1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <crypto/hash.h> 7 #include <linux/kernel.h> 8 #include <linux/bio.h> 9 #include <linux/file.h> 10 #include <linux/fs.h> 11 #include <linux/pagemap.h> 12 #include <linux/highmem.h> 13 #include <linux/time.h> 14 #include <linux/init.h> 15 #include <linux/string.h> 16 #include <linux/backing-dev.h> 17 #include <linux/writeback.h> 18 #include <linux/compat.h> 19 #include <linux/xattr.h> 20 #include <linux/posix_acl.h> 21 #include <linux/falloc.h> 22 #include <linux/slab.h> 23 #include <linux/ratelimit.h> 24 #include <linux/btrfs.h> 25 #include <linux/blkdev.h> 26 #include <linux/posix_acl_xattr.h> 27 #include <linux/uio.h> 28 #include <linux/magic.h> 29 #include <linux/iversion.h> 30 #include <linux/swap.h> 31 #include <linux/migrate.h> 32 #include <linux/sched/mm.h> 33 #include <linux/iomap.h> 34 #include <asm/unaligned.h> 35 #include "misc.h" 36 #include "ctree.h" 37 #include "disk-io.h" 38 #include "transaction.h" 39 #include "btrfs_inode.h" 40 #include "print-tree.h" 41 #include "ordered-data.h" 42 #include "xattr.h" 43 #include "tree-log.h" 44 #include "volumes.h" 45 #include "compression.h" 46 #include "locking.h" 47 #include "free-space-cache.h" 48 #include "props.h" 49 #include "qgroup.h" 50 #include "delalloc-space.h" 51 #include "block-group.h" 52 #include "space-info.h" 53 #include "zoned.h" 54 #include "subpage.h" 55 56 struct btrfs_iget_args { 57 u64 ino; 58 struct btrfs_root *root; 59 }; 60 61 struct btrfs_dio_data { 62 u64 reserve; 63 loff_t length; 64 ssize_t submitted; 65 struct extent_changeset *data_reserved; 66 }; 67 68 static const struct inode_operations btrfs_dir_inode_operations; 69 static const struct inode_operations btrfs_symlink_inode_operations; 70 static const struct inode_operations btrfs_special_inode_operations; 71 static const struct inode_operations btrfs_file_inode_operations; 72 static const struct address_space_operations btrfs_aops; 73 static const struct file_operations btrfs_dir_file_operations; 74 75 static struct kmem_cache *btrfs_inode_cachep; 76 struct kmem_cache *btrfs_trans_handle_cachep; 77 struct kmem_cache *btrfs_path_cachep; 78 struct kmem_cache *btrfs_free_space_cachep; 79 struct kmem_cache *btrfs_free_space_bitmap_cachep; 80 81 static int btrfs_setsize(struct inode *inode, struct iattr *attr); 82 static int btrfs_truncate(struct inode *inode, bool skip_writeback); 83 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent); 84 static noinline int cow_file_range(struct btrfs_inode *inode, 85 struct page *locked_page, 86 u64 start, u64 end, int *page_started, 87 unsigned long *nr_written, int unlock); 88 static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start, 89 u64 len, u64 orig_start, u64 block_start, 90 u64 block_len, u64 orig_block_len, 91 u64 ram_bytes, int compress_type, 92 int type); 93 94 static void __endio_write_update_ordered(struct btrfs_inode *inode, 95 const u64 offset, const u64 bytes, 96 const bool uptodate); 97 98 /* 99 * btrfs_inode_lock - lock inode i_rwsem based on arguments passed 100 * 101 * ilock_flags can have the following bit set: 102 * 103 * BTRFS_ILOCK_SHARED - acquire a shared lock on the inode 104 * BTRFS_ILOCK_TRY - try to acquire the lock, if fails on first attempt 105 * return -EAGAIN 106 * BTRFS_ILOCK_MMAP - acquire a write lock on the i_mmap_lock 107 */ 108 int btrfs_inode_lock(struct inode *inode, unsigned int ilock_flags) 109 { 110 if (ilock_flags & BTRFS_ILOCK_SHARED) { 111 if (ilock_flags & BTRFS_ILOCK_TRY) { 112 if (!inode_trylock_shared(inode)) 113 return -EAGAIN; 114 else 115 return 0; 116 } 117 inode_lock_shared(inode); 118 } else { 119 if (ilock_flags & BTRFS_ILOCK_TRY) { 120 if (!inode_trylock(inode)) 121 return -EAGAIN; 122 else 123 return 0; 124 } 125 inode_lock(inode); 126 } 127 if (ilock_flags & BTRFS_ILOCK_MMAP) 128 down_write(&BTRFS_I(inode)->i_mmap_lock); 129 return 0; 130 } 131 132 /* 133 * btrfs_inode_unlock - unock inode i_rwsem 134 * 135 * ilock_flags should contain the same bits set as passed to btrfs_inode_lock() 136 * to decide whether the lock acquired is shared or exclusive. 137 */ 138 void btrfs_inode_unlock(struct inode *inode, unsigned int ilock_flags) 139 { 140 if (ilock_flags & BTRFS_ILOCK_MMAP) 141 up_write(&BTRFS_I(inode)->i_mmap_lock); 142 if (ilock_flags & BTRFS_ILOCK_SHARED) 143 inode_unlock_shared(inode); 144 else 145 inode_unlock(inode); 146 } 147 148 /* 149 * Cleanup all submitted ordered extents in specified range to handle errors 150 * from the btrfs_run_delalloc_range() callback. 151 * 152 * NOTE: caller must ensure that when an error happens, it can not call 153 * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING 154 * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata 155 * to be released, which we want to happen only when finishing the ordered 156 * extent (btrfs_finish_ordered_io()). 157 */ 158 static inline void btrfs_cleanup_ordered_extents(struct btrfs_inode *inode, 159 struct page *locked_page, 160 u64 offset, u64 bytes) 161 { 162 unsigned long index = offset >> PAGE_SHIFT; 163 unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT; 164 u64 page_start = page_offset(locked_page); 165 u64 page_end = page_start + PAGE_SIZE - 1; 166 167 struct page *page; 168 169 while (index <= end_index) { 170 /* 171 * For locked page, we will call end_extent_writepage() on it 172 * in run_delalloc_range() for the error handling. That 173 * end_extent_writepage() function will call 174 * btrfs_mark_ordered_io_finished() to clear page Ordered and 175 * run the ordered extent accounting. 176 * 177 * Here we can't just clear the Ordered bit, or 178 * btrfs_mark_ordered_io_finished() would skip the accounting 179 * for the page range, and the ordered extent will never finish. 180 */ 181 if (index == (page_offset(locked_page) >> PAGE_SHIFT)) { 182 index++; 183 continue; 184 } 185 page = find_get_page(inode->vfs_inode.i_mapping, index); 186 index++; 187 if (!page) 188 continue; 189 190 /* 191 * Here we just clear all Ordered bits for every page in the 192 * range, then __endio_write_update_ordered() will handle 193 * the ordered extent accounting for the range. 194 */ 195 btrfs_page_clamp_clear_ordered(inode->root->fs_info, page, 196 offset, bytes); 197 put_page(page); 198 } 199 200 /* The locked page covers the full range, nothing needs to be done */ 201 if (bytes + offset <= page_offset(locked_page) + PAGE_SIZE) 202 return; 203 /* 204 * In case this page belongs to the delalloc range being instantiated 205 * then skip it, since the first page of a range is going to be 206 * properly cleaned up by the caller of run_delalloc_range 207 */ 208 if (page_start >= offset && page_end <= (offset + bytes - 1)) { 209 bytes = offset + bytes - page_offset(locked_page) - PAGE_SIZE; 210 offset = page_offset(locked_page) + PAGE_SIZE; 211 } 212 213 return __endio_write_update_ordered(inode, offset, bytes, false); 214 } 215 216 static int btrfs_dirty_inode(struct inode *inode); 217 218 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans, 219 struct inode *inode, struct inode *dir, 220 const struct qstr *qstr) 221 { 222 int err; 223 224 err = btrfs_init_acl(trans, inode, dir); 225 if (!err) 226 err = btrfs_xattr_security_init(trans, inode, dir, qstr); 227 return err; 228 } 229 230 /* 231 * this does all the hard work for inserting an inline extent into 232 * the btree. The caller should have done a btrfs_drop_extents so that 233 * no overlapping inline items exist in the btree 234 */ 235 static int insert_inline_extent(struct btrfs_trans_handle *trans, 236 struct btrfs_path *path, bool extent_inserted, 237 struct btrfs_root *root, struct inode *inode, 238 u64 start, size_t size, size_t compressed_size, 239 int compress_type, 240 struct page **compressed_pages) 241 { 242 struct extent_buffer *leaf; 243 struct page *page = NULL; 244 char *kaddr; 245 unsigned long ptr; 246 struct btrfs_file_extent_item *ei; 247 int ret; 248 size_t cur_size = size; 249 unsigned long offset; 250 251 ASSERT((compressed_size > 0 && compressed_pages) || 252 (compressed_size == 0 && !compressed_pages)); 253 254 if (compressed_size && compressed_pages) 255 cur_size = compressed_size; 256 257 if (!extent_inserted) { 258 struct btrfs_key key; 259 size_t datasize; 260 261 key.objectid = btrfs_ino(BTRFS_I(inode)); 262 key.offset = start; 263 key.type = BTRFS_EXTENT_DATA_KEY; 264 265 datasize = btrfs_file_extent_calc_inline_size(cur_size); 266 ret = btrfs_insert_empty_item(trans, root, path, &key, 267 datasize); 268 if (ret) 269 goto fail; 270 } 271 leaf = path->nodes[0]; 272 ei = btrfs_item_ptr(leaf, path->slots[0], 273 struct btrfs_file_extent_item); 274 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 275 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE); 276 btrfs_set_file_extent_encryption(leaf, ei, 0); 277 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 278 btrfs_set_file_extent_ram_bytes(leaf, ei, size); 279 ptr = btrfs_file_extent_inline_start(ei); 280 281 if (compress_type != BTRFS_COMPRESS_NONE) { 282 struct page *cpage; 283 int i = 0; 284 while (compressed_size > 0) { 285 cpage = compressed_pages[i]; 286 cur_size = min_t(unsigned long, compressed_size, 287 PAGE_SIZE); 288 289 kaddr = kmap_atomic(cpage); 290 write_extent_buffer(leaf, kaddr, ptr, cur_size); 291 kunmap_atomic(kaddr); 292 293 i++; 294 ptr += cur_size; 295 compressed_size -= cur_size; 296 } 297 btrfs_set_file_extent_compression(leaf, ei, 298 compress_type); 299 } else { 300 page = find_get_page(inode->i_mapping, 301 start >> PAGE_SHIFT); 302 btrfs_set_file_extent_compression(leaf, ei, 0); 303 kaddr = kmap_atomic(page); 304 offset = offset_in_page(start); 305 write_extent_buffer(leaf, kaddr + offset, ptr, size); 306 kunmap_atomic(kaddr); 307 put_page(page); 308 } 309 btrfs_mark_buffer_dirty(leaf); 310 btrfs_release_path(path); 311 312 /* 313 * We align size to sectorsize for inline extents just for simplicity 314 * sake. 315 */ 316 size = ALIGN(size, root->fs_info->sectorsize); 317 ret = btrfs_inode_set_file_extent_range(BTRFS_I(inode), start, size); 318 if (ret) 319 goto fail; 320 321 /* 322 * we're an inline extent, so nobody can 323 * extend the file past i_size without locking 324 * a page we already have locked. 325 * 326 * We must do any isize and inode updates 327 * before we unlock the pages. Otherwise we 328 * could end up racing with unlink. 329 */ 330 BTRFS_I(inode)->disk_i_size = inode->i_size; 331 fail: 332 return ret; 333 } 334 335 336 /* 337 * conditionally insert an inline extent into the file. This 338 * does the checks required to make sure the data is small enough 339 * to fit as an inline extent. 340 */ 341 static noinline int cow_file_range_inline(struct btrfs_inode *inode, u64 start, 342 u64 end, size_t compressed_size, 343 int compress_type, 344 struct page **compressed_pages) 345 { 346 struct btrfs_drop_extents_args drop_args = { 0 }; 347 struct btrfs_root *root = inode->root; 348 struct btrfs_fs_info *fs_info = root->fs_info; 349 struct btrfs_trans_handle *trans; 350 u64 isize = i_size_read(&inode->vfs_inode); 351 u64 actual_end = min(end + 1, isize); 352 u64 inline_len = actual_end - start; 353 u64 aligned_end = ALIGN(end, fs_info->sectorsize); 354 u64 data_len = inline_len; 355 int ret; 356 struct btrfs_path *path; 357 358 if (compressed_size) 359 data_len = compressed_size; 360 361 if (start > 0 || 362 actual_end > fs_info->sectorsize || 363 data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) || 364 (!compressed_size && 365 (actual_end & (fs_info->sectorsize - 1)) == 0) || 366 end + 1 < isize || 367 data_len > fs_info->max_inline) { 368 return 1; 369 } 370 371 path = btrfs_alloc_path(); 372 if (!path) 373 return -ENOMEM; 374 375 trans = btrfs_join_transaction(root); 376 if (IS_ERR(trans)) { 377 btrfs_free_path(path); 378 return PTR_ERR(trans); 379 } 380 trans->block_rsv = &inode->block_rsv; 381 382 drop_args.path = path; 383 drop_args.start = start; 384 drop_args.end = aligned_end; 385 drop_args.drop_cache = true; 386 drop_args.replace_extent = true; 387 388 if (compressed_size && compressed_pages) 389 drop_args.extent_item_size = btrfs_file_extent_calc_inline_size( 390 compressed_size); 391 else 392 drop_args.extent_item_size = btrfs_file_extent_calc_inline_size( 393 inline_len); 394 395 ret = btrfs_drop_extents(trans, root, inode, &drop_args); 396 if (ret) { 397 btrfs_abort_transaction(trans, ret); 398 goto out; 399 } 400 401 if (isize > actual_end) 402 inline_len = min_t(u64, isize, actual_end); 403 ret = insert_inline_extent(trans, path, drop_args.extent_inserted, 404 root, &inode->vfs_inode, start, 405 inline_len, compressed_size, 406 compress_type, compressed_pages); 407 if (ret && ret != -ENOSPC) { 408 btrfs_abort_transaction(trans, ret); 409 goto out; 410 } else if (ret == -ENOSPC) { 411 ret = 1; 412 goto out; 413 } 414 415 btrfs_update_inode_bytes(inode, inline_len, drop_args.bytes_found); 416 ret = btrfs_update_inode(trans, root, inode); 417 if (ret && ret != -ENOSPC) { 418 btrfs_abort_transaction(trans, ret); 419 goto out; 420 } else if (ret == -ENOSPC) { 421 ret = 1; 422 goto out; 423 } 424 425 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags); 426 out: 427 /* 428 * Don't forget to free the reserved space, as for inlined extent 429 * it won't count as data extent, free them directly here. 430 * And at reserve time, it's always aligned to page size, so 431 * just free one page here. 432 */ 433 btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE); 434 btrfs_free_path(path); 435 btrfs_end_transaction(trans); 436 return ret; 437 } 438 439 struct async_extent { 440 u64 start; 441 u64 ram_size; 442 u64 compressed_size; 443 struct page **pages; 444 unsigned long nr_pages; 445 int compress_type; 446 struct list_head list; 447 }; 448 449 struct async_chunk { 450 struct inode *inode; 451 struct page *locked_page; 452 u64 start; 453 u64 end; 454 unsigned int write_flags; 455 struct list_head extents; 456 struct cgroup_subsys_state *blkcg_css; 457 struct btrfs_work work; 458 atomic_t *pending; 459 }; 460 461 struct async_cow { 462 /* Number of chunks in flight; must be first in the structure */ 463 atomic_t num_chunks; 464 struct async_chunk chunks[]; 465 }; 466 467 static noinline int add_async_extent(struct async_chunk *cow, 468 u64 start, u64 ram_size, 469 u64 compressed_size, 470 struct page **pages, 471 unsigned long nr_pages, 472 int compress_type) 473 { 474 struct async_extent *async_extent; 475 476 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS); 477 BUG_ON(!async_extent); /* -ENOMEM */ 478 async_extent->start = start; 479 async_extent->ram_size = ram_size; 480 async_extent->compressed_size = compressed_size; 481 async_extent->pages = pages; 482 async_extent->nr_pages = nr_pages; 483 async_extent->compress_type = compress_type; 484 list_add_tail(&async_extent->list, &cow->extents); 485 return 0; 486 } 487 488 /* 489 * Check if the inode has flags compatible with compression 490 */ 491 static inline bool inode_can_compress(struct btrfs_inode *inode) 492 { 493 if (inode->flags & BTRFS_INODE_NODATACOW || 494 inode->flags & BTRFS_INODE_NODATASUM) 495 return false; 496 return true; 497 } 498 499 /* 500 * Check if the inode needs to be submitted to compression, based on mount 501 * options, defragmentation, properties or heuristics. 502 */ 503 static inline int inode_need_compress(struct btrfs_inode *inode, u64 start, 504 u64 end) 505 { 506 struct btrfs_fs_info *fs_info = inode->root->fs_info; 507 508 if (!inode_can_compress(inode)) { 509 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG), 510 KERN_ERR "BTRFS: unexpected compression for ino %llu\n", 511 btrfs_ino(inode)); 512 return 0; 513 } 514 /* force compress */ 515 if (btrfs_test_opt(fs_info, FORCE_COMPRESS)) 516 return 1; 517 /* defrag ioctl */ 518 if (inode->defrag_compress) 519 return 1; 520 /* bad compression ratios */ 521 if (inode->flags & BTRFS_INODE_NOCOMPRESS) 522 return 0; 523 if (btrfs_test_opt(fs_info, COMPRESS) || 524 inode->flags & BTRFS_INODE_COMPRESS || 525 inode->prop_compress) 526 return btrfs_compress_heuristic(&inode->vfs_inode, start, end); 527 return 0; 528 } 529 530 static inline void inode_should_defrag(struct btrfs_inode *inode, 531 u64 start, u64 end, u64 num_bytes, u64 small_write) 532 { 533 /* If this is a small write inside eof, kick off a defrag */ 534 if (num_bytes < small_write && 535 (start > 0 || end + 1 < inode->disk_i_size)) 536 btrfs_add_inode_defrag(NULL, inode); 537 } 538 539 /* 540 * we create compressed extents in two phases. The first 541 * phase compresses a range of pages that have already been 542 * locked (both pages and state bits are locked). 543 * 544 * This is done inside an ordered work queue, and the compression 545 * is spread across many cpus. The actual IO submission is step 546 * two, and the ordered work queue takes care of making sure that 547 * happens in the same order things were put onto the queue by 548 * writepages and friends. 549 * 550 * If this code finds it can't get good compression, it puts an 551 * entry onto the work queue to write the uncompressed bytes. This 552 * makes sure that both compressed inodes and uncompressed inodes 553 * are written in the same order that the flusher thread sent them 554 * down. 555 */ 556 static noinline int compress_file_range(struct async_chunk *async_chunk) 557 { 558 struct inode *inode = async_chunk->inode; 559 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 560 u64 blocksize = fs_info->sectorsize; 561 u64 start = async_chunk->start; 562 u64 end = async_chunk->end; 563 u64 actual_end; 564 u64 i_size; 565 int ret = 0; 566 struct page **pages = NULL; 567 unsigned long nr_pages; 568 unsigned long total_compressed = 0; 569 unsigned long total_in = 0; 570 int i; 571 int will_compress; 572 int compress_type = fs_info->compress_type; 573 int compressed_extents = 0; 574 int redirty = 0; 575 576 inode_should_defrag(BTRFS_I(inode), start, end, end - start + 1, 577 SZ_16K); 578 579 /* 580 * We need to save i_size before now because it could change in between 581 * us evaluating the size and assigning it. This is because we lock and 582 * unlock the page in truncate and fallocate, and then modify the i_size 583 * later on. 584 * 585 * The barriers are to emulate READ_ONCE, remove that once i_size_read 586 * does that for us. 587 */ 588 barrier(); 589 i_size = i_size_read(inode); 590 barrier(); 591 actual_end = min_t(u64, i_size, end + 1); 592 again: 593 will_compress = 0; 594 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1; 595 BUILD_BUG_ON((BTRFS_MAX_COMPRESSED % PAGE_SIZE) != 0); 596 nr_pages = min_t(unsigned long, nr_pages, 597 BTRFS_MAX_COMPRESSED / PAGE_SIZE); 598 599 /* 600 * we don't want to send crud past the end of i_size through 601 * compression, that's just a waste of CPU time. So, if the 602 * end of the file is before the start of our current 603 * requested range of bytes, we bail out to the uncompressed 604 * cleanup code that can deal with all of this. 605 * 606 * It isn't really the fastest way to fix things, but this is a 607 * very uncommon corner. 608 */ 609 if (actual_end <= start) 610 goto cleanup_and_bail_uncompressed; 611 612 total_compressed = actual_end - start; 613 614 /* 615 * skip compression for a small file range(<=blocksize) that 616 * isn't an inline extent, since it doesn't save disk space at all. 617 */ 618 if (total_compressed <= blocksize && 619 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size)) 620 goto cleanup_and_bail_uncompressed; 621 622 total_compressed = min_t(unsigned long, total_compressed, 623 BTRFS_MAX_UNCOMPRESSED); 624 total_in = 0; 625 ret = 0; 626 627 /* 628 * we do compression for mount -o compress and when the 629 * inode has not been flagged as nocompress. This flag can 630 * change at any time if we discover bad compression ratios. 631 */ 632 if (nr_pages > 1 && inode_need_compress(BTRFS_I(inode), start, end)) { 633 WARN_ON(pages); 634 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS); 635 if (!pages) { 636 /* just bail out to the uncompressed code */ 637 nr_pages = 0; 638 goto cont; 639 } 640 641 if (BTRFS_I(inode)->defrag_compress) 642 compress_type = BTRFS_I(inode)->defrag_compress; 643 else if (BTRFS_I(inode)->prop_compress) 644 compress_type = BTRFS_I(inode)->prop_compress; 645 646 /* 647 * we need to call clear_page_dirty_for_io on each 648 * page in the range. Otherwise applications with the file 649 * mmap'd can wander in and change the page contents while 650 * we are compressing them. 651 * 652 * If the compression fails for any reason, we set the pages 653 * dirty again later on. 654 * 655 * Note that the remaining part is redirtied, the start pointer 656 * has moved, the end is the original one. 657 */ 658 if (!redirty) { 659 extent_range_clear_dirty_for_io(inode, start, end); 660 redirty = 1; 661 } 662 663 /* Compression level is applied here and only here */ 664 ret = btrfs_compress_pages( 665 compress_type | (fs_info->compress_level << 4), 666 inode->i_mapping, start, 667 pages, 668 &nr_pages, 669 &total_in, 670 &total_compressed); 671 672 if (!ret) { 673 unsigned long offset = offset_in_page(total_compressed); 674 struct page *page = pages[nr_pages - 1]; 675 676 /* zero the tail end of the last page, we might be 677 * sending it down to disk 678 */ 679 if (offset) 680 memzero_page(page, offset, PAGE_SIZE - offset); 681 will_compress = 1; 682 } 683 } 684 cont: 685 if (start == 0) { 686 /* lets try to make an inline extent */ 687 if (ret || total_in < actual_end) { 688 /* we didn't compress the entire range, try 689 * to make an uncompressed inline extent. 690 */ 691 ret = cow_file_range_inline(BTRFS_I(inode), start, end, 692 0, BTRFS_COMPRESS_NONE, 693 NULL); 694 } else { 695 /* try making a compressed inline extent */ 696 ret = cow_file_range_inline(BTRFS_I(inode), start, end, 697 total_compressed, 698 compress_type, pages); 699 } 700 if (ret <= 0) { 701 unsigned long clear_flags = EXTENT_DELALLOC | 702 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG | 703 EXTENT_DO_ACCOUNTING; 704 unsigned long page_error_op; 705 706 page_error_op = ret < 0 ? PAGE_SET_ERROR : 0; 707 708 /* 709 * inline extent creation worked or returned error, 710 * we don't need to create any more async work items. 711 * Unlock and free up our temp pages. 712 * 713 * We use DO_ACCOUNTING here because we need the 714 * delalloc_release_metadata to be done _after_ we drop 715 * our outstanding extent for clearing delalloc for this 716 * range. 717 */ 718 extent_clear_unlock_delalloc(BTRFS_I(inode), start, end, 719 NULL, 720 clear_flags, 721 PAGE_UNLOCK | 722 PAGE_START_WRITEBACK | 723 page_error_op | 724 PAGE_END_WRITEBACK); 725 726 /* 727 * Ensure we only free the compressed pages if we have 728 * them allocated, as we can still reach here with 729 * inode_need_compress() == false. 730 */ 731 if (pages) { 732 for (i = 0; i < nr_pages; i++) { 733 WARN_ON(pages[i]->mapping); 734 put_page(pages[i]); 735 } 736 kfree(pages); 737 } 738 return 0; 739 } 740 } 741 742 if (will_compress) { 743 /* 744 * we aren't doing an inline extent round the compressed size 745 * up to a block size boundary so the allocator does sane 746 * things 747 */ 748 total_compressed = ALIGN(total_compressed, blocksize); 749 750 /* 751 * one last check to make sure the compression is really a 752 * win, compare the page count read with the blocks on disk, 753 * compression must free at least one sector size 754 */ 755 total_in = ALIGN(total_in, PAGE_SIZE); 756 if (total_compressed + blocksize <= total_in) { 757 compressed_extents++; 758 759 /* 760 * The async work queues will take care of doing actual 761 * allocation on disk for these compressed pages, and 762 * will submit them to the elevator. 763 */ 764 add_async_extent(async_chunk, start, total_in, 765 total_compressed, pages, nr_pages, 766 compress_type); 767 768 if (start + total_in < end) { 769 start += total_in; 770 pages = NULL; 771 cond_resched(); 772 goto again; 773 } 774 return compressed_extents; 775 } 776 } 777 if (pages) { 778 /* 779 * the compression code ran but failed to make things smaller, 780 * free any pages it allocated and our page pointer array 781 */ 782 for (i = 0; i < nr_pages; i++) { 783 WARN_ON(pages[i]->mapping); 784 put_page(pages[i]); 785 } 786 kfree(pages); 787 pages = NULL; 788 total_compressed = 0; 789 nr_pages = 0; 790 791 /* flag the file so we don't compress in the future */ 792 if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) && 793 !(BTRFS_I(inode)->prop_compress)) { 794 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS; 795 } 796 } 797 cleanup_and_bail_uncompressed: 798 /* 799 * No compression, but we still need to write the pages in the file 800 * we've been given so far. redirty the locked page if it corresponds 801 * to our extent and set things up for the async work queue to run 802 * cow_file_range to do the normal delalloc dance. 803 */ 804 if (async_chunk->locked_page && 805 (page_offset(async_chunk->locked_page) >= start && 806 page_offset(async_chunk->locked_page)) <= end) { 807 __set_page_dirty_nobuffers(async_chunk->locked_page); 808 /* unlocked later on in the async handlers */ 809 } 810 811 if (redirty) 812 extent_range_redirty_for_io(inode, start, end); 813 add_async_extent(async_chunk, start, end - start + 1, 0, NULL, 0, 814 BTRFS_COMPRESS_NONE); 815 compressed_extents++; 816 817 return compressed_extents; 818 } 819 820 static void free_async_extent_pages(struct async_extent *async_extent) 821 { 822 int i; 823 824 if (!async_extent->pages) 825 return; 826 827 for (i = 0; i < async_extent->nr_pages; i++) { 828 WARN_ON(async_extent->pages[i]->mapping); 829 put_page(async_extent->pages[i]); 830 } 831 kfree(async_extent->pages); 832 async_extent->nr_pages = 0; 833 async_extent->pages = NULL; 834 } 835 836 /* 837 * phase two of compressed writeback. This is the ordered portion 838 * of the code, which only gets called in the order the work was 839 * queued. We walk all the async extents created by compress_file_range 840 * and send them down to the disk. 841 */ 842 static noinline void submit_compressed_extents(struct async_chunk *async_chunk) 843 { 844 struct btrfs_inode *inode = BTRFS_I(async_chunk->inode); 845 struct btrfs_fs_info *fs_info = inode->root->fs_info; 846 struct async_extent *async_extent; 847 u64 alloc_hint = 0; 848 struct btrfs_key ins; 849 struct extent_map *em; 850 struct btrfs_root *root = inode->root; 851 struct extent_io_tree *io_tree = &inode->io_tree; 852 int ret = 0; 853 854 again: 855 while (!list_empty(&async_chunk->extents)) { 856 async_extent = list_entry(async_chunk->extents.next, 857 struct async_extent, list); 858 list_del(&async_extent->list); 859 860 retry: 861 lock_extent(io_tree, async_extent->start, 862 async_extent->start + async_extent->ram_size - 1); 863 /* did the compression code fall back to uncompressed IO? */ 864 if (!async_extent->pages) { 865 int page_started = 0; 866 unsigned long nr_written = 0; 867 868 /* allocate blocks */ 869 ret = cow_file_range(inode, async_chunk->locked_page, 870 async_extent->start, 871 async_extent->start + 872 async_extent->ram_size - 1, 873 &page_started, &nr_written, 0); 874 875 /* JDM XXX */ 876 877 /* 878 * if page_started, cow_file_range inserted an 879 * inline extent and took care of all the unlocking 880 * and IO for us. Otherwise, we need to submit 881 * all those pages down to the drive. 882 */ 883 if (!page_started && !ret) 884 extent_write_locked_range(&inode->vfs_inode, 885 async_extent->start, 886 async_extent->start + 887 async_extent->ram_size - 1, 888 WB_SYNC_ALL); 889 else if (ret && async_chunk->locked_page) 890 unlock_page(async_chunk->locked_page); 891 kfree(async_extent); 892 cond_resched(); 893 continue; 894 } 895 896 ret = btrfs_reserve_extent(root, async_extent->ram_size, 897 async_extent->compressed_size, 898 async_extent->compressed_size, 899 0, alloc_hint, &ins, 1, 1); 900 if (ret) { 901 free_async_extent_pages(async_extent); 902 903 if (ret == -ENOSPC) { 904 unlock_extent(io_tree, async_extent->start, 905 async_extent->start + 906 async_extent->ram_size - 1); 907 908 /* 909 * we need to redirty the pages if we decide to 910 * fallback to uncompressed IO, otherwise we 911 * will not submit these pages down to lower 912 * layers. 913 */ 914 extent_range_redirty_for_io(&inode->vfs_inode, 915 async_extent->start, 916 async_extent->start + 917 async_extent->ram_size - 1); 918 919 goto retry; 920 } 921 goto out_free; 922 } 923 /* 924 * here we're doing allocation and writeback of the 925 * compressed pages 926 */ 927 em = create_io_em(inode, async_extent->start, 928 async_extent->ram_size, /* len */ 929 async_extent->start, /* orig_start */ 930 ins.objectid, /* block_start */ 931 ins.offset, /* block_len */ 932 ins.offset, /* orig_block_len */ 933 async_extent->ram_size, /* ram_bytes */ 934 async_extent->compress_type, 935 BTRFS_ORDERED_COMPRESSED); 936 if (IS_ERR(em)) 937 /* ret value is not necessary due to void function */ 938 goto out_free_reserve; 939 free_extent_map(em); 940 941 ret = btrfs_add_ordered_extent_compress(inode, 942 async_extent->start, 943 ins.objectid, 944 async_extent->ram_size, 945 ins.offset, 946 async_extent->compress_type); 947 if (ret) { 948 btrfs_drop_extent_cache(inode, async_extent->start, 949 async_extent->start + 950 async_extent->ram_size - 1, 0); 951 goto out_free_reserve; 952 } 953 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 954 955 /* 956 * clear dirty, set writeback and unlock the pages. 957 */ 958 extent_clear_unlock_delalloc(inode, async_extent->start, 959 async_extent->start + 960 async_extent->ram_size - 1, 961 NULL, EXTENT_LOCKED | EXTENT_DELALLOC, 962 PAGE_UNLOCK | PAGE_START_WRITEBACK); 963 if (btrfs_submit_compressed_write(inode, async_extent->start, 964 async_extent->ram_size, 965 ins.objectid, 966 ins.offset, async_extent->pages, 967 async_extent->nr_pages, 968 async_chunk->write_flags, 969 async_chunk->blkcg_css)) { 970 struct page *p = async_extent->pages[0]; 971 const u64 start = async_extent->start; 972 const u64 end = start + async_extent->ram_size - 1; 973 974 p->mapping = inode->vfs_inode.i_mapping; 975 btrfs_writepage_endio_finish_ordered(inode, p, start, 976 end, 0); 977 978 p->mapping = NULL; 979 extent_clear_unlock_delalloc(inode, start, end, NULL, 0, 980 PAGE_END_WRITEBACK | 981 PAGE_SET_ERROR); 982 free_async_extent_pages(async_extent); 983 } 984 alloc_hint = ins.objectid + ins.offset; 985 kfree(async_extent); 986 cond_resched(); 987 } 988 return; 989 out_free_reserve: 990 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 991 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1); 992 out_free: 993 extent_clear_unlock_delalloc(inode, async_extent->start, 994 async_extent->start + 995 async_extent->ram_size - 1, 996 NULL, EXTENT_LOCKED | EXTENT_DELALLOC | 997 EXTENT_DELALLOC_NEW | 998 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING, 999 PAGE_UNLOCK | PAGE_START_WRITEBACK | 1000 PAGE_END_WRITEBACK | PAGE_SET_ERROR); 1001 free_async_extent_pages(async_extent); 1002 kfree(async_extent); 1003 goto again; 1004 } 1005 1006 static u64 get_extent_allocation_hint(struct btrfs_inode *inode, u64 start, 1007 u64 num_bytes) 1008 { 1009 struct extent_map_tree *em_tree = &inode->extent_tree; 1010 struct extent_map *em; 1011 u64 alloc_hint = 0; 1012 1013 read_lock(&em_tree->lock); 1014 em = search_extent_mapping(em_tree, start, num_bytes); 1015 if (em) { 1016 /* 1017 * if block start isn't an actual block number then find the 1018 * first block in this inode and use that as a hint. If that 1019 * block is also bogus then just don't worry about it. 1020 */ 1021 if (em->block_start >= EXTENT_MAP_LAST_BYTE) { 1022 free_extent_map(em); 1023 em = search_extent_mapping(em_tree, 0, 0); 1024 if (em && em->block_start < EXTENT_MAP_LAST_BYTE) 1025 alloc_hint = em->block_start; 1026 if (em) 1027 free_extent_map(em); 1028 } else { 1029 alloc_hint = em->block_start; 1030 free_extent_map(em); 1031 } 1032 } 1033 read_unlock(&em_tree->lock); 1034 1035 return alloc_hint; 1036 } 1037 1038 /* 1039 * when extent_io.c finds a delayed allocation range in the file, 1040 * the call backs end up in this code. The basic idea is to 1041 * allocate extents on disk for the range, and create ordered data structs 1042 * in ram to track those extents. 1043 * 1044 * locked_page is the page that writepage had locked already. We use 1045 * it to make sure we don't do extra locks or unlocks. 1046 * 1047 * *page_started is set to one if we unlock locked_page and do everything 1048 * required to start IO on it. It may be clean and already done with 1049 * IO when we return. 1050 */ 1051 static noinline int cow_file_range(struct btrfs_inode *inode, 1052 struct page *locked_page, 1053 u64 start, u64 end, int *page_started, 1054 unsigned long *nr_written, int unlock) 1055 { 1056 struct btrfs_root *root = inode->root; 1057 struct btrfs_fs_info *fs_info = root->fs_info; 1058 u64 alloc_hint = 0; 1059 u64 num_bytes; 1060 unsigned long ram_size; 1061 u64 cur_alloc_size = 0; 1062 u64 min_alloc_size; 1063 u64 blocksize = fs_info->sectorsize; 1064 struct btrfs_key ins; 1065 struct extent_map *em; 1066 unsigned clear_bits; 1067 unsigned long page_ops; 1068 bool extent_reserved = false; 1069 int ret = 0; 1070 1071 if (btrfs_is_free_space_inode(inode)) { 1072 WARN_ON_ONCE(1); 1073 ret = -EINVAL; 1074 goto out_unlock; 1075 } 1076 1077 num_bytes = ALIGN(end - start + 1, blocksize); 1078 num_bytes = max(blocksize, num_bytes); 1079 ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy)); 1080 1081 inode_should_defrag(inode, start, end, num_bytes, SZ_64K); 1082 1083 if (start == 0) { 1084 /* lets try to make an inline extent */ 1085 ret = cow_file_range_inline(inode, start, end, 0, 1086 BTRFS_COMPRESS_NONE, NULL); 1087 if (ret == 0) { 1088 /* 1089 * We use DO_ACCOUNTING here because we need the 1090 * delalloc_release_metadata to be run _after_ we drop 1091 * our outstanding extent for clearing delalloc for this 1092 * range. 1093 */ 1094 extent_clear_unlock_delalloc(inode, start, end, 1095 locked_page, 1096 EXTENT_LOCKED | EXTENT_DELALLOC | 1097 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG | 1098 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK | 1099 PAGE_START_WRITEBACK | PAGE_END_WRITEBACK); 1100 *nr_written = *nr_written + 1101 (end - start + PAGE_SIZE) / PAGE_SIZE; 1102 *page_started = 1; 1103 /* 1104 * locked_page is locked by the caller of 1105 * writepage_delalloc(), not locked by 1106 * __process_pages_contig(). 1107 * 1108 * We can't let __process_pages_contig() to unlock it, 1109 * as it doesn't have any subpage::writers recorded. 1110 * 1111 * Here we manually unlock the page, since the caller 1112 * can't use page_started to determine if it's an 1113 * inline extent or a compressed extent. 1114 */ 1115 unlock_page(locked_page); 1116 goto out; 1117 } else if (ret < 0) { 1118 goto out_unlock; 1119 } 1120 } 1121 1122 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes); 1123 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0); 1124 1125 /* 1126 * Relocation relies on the relocated extents to have exactly the same 1127 * size as the original extents. Normally writeback for relocation data 1128 * extents follows a NOCOW path because relocation preallocates the 1129 * extents. However, due to an operation such as scrub turning a block 1130 * group to RO mode, it may fallback to COW mode, so we must make sure 1131 * an extent allocated during COW has exactly the requested size and can 1132 * not be split into smaller extents, otherwise relocation breaks and 1133 * fails during the stage where it updates the bytenr of file extent 1134 * items. 1135 */ 1136 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) 1137 min_alloc_size = num_bytes; 1138 else 1139 min_alloc_size = fs_info->sectorsize; 1140 1141 while (num_bytes > 0) { 1142 cur_alloc_size = num_bytes; 1143 ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size, 1144 min_alloc_size, 0, alloc_hint, 1145 &ins, 1, 1); 1146 if (ret < 0) 1147 goto out_unlock; 1148 cur_alloc_size = ins.offset; 1149 extent_reserved = true; 1150 1151 ram_size = ins.offset; 1152 em = create_io_em(inode, start, ins.offset, /* len */ 1153 start, /* orig_start */ 1154 ins.objectid, /* block_start */ 1155 ins.offset, /* block_len */ 1156 ins.offset, /* orig_block_len */ 1157 ram_size, /* ram_bytes */ 1158 BTRFS_COMPRESS_NONE, /* compress_type */ 1159 BTRFS_ORDERED_REGULAR /* type */); 1160 if (IS_ERR(em)) { 1161 ret = PTR_ERR(em); 1162 goto out_reserve; 1163 } 1164 free_extent_map(em); 1165 1166 ret = btrfs_add_ordered_extent(inode, start, ins.objectid, 1167 ram_size, cur_alloc_size, 1168 BTRFS_ORDERED_REGULAR); 1169 if (ret) 1170 goto out_drop_extent_cache; 1171 1172 if (root->root_key.objectid == 1173 BTRFS_DATA_RELOC_TREE_OBJECTID) { 1174 ret = btrfs_reloc_clone_csums(inode, start, 1175 cur_alloc_size); 1176 /* 1177 * Only drop cache here, and process as normal. 1178 * 1179 * We must not allow extent_clear_unlock_delalloc() 1180 * at out_unlock label to free meta of this ordered 1181 * extent, as its meta should be freed by 1182 * btrfs_finish_ordered_io(). 1183 * 1184 * So we must continue until @start is increased to 1185 * skip current ordered extent. 1186 */ 1187 if (ret) 1188 btrfs_drop_extent_cache(inode, start, 1189 start + ram_size - 1, 0); 1190 } 1191 1192 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1193 1194 /* 1195 * We're not doing compressed IO, don't unlock the first page 1196 * (which the caller expects to stay locked), don't clear any 1197 * dirty bits and don't set any writeback bits 1198 * 1199 * Do set the Ordered (Private2) bit so we know this page was 1200 * properly setup for writepage. 1201 */ 1202 page_ops = unlock ? PAGE_UNLOCK : 0; 1203 page_ops |= PAGE_SET_ORDERED; 1204 1205 extent_clear_unlock_delalloc(inode, start, start + ram_size - 1, 1206 locked_page, 1207 EXTENT_LOCKED | EXTENT_DELALLOC, 1208 page_ops); 1209 if (num_bytes < cur_alloc_size) 1210 num_bytes = 0; 1211 else 1212 num_bytes -= cur_alloc_size; 1213 alloc_hint = ins.objectid + ins.offset; 1214 start += cur_alloc_size; 1215 extent_reserved = false; 1216 1217 /* 1218 * btrfs_reloc_clone_csums() error, since start is increased 1219 * extent_clear_unlock_delalloc() at out_unlock label won't 1220 * free metadata of current ordered extent, we're OK to exit. 1221 */ 1222 if (ret) 1223 goto out_unlock; 1224 } 1225 out: 1226 return ret; 1227 1228 out_drop_extent_cache: 1229 btrfs_drop_extent_cache(inode, start, start + ram_size - 1, 0); 1230 out_reserve: 1231 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1232 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1); 1233 out_unlock: 1234 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW | 1235 EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV; 1236 page_ops = PAGE_UNLOCK | PAGE_START_WRITEBACK | PAGE_END_WRITEBACK; 1237 /* 1238 * If we reserved an extent for our delalloc range (or a subrange) and 1239 * failed to create the respective ordered extent, then it means that 1240 * when we reserved the extent we decremented the extent's size from 1241 * the data space_info's bytes_may_use counter and incremented the 1242 * space_info's bytes_reserved counter by the same amount. We must make 1243 * sure extent_clear_unlock_delalloc() does not try to decrement again 1244 * the data space_info's bytes_may_use counter, therefore we do not pass 1245 * it the flag EXTENT_CLEAR_DATA_RESV. 1246 */ 1247 if (extent_reserved) { 1248 extent_clear_unlock_delalloc(inode, start, 1249 start + cur_alloc_size - 1, 1250 locked_page, 1251 clear_bits, 1252 page_ops); 1253 start += cur_alloc_size; 1254 if (start >= end) 1255 goto out; 1256 } 1257 extent_clear_unlock_delalloc(inode, start, end, locked_page, 1258 clear_bits | EXTENT_CLEAR_DATA_RESV, 1259 page_ops); 1260 goto out; 1261 } 1262 1263 /* 1264 * work queue call back to started compression on a file and pages 1265 */ 1266 static noinline void async_cow_start(struct btrfs_work *work) 1267 { 1268 struct async_chunk *async_chunk; 1269 int compressed_extents; 1270 1271 async_chunk = container_of(work, struct async_chunk, work); 1272 1273 compressed_extents = compress_file_range(async_chunk); 1274 if (compressed_extents == 0) { 1275 btrfs_add_delayed_iput(async_chunk->inode); 1276 async_chunk->inode = NULL; 1277 } 1278 } 1279 1280 /* 1281 * work queue call back to submit previously compressed pages 1282 */ 1283 static noinline void async_cow_submit(struct btrfs_work *work) 1284 { 1285 struct async_chunk *async_chunk = container_of(work, struct async_chunk, 1286 work); 1287 struct btrfs_fs_info *fs_info = btrfs_work_owner(work); 1288 unsigned long nr_pages; 1289 1290 nr_pages = (async_chunk->end - async_chunk->start + PAGE_SIZE) >> 1291 PAGE_SHIFT; 1292 1293 /* atomic_sub_return implies a barrier */ 1294 if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) < 1295 5 * SZ_1M) 1296 cond_wake_up_nomb(&fs_info->async_submit_wait); 1297 1298 /* 1299 * ->inode could be NULL if async_chunk_start has failed to compress, 1300 * in which case we don't have anything to submit, yet we need to 1301 * always adjust ->async_delalloc_pages as its paired with the init 1302 * happening in cow_file_range_async 1303 */ 1304 if (async_chunk->inode) 1305 submit_compressed_extents(async_chunk); 1306 } 1307 1308 static noinline void async_cow_free(struct btrfs_work *work) 1309 { 1310 struct async_chunk *async_chunk; 1311 1312 async_chunk = container_of(work, struct async_chunk, work); 1313 if (async_chunk->inode) 1314 btrfs_add_delayed_iput(async_chunk->inode); 1315 if (async_chunk->blkcg_css) 1316 css_put(async_chunk->blkcg_css); 1317 /* 1318 * Since the pointer to 'pending' is at the beginning of the array of 1319 * async_chunk's, freeing it ensures the whole array has been freed. 