xref: /openbmc/linux/fs/btrfs/inode.c (revision cd99b9eb)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <crypto/hash.h>
7 #include <linux/kernel.h>
8 #include <linux/bio.h>
9 #include <linux/blk-cgroup.h>
10 #include <linux/file.h>
11 #include <linux/fs.h>
12 #include <linux/pagemap.h>
13 #include <linux/highmem.h>
14 #include <linux/time.h>
15 #include <linux/init.h>
16 #include <linux/string.h>
17 #include <linux/backing-dev.h>
18 #include <linux/writeback.h>
19 #include <linux/compat.h>
20 #include <linux/xattr.h>
21 #include <linux/posix_acl.h>
22 #include <linux/falloc.h>
23 #include <linux/slab.h>
24 #include <linux/ratelimit.h>
25 #include <linux/btrfs.h>
26 #include <linux/blkdev.h>
27 #include <linux/posix_acl_xattr.h>
28 #include <linux/uio.h>
29 #include <linux/magic.h>
30 #include <linux/iversion.h>
31 #include <linux/swap.h>
32 #include <linux/migrate.h>
33 #include <linux/sched/mm.h>
34 #include <linux/iomap.h>
35 #include <asm/unaligned.h>
36 #include <linux/fsverity.h>
37 #include "misc.h"
38 #include "ctree.h"
39 #include "disk-io.h"
40 #include "transaction.h"
41 #include "btrfs_inode.h"
42 #include "print-tree.h"
43 #include "ordered-data.h"
44 #include "xattr.h"
45 #include "tree-log.h"
46 #include "bio.h"
47 #include "compression.h"
48 #include "locking.h"
49 #include "free-space-cache.h"
50 #include "props.h"
51 #include "qgroup.h"
52 #include "delalloc-space.h"
53 #include "block-group.h"
54 #include "space-info.h"
55 #include "zoned.h"
56 #include "subpage.h"
57 #include "inode-item.h"
58 #include "fs.h"
59 #include "accessors.h"
60 #include "extent-tree.h"
61 #include "root-tree.h"
62 #include "defrag.h"
63 #include "dir-item.h"
64 #include "file-item.h"
65 #include "uuid-tree.h"
66 #include "ioctl.h"
67 #include "file.h"
68 #include "acl.h"
69 #include "relocation.h"
70 #include "verity.h"
71 #include "super.h"
72 #include "orphan.h"
73 #include "backref.h"
74 
75 struct btrfs_iget_args {
76 	u64 ino;
77 	struct btrfs_root *root;
78 };
79 
80 struct btrfs_dio_data {
81 	ssize_t submitted;
82 	struct extent_changeset *data_reserved;
83 	struct btrfs_ordered_extent *ordered;
84 	bool data_space_reserved;
85 	bool nocow_done;
86 };
87 
88 struct btrfs_dio_private {
89 	/* Range of I/O */
90 	u64 file_offset;
91 	u32 bytes;
92 
93 	/* This must be last */
94 	struct btrfs_bio bbio;
95 };
96 
97 static struct bio_set btrfs_dio_bioset;
98 
99 struct btrfs_rename_ctx {
100 	/* Output field. Stores the index number of the old directory entry. */
101 	u64 index;
102 };
103 
104 /*
105  * Used by data_reloc_print_warning_inode() to pass needed info for filename
106  * resolution and output of error message.
107  */
108 struct data_reloc_warn {
109 	struct btrfs_path path;
110 	struct btrfs_fs_info *fs_info;
111 	u64 extent_item_size;
112 	u64 logical;
113 	int mirror_num;
114 };
115 
116 static const struct inode_operations btrfs_dir_inode_operations;
117 static const struct inode_operations btrfs_symlink_inode_operations;
118 static const struct inode_operations btrfs_special_inode_operations;
119 static const struct inode_operations btrfs_file_inode_operations;
120 static const struct address_space_operations btrfs_aops;
121 static const struct file_operations btrfs_dir_file_operations;
122 
123 static struct kmem_cache *btrfs_inode_cachep;
124 
125 static int btrfs_setsize(struct inode *inode, struct iattr *attr);
126 static int btrfs_truncate(struct btrfs_inode *inode, bool skip_writeback);
127 
128 static noinline int run_delalloc_cow(struct btrfs_inode *inode,
129 				     struct page *locked_page, u64 start,
130 				     u64 end, struct writeback_control *wbc,
131 				     bool pages_dirty);
132 static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start,
133 				       u64 len, u64 orig_start, u64 block_start,
134 				       u64 block_len, u64 orig_block_len,
135 				       u64 ram_bytes, int compress_type,
136 				       int type);
137 
138 static int data_reloc_print_warning_inode(u64 inum, u64 offset, u64 num_bytes,
139 					  u64 root, void *warn_ctx)
140 {
141 	struct data_reloc_warn *warn = warn_ctx;
142 	struct btrfs_fs_info *fs_info = warn->fs_info;
143 	struct extent_buffer *eb;
144 	struct btrfs_inode_item *inode_item;
145 	struct inode_fs_paths *ipath = NULL;
146 	struct btrfs_root *local_root;
147 	struct btrfs_key key;
148 	unsigned int nofs_flag;
149 	u32 nlink;
150 	int ret;
151 
152 	local_root = btrfs_get_fs_root(fs_info, root, true);
153 	if (IS_ERR(local_root)) {
154 		ret = PTR_ERR(local_root);
155 		goto err;
156 	}
157 
158 	/* This makes the path point to (inum INODE_ITEM ioff). */
159 	key.objectid = inum;
160 	key.type = BTRFS_INODE_ITEM_KEY;
161 	key.offset = 0;
162 
163 	ret = btrfs_search_slot(NULL, local_root, &key, &warn->path, 0, 0);
164 	if (ret) {
165 		btrfs_put_root(local_root);
166 		btrfs_release_path(&warn->path);
167 		goto err;
168 	}
169 
170 	eb = warn->path.nodes[0];
171 	inode_item = btrfs_item_ptr(eb, warn->path.slots[0], struct btrfs_inode_item);
172 	nlink = btrfs_inode_nlink(eb, inode_item);
173 	btrfs_release_path(&warn->path);
174 
175 	nofs_flag = memalloc_nofs_save();
176 	ipath = init_ipath(4096, local_root, &warn->path);
177 	memalloc_nofs_restore(nofs_flag);
178 	if (IS_ERR(ipath)) {
179 		btrfs_put_root(local_root);
180 		ret = PTR_ERR(ipath);
181 		ipath = NULL;
182 		/*
183 		 * -ENOMEM, not a critical error, just output an generic error
184 		 * without filename.
185 		 */
186 		btrfs_warn(fs_info,
187 "checksum error at logical %llu mirror %u root %llu, inode %llu offset %llu",
188 			   warn->logical, warn->mirror_num, root, inum, offset);
189 		return ret;
190 	}
191 	ret = paths_from_inode(inum, ipath);
192 	if (ret < 0)
193 		goto err;
194 
195 	/*
196 	 * We deliberately ignore the bit ipath might have been too small to
197 	 * hold all of the paths here
198 	 */
199 	for (int i = 0; i < ipath->fspath->elem_cnt; i++) {
200 		btrfs_warn(fs_info,
201 "checksum error at logical %llu mirror %u root %llu inode %llu offset %llu length %u links %u (path: %s)",
202 			   warn->logical, warn->mirror_num, root, inum, offset,
203 			   fs_info->sectorsize, nlink,
204 			   (char *)(unsigned long)ipath->fspath->val[i]);
205 	}
206 
207 	btrfs_put_root(local_root);
208 	free_ipath(ipath);
209 	return 0;
210 
211 err:
212 	btrfs_warn(fs_info,
213 "checksum error at logical %llu mirror %u root %llu inode %llu offset %llu, path resolving failed with ret=%d",
214 		   warn->logical, warn->mirror_num, root, inum, offset, ret);
215 
216 	free_ipath(ipath);
217 	return ret;
218 }
219 
220 /*
221  * Do extra user-friendly error output (e.g. lookup all the affected files).
222  *
223  * Return true if we succeeded doing the backref lookup.
224  * Return false if such lookup failed, and has to fallback to the old error message.
225  */
226 static void print_data_reloc_error(const struct btrfs_inode *inode, u64 file_off,
227 				   const u8 *csum, const u8 *csum_expected,
228 				   int mirror_num)
229 {
230 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
231 	struct btrfs_path path = { 0 };
232 	struct btrfs_key found_key = { 0 };
233 	struct extent_buffer *eb;
234 	struct btrfs_extent_item *ei;
235 	const u32 csum_size = fs_info->csum_size;
236 	u64 logical;
237 	u64 flags;
238 	u32 item_size;
239 	int ret;
240 
241 	mutex_lock(&fs_info->reloc_mutex);
242 	logical = btrfs_get_reloc_bg_bytenr(fs_info);
243 	mutex_unlock(&fs_info->reloc_mutex);
244 
245 	if (logical == U64_MAX) {
246 		btrfs_warn_rl(fs_info, "has data reloc tree but no running relocation");
247 		btrfs_warn_rl(fs_info,
248 "csum failed root %lld ino %llu off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
249 			inode->root->root_key.objectid, btrfs_ino(inode), file_off,
250 			CSUM_FMT_VALUE(csum_size, csum),
251 			CSUM_FMT_VALUE(csum_size, csum_expected),
252 			mirror_num);
253 		return;
254 	}
255 
256 	logical += file_off;
257 	btrfs_warn_rl(fs_info,
258 "csum failed root %lld ino %llu off %llu logical %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
259 			inode->root->root_key.objectid,
260 			btrfs_ino(inode), file_off, logical,
261 			CSUM_FMT_VALUE(csum_size, csum),
262 			CSUM_FMT_VALUE(csum_size, csum_expected),
263 			mirror_num);
264 
265 	ret = extent_from_logical(fs_info, logical, &path, &found_key, &flags);
266 	if (ret < 0) {
267 		btrfs_err_rl(fs_info, "failed to lookup extent item for logical %llu: %d",
268 			     logical, ret);
269 		return;
270 	}
271 	eb = path.nodes[0];
272 	ei = btrfs_item_ptr(eb, path.slots[0], struct btrfs_extent_item);
273 	item_size = btrfs_item_size(eb, path.slots[0]);
274 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
275 		unsigned long ptr = 0;
276 		u64 ref_root;
277 		u8 ref_level;
278 
279 		while (true) {
280 			ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
281 						      item_size, &ref_root,
282 						      &ref_level);
283 			if (ret < 0) {
284 				btrfs_warn_rl(fs_info,
285 				"failed to resolve tree backref for logical %llu: %d",
286 					      logical, ret);
287 				break;
288 			}
289 			if (ret > 0)
290 				break;
291 
292 			btrfs_warn_rl(fs_info,
293 "csum error at logical %llu mirror %u: metadata %s (level %d) in tree %llu",
294 				logical, mirror_num,
295 				(ref_level ? "node" : "leaf"),
296 				ref_level, ref_root);
297 		}
298 		btrfs_release_path(&path);
299 	} else {
300 		struct btrfs_backref_walk_ctx ctx = { 0 };
301 		struct data_reloc_warn reloc_warn = { 0 };
302 
303 		btrfs_release_path(&path);
304 
305 		ctx.bytenr = found_key.objectid;
306 		ctx.extent_item_pos = logical - found_key.objectid;
307 		ctx.fs_info = fs_info;
308 
309 		reloc_warn.logical = logical;
310 		reloc_warn.extent_item_size = found_key.offset;
311 		reloc_warn.mirror_num = mirror_num;
312 		reloc_warn.fs_info = fs_info;
313 
314 		iterate_extent_inodes(&ctx, true,
315 				      data_reloc_print_warning_inode, &reloc_warn);
316 	}
317 }
318 
319 static void __cold btrfs_print_data_csum_error(struct btrfs_inode *inode,
320 		u64 logical_start, u8 *csum, u8 *csum_expected, int mirror_num)
321 {
322 	struct btrfs_root *root = inode->root;
323 	const u32 csum_size = root->fs_info->csum_size;
324 
325 	/* For data reloc tree, it's better to do a backref lookup instead. */
326 	if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
327 		return print_data_reloc_error(inode, logical_start, csum,
328 					      csum_expected, mirror_num);
329 
330 	/* Output without objectid, which is more meaningful */
331 	if (root->root_key.objectid >= BTRFS_LAST_FREE_OBJECTID) {
332 		btrfs_warn_rl(root->fs_info,
333 "csum failed root %lld ino %lld off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
334 			root->root_key.objectid, btrfs_ino(inode),
335 			logical_start,
336 			CSUM_FMT_VALUE(csum_size, csum),
337 			CSUM_FMT_VALUE(csum_size, csum_expected),
338 			mirror_num);
339 	} else {
340 		btrfs_warn_rl(root->fs_info,
341 "csum failed root %llu ino %llu off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
342 			root->root_key.objectid, btrfs_ino(inode),
343 			logical_start,
344 			CSUM_FMT_VALUE(csum_size, csum),
345 			CSUM_FMT_VALUE(csum_size, csum_expected),
346 			mirror_num);
347 	}
348 }
349 
350 /*
351  * btrfs_inode_lock - lock inode i_rwsem based on arguments passed
352  *
353  * ilock_flags can have the following bit set:
354  *
355  * BTRFS_ILOCK_SHARED - acquire a shared lock on the inode
356  * BTRFS_ILOCK_TRY - try to acquire the lock, if fails on first attempt
357  *		     return -EAGAIN
358  * BTRFS_ILOCK_MMAP - acquire a write lock on the i_mmap_lock
359  */
360 int btrfs_inode_lock(struct btrfs_inode *inode, unsigned int ilock_flags)
361 {
362 	if (ilock_flags & BTRFS_ILOCK_SHARED) {
363 		if (ilock_flags & BTRFS_ILOCK_TRY) {
364 			if (!inode_trylock_shared(&inode->vfs_inode))
365 				return -EAGAIN;
366 			else
367 				return 0;
368 		}
369 		inode_lock_shared(&inode->vfs_inode);
370 	} else {
371 		if (ilock_flags & BTRFS_ILOCK_TRY) {
372 			if (!inode_trylock(&inode->vfs_inode))
373 				return -EAGAIN;
374 			else
375 				return 0;
376 		}
377 		inode_lock(&inode->vfs_inode);
378 	}
379 	if (ilock_flags & BTRFS_ILOCK_MMAP)
380 		down_write(&inode->i_mmap_lock);
381 	return 0;
382 }
383 
384 /*
385  * btrfs_inode_unlock - unock inode i_rwsem
386  *
387  * ilock_flags should contain the same bits set as passed to btrfs_inode_lock()
388  * to decide whether the lock acquired is shared or exclusive.
389  */
390 void btrfs_inode_unlock(struct btrfs_inode *inode, unsigned int ilock_flags)
391 {
392 	if (ilock_flags & BTRFS_ILOCK_MMAP)
393 		up_write(&inode->i_mmap_lock);
394 	if (ilock_flags & BTRFS_ILOCK_SHARED)
395 		inode_unlock_shared(&inode->vfs_inode);
396 	else
397 		inode_unlock(&inode->vfs_inode);
398 }
399 
400 /*
401  * Cleanup all submitted ordered extents in specified range to handle errors
402  * from the btrfs_run_delalloc_range() callback.
403  *
404  * NOTE: caller must ensure that when an error happens, it can not call
405  * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING
406  * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata
407  * to be released, which we want to happen only when finishing the ordered
408  * extent (btrfs_finish_ordered_io()).
409  */
410 static inline void btrfs_cleanup_ordered_extents(struct btrfs_inode *inode,
411 						 struct page *locked_page,
412 						 u64 offset, u64 bytes)
413 {
414 	unsigned long index = offset >> PAGE_SHIFT;
415 	unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT;
416 	u64 page_start = 0, page_end = 0;
417 	struct page *page;
418 
419 	if (locked_page) {
420 		page_start = page_offset(locked_page);
421 		page_end = page_start + PAGE_SIZE - 1;
422 	}
423 
424 	while (index <= end_index) {
425 		/*
426 		 * For locked page, we will call btrfs_mark_ordered_io_finished
427 		 * through btrfs_mark_ordered_io_finished() on it
428 		 * in run_delalloc_range() for the error handling, which will
429 		 * clear page Ordered and run the ordered extent accounting.
430 		 *
431 		 * Here we can't just clear the Ordered bit, or
432 		 * btrfs_mark_ordered_io_finished() would skip the accounting
433 		 * for the page range, and the ordered extent will never finish.
434 		 */
435 		if (locked_page && index == (page_start >> PAGE_SHIFT)) {
436 			index++;
437 			continue;
438 		}
439 		page = find_get_page(inode->vfs_inode.i_mapping, index);
440 		index++;
441 		if (!page)
442 			continue;
443 
444 		/*
445 		 * Here we just clear all Ordered bits for every page in the
446 		 * range, then btrfs_mark_ordered_io_finished() will handle
447 		 * the ordered extent accounting for the range.
448 		 */
449 		btrfs_page_clamp_clear_ordered(inode->root->fs_info, page,
450 					       offset, bytes);
451 		put_page(page);
452 	}
453 
454 	if (locked_page) {
455 		/* The locked page covers the full range, nothing needs to be done */
456 		if (bytes + offset <= page_start + PAGE_SIZE)
457 			return;
458 		/*
459 		 * In case this page belongs to the delalloc range being
460 		 * instantiated then skip it, since the first page of a range is
461 		 * going to be properly cleaned up by the caller of
462 		 * run_delalloc_range
463 		 */
464 		if (page_start >= offset && page_end <= (offset + bytes - 1)) {
465 			bytes = offset + bytes - page_offset(locked_page) - PAGE_SIZE;
466 			offset = page_offset(locked_page) + PAGE_SIZE;
467 		}
468 	}
469 
470 	return btrfs_mark_ordered_io_finished(inode, NULL, offset, bytes, false);
471 }
472 
473 static int btrfs_dirty_inode(struct btrfs_inode *inode);
474 
475 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
476 				     struct btrfs_new_inode_args *args)
477 {
478 	int err;
479 
480 	if (args->default_acl) {
481 		err = __btrfs_set_acl(trans, args->inode, args->default_acl,
482 				      ACL_TYPE_DEFAULT);
483 		if (err)
484 			return err;
485 	}
486 	if (args->acl) {
487 		err = __btrfs_set_acl(trans, args->inode, args->acl, ACL_TYPE_ACCESS);
488 		if (err)
489 			return err;
490 	}
491 	if (!args->default_acl && !args->acl)
492 		cache_no_acl(args->inode);
493 	return btrfs_xattr_security_init(trans, args->inode, args->dir,
494 					 &args->dentry->d_name);
495 }
496 
497 /*
498  * this does all the hard work for inserting an inline extent into
499  * the btree.  The caller should have done a btrfs_drop_extents so that
500  * no overlapping inline items exist in the btree
501  */
502 static int insert_inline_extent(struct btrfs_trans_handle *trans,
503 				struct btrfs_path *path,
504 				struct btrfs_inode *inode, bool extent_inserted,
505 				size_t size, size_t compressed_size,
506 				int compress_type,
507 				struct page **compressed_pages,
508 				bool update_i_size)
509 {
510 	struct btrfs_root *root = inode->root;
511 	struct extent_buffer *leaf;
512 	struct page *page = NULL;
513 	char *kaddr;
514 	unsigned long ptr;
515 	struct btrfs_file_extent_item *ei;
516 	int ret;
517 	size_t cur_size = size;
518 	u64 i_size;
519 
520 	ASSERT((compressed_size > 0 && compressed_pages) ||
521 	       (compressed_size == 0 && !compressed_pages));
522 
523 	if (compressed_size && compressed_pages)
524 		cur_size = compressed_size;
525 
526 	if (!extent_inserted) {
527 		struct btrfs_key key;
528 		size_t datasize;
529 
530 		key.objectid = btrfs_ino(inode);
531 		key.offset = 0;
532 		key.type = BTRFS_EXTENT_DATA_KEY;
533 
534 		datasize = btrfs_file_extent_calc_inline_size(cur_size);
535 		ret = btrfs_insert_empty_item(trans, root, path, &key,
536 					      datasize);
537 		if (ret)
538 			goto fail;
539 	}
540 	leaf = path->nodes[0];
541 	ei = btrfs_item_ptr(leaf, path->slots[0],
542 			    struct btrfs_file_extent_item);
543 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
544 	btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
545 	btrfs_set_file_extent_encryption(leaf, ei, 0);
546 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
547 	btrfs_set_file_extent_ram_bytes(leaf, ei, size);
548 	ptr = btrfs_file_extent_inline_start(ei);
549 
550 	if (compress_type != BTRFS_COMPRESS_NONE) {
551 		struct page *cpage;
552 		int i = 0;
553 		while (compressed_size > 0) {
554 			cpage = compressed_pages[i];
555 			cur_size = min_t(unsigned long, compressed_size,
556 				       PAGE_SIZE);
557 
558 			kaddr = kmap_local_page(cpage);
559 			write_extent_buffer(leaf, kaddr, ptr, cur_size);
560 			kunmap_local(kaddr);
561 
562 			i++;
563 			ptr += cur_size;
564 			compressed_size -= cur_size;
565 		}
566 		btrfs_set_file_extent_compression(leaf, ei,
567 						  compress_type);
568 	} else {
569 		page = find_get_page(inode->vfs_inode.i_mapping, 0);
570 		btrfs_set_file_extent_compression(leaf, ei, 0);
571 		kaddr = kmap_local_page(page);
572 		write_extent_buffer(leaf, kaddr, ptr, size);
573 		kunmap_local(kaddr);
574 		put_page(page);
575 	}
576 	btrfs_mark_buffer_dirty(leaf);
577 	btrfs_release_path(path);
578 
579 	/*
580 	 * We align size to sectorsize for inline extents just for simplicity
581 	 * sake.
582 	 */
583 	ret = btrfs_inode_set_file_extent_range(inode, 0,
584 					ALIGN(size, root->fs_info->sectorsize));
585 	if (ret)
586 		goto fail;
587 
588 	/*
589 	 * We're an inline extent, so nobody can extend the file past i_size
590 	 * without locking a page we already have locked.
591 	 *
592 	 * We must do any i_size and inode updates before we unlock the pages.
593 	 * Otherwise we could end up racing with unlink.
594 	 */
595 	i_size = i_size_read(&inode->vfs_inode);
596 	if (update_i_size && size > i_size) {
597 		i_size_write(&inode->vfs_inode, size);
598 		i_size = size;
599 	}
600 	inode->disk_i_size = i_size;
601 
602 fail:
603 	return ret;
604 }
605 
606 
607 /*
608  * conditionally insert an inline extent into the file.  This
609  * does the checks required to make sure the data is small enough
610  * to fit as an inline extent.
611  */
612 static noinline int cow_file_range_inline(struct btrfs_inode *inode, u64 size,
613 					  size_t compressed_size,
614 					  int compress_type,
615 					  struct page **compressed_pages,
616 					  bool update_i_size)
617 {
618 	struct btrfs_drop_extents_args drop_args = { 0 };
619 	struct btrfs_root *root = inode->root;
620 	struct btrfs_fs_info *fs_info = root->fs_info;
621 	struct btrfs_trans_handle *trans;
622 	u64 data_len = (compressed_size ?: size);
623 	int ret;
624 	struct btrfs_path *path;
625 
626 	/*
627 	 * We can create an inline extent if it ends at or beyond the current
628 	 * i_size, is no larger than a sector (decompressed), and the (possibly
629 	 * compressed) data fits in a leaf and the configured maximum inline
630 	 * size.
631 	 */
632 	if (size < i_size_read(&inode->vfs_inode) ||
633 	    size > fs_info->sectorsize ||
634 	    data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) ||
635 	    data_len > fs_info->max_inline)
636 		return 1;
637 
638 	path = btrfs_alloc_path();
639 	if (!path)
640 		return -ENOMEM;
641 
642 	trans = btrfs_join_transaction(root);
643 	if (IS_ERR(trans)) {
644 		btrfs_free_path(path);
645 		return PTR_ERR(trans);
646 	}
647 	trans->block_rsv = &inode->block_rsv;
648 
649 	drop_args.path = path;
650 	drop_args.start = 0;
651 	drop_args.end = fs_info->sectorsize;
652 	drop_args.drop_cache = true;
653 	drop_args.replace_extent = true;
654 	drop_args.extent_item_size = btrfs_file_extent_calc_inline_size(data_len);
655 	ret = btrfs_drop_extents(trans, root, inode, &drop_args);
656 	if (ret) {
657 		btrfs_abort_transaction(trans, ret);
658 		goto out;
659 	}
660 
661 	ret = insert_inline_extent(trans, path, inode, drop_args.extent_inserted,
662 				   size, compressed_size, compress_type,
663 				   compressed_pages, update_i_size);
664 	if (ret && ret != -ENOSPC) {
665 		btrfs_abort_transaction(trans, ret);
666 		goto out;
667 	} else if (ret == -ENOSPC) {
668 		ret = 1;
669 		goto out;
670 	}
671 
672 	btrfs_update_inode_bytes(inode, size, drop_args.bytes_found);
673 	ret = btrfs_update_inode(trans, root, inode);
674 	if (ret && ret != -ENOSPC) {
675 		btrfs_abort_transaction(trans, ret);
676 		goto out;
677 	} else if (ret == -ENOSPC) {
678 		ret = 1;
679 		goto out;
680 	}
681 
682 	btrfs_set_inode_full_sync(inode);
683 out:
684 	/*
685 	 * Don't forget to free the reserved space, as for inlined extent
686 	 * it won't count as data extent, free them directly here.
687 	 * And at reserve time, it's always aligned to page size, so
688 	 * just free one page here.
689 	 */
690 	btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE);
691 	btrfs_free_path(path);
692 	btrfs_end_transaction(trans);
693 	return ret;
694 }
695 
696 struct async_extent {
697 	u64 start;
698 	u64 ram_size;
699 	u64 compressed_size;
700 	struct page **pages;
701 	unsigned long nr_pages;
702 	int compress_type;
703 	struct list_head list;
704 };
705 
706 struct async_chunk {
707 	struct btrfs_inode *inode;
708 	struct page *locked_page;
709 	u64 start;
710 	u64 end;
711 	blk_opf_t write_flags;
712 	struct list_head extents;
713 	struct cgroup_subsys_state *blkcg_css;
714 	struct btrfs_work work;
715 	struct async_cow *async_cow;
716 };
717 
718 struct async_cow {
719 	atomic_t num_chunks;
720 	struct async_chunk chunks[];
721 };
722 
723 static noinline int add_async_extent(struct async_chunk *cow,
724 				     u64 start, u64 ram_size,
725 				     u64 compressed_size,
726 				     struct page **pages,
727 				     unsigned long nr_pages,
728 				     int compress_type)
729 {
730 	struct async_extent *async_extent;
731 
732 	async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
733 	BUG_ON(!async_extent); /* -ENOMEM */
734 	async_extent->start = start;
735 	async_extent->ram_size = ram_size;
736 	async_extent->compressed_size = compressed_size;
737 	async_extent->pages = pages;
738 	async_extent->nr_pages = nr_pages;
739 	async_extent->compress_type = compress_type;
740 	list_add_tail(&async_extent->list, &cow->extents);
741 	return 0;
742 }
743 
744 /*
745  * Check if the inode needs to be submitted to compression, based on mount
746  * options, defragmentation, properties or heuristics.
747  */
748 static inline int inode_need_compress(struct btrfs_inode *inode, u64 start,
749 				      u64 end)
750 {
751 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
752 
753 	if (!btrfs_inode_can_compress(inode)) {
754 		WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
755 			KERN_ERR "BTRFS: unexpected compression for ino %llu\n",
756 			btrfs_ino(inode));
757 		return 0;
758 	}
759 	/*
760 	 * Special check for subpage.
761 	 *
762 	 * We lock the full page then run each delalloc range in the page, thus
763 	 * for the following case, we will hit some subpage specific corner case:
764 	 *
765 	 * 0		32K		64K
766 	 * |	|///////|	|///////|
767 	 *		\- A		\- B
768 	 *
769 	 * In above case, both range A and range B will try to unlock the full
770 	 * page [0, 64K), causing the one finished later will have page
771 	 * unlocked already, triggering various page lock requirement BUG_ON()s.
772 	 *
773 	 * So here we add an artificial limit that subpage compression can only
774 	 * if the range is fully page aligned.
775 	 *
776 	 * In theory we only need to ensure the first page is fully covered, but
777 	 * the tailing partial page will be locked until the full compression
778 	 * finishes, delaying the write of other range.
779 	 *
780 	 * TODO: Make btrfs_run_delalloc_range() to lock all delalloc range
781 	 * first to prevent any submitted async extent to unlock the full page.
782 	 * By this, we can ensure for subpage case that only the last async_cow
783 	 * will unlock the full page.
784 	 */
785 	if (fs_info->sectorsize < PAGE_SIZE) {
786 		if (!PAGE_ALIGNED(start) ||
787 		    !PAGE_ALIGNED(end + 1))
788 			return 0;
789 	}
790 
791 	/* force compress */
792 	if (btrfs_test_opt(fs_info, FORCE_COMPRESS))
793 		return 1;
794 	/* defrag ioctl */
795 	if (inode->defrag_compress)
796 		return 1;
797 	/* bad compression ratios */
798 	if (inode->flags & BTRFS_INODE_NOCOMPRESS)
799 		return 0;
800 	if (btrfs_test_opt(fs_info, COMPRESS) ||
801 	    inode->flags & BTRFS_INODE_COMPRESS ||
802 	    inode->prop_compress)
803 		return btrfs_compress_heuristic(&inode->vfs_inode, start, end);
804 	return 0;
805 }
806 
807 static inline void inode_should_defrag(struct btrfs_inode *inode,
808 		u64 start, u64 end, u64 num_bytes, u32 small_write)
809 {
810 	/* If this is a small write inside eof, kick off a defrag */
811 	if (num_bytes < small_write &&
812 	    (start > 0 || end + 1 < inode->disk_i_size))
813 		btrfs_add_inode_defrag(NULL, inode, small_write);
814 }
815 
816 /*
817  * Work queue call back to started compression on a file and pages.
818  *
819  * This is done inside an ordered work queue, and the compression is spread
820  * across many cpus.  The actual IO submission is step two, and the ordered work
821  * queue takes care of making sure that happens in the same order things were
822  * put onto the queue by writepages and friends.
823  *
824  * If this code finds it can't get good compression, it puts an entry onto the
825  * work queue to write the uncompressed bytes.  This makes sure that both
826  * compressed inodes and uncompressed inodes are written in the same order that
827  * the flusher thread sent them down.
828  */
829 static void compress_file_range(struct btrfs_work *work)
830 {
831 	struct async_chunk *async_chunk =
832 		container_of(work, struct async_chunk, work);
833 	struct btrfs_inode *inode = async_chunk->inode;
834 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
835 	struct address_space *mapping = inode->vfs_inode.i_mapping;
836 	u64 blocksize = fs_info->sectorsize;
837 	u64 start = async_chunk->start;
838 	u64 end = async_chunk->end;
839 	u64 actual_end;
840 	u64 i_size;
841 	int ret = 0;
842 	struct page **pages;
843 	unsigned long nr_pages;
844 	unsigned long total_compressed = 0;
845 	unsigned long total_in = 0;
846 	unsigned int poff;
847 	int i;
848 	int compress_type = fs_info->compress_type;
849 
850 	inode_should_defrag(inode, start, end, end - start + 1, SZ_16K);
851 
852 	/*
853 	 * We need to call clear_page_dirty_for_io on each page in the range.
854 	 * Otherwise applications with the file mmap'd can wander in and change
855 	 * the page contents while we are compressing them.
856 	 */
857 	extent_range_clear_dirty_for_io(&inode->vfs_inode, start, end);
858 
859 	/*
860 	 * We need to save i_size before now because it could change in between
861 	 * us evaluating the size and assigning it.  This is because we lock and
862 	 * unlock the page in truncate and fallocate, and then modify the i_size
863 	 * later on.
864 	 *
865 	 * The barriers are to emulate READ_ONCE, remove that once i_size_read
866 	 * does that for us.
867 	 */
868 	barrier();
869 	i_size = i_size_read(&inode->vfs_inode);
870 	barrier();
871 	actual_end = min_t(u64, i_size, end + 1);
872 again:
873 	pages = NULL;
874 	nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
875 	nr_pages = min_t(unsigned long, nr_pages, BTRFS_MAX_COMPRESSED_PAGES);
876 
877 	/*
878 	 * we don't want to send crud past the end of i_size through
879 	 * compression, that's just a waste of CPU time.  So, if the
880 	 * end of the file is before the start of our current
881 	 * requested range of bytes, we bail out to the uncompressed
882 	 * cleanup code that can deal with all of this.
883 	 *
884 	 * It isn't really the fastest way to fix things, but this is a
885 	 * very uncommon corner.
886 	 */
887 	if (actual_end <= start)
888 		goto cleanup_and_bail_uncompressed;
889 
890 	total_compressed = actual_end - start;
891 
892 	/*
893 	 * Skip compression for a small file range(<=blocksize) that
894 	 * isn't an inline extent, since it doesn't save disk space at all.
895 	 */
896 	if (total_compressed <= blocksize &&
897 	   (start > 0 || end + 1 < inode->disk_i_size))
898 		goto cleanup_and_bail_uncompressed;
899 
900 	/*
901 	 * For subpage case, we require full page alignment for the sector
902 	 * aligned range.
903 	 * Thus we must also check against @actual_end, not just @end.
904 	 */
905 	if (blocksize < PAGE_SIZE) {
906 		if (!PAGE_ALIGNED(start) ||
907 		    !PAGE_ALIGNED(round_up(actual_end, blocksize)))
908 			goto cleanup_and_bail_uncompressed;
909 	}
910 
911 	total_compressed = min_t(unsigned long, total_compressed,
912 			BTRFS_MAX_UNCOMPRESSED);
913 	total_in = 0;
914 	ret = 0;
915 
916 	/*
917 	 * We do compression for mount -o compress and when the inode has not
918 	 * been flagged as NOCOMPRESS.  This flag can change at any time if we
919 	 * discover bad compression ratios.
920 	 */
921 	if (!inode_need_compress(inode, start, end))
922 		goto cleanup_and_bail_uncompressed;
923 
924 	pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
925 	if (!pages) {
926 		/*
927 		 * Memory allocation failure is not a fatal error, we can fall
928 		 * back to uncompressed code.
929 		 */
930 		goto cleanup_and_bail_uncompressed;
931 	}
932 
933 	if (inode->defrag_compress)
934 		compress_type = inode->defrag_compress;
935 	else if (inode->prop_compress)
936 		compress_type = inode->prop_compress;
937 
938 	/* Compression level is applied here. */
939 	ret = btrfs_compress_pages(compress_type | (fs_info->compress_level << 4),
940 				   mapping, start, pages, &nr_pages, &total_in,
941 				   &total_compressed);
942 	if (ret)
943 		goto mark_incompressible;
944 
945 	/*
946 	 * Zero the tail end of the last page, as we might be sending it down
947 	 * to disk.
948 	 */
949 	poff = offset_in_page(total_compressed);
950 	if (poff)
951 		memzero_page(pages[nr_pages - 1], poff, PAGE_SIZE - poff);
952 
953 	/*
954 	 * Try to create an inline extent.
955 	 *
956 	 * If we didn't compress the entire range, try to create an uncompressed
957 	 * inline extent, else a compressed one.
958 	 *
959 	 * Check cow_file_range() for why we don't even try to create inline
960 	 * extent for the subpage case.
961 	 */
962 	if (start == 0 && fs_info->sectorsize == PAGE_SIZE) {
963 		if (total_in < actual_end) {
964 			ret = cow_file_range_inline(inode, actual_end, 0,
965 						    BTRFS_COMPRESS_NONE, NULL,
966 						    false);
967 		} else {
968 			ret = cow_file_range_inline(inode, actual_end,
969 						    total_compressed,
970 						    compress_type, pages,
971 						    false);
972 		}
973 		if (ret <= 0) {
974 			unsigned long clear_flags = EXTENT_DELALLOC |
975 				EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
976 				EXTENT_DO_ACCOUNTING;
977 
978 			if (ret < 0)
979 				mapping_set_error(mapping, -EIO);
980 
981 			/*
982 			 * inline extent creation worked or returned error,
983 			 * we don't need to create any more async work items.
984 			 * Unlock and free up our temp pages.
985 			 *
986 			 * We use DO_ACCOUNTING here because we need the
987 			 * delalloc_release_metadata to be done _after_ we drop
988 			 * our outstanding extent for clearing delalloc for this
989 			 * range.
