must cow */ 7227 ret = 0; 7228 goto out; 7229 } 7230 slot--; 7231 } 7232 ret = 0; 7233 leaf = path->nodes[0]; 7234 btrfs_item_key_to_cpu(leaf, &key, slot); 7235 if (key.objectid != btrfs_ino(BTRFS_I(inode)) || 7236 key.type != BTRFS_EXTENT_DATA_KEY) { 7237 /* not our file or wrong item type, must cow */ 7238 goto out; 7239 } 7240 7241 if (key.offset > offset) { 7242 /* Wrong offset, must cow */ 7243 goto out; 7244 } 7245 7246 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 7247 found_type = btrfs_file_extent_type(leaf, fi); 7248 if (found_type != BTRFS_FILE_EXTENT_REG && 7249 found_type != BTRFS_FILE_EXTENT_PREALLOC) { 7250 /* not a regular extent, must cow */ 7251 goto out; 7252 } 7253 7254 if (!nocow && found_type == BTRFS_FILE_EXTENT_REG) 7255 goto out; 7256 7257 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 7258 if (extent_end <= offset) 7259 goto out; 7260 7261 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 7262 if (disk_bytenr == 0) 7263 goto out; 7264 7265 if (btrfs_file_extent_compression(leaf, fi) || 7266 btrfs_file_extent_encryption(leaf, fi) || 7267 btrfs_file_extent_other_encoding(leaf, fi)) 7268 goto out; 7269 7270 /* 7271 * Do the same check as in btrfs_cross_ref_exist but without the 7272 * unnecessary search. 7273 */ 7274 if (btrfs_file_extent_generation(leaf, fi) <= 7275 btrfs_root_last_snapshot(&root->root_item)) 7276 goto out; 7277 7278 backref_offset = btrfs_file_extent_offset(leaf, fi); 7279 7280 if (orig_start) { 7281 *orig_start = key.offset - backref_offset; 7282 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi); 7283 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 7284 } 7285 7286 if (btrfs_extent_readonly(fs_info, disk_bytenr)) 7287 goto out; 7288 7289 num_bytes = min(offset + *len, extent_end) - offset; 7290 if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) { 7291 u64 range_end; 7292 7293 range_end = round_up(offset + num_bytes, 7294 root->fs_info->sectorsize) - 1; 7295 ret = test_range_bit(io_tree, offset, range_end, 7296 EXTENT_DELALLOC, 0, NULL); 7297 if (ret) { 7298 ret = -EAGAIN; 7299 goto out; 7300 } 7301 } 7302 7303 btrfs_release_path(path); 7304 7305 /* 7306 * look for other files referencing this extent, if we 7307 * find any we must cow 7308 */ 7309 7310 ret = btrfs_cross_ref_exist(root, btrfs_ino(BTRFS_I(inode)), 7311 key.offset - backref_offset, disk_bytenr); 7312 if (ret) { 7313 ret = 0; 7314 goto out; 7315 } 7316 7317 /* 7318 * adjust disk_bytenr and num_bytes to cover just the bytes 7319 * in this extent we are about to write. If there 7320 * are any csums in that range we have to cow in order 7321 * to keep the csums correct 7322 */ 7323 disk_bytenr += backref_offset; 7324 disk_bytenr += offset - key.offset; 7325 if (csum_exist_in_range(fs_info, disk_bytenr, num_bytes)) 7326 goto out; 7327 /* 7328 * all of the above have passed, it is safe to overwrite this extent 7329 * without cow 7330 */ 7331 *len = num_bytes; 7332 ret = 1; 7333 out: 7334 btrfs_free_path(path); 7335 return ret; 7336 } 7337 7338 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend, 7339 struct extent_state **cached_state, int writing) 7340 { 7341 struct btrfs_ordered_extent *ordered; 7342 int ret = 0; 7343 7344 while (1) { 7345 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7346 cached_state); 7347 /* 7348 * We're concerned with the entire range that we're going to be 7349 * doing DIO to, so we need to make sure there's no ordered 7350 * extents in this range. 7351 */ 7352 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart, 7353 lockend - lockstart + 1); 7354 7355 /* 7356 * We need to make sure there are no buffered pages in this 7357 * range either, we could have raced between the invalidate in 7358 * generic_file_direct_write and locking the extent. The 7359 * invalidate needs to happen so that reads after a write do not 7360 * get stale data. 7361 */ 7362 if (!ordered && 7363 (!writing || !filemap_range_has_page(inode->i_mapping, 7364 lockstart, lockend))) 7365 break; 7366 7367 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7368 cached_state); 7369 7370 if (ordered) { 7371 /* 7372 * If we are doing a DIO read and the ordered extent we 7373 * found is for a buffered write, we can not wait for it 7374 * to complete and retry, because if we do so we can 7375 * deadlock with concurrent buffered writes on page 7376 * locks. This happens only if our DIO read covers more 7377 * than one extent map, if at this point has already 7378 * created an ordered extent for a previous extent map 7379 * and locked its range in the inode's io tree, and a 7380 * concurrent write against that previous extent map's 7381 * range and this range started (we unlock the ranges 7382 * in the io tree only when the bios complete and 7383 * buffered writes always lock pages before attempting 7384 * to lock range in the io tree). 7385 */ 7386 if (writing || 7387 test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) 7388 btrfs_start_ordered_extent(inode, ordered, 1); 7389 else 7390 ret = -ENOTBLK; 7391 btrfs_put_ordered_extent(ordered); 7392 } else { 7393 /* 7394 * We could trigger writeback for this range (and wait 7395 * for it to complete) and then invalidate the pages for 7396 * this range (through invalidate_inode_pages2_range()), 7397 * but that can lead us to a deadlock with a concurrent 7398 * call to readpages() (a buffered read or a defrag call 7399 * triggered a readahead) on a page lock due to an 7400 * ordered dio extent we created before but did not have 7401 * yet a corresponding bio submitted (whence it can not 7402 * complete), which makes readpages() wait for that 7403 * ordered extent to complete while holding a lock on 7404 * that page. 7405 */ 7406 ret = -ENOTBLK; 7407 } 7408 7409 if (ret) 7410 break; 7411 7412 cond_resched(); 7413 } 7414 7415 return ret; 7416 } 7417 7418 /* The callers of this must take lock_extent() */ 7419 static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len, 7420 u64 orig_start, u64 block_start, 7421 u64 block_len, u64 orig_block_len, 7422 u64 ram_bytes, int compress_type, 7423 int type) 7424 { 7425 struct extent_map_tree *em_tree; 7426 struct extent_map *em; 7427 struct btrfs_root *root = BTRFS_I(inode)->root; 7428 int ret; 7429 7430 ASSERT(type == BTRFS_ORDERED_PREALLOC || 7431 type == BTRFS_ORDERED_COMPRESSED || 7432 type == BTRFS_ORDERED_NOCOW || 7433 type == BTRFS_ORDERED_REGULAR); 7434 7435 em_tree = &BTRFS_I(inode)->extent_tree; 7436 em = alloc_extent_map(); 7437 if (!em) 7438 return ERR_PTR(-ENOMEM); 7439 7440 em->start = start; 7441 em->orig_start = orig_start; 7442 em->len = len; 7443 em->block_len = block_len; 7444 em->block_start = block_start; 7445 em->bdev = root->fs_info->fs_devices->latest_bdev; 7446 em->orig_block_len = orig_block_len; 7447 em->ram_bytes = ram_bytes; 7448 em->generation = -1; 7449 set_bit(EXTENT_FLAG_PINNED, &em->flags); 7450 if (type == BTRFS_ORDERED_PREALLOC) { 7451 set_bit(EXTENT_FLAG_FILLING, &em->flags); 7452 } else if (type == BTRFS_ORDERED_COMPRESSED) { 7453 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 7454 em->compress_type = compress_type; 7455 } 7456 7457 do { 7458 btrfs_drop_extent_cache(BTRFS_I(inode), em->start, 7459 em->start + em->len - 1, 0); 7460 write_lock(&em_tree->lock); 7461 ret = add_extent_mapping(em_tree, em, 1); 7462 write_unlock(&em_tree->lock); 7463 /* 7464 * The caller has taken lock_extent(), who could race with us 7465 * to add em? 7466 */ 7467 } while (ret == -EEXIST); 7468 7469 if (ret) { 7470 free_extent_map(em); 7471 return ERR_PTR(ret); 7472 } 7473 7474 /* em got 2 refs now, callers needs to do free_extent_map once. */ 7475 return em; 7476 } 7477 7478 7479 static int btrfs_get_blocks_direct_read(struct extent_map *em, 7480 struct buffer_head *bh_result, 7481 struct inode *inode, 7482 u64 start, u64 len) 7483 { 7484 if (em->block_start == EXTENT_MAP_HOLE || 7485 test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 7486 return -ENOENT; 7487 7488 len = min(len, em->len - (start - em->start)); 7489 7490 bh_result->b_blocknr = (em->block_start + (start - em->start)) >> 7491 inode->i_blkbits; 7492 bh_result->b_size = len; 7493 bh_result->b_bdev = em->bdev; 7494 set_buffer_mapped(bh_result); 7495 7496 return 0; 7497 } 7498 7499 static int btrfs_get_blocks_direct_write(struct extent_map **map, 7500 struct buffer_head *bh_result, 7501 struct inode *inode, 7502 struct btrfs_dio_data *dio_data, 7503 u64 start, u64 len) 7504 { 7505 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7506 struct extent_map *em = *map; 7507 int ret = 0; 7508 7509 /* 7510 * We don't allocate a new extent in the following cases 7511 * 7512 * 1) The inode is marked as NODATACOW. In this case we'll just use the 7513 * existing extent. 7514 * 2) The extent is marked as PREALLOC. We're good to go here and can 7515 * just use the extent. 7516 * 7517 */ 7518 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) || 7519 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) && 7520 em->block_start != EXTENT_MAP_HOLE)) { 7521 int type; 7522 u64 block_start, orig_start, orig_block_len, ram_bytes; 7523 7524 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 7525 type = BTRFS_ORDERED_PREALLOC; 7526 else 7527 type = BTRFS_ORDERED_NOCOW; 7528 len = min(len, em->len - (start - em->start)); 7529 block_start = em->block_start + (start - em->start); 7530 7531 if (can_nocow_extent(inode, start, &len, &orig_start, 7532 &orig_block_len, &ram_bytes) == 1 && 7533 btrfs_inc_nocow_writers(fs_info, block_start)) { 7534 struct extent_map *em2; 7535 7536 em2 = btrfs_create_dio_extent(inode, start, len, 7537 orig_start, block_start, 7538 len, orig_block_len, 7539 ram_bytes, type); 7540 btrfs_dec_nocow_writers(fs_info, block_start); 7541 if (type == BTRFS_ORDERED_PREALLOC) { 7542 free_extent_map(em); 7543 *map = em = em2; 7544 } 7545 7546 if (em2 && IS_ERR(em2)) { 7547 ret = PTR_ERR(em2); 7548 goto out; 7549 } 7550 /* 7551 * For inode marked NODATACOW or extent marked PREALLOC, 7552 * use the existing or preallocated extent, so does not 7553 * need to adjust btrfs_space_info's bytes_may_use. 7554 */ 7555 btrfs_free_reserved_data_space_noquota(inode, start, 7556 len); 7557 goto skip_cow; 7558 } 7559 } 7560 7561 /* this will cow the extent */ 7562 len = bh_result->b_size; 7563 free_extent_map(em); 7564 *map = em = btrfs_new_extent_direct(inode, start, len); 7565 if (IS_ERR(em)) { 7566 ret = PTR_ERR(em); 7567 goto out; 7568 } 7569 7570 len = min(len, em->len - (start - em->start)); 7571 7572 skip_cow: 7573 bh_result->b_blocknr = (em->block_start + (start - em->start)) >> 7574 inode->i_blkbits; 7575 bh_result->b_size = len; 7576 bh_result->b_bdev = em->bdev; 7577 set_buffer_mapped(bh_result); 7578 7579 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 7580 set_buffer_new(bh_result); 7581 7582 /* 7583 * Need to update the i_size under the extent lock so buffered 7584 * readers will get the updated i_size when we unlock. 7585 */ 7586 if (!dio_data->overwrite && start + len > i_size_read(inode)) 7587 i_size_write(inode, start + len); 7588 7589 WARN_ON(dio_data->reserve < len); 7590 dio_data->reserve -= len; 7591 dio_data->unsubmitted_oe_range_end = start + len; 7592 current->journal_info = dio_data; 7593 out: 7594 return ret; 7595 } 7596 7597 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock, 7598 struct buffer_head *bh_result, int create) 7599 { 7600 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7601 struct extent_map *em; 7602 struct extent_state *cached_state = NULL; 7603 struct btrfs_dio_data *dio_data = NULL; 7604 u64 start = iblock << inode->i_blkbits; 7605 u64 lockstart, lockend; 7606 u64 len = bh_result->b_size; 7607 int unlock_bits = EXTENT_LOCKED; 7608 int ret = 0; 7609 7610 if (create) 7611 unlock_bits |= EXTENT_DIRTY; 7612 else 7613 len = min_t(u64, len, fs_info->sectorsize); 7614 7615 lockstart = start; 7616 lockend = start + len - 1; 7617 7618 if (current->journal_info) { 7619 /* 7620 * Need to pull our outstanding extents and set journal_info to NULL so 7621 * that anything that needs to check if there's a transaction doesn't get 7622 * confused. 7623 */ 7624 dio_data = current->journal_info; 7625 current->journal_info = NULL; 7626 } 7627 7628 /* 7629 * If this errors out it's because we couldn't invalidate pagecache for 7630 * this range and we need to fallback to buffered. 7631 */ 7632 if (lock_extent_direct(inode, lockstart, lockend, &cached_state, 7633 create)) { 7634 ret = -ENOTBLK; 7635 goto err; 7636 } 7637 7638 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len, 0); 7639 if (IS_ERR(em)) { 7640 ret = PTR_ERR(em); 7641 goto unlock_err; 7642 } 7643 7644 /* 7645 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered 7646 * io. INLINE is special, and we could probably kludge it in here, but 7647 * it's still buffered so for safety lets just fall back to the generic 7648 * buffered path. 7649 * 7650 * For COMPRESSED we _have_ to read the entire extent in so we can 7651 * decompress it, so there will be buffering required no matter what we 7652 * do, so go ahead and fallback to buffered. 7653 * 7654 * We return -ENOTBLK because that's what makes DIO go ahead and go back 7655 * to buffered IO. Don't blame me, this is the price we pay for using 7656 * the generic code. 7657 */ 7658 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) || 7659 em->block_start == EXTENT_MAP_INLINE) { 7660 free_extent_map(em); 7661 ret = -ENOTBLK; 7662 goto unlock_err; 7663 } 7664 7665 if (create) { 7666 ret = btrfs_get_blocks_direct_write(&em, bh_result, inode, 7667 dio_data, start, len); 7668 if (ret < 0) 7669 goto unlock_err; 7670 7671 /* clear and unlock the entire range */ 7672 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7673 unlock_bits, 1, 0, &cached_state); 7674 } else { 7675 ret = btrfs_get_blocks_direct_read(em, bh_result, inode, 7676 start, len); 7677 /* Can be negative only if we read from a hole */ 7678 if (ret < 0) { 7679 ret = 0; 7680 free_extent_map(em); 7681 goto unlock_err; 7682 } 7683 /* 7684 * We need to unlock only the end area that we aren't using. 7685 * The rest is going to be unlocked by the endio routine. 