1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/kernel.h> 20 #include <linux/bio.h> 21 #include <linux/buffer_head.h> 22 #include <linux/file.h> 23 #include <linux/fs.h> 24 #include <linux/pagemap.h> 25 #include <linux/highmem.h> 26 #include <linux/time.h> 27 #include <linux/init.h> 28 #include <linux/string.h> 29 #include <linux/backing-dev.h> 30 #include <linux/mpage.h> 31 #include <linux/swap.h> 32 #include <linux/writeback.h> 33 #include <linux/statfs.h> 34 #include <linux/compat.h> 35 #include <linux/aio.h> 36 #include <linux/bit_spinlock.h> 37 #include <linux/xattr.h> 38 #include <linux/posix_acl.h> 39 #include <linux/falloc.h> 40 #include <linux/slab.h> 41 #include <linux/ratelimit.h> 42 #include <linux/mount.h> 43 #include <linux/btrfs.h> 44 #include <linux/blkdev.h> 45 #include "compat.h" 46 #include "ctree.h" 47 #include "disk-io.h" 48 #include "transaction.h" 49 #include "btrfs_inode.h" 50 #include "print-tree.h" 51 #include "ordered-data.h" 52 #include "xattr.h" 53 #include "tree-log.h" 54 #include "volumes.h" 55 #include "compression.h" 56 #include "locking.h" 57 #include "free-space-cache.h" 58 #include "inode-map.h" 59 #include "backref.h" 60 61 struct btrfs_iget_args { 62 u64 ino; 63 struct btrfs_root *root; 64 }; 65 66 static const struct inode_operations btrfs_dir_inode_operations; 67 static const struct inode_operations btrfs_symlink_inode_operations; 68 static const struct inode_operations btrfs_dir_ro_inode_operations; 69 static const struct inode_operations btrfs_special_inode_operations; 70 static const struct inode_operations btrfs_file_inode_operations; 71 static const struct address_space_operations btrfs_aops; 72 static const struct address_space_operations btrfs_symlink_aops; 73 static const struct file_operations btrfs_dir_file_operations; 74 static struct extent_io_ops btrfs_extent_io_ops; 75 76 static struct kmem_cache *btrfs_inode_cachep; 77 static struct kmem_cache *btrfs_delalloc_work_cachep; 78 struct kmem_cache *btrfs_trans_handle_cachep; 79 struct kmem_cache *btrfs_transaction_cachep; 80 struct kmem_cache *btrfs_path_cachep; 81 struct kmem_cache *btrfs_free_space_cachep; 82 83 #define S_SHIFT 12 84 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = { 85 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE, 86 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR, 87 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV, 88 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV, 89 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO, 90 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK, 91 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK, 92 }; 93 94 static int btrfs_setsize(struct inode *inode, struct iattr *attr); 95 static int btrfs_truncate(struct inode *inode); 96 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent); 97 static noinline int cow_file_range(struct inode *inode, 98 struct page *locked_page, 99 u64 start, u64 end, int *page_started, 100 unsigned long *nr_written, int unlock); 101 static struct extent_map *create_pinned_em(struct inode *inode, u64 start, 102 u64 len, u64 orig_start, 103 u64 block_start, u64 block_len, 104 u64 orig_block_len, u64 ram_bytes, 105 int type); 106 107 static int btrfs_dirty_inode(struct inode *inode); 108 109 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans, 110 struct inode *inode, struct inode *dir, 111 const struct qstr *qstr) 112 { 113 int err; 114 115 err = btrfs_init_acl(trans, inode, dir); 116 if (!err) 117 err = btrfs_xattr_security_init(trans, inode, dir, qstr); 118 return err; 119 } 120 121 /* 122 * this does all the hard work for inserting an inline extent into 123 * the btree. The caller should have done a btrfs_drop_extents so that 124 * no overlapping inline items exist in the btree 125 */ 126 static noinline int insert_inline_extent(struct btrfs_trans_handle *trans, 127 struct btrfs_root *root, struct inode *inode, 128 u64 start, size_t size, size_t compressed_size, 129 int compress_type, 130 struct page **compressed_pages) 131 { 132 struct btrfs_key key; 133 struct btrfs_path *path; 134 struct extent_buffer *leaf; 135 struct page *page = NULL; 136 char *kaddr; 137 unsigned long ptr; 138 struct btrfs_file_extent_item *ei; 139 int err = 0; 140 int ret; 141 size_t cur_size = size; 142 size_t datasize; 143 unsigned long offset; 144 145 if (compressed_size && compressed_pages) 146 cur_size = compressed_size; 147 148 path = btrfs_alloc_path(); 149 if (!path) 150 return -ENOMEM; 151 152 path->leave_spinning = 1; 153 154 key.objectid = btrfs_ino(inode); 155 key.offset = start; 156 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY); 157 datasize = btrfs_file_extent_calc_inline_size(cur_size); 158 159 inode_add_bytes(inode, size); 160 ret = btrfs_insert_empty_item(trans, root, path, &key, 161 datasize); 162 if (ret) { 163 err = ret; 164 goto fail; 165 } 166 leaf = path->nodes[0]; 167 ei = btrfs_item_ptr(leaf, path->slots[0], 168 struct btrfs_file_extent_item); 169 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 170 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE); 171 btrfs_set_file_extent_encryption(leaf, ei, 0); 172 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 173 btrfs_set_file_extent_ram_bytes(leaf, ei, size); 174 ptr = btrfs_file_extent_inline_start(ei); 175 176 if (compress_type != BTRFS_COMPRESS_NONE) { 177 struct page *cpage; 178 int i = 0; 179 while (compressed_size > 0) { 180 cpage = compressed_pages[i]; 181 cur_size = min_t(unsigned long, compressed_size, 182 PAGE_CACHE_SIZE); 183 184 kaddr = kmap_atomic(cpage); 185 write_extent_buffer(leaf, kaddr, ptr, cur_size); 186 kunmap_atomic(kaddr); 187 188 i++; 189 ptr += cur_size; 190 compressed_size -= cur_size; 191 } 192 btrfs_set_file_extent_compression(leaf, ei, 193 compress_type); 194 } else { 195 page = find_get_page(inode->i_mapping, 196 start >> PAGE_CACHE_SHIFT); 197 btrfs_set_file_extent_compression(leaf, ei, 0); 198 kaddr = kmap_atomic(page); 199 offset = start & (PAGE_CACHE_SIZE - 1); 200 write_extent_buffer(leaf, kaddr + offset, ptr, size); 201 kunmap_atomic(kaddr); 202 page_cache_release(page); 203 } 204 btrfs_mark_buffer_dirty(leaf); 205 btrfs_free_path(path); 206 207 /* 208 * we're an inline extent, so nobody can 209 * extend the file past i_size without locking 210 * a page we already have locked. 211 * 212 * We must do any isize and inode updates 213 * before we unlock the pages. Otherwise we 214 * could end up racing with unlink. 215 */ 216 BTRFS_I(inode)->disk_i_size = inode->i_size; 217 ret = btrfs_update_inode(trans, root, inode); 218 219 return ret; 220 fail: 221 btrfs_free_path(path); 222 return err; 223 } 224 225 226 /* 227 * conditionally insert an inline extent into the file. This 228 * does the checks required to make sure the data is small enough 229 * to fit as an inline extent. 230 */ 231 static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans, 232 struct btrfs_root *root, 233 struct inode *inode, u64 start, u64 end, 234 size_t compressed_size, int compress_type, 235 struct page **compressed_pages) 236 { 237 u64 isize = i_size_read(inode); 238 u64 actual_end = min(end + 1, isize); 239 u64 inline_len = actual_end - start; 240 u64 aligned_end = ALIGN(end, root->sectorsize); 241 u64 data_len = inline_len; 242 int ret; 243 244 if (compressed_size) 245 data_len = compressed_size; 246 247 if (start > 0 || 248 actual_end >= PAGE_CACHE_SIZE || 249 data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) || 250 (!compressed_size && 251 (actual_end & (root->sectorsize - 1)) == 0) || 252 end + 1 < isize || 253 data_len > root->fs_info->max_inline) { 254 return 1; 255 } 256 257 ret = btrfs_drop_extents(trans, root, inode, start, aligned_end, 1); 258 if (ret) 259 return ret; 260 261 if (isize > actual_end) 262 inline_len = min_t(u64, isize, actual_end); 263 ret = insert_inline_extent(trans, root, inode, start, 264 inline_len, compressed_size, 265 compress_type, compressed_pages); 266 if (ret && ret != -ENOSPC) { 267 btrfs_abort_transaction(trans, root, ret); 268 return ret; 269 } else if (ret == -ENOSPC) { 270 return 1; 271 } 272 273 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 274 btrfs_delalloc_release_metadata(inode, end + 1 - start); 275 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0); 276 return 0; 277 } 278 279 struct async_extent { 280 u64 start; 281 u64 ram_size; 282 u64 compressed_size; 283 struct page **pages; 284 unsigned long nr_pages; 285 int compress_type; 286 struct list_head list; 287 }; 288 289 struct async_cow { 290 struct inode *inode; 291 struct btrfs_root *root; 292 struct page *locked_page; 293 u64 start; 294 u64 end; 295 struct list_head extents; 296 struct btrfs_work work; 297 }; 298 299 static noinline int add_async_extent(struct async_cow *cow, 300 u64 start, u64 ram_size, 301 u64 compressed_size, 302 struct page **pages, 303 unsigned long nr_pages, 304 int compress_type) 305 { 306 struct async_extent *async_extent; 307 308 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS); 309 BUG_ON(!async_extent); /* -ENOMEM */ 310 async_extent->start = start; 311 async_extent->ram_size = ram_size; 312 async_extent->compressed_size = compressed_size; 313 async_extent->pages = pages; 314 async_extent->nr_pages = nr_pages; 315 async_extent->compress_type = compress_type; 316 list_add_tail(&async_extent->list, &cow->extents); 317 return 0; 318 } 319 320 /* 321 * we create compressed extents in two phases. The first 322 * phase compresses a range of pages that have already been 323 * locked (both pages and state bits are locked). 324 * 325 * This is done inside an ordered work queue, and the compression 326 * is spread across many cpus. The actual IO submission is step 327 * two, and the ordered work queue takes care of making sure that 328 * happens in the same order things were put onto the queue by 329 * writepages and friends. 330 * 331 * If this code finds it can't get good compression, it puts an 332 * entry onto the work queue to write the uncompressed bytes. This 333 * makes sure that both compressed inodes and uncompressed inodes 334 * are written in the same order that the flusher thread sent them 335 * down. 336 */ 337 static noinline int compress_file_range(struct inode *inode, 338 struct page *locked_page, 339 u64 start, u64 end, 340 struct async_cow *async_cow, 341 int *num_added) 342 { 343 struct btrfs_root *root = BTRFS_I(inode)->root; 344 struct btrfs_trans_handle *trans; 345 u64 num_bytes; 346 u64 blocksize = root->sectorsize; 347 u64 actual_end; 348 u64 isize = i_size_read(inode); 349 int ret = 0; 350 struct page **pages = NULL; 351 unsigned long nr_pages; 352 unsigned long nr_pages_ret = 0; 353 unsigned long total_compressed = 0; 354 unsigned long total_in = 0; 355 unsigned long max_compressed = 128 * 1024; 356 unsigned long max_uncompressed = 128 * 1024; 357 int i; 358 int will_compress; 359 int compress_type = root->fs_info->compress_type; 360 int redirty = 0; 361 362 /* if this is a small write inside eof, kick off a defrag */ 363 if ((end - start + 1) < 16 * 1024 && 364 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size)) 365 btrfs_add_inode_defrag(NULL, inode); 366 367 actual_end = min_t(u64, isize, end + 1); 368 again: 369 will_compress = 0; 370 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1; 371 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE); 372 373 /* 374 * we don't want to send crud past the end of i_size through 375 * compression, that's just a waste of CPU time. So, if the 376 * end of the file is before the start of our current 377 * requested range of bytes, we bail out to the uncompressed 378 * cleanup code that can deal with all of this. 379 * 380 * It isn't really the fastest way to fix things, but this is a 381 * very uncommon corner. 382 */ 383 if (actual_end <= start) 384 goto cleanup_and_bail_uncompressed; 385 386 total_compressed = actual_end - start; 387 388 /* we want to make sure that amount of ram required to uncompress 389 * an extent is reasonable, so we limit the total size in ram 390 * of a compressed extent to 128k. This is a crucial number 391 * because it also controls how easily we can spread reads across 392 * cpus for decompression. 393 * 394 * We also want to make sure the amount of IO required to do 395 * a random read is reasonably small, so we limit the size of 396 * a compressed extent to 128k. 397 */ 398 total_compressed = min(total_compressed, max_uncompressed); 399 num_bytes = ALIGN(end - start + 1, blocksize); 400 num_bytes = max(blocksize, num_bytes); 401 total_in = 0; 402 ret = 0; 403 404 /* 405 * we do compression for mount -o compress and when the 406 * inode has not been flagged as nocompress. This flag can 407 * change at any time if we discover bad compression ratios. 408 */ 409 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) && 410 (btrfs_test_opt(root, COMPRESS) || 411 (BTRFS_I(inode)->force_compress) || 412 (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))) { 413 WARN_ON(pages); 414 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS); 415 if (!pages) { 416 /* just bail out to the uncompressed code */ 417 goto cont; 418 } 419 420 if (BTRFS_I(inode)->force_compress) 421 compress_type = BTRFS_I(inode)->force_compress; 422 423 /* 424 * we need to call clear_page_dirty_for_io on each 425 * page in the range. Otherwise applications with the file 426 * mmap'd can wander in and change the page contents while 427 * we are compressing them. 428 * 429 * If the compression fails for any reason, we set the pages 430 * dirty again later on. 431 */ 432 extent_range_clear_dirty_for_io(inode, start, end); 433 redirty = 1; 434 ret = btrfs_compress_pages(compress_type, 435 inode->i_mapping, start, 436 total_compressed, pages, 437 nr_pages, &nr_pages_ret, 438 &total_in, 439 &total_compressed, 440 max_compressed); 441 442 if (!ret) { 443 unsigned long offset = total_compressed & 444 (PAGE_CACHE_SIZE - 1); 445 struct page *page = pages[nr_pages_ret - 1]; 446 char *kaddr; 447 448 /* zero the tail end of the last page, we might be 449 * sending it down to disk 450 */ 451 if (offset) { 452 kaddr = kmap_atomic(page); 453 memset(kaddr + offset, 0, 454 PAGE_CACHE_SIZE - offset); 455 kunmap_atomic(kaddr); 456 } 457 will_compress = 1; 458 } 459 } 460 cont: 461 if (start == 0) { 462 trans = btrfs_join_transaction(root); 463 if (IS_ERR(trans)) { 464 ret = PTR_ERR(trans); 465 trans = NULL; 466 goto cleanup_and_out; 467 } 468 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 469 470 /* lets try to make an inline extent */ 471 if (ret || total_in < (actual_end - start)) { 472 /* we didn't compress the entire range, try 473 * to make an uncompressed inline extent. 474 */ 475 ret = cow_file_range_inline(trans, root, inode, 476 start, end, 0, 0, NULL); 477 } else { 478 /* try making a compressed inline extent */ 479 ret = cow_file_range_inline(trans, root, inode, 480 start, end, 481 total_compressed, 482 compress_type, pages); 483 } 484 if (ret <= 0) { 485 /* 486 * inline extent creation worked or returned error, 487 * we don't need to create any more async work items. 488 * Unlock and free up our temp pages. 489 */ 490 extent_clear_unlock_delalloc(inode, 491 &BTRFS_I(inode)->io_tree, 492 start, end, NULL, 493 EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY | 494 EXTENT_CLEAR_DELALLOC | 495 EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK); 496 497 btrfs_end_transaction(trans, root); 498 goto free_pages_out; 499 } 500 btrfs_end_transaction(trans, root); 501 } 502 503 if (will_compress) { 504 /* 505 * we aren't doing an inline extent round the compressed size 506 * up to a block size boundary so the allocator does sane 507 * things 508 */ 509 total_compressed = ALIGN(total_compressed, blocksize); 510 511 /* 512 * one last check to make sure the compression is really a 513 * win, compare the page count read with the blocks on disk 514 */ 515 total_in = ALIGN(total_in, PAGE_CACHE_SIZE); 516 if (total_compressed >= total_in) { 517 will_compress = 0; 518 } else { 519 num_bytes = total_in; 520 } 521 } 522 if (!will_compress && pages) { 523 /* 524 * the compression code ran but failed to make things smaller, 525 * free any pages it allocated and our page pointer array 526 */ 527 for (i = 0; i < nr_pages_ret; i++) { 528 WARN_ON(pages[i]->mapping); 529 page_cache_release(pages[i]); 530 } 531 kfree(pages); 532 pages = NULL; 533 total_compressed = 0; 534 nr_pages_ret = 0; 535 536 /* flag the file so we don't compress in the future */ 537 if (!btrfs_test_opt(root, FORCE_COMPRESS) && 538 !(BTRFS_I(inode)->force_compress)) { 539 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS; 540 } 541 } 542 if (will_compress) { 543 *num_added += 1; 544 545 /* the async work queues will take care of doing actual 546 * allocation on disk for these compressed pages, 547 * and will submit them to the elevator. 548 */ 549 add_async_extent(async_cow, start, num_bytes, 550 total_compressed, pages, nr_pages_ret, 551 compress_type); 552 553 if (start + num_bytes < end) { 554 start += num_bytes; 555 pages = NULL; 556 cond_resched(); 557 goto again; 558 } 559 } else { 560 cleanup_and_bail_uncompressed: 561 /* 562 * No compression, but we still need to write the pages in 563 * the file we've been given so far. redirty the locked 564 * page if it corresponds to our extent and set things up 565 * for the async work queue to run cow_file_range to do 566 * the normal delalloc dance 567 */ 568 if (page_offset(locked_page) >= start && 569 page_offset(locked_page) <= end) { 570 __set_page_dirty_nobuffers(locked_page); 571 /* unlocked later on in the async handlers */ 572 } 573 if (redirty) 574 extent_range_redirty_for_io(inode, start, end); 575 add_async_extent(async_cow, start, end - start + 1, 576 0, NULL, 0, BTRFS_COMPRESS_NONE); 577 *num_added += 1; 578 } 579 580 out: 581 return ret; 582 583 free_pages_out: 584 for (i = 0; i < nr_pages_ret; i++) { 585 WARN_ON(pages[i]->mapping); 586 page_cache_release(pages[i]); 587 } 588 kfree(pages); 589 590 goto out; 591 592 cleanup_and_out: 593 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree, 594 start, end, NULL, 595 EXTENT_CLEAR_UNLOCK_PAGE | 596 EXTENT_CLEAR_DIRTY | 597 EXTENT_CLEAR_DELALLOC | 598 EXTENT_SET_WRITEBACK | 599 EXTENT_END_WRITEBACK); 600 if (!trans || IS_ERR(trans)) 601 btrfs_error(root->fs_info, ret, "Failed to join transaction"); 602 else 603 btrfs_abort_transaction(trans, root, ret); 604 goto free_pages_out; 605 } 606 607 /* 608 * phase two of compressed writeback. This is the ordered portion 609 * of the code, which only gets called in the order the work was 610 * queued. We walk all the async extents created by compress_file_range 611 * and send them down to the disk. 612 */ 613 static noinline int submit_compressed_extents(struct inode *inode, 614 struct async_cow *async_cow) 615 { 616 struct async_extent *async_extent; 617 u64 alloc_hint = 0; 618 struct btrfs_trans_handle *trans; 619 struct btrfs_key ins; 620 struct extent_map *em; 621 struct btrfs_root *root = BTRFS_I(inode)->root; 622 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 623 struct extent_io_tree *io_tree; 624 int ret = 0; 625 626 if (list_empty(&async_cow->extents)) 627 return 0; 628 629 again: 630 while (!list_empty(&async_cow->extents)) { 631 async_extent = list_entry(async_cow->extents.next, 632 struct async_extent, list); 633 list_del(&async_extent->list); 634 635 io_tree = &BTRFS_I(inode)->io_tree; 636 637 retry: 638 /* did the compression code fall back to uncompressed IO? */ 639 if (!async_extent->pages) { 640 int page_started = 0; 641 unsigned long nr_written = 0; 642 643 lock_extent(io_tree, async_extent->start, 644 async_extent->start + 645 async_extent->ram_size - 1); 646 647 /* allocate blocks */ 648 ret = cow_file_range(inode, async_cow->locked_page, 649 async_extent->start, 650 async_extent->start + 651 async_extent->ram_size - 1, 652 &page_started, &nr_written, 0); 653 654 /* JDM XXX */ 655 656 /* 657 * if page_started, cow_file_range inserted an 658 * inline extent and took care of all the unlocking 659 * and IO for us. Otherwise, we need to submit 660 * all those pages down to the drive. 661 */ 662 if (!page_started && !ret) 663 extent_write_locked_range(io_tree, 664 inode, async_extent->start, 665 async_extent->start + 666 async_extent->ram_size - 1, 667 btrfs_get_extent, 668 WB_SYNC_ALL); 669 else if (ret) 670 unlock_page(async_cow->locked_page); 671 kfree(async_extent); 672 cond_resched(); 673 continue; 674 } 675 676 lock_extent(io_tree, async_extent->start, 677 async_extent->start + async_extent->ram_size - 1); 678 679 trans = btrfs_join_transaction(root); 680 if (IS_ERR(trans)) { 681 ret = PTR_ERR(trans); 682 } else { 683 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 684 ret = btrfs_reserve_extent(trans, root, 685 async_extent->compressed_size, 686 async_extent->compressed_size, 687 0, alloc_hint, &ins, 1); 688 if (ret && ret != -ENOSPC) 689 btrfs_abort_transaction(trans, root, ret); 690 btrfs_end_transaction(trans, root); 691 } 692 693 if (ret) { 694 int i; 695 696 for (i = 0; i < async_extent->nr_pages; i++) { 697 WARN_ON(async_extent->pages[i]->mapping); 698 page_cache_release(async_extent->pages[i]); 699 } 700 kfree(async_extent->pages); 701 async_extent->nr_pages = 0; 702 async_extent->pages = NULL; 703 704 if (ret == -ENOSPC) 705 goto retry; 706 goto out_free; 707 } 708 709 /* 710 * here we're doing allocation and writeback of the 711 * compressed pages 712 */ 713 btrfs_drop_extent_cache(inode, async_extent->start, 714 async_extent->start + 715 async_extent->ram_size - 1, 0); 716 717 em = alloc_extent_map(); 718 if (!em) { 719 ret = -ENOMEM; 720 goto out_free_reserve; 721 } 722 em->start = async_extent->start; 723 em->len = async_extent->ram_size; 724 em->orig_start = em->start; 725 em->mod_start = em->start; 726 em->mod_len = em->len; 727 728 em->block_start = ins.objectid; 729 em->block_len = ins.offset; 730 em->orig_block_len = ins.offset; 731 em->ram_bytes = async_extent->ram_size; 732 em->bdev = root->fs_info->fs_devices->latest_bdev; 733 em->compress_type = async_extent->compress_type; 734 set_bit(EXTENT_FLAG_PINNED, &em->flags); 735 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 736 em->generation = -1; 737 738 while (1) { 739 write_lock(&em_tree->lock); 740 ret = add_extent_mapping(em_tree, em, 1); 741 write_unlock(&em_tree->lock); 742 if (ret != -EEXIST) { 743 free_extent_map(em); 744 break; 745 } 746 btrfs_drop_extent_cache(inode, async_extent->start, 747 async_extent->start + 748 async_extent->ram_size - 1, 0); 749 } 750 751 if (ret) 752 goto out_free_reserve; 753 754 ret = btrfs_add_ordered_extent_compress(inode, 755 async_extent->start, 756 ins.objectid, 757 async_extent->ram_size, 758 ins.offset, 759 BTRFS_ORDERED_COMPRESSED, 760 async_extent->compress_type); 761 if (ret) 762 goto out_free_reserve; 763 764 /* 765 * clear dirty, set writeback and unlock the pages. 766 */ 767 extent_clear_unlock_delalloc(inode, 768 &BTRFS_I(inode)->io_tree, 769 async_extent->start, 770 async_extent->start + 771 async_extent->ram_size - 1, 772 NULL, EXTENT_CLEAR_UNLOCK_PAGE | 773 EXTENT_CLEAR_UNLOCK | 774 EXTENT_CLEAR_DELALLOC | 775 EXTENT_CLEAR_DIRTY | EXTENT_SET_WRITEBACK); 776 777 ret = btrfs_submit_compressed_write(inode, 778 async_extent->start, 779 async_extent->ram_size, 780 ins.objectid, 781 ins.offset, async_extent->pages, 782 async_extent->nr_pages); 783 alloc_hint = ins.objectid + ins.offset; 784 kfree(async_extent); 785 if (ret) 786 goto out; 787 cond_resched(); 788 } 789 ret = 0; 790 out: 791 return ret; 792 out_free_reserve: 793 btrfs_free_reserved_extent(root, ins.objectid, ins.offset); 794 out_free: 795 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree, 796 async_extent->start, 797 async_extent->start + 798 async_extent->ram_size - 1, 799 NULL, EXTENT_CLEAR_UNLOCK_PAGE | 800 EXTENT_CLEAR_UNLOCK | 801 EXTENT_CLEAR_DELALLOC | 802 EXTENT_CLEAR_DIRTY | 803 EXTENT_SET_WRITEBACK | 804 EXTENT_END_WRITEBACK); 805 kfree(async_extent); 806 goto again; 807 } 808 809 static u64 get_extent_allocation_hint(struct inode *inode, u64 start, 810 u64 num_bytes) 811 { 812 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 813 struct extent_map *em; 814 u64 alloc_hint = 0; 815 816 read_lock(&em_tree->lock); 817 em = search_extent_mapping(em_tree, start, num_bytes); 818 if (em) { 819 /* 820 * if block start isn't an actual block number then find the 821 * first block in this inode and use that as a hint. If that 822 * block is also bogus then just don't worry about it. 823 */ 824 if (em->block_start >= EXTENT_MAP_LAST_BYTE) { 825 free_extent_map(em); 826 em = search_extent_mapping(em_tree, 0, 0); 827 if (em && em->block_start < EXTENT_MAP_LAST_BYTE) 828 alloc_hint = em->block_start; 829 if (em) 830 free_extent_map(em); 831 } else { 832 alloc_hint = em->block_start; 833 free_extent_map(em); 834 } 835 } 836 read_unlock(&em_tree->lock); 837 838 return alloc_hint; 839 } 840 841 /* 842 * when extent_io.c finds a delayed allocation range in the file, 843 * the call backs end up in this code. The basic idea is to 844 * allocate extents on disk for the range, and create ordered data structs 845 * in ram to track those extents. 846 * 847 * locked_page is the page that writepage had locked already. We use 848 * it to make sure we don't do extra locks or unlocks. 849 * 850 * *page_started is set to one if we unlock locked_page and do everything 851 * required to start IO on it. It may be clean and already done with 852 * IO when we return. 853 */ 854 static noinline int __cow_file_range(struct btrfs_trans_handle *trans, 855 struct inode *inode, 856 struct btrfs_root *root, 857 struct page *locked_page, 858 u64 start, u64 end, int *page_started, 859 unsigned long *nr_written, 860 int unlock) 861 { 862 u64 alloc_hint = 0; 863 u64 num_bytes; 864 unsigned long ram_size; 865 u64 disk_num_bytes; 866 u64 cur_alloc_size; 867 u64 blocksize = root->sectorsize; 868 struct btrfs_key ins; 869 struct extent_map *em; 870 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 871 int ret = 0; 872 873 BUG_ON(btrfs_is_free_space_inode(inode)); 874 875 num_bytes = ALIGN(end - start + 1, blocksize); 876 num_bytes = max(blocksize, num_bytes); 877 disk_num_bytes = num_bytes; 878 879 /* if this is a small write inside eof, kick off defrag */ 880 if (num_bytes < 64 * 1024 && 881 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size)) 882 btrfs_add_inode_defrag(trans, inode); 883 884 if (start == 0) { 885 /* lets try to make an inline extent */ 886 ret = cow_file_range_inline(trans, root, inode, 887 start, end, 0, 0, NULL); 888 if (ret == 0) { 889 extent_clear_unlock_delalloc(inode, 890 &BTRFS_I(inode)->io_tree, 891 start, end, NULL, 892 EXTENT_CLEAR_UNLOCK_PAGE | 893 EXTENT_CLEAR_UNLOCK | 894 EXTENT_CLEAR_DELALLOC | 895 EXTENT_CLEAR_DIRTY | 896 EXTENT_SET_WRITEBACK | 897 EXTENT_END_WRITEBACK); 898 899 *nr_written = *nr_written + 900 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE; 901 *page_started = 1; 902 goto out; 903 } else if (ret < 0) { 904 btrfs_abort_transaction(trans, root, ret); 905 goto out_unlock; 906 } 907 } 908 909 BUG_ON(disk_num_bytes > 910 btrfs_super_total_bytes(root->fs_info->super_copy)); 911 912 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes); 913 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0); 914 915 while (disk_num_bytes > 0) { 916 unsigned long op; 917 918 cur_alloc_size = disk_num_bytes; 919 ret = btrfs_reserve_extent(trans, root, cur_alloc_size, 920 root->sectorsize, 0, alloc_hint, 921 &ins, 1); 922 if (ret < 0) { 923 btrfs_abort_transaction(trans, root, ret); 924 goto out_unlock; 925 } 926 927 em = alloc_extent_map(); 928 if (!em) { 929 ret = -ENOMEM; 930 goto out_reserve; 931 } 932 em->start = start; 933 em->orig_start = em->start; 934 ram_size = ins.offset; 935 em->len = ins.offset; 936 em->mod_start = em->start; 937 em->mod_len = em->len; 938 939 em->block_start = ins.objectid; 940 em->block_len = ins.offset; 941 em->orig_block_len = ins.offset; 942 em->ram_bytes = ram_size; 943 em->bdev = root->fs_info->fs_devices->latest_bdev; 944 set_bit(EXTENT_FLAG_PINNED, &em->flags); 945 em->generation = -1; 946 947 while (1) { 948 write_lock(&em_tree->lock); 949 ret = add_extent_mapping(em_tree, em, 1); 950 write_unlock(&em_tree->lock); 951 if (ret != -EEXIST) { 952 free_extent_map(em); 953 break; 954 } 955 btrfs_drop_extent_cache(inode, start, 956 start + ram_size - 1, 0); 957 } 958 if (ret) 959 goto out_reserve; 960 961 cur_alloc_size = ins.offset; 962 ret = btrfs_add_ordered_extent(inode, start, ins.objectid, 963 ram_size, cur_alloc_size, 0); 964 if (ret) 965 goto out_reserve; 966 967 if (root->root_key.objectid == 968 BTRFS_DATA_RELOC_TREE_OBJECTID) { 969 ret = btrfs_reloc_clone_csums(inode, start, 970 cur_alloc_size); 971 if (ret) { 972 btrfs_abort_transaction(trans, root, ret); 973 goto out_reserve; 974 } 975 } 976 977 if (disk_num_bytes < cur_alloc_size) 978 break; 979 980 /* we're not doing compressed IO, don't unlock the first 981 * page (which the caller expects to stay locked), don't 982 * clear any dirty bits and don't set any writeback bits 983 * 984 * Do set the Private2 bit so we know this page was properly 985 * setup for writepage 986 */ 987 op = unlock ? EXTENT_CLEAR_UNLOCK_PAGE : 0; 988 op |= EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC | 989 EXTENT_SET_PRIVATE2; 990 991 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree, 992 start, start + ram_size - 1, 993 locked_page, op); 994 disk_num_bytes -= cur_alloc_size; 995 num_bytes -= cur_alloc_size; 996 alloc_hint = ins.objectid + ins.offset; 997 start += cur_alloc_size; 998 } 999 out: 1000 return ret; 1001 1002 out_reserve: 1003 btrfs_free_reserved_extent(root, ins.objectid, ins.offset); 1004 out_unlock: 1005 extent_clear_unlock_delalloc(inode, 1006 &BTRFS_I(inode)->io_tree, 1007 start, end, locked_page, 1008 EXTENT_CLEAR_UNLOCK_PAGE | 1009 EXTENT_CLEAR_UNLOCK | 1010 EXTENT_CLEAR_DELALLOC | 1011 EXTENT_CLEAR_DIRTY | 1012 EXTENT_SET_WRITEBACK | 1013 EXTENT_END_WRITEBACK); 1014 1015 goto out; 1016 } 1017 1018 static noinline int cow_file_range(struct inode *inode, 1019 struct page *locked_page, 1020 u64 start, u64 end, int *page_started, 1021 unsigned long *nr_written, 1022 int unlock) 1023 { 1024 struct btrfs_trans_handle *trans; 1025 struct btrfs_root *root = BTRFS_I(inode)->root; 1026 int ret; 1027 1028 trans = btrfs_join_transaction(root); 1029 if (IS_ERR(trans)) { 1030 extent_clear_unlock_delalloc(inode, 1031 &BTRFS_I(inode)->io_tree, 1032 start, end, locked_page, 1033 EXTENT_CLEAR_UNLOCK_PAGE | 1034 EXTENT_CLEAR_UNLOCK | 1035 EXTENT_CLEAR_DELALLOC | 1036 EXTENT_CLEAR_DIRTY | 1037 EXTENT_SET_WRITEBACK | 1038 EXTENT_END_WRITEBACK); 1039 return PTR_ERR(trans); 1040 } 1041 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 1042 1043 ret = __cow_file_range(trans, inode, root, locked_page, start, end, 1044 page_started, nr_written, unlock); 1045 1046 btrfs_end_transaction(trans, root); 1047 1048 return ret; 1049 } 1050 1051 /* 1052 * work queue call back to started compression on a file and pages 1053 */ 1054 static noinline void async_cow_start(struct btrfs_work *work) 1055 { 1056 struct async_cow *async_cow; 1057 int num_added = 0; 1058 async_cow = container_of(work, struct async_cow, work); 1059 1060 compress_file_range(async_cow->inode, async_cow->locked_page, 1061 async_cow->start, async_cow->end, async_cow, 1062 &num_added); 1063 if (num_added == 0) { 1064 btrfs_add_delayed_iput(async_cow->inode); 1065 async_cow->inode = NULL; 1066 } 1067 } 1068 1069 /* 1070 * work queue call back to submit previously compressed pages 1071 */ 1072 static noinline void async_cow_submit(struct btrfs_work *work) 1073 { 1074 struct async_cow *async_cow; 1075 struct btrfs_root *root; 1076 unsigned long nr_pages; 1077 1078 async_cow = container_of(work, struct async_cow, work); 1079 1080 root = async_cow->root; 1081 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >> 1082 PAGE_CACHE_SHIFT; 1083 1084 if (atomic_sub_return(nr_pages, &root->fs_info->async_delalloc_pages) < 1085 5 * 1024 * 1024 && 1086 waitqueue_active(&root->fs_info->async_submit_wait)) 1087 wake_up(&root->fs_info->async_submit_wait); 1088 1089 if (async_cow->inode) 1090 submit_compressed_extents(async_cow->inode, async_cow); 1091 } 1092 1093 static noinline void async_cow_free(struct btrfs_work *work) 1094 { 1095 struct async_cow *async_cow; 1096 async_cow = container_of(work, struct async_cow, work); 1097 if (async_cow->inode) 1098 btrfs_add_delayed_iput(async_cow->inode); 1099 kfree(async_cow); 1100 } 1101 1102 static int cow_file_range_async(struct inode *inode, struct page *locked_page, 1103 u64 start, u64 end, int *page_started, 1104 unsigned long *nr_written) 1105 { 1106 struct async_cow *async_cow; 1107 struct btrfs_root *root = BTRFS_I(inode)->root; 1108 unsigned long nr_pages; 1109 u64 cur_end; 1110 int limit = 10 * 1024 * 1024; 1111 1112 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED, 1113 1, 0, NULL, GFP_NOFS); 1114 while (start < end) { 1115 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS); 1116 BUG_ON(!async_cow); /* -ENOMEM */ 1117 async_cow->inode = igrab(inode); 1118 async_cow->root = root; 1119 async_cow->locked_page = locked_page; 1120 async_cow->start = start; 1121 1122 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) 1123 cur_end = end; 1124 else 1125 cur_end = min(end, start + 512 * 1024 - 1); 1126 1127 async_cow->end = cur_end; 1128 INIT_LIST_HEAD(&async_cow->extents); 1129 1130 async_cow->work.func = async_cow_start; 1131 async_cow->work.ordered_func = async_cow_submit; 1132 async_cow->work.ordered_free = async_cow_free; 1133 async_cow->work.flags = 0; 1134 1135 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >> 1136 PAGE_CACHE_SHIFT; 1137 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages); 1138 1139 btrfs_queue_worker(&root->fs_info->delalloc_workers, 1140 &async_cow->work); 1141 1142 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) { 1143 wait_event(root->fs_info->async_submit_wait, 1144 (atomic_read(&root->fs_info->async_delalloc_pages) < 1145 limit)); 1146 } 1147 1148 while (atomic_read(&root->fs_info->async_submit_draining) && 1149 atomic_read(&root->fs_info->async_delalloc_pages)) { 1150 wait_event(root->fs_info->async_submit_wait, 1151 (atomic_read(&root->fs_info->async_delalloc_pages) == 1152 0)); 1153 } 1154 1155 *nr_written += nr_pages; 1156 start = cur_end + 1; 1157 } 1158 *page_started = 1; 1159 return 0; 1160 } 1161 1162 static noinline int csum_exist_in_range(struct btrfs_root *root, 1163 u64 bytenr, u64 num_bytes) 1164 { 1165 int ret; 1166 struct btrfs_ordered_sum *sums; 1167 LIST_HEAD(list); 1168 1169 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr, 1170 bytenr + num_bytes - 1, &list, 0); 1171 if (ret == 0 && list_empty(&list)) 1172 return 0; 1173 1174 while (!list_empty(&list)) { 1175 sums = list_entry(list.next, struct btrfs_ordered_sum, list); 1176 list_del(&sums->list); 1177 kfree(sums); 1178 } 1179 return 1; 1180 } 1181 1182 /* 1183 * when nowcow writeback call back. This checks for snapshots or COW copies 1184 * of the extents that exist in the file, and COWs the file as required. 