990 			 */
991 			extent_clear_unlock_delalloc(inode, start, end,
992 						     NULL,
993 						     clear_flags,
994 						     PAGE_UNLOCK |
995 						     PAGE_START_WRITEBACK |
996 						     PAGE_END_WRITEBACK);
997 			goto free_pages;
998 		}
999 	}
1000 
1001 	/*
1002 	 * We aren't doing an inline extent. Round the compressed size up to a
1003 	 * block size boundary so the allocator does sane things.
1004 	 */
1005 	total_compressed = ALIGN(total_compressed, blocksize);
1006 
1007 	/*
1008 	 * One last check to make sure the compression is really a win, compare
1009 	 * the page count read with the blocks on disk, compression must free at
1010 	 * least one sector.
1011 	 */
1012 	total_in = round_up(total_in, fs_info->sectorsize);
1013 	if (total_compressed + blocksize > total_in)
1014 		goto mark_incompressible;
1015 
1016 	/*
1017 	 * The async work queues will take care of doing actual allocation on
1018 	 * disk for these compressed pages, and will submit the bios.
1019 	 */
1020 	add_async_extent(async_chunk, start, total_in, total_compressed, pages,
1021 			 nr_pages, compress_type);
1022 	if (start + total_in < end) {
1023 		start += total_in;
1024 		cond_resched();
1025 		goto again;
1026 	}
1027 	return;
1028 
1029 mark_incompressible:
1030 	if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) && !inode->prop_compress)
1031 		inode->flags |= BTRFS_INODE_NOCOMPRESS;
1032 cleanup_and_bail_uncompressed:
1033 	add_async_extent(async_chunk, start, end - start + 1, 0, NULL, 0,
1034 			 BTRFS_COMPRESS_NONE);
1035 free_pages:
1036 	if (pages) {
1037 		for (i = 0; i < nr_pages; i++) {
1038 			WARN_ON(pages[i]->mapping);
1039 			put_page(pages[i]);
1040 		}
1041 		kfree(pages);
1042 	}
1043 }
1044 
1045 static void free_async_extent_pages(struct async_extent *async_extent)
1046 {
1047 	int i;
1048 
1049 	if (!async_extent->pages)
1050 		return;
1051 
1052 	for (i = 0; i < async_extent->nr_pages; i++) {
1053 		WARN_ON(async_extent->pages[i]->mapping);
1054 		put_page(async_extent->pages[i]);
1055 	}
1056 	kfree(async_extent->pages);
1057 	async_extent->nr_pages = 0;
1058 	async_extent->pages = NULL;
1059 }
1060 
1061 static void submit_uncompressed_range(struct btrfs_inode *inode,
1062 				      struct async_extent *async_extent,
1063 				      struct page *locked_page)
1064 {
1065 	u64 start = async_extent->start;
1066 	u64 end = async_extent->start + async_extent->ram_size - 1;
1067 	int ret;
1068 	struct writeback_control wbc = {
1069 		.sync_mode		= WB_SYNC_ALL,
1070 		.range_start		= start,
1071 		.range_end		= end,
1072 		.no_cgroup_owner	= 1,
1073 	};
1074 
1075 	wbc_attach_fdatawrite_inode(&wbc, &inode->vfs_inode);
1076 	ret = run_delalloc_cow(inode, locked_page, start, end, &wbc, false);
1077 	wbc_detach_inode(&wbc);
1078 	if (ret < 0) {
1079 		btrfs_cleanup_ordered_extents(inode, locked_page, start, end - start + 1);
1080 		if (locked_page) {
1081 			const u64 page_start = page_offset(locked_page);
1082 
1083 			set_page_writeback(locked_page);
1084 			end_page_writeback(locked_page);
1085 			btrfs_mark_ordered_io_finished(inode, locked_page,
1086 						       page_start, PAGE_SIZE,
1087 						       !ret);
1088 			btrfs_page_clear_uptodate(inode->root->fs_info,
1089 						  locked_page, page_start,
1090 						  PAGE_SIZE);
1091 			mapping_set_error(locked_page->mapping, ret);
1092 			unlock_page(locked_page);
1093 		}
1094 	}
1095 }
1096 
1097 static void submit_one_async_extent(struct async_chunk *async_chunk,
1098 				    struct async_extent *async_extent,
1099 				    u64 *alloc_hint)
1100 {
1101 	struct btrfs_inode *inode = async_chunk->inode;
1102 	struct extent_io_tree *io_tree = &inode->io_tree;
1103 	struct btrfs_root *root = inode->root;
1104 	struct btrfs_fs_info *fs_info = root->fs_info;
1105 	struct btrfs_ordered_extent *ordered;
1106 	struct btrfs_key ins;
1107 	struct page *locked_page = NULL;
1108 	struct extent_map *em;
1109 	int ret = 0;
1110 	u64 start = async_extent->start;
1111 	u64 end = async_extent->start + async_extent->ram_size - 1;
1112 
1113 	if (async_chunk->blkcg_css)
1114 		kthread_associate_blkcg(async_chunk->blkcg_css);
1115 
1116 	/*
1117 	 * If async_chunk->locked_page is in the async_extent range, we need to
1118 	 * handle it.
1119 	 */
1120 	if (async_chunk->locked_page) {
1121 		u64 locked_page_start = page_offset(async_chunk->locked_page);
1122 		u64 locked_page_end = locked_page_start + PAGE_SIZE - 1;
1123 
1124 		if (!(start >= locked_page_end || end <= locked_page_start))
1125 			locked_page = async_chunk->locked_page;
1126 	}
1127 	lock_extent(io_tree, start, end, NULL);
1128 
1129 	if (async_extent->compress_type == BTRFS_COMPRESS_NONE) {
1130 		submit_uncompressed_range(inode, async_extent, locked_page);
1131 		goto done;
1132 	}
1133 
1134 	ret = btrfs_reserve_extent(root, async_extent->ram_size,
1135 				   async_extent->compressed_size,
1136 				   async_extent->compressed_size,
1137 				   0, *alloc_hint, &ins, 1, 1);
1138 	if (ret) {
1139 		/*
1140 		 * Here we used to try again by going back to non-compressed
1141 		 * path for ENOSPC.  But we can't reserve space even for
1142 		 * compressed size, how could it work for uncompressed size
1143 		 * which requires larger size?  So here we directly go error
1144 		 * path.
1145 		 */
1146 		goto out_free;
1147 	}
1148 
1149 	/* Here we're doing allocation and writeback of the compressed pages */
1150 	em = create_io_em(inode, start,
1151 			  async_extent->ram_size,	/* len */
1152 			  start,			/* orig_start */
1153 			  ins.objectid,			/* block_start */
1154 			  ins.offset,			/* block_len */
1155 			  ins.offset,			/* orig_block_len */
1156 			  async_extent->ram_size,	/* ram_bytes */
1157 			  async_extent->compress_type,
1158 			  BTRFS_ORDERED_COMPRESSED);
1159 	if (IS_ERR(em)) {
1160 		ret = PTR_ERR(em);
1161 		goto out_free_reserve;
1162 	}
1163 	free_extent_map(em);
1164 
1165 	ordered = btrfs_alloc_ordered_extent(inode, start,	/* file_offset */
1166 				       async_extent->ram_size,	/* num_bytes */
1167 				       async_extent->ram_size,	/* ram_bytes */
1168 				       ins.objectid,		/* disk_bytenr */
1169 				       ins.offset,		/* disk_num_bytes */
1170 				       0,			/* offset */
1171 				       1 << BTRFS_ORDERED_COMPRESSED,
1172 				       async_extent->compress_type);
1173 	if (IS_ERR(ordered)) {
1174 		btrfs_drop_extent_map_range(inode, start, end, false);
1175 		ret = PTR_ERR(ordered);
1176 		goto out_free_reserve;
1177 	}
1178 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1179 
1180 	/* Clear dirty, set writeback and unlock the pages. */
1181 	extent_clear_unlock_delalloc(inode, start, end,
1182 			NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
1183 			PAGE_UNLOCK | PAGE_START_WRITEBACK);
1184 	btrfs_submit_compressed_write(ordered,
1185 			    async_extent->pages,	/* compressed_pages */
1186 			    async_extent->nr_pages,
1187 			    async_chunk->write_flags, true);
1188 	*alloc_hint = ins.objectid + ins.offset;
1189 done:
1190 	if (async_chunk->blkcg_css)
1191 		kthread_associate_blkcg(NULL);
1192 	kfree(async_extent);
1193 	return;
1194 
1195 out_free_reserve:
1196 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1197 	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
1198 out_free:
1199 	mapping_set_error(inode->vfs_inode.i_mapping, -EIO);
1200 	extent_clear_unlock_delalloc(inode, start, end,
1201 				     NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
1202 				     EXTENT_DELALLOC_NEW |
1203 				     EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
1204 				     PAGE_UNLOCK | PAGE_START_WRITEBACK |
1205 				     PAGE_END_WRITEBACK);
1206 	free_async_extent_pages(async_extent);
1207 	if (async_chunk->blkcg_css)
1208 		kthread_associate_blkcg(NULL);
1209 	btrfs_debug(fs_info,
1210 "async extent submission failed root=%lld inode=%llu start=%llu len=%llu ret=%d",
1211 		    root->root_key.objectid, btrfs_ino(inode), start,
1212 		    async_extent->ram_size, ret);
1213 	kfree(async_extent);
1214 }
1215 
1216 static u64 get_extent_allocation_hint(struct btrfs_inode *inode, u64 start,
1217 				      u64 num_bytes)
1218 {
1219 	struct extent_map_tree *em_tree = &inode->extent_tree;
1220 	struct extent_map *em;
1221 	u64 alloc_hint = 0;
1222 
1223 	read_lock(&em_tree->lock);
1224 	em = search_extent_mapping(em_tree, start, num_bytes);
1225 	if (em) {
1226 		/*
1227 		 * if block start isn't an actual block number then find the
1228 		 * first block in this inode and use that as a hint.  If that
1229 		 * block is also bogus then just don't worry about it.
1230 		 */
1231 		if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1232 			free_extent_map(em);
1233 			em = search_extent_mapping(em_tree, 0, 0);
1234 			if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
1235 				alloc_hint = em->block_start;
1236 			if (em)
1237 				free_extent_map(em);
1238 		} else {
1239 			alloc_hint = em->block_start;
1240 			free_extent_map(em);
1241 		}
1242 	}
1243 	read_unlock(&em_tree->lock);
1244 
1245 	return alloc_hint;
1246 }
1247 
1248 /*
1249  * when extent_io.c finds a delayed allocation range in the file,
1250  * the call backs end up in this code.  The basic idea is to
1251  * allocate extents on disk for the range, and create ordered data structs
1252  * in ram to track those extents.
1253  *
1254  * locked_page is the page that writepage had locked already.  We use
1255  * it to make sure we don't do extra locks or unlocks.
1256  *
1257  * When this function fails, it unlocks all pages except @locked_page.
1258  *
1259  * When this function successfully creates an inline extent, it returns 1 and
1260  * unlocks all pages including locked_page and starts I/O on them.
1261  * (In reality inline extents are limited to a single page, so locked_page is
1262  * the only page handled anyway).
1263  *
1264  * When this function succeed and creates a normal extent, the page locking
1265  * status depends on the passed in flags:
1266  *
1267  * - If @keep_locked is set, all pages are kept locked.
1268  * - Else all pages except for @locked_page are unlocked.
1269  *
1270  * When a failure happens in the second or later iteration of the
1271  * while-loop, the ordered extents created in previous iterations are kept
1272  * intact. So, the caller must clean them up by calling
1273  * btrfs_cleanup_ordered_extents(). See btrfs_run_delalloc_range() for
1274  * example.
1275  */
1276 static noinline int cow_file_range(struct btrfs_inode *inode,
1277 				   struct page *locked_page, u64 start, u64 end,
1278 				   u64 *done_offset,
1279 				   bool keep_locked, bool no_inline)
1280 {
1281 	struct btrfs_root *root = inode->root;
1282 	struct btrfs_fs_info *fs_info = root->fs_info;
1283 	u64 alloc_hint = 0;
1284 	u64 orig_start = start;
1285 	u64 num_bytes;
1286 	unsigned long ram_size;
1287 	u64 cur_alloc_size = 0;
1288 	u64 min_alloc_size;
1289 	u64 blocksize = fs_info->sectorsize;
1290 	struct btrfs_key ins;
1291 	struct extent_map *em;
1292 	unsigned clear_bits;
1293 	unsigned long page_ops;
1294 	bool extent_reserved = false;
1295 	int ret = 0;
1296 
1297 	if (btrfs_is_free_space_inode(inode)) {
1298 		ret = -EINVAL;
1299 		goto out_unlock;
1300 	}
1301 
1302 	num_bytes = ALIGN(end - start + 1, blocksize);
1303 	num_bytes = max(blocksize,  num_bytes);
1304 	ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy));
1305 
1306 	inode_should_defrag(inode, start, end, num_bytes, SZ_64K);
1307 
1308 	/*
1309 	 * Due to the page size limit, for subpage we can only trigger the
1310 	 * writeback for the dirty sectors of page, that means data writeback
1311 	 * is doing more writeback than what we want.
1312 	 *
1313 	 * This is especially unexpected for some call sites like fallocate,
1314 	 * where we only increase i_size after everything is done.
1315 	 * This means we can trigger inline extent even if we didn't want to.
1316 	 * So here we skip inline extent creation completely.
1317 	 */
1318 	if (start == 0 && fs_info->sectorsize == PAGE_SIZE && !no_inline) {
1319 		u64 actual_end = min_t(u64, i_size_read(&inode->vfs_inode),
1320 				       end + 1);
1321 
1322 		/* lets try to make an inline extent */
1323 		ret = cow_file_range_inline(inode, actual_end, 0,
1324 					    BTRFS_COMPRESS_NONE, NULL, false);
1325 		if (ret == 0) {
1326 			/*
1327 			 * We use DO_ACCOUNTING here because we need the
1328 			 * delalloc_release_metadata to be run _after_ we drop
1329 			 * our outstanding extent for clearing delalloc for this
1330 			 * range.
1331 			 */
1332 			extent_clear_unlock_delalloc(inode, start, end,
1333 				     locked_page,
1334 				     EXTENT_LOCKED | EXTENT_DELALLOC |
1335 				     EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
1336 				     EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1337 				     PAGE_START_WRITEBACK | PAGE_END_WRITEBACK);
1338 			/*
1339 			 * locked_page is locked by the caller of
1340 			 * writepage_delalloc(), not locked by
1341 			 * __process_pages_contig().
1342 			 *
1343 			 * We can't let __process_pages_contig() to unlock it,
1344 			 * as it doesn't have any subpage::writers recorded.
1345 			 *
1346 			 * Here we manually unlock the page, since the caller
1347 			 * can't determine if it's an inline extent or a
1348 			 * compressed extent.
1349 			 */
1350 			unlock_page(locked_page);
1351 			ret = 1;
1352 			goto done;
1353 		} else if (ret < 0) {
1354 			goto out_unlock;
1355 		}
1356 	}
1357 
1358 	alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
1359 
1360 	/*
1361 	 * Relocation relies on the relocated extents to have exactly the same
1362 	 * size as the original extents. Normally writeback for relocation data
1363 	 * extents follows a NOCOW path because relocation preallocates the
1364 	 * extents. However, due to an operation such as scrub turning a block
1365 	 * group to RO mode, it may fallback to COW mode, so we must make sure
1366 	 * an extent allocated during COW has exactly the requested size and can
1367 	 * not be split into smaller extents, otherwise relocation breaks and
1368 	 * fails during the stage where it updates the bytenr of file extent
1369 	 * items.
1370 	 */
1371 	if (btrfs_is_data_reloc_root(root))
1372 		min_alloc_size = num_bytes;
1373 	else
1374 		min_alloc_size = fs_info->sectorsize;
1375 
1376 	while (num_bytes > 0) {
1377 		struct btrfs_ordered_extent *ordered;
1378 
1379 		cur_alloc_size = num_bytes;
1380 		ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size,
1381 					   min_alloc_size, 0, alloc_hint,
1382 					   &ins, 1, 1);
1383 		if (ret == -EAGAIN) {
1384 			/*
1385 			 * btrfs_reserve_extent only returns -EAGAIN for zoned
1386 			 * file systems, which is an indication that there are
1387 			 * no active zones to allocate from at the moment.
1388 			 *
1389 			 * If this is the first loop iteration, wait for at
1390 			 * least one zone to finish before retrying the
1391 			 * allocation.  Otherwise ask the caller to write out
1392 			 * the already allocated blocks before coming back to
1393 			 * us, or return -ENOSPC if it can't handle retries.
1394 			 */
1395 			ASSERT(btrfs_is_zoned(fs_info));
1396 			if (start == orig_start) {
1397 				wait_on_bit_io(&inode->root->fs_info->flags,
1398 					       BTRFS_FS_NEED_ZONE_FINISH,
1399 					       TASK_UNINTERRUPTIBLE);
1400 				continue;
1401 			}
1402 			if (done_offset) {
1403 				*done_offset = start - 1;
1404 				return 0;
1405 			}
1406 			ret = -ENOSPC;
1407 		}
1408 		if (ret < 0)
1409 			goto out_unlock;
1410 		cur_alloc_size = ins.offset;
1411 		extent_reserved = true;
1412 
1413 		ram_size = ins.offset;
1414 		em = create_io_em(inode, start, ins.offset, /* len */
1415 				  start, /* orig_start */
1416 				  ins.objectid, /* block_start */
1417 				  ins.offset, /* block_len */
1418 				  ins.offset, /* orig_block_len */
1419 				  ram_size, /* ram_bytes */
1420 				  BTRFS_COMPRESS_NONE, /* compress_type */
1421 				  BTRFS_ORDERED_REGULAR /* type */);
1422 		if (IS_ERR(em)) {
1423 			ret = PTR_ERR(em);
1424 			goto out_reserve;
1425 		}
1426 		free_extent_map(em);
1427 
1428 		ordered = btrfs_alloc_ordered_extent(inode, start, ram_size,
1429 					ram_size, ins.objectid, cur_alloc_size,
1430 					0, 1 << BTRFS_ORDERED_REGULAR,
1431 					BTRFS_COMPRESS_NONE);
1432 		if (IS_ERR(ordered)) {
1433 			ret = PTR_ERR(ordered);
1434 			goto out_drop_extent_cache;
1435 		}
1436 
1437 		if (btrfs_is_data_reloc_root(root)) {
1438 			ret = btrfs_reloc_clone_csums(ordered);
1439 
1440 			/*
1441 			 * Only drop cache here, and process as normal.
1442 			 *
1443 			 * We must not allow extent_clear_unlock_delalloc()
1444 			 * at out_unlock label to free meta of this ordered
1445 			 * extent, as its meta should be freed by
1446 			 * btrfs_finish_ordered_io().
1447 			 *
1448 			 * So we must continue until @start is increased to
1449 			 * skip current ordered extent.
1450 			 */
1451 			if (ret)
1452 				btrfs_drop_extent_map_range(inode, start,
1453 							    start + ram_size - 1,
1454 							    false);
1455 		}
1456 		btrfs_put_ordered_extent(ordered);
1457 
1458 		btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1459 
1460 		/*
1461 		 * We're not doing compressed IO, don't unlock the first page
1462 		 * (which the caller expects to stay locked), don't clear any
1463 		 * dirty bits and don't set any writeback bits
1464 		 *
1465 		 * Do set the Ordered (Private2) bit so we know this page was
1466 		 * properly setup for writepage.
1467 		 */
1468 		page_ops = (keep_locked ? 0 : PAGE_UNLOCK);
1469 		page_ops |= PAGE_SET_ORDERED;
1470 
1471 		extent_clear_unlock_delalloc(inode, start, start + ram_size - 1,
1472 					     locked_page,
1473 					     EXTENT_LOCKED | EXTENT_DELALLOC,
1474 					     page_ops);
1475 		if (num_bytes < cur_alloc_size)
1476 			num_bytes = 0;
1477 		else
1478 			num_bytes -= cur_alloc_size;
1479 		alloc_hint = ins.objectid + ins.offset;
1480 		start += cur_alloc_size;
1481 		extent_reserved = false;
1482 
1483 		/*
1484 		 * btrfs_reloc_clone_csums() error, since start is increased
1485 		 * extent_clear_unlock_delalloc() at out_unlock label won't
1486 		 * free metadata of current ordered extent, we're OK to exit.
1487 		 */
1488 		if (ret)
1489 			goto out_unlock;
1490 	}
1491 done:
1492 	if (done_offset)
1493 		*done_offset = end;
1494 	return ret;
1495 
1496 out_drop_extent_cache:
1497 	btrfs_drop_extent_map_range(inode, start, start + ram_size - 1, false);
1498 out_reserve:
1499 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1500 	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
1501 out_unlock:
1502 	/*
1503 	 * Now, we have three regions to clean up:
1504 	 *
1505 	 * |-------(1)----|---(2)---|-------------(3)----------|
1506 	 * `- orig_start  `- start  `- start + cur_alloc_size  `- end
1507 	 *
1508 	 * We process each region below.
1509 	 */
1510 
1511 	clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
1512 		EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV;
1513 	page_ops = PAGE_UNLOCK | PAGE_START_WRITEBACK | PAGE_END_WRITEBACK;
1514 
1515 	/*
1516 	 * For the range (1). We have already instantiated the ordered extents
1517 	 * for this region. They are cleaned up by
1518 	 * btrfs_cleanup_ordered_extents() in e.g,
1519 	 * btrfs_run_delalloc_range(). EXTENT_LOCKED | EXTENT_DELALLOC are
1520 	 * already cleared in the above loop. And, EXTENT_DELALLOC_NEW |
1521 	 * EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV are handled by the cleanup
1522 	 * function.
1523 	 *
1524 	 * However, in case of @keep_locked, we still need to unlock the pages
1525 	 * (except @locked_page) to ensure all the pages are unlocked.
1526 	 */
1527 	if (keep_locked && orig_start < start) {
1528 		if (!locked_page)
1529 			mapping_set_error(inode->vfs_inode.i_mapping, ret);
1530 		extent_clear_unlock_delalloc(inode, orig_start, start - 1,
1531 					     locked_page, 0, page_ops);
1532 	}
1533 
1534 	/*
1535 	 * For the range (2). If we reserved an extent for our delalloc range
1536 	 * (or a subrange) and failed to create the respective ordered extent,
1537 	 * then it means that when we reserved the extent we decremented the
1538 	 * extent's size from the data space_info's bytes_may_use counter and
1539 	 * incremented the space_info's bytes_reserved counter by the same
1540 	 * amount. We must make sure extent_clear_unlock_delalloc() does not try
1541 	 * to decrement again the data space_info's bytes_may_use counter,
1542 	 * therefore we do not pass it the flag EXTENT_CLEAR_DATA_RESV.
1543 	 */
1544 	if (extent_reserved) {
1545 		extent_clear_unlock_delalloc(inode, start,
1546 					     start + cur_alloc_size - 1,
1547 					     locked_page,
1548 					     clear_bits,
1549 					     page_ops);
1550 		start += cur_alloc_size;
1551 	}
1552 
1553 	/*
1554 	 * For the range (3). We never touched the region. In addition to the
1555 	 * clear_bits above, we add EXTENT_CLEAR_DATA_RESV to release the data
1556 	 * space_info's bytes_may_use counter, reserved in
1557 	 * btrfs_check_data_free_space().
1558 	 */
1559 	if (start < end) {
1560 		clear_bits |= EXTENT_CLEAR_DATA_RESV;
1561 		extent_clear_unlock_delalloc(inode, start, end, locked_page,
1562 					     clear_bits, page_ops);
1563 	}
1564 	return ret;
1565 }
1566 
1567 /*
1568  * Phase two of compressed writeback.  This is the ordered portion of the code,
1569  * which only gets called in the order the work was queued.  We walk all the
1570  * async extents created by compress_file_range and send them down to the disk.
1571  */
1572 static noinline void submit_compressed_extents(struct btrfs_work *work)
1573 {
1574 	struct async_chunk *async_chunk = container_of(work, struct async_chunk,
1575 						     work);
1576 	struct btrfs_fs_info *fs_info = btrfs_work_owner(work);
1577 	struct async_extent *async_extent;
1578 	unsigned long nr_pages;
1579 	u64 alloc_hint = 0;
1580 
1581 	nr_pages = (async_chunk->end - async_chunk->start + PAGE_SIZE) >>
1582 		PAGE_SHIFT;
1583 
1584 	while (!list_empty(&async_chunk->extents)) {
1585 		async_extent = list_entry(async_chunk->extents.next,
1586 					  struct async_extent, list);
1587 		list_del(&async_extent->list);
1588 		submit_one_async_extent(async_chunk, async_extent, &alloc_hint);
1589 	}
1590 
1591 	/* atomic_sub_return implies a barrier */
1592 	if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) <
1593 	    5 * SZ_1M)
1594 		cond_wake_up_nomb(&fs_info->async_submit_wait);
1595 }
1596 
1597 static noinline void async_cow_free(struct btrfs_work *work)
1598 {
1599 	struct async_chunk *async_chunk;
1600 	struct async_cow *async_cow;
1601 
1602 	async_chunk = container_of(work, struct async_chunk, work);
1603 	btrfs_add_delayed_iput(async_chunk->inode);
1604 	if (async_chunk->blkcg_css)
1605 		css_put(async_chunk->blkcg_css);
1606 
1607 	async_cow = async_chunk->async_cow;
1608 	if (atomic_dec_and_test(&async_cow->num_chunks))
1609 		kvfree(async_cow);
1610 }
1611 
1612 static bool run_delalloc_compressed(struct btrfs_inode *inode,
1613 				    struct page *locked_page, u64 start,
1614 				    u64 end, struct writeback_control *wbc)
1615 {
1616 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1617 	struct cgroup_subsys_state *blkcg_css = wbc_blkcg_css(wbc);
1618 	struct async_cow *ctx;
1619 	struct async_chunk *async_chunk;
1620 	unsigned long nr_pages;
1621 	u64 num_chunks = DIV_ROUND_UP(end - start, SZ_512K);
1622 	int i;
1623 	unsigned nofs_flag;
1624 	const blk_opf_t write_flags = wbc_to_write_flags(wbc);
1625 
1626 	nofs_flag = memalloc_nofs_save();
1627 	ctx = kvmalloc(struct_size(ctx, chunks, num_chunks), GFP_KERNEL);
1628 	memalloc_nofs_restore(nofs_flag);
1629 	if (!ctx)
1630 		return false;
1631 
1632 	unlock_extent(&inode->io_tree, start, end, NULL);
1633 	set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, &inode->runtime_flags);
1634 
1635 	async_chunk = ctx->chunks;
1636 	atomic_set(&ctx->num_chunks, num_chunks);
1637 
1638 	for (i = 0; i < num_chunks; i++) {
1639 		u64 cur_end = min(end, start + SZ_512K - 1);
1640 
1641 		/*
1642 		 * igrab is called higher up in the call chain, take only the
1643 		 * lightweight reference for the callback lifetime
1644 		 */
1645 		ihold(&inode->vfs_inode);
1646 		async_chunk[i].async_cow = ctx;
1647 		async_chunk[i].inode = inode;
1648 		async_chunk[i].start = start;
1649 		async_chunk[i].end = cur_end;
1650 		async_chunk[i].write_flags = write_flags;
1651 		INIT_LIST_HEAD(&async_chunk[i].extents);
1652 
1653 		/*
1654 		 * The locked_page comes all the way from writepage and its
1655 		 * the original page we were actually given.  As we spread
1656 		 * this large delalloc region across multiple async_chunk
1657 		 * structs, only the first struct needs a pointer to locked_page
1658 		 *
1659 		 * This way we don't need racey decisions about who is supposed
1660 		 * to unlock it.
1661 		 */
1662 		if (locked_page) {
1663 			/*
1664 			 * Depending on the compressibility, the pages might or
1665 			 * might not go through async.  We want all of them to
1666 			 * be accounted against wbc once.  Let's do it here
1667 			 * before the paths diverge.  wbc accounting is used
1668 			 * only for foreign writeback detection and doesn't
1669 			 * need full accuracy.  Just account the whole thing
1670 			 * against the first page.
1671 			 */
1672 			wbc_account_cgroup_owner(wbc, locked_page,
1673 						 cur_end - start);
1674 			async_chunk[i].locked_page = locked_page;
1675 			locked_page = NULL;
1676 		} else {
1677 			async_chunk[i].locked_page = NULL;
1678 		}
1679 
1680 		if (blkcg_css != blkcg_root_css) {
1681 			css_get(blkcg_css);
1682 			async_chunk[i].blkcg_css = blkcg_css;
1683 			async_chunk[i].write_flags |= REQ_BTRFS_CGROUP_PUNT;
1684 		} else {
1685 			async_chunk[i].blkcg_css = NULL;
1686 		}
1687 
1688 		btrfs_init_work(&async_chunk[i].work, compress_file_range,
1689 				submit_compressed_extents, async_cow_free);
1690 
1691 		nr_pages = DIV_ROUND_UP(cur_end - start, PAGE_SIZE);
1692 		atomic_add(nr_pages, &fs_info->async_delalloc_pages);
1693 
1694 		btrfs_queue_work(fs_info->delalloc_workers, &async_chunk[i].work);
1695 
1696 		start = cur_end + 1;
1697 	}
1698 	return true;
1699 }
1700 
1701 /*
1702  * Run the delalloc range from start to end, and write back any dirty pages
1703  * covered by the range.
1704  */
1705 static noinline int run_delalloc_cow(struct btrfs_inode *inode,
1706 				     struct page *locked_page, u64 start,
1707 				     u64 end, struct writeback_control *wbc,
1708 				     bool pages_dirty)
1709 {
1710 	u64 done_offset = end;
1711 	int ret;
1712 
1713 	while (start <= end) {
1714 		ret = cow_file_range(inode, locked_page, start, end, &done_offset,
1715 				     true, false);
1716 		if (ret)
1717 			return ret;
1718 		extent_write_locked_range(&inode->vfs_inode, locked_page, start,
1719 					  done_offset, wbc, pages_dirty);
1720 		start = done_offset + 1;
1721 	}
1722 
1723 	return 1;
1724 }
1725 
1726 static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info,
1727 					u64 bytenr, u64 num_bytes, bool nowait)
1728 {
1729 	struct btrfs_root *csum_root = btrfs_csum_root(fs_info, bytenr);
1730 	struct btrfs_ordered_sum *sums;
1731 	int ret;
1732 	LIST_HEAD(list);
1733 
1734 	ret = btrfs_lookup_csums_list(csum_root, bytenr, bytenr + num_bytes - 1,
1735 				      &list, 0, nowait);
1736 	if (ret == 0 && list_empty(&list))
1737 		return 0;
1738 
1739 	while (!list_empty(&list)) {
1740 		sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1741 		list_del(&sums->list);
1742 		kfree(sums);
1743 	}
1744 	if (ret < 0)
1745 		return ret;
1746 	return 1;
1747 }
1748 
1749 static int fallback_to_cow(struct btrfs_inode *inode, struct page *locked_page,
1750 			   const u64 start, const u64 end)
1751 {
1752 	const bool is_space_ino = btrfs_is_free_space_inode(inode);
1753 	const bool is_reloc_ino = btrfs_is_data_reloc_root(inode->root);
1754 	const u64 range_bytes = end + 1 - start;
1755 	struct extent_io_tree *io_tree = &inode->io_tree;
1756 	u64 range_start = start;
1757 	u64 count;
1758 	int ret;
1759 
1760 	/*
1761 	 * If EXTENT_NORESERVE is set it means that when the buffered write was
1762 	 * made we had not enough available data space and therefore we did not
1763 	 * reserve data space for it, since we though we could do NOCOW for the
1764 	 * respective file range (either there is prealloc extent or the inode
1765 	 * has the NOCOW bit set).
1766 	 *
1767 	 * However when we need to fallback to COW mode (because for example the
1768 	 * block group for the corresponding extent was turned to RO mode by a
1769 	 * scrub or relocation) we need to do the following:
1770 	 *
1771 	 * 1) We increment the bytes_may_use counter of the data space info.
1772 	 *    If COW succeeds, it allocates a new data extent and after doing
1773 	 *    that it decrements the space info's bytes_may_use counter and
1774 	 *    increments its bytes_reserved counter by the same amount (we do
1775 	 *    this at btrfs_add_reserved_bytes()). So we need to increment the
1776 	 *    bytes_may_use counter to compensate (when space is reserved at
1777 	 *    buffered write time, the bytes_may_use counter is incremented);
1778 	 *
1779 	 * 2) We clear the EXTENT_NORESERVE bit from the range. We do this so
1780 	 *    that if the COW path fails for any reason, it decrements (through
1781 	 *    extent_clear_unlock_delalloc()) the bytes_may_use counter of the
1782 	 *    data space info, which we incremented in the step above.
1783 	 *
1784 	 * If we need to fallback to cow and the inode corresponds to a free
1785 	 * space cache inode or an inode of the data relocation tree, we must
1786 	 * also increment bytes_may_use of the data space_info for the same
1787 	 * reason. Space caches and relocated data extents always get a prealloc
1788 	 * extent for them, however scrub or balance may have set the block
1789 	 * group that contains that extent to RO mode and therefore force COW
1790 	 * when starting writeback.
1791 	 */
1792 	count = count_range_bits(io_tree, &range_start, end, range_bytes,
1793 				 EXTENT_NORESERVE, 0, NULL);
1794 	if (count > 0 || is_space_ino || is_reloc_ino) {
1795 		u64 bytes = count;
1796 		struct btrfs_fs_info *fs_info = inode->root->fs_info;
1797 		struct btrfs_space_info *sinfo = fs_info->data_sinfo;
1798 
1799 		if (is_space_ino || is_reloc_ino)
1800 			bytes = range_bytes;
1801 
1802 		spin_lock(&sinfo->lock);
1803 		btrfs_space_info_update_bytes_may_use(fs_info, sinfo, bytes);
1804 		spin_unlock(&sinfo->lock);
1805 
1806 		if (count > 0)
1807 			clear_extent_bit(io_tree, start, end, EXTENT_NORESERVE,
1808 					 NULL);
1809 	}
1810 
1811 	/*
1812 	 * Don't try to create inline extents, as a mix of inline extent that
1813 	 * is written out and unlocked directly and a normal NOCOW extent
1814 	 * doesn't work.
1815 	 */
1816 	ret = cow_file_range(inode, locked_page, start, end, NULL, false, true);
1817 	ASSERT(ret != 1);
1818 	return ret;
1819 }
1820 
1821 struct can_nocow_file_extent_args {
1822 	/* Input fields. */
1823 
1824 	/* Start file offset of the range we want to NOCOW. */
1825 	u64 start;
1826 	/* End file offset (inclusive) of the range we want to NOCOW. */
1827 	u64 end;
1828 	bool writeback_path;
1829 	bool strict;
1830 	/*
1831 	 * Free the path passed to can_nocow_file_extent() once it's not needed
1832 	 * anymore.
1833 	 */
1834 	bool free_path;
1835 
1836 	/* Output fields. Only set when can_nocow_file_extent() returns 1. */
1837 
1838 	u64 disk_bytenr;
1839 	u64 disk_num_bytes;
1840 	u64 extent_offset;
1841 	/* Number of bytes that can be written to in NOCOW mode. */
1842 	u64 num_bytes;
1843 };
1844 
1845 /*
1846  * Check if we can NOCOW the file extent that the path points to.
1847  * This function may return with the path released, so the caller should check
1848  * if path->nodes[0] is NULL or not if it needs to use the path afterwards.
1849  *
1850  * Returns: < 0 on error
1851  *            0 if we can not NOCOW
1852  *            1 if we can NOCOW
1853  */
1854 static int can_nocow_file_extent(struct btrfs_path *path,
1855 				 struct btrfs_key *key,
1856 				 struct btrfs_inode *inode,
1857 				 struct can_nocow_file_extent_args *args)
1858 {
1859 	const bool is_freespace_inode = btrfs_is_free_space_inode(inode);
1860 	struct extent_buffer *leaf = path->nodes[0];
1861 	struct btrfs_root *root = inode->root;
1862 	struct btrfs_file_extent_item *fi;
1863 	u64 extent_end;
1864 	u8 extent_type;
1865 	int can_nocow = 0;
1866 	int ret = 0;
1867 	bool nowait = path->nowait;
1868 
1869 	fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
1870 	extent_type = btrfs_file_extent_type(leaf, fi);
1871 
1872 	if (extent_type == BTRFS_FILE_EXTENT_INLINE)
1873 		goto out;
1874 
1875 	/* Can't access these fields unless we know it's not an inline extent. */
1876 	args->disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1877 	args->disk_num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1878 	args->extent_offset = btrfs_file_extent_offset(leaf, fi);
1879 
1880 	if (!(inode->flags & BTRFS_INODE_NODATACOW) &&
1881 	    extent_type == BTRFS_FILE_EXTENT_REG)
1882 		goto out;
1883 
1884 	/*
1885 	 * If the extent was created before the generation where the last snapshot
1886 	 * for its subvolume was created, then this implies the extent is shared,
1887 	 * hence we must COW.