7686 */ 7687 lockstart = start + bh_result->b_size; 7688 if (lockstart < lockend) { 7689 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, 7690 lockend, unlock_bits, 1, 0, 7691 &cached_state); 7692 } else { 7693 free_extent_state(cached_state); 7694 } 7695 } 7696 7697 free_extent_map(em); 7698 7699 return 0; 7700 7701 unlock_err: 7702 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7703 unlock_bits, 1, 0, &cached_state); 7704 err: 7705 if (dio_data) 7706 current->journal_info = dio_data; 7707 return ret; 7708 } 7709 7710 static inline blk_status_t submit_dio_repair_bio(struct inode *inode, 7711 struct bio *bio, 7712 int mirror_num) 7713 { 7714 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7715 blk_status_t ret; 7716 7717 BUG_ON(bio_op(bio) == REQ_OP_WRITE); 7718 7719 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DIO_REPAIR); 7720 if (ret) 7721 return ret; 7722 7723 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0); 7724 7725 return ret; 7726 } 7727 7728 static int btrfs_check_dio_repairable(struct inode *inode, 7729 struct bio *failed_bio, 7730 struct io_failure_record *failrec, 7731 int failed_mirror) 7732 { 7733 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7734 int num_copies; 7735 7736 num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len); 7737 if (num_copies == 1) { 7738 /* 7739 * we only have a single copy of the data, so don't bother with 7740 * all the retry and error correction code that follows. no 7741 * matter what the error is, it is very likely to persist. 7742 */ 7743 btrfs_debug(fs_info, 7744 "Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d", 7745 num_copies, failrec->this_mirror, failed_mirror); 7746 return 0; 7747 } 7748 7749 failrec->failed_mirror = failed_mirror; 7750 failrec->this_mirror++; 7751 if (failrec->this_mirror == failed_mirror) 7752 failrec->this_mirror++; 7753 7754 if (failrec->this_mirror > num_copies) { 7755 btrfs_debug(fs_info, 7756 "Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d", 7757 num_copies, failrec->this_mirror, failed_mirror); 7758 return 0; 7759 } 7760 7761 return 1; 7762 } 7763 7764 static blk_status_t dio_read_error(struct inode *inode, struct bio *failed_bio, 7765 struct page *page, unsigned int pgoff, 7766 u64 start, u64 end, int failed_mirror, 7767 bio_end_io_t *repair_endio, void *repair_arg) 7768 { 7769 struct io_failure_record *failrec; 7770 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 7771 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; 7772 struct bio *bio; 7773 int isector; 7774 unsigned int read_mode = 0; 7775 int segs; 7776 int ret; 7777 blk_status_t status; 7778 struct bio_vec bvec; 7779 7780 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE); 7781 7782 ret = btrfs_get_io_failure_record(inode, start, end, &failrec); 7783 if (ret) 7784 return errno_to_blk_status(ret); 7785 7786 ret = btrfs_check_dio_repairable(inode, failed_bio, failrec, 7787 failed_mirror); 7788 if (!ret) { 7789 free_io_failure(failure_tree, io_tree, failrec); 7790 return BLK_STS_IOERR; 7791 } 7792 7793 segs = bio_segments(failed_bio); 7794 bio_get_first_bvec(failed_bio, &bvec); 7795 if (segs > 1 || 7796 (bvec.bv_len > btrfs_inode_sectorsize(inode))) 7797 read_mode |= REQ_FAILFAST_DEV; 7798 7799 isector = start - btrfs_io_bio(failed_bio)->logical; 7800 isector >>= inode->i_sb->s_blocksize_bits; 7801 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page, 7802 pgoff, isector, repair_endio, repair_arg); 7803 bio->bi_opf = REQ_OP_READ | read_mode; 7804 7805 btrfs_debug(BTRFS_I(inode)->root->fs_info, 7806 "repair DIO read error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d", 7807 read_mode, failrec->this_mirror, failrec->in_validation); 7808 7809 status = submit_dio_repair_bio(inode, bio, failrec->this_mirror); 7810 if (status) { 7811 free_io_failure(failure_tree, io_tree, failrec); 7812 bio_put(bio); 7813 } 7814 7815 return status; 7816 } 7817 7818 struct btrfs_retry_complete { 7819 struct completion done; 7820 struct inode *inode; 7821 u64 start; 7822 int uptodate; 7823 }; 7824 7825 static void btrfs_retry_endio_nocsum(struct bio *bio) 7826 { 7827 struct btrfs_retry_complete *done = bio->bi_private; 7828 struct inode *inode = done->inode; 7829 struct bio_vec *bvec; 7830 struct extent_io_tree *io_tree, *failure_tree; 7831 int i; 7832 struct bvec_iter_all iter_all; 7833 7834 if (bio->bi_status) 7835 goto end; 7836 7837 ASSERT(bio->bi_vcnt == 1); 7838 io_tree = &BTRFS_I(inode)->io_tree; 7839 failure_tree = &BTRFS_I(inode)->io_failure_tree; 7840 ASSERT(bio_first_bvec_all(bio)->bv_len == btrfs_inode_sectorsize(inode)); 7841 7842 done->uptodate = 1; 7843 ASSERT(!bio_flagged(bio, BIO_CLONED)); 7844 bio_for_each_segment_all(bvec, bio, i, iter_all) 7845 clean_io_failure(BTRFS_I(inode)->root->fs_info, failure_tree, 7846 io_tree, done->start, bvec->bv_page, 7847 btrfs_ino(BTRFS_I(inode)), 0); 7848 end: 7849 complete(&done->done); 7850 bio_put(bio); 7851 } 7852 7853 static blk_status_t __btrfs_correct_data_nocsum(struct inode *inode, 7854 struct btrfs_io_bio *io_bio) 7855 { 7856 struct btrfs_fs_info *fs_info; 7857 struct bio_vec bvec; 7858 struct bvec_iter iter; 7859 struct btrfs_retry_complete done; 7860 u64 start; 7861 unsigned int pgoff; 7862 u32 sectorsize; 7863 int nr_sectors; 7864 blk_status_t ret; 7865 blk_status_t err = BLK_STS_OK; 7866 7867 fs_info = BTRFS_I(inode)->root->fs_info; 7868 sectorsize = fs_info->sectorsize; 7869 7870 start = io_bio->logical; 7871 done.inode = inode; 7872 io_bio->bio.bi_iter = io_bio->iter; 7873 7874 bio_for_each_segment(bvec, &io_bio->bio, iter) { 7875 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len); 7876 pgoff = bvec.bv_offset; 7877 7878 next_block_or_try_again: 7879 done.uptodate = 0; 7880 done.start = start; 7881 init_completion(&done.done); 7882 7883 ret = dio_read_error(inode, &io_bio->bio, bvec.bv_page, 7884 pgoff, start, start + sectorsize - 1, 7885 io_bio->mirror_num, 7886 btrfs_retry_endio_nocsum, &done); 7887 if (ret) { 7888 err = ret; 7889 goto next; 7890 } 7891 7892 wait_for_completion_io(&done.done); 7893 7894 if (!done.uptodate) { 7895 /* We might have another mirror, so try again */ 7896 goto next_block_or_try_again; 7897 } 7898 7899 next: 7900 start += sectorsize; 7901 7902 nr_sectors--; 7903 if (nr_sectors) { 7904 pgoff += sectorsize; 7905 ASSERT(pgoff < PAGE_SIZE); 7906 goto next_block_or_try_again; 7907 } 7908 } 7909 7910 return err; 7911 } 7912 7913 static void btrfs_retry_endio(struct bio *bio) 7914 { 7915 struct btrfs_retry_complete *done = bio->bi_private; 7916 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio); 7917 struct extent_io_tree *io_tree, *failure_tree; 7918 struct inode *inode = done->inode; 7919 struct bio_vec *bvec; 7920 int uptodate; 7921 int ret; 7922 int i; 7923 struct bvec_iter_all iter_all; 7924 7925 if (bio->bi_status) 7926 goto end; 7927 7928 uptodate = 1; 7929 7930 ASSERT(bio->bi_vcnt == 1); 7931 ASSERT(bio_first_bvec_all(bio)->bv_len == btrfs_inode_sectorsize(done->inode)); 7932 7933 io_tree = &BTRFS_I(inode)->io_tree; 7934 failure_tree = &BTRFS_I(inode)->io_failure_tree; 7935 7936 ASSERT(!bio_flagged(bio, BIO_CLONED)); 7937 bio_for_each_segment_all(bvec, bio, i, iter_all) { 7938 ret = __readpage_endio_check(inode, io_bio, i, bvec->bv_page, 7939 bvec->bv_offset, done->start, 7940 bvec->bv_len); 7941 if (!ret) 7942 clean_io_failure(BTRFS_I(inode)->root->fs_info, 7943 failure_tree, io_tree, done->start, 7944 bvec->bv_page, 7945 btrfs_ino(BTRFS_I(inode)), 7946 bvec->bv_offset); 7947 else 7948 uptodate = 0; 7949 } 7950 7951 done->uptodate = uptodate; 7952 end: 7953 complete(&done->done); 7954 bio_put(bio); 7955 } 7956 7957 static blk_status_t __btrfs_subio_endio_read(struct inode *inode, 7958 struct btrfs_io_bio *io_bio, blk_status_t err) 7959 { 7960 struct btrfs_fs_info *fs_info; 7961 struct bio_vec bvec; 7962 struct bvec_iter iter; 7963 struct btrfs_retry_complete done; 7964 u64 start; 7965 u64 offset = 0; 7966 u32 sectorsize; 7967 int nr_sectors; 7968 unsigned int pgoff; 7969 int csum_pos; 7970 bool uptodate = (err == 0); 7971 int ret; 7972 blk_status_t status; 7973 7974 fs_info = BTRFS_I(inode)->root->fs_info; 7975 sectorsize = fs_info->sectorsize; 7976 7977 err = BLK_STS_OK; 7978 start = io_bio->logical; 7979 done.inode = inode; 7980 io_bio->bio.bi_iter = io_bio->iter; 7981 7982 bio_for_each_segment(bvec, &io_bio->bio, iter) { 7983 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len); 7984 7985 pgoff = bvec.bv_offset; 7986 next_block: 7987 if (uptodate) { 7988 csum_pos = BTRFS_BYTES_TO_BLKS(fs_info, offset); 7989 ret = __readpage_endio_check(inode, io_bio, csum_pos, 7990 bvec.bv_page, pgoff, start, sectorsize); 7991 if (likely(!ret)) 7992 goto next; 7993 } 7994 try_again: 7995 done.uptodate = 0; 7996 done.start = start; 7997 init_completion(&done.done); 7998 7999 status = dio_read_error(inode, &io_bio->bio, bvec.bv_page, 8000 pgoff, start, start + sectorsize - 1, 8001 io_bio->mirror_num, btrfs_retry_endio, 8002 &done); 8003 if (status) { 8004 err = status; 8005 goto next; 8006 } 8007 8008 wait_for_completion_io(&done.done); 8009 8010 if (!done.uptodate) { 8011 /* We might have another mirror, so try again */ 8012 goto try_again; 8013 } 8014 next: 8015 offset += sectorsize; 8016 start += sectorsize; 8017 8018 ASSERT(nr_sectors); 8019 8020 nr_sectors--; 8021 if (nr_sectors) { 8022 pgoff += sectorsize; 8023 ASSERT(pgoff < PAGE_SIZE); 8024 goto next_block; 8025 } 8026 } 8027 8028 return err; 8029 } 8030 8031 static blk_status_t btrfs_subio_endio_read(struct inode *inode, 8032 struct btrfs_io_bio *io_bio, blk_status_t err) 8033 { 8034 bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 8035 8036 if (skip_csum) { 8037 if (unlikely(err)) 8038 return __btrfs_correct_data_nocsum(inode, io_bio); 8039 else 8040 return BLK_STS_OK; 8041 } else { 8042 return __btrfs_subio_endio_read(inode, io_bio, err); 8043 } 8044 } 8045 8046 static void btrfs_endio_direct_read(struct bio *bio) 8047 { 8048 struct btrfs_dio_private *dip = bio->bi_private; 8049 struct inode *inode = dip->inode; 8050 struct bio *dio_bio; 8051 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio); 8052 blk_status_t err = bio->bi_status; 8053 8054 if (dip->flags & BTRFS_DIO_ORIG_BIO_SUBMITTED) 8055 err = btrfs_subio_endio_read(inode, io_bio, err); 8056 8057 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset, 8058 dip->logical_offset + dip->bytes - 1); 8059 dio_bio = dip->dio_bio; 8060 8061 kfree(dip); 8062 8063 dio_bio->bi_status = err; 8064 dio_end_io(dio_bio); 8065 btrfs_io_bio_free_csum(io_bio); 8066 bio_put(bio); 8067 } 8068 8069 static void __endio_write_update_ordered(struct inode *inode, 8070 const u64 offset, const u64 bytes, 8071 const bool uptodate) 8072 { 8073 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8074 struct btrfs_ordered_extent *ordered = NULL; 8075 struct btrfs_workqueue *wq; 8076 btrfs_work_func_t func; 8077 u64 ordered_offset = offset; 8078 u64 ordered_bytes = bytes; 8079 u64 last_offset; 8080 8081 if (btrfs_is_free_space_inode(BTRFS_I(inode))) { 8082 wq = fs_info->endio_freespace_worker; 8083 func = btrfs_freespace_write_helper; 8084 } else { 8085 wq = fs_info->endio_write_workers; 8086 func = btrfs_endio_write_helper; 8087 } 8088 8089 while (ordered_offset < offset + bytes) { 8090 last_offset = ordered_offset; 8091 if (btrfs_dec_test_first_ordered_pending(inode, &ordered, 8092 &ordered_offset, 8093 ordered_bytes, 8094 uptodate)) { 8095 btrfs_init_work(&ordered->work, func, 8096 finish_ordered_fn, 8097 NULL, NULL); 8098 btrfs_queue_work(wq, &ordered->work); 8099 } 8100 /* 8101 * If btrfs_dec_test_ordered_pending does not find any ordered 8102 * extent in the range, we can exit. 8103 */ 8104 if (ordered_offset == last_offset) 8105 return; 8106 /* 8107 * Our bio might span multiple ordered extents. In this case 8108 * we keep going until we have accounted the whole dio. 8109 */ 8110 if (ordered_offset < offset + bytes) { 8111 ordered_bytes = offset + bytes - ordered_offset; 8112 ordered = NULL; 8113 } 8114 } 8115 } 8116 8117 static void btrfs_endio_direct_write(struct bio *bio) 8118 { 8119 struct btrfs_dio_private *dip = bio->bi_private; 8120 struct bio *dio_bio = dip->dio_bio; 8121 8122 __endio_write_update_ordered(dip->inode, dip->logical_offset, 8123 dip->bytes, !bio->bi_status); 8124 8125 kfree(dip); 8126 8127 dio_bio->bi_status = bio->bi_status; 8128 dio_end_io(dio_bio); 8129 bio_put(bio); 8130 } 8131 8132 static blk_status_t btrfs_submit_bio_start_direct_io(void *private_data, 8133 struct bio *bio, u64 offset) 8134 { 8135 struct inode *inode = private_data; 8136 blk_status_t ret; 8137 ret = btrfs_csum_one_bio(inode, bio, offset, 1); 8138 BUG_ON(ret); /* -ENOMEM */ 8139 return 0; 8140 } 8141 8142 static void btrfs_end_dio_bio(struct bio *bio) 8143 { 8144 struct btrfs_dio_private *dip = bio->bi_private; 8145 blk_status_t err = bio->bi_status; 8146 8147 if (err) 8148 btrfs_warn(BTRFS_I(dip->inode)->root->fs_info, 8149 "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d", 8150 btrfs_ino(BTRFS_I(dip->inode)), bio_op(bio), 8151 bio->bi_opf, 8152 (unsigned long long)bio->bi_iter.bi_sector, 8153 bio->bi_iter.bi_size, err); 8154 8155 if (dip->subio_endio) 8156 err = dip->subio_endio(dip->inode, btrfs_io_bio(bio), err); 8157 8158 if (err) { 8159 /* 8160 * We want to perceive the errors flag being set before 8161 * decrementing the reference count. We don't need a barrier 8162 * since atomic operations with a return value are fully 8163 * ordered as per atomic_t.txt 8164 */ 8165 dip->errors = 1; 8166 } 8167 8168 /* if there are more bios still pending for this dio, just exit */ 8169 if (!atomic_dec_and_test(&dip->pending_bios)) 8170 goto out; 8171 8172 if (dip->errors) { 8173 bio_io_error(dip->orig_bio); 8174 } else { 8175 dip->dio_bio->bi_status = BLK_STS_OK; 8176 bio_endio(dip->orig_bio); 8177 } 8178 out: 8179 bio_put(bio); 8180 } 8181 8182 static inline blk_status_t btrfs_lookup_and_bind_dio_csum(struct inode *inode, 8183 struct btrfs_dio_private *dip, 8184 struct bio *bio, 8185 u64 file_offset) 8186 { 8187 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio); 8188 struct btrfs_io_bio *orig_io_bio = btrfs_io_bio(dip->orig_bio); 8189 blk_status_t ret; 8190 8191 /* 8192 * We load all the csum data we need when we submit 8193 * the first bio to reduce the csum tree search and 8194 * contention. 