xref: /openbmc/linux/fs/btrfs/inode.c (revision cfba5de9)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/kernel.h>
7 #include <linux/bio.h>
8 #include <linux/buffer_head.h>
9 #include <linux/file.h>
10 #include <linux/fs.h>
11 #include <linux/pagemap.h>
12 #include <linux/highmem.h>
13 #include <linux/time.h>
14 #include <linux/init.h>
15 #include <linux/string.h>
16 #include <linux/backing-dev.h>
17 #include <linux/writeback.h>
18 #include <linux/compat.h>
19 #include <linux/xattr.h>
20 #include <linux/posix_acl.h>
21 #include <linux/falloc.h>
22 #include <linux/slab.h>
23 #include <linux/ratelimit.h>
24 #include <linux/btrfs.h>
25 #include <linux/blkdev.h>
26 #include <linux/posix_acl_xattr.h>
27 #include <linux/uio.h>
28 #include <linux/magic.h>
29 #include <linux/iversion.h>
30 #include <linux/swap.h>
31 #include <linux/sched/mm.h>
32 #include <asm/unaligned.h>
33 #include "ctree.h"
34 #include "disk-io.h"
35 #include "transaction.h"
36 #include "btrfs_inode.h"
37 #include "print-tree.h"
38 #include "ordered-data.h"
39 #include "xattr.h"
40 #include "tree-log.h"
41 #include "volumes.h"
42 #include "compression.h"
43 #include "locking.h"
44 #include "free-space-cache.h"
45 #include "inode-map.h"
46 #include "backref.h"
47 #include "props.h"
48 #include "qgroup.h"
49 #include "dedupe.h"
50 #include "delalloc-space.h"
51 
52 struct btrfs_iget_args {
53 	struct btrfs_key *location;
54 	struct btrfs_root *root;
55 };
56 
57 struct btrfs_dio_data {
58 	u64 reserve;
59 	u64 unsubmitted_oe_range_start;
60 	u64 unsubmitted_oe_range_end;
61 	int overwrite;
62 };
63 
64 static const struct inode_operations btrfs_dir_inode_operations;
65 static const struct inode_operations btrfs_symlink_inode_operations;
66 static const struct inode_operations btrfs_dir_ro_inode_operations;
67 static const struct inode_operations btrfs_special_inode_operations;
68 static const struct inode_operations btrfs_file_inode_operations;
69 static const struct address_space_operations btrfs_aops;
70 static const struct file_operations btrfs_dir_file_operations;
71 static const struct extent_io_ops btrfs_extent_io_ops;
72 
73 static struct kmem_cache *btrfs_inode_cachep;
74 struct kmem_cache *btrfs_trans_handle_cachep;
75 struct kmem_cache *btrfs_path_cachep;
76 struct kmem_cache *btrfs_free_space_cachep;
77 
78 static int btrfs_setsize(struct inode *inode, struct iattr *attr);
79 static int btrfs_truncate(struct inode *inode, bool skip_writeback);
80 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
81 static noinline int cow_file_range(struct inode *inode,
82 				   struct page *locked_page,
83 				   u64 start, u64 end, u64 delalloc_end,
84 				   int *page_started, unsigned long *nr_written,
85 				   int unlock, struct btrfs_dedupe_hash *hash);
86 static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len,
87 				       u64 orig_start, u64 block_start,
88 				       u64 block_len, u64 orig_block_len,
89 				       u64 ram_bytes, int compress_type,
90 				       int type);
91 
92 static void __endio_write_update_ordered(struct inode *inode,
93 					 const u64 offset, const u64 bytes,
94 					 const bool uptodate);
95 
96 /*
97  * Cleanup all submitted ordered extents in specified range to handle errors
98  * from the btrfs_run_delalloc_range() callback.
99  *
100  * NOTE: caller must ensure that when an error happens, it can not call
101  * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING
102  * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata
103  * to be released, which we want to happen only when finishing the ordered
104  * extent (btrfs_finish_ordered_io()).
105  */
106 static inline void btrfs_cleanup_ordered_extents(struct inode *inode,
107 						 struct page *locked_page,
108 						 u64 offset, u64 bytes)
109 {
110 	unsigned long index = offset >> PAGE_SHIFT;
111 	unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT;
112 	u64 page_start = page_offset(locked_page);
113 	u64 page_end = page_start + PAGE_SIZE - 1;
114 
115 	struct page *page;
116 
117 	while (index <= end_index) {
118 		page = find_get_page(inode->i_mapping, index);
119 		index++;
120 		if (!page)
121 			continue;
122 		ClearPagePrivate2(page);
123 		put_page(page);
124 	}
125 
126 	/*
127 	 * In case this page belongs to the delalloc range being instantiated
128 	 * then skip it, since the first page of a range is going to be
129 	 * properly cleaned up by the caller of run_delalloc_range
130 	 */
131 	if (page_start >= offset && page_end <= (offset + bytes - 1)) {
132 		offset += PAGE_SIZE;
133 		bytes -= PAGE_SIZE;
134 	}
135 
136 	return __endio_write_update_ordered(inode, offset, bytes, false);
137 }
138 
139 static int btrfs_dirty_inode(struct inode *inode);
140 
141 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
142 void btrfs_test_inode_set_ops(struct inode *inode)
143 {
144 	BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
145 }
146 #endif
147 
148 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
149 				     struct inode *inode,  struct inode *dir,
150 				     const struct qstr *qstr)
151 {
152 	int err;
153 
154 	err = btrfs_init_acl(trans, inode, dir);
155 	if (!err)
156 		err = btrfs_xattr_security_init(trans, inode, dir, qstr);
157 	return err;
158 }
159 
160 /*
161  * this does all the hard work for inserting an inline extent into
162  * the btree.  The caller should have done a btrfs_drop_extents so that
163  * no overlapping inline items exist in the btree
164  */
165 static int insert_inline_extent(struct btrfs_trans_handle *trans,
166 				struct btrfs_path *path, int extent_inserted,
167 				struct btrfs_root *root, struct inode *inode,
168 				u64 start, size_t size, size_t compressed_size,
169 				int compress_type,
170 				struct page **compressed_pages)
171 {
172 	struct extent_buffer *leaf;
173 	struct page *page = NULL;
174 	char *kaddr;
175 	unsigned long ptr;
176 	struct btrfs_file_extent_item *ei;
177 	int ret;
178 	size_t cur_size = size;
179 	unsigned long offset;
180 
181 	if (compressed_size && compressed_pages)
182 		cur_size = compressed_size;
183 
184 	inode_add_bytes(inode, size);
185 
186 	if (!extent_inserted) {
187 		struct btrfs_key key;
188 		size_t datasize;
189 
190 		key.objectid = btrfs_ino(BTRFS_I(inode));
191 		key.offset = start;
192 		key.type = BTRFS_EXTENT_DATA_KEY;
193 
194 		datasize = btrfs_file_extent_calc_inline_size(cur_size);
195 		path->leave_spinning = 1;
196 		ret = btrfs_insert_empty_item(trans, root, path, &key,
197 					      datasize);
198 		if (ret)
199 			goto fail;
200 	}
201 	leaf = path->nodes[0];
202 	ei = btrfs_item_ptr(leaf, path->slots[0],
203 			    struct btrfs_file_extent_item);
204 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
205 	btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
206 	btrfs_set_file_extent_encryption(leaf, ei, 0);
207 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
208 	btrfs_set_file_extent_ram_bytes(leaf, ei, size);
209 	ptr = btrfs_file_extent_inline_start(ei);
210 
211 	if (compress_type != BTRFS_COMPRESS_NONE) {
212 		struct page *cpage;
213 		int i = 0;
214 		while (compressed_size > 0) {
215 			cpage = compressed_pages[i];
216 			cur_size = min_t(unsigned long, compressed_size,
217 				       PAGE_SIZE);
218 
219 			kaddr = kmap_atomic(cpage);
220 			write_extent_buffer(leaf, kaddr, ptr, cur_size);
221 			kunmap_atomic(kaddr);
222 
223 			i++;
224 			ptr += cur_size;
225 			compressed_size -= cur_size;
226 		}
227 		btrfs_set_file_extent_compression(leaf, ei,
228 						  compress_type);
229 	} else {
230 		page = find_get_page(inode->i_mapping,
231 				     start >> PAGE_SHIFT);
232 		btrfs_set_file_extent_compression(leaf, ei, 0);
233 		kaddr = kmap_atomic(page);
234 		offset = offset_in_page(start);
235 		write_extent_buffer(leaf, kaddr + offset, ptr, size);
236 		kunmap_atomic(kaddr);
237 		put_page(page);
238 	}
239 	btrfs_mark_buffer_dirty(leaf);
240 	btrfs_release_path(path);
241 
242 	/*
243 	 * we're an inline extent, so nobody can
244 	 * extend the file past i_size without locking
245 	 * a page we already have locked.
246 	 *
247 	 * We must do any isize and inode updates
248 	 * before we unlock the pages.  Otherwise we
249 	 * could end up racing with unlink.
250 	 */
251 	BTRFS_I(inode)->disk_i_size = inode->i_size;
252 	ret = btrfs_update_inode(trans, root, inode);
253 
254 fail:
255 	return ret;
256 }
257 
258 
259 /*
260  * conditionally insert an inline extent into the file.  This
261  * does the checks required to make sure the data is small enough
262  * to fit as an inline extent.
263  */
264 static noinline int cow_file_range_inline(struct inode *inode, u64 start,
265 					  u64 end, size_t compressed_size,
266 					  int compress_type,
267 					  struct page **compressed_pages)
268 {
269 	struct btrfs_root *root = BTRFS_I(inode)->root;
270 	struct btrfs_fs_info *fs_info = root->fs_info;
271 	struct btrfs_trans_handle *trans;
272 	u64 isize = i_size_read(inode);
273 	u64 actual_end = min(end + 1, isize);
274 	u64 inline_len = actual_end - start;
275 	u64 aligned_end = ALIGN(end, fs_info->sectorsize);
276 	u64 data_len = inline_len;
277 	int ret;
278 	struct btrfs_path *path;
279 	int extent_inserted = 0;
280 	u32 extent_item_size;
281 
282 	if (compressed_size)
283 		data_len = compressed_size;
284 
285 	if (start > 0 ||
286 	    actual_end > fs_info->sectorsize ||
287 	    data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) ||
288 	    (!compressed_size &&
289 	    (actual_end & (fs_info->sectorsize - 1)) == 0) ||
290 	    end + 1 < isize ||
291 	    data_len > fs_info->max_inline) {
292 		return 1;
293 	}
294 
295 	path = btrfs_alloc_path();
296 	if (!path)
297 		return -ENOMEM;
298 
299 	trans = btrfs_join_transaction(root);
300 	if (IS_ERR(trans)) {
301 		btrfs_free_path(path);
302 		return PTR_ERR(trans);
303 	}
304 	trans->block_rsv = &BTRFS_I(inode)->block_rsv;
305 
306 	if (compressed_size && compressed_pages)
307 		extent_item_size = btrfs_file_extent_calc_inline_size(
308 		   compressed_size);
309 	else
310 		extent_item_size = btrfs_file_extent_calc_inline_size(
311 		    inline_len);
312 
313 	ret = __btrfs_drop_extents(trans, root, inode, path,
314 				   start, aligned_end, NULL,
315 				   1, 1, extent_item_size, &extent_inserted);
316 	if (ret) {
317 		btrfs_abort_transaction(trans, ret);
318 		goto out;
319 	}
320 
321 	if (isize > actual_end)
322 		inline_len = min_t(u64, isize, actual_end);
323 	ret = insert_inline_extent(trans, path, extent_inserted,
324 				   root, inode, start,
325 				   inline_len, compressed_size,
326 				   compress_type, compressed_pages);
327 	if (ret && ret != -ENOSPC) {
328 		btrfs_abort_transaction(trans, ret);
329 		goto out;
330 	} else if (ret == -ENOSPC) {
331 		ret = 1;
332 		goto out;
333 	}
334 
335 	set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
336 	btrfs_drop_extent_cache(BTRFS_I(inode), start, aligned_end - 1, 0);
337 out:
338 	/*
339 	 * Don't forget to free the reserved space, as for inlined extent
340 	 * it won't count as data extent, free them directly here.
341 	 * And at reserve time, it's always aligned to page size, so
342 	 * just free one page here.
343 	 */
344 	btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE);
345 	btrfs_free_path(path);
346 	btrfs_end_transaction(trans);
347 	return ret;
348 }
349 
350 struct async_extent {
351 	u64 start;
352 	u64 ram_size;
353 	u64 compressed_size;
354 	struct page **pages;
355 	unsigned long nr_pages;
356 	int compress_type;
357 	struct list_head list;
358 };
359 
360 struct async_chunk {
361 	struct inode *inode;
362 	struct page *locked_page;
363 	u64 start;
364 	u64 end;
365 	unsigned int write_flags;
366 	struct list_head extents;
367 	struct btrfs_work work;
368 	atomic_t *pending;
369 };
370 
371 struct async_cow {
372 	/* Number of chunks in flight; must be first in the structure */
373 	atomic_t num_chunks;
374 	struct async_chunk chunks[];
375 };
376 
377 static noinline int add_async_extent(struct async_chunk *cow,
378 				     u64 start, u64 ram_size,
379 				     u64 compressed_size,
380 				     struct page **pages,
381 				     unsigned long nr_pages,
382 				     int compress_type)
383 {
384 	struct async_extent *async_extent;
385 
386 	async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
387 	BUG_ON(!async_extent); /* -ENOMEM */
388 	async_extent->start = start;
389 	async_extent->ram_size = ram_size;
390 	async_extent->compressed_size = compressed_size;
391 	async_extent->pages = pages;
392 	async_extent->nr_pages = nr_pages;
393 	async_extent->compress_type = compress_type;
394 	list_add_tail(&async_extent->list, &cow->extents);
395 	return 0;
396 }
397 
398 static inline int inode_need_compress(struct inode *inode, u64 start, u64 end)
399 {
400 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
401 
402 	/* force compress */
403 	if (btrfs_test_opt(fs_info, FORCE_COMPRESS))
404 		return 1;
405 	/* defrag ioctl */
406 	if (BTRFS_I(inode)->defrag_compress)
407 		return 1;
408 	/* bad compression ratios */
409 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
410 		return 0;
411 	if (btrfs_test_opt(fs_info, COMPRESS) ||
412 	    BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS ||
413 	    BTRFS_I(inode)->prop_compress)
414 		return btrfs_compress_heuristic(inode, start, end);
415 	return 0;
416 }
417 
418 static inline void inode_should_defrag(struct btrfs_inode *inode,
419 		u64 start, u64 end, u64 num_bytes, u64 small_write)
420 {
421 	/* If this is a small write inside eof, kick off a defrag */
422 	if (num_bytes < small_write &&
423 	    (start > 0 || end + 1 < inode->disk_i_size))
424 		btrfs_add_inode_defrag(NULL, inode);
425 }
426 
427 /*
428  * we create compressed extents in two phases.  The first
429  * phase compresses a range of pages that have already been
430  * locked (both pages and state bits are locked).
431  *
432  * This is done inside an ordered work queue, and the compression
433  * is spread across many cpus.  The actual IO submission is step
434  * two, and the ordered work queue takes care of making sure that
435  * happens in the same order things were put onto the queue by
436  * writepages and friends.
437  *
438  * If this code finds it can't get good compression, it puts an
439  * entry onto the work queue to write the uncompressed bytes.  This
440  * makes sure that both compressed inodes and uncompressed inodes
441  * are written in the same order that the flusher thread sent them
442  * down.
443  */
444 static noinline void compress_file_range(struct async_chunk *async_chunk,
445 					 int *num_added)
446 {
447 	struct inode *inode = async_chunk->inode;
448 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
449 	u64 blocksize = fs_info->sectorsize;
450 	u64 start = async_chunk->start;
451 	u64 end = async_chunk->end;
452 	u64 actual_end;
453 	int ret = 0;
454 	struct page **pages = NULL;
455 	unsigned long nr_pages;
456 	unsigned long total_compressed = 0;
457 	unsigned long total_in = 0;
458 	int i;
459 	int will_compress;
460 	int compress_type = fs_info->compress_type;
461 	int redirty = 0;
462 
463 	inode_should_defrag(BTRFS_I(inode), start, end, end - start + 1,
464 			SZ_16K);
465 
466 	actual_end = min_t(u64, i_size_read(inode), end + 1);
467 again:
468 	will_compress = 0;
469 	nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
470 	BUILD_BUG_ON((BTRFS_MAX_COMPRESSED % PAGE_SIZE) != 0);
471 	nr_pages = min_t(unsigned long, nr_pages,
472 			BTRFS_MAX_COMPRESSED / PAGE_SIZE);
473 
474 	/*
475 	 * we don't want to send crud past the end of i_size through
476 	 * compression, that's just a waste of CPU time.  So, if the
477 	 * end of the file is before the start of our current
478 	 * requested range of bytes, we bail out to the uncompressed
479 	 * cleanup code that can deal with all of this.
480 	 *
481 	 * It isn't really the fastest way to fix things, but this is a
482 	 * very uncommon corner.
483 	 */
484 	if (actual_end <= start)
485 		goto cleanup_and_bail_uncompressed;
486 
487 	total_compressed = actual_end - start;
488 
489 	/*
490 	 * skip compression for a small file range(<=blocksize) that
491 	 * isn't an inline extent, since it doesn't save disk space at all.
492 	 */
493 	if (total_compressed <= blocksize &&
494 	   (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
495 		goto cleanup_and_bail_uncompressed;
496 
497 	total_compressed = min_t(unsigned long, total_compressed,
498 			BTRFS_MAX_UNCOMPRESSED);
499 	total_in = 0;
500 	ret = 0;
501 
502 	/*
503 	 * we do compression for mount -o compress and when the
504 	 * inode has not been flagged as nocompress.  This flag can
505 	 * change at any time if we discover bad compression ratios.
506 	 */
507 	if (inode_need_compress(inode, start, end)) {
508 		WARN_ON(pages);
509 		pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
510 		if (!pages) {
511 			/* just bail out to the uncompressed code */
512 			nr_pages = 0;
513 			goto cont;
514 		}
515 
516 		if (BTRFS_I(inode)->defrag_compress)
517 			compress_type = BTRFS_I(inode)->defrag_compress;
518 		else if (BTRFS_I(inode)->prop_compress)
519 			compress_type = BTRFS_I(inode)->prop_compress;
520 
521 		/*
522 		 * we need to call clear_page_dirty_for_io on each
523 		 * page in the range.  Otherwise applications with the file
524 		 * mmap'd can wander in and change the page contents while
525 		 * we are compressing them.
526 		 *
527 		 * If the compression fails for any reason, we set the pages
528 		 * dirty again later on.
529 		 *
530 		 * Note that the remaining part is redirtied, the start pointer
531 		 * has moved, the end is the original one.
532 		 */
533 		if (!redirty) {
534 			extent_range_clear_dirty_for_io(inode, start, end);
535 			redirty = 1;
536 		}
537 
538 		/* Compression level is applied here and only here */
539 		ret = btrfs_compress_pages(
540 			compress_type | (fs_info->compress_level << 4),
541 					   inode->i_mapping, start,
542 					   pages,
543 					   &nr_pages,
544 					   &total_in,
545 					   &total_compressed);
546 
547 		if (!ret) {
548 			unsigned long offset = offset_in_page(total_compressed);
549 			struct page *page = pages[nr_pages - 1];
550 			char *kaddr;
551 
552 			/* zero the tail end of the last page, we might be
553 			 * sending it down to disk
554 			 */
555 			if (offset) {
556 				kaddr = kmap_atomic(page);
557 				memset(kaddr + offset, 0,
558 				       PAGE_SIZE - offset);
559 				kunmap_atomic(kaddr);
560 			}
561 			will_compress = 1;
562 		}
563 	}
564 cont:
565 	if (start == 0) {
566 		/* lets try to make an inline extent */
567 		if (ret || total_in < actual_end) {
568 			/* we didn't compress the entire range, try
569 			 * to make an uncompressed inline extent.
570 			 */
571 			ret = cow_file_range_inline(inode, start, end, 0,
572 						    BTRFS_COMPRESS_NONE, NULL);
573 		} else {
574 			/* try making a compressed inline extent */
575 			ret = cow_file_range_inline(inode, start, end,
576 						    total_compressed,
577 						    compress_type, pages);
578 		}
579 		if (ret <= 0) {
580 			unsigned long clear_flags = EXTENT_DELALLOC |
581 				EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
582 				EXTENT_DO_ACCOUNTING;
583 			unsigned long page_error_op;
584 
585 			page_error_op = ret < 0 ? PAGE_SET_ERROR : 0;
586 
587 			/*
588 			 * inline extent creation worked or returned error,
589 			 * we don't need to create any more async work items.
590 			 * Unlock and free up our temp pages.
591 			 *
592 			 * We use DO_ACCOUNTING here because we need the
593 			 * delalloc_release_metadata to be done _after_ we drop
594 			 * our outstanding extent for clearing delalloc for this
595 			 * range.
596 			 */
597 			extent_clear_unlock_delalloc(inode, start, end, end,
598 						     NULL, clear_flags,
599 						     PAGE_UNLOCK |
600 						     PAGE_CLEAR_DIRTY |
601 						     PAGE_SET_WRITEBACK |
602 						     page_error_op |
603 						     PAGE_END_WRITEBACK);
604 			goto free_pages_out;
605 		}
606 	}
607 
608 	if (will_compress) {
609 		/*
610 		 * we aren't doing an inline extent round the compressed size
611 		 * up to a block size boundary so the allocator does sane
612 		 * things
613 		 */
614 		total_compressed = ALIGN(total_compressed, blocksize);
615 
616 		/*
617 		 * one last check to make sure the compression is really a
618 		 * win, compare the page count read with the blocks on disk,
619 		 * compression must free at least one sector size
620 		 */
621 		total_in = ALIGN(total_in, PAGE_SIZE);
622 		if (total_compressed + blocksize <= total_in) {
623 			*num_added += 1;
624 
625 			/*
626 			 * The async work queues will take care of doing actual
627 			 * allocation on disk for these compressed pages, and
628 			 * will submit them to the elevator.
629 			 */
630 			add_async_extent(async_chunk, start, total_in,
631 					total_compressed, pages, nr_pages,
632 					compress_type);
633 
634 			if (start + total_in < end) {
635 				start += total_in;
636 				pages = NULL;
637 				cond_resched();
638 				goto again;
639 			}
640 			return;
641 		}
642 	}
643 	if (pages) {
644 		/*
645 		 * the compression code ran but failed to make things smaller,
646 		 * free any pages it allocated and our page pointer array
647 		 */
648 		for (i = 0; i < nr_pages; i++) {
649 			WARN_ON(pages[i]->mapping);
650 			put_page(pages[i]);
651 		}
652 		kfree(pages);
653 		pages = NULL;
654 		total_compressed = 0;
655 		nr_pages = 0;
656 
657 		/* flag the file so we don't compress in the future */
658 		if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) &&
659 		    !(BTRFS_I(inode)->prop_compress)) {
660 			BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
661 		}
662 	}
663 cleanup_and_bail_uncompressed:
664 	/*
665 	 * No compression, but we still need to write the pages in the file
666 	 * we've been given so far.  redirty the locked page if it corresponds
667 	 * to our extent and set things up for the async work queue to run
668 	 * cow_file_range to do the normal delalloc dance.
669 	 */
670 	if (page_offset(async_chunk->locked_page) >= start &&
671 	    page_offset(async_chunk->locked_page) <= end)
672 		__set_page_dirty_nobuffers(async_chunk->locked_page);
673 		/* unlocked later on in the async handlers */
674 
675 	if (redirty)
676 		extent_range_redirty_for_io(inode, start, end);
677 	add_async_extent(async_chunk, start, end - start + 1, 0, NULL, 0,
678 			 BTRFS_COMPRESS_NONE);
679 	*num_added += 1;
680 
681 	return;
682 
683 free_pages_out:
684 	for (i = 0; i < nr_pages; i++) {
685 		WARN_ON(pages[i]->mapping);
686 		put_page(pages[i]);
687 	}
688 	kfree(pages);
689 }
690 
691 static void free_async_extent_pages(struct async_extent *async_extent)
692 {
693 	int i;
694 
695 	if (!async_extent->pages)
696 		return;
697 
698 	for (i = 0; i < async_extent->nr_pages; i++) {
699 		WARN_ON(async_extent->pages[i]->mapping);
700 		put_page(async_extent->pages[i]);
701 	}
702 	kfree(async_extent->pages);
703 	async_extent->nr_pages = 0;
704 	async_extent->pages = NULL;
705 }
706 
707 /*
708  * phase two of compressed writeback.  This is the ordered portion
709  * of the code, which only gets called in the order the work was
710  * queued.  We walk all the async extents created by compress_file_range
711  * and send them down to the disk.
712  */
713 static noinline void submit_compressed_extents(struct async_chunk *async_chunk)
714 {
715 	struct inode *inode = async_chunk->inode;
716 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
717 	struct async_extent *async_extent;
718 	u64 alloc_hint = 0;
719 	struct btrfs_key ins;
720 	struct extent_map *em;
721 	struct btrfs_root *root = BTRFS_I(inode)->root;
722 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
723 	int ret = 0;
724 
725 again:
726 	while (!list_empty(&async_chunk->extents)) {
727 		async_extent = list_entry(async_chunk->extents.next,
728 					  struct async_extent, list);
729 		list_del(&async_extent->list);
730 
731 retry:
732 		lock_extent(io_tree, async_extent->start,
733 			    async_extent->start + async_extent->ram_size - 1);
734 		/* did the compression code fall back to uncompressed IO? */
735 		if (!async_extent->pages) {
736 			int page_started = 0;
737 			unsigned long nr_written = 0;
738 
739 			/* allocate blocks */
740 			ret = cow_file_range(inode, async_chunk->locked_page,
741 					     async_extent->start,
742 					     async_extent->start +
743 					     async_extent->ram_size - 1,
744 					     async_extent->start +
745 					     async_extent->ram_size - 1,
746 					     &page_started, &nr_written, 0,
747 					     NULL);
748 
749 			/* JDM XXX */
750 
751 			/*
752 			 * if page_started, cow_file_range inserted an
753 			 * inline extent and took care of all the unlocking
754 			 * and IO for us.  Otherwise, we need to submit
755 			 * all those pages down to the drive.
756 			 */
757 			if (!page_started && !ret)
758 				extent_write_locked_range(inode,
759 						  async_extent->start,
760 						  async_extent->start +
761 						  async_extent->ram_size - 1,
762 						  WB_SYNC_ALL);
763 			else if (ret)
764 				unlock_page(async_chunk->locked_page);
765 			kfree(async_extent);
766 			cond_resched();
767 			continue;
768 		}
769 
770 		ret = btrfs_reserve_extent(root, async_extent->ram_size,
771 					   async_extent->compressed_size,
772 					   async_extent->compressed_size,
773 					   0, alloc_hint, &ins, 1, 1);
774 		if (ret) {
775 			free_async_extent_pages(async_extent);
776 
777 			if (ret == -ENOSPC) {
778 				unlock_extent(io_tree, async_extent->start,
779 					      async_extent->start +
780 					      async_extent->ram_size - 1);
781 
782 				/*
783 				 * we need to redirty the pages if we decide to
784 				 * fallback to uncompressed IO, otherwise we
785 				 * will not submit these pages down to lower
786 				 * layers.
787 				 */
788 				extent_range_redirty_for_io(inode,
789 						async_extent->start,
790 						async_extent->start +
791 						async_extent->ram_size - 1);
792 
793 				goto retry;
794 			}
795 			goto out_free;
796 		}
797 		/*
798 		 * here we're doing allocation and writeback of the
799 		 * compressed pages
800 		 */
801 		em = create_io_em(inode, async_extent->start,
802 				  async_extent->ram_size, /* len */
803 				  async_extent->start, /* orig_start */
804 				  ins.objectid, /* block_start */
805 				  ins.offset, /* block_len */
806 				  ins.offset, /* orig_block_len */
807 				  async_extent->ram_size, /* ram_bytes */
808 				  async_extent->compress_type,
809 				  BTRFS_ORDERED_COMPRESSED);
810 		if (IS_ERR(em))
811 			/* ret value is not necessary due to void function */
812 			goto out_free_reserve;
813 		free_extent_map(em);
814 
815 		ret = btrfs_add_ordered_extent_compress(inode,
816 						async_extent->start,
817 						ins.objectid,
818 						async_extent->ram_size,
819 						ins.offset,
820 						BTRFS_ORDERED_COMPRESSED,
821 						async_extent->compress_type);
822 		if (ret) {
823 			btrfs_drop_extent_cache(BTRFS_I(inode),
824 						async_extent->start,
825 						async_extent->start +
826 						async_extent->ram_size - 1, 0);
827 			goto out_free_reserve;
828 		}
829 		btrfs_dec_block_group_reservations(fs_info, ins.objectid);
830 
831 		/*
832 		 * clear dirty, set writeback and unlock the pages.
833 		 */
834 		extent_clear_unlock_delalloc(inode, async_extent->start,
835 				async_extent->start +
836 				async_extent->ram_size - 1,
837 				async_extent->start +
838 				async_extent->ram_size - 1,
839 				NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
840 				PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
841 				PAGE_SET_WRITEBACK);
842 		if (btrfs_submit_compressed_write(inode,
843 				    async_extent->start,
844 				    async_extent->ram_size,
845 				    ins.objectid,
846 				    ins.offset, async_extent->pages,
847 				    async_extent->nr_pages,
848 				    async_chunk->write_flags)) {
849 			struct page *p = async_extent->pages[0];
850 			const u64 start = async_extent->start;
851 			const u64 end = start + async_extent->ram_size - 1;
852 
853 			p->mapping = inode->i_mapping;
854 			btrfs_writepage_endio_finish_ordered(p, start, end, 0);
855 
856 			p->mapping = NULL;
857 			extent_clear_unlock_delalloc(inode, start, end, end,
858 						     NULL, 0,
859 						     PAGE_END_WRITEBACK |
860 						     PAGE_SET_ERROR);
861 			free_async_extent_pages(async_extent);
862 		}
863 		alloc_hint = ins.objectid + ins.offset;
864 		kfree(async_extent);
865 		cond_resched();
866 	}
867 	return;
868 out_free_reserve:
869 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
870 	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
871 out_free:
872 	extent_clear_unlock_delalloc(inode, async_extent->start,
873 				     async_extent->start +
874 				     async_extent->ram_size - 1,
875 				     async_extent->start +
876 				     async_extent->ram_size - 1,
877 				     NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
878 				     EXTENT_DELALLOC_NEW |
879 				     EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
880 				     PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
881 				     PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
882 				     PAGE_SET_ERROR);
883 	free_async_extent_pages(async_extent);
884 	kfree(async_extent);
885 	goto again;
886 }
887 
888 static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
889 				      u64 num_bytes)
890 {
891 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
892 	struct extent_map *em;
893 	u64 alloc_hint = 0;
894 
895 	read_lock(&em_tree->lock);
896 	em = search_extent_mapping(em_tree, start, num_bytes);
897 	if (em) {
898 		/*
899 		 * if block start isn't an actual block number then find the
900 		 * first block in this inode and use that as a hint.  If that
901 		 * block is also bogus then just don't worry about it.
902 		 */
903 		if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
904 			free_extent_map(em);
905 			em = search_extent_mapping(em_tree, 0, 0);
906 			if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
907 				alloc_hint = em->block_start;
908 			if (em)
909 				free_extent_map(em);
910 		} else {
911 			alloc_hint = em->block_start;
912 			free_extent_map(em);
913 		}
914 	}
915 	read_unlock(&em_tree->lock);
916 
917 	return alloc_hint;
918 }
919 
920 /*
921  * when extent_io.c finds a delayed allocation range in the file,
922  * the call backs end up in this code.  The basic idea is to
923  * allocate extents on disk for the range, and create ordered data structs
924  * in ram to track those extents.
925  *
926  * locked_page is the page that writepage had locked already.  We use
927  * it to make sure we don't do extra locks or unlocks.
928  *
929  * *page_started is set to one if we unlock locked_page and do everything
930  * required to start IO on it.  It may be clean and already done with
931  * IO when we return.
932  */
933 static noinline int cow_file_range(struct inode *inode,
934 				   struct page *locked_page,
935 				   u64 start, u64 end, u64 delalloc_end,
936 				   int *page_started, unsigned long *nr_written,
937 				   int unlock, struct btrfs_dedupe_hash *hash)
938 {
939 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
940 	struct btrfs_root *root = BTRFS_I(inode)->root;
941 	u64 alloc_hint = 0;
942 	u64 num_bytes;
943 	unsigned long ram_size;
944 	u64 cur_alloc_size = 0;
945 	u64 blocksize = fs_info->sectorsize;
946 	struct btrfs_key ins;
947 	struct extent_map *em;
948 	unsigned clear_bits;
949 	unsigned long page_ops;
950 	bool extent_reserved = false;
951 	int ret = 0;
952 
953 	if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
954 		WARN_ON_ONCE(1);
955 		ret = -EINVAL;
956 		goto out_unlock;
957 	}
958 
959 	num_bytes = ALIGN(end - start + 1, blocksize);
960 	num_bytes = max(blocksize,  num_bytes);
961 	ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy));
962 
963 	inode_should_defrag(BTRFS_I(inode), start, end, num_bytes, SZ_64K);
964 
965 	if (start == 0) {
966 		/* lets try to make an inline extent */
967 		ret = cow_file_range_inline(inode, start, end, 0,
968 					    BTRFS_COMPRESS_NONE, NULL);
969 		if (ret == 0) {
970 			/*
971 			 * We use DO_ACCOUNTING here because we need the
972 			 * delalloc_release_metadata to be run _after_ we drop
973 			 * our outstanding extent for clearing delalloc for this
974 			 * range.
975 			 */
976 			extent_clear_unlock_delalloc(inode, start, end,
977 				     delalloc_end, NULL,
978 				     EXTENT_LOCKED | EXTENT_DELALLOC |
979 				     EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
980 				     EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
981 				     PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
982 				     PAGE_END_WRITEBACK);
983 			*nr_written = *nr_written +
984 			     (end - start + PAGE_SIZE) / PAGE_SIZE;
985 			*page_started = 1;
986 			goto out;
987 		} else if (ret < 0) {
988 			goto out_unlock;
989 		}
990 	}
991 
992 	alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
993 	btrfs_drop_extent_cache(BTRFS_I(inode), start,
994 			start + num_bytes - 1, 0);
995 
996 	while (num_bytes > 0) {
997 		cur_alloc_size = num_bytes;
998 		ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size,
999 					   fs_info->sectorsize, 0, alloc_hint,
1000 					   &ins, 1, 1);
1001 		if (ret < 0)
1002 			goto out_unlock;
1003 		cur_alloc_size = ins.offset;
1004 		extent_reserved = true;
1005 
1006 		ram_size = ins.offset;
1007 		em = create_io_em(inode, start, ins.offset, /* len */
1008 				  start, /* orig_start */
1009 				  ins.objectid, /* block_start */
1010 				  ins.offset, /* block_len */
1011 				  ins.offset, /* orig_block_len */
1012 				  ram_size, /* ram_bytes */
1013 				  BTRFS_COMPRESS_NONE, /* compress_type */
1014 				  BTRFS_ORDERED_REGULAR /* type */);
1015 		if (IS_ERR(em)) {
1016 			ret = PTR_ERR(em);
1017 			goto out_reserve;
1018 		}
1019 		free_extent_map(em);
1020 
1021 		ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
1022 					       ram_size, cur_alloc_size, 0);
1023 		if (ret)
1024 			goto out_drop_extent_cache;
1025 
1026 		if (root->root_key.objectid ==
1027 		    BTRFS_DATA_RELOC_TREE_OBJECTID) {
1028 			ret = btrfs_reloc_clone_csums(inode, start,
1029 						      cur_alloc_size);
1030 			/*
1031 			 * Only drop cache here, and process as normal.
1032 			 *
1033 			 * We must not allow extent_clear_unlock_delalloc()
1034 			 * at out_unlock label to free meta of this ordered
1035 			 * extent, as its meta should be freed by
1036 			 * btrfs_finish_ordered_io().
1037 			 *
1038 			 * So we must continue until @start is increased to
1039 			 * skip current ordered extent.
1040 			 */
1041 			if (ret)
1042 				btrfs_drop_extent_cache(BTRFS_I(inode), start,
1043 						start + ram_size - 1, 0);
1044 		}
1045 
1046 		btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1047 
1048 		/* we're not doing compressed IO, don't unlock the first
1049 		 * page (which the caller expects to stay locked), don't
1050 		 * clear any dirty bits and don't set any writeback bits
1051 		 *
1052 		 * Do set the Private2 bit so we know this page was properly
1053 		 * setup for writepage
1054 		 */
1055 		page_ops = unlock ? PAGE_UNLOCK : 0;
1056 		page_ops |= PAGE_SET_PRIVATE2;
1057 
1058 		extent_clear_unlock_delalloc(inode, start,
1059 					     start + ram_size - 1,
1060 					     delalloc_end, locked_page,
1061 					     EXTENT_LOCKED | EXTENT_DELALLOC,
1062 					     page_ops);
1063 		if (num_bytes < cur_alloc_size)
1064 			num_bytes = 0;
1065 		else
1066 			num_bytes -= cur_alloc_size;
1067 		alloc_hint = ins.objectid + ins.offset;
1068 		start += cur_alloc_size;
1069 		extent_reserved = false;
1070 
1071 		/*
1072 		 * btrfs_reloc_clone_csums() error, since start is increased
1073 		 * extent_clear_unlock_delalloc() at out_unlock label won't
1074 		 * free metadata of current ordered extent, we're OK to exit.
1075 		 */
1076 		if (ret)
1077 			goto out_unlock;
1078 	}
1079 out:
1080 	return ret;
1081 
1082 out_drop_extent_cache:
1083 	btrfs_drop_extent_cache(BTRFS_I(inode), start, start + ram_size - 1, 0);
1084 out_reserve:
1085 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1086 	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
1087 out_unlock:
1088 	clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
1089 		EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV;
1090 	page_ops = PAGE_UNLOCK | PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
1091 		PAGE_END_WRITEBACK;
1092 	/*
1093 	 * If we reserved an extent for our delalloc range (or a subrange) and
1094 	 * failed to create the respective ordered extent, then it means that
1095 	 * when we reserved the extent we decremented the extent's size from
1096 	 * the data space_info's bytes_may_use counter and incremented the
1097 	 * space_info's bytes_reserved counter by the same amount. We must make
1098 	 * sure extent_clear_unlock_delalloc() does not try to decrement again
1099 	 * the data space_info's bytes_may_use counter, therefore we do not pass
1100 	 * it the flag EXTENT_CLEAR_DATA_RESV.
1101 	 */
1102 	if (extent_reserved) {
1103 		extent_clear_unlock_delalloc(inode, start,
1104 					     start + cur_alloc_size,
1105 					     start + cur_alloc_size,
1106 					     locked_page,
1107 					     clear_bits,
1108 					     page_ops);
1109 		start += cur_alloc_size;
1110 		if (start >= end)
1111 			goto out;
1112 	}
1113 	extent_clear_unlock_delalloc(inode, start, end, delalloc_end,
1114 				     locked_page,
1115 				     clear_bits | EXTENT_CLEAR_DATA_RESV,
1116 				     page_ops);
1117 	goto out;
1118 }
1119 
1120 /*
1121  * work queue call back to started compression on a file and pages
1122  */
1123 static noinline void async_cow_start(struct btrfs_work *work)
1124 {
1125 	struct async_chunk *async_chunk;
1126 	int num_added = 0;
1127 
1128 	async_chunk = container_of(work, struct async_chunk, work);
1129 
1130 	compress_file_range(async_chunk, &num_added);
1131 	if (num_added == 0) {
1132 		btrfs_add_delayed_iput(async_chunk->inode);
1133 		async_chunk->inode = NULL;
1134 	}
1135 }
1136 
1137 /*
1138  * work queue call back to submit previously compressed pages
1139  */
1140 static noinline void async_cow_submit(struct btrfs_work *work)
1141 {
1142 	struct async_chunk *async_chunk = container_of(work, struct async_chunk,
1143 						     work);
1144 	struct btrfs_fs_info *fs_info = btrfs_work_owner(work);
1145 	unsigned long nr_pages;
1146 
1147 	nr_pages = (async_chunk->end - async_chunk->start + PAGE_SIZE) >>
1148 		PAGE_SHIFT;
1149 
1150 	/* atomic_sub_return implies a barrier */
1151 	if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) <
1152 	    5 * SZ_1M)
1153 		cond_wake_up_nomb(&fs_info->async_submit_wait);
1154 
1155 	/*
1156 	 * ->inode could be NULL if async_chunk_start has failed to compress,
1157 	 * in which case we don't have anything to submit, yet we need to
1158 	 * always adjust ->async_delalloc_pages as its paired with the init
1159 	 * happening in cow_file_range_async
1160 	 */
1161 	if (async_chunk->inode)
1162 		submit_compressed_extents(async_chunk);
1163 }
1164 
1165 static noinline void async_cow_free(struct btrfs_work *work)
1166 {
1167 	struct async_chunk *async_chunk;
1168 
1169 	async_chunk = container_of(work, struct async_chunk, work);
1170 	if (async_chunk->inode)
1171 		btrfs_add_delayed_iput(async_chunk->inode);
1172 	/*
1173 	 * Since the pointer to 'pending' is at the beginning of the array of
1174 	 * async_chunk's, freeing it ensures the whole array has been freed.
1175 	 */
1176 	if (atomic_dec_and_test(async_chunk->pending))
1177 		kvfree(async_chunk->pending);
1178 }
1179 
1180 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1181 				u64 start, u64 end, int *page_started,
1182 				unsigned long *nr_written,
1183 				unsigned int write_flags)
1184 {
1185 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1186 	struct async_cow *ctx;
1187 	struct async_chunk *async_chunk;
1188 	unsigned long nr_pages;
1189 	u64 cur_end;
1190 	u64 num_chunks = DIV_ROUND_UP(end - start, SZ_512K);
1191 	int i;
1192 	bool should_compress;
1193 	unsigned nofs_flag;
1194 
1195 	unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
1196 
1197 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS &&
1198 	    !btrfs_test_opt(fs_info, FORCE_COMPRESS)) {
1199 		num_chunks = 1;
1200 		should_compress = false;
1201 	} else {
1202 		should_compress = true;
1203 	}
1204 
1205 	nofs_flag = memalloc_nofs_save();
1206 	ctx = kvmalloc(struct_size(ctx, chunks, num_chunks), GFP_KERNEL);
1207 	memalloc_nofs_restore(nofs_flag);
1208 
1209 	if (!ctx) {
1210 		unsigned clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC |
1211 			EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
1212 			EXTENT_DO_ACCOUNTING;
1213 		unsigned long page_ops = PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
1214 			PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
1215 			PAGE_SET_ERROR;
1216 
1217 		extent_clear_unlock_delalloc(inode, start, end, 0, locked_page,
1218 					     clear_bits, page_ops);
1219 		return -ENOMEM;
1220 	}
1221 
1222 	async_chunk = ctx->chunks;
1223 	atomic_set(&ctx->num_chunks, num_chunks);
1224 
1225 	for (i = 0; i < num_chunks; i++) {
1226 		if (should_compress)
1227 			cur_end = min(end, start + SZ_512K - 1);
1228 		else
1229 			cur_end = end;
1230 
1231 		/*
1232 		 * igrab is called higher up in the call chain, take only the
1233 		 * lightweight reference for the callback lifetime
1234 		 */
1235 		ihold(inode);
1236 		async_chunk[i].pending = &ctx->num_chunks;
1237 		async_chunk[i].inode = inode;
1238 		async_chunk[i].start = start;
1239 		async_chunk[i].end = cur_end;
1240 		async_chunk[i].locked_page = locked_page;
1241 		async_chunk[i].write_flags = write_flags;
1242 		INIT_LIST_HEAD(&async_chunk[i].extents);
1243 
1244 		btrfs_init_work(&async_chunk[i].work,
1245 				btrfs_delalloc_helper,
1246 				async_cow_start, async_cow_submit,
1247 				async_cow_free);
1248 
1249 		nr_pages = DIV_ROUND_UP(cur_end - start, PAGE_SIZE);
1250 		atomic_add(nr_pages, &fs_info->async_delalloc_pages);
1251 
1252 		btrfs_queue_work(fs_info->delalloc_workers, &async_chunk[i].work);
1253 
1254 		*nr_written += nr_pages;
1255 		start = cur_end + 1;
1256 	}
1257 	*page_started = 1;
1258 	return 0;
1259 }
1260 
1261 static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info,
1262 					u64 bytenr, u64 num_bytes)
1263 {
1264 	int ret;
1265 	struct btrfs_ordered_sum *sums;
1266 	LIST_HEAD(list);
1267 
1268 	ret = btrfs_lookup_csums_range(fs_info->csum_root, bytenr,
1269 				       bytenr + num_bytes - 1, &list, 0);
1270 	if (ret == 0 && list_empty(&list))
1271 		return 0;
1272 
1273 	while (!list_empty(&list)) {
1274 		sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1275 		list_del(&sums->list);
1276 		kfree(sums);
1277 	}
1278 	if (ret < 0)
1279 		return ret;
1280 	return 1;
1281 }
1282 
1283 /*
1284  * when nowcow writeback call back.  This checks for snapshots or COW copies
1285  * of the extents that exist in the file, and COWs the file as required.
1286  *
1287  * If no cow copies or snapshots exist, we write directly to the existing
1288  * blocks on disk
1289  */
1290 static noinline int run_delalloc_nocow(struct inode *inode,
1291 				       struct page *locked_page,
1292 			      u64 start, u64 end, int *page_started, int force,
1293 			      unsigned long *nr_written)
1294 {
1295 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1296 	struct btrfs_root *root = BTRFS_I(inode)->root;
1297 	struct extent_buffer *leaf;
1298 	struct btrfs_path *path;
1299 	struct btrfs_file_extent_item *fi;
1300 	struct btrfs_key found_key;
1301 	struct extent_map *em;
1302 	u64 cow_start;
1303 	u64 cur_offset;
1304 	u64 extent_end;
1305 	u64 extent_offset;
1306 	u64 disk_bytenr;
1307 	u64 num_bytes;
1308 	u64 disk_num_bytes;
1309 	u64 ram_bytes;
1310 	int extent_type;
1311 	int ret;
1312 	int type;
1313 	int nocow;
1314 	int check_prev = 1;
1315 	bool nolock;
1316 	u64 ino = btrfs_ino(BTRFS_I(inode));
1317 
1318 	path = btrfs_alloc_path();
1319 	if (!path) {
1320 		extent_clear_unlock_delalloc(inode, start, end, end,
1321 					     locked_page,
1322 					     EXTENT_LOCKED | EXTENT_DELALLOC |
1323 					     EXTENT_DO_ACCOUNTING |
1324 					     EXTENT_DEFRAG, PAGE_UNLOCK |
1325 					     PAGE_CLEAR_DIRTY |
1326 					     PAGE_SET_WRITEBACK |
1327 					     PAGE_END_WRITEBACK);
1328 		return -ENOMEM;
1329 	}
1330 
1331 	nolock = btrfs_is_free_space_inode(BTRFS_I(inode));
1332 
1333 	cow_start = (u64)-1;
1334 	cur_offset = start;
1335 	while (1) {
1336 		ret = btrfs_lookup_file_extent(NULL, root, path, ino,
1337 					       cur_offset, 0);
1338 		if (ret < 0)
1339 			goto error;
1340 		if (ret > 0 && path->slots[0] > 0 && check_prev) {
1341 			leaf = path->nodes[0];
1342 			btrfs_item_key_to_cpu(leaf, &found_key,
1343 					      path->slots[0] - 1);
1344 			if (found_key.objectid == ino &&
1345 			    found_key.type == BTRFS_EXTENT_DATA_KEY)
1346 				path->slots[0]--;
1347 		}
1348 		check_prev = 0;
1349 next_slot:
1350 		leaf = path->nodes[0];
1351 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1352 			ret = btrfs_next_leaf(root, path);
1353 			if (ret < 0) {
1354 				if (cow_start != (u64)-1)
1355 					cur_offset = cow_start;
1356 				goto error;
1357 			}
1358 			if (ret > 0)
1359 				break;
1360 			leaf = path->nodes[0];
1361 		}
1362 
1363 		nocow = 0;
1364 		disk_bytenr = 0;
1365 		num_bytes = 0;
1366 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1367 
1368 		if (found_key.objectid > ino)
1369 			break;
1370 		if (WARN_ON_ONCE(found_key.objectid < ino) ||
1371 		    found_key.type < BTRFS_EXTENT_DATA_KEY) {
1372 			path->slots[0]++;
1373 			goto next_slot;
1374 		}
1375 		if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
1376 		    found_key.offset > end)
1377 			break;
1378 
1379 		if (found_key.offset > cur_offset) {
1380 			extent_end = found_key.offset;
1381 			extent_type = 0;
1382 			goto out_check;
1383 		}
1384 
1385 		fi = btrfs_item_ptr(leaf, path->slots[0],
1386 				    struct btrfs_file_extent_item);
1387 		extent_type = btrfs_file_extent_type(leaf, fi);
1388 
1389 		ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1390 		if (extent_type == BTRFS_FILE_EXTENT_REG ||
1391 		    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1392 			disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1393 			extent_offset = btrfs_file_extent_offset(leaf, fi);
1394 			extent_end = found_key.offset +
1395 				btrfs_file_extent_num_bytes(leaf, fi);
1396 			disk_num_bytes =
1397 				btrfs_file_extent_disk_num_bytes(leaf, fi);
1398 			if (extent_end <= start) {
1399 				path->slots[0]++;
1400 				goto next_slot;
1401 			}
1402 			if (disk_bytenr == 0)
1403 				goto out_check;
1404 			if (btrfs_file_extent_compression(leaf, fi) ||
1405 			    btrfs_file_extent_encryption(leaf, fi) ||
1406 			    btrfs_file_extent_other_encoding(leaf, fi))
1407 				goto out_check;
1408 			/*
1409 			 * Do the same check as in btrfs_cross_ref_exist but
1410 			 * without the unnecessary search.