1185 * 1186 * If no cow copies or snapshots exist, we write directly to the existing 1187 * blocks on disk 1188 */ 1189 static noinline int run_delalloc_nocow(struct inode *inode, 1190 struct page *locked_page, 1191 u64 start, u64 end, int *page_started, int force, 1192 unsigned long *nr_written) 1193 { 1194 struct btrfs_root *root = BTRFS_I(inode)->root; 1195 struct btrfs_trans_handle *trans; 1196 struct extent_buffer *leaf; 1197 struct btrfs_path *path; 1198 struct btrfs_file_extent_item *fi; 1199 struct btrfs_key found_key; 1200 u64 cow_start; 1201 u64 cur_offset; 1202 u64 extent_end; 1203 u64 extent_offset; 1204 u64 disk_bytenr; 1205 u64 num_bytes; 1206 u64 disk_num_bytes; 1207 u64 ram_bytes; 1208 int extent_type; 1209 int ret, err; 1210 int type; 1211 int nocow; 1212 int check_prev = 1; 1213 bool nolock; 1214 u64 ino = btrfs_ino(inode); 1215 1216 path = btrfs_alloc_path(); 1217 if (!path) { 1218 extent_clear_unlock_delalloc(inode, 1219 &BTRFS_I(inode)->io_tree, 1220 start, end, locked_page, 1221 EXTENT_CLEAR_UNLOCK_PAGE | 1222 EXTENT_CLEAR_UNLOCK | 1223 EXTENT_CLEAR_DELALLOC | 1224 EXTENT_CLEAR_DIRTY | 1225 EXTENT_SET_WRITEBACK | 1226 EXTENT_END_WRITEBACK); 1227 return -ENOMEM; 1228 } 1229 1230 nolock = btrfs_is_free_space_inode(inode); 1231 1232 if (nolock) 1233 trans = btrfs_join_transaction_nolock(root); 1234 else 1235 trans = btrfs_join_transaction(root); 1236 1237 if (IS_ERR(trans)) { 1238 extent_clear_unlock_delalloc(inode, 1239 &BTRFS_I(inode)->io_tree, 1240 start, end, locked_page, 1241 EXTENT_CLEAR_UNLOCK_PAGE | 1242 EXTENT_CLEAR_UNLOCK | 1243 EXTENT_CLEAR_DELALLOC | 1244 EXTENT_CLEAR_DIRTY | 1245 EXTENT_SET_WRITEBACK | 1246 EXTENT_END_WRITEBACK); 1247 btrfs_free_path(path); 1248 return PTR_ERR(trans); 1249 } 1250 1251 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 1252 1253 cow_start = (u64)-1; 1254 cur_offset = start; 1255 while (1) { 1256 ret = btrfs_lookup_file_extent(trans, root, path, ino, 1257 cur_offset, 0); 1258 if (ret < 0) { 1259 btrfs_abort_transaction(trans, root, ret); 1260 goto error; 1261 } 1262 if (ret > 0 && path->slots[0] > 0 && check_prev) { 1263 leaf = path->nodes[0]; 1264 btrfs_item_key_to_cpu(leaf, &found_key, 1265 path->slots[0] - 1); 1266 if (found_key.objectid == ino && 1267 found_key.type == BTRFS_EXTENT_DATA_KEY) 1268 path->slots[0]--; 1269 } 1270 check_prev = 0; 1271 next_slot: 1272 leaf = path->nodes[0]; 1273 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 1274 ret = btrfs_next_leaf(root, path); 1275 if (ret < 0) { 1276 btrfs_abort_transaction(trans, root, ret); 1277 goto error; 1278 } 1279 if (ret > 0) 1280 break; 1281 leaf = path->nodes[0]; 1282 } 1283 1284 nocow = 0; 1285 disk_bytenr = 0; 1286 num_bytes = 0; 1287 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1288 1289 if (found_key.objectid > ino || 1290 found_key.type > BTRFS_EXTENT_DATA_KEY || 1291 found_key.offset > end) 1292 break; 1293 1294 if (found_key.offset > cur_offset) { 1295 extent_end = found_key.offset; 1296 extent_type = 0; 1297 goto out_check; 1298 } 1299 1300 fi = btrfs_item_ptr(leaf, path->slots[0], 1301 struct btrfs_file_extent_item); 1302 extent_type = btrfs_file_extent_type(leaf, fi); 1303 1304 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 1305 if (extent_type == BTRFS_FILE_EXTENT_REG || 1306 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1307 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1308 extent_offset = btrfs_file_extent_offset(leaf, fi); 1309 extent_end = found_key.offset + 1310 btrfs_file_extent_num_bytes(leaf, fi); 1311 disk_num_bytes = 1312 btrfs_file_extent_disk_num_bytes(leaf, fi); 1313 if (extent_end <= start) { 1314 path->slots[0]++; 1315 goto next_slot; 1316 } 1317 if (disk_bytenr == 0) 1318 goto out_check; 1319 if (btrfs_file_extent_compression(leaf, fi) || 1320 btrfs_file_extent_encryption(leaf, fi) || 1321 btrfs_file_extent_other_encoding(leaf, fi)) 1322 goto out_check; 1323 if (extent_type == BTRFS_FILE_EXTENT_REG && !force) 1324 goto out_check; 1325 if (btrfs_extent_readonly(root, disk_bytenr)) 1326 goto out_check; 1327 if (btrfs_cross_ref_exist(trans, root, ino, 1328 found_key.offset - 1329 extent_offset, disk_bytenr)) 1330 goto out_check; 1331 disk_bytenr += extent_offset; 1332 disk_bytenr += cur_offset - found_key.offset; 1333 num_bytes = min(end + 1, extent_end) - cur_offset; 1334 /* 1335 * force cow if csum exists in the range. 1336 * this ensure that csum for a given extent are 1337 * either valid or do not exist. 1338 */ 1339 if (csum_exist_in_range(root, disk_bytenr, num_bytes)) 1340 goto out_check; 1341 nocow = 1; 1342 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 1343 extent_end = found_key.offset + 1344 btrfs_file_extent_inline_len(leaf, fi); 1345 extent_end = ALIGN(extent_end, root->sectorsize); 1346 } else { 1347 BUG_ON(1); 1348 } 1349 out_check: 1350 if (extent_end <= start) { 1351 path->slots[0]++; 1352 goto next_slot; 1353 } 1354 if (!nocow) { 1355 if (cow_start == (u64)-1) 1356 cow_start = cur_offset; 1357 cur_offset = extent_end; 1358 if (cur_offset > end) 1359 break; 1360 path->slots[0]++; 1361 goto next_slot; 1362 } 1363 1364 btrfs_release_path(path); 1365 if (cow_start != (u64)-1) { 1366 ret = __cow_file_range(trans, inode, root, locked_page, 1367 cow_start, found_key.offset - 1, 1368 page_started, nr_written, 1); 1369 if (ret) { 1370 btrfs_abort_transaction(trans, root, ret); 1371 goto error; 1372 } 1373 cow_start = (u64)-1; 1374 } 1375 1376 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1377 struct extent_map *em; 1378 struct extent_map_tree *em_tree; 1379 em_tree = &BTRFS_I(inode)->extent_tree; 1380 em = alloc_extent_map(); 1381 BUG_ON(!em); /* -ENOMEM */ 1382 em->start = cur_offset; 1383 em->orig_start = found_key.offset - extent_offset; 1384 em->len = num_bytes; 1385 em->block_len = num_bytes; 1386 em->block_start = disk_bytenr; 1387 em->orig_block_len = disk_num_bytes; 1388 em->ram_bytes = ram_bytes; 1389 em->bdev = root->fs_info->fs_devices->latest_bdev; 1390 em->mod_start = em->start; 1391 em->mod_len = em->len; 1392 set_bit(EXTENT_FLAG_PINNED, &em->flags); 1393 set_bit(EXTENT_FLAG_FILLING, &em->flags); 1394 em->generation = -1; 1395 while (1) { 1396 write_lock(&em_tree->lock); 1397 ret = add_extent_mapping(em_tree, em, 1); 1398 write_unlock(&em_tree->lock); 1399 if (ret != -EEXIST) { 1400 free_extent_map(em); 1401 break; 1402 } 1403 btrfs_drop_extent_cache(inode, em->start, 1404 em->start + em->len - 1, 0); 1405 } 1406 type = BTRFS_ORDERED_PREALLOC; 1407 } else { 1408 type = BTRFS_ORDERED_NOCOW; 1409 } 1410 1411 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr, 1412 num_bytes, num_bytes, type); 1413 BUG_ON(ret); /* -ENOMEM */ 1414 1415 if (root->root_key.objectid == 1416 BTRFS_DATA_RELOC_TREE_OBJECTID) { 1417 ret = btrfs_reloc_clone_csums(inode, cur_offset, 1418 num_bytes); 1419 if (ret) { 1420 btrfs_abort_transaction(trans, root, ret); 1421 goto error; 1422 } 1423 } 1424 1425 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree, 1426 cur_offset, cur_offset + num_bytes - 1, 1427 locked_page, EXTENT_CLEAR_UNLOCK_PAGE | 1428 EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC | 1429 EXTENT_SET_PRIVATE2); 1430 cur_offset = extent_end; 1431 if (cur_offset > end) 1432 break; 1433 } 1434 btrfs_release_path(path); 1435 1436 if (cur_offset <= end && cow_start == (u64)-1) { 1437 cow_start = cur_offset; 1438 cur_offset = end; 1439 } 1440 1441 if (cow_start != (u64)-1) { 1442 ret = __cow_file_range(trans, inode, root, locked_page, 1443 cow_start, end, 1444 page_started, nr_written, 1); 1445 if (ret) { 1446 btrfs_abort_transaction(trans, root, ret); 1447 goto error; 1448 } 1449 } 1450 1451 error: 1452 err = btrfs_end_transaction(trans, root); 1453 if (!ret) 1454 ret = err; 1455 1456 if (ret && cur_offset < end) 1457 extent_clear_unlock_delalloc(inode, 1458 &BTRFS_I(inode)->io_tree, 1459 cur_offset, end, locked_page, 1460 EXTENT_CLEAR_UNLOCK_PAGE | 1461 EXTENT_CLEAR_UNLOCK | 1462 EXTENT_CLEAR_DELALLOC | 1463 EXTENT_CLEAR_DIRTY | 1464 EXTENT_SET_WRITEBACK | 1465 EXTENT_END_WRITEBACK); 1466 1467 btrfs_free_path(path); 1468 return ret; 1469 } 1470 1471 /* 1472 * extent_io.c call back to do delayed allocation processing 1473 */ 1474 static int run_delalloc_range(struct inode *inode, struct page *locked_page, 1475 u64 start, u64 end, int *page_started, 1476 unsigned long *nr_written) 1477 { 1478 int ret; 1479 struct btrfs_root *root = BTRFS_I(inode)->root; 1480 1481 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) { 1482 ret = run_delalloc_nocow(inode, locked_page, start, end, 1483 page_started, 1, nr_written); 1484 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC) { 1485 ret = run_delalloc_nocow(inode, locked_page, start, end, 1486 page_started, 0, nr_written); 1487 } else if (!btrfs_test_opt(root, COMPRESS) && 1488 !(BTRFS_I(inode)->force_compress) && 1489 !(BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS)) { 1490 ret = cow_file_range(inode, locked_page, start, end, 1491 page_started, nr_written, 1); 1492 } else { 1493 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 1494 &BTRFS_I(inode)->runtime_flags); 1495 ret = cow_file_range_async(inode, locked_page, start, end, 1496 page_started, nr_written); 1497 } 1498 return ret; 1499 } 1500 1501 static void btrfs_split_extent_hook(struct inode *inode, 1502 struct extent_state *orig, u64 split) 1503 { 1504 /* not delalloc, ignore it */ 1505 if (!(orig->state & EXTENT_DELALLOC)) 1506 return; 1507 1508 spin_lock(&BTRFS_I(inode)->lock); 1509 BTRFS_I(inode)->outstanding_extents++; 1510 spin_unlock(&BTRFS_I(inode)->lock); 1511 } 1512 1513 /* 1514 * extent_io.c merge_extent_hook, used to track merged delayed allocation 1515 * extents so we can keep track of new extents that are just merged onto old 1516 * extents, such as when we are doing sequential writes, so we can properly 1517 * account for the metadata space we'll need. 1518 */ 1519 static void btrfs_merge_extent_hook(struct inode *inode, 1520 struct extent_state *new, 1521 struct extent_state *other) 1522 { 1523 /* not delalloc, ignore it */ 1524 if (!(other->state & EXTENT_DELALLOC)) 1525 return; 1526 1527 spin_lock(&BTRFS_I(inode)->lock); 1528 BTRFS_I(inode)->outstanding_extents--; 1529 spin_unlock(&BTRFS_I(inode)->lock); 1530 } 1531 1532 /* 1533 * extent_io.c set_bit_hook, used to track delayed allocation 1534 * bytes in this file, and to maintain the list of inodes that 1535 * have pending delalloc work to be done. 1536 */ 1537 static void btrfs_set_bit_hook(struct inode *inode, 1538 struct extent_state *state, unsigned long *bits) 1539 { 1540 1541 /* 1542 * set_bit and clear bit hooks normally require _irqsave/restore 1543 * but in this case, we are only testing for the DELALLOC 1544 * bit, which is only set or cleared with irqs on 1545 */ 1546 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) { 1547 struct btrfs_root *root = BTRFS_I(inode)->root; 1548 u64 len = state->end + 1 - state->start; 1549 bool do_list = !btrfs_is_free_space_inode(inode); 1550 1551 if (*bits & EXTENT_FIRST_DELALLOC) { 1552 *bits &= ~EXTENT_FIRST_DELALLOC; 1553 } else { 1554 spin_lock(&BTRFS_I(inode)->lock); 1555 BTRFS_I(inode)->outstanding_extents++; 1556 spin_unlock(&BTRFS_I(inode)->lock); 1557 } 1558 1559 __percpu_counter_add(&root->fs_info->delalloc_bytes, len, 1560 root->fs_info->delalloc_batch); 1561 spin_lock(&BTRFS_I(inode)->lock); 1562 BTRFS_I(inode)->delalloc_bytes += len; 1563 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1564 &BTRFS_I(inode)->runtime_flags)) { 1565 spin_lock(&root->fs_info->delalloc_lock); 1566 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) { 1567 list_add_tail(&BTRFS_I(inode)->delalloc_inodes, 1568 &root->fs_info->delalloc_inodes); 1569 set_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1570 &BTRFS_I(inode)->runtime_flags); 1571 } 1572 spin_unlock(&root->fs_info->delalloc_lock); 1573 } 1574 spin_unlock(&BTRFS_I(inode)->lock); 1575 } 1576 } 1577 1578 /* 1579 * extent_io.c clear_bit_hook, see set_bit_hook for why 1580 */ 1581 static void btrfs_clear_bit_hook(struct inode *inode, 1582 struct extent_state *state, 1583 unsigned long *bits) 1584 { 1585 /* 1586 * set_bit and clear bit hooks normally require _irqsave/restore 1587 * but in this case, we are only testing for the DELALLOC 1588 * bit, which is only set or cleared with irqs on 1589 */ 1590 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) { 1591 struct btrfs_root *root = BTRFS_I(inode)->root; 1592 u64 len = state->end + 1 - state->start; 1593 bool do_list = !btrfs_is_free_space_inode(inode); 1594 1595 if (*bits & EXTENT_FIRST_DELALLOC) { 1596 *bits &= ~EXTENT_FIRST_DELALLOC; 1597 } else if (!(*bits & EXTENT_DO_ACCOUNTING)) { 1598 spin_lock(&BTRFS_I(inode)->lock); 1599 BTRFS_I(inode)->outstanding_extents--; 1600 spin_unlock(&BTRFS_I(inode)->lock); 1601 } 1602 1603 if (*bits & EXTENT_DO_ACCOUNTING) 1604 btrfs_delalloc_release_metadata(inode, len); 1605 1606 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID 1607 && do_list) 1608 btrfs_free_reserved_data_space(inode, len); 1609 1610 __percpu_counter_add(&root->fs_info->delalloc_bytes, -len, 1611 root->fs_info->delalloc_batch); 1612 spin_lock(&BTRFS_I(inode)->lock); 1613 BTRFS_I(inode)->delalloc_bytes -= len; 1614 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 && 1615 test_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1616 &BTRFS_I(inode)->runtime_flags)) { 1617 spin_lock(&root->fs_info->delalloc_lock); 1618 if (!list_empty(&BTRFS_I(inode)->delalloc_inodes)) { 1619 list_del_init(&BTRFS_I(inode)->delalloc_inodes); 1620 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1621 &BTRFS_I(inode)->runtime_flags); 1622 } 1623 spin_unlock(&root->fs_info->delalloc_lock); 1624 } 1625 spin_unlock(&BTRFS_I(inode)->lock); 1626 } 1627 } 1628 1629 /* 1630 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure 1631 * we don't create bios that span stripes or chunks 1632 */ 1633 int btrfs_merge_bio_hook(int rw, struct page *page, unsigned long offset, 1634 size_t size, struct bio *bio, 1635 unsigned long bio_flags) 1636 { 1637 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; 1638 u64 logical = (u64)bio->bi_sector << 9; 1639 u64 length = 0; 1640 u64 map_length; 1641 int ret; 1642 1643 if (bio_flags & EXTENT_BIO_COMPRESSED) 1644 return 0; 1645 1646 length = bio->bi_size; 1647 map_length = length; 1648 ret = btrfs_map_block(root->fs_info, rw, logical, 1649 &map_length, NULL, 0); 1650 /* Will always return 0 with map_multi == NULL */ 1651 BUG_ON(ret < 0); 1652 if (map_length < length + size) 1653 return 1; 1654 return 0; 1655 } 1656 1657 /* 1658 * in order to insert checksums into the metadata in large chunks, 1659 * we wait until bio submission time. All the pages in the bio are 1660 * checksummed and sums are attached onto the ordered extent record. 1661 * 1662 * At IO completion time the cums attached on the ordered extent record 1663 * are inserted into the btree 1664 */ 1665 static int __btrfs_submit_bio_start(struct inode *inode, int rw, 1666 struct bio *bio, int mirror_num, 1667 unsigned long bio_flags, 1668 u64 bio_offset) 1669 { 1670 struct btrfs_root *root = BTRFS_I(inode)->root; 1671 int ret = 0; 1672 1673 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0); 1674 BUG_ON(ret); /* -ENOMEM */ 1675 return 0; 1676 } 1677 1678 /* 1679 * in order to insert checksums into the metadata in large chunks, 1680 * we wait until bio submission time. All the pages in the bio are 1681 * checksummed and sums are attached onto the ordered extent record. 1682 * 1683 * At IO completion time the cums attached on the ordered extent record 1684 * are inserted into the btree 1685 */ 1686 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio, 1687 int mirror_num, unsigned long bio_flags, 1688 u64 bio_offset) 1689 { 1690 struct btrfs_root *root = BTRFS_I(inode)->root; 1691 int ret; 1692 1693 ret = btrfs_map_bio(root, rw, bio, mirror_num, 1); 1694 if (ret) 1695 bio_endio(bio, ret); 1696 return ret; 1697 } 1698 1699 /* 1700 * extent_io.c submission hook. This does the right thing for csum calculation 1701 * on write, or reading the csums from the tree before a read 1702 */ 1703 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio, 1704 int mirror_num, unsigned long bio_flags, 1705 u64 bio_offset) 1706 { 1707 struct btrfs_root *root = BTRFS_I(inode)->root; 1708 int ret = 0; 1709 int skip_sum; 1710 int metadata = 0; 1711 int async = !atomic_read(&BTRFS_I(inode)->sync_writers); 1712 1713 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 1714 1715 if (btrfs_is_free_space_inode(inode)) 1716 metadata = 2; 1717 1718 if (!(rw & REQ_WRITE)) { 1719 ret = btrfs_bio_wq_end_io(root->fs_info, bio, metadata); 1720 if (ret) 1721 goto out; 1722 1723 if (bio_flags & EXTENT_BIO_COMPRESSED) { 1724 ret = btrfs_submit_compressed_read(inode, bio, 1725 mirror_num, 1726 bio_flags); 1727 goto out; 1728 } else if (!skip_sum) { 1729 ret = btrfs_lookup_bio_sums(root, inode, bio, NULL); 1730 if (ret) 1731 goto out; 1732 } 1733 goto mapit; 1734 } else if (async && !skip_sum) { 1735 /* csum items have already been cloned */ 1736 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) 1737 goto mapit; 1738 /* we're doing a write, do the async checksumming */ 1739 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info, 1740 inode, rw, bio, mirror_num, 1741 bio_flags, bio_offset, 1742 __btrfs_submit_bio_start, 1743 __btrfs_submit_bio_done); 1744 goto out; 1745 } else if (!skip_sum) { 1746 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0); 1747 if (ret) 1748 goto out; 1749 } 1750 1751 mapit: 1752 ret = btrfs_map_bio(root, rw, bio, mirror_num, 0); 1753 1754 out: 1755 if (ret < 0) 1756 bio_endio(bio, ret); 1757 return ret; 1758 } 1759 1760 /* 1761 * given a list of ordered sums record them in the inode. This happens 1762 * at IO completion time based on sums calculated at bio submission time. 1763 */ 1764 static noinline int add_pending_csums(struct btrfs_trans_handle *trans, 1765 struct inode *inode, u64 file_offset, 1766 struct list_head *list) 1767 { 1768 struct btrfs_ordered_sum *sum; 1769 1770 list_for_each_entry(sum, list, list) { 1771 trans->adding_csums = 1; 1772 btrfs_csum_file_blocks(trans, 1773 BTRFS_I(inode)->root->fs_info->csum_root, sum); 1774 trans->adding_csums = 0; 1775 } 1776 return 0; 1777 } 1778 1779 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end, 1780 struct extent_state **cached_state) 1781 { 1782 WARN_ON((end & (PAGE_CACHE_SIZE - 1)) == 0); 1783 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end, 1784 cached_state, GFP_NOFS); 1785 } 1786 1787 /* see btrfs_writepage_start_hook for details on why this is required */ 1788 struct btrfs_writepage_fixup { 1789 struct page *page; 1790 struct btrfs_work work; 1791 }; 1792 1793 static void btrfs_writepage_fixup_worker(struct btrfs_work *work) 1794 { 1795 struct btrfs_writepage_fixup *fixup; 1796 struct btrfs_ordered_extent *ordered; 1797 struct extent_state *cached_state = NULL; 1798 struct page *page; 1799 struct inode *inode; 1800 u64 page_start; 1801 u64 page_end; 1802 int ret; 1803 1804 fixup = container_of(work, struct btrfs_writepage_fixup, work); 1805 page = fixup->page; 1806 again: 1807 lock_page(page); 1808 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) { 1809 ClearPageChecked(page); 1810 goto out_page; 1811 } 1812 1813 inode = page->mapping->host; 1814 page_start = page_offset(page); 1815 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1; 1816 1817 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0, 1818 &cached_state); 1819 1820 /* already ordered? We're done */ 1821 if (PagePrivate2(page)) 1822 goto out; 1823 1824 ordered = btrfs_lookup_ordered_extent(inode, page_start); 1825 if (ordered) { 1826 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, 1827 page_end, &cached_state, GFP_NOFS); 1828 unlock_page(page); 1829 btrfs_start_ordered_extent(inode, ordered, 1); 1830 btrfs_put_ordered_extent(ordered); 1831 goto again; 1832 } 1833 1834 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE); 1835 if (ret) { 1836 mapping_set_error(page->mapping, ret); 1837 end_extent_writepage(page, ret, page_start, page_end); 1838 ClearPageChecked(page); 1839 goto out; 1840 } 1841 1842 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state); 1843 ClearPageChecked(page); 1844 set_page_dirty(page); 1845 out: 1846 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end, 1847 &cached_state, GFP_NOFS); 1848 out_page: 1849 unlock_page(page); 1850 page_cache_release(page); 1851 kfree(fixup); 1852 } 1853 1854 /* 1855 * There are a few paths in the higher layers of the kernel that directly 1856 * set the page dirty bit without asking the filesystem if it is a 1857 * good idea. This causes problems because we want to make sure COW 1858 * properly happens and the data=ordered rules are followed. 1859 * 1860 * In our case any range that doesn't have the ORDERED bit set 1861 * hasn't been properly setup for IO. We kick off an async process 1862 * to fix it up. The async helper will wait for ordered extents, set 1863 * the delalloc bit and make it safe to write the page. 1864 */ 1865 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end) 1866 { 1867 struct inode *inode = page->mapping->host; 1868 struct btrfs_writepage_fixup *fixup; 1869 struct btrfs_root *root = BTRFS_I(inode)->root; 1870 1871 /* this page is properly in the ordered list */ 1872 if (TestClearPagePrivate2(page)) 1873 return 0; 1874 1875 if (PageChecked(page)) 1876 return -EAGAIN; 1877 1878 fixup = kzalloc(sizeof(*fixup), GFP_NOFS); 1879 if (!fixup) 1880 return -EAGAIN; 1881 1882 SetPageChecked(page); 1883 page_cache_get(page); 1884 fixup->work.func = btrfs_writepage_fixup_worker; 1885 fixup->page = page; 1886 btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work); 1887 return -EBUSY; 1888 } 1889 1890 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans, 1891 struct inode *inode, u64 file_pos, 1892 u64 disk_bytenr, u64 disk_num_bytes, 1893 u64 num_bytes, u64 ram_bytes, 1894 u8 compression, u8 encryption, 1895 u16 other_encoding, int extent_type) 1896 { 1897 struct btrfs_root *root = BTRFS_I(inode)->root; 1898 struct btrfs_file_extent_item *fi; 1899 struct btrfs_path *path; 1900 struct extent_buffer *leaf; 1901 struct btrfs_key ins; 1902 int ret; 1903 1904 path = btrfs_alloc_path(); 1905 if (!path) 1906 return -ENOMEM; 1907 1908 path->leave_spinning = 1; 1909 1910 /* 1911 * we may be replacing one extent in the tree with another. 1912 * The new extent is pinned in the extent map, and we don't want 1913 * to drop it from the cache until it is completely in the btree. 1914 * 1915 * So, tell btrfs_drop_extents to leave this extent in the cache. 1916 * the caller is expected to unpin it and allow it to be merged 1917 * with the others. 1918 */ 1919 ret = btrfs_drop_extents(trans, root, inode, file_pos, 1920 file_pos + num_bytes, 0); 1921 if (ret) 1922 goto out; 1923 1924 ins.objectid = btrfs_ino(inode); 1925 ins.offset = file_pos; 1926 ins.type = BTRFS_EXTENT_DATA_KEY; 1927 ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi)); 1928 if (ret) 1929 goto out; 1930 leaf = path->nodes[0]; 1931 fi = btrfs_item_ptr(leaf, path->slots[0], 1932 struct btrfs_file_extent_item); 1933 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1934 btrfs_set_file_extent_type(leaf, fi, extent_type); 1935 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr); 1936 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes); 1937 btrfs_set_file_extent_offset(leaf, fi, 0); 1938 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 1939 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes); 1940 btrfs_set_file_extent_compression(leaf, fi, compression); 1941 btrfs_set_file_extent_encryption(leaf, fi, encryption); 1942 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding); 1943 1944 btrfs_mark_buffer_dirty(leaf); 1945 btrfs_release_path(path); 1946 1947 inode_add_bytes(inode, num_bytes); 1948 1949 ins.objectid = disk_bytenr; 1950 ins.offset = disk_num_bytes; 1951 ins.type = BTRFS_EXTENT_ITEM_KEY; 1952 ret = btrfs_alloc_reserved_file_extent(trans, root, 1953 root->root_key.objectid, 1954 btrfs_ino(inode), file_pos, &ins); 1955 out: 1956 btrfs_free_path(path); 1957 1958 return ret; 1959 } 1960 1961 /* snapshot-aware defrag */ 1962 struct sa_defrag_extent_backref { 1963 struct rb_node node; 1964 struct old_sa_defrag_extent *old; 1965 u64 root_id; 1966 u64 inum; 1967 u64 file_pos; 1968 u64 extent_offset; 1969 u64 num_bytes; 1970 u64 generation; 1971 }; 1972 1973 struct old_sa_defrag_extent { 1974 struct list_head list; 1975 struct new_sa_defrag_extent *new; 1976 1977 u64 extent_offset; 1978 u64 bytenr; 1979 u64 offset; 1980 u64 len; 1981 int count; 1982 }; 1983 1984 struct new_sa_defrag_extent { 1985 struct rb_root root; 1986 struct list_head head; 1987 struct btrfs_path *path; 1988 struct inode *inode; 1989 u64 file_pos; 1990 u64 len; 1991 u64 bytenr; 1992 u64 disk_len; 1993 u8 compress_type; 1994 }; 1995 1996 static int backref_comp(struct sa_defrag_extent_backref *b1, 1997 struct sa_defrag_extent_backref *b2) 1998 { 1999 if (b1->root_id < b2->root_id) 2000 return -1; 2001 else if (b1->root_id > b2->root_id) 2002 return 1; 2003 2004 if (b1->inum < b2->inum) 2005 return -1; 2006 else if (b1->inum > b2->inum) 2007 return 1; 2008 2009 if (b1->file_pos < b2->file_pos) 2010 return -1; 2011 else if (b1->file_pos > b2->file_pos) 2012 return 1; 2013 2014 /* 2015 * [------------------------------] ===> (a range of space) 2016 * |<--->| |<---->| =============> (fs/file tree A) 2017 * |<---------------------------->| ===> (fs/file tree B) 2018 * 2019 * A range of space can refer to two file extents in one tree while 2020 * refer to only one file extent in another tree. 2021 * 2022 * So we may process a disk offset more than one time(two extents in A) 2023 * and locate at the same extent(one extent in B), then insert two same 2024 * backrefs(both refer to the extent in B). 2025 */ 2026 return 0; 2027 } 2028 2029 static void backref_insert(struct rb_root *root, 2030 struct sa_defrag_extent_backref *backref) 2031 { 2032 struct rb_node **p = &root->rb_node; 2033 struct rb_node *parent = NULL; 2034 struct sa_defrag_extent_backref *entry; 2035 int ret; 2036 2037 while (*p) { 2038 parent = *p; 2039 entry = rb_entry(parent, struct sa_defrag_extent_backref, node); 2040 2041 ret = backref_comp(backref, entry); 2042 if (ret < 0) 2043 p = &(*p)->rb_left; 2044 else 2045 p = &(*p)->rb_right; 2046 } 2047 2048 rb_link_node(&backref->node, parent, p); 2049 rb_insert_color(&backref->node, root); 2050 } 2051 2052 /* 2053 * Note the backref might has changed, and in this case we just return 0. 2054 */ 2055 static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id, 2056 void *ctx) 2057 { 2058 struct btrfs_file_extent_item *extent; 2059 struct btrfs_fs_info *fs_info; 2060 struct old_sa_defrag_extent *old = ctx; 2061 struct new_sa_defrag_extent *new = old->new; 2062 struct btrfs_path *path = new->path; 2063 struct btrfs_key key; 2064 struct btrfs_root *root; 2065 struct sa_defrag_extent_backref *backref; 2066 struct extent_buffer *leaf; 2067 struct inode *inode = new->inode; 2068 int slot; 2069 int ret; 2070 u64 extent_offset; 2071 u64 num_bytes; 2072 2073 if (BTRFS_I(inode)->root->root_key.objectid == root_id && 2074 inum == btrfs_ino(inode)) 2075 return 0; 2076 2077 key.objectid = root_id; 2078 key.type = BTRFS_ROOT_ITEM_KEY; 2079 key.offset = (u64)-1; 2080 2081 fs_info = BTRFS_I(inode)->root->fs_info; 2082 root = btrfs_read_fs_root_no_name(fs_info, &key); 2083 if (IS_ERR(root)) { 2084 if (PTR_ERR(root) == -ENOENT) 2085 return 0; 2086 WARN_ON(1); 2087 pr_debug("inum=%llu, offset=%llu, root_id=%llu\n", 2088 inum, offset, root_id); 2089 return PTR_ERR(root); 2090 } 2091 2092 key.objectid = inum; 2093 key.type = BTRFS_EXTENT_DATA_KEY; 2094 if (offset > (u64)-1 << 32) 2095 key.offset = 0; 2096 else 2097 key.offset = offset; 2098 2099 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2100 if (ret < 0) { 2101 WARN_ON(1); 2102 return ret; 2103 } 2104 2105 while (1) { 2106 cond_resched(); 2107 2108 leaf = path->nodes[0]; 2109 slot = path->slots[0]; 2110 2111 if (slot >= btrfs_header_nritems(leaf)) { 2112 ret = btrfs_next_leaf(root, path); 2113 if (ret < 0) { 2114 goto out; 2115 } else if (ret > 0) { 2116 ret = 0; 2117 goto out; 2118 } 2119 continue; 2120 } 2121 2122 path->slots[0]++; 2123 2124 btrfs_item_key_to_cpu(leaf, &key, slot); 2125 2126 if (key.objectid > inum) 2127 goto out; 2128 2129 if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY) 2130 continue; 2131 2132 extent = btrfs_item_ptr(leaf, slot, 2133 struct btrfs_file_extent_item); 2134 2135 if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr) 2136 continue; 2137 2138 extent_offset = btrfs_file_extent_offset(leaf, extent); 2139 if (key.offset - extent_offset != offset) 2140 continue; 2141 2142 num_bytes = btrfs_file_extent_num_bytes(leaf, extent); 2143 if (extent_offset >= old->extent_offset + old->offset + 2144 old->len || extent_offset + num_bytes <= 2145 old->extent_offset + old->offset) 2146 continue; 2147 2148 break; 2149 } 2150 2151 backref = kmalloc(sizeof(*backref), GFP_NOFS); 2152 if (!backref) { 2153 ret = -ENOENT; 2154 goto out; 2155 } 2156 2157 backref->root_id = root_id; 2158 backref->inum = inum; 2159 backref->file_pos = offset + extent_offset; 2160 backref->num_bytes = num_bytes; 2161 backref->extent_offset = extent_offset; 2162 backref->generation = btrfs_file_extent_generation(leaf, extent); 2163 backref->old = old; 2164 backref_insert(&new->root, backref); 2165 old->count++; 2166 out: 2167 btrfs_release_path(path); 2168 WARN_ON(ret); 2169 return ret; 2170 } 2171 2172 static noinline bool record_extent_backrefs(struct btrfs_path *path, 2173 struct new_sa_defrag_extent *new) 2174 { 2175 struct btrfs_fs_info *fs_info = BTRFS_I(new->inode)->root->fs_info; 2176 struct old_sa_defrag_extent *old, *tmp; 2177 int ret; 2178 2179 new->path = path; 2180 2181 list_for_each_entry_safe(old, tmp, &new->head, list) { 2182 ret = iterate_inodes_from_logical(old->bytenr, fs_info, 2183 path, record_one_backref, 2184 old); 2185 BUG_ON(ret < 0 && ret != -ENOENT); 2186 2187 /* no backref to be processed for this extent */ 2188 if (!old->count) { 2189 list_del(&old->list); 2190 kfree(old); 2191 } 2192 } 2193 2194 if (list_empty(&new->head)) 2195 return false; 2196 2197 return true; 2198 } 2199 2200 static int relink_is_mergable(struct extent_buffer *leaf, 2201 struct btrfs_file_extent_item *fi, 2202 u64 disk_bytenr) 2203 { 2204 if (btrfs_file_extent_disk_bytenr(leaf, fi) != disk_bytenr) 2205 return 0; 2206 2207 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG) 2208 return 0; 2209 2210 if (btrfs_file_extent_compression(leaf, fi) || 2211 btrfs_file_extent_encryption(leaf, fi) || 2212 btrfs_file_extent_other_encoding(leaf, fi)) 2213 return 0; 2214 2215 return 1; 2216 } 2217 2218 /* 2219 * Note the backref might has changed, and in this case we just return 0. 