1320 */ 1321 if (atomic_dec_and_test(async_chunk->pending)) 1322 kvfree(async_chunk->pending); 1323 } 1324 1325 static int cow_file_range_async(struct btrfs_inode *inode, 1326 struct writeback_control *wbc, 1327 struct page *locked_page, 1328 u64 start, u64 end, int *page_started, 1329 unsigned long *nr_written) 1330 { 1331 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1332 struct cgroup_subsys_state *blkcg_css = wbc_blkcg_css(wbc); 1333 struct async_cow *ctx; 1334 struct async_chunk *async_chunk; 1335 unsigned long nr_pages; 1336 u64 cur_end; 1337 u64 num_chunks = DIV_ROUND_UP(end - start, SZ_512K); 1338 int i; 1339 bool should_compress; 1340 unsigned nofs_flag; 1341 const unsigned int write_flags = wbc_to_write_flags(wbc); 1342 1343 unlock_extent(&inode->io_tree, start, end); 1344 1345 if (inode->flags & BTRFS_INODE_NOCOMPRESS && 1346 !btrfs_test_opt(fs_info, FORCE_COMPRESS)) { 1347 num_chunks = 1; 1348 should_compress = false; 1349 } else { 1350 should_compress = true; 1351 } 1352 1353 nofs_flag = memalloc_nofs_save(); 1354 ctx = kvmalloc(struct_size(ctx, chunks, num_chunks), GFP_KERNEL); 1355 memalloc_nofs_restore(nofs_flag); 1356 1357 if (!ctx) { 1358 unsigned clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | 1359 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG | 1360 EXTENT_DO_ACCOUNTING; 1361 unsigned long page_ops = PAGE_UNLOCK | PAGE_START_WRITEBACK | 1362 PAGE_END_WRITEBACK | PAGE_SET_ERROR; 1363 1364 extent_clear_unlock_delalloc(inode, start, end, locked_page, 1365 clear_bits, page_ops); 1366 return -ENOMEM; 1367 } 1368 1369 async_chunk = ctx->chunks; 1370 atomic_set(&ctx->num_chunks, num_chunks); 1371 1372 for (i = 0; i < num_chunks; i++) { 1373 if (should_compress) 1374 cur_end = min(end, start + SZ_512K - 1); 1375 else 1376 cur_end = end; 1377 1378 /* 1379 * igrab is called higher up in the call chain, take only the 1380 * lightweight reference for the callback lifetime 1381 */ 1382 ihold(&inode->vfs_inode); 1383 async_chunk[i].pending = &ctx->num_chunks; 1384 async_chunk[i].inode = &inode->vfs_inode; 1385 async_chunk[i].start = start; 1386 async_chunk[i].end = cur_end; 1387 async_chunk[i].write_flags = write_flags; 1388 INIT_LIST_HEAD(&async_chunk[i].extents); 1389 1390 /* 1391 * The locked_page comes all the way from writepage and its 1392 * the original page we were actually given. As we spread 1393 * this large delalloc region across multiple async_chunk 1394 * structs, only the first struct needs a pointer to locked_page 1395 * 1396 * This way we don't need racey decisions about who is supposed 1397 * to unlock it. 1398 */ 1399 if (locked_page) { 1400 /* 1401 * Depending on the compressibility, the pages might or 1402 * might not go through async. We want all of them to 1403 * be accounted against wbc once. Let's do it here 1404 * before the paths diverge. wbc accounting is used 1405 * only for foreign writeback detection and doesn't 1406 * need full accuracy. Just account the whole thing 1407 * against the first page. 1408 */ 1409 wbc_account_cgroup_owner(wbc, locked_page, 1410 cur_end - start); 1411 async_chunk[i].locked_page = locked_page; 1412 locked_page = NULL; 1413 } else { 1414 async_chunk[i].locked_page = NULL; 1415 } 1416 1417 if (blkcg_css != blkcg_root_css) { 1418 css_get(blkcg_css); 1419 async_chunk[i].blkcg_css = blkcg_css; 1420 } else { 1421 async_chunk[i].blkcg_css = NULL; 1422 } 1423 1424 btrfs_init_work(&async_chunk[i].work, async_cow_start, 1425 async_cow_submit, async_cow_free); 1426 1427 nr_pages = DIV_ROUND_UP(cur_end - start, PAGE_SIZE); 1428 atomic_add(nr_pages, &fs_info->async_delalloc_pages); 1429 1430 btrfs_queue_work(fs_info->delalloc_workers, &async_chunk[i].work); 1431 1432 *nr_written += nr_pages; 1433 start = cur_end + 1; 1434 } 1435 *page_started = 1; 1436 return 0; 1437 } 1438 1439 static noinline int run_delalloc_zoned(struct btrfs_inode *inode, 1440 struct page *locked_page, u64 start, 1441 u64 end, int *page_started, 1442 unsigned long *nr_written) 1443 { 1444 int ret; 1445 1446 ret = cow_file_range(inode, locked_page, start, end, page_started, 1447 nr_written, 0); 1448 if (ret) 1449 return ret; 1450 1451 if (*page_started) 1452 return 0; 1453 1454 __set_page_dirty_nobuffers(locked_page); 1455 account_page_redirty(locked_page); 1456 extent_write_locked_range(&inode->vfs_inode, start, end, WB_SYNC_ALL); 1457 *page_started = 1; 1458 1459 return 0; 1460 } 1461 1462 static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info, 1463 u64 bytenr, u64 num_bytes) 1464 { 1465 int ret; 1466 struct btrfs_ordered_sum *sums; 1467 LIST_HEAD(list); 1468 1469 ret = btrfs_lookup_csums_range(fs_info->csum_root, bytenr, 1470 bytenr + num_bytes - 1, &list, 0); 1471 if (ret == 0 && list_empty(&list)) 1472 return 0; 1473 1474 while (!list_empty(&list)) { 1475 sums = list_entry(list.next, struct btrfs_ordered_sum, list); 1476 list_del(&sums->list); 1477 kfree(sums); 1478 } 1479 if (ret < 0) 1480 return ret; 1481 return 1; 1482 } 1483 1484 static int fallback_to_cow(struct btrfs_inode *inode, struct page *locked_page, 1485 const u64 start, const u64 end, 1486 int *page_started, unsigned long *nr_written) 1487 { 1488 const bool is_space_ino = btrfs_is_free_space_inode(inode); 1489 const bool is_reloc_ino = (inode->root->root_key.objectid == 1490 BTRFS_DATA_RELOC_TREE_OBJECTID); 1491 const u64 range_bytes = end + 1 - start; 1492 struct extent_io_tree *io_tree = &inode->io_tree; 1493 u64 range_start = start; 1494 u64 count; 1495 1496 /* 1497 * If EXTENT_NORESERVE is set it means that when the buffered write was 1498 * made we had not enough available data space and therefore we did not 1499 * reserve data space for it, since we though we could do NOCOW for the 1500 * respective file range (either there is prealloc extent or the inode 1501 * has the NOCOW bit set). 1502 * 1503 * However when we need to fallback to COW mode (because for example the 1504 * block group for the corresponding extent was turned to RO mode by a 1505 * scrub or relocation) we need to do the following: 1506 * 1507 * 1) We increment the bytes_may_use counter of the data space info. 1508 * If COW succeeds, it allocates a new data extent and after doing 1509 * that it decrements the space info's bytes_may_use counter and 1510 * increments its bytes_reserved counter by the same amount (we do 1511 * this at btrfs_add_reserved_bytes()). So we need to increment the 1512 * bytes_may_use counter to compensate (when space is reserved at 1513 * buffered write time, the bytes_may_use counter is incremented); 1514 * 1515 * 2) We clear the EXTENT_NORESERVE bit from the range. We do this so 1516 * that if the COW path fails for any reason, it decrements (through 1517 * extent_clear_unlock_delalloc()) the bytes_may_use counter of the 1518 * data space info, which we incremented in the step above. 1519 * 1520 * If we need to fallback to cow and the inode corresponds to a free 1521 * space cache inode or an inode of the data relocation tree, we must 1522 * also increment bytes_may_use of the data space_info for the same 1523 * reason. Space caches and relocated data extents always get a prealloc 1524 * extent for them, however scrub or balance may have set the block 1525 * group that contains that extent to RO mode and therefore force COW 1526 * when starting writeback. 1527 */ 1528 count = count_range_bits(io_tree, &range_start, end, range_bytes, 1529 EXTENT_NORESERVE, 0); 1530 if (count > 0 || is_space_ino || is_reloc_ino) { 1531 u64 bytes = count; 1532 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1533 struct btrfs_space_info *sinfo = fs_info->data_sinfo; 1534 1535 if (is_space_ino || is_reloc_ino) 1536 bytes = range_bytes; 1537 1538 spin_lock(&sinfo->lock); 1539 btrfs_space_info_update_bytes_may_use(fs_info, sinfo, bytes); 1540 spin_unlock(&sinfo->lock); 1541 1542 if (count > 0) 1543 clear_extent_bit(io_tree, start, end, EXTENT_NORESERVE, 1544 0, 0, NULL); 1545 } 1546 1547 return cow_file_range(inode, locked_page, start, end, page_started, 1548 nr_written, 1); 1549 } 1550 1551 /* 1552 * when nowcow writeback call back. This checks for snapshots or COW copies 1553 * of the extents that exist in the file, and COWs the file as required. 1554 * 1555 * If no cow copies or snapshots exist, we write directly to the existing 1556 * blocks on disk 1557 */ 1558 static noinline int run_delalloc_nocow(struct btrfs_inode *inode, 1559 struct page *locked_page, 1560 const u64 start, const u64 end, 1561 int *page_started, 1562 unsigned long *nr_written) 1563 { 1564 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1565 struct btrfs_root *root = inode->root; 1566 struct btrfs_path *path; 1567 u64 cow_start = (u64)-1; 1568 u64 cur_offset = start; 1569 int ret; 1570 bool check_prev = true; 1571 const bool freespace_inode = btrfs_is_free_space_inode(inode); 1572 u64 ino = btrfs_ino(inode); 1573 bool nocow = false; 1574 u64 disk_bytenr = 0; 1575 const bool force = inode->flags & BTRFS_INODE_NODATACOW; 1576 1577 path = btrfs_alloc_path(); 1578 if (!path) { 1579 extent_clear_unlock_delalloc(inode, start, end, locked_page, 1580 EXTENT_LOCKED | EXTENT_DELALLOC | 1581 EXTENT_DO_ACCOUNTING | 1582 EXTENT_DEFRAG, PAGE_UNLOCK | 1583 PAGE_START_WRITEBACK | 1584 PAGE_END_WRITEBACK); 1585 return -ENOMEM; 1586 } 1587 1588 while (1) { 1589 struct btrfs_key found_key; 1590 struct btrfs_file_extent_item *fi; 1591 struct extent_buffer *leaf; 1592 u64 extent_end; 1593 u64 extent_offset; 1594 u64 num_bytes = 0; 1595 u64 disk_num_bytes; 1596 u64 ram_bytes; 1597 int extent_type; 1598 1599 nocow = false; 1600 1601 ret = btrfs_lookup_file_extent(NULL, root, path, ino, 1602 cur_offset, 0); 1603 if (ret < 0) 1604 goto error; 1605 1606 /* 1607 * If there is no extent for our range when doing the initial 1608 * search, then go back to the previous slot as it will be the 1609 * one containing the search offset 1610 */ 1611 if (ret > 0 && path->slots[0] > 0 && check_prev) { 1612 leaf = path->nodes[0]; 1613 btrfs_item_key_to_cpu(leaf, &found_key, 1614 path->slots[0] - 1); 1615 if (found_key.objectid == ino && 1616 found_key.type == BTRFS_EXTENT_DATA_KEY) 1617 path->slots[0]--; 1618 } 1619 check_prev = false; 1620 next_slot: 1621 /* Go to next leaf if we have exhausted the current one */ 1622 leaf = path->nodes[0]; 1623 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 1624 ret = btrfs_next_leaf(root, path); 1625 if (ret < 0) { 1626 if (cow_start != (u64)-1) 1627 cur_offset = cow_start; 1628 goto error; 1629 } 1630 if (ret > 0) 1631 break; 1632 leaf = path->nodes[0]; 1633 } 1634 1635 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1636 1637 /* Didn't find anything for our INO */ 1638 if (found_key.objectid > ino) 1639 break; 1640 /* 1641 * Keep searching until we find an EXTENT_ITEM or there are no 1642 * more extents for this inode 1643 */ 1644 if (WARN_ON_ONCE(found_key.objectid < ino) || 1645 found_key.type < BTRFS_EXTENT_DATA_KEY) { 1646 path->slots[0]++; 1647 goto next_slot; 1648 } 1649 1650 /* Found key is not EXTENT_DATA_KEY or starts after req range */ 1651 if (found_key.type > BTRFS_EXTENT_DATA_KEY || 1652 found_key.offset > end) 1653 break; 1654 1655 /* 1656 * If the found extent starts after requested offset, then 1657 * adjust extent_end to be right before this extent begins 1658 */ 1659 if (found_key.offset > cur_offset) { 1660 extent_end = found_key.offset; 1661 extent_type = 0; 1662 goto out_check; 1663 } 1664 1665 /* 1666 * Found extent which begins before our range and potentially 1667 * intersect it 1668 */ 1669 fi = btrfs_item_ptr(leaf, path->slots[0], 1670 struct btrfs_file_extent_item); 1671 extent_type = btrfs_file_extent_type(leaf, fi); 1672 1673 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 1674 if (extent_type == BTRFS_FILE_EXTENT_REG || 1675 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1676 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1677 extent_offset = btrfs_file_extent_offset(leaf, fi); 1678 extent_end = found_key.offset + 1679 btrfs_file_extent_num_bytes(leaf, fi); 1680 disk_num_bytes = 1681 btrfs_file_extent_disk_num_bytes(leaf, fi); 1682 /* 1683 * If the extent we got ends before our current offset, 1684 * skip to the next extent. 1685 */ 1686 if (extent_end <= cur_offset) { 1687 path->slots[0]++; 1688 goto next_slot; 1689 } 1690 /* Skip holes */ 1691 if (disk_bytenr == 0) 1692 goto out_check; 1693 /* Skip compressed/encrypted/encoded extents */ 1694 if (btrfs_file_extent_compression(leaf, fi) || 1695 btrfs_file_extent_encryption(leaf, fi) || 1696 btrfs_file_extent_other_encoding(leaf, fi)) 1697 goto out_check; 1698 /* 1699 * If extent is created before the last volume's snapshot 1700 * this implies the extent is shared, hence we can't do 1701 * nocow. This is the same check as in 1702 * btrfs_cross_ref_exist but without calling 1703 * btrfs_search_slot. 1704 */ 1705 if (!freespace_inode && 1706 btrfs_file_extent_generation(leaf, fi) <= 1707 btrfs_root_last_snapshot(&root->root_item)) 1708 goto out_check; 1709 if (extent_type == BTRFS_FILE_EXTENT_REG && !force) 1710 goto out_check; 1711 1712 /* 1713 * The following checks can be expensive, as they need to 1714 * take other locks and do btree or rbtree searches, so 1715 * release the path to avoid blocking other tasks for too 1716 * long. 1717 */ 1718 btrfs_release_path(path); 1719 1720 ret = btrfs_cross_ref_exist(root, ino, 1721 found_key.offset - 1722 extent_offset, disk_bytenr, false); 1723 if (ret) { 1724 /* 1725 * ret could be -EIO if the above fails to read 1726 * metadata. 1727 */ 1728 if (ret < 0) { 1729 if (cow_start != (u64)-1) 1730 cur_offset = cow_start; 1731 goto error; 1732 } 1733 1734 WARN_ON_ONCE(freespace_inode); 1735 goto out_check; 1736 } 1737 disk_bytenr += extent_offset; 1738 disk_bytenr += cur_offset - found_key.offset; 1739 num_bytes = min(end + 1, extent_end) - cur_offset; 1740 /* 1741 * If there are pending snapshots for this root, we 1742 * fall into common COW way 1743 */ 1744 if (!freespace_inode && atomic_read(&root->snapshot_force_cow)) 1745 goto out_check; 1746 /* 1747 * force cow if csum exists in the range. 1748 * this ensure that csum for a given extent are 1749 * either valid or do not exist. 1750 */ 1751 ret = csum_exist_in_range(fs_info, disk_bytenr, 1752 num_bytes); 1753 if (ret) { 1754 /* 1755 * ret could be -EIO if the above fails to read 1756 * metadata. 1757 */ 1758 if (ret < 0) { 1759 if (cow_start != (u64)-1) 1760 cur_offset = cow_start; 1761 goto error; 1762 } 1763 WARN_ON_ONCE(freespace_inode); 1764 goto out_check; 1765 } 1766 /* If the extent's block group is RO, we must COW */ 1767 if (!btrfs_inc_nocow_writers(fs_info, disk_bytenr)) 1768 goto out_check; 1769 nocow = true; 1770 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 1771 extent_end = found_key.offset + ram_bytes; 1772 extent_end = ALIGN(extent_end, fs_info->sectorsize); 1773 /* Skip extents outside of our requested range */ 1774 if (extent_end <= start) { 1775 path->slots[0]++; 1776 goto next_slot; 1777 } 1778 } else { 1779 /* If this triggers then we have a memory corruption */ 1780 BUG(); 1781 } 1782 out_check: 1783 /* 1784 * If nocow is false then record the beginning of the range 1785 * that needs to be COWed 1786 */ 1787 if (!nocow) { 1788 if (cow_start == (u64)-1) 1789 cow_start = cur_offset; 1790 cur_offset = extent_end; 1791 if (cur_offset > end) 1792 break; 1793 if (!path->nodes[0]) 1794 continue; 1795 path->slots[0]++; 1796 goto next_slot; 1797 } 1798 1799 /* 1800 * COW range from cow_start to found_key.offset - 1. As the key 1801 * will contain the beginning of the first extent that can be 1802 * NOCOW, following one which needs to be COW'ed 1803 */ 1804 if (cow_start != (u64)-1) { 1805 ret = fallback_to_cow(inode, locked_page, 1806 cow_start, found_key.offset - 1, 1807 page_started, nr_written); 1808 if (ret) 1809 goto error; 1810 cow_start = (u64)-1; 1811 } 1812 1813 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1814 u64 orig_start = found_key.offset - extent_offset; 1815 struct extent_map *em; 1816 1817 em = create_io_em(inode, cur_offset, num_bytes, 1818 orig_start, 1819 disk_bytenr, /* block_start */ 1820 num_bytes, /* block_len */ 1821 disk_num_bytes, /* orig_block_len */ 1822 ram_bytes, BTRFS_COMPRESS_NONE, 1823 BTRFS_ORDERED_PREALLOC); 1824 if (IS_ERR(em)) { 1825 ret = PTR_ERR(em); 1826 goto error; 1827 } 1828 free_extent_map(em); 1829 ret = btrfs_add_ordered_extent(inode, cur_offset, 1830 disk_bytenr, num_bytes, 1831 num_bytes, 1832 BTRFS_ORDERED_PREALLOC); 1833 if (ret) { 1834 btrfs_drop_extent_cache(inode, cur_offset, 1835 cur_offset + num_bytes - 1, 1836 0); 1837 goto error; 1838 } 1839 } else { 1840 ret = btrfs_add_ordered_extent(inode, cur_offset, 1841 disk_bytenr, num_bytes, 1842 num_bytes, 1843 BTRFS_ORDERED_NOCOW); 1844 if (ret) 1845 goto error; 1846 } 1847 1848 if (nocow) 1849 btrfs_dec_nocow_writers(fs_info, disk_bytenr); 1850 nocow = false; 1851 1852 if (root->root_key.objectid == 1853 BTRFS_DATA_RELOC_TREE_OBJECTID) 1854 /* 1855 * Error handled later, as we must prevent 1856 * extent_clear_unlock_delalloc() in error handler 1857 * from freeing metadata of created ordered extent. 1858 */ 1859 ret = btrfs_reloc_clone_csums(inode, cur_offset, 1860 num_bytes); 1861 1862 extent_clear_unlock_delalloc(inode, cur_offset, 1863 cur_offset + num_bytes - 1, 1864 locked_page, EXTENT_LOCKED | 1865 EXTENT_DELALLOC | 1866 EXTENT_CLEAR_DATA_RESV, 1867 PAGE_UNLOCK | PAGE_SET_ORDERED); 1868 1869 cur_offset = extent_end; 1870 1871 /* 1872 * btrfs_reloc_clone_csums() error, now we're OK to call error 1873 * handler, as metadata for created ordered extent will only 1874 * be freed by btrfs_finish_ordered_io(). 1875 */ 1876 if (ret) 1877 goto error; 1878 if (cur_offset > end) 1879 break; 1880 } 1881 btrfs_release_path(path); 1882 1883 if (cur_offset <= end && cow_start == (u64)-1) 1884 cow_start = cur_offset; 1885 1886 if (cow_start != (u64)-1) { 1887 cur_offset = end; 1888 ret = fallback_to_cow(inode, locked_page, cow_start, end, 1889 page_started, nr_written); 1890 if (ret) 1891 goto error; 1892 } 1893 1894 error: 1895 if (nocow) 1896 btrfs_dec_nocow_writers(fs_info, disk_bytenr); 1897 1898 if (ret && cur_offset < end) 1899 extent_clear_unlock_delalloc(inode, cur_offset, end, 1900 locked_page, EXTENT_LOCKED | 1901 EXTENT_DELALLOC | EXTENT_DEFRAG | 1902 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK | 1903 PAGE_START_WRITEBACK | 1904 PAGE_END_WRITEBACK); 1905 btrfs_free_path(path); 1906 return ret; 1907 } 1908 1909 static bool should_nocow(struct btrfs_inode *inode, u64 start, u64 end) 1910 { 1911 if (inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)) { 1912 if (inode->defrag_bytes && 1913 test_range_bit(&inode->io_tree, start, end, EXTENT_DEFRAG, 1914 0, NULL)) 1915 return false; 1916 return true; 1917 } 1918 return false; 1919 } 1920 1921 /* 1922 * Function to process delayed allocation (create CoW) for ranges which are 1923 * being touched for the first time. 1924 */ 1925 int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct page *locked_page, 1926 u64 start, u64 end, int *page_started, unsigned long *nr_written, 1927 struct writeback_control *wbc) 1928 { 1929 int ret; 1930 const bool zoned = btrfs_is_zoned(inode->root->fs_info); 1931 1932 if (should_nocow(inode, start, end)) { 1933 ASSERT(!zoned); 1934 ret = run_delalloc_nocow(inode, locked_page, start, end, 1935 page_started, nr_written); 1936 } else if (!inode_can_compress(inode) || 1937 !inode_need_compress(inode, start, end)) { 1938 if (zoned) 1939 ret = run_delalloc_zoned(inode, locked_page, start, end, 1940 page_started, nr_written); 1941 else 1942 ret = cow_file_range(inode, locked_page, start, end, 1943 page_started, nr_written, 1); 1944 } else { 1945 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, &inode->runtime_flags); 1946 ret = cow_file_range_async(inode, wbc, locked_page, start, end, 1947 page_started, nr_written); 1948 } 1949 if (ret) 1950 btrfs_cleanup_ordered_extents(inode, locked_page, start, 1951 end - start + 1); 1952 return ret; 1953 } 1954 1955 void btrfs_split_delalloc_extent(struct inode *inode, 1956 struct extent_state *orig, u64 split) 1957 { 1958 u64 size; 1959 1960 /* not delalloc, ignore it */ 1961 if (!(orig->state & EXTENT_DELALLOC)) 1962 return; 1963 1964 size = orig->end - orig->start + 1; 1965 if (size > BTRFS_MAX_EXTENT_SIZE) { 1966 u32 num_extents; 1967 u64 new_size; 1968 1969 /* 1970 * See the explanation in btrfs_merge_delalloc_extent, the same 1971 * applies here, just in reverse. 1972 */ 1973 new_size = orig->end - split + 1; 1974 num_extents = count_max_extents(new_size); 1975 new_size = split - orig->start; 1976 num_extents += count_max_extents(new_size); 1977 if (count_max_extents(size) >= num_extents) 1978 return; 1979 } 1980 1981 spin_lock(&BTRFS_I(inode)->lock); 1982 btrfs_mod_outstanding_extents(BTRFS_I(inode), 1); 1983 spin_unlock(&BTRFS_I(inode)->lock); 1984 } 1985 1986 /* 1987 * Handle merged delayed allocation extents so we can keep track of new extents 1988 * that are just merged onto old extents, such as when we are doing sequential 1989 * writes, so we can properly account for the metadata space we'll need. 1990 */ 1991 void btrfs_merge_delalloc_extent(struct inode *inode, struct extent_state *new, 1992 struct extent_state *other) 1993 { 1994 u64 new_size, old_size; 1995 u32 num_extents; 1996 1997 /* not delalloc, ignore it */ 1998 if (!(other->state & EXTENT_DELALLOC)) 1999 return; 2000 2001 if (new->start > other->start) 2002 new_size = new->end - other->start + 1; 2003 else 2004 new_size = other->end - new->start + 1; 2005 2006 /* we're not bigger than the max, unreserve the space and go */ 2007 if (new_size <= BTRFS_MAX_EXTENT_SIZE) { 2008 spin_lock(&BTRFS_I(inode)->lock); 2009 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1); 2010 spin_unlock(&BTRFS_I(inode)->lock); 2011 return; 2012 } 2013 2014 /* 2015 * We have to add up either side to figure out how many extents were 2016 * accounted for before we merged into one big extent. If the number of 2017 * extents we accounted for is <= the amount we need for the new range 2018 * then we can return, otherwise drop. Think of it like this 2019 * 2020 * [ 4k][MAX_SIZE] 2021 * 2022 * So we've grown the extent by a MAX_SIZE extent, this would mean we 2023 * need 2 outstanding extents, on one side we have 1 and the other side 2024 * we have 1 so they are == and we can return. But in this case 2025 * 2026 * [MAX_SIZE+4k][MAX_SIZE+4k] 2027 * 2028 * Each range on their own accounts for 2 extents, but merged together 2029 * they are only 3 extents worth of accounting, so we need to drop in 2030 * this case. 2031 */ 2032 old_size = other->end - other->start + 1; 2033 num_extents = count_max_extents(old_size); 2034 old_size = new->end - new->start + 1; 2035 num_extents += count_max_extents(old_size); 2036 if (count_max_extents(new_size) >= num_extents) 2037 return; 2038 2039 spin_lock(&BTRFS_I(inode)->lock); 2040 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1); 2041 spin_unlock(&BTRFS_I(inode)->lock); 2042 } 2043 2044 static void btrfs_add_delalloc_inodes(struct btrfs_root *root, 2045 struct inode *inode) 2046 { 2047 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2048 2049 spin_lock(&root->delalloc_lock); 2050 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) { 2051 list_add_tail(&BTRFS_I(inode)->delalloc_inodes, 2052 &root->delalloc_inodes); 2053 set_bit(BTRFS_INODE_IN_DELALLOC_LIST, 2054 &BTRFS_I(inode)->runtime_flags); 2055 root->nr_delalloc_inodes++; 2056 if (root->nr_delalloc_inodes == 1) { 2057 spin_lock(&fs_info->delalloc_root_lock); 2058 BUG_ON(!list_empty(&root->delalloc_root)); 2059 list_add_tail(&root->delalloc_root, 2060 &fs_info->delalloc_roots); 2061 spin_unlock(&fs_info->delalloc_root_lock); 2062 } 2063 } 2064 spin_unlock(&root->delalloc_lock); 2065 } 2066 2067 2068 void __btrfs_del_delalloc_inode(struct btrfs_root *root, 2069 struct btrfs_inode *inode) 2070 { 2071 struct btrfs_fs_info *fs_info = root->fs_info; 2072 2073 if (!list_empty(&inode->delalloc_inodes)) { 2074 list_del_init(&inode->delalloc_inodes); 2075 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST, 2076 &inode->runtime_flags); 2077 root->nr_delalloc_inodes--; 2078 if (!root->nr_delalloc_inodes) { 2079 ASSERT(list_empty(&root->delalloc_inodes)); 2080 spin_lock(&fs_info->delalloc_root_lock); 2081 BUG_ON(list_empty(&root->delalloc_root)); 2082 list_del_init(&root->delalloc_root); 2083 spin_unlock(&fs_info->delalloc_root_lock); 2084 } 2085 } 2086 } 2087 2088 static void btrfs_del_delalloc_inode(struct btrfs_root *root, 2089 struct btrfs_inode *inode) 2090 { 2091 spin_lock(&root->delalloc_lock); 2092 __btrfs_del_delalloc_inode(root, inode); 2093 spin_unlock(&root->delalloc_lock); 2094 } 2095 2096 /* 2097 * Properly track delayed allocation bytes in the inode and to maintain the 2098 * list of inodes that have pending delalloc work to be done. 2099 */ 2100 void btrfs_set_delalloc_extent(struct inode *inode, struct extent_state *state, 2101 unsigned *bits) 2102 { 2103 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2104 2105 if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC)) 2106 WARN_ON(1); 2107 /* 2108 * set_bit and clear bit hooks normally require _irqsave/restore 2109 * but in this case, we are only testing for the DELALLOC 2110 * bit, which is only set or cleared with irqs on 2111 */ 2112 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) { 2113 struct btrfs_root *root = BTRFS_I(inode)->root; 2114 u64 len = state->end + 1 - state->start; 2115 u32 num_extents = count_max_extents(len); 2116 bool do_list = !btrfs_is_free_space_inode(BTRFS_I(inode)); 2117 2118 spin_lock(&BTRFS_I(inode)->lock); 2119 btrfs_mod_outstanding_extents(BTRFS_I(inode), num_extents); 2120 spin_unlock(&BTRFS_I(inode)->lock); 2121 2122 /* For sanity tests */ 2123 if (btrfs_is_testing(fs_info)) 2124 return; 2125 2126 percpu_counter_add_batch(&fs_info->delalloc_bytes, len, 2127 fs_info->delalloc_batch); 2128 spin_lock(&BTRFS_I(inode)->lock); 2129 BTRFS_I(inode)->delalloc_bytes += len; 2130 if (*bits & EXTENT_DEFRAG) 2131 BTRFS_I(inode)->defrag_bytes += len; 2132 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST, 2133 &BTRFS_I(inode)->runtime_flags)) 2134 btrfs_add_delalloc_inodes(root, inode); 2135 spin_unlock(&BTRFS_I(inode)->lock); 2136 } 2137 2138 if (!(state->state & EXTENT_DELALLOC_NEW) && 2139 (*bits & EXTENT_DELALLOC_NEW)) { 2140 spin_lock(&BTRFS_I(inode)->lock); 2141 BTRFS_I(inode)->new_delalloc_bytes += state->end + 1 - 2142 state->start; 2143 spin_unlock(&BTRFS_I(inode)->lock); 2144 } 2145 } 2146 2147 /* 2148 * Once a range is no longer delalloc this function ensures that proper 2149 * accounting happens. 2150 */ 2151 void btrfs_clear_delalloc_extent(struct inode *vfs_inode, 2152 struct extent_state *state, unsigned *bits) 2153 { 2154 struct btrfs_inode *inode = BTRFS_I(vfs_inode); 2155 struct btrfs_fs_info *fs_info = btrfs_sb(vfs_inode->i_sb); 2156 u64 len = state->end + 1 - state->start; 2157 u32 num_extents = count_max_extents(len); 2158 2159 if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG)) { 2160 spin_lock(&inode->lock); 2161 inode->defrag_bytes -= len; 2162 spin_unlock(&inode->lock); 2163 } 2164 2165 /* 2166 * set_bit and clear bit hooks normally require _irqsave/restore 2167 * but in this case, we are only testing for the DELALLOC 2168 * bit, which is only set or cleared with irqs on 2169 */ 2170 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) { 2171 struct btrfs_root *root = inode->root; 2172 bool do_list = !btrfs_is_free_space_inode(inode); 2173 2174 spin_lock(&inode->lock); 2175 btrfs_mod_outstanding_extents(inode, -num_extents); 2176 spin_unlock(&inode->lock); 2177 2178 /* 2179 * We don't reserve metadata space for space cache inodes so we 2180 * don't need to call delalloc_release_metadata if there is an 2181 * error. 2182 */ 2183 if (*bits & EXTENT_CLEAR_META_RESV && 2184 root != fs_info->tree_root) 2185 btrfs_delalloc_release_metadata(inode, len, false); 2186 2187 /* For sanity tests. */ 2188 if (btrfs_is_testing(fs_info)) 2189 return; 2190 2191 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID && 2192 do_list && !(state->state & EXTENT_NORESERVE) && 2193 (*bits & EXTENT_CLEAR_DATA_RESV)) 2194 btrfs_free_reserved_data_space_noquota(fs_info, len); 2195 2196 percpu_counter_add_batch(&fs_info->delalloc_bytes, -len, 2197 fs_info->delalloc_batch); 2198 spin_lock(&inode->lock); 2199 inode->delalloc_bytes -= len; 2200 if (do_list && inode->delalloc_bytes == 0 && 2201 test_bit(BTRFS_INODE_IN_DELALLOC_LIST, 2202 &inode->runtime_flags)) 2203 btrfs_del_delalloc_inode(root, inode); 2204 spin_unlock(&inode->lock); 2205 } 2206 2207 if ((state->state & EXTENT_DELALLOC_NEW) && 2208 (*bits & EXTENT_DELALLOC_NEW)) { 2209 spin_lock(&inode->lock); 2210 ASSERT(inode->new_delalloc_bytes >= len); 2211 inode->new_delalloc_bytes -= len; 2212 if (*bits & EXTENT_ADD_INODE_BYTES) 2213 inode_add_bytes(&inode->vfs_inode, len); 2214 spin_unlock(&inode->lock); 2215 } 2216 } 2217 2218 /* 2219 * btrfs_bio_fits_in_stripe - Checks whether the size of the given bio will fit 2220 * in a chunk's stripe. This function ensures that bios do not span a 2221 * stripe/chunk 2222 * 2223 * @page - The page we are about to add to the bio 2224 * @size - size we want to add to the bio 2225 * @bio - bio we want to ensure is smaller than a stripe 2226 * @bio_flags - flags of the bio 2227 * 2228 * return 1 if page cannot be added to the bio 2229 * return 0 if page can be added to the bio 2230 * return error otherwise 2231 */ 2232 int btrfs_bio_fits_in_stripe(struct page *page, size_t size, struct bio *bio, 2233 unsigned long bio_flags) 2234 { 2235 struct inode *inode = page->mapping->host; 2236 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2237 u64 logical = bio->bi_iter.bi_sector << 9; 2238 u32 bio_len = bio->bi_iter.bi_size; 2239 struct extent_map *em; 2240 int ret = 0; 2241 struct btrfs_io_geometry geom; 2242 2243 if (bio_flags & EXTENT_BIO_COMPRESSED) 2244 return 0; 2245 2246 em = btrfs_get_chunk_map(fs_info, logical, fs_info->sectorsize); 2247 if (IS_ERR(em)) 2248 return PTR_ERR(em); 2249 ret = btrfs_get_io_geometry(fs_info, em, btrfs_op(bio), logical, &geom); 2250 if (ret < 0) 2251 goto out; 2252 2253 if (geom.len < bio_len + size) 2254 ret = 1; 2255 out: 2256 free_extent_map(em); 2257 return ret; 2258 } 2259 2260 /* 2261 * in order to insert checksums into the metadata in large chunks, 2262 * we wait until bio submission time. All the pages in the bio are 2263 * checksummed and sums are attached onto the ordered extent record. 2264 * 2265 * At IO completion time the cums attached on the ordered extent record 2266 * are inserted into the btree 2267 */ 2268 static blk_status_t btrfs_submit_bio_start(struct inode *inode, struct bio *bio, 2269 u64 dio_file_offset) 2270 { 2271 return btrfs_csum_one_bio(BTRFS_I(inode), bio, 0, 0); 2272 } 2273 2274 static blk_status_t extract_ordered_extent(struct btrfs_inode *inode, 2275 struct bio *bio, loff_t file_offset) 2276 { 2277 struct btrfs_ordered_extent *ordered; 2278 struct extent_map *em = NULL, *em_new = NULL; 2279 struct extent_map_tree *em_tree = &inode->extent_tree; 2280 u64 start = (u64)bio->bi_iter.bi_sector << SECTOR_SHIFT; 2281 u64 len = bio->bi_iter.bi_size; 2282 u64 end = start + len; 2283 u64 ordered_end; 2284 u64 pre, post; 2285 int ret = 0; 2286 2287 ordered = btrfs_lookup_ordered_extent(inode, file_offset); 2288 if (WARN_ON_ONCE(!ordered)) 2289 return BLK_STS_IOERR; 2290 2291 /* No need to split */ 2292 if (ordered->disk_num_bytes == len) 2293 goto out; 2294 2295 /* We cannot split once end_bio'd ordered extent */ 2296 if (WARN_ON_ONCE(ordered->bytes_left != ordered->disk_num_bytes)) { 2297 ret = -EINVAL; 2298 goto out; 2299 } 2300 2301 /* We cannot split a compressed ordered extent */ 2302 if (WARN_ON_ONCE(ordered->disk_num_bytes != ordered->num_bytes)) { 2303 ret = -EINVAL; 2304 goto out; 2305 } 2306 2307 ordered_end = ordered->disk_bytenr + ordered->disk_num_bytes; 2308 /* bio must be in one ordered extent */ 2309 if (WARN_ON_ONCE(start < ordered->disk_bytenr || end > ordered_end)) { 2310 ret = -EINVAL; 2311 goto out; 2312 } 2313 2314 /* Checksum list should be empty */ 2315 if (WARN_ON_ONCE(!list_empty(&ordered->list))) { 2316 ret = -EINVAL; 2317 goto out; 2318 } 2319 2320 pre = start - ordered->disk_bytenr; 2321 post = ordered_end - end; 2322 2323 ret = btrfs_split_ordered_extent(ordered, pre, post); 2324 if (ret) 2325 goto out; 2326 2327 read_lock(&em_tree->lock); 2328 em = lookup_extent_mapping(em_tree, ordered->file_offset, len); 2329 if (!em) { 2330 read_unlock(&em_tree->lock); 2331 ret = -EIO; 2332 goto out; 2333 } 2334 read_unlock(&em_tree->lock); 2335 2336 ASSERT(!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)); 2337 /* 2338 * We cannot reuse em_new here but have to create a new one, as 2339 * unpin_extent_cache() expects the start of the extent map to be the 2340 * logical offset of the file, which does not hold true anymore after 2341 * splitting. 2342 */ 2343 em_new = create_io_em(inode, em->start + pre, len, 2344 em->start + pre, em->block_start + pre, len, 2345 len, len, BTRFS_COMPRESS_NONE, 2346 BTRFS_ORDERED_REGULAR); 2347 if (IS_ERR(em_new)) { 2348 ret = PTR_ERR(em_new); 2349 goto out; 2350 } 2351 free_extent_map(em_new); 2352 2353 out: 2354 free_extent_map(em); 2355 btrfs_put_ordered_extent(ordered); 2356 2357 return errno_to_blk_status(ret); 2358 } 2359 2360 /* 2361 * extent_io.c submission hook. This does the right thing for csum calculation 2362 * on write, or reading the csums from the tree before a read. 2363 * 2364 * Rules about async/sync submit, 2365 * a) read: sync submit 2366 * 2367 * b) write without checksum: sync submit 2368 * 2369 * c) write with checksum: 2370 * c-1) if bio is issued by fsync: sync submit 2371 * (sync_writers != 0) 2372 * 2373 * c-2) if root is reloc root: sync submit 2374 * (only in case of buffered IO) 2375 * 2376 * c-3) otherwise: async submit 2377 */ 2378 blk_status_t btrfs_submit_data_bio(struct inode *inode, struct bio *bio, 2379 int mirror_num, unsigned long bio_flags) 2380 2381 { 2382 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2383 struct btrfs_root *root = BTRFS_I(inode)->root; 2384 enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA; 2385 blk_status_t ret = 0; 2386 int skip_sum; 2387 int async = !atomic_read(&BTRFS_I(inode)->sync_writers); 2388 2389 skip_sum = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) || 2390 !fs_info->csum_root; 2391 2392 if (btrfs_is_free_space_inode(BTRFS_I(inode))) 2393 metadata = BTRFS_WQ_ENDIO_FREE_SPACE; 2394 2395 if (bio_op(bio) == REQ_OP_ZONE_APPEND) { 2396 struct page *page = bio_first_bvec_all(bio)->bv_page; 2397 loff_t file_offset = page_offset(page); 2398 2399 ret = extract_ordered_extent(BTRFS_I(inode), bio, file_offset); 2400 if (ret) 2401 goto out; 2402 } 2403 2404 if (btrfs_op(bio) != BTRFS_MAP_WRITE) { 2405 ret = btrfs_bio_wq_end_io(fs_info, bio, metadata); 2406 if (ret) 2407 goto out; 2408 2409 if (bio_flags & EXTENT_BIO_COMPRESSED) { 2410 ret = btrfs_submit_compressed_read(inode, bio, 2411 mirror_num, 2412 bio_flags); 2413 goto out; 2414 } else { 2415 /* 2416 * Lookup bio sums does extra checks around whether we 2417 * need to csum or not, which is why we ignore skip_sum 2418 * here. 2419 */ 2420 ret = btrfs_lookup_bio_sums(inode, bio, NULL); 2421 if (ret) 2422 goto out; 2423 } 2424 goto mapit; 2425 } else if (async && !skip_sum) { 2426 /* csum items have already been cloned */ 2427 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) 2428 goto mapit; 2429 /* we're doing a write, do the async checksumming */ 2430 ret = btrfs_wq_submit_bio(inode, bio, mirror_num, bio_flags, 2431 0, btrfs_submit_bio_start); 2432 goto out; 2433 } else if (!skip_sum) { 2434 ret = btrfs_csum_one_bio(BTRFS_I(inode), bio, 0, 0); 2435 if (ret) 2436 goto out; 2437 } 2438 2439 mapit: 2440 ret = btrfs_map_bio(fs_info, bio, mirror_num); 2441 2442 out: 2443 if (ret) { 2444 bio->bi_status = ret; 2445 bio_endio(bio); 2446 } 2447 return ret; 2448 } 2449 2450 /* 2451 * given a list of ordered sums record them in the inode. This happens 2452 * at IO completion time based on sums calculated at bio submission time. 2453 */ 2454 static int add_pending_csums(struct btrfs_trans_handle *trans, 2455 struct list_head *list) 2456 { 2457 struct btrfs_ordered_sum *sum; 2458 int ret; 2459 2460 list_for_each_entry(sum, list, list) { 2461 trans->adding_csums = true; 2462 ret = btrfs_csum_file_blocks(trans, trans->fs_info->csum_root, sum); 2463 trans->adding_csums = false; 2464 if (ret) 2465 return ret; 2466 } 2467 return 0; 2468 } 2469 2470 static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode, 2471 const u64 start, 2472 const u64 len, 2473 struct extent_state **cached_state) 2474 { 2475 u64 search_start = start; 2476 const u64 end = start + len - 1; 2477 2478 while (search_start < end) { 2479 const u64 search_len = end - search_start + 1; 2480 struct extent_map *em; 2481 u64 em_len; 2482 int ret = 0; 2483 2484 em = btrfs_get_extent(inode, NULL, 0, search_start, search_len); 2485 if (IS_ERR(em)) 2486 return PTR_ERR(em); 2487 2488 if (em->block_start != EXTENT_MAP_HOLE) 2489 goto next; 2490 2491 em_len = em->len; 2492 if (em->start < search_start) 2493 em_len -= search_start - em->start; 2494 if (em_len > search_len) 2495 em_len = search_len; 2496 2497 ret = set_extent_bit(&inode->io_tree, search_start, 2498 search_start + em_len - 1, 2499 EXTENT_DELALLOC_NEW, 0, NULL, cached_state, 2500 GFP_NOFS, NULL); 2501 next: 2502 search_start = extent_map_end(em); 2503 free_extent_map(em); 2504 if (ret) 2505 return ret; 2506 } 2507 return 0; 2508 } 2509 2510 int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end, 2511 unsigned int extra_bits, 2512 struct extent_state **cached_state) 2513 { 2514 WARN_ON(PAGE_ALIGNED(end)); 2515 2516 if (start >= i_size_read(&inode->vfs_inode) && 2517 !(inode->flags & BTRFS_INODE_PREALLOC)) { 2518 /* 2519 * There can't be any extents following eof in this case so just 2520 * set the delalloc new bit for the range directly. 2521 */ 2522 extra_bits |= EXTENT_DELALLOC_NEW; 2523 } else { 2524 int ret; 2525 2526 ret = btrfs_find_new_delalloc_bytes(inode, start, 2527 end + 1 - start, 2528 cached_state); 2529 if (ret) 2530 return ret; 2531 } 2532 2533 return set_extent_delalloc(&inode->io_tree, start, end, extra_bits, 2534 cached_state); 2535 } 2536 2537 /* see btrfs_writepage_start_hook for details on why this is required */ 2538 struct btrfs_writepage_fixup { 2539 struct page *page; 2540 struct inode *inode; 2541 struct btrfs_work work; 2542 }; 2543 2544 static void btrfs_writepage_fixup_worker(struct btrfs_work *work) 2545 { 2546 struct btrfs_writepage_fixup *fixup; 2547 struct btrfs_ordered_extent *ordered; 2548 struct extent_state *cached_state = NULL; 2549 struct extent_changeset *data_reserved = NULL; 2550 struct page *page; 2551 struct btrfs_inode *inode; 2552 u64 page_start; 2553 u64 page_end; 2554 int ret = 0; 2555 bool free_delalloc_space = true; 2556 2557 fixup = container_of(work, struct btrfs_writepage_fixup, work); 2558 page = fixup->page; 2559 inode = BTRFS_I(fixup->inode); 2560 page_start = page_offset(page); 2561 page_end = page_offset(page) + PAGE_SIZE - 1; 2562 2563 /* 2564 * This is similar to page_mkwrite, we need to reserve the space before 2565 * we take the page lock. 2566 */ 2567 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start, 2568 PAGE_SIZE); 2569 again: 2570 lock_page(page); 2571 2572 /* 2573 * Before we queued this fixup, we took a reference on the page. 2574 * page->mapping may go NULL, but it shouldn't be moved to a different 2575 * address space. 2576 */ 2577 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) { 2578 /* 2579 * Unfortunately this is a little tricky, either 2580 * 2581 * 1) We got here and our page had already been dealt with and 2582 * we reserved our space, thus ret == 0, so we need to just 2583 * drop our space reservation and bail. This can happen the 2584 * first time we come into the fixup worker, or could happen 2585 * while waiting for the ordered extent. 2586 * 2) Our page was already dealt with, but we happened to get an 2587 * ENOSPC above from the btrfs_delalloc_reserve_space. In 2588 * this case we obviously don't have anything to release, but 2589 * because the page was already dealt with we don't want to 2590 * mark the page with an error, so make sure we're resetting 2591 * ret to 0. This is why we have this check _before_ the ret 2592 * check, because we do not want to have a surprise ENOSPC 2593 * when the page was already properly dealt with. 2594 */ 2595 if (!ret) { 2596 btrfs_delalloc_release_extents(inode, PAGE_SIZE); 2597 btrfs_delalloc_release_space(inode, data_reserved, 2598 page_start, PAGE_SIZE, 2599 true); 2600 } 2601 ret = 0; 2602 goto out_page; 2603 } 2604 2605 /* 2606 * We can't mess with the page state unless it is locked, so now that 2607 * it is locked bail if we failed to make our space reservation. 2608 */ 2609 if (ret) 2610 goto out_page; 2611 2612 lock_extent_bits(&inode->io_tree, page_start, page_end, &cached_state); 2613 2614 /* already ordered? We're done */ 2615 if (PageOrdered(page)) 2616 goto out_reserved; 2617 2618 ordered = btrfs_lookup_ordered_range(inode, page_start, PAGE_SIZE); 2619 if (ordered) { 2620 unlock_extent_cached(&inode->io_tree, page_start, page_end, 2621 &cached_state); 2622 unlock_page(page); 2623 btrfs_start_ordered_extent(ordered, 1); 2624 btrfs_put_ordered_extent(ordered); 2625 goto again; 2626 } 2627 2628 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0, 2629 &cached_state); 2630 if (ret) 2631 goto out_reserved; 2632 2633 /* 2634 * Everything went as planned, we're now the owner of a dirty page with 2635 * delayed allocation bits set and space reserved for our COW 2636 * destination. 2637 * 2638 * The page was dirty when we started, nothing should have cleaned it. 2639 */ 2640 BUG_ON(!PageDirty(page)); 2641 free_delalloc_space = false; 2642 out_reserved: 2643 btrfs_delalloc_release_extents(inode, PAGE_SIZE); 2644 if (free_delalloc_space) 2645 btrfs_delalloc_release_space(inode, data_reserved, page_start, 2646 PAGE_SIZE, true); 2647 unlock_extent_cached(&inode->io_tree, page_start, page_end, 2648 &cached_state); 2649 out_page: 2650 if (ret) { 2651 /* 2652 * We hit ENOSPC or other errors. Update the mapping and page 2653 * to reflect the errors and clean the page. 2654 */ 2655 mapping_set_error(page->mapping, ret); 2656 end_extent_writepage(page, ret, page_start, page_end); 2657 clear_page_dirty_for_io(page); 2658 SetPageError(page); 2659 } 2660 ClearPageChecked(page); 2661 unlock_page(page); 2662 put_page(page); 2663 kfree(fixup); 2664 extent_changeset_free(data_reserved); 2665 /* 2666 * As a precaution, do a delayed iput in case it would be the last iput 2667 * that could need flushing space. Recursing back to fixup worker would 2668 * deadlock. 