8195 */ 8196 if (dip->logical_offset == file_offset) { 8197 ret = btrfs_lookup_bio_sums_dio(inode, dip->orig_bio, 8198 file_offset); 8199 if (ret) 8200 return ret; 8201 } 8202 8203 if (bio == dip->orig_bio) 8204 return 0; 8205 8206 file_offset -= dip->logical_offset; 8207 file_offset >>= inode->i_sb->s_blocksize_bits; 8208 io_bio->csum = (u8 *)(((u32 *)orig_io_bio->csum) + file_offset); 8209 8210 return 0; 8211 } 8212 8213 static inline blk_status_t btrfs_submit_dio_bio(struct bio *bio, 8214 struct inode *inode, u64 file_offset, int async_submit) 8215 { 8216 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8217 struct btrfs_dio_private *dip = bio->bi_private; 8218 bool write = bio_op(bio) == REQ_OP_WRITE; 8219 blk_status_t ret; 8220 8221 /* Check btrfs_submit_bio_hook() for rules about async submit. */ 8222 if (async_submit) 8223 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers); 8224 8225 if (!write) { 8226 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA); 8227 if (ret) 8228 goto err; 8229 } 8230 8231 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) 8232 goto map; 8233 8234 if (write && async_submit) { 8235 ret = btrfs_wq_submit_bio(fs_info, bio, 0, 0, 8236 file_offset, inode, 8237 btrfs_submit_bio_start_direct_io); 8238 goto err; 8239 } else if (write) { 8240 /* 8241 * If we aren't doing async submit, calculate the csum of the 8242 * bio now. 8243 */ 8244 ret = btrfs_csum_one_bio(inode, bio, file_offset, 1); 8245 if (ret) 8246 goto err; 8247 } else { 8248 ret = btrfs_lookup_and_bind_dio_csum(inode, dip, bio, 8249 file_offset); 8250 if (ret) 8251 goto err; 8252 } 8253 map: 8254 ret = btrfs_map_bio(fs_info, bio, 0, 0); 8255 err: 8256 return ret; 8257 } 8258 8259 static int btrfs_submit_direct_hook(struct btrfs_dio_private *dip) 8260 { 8261 struct inode *inode = dip->inode; 8262 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8263 struct bio *bio; 8264 struct bio *orig_bio = dip->orig_bio; 8265 u64 start_sector = orig_bio->bi_iter.bi_sector; 8266 u64 file_offset = dip->logical_offset; 8267 u64 map_length; 8268 int async_submit = 0; 8269 u64 submit_len; 8270 int clone_offset = 0; 8271 int clone_len; 8272 int ret; 8273 blk_status_t status; 8274 8275 map_length = orig_bio->bi_iter.bi_size; 8276 submit_len = map_length; 8277 ret = btrfs_map_block(fs_info, btrfs_op(orig_bio), start_sector << 9, 8278 &map_length, NULL, 0); 8279 if (ret) 8280 return -EIO; 8281 8282 if (map_length >= submit_len) { 8283 bio = orig_bio; 8284 dip->flags |= BTRFS_DIO_ORIG_BIO_SUBMITTED; 8285 goto submit; 8286 } 8287 8288 /* async crcs make it difficult to collect full stripe writes. */ 8289 if (btrfs_data_alloc_profile(fs_info) & BTRFS_BLOCK_GROUP_RAID56_MASK) 8290 async_submit = 0; 8291 else 8292 async_submit = 1; 8293 8294 /* bio split */ 8295 ASSERT(map_length <= INT_MAX); 8296 atomic_inc(&dip->pending_bios); 8297 do { 8298 clone_len = min_t(int, submit_len, map_length); 8299 8300 /* 8301 * This will never fail as it's passing GPF_NOFS and 8302 * the allocation is backed by btrfs_bioset. 8303 */ 8304 bio = btrfs_bio_clone_partial(orig_bio, clone_offset, 8305 clone_len); 8306 bio->bi_private = dip; 8307 bio->bi_end_io = btrfs_end_dio_bio; 8308 btrfs_io_bio(bio)->logical = file_offset; 8309 8310 ASSERT(submit_len >= clone_len); 8311 submit_len -= clone_len; 8312 if (submit_len == 0) 8313 break; 8314 8315 /* 8316 * Increase the count before we submit the bio so we know 8317 * the end IO handler won't happen before we increase the 8318 * count. Otherwise, the dip might get freed before we're 8319 * done setting it up. 8320 */ 8321 atomic_inc(&dip->pending_bios); 8322 8323 status = btrfs_submit_dio_bio(bio, inode, file_offset, 8324 async_submit); 8325 if (status) { 8326 bio_put(bio); 8327 atomic_dec(&dip->pending_bios); 8328 goto out_err; 8329 } 8330 8331 clone_offset += clone_len; 8332 start_sector += clone_len >> 9; 8333 file_offset += clone_len; 8334 8335 map_length = submit_len; 8336 ret = btrfs_map_block(fs_info, btrfs_op(orig_bio), 8337 start_sector << 9, &map_length, NULL, 0); 8338 if (ret) 8339 goto out_err; 8340 } while (submit_len > 0); 8341 8342 submit: 8343 status = btrfs_submit_dio_bio(bio, inode, file_offset, async_submit); 8344 if (!status) 8345 return 0; 8346 8347 bio_put(bio); 8348 out_err: 8349 dip->errors = 1; 8350 /* 8351 * Before atomic variable goto zero, we must make sure dip->errors is 8352 * perceived to be set. This ordering is ensured by the fact that an 8353 * atomic operations with a return value are fully ordered as per 8354 * atomic_t.txt 8355 */ 8356 if (atomic_dec_and_test(&dip->pending_bios)) 8357 bio_io_error(dip->orig_bio); 8358 8359 /* bio_end_io() will handle error, so we needn't return it */ 8360 return 0; 8361 } 8362 8363 static void btrfs_submit_direct(struct bio *dio_bio, struct inode *inode, 8364 loff_t file_offset) 8365 { 8366 struct btrfs_dio_private *dip = NULL; 8367 struct bio *bio = NULL; 8368 struct btrfs_io_bio *io_bio; 8369 bool write = (bio_op(dio_bio) == REQ_OP_WRITE); 8370 int ret = 0; 8371 8372 bio = btrfs_bio_clone(dio_bio); 8373 8374 dip = kzalloc(sizeof(*dip), GFP_NOFS); 8375 if (!dip) { 8376 ret = -ENOMEM; 8377 goto free_ordered; 8378 } 8379 8380 dip->private = dio_bio->bi_private; 8381 dip->inode = inode; 8382 dip->logical_offset = file_offset; 8383 dip->bytes = dio_bio->bi_iter.bi_size; 8384 dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9; 8385 bio->bi_private = dip; 8386 dip->orig_bio = bio; 8387 dip->dio_bio = dio_bio; 8388 atomic_set(&dip->pending_bios, 0); 8389 io_bio = btrfs_io_bio(bio); 8390 io_bio->logical = file_offset; 8391 8392 if (write) { 8393 bio->bi_end_io = btrfs_endio_direct_write; 8394 } else { 8395 bio->bi_end_io = btrfs_endio_direct_read; 8396 dip->subio_endio = btrfs_subio_endio_read; 8397 } 8398 8399 /* 8400 * Reset the range for unsubmitted ordered extents (to a 0 length range) 8401 * even if we fail to submit a bio, because in such case we do the 8402 * corresponding error handling below and it must not be done a second 8403 * time by btrfs_direct_IO(). 8404 */ 8405 if (write) { 8406 struct btrfs_dio_data *dio_data = current->journal_info; 8407 8408 dio_data->unsubmitted_oe_range_end = dip->logical_offset + 8409 dip->bytes; 8410 dio_data->unsubmitted_oe_range_start = 8411 dio_data->unsubmitted_oe_range_end; 8412 } 8413 8414 ret = btrfs_submit_direct_hook(dip); 8415 if (!ret) 8416 return; 8417 8418 btrfs_io_bio_free_csum(io_bio); 8419 8420 free_ordered: 8421 /* 8422 * If we arrived here it means either we failed to submit the dip 8423 * or we either failed to clone the dio_bio or failed to allocate the 8424 * dip. If we cloned the dio_bio and allocated the dip, we can just 8425 * call bio_endio against our io_bio so that we get proper resource 8426 * cleanup if we fail to submit the dip, otherwise, we must do the 8427 * same as btrfs_endio_direct_[write|read] because we can't call these 8428 * callbacks - they require an allocated dip and a clone of dio_bio. 8429 */ 8430 if (bio && dip) { 8431 bio_io_error(bio); 8432 /* 8433 * The end io callbacks free our dip, do the final put on bio 8434 * and all the cleanup and final put for dio_bio (through 8435 * dio_end_io()). 8436 */ 8437 dip = NULL; 8438 bio = NULL; 8439 } else { 8440 if (write) 8441 __endio_write_update_ordered(inode, 8442 file_offset, 8443 dio_bio->bi_iter.bi_size, 8444 false); 8445 else 8446 unlock_extent(&BTRFS_I(inode)->io_tree, file_offset, 8447 file_offset + dio_bio->bi_iter.bi_size - 1); 8448 8449 dio_bio->bi_status = BLK_STS_IOERR; 8450 /* 8451 * Releases and cleans up our dio_bio, no need to bio_put() 8452 * nor bio_endio()/bio_io_error() against dio_bio. 8453 */ 8454 dio_end_io(dio_bio); 8455 } 8456 if (bio) 8457 bio_put(bio); 8458 kfree(dip); 8459 } 8460 8461 static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info, 8462 const struct iov_iter *iter, loff_t offset) 8463 { 8464 int seg; 8465 int i; 8466 unsigned int blocksize_mask = fs_info->sectorsize - 1; 8467 ssize_t retval = -EINVAL; 8468 8469 if (offset & blocksize_mask) 8470 goto out; 8471 8472 if (iov_iter_alignment(iter) & blocksize_mask) 8473 goto out; 8474 8475 /* If this is a write we don't need to check anymore */ 8476 if (iov_iter_rw(iter) != READ || !iter_is_iovec(iter)) 8477 return 0; 8478 /* 8479 * Check to make sure we don't have duplicate iov_base's in this 8480 * iovec, if so return EINVAL, otherwise we'll get csum errors 8481 * when reading back. 8482 */ 8483 for (seg = 0; seg < iter->nr_segs; seg++) { 8484 for (i = seg + 1; i < iter->nr_segs; i++) { 8485 if (iter->iov[seg].iov_base == iter->iov[i].iov_base) 8486 goto out; 8487 } 8488 } 8489 retval = 0; 8490 out: 8491 return retval; 8492 } 8493 8494 static ssize_t btrfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 8495 { 8496 struct file *file = iocb->ki_filp; 8497 struct inode *inode = file->f_mapping->host; 8498 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8499 struct btrfs_dio_data dio_data = { 0 }; 8500 struct extent_changeset *data_reserved = NULL; 8501 loff_t offset = iocb->ki_pos; 8502 size_t count = 0; 8503 int flags = 0; 8504 bool wakeup = true; 8505 bool relock = false; 8506 ssize_t ret; 8507 8508 if (check_direct_IO(fs_info, iter, offset)) 8509 return 0; 8510 8511 inode_dio_begin(inode); 8512 8513 /* 8514 * The generic stuff only does filemap_write_and_wait_range, which 8515 * isn't enough if we've written compressed pages to this area, so 8516 * we need to flush the dirty pages again to make absolutely sure 8517 * that any outstanding dirty pages are on disk. 8518 */ 8519 count = iov_iter_count(iter); 8520 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 8521 &BTRFS_I(inode)->runtime_flags)) 8522 filemap_fdatawrite_range(inode->i_mapping, offset, 8523 offset + count - 1); 8524 8525 if (iov_iter_rw(iter) == WRITE) { 8526 /* 8527 * If the write DIO is beyond the EOF, we need update 8528 * the isize, but it is protected by i_mutex. So we can 8529 * not unlock the i_mutex at this case. 8530 */ 8531 if (offset + count <= inode->i_size) { 8532 dio_data.overwrite = 1; 8533 inode_unlock(inode); 8534 relock = true; 8535 } else if (iocb->ki_flags & IOCB_NOWAIT) { 8536 ret = -EAGAIN; 8537 goto out; 8538 } 8539 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, 8540 offset, count); 8541 if (ret) 8542 goto out; 8543 8544 /* 8545 * We need to know how many extents we reserved so that we can 8546 * do the accounting properly if we go over the number we 8547 * originally calculated. Abuse current->journal_info for this. 8548 */ 8549 dio_data.reserve = round_up(count, 8550 fs_info->sectorsize); 8551 dio_data.unsubmitted_oe_range_start = (u64)offset; 8552 dio_data.unsubmitted_oe_range_end = (u64)offset; 8553 current->journal_info = &dio_data; 8554 down_read(&BTRFS_I(inode)->dio_sem); 8555 } else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK, 8556 &BTRFS_I(inode)->runtime_flags)) { 8557 inode_dio_end(inode); 8558 flags = DIO_LOCKING | DIO_SKIP_HOLES; 8559 wakeup = false; 8560 } 8561 8562 ret = __blockdev_direct_IO(iocb, inode, 8563 fs_info->fs_devices->latest_bdev, 8564 iter, btrfs_get_blocks_direct, NULL, 8565 btrfs_submit_direct, flags); 8566 if (iov_iter_rw(iter) == WRITE) { 8567 up_read(&BTRFS_I(inode)->dio_sem); 8568 current->journal_info = NULL; 8569 if (ret < 0 && ret != -EIOCBQUEUED) { 8570 if (dio_data.reserve) 8571 btrfs_delalloc_release_space(inode, data_reserved, 8572 offset, dio_data.reserve, true); 8573 /* 8574 * On error we might have left some ordered extents 8575 * without submitting corresponding bios for them, so 8576 * cleanup them up to avoid other tasks getting them 8577 * and waiting for them to complete forever. 8578 */ 8579 if (dio_data.unsubmitted_oe_range_start < 8580 dio_data.unsubmitted_oe_range_end) 8581 __endio_write_update_ordered(inode, 8582 dio_data.unsubmitted_oe_range_start, 8583 dio_data.unsubmitted_oe_range_end - 8584 dio_data.unsubmitted_oe_range_start, 8585 false); 8586 } else if (ret >= 0 && (size_t)ret < count) 8587 btrfs_delalloc_release_space(inode, data_reserved, 8588 offset, count - (size_t)ret, true); 8589 btrfs_delalloc_release_extents(BTRFS_I(inode), count, false); 8590 } 8591 out: 8592 if (wakeup) 8593 inode_dio_end(inode); 8594 if (relock) 8595 inode_lock(inode); 8596 8597 extent_changeset_free(data_reserved); 8598 return ret; 8599 } 8600 8601 #define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC) 8602 8603 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 8604 __u64 start, __u64 len) 8605 { 8606 int ret; 8607 8608 ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS); 8609 if (ret) 8610 return ret; 8611 8612 return extent_fiemap(inode, fieinfo, start, len); 8613 } 8614 8615 int btrfs_readpage(struct file *file, struct page *page) 8616 { 8617 struct extent_io_tree *tree; 8618 tree = &BTRFS_I(page->mapping->host)->io_tree; 8619 return extent_read_full_page(tree, page, btrfs_get_extent, 0); 8620 } 8621 8622 static int btrfs_writepage(struct page *page, struct writeback_control *wbc) 8623 { 8624 struct inode *inode = page->mapping->host; 8625 int ret; 8626 8627 if (current->flags & PF_MEMALLOC) { 8628 redirty_page_for_writepage(wbc, page); 8629 unlock_page(page); 8630 return 0; 8631 } 8632 8633 /* 8634 * If we are under memory pressure we will call this directly from the 8635 * VM, we need to make sure we have the inode referenced for the ordered 8636 * extent. If not just return like we didn't do anything. 