1411 			 */
1412 			if (!nolock &&
1413 			    btrfs_file_extent_generation(leaf, fi) <=
1414 			    btrfs_root_last_snapshot(&root->root_item))
1415 				goto out_check;
1416 			if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1417 				goto out_check;
1418 			if (btrfs_extent_readonly(fs_info, disk_bytenr))
1419 				goto out_check;
1420 			ret = btrfs_cross_ref_exist(root, ino,
1421 						    found_key.offset -
1422 						    extent_offset, disk_bytenr);
1423 			if (ret) {
1424 				/*
1425 				 * ret could be -EIO if the above fails to read
1426 				 * metadata.
1427 				 */
1428 				if (ret < 0) {
1429 					if (cow_start != (u64)-1)
1430 						cur_offset = cow_start;
1431 					goto error;
1432 				}
1433 
1434 				WARN_ON_ONCE(nolock);
1435 				goto out_check;
1436 			}
1437 			disk_bytenr += extent_offset;
1438 			disk_bytenr += cur_offset - found_key.offset;
1439 			num_bytes = min(end + 1, extent_end) - cur_offset;
1440 			/*
1441 			 * if there are pending snapshots for this root,
1442 			 * we fall into common COW way.
1443 			 */
1444 			if (!nolock && atomic_read(&root->snapshot_force_cow))
1445 				goto out_check;
1446 			/*
1447 			 * force cow if csum exists in the range.
1448 			 * this ensure that csum for a given extent are
1449 			 * either valid or do not exist.
1450 			 */
1451 			ret = csum_exist_in_range(fs_info, disk_bytenr,
1452 						  num_bytes);
1453 			if (ret) {
1454 				/*
1455 				 * ret could be -EIO if the above fails to read
1456 				 * metadata.
1457 				 */
1458 				if (ret < 0) {
1459 					if (cow_start != (u64)-1)
1460 						cur_offset = cow_start;
1461 					goto error;
1462 				}
1463 				WARN_ON_ONCE(nolock);
1464 				goto out_check;
1465 			}
1466 			if (!btrfs_inc_nocow_writers(fs_info, disk_bytenr))
1467 				goto out_check;
1468 			nocow = 1;
1469 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1470 			extent_end = found_key.offset +
1471 				btrfs_file_extent_ram_bytes(leaf, fi);
1472 			extent_end = ALIGN(extent_end,
1473 					   fs_info->sectorsize);
1474 		} else {
1475 			BUG();
1476 		}
1477 out_check:
1478 		if (extent_end <= start) {
1479 			path->slots[0]++;
1480 			if (nocow)
1481 				btrfs_dec_nocow_writers(fs_info, disk_bytenr);
1482 			goto next_slot;
1483 		}
1484 		if (!nocow) {
1485 			if (cow_start == (u64)-1)
1486 				cow_start = cur_offset;
1487 			cur_offset = extent_end;
1488 			if (cur_offset > end)
1489 				break;
1490 			path->slots[0]++;
1491 			goto next_slot;
1492 		}
1493 
1494 		btrfs_release_path(path);
1495 		if (cow_start != (u64)-1) {
1496 			ret = cow_file_range(inode, locked_page,
1497 					     cow_start, found_key.offset - 1,
1498 					     end, page_started, nr_written, 1,
1499 					     NULL);
1500 			if (ret) {
1501 				if (nocow)
1502 					btrfs_dec_nocow_writers(fs_info,
1503 								disk_bytenr);
1504 				goto error;
1505 			}
1506 			cow_start = (u64)-1;
1507 		}
1508 
1509 		if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1510 			u64 orig_start = found_key.offset - extent_offset;
1511 
1512 			em = create_io_em(inode, cur_offset, num_bytes,
1513 					  orig_start,
1514 					  disk_bytenr, /* block_start */
1515 					  num_bytes, /* block_len */
1516 					  disk_num_bytes, /* orig_block_len */
1517 					  ram_bytes, BTRFS_COMPRESS_NONE,
1518 					  BTRFS_ORDERED_PREALLOC);
1519 			if (IS_ERR(em)) {
1520 				if (nocow)
1521 					btrfs_dec_nocow_writers(fs_info,
1522 								disk_bytenr);
1523 				ret = PTR_ERR(em);
1524 				goto error;
1525 			}
1526 			free_extent_map(em);
1527 		}
1528 
1529 		if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1530 			type = BTRFS_ORDERED_PREALLOC;
1531 		} else {
1532 			type = BTRFS_ORDERED_NOCOW;
1533 		}
1534 
1535 		ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1536 					       num_bytes, num_bytes, type);
1537 		if (nocow)
1538 			btrfs_dec_nocow_writers(fs_info, disk_bytenr);
1539 		BUG_ON(ret); /* -ENOMEM */
1540 
1541 		if (root->root_key.objectid ==
1542 		    BTRFS_DATA_RELOC_TREE_OBJECTID)
1543 			/*
1544 			 * Error handled later, as we must prevent
1545 			 * extent_clear_unlock_delalloc() in error handler
1546 			 * from freeing metadata of created ordered extent.
1547 			 */
1548 			ret = btrfs_reloc_clone_csums(inode, cur_offset,
1549 						      num_bytes);
1550 
1551 		extent_clear_unlock_delalloc(inode, cur_offset,
1552 					     cur_offset + num_bytes - 1, end,
1553 					     locked_page, EXTENT_LOCKED |
1554 					     EXTENT_DELALLOC |
1555 					     EXTENT_CLEAR_DATA_RESV,
1556 					     PAGE_UNLOCK | PAGE_SET_PRIVATE2);
1557 
1558 		cur_offset = extent_end;
1559 
1560 		/*
1561 		 * btrfs_reloc_clone_csums() error, now we're OK to call error
1562 		 * handler, as metadata for created ordered extent will only
1563 		 * be freed by btrfs_finish_ordered_io().
1564 		 */
1565 		if (ret)
1566 			goto error;
1567 		if (cur_offset > end)
1568 			break;
1569 	}
1570 	btrfs_release_path(path);
1571 
1572 	if (cur_offset <= end && cow_start == (u64)-1)
1573 		cow_start = cur_offset;
1574 
1575 	if (cow_start != (u64)-1) {
1576 		cur_offset = end;
1577 		ret = cow_file_range(inode, locked_page, cow_start, end, end,
1578 				     page_started, nr_written, 1, NULL);
1579 		if (ret)
1580 			goto error;
1581 	}
1582 
1583 error:
1584 	if (ret && cur_offset < end)
1585 		extent_clear_unlock_delalloc(inode, cur_offset, end, end,
1586 					     locked_page, EXTENT_LOCKED |
1587 					     EXTENT_DELALLOC | EXTENT_DEFRAG |
1588 					     EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1589 					     PAGE_CLEAR_DIRTY |
1590 					     PAGE_SET_WRITEBACK |
1591 					     PAGE_END_WRITEBACK);
1592 	btrfs_free_path(path);
1593 	return ret;
1594 }
1595 
1596 static inline int need_force_cow(struct inode *inode, u64 start, u64 end)
1597 {
1598 
1599 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
1600 	    !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC))
1601 		return 0;
1602 
1603 	/*
1604 	 * @defrag_bytes is a hint value, no spinlock held here,
1605 	 * if is not zero, it means the file is defragging.
1606 	 * Force cow if given extent needs to be defragged.
1607 	 */
1608 	if (BTRFS_I(inode)->defrag_bytes &&
1609 	    test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
1610 			   EXTENT_DEFRAG, 0, NULL))
1611 		return 1;
1612 
1613 	return 0;
1614 }
1615 
1616 /*
1617  * Function to process delayed allocation (create CoW) for ranges which are
1618  * being touched for the first time.
1619  */
1620 int btrfs_run_delalloc_range(struct inode *inode, struct page *locked_page,
1621 		u64 start, u64 end, int *page_started, unsigned long *nr_written,
1622 		struct writeback_control *wbc)
1623 {
1624 	int ret;
1625 	int force_cow = need_force_cow(inode, start, end);
1626 	unsigned int write_flags = wbc_to_write_flags(wbc);
1627 
1628 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) {
1629 		ret = run_delalloc_nocow(inode, locked_page, start, end,
1630 					 page_started, 1, nr_written);
1631 	} else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) {
1632 		ret = run_delalloc_nocow(inode, locked_page, start, end,
1633 					 page_started, 0, nr_written);
1634 	} else if (!inode_need_compress(inode, start, end)) {
1635 		ret = cow_file_range(inode, locked_page, start, end, end,
1636 				      page_started, nr_written, 1, NULL);
1637 	} else {
1638 		set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1639 			&BTRFS_I(inode)->runtime_flags);
1640 		ret = cow_file_range_async(inode, locked_page, start, end,
1641 					   page_started, nr_written,
1642 					   write_flags);
1643 	}
1644 	if (ret)
1645 		btrfs_cleanup_ordered_extents(inode, locked_page, start,
1646 					      end - start + 1);
1647 	return ret;
1648 }
1649 
1650 void btrfs_split_delalloc_extent(struct inode *inode,
1651 				 struct extent_state *orig, u64 split)
1652 {
1653 	u64 size;
1654 
1655 	/* not delalloc, ignore it */
1656 	if (!(orig->state & EXTENT_DELALLOC))
1657 		return;
1658 
1659 	size = orig->end - orig->start + 1;
1660 	if (size > BTRFS_MAX_EXTENT_SIZE) {
1661 		u32 num_extents;
1662 		u64 new_size;
1663 
1664 		/*
1665 		 * See the explanation in btrfs_merge_delalloc_extent, the same
1666 		 * applies here, just in reverse.
1667 		 */
1668 		new_size = orig->end - split + 1;
1669 		num_extents = count_max_extents(new_size);
1670 		new_size = split - orig->start;
1671 		num_extents += count_max_extents(new_size);
1672 		if (count_max_extents(size) >= num_extents)
1673 			return;
1674 	}
1675 
1676 	spin_lock(&BTRFS_I(inode)->lock);
1677 	btrfs_mod_outstanding_extents(BTRFS_I(inode), 1);
1678 	spin_unlock(&BTRFS_I(inode)->lock);
1679 }
1680 
1681 /*
1682  * Handle merged delayed allocation extents so we can keep track of new extents
1683  * that are just merged onto old extents, such as when we are doing sequential
1684  * writes, so we can properly account for the metadata space we'll need.
1685  */
1686 void btrfs_merge_delalloc_extent(struct inode *inode, struct extent_state *new,
1687 				 struct extent_state *other)
1688 {
1689 	u64 new_size, old_size;
1690 	u32 num_extents;
1691 
1692 	/* not delalloc, ignore it */
1693 	if (!(other->state & EXTENT_DELALLOC))
1694 		return;
1695 
1696 	if (new->start > other->start)
1697 		new_size = new->end - other->start + 1;
1698 	else
1699 		new_size = other->end - new->start + 1;
1700 
1701 	/* we're not bigger than the max, unreserve the space and go */
1702 	if (new_size <= BTRFS_MAX_EXTENT_SIZE) {
1703 		spin_lock(&BTRFS_I(inode)->lock);
1704 		btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
1705 		spin_unlock(&BTRFS_I(inode)->lock);
1706 		return;
1707 	}
1708 
1709 	/*
1710 	 * We have to add up either side to figure out how many extents were
1711 	 * accounted for before we merged into one big extent.  If the number of
1712 	 * extents we accounted for is <= the amount we need for the new range
1713 	 * then we can return, otherwise drop.  Think of it like this
1714 	 *
1715 	 * [ 4k][MAX_SIZE]
1716 	 *
1717 	 * So we've grown the extent by a MAX_SIZE extent, this would mean we
1718 	 * need 2 outstanding extents, on one side we have 1 and the other side
1719 	 * we have 1 so they are == and we can return.  But in this case
1720 	 *
1721 	 * [MAX_SIZE+4k][MAX_SIZE+4k]
1722 	 *
1723 	 * Each range on their own accounts for 2 extents, but merged together
1724 	 * they are only 3 extents worth of accounting, so we need to drop in
1725 	 * this case.
1726 	 */
1727 	old_size = other->end - other->start + 1;
1728 	num_extents = count_max_extents(old_size);
1729 	old_size = new->end - new->start + 1;
1730 	num_extents += count_max_extents(old_size);
1731 	if (count_max_extents(new_size) >= num_extents)
1732 		return;
1733 
1734 	spin_lock(&BTRFS_I(inode)->lock);
1735 	btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
1736 	spin_unlock(&BTRFS_I(inode)->lock);
1737 }
1738 
1739 static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1740 				      struct inode *inode)
1741 {
1742 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1743 
1744 	spin_lock(&root->delalloc_lock);
1745 	if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1746 		list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1747 			      &root->delalloc_inodes);
1748 		set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1749 			&BTRFS_I(inode)->runtime_flags);
1750 		root->nr_delalloc_inodes++;
1751 		if (root->nr_delalloc_inodes == 1) {
1752 			spin_lock(&fs_info->delalloc_root_lock);
1753 			BUG_ON(!list_empty(&root->delalloc_root));
1754 			list_add_tail(&root->delalloc_root,
1755 				      &fs_info->delalloc_roots);
1756 			spin_unlock(&fs_info->delalloc_root_lock);
1757 		}
1758 	}
1759 	spin_unlock(&root->delalloc_lock);
1760 }
1761 
1762 
1763 void __btrfs_del_delalloc_inode(struct btrfs_root *root,
1764 				struct btrfs_inode *inode)
1765 {
1766 	struct btrfs_fs_info *fs_info = root->fs_info;
1767 
1768 	if (!list_empty(&inode->delalloc_inodes)) {
1769 		list_del_init(&inode->delalloc_inodes);
1770 		clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1771 			  &inode->runtime_flags);
1772 		root->nr_delalloc_inodes--;
1773 		if (!root->nr_delalloc_inodes) {
1774 			ASSERT(list_empty(&root->delalloc_inodes));
1775 			spin_lock(&fs_info->delalloc_root_lock);
1776 			BUG_ON(list_empty(&root->delalloc_root));
1777 			list_del_init(&root->delalloc_root);
1778 			spin_unlock(&fs_info->delalloc_root_lock);
1779 		}
1780 	}
1781 }
1782 
1783 static void btrfs_del_delalloc_inode(struct btrfs_root *root,
1784 				     struct btrfs_inode *inode)
1785 {
1786 	spin_lock(&root->delalloc_lock);
1787 	__btrfs_del_delalloc_inode(root, inode);
1788 	spin_unlock(&root->delalloc_lock);
1789 }
1790 
1791 /*
1792  * Properly track delayed allocation bytes in the inode and to maintain the
1793  * list of inodes that have pending delalloc work to be done.
1794  */
1795 void btrfs_set_delalloc_extent(struct inode *inode, struct extent_state *state,
1796 			       unsigned *bits)
1797 {
1798 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1799 
1800 	if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC))
1801 		WARN_ON(1);
1802 	/*
1803 	 * set_bit and clear bit hooks normally require _irqsave/restore
1804 	 * but in this case, we are only testing for the DELALLOC
1805 	 * bit, which is only set or cleared with irqs on
1806 	 */
1807 	if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1808 		struct btrfs_root *root = BTRFS_I(inode)->root;
1809 		u64 len = state->end + 1 - state->start;
1810 		u32 num_extents = count_max_extents(len);
1811 		bool do_list = !btrfs_is_free_space_inode(BTRFS_I(inode));
1812 
1813 		spin_lock(&BTRFS_I(inode)->lock);
1814 		btrfs_mod_outstanding_extents(BTRFS_I(inode), num_extents);
1815 		spin_unlock(&BTRFS_I(inode)->lock);
1816 
1817 		/* For sanity tests */
1818 		if (btrfs_is_testing(fs_info))
1819 			return;
1820 
1821 		percpu_counter_add_batch(&fs_info->delalloc_bytes, len,
1822 					 fs_info->delalloc_batch);
1823 		spin_lock(&BTRFS_I(inode)->lock);
1824 		BTRFS_I(inode)->delalloc_bytes += len;
1825 		if (*bits & EXTENT_DEFRAG)
1826 			BTRFS_I(inode)->defrag_bytes += len;
1827 		if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1828 					 &BTRFS_I(inode)->runtime_flags))
1829 			btrfs_add_delalloc_inodes(root, inode);
1830 		spin_unlock(&BTRFS_I(inode)->lock);
1831 	}
1832 
1833 	if (!(state->state & EXTENT_DELALLOC_NEW) &&
1834 	    (*bits & EXTENT_DELALLOC_NEW)) {
1835 		spin_lock(&BTRFS_I(inode)->lock);
1836 		BTRFS_I(inode)->new_delalloc_bytes += state->end + 1 -
1837 			state->start;
1838 		spin_unlock(&BTRFS_I(inode)->lock);
1839 	}
1840 }
1841 
1842 /*
1843  * Once a range is no longer delalloc this function ensures that proper
1844  * accounting happens.
1845  */
1846 void btrfs_clear_delalloc_extent(struct inode *vfs_inode,
1847 				 struct extent_state *state, unsigned *bits)
1848 {
1849 	struct btrfs_inode *inode = BTRFS_I(vfs_inode);
1850 	struct btrfs_fs_info *fs_info = btrfs_sb(vfs_inode->i_sb);
1851 	u64 len = state->end + 1 - state->start;
1852 	u32 num_extents = count_max_extents(len);
1853 
1854 	if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG)) {
1855 		spin_lock(&inode->lock);
1856 		inode->defrag_bytes -= len;
1857 		spin_unlock(&inode->lock);
1858 	}
1859 
1860 	/*
1861 	 * set_bit and clear bit hooks normally require _irqsave/restore
1862 	 * but in this case, we are only testing for the DELALLOC
1863 	 * bit, which is only set or cleared with irqs on
1864 	 */
1865 	if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1866 		struct btrfs_root *root = inode->root;
1867 		bool do_list = !btrfs_is_free_space_inode(inode);
1868 
1869 		spin_lock(&inode->lock);
1870 		btrfs_mod_outstanding_extents(inode, -num_extents);
1871 		spin_unlock(&inode->lock);
1872 
1873 		/*
1874 		 * We don't reserve metadata space for space cache inodes so we
1875 		 * don't need to call delalloc_release_metadata if there is an
1876 		 * error.
1877 		 */
1878 		if (*bits & EXTENT_CLEAR_META_RESV &&
1879 		    root != fs_info->tree_root)
1880 			btrfs_delalloc_release_metadata(inode, len, false);
1881 
1882 		/* For sanity tests. */
1883 		if (btrfs_is_testing(fs_info))
1884 			return;
1885 
1886 		if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID &&
1887 		    do_list && !(state->state & EXTENT_NORESERVE) &&
1888 		    (*bits & EXTENT_CLEAR_DATA_RESV))
1889 			btrfs_free_reserved_data_space_noquota(
1890 					&inode->vfs_inode,
1891 					state->start, len);
1892 
1893 		percpu_counter_add_batch(&fs_info->delalloc_bytes, -len,
1894 					 fs_info->delalloc_batch);
1895 		spin_lock(&inode->lock);
1896 		inode->delalloc_bytes -= len;
1897 		if (do_list && inode->delalloc_bytes == 0 &&
1898 		    test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1899 					&inode->runtime_flags))
1900 			btrfs_del_delalloc_inode(root, inode);
1901 		spin_unlock(&inode->lock);
1902 	}
1903 
1904 	if ((state->state & EXTENT_DELALLOC_NEW) &&
1905 	    (*bits & EXTENT_DELALLOC_NEW)) {
1906 		spin_lock(&inode->lock);
1907 		ASSERT(inode->new_delalloc_bytes >= len);
1908 		inode->new_delalloc_bytes -= len;
1909 		spin_unlock(&inode->lock);
1910 	}
1911 }
1912 
1913 /*
1914  * btrfs_bio_fits_in_stripe - Checks whether the size of the given bio will fit
1915  * in a chunk's stripe. This function ensures that bios do not span a
1916  * stripe/chunk
1917  *
1918  * @page - The page we are about to add to the bio
1919  * @size - size we want to add to the bio
1920  * @bio - bio we want to ensure is smaller than a stripe
1921  * @bio_flags - flags of the bio
1922  *
1923  * return 1 if page cannot be added to the bio
1924  * return 0 if page can be added to the bio
1925  * return error otherwise
1926  */
1927 int btrfs_bio_fits_in_stripe(struct page *page, size_t size, struct bio *bio,
1928 			     unsigned long bio_flags)
1929 {
1930 	struct inode *inode = page->mapping->host;
1931 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1932 	u64 logical = (u64)bio->bi_iter.bi_sector << 9;
1933 	u64 length = 0;
1934 	u64 map_length;
1935 	int ret;
1936 	struct btrfs_io_geometry geom;
1937 
1938 	if (bio_flags & EXTENT_BIO_COMPRESSED)
1939 		return 0;
1940 
1941 	length = bio->bi_iter.bi_size;
1942 	map_length = length;
1943 	ret = btrfs_get_io_geometry(fs_info, btrfs_op(bio), logical, map_length,
1944 				    &geom);
1945 	if (ret < 0)
1946 		return ret;
1947 
1948 	if (geom.len < length + size)
1949 		return 1;
1950 	return 0;
1951 }
1952 
1953 /*
1954  * in order to insert checksums into the metadata in large chunks,
1955  * we wait until bio submission time.   All the pages in the bio are
1956  * checksummed and sums are attached onto the ordered extent record.
1957  *
1958  * At IO completion time the cums attached on the ordered extent record
1959  * are inserted into the btree
1960  */
1961 static blk_status_t btrfs_submit_bio_start(void *private_data, struct bio *bio,
1962 				    u64 bio_offset)
1963 {
1964 	struct inode *inode = private_data;
1965 	blk_status_t ret = 0;
1966 
1967 	ret = btrfs_csum_one_bio(inode, bio, 0, 0);
1968 	BUG_ON(ret); /* -ENOMEM */
1969 	return 0;
1970 }
1971 
1972 /*
1973  * extent_io.c submission hook. This does the right thing for csum calculation
1974  * on write, or reading the csums from the tree before a read.
1975  *
1976  * Rules about async/sync submit,
1977  * a) read:				sync submit
1978  *
1979  * b) write without checksum:		sync submit
1980  *
1981  * c) write with checksum:
1982  *    c-1) if bio is issued by fsync:	sync submit
1983  *         (sync_writers != 0)
1984  *
1985  *    c-2) if root is reloc root:	sync submit
1986  *         (only in case of buffered IO)
1987  *
1988  *    c-3) otherwise:			async submit
1989  */
1990 static blk_status_t btrfs_submit_bio_hook(struct inode *inode, struct bio *bio,
1991 					  int mirror_num,
1992 					  unsigned long bio_flags)
1993 
1994 {
1995 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1996 	struct btrfs_root *root = BTRFS_I(inode)->root;
1997 	enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA;
1998 	blk_status_t ret = 0;
1999 	int skip_sum;
2000 	int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
2001 
2002 	skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
2003 
2004 	if (btrfs_is_free_space_inode(BTRFS_I(inode)))
2005 		metadata = BTRFS_WQ_ENDIO_FREE_SPACE;
2006 
2007 	if (bio_op(bio) != REQ_OP_WRITE) {
2008 		ret = btrfs_bio_wq_end_io(fs_info, bio, metadata);
2009 		if (ret)
2010 			goto out;
2011 
2012 		if (bio_flags & EXTENT_BIO_COMPRESSED) {
2013 			ret = btrfs_submit_compressed_read(inode, bio,
2014 							   mirror_num,
2015 							   bio_flags);
2016 			goto out;
2017 		} else if (!skip_sum) {
2018 			ret = btrfs_lookup_bio_sums(inode, bio, NULL);
2019 			if (ret)
2020 				goto out;
2021 		}
2022 		goto mapit;
2023 	} else if (async && !skip_sum) {
2024 		/* csum items have already been cloned */
2025 		if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
2026 			goto mapit;
2027 		/* we're doing a write, do the async checksumming */
2028 		ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, bio_flags,
2029 					  0, inode, btrfs_submit_bio_start);
2030 		goto out;
2031 	} else if (!skip_sum) {
2032 		ret = btrfs_csum_one_bio(inode, bio, 0, 0);
2033 		if (ret)
2034 			goto out;
2035 	}
2036 
2037 mapit:
2038 	ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
2039 
2040 out:
2041 	if (ret) {
2042 		bio->bi_status = ret;
2043 		bio_endio(bio);
2044 	}
2045 	return ret;
2046 }
2047 
2048 /*
2049  * given a list of ordered sums record them in the inode.  This happens
2050  * at IO completion time based on sums calculated at bio submission time.
2051  */
2052 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
2053 			     struct inode *inode, struct list_head *list)
2054 {
2055 	struct btrfs_ordered_sum *sum;
2056 	int ret;
2057 
2058 	list_for_each_entry(sum, list, list) {
2059 		trans->adding_csums = true;
2060 		ret = btrfs_csum_file_blocks(trans,
2061 		       BTRFS_I(inode)->root->fs_info->csum_root, sum);
2062 		trans->adding_csums = false;
2063 		if (ret)
2064 			return ret;
2065 	}
2066 	return 0;
2067 }
2068 
2069 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
2070 			      unsigned int extra_bits,
2071 			      struct extent_state **cached_state, int dedupe)
2072 {
2073 	WARN_ON(PAGE_ALIGNED(end));
2074 	return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
2075 				   extra_bits, cached_state);
2076 }
2077 
2078 /* see btrfs_writepage_start_hook for details on why this is required */
2079 struct btrfs_writepage_fixup {
2080 	struct page *page;
2081 	struct btrfs_work work;
2082 };
2083 
2084 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
2085 {
2086 	struct btrfs_writepage_fixup *fixup;
2087 	struct btrfs_ordered_extent *ordered;
2088 	struct extent_state *cached_state = NULL;
2089 	struct extent_changeset *data_reserved = NULL;
2090 	struct page *page;
2091 	struct inode *inode;
2092 	u64 page_start;
2093 	u64 page_end;
2094 	int ret;
2095 
2096 	fixup = container_of(work, struct btrfs_writepage_fixup, work);
2097 	page = fixup->page;
2098 again:
2099 	lock_page(page);
2100 	if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
2101 		ClearPageChecked(page);
2102 		goto out_page;
2103 	}
2104 
2105 	inode = page->mapping->host;
2106 	page_start = page_offset(page);
2107 	page_end = page_offset(page) + PAGE_SIZE - 1;
2108 
2109 	lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end,
2110 			 &cached_state);
2111 
2112 	/* already ordered? We're done */
2113 	if (PagePrivate2(page))
2114 		goto out;
2115 
2116 	ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
2117 					PAGE_SIZE);
2118 	if (ordered) {
2119 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
2120 				     page_end, &cached_state);
2121 		unlock_page(page);
2122 		btrfs_start_ordered_extent(inode, ordered, 1);
2123 		btrfs_put_ordered_extent(ordered);
2124 		goto again;
2125 	}
2126 
2127 	ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
2128 					   PAGE_SIZE);
2129 	if (ret) {
2130 		mapping_set_error(page->mapping, ret);
2131 		end_extent_writepage(page, ret, page_start, page_end);
2132 		ClearPageChecked(page);
2133 		goto out;
2134 	 }
2135 
2136 	ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0,
2137 					&cached_state, 0);
2138 	if (ret) {
2139 		mapping_set_error(page->mapping, ret);
2140 		end_extent_writepage(page, ret, page_start, page_end);
2141 		ClearPageChecked(page);
2142 		goto out;
2143 	}
2144 
2145 	ClearPageChecked(page);
2146 	set_page_dirty(page);
2147 	btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE, false);
2148 out:
2149 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
2150 			     &cached_state);
2151 out_page:
2152 	unlock_page(page);
2153 	put_page(page);
2154 	kfree(fixup);
2155 	extent_changeset_free(data_reserved);
2156 }
2157 
2158 /*
2159  * There are a few paths in the higher layers of the kernel that directly
2160  * set the page dirty bit without asking the filesystem if it is a
2161  * good idea.  This causes problems because we want to make sure COW
2162  * properly happens and the data=ordered rules are followed.
2163  *
2164  * In our case any range that doesn't have the ORDERED bit set
2165  * hasn't been properly setup for IO.  We kick off an async process
2166  * to fix it up.  The async helper will wait for ordered extents, set
2167  * the delalloc bit and make it safe to write the page.
2168  */
2169 int btrfs_writepage_cow_fixup(struct page *page, u64 start, u64 end)
2170 {
2171 	struct inode *inode = page->mapping->host;
2172 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2173 	struct btrfs_writepage_fixup *fixup;
2174 
2175 	/* this page is properly in the ordered list */
2176 	if (TestClearPagePrivate2(page))
2177 		return 0;
2178 
2179 	if (PageChecked(page))
2180 		return -EAGAIN;
2181 
2182 	fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2183 	if (!fixup)
2184 		return -EAGAIN;
2185 
2186 	SetPageChecked(page);
2187 	get_page(page);
2188 	btrfs_init_work(&fixup->work, btrfs_fixup_helper,
2189 			btrfs_writepage_fixup_worker, NULL, NULL);
2190 	fixup->page = page;
2191 	btrfs_queue_work(fs_info->fixup_workers, &fixup->work);
2192 	return -EBUSY;
2193 }
2194 
2195 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2196 				       struct inode *inode, u64 file_pos,
2197 				       u64 disk_bytenr, u64 disk_num_bytes,
2198 				       u64 num_bytes, u64 ram_bytes,
2199 				       u8 compression, u8 encryption,
2200 				       u16 other_encoding, int extent_type)
2201 {
2202 	struct btrfs_root *root = BTRFS_I(inode)->root;
2203 	struct btrfs_file_extent_item *fi;
2204 	struct btrfs_path *path;
2205 	struct extent_buffer *leaf;
2206 	struct btrfs_key ins;
2207 	u64 qg_released;
2208 	int extent_inserted = 0;
2209 	int ret;
2210 
2211 	path = btrfs_alloc_path();
2212 	if (!path)
2213 		return -ENOMEM;
2214 
2215 	/*
2216 	 * we may be replacing one extent in the tree with another.
2217 	 * The new extent is pinned in the extent map, and we don't want
2218 	 * to drop it from the cache until it is completely in the btree.
2219 	 *
2220 	 * So, tell btrfs_drop_extents to leave this extent in the cache.
2221 	 * the caller is expected to unpin it and allow it to be merged
2222 	 * with the others.
2223 	 */
2224 	ret = __btrfs_drop_extents(trans, root, inode, path, file_pos,
2225 				   file_pos + num_bytes, NULL, 0,
2226 				   1, sizeof(*fi), &extent_inserted);
2227 	if (ret)
2228 		goto out;
2229 
2230 	if (!extent_inserted) {
2231 		ins.objectid = btrfs_ino(BTRFS_I(inode));
2232 		ins.offset = file_pos;
2233 		ins.type = BTRFS_EXTENT_DATA_KEY;
2234 
2235 		path->leave_spinning = 1;
2236 		ret = btrfs_insert_empty_item(trans, root, path, &ins,
2237 					      sizeof(*fi));
2238 		if (ret)
2239 			goto out;
2240 	}
2241 	leaf = path->nodes[0];
2242 	fi = btrfs_item_ptr(leaf, path->slots[0],
2243 			    struct btrfs_file_extent_item);
2244 	btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2245 	btrfs_set_file_extent_type(leaf, fi, extent_type);
2246 	btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
2247 	btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
2248 	btrfs_set_file_extent_offset(leaf, fi, 0);
2249 	btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2250 	btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
2251 	btrfs_set_file_extent_compression(leaf, fi, compression);
2252 	btrfs_set_file_extent_encryption(leaf, fi, encryption);
2253 	btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
2254 
2255 	btrfs_mark_buffer_dirty(leaf);
2256 	btrfs_release_path(path);
2257 
2258 	inode_add_bytes(inode, num_bytes);
2259 
2260 	ins.objectid = disk_bytenr;
2261 	ins.offset = disk_num_bytes;
2262 	ins.type = BTRFS_EXTENT_ITEM_KEY;
2263 
2264 	/*
2265 	 * Release the reserved range from inode dirty range map, as it is
2266 	 * already moved into delayed_ref_head
2267 	 */
2268 	ret = btrfs_qgroup_release_data(inode, file_pos, ram_bytes);
2269 	if (ret < 0)
2270 		goto out;
2271 	qg_released = ret;
2272 	ret = btrfs_alloc_reserved_file_extent(trans, root,
2273 					       btrfs_ino(BTRFS_I(inode)),
2274 					       file_pos, qg_released, &ins);
2275 out:
2276 	btrfs_free_path(path);
2277 
2278 	return ret;
2279 }
2280 
2281 /* snapshot-aware defrag */
2282 struct sa_defrag_extent_backref {
2283 	struct rb_node node;
2284 	struct old_sa_defrag_extent *old;
2285 	u64 root_id;
2286 	u64 inum;
2287 	u64 file_pos;
2288 	u64 extent_offset;
2289 	u64 num_bytes;
2290 	u64 generation;
2291 };
2292 
2293 struct old_sa_defrag_extent {
2294 	struct list_head list;
2295 	struct new_sa_defrag_extent *new;
2296 
2297 	u64 extent_offset;
2298 	u64 bytenr;
2299 	u64 offset;
2300 	u64 len;
2301 	int count;
2302 };
2303 
2304 struct new_sa_defrag_extent {
2305 	struct rb_root root;
2306 	struct list_head head;
2307 	struct btrfs_path *path;
2308 	struct inode *inode;
2309 	u64 file_pos;
2310 	u64 len;
2311 	u64 bytenr;
2312 	u64 disk_len;
2313 	u8 compress_type;
2314 };
2315 
2316 static int backref_comp(struct sa_defrag_extent_backref *b1,
2317 			struct sa_defrag_extent_backref *b2)
2318 {
2319 	if (b1->root_id < b2->root_id)
2320 		return -1;
2321 	else if (b1->root_id > b2->root_id)
2322 		return 1;
2323 
2324 	if (b1->inum < b2->inum)
2325 		return -1;
2326 	else if (b1->inum > b2->inum)
2327 		return 1;
2328 
2329 	if (b1->file_pos < b2->file_pos)
2330 		return -1;
2331 	else if (b1->file_pos > b2->file_pos)
2332 		return 1;
2333 
2334 	/*
2335 	 * [------------------------------] ===> (a range of space)
2336 	 *     |<--->|   |<---->| =============> (fs/file tree A)
2337 	 * |<---------------------------->| ===> (fs/file tree B)
2338 	 *
2339 	 * A range of space can refer to two file extents in one tree while
2340 	 * refer to only one file extent in another tree.
2341 	 *
2342 	 * So we may process a disk offset more than one time(two extents in A)
2343 	 * and locate at the same extent(one extent in B), then insert two same
2344 	 * backrefs(both refer to the extent in B).
2345 	 */
2346 	return 0;
2347 }
2348 
2349 static void backref_insert(struct rb_root *root,
2350 			   struct sa_defrag_extent_backref *backref)
2351 {
2352 	struct rb_node **p = &root->rb_node;
2353 	struct rb_node *parent = NULL;
2354 	struct sa_defrag_extent_backref *entry;
2355 	int ret;
2356 
2357 	while (*p) {
2358 		parent = *p;
2359 		entry = rb_entry(parent, struct sa_defrag_extent_backref, node);
2360 
2361 		ret = backref_comp(backref, entry);
2362 		if (ret < 0)
2363 			p = &(*p)->rb_left;
2364 		else
2365 			p = &(*p)->rb_right;
2366 	}
2367 
2368 	rb_link_node(&backref->node, parent, p);
2369 	rb_insert_color(&backref->node, root);
2370 }
2371 
2372 /*
2373  * Note the backref might has changed, and in this case we just return 0.
2374  */
2375 static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id,
2376 				       void *ctx)
2377 {
2378 	struct btrfs_file_extent_item *extent;
2379 	struct old_sa_defrag_extent *old = ctx;
2380 	struct new_sa_defrag_extent *new = old->new;
2381 	struct btrfs_path *path = new->path;
2382 	struct btrfs_key key;
2383 	struct btrfs_root *root;
2384 	struct sa_defrag_extent_backref *backref;
2385 	struct extent_buffer *leaf;
2386 	struct inode *inode = new->inode;
2387 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2388 	int slot;
2389 	int ret;
2390 	u64 extent_offset;
2391 	u64 num_bytes;
2392 
2393 	if (BTRFS_I(inode)->root->root_key.objectid == root_id &&
2394 	    inum == btrfs_ino(BTRFS_I(inode)))
2395 		return 0;
2396 
2397 	key.objectid = root_id;
2398 	key.type = BTRFS_ROOT_ITEM_KEY;
2399 	key.offset = (u64)-1;
2400 
2401 	root = btrfs_read_fs_root_no_name(fs_info, &key);
2402 	if (IS_ERR(root)) {
2403 		if (PTR_ERR(root) == -ENOENT)
2404 			return 0;
2405 		WARN_ON(1);
2406 		btrfs_debug(fs_info, "inum=%llu, offset=%llu, root_id=%llu",
2407 			 inum, offset, root_id);
2408 		return PTR_ERR(root);
2409 	}
2410 
2411 	key.objectid = inum;
2412 	key.type = BTRFS_EXTENT_DATA_KEY;
2413 	if (offset > (u64)-1 << 32)
2414 		key.offset = 0;
2415 	else
2416 		key.offset = offset;
2417 
2418 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2419 	if (WARN_ON(ret < 0))
2420 		return ret;
2421 	ret = 0;
2422 
2423 	while (1) {
2424 		cond_resched();
2425 
2426 		leaf = path->nodes[0];
2427 		slot = path->slots[0];
2428 
2429 		if (slot >= btrfs_header_nritems(leaf)) {
2430 			ret = btrfs_next_leaf(root, path);
2431 			if (ret < 0) {
2432 				goto out;
2433 			} else if (ret > 0) {
2434 				ret = 0;
2435 				goto out;
2436 			}
2437 			continue;
2438 		}
2439 
2440 		path->slots[0]++;
2441 
2442 		btrfs_item_key_to_cpu(leaf, &key, slot);
2443 
2444 		if (key.objectid > inum)
2445 			goto out;
2446 
2447 		if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY)
2448 			continue;
2449 
2450 		extent = btrfs_item_ptr(leaf, slot,
2451 					struct btrfs_file_extent_item);
2452 
2453 		if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr)
2454 			continue;
2455 
2456 		/*
2457 		 * 'offset' refers to the exact key.offset,
2458 		 * NOT the 'offset' field in btrfs_extent_data_ref, ie.
2459 		 * (key.offset - extent_offset).
2460 		 */
2461 		if (key.offset != offset)
2462 			continue;
2463 
2464 		extent_offset = btrfs_file_extent_offset(leaf, extent);
2465 		num_bytes = btrfs_file_extent_num_bytes(leaf, extent);
2466 
2467 		if (extent_offset >= old->extent_offset + old->offset +
2468 		    old->len || extent_offset + num_bytes <=
2469 		    old->extent_offset + old->offset)
2470 			continue;
2471 		break;
2472 	}
2473 
2474 	backref = kmalloc(sizeof(*backref), GFP_NOFS);
2475 	if (!backref) {
2476 		ret = -ENOENT;
2477 		goto out;
2478 	}
2479 
2480 	backref->root_id = root_id;
2481 	backref->inum = inum;
2482 	backref->file_pos = offset;
2483 	backref->num_bytes = num_bytes;
2484 	backref->extent_offset = extent_offset;
2485 	backref->generation = btrfs_file_extent_generation(leaf, extent);
2486 	backref->old = old;
2487 	backref_insert(&new->root, backref);
2488 	old->count++;
2489 out:
2490 	btrfs_release_path(path);
2491 	WARN_ON(ret);
2492 	return ret;
2493 }
2494 
2495 static noinline bool record_extent_backrefs(struct btrfs_path *path,
2496 				   struct new_sa_defrag_extent *new)
2497 {
2498 	struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
2499 	struct old_sa_defrag_extent *old, *tmp;
2500 	int ret;
2501 
2502 	new->path = path;
2503 
2504 	list_for_each_entry_safe(old, tmp, &new->head, list) {
2505 		ret = iterate_inodes_from_logical(old->bytenr +
2506 						  old->extent_offset, fs_info,
2507 						  path, record_one_backref,
2508 						  old, false);
2509 		if (ret < 0 && ret != -ENOENT)
2510 			return false;
2511 
2512 		/* no backref to be processed for this extent */
2513 		if (!old->count) {
2514 			list_del(&old->list);
2515 			kfree(old);
2516 		}
2517 	}
2518 
2519 	if (list_empty(&new->head))
2520 		return false;
2521 
2522 	return true;
2523 }
2524 
2525 static int relink_is_mergable(struct extent_buffer *leaf,
2526 			      struct btrfs_file_extent_item *fi,
2527 			      struct new_sa_defrag_extent *new)
2528 {
2529 	if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr)
2530 		return 0;
2531 
2532 	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2533 		return 0;
2534 
2535 	if (btrfs_file_extent_compression(leaf, fi) != new->compress_type)
2536 		return 0;
2537 
2538 	if (btrfs_file_extent_encryption(leaf, fi) ||
2539 	    btrfs_file_extent_other_encoding(leaf, fi))
2540 		return 0;
2541 
2542 	return 1;
2543 }
2544 
2545 /*
2546  * Note the backref might has changed, and in this case we just return 0.
2547  */
2548 static noinline int relink_extent_backref(struct btrfs_path *path,
2549 				 struct sa_defrag_extent_backref *prev,
2550 				 struct sa_defrag_extent_backref *backref)
2551 {
2552 	struct btrfs_file_extent_item *extent;
2553 	struct btrfs_file_extent_item *item;
2554 	struct btrfs_ordered_extent *ordered;
2555 	struct btrfs_trans_handle *trans;
2556 	struct btrfs_ref ref = { 0 };
2557 	struct btrfs_root *root;
2558 	struct btrfs_key key;
2559 	struct extent_buffer *leaf;
2560 	struct old_sa_defrag_extent *old = backref->old;
2561 	struct new_sa_defrag_extent *new = old->new;
2562 	struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
2563 	struct inode *inode;
2564 	struct extent_state *cached = NULL;
2565 	int ret = 0;
2566 	u64 start;
2567 	u64 len;
2568 	u64 lock_start;
2569 	u64 lock_end;
2570 	bool merge = false;
2571 	int index;
2572 
2573 	if (prev && prev->root_id == backref->root_id &&
2574 	    prev->inum == backref->inum &&
2575 	    prev->file_pos + prev->num_bytes == backref->file_pos)
2576 		merge = true;
2577 
2578 	/* step 1: get root */
2579 	key.objectid = backref->root_id;
2580 	key.type = BTRFS_ROOT_ITEM_KEY;
2581 	key.offset = (u64)-1;
2582 
2583 	index = srcu_read_lock(&fs_info->subvol_srcu);
2584 
2585 	root = btrfs_read_fs_root_no_name(fs_info, &key);
2586 	if (IS_ERR(root)) {
2587 		srcu_read_unlock(&fs_info->subvol_srcu, index);
2588 		if (PTR_ERR(root) == -ENOENT)
2589 			return 0;
2590 		return PTR_ERR(root);
2591 	}
2592 
2593 	if (btrfs_root_readonly(root)) {
2594 		srcu_read_unlock(&fs_info->subvol_srcu, index);
2595 		return 0;
2596 	}
2597 
2598 	/* step 2: get inode */
2599 	key.objectid = backref->inum;
2600 	key.type = BTRFS_INODE_ITEM_KEY;
2601 	key.offset = 0;
2602 
2603 	inode = btrfs_iget(fs_info->sb, &key, root, NULL);
2604 	if (IS_ERR(inode)) {
2605 		srcu_read_unlock(&fs_info->subvol_srcu, index);
2606 		return 0;
2607 	}
2608 
2609 	srcu_read_unlock(&fs_info->subvol_srcu, index);
2610 
2611 	/* step 3: relink backref */
2612 	lock_start = backref->file_pos;
2613 	lock_end = backref->file_pos + backref->num_bytes - 1;
2614 	lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2615 			 &cached);
2616 
2617 	ordered = btrfs_lookup_first_ordered_extent(inode, lock_end);
2618 	if (ordered) {
2619 		btrfs_put_ordered_extent(ordered);
2620 		goto out_unlock;
2621 	}
2622 
2623 	trans = btrfs_join_transaction(root);
2624 	if (IS_ERR(trans)) {
2625 		ret = PTR_ERR(trans);
2626 		goto out_unlock;
2627 	}
2628 
2629 	key.objectid = backref->inum;
2630 	key.type = BTRFS_EXTENT_DATA_KEY;
2631 	key.offset = backref->file_pos;
2632 
2633 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2634 	if (ret < 0) {
2635 		goto out_free_path;
2636 	} else if (ret > 0) {
2637 		ret = 0;
2638 		goto out_free_path;
2639 	}
2640 
2641 	extent = btrfs_item_ptr(path->nodes[0], path->slots[0],
2642 				struct btrfs_file_extent_item);
2643 
2644 	if (btrfs_file_extent_generation(path->nodes[0], extent) !=
2645 	    backref->generation)
2646 		goto out_free_path;
2647 
2648 	btrfs_release_path(path);
2649 
2650 	start = backref->file_pos;
2651 	if (backref->extent_offset < old->extent_offset + old->offset)
2652 		start += old->extent_offset + old->offset -
2653 			 backref->extent_offset;
2654 
2655 	len = min(backref->extent_offset + backref->num_bytes,
2656 		  old->extent_offset + old->offset + old->len);
2657 	len -= max(backref->extent_offset, old->extent_offset + old->offset);
2658 
2659 	ret = btrfs_drop_extents(trans, root, inode, start,
2660 				 start + len, 1);
2661 	if (ret)
2662 		goto out_free_path;
2663 again:
2664 	key.objectid = btrfs_ino(BTRFS_I(inode));
2665 	key.type = BTRFS_EXTENT_DATA_KEY;
2666 	key.offset = start;
2667 
2668 	path->leave_spinning = 1;
2669 	if (merge) {
2670 		struct btrfs_file_extent_item *fi;
2671 		u64 extent_len;
2672 		struct btrfs_key found_key;
2673 
2674 		ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2675 		if (ret < 0)
2676 			goto out_free_path;
2677 
2678 		path->slots[0]--;
2679 		leaf = path->nodes[0];
2680 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2681 
2682 		fi = btrfs_item_ptr(leaf, path->slots[0],
2683 				    struct btrfs_file_extent_item);
2684 		extent_len = btrfs_file_extent_num_bytes(leaf, fi);
2685 
2686 		if (extent_len + found_key.offset == start &&
2687 		    relink_is_mergable(leaf, fi, new)) {
2688 			btrfs_set_file_extent_num_bytes(leaf, fi,
2689 							extent_len + len);
2690 			btrfs_mark_buffer_dirty(leaf);
2691 			inode_add_bytes(inode, len);
2692 
2693 			ret = 1;
2694 			goto out_free_path;
2695 		} else {
2696 			merge = false;
2697 			btrfs_release_path(path);
2698 			goto again;
2699 		}
2700 	}
2701 
2702 	ret = btrfs_insert_empty_item(trans, root, path, &key,
2703 					sizeof(*extent));
2704 	if (ret) {
2705 		btrfs_abort_transaction(trans, ret);
2706 		goto out_free_path;
2707 	}
2708 
2709 	leaf = path->nodes[0];
2710 	item = btrfs_item_ptr(leaf, path->slots[0],
2711 				struct btrfs_file_extent_item);
2712 	btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr);
2713 	btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len);
2714 	btrfs_set_file_extent_offset(leaf, item, start - new->file_pos);
2715 	btrfs_set_file_extent_num_bytes(leaf, item, len);
2716 	btrfs_set_file_extent_ram_bytes(leaf, item, new->len);
2717 	btrfs_set_file_extent_generation(leaf, item, trans->transid);
2718 	btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
2719 	btrfs_set_file_extent_compression(leaf, item, new->compress_type);
2720 	btrfs_set_file_extent_encryption(leaf, item, 0);
2721 	btrfs_set_file_extent_other_encoding(leaf, item, 0);
2722 
2723 	btrfs_mark_buffer_dirty(leaf);
2724 	inode_add_bytes(inode, len);
2725 	btrfs_release_path(path);
2726 
2727 	btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, new->bytenr,
2728 			       new->disk_len, 0);
2729 	btrfs_init_data_ref(&ref, backref->root_id, backref->inum,
2730 			    new->file_pos);  /* start - extent_offset */
2731 	ret = btrfs_inc_extent_ref(trans, &ref);
2732 	if (ret) {
2733 		btrfs_abort_transaction(trans, ret);
2734 		goto out_free_path;
2735 	}
2736 
2737 	ret = 1;
2738 out_free_path:
2739 	btrfs_release_path(path);
2740 	path->leave_spinning = 0;
2741 	btrfs_end_transaction(trans);
2742 out_unlock:
2743 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2744 			     &cached);
2745 	iput(inode);
2746 	return ret;
2747 }
2748 
2749 static void free_sa_defrag_extent(struct new_sa_defrag_extent *new)
2750 {
2751 	struct old_sa_defrag_extent *old, *tmp;
2752 
2753 	if (!new)
2754 		return;
2755 
2756 	list_for_each_entry_safe(old, tmp, &new->head, list) {
2757 		kfree(old);
2758 	}
2759 	kfree(new);
2760 }
2761 
2762 static void relink_file_extents(struct new_sa_defrag_extent *new)
2763 {
2764 	struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
2765 	struct btrfs_path *path;
2766 	struct sa_defrag_extent_backref *backref;
2767 	struct sa_defrag_extent_backref *prev = NULL;
2768 	struct rb_node *node;
2769 	int ret;
2770 
2771 	path = btrfs_alloc_path();
2772 	if (!path)
2773 		return;
2774 
2775 	if (!record_extent_backrefs(path, new)) {
2776 		btrfs_free_path(path);
2777 		goto out;
2778 	}
2779 	btrfs_release_path(path);
2780 
2781 	while (1) {
2782 		node = rb_first(&new->root);
2783 		if (!node)
2784 			break;
2785 		rb_erase(node, &new->root);
2786 
2787 		backref = rb_entry(node, struct sa_defrag_extent_backref, node);
2788 
2789 		ret = relink_extent_backref(path, prev, backref);
2790 		WARN_ON(ret < 0);
2791 
2792 		kfree(prev);
2793 
2794 		if (ret == 1)
2795 			prev = backref;
2796 		else
2797 			prev = NULL;
2798 		cond_resched();
2799 	}
2800 	kfree(prev);
2801 
2802 	btrfs_free_path(path);
2803 out:
2804 	free_sa_defrag_extent(new);
2805 
2806 	atomic_dec(&fs_info->defrag_running);
2807 	wake_up(&fs_info->transaction_wait);
2808 }
2809 
2810 static struct new_sa_defrag_extent *
2811 record_old_file_extents(struct inode *inode,
2812 			struct btrfs_ordered_extent *ordered)
2813 {
2814 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2815 	struct btrfs_root *root = BTRFS_I(inode)->root;
2816 	struct btrfs_path *path;
2817 	struct btrfs_key key;
2818 	struct old_sa_defrag_extent *old;
2819 	struct new_sa_defrag_extent *new;
2820 	int ret;
2821 
2822 	new = kmalloc(sizeof(*new), GFP_NOFS);
2823 	if (!new)
2824 		return NULL;
2825 
2826 	new->inode = inode;
2827 	new->file_pos = ordered->file_offset;
2828 	new->len = ordered->len;
2829 	new->bytenr = ordered->start;
2830 	new->disk_len = ordered->disk_len;
2831 	new->compress_type = ordered->compress_type;
2832 	new->root = RB_ROOT;
2833 	INIT_LIST_HEAD(&new->head);
2834 
2835 	path = btrfs_alloc_path();
2836 	if (!path)
2837 		goto out_kfree;
2838 
2839 	key.objectid = btrfs_ino(BTRFS_I(inode));
2840 	key.type = BTRFS_EXTENT_DATA_KEY;
2841 	key.offset = new->file_pos;
2842 
2843 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2844 	if (ret < 0)
2845 		goto out_free_path;
2846 	if (ret > 0 && path->slots[0] > 0)
2847 		path->slots[0]--;
2848 
2849 	/* find out all the old extents for the file range */
2850 	while (1) {
2851 		struct btrfs_file_extent_item *extent;
2852 		struct extent_buffer *l;
2853 		int slot;
2854 		u64 num_bytes;
2855 		u64 offset;
2856 		u64 end;
2857 		u64 disk_bytenr;
2858 		u64 extent_offset;
2859 
2860 		l = path->nodes[0];
2861 		slot = path->slots[0];
2862 
2863 		if (slot >= btrfs_header_nritems(l)) {
2864 			ret = btrfs_next_leaf(root, path);
2865 			if (ret < 0)
2866 				goto out_free_path;
2867 			else if (ret > 0)
2868 				break;
2869 			continue;
2870 		}
2871 
2872 		btrfs_item_key_to_cpu(l, &key, slot);
2873 
2874 		if (key.objectid != btrfs_ino(BTRFS_I(inode)))
2875 			break;
2876 		if (key.type != BTRFS_EXTENT_DATA_KEY)
2877 			break;
2878 		if (key.offset >= new->file_pos + new->len)
2879 			break;
2880 
2881 		extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item);
2882 
2883 		num_bytes = btrfs_file_extent_num_bytes(l, extent);
2884 		if (key.offset + num_bytes < new->file_pos)
2885 			goto next;
2886 
2887 		disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent);
2888 		if (!disk_bytenr)
2889 			goto next;
2890 
2891 		extent_offset = btrfs_file_extent_offset(l, extent);
2892 
2893 		old = kmalloc(sizeof(*old), GFP_NOFS);
2894 		if (!old)
2895 			goto out_free_path;
2896 
2897 		offset = max(new->file_pos, key.offset);
2898 		end = min(new->file_pos + new->len, key.offset + num_bytes);
2899 
2900 		old->bytenr = disk_bytenr;
2901 		old->extent_offset = extent_offset;
2902 		old->offset = offset - key.offset;
2903 		old->len = end - offset;
2904 		old->new = new;
2905 		old->count = 0;
2906 		list_add_tail(&old->list, &new->head);
2907 next:
2908 		path->slots[0]++;
2909 		cond_resched();
2910 	}
2911 
2912 	btrfs_free_path(path);
2913 	atomic_inc(&fs_info->defrag_running);
2914 
2915 	return new;
2916 
2917 out_free_path:
2918 	btrfs_free_path(path);
2919 out_kfree:
2920 	free_sa_defrag_extent(new);
2921 	return NULL;
2922 }
2923 
2924 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info,
2925 					 u64 start, u64 len)
2926 {
2927 	struct btrfs_block_group_cache *cache;
2928 
2929 	cache = btrfs_lookup_block_group(fs_info, start);
2930 	ASSERT(cache);
2931 
2932 	spin_lock(&cache->lock);
2933 	cache->delalloc_bytes -= len;
2934 	spin_unlock(&cache->lock);
2935 
2936 	btrfs_put_block_group(cache);
2937 }
2938 
2939 /* as ordered data IO finishes, this gets called so we can finish
2940  * an ordered extent if the range of bytes in the file it covers are
2941  * fully written.