1888 	 */
1889 	if (!args->strict &&
1890 	    btrfs_file_extent_generation(leaf, fi) <=
1891 	    btrfs_root_last_snapshot(&root->root_item))
1892 		goto out;
1893 
1894 	/* An explicit hole, must COW. */
1895 	if (args->disk_bytenr == 0)
1896 		goto out;
1897 
1898 	/* Compressed/encrypted/encoded extents must be COWed. */
1899 	if (btrfs_file_extent_compression(leaf, fi) ||
1900 	    btrfs_file_extent_encryption(leaf, fi) ||
1901 	    btrfs_file_extent_other_encoding(leaf, fi))
1902 		goto out;
1903 
1904 	extent_end = btrfs_file_extent_end(path);
1905 
1906 	/*
1907 	 * The following checks can be expensive, as they need to take other
1908 	 * locks and do btree or rbtree searches, so release the path to avoid
1909 	 * blocking other tasks for too long.
1910 	 */
1911 	btrfs_release_path(path);
1912 
1913 	ret = btrfs_cross_ref_exist(root, btrfs_ino(inode),
1914 				    key->offset - args->extent_offset,
1915 				    args->disk_bytenr, args->strict, path);
1916 	WARN_ON_ONCE(ret > 0 && is_freespace_inode);
1917 	if (ret != 0)
1918 		goto out;
1919 
1920 	if (args->free_path) {
1921 		/*
1922 		 * We don't need the path anymore, plus through the
1923 		 * csum_exist_in_range() call below we will end up allocating
1924 		 * another path. So free the path to avoid unnecessary extra
1925 		 * memory usage.
1926 		 */
1927 		btrfs_free_path(path);
1928 		path = NULL;
1929 	}
1930 
1931 	/* If there are pending snapshots for this root, we must COW. */
1932 	if (args->writeback_path && !is_freespace_inode &&
1933 	    atomic_read(&root->snapshot_force_cow))
1934 		goto out;
1935 
1936 	args->disk_bytenr += args->extent_offset;
1937 	args->disk_bytenr += args->start - key->offset;
1938 	args->num_bytes = min(args->end + 1, extent_end) - args->start;
1939 
1940 	/*
1941 	 * Force COW if csums exist in the range. This ensures that csums for a
1942 	 * given extent are either valid or do not exist.
1943 	 */
1944 	ret = csum_exist_in_range(root->fs_info, args->disk_bytenr, args->num_bytes,
1945 				  nowait);
1946 	WARN_ON_ONCE(ret > 0 && is_freespace_inode);
1947 	if (ret != 0)
1948 		goto out;
1949 
1950 	can_nocow = 1;
1951  out:
1952 	if (args->free_path && path)
1953 		btrfs_free_path(path);
1954 
1955 	return ret < 0 ? ret : can_nocow;
1956 }
1957 
1958 /*
1959  * when nowcow writeback call back.  This checks for snapshots or COW copies
1960  * of the extents that exist in the file, and COWs the file as required.
1961  *
1962  * If no cow copies or snapshots exist, we write directly to the existing
1963  * blocks on disk
1964  */
1965 static noinline int run_delalloc_nocow(struct btrfs_inode *inode,
1966 				       struct page *locked_page,
1967 				       const u64 start, const u64 end)
1968 {
1969 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1970 	struct btrfs_root *root = inode->root;
1971 	struct btrfs_path *path;
1972 	u64 cow_start = (u64)-1;
1973 	u64 cur_offset = start;
1974 	int ret;
1975 	bool check_prev = true;
1976 	u64 ino = btrfs_ino(inode);
1977 	struct can_nocow_file_extent_args nocow_args = { 0 };
1978 
1979 	/*
1980 	 * Normally on a zoned device we're only doing COW writes, but in case
1981 	 * of relocation on a zoned filesystem serializes I/O so that we're only
1982 	 * writing sequentially and can end up here as well.
1983 	 */
1984 	ASSERT(!btrfs_is_zoned(fs_info) || btrfs_is_data_reloc_root(root));
1985 
1986 	path = btrfs_alloc_path();
1987 	if (!path) {
1988 		ret = -ENOMEM;
1989 		goto error;
1990 	}
1991 
1992 	nocow_args.end = end;
1993 	nocow_args.writeback_path = true;
1994 
1995 	while (1) {
1996 		struct btrfs_block_group *nocow_bg = NULL;
1997 		struct btrfs_ordered_extent *ordered;
1998 		struct btrfs_key found_key;
1999 		struct btrfs_file_extent_item *fi;
2000 		struct extent_buffer *leaf;
2001 		u64 extent_end;
2002 		u64 ram_bytes;
2003 		u64 nocow_end;
2004 		int extent_type;
2005 		bool is_prealloc;
2006 
2007 		ret = btrfs_lookup_file_extent(NULL, root, path, ino,
2008 					       cur_offset, 0);
2009 		if (ret < 0)
2010 			goto error;
2011 
2012 		/*
2013 		 * If there is no extent for our range when doing the initial
2014 		 * search, then go back to the previous slot as it will be the
2015 		 * one containing the search offset
2016 		 */
2017 		if (ret > 0 && path->slots[0] > 0 && check_prev) {
2018 			leaf = path->nodes[0];
2019 			btrfs_item_key_to_cpu(leaf, &found_key,
2020 					      path->slots[0] - 1);
2021 			if (found_key.objectid == ino &&
2022 			    found_key.type == BTRFS_EXTENT_DATA_KEY)
2023 				path->slots[0]--;
2024 		}
2025 		check_prev = false;
2026 next_slot:
2027 		/* Go to next leaf if we have exhausted the current one */
2028 		leaf = path->nodes[0];
2029 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2030 			ret = btrfs_next_leaf(root, path);
2031 			if (ret < 0)
2032 				goto error;
2033 			if (ret > 0)
2034 				break;
2035 			leaf = path->nodes[0];
2036 		}
2037 
2038 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2039 
2040 		/* Didn't find anything for our INO */
2041 		if (found_key.objectid > ino)
2042 			break;
2043 		/*
2044 		 * Keep searching until we find an EXTENT_ITEM or there are no
2045 		 * more extents for this inode
2046 		 */
2047 		if (WARN_ON_ONCE(found_key.objectid < ino) ||
2048 		    found_key.type < BTRFS_EXTENT_DATA_KEY) {
2049 			path->slots[0]++;
2050 			goto next_slot;
2051 		}
2052 
2053 		/* Found key is not EXTENT_DATA_KEY or starts after req range */
2054 		if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
2055 		    found_key.offset > end)
2056 			break;
2057 
2058 		/*
2059 		 * If the found extent starts after requested offset, then
2060 		 * adjust extent_end to be right before this extent begins
2061 		 */
2062 		if (found_key.offset > cur_offset) {
2063 			extent_end = found_key.offset;
2064 			extent_type = 0;
2065 			goto must_cow;
2066 		}
2067 
2068 		/*
2069 		 * Found extent which begins before our range and potentially
2070 		 * intersect it
2071 		 */
2072 		fi = btrfs_item_ptr(leaf, path->slots[0],
2073 				    struct btrfs_file_extent_item);
2074 		extent_type = btrfs_file_extent_type(leaf, fi);
2075 		/* If this is triggered then we have a memory corruption. */
2076 		ASSERT(extent_type < BTRFS_NR_FILE_EXTENT_TYPES);
2077 		if (WARN_ON(extent_type >= BTRFS_NR_FILE_EXTENT_TYPES)) {
2078 			ret = -EUCLEAN;
2079 			goto error;
2080 		}
2081 		ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
2082 		extent_end = btrfs_file_extent_end(path);
2083 
2084 		/*
2085 		 * If the extent we got ends before our current offset, skip to
2086 		 * the next extent.
2087 		 */
2088 		if (extent_end <= cur_offset) {
2089 			path->slots[0]++;
2090 			goto next_slot;
2091 		}
2092 
2093 		nocow_args.start = cur_offset;
2094 		ret = can_nocow_file_extent(path, &found_key, inode, &nocow_args);
2095 		if (ret < 0)
2096 			goto error;
2097 		if (ret == 0)
2098 			goto must_cow;
2099 
2100 		ret = 0;
2101 		nocow_bg = btrfs_inc_nocow_writers(fs_info, nocow_args.disk_bytenr);
2102 		if (!nocow_bg) {
2103 must_cow:
2104 			/*
2105 			 * If we can't perform NOCOW writeback for the range,
2106 			 * then record the beginning of the range that needs to
2107 			 * be COWed.  It will be written out before the next
2108 			 * NOCOW range if we find one, or when exiting this
2109 			 * loop.
2110 			 */
2111 			if (cow_start == (u64)-1)
2112 				cow_start = cur_offset;
2113 			cur_offset = extent_end;
2114 			if (cur_offset > end)
2115 				break;
2116 			if (!path->nodes[0])
2117 				continue;
2118 			path->slots[0]++;
2119 			goto next_slot;
2120 		}
2121 
2122 		/*
2123 		 * COW range from cow_start to found_key.offset - 1. As the key
2124 		 * will contain the beginning of the first extent that can be
2125 		 * NOCOW, following one which needs to be COW'ed
2126 		 */
2127 		if (cow_start != (u64)-1) {
2128 			ret = fallback_to_cow(inode, locked_page,
2129 					      cow_start, found_key.offset - 1);
2130 			cow_start = (u64)-1;
2131 			if (ret) {
2132 				btrfs_dec_nocow_writers(nocow_bg);
2133 				goto error;
2134 			}
2135 		}
2136 
2137 		nocow_end = cur_offset + nocow_args.num_bytes - 1;
2138 		is_prealloc = extent_type == BTRFS_FILE_EXTENT_PREALLOC;
2139 		if (is_prealloc) {
2140 			u64 orig_start = found_key.offset - nocow_args.extent_offset;
2141 			struct extent_map *em;
2142 
2143 			em = create_io_em(inode, cur_offset, nocow_args.num_bytes,
2144 					  orig_start,
2145 					  nocow_args.disk_bytenr, /* block_start */
2146 					  nocow_args.num_bytes, /* block_len */
2147 					  nocow_args.disk_num_bytes, /* orig_block_len */
2148 					  ram_bytes, BTRFS_COMPRESS_NONE,
2149 					  BTRFS_ORDERED_PREALLOC);
2150 			if (IS_ERR(em)) {
2151 				btrfs_dec_nocow_writers(nocow_bg);
2152 				ret = PTR_ERR(em);
2153 				goto error;
2154 			}
2155 			free_extent_map(em);
2156 		}
2157 
2158 		ordered = btrfs_alloc_ordered_extent(inode, cur_offset,
2159 				nocow_args.num_bytes, nocow_args.num_bytes,
2160 				nocow_args.disk_bytenr, nocow_args.num_bytes, 0,
2161 				is_prealloc
2162 				? (1 << BTRFS_ORDERED_PREALLOC)
2163 				: (1 << BTRFS_ORDERED_NOCOW),
2164 				BTRFS_COMPRESS_NONE);
2165 		btrfs_dec_nocow_writers(nocow_bg);
2166 		if (IS_ERR(ordered)) {
2167 			if (is_prealloc) {
2168 				btrfs_drop_extent_map_range(inode, cur_offset,
2169 							    nocow_end, false);
2170 			}
2171 			ret = PTR_ERR(ordered);
2172 			goto error;
2173 		}
2174 
2175 		if (btrfs_is_data_reloc_root(root))
2176 			/*
2177 			 * Error handled later, as we must prevent
2178 			 * extent_clear_unlock_delalloc() in error handler
2179 			 * from freeing metadata of created ordered extent.
2180 			 */
2181 			ret = btrfs_reloc_clone_csums(ordered);
2182 		btrfs_put_ordered_extent(ordered);
2183 
2184 		extent_clear_unlock_delalloc(inode, cur_offset, nocow_end,
2185 					     locked_page, EXTENT_LOCKED |
2186 					     EXTENT_DELALLOC |
2187 					     EXTENT_CLEAR_DATA_RESV,
2188 					     PAGE_UNLOCK | PAGE_SET_ORDERED);
2189 
2190 		cur_offset = extent_end;
2191 
2192 		/*
2193 		 * btrfs_reloc_clone_csums() error, now we're OK to call error
2194 		 * handler, as metadata for created ordered extent will only
2195 		 * be freed by btrfs_finish_ordered_io().
2196 		 */
2197 		if (ret)
2198 			goto error;
2199 		if (cur_offset > end)
2200 			break;
2201 	}
2202 	btrfs_release_path(path);
2203 
2204 	if (cur_offset <= end && cow_start == (u64)-1)
2205 		cow_start = cur_offset;
2206 
2207 	if (cow_start != (u64)-1) {
2208 		cur_offset = end;
2209 		ret = fallback_to_cow(inode, locked_page, cow_start, end);
2210 		cow_start = (u64)-1;
2211 		if (ret)
2212 			goto error;
2213 	}
2214 
2215 	btrfs_free_path(path);
2216 	return 0;
2217 
2218 error:
2219 	/*
2220 	 * If an error happened while a COW region is outstanding, cur_offset
2221 	 * needs to be reset to cow_start to ensure the COW region is unlocked
2222 	 * as well.
2223 	 */
2224 	if (cow_start != (u64)-1)
2225 		cur_offset = cow_start;
2226 	if (cur_offset < end)
2227 		extent_clear_unlock_delalloc(inode, cur_offset, end,
2228 					     locked_page, EXTENT_LOCKED |
2229 					     EXTENT_DELALLOC | EXTENT_DEFRAG |
2230 					     EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
2231 					     PAGE_START_WRITEBACK |
2232 					     PAGE_END_WRITEBACK);
2233 	btrfs_free_path(path);
2234 	return ret;
2235 }
2236 
2237 static bool should_nocow(struct btrfs_inode *inode, u64 start, u64 end)
2238 {
2239 	if (inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)) {
2240 		if (inode->defrag_bytes &&
2241 		    test_range_bit(&inode->io_tree, start, end, EXTENT_DEFRAG,
2242 				   0, NULL))
2243 			return false;
2244 		return true;
2245 	}
2246 	return false;
2247 }
2248 
2249 /*
2250  * Function to process delayed allocation (create CoW) for ranges which are
2251  * being touched for the first time.
2252  */
2253 int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct page *locked_page,
2254 			     u64 start, u64 end, struct writeback_control *wbc)
2255 {
2256 	const bool zoned = btrfs_is_zoned(inode->root->fs_info);
2257 	int ret;
2258 
2259 	/*
2260 	 * The range must cover part of the @locked_page, or a return of 1
2261 	 * can confuse the caller.
2262 	 */
2263 	ASSERT(!(end <= page_offset(locked_page) ||
2264 		 start >= page_offset(locked_page) + PAGE_SIZE));
2265 
2266 	if (should_nocow(inode, start, end)) {
2267 		ret = run_delalloc_nocow(inode, locked_page, start, end);
2268 		goto out;
2269 	}
2270 
2271 	if (btrfs_inode_can_compress(inode) &&
2272 	    inode_need_compress(inode, start, end) &&
2273 	    run_delalloc_compressed(inode, locked_page, start, end, wbc))
2274 		return 1;
2275 
2276 	if (zoned)
2277 		ret = run_delalloc_cow(inode, locked_page, start, end, wbc,
2278 				       true);
2279 	else
2280 		ret = cow_file_range(inode, locked_page, start, end, NULL,
2281 				     false, false);
2282 
2283 out:
2284 	if (ret < 0)
2285 		btrfs_cleanup_ordered_extents(inode, locked_page, start,
2286 					      end - start + 1);
2287 	return ret;
2288 }
2289 
2290 void btrfs_split_delalloc_extent(struct btrfs_inode *inode,
2291 				 struct extent_state *orig, u64 split)
2292 {
2293 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
2294 	u64 size;
2295 
2296 	/* not delalloc, ignore it */
2297 	if (!(orig->state & EXTENT_DELALLOC))
2298 		return;
2299 
2300 	size = orig->end - orig->start + 1;
2301 	if (size > fs_info->max_extent_size) {
2302 		u32 num_extents;
2303 		u64 new_size;
2304 
2305 		/*
2306 		 * See the explanation in btrfs_merge_delalloc_extent, the same
2307 		 * applies here, just in reverse.
2308 		 */
2309 		new_size = orig->end - split + 1;
2310 		num_extents = count_max_extents(fs_info, new_size);
2311 		new_size = split - orig->start;
2312 		num_extents += count_max_extents(fs_info, new_size);
2313 		if (count_max_extents(fs_info, size) >= num_extents)
2314 			return;
2315 	}
2316 
2317 	spin_lock(&inode->lock);
2318 	btrfs_mod_outstanding_extents(inode, 1);
2319 	spin_unlock(&inode->lock);
2320 }
2321 
2322 /*
2323  * Handle merged delayed allocation extents so we can keep track of new extents
2324  * that are just merged onto old extents, such as when we are doing sequential
2325  * writes, so we can properly account for the metadata space we'll need.
2326  */
2327 void btrfs_merge_delalloc_extent(struct btrfs_inode *inode, struct extent_state *new,
2328 				 struct extent_state *other)
2329 {
2330 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
2331 	u64 new_size, old_size;
2332 	u32 num_extents;
2333 
2334 	/* not delalloc, ignore it */
2335 	if (!(other->state & EXTENT_DELALLOC))
2336 		return;
2337 
2338 	if (new->start > other->start)
2339 		new_size = new->end - other->start + 1;
2340 	else
2341 		new_size = other->end - new->start + 1;
2342 
2343 	/* we're not bigger than the max, unreserve the space and go */
2344 	if (new_size <= fs_info->max_extent_size) {
2345 		spin_lock(&inode->lock);
2346 		btrfs_mod_outstanding_extents(inode, -1);
2347 		spin_unlock(&inode->lock);
2348 		return;
2349 	}
2350 
2351 	/*
2352 	 * We have to add up either side to figure out how many extents were
2353 	 * accounted for before we merged into one big extent.  If the number of
2354 	 * extents we accounted for is <= the amount we need for the new range
2355 	 * then we can return, otherwise drop.  Think of it like this
2356 	 *
2357 	 * [ 4k][MAX_SIZE]
2358 	 *
2359 	 * So we've grown the extent by a MAX_SIZE extent, this would mean we
2360 	 * need 2 outstanding extents, on one side we have 1 and the other side
2361 	 * we have 1 so they are == and we can return.  But in this case
2362 	 *
2363 	 * [MAX_SIZE+4k][MAX_SIZE+4k]
2364 	 *
2365 	 * Each range on their own accounts for 2 extents, but merged together
2366 	 * they are only 3 extents worth of accounting, so we need to drop in
2367 	 * this case.
2368 	 */
2369 	old_size = other->end - other->start + 1;
2370 	num_extents = count_max_extents(fs_info, old_size);
2371 	old_size = new->end - new->start + 1;
2372 	num_extents += count_max_extents(fs_info, old_size);
2373 	if (count_max_extents(fs_info, new_size) >= num_extents)
2374 		return;
2375 
2376 	spin_lock(&inode->lock);
2377 	btrfs_mod_outstanding_extents(inode, -1);
2378 	spin_unlock(&inode->lock);
2379 }
2380 
2381 static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
2382 				      struct btrfs_inode *inode)
2383 {
2384 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
2385 
2386 	spin_lock(&root->delalloc_lock);
2387 	if (list_empty(&inode->delalloc_inodes)) {
2388 		list_add_tail(&inode->delalloc_inodes, &root->delalloc_inodes);
2389 		set_bit(BTRFS_INODE_IN_DELALLOC_LIST, &inode->runtime_flags);
2390 		root->nr_delalloc_inodes++;
2391 		if (root->nr_delalloc_inodes == 1) {
2392 			spin_lock(&fs_info->delalloc_root_lock);
2393 			BUG_ON(!list_empty(&root->delalloc_root));
2394 			list_add_tail(&root->delalloc_root,
2395 				      &fs_info->delalloc_roots);
2396 			spin_unlock(&fs_info->delalloc_root_lock);
2397 		}
2398 	}
2399 	spin_unlock(&root->delalloc_lock);
2400 }
2401 
2402 void __btrfs_del_delalloc_inode(struct btrfs_root *root,
2403 				struct btrfs_inode *inode)
2404 {
2405 	struct btrfs_fs_info *fs_info = root->fs_info;
2406 
2407 	if (!list_empty(&inode->delalloc_inodes)) {
2408 		list_del_init(&inode->delalloc_inodes);
2409 		clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
2410 			  &inode->runtime_flags);
2411 		root->nr_delalloc_inodes--;
2412 		if (!root->nr_delalloc_inodes) {
2413 			ASSERT(list_empty(&root->delalloc_inodes));
2414 			spin_lock(&fs_info->delalloc_root_lock);
2415 			BUG_ON(list_empty(&root->delalloc_root));
2416 			list_del_init(&root->delalloc_root);
2417 			spin_unlock(&fs_info->delalloc_root_lock);
2418 		}
2419 	}
2420 }
2421 
2422 static void btrfs_del_delalloc_inode(struct btrfs_root *root,
2423 				     struct btrfs_inode *inode)
2424 {
2425 	spin_lock(&root->delalloc_lock);
2426 	__btrfs_del_delalloc_inode(root, inode);
2427 	spin_unlock(&root->delalloc_lock);
2428 }
2429 
2430 /*
2431  * Properly track delayed allocation bytes in the inode and to maintain the
2432  * list of inodes that have pending delalloc work to be done.
2433  */
2434 void btrfs_set_delalloc_extent(struct btrfs_inode *inode, struct extent_state *state,
2435 			       u32 bits)
2436 {
2437 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
2438 
2439 	if ((bits & EXTENT_DEFRAG) && !(bits & EXTENT_DELALLOC))
2440 		WARN_ON(1);
2441 	/*
2442 	 * set_bit and clear bit hooks normally require _irqsave/restore
2443 	 * but in this case, we are only testing for the DELALLOC
2444 	 * bit, which is only set or cleared with irqs on
2445 	 */
2446 	if (!(state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
2447 		struct btrfs_root *root = inode->root;
2448 		u64 len = state->end + 1 - state->start;
2449 		u32 num_extents = count_max_extents(fs_info, len);
2450 		bool do_list = !btrfs_is_free_space_inode(inode);
2451 
2452 		spin_lock(&inode->lock);
2453 		btrfs_mod_outstanding_extents(inode, num_extents);
2454 		spin_unlock(&inode->lock);
2455 
2456 		/* For sanity tests */
2457 		if (btrfs_is_testing(fs_info))
2458 			return;
2459 
2460 		percpu_counter_add_batch(&fs_info->delalloc_bytes, len,
2461 					 fs_info->delalloc_batch);
2462 		spin_lock(&inode->lock);
2463 		inode->delalloc_bytes += len;
2464 		if (bits & EXTENT_DEFRAG)
2465 			inode->defrag_bytes += len;
2466 		if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
2467 					 &inode->runtime_flags))
2468 			btrfs_add_delalloc_inodes(root, inode);
2469 		spin_unlock(&inode->lock);
2470 	}
2471 
2472 	if (!(state->state & EXTENT_DELALLOC_NEW) &&
2473 	    (bits & EXTENT_DELALLOC_NEW)) {
2474 		spin_lock(&inode->lock);
2475 		inode->new_delalloc_bytes += state->end + 1 - state->start;
2476 		spin_unlock(&inode->lock);
2477 	}
2478 }
2479 
2480 /*
2481  * Once a range is no longer delalloc this function ensures that proper
2482  * accounting happens.
2483  */
2484 void btrfs_clear_delalloc_extent(struct btrfs_inode *inode,
2485 				 struct extent_state *state, u32 bits)
2486 {
2487 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
2488 	u64 len = state->end + 1 - state->start;
2489 	u32 num_extents = count_max_extents(fs_info, len);
2490 
2491 	if ((state->state & EXTENT_DEFRAG) && (bits & EXTENT_DEFRAG)) {
2492 		spin_lock(&inode->lock);
2493 		inode->defrag_bytes -= len;
2494 		spin_unlock(&inode->lock);
2495 	}
2496 
2497 	/*
2498 	 * set_bit and clear bit hooks normally require _irqsave/restore
2499 	 * but in this case, we are only testing for the DELALLOC
2500 	 * bit, which is only set or cleared with irqs on
2501 	 */
2502 	if ((state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
2503 		struct btrfs_root *root = inode->root;
2504 		bool do_list = !btrfs_is_free_space_inode(inode);
2505 
2506 		spin_lock(&inode->lock);
2507 		btrfs_mod_outstanding_extents(inode, -num_extents);
2508 		spin_unlock(&inode->lock);
2509 
2510 		/*
2511 		 * We don't reserve metadata space for space cache inodes so we
2512 		 * don't need to call delalloc_release_metadata if there is an
2513 		 * error.
2514 		 */
2515 		if (bits & EXTENT_CLEAR_META_RESV &&
2516 		    root != fs_info->tree_root)
2517 			btrfs_delalloc_release_metadata(inode, len, false);
2518 
2519 		/* For sanity tests. */
2520 		if (btrfs_is_testing(fs_info))
2521 			return;
2522 
2523 		if (!btrfs_is_data_reloc_root(root) &&
2524 		    do_list && !(state->state & EXTENT_NORESERVE) &&
2525 		    (bits & EXTENT_CLEAR_DATA_RESV))
2526 			btrfs_free_reserved_data_space_noquota(fs_info, len);
2527 
2528 		percpu_counter_add_batch(&fs_info->delalloc_bytes, -len,
2529 					 fs_info->delalloc_batch);
2530 		spin_lock(&inode->lock);
2531 		inode->delalloc_bytes -= len;
2532 		if (do_list && inode->delalloc_bytes == 0 &&
2533 		    test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
2534 					&inode->runtime_flags))
2535 			btrfs_del_delalloc_inode(root, inode);
2536 		spin_unlock(&inode->lock);
2537 	}
2538 
2539 	if ((state->state & EXTENT_DELALLOC_NEW) &&
2540 	    (bits & EXTENT_DELALLOC_NEW)) {
2541 		spin_lock(&inode->lock);
2542 		ASSERT(inode->new_delalloc_bytes >= len);
2543 		inode->new_delalloc_bytes -= len;
2544 		if (bits & EXTENT_ADD_INODE_BYTES)
2545 			inode_add_bytes(&inode->vfs_inode, len);
2546 		spin_unlock(&inode->lock);
2547 	}
2548 }
2549 
2550 static int btrfs_extract_ordered_extent(struct btrfs_bio *bbio,
2551 					struct btrfs_ordered_extent *ordered)
2552 {
2553 	u64 start = (u64)bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT;
2554 	u64 len = bbio->bio.bi_iter.bi_size;
2555 	struct btrfs_ordered_extent *new;
2556 	int ret;
2557 
2558 	/* Must always be called for the beginning of an ordered extent. */
2559 	if (WARN_ON_ONCE(start != ordered->disk_bytenr))
2560 		return -EINVAL;
2561 
2562 	/* No need to split if the ordered extent covers the entire bio. */
2563 	if (ordered->disk_num_bytes == len) {
2564 		refcount_inc(&ordered->refs);
2565 		bbio->ordered = ordered;
2566 		return 0;
2567 	}
2568 
2569 	/*
2570 	 * Don't split the extent_map for NOCOW extents, as we're writing into
2571 	 * a pre-existing one.
2572 	 */
2573 	if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags)) {
2574 		ret = split_extent_map(bbio->inode, bbio->file_offset,
2575 				       ordered->num_bytes, len,
2576 				       ordered->disk_bytenr);
2577 		if (ret)
2578 			return ret;
2579 	}
2580 
2581 	new = btrfs_split_ordered_extent(ordered, len);
2582 	if (IS_ERR(new))
2583 		return PTR_ERR(new);
2584 	bbio->ordered = new;
2585 	return 0;
2586 }
2587 
2588 /*
2589  * given a list of ordered sums record them in the inode.  This happens
2590  * at IO completion time based on sums calculated at bio submission time.
2591  */
2592 static int add_pending_csums(struct btrfs_trans_handle *trans,
2593 			     struct list_head *list)
2594 {
2595 	struct btrfs_ordered_sum *sum;
2596 	struct btrfs_root *csum_root = NULL;
2597 	int ret;
2598 
2599 	list_for_each_entry(sum, list, list) {
2600 		trans->adding_csums = true;
2601 		if (!csum_root)
2602 			csum_root = btrfs_csum_root(trans->fs_info,
2603 						    sum->logical);
2604 		ret = btrfs_csum_file_blocks(trans, csum_root, sum);
2605 		trans->adding_csums = false;
2606 		if (ret)
2607 			return ret;
2608 	}
2609 	return 0;
2610 }
2611 
2612 static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode,
2613 					 const u64 start,
2614 					 const u64 len,
2615 					 struct extent_state **cached_state)
2616 {
2617 	u64 search_start = start;
2618 	const u64 end = start + len - 1;
2619 
2620 	while (search_start < end) {
2621 		const u64 search_len = end - search_start + 1;
2622 		struct extent_map *em;
2623 		u64 em_len;
2624 		int ret = 0;
2625 
2626 		em = btrfs_get_extent(inode, NULL, 0, search_start, search_len);
2627 		if (IS_ERR(em))
2628 			return PTR_ERR(em);
2629 
2630 		if (em->block_start != EXTENT_MAP_HOLE)
2631 			goto next;
2632 
2633 		em_len = em->len;
2634 		if (em->start < search_start)
2635 			em_len -= search_start - em->start;
2636 		if (em_len > search_len)
2637 			em_len = search_len;
2638 
2639 		ret = set_extent_bit(&inode->io_tree, search_start,
2640 				     search_start + em_len - 1,
2641 				     EXTENT_DELALLOC_NEW, cached_state);
2642 next:
2643 		search_start = extent_map_end(em);
2644 		free_extent_map(em);
2645 		if (ret)
2646 			return ret;
2647 	}
2648 	return 0;
2649 }
2650 
2651 int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
2652 			      unsigned int extra_bits,
2653 			      struct extent_state **cached_state)
2654 {
2655 	WARN_ON(PAGE_ALIGNED(end));
2656 
2657 	if (start >= i_size_read(&inode->vfs_inode) &&
2658 	    !(inode->flags & BTRFS_INODE_PREALLOC)) {
2659 		/*
2660 		 * There can't be any extents following eof in this case so just
2661 		 * set the delalloc new bit for the range directly.
2662 		 */
2663 		extra_bits |= EXTENT_DELALLOC_NEW;
2664 	} else {
2665 		int ret;
2666 
2667 		ret = btrfs_find_new_delalloc_bytes(inode, start,
2668 						    end + 1 - start,
2669 						    cached_state);
2670 		if (ret)
2671 			return ret;
2672 	}
2673 
2674 	return set_extent_bit(&inode->io_tree, start, end,
2675 			      EXTENT_DELALLOC | extra_bits, cached_state);
2676 }
2677 
2678 /* see btrfs_writepage_start_hook for details on why this is required */
2679 struct btrfs_writepage_fixup {
2680 	struct page *page;
2681 	struct btrfs_inode *inode;
2682 	struct btrfs_work work;
2683 };
2684 
2685 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
2686 {
2687 	struct btrfs_writepage_fixup *fixup =
2688 		container_of(work, struct btrfs_writepage_fixup, work);
2689 	struct btrfs_ordered_extent *ordered;
2690 	struct extent_state *cached_state = NULL;
2691 	struct extent_changeset *data_reserved = NULL;
2692 	struct page *page = fixup->page;
2693 	struct btrfs_inode *inode = fixup->inode;
2694 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
2695 	u64 page_start = page_offset(page);
2696 	u64 page_end = page_offset(page) + PAGE_SIZE - 1;
2697 	int ret = 0;
2698 	bool free_delalloc_space = true;
2699 
2700 	/*
2701 	 * This is similar to page_mkwrite, we need to reserve the space before
2702 	 * we take the page lock.
2703 	 */
2704 	ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
2705 					   PAGE_SIZE);
2706 again:
2707 	lock_page(page);
2708 
2709 	/*
2710 	 * Before we queued this fixup, we took a reference on the page.
2711 	 * page->mapping may go NULL, but it shouldn't be moved to a different
2712 	 * address space.
2713 	 */
2714 	if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
2715 		/*
2716 		 * Unfortunately this is a little tricky, either
2717 		 *
2718 		 * 1) We got here and our page had already been dealt with and
2719 		 *    we reserved our space, thus ret == 0, so we need to just
2720 		 *    drop our space reservation and bail.  This can happen the
2721 		 *    first time we come into the fixup worker, or could happen
2722 		 *    while waiting for the ordered extent.
2723 		 * 2) Our page was already dealt with, but we happened to get an
2724 		 *    ENOSPC above from the btrfs_delalloc_reserve_space.  In
2725 		 *    this case we obviously don't have anything to release, but
2726 		 *    because the page was already dealt with we don't want to
2727 		 *    mark the page with an error, so make sure we're resetting
2728 		 *    ret to 0.  This is why we have this check _before_ the ret
2729 		 *    check, because we do not want to have a surprise ENOSPC
2730 		 *    when the page was already properly dealt with.
2731 		 */
2732 		if (!ret) {
2733 			btrfs_delalloc_release_extents(inode, PAGE_SIZE);
2734 			btrfs_delalloc_release_space(inode, data_reserved,
2735 						     page_start, PAGE_SIZE,
2736 						     true);
2737 		}
2738 		ret = 0;
2739 		goto out_page;
2740 	}
2741 
2742 	/*
2743 	 * We can't mess with the page state unless it is locked, so now that
2744 	 * it is locked bail if we failed to make our space reservation.
2745 	 */
2746 	if (ret)
2747 		goto out_page;
2748 
2749 	lock_extent(&inode->io_tree, page_start, page_end, &cached_state);
2750 
2751 	/* already ordered? We're done */
2752 	if (PageOrdered(page))
2753 		goto out_reserved;
2754 
2755 	ordered = btrfs_lookup_ordered_range(inode, page_start, PAGE_SIZE);
2756 	if (ordered) {
2757 		unlock_extent(&inode->io_tree, page_start, page_end,
2758 			      &cached_state);
2759 		unlock_page(page);
2760 		btrfs_start_ordered_extent(ordered);
2761 		btrfs_put_ordered_extent(ordered);
2762 		goto again;
2763 	}
2764 
2765 	ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0,
2766 					&cached_state);
2767 	if (ret)
2768 		goto out_reserved;
2769 
2770 	/*
2771 	 * Everything went as planned, we're now the owner of a dirty page with
2772 	 * delayed allocation bits set and space reserved for our COW
2773 	 * destination.
2774 	 *
2775 	 * The page was dirty when we started, nothing should have cleaned it.
2776 	 */
2777 	BUG_ON(!PageDirty(page));
2778 	free_delalloc_space = false;
2779 out_reserved:
2780 	btrfs_delalloc_release_extents(inode, PAGE_SIZE);
2781 	if (free_delalloc_space)
2782 		btrfs_delalloc_release_space(inode, data_reserved, page_start,
2783 					     PAGE_SIZE, true);
2784 	unlock_extent(&inode->io_tree, page_start, page_end, &cached_state);
2785 out_page:
2786 	if (ret) {
2787 		/*
2788 		 * We hit ENOSPC or other errors.  Update the mapping and page
2789 		 * to reflect the errors and clean the page.
2790 		 */
2791 		mapping_set_error(page->mapping, ret);
2792 		btrfs_mark_ordered_io_finished(inode, page, page_start,
2793 					       PAGE_SIZE, !ret);
2794 		btrfs_page_clear_uptodate(fs_info, page, page_start, PAGE_SIZE);
2795 		clear_page_dirty_for_io(page);
2796 	}
2797 	btrfs_page_clear_checked(fs_info, page, page_start, PAGE_SIZE);
2798 	unlock_page(page);
2799 	put_page(page);
2800 	kfree(fixup);
2801 	extent_changeset_free(data_reserved);
2802 	/*
2803 	 * As a precaution, do a delayed iput in case it would be the last iput
2804 	 * that could need flushing space. Recursing back to fixup worker would
2805 	 * deadlock.
2806 	 */
2807 	btrfs_add_delayed_iput(inode);
2808 }
2809 
2810 /*
2811  * There are a few paths in the higher layers of the kernel that directly
2812  * set the page dirty bit without asking the filesystem if it is a
2813  * good idea.  This causes problems because we want to make sure COW
2814  * properly happens and the data=ordered rules are followed.