8637 */ 8638 if (!igrab(inode)) { 8639 redirty_page_for_writepage(wbc, page); 8640 return AOP_WRITEPAGE_ACTIVATE; 8641 } 8642 ret = extent_write_full_page(page, wbc); 8643 btrfs_add_delayed_iput(inode); 8644 return ret; 8645 } 8646 8647 static int btrfs_writepages(struct address_space *mapping, 8648 struct writeback_control *wbc) 8649 { 8650 return extent_writepages(mapping, wbc); 8651 } 8652 8653 static int 8654 btrfs_readpages(struct file *file, struct address_space *mapping, 8655 struct list_head *pages, unsigned nr_pages) 8656 { 8657 return extent_readpages(mapping, pages, nr_pages); 8658 } 8659 8660 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags) 8661 { 8662 int ret = try_release_extent_mapping(page, gfp_flags); 8663 if (ret == 1) { 8664 ClearPagePrivate(page); 8665 set_page_private(page, 0); 8666 put_page(page); 8667 } 8668 return ret; 8669 } 8670 8671 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags) 8672 { 8673 if (PageWriteback(page) || PageDirty(page)) 8674 return 0; 8675 return __btrfs_releasepage(page, gfp_flags); 8676 } 8677 8678 static void btrfs_invalidatepage(struct page *page, unsigned int offset, 8679 unsigned int length) 8680 { 8681 struct inode *inode = page->mapping->host; 8682 struct extent_io_tree *tree; 8683 struct btrfs_ordered_extent *ordered; 8684 struct extent_state *cached_state = NULL; 8685 u64 page_start = page_offset(page); 8686 u64 page_end = page_start + PAGE_SIZE - 1; 8687 u64 start; 8688 u64 end; 8689 int inode_evicting = inode->i_state & I_FREEING; 8690 8691 /* 8692 * we have the page locked, so new writeback can't start, 8693 * and the dirty bit won't be cleared while we are here. 8694 * 8695 * Wait for IO on this page so that we can safely clear 8696 * the PagePrivate2 bit and do ordered accounting 8697 */ 8698 wait_on_page_writeback(page); 8699 8700 tree = &BTRFS_I(inode)->io_tree; 8701 if (offset) { 8702 btrfs_releasepage(page, GFP_NOFS); 8703 return; 8704 } 8705 8706 if (!inode_evicting) 8707 lock_extent_bits(tree, page_start, page_end, &cached_state); 8708 again: 8709 start = page_start; 8710 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start, 8711 page_end - start + 1); 8712 if (ordered) { 8713 end = min(page_end, ordered->file_offset + ordered->len - 1); 8714 /* 8715 * IO on this page will never be started, so we need 8716 * to account for any ordered extents now 8717 */ 8718 if (!inode_evicting) 8719 clear_extent_bit(tree, start, end, 8720 EXTENT_DIRTY | EXTENT_DELALLOC | 8721 EXTENT_DELALLOC_NEW | 8722 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING | 8723 EXTENT_DEFRAG, 1, 0, &cached_state); 8724 /* 8725 * whoever cleared the private bit is responsible 8726 * for the finish_ordered_io 8727 */ 8728 if (TestClearPagePrivate2(page)) { 8729 struct btrfs_ordered_inode_tree *tree; 8730 u64 new_len; 8731 8732 tree = &BTRFS_I(inode)->ordered_tree; 8733 8734 spin_lock_irq(&tree->lock); 8735 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags); 8736 new_len = start - ordered->file_offset; 8737 if (new_len < ordered->truncated_len) 8738 ordered->truncated_len = new_len; 8739 spin_unlock_irq(&tree->lock); 8740 8741 if (btrfs_dec_test_ordered_pending(inode, &ordered, 8742 start, 8743 end - start + 1, 1)) 8744 btrfs_finish_ordered_io(ordered); 8745 } 8746 btrfs_put_ordered_extent(ordered); 8747 if (!inode_evicting) { 8748 cached_state = NULL; 8749 lock_extent_bits(tree, start, end, 8750 &cached_state); 8751 } 8752 8753 start = end + 1; 8754 if (start < page_end) 8755 goto again; 8756 } 8757 8758 /* 8759 * Qgroup reserved space handler 8760 * Page here will be either 8761 * 1) Already written to disk 8762 * In this case, its reserved space is released from data rsv map 8763 * and will be freed by delayed_ref handler finally. 8764 * So even we call qgroup_free_data(), it won't decrease reserved 8765 * space. 8766 * 2) Not written to disk 8767 * This means the reserved space should be freed here. However, 8768 * if a truncate invalidates the page (by clearing PageDirty) 8769 * and the page is accounted for while allocating extent 8770 * in btrfs_check_data_free_space() we let delayed_ref to 8771 * free the entire extent. 8772 */ 8773 if (PageDirty(page)) 8774 btrfs_qgroup_free_data(inode, NULL, page_start, PAGE_SIZE); 8775 if (!inode_evicting) { 8776 clear_extent_bit(tree, page_start, page_end, 8777 EXTENT_LOCKED | EXTENT_DIRTY | 8778 EXTENT_DELALLOC | EXTENT_DELALLOC_NEW | 8779 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1, 8780 &cached_state); 8781 8782 __btrfs_releasepage(page, GFP_NOFS); 8783 } 8784 8785 ClearPageChecked(page); 8786 if (PagePrivate(page)) { 8787 ClearPagePrivate(page); 8788 set_page_private(page, 0); 8789 put_page(page); 8790 } 8791 } 8792 8793 /* 8794 * btrfs_page_mkwrite() is not allowed to change the file size as it gets 8795 * called from a page fault handler when a page is first dirtied. Hence we must 8796 * be careful to check for EOF conditions here. We set the page up correctly 8797 * for a written page which means we get ENOSPC checking when writing into 8798 * holes and correct delalloc and unwritten extent mapping on filesystems that 8799 * support these features. 8800 * 8801 * We are not allowed to take the i_mutex here so we have to play games to 8802 * protect against truncate races as the page could now be beyond EOF. Because 8803 * truncate_setsize() writes the inode size before removing pages, once we have 8804 * the page lock we can determine safely if the page is beyond EOF. If it is not 8805 * beyond EOF, then the page is guaranteed safe against truncation until we 8806 * unlock the page. 8807 */ 8808 vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf) 8809 { 8810 struct page *page = vmf->page; 8811 struct inode *inode = file_inode(vmf->vma->vm_file); 8812 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8813 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 8814 struct btrfs_ordered_extent *ordered; 8815 struct extent_state *cached_state = NULL; 8816 struct extent_changeset *data_reserved = NULL; 8817 char *kaddr; 8818 unsigned long zero_start; 8819 loff_t size; 8820 vm_fault_t ret; 8821 int ret2; 8822 int reserved = 0; 8823 u64 reserved_space; 8824 u64 page_start; 8825 u64 page_end; 8826 u64 end; 8827 8828 reserved_space = PAGE_SIZE; 8829 8830 sb_start_pagefault(inode->i_sb); 8831 page_start = page_offset(page); 8832 page_end = page_start + PAGE_SIZE - 1; 8833 end = page_end; 8834 8835 /* 8836 * Reserving delalloc space after obtaining the page lock can lead to 8837 * deadlock. For example, if a dirty page is locked by this function 8838 * and the call to btrfs_delalloc_reserve_space() ends up triggering 8839 * dirty page write out, then the btrfs_writepage() function could 8840 * end up waiting indefinitely to get a lock on the page currently 8841 * being processed by btrfs_page_mkwrite() function. 8842 */ 8843 ret2 = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start, 8844 reserved_space); 8845 if (!ret2) { 8846 ret2 = file_update_time(vmf->vma->vm_file); 8847 reserved = 1; 8848 } 8849 if (ret2) { 8850 ret = vmf_error(ret2); 8851 if (reserved) 8852 goto out; 8853 goto out_noreserve; 8854 } 8855 8856 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */ 8857 again: 8858 lock_page(page); 8859 size = i_size_read(inode); 8860 8861 if ((page->mapping != inode->i_mapping) || 8862 (page_start >= size)) { 8863 /* page got truncated out from underneath us */ 8864 goto out_unlock; 8865 } 8866 wait_on_page_writeback(page); 8867 8868 lock_extent_bits(io_tree, page_start, page_end, &cached_state); 8869 set_page_extent_mapped(page); 8870 8871 /* 8872 * we can't set the delalloc bits if there are pending ordered 8873 * extents. Drop our locks and wait for them to finish 8874 */ 8875 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start, 8876 PAGE_SIZE); 8877 if (ordered) { 8878 unlock_extent_cached(io_tree, page_start, page_end, 8879 &cached_state); 8880 unlock_page(page); 8881 btrfs_start_ordered_extent(inode, ordered, 1); 8882 btrfs_put_ordered_extent(ordered); 8883 goto again; 8884 } 8885 8886 if (page->index == ((size - 1) >> PAGE_SHIFT)) { 8887 reserved_space = round_up(size - page_start, 8888 fs_info->sectorsize); 8889 if (reserved_space < PAGE_SIZE) { 8890 end = page_start + reserved_space - 1; 8891 btrfs_delalloc_release_space(inode, data_reserved, 8892 page_start, PAGE_SIZE - reserved_space, 8893 true); 8894 } 8895 } 8896 8897 /* 8898 * page_mkwrite gets called when the page is firstly dirtied after it's 8899 * faulted in, but write(2) could also dirty a page and set delalloc 8900 * bits, thus in this case for space account reason, we still need to 8901 * clear any delalloc bits within this page range since we have to 8902 * reserve data&meta space before lock_page() (see above comments). 8903 */ 8904 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end, 8905 EXTENT_DIRTY | EXTENT_DELALLOC | 8906 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 8907 0, 0, &cached_state); 8908 8909 ret2 = btrfs_set_extent_delalloc(inode, page_start, end, 0, 8910 &cached_state, 0); 8911 if (ret2) { 8912 unlock_extent_cached(io_tree, page_start, page_end, 8913 &cached_state); 8914 ret = VM_FAULT_SIGBUS; 8915 goto out_unlock; 8916 } 8917 ret2 = 0; 8918 8919 /* page is wholly or partially inside EOF */ 8920 if (page_start + PAGE_SIZE > size) 8921 zero_start = offset_in_page(size); 8922 else 8923 zero_start = PAGE_SIZE; 8924 8925 if (zero_start != PAGE_SIZE) { 8926 kaddr = kmap(page); 8927 memset(kaddr + zero_start, 0, PAGE_SIZE - zero_start); 8928 flush_dcache_page(page); 8929 kunmap(page); 8930 } 8931 ClearPageChecked(page); 8932 set_page_dirty(page); 8933 SetPageUptodate(page); 8934 8935 BTRFS_I(inode)->last_trans = fs_info->generation; 8936 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid; 8937 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit; 8938 8939 unlock_extent_cached(io_tree, page_start, page_end, &cached_state); 8940 8941 if (!ret2) { 8942 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE, true); 8943 sb_end_pagefault(inode->i_sb); 8944 extent_changeset_free(data_reserved); 8945 return VM_FAULT_LOCKED; 8946 } 8947 8948 out_unlock: 8949 unlock_page(page); 8950 out: 8951 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE, (ret != 0)); 8952 btrfs_delalloc_release_space(inode, data_reserved, page_start, 8953 reserved_space, (ret != 0)); 8954 out_noreserve: 8955 sb_end_pagefault(inode->i_sb); 8956 extent_changeset_free(data_reserved); 8957 return ret; 8958 } 8959 8960 static int btrfs_truncate(struct inode *inode, bool skip_writeback) 8961 { 8962 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8963 struct btrfs_root *root = BTRFS_I(inode)->root; 8964 struct btrfs_block_rsv *rsv; 8965 int ret; 8966 struct btrfs_trans_handle *trans; 8967 u64 mask = fs_info->sectorsize - 1; 8968 u64 min_size = btrfs_calc_trunc_metadata_size(fs_info, 1); 8969 8970 if (!skip_writeback) { 8971 ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask), 8972 (u64)-1); 8973 if (ret) 8974 return ret; 8975 } 8976 8977 /* 8978 * Yes ladies and gentlemen, this is indeed ugly. We have a couple of 8979 * things going on here: 8980 * 8981 * 1) We need to reserve space to update our inode. 8982 * 8983 * 2) We need to have something to cache all the space that is going to 8984 * be free'd up by the truncate operation, but also have some slack 8985 * space reserved in case it uses space during the truncate (thank you 8986 * very much snapshotting). 8987 * 8988 * And we need these to be separate. The fact is we can use a lot of 8989 * space doing the truncate, and we have no earthly idea how much space 8990 * we will use, so we need the truncate reservation to be separate so it 8991 * doesn't end up using space reserved for updating the inode. We also 8992 * need to be able to stop the transaction and start a new one, which 8993 * means we need to be able to update the inode several times, and we 8994 * have no idea of knowing how many times that will be, so we can't just 8995 * reserve 1 item for the entirety of the operation, so that has to be 8996 * done separately as well. 8997 * 8998 * So that leaves us with 8999 * 9000 * 1) rsv - for the truncate reservation, which we will steal from the 9001 * transaction reservation. 9002 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for 9003 * updating the inode. 9004 */ 9005 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP); 9006 if (!rsv) 9007 return -ENOMEM; 9008 rsv->size = min_size; 9009 rsv->failfast = 1; 9010 9011 /* 9012 * 1 for the truncate slack space 9013 * 1 for updating the inode. 9014 */ 9015 trans = btrfs_start_transaction(root, 2); 9016 if (IS_ERR(trans)) { 9017 ret = PTR_ERR(trans); 9018 goto out; 9019 } 9020 9021 /* Migrate the slack space for the truncate to our reserve */ 9022 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv, 9023 min_size, false); 9024 BUG_ON(ret); 9025 9026 /* 9027 * So if we truncate and then write and fsync we normally would just 9028 * write the extents that changed, which is a problem if we need to 9029 * first truncate that entire inode. So set this flag so we write out 9030 * all of the extents in the inode to the sync log so we're completely 9031 * safe. 9032 */ 9033 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 9034 trans->block_rsv = rsv; 9035 9036 while (1) { 9037 ret = btrfs_truncate_inode_items(trans, root, inode, 9038 inode->i_size, 9039 BTRFS_EXTENT_DATA_KEY); 9040 trans->block_rsv = &fs_info->trans_block_rsv; 9041 if (ret != -ENOSPC && ret != -EAGAIN) 9042 break; 9043 9044 ret = btrfs_update_inode(trans, root, inode); 9045 if (ret) 9046 break; 9047 9048 btrfs_end_transaction(trans); 9049 btrfs_btree_balance_dirty(fs_info); 9050 9051 trans = btrfs_start_transaction(root, 2); 9052 if (IS_ERR(trans)) { 9053 ret = PTR_ERR(trans); 9054 trans = NULL; 9055 break; 9056 } 9057 9058 btrfs_block_rsv_release(fs_info, rsv, -1); 9059 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, 9060 rsv, min_size, false); 9061 BUG_ON(ret); /* shouldn't happen */ 9062 trans->block_rsv = rsv; 9063 } 9064 9065 /* 9066 * We can't call btrfs_truncate_block inside a trans handle as we could 9067 * deadlock with freeze, if we got NEED_TRUNCATE_BLOCK then we know 9068 * we've truncated everything except the last little bit, and can do 9069 * btrfs_truncate_block and then update the disk_i_size. 9070 */ 9071 if (ret == NEED_TRUNCATE_BLOCK) { 9072 btrfs_end_transaction(trans); 9073 btrfs_btree_balance_dirty(fs_info); 9074 9075 ret = btrfs_truncate_block(inode, inode->i_size, 0, 0); 9076 if (ret) 9077 goto out; 9078 trans = btrfs_start_transaction(root, 1); 9079 if (IS_ERR(trans)) { 9080 ret = PTR_ERR(trans); 9081 goto out; 9082 } 9083 btrfs_ordered_update_i_size(inode, inode->i_size, NULL); 9084 } 9085 9086 if (trans) { 9087 int ret2; 9088 9089 trans->block_rsv = &fs_info->trans_block_rsv; 9090 ret2 = btrfs_update_inode(trans, root, inode); 9091 if (ret2 && !ret) 9092 ret = ret2; 9093 9094 ret2 = btrfs_end_transaction(trans); 9095 if (ret2 && !ret) 9096 ret = ret2; 9097 btrfs_btree_balance_dirty(fs_info); 9098 } 9099 out: 9100 btrfs_free_block_rsv(fs_info, rsv); 9101 9102 return ret; 9103 } 9104 9105 /* 9106 * create a new subvolume directory/inode (helper for the ioctl). 