2942  */
2943 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
2944 {
2945 	struct inode *inode = ordered_extent->inode;
2946 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2947 	struct btrfs_root *root = BTRFS_I(inode)->root;
2948 	struct btrfs_trans_handle *trans = NULL;
2949 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2950 	struct extent_state *cached_state = NULL;
2951 	struct new_sa_defrag_extent *new = NULL;
2952 	int compress_type = 0;
2953 	int ret = 0;
2954 	u64 logical_len = ordered_extent->len;
2955 	bool nolock;
2956 	bool truncated = false;
2957 	bool range_locked = false;
2958 	bool clear_new_delalloc_bytes = false;
2959 	bool clear_reserved_extent = true;
2960 
2961 	if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
2962 	    !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) &&
2963 	    !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags))
2964 		clear_new_delalloc_bytes = true;
2965 
2966 	nolock = btrfs_is_free_space_inode(BTRFS_I(inode));
2967 
2968 	if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
2969 		ret = -EIO;
2970 		goto out;
2971 	}
2972 
2973 	btrfs_free_io_failure_record(BTRFS_I(inode),
2974 			ordered_extent->file_offset,
2975 			ordered_extent->file_offset +
2976 			ordered_extent->len - 1);
2977 
2978 	if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
2979 		truncated = true;
2980 		logical_len = ordered_extent->truncated_len;
2981 		/* Truncated the entire extent, don't bother adding */
2982 		if (!logical_len)
2983 			goto out;
2984 	}
2985 
2986 	if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
2987 		BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
2988 
2989 		/*
2990 		 * For mwrite(mmap + memset to write) case, we still reserve
2991 		 * space for NOCOW range.
2992 		 * As NOCOW won't cause a new delayed ref, just free the space
2993 		 */
2994 		btrfs_qgroup_free_data(inode, NULL, ordered_extent->file_offset,
2995 				       ordered_extent->len);
2996 		btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2997 		if (nolock)
2998 			trans = btrfs_join_transaction_nolock(root);
2999 		else
3000 			trans = btrfs_join_transaction(root);
3001 		if (IS_ERR(trans)) {
3002 			ret = PTR_ERR(trans);
3003 			trans = NULL;
3004 			goto out;
3005 		}
3006 		trans->block_rsv = &BTRFS_I(inode)->block_rsv;
3007 		ret = btrfs_update_inode_fallback(trans, root, inode);
3008 		if (ret) /* -ENOMEM or corruption */
3009 			btrfs_abort_transaction(trans, ret);
3010 		goto out;
3011 	}
3012 
3013 	range_locked = true;
3014 	lock_extent_bits(io_tree, ordered_extent->file_offset,
3015 			 ordered_extent->file_offset + ordered_extent->len - 1,
3016 			 &cached_state);
3017 
3018 	ret = test_range_bit(io_tree, ordered_extent->file_offset,
3019 			ordered_extent->file_offset + ordered_extent->len - 1,
3020 			EXTENT_DEFRAG, 0, cached_state);
3021 	if (ret) {
3022 		u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
3023 		if (0 && last_snapshot >= BTRFS_I(inode)->generation)
3024 			/* the inode is shared */
3025 			new = record_old_file_extents(inode, ordered_extent);
3026 
3027 		clear_extent_bit(io_tree, ordered_extent->file_offset,
3028 			ordered_extent->file_offset + ordered_extent->len - 1,
3029 			EXTENT_DEFRAG, 0, 0, &cached_state);
3030 	}
3031 
3032 	if (nolock)
3033 		trans = btrfs_join_transaction_nolock(root);
3034 	else
3035 		trans = btrfs_join_transaction(root);
3036 	if (IS_ERR(trans)) {
3037 		ret = PTR_ERR(trans);
3038 		trans = NULL;
3039 		goto out;
3040 	}
3041 
3042 	trans->block_rsv = &BTRFS_I(inode)->block_rsv;
3043 
3044 	if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
3045 		compress_type = ordered_extent->compress_type;
3046 	if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
3047 		BUG_ON(compress_type);
3048 		btrfs_qgroup_free_data(inode, NULL, ordered_extent->file_offset,
3049 				       ordered_extent->len);
3050 		ret = btrfs_mark_extent_written(trans, BTRFS_I(inode),
3051 						ordered_extent->file_offset,
3052 						ordered_extent->file_offset +
3053 						logical_len);
3054 	} else {
3055 		BUG_ON(root == fs_info->tree_root);
3056 		ret = insert_reserved_file_extent(trans, inode,
3057 						ordered_extent->file_offset,
3058 						ordered_extent->start,
3059 						ordered_extent->disk_len,
3060 						logical_len, logical_len,
3061 						compress_type, 0, 0,
3062 						BTRFS_FILE_EXTENT_REG);
3063 		if (!ret) {
3064 			clear_reserved_extent = false;
3065 			btrfs_release_delalloc_bytes(fs_info,
3066 						     ordered_extent->start,
3067 						     ordered_extent->disk_len);
3068 		}
3069 	}
3070 	unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
3071 			   ordered_extent->file_offset, ordered_extent->len,
3072 			   trans->transid);
3073 	if (ret < 0) {
3074 		btrfs_abort_transaction(trans, ret);
3075 		goto out;
3076 	}
3077 
3078 	ret = add_pending_csums(trans, inode, &ordered_extent->list);
3079 	if (ret) {
3080 		btrfs_abort_transaction(trans, ret);
3081 		goto out;
3082 	}
3083 
3084 	btrfs_ordered_update_i_size(inode, 0, ordered_extent);
3085 	ret = btrfs_update_inode_fallback(trans, root, inode);
3086 	if (ret) { /* -ENOMEM or corruption */
3087 		btrfs_abort_transaction(trans, ret);
3088 		goto out;
3089 	}
3090 	ret = 0;
3091 out:
3092 	if (range_locked || clear_new_delalloc_bytes) {
3093 		unsigned int clear_bits = 0;
3094 
3095 		if (range_locked)
3096 			clear_bits |= EXTENT_LOCKED;
3097 		if (clear_new_delalloc_bytes)
3098 			clear_bits |= EXTENT_DELALLOC_NEW;
3099 		clear_extent_bit(&BTRFS_I(inode)->io_tree,
3100 				 ordered_extent->file_offset,
3101 				 ordered_extent->file_offset +
3102 				 ordered_extent->len - 1,
3103 				 clear_bits,
3104 				 (clear_bits & EXTENT_LOCKED) ? 1 : 0,
3105 				 0, &cached_state);
3106 	}
3107 
3108 	if (trans)
3109 		btrfs_end_transaction(trans);
3110 
3111 	if (ret || truncated) {
3112 		u64 start, end;
3113 
3114 		if (truncated)
3115 			start = ordered_extent->file_offset + logical_len;
3116 		else
3117 			start = ordered_extent->file_offset;
3118 		end = ordered_extent->file_offset + ordered_extent->len - 1;
3119 		clear_extent_uptodate(io_tree, start, end, NULL);
3120 
3121 		/* Drop the cache for the part of the extent we didn't write. */
3122 		btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 0);
3123 
3124 		/*
3125 		 * If the ordered extent had an IOERR or something else went
3126 		 * wrong we need to return the space for this ordered extent
3127 		 * back to the allocator.  We only free the extent in the
3128 		 * truncated case if we didn't write out the extent at all.
3129 		 *
3130 		 * If we made it past insert_reserved_file_extent before we
3131 		 * errored out then we don't need to do this as the accounting
3132 		 * has already been done.
3133 		 */
3134 		if ((ret || !logical_len) &&
3135 		    clear_reserved_extent &&
3136 		    !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3137 		    !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags))
3138 			btrfs_free_reserved_extent(fs_info,
3139 						   ordered_extent->start,
3140 						   ordered_extent->disk_len, 1);
3141 	}
3142 
3143 
3144 	/*
3145 	 * This needs to be done to make sure anybody waiting knows we are done
3146 	 * updating everything for this ordered extent.
3147 	 */
3148 	btrfs_remove_ordered_extent(inode, ordered_extent);
3149 
3150 	/* for snapshot-aware defrag */
3151 	if (new) {
3152 		if (ret) {
3153 			free_sa_defrag_extent(new);
3154 			atomic_dec(&fs_info->defrag_running);
3155 		} else {
3156 			relink_file_extents(new);
3157 		}
3158 	}
3159 
3160 	/* once for us */
3161 	btrfs_put_ordered_extent(ordered_extent);
3162 	/* once for the tree */
3163 	btrfs_put_ordered_extent(ordered_extent);
3164 
3165 	return ret;
3166 }
3167 
3168 static void finish_ordered_fn(struct btrfs_work *work)
3169 {
3170 	struct btrfs_ordered_extent *ordered_extent;
3171 	ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
3172 	btrfs_finish_ordered_io(ordered_extent);
3173 }
3174 
3175 void btrfs_writepage_endio_finish_ordered(struct page *page, u64 start,
3176 					  u64 end, int uptodate)
3177 {
3178 	struct inode *inode = page->mapping->host;
3179 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3180 	struct btrfs_ordered_extent *ordered_extent = NULL;
3181 	struct btrfs_workqueue *wq;
3182 	btrfs_work_func_t func;
3183 
3184 	trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
3185 
3186 	ClearPagePrivate2(page);
3187 	if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
3188 					    end - start + 1, uptodate))
3189 		return;
3190 
3191 	if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
3192 		wq = fs_info->endio_freespace_worker;
3193 		func = btrfs_freespace_write_helper;
3194 	} else {
3195 		wq = fs_info->endio_write_workers;
3196 		func = btrfs_endio_write_helper;
3197 	}
3198 
3199 	btrfs_init_work(&ordered_extent->work, func, finish_ordered_fn, NULL,
3200 			NULL);
3201 	btrfs_queue_work(wq, &ordered_extent->work);
3202 }
3203 
3204 static int __readpage_endio_check(struct inode *inode,
3205 				  struct btrfs_io_bio *io_bio,
3206 				  int icsum, struct page *page,
3207 				  int pgoff, u64 start, size_t len)
3208 {
3209 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3210 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
3211 	char *kaddr;
3212 	u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
3213 	u8 *csum_expected;
3214 	u8 csum[BTRFS_CSUM_SIZE];
3215 
3216 	csum_expected = ((u8 *)io_bio->csum) + icsum * csum_size;
3217 
3218 	kaddr = kmap_atomic(page);
3219 	shash->tfm = fs_info->csum_shash;
3220 
3221 	crypto_shash_init(shash);
3222 	crypto_shash_update(shash, kaddr + pgoff, len);
3223 	crypto_shash_final(shash, csum);
3224 
3225 	if (memcmp(csum, csum_expected, csum_size))
3226 		goto zeroit;
3227 
3228 	kunmap_atomic(kaddr);
3229 	return 0;
3230 zeroit:
3231 	btrfs_print_data_csum_error(BTRFS_I(inode), start, csum, csum_expected,
3232 				    io_bio->mirror_num);
3233 	memset(kaddr + pgoff, 1, len);
3234 	flush_dcache_page(page);
3235 	kunmap_atomic(kaddr);
3236 	return -EIO;
3237 }
3238 
3239 /*
3240  * when reads are done, we need to check csums to verify the data is correct
3241  * if there's a match, we allow the bio to finish.  If not, the code in
3242  * extent_io.c will try to find good copies for us.
3243  */
3244 static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
3245 				      u64 phy_offset, struct page *page,
3246 				      u64 start, u64 end, int mirror)
3247 {
3248 	size_t offset = start - page_offset(page);
3249 	struct inode *inode = page->mapping->host;
3250 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3251 	struct btrfs_root *root = BTRFS_I(inode)->root;
3252 
3253 	if (PageChecked(page)) {
3254 		ClearPageChecked(page);
3255 		return 0;
3256 	}
3257 
3258 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
3259 		return 0;
3260 
3261 	if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
3262 	    test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
3263 		clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM);
3264 		return 0;
3265 	}
3266 
3267 	phy_offset >>= inode->i_sb->s_blocksize_bits;
3268 	return __readpage_endio_check(inode, io_bio, phy_offset, page, offset,
3269 				      start, (size_t)(end - start + 1));
3270 }
3271 
3272 /*
3273  * btrfs_add_delayed_iput - perform a delayed iput on @inode
3274  *
3275  * @inode: The inode we want to perform iput on
3276  *
3277  * This function uses the generic vfs_inode::i_count to track whether we should
3278  * just decrement it (in case it's > 1) or if this is the last iput then link
3279  * the inode to the delayed iput machinery. Delayed iputs are processed at
3280  * transaction commit time/superblock commit/cleaner kthread.
3281  */
3282 void btrfs_add_delayed_iput(struct inode *inode)
3283 {
3284 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3285 	struct btrfs_inode *binode = BTRFS_I(inode);
3286 
3287 	if (atomic_add_unless(&inode->i_count, -1, 1))
3288 		return;
3289 
3290 	atomic_inc(&fs_info->nr_delayed_iputs);
3291 	spin_lock(&fs_info->delayed_iput_lock);
3292 	ASSERT(list_empty(&binode->delayed_iput));
3293 	list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs);
3294 	spin_unlock(&fs_info->delayed_iput_lock);
3295 	if (!test_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags))
3296 		wake_up_process(fs_info->cleaner_kthread);
3297 }
3298 
3299 static void run_delayed_iput_locked(struct btrfs_fs_info *fs_info,
3300 				    struct btrfs_inode *inode)
3301 {
3302 	list_del_init(&inode->delayed_iput);
3303 	spin_unlock(&fs_info->delayed_iput_lock);
3304 	iput(&inode->vfs_inode);
3305 	if (atomic_dec_and_test(&fs_info->nr_delayed_iputs))
3306 		wake_up(&fs_info->delayed_iputs_wait);
3307 	spin_lock(&fs_info->delayed_iput_lock);
3308 }
3309 
3310 static void btrfs_run_delayed_iput(struct btrfs_fs_info *fs_info,
3311 				   struct btrfs_inode *inode)
3312 {
3313 	if (!list_empty(&inode->delayed_iput)) {
3314 		spin_lock(&fs_info->delayed_iput_lock);
3315 		if (!list_empty(&inode->delayed_iput))
3316 			run_delayed_iput_locked(fs_info, inode);
3317 		spin_unlock(&fs_info->delayed_iput_lock);
3318 	}
3319 }
3320 
3321 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info)
3322 {
3323 
3324 	spin_lock(&fs_info->delayed_iput_lock);
3325 	while (!list_empty(&fs_info->delayed_iputs)) {
3326 		struct btrfs_inode *inode;
3327 
3328 		inode = list_first_entry(&fs_info->delayed_iputs,
3329 				struct btrfs_inode, delayed_iput);
3330 		run_delayed_iput_locked(fs_info, inode);
3331 	}
3332 	spin_unlock(&fs_info->delayed_iput_lock);
3333 }
3334 
3335 /**
3336  * btrfs_wait_on_delayed_iputs - wait on the delayed iputs to be done running
3337  * @fs_info - the fs_info for this fs
3338  * @return - EINTR if we were killed, 0 if nothing's pending
3339  *
3340  * This will wait on any delayed iputs that are currently running with KILLABLE
3341  * set.  Once they are all done running we will return, unless we are killed in
3342  * which case we return EINTR. This helps in user operations like fallocate etc
3343  * that might get blocked on the iputs.
3344  */
3345 int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info)
3346 {
3347 	int ret = wait_event_killable(fs_info->delayed_iputs_wait,
3348 			atomic_read(&fs_info->nr_delayed_iputs) == 0);
3349 	if (ret)
3350 		return -EINTR;
3351 	return 0;
3352 }
3353 
3354 /*
3355  * This creates an orphan entry for the given inode in case something goes wrong
3356  * in the middle of an unlink.
3357  */
3358 int btrfs_orphan_add(struct btrfs_trans_handle *trans,
3359 		     struct btrfs_inode *inode)
3360 {
3361 	int ret;
3362 
3363 	ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode));
3364 	if (ret && ret != -EEXIST) {
3365 		btrfs_abort_transaction(trans, ret);
3366 		return ret;
3367 	}
3368 
3369 	return 0;
3370 }
3371 
3372 /*
3373  * We have done the delete so we can go ahead and remove the orphan item for
3374  * this particular inode.
3375  */
3376 static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3377 			    struct btrfs_inode *inode)
3378 {
3379 	return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode));
3380 }
3381 
3382 /*
3383  * this cleans up any orphans that may be left on the list from the last use
3384  * of this root.
3385  */
3386 int btrfs_orphan_cleanup(struct btrfs_root *root)
3387 {
3388 	struct btrfs_fs_info *fs_info = root->fs_info;
3389 	struct btrfs_path *path;
3390 	struct extent_buffer *leaf;
3391 	struct btrfs_key key, found_key;
3392 	struct btrfs_trans_handle *trans;
3393 	struct inode *inode;
3394 	u64 last_objectid = 0;
3395 	int ret = 0, nr_unlink = 0;
3396 
3397 	if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
3398 		return 0;
3399 
3400 	path = btrfs_alloc_path();
3401 	if (!path) {
3402 		ret = -ENOMEM;
3403 		goto out;
3404 	}
3405 	path->reada = READA_BACK;
3406 
3407 	key.objectid = BTRFS_ORPHAN_OBJECTID;
3408 	key.type = BTRFS_ORPHAN_ITEM_KEY;
3409 	key.offset = (u64)-1;
3410 
3411 	while (1) {
3412 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3413 		if (ret < 0)
3414 			goto out;
3415 
3416 		/*
3417 		 * if ret == 0 means we found what we were searching for, which
3418 		 * is weird, but possible, so only screw with path if we didn't
3419 		 * find the key and see if we have stuff that matches
3420 		 */
3421 		if (ret > 0) {
3422 			ret = 0;
3423 			if (path->slots[0] == 0)
3424 				break;
3425 			path->slots[0]--;
3426 		}
3427 
3428 		/* pull out the item */
3429 		leaf = path->nodes[0];
3430 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3431 
3432 		/* make sure the item matches what we want */
3433 		if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3434 			break;
3435 		if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
3436 			break;
3437 
3438 		/* release the path since we're done with it */
3439 		btrfs_release_path(path);
3440 
3441 		/*
3442 		 * this is where we are basically btrfs_lookup, without the
3443 		 * crossing root thing.  we store the inode number in the
3444 		 * offset of the orphan item.
3445 		 */
3446 
3447 		if (found_key.offset == last_objectid) {
3448 			btrfs_err(fs_info,
3449 				  "Error removing orphan entry, stopping orphan cleanup");
3450 			ret = -EINVAL;
3451 			goto out;
3452 		}
3453 
3454 		last_objectid = found_key.offset;
3455 
3456 		found_key.objectid = found_key.offset;
3457 		found_key.type = BTRFS_INODE_ITEM_KEY;
3458 		found_key.offset = 0;
3459 		inode = btrfs_iget(fs_info->sb, &found_key, root, NULL);
3460 		ret = PTR_ERR_OR_ZERO(inode);
3461 		if (ret && ret != -ENOENT)
3462 			goto out;
3463 
3464 		if (ret == -ENOENT && root == fs_info->tree_root) {
3465 			struct btrfs_root *dead_root;
3466 			struct btrfs_fs_info *fs_info = root->fs_info;
3467 			int is_dead_root = 0;
3468 
3469 			/*
3470 			 * this is an orphan in the tree root. Currently these
3471 			 * could come from 2 sources:
3472 			 *  a) a snapshot deletion in progress
3473 			 *  b) a free space cache inode
3474 			 * We need to distinguish those two, as the snapshot
3475 			 * orphan must not get deleted.
3476 			 * find_dead_roots already ran before us, so if this
3477 			 * is a snapshot deletion, we should find the root
3478 			 * in the dead_roots list
3479 			 */
3480 			spin_lock(&fs_info->trans_lock);
3481 			list_for_each_entry(dead_root, &fs_info->dead_roots,
3482 					    root_list) {
3483 				if (dead_root->root_key.objectid ==
3484 				    found_key.objectid) {
3485 					is_dead_root = 1;
3486 					break;
3487 				}
3488 			}
3489 			spin_unlock(&fs_info->trans_lock);
3490 			if (is_dead_root) {
3491 				/* prevent this orphan from being found again */
3492 				key.offset = found_key.objectid - 1;
3493 				continue;
3494 			}
3495 
3496 		}
3497 
3498 		/*
3499 		 * If we have an inode with links, there are a couple of
3500 		 * possibilities. Old kernels (before v3.12) used to create an
3501 		 * orphan item for truncate indicating that there were possibly
3502 		 * extent items past i_size that needed to be deleted. In v3.12,
3503 		 * truncate was changed to update i_size in sync with the extent
3504 		 * items, but the (useless) orphan item was still created. Since
3505 		 * v4.18, we don't create the orphan item for truncate at all.
3506 		 *
3507 		 * So, this item could mean that we need to do a truncate, but
3508 		 * only if this filesystem was last used on a pre-v3.12 kernel
3509 		 * and was not cleanly unmounted. The odds of that are quite
3510 		 * slim, and it's a pain to do the truncate now, so just delete
3511 		 * the orphan item.
3512 		 *
3513 		 * It's also possible that this orphan item was supposed to be
3514 		 * deleted but wasn't. The inode number may have been reused,
3515 		 * but either way, we can delete the orphan item.
3516 		 */
3517 		if (ret == -ENOENT || inode->i_nlink) {
3518 			if (!ret)
3519 				iput(inode);
3520 			trans = btrfs_start_transaction(root, 1);
3521 			if (IS_ERR(trans)) {
3522 				ret = PTR_ERR(trans);
3523 				goto out;
3524 			}
3525 			btrfs_debug(fs_info, "auto deleting %Lu",
3526 				    found_key.objectid);
3527 			ret = btrfs_del_orphan_item(trans, root,
3528 						    found_key.objectid);
3529 			btrfs_end_transaction(trans);
3530 			if (ret)
3531 				goto out;
3532 			continue;
3533 		}
3534 
3535 		nr_unlink++;
3536 
3537 		/* this will do delete_inode and everything for us */
3538 		iput(inode);
3539 	}
3540 	/* release the path since we're done with it */
3541 	btrfs_release_path(path);
3542 
3543 	root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3544 
3545 	if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
3546 		trans = btrfs_join_transaction(root);
3547 		if (!IS_ERR(trans))
3548 			btrfs_end_transaction(trans);
3549 	}
3550 
3551 	if (nr_unlink)
3552 		btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink);
3553 
3554 out:
3555 	if (ret)
3556 		btrfs_err(fs_info, "could not do orphan cleanup %d", ret);
3557 	btrfs_free_path(path);
3558 	return ret;
3559 }
3560 
3561 /*
3562  * very simple check to peek ahead in the leaf looking for xattrs.  If we
3563  * don't find any xattrs, we know there can't be any acls.
3564  *
3565  * slot is the slot the inode is in, objectid is the objectid of the inode
3566  */
3567 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
3568 					  int slot, u64 objectid,
3569 					  int *first_xattr_slot)
3570 {
3571 	u32 nritems = btrfs_header_nritems(leaf);
3572 	struct btrfs_key found_key;
3573 	static u64 xattr_access = 0;
3574 	static u64 xattr_default = 0;
3575 	int scanned = 0;
3576 
3577 	if (!xattr_access) {
3578 		xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
3579 					strlen(XATTR_NAME_POSIX_ACL_ACCESS));
3580 		xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
3581 					strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
3582 	}
3583 
3584 	slot++;
3585 	*first_xattr_slot = -1;
3586 	while (slot < nritems) {
3587 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3588 
3589 		/* we found a different objectid, there must not be acls */
3590 		if (found_key.objectid != objectid)
3591 			return 0;
3592 
3593 		/* we found an xattr, assume we've got an acl */
3594 		if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
3595 			if (*first_xattr_slot == -1)
3596 				*first_xattr_slot = slot;
3597 			if (found_key.offset == xattr_access ||
3598 			    found_key.offset == xattr_default)
3599 				return 1;
3600 		}
3601 
3602 		/*
3603 		 * we found a key greater than an xattr key, there can't
3604 		 * be any acls later on
3605 		 */
3606 		if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3607 			return 0;
3608 
3609 		slot++;
3610 		scanned++;
3611 
3612 		/*
3613 		 * it goes inode, inode backrefs, xattrs, extents,
3614 		 * so if there are a ton of hard links to an inode there can
3615 		 * be a lot of backrefs.  Don't waste time searching too hard,
3616 		 * this is just an optimization
3617 		 */
3618 		if (scanned >= 8)
3619 			break;
3620 	}
3621 	/* we hit the end of the leaf before we found an xattr or
3622 	 * something larger than an xattr.  We have to assume the inode
3623 	 * has acls
3624 	 */
3625 	if (*first_xattr_slot == -1)
3626 		*first_xattr_slot = slot;
3627 	return 1;
3628 }
3629 
3630 /*
3631  * read an inode from the btree into the in-memory inode
3632  */
3633 static int btrfs_read_locked_inode(struct inode *inode,
3634 				   struct btrfs_path *in_path)
3635 {
3636 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3637 	struct btrfs_path *path = in_path;
3638 	struct extent_buffer *leaf;
3639 	struct btrfs_inode_item *inode_item;
3640 	struct btrfs_root *root = BTRFS_I(inode)->root;
3641 	struct btrfs_key location;
3642 	unsigned long ptr;
3643 	int maybe_acls;
3644 	u32 rdev;
3645 	int ret;
3646 	bool filled = false;
3647 	int first_xattr_slot;
3648 
3649 	ret = btrfs_fill_inode(inode, &rdev);
3650 	if (!ret)
3651 		filled = true;
3652 
3653 	if (!path) {
3654 		path = btrfs_alloc_path();
3655 		if (!path)
3656 			return -ENOMEM;
3657 	}
3658 
3659 	memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
3660 
3661 	ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
3662 	if (ret) {
3663 		if (path != in_path)
3664 			btrfs_free_path(path);
3665 		return ret;
3666 	}
3667 
3668 	leaf = path->nodes[0];
3669 
3670 	if (filled)
3671 		goto cache_index;
3672 
3673 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
3674 				    struct btrfs_inode_item);
3675 	inode->i_mode = btrfs_inode_mode(leaf, inode_item);
3676 	set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
3677 	i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3678 	i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
3679 	btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item));
3680 
3681 	inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime);
3682 	inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime);
3683 
3684 	inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime);
3685 	inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime);
3686 
3687 	inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime);
3688 	inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime);
3689 
3690 	BTRFS_I(inode)->i_otime.tv_sec =
3691 		btrfs_timespec_sec(leaf, &inode_item->otime);
3692 	BTRFS_I(inode)->i_otime.tv_nsec =
3693 		btrfs_timespec_nsec(leaf, &inode_item->otime);
3694 
3695 	inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
3696 	BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
3697 	BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3698 
3699 	inode_set_iversion_queried(inode,
3700 				   btrfs_inode_sequence(leaf, inode_item));
3701 	inode->i_generation = BTRFS_I(inode)->generation;
3702 	inode->i_rdev = 0;
3703 	rdev = btrfs_inode_rdev(leaf, inode_item);
3704 
3705 	BTRFS_I(inode)->index_cnt = (u64)-1;
3706 	BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
3707 
3708 cache_index:
3709 	/*
3710 	 * If we were modified in the current generation and evicted from memory
3711 	 * and then re-read we need to do a full sync since we don't have any
3712 	 * idea about which extents were modified before we were evicted from
3713 	 * cache.
3714 	 *
3715 	 * This is required for both inode re-read from disk and delayed inode
3716 	 * in delayed_nodes_tree.
3717 	 */
3718 	if (BTRFS_I(inode)->last_trans == fs_info->generation)
3719 		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3720 			&BTRFS_I(inode)->runtime_flags);
3721 
3722 	/*
3723 	 * We don't persist the id of the transaction where an unlink operation
3724 	 * against the inode was last made. So here we assume the inode might
3725 	 * have been evicted, and therefore the exact value of last_unlink_trans
3726 	 * lost, and set it to last_trans to avoid metadata inconsistencies
3727 	 * between the inode and its parent if the inode is fsync'ed and the log
3728 	 * replayed. For example, in the scenario:
3729 	 *
3730 	 * touch mydir/foo
3731 	 * ln mydir/foo mydir/bar
3732 	 * sync
3733 	 * unlink mydir/bar
3734 	 * echo 2 > /proc/sys/vm/drop_caches   # evicts inode
3735 	 * xfs_io -c fsync mydir/foo
3736 	 * <power failure>
3737 	 * mount fs, triggers fsync log replay
3738 	 *
3739 	 * We must make sure that when we fsync our inode foo we also log its
3740 	 * parent inode, otherwise after log replay the parent still has the
3741 	 * dentry with the "bar" name but our inode foo has a link count of 1
3742 	 * and doesn't have an inode ref with the name "bar" anymore.
3743 	 *
3744 	 * Setting last_unlink_trans to last_trans is a pessimistic approach,
3745 	 * but it guarantees correctness at the expense of occasional full
3746 	 * transaction commits on fsync if our inode is a directory, or if our
3747 	 * inode is not a directory, logging its parent unnecessarily.
3748 	 */
3749 	BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
3750 
3751 	path->slots[0]++;
3752 	if (inode->i_nlink != 1 ||
3753 	    path->slots[0] >= btrfs_header_nritems(leaf))
3754 		goto cache_acl;
3755 
3756 	btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
3757 	if (location.objectid != btrfs_ino(BTRFS_I(inode)))
3758 		goto cache_acl;
3759 
3760 	ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3761 	if (location.type == BTRFS_INODE_REF_KEY) {
3762 		struct btrfs_inode_ref *ref;
3763 
3764 		ref = (struct btrfs_inode_ref *)ptr;
3765 		BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3766 	} else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3767 		struct btrfs_inode_extref *extref;
3768 
3769 		extref = (struct btrfs_inode_extref *)ptr;
3770 		BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3771 								     extref);
3772 	}
3773 cache_acl:
3774 	/*
3775 	 * try to precache a NULL acl entry for files that don't have
3776 	 * any xattrs or acls
3777 	 */
3778 	maybe_acls = acls_after_inode_item(leaf, path->slots[0],
3779 			btrfs_ino(BTRFS_I(inode)), &first_xattr_slot);
3780 	if (first_xattr_slot != -1) {
3781 		path->slots[0] = first_xattr_slot;
3782 		ret = btrfs_load_inode_props(inode, path);
3783 		if (ret)
3784 			btrfs_err(fs_info,
3785 				  "error loading props for ino %llu (root %llu): %d",
3786 				  btrfs_ino(BTRFS_I(inode)),
3787 				  root->root_key.objectid, ret);
3788 	}
3789 	if (path != in_path)
3790 		btrfs_free_path(path);
3791 
3792 	if (!maybe_acls)
3793 		cache_no_acl(inode);
3794 
3795 	switch (inode->i_mode & S_IFMT) {
3796 	case S_IFREG:
3797 		inode->i_mapping->a_ops = &btrfs_aops;
3798 		BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
3799 		inode->i_fop = &btrfs_file_operations;
3800 		inode->i_op = &btrfs_file_inode_operations;
3801 		break;
3802 	case S_IFDIR:
3803 		inode->i_fop = &btrfs_dir_file_operations;
3804 		inode->i_op = &btrfs_dir_inode_operations;
3805 		break;
3806 	case S_IFLNK:
3807 		inode->i_op = &btrfs_symlink_inode_operations;
3808 		inode_nohighmem(inode);
3809 		inode->i_mapping->a_ops = &btrfs_aops;
3810 		break;
3811 	default:
3812 		inode->i_op = &btrfs_special_inode_operations;
3813 		init_special_inode(inode, inode->i_mode, rdev);
3814 		break;
3815 	}
3816 
3817 	btrfs_sync_inode_flags_to_i_flags(inode);
3818 	return 0;
3819 }
3820 
3821 /*
3822  * given a leaf and an inode, copy the inode fields into the leaf
3823  */
3824 static void fill_inode_item(struct btrfs_trans_handle *trans,
3825 			    struct extent_buffer *leaf,
3826 			    struct btrfs_inode_item *item,
3827 			    struct inode *inode)
3828 {
3829 	struct btrfs_map_token token;
3830 
3831 	btrfs_init_map_token(&token);
3832 
3833 	btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3834 	btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3835 	btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size,
3836 				   &token);
3837 	btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3838 	btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3839 
3840 	btrfs_set_token_timespec_sec(leaf, &item->atime,
3841 				     inode->i_atime.tv_sec, &token);
3842 	btrfs_set_token_timespec_nsec(leaf, &item->atime,
3843 				      inode->i_atime.tv_nsec, &token);
3844 
3845 	btrfs_set_token_timespec_sec(leaf, &item->mtime,
3846 				     inode->i_mtime.tv_sec, &token);
3847 	btrfs_set_token_timespec_nsec(leaf, &item->mtime,
3848 				      inode->i_mtime.tv_nsec, &token);
3849 
3850 	btrfs_set_token_timespec_sec(leaf, &item->ctime,
3851 				     inode->i_ctime.tv_sec, &token);
3852 	btrfs_set_token_timespec_nsec(leaf, &item->ctime,
3853 				      inode->i_ctime.tv_nsec, &token);
3854 
3855 	btrfs_set_token_timespec_sec(leaf, &item->otime,
3856 				     BTRFS_I(inode)->i_otime.tv_sec, &token);
3857 	btrfs_set_token_timespec_nsec(leaf, &item->otime,
3858 				      BTRFS_I(inode)->i_otime.tv_nsec, &token);
3859 
3860 	btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3861 				     &token);
3862 	btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation,
3863 					 &token);
3864 	btrfs_set_token_inode_sequence(leaf, item, inode_peek_iversion(inode),
3865 				       &token);
3866 	btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3867 	btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3868 	btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3869 	btrfs_set_token_inode_block_group(leaf, item, 0, &token);
3870 }
3871 
3872 /*
3873  * copy everything in the in-memory inode into the btree.
3874  */
3875 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
3876 				struct btrfs_root *root, struct inode *inode)
3877 {
3878 	struct btrfs_inode_item *inode_item;
3879 	struct btrfs_path *path;
3880 	struct extent_buffer *leaf;
3881 	int ret;
3882 
3883 	path = btrfs_alloc_path();
3884 	if (!path)
3885 		return -ENOMEM;
3886 
3887 	path->leave_spinning = 1;
3888 	ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
3889 				 1);
3890 	if (ret) {
3891 		if (ret > 0)
3892 			ret = -ENOENT;
3893 		goto failed;
3894 	}
3895 
3896 	leaf = path->nodes[0];
3897 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
3898 				    struct btrfs_inode_item);
3899 
3900 	fill_inode_item(trans, leaf, inode_item, inode);
3901 	btrfs_mark_buffer_dirty(leaf);
3902 	btrfs_set_inode_last_trans(trans, inode);
3903 	ret = 0;
3904 failed:
3905 	btrfs_free_path(path);
3906 	return ret;
3907 }
3908 
3909 /*
3910  * copy everything in the in-memory inode into the btree.
3911  */
3912 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
3913 				struct btrfs_root *root, struct inode *inode)
3914 {
3915 	struct btrfs_fs_info *fs_info = root->fs_info;
3916 	int ret;
3917 
3918 	/*
3919 	 * If the inode is a free space inode, we can deadlock during commit
3920 	 * if we put it into the delayed code.
3921 	 *
3922 	 * The data relocation inode should also be directly updated
3923 	 * without delay
3924 	 */
3925 	if (!btrfs_is_free_space_inode(BTRFS_I(inode))
3926 	    && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
3927 	    && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
3928 		btrfs_update_root_times(trans, root);
3929 
3930 		ret = btrfs_delayed_update_inode(trans, root, inode);
3931 		if (!ret)
3932 			btrfs_set_inode_last_trans(trans, inode);
3933 		return ret;
3934 	}
3935 
3936 	return btrfs_update_inode_item(trans, root, inode);
3937 }
3938 
3939 noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3940 					 struct btrfs_root *root,
3941 					 struct inode *inode)
3942 {
3943 	int ret;
3944 
3945 	ret = btrfs_update_inode(trans, root, inode);
3946 	if (ret == -ENOSPC)
3947 		return btrfs_update_inode_item(trans, root, inode);
3948 	return ret;
3949 }
3950 
3951 /*
3952  * unlink helper that gets used here in inode.c and in the tree logging
3953  * recovery code.  It remove a link in a directory with a given name, and
3954  * also drops the back refs in the inode to the directory
3955  */
3956 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3957 				struct btrfs_root *root,
3958 				struct btrfs_inode *dir,
3959 				struct btrfs_inode *inode,
3960 				const char *name, int name_len)
3961 {
3962 	struct btrfs_fs_info *fs_info = root->fs_info;
3963 	struct btrfs_path *path;
3964 	int ret = 0;
3965 	struct btrfs_dir_item *di;
3966 	u64 index;
3967 	u64 ino = btrfs_ino(inode);
3968 	u64 dir_ino = btrfs_ino(dir);
3969 
3970 	path = btrfs_alloc_path();
3971 	if (!path) {
3972 		ret = -ENOMEM;
3973 		goto out;
3974 	}
3975 
3976 	path->leave_spinning = 1;
3977 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
3978 				    name, name_len, -1);
3979 	if (IS_ERR_OR_NULL(di)) {
3980 		ret = di ? PTR_ERR(di) : -ENOENT;
3981 		goto err;
3982 	}
3983 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
3984 	if (ret)
3985 		goto err;
3986 	btrfs_release_path(path);
3987 
3988 	/*
3989 	 * If we don't have dir index, we have to get it by looking up
3990 	 * the inode ref, since we get the inode ref, remove it directly,
3991 	 * it is unnecessary to do delayed deletion.
3992 	 *
3993 	 * But if we have dir index, needn't search inode ref to get it.
3994 	 * Since the inode ref is close to the inode item, it is better
3995 	 * that we delay to delete it, and just do this deletion when
3996 	 * we update the inode item.
3997 	 */
3998 	if (inode->dir_index) {
3999 		ret = btrfs_delayed_delete_inode_ref(inode);
4000 		if (!ret) {
4001 			index = inode->dir_index;
4002 			goto skip_backref;
4003 		}
4004 	}
4005 
4006 	ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
4007 				  dir_ino, &index);
4008 	if (ret) {
4009 		btrfs_info(fs_info,
4010 			"failed to delete reference to %.*s, inode %llu parent %llu",
4011 			name_len, name, ino, dir_ino);
4012 		btrfs_abort_transaction(trans, ret);
4013 		goto err;
4014 	}
4015 skip_backref:
4016 	ret = btrfs_delete_delayed_dir_index(trans, dir, index);
4017 	if (ret) {
4018 		btrfs_abort_transaction(trans, ret);
4019 		goto err;
4020 	}
4021 
4022 	ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, inode,
4023 			dir_ino);
4024 	if (ret != 0 && ret != -ENOENT) {
4025 		btrfs_abort_transaction(trans, ret);
4026 		goto err;
4027 	}
4028 
4029 	ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, dir,
4030 			index);
4031 	if (ret == -ENOENT)
4032 		ret = 0;
4033 	else if (ret)
4034 		btrfs_abort_transaction(trans, ret);
4035 
4036 	/*
4037 	 * If we have a pending delayed iput we could end up with the final iput
4038 	 * being run in btrfs-cleaner context.  If we have enough of these built
4039 	 * up we can end up burning a lot of time in btrfs-cleaner without any
4040 	 * way to throttle the unlinks.  Since we're currently holding a ref on
4041 	 * the inode we can run the delayed iput here without any issues as the
4042 	 * final iput won't be done until after we drop the ref we're currently
4043 	 * holding.
4044 	 */
4045 	btrfs_run_delayed_iput(fs_info, inode);
4046 err:
4047 	btrfs_free_path(path);
4048 	if (ret)
4049 		goto out;
4050 
4051 	btrfs_i_size_write(dir, dir->vfs_inode.i_size - name_len * 2);
4052 	inode_inc_iversion(&inode->vfs_inode);
4053 	inode_inc_iversion(&dir->vfs_inode);
4054 	inode->vfs_inode.i_ctime = dir->vfs_inode.i_mtime =
4055 		dir->vfs_inode.i_ctime = current_time(&inode->vfs_inode);
4056 	ret = btrfs_update_inode(trans, root, &dir->vfs_inode);
4057 out:
4058 	return ret;
4059 }
4060 
4061 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4062 		       struct btrfs_root *root,
4063 		       struct btrfs_inode *dir, struct btrfs_inode *inode,
4064 		       const char *name, int name_len)
4065 {
4066 	int ret;
4067 	ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
4068 	if (!ret) {
4069 		drop_nlink(&inode->vfs_inode);
4070 		ret = btrfs_update_inode(trans, root, &inode->vfs_inode);
4071 	}
4072 	return ret;
4073 }
4074 
4075 /*
4076  * helper to start transaction for unlink and rmdir.
4077  *
4078  * unlink and rmdir are special in btrfs, they do not always free space, so
4079  * if we cannot make our reservations the normal way try and see if there is
4080  * plenty of slack room in the global reserve to migrate, otherwise we cannot
4081  * allow the unlink to occur.
4082  */
4083 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
4084 {
4085 	struct btrfs_root *root = BTRFS_I(dir)->root;
4086 
4087 	/*
4088 	 * 1 for the possible orphan item
4089 	 * 1 for the dir item
4090 	 * 1 for the dir index
4091 	 * 1 for the inode ref
4092 	 * 1 for the inode
4093 	 */
4094 	return btrfs_start_transaction_fallback_global_rsv(root, 5, 5);
4095 }
4096 
4097 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4098 {
4099 	struct btrfs_root *root = BTRFS_I(dir)->root;
4100 	struct btrfs_trans_handle *trans;
4101 	struct inode *inode = d_inode(dentry);
4102 	int ret;
4103 
4104 	trans = __unlink_start_trans(dir);
4105 	if (IS_ERR(trans))
4106 		return PTR_ERR(trans);
4107 
4108 	btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4109 			0);
4110 
4111 	ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
4112 			BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4113 			dentry->d_name.len);
4114 	if (ret)
4115 		goto out;
4116 
4117 	if (inode->i_nlink == 0) {
4118 		ret = btrfs_orphan_add(trans, BTRFS_I(inode));
4119 		if (ret)
4120 			goto out;
4121 	}
4122 
4123 out:
4124 	btrfs_end_transaction(trans);
4125 	btrfs_btree_balance_dirty(root->fs_info);
4126 	return ret;
4127 }
4128 
4129 static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
4130 			       struct inode *dir, u64 objectid,
4131 			       const char *name, int name_len)
4132 {
4133 	struct btrfs_root *root = BTRFS_I(dir)->root;
4134 	struct btrfs_path *path;
4135 	struct extent_buffer *leaf;
4136 	struct btrfs_dir_item *di;
4137 	struct btrfs_key key;
4138 	u64 index;
4139 	int ret;
4140 	u64 dir_ino = btrfs_ino(BTRFS_I(dir));
4141 
4142 	path = btrfs_alloc_path();
4143 	if (!path)
4144 		return -ENOMEM;
4145 
4146 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4147 				   name, name_len, -1);
4148 	if (IS_ERR_OR_NULL(di)) {
4149 		ret = di ? PTR_ERR(di) : -ENOENT;
4150 		goto out;
4151 	}
4152 
4153 	leaf = path->nodes[0];
4154 	btrfs_dir_item_key_to_cpu(leaf, di, &key);
4155 	WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4156 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
4157 	if (ret) {
4158 		btrfs_abort_transaction(trans, ret);
4159 		goto out;
4160 	}
4161 	btrfs_release_path(path);
4162 
4163 	ret = btrfs_del_root_ref(trans, objectid, root->root_key.objectid,
4164 				 dir_ino, &index, name, name_len);
4165 	if (ret < 0) {
4166 		if (ret != -ENOENT) {
4167 			btrfs_abort_transaction(trans, ret);
4168 			goto out;
4169 		}
4170 		di = btrfs_search_dir_index_item(root, path, dir_ino,
4171 						 name, name_len);
4172 		if (IS_ERR_OR_NULL(di)) {
4173 			if (!di)
4174 				ret = -ENOENT;
4175 			else
4176 				ret = PTR_ERR(di);
4177 			btrfs_abort_transaction(trans, ret);
4178 			goto out;
4179 		}
4180 
4181 		leaf = path->nodes[0];
4182 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4183 		index = key.offset;
4184 	}
4185 	btrfs_release_path(path);
4186 
4187 	ret = btrfs_delete_delayed_dir_index(trans, BTRFS_I(dir), index);
4188 	if (ret) {
4189 		btrfs_abort_transaction(trans, ret);
4190 		goto out;
4191 	}
4192 
4193 	btrfs_i_size_write(BTRFS_I(dir), dir->i_size - name_len * 2);
4194 	inode_inc_iversion(dir);
4195 	dir->i_mtime = dir->i_ctime = current_time(dir);
4196 	ret = btrfs_update_inode_fallback(trans, root, dir);
4197 	if (ret)
4198 		btrfs_abort_transaction(trans, ret);
4199 out:
4200 	btrfs_free_path(path);
4201 	return ret;
4202 }
4203 
4204 /*
4205  * Helper to check if the subvolume references other subvolumes or if it's
4206  * default.