2669 */ 2670 btrfs_add_delayed_iput(&inode->vfs_inode); 2671 } 2672 2673 /* 2674 * There are a few paths in the higher layers of the kernel that directly 2675 * set the page dirty bit without asking the filesystem if it is a 2676 * good idea. This causes problems because we want to make sure COW 2677 * properly happens and the data=ordered rules are followed. 2678 * 2679 * In our case any range that doesn't have the ORDERED bit set 2680 * hasn't been properly setup for IO. We kick off an async process 2681 * to fix it up. The async helper will wait for ordered extents, set 2682 * the delalloc bit and make it safe to write the page. 2683 */ 2684 int btrfs_writepage_cow_fixup(struct page *page, u64 start, u64 end) 2685 { 2686 struct inode *inode = page->mapping->host; 2687 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2688 struct btrfs_writepage_fixup *fixup; 2689 2690 /* This page has ordered extent covering it already */ 2691 if (PageOrdered(page)) 2692 return 0; 2693 2694 /* 2695 * PageChecked is set below when we create a fixup worker for this page, 2696 * don't try to create another one if we're already PageChecked() 2697 * 2698 * The extent_io writepage code will redirty the page if we send back 2699 * EAGAIN. 2700 */ 2701 if (PageChecked(page)) 2702 return -EAGAIN; 2703 2704 fixup = kzalloc(sizeof(*fixup), GFP_NOFS); 2705 if (!fixup) 2706 return -EAGAIN; 2707 2708 /* 2709 * We are already holding a reference to this inode from 2710 * write_cache_pages. We need to hold it because the space reservation 2711 * takes place outside of the page lock, and we can't trust 2712 * page->mapping outside of the page lock. 2713 */ 2714 ihold(inode); 2715 SetPageChecked(page); 2716 get_page(page); 2717 btrfs_init_work(&fixup->work, btrfs_writepage_fixup_worker, NULL, NULL); 2718 fixup->page = page; 2719 fixup->inode = inode; 2720 btrfs_queue_work(fs_info->fixup_workers, &fixup->work); 2721 2722 return -EAGAIN; 2723 } 2724 2725 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans, 2726 struct btrfs_inode *inode, u64 file_pos, 2727 struct btrfs_file_extent_item *stack_fi, 2728 const bool update_inode_bytes, 2729 u64 qgroup_reserved) 2730 { 2731 struct btrfs_root *root = inode->root; 2732 const u64 sectorsize = root->fs_info->sectorsize; 2733 struct btrfs_path *path; 2734 struct extent_buffer *leaf; 2735 struct btrfs_key ins; 2736 u64 disk_num_bytes = btrfs_stack_file_extent_disk_num_bytes(stack_fi); 2737 u64 disk_bytenr = btrfs_stack_file_extent_disk_bytenr(stack_fi); 2738 u64 num_bytes = btrfs_stack_file_extent_num_bytes(stack_fi); 2739 u64 ram_bytes = btrfs_stack_file_extent_ram_bytes(stack_fi); 2740 struct btrfs_drop_extents_args drop_args = { 0 }; 2741 int ret; 2742 2743 path = btrfs_alloc_path(); 2744 if (!path) 2745 return -ENOMEM; 2746 2747 /* 2748 * we may be replacing one extent in the tree with another. 2749 * The new extent is pinned in the extent map, and we don't want 2750 * to drop it from the cache until it is completely in the btree. 2751 * 2752 * So, tell btrfs_drop_extents to leave this extent in the cache. 2753 * the caller is expected to unpin it and allow it to be merged 2754 * with the others. 2755 */ 2756 drop_args.path = path; 2757 drop_args.start = file_pos; 2758 drop_args.end = file_pos + num_bytes; 2759 drop_args.replace_extent = true; 2760 drop_args.extent_item_size = sizeof(*stack_fi); 2761 ret = btrfs_drop_extents(trans, root, inode, &drop_args); 2762 if (ret) 2763 goto out; 2764 2765 if (!drop_args.extent_inserted) { 2766 ins.objectid = btrfs_ino(inode); 2767 ins.offset = file_pos; 2768 ins.type = BTRFS_EXTENT_DATA_KEY; 2769 2770 ret = btrfs_insert_empty_item(trans, root, path, &ins, 2771 sizeof(*stack_fi)); 2772 if (ret) 2773 goto out; 2774 } 2775 leaf = path->nodes[0]; 2776 btrfs_set_stack_file_extent_generation(stack_fi, trans->transid); 2777 write_extent_buffer(leaf, stack_fi, 2778 btrfs_item_ptr_offset(leaf, path->slots[0]), 2779 sizeof(struct btrfs_file_extent_item)); 2780 2781 btrfs_mark_buffer_dirty(leaf); 2782 btrfs_release_path(path); 2783 2784 /* 2785 * If we dropped an inline extent here, we know the range where it is 2786 * was not marked with the EXTENT_DELALLOC_NEW bit, so we update the 2787 * number of bytes only for that range containing the inline extent. 2788 * The remaining of the range will be processed when clearning the 2789 * EXTENT_DELALLOC_BIT bit through the ordered extent completion. 2790 */ 2791 if (file_pos == 0 && !IS_ALIGNED(drop_args.bytes_found, sectorsize)) { 2792 u64 inline_size = round_down(drop_args.bytes_found, sectorsize); 2793 2794 inline_size = drop_args.bytes_found - inline_size; 2795 btrfs_update_inode_bytes(inode, sectorsize, inline_size); 2796 drop_args.bytes_found -= inline_size; 2797 num_bytes -= sectorsize; 2798 } 2799 2800 if (update_inode_bytes) 2801 btrfs_update_inode_bytes(inode, num_bytes, drop_args.bytes_found); 2802 2803 ins.objectid = disk_bytenr; 2804 ins.offset = disk_num_bytes; 2805 ins.type = BTRFS_EXTENT_ITEM_KEY; 2806 2807 ret = btrfs_inode_set_file_extent_range(inode, file_pos, ram_bytes); 2808 if (ret) 2809 goto out; 2810 2811 ret = btrfs_alloc_reserved_file_extent(trans, root, btrfs_ino(inode), 2812 file_pos, qgroup_reserved, &ins); 2813 out: 2814 btrfs_free_path(path); 2815 2816 return ret; 2817 } 2818 2819 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info, 2820 u64 start, u64 len) 2821 { 2822 struct btrfs_block_group *cache; 2823 2824 cache = btrfs_lookup_block_group(fs_info, start); 2825 ASSERT(cache); 2826 2827 spin_lock(&cache->lock); 2828 cache->delalloc_bytes -= len; 2829 spin_unlock(&cache->lock); 2830 2831 btrfs_put_block_group(cache); 2832 } 2833 2834 static int insert_ordered_extent_file_extent(struct btrfs_trans_handle *trans, 2835 struct btrfs_ordered_extent *oe) 2836 { 2837 struct btrfs_file_extent_item stack_fi; 2838 u64 logical_len; 2839 bool update_inode_bytes; 2840 2841 memset(&stack_fi, 0, sizeof(stack_fi)); 2842 btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_REG); 2843 btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, oe->disk_bytenr); 2844 btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi, 2845 oe->disk_num_bytes); 2846 if (test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags)) 2847 logical_len = oe->truncated_len; 2848 else 2849 logical_len = oe->num_bytes; 2850 btrfs_set_stack_file_extent_num_bytes(&stack_fi, logical_len); 2851 btrfs_set_stack_file_extent_ram_bytes(&stack_fi, logical_len); 2852 btrfs_set_stack_file_extent_compression(&stack_fi, oe->compress_type); 2853 /* Encryption and other encoding is reserved and all 0 */ 2854 2855 /* 2856 * For delalloc, when completing an ordered extent we update the inode's 2857 * bytes when clearing the range in the inode's io tree, so pass false 2858 * as the argument 'update_inode_bytes' to insert_reserved_file_extent(), 2859 * except if the ordered extent was truncated. 2860 */ 2861 update_inode_bytes = test_bit(BTRFS_ORDERED_DIRECT, &oe->flags) || 2862 test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags); 2863 2864 return insert_reserved_file_extent(trans, BTRFS_I(oe->inode), 2865 oe->file_offset, &stack_fi, 2866 update_inode_bytes, oe->qgroup_rsv); 2867 } 2868 2869 /* 2870 * As ordered data IO finishes, this gets called so we can finish 2871 * an ordered extent if the range of bytes in the file it covers are 2872 * fully written. 2873 */ 2874 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent) 2875 { 2876 struct btrfs_inode *inode = BTRFS_I(ordered_extent->inode); 2877 struct btrfs_root *root = inode->root; 2878 struct btrfs_fs_info *fs_info = root->fs_info; 2879 struct btrfs_trans_handle *trans = NULL; 2880 struct extent_io_tree *io_tree = &inode->io_tree; 2881 struct extent_state *cached_state = NULL; 2882 u64 start, end; 2883 int compress_type = 0; 2884 int ret = 0; 2885 u64 logical_len = ordered_extent->num_bytes; 2886 bool freespace_inode; 2887 bool truncated = false; 2888 bool clear_reserved_extent = true; 2889 unsigned int clear_bits = EXTENT_DEFRAG; 2890 2891 start = ordered_extent->file_offset; 2892 end = start + ordered_extent->num_bytes - 1; 2893 2894 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) && 2895 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) && 2896 !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags)) 2897 clear_bits |= EXTENT_DELALLOC_NEW; 2898 2899 freespace_inode = btrfs_is_free_space_inode(inode); 2900 2901 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) { 2902 ret = -EIO; 2903 goto out; 2904 } 2905 2906 if (ordered_extent->disk) 2907 btrfs_rewrite_logical_zoned(ordered_extent); 2908 2909 btrfs_free_io_failure_record(inode, start, end); 2910 2911 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) { 2912 truncated = true; 2913 logical_len = ordered_extent->truncated_len; 2914 /* Truncated the entire extent, don't bother adding */ 2915 if (!logical_len) 2916 goto out; 2917 } 2918 2919 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) { 2920 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */ 2921 2922 btrfs_inode_safe_disk_i_size_write(inode, 0); 2923 if (freespace_inode) 2924 trans = btrfs_join_transaction_spacecache(root); 2925 else 2926 trans = btrfs_join_transaction(root); 2927 if (IS_ERR(trans)) { 2928 ret = PTR_ERR(trans); 2929 trans = NULL; 2930 goto out; 2931 } 2932 trans->block_rsv = &inode->block_rsv; 2933 ret = btrfs_update_inode_fallback(trans, root, inode); 2934 if (ret) /* -ENOMEM or corruption */ 2935 btrfs_abort_transaction(trans, ret); 2936 goto out; 2937 } 2938 2939 clear_bits |= EXTENT_LOCKED; 2940 lock_extent_bits(io_tree, start, end, &cached_state); 2941 2942 if (freespace_inode) 2943 trans = btrfs_join_transaction_spacecache(root); 2944 else 2945 trans = btrfs_join_transaction(root); 2946 if (IS_ERR(trans)) { 2947 ret = PTR_ERR(trans); 2948 trans = NULL; 2949 goto out; 2950 } 2951 2952 trans->block_rsv = &inode->block_rsv; 2953 2954 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags)) 2955 compress_type = ordered_extent->compress_type; 2956 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 2957 BUG_ON(compress_type); 2958 ret = btrfs_mark_extent_written(trans, inode, 2959 ordered_extent->file_offset, 2960 ordered_extent->file_offset + 2961 logical_len); 2962 } else { 2963 BUG_ON(root == fs_info->tree_root); 2964 ret = insert_ordered_extent_file_extent(trans, ordered_extent); 2965 if (!ret) { 2966 clear_reserved_extent = false; 2967 btrfs_release_delalloc_bytes(fs_info, 2968 ordered_extent->disk_bytenr, 2969 ordered_extent->disk_num_bytes); 2970 } 2971 } 2972 unpin_extent_cache(&inode->extent_tree, ordered_extent->file_offset, 2973 ordered_extent->num_bytes, trans->transid); 2974 if (ret < 0) { 2975 btrfs_abort_transaction(trans, ret); 2976 goto out; 2977 } 2978 2979 ret = add_pending_csums(trans, &ordered_extent->list); 2980 if (ret) { 2981 btrfs_abort_transaction(trans, ret); 2982 goto out; 2983 } 2984 2985 /* 2986 * If this is a new delalloc range, clear its new delalloc flag to 2987 * update the inode's number of bytes. This needs to be done first 2988 * before updating the inode item. 2989 */ 2990 if ((clear_bits & EXTENT_DELALLOC_NEW) && 2991 !test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) 2992 clear_extent_bit(&inode->io_tree, start, end, 2993 EXTENT_DELALLOC_NEW | EXTENT_ADD_INODE_BYTES, 2994 0, 0, &cached_state); 2995 2996 btrfs_inode_safe_disk_i_size_write(inode, 0); 2997 ret = btrfs_update_inode_fallback(trans, root, inode); 2998 if (ret) { /* -ENOMEM or corruption */ 2999 btrfs_abort_transaction(trans, ret); 3000 goto out; 3001 } 3002 ret = 0; 3003 out: 3004 clear_extent_bit(&inode->io_tree, start, end, clear_bits, 3005 (clear_bits & EXTENT_LOCKED) ? 1 : 0, 0, 3006 &cached_state); 3007 3008 if (trans) 3009 btrfs_end_transaction(trans); 3010 3011 if (ret || truncated) { 3012 u64 unwritten_start = start; 3013 3014 /* 3015 * If we failed to finish this ordered extent for any reason we 3016 * need to make sure BTRFS_ORDERED_IOERR is set on the ordered 3017 * extent, and mark the inode with the error if it wasn't 3018 * already set. Any error during writeback would have already 3019 * set the mapping error, so we need to set it if we're the ones 3020 * marking this ordered extent as failed. 3021 */ 3022 if (ret && !test_and_set_bit(BTRFS_ORDERED_IOERR, 3023 &ordered_extent->flags)) 3024 mapping_set_error(ordered_extent->inode->i_mapping, -EIO); 3025 3026 if (truncated) 3027 unwritten_start += logical_len; 3028 clear_extent_uptodate(io_tree, unwritten_start, end, NULL); 3029 3030 /* Drop the cache for the part of the extent we didn't write. */ 3031 btrfs_drop_extent_cache(inode, unwritten_start, end, 0); 3032 3033 /* 3034 * If the ordered extent had an IOERR or something else went 3035 * wrong we need to return the space for this ordered extent 3036 * back to the allocator. We only free the extent in the 3037 * truncated case if we didn't write out the extent at all. 3038 * 3039 * If we made it past insert_reserved_file_extent before we 3040 * errored out then we don't need to do this as the accounting 3041 * has already been done. 3042 */ 3043 if ((ret || !logical_len) && 3044 clear_reserved_extent && 3045 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) && 3046 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 3047 /* 3048 * Discard the range before returning it back to the 3049 * free space pool 3050 */ 3051 if (ret && btrfs_test_opt(fs_info, DISCARD_SYNC)) 3052 btrfs_discard_extent(fs_info, 3053 ordered_extent->disk_bytenr, 3054 ordered_extent->disk_num_bytes, 3055 NULL); 3056 btrfs_free_reserved_extent(fs_info, 3057 ordered_extent->disk_bytenr, 3058 ordered_extent->disk_num_bytes, 1); 3059 } 3060 } 3061 3062 /* 3063 * This needs to be done to make sure anybody waiting knows we are done 3064 * updating everything for this ordered extent. 3065 */ 3066 btrfs_remove_ordered_extent(inode, ordered_extent); 3067 3068 /* once for us */ 3069 btrfs_put_ordered_extent(ordered_extent); 3070 /* once for the tree */ 3071 btrfs_put_ordered_extent(ordered_extent); 3072 3073 return ret; 3074 } 3075 3076 static void finish_ordered_fn(struct btrfs_work *work) 3077 { 3078 struct btrfs_ordered_extent *ordered_extent; 3079 ordered_extent = container_of(work, struct btrfs_ordered_extent, work); 3080 btrfs_finish_ordered_io(ordered_extent); 3081 } 3082 3083 void btrfs_writepage_endio_finish_ordered(struct btrfs_inode *inode, 3084 struct page *page, u64 start, 3085 u64 end, int uptodate) 3086 { 3087 trace_btrfs_writepage_end_io_hook(inode, start, end, uptodate); 3088 3089 btrfs_mark_ordered_io_finished(inode, page, start, end + 1 - start, 3090 finish_ordered_fn, uptodate); 3091 } 3092 3093 /* 3094 * check_data_csum - verify checksum of one sector of uncompressed data 3095 * @inode: inode 3096 * @io_bio: btrfs_io_bio which contains the csum 3097 * @bio_offset: offset to the beginning of the bio (in bytes) 3098 * @page: page where is the data to be verified 3099 * @pgoff: offset inside the page 3100 * @start: logical offset in the file 3101 * 3102 * The length of such check is always one sector size. 3103 */ 3104 static int check_data_csum(struct inode *inode, struct btrfs_io_bio *io_bio, 3105 u32 bio_offset, struct page *page, u32 pgoff, 3106 u64 start) 3107 { 3108 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3109 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 3110 char *kaddr; 3111 u32 len = fs_info->sectorsize; 3112 const u32 csum_size = fs_info->csum_size; 3113 unsigned int offset_sectors; 3114 u8 *csum_expected; 3115 u8 csum[BTRFS_CSUM_SIZE]; 3116 3117 ASSERT(pgoff + len <= PAGE_SIZE); 3118 3119 offset_sectors = bio_offset >> fs_info->sectorsize_bits; 3120 csum_expected = ((u8 *)io_bio->csum) + offset_sectors * csum_size; 3121 3122 kaddr = kmap_atomic(page); 3123 shash->tfm = fs_info->csum_shash; 3124 3125 crypto_shash_digest(shash, kaddr + pgoff, len, csum); 3126 3127 if (memcmp(csum, csum_expected, csum_size)) 3128 goto zeroit; 3129 3130 kunmap_atomic(kaddr); 3131 return 0; 3132 zeroit: 3133 btrfs_print_data_csum_error(BTRFS_I(inode), start, csum, csum_expected, 3134 io_bio->mirror_num); 3135 if (io_bio->device) 3136 btrfs_dev_stat_inc_and_print(io_bio->device, 3137 BTRFS_DEV_STAT_CORRUPTION_ERRS); 3138 memset(kaddr + pgoff, 1, len); 3139 flush_dcache_page(page); 3140 kunmap_atomic(kaddr); 3141 return -EIO; 3142 } 3143 3144 /* 3145 * When reads are done, we need to check csums to verify the data is correct. 3146 * if there's a match, we allow the bio to finish. If not, the code in 3147 * extent_io.c will try to find good copies for us. 3148 * 3149 * @bio_offset: offset to the beginning of the bio (in bytes) 3150 * @start: file offset of the range start 3151 * @end: file offset of the range end (inclusive) 3152 * 3153 * Return a bitmap where bit set means a csum mismatch, and bit not set means 3154 * csum match. 3155 */ 3156 unsigned int btrfs_verify_data_csum(struct btrfs_io_bio *io_bio, u32 bio_offset, 3157 struct page *page, u64 start, u64 end) 3158 { 3159 struct inode *inode = page->mapping->host; 3160 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 3161 struct btrfs_root *root = BTRFS_I(inode)->root; 3162 const u32 sectorsize = root->fs_info->sectorsize; 3163 u32 pg_off; 3164 unsigned int result = 0; 3165 3166 if (PageChecked(page)) { 3167 ClearPageChecked(page); 3168 return 0; 3169 } 3170 3171 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) 3172 return 0; 3173 3174 if (!root->fs_info->csum_root) 3175 return 0; 3176 3177 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID && 3178 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) { 3179 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM); 3180 return 0; 3181 } 3182 3183 ASSERT(page_offset(page) <= start && 3184 end <= page_offset(page) + PAGE_SIZE - 1); 3185 for (pg_off = offset_in_page(start); 3186 pg_off < offset_in_page(end); 3187 pg_off += sectorsize, bio_offset += sectorsize) { 3188 int ret; 3189 3190 ret = check_data_csum(inode, io_bio, bio_offset, page, pg_off, 3191 page_offset(page) + pg_off); 3192 if (ret < 0) { 3193 const int nr_bit = (pg_off - offset_in_page(start)) >> 3194 root->fs_info->sectorsize_bits; 3195 3196 result |= (1U << nr_bit); 3197 } 3198 } 3199 return result; 3200 } 3201 3202 /* 3203 * btrfs_add_delayed_iput - perform a delayed iput on @inode 3204 * 3205 * @inode: The inode we want to perform iput on 3206 * 3207 * This function uses the generic vfs_inode::i_count to track whether we should 3208 * just decrement it (in case it's > 1) or if this is the last iput then link 3209 * the inode to the delayed iput machinery. Delayed iputs are processed at 3210 * transaction commit time/superblock commit/cleaner kthread. 3211 */ 3212 void btrfs_add_delayed_iput(struct inode *inode) 3213 { 3214 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3215 struct btrfs_inode *binode = BTRFS_I(inode); 3216 3217 if (atomic_add_unless(&inode->i_count, -1, 1)) 3218 return; 3219 3220 atomic_inc(&fs_info->nr_delayed_iputs); 3221 spin_lock(&fs_info->delayed_iput_lock); 3222 ASSERT(list_empty(&binode->delayed_iput)); 3223 list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs); 3224 spin_unlock(&fs_info->delayed_iput_lock); 3225 if (!test_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags)) 3226 wake_up_process(fs_info->cleaner_kthread); 3227 } 3228 3229 static void run_delayed_iput_locked(struct btrfs_fs_info *fs_info, 3230 struct btrfs_inode *inode) 3231 { 3232 list_del_init(&inode->delayed_iput); 3233 spin_unlock(&fs_info->delayed_iput_lock); 3234 iput(&inode->vfs_inode); 3235 if (atomic_dec_and_test(&fs_info->nr_delayed_iputs)) 3236 wake_up(&fs_info->delayed_iputs_wait); 3237 spin_lock(&fs_info->delayed_iput_lock); 3238 } 3239 3240 static void btrfs_run_delayed_iput(struct btrfs_fs_info *fs_info, 3241 struct btrfs_inode *inode) 3242 { 3243 if (!list_empty(&inode->delayed_iput)) { 3244 spin_lock(&fs_info->delayed_iput_lock); 3245 if (!list_empty(&inode->delayed_iput)) 3246 run_delayed_iput_locked(fs_info, inode); 3247 spin_unlock(&fs_info->delayed_iput_lock); 3248 } 3249 } 3250 3251 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info) 3252 { 3253 3254 spin_lock(&fs_info->delayed_iput_lock); 3255 while (!list_empty(&fs_info->delayed_iputs)) { 3256 struct btrfs_inode *inode; 3257 3258 inode = list_first_entry(&fs_info->delayed_iputs, 3259 struct btrfs_inode, delayed_iput); 3260 run_delayed_iput_locked(fs_info, inode); 3261 cond_resched_lock(&fs_info->delayed_iput_lock); 3262 } 3263 spin_unlock(&fs_info->delayed_iput_lock); 3264 } 3265 3266 /** 3267 * Wait for flushing all delayed iputs 3268 * 3269 * @fs_info: the filesystem 3270 * 3271 * This will wait on any delayed iputs that are currently running with KILLABLE 3272 * set. Once they are all done running we will return, unless we are killed in 3273 * which case we return EINTR. This helps in user operations like fallocate etc 3274 * that might get blocked on the iputs. 3275 * 3276 * Return EINTR if we were killed, 0 if nothing's pending 3277 */ 3278 int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info) 3279 { 3280 int ret = wait_event_killable(fs_info->delayed_iputs_wait, 3281 atomic_read(&fs_info->nr_delayed_iputs) == 0); 3282 if (ret) 3283 return -EINTR; 3284 return 0; 3285 } 3286 3287 /* 3288 * This creates an orphan entry for the given inode in case something goes wrong 3289 * in the middle of an unlink. 3290 */ 3291 int btrfs_orphan_add(struct btrfs_trans_handle *trans, 3292 struct btrfs_inode *inode) 3293 { 3294 int ret; 3295 3296 ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode)); 3297 if (ret && ret != -EEXIST) { 3298 btrfs_abort_transaction(trans, ret); 3299 return ret; 3300 } 3301 3302 return 0; 3303 } 3304 3305 /* 3306 * We have done the delete so we can go ahead and remove the orphan item for 3307 * this particular inode. 3308 */ 3309 static int btrfs_orphan_del(struct btrfs_trans_handle *trans, 3310 struct btrfs_inode *inode) 3311 { 3312 return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode)); 3313 } 3314 3315 /* 3316 * this cleans up any orphans that may be left on the list from the last use 3317 * of this root. 3318 */ 3319 int btrfs_orphan_cleanup(struct btrfs_root *root) 3320 { 3321 struct btrfs_fs_info *fs_info = root->fs_info; 3322 struct btrfs_path *path; 3323 struct extent_buffer *leaf; 3324 struct btrfs_key key, found_key; 3325 struct btrfs_trans_handle *trans; 3326 struct inode *inode; 3327 u64 last_objectid = 0; 3328 int ret = 0, nr_unlink = 0; 3329 3330 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED)) 3331 return 0; 3332 3333 path = btrfs_alloc_path(); 3334 if (!path) { 3335 ret = -ENOMEM; 3336 goto out; 3337 } 3338 path->reada = READA_BACK; 3339 3340 key.objectid = BTRFS_ORPHAN_OBJECTID; 3341 key.type = BTRFS_ORPHAN_ITEM_KEY; 3342 key.offset = (u64)-1; 3343 3344 while (1) { 3345 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3346 if (ret < 0) 3347 goto out; 3348 3349 /* 3350 * if ret == 0 means we found what we were searching for, which 3351 * is weird, but possible, so only screw with path if we didn't 3352 * find the key and see if we have stuff that matches 3353 */ 3354 if (ret > 0) { 3355 ret = 0; 3356 if (path->slots[0] == 0) 3357 break; 3358 path->slots[0]--; 3359 } 3360 3361 /* pull out the item */ 3362 leaf = path->nodes[0]; 3363 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 3364 3365 /* make sure the item matches what we want */ 3366 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID) 3367 break; 3368 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY) 3369 break; 3370 3371 /* release the path since we're done with it */ 3372 btrfs_release_path(path); 3373 3374 /* 3375 * this is where we are basically btrfs_lookup, without the 3376 * crossing root thing. we store the inode number in the 3377 * offset of the orphan item. 3378 */ 3379 3380 if (found_key.offset == last_objectid) { 3381 btrfs_err(fs_info, 3382 "Error removing orphan entry, stopping orphan cleanup"); 3383 ret = -EINVAL; 3384 goto out; 3385 } 3386 3387 last_objectid = found_key.offset; 3388 3389 found_key.objectid = found_key.offset; 3390 found_key.type = BTRFS_INODE_ITEM_KEY; 3391 found_key.offset = 0; 3392 inode = btrfs_iget(fs_info->sb, last_objectid, root); 3393 ret = PTR_ERR_OR_ZERO(inode); 3394 if (ret && ret != -ENOENT) 3395 goto out; 3396 3397 if (ret == -ENOENT && root == fs_info->tree_root) { 3398 struct btrfs_root *dead_root; 3399 int is_dead_root = 0; 3400 3401 /* 3402 * This is an orphan in the tree root. Currently these 3403 * could come from 2 sources: 3404 * a) a root (snapshot/subvolume) deletion in progress 3405 * b) a free space cache inode 3406 * We need to distinguish those two, as the orphan item 3407 * for a root must not get deleted before the deletion 3408 * of the snapshot/subvolume's tree completes. 3409 * 3410 * btrfs_find_orphan_roots() ran before us, which has 3411 * found all deleted roots and loaded them into 3412 * fs_info->fs_roots_radix. So here we can find if an 3413 * orphan item corresponds to a deleted root by looking 3414 * up the root from that radix tree. 3415 */ 3416 3417 spin_lock(&fs_info->fs_roots_radix_lock); 3418 dead_root = radix_tree_lookup(&fs_info->fs_roots_radix, 3419 (unsigned long)found_key.objectid); 3420 if (dead_root && btrfs_root_refs(&dead_root->root_item) == 0) 3421 is_dead_root = 1; 3422 spin_unlock(&fs_info->fs_roots_radix_lock); 3423 3424 if (is_dead_root) { 3425 /* prevent this orphan from being found again */ 3426 key.offset = found_key.objectid - 1; 3427 continue; 3428 } 3429 3430 } 3431 3432 /* 3433 * If we have an inode with links, there are a couple of 3434 * possibilities. Old kernels (before v3.12) used to create an 3435 * orphan item for truncate indicating that there were possibly 3436 * extent items past i_size that needed to be deleted. In v3.12, 3437 * truncate was changed to update i_size in sync with the extent 3438 * items, but the (useless) orphan item was still created. Since 3439 * v4.18, we don't create the orphan item for truncate at all. 3440 * 3441 * So, this item could mean that we need to do a truncate, but 3442 * only if this filesystem was last used on a pre-v3.12 kernel 3443 * and was not cleanly unmounted. The odds of that are quite 3444 * slim, and it's a pain to do the truncate now, so just delete 3445 * the orphan item. 3446 * 3447 * It's also possible that this orphan item was supposed to be 3448 * deleted but wasn't. The inode number may have been reused, 3449 * but either way, we can delete the orphan item. 3450 */ 3451 if (ret == -ENOENT || inode->i_nlink) { 3452 if (!ret) 3453 iput(inode); 3454 trans = btrfs_start_transaction(root, 1); 3455 if (IS_ERR(trans)) { 3456 ret = PTR_ERR(trans); 3457 goto out; 3458 } 3459 btrfs_debug(fs_info, "auto deleting %Lu", 3460 found_key.objectid); 3461 ret = btrfs_del_orphan_item(trans, root, 3462 found_key.objectid); 3463 btrfs_end_transaction(trans); 3464 if (ret) 3465 goto out; 3466 continue; 3467 } 3468 3469 nr_unlink++; 3470 3471 /* this will do delete_inode and everything for us */ 3472 iput(inode); 3473 } 3474 /* release the path since we're done with it */ 3475 btrfs_release_path(path); 3476 3477 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE; 3478 3479 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) { 3480 trans = btrfs_join_transaction(root); 3481 if (!IS_ERR(trans)) 3482 btrfs_end_transaction(trans); 3483 } 3484 3485 if (nr_unlink) 3486 btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink); 3487 3488 out: 3489 if (ret) 3490 btrfs_err(fs_info, "could not do orphan cleanup %d", ret); 3491 btrfs_free_path(path); 3492 return ret; 3493 } 3494 3495 /* 3496 * very simple check to peek ahead in the leaf looking for xattrs. If we 3497 * don't find any xattrs, we know there can't be any acls. 3498 * 3499 * slot is the slot the inode is in, objectid is the objectid of the inode 3500 */ 3501 static noinline int acls_after_inode_item(struct extent_buffer *leaf, 3502 int slot, u64 objectid, 3503 int *first_xattr_slot) 3504 { 3505 u32 nritems = btrfs_header_nritems(leaf); 3506 struct btrfs_key found_key; 3507 static u64 xattr_access = 0; 3508 static u64 xattr_default = 0; 3509 int scanned = 0; 3510 3511 if (!xattr_access) { 3512 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS, 3513 strlen(XATTR_NAME_POSIX_ACL_ACCESS)); 3514 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT, 3515 strlen(XATTR_NAME_POSIX_ACL_DEFAULT)); 3516 } 3517 3518 slot++; 3519 *first_xattr_slot = -1; 3520 while (slot < nritems) { 3521 btrfs_item_key_to_cpu(leaf, &found_key, slot); 3522 3523 /* we found a different objectid, there must not be acls */ 3524 if (found_key.objectid != objectid) 3525 return 0; 3526 3527 /* we found an xattr, assume we've got an acl */ 3528 if (found_key.type == BTRFS_XATTR_ITEM_KEY) { 3529 if (*first_xattr_slot == -1) 3530 *first_xattr_slot = slot; 3531 if (found_key.offset == xattr_access || 3532 found_key.offset == xattr_default) 3533 return 1; 3534 } 3535 3536 /* 3537 * we found a key greater than an xattr key, there can't 3538 * be any acls later on 3539 */ 3540 if (found_key.type > BTRFS_XATTR_ITEM_KEY) 3541 return 0; 3542 3543 slot++; 3544 scanned++; 3545 3546 /* 3547 * it goes inode, inode backrefs, xattrs, extents, 3548 * so if there are a ton of hard links to an inode there can 3549 * be a lot of backrefs. Don't waste time searching too hard, 3550 * this is just an optimization 3551 */ 3552 if (scanned >= 8) 3553 break; 3554 } 3555 /* we hit the end of the leaf before we found an xattr or 3556 * something larger than an xattr. We have to assume the inode 3557 * has acls 3558 */ 3559 if (*first_xattr_slot == -1) 3560 *first_xattr_slot = slot; 3561 return 1; 3562 } 3563 3564 /* 3565 * read an inode from the btree into the in-memory inode 3566 */ 3567 static int btrfs_read_locked_inode(struct inode *inode, 3568 struct btrfs_path *in_path) 3569 { 3570 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3571 struct btrfs_path *path = in_path; 3572 struct extent_buffer *leaf; 3573 struct btrfs_inode_item *inode_item; 3574 struct btrfs_root *root = BTRFS_I(inode)->root; 3575 struct btrfs_key location; 3576 unsigned long ptr; 3577 int maybe_acls; 3578 u32 rdev; 3579 int ret; 3580 bool filled = false; 3581 int first_xattr_slot; 3582 3583 ret = btrfs_fill_inode(inode, &rdev); 3584 if (!ret) 3585 filled = true; 3586 3587 if (!path) { 3588 path = btrfs_alloc_path(); 3589 if (!path) 3590 return -ENOMEM; 3591 } 3592 3593 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location)); 3594 3595 ret = btrfs_lookup_inode(NULL, root, path, &location, 0); 3596 if (ret) { 3597 if (path != in_path) 3598 btrfs_free_path(path); 3599 return ret; 3600 } 3601 3602 leaf = path->nodes[0]; 3603 3604 if (filled) 3605 goto cache_index; 3606 3607 inode_item = btrfs_item_ptr(leaf, path->slots[0], 3608 struct btrfs_inode_item); 3609 inode->i_mode = btrfs_inode_mode(leaf, inode_item); 3610 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item)); 3611 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item)); 3612 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item)); 3613 btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item)); 3614 btrfs_inode_set_file_extent_range(BTRFS_I(inode), 0, 3615 round_up(i_size_read(inode), fs_info->sectorsize)); 3616 3617 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime); 3618 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime); 3619 3620 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime); 3621 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime); 3622 3623 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime); 3624 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime); 3625 3626 BTRFS_I(inode)->i_otime.tv_sec = 3627 btrfs_timespec_sec(leaf, &inode_item->otime); 3628 BTRFS_I(inode)->i_otime.tv_nsec = 3629 btrfs_timespec_nsec(leaf, &inode_item->otime); 3630 3631 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item)); 3632 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item); 3633 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item); 3634 3635 inode_set_iversion_queried(inode, 3636 btrfs_inode_sequence(leaf, inode_item)); 3637 inode->i_generation = BTRFS_I(inode)->generation; 3638 inode->i_rdev = 0; 3639 rdev = btrfs_inode_rdev(leaf, inode_item); 3640 3641 BTRFS_I(inode)->index_cnt = (u64)-1; 3642 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item); 3643 3644 cache_index: 3645 /* 3646 * If we were modified in the current generation and evicted from memory 3647 * and then re-read we need to do a full sync since we don't have any 3648 * idea about which extents were modified before we were evicted from 3649 * cache. 3650 * 3651 * This is required for both inode re-read from disk and delayed inode 3652 * in delayed_nodes_tree. 3653 */ 3654 if (BTRFS_I(inode)->last_trans == fs_info->generation) 3655 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 3656 &BTRFS_I(inode)->runtime_flags); 3657 3658 /* 3659 * We don't persist the id of the transaction where an unlink operation 3660 * against the inode was last made. So here we assume the inode might 3661 * have been evicted, and therefore the exact value of last_unlink_trans 3662 * lost, and set it to last_trans to avoid metadata inconsistencies 3663 * between the inode and its parent if the inode is fsync'ed and the log 3664 * replayed. For example, in the scenario: 3665 * 3666 * touch mydir/foo 3667 * ln mydir/foo mydir/bar 3668 * sync 3669 * unlink mydir/bar 3670 * echo 2 > /proc/sys/vm/drop_caches # evicts inode 3671 * xfs_io -c fsync mydir/foo 3672 * <power failure> 3673 * mount fs, triggers fsync log replay 3674 * 3675 * We must make sure that when we fsync our inode foo we also log its 3676 * parent inode, otherwise after log replay the parent still has the 3677 * dentry with the "bar" name but our inode foo has a link count of 1 3678 * and doesn't have an inode ref with the name "bar" anymore. 3679 * 3680 * Setting last_unlink_trans to last_trans is a pessimistic approach, 3681 * but it guarantees correctness at the expense of occasional full 3682 * transaction commits on fsync if our inode is a directory, or if our 3683 * inode is not a directory, logging its parent unnecessarily. 3684 */ 3685 BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans; 3686 3687 /* 3688 * Same logic as for last_unlink_trans. We don't persist the generation 3689 * of the last transaction where this inode was used for a reflink 3690 * operation, so after eviction and reloading the inode we must be 3691 * pessimistic and assume the last transaction that modified the inode. 3692 */ 3693 BTRFS_I(inode)->last_reflink_trans = BTRFS_I(inode)->last_trans; 3694 3695 path->slots[0]++; 3696 if (inode->i_nlink != 1 || 3697 path->slots[0] >= btrfs_header_nritems(leaf)) 3698 goto cache_acl; 3699 3700 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]); 3701 if (location.objectid != btrfs_ino(BTRFS_I(inode))) 3702 goto cache_acl; 3703 3704 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 3705 if (location.type == BTRFS_INODE_REF_KEY) { 3706 struct btrfs_inode_ref *ref; 3707 3708 ref = (struct btrfs_inode_ref *)ptr; 3709 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref); 3710 } else if (location.type == BTRFS_INODE_EXTREF_KEY) { 3711 struct btrfs_inode_extref *extref; 3712 3713 extref = (struct btrfs_inode_extref *)ptr; 3714 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf, 3715 extref); 3716 } 3717 cache_acl: 3718 /* 3719 * try to precache a NULL acl entry for files that don't have 3720 * any xattrs or acls 3721 */ 3722 maybe_acls = acls_after_inode_item(leaf, path->slots[0], 3723 btrfs_ino(BTRFS_I(inode)), &first_xattr_slot); 3724 if (first_xattr_slot != -1) { 3725 path->slots[0] = first_xattr_slot; 3726 ret = btrfs_load_inode_props(inode, path); 3727 if (ret) 3728 btrfs_err(fs_info, 3729 "error loading props for ino %llu (root %llu): %d", 3730 btrfs_ino(BTRFS_I(inode)), 3731 root->root_key.objectid, ret); 3732 } 3733 if (path != in_path) 3734 btrfs_free_path(path); 3735 3736 if (!maybe_acls) 3737 cache_no_acl(inode); 3738 3739 switch (inode->i_mode & S_IFMT) { 3740 case S_IFREG: 3741 inode->i_mapping->a_ops = &btrfs_aops; 3742 inode->i_fop = &btrfs_file_operations; 3743 inode->i_op = &btrfs_file_inode_operations; 3744 break; 3745 case S_IFDIR: 3746 inode->i_fop = &btrfs_dir_file_operations; 3747 inode->i_op = &btrfs_dir_inode_operations; 3748 break; 3749 case S_IFLNK: 3750 inode->i_op = &btrfs_symlink_inode_operations; 3751 inode_nohighmem(inode); 3752 inode->i_mapping->a_ops = &btrfs_aops; 3753 break; 3754 default: 3755 inode->i_op = &btrfs_special_inode_operations; 3756 init_special_inode(inode, inode->i_mode, rdev); 3757 break; 3758 } 3759 3760 btrfs_sync_inode_flags_to_i_flags(inode); 3761 return 0; 3762 } 3763 3764 /* 3765 * given a leaf and an inode, copy the inode fields into the leaf 3766 */ 3767 static void fill_inode_item(struct btrfs_trans_handle *trans, 3768 struct extent_buffer *leaf, 3769 struct btrfs_inode_item *item, 3770 struct inode *inode) 3771 { 3772 struct btrfs_map_token token; 3773 3774 btrfs_init_map_token(&token, leaf); 3775 3776 btrfs_set_token_inode_uid(&token, item, i_uid_read(inode)); 3777 btrfs_set_token_inode_gid(&token, item, i_gid_read(inode)); 3778 btrfs_set_token_inode_size(&token, item, BTRFS_I(inode)->disk_i_size); 3779 btrfs_set_token_inode_mode(&token, item, inode->i_mode); 3780 btrfs_set_token_inode_nlink(&token, item, inode->i_nlink); 3781 3782 btrfs_set_token_timespec_sec(&token, &item->atime, 3783 inode->i_atime.tv_sec); 3784 btrfs_set_token_timespec_nsec(&token, &item->atime, 3785 inode->i_atime.tv_nsec); 3786 3787 btrfs_set_token_timespec_sec(&token, &item->mtime, 3788 inode->i_mtime.tv_sec); 3789 btrfs_set_token_timespec_nsec(&token, &item->mtime, 3790 inode->i_mtime.tv_nsec); 3791 3792 btrfs_set_token_timespec_sec(&token, &item->ctime, 3793 inode->i_ctime.tv_sec); 3794 btrfs_set_token_timespec_nsec(&token, &item->ctime, 3795 inode->i_ctime.tv_nsec); 3796 3797 btrfs_set_token_timespec_sec(&token, &item->otime, 3798 BTRFS_I(inode)->i_otime.tv_sec); 3799 btrfs_set_token_timespec_nsec(&token, &item->otime, 3800 BTRFS_I(inode)->i_otime.tv_nsec); 3801 3802 btrfs_set_token_inode_nbytes(&token, item, inode_get_bytes(inode)); 3803 btrfs_set_token_inode_generation(&token, item, 3804 BTRFS_I(inode)->generation); 3805 btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode)); 3806 btrfs_set_token_inode_transid(&token, item, trans->transid); 3807 btrfs_set_token_inode_rdev(&token, item, inode->i_rdev); 3808 btrfs_set_token_inode_flags(&token, item, BTRFS_I(inode)->flags); 3809 btrfs_set_token_inode_block_group(&token, item, 0); 3810 } 3811 3812 /* 3813 * copy everything in the in-memory inode into the btree. 3814 */ 3815 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans, 3816 struct btrfs_root *root, 3817 struct btrfs_inode *inode) 3818 { 3819 struct btrfs_inode_item *inode_item; 3820 struct btrfs_path *path; 3821 struct extent_buffer *leaf; 3822 int ret; 3823 3824 path = btrfs_alloc_path(); 3825 if (!path) 3826 return -ENOMEM; 3827 3828 ret = btrfs_lookup_inode(trans, root, path, &inode->location, 1); 3829 if (ret) { 3830 if (ret > 0) 3831 ret = -ENOENT; 3832 goto failed; 3833 } 3834 3835 leaf = path->nodes[0]; 3836 inode_item = btrfs_item_ptr(leaf, path->slots[0], 3837 struct btrfs_inode_item); 3838 3839 fill_inode_item(trans, leaf, inode_item, &inode->vfs_inode); 3840 btrfs_mark_buffer_dirty(leaf); 3841 btrfs_set_inode_last_trans(trans, inode); 3842 ret = 0; 3843 failed: 3844 btrfs_free_path(path); 3845 return ret; 3846 } 3847 3848 /* 3849 * copy everything in the in-memory inode into the btree. 3850 */ 3851 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans, 3852 struct btrfs_root *root, 3853 struct btrfs_inode *inode) 3854 { 3855 struct btrfs_fs_info *fs_info = root->fs_info; 3856 int ret; 3857 3858 /* 3859 * If the inode is a free space inode, we can deadlock during commit 3860 * if we put it into the delayed code. 3861 * 3862 * The data relocation inode should also be directly updated 3863 * without delay 3864 */ 3865 if (!btrfs_is_free_space_inode(inode) 3866 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID 3867 && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) { 3868 btrfs_update_root_times(trans, root); 3869 3870 ret = btrfs_delayed_update_inode(trans, root, inode); 3871 if (!ret) 3872 btrfs_set_inode_last_trans(trans, inode); 3873 return ret; 3874 } 3875 3876 return btrfs_update_inode_item(trans, root, inode); 3877 } 3878 3879 int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans, 3880 struct btrfs_root *root, struct btrfs_inode *inode) 3881 { 3882 int ret; 3883 3884 ret = btrfs_update_inode(trans, root, inode); 3885 if (ret == -ENOSPC) 3886 return btrfs_update_inode_item(trans, root, inode); 3887 return ret; 3888 } 3889 3890 /* 3891 * unlink helper that gets used here in inode.c and in the tree logging 3892 * recovery code. It remove a link in a directory with a given name, and 3893 * also drops the back refs in the inode to the directory 3894 */ 3895 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans, 3896 struct btrfs_root *root, 3897 struct btrfs_inode *dir, 3898 struct btrfs_inode *inode, 3899 const char *name, int name_len) 3900 { 3901 struct btrfs_fs_info *fs_info = root->fs_info; 3902 struct btrfs_path *path; 3903 int ret = 0; 3904 struct btrfs_dir_item *di; 3905 u64 index; 3906 u64 ino = btrfs_ino(inode); 3907 u64 dir_ino = btrfs_ino(dir); 3908 3909 path = btrfs_alloc_path(); 3910 if (!path) { 3911 ret = -ENOMEM; 3912 goto out; 3913 } 3914 3915 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 3916 name, name_len, -1); 3917 if (IS_ERR_OR_NULL(di)) { 3918 ret = di ? PTR_ERR(di) : -ENOENT; 3919 goto err; 3920 } 3921 ret = btrfs_delete_one_dir_name(trans, root, path, di); 3922 if (ret) 3923 goto err; 3924 btrfs_release_path(path); 3925 3926 /* 3927 * If we don't have dir index, we have to get it by looking up 3928 * the inode ref, since we get the inode ref, remove it directly, 3929 * it is unnecessary to do delayed deletion. 