9107 */ 9108 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans, 9109 struct btrfs_root *new_root, 9110 struct btrfs_root *parent_root, 9111 u64 new_dirid) 9112 { 9113 struct inode *inode; 9114 int err; 9115 u64 index = 0; 9116 9117 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, 9118 new_dirid, new_dirid, 9119 S_IFDIR | (~current_umask() & S_IRWXUGO), 9120 &index); 9121 if (IS_ERR(inode)) 9122 return PTR_ERR(inode); 9123 inode->i_op = &btrfs_dir_inode_operations; 9124 inode->i_fop = &btrfs_dir_file_operations; 9125 9126 set_nlink(inode, 1); 9127 btrfs_i_size_write(BTRFS_I(inode), 0); 9128 unlock_new_inode(inode); 9129 9130 err = btrfs_subvol_inherit_props(trans, new_root, parent_root); 9131 if (err) 9132 btrfs_err(new_root->fs_info, 9133 "error inheriting subvolume %llu properties: %d", 9134 new_root->root_key.objectid, err); 9135 9136 err = btrfs_update_inode(trans, new_root, inode); 9137 9138 iput(inode); 9139 return err; 9140 } 9141 9142 struct inode *btrfs_alloc_inode(struct super_block *sb) 9143 { 9144 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 9145 struct btrfs_inode *ei; 9146 struct inode *inode; 9147 9148 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_KERNEL); 9149 if (!ei) 9150 return NULL; 9151 9152 ei->root = NULL; 9153 ei->generation = 0; 9154 ei->last_trans = 0; 9155 ei->last_sub_trans = 0; 9156 ei->logged_trans = 0; 9157 ei->delalloc_bytes = 0; 9158 ei->new_delalloc_bytes = 0; 9159 ei->defrag_bytes = 0; 9160 ei->disk_i_size = 0; 9161 ei->flags = 0; 9162 ei->csum_bytes = 0; 9163 ei->index_cnt = (u64)-1; 9164 ei->dir_index = 0; 9165 ei->last_unlink_trans = 0; 9166 ei->last_link_trans = 0; 9167 ei->last_log_commit = 0; 9168 9169 spin_lock_init(&ei->lock); 9170 ei->outstanding_extents = 0; 9171 if (sb->s_magic != BTRFS_TEST_MAGIC) 9172 btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv, 9173 BTRFS_BLOCK_RSV_DELALLOC); 9174 ei->runtime_flags = 0; 9175 ei->prop_compress = BTRFS_COMPRESS_NONE; 9176 ei->defrag_compress = BTRFS_COMPRESS_NONE; 9177 9178 ei->delayed_node = NULL; 9179 9180 ei->i_otime.tv_sec = 0; 9181 ei->i_otime.tv_nsec = 0; 9182 9183 inode = &ei->vfs_inode; 9184 extent_map_tree_init(&ei->extent_tree); 9185 extent_io_tree_init(&ei->io_tree, inode); 9186 extent_io_tree_init(&ei->io_failure_tree, inode); 9187 ei->io_tree.track_uptodate = 1; 9188 ei->io_failure_tree.track_uptodate = 1; 9189 atomic_set(&ei->sync_writers, 0); 9190 mutex_init(&ei->log_mutex); 9191 mutex_init(&ei->delalloc_mutex); 9192 btrfs_ordered_inode_tree_init(&ei->ordered_tree); 9193 INIT_LIST_HEAD(&ei->delalloc_inodes); 9194 INIT_LIST_HEAD(&ei->delayed_iput); 9195 RB_CLEAR_NODE(&ei->rb_node); 9196 init_rwsem(&ei->dio_sem); 9197 9198 return inode; 9199 } 9200 9201 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 9202 void btrfs_test_destroy_inode(struct inode *inode) 9203 { 9204 btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0); 9205 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 9206 } 9207 #endif 9208 9209 static void btrfs_i_callback(struct rcu_head *head) 9210 { 9211 struct inode *inode = container_of(head, struct inode, i_rcu); 9212 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 9213 } 9214 9215 void btrfs_destroy_inode(struct inode *inode) 9216 { 9217 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 9218 struct btrfs_ordered_extent *ordered; 9219 struct btrfs_root *root = BTRFS_I(inode)->root; 9220 9221 WARN_ON(!hlist_empty(&inode->i_dentry)); 9222 WARN_ON(inode->i_data.nrpages); 9223 WARN_ON(BTRFS_I(inode)->block_rsv.reserved); 9224 WARN_ON(BTRFS_I(inode)->block_rsv.size); 9225 WARN_ON(BTRFS_I(inode)->outstanding_extents); 9226 WARN_ON(BTRFS_I(inode)->delalloc_bytes); 9227 WARN_ON(BTRFS_I(inode)->new_delalloc_bytes); 9228 WARN_ON(BTRFS_I(inode)->csum_bytes); 9229 WARN_ON(BTRFS_I(inode)->defrag_bytes); 9230 9231 /* 9232 * This can happen where we create an inode, but somebody else also 9233 * created the same inode and we need to destroy the one we already 9234 * created. 9235 */ 9236 if (!root) 9237 goto free; 9238 9239 while (1) { 9240 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1); 9241 if (!ordered) 9242 break; 9243 else { 9244 btrfs_err(fs_info, 9245 "found ordered extent %llu %llu on inode cleanup", 9246 ordered->file_offset, ordered->len); 9247 btrfs_remove_ordered_extent(inode, ordered); 9248 btrfs_put_ordered_extent(ordered); 9249 btrfs_put_ordered_extent(ordered); 9250 } 9251 } 9252 btrfs_qgroup_check_reserved_leak(inode); 9253 inode_tree_del(inode); 9254 btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0); 9255 free: 9256 call_rcu(&inode->i_rcu, btrfs_i_callback); 9257 } 9258 9259 int btrfs_drop_inode(struct inode *inode) 9260 { 9261 struct btrfs_root *root = BTRFS_I(inode)->root; 9262 9263 if (root == NULL) 9264 return 1; 9265 9266 /* the snap/subvol tree is on deleting */ 9267 if (btrfs_root_refs(&root->root_item) == 0) 9268 return 1; 9269 else 9270 return generic_drop_inode(inode); 9271 } 9272 9273 static void init_once(void *foo) 9274 { 9275 struct btrfs_inode *ei = (struct btrfs_inode *) foo; 9276 9277 inode_init_once(&ei->vfs_inode); 9278 } 9279 9280 void __cold btrfs_destroy_cachep(void) 9281 { 9282 /* 9283 * Make sure all delayed rcu free inodes are flushed before we 9284 * destroy cache. 9285 */ 9286 rcu_barrier(); 9287 kmem_cache_destroy(btrfs_inode_cachep); 9288 kmem_cache_destroy(btrfs_trans_handle_cachep); 9289 kmem_cache_destroy(btrfs_path_cachep); 9290 kmem_cache_destroy(btrfs_free_space_cachep); 9291 } 9292 9293 int __init btrfs_init_cachep(void) 9294 { 9295 btrfs_inode_cachep = kmem_cache_create("btrfs_inode", 9296 sizeof(struct btrfs_inode), 0, 9297 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT, 9298 init_once); 9299 if (!btrfs_inode_cachep) 9300 goto fail; 9301 9302 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle", 9303 sizeof(struct btrfs_trans_handle), 0, 9304 SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL); 9305 if (!btrfs_trans_handle_cachep) 9306 goto fail; 9307 9308 btrfs_path_cachep = kmem_cache_create("btrfs_path", 9309 sizeof(struct btrfs_path), 0, 9310 SLAB_MEM_SPREAD, NULL); 9311 if (!btrfs_path_cachep) 9312 goto fail; 9313 9314 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space", 9315 sizeof(struct btrfs_free_space), 0, 9316 SLAB_MEM_SPREAD, NULL); 9317 if (!btrfs_free_space_cachep) 9318 goto fail; 9319 9320 return 0; 9321 fail: 9322 btrfs_destroy_cachep(); 9323 return -ENOMEM; 9324 } 9325 9326 static int btrfs_getattr(const struct path *path, struct kstat *stat, 9327 u32 request_mask, unsigned int flags) 9328 { 9329 u64 delalloc_bytes; 9330 struct inode *inode = d_inode(path->dentry); 9331 u32 blocksize = inode->i_sb->s_blocksize; 9332 u32 bi_flags = BTRFS_I(inode)->flags; 9333 9334 stat->result_mask |= STATX_BTIME; 9335 stat->btime.tv_sec = BTRFS_I(inode)->i_otime.tv_sec; 9336 stat->btime.tv_nsec = BTRFS_I(inode)->i_otime.tv_nsec; 9337 if (bi_flags & BTRFS_INODE_APPEND) 9338 stat->attributes |= STATX_ATTR_APPEND; 9339 if (bi_flags & BTRFS_INODE_COMPRESS) 9340 stat->attributes |= STATX_ATTR_COMPRESSED; 9341 if (bi_flags & BTRFS_INODE_IMMUTABLE) 9342 stat->attributes |= STATX_ATTR_IMMUTABLE; 9343 if (bi_flags & BTRFS_INODE_NODUMP) 9344 stat->attributes |= STATX_ATTR_NODUMP; 9345 9346 stat->attributes_mask |= (STATX_ATTR_APPEND | 9347 STATX_ATTR_COMPRESSED | 9348 STATX_ATTR_IMMUTABLE | 9349 STATX_ATTR_NODUMP); 9350 9351 generic_fillattr(inode, stat); 9352 stat->dev = BTRFS_I(inode)->root->anon_dev; 9353 9354 spin_lock(&BTRFS_I(inode)->lock); 9355 delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes; 9356 spin_unlock(&BTRFS_I(inode)->lock); 9357 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) + 9358 ALIGN(delalloc_bytes, blocksize)) >> 9; 9359 return 0; 9360 } 9361 9362 static int btrfs_rename_exchange(struct inode *old_dir, 9363 struct dentry *old_dentry, 9364 struct inode *new_dir, 9365 struct dentry *new_dentry) 9366 { 9367 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb); 9368 struct btrfs_trans_handle *trans; 9369 struct btrfs_root *root = BTRFS_I(old_dir)->root; 9370 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 9371 struct inode *new_inode = new_dentry->d_inode; 9372 struct inode *old_inode = old_dentry->d_inode; 9373 struct timespec64 ctime = current_time(old_inode); 9374 struct dentry *parent; 9375 u64 old_ino = btrfs_ino(BTRFS_I(old_inode)); 9376 u64 new_ino = btrfs_ino(BTRFS_I(new_inode)); 9377 u64 old_idx = 0; 9378 u64 new_idx = 0; 9379 u64 root_objectid; 9380 int ret; 9381 bool root_log_pinned = false; 9382 bool dest_log_pinned = false; 9383 struct btrfs_log_ctx ctx_root; 9384 struct btrfs_log_ctx ctx_dest; 9385 bool sync_log_root = false; 9386 bool sync_log_dest = false; 9387 bool commit_transaction = false; 9388 9389 /* we only allow rename subvolume link between subvolumes */ 9390 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest) 9391 return -EXDEV; 9392 9393 btrfs_init_log_ctx(&ctx_root, old_inode); 9394 btrfs_init_log_ctx(&ctx_dest, new_inode); 9395 9396 /* close the race window with snapshot create/destroy ioctl */ 9397 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 9398 down_read(&fs_info->subvol_sem); 9399 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) 9400 down_read(&fs_info->subvol_sem); 9401 9402 /* 9403 * We want to reserve the absolute worst case amount of items. So if 9404 * both inodes are subvols and we need to unlink them then that would 9405 * require 4 item modifications, but if they are both normal inodes it 9406 * would require 5 item modifications, so we'll assume their normal 9407 * inodes. So 5 * 2 is 10, plus 2 for the new links, so 12 total items 9408 * should cover the worst case number of items we'll modify. 9409 */ 9410 trans = btrfs_start_transaction(root, 12); 9411 if (IS_ERR(trans)) { 9412 ret = PTR_ERR(trans); 9413 goto out_notrans; 9414 } 9415 9416 /* 9417 * We need to find a free sequence number both in the source and 9418 * in the destination directory for the exchange. 9419 */ 9420 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx); 9421 if (ret) 9422 goto out_fail; 9423 ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx); 9424 if (ret) 9425 goto out_fail; 9426 9427 BTRFS_I(old_inode)->dir_index = 0ULL; 9428 BTRFS_I(new_inode)->dir_index = 0ULL; 9429 9430 /* Reference for the source. */ 9431 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 9432 /* force full log commit if subvolume involved. */ 9433 btrfs_set_log_full_commit(fs_info, trans); 9434 } else { 9435 btrfs_pin_log_trans(root); 9436 root_log_pinned = true; 9437 ret = btrfs_insert_inode_ref(trans, dest, 9438 new_dentry->d_name.name, 9439 new_dentry->d_name.len, 9440 old_ino, 9441 btrfs_ino(BTRFS_I(new_dir)), 9442 old_idx); 9443 if (ret) 9444 goto out_fail; 9445 } 9446 9447 /* And now for the dest. */ 9448 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) { 9449 /* force full log commit if subvolume involved. */ 9450 btrfs_set_log_full_commit(fs_info, trans); 9451 } else { 9452 btrfs_pin_log_trans(dest); 9453 dest_log_pinned = true; 9454 ret = btrfs_insert_inode_ref(trans, root, 9455 old_dentry->d_name.name, 9456 old_dentry->d_name.len, 9457 new_ino, 9458 btrfs_ino(BTRFS_I(old_dir)), 9459 new_idx); 9460 if (ret) 9461 goto out_fail; 9462 } 9463 9464 /* Update inode version and ctime/mtime. */ 9465 inode_inc_iversion(old_dir); 9466 inode_inc_iversion(new_dir); 9467 inode_inc_iversion(old_inode); 9468 inode_inc_iversion(new_inode); 9469 old_dir->i_ctime = old_dir->i_mtime = ctime; 9470 new_dir->i_ctime = new_dir->i_mtime = ctime; 9471 old_inode->i_ctime = ctime; 9472 new_inode->i_ctime = ctime; 9473 9474 if (old_dentry->d_parent != new_dentry->d_parent) { 9475 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir), 9476 BTRFS_I(old_inode), 1); 9477 btrfs_record_unlink_dir(trans, BTRFS_I(new_dir), 9478 BTRFS_I(new_inode), 1); 9479 } 9480 9481 /* src is a subvolume */ 9482 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 9483 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid; 9484 ret = btrfs_unlink_subvol(trans, old_dir, root_objectid, 9485 old_dentry->d_name.name, 9486 old_dentry->d_name.len); 9487 } else { /* src is an inode */ 9488 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir), 9489 BTRFS_I(old_dentry->d_inode), 9490 old_dentry->d_name.name, 9491 old_dentry->d_name.len); 9492 if (!ret) 9493 ret = btrfs_update_inode(trans, root, old_inode); 9494 } 9495 if (ret) { 9496 btrfs_abort_transaction(trans, ret); 9497 goto out_fail; 9498 } 9499 9500 /* dest is a subvolume */ 9501 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) { 9502 root_objectid = BTRFS_I(new_inode)->root->root_key.objectid; 9503 ret = btrfs_unlink_subvol(trans, new_dir, root_objectid, 9504 new_dentry->d_name.name, 9505 new_dentry->d_name.len); 9506 } else { /* dest is an inode */ 9507 ret = __btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir), 9508 BTRFS_I(new_dentry->d_inode), 9509 new_dentry->d_name.name, 9510 new_dentry->d_name.len); 9511 if (!ret) 9512 ret = btrfs_update_inode(trans, dest, new_inode); 9513 } 9514 if (ret) { 9515 btrfs_abort_transaction(trans, ret); 9516 goto out_fail; 9517 } 9518 9519 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode), 9520 new_dentry->d_name.name, 9521 new_dentry->d_name.len, 0, old_idx); 9522 if (ret) { 9523 btrfs_abort_transaction(trans, ret); 9524 goto out_fail; 9525 } 9526 9527 ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode), 9528 old_dentry->d_name.name, 9529 old_dentry->d_name.len, 0, new_idx); 9530 if (ret) { 9531 btrfs_abort_transaction(trans, ret); 9532 goto out_fail; 9533 } 9534 9535 if (old_inode->i_nlink == 1) 9536 BTRFS_I(old_inode)->dir_index = old_idx; 9537 if (new_inode->i_nlink == 1) 9538 BTRFS_I(new_inode)->dir_index = new_idx; 9539 9540 if (root_log_pinned) { 9541 parent = new_dentry->d_parent; 9542 ret = btrfs_log_new_name(trans, BTRFS_I(old_inode), 