4207  */
4208 static noinline int may_destroy_subvol(struct btrfs_root *root)
4209 {
4210 	struct btrfs_fs_info *fs_info = root->fs_info;
4211 	struct btrfs_path *path;
4212 	struct btrfs_dir_item *di;
4213 	struct btrfs_key key;
4214 	u64 dir_id;
4215 	int ret;
4216 
4217 	path = btrfs_alloc_path();
4218 	if (!path)
4219 		return -ENOMEM;
4220 
4221 	/* Make sure this root isn't set as the default subvol */
4222 	dir_id = btrfs_super_root_dir(fs_info->super_copy);
4223 	di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path,
4224 				   dir_id, "default", 7, 0);
4225 	if (di && !IS_ERR(di)) {
4226 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
4227 		if (key.objectid == root->root_key.objectid) {
4228 			ret = -EPERM;
4229 			btrfs_err(fs_info,
4230 				  "deleting default subvolume %llu is not allowed",
4231 				  key.objectid);
4232 			goto out;
4233 		}
4234 		btrfs_release_path(path);
4235 	}
4236 
4237 	key.objectid = root->root_key.objectid;
4238 	key.type = BTRFS_ROOT_REF_KEY;
4239 	key.offset = (u64)-1;
4240 
4241 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4242 	if (ret < 0)
4243 		goto out;
4244 	BUG_ON(ret == 0);
4245 
4246 	ret = 0;
4247 	if (path->slots[0] > 0) {
4248 		path->slots[0]--;
4249 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
4250 		if (key.objectid == root->root_key.objectid &&
4251 		    key.type == BTRFS_ROOT_REF_KEY)
4252 			ret = -ENOTEMPTY;
4253 	}
4254 out:
4255 	btrfs_free_path(path);
4256 	return ret;
4257 }
4258 
4259 /* Delete all dentries for inodes belonging to the root */
4260 static void btrfs_prune_dentries(struct btrfs_root *root)
4261 {
4262 	struct btrfs_fs_info *fs_info = root->fs_info;
4263 	struct rb_node *node;
4264 	struct rb_node *prev;
4265 	struct btrfs_inode *entry;
4266 	struct inode *inode;
4267 	u64 objectid = 0;
4268 
4269 	if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
4270 		WARN_ON(btrfs_root_refs(&root->root_item) != 0);
4271 
4272 	spin_lock(&root->inode_lock);
4273 again:
4274 	node = root->inode_tree.rb_node;
4275 	prev = NULL;
4276 	while (node) {
4277 		prev = node;
4278 		entry = rb_entry(node, struct btrfs_inode, rb_node);
4279 
4280 		if (objectid < btrfs_ino(entry))
4281 			node = node->rb_left;
4282 		else if (objectid > btrfs_ino(entry))
4283 			node = node->rb_right;
4284 		else
4285 			break;
4286 	}
4287 	if (!node) {
4288 		while (prev) {
4289 			entry = rb_entry(prev, struct btrfs_inode, rb_node);
4290 			if (objectid <= btrfs_ino(entry)) {
4291 				node = prev;
4292 				break;
4293 			}
4294 			prev = rb_next(prev);
4295 		}
4296 	}
4297 	while (node) {
4298 		entry = rb_entry(node, struct btrfs_inode, rb_node);
4299 		objectid = btrfs_ino(entry) + 1;
4300 		inode = igrab(&entry->vfs_inode);
4301 		if (inode) {
4302 			spin_unlock(&root->inode_lock);
4303 			if (atomic_read(&inode->i_count) > 1)
4304 				d_prune_aliases(inode);
4305 			/*
4306 			 * btrfs_drop_inode will have it removed from the inode
4307 			 * cache when its usage count hits zero.
4308 			 */
4309 			iput(inode);
4310 			cond_resched();
4311 			spin_lock(&root->inode_lock);
4312 			goto again;
4313 		}
4314 
4315 		if (cond_resched_lock(&root->inode_lock))
4316 			goto again;
4317 
4318 		node = rb_next(node);
4319 	}
4320 	spin_unlock(&root->inode_lock);
4321 }
4322 
4323 int btrfs_delete_subvolume(struct inode *dir, struct dentry *dentry)
4324 {
4325 	struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
4326 	struct btrfs_root *root = BTRFS_I(dir)->root;
4327 	struct inode *inode = d_inode(dentry);
4328 	struct btrfs_root *dest = BTRFS_I(inode)->root;
4329 	struct btrfs_trans_handle *trans;
4330 	struct btrfs_block_rsv block_rsv;
4331 	u64 root_flags;
4332 	int ret;
4333 	int err;
4334 
4335 	/*
4336 	 * Don't allow to delete a subvolume with send in progress. This is
4337 	 * inside the inode lock so the error handling that has to drop the bit
4338 	 * again is not run concurrently.
4339 	 */
4340 	spin_lock(&dest->root_item_lock);
4341 	if (dest->send_in_progress) {
4342 		spin_unlock(&dest->root_item_lock);
4343 		btrfs_warn(fs_info,
4344 			   "attempt to delete subvolume %llu during send",
4345 			   dest->root_key.objectid);
4346 		return -EPERM;
4347 	}
4348 	root_flags = btrfs_root_flags(&dest->root_item);
4349 	btrfs_set_root_flags(&dest->root_item,
4350 			     root_flags | BTRFS_ROOT_SUBVOL_DEAD);
4351 	spin_unlock(&dest->root_item_lock);
4352 
4353 	down_write(&fs_info->subvol_sem);
4354 
4355 	err = may_destroy_subvol(dest);
4356 	if (err)
4357 		goto out_up_write;
4358 
4359 	btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
4360 	/*
4361 	 * One for dir inode,
4362 	 * two for dir entries,
4363 	 * two for root ref/backref.
4364 	 */
4365 	err = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true);
4366 	if (err)
4367 		goto out_up_write;
4368 
4369 	trans = btrfs_start_transaction(root, 0);
4370 	if (IS_ERR(trans)) {
4371 		err = PTR_ERR(trans);
4372 		goto out_release;
4373 	}
4374 	trans->block_rsv = &block_rsv;
4375 	trans->bytes_reserved = block_rsv.size;
4376 
4377 	btrfs_record_snapshot_destroy(trans, BTRFS_I(dir));
4378 
4379 	ret = btrfs_unlink_subvol(trans, dir, dest->root_key.objectid,
4380 				  dentry->d_name.name, dentry->d_name.len);
4381 	if (ret) {
4382 		err = ret;
4383 		btrfs_abort_transaction(trans, ret);
4384 		goto out_end_trans;
4385 	}
4386 
4387 	btrfs_record_root_in_trans(trans, dest);
4388 
4389 	memset(&dest->root_item.drop_progress, 0,
4390 		sizeof(dest->root_item.drop_progress));
4391 	dest->root_item.drop_level = 0;
4392 	btrfs_set_root_refs(&dest->root_item, 0);
4393 
4394 	if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) {
4395 		ret = btrfs_insert_orphan_item(trans,
4396 					fs_info->tree_root,
4397 					dest->root_key.objectid);
4398 		if (ret) {
4399 			btrfs_abort_transaction(trans, ret);
4400 			err = ret;
4401 			goto out_end_trans;
4402 		}
4403 	}
4404 
4405 	ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid,
4406 				  BTRFS_UUID_KEY_SUBVOL,
4407 				  dest->root_key.objectid);
4408 	if (ret && ret != -ENOENT) {
4409 		btrfs_abort_transaction(trans, ret);
4410 		err = ret;
4411 		goto out_end_trans;
4412 	}
4413 	if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) {
4414 		ret = btrfs_uuid_tree_remove(trans,
4415 					  dest->root_item.received_uuid,
4416 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4417 					  dest->root_key.objectid);
4418 		if (ret && ret != -ENOENT) {
4419 			btrfs_abort_transaction(trans, ret);
4420 			err = ret;
4421 			goto out_end_trans;
4422 		}
4423 	}
4424 
4425 out_end_trans:
4426 	trans->block_rsv = NULL;
4427 	trans->bytes_reserved = 0;
4428 	ret = btrfs_end_transaction(trans);
4429 	if (ret && !err)
4430 		err = ret;
4431 	inode->i_flags |= S_DEAD;
4432 out_release:
4433 	btrfs_subvolume_release_metadata(fs_info, &block_rsv);
4434 out_up_write:
4435 	up_write(&fs_info->subvol_sem);
4436 	if (err) {
4437 		spin_lock(&dest->root_item_lock);
4438 		root_flags = btrfs_root_flags(&dest->root_item);
4439 		btrfs_set_root_flags(&dest->root_item,
4440 				root_flags & ~BTRFS_ROOT_SUBVOL_DEAD);
4441 		spin_unlock(&dest->root_item_lock);
4442 	} else {
4443 		d_invalidate(dentry);
4444 		btrfs_prune_dentries(dest);
4445 		ASSERT(dest->send_in_progress == 0);
4446 
4447 		/* the last ref */
4448 		if (dest->ino_cache_inode) {
4449 			iput(dest->ino_cache_inode);
4450 			dest->ino_cache_inode = NULL;
4451 		}
4452 	}
4453 
4454 	return err;
4455 }
4456 
4457 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4458 {
4459 	struct inode *inode = d_inode(dentry);
4460 	int err = 0;
4461 	struct btrfs_root *root = BTRFS_I(dir)->root;
4462 	struct btrfs_trans_handle *trans;
4463 	u64 last_unlink_trans;
4464 
4465 	if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
4466 		return -ENOTEMPTY;
4467 	if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID)
4468 		return btrfs_delete_subvolume(dir, dentry);
4469 
4470 	trans = __unlink_start_trans(dir);
4471 	if (IS_ERR(trans))
4472 		return PTR_ERR(trans);
4473 
4474 	if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4475 		err = btrfs_unlink_subvol(trans, dir,
4476 					  BTRFS_I(inode)->location.objectid,
4477 					  dentry->d_name.name,
4478 					  dentry->d_name.len);
4479 		goto out;
4480 	}
4481 
4482 	err = btrfs_orphan_add(trans, BTRFS_I(inode));
4483 	if (err)
4484 		goto out;
4485 
4486 	last_unlink_trans = BTRFS_I(inode)->last_unlink_trans;
4487 
4488 	/* now the directory is empty */
4489 	err = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
4490 			BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4491 			dentry->d_name.len);
4492 	if (!err) {
4493 		btrfs_i_size_write(BTRFS_I(inode), 0);
4494 		/*
4495 		 * Propagate the last_unlink_trans value of the deleted dir to
4496 		 * its parent directory. This is to prevent an unrecoverable
4497 		 * log tree in the case we do something like this:
4498 		 * 1) create dir foo
4499 		 * 2) create snapshot under dir foo
4500 		 * 3) delete the snapshot
4501 		 * 4) rmdir foo
4502 		 * 5) mkdir foo
4503 		 * 6) fsync foo or some file inside foo
4504 		 */
4505 		if (last_unlink_trans >= trans->transid)
4506 			BTRFS_I(dir)->last_unlink_trans = last_unlink_trans;
4507 	}
4508 out:
4509 	btrfs_end_transaction(trans);
4510 	btrfs_btree_balance_dirty(root->fs_info);
4511 
4512 	return err;
4513 }
4514 
4515 /*
4516  * Return this if we need to call truncate_block for the last bit of the
4517  * truncate.
4518  */
4519 #define NEED_TRUNCATE_BLOCK 1
4520 
4521 /*
4522  * this can truncate away extent items, csum items and directory items.
4523  * It starts at a high offset and removes keys until it can't find
4524  * any higher than new_size
4525  *
4526  * csum items that cross the new i_size are truncated to the new size
4527  * as well.
4528  *
4529  * min_type is the minimum key type to truncate down to.  If set to 0, this
4530  * will kill all the items on this inode, including the INODE_ITEM_KEY.
4531  */
4532 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
4533 			       struct btrfs_root *root,
4534 			       struct inode *inode,
4535 			       u64 new_size, u32 min_type)
4536 {
4537 	struct btrfs_fs_info *fs_info = root->fs_info;
4538 	struct btrfs_path *path;
4539 	struct extent_buffer *leaf;
4540 	struct btrfs_file_extent_item *fi;
4541 	struct btrfs_key key;
4542 	struct btrfs_key found_key;
4543 	u64 extent_start = 0;
4544 	u64 extent_num_bytes = 0;
4545 	u64 extent_offset = 0;
4546 	u64 item_end = 0;
4547 	u64 last_size = new_size;
4548 	u32 found_type = (u8)-1;
4549 	int found_extent;
4550 	int del_item;
4551 	int pending_del_nr = 0;
4552 	int pending_del_slot = 0;
4553 	int extent_type = -1;
4554 	int ret;
4555 	u64 ino = btrfs_ino(BTRFS_I(inode));
4556 	u64 bytes_deleted = 0;
4557 	bool be_nice = false;
4558 	bool should_throttle = false;
4559 
4560 	BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
4561 
4562 	/*
4563 	 * for non-free space inodes and ref cows, we want to back off from
4564 	 * time to time
4565 	 */
4566 	if (!btrfs_is_free_space_inode(BTRFS_I(inode)) &&
4567 	    test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4568 		be_nice = true;
4569 
4570 	path = btrfs_alloc_path();
4571 	if (!path)
4572 		return -ENOMEM;
4573 	path->reada = READA_BACK;
4574 
4575 	/*
4576 	 * We want to drop from the next block forward in case this new size is
4577 	 * not block aligned since we will be keeping the last block of the
4578 	 * extent just the way it is.
4579 	 */
4580 	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4581 	    root == fs_info->tree_root)
4582 		btrfs_drop_extent_cache(BTRFS_I(inode), ALIGN(new_size,
4583 					fs_info->sectorsize),
4584 					(u64)-1, 0);
4585 
4586 	/*
4587 	 * This function is also used to drop the items in the log tree before
4588 	 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
4589 	 * it is used to drop the logged items. So we shouldn't kill the delayed
4590 	 * items.
4591 	 */
4592 	if (min_type == 0 && root == BTRFS_I(inode)->root)
4593 		btrfs_kill_delayed_inode_items(BTRFS_I(inode));
4594 
4595 	key.objectid = ino;
4596 	key.offset = (u64)-1;
4597 	key.type = (u8)-1;
4598 
4599 search_again:
4600 	/*
4601 	 * with a 16K leaf size and 128MB extents, you can actually queue
4602 	 * up a huge file in a single leaf.  Most of the time that
4603 	 * bytes_deleted is > 0, it will be huge by the time we get here
4604 	 */
4605 	if (be_nice && bytes_deleted > SZ_32M &&
4606 	    btrfs_should_end_transaction(trans)) {
4607 		ret = -EAGAIN;
4608 		goto out;
4609 	}
4610 
4611 	path->leave_spinning = 1;
4612 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
4613 	if (ret < 0)
4614 		goto out;
4615 
4616 	if (ret > 0) {
4617 		ret = 0;
4618 		/* there are no items in the tree for us to truncate, we're
4619 		 * done
4620 		 */
4621 		if (path->slots[0] == 0)
4622 			goto out;
4623 		path->slots[0]--;
4624 	}
4625 
4626 	while (1) {
4627 		fi = NULL;
4628 		leaf = path->nodes[0];
4629 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4630 		found_type = found_key.type;
4631 
4632 		if (found_key.objectid != ino)
4633 			break;
4634 
4635 		if (found_type < min_type)
4636 			break;
4637 
4638 		item_end = found_key.offset;
4639 		if (found_type == BTRFS_EXTENT_DATA_KEY) {
4640 			fi = btrfs_item_ptr(leaf, path->slots[0],
4641 					    struct btrfs_file_extent_item);
4642 			extent_type = btrfs_file_extent_type(leaf, fi);
4643 			if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4644 				item_end +=
4645 				    btrfs_file_extent_num_bytes(leaf, fi);
4646 
4647 				trace_btrfs_truncate_show_fi_regular(
4648 					BTRFS_I(inode), leaf, fi,
4649 					found_key.offset);
4650 			} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4651 				item_end += btrfs_file_extent_ram_bytes(leaf,
4652 									fi);
4653 
4654 				trace_btrfs_truncate_show_fi_inline(
4655 					BTRFS_I(inode), leaf, fi, path->slots[0],
4656 					found_key.offset);
4657 			}
4658 			item_end--;
4659 		}
4660 		if (found_type > min_type) {
4661 			del_item = 1;
4662 		} else {
4663 			if (item_end < new_size)
4664 				break;
4665 			if (found_key.offset >= new_size)
4666 				del_item = 1;
4667 			else
4668 				del_item = 0;
4669 		}
4670 		found_extent = 0;
4671 		/* FIXME, shrink the extent if the ref count is only 1 */
4672 		if (found_type != BTRFS_EXTENT_DATA_KEY)
4673 			goto delete;
4674 
4675 		if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4676 			u64 num_dec;
4677 			extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
4678 			if (!del_item) {
4679 				u64 orig_num_bytes =
4680 					btrfs_file_extent_num_bytes(leaf, fi);
4681 				extent_num_bytes = ALIGN(new_size -
4682 						found_key.offset,
4683 						fs_info->sectorsize);
4684 				btrfs_set_file_extent_num_bytes(leaf, fi,
4685 							 extent_num_bytes);
4686 				num_dec = (orig_num_bytes -
4687 					   extent_num_bytes);
4688 				if (test_bit(BTRFS_ROOT_REF_COWS,
4689 					     &root->state) &&
4690 				    extent_start != 0)
4691 					inode_sub_bytes(inode, num_dec);
4692 				btrfs_mark_buffer_dirty(leaf);
4693 			} else {
4694 				extent_num_bytes =
4695 					btrfs_file_extent_disk_num_bytes(leaf,
4696 									 fi);
4697 				extent_offset = found_key.offset -
4698 					btrfs_file_extent_offset(leaf, fi);
4699 
4700 				/* FIXME blocksize != 4096 */
4701 				num_dec = btrfs_file_extent_num_bytes(leaf, fi);
4702 				if (extent_start != 0) {
4703 					found_extent = 1;
4704 					if (test_bit(BTRFS_ROOT_REF_COWS,
4705 						     &root->state))
4706 						inode_sub_bytes(inode, num_dec);
4707 				}
4708 			}
4709 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4710 			/*
4711 			 * we can't truncate inline items that have had
4712 			 * special encodings
4713 			 */
4714 			if (!del_item &&
4715 			    btrfs_file_extent_encryption(leaf, fi) == 0 &&
4716 			    btrfs_file_extent_other_encoding(leaf, fi) == 0 &&
4717 			    btrfs_file_extent_compression(leaf, fi) == 0) {
4718 				u32 size = (u32)(new_size - found_key.offset);
4719 
4720 				btrfs_set_file_extent_ram_bytes(leaf, fi, size);
4721 				size = btrfs_file_extent_calc_inline_size(size);
4722 				btrfs_truncate_item(path, size, 1);
4723 			} else if (!del_item) {
4724 				/*
4725 				 * We have to bail so the last_size is set to
4726 				 * just before this extent.
4727 				 */
4728 				ret = NEED_TRUNCATE_BLOCK;
4729 				break;
4730 			}
4731 
4732 			if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4733 				inode_sub_bytes(inode, item_end + 1 - new_size);
4734 		}
4735 delete:
4736 		if (del_item)
4737 			last_size = found_key.offset;
4738 		else
4739 			last_size = new_size;
4740 		if (del_item) {
4741 			if (!pending_del_nr) {
4742 				/* no pending yet, add ourselves */
4743 				pending_del_slot = path->slots[0];
4744 				pending_del_nr = 1;
4745 			} else if (pending_del_nr &&
4746 				   path->slots[0] + 1 == pending_del_slot) {
4747 				/* hop on the pending chunk */
4748 				pending_del_nr++;
4749 				pending_del_slot = path->slots[0];
4750 			} else {
4751 				BUG();
4752 			}
4753 		} else {
4754 			break;
4755 		}
4756 		should_throttle = false;
4757 
4758 		if (found_extent &&
4759 		    (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4760 		     root == fs_info->tree_root)) {
4761 			struct btrfs_ref ref = { 0 };
4762 
4763 			btrfs_set_path_blocking(path);
4764 			bytes_deleted += extent_num_bytes;
4765 
4766 			btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF,
4767 					extent_start, extent_num_bytes, 0);
4768 			ref.real_root = root->root_key.objectid;
4769 			btrfs_init_data_ref(&ref, btrfs_header_owner(leaf),
4770 					ino, extent_offset);
4771 			ret = btrfs_free_extent(trans, &ref);
4772 			if (ret) {
4773 				btrfs_abort_transaction(trans, ret);
4774 				break;
4775 			}
4776 			if (be_nice) {
4777 				if (btrfs_should_throttle_delayed_refs(trans))
4778 					should_throttle = true;
4779 			}
4780 		}
4781 
4782 		if (found_type == BTRFS_INODE_ITEM_KEY)
4783 			break;
4784 
4785 		if (path->slots[0] == 0 ||
4786 		    path->slots[0] != pending_del_slot ||
4787 		    should_throttle) {
4788 			if (pending_del_nr) {
4789 				ret = btrfs_del_items(trans, root, path,
4790 						pending_del_slot,
4791 						pending_del_nr);
4792 				if (ret) {
4793 					btrfs_abort_transaction(trans, ret);
4794 					break;
4795 				}
4796 				pending_del_nr = 0;
4797 			}
4798 			btrfs_release_path(path);
4799 
4800 			/*
4801 			 * We can generate a lot of delayed refs, so we need to
4802 			 * throttle every once and a while and make sure we're
4803 			 * adding enough space to keep up with the work we are
4804 			 * generating.  Since we hold a transaction here we
4805 			 * can't flush, and we don't want to FLUSH_LIMIT because
4806 			 * we could have generated too many delayed refs to
4807 			 * actually allocate, so just bail if we're short and
4808 			 * let the normal reservation dance happen higher up.
4809 			 */
4810 			if (should_throttle) {
4811 				ret = btrfs_delayed_refs_rsv_refill(fs_info,
4812 							BTRFS_RESERVE_NO_FLUSH);
4813 				if (ret) {
4814 					ret = -EAGAIN;
4815 					break;
4816 				}
4817 			}
4818 			goto search_again;
4819 		} else {
4820 			path->slots[0]--;
4821 		}
4822 	}
4823 out:
4824 	if (ret >= 0 && pending_del_nr) {
4825 		int err;
4826 
4827 		err = btrfs_del_items(trans, root, path, pending_del_slot,
4828 				      pending_del_nr);
4829 		if (err) {
4830 			btrfs_abort_transaction(trans, err);
4831 			ret = err;
4832 		}
4833 	}
4834 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
4835 		ASSERT(last_size >= new_size);
4836 		if (!ret && last_size > new_size)
4837 			last_size = new_size;
4838 		btrfs_ordered_update_i_size(inode, last_size, NULL);
4839 	}
4840 
4841 	btrfs_free_path(path);
4842 	return ret;
4843 }
4844 
4845 /*
4846  * btrfs_truncate_block - read, zero a chunk and write a block
4847  * @inode - inode that we're zeroing
4848  * @from - the offset to start zeroing
4849  * @len - the length to zero, 0 to zero the entire range respective to the
4850  *	offset
4851  * @front - zero up to the offset instead of from the offset on
4852  *
4853  * This will find the block for the "from" offset and cow the block and zero the
4854  * part we want to zero.  This is used with truncate and hole punching.
4855  */
4856 int btrfs_truncate_block(struct inode *inode, loff_t from, loff_t len,
4857 			int front)
4858 {
4859 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4860 	struct address_space *mapping = inode->i_mapping;
4861 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4862 	struct btrfs_ordered_extent *ordered;
4863 	struct extent_state *cached_state = NULL;
4864 	struct extent_changeset *data_reserved = NULL;
4865 	char *kaddr;
4866 	u32 blocksize = fs_info->sectorsize;
4867 	pgoff_t index = from >> PAGE_SHIFT;
4868 	unsigned offset = from & (blocksize - 1);
4869 	struct page *page;
4870 	gfp_t mask = btrfs_alloc_write_mask(mapping);
4871 	int ret = 0;
4872 	u64 block_start;
4873 	u64 block_end;
4874 
4875 	if (IS_ALIGNED(offset, blocksize) &&
4876 	    (!len || IS_ALIGNED(len, blocksize)))
4877 		goto out;
4878 
4879 	block_start = round_down(from, blocksize);
4880 	block_end = block_start + blocksize - 1;
4881 
4882 	ret = btrfs_delalloc_reserve_space(inode, &data_reserved,
4883 					   block_start, blocksize);
4884 	if (ret)
4885 		goto out;
4886 
4887 again:
4888 	page = find_or_create_page(mapping, index, mask);
4889 	if (!page) {
4890 		btrfs_delalloc_release_space(inode, data_reserved,
4891 					     block_start, blocksize, true);
4892 		btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize, true);
4893 		ret = -ENOMEM;
4894 		goto out;
4895 	}
4896 
4897 	if (!PageUptodate(page)) {
4898 		ret = btrfs_readpage(NULL, page);
4899 		lock_page(page);
4900 		if (page->mapping != mapping) {
4901 			unlock_page(page);
4902 			put_page(page);
4903 			goto again;
4904 		}
4905 		if (!PageUptodate(page)) {
4906 			ret = -EIO;
4907 			goto out_unlock;
4908 		}
4909 	}
4910 	wait_on_page_writeback(page);
4911 
4912 	lock_extent_bits(io_tree, block_start, block_end, &cached_state);
4913 	set_page_extent_mapped(page);
4914 
4915 	ordered = btrfs_lookup_ordered_extent(inode, block_start);
4916 	if (ordered) {
4917 		unlock_extent_cached(io_tree, block_start, block_end,
4918 				     &cached_state);
4919 		unlock_page(page);
4920 		put_page(page);
4921 		btrfs_start_ordered_extent(inode, ordered, 1);
4922 		btrfs_put_ordered_extent(ordered);
4923 		goto again;
4924 	}
4925 
4926 	clear_extent_bit(&BTRFS_I(inode)->io_tree, block_start, block_end,
4927 			  EXTENT_DIRTY | EXTENT_DELALLOC |
4928 			  EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
4929 			  0, 0, &cached_state);
4930 
4931 	ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0,
4932 					&cached_state, 0);
4933 	if (ret) {
4934 		unlock_extent_cached(io_tree, block_start, block_end,
4935 				     &cached_state);
4936 		goto out_unlock;
4937 	}
4938 
4939 	if (offset != blocksize) {
4940 		if (!len)
4941 			len = blocksize - offset;
4942 		kaddr = kmap(page);
4943 		if (front)
4944 			memset(kaddr + (block_start - page_offset(page)),
4945 				0, offset);
4946 		else
4947 			memset(kaddr + (block_start - page_offset(page)) +  offset,
4948 				0, len);
4949 		flush_dcache_page(page);
4950 		kunmap(page);
4951 	}
4952 	ClearPageChecked(page);
4953 	set_page_dirty(page);
4954 	unlock_extent_cached(io_tree, block_start, block_end, &cached_state);
4955 
4956 out_unlock:
4957 	if (ret)
4958 		btrfs_delalloc_release_space(inode, data_reserved, block_start,
4959 					     blocksize, true);
4960 	btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize, (ret != 0));
4961 	unlock_page(page);
4962 	put_page(page);
4963 out:
4964 	extent_changeset_free(data_reserved);
4965 	return ret;
4966 }
4967 
4968 static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode,
4969 			     u64 offset, u64 len)
4970 {
4971 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4972 	struct btrfs_trans_handle *trans;
4973 	int ret;
4974 
4975 	/*
4976 	 * Still need to make sure the inode looks like it's been updated so
4977 	 * that any holes get logged if we fsync.
4978 	 */
4979 	if (btrfs_fs_incompat(fs_info, NO_HOLES)) {
4980 		BTRFS_I(inode)->last_trans = fs_info->generation;
4981 		BTRFS_I(inode)->last_sub_trans = root->log_transid;
4982 		BTRFS_I(inode)->last_log_commit = root->last_log_commit;
4983 		return 0;
4984 	}
4985 
4986 	/*
4987 	 * 1 - for the one we're dropping
4988 	 * 1 - for the one we're adding
4989 	 * 1 - for updating the inode.
4990 	 */
4991 	trans = btrfs_start_transaction(root, 3);
4992 	if (IS_ERR(trans))
4993 		return PTR_ERR(trans);
4994 
4995 	ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1);
4996 	if (ret) {
4997 		btrfs_abort_transaction(trans, ret);
4998 		btrfs_end_transaction(trans);
4999 		return ret;
5000 	}
5001 
5002 	ret = btrfs_insert_file_extent(trans, root, btrfs_ino(BTRFS_I(inode)),
5003 			offset, 0, 0, len, 0, len, 0, 0, 0);
5004 	if (ret)
5005 		btrfs_abort_transaction(trans, ret);
5006 	else
5007 		btrfs_update_inode(trans, root, inode);
5008 	btrfs_end_transaction(trans);
5009 	return ret;
5010 }
5011 
5012 /*
5013  * This function puts in dummy file extents for the area we're creating a hole
5014  * for.  So if we are truncating this file to a larger size we need to insert
5015  * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
5016  * the range between oldsize and size
5017  */
5018 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
5019 {
5020 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5021 	struct btrfs_root *root = BTRFS_I(inode)->root;
5022 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5023 	struct extent_map *em = NULL;
5024 	struct extent_state *cached_state = NULL;
5025 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
5026 	u64 hole_start = ALIGN(oldsize, fs_info->sectorsize);
5027 	u64 block_end = ALIGN(size, fs_info->sectorsize);
5028 	u64 last_byte;
5029 	u64 cur_offset;
5030 	u64 hole_size;
5031 	int err = 0;
5032 
5033 	/*
5034 	 * If our size started in the middle of a block we need to zero out the
5035 	 * rest of the block before we expand the i_size, otherwise we could
5036 	 * expose stale data.
5037 	 */
5038 	err = btrfs_truncate_block(inode, oldsize, 0, 0);
5039 	if (err)
5040 		return err;
5041 
5042 	if (size <= hole_start)
5043 		return 0;
5044 
5045 	btrfs_lock_and_flush_ordered_range(io_tree, BTRFS_I(inode), hole_start,
5046 					   block_end - 1, &cached_state);
5047 	cur_offset = hole_start;
5048 	while (1) {
5049 		em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset,
5050 				block_end - cur_offset, 0);
5051 		if (IS_ERR(em)) {
5052 			err = PTR_ERR(em);
5053 			em = NULL;
5054 			break;
5055 		}
5056 		last_byte = min(extent_map_end(em), block_end);
5057 		last_byte = ALIGN(last_byte, fs_info->sectorsize);
5058 		if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
5059 			struct extent_map *hole_em;
5060 			hole_size = last_byte - cur_offset;
5061 
5062 			err = maybe_insert_hole(root, inode, cur_offset,
5063 						hole_size);
5064 			if (err)
5065 				break;
5066 			btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
5067 						cur_offset + hole_size - 1, 0);
5068 			hole_em = alloc_extent_map();
5069 			if (!hole_em) {
5070 				set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5071 					&BTRFS_I(inode)->runtime_flags);
5072 				goto next;
5073 			}
5074 			hole_em->start = cur_offset;
5075 			hole_em->len = hole_size;
5076 			hole_em->orig_start = cur_offset;
5077 
5078 			hole_em->block_start = EXTENT_MAP_HOLE;
5079 			hole_em->block_len = 0;
5080 			hole_em->orig_block_len = 0;
5081 			hole_em->ram_bytes = hole_size;
5082 			hole_em->bdev = fs_info->fs_devices->latest_bdev;
5083 			hole_em->compress_type = BTRFS_COMPRESS_NONE;
5084 			hole_em->generation = fs_info->generation;
5085 
5086 			while (1) {
5087 				write_lock(&em_tree->lock);
5088 				err = add_extent_mapping(em_tree, hole_em, 1);
5089 				write_unlock(&em_tree->lock);
5090 				if (err != -EEXIST)
5091 					break;
5092 				btrfs_drop_extent_cache(BTRFS_I(inode),
5093 							cur_offset,
5094 							cur_offset +
5095 							hole_size - 1, 0);
5096 			}
5097 			free_extent_map(hole_em);
5098 		}
5099 next:
5100 		free_extent_map(em);
5101 		em = NULL;
5102 		cur_offset = last_byte;
5103 		if (cur_offset >= block_end)
5104 			break;
5105 	}
5106 	free_extent_map(em);
5107 	unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state);
5108 	return err;
5109 }
5110 
5111 static int btrfs_setsize(struct inode *inode, struct iattr *attr)
5112 {
5113 	struct btrfs_root *root = BTRFS_I(inode)->root;
5114 	struct btrfs_trans_handle *trans;
5115 	loff_t oldsize = i_size_read(inode);
5116 	loff_t newsize = attr->ia_size;
5117 	int mask = attr->ia_valid;
5118 	int ret;
5119 
5120 	/*
5121 	 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
5122 	 * special case where we need to update the times despite not having
5123 	 * these flags set.  For all other operations the VFS set these flags
5124 	 * explicitly if it wants a timestamp update.
5125 	 */
5126 	if (newsize != oldsize) {
5127 		inode_inc_iversion(inode);
5128 		if (!(mask & (ATTR_CTIME | ATTR_MTIME)))
5129 			inode->i_ctime = inode->i_mtime =
5130 				current_time(inode);
5131 	}
5132 
5133 	if (newsize > oldsize) {
5134 		/*
5135 		 * Don't do an expanding truncate while snapshotting is ongoing.
5136 		 * This is to ensure the snapshot captures a fully consistent
5137 		 * state of this file - if the snapshot captures this expanding
5138 		 * truncation, it must capture all writes that happened before
5139 		 * this truncation.
5140 		 */
5141 		btrfs_wait_for_snapshot_creation(root);
5142 		ret = btrfs_cont_expand(inode, oldsize, newsize);
5143 		if (ret) {
5144 			btrfs_end_write_no_snapshotting(root);
5145 			return ret;
5146 		}
5147 
5148 		trans = btrfs_start_transaction(root, 1);
5149 		if (IS_ERR(trans)) {
5150 			btrfs_end_write_no_snapshotting(root);
5151 			return PTR_ERR(trans);
5152 		}
5153 
5154 		i_size_write(inode, newsize);
5155 		btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
5156 		pagecache_isize_extended(inode, oldsize, newsize);
5157 		ret = btrfs_update_inode(trans, root, inode);
5158 		btrfs_end_write_no_snapshotting(root);
5159 		btrfs_end_transaction(trans);
5160 	} else {
5161 
5162 		/*
5163 		 * We're truncating a file that used to have good data down to
5164 		 * zero. Make sure it gets into the ordered flush list so that
5165 		 * any new writes get down to disk quickly.
5166 		 */
5167 		if (newsize == 0)
5168 			set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
5169 				&BTRFS_I(inode)->runtime_flags);
5170 
5171 		truncate_setsize(inode, newsize);
5172 
5173 		/* Disable nonlocked read DIO to avoid the endless truncate */
5174 		btrfs_inode_block_unlocked_dio(BTRFS_I(inode));
5175 		inode_dio_wait(inode);
5176 		btrfs_inode_resume_unlocked_dio(BTRFS_I(inode));
5177 
5178 		ret = btrfs_truncate(inode, newsize == oldsize);
5179 		if (ret && inode->i_nlink) {
5180 			int err;
5181 
5182 			/*
5183 			 * Truncate failed, so fix up the in-memory size. We
5184 			 * adjusted disk_i_size down as we removed extents, so
5185 			 * wait for disk_i_size to be stable and then update the
5186 			 * in-memory size to match.
5187 			 */
5188 			err = btrfs_wait_ordered_range(inode, 0, (u64)-1);
5189 			if (err)
5190 				return err;
5191 			i_size_write(inode, BTRFS_I(inode)->disk_i_size);
5192 		}
5193 	}
5194 
5195 	return ret;
5196 }
5197 
5198 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
5199 {
5200 	struct inode *inode = d_inode(dentry);
5201 	struct btrfs_root *root = BTRFS_I(inode)->root;
5202 	int err;
5203 
5204 	if (btrfs_root_readonly(root))
5205 		return -EROFS;
5206 
5207 	err = setattr_prepare(dentry, attr);
5208 	if (err)
5209 		return err;
5210 
5211 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
5212 		err = btrfs_setsize(inode, attr);
5213 		if (err)
5214 			return err;
5215 	}
5216 
5217 	if (attr->ia_valid) {
5218 		setattr_copy(inode, attr);
5219 		inode_inc_iversion(inode);
5220 		err = btrfs_dirty_inode(inode);
5221 
5222 		if (!err && attr->ia_valid & ATTR_MODE)
5223 			err = posix_acl_chmod(inode, inode->i_mode);
5224 	}
5225 
5226 	return err;
5227 }
5228 
5229 /*
5230  * While truncating the inode pages during eviction, we get the VFS calling
5231  * btrfs_invalidatepage() against each page of the inode. This is slow because
5232  * the calls to btrfs_invalidatepage() result in a huge amount of calls to
5233  * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
5234  * extent_state structures over and over, wasting lots of time.
5235  *
5236  * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
5237  * those expensive operations on a per page basis and do only the ordered io
5238  * finishing, while we release here the extent_map and extent_state structures,
5239  * without the excessive merging and splitting.
5240  */
5241 static void evict_inode_truncate_pages(struct inode *inode)
5242 {
5243 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5244 	struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
5245 	struct rb_node *node;
5246 
5247 	ASSERT(inode->i_state & I_FREEING);
5248 	truncate_inode_pages_final(&inode->i_data);
5249 
5250 	write_lock(&map_tree->lock);
5251 	while (!RB_EMPTY_ROOT(&map_tree->map.rb_root)) {
5252 		struct extent_map *em;
5253 
5254 		node = rb_first_cached(&map_tree->map);
5255 		em = rb_entry(node, struct extent_map, rb_node);
5256 		clear_bit(EXTENT_FLAG_PINNED, &em->flags);
5257 		clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
5258 		remove_extent_mapping(map_tree, em);
5259 		free_extent_map(em);
5260 		if (need_resched()) {
5261 			write_unlock(&map_tree->lock);
5262 			cond_resched();
5263 			write_lock(&map_tree->lock);
5264 		}
5265 	}
5266 	write_unlock(&map_tree->lock);
5267 
5268 	/*
5269 	 * Keep looping until we have no more ranges in the io tree.
5270 	 * We can have ongoing bios started by readpages (called from readahead)
5271 	 * that have their endio callback (extent_io.c:end_bio_extent_readpage)
5272 	 * still in progress (unlocked the pages in the bio but did not yet
5273 	 * unlocked the ranges in the io tree). Therefore this means some
5274 	 * ranges can still be locked and eviction started because before
5275 	 * submitting those bios, which are executed by a separate task (work
5276 	 * queue kthread), inode references (inode->i_count) were not taken
5277 	 * (which would be dropped in the end io callback of each bio).
5278 	 * Therefore here we effectively end up waiting for those bios and
5279 	 * anyone else holding locked ranges without having bumped the inode's
5280 	 * reference count - if we don't do it, when they access the inode's
5281 	 * io_tree to unlock a range it may be too late, leading to an
5282 	 * use-after-free issue.
5283 	 */
5284 	spin_lock(&io_tree->lock);
5285 	while (!RB_EMPTY_ROOT(&io_tree->state)) {
5286 		struct extent_state *state;
5287 		struct extent_state *cached_state = NULL;
5288 		u64 start;
5289 		u64 end;
5290 		unsigned state_flags;
5291 
5292 		node = rb_first(&io_tree->state);
5293 		state = rb_entry(node, struct extent_state, rb_node);
5294 		start = state->start;
5295 		end = state->end;
5296 		state_flags = state->state;
5297 		spin_unlock(&io_tree->lock);
5298 
5299 		lock_extent_bits(io_tree, start, end, &cached_state);
5300 
5301 		/*
5302 		 * If still has DELALLOC flag, the extent didn't reach disk,
5303 		 * and its reserved space won't be freed by delayed_ref.
5304 		 * So we need to free its reserved space here.
5305 		 * (Refer to comment in btrfs_invalidatepage, case 2)
5306 		 *
5307 		 * Note, end is the bytenr of last byte, so we need + 1 here.
5308 		 */
5309 		if (state_flags & EXTENT_DELALLOC)
5310 			btrfs_qgroup_free_data(inode, NULL, start, end - start + 1);
5311 
5312 		clear_extent_bit(io_tree, start, end,
5313 				 EXTENT_LOCKED | EXTENT_DIRTY |
5314 				 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
5315 				 EXTENT_DEFRAG, 1, 1, &cached_state);
5316 
5317 		cond_resched();
5318 		spin_lock(&io_tree->lock);
5319 	}
5320 	spin_unlock(&io_tree->lock);
5321 }
5322 
5323 static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root,
5324 							struct btrfs_block_rsv *rsv)
5325 {
5326 	struct btrfs_fs_info *fs_info = root->fs_info;
5327 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5328 	u64 delayed_refs_extra = btrfs_calc_trans_metadata_size(fs_info, 1);
5329 	int failures = 0;
5330 
5331 	for (;;) {
5332 		struct btrfs_trans_handle *trans;
5333 		int ret;
5334 
5335 		ret = btrfs_block_rsv_refill(root, rsv,
5336 					     rsv->size + delayed_refs_extra,
5337 					     BTRFS_RESERVE_FLUSH_LIMIT);
5338 
5339 		if (ret && ++failures > 2) {
5340 			btrfs_warn(fs_info,
5341 				   "could not allocate space for a delete; will truncate on mount");
5342 			return ERR_PTR(-ENOSPC);
5343 		}
5344 
5345 		/*
5346 		 * Evict can generate a large amount of delayed refs without
5347 		 * having a way to add space back since we exhaust our temporary
5348 		 * block rsv.  We aren't allowed to do FLUSH_ALL in this case
5349 		 * because we could deadlock with so many things in the flushing
5350 		 * code, so we have to try and hold some extra space to
5351 		 * compensate for our delayed ref generation.  If we can't get
5352 		 * that space then we need see if we can steal our minimum from
5353 		 * the global reserve.  We will be ratelimited by the amount of
5354 		 * space we have for the delayed refs rsv, so we'll end up
5355 		 * committing and trying again.
5356 		 */
5357 		trans = btrfs_join_transaction(root);
5358 		if (IS_ERR(trans) || !ret) {
5359 			if (!IS_ERR(trans)) {
5360 				trans->block_rsv = &fs_info->trans_block_rsv;
5361 				trans->bytes_reserved = delayed_refs_extra;
5362 				btrfs_block_rsv_migrate(rsv, trans->block_rsv,
5363 							delayed_refs_extra, 1);
5364 			}
5365 			return trans;
5366 		}
5367 
5368 		/*
5369 		 * Try to steal from the global reserve if there is space for
5370 		 * it.
5371 		 */
5372 		if (!btrfs_check_space_for_delayed_refs(fs_info) &&
5373 		    !btrfs_block_rsv_migrate(global_rsv, rsv, rsv->size, 0))
5374 			return trans;
5375 
5376 		/* If not, commit and try again. */
5377 		ret = btrfs_commit_transaction(trans);
5378 		if (ret)
5379 			return ERR_PTR(ret);
5380 	}
5381 }
5382 
5383 void btrfs_evict_inode(struct inode *inode)
5384 {
5385 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5386 	struct btrfs_trans_handle *trans;
5387 	struct btrfs_root *root = BTRFS_I(inode)->root;
5388 	struct btrfs_block_rsv *rsv;
5389 	int ret;
5390 
5391 	trace_btrfs_inode_evict(inode);
5392 
5393 	if (!root) {
5394 		clear_inode(inode);
5395 		return;
5396 	}
5397 
5398 	evict_inode_truncate_pages(inode);
5399 
5400 	if (inode->i_nlink &&
5401 	    ((btrfs_root_refs(&root->root_item) != 0 &&
5402 	      root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
5403 	     btrfs_is_free_space_inode(BTRFS_I(inode))))
5404 		goto no_delete;
5405 
5406 	if (is_bad_inode(inode))
5407 		goto no_delete;
5408 
5409 	btrfs_free_io_failure_record(BTRFS_I(inode), 0, (u64)-1);
5410 
5411 	if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
5412 		goto no_delete;
5413 
5414 	if (inode->i_nlink > 0) {
5415 		BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5416 		       root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
5417 		goto no_delete;
5418 	}
5419 
5420 	ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode));
5421 	if (ret)
5422 		goto no_delete;
5423 
5424 	rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
5425 	if (!rsv)
5426 		goto no_delete;
5427 	rsv->size = btrfs_calc_trunc_metadata_size(fs_info, 1);
5428 	rsv->failfast = 1;
5429 
5430 	btrfs_i_size_write(BTRFS_I(inode), 0);
5431 
5432 	while (1) {
5433 		trans = evict_refill_and_join(root, rsv);
5434 		if (IS_ERR(trans))
5435 			goto free_rsv;
5436 
5437 		trans->block_rsv = rsv;
5438 
5439 		ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
5440 		trans->block_rsv = &fs_info->trans_block_rsv;
5441 		btrfs_end_transaction(trans);
5442 		btrfs_btree_balance_dirty(fs_info);
5443 		if (ret && ret != -ENOSPC && ret != -EAGAIN)
5444 			goto free_rsv;
5445 		else if (!ret)
5446 			break;
5447 	}
5448 
5449 	/*
5450 	 * Errors here aren't a big deal, it just means we leave orphan items in
5451 	 * the tree. They will be cleaned up on the next mount. If the inode
5452 	 * number gets reused, cleanup deletes the orphan item without doing
5453 	 * anything, and unlink reuses the existing orphan item.
5454 	 *
5455 	 * If it turns out that we are dropping too many of these, we might want
5456 	 * to add a mechanism for retrying these after a commit.
5457 	 */
5458 	trans = evict_refill_and_join(root, rsv);
5459 	if (!IS_ERR(trans)) {
5460 		trans->block_rsv = rsv;
5461 		btrfs_orphan_del(trans, BTRFS_I(inode));
5462 		trans->block_rsv = &fs_info->trans_block_rsv;
5463 		btrfs_end_transaction(trans);
5464 	}
5465 
5466 	if (!(root == fs_info->tree_root ||
5467 	      root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
5468 		btrfs_return_ino(root, btrfs_ino(BTRFS_I(inode)));
5469 
5470 free_rsv:
5471 	btrfs_free_block_rsv(fs_info, rsv);
5472 no_delete:
5473 	/*
5474 	 * If we didn't successfully delete, the orphan item will still be in
5475 	 * the tree and we'll retry on the next mount. Again, we might also want
5476 	 * to retry these periodically in the future.
5477 	 */
5478 	btrfs_remove_delayed_node(BTRFS_I(inode));
5479 	clear_inode(inode);
5480 }
5481 
5482 /*
5483  * Return the key found in the dir entry in the location pointer, fill @type
5484  * with BTRFS_FT_*, and return 0.
5485  *
5486  * If no dir entries were found, returns -ENOENT.
5487  * If found a corrupted location in dir entry, returns -EUCLEAN.
5488  */
5489 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
5490 			       struct btrfs_key *location, u8 *type)
5491 {
5492 	const char *name = dentry->d_name.name;
5493 	int namelen = dentry->d_name.len;
5494 	struct btrfs_dir_item *di;
5495 	struct btrfs_path *path;
5496 	struct btrfs_root *root = BTRFS_I(dir)->root;
5497 	int ret = 0;
5498 
5499 	path = btrfs_alloc_path();
5500 	if (!path)
5501 		return -ENOMEM;
5502 
5503 	di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(BTRFS_I(dir)),
5504 			name, namelen, 0);
5505 	if (IS_ERR_OR_NULL(di)) {
5506 		ret = di ? PTR_ERR(di) : -ENOENT;
5507 		goto out;
5508 	}
5509 
5510 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
5511 	if (location->type != BTRFS_INODE_ITEM_KEY &&
5512 	    location->type != BTRFS_ROOT_ITEM_KEY) {
5513 		ret = -EUCLEAN;
5514 		btrfs_warn(root->fs_info,
5515 "%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))",
5516 			   __func__, name, btrfs_ino(BTRFS_I(dir)),
5517 			   location->objectid, location->type, location->offset);
5518 	}
5519 	if (!ret)
5520 		*type = btrfs_dir_type(path->nodes[0], di);
5521 out:
5522 	btrfs_free_path(path);
5523 	return ret;
5524 }
5525 
5526 /*
5527  * when we hit a tree root in a directory, the btrfs part of the inode
5528  * needs to be changed to reflect the root directory of the tree root.  This
5529  * is kind of like crossing a mount point.