2815  *
2816  * In our case any range that doesn't have the ORDERED bit set
2817  * hasn't been properly setup for IO.  We kick off an async process
2818  * to fix it up.  The async helper will wait for ordered extents, set
2819  * the delalloc bit and make it safe to write the page.
2820  */
2821 int btrfs_writepage_cow_fixup(struct page *page)
2822 {
2823 	struct inode *inode = page->mapping->host;
2824 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2825 	struct btrfs_writepage_fixup *fixup;
2826 
2827 	/* This page has ordered extent covering it already */
2828 	if (PageOrdered(page))
2829 		return 0;
2830 
2831 	/*
2832 	 * PageChecked is set below when we create a fixup worker for this page,
2833 	 * don't try to create another one if we're already PageChecked()
2834 	 *
2835 	 * The extent_io writepage code will redirty the page if we send back
2836 	 * EAGAIN.
2837 	 */
2838 	if (PageChecked(page))
2839 		return -EAGAIN;
2840 
2841 	fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2842 	if (!fixup)
2843 		return -EAGAIN;
2844 
2845 	/*
2846 	 * We are already holding a reference to this inode from
2847 	 * write_cache_pages.  We need to hold it because the space reservation
2848 	 * takes place outside of the page lock, and we can't trust
2849 	 * page->mapping outside of the page lock.
2850 	 */
2851 	ihold(inode);
2852 	btrfs_page_set_checked(fs_info, page, page_offset(page), PAGE_SIZE);
2853 	get_page(page);
2854 	btrfs_init_work(&fixup->work, btrfs_writepage_fixup_worker, NULL, NULL);
2855 	fixup->page = page;
2856 	fixup->inode = BTRFS_I(inode);
2857 	btrfs_queue_work(fs_info->fixup_workers, &fixup->work);
2858 
2859 	return -EAGAIN;
2860 }
2861 
2862 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2863 				       struct btrfs_inode *inode, u64 file_pos,
2864 				       struct btrfs_file_extent_item *stack_fi,
2865 				       const bool update_inode_bytes,
2866 				       u64 qgroup_reserved)
2867 {
2868 	struct btrfs_root *root = inode->root;
2869 	const u64 sectorsize = root->fs_info->sectorsize;
2870 	struct btrfs_path *path;
2871 	struct extent_buffer *leaf;
2872 	struct btrfs_key ins;
2873 	u64 disk_num_bytes = btrfs_stack_file_extent_disk_num_bytes(stack_fi);
2874 	u64 disk_bytenr = btrfs_stack_file_extent_disk_bytenr(stack_fi);
2875 	u64 offset = btrfs_stack_file_extent_offset(stack_fi);
2876 	u64 num_bytes = btrfs_stack_file_extent_num_bytes(stack_fi);
2877 	u64 ram_bytes = btrfs_stack_file_extent_ram_bytes(stack_fi);
2878 	struct btrfs_drop_extents_args drop_args = { 0 };
2879 	int ret;
2880 
2881 	path = btrfs_alloc_path();
2882 	if (!path)
2883 		return -ENOMEM;
2884 
2885 	/*
2886 	 * we may be replacing one extent in the tree with another.
2887 	 * The new extent is pinned in the extent map, and we don't want
2888 	 * to drop it from the cache until it is completely in the btree.
2889 	 *
2890 	 * So, tell btrfs_drop_extents to leave this extent in the cache.
2891 	 * the caller is expected to unpin it and allow it to be merged
2892 	 * with the others.
2893 	 */
2894 	drop_args.path = path;
2895 	drop_args.start = file_pos;
2896 	drop_args.end = file_pos + num_bytes;
2897 	drop_args.replace_extent = true;
2898 	drop_args.extent_item_size = sizeof(*stack_fi);
2899 	ret = btrfs_drop_extents(trans, root, inode, &drop_args);
2900 	if (ret)
2901 		goto out;
2902 
2903 	if (!drop_args.extent_inserted) {
2904 		ins.objectid = btrfs_ino(inode);
2905 		ins.offset = file_pos;
2906 		ins.type = BTRFS_EXTENT_DATA_KEY;
2907 
2908 		ret = btrfs_insert_empty_item(trans, root, path, &ins,
2909 					      sizeof(*stack_fi));
2910 		if (ret)
2911 			goto out;
2912 	}
2913 	leaf = path->nodes[0];
2914 	btrfs_set_stack_file_extent_generation(stack_fi, trans->transid);
2915 	write_extent_buffer(leaf, stack_fi,
2916 			btrfs_item_ptr_offset(leaf, path->slots[0]),
2917 			sizeof(struct btrfs_file_extent_item));
2918 
2919 	btrfs_mark_buffer_dirty(leaf);
2920 	btrfs_release_path(path);
2921 
2922 	/*
2923 	 * If we dropped an inline extent here, we know the range where it is
2924 	 * was not marked with the EXTENT_DELALLOC_NEW bit, so we update the
2925 	 * number of bytes only for that range containing the inline extent.
2926 	 * The remaining of the range will be processed when clearning the
2927 	 * EXTENT_DELALLOC_BIT bit through the ordered extent completion.
2928 	 */
2929 	if (file_pos == 0 && !IS_ALIGNED(drop_args.bytes_found, sectorsize)) {
2930 		u64 inline_size = round_down(drop_args.bytes_found, sectorsize);
2931 
2932 		inline_size = drop_args.bytes_found - inline_size;
2933 		btrfs_update_inode_bytes(inode, sectorsize, inline_size);
2934 		drop_args.bytes_found -= inline_size;
2935 		num_bytes -= sectorsize;
2936 	}
2937 
2938 	if (update_inode_bytes)
2939 		btrfs_update_inode_bytes(inode, num_bytes, drop_args.bytes_found);
2940 
2941 	ins.objectid = disk_bytenr;
2942 	ins.offset = disk_num_bytes;
2943 	ins.type = BTRFS_EXTENT_ITEM_KEY;
2944 
2945 	ret = btrfs_inode_set_file_extent_range(inode, file_pos, ram_bytes);
2946 	if (ret)
2947 		goto out;
2948 
2949 	ret = btrfs_alloc_reserved_file_extent(trans, root, btrfs_ino(inode),
2950 					       file_pos - offset,
2951 					       qgroup_reserved, &ins);
2952 out:
2953 	btrfs_free_path(path);
2954 
2955 	return ret;
2956 }
2957 
2958 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info,
2959 					 u64 start, u64 len)
2960 {
2961 	struct btrfs_block_group *cache;
2962 
2963 	cache = btrfs_lookup_block_group(fs_info, start);
2964 	ASSERT(cache);
2965 
2966 	spin_lock(&cache->lock);
2967 	cache->delalloc_bytes -= len;
2968 	spin_unlock(&cache->lock);
2969 
2970 	btrfs_put_block_group(cache);
2971 }
2972 
2973 static int insert_ordered_extent_file_extent(struct btrfs_trans_handle *trans,
2974 					     struct btrfs_ordered_extent *oe)
2975 {
2976 	struct btrfs_file_extent_item stack_fi;
2977 	bool update_inode_bytes;
2978 	u64 num_bytes = oe->num_bytes;
2979 	u64 ram_bytes = oe->ram_bytes;
2980 
2981 	memset(&stack_fi, 0, sizeof(stack_fi));
2982 	btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_REG);
2983 	btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, oe->disk_bytenr);
2984 	btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi,
2985 						   oe->disk_num_bytes);
2986 	btrfs_set_stack_file_extent_offset(&stack_fi, oe->offset);
2987 	if (test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags)) {
2988 		num_bytes = oe->truncated_len;
2989 		ram_bytes = num_bytes;
2990 	}
2991 	btrfs_set_stack_file_extent_num_bytes(&stack_fi, num_bytes);
2992 	btrfs_set_stack_file_extent_ram_bytes(&stack_fi, ram_bytes);
2993 	btrfs_set_stack_file_extent_compression(&stack_fi, oe->compress_type);
2994 	/* Encryption and other encoding is reserved and all 0 */
2995 
2996 	/*
2997 	 * For delalloc, when completing an ordered extent we update the inode's
2998 	 * bytes when clearing the range in the inode's io tree, so pass false
2999 	 * as the argument 'update_inode_bytes' to insert_reserved_file_extent(),
3000 	 * except if the ordered extent was truncated.
3001 	 */
3002 	update_inode_bytes = test_bit(BTRFS_ORDERED_DIRECT, &oe->flags) ||
3003 			     test_bit(BTRFS_ORDERED_ENCODED, &oe->flags) ||
3004 			     test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags);
3005 
3006 	return insert_reserved_file_extent(trans, BTRFS_I(oe->inode),
3007 					   oe->file_offset, &stack_fi,
3008 					   update_inode_bytes, oe->qgroup_rsv);
3009 }
3010 
3011 /*
3012  * As ordered data IO finishes, this gets called so we can finish
3013  * an ordered extent if the range of bytes in the file it covers are
3014  * fully written.
3015  */
3016 int btrfs_finish_one_ordered(struct btrfs_ordered_extent *ordered_extent)
3017 {
3018 	struct btrfs_inode *inode = BTRFS_I(ordered_extent->inode);
3019 	struct btrfs_root *root = inode->root;
3020 	struct btrfs_fs_info *fs_info = root->fs_info;
3021 	struct btrfs_trans_handle *trans = NULL;
3022 	struct extent_io_tree *io_tree = &inode->io_tree;
3023 	struct extent_state *cached_state = NULL;
3024 	u64 start, end;
3025 	int compress_type = 0;
3026 	int ret = 0;
3027 	u64 logical_len = ordered_extent->num_bytes;
3028 	bool freespace_inode;
3029 	bool truncated = false;
3030 	bool clear_reserved_extent = true;
3031 	unsigned int clear_bits = EXTENT_DEFRAG;
3032 
3033 	start = ordered_extent->file_offset;
3034 	end = start + ordered_extent->num_bytes - 1;
3035 
3036 	if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3037 	    !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) &&
3038 	    !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags) &&
3039 	    !test_bit(BTRFS_ORDERED_ENCODED, &ordered_extent->flags))
3040 		clear_bits |= EXTENT_DELALLOC_NEW;
3041 
3042 	freespace_inode = btrfs_is_free_space_inode(inode);
3043 	if (!freespace_inode)
3044 		btrfs_lockdep_acquire(fs_info, btrfs_ordered_extent);
3045 
3046 	if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
3047 		ret = -EIO;
3048 		goto out;
3049 	}
3050 
3051 	if (btrfs_is_zoned(fs_info))
3052 		btrfs_zone_finish_endio(fs_info, ordered_extent->disk_bytenr,
3053 					ordered_extent->disk_num_bytes);
3054 
3055 	if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
3056 		truncated = true;
3057 		logical_len = ordered_extent->truncated_len;
3058 		/* Truncated the entire extent, don't bother adding */
3059 		if (!logical_len)
3060 			goto out;
3061 	}
3062 
3063 	if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
3064 		BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
3065 
3066 		btrfs_inode_safe_disk_i_size_write(inode, 0);
3067 		if (freespace_inode)
3068 			trans = btrfs_join_transaction_spacecache(root);
3069 		else
3070 			trans = btrfs_join_transaction(root);
3071 		if (IS_ERR(trans)) {
3072 			ret = PTR_ERR(trans);
3073 			trans = NULL;
3074 			goto out;
3075 		}
3076 		trans->block_rsv = &inode->block_rsv;
3077 		ret = btrfs_update_inode_fallback(trans, root, inode);
3078 		if (ret) /* -ENOMEM or corruption */
3079 			btrfs_abort_transaction(trans, ret);
3080 		goto out;
3081 	}
3082 
3083 	clear_bits |= EXTENT_LOCKED;
3084 	lock_extent(io_tree, start, end, &cached_state);
3085 
3086 	if (freespace_inode)
3087 		trans = btrfs_join_transaction_spacecache(root);
3088 	else
3089 		trans = btrfs_join_transaction(root);
3090 	if (IS_ERR(trans)) {
3091 		ret = PTR_ERR(trans);
3092 		trans = NULL;
3093 		goto out;
3094 	}
3095 
3096 	trans->block_rsv = &inode->block_rsv;
3097 
3098 	if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
3099 		compress_type = ordered_extent->compress_type;
3100 	if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
3101 		BUG_ON(compress_type);
3102 		ret = btrfs_mark_extent_written(trans, inode,
3103 						ordered_extent->file_offset,
3104 						ordered_extent->file_offset +
3105 						logical_len);
3106 		btrfs_zoned_release_data_reloc_bg(fs_info, ordered_extent->disk_bytenr,
3107 						  ordered_extent->disk_num_bytes);
3108 	} else {
3109 		BUG_ON(root == fs_info->tree_root);
3110 		ret = insert_ordered_extent_file_extent(trans, ordered_extent);
3111 		if (!ret) {
3112 			clear_reserved_extent = false;
3113 			btrfs_release_delalloc_bytes(fs_info,
3114 						ordered_extent->disk_bytenr,
3115 						ordered_extent->disk_num_bytes);
3116 		}
3117 	}
3118 	unpin_extent_cache(&inode->extent_tree, ordered_extent->file_offset,
3119 			   ordered_extent->num_bytes, trans->transid);
3120 	if (ret < 0) {
3121 		btrfs_abort_transaction(trans, ret);
3122 		goto out;
3123 	}
3124 
3125 	ret = add_pending_csums(trans, &ordered_extent->list);
3126 	if (ret) {
3127 		btrfs_abort_transaction(trans, ret);
3128 		goto out;
3129 	}
3130 
3131 	/*
3132 	 * If this is a new delalloc range, clear its new delalloc flag to
3133 	 * update the inode's number of bytes. This needs to be done first
3134 	 * before updating the inode item.
3135 	 */
3136 	if ((clear_bits & EXTENT_DELALLOC_NEW) &&
3137 	    !test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags))
3138 		clear_extent_bit(&inode->io_tree, start, end,
3139 				 EXTENT_DELALLOC_NEW | EXTENT_ADD_INODE_BYTES,
3140 				 &cached_state);
3141 
3142 	btrfs_inode_safe_disk_i_size_write(inode, 0);
3143 	ret = btrfs_update_inode_fallback(trans, root, inode);
3144 	if (ret) { /* -ENOMEM or corruption */
3145 		btrfs_abort_transaction(trans, ret);
3146 		goto out;
3147 	}
3148 	ret = 0;
3149 out:
3150 	clear_extent_bit(&inode->io_tree, start, end, clear_bits,
3151 			 &cached_state);
3152 
3153 	if (trans)
3154 		btrfs_end_transaction(trans);
3155 
3156 	if (ret || truncated) {
3157 		u64 unwritten_start = start;
3158 
3159 		/*
3160 		 * If we failed to finish this ordered extent for any reason we
3161 		 * need to make sure BTRFS_ORDERED_IOERR is set on the ordered
3162 		 * extent, and mark the inode with the error if it wasn't
3163 		 * already set.  Any error during writeback would have already
3164 		 * set the mapping error, so we need to set it if we're the ones
3165 		 * marking this ordered extent as failed.
3166 		 */
3167 		if (ret && !test_and_set_bit(BTRFS_ORDERED_IOERR,
3168 					     &ordered_extent->flags))
3169 			mapping_set_error(ordered_extent->inode->i_mapping, -EIO);
3170 
3171 		if (truncated)
3172 			unwritten_start += logical_len;
3173 		clear_extent_uptodate(io_tree, unwritten_start, end, NULL);
3174 
3175 		/* Drop extent maps for the part of the extent we didn't write. */
3176 		btrfs_drop_extent_map_range(inode, unwritten_start, end, false);
3177 
3178 		/*
3179 		 * If the ordered extent had an IOERR or something else went
3180 		 * wrong we need to return the space for this ordered extent
3181 		 * back to the allocator.  We only free the extent in the
3182 		 * truncated case if we didn't write out the extent at all.
3183 		 *
3184 		 * If we made it past insert_reserved_file_extent before we
3185 		 * errored out then we don't need to do this as the accounting
3186 		 * has already been done.
3187 		 */
3188 		if ((ret || !logical_len) &&
3189 		    clear_reserved_extent &&
3190 		    !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3191 		    !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
3192 			/*
3193 			 * Discard the range before returning it back to the
3194 			 * free space pool
3195 			 */
3196 			if (ret && btrfs_test_opt(fs_info, DISCARD_SYNC))
3197 				btrfs_discard_extent(fs_info,
3198 						ordered_extent->disk_bytenr,
3199 						ordered_extent->disk_num_bytes,
3200 						NULL);
3201 			btrfs_free_reserved_extent(fs_info,
3202 					ordered_extent->disk_bytenr,
3203 					ordered_extent->disk_num_bytes, 1);
3204 			/*
3205 			 * Actually free the qgroup rsv which was released when
3206 			 * the ordered extent was created.
3207 			 */
3208 			btrfs_qgroup_free_refroot(fs_info, inode->root->root_key.objectid,
3209 						  ordered_extent->qgroup_rsv,
3210 						  BTRFS_QGROUP_RSV_DATA);
3211 		}
3212 	}
3213 
3214 	/*
3215 	 * This needs to be done to make sure anybody waiting knows we are done
3216 	 * updating everything for this ordered extent.
3217 	 */
3218 	btrfs_remove_ordered_extent(inode, ordered_extent);
3219 
3220 	/* once for us */
3221 	btrfs_put_ordered_extent(ordered_extent);
3222 	/* once for the tree */
3223 	btrfs_put_ordered_extent(ordered_extent);
3224 
3225 	return ret;
3226 }
3227 
3228 int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered)
3229 {
3230 	if (btrfs_is_zoned(btrfs_sb(ordered->inode->i_sb)) &&
3231 	    !test_bit(BTRFS_ORDERED_IOERR, &ordered->flags))
3232 		btrfs_finish_ordered_zoned(ordered);
3233 	return btrfs_finish_one_ordered(ordered);
3234 }
3235 
3236 /*
3237  * Verify the checksum for a single sector without any extra action that depend
3238  * on the type of I/O.
3239  */
3240 int btrfs_check_sector_csum(struct btrfs_fs_info *fs_info, struct page *page,
3241 			    u32 pgoff, u8 *csum, const u8 * const csum_expected)
3242 {
3243 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
3244 	char *kaddr;
3245 
3246 	ASSERT(pgoff + fs_info->sectorsize <= PAGE_SIZE);
3247 
3248 	shash->tfm = fs_info->csum_shash;
3249 
3250 	kaddr = kmap_local_page(page) + pgoff;
3251 	crypto_shash_digest(shash, kaddr, fs_info->sectorsize, csum);
3252 	kunmap_local(kaddr);
3253 
3254 	if (memcmp(csum, csum_expected, fs_info->csum_size))
3255 		return -EIO;
3256 	return 0;
3257 }
3258 
3259 /*
3260  * Verify the checksum of a single data sector.
3261  *
3262  * @bbio:	btrfs_io_bio which contains the csum
3263  * @dev:	device the sector is on
3264  * @bio_offset:	offset to the beginning of the bio (in bytes)
3265  * @bv:		bio_vec to check
3266  *
3267  * Check if the checksum on a data block is valid.  When a checksum mismatch is
3268  * detected, report the error and fill the corrupted range with zero.
3269  *
3270  * Return %true if the sector is ok or had no checksum to start with, else %false.
3271  */
3272 bool btrfs_data_csum_ok(struct btrfs_bio *bbio, struct btrfs_device *dev,
3273 			u32 bio_offset, struct bio_vec *bv)
3274 {
3275 	struct btrfs_inode *inode = bbio->inode;
3276 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
3277 	u64 file_offset = bbio->file_offset + bio_offset;
3278 	u64 end = file_offset + bv->bv_len - 1;
3279 	u8 *csum_expected;
3280 	u8 csum[BTRFS_CSUM_SIZE];
3281 
3282 	ASSERT(bv->bv_len == fs_info->sectorsize);
3283 
3284 	if (!bbio->csum)
3285 		return true;
3286 
3287 	if (btrfs_is_data_reloc_root(inode->root) &&
3288 	    test_range_bit(&inode->io_tree, file_offset, end, EXTENT_NODATASUM,
3289 			   1, NULL)) {
3290 		/* Skip the range without csum for data reloc inode */
3291 		clear_extent_bits(&inode->io_tree, file_offset, end,
3292 				  EXTENT_NODATASUM);
3293 		return true;
3294 	}
3295 
3296 	csum_expected = bbio->csum + (bio_offset >> fs_info->sectorsize_bits) *
3297 				fs_info->csum_size;
3298 	if (btrfs_check_sector_csum(fs_info, bv->bv_page, bv->bv_offset, csum,
3299 				    csum_expected))
3300 		goto zeroit;
3301 	return true;
3302 
3303 zeroit:
3304 	btrfs_print_data_csum_error(inode, file_offset, csum, csum_expected,
3305 				    bbio->mirror_num);
3306 	if (dev)
3307 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS);
3308 	memzero_bvec(bv);
3309 	return false;
3310 }
3311 
3312 /*
3313  * btrfs_add_delayed_iput - perform a delayed iput on @inode
3314  *
3315  * @inode: The inode we want to perform iput on
3316  *
3317  * This function uses the generic vfs_inode::i_count to track whether we should
3318  * just decrement it (in case it's > 1) or if this is the last iput then link
3319  * the inode to the delayed iput machinery. Delayed iputs are processed at
3320  * transaction commit time/superblock commit/cleaner kthread.
3321  */
3322 void btrfs_add_delayed_iput(struct btrfs_inode *inode)
3323 {
3324 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
3325 	unsigned long flags;
3326 
3327 	if (atomic_add_unless(&inode->vfs_inode.i_count, -1, 1))
3328 		return;
3329 
3330 	atomic_inc(&fs_info->nr_delayed_iputs);
3331 	/*
3332 	 * Need to be irq safe here because we can be called from either an irq
3333 	 * context (see bio.c and btrfs_put_ordered_extent()) or a non-irq
3334 	 * context.
3335 	 */
3336 	spin_lock_irqsave(&fs_info->delayed_iput_lock, flags);
3337 	ASSERT(list_empty(&inode->delayed_iput));
3338 	list_add_tail(&inode->delayed_iput, &fs_info->delayed_iputs);
3339 	spin_unlock_irqrestore(&fs_info->delayed_iput_lock, flags);
3340 	if (!test_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags))
3341 		wake_up_process(fs_info->cleaner_kthread);
3342 }
3343 
3344 static void run_delayed_iput_locked(struct btrfs_fs_info *fs_info,
3345 				    struct btrfs_inode *inode)
3346 {
3347 	list_del_init(&inode->delayed_iput);
3348 	spin_unlock_irq(&fs_info->delayed_iput_lock);
3349 	iput(&inode->vfs_inode);
3350 	if (atomic_dec_and_test(&fs_info->nr_delayed_iputs))
3351 		wake_up(&fs_info->delayed_iputs_wait);
3352 	spin_lock_irq(&fs_info->delayed_iput_lock);
3353 }
3354 
3355 static void btrfs_run_delayed_iput(struct btrfs_fs_info *fs_info,
3356 				   struct btrfs_inode *inode)
3357 {
3358 	if (!list_empty(&inode->delayed_iput)) {
3359 		spin_lock_irq(&fs_info->delayed_iput_lock);
3360 		if (!list_empty(&inode->delayed_iput))
3361 			run_delayed_iput_locked(fs_info, inode);
3362 		spin_unlock_irq(&fs_info->delayed_iput_lock);
3363 	}
3364 }
3365 
3366 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info)
3367 {
3368 	/*
3369 	 * btrfs_put_ordered_extent() can run in irq context (see bio.c), which
3370 	 * calls btrfs_add_delayed_iput() and that needs to lock
3371 	 * fs_info->delayed_iput_lock. So we need to disable irqs here to
3372 	 * prevent a deadlock.
3373 	 */
3374 	spin_lock_irq(&fs_info->delayed_iput_lock);
3375 	while (!list_empty(&fs_info->delayed_iputs)) {
3376 		struct btrfs_inode *inode;
3377 
3378 		inode = list_first_entry(&fs_info->delayed_iputs,
3379 				struct btrfs_inode, delayed_iput);
3380 		run_delayed_iput_locked(fs_info, inode);
3381 		if (need_resched()) {
3382 			spin_unlock_irq(&fs_info->delayed_iput_lock);
3383 			cond_resched();
3384 			spin_lock_irq(&fs_info->delayed_iput_lock);
3385 		}
3386 	}
3387 	spin_unlock_irq(&fs_info->delayed_iput_lock);
3388 }
3389 
3390 /*
3391  * Wait for flushing all delayed iputs
3392  *
3393  * @fs_info:  the filesystem
3394  *
3395  * This will wait on any delayed iputs that are currently running with KILLABLE
3396  * set.  Once they are all done running we will return, unless we are killed in
3397  * which case we return EINTR. This helps in user operations like fallocate etc
3398  * that might get blocked on the iputs.
3399  *
3400  * Return EINTR if we were killed, 0 if nothing's pending
3401  */
3402 int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info)
3403 {
3404 	int ret = wait_event_killable(fs_info->delayed_iputs_wait,
3405 			atomic_read(&fs_info->nr_delayed_iputs) == 0);
3406 	if (ret)
3407 		return -EINTR;
3408 	return 0;
3409 }
3410 
3411 /*
3412  * This creates an orphan entry for the given inode in case something goes wrong
3413  * in the middle of an unlink.
3414  */
3415 int btrfs_orphan_add(struct btrfs_trans_handle *trans,
3416 		     struct btrfs_inode *inode)
3417 {
3418 	int ret;
3419 
3420 	ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode));
3421 	if (ret && ret != -EEXIST) {
3422 		btrfs_abort_transaction(trans, ret);
3423 		return ret;
3424 	}
3425 
3426 	return 0;
3427 }
3428 
3429 /*
3430  * We have done the delete so we can go ahead and remove the orphan item for
3431  * this particular inode.
3432  */
3433 static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3434 			    struct btrfs_inode *inode)
3435 {
3436 	return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode));
3437 }
3438 
3439 /*
3440  * this cleans up any orphans that may be left on the list from the last use
3441  * of this root.
3442  */
3443 int btrfs_orphan_cleanup(struct btrfs_root *root)
3444 {
3445 	struct btrfs_fs_info *fs_info = root->fs_info;
3446 	struct btrfs_path *path;
3447 	struct extent_buffer *leaf;
3448 	struct btrfs_key key, found_key;
3449 	struct btrfs_trans_handle *trans;
3450 	struct inode *inode;
3451 	u64 last_objectid = 0;
3452 	int ret = 0, nr_unlink = 0;
3453 
3454 	if (test_and_set_bit(BTRFS_ROOT_ORPHAN_CLEANUP, &root->state))
3455 		return 0;
3456 
3457 	path = btrfs_alloc_path();
3458 	if (!path) {
3459 		ret = -ENOMEM;
3460 		goto out;
3461 	}
3462 	path->reada = READA_BACK;
3463 
3464 	key.objectid = BTRFS_ORPHAN_OBJECTID;
3465 	key.type = BTRFS_ORPHAN_ITEM_KEY;
3466 	key.offset = (u64)-1;
3467 
3468 	while (1) {
3469 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3470 		if (ret < 0)
3471 			goto out;
3472 
3473 		/*
3474 		 * if ret == 0 means we found what we were searching for, which
3475 		 * is weird, but possible, so only screw with path if we didn't
3476 		 * find the key and see if we have stuff that matches
3477 		 */
3478 		if (ret > 0) {
3479 			ret = 0;
3480 			if (path->slots[0] == 0)
3481 				break;
3482 			path->slots[0]--;
3483 		}
3484 
3485 		/* pull out the item */
3486 		leaf = path->nodes[0];
3487 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3488 
3489 		/* make sure the item matches what we want */
3490 		if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3491 			break;
3492 		if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
3493 			break;
3494 
3495 		/* release the path since we're done with it */
3496 		btrfs_release_path(path);
3497 
3498 		/*
3499 		 * this is where we are basically btrfs_lookup, without the
3500 		 * crossing root thing.  we store the inode number in the
3501 		 * offset of the orphan item.
3502 		 */
3503 
3504 		if (found_key.offset == last_objectid) {
3505 			/*
3506 			 * We found the same inode as before. This means we were
3507 			 * not able to remove its items via eviction triggered
3508 			 * by an iput(). A transaction abort may have happened,
3509 			 * due to -ENOSPC for example, so try to grab the error
3510 			 * that lead to a transaction abort, if any.
3511 			 */
3512 			btrfs_err(fs_info,
3513 				  "Error removing orphan entry, stopping orphan cleanup");
3514 			ret = BTRFS_FS_ERROR(fs_info) ?: -EINVAL;
3515 			goto out;
3516 		}
3517 
3518 		last_objectid = found_key.offset;
3519 
3520 		found_key.objectid = found_key.offset;
3521 		found_key.type = BTRFS_INODE_ITEM_KEY;
3522 		found_key.offset = 0;
3523 		inode = btrfs_iget(fs_info->sb, last_objectid, root);
3524 		if (IS_ERR(inode)) {
3525 			ret = PTR_ERR(inode);
3526 			inode = NULL;
3527 			if (ret != -ENOENT)
3528 				goto out;
3529 		}
3530 
3531 		if (!inode && root == fs_info->tree_root) {
3532 			struct btrfs_root *dead_root;
3533 			int is_dead_root = 0;
3534 
3535 			/*
3536 			 * This is an orphan in the tree root. Currently these
3537 			 * could come from 2 sources:
3538 			 *  a) a root (snapshot/subvolume) deletion in progress
3539 			 *  b) a free space cache inode
3540 			 * We need to distinguish those two, as the orphan item
3541 			 * for a root must not get deleted before the deletion
3542 			 * of the snapshot/subvolume's tree completes.
3543 			 *
3544 			 * btrfs_find_orphan_roots() ran before us, which has
3545 			 * found all deleted roots and loaded them into
3546 			 * fs_info->fs_roots_radix. So here we can find if an
3547 			 * orphan item corresponds to a deleted root by looking
3548 			 * up the root from that radix tree.
3549 			 */
3550 
3551 			spin_lock(&fs_info->fs_roots_radix_lock);
3552 			dead_root = radix_tree_lookup(&fs_info->fs_roots_radix,
3553 							 (unsigned long)found_key.objectid);
3554 			if (dead_root && btrfs_root_refs(&dead_root->root_item) == 0)
3555 				is_dead_root = 1;
3556 			spin_unlock(&fs_info->fs_roots_radix_lock);
3557 
3558 			if (is_dead_root) {
3559 				/* prevent this orphan from being found again */
3560 				key.offset = found_key.objectid - 1;
3561 				continue;
3562 			}
3563 
3564 		}
3565 
3566 		/*
3567 		 * If we have an inode with links, there are a couple of
3568 		 * possibilities:
3569 		 *
3570 		 * 1. We were halfway through creating fsverity metadata for the
3571 		 * file. In that case, the orphan item represents incomplete
3572 		 * fsverity metadata which must be cleaned up with
3573 		 * btrfs_drop_verity_items and deleting the orphan item.
3574 
3575 		 * 2. Old kernels (before v3.12) used to create an
3576 		 * orphan item for truncate indicating that there were possibly
3577 		 * extent items past i_size that needed to be deleted. In v3.12,
3578 		 * truncate was changed to update i_size in sync with the extent
3579 		 * items, but the (useless) orphan item was still created. Since
3580 		 * v4.18, we don't create the orphan item for truncate at all.
3581 		 *
3582 		 * So, this item could mean that we need to do a truncate, but
3583 		 * only if this filesystem was last used on a pre-v3.12 kernel
3584 		 * and was not cleanly unmounted. The odds of that are quite
3585 		 * slim, and it's a pain to do the truncate now, so just delete
3586 		 * the orphan item.
3587 		 *
3588 		 * It's also possible that this orphan item was supposed to be
3589 		 * deleted but wasn't. The inode number may have been reused,
3590 		 * but either way, we can delete the orphan item.
3591 		 */
3592 		if (!inode || inode->i_nlink) {
3593 			if (inode) {
3594 				ret = btrfs_drop_verity_items(BTRFS_I(inode));
3595 				iput(inode);
3596 				inode = NULL;
3597 				if (ret)
3598 					goto out;
3599 			}
3600 			trans = btrfs_start_transaction(root, 1);
3601 			if (IS_ERR(trans)) {
3602 				ret = PTR_ERR(trans);
3603 				goto out;
3604 			}
3605 			btrfs_debug(fs_info, "auto deleting %Lu",
3606 				    found_key.objectid);
3607 			ret = btrfs_del_orphan_item(trans, root,
3608 						    found_key.objectid);
3609 			btrfs_end_transaction(trans);
3610 			if (ret)
3611 				goto out;
3612 			continue;
3613 		}
3614 
3615 		nr_unlink++;
3616 
3617 		/* this will do delete_inode and everything for us */
3618 		iput(inode);
3619 	}
3620 	/* release the path since we're done with it */
3621 	btrfs_release_path(path);
3622 
3623 	if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
3624 		trans = btrfs_join_transaction(root);
3625 		if (!IS_ERR(trans))
3626 			btrfs_end_transaction(trans);
3627 	}
3628 
3629 	if (nr_unlink)
3630 		btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink);
3631 
3632 out:
3633 	if (ret)
3634 		btrfs_err(fs_info, "could not do orphan cleanup %d", ret);
3635 	btrfs_free_path(path);
3636 	return ret;
3637 }
3638 
3639 /*
3640  * very simple check to peek ahead in the leaf looking for xattrs.  If we
3641  * don't find any xattrs, we know there can't be any acls.
3642  *
3643  * slot is the slot the inode is in, objectid is the objectid of the inode
3644  */
3645 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
3646 					  int slot, u64 objectid,
3647 					  int *first_xattr_slot)
3648 {
3649 	u32 nritems = btrfs_header_nritems(leaf);
3650 	struct btrfs_key found_key;
3651 	static u64 xattr_access = 0;
3652 	static u64 xattr_default = 0;
3653 	int scanned = 0;
3654 
3655 	if (!xattr_access) {
3656 		xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
3657 					strlen(XATTR_NAME_POSIX_ACL_ACCESS));
3658 		xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
3659 					strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
3660 	}
3661 
3662 	slot++;
3663 	*first_xattr_slot = -1;
3664 	while (slot < nritems) {
3665 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3666 
3667 		/* we found a different objectid, there must not be acls */
3668 		if (found_key.objectid != objectid)
3669 			return 0;
3670 
3671 		/* we found an xattr, assume we've got an acl */
3672 		if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
3673 			if (*first_xattr_slot == -1)
3674 				*first_xattr_slot = slot;
3675 			if (found_key.offset == xattr_access ||
3676 			    found_key.offset == xattr_default)
3677 				return 1;
3678 		}
3679 
3680 		/*
3681 		 * we found a key greater than an xattr key, there can't
3682 		 * be any acls later on
3683 		 */
3684 		if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3685 			return 0;
3686 
3687 		slot++;
3688 		scanned++;
3689 
3690 		/*
3691 		 * it goes inode, inode backrefs, xattrs, extents,
3692 		 * so if there are a ton of hard links to an inode there can
3693 		 * be a lot of backrefs.  Don't waste time searching too hard,
3694 		 * this is just an optimization
3695 		 */
3696 		if (scanned >= 8)
3697 			break;
3698 	}
3699 	/* we hit the end of the leaf before we found an xattr or
3700 	 * something larger than an xattr.  We have to assume the inode
3701 	 * has acls
3702 	 */
3703 	if (*first_xattr_slot == -1)
3704 		*first_xattr_slot = slot;
3705 	return 1;
3706 }
3707 
3708 /*
3709  * read an inode from the btree into the in-memory inode
3710  */
3711 static int btrfs_read_locked_inode(struct inode *inode,
3712 				   struct btrfs_path *in_path)
3713 {
3714 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3715 	struct btrfs_path *path = in_path;
3716 	struct extent_buffer *leaf;
3717 	struct btrfs_inode_item *inode_item;
3718 	struct btrfs_root *root = BTRFS_I(inode)->root;
3719 	struct btrfs_key location;
3720 	unsigned long ptr;
3721 	int maybe_acls;
3722 	u32 rdev;
3723 	int ret;
3724 	bool filled = false;
3725 	int first_xattr_slot;
3726 
3727 	ret = btrfs_fill_inode(inode, &rdev);
3728 	if (!ret)
3729 		filled = true;
3730 
3731 	if (!path) {
3732 		path = btrfs_alloc_path();
3733 		if (!path)
3734 			return -ENOMEM;
3735 	}
3736 
3737 	memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
3738 
3739 	ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
3740 	if (ret) {
3741 		if (path != in_path)
3742 			btrfs_free_path(path);
3743 		return ret;
3744 	}
3745 
3746 	leaf = path->nodes[0];
3747 
3748 	if (filled)
3749 		goto cache_index;
3750 
3751 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
3752 				    struct btrfs_inode_item);
3753 	inode->i_mode = btrfs_inode_mode(leaf, inode_item);
3754 	set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
3755 	i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3756 	i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
3757 	btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item));
3758 	btrfs_inode_set_file_extent_range(BTRFS_I(inode), 0,
3759 			round_up(i_size_read(inode), fs_info->sectorsize));
3760 
3761 	inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime);
3762 	inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime);
3763 
3764 	inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime);
3765 	inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime);
3766 
3767 	inode_set_ctime(inode, btrfs_timespec_sec(leaf, &inode_item->ctime),
3768 			btrfs_timespec_nsec(leaf, &inode_item->ctime));
3769 
3770 	BTRFS_I(inode)->i_otime.tv_sec =
3771 		btrfs_timespec_sec(leaf, &inode_item->otime);
3772 	BTRFS_I(inode)->i_otime.tv_nsec =
3773 		btrfs_timespec_nsec(leaf, &inode_item->otime);
3774 
3775 	inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
3776 	BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
3777 	BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3778 
3779 	inode_set_iversion_queried(inode,
3780 				   btrfs_inode_sequence(leaf, inode_item));
3781 	inode->i_generation = BTRFS_I(inode)->generation;
3782 	inode->i_rdev = 0;
3783 	rdev = btrfs_inode_rdev(leaf, inode_item);
3784 
3785 	BTRFS_I(inode)->index_cnt = (u64)-1;
3786 	btrfs_inode_split_flags(btrfs_inode_flags(leaf, inode_item),
3787 				&BTRFS_I(inode)->flags, &BTRFS_I(inode)->ro_flags);
3788 
3789 cache_index:
3790 	/*
3791 	 * If we were modified in the current generation and evicted from memory
3792 	 * and then re-read we need to do a full sync since we don't have any
3793 	 * idea about which extents were modified before we were evicted from
3794 	 * cache.