9543 BTRFS_I(old_dir), parent, 9544 false, &ctx_root); 9545 if (ret == BTRFS_NEED_LOG_SYNC) 9546 sync_log_root = true; 9547 else if (ret == BTRFS_NEED_TRANS_COMMIT) 9548 commit_transaction = true; 9549 ret = 0; 9550 btrfs_end_log_trans(root); 9551 root_log_pinned = false; 9552 } 9553 if (dest_log_pinned) { 9554 if (!commit_transaction) { 9555 parent = old_dentry->d_parent; 9556 ret = btrfs_log_new_name(trans, BTRFS_I(new_inode), 9557 BTRFS_I(new_dir), parent, 9558 false, &ctx_dest); 9559 if (ret == BTRFS_NEED_LOG_SYNC) 9560 sync_log_dest = true; 9561 else if (ret == BTRFS_NEED_TRANS_COMMIT) 9562 commit_transaction = true; 9563 ret = 0; 9564 } 9565 btrfs_end_log_trans(dest); 9566 dest_log_pinned = false; 9567 } 9568 out_fail: 9569 /* 9570 * If we have pinned a log and an error happened, we unpin tasks 9571 * trying to sync the log and force them to fallback to a transaction 9572 * commit if the log currently contains any of the inodes involved in 9573 * this rename operation (to ensure we do not persist a log with an 9574 * inconsistent state for any of these inodes or leading to any 9575 * inconsistencies when replayed). If the transaction was aborted, the 9576 * abortion reason is propagated to userspace when attempting to commit 9577 * the transaction. If the log does not contain any of these inodes, we 9578 * allow the tasks to sync it. 9579 */ 9580 if (ret && (root_log_pinned || dest_log_pinned)) { 9581 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) || 9582 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) || 9583 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) || 9584 (new_inode && 9585 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation))) 9586 btrfs_set_log_full_commit(fs_info, trans); 9587 9588 if (root_log_pinned) { 9589 btrfs_end_log_trans(root); 9590 root_log_pinned = false; 9591 } 9592 if (dest_log_pinned) { 9593 btrfs_end_log_trans(dest); 9594 dest_log_pinned = false; 9595 } 9596 } 9597 if (!ret && sync_log_root && !commit_transaction) { 9598 ret = btrfs_sync_log(trans, BTRFS_I(old_inode)->root, 9599 &ctx_root); 9600 if (ret) 9601 commit_transaction = true; 9602 } 9603 if (!ret && sync_log_dest && !commit_transaction) { 9604 ret = btrfs_sync_log(trans, BTRFS_I(new_inode)->root, 9605 &ctx_dest); 9606 if (ret) 9607 commit_transaction = true; 9608 } 9609 if (commit_transaction) { 9610 ret = btrfs_commit_transaction(trans); 9611 } else { 9612 int ret2; 9613 9614 ret2 = btrfs_end_transaction(trans); 9615 ret = ret ? ret : ret2; 9616 } 9617 out_notrans: 9618 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) 9619 up_read(&fs_info->subvol_sem); 9620 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 9621 up_read(&fs_info->subvol_sem); 9622 9623 return ret; 9624 } 9625 9626 static int btrfs_whiteout_for_rename(struct btrfs_trans_handle *trans, 9627 struct btrfs_root *root, 9628 struct inode *dir, 9629 struct dentry *dentry) 9630 { 9631 int ret; 9632 struct inode *inode; 9633 u64 objectid; 9634 u64 index; 9635 9636 ret = btrfs_find_free_ino(root, &objectid); 9637 if (ret) 9638 return ret; 9639 9640 inode = btrfs_new_inode(trans, root, dir, 9641 dentry->d_name.name, 9642 dentry->d_name.len, 9643 btrfs_ino(BTRFS_I(dir)), 9644 objectid, 9645 S_IFCHR | WHITEOUT_MODE, 9646 &index); 9647 9648 if (IS_ERR(inode)) { 9649 ret = PTR_ERR(inode); 9650 return ret; 9651 } 9652 9653 inode->i_op = &btrfs_special_inode_operations; 9654 init_special_inode(inode, inode->i_mode, 9655 WHITEOUT_DEV); 9656 9657 ret = btrfs_init_inode_security(trans, inode, dir, 9658 &dentry->d_name); 9659 if (ret) 9660 goto out; 9661 9662 ret = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, 9663 BTRFS_I(inode), 0, index); 9664 if (ret) 9665 goto out; 9666 9667 ret = btrfs_update_inode(trans, root, inode); 9668 out: 9669 unlock_new_inode(inode); 9670 if (ret) 9671 inode_dec_link_count(inode); 9672 iput(inode); 9673 9674 return ret; 9675 } 9676 9677 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry, 9678 struct inode *new_dir, struct dentry *new_dentry, 9679 unsigned int flags) 9680 { 9681 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb); 9682 struct btrfs_trans_handle *trans; 9683 unsigned int trans_num_items; 9684 struct btrfs_root *root = BTRFS_I(old_dir)->root; 9685 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 9686 struct inode *new_inode = d_inode(new_dentry); 9687 struct inode *old_inode = d_inode(old_dentry); 9688 u64 index = 0; 9689 u64 root_objectid; 9690 int ret; 9691 u64 old_ino = btrfs_ino(BTRFS_I(old_inode)); 9692 bool log_pinned = false; 9693 struct btrfs_log_ctx ctx; 9694 bool sync_log = false; 9695 bool commit_transaction = false; 9696 9697 if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 9698 return -EPERM; 9699 9700 /* we only allow rename subvolume link between subvolumes */ 9701 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest) 9702 return -EXDEV; 9703 9704 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID || 9705 (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID)) 9706 return -ENOTEMPTY; 9707 9708 if (S_ISDIR(old_inode->i_mode) && new_inode && 9709 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) 9710 return -ENOTEMPTY; 9711 9712 9713 /* check for collisions, even if the name isn't there */ 9714 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino, 9715 new_dentry->d_name.name, 9716 new_dentry->d_name.len); 9717 9718 if (ret) { 9719 if (ret == -EEXIST) { 9720 /* we shouldn't get 9721 * eexist without a new_inode */ 9722 if (WARN_ON(!new_inode)) { 9723 return ret; 9724 } 9725 } else { 9726 /* maybe -EOVERFLOW */ 9727 return ret; 9728 } 9729 } 9730 ret = 0; 9731 9732 /* 9733 * we're using rename to replace one file with another. Start IO on it 9734 * now so we don't add too much work to the end of the transaction 9735 */ 9736 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size) 9737 filemap_flush(old_inode->i_mapping); 9738 9739 /* close the racy window with snapshot create/destroy ioctl */ 9740 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 9741 down_read(&fs_info->subvol_sem); 9742 /* 9743 * We want to reserve the absolute worst case amount of items. So if 9744 * both inodes are subvols and we need to unlink them then that would 9745 * require 4 item modifications, but if they are both normal inodes it 9746 * would require 5 item modifications, so we'll assume they are normal 9747 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items 9748 * should cover the worst case number of items we'll modify. 9749 * If our rename has the whiteout flag, we need more 5 units for the 9750 * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item 9751 * when selinux is enabled). 9752 */ 9753 trans_num_items = 11; 9754 if (flags & RENAME_WHITEOUT) 9755 trans_num_items += 5; 9756 trans = btrfs_start_transaction(root, trans_num_items); 9757 if (IS_ERR(trans)) { 9758 ret = PTR_ERR(trans); 9759 goto out_notrans; 9760 } 9761 9762 if (dest != root) 9763 btrfs_record_root_in_trans(trans, dest); 9764 9765 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index); 9766 if (ret) 9767 goto out_fail; 9768 9769 BTRFS_I(old_inode)->dir_index = 0ULL; 9770 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 9771 /* force full log commit if subvolume involved. */ 9772 btrfs_set_log_full_commit(fs_info, trans); 9773 } else { 9774 btrfs_pin_log_trans(root); 9775 log_pinned = true; 9776 ret = btrfs_insert_inode_ref(trans, dest, 9777 new_dentry->d_name.name, 9778 new_dentry->d_name.len, 9779 old_ino, 9780 btrfs_ino(BTRFS_I(new_dir)), index); 9781 if (ret) 9782 goto out_fail; 9783 } 9784 9785 inode_inc_iversion(old_dir); 9786 inode_inc_iversion(new_dir); 9787 inode_inc_iversion(old_inode); 9788 old_dir->i_ctime = old_dir->i_mtime = 9789 new_dir->i_ctime = new_dir->i_mtime = 9790 old_inode->i_ctime = current_time(old_dir); 9791 9792 if (old_dentry->d_parent != new_dentry->d_parent) 9793 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir), 9794 BTRFS_I(old_inode), 1); 9795 9796 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 9797 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid; 9798 ret = btrfs_unlink_subvol(trans, old_dir, root_objectid, 9799 old_dentry->d_name.name, 9800 old_dentry->d_name.len); 9801 } else { 9802 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir), 9803 BTRFS_I(d_inode(old_dentry)), 9804 old_dentry->d_name.name, 9805 old_dentry->d_name.len); 9806 if (!ret) 9807 ret = btrfs_update_inode(trans, root, old_inode); 9808 } 9809 if (ret) { 9810 btrfs_abort_transaction(trans, ret); 9811 goto out_fail; 9812 } 9813 9814 if (new_inode) { 9815 inode_inc_iversion(new_inode); 9816 new_inode->i_ctime = current_time(new_inode); 9817 if (unlikely(btrfs_ino(BTRFS_I(new_inode)) == 9818 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 9819 root_objectid = BTRFS_I(new_inode)->location.objectid; 9820 ret = btrfs_unlink_subvol(trans, new_dir, root_objectid, 9821 new_dentry->d_name.name, 9822 new_dentry->d_name.len); 9823 BUG_ON(new_inode->i_nlink == 0); 9824 } else { 9825 ret = btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir), 9826 BTRFS_I(d_inode(new_dentry)), 9827 new_dentry->d_name.name, 9828 new_dentry->d_name.len); 9829 } 9830 if (!ret && new_inode->i_nlink == 0) 9831 ret = btrfs_orphan_add(trans, 9832 BTRFS_I(d_inode(new_dentry))); 9833 if (ret) { 9834 btrfs_abort_transaction(trans, ret); 9835 goto out_fail; 9836 } 9837 } 9838 9839 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode), 9840 new_dentry->d_name.name, 9841 new_dentry->d_name.len, 0, index); 9842 if (ret) { 9843 btrfs_abort_transaction(trans, ret); 9844 goto out_fail; 9845 } 9846 9847 if (old_inode->i_nlink == 1) 9848 BTRFS_I(old_inode)->dir_index = index; 9849 9850 if (log_pinned) { 9851 struct dentry *parent = new_dentry->d_parent; 9852 9853 btrfs_init_log_ctx(&ctx, old_inode); 9854 ret = btrfs_log_new_name(trans, BTRFS_I(old_inode), 9855 BTRFS_I(old_dir), parent, 9856 false, &ctx); 9857 if (ret == BTRFS_NEED_LOG_SYNC) 9858 sync_log = true; 9859 else if (ret == BTRFS_NEED_TRANS_COMMIT) 9860 commit_transaction = true; 9861 ret = 0; 9862 btrfs_end_log_trans(root); 9863 log_pinned = false; 9864 } 9865 9866 if (flags & RENAME_WHITEOUT) { 9867 ret = btrfs_whiteout_for_rename(trans, root, old_dir, 9868 old_dentry); 9869 9870 if (ret) { 9871 btrfs_abort_transaction(trans, ret); 9872 goto out_fail; 9873 } 9874 } 9875 out_fail: 9876 /* 9877 * If we have pinned the log and an error happened, we unpin tasks 9878 * trying to sync the log and force them to fallback to a transaction 9879 * commit if the log currently contains any of the inodes involved in 9880 * this rename operation (to ensure we do not persist a log with an 9881 * inconsistent state for any of these inodes or leading to any 9882 * inconsistencies when replayed). If the transaction was aborted, the 9883 * abortion reason is propagated to userspace when attempting to commit 9884 * the transaction. If the log does not contain any of these inodes, we 9885 * allow the tasks to sync it. 9886 */ 9887 if (ret && log_pinned) { 9888 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) || 9889 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) || 9890 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) || 9891 (new_inode && 9892 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation))) 9893 btrfs_set_log_full_commit(fs_info, trans); 9894 9895 btrfs_end_log_trans(root); 9896 log_pinned = false; 9897 } 9898 if (!ret && sync_log) { 9899 ret = btrfs_sync_log(trans, BTRFS_I(old_inode)->root, &ctx); 9900 if (ret) 9901 commit_transaction = true; 9902 } 9903 if (commit_transaction) { 9904 ret = btrfs_commit_transaction(trans); 9905 } else { 9906 int ret2; 9907 9908 ret2 = btrfs_end_transaction(trans); 9909 ret = ret ? ret : ret2; 9910 } 9911 out_notrans: 9912 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 9913 up_read(&fs_info->subvol_sem); 9914 9915 return ret; 9916 } 9917 9918 static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry, 9919 struct inode *new_dir, struct dentry *new_dentry, 9920 unsigned int flags) 9921 { 9922 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 9923 return -EINVAL; 9924 9925 if (flags & RENAME_EXCHANGE) 9926 return btrfs_rename_exchange(old_dir, old_dentry, new_dir, 9927 new_dentry); 9928 9929 return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry, flags); 9930 } 9931 9932 struct btrfs_delalloc_work { 9933 struct inode *inode; 9934 struct completion completion; 9935 struct list_head list; 9936 struct btrfs_work work; 9937 }; 9938 9939 static void btrfs_run_delalloc_work(struct btrfs_work *work) 9940 { 9941 struct btrfs_delalloc_work *delalloc_work; 9942 struct inode *inode; 9943 9944 delalloc_work = container_of(work, struct btrfs_delalloc_work, 9945 work); 9946 inode = delalloc_work->inode; 9947 filemap_flush(inode->i_mapping); 9948 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 9949 &BTRFS_I(inode)->runtime_flags)) 9950 filemap_flush(inode->i_mapping); 9951 9952 iput(inode); 9953 complete(&delalloc_work->completion); 9954 } 9955 9956 static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode) 9957 { 9958 struct btrfs_delalloc_work *work; 9959 9960 work = kmalloc(sizeof(*work), GFP_NOFS); 9961 if (!work) 9962 return NULL; 9963 9964 init_completion(&work->completion); 9965 INIT_LIST_HEAD(&work->list); 9966 work->inode = inode; 9967 btrfs_init_work(&work->work, btrfs_flush_delalloc_helper, 9968 btrfs_run_delalloc_work, NULL, NULL); 9969 9970 return work; 9971 } 9972 9973 /* 9974 * some fairly slow code that needs optimization. This walks the list 9975 * of all the inodes with pending delalloc and forces them to disk. 9976 */ 9977 static int start_delalloc_inodes(struct btrfs_root *root, int nr, bool snapshot) 9978 { 9979 struct btrfs_inode *binode; 9980 struct inode *inode; 9981 struct btrfs_delalloc_work *work, *next; 9982 struct list_head works; 9983 struct list_head splice; 9984 int ret = 0; 9985 9986 INIT_LIST_HEAD(&works); 9987 INIT_LIST_HEAD(&splice); 9988 9989 mutex_lock(&root->delalloc_mutex); 9990 spin_lock(&root->delalloc_lock); 9991 list_splice_init(&root->delalloc_inodes, &splice); 9992 while (!list_empty(&splice)) { 9993 binode = list_entry(splice.next, struct