5530  */
5531 static int fixup_tree_root_location(struct btrfs_fs_info *fs_info,
5532 				    struct inode *dir,
5533 				    struct dentry *dentry,
5534 				    struct btrfs_key *location,
5535 				    struct btrfs_root **sub_root)
5536 {
5537 	struct btrfs_path *path;
5538 	struct btrfs_root *new_root;
5539 	struct btrfs_root_ref *ref;
5540 	struct extent_buffer *leaf;
5541 	struct btrfs_key key;
5542 	int ret;
5543 	int err = 0;
5544 
5545 	path = btrfs_alloc_path();
5546 	if (!path) {
5547 		err = -ENOMEM;
5548 		goto out;
5549 	}
5550 
5551 	err = -ENOENT;
5552 	key.objectid = BTRFS_I(dir)->root->root_key.objectid;
5553 	key.type = BTRFS_ROOT_REF_KEY;
5554 	key.offset = location->objectid;
5555 
5556 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
5557 	if (ret) {
5558 		if (ret < 0)
5559 			err = ret;
5560 		goto out;
5561 	}
5562 
5563 	leaf = path->nodes[0];
5564 	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
5565 	if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(BTRFS_I(dir)) ||
5566 	    btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
5567 		goto out;
5568 
5569 	ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
5570 				   (unsigned long)(ref + 1),
5571 				   dentry->d_name.len);
5572 	if (ret)
5573 		goto out;
5574 
5575 	btrfs_release_path(path);
5576 
5577 	new_root = btrfs_read_fs_root_no_name(fs_info, location);
5578 	if (IS_ERR(new_root)) {
5579 		err = PTR_ERR(new_root);
5580 		goto out;
5581 	}
5582 
5583 	*sub_root = new_root;
5584 	location->objectid = btrfs_root_dirid(&new_root->root_item);
5585 	location->type = BTRFS_INODE_ITEM_KEY;
5586 	location->offset = 0;
5587 	err = 0;
5588 out:
5589 	btrfs_free_path(path);
5590 	return err;
5591 }
5592 
5593 static void inode_tree_add(struct inode *inode)
5594 {
5595 	struct btrfs_root *root = BTRFS_I(inode)->root;
5596 	struct btrfs_inode *entry;
5597 	struct rb_node **p;
5598 	struct rb_node *parent;
5599 	struct rb_node *new = &BTRFS_I(inode)->rb_node;
5600 	u64 ino = btrfs_ino(BTRFS_I(inode));
5601 
5602 	if (inode_unhashed(inode))
5603 		return;
5604 	parent = NULL;
5605 	spin_lock(&root->inode_lock);
5606 	p = &root->inode_tree.rb_node;
5607 	while (*p) {
5608 		parent = *p;
5609 		entry = rb_entry(parent, struct btrfs_inode, rb_node);
5610 
5611 		if (ino < btrfs_ino(entry))
5612 			p = &parent->rb_left;
5613 		else if (ino > btrfs_ino(entry))
5614 			p = &parent->rb_right;
5615 		else {
5616 			WARN_ON(!(entry->vfs_inode.i_state &
5617 				  (I_WILL_FREE | I_FREEING)));
5618 			rb_replace_node(parent, new, &root->inode_tree);
5619 			RB_CLEAR_NODE(parent);
5620 			spin_unlock(&root->inode_lock);
5621 			return;
5622 		}
5623 	}
5624 	rb_link_node(new, parent, p);
5625 	rb_insert_color(new, &root->inode_tree);
5626 	spin_unlock(&root->inode_lock);
5627 }
5628 
5629 static void inode_tree_del(struct inode *inode)
5630 {
5631 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5632 	struct btrfs_root *root = BTRFS_I(inode)->root;
5633 	int empty = 0;
5634 
5635 	spin_lock(&root->inode_lock);
5636 	if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5637 		rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5638 		RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
5639 		empty = RB_EMPTY_ROOT(&root->inode_tree);
5640 	}
5641 	spin_unlock(&root->inode_lock);
5642 
5643 	if (empty && btrfs_root_refs(&root->root_item) == 0) {
5644 		synchronize_srcu(&fs_info->subvol_srcu);
5645 		spin_lock(&root->inode_lock);
5646 		empty = RB_EMPTY_ROOT(&root->inode_tree);
5647 		spin_unlock(&root->inode_lock);
5648 		if (empty)
5649 			btrfs_add_dead_root(root);
5650 	}
5651 }
5652 
5653 
5654 static int btrfs_init_locked_inode(struct inode *inode, void *p)
5655 {
5656 	struct btrfs_iget_args *args = p;
5657 	inode->i_ino = args->location->objectid;
5658 	memcpy(&BTRFS_I(inode)->location, args->location,
5659 	       sizeof(*args->location));
5660 	BTRFS_I(inode)->root = args->root;
5661 	return 0;
5662 }
5663 
5664 static int btrfs_find_actor(struct inode *inode, void *opaque)
5665 {
5666 	struct btrfs_iget_args *args = opaque;
5667 	return args->location->objectid == BTRFS_I(inode)->location.objectid &&
5668 		args->root == BTRFS_I(inode)->root;
5669 }
5670 
5671 static struct inode *btrfs_iget_locked(struct super_block *s,
5672 				       struct btrfs_key *location,
5673 				       struct btrfs_root *root)
5674 {
5675 	struct inode *inode;
5676 	struct btrfs_iget_args args;
5677 	unsigned long hashval = btrfs_inode_hash(location->objectid, root);
5678 
5679 	args.location = location;
5680 	args.root = root;
5681 
5682 	inode = iget5_locked(s, hashval, btrfs_find_actor,
5683 			     btrfs_init_locked_inode,
5684 			     (void *)&args);
5685 	return inode;
5686 }
5687 
5688 /* Get an inode object given its location and corresponding root.
5689  * Returns in *is_new if the inode was read from disk
5690  */
5691 struct inode *btrfs_iget_path(struct super_block *s, struct btrfs_key *location,
5692 			      struct btrfs_root *root, int *new,
5693 			      struct btrfs_path *path)
5694 {
5695 	struct inode *inode;
5696 
5697 	inode = btrfs_iget_locked(s, location, root);
5698 	if (!inode)
5699 		return ERR_PTR(-ENOMEM);
5700 
5701 	if (inode->i_state & I_NEW) {
5702 		int ret;
5703 
5704 		ret = btrfs_read_locked_inode(inode, path);
5705 		if (!ret) {
5706 			inode_tree_add(inode);
5707 			unlock_new_inode(inode);
5708 			if (new)
5709 				*new = 1;
5710 		} else {
5711 			iget_failed(inode);
5712 			/*
5713 			 * ret > 0 can come from btrfs_search_slot called by
5714 			 * btrfs_read_locked_inode, this means the inode item
5715 			 * was not found.
5716 			 */
5717 			if (ret > 0)
5718 				ret = -ENOENT;
5719 			inode = ERR_PTR(ret);
5720 		}
5721 	}
5722 
5723 	return inode;
5724 }
5725 
5726 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
5727 			 struct btrfs_root *root, int *new)
5728 {
5729 	return btrfs_iget_path(s, location, root, new, NULL);
5730 }
5731 
5732 static struct inode *new_simple_dir(struct super_block *s,
5733 				    struct btrfs_key *key,
5734 				    struct btrfs_root *root)
5735 {
5736 	struct inode *inode = new_inode(s);
5737 
5738 	if (!inode)
5739 		return ERR_PTR(-ENOMEM);
5740 
5741 	BTRFS_I(inode)->root = root;
5742 	memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
5743 	set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
5744 
5745 	inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
5746 	inode->i_op = &btrfs_dir_ro_inode_operations;
5747 	inode->i_opflags &= ~IOP_XATTR;
5748 	inode->i_fop = &simple_dir_operations;
5749 	inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
5750 	inode->i_mtime = current_time(inode);
5751 	inode->i_atime = inode->i_mtime;
5752 	inode->i_ctime = inode->i_mtime;
5753 	BTRFS_I(inode)->i_otime = inode->i_mtime;
5754 
5755 	return inode;
5756 }
5757 
5758 static inline u8 btrfs_inode_type(struct inode *inode)
5759 {
5760 	/*
5761 	 * Compile-time asserts that generic FT_* types still match
5762 	 * BTRFS_FT_* types
5763 	 */
5764 	BUILD_BUG_ON(BTRFS_FT_UNKNOWN != FT_UNKNOWN);
5765 	BUILD_BUG_ON(BTRFS_FT_REG_FILE != FT_REG_FILE);
5766 	BUILD_BUG_ON(BTRFS_FT_DIR != FT_DIR);
5767 	BUILD_BUG_ON(BTRFS_FT_CHRDEV != FT_CHRDEV);
5768 	BUILD_BUG_ON(BTRFS_FT_BLKDEV != FT_BLKDEV);
5769 	BUILD_BUG_ON(BTRFS_FT_FIFO != FT_FIFO);
5770 	BUILD_BUG_ON(BTRFS_FT_SOCK != FT_SOCK);
5771 	BUILD_BUG_ON(BTRFS_FT_SYMLINK != FT_SYMLINK);
5772 
5773 	return fs_umode_to_ftype(inode->i_mode);
5774 }
5775 
5776 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
5777 {
5778 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
5779 	struct inode *inode;
5780 	struct btrfs_root *root = BTRFS_I(dir)->root;
5781 	struct btrfs_root *sub_root = root;
5782 	struct btrfs_key location;
5783 	u8 di_type = 0;
5784 	int index;
5785 	int ret = 0;
5786 
5787 	if (dentry->d_name.len > BTRFS_NAME_LEN)
5788 		return ERR_PTR(-ENAMETOOLONG);
5789 
5790 	ret = btrfs_inode_by_name(dir, dentry, &location, &di_type);
5791 	if (ret < 0)
5792 		return ERR_PTR(ret);
5793 
5794 	if (location.type == BTRFS_INODE_ITEM_KEY) {
5795 		inode = btrfs_iget(dir->i_sb, &location, root, NULL);
5796 		if (IS_ERR(inode))
5797 			return inode;
5798 
5799 		/* Do extra check against inode mode with di_type */
5800 		if (btrfs_inode_type(inode) != di_type) {
5801 			btrfs_crit(fs_info,
5802 "inode mode mismatch with dir: inode mode=0%o btrfs type=%u dir type=%u",
5803 				  inode->i_mode, btrfs_inode_type(inode),
5804 				  di_type);
5805 			iput(inode);
5806 			return ERR_PTR(-EUCLEAN);
5807 		}
5808 		return inode;
5809 	}
5810 
5811 	index = srcu_read_lock(&fs_info->subvol_srcu);
5812 	ret = fixup_tree_root_location(fs_info, dir, dentry,
5813 				       &location, &sub_root);
5814 	if (ret < 0) {
5815 		if (ret != -ENOENT)
5816 			inode = ERR_PTR(ret);
5817 		else
5818 			inode = new_simple_dir(dir->i_sb, &location, sub_root);
5819 	} else {
5820 		inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
5821 	}
5822 	srcu_read_unlock(&fs_info->subvol_srcu, index);
5823 
5824 	if (!IS_ERR(inode) && root != sub_root) {
5825 		down_read(&fs_info->cleanup_work_sem);
5826 		if (!sb_rdonly(inode->i_sb))
5827 			ret = btrfs_orphan_cleanup(sub_root);
5828 		up_read(&fs_info->cleanup_work_sem);
5829 		if (ret) {
5830 			iput(inode);
5831 			inode = ERR_PTR(ret);
5832 		}
5833 	}
5834 
5835 	return inode;
5836 }
5837 
5838 static int btrfs_dentry_delete(const struct dentry *dentry)
5839 {
5840 	struct btrfs_root *root;
5841 	struct inode *inode = d_inode(dentry);
5842 
5843 	if (!inode && !IS_ROOT(dentry))
5844 		inode = d_inode(dentry->d_parent);
5845 
5846 	if (inode) {
5847 		root = BTRFS_I(inode)->root;
5848 		if (btrfs_root_refs(&root->root_item) == 0)
5849 			return 1;
5850 
5851 		if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5852 			return 1;
5853 	}
5854 	return 0;
5855 }
5856 
5857 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
5858 				   unsigned int flags)
5859 {
5860 	struct inode *inode = btrfs_lookup_dentry(dir, dentry);
5861 
5862 	if (inode == ERR_PTR(-ENOENT))
5863 		inode = NULL;
5864 	return d_splice_alias(inode, dentry);
5865 }
5866 
5867 /*
5868  * All this infrastructure exists because dir_emit can fault, and we are holding
5869  * the tree lock when doing readdir.  For now just allocate a buffer and copy
5870  * our information into that, and then dir_emit from the buffer.  This is
5871  * similar to what NFS does, only we don't keep the buffer around in pagecache
5872  * because I'm afraid I'll mess that up.  Long term we need to make filldir do
5873  * copy_to_user_inatomic so we don't have to worry about page faulting under the
5874  * tree lock.
5875  */
5876 static int btrfs_opendir(struct inode *inode, struct file *file)
5877 {
5878 	struct btrfs_file_private *private;
5879 
5880 	private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL);
5881 	if (!private)
5882 		return -ENOMEM;
5883 	private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL);
5884 	if (!private->filldir_buf) {
5885 		kfree(private);
5886 		return -ENOMEM;
5887 	}
5888 	file->private_data = private;
5889 	return 0;
5890 }
5891 
5892 struct dir_entry {
5893 	u64 ino;
5894 	u64 offset;
5895 	unsigned type;
5896 	int name_len;
5897 };
5898 
5899 static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx)
5900 {
5901 	while (entries--) {
5902 		struct dir_entry *entry = addr;
5903 		char *name = (char *)(entry + 1);
5904 
5905 		ctx->pos = get_unaligned(&entry->offset);
5906 		if (!dir_emit(ctx, name, get_unaligned(&entry->name_len),
5907 					 get_unaligned(&entry->ino),
5908 					 get_unaligned(&entry->type)))
5909 			return 1;
5910 		addr += sizeof(struct dir_entry) +
5911 			get_unaligned(&entry->name_len);
5912 		ctx->pos++;
5913 	}
5914 	return 0;
5915 }
5916 
5917 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
5918 {
5919 	struct inode *inode = file_inode(file);
5920 	struct btrfs_root *root = BTRFS_I(inode)->root;
5921 	struct btrfs_file_private *private = file->private_data;
5922 	struct btrfs_dir_item *di;
5923 	struct btrfs_key key;
5924 	struct btrfs_key found_key;
5925 	struct btrfs_path *path;
5926 	void *addr;
5927 	struct list_head ins_list;
5928 	struct list_head del_list;
5929 	int ret;
5930 	struct extent_buffer *leaf;
5931 	int slot;
5932 	char *name_ptr;
5933 	int name_len;
5934 	int entries = 0;
5935 	int total_len = 0;
5936 	bool put = false;
5937 	struct btrfs_key location;
5938 
5939 	if (!dir_emit_dots(file, ctx))
5940 		return 0;
5941 
5942 	path = btrfs_alloc_path();
5943 	if (!path)
5944 		return -ENOMEM;
5945 
5946 	addr = private->filldir_buf;
5947 	path->reada = READA_FORWARD;
5948 
5949 	INIT_LIST_HEAD(&ins_list);
5950 	INIT_LIST_HEAD(&del_list);
5951 	put = btrfs_readdir_get_delayed_items(inode, &ins_list, &del_list);
5952 
5953 again:
5954 	key.type = BTRFS_DIR_INDEX_KEY;
5955 	key.offset = ctx->pos;
5956 	key.objectid = btrfs_ino(BTRFS_I(inode));
5957 
5958 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5959 	if (ret < 0)
5960 		goto err;
5961 
5962 	while (1) {
5963 		struct dir_entry *entry;
5964 
5965 		leaf = path->nodes[0];
5966 		slot = path->slots[0];
5967 		if (slot >= btrfs_header_nritems(leaf)) {
5968 			ret = btrfs_next_leaf(root, path);
5969 			if (ret < 0)
5970 				goto err;
5971 			else if (ret > 0)
5972 				break;
5973 			continue;
5974 		}
5975 
5976 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
5977 
5978 		if (found_key.objectid != key.objectid)
5979 			break;
5980 		if (found_key.type != BTRFS_DIR_INDEX_KEY)
5981 			break;
5982 		if (found_key.offset < ctx->pos)
5983 			goto next;
5984 		if (btrfs_should_delete_dir_index(&del_list, found_key.offset))
5985 			goto next;
5986 		di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
5987 		name_len = btrfs_dir_name_len(leaf, di);
5988 		if ((total_len + sizeof(struct dir_entry) + name_len) >=
5989 		    PAGE_SIZE) {
5990 			btrfs_release_path(path);
5991 			ret = btrfs_filldir(private->filldir_buf, entries, ctx);
5992 			if (ret)
5993 				goto nopos;
5994 			addr = private->filldir_buf;
5995 			entries = 0;
5996 			total_len = 0;
5997 			goto again;
5998 		}
5999 
6000 		entry = addr;
6001 		put_unaligned(name_len, &entry->name_len);
6002 		name_ptr = (char *)(entry + 1);
6003 		read_extent_buffer(leaf, name_ptr, (unsigned long)(di + 1),
6004 				   name_len);
6005 		put_unaligned(fs_ftype_to_dtype(btrfs_dir_type(leaf, di)),
6006 				&entry->type);
6007 		btrfs_dir_item_key_to_cpu(leaf, di, &location);
6008 		put_unaligned(location.objectid, &entry->ino);
6009 		put_unaligned(found_key.offset, &entry->offset);
6010 		entries++;
6011 		addr += sizeof(struct dir_entry) + name_len;
6012 		total_len += sizeof(struct dir_entry) + name_len;
6013 next:
6014 		path->slots[0]++;
6015 	}
6016 	btrfs_release_path(path);
6017 
6018 	ret = btrfs_filldir(private->filldir_buf, entries, ctx);
6019 	if (ret)
6020 		goto nopos;
6021 
6022 	ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
6023 	if (ret)
6024 		goto nopos;
6025 
6026 	/*
6027 	 * Stop new entries from being returned after we return the last
6028 	 * entry.
6029 	 *
6030 	 * New directory entries are assigned a strictly increasing
6031 	 * offset.  This means that new entries created during readdir
6032 	 * are *guaranteed* to be seen in the future by that readdir.
6033 	 * This has broken buggy programs which operate on names as
6034 	 * they're returned by readdir.  Until we re-use freed offsets
6035 	 * we have this hack to stop new entries from being returned
6036 	 * under the assumption that they'll never reach this huge
6037 	 * offset.
6038 	 *
6039 	 * This is being careful not to overflow 32bit loff_t unless the
6040 	 * last entry requires it because doing so has broken 32bit apps
6041 	 * in the past.
6042 	 */
6043 	if (ctx->pos >= INT_MAX)
6044 		ctx->pos = LLONG_MAX;
6045 	else
6046 		ctx->pos = INT_MAX;
6047 nopos:
6048 	ret = 0;
6049 err:
6050 	if (put)
6051 		btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list);
6052 	btrfs_free_path(path);
6053 	return ret;
6054 }
6055 
6056 /*
6057  * This is somewhat expensive, updating the tree every time the
6058  * inode changes.  But, it is most likely to find the inode in cache.
6059  * FIXME, needs more benchmarking...there are no reasons other than performance
6060  * to keep or drop this code.
6061  */
6062 static int btrfs_dirty_inode(struct inode *inode)
6063 {
6064 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
6065 	struct btrfs_root *root = BTRFS_I(inode)->root;
6066 	struct btrfs_trans_handle *trans;
6067 	int ret;
6068 
6069 	if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
6070 		return 0;
6071 
6072 	trans = btrfs_join_transaction(root);
6073 	if (IS_ERR(trans))
6074 		return PTR_ERR(trans);
6075 
6076 	ret = btrfs_update_inode(trans, root, inode);
6077 	if (ret && ret == -ENOSPC) {
6078 		/* whoops, lets try again with the full transaction */
6079 		btrfs_end_transaction(trans);
6080 		trans = btrfs_start_transaction(root, 1);
6081 		if (IS_ERR(trans))
6082 			return PTR_ERR(trans);
6083 
6084 		ret = btrfs_update_inode(trans, root, inode);
6085 	}
6086 	btrfs_end_transaction(trans);
6087 	if (BTRFS_I(inode)->delayed_node)
6088 		btrfs_balance_delayed_items(fs_info);
6089 
6090 	return ret;
6091 }
6092 
6093 /*
6094  * This is a copy of file_update_time.  We need this so we can return error on
6095  * ENOSPC for updating the inode in the case of file write and mmap writes.
6096  */
6097 static int btrfs_update_time(struct inode *inode, struct timespec64 *now,
6098 			     int flags)
6099 {
6100 	struct btrfs_root *root = BTRFS_I(inode)->root;
6101 	bool dirty = flags & ~S_VERSION;
6102 
6103 	if (btrfs_root_readonly(root))
6104 		return -EROFS;
6105 
6106 	if (flags & S_VERSION)
6107 		dirty |= inode_maybe_inc_iversion(inode, dirty);
6108 	if (flags & S_CTIME)
6109 		inode->i_ctime = *now;
6110 	if (flags & S_MTIME)
6111 		inode->i_mtime = *now;
6112 	if (flags & S_ATIME)
6113 		inode->i_atime = *now;
6114 	return dirty ? btrfs_dirty_inode(inode) : 0;
6115 }
6116 
6117 /*
6118  * find the highest existing sequence number in a directory
6119  * and then set the in-memory index_cnt variable to reflect
6120  * free sequence numbers
6121  */
6122 static int btrfs_set_inode_index_count(struct btrfs_inode *inode)
6123 {
6124 	struct btrfs_root *root = inode->root;
6125 	struct btrfs_key key, found_key;
6126 	struct btrfs_path *path;
6127 	struct extent_buffer *leaf;
6128 	int ret;
6129 
6130 	key.objectid = btrfs_ino(inode);
6131 	key.type = BTRFS_DIR_INDEX_KEY;
6132 	key.offset = (u64)-1;
6133 
6134 	path = btrfs_alloc_path();
6135 	if (!path)
6136 		return -ENOMEM;
6137 
6138 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6139 	if (ret < 0)
6140 		goto out;
6141 	/* FIXME: we should be able to handle this */
6142 	if (ret == 0)
6143 		goto out;
6144 	ret = 0;
6145 
6146 	/*
6147 	 * MAGIC NUMBER EXPLANATION:
6148 	 * since we search a directory based on f_pos we have to start at 2
6149 	 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
6150 	 * else has to start at 2
6151 	 */
6152 	if (path->slots[0] == 0) {
6153 		inode->index_cnt = 2;
6154 		goto out;
6155 	}
6156 
6157 	path->slots[0]--;
6158 
6159 	leaf = path->nodes[0];
6160 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6161 
6162 	if (found_key.objectid != btrfs_ino(inode) ||
6163 	    found_key.type != BTRFS_DIR_INDEX_KEY) {
6164 		inode->index_cnt = 2;
6165 		goto out;
6166 	}
6167 
6168 	inode->index_cnt = found_key.offset + 1;
6169 out:
6170 	btrfs_free_path(path);
6171 	return ret;
6172 }
6173 
6174 /*
6175  * helper to find a free sequence number in a given directory.  This current
6176  * code is very simple, later versions will do smarter things in the btree
6177  */
6178 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index)
6179 {
6180 	int ret = 0;
6181 
6182 	if (dir->index_cnt == (u64)-1) {
6183 		ret = btrfs_inode_delayed_dir_index_count(dir);
6184 		if (ret) {
6185 			ret = btrfs_set_inode_index_count(dir);
6186 			if (ret)
6187 				return ret;
6188 		}
6189 	}
6190 
6191 	*index = dir->index_cnt;
6192 	dir->index_cnt++;
6193 
6194 	return ret;
6195 }
6196 
6197 static int btrfs_insert_inode_locked(struct inode *inode)
6198 {
6199 	struct btrfs_iget_args args;
6200 	args.location = &BTRFS_I(inode)->location;
6201 	args.root = BTRFS_I(inode)->root;
6202 
6203 	return insert_inode_locked4(inode,
6204 		   btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
6205 		   btrfs_find_actor, &args);
6206 }
6207 
6208 /*
6209  * Inherit flags from the parent inode.
6210  *
6211  * Currently only the compression flags and the cow flags are inherited.
6212  */
6213 static void btrfs_inherit_iflags(struct inode *inode, struct inode *dir)
6214 {
6215 	unsigned int flags;
6216 
6217 	if (!dir)
6218 		return;
6219 
6220 	flags = BTRFS_I(dir)->flags;
6221 
6222 	if (flags & BTRFS_INODE_NOCOMPRESS) {
6223 		BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS;
6224 		BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
6225 	} else if (flags & BTRFS_INODE_COMPRESS) {
6226 		BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS;
6227 		BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS;
6228 	}
6229 
6230 	if (flags & BTRFS_INODE_NODATACOW) {
6231 		BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
6232 		if (S_ISREG(inode->i_mode))
6233 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6234 	}
6235 
6236 	btrfs_sync_inode_flags_to_i_flags(inode);
6237 }
6238 
6239 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
6240 				     struct btrfs_root *root,
6241 				     struct inode *dir,
6242 				     const char *name, int name_len,
6243 				     u64 ref_objectid, u64 objectid,
6244 				     umode_t mode, u64 *index)
6245 {
6246 	struct btrfs_fs_info *fs_info = root->fs_info;
6247 	struct inode *inode;
6248 	struct btrfs_inode_item *inode_item;
6249 	struct btrfs_key *location;
6250 	struct btrfs_path *path;
6251 	struct btrfs_inode_ref *ref;
6252 	struct btrfs_key key[2];
6253 	u32 sizes[2];
6254 	int nitems = name ? 2 : 1;
6255 	unsigned long ptr;
6256 	int ret;
6257 
6258 	path = btrfs_alloc_path();
6259 	if (!path)
6260 		return ERR_PTR(-ENOMEM);
6261 
6262 	inode = new_inode(fs_info->sb);
6263 	if (!inode) {
6264 		btrfs_free_path(path);
6265 		return ERR_PTR(-ENOMEM);
6266 	}
6267 
6268 	/*
6269 	 * O_TMPFILE, set link count to 0, so that after this point,
6270 	 * we fill in an inode item with the correct link count.
6271 	 */
6272 	if (!name)
6273 		set_nlink(inode, 0);
6274 
6275 	/*
6276 	 * we have to initialize this early, so we can reclaim the inode
6277 	 * number if we fail afterwards in this function.
6278 	 */
6279 	inode->i_ino = objectid;
6280 
6281 	if (dir && name) {
6282 		trace_btrfs_inode_request(dir);
6283 
6284 		ret = btrfs_set_inode_index(BTRFS_I(dir), index);
6285 		if (ret) {
6286 			btrfs_free_path(path);
6287 			iput(inode);
6288 			return ERR_PTR(ret);
6289 		}
6290 	} else if (dir) {
6291 		*index = 0;
6292 	}
6293 	/*
6294 	 * index_cnt is ignored for everything but a dir,
6295 	 * btrfs_set_inode_index_count has an explanation for the magic
6296 	 * number
6297 	 */
6298 	BTRFS_I(inode)->index_cnt = 2;
6299 	BTRFS_I(inode)->dir_index = *index;
6300 	BTRFS_I(inode)->root = root;
6301 	BTRFS_I(inode)->generation = trans->transid;
6302 	inode->i_generation = BTRFS_I(inode)->generation;
6303 
6304 	/*
6305 	 * We could have gotten an inode number from somebody who was fsynced
6306 	 * and then removed in this same transaction, so let's just set full
6307 	 * sync since it will be a full sync anyway and this will blow away the
6308 	 * old info in the log.
6309 	 */
6310 	set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
6311 
6312 	key[0].objectid = objectid;
6313 	key[0].type = BTRFS_INODE_ITEM_KEY;
6314 	key[0].offset = 0;
6315 
6316 	sizes[0] = sizeof(struct btrfs_inode_item);
6317 
6318 	if (name) {
6319 		/*
6320 		 * Start new inodes with an inode_ref. This is slightly more
6321 		 * efficient for small numbers of hard links since they will
6322 		 * be packed into one item. Extended refs will kick in if we
6323 		 * add more hard links than can fit in the ref item.
6324 		 */
6325 		key[1].objectid = objectid;
6326 		key[1].type = BTRFS_INODE_REF_KEY;
6327 		key[1].offset = ref_objectid;
6328 
6329 		sizes[1] = name_len + sizeof(*ref);
6330 	}
6331 
6332 	location = &BTRFS_I(inode)->location;
6333 	location->objectid = objectid;
6334 	location->offset = 0;
6335 	location->type = BTRFS_INODE_ITEM_KEY;
6336 
6337 	ret = btrfs_insert_inode_locked(inode);
6338 	if (ret < 0) {
6339 		iput(inode);
6340 		goto fail;
6341 	}
6342 
6343 	path->leave_spinning = 1;
6344 	ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems);
6345 	if (ret != 0)
6346 		goto fail_unlock;
6347 
6348 	inode_init_owner(inode, dir, mode);
6349 	inode_set_bytes(inode, 0);
6350 
6351 	inode->i_mtime = current_time(inode);
6352 	inode->i_atime = inode->i_mtime;
6353 	inode->i_ctime = inode->i_mtime;
6354 	BTRFS_I(inode)->i_otime = inode->i_mtime;
6355 
6356 	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6357 				  struct btrfs_inode_item);
6358 	memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item,
6359 			     sizeof(*inode_item));
6360 	fill_inode_item(trans, path->nodes[0], inode_item, inode);
6361 
6362 	if (name) {
6363 		ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6364 				     struct btrfs_inode_ref);
6365 		btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
6366 		btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
6367 		ptr = (unsigned long)(ref + 1);
6368 		write_extent_buffer(path->nodes[0], name, ptr, name_len);
6369 	}
6370 
6371 	btrfs_mark_buffer_dirty(path->nodes[0]);
6372 	btrfs_free_path(path);
6373 
6374 	btrfs_inherit_iflags(inode, dir);
6375 
6376 	if (S_ISREG(mode)) {
6377 		if (btrfs_test_opt(fs_info, NODATASUM))
6378 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6379 		if (btrfs_test_opt(fs_info, NODATACOW))
6380 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6381 				BTRFS_INODE_NODATASUM;
6382 	}
6383 
6384 	inode_tree_add(inode);
6385 
6386 	trace_btrfs_inode_new(inode);
6387 	btrfs_set_inode_last_trans(trans, inode);
6388 
6389 	btrfs_update_root_times(trans, root);
6390 
6391 	ret = btrfs_inode_inherit_props(trans, inode, dir);
6392 	if (ret)
6393 		btrfs_err(fs_info,
6394 			  "error inheriting props for ino %llu (root %llu): %d",
6395 			btrfs_ino(BTRFS_I(inode)), root->root_key.objectid, ret);
6396 
6397 	return inode;
6398 
6399 fail_unlock:
6400 	discard_new_inode(inode);
6401 fail:
6402 	if (dir && name)
6403 		BTRFS_I(dir)->index_cnt--;
6404 	btrfs_free_path(path);
6405 	return ERR_PTR(ret);
6406 }
6407 
6408 /*
6409  * utility function to add 'inode' into 'parent_inode' with
6410  * a give name and a given sequence number.
6411  * if 'add_backref' is true, also insert a backref from the
6412  * inode to the parent directory.
6413  */
6414 int btrfs_add_link(struct btrfs_trans_handle *trans,
6415 		   struct btrfs_inode *parent_inode, struct btrfs_inode *inode,
6416 		   const char *name, int name_len, int add_backref, u64 index)
6417 {
6418 	int ret = 0;
6419 	struct btrfs_key key;
6420 	struct btrfs_root *root = parent_inode->root;
6421 	u64 ino = btrfs_ino(inode);
6422 	u64 parent_ino = btrfs_ino(parent_inode);
6423 
6424 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6425 		memcpy(&key, &inode->root->root_key, sizeof(key));
6426 	} else {
6427 		key.objectid = ino;
6428 		key.type = BTRFS_INODE_ITEM_KEY;
6429 		key.offset = 0;
6430 	}
6431 
6432 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6433 		ret = btrfs_add_root_ref(trans, key.objectid,
6434 					 root->root_key.objectid, parent_ino,
6435 					 index, name, name_len);
6436 	} else if (add_backref) {
6437 		ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
6438 					     parent_ino, index);
6439 	}
6440 
6441 	/* Nothing to clean up yet */
6442 	if (ret)
6443 		return ret;
6444 
6445 	ret = btrfs_insert_dir_item(trans, name, name_len, parent_inode, &key,
6446 				    btrfs_inode_type(&inode->vfs_inode), index);
6447 	if (ret == -EEXIST || ret == -EOVERFLOW)
6448 		goto fail_dir_item;
6449 	else if (ret) {
6450 		btrfs_abort_transaction(trans, ret);
6451 		return ret;
6452 	}
6453 
6454 	btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size +
6455 			   name_len * 2);
6456 	inode_inc_iversion(&parent_inode->vfs_inode);
6457 	/*
6458 	 * If we are replaying a log tree, we do not want to update the mtime
6459 	 * and ctime of the parent directory with the current time, since the
6460 	 * log replay procedure is responsible for setting them to their correct
6461 	 * values (the ones it had when the fsync was done).
6462 	 */
6463 	if (!test_bit(BTRFS_FS_LOG_RECOVERING, &root->fs_info->flags)) {
6464 		struct timespec64 now = current_time(&parent_inode->vfs_inode);
6465 
6466 		parent_inode->vfs_inode.i_mtime = now;
6467 		parent_inode->vfs_inode.i_ctime = now;
6468 	}
6469 	ret = btrfs_update_inode(trans, root, &parent_inode->vfs_inode);
6470 	if (ret)
6471 		btrfs_abort_transaction(trans, ret);
6472 	return ret;
6473 
6474 fail_dir_item:
6475 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6476 		u64 local_index;
6477 		int err;
6478 		err = btrfs_del_root_ref(trans, key.objectid,
6479 					 root->root_key.objectid, parent_ino,
6480 					 &local_index, name, name_len);
6481 		if (err)
6482 			btrfs_abort_transaction(trans, err);
6483 	} else if (add_backref) {
6484 		u64 local_index;
6485 		int err;
6486 
6487 		err = btrfs_del_inode_ref(trans, root, name, name_len,
6488 					  ino, parent_ino, &local_index);
6489 		if (err)
6490 			btrfs_abort_transaction(trans, err);
6491 	}
6492 
6493 	/* Return the original error code */
6494 	return ret;
6495 }
6496 
6497 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
6498 			    struct btrfs_inode *dir, struct dentry *dentry,
6499 			    struct btrfs_inode *inode, int backref, u64 index)
6500 {
6501 	int err = btrfs_add_link(trans, dir, inode,
6502 				 dentry->d_name.name, dentry->d_name.len,
6503 				 backref, index);
6504 	if (err > 0)
6505 		err = -EEXIST;
6506 	return err;
6507 }
6508 
6509 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
6510 			umode_t mode, dev_t rdev)
6511 {
6512 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6513 	struct btrfs_trans_handle *trans;
6514 	struct btrfs_root *root = BTRFS_I(dir)->root;
6515 	struct inode *inode = NULL;
6516 	int err;
6517 	u64 objectid;
6518 	u64 index = 0;
6519 
6520 	/*
6521 	 * 2 for inode item and ref
6522 	 * 2 for dir items
6523 	 * 1 for xattr if selinux is on
6524 	 */
6525 	trans = btrfs_start_transaction(root, 5);
6526 	if (IS_ERR(trans))
6527 		return PTR_ERR(trans);
6528 
6529 	err = btrfs_find_free_ino(root, &objectid);
6530 	if (err)
6531 		goto out_unlock;
6532 
6533 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6534 			dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6535 			mode, &index);
6536 	if (IS_ERR(inode)) {
6537 		err = PTR_ERR(inode);
6538 		inode = NULL;
6539 		goto out_unlock;
6540 	}
6541 
6542 	/*
6543 	* If the active LSM wants to access the inode during
6544 	* d_instantiate it needs these. Smack checks to see
6545 	* if the filesystem supports xattrs by looking at the
6546 	* ops vector.
6547 	*/
6548 	inode->i_op = &btrfs_special_inode_operations;
6549 	init_special_inode(inode, inode->i_mode, rdev);
6550 
6551 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6552 	if (err)
6553 		goto out_unlock;
6554 
6555 	err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6556 			0, index);
6557 	if (err)
6558 		goto out_unlock;
6559 
6560 	btrfs_update_inode(trans, root, inode);
6561 	d_instantiate_new(dentry, inode);
6562 
6563 out_unlock:
6564 	btrfs_end_transaction(trans);
6565 	btrfs_btree_balance_dirty(fs_info);
6566 	if (err && inode) {
6567 		inode_dec_link_count(inode);
6568 		discard_new_inode(inode);
6569 	}
6570 	return err;
6571 }
6572 
6573 static int btrfs_create(struct inode *dir, struct dentry *dentry,
6574 			umode_t mode, bool excl)
6575 {
6576 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6577 	struct btrfs_trans_handle *trans;
6578 	struct btrfs_root *root = BTRFS_I(dir)->root;
6579 	struct inode *inode = NULL;
6580 	int err;
6581 	u64 objectid;
6582 	u64 index = 0;
6583 
6584 	/*
6585 	 * 2 for inode item and ref
6586 	 * 2 for dir items
6587 	 * 1 for xattr if selinux is on
6588 	 */
6589 	trans = btrfs_start_transaction(root, 5);
6590 	if (IS_ERR(trans))
6591 		return PTR_ERR(trans);
6592 
6593 	err = btrfs_find_free_ino(root, &objectid);
6594 	if (err)
6595 		goto out_unlock;
6596 
6597 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6598 			dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6599 			mode, &index);
6600 	if (IS_ERR(inode)) {
6601 		err = PTR_ERR(inode);
6602 		inode = NULL;
6603 		goto out_unlock;
6604 	}
6605 	/*
6606 	* If the active LSM wants to access the inode during
6607 	* d_instantiate it needs these. Smack checks to see
6608 	* if the filesystem supports xattrs by looking at the
6609 	* ops vector.
6610 	*/
6611 	inode->i_fop = &btrfs_file_operations;
6612 	inode->i_op = &btrfs_file_inode_operations;
6613 	inode->i_mapping->a_ops = &btrfs_aops;
6614 
6615 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6616 	if (err)
6617 		goto out_unlock;
6618 
6619 	err = btrfs_update_inode(trans, root, inode);
6620 	if (err)
6621 		goto out_unlock;
6622 
6623 	err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6624 			0, index);
6625 	if (err)
6626 		goto out_unlock;
6627 
6628 	BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
6629 	d_instantiate_new(dentry, inode);
6630 
6631 out_unlock:
6632 	btrfs_end_transaction(trans);
6633 	if (err && inode) {
6634 		inode_dec_link_count(inode);
6635 		discard_new_inode(inode);
6636 	}
6637 	btrfs_btree_balance_dirty(fs_info);
6638 	return err;
6639 }
6640 
6641 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6642 		      struct dentry *dentry)
6643 {
6644 	struct btrfs_trans_handle *trans = NULL;
6645 	struct btrfs_root *root = BTRFS_I(dir)->root;
6646 	struct inode *inode = d_inode(old_dentry);
6647 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
6648 	u64 index;
6649 	int err;
6650 	int drop_inode = 0;
6651 
6652 	/* do not allow sys_link's with other subvols of the same device */
6653 	if (root->root_key.objectid != BTRFS_I(inode)->root->root_key.objectid)
6654 		return -EXDEV;
6655 
6656 	if (inode->i_nlink >= BTRFS_LINK_MAX)
6657 		return -EMLINK;
6658 
6659 	err = btrfs_set_inode_index(BTRFS_I(dir), &index);
6660 	if (err)
6661 		goto fail;
6662 
6663 	/*
6664 	 * 2 items for inode and inode ref
6665 	 * 2 items for dir items
6666 	 * 1 item for parent inode
6667 	 * 1 item for orphan item deletion if O_TMPFILE
6668 	 */
6669 	trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6);
6670 	if (IS_ERR(trans)) {
6671 		err = PTR_ERR(trans);
6672 		trans = NULL;
6673 		goto fail;
6674 	}
6675 
6676 	/* There are several dir indexes for this inode, clear the cache. */
6677 	BTRFS_I(inode)->dir_index = 0ULL;
6678 	inc_nlink(inode);
6679 	inode_inc_iversion(inode);
6680 	inode->i_ctime = current_time(inode);
6681 	ihold(inode);
6682 	set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
6683 
6684 	err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6685 			1, index);
6686 
6687 	if (err) {
6688 		drop_inode = 1;
6689 	} else {
6690 		struct dentry *parent = dentry->d_parent;
6691 		int ret;
6692 
6693 		err = btrfs_update_inode(trans, root, inode);
6694 		if (err)
6695 			goto fail;
6696 		if (inode->i_nlink == 1) {
6697 			/*
6698 			 * If new hard link count is 1, it's a file created
6699 			 * with open(2) O_TMPFILE flag.
6700 			 */
6701 			err = btrfs_orphan_del(trans, BTRFS_I(inode));
6702 			if (err)
6703 				goto fail;
6704 		}
6705 		d_instantiate(dentry, inode);
6706 		ret = btrfs_log_new_name(trans, BTRFS_I(inode), NULL, parent,
6707 					 true, NULL);
6708 		if (ret == BTRFS_NEED_TRANS_COMMIT) {
6709 			err = btrfs_commit_transaction(trans);
6710 			trans = NULL;
6711 		}
6712 	}
6713 
6714 fail:
6715 	if (trans)
6716 		btrfs_end_transaction(trans);
6717 	if (drop_inode) {
6718 		inode_dec_link_count(inode);
6719 		iput(inode);
6720 	}
6721 	btrfs_btree_balance_dirty(fs_info);
6722 	return err;
6723 }
6724 
6725 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
6726 {
6727 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6728 	struct inode *inode = NULL;
6729 	struct btrfs_trans_handle *trans;
6730 	struct btrfs_root *root = BTRFS_I(dir)->root;
6731 	int err = 0;
6732 	u64 objectid = 0;
6733 	u64 index = 0;
6734 
6735 	/*
6736 	 * 2 items for inode and ref
6737 	 * 2 items for dir items
6738 	 * 1 for xattr if selinux is on
6739 	 */
6740 	trans = btrfs_start_transaction(root, 5);
6741 	if (IS_ERR(trans))
6742 		return PTR_ERR(trans);
6743 
6744 	err = btrfs_find_free_ino(root, &objectid);
6745 	if (err)
6746 		goto out_fail;
6747 
6748 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6749 			dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6750 			S_IFDIR | mode, &index);
6751 	if (IS_ERR(inode)) {
6752 		err = PTR_ERR(inode);
6753 		inode = NULL;
6754 		goto out_fail;
6755 	}
6756 
6757 	/* these must be set before we unlock the inode */
6758 	inode->i_op = &btrfs_dir_inode_operations;
6759 	inode->i_fop = &btrfs_dir_file_operations;
6760 
6761 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6762 	if (err)
6763 		goto out_fail;
6764 
6765 	btrfs_i_size_write(BTRFS_I(inode), 0);
6766 	err = btrfs_update_inode(trans, root, inode);
6767 	if (err)
6768 		goto out_fail;
6769 
6770 	err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
6771 			dentry->d_name.name,
6772 			dentry->d_name.len, 0, index);
6773 	if (err)
6774 		goto out_fail;
6775 
6776 	d_instantiate_new(dentry, inode);
6777 
6778 out_fail:
6779 	btrfs_end_transaction(trans);
6780 	if (err && inode) {
6781 		inode_dec_link_count(inode);
6782 		discard_new_inode(inode);
6783 	}
6784 	btrfs_btree_balance_dirty(fs_info);
6785 	return err;
6786 }
6787 
6788 static noinline int uncompress_inline(struct btrfs_path *path,
6789 				      struct page *page,
6790 				      size_t pg_offset, u64 extent_offset,
6791 				      struct btrfs_file_extent_item *item)
6792 {
6793 	int ret;
6794 	struct extent_buffer *leaf = path->nodes[0];
6795 	char *tmp;
6796 	size_t max_size;
6797 	unsigned long inline_size;
6798 	unsigned long ptr;
6799 	int compress_type;
6800 
6801 	WARN_ON(pg_offset != 0);
6802 	compress_type = btrfs_file_extent_compression(leaf, item);
6803 	max_size = btrfs_file_extent_ram_bytes(leaf, item);
6804 	inline_size = btrfs_file_extent_inline_item_len(leaf,
6805 					btrfs_item_nr(path->slots[0]));
6806 	tmp = kmalloc(inline_size, GFP_NOFS);
6807 	if (!tmp)
6808 		return -ENOMEM;
6809 	ptr = btrfs_file_extent_inline_start(item);
6810 
6811 	read_extent_buffer(leaf, tmp, ptr, inline_size);
6812 
6813 	max_size = min_t(unsigned long, PAGE_SIZE, max_size);
6814 	ret = btrfs_decompress(compress_type, tmp, page,
6815 			       extent_offset, inline_size, max_size);
6816 
6817 	/*
6818 	 * decompression code contains a memset to fill in any space between the end
6819 	 * of the uncompressed data and the end of max_size in case the decompressed
6820 	 * data ends up shorter than ram_bytes.  That doesn't cover the hole between
6821 	 * the end of an inline extent and the beginning of the next block, so we
6822 	 * cover that region here.
6823 	 */
6824 
6825 	if (max_size + pg_offset < PAGE_SIZE) {
6826 		char *map = kmap(page);
6827 		memset(map + pg_offset + max_size, 0, PAGE_SIZE - max_size - pg_offset);
6828 		kunmap(page);
6829 	}
6830 	kfree(tmp);
6831 	return ret;
6832 }
6833 
6834 /*
6835  * a bit scary, this does extent mapping from logical file offset to the disk.
6836  * the ugly parts come from merging extents from the disk with the in-ram
6837  * representation.  This gets more complex because of the data=ordered code,
6838  * where the in-ram extents might be locked pending data=ordered completion.
6839  *
6840  * This also copies inline extents directly into the page.
6841  */
6842 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode,
6843 				    struct page *page,
6844 				    size_t pg_offset, u64 start, u64 len,
6845 				    int create)
6846 {
6847 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
6848 	int ret;
6849 	int err = 0;
6850 	u64 extent_start = 0;
6851 	u64 extent_end = 0;
6852 	u64 objectid = btrfs_ino(inode);
6853 	int extent_type = -1;
6854 	struct btrfs_path *path = NULL;
6855 	struct btrfs_root *root = inode->root;
6856 	struct btrfs_file_extent_item *item;
6857 	struct extent_buffer *leaf;
6858 	struct btrfs_key found_key;
6859 	struct extent_map *em = NULL;
6860 	struct extent_map_tree *em_tree = &inode->extent_tree;
6861 	struct extent_io_tree *io_tree = &inode->io_tree;
6862 	const bool new_inline = !page || create;
6863 
6864 	read_lock(&em_tree->lock);
6865 	em = lookup_extent_mapping(em_tree, start, len);
6866 	if (em)
6867 		em->bdev = fs_info->fs_devices->latest_bdev;
6868 	read_unlock(&em_tree->lock);
6869 
6870 	if (em) {
6871 		if (em->start > start || em->start + em->len <= start)
6872 			free_extent_map(em);
6873 		else if (em->block_start == EXTENT_MAP_INLINE && page)
6874 			free_extent_map(em);
6875 		else
6876 			goto out;
6877 	}
6878 	em = alloc_extent_map();
6879 	if (!em) {
6880 		err = -ENOMEM;
6881 		goto out;
6882 	}
6883 	em->bdev = fs_info->fs_devices->latest_bdev;
6884 	em->start = EXTENT_MAP_HOLE;
6885 	em->orig_start = EXTENT_MAP_HOLE;
6886 	em->len = (u64)-1;
6887 	em->block_len = (u64)-1;
6888 
6889 	path = btrfs_alloc_path();
6890 	if (!path) {
6891 		err = -ENOMEM;
6892 		goto out;
6893 	}
6894 
6895 	/* Chances are we'll be called again, so go ahead and do readahead */
6896 	path->reada = READA_FORWARD;
6897 
6898 	/*
6899 	 * Unless we're going to uncompress the inline extent, no sleep would
6900 	 * happen.
6901 	 */
6902 	path->leave_spinning = 1;
6903 
6904 	ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0);
6905 	if (ret < 0) {
6906 		err = ret;
6907 		goto out;
6908 	} else if (ret > 0) {
6909 		if (path->slots[0] == 0)
6910 			goto not_found;
6911 		path->slots[0]--;
6912 	}
6913 
6914 	leaf = path->nodes[0];
6915 	item = btrfs_item_ptr(leaf, path->slots[0],
6916 			      struct btrfs_file_extent_item);
6917 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6918 	if (found_key.objectid != objectid ||
6919 	    found_key.type != BTRFS_EXTENT_DATA_KEY) {
6920 		/*
6921 		 * If we backup past the first extent we want to move forward
6922 		 * and see if there is an extent in front of us, otherwise we'll
6923 		 * say there is a hole for our whole search range which can
6924 		 * cause problems.