3930 * 3931 * But if we have dir index, needn't search inode ref to get it. 3932 * Since the inode ref is close to the inode item, it is better 3933 * that we delay to delete it, and just do this deletion when 3934 * we update the inode item. 3935 */ 3936 if (inode->dir_index) { 3937 ret = btrfs_delayed_delete_inode_ref(inode); 3938 if (!ret) { 3939 index = inode->dir_index; 3940 goto skip_backref; 3941 } 3942 } 3943 3944 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino, 3945 dir_ino, &index); 3946 if (ret) { 3947 btrfs_info(fs_info, 3948 "failed to delete reference to %.*s, inode %llu parent %llu", 3949 name_len, name, ino, dir_ino); 3950 btrfs_abort_transaction(trans, ret); 3951 goto err; 3952 } 3953 skip_backref: 3954 ret = btrfs_delete_delayed_dir_index(trans, dir, index); 3955 if (ret) { 3956 btrfs_abort_transaction(trans, ret); 3957 goto err; 3958 } 3959 3960 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, inode, 3961 dir_ino); 3962 if (ret != 0 && ret != -ENOENT) { 3963 btrfs_abort_transaction(trans, ret); 3964 goto err; 3965 } 3966 3967 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, dir, 3968 index); 3969 if (ret == -ENOENT) 3970 ret = 0; 3971 else if (ret) 3972 btrfs_abort_transaction(trans, ret); 3973 3974 /* 3975 * If we have a pending delayed iput we could end up with the final iput 3976 * being run in btrfs-cleaner context. If we have enough of these built 3977 * up we can end up burning a lot of time in btrfs-cleaner without any 3978 * way to throttle the unlinks. Since we're currently holding a ref on 3979 * the inode we can run the delayed iput here without any issues as the 3980 * final iput won't be done until after we drop the ref we're currently 3981 * holding. 3982 */ 3983 btrfs_run_delayed_iput(fs_info, inode); 3984 err: 3985 btrfs_free_path(path); 3986 if (ret) 3987 goto out; 3988 3989 btrfs_i_size_write(dir, dir->vfs_inode.i_size - name_len * 2); 3990 inode_inc_iversion(&inode->vfs_inode); 3991 inode_inc_iversion(&dir->vfs_inode); 3992 inode->vfs_inode.i_ctime = dir->vfs_inode.i_mtime = 3993 dir->vfs_inode.i_ctime = current_time(&inode->vfs_inode); 3994 ret = btrfs_update_inode(trans, root, dir); 3995 out: 3996 return ret; 3997 } 3998 3999 int btrfs_unlink_inode(struct btrfs_trans_handle *trans, 4000 struct btrfs_root *root, 4001 struct btrfs_inode *dir, struct btrfs_inode *inode, 4002 const char *name, int name_len) 4003 { 4004 int ret; 4005 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len); 4006 if (!ret) { 4007 drop_nlink(&inode->vfs_inode); 4008 ret = btrfs_update_inode(trans, root, inode); 4009 } 4010 return ret; 4011 } 4012 4013 /* 4014 * helper to start transaction for unlink and rmdir. 4015 * 4016 * unlink and rmdir are special in btrfs, they do not always free space, so 4017 * if we cannot make our reservations the normal way try and see if there is 4018 * plenty of slack room in the global reserve to migrate, otherwise we cannot 4019 * allow the unlink to occur. 4020 */ 4021 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir) 4022 { 4023 struct btrfs_root *root = BTRFS_I(dir)->root; 4024 4025 /* 4026 * 1 for the possible orphan item 4027 * 1 for the dir item 4028 * 1 for the dir index 4029 * 1 for the inode ref 4030 * 1 for the inode 4031 */ 4032 return btrfs_start_transaction_fallback_global_rsv(root, 5); 4033 } 4034 4035 static int btrfs_unlink(struct inode *dir, struct dentry *dentry) 4036 { 4037 struct btrfs_root *root = BTRFS_I(dir)->root; 4038 struct btrfs_trans_handle *trans; 4039 struct inode *inode = d_inode(dentry); 4040 int ret; 4041 4042 trans = __unlink_start_trans(dir); 4043 if (IS_ERR(trans)) 4044 return PTR_ERR(trans); 4045 4046 btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)), 4047 0); 4048 4049 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir), 4050 BTRFS_I(d_inode(dentry)), dentry->d_name.name, 4051 dentry->d_name.len); 4052 if (ret) 4053 goto out; 4054 4055 if (inode->i_nlink == 0) { 4056 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 4057 if (ret) 4058 goto out; 4059 } 4060 4061 out: 4062 btrfs_end_transaction(trans); 4063 btrfs_btree_balance_dirty(root->fs_info); 4064 return ret; 4065 } 4066 4067 static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans, 4068 struct inode *dir, struct dentry *dentry) 4069 { 4070 struct btrfs_root *root = BTRFS_I(dir)->root; 4071 struct btrfs_inode *inode = BTRFS_I(d_inode(dentry)); 4072 struct btrfs_path *path; 4073 struct extent_buffer *leaf; 4074 struct btrfs_dir_item *di; 4075 struct btrfs_key key; 4076 const char *name = dentry->d_name.name; 4077 int name_len = dentry->d_name.len; 4078 u64 index; 4079 int ret; 4080 u64 objectid; 4081 u64 dir_ino = btrfs_ino(BTRFS_I(dir)); 4082 4083 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) { 4084 objectid = inode->root->root_key.objectid; 4085 } else if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) { 4086 objectid = inode->location.objectid; 4087 } else { 4088 WARN_ON(1); 4089 return -EINVAL; 4090 } 4091 4092 path = btrfs_alloc_path(); 4093 if (!path) 4094 return -ENOMEM; 4095 4096 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 4097 name, name_len, -1); 4098 if (IS_ERR_OR_NULL(di)) { 4099 ret = di ? PTR_ERR(di) : -ENOENT; 4100 goto out; 4101 } 4102 4103 leaf = path->nodes[0]; 4104 btrfs_dir_item_key_to_cpu(leaf, di, &key); 4105 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid); 4106 ret = btrfs_delete_one_dir_name(trans, root, path, di); 4107 if (ret) { 4108 btrfs_abort_transaction(trans, ret); 4109 goto out; 4110 } 4111 btrfs_release_path(path); 4112 4113 /* 4114 * This is a placeholder inode for a subvolume we didn't have a 4115 * reference to at the time of the snapshot creation. In the meantime 4116 * we could have renamed the real subvol link into our snapshot, so 4117 * depending on btrfs_del_root_ref to return -ENOENT here is incorrect. 4118 * Instead simply lookup the dir_index_item for this entry so we can 4119 * remove it. Otherwise we know we have a ref to the root and we can 4120 * call btrfs_del_root_ref, and it _shouldn't_ fail. 4121 */ 4122 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) { 4123 di = btrfs_search_dir_index_item(root, path, dir_ino, 4124 name, name_len); 4125 if (IS_ERR_OR_NULL(di)) { 4126 if (!di) 4127 ret = -ENOENT; 4128 else 4129 ret = PTR_ERR(di); 4130 btrfs_abort_transaction(trans, ret); 4131 goto out; 4132 } 4133 4134 leaf = path->nodes[0]; 4135 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 4136 index = key.offset; 4137 btrfs_release_path(path); 4138 } else { 4139 ret = btrfs_del_root_ref(trans, objectid, 4140 root->root_key.objectid, dir_ino, 4141 &index, name, name_len); 4142 if (ret) { 4143 btrfs_abort_transaction(trans, ret); 4144 goto out; 4145 } 4146 } 4147 4148 ret = btrfs_delete_delayed_dir_index(trans, BTRFS_I(dir), index); 4149 if (ret) { 4150 btrfs_abort_transaction(trans, ret); 4151 goto out; 4152 } 4153 4154 btrfs_i_size_write(BTRFS_I(dir), dir->i_size - name_len * 2); 4155 inode_inc_iversion(dir); 4156 dir->i_mtime = dir->i_ctime = current_time(dir); 4157 ret = btrfs_update_inode_fallback(trans, root, BTRFS_I(dir)); 4158 if (ret) 4159 btrfs_abort_transaction(trans, ret); 4160 out: 4161 btrfs_free_path(path); 4162 return ret; 4163 } 4164 4165 /* 4166 * Helper to check if the subvolume references other subvolumes or if it's 4167 * default. 4168 */ 4169 static noinline int may_destroy_subvol(struct btrfs_root *root) 4170 { 4171 struct btrfs_fs_info *fs_info = root->fs_info; 4172 struct btrfs_path *path; 4173 struct btrfs_dir_item *di; 4174 struct btrfs_key key; 4175 u64 dir_id; 4176 int ret; 4177 4178 path = btrfs_alloc_path(); 4179 if (!path) 4180 return -ENOMEM; 4181 4182 /* Make sure this root isn't set as the default subvol */ 4183 dir_id = btrfs_super_root_dir(fs_info->super_copy); 4184 di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path, 4185 dir_id, "default", 7, 0); 4186 if (di && !IS_ERR(di)) { 4187 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key); 4188 if (key.objectid == root->root_key.objectid) { 4189 ret = -EPERM; 4190 btrfs_err(fs_info, 4191 "deleting default subvolume %llu is not allowed", 4192 key.objectid); 4193 goto out; 4194 } 4195 btrfs_release_path(path); 4196 } 4197 4198 key.objectid = root->root_key.objectid; 4199 key.type = BTRFS_ROOT_REF_KEY; 4200 key.offset = (u64)-1; 4201 4202 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 4203 if (ret < 0) 4204 goto out; 4205 BUG_ON(ret == 0); 4206 4207 ret = 0; 4208 if (path->slots[0] > 0) { 4209 path->slots[0]--; 4210 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 4211 if (key.objectid == root->root_key.objectid && 4212 key.type == BTRFS_ROOT_REF_KEY) 4213 ret = -ENOTEMPTY; 4214 } 4215 out: 4216 btrfs_free_path(path); 4217 return ret; 4218 } 4219 4220 /* Delete all dentries for inodes belonging to the root */ 4221 static void btrfs_prune_dentries(struct btrfs_root *root) 4222 { 4223 struct btrfs_fs_info *fs_info = root->fs_info; 4224 struct rb_node *node; 4225 struct rb_node *prev; 4226 struct btrfs_inode *entry; 4227 struct inode *inode; 4228 u64 objectid = 0; 4229 4230 if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 4231 WARN_ON(btrfs_root_refs(&root->root_item) != 0); 4232 4233 spin_lock(&root->inode_lock); 4234 again: 4235 node = root->inode_tree.rb_node; 4236 prev = NULL; 4237 while (node) { 4238 prev = node; 4239 entry = rb_entry(node, struct btrfs_inode, rb_node); 4240 4241 if (objectid < btrfs_ino(entry)) 4242 node = node->rb_left; 4243 else if (objectid > btrfs_ino(entry)) 4244 node = node->rb_right; 4245 else 4246 break; 4247 } 4248 if (!node) { 4249 while (prev) { 4250 entry = rb_entry(prev, struct btrfs_inode, rb_node); 4251 if (objectid <= btrfs_ino(entry)) { 4252 node = prev; 4253 break; 4254 } 4255 prev = rb_next(prev); 4256 } 4257 } 4258 while (node) { 4259 entry = rb_entry(node, struct btrfs_inode, rb_node); 4260 objectid = btrfs_ino(entry) + 1; 4261 inode = igrab(&entry->vfs_inode); 4262 if (inode) { 4263 spin_unlock(&root->inode_lock); 4264 if (atomic_read(&inode->i_count) > 1) 4265 d_prune_aliases(inode); 4266 /* 4267 * btrfs_drop_inode will have it removed from the inode 4268 * cache when its usage count hits zero. 4269 */ 4270 iput(inode); 4271 cond_resched(); 4272 spin_lock(&root->inode_lock); 4273 goto again; 4274 } 4275 4276 if (cond_resched_lock(&root->inode_lock)) 4277 goto again; 4278 4279 node = rb_next(node); 4280 } 4281 spin_unlock(&root->inode_lock); 4282 } 4283 4284 int btrfs_delete_subvolume(struct inode *dir, struct dentry *dentry) 4285 { 4286 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb); 4287 struct btrfs_root *root = BTRFS_I(dir)->root; 4288 struct inode *inode = d_inode(dentry); 4289 struct btrfs_root *dest = BTRFS_I(inode)->root; 4290 struct btrfs_trans_handle *trans; 4291 struct btrfs_block_rsv block_rsv; 4292 u64 root_flags; 4293 int ret; 4294 4295 /* 4296 * Don't allow to delete a subvolume with send in progress. This is 4297 * inside the inode lock so the error handling that has to drop the bit 4298 * again is not run concurrently. 4299 */ 4300 spin_lock(&dest->root_item_lock); 4301 if (dest->send_in_progress) { 4302 spin_unlock(&dest->root_item_lock); 4303 btrfs_warn(fs_info, 4304 "attempt to delete subvolume %llu during send", 4305 dest->root_key.objectid); 4306 return -EPERM; 4307 } 4308 root_flags = btrfs_root_flags(&dest->root_item); 4309 btrfs_set_root_flags(&dest->root_item, 4310 root_flags | BTRFS_ROOT_SUBVOL_DEAD); 4311 spin_unlock(&dest->root_item_lock); 4312 4313 down_write(&fs_info->subvol_sem); 4314 4315 ret = may_destroy_subvol(dest); 4316 if (ret) 4317 goto out_up_write; 4318 4319 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP); 4320 /* 4321 * One for dir inode, 4322 * two for dir entries, 4323 * two for root ref/backref. 4324 */ 4325 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true); 4326 if (ret) 4327 goto out_up_write; 4328 4329 trans = btrfs_start_transaction(root, 0); 4330 if (IS_ERR(trans)) { 4331 ret = PTR_ERR(trans); 4332 goto out_release; 4333 } 4334 trans->block_rsv = &block_rsv; 4335 trans->bytes_reserved = block_rsv.size; 4336 4337 btrfs_record_snapshot_destroy(trans, BTRFS_I(dir)); 4338 4339 ret = btrfs_unlink_subvol(trans, dir, dentry); 4340 if (ret) { 4341 btrfs_abort_transaction(trans, ret); 4342 goto out_end_trans; 4343 } 4344 4345 ret = btrfs_record_root_in_trans(trans, dest); 4346 if (ret) { 4347 btrfs_abort_transaction(trans, ret); 4348 goto out_end_trans; 4349 } 4350 4351 memset(&dest->root_item.drop_progress, 0, 4352 sizeof(dest->root_item.drop_progress)); 4353 btrfs_set_root_drop_level(&dest->root_item, 0); 4354 btrfs_set_root_refs(&dest->root_item, 0); 4355 4356 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) { 4357 ret = btrfs_insert_orphan_item(trans, 4358 fs_info->tree_root, 4359 dest->root_key.objectid); 4360 if (ret) { 4361 btrfs_abort_transaction(trans, ret); 4362 goto out_end_trans; 4363 } 4364 } 4365 4366 ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid, 4367 BTRFS_UUID_KEY_SUBVOL, 4368 dest->root_key.objectid); 4369 if (ret && ret != -ENOENT) { 4370 btrfs_abort_transaction(trans, ret); 4371 goto out_end_trans; 4372 } 4373 if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) { 4374 ret = btrfs_uuid_tree_remove(trans, 4375 dest->root_item.received_uuid, 4376 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 4377 dest->root_key.objectid); 4378 if (ret && ret != -ENOENT) { 4379 btrfs_abort_transaction(trans, ret); 4380 goto out_end_trans; 4381 } 4382 } 4383 4384 free_anon_bdev(dest->anon_dev); 4385 dest->anon_dev = 0; 4386 out_end_trans: 4387 trans->block_rsv = NULL; 4388 trans->bytes_reserved = 0; 4389 ret = btrfs_end_transaction(trans); 4390 inode->i_flags |= S_DEAD; 4391 out_release: 4392 btrfs_subvolume_release_metadata(root, &block_rsv); 4393 out_up_write: 4394 up_write(&fs_info->subvol_sem); 4395 if (ret) { 4396 spin_lock(&dest->root_item_lock); 4397 root_flags = btrfs_root_flags(&dest->root_item); 4398 btrfs_set_root_flags(&dest->root_item, 4399 root_flags & ~BTRFS_ROOT_SUBVOL_DEAD); 4400 spin_unlock(&dest->root_item_lock); 4401 } else { 4402 d_invalidate(dentry); 4403 btrfs_prune_dentries(dest); 4404 ASSERT(dest->send_in_progress == 0); 4405 } 4406 4407 return ret; 4408 } 4409 4410 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry) 4411 { 4412 struct inode *inode = d_inode(dentry); 4413 int err = 0; 4414 struct btrfs_root *root = BTRFS_I(dir)->root; 4415 struct btrfs_trans_handle *trans; 4416 u64 last_unlink_trans; 4417 4418 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE) 4419 return -ENOTEMPTY; 4420 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID) 4421 return btrfs_delete_subvolume(dir, dentry); 4422 4423 trans = __unlink_start_trans(dir); 4424 if (IS_ERR(trans)) 4425 return PTR_ERR(trans); 4426 4427 if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 4428 err = btrfs_unlink_subvol(trans, dir, dentry); 4429 goto out; 4430 } 4431 4432 err = btrfs_orphan_add(trans, BTRFS_I(inode)); 4433 if (err) 4434 goto out; 4435 4436 last_unlink_trans = BTRFS_I(inode)->last_unlink_trans; 4437 4438 /* now the directory is empty */ 4439 err = btrfs_unlink_inode(trans, root, BTRFS_I(dir), 4440 BTRFS_I(d_inode(dentry)), dentry->d_name.name, 4441 dentry->d_name.len); 4442 if (!err) { 4443 btrfs_i_size_write(BTRFS_I(inode), 0); 4444 /* 4445 * Propagate the last_unlink_trans value of the deleted dir to 4446 * its parent directory. This is to prevent an unrecoverable 4447 * log tree in the case we do something like this: 4448 * 1) create dir foo 4449 * 2) create snapshot under dir foo 4450 * 3) delete the snapshot 4451 * 4) rmdir foo 4452 * 5) mkdir foo 4453 * 6) fsync foo or some file inside foo 4454 */ 4455 if (last_unlink_trans >= trans->transid) 4456 BTRFS_I(dir)->last_unlink_trans = last_unlink_trans; 4457 } 4458 out: 4459 btrfs_end_transaction(trans); 4460 btrfs_btree_balance_dirty(root->fs_info); 4461 4462 return err; 4463 } 4464 4465 /* 4466 * Return this if we need to call truncate_block for the last bit of the 4467 * truncate. 4468 */ 4469 #define NEED_TRUNCATE_BLOCK 1 4470 4471 /* 4472 * Remove inode items from a given root. 4473 * 4474 * @trans: A transaction handle. 4475 * @root: The root from which to remove items. 4476 * @inode: The inode whose items we want to remove. 4477 * @new_size: The new i_size for the inode. This is only applicable when 4478 * @min_type is BTRFS_EXTENT_DATA_KEY, must be 0 otherwise. 4479 * @min_type: The minimum key type to remove. All keys with a type 4480 * greater than this value are removed and all keys with 4481 * this type are removed only if their offset is >= @new_size. 4482 * @extents_found: Output parameter that will contain the number of file 4483 * extent items that were removed or adjusted to the new 4484 * inode i_size. The caller is responsible for initializing 4485 * the counter. Also, it can be NULL if the caller does not 4486 * need this counter. 4487 * 4488 * Remove all keys associated with the inode from the given root that have a key 4489 * with a type greater than or equals to @min_type. When @min_type has a value of 4490 * BTRFS_EXTENT_DATA_KEY, only remove file extent items that have an offset value 4491 * greater than or equals to @new_size. If a file extent item that starts before 4492 * @new_size and ends after it is found, its length is adjusted. 4493 * 4494 * Returns: 0 on success, < 0 on error and NEED_TRUNCATE_BLOCK when @min_type is 4495 * BTRFS_EXTENT_DATA_KEY and the caller must truncate the last block. 4496 */ 4497 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans, 4498 struct btrfs_root *root, 4499 struct btrfs_inode *inode, 4500 u64 new_size, u32 min_type, 4501 u64 *extents_found) 4502 { 4503 struct btrfs_fs_info *fs_info = root->fs_info; 4504 struct btrfs_path *path; 4505 struct extent_buffer *leaf; 4506 struct btrfs_file_extent_item *fi; 4507 struct btrfs_key key; 4508 struct btrfs_key found_key; 4509 u64 extent_start = 0; 4510 u64 extent_num_bytes = 0; 4511 u64 extent_offset = 0; 4512 u64 item_end = 0; 4513 u64 last_size = new_size; 4514 u32 found_type = (u8)-1; 4515 int found_extent; 4516 int del_item; 4517 int pending_del_nr = 0; 4518 int pending_del_slot = 0; 4519 int extent_type = -1; 4520 int ret; 4521 u64 ino = btrfs_ino(inode); 4522 u64 bytes_deleted = 0; 4523 bool be_nice = false; 4524 bool should_throttle = false; 4525 const u64 lock_start = ALIGN_DOWN(new_size, fs_info->sectorsize); 4526 struct extent_state *cached_state = NULL; 4527 4528 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY); 4529 4530 /* 4531 * For non-free space inodes and non-shareable roots, we want to back 4532 * off from time to time. This means all inodes in subvolume roots, 4533 * reloc roots, and data reloc roots. 4534 */ 4535 if (!btrfs_is_free_space_inode(inode) && 4536 test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) 4537 be_nice = true; 4538 4539 path = btrfs_alloc_path(); 4540 if (!path) 4541 return -ENOMEM; 4542 path->reada = READA_BACK; 4543 4544 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 4545 lock_extent_bits(&inode->io_tree, lock_start, (u64)-1, 4546 &cached_state); 4547 4548 /* 4549 * We want to drop from the next block forward in case this 4550 * new size is not block aligned since we will be keeping the 4551 * last block of the extent just the way it is. 4552 */ 4553 btrfs_drop_extent_cache(inode, ALIGN(new_size, 4554 fs_info->sectorsize), 4555 (u64)-1, 0); 4556 } 4557 4558 /* 4559 * This function is also used to drop the items in the log tree before 4560 * we relog the inode, so if root != BTRFS_I(inode)->root, it means 4561 * it is used to drop the logged items. So we shouldn't kill the delayed 4562 * items. 4563 */ 4564 if (min_type == 0 && root == inode->root) 4565 btrfs_kill_delayed_inode_items(inode); 4566 4567 key.objectid = ino; 4568 key.offset = (u64)-1; 4569 key.type = (u8)-1; 4570 4571 search_again: 4572 /* 4573 * with a 16K leaf size and 128MB extents, you can actually queue 4574 * up a huge file in a single leaf. Most of the time that 4575 * bytes_deleted is > 0, it will be huge by the time we get here 4576 */ 4577 if (be_nice && bytes_deleted > SZ_32M && 4578 btrfs_should_end_transaction(trans)) { 4579 ret = -EAGAIN; 4580 goto out; 4581 } 4582 4583 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 4584 if (ret < 0) 4585 goto out; 4586 4587 if (ret > 0) { 4588 ret = 0; 4589 /* there are no items in the tree for us to truncate, we're 4590 * done 4591 */ 4592 if (path->slots[0] == 0) 4593 goto out; 4594 path->slots[0]--; 4595 } 4596 4597 while (1) { 4598 u64 clear_start = 0, clear_len = 0; 4599 4600 fi = NULL; 4601 leaf = path->nodes[0]; 4602 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 4603 found_type = found_key.type; 4604 4605 if (found_key.objectid != ino) 4606 break; 4607 4608 if (found_type < min_type) 4609 break; 4610 4611 item_end = found_key.offset; 4612 if (found_type == BTRFS_EXTENT_DATA_KEY) { 4613 fi = btrfs_item_ptr(leaf, path->slots[0], 4614 struct btrfs_file_extent_item); 4615 extent_type = btrfs_file_extent_type(leaf, fi); 4616 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 4617 item_end += 4618 btrfs_file_extent_num_bytes(leaf, fi); 4619 4620 trace_btrfs_truncate_show_fi_regular( 4621 inode, leaf, fi, found_key.offset); 4622 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 4623 item_end += btrfs_file_extent_ram_bytes(leaf, 4624 fi); 4625 4626 trace_btrfs_truncate_show_fi_inline( 4627 inode, leaf, fi, path->slots[0], 4628 found_key.offset); 4629 } 4630 item_end--; 4631 } 4632 if (found_type > min_type) { 4633 del_item = 1; 4634 } else { 4635 if (item_end < new_size) 4636 break; 4637 if (found_key.offset >= new_size) 4638 del_item = 1; 4639 else 4640 del_item = 0; 4641 } 4642 found_extent = 0; 4643 /* FIXME, shrink the extent if the ref count is only 1 */ 4644 if (found_type != BTRFS_EXTENT_DATA_KEY) 4645 goto delete; 4646 4647 if (extents_found != NULL) 4648 (*extents_found)++; 4649 4650 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 4651 u64 num_dec; 4652 4653 clear_start = found_key.offset; 4654 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi); 4655 if (!del_item) { 4656 u64 orig_num_bytes = 4657 btrfs_file_extent_num_bytes(leaf, fi); 4658 extent_num_bytes = ALIGN(new_size - 4659 found_key.offset, 4660 fs_info->sectorsize); 4661 clear_start = ALIGN(new_size, fs_info->sectorsize); 4662 btrfs_set_file_extent_num_bytes(leaf, fi, 4663 extent_num_bytes); 4664 num_dec = (orig_num_bytes - 4665 extent_num_bytes); 4666 if (test_bit(BTRFS_ROOT_SHAREABLE, 4667 &root->state) && 4668 extent_start != 0) 4669 inode_sub_bytes(&inode->vfs_inode, 4670 num_dec); 4671 btrfs_mark_buffer_dirty(leaf); 4672 } else { 4673 extent_num_bytes = 4674 btrfs_file_extent_disk_num_bytes(leaf, 4675 fi); 4676 extent_offset = found_key.offset - 4677 btrfs_file_extent_offset(leaf, fi); 4678 4679 /* FIXME blocksize != 4096 */ 4680 num_dec = btrfs_file_extent_num_bytes(leaf, fi); 4681 if (extent_start != 0) { 4682 found_extent = 1; 4683 if (test_bit(BTRFS_ROOT_SHAREABLE, 4684 &root->state)) 4685 inode_sub_bytes(&inode->vfs_inode, 4686 num_dec); 4687 } 4688 } 4689 clear_len = num_dec; 4690 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 4691 /* 4692 * we can't truncate inline items that have had 4693 * special encodings 4694 */ 4695 if (!del_item && 4696 btrfs_file_extent_encryption(leaf, fi) == 0 && 4697 btrfs_file_extent_other_encoding(leaf, fi) == 0 && 4698 btrfs_file_extent_compression(leaf, fi) == 0) { 4699 u32 size = (u32)(new_size - found_key.offset); 4700 4701 btrfs_set_file_extent_ram_bytes(leaf, fi, size); 4702 size = btrfs_file_extent_calc_inline_size(size); 4703 btrfs_truncate_item(path, size, 1); 4704 } else if (!del_item) { 4705 /* 4706 * We have to bail so the last_size is set to 4707 * just before this extent. 4708 */ 4709 ret = NEED_TRUNCATE_BLOCK; 4710 break; 4711 } else { 4712 /* 4713 * Inline extents are special, we just treat 4714 * them as a full sector worth in the file 4715 * extent tree just for simplicity sake. 4716 */ 4717 clear_len = fs_info->sectorsize; 4718 } 4719 4720 if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) 4721 inode_sub_bytes(&inode->vfs_inode, 4722 item_end + 1 - new_size); 4723 } 4724 delete: 4725 /* 4726 * We use btrfs_truncate_inode_items() to clean up log trees for 4727 * multiple fsyncs, and in this case we don't want to clear the 4728 * file extent range because it's just the log. 4729 */ 4730 if (root == inode->root) { 4731 ret = btrfs_inode_clear_file_extent_range(inode, 4732 clear_start, clear_len); 4733 if (ret) { 4734 btrfs_abort_transaction(trans, ret); 4735 break; 4736 } 4737 } 4738 4739 if (del_item) 4740 last_size = found_key.offset; 4741 else 4742 last_size = new_size; 4743 if (del_item) { 4744 if (!pending_del_nr) { 4745 /* no pending yet, add ourselves */ 4746 pending_del_slot = path->slots[0]; 4747 pending_del_nr = 1; 4748 } else if (pending_del_nr && 4749 path->slots[0] + 1 == pending_del_slot) { 4750 /* hop on the pending chunk */ 4751 pending_del_nr++; 4752 pending_del_slot = path->slots[0]; 4753 } else { 4754 BUG(); 4755 } 4756 } else { 4757 break; 4758 } 4759 should_throttle = false; 4760 4761 if (found_extent && 4762 root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 4763 struct btrfs_ref ref = { 0 }; 4764 4765 bytes_deleted += extent_num_bytes; 4766 4767 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, 4768 extent_start, extent_num_bytes, 0); 4769 ref.real_root = root->root_key.objectid; 4770 btrfs_init_data_ref(&ref, btrfs_header_owner(leaf), 4771 ino, extent_offset); 4772 ret = btrfs_free_extent(trans, &ref); 4773 if (ret) { 4774 btrfs_abort_transaction(trans, ret); 4775 break; 4776 } 4777 if (be_nice) { 4778 if (btrfs_should_throttle_delayed_refs(trans)) 4779 should_throttle = true; 4780 } 4781 } 4782 4783 if (found_type == BTRFS_INODE_ITEM_KEY) 4784 break; 4785 4786 if (path->slots[0] == 0 || 4787 path->slots[0] != pending_del_slot || 4788 should_throttle) { 4789 if (pending_del_nr) { 4790 ret = btrfs_del_items(trans, root, path, 4791 pending_del_slot, 4792 pending_del_nr); 4793 if (ret) { 4794 btrfs_abort_transaction(trans, ret); 4795 break; 4796 } 4797 pending_del_nr = 0; 4798 } 4799 btrfs_release_path(path); 4800 4801 /* 4802 * We can generate a lot of delayed refs, so we need to 4803 * throttle every once and a while and make sure we're 4804 * adding enough space to keep up with the work we are 4805 * generating. Since we hold a transaction here we 4806 * can't flush, and we don't want to FLUSH_LIMIT because 4807 * we could have generated too many delayed refs to 4808 * actually allocate, so just bail if we're short and 4809 * let the normal reservation dance happen higher up. 4810 */ 4811 if (should_throttle) { 4812 ret = btrfs_delayed_refs_rsv_refill(fs_info, 4813 BTRFS_RESERVE_NO_FLUSH); 4814 if (ret) { 4815 ret = -EAGAIN; 4816 break; 4817 } 4818 } 4819 goto search_again; 4820 } else { 4821 path->slots[0]--; 4822 } 4823 } 4824 out: 4825 if (ret >= 0 && pending_del_nr) { 4826 int err; 4827 4828 err = btrfs_del_items(trans, root, path, pending_del_slot, 4829 pending_del_nr); 4830 if (err) { 4831 btrfs_abort_transaction(trans, err); 4832 ret = err; 4833 } 4834 } 4835 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 4836 ASSERT(last_size >= new_size); 4837 if (!ret && last_size > new_size) 4838 last_size = new_size; 4839 btrfs_inode_safe_disk_i_size_write(inode, last_size); 4840 unlock_extent_cached(&inode->io_tree, lock_start, (u64)-1, 4841 &cached_state); 4842 } 4843 4844 btrfs_free_path(path); 4845 return ret; 4846 } 4847 4848 /* 4849 * btrfs_truncate_block - read, zero a chunk and write a block 4850 * @inode - inode that we're zeroing 4851 * @from - the offset to start zeroing 4852 * @len - the length to zero, 0 to zero the entire range respective to the 4853 * offset 4854 * @front - zero up to the offset instead of from the offset on 4855 * 4856 * This will find the block for the "from" offset and cow the block and zero the 4857 * part we want to zero. This is used with truncate and hole punching. 4858 */ 4859 int btrfs_truncate_block(struct btrfs_inode *inode, loff_t from, loff_t len, 4860 int front) 4861 { 4862 struct btrfs_fs_info *fs_info = inode->root->fs_info; 4863 struct address_space *mapping = inode->vfs_inode.i_mapping; 4864 struct extent_io_tree *io_tree = &inode->io_tree; 4865 struct btrfs_ordered_extent *ordered; 4866 struct extent_state *cached_state = NULL; 4867 struct extent_changeset *data_reserved = NULL; 4868 bool only_release_metadata = false; 4869 u32 blocksize = fs_info->sectorsize; 4870 pgoff_t index = from >> PAGE_SHIFT; 4871 unsigned offset = from & (blocksize - 1); 4872 struct page *page; 4873 gfp_t mask = btrfs_alloc_write_mask(mapping); 4874 size_t write_bytes = blocksize; 4875 int ret = 0; 4876 u64 block_start; 4877 u64 block_end; 4878 4879 if (IS_ALIGNED(offset, blocksize) && 4880 (!len || IS_ALIGNED(len, blocksize))) 4881 goto out; 4882 4883 block_start = round_down(from, blocksize); 4884 block_end = block_start + blocksize - 1; 4885 4886 ret = btrfs_check_data_free_space(inode, &data_reserved, block_start, 4887 blocksize); 4888 if (ret < 0) { 4889 if (btrfs_check_nocow_lock(inode, block_start, &write_bytes) > 0) { 4890 /* For nocow case, no need to reserve data space */ 4891 only_release_metadata = true; 4892 } else { 4893 goto out; 4894 } 4895 } 4896 ret = btrfs_delalloc_reserve_metadata(inode, blocksize); 4897 if (ret < 0) { 4898 if (!only_release_metadata) 4899 btrfs_free_reserved_data_space(inode, data_reserved, 4900 block_start, blocksize); 4901 goto out; 4902 } 4903 again: 4904 page = find_or_create_page(mapping, index, mask); 4905 if (!page) { 4906 btrfs_delalloc_release_space(inode, data_reserved, block_start, 4907 blocksize, true); 4908 btrfs_delalloc_release_extents(inode, blocksize); 4909 ret = -ENOMEM; 4910 goto out; 4911 } 4912 ret = set_page_extent_mapped(page); 4913 if (ret < 0) 4914 goto out_unlock; 4915 4916 if (!PageUptodate(page)) { 4917 ret = btrfs_readpage(NULL, page); 4918 lock_page(page); 4919 if (page->mapping != mapping) { 4920 unlock_page(page); 4921 put_page(page); 4922 goto again; 4923 } 4924 if (!PageUptodate(page)) { 4925 ret = -EIO; 4926 goto out_unlock; 4927 } 4928 } 4929 wait_on_page_writeback(page); 4930 4931 lock_extent_bits(io_tree, block_start, block_end, &cached_state); 4932 4933 ordered = btrfs_lookup_ordered_extent(inode, block_start); 4934 if (ordered) { 4935 unlock_extent_cached(io_tree, block_start, block_end, 4936 &cached_state); 4937 unlock_page(page); 4938 put_page(page); 4939 btrfs_start_ordered_extent(ordered, 1); 4940 btrfs_put_ordered_extent(ordered); 4941 goto again; 4942 } 4943 4944 clear_extent_bit(&inode->io_tree, block_start, block_end, 4945 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 4946 0, 0, &cached_state); 4947 4948 ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0, 4949 &cached_state); 4950 if (ret) { 4951 unlock_extent_cached(io_tree, block_start, block_end, 4952 &cached_state); 4953 goto out_unlock; 4954 } 4955 4956 if (offset != blocksize) { 4957 if (!len) 4958 len = blocksize - offset; 4959 if (front) 4960 memzero_page(page, (block_start - page_offset(page)), 4961 offset); 4962 else 4963 memzero_page(page, (block_start - page_offset(page)) + offset, 4964 len); 4965 flush_dcache_page(page); 4966 } 4967 ClearPageChecked(page); 4968 btrfs_page_set_dirty(fs_info, page, block_start, block_end + 1 - block_start); 4969 unlock_extent_cached(io_tree, block_start, block_end, &cached_state); 4970 4971 if (only_release_metadata) 4972 set_extent_bit(&inode->io_tree, block_start, block_end, 4973 EXTENT_NORESERVE, 0, NULL, NULL, GFP_NOFS, NULL); 4974 4975 out_unlock: 4976 if (ret) { 4977 if (only_release_metadata) 4978 btrfs_delalloc_release_metadata(inode, blocksize, true); 4979 else 4980 btrfs_delalloc_release_space(inode, data_reserved, 4981 block_start, blocksize, true); 4982 } 4983 btrfs_delalloc_release_extents(inode, blocksize); 4984 unlock_page(page); 4985 put_page(page); 4986 out: 4987 if (only_release_metadata) 4988 btrfs_check_nocow_unlock(inode); 4989 extent_changeset_free(data_reserved); 4990 return ret; 4991 } 4992 4993 static int maybe_insert_hole(struct btrfs_root *root, struct btrfs_inode *inode, 4994 u64 offset, u64 len) 4995 { 4996 struct btrfs_fs_info *fs_info = root->fs_info; 4997 struct btrfs_trans_handle *trans; 4998 struct btrfs_drop_extents_args drop_args = { 0 }; 4999 int ret; 5000 5001 /* 5002 * Still need to make sure the inode looks like it's been updated so 5003 * that any holes get logged if we fsync. 5004 */ 5005 if (btrfs_fs_incompat(fs_info, NO_HOLES)) { 5006 inode->last_trans = fs_info->generation; 5007 inode->last_sub_trans = root->log_transid; 5008 inode->last_log_commit = root->last_log_commit; 5009 return 0; 5010 } 5011 5012 /* 5013 * 1 - for the one we're dropping 5014 * 1 - for the one we're adding 5015 * 1 - for updating the inode. 5016 */ 5017 trans = btrfs_start_transaction(root, 3); 5018 if (IS_ERR(trans)) 5019 return PTR_ERR(trans); 5020 5021 drop_args.start = offset; 5022 drop_args.end = offset + len; 5023 drop_args.drop_cache = true; 5024 5025 ret = btrfs_drop_extents(trans, root, inode, &drop_args); 5026 if (ret) { 5027 btrfs_abort_transaction(trans, ret); 5028 btrfs_end_transaction(trans); 5029 return ret; 5030 } 5031 5032 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), 5033 offset, 0, 0, len, 0, len, 0, 0, 0); 5034 if (ret) { 5035 btrfs_abort_transaction(trans, ret); 5036 } else { 5037 btrfs_update_inode_bytes(inode, 0, drop_args.bytes_found); 5038 btrfs_update_inode(trans, root, inode); 5039 } 5040 btrfs_end_transaction(trans); 5041 return ret; 5042 } 5043 5044 /* 5045 * This function puts in dummy file extents for the area we're creating a hole 5046 * for. So if we are truncating this file to a larger size we need to insert 5047 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for 5048 * the range between oldsize and size 5049 */ 5050 int btrfs_cont_expand(struct btrfs_inode *inode, loff_t oldsize, loff_t size) 5051 { 5052 struct btrfs_root *root = inode->root; 5053 struct btrfs_fs_info *fs_info = root->fs_info; 5054 struct extent_io_tree *io_tree = &inode->io_tree; 5055 struct extent_map *em = NULL; 5056 struct extent_state *cached_state = NULL; 5057 struct extent_map_tree *em_tree = &inode->extent_tree; 5058 u64 hole_start = ALIGN(oldsize, fs_info->sectorsize); 5059 u64 block_end = ALIGN(size, fs_info->sectorsize); 5060 u64 last_byte; 5061 u64 cur_offset; 5062 u64 hole_size; 5063 int err = 0; 5064 5065 /* 5066 * If our size started in the middle of a block we need to zero out the 5067 * rest of the block before we expand the i_size, otherwise we could 5068 * expose stale data. 5069 */ 5070 err = btrfs_truncate_block(inode, oldsize, 0, 0); 5071 if (err) 5072 return err; 5073 5074 if (size <= hole_start) 5075 return 0; 5076 5077 btrfs_lock_and_flush_ordered_range(inode, hole_start, block_end - 1, 5078 &cached_state); 5079 cur_offset = hole_start; 5080 while (1) { 5081 em = btrfs_get_extent(inode, NULL, 0, cur_offset, 5082 block_end - cur_offset); 5083 if (IS_ERR(em)) { 5084 err = PTR_ERR(em); 5085 em = NULL; 5086 break; 5087 } 5088 last_byte = min(extent_map_end(em), block_end); 5089 last_byte = ALIGN(last_byte, fs_info->sectorsize); 5090 hole_size = last_byte - cur_offset; 5091 5092 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) { 5093 struct extent_map *hole_em; 5094 5095 err = maybe_insert_hole(root, inode, cur_offset, 5096 hole_size); 5097 if (err) 5098 break; 5099 5100 err = btrfs_inode_set_file_extent_range(inode, 5101 cur_offset, hole_size); 5102 if (err) 5103 break; 5104 5105 btrfs_drop_extent_cache(inode, cur_offset, 5106 cur_offset + hole_size - 1, 0); 5107 hole_em = alloc_extent_map(); 5108 if (!hole_em) { 5109 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 5110 &inode->runtime_flags); 5111 goto next; 5112 } 5113 hole_em->start = cur_offset; 5114 hole_em->len = hole_size; 5115 hole_em->orig_start = cur_offset; 5116 5117 hole_em->block_start = EXTENT_MAP_HOLE; 5118 hole_em->block_len = 0; 5119 hole_em->orig_block_len = 0; 5120 hole_em->ram_bytes = hole_size; 5121 hole_em->compress_type = BTRFS_COMPRESS_NONE; 5122 hole_em->generation = fs_info->generation; 5123 5124 while (1) { 5125 write_lock(&em_tree->lock); 5126 err = add_extent_mapping(em_tree, hole_em, 1); 5127 write_unlock(&em_tree->lock); 5128 if (err != -EEXIST) 5129 break; 5130 btrfs_drop_extent_cache(inode, cur_offset, 5131 cur_offset + 5132 hole_size - 1, 0); 5133 } 5134 free_extent_map(hole_em); 5135 } else { 5136 err = btrfs_inode_set_file_extent_range(inode, 5137 cur_offset, hole_size); 5138 if (err) 5139 break; 5140 } 5141 next: 5142 free_extent_map(em); 5143 em = NULL; 5144 cur_offset = last_byte; 5145 if (cur_offset >= block_end) 5146 break; 5147 } 5148 free_extent_map(em); 5149 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state); 5150 return err; 5151 } 5152 5153 static int btrfs_setsize(struct inode *inode, struct iattr *attr) 5154 { 5155 struct btrfs_root *root = BTRFS_I(inode)->root; 5156 struct btrfs_trans_handle *trans; 5157 loff_t oldsize = i_size_read(inode); 5158 loff_t newsize = attr->ia_size; 5159 int mask = attr->ia_valid; 5160 int ret; 5161 5162 /* 5163 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a 5164 * special case where we need to update the times despite not having 5165 * these flags set. For all other operations the VFS set these flags 5166 * explicitly if it wants a timestamp update. 5167 */ 5168 if (newsize != oldsize) { 5169 inode_inc_iversion(inode); 5170 if (!(mask & (ATTR_CTIME | ATTR_MTIME))) 5171 inode->i_ctime = inode->i_mtime = 5172 current_time(inode); 5173 } 5174 5175 if (newsize > oldsize) { 5176 /* 5177 * Don't do an expanding truncate while snapshotting is ongoing. 5178 * This is to ensure the snapshot captures a fully consistent 5179 * state of this file - if the snapshot captures this expanding 5180 * truncation, it must capture all writes that happened before 5181 * this truncation. 5182 */ 5183 btrfs_drew_write_lock(&root->snapshot_lock); 5184 ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, newsize); 5185 if (ret) { 5186 btrfs_drew_write_unlock(&root->snapshot_lock); 5187 return ret; 5188 } 5189 5190 trans = btrfs_start_transaction(root, 1); 5191 if (IS_ERR(trans)) { 5192 btrfs_drew_write_unlock(&root->snapshot_lock); 5193 return PTR_ERR(trans); 5194 } 5195 5196 i_size_write(inode, newsize); 5197 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0); 5198 pagecache_isize_extended(inode, oldsize, newsize); 5199 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 5200 btrfs_drew_write_unlock(&root->snapshot_lock); 5201 btrfs_end_transaction(trans); 5202 } else { 5203 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5204 5205 if (btrfs_is_zoned(fs_info)) { 5206 ret = btrfs_wait_ordered_range(inode, 5207 ALIGN(newsize, fs_info->sectorsize), 5208 (u64)-1); 5209 if (ret) 5210 return ret; 5211 } 5212 5213 /* 5214 * We're truncating a file that used to have good data down to 5215 * zero. Make sure any new writes to the file get on disk 5216 * on close. 5217 */ 5218 if (newsize == 0) 5219 set_bit(BTRFS_INODE_FLUSH_ON_CLOSE, 5220 &BTRFS_I(inode)->runtime_flags); 5221 5222 truncate_setsize(inode, newsize); 5223 5224 inode_dio_wait(inode); 5225 5226 ret = btrfs_truncate(inode, newsize == oldsize); 5227 if (ret && inode->i_nlink) { 5228 int err; 5229 5230 /* 5231 * Truncate failed, so fix up the in-memory size. We 5232 * adjusted disk_i_size down as we removed extents, so 5233 * wait for disk_i_size to be stable and then update the 5234 * in-memory size to match. 5235 */ 5236 err = btrfs_wait_ordered_range(inode, 0, (u64)-1); 5237 if (err) 5238 return err; 5239 i_size_write(inode, BTRFS_I(inode)->disk_i_size); 5240 } 5241 } 5242 5243 return ret; 5244 } 5245 5246 static int btrfs_setattr(struct user_namespace *mnt_userns, struct dentry *dentry, 5247 struct iattr *attr) 5248 { 5249 struct inode *inode = d_inode(dentry); 5250 struct btrfs_root *root = BTRFS_I(inode)->root; 5251 int err; 5252 5253 if (btrfs_root_readonly(root)) 5254 return -EROFS; 5255 5256 err = setattr_prepare(&init_user_ns, dentry, attr); 5257 if (err) 5258 return err; 5259 5260 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 5261 err = btrfs_setsize(inode, attr); 5262 if (err) 5263 return err; 5264 } 5265 5266 if (attr->ia_valid) { 5267 setattr_copy(&init_user_ns, inode, attr); 5268 inode_inc_iversion(inode); 5269 err = btrfs_dirty_inode(inode); 5270 5271 if (!err && attr->ia_valid & ATTR_MODE) 5272 err = posix_acl_chmod(&init_user_ns, inode, 5273 inode->i_mode); 5274 } 5275 5276 return err; 5277 } 5278 5279 /* 5280 * While truncating the inode pages during eviction, we get the VFS calling 5281 * btrfs_invalidatepage() against each page of the inode. This is slow because 5282 * the calls to btrfs_invalidatepage() result in a huge amount of calls to 5283 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting 5284 * extent_state structures over and over, wasting lots of time. 5285 * 5286 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all 5287 * those expensive operations on a per page basis and do only the ordered io 5288 * finishing, while we release here the extent_map and extent_state structures, 5289 * without the excessive merging and splitting. 