btrfs_inode, 9994 delalloc_inodes); 9995 9996 list_move_tail(&binode->delalloc_inodes, 9997 &root->delalloc_inodes); 9998 inode = igrab(&binode->vfs_inode); 9999 if (!inode) { 10000 cond_resched_lock(&root->delalloc_lock); 10001 continue; 10002 } 10003 spin_unlock(&root->delalloc_lock); 10004 10005 if (snapshot) 10006 set_bit(BTRFS_INODE_SNAPSHOT_FLUSH, 10007 &binode->runtime_flags); 10008 work = btrfs_alloc_delalloc_work(inode); 10009 if (!work) { 10010 iput(inode); 10011 ret = -ENOMEM; 10012 goto out; 10013 } 10014 list_add_tail(&work->list, &works); 10015 btrfs_queue_work(root->fs_info->flush_workers, 10016 &work->work); 10017 ret++; 10018 if (nr != -1 && ret >= nr) 10019 goto out; 10020 cond_resched(); 10021 spin_lock(&root->delalloc_lock); 10022 } 10023 spin_unlock(&root->delalloc_lock); 10024 10025 out: 10026 list_for_each_entry_safe(work, next, &works, list) { 10027 list_del_init(&work->list); 10028 wait_for_completion(&work->completion); 10029 kfree(work); 10030 } 10031 10032 if (!list_empty(&splice)) { 10033 spin_lock(&root->delalloc_lock); 10034 list_splice_tail(&splice, &root->delalloc_inodes); 10035 spin_unlock(&root->delalloc_lock); 10036 } 10037 mutex_unlock(&root->delalloc_mutex); 10038 return ret; 10039 } 10040 10041 int btrfs_start_delalloc_snapshot(struct btrfs_root *root) 10042 { 10043 struct btrfs_fs_info *fs_info = root->fs_info; 10044 int ret; 10045 10046 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 10047 return -EROFS; 10048 10049 ret = start_delalloc_inodes(root, -1, true); 10050 if (ret > 0) 10051 ret = 0; 10052 return ret; 10053 } 10054 10055 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int nr) 10056 { 10057 struct btrfs_root *root; 10058 struct list_head splice; 10059 int ret; 10060 10061 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 10062 return -EROFS; 10063 10064 INIT_LIST_HEAD(&splice); 10065 10066 mutex_lock(&fs_info->delalloc_root_mutex); 10067 spin_lock(&fs_info->delalloc_root_lock); 10068 list_splice_init(&fs_info->delalloc_roots, &splice); 10069 while (!list_empty(&splice) && nr) { 10070 root = list_first_entry(&splice, struct btrfs_root, 10071 delalloc_root); 10072 root = btrfs_grab_fs_root(root); 10073 BUG_ON(!root); 10074 list_move_tail(&root->delalloc_root, 10075 &fs_info->delalloc_roots); 10076 spin_unlock(&fs_info->delalloc_root_lock); 10077 10078 ret = start_delalloc_inodes(root, nr, false); 10079 btrfs_put_fs_root(root); 10080 if (ret < 0) 10081 goto out; 10082 10083 if (nr != -1) { 10084 nr -= ret; 10085 WARN_ON(nr < 0); 10086 } 10087 spin_lock(&fs_info->delalloc_root_lock); 10088 } 10089 spin_unlock(&fs_info->delalloc_root_lock); 10090 10091 ret = 0; 10092 out: 10093 if (!list_empty(&splice)) { 10094 spin_lock(&fs_info->delalloc_root_lock); 10095 list_splice_tail(&splice, &fs_info->delalloc_roots); 10096 spin_unlock(&fs_info->delalloc_root_lock); 10097 } 10098 mutex_unlock(&fs_info->delalloc_root_mutex); 10099 return ret; 10100 } 10101 10102 static int btrfs_symlink(struct inode *dir, struct dentry *dentry, 10103 const char *symname) 10104 { 10105 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 10106 struct btrfs_trans_handle *trans; 10107 struct btrfs_root *root = BTRFS_I(dir)->root; 10108 struct btrfs_path *path; 10109 struct btrfs_key key; 10110 struct inode *inode = NULL; 10111 int err; 10112 u64 objectid; 10113 u64 index = 0; 10114 int name_len; 10115 int datasize; 10116 unsigned long ptr; 10117 struct btrfs_file_extent_item *ei; 10118 struct extent_buffer *leaf; 10119 10120 name_len = strlen(symname); 10121 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info)) 10122 return -ENAMETOOLONG; 10123 10124 /* 10125 * 2 items for inode item and ref 10126 * 2 items for dir items 10127 * 1 item for updating parent inode item 10128 * 1 item for the inline extent item 10129 * 1 item for xattr if selinux is on 10130 */ 10131 trans = btrfs_start_transaction(root, 7); 10132 if (IS_ERR(trans)) 10133 return PTR_ERR(trans); 10134 10135 err = btrfs_find_free_ino(root, &objectid); 10136 if (err) 10137 goto out_unlock; 10138 10139 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 10140 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), 10141 objectid, S_IFLNK|S_IRWXUGO, &index); 10142 if (IS_ERR(inode)) { 10143 err = PTR_ERR(inode); 10144 inode = NULL; 10145 goto out_unlock; 10146 } 10147 10148 /* 10149 * If the active LSM wants to access the inode during 10150 * d_instantiate it needs these. Smack checks to see 10151 * if the filesystem supports xattrs by looking at the 10152 * ops vector. 10153 */ 10154 inode->i_fop = &btrfs_file_operations; 10155 inode->i_op = &btrfs_file_inode_operations; 10156 inode->i_mapping->a_ops = &btrfs_aops; 10157 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 10158 10159 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 10160 if (err) 10161 goto out_unlock; 10162 10163 path = btrfs_alloc_path(); 10164 if (!path) { 10165 err = -ENOMEM; 10166 goto out_unlock; 10167 } 10168 key.objectid = btrfs_ino(BTRFS_I(inode)); 10169 key.offset = 0; 10170 key.type = BTRFS_EXTENT_DATA_KEY; 10171 datasize = btrfs_file_extent_calc_inline_size(name_len); 10172 err = btrfs_insert_empty_item(trans, root, path, &key, 10173 datasize); 10174 if (err) { 10175 btrfs_free_path(path); 10176 goto out_unlock; 10177 } 10178 leaf = path->nodes[0]; 10179 ei = btrfs_item_ptr(leaf, path->slots[0], 10180 struct btrfs_file_extent_item); 10181 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 10182 btrfs_set_file_extent_type(leaf, ei, 10183 BTRFS_FILE_EXTENT_INLINE); 10184 btrfs_set_file_extent_encryption(leaf, ei, 0); 10185 btrfs_set_file_extent_compression(leaf, ei, 0); 10186 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 10187 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len); 10188 10189 ptr = btrfs_file_extent_inline_start(ei); 10190 write_extent_buffer(leaf, symname, ptr, name_len); 10191 btrfs_mark_buffer_dirty(leaf); 10192 btrfs_free_path(path); 10193 10194 inode->i_op = &btrfs_symlink_inode_operations; 10195 inode_nohighmem(inode); 10196 inode->i_mapping->a_ops = &btrfs_aops; 10197 inode_set_bytes(inode, name_len); 10198 btrfs_i_size_write(BTRFS_I(inode), name_len); 10199 err = btrfs_update_inode(trans, root, inode); 10200 /* 10201 * Last step, add directory indexes for our symlink inode. This is the 10202 * last step to avoid extra cleanup of these indexes if an error happens 10203 * elsewhere above. 10204 */ 10205 if (!err) 10206 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, 10207 BTRFS_I(inode), 0, index); 10208 if (err) 10209 goto out_unlock; 10210 10211 d_instantiate_new(dentry, inode); 10212 10213 out_unlock: 10214 btrfs_end_transaction(trans); 10215 if (err && inode) { 10216 inode_dec_link_count(inode); 10217 discard_new_inode(inode); 10218 } 10219 btrfs_btree_balance_dirty(fs_info); 10220 return err; 10221 } 10222 10223 static int __btrfs_prealloc_file_range(struct inode *inode, int mode, 10224 u64 start, u64 num_bytes, u64 min_size, 10225 loff_t actual_len, u64 *alloc_hint, 10226 struct btrfs_trans_handle *trans) 10227 { 10228 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 10229 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 10230 struct extent_map *em; 10231 struct btrfs_root *root = BTRFS_I(inode)->root; 10232 struct btrfs_key ins; 10233 u64 cur_offset = start; 10234 u64 i_size; 10235 u64 cur_bytes; 10236 u64 last_alloc = (u64)-1; 10237 int ret = 0; 10238 bool own_trans = true; 10239 u64 end = start + num_bytes - 1; 10240 10241 if (trans) 10242 own_trans = false; 10243 while (num_bytes > 0) { 10244 if (own_trans) { 10245 trans = btrfs_start_transaction(root, 3); 10246 if (IS_ERR(trans)) { 10247 ret = PTR_ERR(trans); 10248 break; 10249 } 10250 } 10251 10252 cur_bytes = min_t(u64, num_bytes, SZ_256M); 10253 cur_bytes = max(cur_bytes, min_size); 10254 /* 10255 * If we are severely fragmented we could end up with really 10256 * small allocations, so if the allocator is returning small 10257 * chunks lets make its job easier by only searching for those 10258 * sized chunks. 10259 */ 10260 cur_bytes = min(cur_bytes, last_alloc); 10261 ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes, 10262 min_size, 0, *alloc_hint, &ins, 1, 0); 10263 if (ret) { 10264 if (own_trans) 10265 btrfs_end_transaction(trans); 10266 break; 10267 } 10268 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 10269 10270 last_alloc = ins.offset; 10271 ret = insert_reserved_file_extent(trans, inode, 10272 cur_offset, ins.objectid, 10273 ins.offset, ins.offset, 10274 ins.offset, 0, 0, 0, 10275 BTRFS_FILE_EXTENT_PREALLOC); 10276 if (ret) { 10277 btrfs_free_reserved_extent(fs_info, ins.objectid, 10278 ins.offset, 0); 10279 btrfs_abort_transaction(trans, ret); 10280 if (own_trans) 10281 btrfs_end_transaction(trans); 10282 break; 10283 } 10284 10285 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset, 10286 cur_offset + ins.offset -1, 0); 10287 10288 em = alloc_extent_map(); 10289 if (!em) { 10290 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 10291 &BTRFS_I(inode)->runtime_flags); 10292 goto next; 10293 } 10294 10295 em->start = cur_offset; 10296 em->orig_start = cur_offset; 10297 em->len = ins.offset; 10298 em->block_start = ins.objectid; 10299 em->block_len = ins.offset; 10300 em->orig_block_len = ins.offset; 10301 em->ram_bytes = ins.offset; 10302 em->bdev = fs_info->fs_devices->latest_bdev; 10303 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 10304 em->generation = trans->transid; 10305 10306 while (1) { 10307 write_lock(&em_tree->lock); 10308 ret = add_extent_mapping(em_tree, em, 1); 10309 write_unlock(&em_tree->lock); 10310 if (ret != -EEXIST) 10311 break; 10312 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset, 10313 cur_offset + ins.offset - 1, 10314 0); 10315 } 10316 free_extent_map(em); 10317 next: 10318 num_bytes -= ins.offset; 10319 cur_offset += ins.offset; 10320 *alloc_hint = ins.objectid + ins.offset; 10321 10322 inode_inc_iversion(inode); 10323 inode->i_ctime = current_time(inode); 10324 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC; 10325 if (!(mode & FALLOC_FL_KEEP_SIZE) && 10326 (actual_len > inode->i_size) && 10327 (cur_offset > inode->i_size)) { 10328 if (cur_offset > actual_len) 10329 i_size = actual_len; 10330 else 10331 i_size = cur_offset; 10332 i_size_write(inode, i_size); 10333 btrfs_ordered_update_i_size(inode, i_size, NULL); 10334 } 10335 10336 ret = btrfs_update_inode(trans, root, inode); 10337 10338 if (ret) { 10339 btrfs_abort_transaction(trans, ret); 10340 if (own_trans) 10341 btrfs_end_transaction(trans); 10342 break; 10343 } 10344 10345 if (own_trans) 10346 btrfs_end_transaction(trans); 10347 } 10348 if (cur_offset < end) 10349 btrfs_free_reserved_data_space(inode, NULL, cur_offset, 10350 end - cur_offset + 1); 10351 return ret; 10352 } 10353 10354 int btrfs_prealloc_file_range(struct inode *inode, int mode, 10355 u64 start, u64 num_bytes, u64 min_size, 10356 loff_t actual_len, u64 *alloc_hint) 10357 { 10358 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 10359 min_size, actual_len, alloc_hint, 10360 NULL); 10361 } 10362 10363 int btrfs_prealloc_file_range_trans(struct inode *inode, 10364 struct btrfs_trans_handle *trans, int mode, 10365 u64 start, u64 num_bytes, u64 min_size, 10366 loff_t actual_len, u64 *alloc_hint) 10367 { 10368 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 10369 min_size, actual_len, alloc_hint, trans); 10370 } 10371 10372 static int btrfs_set_page_dirty(struct page *page) 10373 { 10374 return __set_page_dirty_nobuffers(page); 10375 } 10376 10377 static int btrfs_permission(struct inode *inode, int mask) 10378 { 10379 struct btrfs_root *root = BTRFS_I(inode)->root; 10380 umode_t mode = inode->i_mode; 10381 10382 if (mask & MAY_WRITE && 10383 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) { 10384 if (btrfs_root_readonly(root)) 10385 return -EROFS; 10386 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) 10387 return -EACCES; 10388 } 10389 return generic_permission(inode, mask); 10390 } 10391 10392 static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode) 10393 { 10394 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 10395 struct btrfs_trans_handle *trans; 10396 struct btrfs_root *root = BTRFS_I(dir)->root; 10397 struct inode *inode = NULL; 10398 u64 objectid; 10399 u64 index; 10400 int ret = 0; 10401 10402 /* 10403 * 5 units required for adding orphan entry 10404 */ 10405 trans = btrfs_start_transaction(root, 5); 10406 if (IS_ERR(trans)) 10407 return PTR_ERR(trans); 10408 10409 ret = btrfs_find_free_ino(root, &objectid); 10410 if (ret) 10411 goto out; 10412 10413 inode = btrfs_new_inode(trans, root, dir, NULL, 0, 10414 btrfs_ino(BTRFS_I(dir)), objectid, mode, &index); 10415 if (IS_ERR(inode)) { 10416 ret = PTR_ERR(inode); 10417 inode = NULL; 10418 goto out; 10419 } 10420 10421 inode->i_fop = &btrfs_file_operations; 10422 inode->i_op = &btrfs_file_inode_operations; 10423 10424 inode->i_mapping->a_ops = &btrfs_aops; 10425 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 10426 10427 ret = btrfs_init_inode_security(trans, inode, dir, NULL); 10428 if (ret) 10429 goto out; 10430 10431 ret = btrfs_update_inode(trans, root, inode); 10432 if (ret) 10433 goto out; 10434 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 10435 if (ret) 10436 goto out; 10437 10438 /* 10439 * We set number of links to 0 in btrfs_new_inode(), and here we set 10440 * it to 1 because d_tmpfile() will issue a warning if the count is 0, 10441 * through: 10442 * 10443 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink() 10444 */ 10445 set_nlink(inode, 1); 10446 d_tmpfile(dentry, inode); 10447 unlock_new_inode(inode); 10448 mark_inode_dirty(inode); 10449 out: 10450 btrfs_end_transaction(trans); 10451 if (ret && inode) 10452 discard_new_inode(inode); 10453 btrfs_btree_balance_dirty(fs_info); 10454 return ret; 10455 } 10456 10457 void btrfs_set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end) 10458 { 10459 struct inode *inode = tree->private_data; 10460 unsigned long index = start >> PAGE_SHIFT; 10461 unsigned long end_index = end >> PAGE_SHIFT; 10462 struct page *page; 10463 10464 while (index <= end_index) { 10465 page = find_get_page(inode->i_mapping, index); 10466 ASSERT(page); /* Pages should be in the extent_io_tree */ 10467 set_page_writeback(page); 10468 put_page(page); 10469 index++; 10470 } 10471 } 10472 10473 #ifdef CONFIG_SWAP 10474 /* 10475 * Add an entry indicating a block group or device which is pinned by a 10476 * swapfile. Returns 0 on success, 1 if there is already an entry for it, or a 10477 * negative errno on failure. 