2220 */ 2221 static noinline int relink_extent_backref(struct btrfs_path *path, 2222 struct sa_defrag_extent_backref *prev, 2223 struct sa_defrag_extent_backref *backref) 2224 { 2225 struct btrfs_file_extent_item *extent; 2226 struct btrfs_file_extent_item *item; 2227 struct btrfs_ordered_extent *ordered; 2228 struct btrfs_trans_handle *trans; 2229 struct btrfs_fs_info *fs_info; 2230 struct btrfs_root *root; 2231 struct btrfs_key key; 2232 struct extent_buffer *leaf; 2233 struct old_sa_defrag_extent *old = backref->old; 2234 struct new_sa_defrag_extent *new = old->new; 2235 struct inode *src_inode = new->inode; 2236 struct inode *inode; 2237 struct extent_state *cached = NULL; 2238 int ret = 0; 2239 u64 start; 2240 u64 len; 2241 u64 lock_start; 2242 u64 lock_end; 2243 bool merge = false; 2244 int index; 2245 2246 if (prev && prev->root_id == backref->root_id && 2247 prev->inum == backref->inum && 2248 prev->file_pos + prev->num_bytes == backref->file_pos) 2249 merge = true; 2250 2251 /* step 1: get root */ 2252 key.objectid = backref->root_id; 2253 key.type = BTRFS_ROOT_ITEM_KEY; 2254 key.offset = (u64)-1; 2255 2256 fs_info = BTRFS_I(src_inode)->root->fs_info; 2257 index = srcu_read_lock(&fs_info->subvol_srcu); 2258 2259 root = btrfs_read_fs_root_no_name(fs_info, &key); 2260 if (IS_ERR(root)) { 2261 srcu_read_unlock(&fs_info->subvol_srcu, index); 2262 if (PTR_ERR(root) == -ENOENT) 2263 return 0; 2264 return PTR_ERR(root); 2265 } 2266 if (btrfs_root_refs(&root->root_item) == 0) { 2267 srcu_read_unlock(&fs_info->subvol_srcu, index); 2268 /* parse ENOENT to 0 */ 2269 return 0; 2270 } 2271 2272 /* step 2: get inode */ 2273 key.objectid = backref->inum; 2274 key.type = BTRFS_INODE_ITEM_KEY; 2275 key.offset = 0; 2276 2277 inode = btrfs_iget(fs_info->sb, &key, root, NULL); 2278 if (IS_ERR(inode)) { 2279 srcu_read_unlock(&fs_info->subvol_srcu, index); 2280 return 0; 2281 } 2282 2283 srcu_read_unlock(&fs_info->subvol_srcu, index); 2284 2285 /* step 3: relink backref */ 2286 lock_start = backref->file_pos; 2287 lock_end = backref->file_pos + backref->num_bytes - 1; 2288 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end, 2289 0, &cached); 2290 2291 ordered = btrfs_lookup_first_ordered_extent(inode, lock_end); 2292 if (ordered) { 2293 btrfs_put_ordered_extent(ordered); 2294 goto out_unlock; 2295 } 2296 2297 trans = btrfs_join_transaction(root); 2298 if (IS_ERR(trans)) { 2299 ret = PTR_ERR(trans); 2300 goto out_unlock; 2301 } 2302 2303 key.objectid = backref->inum; 2304 key.type = BTRFS_EXTENT_DATA_KEY; 2305 key.offset = backref->file_pos; 2306 2307 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2308 if (ret < 0) { 2309 goto out_free_path; 2310 } else if (ret > 0) { 2311 ret = 0; 2312 goto out_free_path; 2313 } 2314 2315 extent = btrfs_item_ptr(path->nodes[0], path->slots[0], 2316 struct btrfs_file_extent_item); 2317 2318 if (btrfs_file_extent_generation(path->nodes[0], extent) != 2319 backref->generation) 2320 goto out_free_path; 2321 2322 btrfs_release_path(path); 2323 2324 start = backref->file_pos; 2325 if (backref->extent_offset < old->extent_offset + old->offset) 2326 start += old->extent_offset + old->offset - 2327 backref->extent_offset; 2328 2329 len = min(backref->extent_offset + backref->num_bytes, 2330 old->extent_offset + old->offset + old->len); 2331 len -= max(backref->extent_offset, old->extent_offset + old->offset); 2332 2333 ret = btrfs_drop_extents(trans, root, inode, start, 2334 start + len, 1); 2335 if (ret) 2336 goto out_free_path; 2337 again: 2338 key.objectid = btrfs_ino(inode); 2339 key.type = BTRFS_EXTENT_DATA_KEY; 2340 key.offset = start; 2341 2342 path->leave_spinning = 1; 2343 if (merge) { 2344 struct btrfs_file_extent_item *fi; 2345 u64 extent_len; 2346 struct btrfs_key found_key; 2347 2348 ret = btrfs_search_slot(trans, root, &key, path, 1, 1); 2349 if (ret < 0) 2350 goto out_free_path; 2351 2352 path->slots[0]--; 2353 leaf = path->nodes[0]; 2354 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 2355 2356 fi = btrfs_item_ptr(leaf, path->slots[0], 2357 struct btrfs_file_extent_item); 2358 extent_len = btrfs_file_extent_num_bytes(leaf, fi); 2359 2360 if (relink_is_mergable(leaf, fi, new->bytenr) && 2361 extent_len + found_key.offset == start) { 2362 btrfs_set_file_extent_num_bytes(leaf, fi, 2363 extent_len + len); 2364 btrfs_mark_buffer_dirty(leaf); 2365 inode_add_bytes(inode, len); 2366 2367 ret = 1; 2368 goto out_free_path; 2369 } else { 2370 merge = false; 2371 btrfs_release_path(path); 2372 goto again; 2373 } 2374 } 2375 2376 ret = btrfs_insert_empty_item(trans, root, path, &key, 2377 sizeof(*extent)); 2378 if (ret) { 2379 btrfs_abort_transaction(trans, root, ret); 2380 goto out_free_path; 2381 } 2382 2383 leaf = path->nodes[0]; 2384 item = btrfs_item_ptr(leaf, path->slots[0], 2385 struct btrfs_file_extent_item); 2386 btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr); 2387 btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len); 2388 btrfs_set_file_extent_offset(leaf, item, start - new->file_pos); 2389 btrfs_set_file_extent_num_bytes(leaf, item, len); 2390 btrfs_set_file_extent_ram_bytes(leaf, item, new->len); 2391 btrfs_set_file_extent_generation(leaf, item, trans->transid); 2392 btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG); 2393 btrfs_set_file_extent_compression(leaf, item, new->compress_type); 2394 btrfs_set_file_extent_encryption(leaf, item, 0); 2395 btrfs_set_file_extent_other_encoding(leaf, item, 0); 2396 2397 btrfs_mark_buffer_dirty(leaf); 2398 inode_add_bytes(inode, len); 2399 btrfs_release_path(path); 2400 2401 ret = btrfs_inc_extent_ref(trans, root, new->bytenr, 2402 new->disk_len, 0, 2403 backref->root_id, backref->inum, 2404 new->file_pos, 0); /* start - extent_offset */ 2405 if (ret) { 2406 btrfs_abort_transaction(trans, root, ret); 2407 goto out_free_path; 2408 } 2409 2410 ret = 1; 2411 out_free_path: 2412 btrfs_release_path(path); 2413 path->leave_spinning = 0; 2414 btrfs_end_transaction(trans, root); 2415 out_unlock: 2416 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end, 2417 &cached, GFP_NOFS); 2418 iput(inode); 2419 return ret; 2420 } 2421 2422 static void relink_file_extents(struct new_sa_defrag_extent *new) 2423 { 2424 struct btrfs_path *path; 2425 struct old_sa_defrag_extent *old, *tmp; 2426 struct sa_defrag_extent_backref *backref; 2427 struct sa_defrag_extent_backref *prev = NULL; 2428 struct inode *inode; 2429 struct btrfs_root *root; 2430 struct rb_node *node; 2431 int ret; 2432 2433 inode = new->inode; 2434 root = BTRFS_I(inode)->root; 2435 2436 path = btrfs_alloc_path(); 2437 if (!path) 2438 return; 2439 2440 if (!record_extent_backrefs(path, new)) { 2441 btrfs_free_path(path); 2442 goto out; 2443 } 2444 btrfs_release_path(path); 2445 2446 while (1) { 2447 node = rb_first(&new->root); 2448 if (!node) 2449 break; 2450 rb_erase(node, &new->root); 2451 2452 backref = rb_entry(node, struct sa_defrag_extent_backref, node); 2453 2454 ret = relink_extent_backref(path, prev, backref); 2455 WARN_ON(ret < 0); 2456 2457 kfree(prev); 2458 2459 if (ret == 1) 2460 prev = backref; 2461 else 2462 prev = NULL; 2463 cond_resched(); 2464 } 2465 kfree(prev); 2466 2467 btrfs_free_path(path); 2468 2469 list_for_each_entry_safe(old, tmp, &new->head, list) { 2470 list_del(&old->list); 2471 kfree(old); 2472 } 2473 out: 2474 atomic_dec(&root->fs_info->defrag_running); 2475 wake_up(&root->fs_info->transaction_wait); 2476 2477 kfree(new); 2478 } 2479 2480 static struct new_sa_defrag_extent * 2481 record_old_file_extents(struct inode *inode, 2482 struct btrfs_ordered_extent *ordered) 2483 { 2484 struct btrfs_root *root = BTRFS_I(inode)->root; 2485 struct btrfs_path *path; 2486 struct btrfs_key key; 2487 struct old_sa_defrag_extent *old, *tmp; 2488 struct new_sa_defrag_extent *new; 2489 int ret; 2490 2491 new = kmalloc(sizeof(*new), GFP_NOFS); 2492 if (!new) 2493 return NULL; 2494 2495 new->inode = inode; 2496 new->file_pos = ordered->file_offset; 2497 new->len = ordered->len; 2498 new->bytenr = ordered->start; 2499 new->disk_len = ordered->disk_len; 2500 new->compress_type = ordered->compress_type; 2501 new->root = RB_ROOT; 2502 INIT_LIST_HEAD(&new->head); 2503 2504 path = btrfs_alloc_path(); 2505 if (!path) 2506 goto out_kfree; 2507 2508 key.objectid = btrfs_ino(inode); 2509 key.type = BTRFS_EXTENT_DATA_KEY; 2510 key.offset = new->file_pos; 2511 2512 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2513 if (ret < 0) 2514 goto out_free_path; 2515 if (ret > 0 && path->slots[0] > 0) 2516 path->slots[0]--; 2517 2518 /* find out all the old extents for the file range */ 2519 while (1) { 2520 struct btrfs_file_extent_item *extent; 2521 struct extent_buffer *l; 2522 int slot; 2523 u64 num_bytes; 2524 u64 offset; 2525 u64 end; 2526 u64 disk_bytenr; 2527 u64 extent_offset; 2528 2529 l = path->nodes[0]; 2530 slot = path->slots[0]; 2531 2532 if (slot >= btrfs_header_nritems(l)) { 2533 ret = btrfs_next_leaf(root, path); 2534 if (ret < 0) 2535 goto out_free_list; 2536 else if (ret > 0) 2537 break; 2538 continue; 2539 } 2540 2541 btrfs_item_key_to_cpu(l, &key, slot); 2542 2543 if (key.objectid != btrfs_ino(inode)) 2544 break; 2545 if (key.type != BTRFS_EXTENT_DATA_KEY) 2546 break; 2547 if (key.offset >= new->file_pos + new->len) 2548 break; 2549 2550 extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item); 2551 2552 num_bytes = btrfs_file_extent_num_bytes(l, extent); 2553 if (key.offset + num_bytes < new->file_pos) 2554 goto next; 2555 2556 disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent); 2557 if (!disk_bytenr) 2558 goto next; 2559 2560 extent_offset = btrfs_file_extent_offset(l, extent); 2561 2562 old = kmalloc(sizeof(*old), GFP_NOFS); 2563 if (!old) 2564 goto out_free_list; 2565 2566 offset = max(new->file_pos, key.offset); 2567 end = min(new->file_pos + new->len, key.offset + num_bytes); 2568 2569 old->bytenr = disk_bytenr; 2570 old->extent_offset = extent_offset; 2571 old->offset = offset - key.offset; 2572 old->len = end - offset; 2573 old->new = new; 2574 old->count = 0; 2575 list_add_tail(&old->list, &new->head); 2576 next: 2577 path->slots[0]++; 2578 cond_resched(); 2579 } 2580 2581 btrfs_free_path(path); 2582 atomic_inc(&root->fs_info->defrag_running); 2583 2584 return new; 2585 2586 out_free_list: 2587 list_for_each_entry_safe(old, tmp, &new->head, list) { 2588 list_del(&old->list); 2589 kfree(old); 2590 } 2591 out_free_path: 2592 btrfs_free_path(path); 2593 out_kfree: 2594 kfree(new); 2595 return NULL; 2596 } 2597 2598 /* 2599 * helper function for btrfs_finish_ordered_io, this 2600 * just reads in some of the csum leaves to prime them into ram 2601 * before we start the transaction. It limits the amount of btree 2602 * reads required while inside the transaction. 2603 */ 2604 /* as ordered data IO finishes, this gets called so we can finish 2605 * an ordered extent if the range of bytes in the file it covers are 2606 * fully written. 2607 */ 2608 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent) 2609 { 2610 struct inode *inode = ordered_extent->inode; 2611 struct btrfs_root *root = BTRFS_I(inode)->root; 2612 struct btrfs_trans_handle *trans = NULL; 2613 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 2614 struct extent_state *cached_state = NULL; 2615 struct new_sa_defrag_extent *new = NULL; 2616 int compress_type = 0; 2617 int ret; 2618 bool nolock; 2619 2620 nolock = btrfs_is_free_space_inode(inode); 2621 2622 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) { 2623 ret = -EIO; 2624 goto out; 2625 } 2626 2627 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) { 2628 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */ 2629 btrfs_ordered_update_i_size(inode, 0, ordered_extent); 2630 if (nolock) 2631 trans = btrfs_join_transaction_nolock(root); 2632 else 2633 trans = btrfs_join_transaction(root); 2634 if (IS_ERR(trans)) { 2635 ret = PTR_ERR(trans); 2636 trans = NULL; 2637 goto out; 2638 } 2639 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 2640 ret = btrfs_update_inode_fallback(trans, root, inode); 2641 if (ret) /* -ENOMEM or corruption */ 2642 btrfs_abort_transaction(trans, root, ret); 2643 goto out; 2644 } 2645 2646 lock_extent_bits(io_tree, ordered_extent->file_offset, 2647 ordered_extent->file_offset + ordered_extent->len - 1, 2648 0, &cached_state); 2649 2650 ret = test_range_bit(io_tree, ordered_extent->file_offset, 2651 ordered_extent->file_offset + ordered_extent->len - 1, 2652 EXTENT_DEFRAG, 1, cached_state); 2653 if (ret) { 2654 u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item); 2655 if (last_snapshot >= BTRFS_I(inode)->generation) 2656 /* the inode is shared */ 2657 new = record_old_file_extents(inode, ordered_extent); 2658 2659 clear_extent_bit(io_tree, ordered_extent->file_offset, 2660 ordered_extent->file_offset + ordered_extent->len - 1, 2661 EXTENT_DEFRAG, 0, 0, &cached_state, GFP_NOFS); 2662 } 2663 2664 if (nolock) 2665 trans = btrfs_join_transaction_nolock(root); 2666 else 2667 trans = btrfs_join_transaction(root); 2668 if (IS_ERR(trans)) { 2669 ret = PTR_ERR(trans); 2670 trans = NULL; 2671 goto out_unlock; 2672 } 2673 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 2674 2675 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags)) 2676 compress_type = ordered_extent->compress_type; 2677 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 2678 BUG_ON(compress_type); 2679 ret = btrfs_mark_extent_written(trans, inode, 2680 ordered_extent->file_offset, 2681 ordered_extent->file_offset + 2682 ordered_extent->len); 2683 } else { 2684 BUG_ON(root == root->fs_info->tree_root); 2685 ret = insert_reserved_file_extent(trans, inode, 2686 ordered_extent->file_offset, 2687 ordered_extent->start, 2688 ordered_extent->disk_len, 2689 ordered_extent->len, 2690 ordered_extent->len, 2691 compress_type, 0, 0, 2692 BTRFS_FILE_EXTENT_REG); 2693 } 2694 unpin_extent_cache(&BTRFS_I(inode)->extent_tree, 2695 ordered_extent->file_offset, ordered_extent->len, 2696 trans->transid); 2697 if (ret < 0) { 2698 btrfs_abort_transaction(trans, root, ret); 2699 goto out_unlock; 2700 } 2701 2702 add_pending_csums(trans, inode, ordered_extent->file_offset, 2703 &ordered_extent->list); 2704 2705 btrfs_ordered_update_i_size(inode, 0, ordered_extent); 2706 ret = btrfs_update_inode_fallback(trans, root, inode); 2707 if (ret) { /* -ENOMEM or corruption */ 2708 btrfs_abort_transaction(trans, root, ret); 2709 goto out_unlock; 2710 } 2711 ret = 0; 2712 out_unlock: 2713 unlock_extent_cached(io_tree, ordered_extent->file_offset, 2714 ordered_extent->file_offset + 2715 ordered_extent->len - 1, &cached_state, GFP_NOFS); 2716 out: 2717 if (root != root->fs_info->tree_root) 2718 btrfs_delalloc_release_metadata(inode, ordered_extent->len); 2719 if (trans) 2720 btrfs_end_transaction(trans, root); 2721 2722 if (ret) { 2723 clear_extent_uptodate(io_tree, ordered_extent->file_offset, 2724 ordered_extent->file_offset + 2725 ordered_extent->len - 1, NULL, GFP_NOFS); 2726 2727 /* 2728 * If the ordered extent had an IOERR or something else went 2729 * wrong we need to return the space for this ordered extent 2730 * back to the allocator. 2731 */ 2732 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) && 2733 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) 2734 btrfs_free_reserved_extent(root, ordered_extent->start, 2735 ordered_extent->disk_len); 2736 } 2737 2738 2739 /* 2740 * This needs to be done to make sure anybody waiting knows we are done 2741 * updating everything for this ordered extent. 2742 */ 2743 btrfs_remove_ordered_extent(inode, ordered_extent); 2744 2745 /* for snapshot-aware defrag */ 2746 if (new) 2747 relink_file_extents(new); 2748 2749 /* once for us */ 2750 btrfs_put_ordered_extent(ordered_extent); 2751 /* once for the tree */ 2752 btrfs_put_ordered_extent(ordered_extent); 2753 2754 return ret; 2755 } 2756 2757 static void finish_ordered_fn(struct btrfs_work *work) 2758 { 2759 struct btrfs_ordered_extent *ordered_extent; 2760 ordered_extent = container_of(work, struct btrfs_ordered_extent, work); 2761 btrfs_finish_ordered_io(ordered_extent); 2762 } 2763 2764 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end, 2765 struct extent_state *state, int uptodate) 2766 { 2767 struct inode *inode = page->mapping->host; 2768 struct btrfs_root *root = BTRFS_I(inode)->root; 2769 struct btrfs_ordered_extent *ordered_extent = NULL; 2770 struct btrfs_workers *workers; 2771 2772 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate); 2773 2774 ClearPagePrivate2(page); 2775 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start, 2776 end - start + 1, uptodate)) 2777 return 0; 2778 2779 ordered_extent->work.func = finish_ordered_fn; 2780 ordered_extent->work.flags = 0; 2781 2782 if (btrfs_is_free_space_inode(inode)) 2783 workers = &root->fs_info->endio_freespace_worker; 2784 else 2785 workers = &root->fs_info->endio_write_workers; 2786 btrfs_queue_worker(workers, &ordered_extent->work); 2787 2788 return 0; 2789 } 2790 2791 /* 2792 * when reads are done, we need to check csums to verify the data is correct 2793 * if there's a match, we allow the bio to finish. If not, the code in 2794 * extent_io.c will try to find good copies for us. 2795 */ 2796 static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end, 2797 struct extent_state *state, int mirror) 2798 { 2799 size_t offset = start - page_offset(page); 2800 struct inode *inode = page->mapping->host; 2801 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 2802 char *kaddr; 2803 u64 private = ~(u32)0; 2804 int ret; 2805 struct btrfs_root *root = BTRFS_I(inode)->root; 2806 u32 csum = ~(u32)0; 2807 static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL, 2808 DEFAULT_RATELIMIT_BURST); 2809 2810 if (PageChecked(page)) { 2811 ClearPageChecked(page); 2812 goto good; 2813 } 2814 2815 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) 2816 goto good; 2817 2818 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID && 2819 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) { 2820 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM, 2821 GFP_NOFS); 2822 return 0; 2823 } 2824 2825 if (state && state->start == start) { 2826 private = state->private; 2827 ret = 0; 2828 } else { 2829 ret = get_state_private(io_tree, start, &private); 2830 } 2831 kaddr = kmap_atomic(page); 2832 if (ret) 2833 goto zeroit; 2834 2835 csum = btrfs_csum_data(kaddr + offset, csum, end - start + 1); 2836 btrfs_csum_final(csum, (char *)&csum); 2837 if (csum != private) 2838 goto zeroit; 2839 2840 kunmap_atomic(kaddr); 2841 good: 2842 return 0; 2843 2844 zeroit: 2845 if (__ratelimit(&_rs)) 2846 btrfs_info(root->fs_info, "csum failed ino %llu off %llu csum %u private %llu", 2847 (unsigned long long)btrfs_ino(page->mapping->host), 2848 (unsigned long long)start, csum, 2849 (unsigned long long)private); 2850 memset(kaddr + offset, 1, end - start + 1); 2851 flush_dcache_page(page); 2852 kunmap_atomic(kaddr); 2853 if (private == 0) 2854 return 0; 2855 return -EIO; 2856 } 2857 2858 struct delayed_iput { 2859 struct list_head list; 2860 struct inode *inode; 2861 }; 2862 2863 /* JDM: If this is fs-wide, why can't we add a pointer to 2864 * btrfs_inode instead and avoid the allocation? */ 2865 void btrfs_add_delayed_iput(struct inode *inode) 2866 { 2867 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 2868 struct delayed_iput *delayed; 2869 2870 if (atomic_add_unless(&inode->i_count, -1, 1)) 2871 return; 2872 2873 delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL); 2874 delayed->inode = inode; 2875 2876 spin_lock(&fs_info->delayed_iput_lock); 2877 list_add_tail(&delayed->list, &fs_info->delayed_iputs); 2878 spin_unlock(&fs_info->delayed_iput_lock); 2879 } 2880 2881 void btrfs_run_delayed_iputs(struct btrfs_root *root) 2882 { 2883 LIST_HEAD(list); 2884 struct btrfs_fs_info *fs_info = root->fs_info; 2885 struct delayed_iput *delayed; 2886 int empty; 2887 2888 spin_lock(&fs_info->delayed_iput_lock); 2889 empty = list_empty(&fs_info->delayed_iputs); 2890 spin_unlock(&fs_info->delayed_iput_lock); 2891 if (empty) 2892 return; 2893 2894 spin_lock(&fs_info->delayed_iput_lock); 2895 list_splice_init(&fs_info->delayed_iputs, &list); 2896 spin_unlock(&fs_info->delayed_iput_lock); 2897 2898 while (!list_empty(&list)) { 2899 delayed = list_entry(list.next, struct delayed_iput, list); 2900 list_del(&delayed->list); 2901 iput(delayed->inode); 2902 kfree(delayed); 2903 } 2904 } 2905 2906 /* 2907 * This is called in transaction commit time. If there are no orphan 2908 * files in the subvolume, it removes orphan item and frees block_rsv 2909 * structure. 2910 */ 2911 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans, 2912 struct btrfs_root *root) 2913 { 2914 struct btrfs_block_rsv *block_rsv; 2915 int ret; 2916 2917 if (atomic_read(&root->orphan_inodes) || 2918 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) 2919 return; 2920 2921 spin_lock(&root->orphan_lock); 2922 if (atomic_read(&root->orphan_inodes)) { 2923 spin_unlock(&root->orphan_lock); 2924 return; 2925 } 2926 2927 if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) { 2928 spin_unlock(&root->orphan_lock); 2929 return; 2930 } 2931 2932 block_rsv = root->orphan_block_rsv; 2933 root->orphan_block_rsv = NULL; 2934 spin_unlock(&root->orphan_lock); 2935 2936 if (root->orphan_item_inserted && 2937 btrfs_root_refs(&root->root_item) > 0) { 2938 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root, 2939 root->root_key.objectid); 2940 BUG_ON(ret); 2941 root->orphan_item_inserted = 0; 2942 } 2943 2944 if (block_rsv) { 2945 WARN_ON(block_rsv->size > 0); 2946 btrfs_free_block_rsv(root, block_rsv); 2947 } 2948 } 2949 2950 /* 2951 * This creates an orphan entry for the given inode in case something goes 2952 * wrong in the middle of an unlink/truncate. 2953 * 2954 * NOTE: caller of this function should reserve 5 units of metadata for 2955 * this function. 2956 */ 2957 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode) 2958 { 2959 struct btrfs_root *root = BTRFS_I(inode)->root; 2960 struct btrfs_block_rsv *block_rsv = NULL; 2961 int reserve = 0; 2962 int insert = 0; 2963 int ret; 2964 2965 if (!root->orphan_block_rsv) { 2966 block_rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP); 2967 if (!block_rsv) 2968 return -ENOMEM; 2969 } 2970 2971 spin_lock(&root->orphan_lock); 2972 if (!root->orphan_block_rsv) { 2973 root->orphan_block_rsv = block_rsv; 2974 } else if (block_rsv) { 2975 btrfs_free_block_rsv(root, block_rsv); 2976 block_rsv = NULL; 2977 } 2978 2979 if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 2980 &BTRFS_I(inode)->runtime_flags)) { 2981 #if 0 2982 /* 2983 * For proper ENOSPC handling, we should do orphan 2984 * cleanup when mounting. But this introduces backward 2985 * compatibility issue. 2986 */ 2987 if (!xchg(&root->orphan_item_inserted, 1)) 2988 insert = 2; 2989 else 2990 insert = 1; 2991 #endif 2992 insert = 1; 2993 atomic_inc(&root->orphan_inodes); 2994 } 2995 2996 if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED, 2997 &BTRFS_I(inode)->runtime_flags)) 2998 reserve = 1; 2999 spin_unlock(&root->orphan_lock); 3000 3001 /* grab metadata reservation from transaction handle */ 3002 if (reserve) { 3003 ret = btrfs_orphan_reserve_metadata(trans, inode); 3004 BUG_ON(ret); /* -ENOSPC in reservation; Logic error? JDM */ 3005 } 3006 3007 /* insert an orphan item to track this unlinked/truncated file */ 3008 if (insert >= 1) { 3009 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode)); 3010 if (ret && ret != -EEXIST) { 3011 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 3012 &BTRFS_I(inode)->runtime_flags); 3013 btrfs_abort_transaction(trans, root, ret); 3014 return ret; 3015 } 3016 ret = 0; 3017 } 3018 3019 /* insert an orphan item to track subvolume contains orphan files */ 3020 if (insert >= 2) { 3021 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root, 3022 root->root_key.objectid); 3023 if (ret && ret != -EEXIST) { 3024 btrfs_abort_transaction(trans, root, ret); 3025 return ret; 3026 } 3027 } 3028 return 0; 3029 } 3030 3031 /* 3032 * We have done the truncate/delete so we can go ahead and remove the orphan 3033 * item for this particular inode. 3034 */ 3035 static int btrfs_orphan_del(struct btrfs_trans_handle *trans, 3036 struct inode *inode) 3037 { 3038 struct btrfs_root *root = BTRFS_I(inode)->root; 3039 int delete_item = 0; 3040 int release_rsv = 0; 3041 int ret = 0; 3042 3043 spin_lock(&root->orphan_lock); 3044 if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 3045 &BTRFS_I(inode)->runtime_flags)) 3046 delete_item = 1; 3047 3048 if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED, 3049 &BTRFS_I(inode)->runtime_flags)) 3050 release_rsv = 1; 3051 spin_unlock(&root->orphan_lock); 3052 3053 if (trans && delete_item) { 3054 ret = btrfs_del_orphan_item(trans, root, btrfs_ino(inode)); 3055 BUG_ON(ret); /* -ENOMEM or corruption (JDM: Recheck) */ 3056 } 3057 3058 if (release_rsv) { 3059 btrfs_orphan_release_metadata(inode); 3060 atomic_dec(&root->orphan_inodes); 3061 } 3062 3063 return 0; 3064 } 3065 3066 /* 3067 * this cleans up any orphans that may be left on the list from the last use 3068 * of this root. 3069 */ 3070 int btrfs_orphan_cleanup(struct btrfs_root *root) 3071 { 3072 struct btrfs_path *path; 3073 struct extent_buffer *leaf; 3074 struct btrfs_key key, found_key; 3075 struct btrfs_trans_handle *trans; 3076 struct inode *inode; 3077 u64 last_objectid = 0; 3078 int ret = 0, nr_unlink = 0, nr_truncate = 0; 3079 3080 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED)) 3081 return 0; 3082 3083 path = btrfs_alloc_path(); 3084 if (!path) { 3085 ret = -ENOMEM; 3086 goto out; 3087 } 3088 path->reada = -1; 3089 3090 key.objectid = BTRFS_ORPHAN_OBJECTID; 3091 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY); 3092 key.offset = (u64)-1; 3093 3094 while (1) { 3095 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3096 if (ret < 0) 3097 goto out; 3098 3099 /* 3100 * if ret == 0 means we found what we were searching for, which 3101 * is weird, but possible, so only screw with path if we didn't 3102 * find the key and see if we have stuff that matches 3103 */ 3104 if (ret > 0) { 3105 ret = 0; 3106 if (path->slots[0] == 0) 3107 break; 3108 path->slots[0]--; 3109 } 3110 3111 /* pull out the item */ 3112 leaf = path->nodes[0]; 3113 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 3114 3115 /* make sure the item matches what we want */ 3116 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID) 3117 break; 3118 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY) 3119 break; 3120 3121 /* release the path since we're done with it */ 3122 btrfs_release_path(path); 3123 3124 /* 3125 * this is where we are basically btrfs_lookup, without the 3126 * crossing root thing. we store the inode number in the 3127 * offset of the orphan item. 3128 */ 3129 3130 if (found_key.offset == last_objectid) { 3131 btrfs_err(root->fs_info, 3132 "Error removing orphan entry, stopping orphan cleanup"); 3133 ret = -EINVAL; 3134 goto out; 3135 } 3136 3137 last_objectid = found_key.offset; 3138 3139 found_key.objectid = found_key.offset; 3140 found_key.type = BTRFS_INODE_ITEM_KEY; 3141 found_key.offset = 0; 3142 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL); 3143 ret = PTR_RET(inode); 3144 if (ret && ret != -ESTALE) 3145 goto out; 3146 3147 if (ret == -ESTALE && root == root->fs_info->tree_root) { 3148 struct btrfs_root *dead_root; 3149 struct btrfs_fs_info *fs_info = root->fs_info; 3150 int is_dead_root = 0; 3151 3152 /* 3153 * this is an orphan in the tree root. Currently these 3154 * could come from 2 sources: 3155 * a) a snapshot deletion in progress 3156 * b) a free space cache inode 3157 * We need to distinguish those two, as the snapshot 3158 * orphan must not get deleted. 3159 * find_dead_roots already ran before us, so if this 3160 * is a snapshot deletion, we should find the root 3161 * in the dead_roots list 3162 */ 3163 spin_lock(&fs_info->trans_lock); 3164 list_for_each_entry(dead_root, &fs_info->dead_roots, 3165 root_list) { 3166 if (dead_root->root_key.objectid == 3167 found_key.objectid) { 3168 is_dead_root = 1; 3169 break; 3170 } 3171 } 3172 spin_unlock(&fs_info->trans_lock); 3173 if (is_dead_root) { 3174 /* prevent this orphan from being found again */ 3175 key.offset = found_key.objectid - 1; 3176 continue; 3177 } 3178 } 3179 /* 3180 * Inode is already gone but the orphan item is still there, 3181 * kill the orphan item. 3182 */ 3183 if (ret == -ESTALE) { 3184 trans = btrfs_start_transaction(root, 1); 3185 if (IS_ERR(trans)) { 3186 ret = PTR_ERR(trans); 3187 goto out; 3188 } 3189 btrfs_debug(root->fs_info, "auto deleting %Lu", 3190 found_key.objectid); 3191 ret = btrfs_del_orphan_item(trans, root, 3192 found_key.objectid); 3193 BUG_ON(ret); /* -ENOMEM or corruption (JDM: Recheck) */ 3194 btrfs_end_transaction(trans, root); 3195 continue; 3196 } 3197 3198 /* 3199 * add this inode to the orphan list so btrfs_orphan_del does 3200 * the proper thing when we hit it 3201 */ 3202 set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 3203 &BTRFS_I(inode)->runtime_flags); 3204 atomic_inc(&root->orphan_inodes); 3205 3206 /* if we have links, this was a truncate, lets do that */ 3207 if (inode->i_nlink) { 3208 if (!S_ISREG(inode->i_mode)) { 3209 WARN_ON(1); 3210 iput(inode); 3211 continue; 3212 } 3213 nr_truncate++; 3214 3215 /* 1 for the orphan item deletion. */ 3216 trans = btrfs_start_transaction(root, 1); 3217 if (IS_ERR(trans)) { 3218 ret = PTR_ERR(trans); 3219 goto out; 3220 } 3221 ret = btrfs_orphan_add(trans, inode); 3222 btrfs_end_transaction(trans, root); 3223 if (ret) 3224 goto out; 3225 3226 ret = btrfs_truncate(inode); 3227 if (ret) 3228 btrfs_orphan_del(NULL, inode); 3229 } else { 3230 nr_unlink++; 3231 } 3232 3233 /* this will do delete_inode and everything for us */ 3234 iput(inode); 3235 if (ret) 3236 goto out; 3237 } 3238 /* release the path since we're done with it */ 3239 btrfs_release_path(path); 3240 3241 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE; 3242 3243 if (root->orphan_block_rsv) 3244 btrfs_block_rsv_release(root, root->orphan_block_rsv, 3245 (u64)-1); 3246 3247 if (root->orphan_block_rsv || root->orphan_item_inserted) { 3248 trans = btrfs_join_transaction(root); 3249 if (!IS_ERR(trans)) 3250 btrfs_end_transaction(trans, root); 3251 } 3252 3253 if (nr_unlink) 3254 btrfs_debug(root->fs_info, "unlinked %d orphans", nr_unlink); 3255 if (nr_truncate) 3256 btrfs_debug(root->fs_info, "truncated %d orphans", nr_truncate); 3257 3258 out: 3259 if (ret) 3260 btrfs_crit(root->fs_info, 3261 "could not do orphan cleanup %d", ret); 3262 btrfs_free_path(path); 3263 return ret; 3264 } 3265 3266 /* 3267 * very simple check to peek ahead in the leaf looking for xattrs. If we 3268 * don't find any xattrs, we know there can't be any acls. 3269 * 3270 * slot is the slot the inode is in, objectid is the objectid of the inode 3271 */ 3272 static noinline int acls_after_inode_item(struct extent_buffer *leaf, 3273 int slot, u64 objectid) 3274 { 3275 u32 nritems = btrfs_header_nritems(leaf); 3276 struct btrfs_key found_key; 3277 int scanned = 0; 3278 3279 slot++; 3280 while (slot < nritems) { 3281 btrfs_item_key_to_cpu(leaf, &found_key, slot); 3282 3283 /* we found a different objectid, there must not be acls */ 3284 if (found_key.objectid != objectid) 3285 return 0; 3286 3287 /* we found an xattr, assume we've got an acl */ 3288 if (found_key.type == BTRFS_XATTR_ITEM_KEY) 3289 return 1; 3290 3291 /* 3292 * we found a key greater than an xattr key, there can't 3293 * be any acls later on 3294 */ 3295 if (found_key.type > BTRFS_XATTR_ITEM_KEY) 3296 return 0; 3297 3298 slot++; 3299 scanned++; 3300 3301 /* 3302 * it goes inode, inode backrefs, xattrs, extents, 3303 * so if there are a ton of hard links to an inode there can 3304 * be a lot of backrefs. Don't waste time searching too hard, 3305 * this is just an optimization 3306 */ 3307 if (scanned >= 8) 3308 break; 3309 } 3310 /* we hit the end of the leaf before we found an xattr or 3311 * something larger than an xattr. We have to assume the inode 3312 * has acls 3313 */ 3314 return 1; 3315 } 3316 3317 /* 3318 * read an inode from the btree into the in-memory inode 3319 */ 3320 static void btrfs_read_locked_inode(struct inode *inode) 3321 { 3322 struct btrfs_path *path; 3323 struct extent_buffer *leaf; 3324 struct btrfs_inode_item *inode_item; 3325 struct btrfs_timespec *tspec; 3326 struct btrfs_root *root = BTRFS_I(inode)->root; 3327 struct btrfs_key location; 3328 int maybe_acls; 3329 u32 rdev; 3330 int ret; 3331 bool filled = false; 3332 3333 ret = btrfs_fill_inode(inode, &rdev); 3334 if (!ret) 3335 filled = true; 3336 3337 path = btrfs_alloc_path(); 3338 if (!path) 3339 goto make_bad; 3340 3341 path->leave_spinning = 1; 3342 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location)); 3343 3344 ret = btrfs_lookup_inode(NULL, root, path, &location, 0); 3345 if (ret) 3346 goto make_bad; 3347 3348 leaf = path->nodes[0]; 3349 3350 if (filled) 3351 goto cache_acl; 3352 3353 inode_item = btrfs_item_ptr(leaf, path->slots[0], 3354 struct btrfs_inode_item); 3355 inode->i_mode = btrfs_inode_mode(leaf, inode_item); 3356 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item)); 3357 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item)); 3358 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item)); 3359 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item)); 3360 3361 tspec = btrfs_inode_atime(inode_item); 3362 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec); 3363 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec); 3364 3365 tspec = btrfs_inode_mtime(inode_item); 3366 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec); 3367 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec); 3368 3369 tspec = btrfs_inode_ctime(inode_item); 3370 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec); 3371 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec); 3372 3373 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item)); 3374 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item); 3375 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item); 3376 3377 /* 3378 * If we were modified in the current generation and evicted from memory 3379 * and then re-read we need to do a full sync since we don't have any 3380 * idea about which extents were modified before we were evicted from 3381 * cache. 