3795 	 *
3796 	 * This is required for both inode re-read from disk and delayed inode
3797 	 * in delayed_nodes_tree.
3798 	 */
3799 	if (BTRFS_I(inode)->last_trans == fs_info->generation)
3800 		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3801 			&BTRFS_I(inode)->runtime_flags);
3802 
3803 	/*
3804 	 * We don't persist the id of the transaction where an unlink operation
3805 	 * against the inode was last made. So here we assume the inode might
3806 	 * have been evicted, and therefore the exact value of last_unlink_trans
3807 	 * lost, and set it to last_trans to avoid metadata inconsistencies
3808 	 * between the inode and its parent if the inode is fsync'ed and the log
3809 	 * replayed. For example, in the scenario:
3810 	 *
3811 	 * touch mydir/foo
3812 	 * ln mydir/foo mydir/bar
3813 	 * sync
3814 	 * unlink mydir/bar
3815 	 * echo 2 > /proc/sys/vm/drop_caches   # evicts inode
3816 	 * xfs_io -c fsync mydir/foo
3817 	 * <power failure>
3818 	 * mount fs, triggers fsync log replay
3819 	 *
3820 	 * We must make sure that when we fsync our inode foo we also log its
3821 	 * parent inode, otherwise after log replay the parent still has the
3822 	 * dentry with the "bar" name but our inode foo has a link count of 1
3823 	 * and doesn't have an inode ref with the name "bar" anymore.
3824 	 *
3825 	 * Setting last_unlink_trans to last_trans is a pessimistic approach,
3826 	 * but it guarantees correctness at the expense of occasional full
3827 	 * transaction commits on fsync if our inode is a directory, or if our
3828 	 * inode is not a directory, logging its parent unnecessarily.
3829 	 */
3830 	BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
3831 
3832 	/*
3833 	 * Same logic as for last_unlink_trans. We don't persist the generation
3834 	 * of the last transaction where this inode was used for a reflink
3835 	 * operation, so after eviction and reloading the inode we must be
3836 	 * pessimistic and assume the last transaction that modified the inode.
3837 	 */
3838 	BTRFS_I(inode)->last_reflink_trans = BTRFS_I(inode)->last_trans;
3839 
3840 	path->slots[0]++;
3841 	if (inode->i_nlink != 1 ||
3842 	    path->slots[0] >= btrfs_header_nritems(leaf))
3843 		goto cache_acl;
3844 
3845 	btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
3846 	if (location.objectid != btrfs_ino(BTRFS_I(inode)))
3847 		goto cache_acl;
3848 
3849 	ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3850 	if (location.type == BTRFS_INODE_REF_KEY) {
3851 		struct btrfs_inode_ref *ref;
3852 
3853 		ref = (struct btrfs_inode_ref *)ptr;
3854 		BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3855 	} else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3856 		struct btrfs_inode_extref *extref;
3857 
3858 		extref = (struct btrfs_inode_extref *)ptr;
3859 		BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3860 								     extref);
3861 	}
3862 cache_acl:
3863 	/*
3864 	 * try to precache a NULL acl entry for files that don't have
3865 	 * any xattrs or acls
3866 	 */
3867 	maybe_acls = acls_after_inode_item(leaf, path->slots[0],
3868 			btrfs_ino(BTRFS_I(inode)), &first_xattr_slot);
3869 	if (first_xattr_slot != -1) {
3870 		path->slots[0] = first_xattr_slot;
3871 		ret = btrfs_load_inode_props(inode, path);
3872 		if (ret)
3873 			btrfs_err(fs_info,
3874 				  "error loading props for ino %llu (root %llu): %d",
3875 				  btrfs_ino(BTRFS_I(inode)),
3876 				  root->root_key.objectid, ret);
3877 	}
3878 	if (path != in_path)
3879 		btrfs_free_path(path);
3880 
3881 	if (!maybe_acls)
3882 		cache_no_acl(inode);
3883 
3884 	switch (inode->i_mode & S_IFMT) {
3885 	case S_IFREG:
3886 		inode->i_mapping->a_ops = &btrfs_aops;
3887 		inode->i_fop = &btrfs_file_operations;
3888 		inode->i_op = &btrfs_file_inode_operations;
3889 		break;
3890 	case S_IFDIR:
3891 		inode->i_fop = &btrfs_dir_file_operations;
3892 		inode->i_op = &btrfs_dir_inode_operations;
3893 		break;
3894 	case S_IFLNK:
3895 		inode->i_op = &btrfs_symlink_inode_operations;
3896 		inode_nohighmem(inode);
3897 		inode->i_mapping->a_ops = &btrfs_aops;
3898 		break;
3899 	default:
3900 		inode->i_op = &btrfs_special_inode_operations;
3901 		init_special_inode(inode, inode->i_mode, rdev);
3902 		break;
3903 	}
3904 
3905 	btrfs_sync_inode_flags_to_i_flags(inode);
3906 	return 0;
3907 }
3908 
3909 /*
3910  * given a leaf and an inode, copy the inode fields into the leaf
3911  */
3912 static void fill_inode_item(struct btrfs_trans_handle *trans,
3913 			    struct extent_buffer *leaf,
3914 			    struct btrfs_inode_item *item,
3915 			    struct inode *inode)
3916 {
3917 	struct btrfs_map_token token;
3918 	u64 flags;
3919 
3920 	btrfs_init_map_token(&token, leaf);
3921 
3922 	btrfs_set_token_inode_uid(&token, item, i_uid_read(inode));
3923 	btrfs_set_token_inode_gid(&token, item, i_gid_read(inode));
3924 	btrfs_set_token_inode_size(&token, item, BTRFS_I(inode)->disk_i_size);
3925 	btrfs_set_token_inode_mode(&token, item, inode->i_mode);
3926 	btrfs_set_token_inode_nlink(&token, item, inode->i_nlink);
3927 
3928 	btrfs_set_token_timespec_sec(&token, &item->atime,
3929 				     inode->i_atime.tv_sec);
3930 	btrfs_set_token_timespec_nsec(&token, &item->atime,
3931 				      inode->i_atime.tv_nsec);
3932 
3933 	btrfs_set_token_timespec_sec(&token, &item->mtime,
3934 				     inode->i_mtime.tv_sec);
3935 	btrfs_set_token_timespec_nsec(&token, &item->mtime,
3936 				      inode->i_mtime.tv_nsec);
3937 
3938 	btrfs_set_token_timespec_sec(&token, &item->ctime,
3939 				     inode_get_ctime(inode).tv_sec);
3940 	btrfs_set_token_timespec_nsec(&token, &item->ctime,
3941 				      inode_get_ctime(inode).tv_nsec);
3942 
3943 	btrfs_set_token_timespec_sec(&token, &item->otime,
3944 				     BTRFS_I(inode)->i_otime.tv_sec);
3945 	btrfs_set_token_timespec_nsec(&token, &item->otime,
3946 				      BTRFS_I(inode)->i_otime.tv_nsec);
3947 
3948 	btrfs_set_token_inode_nbytes(&token, item, inode_get_bytes(inode));
3949 	btrfs_set_token_inode_generation(&token, item,
3950 					 BTRFS_I(inode)->generation);
3951 	btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode));
3952 	btrfs_set_token_inode_transid(&token, item, trans->transid);
3953 	btrfs_set_token_inode_rdev(&token, item, inode->i_rdev);
3954 	flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags,
3955 					  BTRFS_I(inode)->ro_flags);
3956 	btrfs_set_token_inode_flags(&token, item, flags);
3957 	btrfs_set_token_inode_block_group(&token, item, 0);
3958 }
3959 
3960 /*
3961  * copy everything in the in-memory inode into the btree.
3962  */
3963 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
3964 				struct btrfs_root *root,
3965 				struct btrfs_inode *inode)
3966 {
3967 	struct btrfs_inode_item *inode_item;
3968 	struct btrfs_path *path;
3969 	struct extent_buffer *leaf;
3970 	int ret;
3971 
3972 	path = btrfs_alloc_path();
3973 	if (!path)
3974 		return -ENOMEM;
3975 
3976 	ret = btrfs_lookup_inode(trans, root, path, &inode->location, 1);
3977 	if (ret) {
3978 		if (ret > 0)
3979 			ret = -ENOENT;
3980 		goto failed;
3981 	}
3982 
3983 	leaf = path->nodes[0];
3984 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
3985 				    struct btrfs_inode_item);
3986 
3987 	fill_inode_item(trans, leaf, inode_item, &inode->vfs_inode);
3988 	btrfs_mark_buffer_dirty(leaf);
3989 	btrfs_set_inode_last_trans(trans, inode);
3990 	ret = 0;
3991 failed:
3992 	btrfs_free_path(path);
3993 	return ret;
3994 }
3995 
3996 /*
3997  * copy everything in the in-memory inode into the btree.
3998  */
3999 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
4000 				struct btrfs_root *root,
4001 				struct btrfs_inode *inode)
4002 {
4003 	struct btrfs_fs_info *fs_info = root->fs_info;
4004 	int ret;
4005 
4006 	/*
4007 	 * If the inode is a free space inode, we can deadlock during commit
4008 	 * if we put it into the delayed code.
4009 	 *
4010 	 * The data relocation inode should also be directly updated
4011 	 * without delay
4012 	 */
4013 	if (!btrfs_is_free_space_inode(inode)
4014 	    && !btrfs_is_data_reloc_root(root)
4015 	    && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
4016 		btrfs_update_root_times(trans, root);
4017 
4018 		ret = btrfs_delayed_update_inode(trans, root, inode);
4019 		if (!ret)
4020 			btrfs_set_inode_last_trans(trans, inode);
4021 		return ret;
4022 	}
4023 
4024 	return btrfs_update_inode_item(trans, root, inode);
4025 }
4026 
4027 int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
4028 				struct btrfs_root *root, struct btrfs_inode *inode)
4029 {
4030 	int ret;
4031 
4032 	ret = btrfs_update_inode(trans, root, inode);
4033 	if (ret == -ENOSPC)
4034 		return btrfs_update_inode_item(trans, root, inode);
4035 	return ret;
4036 }
4037 
4038 /*
4039  * unlink helper that gets used here in inode.c and in the tree logging
4040  * recovery code.  It remove a link in a directory with a given name, and
4041  * also drops the back refs in the inode to the directory
4042  */
4043 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4044 				struct btrfs_inode *dir,
4045 				struct btrfs_inode *inode,
4046 				const struct fscrypt_str *name,
4047 				struct btrfs_rename_ctx *rename_ctx)
4048 {
4049 	struct btrfs_root *root = dir->root;
4050 	struct btrfs_fs_info *fs_info = root->fs_info;
4051 	struct btrfs_path *path;
4052 	int ret = 0;
4053 	struct btrfs_dir_item *di;
4054 	u64 index;
4055 	u64 ino = btrfs_ino(inode);
4056 	u64 dir_ino = btrfs_ino(dir);
4057 
4058 	path = btrfs_alloc_path();
4059 	if (!path) {
4060 		ret = -ENOMEM;
4061 		goto out;
4062 	}
4063 
4064 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino, name, -1);
4065 	if (IS_ERR_OR_NULL(di)) {
4066 		ret = di ? PTR_ERR(di) : -ENOENT;
4067 		goto err;
4068 	}
4069 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
4070 	if (ret)
4071 		goto err;
4072 	btrfs_release_path(path);
4073 
4074 	/*
4075 	 * If we don't have dir index, we have to get it by looking up
4076 	 * the inode ref, since we get the inode ref, remove it directly,
4077 	 * it is unnecessary to do delayed deletion.
4078 	 *
4079 	 * But if we have dir index, needn't search inode ref to get it.
4080 	 * Since the inode ref is close to the inode item, it is better
4081 	 * that we delay to delete it, and just do this deletion when
4082 	 * we update the inode item.
4083 	 */
4084 	if (inode->dir_index) {
4085 		ret = btrfs_delayed_delete_inode_ref(inode);
4086 		if (!ret) {
4087 			index = inode->dir_index;
4088 			goto skip_backref;
4089 		}
4090 	}
4091 
4092 	ret = btrfs_del_inode_ref(trans, root, name, ino, dir_ino, &index);
4093 	if (ret) {
4094 		btrfs_info(fs_info,
4095 			"failed to delete reference to %.*s, inode %llu parent %llu",
4096 			name->len, name->name, ino, dir_ino);
4097 		btrfs_abort_transaction(trans, ret);
4098 		goto err;
4099 	}
4100 skip_backref:
4101 	if (rename_ctx)
4102 		rename_ctx->index = index;
4103 
4104 	ret = btrfs_delete_delayed_dir_index(trans, dir, index);
4105 	if (ret) {
4106 		btrfs_abort_transaction(trans, ret);
4107 		goto err;
4108 	}
4109 
4110 	/*
4111 	 * If we are in a rename context, we don't need to update anything in the
4112 	 * log. That will be done later during the rename by btrfs_log_new_name().
4113 	 * Besides that, doing it here would only cause extra unnecessary btree
4114 	 * operations on the log tree, increasing latency for applications.
4115 	 */
4116 	if (!rename_ctx) {
4117 		btrfs_del_inode_ref_in_log(trans, root, name, inode, dir_ino);
4118 		btrfs_del_dir_entries_in_log(trans, root, name, dir, index);
4119 	}
4120 
4121 	/*
4122 	 * If we have a pending delayed iput we could end up with the final iput
4123 	 * being run in btrfs-cleaner context.  If we have enough of these built
4124 	 * up we can end up burning a lot of time in btrfs-cleaner without any
4125 	 * way to throttle the unlinks.  Since we're currently holding a ref on
4126 	 * the inode we can run the delayed iput here without any issues as the
4127 	 * final iput won't be done until after we drop the ref we're currently
4128 	 * holding.
4129 	 */
4130 	btrfs_run_delayed_iput(fs_info, inode);
4131 err:
4132 	btrfs_free_path(path);
4133 	if (ret)
4134 		goto out;
4135 
4136 	btrfs_i_size_write(dir, dir->vfs_inode.i_size - name->len * 2);
4137 	inode_inc_iversion(&inode->vfs_inode);
4138 	inode_inc_iversion(&dir->vfs_inode);
4139 	inode_set_ctime_current(&inode->vfs_inode);
4140 	dir->vfs_inode.i_mtime = inode_set_ctime_current(&dir->vfs_inode);
4141 	ret = btrfs_update_inode(trans, root, dir);
4142 out:
4143 	return ret;
4144 }
4145 
4146 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4147 		       struct btrfs_inode *dir, struct btrfs_inode *inode,
4148 		       const struct fscrypt_str *name)
4149 {
4150 	int ret;
4151 
4152 	ret = __btrfs_unlink_inode(trans, dir, inode, name, NULL);
4153 	if (!ret) {
4154 		drop_nlink(&inode->vfs_inode);
4155 		ret = btrfs_update_inode(trans, inode->root, inode);
4156 	}
4157 	return ret;
4158 }
4159 
4160 /*
4161  * helper to start transaction for unlink and rmdir.
4162  *
4163  * unlink and rmdir are special in btrfs, they do not always free space, so
4164  * if we cannot make our reservations the normal way try and see if there is
4165  * plenty of slack room in the global reserve to migrate, otherwise we cannot
4166  * allow the unlink to occur.
4167  */
4168 static struct btrfs_trans_handle *__unlink_start_trans(struct btrfs_inode *dir)
4169 {
4170 	struct btrfs_root *root = dir->root;
4171 
4172 	return btrfs_start_transaction_fallback_global_rsv(root,
4173 						   BTRFS_UNLINK_METADATA_UNITS);
4174 }
4175 
4176 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4177 {
4178 	struct btrfs_trans_handle *trans;
4179 	struct inode *inode = d_inode(dentry);
4180 	int ret;
4181 	struct fscrypt_name fname;
4182 
4183 	ret = fscrypt_setup_filename(dir, &dentry->d_name, 1, &fname);
4184 	if (ret)
4185 		return ret;
4186 
4187 	/* This needs to handle no-key deletions later on */
4188 
4189 	trans = __unlink_start_trans(BTRFS_I(dir));
4190 	if (IS_ERR(trans)) {
4191 		ret = PTR_ERR(trans);
4192 		goto fscrypt_free;
4193 	}
4194 
4195 	btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4196 				false);
4197 
4198 	ret = btrfs_unlink_inode(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4199 				 &fname.disk_name);
4200 	if (ret)
4201 		goto end_trans;
4202 
4203 	if (inode->i_nlink == 0) {
4204 		ret = btrfs_orphan_add(trans, BTRFS_I(inode));
4205 		if (ret)
4206 			goto end_trans;
4207 	}
4208 
4209 end_trans:
4210 	btrfs_end_transaction(trans);
4211 	btrfs_btree_balance_dirty(BTRFS_I(dir)->root->fs_info);
4212 fscrypt_free:
4213 	fscrypt_free_filename(&fname);
4214 	return ret;
4215 }
4216 
4217 static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
4218 			       struct btrfs_inode *dir, struct dentry *dentry)
4219 {
4220 	struct btrfs_root *root = dir->root;
4221 	struct btrfs_inode *inode = BTRFS_I(d_inode(dentry));
4222 	struct btrfs_path *path;
4223 	struct extent_buffer *leaf;
4224 	struct btrfs_dir_item *di;
4225 	struct btrfs_key key;
4226 	u64 index;
4227 	int ret;
4228 	u64 objectid;
4229 	u64 dir_ino = btrfs_ino(dir);
4230 	struct fscrypt_name fname;
4231 
4232 	ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 1, &fname);
4233 	if (ret)
4234 		return ret;
4235 
4236 	/* This needs to handle no-key deletions later on */
4237 
4238 	if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) {
4239 		objectid = inode->root->root_key.objectid;
4240 	} else if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
4241 		objectid = inode->location.objectid;
4242 	} else {
4243 		WARN_ON(1);
4244 		fscrypt_free_filename(&fname);
4245 		return -EINVAL;
4246 	}
4247 
4248 	path = btrfs_alloc_path();
4249 	if (!path) {
4250 		ret = -ENOMEM;
4251 		goto out;
4252 	}
4253 
4254 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4255 				   &fname.disk_name, -1);
4256 	if (IS_ERR_OR_NULL(di)) {
4257 		ret = di ? PTR_ERR(di) : -ENOENT;
4258 		goto out;
4259 	}
4260 
4261 	leaf = path->nodes[0];
4262 	btrfs_dir_item_key_to_cpu(leaf, di, &key);
4263 	WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4264 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
4265 	if (ret) {
4266 		btrfs_abort_transaction(trans, ret);
4267 		goto out;
4268 	}
4269 	btrfs_release_path(path);
4270 
4271 	/*
4272 	 * This is a placeholder inode for a subvolume we didn't have a
4273 	 * reference to at the time of the snapshot creation.  In the meantime
4274 	 * we could have renamed the real subvol link into our snapshot, so
4275 	 * depending on btrfs_del_root_ref to return -ENOENT here is incorrect.
4276 	 * Instead simply lookup the dir_index_item for this entry so we can
4277 	 * remove it.  Otherwise we know we have a ref to the root and we can
4278 	 * call btrfs_del_root_ref, and it _shouldn't_ fail.
4279 	 */
4280 	if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
4281 		di = btrfs_search_dir_index_item(root, path, dir_ino, &fname.disk_name);
4282 		if (IS_ERR_OR_NULL(di)) {
4283 			if (!di)
4284 				ret = -ENOENT;
4285 			else
4286 				ret = PTR_ERR(di);
4287 			btrfs_abort_transaction(trans, ret);
4288 			goto out;
4289 		}
4290 
4291 		leaf = path->nodes[0];
4292 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4293 		index = key.offset;
4294 		btrfs_release_path(path);
4295 	} else {
4296 		ret = btrfs_del_root_ref(trans, objectid,
4297 					 root->root_key.objectid, dir_ino,
4298 					 &index, &fname.disk_name);
4299 		if (ret) {
4300 			btrfs_abort_transaction(trans, ret);
4301 			goto out;
4302 		}
4303 	}
4304 
4305 	ret = btrfs_delete_delayed_dir_index(trans, dir, index);
4306 	if (ret) {
4307 		btrfs_abort_transaction(trans, ret);
4308 		goto out;
4309 	}
4310 
4311 	btrfs_i_size_write(dir, dir->vfs_inode.i_size - fname.disk_name.len * 2);
4312 	inode_inc_iversion(&dir->vfs_inode);
4313 	dir->vfs_inode.i_mtime = inode_set_ctime_current(&dir->vfs_inode);
4314 	ret = btrfs_update_inode_fallback(trans, root, dir);
4315 	if (ret)
4316 		btrfs_abort_transaction(trans, ret);
4317 out:
4318 	btrfs_free_path(path);
4319 	fscrypt_free_filename(&fname);
4320 	return ret;
4321 }
4322 
4323 /*
4324  * Helper to check if the subvolume references other subvolumes or if it's
4325  * default.
4326  */
4327 static noinline int may_destroy_subvol(struct btrfs_root *root)
4328 {
4329 	struct btrfs_fs_info *fs_info = root->fs_info;
4330 	struct btrfs_path *path;
4331 	struct btrfs_dir_item *di;
4332 	struct btrfs_key key;
4333 	struct fscrypt_str name = FSTR_INIT("default", 7);
4334 	u64 dir_id;
4335 	int ret;
4336 
4337 	path = btrfs_alloc_path();
4338 	if (!path)
4339 		return -ENOMEM;
4340 
4341 	/* Make sure this root isn't set as the default subvol */
4342 	dir_id = btrfs_super_root_dir(fs_info->super_copy);
4343 	di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path,
4344 				   dir_id, &name, 0);
4345 	if (di && !IS_ERR(di)) {
4346 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
4347 		if (key.objectid == root->root_key.objectid) {
4348 			ret = -EPERM;
4349 			btrfs_err(fs_info,
4350 				  "deleting default subvolume %llu is not allowed",
4351 				  key.objectid);
4352 			goto out;
4353 		}
4354 		btrfs_release_path(path);
4355 	}
4356 
4357 	key.objectid = root->root_key.objectid;
4358 	key.type = BTRFS_ROOT_REF_KEY;
4359 	key.offset = (u64)-1;
4360 
4361 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4362 	if (ret < 0)
4363 		goto out;
4364 	BUG_ON(ret == 0);
4365 
4366 	ret = 0;
4367 	if (path->slots[0] > 0) {
4368 		path->slots[0]--;
4369 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
4370 		if (key.objectid == root->root_key.objectid &&
4371 		    key.type == BTRFS_ROOT_REF_KEY)
4372 			ret = -ENOTEMPTY;
4373 	}
4374 out:
4375 	btrfs_free_path(path);
4376 	return ret;
4377 }
4378 
4379 /* Delete all dentries for inodes belonging to the root */
4380 static void btrfs_prune_dentries(struct btrfs_root *root)
4381 {
4382 	struct btrfs_fs_info *fs_info = root->fs_info;
4383 	struct rb_node *node;
4384 	struct rb_node *prev;
4385 	struct btrfs_inode *entry;
4386 	struct inode *inode;
4387 	u64 objectid = 0;
4388 
4389 	if (!BTRFS_FS_ERROR(fs_info))
4390 		WARN_ON(btrfs_root_refs(&root->root_item) != 0);
4391 
4392 	spin_lock(&root->inode_lock);
4393 again:
4394 	node = root->inode_tree.rb_node;
4395 	prev = NULL;
4396 	while (node) {
4397 		prev = node;
4398 		entry = rb_entry(node, struct btrfs_inode, rb_node);
4399 
4400 		if (objectid < btrfs_ino(entry))
4401 			node = node->rb_left;
4402 		else if (objectid > btrfs_ino(entry))
4403 			node = node->rb_right;
4404 		else
4405 			break;
4406 	}
4407 	if (!node) {
4408 		while (prev) {
4409 			entry = rb_entry(prev, struct btrfs_inode, rb_node);
4410 			if (objectid <= btrfs_ino(entry)) {
4411 				node = prev;
4412 				break;
4413 			}
4414 			prev = rb_next(prev);
4415 		}
4416 	}
4417 	while (node) {
4418 		entry = rb_entry(node, struct btrfs_inode, rb_node);
4419 		objectid = btrfs_ino(entry) + 1;
4420 		inode = igrab(&entry->vfs_inode);
4421 		if (inode) {
4422 			spin_unlock(&root->inode_lock);
4423 			if (atomic_read(&inode->i_count) > 1)
4424 				d_prune_aliases(inode);
4425 			/*
4426 			 * btrfs_drop_inode will have it removed from the inode
4427 			 * cache when its usage count hits zero.
4428 			 */
4429 			iput(inode);
4430 			cond_resched();
4431 			spin_lock(&root->inode_lock);
4432 			goto again;
4433 		}
4434 
4435 		if (cond_resched_lock(&root->inode_lock))
4436 			goto again;
4437 
4438 		node = rb_next(node);
4439 	}
4440 	spin_unlock(&root->inode_lock);
4441 }
4442 
4443 int btrfs_delete_subvolume(struct btrfs_inode *dir, struct dentry *dentry)
4444 {
4445 	struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
4446 	struct btrfs_root *root = dir->root;
4447 	struct inode *inode = d_inode(dentry);
4448 	struct btrfs_root *dest = BTRFS_I(inode)->root;
4449 	struct btrfs_trans_handle *trans;
4450 	struct btrfs_block_rsv block_rsv;
4451 	u64 root_flags;
4452 	int ret;
4453 
4454 	/*
4455 	 * Don't allow to delete a subvolume with send in progress. This is
4456 	 * inside the inode lock so the error handling that has to drop the bit
4457 	 * again is not run concurrently.
4458 	 */
4459 	spin_lock(&dest->root_item_lock);
4460 	if (dest->send_in_progress) {
4461 		spin_unlock(&dest->root_item_lock);
4462 		btrfs_warn(fs_info,
4463 			   "attempt to delete subvolume %llu during send",
4464 			   dest->root_key.objectid);
4465 		return -EPERM;
4466 	}
4467 	if (atomic_read(&dest->nr_swapfiles)) {
4468 		spin_unlock(&dest->root_item_lock);
4469 		btrfs_warn(fs_info,
4470 			   "attempt to delete subvolume %llu with active swapfile",
4471 			   root->root_key.objectid);
4472 		return -EPERM;
4473 	}
4474 	root_flags = btrfs_root_flags(&dest->root_item);
4475 	btrfs_set_root_flags(&dest->root_item,
4476 			     root_flags | BTRFS_ROOT_SUBVOL_DEAD);
4477 	spin_unlock(&dest->root_item_lock);
4478 
4479 	down_write(&fs_info->subvol_sem);
4480 
4481 	ret = may_destroy_subvol(dest);
4482 	if (ret)
4483 		goto out_up_write;
4484 
4485 	btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
4486 	/*
4487 	 * One for dir inode,
4488 	 * two for dir entries,
4489 	 * two for root ref/backref.
4490 	 */
4491 	ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true);
4492 	if (ret)
4493 		goto out_up_write;
4494 
4495 	trans = btrfs_start_transaction(root, 0);
4496 	if (IS_ERR(trans)) {
4497 		ret = PTR_ERR(trans);
4498 		goto out_release;
4499 	}
4500 	trans->block_rsv = &block_rsv;
4501 	trans->bytes_reserved = block_rsv.size;
4502 
4503 	btrfs_record_snapshot_destroy(trans, dir);
4504 
4505 	ret = btrfs_unlink_subvol(trans, dir, dentry);
4506 	if (ret) {
4507 		btrfs_abort_transaction(trans, ret);
4508 		goto out_end_trans;
4509 	}
4510 
4511 	ret = btrfs_record_root_in_trans(trans, dest);
4512 	if (ret) {
4513 		btrfs_abort_transaction(trans, ret);
4514 		goto out_end_trans;
4515 	}
4516 
4517 	memset(&dest->root_item.drop_progress, 0,
4518 		sizeof(dest->root_item.drop_progress));
4519 	btrfs_set_root_drop_level(&dest->root_item, 0);
4520 	btrfs_set_root_refs(&dest->root_item, 0);
4521 
4522 	if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) {
4523 		ret = btrfs_insert_orphan_item(trans,
4524 					fs_info->tree_root,
4525 					dest->root_key.objectid);
4526 		if (ret) {
4527 			btrfs_abort_transaction(trans, ret);
4528 			goto out_end_trans;
4529 		}
4530 	}
4531 
4532 	ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid,
4533 				  BTRFS_UUID_KEY_SUBVOL,
4534 				  dest->root_key.objectid);
4535 	if (ret && ret != -ENOENT) {
4536 		btrfs_abort_transaction(trans, ret);
4537 		goto out_end_trans;
4538 	}
4539 	if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) {
4540 		ret = btrfs_uuid_tree_remove(trans,
4541 					  dest->root_item.received_uuid,
4542 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4543 					  dest->root_key.objectid);
4544 		if (ret && ret != -ENOENT) {
4545 			btrfs_abort_transaction(trans, ret);
4546 			goto out_end_trans;
4547 		}
4548 	}
4549 
4550 	free_anon_bdev(dest->anon_dev);
4551 	dest->anon_dev = 0;
4552 out_end_trans:
4553 	trans->block_rsv = NULL;
4554 	trans->bytes_reserved = 0;
4555 	ret = btrfs_end_transaction(trans);
4556 	inode->i_flags |= S_DEAD;
4557 out_release:
4558 	btrfs_subvolume_release_metadata(root, &block_rsv);
4559 out_up_write:
4560 	up_write(&fs_info->subvol_sem);
4561 	if (ret) {
4562 		spin_lock(&dest->root_item_lock);
4563 		root_flags = btrfs_root_flags(&dest->root_item);
4564 		btrfs_set_root_flags(&dest->root_item,
4565 				root_flags & ~BTRFS_ROOT_SUBVOL_DEAD);
4566 		spin_unlock(&dest->root_item_lock);
4567 	} else {
4568 		d_invalidate(dentry);
4569 		btrfs_prune_dentries(dest);
4570 		ASSERT(dest->send_in_progress == 0);
4571 	}
4572 
4573 	return ret;
4574 }
4575 
4576 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4577 {
4578 	struct inode *inode = d_inode(dentry);
4579 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
4580 	int err = 0;
4581 	struct btrfs_trans_handle *trans;
4582 	u64 last_unlink_trans;
4583 	struct fscrypt_name fname;
4584 
4585 	if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
4586 		return -ENOTEMPTY;
4587 	if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID) {
4588 		if (unlikely(btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))) {
4589 			btrfs_err(fs_info,
4590 			"extent tree v2 doesn't support snapshot deletion yet");
4591 			return -EOPNOTSUPP;
4592 		}
4593 		return btrfs_delete_subvolume(BTRFS_I(dir), dentry);
4594 	}
4595 
4596 	err = fscrypt_setup_filename(dir, &dentry->d_name, 1, &fname);
4597 	if (err)
4598 		return err;
4599 
4600 	/* This needs to handle no-key deletions later on */
4601 
4602 	trans = __unlink_start_trans(BTRFS_I(dir));
4603 	if (IS_ERR(trans)) {
4604 		err = PTR_ERR(trans);
4605 		goto out_notrans;
4606 	}
4607 
4608 	if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4609 		err = btrfs_unlink_subvol(trans, BTRFS_I(dir), dentry);
4610 		goto out;
4611 	}
4612 
4613 	err = btrfs_orphan_add(trans, BTRFS_I(inode));
4614 	if (err)
4615 		goto out;
4616 
4617 	last_unlink_trans = BTRFS_I(inode)->last_unlink_trans;
4618 
4619 	/* now the directory is empty */
4620 	err = btrfs_unlink_inode(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4621 				 &fname.disk_name);
4622 	if (!err) {
4623 		btrfs_i_size_write(BTRFS_I(inode), 0);
4624 		/*
4625 		 * Propagate the last_unlink_trans value of the deleted dir to
4626 		 * its parent directory. This is to prevent an unrecoverable
4627 		 * log tree in the case we do something like this:
4628 		 * 1) create dir foo
4629 		 * 2) create snapshot under dir foo
4630 		 * 3) delete the snapshot
4631 		 * 4) rmdir foo
4632 		 * 5) mkdir foo
4633 		 * 6) fsync foo or some file inside foo
4634 		 */
4635 		if (last_unlink_trans >= trans->transid)
4636 			BTRFS_I(dir)->last_unlink_trans = last_unlink_trans;
4637 	}
4638 out:
4639 	btrfs_end_transaction(trans);
4640 out_notrans:
4641 	btrfs_btree_balance_dirty(fs_info);
4642 	fscrypt_free_filename(&fname);
4643 
4644 	return err;
4645 }
4646 
4647 /*
4648  * btrfs_truncate_block - read, zero a chunk and write a block
4649  * @inode - inode that we're zeroing
4650  * @from - the offset to start zeroing
4651  * @len - the length to zero, 0 to zero the entire range respective to the
4652  *	offset
4653  * @front - zero up to the offset instead of from the offset on
4654  *
4655  * This will find the block for the "from" offset and cow the block and zero the
4656  * part we want to zero.  This is used with truncate and hole punching.
4657  */
4658 int btrfs_truncate_block(struct btrfs_inode *inode, loff_t from, loff_t len,
4659 			 int front)
4660 {
4661 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
4662 	struct address_space *mapping = inode->vfs_inode.i_mapping;
4663 	struct extent_io_tree *io_tree = &inode->io_tree;
4664 	struct btrfs_ordered_extent *ordered;
4665 	struct extent_state *cached_state = NULL;
4666 	struct extent_changeset *data_reserved = NULL;
4667 	bool only_release_metadata = false;
4668 	u32 blocksize = fs_info->sectorsize;
4669 	pgoff_t index = from >> PAGE_SHIFT;
4670 	unsigned offset = from & (blocksize - 1);
4671 	struct page *page;
4672 	gfp_t mask = btrfs_alloc_write_mask(mapping);
4673 	size_t write_bytes = blocksize;
4674 	int ret = 0;
4675 	u64 block_start;
4676 	u64 block_end;
4677 
4678 	if (IS_ALIGNED(offset, blocksize) &&
4679 	    (!len || IS_ALIGNED(len, blocksize)))
4680 		goto out;
4681 
4682 	block_start = round_down(from, blocksize);
4683 	block_end = block_start + blocksize - 1;
4684 
4685 	ret = btrfs_check_data_free_space(inode, &data_reserved, block_start,
4686 					  blocksize, false);
4687 	if (ret < 0) {
4688 		if (btrfs_check_nocow_lock(inode, block_start, &write_bytes, false) > 0) {
4689 			/* For nocow case, no need to reserve data space */
4690 			only_release_metadata = true;
4691 		} else {
4692 			goto out;
4693 		}
4694 	}
4695 	ret = btrfs_delalloc_reserve_metadata(inode, blocksize, blocksize, false);
4696 	if (ret < 0) {
4697 		if (!only_release_metadata)
4698 			btrfs_free_reserved_data_space(inode, data_reserved,
4699 						       block_start, blocksize);
4700 		goto out;
4701 	}
4702 again:
4703 	page = find_or_create_page(mapping, index, mask);
4704 	if (!page) {
4705 		btrfs_delalloc_release_space(inode, data_reserved, block_start,
4706 					     blocksize, true);
4707 		btrfs_delalloc_release_extents(inode, blocksize);
4708 		ret = -ENOMEM;
4709 		goto out;
4710 	}
4711 
4712 	if (!PageUptodate(page)) {
4713 		ret = btrfs_read_folio(NULL, page_folio(page));
4714 		lock_page(page);
4715 		if (page->mapping != mapping) {
4716 			unlock_page(page);
4717 			put_page(page);
4718 			goto again;
4719 		}
4720 		if (!PageUptodate(page)) {
4721 			ret = -EIO;
4722 			goto out_unlock;
4723 		}
4724 	}
4725 
4726 	/*
4727 	 * We unlock the page after the io is completed and then re-lock it
4728 	 * above.  release_folio() could have come in between that and cleared
4729 	 * PagePrivate(), but left the page in the mapping.  Set the page mapped
4730 	 * here to make sure it's properly set for the subpage stuff.