10478 */ 10479 static int btrfs_add_swapfile_pin(struct inode *inode, void *ptr, 10480 bool is_block_group) 10481 { 10482 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 10483 struct btrfs_swapfile_pin *sp, *entry; 10484 struct rb_node **p; 10485 struct rb_node *parent = NULL; 10486 10487 sp = kmalloc(sizeof(*sp), GFP_NOFS); 10488 if (!sp) 10489 return -ENOMEM; 10490 sp->ptr = ptr; 10491 sp->inode = inode; 10492 sp->is_block_group = is_block_group; 10493 10494 spin_lock(&fs_info->swapfile_pins_lock); 10495 p = &fs_info->swapfile_pins.rb_node; 10496 while (*p) { 10497 parent = *p; 10498 entry = rb_entry(parent, struct btrfs_swapfile_pin, node); 10499 if (sp->ptr < entry->ptr || 10500 (sp->ptr == entry->ptr && sp->inode < entry->inode)) { 10501 p = &(*p)->rb_left; 10502 } else if (sp->ptr > entry->ptr || 10503 (sp->ptr == entry->ptr && sp->inode > entry->inode)) { 10504 p = &(*p)->rb_right; 10505 } else { 10506 spin_unlock(&fs_info->swapfile_pins_lock); 10507 kfree(sp); 10508 return 1; 10509 } 10510 } 10511 rb_link_node(&sp->node, parent, p); 10512 rb_insert_color(&sp->node, &fs_info->swapfile_pins); 10513 spin_unlock(&fs_info->swapfile_pins_lock); 10514 return 0; 10515 } 10516 10517 /* Free all of the entries pinned by this swapfile. */ 10518 static void btrfs_free_swapfile_pins(struct inode *inode) 10519 { 10520 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 10521 struct btrfs_swapfile_pin *sp; 10522 struct rb_node *node, *next; 10523 10524 spin_lock(&fs_info->swapfile_pins_lock); 10525 node = rb_first(&fs_info->swapfile_pins); 10526 while (node) { 10527 next = rb_next(node); 10528 sp = rb_entry(node, struct btrfs_swapfile_pin, node); 10529 if (sp->inode == inode) { 10530 rb_erase(&sp->node, &fs_info->swapfile_pins); 10531 if (sp->is_block_group) 10532 btrfs_put_block_group(sp->ptr); 10533 kfree(sp); 10534 } 10535 node = next; 10536 } 10537 spin_unlock(&fs_info->swapfile_pins_lock); 10538 } 10539 10540 struct btrfs_swap_info { 10541 u64 start; 10542 u64 block_start; 10543 u64 block_len; 10544 u64 lowest_ppage; 10545 u64 highest_ppage; 10546 unsigned long nr_pages; 10547 int nr_extents; 10548 }; 10549 10550 static int btrfs_add_swap_extent(struct swap_info_struct *sis, 10551 struct btrfs_swap_info *bsi) 10552 { 10553 unsigned long nr_pages; 10554 u64 first_ppage, first_ppage_reported, next_ppage; 10555 int ret; 10556 10557 first_ppage = ALIGN(bsi->block_start, PAGE_SIZE) >> PAGE_SHIFT; 10558 next_ppage = ALIGN_DOWN(bsi->block_start + bsi->block_len, 10559 PAGE_SIZE) >> PAGE_SHIFT; 10560 10561 if (first_ppage >= next_ppage) 10562 return 0; 10563 nr_pages = next_ppage - first_ppage; 10564 10565 first_ppage_reported = first_ppage; 10566 if (bsi->start == 0) 10567 first_ppage_reported++; 10568 if (bsi->lowest_ppage > first_ppage_reported) 10569 bsi->lowest_ppage = first_ppage_reported; 10570 if (bsi->highest_ppage < (next_ppage - 1)) 10571 bsi->highest_ppage = next_ppage - 1; 10572 10573 ret = add_swap_extent(sis, bsi->nr_pages, nr_pages, first_ppage); 10574 if (ret < 0) 10575 return ret; 10576 bsi->nr_extents += ret; 10577 bsi->nr_pages += nr_pages; 10578 return 0; 10579 } 10580 10581 static void btrfs_swap_deactivate(struct file *file) 10582 { 10583 struct inode *inode = file_inode(file); 10584 10585 btrfs_free_swapfile_pins(inode); 10586 atomic_dec(&BTRFS_I(inode)->root->nr_swapfiles); 10587 } 10588 10589 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file, 10590 sector_t *span) 10591 { 10592 struct inode *inode = file_inode(file); 10593 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 10594 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 10595 struct extent_state *cached_state = NULL; 10596 struct extent_map *em = NULL; 10597 struct btrfs_device *device = NULL; 10598 struct btrfs_swap_info bsi = { 10599 .lowest_ppage = (sector_t)-1ULL, 10600 }; 10601 int ret = 0; 10602 u64 isize; 10603 u64 start; 10604 10605 /* 10606 * If the swap file was just created, make sure delalloc is done. If the 10607 * file changes again after this, the user is doing something stupid and 10608 * we don't really care. 10609 */ 10610 ret = btrfs_wait_ordered_range(inode, 0, (u64)-1); 10611 if (ret) 10612 return ret; 10613 10614 /* 10615 * The inode is locked, so these flags won't change after we check them. 10616 */ 10617 if (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS) { 10618 btrfs_warn(fs_info, "swapfile must not be compressed"); 10619 return -EINVAL; 10620 } 10621 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)) { 10622 btrfs_warn(fs_info, "swapfile must not be copy-on-write"); 10623 return -EINVAL; 10624 } 10625 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) { 10626 btrfs_warn(fs_info, "swapfile must not be checksummed"); 10627 return -EINVAL; 10628 } 10629 10630 /* 10631 * Balance or device remove/replace/resize can move stuff around from 10632 * under us. The EXCL_OP flag makes sure they aren't running/won't run 10633 * concurrently while we are mapping the swap extents, and 10634 * fs_info->swapfile_pins prevents them from running while the swap file 10635 * is active and moving the extents. Note that this also prevents a 10636 * concurrent device add which isn't actually necessary, but it's not 10637 * really worth the trouble to allow it. 10638 */ 10639 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) { 10640 btrfs_warn(fs_info, 10641 "cannot activate swapfile while exclusive operation is running"); 10642 return -EBUSY; 10643 } 10644 /* 10645 * Snapshots can create extents which require COW even if NODATACOW is 10646 * set. We use this counter to prevent snapshots. We must increment it 10647 * before walking the extents because we don't want a concurrent 10648 * snapshot to run after we've already checked the extents. 10649 */ 10650 atomic_inc(&BTRFS_I(inode)->root->nr_swapfiles); 10651 10652 isize = ALIGN_DOWN(inode->i_size, fs_info->sectorsize); 10653 10654 lock_extent_bits(io_tree, 0, isize - 1, &cached_state); 10655 start = 0; 10656 while (start < isize) { 10657 u64 logical_block_start, physical_block_start; 10658 struct btrfs_block_group_cache *bg; 10659 u64 len = isize - start; 10660 10661 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len, 0); 10662 if (IS_ERR(em)) { 10663 ret = PTR_ERR(em); 10664 goto out; 10665 } 10666 10667 if (em->block_start == EXTENT_MAP_HOLE) { 10668 btrfs_warn(fs_info, "swapfile must not have holes"); 10669 ret = -EINVAL; 10670 goto out; 10671 } 10672 if (em->block_start == EXTENT_MAP_INLINE) { 10673 /* 10674 * It's unlikely we'll ever actually find ourselves 10675 * here, as a file small enough to fit inline won't be 10676 * big enough to store more than the swap header, but in 10677 * case something changes in the future, let's catch it 10678 * here rather than later. 10679 */ 10680 btrfs_warn(fs_info, "swapfile must not be inline"); 10681 ret = -EINVAL; 10682 goto out; 10683 } 10684 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 10685 btrfs_warn(fs_info, "swapfile must not be compressed"); 10686 ret = -EINVAL; 10687 goto out; 10688 } 10689 10690 logical_block_start = em->block_start + (start - em->start); 10691 len = min(len, em->len - (start - em->start)); 10692 free_extent_map(em); 10693 em = NULL; 10694 10695 ret = can_nocow_extent(inode, start, &len, NULL, NULL, NULL); 10696 if (ret < 0) { 10697 goto out; 10698 } else if (ret) { 10699 ret = 0; 10700 } else { 10701 btrfs_warn(fs_info, 10702 "swapfile must not be copy-on-write"); 10703 ret = -EINVAL; 10704 goto out; 10705 } 10706 10707 em = btrfs_get_chunk_map(fs_info, logical_block_start, len); 10708 if (IS_ERR(em)) { 10709 ret = PTR_ERR(em); 10710 goto out; 10711 } 10712 10713 if (em->map_lookup->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) { 10714 btrfs_warn(fs_info, 10715 "swapfile must have single data profile"); 10716 ret = -EINVAL; 10717 goto out; 10718 } 10719 10720 if (device == NULL) { 10721 device = em->map_lookup->stripes[0].dev; 10722 ret = btrfs_add_swapfile_pin(inode, device, false); 10723 if (ret == 1) 10724 ret = 0; 10725 else if (ret) 10726 goto out; 10727 } else if (device != em->map_lookup->stripes[0].dev) { 10728 btrfs_warn(fs_info, "swapfile must be on one device"); 10729 ret = -EINVAL; 10730 goto out; 10731 } 10732 10733 physical_block_start = (em->map_lookup->stripes[0].physical + 10734 (logical_block_start - em->start)); 10735 len = min(len, em->len - (logical_block_start - em->start)); 10736 free_extent_map(em); 10737 em = NULL; 10738 10739 bg = btrfs_lookup_block_group(fs_info, logical_block_start); 10740 if (!bg) { 10741 btrfs_warn(fs_info, 10742 "could not find block group containing swapfile"); 10743 ret = -EINVAL; 10744 goto out; 10745 } 10746 10747 ret = btrfs_add_swapfile_pin(inode, bg, true); 10748 if (ret) { 10749 btrfs_put_block_group(bg); 10750 if (ret == 1) 10751 ret = 0; 10752 else 10753 goto out; 10754 } 10755 10756 if (bsi.block_len && 10757 bsi.block_start + bsi.block_len == physical_block_start) { 10758 bsi.block_len += len; 10759 } else { 10760 if (bsi.block_len) { 10761 ret = btrfs_add_swap_extent(sis, &bsi); 10762 if (ret) 10763 goto out; 10764 } 10765 bsi.start = start; 10766 bsi.block_start = physical_block_start; 10767 bsi.block_len = len; 10768 } 10769 10770 start += len; 10771 } 10772 10773 if (bsi.block_len) 10774 ret = btrfs_add_swap_extent(sis, &bsi); 10775 10776 out: 10777 if (!IS_ERR_OR_NULL(em)) 10778 free_extent_map(em); 10779 10780 unlock_extent_cached(io_tree, 0, isize - 1, &cached_state); 10781 10782 if (ret) 10783 btrfs_swap_deactivate(file); 10784 10785 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags); 10786 10787 if (ret) 10788 return ret; 10789 10790 if (device) 10791 sis->bdev = device->bdev; 10792 *span = bsi.highest_ppage - bsi.lowest_ppage + 1; 10793 sis->max = bsi.nr_pages; 10794 sis->pages = bsi.nr_pages - 1; 10795 sis->highest_bit = bsi.nr_pages - 1; 10796 return bsi.nr_extents; 10797 } 10798 #else 10799 static void btrfs_swap_deactivate(struct file *file) 10800 { 10801 } 10802 10803 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file, 10804 sector_t *span) 10805 { 10806 return -EOPNOTSUPP; 10807 } 10808 #endif 10809 10810 static const struct inode_operations btrfs_dir_inode_operations = { 10811 .getattr = btrfs_getattr, 10812 .lookup = btrfs_lookup, 10813 .create = btrfs_create, 10814 .unlink = btrfs_unlink, 10815 .link = btrfs_link, 10816 .mkdir = btrfs_mkdir, 10817 .rmdir = btrfs_rmdir, 10818 .rename = btrfs_rename2, 10819 .symlink = btrfs_symlink, 10820 .setattr = btrfs_setattr, 10821 .mknod = btrfs_mknod, 10822 .listxattr = btrfs_listxattr, 10823 .permission = btrfs_permission, 10824 .get_acl = btrfs_get_acl, 10825 .set_acl = btrfs_set_acl, 10826 .update_time = btrfs_update_time, 10827 .tmpfile = btrfs_tmpfile, 10828 }; 10829 static const struct inode_operations btrfs_dir_ro_inode_operations = { 10830 .lookup = btrfs_lookup, 10831 .permission = btrfs_permission, 10832 .update_time = btrfs_update_time, 10833 }; 10834 10835 static const struct file_operations btrfs_dir_file_operations = { 10836 .llseek = generic_file_llseek, 10837 .read = generic_read_dir, 10838 .iterate_shared = btrfs_real_readdir, 10839 .open = btrfs_opendir, 10840 .unlocked_ioctl = btrfs_ioctl, 10841 #ifdef CONFIG_COMPAT 10842 .compat_ioctl = btrfs_compat_ioctl, 10843 #endif 10844 .release = btrfs_release_file, 10845 .fsync = btrfs_sync_file, 10846 }; 10847 10848 static const struct extent_io_ops btrfs_extent_io_ops = { 10849 /* mandatory callbacks */ 10850 .submit_bio_hook = btrfs_submit_bio_hook, 10851 .readpage_end_io_hook = btrfs_readpage_end_io_hook, 10852 }; 10853 10854 /* 10855 * btrfs doesn't support the bmap operation because swapfiles 10856 * use bmap to make a mapping of extents in the file. They assume 10857 * these extents won't change over the life of the file and they 10858 * use the bmap result to do IO directly to the drive. 10859 * 10860 * the btrfs bmap call would return logical addresses that aren't 10861 * suitable for IO and they also will change frequently as COW 10862 * operations happen. So, swapfile + btrfs == corruption. 10863 * 10864 * For now we're avoiding this by dropping bmap. 10865 */ 10866 static const struct address_space_operations btrfs_aops = { 10867 .readpage = btrfs_readpage, 10868 .writepage = btrfs_writepage, 10869 .writepages = btrfs_writepages, 10870 .readpages = btrfs_readpages, 10871 .direct_IO = btrfs_direct_IO, 10872 .invalidatepage = btrfs_invalidatepage, 10873 .releasepage = btrfs_releasepage, 10874 .set_page_dirty = btrfs_set_page_dirty, 10875 .error_remove_page = generic_error_remove_page, 10876 .swap_activate = btrfs_swap_activate, 10877 .swap_deactivate = btrfs_swap_deactivate, 10878 }; 10879 10880 static const struct inode_operations btrfs_file_inode_operations = { 10881 .getattr = btrfs_getattr, 10882 .setattr = btrfs_setattr, 10883 .listxattr = btrfs_listxattr, 10884 .permission = btrfs_permission, 10885 .fiemap = btrfs_fiemap, 10886 .get_acl = btrfs_get_acl, 10887 .set_acl = btrfs_set_acl, 10888 .update_time = btrfs_update_time, 10889 }; 10890 static const struct inode_operations btrfs_special_inode_operations = { 10891 .getattr = btrfs_getattr, 10892 .setattr = btrfs_setattr, 10893 .permission = btrfs_permission, 10894 .listxattr = btrfs_listxattr, 10895 .get_acl = btrfs_get_acl, 10896 .set_acl = btrfs_set_acl, 10897 .update_time = btrfs_update_time, 10898 }; 10899 static const struct inode_operations btrfs_symlink_inode_operations = { 10900 .get_link = page_get_link, 10901 .getattr = btrfs_getattr, 10902 .setattr = btrfs_setattr, 10903 .permission = btrfs_permission, 10904 .listxattr = btrfs_listxattr, 10905 .update_time = btrfs_update_time, 10906 }; 10907 10908 const struct dentry_operations btrfs_dentry_operations = { 10909 .d_delete = btrfs_dentry_delete, 10910 }; 10911