3382 */ 3383 if (BTRFS_I(inode)->last_trans == root->fs_info->generation) 3384 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 3385 &BTRFS_I(inode)->runtime_flags); 3386 3387 inode->i_version = btrfs_inode_sequence(leaf, inode_item); 3388 inode->i_generation = BTRFS_I(inode)->generation; 3389 inode->i_rdev = 0; 3390 rdev = btrfs_inode_rdev(leaf, inode_item); 3391 3392 BTRFS_I(inode)->index_cnt = (u64)-1; 3393 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item); 3394 cache_acl: 3395 /* 3396 * try to precache a NULL acl entry for files that don't have 3397 * any xattrs or acls 3398 */ 3399 maybe_acls = acls_after_inode_item(leaf, path->slots[0], 3400 btrfs_ino(inode)); 3401 if (!maybe_acls) 3402 cache_no_acl(inode); 3403 3404 btrfs_free_path(path); 3405 3406 switch (inode->i_mode & S_IFMT) { 3407 case S_IFREG: 3408 inode->i_mapping->a_ops = &btrfs_aops; 3409 inode->i_mapping->backing_dev_info = &root->fs_info->bdi; 3410 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 3411 inode->i_fop = &btrfs_file_operations; 3412 inode->i_op = &btrfs_file_inode_operations; 3413 break; 3414 case S_IFDIR: 3415 inode->i_fop = &btrfs_dir_file_operations; 3416 if (root == root->fs_info->tree_root) 3417 inode->i_op = &btrfs_dir_ro_inode_operations; 3418 else 3419 inode->i_op = &btrfs_dir_inode_operations; 3420 break; 3421 case S_IFLNK: 3422 inode->i_op = &btrfs_symlink_inode_operations; 3423 inode->i_mapping->a_ops = &btrfs_symlink_aops; 3424 inode->i_mapping->backing_dev_info = &root->fs_info->bdi; 3425 break; 3426 default: 3427 inode->i_op = &btrfs_special_inode_operations; 3428 init_special_inode(inode, inode->i_mode, rdev); 3429 break; 3430 } 3431 3432 btrfs_update_iflags(inode); 3433 return; 3434 3435 make_bad: 3436 btrfs_free_path(path); 3437 make_bad_inode(inode); 3438 } 3439 3440 /* 3441 * given a leaf and an inode, copy the inode fields into the leaf 3442 */ 3443 static void fill_inode_item(struct btrfs_trans_handle *trans, 3444 struct extent_buffer *leaf, 3445 struct btrfs_inode_item *item, 3446 struct inode *inode) 3447 { 3448 struct btrfs_map_token token; 3449 3450 btrfs_init_map_token(&token); 3451 3452 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token); 3453 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token); 3454 btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size, 3455 &token); 3456 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token); 3457 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token); 3458 3459 btrfs_set_token_timespec_sec(leaf, btrfs_inode_atime(item), 3460 inode->i_atime.tv_sec, &token); 3461 btrfs_set_token_timespec_nsec(leaf, btrfs_inode_atime(item), 3462 inode->i_atime.tv_nsec, &token); 3463 3464 btrfs_set_token_timespec_sec(leaf, btrfs_inode_mtime(item), 3465 inode->i_mtime.tv_sec, &token); 3466 btrfs_set_token_timespec_nsec(leaf, btrfs_inode_mtime(item), 3467 inode->i_mtime.tv_nsec, &token); 3468 3469 btrfs_set_token_timespec_sec(leaf, btrfs_inode_ctime(item), 3470 inode->i_ctime.tv_sec, &token); 3471 btrfs_set_token_timespec_nsec(leaf, btrfs_inode_ctime(item), 3472 inode->i_ctime.tv_nsec, &token); 3473 3474 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode), 3475 &token); 3476 btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation, 3477 &token); 3478 btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token); 3479 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token); 3480 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token); 3481 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token); 3482 btrfs_set_token_inode_block_group(leaf, item, 0, &token); 3483 } 3484 3485 /* 3486 * copy everything in the in-memory inode into the btree. 3487 */ 3488 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans, 3489 struct btrfs_root *root, struct inode *inode) 3490 { 3491 struct btrfs_inode_item *inode_item; 3492 struct btrfs_path *path; 3493 struct extent_buffer *leaf; 3494 int ret; 3495 3496 path = btrfs_alloc_path(); 3497 if (!path) 3498 return -ENOMEM; 3499 3500 path->leave_spinning = 1; 3501 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location, 3502 1); 3503 if (ret) { 3504 if (ret > 0) 3505 ret = -ENOENT; 3506 goto failed; 3507 } 3508 3509 btrfs_unlock_up_safe(path, 1); 3510 leaf = path->nodes[0]; 3511 inode_item = btrfs_item_ptr(leaf, path->slots[0], 3512 struct btrfs_inode_item); 3513 3514 fill_inode_item(trans, leaf, inode_item, inode); 3515 btrfs_mark_buffer_dirty(leaf); 3516 btrfs_set_inode_last_trans(trans, inode); 3517 ret = 0; 3518 failed: 3519 btrfs_free_path(path); 3520 return ret; 3521 } 3522 3523 /* 3524 * copy everything in the in-memory inode into the btree. 3525 */ 3526 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans, 3527 struct btrfs_root *root, struct inode *inode) 3528 { 3529 int ret; 3530 3531 /* 3532 * If the inode is a free space inode, we can deadlock during commit 3533 * if we put it into the delayed code. 3534 * 3535 * The data relocation inode should also be directly updated 3536 * without delay 3537 */ 3538 if (!btrfs_is_free_space_inode(inode) 3539 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) { 3540 btrfs_update_root_times(trans, root); 3541 3542 ret = btrfs_delayed_update_inode(trans, root, inode); 3543 if (!ret) 3544 btrfs_set_inode_last_trans(trans, inode); 3545 return ret; 3546 } 3547 3548 return btrfs_update_inode_item(trans, root, inode); 3549 } 3550 3551 noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans, 3552 struct btrfs_root *root, 3553 struct inode *inode) 3554 { 3555 int ret; 3556 3557 ret = btrfs_update_inode(trans, root, inode); 3558 if (ret == -ENOSPC) 3559 return btrfs_update_inode_item(trans, root, inode); 3560 return ret; 3561 } 3562 3563 /* 3564 * unlink helper that gets used here in inode.c and in the tree logging 3565 * recovery code. It remove a link in a directory with a given name, and 3566 * also drops the back refs in the inode to the directory 3567 */ 3568 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans, 3569 struct btrfs_root *root, 3570 struct inode *dir, struct inode *inode, 3571 const char *name, int name_len) 3572 { 3573 struct btrfs_path *path; 3574 int ret = 0; 3575 struct extent_buffer *leaf; 3576 struct btrfs_dir_item *di; 3577 struct btrfs_key key; 3578 u64 index; 3579 u64 ino = btrfs_ino(inode); 3580 u64 dir_ino = btrfs_ino(dir); 3581 3582 path = btrfs_alloc_path(); 3583 if (!path) { 3584 ret = -ENOMEM; 3585 goto out; 3586 } 3587 3588 path->leave_spinning = 1; 3589 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 3590 name, name_len, -1); 3591 if (IS_ERR(di)) { 3592 ret = PTR_ERR(di); 3593 goto err; 3594 } 3595 if (!di) { 3596 ret = -ENOENT; 3597 goto err; 3598 } 3599 leaf = path->nodes[0]; 3600 btrfs_dir_item_key_to_cpu(leaf, di, &key); 3601 ret = btrfs_delete_one_dir_name(trans, root, path, di); 3602 if (ret) 3603 goto err; 3604 btrfs_release_path(path); 3605 3606 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino, 3607 dir_ino, &index); 3608 if (ret) { 3609 btrfs_info(root->fs_info, 3610 "failed to delete reference to %.*s, inode %llu parent %llu", 3611 name_len, name, 3612 (unsigned long long)ino, (unsigned long long)dir_ino); 3613 btrfs_abort_transaction(trans, root, ret); 3614 goto err; 3615 } 3616 3617 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index); 3618 if (ret) { 3619 btrfs_abort_transaction(trans, root, ret); 3620 goto err; 3621 } 3622 3623 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, 3624 inode, dir_ino); 3625 if (ret != 0 && ret != -ENOENT) { 3626 btrfs_abort_transaction(trans, root, ret); 3627 goto err; 3628 } 3629 3630 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, 3631 dir, index); 3632 if (ret == -ENOENT) 3633 ret = 0; 3634 else if (ret) 3635 btrfs_abort_transaction(trans, root, ret); 3636 err: 3637 btrfs_free_path(path); 3638 if (ret) 3639 goto out; 3640 3641 btrfs_i_size_write(dir, dir->i_size - name_len * 2); 3642 inode_inc_iversion(inode); 3643 inode_inc_iversion(dir); 3644 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME; 3645 ret = btrfs_update_inode(trans, root, dir); 3646 out: 3647 return ret; 3648 } 3649 3650 int btrfs_unlink_inode(struct btrfs_trans_handle *trans, 3651 struct btrfs_root *root, 3652 struct inode *dir, struct inode *inode, 3653 const char *name, int name_len) 3654 { 3655 int ret; 3656 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len); 3657 if (!ret) { 3658 btrfs_drop_nlink(inode); 3659 ret = btrfs_update_inode(trans, root, inode); 3660 } 3661 return ret; 3662 } 3663 3664 3665 /* helper to check if there is any shared block in the path */ 3666 static int check_path_shared(struct btrfs_root *root, 3667 struct btrfs_path *path) 3668 { 3669 struct extent_buffer *eb; 3670 int level; 3671 u64 refs = 1; 3672 3673 for (level = 0; level < BTRFS_MAX_LEVEL; level++) { 3674 int ret; 3675 3676 if (!path->nodes[level]) 3677 break; 3678 eb = path->nodes[level]; 3679 if (!btrfs_block_can_be_shared(root, eb)) 3680 continue; 3681 ret = btrfs_lookup_extent_info(NULL, root, eb->start, level, 1, 3682 &refs, NULL); 3683 if (refs > 1) 3684 return 1; 3685 } 3686 return 0; 3687 } 3688 3689 /* 3690 * helper to start transaction for unlink and rmdir. 3691 * 3692 * unlink and rmdir are special in btrfs, they do not always free space. 3693 * so in enospc case, we should make sure they will free space before 3694 * allowing them to use the global metadata reservation. 3695 */ 3696 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir, 3697 struct dentry *dentry) 3698 { 3699 struct btrfs_trans_handle *trans; 3700 struct btrfs_root *root = BTRFS_I(dir)->root; 3701 struct btrfs_path *path; 3702 struct btrfs_dir_item *di; 3703 struct inode *inode = dentry->d_inode; 3704 u64 index; 3705 int check_link = 1; 3706 int err = -ENOSPC; 3707 int ret; 3708 u64 ino = btrfs_ino(inode); 3709 u64 dir_ino = btrfs_ino(dir); 3710 3711 /* 3712 * 1 for the possible orphan item 3713 * 1 for the dir item 3714 * 1 for the dir index 3715 * 1 for the inode ref 3716 * 1 for the inode 3717 */ 3718 trans = btrfs_start_transaction(root, 5); 3719 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC) 3720 return trans; 3721 3722 if (ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 3723 return ERR_PTR(-ENOSPC); 3724 3725 /* check if there is someone else holds reference */ 3726 if (S_ISDIR(inode->i_mode) && atomic_read(&inode->i_count) > 1) 3727 return ERR_PTR(-ENOSPC); 3728 3729 if (atomic_read(&inode->i_count) > 2) 3730 return ERR_PTR(-ENOSPC); 3731 3732 if (xchg(&root->fs_info->enospc_unlink, 1)) 3733 return ERR_PTR(-ENOSPC); 3734 3735 path = btrfs_alloc_path(); 3736 if (!path) { 3737 root->fs_info->enospc_unlink = 0; 3738 return ERR_PTR(-ENOMEM); 3739 } 3740 3741 /* 1 for the orphan item */ 3742 trans = btrfs_start_transaction(root, 1); 3743 if (IS_ERR(trans)) { 3744 btrfs_free_path(path); 3745 root->fs_info->enospc_unlink = 0; 3746 return trans; 3747 } 3748 3749 path->skip_locking = 1; 3750 path->search_commit_root = 1; 3751 3752 ret = btrfs_lookup_inode(trans, root, path, 3753 &BTRFS_I(dir)->location, 0); 3754 if (ret < 0) { 3755 err = ret; 3756 goto out; 3757 } 3758 if (ret == 0) { 3759 if (check_path_shared(root, path)) 3760 goto out; 3761 } else { 3762 check_link = 0; 3763 } 3764 btrfs_release_path(path); 3765 3766 ret = btrfs_lookup_inode(trans, root, path, 3767 &BTRFS_I(inode)->location, 0); 3768 if (ret < 0) { 3769 err = ret; 3770 goto out; 3771 } 3772 if (ret == 0) { 3773 if (check_path_shared(root, path)) 3774 goto out; 3775 } else { 3776 check_link = 0; 3777 } 3778 btrfs_release_path(path); 3779 3780 if (ret == 0 && S_ISREG(inode->i_mode)) { 3781 ret = btrfs_lookup_file_extent(trans, root, path, 3782 ino, (u64)-1, 0); 3783 if (ret < 0) { 3784 err = ret; 3785 goto out; 3786 } 3787 BUG_ON(ret == 0); /* Corruption */ 3788 if (check_path_shared(root, path)) 3789 goto out; 3790 btrfs_release_path(path); 3791 } 3792 3793 if (!check_link) { 3794 err = 0; 3795 goto out; 3796 } 3797 3798 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 3799 dentry->d_name.name, dentry->d_name.len, 0); 3800 if (IS_ERR(di)) { 3801 err = PTR_ERR(di); 3802 goto out; 3803 } 3804 if (di) { 3805 if (check_path_shared(root, path)) 3806 goto out; 3807 } else { 3808 err = 0; 3809 goto out; 3810 } 3811 btrfs_release_path(path); 3812 3813 ret = btrfs_get_inode_ref_index(trans, root, path, dentry->d_name.name, 3814 dentry->d_name.len, ino, dir_ino, 0, 3815 &index); 3816 if (ret) { 3817 err = ret; 3818 goto out; 3819 } 3820 3821 if (check_path_shared(root, path)) 3822 goto out; 3823 3824 btrfs_release_path(path); 3825 3826 /* 3827 * This is a commit root search, if we can lookup inode item and other 3828 * relative items in the commit root, it means the transaction of 3829 * dir/file creation has been committed, and the dir index item that we 3830 * delay to insert has also been inserted into the commit root. So 3831 * we needn't worry about the delayed insertion of the dir index item 3832 * here. 3833 */ 3834 di = btrfs_lookup_dir_index_item(trans, root, path, dir_ino, index, 3835 dentry->d_name.name, dentry->d_name.len, 0); 3836 if (IS_ERR(di)) { 3837 err = PTR_ERR(di); 3838 goto out; 3839 } 3840 BUG_ON(ret == -ENOENT); 3841 if (check_path_shared(root, path)) 3842 goto out; 3843 3844 err = 0; 3845 out: 3846 btrfs_free_path(path); 3847 /* Migrate the orphan reservation over */ 3848 if (!err) 3849 err = btrfs_block_rsv_migrate(trans->block_rsv, 3850 &root->fs_info->global_block_rsv, 3851 trans->bytes_reserved); 3852 3853 if (err) { 3854 btrfs_end_transaction(trans, root); 3855 root->fs_info->enospc_unlink = 0; 3856 return ERR_PTR(err); 3857 } 3858 3859 trans->block_rsv = &root->fs_info->global_block_rsv; 3860 return trans; 3861 } 3862 3863 static void __unlink_end_trans(struct btrfs_trans_handle *trans, 3864 struct btrfs_root *root) 3865 { 3866 if (trans->block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL) { 3867 btrfs_block_rsv_release(root, trans->block_rsv, 3868 trans->bytes_reserved); 3869 trans->block_rsv = &root->fs_info->trans_block_rsv; 3870 BUG_ON(!root->fs_info->enospc_unlink); 3871 root->fs_info->enospc_unlink = 0; 3872 } 3873 btrfs_end_transaction(trans, root); 3874 } 3875 3876 static int btrfs_unlink(struct inode *dir, struct dentry *dentry) 3877 { 3878 struct btrfs_root *root = BTRFS_I(dir)->root; 3879 struct btrfs_trans_handle *trans; 3880 struct inode *inode = dentry->d_inode; 3881 int ret; 3882 3883 trans = __unlink_start_trans(dir, dentry); 3884 if (IS_ERR(trans)) 3885 return PTR_ERR(trans); 3886 3887 btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0); 3888 3889 ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode, 3890 dentry->d_name.name, dentry->d_name.len); 3891 if (ret) 3892 goto out; 3893 3894 if (inode->i_nlink == 0) { 3895 ret = btrfs_orphan_add(trans, inode); 3896 if (ret) 3897 goto out; 3898 } 3899 3900 out: 3901 __unlink_end_trans(trans, root); 3902 btrfs_btree_balance_dirty(root); 3903 return ret; 3904 } 3905 3906 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans, 3907 struct btrfs_root *root, 3908 struct inode *dir, u64 objectid, 3909 const char *name, int name_len) 3910 { 3911 struct btrfs_path *path; 3912 struct extent_buffer *leaf; 3913 struct btrfs_dir_item *di; 3914 struct btrfs_key key; 3915 u64 index; 3916 int ret; 3917 u64 dir_ino = btrfs_ino(dir); 3918 3919 path = btrfs_alloc_path(); 3920 if (!path) 3921 return -ENOMEM; 3922 3923 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 3924 name, name_len, -1); 3925 if (IS_ERR_OR_NULL(di)) { 3926 if (!di) 3927 ret = -ENOENT; 3928 else 3929 ret = PTR_ERR(di); 3930 goto out; 3931 } 3932 3933 leaf = path->nodes[0]; 3934 btrfs_dir_item_key_to_cpu(leaf, di, &key); 3935 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid); 3936 ret = btrfs_delete_one_dir_name(trans, root, path, di); 3937 if (ret) { 3938 btrfs_abort_transaction(trans, root, ret); 3939 goto out; 3940 } 3941 btrfs_release_path(path); 3942 3943 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root, 3944 objectid, root->root_key.objectid, 3945 dir_ino, &index, name, name_len); 3946 if (ret < 0) { 3947 if (ret != -ENOENT) { 3948 btrfs_abort_transaction(trans, root, ret); 3949 goto out; 3950 } 3951 di = btrfs_search_dir_index_item(root, path, dir_ino, 3952 name, name_len); 3953 if (IS_ERR_OR_NULL(di)) { 3954 if (!di) 3955 ret = -ENOENT; 3956 else 3957 ret = PTR_ERR(di); 3958 btrfs_abort_transaction(trans, root, ret); 3959 goto out; 3960 } 3961 3962 leaf = path->nodes[0]; 3963 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 3964 btrfs_release_path(path); 3965 index = key.offset; 3966 } 3967 btrfs_release_path(path); 3968 3969 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index); 3970 if (ret) { 3971 btrfs_abort_transaction(trans, root, ret); 3972 goto out; 3973 } 3974 3975 btrfs_i_size_write(dir, dir->i_size - name_len * 2); 3976 inode_inc_iversion(dir); 3977 dir->i_mtime = dir->i_ctime = CURRENT_TIME; 3978 ret = btrfs_update_inode_fallback(trans, root, dir); 3979 if (ret) 3980 btrfs_abort_transaction(trans, root, ret); 3981 out: 3982 btrfs_free_path(path); 3983 return ret; 3984 } 3985 3986 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry) 3987 { 3988 struct inode *inode = dentry->d_inode; 3989 int err = 0; 3990 struct btrfs_root *root = BTRFS_I(dir)->root; 3991 struct btrfs_trans_handle *trans; 3992 3993 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE) 3994 return -ENOTEMPTY; 3995 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) 3996 return -EPERM; 3997 3998 trans = __unlink_start_trans(dir, dentry); 3999 if (IS_ERR(trans)) 4000 return PTR_ERR(trans); 4001 4002 if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 4003 err = btrfs_unlink_subvol(trans, root, dir, 4004 BTRFS_I(inode)->location.objectid, 4005 dentry->d_name.name, 4006 dentry->d_name.len); 4007 goto out; 4008 } 4009 4010 err = btrfs_orphan_add(trans, inode); 4011 if (err) 4012 goto out; 4013 4014 /* now the directory is empty */ 4015 err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode, 4016 dentry->d_name.name, dentry->d_name.len); 4017 if (!err) 4018 btrfs_i_size_write(inode, 0); 4019 out: 4020 __unlink_end_trans(trans, root); 4021 btrfs_btree_balance_dirty(root); 4022 4023 return err; 4024 } 4025 4026 /* 4027 * this can truncate away extent items, csum items and directory items. 4028 * It starts at a high offset and removes keys until it can't find 4029 * any higher than new_size 4030 * 4031 * csum items that cross the new i_size are truncated to the new size 4032 * as well. 4033 * 4034 * min_type is the minimum key type to truncate down to. If set to 0, this 4035 * will kill all the items on this inode, including the INODE_ITEM_KEY. 4036 */ 4037 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans, 4038 struct btrfs_root *root, 4039 struct inode *inode, 4040 u64 new_size, u32 min_type) 4041 { 4042 struct btrfs_path *path; 4043 struct extent_buffer *leaf; 4044 struct btrfs_file_extent_item *fi; 4045 struct btrfs_key key; 4046 struct btrfs_key found_key; 4047 u64 extent_start = 0; 4048 u64 extent_num_bytes = 0; 4049 u64 extent_offset = 0; 4050 u64 item_end = 0; 4051 u32 found_type = (u8)-1; 4052 int found_extent; 4053 int del_item; 4054 int pending_del_nr = 0; 4055 int pending_del_slot = 0; 4056 int extent_type = -1; 4057 int ret; 4058 int err = 0; 4059 u64 ino = btrfs_ino(inode); 4060 4061 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY); 4062 4063 path = btrfs_alloc_path(); 4064 if (!path) 4065 return -ENOMEM; 4066 path->reada = -1; 4067 4068 /* 4069 * We want to drop from the next block forward in case this new size is 4070 * not block aligned since we will be keeping the last block of the 4071 * extent just the way it is. 4072 */ 4073 if (root->ref_cows || root == root->fs_info->tree_root) 4074 btrfs_drop_extent_cache(inode, ALIGN(new_size, 4075 root->sectorsize), (u64)-1, 0); 4076 4077 /* 4078 * This function is also used to drop the items in the log tree before 4079 * we relog the inode, so if root != BTRFS_I(inode)->root, it means 4080 * it is used to drop the loged items. So we shouldn't kill the delayed 4081 * items. 4082 */ 4083 if (min_type == 0 && root == BTRFS_I(inode)->root) 4084 btrfs_kill_delayed_inode_items(inode); 4085 4086 key.objectid = ino; 4087 key.offset = (u64)-1; 4088 key.type = (u8)-1; 4089 4090 search_again: 4091 path->leave_spinning = 1; 4092 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 4093 if (ret < 0) { 4094 err = ret; 4095 goto out; 4096 } 4097 4098 if (ret > 0) { 4099 /* there are no items in the tree for us to truncate, we're 4100 * done 4101 */ 4102 if (path->slots[0] == 0) 4103 goto out; 4104 path->slots[0]--; 4105 } 4106 4107 while (1) { 4108 fi = NULL; 4109 leaf = path->nodes[0]; 4110 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 4111 found_type = btrfs_key_type(&found_key); 4112 4113 if (found_key.objectid != ino) 4114 break; 4115 4116 if (found_type < min_type) 4117 break; 4118 4119 item_end = found_key.offset; 4120 if (found_type == BTRFS_EXTENT_DATA_KEY) { 4121 fi = btrfs_item_ptr(leaf, path->slots[0], 4122 struct btrfs_file_extent_item); 4123 extent_type = btrfs_file_extent_type(leaf, fi); 4124 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 4125 item_end += 4126 btrfs_file_extent_num_bytes(leaf, fi); 4127 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 4128 item_end += btrfs_file_extent_inline_len(leaf, 4129 fi); 4130 } 4131 item_end--; 4132 } 4133 if (found_type > min_type) { 4134 del_item = 1; 4135 } else { 4136 if (item_end < new_size) 4137 break; 4138 if (found_key.offset >= new_size) 4139 del_item = 1; 4140 else 4141 del_item = 0; 4142 } 4143 found_extent = 0; 4144 /* FIXME, shrink the extent if the ref count is only 1 */ 4145 if (found_type != BTRFS_EXTENT_DATA_KEY) 4146 goto delete; 4147 4148 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 4149 u64 num_dec; 4150 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi); 4151 if (!del_item) { 4152 u64 orig_num_bytes = 4153 btrfs_file_extent_num_bytes(leaf, fi); 4154 extent_num_bytes = ALIGN(new_size - 4155 found_key.offset, 4156 root->sectorsize); 4157 btrfs_set_file_extent_num_bytes(leaf, fi, 4158 extent_num_bytes); 4159 num_dec = (orig_num_bytes - 4160 extent_num_bytes); 4161 if (root->ref_cows && extent_start != 0) 4162 inode_sub_bytes(inode, num_dec); 4163 btrfs_mark_buffer_dirty(leaf); 4164 } else { 4165 extent_num_bytes = 4166 btrfs_file_extent_disk_num_bytes(leaf, 4167 fi); 4168 extent_offset = found_key.offset - 4169 btrfs_file_extent_offset(leaf, fi); 4170 4171 /* FIXME blocksize != 4096 */ 4172 num_dec = btrfs_file_extent_num_bytes(leaf, fi); 4173 if (extent_start != 0) { 4174 found_extent = 1; 4175 if (root->ref_cows) 4176 inode_sub_bytes(inode, num_dec); 4177 } 4178 } 4179 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 4180 /* 4181 * we can't truncate inline items that have had 4182 * special encodings 4183 */ 4184 if (!del_item && 4185 btrfs_file_extent_compression(leaf, fi) == 0 && 4186 btrfs_file_extent_encryption(leaf, fi) == 0 && 4187 btrfs_file_extent_other_encoding(leaf, fi) == 0) { 4188 u32 size = new_size - found_key.offset; 4189 4190 if (root->ref_cows) { 4191 inode_sub_bytes(inode, item_end + 1 - 4192 new_size); 4193 } 4194 size = 4195 btrfs_file_extent_calc_inline_size(size); 4196 btrfs_truncate_item(root, path, size, 1); 4197 } else if (root->ref_cows) { 4198 inode_sub_bytes(inode, item_end + 1 - 4199 found_key.offset); 4200 } 4201 } 4202 delete: 4203 if (del_item) { 4204 if (!pending_del_nr) { 4205 /* no pending yet, add ourselves */ 4206 pending_del_slot = path->slots[0]; 4207 pending_del_nr = 1; 4208 } else if (pending_del_nr && 4209 path->slots[0] + 1 == pending_del_slot) { 4210 /* hop on the pending chunk */ 4211 pending_del_nr++; 4212 pending_del_slot = path->slots[0]; 4213 } else { 4214 BUG(); 4215 } 4216 } else { 4217 break; 4218 } 4219 if (found_extent && (root->ref_cows || 4220 root == root->fs_info->tree_root)) { 4221 btrfs_set_path_blocking(path); 4222 ret = btrfs_free_extent(trans, root, extent_start, 4223 extent_num_bytes, 0, 4224 btrfs_header_owner(leaf), 4225 ino, extent_offset, 0); 4226 BUG_ON(ret); 4227 } 4228 4229 if (found_type == BTRFS_INODE_ITEM_KEY) 4230 break; 4231 4232 if (path->slots[0] == 0 || 4233 path->slots[0] != pending_del_slot) { 4234 if (pending_del_nr) { 4235 ret = btrfs_del_items(trans, root, path, 4236 pending_del_slot, 4237 pending_del_nr); 4238 if (ret) { 4239 btrfs_abort_transaction(trans, 4240 root, ret); 4241 goto error; 4242 } 4243 pending_del_nr = 0; 4244 } 4245 btrfs_release_path(path); 4246 goto search_again; 4247 } else { 4248 path->slots[0]--; 4249 } 4250 } 4251 out: 4252 if (pending_del_nr) { 4253 ret = btrfs_del_items(trans, root, path, pending_del_slot, 4254 pending_del_nr); 4255 if (ret) 4256 btrfs_abort_transaction(trans, root, ret); 4257 } 4258 error: 4259 btrfs_free_path(path); 4260 return err; 4261 } 4262 4263 /* 4264 * btrfs_truncate_page - read, zero a chunk and write a page 4265 * @inode - inode that we're zeroing 4266 * @from - the offset to start zeroing 4267 * @len - the length to zero, 0 to zero the entire range respective to the 4268 * offset 4269 * @front - zero up to the offset instead of from the offset on 4270 * 4271 * This will find the page for the "from" offset and cow the page and zero the 4272 * part we want to zero. This is used with truncate and hole punching. 4273 */ 4274 int btrfs_truncate_page(struct inode *inode, loff_t from, loff_t len, 4275 int front) 4276 { 4277 struct address_space *mapping = inode->i_mapping; 4278 struct btrfs_root *root = BTRFS_I(inode)->root; 4279 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 4280 struct btrfs_ordered_extent *ordered; 4281 struct extent_state *cached_state = NULL; 4282 char *kaddr; 4283 u32 blocksize = root->sectorsize; 4284 pgoff_t index = from >> PAGE_CACHE_SHIFT; 4285 unsigned offset = from & (PAGE_CACHE_SIZE-1); 4286 struct page *page; 4287 gfp_t mask = btrfs_alloc_write_mask(mapping); 4288 int ret = 0; 4289 u64 page_start; 4290 u64 page_end; 4291 4292 if ((offset & (blocksize - 1)) == 0 && 4293 (!len || ((len & (blocksize - 1)) == 0))) 4294 goto out; 4295 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE); 4296 if (ret) 4297 goto out; 4298 4299 again: 4300 page = find_or_create_page(mapping, index, mask); 4301 if (!page) { 4302 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE); 4303 ret = -ENOMEM; 4304 goto out; 4305 } 4306 4307 page_start = page_offset(page); 4308 page_end = page_start + PAGE_CACHE_SIZE - 1; 4309 4310 if (!PageUptodate(page)) { 4311 ret = btrfs_readpage(NULL, page); 4312 lock_page(page); 4313 if (page->mapping != mapping) { 4314 unlock_page(page); 4315 page_cache_release(page); 4316 goto again; 4317 } 4318 if (!PageUptodate(page)) { 4319 ret = -EIO; 4320 goto out_unlock; 4321 } 4322 } 4323 wait_on_page_writeback(page); 4324 4325 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state); 4326 set_page_extent_mapped(page); 4327 4328 ordered = btrfs_lookup_ordered_extent(inode, page_start); 4329 if (ordered) { 4330 unlock_extent_cached(io_tree, page_start, page_end, 4331 &cached_state, GFP_NOFS); 4332 unlock_page(page); 4333 page_cache_release(page); 4334 btrfs_start_ordered_extent(inode, ordered, 1); 4335 btrfs_put_ordered_extent(ordered); 4336 goto again; 4337 } 4338 4339 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end, 4340 EXTENT_DIRTY | EXTENT_DELALLOC | 4341 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 4342 0, 0, &cached_state, GFP_NOFS); 4343 4344 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 4345 &cached_state); 4346 if (ret) { 4347 unlock_extent_cached(io_tree, page_start, page_end, 4348 &cached_state, GFP_NOFS); 4349 goto out_unlock; 4350 } 4351 4352 if (offset != PAGE_CACHE_SIZE) { 4353 if (!len) 4354 len = PAGE_CACHE_SIZE - offset; 4355 kaddr = kmap(page); 4356 if (front) 4357 memset(kaddr, 0, offset); 4358 else 4359 memset(kaddr + offset, 0, len); 4360 flush_dcache_page(page); 4361 kunmap(page); 4362 } 4363 ClearPageChecked(page); 4364 set_page_dirty(page); 4365 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, 4366 GFP_NOFS); 4367 4368 out_unlock: 4369 if (ret) 4370 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE); 4371 unlock_page(page); 4372 page_cache_release(page); 4373 out: 4374 return ret; 4375 } 4376 4377 /* 4378 * This function puts in dummy file extents for the area we're creating a hole 4379 * for. So if we are truncating this file to a larger size we need to insert 4380 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for 4381 * the range between oldsize and size 4382 */ 4383 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size) 4384 { 4385 struct btrfs_trans_handle *trans; 4386 struct btrfs_root *root = BTRFS_I(inode)->root; 4387 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 4388 struct extent_map *em = NULL; 4389 struct extent_state *cached_state = NULL; 4390 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 4391 u64 hole_start = ALIGN(oldsize, root->sectorsize); 4392 u64 block_end = ALIGN(size, root->sectorsize); 4393 u64 last_byte; 4394 u64 cur_offset; 4395 u64 hole_size; 4396 int err = 0; 4397 4398 if (size <= hole_start) 4399 return 0; 4400 4401 while (1) { 4402 struct btrfs_ordered_extent *ordered; 4403 btrfs_wait_ordered_range(inode, hole_start, 4404 block_end - hole_start); 4405 lock_extent_bits(io_tree, hole_start, block_end - 1, 0, 4406 &cached_state); 4407 ordered = btrfs_lookup_ordered_extent(inode, hole_start); 4408 if (!ordered) 4409 break; 4410 unlock_extent_cached(io_tree, hole_start, block_end - 1, 4411 &cached_state, GFP_NOFS); 4412 btrfs_put_ordered_extent(ordered); 4413 } 4414 4415 cur_offset = hole_start; 4416 while (1) { 4417 em = btrfs_get_extent(inode, NULL, 0, cur_offset, 4418 block_end - cur_offset, 0); 4419 if (IS_ERR(em)) { 4420 err = PTR_ERR(em); 4421 em = NULL; 4422 break; 4423 } 4424 last_byte = min(extent_map_end(em), block_end); 4425 last_byte = ALIGN(last_byte , root->sectorsize); 4426 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) { 4427 struct extent_map *hole_em; 4428 hole_size = last_byte - cur_offset; 4429 4430 trans = btrfs_start_transaction(root, 3); 4431 if (IS_ERR(trans)) { 4432 err = PTR_ERR(trans); 4433 break; 4434 } 4435 4436 err = btrfs_drop_extents(trans, root, inode, 4437 cur_offset, 4438 cur_offset + hole_size, 1); 4439 if (err) { 4440 btrfs_abort_transaction(trans, root, err); 4441 btrfs_end_transaction(trans, root); 4442 break; 4443 } 4444 4445 err = btrfs_insert_file_extent(trans, root, 4446 btrfs_ino(inode), cur_offset, 0, 4447 0, hole_size, 0, hole_size, 4448 0, 0, 0); 4449 if (err) { 4450 btrfs_abort_transaction(trans, root, err); 4451 btrfs_end_transaction(trans, root); 4452 break; 4453 } 4454 4455 btrfs_drop_extent_cache(inode, cur_offset, 4456 cur_offset + hole_size - 1, 0); 4457 hole_em = alloc_extent_map(); 4458 if (!hole_em) { 4459 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 4460 &BTRFS_I(inode)->runtime_flags); 4461 goto next; 4462 } 4463 hole_em->start = cur_offset; 4464 hole_em->len = hole_size; 4465 hole_em->orig_start = cur_offset; 4466 4467 hole_em->block_start = EXTENT_MAP_HOLE; 4468 hole_em->block_len = 0; 4469 hole_em->orig_block_len = 0; 4470 hole_em->ram_bytes = hole_size; 4471 hole_em->bdev = root->fs_info->fs_devices->latest_bdev; 4472 hole_em->compress_type = BTRFS_COMPRESS_NONE; 4473 hole_em->generation = trans->transid; 4474 4475 while (1) { 4476 write_lock(&em_tree->lock); 4477 err = add_extent_mapping(em_tree, hole_em, 1); 4478 write_unlock(&em_tree->lock); 4479 if (err != -EEXIST) 4480 break; 4481 btrfs_drop_extent_cache(inode, cur_offset, 4482 cur_offset + 4483 hole_size - 1, 0); 4484 } 4485 free_extent_map(hole_em); 4486 next: 4487 btrfs_update_inode(trans, root, inode); 4488 btrfs_end_transaction(trans, root); 4489 } 4490 free_extent_map(em); 4491 em = NULL; 4492 cur_offset = last_byte; 4493 if (cur_offset >= block_end) 4494 break; 4495 } 4496 4497 free_extent_map(em); 4498 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state, 4499 GFP_NOFS); 4500 return err; 4501 } 4502 4503 static int btrfs_setsize(struct inode *inode, struct iattr *attr) 4504 { 4505 struct btrfs_root *root = BTRFS_I(inode)->root; 4506 struct btrfs_trans_handle *trans; 4507 loff_t oldsize = i_size_read(inode); 4508 loff_t newsize = attr->ia_size; 4509 int mask = attr->ia_valid; 4510 int ret; 4511 4512 if (newsize == oldsize) 4513 return 0; 4514 4515 /* 4516 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a 4517 * special case where we need to update the times despite not having 4518 * these flags set. For all other operations the VFS set these flags 4519 * explicitly if it wants a timestamp update. 