4731 	 */
4732 	ret = set_page_extent_mapped(page);
4733 	if (ret < 0)
4734 		goto out_unlock;
4735 
4736 	wait_on_page_writeback(page);
4737 
4738 	lock_extent(io_tree, block_start, block_end, &cached_state);
4739 
4740 	ordered = btrfs_lookup_ordered_extent(inode, block_start);
4741 	if (ordered) {
4742 		unlock_extent(io_tree, block_start, block_end, &cached_state);
4743 		unlock_page(page);
4744 		put_page(page);
4745 		btrfs_start_ordered_extent(ordered);
4746 		btrfs_put_ordered_extent(ordered);
4747 		goto again;
4748 	}
4749 
4750 	clear_extent_bit(&inode->io_tree, block_start, block_end,
4751 			 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
4752 			 &cached_state);
4753 
4754 	ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0,
4755 					&cached_state);
4756 	if (ret) {
4757 		unlock_extent(io_tree, block_start, block_end, &cached_state);
4758 		goto out_unlock;
4759 	}
4760 
4761 	if (offset != blocksize) {
4762 		if (!len)
4763 			len = blocksize - offset;
4764 		if (front)
4765 			memzero_page(page, (block_start - page_offset(page)),
4766 				     offset);
4767 		else
4768 			memzero_page(page, (block_start - page_offset(page)) + offset,
4769 				     len);
4770 	}
4771 	btrfs_page_clear_checked(fs_info, page, block_start,
4772 				 block_end + 1 - block_start);
4773 	btrfs_page_set_dirty(fs_info, page, block_start, block_end + 1 - block_start);
4774 	unlock_extent(io_tree, block_start, block_end, &cached_state);
4775 
4776 	if (only_release_metadata)
4777 		set_extent_bit(&inode->io_tree, block_start, block_end,
4778 			       EXTENT_NORESERVE, NULL);
4779 
4780 out_unlock:
4781 	if (ret) {
4782 		if (only_release_metadata)
4783 			btrfs_delalloc_release_metadata(inode, blocksize, true);
4784 		else
4785 			btrfs_delalloc_release_space(inode, data_reserved,
4786 					block_start, blocksize, true);
4787 	}
4788 	btrfs_delalloc_release_extents(inode, blocksize);
4789 	unlock_page(page);
4790 	put_page(page);
4791 out:
4792 	if (only_release_metadata)
4793 		btrfs_check_nocow_unlock(inode);
4794 	extent_changeset_free(data_reserved);
4795 	return ret;
4796 }
4797 
4798 static int maybe_insert_hole(struct btrfs_root *root, struct btrfs_inode *inode,
4799 			     u64 offset, u64 len)
4800 {
4801 	struct btrfs_fs_info *fs_info = root->fs_info;
4802 	struct btrfs_trans_handle *trans;
4803 	struct btrfs_drop_extents_args drop_args = { 0 };
4804 	int ret;
4805 
4806 	/*
4807 	 * If NO_HOLES is enabled, we don't need to do anything.
4808 	 * Later, up in the call chain, either btrfs_set_inode_last_sub_trans()
4809 	 * or btrfs_update_inode() will be called, which guarantee that the next
4810 	 * fsync will know this inode was changed and needs to be logged.
4811 	 */
4812 	if (btrfs_fs_incompat(fs_info, NO_HOLES))
4813 		return 0;
4814 
4815 	/*
4816 	 * 1 - for the one we're dropping
4817 	 * 1 - for the one we're adding
4818 	 * 1 - for updating the inode.
4819 	 */
4820 	trans = btrfs_start_transaction(root, 3);
4821 	if (IS_ERR(trans))
4822 		return PTR_ERR(trans);
4823 
4824 	drop_args.start = offset;
4825 	drop_args.end = offset + len;
4826 	drop_args.drop_cache = true;
4827 
4828 	ret = btrfs_drop_extents(trans, root, inode, &drop_args);
4829 	if (ret) {
4830 		btrfs_abort_transaction(trans, ret);
4831 		btrfs_end_transaction(trans);
4832 		return ret;
4833 	}
4834 
4835 	ret = btrfs_insert_hole_extent(trans, root, btrfs_ino(inode), offset, len);
4836 	if (ret) {
4837 		btrfs_abort_transaction(trans, ret);
4838 	} else {
4839 		btrfs_update_inode_bytes(inode, 0, drop_args.bytes_found);
4840 		btrfs_update_inode(trans, root, inode);
4841 	}
4842 	btrfs_end_transaction(trans);
4843 	return ret;
4844 }
4845 
4846 /*
4847  * This function puts in dummy file extents for the area we're creating a hole
4848  * for.  So if we are truncating this file to a larger size we need to insert
4849  * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4850  * the range between oldsize and size
4851  */
4852 int btrfs_cont_expand(struct btrfs_inode *inode, loff_t oldsize, loff_t size)
4853 {
4854 	struct btrfs_root *root = inode->root;
4855 	struct btrfs_fs_info *fs_info = root->fs_info;
4856 	struct extent_io_tree *io_tree = &inode->io_tree;
4857 	struct extent_map *em = NULL;
4858 	struct extent_state *cached_state = NULL;
4859 	u64 hole_start = ALIGN(oldsize, fs_info->sectorsize);
4860 	u64 block_end = ALIGN(size, fs_info->sectorsize);
4861 	u64 last_byte;
4862 	u64 cur_offset;
4863 	u64 hole_size;
4864 	int err = 0;
4865 
4866 	/*
4867 	 * If our size started in the middle of a block we need to zero out the
4868 	 * rest of the block before we expand the i_size, otherwise we could
4869 	 * expose stale data.
4870 	 */
4871 	err = btrfs_truncate_block(inode, oldsize, 0, 0);
4872 	if (err)
4873 		return err;
4874 
4875 	if (size <= hole_start)
4876 		return 0;
4877 
4878 	btrfs_lock_and_flush_ordered_range(inode, hole_start, block_end - 1,
4879 					   &cached_state);
4880 	cur_offset = hole_start;
4881 	while (1) {
4882 		em = btrfs_get_extent(inode, NULL, 0, cur_offset,
4883 				      block_end - cur_offset);
4884 		if (IS_ERR(em)) {
4885 			err = PTR_ERR(em);
4886 			em = NULL;
4887 			break;
4888 		}
4889 		last_byte = min(extent_map_end(em), block_end);
4890 		last_byte = ALIGN(last_byte, fs_info->sectorsize);
4891 		hole_size = last_byte - cur_offset;
4892 
4893 		if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
4894 			struct extent_map *hole_em;
4895 
4896 			err = maybe_insert_hole(root, inode, cur_offset,
4897 						hole_size);
4898 			if (err)
4899 				break;
4900 
4901 			err = btrfs_inode_set_file_extent_range(inode,
4902 							cur_offset, hole_size);
4903 			if (err)
4904 				break;
4905 
4906 			hole_em = alloc_extent_map();
4907 			if (!hole_em) {
4908 				btrfs_drop_extent_map_range(inode, cur_offset,
4909 						    cur_offset + hole_size - 1,
4910 						    false);
4911 				btrfs_set_inode_full_sync(inode);
4912 				goto next;
4913 			}
4914 			hole_em->start = cur_offset;
4915 			hole_em->len = hole_size;
4916 			hole_em->orig_start = cur_offset;
4917 
4918 			hole_em->block_start = EXTENT_MAP_HOLE;
4919 			hole_em->block_len = 0;
4920 			hole_em->orig_block_len = 0;
4921 			hole_em->ram_bytes = hole_size;
4922 			hole_em->compress_type = BTRFS_COMPRESS_NONE;
4923 			hole_em->generation = fs_info->generation;
4924 
4925 			err = btrfs_replace_extent_map_range(inode, hole_em, true);
4926 			free_extent_map(hole_em);
4927 		} else {
4928 			err = btrfs_inode_set_file_extent_range(inode,
4929 							cur_offset, hole_size);
4930 			if (err)
4931 				break;
4932 		}
4933 next:
4934 		free_extent_map(em);
4935 		em = NULL;
4936 		cur_offset = last_byte;
4937 		if (cur_offset >= block_end)
4938 			break;
4939 	}
4940 	free_extent_map(em);
4941 	unlock_extent(io_tree, hole_start, block_end - 1, &cached_state);
4942 	return err;
4943 }
4944 
4945 static int btrfs_setsize(struct inode *inode, struct iattr *attr)
4946 {
4947 	struct btrfs_root *root = BTRFS_I(inode)->root;
4948 	struct btrfs_trans_handle *trans;
4949 	loff_t oldsize = i_size_read(inode);
4950 	loff_t newsize = attr->ia_size;
4951 	int mask = attr->ia_valid;
4952 	int ret;
4953 
4954 	/*
4955 	 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
4956 	 * special case where we need to update the times despite not having
4957 	 * these flags set.  For all other operations the VFS set these flags
4958 	 * explicitly if it wants a timestamp update.
4959 	 */
4960 	if (newsize != oldsize) {
4961 		inode_inc_iversion(inode);
4962 		if (!(mask & (ATTR_CTIME | ATTR_MTIME))) {
4963 			inode->i_mtime = inode_set_ctime_current(inode);
4964 		}
4965 	}
4966 
4967 	if (newsize > oldsize) {
4968 		/*
4969 		 * Don't do an expanding truncate while snapshotting is ongoing.
4970 		 * This is to ensure the snapshot captures a fully consistent
4971 		 * state of this file - if the snapshot captures this expanding
4972 		 * truncation, it must capture all writes that happened before
4973 		 * this truncation.
4974 		 */
4975 		btrfs_drew_write_lock(&root->snapshot_lock);
4976 		ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, newsize);
4977 		if (ret) {
4978 			btrfs_drew_write_unlock(&root->snapshot_lock);
4979 			return ret;
4980 		}
4981 
4982 		trans = btrfs_start_transaction(root, 1);
4983 		if (IS_ERR(trans)) {
4984 			btrfs_drew_write_unlock(&root->snapshot_lock);
4985 			return PTR_ERR(trans);
4986 		}
4987 
4988 		i_size_write(inode, newsize);
4989 		btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
4990 		pagecache_isize_extended(inode, oldsize, newsize);
4991 		ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
4992 		btrfs_drew_write_unlock(&root->snapshot_lock);
4993 		btrfs_end_transaction(trans);
4994 	} else {
4995 		struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4996 
4997 		if (btrfs_is_zoned(fs_info)) {
4998 			ret = btrfs_wait_ordered_range(inode,
4999 					ALIGN(newsize, fs_info->sectorsize),
5000 					(u64)-1);
5001 			if (ret)
5002 				return ret;
5003 		}
5004 
5005 		/*
5006 		 * We're truncating a file that used to have good data down to
5007 		 * zero. Make sure any new writes to the file get on disk
5008 		 * on close.
5009 		 */
5010 		if (newsize == 0)
5011 			set_bit(BTRFS_INODE_FLUSH_ON_CLOSE,
5012 				&BTRFS_I(inode)->runtime_flags);
5013 
5014 		truncate_setsize(inode, newsize);
5015 
5016 		inode_dio_wait(inode);
5017 
5018 		ret = btrfs_truncate(BTRFS_I(inode), newsize == oldsize);
5019 		if (ret && inode->i_nlink) {
5020 			int err;
5021 
5022 			/*
5023 			 * Truncate failed, so fix up the in-memory size. We
5024 			 * adjusted disk_i_size down as we removed extents, so
5025 			 * wait for disk_i_size to be stable and then update the
5026 			 * in-memory size to match.
5027 			 */
5028 			err = btrfs_wait_ordered_range(inode, 0, (u64)-1);
5029 			if (err)
5030 				return err;
5031 			i_size_write(inode, BTRFS_I(inode)->disk_i_size);
5032 		}
5033 	}
5034 
5035 	return ret;
5036 }
5037 
5038 static int btrfs_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
5039 			 struct iattr *attr)
5040 {
5041 	struct inode *inode = d_inode(dentry);
5042 	struct btrfs_root *root = BTRFS_I(inode)->root;
5043 	int err;
5044 
5045 	if (btrfs_root_readonly(root))
5046 		return -EROFS;
5047 
5048 	err = setattr_prepare(idmap, dentry, attr);
5049 	if (err)
5050 		return err;
5051 
5052 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
5053 		err = btrfs_setsize(inode, attr);
5054 		if (err)
5055 			return err;
5056 	}
5057 
5058 	if (attr->ia_valid) {
5059 		setattr_copy(idmap, inode, attr);
5060 		inode_inc_iversion(inode);
5061 		err = btrfs_dirty_inode(BTRFS_I(inode));
5062 
5063 		if (!err && attr->ia_valid & ATTR_MODE)
5064 			err = posix_acl_chmod(idmap, dentry, inode->i_mode);
5065 	}
5066 
5067 	return err;
5068 }
5069 
5070 /*
5071  * While truncating the inode pages during eviction, we get the VFS
5072  * calling btrfs_invalidate_folio() against each folio of the inode. This
5073  * is slow because the calls to btrfs_invalidate_folio() result in a
5074  * huge amount of calls to lock_extent() and clear_extent_bit(),
5075  * which keep merging and splitting extent_state structures over and over,
5076  * wasting lots of time.
5077  *
5078  * Therefore if the inode is being evicted, let btrfs_invalidate_folio()
5079  * skip all those expensive operations on a per folio basis and do only
5080  * the ordered io finishing, while we release here the extent_map and
5081  * extent_state structures, without the excessive merging and splitting.
5082  */
5083 static void evict_inode_truncate_pages(struct inode *inode)
5084 {
5085 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5086 	struct rb_node *node;
5087 
5088 	ASSERT(inode->i_state & I_FREEING);
5089 	truncate_inode_pages_final(&inode->i_data);
5090 
5091 	btrfs_drop_extent_map_range(BTRFS_I(inode), 0, (u64)-1, false);
5092 
5093 	/*
5094 	 * Keep looping until we have no more ranges in the io tree.
5095 	 * We can have ongoing bios started by readahead that have
5096 	 * their endio callback (extent_io.c:end_bio_extent_readpage)
5097 	 * still in progress (unlocked the pages in the bio but did not yet
5098 	 * unlocked the ranges in the io tree). Therefore this means some
5099 	 * ranges can still be locked and eviction started because before
5100 	 * submitting those bios, which are executed by a separate task (work
5101 	 * queue kthread), inode references (inode->i_count) were not taken
5102 	 * (which would be dropped in the end io callback of each bio).
5103 	 * Therefore here we effectively end up waiting for those bios and
5104 	 * anyone else holding locked ranges without having bumped the inode's
5105 	 * reference count - if we don't do it, when they access the inode's
5106 	 * io_tree to unlock a range it may be too late, leading to an
5107 	 * use-after-free issue.
5108 	 */
5109 	spin_lock(&io_tree->lock);
5110 	while (!RB_EMPTY_ROOT(&io_tree->state)) {
5111 		struct extent_state *state;
5112 		struct extent_state *cached_state = NULL;
5113 		u64 start;
5114 		u64 end;
5115 		unsigned state_flags;
5116 
5117 		node = rb_first(&io_tree->state);
5118 		state = rb_entry(node, struct extent_state, rb_node);
5119 		start = state->start;
5120 		end = state->end;
5121 		state_flags = state->state;
5122 		spin_unlock(&io_tree->lock);
5123 
5124 		lock_extent(io_tree, start, end, &cached_state);
5125 
5126 		/*
5127 		 * If still has DELALLOC flag, the extent didn't reach disk,
5128 		 * and its reserved space won't be freed by delayed_ref.
5129 		 * So we need to free its reserved space here.
5130 		 * (Refer to comment in btrfs_invalidate_folio, case 2)
5131 		 *
5132 		 * Note, end is the bytenr of last byte, so we need + 1 here.
5133 		 */
5134 		if (state_flags & EXTENT_DELALLOC)
5135 			btrfs_qgroup_free_data(BTRFS_I(inode), NULL, start,
5136 					       end - start + 1);
5137 
5138 		clear_extent_bit(io_tree, start, end,
5139 				 EXTENT_CLEAR_ALL_BITS | EXTENT_DO_ACCOUNTING,
5140 				 &cached_state);
5141 
5142 		cond_resched();
5143 		spin_lock(&io_tree->lock);
5144 	}
5145 	spin_unlock(&io_tree->lock);
5146 }
5147 
5148 static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root,
5149 							struct btrfs_block_rsv *rsv)
5150 {
5151 	struct btrfs_fs_info *fs_info = root->fs_info;
5152 	struct btrfs_trans_handle *trans;
5153 	u64 delayed_refs_extra = btrfs_calc_delayed_ref_bytes(fs_info, 1);
5154 	int ret;
5155 
5156 	/*
5157 	 * Eviction should be taking place at some place safe because of our
5158 	 * delayed iputs.  However the normal flushing code will run delayed
5159 	 * iputs, so we cannot use FLUSH_ALL otherwise we'll deadlock.
5160 	 *
5161 	 * We reserve the delayed_refs_extra here again because we can't use
5162 	 * btrfs_start_transaction(root, 0) for the same deadlocky reason as
5163 	 * above.  We reserve our extra bit here because we generate a ton of
5164 	 * delayed refs activity by truncating.
5165 	 *
5166 	 * BTRFS_RESERVE_FLUSH_EVICT will steal from the global_rsv if it can,
5167 	 * if we fail to make this reservation we can re-try without the
5168 	 * delayed_refs_extra so we can make some forward progress.
5169 	 */
5170 	ret = btrfs_block_rsv_refill(fs_info, rsv, rsv->size + delayed_refs_extra,
5171 				     BTRFS_RESERVE_FLUSH_EVICT);
5172 	if (ret) {
5173 		ret = btrfs_block_rsv_refill(fs_info, rsv, rsv->size,
5174 					     BTRFS_RESERVE_FLUSH_EVICT);
5175 		if (ret) {
5176 			btrfs_warn(fs_info,
5177 				   "could not allocate space for delete; will truncate on mount");
5178 			return ERR_PTR(-ENOSPC);
5179 		}
5180 		delayed_refs_extra = 0;
5181 	}
5182 
5183 	trans = btrfs_join_transaction(root);
5184 	if (IS_ERR(trans))
5185 		return trans;
5186 
5187 	if (delayed_refs_extra) {
5188 		trans->block_rsv = &fs_info->trans_block_rsv;
5189 		trans->bytes_reserved = delayed_refs_extra;
5190 		btrfs_block_rsv_migrate(rsv, trans->block_rsv,
5191 					delayed_refs_extra, true);
5192 	}
5193 	return trans;
5194 }
5195 
5196 void btrfs_evict_inode(struct inode *inode)
5197 {
5198 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5199 	struct btrfs_trans_handle *trans;
5200 	struct btrfs_root *root = BTRFS_I(inode)->root;
5201 	struct btrfs_block_rsv *rsv = NULL;
5202 	int ret;
5203 
5204 	trace_btrfs_inode_evict(inode);
5205 
5206 	if (!root) {
5207 		fsverity_cleanup_inode(inode);
5208 		clear_inode(inode);
5209 		return;
5210 	}
5211 
5212 	evict_inode_truncate_pages(inode);
5213 
5214 	if (inode->i_nlink &&
5215 	    ((btrfs_root_refs(&root->root_item) != 0 &&
5216 	      root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
5217 	     btrfs_is_free_space_inode(BTRFS_I(inode))))
5218 		goto out;
5219 
5220 	if (is_bad_inode(inode))
5221 		goto out;
5222 
5223 	if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
5224 		goto out;
5225 
5226 	if (inode->i_nlink > 0) {
5227 		BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5228 		       root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
5229 		goto out;
5230 	}
5231 
5232 	/*
5233 	 * This makes sure the inode item in tree is uptodate and the space for
5234 	 * the inode update is released.
5235 	 */
5236 	ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode));
5237 	if (ret)
5238 		goto out;
5239 
5240 	/*
5241 	 * This drops any pending insert or delete operations we have for this
5242 	 * inode.  We could have a delayed dir index deletion queued up, but
5243 	 * we're removing the inode completely so that'll be taken care of in
5244 	 * the truncate.
5245 	 */
5246 	btrfs_kill_delayed_inode_items(BTRFS_I(inode));
5247 
5248 	rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
5249 	if (!rsv)
5250 		goto out;
5251 	rsv->size = btrfs_calc_metadata_size(fs_info, 1);
5252 	rsv->failfast = true;
5253 
5254 	btrfs_i_size_write(BTRFS_I(inode), 0);
5255 
5256 	while (1) {
5257 		struct btrfs_truncate_control control = {
5258 			.inode = BTRFS_I(inode),
5259 			.ino = btrfs_ino(BTRFS_I(inode)),
5260 			.new_size = 0,
5261 			.min_type = 0,
5262 		};
5263 
5264 		trans = evict_refill_and_join(root, rsv);
5265 		if (IS_ERR(trans))
5266 			goto out;
5267 
5268 		trans->block_rsv = rsv;
5269 
5270 		ret = btrfs_truncate_inode_items(trans, root, &control);
5271 		trans->block_rsv = &fs_info->trans_block_rsv;
5272 		btrfs_end_transaction(trans);
5273 		/*
5274 		 * We have not added new delayed items for our inode after we
5275 		 * have flushed its delayed items, so no need to throttle on
5276 		 * delayed items. However we have modified extent buffers.
5277 		 */
5278 		btrfs_btree_balance_dirty_nodelay(fs_info);
5279 		if (ret && ret != -ENOSPC && ret != -EAGAIN)
5280 			goto out;
5281 		else if (!ret)
5282 			break;
5283 	}
5284 
5285 	/*
5286 	 * Errors here aren't a big deal, it just means we leave orphan items in
5287 	 * the tree. They will be cleaned up on the next mount. If the inode
5288 	 * number gets reused, cleanup deletes the orphan item without doing
5289 	 * anything, and unlink reuses the existing orphan item.
5290 	 *
5291 	 * If it turns out that we are dropping too many of these, we might want
5292 	 * to add a mechanism for retrying these after a commit.
5293 	 */
5294 	trans = evict_refill_and_join(root, rsv);
5295 	if (!IS_ERR(trans)) {
5296 		trans->block_rsv = rsv;
5297 		btrfs_orphan_del(trans, BTRFS_I(inode));
5298 		trans->block_rsv = &fs_info->trans_block_rsv;
5299 		btrfs_end_transaction(trans);
5300 	}
5301 
5302 out:
5303 	btrfs_free_block_rsv(fs_info, rsv);
5304 	/*
5305 	 * If we didn't successfully delete, the orphan item will still be in
5306 	 * the tree and we'll retry on the next mount. Again, we might also want
5307 	 * to retry these periodically in the future.
5308 	 */
5309 	btrfs_remove_delayed_node(BTRFS_I(inode));
5310 	fsverity_cleanup_inode(inode);
5311 	clear_inode(inode);
5312 }
5313 
5314 /*
5315  * Return the key found in the dir entry in the location pointer, fill @type
5316  * with BTRFS_FT_*, and return 0.
5317  *
5318  * If no dir entries were found, returns -ENOENT.
5319  * If found a corrupted location in dir entry, returns -EUCLEAN.
5320  */
5321 static int btrfs_inode_by_name(struct btrfs_inode *dir, struct dentry *dentry,
5322 			       struct btrfs_key *location, u8 *type)
5323 {
5324 	struct btrfs_dir_item *di;
5325 	struct btrfs_path *path;
5326 	struct btrfs_root *root = dir->root;
5327 	int ret = 0;
5328 	struct fscrypt_name fname;
5329 
5330 	path = btrfs_alloc_path();
5331 	if (!path)
5332 		return -ENOMEM;
5333 
5334 	ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 1, &fname);
5335 	if (ret < 0)
5336 		goto out;
5337 	/*
5338 	 * fscrypt_setup_filename() should never return a positive value, but
5339 	 * gcc on sparc/parisc thinks it can, so assert that doesn't happen.
5340 	 */
5341 	ASSERT(ret == 0);
5342 
5343 	/* This needs to handle no-key deletions later on */
5344 
5345 	di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir),
5346 				   &fname.disk_name, 0);
5347 	if (IS_ERR_OR_NULL(di)) {
5348 		ret = di ? PTR_ERR(di) : -ENOENT;
5349 		goto out;
5350 	}
5351 
5352 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
5353 	if (location->type != BTRFS_INODE_ITEM_KEY &&
5354 	    location->type != BTRFS_ROOT_ITEM_KEY) {
5355 		ret = -EUCLEAN;
5356 		btrfs_warn(root->fs_info,
5357 "%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))",
5358 			   __func__, fname.disk_name.name, btrfs_ino(dir),
5359 			   location->objectid, location->type, location->offset);
5360 	}
5361 	if (!ret)
5362 		*type = btrfs_dir_ftype(path->nodes[0], di);
5363 out:
5364 	fscrypt_free_filename(&fname);
5365 	btrfs_free_path(path);
5366 	return ret;
5367 }
5368 
5369 /*
5370  * when we hit a tree root in a directory, the btrfs part of the inode
5371  * needs to be changed to reflect the root directory of the tree root.  This
5372  * is kind of like crossing a mount point.
5373  */
5374 static int fixup_tree_root_location(struct btrfs_fs_info *fs_info,
5375 				    struct btrfs_inode *dir,
5376 				    struct dentry *dentry,
5377 				    struct btrfs_key *location,
5378 				    struct btrfs_root **sub_root)
5379 {
5380 	struct btrfs_path *path;
5381 	struct btrfs_root *new_root;
5382 	struct btrfs_root_ref *ref;
5383 	struct extent_buffer *leaf;
5384 	struct btrfs_key key;
5385 	int ret;
5386 	int err = 0;
5387 	struct fscrypt_name fname;
5388 
5389 	ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 0, &fname);
5390 	if (ret)
5391 		return ret;
5392 
5393 	path = btrfs_alloc_path();
5394 	if (!path) {
5395 		err = -ENOMEM;
5396 		goto out;
5397 	}
5398 
5399 	err = -ENOENT;
5400 	key.objectid = dir->root->root_key.objectid;
5401 	key.type = BTRFS_ROOT_REF_KEY;
5402 	key.offset = location->objectid;
5403 
5404 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
5405 	if (ret) {
5406 		if (ret < 0)
5407 			err = ret;
5408 		goto out;
5409 	}
5410 
5411 	leaf = path->nodes[0];
5412 	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
5413 	if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
5414 	    btrfs_root_ref_name_len(leaf, ref) != fname.disk_name.len)
5415 		goto out;
5416 
5417 	ret = memcmp_extent_buffer(leaf, fname.disk_name.name,
5418 				   (unsigned long)(ref + 1), fname.disk_name.len);
5419 	if (ret)
5420 		goto out;
5421 
5422 	btrfs_release_path(path);
5423 
5424 	new_root = btrfs_get_fs_root(fs_info, location->objectid, true);
5425 	if (IS_ERR(new_root)) {
5426 		err = PTR_ERR(new_root);
5427 		goto out;
5428 	}
5429 
5430 	*sub_root = new_root;
5431 	location->objectid = btrfs_root_dirid(&new_root->root_item);
5432 	location->type = BTRFS_INODE_ITEM_KEY;
5433 	location->offset = 0;
5434 	err = 0;
5435 out:
5436 	btrfs_free_path(path);
5437 	fscrypt_free_filename(&fname);
5438 	return err;
5439 }
5440 
5441 static void inode_tree_add(struct btrfs_inode *inode)
5442 {
5443 	struct btrfs_root *root = inode->root;
5444 	struct btrfs_inode *entry;
5445 	struct rb_node **p;
5446 	struct rb_node *parent;
5447 	struct rb_node *new = &inode->rb_node;
5448 	u64 ino = btrfs_ino(inode);
5449 
5450 	if (inode_unhashed(&inode->vfs_inode))
5451 		return;
5452 	parent = NULL;
5453 	spin_lock(&root->inode_lock);
5454 	p = &root->inode_tree.rb_node;
5455 	while (*p) {
5456 		parent = *p;
5457 		entry = rb_entry(parent, struct btrfs_inode, rb_node);
5458 
5459 		if (ino < btrfs_ino(entry))
5460 			p = &parent->rb_left;
5461 		else if (ino > btrfs_ino(entry))
5462 			p = &parent->rb_right;
5463 		else {
5464 			WARN_ON(!(entry->vfs_inode.i_state &
5465 				  (I_WILL_FREE | I_FREEING)));
5466 			rb_replace_node(parent, new, &root->inode_tree);
5467 			RB_CLEAR_NODE(parent);
5468 			spin_unlock(&root->inode_lock);
5469 			return;
5470 		}
5471 	}
5472 	rb_link_node(new, parent, p);
5473 	rb_insert_color(new, &root->inode_tree);
5474 	spin_unlock(&root->inode_lock);
5475 }
5476 
5477 static void inode_tree_del(struct btrfs_inode *inode)
5478 {
5479 	struct btrfs_root *root = inode->root;
5480 	int empty = 0;
5481 
5482 	spin_lock(&root->inode_lock);
5483 	if (!RB_EMPTY_NODE(&inode->rb_node)) {
5484 		rb_erase(&inode->rb_node, &root->inode_tree);
5485 		RB_CLEAR_NODE(&inode->rb_node);
5486 		empty = RB_EMPTY_ROOT(&root->inode_tree);
5487 	}
5488 	spin_unlock(&root->inode_lock);
5489 
5490 	if (empty && btrfs_root_refs(&root->root_item) == 0) {
5491 		spin_lock(&root->inode_lock);
5492 		empty = RB_EMPTY_ROOT(&root->inode_tree);
5493 		spin_unlock(&root->inode_lock);
5494 		if (empty)
5495 			btrfs_add_dead_root(root);
5496 	}
5497 }
5498 
5499 
5500 static int btrfs_init_locked_inode(struct inode *inode, void *p)
5501 {
5502 	struct btrfs_iget_args *args = p;
5503 
5504 	inode->i_ino = args->ino;
5505 	BTRFS_I(inode)->location.objectid = args->ino;
5506 	BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY;
5507 	BTRFS_I(inode)->location.offset = 0;
5508 	BTRFS_I(inode)->root = btrfs_grab_root(args->root);
5509 	BUG_ON(args->root && !BTRFS_I(inode)->root);
5510 
5511 	if (args->root && args->root == args->root->fs_info->tree_root &&
5512 	    args->ino != BTRFS_BTREE_INODE_OBJECTID)
5513 		set_bit(BTRFS_INODE_FREE_SPACE_INODE,
5514 			&BTRFS_I(inode)->runtime_flags);
5515 	return 0;
5516 }
5517 
5518 static int btrfs_find_actor(struct inode *inode, void *opaque)
5519 {
5520 	struct btrfs_iget_args *args = opaque;
5521 
5522 	return args->ino == BTRFS_I(inode)->location.objectid &&
5523 		args->root == BTRFS_I(inode)->root;
5524 }
5525 
5526 static struct inode *btrfs_iget_locked(struct super_block *s, u64 ino,
5527 				       struct btrfs_root *root)
5528 {
5529 	struct inode *inode;
5530 	struct btrfs_iget_args args;
5531 	unsigned long hashval = btrfs_inode_hash(ino, root);
5532 
5533 	args.ino = ino;
5534 	args.root = root;
5535 
5536 	inode = iget5_locked(s, hashval, btrfs_find_actor,
5537 			     btrfs_init_locked_inode,
5538 			     (void *)&args);
5539 	return inode;
5540 }
5541 
5542 /*
5543  * Get an inode object given its inode number and corresponding root.
5544  * Path can be preallocated to prevent recursing back to iget through
5545  * allocator. NULL is also valid but may require an additional allocation
5546  * later.
5547  */
5548 struct inode *btrfs_iget_path(struct super_block *s, u64 ino,
5549 			      struct btrfs_root *root, struct btrfs_path *path)
5550 {
5551 	struct inode *inode;
5552 
5553 	inode = btrfs_iget_locked(s, ino, root);
5554 	if (!inode)
5555 		return ERR_PTR(-ENOMEM);
5556 
5557 	if (inode->i_state & I_NEW) {
5558 		int ret;
5559 
5560 		ret = btrfs_read_locked_inode(inode, path);
5561 		if (!ret) {
5562 			inode_tree_add(BTRFS_I(inode));
5563 			unlock_new_inode(inode);
5564 		} else {
5565 			iget_failed(inode);
5566 			/*
5567 			 * ret > 0 can come from btrfs_search_slot called by
5568 			 * btrfs_read_locked_inode, this means the inode item
5569 			 * was not found.
5570 			 */
5571 			if (ret > 0)
5572 				ret = -ENOENT;
5573 			inode = ERR_PTR(ret);
5574 		}
5575 	}
5576 
5577 	return inode;
5578 }
5579 
5580 struct inode *btrfs_iget(struct super_block *s, u64 ino, struct btrfs_root *root)
5581 {
5582 	return btrfs_iget_path(s, ino, root, NULL);
5583 }
5584 
5585 static struct inode *new_simple_dir(struct inode *dir,
5586 				    struct btrfs_key *key,
5587 				    struct btrfs_root *root)
5588 {
5589 	struct inode *inode = new_inode(dir->i_sb);
5590 
5591 	if (!inode)
5592 		return ERR_PTR(-ENOMEM);
5593 
5594 	BTRFS_I(inode)->root = btrfs_grab_root(root);
5595 	memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
5596 	set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
5597 
5598 	inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
5599 	/*
5600 	 * We only need lookup, the rest is read-only and there's no inode
5601 	 * associated with the dentry
5602 	 */
5603 	inode->i_op = &simple_dir_inode_operations;
5604 	inode->i_opflags &= ~IOP_XATTR;
5605 	inode->i_fop = &simple_dir_operations;
5606 	inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
5607 	inode->i_mtime = inode_set_ctime_current(inode);
5608 	inode->i_atime = dir->i_atime;
5609 	BTRFS_I(inode)->i_otime = inode->i_mtime;
5610 	inode->i_uid = dir->i_uid;
5611 	inode->i_gid = dir->i_gid;
5612 
5613 	return inode;
5614 }
5615 
5616 static_assert(BTRFS_FT_UNKNOWN == FT_UNKNOWN);
5617 static_assert(BTRFS_FT_REG_FILE == FT_REG_FILE);
5618 static_assert(BTRFS_FT_DIR == FT_DIR);
5619 static_assert(BTRFS_FT_CHRDEV == FT_CHRDEV);
5620 static_assert(BTRFS_FT_BLKDEV == FT_BLKDEV);
5621 static_assert(BTRFS_FT_FIFO == FT_FIFO);
5622 static_assert(BTRFS_FT_SOCK == FT_SOCK);
5623 static_assert(BTRFS_FT_SYMLINK == FT_SYMLINK);
5624 
5625 static inline u8 btrfs_inode_type(struct inode *inode)
5626 {
5627 	return fs_umode_to_ftype(inode->i_mode);
5628 }
5629 
5630 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
5631 {
5632 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
5633 	struct inode *inode;
5634 	struct btrfs_root *root = BTRFS_I(dir)->root;
5635 	struct btrfs_root *sub_root = root;
5636 	struct btrfs_key location;
5637 	u8 di_type = 0;
5638 	int ret = 0;
5639 
5640 	if (dentry->d_name.len > BTRFS_NAME_LEN)
5641 		return ERR_PTR(-ENAMETOOLONG);
5642 
5643 	ret = btrfs_inode_by_name(BTRFS_I(dir), dentry, &location, &di_type);
5644 	if (ret < 0)
5645 		return ERR_PTR(ret);
5646 
5647 	if (location.type == BTRFS_INODE_ITEM_KEY) {
5648 		inode = btrfs_iget(dir->i_sb, location.objectid, root);
5649 		if (IS_ERR(inode))
5650 			return inode;
5651 
5652 		/* Do extra check against inode mode with di_type */
5653 		if (btrfs_inode_type(inode) != di_type) {
5654 			btrfs_crit(fs_info,
5655 "inode mode mismatch with dir: inode mode=0%o btrfs type=%u dir type=%u",
5656 				  inode->i_mode, btrfs_inode_type(inode),
5657 				  di_type);
5658 			iput(inode);
5659 			return ERR_PTR(-EUCLEAN);
5660 		}
5661 		return inode;
5662 	}
5663 
5664 	ret = fixup_tree_root_location(fs_info, BTRFS_I(dir), dentry,
5665 				       &location, &sub_root);
5666 	if (ret < 0) {
5667 		if (ret != -ENOENT)
5668 			inode = ERR_PTR(ret);
5669 		else
5670 			inode = new_simple_dir(dir, &location, root);
5671 	} else {
5672 		inode = btrfs_iget(dir->i_sb, location.objectid, sub_root);
5673 		btrfs_put_root(sub_root);
5674 
5675 		if (IS_ERR(inode))
5676 			return inode;
5677 
5678 		down_read(&fs_info->cleanup_work_sem);
5679 		if (!sb_rdonly(inode->i_sb))
5680 			ret = btrfs_orphan_cleanup(sub_root);
5681 		up_read(&fs_info->cleanup_work_sem);
5682 		if (ret) {
5683 			iput(inode);
5684 			inode = ERR_PTR(ret);
5685 		}
5686 	}
5687 
5688 	return inode;
5689 }
5690 
5691 static int btrfs_dentry_delete(const struct dentry *dentry)
5692 {
5693 	struct btrfs_root *root;
5694 	struct inode *inode = d_inode(dentry);
5695 
5696 	if (!inode && !IS_ROOT(dentry))
5697 		inode = d_inode(dentry->d_parent);
5698 
5699 	if (inode) {
5700 		root = BTRFS_I(inode)->root;
5701 		if (btrfs_root_refs(&root->root_item) == 0)
5702 			return 1;
5703 
5704 		if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5705 			return 1;
5706 	}
5707 	return 0;
5708 }
5709 
5710 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
5711 				   unsigned int flags)
5712 {
5713 	struct inode *inode = btrfs_lookup_dentry(dir, dentry);
5714 
5715 	if (inode == ERR_PTR(-ENOENT))
5716 		inode = NULL;
5717 	return d_splice_alias(inode, dentry);
5718 }
5719 
5720 /*
5721  * Find the highest existing sequence number in a directory and then set the
5722  * in-memory index_cnt variable to the first free sequence number.