5290 */ 5291 static void evict_inode_truncate_pages(struct inode *inode) 5292 { 5293 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 5294 struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree; 5295 struct rb_node *node; 5296 5297 ASSERT(inode->i_state & I_FREEING); 5298 truncate_inode_pages_final(&inode->i_data); 5299 5300 write_lock(&map_tree->lock); 5301 while (!RB_EMPTY_ROOT(&map_tree->map.rb_root)) { 5302 struct extent_map *em; 5303 5304 node = rb_first_cached(&map_tree->map); 5305 em = rb_entry(node, struct extent_map, rb_node); 5306 clear_bit(EXTENT_FLAG_PINNED, &em->flags); 5307 clear_bit(EXTENT_FLAG_LOGGING, &em->flags); 5308 remove_extent_mapping(map_tree, em); 5309 free_extent_map(em); 5310 if (need_resched()) { 5311 write_unlock(&map_tree->lock); 5312 cond_resched(); 5313 write_lock(&map_tree->lock); 5314 } 5315 } 5316 write_unlock(&map_tree->lock); 5317 5318 /* 5319 * Keep looping until we have no more ranges in the io tree. 5320 * We can have ongoing bios started by readahead that have 5321 * their endio callback (extent_io.c:end_bio_extent_readpage) 5322 * still in progress (unlocked the pages in the bio but did not yet 5323 * unlocked the ranges in the io tree). Therefore this means some 5324 * ranges can still be locked and eviction started because before 5325 * submitting those bios, which are executed by a separate task (work 5326 * queue kthread), inode references (inode->i_count) were not taken 5327 * (which would be dropped in the end io callback of each bio). 5328 * Therefore here we effectively end up waiting for those bios and 5329 * anyone else holding locked ranges without having bumped the inode's 5330 * reference count - if we don't do it, when they access the inode's 5331 * io_tree to unlock a range it may be too late, leading to an 5332 * use-after-free issue. 5333 */ 5334 spin_lock(&io_tree->lock); 5335 while (!RB_EMPTY_ROOT(&io_tree->state)) { 5336 struct extent_state *state; 5337 struct extent_state *cached_state = NULL; 5338 u64 start; 5339 u64 end; 5340 unsigned state_flags; 5341 5342 node = rb_first(&io_tree->state); 5343 state = rb_entry(node, struct extent_state, rb_node); 5344 start = state->start; 5345 end = state->end; 5346 state_flags = state->state; 5347 spin_unlock(&io_tree->lock); 5348 5349 lock_extent_bits(io_tree, start, end, &cached_state); 5350 5351 /* 5352 * If still has DELALLOC flag, the extent didn't reach disk, 5353 * and its reserved space won't be freed by delayed_ref. 5354 * So we need to free its reserved space here. 5355 * (Refer to comment in btrfs_invalidatepage, case 2) 5356 * 5357 * Note, end is the bytenr of last byte, so we need + 1 here. 5358 */ 5359 if (state_flags & EXTENT_DELALLOC) 5360 btrfs_qgroup_free_data(BTRFS_I(inode), NULL, start, 5361 end - start + 1); 5362 5363 clear_extent_bit(io_tree, start, end, 5364 EXTENT_LOCKED | EXTENT_DELALLOC | 5365 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1, 5366 &cached_state); 5367 5368 cond_resched(); 5369 spin_lock(&io_tree->lock); 5370 } 5371 spin_unlock(&io_tree->lock); 5372 } 5373 5374 static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root, 5375 struct btrfs_block_rsv *rsv) 5376 { 5377 struct btrfs_fs_info *fs_info = root->fs_info; 5378 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 5379 struct btrfs_trans_handle *trans; 5380 u64 delayed_refs_extra = btrfs_calc_insert_metadata_size(fs_info, 1); 5381 int ret; 5382 5383 /* 5384 * Eviction should be taking place at some place safe because of our 5385 * delayed iputs. However the normal flushing code will run delayed 5386 * iputs, so we cannot use FLUSH_ALL otherwise we'll deadlock. 5387 * 5388 * We reserve the delayed_refs_extra here again because we can't use 5389 * btrfs_start_transaction(root, 0) for the same deadlocky reason as 5390 * above. We reserve our extra bit here because we generate a ton of 5391 * delayed refs activity by truncating. 5392 * 5393 * If we cannot make our reservation we'll attempt to steal from the 5394 * global reserve, because we really want to be able to free up space. 5395 */ 5396 ret = btrfs_block_rsv_refill(root, rsv, rsv->size + delayed_refs_extra, 5397 BTRFS_RESERVE_FLUSH_EVICT); 5398 if (ret) { 5399 /* 5400 * Try to steal from the global reserve if there is space for 5401 * it. 5402 */ 5403 if (btrfs_check_space_for_delayed_refs(fs_info) || 5404 btrfs_block_rsv_migrate(global_rsv, rsv, rsv->size, 0)) { 5405 btrfs_warn(fs_info, 5406 "could not allocate space for delete; will truncate on mount"); 5407 return ERR_PTR(-ENOSPC); 5408 } 5409 delayed_refs_extra = 0; 5410 } 5411 5412 trans = btrfs_join_transaction(root); 5413 if (IS_ERR(trans)) 5414 return trans; 5415 5416 if (delayed_refs_extra) { 5417 trans->block_rsv = &fs_info->trans_block_rsv; 5418 trans->bytes_reserved = delayed_refs_extra; 5419 btrfs_block_rsv_migrate(rsv, trans->block_rsv, 5420 delayed_refs_extra, 1); 5421 } 5422 return trans; 5423 } 5424 5425 void btrfs_evict_inode(struct inode *inode) 5426 { 5427 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5428 struct btrfs_trans_handle *trans; 5429 struct btrfs_root *root = BTRFS_I(inode)->root; 5430 struct btrfs_block_rsv *rsv; 5431 int ret; 5432 5433 trace_btrfs_inode_evict(inode); 5434 5435 if (!root) { 5436 clear_inode(inode); 5437 return; 5438 } 5439 5440 evict_inode_truncate_pages(inode); 5441 5442 if (inode->i_nlink && 5443 ((btrfs_root_refs(&root->root_item) != 0 && 5444 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) || 5445 btrfs_is_free_space_inode(BTRFS_I(inode)))) 5446 goto no_delete; 5447 5448 if (is_bad_inode(inode)) 5449 goto no_delete; 5450 5451 btrfs_free_io_failure_record(BTRFS_I(inode), 0, (u64)-1); 5452 5453 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) 5454 goto no_delete; 5455 5456 if (inode->i_nlink > 0) { 5457 BUG_ON(btrfs_root_refs(&root->root_item) != 0 && 5458 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID); 5459 goto no_delete; 5460 } 5461 5462 ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode)); 5463 if (ret) 5464 goto no_delete; 5465 5466 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP); 5467 if (!rsv) 5468 goto no_delete; 5469 rsv->size = btrfs_calc_metadata_size(fs_info, 1); 5470 rsv->failfast = 1; 5471 5472 btrfs_i_size_write(BTRFS_I(inode), 0); 5473 5474 while (1) { 5475 trans = evict_refill_and_join(root, rsv); 5476 if (IS_ERR(trans)) 5477 goto free_rsv; 5478 5479 trans->block_rsv = rsv; 5480 5481 ret = btrfs_truncate_inode_items(trans, root, BTRFS_I(inode), 5482 0, 0, NULL); 5483 trans->block_rsv = &fs_info->trans_block_rsv; 5484 btrfs_end_transaction(trans); 5485 btrfs_btree_balance_dirty(fs_info); 5486 if (ret && ret != -ENOSPC && ret != -EAGAIN) 5487 goto free_rsv; 5488 else if (!ret) 5489 break; 5490 } 5491 5492 /* 5493 * Errors here aren't a big deal, it just means we leave orphan items in 5494 * the tree. They will be cleaned up on the next mount. If the inode 5495 * number gets reused, cleanup deletes the orphan item without doing 5496 * anything, and unlink reuses the existing orphan item. 5497 * 5498 * If it turns out that we are dropping too many of these, we might want 5499 * to add a mechanism for retrying these after a commit. 5500 */ 5501 trans = evict_refill_and_join(root, rsv); 5502 if (!IS_ERR(trans)) { 5503 trans->block_rsv = rsv; 5504 btrfs_orphan_del(trans, BTRFS_I(inode)); 5505 trans->block_rsv = &fs_info->trans_block_rsv; 5506 btrfs_end_transaction(trans); 5507 } 5508 5509 free_rsv: 5510 btrfs_free_block_rsv(fs_info, rsv); 5511 no_delete: 5512 /* 5513 * If we didn't successfully delete, the orphan item will still be in 5514 * the tree and we'll retry on the next mount. Again, we might also want 5515 * to retry these periodically in the future. 5516 */ 5517 btrfs_remove_delayed_node(BTRFS_I(inode)); 5518 clear_inode(inode); 5519 } 5520 5521 /* 5522 * Return the key found in the dir entry in the location pointer, fill @type 5523 * with BTRFS_FT_*, and return 0. 5524 * 5525 * If no dir entries were found, returns -ENOENT. 5526 * If found a corrupted location in dir entry, returns -EUCLEAN. 5527 */ 5528 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry, 5529 struct btrfs_key *location, u8 *type) 5530 { 5531 const char *name = dentry->d_name.name; 5532 int namelen = dentry->d_name.len; 5533 struct btrfs_dir_item *di; 5534 struct btrfs_path *path; 5535 struct btrfs_root *root = BTRFS_I(dir)->root; 5536 int ret = 0; 5537 5538 path = btrfs_alloc_path(); 5539 if (!path) 5540 return -ENOMEM; 5541 5542 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(BTRFS_I(dir)), 5543 name, namelen, 0); 5544 if (IS_ERR_OR_NULL(di)) { 5545 ret = di ? PTR_ERR(di) : -ENOENT; 5546 goto out; 5547 } 5548 5549 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location); 5550 if (location->type != BTRFS_INODE_ITEM_KEY && 5551 location->type != BTRFS_ROOT_ITEM_KEY) { 5552 ret = -EUCLEAN; 5553 btrfs_warn(root->fs_info, 5554 "%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))", 5555 __func__, name, btrfs_ino(BTRFS_I(dir)), 5556 location->objectid, location->type, location->offset); 5557 } 5558 if (!ret) 5559 *type = btrfs_dir_type(path->nodes[0], di); 5560 out: 5561 btrfs_free_path(path); 5562 return ret; 5563 } 5564 5565 /* 5566 * when we hit a tree root in a directory, the btrfs part of the inode 5567 * needs to be changed to reflect the root directory of the tree root. This 5568 * is kind of like crossing a mount point. 5569 */ 5570 static int fixup_tree_root_location(struct btrfs_fs_info *fs_info, 5571 struct inode *dir, 5572 struct dentry *dentry, 5573 struct btrfs_key *location, 5574 struct btrfs_root **sub_root) 5575 { 5576 struct btrfs_path *path; 5577 struct btrfs_root *new_root; 5578 struct btrfs_root_ref *ref; 5579 struct extent_buffer *leaf; 5580 struct btrfs_key key; 5581 int ret; 5582 int err = 0; 5583 5584 path = btrfs_alloc_path(); 5585 if (!path) { 5586 err = -ENOMEM; 5587 goto out; 5588 } 5589 5590 err = -ENOENT; 5591 key.objectid = BTRFS_I(dir)->root->root_key.objectid; 5592 key.type = BTRFS_ROOT_REF_KEY; 5593 key.offset = location->objectid; 5594 5595 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 5596 if (ret) { 5597 if (ret < 0) 5598 err = ret; 5599 goto out; 5600 } 5601 5602 leaf = path->nodes[0]; 5603 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); 5604 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(BTRFS_I(dir)) || 5605 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len) 5606 goto out; 5607 5608 ret = memcmp_extent_buffer(leaf, dentry->d_name.name, 5609 (unsigned long)(ref + 1), 5610 dentry->d_name.len); 5611 if (ret) 5612 goto out; 5613 5614 btrfs_release_path(path); 5615 5616 new_root = btrfs_get_fs_root(fs_info, location->objectid, true); 5617 if (IS_ERR(new_root)) { 5618 err = PTR_ERR(new_root); 5619 goto out; 5620 } 5621 5622 *sub_root = new_root; 5623 location->objectid = btrfs_root_dirid(&new_root->root_item); 5624 location->type = BTRFS_INODE_ITEM_KEY; 5625 location->offset = 0; 5626 err = 0; 5627 out: 5628 btrfs_free_path(path); 5629 return err; 5630 } 5631 5632 static void inode_tree_add(struct inode *inode) 5633 { 5634 struct btrfs_root *root = BTRFS_I(inode)->root; 5635 struct btrfs_inode *entry; 5636 struct rb_node **p; 5637 struct rb_node *parent; 5638 struct rb_node *new = &BTRFS_I(inode)->rb_node; 5639 u64 ino = btrfs_ino(BTRFS_I(inode)); 5640 5641 if (inode_unhashed(inode)) 5642 return; 5643 parent = NULL; 5644 spin_lock(&root->inode_lock); 5645 p = &root->inode_tree.rb_node; 5646 while (*p) { 5647 parent = *p; 5648 entry = rb_entry(parent, struct btrfs_inode, rb_node); 5649 5650 if (ino < btrfs_ino(entry)) 5651 p = &parent->rb_left; 5652 else if (ino > btrfs_ino(entry)) 5653 p = &parent->rb_right; 5654 else { 5655 WARN_ON(!(entry->vfs_inode.i_state & 5656 (I_WILL_FREE | I_FREEING))); 5657 rb_replace_node(parent, new, &root->inode_tree); 5658 RB_CLEAR_NODE(parent); 5659 spin_unlock(&root->inode_lock); 5660 return; 5661 } 5662 } 5663 rb_link_node(new, parent, p); 5664 rb_insert_color(new, &root->inode_tree); 5665 spin_unlock(&root->inode_lock); 5666 } 5667 5668 static void inode_tree_del(struct btrfs_inode *inode) 5669 { 5670 struct btrfs_root *root = inode->root; 5671 int empty = 0; 5672 5673 spin_lock(&root->inode_lock); 5674 if (!RB_EMPTY_NODE(&inode->rb_node)) { 5675 rb_erase(&inode->rb_node, &root->inode_tree); 5676 RB_CLEAR_NODE(&inode->rb_node); 5677 empty = RB_EMPTY_ROOT(&root->inode_tree); 5678 } 5679 spin_unlock(&root->inode_lock); 5680 5681 if (empty && btrfs_root_refs(&root->root_item) == 0) { 5682 spin_lock(&root->inode_lock); 5683 empty = RB_EMPTY_ROOT(&root->inode_tree); 5684 spin_unlock(&root->inode_lock); 5685 if (empty) 5686 btrfs_add_dead_root(root); 5687 } 5688 } 5689 5690 5691 static int btrfs_init_locked_inode(struct inode *inode, void *p) 5692 { 5693 struct btrfs_iget_args *args = p; 5694 5695 inode->i_ino = args->ino; 5696 BTRFS_I(inode)->location.objectid = args->ino; 5697 BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY; 5698 BTRFS_I(inode)->location.offset = 0; 5699 BTRFS_I(inode)->root = btrfs_grab_root(args->root); 5700 BUG_ON(args->root && !BTRFS_I(inode)->root); 5701 return 0; 5702 } 5703 5704 static int btrfs_find_actor(struct inode *inode, void *opaque) 5705 { 5706 struct btrfs_iget_args *args = opaque; 5707 5708 return args->ino == BTRFS_I(inode)->location.objectid && 5709 args->root == BTRFS_I(inode)->root; 5710 } 5711 5712 static struct inode *btrfs_iget_locked(struct super_block *s, u64 ino, 5713 struct btrfs_root *root) 5714 { 5715 struct inode *inode; 5716 struct btrfs_iget_args args; 5717 unsigned long hashval = btrfs_inode_hash(ino, root); 5718 5719 args.ino = ino; 5720 args.root = root; 5721 5722 inode = iget5_locked(s, hashval, btrfs_find_actor, 5723 btrfs_init_locked_inode, 5724 (void *)&args); 5725 return inode; 5726 } 5727 5728 /* 5729 * Get an inode object given its inode number and corresponding root. 5730 * Path can be preallocated to prevent recursing back to iget through 5731 * allocator. NULL is also valid but may require an additional allocation 5732 * later. 5733 */ 5734 struct inode *btrfs_iget_path(struct super_block *s, u64 ino, 5735 struct btrfs_root *root, struct btrfs_path *path) 5736 { 5737 struct inode *inode; 5738 5739 inode = btrfs_iget_locked(s, ino, root); 5740 if (!inode) 5741 return ERR_PTR(-ENOMEM); 5742 5743 if (inode->i_state & I_NEW) { 5744 int ret; 5745 5746 ret = btrfs_read_locked_inode(inode, path); 5747 if (!ret) { 5748 inode_tree_add(inode); 5749 unlock_new_inode(inode); 5750 } else { 5751 iget_failed(inode); 5752 /* 5753 * ret > 0 can come from btrfs_search_slot called by 5754 * btrfs_read_locked_inode, this means the inode item 5755 * was not found. 5756 */ 5757 if (ret > 0) 5758 ret = -ENOENT; 5759 inode = ERR_PTR(ret); 5760 } 5761 } 5762 5763 return inode; 5764 } 5765 5766 struct inode *btrfs_iget(struct super_block *s, u64 ino, struct btrfs_root *root) 5767 { 5768 return btrfs_iget_path(s, ino, root, NULL); 5769 } 5770 5771 static struct inode *new_simple_dir(struct super_block *s, 5772 struct btrfs_key *key, 5773 struct btrfs_root *root) 5774 { 5775 struct inode *inode = new_inode(s); 5776 5777 if (!inode) 5778 return ERR_PTR(-ENOMEM); 5779 5780 BTRFS_I(inode)->root = btrfs_grab_root(root); 5781 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key)); 5782 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags); 5783 5784 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID; 5785 /* 5786 * We only need lookup, the rest is read-only and there's no inode 5787 * associated with the dentry 5788 */ 5789 inode->i_op = &simple_dir_inode_operations; 5790 inode->i_opflags &= ~IOP_XATTR; 5791 inode->i_fop = &simple_dir_operations; 5792 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO; 5793 inode->i_mtime = current_time(inode); 5794 inode->i_atime = inode->i_mtime; 5795 inode->i_ctime = inode->i_mtime; 5796 BTRFS_I(inode)->i_otime = inode->i_mtime; 5797 5798 return inode; 5799 } 5800 5801 static inline u8 btrfs_inode_type(struct inode *inode) 5802 { 5803 /* 5804 * Compile-time asserts that generic FT_* types still match 5805 * BTRFS_FT_* types 5806 */ 5807 BUILD_BUG_ON(BTRFS_FT_UNKNOWN != FT_UNKNOWN); 5808 BUILD_BUG_ON(BTRFS_FT_REG_FILE != FT_REG_FILE); 5809 BUILD_BUG_ON(BTRFS_FT_DIR != FT_DIR); 5810 BUILD_BUG_ON(BTRFS_FT_CHRDEV != FT_CHRDEV); 5811 BUILD_BUG_ON(BTRFS_FT_BLKDEV != FT_BLKDEV); 5812 BUILD_BUG_ON(BTRFS_FT_FIFO != FT_FIFO); 5813 BUILD_BUG_ON(BTRFS_FT_SOCK != FT_SOCK); 5814 BUILD_BUG_ON(BTRFS_FT_SYMLINK != FT_SYMLINK); 5815 5816 return fs_umode_to_ftype(inode->i_mode); 5817 } 5818 5819 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry) 5820 { 5821 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 5822 struct inode *inode; 5823 struct btrfs_root *root = BTRFS_I(dir)->root; 5824 struct btrfs_root *sub_root = root; 5825 struct btrfs_key location; 5826 u8 di_type = 0; 5827 int ret = 0; 5828 5829 if (dentry->d_name.len > BTRFS_NAME_LEN) 5830 return ERR_PTR(-ENAMETOOLONG); 5831 5832 ret = btrfs_inode_by_name(dir, dentry, &location, &di_type); 5833 if (ret < 0) 5834 return ERR_PTR(ret); 5835 5836 if (location.type == BTRFS_INODE_ITEM_KEY) { 5837 inode = btrfs_iget(dir->i_sb, location.objectid, root); 5838 if (IS_ERR(inode)) 5839 return inode; 5840 5841 /* Do extra check against inode mode with di_type */ 5842 if (btrfs_inode_type(inode) != di_type) { 5843 btrfs_crit(fs_info, 5844 "inode mode mismatch with dir: inode mode=0%o btrfs type=%u dir type=%u", 5845 inode->i_mode, btrfs_inode_type(inode), 5846 di_type); 5847 iput(inode); 5848 return ERR_PTR(-EUCLEAN); 5849 } 5850 return inode; 5851 } 5852 5853 ret = fixup_tree_root_location(fs_info, dir, dentry, 5854 &location, &sub_root); 5855 if (ret < 0) { 5856 if (ret != -ENOENT) 5857 inode = ERR_PTR(ret); 5858 else 5859 inode = new_simple_dir(dir->i_sb, &location, sub_root); 5860 } else { 5861 inode = btrfs_iget(dir->i_sb, location.objectid, sub_root); 5862 } 5863 if (root != sub_root) 5864 btrfs_put_root(sub_root); 5865 5866 if (!IS_ERR(inode) && root != sub_root) { 5867 down_read(&fs_info->cleanup_work_sem); 5868 if (!sb_rdonly(inode->i_sb)) 5869 ret = btrfs_orphan_cleanup(sub_root); 5870 up_read(&fs_info->cleanup_work_sem); 5871 if (ret) { 5872 iput(inode); 5873 inode = ERR_PTR(ret); 5874 } 5875 } 5876 5877 return inode; 5878 } 5879 5880 static int btrfs_dentry_delete(const struct dentry *dentry) 5881 { 5882 struct btrfs_root *root; 5883 struct inode *inode = d_inode(dentry); 5884 5885 if (!inode && !IS_ROOT(dentry)) 5886 inode = d_inode(dentry->d_parent); 5887 5888 if (inode) { 5889 root = BTRFS_I(inode)->root; 5890 if (btrfs_root_refs(&root->root_item) == 0) 5891 return 1; 5892 5893 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 5894 return 1; 5895 } 5896 return 0; 5897 } 5898 5899 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry, 5900 unsigned int flags) 5901 { 5902 struct inode *inode = btrfs_lookup_dentry(dir, dentry); 5903 5904 if (inode == ERR_PTR(-ENOENT)) 5905 inode = NULL; 5906 return d_splice_alias(inode, dentry); 5907 } 5908 5909 /* 5910 * All this infrastructure exists because dir_emit can fault, and we are holding 5911 * the tree lock when doing readdir. For now just allocate a buffer and copy 5912 * our information into that, and then dir_emit from the buffer. This is 5913 * similar to what NFS does, only we don't keep the buffer around in pagecache 5914 * because I'm afraid I'll mess that up. Long term we need to make filldir do 5915 * copy_to_user_inatomic so we don't have to worry about page faulting under the 5916 * tree lock. 5917 */ 5918 static int btrfs_opendir(struct inode *inode, struct file *file) 5919 { 5920 struct btrfs_file_private *private; 5921 5922 private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL); 5923 if (!private) 5924 return -ENOMEM; 5925 private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL); 5926 if (!private->filldir_buf) { 5927 kfree(private); 5928 return -ENOMEM; 5929 } 5930 file->private_data = private; 5931 return 0; 5932 } 5933 5934 struct dir_entry { 5935 u64 ino; 5936 u64 offset; 5937 unsigned type; 5938 int name_len; 5939 }; 5940 5941 static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx) 5942 { 5943 while (entries--) { 5944 struct dir_entry *entry = addr; 5945 char *name = (char *)(entry + 1); 5946 5947 ctx->pos = get_unaligned(&entry->offset); 5948 if (!dir_emit(ctx, name, get_unaligned(&entry->name_len), 5949 get_unaligned(&entry->ino), 5950 get_unaligned(&entry->type))) 5951 return 1; 5952 addr += sizeof(struct dir_entry) + 5953 get_unaligned(&entry->name_len); 5954 ctx->pos++; 5955 } 5956 return 0; 5957 } 5958 5959 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx) 5960 { 5961 struct inode *inode = file_inode(file); 5962 struct btrfs_root *root = BTRFS_I(inode)->root; 5963 struct btrfs_file_private *private = file->private_data; 5964 struct btrfs_dir_item *di; 5965 struct btrfs_key key; 5966 struct btrfs_key found_key; 5967 struct btrfs_path *path; 5968 void *addr; 5969 struct list_head ins_list; 5970 struct list_head del_list; 5971 int ret; 5972 struct extent_buffer *leaf; 5973 int slot; 5974 char *name_ptr; 5975 int name_len; 5976 int entries = 0; 5977 int total_len = 0; 5978 bool put = false; 5979 struct btrfs_key location; 5980 5981 if (!dir_emit_dots(file, ctx)) 5982 return 0; 5983 5984 path = btrfs_alloc_path(); 5985 if (!path) 5986 return -ENOMEM; 5987 5988 addr = private->filldir_buf; 5989 path->reada = READA_FORWARD; 5990 5991 INIT_LIST_HEAD(&ins_list); 5992 INIT_LIST_HEAD(&del_list); 5993 put = btrfs_readdir_get_delayed_items(inode, &ins_list, &del_list); 5994 5995 again: 5996 key.type = BTRFS_DIR_INDEX_KEY; 5997 key.offset = ctx->pos; 5998 key.objectid = btrfs_ino(BTRFS_I(inode)); 5999 6000 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 6001 if (ret < 0) 6002 goto err; 6003 6004 while (1) { 6005 struct dir_entry *entry; 6006 6007 leaf = path->nodes[0]; 6008 slot = path->slots[0]; 6009 if (slot >= btrfs_header_nritems(leaf)) { 6010 ret = btrfs_next_leaf(root, path); 6011 if (ret < 0) 6012 goto err; 6013 else if (ret > 0) 6014 break; 6015 continue; 6016 } 6017 6018 btrfs_item_key_to_cpu(leaf, &found_key, slot); 6019 6020 if (found_key.objectid != key.objectid) 6021 break; 6022 if (found_key.type != BTRFS_DIR_INDEX_KEY) 6023 break; 6024 if (found_key.offset < ctx->pos) 6025 goto next; 6026 if (btrfs_should_delete_dir_index(&del_list, found_key.offset)) 6027 goto next; 6028 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item); 6029 name_len = btrfs_dir_name_len(leaf, di); 6030 if ((total_len + sizeof(struct dir_entry) + name_len) >= 6031 PAGE_SIZE) { 6032 btrfs_release_path(path); 6033 ret = btrfs_filldir(private->filldir_buf, entries, ctx); 6034 if (ret) 6035 goto nopos; 6036 addr = private->filldir_buf; 6037 entries = 0; 6038 total_len = 0; 6039 goto again; 6040 } 6041 6042 entry = addr; 6043 put_unaligned(name_len, &entry->name_len); 6044 name_ptr = (char *)(entry + 1); 6045 read_extent_buffer(leaf, name_ptr, (unsigned long)(di + 1), 6046 name_len); 6047 put_unaligned(fs_ftype_to_dtype(btrfs_dir_type(leaf, di)), 6048 &entry->type); 6049 btrfs_dir_item_key_to_cpu(leaf, di, &location); 6050 put_unaligned(location.objectid, &entry->ino); 6051 put_unaligned(found_key.offset, &entry->offset); 6052 entries++; 6053 addr += sizeof(struct dir_entry) + name_len; 6054 total_len += sizeof(struct dir_entry) + name_len; 6055 next: 6056 path->slots[0]++; 6057 } 6058 btrfs_release_path(path); 6059 6060 ret = btrfs_filldir(private->filldir_buf, entries, ctx); 6061 if (ret) 6062 goto nopos; 6063 6064 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list); 6065 if (ret) 6066 goto nopos; 6067 6068 /* 6069 * Stop new entries from being returned after we return the last 6070 * entry. 6071 * 6072 * New directory entries are assigned a strictly increasing 6073 * offset. This means that new entries created during readdir 6074 * are *guaranteed* to be seen in the future by that readdir. 6075 * This has broken buggy programs which operate on names as 6076 * they're returned by readdir. Until we re-use freed offsets 6077 * we have this hack to stop new entries from being returned 6078 * under the assumption that they'll never reach this huge 6079 * offset. 6080 * 6081 * This is being careful not to overflow 32bit loff_t unless the 6082 * last entry requires it because doing so has broken 32bit apps 6083 * in the past. 6084 */ 6085 if (ctx->pos >= INT_MAX) 6086 ctx->pos = LLONG_MAX; 6087 else 6088 ctx->pos = INT_MAX; 6089 nopos: 6090 ret = 0; 6091 err: 6092 if (put) 6093 btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list); 6094 btrfs_free_path(path); 6095 return ret; 6096 } 6097 6098 /* 6099 * This is somewhat expensive, updating the tree every time the 6100 * inode changes. But, it is most likely to find the inode in cache. 6101 * FIXME, needs more benchmarking...there are no reasons other than performance 6102 * to keep or drop this code. 6103 */ 6104 static int btrfs_dirty_inode(struct inode *inode) 6105 { 6106 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 6107 struct btrfs_root *root = BTRFS_I(inode)->root; 6108 struct btrfs_trans_handle *trans; 6109 int ret; 6110 6111 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags)) 6112 return 0; 6113 6114 trans = btrfs_join_transaction(root); 6115 if (IS_ERR(trans)) 6116 return PTR_ERR(trans); 6117 6118 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 6119 if (ret && (ret == -ENOSPC || ret == -EDQUOT)) { 6120 /* whoops, lets try again with the full transaction */ 6121 btrfs_end_transaction(trans); 6122 trans = btrfs_start_transaction(root, 1); 6123 if (IS_ERR(trans)) 6124 return PTR_ERR(trans); 6125 6126 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 6127 } 6128 btrfs_end_transaction(trans); 6129 if (BTRFS_I(inode)->delayed_node) 6130 btrfs_balance_delayed_items(fs_info); 6131 6132 return ret; 6133 } 6134 6135 /* 6136 * This is a copy of file_update_time. We need this so we can return error on 6137 * ENOSPC for updating the inode in the case of file write and mmap writes. 6138 */ 6139 static int btrfs_update_time(struct inode *inode, struct timespec64 *now, 6140 int flags) 6141 { 6142 struct btrfs_root *root = BTRFS_I(inode)->root; 6143 bool dirty = flags & ~S_VERSION; 6144 6145 if (btrfs_root_readonly(root)) 6146 return -EROFS; 6147 6148 if (flags & S_VERSION) 6149 dirty |= inode_maybe_inc_iversion(inode, dirty); 6150 if (flags & S_CTIME) 6151 inode->i_ctime = *now; 6152 if (flags & S_MTIME) 6153 inode->i_mtime = *now; 6154 if (flags & S_ATIME) 6155 inode->i_atime = *now; 6156 return dirty ? btrfs_dirty_inode(inode) : 0; 6157 } 6158 6159 /* 6160 * find the highest existing sequence number in a directory 6161 * and then set the in-memory index_cnt variable to reflect 6162 * free sequence numbers 6163 */ 6164 static int btrfs_set_inode_index_count(struct btrfs_inode *inode) 6165 { 6166 struct btrfs_root *root = inode->root; 6167 struct btrfs_key key, found_key; 6168 struct btrfs_path *path; 6169 struct extent_buffer *leaf; 6170 int ret; 6171 6172 key.objectid = btrfs_ino(inode); 6173 key.type = BTRFS_DIR_INDEX_KEY; 6174 key.offset = (u64)-1; 6175 6176 path = btrfs_alloc_path(); 6177 if (!path) 6178 return -ENOMEM; 6179 6180 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 6181 if (ret < 0) 6182 goto out; 6183 /* FIXME: we should be able to handle this */ 6184 if (ret == 0) 6185 goto out; 6186 ret = 0; 6187 6188 /* 6189 * MAGIC NUMBER EXPLANATION: 6190 * since we search a directory based on f_pos we have to start at 2 6191 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody 6192 * else has to start at 2 6193 */ 6194 if (path->slots[0] == 0) { 6195 inode->index_cnt = 2; 6196 goto out; 6197 } 6198 6199 path->slots[0]--; 6200 6201 leaf = path->nodes[0]; 6202 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6203 6204 if (found_key.objectid != btrfs_ino(inode) || 6205 found_key.type != BTRFS_DIR_INDEX_KEY) { 6206 inode->index_cnt = 2; 6207 goto out; 6208 } 6209 6210 inode->index_cnt = found_key.offset + 1; 6211 out: 6212 btrfs_free_path(path); 6213 return ret; 6214 } 6215 6216 /* 6217 * helper to find a free sequence number in a given directory. This current 6218 * code is very simple, later versions will do smarter things in the btree 6219 */ 6220 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index) 6221 { 6222 int ret = 0; 6223 6224 if (dir->index_cnt == (u64)-1) { 6225 ret = btrfs_inode_delayed_dir_index_count(dir); 6226 if (ret) { 6227 ret = btrfs_set_inode_index_count(dir); 6228 if (ret) 6229 return ret; 6230 } 6231 } 6232 6233 *index = dir->index_cnt; 6234 dir->index_cnt++; 6235 6236 return ret; 6237 } 6238 6239 static int btrfs_insert_inode_locked(struct inode *inode) 6240 { 6241 struct btrfs_iget_args args; 6242 6243 args.ino = BTRFS_I(inode)->location.objectid; 6244 args.root = BTRFS_I(inode)->root; 6245 6246 return insert_inode_locked4(inode, 6247 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root), 6248 btrfs_find_actor, &args); 6249 } 6250 6251 /* 6252 * Inherit flags from the parent inode. 6253 * 6254 * Currently only the compression flags and the cow flags are inherited. 6255 */ 6256 static void btrfs_inherit_iflags(struct inode *inode, struct inode *dir) 6257 { 6258 unsigned int flags; 6259 6260 if (!dir) 6261 return; 6262 6263 flags = BTRFS_I(dir)->flags; 6264 6265 if (flags & BTRFS_INODE_NOCOMPRESS) { 6266 BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS; 6267 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS; 6268 } else if (flags & BTRFS_INODE_COMPRESS) { 6269 BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS; 6270 BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS; 6271 } 6272 6273 if (flags & BTRFS_INODE_NODATACOW) { 6274 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW; 6275 if (S_ISREG(inode->i_mode)) 6276 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; 6277 } 6278 6279 btrfs_sync_inode_flags_to_i_flags(inode); 6280 } 6281 6282 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans, 6283 struct btrfs_root *root, 6284 struct inode *dir, 6285 const char *name, int name_len, 6286 u64 ref_objectid, u64 objectid, 6287 umode_t mode, u64 *index) 6288 { 6289 struct btrfs_fs_info *fs_info = root->fs_info; 6290 struct inode *inode; 6291 struct btrfs_inode_item *inode_item; 6292 struct btrfs_key *location; 6293 struct btrfs_path *path; 6294 struct btrfs_inode_ref *ref; 6295 struct btrfs_key key[2]; 6296 u32 sizes[2]; 6297 int nitems = name ? 2 : 1; 6298 unsigned long ptr; 6299 unsigned int nofs_flag; 6300 int ret; 6301 6302 path = btrfs_alloc_path(); 6303 if (!path) 6304 return ERR_PTR(-ENOMEM); 6305 6306 nofs_flag = memalloc_nofs_save(); 6307 inode = new_inode(fs_info->sb); 6308 memalloc_nofs_restore(nofs_flag); 6309 if (!inode) { 6310 btrfs_free_path(path); 6311 return ERR_PTR(-ENOMEM); 6312 } 6313 6314 /* 6315 * O_TMPFILE, set link count to 0, so that after this point, 6316 * we fill in an inode item with the correct link count. 6317 */ 6318 if (!name) 6319 set_nlink(inode, 0); 6320 6321 /* 6322 * we have to initialize this early, so we can reclaim the inode 6323 * number if we fail afterwards in this function. 6324 */ 6325 inode->i_ino = objectid; 6326 6327 if (dir && name) { 6328 trace_btrfs_inode_request(dir); 6329 6330 ret = btrfs_set_inode_index(BTRFS_I(dir), index); 6331 if (ret) { 6332 btrfs_free_path(path); 6333 iput(inode); 6334 return ERR_PTR(ret); 6335 } 6336 } else if (dir) { 6337 *index = 0; 6338 } 6339 /* 6340 * index_cnt is ignored for everything but a dir, 6341 * btrfs_set_inode_index_count has an explanation for the magic 6342 * number 6343 */ 6344 BTRFS_I(inode)->index_cnt = 2; 6345 BTRFS_I(inode)->dir_index = *index; 6346 BTRFS_I(inode)->root = btrfs_grab_root(root); 6347 BTRFS_I(inode)->generation = trans->transid; 6348 inode->i_generation = BTRFS_I(inode)->generation; 6349 6350 /* 6351 * We could have gotten an inode number from somebody who was fsynced 6352 * and then removed in this same transaction, so let's just set full 6353 * sync since it will be a full sync anyway and this will blow away the 6354 * old info in the log. 6355 */ 6356 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 6357 6358 key[0].objectid = objectid; 6359 key[0].type = BTRFS_INODE_ITEM_KEY; 6360 key[0].offset = 0; 6361 6362 sizes[0] = sizeof(struct btrfs_inode_item); 6363 6364 if (name) { 6365 /* 6366 * Start new inodes with an inode_ref. This is slightly more 6367 * efficient for small numbers of hard links since they will 6368 * be packed into one item. Extended refs will kick in if we 6369 * add more hard links than can fit in the ref item. 6370 */ 6371 key[1].objectid = objectid; 6372 key[1].type = BTRFS_INODE_REF_KEY; 6373 key[1].offset = ref_objectid; 6374 6375 sizes[1] = name_len + sizeof(*ref); 6376 } 6377 6378 location = &BTRFS_I(inode)->location; 6379 location->objectid = objectid; 6380 location->offset = 0; 6381 location->type = BTRFS_INODE_ITEM_KEY; 6382 6383 ret = btrfs_insert_inode_locked(inode); 6384 if (ret < 0) { 6385 iput(inode); 6386 goto fail; 6387 } 6388 6389 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems); 6390 if (ret != 0) 6391 goto fail_unlock; 6392 6393 inode_init_owner(&init_user_ns, inode, dir, mode); 6394 inode_set_bytes(inode, 0); 6395 6396 inode->i_mtime = current_time(inode); 6397 inode->i_atime = inode->i_mtime; 6398 inode->i_ctime = inode->i_mtime; 6399 BTRFS_I(inode)->i_otime = inode->i_mtime; 6400 6401 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0], 6402 struct btrfs_inode_item); 6403 memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item, 6404 sizeof(*inode_item)); 6405 fill_inode_item(trans, path->nodes[0], inode_item, inode); 6406 6407 if (name) { 6408 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1, 6409 struct btrfs_inode_ref); 6410 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len); 6411 btrfs_set_inode_ref_index(path->nodes[0], ref, *index); 6412 ptr = (unsigned long)(ref + 1); 6413 write_extent_buffer(path->nodes[0], name, ptr, name_len); 6414 } 6415 6416 btrfs_mark_buffer_dirty(path->nodes[0]); 6417 btrfs_free_path(path); 6418 6419 btrfs_inherit_iflags(inode, dir); 6420 6421 if (S_ISREG(mode)) { 6422 if (btrfs_test_opt(fs_info, NODATASUM)) 6423 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; 6424 if (btrfs_test_opt(fs_info, NODATACOW)) 6425 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW | 6426 BTRFS_INODE_NODATASUM; 6427 } 6428 6429 inode_tree_add(inode); 6430 6431 trace_btrfs_inode_new(inode); 6432 btrfs_set_inode_last_trans(trans, BTRFS_I(inode)); 6433 6434 btrfs_update_root_times(trans, root); 6435 6436 ret = btrfs_inode_inherit_props(trans, inode, dir); 6437 if (ret) 6438 btrfs_err(fs_info, 6439 "error inheriting props for ino %llu (root %llu): %d", 6440 btrfs_ino(BTRFS_I(inode)), root->root_key.objectid, ret); 6441 6442 return inode; 6443 6444 fail_unlock: 6445 discard_new_inode(inode); 6446 fail: 6447 if (dir && name) 6448 BTRFS_I(dir)->index_cnt--; 6449 btrfs_free_path(path); 6450 return ERR_PTR(ret); 6451 } 6452 6453 /* 6454 * utility function to add 'inode' into 'parent_inode' with 6455 * a give name and a given sequence number. 6456 * if 'add_backref' is true, also insert a backref from the 6457 * inode to the parent directory. 6458 */ 6459 int btrfs_add_link(struct btrfs_trans_handle *trans, 6460 struct btrfs_inode *parent_inode, struct btrfs_inode *inode, 6461 const char *name, int name_len, int add_backref, u64 index) 6462 { 6463 int ret = 0; 6464 struct btrfs_key key; 6465 struct btrfs_root *root = parent_inode->root; 6466 u64 ino = btrfs_ino(inode); 6467 u64 parent_ino = btrfs_ino(parent_inode); 6468 6469 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6470 memcpy(&key, &inode->root->root_key, sizeof(key)); 6471 } else { 6472 key.objectid = ino; 6473 key.type = BTRFS_INODE_ITEM_KEY; 6474 key.offset = 0; 6475 } 6476 6477 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6478 ret = btrfs_add_root_ref(trans, key.objectid, 6479 root->root_key.objectid, parent_ino, 6480 index, name, name_len); 6481 } else if (add_backref) { 6482 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino, 6483 parent_ino, index); 6484 } 6485 6486 /* Nothing to clean up yet */ 6487 if (ret) 6488 return ret; 6489 6490 ret = btrfs_insert_dir_item(trans, name, name_len, parent_inode, &key, 6491 btrfs_inode_type(&inode->vfs_inode), index); 6492 if (ret == -EEXIST || ret == -EOVERFLOW) 6493 goto fail_dir_item; 6494 else if (ret) { 6495 btrfs_abort_transaction(trans, ret); 6496 return ret; 6497 } 6498 6499 btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size + 6500 name_len * 2); 6501 inode_inc_iversion(&parent_inode->vfs_inode); 6502 /* 6503 * If we are replaying a log tree, we do not want to update the mtime 6504 * and ctime of the parent directory with the current time, since the 6505 * log replay procedure is responsible for setting them to their correct 6506 * values (the ones it had when the fsync was done). 6507 */ 6508 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &root->fs_info->flags)) { 6509 struct timespec64 now = current_time(&parent_inode->vfs_inode); 6510 6511 parent_inode->vfs_inode.i_mtime = now; 6512 parent_inode->vfs_inode.i_ctime = now; 6513 } 6514 ret = btrfs_update_inode(trans, root, parent_inode); 6515 if (ret) 6516 btrfs_abort_transaction(trans, ret); 6517 return ret; 6518 6519 fail_dir_item: 6520 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6521 u64 local_index; 6522 int err; 6523 err = btrfs_del_root_ref(trans, key.objectid, 6524 root->root_key.objectid, parent_ino, 6525 &local_index, name, name_len); 6526 if (err) 6527 btrfs_abort_transaction(trans, err); 6528 } else if (add_backref) { 6529 u64 local_index; 6530 int err; 6531 6532 err = btrfs_del_inode_ref(trans, root, name, name_len, 6533 ino, parent_ino, &local_index); 6534 if (err) 6535 btrfs_abort_transaction(trans, err); 6536 } 6537 6538 /* Return the original error code */ 6539 return ret; 6540 } 6541 6542 static int btrfs_add_nondir(struct btrfs_trans_handle *trans, 6543 struct btrfs_inode *dir, struct dentry *dentry, 6544 struct btrfs_inode *inode, int backref, u64 index) 6545 { 6546 int err = btrfs_add_link(trans, dir, inode, 6547 dentry->d_name.name, dentry->d_name.len, 6548 backref, index); 6549 if (err > 0) 6550 err = -EEXIST; 6551 return err; 6552 } 6553 6554 static int btrfs_mknod(struct user_namespace *mnt_userns, struct inode *dir, 6555 struct dentry *dentry, umode_t mode, dev_t rdev) 6556 { 6557 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 6558 struct btrfs_trans_handle *trans; 6559 struct btrfs_root *root = BTRFS_I(dir)->root; 6560 struct inode *inode = NULL; 6561 int err; 6562 u64 objectid; 6563 u64 index = 0; 6564 6565 /* 6566 * 2 for inode item and ref 6567 * 2 for dir items 6568 * 1 for xattr if selinux is on 6569 */ 6570 trans = btrfs_start_transaction(root, 5); 6571 if (IS_ERR(trans)) 6572 return PTR_ERR(trans); 6573 6574 err = btrfs_get_free_objectid(root, &objectid); 6575 if (err) 6576 goto out_unlock; 6577 6578 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 6579 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid, 6580 mode, &index); 6581 if (IS_ERR(inode)) { 6582 err = PTR_ERR(inode); 6583 inode = NULL; 6584 goto out_unlock; 6585 } 6586 6587 /* 6588 * If the active LSM wants to access the inode during 6589 * d_instantiate it needs these. Smack checks to see 6590 * if the filesystem supports xattrs by looking at the 6591 * ops vector. 6592 */ 6593 inode->i_op = &btrfs_special_inode_operations; 6594 init_special_inode(inode, inode->i_mode, rdev); 6595 6596 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 6597 if (err) 6598 goto out_unlock; 6599 6600 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode), 6601 0, index); 6602 if (err) 6603 goto out_unlock; 6604 6605 btrfs_update_inode(trans, root, BTRFS_I(inode)); 6606 d_instantiate_new(dentry, inode); 6607 6608 out_unlock: 6609 btrfs_end_transaction(trans); 6610 btrfs_btree_balance_dirty(fs_info); 6611 if (err && inode) { 6612 inode_dec_link_count(inode); 6613 discard_new_inode(inode); 6614 } 6615 return err; 6616 } 6617 6618 static int btrfs_create(struct user_namespace *mnt_userns, struct inode *dir, 6619 struct dentry *dentry, umode_t mode, bool excl) 6620 { 6621 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 6622 struct btrfs_trans_handle *trans; 6623 struct btrfs_root *root = BTRFS_I(dir)->root; 6624 struct inode *inode = NULL; 6625 int err; 6626 u64 objectid; 6627 u64 index = 0; 6628 6629 /* 6630 * 2 for inode item and ref 6631 * 2 for dir items 6632 * 1 for xattr if selinux is on 6633 */ 6634 trans = btrfs_start_transaction(root, 5); 6635 if (IS_ERR(trans)) 6636 return PTR_ERR(trans); 6637 6638 err = btrfs_get_free_objectid(root, &objectid); 6639 if (err) 6640 goto out_unlock; 6641 6642 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 6643 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid, 6644 mode, &index); 6645 if (IS_ERR(inode)) { 6646 err = PTR_ERR(inode); 6647 inode = NULL; 6648 goto out_unlock; 6649 } 6650 /* 6651 * If the active LSM wants to access the inode during 6652 * d_instantiate it needs these. Smack checks to see 6653 * if the filesystem supports xattrs by looking at the 6654 * ops vector. 