4520 */ 4521 if (newsize != oldsize && (!(mask & (ATTR_CTIME | ATTR_MTIME)))) 4522 inode->i_ctime = inode->i_mtime = current_fs_time(inode->i_sb); 4523 4524 if (newsize > oldsize) { 4525 truncate_pagecache(inode, oldsize, newsize); 4526 ret = btrfs_cont_expand(inode, oldsize, newsize); 4527 if (ret) 4528 return ret; 4529 4530 trans = btrfs_start_transaction(root, 1); 4531 if (IS_ERR(trans)) 4532 return PTR_ERR(trans); 4533 4534 i_size_write(inode, newsize); 4535 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL); 4536 ret = btrfs_update_inode(trans, root, inode); 4537 btrfs_end_transaction(trans, root); 4538 } else { 4539 4540 /* 4541 * We're truncating a file that used to have good data down to 4542 * zero. Make sure it gets into the ordered flush list so that 4543 * any new writes get down to disk quickly. 4544 */ 4545 if (newsize == 0) 4546 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE, 4547 &BTRFS_I(inode)->runtime_flags); 4548 4549 /* 4550 * 1 for the orphan item we're going to add 4551 * 1 for the orphan item deletion. 4552 */ 4553 trans = btrfs_start_transaction(root, 2); 4554 if (IS_ERR(trans)) 4555 return PTR_ERR(trans); 4556 4557 /* 4558 * We need to do this in case we fail at _any_ point during the 4559 * actual truncate. Once we do the truncate_setsize we could 4560 * invalidate pages which forces any outstanding ordered io to 4561 * be instantly completed which will give us extents that need 4562 * to be truncated. If we fail to get an orphan inode down we 4563 * could have left over extents that were never meant to live, 4564 * so we need to garuntee from this point on that everything 4565 * will be consistent. 4566 */ 4567 ret = btrfs_orphan_add(trans, inode); 4568 btrfs_end_transaction(trans, root); 4569 if (ret) 4570 return ret; 4571 4572 /* we don't support swapfiles, so vmtruncate shouldn't fail */ 4573 truncate_setsize(inode, newsize); 4574 4575 /* Disable nonlocked read DIO to avoid the end less truncate */ 4576 btrfs_inode_block_unlocked_dio(inode); 4577 inode_dio_wait(inode); 4578 btrfs_inode_resume_unlocked_dio(inode); 4579 4580 ret = btrfs_truncate(inode); 4581 if (ret && inode->i_nlink) 4582 btrfs_orphan_del(NULL, inode); 4583 } 4584 4585 return ret; 4586 } 4587 4588 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr) 4589 { 4590 struct inode *inode = dentry->d_inode; 4591 struct btrfs_root *root = BTRFS_I(inode)->root; 4592 int err; 4593 4594 if (btrfs_root_readonly(root)) 4595 return -EROFS; 4596 4597 err = inode_change_ok(inode, attr); 4598 if (err) 4599 return err; 4600 4601 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 4602 err = btrfs_setsize(inode, attr); 4603 if (err) 4604 return err; 4605 } 4606 4607 if (attr->ia_valid) { 4608 setattr_copy(inode, attr); 4609 inode_inc_iversion(inode); 4610 err = btrfs_dirty_inode(inode); 4611 4612 if (!err && attr->ia_valid & ATTR_MODE) 4613 err = btrfs_acl_chmod(inode); 4614 } 4615 4616 return err; 4617 } 4618 4619 void btrfs_evict_inode(struct inode *inode) 4620 { 4621 struct btrfs_trans_handle *trans; 4622 struct btrfs_root *root = BTRFS_I(inode)->root; 4623 struct btrfs_block_rsv *rsv, *global_rsv; 4624 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1); 4625 int ret; 4626 4627 trace_btrfs_inode_evict(inode); 4628 4629 truncate_inode_pages(&inode->i_data, 0); 4630 if (inode->i_nlink && (btrfs_root_refs(&root->root_item) != 0 || 4631 btrfs_is_free_space_inode(inode))) 4632 goto no_delete; 4633 4634 if (is_bad_inode(inode)) { 4635 btrfs_orphan_del(NULL, inode); 4636 goto no_delete; 4637 } 4638 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */ 4639 btrfs_wait_ordered_range(inode, 0, (u64)-1); 4640 4641 if (root->fs_info->log_root_recovering) { 4642 BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 4643 &BTRFS_I(inode)->runtime_flags)); 4644 goto no_delete; 4645 } 4646 4647 if (inode->i_nlink > 0) { 4648 BUG_ON(btrfs_root_refs(&root->root_item) != 0); 4649 goto no_delete; 4650 } 4651 4652 ret = btrfs_commit_inode_delayed_inode(inode); 4653 if (ret) { 4654 btrfs_orphan_del(NULL, inode); 4655 goto no_delete; 4656 } 4657 4658 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP); 4659 if (!rsv) { 4660 btrfs_orphan_del(NULL, inode); 4661 goto no_delete; 4662 } 4663 rsv->size = min_size; 4664 rsv->failfast = 1; 4665 global_rsv = &root->fs_info->global_block_rsv; 4666 4667 btrfs_i_size_write(inode, 0); 4668 4669 /* 4670 * This is a bit simpler than btrfs_truncate since we've already 4671 * reserved our space for our orphan item in the unlink, so we just 4672 * need to reserve some slack space in case we add bytes and update 4673 * inode item when doing the truncate. 4674 */ 4675 while (1) { 4676 ret = btrfs_block_rsv_refill(root, rsv, min_size, 4677 BTRFS_RESERVE_FLUSH_LIMIT); 4678 4679 /* 4680 * Try and steal from the global reserve since we will 4681 * likely not use this space anyway, we want to try as 4682 * hard as possible to get this to work. 4683 */ 4684 if (ret) 4685 ret = btrfs_block_rsv_migrate(global_rsv, rsv, min_size); 4686 4687 if (ret) { 4688 btrfs_warn(root->fs_info, 4689 "Could not get space for a delete, will truncate on mount %d", 4690 ret); 4691 btrfs_orphan_del(NULL, inode); 4692 btrfs_free_block_rsv(root, rsv); 4693 goto no_delete; 4694 } 4695 4696 trans = btrfs_join_transaction(root); 4697 if (IS_ERR(trans)) { 4698 btrfs_orphan_del(NULL, inode); 4699 btrfs_free_block_rsv(root, rsv); 4700 goto no_delete; 4701 } 4702 4703 trans->block_rsv = rsv; 4704 4705 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0); 4706 if (ret != -ENOSPC) 4707 break; 4708 4709 trans->block_rsv = &root->fs_info->trans_block_rsv; 4710 btrfs_end_transaction(trans, root); 4711 trans = NULL; 4712 btrfs_btree_balance_dirty(root); 4713 } 4714 4715 btrfs_free_block_rsv(root, rsv); 4716 4717 if (ret == 0) { 4718 trans->block_rsv = root->orphan_block_rsv; 4719 ret = btrfs_orphan_del(trans, inode); 4720 BUG_ON(ret); 4721 } 4722 4723 trans->block_rsv = &root->fs_info->trans_block_rsv; 4724 if (!(root == root->fs_info->tree_root || 4725 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)) 4726 btrfs_return_ino(root, btrfs_ino(inode)); 4727 4728 btrfs_end_transaction(trans, root); 4729 btrfs_btree_balance_dirty(root); 4730 no_delete: 4731 btrfs_remove_delayed_node(inode); 4732 clear_inode(inode); 4733 return; 4734 } 4735 4736 /* 4737 * this returns the key found in the dir entry in the location pointer. 4738 * If no dir entries were found, location->objectid is 0. 4739 */ 4740 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry, 4741 struct btrfs_key *location) 4742 { 4743 const char *name = dentry->d_name.name; 4744 int namelen = dentry->d_name.len; 4745 struct btrfs_dir_item *di; 4746 struct btrfs_path *path; 4747 struct btrfs_root *root = BTRFS_I(dir)->root; 4748 int ret = 0; 4749 4750 path = btrfs_alloc_path(); 4751 if (!path) 4752 return -ENOMEM; 4753 4754 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name, 4755 namelen, 0); 4756 if (IS_ERR(di)) 4757 ret = PTR_ERR(di); 4758 4759 if (IS_ERR_OR_NULL(di)) 4760 goto out_err; 4761 4762 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location); 4763 out: 4764 btrfs_free_path(path); 4765 return ret; 4766 out_err: 4767 location->objectid = 0; 4768 goto out; 4769 } 4770 4771 /* 4772 * when we hit a tree root in a directory, the btrfs part of the inode 4773 * needs to be changed to reflect the root directory of the tree root. This 4774 * is kind of like crossing a mount point. 4775 */ 4776 static int fixup_tree_root_location(struct btrfs_root *root, 4777 struct inode *dir, 4778 struct dentry *dentry, 4779 struct btrfs_key *location, 4780 struct btrfs_root **sub_root) 4781 { 4782 struct btrfs_path *path; 4783 struct btrfs_root *new_root; 4784 struct btrfs_root_ref *ref; 4785 struct extent_buffer *leaf; 4786 int ret; 4787 int err = 0; 4788 4789 path = btrfs_alloc_path(); 4790 if (!path) { 4791 err = -ENOMEM; 4792 goto out; 4793 } 4794 4795 err = -ENOENT; 4796 ret = btrfs_find_root_ref(root->fs_info->tree_root, path, 4797 BTRFS_I(dir)->root->root_key.objectid, 4798 location->objectid); 4799 if (ret) { 4800 if (ret < 0) 4801 err = ret; 4802 goto out; 4803 } 4804 4805 leaf = path->nodes[0]; 4806 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); 4807 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) || 4808 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len) 4809 goto out; 4810 4811 ret = memcmp_extent_buffer(leaf, dentry->d_name.name, 4812 (unsigned long)(ref + 1), 4813 dentry->d_name.len); 4814 if (ret) 4815 goto out; 4816 4817 btrfs_release_path(path); 4818 4819 new_root = btrfs_read_fs_root_no_name(root->fs_info, location); 4820 if (IS_ERR(new_root)) { 4821 err = PTR_ERR(new_root); 4822 goto out; 4823 } 4824 4825 if (btrfs_root_refs(&new_root->root_item) == 0) { 4826 err = -ENOENT; 4827 goto out; 4828 } 4829 4830 *sub_root = new_root; 4831 location->objectid = btrfs_root_dirid(&new_root->root_item); 4832 location->type = BTRFS_INODE_ITEM_KEY; 4833 location->offset = 0; 4834 err = 0; 4835 out: 4836 btrfs_free_path(path); 4837 return err; 4838 } 4839 4840 static void inode_tree_add(struct inode *inode) 4841 { 4842 struct btrfs_root *root = BTRFS_I(inode)->root; 4843 struct btrfs_inode *entry; 4844 struct rb_node **p; 4845 struct rb_node *parent; 4846 u64 ino = btrfs_ino(inode); 4847 4848 if (inode_unhashed(inode)) 4849 return; 4850 again: 4851 parent = NULL; 4852 spin_lock(&root->inode_lock); 4853 p = &root->inode_tree.rb_node; 4854 while (*p) { 4855 parent = *p; 4856 entry = rb_entry(parent, struct btrfs_inode, rb_node); 4857 4858 if (ino < btrfs_ino(&entry->vfs_inode)) 4859 p = &parent->rb_left; 4860 else if (ino > btrfs_ino(&entry->vfs_inode)) 4861 p = &parent->rb_right; 4862 else { 4863 WARN_ON(!(entry->vfs_inode.i_state & 4864 (I_WILL_FREE | I_FREEING))); 4865 rb_erase(parent, &root->inode_tree); 4866 RB_CLEAR_NODE(parent); 4867 spin_unlock(&root->inode_lock); 4868 goto again; 4869 } 4870 } 4871 rb_link_node(&BTRFS_I(inode)->rb_node, parent, p); 4872 rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree); 4873 spin_unlock(&root->inode_lock); 4874 } 4875 4876 static void inode_tree_del(struct inode *inode) 4877 { 4878 struct btrfs_root *root = BTRFS_I(inode)->root; 4879 int empty = 0; 4880 4881 spin_lock(&root->inode_lock); 4882 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) { 4883 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree); 4884 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node); 4885 empty = RB_EMPTY_ROOT(&root->inode_tree); 4886 } 4887 spin_unlock(&root->inode_lock); 4888 4889 /* 4890 * Free space cache has inodes in the tree root, but the tree root has a 4891 * root_refs of 0, so this could end up dropping the tree root as a 4892 * snapshot, so we need the extra !root->fs_info->tree_root check to 4893 * make sure we don't drop it. 4894 */ 4895 if (empty && btrfs_root_refs(&root->root_item) == 0 && 4896 root != root->fs_info->tree_root) { 4897 synchronize_srcu(&root->fs_info->subvol_srcu); 4898 spin_lock(&root->inode_lock); 4899 empty = RB_EMPTY_ROOT(&root->inode_tree); 4900 spin_unlock(&root->inode_lock); 4901 if (empty) 4902 btrfs_add_dead_root(root); 4903 } 4904 } 4905 4906 void btrfs_invalidate_inodes(struct btrfs_root *root) 4907 { 4908 struct rb_node *node; 4909 struct rb_node *prev; 4910 struct btrfs_inode *entry; 4911 struct inode *inode; 4912 u64 objectid = 0; 4913 4914 WARN_ON(btrfs_root_refs(&root->root_item) != 0); 4915 4916 spin_lock(&root->inode_lock); 4917 again: 4918 node = root->inode_tree.rb_node; 4919 prev = NULL; 4920 while (node) { 4921 prev = node; 4922 entry = rb_entry(node, struct btrfs_inode, rb_node); 4923 4924 if (objectid < btrfs_ino(&entry->vfs_inode)) 4925 node = node->rb_left; 4926 else if (objectid > btrfs_ino(&entry->vfs_inode)) 4927 node = node->rb_right; 4928 else 4929 break; 4930 } 4931 if (!node) { 4932 while (prev) { 4933 entry = rb_entry(prev, struct btrfs_inode, rb_node); 4934 if (objectid <= btrfs_ino(&entry->vfs_inode)) { 4935 node = prev; 4936 break; 4937 } 4938 prev = rb_next(prev); 4939 } 4940 } 4941 while (node) { 4942 entry = rb_entry(node, struct btrfs_inode, rb_node); 4943 objectid = btrfs_ino(&entry->vfs_inode) + 1; 4944 inode = igrab(&entry->vfs_inode); 4945 if (inode) { 4946 spin_unlock(&root->inode_lock); 4947 if (atomic_read(&inode->i_count) > 1) 4948 d_prune_aliases(inode); 4949 /* 4950 * btrfs_drop_inode will have it removed from 4951 * the inode cache when its usage count 4952 * hits zero. 4953 */ 4954 iput(inode); 4955 cond_resched(); 4956 spin_lock(&root->inode_lock); 4957 goto again; 4958 } 4959 4960 if (cond_resched_lock(&root->inode_lock)) 4961 goto again; 4962 4963 node = rb_next(node); 4964 } 4965 spin_unlock(&root->inode_lock); 4966 } 4967 4968 static int btrfs_init_locked_inode(struct inode *inode, void *p) 4969 { 4970 struct btrfs_iget_args *args = p; 4971 inode->i_ino = args->ino; 4972 BTRFS_I(inode)->root = args->root; 4973 return 0; 4974 } 4975 4976 static int btrfs_find_actor(struct inode *inode, void *opaque) 4977 { 4978 struct btrfs_iget_args *args = opaque; 4979 return args->ino == btrfs_ino(inode) && 4980 args->root == BTRFS_I(inode)->root; 4981 } 4982 4983 static struct inode *btrfs_iget_locked(struct super_block *s, 4984 u64 objectid, 4985 struct btrfs_root *root) 4986 { 4987 struct inode *inode; 4988 struct btrfs_iget_args args; 4989 args.ino = objectid; 4990 args.root = root; 4991 4992 inode = iget5_locked(s, objectid, btrfs_find_actor, 4993 btrfs_init_locked_inode, 4994 (void *)&args); 4995 return inode; 4996 } 4997 4998 /* Get an inode object given its location and corresponding root. 4999 * Returns in *is_new if the inode was read from disk 5000 */ 5001 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location, 5002 struct btrfs_root *root, int *new) 5003 { 5004 struct inode *inode; 5005 5006 inode = btrfs_iget_locked(s, location->objectid, root); 5007 if (!inode) 5008 return ERR_PTR(-ENOMEM); 5009 5010 if (inode->i_state & I_NEW) { 5011 BTRFS_I(inode)->root = root; 5012 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location)); 5013 btrfs_read_locked_inode(inode); 5014 if (!is_bad_inode(inode)) { 5015 inode_tree_add(inode); 5016 unlock_new_inode(inode); 5017 if (new) 5018 *new = 1; 5019 } else { 5020 unlock_new_inode(inode); 5021 iput(inode); 5022 inode = ERR_PTR(-ESTALE); 5023 } 5024 } 5025 5026 return inode; 5027 } 5028 5029 static struct inode *new_simple_dir(struct super_block *s, 5030 struct btrfs_key *key, 5031 struct btrfs_root *root) 5032 { 5033 struct inode *inode = new_inode(s); 5034 5035 if (!inode) 5036 return ERR_PTR(-ENOMEM); 5037 5038 BTRFS_I(inode)->root = root; 5039 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key)); 5040 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags); 5041 5042 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID; 5043 inode->i_op = &btrfs_dir_ro_inode_operations; 5044 inode->i_fop = &simple_dir_operations; 5045 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO; 5046 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME; 5047 5048 return inode; 5049 } 5050 5051 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry) 5052 { 5053 struct inode *inode; 5054 struct btrfs_root *root = BTRFS_I(dir)->root; 5055 struct btrfs_root *sub_root = root; 5056 struct btrfs_key location; 5057 int index; 5058 int ret = 0; 5059 5060 if (dentry->d_name.len > BTRFS_NAME_LEN) 5061 return ERR_PTR(-ENAMETOOLONG); 5062 5063 ret = btrfs_inode_by_name(dir, dentry, &location); 5064 if (ret < 0) 5065 return ERR_PTR(ret); 5066 5067 if (location.objectid == 0) 5068 return NULL; 5069 5070 if (location.type == BTRFS_INODE_ITEM_KEY) { 5071 inode = btrfs_iget(dir->i_sb, &location, root, NULL); 5072 return inode; 5073 } 5074 5075 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY); 5076 5077 index = srcu_read_lock(&root->fs_info->subvol_srcu); 5078 ret = fixup_tree_root_location(root, dir, dentry, 5079 &location, &sub_root); 5080 if (ret < 0) { 5081 if (ret != -ENOENT) 5082 inode = ERR_PTR(ret); 5083 else 5084 inode = new_simple_dir(dir->i_sb, &location, sub_root); 5085 } else { 5086 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL); 5087 } 5088 srcu_read_unlock(&root->fs_info->subvol_srcu, index); 5089 5090 if (!IS_ERR(inode) && root != sub_root) { 5091 down_read(&root->fs_info->cleanup_work_sem); 5092 if (!(inode->i_sb->s_flags & MS_RDONLY)) 5093 ret = btrfs_orphan_cleanup(sub_root); 5094 up_read(&root->fs_info->cleanup_work_sem); 5095 if (ret) 5096 inode = ERR_PTR(ret); 5097 } 5098 5099 return inode; 5100 } 5101 5102 static int btrfs_dentry_delete(const struct dentry *dentry) 5103 { 5104 struct btrfs_root *root; 5105 struct inode *inode = dentry->d_inode; 5106 5107 if (!inode && !IS_ROOT(dentry)) 5108 inode = dentry->d_parent->d_inode; 5109 5110 if (inode) { 5111 root = BTRFS_I(inode)->root; 5112 if (btrfs_root_refs(&root->root_item) == 0) 5113 return 1; 5114 5115 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 5116 return 1; 5117 } 5118 return 0; 5119 } 5120 5121 static void btrfs_dentry_release(struct dentry *dentry) 5122 { 5123 if (dentry->d_fsdata) 5124 kfree(dentry->d_fsdata); 5125 } 5126 5127 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry, 5128 unsigned int flags) 5129 { 5130 struct dentry *ret; 5131 5132 ret = d_splice_alias(btrfs_lookup_dentry(dir, dentry), dentry); 5133 return ret; 5134 } 5135 5136 unsigned char btrfs_filetype_table[] = { 5137 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK 5138 }; 5139 5140 static int btrfs_real_readdir(struct file *filp, void *dirent, 5141 filldir_t filldir) 5142 { 5143 struct inode *inode = file_inode(filp); 5144 struct btrfs_root *root = BTRFS_I(inode)->root; 5145 struct btrfs_item *item; 5146 struct btrfs_dir_item *di; 5147 struct btrfs_key key; 5148 struct btrfs_key found_key; 5149 struct btrfs_path *path; 5150 struct list_head ins_list; 5151 struct list_head del_list; 5152 int ret; 5153 struct extent_buffer *leaf; 5154 int slot; 5155 unsigned char d_type; 5156 int over = 0; 5157 u32 di_cur; 5158 u32 di_total; 5159 u32 di_len; 5160 int key_type = BTRFS_DIR_INDEX_KEY; 5161 char tmp_name[32]; 5162 char *name_ptr; 5163 int name_len; 5164 int is_curr = 0; /* filp->f_pos points to the current index? */ 5165 5166 /* FIXME, use a real flag for deciding about the key type */ 5167 if (root->fs_info->tree_root == root) 5168 key_type = BTRFS_DIR_ITEM_KEY; 5169 5170 /* special case for "." */ 5171 if (filp->f_pos == 0) { 5172 over = filldir(dirent, ".", 1, 5173 filp->f_pos, btrfs_ino(inode), DT_DIR); 5174 if (over) 5175 return 0; 5176 filp->f_pos = 1; 5177 } 5178 /* special case for .., just use the back ref */ 5179 if (filp->f_pos == 1) { 5180 u64 pino = parent_ino(filp->f_path.dentry); 5181 over = filldir(dirent, "..", 2, 5182 filp->f_pos, pino, DT_DIR); 5183 if (over) 5184 return 0; 5185 filp->f_pos = 2; 5186 } 5187 path = btrfs_alloc_path(); 5188 if (!path) 5189 return -ENOMEM; 5190 5191 path->reada = 1; 5192 5193 if (key_type == BTRFS_DIR_INDEX_KEY) { 5194 INIT_LIST_HEAD(&ins_list); 5195 INIT_LIST_HEAD(&del_list); 5196 btrfs_get_delayed_items(inode, &ins_list, &del_list); 5197 } 5198 5199 btrfs_set_key_type(&key, key_type); 5200 key.offset = filp->f_pos; 5201 key.objectid = btrfs_ino(inode); 5202 5203 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5204 if (ret < 0) 5205 goto err; 5206 5207 while (1) { 5208 leaf = path->nodes[0]; 5209 slot = path->slots[0]; 5210 if (slot >= btrfs_header_nritems(leaf)) { 5211 ret = btrfs_next_leaf(root, path); 5212 if (ret < 0) 5213 goto err; 5214 else if (ret > 0) 5215 break; 5216 continue; 5217 } 5218 5219 item = btrfs_item_nr(leaf, slot); 5220 btrfs_item_key_to_cpu(leaf, &found_key, slot); 5221 5222 if (found_key.objectid != key.objectid) 5223 break; 5224 if (btrfs_key_type(&found_key) != key_type) 5225 break; 5226 if (found_key.offset < filp->f_pos) 5227 goto next; 5228 if (key_type == BTRFS_DIR_INDEX_KEY && 5229 btrfs_should_delete_dir_index(&del_list, 5230 found_key.offset)) 5231 goto next; 5232 5233 filp->f_pos = found_key.offset; 5234 is_curr = 1; 5235 5236 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item); 5237 di_cur = 0; 5238 di_total = btrfs_item_size(leaf, item); 5239 5240 while (di_cur < di_total) { 5241 struct btrfs_key location; 5242 5243 if (verify_dir_item(root, leaf, di)) 5244 break; 5245 5246 name_len = btrfs_dir_name_len(leaf, di); 5247 if (name_len <= sizeof(tmp_name)) { 5248 name_ptr = tmp_name; 5249 } else { 5250 name_ptr = kmalloc(name_len, GFP_NOFS); 5251 if (!name_ptr) { 5252 ret = -ENOMEM; 5253 goto err; 5254 } 5255 } 5256 read_extent_buffer(leaf, name_ptr, 5257 (unsigned long)(di + 1), name_len); 5258 5259 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)]; 5260 btrfs_dir_item_key_to_cpu(leaf, di, &location); 5261 5262 5263 /* is this a reference to our own snapshot? If so 5264 * skip it. 5265 * 5266 * In contrast to old kernels, we insert the snapshot's 5267 * dir item and dir index after it has been created, so 5268 * we won't find a reference to our own snapshot. We 5269 * still keep the following code for backward 5270 * compatibility. 5271 */ 5272 if (location.type == BTRFS_ROOT_ITEM_KEY && 5273 location.objectid == root->root_key.objectid) { 5274 over = 0; 5275 goto skip; 5276 } 5277 over = filldir(dirent, name_ptr, name_len, 5278 found_key.offset, location.objectid, 5279 d_type); 5280 5281 skip: 5282 if (name_ptr != tmp_name) 5283 kfree(name_ptr); 5284 5285 if (over) 5286 goto nopos; 5287 di_len = btrfs_dir_name_len(leaf, di) + 5288 btrfs_dir_data_len(leaf, di) + sizeof(*di); 5289 di_cur += di_len; 5290 di = (struct btrfs_dir_item *)((char *)di + di_len); 5291 } 5292 next: 5293 path->slots[0]++; 5294 } 5295 5296 if (key_type == BTRFS_DIR_INDEX_KEY) { 5297 if (is_curr) 5298 filp->f_pos++; 5299 ret = btrfs_readdir_delayed_dir_index(filp, dirent, filldir, 5300 &ins_list); 5301 if (ret) 5302 goto nopos; 5303 } 5304 5305 /* Reached end of directory/root. Bump pos past the last item. */ 5306 if (key_type == BTRFS_DIR_INDEX_KEY) 5307 /* 5308 * 32-bit glibc will use getdents64, but then strtol - 5309 * so the last number we can serve is this. 5310 */ 5311 filp->f_pos = 0x7fffffff; 5312 else 5313 filp->f_pos++; 5314 nopos: 5315 ret = 0; 5316 err: 5317 if (key_type == BTRFS_DIR_INDEX_KEY) 5318 btrfs_put_delayed_items(&ins_list, &del_list); 5319 btrfs_free_path(path); 5320 return ret; 5321 } 5322 5323 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc) 5324 { 5325 struct btrfs_root *root = BTRFS_I(inode)->root; 5326 struct btrfs_trans_handle *trans; 5327 int ret = 0; 5328 bool nolock = false; 5329 5330 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags)) 5331 return 0; 5332 5333 if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(inode)) 5334 nolock = true; 5335 5336 if (wbc->sync_mode == WB_SYNC_ALL) { 5337 if (nolock) 5338 trans = btrfs_join_transaction_nolock(root); 5339 else 5340 trans = btrfs_join_transaction(root); 5341 if (IS_ERR(trans)) 5342 return PTR_ERR(trans); 5343 ret = btrfs_commit_transaction(trans, root); 5344 } 5345 return ret; 5346 } 5347 5348 /* 5349 * This is somewhat expensive, updating the tree every time the 5350 * inode changes. But, it is most likely to find the inode in cache. 5351 * FIXME, needs more benchmarking...there are no reasons other than performance 5352 * to keep or drop this code. 5353 */ 5354 static int btrfs_dirty_inode(struct inode *inode) 5355 { 5356 struct btrfs_root *root = BTRFS_I(inode)->root; 5357 struct btrfs_trans_handle *trans; 5358 int ret; 5359 5360 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags)) 5361 return 0; 5362 5363 trans = btrfs_join_transaction(root); 5364 if (IS_ERR(trans)) 5365 return PTR_ERR(trans); 5366 5367 ret = btrfs_update_inode(trans, root, inode); 5368 if (ret && ret == -ENOSPC) { 5369 /* whoops, lets try again with the full transaction */ 5370 btrfs_end_transaction(trans, root); 5371 trans = btrfs_start_transaction(root, 1); 5372 if (IS_ERR(trans)) 5373 return PTR_ERR(trans); 5374 5375 ret = btrfs_update_inode(trans, root, inode); 5376 } 5377 btrfs_end_transaction(trans, root); 5378 if (BTRFS_I(inode)->delayed_node) 5379 btrfs_balance_delayed_items(root); 5380 5381 return ret; 5382 } 5383 5384 /* 5385 * This is a copy of file_update_time. We need this so we can return error on 5386 * ENOSPC for updating the inode in the case of file write and mmap writes. 5387 */ 5388 static int btrfs_update_time(struct inode *inode, struct timespec *now, 5389 int flags) 5390 { 5391 struct btrfs_root *root = BTRFS_I(inode)->root; 5392 5393 if (btrfs_root_readonly(root)) 5394 return -EROFS; 5395 5396 if (flags & S_VERSION) 5397 inode_inc_iversion(inode); 5398 if (flags & S_CTIME) 5399 inode->i_ctime = *now; 5400 if (flags & S_MTIME) 5401 inode->i_mtime = *now; 5402 if (flags & S_ATIME) 5403 inode->i_atime = *now; 5404 return btrfs_dirty_inode(inode); 5405 } 5406 5407 /* 5408 * find the highest existing sequence number in a directory 5409 * and then set the in-memory index_cnt variable to reflect 5410 * free sequence numbers 5411 */ 5412 static int btrfs_set_inode_index_count(struct inode *inode) 5413 { 5414 struct btrfs_root *root = BTRFS_I(inode)->root; 5415 struct btrfs_key key, found_key; 5416 struct btrfs_path *path; 5417 struct extent_buffer *leaf; 5418 int ret; 5419 5420 key.objectid = btrfs_ino(inode); 5421 btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY); 5422 key.offset = (u64)-1; 5423 5424 path = btrfs_alloc_path(); 5425 if (!path) 5426 return -ENOMEM; 5427 5428 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5429 if (ret < 0) 5430 goto out; 5431 /* FIXME: we should be able to handle this */ 5432 if (ret == 0) 5433 goto out; 5434 ret = 0; 5435 5436 /* 5437 * MAGIC NUMBER EXPLANATION: 5438 * since we search a directory based on f_pos we have to start at 2 5439 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody 5440 * else has to start at 2 5441 */ 5442 if (path->slots[0] == 0) { 5443 BTRFS_I(inode)->index_cnt = 2; 5444 goto out; 5445 } 5446 5447 path->slots[0]--; 5448 5449 leaf = path->nodes[0]; 5450 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 5451 5452 if (found_key.objectid != btrfs_ino(inode) || 5453 btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) { 5454 BTRFS_I(inode)->index_cnt = 2; 5455 goto out; 5456 } 5457 5458 BTRFS_I(inode)->index_cnt = found_key.offset + 1; 5459 out: 5460 btrfs_free_path(path); 5461 return ret; 5462 } 5463 5464 /* 5465 * helper to find a free sequence number in a given directory. This current 5466 * code is very simple, later versions will do smarter things in the btree 5467 */ 5468 int btrfs_set_inode_index(struct inode *dir, u64 *index) 5469 { 5470 int ret = 0; 5471 5472 if (BTRFS_I(dir)->index_cnt == (u64)-1) { 5473 ret = btrfs_inode_delayed_dir_index_count(dir); 5474 if (ret) { 5475 ret = btrfs_set_inode_index_count(dir); 5476 if (ret) 5477 return ret; 5478 } 5479 } 5480 5481 *index = BTRFS_I(dir)->index_cnt; 5482 BTRFS_I(dir)->index_cnt++; 5483 5484 return ret; 5485 } 5486 5487 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans, 5488 struct btrfs_root *root, 5489 struct inode *dir, 5490 const char *name, int name_len, 5491 u64 ref_objectid, u64 objectid, 5492 umode_t mode, u64 *index) 5493 { 5494 struct inode *inode; 5495 struct btrfs_inode_item *inode_item; 5496 struct btrfs_key *location; 5497 struct btrfs_path *path; 5498 struct btrfs_inode_ref *ref; 5499 struct btrfs_key key[2]; 5500 u32 sizes[2]; 5501 unsigned long ptr; 5502 int ret; 5503 int owner; 5504 5505 path = btrfs_alloc_path(); 5506 if (!path) 5507 return ERR_PTR(-ENOMEM); 5508 5509 inode = new_inode(root->fs_info->sb); 5510 if (!inode) { 5511 btrfs_free_path(path); 5512 return ERR_PTR(-ENOMEM); 5513 } 5514 5515 /* 5516 * we have to initialize this early, so we can reclaim the inode 5517 * number if we fail afterwards in this function. 