6925 		 */
6926 		extent_end = start;
6927 		goto next;
6928 	}
6929 
6930 	extent_type = btrfs_file_extent_type(leaf, item);
6931 	extent_start = found_key.offset;
6932 	if (extent_type == BTRFS_FILE_EXTENT_REG ||
6933 	    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
6934 		/* Only regular file could have regular/prealloc extent */
6935 		if (!S_ISREG(inode->vfs_inode.i_mode)) {
6936 			ret = -EUCLEAN;
6937 			btrfs_crit(fs_info,
6938 		"regular/prealloc extent found for non-regular inode %llu",
6939 				   btrfs_ino(inode));
6940 			goto out;
6941 		}
6942 		extent_end = extent_start +
6943 		       btrfs_file_extent_num_bytes(leaf, item);
6944 
6945 		trace_btrfs_get_extent_show_fi_regular(inode, leaf, item,
6946 						       extent_start);
6947 	} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
6948 		size_t size;
6949 
6950 		size = btrfs_file_extent_ram_bytes(leaf, item);
6951 		extent_end = ALIGN(extent_start + size,
6952 				   fs_info->sectorsize);
6953 
6954 		trace_btrfs_get_extent_show_fi_inline(inode, leaf, item,
6955 						      path->slots[0],
6956 						      extent_start);
6957 	}
6958 next:
6959 	if (start >= extent_end) {
6960 		path->slots[0]++;
6961 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6962 			ret = btrfs_next_leaf(root, path);
6963 			if (ret < 0) {
6964 				err = ret;
6965 				goto out;
6966 			} else if (ret > 0) {
6967 				goto not_found;
6968 			}
6969 			leaf = path->nodes[0];
6970 		}
6971 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6972 		if (found_key.objectid != objectid ||
6973 		    found_key.type != BTRFS_EXTENT_DATA_KEY)
6974 			goto not_found;
6975 		if (start + len <= found_key.offset)
6976 			goto not_found;
6977 		if (start > found_key.offset)
6978 			goto next;
6979 
6980 		/* New extent overlaps with existing one */
6981 		em->start = start;
6982 		em->orig_start = start;
6983 		em->len = found_key.offset - start;
6984 		em->block_start = EXTENT_MAP_HOLE;
6985 		goto insert;
6986 	}
6987 
6988 	btrfs_extent_item_to_extent_map(inode, path, item,
6989 			new_inline, em);
6990 
6991 	if (extent_type == BTRFS_FILE_EXTENT_REG ||
6992 	    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
6993 		goto insert;
6994 	} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
6995 		unsigned long ptr;
6996 		char *map;
6997 		size_t size;
6998 		size_t extent_offset;
6999 		size_t copy_size;
7000 
7001 		if (new_inline)
7002 			goto out;
7003 
7004 		size = btrfs_file_extent_ram_bytes(leaf, item);
7005 		extent_offset = page_offset(page) + pg_offset - extent_start;
7006 		copy_size = min_t(u64, PAGE_SIZE - pg_offset,
7007 				  size - extent_offset);
7008 		em->start = extent_start + extent_offset;
7009 		em->len = ALIGN(copy_size, fs_info->sectorsize);
7010 		em->orig_block_len = em->len;
7011 		em->orig_start = em->start;
7012 		ptr = btrfs_file_extent_inline_start(item) + extent_offset;
7013 
7014 		btrfs_set_path_blocking(path);
7015 		if (!PageUptodate(page)) {
7016 			if (btrfs_file_extent_compression(leaf, item) !=
7017 			    BTRFS_COMPRESS_NONE) {
7018 				ret = uncompress_inline(path, page, pg_offset,
7019 							extent_offset, item);
7020 				if (ret) {
7021 					err = ret;
7022 					goto out;
7023 				}
7024 			} else {
7025 				map = kmap(page);
7026 				read_extent_buffer(leaf, map + pg_offset, ptr,
7027 						   copy_size);
7028 				if (pg_offset + copy_size < PAGE_SIZE) {
7029 					memset(map + pg_offset + copy_size, 0,
7030 					       PAGE_SIZE - pg_offset -
7031 					       copy_size);
7032 				}
7033 				kunmap(page);
7034 			}
7035 			flush_dcache_page(page);
7036 		}
7037 		set_extent_uptodate(io_tree, em->start,
7038 				    extent_map_end(em) - 1, NULL, GFP_NOFS);
7039 		goto insert;
7040 	}
7041 not_found:
7042 	em->start = start;
7043 	em->orig_start = start;
7044 	em->len = len;
7045 	em->block_start = EXTENT_MAP_HOLE;
7046 insert:
7047 	btrfs_release_path(path);
7048 	if (em->start > start || extent_map_end(em) <= start) {
7049 		btrfs_err(fs_info,
7050 			  "bad extent! em: [%llu %llu] passed [%llu %llu]",
7051 			  em->start, em->len, start, len);
7052 		err = -EIO;
7053 		goto out;
7054 	}
7055 
7056 	err = 0;
7057 	write_lock(&em_tree->lock);
7058 	err = btrfs_add_extent_mapping(fs_info, em_tree, &em, start, len);
7059 	write_unlock(&em_tree->lock);
7060 out:
7061 	btrfs_free_path(path);
7062 
7063 	trace_btrfs_get_extent(root, inode, em);
7064 
7065 	if (err) {
7066 		free_extent_map(em);
7067 		return ERR_PTR(err);
7068 	}
7069 	BUG_ON(!em); /* Error is always set */
7070 	return em;
7071 }
7072 
7073 struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode,
7074 					   u64 start, u64 len)
7075 {
7076 	struct extent_map *em;
7077 	struct extent_map *hole_em = NULL;
7078 	u64 delalloc_start = start;
7079 	u64 end;
7080 	u64 delalloc_len;
7081 	u64 delalloc_end;
7082 	int err = 0;
7083 
7084 	em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
7085 	if (IS_ERR(em))
7086 		return em;
7087 	/*
7088 	 * If our em maps to:
7089 	 * - a hole or
7090 	 * - a pre-alloc extent,
7091 	 * there might actually be delalloc bytes behind it.
7092 	 */
7093 	if (em->block_start != EXTENT_MAP_HOLE &&
7094 	    !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7095 		return em;
7096 	else
7097 		hole_em = em;
7098 
7099 	/* check to see if we've wrapped (len == -1 or similar) */
7100 	end = start + len;
7101 	if (end < start)
7102 		end = (u64)-1;
7103 	else
7104 		end -= 1;
7105 
7106 	em = NULL;
7107 
7108 	/* ok, we didn't find anything, lets look for delalloc */
7109 	delalloc_len = count_range_bits(&inode->io_tree, &delalloc_start,
7110 				 end, len, EXTENT_DELALLOC, 1);
7111 	delalloc_end = delalloc_start + delalloc_len;
7112 	if (delalloc_end < delalloc_start)
7113 		delalloc_end = (u64)-1;
7114 
7115 	/*
7116 	 * We didn't find anything useful, return the original results from
7117 	 * get_extent()
7118 	 */
7119 	if (delalloc_start > end || delalloc_end <= start) {
7120 		em = hole_em;
7121 		hole_em = NULL;
7122 		goto out;
7123 	}
7124 
7125 	/*
7126 	 * Adjust the delalloc_start to make sure it doesn't go backwards from
7127 	 * the start they passed in
7128 	 */
7129 	delalloc_start = max(start, delalloc_start);
7130 	delalloc_len = delalloc_end - delalloc_start;
7131 
7132 	if (delalloc_len > 0) {
7133 		u64 hole_start;
7134 		u64 hole_len;
7135 		const u64 hole_end = extent_map_end(hole_em);
7136 
7137 		em = alloc_extent_map();
7138 		if (!em) {
7139 			err = -ENOMEM;
7140 			goto out;
7141 		}
7142 		em->bdev = NULL;
7143 
7144 		ASSERT(hole_em);
7145 		/*
7146 		 * When btrfs_get_extent can't find anything it returns one
7147 		 * huge hole
7148 		 *
7149 		 * Make sure what it found really fits our range, and adjust to
7150 		 * make sure it is based on the start from the caller
7151 		 */
7152 		if (hole_end <= start || hole_em->start > end) {
7153 		       free_extent_map(hole_em);
7154 		       hole_em = NULL;
7155 		} else {
7156 		       hole_start = max(hole_em->start, start);
7157 		       hole_len = hole_end - hole_start;
7158 		}
7159 
7160 		if (hole_em && delalloc_start > hole_start) {
7161 			/*
7162 			 * Our hole starts before our delalloc, so we have to
7163 			 * return just the parts of the hole that go until the
7164 			 * delalloc starts
7165 			 */
7166 			em->len = min(hole_len, delalloc_start - hole_start);
7167 			em->start = hole_start;
7168 			em->orig_start = hole_start;
7169 			/*
7170 			 * Don't adjust block start at all, it is fixed at
7171 			 * EXTENT_MAP_HOLE
7172 			 */
7173 			em->block_start = hole_em->block_start;
7174 			em->block_len = hole_len;
7175 			if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
7176 				set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
7177 		} else {
7178 			/*
7179 			 * Hole is out of passed range or it starts after
7180 			 * delalloc range
7181 			 */
7182 			em->start = delalloc_start;
7183 			em->len = delalloc_len;
7184 			em->orig_start = delalloc_start;
7185 			em->block_start = EXTENT_MAP_DELALLOC;
7186 			em->block_len = delalloc_len;
7187 		}
7188 	} else {
7189 		return hole_em;
7190 	}
7191 out:
7192 
7193 	free_extent_map(hole_em);
7194 	if (err) {
7195 		free_extent_map(em);
7196 		return ERR_PTR(err);
7197 	}
7198 	return em;
7199 }
7200 
7201 static struct extent_map *btrfs_create_dio_extent(struct inode *inode,
7202 						  const u64 start,
7203 						  const u64 len,
7204 						  const u64 orig_start,
7205 						  const u64 block_start,
7206 						  const u64 block_len,
7207 						  const u64 orig_block_len,
7208 						  const u64 ram_bytes,
7209 						  const int type)
7210 {
7211 	struct extent_map *em = NULL;
7212 	int ret;
7213 
7214 	if (type != BTRFS_ORDERED_NOCOW) {
7215 		em = create_io_em(inode, start, len, orig_start,
7216 				  block_start, block_len, orig_block_len,
7217 				  ram_bytes,
7218 				  BTRFS_COMPRESS_NONE, /* compress_type */
7219 				  type);
7220 		if (IS_ERR(em))
7221 			goto out;
7222 	}
7223 	ret = btrfs_add_ordered_extent_dio(inode, start, block_start,
7224 					   len, block_len, type);
7225 	if (ret) {
7226 		if (em) {
7227 			free_extent_map(em);
7228 			btrfs_drop_extent_cache(BTRFS_I(inode), start,
7229 						start + len - 1, 0);
7230 		}
7231 		em = ERR_PTR(ret);
7232 	}
7233  out:
7234 
7235 	return em;
7236 }
7237 
7238 static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
7239 						  u64 start, u64 len)
7240 {
7241 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7242 	struct btrfs_root *root = BTRFS_I(inode)->root;
7243 	struct extent_map *em;
7244 	struct btrfs_key ins;
7245 	u64 alloc_hint;
7246 	int ret;
7247 
7248 	alloc_hint = get_extent_allocation_hint(inode, start, len);
7249 	ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize,
7250 				   0, alloc_hint, &ins, 1, 1);
7251 	if (ret)
7252 		return ERR_PTR(ret);
7253 
7254 	em = btrfs_create_dio_extent(inode, start, ins.offset, start,
7255 				     ins.objectid, ins.offset, ins.offset,
7256 				     ins.offset, BTRFS_ORDERED_REGULAR);
7257 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
7258 	if (IS_ERR(em))
7259 		btrfs_free_reserved_extent(fs_info, ins.objectid,
7260 					   ins.offset, 1);
7261 
7262 	return em;
7263 }
7264 
7265 /*
7266  * returns 1 when the nocow is safe, < 1 on error, 0 if the
7267  * block must be cow'd
7268  */
7269 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7270 			      u64 *orig_start, u64 *orig_block_len,
7271 			      u64 *ram_bytes)
7272 {
7273 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7274 	struct btrfs_path *path;
7275 	int ret;
7276 	struct extent_buffer *leaf;
7277 	struct btrfs_root *root = BTRFS_I(inode)->root;
7278 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7279 	struct btrfs_file_extent_item *fi;
7280 	struct btrfs_key key;
7281 	u64 disk_bytenr;
7282 	u64 backref_offset;
7283 	u64 extent_end;
7284 	u64 num_bytes;
7285 	int slot;
7286 	int found_type;
7287 	bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
7288 
7289 	path = btrfs_alloc_path();
7290 	if (!path)
7291 		return -ENOMEM;
7292 
7293 	ret = btrfs_lookup_file_extent(NULL, root, path,
7294 			btrfs_ino(BTRFS_I(inode)), offset, 0);
7295 	if (ret < 0)
7296 		goto out;
7297 
7298 	slot = path->slots[0];
7299 	if (ret == 1) {
7300 		if (slot == 0) {
7301 			/* can't find the item, must cow */
7302 			ret = 0;
7303 			goto out;
7304 		}
7305 		slot--;
7306 	}
7307 	ret = 0;
7308 	leaf = path->nodes[0];
7309 	btrfs_item_key_to_cpu(leaf, &key, slot);
7310 	if (key.objectid != btrfs_ino(BTRFS_I(inode)) ||
7311 	    key.type != BTRFS_EXTENT_DATA_KEY) {
7312 		/* not our file or wrong item type, must cow */
7313 		goto out;
7314 	}
7315 
7316 	if (key.offset > offset) {
7317 		/* Wrong offset, must cow */
7318 		goto out;
7319 	}
7320 
7321 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
7322 	found_type = btrfs_file_extent_type(leaf, fi);
7323 	if (found_type != BTRFS_FILE_EXTENT_REG &&
7324 	    found_type != BTRFS_FILE_EXTENT_PREALLOC) {
7325 		/* not a regular extent, must cow */
7326 		goto out;
7327 	}
7328 
7329 	if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
7330 		goto out;
7331 
7332 	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
7333 	if (extent_end <= offset)
7334 		goto out;
7335 
7336 	disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
7337 	if (disk_bytenr == 0)
7338 		goto out;
7339 
7340 	if (btrfs_file_extent_compression(leaf, fi) ||
7341 	    btrfs_file_extent_encryption(leaf, fi) ||
7342 	    btrfs_file_extent_other_encoding(leaf, fi))
7343 		goto out;
7344 
7345 	/*
7346 	 * Do the same check as in btrfs_cross_ref_exist but without the
7347 	 * unnecessary search.
7348 	 */
7349 	if (btrfs_file_extent_generation(leaf, fi) <=
7350 	    btrfs_root_last_snapshot(&root->root_item))
7351 		goto out;
7352 
7353 	backref_offset = btrfs_file_extent_offset(leaf, fi);
7354 
7355 	if (orig_start) {
7356 		*orig_start = key.offset - backref_offset;
7357 		*orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
7358 		*ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
7359 	}
7360 
7361 	if (btrfs_extent_readonly(fs_info, disk_bytenr))
7362 		goto out;
7363 
7364 	num_bytes = min(offset + *len, extent_end) - offset;
7365 	if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7366 		u64 range_end;
7367 
7368 		range_end = round_up(offset + num_bytes,
7369 				     root->fs_info->sectorsize) - 1;
7370 		ret = test_range_bit(io_tree, offset, range_end,
7371 				     EXTENT_DELALLOC, 0, NULL);
7372 		if (ret) {
7373 			ret = -EAGAIN;
7374 			goto out;
7375 		}
7376 	}
7377 
7378 	btrfs_release_path(path);
7379 
7380 	/*
7381 	 * look for other files referencing this extent, if we
7382 	 * find any we must cow
7383 	 */
7384 
7385 	ret = btrfs_cross_ref_exist(root, btrfs_ino(BTRFS_I(inode)),
7386 				    key.offset - backref_offset, disk_bytenr);
7387 	if (ret) {
7388 		ret = 0;
7389 		goto out;
7390 	}
7391 
7392 	/*
7393 	 * adjust disk_bytenr and num_bytes to cover just the bytes
7394 	 * in this extent we are about to write.  If there
7395 	 * are any csums in that range we have to cow in order
7396 	 * to keep the csums correct
7397 	 */
7398 	disk_bytenr += backref_offset;
7399 	disk_bytenr += offset - key.offset;
7400 	if (csum_exist_in_range(fs_info, disk_bytenr, num_bytes))
7401 		goto out;
7402 	/*
7403 	 * all of the above have passed, it is safe to overwrite this extent
7404 	 * without cow
7405 	 */
7406 	*len = num_bytes;
7407 	ret = 1;
7408 out:
7409 	btrfs_free_path(path);
7410 	return ret;
7411 }
7412 
7413 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
7414 			      struct extent_state **cached_state, int writing)
7415 {
7416 	struct btrfs_ordered_extent *ordered;
7417 	int ret = 0;
7418 
7419 	while (1) {
7420 		lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7421 				 cached_state);
7422 		/*
7423 		 * We're concerned with the entire range that we're going to be
7424 		 * doing DIO to, so we need to make sure there's no ordered
7425 		 * extents in this range.
7426 		 */
7427 		ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart,
7428 						     lockend - lockstart + 1);
7429 
7430 		/*
7431 		 * We need to make sure there are no buffered pages in this
7432 		 * range either, we could have raced between the invalidate in
7433 		 * generic_file_direct_write and locking the extent.  The
7434 		 * invalidate needs to happen so that reads after a write do not
7435 		 * get stale data.
7436 		 */
7437 		if (!ordered &&
7438 		    (!writing || !filemap_range_has_page(inode->i_mapping,
7439 							 lockstart, lockend)))
7440 			break;
7441 
7442 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7443 				     cached_state);
7444 
7445 		if (ordered) {
7446 			/*
7447 			 * If we are doing a DIO read and the ordered extent we
7448 			 * found is for a buffered write, we can not wait for it
7449 			 * to complete and retry, because if we do so we can
7450 			 * deadlock with concurrent buffered writes on page
7451 			 * locks. This happens only if our DIO read covers more
7452 			 * than one extent map, if at this point has already
7453 			 * created an ordered extent for a previous extent map
7454 			 * and locked its range in the inode's io tree, and a
7455 			 * concurrent write against that previous extent map's
7456 			 * range and this range started (we unlock the ranges
7457 			 * in the io tree only when the bios complete and
7458 			 * buffered writes always lock pages before attempting
7459 			 * to lock range in the io tree).
7460 			 */
7461 			if (writing ||
7462 			    test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags))
7463 				btrfs_start_ordered_extent(inode, ordered, 1);
7464 			else
7465 				ret = -ENOTBLK;
7466 			btrfs_put_ordered_extent(ordered);
7467 		} else {
7468 			/*
7469 			 * We could trigger writeback for this range (and wait
7470 			 * for it to complete) and then invalidate the pages for
7471 			 * this range (through invalidate_inode_pages2_range()),
7472 			 * but that can lead us to a deadlock with a concurrent
7473 			 * call to readpages() (a buffered read or a defrag call
7474 			 * triggered a readahead) on a page lock due to an
7475 			 * ordered dio extent we created before but did not have
7476 			 * yet a corresponding bio submitted (whence it can not
7477 			 * complete), which makes readpages() wait for that
7478 			 * ordered extent to complete while holding a lock on
7479 			 * that page.
7480 			 */
7481 			ret = -ENOTBLK;
7482 		}
7483 
7484 		if (ret)
7485 			break;
7486 
7487 		cond_resched();
7488 	}
7489 
7490 	return ret;
7491 }
7492 
7493 /* The callers of this must take lock_extent() */
7494 static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len,
7495 				       u64 orig_start, u64 block_start,
7496 				       u64 block_len, u64 orig_block_len,
7497 				       u64 ram_bytes, int compress_type,
7498 				       int type)
7499 {
7500 	struct extent_map_tree *em_tree;
7501 	struct extent_map *em;
7502 	struct btrfs_root *root = BTRFS_I(inode)->root;
7503 	int ret;
7504 
7505 	ASSERT(type == BTRFS_ORDERED_PREALLOC ||
7506 	       type == BTRFS_ORDERED_COMPRESSED ||
7507 	       type == BTRFS_ORDERED_NOCOW ||
7508 	       type == BTRFS_ORDERED_REGULAR);
7509 
7510 	em_tree = &BTRFS_I(inode)->extent_tree;
7511 	em = alloc_extent_map();
7512 	if (!em)
7513 		return ERR_PTR(-ENOMEM);
7514 
7515 	em->start = start;
7516 	em->orig_start = orig_start;
7517 	em->len = len;
7518 	em->block_len = block_len;
7519 	em->block_start = block_start;
7520 	em->bdev = root->fs_info->fs_devices->latest_bdev;
7521 	em->orig_block_len = orig_block_len;
7522 	em->ram_bytes = ram_bytes;
7523 	em->generation = -1;
7524 	set_bit(EXTENT_FLAG_PINNED, &em->flags);
7525 	if (type == BTRFS_ORDERED_PREALLOC) {
7526 		set_bit(EXTENT_FLAG_FILLING, &em->flags);
7527 	} else if (type == BTRFS_ORDERED_COMPRESSED) {
7528 		set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
7529 		em->compress_type = compress_type;
7530 	}
7531 
7532 	do {
7533 		btrfs_drop_extent_cache(BTRFS_I(inode), em->start,
7534 				em->start + em->len - 1, 0);
7535 		write_lock(&em_tree->lock);
7536 		ret = add_extent_mapping(em_tree, em, 1);
7537 		write_unlock(&em_tree->lock);
7538 		/*
7539 		 * The caller has taken lock_extent(), who could race with us
7540 		 * to add em?
7541 		 */
7542 	} while (ret == -EEXIST);
7543 
7544 	if (ret) {
7545 		free_extent_map(em);
7546 		return ERR_PTR(ret);
7547 	}
7548 
7549 	/* em got 2 refs now, callers needs to do free_extent_map once. */
7550 	return em;
7551 }
7552 
7553 
7554 static int btrfs_get_blocks_direct_read(struct extent_map *em,
7555 					struct buffer_head *bh_result,
7556 					struct inode *inode,
7557 					u64 start, u64 len)
7558 {
7559 	if (em->block_start == EXTENT_MAP_HOLE ||
7560 			test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7561 		return -ENOENT;
7562 
7563 	len = min(len, em->len - (start - em->start));
7564 
7565 	bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7566 		inode->i_blkbits;
7567 	bh_result->b_size = len;
7568 	bh_result->b_bdev = em->bdev;
7569 	set_buffer_mapped(bh_result);
7570 
7571 	return 0;
7572 }
7573 
7574 static int btrfs_get_blocks_direct_write(struct extent_map **map,
7575 					 struct buffer_head *bh_result,
7576 					 struct inode *inode,
7577 					 struct btrfs_dio_data *dio_data,
7578 					 u64 start, u64 len)
7579 {
7580 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7581 	struct extent_map *em = *map;
7582 	int ret = 0;
7583 
7584 	/*
7585 	 * We don't allocate a new extent in the following cases
7586 	 *
7587 	 * 1) The inode is marked as NODATACOW. In this case we'll just use the
7588 	 * existing extent.
7589 	 * 2) The extent is marked as PREALLOC. We're good to go here and can
7590 	 * just use the extent.
7591 	 *
7592 	 */
7593 	if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7594 	    ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7595 	     em->block_start != EXTENT_MAP_HOLE)) {
7596 		int type;
7597 		u64 block_start, orig_start, orig_block_len, ram_bytes;
7598 
7599 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7600 			type = BTRFS_ORDERED_PREALLOC;
7601 		else
7602 			type = BTRFS_ORDERED_NOCOW;
7603 		len = min(len, em->len - (start - em->start));
7604 		block_start = em->block_start + (start - em->start);
7605 
7606 		if (can_nocow_extent(inode, start, &len, &orig_start,
7607 				     &orig_block_len, &ram_bytes) == 1 &&
7608 		    btrfs_inc_nocow_writers(fs_info, block_start)) {
7609 			struct extent_map *em2;
7610 
7611 			em2 = btrfs_create_dio_extent(inode, start, len,
7612 						      orig_start, block_start,
7613 						      len, orig_block_len,
7614 						      ram_bytes, type);
7615 			btrfs_dec_nocow_writers(fs_info, block_start);
7616 			if (type == BTRFS_ORDERED_PREALLOC) {
7617 				free_extent_map(em);
7618 				*map = em = em2;
7619 			}
7620 
7621 			if (em2 && IS_ERR(em2)) {
7622 				ret = PTR_ERR(em2);
7623 				goto out;
7624 			}
7625 			/*
7626 			 * For inode marked NODATACOW or extent marked PREALLOC,
7627 			 * use the existing or preallocated extent, so does not
7628 			 * need to adjust btrfs_space_info's bytes_may_use.
7629 			 */
7630 			btrfs_free_reserved_data_space_noquota(inode, start,
7631 							       len);
7632 			goto skip_cow;
7633 		}
7634 	}
7635 
7636 	/* this will cow the extent */
7637 	len = bh_result->b_size;
7638 	free_extent_map(em);
7639 	*map = em = btrfs_new_extent_direct(inode, start, len);
7640 	if (IS_ERR(em)) {
7641 		ret = PTR_ERR(em);
7642 		goto out;
7643 	}
7644 
7645 	len = min(len, em->len - (start - em->start));
7646 
7647 skip_cow:
7648 	bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7649 		inode->i_blkbits;
7650 	bh_result->b_size = len;
7651 	bh_result->b_bdev = em->bdev;
7652 	set_buffer_mapped(bh_result);
7653 
7654 	if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7655 		set_buffer_new(bh_result);
7656 
7657 	/*
7658 	 * Need to update the i_size under the extent lock so buffered
7659 	 * readers will get the updated i_size when we unlock.
7660 	 */
7661 	if (!dio_data->overwrite && start + len > i_size_read(inode))
7662 		i_size_write(inode, start + len);
7663 
7664 	WARN_ON(dio_data->reserve < len);
7665 	dio_data->reserve -= len;
7666 	dio_data->unsubmitted_oe_range_end = start + len;
7667 	current->journal_info = dio_data;
7668 out:
7669 	return ret;
7670 }
7671 
7672 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
7673 				   struct buffer_head *bh_result, int create)
7674 {
7675 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7676 	struct extent_map *em;
7677 	struct extent_state *cached_state = NULL;
7678 	struct btrfs_dio_data *dio_data = NULL;
7679 	u64 start = iblock << inode->i_blkbits;
7680 	u64 lockstart, lockend;
7681 	u64 len = bh_result->b_size;
7682 	int unlock_bits = EXTENT_LOCKED;
7683 	int ret = 0;
7684 
7685 	if (create)
7686 		unlock_bits |= EXTENT_DIRTY;
7687 	else
7688 		len = min_t(u64, len, fs_info->sectorsize);
7689 
7690 	lockstart = start;
7691 	lockend = start + len - 1;
7692 
7693 	if (current->journal_info) {
7694 		/*
7695 		 * Need to pull our outstanding extents and set journal_info to NULL so
7696 		 * that anything that needs to check if there's a transaction doesn't get
7697 		 * confused.
7698 		 */
7699 		dio_data = current->journal_info;
7700 		current->journal_info = NULL;
7701 	}
7702 
7703 	/*
7704 	 * If this errors out it's because we couldn't invalidate pagecache for
7705 	 * this range and we need to fallback to buffered.
7706 	 */
7707 	if (lock_extent_direct(inode, lockstart, lockend, &cached_state,
7708 			       create)) {
7709 		ret = -ENOTBLK;
7710 		goto err;
7711 	}
7712 
7713 	em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len, 0);
7714 	if (IS_ERR(em)) {
7715 		ret = PTR_ERR(em);
7716 		goto unlock_err;
7717 	}
7718 
7719 	/*
7720 	 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7721 	 * io.  INLINE is special, and we could probably kludge it in here, but
7722 	 * it's still buffered so for safety lets just fall back to the generic
7723 	 * buffered path.
7724 	 *
7725 	 * For COMPRESSED we _have_ to read the entire extent in so we can
7726 	 * decompress it, so there will be buffering required no matter what we
7727 	 * do, so go ahead and fallback to buffered.
7728 	 *
7729 	 * We return -ENOTBLK because that's what makes DIO go ahead and go back
7730 	 * to buffered IO.  Don't blame me, this is the price we pay for using
7731 	 * the generic code.
7732 	 */
7733 	if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7734 	    em->block_start == EXTENT_MAP_INLINE) {
7735 		free_extent_map(em);
7736 		ret = -ENOTBLK;
7737 		goto unlock_err;
7738 	}
7739 
7740 	if (create) {
7741 		ret = btrfs_get_blocks_direct_write(&em, bh_result, inode,
7742 						    dio_data, start, len);
7743 		if (ret < 0)
7744 			goto unlock_err;
7745 
7746 		/* clear and unlock the entire range */
7747 		clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7748 				 unlock_bits, 1, 0, &cached_state);
7749 	} else {
7750 		ret = btrfs_get_blocks_direct_read(em, bh_result, inode,
7751 						   start, len);
7752 		/* Can be negative only if we read from a hole */
7753 		if (ret < 0) {
7754 			ret = 0;
7755 			free_extent_map(em);
7756 			goto unlock_err;
7757 		}
7758 		/*
7759 		 * We need to unlock only the end area that we aren't using.
7760 		 * The rest is going to be unlocked by the endio routine.
7761 		 */
7762 		lockstart = start + bh_result->b_size;
7763 		if (lockstart < lockend) {
7764 			clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
7765 					 lockend, unlock_bits, 1, 0,
7766 					 &cached_state);
7767 		} else {
7768 			free_extent_state(cached_state);
7769 		}
7770 	}
7771 
7772 	free_extent_map(em);
7773 
7774 	return 0;
7775 
7776 unlock_err:
7777 	clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7778 			 unlock_bits, 1, 0, &cached_state);
7779 err:
7780 	if (dio_data)
7781 		current->journal_info = dio_data;
7782 	return ret;
7783 }
7784 
7785 static inline blk_status_t submit_dio_repair_bio(struct inode *inode,
7786 						 struct bio *bio,
7787 						 int mirror_num)
7788 {
7789 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7790 	blk_status_t ret;
7791 
7792 	BUG_ON(bio_op(bio) == REQ_OP_WRITE);
7793 
7794 	ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DIO_REPAIR);
7795 	if (ret)
7796 		return ret;
7797 
7798 	ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
7799 
7800 	return ret;
7801 }
7802 
7803 static int btrfs_check_dio_repairable(struct inode *inode,
7804 				      struct bio *failed_bio,
7805 				      struct io_failure_record *failrec,
7806 				      int failed_mirror)
7807 {
7808 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7809 	int num_copies;
7810 
7811 	num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
7812 	if (num_copies == 1) {
7813 		/*
7814 		 * we only have a single copy of the data, so don't bother with
7815 		 * all the retry and error correction code that follows. no
7816 		 * matter what the error is, it is very likely to persist.
7817 		 */
7818 		btrfs_debug(fs_info,
7819 			"Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
7820 			num_copies, failrec->this_mirror, failed_mirror);
7821 		return 0;
7822 	}
7823 
7824 	failrec->failed_mirror = failed_mirror;
7825 	failrec->this_mirror++;
7826 	if (failrec->this_mirror == failed_mirror)
7827 		failrec->this_mirror++;
7828 
7829 	if (failrec->this_mirror > num_copies) {
7830 		btrfs_debug(fs_info,
7831 			"Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
7832 			num_copies, failrec->this_mirror, failed_mirror);
7833 		return 0;
7834 	}
7835 
7836 	return 1;
7837 }
7838 
7839 static blk_status_t dio_read_error(struct inode *inode, struct bio *failed_bio,
7840 				   struct page *page, unsigned int pgoff,
7841 				   u64 start, u64 end, int failed_mirror,
7842 				   bio_end_io_t *repair_endio, void *repair_arg)
7843 {
7844 	struct io_failure_record *failrec;
7845 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7846 	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
7847 	struct bio *bio;
7848 	int isector;
7849 	unsigned int read_mode = 0;
7850 	int segs;
7851 	int ret;
7852 	blk_status_t status;
7853 	struct bio_vec bvec;
7854 
7855 	BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
7856 
7857 	ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
7858 	if (ret)
7859 		return errno_to_blk_status(ret);
7860 
7861 	ret = btrfs_check_dio_repairable(inode, failed_bio, failrec,
7862 					 failed_mirror);
7863 	if (!ret) {
7864 		free_io_failure(failure_tree, io_tree, failrec);
7865 		return BLK_STS_IOERR;
7866 	}
7867 
7868 	segs = bio_segments(failed_bio);
7869 	bio_get_first_bvec(failed_bio, &bvec);
7870 	if (segs > 1 ||
7871 	    (bvec.bv_len > btrfs_inode_sectorsize(inode)))
7872 		read_mode |= REQ_FAILFAST_DEV;
7873 
7874 	isector = start - btrfs_io_bio(failed_bio)->logical;
7875 	isector >>= inode->i_sb->s_blocksize_bits;
7876 	bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
7877 				pgoff, isector, repair_endio, repair_arg);
7878 	bio->bi_opf = REQ_OP_READ | read_mode;
7879 
7880 	btrfs_debug(BTRFS_I(inode)->root->fs_info,
7881 		    "repair DIO read error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d",
7882 		    read_mode, failrec->this_mirror, failrec->in_validation);
7883 
7884 	status = submit_dio_repair_bio(inode, bio, failrec->this_mirror);
7885 	if (status) {
7886 		free_io_failure(failure_tree, io_tree, failrec);
7887 		bio_put(bio);
7888 	}
7889 
7890 	return status;
7891 }
7892 
7893 struct btrfs_retry_complete {
7894 	struct completion done;
7895 	struct inode *inode;
7896 	u64 start;
7897 	int uptodate;
7898 };
7899 
7900 static void btrfs_retry_endio_nocsum(struct bio *bio)
7901 {
7902 	struct btrfs_retry_complete *done = bio->bi_private;
7903 	struct inode *inode = done->inode;
7904 	struct bio_vec *bvec;
7905 	struct extent_io_tree *io_tree, *failure_tree;
7906 	struct bvec_iter_all iter_all;
7907 
7908 	if (bio->bi_status)
7909 		goto end;
7910 
7911 	ASSERT(bio->bi_vcnt == 1);
7912 	io_tree = &BTRFS_I(inode)->io_tree;
7913 	failure_tree = &BTRFS_I(inode)->io_failure_tree;
7914 	ASSERT(bio_first_bvec_all(bio)->bv_len == btrfs_inode_sectorsize(inode));
7915 
7916 	done->uptodate = 1;
7917 	ASSERT(!bio_flagged(bio, BIO_CLONED));
7918 	bio_for_each_segment_all(bvec, bio, iter_all)
7919 		clean_io_failure(BTRFS_I(inode)->root->fs_info, failure_tree,
7920 				 io_tree, done->start, bvec->bv_page,
7921 				 btrfs_ino(BTRFS_I(inode)), 0);
7922 end:
7923 	complete(&done->done);
7924 	bio_put(bio);
7925 }
7926 
7927 static blk_status_t __btrfs_correct_data_nocsum(struct inode *inode,
7928 						struct btrfs_io_bio *io_bio)
7929 {
7930 	struct btrfs_fs_info *fs_info;
7931 	struct bio_vec bvec;
7932 	struct bvec_iter iter;
7933 	struct btrfs_retry_complete done;
7934 	u64 start;
7935 	unsigned int pgoff;
7936 	u32 sectorsize;
7937 	int nr_sectors;
7938 	blk_status_t ret;
7939 	blk_status_t err = BLK_STS_OK;
7940 
7941 	fs_info = BTRFS_I(inode)->root->fs_info;
7942 	sectorsize = fs_info->sectorsize;
7943 
7944 	start = io_bio->logical;
7945 	done.inode = inode;
7946 	io_bio->bio.bi_iter = io_bio->iter;
7947 
7948 	bio_for_each_segment(bvec, &io_bio->bio, iter) {
7949 		nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len);
7950 		pgoff = bvec.bv_offset;
7951 
7952 next_block_or_try_again:
7953 		done.uptodate = 0;
7954 		done.start = start;
7955 		init_completion(&done.done);
7956 
7957 		ret = dio_read_error(inode, &io_bio->bio, bvec.bv_page,
7958 				pgoff, start, start + sectorsize - 1,
7959 				io_bio->mirror_num,
7960 				btrfs_retry_endio_nocsum, &done);
7961 		if (ret) {
7962 			err = ret;
7963 			goto next;
7964 		}
7965 
7966 		wait_for_completion_io(&done.done);
7967 
7968 		if (!done.uptodate) {
7969 			/* We might have another mirror, so try again */
7970 			goto next_block_or_try_again;
7971 		}
7972 
7973 next:
7974 		start += sectorsize;
7975 
7976 		nr_sectors--;
7977 		if (nr_sectors) {
7978 			pgoff += sectorsize;
7979 			ASSERT(pgoff < PAGE_SIZE);
7980 			goto next_block_or_try_again;
7981 		}
7982 	}
7983 
7984 	return err;
7985 }
7986 
7987 static void btrfs_retry_endio(struct bio *bio)
7988 {
7989 	struct btrfs_retry_complete *done = bio->bi_private;
7990 	struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
7991 	struct extent_io_tree *io_tree, *failure_tree;
7992 	struct inode *inode = done->inode;
7993 	struct bio_vec *bvec;
7994 	int uptodate;
7995 	int ret;
7996 	int i = 0;
7997 	struct bvec_iter_all iter_all;
7998 
7999 	if (bio->bi_status)
8000 		goto end;
8001 
8002 	uptodate = 1;
8003 
8004 	ASSERT(bio->bi_vcnt == 1);
8005 	ASSERT(bio_first_bvec_all(bio)->bv_len == btrfs_inode_sectorsize(done->inode));
8006 
8007 	io_tree = &BTRFS_I(inode)->io_tree;
8008 	failure_tree = &BTRFS_I(inode)->io_failure_tree;
8009 
8010 	ASSERT(!bio_flagged(bio, BIO_CLONED));
8011 	bio_for_each_segment_all(bvec, bio, iter_all) {
8012 		ret = __readpage_endio_check(inode, io_bio, i, bvec->bv_page,
8013 					     bvec->bv_offset, done->start,
8014 					     bvec->bv_len);
8015 		if (!ret)
8016 			clean_io_failure(BTRFS_I(inode)->root->fs_info,
8017 					 failure_tree, io_tree, done->start,
8018 					 bvec->bv_page,
8019 					 btrfs_ino(BTRFS_I(inode)),
8020 					 bvec->bv_offset);
8021 		else
8022 			uptodate = 0;
8023 		i++;
8024 	}
8025 
8026 	done->uptodate = uptodate;
8027 end:
8028 	complete(&done->done);
8029 	bio_put(bio);
8030 }
8031 
8032 static blk_status_t __btrfs_subio_endio_read(struct inode *inode,
8033 		struct btrfs_io_bio *io_bio, blk_status_t err)
8034 {
8035 	struct btrfs_fs_info *fs_info;
8036 	struct bio_vec bvec;
8037 	struct bvec_iter iter;
8038 	struct btrfs_retry_complete done;
8039 	u64 start;
8040 	u64 offset = 0;
8041 	u32 sectorsize;
8042 	int nr_sectors;
8043 	unsigned int pgoff;
8044 	int csum_pos;
8045 	bool uptodate = (err == 0);
8046 	int ret;
8047 	blk_status_t status;
8048 
8049 	fs_info = BTRFS_I(inode)->root->fs_info;
8050 	sectorsize = fs_info->sectorsize;
8051 
8052 	err = BLK_STS_OK;
8053 	start = io_bio->logical;
8054 	done.inode = inode;
8055 	io_bio->bio.bi_iter = io_bio->iter;
8056 
8057 	bio_for_each_segment(bvec, &io_bio->bio, iter) {
8058 		nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len);
8059 
8060 		pgoff = bvec.bv_offset;
8061 next_block:
8062 		if (uptodate) {
8063 			csum_pos = BTRFS_BYTES_TO_BLKS(fs_info, offset);
8064 			ret = __readpage_endio_check(inode, io_bio, csum_pos,
8065 					bvec.bv_page, pgoff, start, sectorsize);
8066 			if (likely(!ret))
8067 				goto next;
8068 		}
8069 try_again:
8070 		done.uptodate = 0;
8071 		done.start = start;
8072 		init_completion(&done.done);
8073 
8074 		status = dio_read_error(inode, &io_bio->bio, bvec.bv_page,
8075 					pgoff, start, start + sectorsize - 1,
8076 					io_bio->mirror_num, btrfs_retry_endio,
8077 					&done);
8078 		if (status) {
8079 			err = status;
8080 			goto next;
8081 		}
8082 
8083 		wait_for_completion_io(&done.done);
8084 
8085 		if (!done.uptodate) {
8086 			/* We might have another mirror, so try again */
8087 			goto try_again;
8088 		}
8089 next:
8090 		offset += sectorsize;
8091 		start += sectorsize;
8092 
8093 		ASSERT(nr_sectors);
8094 
8095 		nr_sectors--;
8096 		if (nr_sectors) {
8097 			pgoff += sectorsize;
8098 			ASSERT(pgoff < PAGE_SIZE);
8099 			goto next_block;
8100 		}
8101 	}
8102 
8103 	return err;
8104 }
8105 
8106 static blk_status_t btrfs_subio_endio_read(struct inode *inode,
8107 		struct btrfs_io_bio *io_bio, blk_status_t err)
8108 {
8109 	bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
8110 
8111 	if (skip_csum) {
8112 		if (unlikely(err))
8113 			return __btrfs_correct_data_nocsum(inode, io_bio);
8114 		else
8115 			return BLK_STS_OK;
8116 	} else {
8117 		return __btrfs_subio_endio_read(inode, io_bio, err);
8118 	}
8119 }
8120 
8121 static void btrfs_endio_direct_read(struct bio *bio)
8122 {
8123 	struct btrfs_dio_private *dip = bio->bi_private;
8124 	struct inode *inode = dip->inode;
8125 	struct bio *dio_bio;
8126 	struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8127 	blk_status_t err = bio->bi_status;
8128 
8129 	if (dip->flags & BTRFS_DIO_ORIG_BIO_SUBMITTED)
8130 		err = btrfs_subio_endio_read(inode, io_bio, err);
8131 
8132 	unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
8133 		      dip->logical_offset + dip->bytes - 1);
8134 	dio_bio = dip->dio_bio;
8135 
8136 	kfree(dip);
8137 
8138 	dio_bio->bi_status = err;
8139 	dio_end_io(dio_bio);
8140 	btrfs_io_bio_free_csum(io_bio);
8141 	bio_put(bio);
8142 }
8143 
8144 static void __endio_write_update_ordered(struct inode *inode,
8145 					 const u64 offset, const u64 bytes,
8146 					 const bool uptodate)
8147 {
8148 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8149 	struct btrfs_ordered_extent *ordered = NULL;
8150 	struct btrfs_workqueue *wq;
8151 	btrfs_work_func_t func;
8152 	u64 ordered_offset = offset;
8153 	u64 ordered_bytes = bytes;
8154 	u64 last_offset;
8155 
8156 	if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
8157 		wq = fs_info->endio_freespace_worker;
8158 		func = btrfs_freespace_write_helper;
8159 	} else {
8160 		wq = fs_info->endio_write_workers;
8161 		func = btrfs_endio_write_helper;
8162 	}
8163 
8164 	while (ordered_offset < offset + bytes) {
8165 		last_offset = ordered_offset;
8166 		if (btrfs_dec_test_first_ordered_pending(inode, &ordered,
8167 							   &ordered_offset,
8168 							   ordered_bytes,
8169 							   uptodate)) {
8170 			btrfs_init_work(&ordered->work, func,
8171 					finish_ordered_fn,
8172 					NULL, NULL);
8173 			btrfs_queue_work(wq, &ordered->work);
8174 		}
8175 		/*
8176 		 * If btrfs_dec_test_ordered_pending does not find any ordered
8177 		 * extent in the range, we can exit.
8178 		 */
8179 		if (ordered_offset == last_offset)
8180 			return;
8181 		/*
8182 		 * Our bio might span multiple ordered extents. In this case
8183 		 * we keep going until we have accounted the whole dio.
8184 		 */
8185 		if (ordered_offset < offset + bytes) {
8186 			ordered_bytes = offset + bytes - ordered_offset;
8187 			ordered = NULL;
8188 		}
8189 	}
8190 }
8191 
8192 static void btrfs_endio_direct_write(struct bio *bio)
8193 {
8194 	struct btrfs_dio_private *dip = bio->bi_private;
8195 	struct bio *dio_bio = dip->dio_bio;
8196 
8197 	__endio_write_update_ordered(dip->inode, dip->logical_offset,
8198 				     dip->bytes, !bio->bi_status);
8199 
8200 	kfree(dip);
8201 
8202 	dio_bio->bi_status = bio->bi_status;
8203 	dio_end_io(dio_bio);
8204 	bio_put(bio);
8205 }
8206 
8207 static blk_status_t btrfs_submit_bio_start_direct_io(void *private_data,
8208 				    struct bio *bio, u64 offset)
8209 {
8210 	struct inode *inode = private_data;
8211 	blk_status_t ret;
8212 	ret = btrfs_csum_one_bio(inode, bio, offset, 1);
8213 	BUG_ON(ret); /* -ENOMEM */
8214 	return 0;
8215 }
8216 
8217 static void btrfs_end_dio_bio(struct bio *bio)
8218 {
8219 	struct btrfs_dio_private *dip = bio->bi_private;
8220 	blk_status_t err = bio->bi_status;
8221 
8222 	if (err)
8223 		btrfs_warn(BTRFS_I(dip->inode)->root->fs_info,
8224 			   "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d",
8225 			   btrfs_ino(BTRFS_I(dip->inode)), bio_op(bio),
8226 			   bio->bi_opf,
8227 			   (unsigned long long)bio->bi_iter.bi_sector,
8228 			   bio->bi_iter.bi_size, err);
8229 
8230 	if (dip->subio_endio)
8231 		err = dip->subio_endio(dip->inode, btrfs_io_bio(bio), err);
8232 
8233 	if (err) {
8234 		/*
8235 		 * We want to perceive the errors flag being set before
8236 		 * decrementing the reference count. We don't need a barrier
8237 		 * since atomic operations with a return value are fully
8238 		 * ordered as per atomic_t.txt
8239 		 */
8240 		dip->errors = 1;
8241 	}
8242 
8243 	/* if there are more bios still pending for this dio, just exit */
8244 	if (!atomic_dec_and_test(&dip->pending_bios))
8245 		goto out;
8246 
8247 	if (dip->errors) {
8248 		bio_io_error(dip->orig_bio);
8249 	} else {
8250 		dip->dio_bio->bi_status = BLK_STS_OK;
8251 		bio_endio(dip->orig_bio);
8252 	}
8253 out:
8254 	bio_put(bio);
8255 }
8256 
8257 static inline blk_status_t btrfs_lookup_and_bind_dio_csum(struct inode *inode,
8258 						 struct btrfs_dio_private *dip,
8259 						 struct bio *bio,
8260 						 u64 file_offset)
8261 {
8262 	struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8263 	struct btrfs_io_bio *orig_io_bio = btrfs_io_bio(dip->orig_bio);
8264 	blk_status_t ret;
8265 
8266 	/*
8267 	 * We load all the csum data we need when we submit
8268 	 * the first bio to reduce the csum tree search and
8269 	 * contention.
8270 	 */
8271 	if (dip->logical_offset == file_offset) {
8272 		ret = btrfs_lookup_bio_sums_dio(inode, dip->orig_bio,
8273 						file_offset);
8274 		if (ret)
8275 			return ret;
8276 	}
8277 
8278 	if (bio == dip->orig_bio)
8279 		return 0;
8280 
8281 	file_offset -= dip->logical_offset;
8282 	file_offset >>= inode->i_sb->s_blocksize_bits;
8283 	io_bio->csum = (u8 *)(((u32 *)orig_io_bio->csum) + file_offset);
8284 
8285 	return 0;
8286 }
8287 
8288 static inline blk_status_t btrfs_submit_dio_bio(struct bio *bio,
8289 		struct inode *inode, u64 file_offset, int async_submit)
8290 {
8291 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8292 	struct btrfs_dio_private *dip = bio->bi_private;
8293 	bool write = bio_op(bio) == REQ_OP_WRITE;
8294 	blk_status_t ret;
8295 
8296 	/* Check btrfs_submit_bio_hook() for rules about async submit. */
8297 	if (async_submit)
8298 		async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
8299 
8300 	if (!write) {
8301 		ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
8302 		if (ret)
8303 			goto err;
8304 	}
8305 
8306 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
8307 		goto map;
8308 
8309 	if (write && async_submit) {
8310 		ret = btrfs_wq_submit_bio(fs_info, bio, 0, 0,
8311 					  file_offset, inode,
8312 					  btrfs_submit_bio_start_direct_io);
8313 		goto err;
8314 	} else if (write) {
8315 		/*
8316 		 * If we aren't doing async submit, calculate the csum of the
8317 		 * bio now.