5723  */
5724 static int btrfs_set_inode_index_count(struct btrfs_inode *inode)
5725 {
5726 	struct btrfs_root *root = inode->root;
5727 	struct btrfs_key key, found_key;
5728 	struct btrfs_path *path;
5729 	struct extent_buffer *leaf;
5730 	int ret;
5731 
5732 	key.objectid = btrfs_ino(inode);
5733 	key.type = BTRFS_DIR_INDEX_KEY;
5734 	key.offset = (u64)-1;
5735 
5736 	path = btrfs_alloc_path();
5737 	if (!path)
5738 		return -ENOMEM;
5739 
5740 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5741 	if (ret < 0)
5742 		goto out;
5743 	/* FIXME: we should be able to handle this */
5744 	if (ret == 0)
5745 		goto out;
5746 	ret = 0;
5747 
5748 	if (path->slots[0] == 0) {
5749 		inode->index_cnt = BTRFS_DIR_START_INDEX;
5750 		goto out;
5751 	}
5752 
5753 	path->slots[0]--;
5754 
5755 	leaf = path->nodes[0];
5756 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5757 
5758 	if (found_key.objectid != btrfs_ino(inode) ||
5759 	    found_key.type != BTRFS_DIR_INDEX_KEY) {
5760 		inode->index_cnt = BTRFS_DIR_START_INDEX;
5761 		goto out;
5762 	}
5763 
5764 	inode->index_cnt = found_key.offset + 1;
5765 out:
5766 	btrfs_free_path(path);
5767 	return ret;
5768 }
5769 
5770 static int btrfs_get_dir_last_index(struct btrfs_inode *dir, u64 *index)
5771 {
5772 	if (dir->index_cnt == (u64)-1) {
5773 		int ret;
5774 
5775 		ret = btrfs_inode_delayed_dir_index_count(dir);
5776 		if (ret) {
5777 			ret = btrfs_set_inode_index_count(dir);
5778 			if (ret)
5779 				return ret;
5780 		}
5781 	}
5782 
5783 	*index = dir->index_cnt;
5784 
5785 	return 0;
5786 }
5787 
5788 /*
5789  * All this infrastructure exists because dir_emit can fault, and we are holding
5790  * the tree lock when doing readdir.  For now just allocate a buffer and copy
5791  * our information into that, and then dir_emit from the buffer.  This is
5792  * similar to what NFS does, only we don't keep the buffer around in pagecache
5793  * because I'm afraid I'll mess that up.  Long term we need to make filldir do
5794  * copy_to_user_inatomic so we don't have to worry about page faulting under the
5795  * tree lock.
5796  */
5797 static int btrfs_opendir(struct inode *inode, struct file *file)
5798 {
5799 	struct btrfs_file_private *private;
5800 	u64 last_index;
5801 	int ret;
5802 
5803 	ret = btrfs_get_dir_last_index(BTRFS_I(inode), &last_index);
5804 	if (ret)
5805 		return ret;
5806 
5807 	private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL);
5808 	if (!private)
5809 		return -ENOMEM;
5810 	private->last_index = last_index;
5811 	private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL);
5812 	if (!private->filldir_buf) {
5813 		kfree(private);
5814 		return -ENOMEM;
5815 	}
5816 	file->private_data = private;
5817 	return 0;
5818 }
5819 
5820 struct dir_entry {
5821 	u64 ino;
5822 	u64 offset;
5823 	unsigned type;
5824 	int name_len;
5825 };
5826 
5827 static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx)
5828 {
5829 	while (entries--) {
5830 		struct dir_entry *entry = addr;
5831 		char *name = (char *)(entry + 1);
5832 
5833 		ctx->pos = get_unaligned(&entry->offset);
5834 		if (!dir_emit(ctx, name, get_unaligned(&entry->name_len),
5835 					 get_unaligned(&entry->ino),
5836 					 get_unaligned(&entry->type)))
5837 			return 1;
5838 		addr += sizeof(struct dir_entry) +
5839 			get_unaligned(&entry->name_len);
5840 		ctx->pos++;
5841 	}
5842 	return 0;
5843 }
5844 
5845 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
5846 {
5847 	struct inode *inode = file_inode(file);
5848 	struct btrfs_root *root = BTRFS_I(inode)->root;
5849 	struct btrfs_file_private *private = file->private_data;
5850 	struct btrfs_dir_item *di;
5851 	struct btrfs_key key;
5852 	struct btrfs_key found_key;
5853 	struct btrfs_path *path;
5854 	void *addr;
5855 	LIST_HEAD(ins_list);
5856 	LIST_HEAD(del_list);
5857 	int ret;
5858 	char *name_ptr;
5859 	int name_len;
5860 	int entries = 0;
5861 	int total_len = 0;
5862 	bool put = false;
5863 	struct btrfs_key location;
5864 
5865 	if (!dir_emit_dots(file, ctx))
5866 		return 0;
5867 
5868 	path = btrfs_alloc_path();
5869 	if (!path)
5870 		return -ENOMEM;
5871 
5872 	addr = private->filldir_buf;
5873 	path->reada = READA_FORWARD;
5874 
5875 	put = btrfs_readdir_get_delayed_items(inode, private->last_index,
5876 					      &ins_list, &del_list);
5877 
5878 again:
5879 	key.type = BTRFS_DIR_INDEX_KEY;
5880 	key.offset = ctx->pos;
5881 	key.objectid = btrfs_ino(BTRFS_I(inode));
5882 
5883 	btrfs_for_each_slot(root, &key, &found_key, path, ret) {
5884 		struct dir_entry *entry;
5885 		struct extent_buffer *leaf = path->nodes[0];
5886 		u8 ftype;
5887 
5888 		if (found_key.objectid != key.objectid)
5889 			break;
5890 		if (found_key.type != BTRFS_DIR_INDEX_KEY)
5891 			break;
5892 		if (found_key.offset < ctx->pos)
5893 			continue;
5894 		if (found_key.offset > private->last_index)
5895 			break;
5896 		if (btrfs_should_delete_dir_index(&del_list, found_key.offset))
5897 			continue;
5898 		di = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dir_item);
5899 		name_len = btrfs_dir_name_len(leaf, di);
5900 		if ((total_len + sizeof(struct dir_entry) + name_len) >=
5901 		    PAGE_SIZE) {
5902 			btrfs_release_path(path);
5903 			ret = btrfs_filldir(private->filldir_buf, entries, ctx);
5904 			if (ret)
5905 				goto nopos;
5906 			addr = private->filldir_buf;
5907 			entries = 0;
5908 			total_len = 0;
5909 			goto again;
5910 		}
5911 
5912 		ftype = btrfs_dir_flags_to_ftype(btrfs_dir_flags(leaf, di));
5913 		entry = addr;
5914 		name_ptr = (char *)(entry + 1);
5915 		read_extent_buffer(leaf, name_ptr,
5916 				   (unsigned long)(di + 1), name_len);
5917 		put_unaligned(name_len, &entry->name_len);
5918 		put_unaligned(fs_ftype_to_dtype(ftype), &entry->type);
5919 		btrfs_dir_item_key_to_cpu(leaf, di, &location);
5920 		put_unaligned(location.objectid, &entry->ino);
5921 		put_unaligned(found_key.offset, &entry->offset);
5922 		entries++;
5923 		addr += sizeof(struct dir_entry) + name_len;
5924 		total_len += sizeof(struct dir_entry) + name_len;
5925 	}
5926 	/* Catch error encountered during iteration */
5927 	if (ret < 0)
5928 		goto err;
5929 
5930 	btrfs_release_path(path);
5931 
5932 	ret = btrfs_filldir(private->filldir_buf, entries, ctx);
5933 	if (ret)
5934 		goto nopos;
5935 
5936 	ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
5937 	if (ret)
5938 		goto nopos;
5939 
5940 	/*
5941 	 * Stop new entries from being returned after we return the last
5942 	 * entry.
5943 	 *
5944 	 * New directory entries are assigned a strictly increasing
5945 	 * offset.  This means that new entries created during readdir
5946 	 * are *guaranteed* to be seen in the future by that readdir.
5947 	 * This has broken buggy programs which operate on names as
5948 	 * they're returned by readdir.  Until we re-use freed offsets
5949 	 * we have this hack to stop new entries from being returned
5950 	 * under the assumption that they'll never reach this huge
5951 	 * offset.
5952 	 *
5953 	 * This is being careful not to overflow 32bit loff_t unless the
5954 	 * last entry requires it because doing so has broken 32bit apps
5955 	 * in the past.
5956 	 */
5957 	if (ctx->pos >= INT_MAX)
5958 		ctx->pos = LLONG_MAX;
5959 	else
5960 		ctx->pos = INT_MAX;
5961 nopos:
5962 	ret = 0;
5963 err:
5964 	if (put)
5965 		btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list);
5966 	btrfs_free_path(path);
5967 	return ret;
5968 }
5969 
5970 /*
5971  * This is somewhat expensive, updating the tree every time the
5972  * inode changes.  But, it is most likely to find the inode in cache.
5973  * FIXME, needs more benchmarking...there are no reasons other than performance
5974  * to keep or drop this code.
5975  */
5976 static int btrfs_dirty_inode(struct btrfs_inode *inode)
5977 {
5978 	struct btrfs_root *root = inode->root;
5979 	struct btrfs_fs_info *fs_info = root->fs_info;
5980 	struct btrfs_trans_handle *trans;
5981 	int ret;
5982 
5983 	if (test_bit(BTRFS_INODE_DUMMY, &inode->runtime_flags))
5984 		return 0;
5985 
5986 	trans = btrfs_join_transaction(root);
5987 	if (IS_ERR(trans))
5988 		return PTR_ERR(trans);
5989 
5990 	ret = btrfs_update_inode(trans, root, inode);
5991 	if (ret && (ret == -ENOSPC || ret == -EDQUOT)) {
5992 		/* whoops, lets try again with the full transaction */
5993 		btrfs_end_transaction(trans);
5994 		trans = btrfs_start_transaction(root, 1);
5995 		if (IS_ERR(trans))
5996 			return PTR_ERR(trans);
5997 
5998 		ret = btrfs_update_inode(trans, root, inode);
5999 	}
6000 	btrfs_end_transaction(trans);
6001 	if (inode->delayed_node)
6002 		btrfs_balance_delayed_items(fs_info);
6003 
6004 	return ret;
6005 }
6006 
6007 /*
6008  * This is a copy of file_update_time.  We need this so we can return error on
6009  * ENOSPC for updating the inode in the case of file write and mmap writes.
6010  */
6011 static int btrfs_update_time(struct inode *inode, int flags)
6012 {
6013 	struct btrfs_root *root = BTRFS_I(inode)->root;
6014 	bool dirty = flags & ~S_VERSION;
6015 
6016 	if (btrfs_root_readonly(root))
6017 		return -EROFS;
6018 
6019 	dirty = inode_update_timestamps(inode, flags);
6020 	return dirty ? btrfs_dirty_inode(BTRFS_I(inode)) : 0;
6021 }
6022 
6023 /*
6024  * helper to find a free sequence number in a given directory.  This current
6025  * code is very simple, later versions will do smarter things in the btree
6026  */
6027 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index)
6028 {
6029 	int ret = 0;
6030 
6031 	if (dir->index_cnt == (u64)-1) {
6032 		ret = btrfs_inode_delayed_dir_index_count(dir);
6033 		if (ret) {
6034 			ret = btrfs_set_inode_index_count(dir);
6035 			if (ret)
6036 				return ret;
6037 		}
6038 	}
6039 
6040 	*index = dir->index_cnt;
6041 	dir->index_cnt++;
6042 
6043 	return ret;
6044 }
6045 
6046 static int btrfs_insert_inode_locked(struct inode *inode)
6047 {
6048 	struct btrfs_iget_args args;
6049 
6050 	args.ino = BTRFS_I(inode)->location.objectid;
6051 	args.root = BTRFS_I(inode)->root;
6052 
6053 	return insert_inode_locked4(inode,
6054 		   btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
6055 		   btrfs_find_actor, &args);
6056 }
6057 
6058 int btrfs_new_inode_prepare(struct btrfs_new_inode_args *args,
6059 			    unsigned int *trans_num_items)
6060 {
6061 	struct inode *dir = args->dir;
6062 	struct inode *inode = args->inode;
6063 	int ret;
6064 
6065 	if (!args->orphan) {
6066 		ret = fscrypt_setup_filename(dir, &args->dentry->d_name, 0,
6067 					     &args->fname);
6068 		if (ret)
6069 			return ret;
6070 	}
6071 
6072 	ret = posix_acl_create(dir, &inode->i_mode, &args->default_acl, &args->acl);
6073 	if (ret) {
6074 		fscrypt_free_filename(&args->fname);
6075 		return ret;
6076 	}
6077 
6078 	/* 1 to add inode item */
6079 	*trans_num_items = 1;
6080 	/* 1 to add compression property */
6081 	if (BTRFS_I(dir)->prop_compress)
6082 		(*trans_num_items)++;
6083 	/* 1 to add default ACL xattr */
6084 	if (args->default_acl)
6085 		(*trans_num_items)++;
6086 	/* 1 to add access ACL xattr */
6087 	if (args->acl)
6088 		(*trans_num_items)++;
6089 #ifdef CONFIG_SECURITY
6090 	/* 1 to add LSM xattr */
6091 	if (dir->i_security)
6092 		(*trans_num_items)++;
6093 #endif
6094 	if (args->orphan) {
6095 		/* 1 to add orphan item */
6096 		(*trans_num_items)++;
6097 	} else {
6098 		/*
6099 		 * 1 to add dir item
6100 		 * 1 to add dir index
6101 		 * 1 to update parent inode item
6102 		 *
6103 		 * No need for 1 unit for the inode ref item because it is
6104 		 * inserted in a batch together with the inode item at
6105 		 * btrfs_create_new_inode().
6106 		 */
6107 		*trans_num_items += 3;
6108 	}
6109 	return 0;
6110 }
6111 
6112 void btrfs_new_inode_args_destroy(struct btrfs_new_inode_args *args)
6113 {
6114 	posix_acl_release(args->acl);
6115 	posix_acl_release(args->default_acl);
6116 	fscrypt_free_filename(&args->fname);
6117 }
6118 
6119 /*
6120  * Inherit flags from the parent inode.
6121  *
6122  * Currently only the compression flags and the cow flags are inherited.
6123  */
6124 static void btrfs_inherit_iflags(struct btrfs_inode *inode, struct btrfs_inode *dir)
6125 {
6126 	unsigned int flags;
6127 
6128 	flags = dir->flags;
6129 
6130 	if (flags & BTRFS_INODE_NOCOMPRESS) {
6131 		inode->flags &= ~BTRFS_INODE_COMPRESS;
6132 		inode->flags |= BTRFS_INODE_NOCOMPRESS;
6133 	} else if (flags & BTRFS_INODE_COMPRESS) {
6134 		inode->flags &= ~BTRFS_INODE_NOCOMPRESS;
6135 		inode->flags |= BTRFS_INODE_COMPRESS;
6136 	}
6137 
6138 	if (flags & BTRFS_INODE_NODATACOW) {
6139 		inode->flags |= BTRFS_INODE_NODATACOW;
6140 		if (S_ISREG(inode->vfs_inode.i_mode))
6141 			inode->flags |= BTRFS_INODE_NODATASUM;
6142 	}
6143 
6144 	btrfs_sync_inode_flags_to_i_flags(&inode->vfs_inode);
6145 }
6146 
6147 int btrfs_create_new_inode(struct btrfs_trans_handle *trans,
6148 			   struct btrfs_new_inode_args *args)
6149 {
6150 	struct inode *dir = args->dir;
6151 	struct inode *inode = args->inode;
6152 	const struct fscrypt_str *name = args->orphan ? NULL : &args->fname.disk_name;
6153 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6154 	struct btrfs_root *root;
6155 	struct btrfs_inode_item *inode_item;
6156 	struct btrfs_key *location;
6157 	struct btrfs_path *path;
6158 	u64 objectid;
6159 	struct btrfs_inode_ref *ref;
6160 	struct btrfs_key key[2];
6161 	u32 sizes[2];
6162 	struct btrfs_item_batch batch;
6163 	unsigned long ptr;
6164 	int ret;
6165 
6166 	path = btrfs_alloc_path();
6167 	if (!path)
6168 		return -ENOMEM;
6169 
6170 	if (!args->subvol)
6171 		BTRFS_I(inode)->root = btrfs_grab_root(BTRFS_I(dir)->root);
6172 	root = BTRFS_I(inode)->root;
6173 
6174 	ret = btrfs_get_free_objectid(root, &objectid);
6175 	if (ret)
6176 		goto out;
6177 	inode->i_ino = objectid;
6178 
6179 	if (args->orphan) {
6180 		/*
6181 		 * O_TMPFILE, set link count to 0, so that after this point, we
6182 		 * fill in an inode item with the correct link count.
6183 		 */
6184 		set_nlink(inode, 0);
6185 	} else {
6186 		trace_btrfs_inode_request(dir);
6187 
6188 		ret = btrfs_set_inode_index(BTRFS_I(dir), &BTRFS_I(inode)->dir_index);
6189 		if (ret)
6190 			goto out;
6191 	}
6192 	/* index_cnt is ignored for everything but a dir. */
6193 	BTRFS_I(inode)->index_cnt = BTRFS_DIR_START_INDEX;
6194 	BTRFS_I(inode)->generation = trans->transid;
6195 	inode->i_generation = BTRFS_I(inode)->generation;
6196 
6197 	/*
6198 	 * Subvolumes don't inherit flags from their parent directory.
6199 	 * Originally this was probably by accident, but we probably can't
6200 	 * change it now without compatibility issues.
6201 	 */
6202 	if (!args->subvol)
6203 		btrfs_inherit_iflags(BTRFS_I(inode), BTRFS_I(dir));
6204 
6205 	if (S_ISREG(inode->i_mode)) {
6206 		if (btrfs_test_opt(fs_info, NODATASUM))
6207 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6208 		if (btrfs_test_opt(fs_info, NODATACOW))
6209 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6210 				BTRFS_INODE_NODATASUM;
6211 	}
6212 
6213 	location = &BTRFS_I(inode)->location;
6214 	location->objectid = objectid;
6215 	location->offset = 0;
6216 	location->type = BTRFS_INODE_ITEM_KEY;
6217 
6218 	ret = btrfs_insert_inode_locked(inode);
6219 	if (ret < 0) {
6220 		if (!args->orphan)
6221 			BTRFS_I(dir)->index_cnt--;
6222 		goto out;
6223 	}
6224 
6225 	/*
6226 	 * We could have gotten an inode number from somebody who was fsynced
6227 	 * and then removed in this same transaction, so let's just set full
6228 	 * sync since it will be a full sync anyway and this will blow away the
6229 	 * old info in the log.
6230 	 */
6231 	btrfs_set_inode_full_sync(BTRFS_I(inode));
6232 
6233 	key[0].objectid = objectid;
6234 	key[0].type = BTRFS_INODE_ITEM_KEY;
6235 	key[0].offset = 0;
6236 
6237 	sizes[0] = sizeof(struct btrfs_inode_item);
6238 
6239 	if (!args->orphan) {
6240 		/*
6241 		 * Start new inodes with an inode_ref. This is slightly more
6242 		 * efficient for small numbers of hard links since they will
6243 		 * be packed into one item. Extended refs will kick in if we
6244 		 * add more hard links than can fit in the ref item.
6245 		 */
6246 		key[1].objectid = objectid;
6247 		key[1].type = BTRFS_INODE_REF_KEY;
6248 		if (args->subvol) {
6249 			key[1].offset = objectid;
6250 			sizes[1] = 2 + sizeof(*ref);
6251 		} else {
6252 			key[1].offset = btrfs_ino(BTRFS_I(dir));
6253 			sizes[1] = name->len + sizeof(*ref);
6254 		}
6255 	}
6256 
6257 	batch.keys = &key[0];
6258 	batch.data_sizes = &sizes[0];
6259 	batch.total_data_size = sizes[0] + (args->orphan ? 0 : sizes[1]);
6260 	batch.nr = args->orphan ? 1 : 2;
6261 	ret = btrfs_insert_empty_items(trans, root, path, &batch);
6262 	if (ret != 0) {
6263 		btrfs_abort_transaction(trans, ret);
6264 		goto discard;
6265 	}
6266 
6267 	inode->i_mtime = inode_set_ctime_current(inode);
6268 	inode->i_atime = inode->i_mtime;
6269 	BTRFS_I(inode)->i_otime = inode->i_mtime;
6270 
6271 	/*
6272 	 * We're going to fill the inode item now, so at this point the inode
6273 	 * must be fully initialized.
6274 	 */
6275 
6276 	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6277 				  struct btrfs_inode_item);
6278 	memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item,
6279 			     sizeof(*inode_item));
6280 	fill_inode_item(trans, path->nodes[0], inode_item, inode);
6281 
6282 	if (!args->orphan) {
6283 		ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6284 				     struct btrfs_inode_ref);
6285 		ptr = (unsigned long)(ref + 1);
6286 		if (args->subvol) {
6287 			btrfs_set_inode_ref_name_len(path->nodes[0], ref, 2);
6288 			btrfs_set_inode_ref_index(path->nodes[0], ref, 0);
6289 			write_extent_buffer(path->nodes[0], "..", ptr, 2);
6290 		} else {
6291 			btrfs_set_inode_ref_name_len(path->nodes[0], ref,
6292 						     name->len);
6293 			btrfs_set_inode_ref_index(path->nodes[0], ref,
6294 						  BTRFS_I(inode)->dir_index);
6295 			write_extent_buffer(path->nodes[0], name->name, ptr,
6296 					    name->len);
6297 		}
6298 	}
6299 
6300 	btrfs_mark_buffer_dirty(path->nodes[0]);
6301 	/*
6302 	 * We don't need the path anymore, plus inheriting properties, adding
6303 	 * ACLs, security xattrs, orphan item or adding the link, will result in
6304 	 * allocating yet another path. So just free our path.
6305 	 */
6306 	btrfs_free_path(path);
6307 	path = NULL;
6308 
6309 	if (args->subvol) {
6310 		struct inode *parent;
6311 
6312 		/*
6313 		 * Subvolumes inherit properties from their parent subvolume,
6314 		 * not the directory they were created in.
6315 		 */
6316 		parent = btrfs_iget(fs_info->sb, BTRFS_FIRST_FREE_OBJECTID,
6317 				    BTRFS_I(dir)->root);
6318 		if (IS_ERR(parent)) {
6319 			ret = PTR_ERR(parent);
6320 		} else {
6321 			ret = btrfs_inode_inherit_props(trans, inode, parent);
6322 			iput(parent);
6323 		}
6324 	} else {
6325 		ret = btrfs_inode_inherit_props(trans, inode, dir);
6326 	}
6327 	if (ret) {
6328 		btrfs_err(fs_info,
6329 			  "error inheriting props for ino %llu (root %llu): %d",
6330 			  btrfs_ino(BTRFS_I(inode)), root->root_key.objectid,
6331 			  ret);
6332 	}
6333 
6334 	/*
6335 	 * Subvolumes don't inherit ACLs or get passed to the LSM. This is
6336 	 * probably a bug.
6337 	 */
6338 	if (!args->subvol) {
6339 		ret = btrfs_init_inode_security(trans, args);
6340 		if (ret) {
6341 			btrfs_abort_transaction(trans, ret);
6342 			goto discard;
6343 		}
6344 	}
6345 
6346 	inode_tree_add(BTRFS_I(inode));
6347 
6348 	trace_btrfs_inode_new(inode);
6349 	btrfs_set_inode_last_trans(trans, BTRFS_I(inode));
6350 
6351 	btrfs_update_root_times(trans, root);
6352 
6353 	if (args->orphan) {
6354 		ret = btrfs_orphan_add(trans, BTRFS_I(inode));
6355 	} else {
6356 		ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name,
6357 				     0, BTRFS_I(inode)->dir_index);
6358 	}
6359 	if (ret) {
6360 		btrfs_abort_transaction(trans, ret);
6361 		goto discard;
6362 	}
6363 
6364 	return 0;
6365 
6366 discard:
6367 	/*
6368 	 * discard_new_inode() calls iput(), but the caller owns the reference
6369 	 * to the inode.
6370 	 */
6371 	ihold(inode);
6372 	discard_new_inode(inode);
6373 out:
6374 	btrfs_free_path(path);
6375 	return ret;
6376 }
6377 
6378 /*
6379  * utility function to add 'inode' into 'parent_inode' with
6380  * a give name and a given sequence number.
6381  * if 'add_backref' is true, also insert a backref from the
6382  * inode to the parent directory.
6383  */
6384 int btrfs_add_link(struct btrfs_trans_handle *trans,
6385 		   struct btrfs_inode *parent_inode, struct btrfs_inode *inode,
6386 		   const struct fscrypt_str *name, int add_backref, u64 index)
6387 {
6388 	int ret = 0;
6389 	struct btrfs_key key;
6390 	struct btrfs_root *root = parent_inode->root;
6391 	u64 ino = btrfs_ino(inode);
6392 	u64 parent_ino = btrfs_ino(parent_inode);
6393 
6394 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6395 		memcpy(&key, &inode->root->root_key, sizeof(key));
6396 	} else {
6397 		key.objectid = ino;
6398 		key.type = BTRFS_INODE_ITEM_KEY;
6399 		key.offset = 0;
6400 	}
6401 
6402 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6403 		ret = btrfs_add_root_ref(trans, key.objectid,
6404 					 root->root_key.objectid, parent_ino,
6405 					 index, name);
6406 	} else if (add_backref) {
6407 		ret = btrfs_insert_inode_ref(trans, root, name,
6408 					     ino, parent_ino, index);
6409 	}
6410 
6411 	/* Nothing to clean up yet */
6412 	if (ret)
6413 		return ret;
6414 
6415 	ret = btrfs_insert_dir_item(trans, name, parent_inode, &key,
6416 				    btrfs_inode_type(&inode->vfs_inode), index);
6417 	if (ret == -EEXIST || ret == -EOVERFLOW)
6418 		goto fail_dir_item;
6419 	else if (ret) {
6420 		btrfs_abort_transaction(trans, ret);
6421 		return ret;
6422 	}
6423 
6424 	btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size +
6425 			   name->len * 2);
6426 	inode_inc_iversion(&parent_inode->vfs_inode);
6427 	/*
6428 	 * If we are replaying a log tree, we do not want to update the mtime
6429 	 * and ctime of the parent directory with the current time, since the
6430 	 * log replay procedure is responsible for setting them to their correct
6431 	 * values (the ones it had when the fsync was done).
6432 	 */
6433 	if (!test_bit(BTRFS_FS_LOG_RECOVERING, &root->fs_info->flags))
6434 		parent_inode->vfs_inode.i_mtime =
6435 			inode_set_ctime_current(&parent_inode->vfs_inode);
6436 
6437 	ret = btrfs_update_inode(trans, root, parent_inode);
6438 	if (ret)
6439 		btrfs_abort_transaction(trans, ret);
6440 	return ret;
6441 
6442 fail_dir_item:
6443 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6444 		u64 local_index;
6445 		int err;
6446 		err = btrfs_del_root_ref(trans, key.objectid,
6447 					 root->root_key.objectid, parent_ino,
6448 					 &local_index, name);
6449 		if (err)
6450 			btrfs_abort_transaction(trans, err);
6451 	} else if (add_backref) {
6452 		u64 local_index;
6453 		int err;
6454 
6455 		err = btrfs_del_inode_ref(trans, root, name, ino, parent_ino,
6456 					  &local_index);
6457 		if (err)
6458 			btrfs_abort_transaction(trans, err);
6459 	}
6460 
6461 	/* Return the original error code */
6462 	return ret;
6463 }
6464 
6465 static int btrfs_create_common(struct inode *dir, struct dentry *dentry,
6466 			       struct inode *inode)
6467 {
6468 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6469 	struct btrfs_root *root = BTRFS_I(dir)->root;
6470 	struct btrfs_new_inode_args new_inode_args = {
6471 		.dir = dir,
6472 		.dentry = dentry,
6473 		.inode = inode,
6474 	};
6475 	unsigned int trans_num_items;
6476 	struct btrfs_trans_handle *trans;
6477 	int err;
6478 
6479 	err = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
6480 	if (err)
6481 		goto out_inode;
6482 
6483 	trans = btrfs_start_transaction(root, trans_num_items);
6484 	if (IS_ERR(trans)) {
6485 		err = PTR_ERR(trans);
6486 		goto out_new_inode_args;
6487 	}
6488 
6489 	err = btrfs_create_new_inode(trans, &new_inode_args);
6490 	if (!err)
6491 		d_instantiate_new(dentry, inode);
6492 
6493 	btrfs_end_transaction(trans);
6494 	btrfs_btree_balance_dirty(fs_info);
6495 out_new_inode_args:
6496 	btrfs_new_inode_args_destroy(&new_inode_args);
6497 out_inode:
6498 	if (err)
6499 		iput(inode);
6500 	return err;
6501 }
6502 
6503 static int btrfs_mknod(struct mnt_idmap *idmap, struct inode *dir,
6504 		       struct dentry *dentry, umode_t mode, dev_t rdev)
6505 {
6506 	struct inode *inode;
6507 
6508 	inode = new_inode(dir->i_sb);
6509 	if (!inode)
6510 		return -ENOMEM;
6511 	inode_init_owner(idmap, inode, dir, mode);
6512 	inode->i_op = &btrfs_special_inode_operations;
6513 	init_special_inode(inode, inode->i_mode, rdev);
6514 	return btrfs_create_common(dir, dentry, inode);
6515 }
6516 
6517 static int btrfs_create(struct mnt_idmap *idmap, struct inode *dir,
6518 			struct dentry *dentry, umode_t mode, bool excl)
6519 {
6520 	struct inode *inode;
6521 
6522 	inode = new_inode(dir->i_sb);
6523 	if (!inode)
6524 		return -ENOMEM;
6525 	inode_init_owner(idmap, inode, dir, mode);
6526 	inode->i_fop = &btrfs_file_operations;
6527 	inode->i_op = &btrfs_file_inode_operations;
6528 	inode->i_mapping->a_ops = &btrfs_aops;
6529 	return btrfs_create_common(dir, dentry, inode);
6530 }
6531 
6532 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6533 		      struct dentry *dentry)
6534 {
6535 	struct btrfs_trans_handle *trans = NULL;
6536 	struct btrfs_root *root = BTRFS_I(dir)->root;
6537 	struct inode *inode = d_inode(old_dentry);
6538 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
6539 	struct fscrypt_name fname;
6540 	u64 index;
6541 	int err;
6542 	int drop_inode = 0;
6543 
6544 	/* do not allow sys_link's with other subvols of the same device */
6545 	if (root->root_key.objectid != BTRFS_I(inode)->root->root_key.objectid)
6546 		return -EXDEV;
6547 
6548 	if (inode->i_nlink >= BTRFS_LINK_MAX)
6549 		return -EMLINK;
6550 
6551 	err = fscrypt_setup_filename(dir, &dentry->d_name, 0, &fname);
6552 	if (err)
6553 		goto fail;
6554 
6555 	err = btrfs_set_inode_index(BTRFS_I(dir), &index);
6556 	if (err)
6557 		goto fail;
6558 
6559 	/*
6560 	 * 2 items for inode and inode ref
6561 	 * 2 items for dir items
6562 	 * 1 item for parent inode
6563 	 * 1 item for orphan item deletion if O_TMPFILE
6564 	 */
6565 	trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6);
6566 	if (IS_ERR(trans)) {
6567 		err = PTR_ERR(trans);
6568 		trans = NULL;
6569 		goto fail;
6570 	}
6571 
6572 	/* There are several dir indexes for this inode, clear the cache. */
6573 	BTRFS_I(inode)->dir_index = 0ULL;
6574 	inc_nlink(inode);
6575 	inode_inc_iversion(inode);
6576 	inode_set_ctime_current(inode);
6577 	ihold(inode);
6578 	set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
6579 
6580 	err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
6581 			     &fname.disk_name, 1, index);
6582 
6583 	if (err) {
6584 		drop_inode = 1;
6585 	} else {
6586 		struct dentry *parent = dentry->d_parent;
6587 
6588 		err = btrfs_update_inode(trans, root, BTRFS_I(inode));
6589 		if (err)
6590 			goto fail;
6591 		if (inode->i_nlink == 1) {
6592 			/*
6593 			 * If new hard link count is 1, it's a file created
6594 			 * with open(2) O_TMPFILE flag.
6595 			 */
6596 			err = btrfs_orphan_del(trans, BTRFS_I(inode));
6597 			if (err)
6598 				goto fail;
6599 		}
6600 		d_instantiate(dentry, inode);
6601 		btrfs_log_new_name(trans, old_dentry, NULL, 0, parent);
6602 	}
6603 
6604 fail:
6605 	fscrypt_free_filename(&fname);
6606 	if (trans)
6607 		btrfs_end_transaction(trans);
6608 	if (drop_inode) {
6609 		inode_dec_link_count(inode);
6610 		iput(inode);
6611 	}
6612 	btrfs_btree_balance_dirty(fs_info);
6613 	return err;
6614 }
6615 
6616 static int btrfs_mkdir(struct mnt_idmap *idmap, struct inode *dir,
6617 		       struct dentry *dentry, umode_t mode)
6618 {
6619 	struct inode *inode;
6620 
6621 	inode = new_inode(dir->i_sb);
6622 	if (!inode)
6623 		return -ENOMEM;
6624 	inode_init_owner(idmap, inode, dir, S_IFDIR | mode);
6625 	inode->i_op = &btrfs_dir_inode_operations;
6626 	inode->i_fop = &btrfs_dir_file_operations;
6627 	return btrfs_create_common(dir, dentry, inode);
6628 }
6629 
6630 static noinline int uncompress_inline(struct btrfs_path *path,
6631 				      struct page *page,
6632 				      struct btrfs_file_extent_item *item)
6633 {
6634 	int ret;
6635 	struct extent_buffer *leaf = path->nodes[0];
6636 	char *tmp;
6637 	size_t max_size;
6638 	unsigned long inline_size;
6639 	unsigned long ptr;
6640 	int compress_type;
6641 
6642 	compress_type = btrfs_file_extent_compression(leaf, item);
6643 	max_size = btrfs_file_extent_ram_bytes(leaf, item);
6644 	inline_size = btrfs_file_extent_inline_item_len(leaf, path->slots[0]);
6645 	tmp = kmalloc(inline_size, GFP_NOFS);
6646 	if (!tmp)
6647 		return -ENOMEM;
6648 	ptr = btrfs_file_extent_inline_start(item);
6649 
6650 	read_extent_buffer(leaf, tmp, ptr, inline_size);
6651 
6652 	max_size = min_t(unsigned long, PAGE_SIZE, max_size);
6653 	ret = btrfs_decompress(compress_type, tmp, page, 0, inline_size, max_size);
6654 
6655 	/*
6656 	 * decompression code contains a memset to fill in any space between the end
6657 	 * of the uncompressed data and the end of max_size in case the decompressed
6658 	 * data ends up shorter than ram_bytes.  That doesn't cover the hole between
6659 	 * the end of an inline extent and the beginning of the next block, so we
6660 	 * cover that region here.