5518 */ 5519 inode->i_ino = objectid; 5520 5521 if (dir) { 5522 trace_btrfs_inode_request(dir); 5523 5524 ret = btrfs_set_inode_index(dir, index); 5525 if (ret) { 5526 btrfs_free_path(path); 5527 iput(inode); 5528 return ERR_PTR(ret); 5529 } 5530 } 5531 /* 5532 * index_cnt is ignored for everything but a dir, 5533 * btrfs_get_inode_index_count has an explanation for the magic 5534 * number 5535 */ 5536 BTRFS_I(inode)->index_cnt = 2; 5537 BTRFS_I(inode)->root = root; 5538 BTRFS_I(inode)->generation = trans->transid; 5539 inode->i_generation = BTRFS_I(inode)->generation; 5540 5541 /* 5542 * We could have gotten an inode number from somebody who was fsynced 5543 * and then removed in this same transaction, so let's just set full 5544 * sync since it will be a full sync anyway and this will blow away the 5545 * old info in the log. 5546 */ 5547 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 5548 5549 if (S_ISDIR(mode)) 5550 owner = 0; 5551 else 5552 owner = 1; 5553 5554 key[0].objectid = objectid; 5555 btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY); 5556 key[0].offset = 0; 5557 5558 /* 5559 * Start new inodes with an inode_ref. This is slightly more 5560 * efficient for small numbers of hard links since they will 5561 * be packed into one item. Extended refs will kick in if we 5562 * add more hard links than can fit in the ref item. 5563 */ 5564 key[1].objectid = objectid; 5565 btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY); 5566 key[1].offset = ref_objectid; 5567 5568 sizes[0] = sizeof(struct btrfs_inode_item); 5569 sizes[1] = name_len + sizeof(*ref); 5570 5571 path->leave_spinning = 1; 5572 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2); 5573 if (ret != 0) 5574 goto fail; 5575 5576 inode_init_owner(inode, dir, mode); 5577 inode_set_bytes(inode, 0); 5578 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME; 5579 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0], 5580 struct btrfs_inode_item); 5581 memset_extent_buffer(path->nodes[0], 0, (unsigned long)inode_item, 5582 sizeof(*inode_item)); 5583 fill_inode_item(trans, path->nodes[0], inode_item, inode); 5584 5585 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1, 5586 struct btrfs_inode_ref); 5587 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len); 5588 btrfs_set_inode_ref_index(path->nodes[0], ref, *index); 5589 ptr = (unsigned long)(ref + 1); 5590 write_extent_buffer(path->nodes[0], name, ptr, name_len); 5591 5592 btrfs_mark_buffer_dirty(path->nodes[0]); 5593 btrfs_free_path(path); 5594 5595 location = &BTRFS_I(inode)->location; 5596 location->objectid = objectid; 5597 location->offset = 0; 5598 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY); 5599 5600 btrfs_inherit_iflags(inode, dir); 5601 5602 if (S_ISREG(mode)) { 5603 if (btrfs_test_opt(root, NODATASUM)) 5604 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; 5605 if (btrfs_test_opt(root, NODATACOW)) 5606 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW | 5607 BTRFS_INODE_NODATASUM; 5608 } 5609 5610 insert_inode_hash(inode); 5611 inode_tree_add(inode); 5612 5613 trace_btrfs_inode_new(inode); 5614 btrfs_set_inode_last_trans(trans, inode); 5615 5616 btrfs_update_root_times(trans, root); 5617 5618 return inode; 5619 fail: 5620 if (dir) 5621 BTRFS_I(dir)->index_cnt--; 5622 btrfs_free_path(path); 5623 iput(inode); 5624 return ERR_PTR(ret); 5625 } 5626 5627 static inline u8 btrfs_inode_type(struct inode *inode) 5628 { 5629 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT]; 5630 } 5631 5632 /* 5633 * utility function to add 'inode' into 'parent_inode' with 5634 * a give name and a given sequence number. 5635 * if 'add_backref' is true, also insert a backref from the 5636 * inode to the parent directory. 5637 */ 5638 int btrfs_add_link(struct btrfs_trans_handle *trans, 5639 struct inode *parent_inode, struct inode *inode, 5640 const char *name, int name_len, int add_backref, u64 index) 5641 { 5642 int ret = 0; 5643 struct btrfs_key key; 5644 struct btrfs_root *root = BTRFS_I(parent_inode)->root; 5645 u64 ino = btrfs_ino(inode); 5646 u64 parent_ino = btrfs_ino(parent_inode); 5647 5648 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 5649 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key)); 5650 } else { 5651 key.objectid = ino; 5652 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY); 5653 key.offset = 0; 5654 } 5655 5656 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 5657 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root, 5658 key.objectid, root->root_key.objectid, 5659 parent_ino, index, name, name_len); 5660 } else if (add_backref) { 5661 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino, 5662 parent_ino, index); 5663 } 5664 5665 /* Nothing to clean up yet */ 5666 if (ret) 5667 return ret; 5668 5669 ret = btrfs_insert_dir_item(trans, root, name, name_len, 5670 parent_inode, &key, 5671 btrfs_inode_type(inode), index); 5672 if (ret == -EEXIST || ret == -EOVERFLOW) 5673 goto fail_dir_item; 5674 else if (ret) { 5675 btrfs_abort_transaction(trans, root, ret); 5676 return ret; 5677 } 5678 5679 btrfs_i_size_write(parent_inode, parent_inode->i_size + 5680 name_len * 2); 5681 inode_inc_iversion(parent_inode); 5682 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME; 5683 ret = btrfs_update_inode(trans, root, parent_inode); 5684 if (ret) 5685 btrfs_abort_transaction(trans, root, ret); 5686 return ret; 5687 5688 fail_dir_item: 5689 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 5690 u64 local_index; 5691 int err; 5692 err = btrfs_del_root_ref(trans, root->fs_info->tree_root, 5693 key.objectid, root->root_key.objectid, 5694 parent_ino, &local_index, name, name_len); 5695 5696 } else if (add_backref) { 5697 u64 local_index; 5698 int err; 5699 5700 err = btrfs_del_inode_ref(trans, root, name, name_len, 5701 ino, parent_ino, &local_index); 5702 } 5703 return ret; 5704 } 5705 5706 static int btrfs_add_nondir(struct btrfs_trans_handle *trans, 5707 struct inode *dir, struct dentry *dentry, 5708 struct inode *inode, int backref, u64 index) 5709 { 5710 int err = btrfs_add_link(trans, dir, inode, 5711 dentry->d_name.name, dentry->d_name.len, 5712 backref, index); 5713 if (err > 0) 5714 err = -EEXIST; 5715 return err; 5716 } 5717 5718 static int btrfs_mknod(struct inode *dir, struct dentry *dentry, 5719 umode_t mode, dev_t rdev) 5720 { 5721 struct btrfs_trans_handle *trans; 5722 struct btrfs_root *root = BTRFS_I(dir)->root; 5723 struct inode *inode = NULL; 5724 int err; 5725 int drop_inode = 0; 5726 u64 objectid; 5727 u64 index = 0; 5728 5729 if (!new_valid_dev(rdev)) 5730 return -EINVAL; 5731 5732 /* 5733 * 2 for inode item and ref 5734 * 2 for dir items 5735 * 1 for xattr if selinux is on 5736 */ 5737 trans = btrfs_start_transaction(root, 5); 5738 if (IS_ERR(trans)) 5739 return PTR_ERR(trans); 5740 5741 err = btrfs_find_free_ino(root, &objectid); 5742 if (err) 5743 goto out_unlock; 5744 5745 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 5746 dentry->d_name.len, btrfs_ino(dir), objectid, 5747 mode, &index); 5748 if (IS_ERR(inode)) { 5749 err = PTR_ERR(inode); 5750 goto out_unlock; 5751 } 5752 5753 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 5754 if (err) { 5755 drop_inode = 1; 5756 goto out_unlock; 5757 } 5758 5759 /* 5760 * If the active LSM wants to access the inode during 5761 * d_instantiate it needs these. Smack checks to see 5762 * if the filesystem supports xattrs by looking at the 5763 * ops vector. 5764 */ 5765 5766 inode->i_op = &btrfs_special_inode_operations; 5767 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index); 5768 if (err) 5769 drop_inode = 1; 5770 else { 5771 init_special_inode(inode, inode->i_mode, rdev); 5772 btrfs_update_inode(trans, root, inode); 5773 d_instantiate(dentry, inode); 5774 } 5775 out_unlock: 5776 btrfs_end_transaction(trans, root); 5777 btrfs_btree_balance_dirty(root); 5778 if (drop_inode) { 5779 inode_dec_link_count(inode); 5780 iput(inode); 5781 } 5782 return err; 5783 } 5784 5785 static int btrfs_create(struct inode *dir, struct dentry *dentry, 5786 umode_t mode, bool excl) 5787 { 5788 struct btrfs_trans_handle *trans; 5789 struct btrfs_root *root = BTRFS_I(dir)->root; 5790 struct inode *inode = NULL; 5791 int drop_inode_on_err = 0; 5792 int err; 5793 u64 objectid; 5794 u64 index = 0; 5795 5796 /* 5797 * 2 for inode item and ref 5798 * 2 for dir items 5799 * 1 for xattr if selinux is on 5800 */ 5801 trans = btrfs_start_transaction(root, 5); 5802 if (IS_ERR(trans)) 5803 return PTR_ERR(trans); 5804 5805 err = btrfs_find_free_ino(root, &objectid); 5806 if (err) 5807 goto out_unlock; 5808 5809 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 5810 dentry->d_name.len, btrfs_ino(dir), objectid, 5811 mode, &index); 5812 if (IS_ERR(inode)) { 5813 err = PTR_ERR(inode); 5814 goto out_unlock; 5815 } 5816 drop_inode_on_err = 1; 5817 5818 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 5819 if (err) 5820 goto out_unlock; 5821 5822 err = btrfs_update_inode(trans, root, inode); 5823 if (err) 5824 goto out_unlock; 5825 5826 /* 5827 * If the active LSM wants to access the inode during 5828 * d_instantiate it needs these. Smack checks to see 5829 * if the filesystem supports xattrs by looking at the 5830 * ops vector. 5831 */ 5832 inode->i_fop = &btrfs_file_operations; 5833 inode->i_op = &btrfs_file_inode_operations; 5834 5835 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index); 5836 if (err) 5837 goto out_unlock; 5838 5839 inode->i_mapping->a_ops = &btrfs_aops; 5840 inode->i_mapping->backing_dev_info = &root->fs_info->bdi; 5841 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 5842 d_instantiate(dentry, inode); 5843 5844 out_unlock: 5845 btrfs_end_transaction(trans, root); 5846 if (err && drop_inode_on_err) { 5847 inode_dec_link_count(inode); 5848 iput(inode); 5849 } 5850 btrfs_btree_balance_dirty(root); 5851 return err; 5852 } 5853 5854 static int btrfs_link(struct dentry *old_dentry, struct inode *dir, 5855 struct dentry *dentry) 5856 { 5857 struct btrfs_trans_handle *trans; 5858 struct btrfs_root *root = BTRFS_I(dir)->root; 5859 struct inode *inode = old_dentry->d_inode; 5860 u64 index; 5861 int err; 5862 int drop_inode = 0; 5863 5864 /* do not allow sys_link's with other subvols of the same device */ 5865 if (root->objectid != BTRFS_I(inode)->root->objectid) 5866 return -EXDEV; 5867 5868 if (inode->i_nlink >= BTRFS_LINK_MAX) 5869 return -EMLINK; 5870 5871 err = btrfs_set_inode_index(dir, &index); 5872 if (err) 5873 goto fail; 5874 5875 /* 5876 * 2 items for inode and inode ref 5877 * 2 items for dir items 5878 * 1 item for parent inode 5879 */ 5880 trans = btrfs_start_transaction(root, 5); 5881 if (IS_ERR(trans)) { 5882 err = PTR_ERR(trans); 5883 goto fail; 5884 } 5885 5886 btrfs_inc_nlink(inode); 5887 inode_inc_iversion(inode); 5888 inode->i_ctime = CURRENT_TIME; 5889 ihold(inode); 5890 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags); 5891 5892 err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index); 5893 5894 if (err) { 5895 drop_inode = 1; 5896 } else { 5897 struct dentry *parent = dentry->d_parent; 5898 err = btrfs_update_inode(trans, root, inode); 5899 if (err) 5900 goto fail; 5901 d_instantiate(dentry, inode); 5902 btrfs_log_new_name(trans, inode, NULL, parent); 5903 } 5904 5905 btrfs_end_transaction(trans, root); 5906 fail: 5907 if (drop_inode) { 5908 inode_dec_link_count(inode); 5909 iput(inode); 5910 } 5911 btrfs_btree_balance_dirty(root); 5912 return err; 5913 } 5914 5915 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 5916 { 5917 struct inode *inode = NULL; 5918 struct btrfs_trans_handle *trans; 5919 struct btrfs_root *root = BTRFS_I(dir)->root; 5920 int err = 0; 5921 int drop_on_err = 0; 5922 u64 objectid = 0; 5923 u64 index = 0; 5924 5925 /* 5926 * 2 items for inode and ref 5927 * 2 items for dir items 5928 * 1 for xattr if selinux is on 5929 */ 5930 trans = btrfs_start_transaction(root, 5); 5931 if (IS_ERR(trans)) 5932 return PTR_ERR(trans); 5933 5934 err = btrfs_find_free_ino(root, &objectid); 5935 if (err) 5936 goto out_fail; 5937 5938 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 5939 dentry->d_name.len, btrfs_ino(dir), objectid, 5940 S_IFDIR | mode, &index); 5941 if (IS_ERR(inode)) { 5942 err = PTR_ERR(inode); 5943 goto out_fail; 5944 } 5945 5946 drop_on_err = 1; 5947 5948 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 5949 if (err) 5950 goto out_fail; 5951 5952 inode->i_op = &btrfs_dir_inode_operations; 5953 inode->i_fop = &btrfs_dir_file_operations; 5954 5955 btrfs_i_size_write(inode, 0); 5956 err = btrfs_update_inode(trans, root, inode); 5957 if (err) 5958 goto out_fail; 5959 5960 err = btrfs_add_link(trans, dir, inode, dentry->d_name.name, 5961 dentry->d_name.len, 0, index); 5962 if (err) 5963 goto out_fail; 5964 5965 d_instantiate(dentry, inode); 5966 drop_on_err = 0; 5967 5968 out_fail: 5969 btrfs_end_transaction(trans, root); 5970 if (drop_on_err) 5971 iput(inode); 5972 btrfs_btree_balance_dirty(root); 5973 return err; 5974 } 5975 5976 /* helper for btfs_get_extent. Given an existing extent in the tree, 5977 * and an extent that you want to insert, deal with overlap and insert 5978 * the new extent into the tree. 5979 */ 5980 static int merge_extent_mapping(struct extent_map_tree *em_tree, 5981 struct extent_map *existing, 5982 struct extent_map *em, 5983 u64 map_start, u64 map_len) 5984 { 5985 u64 start_diff; 5986 5987 BUG_ON(map_start < em->start || map_start >= extent_map_end(em)); 5988 start_diff = map_start - em->start; 5989 em->start = map_start; 5990 em->len = map_len; 5991 if (em->block_start < EXTENT_MAP_LAST_BYTE && 5992 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 5993 em->block_start += start_diff; 5994 em->block_len -= start_diff; 5995 } 5996 return add_extent_mapping(em_tree, em, 0); 5997 } 5998 5999 static noinline int uncompress_inline(struct btrfs_path *path, 6000 struct inode *inode, struct page *page, 6001 size_t pg_offset, u64 extent_offset, 6002 struct btrfs_file_extent_item *item) 6003 { 6004 int ret; 6005 struct extent_buffer *leaf = path->nodes[0]; 6006 char *tmp; 6007 size_t max_size; 6008 unsigned long inline_size; 6009 unsigned long ptr; 6010 int compress_type; 6011 6012 WARN_ON(pg_offset != 0); 6013 compress_type = btrfs_file_extent_compression(leaf, item); 6014 max_size = btrfs_file_extent_ram_bytes(leaf, item); 6015 inline_size = btrfs_file_extent_inline_item_len(leaf, 6016 btrfs_item_nr(leaf, path->slots[0])); 6017 tmp = kmalloc(inline_size, GFP_NOFS); 6018 if (!tmp) 6019 return -ENOMEM; 6020 ptr = btrfs_file_extent_inline_start(item); 6021 6022 read_extent_buffer(leaf, tmp, ptr, inline_size); 6023 6024 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size); 6025 ret = btrfs_decompress(compress_type, tmp, page, 6026 extent_offset, inline_size, max_size); 6027 if (ret) { 6028 char *kaddr = kmap_atomic(page); 6029 unsigned long copy_size = min_t(u64, 6030 PAGE_CACHE_SIZE - pg_offset, 6031 max_size - extent_offset); 6032 memset(kaddr + pg_offset, 0, copy_size); 6033 kunmap_atomic(kaddr); 6034 } 6035 kfree(tmp); 6036 return 0; 6037 } 6038 6039 /* 6040 * a bit scary, this does extent mapping from logical file offset to the disk. 6041 * the ugly parts come from merging extents from the disk with the in-ram 6042 * representation. This gets more complex because of the data=ordered code, 6043 * where the in-ram extents might be locked pending data=ordered completion. 6044 * 6045 * This also copies inline extents directly into the page. 6046 */ 6047 6048 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page, 6049 size_t pg_offset, u64 start, u64 len, 6050 int create) 6051 { 6052 int ret; 6053 int err = 0; 6054 u64 bytenr; 6055 u64 extent_start = 0; 6056 u64 extent_end = 0; 6057 u64 objectid = btrfs_ino(inode); 6058 u32 found_type; 6059 struct btrfs_path *path = NULL; 6060 struct btrfs_root *root = BTRFS_I(inode)->root; 6061 struct btrfs_file_extent_item *item; 6062 struct extent_buffer *leaf; 6063 struct btrfs_key found_key; 6064 struct extent_map *em = NULL; 6065 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 6066 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 6067 struct btrfs_trans_handle *trans = NULL; 6068 int compress_type; 6069 6070 again: 6071 read_lock(&em_tree->lock); 6072 em = lookup_extent_mapping(em_tree, start, len); 6073 if (em) 6074 em->bdev = root->fs_info->fs_devices->latest_bdev; 6075 read_unlock(&em_tree->lock); 6076 6077 if (em) { 6078 if (em->start > start || em->start + em->len <= start) 6079 free_extent_map(em); 6080 else if (em->block_start == EXTENT_MAP_INLINE && page) 6081 free_extent_map(em); 6082 else 6083 goto out; 6084 } 6085 em = alloc_extent_map(); 6086 if (!em) { 6087 err = -ENOMEM; 6088 goto out; 6089 } 6090 em->bdev = root->fs_info->fs_devices->latest_bdev; 6091 em->start = EXTENT_MAP_HOLE; 6092 em->orig_start = EXTENT_MAP_HOLE; 6093 em->len = (u64)-1; 6094 em->block_len = (u64)-1; 6095 6096 if (!path) { 6097 path = btrfs_alloc_path(); 6098 if (!path) { 6099 err = -ENOMEM; 6100 goto out; 6101 } 6102 /* 6103 * Chances are we'll be called again, so go ahead and do 6104 * readahead 6105 */ 6106 path->reada = 1; 6107 } 6108 6109 ret = btrfs_lookup_file_extent(trans, root, path, 6110 objectid, start, trans != NULL); 6111 if (ret < 0) { 6112 err = ret; 6113 goto out; 6114 } 6115 6116 if (ret != 0) { 6117 if (path->slots[0] == 0) 6118 goto not_found; 6119 path->slots[0]--; 6120 } 6121 6122 leaf = path->nodes[0]; 6123 item = btrfs_item_ptr(leaf, path->slots[0], 6124 struct btrfs_file_extent_item); 6125 /* are we inside the extent that was found? */ 6126 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6127 found_type = btrfs_key_type(&found_key); 6128 if (found_key.objectid != objectid || 6129 found_type != BTRFS_EXTENT_DATA_KEY) { 6130 goto not_found; 6131 } 6132 6133 found_type = btrfs_file_extent_type(leaf, item); 6134 extent_start = found_key.offset; 6135 compress_type = btrfs_file_extent_compression(leaf, item); 6136 if (found_type == BTRFS_FILE_EXTENT_REG || 6137 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 6138 extent_end = extent_start + 6139 btrfs_file_extent_num_bytes(leaf, item); 6140 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 6141 size_t size; 6142 size = btrfs_file_extent_inline_len(leaf, item); 6143 extent_end = ALIGN(extent_start + size, root->sectorsize); 6144 } 6145 6146 if (start >= extent_end) { 6147 path->slots[0]++; 6148 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 6149 ret = btrfs_next_leaf(root, path); 6150 if (ret < 0) { 6151 err = ret; 6152 goto out; 6153 } 6154 if (ret > 0) 6155 goto not_found; 6156 leaf = path->nodes[0]; 6157 } 6158 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6159 if (found_key.objectid != objectid || 6160 found_key.type != BTRFS_EXTENT_DATA_KEY) 6161 goto not_found; 6162 if (start + len <= found_key.offset) 6163 goto not_found; 6164 em->start = start; 6165 em->orig_start = start; 6166 em->len = found_key.offset - start; 6167 goto not_found_em; 6168 } 6169 6170 em->ram_bytes = btrfs_file_extent_ram_bytes(leaf, item); 6171 if (found_type == BTRFS_FILE_EXTENT_REG || 6172 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 6173 em->start = extent_start; 6174 em->len = extent_end - extent_start; 6175 em->orig_start = extent_start - 6176 btrfs_file_extent_offset(leaf, item); 6177 em->orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, 6178 item); 6179 bytenr = btrfs_file_extent_disk_bytenr(leaf, item); 6180 if (bytenr == 0) { 6181 em->block_start = EXTENT_MAP_HOLE; 6182 goto insert; 6183 } 6184 if (compress_type != BTRFS_COMPRESS_NONE) { 6185 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 6186 em->compress_type = compress_type; 6187 em->block_start = bytenr; 6188 em->block_len = em->orig_block_len; 6189 } else { 6190 bytenr += btrfs_file_extent_offset(leaf, item); 6191 em->block_start = bytenr; 6192 em->block_len = em->len; 6193 if (found_type == BTRFS_FILE_EXTENT_PREALLOC) 6194 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 6195 } 6196 goto insert; 6197 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 6198 unsigned long ptr; 6199 char *map; 6200 size_t size; 6201 size_t extent_offset; 6202 size_t copy_size; 6203 6204 em->block_start = EXTENT_MAP_INLINE; 6205 if (!page || create) { 6206 em->start = extent_start; 6207 em->len = extent_end - extent_start; 6208 goto out; 6209 } 6210 6211 size = btrfs_file_extent_inline_len(leaf, item); 6212 extent_offset = page_offset(page) + pg_offset - extent_start; 6213 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset, 6214 size - extent_offset); 6215 em->start = extent_start + extent_offset; 6216 em->len = ALIGN(copy_size, root->sectorsize); 6217 em->orig_block_len = em->len; 6218 em->orig_start = em->start; 6219 if (compress_type) { 6220 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 6221 em->compress_type = compress_type; 6222 } 6223 ptr = btrfs_file_extent_inline_start(item) + extent_offset; 6224 if (create == 0 && !PageUptodate(page)) { 6225 if (btrfs_file_extent_compression(leaf, item) != 6226 BTRFS_COMPRESS_NONE) { 6227 ret = uncompress_inline(path, inode, page, 6228 pg_offset, 6229 extent_offset, item); 6230 BUG_ON(ret); /* -ENOMEM */ 6231 } else { 6232 map = kmap(page); 6233 read_extent_buffer(leaf, map + pg_offset, ptr, 6234 copy_size); 6235 if (pg_offset + copy_size < PAGE_CACHE_SIZE) { 6236 memset(map + pg_offset + copy_size, 0, 6237 PAGE_CACHE_SIZE - pg_offset - 6238 copy_size); 6239 } 6240 kunmap(page); 6241 } 6242 flush_dcache_page(page); 6243 } else if (create && PageUptodate(page)) { 6244 BUG(); 6245 if (!trans) { 6246 kunmap(page); 6247 free_extent_map(em); 6248 em = NULL; 6249 6250 btrfs_release_path(path); 6251 trans = btrfs_join_transaction(root); 6252 6253 if (IS_ERR(trans)) 6254 return ERR_CAST(trans); 6255 goto again; 6256 } 6257 map = kmap(page); 6258 write_extent_buffer(leaf, map + pg_offset, ptr, 6259 copy_size); 6260 kunmap(page); 6261 btrfs_mark_buffer_dirty(leaf); 6262 } 6263 set_extent_uptodate(io_tree, em->start, 6264 extent_map_end(em) - 1, NULL, GFP_NOFS); 6265 goto insert; 6266 } else { 6267 WARN(1, KERN_ERR "btrfs unknown found_type %d\n", found_type); 6268 } 6269 not_found: 6270 em->start = start; 6271 em->orig_start = start; 6272 em->len = len; 6273 not_found_em: 6274 em->block_start = EXTENT_MAP_HOLE; 6275 set_bit(EXTENT_FLAG_VACANCY, &em->flags); 6276 insert: 6277 btrfs_release_path(path); 6278 if (em->start > start || extent_map_end(em) <= start) { 6279 btrfs_err(root->fs_info, "bad extent! em: [%llu %llu] passed [%llu %llu]", 6280 (unsigned long long)em->start, 6281 (unsigned long long)em->len, 6282 (unsigned long long)start, 6283 (unsigned long long)len); 6284 err = -EIO; 6285 goto out; 6286 } 6287 6288 err = 0; 6289 write_lock(&em_tree->lock); 6290 ret = add_extent_mapping(em_tree, em, 0); 6291 /* it is possible that someone inserted the extent into the tree 6292 * while we had the lock dropped. It is also possible that 6293 * an overlapping map exists in the tree 6294 */ 6295 if (ret == -EEXIST) { 6296 struct extent_map *existing; 6297 6298 ret = 0; 6299 6300 existing = lookup_extent_mapping(em_tree, start, len); 6301 if (existing && (existing->start > start || 6302 existing->start + existing->len <= start)) { 6303 free_extent_map(existing); 6304 existing = NULL; 6305 } 6306 if (!existing) { 6307 existing = lookup_extent_mapping(em_tree, em->start, 6308 em->len); 6309 if (existing) { 6310 err = merge_extent_mapping(em_tree, existing, 6311 em, start, 6312 root->sectorsize); 6313 free_extent_map(existing); 6314 if (err) { 6315 free_extent_map(em); 6316 em = NULL; 6317 } 6318 } else { 6319 err = -EIO; 6320 free_extent_map(em); 6321 em = NULL; 6322 } 6323 } else { 6324 free_extent_map(em); 6325 em = existing; 6326 err = 0; 6327 } 6328 } 6329 write_unlock(&em_tree->lock); 6330 out: 6331 6332 if (em) 6333 trace_btrfs_get_extent(root, em); 6334 6335 if (path) 6336 btrfs_free_path(path); 6337 if (trans) { 6338 ret = btrfs_end_transaction(trans, root); 6339 if (!err) 6340 err = ret; 6341 } 6342 if (err) { 6343 free_extent_map(em); 6344 return ERR_PTR(err); 6345 } 6346 BUG_ON(!em); /* Error is always set */ 6347 return em; 6348 } 6349 6350 struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page, 6351 size_t pg_offset, u64 start, u64 len, 6352 int create) 6353 { 6354 struct extent_map *em; 6355 struct extent_map *hole_em = NULL; 6356 u64 range_start = start; 6357 u64 end; 6358 u64 found; 6359 u64 found_end; 6360 int err = 0; 6361 6362 em = btrfs_get_extent(inode, page, pg_offset, start, len, create); 6363 if (IS_ERR(em)) 6364 return em; 6365 if (em) { 6366 /* 6367 * if our em maps to 6368 * - a hole or 6369 * - a pre-alloc extent, 6370 * there might actually be delalloc bytes behind it. 6371 */ 6372 if (em->block_start != EXTENT_MAP_HOLE && 6373 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 6374 return em; 6375 else 6376 hole_em = em; 6377 } 6378 6379 /* check to see if we've wrapped (len == -1 or similar) */ 6380 end = start + len; 6381 if (end < start) 6382 end = (u64)-1; 6383 else 6384 end -= 1; 6385 6386 em = NULL; 6387 6388 /* ok, we didn't find anything, lets look for delalloc */ 6389 found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start, 6390 end, len, EXTENT_DELALLOC, 1); 6391 found_end = range_start + found; 6392 if (found_end < range_start) 6393 found_end = (u64)-1; 6394 6395 /* 6396 * we didn't find anything useful, return 6397 * the original results from get_extent() 6398 */ 6399 if (range_start > end || found_end <= start) { 6400 em = hole_em; 6401 hole_em = NULL; 6402 goto out; 6403 } 6404 6405 /* adjust the range_start to make sure it doesn't 6406 * go backwards from the start they passed in 6407 */ 6408 range_start = max(start,range_start); 6409 found = found_end - range_start; 6410 6411 if (found > 0) { 6412 u64 hole_start = start; 6413 u64 hole_len = len; 6414 6415 em = alloc_extent_map(); 6416 if (!em) { 6417 err = -ENOMEM; 6418 goto out; 6419 } 6420 /* 6421 * when btrfs_get_extent can't find anything it 6422 * returns one huge hole 6423 * 6424 * make sure what it found really fits our range, and 6425 * adjust to make sure it is based on the start from 6426 * the caller 6427 */ 6428 if (hole_em) { 6429 u64 calc_end = extent_map_end(hole_em); 6430 6431 if (calc_end <= start || (hole_em->start > end)) { 6432 free_extent_map(hole_em); 6433 hole_em = NULL; 6434 } else { 6435 hole_start = max(hole_em->start, start); 6436 hole_len = calc_end - hole_start; 6437 } 6438 } 6439 em->bdev = NULL; 6440 if (hole_em && range_start > hole_start) { 6441 /* our hole starts before our delalloc, so we 6442 * have to return just the parts of the hole 6443 * that go until the delalloc starts 6444 */ 6445 em->len = min(hole_len, 6446 range_start - hole_start); 6447 em->start = hole_start; 6448 em->orig_start = hole_start; 6449 /* 6450 * don't adjust block start at all, 6451 * it is fixed at EXTENT_MAP_HOLE 6452 */ 6453 em->block_start = hole_em->block_start; 6454 em->block_len = hole_len; 6455 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags)) 6456 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 6457 } else { 6458 em->start = range_start; 6459 em->len = found; 6460 em->orig_start = range_start; 6461 em->block_start = EXTENT_MAP_DELALLOC; 6462 em->block_len = found; 6463 } 6464 } else if (hole_em) { 6465 return hole_em; 6466 } 6467 out: 6468 6469 free_extent_map(hole_em); 6470 if (err) { 6471 free_extent_map(em); 6472 return ERR_PTR(err); 6473 } 6474 return em; 6475 } 6476 6477 static struct extent_map *btrfs_new_extent_direct(struct inode *inode, 6478 u64 start, u64 len) 6479 { 6480 struct btrfs_root *root = BTRFS_I(inode)->root; 6481 struct btrfs_trans_handle *trans; 6482 struct extent_map *em; 6483 struct btrfs_key ins; 6484 u64 alloc_hint; 6485 int ret; 6486 6487 trans = btrfs_join_transaction(root); 6488 if (IS_ERR(trans)) 6489 return ERR_CAST(trans); 6490 6491 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 6492 6493 alloc_hint = get_extent_allocation_hint(inode, start, len); 6494 ret = btrfs_reserve_extent(trans, root, len, root->sectorsize, 0, 6495 alloc_hint, &ins, 1); 6496 if (ret) { 6497 em = ERR_PTR(ret); 6498 goto out; 6499 } 6500 6501 em = create_pinned_em(inode, start, ins.offset, start, ins.objectid, 6502 ins.offset, ins.offset, ins.offset, 0); 6503 if (IS_ERR(em)) 6504 goto out; 6505 6506 ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid, 6507 ins.offset, ins.offset, 0); 6508 if (ret) { 6509 btrfs_free_reserved_extent(root, ins.objectid, ins.offset); 6510 em = ERR_PTR(ret); 6511 } 6512 out: 6513 btrfs_end_transaction(trans, root); 6514 return em; 6515 } 6516 6517 /* 6518 * returns 1 when the nocow is safe, < 1 on error, 0 if the 6519 * block must be cow'd 6520 */ 6521 static noinline int can_nocow_odirect(struct btrfs_trans_handle *trans, 6522 struct inode *inode, u64 offset, u64 *len, 6523 u64 *orig_start, u64 *orig_block_len, 6524 u64 *ram_bytes) 6525 { 6526 struct btrfs_path *path; 6527 int ret; 6528 struct extent_buffer *leaf; 6529 struct btrfs_root *root = BTRFS_I(inode)->root; 6530 struct btrfs_file_extent_item *fi; 6531 struct btrfs_key key; 6532 u64 disk_bytenr; 6533 u64 backref_offset; 6534 u64 extent_end; 6535 u64 num_bytes; 6536 int slot; 6537 int found_type; 6538 6539 path = btrfs_alloc_path(); 6540 if (!path) 6541 return -ENOMEM; 6542 6543 ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode), 6544 offset, 0); 6545 if (ret < 0) 6546 goto out; 6547 6548 slot = path->slots[0]; 6549 if (ret == 1) { 6550 if (slot == 0) { 6551 /* can't find the item, must cow */ 6552 ret = 0; 6553 goto out; 6554 } 6555 slot--; 6556 } 6557 ret = 0; 6558 leaf = path->nodes[0]; 6559 btrfs_item_key_to_cpu(leaf, &key, slot); 6560 if (key.objectid != btrfs_ino(inode) || 6561 key.type != BTRFS_EXTENT_DATA_KEY) { 6562 /* not our file or wrong item type, must cow */ 6563 goto out; 6564 } 6565 6566 if (key.offset > offset) { 6567 /* Wrong offset, must cow */ 6568 goto out; 6569 } 6570 6571 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 6572 found_type = btrfs_file_extent_type(leaf, fi); 6573 if (found_type != BTRFS_FILE_EXTENT_REG && 6574 found_type != BTRFS_FILE_EXTENT_PREALLOC) { 6575 /* not a regular extent, must cow */ 6576 goto out; 6577 } 6578 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 6579 backref_offset = btrfs_file_extent_offset(leaf, fi); 6580 6581 *orig_start = key.offset - backref_offset; 6582 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi); 6583 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 6584 6585 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 6586 if (extent_end < offset + *len) { 6587 /* extent doesn't include our full range, must cow */ 6588 goto out; 6589 } 6590 6591 if (btrfs_extent_readonly(root, disk_bytenr)) 6592 goto out; 6593 6594 /* 6595 * look for other files referencing this extent, if we 6596 * find any we must cow 6597 */ 6598 if (btrfs_cross_ref_exist(trans, root, btrfs_ino(inode), 6599 key.offset - backref_offset, disk_bytenr)) 6600 goto out; 6601 6602 /* 6603 * adjust disk_bytenr and num_bytes to cover just the bytes 6604 * in this extent we are about to write. If there 6605 * are any csums in that range we have to cow in order 6606 * to keep the csums correct 6607 */ 6608 disk_bytenr += backref_offset; 6609 disk_bytenr += offset - key.offset; 6610 num_bytes = min(offset + *len, extent_end) - offset; 6611 if (csum_exist_in_range(root, disk_bytenr, num_bytes)) 6612 goto out; 6613 /* 6614 * all of the above have passed, it is safe to overwrite this extent 6615 * without cow 6616 */ 6617 *len = num_bytes; 6618 ret = 1; 6619 out: 6620 btrfs_free_path(path); 6621 return ret; 6622 } 6623 6624 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend, 6625 struct extent_state **cached_state, int writing) 6626 { 6627 struct btrfs_ordered_extent *ordered; 6628 int ret = 0; 6629 6630 while (1) { 6631 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 6632 0, cached_state); 6633 /* 6634 * We're concerned with the entire range that we're going to be 6635 * doing DIO to, so we need to make sure theres no ordered 6636 * extents in this range. 6637 */ 6638 ordered = btrfs_lookup_ordered_range(inode, lockstart, 6639 lockend - lockstart + 1); 6640 6641 /* 6642 * We need to make sure there are no buffered pages in this 6643 * range either, we could have raced between the invalidate in 6644 * generic_file_direct_write and locking the extent. The 6645 * invalidate needs to happen so that reads after a write do not 6646 * get stale data. 6647 */ 6648 if (!ordered && (!writing || 6649 !test_range_bit(&BTRFS_I(inode)->io_tree, 6650 lockstart, lockend, EXTENT_UPTODATE, 0, 6651 *cached_state))) 6652 break; 6653 6654 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, 6655 cached_state, GFP_NOFS); 6656 6657 if (ordered) { 6658 btrfs_start_ordered_extent(inode, ordered, 1); 6659 btrfs_put_ordered_extent(ordered); 6660 } else { 6661 /* Screw you mmap */ 6662 ret = filemap_write_and_wait_range(inode->i_mapping, 6663 lockstart, 6664 lockend); 6665 if (ret) 6666 break; 6667 6668 /* 6669 * If we found a page that couldn't be invalidated just 6670 * fall back to buffered. 