8318 		 */
8319 		ret = btrfs_csum_one_bio(inode, bio, file_offset, 1);
8320 		if (ret)
8321 			goto err;
8322 	} else {
8323 		ret = btrfs_lookup_and_bind_dio_csum(inode, dip, bio,
8324 						     file_offset);
8325 		if (ret)
8326 			goto err;
8327 	}
8328 map:
8329 	ret = btrfs_map_bio(fs_info, bio, 0, 0);
8330 err:
8331 	return ret;
8332 }
8333 
8334 static int btrfs_submit_direct_hook(struct btrfs_dio_private *dip)
8335 {
8336 	struct inode *inode = dip->inode;
8337 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8338 	struct bio *bio;
8339 	struct bio *orig_bio = dip->orig_bio;
8340 	u64 start_sector = orig_bio->bi_iter.bi_sector;
8341 	u64 file_offset = dip->logical_offset;
8342 	int async_submit = 0;
8343 	u64 submit_len;
8344 	int clone_offset = 0;
8345 	int clone_len;
8346 	int ret;
8347 	blk_status_t status;
8348 	struct btrfs_io_geometry geom;
8349 
8350 	submit_len = orig_bio->bi_iter.bi_size;
8351 	ret = btrfs_get_io_geometry(fs_info, btrfs_op(orig_bio),
8352 				    start_sector << 9, submit_len, &geom);
8353 	if (ret)
8354 		return -EIO;
8355 
8356 	if (geom.len >= submit_len) {
8357 		bio = orig_bio;
8358 		dip->flags |= BTRFS_DIO_ORIG_BIO_SUBMITTED;
8359 		goto submit;
8360 	}
8361 
8362 	/* async crcs make it difficult to collect full stripe writes. */
8363 	if (btrfs_data_alloc_profile(fs_info) & BTRFS_BLOCK_GROUP_RAID56_MASK)
8364 		async_submit = 0;
8365 	else
8366 		async_submit = 1;
8367 
8368 	/* bio split */
8369 	ASSERT(geom.len <= INT_MAX);
8370 	atomic_inc(&dip->pending_bios);
8371 	do {
8372 		clone_len = min_t(int, submit_len, geom.len);
8373 
8374 		/*
8375 		 * This will never fail as it's passing GPF_NOFS and
8376 		 * the allocation is backed by btrfs_bioset.
8377 		 */
8378 		bio = btrfs_bio_clone_partial(orig_bio, clone_offset,
8379 					      clone_len);
8380 		bio->bi_private = dip;
8381 		bio->bi_end_io = btrfs_end_dio_bio;
8382 		btrfs_io_bio(bio)->logical = file_offset;
8383 
8384 		ASSERT(submit_len >= clone_len);
8385 		submit_len -= clone_len;
8386 		if (submit_len == 0)
8387 			break;
8388 
8389 		/*
8390 		 * Increase the count before we submit the bio so we know
8391 		 * the end IO handler won't happen before we increase the
8392 		 * count. Otherwise, the dip might get freed before we're
8393 		 * done setting it up.
8394 		 */
8395 		atomic_inc(&dip->pending_bios);
8396 
8397 		status = btrfs_submit_dio_bio(bio, inode, file_offset,
8398 						async_submit);
8399 		if (status) {
8400 			bio_put(bio);
8401 			atomic_dec(&dip->pending_bios);
8402 			goto out_err;
8403 		}
8404 
8405 		clone_offset += clone_len;
8406 		start_sector += clone_len >> 9;
8407 		file_offset += clone_len;
8408 
8409 		ret = btrfs_get_io_geometry(fs_info, btrfs_op(orig_bio),
8410 				      start_sector << 9, submit_len, &geom);
8411 		if (ret)
8412 			goto out_err;
8413 	} while (submit_len > 0);
8414 
8415 submit:
8416 	status = btrfs_submit_dio_bio(bio, inode, file_offset, async_submit);
8417 	if (!status)
8418 		return 0;
8419 
8420 	bio_put(bio);
8421 out_err:
8422 	dip->errors = 1;
8423 	/*
8424 	 * Before atomic variable goto zero, we must  make sure dip->errors is
8425 	 * perceived to be set. This ordering is ensured by the fact that an
8426 	 * atomic operations with a return value are fully ordered as per
8427 	 * atomic_t.txt
8428 	 */
8429 	if (atomic_dec_and_test(&dip->pending_bios))
8430 		bio_io_error(dip->orig_bio);
8431 
8432 	/* bio_end_io() will handle error, so we needn't return it */
8433 	return 0;
8434 }
8435 
8436 static void btrfs_submit_direct(struct bio *dio_bio, struct inode *inode,
8437 				loff_t file_offset)
8438 {
8439 	struct btrfs_dio_private *dip = NULL;
8440 	struct bio *bio = NULL;
8441 	struct btrfs_io_bio *io_bio;
8442 	bool write = (bio_op(dio_bio) == REQ_OP_WRITE);
8443 	int ret = 0;
8444 
8445 	bio = btrfs_bio_clone(dio_bio);
8446 
8447 	dip = kzalloc(sizeof(*dip), GFP_NOFS);
8448 	if (!dip) {
8449 		ret = -ENOMEM;
8450 		goto free_ordered;
8451 	}
8452 
8453 	dip->private = dio_bio->bi_private;
8454 	dip->inode = inode;
8455 	dip->logical_offset = file_offset;
8456 	dip->bytes = dio_bio->bi_iter.bi_size;
8457 	dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9;
8458 	bio->bi_private = dip;
8459 	dip->orig_bio = bio;
8460 	dip->dio_bio = dio_bio;
8461 	atomic_set(&dip->pending_bios, 0);
8462 	io_bio = btrfs_io_bio(bio);
8463 	io_bio->logical = file_offset;
8464 
8465 	if (write) {
8466 		bio->bi_end_io = btrfs_endio_direct_write;
8467 	} else {
8468 		bio->bi_end_io = btrfs_endio_direct_read;
8469 		dip->subio_endio = btrfs_subio_endio_read;
8470 	}
8471 
8472 	/*
8473 	 * Reset the range for unsubmitted ordered extents (to a 0 length range)
8474 	 * even if we fail to submit a bio, because in such case we do the
8475 	 * corresponding error handling below and it must not be done a second
8476 	 * time by btrfs_direct_IO().
8477 	 */
8478 	if (write) {
8479 		struct btrfs_dio_data *dio_data = current->journal_info;
8480 
8481 		dio_data->unsubmitted_oe_range_end = dip->logical_offset +
8482 			dip->bytes;
8483 		dio_data->unsubmitted_oe_range_start =
8484 			dio_data->unsubmitted_oe_range_end;
8485 	}
8486 
8487 	ret = btrfs_submit_direct_hook(dip);
8488 	if (!ret)
8489 		return;
8490 
8491 	btrfs_io_bio_free_csum(io_bio);
8492 
8493 free_ordered:
8494 	/*
8495 	 * If we arrived here it means either we failed to submit the dip
8496 	 * or we either failed to clone the dio_bio or failed to allocate the
8497 	 * dip. If we cloned the dio_bio and allocated the dip, we can just
8498 	 * call bio_endio against our io_bio so that we get proper resource
8499 	 * cleanup if we fail to submit the dip, otherwise, we must do the
8500 	 * same as btrfs_endio_direct_[write|read] because we can't call these
8501 	 * callbacks - they require an allocated dip and a clone of dio_bio.
8502 	 */
8503 	if (bio && dip) {
8504 		bio_io_error(bio);
8505 		/*
8506 		 * The end io callbacks free our dip, do the final put on bio
8507 		 * and all the cleanup and final put for dio_bio (through
8508 		 * dio_end_io()).
8509 		 */
8510 		dip = NULL;
8511 		bio = NULL;
8512 	} else {
8513 		if (write)
8514 			__endio_write_update_ordered(inode,
8515 						file_offset,
8516 						dio_bio->bi_iter.bi_size,
8517 						false);
8518 		else
8519 			unlock_extent(&BTRFS_I(inode)->io_tree, file_offset,
8520 			      file_offset + dio_bio->bi_iter.bi_size - 1);
8521 
8522 		dio_bio->bi_status = BLK_STS_IOERR;
8523 		/*
8524 		 * Releases and cleans up our dio_bio, no need to bio_put()
8525 		 * nor bio_endio()/bio_io_error() against dio_bio.
8526 		 */
8527 		dio_end_io(dio_bio);
8528 	}
8529 	if (bio)
8530 		bio_put(bio);
8531 	kfree(dip);
8532 }
8533 
8534 static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info,
8535 			       const struct iov_iter *iter, loff_t offset)
8536 {
8537 	int seg;
8538 	int i;
8539 	unsigned int blocksize_mask = fs_info->sectorsize - 1;
8540 	ssize_t retval = -EINVAL;
8541 
8542 	if (offset & blocksize_mask)
8543 		goto out;
8544 
8545 	if (iov_iter_alignment(iter) & blocksize_mask)
8546 		goto out;
8547 
8548 	/* If this is a write we don't need to check anymore */
8549 	if (iov_iter_rw(iter) != READ || !iter_is_iovec(iter))
8550 		return 0;
8551 	/*
8552 	 * Check to make sure we don't have duplicate iov_base's in this
8553 	 * iovec, if so return EINVAL, otherwise we'll get csum errors
8554 	 * when reading back.
8555 	 */
8556 	for (seg = 0; seg < iter->nr_segs; seg++) {
8557 		for (i = seg + 1; i < iter->nr_segs; i++) {
8558 			if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
8559 				goto out;
8560 		}
8561 	}
8562 	retval = 0;
8563 out:
8564 	return retval;
8565 }
8566 
8567 static ssize_t btrfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
8568 {
8569 	struct file *file = iocb->ki_filp;
8570 	struct inode *inode = file->f_mapping->host;
8571 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8572 	struct btrfs_dio_data dio_data = { 0 };
8573 	struct extent_changeset *data_reserved = NULL;
8574 	loff_t offset = iocb->ki_pos;
8575 	size_t count = 0;
8576 	int flags = 0;
8577 	bool wakeup = true;
8578 	bool relock = false;
8579 	ssize_t ret;
8580 
8581 	if (check_direct_IO(fs_info, iter, offset))
8582 		return 0;
8583 
8584 	inode_dio_begin(inode);
8585 
8586 	/*
8587 	 * The generic stuff only does filemap_write_and_wait_range, which
8588 	 * isn't enough if we've written compressed pages to this area, so
8589 	 * we need to flush the dirty pages again to make absolutely sure
8590 	 * that any outstanding dirty pages are on disk.
8591 	 */
8592 	count = iov_iter_count(iter);
8593 	if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
8594 		     &BTRFS_I(inode)->runtime_flags))
8595 		filemap_fdatawrite_range(inode->i_mapping, offset,
8596 					 offset + count - 1);
8597 
8598 	if (iov_iter_rw(iter) == WRITE) {
8599 		/*
8600 		 * If the write DIO is beyond the EOF, we need update
8601 		 * the isize, but it is protected by i_mutex. So we can
8602 		 * not unlock the i_mutex at this case.
8603 		 */
8604 		if (offset + count <= inode->i_size) {
8605 			dio_data.overwrite = 1;
8606 			inode_unlock(inode);
8607 			relock = true;
8608 		} else if (iocb->ki_flags & IOCB_NOWAIT) {
8609 			ret = -EAGAIN;
8610 			goto out;
8611 		}
8612 		ret = btrfs_delalloc_reserve_space(inode, &data_reserved,
8613 						   offset, count);
8614 		if (ret)
8615 			goto out;
8616 
8617 		/*
8618 		 * We need to know how many extents we reserved so that we can
8619 		 * do the accounting properly if we go over the number we
8620 		 * originally calculated.  Abuse current->journal_info for this.
8621 		 */
8622 		dio_data.reserve = round_up(count,
8623 					    fs_info->sectorsize);
8624 		dio_data.unsubmitted_oe_range_start = (u64)offset;
8625 		dio_data.unsubmitted_oe_range_end = (u64)offset;
8626 		current->journal_info = &dio_data;
8627 		down_read(&BTRFS_I(inode)->dio_sem);
8628 	} else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK,
8629 				     &BTRFS_I(inode)->runtime_flags)) {
8630 		inode_dio_end(inode);
8631 		flags = DIO_LOCKING | DIO_SKIP_HOLES;
8632 		wakeup = false;
8633 	}
8634 
8635 	ret = __blockdev_direct_IO(iocb, inode,
8636 				   fs_info->fs_devices->latest_bdev,
8637 				   iter, btrfs_get_blocks_direct, NULL,
8638 				   btrfs_submit_direct, flags);
8639 	if (iov_iter_rw(iter) == WRITE) {
8640 		up_read(&BTRFS_I(inode)->dio_sem);
8641 		current->journal_info = NULL;
8642 		if (ret < 0 && ret != -EIOCBQUEUED) {
8643 			if (dio_data.reserve)
8644 				btrfs_delalloc_release_space(inode, data_reserved,
8645 					offset, dio_data.reserve, true);
8646 			/*
8647 			 * On error we might have left some ordered extents
8648 			 * without submitting corresponding bios for them, so
8649 			 * cleanup them up to avoid other tasks getting them
8650 			 * and waiting for them to complete forever.
8651 			 */
8652 			if (dio_data.unsubmitted_oe_range_start <
8653 			    dio_data.unsubmitted_oe_range_end)
8654 				__endio_write_update_ordered(inode,
8655 					dio_data.unsubmitted_oe_range_start,
8656 					dio_data.unsubmitted_oe_range_end -
8657 					dio_data.unsubmitted_oe_range_start,
8658 					false);
8659 		} else if (ret >= 0 && (size_t)ret < count)
8660 			btrfs_delalloc_release_space(inode, data_reserved,
8661 					offset, count - (size_t)ret, true);
8662 		btrfs_delalloc_release_extents(BTRFS_I(inode), count, false);
8663 	}
8664 out:
8665 	if (wakeup)
8666 		inode_dio_end(inode);
8667 	if (relock)
8668 		inode_lock(inode);
8669 
8670 	extent_changeset_free(data_reserved);
8671 	return ret;
8672 }
8673 
8674 #define BTRFS_FIEMAP_FLAGS	(FIEMAP_FLAG_SYNC)
8675 
8676 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
8677 		__u64 start, __u64 len)
8678 {
8679 	int	ret;
8680 
8681 	ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS);
8682 	if (ret)
8683 		return ret;
8684 
8685 	return extent_fiemap(inode, fieinfo, start, len);
8686 }
8687 
8688 int btrfs_readpage(struct file *file, struct page *page)
8689 {
8690 	struct extent_io_tree *tree;
8691 	tree = &BTRFS_I(page->mapping->host)->io_tree;
8692 	return extent_read_full_page(tree, page, btrfs_get_extent, 0);
8693 }
8694 
8695 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
8696 {
8697 	struct inode *inode = page->mapping->host;
8698 	int ret;
8699 
8700 	if (current->flags & PF_MEMALLOC) {
8701 		redirty_page_for_writepage(wbc, page);
8702 		unlock_page(page);
8703 		return 0;
8704 	}
8705 
8706 	/*
8707 	 * If we are under memory pressure we will call this directly from the
8708 	 * VM, we need to make sure we have the inode referenced for the ordered
8709 	 * extent.  If not just return like we didn't do anything.
8710 	 */
8711 	if (!igrab(inode)) {
8712 		redirty_page_for_writepage(wbc, page);
8713 		return AOP_WRITEPAGE_ACTIVATE;
8714 	}
8715 	ret = extent_write_full_page(page, wbc);
8716 	btrfs_add_delayed_iput(inode);
8717 	return ret;
8718 }
8719 
8720 static int btrfs_writepages(struct address_space *mapping,
8721 			    struct writeback_control *wbc)
8722 {
8723 	return extent_writepages(mapping, wbc);
8724 }
8725 
8726 static int
8727 btrfs_readpages(struct file *file, struct address_space *mapping,
8728 		struct list_head *pages, unsigned nr_pages)
8729 {
8730 	return extent_readpages(mapping, pages, nr_pages);
8731 }
8732 
8733 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8734 {
8735 	int ret = try_release_extent_mapping(page, gfp_flags);
8736 	if (ret == 1) {
8737 		ClearPagePrivate(page);
8738 		set_page_private(page, 0);
8739 		put_page(page);
8740 	}
8741 	return ret;
8742 }
8743 
8744 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8745 {
8746 	if (PageWriteback(page) || PageDirty(page))
8747 		return 0;
8748 	return __btrfs_releasepage(page, gfp_flags);
8749 }
8750 
8751 static void btrfs_invalidatepage(struct page *page, unsigned int offset,
8752 				 unsigned int length)
8753 {
8754 	struct inode *inode = page->mapping->host;
8755 	struct extent_io_tree *tree;
8756 	struct btrfs_ordered_extent *ordered;
8757 	struct extent_state *cached_state = NULL;
8758 	u64 page_start = page_offset(page);
8759 	u64 page_end = page_start + PAGE_SIZE - 1;
8760 	u64 start;
8761 	u64 end;
8762 	int inode_evicting = inode->i_state & I_FREEING;
8763 
8764 	/*
8765 	 * we have the page locked, so new writeback can't start,
8766 	 * and the dirty bit won't be cleared while we are here.
8767 	 *
8768 	 * Wait for IO on this page so that we can safely clear
8769 	 * the PagePrivate2 bit and do ordered accounting
8770 	 */
8771 	wait_on_page_writeback(page);
8772 
8773 	tree = &BTRFS_I(inode)->io_tree;
8774 	if (offset) {
8775 		btrfs_releasepage(page, GFP_NOFS);
8776 		return;
8777 	}
8778 
8779 	if (!inode_evicting)
8780 		lock_extent_bits(tree, page_start, page_end, &cached_state);
8781 again:
8782 	start = page_start;
8783 	ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
8784 					page_end - start + 1);
8785 	if (ordered) {
8786 		end = min(page_end, ordered->file_offset + ordered->len - 1);
8787 		/*
8788 		 * IO on this page will never be started, so we need
8789 		 * to account for any ordered extents now
8790 		 */
8791 		if (!inode_evicting)
8792 			clear_extent_bit(tree, start, end,
8793 					 EXTENT_DIRTY | EXTENT_DELALLOC |
8794 					 EXTENT_DELALLOC_NEW |
8795 					 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
8796 					 EXTENT_DEFRAG, 1, 0, &cached_state);
8797 		/*
8798 		 * whoever cleared the private bit is responsible
8799 		 * for the finish_ordered_io
8800 		 */
8801 		if (TestClearPagePrivate2(page)) {
8802 			struct btrfs_ordered_inode_tree *tree;
8803 			u64 new_len;
8804 
8805 			tree = &BTRFS_I(inode)->ordered_tree;
8806 
8807 			spin_lock_irq(&tree->lock);
8808 			set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
8809 			new_len = start - ordered->file_offset;
8810 			if (new_len < ordered->truncated_len)
8811 				ordered->truncated_len = new_len;
8812 			spin_unlock_irq(&tree->lock);
8813 
8814 			if (btrfs_dec_test_ordered_pending(inode, &ordered,
8815 							   start,
8816 							   end - start + 1, 1))
8817 				btrfs_finish_ordered_io(ordered);
8818 		}
8819 		btrfs_put_ordered_extent(ordered);
8820 		if (!inode_evicting) {
8821 			cached_state = NULL;
8822 			lock_extent_bits(tree, start, end,
8823 					 &cached_state);
8824 		}
8825 
8826 		start = end + 1;
8827 		if (start < page_end)
8828 			goto again;
8829 	}
8830 
8831 	/*
8832 	 * Qgroup reserved space handler
8833 	 * Page here will be either
8834 	 * 1) Already written to disk
8835 	 *    In this case, its reserved space is released from data rsv map
8836 	 *    and will be freed by delayed_ref handler finally.
8837 	 *    So even we call qgroup_free_data(), it won't decrease reserved
8838 	 *    space.
8839 	 * 2) Not written to disk
8840 	 *    This means the reserved space should be freed here. However,
8841 	 *    if a truncate invalidates the page (by clearing PageDirty)
8842 	 *    and the page is accounted for while allocating extent
8843 	 *    in btrfs_check_data_free_space() we let delayed_ref to
8844 	 *    free the entire extent.
8845 	 */
8846 	if (PageDirty(page))
8847 		btrfs_qgroup_free_data(inode, NULL, page_start, PAGE_SIZE);
8848 	if (!inode_evicting) {
8849 		clear_extent_bit(tree, page_start, page_end,
8850 				 EXTENT_LOCKED | EXTENT_DIRTY |
8851 				 EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
8852 				 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1,
8853 				 &cached_state);
8854 
8855 		__btrfs_releasepage(page, GFP_NOFS);
8856 	}
8857 
8858 	ClearPageChecked(page);
8859 	if (PagePrivate(page)) {
8860 		ClearPagePrivate(page);
8861 		set_page_private(page, 0);
8862 		put_page(page);
8863 	}
8864 }
8865 
8866 /*
8867  * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8868  * called from a page fault handler when a page is first dirtied. Hence we must
8869  * be careful to check for EOF conditions here. We set the page up correctly
8870  * for a written page which means we get ENOSPC checking when writing into
8871  * holes and correct delalloc and unwritten extent mapping on filesystems that
8872  * support these features.
8873  *
8874  * We are not allowed to take the i_mutex here so we have to play games to
8875  * protect against truncate races as the page could now be beyond EOF.  Because
8876  * truncate_setsize() writes the inode size before removing pages, once we have
8877  * the page lock we can determine safely if the page is beyond EOF. If it is not
8878  * beyond EOF, then the page is guaranteed safe against truncation until we
8879  * unlock the page.
8880  */
8881 vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf)
8882 {
8883 	struct page *page = vmf->page;
8884 	struct inode *inode = file_inode(vmf->vma->vm_file);
8885 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8886 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8887 	struct btrfs_ordered_extent *ordered;
8888 	struct extent_state *cached_state = NULL;
8889 	struct extent_changeset *data_reserved = NULL;
8890 	char *kaddr;
8891 	unsigned long zero_start;
8892 	loff_t size;
8893 	vm_fault_t ret;
8894 	int ret2;
8895 	int reserved = 0;
8896 	u64 reserved_space;
8897 	u64 page_start;
8898 	u64 page_end;
8899 	u64 end;
8900 
8901 	reserved_space = PAGE_SIZE;
8902 
8903 	sb_start_pagefault(inode->i_sb);
8904 	page_start = page_offset(page);
8905 	page_end = page_start + PAGE_SIZE - 1;
8906 	end = page_end;
8907 
8908 	/*
8909 	 * Reserving delalloc space after obtaining the page lock can lead to
8910 	 * deadlock. For example, if a dirty page is locked by this function
8911 	 * and the call to btrfs_delalloc_reserve_space() ends up triggering
8912 	 * dirty page write out, then the btrfs_writepage() function could
8913 	 * end up waiting indefinitely to get a lock on the page currently
8914 	 * being processed by btrfs_page_mkwrite() function.
8915 	 */
8916 	ret2 = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
8917 					   reserved_space);
8918 	if (!ret2) {
8919 		ret2 = file_update_time(vmf->vma->vm_file);
8920 		reserved = 1;
8921 	}
8922 	if (ret2) {
8923 		ret = vmf_error(ret2);
8924 		if (reserved)
8925 			goto out;
8926 		goto out_noreserve;
8927 	}
8928 
8929 	ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
8930 again:
8931 	lock_page(page);
8932 	size = i_size_read(inode);
8933 
8934 	if ((page->mapping != inode->i_mapping) ||
8935 	    (page_start >= size)) {
8936 		/* page got truncated out from underneath us */
8937 		goto out_unlock;
8938 	}
8939 	wait_on_page_writeback(page);
8940 
8941 	lock_extent_bits(io_tree, page_start, page_end, &cached_state);
8942 	set_page_extent_mapped(page);
8943 
8944 	/*
8945 	 * we can't set the delalloc bits if there are pending ordered
8946 	 * extents.  Drop our locks and wait for them to finish
8947 	 */
8948 	ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
8949 			PAGE_SIZE);
8950 	if (ordered) {
8951 		unlock_extent_cached(io_tree, page_start, page_end,
8952 				     &cached_state);
8953 		unlock_page(page);
8954 		btrfs_start_ordered_extent(inode, ordered, 1);
8955 		btrfs_put_ordered_extent(ordered);
8956 		goto again;
8957 	}
8958 
8959 	if (page->index == ((size - 1) >> PAGE_SHIFT)) {
8960 		reserved_space = round_up(size - page_start,
8961 					  fs_info->sectorsize);
8962 		if (reserved_space < PAGE_SIZE) {
8963 			end = page_start + reserved_space - 1;
8964 			btrfs_delalloc_release_space(inode, data_reserved,
8965 					page_start, PAGE_SIZE - reserved_space,
8966 					true);
8967 		}
8968 	}
8969 
8970 	/*
8971 	 * page_mkwrite gets called when the page is firstly dirtied after it's
8972 	 * faulted in, but write(2) could also dirty a page and set delalloc
8973 	 * bits, thus in this case for space account reason, we still need to
8974 	 * clear any delalloc bits within this page range since we have to
8975 	 * reserve data&meta space before lock_page() (see above comments).
8976 	 */
8977 	clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end,
8978 			  EXTENT_DIRTY | EXTENT_DELALLOC |
8979 			  EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
8980 			  0, 0, &cached_state);
8981 
8982 	ret2 = btrfs_set_extent_delalloc(inode, page_start, end, 0,
8983 					&cached_state, 0);
8984 	if (ret2) {
8985 		unlock_extent_cached(io_tree, page_start, page_end,
8986 				     &cached_state);
8987 		ret = VM_FAULT_SIGBUS;
8988 		goto out_unlock;
8989 	}
8990 	ret2 = 0;
8991 
8992 	/* page is wholly or partially inside EOF */
8993 	if (page_start + PAGE_SIZE > size)
8994 		zero_start = offset_in_page(size);
8995 	else
8996 		zero_start = PAGE_SIZE;
8997 
8998 	if (zero_start != PAGE_SIZE) {
8999 		kaddr = kmap(page);
9000 		memset(kaddr + zero_start, 0, PAGE_SIZE - zero_start);
9001 		flush_dcache_page(page);
9002 		kunmap(page);
9003 	}
9004 	ClearPageChecked(page);
9005 	set_page_dirty(page);
9006 	SetPageUptodate(page);
9007 
9008 	BTRFS_I(inode)->last_trans = fs_info->generation;
9009 	BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
9010 	BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
9011 
9012 	unlock_extent_cached(io_tree, page_start, page_end, &cached_state);
9013 
9014 	if (!ret2) {
9015 		btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE, true);
9016 		sb_end_pagefault(inode->i_sb);
9017 		extent_changeset_free(data_reserved);
9018 		return VM_FAULT_LOCKED;
9019 	}
9020 
9021 out_unlock:
9022 	unlock_page(page);
9023 out:
9024 	btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE, (ret != 0));
9025 	btrfs_delalloc_release_space(inode, data_reserved, page_start,
9026 				     reserved_space, (ret != 0));
9027 out_noreserve:
9028 	sb_end_pagefault(inode->i_sb);
9029 	extent_changeset_free(data_reserved);
9030 	return ret;
9031 }
9032 
9033 static int btrfs_truncate(struct inode *inode, bool skip_writeback)
9034 {
9035 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9036 	struct btrfs_root *root = BTRFS_I(inode)->root;
9037 	struct btrfs_block_rsv *rsv;
9038 	int ret;
9039 	struct btrfs_trans_handle *trans;
9040 	u64 mask = fs_info->sectorsize - 1;
9041 	u64 min_size = btrfs_calc_trunc_metadata_size(fs_info, 1);
9042 
9043 	if (!skip_writeback) {
9044 		ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
9045 					       (u64)-1);
9046 		if (ret)
9047 			return ret;
9048 	}
9049 
9050 	/*
9051 	 * Yes ladies and gentlemen, this is indeed ugly.  We have a couple of
9052 	 * things going on here:
9053 	 *
9054 	 * 1) We need to reserve space to update our inode.
9055 	 *
9056 	 * 2) We need to have something to cache all the space that is going to
9057 	 * be free'd up by the truncate operation, but also have some slack
9058 	 * space reserved in case it uses space during the truncate (thank you
9059 	 * very much snapshotting).
9060 	 *
9061 	 * And we need these to be separate.  The fact is we can use a lot of
9062 	 * space doing the truncate, and we have no earthly idea how much space
9063 	 * we will use, so we need the truncate reservation to be separate so it
9064 	 * doesn't end up using space reserved for updating the inode.  We also
9065 	 * need to be able to stop the transaction and start a new one, which
9066 	 * means we need to be able to update the inode several times, and we
9067 	 * have no idea of knowing how many times that will be, so we can't just
9068 	 * reserve 1 item for the entirety of the operation, so that has to be
9069 	 * done separately as well.
9070 	 *
9071 	 * So that leaves us with
9072 	 *
9073 	 * 1) rsv - for the truncate reservation, which we will steal from the
9074 	 * transaction reservation.
9075 	 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for
9076 	 * updating the inode.
9077 	 */
9078 	rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
9079 	if (!rsv)
9080 		return -ENOMEM;
9081 	rsv->size = min_size;
9082 	rsv->failfast = 1;
9083 
9084 	/*
9085 	 * 1 for the truncate slack space
9086 	 * 1 for updating the inode.
9087 	 */
9088 	trans = btrfs_start_transaction(root, 2);
9089 	if (IS_ERR(trans)) {
9090 		ret = PTR_ERR(trans);
9091 		goto out;
9092 	}
9093 
9094 	/* Migrate the slack space for the truncate to our reserve */
9095 	ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
9096 				      min_size, false);
9097 	BUG_ON(ret);
9098 
9099 	/*
9100 	 * So if we truncate and then write and fsync we normally would just
9101 	 * write the extents that changed, which is a problem if we need to
9102 	 * first truncate that entire inode.  So set this flag so we write out
9103 	 * all of the extents in the inode to the sync log so we're completely
9104 	 * safe.
9105 	 */
9106 	set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
9107 	trans->block_rsv = rsv;
9108 
9109 	while (1) {
9110 		ret = btrfs_truncate_inode_items(trans, root, inode,
9111 						 inode->i_size,
9112 						 BTRFS_EXTENT_DATA_KEY);
9113 		trans->block_rsv = &fs_info->trans_block_rsv;
9114 		if (ret != -ENOSPC && ret != -EAGAIN)
9115 			break;
9116 
9117 		ret = btrfs_update_inode(trans, root, inode);
9118 		if (ret)
9119 			break;
9120 
9121 		btrfs_end_transaction(trans);
9122 		btrfs_btree_balance_dirty(fs_info);
9123 
9124 		trans = btrfs_start_transaction(root, 2);
9125 		if (IS_ERR(trans)) {
9126 			ret = PTR_ERR(trans);
9127 			trans = NULL;
9128 			break;
9129 		}
9130 
9131 		btrfs_block_rsv_release(fs_info, rsv, -1);
9132 		ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
9133 					      rsv, min_size, false);
9134 		BUG_ON(ret);	/* shouldn't happen */
9135 		trans->block_rsv = rsv;
9136 	}
9137 
9138 	/*
9139 	 * We can't call btrfs_truncate_block inside a trans handle as we could
9140 	 * deadlock with freeze, if we got NEED_TRUNCATE_BLOCK then we know
9141 	 * we've truncated everything except the last little bit, and can do
9142 	 * btrfs_truncate_block and then update the disk_i_size.
9143 	 */
9144 	if (ret == NEED_TRUNCATE_BLOCK) {
9145 		btrfs_end_transaction(trans);
9146 		btrfs_btree_balance_dirty(fs_info);
9147 
9148 		ret = btrfs_truncate_block(inode, inode->i_size, 0, 0);
9149 		if (ret)
9150 			goto out;
9151 		trans = btrfs_start_transaction(root, 1);
9152 		if (IS_ERR(trans)) {
9153 			ret = PTR_ERR(trans);
9154 			goto out;
9155 		}
9156 		btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
9157 	}
9158 
9159 	if (trans) {
9160 		int ret2;
9161 
9162 		trans->block_rsv = &fs_info->trans_block_rsv;
9163 		ret2 = btrfs_update_inode(trans, root, inode);
9164 		if (ret2 && !ret)
9165 			ret = ret2;
9166 
9167 		ret2 = btrfs_end_transaction(trans);
9168 		if (ret2 && !ret)
9169 			ret = ret2;
9170 		btrfs_btree_balance_dirty(fs_info);
9171 	}
9172 out:
9173 	btrfs_free_block_rsv(fs_info, rsv);
9174 
9175 	return ret;
9176 }
9177 
9178 /*
9179  * create a new subvolume directory/inode (helper for the ioctl).
9180  */
9181 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
9182 			     struct btrfs_root *new_root,
9183 			     struct btrfs_root *parent_root,
9184 			     u64 new_dirid)
9185 {
9186 	struct inode *inode;
9187 	int err;
9188 	u64 index = 0;
9189 
9190 	inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
9191 				new_dirid, new_dirid,
9192 				S_IFDIR | (~current_umask() & S_IRWXUGO),
9193 				&index);
9194 	if (IS_ERR(inode))
9195 		return PTR_ERR(inode);
9196 	inode->i_op = &btrfs_dir_inode_operations;
9197 	inode->i_fop = &btrfs_dir_file_operations;
9198 
9199 	set_nlink(inode, 1);
9200 	btrfs_i_size_write(BTRFS_I(inode), 0);
9201 	unlock_new_inode(inode);
9202 
9203 	err = btrfs_subvol_inherit_props(trans, new_root, parent_root);
9204 	if (err)
9205 		btrfs_err(new_root->fs_info,
9206 			  "error inheriting subvolume %llu properties: %d",
9207 			  new_root->root_key.objectid, err);
9208 
9209 	err = btrfs_update_inode(trans, new_root, inode);
9210 
9211 	iput(inode);
9212 	return err;
9213 }
9214 
9215 struct inode *btrfs_alloc_inode(struct super_block *sb)
9216 {
9217 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
9218 	struct btrfs_inode *ei;
9219 	struct inode *inode;
9220 
9221 	ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_KERNEL);
9222 	if (!ei)
9223 		return NULL;
9224 
9225 	ei->root = NULL;
9226 	ei->generation = 0;
9227 	ei->last_trans = 0;
9228 	ei->last_sub_trans = 0;
9229 	ei->logged_trans = 0;
9230 	ei->delalloc_bytes = 0;
9231 	ei->new_delalloc_bytes = 0;
9232 	ei->defrag_bytes = 0;
9233 	ei->disk_i_size = 0;
9234 	ei->flags = 0;
9235 	ei->csum_bytes = 0;
9236 	ei->index_cnt = (u64)-1;
9237 	ei->dir_index = 0;
9238 	ei->last_unlink_trans = 0;
9239 	ei->last_log_commit = 0;
9240 
9241 	spin_lock_init(&ei->lock);
9242 	ei->outstanding_extents = 0;
9243 	if (sb->s_magic != BTRFS_TEST_MAGIC)
9244 		btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv,
9245 					      BTRFS_BLOCK_RSV_DELALLOC);
9246 	ei->runtime_flags = 0;
9247 	ei->prop_compress = BTRFS_COMPRESS_NONE;
9248 	ei->defrag_compress = BTRFS_COMPRESS_NONE;
9249 
9250 	ei->delayed_node = NULL;
9251 
9252 	ei->i_otime.tv_sec = 0;
9253 	ei->i_otime.tv_nsec = 0;
9254 
9255 	inode = &ei->vfs_inode;
9256 	extent_map_tree_init(&ei->extent_tree);
9257 	extent_io_tree_init(fs_info, &ei->io_tree, IO_TREE_INODE_IO, inode);
9258 	extent_io_tree_init(fs_info, &ei->io_failure_tree,
9259 			    IO_TREE_INODE_IO_FAILURE, inode);
9260 	ei->io_tree.track_uptodate = true;
9261 	ei->io_failure_tree.track_uptodate = true;
9262 	atomic_set(&ei->sync_writers, 0);
9263 	mutex_init(&ei->log_mutex);
9264 	mutex_init(&ei->delalloc_mutex);
9265 	btrfs_ordered_inode_tree_init(&ei->ordered_tree);
9266 	INIT_LIST_HEAD(&ei->delalloc_inodes);
9267 	INIT_LIST_HEAD(&ei->delayed_iput);
9268 	RB_CLEAR_NODE(&ei->rb_node);
9269 	init_rwsem(&ei->dio_sem);
9270 
9271 	return inode;
9272 }
9273 
9274 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
9275 void btrfs_test_destroy_inode(struct inode *inode)
9276 {
9277 	btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
9278 	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9279 }
9280 #endif
9281 
9282 void btrfs_free_inode(struct inode *inode)
9283 {
9284 	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9285 }
9286 
9287 void btrfs_destroy_inode(struct inode *inode)
9288 {
9289 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9290 	struct btrfs_ordered_extent *ordered;
9291 	struct btrfs_root *root = BTRFS_I(inode)->root;
9292 
9293 	WARN_ON(!hlist_empty(&inode->i_dentry));
9294 	WARN_ON(inode->i_data.nrpages);
9295 	WARN_ON(BTRFS_I(inode)->block_rsv.reserved);
9296 	WARN_ON(BTRFS_I(inode)->block_rsv.size);
9297 	WARN_ON(BTRFS_I(inode)->outstanding_extents);
9298 	WARN_ON(BTRFS_I(inode)->delalloc_bytes);
9299 	WARN_ON(BTRFS_I(inode)->new_delalloc_bytes);
9300 	WARN_ON(BTRFS_I(inode)->csum_bytes);
9301 	WARN_ON(BTRFS_I(inode)->defrag_bytes);
9302 
9303 	/*
9304 	 * This can happen where we create an inode, but somebody else also
9305 	 * created the same inode and we need to destroy the one we already
9306 	 * created.
9307 	 */
9308 	if (!root)
9309 		return;
9310 
9311 	while (1) {
9312 		ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
9313 		if (!ordered)
9314 			break;
9315 		else {
9316 			btrfs_err(fs_info,
9317 				  "found ordered extent %llu %llu on inode cleanup",
9318 				  ordered->file_offset, ordered->len);
9319 			btrfs_remove_ordered_extent(inode, ordered);
9320 			btrfs_put_ordered_extent(ordered);
9321 			btrfs_put_ordered_extent(ordered);
9322 		}
9323 	}
9324 	btrfs_qgroup_check_reserved_leak(inode);
9325 	inode_tree_del(inode);
9326 	btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
9327 }
9328 
9329 int btrfs_drop_inode(struct inode *inode)
9330 {
9331 	struct btrfs_root *root = BTRFS_I(inode)->root;
9332 
9333 	if (root == NULL)
9334 		return 1;
9335 
9336 	/* the snap/subvol tree is on deleting */
9337 	if (btrfs_root_refs(&root->root_item) == 0)
9338 		return 1;
9339 	else
9340 		return generic_drop_inode(inode);
9341 }
9342 
9343 static void init_once(void *foo)
9344 {
9345 	struct btrfs_inode *ei = (struct btrfs_inode *) foo;
9346 
9347 	inode_init_once(&ei->vfs_inode);
9348 }
9349 
9350 void __cold btrfs_destroy_cachep(void)
9351 {
9352 	/*
9353 	 * Make sure all delayed rcu free inodes are flushed before we
9354 	 * destroy cache.
9355 	 */
9356 	rcu_barrier();
9357 	kmem_cache_destroy(btrfs_inode_cachep);
9358 	kmem_cache_destroy(btrfs_trans_handle_cachep);
9359 	kmem_cache_destroy(btrfs_path_cachep);
9360 	kmem_cache_destroy(btrfs_free_space_cachep);
9361 }
9362 
9363 int __init btrfs_init_cachep(void)
9364 {
9365 	btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
9366 			sizeof(struct btrfs_inode), 0,
9367 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT,
9368 			init_once);
9369 	if (!btrfs_inode_cachep)
9370 		goto fail;
9371 
9372 	btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
9373 			sizeof(struct btrfs_trans_handle), 0,
9374 			SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL);
9375 	if (!btrfs_trans_handle_cachep)
9376 		goto fail;
9377 
9378 	btrfs_path_cachep = kmem_cache_create("btrfs_path",
9379 			sizeof(struct btrfs_path), 0,
9380 			SLAB_MEM_SPREAD, NULL);
9381 	if (!btrfs_path_cachep)
9382 		goto fail;
9383 
9384 	btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
9385 			sizeof(struct btrfs_free_space), 0,
9386 			SLAB_MEM_SPREAD, NULL);
9387 	if (!btrfs_free_space_cachep)
9388 		goto fail;
9389 
9390 	return 0;
9391 fail:
9392 	btrfs_destroy_cachep();
9393 	return -ENOMEM;
9394 }
9395 
9396 static int btrfs_getattr(const struct path *path, struct kstat *stat,
9397 			 u32 request_mask, unsigned int flags)
9398 {
9399 	u64 delalloc_bytes;
9400 	struct inode *inode = d_inode(path->dentry);
9401 	u32 blocksize = inode->i_sb->s_blocksize;
9402 	u32 bi_flags = BTRFS_I(inode)->flags;
9403 
9404 	stat->result_mask |= STATX_BTIME;
9405 	stat->btime.tv_sec = BTRFS_I(inode)->i_otime.tv_sec;
9406 	stat->btime.tv_nsec = BTRFS_I(inode)->i_otime.tv_nsec;
9407 	if (bi_flags & BTRFS_INODE_APPEND)
9408 		stat->attributes |= STATX_ATTR_APPEND;
9409 	if (bi_flags & BTRFS_INODE_COMPRESS)
9410 		stat->attributes |= STATX_ATTR_COMPRESSED;
9411 	if (bi_flags & BTRFS_INODE_IMMUTABLE)
9412 		stat->attributes |= STATX_ATTR_IMMUTABLE;
9413 	if (bi_flags & BTRFS_INODE_NODUMP)
9414 		stat->attributes |= STATX_ATTR_NODUMP;
9415 
9416 	stat->attributes_mask |= (STATX_ATTR_APPEND |
9417 				  STATX_ATTR_COMPRESSED |
9418 				  STATX_ATTR_IMMUTABLE |
9419 				  STATX_ATTR_NODUMP);
9420 
9421 	generic_fillattr(inode, stat);
9422 	stat->dev = BTRFS_I(inode)->root->anon_dev;
9423 
9424 	spin_lock(&BTRFS_I(inode)->lock);
9425 	delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes;
9426 	spin_unlock(&BTRFS_I(inode)->lock);
9427 	stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
9428 			ALIGN(delalloc_bytes, blocksize)) >> 9;
9429 	return 0;
9430 }
9431 
9432 static int btrfs_rename_exchange(struct inode *old_dir,
9433 			      struct dentry *old_dentry,
9434 			      struct inode *new_dir,
9435 			      struct dentry *new_dentry)
9436 {
9437 	struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
9438 	struct btrfs_trans_handle *trans;
9439 	struct btrfs_root *root = BTRFS_I(old_dir)->root;
9440 	struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9441 	struct inode *new_inode = new_dentry->d_inode;
9442 	struct inode *old_inode = old_dentry->d_inode;
9443 	struct timespec64 ctime = current_time(old_inode);
9444 	struct dentry *parent;
9445 	u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
9446 	u64 new_ino = btrfs_ino(BTRFS_I(new_inode));
9447 	u64 old_idx = 0;
9448 	u64 new_idx = 0;
9449 	u64 root_objectid;
9450 	int ret;
9451 	bool root_log_pinned = false;
9452 	bool dest_log_pinned = false;
9453 	struct btrfs_log_ctx ctx_root;
9454 	struct btrfs_log_ctx ctx_dest;
9455 	bool sync_log_root = false;
9456 	bool sync_log_dest = false;
9457 	bool commit_transaction = false;
9458 
9459 	/* we only allow rename subvolume link between subvolumes */
9460 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9461 		return -EXDEV;
9462 
9463 	btrfs_init_log_ctx(&ctx_root, old_inode);
9464 	btrfs_init_log_ctx(&ctx_dest, new_inode);
9465 
9466 	/* close the race window with snapshot create/destroy ioctl */
9467 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9468 		down_read(&fs_info->subvol_sem);
9469 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
9470 		down_read(&fs_info->subvol_sem);
9471 
9472 	/*
9473 	 * We want to reserve the absolute worst case amount of items.  So if
9474 	 * both inodes are subvols and we need to unlink them then that would
9475 	 * require 4 item modifications, but if they are both normal inodes it
9476 	 * would require 5 item modifications, so we'll assume their normal
9477 	 * inodes.  So 5 * 2 is 10, plus 2 for the new links, so 12 total items
9478 	 * should cover the worst case number of items we'll modify.
9479 	 */
9480 	trans = btrfs_start_transaction(root, 12);
9481 	if (IS_ERR(trans)) {
9482 		ret = PTR_ERR(trans);
9483 		goto out_notrans;
9484 	}
9485 
9486 	/*
9487 	 * We need to find a free sequence number both in the source and
9488 	 * in the destination directory for the exchange.
9489 	 */
9490 	ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx);
9491 	if (ret)
9492 		goto out_fail;
9493 	ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx);
9494 	if (ret)
9495 		goto out_fail;
9496 
9497 	BTRFS_I(old_inode)->dir_index = 0ULL;
9498 	BTRFS_I(new_inode)->dir_index = 0ULL;
9499 
9500 	/* Reference for the source. */
9501 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9502 		/* force full log commit if subvolume involved. */
9503 		btrfs_set_log_full_commit(trans);
9504 	} else {
9505 		btrfs_pin_log_trans(root);
9506 		root_log_pinned = true;
9507 		ret = btrfs_insert_inode_ref(trans, dest,
9508 					     new_dentry->d_name.name,
9509 					     new_dentry->d_name.len,
9510 					     old_ino,
9511 					     btrfs_ino(BTRFS_I(new_dir)),
9512 					     old_idx);
9513 		if (ret)
9514 			goto out_fail;
9515 	}
9516 
9517 	/* And now for the dest. */
9518 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9519 		/* force full log commit if subvolume involved. */
9520 		btrfs_set_log_full_commit(trans);
9521 	} else {
9522 		btrfs_pin_log_trans(dest);
9523 		dest_log_pinned = true;
9524 		ret = btrfs_insert_inode_ref(trans, root,
9525 					     old_dentry->d_name.name,
9526 					     old_dentry->d_name.len,
9527 					     new_ino,
9528 					     btrfs_ino(BTRFS_I(old_dir)),
9529 					     new_idx);
9530 		if (ret)
9531 			goto out_fail;
9532 	}
9533 
9534 	/* Update inode version and ctime/mtime. */
9535 	inode_inc_iversion(old_dir);
9536 	inode_inc_iversion(new_dir);
9537 	inode_inc_iversion(old_inode);
9538 	inode_inc_iversion(new_inode);
9539 	old_dir->i_ctime = old_dir->i_mtime = ctime;
9540 	new_dir->i_ctime = new_dir->i_mtime = ctime;
9541 	old_inode->i_ctime = ctime;
9542 	new_inode->i_ctime = ctime;
9543 
9544 	if (old_dentry->d_parent != new_dentry->d_parent) {
9545 		btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9546 				BTRFS_I(old_inode), 1);
9547 		btrfs_record_unlink_dir(trans, BTRFS_I(new_dir),
9548 				BTRFS_I(new_inode), 1);
9549 	}
9550 
9551 	/* src is a subvolume */
9552 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9553 		root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
9554 		ret = btrfs_unlink_subvol(trans, old_dir, root_objectid,
9555 					  old_dentry->d_name.name,
9556 					  old_dentry->d_name.len);
9557 	} else { /* src is an inode */
9558 		ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
9559 					   BTRFS_I(old_dentry->d_inode),
9560 					   old_dentry->d_name.name,
9561 					   old_dentry->d_name.len);
9562 		if (!ret)
9563 			ret = btrfs_update_inode(trans, root, old_inode);
9564 	}
9565 	if (ret) {
9566 		btrfs_abort_transaction(trans, ret);
9567 		goto out_fail;
9568 	}
9569 
9570 	/* dest is a subvolume */
9571 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9572 		root_objectid = BTRFS_I(new_inode)->root->root_key.objectid;
9573 		ret = btrfs_unlink_subvol(trans, new_dir, root_objectid,
9574 					  new_dentry->d_name.name,
9575 					  new_dentry->d_name.len);
9576 	} else { /* dest is an inode */
9577 		ret = __btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
9578 					   BTRFS_I(new_dentry->d_inode),
9579 					   new_dentry->d_name.name,
9580 					   new_dentry->d_name.len);
9581 		if (!ret)
9582 			ret = btrfs_update_inode(trans, dest, new_inode);
9583 	}
9584 	if (ret) {
9585 		btrfs_abort_transaction(trans, ret);
9586 		goto out_fail;
9587 	}
9588 
9589 	ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
9590 			     new_dentry->d_name.name,
9591 			     new_dentry->d_name.len, 0, old_idx);
9592 	if (ret) {
9593 		btrfs_abort_transaction(trans, ret);
9594 		goto out_fail;
9595 	}
9596 
9597 	ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode),
9598 			     old_dentry->d_name.name,
9599 			     old_dentry->d_name.len, 0, new_idx);
9600 	if (ret) {
9601 		btrfs_abort_transaction(trans, ret);
9602 		goto out_fail;
9603 	}
9604 
9605 	if (old_inode->i_nlink == 1)
9606 		BTRFS_I(old_inode)->dir_index = old_idx;
9607 	if (new_inode->i_nlink == 1)
9608 		BTRFS_I(new_inode)->dir_index = new_idx;
9609 
9610 	if (root_log_pinned) {
9611 		parent = new_dentry->d_parent;
9612 		ret = btrfs_log_new_name(trans, BTRFS_I(old_inode),
9613 					 BTRFS_I(old_dir), parent,
9614 					 false, &ctx_root);
9615 		if (ret == BTRFS_NEED_LOG_SYNC)
9616 			sync_log_root = true;
9617 		else if (ret == BTRFS_NEED_TRANS_COMMIT)
9618 			commit_transaction = true;
9619 		ret = 0;
9620 		btrfs_end_log_trans(root);
9621 		root_log_pinned = false;
9622 	}
9623 	if (dest_log_pinned) {
9624 		if (!commit_transaction) {
9625 			parent = old_dentry->d_parent;
9626 			ret = btrfs_log_new_name(trans, BTRFS_I(new_inode),
9627 						 BTRFS_I(new_dir), parent,
9628 						 false, &ctx_dest);
9629 			if (ret == BTRFS_NEED_LOG_SYNC)
9630 				sync_log_dest = true;
9631 			else if (ret == BTRFS_NEED_TRANS_COMMIT)
9632 				commit_transaction = true;
9633 			ret = 0;
9634 		}
9635 		btrfs_end_log_trans(dest);
9636 		dest_log_pinned = false;
9637 	}
9638 out_fail:
9639 	/*
9640 	 * If we have pinned a log and an error happened, we unpin tasks
9641 	 * trying to sync the log and force them to fallback to a transaction
9642 	 * commit if the log currently contains any of the inodes involved in
9643 	 * this rename operation (to ensure we do not persist a log with an
9644 	 * inconsistent state for any of these inodes or leading to any
9645 	 * inconsistencies when replayed). If the transaction was aborted, the
9646 	 * abortion reason is propagated to userspace when attempting to commit
9647 	 * the transaction. If the log does not contain any of these inodes, we
9648 	 * allow the tasks to sync it.