6655 */ 6656 inode->i_fop = &btrfs_file_operations; 6657 inode->i_op = &btrfs_file_inode_operations; 6658 inode->i_mapping->a_ops = &btrfs_aops; 6659 6660 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 6661 if (err) 6662 goto out_unlock; 6663 6664 err = btrfs_update_inode(trans, root, BTRFS_I(inode)); 6665 if (err) 6666 goto out_unlock; 6667 6668 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode), 6669 0, index); 6670 if (err) 6671 goto out_unlock; 6672 6673 d_instantiate_new(dentry, inode); 6674 6675 out_unlock: 6676 btrfs_end_transaction(trans); 6677 if (err && inode) { 6678 inode_dec_link_count(inode); 6679 discard_new_inode(inode); 6680 } 6681 btrfs_btree_balance_dirty(fs_info); 6682 return err; 6683 } 6684 6685 static int btrfs_link(struct dentry *old_dentry, struct inode *dir, 6686 struct dentry *dentry) 6687 { 6688 struct btrfs_trans_handle *trans = NULL; 6689 struct btrfs_root *root = BTRFS_I(dir)->root; 6690 struct inode *inode = d_inode(old_dentry); 6691 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 6692 u64 index; 6693 int err; 6694 int drop_inode = 0; 6695 6696 /* do not allow sys_link's with other subvols of the same device */ 6697 if (root->root_key.objectid != BTRFS_I(inode)->root->root_key.objectid) 6698 return -EXDEV; 6699 6700 if (inode->i_nlink >= BTRFS_LINK_MAX) 6701 return -EMLINK; 6702 6703 err = btrfs_set_inode_index(BTRFS_I(dir), &index); 6704 if (err) 6705 goto fail; 6706 6707 /* 6708 * 2 items for inode and inode ref 6709 * 2 items for dir items 6710 * 1 item for parent inode 6711 * 1 item for orphan item deletion if O_TMPFILE 6712 */ 6713 trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6); 6714 if (IS_ERR(trans)) { 6715 err = PTR_ERR(trans); 6716 trans = NULL; 6717 goto fail; 6718 } 6719 6720 /* There are several dir indexes for this inode, clear the cache. */ 6721 BTRFS_I(inode)->dir_index = 0ULL; 6722 inc_nlink(inode); 6723 inode_inc_iversion(inode); 6724 inode->i_ctime = current_time(inode); 6725 ihold(inode); 6726 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags); 6727 6728 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode), 6729 1, index); 6730 6731 if (err) { 6732 drop_inode = 1; 6733 } else { 6734 struct dentry *parent = dentry->d_parent; 6735 6736 err = btrfs_update_inode(trans, root, BTRFS_I(inode)); 6737 if (err) 6738 goto fail; 6739 if (inode->i_nlink == 1) { 6740 /* 6741 * If new hard link count is 1, it's a file created 6742 * with open(2) O_TMPFILE flag. 6743 */ 6744 err = btrfs_orphan_del(trans, BTRFS_I(inode)); 6745 if (err) 6746 goto fail; 6747 } 6748 d_instantiate(dentry, inode); 6749 btrfs_log_new_name(trans, BTRFS_I(inode), NULL, parent); 6750 } 6751 6752 fail: 6753 if (trans) 6754 btrfs_end_transaction(trans); 6755 if (drop_inode) { 6756 inode_dec_link_count(inode); 6757 iput(inode); 6758 } 6759 btrfs_btree_balance_dirty(fs_info); 6760 return err; 6761 } 6762 6763 static int btrfs_mkdir(struct user_namespace *mnt_userns, struct inode *dir, 6764 struct dentry *dentry, umode_t mode) 6765 { 6766 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 6767 struct inode *inode = NULL; 6768 struct btrfs_trans_handle *trans; 6769 struct btrfs_root *root = BTRFS_I(dir)->root; 6770 int err = 0; 6771 u64 objectid = 0; 6772 u64 index = 0; 6773 6774 /* 6775 * 2 items for inode and ref 6776 * 2 items for dir items 6777 * 1 for xattr if selinux is on 6778 */ 6779 trans = btrfs_start_transaction(root, 5); 6780 if (IS_ERR(trans)) 6781 return PTR_ERR(trans); 6782 6783 err = btrfs_get_free_objectid(root, &objectid); 6784 if (err) 6785 goto out_fail; 6786 6787 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 6788 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid, 6789 S_IFDIR | mode, &index); 6790 if (IS_ERR(inode)) { 6791 err = PTR_ERR(inode); 6792 inode = NULL; 6793 goto out_fail; 6794 } 6795 6796 /* these must be set before we unlock the inode */ 6797 inode->i_op = &btrfs_dir_inode_operations; 6798 inode->i_fop = &btrfs_dir_file_operations; 6799 6800 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 6801 if (err) 6802 goto out_fail; 6803 6804 btrfs_i_size_write(BTRFS_I(inode), 0); 6805 err = btrfs_update_inode(trans, root, BTRFS_I(inode)); 6806 if (err) 6807 goto out_fail; 6808 6809 err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), 6810 dentry->d_name.name, 6811 dentry->d_name.len, 0, index); 6812 if (err) 6813 goto out_fail; 6814 6815 d_instantiate_new(dentry, inode); 6816 6817 out_fail: 6818 btrfs_end_transaction(trans); 6819 if (err && inode) { 6820 inode_dec_link_count(inode); 6821 discard_new_inode(inode); 6822 } 6823 btrfs_btree_balance_dirty(fs_info); 6824 return err; 6825 } 6826 6827 static noinline int uncompress_inline(struct btrfs_path *path, 6828 struct page *page, 6829 size_t pg_offset, u64 extent_offset, 6830 struct btrfs_file_extent_item *item) 6831 { 6832 int ret; 6833 struct extent_buffer *leaf = path->nodes[0]; 6834 char *tmp; 6835 size_t max_size; 6836 unsigned long inline_size; 6837 unsigned long ptr; 6838 int compress_type; 6839 6840 WARN_ON(pg_offset != 0); 6841 compress_type = btrfs_file_extent_compression(leaf, item); 6842 max_size = btrfs_file_extent_ram_bytes(leaf, item); 6843 inline_size = btrfs_file_extent_inline_item_len(leaf, 6844 btrfs_item_nr(path->slots[0])); 6845 tmp = kmalloc(inline_size, GFP_NOFS); 6846 if (!tmp) 6847 return -ENOMEM; 6848 ptr = btrfs_file_extent_inline_start(item); 6849 6850 read_extent_buffer(leaf, tmp, ptr, inline_size); 6851 6852 max_size = min_t(unsigned long, PAGE_SIZE, max_size); 6853 ret = btrfs_decompress(compress_type, tmp, page, 6854 extent_offset, inline_size, max_size); 6855 6856 /* 6857 * decompression code contains a memset to fill in any space between the end 6858 * of the uncompressed data and the end of max_size in case the decompressed 6859 * data ends up shorter than ram_bytes. That doesn't cover the hole between 6860 * the end of an inline extent and the beginning of the next block, so we 6861 * cover that region here. 6862 */ 6863 6864 if (max_size + pg_offset < PAGE_SIZE) 6865 memzero_page(page, pg_offset + max_size, 6866 PAGE_SIZE - max_size - pg_offset); 6867 kfree(tmp); 6868 return ret; 6869 } 6870 6871 /** 6872 * btrfs_get_extent - Lookup the first extent overlapping a range in a file. 6873 * @inode: file to search in 6874 * @page: page to read extent data into if the extent is inline 6875 * @pg_offset: offset into @page to copy to 6876 * @start: file offset 6877 * @len: length of range starting at @start 6878 * 6879 * This returns the first &struct extent_map which overlaps with the given 6880 * range, reading it from the B-tree and caching it if necessary. Note that 6881 * there may be more extents which overlap the given range after the returned 6882 * extent_map. 6883 * 6884 * If @page is not NULL and the extent is inline, this also reads the extent 6885 * data directly into the page and marks the extent up to date in the io_tree. 6886 * 6887 * Return: ERR_PTR on error, non-NULL extent_map on success. 6888 */ 6889 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode, 6890 struct page *page, size_t pg_offset, 6891 u64 start, u64 len) 6892 { 6893 struct btrfs_fs_info *fs_info = inode->root->fs_info; 6894 int ret = 0; 6895 u64 extent_start = 0; 6896 u64 extent_end = 0; 6897 u64 objectid = btrfs_ino(inode); 6898 int extent_type = -1; 6899 struct btrfs_path *path = NULL; 6900 struct btrfs_root *root = inode->root; 6901 struct btrfs_file_extent_item *item; 6902 struct extent_buffer *leaf; 6903 struct btrfs_key found_key; 6904 struct extent_map *em = NULL; 6905 struct extent_map_tree *em_tree = &inode->extent_tree; 6906 struct extent_io_tree *io_tree = &inode->io_tree; 6907 6908 read_lock(&em_tree->lock); 6909 em = lookup_extent_mapping(em_tree, start, len); 6910 read_unlock(&em_tree->lock); 6911 6912 if (em) { 6913 if (em->start > start || em->start + em->len <= start) 6914 free_extent_map(em); 6915 else if (em->block_start == EXTENT_MAP_INLINE && page) 6916 free_extent_map(em); 6917 else 6918 goto out; 6919 } 6920 em = alloc_extent_map(); 6921 if (!em) { 6922 ret = -ENOMEM; 6923 goto out; 6924 } 6925 em->start = EXTENT_MAP_HOLE; 6926 em->orig_start = EXTENT_MAP_HOLE; 6927 em->len = (u64)-1; 6928 em->block_len = (u64)-1; 6929 6930 path = btrfs_alloc_path(); 6931 if (!path) { 6932 ret = -ENOMEM; 6933 goto out; 6934 } 6935 6936 /* Chances are we'll be called again, so go ahead and do readahead */ 6937 path->reada = READA_FORWARD; 6938 6939 /* 6940 * The same explanation in load_free_space_cache applies here as well, 6941 * we only read when we're loading the free space cache, and at that 6942 * point the commit_root has everything we need. 6943 */ 6944 if (btrfs_is_free_space_inode(inode)) { 6945 path->search_commit_root = 1; 6946 path->skip_locking = 1; 6947 } 6948 6949 ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0); 6950 if (ret < 0) { 6951 goto out; 6952 } else if (ret > 0) { 6953 if (path->slots[0] == 0) 6954 goto not_found; 6955 path->slots[0]--; 6956 ret = 0; 6957 } 6958 6959 leaf = path->nodes[0]; 6960 item = btrfs_item_ptr(leaf, path->slots[0], 6961 struct btrfs_file_extent_item); 6962 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6963 if (found_key.objectid != objectid || 6964 found_key.type != BTRFS_EXTENT_DATA_KEY) { 6965 /* 6966 * If we backup past the first extent we want to move forward 6967 * and see if there is an extent in front of us, otherwise we'll 6968 * say there is a hole for our whole search range which can 6969 * cause problems. 6970 */ 6971 extent_end = start; 6972 goto next; 6973 } 6974 6975 extent_type = btrfs_file_extent_type(leaf, item); 6976 extent_start = found_key.offset; 6977 extent_end = btrfs_file_extent_end(path); 6978 if (extent_type == BTRFS_FILE_EXTENT_REG || 6979 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 6980 /* Only regular file could have regular/prealloc extent */ 6981 if (!S_ISREG(inode->vfs_inode.i_mode)) { 6982 ret = -EUCLEAN; 6983 btrfs_crit(fs_info, 6984 "regular/prealloc extent found for non-regular inode %llu", 6985 btrfs_ino(inode)); 6986 goto out; 6987 } 6988 trace_btrfs_get_extent_show_fi_regular(inode, leaf, item, 6989 extent_start); 6990 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 6991 trace_btrfs_get_extent_show_fi_inline(inode, leaf, item, 6992 path->slots[0], 6993 extent_start); 6994 } 6995 next: 6996 if (start >= extent_end) { 6997 path->slots[0]++; 6998 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 6999 ret = btrfs_next_leaf(root, path); 7000 if (ret < 0) 7001 goto out; 7002 else if (ret > 0) 7003 goto not_found; 7004 7005 leaf = path->nodes[0]; 7006 } 7007 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 7008 if (found_key.objectid != objectid || 7009 found_key.type != BTRFS_EXTENT_DATA_KEY) 7010 goto not_found; 7011 if (start + len <= found_key.offset) 7012 goto not_found; 7013 if (start > found_key.offset) 7014 goto next; 7015 7016 /* New extent overlaps with existing one */ 7017 em->start = start; 7018 em->orig_start = start; 7019 em->len = found_key.offset - start; 7020 em->block_start = EXTENT_MAP_HOLE; 7021 goto insert; 7022 } 7023 7024 btrfs_extent_item_to_extent_map(inode, path, item, !page, em); 7025 7026 if (extent_type == BTRFS_FILE_EXTENT_REG || 7027 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 7028 goto insert; 7029 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 7030 unsigned long ptr; 7031 char *map; 7032 size_t size; 7033 size_t extent_offset; 7034 size_t copy_size; 7035 7036 if (!page) 7037 goto out; 7038 7039 size = btrfs_file_extent_ram_bytes(leaf, item); 7040 extent_offset = page_offset(page) + pg_offset - extent_start; 7041 copy_size = min_t(u64, PAGE_SIZE - pg_offset, 7042 size - extent_offset); 7043 em->start = extent_start + extent_offset; 7044 em->len = ALIGN(copy_size, fs_info->sectorsize); 7045 em->orig_block_len = em->len; 7046 em->orig_start = em->start; 7047 ptr = btrfs_file_extent_inline_start(item) + extent_offset; 7048 7049 if (!PageUptodate(page)) { 7050 if (btrfs_file_extent_compression(leaf, item) != 7051 BTRFS_COMPRESS_NONE) { 7052 ret = uncompress_inline(path, page, pg_offset, 7053 extent_offset, item); 7054 if (ret) 7055 goto out; 7056 } else { 7057 map = kmap_local_page(page); 7058 read_extent_buffer(leaf, map + pg_offset, ptr, 7059 copy_size); 7060 if (pg_offset + copy_size < PAGE_SIZE) { 7061 memset(map + pg_offset + copy_size, 0, 7062 PAGE_SIZE - pg_offset - 7063 copy_size); 7064 } 7065 kunmap_local(map); 7066 } 7067 flush_dcache_page(page); 7068 } 7069 set_extent_uptodate(io_tree, em->start, 7070 extent_map_end(em) - 1, NULL, GFP_NOFS); 7071 goto insert; 7072 } 7073 not_found: 7074 em->start = start; 7075 em->orig_start = start; 7076 em->len = len; 7077 em->block_start = EXTENT_MAP_HOLE; 7078 insert: 7079 ret = 0; 7080 btrfs_release_path(path); 7081 if (em->start > start || extent_map_end(em) <= start) { 7082 btrfs_err(fs_info, 7083 "bad extent! em: [%llu %llu] passed [%llu %llu]", 7084 em->start, em->len, start, len); 7085 ret = -EIO; 7086 goto out; 7087 } 7088 7089 write_lock(&em_tree->lock); 7090 ret = btrfs_add_extent_mapping(fs_info, em_tree, &em, start, len); 7091 write_unlock(&em_tree->lock); 7092 out: 7093 btrfs_free_path(path); 7094 7095 trace_btrfs_get_extent(root, inode, em); 7096 7097 if (ret) { 7098 free_extent_map(em); 7099 return ERR_PTR(ret); 7100 } 7101 return em; 7102 } 7103 7104 struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode, 7105 u64 start, u64 len) 7106 { 7107 struct extent_map *em; 7108 struct extent_map *hole_em = NULL; 7109 u64 delalloc_start = start; 7110 u64 end; 7111 u64 delalloc_len; 7112 u64 delalloc_end; 7113 int err = 0; 7114 7115 em = btrfs_get_extent(inode, NULL, 0, start, len); 7116 if (IS_ERR(em)) 7117 return em; 7118 /* 7119 * If our em maps to: 7120 * - a hole or 7121 * - a pre-alloc extent, 7122 * there might actually be delalloc bytes behind it. 7123 */ 7124 if (em->block_start != EXTENT_MAP_HOLE && 7125 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 7126 return em; 7127 else 7128 hole_em = em; 7129 7130 /* check to see if we've wrapped (len == -1 or similar) */ 7131 end = start + len; 7132 if (end < start) 7133 end = (u64)-1; 7134 else 7135 end -= 1; 7136 7137 em = NULL; 7138 7139 /* ok, we didn't find anything, lets look for delalloc */ 7140 delalloc_len = count_range_bits(&inode->io_tree, &delalloc_start, 7141 end, len, EXTENT_DELALLOC, 1); 7142 delalloc_end = delalloc_start + delalloc_len; 7143 if (delalloc_end < delalloc_start) 7144 delalloc_end = (u64)-1; 7145 7146 /* 7147 * We didn't find anything useful, return the original results from 7148 * get_extent() 7149 */ 7150 if (delalloc_start > end || delalloc_end <= start) { 7151 em = hole_em; 7152 hole_em = NULL; 7153 goto out; 7154 } 7155 7156 /* 7157 * Adjust the delalloc_start to make sure it doesn't go backwards from 7158 * the start they passed in 7159 */ 7160 delalloc_start = max(start, delalloc_start); 7161 delalloc_len = delalloc_end - delalloc_start; 7162 7163 if (delalloc_len > 0) { 7164 u64 hole_start; 7165 u64 hole_len; 7166 const u64 hole_end = extent_map_end(hole_em); 7167 7168 em = alloc_extent_map(); 7169 if (!em) { 7170 err = -ENOMEM; 7171 goto out; 7172 } 7173 7174 ASSERT(hole_em); 7175 /* 7176 * When btrfs_get_extent can't find anything it returns one 7177 * huge hole 7178 * 7179 * Make sure what it found really fits our range, and adjust to 7180 * make sure it is based on the start from the caller 7181 */ 7182 if (hole_end <= start || hole_em->start > end) { 7183 free_extent_map(hole_em); 7184 hole_em = NULL; 7185 } else { 7186 hole_start = max(hole_em->start, start); 7187 hole_len = hole_end - hole_start; 7188 } 7189 7190 if (hole_em && delalloc_start > hole_start) { 7191 /* 7192 * Our hole starts before our delalloc, so we have to 7193 * return just the parts of the hole that go until the 7194 * delalloc starts 7195 */ 7196 em->len = min(hole_len, delalloc_start - hole_start); 7197 em->start = hole_start; 7198 em->orig_start = hole_start; 7199 /* 7200 * Don't adjust block start at all, it is fixed at 7201 * EXTENT_MAP_HOLE 7202 */ 7203 em->block_start = hole_em->block_start; 7204 em->block_len = hole_len; 7205 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags)) 7206 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 7207 } else { 7208 /* 7209 * Hole is out of passed range or it starts after 7210 * delalloc range 7211 */ 7212 em->start = delalloc_start; 7213 em->len = delalloc_len; 7214 em->orig_start = delalloc_start; 7215 em->block_start = EXTENT_MAP_DELALLOC; 7216 em->block_len = delalloc_len; 7217 } 7218 } else { 7219 return hole_em; 7220 } 7221 out: 7222 7223 free_extent_map(hole_em); 7224 if (err) { 7225 free_extent_map(em); 7226 return ERR_PTR(err); 7227 } 7228 return em; 7229 } 7230 7231 static struct extent_map *btrfs_create_dio_extent(struct btrfs_inode *inode, 7232 const u64 start, 7233 const u64 len, 7234 const u64 orig_start, 7235 const u64 block_start, 7236 const u64 block_len, 7237 const u64 orig_block_len, 7238 const u64 ram_bytes, 7239 const int type) 7240 { 7241 struct extent_map *em = NULL; 7242 int ret; 7243 7244 if (type != BTRFS_ORDERED_NOCOW) { 7245 em = create_io_em(inode, start, len, orig_start, block_start, 7246 block_len, orig_block_len, ram_bytes, 7247 BTRFS_COMPRESS_NONE, /* compress_type */ 7248 type); 7249 if (IS_ERR(em)) 7250 goto out; 7251 } 7252 ret = btrfs_add_ordered_extent_dio(inode, start, block_start, len, 7253 block_len, type); 7254 if (ret) { 7255 if (em) { 7256 free_extent_map(em); 7257 btrfs_drop_extent_cache(inode, start, start + len - 1, 0); 7258 } 7259 em = ERR_PTR(ret); 7260 } 7261 out: 7262 7263 return em; 7264 } 7265 7266 static struct extent_map *btrfs_new_extent_direct(struct btrfs_inode *inode, 7267 u64 start, u64 len) 7268 { 7269 struct btrfs_root *root = inode->root; 7270 struct btrfs_fs_info *fs_info = root->fs_info; 7271 struct extent_map *em; 7272 struct btrfs_key ins; 7273 u64 alloc_hint; 7274 int ret; 7275 7276 alloc_hint = get_extent_allocation_hint(inode, start, len); 7277 ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize, 7278 0, alloc_hint, &ins, 1, 1); 7279 if (ret) 7280 return ERR_PTR(ret); 7281 7282 em = btrfs_create_dio_extent(inode, start, ins.offset, start, 7283 ins.objectid, ins.offset, ins.offset, 7284 ins.offset, BTRFS_ORDERED_REGULAR); 7285 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 7286 if (IS_ERR(em)) 7287 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 7288 1); 7289 7290 return em; 7291 } 7292 7293 static bool btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr) 7294 { 7295 struct btrfs_block_group *block_group; 7296 bool readonly = false; 7297 7298 block_group = btrfs_lookup_block_group(fs_info, bytenr); 7299 if (!block_group || block_group->ro) 7300 readonly = true; 7301 if (block_group) 7302 btrfs_put_block_group(block_group); 7303 return readonly; 7304 } 7305 7306 /* 7307 * Check if we can do nocow write into the range [@offset, @offset + @len) 7308 * 7309 * @offset: File offset 7310 * @len: The length to write, will be updated to the nocow writeable 7311 * range 7312 * @orig_start: (optional) Return the original file offset of the file extent 7313 * @orig_len: (optional) Return the original on-disk length of the file extent 7314 * @ram_bytes: (optional) Return the ram_bytes of the file extent 7315 * @strict: if true, omit optimizations that might force us into unnecessary 7316 * cow. e.g., don't trust generation number. 7317 * 7318 * Return: 7319 * >0 and update @len if we can do nocow write 7320 * 0 if we can't do nocow write 7321 * <0 if error happened 7322 * 7323 * NOTE: This only checks the file extents, caller is responsible to wait for 7324 * any ordered extents. 7325 */ 7326 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len, 7327 u64 *orig_start, u64 *orig_block_len, 7328 u64 *ram_bytes, bool strict) 7329 { 7330 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7331 struct btrfs_path *path; 7332 int ret; 7333 struct extent_buffer *leaf; 7334 struct btrfs_root *root = BTRFS_I(inode)->root; 7335 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 7336 struct btrfs_file_extent_item *fi; 7337 struct btrfs_key key; 7338 u64 disk_bytenr; 7339 u64 backref_offset; 7340 u64 extent_end; 7341 u64 num_bytes; 7342 int slot; 7343 int found_type; 7344 bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW); 7345 7346 path = btrfs_alloc_path(); 7347 if (!path) 7348 return -ENOMEM; 7349 7350 ret = btrfs_lookup_file_extent(NULL, root, path, 7351 btrfs_ino(BTRFS_I(inode)), offset, 0); 7352 if (ret < 0) 7353 goto out; 7354 7355 slot = path->slots[0]; 7356 if (ret == 1) { 7357 if (slot == 0) { 7358 /* can't find the item, must cow */ 7359 ret = 0; 7360 goto out; 7361 } 7362 slot--; 7363 } 7364 ret = 0; 7365 leaf = path->nodes[0]; 7366 btrfs_item_key_to_cpu(leaf, &key, slot); 7367 if (key.objectid != btrfs_ino(BTRFS_I(inode)) || 7368 key.type != BTRFS_EXTENT_DATA_KEY) { 7369 /* not our file or wrong item type, must cow */ 7370 goto out; 7371 } 7372 7373 if (key.offset > offset) { 7374 /* Wrong offset, must cow */ 7375 goto out; 7376 } 7377 7378 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 7379 found_type = btrfs_file_extent_type(leaf, fi); 7380 if (found_type != BTRFS_FILE_EXTENT_REG && 7381 found_type != BTRFS_FILE_EXTENT_PREALLOC) { 7382 /* not a regular extent, must cow */ 7383 goto out; 7384 } 7385 7386 if (!nocow && found_type == BTRFS_FILE_EXTENT_REG) 7387 goto out; 7388 7389 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 7390 if (extent_end <= offset) 7391 goto out; 7392 7393 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 7394 if (disk_bytenr == 0) 7395 goto out; 7396 7397 if (btrfs_file_extent_compression(leaf, fi) || 7398 btrfs_file_extent_encryption(leaf, fi) || 7399 btrfs_file_extent_other_encoding(leaf, fi)) 7400 goto out; 7401 7402 /* 7403 * Do the same check as in btrfs_cross_ref_exist but without the 7404 * unnecessary search. 7405 */ 7406 if (!strict && 7407 (btrfs_file_extent_generation(leaf, fi) <= 7408 btrfs_root_last_snapshot(&root->root_item))) 7409 goto out; 7410 7411 backref_offset = btrfs_file_extent_offset(leaf, fi); 7412 7413 if (orig_start) { 7414 *orig_start = key.offset - backref_offset; 7415 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi); 7416 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 7417 } 7418 7419 if (btrfs_extent_readonly(fs_info, disk_bytenr)) 7420 goto out; 7421 7422 num_bytes = min(offset + *len, extent_end) - offset; 7423 if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) { 7424 u64 range_end; 7425 7426 range_end = round_up(offset + num_bytes, 7427 root->fs_info->sectorsize) - 1; 7428 ret = test_range_bit(io_tree, offset, range_end, 7429 EXTENT_DELALLOC, 0, NULL); 7430 if (ret) { 7431 ret = -EAGAIN; 7432 goto out; 7433 } 7434 } 7435 7436 btrfs_release_path(path); 7437 7438 /* 7439 * look for other files referencing this extent, if we 7440 * find any we must cow 7441 */ 7442 7443 ret = btrfs_cross_ref_exist(root, btrfs_ino(BTRFS_I(inode)), 7444 key.offset - backref_offset, disk_bytenr, 7445 strict); 7446 if (ret) { 7447 ret = 0; 7448 goto out; 7449 } 7450 7451 /* 7452 * adjust disk_bytenr and num_bytes to cover just the bytes 7453 * in this extent we are about to write. If there 7454 * are any csums in that range we have to cow in order 7455 * to keep the csums correct 7456 */ 7457 disk_bytenr += backref_offset; 7458 disk_bytenr += offset - key.offset; 7459 if (csum_exist_in_range(fs_info, disk_bytenr, num_bytes)) 7460 goto out; 7461 /* 7462 * all of the above have passed, it is safe to overwrite this extent 7463 * without cow 7464 */ 7465 *len = num_bytes; 7466 ret = 1; 7467 out: 7468 btrfs_free_path(path); 7469 return ret; 7470 } 7471 7472 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend, 7473 struct extent_state **cached_state, bool writing) 7474 { 7475 struct btrfs_ordered_extent *ordered; 7476 int ret = 0; 7477 7478 while (1) { 7479 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7480 cached_state); 7481 /* 7482 * We're concerned with the entire range that we're going to be 7483 * doing DIO to, so we need to make sure there's no ordered 7484 * extents in this range. 7485 */ 7486 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart, 7487 lockend - lockstart + 1); 7488 7489 /* 7490 * We need to make sure there are no buffered pages in this 7491 * range either, we could have raced between the invalidate in 7492 * generic_file_direct_write and locking the extent. The 7493 * invalidate needs to happen so that reads after a write do not 7494 * get stale data. 7495 */ 7496 if (!ordered && 7497 (!writing || !filemap_range_has_page(inode->i_mapping, 7498 lockstart, lockend))) 7499 break; 7500 7501 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7502 cached_state); 7503 7504 if (ordered) { 7505 /* 7506 * If we are doing a DIO read and the ordered extent we 7507 * found is for a buffered write, we can not wait for it 7508 * to complete and retry, because if we do so we can 7509 * deadlock with concurrent buffered writes on page 7510 * locks. This happens only if our DIO read covers more 7511 * than one extent map, if at this point has already 7512 * created an ordered extent for a previous extent map 7513 * and locked its range in the inode's io tree, and a 7514 * concurrent write against that previous extent map's 7515 * range and this range started (we unlock the ranges 7516 * in the io tree only when the bios complete and 7517 * buffered writes always lock pages before attempting 7518 * to lock range in the io tree). 7519 */ 7520 if (writing || 7521 test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) 7522 btrfs_start_ordered_extent(ordered, 1); 7523 else 7524 ret = -ENOTBLK; 7525 btrfs_put_ordered_extent(ordered); 7526 } else { 7527 /* 7528 * We could trigger writeback for this range (and wait 7529 * for it to complete) and then invalidate the pages for 7530 * this range (through invalidate_inode_pages2_range()), 7531 * but that can lead us to a deadlock with a concurrent 7532 * call to readahead (a buffered read or a defrag call 7533 * triggered a readahead) on a page lock due to an 7534 * ordered dio extent we created before but did not have 7535 * yet a corresponding bio submitted (whence it can not 7536 * complete), which makes readahead wait for that 7537 * ordered extent to complete while holding a lock on 7538 * that page. 7539 */ 7540 ret = -ENOTBLK; 7541 } 7542 7543 if (ret) 7544 break; 7545 7546 cond_resched(); 7547 } 7548 7549 return ret; 7550 } 7551 7552 /* The callers of this must take lock_extent() */ 7553 static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start, 7554 u64 len, u64 orig_start, u64 block_start, 7555 u64 block_len, u64 orig_block_len, 7556 u64 ram_bytes, int compress_type, 7557 int type) 7558 { 7559 struct extent_map_tree *em_tree; 7560 struct extent_map *em; 7561 int ret; 7562 7563 ASSERT(type == BTRFS_ORDERED_PREALLOC || 7564 type == BTRFS_ORDERED_COMPRESSED || 7565 type == BTRFS_ORDERED_NOCOW || 7566 type == BTRFS_ORDERED_REGULAR); 7567 7568 em_tree = &inode->extent_tree; 7569 em = alloc_extent_map(); 7570 if (!em) 7571 return ERR_PTR(-ENOMEM); 7572 7573 em->start = start; 7574 em->orig_start = orig_start; 7575 em->len = len; 7576 em->block_len = block_len; 7577 em->block_start = block_start; 7578 em->orig_block_len = orig_block_len; 7579 em->ram_bytes = ram_bytes; 7580 em->generation = -1; 7581 set_bit(EXTENT_FLAG_PINNED, &em->flags); 7582 if (type == BTRFS_ORDERED_PREALLOC) { 7583 set_bit(EXTENT_FLAG_FILLING, &em->flags); 7584 } else if (type == BTRFS_ORDERED_COMPRESSED) { 7585 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 7586 em->compress_type = compress_type; 7587 } 7588 7589 do { 7590 btrfs_drop_extent_cache(inode, em->start, 7591 em->start + em->len - 1, 0); 7592 write_lock(&em_tree->lock); 7593 ret = add_extent_mapping(em_tree, em, 1); 7594 write_unlock(&em_tree->lock); 7595 /* 7596 * The caller has taken lock_extent(), who could race with us 7597 * to add em? 7598 */ 7599 } while (ret == -EEXIST); 7600 7601 if (ret) { 7602 free_extent_map(em); 7603 return ERR_PTR(ret); 7604 } 7605 7606 /* em got 2 refs now, callers needs to do free_extent_map once. */ 7607 return em; 7608 } 7609 7610 7611 static int btrfs_get_blocks_direct_write(struct extent_map **map, 7612 struct inode *inode, 7613 struct btrfs_dio_data *dio_data, 7614 u64 start, u64 len) 7615 { 7616 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7617 struct extent_map *em = *map; 7618 int ret = 0; 7619 7620 /* 7621 * We don't allocate a new extent in the following cases 7622 * 7623 * 1) The inode is marked as NODATACOW. In this case we'll just use the 7624 * existing extent. 7625 * 2) The extent is marked as PREALLOC. We're good to go here and can 7626 * just use the extent. 7627 * 7628 */ 7629 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) || 7630 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) && 7631 em->block_start != EXTENT_MAP_HOLE)) { 7632 int type; 7633 u64 block_start, orig_start, orig_block_len, ram_bytes; 7634 7635 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 7636 type = BTRFS_ORDERED_PREALLOC; 7637 else 7638 type = BTRFS_ORDERED_NOCOW; 7639 len = min(len, em->len - (start - em->start)); 7640 block_start = em->block_start + (start - em->start); 7641 7642 if (can_nocow_extent(inode, start, &len, &orig_start, 7643 &orig_block_len, &ram_bytes, false) == 1 && 7644 btrfs_inc_nocow_writers(fs_info, block_start)) { 7645 struct extent_map *em2; 7646 7647 em2 = btrfs_create_dio_extent(BTRFS_I(inode), start, len, 7648 orig_start, block_start, 7649 len, orig_block_len, 7650 ram_bytes, type); 7651 btrfs_dec_nocow_writers(fs_info, block_start); 7652 if (type == BTRFS_ORDERED_PREALLOC) { 7653 free_extent_map(em); 7654 *map = em = em2; 7655 } 7656 7657 if (em2 && IS_ERR(em2)) { 7658 ret = PTR_ERR(em2); 7659 goto out; 7660 } 7661 /* 7662 * For inode marked NODATACOW or extent marked PREALLOC, 7663 * use the existing or preallocated extent, so does not 7664 * need to adjust btrfs_space_info's bytes_may_use. 7665 */ 7666 btrfs_free_reserved_data_space_noquota(fs_info, len); 7667 goto skip_cow; 7668 } 7669 } 7670 7671 /* this will cow the extent */ 7672 free_extent_map(em); 7673 *map = em = btrfs_new_extent_direct(BTRFS_I(inode), start, len); 7674 if (IS_ERR(em)) { 7675 ret = PTR_ERR(em); 7676 goto out; 7677 } 7678 7679 len = min(len, em->len - (start - em->start)); 7680 7681 skip_cow: 7682 /* 7683 * Need to update the i_size under the extent lock so buffered 7684 * readers will get the updated i_size when we unlock. 7685 */ 7686 if (start + len > i_size_read(inode)) 7687 i_size_write(inode, start + len); 7688 7689 dio_data->reserve -= len; 7690 out: 7691 return ret; 7692 } 7693 7694 static int btrfs_dio_iomap_begin(struct inode *inode, loff_t start, 7695 loff_t length, unsigned int flags, struct iomap *iomap, 7696 struct iomap *srcmap) 7697 { 7698 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7699 struct extent_map *em; 7700 struct extent_state *cached_state = NULL; 7701 struct btrfs_dio_data *dio_data = NULL; 7702 u64 lockstart, lockend; 7703 const bool write = !!(flags & IOMAP_WRITE); 7704 int ret = 0; 7705 u64 len = length; 7706 bool unlock_extents = false; 7707 7708 if (!write) 7709 len = min_t(u64, len, fs_info->sectorsize); 7710 7711 lockstart = start; 7712 lockend = start + len - 1; 7713 7714 /* 7715 * The generic stuff only does filemap_write_and_wait_range, which 7716 * isn't enough if we've written compressed pages to this area, so we 7717 * need to flush the dirty pages again to make absolutely sure that any 7718 * outstanding dirty pages are on disk. 7719 */ 7720 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 7721 &BTRFS_I(inode)->runtime_flags)) { 7722 ret = filemap_fdatawrite_range(inode->i_mapping, start, 7723 start + length - 1); 7724 if (ret) 7725 return ret; 7726 } 7727 7728 dio_data = kzalloc(sizeof(*dio_data), GFP_NOFS); 7729 if (!dio_data) 7730 return -ENOMEM; 7731 7732 dio_data->length = length; 7733 if (write) { 7734 dio_data->reserve = round_up(length, fs_info->sectorsize); 7735 ret = btrfs_delalloc_reserve_space(BTRFS_I(inode), 7736 &dio_data->data_reserved, 7737 start, dio_data->reserve); 7738 if (ret) { 7739 extent_changeset_free(dio_data->data_reserved); 7740 kfree(dio_data); 7741 return ret; 7742 } 7743 } 7744 iomap->private = dio_data; 7745 7746 7747 /* 7748 * If this errors out it's because we couldn't invalidate pagecache for 7749 * this range and we need to fallback to buffered. 7750 */ 7751 if (lock_extent_direct(inode, lockstart, lockend, &cached_state, write)) { 7752 ret = -ENOTBLK; 7753 goto err; 7754 } 7755 7756 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len); 7757 if (IS_ERR(em)) { 7758 ret = PTR_ERR(em); 7759 goto unlock_err; 7760 } 7761 7762 /* 7763 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered 7764 * io. INLINE is special, and we could probably kludge it in here, but 7765 * it's still buffered so for safety lets just fall back to the generic 7766 * buffered path. 7767 * 7768 * For COMPRESSED we _have_ to read the entire extent in so we can 7769 * decompress it, so there will be buffering required no matter what we 7770 * do, so go ahead and fallback to buffered. 7771 * 7772 * We return -ENOTBLK because that's what makes DIO go ahead and go back 7773 * to buffered IO. Don't blame me, this is the price we pay for using 7774 * the generic code. 7775 */ 7776 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) || 7777 em->block_start == EXTENT_MAP_INLINE) { 7778 free_extent_map(em); 7779 ret = -ENOTBLK; 7780 goto unlock_err; 7781 } 7782 7783 len = min(len, em->len - (start - em->start)); 7784 if (write) { 7785 ret = btrfs_get_blocks_direct_write(&em, inode, dio_data, 7786 start, len); 7787 if (ret < 0) 7788 goto unlock_err; 7789 unlock_extents = true; 7790 /* Recalc len in case the new em is smaller than requested */ 7791 len = min(len, em->len - (start - em->start)); 7792 } else { 7793 /* 7794 * We need to unlock only the end area that we aren't using. 7795 * The rest is going to be unlocked by the endio routine. 7796 */ 7797 lockstart = start + len; 7798 if (lockstart < lockend) 7799 unlock_extents = true; 7800 } 7801 7802 if (unlock_extents) 7803 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 7804 lockstart, lockend, &cached_state); 7805 else 7806 free_extent_state(cached_state); 7807 7808 /* 7809 * Translate extent map information to iomap. 7810 * We trim the extents (and move the addr) even though iomap code does 7811 * that, since we have locked only the parts we are performing I/O in. 7812 */ 7813 if ((em->block_start == EXTENT_MAP_HOLE) || 7814 (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) && !write)) { 7815 iomap->addr = IOMAP_NULL_ADDR; 7816 iomap->type = IOMAP_HOLE; 7817 } else { 7818 iomap->addr = em->block_start + (start - em->start); 7819 iomap->type = IOMAP_MAPPED; 7820 } 7821 iomap->offset = start; 7822 iomap->bdev = fs_info->fs_devices->latest_bdev; 7823 iomap->length = len; 7824 7825 if (write && btrfs_use_zone_append(BTRFS_I(inode), em->block_start)) 7826 iomap->flags |= IOMAP_F_ZONE_APPEND; 7827 7828 free_extent_map(em); 7829 7830 return 0; 7831 7832 unlock_err: 7833 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7834 &cached_state); 7835 err: 7836 if (dio_data) { 7837 btrfs_delalloc_release_space(BTRFS_I(inode), 7838 dio_data->data_reserved, start, 7839 dio_data->reserve, true); 7840 btrfs_delalloc_release_extents(BTRFS_I(inode), dio_data->reserve); 7841 extent_changeset_free(dio_data->data_reserved); 7842 kfree(dio_data); 7843 } 7844 return ret; 7845 } 7846 7847 static int btrfs_dio_iomap_end(struct inode *inode, loff_t pos, loff_t length, 7848 ssize_t written, unsigned int flags, struct iomap *iomap) 7849 { 7850 int ret = 0; 7851 struct btrfs_dio_data *dio_data = iomap->private; 7852 size_t submitted = dio_data->submitted; 7853 const bool write = !!(flags & IOMAP_WRITE); 7854 7855 if (!write && (iomap->type == IOMAP_HOLE)) { 7856 /* If reading from a hole, unlock and return */ 7857 unlock_extent(&BTRFS_I(inode)->io_tree, pos, pos + length - 1); 7858 goto out; 7859 } 7860 7861 if (submitted < length) { 7862 pos += submitted; 7863 length -= submitted; 7864 if (write) 7865 __endio_write_update_ordered(BTRFS_I(inode), pos, 7866 length, false); 7867 else 7868 unlock_extent(&BTRFS_I(inode)->io_tree, pos, 7869 pos + length - 1); 7870 ret = -ENOTBLK; 7871 } 7872 7873 if (write) { 7874 if (dio_data->reserve) 7875 btrfs_delalloc_release_space(BTRFS_I(inode), 7876 dio_data->data_reserved, pos, 7877 dio_data->reserve, true); 7878 btrfs_delalloc_release_extents(BTRFS_I(inode), dio_data->length); 7879 extent_changeset_free(dio_data->data_reserved); 7880 } 7881 out: 7882 kfree(dio_data); 7883 iomap->private = NULL; 7884 7885 return ret; 7886 } 7887 7888 static void btrfs_dio_private_put(struct btrfs_dio_private *dip) 7889 { 7890 /* 7891 * This implies a barrier so that stores to dio_bio->bi_status before 7892 * this and loads of dio_bio->bi_status after this are fully ordered. 7893 */ 7894 if (!refcount_dec_and_test(&dip->refs)) 7895 return; 7896 7897 if (btrfs_op(dip->dio_bio) == BTRFS_MAP_WRITE) { 7898 __endio_write_update_ordered(BTRFS_I(dip->inode), 7899 dip->logical_offset, 7900 dip->bytes, 7901 !dip->dio_bio->bi_status); 7902 } else { 7903 unlock_extent(&BTRFS_I(dip->inode)->io_tree, 7904 dip->logical_offset, 7905 dip->logical_offset + dip->bytes - 1); 7906 } 7907 7908 bio_endio(dip->dio_bio); 7909 kfree(dip); 7910 } 7911 7912 static blk_status_t submit_dio_repair_bio(struct inode *inode, struct bio *bio, 7913 int mirror_num, 7914 unsigned long bio_flags) 7915 { 7916 struct btrfs_dio_private *dip = bio->bi_private; 7917 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7918 blk_status_t ret; 7919 7920 BUG_ON(bio_op(bio) == REQ_OP_WRITE); 7921 7922 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA); 7923 if (ret) 7924 return ret; 7925 7926 refcount_inc(&dip->refs); 7927 ret = btrfs_map_bio(fs_info, bio, mirror_num); 7928 if (ret) 7929 refcount_dec(&dip->refs); 7930 return ret; 7931 } 7932 7933 static blk_status_t btrfs_check_read_dio_bio(struct inode *inode, 7934 struct btrfs_io_bio *io_bio, 7935 const bool uptodate) 7936 { 7937 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 7938 const u32 sectorsize = fs_info->sectorsize; 7939 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; 7940 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 7941 const bool csum = !(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM); 7942 struct bio_vec bvec; 7943 struct bvec_iter iter; 7944 u64 start = io_bio->logical; 7945 u32 bio_offset = 0; 7946 blk_status_t err = BLK_STS_OK; 7947 7948 __bio_for_each_segment(bvec, &io_bio->bio, iter, io_bio->iter) { 7949 unsigned int i, nr_sectors, pgoff; 7950 7951 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len); 7952 pgoff = bvec.bv_offset; 7953 for (i = 0; i < nr_sectors; i++) { 7954 ASSERT(pgoff < PAGE_SIZE); 7955 if (uptodate && 7956 (!csum || !check_data_csum(inode, io_bio, 7957 bio_offset, bvec.bv_page, 7958 pgoff, start))) { 7959 clean_io_failure(fs_info, failure_tree, io_tree, 7960 start, bvec.bv_page, 7961 btrfs_ino(BTRFS_I(inode)), 7962 pgoff); 7963 } else { 7964 int ret; 7965 7966 ASSERT((start - io_bio->logical) < UINT_MAX); 7967 ret = btrfs_repair_one_sector(inode, 7968 &io_bio->bio, 7969 start - io_bio->logical, 7970 bvec.bv_page, pgoff, 7971 start, io_bio->mirror_num, 7972 submit_dio_repair_bio); 7973 if (ret) 7974 err = errno_to_blk_status(ret); 7975 } 7976 start += sectorsize; 7977 ASSERT(bio_offset + sectorsize > bio_offset); 7978 bio_offset += sectorsize; 7979 pgoff += sectorsize; 7980 } 7981 } 7982 return err; 7983 } 7984 7985 static void __endio_write_update_ordered(struct btrfs_inode *inode, 7986 const u64 offset, const u64 bytes, 7987 const bool uptodate) 7988 { 7989 btrfs_mark_ordered_io_finished(inode, NULL, offset, bytes, 7990 finish_ordered_fn, uptodate); 7991 } 7992 7993 static blk_status_t btrfs_submit_bio_start_direct_io(struct inode *inode, 7994 struct bio *bio, 7995 u64 dio_file_offset) 7996 { 7997 return btrfs_csum_one_bio(BTRFS_I(inode), bio, dio_file_offset, 1); 7998 } 7999 8000 static void btrfs_end_dio_bio(struct bio *bio) 8001 { 8002 struct btrfs_dio_private *dip = bio->bi_private; 8003 blk_status_t err = bio->bi_status; 8004 8005 if (err) 8006 btrfs_warn(BTRFS_I(dip->inode)->root->fs_info, 8007 "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d", 8008 btrfs_ino(BTRFS_I(dip->inode)), bio_op(bio), 8009 bio->bi_opf, bio->bi_iter.bi_sector, 8010 bio->bi_iter.bi_size, err); 8011 8012 if (bio_op(bio) == REQ_OP_READ) { 8013 err = btrfs_check_read_dio_bio(dip->inode, btrfs_io_bio(bio), 8014 !err); 8015 } 8016 8017 if (err) 8018 dip->dio_bio->bi_status = err; 8019 8020 btrfs_record_physical_zoned(dip->inode, dip->logical_offset, bio); 8021 8022 bio_put(bio); 8023 btrfs_dio_private_put(dip); 8024 } 8025 8026 static inline blk_status_t btrfs_submit_dio_bio(struct bio *bio, 8027 struct inode *inode, u64 file_offset, int async_submit) 8028 { 8029 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8030 struct btrfs_dio_private *dip = bio->bi_private; 8031 bool write = btrfs_op(bio) == BTRFS_MAP_WRITE; 8032 blk_status_t ret; 8033 8034 /* Check btrfs_submit_bio_hook() for rules about async submit. */ 8035 if (async_submit) 8036 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers); 8037 8038 if (!write) { 8039 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA); 8040 if (ret) 8041 goto err; 8042 } 8043 8044 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) 8045 goto map; 8046 8047 if (write && async_submit) { 8048 ret = btrfs_wq_submit_bio(inode, bio, 0, 0, file_offset, 8049 btrfs_submit_bio_start_direct_io); 8050 goto err; 8051 } else if (write) { 8052 /* 8053 * If we aren't doing async submit, calculate the csum of the 8054 * bio now. 8055 */ 8056 ret = btrfs_csum_one_bio(BTRFS_I(inode), bio, file_offset, 1); 8057 if (ret) 8058 goto err; 8059 } else { 8060 u64 csum_offset; 8061 8062 csum_offset = file_offset - dip->logical_offset; 8063 csum_offset >>= fs_info->sectorsize_bits; 8064 csum_offset *= fs_info->csum_size; 8065 btrfs_io_bio(bio)->csum = dip->csums + csum_offset; 8066 } 8067 map: 8068 ret = btrfs_map_bio(fs_info, bio, 0); 8069 err: 8070 return ret; 8071 } 8072 8073 /* 8074 * If this succeeds, the btrfs_dio_private is responsible for cleaning up locked 8075 * or ordered extents whether or not we submit any bios. 8076 */ 8077 static struct btrfs_dio_private *btrfs_create_dio_private(struct bio *dio_bio, 8078 struct inode *inode, 8079 loff_t file_offset) 8080 { 8081 const bool write = (btrfs_op(dio_bio) == BTRFS_MAP_WRITE); 8082 const bool csum = !