6671 */ 6672 ret = invalidate_inode_pages2_range(inode->i_mapping, 6673 lockstart >> PAGE_CACHE_SHIFT, 6674 lockend >> PAGE_CACHE_SHIFT); 6675 if (ret) 6676 break; 6677 } 6678 6679 cond_resched(); 6680 } 6681 6682 return ret; 6683 } 6684 6685 static struct extent_map *create_pinned_em(struct inode *inode, u64 start, 6686 u64 len, u64 orig_start, 6687 u64 block_start, u64 block_len, 6688 u64 orig_block_len, u64 ram_bytes, 6689 int type) 6690 { 6691 struct extent_map_tree *em_tree; 6692 struct extent_map *em; 6693 struct btrfs_root *root = BTRFS_I(inode)->root; 6694 int ret; 6695 6696 em_tree = &BTRFS_I(inode)->extent_tree; 6697 em = alloc_extent_map(); 6698 if (!em) 6699 return ERR_PTR(-ENOMEM); 6700 6701 em->start = start; 6702 em->orig_start = orig_start; 6703 em->mod_start = start; 6704 em->mod_len = len; 6705 em->len = len; 6706 em->block_len = block_len; 6707 em->block_start = block_start; 6708 em->bdev = root->fs_info->fs_devices->latest_bdev; 6709 em->orig_block_len = orig_block_len; 6710 em->ram_bytes = ram_bytes; 6711 em->generation = -1; 6712 set_bit(EXTENT_FLAG_PINNED, &em->flags); 6713 if (type == BTRFS_ORDERED_PREALLOC) 6714 set_bit(EXTENT_FLAG_FILLING, &em->flags); 6715 6716 do { 6717 btrfs_drop_extent_cache(inode, em->start, 6718 em->start + em->len - 1, 0); 6719 write_lock(&em_tree->lock); 6720 ret = add_extent_mapping(em_tree, em, 1); 6721 write_unlock(&em_tree->lock); 6722 } while (ret == -EEXIST); 6723 6724 if (ret) { 6725 free_extent_map(em); 6726 return ERR_PTR(ret); 6727 } 6728 6729 return em; 6730 } 6731 6732 6733 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock, 6734 struct buffer_head *bh_result, int create) 6735 { 6736 struct extent_map *em; 6737 struct btrfs_root *root = BTRFS_I(inode)->root; 6738 struct extent_state *cached_state = NULL; 6739 u64 start = iblock << inode->i_blkbits; 6740 u64 lockstart, lockend; 6741 u64 len = bh_result->b_size; 6742 struct btrfs_trans_handle *trans; 6743 int unlock_bits = EXTENT_LOCKED; 6744 int ret = 0; 6745 6746 if (create) 6747 unlock_bits |= EXTENT_DELALLOC | EXTENT_DIRTY; 6748 else 6749 len = min_t(u64, len, root->sectorsize); 6750 6751 lockstart = start; 6752 lockend = start + len - 1; 6753 6754 /* 6755 * If this errors out it's because we couldn't invalidate pagecache for 6756 * this range and we need to fallback to buffered. 6757 */ 6758 if (lock_extent_direct(inode, lockstart, lockend, &cached_state, create)) 6759 return -ENOTBLK; 6760 6761 em = btrfs_get_extent(inode, NULL, 0, start, len, 0); 6762 if (IS_ERR(em)) { 6763 ret = PTR_ERR(em); 6764 goto unlock_err; 6765 } 6766 6767 /* 6768 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered 6769 * io. INLINE is special, and we could probably kludge it in here, but 6770 * it's still buffered so for safety lets just fall back to the generic 6771 * buffered path. 6772 * 6773 * For COMPRESSED we _have_ to read the entire extent in so we can 6774 * decompress it, so there will be buffering required no matter what we 6775 * do, so go ahead and fallback to buffered. 6776 * 6777 * We return -ENOTBLK because thats what makes DIO go ahead and go back 6778 * to buffered IO. Don't blame me, this is the price we pay for using 6779 * the generic code. 6780 */ 6781 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) || 6782 em->block_start == EXTENT_MAP_INLINE) { 6783 free_extent_map(em); 6784 ret = -ENOTBLK; 6785 goto unlock_err; 6786 } 6787 6788 /* Just a good old fashioned hole, return */ 6789 if (!create && (em->block_start == EXTENT_MAP_HOLE || 6790 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) { 6791 free_extent_map(em); 6792 goto unlock_err; 6793 } 6794 6795 /* 6796 * We don't allocate a new extent in the following cases 6797 * 6798 * 1) The inode is marked as NODATACOW. In this case we'll just use the 6799 * existing extent. 6800 * 2) The extent is marked as PREALLOC. We're good to go here and can 6801 * just use the extent. 6802 * 6803 */ 6804 if (!create) { 6805 len = min(len, em->len - (start - em->start)); 6806 lockstart = start + len; 6807 goto unlock; 6808 } 6809 6810 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) || 6811 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) && 6812 em->block_start != EXTENT_MAP_HOLE)) { 6813 int type; 6814 int ret; 6815 u64 block_start, orig_start, orig_block_len, ram_bytes; 6816 6817 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 6818 type = BTRFS_ORDERED_PREALLOC; 6819 else 6820 type = BTRFS_ORDERED_NOCOW; 6821 len = min(len, em->len - (start - em->start)); 6822 block_start = em->block_start + (start - em->start); 6823 6824 /* 6825 * we're not going to log anything, but we do need 6826 * to make sure the current transaction stays open 6827 * while we look for nocow cross refs 6828 */ 6829 trans = btrfs_join_transaction(root); 6830 if (IS_ERR(trans)) 6831 goto must_cow; 6832 6833 if (can_nocow_odirect(trans, inode, start, &len, &orig_start, 6834 &orig_block_len, &ram_bytes) == 1) { 6835 if (type == BTRFS_ORDERED_PREALLOC) { 6836 free_extent_map(em); 6837 em = create_pinned_em(inode, start, len, 6838 orig_start, 6839 block_start, len, 6840 orig_block_len, 6841 ram_bytes, type); 6842 if (IS_ERR(em)) { 6843 btrfs_end_transaction(trans, root); 6844 goto unlock_err; 6845 } 6846 } 6847 6848 ret = btrfs_add_ordered_extent_dio(inode, start, 6849 block_start, len, len, type); 6850 btrfs_end_transaction(trans, root); 6851 if (ret) { 6852 free_extent_map(em); 6853 goto unlock_err; 6854 } 6855 goto unlock; 6856 } 6857 btrfs_end_transaction(trans, root); 6858 } 6859 must_cow: 6860 /* 6861 * this will cow the extent, reset the len in case we changed 6862 * it above 6863 */ 6864 len = bh_result->b_size; 6865 free_extent_map(em); 6866 em = btrfs_new_extent_direct(inode, start, len); 6867 if (IS_ERR(em)) { 6868 ret = PTR_ERR(em); 6869 goto unlock_err; 6870 } 6871 len = min(len, em->len - (start - em->start)); 6872 unlock: 6873 bh_result->b_blocknr = (em->block_start + (start - em->start)) >> 6874 inode->i_blkbits; 6875 bh_result->b_size = len; 6876 bh_result->b_bdev = em->bdev; 6877 set_buffer_mapped(bh_result); 6878 if (create) { 6879 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 6880 set_buffer_new(bh_result); 6881 6882 /* 6883 * Need to update the i_size under the extent lock so buffered 6884 * readers will get the updated i_size when we unlock. 6885 */ 6886 if (start + len > i_size_read(inode)) 6887 i_size_write(inode, start + len); 6888 6889 spin_lock(&BTRFS_I(inode)->lock); 6890 BTRFS_I(inode)->outstanding_extents++; 6891 spin_unlock(&BTRFS_I(inode)->lock); 6892 6893 ret = set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, 6894 lockstart + len - 1, EXTENT_DELALLOC, NULL, 6895 &cached_state, GFP_NOFS); 6896 BUG_ON(ret); 6897 } 6898 6899 /* 6900 * In the case of write we need to clear and unlock the entire range, 6901 * in the case of read we need to unlock only the end area that we 6902 * aren't using if there is any left over space. 6903 */ 6904 if (lockstart < lockend) { 6905 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, 6906 lockend, unlock_bits, 1, 0, 6907 &cached_state, GFP_NOFS); 6908 } else { 6909 free_extent_state(cached_state); 6910 } 6911 6912 free_extent_map(em); 6913 6914 return 0; 6915 6916 unlock_err: 6917 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend, 6918 unlock_bits, 1, 0, &cached_state, GFP_NOFS); 6919 return ret; 6920 } 6921 6922 struct btrfs_dio_private { 6923 struct inode *inode; 6924 u64 logical_offset; 6925 u64 disk_bytenr; 6926 u64 bytes; 6927 void *private; 6928 6929 /* number of bios pending for this dio */ 6930 atomic_t pending_bios; 6931 6932 /* IO errors */ 6933 int errors; 6934 6935 /* orig_bio is our btrfs_io_bio */ 6936 struct bio *orig_bio; 6937 6938 /* dio_bio came from fs/direct-io.c */ 6939 struct bio *dio_bio; 6940 }; 6941 6942 static void btrfs_endio_direct_read(struct bio *bio, int err) 6943 { 6944 struct btrfs_dio_private *dip = bio->bi_private; 6945 struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1; 6946 struct bio_vec *bvec = bio->bi_io_vec; 6947 struct inode *inode = dip->inode; 6948 struct btrfs_root *root = BTRFS_I(inode)->root; 6949 struct bio *dio_bio; 6950 u64 start; 6951 6952 start = dip->logical_offset; 6953 do { 6954 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) { 6955 struct page *page = bvec->bv_page; 6956 char *kaddr; 6957 u32 csum = ~(u32)0; 6958 u64 private = ~(u32)0; 6959 unsigned long flags; 6960 6961 if (get_state_private(&BTRFS_I(inode)->io_tree, 6962 start, &private)) 6963 goto failed; 6964 local_irq_save(flags); 6965 kaddr = kmap_atomic(page); 6966 csum = btrfs_csum_data(kaddr + bvec->bv_offset, 6967 csum, bvec->bv_len); 6968 btrfs_csum_final(csum, (char *)&csum); 6969 kunmap_atomic(kaddr); 6970 local_irq_restore(flags); 6971 6972 flush_dcache_page(bvec->bv_page); 6973 if (csum != private) { 6974 failed: 6975 btrfs_err(root->fs_info, "csum failed ino %llu off %llu csum %u private %u", 6976 (unsigned long long)btrfs_ino(inode), 6977 (unsigned long long)start, 6978 csum, (unsigned)private); 6979 err = -EIO; 6980 } 6981 } 6982 6983 start += bvec->bv_len; 6984 bvec++; 6985 } while (bvec <= bvec_end); 6986 6987 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset, 6988 dip->logical_offset + dip->bytes - 1); 6989 dio_bio = dip->dio_bio; 6990 6991 kfree(dip); 6992 6993 /* If we had a csum failure make sure to clear the uptodate flag */ 6994 if (err) 6995 clear_bit(BIO_UPTODATE, &dio_bio->bi_flags); 6996 dio_end_io(dio_bio, err); 6997 bio_put(bio); 6998 } 6999 7000 static void btrfs_endio_direct_write(struct bio *bio, int err) 7001 { 7002 struct btrfs_dio_private *dip = bio->bi_private; 7003 struct inode *inode = dip->inode; 7004 struct btrfs_root *root = BTRFS_I(inode)->root; 7005 struct btrfs_ordered_extent *ordered = NULL; 7006 u64 ordered_offset = dip->logical_offset; 7007 u64 ordered_bytes = dip->bytes; 7008 struct bio *dio_bio; 7009 int ret; 7010 7011 if (err) 7012 goto out_done; 7013 again: 7014 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered, 7015 &ordered_offset, 7016 ordered_bytes, !err); 7017 if (!ret) 7018 goto out_test; 7019 7020 ordered->work.func = finish_ordered_fn; 7021 ordered->work.flags = 0; 7022 btrfs_queue_worker(&root->fs_info->endio_write_workers, 7023 &ordered->work); 7024 out_test: 7025 /* 7026 * our bio might span multiple ordered extents. If we haven't 7027 * completed the accounting for the whole dio, go back and try again 7028 */ 7029 if (ordered_offset < dip->logical_offset + dip->bytes) { 7030 ordered_bytes = dip->logical_offset + dip->bytes - 7031 ordered_offset; 7032 ordered = NULL; 7033 goto again; 7034 } 7035 out_done: 7036 dio_bio = dip->dio_bio; 7037 7038 kfree(dip); 7039 7040 /* If we had an error make sure to clear the uptodate flag */ 7041 if (err) 7042 clear_bit(BIO_UPTODATE, &dio_bio->bi_flags); 7043 dio_end_io(dio_bio, err); 7044 bio_put(bio); 7045 } 7046 7047 static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw, 7048 struct bio *bio, int mirror_num, 7049 unsigned long bio_flags, u64 offset) 7050 { 7051 int ret; 7052 struct btrfs_root *root = BTRFS_I(inode)->root; 7053 ret = btrfs_csum_one_bio(root, inode, bio, offset, 1); 7054 BUG_ON(ret); /* -ENOMEM */ 7055 return 0; 7056 } 7057 7058 static void btrfs_end_dio_bio(struct bio *bio, int err) 7059 { 7060 struct btrfs_dio_private *dip = bio->bi_private; 7061 7062 if (err) { 7063 printk(KERN_ERR "btrfs direct IO failed ino %llu rw %lu " 7064 "sector %#Lx len %u err no %d\n", 7065 (unsigned long long)btrfs_ino(dip->inode), bio->bi_rw, 7066 (unsigned long long)bio->bi_sector, bio->bi_size, err); 7067 dip->errors = 1; 7068 7069 /* 7070 * before atomic variable goto zero, we must make sure 7071 * dip->errors is perceived to be set. 7072 */ 7073 smp_mb__before_atomic_dec(); 7074 } 7075 7076 /* if there are more bios still pending for this dio, just exit */ 7077 if (!atomic_dec_and_test(&dip->pending_bios)) 7078 goto out; 7079 7080 if (dip->errors) { 7081 bio_io_error(dip->orig_bio); 7082 } else { 7083 set_bit(BIO_UPTODATE, &dip->dio_bio->bi_flags); 7084 bio_endio(dip->orig_bio, 0); 7085 } 7086 out: 7087 bio_put(bio); 7088 } 7089 7090 static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev, 7091 u64 first_sector, gfp_t gfp_flags) 7092 { 7093 int nr_vecs = bio_get_nr_vecs(bdev); 7094 return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags); 7095 } 7096 7097 static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode, 7098 int rw, u64 file_offset, int skip_sum, 7099 int async_submit) 7100 { 7101 int write = rw & REQ_WRITE; 7102 struct btrfs_root *root = BTRFS_I(inode)->root; 7103 int ret; 7104 7105 if (async_submit) 7106 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers); 7107 7108 bio_get(bio); 7109 7110 if (!write) { 7111 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0); 7112 if (ret) 7113 goto err; 7114 } 7115 7116 if (skip_sum) 7117 goto map; 7118 7119 if (write && async_submit) { 7120 ret = btrfs_wq_submit_bio(root->fs_info, 7121 inode, rw, bio, 0, 0, 7122 file_offset, 7123 __btrfs_submit_bio_start_direct_io, 7124 __btrfs_submit_bio_done); 7125 goto err; 7126 } else if (write) { 7127 /* 7128 * If we aren't doing async submit, calculate the csum of the 7129 * bio now. 7130 */ 7131 ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1); 7132 if (ret) 7133 goto err; 7134 } else if (!skip_sum) { 7135 ret = btrfs_lookup_bio_sums_dio(root, inode, bio, file_offset); 7136 if (ret) 7137 goto err; 7138 } 7139 7140 map: 7141 ret = btrfs_map_bio(root, rw, bio, 0, async_submit); 7142 err: 7143 bio_put(bio); 7144 return ret; 7145 } 7146 7147 static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip, 7148 int skip_sum) 7149 { 7150 struct inode *inode = dip->inode; 7151 struct btrfs_root *root = BTRFS_I(inode)->root; 7152 struct bio *bio; 7153 struct bio *orig_bio = dip->orig_bio; 7154 struct bio_vec *bvec = orig_bio->bi_io_vec; 7155 u64 start_sector = orig_bio->bi_sector; 7156 u64 file_offset = dip->logical_offset; 7157 u64 submit_len = 0; 7158 u64 map_length; 7159 int nr_pages = 0; 7160 int ret = 0; 7161 int async_submit = 0; 7162 7163 map_length = orig_bio->bi_size; 7164 ret = btrfs_map_block(root->fs_info, rw, start_sector << 9, 7165 &map_length, NULL, 0); 7166 if (ret) { 7167 bio_put(orig_bio); 7168 return -EIO; 7169 } 7170 if (map_length >= orig_bio->bi_size) { 7171 bio = orig_bio; 7172 goto submit; 7173 } 7174 7175 /* async crcs make it difficult to collect full stripe writes. */ 7176 if (btrfs_get_alloc_profile(root, 1) & 7177 (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6)) 7178 async_submit = 0; 7179 else 7180 async_submit = 1; 7181 7182 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS); 7183 if (!bio) 7184 return -ENOMEM; 7185 bio->bi_private = dip; 7186 bio->bi_end_io = btrfs_end_dio_bio; 7187 atomic_inc(&dip->pending_bios); 7188 7189 while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) { 7190 if (unlikely(map_length < submit_len + bvec->bv_len || 7191 bio_add_page(bio, bvec->bv_page, bvec->bv_len, 7192 bvec->bv_offset) < bvec->bv_len)) { 7193 /* 7194 * inc the count before we submit the bio so 7195 * we know the end IO handler won't happen before 7196 * we inc the count. Otherwise, the dip might get freed 7197 * before we're done setting it up 7198 */ 7199 atomic_inc(&dip->pending_bios); 7200 ret = __btrfs_submit_dio_bio(bio, inode, rw, 7201 file_offset, skip_sum, 7202 async_submit); 7203 if (ret) { 7204 bio_put(bio); 7205 atomic_dec(&dip->pending_bios); 7206 goto out_err; 7207 } 7208 7209 start_sector += submit_len >> 9; 7210 file_offset += submit_len; 7211 7212 submit_len = 0; 7213 nr_pages = 0; 7214 7215 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, 7216 start_sector, GFP_NOFS); 7217 if (!bio) 7218 goto out_err; 7219 bio->bi_private = dip; 7220 bio->bi_end_io = btrfs_end_dio_bio; 7221 7222 map_length = orig_bio->bi_size; 7223 ret = btrfs_map_block(root->fs_info, rw, 7224 start_sector << 9, 7225 &map_length, NULL, 0); 7226 if (ret) { 7227 bio_put(bio); 7228 goto out_err; 7229 } 7230 } else { 7231 submit_len += bvec->bv_len; 7232 nr_pages ++; 7233 bvec++; 7234 } 7235 } 7236 7237 submit: 7238 ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum, 7239 async_submit); 7240 if (!ret) 7241 return 0; 7242 7243 bio_put(bio); 7244 out_err: 7245 dip->errors = 1; 7246 /* 7247 * before atomic variable goto zero, we must 7248 * make sure dip->errors is perceived to be set. 7249 */ 7250 smp_mb__before_atomic_dec(); 7251 if (atomic_dec_and_test(&dip->pending_bios)) 7252 bio_io_error(dip->orig_bio); 7253 7254 /* bio_end_io() will handle error, so we needn't return it */ 7255 return 0; 7256 } 7257 7258 static void btrfs_submit_direct(int rw, struct bio *dio_bio, 7259 struct inode *inode, loff_t file_offset) 7260 { 7261 struct btrfs_root *root = BTRFS_I(inode)->root; 7262 struct btrfs_dio_private *dip; 7263 struct bio_vec *bvec = dio_bio->bi_io_vec; 7264 struct bio *io_bio; 7265 int skip_sum; 7266 int write = rw & REQ_WRITE; 7267 int ret = 0; 7268 7269 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 7270 7271 io_bio = btrfs_bio_clone(dio_bio, GFP_NOFS); 7272 7273 if (!io_bio) { 7274 ret = -ENOMEM; 7275 goto free_ordered; 7276 } 7277 7278 dip = kmalloc(sizeof(*dip), GFP_NOFS); 7279 if (!dip) { 7280 ret = -ENOMEM; 7281 goto free_io_bio; 7282 } 7283 7284 dip->private = dio_bio->bi_private; 7285 io_bio->bi_private = dio_bio->bi_private; 7286 dip->inode = inode; 7287 dip->logical_offset = file_offset; 7288 7289 dip->bytes = 0; 7290 do { 7291 dip->bytes += bvec->bv_len; 7292 bvec++; 7293 } while (bvec <= (dio_bio->bi_io_vec + dio_bio->bi_vcnt - 1)); 7294 7295 dip->disk_bytenr = (u64)dio_bio->bi_sector << 9; 7296 io_bio->bi_private = dip; 7297 dip->errors = 0; 7298 dip->orig_bio = io_bio; 7299 dip->dio_bio = dio_bio; 7300 atomic_set(&dip->pending_bios, 0); 7301 7302 if (write) 7303 io_bio->bi_end_io = btrfs_endio_direct_write; 7304 else 7305 io_bio->bi_end_io = btrfs_endio_direct_read; 7306 7307 ret = btrfs_submit_direct_hook(rw, dip, skip_sum); 7308 if (!ret) 7309 return; 7310 7311 free_io_bio: 7312 bio_put(io_bio); 7313 7314 free_ordered: 7315 /* 7316 * If this is a write, we need to clean up the reserved space and kill 7317 * the ordered extent. 7318 */ 7319 if (write) { 7320 struct btrfs_ordered_extent *ordered; 7321 ordered = btrfs_lookup_ordered_extent(inode, file_offset); 7322 if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) && 7323 !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags)) 7324 btrfs_free_reserved_extent(root, ordered->start, 7325 ordered->disk_len); 7326 btrfs_put_ordered_extent(ordered); 7327 btrfs_put_ordered_extent(ordered); 7328 } 7329 bio_endio(dio_bio, ret); 7330 } 7331 7332 static ssize_t check_direct_IO(struct btrfs_root *root, int rw, struct kiocb *iocb, 7333 const struct iovec *iov, loff_t offset, 7334 unsigned long nr_segs) 7335 { 7336 int seg; 7337 int i; 7338 size_t size; 7339 unsigned long addr; 7340 unsigned blocksize_mask = root->sectorsize - 1; 7341 ssize_t retval = -EINVAL; 7342 loff_t end = offset; 7343 7344 if (offset & blocksize_mask) 7345 goto out; 7346 7347 /* Check the memory alignment. Blocks cannot straddle pages */ 7348 for (seg = 0; seg < nr_segs; seg++) { 7349 addr = (unsigned long)iov[seg].iov_base; 7350 size = iov[seg].iov_len; 7351 end += size; 7352 if ((addr & blocksize_mask) || (size & blocksize_mask)) 7353 goto out; 7354 7355 /* If this is a write we don't need to check anymore */ 7356 if (rw & WRITE) 7357 continue; 7358 7359 /* 7360 * Check to make sure we don't have duplicate iov_base's in this 7361 * iovec, if so return EINVAL, otherwise we'll get csum errors 7362 * when reading back. 7363 */ 7364 for (i = seg + 1; i < nr_segs; i++) { 7365 if (iov[seg].iov_base == iov[i].iov_base) 7366 goto out; 7367 } 7368 } 7369 retval = 0; 7370 out: 7371 return retval; 7372 } 7373 7374 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb, 7375 const struct iovec *iov, loff_t offset, 7376 unsigned long nr_segs) 7377 { 7378 struct file *file = iocb->ki_filp; 7379 struct inode *inode = file->f_mapping->host; 7380 size_t count = 0; 7381 int flags = 0; 7382 bool wakeup = true; 7383 bool relock = false; 7384 ssize_t ret; 7385 7386 if (check_direct_IO(BTRFS_I(inode)->root, rw, iocb, iov, 7387 offset, nr_segs)) 7388 return 0; 7389 7390 atomic_inc(&inode->i_dio_count); 7391 smp_mb__after_atomic_inc(); 7392 7393 if (rw & WRITE) { 7394 count = iov_length(iov, nr_segs); 7395 /* 7396 * If the write DIO is beyond the EOF, we need update 7397 * the isize, but it is protected by i_mutex. So we can 7398 * not unlock the i_mutex at this case. 7399 */ 7400 if (offset + count <= inode->i_size) { 7401 mutex_unlock(&inode->i_mutex); 7402 relock = true; 7403 } 7404 ret = btrfs_delalloc_reserve_space(inode, count); 7405 if (ret) 7406 goto out; 7407 } else if (unlikely(test_bit(BTRFS_INODE_READDIO_NEED_LOCK, 7408 &BTRFS_I(inode)->runtime_flags))) { 7409 inode_dio_done(inode); 7410 flags = DIO_LOCKING | DIO_SKIP_HOLES; 7411 wakeup = false; 7412 } 7413 7414 ret = __blockdev_direct_IO(rw, iocb, inode, 7415 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev, 7416 iov, offset, nr_segs, btrfs_get_blocks_direct, NULL, 7417 btrfs_submit_direct, flags); 7418 if (rw & WRITE) { 7419 if (ret < 0 && ret != -EIOCBQUEUED) 7420 btrfs_delalloc_release_space(inode, count); 7421 else if (ret >= 0 && (size_t)ret < count) 7422 btrfs_delalloc_release_space(inode, 7423 count - (size_t)ret); 7424 else 7425 btrfs_delalloc_release_metadata(inode, 0); 7426 } 7427 out: 7428 if (wakeup) 7429 inode_dio_done(inode); 7430 if (relock) 7431 mutex_lock(&inode->i_mutex); 7432 7433 return ret; 7434 } 7435 7436 #define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC) 7437 7438 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 7439 __u64 start, __u64 len) 7440 { 7441 int ret; 7442 7443 ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS); 7444 if (ret) 7445 return ret; 7446 7447 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap); 7448 } 7449 7450 int btrfs_readpage(struct file *file, struct page *page) 7451 { 7452 struct extent_io_tree *tree; 7453 tree = &BTRFS_I(page->mapping->host)->io_tree; 7454 return extent_read_full_page(tree, page, btrfs_get_extent, 0); 7455 } 7456 7457 static int btrfs_writepage(struct page *page, struct writeback_control *wbc) 7458 { 7459 struct extent_io_tree *tree; 7460 7461 7462 if (current->flags & PF_MEMALLOC) { 7463 redirty_page_for_writepage(wbc, page); 7464 unlock_page(page); 7465 return 0; 7466 } 7467 tree = &BTRFS_I(page->mapping->host)->io_tree; 7468 return extent_write_full_page(tree, page, btrfs_get_extent, wbc); 7469 } 7470 7471 static int btrfs_writepages(struct address_space *mapping, 7472 struct writeback_control *wbc) 7473 { 7474 struct extent_io_tree *tree; 7475 7476 tree = &BTRFS_I(mapping->host)->io_tree; 7477 return extent_writepages(tree, mapping, btrfs_get_extent, wbc); 7478 } 7479 7480 static int 7481 btrfs_readpages(struct file *file, struct address_space *mapping, 7482 struct list_head *pages, unsigned nr_pages) 7483 { 7484 struct extent_io_tree *tree; 7485 tree = &BTRFS_I(mapping->host)->io_tree; 7486 return extent_readpages(tree, mapping, pages, nr_pages, 7487 btrfs_get_extent); 7488 } 7489 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags) 7490 { 7491 struct extent_io_tree *tree; 7492 struct extent_map_tree *map; 7493 int ret; 7494 7495 tree = &BTRFS_I(page->mapping->host)->io_tree; 7496 map = &BTRFS_I(page->mapping->host)->extent_tree; 7497 ret = try_release_extent_mapping(map, tree, page, gfp_flags); 7498 if (ret == 1) { 7499 ClearPagePrivate(page); 7500 set_page_private(page, 0); 7501 page_cache_release(page); 7502 } 7503 return ret; 7504 } 7505 7506 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags) 7507 { 7508 if (PageWriteback(page) || PageDirty(page)) 7509 return 0; 7510 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS); 7511 } 7512 7513 static void btrfs_invalidatepage(struct page *page, unsigned long offset) 7514 { 7515 struct inode *inode = page->mapping->host; 7516 struct extent_io_tree *tree; 7517 struct btrfs_ordered_extent *ordered; 7518 struct extent_state *cached_state = NULL; 7519 u64 page_start = page_offset(page); 7520 u64 page_end = page_start + PAGE_CACHE_SIZE - 1; 7521 7522 /* 7523 * we have the page locked, so new writeback can't start, 7524 * and the dirty bit won't be cleared while we are here. 7525 * 7526 * Wait for IO on this page so that we can safely clear 7527 * the PagePrivate2 bit and do ordered accounting 7528 */ 7529 wait_on_page_writeback(page); 7530 7531 tree = &BTRFS_I(inode)->io_tree; 7532 if (offset) { 7533 btrfs_releasepage(page, GFP_NOFS); 7534 return; 7535 } 7536 lock_extent_bits(tree, page_start, page_end, 0, &cached_state); 7537 ordered = btrfs_lookup_ordered_extent(inode, page_offset(page)); 7538 if (ordered) { 7539 /* 7540 * IO on this page will never be started, so we need 7541 * to account for any ordered extents now 7542 */ 7543 clear_extent_bit(tree, page_start, page_end, 7544 EXTENT_DIRTY | EXTENT_DELALLOC | 7545 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING | 7546 EXTENT_DEFRAG, 1, 0, &cached_state, GFP_NOFS); 7547 /* 7548 * whoever cleared the private bit is responsible 7549 * for the finish_ordered_io 7550 */ 7551 if (TestClearPagePrivate2(page) && 7552 btrfs_dec_test_ordered_pending(inode, &ordered, page_start, 7553 PAGE_CACHE_SIZE, 1)) { 7554 btrfs_finish_ordered_io(ordered); 7555 } 7556 btrfs_put_ordered_extent(ordered); 7557 cached_state = NULL; 7558 lock_extent_bits(tree, page_start, page_end, 0, &cached_state); 7559 } 7560 clear_extent_bit(tree, page_start, page_end, 7561 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC | 7562 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1, 7563 &cached_state, GFP_NOFS); 7564 __btrfs_releasepage(page, GFP_NOFS); 7565 7566 ClearPageChecked(page); 7567 if (PagePrivate(page)) { 7568 ClearPagePrivate(page); 7569 set_page_private(page, 0); 7570 page_cache_release(page); 7571 } 7572 } 7573 7574 /* 7575 * btrfs_page_mkwrite() is not allowed to change the file size as it gets 7576 * called from a page fault handler when a page is first dirtied. Hence we must 7577 * be careful to check for EOF conditions here. We set the page up correctly 7578 * for a written page which means we get ENOSPC checking when writing into 7579 * holes and correct delalloc and unwritten extent mapping on filesystems that 7580 * support these features. 7581 * 7582 * We are not allowed to take the i_mutex here so we have to play games to 7583 * protect against truncate races as the page could now be beyond EOF. Because 7584 * vmtruncate() writes the inode size before removing pages, once we have the 7585 * page lock we can determine safely if the page is beyond EOF. If it is not 7586 * beyond EOF, then the page is guaranteed safe against truncation until we 7587 * unlock the page. 7588 */ 7589 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf) 7590 { 7591 struct page *page = vmf->page; 7592 struct inode *inode = file_inode(vma->vm_file); 7593 struct btrfs_root *root = BTRFS_I(inode)->root; 7594 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 7595 struct btrfs_ordered_extent *ordered; 7596 struct extent_state *cached_state = NULL; 7597 char *kaddr; 7598 unsigned long zero_start; 7599 loff_t size; 7600 int ret; 7601 int reserved = 0; 7602 u64 page_start; 7603 u64 page_end; 7604 7605 sb_start_pagefault(inode->i_sb); 7606 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE); 7607 if (!ret) { 7608 ret = file_update_time(vma->vm_file); 7609 reserved = 1; 7610 } 7611 if (ret) { 7612 if (ret == -ENOMEM) 7613 ret = VM_FAULT_OOM; 7614 else /* -ENOSPC, -EIO, etc */ 7615 ret = VM_FAULT_SIGBUS; 7616 if (reserved) 7617 goto out; 7618 goto out_noreserve; 7619 } 7620 7621 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */ 7622 again: 7623 lock_page(page); 7624 size = i_size_read(inode); 7625 page_start = page_offset(page); 7626 page_end = page_start + PAGE_CACHE_SIZE - 1; 7627 7628 if ((page->mapping != inode->i_mapping) || 7629 (page_start >= size)) { 7630 /* page got truncated out from underneath us */ 7631 goto out_unlock; 7632 } 7633 wait_on_page_writeback(page); 7634 7635 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state); 7636 set_page_extent_mapped(page); 7637 7638 /* 7639 * we can't set the delalloc bits if there are pending ordered 7640 * extents. Drop our locks and wait for them to finish 7641 */ 7642 ordered = btrfs_lookup_ordered_extent(inode, page_start); 7643 if (ordered) { 7644 unlock_extent_cached(io_tree, page_start, page_end, 7645 &cached_state, GFP_NOFS); 7646 unlock_page(page); 7647 btrfs_start_ordered_extent(inode, ordered, 1); 7648 btrfs_put_ordered_extent(ordered); 7649 goto again; 7650 } 7651 7652 /* 7653 * XXX - page_mkwrite gets called every time the page is dirtied, even 7654 * if it was already dirty, so for space accounting reasons we need to 7655 * clear any delalloc bits for the range we are fixing to save. There 7656 * is probably a better way to do this, but for now keep consistent with 7657 * prepare_pages in the normal write path. 7658 */ 7659 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end, 7660 EXTENT_DIRTY | EXTENT_DELALLOC | 7661 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 7662 0, 0, &cached_state, GFP_NOFS); 7663 7664 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 7665 &cached_state); 7666 if (ret) { 7667 unlock_extent_cached(io_tree, page_start, page_end, 7668 &cached_state, GFP_NOFS); 7669 ret = VM_FAULT_SIGBUS; 7670 goto out_unlock; 7671 } 7672 ret = 0; 7673 7674 /* page is wholly or partially inside EOF */ 7675 if (page_start + PAGE_CACHE_SIZE > size) 7676 zero_start = size & ~PAGE_CACHE_MASK; 7677 else 7678 zero_start = PAGE_CACHE_SIZE; 7679 7680 if (zero_start != PAGE_CACHE_SIZE) { 7681 kaddr = kmap(page); 7682 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start); 7683 flush_dcache_page(page); 7684 kunmap(page); 7685 } 7686 ClearPageChecked(page); 7687 set_page_dirty(page); 7688 SetPageUptodate(page); 7689 7690 BTRFS_I(inode)->last_trans = root->fs_info->generation; 7691 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid; 7692 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit; 7693 7694 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS); 7695 7696 out_unlock: 7697 if (!ret) { 7698 sb_end_pagefault(inode->i_sb); 7699 return VM_FAULT_LOCKED; 7700 } 7701 unlock_page(page); 7702 out: 7703 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE); 7704 out_noreserve: 7705 sb_end_pagefault(inode->i_sb); 7706 return ret; 7707 } 7708 7709 static int btrfs_truncate(struct inode *inode) 7710 { 7711 struct btrfs_root *root = BTRFS_I(inode)->root; 7712 struct btrfs_block_rsv *rsv; 7713 int ret; 7714 int err = 0; 7715 struct btrfs_trans_handle *trans; 7716 u64 mask = root->sectorsize - 1; 7717 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1); 7718 7719 ret = btrfs_truncate_page(inode, inode->i_size, 0, 0); 7720 if (ret) 7721 return ret; 7722 7723 btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1); 7724 btrfs_ordered_update_i_size(inode, inode->i_size, NULL); 7725 7726 /* 7727 * Yes ladies and gentelment, this is indeed ugly. The fact is we have 7728 * 3 things going on here 7729 * 7730 * 1) We need to reserve space for our orphan item and the space to 7731 * delete our orphan item. Lord knows we don't want to have a dangling 7732 * orphan item because we didn't reserve space to remove it. 7733 * 7734 * 2) We need to reserve space to update our inode. 7735 * 7736 * 3) We need to have something to cache all the space that is going to 7737 * be free'd up by the truncate operation, but also have some slack 7738 * space reserved in case it uses space during the truncate (thank you 7739 * very much snapshotting). 7740 * 7741 * And we need these to all be seperate. The fact is we can use alot of 7742 * space doing the truncate, and we have no earthly idea how much space 7743 * we will use, so we need the truncate reservation to be seperate so it 7744 * doesn't end up using space reserved for updating the inode or 7745 * removing the orphan item. We also need to be able to stop the 7746 * transaction and start a new one, which means we need to be able to 7747 * update the inode several times, and we have no idea of knowing how 7748 * many times that will be, so we can't just reserve 1 item for the 7749 * entirety of the opration, so that has to be done seperately as well. 7750 * Then there is the orphan item, which does indeed need to be held on 7751 * to for the whole operation, and we need nobody to touch this reserved 7752 * space except the orphan code. 7753 * 7754 * So that leaves us with 7755 * 7756 * 1) root->orphan_block_rsv - for the orphan deletion. 7757 * 2) rsv - for the truncate reservation, which we will steal from the 7758 * transaction reservation. 7759 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for 7760 * updating the inode. 7761 */ 7762 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP); 7763 if (!rsv) 7764 return -ENOMEM; 7765 rsv->size = min_size; 7766 rsv->failfast = 1; 7767 7768 /* 7769 * 1 for the truncate slack space 7770 * 1 for updating the inode. 