9649 	 */
9650 	if (ret && (root_log_pinned || dest_log_pinned)) {
9651 		if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
9652 		    btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
9653 		    btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
9654 		    (new_inode &&
9655 		     btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
9656 			btrfs_set_log_full_commit(trans);
9657 
9658 		if (root_log_pinned) {
9659 			btrfs_end_log_trans(root);
9660 			root_log_pinned = false;
9661 		}
9662 		if (dest_log_pinned) {
9663 			btrfs_end_log_trans(dest);
9664 			dest_log_pinned = false;
9665 		}
9666 	}
9667 	if (!ret && sync_log_root && !commit_transaction) {
9668 		ret = btrfs_sync_log(trans, BTRFS_I(old_inode)->root,
9669 				     &ctx_root);
9670 		if (ret)
9671 			commit_transaction = true;
9672 	}
9673 	if (!ret && sync_log_dest && !commit_transaction) {
9674 		ret = btrfs_sync_log(trans, BTRFS_I(new_inode)->root,
9675 				     &ctx_dest);
9676 		if (ret)
9677 			commit_transaction = true;
9678 	}
9679 	if (commit_transaction) {
9680 		ret = btrfs_commit_transaction(trans);
9681 	} else {
9682 		int ret2;
9683 
9684 		ret2 = btrfs_end_transaction(trans);
9685 		ret = ret ? ret : ret2;
9686 	}
9687 out_notrans:
9688 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
9689 		up_read(&fs_info->subvol_sem);
9690 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9691 		up_read(&fs_info->subvol_sem);
9692 
9693 	return ret;
9694 }
9695 
9696 static int btrfs_whiteout_for_rename(struct btrfs_trans_handle *trans,
9697 				     struct btrfs_root *root,
9698 				     struct inode *dir,
9699 				     struct dentry *dentry)
9700 {
9701 	int ret;
9702 	struct inode *inode;
9703 	u64 objectid;
9704 	u64 index;
9705 
9706 	ret = btrfs_find_free_ino(root, &objectid);
9707 	if (ret)
9708 		return ret;
9709 
9710 	inode = btrfs_new_inode(trans, root, dir,
9711 				dentry->d_name.name,
9712 				dentry->d_name.len,
9713 				btrfs_ino(BTRFS_I(dir)),
9714 				objectid,
9715 				S_IFCHR | WHITEOUT_MODE,
9716 				&index);
9717 
9718 	if (IS_ERR(inode)) {
9719 		ret = PTR_ERR(inode);
9720 		return ret;
9721 	}
9722 
9723 	inode->i_op = &btrfs_special_inode_operations;
9724 	init_special_inode(inode, inode->i_mode,
9725 		WHITEOUT_DEV);
9726 
9727 	ret = btrfs_init_inode_security(trans, inode, dir,
9728 				&dentry->d_name);
9729 	if (ret)
9730 		goto out;
9731 
9732 	ret = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
9733 				BTRFS_I(inode), 0, index);
9734 	if (ret)
9735 		goto out;
9736 
9737 	ret = btrfs_update_inode(trans, root, inode);
9738 out:
9739 	unlock_new_inode(inode);
9740 	if (ret)
9741 		inode_dec_link_count(inode);
9742 	iput(inode);
9743 
9744 	return ret;
9745 }
9746 
9747 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
9748 			   struct inode *new_dir, struct dentry *new_dentry,
9749 			   unsigned int flags)
9750 {
9751 	struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
9752 	struct btrfs_trans_handle *trans;
9753 	unsigned int trans_num_items;
9754 	struct btrfs_root *root = BTRFS_I(old_dir)->root;
9755 	struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9756 	struct inode *new_inode = d_inode(new_dentry);
9757 	struct inode *old_inode = d_inode(old_dentry);
9758 	u64 index = 0;
9759 	u64 root_objectid;
9760 	int ret;
9761 	u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
9762 	bool log_pinned = false;
9763 	struct btrfs_log_ctx ctx;
9764 	bool sync_log = false;
9765 	bool commit_transaction = false;
9766 
9767 	if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
9768 		return -EPERM;
9769 
9770 	/* we only allow rename subvolume link between subvolumes */
9771 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9772 		return -EXDEV;
9773 
9774 	if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
9775 	    (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID))
9776 		return -ENOTEMPTY;
9777 
9778 	if (S_ISDIR(old_inode->i_mode) && new_inode &&
9779 	    new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
9780 		return -ENOTEMPTY;
9781 
9782 
9783 	/* check for collisions, even if the  name isn't there */
9784 	ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
9785 			     new_dentry->d_name.name,
9786 			     new_dentry->d_name.len);
9787 
9788 	if (ret) {
9789 		if (ret == -EEXIST) {
9790 			/* we shouldn't get
9791 			 * eexist without a new_inode */
9792 			if (WARN_ON(!new_inode)) {
9793 				return ret;
9794 			}
9795 		} else {
9796 			/* maybe -EOVERFLOW */
9797 			return ret;
9798 		}
9799 	}
9800 	ret = 0;
9801 
9802 	/*
9803 	 * we're using rename to replace one file with another.  Start IO on it
9804 	 * now so  we don't add too much work to the end of the transaction
9805 	 */
9806 	if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
9807 		filemap_flush(old_inode->i_mapping);
9808 
9809 	/* close the racy window with snapshot create/destroy ioctl */
9810 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9811 		down_read(&fs_info->subvol_sem);
9812 	/*
9813 	 * We want to reserve the absolute worst case amount of items.  So if
9814 	 * both inodes are subvols and we need to unlink them then that would
9815 	 * require 4 item modifications, but if they are both normal inodes it
9816 	 * would require 5 item modifications, so we'll assume they are normal
9817 	 * inodes.  So 5 * 2 is 10, plus 1 for the new link, so 11 total items
9818 	 * should cover the worst case number of items we'll modify.
9819 	 * If our rename has the whiteout flag, we need more 5 units for the
9820 	 * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item
9821 	 * when selinux is enabled).
9822 	 */
9823 	trans_num_items = 11;
9824 	if (flags & RENAME_WHITEOUT)
9825 		trans_num_items += 5;
9826 	trans = btrfs_start_transaction(root, trans_num_items);
9827 	if (IS_ERR(trans)) {
9828 		ret = PTR_ERR(trans);
9829 		goto out_notrans;
9830 	}
9831 
9832 	if (dest != root)
9833 		btrfs_record_root_in_trans(trans, dest);
9834 
9835 	ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index);
9836 	if (ret)
9837 		goto out_fail;
9838 
9839 	BTRFS_I(old_inode)->dir_index = 0ULL;
9840 	if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9841 		/* force full log commit if subvolume involved. */
9842 		btrfs_set_log_full_commit(trans);
9843 	} else {
9844 		btrfs_pin_log_trans(root);
9845 		log_pinned = true;
9846 		ret = btrfs_insert_inode_ref(trans, dest,
9847 					     new_dentry->d_name.name,
9848 					     new_dentry->d_name.len,
9849 					     old_ino,
9850 					     btrfs_ino(BTRFS_I(new_dir)), index);
9851 		if (ret)
9852 			goto out_fail;
9853 	}
9854 
9855 	inode_inc_iversion(old_dir);
9856 	inode_inc_iversion(new_dir);
9857 	inode_inc_iversion(old_inode);
9858 	old_dir->i_ctime = old_dir->i_mtime =
9859 	new_dir->i_ctime = new_dir->i_mtime =
9860 	old_inode->i_ctime = current_time(old_dir);
9861 
9862 	if (old_dentry->d_parent != new_dentry->d_parent)
9863 		btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9864 				BTRFS_I(old_inode), 1);
9865 
9866 	if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9867 		root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
9868 		ret = btrfs_unlink_subvol(trans, old_dir, root_objectid,
9869 					old_dentry->d_name.name,
9870 					old_dentry->d_name.len);
9871 	} else {
9872 		ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
9873 					BTRFS_I(d_inode(old_dentry)),
9874 					old_dentry->d_name.name,
9875 					old_dentry->d_name.len);
9876 		if (!ret)
9877 			ret = btrfs_update_inode(trans, root, old_inode);
9878 	}
9879 	if (ret) {
9880 		btrfs_abort_transaction(trans, ret);
9881 		goto out_fail;
9882 	}
9883 
9884 	if (new_inode) {
9885 		inode_inc_iversion(new_inode);
9886 		new_inode->i_ctime = current_time(new_inode);
9887 		if (unlikely(btrfs_ino(BTRFS_I(new_inode)) ==
9888 			     BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
9889 			root_objectid = BTRFS_I(new_inode)->location.objectid;
9890 			ret = btrfs_unlink_subvol(trans, new_dir, root_objectid,
9891 						new_dentry->d_name.name,
9892 						new_dentry->d_name.len);
9893 			BUG_ON(new_inode->i_nlink == 0);
9894 		} else {
9895 			ret = btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
9896 						 BTRFS_I(d_inode(new_dentry)),
9897 						 new_dentry->d_name.name,
9898 						 new_dentry->d_name.len);
9899 		}
9900 		if (!ret && new_inode->i_nlink == 0)
9901 			ret = btrfs_orphan_add(trans,
9902 					BTRFS_I(d_inode(new_dentry)));
9903 		if (ret) {
9904 			btrfs_abort_transaction(trans, ret);
9905 			goto out_fail;
9906 		}
9907 	}
9908 
9909 	ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
9910 			     new_dentry->d_name.name,
9911 			     new_dentry->d_name.len, 0, index);
9912 	if (ret) {
9913 		btrfs_abort_transaction(trans, ret);
9914 		goto out_fail;
9915 	}
9916 
9917 	if (old_inode->i_nlink == 1)
9918 		BTRFS_I(old_inode)->dir_index = index;
9919 
9920 	if (log_pinned) {
9921 		struct dentry *parent = new_dentry->d_parent;
9922 
9923 		btrfs_init_log_ctx(&ctx, old_inode);
9924 		ret = btrfs_log_new_name(trans, BTRFS_I(old_inode),
9925 					 BTRFS_I(old_dir), parent,
9926 					 false, &ctx);
9927 		if (ret == BTRFS_NEED_LOG_SYNC)
9928 			sync_log = true;
9929 		else if (ret == BTRFS_NEED_TRANS_COMMIT)
9930 			commit_transaction = true;
9931 		ret = 0;
9932 		btrfs_end_log_trans(root);
9933 		log_pinned = false;
9934 	}
9935 
9936 	if (flags & RENAME_WHITEOUT) {
9937 		ret = btrfs_whiteout_for_rename(trans, root, old_dir,
9938 						old_dentry);
9939 
9940 		if (ret) {
9941 			btrfs_abort_transaction(trans, ret);
9942 			goto out_fail;
9943 		}
9944 	}
9945 out_fail:
9946 	/*
9947 	 * If we have pinned the log and an error happened, we unpin tasks
9948 	 * trying to sync the log and force them to fallback to a transaction
9949 	 * commit if the log currently contains any of the inodes involved in
9950 	 * this rename operation (to ensure we do not persist a log with an
9951 	 * inconsistent state for any of these inodes or leading to any
9952 	 * inconsistencies when replayed). If the transaction was aborted, the
9953 	 * abortion reason is propagated to userspace when attempting to commit
9954 	 * the transaction. If the log does not contain any of these inodes, we
9955 	 * allow the tasks to sync it.
9956 	 */
9957 	if (ret && log_pinned) {
9958 		if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
9959 		    btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
9960 		    btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
9961 		    (new_inode &&
9962 		     btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
9963 			btrfs_set_log_full_commit(trans);
9964 
9965 		btrfs_end_log_trans(root);
9966 		log_pinned = false;
9967 	}
9968 	if (!ret && sync_log) {
9969 		ret = btrfs_sync_log(trans, BTRFS_I(old_inode)->root, &ctx);
9970 		if (ret)
9971 			commit_transaction = true;
9972 	}
9973 	if (commit_transaction) {
9974 		ret = btrfs_commit_transaction(trans);
9975 	} else {
9976 		int ret2;
9977 
9978 		ret2 = btrfs_end_transaction(trans);
9979 		ret = ret ? ret : ret2;
9980 	}
9981 out_notrans:
9982 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9983 		up_read(&fs_info->subvol_sem);
9984 
9985 	return ret;
9986 }
9987 
9988 static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry,
9989 			 struct inode *new_dir, struct dentry *new_dentry,
9990 			 unsigned int flags)
9991 {
9992 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
9993 		return -EINVAL;
9994 
9995 	if (flags & RENAME_EXCHANGE)
9996 		return btrfs_rename_exchange(old_dir, old_dentry, new_dir,
9997 					  new_dentry);
9998 
9999 	return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry, flags);
10000 }
10001 
10002 struct btrfs_delalloc_work {
10003 	struct inode *inode;
10004 	struct completion completion;
10005 	struct list_head list;
10006 	struct btrfs_work work;
10007 };
10008 
10009 static void btrfs_run_delalloc_work(struct btrfs_work *work)
10010 {
10011 	struct btrfs_delalloc_work *delalloc_work;
10012 	struct inode *inode;
10013 
10014 	delalloc_work = container_of(work, struct btrfs_delalloc_work,
10015 				     work);
10016 	inode = delalloc_work->inode;
10017 	filemap_flush(inode->i_mapping);
10018 	if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
10019 				&BTRFS_I(inode)->runtime_flags))
10020 		filemap_flush(inode->i_mapping);
10021 
10022 	iput(inode);
10023 	complete(&delalloc_work->completion);
10024 }
10025 
10026 static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode)
10027 {
10028 	struct btrfs_delalloc_work *work;
10029 
10030 	work = kmalloc(sizeof(*work), GFP_NOFS);
10031 	if (!work)
10032 		return NULL;
10033 
10034 	init_completion(&work->completion);
10035 	INIT_LIST_HEAD(&work->list);
10036 	work->inode = inode;
10037 	btrfs_init_work(&work->work, btrfs_flush_delalloc_helper,
10038 			btrfs_run_delalloc_work, NULL, NULL);
10039 
10040 	return work;
10041 }
10042 
10043 /*
10044  * some fairly slow code that needs optimization. This walks the list
10045  * of all the inodes with pending delalloc and forces them to disk.
10046  */
10047 static int start_delalloc_inodes(struct btrfs_root *root, int nr, bool snapshot)
10048 {
10049 	struct btrfs_inode *binode;
10050 	struct inode *inode;
10051 	struct btrfs_delalloc_work *work, *next;
10052 	struct list_head works;
10053 	struct list_head splice;
10054 	int ret = 0;
10055 
10056 	INIT_LIST_HEAD(&works);
10057 	INIT_LIST_HEAD(&splice);
10058 
10059 	mutex_lock(&root->delalloc_mutex);
10060 	spin_lock(&root->delalloc_lock);
10061 	list_splice_init(&root->delalloc_inodes, &splice);
10062 	while (!list_empty(&splice)) {
10063 		binode = list_entry(splice.next, struct btrfs_inode,
10064 				    delalloc_inodes);
10065 
10066 		list_move_tail(&binode->delalloc_inodes,
10067 			       &root->delalloc_inodes);
10068 		inode = igrab(&binode->vfs_inode);
10069 		if (!inode) {
10070 			cond_resched_lock(&root->delalloc_lock);
10071 			continue;
10072 		}
10073 		spin_unlock(&root->delalloc_lock);
10074 
10075 		if (snapshot)
10076 			set_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
10077 				&binode->runtime_flags);
10078 		work = btrfs_alloc_delalloc_work(inode);
10079 		if (!work) {
10080 			iput(inode);
10081 			ret = -ENOMEM;
10082 			goto out;
10083 		}
10084 		list_add_tail(&work->list, &works);
10085 		btrfs_queue_work(root->fs_info->flush_workers,
10086 				 &work->work);
10087 		ret++;
10088 		if (nr != -1 && ret >= nr)
10089 			goto out;
10090 		cond_resched();
10091 		spin_lock(&root->delalloc_lock);
10092 	}
10093 	spin_unlock(&root->delalloc_lock);
10094 
10095 out:
10096 	list_for_each_entry_safe(work, next, &works, list) {
10097 		list_del_init(&work->list);
10098 		wait_for_completion(&work->completion);
10099 		kfree(work);
10100 	}
10101 
10102 	if (!list_empty(&splice)) {
10103 		spin_lock(&root->delalloc_lock);
10104 		list_splice_tail(&splice, &root->delalloc_inodes);
10105 		spin_unlock(&root->delalloc_lock);
10106 	}
10107 	mutex_unlock(&root->delalloc_mutex);
10108 	return ret;
10109 }
10110 
10111 int btrfs_start_delalloc_snapshot(struct btrfs_root *root)
10112 {
10113 	struct btrfs_fs_info *fs_info = root->fs_info;
10114 	int ret;
10115 
10116 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
10117 		return -EROFS;
10118 
10119 	ret = start_delalloc_inodes(root, -1, true);
10120 	if (ret > 0)
10121 		ret = 0;
10122 	return ret;
10123 }
10124 
10125 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int nr)
10126 {
10127 	struct btrfs_root *root;
10128 	struct list_head splice;
10129 	int ret;
10130 
10131 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
10132 		return -EROFS;
10133 
10134 	INIT_LIST_HEAD(&splice);
10135 
10136 	mutex_lock(&fs_info->delalloc_root_mutex);
10137 	spin_lock(&fs_info->delalloc_root_lock);
10138 	list_splice_init(&fs_info->delalloc_roots, &splice);
10139 	while (!list_empty(&splice) && nr) {
10140 		root = list_first_entry(&splice, struct btrfs_root,
10141 					delalloc_root);
10142 		root = btrfs_grab_fs_root(root);
10143 		BUG_ON(!root);
10144 		list_move_tail(&root->delalloc_root,
10145 			       &fs_info->delalloc_roots);
10146 		spin_unlock(&fs_info->delalloc_root_lock);
10147 
10148 		ret = start_delalloc_inodes(root, nr, false);
10149 		btrfs_put_fs_root(root);
10150 		if (ret < 0)
10151 			goto out;
10152 
10153 		if (nr != -1) {
10154 			nr -= ret;
10155 			WARN_ON(nr < 0);
10156 		}
10157 		spin_lock(&fs_info->delalloc_root_lock);
10158 	}
10159 	spin_unlock(&fs_info->delalloc_root_lock);
10160 
10161 	ret = 0;
10162 out:
10163 	if (!list_empty(&splice)) {
10164 		spin_lock(&fs_info->delalloc_root_lock);
10165 		list_splice_tail(&splice, &fs_info->delalloc_roots);
10166 		spin_unlock(&fs_info->delalloc_root_lock);
10167 	}
10168 	mutex_unlock(&fs_info->delalloc_root_mutex);
10169 	return ret;
10170 }
10171 
10172 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
10173 			 const char *symname)
10174 {
10175 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
10176 	struct btrfs_trans_handle *trans;
10177 	struct btrfs_root *root = BTRFS_I(dir)->root;
10178 	struct btrfs_path *path;
10179 	struct btrfs_key key;
10180 	struct inode *inode = NULL;
10181 	int err;
10182 	u64 objectid;
10183 	u64 index = 0;
10184 	int name_len;
10185 	int datasize;
10186 	unsigned long ptr;
10187 	struct btrfs_file_extent_item *ei;
10188 	struct extent_buffer *leaf;
10189 
10190 	name_len = strlen(symname);
10191 	if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info))
10192 		return -ENAMETOOLONG;
10193 
10194 	/*
10195 	 * 2 items for inode item and ref
10196 	 * 2 items for dir items
10197 	 * 1 item for updating parent inode item
10198 	 * 1 item for the inline extent item
10199 	 * 1 item for xattr if selinux is on
10200 	 */
10201 	trans = btrfs_start_transaction(root, 7);
10202 	if (IS_ERR(trans))
10203 		return PTR_ERR(trans);
10204 
10205 	err = btrfs_find_free_ino(root, &objectid);
10206 	if (err)
10207 		goto out_unlock;
10208 
10209 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
10210 				dentry->d_name.len, btrfs_ino(BTRFS_I(dir)),
10211 				objectid, S_IFLNK|S_IRWXUGO, &index);
10212 	if (IS_ERR(inode)) {
10213 		err = PTR_ERR(inode);
10214 		inode = NULL;
10215 		goto out_unlock;
10216 	}
10217 
10218 	/*
10219 	* If the active LSM wants to access the inode during
10220 	* d_instantiate it needs these. Smack checks to see
10221 	* if the filesystem supports xattrs by looking at the
10222 	* ops vector.
10223 	*/
10224 	inode->i_fop = &btrfs_file_operations;
10225 	inode->i_op = &btrfs_file_inode_operations;
10226 	inode->i_mapping->a_ops = &btrfs_aops;
10227 	BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10228 
10229 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
10230 	if (err)
10231 		goto out_unlock;
10232 
10233 	path = btrfs_alloc_path();
10234 	if (!path) {
10235 		err = -ENOMEM;
10236 		goto out_unlock;
10237 	}
10238 	key.objectid = btrfs_ino(BTRFS_I(inode));
10239 	key.offset = 0;
10240 	key.type = BTRFS_EXTENT_DATA_KEY;
10241 	datasize = btrfs_file_extent_calc_inline_size(name_len);
10242 	err = btrfs_insert_empty_item(trans, root, path, &key,
10243 				      datasize);
10244 	if (err) {
10245 		btrfs_free_path(path);
10246 		goto out_unlock;
10247 	}
10248 	leaf = path->nodes[0];
10249 	ei = btrfs_item_ptr(leaf, path->slots[0],
10250 			    struct btrfs_file_extent_item);
10251 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
10252 	btrfs_set_file_extent_type(leaf, ei,
10253 				   BTRFS_FILE_EXTENT_INLINE);
10254 	btrfs_set_file_extent_encryption(leaf, ei, 0);
10255 	btrfs_set_file_extent_compression(leaf, ei, 0);
10256 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
10257 	btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
10258 
10259 	ptr = btrfs_file_extent_inline_start(ei);
10260 	write_extent_buffer(leaf, symname, ptr, name_len);
10261 	btrfs_mark_buffer_dirty(leaf);
10262 	btrfs_free_path(path);
10263 
10264 	inode->i_op = &btrfs_symlink_inode_operations;
10265 	inode_nohighmem(inode);
10266 	inode_set_bytes(inode, name_len);
10267 	btrfs_i_size_write(BTRFS_I(inode), name_len);
10268 	err = btrfs_update_inode(trans, root, inode);
10269 	/*
10270 	 * Last step, add directory indexes for our symlink inode. This is the
10271 	 * last step to avoid extra cleanup of these indexes if an error happens
10272 	 * elsewhere above.
10273 	 */
10274 	if (!err)
10275 		err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
10276 				BTRFS_I(inode), 0, index);
10277 	if (err)
10278 		goto out_unlock;
10279 
10280 	d_instantiate_new(dentry, inode);
10281 
10282 out_unlock:
10283 	btrfs_end_transaction(trans);
10284 	if (err && inode) {
10285 		inode_dec_link_count(inode);
10286 		discard_new_inode(inode);
10287 	}
10288 	btrfs_btree_balance_dirty(fs_info);
10289 	return err;
10290 }
10291 
10292 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
10293 				       u64 start, u64 num_bytes, u64 min_size,
10294 				       loff_t actual_len, u64 *alloc_hint,
10295 				       struct btrfs_trans_handle *trans)
10296 {
10297 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
10298 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
10299 	struct extent_map *em;
10300 	struct btrfs_root *root = BTRFS_I(inode)->root;
10301 	struct btrfs_key ins;
10302 	u64 cur_offset = start;
10303 	u64 i_size;
10304 	u64 cur_bytes;
10305 	u64 last_alloc = (u64)-1;
10306 	int ret = 0;
10307 	bool own_trans = true;
10308 	u64 end = start + num_bytes - 1;
10309 
10310 	if (trans)
10311 		own_trans = false;
10312 	while (num_bytes > 0) {
10313 		if (own_trans) {
10314 			trans = btrfs_start_transaction(root, 3);
10315 			if (IS_ERR(trans)) {
10316 				ret = PTR_ERR(trans);
10317 				break;
10318 			}
10319 		}
10320 
10321 		cur_bytes = min_t(u64, num_bytes, SZ_256M);
10322 		cur_bytes = max(cur_bytes, min_size);
10323 		/*
10324 		 * If we are severely fragmented we could end up with really
10325 		 * small allocations, so if the allocator is returning small
10326 		 * chunks lets make its job easier by only searching for those
10327 		 * sized chunks.
10328 		 */
10329 		cur_bytes = min(cur_bytes, last_alloc);
10330 		ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes,
10331 				min_size, 0, *alloc_hint, &ins, 1, 0);
10332 		if (ret) {
10333 			if (own_trans)
10334 				btrfs_end_transaction(trans);
10335 			break;
10336 		}
10337 		btrfs_dec_block_group_reservations(fs_info, ins.objectid);
10338 
10339 		last_alloc = ins.offset;
10340 		ret = insert_reserved_file_extent(trans, inode,
10341 						  cur_offset, ins.objectid,
10342 						  ins.offset, ins.offset,
10343 						  ins.offset, 0, 0, 0,
10344 						  BTRFS_FILE_EXTENT_PREALLOC);
10345 		if (ret) {
10346 			btrfs_free_reserved_extent(fs_info, ins.objectid,
10347 						   ins.offset, 0);
10348 			btrfs_abort_transaction(trans, ret);
10349 			if (own_trans)
10350 				btrfs_end_transaction(trans);
10351 			break;
10352 		}
10353 
10354 		btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
10355 					cur_offset + ins.offset -1, 0);
10356 
10357 		em = alloc_extent_map();
10358 		if (!em) {
10359 			set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
10360 				&BTRFS_I(inode)->runtime_flags);
10361 			goto next;
10362 		}
10363 
10364 		em->start = cur_offset;
10365 		em->orig_start = cur_offset;
10366 		em->len = ins.offset;
10367 		em->block_start = ins.objectid;
10368 		em->block_len = ins.offset;
10369 		em->orig_block_len = ins.offset;
10370 		em->ram_bytes = ins.offset;
10371 		em->bdev = fs_info->fs_devices->latest_bdev;
10372 		set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
10373 		em->generation = trans->transid;
10374 
10375 		while (1) {
10376 			write_lock(&em_tree->lock);
10377 			ret = add_extent_mapping(em_tree, em, 1);
10378 			write_unlock(&em_tree->lock);
10379 			if (ret != -EEXIST)
10380 				break;
10381 			btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
10382 						cur_offset + ins.offset - 1,
10383 						0);
10384 		}
10385 		free_extent_map(em);
10386 next:
10387 		num_bytes -= ins.offset;
10388 		cur_offset += ins.offset;
10389 		*alloc_hint = ins.objectid + ins.offset;
10390 
10391 		inode_inc_iversion(inode);
10392 		inode->i_ctime = current_time(inode);
10393 		BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
10394 		if (!(mode & FALLOC_FL_KEEP_SIZE) &&
10395 		    (actual_len > inode->i_size) &&
10396 		    (cur_offset > inode->i_size)) {
10397 			if (cur_offset > actual_len)
10398 				i_size = actual_len;
10399 			else
10400 				i_size = cur_offset;
10401 			i_size_write(inode, i_size);
10402 			btrfs_ordered_update_i_size(inode, i_size, NULL);
10403 		}
10404 
10405 		ret = btrfs_update_inode(trans, root, inode);
10406 
10407 		if (ret) {
10408 			btrfs_abort_transaction(trans, ret);
10409 			if (own_trans)
10410 				btrfs_end_transaction(trans);
10411 			break;
10412 		}
10413 
10414 		if (own_trans)
10415 			btrfs_end_transaction(trans);
10416 	}
10417 	if (cur_offset < end)
10418 		btrfs_free_reserved_data_space(inode, NULL, cur_offset,
10419 			end - cur_offset + 1);
10420 	return ret;
10421 }
10422 
10423 int btrfs_prealloc_file_range(struct inode *inode, int mode,
10424 			      u64 start, u64 num_bytes, u64 min_size,
10425 			      loff_t actual_len, u64 *alloc_hint)
10426 {
10427 	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10428 					   min_size, actual_len, alloc_hint,
10429 					   NULL);
10430 }
10431 
10432 int btrfs_prealloc_file_range_trans(struct inode *inode,
10433 				    struct btrfs_trans_handle *trans, int mode,
10434 				    u64 start, u64 num_bytes, u64 min_size,
10435 				    loff_t actual_len, u64 *alloc_hint)
10436 {
10437 	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10438 					   min_size, actual_len, alloc_hint, trans);
10439 }
10440 
10441 static int btrfs_set_page_dirty(struct page *page)
10442 {
10443 	return __set_page_dirty_nobuffers(page);
10444 }
10445 
10446 static int btrfs_permission(struct inode *inode, int mask)
10447 {
10448 	struct btrfs_root *root = BTRFS_I(inode)->root;
10449 	umode_t mode = inode->i_mode;
10450 
10451 	if (mask & MAY_WRITE &&
10452 	    (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
10453 		if (btrfs_root_readonly(root))
10454 			return -EROFS;
10455 		if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
10456 			return -EACCES;
10457 	}
10458 	return generic_permission(inode, mask);
10459 }
10460 
10461 static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
10462 {
10463 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
10464 	struct btrfs_trans_handle *trans;
10465 	struct btrfs_root *root = BTRFS_I(dir)->root;
10466 	struct inode *inode = NULL;
10467 	u64 objectid;
10468 	u64 index;
10469 	int ret = 0;
10470 
10471 	/*
10472 	 * 5 units required for adding orphan entry
10473 	 */
10474 	trans = btrfs_start_transaction(root, 5);
10475 	if (IS_ERR(trans))
10476 		return PTR_ERR(trans);
10477 
10478 	ret = btrfs_find_free_ino(root, &objectid);
10479 	if (ret)
10480 		goto out;
10481 
10482 	inode = btrfs_new_inode(trans, root, dir, NULL, 0,
10483 			btrfs_ino(BTRFS_I(dir)), objectid, mode, &index);
10484 	if (IS_ERR(inode)) {
10485 		ret = PTR_ERR(inode);
10486 		inode = NULL;
10487 		goto out;
10488 	}
10489 
10490 	inode->i_fop = &btrfs_file_operations;
10491 	inode->i_op = &btrfs_file_inode_operations;
10492 
10493 	inode->i_mapping->a_ops = &btrfs_aops;
10494 	BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10495 
10496 	ret = btrfs_init_inode_security(trans, inode, dir, NULL);
10497 	if (ret)
10498 		goto out;
10499 
10500 	ret = btrfs_update_inode(trans, root, inode);
10501 	if (ret)
10502 		goto out;
10503 	ret = btrfs_orphan_add(trans, BTRFS_I(inode));
10504 	if (ret)
10505 		goto out;
10506 
10507 	/*
10508 	 * We set number of links to 0 in btrfs_new_inode(), and here we set
10509 	 * it to 1 because d_tmpfile() will issue a warning if the count is 0,
10510 	 * through:
10511 	 *
10512 	 *    d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
10513 	 */
10514 	set_nlink(inode, 1);
10515 	d_tmpfile(dentry, inode);
10516 	unlock_new_inode(inode);
10517 	mark_inode_dirty(inode);
10518 out:
10519 	btrfs_end_transaction(trans);
10520 	if (ret && inode)
10521 		discard_new_inode(inode);
10522 	btrfs_btree_balance_dirty(fs_info);
10523 	return ret;
10524 }
10525 
10526 void btrfs_set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
10527 {
10528 	struct inode *inode = tree->private_data;
10529 	unsigned long index = start >> PAGE_SHIFT;
10530 	unsigned long end_index = end >> PAGE_SHIFT;
10531 	struct page *page;
10532 
10533 	while (index <= end_index) {
10534 		page = find_get_page(inode->i_mapping, index);
10535 		ASSERT(page); /* Pages should be in the extent_io_tree */
10536 		set_page_writeback(page);
10537 		put_page(page);
10538 		index++;
10539 	}
10540 }
10541 
10542 #ifdef CONFIG_SWAP
10543 /*
10544  * Add an entry indicating a block group or device which is pinned by a
10545  * swapfile. Returns 0 on success, 1 if there is already an entry for it, or a
10546  * negative errno on failure.
10547  */
10548 static int btrfs_add_swapfile_pin(struct inode *inode, void *ptr,
10549 				  bool is_block_group)
10550 {
10551 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10552 	struct btrfs_swapfile_pin *sp, *entry;
10553 	struct rb_node **p;
10554 	struct rb_node *parent = NULL;
10555 
10556 	sp = kmalloc(sizeof(*sp), GFP_NOFS);
10557 	if (!sp)
10558 		return -ENOMEM;
10559 	sp->ptr = ptr;
10560 	sp->inode = inode;
10561 	sp->is_block_group = is_block_group;
10562 
10563 	spin_lock(&fs_info->swapfile_pins_lock);
10564 	p = &fs_info->swapfile_pins.rb_node;
10565 	while (*p) {
10566 		parent = *p;
10567 		entry = rb_entry(parent, struct btrfs_swapfile_pin, node);
10568 		if (sp->ptr < entry->ptr ||
10569 		    (sp->ptr == entry->ptr && sp->inode < entry->inode)) {
10570 			p = &(*p)->rb_left;
10571 		} else if (sp->ptr > entry->ptr ||
10572 			   (sp->ptr == entry->ptr && sp->inode > entry->inode)) {
10573 			p = &(*p)->rb_right;
10574 		} else {
10575 			spin_unlock(&fs_info->swapfile_pins_lock);
10576 			kfree(sp);
10577 			return 1;
10578 		}
10579 	}
10580 	rb_link_node(&sp->node, parent, p);
10581 	rb_insert_color(&sp->node, &fs_info->swapfile_pins);
10582 	spin_unlock(&fs_info->swapfile_pins_lock);
10583 	return 0;
10584 }
10585 
10586 /* Free all of the entries pinned by this swapfile. */
10587 static void btrfs_free_swapfile_pins(struct inode *inode)
10588 {
10589 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10590 	struct btrfs_swapfile_pin *sp;
10591 	struct rb_node *node, *next;
10592 
10593 	spin_lock(&fs_info->swapfile_pins_lock);
10594 	node = rb_first(&fs_info->swapfile_pins);
10595 	while (node) {
10596 		next = rb_next(node);
10597 		sp = rb_entry(node, struct btrfs_swapfile_pin, node);
10598 		if (sp->inode == inode) {
10599 			rb_erase(&sp->node, &fs_info->swapfile_pins);
10600 			if (sp->is_block_group)
10601 				btrfs_put_block_group(sp->ptr);
10602 			kfree(sp);
10603 		}
10604 		node = next;
10605 	}
10606 	spin_unlock(&fs_info->swapfile_pins_lock);
10607 }
10608 
10609 struct btrfs_swap_info {
10610 	u64 start;
10611 	u64 block_start;
10612 	u64 block_len;
10613 	u64 lowest_ppage;
10614 	u64 highest_ppage;
10615 	unsigned long nr_pages;
10616 	int nr_extents;
10617 };
10618 
10619 static int btrfs_add_swap_extent(struct swap_info_struct *sis,
10620 				 struct btrfs_swap_info *bsi)
10621 {
10622 	unsigned long nr_pages;
10623 	u64 first_ppage, first_ppage_reported, next_ppage;
10624 	int ret;
10625 
10626 	first_ppage = ALIGN(bsi->block_start, PAGE_SIZE) >> PAGE_SHIFT;
10627 	next_ppage = ALIGN_DOWN(bsi->block_start + bsi->block_len,
10628 				PAGE_SIZE) >> PAGE_SHIFT;
10629 
10630 	if (first_ppage >= next_ppage)
10631 		return 0;
10632 	nr_pages = next_ppage - first_ppage;
10633 
10634 	first_ppage_reported = first_ppage;
10635 	if (bsi->start == 0)
10636 		first_ppage_reported++;
10637 	if (bsi->lowest_ppage > first_ppage_reported)
10638 		bsi->lowest_ppage = first_ppage_reported;
10639 	if (bsi->highest_ppage < (next_ppage - 1))
10640 		bsi->highest_ppage = next_ppage - 1;
10641 
10642 	ret = add_swap_extent(sis, bsi->nr_pages, nr_pages, first_ppage);
10643 	if (ret < 0)
10644 		return ret;
10645 	bsi->nr_extents += ret;
10646 	bsi->nr_pages += nr_pages;
10647 	return 0;
10648 }
10649 
10650 static void btrfs_swap_deactivate(struct file *file)
10651 {
10652 	struct inode *inode = file_inode(file);
10653 
10654 	btrfs_free_swapfile_pins(inode);
10655 	atomic_dec(&BTRFS_I(inode)->root->nr_swapfiles);
10656 }
10657 
10658 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
10659 			       sector_t *span)
10660 {
10661 	struct inode *inode = file_inode(file);
10662 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10663 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
10664 	struct extent_state *cached_state = NULL;
10665 	struct extent_map *em = NULL;
10666 	struct btrfs_device *device = NULL;
10667 	struct btrfs_swap_info bsi = {
10668 		.lowest_ppage = (sector_t)-1ULL,
10669 	};
10670 	int ret = 0;
10671 	u64 isize;
10672 	u64 start;
10673 
10674 	/*
10675 	 * If the swap file was just created, make sure delalloc is done. If the
10676 	 * file changes again after this, the user is doing something stupid and
10677 	 * we don't really care.
10678 	 */
10679 	ret = btrfs_wait_ordered_range(inode, 0, (u64)-1);
10680 	if (ret)
10681 		return ret;
10682 
10683 	/*
10684 	 * The inode is locked, so these flags won't change after we check them.
10685 	 */
10686 	if (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS) {
10687 		btrfs_warn(fs_info, "swapfile must not be compressed");
10688 		return -EINVAL;
10689 	}
10690 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)) {
10691 		btrfs_warn(fs_info, "swapfile must not be copy-on-write");
10692 		return -EINVAL;
10693 	}
10694 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
10695 		btrfs_warn(fs_info, "swapfile must not be checksummed");
10696 		return -EINVAL;
10697 	}
10698 
10699 	/*
10700 	 * Balance or device remove/replace/resize can move stuff around from
10701 	 * under us. The EXCL_OP flag makes sure they aren't running/won't run
10702 	 * concurrently while we are mapping the swap extents, and
10703 	 * fs_info->swapfile_pins prevents them from running while the swap file
10704 	 * is active and moving the extents. Note that this also prevents a
10705 	 * concurrent device add which isn't actually necessary, but it's not
10706 	 * really worth the trouble to allow it.
10707 	 */
10708 	if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
10709 		btrfs_warn(fs_info,
10710 	   "cannot activate swapfile while exclusive operation is running");
10711 		return -EBUSY;
10712 	}
10713 	/*
10714 	 * Snapshots can create extents which require COW even if NODATACOW is
10715 	 * set. We use this counter to prevent snapshots. We must increment it
10716 	 * before walking the extents because we don't want a concurrent
10717 	 * snapshot to run after we've already checked the extents.
10718 	 */
10719 	atomic_inc(&BTRFS_I(inode)->root->nr_swapfiles);
10720 
10721 	isize = ALIGN_DOWN(inode->i_size, fs_info->sectorsize);
10722 
10723 	lock_extent_bits(io_tree, 0, isize - 1, &cached_state);
10724 	start = 0;
10725 	while (start < isize) {
10726 		u64 logical_block_start, physical_block_start;
10727 		struct btrfs_block_group_cache *bg;
10728 		u64 len = isize - start;
10729 
10730 		em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len, 0);
10731 		if (IS_ERR(em)) {
10732 			ret = PTR_ERR(em);
10733 			goto out;
10734 		}
10735 
10736 		if (em->block_start == EXTENT_MAP_HOLE) {
10737 			btrfs_warn(fs_info, "swapfile must not have holes");
10738 			ret = -EINVAL;
10739 			goto out;
10740 		}
10741 		if (em->block_start == EXTENT_MAP_INLINE) {
10742 			/*
10743 			 * It's unlikely we'll ever actually find ourselves
10744 			 * here, as a file small enough to fit inline won't be
10745 			 * big enough to store more than the swap header, but in
10746 			 * case something changes in the future, let's catch it
10747 			 * here rather than later.
10748 			 */
10749 			btrfs_warn(fs_info, "swapfile must not be inline");
10750 			ret = -EINVAL;
10751 			goto out;
10752 		}
10753 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
10754 			btrfs_warn(fs_info, "swapfile must not be compressed");
10755 			ret = -EINVAL;
10756 			goto out;
10757 		}
10758 
10759 		logical_block_start = em->block_start + (start - em->start);
10760 		len = min(len, em->len - (start - em->start));
10761 		free_extent_map(em);
10762 		em = NULL;
10763 
10764 		ret = can_nocow_extent(inode, start, &len, NULL, NULL, NULL);
10765 		if (ret < 0) {
10766 			goto out;
10767 		} else if (ret) {
10768 			ret = 0;
10769 		} else {
10770 			btrfs_warn(fs_info,
10771 				   "swapfile must not be copy-on-write");
10772 			ret = -EINVAL;
10773 			goto out;
10774 		}
10775 
10776 		em = btrfs_get_chunk_map(fs_info, logical_block_start, len);
10777 		if (IS_ERR(em)) {
10778 			ret = PTR_ERR(em);
10779 			goto out;
10780 		}
10781 
10782 		if (em->map_lookup->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
10783 			btrfs_warn(fs_info,
10784 				   "swapfile must have single data profile");
10785 			ret = -EINVAL;
10786 			goto out;
10787 		}
10788 
10789 		if (device == NULL) {
10790 			device = em->map_lookup->stripes[0].dev;
10791 			ret = btrfs_add_swapfile_pin(inode, device, false);
10792 			if (ret == 1)
10793 				ret = 0;
10794 			else if (ret)
10795 				goto out;
10796 		} else if (device != em->map_lookup->stripes[0].dev) {
10797 			btrfs_warn(fs_info, "swapfile must be on one device");
10798 			ret = -EINVAL;
10799 			goto out;
10800 		}
10801 
10802 		physical_block_start = (em->map_lookup->stripes[0].physical +
10803 					(logical_block_start - em->start));
10804 		len = min(len, em->len - (logical_block_start - em->start));
10805 		free_extent_map(em);
10806 		em = NULL;
10807 
10808 		bg = btrfs_lookup_block_group(fs_info, logical_block_start);
10809 		if (!bg) {
10810 			btrfs_warn(fs_info,
10811 			   "could not find block group containing swapfile");
10812 			ret = -EINVAL;
10813 			goto out;
10814 		}
10815 
10816 		ret = btrfs_add_swapfile_pin(inode, bg, true);
10817 		if (ret) {
10818 			btrfs_put_block_group(bg);
10819 			if (ret == 1)
10820 				ret = 0;
10821 			else
10822 				goto out;
10823 		}
10824 
10825 		if (bsi.block_len &&
10826 		    bsi.block_start + bsi.block_len == physical_block_start) {
10827 			bsi.block_len += len;
10828 		} else {
10829 			if (bsi.block_len) {
10830 				ret = btrfs_add_swap_extent(sis, &bsi);
10831 				if (ret)
10832 					goto out;
10833 			}
10834 			bsi.start = start;
10835 			bsi.block_start = physical_block_start;
10836 			bsi.block_len = len;
10837 		}
10838 
10839 		start += len;
10840 	}
10841 
10842 	if (bsi.block_len)
10843 		ret = btrfs_add_swap_extent(sis, &bsi);
10844 
10845 out:
10846 	if (!IS_ERR_OR_NULL(em))
10847 		free_extent_map(em);
10848 
10849 	unlock_extent_cached(io_tree, 0, isize - 1, &cached_state);
10850 
10851 	if (ret)
10852 		btrfs_swap_deactivate(file);
10853 
10854 	clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
10855 
10856 	if (ret)
10857 		return ret;
10858 
10859 	if (device)
10860 		sis->bdev = device->bdev;
10861 	*span = bsi.highest_ppage - bsi.lowest_ppage + 1;
10862 	sis->max = bsi.nr_pages;
10863 	sis->pages = bsi.nr_pages - 1;
10864 	sis->highest_bit = bsi.nr_pages - 1;
10865 	return bsi.nr_extents;
10866 }
10867 #else
10868 static void btrfs_swap_deactivate(struct file *file)
10869 {
10870 }
10871 
10872 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
10873 			       sector_t *span)
10874 {
10875 	return -EOPNOTSUPP;
10876 }
10877 #endif
10878 
10879 static const struct inode_operations btrfs_dir_inode_operations = {
10880 	.getattr	= btrfs_getattr,
10881 	.lookup		= btrfs_lookup,
10882 	.create		= btrfs_create,
10883 	.unlink		= btrfs_unlink,
10884 	.link		= btrfs_link,
10885 	.mkdir		= btrfs_mkdir,
10886 	.rmdir		= btrfs_rmdir,
10887 	.rename		= btrfs_rename2,
10888 	.symlink	= btrfs_symlink,
10889 	.setattr	= btrfs_setattr,
10890 	.mknod		= btrfs_mknod,
10891 	.listxattr	= btrfs_listxattr,
10892 	.permission	= btrfs_permission,
10893 	.get_acl	= btrfs_get_acl,
10894 	.set_acl	= btrfs_set_acl,
10895 	.update_time	= btrfs_update_time,
10896 	.tmpfile        = btrfs_tmpfile,
10897 };
10898 static const struct inode_operations btrfs_dir_ro_inode_operations = {
10899 	.lookup		= btrfs_lookup,
10900 	.permission	= btrfs_permission,
10901 	.update_time	= btrfs_update_time,
10902 };
10903 
10904 static const struct file_operations btrfs_dir_file_operations = {
10905 	.llseek		= generic_file_llseek,
10906 	.read		= generic_read_dir,
10907 	.iterate_shared	= btrfs_real_readdir,
10908 	.open		= btrfs_opendir,
10909 	.unlocked_ioctl	= btrfs_ioctl,
10910 #ifdef CONFIG_COMPAT
10911 	.compat_ioctl	= btrfs_compat_ioctl,
10912 #endif
10913 	.release        = btrfs_release_file,
10914 	.fsync		= btrfs_sync_file,
10915 };
10916 
10917 static const struct extent_io_ops btrfs_extent_io_ops = {
10918 	/* mandatory callbacks */
10919 	.submit_bio_hook = btrfs_submit_bio_hook,
10920 	.readpage_end_io_hook = btrfs_readpage_end_io_hook,
10921 };
10922 
10923 /*
10924  * btrfs doesn't support the bmap operation because swapfiles
10925  * use bmap to make a mapping of extents in the file.  They assume
10926  * these extents won't change over the life of the file and they
10927  * use the bmap result to do IO directly to the drive.
10928  *
10929  * the btrfs bmap call would return logical addresses that aren't
10930  * suitable for IO and they also will change frequently as COW
10931  * operations happen.  So, swapfile + btrfs == corruption.
10932  *
10933  * For now we're avoiding this by dropping bmap.
10934  */
10935 static const struct address_space_operations btrfs_aops = {
10936 	.readpage	= btrfs_readpage,
10937 	.writepage	= btrfs_writepage,
10938 	.writepages	= btrfs_writepages,
10939 	.readpages	= btrfs_readpages,
10940 	.direct_IO	= btrfs_direct_IO,
10941 	.invalidatepage = btrfs_invalidatepage,
10942 	.releasepage	= btrfs_releasepage,
10943 	.set_page_dirty	= btrfs_set_page_dirty,
10944 	.error_remove_page = generic_error_remove_page,
10945 	.swap_activate	= btrfs_swap_activate,
10946 	.swap_deactivate = btrfs_swap_deactivate,
10947 };
10948 
10949 static const struct inode_operations btrfs_file_inode_operations = {
10950 	.getattr	= btrfs_getattr,
10951 	.setattr	= btrfs_setattr,
10952 	.listxattr      = btrfs_listxattr,
10953 	.permission	= btrfs_permission,
10954 	.fiemap		= btrfs_fiemap,
10955 	.get_acl	= btrfs_get_acl,
10956 	.set_acl	= btrfs_set_acl,
10957 	.update_time	= btrfs_update_time,
10958 };
10959 static const struct inode_operations btrfs_special_inode_operations = {
10960 	.getattr	= btrfs_getattr,
10961 	.setattr	= btrfs_setattr,
10962 	.permission	= btrfs_permission,
10963 	.listxattr	= btrfs_listxattr,
10964 	.get_acl	= btrfs_get_acl,
10965 	.set_acl	= btrfs_set_acl,
10966 	.update_time	= btrfs_update_time,
10967 };
10968 static const struct inode_operations btrfs_symlink_inode_operations = {
10969 	.get_link	= page_get_link,
10970 	.getattr	= btrfs_getattr,
10971 	.setattr	= btrfs_setattr,
10972 	.permission	= btrfs_permission,
10973 	.listxattr	= btrfs_listxattr,
10974 	.update_time	= btrfs_update_time,
10975 };
10976 
10977 const struct dentry_operations btrfs_dentry_operations = {
10978 	.d_delete	= btrfs_dentry_delete,
10979 };
10980