(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM); 8083 size_t dip_size; 8084 struct btrfs_dio_private *dip; 8085 8086 dip_size = sizeof(*dip); 8087 if (!write && csum) { 8088 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8089 size_t nblocks; 8090 8091 nblocks = dio_bio->bi_iter.bi_size >> fs_info->sectorsize_bits; 8092 dip_size += fs_info->csum_size * nblocks; 8093 } 8094 8095 dip = kzalloc(dip_size, GFP_NOFS); 8096 if (!dip) 8097 return NULL; 8098 8099 dip->inode = inode; 8100 dip->logical_offset = file_offset; 8101 dip->bytes = dio_bio->bi_iter.bi_size; 8102 dip->disk_bytenr = dio_bio->bi_iter.bi_sector << 9; 8103 dip->dio_bio = dio_bio; 8104 refcount_set(&dip->refs, 1); 8105 return dip; 8106 } 8107 8108 static blk_qc_t btrfs_submit_direct(struct inode *inode, struct iomap *iomap, 8109 struct bio *dio_bio, loff_t file_offset) 8110 { 8111 const bool write = (btrfs_op(dio_bio) == BTRFS_MAP_WRITE); 8112 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8113 const bool raid56 = (btrfs_data_alloc_profile(fs_info) & 8114 BTRFS_BLOCK_GROUP_RAID56_MASK); 8115 struct btrfs_dio_private *dip; 8116 struct bio *bio; 8117 u64 start_sector; 8118 int async_submit = 0; 8119 u64 submit_len; 8120 int clone_offset = 0; 8121 int clone_len; 8122 u64 logical; 8123 int ret; 8124 blk_status_t status; 8125 struct btrfs_io_geometry geom; 8126 struct btrfs_dio_data *dio_data = iomap->private; 8127 struct extent_map *em = NULL; 8128 8129 dip = btrfs_create_dio_private(dio_bio, inode, file_offset); 8130 if (!dip) { 8131 if (!write) { 8132 unlock_extent(&BTRFS_I(inode)->io_tree, file_offset, 8133 file_offset + dio_bio->bi_iter.bi_size - 1); 8134 } 8135 dio_bio->bi_status = BLK_STS_RESOURCE; 8136 bio_endio(dio_bio); 8137 return BLK_QC_T_NONE; 8138 } 8139 8140 if (!write) { 8141 /* 8142 * Load the csums up front to reduce csum tree searches and 8143 * contention when submitting bios. 8144 * 8145 * If we have csums disabled this will do nothing. 8146 */ 8147 status = btrfs_lookup_bio_sums(inode, dio_bio, dip->csums); 8148 if (status != BLK_STS_OK) 8149 goto out_err; 8150 } 8151 8152 start_sector = dio_bio->bi_iter.bi_sector; 8153 submit_len = dio_bio->bi_iter.bi_size; 8154 8155 do { 8156 logical = start_sector << 9; 8157 em = btrfs_get_chunk_map(fs_info, logical, submit_len); 8158 if (IS_ERR(em)) { 8159 status = errno_to_blk_status(PTR_ERR(em)); 8160 em = NULL; 8161 goto out_err_em; 8162 } 8163 ret = btrfs_get_io_geometry(fs_info, em, btrfs_op(dio_bio), 8164 logical, &geom); 8165 if (ret) { 8166 status = errno_to_blk_status(ret); 8167 goto out_err_em; 8168 } 8169 ASSERT(geom.len <= INT_MAX); 8170 8171 clone_len = min_t(int, submit_len, geom.len); 8172 8173 /* 8174 * This will never fail as it's passing GPF_NOFS and 8175 * the allocation is backed by btrfs_bioset. 8176 */ 8177 bio = btrfs_bio_clone_partial(dio_bio, clone_offset, clone_len); 8178 bio->bi_private = dip; 8179 bio->bi_end_io = btrfs_end_dio_bio; 8180 btrfs_io_bio(bio)->logical = file_offset; 8181 8182 if (bio_op(bio) == REQ_OP_ZONE_APPEND) { 8183 status = extract_ordered_extent(BTRFS_I(inode), bio, 8184 file_offset); 8185 if (status) { 8186 bio_put(bio); 8187 goto out_err; 8188 } 8189 } 8190 8191 ASSERT(submit_len >= clone_len); 8192 submit_len -= clone_len; 8193 8194 /* 8195 * Increase the count before we submit the bio so we know 8196 * the end IO handler won't happen before we increase the 8197 * count. Otherwise, the dip might get freed before we're 8198 * done setting it up. 8199 * 8200 * We transfer the initial reference to the last bio, so we 8201 * don't need to increment the reference count for the last one. 8202 */ 8203 if (submit_len > 0) { 8204 refcount_inc(&dip->refs); 8205 /* 8206 * If we are submitting more than one bio, submit them 8207 * all asynchronously. The exception is RAID 5 or 6, as 8208 * asynchronous checksums make it difficult to collect 8209 * full stripe writes. 8210 */ 8211 if (!raid56) 8212 async_submit = 1; 8213 } 8214 8215 status = btrfs_submit_dio_bio(bio, inode, file_offset, 8216 async_submit); 8217 if (status) { 8218 bio_put(bio); 8219 if (submit_len > 0) 8220 refcount_dec(&dip->refs); 8221 goto out_err_em; 8222 } 8223 8224 dio_data->submitted += clone_len; 8225 clone_offset += clone_len; 8226 start_sector += clone_len >> 9; 8227 file_offset += clone_len; 8228 8229 free_extent_map(em); 8230 } while (submit_len > 0); 8231 return BLK_QC_T_NONE; 8232 8233 out_err_em: 8234 free_extent_map(em); 8235 out_err: 8236 dip->dio_bio->bi_status = status; 8237 btrfs_dio_private_put(dip); 8238 8239 return BLK_QC_T_NONE; 8240 } 8241 8242 const struct iomap_ops btrfs_dio_iomap_ops = { 8243 .iomap_begin = btrfs_dio_iomap_begin, 8244 .iomap_end = btrfs_dio_iomap_end, 8245 }; 8246 8247 const struct iomap_dio_ops btrfs_dio_ops = { 8248 .submit_io = btrfs_submit_direct, 8249 }; 8250 8251 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 8252 u64 start, u64 len) 8253 { 8254 int ret; 8255 8256 ret = fiemap_prep(inode, fieinfo, start, &len, 0); 8257 if (ret) 8258 return ret; 8259 8260 return extent_fiemap(BTRFS_I(inode), fieinfo, start, len); 8261 } 8262 8263 int btrfs_readpage(struct file *file, struct page *page) 8264 { 8265 struct btrfs_inode *inode = BTRFS_I(page->mapping->host); 8266 u64 start = page_offset(page); 8267 u64 end = start + PAGE_SIZE - 1; 8268 struct btrfs_bio_ctrl bio_ctrl = { 0 }; 8269 int ret; 8270 8271 btrfs_lock_and_flush_ordered_range(inode, start, end, NULL); 8272 8273 ret = btrfs_do_readpage(page, NULL, &bio_ctrl, 0, NULL); 8274 if (bio_ctrl.bio) 8275 ret = submit_one_bio(bio_ctrl.bio, 0, bio_ctrl.bio_flags); 8276 return ret; 8277 } 8278 8279 static int btrfs_writepage(struct page *page, struct writeback_control *wbc) 8280 { 8281 struct inode *inode = page->mapping->host; 8282 int ret; 8283 8284 if (current->flags & PF_MEMALLOC) { 8285 redirty_page_for_writepage(wbc, page); 8286 unlock_page(page); 8287 return 0; 8288 } 8289 8290 /* 8291 * If we are under memory pressure we will call this directly from the 8292 * VM, we need to make sure we have the inode referenced for the ordered 8293 * extent. If not just return like we didn't do anything. 8294 */ 8295 if (!igrab(inode)) { 8296 redirty_page_for_writepage(wbc, page); 8297 return AOP_WRITEPAGE_ACTIVATE; 8298 } 8299 ret = extent_write_full_page(page, wbc); 8300 btrfs_add_delayed_iput(inode); 8301 return ret; 8302 } 8303 8304 static int btrfs_writepages(struct address_space *mapping, 8305 struct writeback_control *wbc) 8306 { 8307 return extent_writepages(mapping, wbc); 8308 } 8309 8310 static void btrfs_readahead(struct readahead_control *rac) 8311 { 8312 extent_readahead(rac); 8313 } 8314 8315 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags) 8316 { 8317 int ret = try_release_extent_mapping(page, gfp_flags); 8318 if (ret == 1) 8319 clear_page_extent_mapped(page); 8320 return ret; 8321 } 8322 8323 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags) 8324 { 8325 if (PageWriteback(page) || PageDirty(page)) 8326 return 0; 8327 return __btrfs_releasepage(page, gfp_flags); 8328 } 8329 8330 #ifdef CONFIG_MIGRATION 8331 static int btrfs_migratepage(struct address_space *mapping, 8332 struct page *newpage, struct page *page, 8333 enum migrate_mode mode) 8334 { 8335 int ret; 8336 8337 ret = migrate_page_move_mapping(mapping, newpage, page, 0); 8338 if (ret != MIGRATEPAGE_SUCCESS) 8339 return ret; 8340 8341 if (page_has_private(page)) 8342 attach_page_private(newpage, detach_page_private(page)); 8343 8344 if (PageOrdered(page)) { 8345 ClearPageOrdered(page); 8346 SetPageOrdered(newpage); 8347 } 8348 8349 if (mode != MIGRATE_SYNC_NO_COPY) 8350 migrate_page_copy(newpage, page); 8351 else 8352 migrate_page_states(newpage, page); 8353 return MIGRATEPAGE_SUCCESS; 8354 } 8355 #endif 8356 8357 static void btrfs_invalidatepage(struct page *page, unsigned int offset, 8358 unsigned int length) 8359 { 8360 struct btrfs_inode *inode = BTRFS_I(page->mapping->host); 8361 struct btrfs_fs_info *fs_info = inode->root->fs_info; 8362 struct extent_io_tree *tree = &inode->io_tree; 8363 struct extent_state *cached_state = NULL; 8364 u64 page_start = page_offset(page); 8365 u64 page_end = page_start + PAGE_SIZE - 1; 8366 u64 cur; 8367 int inode_evicting = inode->vfs_inode.i_state & I_FREEING; 8368 8369 /* 8370 * We have page locked so no new ordered extent can be created on this 8371 * page, nor bio can be submitted for this page. 8372 * 8373 * But already submitted bio can still be finished on this page. 8374 * Furthermore, endio function won't skip page which has Ordered 8375 * (Private2) already cleared, so it's possible for endio and 8376 * invalidatepage to do the same ordered extent accounting twice 8377 * on one page. 8378 * 8379 * So here we wait for any submitted bios to finish, so that we won't 8380 * do double ordered extent accounting on the same page. 8381 */ 8382 wait_on_page_writeback(page); 8383 8384 /* 8385 * For subpage case, we have call sites like 8386 * btrfs_punch_hole_lock_range() which passes range not aligned to 8387 * sectorsize. 8388 * If the range doesn't cover the full page, we don't need to and 8389 * shouldn't clear page extent mapped, as page->private can still 8390 * record subpage dirty bits for other part of the range. 8391 * 8392 * For cases that can invalidate the full even the range doesn't 8393 * cover the full page, like invalidating the last page, we're 8394 * still safe to wait for ordered extent to finish. 8395 */ 8396 if (!(offset == 0 && length == PAGE_SIZE)) { 8397 btrfs_releasepage(page, GFP_NOFS); 8398 return; 8399 } 8400 8401 if (!inode_evicting) 8402 lock_extent_bits(tree, page_start, page_end, &cached_state); 8403 8404 cur = page_start; 8405 while (cur < page_end) { 8406 struct btrfs_ordered_extent *ordered; 8407 bool delete_states; 8408 u64 range_end; 8409 u32 range_len; 8410 8411 ordered = btrfs_lookup_first_ordered_range(inode, cur, 8412 page_end + 1 - cur); 8413 if (!ordered) { 8414 range_end = page_end; 8415 /* 8416 * No ordered extent covering this range, we are safe 8417 * to delete all extent states in the range. 8418 */ 8419 delete_states = true; 8420 goto next; 8421 } 8422 if (ordered->file_offset > cur) { 8423 /* 8424 * There is a range between [cur, oe->file_offset) not 8425 * covered by any ordered extent. 8426 * We are safe to delete all extent states, and handle 8427 * the ordered extent in the next iteration. 8428 */ 8429 range_end = ordered->file_offset - 1; 8430 delete_states = true; 8431 goto next; 8432 } 8433 8434 range_end = min(ordered->file_offset + ordered->num_bytes - 1, 8435 page_end); 8436 ASSERT(range_end + 1 - cur < U32_MAX); 8437 range_len = range_end + 1 - cur; 8438 if (!btrfs_page_test_ordered(fs_info, page, cur, range_len)) { 8439 /* 8440 * If Ordered (Private2) is cleared, it means endio has 8441 * already been executed for the range. 8442 * We can't delete the extent states as 8443 * btrfs_finish_ordered_io() may still use some of them. 8444 */ 8445 delete_states = false; 8446 goto next; 8447 } 8448 btrfs_page_clear_ordered(fs_info, page, cur, range_len); 8449 8450 /* 8451 * IO on this page will never be started, so we need to account 8452 * for any ordered extents now. Don't clear EXTENT_DELALLOC_NEW 8453 * here, must leave that up for the ordered extent completion. 8454 * 8455 * This will also unlock the range for incoming 8456 * btrfs_finish_ordered_io(). 8457 */ 8458 if (!inode_evicting) 8459 clear_extent_bit(tree, cur, range_end, 8460 EXTENT_DELALLOC | 8461 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING | 8462 EXTENT_DEFRAG, 1, 0, &cached_state); 8463 8464 spin_lock_irq(&inode->ordered_tree.lock); 8465 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags); 8466 ordered->truncated_len = min(ordered->truncated_len, 8467 cur - ordered->file_offset); 8468 spin_unlock_irq(&inode->ordered_tree.lock); 8469 8470 if (btrfs_dec_test_ordered_pending(inode, &ordered, 8471 cur, range_end + 1 - cur, 1)) { 8472 btrfs_finish_ordered_io(ordered); 8473 /* 8474 * The ordered extent has finished, now we're again 8475 * safe to delete all extent states of the range. 8476 */ 8477 delete_states = true; 8478 } else { 8479 /* 8480 * btrfs_finish_ordered_io() will get executed by endio 8481 * of other pages, thus we can't delete extent states 8482 * anymore 8483 */ 8484 delete_states = false; 8485 } 8486 next: 8487 if (ordered) 8488 btrfs_put_ordered_extent(ordered); 8489 /* 8490 * Qgroup reserved space handler 8491 * Sector(s) here will be either: 8492 * 8493 * 1) Already written to disk or bio already finished 8494 * Then its QGROUP_RESERVED bit in io_tree is already cleared. 8495 * Qgroup will be handled by its qgroup_record then. 8496 * btrfs_qgroup_free_data() call will do nothing here. 8497 * 8498 * 2) Not written to disk yet 8499 * Then btrfs_qgroup_free_data() call will clear the 8500 * QGROUP_RESERVED bit of its io_tree, and free the qgroup 8501 * reserved data space. 8502 * Since the IO will never happen for this page. 8503 */ 8504 btrfs_qgroup_free_data(inode, NULL, cur, range_end + 1 - cur); 8505 if (!inode_evicting) { 8506 clear_extent_bit(tree, cur, range_end, EXTENT_LOCKED | 8507 EXTENT_DELALLOC | EXTENT_UPTODATE | 8508 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 8509 delete_states, &cached_state); 8510 } 8511 cur = range_end + 1; 8512 } 8513 /* 8514 * We have iterated through all ordered extents of the page, the page 8515 * should not have Ordered (Private2) anymore, or the above iteration 8516 * did something wrong. 8517 */ 8518 ASSERT(!PageOrdered(page)); 8519 if (!inode_evicting) 8520 __btrfs_releasepage(page, GFP_NOFS); 8521 ClearPageChecked(page); 8522 clear_page_extent_mapped(page); 8523 } 8524 8525 /* 8526 * btrfs_page_mkwrite() is not allowed to change the file size as it gets 8527 * called from a page fault handler when a page is first dirtied. Hence we must 8528 * be careful to check for EOF conditions here. We set the page up correctly 8529 * for a written page which means we get ENOSPC checking when writing into 8530 * holes and correct delalloc and unwritten extent mapping on filesystems that 8531 * support these features. 8532 * 8533 * We are not allowed to take the i_mutex here so we have to play games to 8534 * protect against truncate races as the page could now be beyond EOF. Because 8535 * truncate_setsize() writes the inode size before removing pages, once we have 8536 * the page lock we can determine safely if the page is beyond EOF. If it is not 8537 * beyond EOF, then the page is guaranteed safe against truncation until we 8538 * unlock the page. 8539 */ 8540 vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf) 8541 { 8542 struct page *page = vmf->page; 8543 struct inode *inode = file_inode(vmf->vma->vm_file); 8544 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8545 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 8546 struct btrfs_ordered_extent *ordered; 8547 struct extent_state *cached_state = NULL; 8548 struct extent_changeset *data_reserved = NULL; 8549 unsigned long zero_start; 8550 loff_t size; 8551 vm_fault_t ret; 8552 int ret2; 8553 int reserved = 0; 8554 u64 reserved_space; 8555 u64 page_start; 8556 u64 page_end; 8557 u64 end; 8558 8559 reserved_space = PAGE_SIZE; 8560 8561 sb_start_pagefault(inode->i_sb); 8562 page_start = page_offset(page); 8563 page_end = page_start + PAGE_SIZE - 1; 8564 end = page_end; 8565 8566 /* 8567 * Reserving delalloc space after obtaining the page lock can lead to 8568 * deadlock. For example, if a dirty page is locked by this function 8569 * and the call to btrfs_delalloc_reserve_space() ends up triggering 8570 * dirty page write out, then the btrfs_writepage() function could 8571 * end up waiting indefinitely to get a lock on the page currently 8572 * being processed by btrfs_page_mkwrite() function. 8573 */ 8574 ret2 = btrfs_delalloc_reserve_space(BTRFS_I(inode), &data_reserved, 8575 page_start, reserved_space); 8576 if (!ret2) { 8577 ret2 = file_update_time(vmf->vma->vm_file); 8578 reserved = 1; 8579 } 8580 if (ret2) { 8581 ret = vmf_error(ret2); 8582 if (reserved) 8583 goto out; 8584 goto out_noreserve; 8585 } 8586 8587 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */ 8588 again: 8589 down_read(&BTRFS_I(inode)->i_mmap_lock); 8590 lock_page(page); 8591 size = i_size_read(inode); 8592 8593 if ((page->mapping != inode->i_mapping) || 8594 (page_start >= size)) { 8595 /* page got truncated out from underneath us */ 8596 goto out_unlock; 8597 } 8598 wait_on_page_writeback(page); 8599 8600 lock_extent_bits(io_tree, page_start, page_end, &cached_state); 8601 ret2 = set_page_extent_mapped(page); 8602 if (ret2 < 0) { 8603 ret = vmf_error(ret2); 8604 unlock_extent_cached(io_tree, page_start, page_end, &cached_state); 8605 goto out_unlock; 8606 } 8607 8608 /* 8609 * we can't set the delalloc bits if there are pending ordered 8610 * extents. Drop our locks and wait for them to finish 8611 */ 8612 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start, 8613 PAGE_SIZE); 8614 if (ordered) { 8615 unlock_extent_cached(io_tree, page_start, page_end, 8616 &cached_state); 8617 unlock_page(page); 8618 up_read(&BTRFS_I(inode)->i_mmap_lock); 8619 btrfs_start_ordered_extent(ordered, 1); 8620 btrfs_put_ordered_extent(ordered); 8621 goto again; 8622 } 8623 8624 if (page->index == ((size - 1) >> PAGE_SHIFT)) { 8625 reserved_space = round_up(size - page_start, 8626 fs_info->sectorsize); 8627 if (reserved_space < PAGE_SIZE) { 8628 end = page_start + reserved_space - 1; 8629 btrfs_delalloc_release_space(BTRFS_I(inode), 8630 data_reserved, page_start, 8631 PAGE_SIZE - reserved_space, true); 8632 } 8633 } 8634 8635 /* 8636 * page_mkwrite gets called when the page is firstly dirtied after it's 8637 * faulted in, but write(2) could also dirty a page and set delalloc 8638 * bits, thus in this case for space account reason, we still need to 8639 * clear any delalloc bits within this page range since we have to 8640 * reserve data&meta space before lock_page() (see above comments). 8641 */ 8642 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end, 8643 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | 8644 EXTENT_DEFRAG, 0, 0, &cached_state); 8645 8646 ret2 = btrfs_set_extent_delalloc(BTRFS_I(inode), page_start, end, 0, 8647 &cached_state); 8648 if (ret2) { 8649 unlock_extent_cached(io_tree, page_start, page_end, 8650 &cached_state); 8651 ret = VM_FAULT_SIGBUS; 8652 goto out_unlock; 8653 } 8654 8655 /* page is wholly or partially inside EOF */ 8656 if (page_start + PAGE_SIZE > size) 8657 zero_start = offset_in_page(size); 8658 else 8659 zero_start = PAGE_SIZE; 8660 8661 if (zero_start != PAGE_SIZE) { 8662 memzero_page(page, zero_start, PAGE_SIZE - zero_start); 8663 flush_dcache_page(page); 8664 } 8665 ClearPageChecked(page); 8666 btrfs_page_set_dirty(fs_info, page, page_start, end + 1 - page_start); 8667 btrfs_page_set_uptodate(fs_info, page, page_start, end + 1 - page_start); 8668 8669 btrfs_set_inode_last_sub_trans(BTRFS_I(inode)); 8670 8671 unlock_extent_cached(io_tree, page_start, page_end, &cached_state); 8672 up_read(&BTRFS_I(inode)->i_mmap_lock); 8673 8674 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE); 8675 sb_end_pagefault(inode->i_sb); 8676 extent_changeset_free(data_reserved); 8677 return VM_FAULT_LOCKED; 8678 8679 out_unlock: 8680 unlock_page(page); 8681 up_read(&BTRFS_I(inode)->i_mmap_lock); 8682 out: 8683 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE); 8684 btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved, page_start, 8685 reserved_space, (ret != 0)); 8686 out_noreserve: 8687 sb_end_pagefault(inode->i_sb); 8688 extent_changeset_free(data_reserved); 8689 return ret; 8690 } 8691 8692 static int btrfs_truncate(struct inode *inode, bool skip_writeback) 8693 { 8694 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8695 struct btrfs_root *root = BTRFS_I(inode)->root; 8696 struct btrfs_block_rsv *rsv; 8697 int ret; 8698 struct btrfs_trans_handle *trans; 8699 u64 mask = fs_info->sectorsize - 1; 8700 u64 min_size = btrfs_calc_metadata_size(fs_info, 1); 8701 u64 extents_found = 0; 8702 8703 if (!skip_writeback) { 8704 ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask), 8705 (u64)-1); 8706 if (ret) 8707 return ret; 8708 } 8709 8710 /* 8711 * Yes ladies and gentlemen, this is indeed ugly. We have a couple of 8712 * things going on here: 8713 * 8714 * 1) We need to reserve space to update our inode. 8715 * 8716 * 2) We need to have something to cache all the space that is going to 8717 * be free'd up by the truncate operation, but also have some slack 8718 * space reserved in case it uses space during the truncate (thank you 8719 * very much snapshotting). 8720 * 8721 * And we need these to be separate. The fact is we can use a lot of 8722 * space doing the truncate, and we have no earthly idea how much space 8723 * we will use, so we need the truncate reservation to be separate so it 8724 * doesn't end up using space reserved for updating the inode. We also 8725 * need to be able to stop the transaction and start a new one, which 8726 * means we need to be able to update the inode several times, and we 8727 * have no idea of knowing how many times that will be, so we can't just 8728 * reserve 1 item for the entirety of the operation, so that has to be 8729 * done separately as well. 8730 * 8731 * So that leaves us with 8732 * 8733 * 1) rsv - for the truncate reservation, which we will steal from the 8734 * transaction reservation. 8735 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for 8736 * updating the inode. 8737 */ 8738 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP); 8739 if (!rsv) 8740 return -ENOMEM; 8741 rsv->size = min_size; 8742 rsv->failfast = 1; 8743 8744 /* 8745 * 1 for the truncate slack space 8746 * 1 for updating the inode. 8747 */ 8748 trans = btrfs_start_transaction(root, 2); 8749 if (IS_ERR(trans)) { 8750 ret = PTR_ERR(trans); 8751 goto out; 8752 } 8753 8754 /* Migrate the slack space for the truncate to our reserve */ 8755 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv, 8756 min_size, false); 8757 BUG_ON(ret); 8758 8759 trans->block_rsv = rsv; 8760 8761 while (1) { 8762 ret = btrfs_truncate_inode_items(trans, root, BTRFS_I(inode), 8763 inode->i_size, 8764 BTRFS_EXTENT_DATA_KEY, 8765 &extents_found); 8766 trans->block_rsv = &fs_info->trans_block_rsv; 8767 if (ret != -ENOSPC && ret != -EAGAIN) 8768 break; 8769 8770 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 8771 if (ret) 8772 break; 8773 8774 btrfs_end_transaction(trans); 8775 btrfs_btree_balance_dirty(fs_info); 8776 8777 trans = btrfs_start_transaction(root, 2); 8778 if (IS_ERR(trans)) { 8779 ret = PTR_ERR(trans); 8780 trans = NULL; 8781 break; 8782 } 8783 8784 btrfs_block_rsv_release(fs_info, rsv, -1, NULL); 8785 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, 8786 rsv, min_size, false); 8787 BUG_ON(ret); /* shouldn't happen */ 8788 trans->block_rsv = rsv; 8789 } 8790 8791 /* 8792 * We can't call btrfs_truncate_block inside a trans handle as we could 8793 * deadlock with freeze, if we got NEED_TRUNCATE_BLOCK then we know 8794 * we've truncated everything except the last little bit, and can do 8795 * btrfs_truncate_block and then update the disk_i_size. 8796 */ 8797 if (ret == NEED_TRUNCATE_BLOCK) { 8798 btrfs_end_transaction(trans); 8799 btrfs_btree_balance_dirty(fs_info); 8800 8801 ret = btrfs_truncate_block(BTRFS_I(inode), inode->i_size, 0, 0); 8802 if (ret) 8803 goto out; 8804 trans = btrfs_start_transaction(root, 1); 8805 if (IS_ERR(trans)) { 8806 ret = PTR_ERR(trans); 8807 goto out; 8808 } 8809 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0); 8810 } 8811 8812 if (trans) { 8813 int ret2; 8814 8815 trans->block_rsv = &fs_info->trans_block_rsv; 8816 ret2 = btrfs_update_inode(trans, root, BTRFS_I(inode)); 8817 if (ret2 && !ret) 8818 ret = ret2; 8819 8820 ret2 = btrfs_end_transaction(trans); 8821 if (ret2 && !ret) 8822 ret = ret2; 8823 btrfs_btree_balance_dirty(fs_info); 8824 } 8825 out: 8826 btrfs_free_block_rsv(fs_info, rsv); 8827 /* 8828 * So if we truncate and then write and fsync we normally would just 8829 * write the extents that changed, which is a problem if we need to 8830 * first truncate that entire inode. So set this flag so we write out 8831 * all of the extents in the inode to the sync log so we're completely 8832 * safe. 8833 * 8834 * If no extents were dropped or trimmed we don't need to force the next 8835 * fsync to truncate all the inode's items from the log and re-log them 8836 * all. This means the truncate operation did not change the file size, 8837 * or changed it to a smaller size but there was only an implicit hole 8838 * between the old i_size and the new i_size, and there were no prealloc 8839 * extents beyond i_size to drop. 8840 */ 8841 if (extents_found > 0) 8842 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 8843 8844 return ret; 8845 } 8846 8847 /* 8848 * create a new subvolume directory/inode (helper for the ioctl). 8849 */ 8850 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans, 8851 struct btrfs_root *new_root, 8852 struct btrfs_root *parent_root) 8853 { 8854 struct inode *inode; 8855 int err; 8856 u64 index = 0; 8857 u64 ino; 8858 8859 err = btrfs_get_free_objectid(new_root, &ino); 8860 if (err < 0) 8861 return err; 8862 8863 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, ino, ino, 8864 S_IFDIR | (~current_umask() & S_IRWXUGO), 8865 &index); 8866 if (IS_ERR(inode)) 8867 return PTR_ERR(inode); 8868 inode->i_op = &btrfs_dir_inode_operations; 8869 inode->i_fop = &btrfs_dir_file_operations; 8870 8871 set_nlink(inode, 1); 8872 btrfs_i_size_write(BTRFS_I(inode), 0); 8873 unlock_new_inode(inode); 8874 8875 err = btrfs_subvol_inherit_props(trans, new_root, parent_root); 8876 if (err) 8877 btrfs_err(new_root->fs_info, 8878 "error inheriting subvolume %llu properties: %d", 8879 new_root->root_key.objectid, err); 8880 8881 err = btrfs_update_inode(trans, new_root, BTRFS_I(inode)); 8882 8883 iput(inode); 8884 return err; 8885 } 8886 8887 struct inode *btrfs_alloc_inode(struct super_block *sb) 8888 { 8889 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 8890 struct btrfs_inode *ei; 8891 struct inode *inode; 8892 8893 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_KERNEL); 8894 if (!ei) 8895 return NULL; 8896 8897 ei->root = NULL; 8898 ei->generation = 0; 8899 ei->last_trans = 0; 8900 ei->last_sub_trans = 0; 8901 ei->logged_trans = 0; 8902 ei->delalloc_bytes = 0; 8903 ei->new_delalloc_bytes = 0; 8904 ei->defrag_bytes = 0; 8905 ei->disk_i_size = 0; 8906 ei->flags = 0; 8907 ei->csum_bytes = 0; 8908 ei->index_cnt = (u64)-1; 8909 ei->dir_index = 0; 8910 ei->last_unlink_trans = 0; 8911 ei->last_reflink_trans = 0; 8912 ei->last_log_commit = 0; 8913 8914 spin_lock_init(&ei->lock); 8915 ei->outstanding_extents = 0; 8916 if (sb->s_magic != BTRFS_TEST_MAGIC) 8917 btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv, 8918 BTRFS_BLOCK_RSV_DELALLOC); 8919 ei->runtime_flags = 0; 8920 ei->prop_compress = BTRFS_COMPRESS_NONE; 8921 ei->defrag_compress = BTRFS_COMPRESS_NONE; 8922 8923 ei->delayed_node = NULL; 8924 8925 ei->i_otime.tv_sec = 0; 8926 ei->i_otime.tv_nsec = 0; 8927 8928 inode = &ei->vfs_inode; 8929 extent_map_tree_init(&ei->extent_tree); 8930 extent_io_tree_init(fs_info, &ei->io_tree, IO_TREE_INODE_IO, inode); 8931 extent_io_tree_init(fs_info, &ei->io_failure_tree, 8932 IO_TREE_INODE_IO_FAILURE, inode); 8933 extent_io_tree_init(fs_info, &ei->file_extent_tree, 8934 IO_TREE_INODE_FILE_EXTENT, inode); 8935 ei->io_tree.track_uptodate = true; 8936 ei->io_failure_tree.track_uptodate = true; 8937 atomic_set(&ei->sync_writers, 0); 8938 mutex_init(&ei->log_mutex); 8939 btrfs_ordered_inode_tree_init(&ei->ordered_tree); 8940 INIT_LIST_HEAD(&ei->delalloc_inodes); 8941 INIT_LIST_HEAD(&ei->delayed_iput); 8942 RB_CLEAR_NODE(&ei->rb_node); 8943 init_rwsem(&ei->i_mmap_lock); 8944 8945 return inode; 8946 } 8947 8948 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 8949 void btrfs_test_destroy_inode(struct inode *inode) 8950 { 8951 btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0); 8952 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 8953 } 8954 #endif 8955 8956 void btrfs_free_inode(struct inode *inode) 8957 { 8958 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 8959 } 8960 8961 void btrfs_destroy_inode(struct inode *vfs_inode) 8962 { 8963 struct btrfs_ordered_extent *ordered; 8964 struct btrfs_inode *inode = BTRFS_I(vfs_inode); 8965 struct btrfs_root *root = inode->root; 8966 8967 WARN_ON(!hlist_empty(&vfs_inode->i_dentry)); 8968 WARN_ON(vfs_inode->i_data.nrpages); 8969 WARN_ON(inode->block_rsv.reserved); 8970 WARN_ON(inode->block_rsv.size); 8971 WARN_ON(inode->outstanding_extents); 8972 WARN_ON(inode->delalloc_bytes); 8973 WARN_ON(inode->new_delalloc_bytes); 8974 WARN_ON(inode->csum_bytes); 8975 WARN_ON(inode->defrag_bytes); 8976 8977 /* 8978 * This can happen where we create an inode, but somebody else also 8979 * created the same inode and we need to destroy the one we already 8980 * created. 8981 */ 8982 if (!root) 8983 return; 8984 8985 while (1) { 8986 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1); 8987 if (!ordered) 8988 break; 8989 else { 8990 btrfs_err(root->fs_info, 8991 "found ordered extent %llu %llu on inode cleanup", 8992 ordered->file_offset, ordered->num_bytes); 8993 btrfs_remove_ordered_extent(inode, ordered); 8994 btrfs_put_ordered_extent(ordered); 8995 btrfs_put_ordered_extent(ordered); 8996 } 8997 } 8998 btrfs_qgroup_check_reserved_leak(inode); 8999 inode_tree_del(inode); 9000 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0); 9001 btrfs_inode_clear_file_extent_range(inode, 0, (u64)-1); 9002 btrfs_put_root(inode->root); 9003 } 9004 9005 int btrfs_drop_inode(struct inode *inode) 9006 { 9007 struct btrfs_root *root = BTRFS_I(inode)->root; 9008 9009 if (root == NULL) 9010 return 1; 9011 9012 /* the snap/subvol tree is on deleting */ 9013 if (btrfs_root_refs(&root->root_item) == 0) 9014 return 1; 9015 else 9016 return generic_drop_inode(inode); 9017 } 9018 9019 static void init_once(void *foo) 9020 { 9021 struct btrfs_inode *ei = (struct btrfs_inode *) foo; 9022 9023 inode_init_once(&ei->vfs_inode); 9024 } 9025 9026 void __cold btrfs_destroy_cachep(void) 9027 { 9028 /* 9029 * Make sure all delayed rcu free inodes are flushed before we 9030 * destroy cache. 9031 */ 9032 rcu_barrier(); 9033 kmem_cache_destroy(btrfs_inode_cachep); 9034 kmem_cache_destroy(btrfs_trans_handle_cachep); 9035 kmem_cache_destroy(btrfs_path_cachep); 9036 kmem_cache_destroy(btrfs_free_space_cachep); 9037 kmem_cache_destroy(btrfs_free_space_bitmap_cachep); 9038 } 9039 9040 int __init btrfs_init_cachep(void) 9041 { 9042 btrfs_inode_cachep = kmem_cache_create("btrfs_inode", 9043 sizeof(struct btrfs_inode), 0, 9044 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT, 9045 init_once); 9046 if (!btrfs_inode_cachep) 9047 goto fail; 9048 9049 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle", 9050 sizeof(struct btrfs_trans_handle), 0, 9051 SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL); 9052 if (!btrfs_trans_handle_cachep) 9053 goto fail; 9054 9055 btrfs_path_cachep = kmem_cache_create("btrfs_path", 9056 sizeof(struct btrfs_path), 0, 9057 SLAB_MEM_SPREAD, NULL); 9058 if (!btrfs_path_cachep) 9059 goto fail; 9060 9061 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space", 9062 sizeof(struct btrfs_free_space), 0, 9063 SLAB_MEM_SPREAD, NULL); 9064 if (!btrfs_free_space_cachep) 9065 goto fail; 9066 9067 btrfs_free_space_bitmap_cachep = kmem_cache_create("btrfs_free_space_bitmap", 9068 PAGE_SIZE, PAGE_SIZE, 9069 SLAB_MEM_SPREAD, NULL); 9070 if (!btrfs_free_space_bitmap_cachep) 9071 goto fail; 9072 9073 return 0; 9074 fail: 9075 btrfs_destroy_cachep(); 9076 return -ENOMEM; 9077 } 9078 9079 static int btrfs_getattr(struct user_namespace *mnt_userns, 9080 const struct path *path, struct kstat *stat, 9081 u32 request_mask, unsigned int flags) 9082 { 9083 u64 delalloc_bytes; 9084 u64 inode_bytes; 9085 struct inode *inode = d_inode(path->dentry); 9086 u32 blocksize = inode->i_sb->s_blocksize; 9087 u32 bi_flags = BTRFS_I(inode)->flags; 9088 9089 stat->result_mask |= STATX_BTIME; 9090 stat->btime.tv_sec = BTRFS_I(inode)->i_otime.tv_sec; 9091 stat->btime.tv_nsec = BTRFS_I(inode)->i_otime.tv_nsec; 9092 if (bi_flags & BTRFS_INODE_APPEND) 9093 stat->attributes |= STATX_ATTR_APPEND; 9094 if (bi_flags & BTRFS_INODE_COMPRESS) 9095 stat->attributes |= STATX_ATTR_COMPRESSED; 9096 if (bi_flags & BTRFS_INODE_IMMUTABLE) 9097 stat->attributes |= STATX_ATTR_IMMUTABLE; 9098 if (bi_flags & BTRFS_INODE_NODUMP) 9099 stat->attributes |= STATX_ATTR_NODUMP; 9100 9101 stat->attributes_mask |= (STATX_ATTR_APPEND | 9102 STATX_ATTR_COMPRESSED | 9103 STATX_ATTR_IMMUTABLE | 9104 STATX_ATTR_NODUMP); 9105 9106 generic_fillattr(&init_user_ns, inode, stat); 9107 stat->dev = BTRFS_I(inode)->root->anon_dev; 9108 9109 spin_lock(&BTRFS_I(inode)->lock); 9110 delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes; 9111 inode_bytes = inode_get_bytes(inode); 9112 spin_unlock(&BTRFS_I(inode)->lock); 9113 stat->blocks = (ALIGN(inode_bytes, blocksize) + 9114 ALIGN(delalloc_bytes, blocksize)) >> 9; 9115 return 0; 9116 } 9117 9118 static int btrfs_rename_exchange(struct inode *old_dir, 9119 struct dentry *old_dentry, 9120 struct inode *new_dir, 9121 struct dentry *new_dentry) 9122 { 9123 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb); 9124 struct btrfs_trans_handle *trans; 9125 struct btrfs_root *root = BTRFS_I(old_dir)->root; 9126 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 9127 struct inode *new_inode = new_dentry->d_inode; 9128 struct inode *old_inode = old_dentry->d_inode; 9129 struct timespec64 ctime = current_time(old_inode); 9130 u64 old_ino = btrfs_ino(BTRFS_I(old_inode)); 9131 u64 new_ino = btrfs_ino(BTRFS_I(new_inode)); 9132 u64 old_idx = 0; 9133 u64 new_idx = 0; 9134 int ret; 9135 int ret2; 9136 bool root_log_pinned = false; 9137 bool dest_log_pinned = false; 9138 bool need_abort = false; 9139 9140 /* we only allow rename subvolume link between subvolumes */ 9141 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest) 9142 return -EXDEV; 9143 9144 /* close the race window with snapshot create/destroy ioctl */ 9145 if (old_ino == BTRFS_FIRST_FREE_OBJECTID || 9146 new_ino == BTRFS_FIRST_FREE_OBJECTID) 9147 down_read(&fs_info->subvol_sem); 9148 9149 /* 9150 * We want to reserve the absolute worst case amount of items. So if 9151 * both inodes are subvols and we need to unlink them then that would 9152 * require 4 item modifications, but if they are both normal inodes it 9153 * would require 5 item modifications, so we'll assume their normal 9154 * inodes. So 5 * 2 is 10, plus 2 for the new links, so 12 total items 9155 * should cover the worst case number of items we'll modify. 9156 */ 9157 trans = btrfs_start_transaction(root, 12); 9158 if (IS_ERR(trans)) { 9159 ret = PTR_ERR(trans); 9160 goto out_notrans; 9161 } 9162 9163 if (dest != root) { 9164 ret = btrfs_record_root_in_trans(trans, dest); 9165 if (ret) 9166 goto out_fail; 9167 } 9168 9169 /* 9170 * We need to find a free sequence number both in the source and 9171 * in the destination directory for the exchange. 9172 */ 9173 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx); 9174 if (ret) 9175 goto out_fail; 9176 ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx); 9177 if (ret) 9178 goto out_fail; 9179 9180 BTRFS_I(old_inode)->dir_index = 0ULL; 9181 BTRFS_I(new_inode)->dir_index = 0ULL; 9182 9183 /* Reference for the source. */ 9184 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 9185 /* force full log commit if subvolume involved. */ 9186 btrfs_set_log_full_commit(trans); 9187 } else { 9188 btrfs_pin_log_trans(root); 9189 root_log_pinned = true; 9190 ret = btrfs_insert_inode_ref(trans, dest, 9191 new_dentry->d_name.name, 9192 new_dentry->d_name.len, 9193 old_ino, 9194 btrfs_ino(BTRFS_I(new_dir)), 9195 old_idx); 9196 if (ret) 9197 goto out_fail; 9198 need_abort = true; 9199 } 9200 9201 /* And now for the dest. */ 9202 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) { 9203 /* force full log commit if subvolume involved. */ 9204 btrfs_set_log_full_commit(trans); 9205 } else { 9206 btrfs_pin_log_trans(dest); 9207 dest_log_pinned = true; 9208 ret = btrfs_insert_inode_ref(trans, root, 9209 old_dentry->d_name.name, 9210 old_dentry->d_name.len, 9211 new_ino, 9212 btrfs_ino(BTRFS_I(old_dir)), 9213 new_idx); 9214 if (ret) { 9215 if (need_abort) 9216 btrfs_abort_transaction(trans, ret); 9217 goto out_fail; 9218 } 9219 } 9220 9221 /* Update inode version and ctime/mtime. */ 9222 inode_inc_iversion(old_dir); 9223 inode_inc_iversion(new_dir); 9224 inode_inc_iversion(old_inode); 9225 inode_inc_iversion(new_inode); 9226 old_dir->i_ctime = old_dir->i_mtime = ctime; 9227 new_dir->i_ctime = new_dir->i_mtime = ctime; 9228 old_inode->i_ctime = ctime; 9229 new_inode->i_ctime = ctime; 9230 9231 if (old_dentry->d_parent != new_dentry->d_parent) { 9232 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir), 9233 BTRFS_I(old_inode), 1); 9234 btrfs_record_unlink_dir(trans, BTRFS_I(new_dir), 9235 BTRFS_I(new_inode), 1); 9236 } 9237 9238 /* src is a subvolume */ 9239 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 9240 ret = btrfs_unlink_subvol(trans, old_dir, old_dentry); 9241 } else { /* src is an inode */ 9242 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir), 9243 BTRFS_I(old_dentry->d_inode), 9244 old_dentry->d_name.name, 9245 old_dentry->d_name.len); 9246 if (!ret) 9247 ret = btrfs_update_inode(trans, root, BTRFS_I(old_inode)); 9248 } 9249 if (ret) { 9250 btrfs_abort_transaction(trans, ret); 9251 goto out_fail; 9252 } 9253 9254 /* dest is a subvolume */ 9255 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) { 9256 ret = btrfs_unlink_subvol(trans, new_dir, new_dentry); 9257 } else { /* dest is an inode */ 9258 ret = __btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir), 9259 BTRFS_I(new_dentry->d_inode), 9260 new_dentry->d_name.name, 9261 new_dentry->d_name.len); 9262 if (!ret) 9263 ret = btrfs_update_inode(trans, dest, BTRFS_I(new_inode)); 9264 } 9265 if (ret) { 9266 btrfs_abort_transaction(trans, ret); 9267 goto out_fail; 9268 } 9269 9270 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode), 9271 new_dentry->d_name.name, 9272 new_dentry->d_name.len, 0, old_idx); 9273 if (ret) { 9274 btrfs_abort_transaction(trans, ret); 9275 goto out_fail; 9276 } 9277 9278 ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode), 9279 old_dentry->d_name.name, 9280 old_dentry->d_name.len, 0, new_idx); 9281 if (ret) { 9282 btrfs_abort_transaction(trans, ret); 9283 goto out_fail; 9284 } 9285 9286 if (old_inode->i_nlink == 1) 9287 BTRFS_I(old_inode)->dir_index = old_idx; 9288 if (new_inode->i_nlink == 1) 9289 BTRFS_I(new_inode)->dir_index = new_idx; 9290 9291 if (root_log_pinned) { 9292 btrfs_log_new_name(trans, BTRFS_I(old_inode), BTRFS_I(old_dir), 9293 new_dentry->d_parent); 9294 btrfs_end_log_trans(root); 9295 root_log_pinned = false; 9296 } 9297 if (dest_log_pinned) { 9298 btrfs_log_new_name(trans, BTRFS_I(new_inode), BTRFS_I(new_dir), 9299 old_dentry->d_parent); 9300 btrfs_end_log_trans(dest); 9301 dest_log_pinned = false; 9302 } 9303 out_fail: 9304 /* 9305 * If we have pinned a log and an error happened, we unpin tasks 9306 * trying to sync the log and force them to fallback to a transaction 9307 * commit if the log currently contains any of the inodes involved in 9308 * this rename operation (to ensure we do not persist a log with an 9309 * inconsistent state for any of these inodes or leading to any 9310 * inconsistencies when replayed). If the transaction was aborted, the 9311 * abortion reason is propagated to userspace when attempting to commit 9312 * the transaction. If the log does not contain any of these inodes, we 9313 * allow the tasks to sync it. 9314 */ 9315 if (ret && (root_log_pinned || dest_log_pinned)) { 9316 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) || 9317 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) || 9318 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) || 9319 (new_inode && 9320 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation))) 9321 btrfs_set_log_full_commit(trans); 9322 9323 if (root_log_pinned) { 9324 btrfs_end_log_trans(root); 9325 root_log_pinned = false; 9326 } 9327 if (dest_log_pinned) { 9328 btrfs_end_log_trans(dest); 9329 dest_log_pinned = false; 9330 } 9331 } 9332 ret2 = btrfs_end_transaction(trans); 9333 ret = ret ? ret : ret2; 9334 out_notrans: 9335 if (new_ino == BTRFS_FIRST_FREE_OBJECTID || 9336 old_ino == BTRFS_FIRST_FREE_OBJECTID) 9337 up_read(&fs_info->subvol_sem); 9338 9339 return ret; 9340 } 9341 9342 static int btrfs_whiteout_for_rename(struct btrfs_trans_handle *trans, 9343 struct btrfs_root *root, 9344 struct inode *dir, 9345 struct dentry *dentry) 9346 { 9347 int ret; 9348 struct inode *inode; 9349 u64 objectid; 9350 u64 index; 9351 9352 ret = btrfs_get_free_objectid(root, &objectid); 9353 if (ret) 9354 return ret; 9355 9356 inode = btrfs_new_inode(trans, root, dir, 9357 dentry->d_name.name, 9358 dentry->d_name.len, 9359 btrfs_ino(BTRFS_I(dir)), 9360 objectid, 9361 S_IFCHR | WHITEOUT_MODE, 9362 &index); 9363 9364 if (IS_ERR(inode)) { 9365 ret = PTR_ERR(inode); 9366 return ret; 9367 } 9368 9369 inode->i_op = &btrfs_special_inode_operations; 9370 init_special_inode(inode, inode->i_mode, 9371 WHITEOUT_DEV); 9372 9373 ret = btrfs_init_inode_security(trans, inode, dir, 9374 &dentry->d_name); 9375 if (ret) 9376 goto out; 9377 9378 ret = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, 9379 BTRFS_I(inode), 0, index); 9380 if (ret) 9381 goto out; 9382 9383 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 9384 out: 9385 unlock_new_inode(inode); 9386 if (ret) 9387 inode_dec_link_count(inode); 9388 iput(inode); 9389 9390 return ret; 9391 } 9392 9393 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry, 9394 struct inode *new_dir, struct dentry *new_dentry, 9395 unsigned int flags) 9396 { 9397 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb); 9398 struct btrfs_trans_handle *trans; 9399 unsigned int trans_num_items; 9400 struct btrfs_root *root = BTRFS_I(old_dir)->root; 9401 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 9402 struct inode *new_inode = d_inode(new_dentry); 9403 struct inode *old_inode = d_inode(old_dentry); 9404 u64 index = 0; 9405 int ret; 9406 int ret2; 9407 u64 old_ino = btrfs_ino(BTRFS_I(old_inode)); 9408 bool log_pinned = false; 9409 9410 if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 9411 return -EPERM; 9412 9413 /* we only allow rename subvolume link between subvolumes */ 9414 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest) 9415 return -EXDEV; 9416 9417 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID || 9418 (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID)) 9419 return -ENOTEMPTY; 9420 9421 if (S_ISDIR(old_inode->i_mode) && new_inode && 9422 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) 9423 return -ENOTEMPTY; 9424 9425 9426 /* check for collisions, even if the name isn't there */ 9427 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino, 9428 new_dentry->d_name.name, 9429 new_dentry->d_name.len); 9430 9431 if (ret) { 9432 if (ret == -EEXIST) { 9433 /* we shouldn't get 9434 * eexist without a new_inode */ 9435 if (WARN_ON(!new_inode)) { 9436 return ret; 9437 } 9438 } else { 9439 /* maybe -EOVERFLOW */ 9440 return ret; 9441 } 9442 } 9443 ret = 0; 9444 9445 /* 9446 * we're using rename to replace one file with another. Start IO on it 9447 * now so we don't add too much work to the end of the transaction 9448 */ 9449 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size) 9450 filemap_flush(old_inode->i_mapping); 9451 9452 /* close the racy window with snapshot create/destroy ioctl */ 9453 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 9454 down_read(&fs_info->subvol_sem); 9455 /* 9456 * We want to reserve the absolute worst case amount of items. So if 9457 * both inodes are subvols and we need to unlink them then that would 9458 * require 4 item modifications, but if they are both normal inodes it 9459 * would require 5 item modifications, so we'll assume they are normal 9460 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items 9461 * should cover the worst case number of items we'll modify. 