7771 */ 7772 trans = btrfs_start_transaction(root, 2); 7773 if (IS_ERR(trans)) { 7774 err = PTR_ERR(trans); 7775 goto out; 7776 } 7777 7778 /* Migrate the slack space for the truncate to our reserve */ 7779 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv, 7780 min_size); 7781 BUG_ON(ret); 7782 7783 /* 7784 * setattr is responsible for setting the ordered_data_close flag, 7785 * but that is only tested during the last file release. That 7786 * could happen well after the next commit, leaving a great big 7787 * window where new writes may get lost if someone chooses to write 7788 * to this file after truncating to zero 7789 * 7790 * The inode doesn't have any dirty data here, and so if we commit 7791 * this is a noop. If someone immediately starts writing to the inode 7792 * it is very likely we'll catch some of their writes in this 7793 * transaction, and the commit will find this file on the ordered 7794 * data list with good things to send down. 7795 * 7796 * This is a best effort solution, there is still a window where 7797 * using truncate to replace the contents of the file will 7798 * end up with a zero length file after a crash. 7799 */ 7800 if (inode->i_size == 0 && test_bit(BTRFS_INODE_ORDERED_DATA_CLOSE, 7801 &BTRFS_I(inode)->runtime_flags)) 7802 btrfs_add_ordered_operation(trans, root, inode); 7803 7804 /* 7805 * So if we truncate and then write and fsync we normally would just 7806 * write the extents that changed, which is a problem if we need to 7807 * first truncate that entire inode. So set this flag so we write out 7808 * all of the extents in the inode to the sync log so we're completely 7809 * safe. 7810 */ 7811 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 7812 trans->block_rsv = rsv; 7813 7814 while (1) { 7815 ret = btrfs_truncate_inode_items(trans, root, inode, 7816 inode->i_size, 7817 BTRFS_EXTENT_DATA_KEY); 7818 if (ret != -ENOSPC) { 7819 err = ret; 7820 break; 7821 } 7822 7823 trans->block_rsv = &root->fs_info->trans_block_rsv; 7824 ret = btrfs_update_inode(trans, root, inode); 7825 if (ret) { 7826 err = ret; 7827 break; 7828 } 7829 7830 btrfs_end_transaction(trans, root); 7831 btrfs_btree_balance_dirty(root); 7832 7833 trans = btrfs_start_transaction(root, 2); 7834 if (IS_ERR(trans)) { 7835 ret = err = PTR_ERR(trans); 7836 trans = NULL; 7837 break; 7838 } 7839 7840 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, 7841 rsv, min_size); 7842 BUG_ON(ret); /* shouldn't happen */ 7843 trans->block_rsv = rsv; 7844 } 7845 7846 if (ret == 0 && inode->i_nlink > 0) { 7847 trans->block_rsv = root->orphan_block_rsv; 7848 ret = btrfs_orphan_del(trans, inode); 7849 if (ret) 7850 err = ret; 7851 } 7852 7853 if (trans) { 7854 trans->block_rsv = &root->fs_info->trans_block_rsv; 7855 ret = btrfs_update_inode(trans, root, inode); 7856 if (ret && !err) 7857 err = ret; 7858 7859 ret = btrfs_end_transaction(trans, root); 7860 btrfs_btree_balance_dirty(root); 7861 } 7862 7863 out: 7864 btrfs_free_block_rsv(root, rsv); 7865 7866 if (ret && !err) 7867 err = ret; 7868 7869 return err; 7870 } 7871 7872 /* 7873 * create a new subvolume directory/inode (helper for the ioctl). 7874 */ 7875 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans, 7876 struct btrfs_root *new_root, u64 new_dirid) 7877 { 7878 struct inode *inode; 7879 int err; 7880 u64 index = 0; 7881 7882 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, 7883 new_dirid, new_dirid, 7884 S_IFDIR | (~current_umask() & S_IRWXUGO), 7885 &index); 7886 if (IS_ERR(inode)) 7887 return PTR_ERR(inode); 7888 inode->i_op = &btrfs_dir_inode_operations; 7889 inode->i_fop = &btrfs_dir_file_operations; 7890 7891 set_nlink(inode, 1); 7892 btrfs_i_size_write(inode, 0); 7893 7894 err = btrfs_update_inode(trans, new_root, inode); 7895 7896 iput(inode); 7897 return err; 7898 } 7899 7900 struct inode *btrfs_alloc_inode(struct super_block *sb) 7901 { 7902 struct btrfs_inode *ei; 7903 struct inode *inode; 7904 7905 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS); 7906 if (!ei) 7907 return NULL; 7908 7909 ei->root = NULL; 7910 ei->generation = 0; 7911 ei->last_trans = 0; 7912 ei->last_sub_trans = 0; 7913 ei->logged_trans = 0; 7914 ei->delalloc_bytes = 0; 7915 ei->disk_i_size = 0; 7916 ei->flags = 0; 7917 ei->csum_bytes = 0; 7918 ei->index_cnt = (u64)-1; 7919 ei->last_unlink_trans = 0; 7920 ei->last_log_commit = 0; 7921 7922 spin_lock_init(&ei->lock); 7923 ei->outstanding_extents = 0; 7924 ei->reserved_extents = 0; 7925 7926 ei->runtime_flags = 0; 7927 ei->force_compress = BTRFS_COMPRESS_NONE; 7928 7929 ei->delayed_node = NULL; 7930 7931 inode = &ei->vfs_inode; 7932 extent_map_tree_init(&ei->extent_tree); 7933 extent_io_tree_init(&ei->io_tree, &inode->i_data); 7934 extent_io_tree_init(&ei->io_failure_tree, &inode->i_data); 7935 ei->io_tree.track_uptodate = 1; 7936 ei->io_failure_tree.track_uptodate = 1; 7937 atomic_set(&ei->sync_writers, 0); 7938 mutex_init(&ei->log_mutex); 7939 mutex_init(&ei->delalloc_mutex); 7940 btrfs_ordered_inode_tree_init(&ei->ordered_tree); 7941 INIT_LIST_HEAD(&ei->delalloc_inodes); 7942 INIT_LIST_HEAD(&ei->ordered_operations); 7943 RB_CLEAR_NODE(&ei->rb_node); 7944 7945 return inode; 7946 } 7947 7948 static void btrfs_i_callback(struct rcu_head *head) 7949 { 7950 struct inode *inode = container_of(head, struct inode, i_rcu); 7951 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 7952 } 7953 7954 void btrfs_destroy_inode(struct inode *inode) 7955 { 7956 struct btrfs_ordered_extent *ordered; 7957 struct btrfs_root *root = BTRFS_I(inode)->root; 7958 7959 WARN_ON(!hlist_empty(&inode->i_dentry)); 7960 WARN_ON(inode->i_data.nrpages); 7961 WARN_ON(BTRFS_I(inode)->outstanding_extents); 7962 WARN_ON(BTRFS_I(inode)->reserved_extents); 7963 WARN_ON(BTRFS_I(inode)->delalloc_bytes); 7964 WARN_ON(BTRFS_I(inode)->csum_bytes); 7965 7966 /* 7967 * This can happen where we create an inode, but somebody else also 7968 * created the same inode and we need to destroy the one we already 7969 * created. 7970 */ 7971 if (!root) 7972 goto free; 7973 7974 /* 7975 * Make sure we're properly removed from the ordered operation 7976 * lists. 7977 */ 7978 smp_mb(); 7979 if (!list_empty(&BTRFS_I(inode)->ordered_operations)) { 7980 spin_lock(&root->fs_info->ordered_extent_lock); 7981 list_del_init(&BTRFS_I(inode)->ordered_operations); 7982 spin_unlock(&root->fs_info->ordered_extent_lock); 7983 } 7984 7985 if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 7986 &BTRFS_I(inode)->runtime_flags)) { 7987 btrfs_info(root->fs_info, "inode %llu still on the orphan list", 7988 (unsigned long long)btrfs_ino(inode)); 7989 atomic_dec(&root->orphan_inodes); 7990 } 7991 7992 while (1) { 7993 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1); 7994 if (!ordered) 7995 break; 7996 else { 7997 btrfs_err(root->fs_info, "found ordered extent %llu %llu on inode cleanup", 7998 (unsigned long long)ordered->file_offset, 7999 (unsigned long long)ordered->len); 8000 btrfs_remove_ordered_extent(inode, ordered); 8001 btrfs_put_ordered_extent(ordered); 8002 btrfs_put_ordered_extent(ordered); 8003 } 8004 } 8005 inode_tree_del(inode); 8006 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0); 8007 free: 8008 call_rcu(&inode->i_rcu, btrfs_i_callback); 8009 } 8010 8011 int btrfs_drop_inode(struct inode *inode) 8012 { 8013 struct btrfs_root *root = BTRFS_I(inode)->root; 8014 8015 /* the snap/subvol tree is on deleting */ 8016 if (btrfs_root_refs(&root->root_item) == 0 && 8017 root != root->fs_info->tree_root) 8018 return 1; 8019 else 8020 return generic_drop_inode(inode); 8021 } 8022 8023 static void init_once(void *foo) 8024 { 8025 struct btrfs_inode *ei = (struct btrfs_inode *) foo; 8026 8027 inode_init_once(&ei->vfs_inode); 8028 } 8029 8030 void btrfs_destroy_cachep(void) 8031 { 8032 /* 8033 * Make sure all delayed rcu free inodes are flushed before we 8034 * destroy cache. 8035 */ 8036 rcu_barrier(); 8037 if (btrfs_inode_cachep) 8038 kmem_cache_destroy(btrfs_inode_cachep); 8039 if (btrfs_trans_handle_cachep) 8040 kmem_cache_destroy(btrfs_trans_handle_cachep); 8041 if (btrfs_transaction_cachep) 8042 kmem_cache_destroy(btrfs_transaction_cachep); 8043 if (btrfs_path_cachep) 8044 kmem_cache_destroy(btrfs_path_cachep); 8045 if (btrfs_free_space_cachep) 8046 kmem_cache_destroy(btrfs_free_space_cachep); 8047 if (btrfs_delalloc_work_cachep) 8048 kmem_cache_destroy(btrfs_delalloc_work_cachep); 8049 } 8050 8051 int btrfs_init_cachep(void) 8052 { 8053 btrfs_inode_cachep = kmem_cache_create("btrfs_inode", 8054 sizeof(struct btrfs_inode), 0, 8055 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once); 8056 if (!btrfs_inode_cachep) 8057 goto fail; 8058 8059 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle", 8060 sizeof(struct btrfs_trans_handle), 0, 8061 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 8062 if (!btrfs_trans_handle_cachep) 8063 goto fail; 8064 8065 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction", 8066 sizeof(struct btrfs_transaction), 0, 8067 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 8068 if (!btrfs_transaction_cachep) 8069 goto fail; 8070 8071 btrfs_path_cachep = kmem_cache_create("btrfs_path", 8072 sizeof(struct btrfs_path), 0, 8073 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 8074 if (!btrfs_path_cachep) 8075 goto fail; 8076 8077 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space", 8078 sizeof(struct btrfs_free_space), 0, 8079 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 8080 if (!btrfs_free_space_cachep) 8081 goto fail; 8082 8083 btrfs_delalloc_work_cachep = kmem_cache_create("btrfs_delalloc_work", 8084 sizeof(struct btrfs_delalloc_work), 0, 8085 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, 8086 NULL); 8087 if (!btrfs_delalloc_work_cachep) 8088 goto fail; 8089 8090 return 0; 8091 fail: 8092 btrfs_destroy_cachep(); 8093 return -ENOMEM; 8094 } 8095 8096 static int btrfs_getattr(struct vfsmount *mnt, 8097 struct dentry *dentry, struct kstat *stat) 8098 { 8099 u64 delalloc_bytes; 8100 struct inode *inode = dentry->d_inode; 8101 u32 blocksize = inode->i_sb->s_blocksize; 8102 8103 generic_fillattr(inode, stat); 8104 stat->dev = BTRFS_I(inode)->root->anon_dev; 8105 stat->blksize = PAGE_CACHE_SIZE; 8106 8107 spin_lock(&BTRFS_I(inode)->lock); 8108 delalloc_bytes = BTRFS_I(inode)->delalloc_bytes; 8109 spin_unlock(&BTRFS_I(inode)->lock); 8110 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) + 8111 ALIGN(delalloc_bytes, blocksize)) >> 9; 8112 return 0; 8113 } 8114 8115 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry, 8116 struct inode *new_dir, struct dentry *new_dentry) 8117 { 8118 struct btrfs_trans_handle *trans; 8119 struct btrfs_root *root = BTRFS_I(old_dir)->root; 8120 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 8121 struct inode *new_inode = new_dentry->d_inode; 8122 struct inode *old_inode = old_dentry->d_inode; 8123 struct timespec ctime = CURRENT_TIME; 8124 u64 index = 0; 8125 u64 root_objectid; 8126 int ret; 8127 u64 old_ino = btrfs_ino(old_inode); 8128 8129 if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 8130 return -EPERM; 8131 8132 /* we only allow rename subvolume link between subvolumes */ 8133 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest) 8134 return -EXDEV; 8135 8136 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID || 8137 (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID)) 8138 return -ENOTEMPTY; 8139 8140 if (S_ISDIR(old_inode->i_mode) && new_inode && 8141 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) 8142 return -ENOTEMPTY; 8143 8144 8145 /* check for collisions, even if the name isn't there */ 8146 ret = btrfs_check_dir_item_collision(root, new_dir->i_ino, 8147 new_dentry->d_name.name, 8148 new_dentry->d_name.len); 8149 8150 if (ret) { 8151 if (ret == -EEXIST) { 8152 /* we shouldn't get 8153 * eexist without a new_inode */ 8154 if (!new_inode) { 8155 WARN_ON(1); 8156 return ret; 8157 } 8158 } else { 8159 /* maybe -EOVERFLOW */ 8160 return ret; 8161 } 8162 } 8163 ret = 0; 8164 8165 /* 8166 * we're using rename to replace one file with another. 8167 * and the replacement file is large. Start IO on it now so 8168 * we don't add too much work to the end of the transaction 8169 */ 8170 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size && 8171 old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT) 8172 filemap_flush(old_inode->i_mapping); 8173 8174 /* close the racy window with snapshot create/destroy ioctl */ 8175 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 8176 down_read(&root->fs_info->subvol_sem); 8177 /* 8178 * We want to reserve the absolute worst case amount of items. So if 8179 * both inodes are subvols and we need to unlink them then that would 8180 * require 4 item modifications, but if they are both normal inodes it 8181 * would require 5 item modifications, so we'll assume their normal 8182 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items 8183 * should cover the worst case number of items we'll modify. 8184 */ 8185 trans = btrfs_start_transaction(root, 11); 8186 if (IS_ERR(trans)) { 8187 ret = PTR_ERR(trans); 8188 goto out_notrans; 8189 } 8190 8191 if (dest != root) 8192 btrfs_record_root_in_trans(trans, dest); 8193 8194 ret = btrfs_set_inode_index(new_dir, &index); 8195 if (ret) 8196 goto out_fail; 8197 8198 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 8199 /* force full log commit if subvolume involved. */ 8200 root->fs_info->last_trans_log_full_commit = trans->transid; 8201 } else { 8202 ret = btrfs_insert_inode_ref(trans, dest, 8203 new_dentry->d_name.name, 8204 new_dentry->d_name.len, 8205 old_ino, 8206 btrfs_ino(new_dir), index); 8207 if (ret) 8208 goto out_fail; 8209 /* 8210 * this is an ugly little race, but the rename is required 8211 * to make sure that if we crash, the inode is either at the 8212 * old name or the new one. pinning the log transaction lets 8213 * us make sure we don't allow a log commit to come in after 8214 * we unlink the name but before we add the new name back in. 8215 */ 8216 btrfs_pin_log_trans(root); 8217 } 8218 /* 8219 * make sure the inode gets flushed if it is replacing 8220 * something. 8221 */ 8222 if (new_inode && new_inode->i_size && S_ISREG(old_inode->i_mode)) 8223 btrfs_add_ordered_operation(trans, root, old_inode); 8224 8225 inode_inc_iversion(old_dir); 8226 inode_inc_iversion(new_dir); 8227 inode_inc_iversion(old_inode); 8228 old_dir->i_ctime = old_dir->i_mtime = ctime; 8229 new_dir->i_ctime = new_dir->i_mtime = ctime; 8230 old_inode->i_ctime = ctime; 8231 8232 if (old_dentry->d_parent != new_dentry->d_parent) 8233 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1); 8234 8235 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 8236 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid; 8237 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid, 8238 old_dentry->d_name.name, 8239 old_dentry->d_name.len); 8240 } else { 8241 ret = __btrfs_unlink_inode(trans, root, old_dir, 8242 old_dentry->d_inode, 8243 old_dentry->d_name.name, 8244 old_dentry->d_name.len); 8245 if (!ret) 8246 ret = btrfs_update_inode(trans, root, old_inode); 8247 } 8248 if (ret) { 8249 btrfs_abort_transaction(trans, root, ret); 8250 goto out_fail; 8251 } 8252 8253 if (new_inode) { 8254 inode_inc_iversion(new_inode); 8255 new_inode->i_ctime = CURRENT_TIME; 8256 if (unlikely(btrfs_ino(new_inode) == 8257 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 8258 root_objectid = BTRFS_I(new_inode)->location.objectid; 8259 ret = btrfs_unlink_subvol(trans, dest, new_dir, 8260 root_objectid, 8261 new_dentry->d_name.name, 8262 new_dentry->d_name.len); 8263 BUG_ON(new_inode->i_nlink == 0); 8264 } else { 8265 ret = btrfs_unlink_inode(trans, dest, new_dir, 8266 new_dentry->d_inode, 8267 new_dentry->d_name.name, 8268 new_dentry->d_name.len); 8269 } 8270 if (!ret && new_inode->i_nlink == 0) { 8271 ret = btrfs_orphan_add(trans, new_dentry->d_inode); 8272 BUG_ON(ret); 8273 } 8274 if (ret) { 8275 btrfs_abort_transaction(trans, root, ret); 8276 goto out_fail; 8277 } 8278 } 8279 8280 ret = btrfs_add_link(trans, new_dir, old_inode, 8281 new_dentry->d_name.name, 8282 new_dentry->d_name.len, 0, index); 8283 if (ret) { 8284 btrfs_abort_transaction(trans, root, ret); 8285 goto out_fail; 8286 } 8287 8288 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) { 8289 struct dentry *parent = new_dentry->d_parent; 8290 btrfs_log_new_name(trans, old_inode, old_dir, parent); 8291 btrfs_end_log_trans(root); 8292 } 8293 out_fail: 8294 btrfs_end_transaction(trans, root); 8295 out_notrans: 8296 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 8297 up_read(&root->fs_info->subvol_sem); 8298 8299 return ret; 8300 } 8301 8302 static void btrfs_run_delalloc_work(struct btrfs_work *work) 8303 { 8304 struct btrfs_delalloc_work *delalloc_work; 8305 8306 delalloc_work = container_of(work, struct btrfs_delalloc_work, 8307 work); 8308 if (delalloc_work->wait) 8309 btrfs_wait_ordered_range(delalloc_work->inode, 0, (u64)-1); 8310 else 8311 filemap_flush(delalloc_work->inode->i_mapping); 8312 8313 if (delalloc_work->delay_iput) 8314 btrfs_add_delayed_iput(delalloc_work->inode); 8315 else 8316 iput(delalloc_work->inode); 8317 complete(&delalloc_work->completion); 8318 } 8319 8320 struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode, 8321 int wait, int delay_iput) 8322 { 8323 struct btrfs_delalloc_work *work; 8324 8325 work = kmem_cache_zalloc(btrfs_delalloc_work_cachep, GFP_NOFS); 8326 if (!work) 8327 return NULL; 8328 8329 init_completion(&work->completion); 8330 INIT_LIST_HEAD(&work->list); 8331 work->inode = inode; 8332 work->wait = wait; 8333 work->delay_iput = delay_iput; 8334 work->work.func = btrfs_run_delalloc_work; 8335 8336 return work; 8337 } 8338 8339 void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work) 8340 { 8341 wait_for_completion(&work->completion); 8342 kmem_cache_free(btrfs_delalloc_work_cachep, work); 8343 } 8344 8345 /* 8346 * some fairly slow code that needs optimization. This walks the list 8347 * of all the inodes with pending delalloc and forces them to disk. 8348 */ 8349 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput) 8350 { 8351 struct btrfs_inode *binode; 8352 struct inode *inode; 8353 struct btrfs_delalloc_work *work, *next; 8354 struct list_head works; 8355 struct list_head splice; 8356 int ret = 0; 8357 8358 if (root->fs_info->sb->s_flags & MS_RDONLY) 8359 return -EROFS; 8360 8361 INIT_LIST_HEAD(&works); 8362 INIT_LIST_HEAD(&splice); 8363 8364 spin_lock(&root->fs_info->delalloc_lock); 8365 list_splice_init(&root->fs_info->delalloc_inodes, &splice); 8366 while (!list_empty(&splice)) { 8367 binode = list_entry(splice.next, struct btrfs_inode, 8368 delalloc_inodes); 8369 8370 list_del_init(&binode->delalloc_inodes); 8371 8372 inode = igrab(&binode->vfs_inode); 8373 if (!inode) { 8374 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST, 8375 &binode->runtime_flags); 8376 continue; 8377 } 8378 8379 list_add_tail(&binode->delalloc_inodes, 8380 &root->fs_info->delalloc_inodes); 8381 spin_unlock(&root->fs_info->delalloc_lock); 8382 8383 work = btrfs_alloc_delalloc_work(inode, 0, delay_iput); 8384 if (unlikely(!work)) { 8385 ret = -ENOMEM; 8386 goto out; 8387 } 8388 list_add_tail(&work->list, &works); 8389 btrfs_queue_worker(&root->fs_info->flush_workers, 8390 &work->work); 8391 8392 cond_resched(); 8393 spin_lock(&root->fs_info->delalloc_lock); 8394 } 8395 spin_unlock(&root->fs_info->delalloc_lock); 8396 8397 list_for_each_entry_safe(work, next, &works, list) { 8398 list_del_init(&work->list); 8399 btrfs_wait_and_free_delalloc_work(work); 8400 } 8401 8402 /* the filemap_flush will queue IO into the worker threads, but 8403 * we have to make sure the IO is actually started and that 8404 * ordered extents get created before we return 8405 */ 8406 atomic_inc(&root->fs_info->async_submit_draining); 8407 while (atomic_read(&root->fs_info->nr_async_submits) || 8408 atomic_read(&root->fs_info->async_delalloc_pages)) { 8409 wait_event(root->fs_info->async_submit_wait, 8410 (atomic_read(&root->fs_info->nr_async_submits) == 0 && 8411 atomic_read(&root->fs_info->async_delalloc_pages) == 0)); 8412 } 8413 atomic_dec(&root->fs_info->async_submit_draining); 8414 return 0; 8415 out: 8416 list_for_each_entry_safe(work, next, &works, list) { 8417 list_del_init(&work->list); 8418 btrfs_wait_and_free_delalloc_work(work); 8419 } 8420 8421 if (!list_empty_careful(&splice)) { 8422 spin_lock(&root->fs_info->delalloc_lock); 8423 list_splice_tail(&splice, &root->fs_info->delalloc_inodes); 8424 spin_unlock(&root->fs_info->delalloc_lock); 8425 } 8426 return ret; 8427 } 8428 8429 static int btrfs_symlink(struct inode *dir, struct dentry *dentry, 8430 const char *symname) 8431 { 8432 struct btrfs_trans_handle *trans; 8433 struct btrfs_root *root = BTRFS_I(dir)->root; 8434 struct btrfs_path *path; 8435 struct btrfs_key key; 8436 struct inode *inode = NULL; 8437 int err; 8438 int drop_inode = 0; 8439 u64 objectid; 8440 u64 index = 0 ; 8441 int name_len; 8442 int datasize; 8443 unsigned long ptr; 8444 struct btrfs_file_extent_item *ei; 8445 struct extent_buffer *leaf; 8446 8447 name_len = strlen(symname) + 1; 8448 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root)) 8449 return -ENAMETOOLONG; 8450 8451 /* 8452 * 2 items for inode item and ref 8453 * 2 items for dir items 8454 * 1 item for xattr if selinux is on 8455 */ 8456 trans = btrfs_start_transaction(root, 5); 8457 if (IS_ERR(trans)) 8458 return PTR_ERR(trans); 8459 8460 err = btrfs_find_free_ino(root, &objectid); 8461 if (err) 8462 goto out_unlock; 8463 8464 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 8465 dentry->d_name.len, btrfs_ino(dir), objectid, 8466 S_IFLNK|S_IRWXUGO, &index); 8467 if (IS_ERR(inode)) { 8468 err = PTR_ERR(inode); 8469 goto out_unlock; 8470 } 8471 8472 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 8473 if (err) { 8474 drop_inode = 1; 8475 goto out_unlock; 8476 } 8477 8478 /* 8479 * If the active LSM wants to access the inode during 8480 * d_instantiate it needs these. Smack checks to see 8481 * if the filesystem supports xattrs by looking at the 8482 * ops vector. 8483 */ 8484 inode->i_fop = &btrfs_file_operations; 8485 inode->i_op = &btrfs_file_inode_operations; 8486 8487 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index); 8488 if (err) 8489 drop_inode = 1; 8490 else { 8491 inode->i_mapping->a_ops = &btrfs_aops; 8492 inode->i_mapping->backing_dev_info = &root->fs_info->bdi; 8493 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 8494 } 8495 if (drop_inode) 8496 goto out_unlock; 8497 8498 path = btrfs_alloc_path(); 8499 if (!path) { 8500 err = -ENOMEM; 8501 drop_inode = 1; 8502 goto out_unlock; 8503 } 8504 key.objectid = btrfs_ino(inode); 8505 key.offset = 0; 8506 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY); 8507 datasize = btrfs_file_extent_calc_inline_size(name_len); 8508 err = btrfs_insert_empty_item(trans, root, path, &key, 8509 datasize); 8510 if (err) { 8511 drop_inode = 1; 8512 btrfs_free_path(path); 8513 goto out_unlock; 8514 } 8515 leaf = path->nodes[0]; 8516 ei = btrfs_item_ptr(leaf, path->slots[0], 8517 struct btrfs_file_extent_item); 8518 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 8519 btrfs_set_file_extent_type(leaf, ei, 8520 BTRFS_FILE_EXTENT_INLINE); 8521 btrfs_set_file_extent_encryption(leaf, ei, 0); 8522 btrfs_set_file_extent_compression(leaf, ei, 0); 8523 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 8524 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len); 8525 8526 ptr = btrfs_file_extent_inline_start(ei); 8527 write_extent_buffer(leaf, symname, ptr, name_len); 8528 btrfs_mark_buffer_dirty(leaf); 8529 btrfs_free_path(path); 8530 8531 inode->i_op = &btrfs_symlink_inode_operations; 8532 inode->i_mapping->a_ops = &btrfs_symlink_aops; 8533 inode->i_mapping->backing_dev_info = &root->fs_info->bdi; 8534 inode_set_bytes(inode, name_len); 8535 btrfs_i_size_write(inode, name_len - 1); 8536 err = btrfs_update_inode(trans, root, inode); 8537 if (err) 8538 drop_inode = 1; 8539 8540 out_unlock: 8541 if (!err) 8542 d_instantiate(dentry, inode); 8543 btrfs_end_transaction(trans, root); 8544 if (drop_inode) { 8545 inode_dec_link_count(inode); 8546 iput(inode); 8547 } 8548 btrfs_btree_balance_dirty(root); 8549 return err; 8550 } 8551 8552 static int __btrfs_prealloc_file_range(struct inode *inode, int mode, 8553 u64 start, u64 num_bytes, u64 min_size, 8554 loff_t actual_len, u64 *alloc_hint, 8555 struct btrfs_trans_handle *trans) 8556 { 8557 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 8558 struct extent_map *em; 8559 struct btrfs_root *root = BTRFS_I(inode)->root; 8560 struct btrfs_key ins; 8561 u64 cur_offset = start; 8562 u64 i_size; 8563 u64 cur_bytes; 8564 int ret = 0; 8565 bool own_trans = true; 8566 8567 if (trans) 8568 own_trans = false; 8569 while (num_bytes > 0) { 8570 if (own_trans) { 8571 trans = btrfs_start_transaction(root, 3); 8572 if (IS_ERR(trans)) { 8573 ret = PTR_ERR(trans); 8574 break; 8575 } 8576 } 8577 8578 cur_bytes = min(num_bytes, 256ULL * 1024 * 1024); 8579 cur_bytes = max(cur_bytes, min_size); 8580 ret = btrfs_reserve_extent(trans, root, cur_bytes, 8581 min_size, 0, *alloc_hint, &ins, 1); 8582 if (ret) { 8583 if (own_trans) 8584 btrfs_end_transaction(trans, root); 8585 break; 8586 } 8587 8588 ret = insert_reserved_file_extent(trans, inode, 8589 cur_offset, ins.objectid, 8590 ins.offset, ins.offset, 8591 ins.offset, 0, 0, 0, 8592 BTRFS_FILE_EXTENT_PREALLOC); 8593 if (ret) { 8594 btrfs_abort_transaction(trans, root, ret); 8595 if (own_trans) 8596 btrfs_end_transaction(trans, root); 8597 break; 8598 } 8599 btrfs_drop_extent_cache(inode, cur_offset, 8600 cur_offset + ins.offset -1, 0); 8601 8602 em = alloc_extent_map(); 8603 if (!em) { 8604 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 8605 &BTRFS_I(inode)->runtime_flags); 8606 goto next; 8607 } 8608 8609 em->start = cur_offset; 8610 em->orig_start = cur_offset; 8611 em->len = ins.offset; 8612 em->block_start = ins.objectid; 8613 em->block_len = ins.offset; 8614 em->orig_block_len = ins.offset; 8615 em->ram_bytes = ins.offset; 8616 em->bdev = root->fs_info->fs_devices->latest_bdev; 8617 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 8618 em->generation = trans->transid; 8619 8620 while (1) { 8621 write_lock(&em_tree->lock); 8622 ret = add_extent_mapping(em_tree, em, 1); 8623 write_unlock(&em_tree->lock); 8624 if (ret != -EEXIST) 8625 break; 8626 btrfs_drop_extent_cache(inode, cur_offset, 8627 cur_offset + ins.offset - 1, 8628 0); 8629 } 8630 free_extent_map(em); 8631 next: 8632 num_bytes -= ins.offset; 8633 cur_offset += ins.offset; 8634 *alloc_hint = ins.objectid + ins.offset; 8635 8636 inode_inc_iversion(inode); 8637 inode->i_ctime = CURRENT_TIME; 8638 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC; 8639 if (!(mode & FALLOC_FL_KEEP_SIZE) && 8640 (actual_len > inode->i_size) && 8641 (cur_offset > inode->i_size)) { 8642 if (cur_offset > actual_len) 8643 i_size = actual_len; 8644 else 8645 i_size = cur_offset; 8646 i_size_write(inode, i_size); 8647 btrfs_ordered_update_i_size(inode, i_size, NULL); 8648 } 8649 8650 ret = btrfs_update_inode(trans, root, inode); 8651 8652 if (ret) { 8653 btrfs_abort_transaction(trans, root, ret); 8654 if (own_trans) 8655 btrfs_end_transaction(trans, root); 8656 break; 8657 } 8658 8659 if (own_trans) 8660 btrfs_end_transaction(trans, root); 8661 } 8662 return ret; 8663 } 8664 8665 int btrfs_prealloc_file_range(struct inode *inode, int mode, 8666 u64 start, u64 num_bytes, u64 min_size, 8667 loff_t actual_len, u64 *alloc_hint) 8668 { 8669 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 8670 min_size, actual_len, alloc_hint, 8671 NULL); 8672 } 8673 8674 int btrfs_prealloc_file_range_trans(struct inode *inode, 8675 struct btrfs_trans_handle *trans, int mode, 8676 u64 start, u64 num_bytes, u64 min_size, 8677 loff_t actual_len, u64 *alloc_hint) 8678 { 8679 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 8680 min_size, actual_len, alloc_hint, trans); 8681 } 8682 8683 static int btrfs_set_page_dirty(struct page *page) 8684 { 8685 return __set_page_dirty_nobuffers(page); 8686 } 8687 8688 static int btrfs_permission(struct inode *inode, int mask) 8689 { 8690 struct btrfs_root *root = BTRFS_I(inode)->root; 8691 umode_t mode = inode->i_mode; 8692 8693 if (mask & MAY_WRITE && 8694 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) { 8695 if (btrfs_root_readonly(root)) 8696 return -EROFS; 8697 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) 8698 return -EACCES; 8699 } 8700 return generic_permission(inode, mask); 8701 } 8702 8703 static const struct inode_operations btrfs_dir_inode_operations = { 8704 .getattr = btrfs_getattr, 8705 .lookup = btrfs_lookup, 8706 .create = btrfs_create, 8707 .unlink = btrfs_unlink, 8708 .link = btrfs_link, 8709 .mkdir = btrfs_mkdir, 8710 .rmdir = btrfs_rmdir, 8711 .rename = btrfs_rename, 8712 .symlink = btrfs_symlink, 8713 .setattr = btrfs_setattr, 8714 .mknod = btrfs_mknod, 8715 .setxattr = btrfs_setxattr, 8716 .getxattr = btrfs_getxattr, 8717 .listxattr = btrfs_listxattr, 8718 .removexattr = btrfs_removexattr, 8719 .permission = btrfs_permission, 8720 .get_acl = btrfs_get_acl, 8721 }; 8722 static const struct inode_operations btrfs_dir_ro_inode_operations = { 8723 .lookup = btrfs_lookup, 8724 .permission = btrfs_permission, 8725 .get_acl = btrfs_get_acl, 8726 }; 8727 8728 static const struct file_operations btrfs_dir_file_operations = { 8729 .llseek = generic_file_llseek, 8730 .read = generic_read_dir, 8731 .readdir = btrfs_real_readdir, 8732 .unlocked_ioctl = btrfs_ioctl, 8733 #ifdef CONFIG_COMPAT 8734 .compat_ioctl = btrfs_ioctl, 8735 #endif 8736 .release = btrfs_release_file, 8737 .fsync = btrfs_sync_file, 8738 }; 8739 8740 static struct extent_io_ops btrfs_extent_io_ops = { 8741 .fill_delalloc = run_delalloc_range, 8742 .submit_bio_hook = btrfs_submit_bio_hook, 8743 .merge_bio_hook = btrfs_merge_bio_hook, 8744 .readpage_end_io_hook = btrfs_readpage_end_io_hook, 8745 .writepage_end_io_hook = btrfs_writepage_end_io_hook, 8746 .writepage_start_hook = btrfs_writepage_start_hook, 8747 .set_bit_hook = btrfs_set_bit_hook, 8748 .clear_bit_hook = btrfs_clear_bit_hook, 8749 .merge_extent_hook = btrfs_merge_extent_hook, 8750 .split_extent_hook = btrfs_split_extent_hook, 8751 }; 8752 8753 /* 8754 * btrfs doesn't support the bmap operation because swapfiles 8755 * use bmap to make a mapping of extents in the file. They assume 8756 * these extents won't change over the life of the file and they 8757 * use the bmap result to do IO directly to the drive. 8758 * 8759 * the btrfs bmap call would return logical addresses that aren't 8760 * suitable for IO and they also will change frequently as COW 8761 * operations happen. So, swapfile + btrfs == corruption. 8762 * 8763 * For now we're avoiding this by dropping bmap. 8764 */ 8765 static const struct address_space_operations btrfs_aops = { 8766 .readpage = btrfs_readpage, 8767 .writepage = btrfs_writepage, 8768 .writepages = btrfs_writepages, 8769 .readpages = btrfs_readpages, 8770 .direct_IO = btrfs_direct_IO, 8771 .invalidatepage = btrfs_invalidatepage, 8772 .releasepage = btrfs_releasepage, 8773 .set_page_dirty = btrfs_set_page_dirty, 8774 .error_remove_page = generic_error_remove_page, 8775 }; 8776 8777 static const struct address_space_operations btrfs_symlink_aops = { 8778 .readpage = btrfs_readpage, 8779 .writepage = btrfs_writepage, 8780 .invalidatepage = btrfs_invalidatepage, 8781 .releasepage = btrfs_releasepage, 8782 }; 8783 8784 static const struct inode_operations btrfs_file_inode_operations = { 8785 .getattr = btrfs_getattr, 8786 .setattr = btrfs_setattr, 8787 .setxattr = btrfs_setxattr, 8788 .getxattr = btrfs_getxattr, 8789 .listxattr = btrfs_listxattr, 8790 .removexattr = btrfs_removexattr, 8791 .permission = btrfs_permission, 8792 .fiemap = btrfs_fiemap, 8793 .get_acl = btrfs_get_acl, 8794 .update_time = btrfs_update_time, 8795 }; 8796 static const struct inode_operations btrfs_special_inode_operations = { 8797 .getattr = btrfs_getattr, 8798 .setattr = btrfs_setattr, 8799 .permission = btrfs_permission, 8800 .setxattr = btrfs_setxattr, 8801 .getxattr = btrfs_getxattr, 8802 .listxattr = btrfs_listxattr, 8803 .removexattr = btrfs_removexattr, 8804 .get_acl = btrfs_get_acl, 8805 .update_time = btrfs_update_time, 8806 }; 8807 static const struct inode_operations btrfs_symlink_inode_operations = { 8808 .readlink = generic_readlink, 8809 .follow_link = page_follow_link_light, 8810 .put_link = page_put_link, 8811 .getattr = btrfs_getattr, 8812 .setattr = btrfs_setattr, 8813 .permission = btrfs_permission, 8814 .setxattr = btrfs_setxattr, 8815 .getxattr = btrfs_getxattr, 8816 .listxattr = btrfs_listxattr, 8817 .removexattr = btrfs_removexattr, 8818 .get_acl = btrfs_get_acl, 8819 .update_time = btrfs_update_time, 8820 }; 8821 8822 const struct dentry_operations btrfs_dentry_operations = { 8823 .d_delete = btrfs_dentry_delete, 8824 .d_release = btrfs_dentry_release, 8825 }; 8826