9462 * If our rename has the whiteout flag, we need more 5 units for the 9463 * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item 9464 * when selinux is enabled). 9465 */ 9466 trans_num_items = 11; 9467 if (flags & RENAME_WHITEOUT) 9468 trans_num_items += 5; 9469 trans = btrfs_start_transaction(root, trans_num_items); 9470 if (IS_ERR(trans)) { 9471 ret = PTR_ERR(trans); 9472 goto out_notrans; 9473 } 9474 9475 if (dest != root) { 9476 ret = btrfs_record_root_in_trans(trans, dest); 9477 if (ret) 9478 goto out_fail; 9479 } 9480 9481 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index); 9482 if (ret) 9483 goto out_fail; 9484 9485 BTRFS_I(old_inode)->dir_index = 0ULL; 9486 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 9487 /* force full log commit if subvolume involved. */ 9488 btrfs_set_log_full_commit(trans); 9489 } else { 9490 btrfs_pin_log_trans(root); 9491 log_pinned = true; 9492 ret = btrfs_insert_inode_ref(trans, dest, 9493 new_dentry->d_name.name, 9494 new_dentry->d_name.len, 9495 old_ino, 9496 btrfs_ino(BTRFS_I(new_dir)), index); 9497 if (ret) 9498 goto out_fail; 9499 } 9500 9501 inode_inc_iversion(old_dir); 9502 inode_inc_iversion(new_dir); 9503 inode_inc_iversion(old_inode); 9504 old_dir->i_ctime = old_dir->i_mtime = 9505 new_dir->i_ctime = new_dir->i_mtime = 9506 old_inode->i_ctime = current_time(old_dir); 9507 9508 if (old_dentry->d_parent != new_dentry->d_parent) 9509 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir), 9510 BTRFS_I(old_inode), 1); 9511 9512 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 9513 ret = btrfs_unlink_subvol(trans, old_dir, old_dentry); 9514 } else { 9515 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir), 9516 BTRFS_I(d_inode(old_dentry)), 9517 old_dentry->d_name.name, 9518 old_dentry->d_name.len); 9519 if (!ret) 9520 ret = btrfs_update_inode(trans, root, BTRFS_I(old_inode)); 9521 } 9522 if (ret) { 9523 btrfs_abort_transaction(trans, ret); 9524 goto out_fail; 9525 } 9526 9527 if (new_inode) { 9528 inode_inc_iversion(new_inode); 9529 new_inode->i_ctime = current_time(new_inode); 9530 if (unlikely(btrfs_ino(BTRFS_I(new_inode)) == 9531 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 9532 ret = btrfs_unlink_subvol(trans, new_dir, new_dentry); 9533 BUG_ON(new_inode->i_nlink == 0); 9534 } else { 9535 ret = btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir), 9536 BTRFS_I(d_inode(new_dentry)), 9537 new_dentry->d_name.name, 9538 new_dentry->d_name.len); 9539 } 9540 if (!ret && new_inode->i_nlink == 0) 9541 ret = btrfs_orphan_add(trans, 9542 BTRFS_I(d_inode(new_dentry))); 9543 if (ret) { 9544 btrfs_abort_transaction(trans, ret); 9545 goto out_fail; 9546 } 9547 } 9548 9549 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode), 9550 new_dentry->d_name.name, 9551 new_dentry->d_name.len, 0, index); 9552 if (ret) { 9553 btrfs_abort_transaction(trans, ret); 9554 goto out_fail; 9555 } 9556 9557 if (old_inode->i_nlink == 1) 9558 BTRFS_I(old_inode)->dir_index = index; 9559 9560 if (log_pinned) { 9561 btrfs_log_new_name(trans, BTRFS_I(old_inode), BTRFS_I(old_dir), 9562 new_dentry->d_parent); 9563 btrfs_end_log_trans(root); 9564 log_pinned = false; 9565 } 9566 9567 if (flags & RENAME_WHITEOUT) { 9568 ret = btrfs_whiteout_for_rename(trans, root, old_dir, 9569 old_dentry); 9570 9571 if (ret) { 9572 btrfs_abort_transaction(trans, ret); 9573 goto out_fail; 9574 } 9575 } 9576 out_fail: 9577 /* 9578 * If we have pinned the log and an error happened, we unpin tasks 9579 * trying to sync the log and force them to fallback to a transaction 9580 * commit if the log currently contains any of the inodes involved in 9581 * this rename operation (to ensure we do not persist a log with an 9582 * inconsistent state for any of these inodes or leading to any 9583 * inconsistencies when replayed). If the transaction was aborted, the 9584 * abortion reason is propagated to userspace when attempting to commit 9585 * the transaction. If the log does not contain any of these inodes, we 9586 * allow the tasks to sync it. 9587 */ 9588 if (ret && log_pinned) { 9589 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) || 9590 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) || 9591 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) || 9592 (new_inode && 9593 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation))) 9594 btrfs_set_log_full_commit(trans); 9595 9596 btrfs_end_log_trans(root); 9597 log_pinned = false; 9598 } 9599 ret2 = btrfs_end_transaction(trans); 9600 ret = ret ? ret : ret2; 9601 out_notrans: 9602 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 9603 up_read(&fs_info->subvol_sem); 9604 9605 return ret; 9606 } 9607 9608 static int btrfs_rename2(struct user_namespace *mnt_userns, struct inode *old_dir, 9609 struct dentry *old_dentry, struct inode *new_dir, 9610 struct dentry *new_dentry, unsigned int flags) 9611 { 9612 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 9613 return -EINVAL; 9614 9615 if (flags & RENAME_EXCHANGE) 9616 return btrfs_rename_exchange(old_dir, old_dentry, new_dir, 9617 new_dentry); 9618 9619 return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry, flags); 9620 } 9621 9622 struct btrfs_delalloc_work { 9623 struct inode *inode; 9624 struct completion completion; 9625 struct list_head list; 9626 struct btrfs_work work; 9627 }; 9628 9629 static void btrfs_run_delalloc_work(struct btrfs_work *work) 9630 { 9631 struct btrfs_delalloc_work *delalloc_work; 9632 struct inode *inode; 9633 9634 delalloc_work = container_of(work, struct btrfs_delalloc_work, 9635 work); 9636 inode = delalloc_work->inode; 9637 filemap_flush(inode->i_mapping); 9638 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 9639 &BTRFS_I(inode)->runtime_flags)) 9640 filemap_flush(inode->i_mapping); 9641 9642 iput(inode); 9643 complete(&delalloc_work->completion); 9644 } 9645 9646 static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode) 9647 { 9648 struct btrfs_delalloc_work *work; 9649 9650 work = kmalloc(sizeof(*work), GFP_NOFS); 9651 if (!work) 9652 return NULL; 9653 9654 init_completion(&work->completion); 9655 INIT_LIST_HEAD(&work->list); 9656 work->inode = inode; 9657 btrfs_init_work(&work->work, btrfs_run_delalloc_work, NULL, NULL); 9658 9659 return work; 9660 } 9661 9662 /* 9663 * some fairly slow code that needs optimization. This walks the list 9664 * of all the inodes with pending delalloc and forces them to disk. 9665 */ 9666 static int start_delalloc_inodes(struct btrfs_root *root, 9667 struct writeback_control *wbc, bool snapshot, 9668 bool in_reclaim_context) 9669 { 9670 struct btrfs_inode *binode; 9671 struct inode *inode; 9672 struct btrfs_delalloc_work *work, *next; 9673 struct list_head works; 9674 struct list_head splice; 9675 int ret = 0; 9676 bool full_flush = wbc->nr_to_write == LONG_MAX; 9677 9678 INIT_LIST_HEAD(&works); 9679 INIT_LIST_HEAD(&splice); 9680 9681 mutex_lock(&root->delalloc_mutex); 9682 spin_lock(&root->delalloc_lock); 9683 list_splice_init(&root->delalloc_inodes, &splice); 9684 while (!list_empty(&splice)) { 9685 binode = list_entry(splice.next, struct btrfs_inode, 9686 delalloc_inodes); 9687 9688 list_move_tail(&binode->delalloc_inodes, 9689 &root->delalloc_inodes); 9690 9691 if (in_reclaim_context && 9692 test_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &binode->runtime_flags)) 9693 continue; 9694 9695 inode = igrab(&binode->vfs_inode); 9696 if (!inode) { 9697 cond_resched_lock(&root->delalloc_lock); 9698 continue; 9699 } 9700 spin_unlock(&root->delalloc_lock); 9701 9702 if (snapshot) 9703 set_bit(BTRFS_INODE_SNAPSHOT_FLUSH, 9704 &binode->runtime_flags); 9705 if (full_flush) { 9706 work = btrfs_alloc_delalloc_work(inode); 9707 if (!work) { 9708 iput(inode); 9709 ret = -ENOMEM; 9710 goto out; 9711 } 9712 list_add_tail(&work->list, &works); 9713 btrfs_queue_work(root->fs_info->flush_workers, 9714 &work->work); 9715 } else { 9716 ret = sync_inode(inode, wbc); 9717 if (!ret && 9718 test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 9719 &BTRFS_I(inode)->runtime_flags)) 9720 ret = sync_inode(inode, wbc); 9721 btrfs_add_delayed_iput(inode); 9722 if (ret || wbc->nr_to_write <= 0) 9723 goto out; 9724 } 9725 cond_resched(); 9726 spin_lock(&root->delalloc_lock); 9727 } 9728 spin_unlock(&root->delalloc_lock); 9729 9730 out: 9731 list_for_each_entry_safe(work, next, &works, list) { 9732 list_del_init(&work->list); 9733 wait_for_completion(&work->completion); 9734 kfree(work); 9735 } 9736 9737 if (!list_empty(&splice)) { 9738 spin_lock(&root->delalloc_lock); 9739 list_splice_tail(&splice, &root->delalloc_inodes); 9740 spin_unlock(&root->delalloc_lock); 9741 } 9742 mutex_unlock(&root->delalloc_mutex); 9743 return ret; 9744 } 9745 9746 int btrfs_start_delalloc_snapshot(struct btrfs_root *root, bool in_reclaim_context) 9747 { 9748 struct writeback_control wbc = { 9749 .nr_to_write = LONG_MAX, 9750 .sync_mode = WB_SYNC_NONE, 9751 .range_start = 0, 9752 .range_end = LLONG_MAX, 9753 }; 9754 struct btrfs_fs_info *fs_info = root->fs_info; 9755 9756 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 9757 return -EROFS; 9758 9759 return start_delalloc_inodes(root, &wbc, true, in_reclaim_context); 9760 } 9761 9762 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, long nr, 9763 bool in_reclaim_context) 9764 { 9765 struct writeback_control wbc = { 9766 .nr_to_write = nr, 9767 .sync_mode = WB_SYNC_NONE, 9768 .range_start = 0, 9769 .range_end = LLONG_MAX, 9770 }; 9771 struct btrfs_root *root; 9772 struct list_head splice; 9773 int ret; 9774 9775 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 9776 return -EROFS; 9777 9778 INIT_LIST_HEAD(&splice); 9779 9780 mutex_lock(&fs_info->delalloc_root_mutex); 9781 spin_lock(&fs_info->delalloc_root_lock); 9782 list_splice_init(&fs_info->delalloc_roots, &splice); 9783 while (!list_empty(&splice)) { 9784 /* 9785 * Reset nr_to_write here so we know that we're doing a full 9786 * flush. 9787 */ 9788 if (nr == LONG_MAX) 9789 wbc.nr_to_write = LONG_MAX; 9790 9791 root = list_first_entry(&splice, struct btrfs_root, 9792 delalloc_root); 9793 root = btrfs_grab_root(root); 9794 BUG_ON(!root); 9795 list_move_tail(&root->delalloc_root, 9796 &fs_info->delalloc_roots); 9797 spin_unlock(&fs_info->delalloc_root_lock); 9798 9799 ret = start_delalloc_inodes(root, &wbc, false, in_reclaim_context); 9800 btrfs_put_root(root); 9801 if (ret < 0 || wbc.nr_to_write <= 0) 9802 goto out; 9803 spin_lock(&fs_info->delalloc_root_lock); 9804 } 9805 spin_unlock(&fs_info->delalloc_root_lock); 9806 9807 ret = 0; 9808 out: 9809 if (!list_empty(&splice)) { 9810 spin_lock(&fs_info->delalloc_root_lock); 9811 list_splice_tail(&splice, &fs_info->delalloc_roots); 9812 spin_unlock(&fs_info->delalloc_root_lock); 9813 } 9814 mutex_unlock(&fs_info->delalloc_root_mutex); 9815 return ret; 9816 } 9817 9818 static int btrfs_symlink(struct user_namespace *mnt_userns, struct inode *dir, 9819 struct dentry *dentry, const char *symname) 9820 { 9821 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 9822 struct btrfs_trans_handle *trans; 9823 struct btrfs_root *root = BTRFS_I(dir)->root; 9824 struct btrfs_path *path; 9825 struct btrfs_key key; 9826 struct inode *inode = NULL; 9827 int err; 9828 u64 objectid; 9829 u64 index = 0; 9830 int name_len; 9831 int datasize; 9832 unsigned long ptr; 9833 struct btrfs_file_extent_item *ei; 9834 struct extent_buffer *leaf; 9835 9836 name_len = strlen(symname); 9837 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info)) 9838 return -ENAMETOOLONG; 9839 9840 /* 9841 * 2 items for inode item and ref 9842 * 2 items for dir items 9843 * 1 item for updating parent inode item 9844 * 1 item for the inline extent item 9845 * 1 item for xattr if selinux is on 9846 */ 9847 trans = btrfs_start_transaction(root, 7); 9848 if (IS_ERR(trans)) 9849 return PTR_ERR(trans); 9850 9851 err = btrfs_get_free_objectid(root, &objectid); 9852 if (err) 9853 goto out_unlock; 9854 9855 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 9856 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), 9857 objectid, S_IFLNK|S_IRWXUGO, &index); 9858 if (IS_ERR(inode)) { 9859 err = PTR_ERR(inode); 9860 inode = NULL; 9861 goto out_unlock; 9862 } 9863 9864 /* 9865 * If the active LSM wants to access the inode during 9866 * d_instantiate it needs these. Smack checks to see 9867 * if the filesystem supports xattrs by looking at the 9868 * ops vector. 9869 */ 9870 inode->i_fop = &btrfs_file_operations; 9871 inode->i_op = &btrfs_file_inode_operations; 9872 inode->i_mapping->a_ops = &btrfs_aops; 9873 9874 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 9875 if (err) 9876 goto out_unlock; 9877 9878 path = btrfs_alloc_path(); 9879 if (!path) { 9880 err = -ENOMEM; 9881 goto out_unlock; 9882 } 9883 key.objectid = btrfs_ino(BTRFS_I(inode)); 9884 key.offset = 0; 9885 key.type = BTRFS_EXTENT_DATA_KEY; 9886 datasize = btrfs_file_extent_calc_inline_size(name_len); 9887 err = btrfs_insert_empty_item(trans, root, path, &key, 9888 datasize); 9889 if (err) { 9890 btrfs_free_path(path); 9891 goto out_unlock; 9892 } 9893 leaf = path->nodes[0]; 9894 ei = btrfs_item_ptr(leaf, path->slots[0], 9895 struct btrfs_file_extent_item); 9896 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 9897 btrfs_set_file_extent_type(leaf, ei, 9898 BTRFS_FILE_EXTENT_INLINE); 9899 btrfs_set_file_extent_encryption(leaf, ei, 0); 9900 btrfs_set_file_extent_compression(leaf, ei, 0); 9901 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 9902 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len); 9903 9904 ptr = btrfs_file_extent_inline_start(ei); 9905 write_extent_buffer(leaf, symname, ptr, name_len); 9906 btrfs_mark_buffer_dirty(leaf); 9907 btrfs_free_path(path); 9908 9909 inode->i_op = &btrfs_symlink_inode_operations; 9910 inode_nohighmem(inode); 9911 inode_set_bytes(inode, name_len); 9912 btrfs_i_size_write(BTRFS_I(inode), name_len); 9913 err = btrfs_update_inode(trans, root, BTRFS_I(inode)); 9914 /* 9915 * Last step, add directory indexes for our symlink inode. This is the 9916 * last step to avoid extra cleanup of these indexes if an error happens 9917 * elsewhere above. 9918 */ 9919 if (!err) 9920 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, 9921 BTRFS_I(inode), 0, index); 9922 if (err) 9923 goto out_unlock; 9924 9925 d_instantiate_new(dentry, inode); 9926 9927 out_unlock: 9928 btrfs_end_transaction(trans); 9929 if (err && inode) { 9930 inode_dec_link_count(inode); 9931 discard_new_inode(inode); 9932 } 9933 btrfs_btree_balance_dirty(fs_info); 9934 return err; 9935 } 9936 9937 static struct btrfs_trans_handle *insert_prealloc_file_extent( 9938 struct btrfs_trans_handle *trans_in, 9939 struct btrfs_inode *inode, 9940 struct btrfs_key *ins, 9941 u64 file_offset) 9942 { 9943 struct btrfs_file_extent_item stack_fi; 9944 struct btrfs_replace_extent_info extent_info; 9945 struct btrfs_trans_handle *trans = trans_in; 9946 struct btrfs_path *path; 9947 u64 start = ins->objectid; 9948 u64 len = ins->offset; 9949 int qgroup_released; 9950 int ret; 9951 9952 memset(&stack_fi, 0, sizeof(stack_fi)); 9953 9954 btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_PREALLOC); 9955 btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, start); 9956 btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi, len); 9957 btrfs_set_stack_file_extent_num_bytes(&stack_fi, len); 9958 btrfs_set_stack_file_extent_ram_bytes(&stack_fi, len); 9959 btrfs_set_stack_file_extent_compression(&stack_fi, BTRFS_COMPRESS_NONE); 9960 /* Encryption and other encoding is reserved and all 0 */ 9961 9962 qgroup_released = btrfs_qgroup_release_data(inode, file_offset, len); 9963 if (qgroup_released < 0) 9964 return ERR_PTR(qgroup_released); 9965 9966 if (trans) { 9967 ret = insert_reserved_file_extent(trans, inode, 9968 file_offset, &stack_fi, 9969 true, qgroup_released); 9970 if (ret) 9971 goto free_qgroup; 9972 return trans; 9973 } 9974 9975 extent_info.disk_offset = start; 9976 extent_info.disk_len = len; 9977 extent_info.data_offset = 0; 9978 extent_info.data_len = len; 9979 extent_info.file_offset = file_offset; 9980 extent_info.extent_buf = (char *)&stack_fi; 9981 extent_info.is_new_extent = true; 9982 extent_info.qgroup_reserved = qgroup_released; 9983 extent_info.insertions = 0; 9984 9985 path = btrfs_alloc_path(); 9986 if (!path) { 9987 ret = -ENOMEM; 9988 goto free_qgroup; 9989 } 9990 9991 ret = btrfs_replace_file_extents(inode, path, file_offset, 9992 file_offset + len - 1, &extent_info, 9993 &trans); 9994 btrfs_free_path(path); 9995 if (ret) 9996 goto free_qgroup; 9997 return trans; 9998 9999 free_qgroup: 10000 /* 10001 * We have released qgroup data range at the beginning of the function, 10002 * and normally qgroup_released bytes will be freed when committing 10003 * transaction. 10004 * But if we error out early, we have to free what we have released 10005 * or we leak qgroup data reservation. 10006 */ 10007 btrfs_qgroup_free_refroot(inode->root->fs_info, 10008 inode->root->root_key.objectid, qgroup_released, 10009 BTRFS_QGROUP_RSV_DATA); 10010 return ERR_PTR(ret); 10011 } 10012 10013 static int __btrfs_prealloc_file_range(struct inode *inode, int mode, 10014 u64 start, u64 num_bytes, u64 min_size, 10015 loff_t actual_len, u64 *alloc_hint, 10016 struct btrfs_trans_handle *trans) 10017 { 10018 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 10019 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 10020 struct extent_map *em; 10021 struct btrfs_root *root = BTRFS_I(inode)->root; 10022 struct btrfs_key ins; 10023 u64 cur_offset = start; 10024 u64 clear_offset = start; 10025 u64 i_size; 10026 u64 cur_bytes; 10027 u64 last_alloc = (u64)-1; 10028 int ret = 0; 10029 bool own_trans = true; 10030 u64 end = start + num_bytes - 1; 10031 10032 if (trans) 10033 own_trans = false; 10034 while (num_bytes > 0) { 10035 cur_bytes = min_t(u64, num_bytes, SZ_256M); 10036 cur_bytes = max(cur_bytes, min_size); 10037 /* 10038 * If we are severely fragmented we could end up with really 10039 * small allocations, so if the allocator is returning small 10040 * chunks lets make its job easier by only searching for those 10041 * sized chunks. 10042 */ 10043 cur_bytes = min(cur_bytes, last_alloc); 10044 ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes, 10045 min_size, 0, *alloc_hint, &ins, 1, 0); 10046 if (ret) 10047 break; 10048 10049 /* 10050 * We've reserved this space, and thus converted it from 10051 * ->bytes_may_use to ->bytes_reserved. Any error that happens 10052 * from here on out we will only need to clear our reservation 10053 * for the remaining unreserved area, so advance our 10054 * clear_offset by our extent size. 10055 */ 10056 clear_offset += ins.offset; 10057 10058 last_alloc = ins.offset; 10059 trans = insert_prealloc_file_extent(trans, BTRFS_I(inode), 10060 &ins, cur_offset); 10061 /* 10062 * Now that we inserted the prealloc extent we can finally 10063 * decrement the number of reservations in the block group. 10064 * If we did it before, we could race with relocation and have 10065 * relocation miss the reserved extent, making it fail later. 10066 */ 10067 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 10068 if (IS_ERR(trans)) { 10069 ret = PTR_ERR(trans); 10070 btrfs_free_reserved_extent(fs_info, ins.objectid, 10071 ins.offset, 0); 10072 break; 10073 } 10074 10075 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset, 10076 cur_offset + ins.offset -1, 0); 10077 10078 em = alloc_extent_map(); 10079 if (!em) { 10080 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 10081 &BTRFS_I(inode)->runtime_flags); 10082 goto next; 10083 } 10084 10085 em->start = cur_offset; 10086 em->orig_start = cur_offset; 10087 em->len = ins.offset; 10088 em->block_start = ins.objectid; 10089 em->block_len = ins.offset; 10090 em->orig_block_len = ins.offset; 10091 em->ram_bytes = ins.offset; 10092 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 10093 em->generation = trans->transid; 10094 10095 while (1) { 10096 write_lock(&em_tree->lock); 10097 ret = add_extent_mapping(em_tree, em, 1); 10098 write_unlock(&em_tree->lock); 10099 if (ret != -EEXIST) 10100 break; 10101 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset, 10102 cur_offset + ins.offset - 1, 10103 0); 10104 } 10105 free_extent_map(em); 10106 next: 10107 num_bytes -= ins.offset; 10108 cur_offset += ins.offset; 10109 *alloc_hint = ins.objectid + ins.offset; 10110 10111 inode_inc_iversion(inode); 10112 inode->i_ctime = current_time(inode); 10113 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC; 10114 if (!(mode & FALLOC_FL_KEEP_SIZE) && 10115 (actual_len > inode->i_size) && 10116 (cur_offset > inode->i_size)) { 10117 if (cur_offset > actual_len) 10118 i_size = actual_len; 10119 else 10120 i_size = cur_offset; 10121 i_size_write(inode, i_size); 10122 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0); 10123 } 10124 10125 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 10126 10127 if (ret) { 10128 btrfs_abort_transaction(trans, ret); 10129 if (own_trans) 10130 btrfs_end_transaction(trans); 10131 break; 10132 } 10133 10134 if (own_trans) { 10135 btrfs_end_transaction(trans); 10136 trans = NULL; 10137 } 10138 } 10139 if (clear_offset < end) 10140 btrfs_free_reserved_data_space(BTRFS_I(inode), NULL, clear_offset, 10141 end - clear_offset + 1); 10142 return ret; 10143 } 10144 10145 int btrfs_prealloc_file_range(struct inode *inode, int mode, 10146 u64 start, u64 num_bytes, u64 min_size, 10147 loff_t actual_len, u64 *alloc_hint) 10148 { 10149 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 10150 min_size, actual_len, alloc_hint, 10151 NULL); 10152 } 10153 10154 int btrfs_prealloc_file_range_trans(struct inode *inode, 10155 struct btrfs_trans_handle *trans, int mode, 10156 u64 start, u64 num_bytes, u64 min_size, 10157 loff_t actual_len, u64 *alloc_hint) 10158 { 10159 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 10160 min_size, actual_len, alloc_hint, trans); 10161 } 10162 10163 static int btrfs_set_page_dirty(struct page *page) 10164 { 10165 return __set_page_dirty_nobuffers(page); 10166 } 10167 10168 static int btrfs_permission(struct user_namespace *mnt_userns, 10169 struct inode *inode, int mask) 10170 { 10171 struct btrfs_root *root = BTRFS_I(inode)->root; 10172 umode_t mode = inode->i_mode; 10173 10174 if (mask & MAY_WRITE && 10175 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) { 10176 if (btrfs_root_readonly(root)) 10177 return -EROFS; 10178 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) 10179 return -EACCES; 10180 } 10181 return generic_permission(&init_user_ns, inode, mask); 10182 } 10183 10184 static int btrfs_tmpfile(struct user_namespace *mnt_userns, struct inode *dir, 10185 struct dentry *dentry, umode_t mode) 10186 { 10187 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 10188 struct btrfs_trans_handle *trans; 10189 struct btrfs_root *root = BTRFS_I(dir)->root; 10190 struct inode *inode = NULL; 10191 u64 objectid; 10192 u64 index; 10193 int ret = 0; 10194 10195 /* 10196 * 5 units required for adding orphan entry 10197 */ 10198 trans = btrfs_start_transaction(root, 5); 10199 if (IS_ERR(trans)) 10200 return PTR_ERR(trans); 10201 10202 ret = btrfs_get_free_objectid(root, &objectid); 10203 if (ret) 10204 goto out; 10205 10206 inode = btrfs_new_inode(trans, root, dir, NULL, 0, 10207 btrfs_ino(BTRFS_I(dir)), objectid, mode, &index); 10208 if (IS_ERR(inode)) { 10209 ret = PTR_ERR(inode); 10210 inode = NULL; 10211 goto out; 10212 } 10213 10214 inode->i_fop = &btrfs_file_operations; 10215 inode->i_op = &btrfs_file_inode_operations; 10216 10217 inode->i_mapping->a_ops = &btrfs_aops; 10218 10219 ret = btrfs_init_inode_security(trans, inode, dir, NULL); 10220 if (ret) 10221 goto out; 10222 10223 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 10224 if (ret) 10225 goto out; 10226 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 10227 if (ret) 10228 goto out; 10229 10230 /* 10231 * We set number of links to 0 in btrfs_new_inode(), and here we set 10232 * it to 1 because d_tmpfile() will issue a warning if the count is 0, 10233 * through: 10234 * 10235 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink() 10236 */ 10237 set_nlink(inode, 1); 10238 d_tmpfile(dentry, inode); 10239 unlock_new_inode(inode); 10240 mark_inode_dirty(inode); 10241 out: 10242 btrfs_end_transaction(trans); 10243 if (ret && inode) 10244 discard_new_inode(inode); 10245 btrfs_btree_balance_dirty(fs_info); 10246 return ret; 10247 } 10248 10249 void btrfs_set_range_writeback(struct btrfs_inode *inode, u64 start, u64 end) 10250 { 10251 struct btrfs_fs_info *fs_info = inode->root->fs_info; 10252 unsigned long index = start >> PAGE_SHIFT; 10253 unsigned long end_index = end >> PAGE_SHIFT; 10254 struct page *page; 10255 u32 len; 10256 10257 ASSERT(end + 1 - start <= U32_MAX); 10258 len = end + 1 - start; 10259 while (index <= end_index) { 10260 page = find_get_page(inode->vfs_inode.i_mapping, index); 10261 ASSERT(page); /* Pages should be in the extent_io_tree */ 10262 10263 btrfs_page_set_writeback(fs_info, page, start, len); 10264 put_page(page); 10265 index++; 10266 } 10267 } 10268 10269 #ifdef CONFIG_SWAP 10270 /* 10271 * Add an entry indicating a block group or device which is pinned by a 10272 * swapfile. Returns 0 on success, 1 if there is already an entry for it, or a 10273 * negative errno on failure. 10274 */ 10275 static int btrfs_add_swapfile_pin(struct inode *inode, void *ptr, 10276 bool is_block_group) 10277 { 10278 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 10279 struct btrfs_swapfile_pin *sp, *entry; 10280 struct rb_node **p; 10281 struct rb_node *parent = NULL; 10282 10283 sp = kmalloc(sizeof(*sp), GFP_NOFS); 10284 if (!sp) 10285 return -ENOMEM; 10286 sp->ptr = ptr; 10287 sp->inode = inode; 10288 sp->is_block_group = is_block_group; 10289 sp->bg_extent_count = 1; 10290 10291 spin_lock(&fs_info->swapfile_pins_lock); 10292 p = &fs_info->swapfile_pins.rb_node; 10293 while (*p) { 10294 parent = *p; 10295 entry = rb_entry(parent, struct btrfs_swapfile_pin, node); 10296 if (sp->ptr < entry->ptr || 10297 (sp->ptr == entry->ptr && sp->inode < entry->inode)) { 10298 p = &(*p)->rb_left; 10299 } else if (sp->ptr > entry->ptr || 10300 (sp->ptr == entry->ptr && sp->inode > entry->inode)) { 10301 p = &(*p)->rb_right; 10302 } else { 10303 if (is_block_group) 10304 entry->bg_extent_count++; 10305 spin_unlock(&fs_info->swapfile_pins_lock); 10306 kfree(sp); 10307 return 1; 10308 } 10309 } 10310 rb_link_node(&sp->node, parent, p); 10311 rb_insert_color(&sp->node, &fs_info->swapfile_pins); 10312 spin_unlock(&fs_info->swapfile_pins_lock); 10313 return 0; 10314 } 10315 10316 /* Free all of the entries pinned by this swapfile. */ 10317 static void btrfs_free_swapfile_pins(struct inode *inode) 10318 { 10319 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 10320 struct btrfs_swapfile_pin *sp; 10321 struct rb_node *node, *next; 10322 10323 spin_lock(&fs_info->swapfile_pins_lock); 10324 node = rb_first(&fs_info->swapfile_pins); 10325 while (node) { 10326 next = rb_next(node); 10327 sp = rb_entry(node, struct btrfs_swapfile_pin, node); 10328 if (sp->inode == inode) { 10329 rb_erase(&sp->node, &fs_info->swapfile_pins); 10330 if (sp->is_block_group) { 10331 btrfs_dec_block_group_swap_extents(sp->ptr, 10332 sp->bg_extent_count); 10333 btrfs_put_block_group(sp->ptr); 10334 } 10335 kfree(sp); 10336 } 10337 node = next; 10338 } 10339 spin_unlock(&fs_info->swapfile_pins_lock); 10340 } 10341 10342 struct btrfs_swap_info { 10343 u64 start; 10344 u64 block_start; 10345 u64 block_len; 10346 u64 lowest_ppage; 10347 u64 highest_ppage; 10348 unsigned long nr_pages; 10349 int nr_extents; 10350 }; 10351 10352 static int btrfs_add_swap_extent(struct swap_info_struct *sis, 10353 struct btrfs_swap_info *bsi) 10354 { 10355 unsigned long nr_pages; 10356 u64 first_ppage, first_ppage_reported, next_ppage; 10357 int ret; 10358 10359 first_ppage = ALIGN(bsi->block_start, PAGE_SIZE) >> PAGE_SHIFT; 10360 next_ppage = ALIGN_DOWN(bsi->block_start + bsi->block_len, 10361 PAGE_SIZE) >> PAGE_SHIFT; 10362 10363 if (first_ppage >= next_ppage) 10364 return 0; 10365 nr_pages = next_ppage - first_ppage; 10366 10367 first_ppage_reported = first_ppage; 10368 if (bsi->start == 0) 10369 first_ppage_reported++; 10370 if (bsi->lowest_ppage > first_ppage_reported) 10371 bsi->lowest_ppage = first_ppage_reported; 10372 if (bsi->highest_ppage < (next_ppage - 1)) 10373 bsi->highest_ppage = next_ppage - 1; 10374 10375 ret = add_swap_extent(sis, bsi->nr_pages, nr_pages, first_ppage); 10376 if (ret < 0) 10377 return ret; 10378 bsi->nr_extents += ret; 10379 bsi->nr_pages += nr_pages; 10380 return 0; 10381 } 10382 10383 static void btrfs_swap_deactivate(struct file *file) 10384 { 10385 struct inode *inode = file_inode(file); 10386 10387 btrfs_free_swapfile_pins(inode); 10388 atomic_dec(&BTRFS_I(inode)->root->nr_swapfiles); 10389 } 10390 10391 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file, 10392 sector_t *span) 10393 { 10394 struct inode *inode = file_inode(file); 10395 struct btrfs_root *root = BTRFS_I(inode)->root; 10396 struct btrfs_fs_info *fs_info = root->fs_info; 10397 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 10398 struct extent_state *cached_state = NULL; 10399 struct extent_map *em = NULL; 10400 struct btrfs_device *device = NULL; 10401 struct btrfs_swap_info bsi = { 10402 .lowest_ppage = (sector_t)-1ULL, 10403 }; 10404 int ret = 0; 10405 u64 isize; 10406 u64 start; 10407 10408 /* 10409 * If the swap file was just created, make sure delalloc is done. If the 10410 * file changes again after this, the user is doing something stupid and 10411 * we don't really care. 10412 */ 10413 ret = btrfs_wait_ordered_range(inode, 0, (u64)-1); 10414 if (ret) 10415 return ret; 10416 10417 /* 10418 * The inode is locked, so these flags won't change after we check them. 10419 */ 10420 if (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS) { 10421 btrfs_warn(fs_info, "swapfile must not be compressed"); 10422 return -EINVAL; 10423 } 10424 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)) { 10425 btrfs_warn(fs_info, "swapfile must not be copy-on-write"); 10426 return -EINVAL; 10427 } 10428 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) { 10429 btrfs_warn(fs_info, "swapfile must not be checksummed"); 10430 return -EINVAL; 10431 } 10432 10433 /* 10434 * Balance or device remove/replace/resize can move stuff around from 10435 * under us. The exclop protection makes sure they aren't running/won't 10436 * run concurrently while we are mapping the swap extents, and 10437 * fs_info->swapfile_pins prevents them from running while the swap 10438 * file is active and moving the extents. Note that this also prevents 10439 * a concurrent device add which isn't actually necessary, but it's not 10440 * really worth the trouble to allow it. 10441 */ 10442 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_SWAP_ACTIVATE)) { 10443 btrfs_warn(fs_info, 10444 "cannot activate swapfile while exclusive operation is running"); 10445 return -EBUSY; 10446 } 10447 10448 /* 10449 * Prevent snapshot creation while we are activating the swap file. 10450 * We do not want to race with snapshot creation. If snapshot creation 10451 * already started before we bumped nr_swapfiles from 0 to 1 and 10452 * completes before the first write into the swap file after it is 10453 * activated, than that write would fallback to COW. 10454 */ 10455 if (!btrfs_drew_try_write_lock(&root->snapshot_lock)) { 10456 btrfs_exclop_finish(fs_info); 10457 btrfs_warn(fs_info, 10458 "cannot activate swapfile because snapshot creation is in progress"); 10459 return -EINVAL; 10460 } 10461 /* 10462 * Snapshots can create extents which require COW even if NODATACOW is 10463 * set. We use this counter to prevent snapshots. We must increment it 10464 * before walking the extents because we don't want a concurrent 10465 * snapshot to run after we've already checked the extents. 10466 */ 10467 atomic_inc(&root->nr_swapfiles); 10468 10469 isize = ALIGN_DOWN(inode->i_size, fs_info->sectorsize); 10470 10471 lock_extent_bits(io_tree, 0, isize - 1, &cached_state); 10472 start = 0; 10473 while (start < isize) { 10474 u64 logical_block_start, physical_block_start; 10475 struct btrfs_block_group *bg; 10476 u64 len = isize - start; 10477 10478 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len); 10479 if (IS_ERR(em)) { 10480 ret = PTR_ERR(em); 10481 goto out; 10482 } 10483 10484 if (em->block_start == EXTENT_MAP_HOLE) { 10485 btrfs_warn(fs_info, "swapfile must not have holes"); 10486 ret = -EINVAL; 10487 goto out; 10488 } 10489 if (em->block_start == EXTENT_MAP_INLINE) { 10490 /* 10491 * It's unlikely we'll ever actually find ourselves 10492 * here, as a file small enough to fit inline won't be 10493 * big enough to store more than the swap header, but in 10494 * case something changes in the future, let's catch it 10495 * here rather than later. 10496 */ 10497 btrfs_warn(fs_info, "swapfile must not be inline"); 10498 ret = -EINVAL; 10499 goto out; 10500 } 10501 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 10502 btrfs_warn(fs_info, "swapfile must not be compressed"); 10503 ret = -EINVAL; 10504 goto out; 10505 } 10506 10507 logical_block_start = em->block_start + (start - em->start); 10508 len = min(len, em->len - (start - em->start)); 10509 free_extent_map(em); 10510 em = NULL; 10511 10512 ret = can_nocow_extent(inode, start, &len, NULL, NULL, NULL, true); 10513 if (ret < 0) { 10514 goto out; 10515 } else if (ret) { 10516 ret = 0; 10517 } else { 10518 btrfs_warn(fs_info, 10519 "swapfile must not be copy-on-write"); 10520 ret = -EINVAL; 10521 goto out; 10522 } 10523 10524 em = btrfs_get_chunk_map(fs_info, logical_block_start, len); 10525 if (IS_ERR(em)) { 10526 ret = PTR_ERR(em); 10527 goto out; 10528 } 10529 10530 if (em->map_lookup->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) { 10531 btrfs_warn(fs_info, 10532 "swapfile must have single data profile"); 10533 ret = -EINVAL; 10534 goto out; 10535 } 10536 10537 if (device == NULL) { 10538 device = em->map_lookup->stripes[0].dev; 10539 ret = btrfs_add_swapfile_pin(inode, device, false); 10540 if (ret == 1) 10541 ret = 0; 10542 else if (ret) 10543 goto out; 10544 } else if (device != em->map_lookup->stripes[0].dev) { 10545 btrfs_warn(fs_info, "swapfile must be on one device"); 10546 ret = -EINVAL; 10547 goto out; 10548 } 10549 10550 physical_block_start = (em->map_lookup->stripes[0].physical + 10551 (logical_block_start - em->start)); 10552 len = min(len, em->len - (logical_block_start - em->start)); 10553 free_extent_map(em); 10554 em = NULL; 10555 10556 bg = btrfs_lookup_block_group(fs_info, logical_block_start); 10557 if (!bg) { 10558 btrfs_warn(fs_info, 10559 "could not find block group containing swapfile"); 10560 ret = -EINVAL; 10561 goto out; 10562 } 10563 10564 if (!btrfs_inc_block_group_swap_extents(bg)) { 10565 btrfs_warn(fs_info, 10566 "block group for swapfile at %llu is read-only%s", 10567 bg->start, 10568 atomic_read(&fs_info->scrubs_running) ? 10569 " (scrub running)" : ""); 10570 btrfs_put_block_group(bg); 10571 ret = -EINVAL; 10572 goto out; 10573 } 10574 10575 ret = btrfs_add_swapfile_pin(inode, bg, true); 10576 if (ret) { 10577 btrfs_put_block_group(bg); 10578 if (ret == 1) 10579 ret = 0; 10580 else 10581 goto out; 10582 } 10583 10584 if (bsi.block_len && 10585 bsi.block_start + bsi.block_len == physical_block_start) { 10586 bsi.block_len += len; 10587 } else { 10588 if (bsi.block_len) { 10589 ret = btrfs_add_swap_extent(sis, &bsi); 10590 if (ret) 10591 goto out; 10592 } 10593 bsi.start = start; 10594 bsi.block_start = physical_block_start; 10595 bsi.block_len = len; 10596 } 10597 10598 start += len; 10599 } 10600 10601 if (bsi.block_len) 10602 ret = btrfs_add_swap_extent(sis, &bsi); 10603 10604 out: 10605 if (!IS_ERR_OR_NULL(em)) 10606 free_extent_map(em); 10607 10608 unlock_extent_cached(io_tree, 0, isize - 1, &cached_state); 10609 10610 if (ret) 10611 btrfs_swap_deactivate(file); 10612 10613 btrfs_drew_write_unlock(&root->snapshot_lock); 10614 10615 btrfs_exclop_finish(fs_info); 10616 10617 if (ret) 10618 return ret; 10619 10620 if (device) 10621 sis->bdev = device->bdev; 10622 *span = bsi.highest_ppage - bsi.lowest_ppage + 1; 10623 sis->max = bsi.nr_pages; 10624 sis->pages = bsi.nr_pages - 1; 10625 sis->highest_bit = bsi.nr_pages - 1; 10626 return bsi.nr_extents; 10627 } 10628 #else 10629 static void btrfs_swap_deactivate(struct file *file) 10630 { 10631 } 10632 10633 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file, 10634 sector_t *span) 10635 { 10636 return -EOPNOTSUPP; 10637 } 10638 #endif 10639 10640 /* 10641 * Update the number of bytes used in the VFS' inode. When we replace extents in 10642 * a range (clone, dedupe, fallocate's zero range), we must update the number of 10643 * bytes used by the inode in an atomic manner, so that concurrent stat(2) calls 10644 * always get a correct value. 10645 */ 10646 void btrfs_update_inode_bytes(struct btrfs_inode *inode, 10647 const u64 add_bytes, 10648 const u64 del_bytes) 10649 { 10650 if (add_bytes == del_bytes) 10651 return; 10652 10653 spin_lock(&inode->lock); 10654 if (del_bytes > 0) 10655 inode_sub_bytes(&inode->vfs_inode, del_bytes); 10656 if (add_bytes > 0) 10657 inode_add_bytes(&inode->vfs_inode, add_bytes); 10658 spin_unlock(&inode->lock); 10659 } 10660 10661 static const struct inode_operations btrfs_dir_inode_operations = { 10662 .getattr = btrfs_getattr, 10663 .lookup = btrfs_lookup, 10664 .create = btrfs_create, 10665 .unlink = btrfs_unlink, 10666 .link = btrfs_link, 10667 .mkdir = btrfs_mkdir, 10668 .rmdir = btrfs_rmdir, 10669 .rename = btrfs_rename2, 10670 .symlink = btrfs_symlink, 10671 .setattr = btrfs_setattr, 10672 .mknod = btrfs_mknod, 10673 .listxattr = btrfs_listxattr, 10674 .permission = btrfs_permission, 10675 .get_acl = btrfs_get_acl, 10676 .set_acl = btrfs_set_acl, 10677 .update_time = btrfs_update_time, 10678 .tmpfile = btrfs_tmpfile, 10679 .fileattr_get = btrfs_fileattr_get, 10680 .fileattr_set = btrfs_fileattr_set, 10681 }; 10682 10683 static const struct file_operations btrfs_dir_file_operations = { 10684 .llseek = generic_file_llseek, 10685 .read = generic_read_dir, 10686 .iterate_shared = btrfs_real_readdir, 10687 .open = btrfs_opendir, 10688 .unlocked_ioctl = btrfs_ioctl, 10689 #ifdef CONFIG_COMPAT 10690 .compat_ioctl = btrfs_compat_ioctl, 10691 #endif 10692 .release = btrfs_release_file, 10693 .fsync = btrfs_sync_file, 10694 }; 10695 10696 /* 10697 * btrfs doesn't support the bmap operation because swapfiles 10698 * use bmap to make a mapping of extents in the file. They assume 10699 * these extents won't change over the life of the file and they 10700 * use the bmap result to do IO directly to the drive. 10701 * 10702 * the btrfs bmap call would return logical addresses that aren't 10703 * suitable for IO and they also will change frequently as COW 10704 * operations happen. So, swapfile + btrfs == corruption. 10705 * 10706 * For now we're avoiding this by dropping bmap. 10707 */ 10708 static const struct address_space_operations btrfs_aops = { 10709 .readpage = btrfs_readpage, 10710 .writepage = btrfs_writepage, 10711 .writepages = btrfs_writepages, 10712 .readahead = btrfs_readahead, 10713 .direct_IO = noop_direct_IO, 10714 .invalidatepage = btrfs_invalidatepage, 10715 .releasepage = btrfs_releasepage, 10716 #ifdef CONFIG_MIGRATION 10717 .migratepage = btrfs_migratepage, 10718 #endif 10719 .set_page_dirty = btrfs_set_page_dirty, 10720 .error_remove_page = generic_error_remove_page, 10721 .swap_activate = btrfs_swap_activate, 10722 .swap_deactivate = btrfs_swap_deactivate, 10723 }; 10724 10725 static const struct inode_operations btrfs_file_inode_operations = { 10726 .getattr = btrfs_getattr, 10727 .setattr = btrfs_setattr, 10728 .listxattr = btrfs_listxattr, 10729 .permission = btrfs_permission, 10730 .fiemap = btrfs_fiemap, 10731 .get_acl = btrfs_get_acl, 10732 .set_acl = btrfs_set_acl, 10733 .update_time = btrfs_update_time, 10734 .fileattr_get = btrfs_fileattr_get, 10735 .fileattr_set = btrfs_fileattr_set, 10736 }; 10737 static const struct inode_operations btrfs_special_inode_operations = { 10738 .getattr = btrfs_getattr, 10739 .setattr = btrfs_setattr, 10740 .permission = btrfs_permission, 10741 .listxattr = btrfs_listxattr, 10742 .get_acl = btrfs_get_acl, 10743 .set_acl = btrfs_set_acl, 10744 .update_time = btrfs_update_time, 10745 }; 10746 static const struct inode_operations btrfs_symlink_inode_operations = { 10747 .get_link = page_get_link, 10748 .getattr = btrfs_getattr, 10749 .setattr = btrfs_setattr, 10750 .permission = btrfs_permission, 10751 .listxattr = btrfs_listxattr, 10752 .update_time = btrfs_update_time, 10753 }; 10754 10755 const struct dentry_operations btrfs_dentry_operations = { 10756 .d_delete = btrfs_dentry_delete, 10757 }; 10758