6661 	 */
6662 
6663 	if (max_size < PAGE_SIZE)
6664 		memzero_page(page, max_size, PAGE_SIZE - max_size);
6665 	kfree(tmp);
6666 	return ret;
6667 }
6668 
6669 static int read_inline_extent(struct btrfs_inode *inode, struct btrfs_path *path,
6670 			      struct page *page)
6671 {
6672 	struct btrfs_file_extent_item *fi;
6673 	void *kaddr;
6674 	size_t copy_size;
6675 
6676 	if (!page || PageUptodate(page))
6677 		return 0;
6678 
6679 	ASSERT(page_offset(page) == 0);
6680 
6681 	fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
6682 			    struct btrfs_file_extent_item);
6683 	if (btrfs_file_extent_compression(path->nodes[0], fi) != BTRFS_COMPRESS_NONE)
6684 		return uncompress_inline(path, page, fi);
6685 
6686 	copy_size = min_t(u64, PAGE_SIZE,
6687 			  btrfs_file_extent_ram_bytes(path->nodes[0], fi));
6688 	kaddr = kmap_local_page(page);
6689 	read_extent_buffer(path->nodes[0], kaddr,
6690 			   btrfs_file_extent_inline_start(fi), copy_size);
6691 	kunmap_local(kaddr);
6692 	if (copy_size < PAGE_SIZE)
6693 		memzero_page(page, copy_size, PAGE_SIZE - copy_size);
6694 	return 0;
6695 }
6696 
6697 /*
6698  * Lookup the first extent overlapping a range in a file.
6699  *
6700  * @inode:	file to search in
6701  * @page:	page to read extent data into if the extent is inline
6702  * @pg_offset:	offset into @page to copy to
6703  * @start:	file offset
6704  * @len:	length of range starting at @start
6705  *
6706  * Return the first &struct extent_map which overlaps the given range, reading
6707  * it from the B-tree and caching it if necessary. Note that there may be more
6708  * extents which overlap the given range after the returned extent_map.
6709  *
6710  * If @page is not NULL and the extent is inline, this also reads the extent
6711  * data directly into the page and marks the extent up to date in the io_tree.
6712  *
6713  * Return: ERR_PTR on error, non-NULL extent_map on success.
6714  */
6715 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode,
6716 				    struct page *page, size_t pg_offset,
6717 				    u64 start, u64 len)
6718 {
6719 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
6720 	int ret = 0;
6721 	u64 extent_start = 0;
6722 	u64 extent_end = 0;
6723 	u64 objectid = btrfs_ino(inode);
6724 	int extent_type = -1;
6725 	struct btrfs_path *path = NULL;
6726 	struct btrfs_root *root = inode->root;
6727 	struct btrfs_file_extent_item *item;
6728 	struct extent_buffer *leaf;
6729 	struct btrfs_key found_key;
6730 	struct extent_map *em = NULL;
6731 	struct extent_map_tree *em_tree = &inode->extent_tree;
6732 
6733 	read_lock(&em_tree->lock);
6734 	em = lookup_extent_mapping(em_tree, start, len);
6735 	read_unlock(&em_tree->lock);
6736 
6737 	if (em) {
6738 		if (em->start > start || em->start + em->len <= start)
6739 			free_extent_map(em);
6740 		else if (em->block_start == EXTENT_MAP_INLINE && page)
6741 			free_extent_map(em);
6742 		else
6743 			goto out;
6744 	}
6745 	em = alloc_extent_map();
6746 	if (!em) {
6747 		ret = -ENOMEM;
6748 		goto out;
6749 	}
6750 	em->start = EXTENT_MAP_HOLE;
6751 	em->orig_start = EXTENT_MAP_HOLE;
6752 	em->len = (u64)-1;
6753 	em->block_len = (u64)-1;
6754 
6755 	path = btrfs_alloc_path();
6756 	if (!path) {
6757 		ret = -ENOMEM;
6758 		goto out;
6759 	}
6760 
6761 	/* Chances are we'll be called again, so go ahead and do readahead */
6762 	path->reada = READA_FORWARD;
6763 
6764 	/*
6765 	 * The same explanation in load_free_space_cache applies here as well,
6766 	 * we only read when we're loading the free space cache, and at that
6767 	 * point the commit_root has everything we need.
6768 	 */
6769 	if (btrfs_is_free_space_inode(inode)) {
6770 		path->search_commit_root = 1;
6771 		path->skip_locking = 1;
6772 	}
6773 
6774 	ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0);
6775 	if (ret < 0) {
6776 		goto out;
6777 	} else if (ret > 0) {
6778 		if (path->slots[0] == 0)
6779 			goto not_found;
6780 		path->slots[0]--;
6781 		ret = 0;
6782 	}
6783 
6784 	leaf = path->nodes[0];
6785 	item = btrfs_item_ptr(leaf, path->slots[0],
6786 			      struct btrfs_file_extent_item);
6787 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6788 	if (found_key.objectid != objectid ||
6789 	    found_key.type != BTRFS_EXTENT_DATA_KEY) {
6790 		/*
6791 		 * If we backup past the first extent we want to move forward
6792 		 * and see if there is an extent in front of us, otherwise we'll
6793 		 * say there is a hole for our whole search range which can
6794 		 * cause problems.
6795 		 */
6796 		extent_end = start;
6797 		goto next;
6798 	}
6799 
6800 	extent_type = btrfs_file_extent_type(leaf, item);
6801 	extent_start = found_key.offset;
6802 	extent_end = btrfs_file_extent_end(path);
6803 	if (extent_type == BTRFS_FILE_EXTENT_REG ||
6804 	    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
6805 		/* Only regular file could have regular/prealloc extent */
6806 		if (!S_ISREG(inode->vfs_inode.i_mode)) {
6807 			ret = -EUCLEAN;
6808 			btrfs_crit(fs_info,
6809 		"regular/prealloc extent found for non-regular inode %llu",
6810 				   btrfs_ino(inode));
6811 			goto out;
6812 		}
6813 		trace_btrfs_get_extent_show_fi_regular(inode, leaf, item,
6814 						       extent_start);
6815 	} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
6816 		trace_btrfs_get_extent_show_fi_inline(inode, leaf, item,
6817 						      path->slots[0],
6818 						      extent_start);
6819 	}
6820 next:
6821 	if (start >= extent_end) {
6822 		path->slots[0]++;
6823 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6824 			ret = btrfs_next_leaf(root, path);
6825 			if (ret < 0)
6826 				goto out;
6827 			else if (ret > 0)
6828 				goto not_found;
6829 
6830 			leaf = path->nodes[0];
6831 		}
6832 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6833 		if (found_key.objectid != objectid ||
6834 		    found_key.type != BTRFS_EXTENT_DATA_KEY)
6835 			goto not_found;
6836 		if (start + len <= found_key.offset)
6837 			goto not_found;
6838 		if (start > found_key.offset)
6839 			goto next;
6840 
6841 		/* New extent overlaps with existing one */
6842 		em->start = start;
6843 		em->orig_start = start;
6844 		em->len = found_key.offset - start;
6845 		em->block_start = EXTENT_MAP_HOLE;
6846 		goto insert;
6847 	}
6848 
6849 	btrfs_extent_item_to_extent_map(inode, path, item, em);
6850 
6851 	if (extent_type == BTRFS_FILE_EXTENT_REG ||
6852 	    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
6853 		goto insert;
6854 	} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
6855 		/*
6856 		 * Inline extent can only exist at file offset 0. This is
6857 		 * ensured by tree-checker and inline extent creation path.
6858 		 * Thus all members representing file offsets should be zero.
6859 		 */
6860 		ASSERT(pg_offset == 0);
6861 		ASSERT(extent_start == 0);
6862 		ASSERT(em->start == 0);
6863 
6864 		/*
6865 		 * btrfs_extent_item_to_extent_map() should have properly
6866 		 * initialized em members already.
6867 		 *
6868 		 * Other members are not utilized for inline extents.
6869 		 */
6870 		ASSERT(em->block_start == EXTENT_MAP_INLINE);
6871 		ASSERT(em->len == fs_info->sectorsize);
6872 
6873 		ret = read_inline_extent(inode, path, page);
6874 		if (ret < 0)
6875 			goto out;
6876 		goto insert;
6877 	}
6878 not_found:
6879 	em->start = start;
6880 	em->orig_start = start;
6881 	em->len = len;
6882 	em->block_start = EXTENT_MAP_HOLE;
6883 insert:
6884 	ret = 0;
6885 	btrfs_release_path(path);
6886 	if (em->start > start || extent_map_end(em) <= start) {
6887 		btrfs_err(fs_info,
6888 			  "bad extent! em: [%llu %llu] passed [%llu %llu]",
6889 			  em->start, em->len, start, len);
6890 		ret = -EIO;
6891 		goto out;
6892 	}
6893 
6894 	write_lock(&em_tree->lock);
6895 	ret = btrfs_add_extent_mapping(fs_info, em_tree, &em, start, len);
6896 	write_unlock(&em_tree->lock);
6897 out:
6898 	btrfs_free_path(path);
6899 
6900 	trace_btrfs_get_extent(root, inode, em);
6901 
6902 	if (ret) {
6903 		free_extent_map(em);
6904 		return ERR_PTR(ret);
6905 	}
6906 	return em;
6907 }
6908 
6909 static struct extent_map *btrfs_create_dio_extent(struct btrfs_inode *inode,
6910 						  struct btrfs_dio_data *dio_data,
6911 						  const u64 start,
6912 						  const u64 len,
6913 						  const u64 orig_start,
6914 						  const u64 block_start,
6915 						  const u64 block_len,
6916 						  const u64 orig_block_len,
6917 						  const u64 ram_bytes,
6918 						  const int type)
6919 {
6920 	struct extent_map *em = NULL;
6921 	struct btrfs_ordered_extent *ordered;
6922 
6923 	if (type != BTRFS_ORDERED_NOCOW) {
6924 		em = create_io_em(inode, start, len, orig_start, block_start,
6925 				  block_len, orig_block_len, ram_bytes,
6926 				  BTRFS_COMPRESS_NONE, /* compress_type */
6927 				  type);
6928 		if (IS_ERR(em))
6929 			goto out;
6930 	}
6931 	ordered = btrfs_alloc_ordered_extent(inode, start, len, len,
6932 					     block_start, block_len, 0,
6933 					     (1 << type) |
6934 					     (1 << BTRFS_ORDERED_DIRECT),
6935 					     BTRFS_COMPRESS_NONE);
6936 	if (IS_ERR(ordered)) {
6937 		if (em) {
6938 			free_extent_map(em);
6939 			btrfs_drop_extent_map_range(inode, start,
6940 						    start + len - 1, false);
6941 		}
6942 		em = ERR_CAST(ordered);
6943 	} else {
6944 		ASSERT(!dio_data->ordered);
6945 		dio_data->ordered = ordered;
6946 	}
6947  out:
6948 
6949 	return em;
6950 }
6951 
6952 static struct extent_map *btrfs_new_extent_direct(struct btrfs_inode *inode,
6953 						  struct btrfs_dio_data *dio_data,
6954 						  u64 start, u64 len)
6955 {
6956 	struct btrfs_root *root = inode->root;
6957 	struct btrfs_fs_info *fs_info = root->fs_info;
6958 	struct extent_map *em;
6959 	struct btrfs_key ins;
6960 	u64 alloc_hint;
6961 	int ret;
6962 
6963 	alloc_hint = get_extent_allocation_hint(inode, start, len);
6964 	ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize,
6965 				   0, alloc_hint, &ins, 1, 1);
6966 	if (ret)
6967 		return ERR_PTR(ret);
6968 
6969 	em = btrfs_create_dio_extent(inode, dio_data, start, ins.offset, start,
6970 				     ins.objectid, ins.offset, ins.offset,
6971 				     ins.offset, BTRFS_ORDERED_REGULAR);
6972 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
6973 	if (IS_ERR(em))
6974 		btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset,
6975 					   1);
6976 
6977 	return em;
6978 }
6979 
6980 static bool btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr)
6981 {
6982 	struct btrfs_block_group *block_group;
6983 	bool readonly = false;
6984 
6985 	block_group = btrfs_lookup_block_group(fs_info, bytenr);
6986 	if (!block_group || block_group->ro)
6987 		readonly = true;
6988 	if (block_group)
6989 		btrfs_put_block_group(block_group);
6990 	return readonly;
6991 }
6992 
6993 /*
6994  * Check if we can do nocow write into the range [@offset, @offset + @len)
6995  *
6996  * @offset:	File offset
6997  * @len:	The length to write, will be updated to the nocow writeable
6998  *		range
6999  * @orig_start:	(optional) Return the original file offset of the file extent
7000  * @orig_len:	(optional) Return the original on-disk length of the file extent
7001  * @ram_bytes:	(optional) Return the ram_bytes of the file extent
7002  * @strict:	if true, omit optimizations that might force us into unnecessary
7003  *		cow. e.g., don't trust generation number.
7004  *
7005  * Return:
7006  * >0	and update @len if we can do nocow write
7007  *  0	if we can't do nocow write
7008  * <0	if error happened
7009  *
7010  * NOTE: This only checks the file extents, caller is responsible to wait for
7011  *	 any ordered extents.
7012  */
7013 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7014 			      u64 *orig_start, u64 *orig_block_len,
7015 			      u64 *ram_bytes, bool nowait, bool strict)
7016 {
7017 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7018 	struct can_nocow_file_extent_args nocow_args = { 0 };
7019 	struct btrfs_path *path;
7020 	int ret;
7021 	struct extent_buffer *leaf;
7022 	struct btrfs_root *root = BTRFS_I(inode)->root;
7023 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7024 	struct btrfs_file_extent_item *fi;
7025 	struct btrfs_key key;
7026 	int found_type;
7027 
7028 	path = btrfs_alloc_path();
7029 	if (!path)
7030 		return -ENOMEM;
7031 	path->nowait = nowait;
7032 
7033 	ret = btrfs_lookup_file_extent(NULL, root, path,
7034 			btrfs_ino(BTRFS_I(inode)), offset, 0);
7035 	if (ret < 0)
7036 		goto out;
7037 
7038 	if (ret == 1) {
7039 		if (path->slots[0] == 0) {
7040 			/* can't find the item, must cow */
7041 			ret = 0;
7042 			goto out;
7043 		}
7044 		path->slots[0]--;
7045 	}
7046 	ret = 0;
7047 	leaf = path->nodes[0];
7048 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
7049 	if (key.objectid != btrfs_ino(BTRFS_I(inode)) ||
7050 	    key.type != BTRFS_EXTENT_DATA_KEY) {
7051 		/* not our file or wrong item type, must cow */
7052 		goto out;
7053 	}
7054 
7055 	if (key.offset > offset) {
7056 		/* Wrong offset, must cow */
7057 		goto out;
7058 	}
7059 
7060 	if (btrfs_file_extent_end(path) <= offset)
7061 		goto out;
7062 
7063 	fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
7064 	found_type = btrfs_file_extent_type(leaf, fi);
7065 	if (ram_bytes)
7066 		*ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
7067 
7068 	nocow_args.start = offset;
7069 	nocow_args.end = offset + *len - 1;
7070 	nocow_args.strict = strict;
7071 	nocow_args.free_path = true;
7072 
7073 	ret = can_nocow_file_extent(path, &key, BTRFS_I(inode), &nocow_args);
7074 	/* can_nocow_file_extent() has freed the path. */
7075 	path = NULL;
7076 
7077 	if (ret != 1) {
7078 		/* Treat errors as not being able to NOCOW. */
7079 		ret = 0;
7080 		goto out;
7081 	}
7082 
7083 	ret = 0;
7084 	if (btrfs_extent_readonly(fs_info, nocow_args.disk_bytenr))
7085 		goto out;
7086 
7087 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7088 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7089 		u64 range_end;
7090 
7091 		range_end = round_up(offset + nocow_args.num_bytes,
7092 				     root->fs_info->sectorsize) - 1;
7093 		ret = test_range_bit(io_tree, offset, range_end,
7094 				     EXTENT_DELALLOC, 0, NULL);
7095 		if (ret) {
7096 			ret = -EAGAIN;
7097 			goto out;
7098 		}
7099 	}
7100 
7101 	if (orig_start)
7102 		*orig_start = key.offset - nocow_args.extent_offset;
7103 	if (orig_block_len)
7104 		*orig_block_len = nocow_args.disk_num_bytes;
7105 
7106 	*len = nocow_args.num_bytes;
7107 	ret = 1;
7108 out:
7109 	btrfs_free_path(path);
7110 	return ret;
7111 }
7112 
7113 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
7114 			      struct extent_state **cached_state,
7115 			      unsigned int iomap_flags)
7116 {
7117 	const bool writing = (iomap_flags & IOMAP_WRITE);
7118 	const bool nowait = (iomap_flags & IOMAP_NOWAIT);
7119 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7120 	struct btrfs_ordered_extent *ordered;
7121 	int ret = 0;
7122 
7123 	while (1) {
7124 		if (nowait) {
7125 			if (!try_lock_extent(io_tree, lockstart, lockend,
7126 					     cached_state))
7127 				return -EAGAIN;
7128 		} else {
7129 			lock_extent(io_tree, lockstart, lockend, cached_state);
7130 		}
7131 		/*
7132 		 * We're concerned with the entire range that we're going to be
7133 		 * doing DIO to, so we need to make sure there's no ordered
7134 		 * extents in this range.
7135 		 */
7136 		ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart,
7137 						     lockend - lockstart + 1);
7138 
7139 		/*
7140 		 * We need to make sure there are no buffered pages in this
7141 		 * range either, we could have raced between the invalidate in
7142 		 * generic_file_direct_write and locking the extent.  The
7143 		 * invalidate needs to happen so that reads after a write do not
7144 		 * get stale data.
7145 		 */
7146 		if (!ordered &&
7147 		    (!writing || !filemap_range_has_page(inode->i_mapping,
7148 							 lockstart, lockend)))
7149 			break;
7150 
7151 		unlock_extent(io_tree, lockstart, lockend, cached_state);
7152 
7153 		if (ordered) {
7154 			if (nowait) {
7155 				btrfs_put_ordered_extent(ordered);
7156 				ret = -EAGAIN;
7157 				break;
7158 			}
7159 			/*
7160 			 * If we are doing a DIO read and the ordered extent we
7161 			 * found is for a buffered write, we can not wait for it
7162 			 * to complete and retry, because if we do so we can
7163 			 * deadlock with concurrent buffered writes on page
7164 			 * locks. This happens only if our DIO read covers more
7165 			 * than one extent map, if at this point has already
7166 			 * created an ordered extent for a previous extent map
7167 			 * and locked its range in the inode's io tree, and a
7168 			 * concurrent write against that previous extent map's
7169 			 * range and this range started (we unlock the ranges
7170 			 * in the io tree only when the bios complete and
7171 			 * buffered writes always lock pages before attempting
7172 			 * to lock range in the io tree).
7173 			 */
7174 			if (writing ||
7175 			    test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags))
7176 				btrfs_start_ordered_extent(ordered);
7177 			else
7178 				ret = nowait ? -EAGAIN : -ENOTBLK;
7179 			btrfs_put_ordered_extent(ordered);
7180 		} else {
7181 			/*
7182 			 * We could trigger writeback for this range (and wait
7183 			 * for it to complete) and then invalidate the pages for
7184 			 * this range (through invalidate_inode_pages2_range()),
7185 			 * but that can lead us to a deadlock with a concurrent
7186 			 * call to readahead (a buffered read or a defrag call
7187 			 * triggered a readahead) on a page lock due to an
7188 			 * ordered dio extent we created before but did not have
7189 			 * yet a corresponding bio submitted (whence it can not
7190 			 * complete), which makes readahead wait for that
7191 			 * ordered extent to complete while holding a lock on
7192 			 * that page.
7193 			 */
7194 			ret = nowait ? -EAGAIN : -ENOTBLK;
7195 		}
7196 
7197 		if (ret)
7198 			break;
7199 
7200 		cond_resched();
7201 	}
7202 
7203 	return ret;
7204 }
7205 
7206 /* The callers of this must take lock_extent() */
7207 static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start,
7208 				       u64 len, u64 orig_start, u64 block_start,
7209 				       u64 block_len, u64 orig_block_len,
7210 				       u64 ram_bytes, int compress_type,
7211 				       int type)
7212 {
7213 	struct extent_map *em;
7214 	int ret;
7215 
7216 	ASSERT(type == BTRFS_ORDERED_PREALLOC ||
7217 	       type == BTRFS_ORDERED_COMPRESSED ||
7218 	       type == BTRFS_ORDERED_NOCOW ||
7219 	       type == BTRFS_ORDERED_REGULAR);
7220 
7221 	em = alloc_extent_map();
7222 	if (!em)
7223 		return ERR_PTR(-ENOMEM);
7224 
7225 	em->start = start;
7226 	em->orig_start = orig_start;
7227 	em->len = len;
7228 	em->block_len = block_len;
7229 	em->block_start = block_start;
7230 	em->orig_block_len = orig_block_len;
7231 	em->ram_bytes = ram_bytes;
7232 	em->generation = -1;
7233 	set_bit(EXTENT_FLAG_PINNED, &em->flags);
7234 	if (type == BTRFS_ORDERED_PREALLOC) {
7235 		set_bit(EXTENT_FLAG_FILLING, &em->flags);
7236 	} else if (type == BTRFS_ORDERED_COMPRESSED) {
7237 		set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
7238 		em->compress_type = compress_type;
7239 	}
7240 
7241 	ret = btrfs_replace_extent_map_range(inode, em, true);
7242 	if (ret) {
7243 		free_extent_map(em);
7244 		return ERR_PTR(ret);
7245 	}
7246 
7247 	/* em got 2 refs now, callers needs to do free_extent_map once. */
7248 	return em;
7249 }
7250 
7251 
7252 static int btrfs_get_blocks_direct_write(struct extent_map **map,
7253 					 struct inode *inode,
7254 					 struct btrfs_dio_data *dio_data,
7255 					 u64 start, u64 *lenp,
7256 					 unsigned int iomap_flags)
7257 {
7258 	const bool nowait = (iomap_flags & IOMAP_NOWAIT);
7259 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7260 	struct extent_map *em = *map;
7261 	int type;
7262 	u64 block_start, orig_start, orig_block_len, ram_bytes;
7263 	struct btrfs_block_group *bg;
7264 	bool can_nocow = false;
7265 	bool space_reserved = false;
7266 	u64 len = *lenp;
7267 	u64 prev_len;
7268 	int ret = 0;
7269 
7270 	/*
7271 	 * We don't allocate a new extent in the following cases
7272 	 *
7273 	 * 1) The inode is marked as NODATACOW. In this case we'll just use the
7274 	 * existing extent.
7275 	 * 2) The extent is marked as PREALLOC. We're good to go here and can
7276 	 * just use the extent.
7277 	 *
7278 	 */
7279 	if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7280 	    ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7281 	     em->block_start != EXTENT_MAP_HOLE)) {
7282 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7283 			type = BTRFS_ORDERED_PREALLOC;
7284 		else
7285 			type = BTRFS_ORDERED_NOCOW;
7286 		len = min(len, em->len - (start - em->start));
7287 		block_start = em->block_start + (start - em->start);
7288 
7289 		if (can_nocow_extent(inode, start, &len, &orig_start,
7290 				     &orig_block_len, &ram_bytes, false, false) == 1) {
7291 			bg = btrfs_inc_nocow_writers(fs_info, block_start);
7292 			if (bg)
7293 				can_nocow = true;
7294 		}
7295 	}
7296 
7297 	prev_len = len;
7298 	if (can_nocow) {
7299 		struct extent_map *em2;
7300 
7301 		/* We can NOCOW, so only need to reserve metadata space. */
7302 		ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len, len,
7303 						      nowait);
7304 		if (ret < 0) {
7305 			/* Our caller expects us to free the input extent map. */
7306 			free_extent_map(em);
7307 			*map = NULL;
7308 			btrfs_dec_nocow_writers(bg);
7309 			if (nowait && (ret == -ENOSPC || ret == -EDQUOT))
7310 				ret = -EAGAIN;
7311 			goto out;
7312 		}
7313 		space_reserved = true;
7314 
7315 		em2 = btrfs_create_dio_extent(BTRFS_I(inode), dio_data, start, len,
7316 					      orig_start, block_start,
7317 					      len, orig_block_len,
7318 					      ram_bytes, type);
7319 		btrfs_dec_nocow_writers(bg);
7320 		if (type == BTRFS_ORDERED_PREALLOC) {
7321 			free_extent_map(em);
7322 			*map = em2;
7323 			em = em2;
7324 		}
7325 
7326 		if (IS_ERR(em2)) {
7327 			ret = PTR_ERR(em2);
7328 			goto out;
7329 		}
7330 
7331 		dio_data->nocow_done = true;
7332 	} else {
7333 		/* Our caller expects us to free the input extent map. */
7334 		free_extent_map(em);
7335 		*map = NULL;
7336 
7337 		if (nowait) {
7338 			ret = -EAGAIN;
7339 			goto out;
7340 		}
7341 
7342 		/*
7343 		 * If we could not allocate data space before locking the file
7344 		 * range and we can't do a NOCOW write, then we have to fail.
7345 		 */
7346 		if (!dio_data->data_space_reserved) {
7347 			ret = -ENOSPC;
7348 			goto out;
7349 		}
7350 
7351 		/*
7352 		 * We have to COW and we have already reserved data space before,
7353 		 * so now we reserve only metadata.
7354 		 */
7355 		ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len, len,
7356 						      false);
7357 		if (ret < 0)
7358 			goto out;
7359 		space_reserved = true;
7360 
7361 		em = btrfs_new_extent_direct(BTRFS_I(inode), dio_data, start, len);
7362 		if (IS_ERR(em)) {
7363 			ret = PTR_ERR(em);
7364 			goto out;
7365 		}
7366 		*map = em;
7367 		len = min(len, em->len - (start - em->start));
7368 		if (len < prev_len)
7369 			btrfs_delalloc_release_metadata(BTRFS_I(inode),
7370 							prev_len - len, true);
7371 	}
7372 
7373 	/*
7374 	 * We have created our ordered extent, so we can now release our reservation
7375 	 * for an outstanding extent.
7376 	 */
7377 	btrfs_delalloc_release_extents(BTRFS_I(inode), prev_len);
7378 
7379 	/*
7380 	 * Need to update the i_size under the extent lock so buffered
7381 	 * readers will get the updated i_size when we unlock.
7382 	 */
7383 	if (start + len > i_size_read(inode))
7384 		i_size_write(inode, start + len);
7385 out:
7386 	if (ret && space_reserved) {
7387 		btrfs_delalloc_release_extents(BTRFS_I(inode), len);
7388 		btrfs_delalloc_release_metadata(BTRFS_I(inode), len, true);
7389 	}
7390 	*lenp = len;
7391 	return ret;
7392 }
7393 
7394 static int btrfs_dio_iomap_begin(struct inode *inode, loff_t start,
7395 		loff_t length, unsigned int flags, struct iomap *iomap,
7396 		struct iomap *srcmap)
7397 {
7398 	struct iomap_iter *iter = container_of(iomap, struct iomap_iter, iomap);
7399 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7400 	struct extent_map *em;
7401 	struct extent_state *cached_state = NULL;
7402 	struct btrfs_dio_data *dio_data = iter->private;
7403 	u64 lockstart, lockend;
7404 	const bool write = !!(flags & IOMAP_WRITE);
7405 	int ret = 0;
7406 	u64 len = length;
7407 	const u64 data_alloc_len = length;
7408 	bool unlock_extents = false;
7409 
7410 	/*
7411 	 * We could potentially fault if we have a buffer > PAGE_SIZE, and if
7412 	 * we're NOWAIT we may submit a bio for a partial range and return
7413 	 * EIOCBQUEUED, which would result in an errant short read.
7414 	 *
7415 	 * The best way to handle this would be to allow for partial completions
7416 	 * of iocb's, so we could submit the partial bio, return and fault in
7417 	 * the rest of the pages, and then submit the io for the rest of the
7418 	 * range.  However we don't have that currently, so simply return
7419 	 * -EAGAIN at this point so that the normal path is used.
7420 	 */
7421 	if (!write && (flags & IOMAP_NOWAIT) && length > PAGE_SIZE)
7422 		return -EAGAIN;
7423 
7424 	/*
7425 	 * Cap the size of reads to that usually seen in buffered I/O as we need
7426 	 * to allocate a contiguous array for the checksums.
7427 	 */
7428 	if (!write)
7429 		len = min_t(u64, len, fs_info->sectorsize * BTRFS_MAX_BIO_SECTORS);
7430 
7431 	lockstart = start;
7432 	lockend = start + len - 1;
7433 
7434 	/*
7435 	 * iomap_dio_rw() only does filemap_write_and_wait_range(), which isn't
7436 	 * enough if we've written compressed pages to this area, so we need to
7437 	 * flush the dirty pages again to make absolutely sure that any
7438 	 * outstanding dirty pages are on disk - the first flush only starts
7439 	 * compression on the data, while keeping the pages locked, so by the
7440 	 * time the second flush returns we know bios for the compressed pages
7441 	 * were submitted and finished, and the pages no longer under writeback.
7442 	 *
7443 	 * If we have a NOWAIT request and we have any pages in the range that
7444 	 * are locked, likely due to compression still in progress, we don't want
7445 	 * to block on page locks. We also don't want to block on pages marked as
7446 	 * dirty or under writeback (same as for the non-compression case).
7447 	 * iomap_dio_rw() did the same check, but after that and before we got
7448 	 * here, mmap'ed writes may have happened or buffered reads started
7449 	 * (readpage() and readahead(), which lock pages), as we haven't locked
7450 	 * the file range yet.
7451 	 */
7452 	if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
7453 		     &BTRFS_I(inode)->runtime_flags)) {
7454 		if (flags & IOMAP_NOWAIT) {
7455 			if (filemap_range_needs_writeback(inode->i_mapping,
7456 							  lockstart, lockend))
7457 				return -EAGAIN;
7458 		} else {
7459 			ret = filemap_fdatawrite_range(inode->i_mapping, start,
7460 						       start + length - 1);
7461 			if (ret)
7462 				return ret;
7463 		}
7464 	}
7465 
7466 	memset(dio_data, 0, sizeof(*dio_data));
7467 
7468 	/*
7469 	 * We always try to allocate data space and must do it before locking
7470 	 * the file range, to avoid deadlocks with concurrent writes to the same
7471 	 * range if the range has several extents and the writes don't expand the
7472 	 * current i_size (the inode lock is taken in shared mode). If we fail to
7473 	 * allocate data space here we continue and later, after locking the
7474 	 * file range, we fail with ENOSPC only if we figure out we can not do a
7475 	 * NOCOW write.
7476 	 */
7477 	if (write && !(flags & IOMAP_NOWAIT)) {
7478 		ret = btrfs_check_data_free_space(BTRFS_I(inode),
7479 						  &dio_data->data_reserved,
7480 						  start, data_alloc_len, false);
7481 		if (!ret)
7482 			dio_data->data_space_reserved = true;
7483 		else if (ret && !(BTRFS_I(inode)->flags &
7484 				  (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)))
7485 			goto err;
7486 	}
7487 
7488 	/*
7489 	 * If this errors out it's because we couldn't invalidate pagecache for
7490 	 * this range and we need to fallback to buffered IO, or we are doing a
7491 	 * NOWAIT read/write and we need to block.
7492 	 */
7493 	ret = lock_extent_direct(inode, lockstart, lockend, &cached_state, flags);
7494 	if (ret < 0)
7495 		goto err;
7496 
7497 	em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len);
7498 	if (IS_ERR(em)) {
7499 		ret = PTR_ERR(em);
7500 		goto unlock_err;
7501 	}
7502 
7503 	/*
7504 	 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7505 	 * io.  INLINE is special, and we could probably kludge it in here, but
7506 	 * it's still buffered so for safety lets just fall back to the generic
7507 	 * buffered path.
7508 	 *
7509 	 * For COMPRESSED we _have_ to read the entire extent in so we can
7510 	 * decompress it, so there will be buffering required no matter what we
7511 	 * do, so go ahead and fallback to buffered.
7512 	 *
7513 	 * We return -ENOTBLK because that's what makes DIO go ahead and go back
7514 	 * to buffered IO.  Don't blame me, this is the price we pay for using
7515 	 * the generic code.
7516 	 */
7517 	if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7518 	    em->block_start == EXTENT_MAP_INLINE) {
7519 		free_extent_map(em);
7520 		/*
7521 		 * If we are in a NOWAIT context, return -EAGAIN in order to
7522 		 * fallback to buffered IO. This is not only because we can
7523 		 * block with buffered IO (no support for NOWAIT semantics at
7524 		 * the moment) but also to avoid returning short reads to user
7525 		 * space - this happens if we were able to read some data from
7526 		 * previous non-compressed extents and then when we fallback to
7527 		 * buffered IO, at btrfs_file_read_iter() by calling
7528 		 * filemap_read(), we fail to fault in pages for the read buffer,
7529 		 * in which case filemap_read() returns a short read (the number
7530 		 * of bytes previously read is > 0, so it does not return -EFAULT).
7531 		 */
7532 		ret = (flags & IOMAP_NOWAIT) ? -EAGAIN : -ENOTBLK;
7533 		goto unlock_err;
7534 	}
7535 
7536 	len = min(len, em->len - (start - em->start));
7537 
7538 	/*
7539 	 * If we have a NOWAIT request and the range contains multiple extents
7540 	 * (or a mix of extents and holes), then we return -EAGAIN to make the
7541 	 * caller fallback to a context where it can do a blocking (without
7542 	 * NOWAIT) request. This way we avoid doing partial IO and returning
7543 	 * success to the caller, which is not optimal for writes and for reads
7544 	 * it can result in unexpected behaviour for an application.
7545 	 *
7546 	 * When doing a read, because we use IOMAP_DIO_PARTIAL when calling
7547 	 * iomap_dio_rw(), we can end up returning less data then what the caller
7548 	 * asked for, resulting in an unexpected, and incorrect, short read.
7549 	 * That is, the caller asked to read N bytes and we return less than that,
7550 	 * which is wrong unless we are crossing EOF. This happens if we get a
7551 	 * page fault error when trying to fault in pages for the buffer that is
7552 	 * associated to the struct iov_iter passed to iomap_dio_rw(), and we
7553 	 * have previously submitted bios for other extents in the range, in
7554 	 * which case iomap_dio_rw() may return us EIOCBQUEUED if not all of
7555 	 * those bios have completed by the time we get the page fault error,
7556 	 * which we return back to our caller - we should only return EIOCBQUEUED
7557 	 * after we have submitted bios for all the extents in the range.
7558 	 */
7559 	if ((flags & IOMAP_NOWAIT) && len < length) {
7560 		free_extent_map(em);
7561 		ret = -EAGAIN;
7562 		goto unlock_err;
7563 	}
7564 
7565 	if (write) {
7566 		ret = btrfs_get_blocks_direct_write(&em, inode, dio_data,
7567 						    start, &len, flags);
7568 		if (ret < 0)
7569 			goto unlock_err;
7570 		unlock_extents = true;
7571 		/* Recalc len in case the new em is smaller than requested */
7572 		len = min(len, em->len - (start - em->start));
7573 		if (dio_data->data_space_reserved) {
7574 			u64 release_offset;
7575 			u64 release_len = 0;
7576 
7577 			if (dio_data->nocow_done) {
7578 				release_offset = start;
7579 				release_len = data_alloc_len;
7580 			} else if (len < data_alloc_len) {
7581 				release_offset = start + len;
7582 				release_len = data_alloc_len - len;
7583 			}
7584 
7585 			if (release_len > 0)
7586 				btrfs_free_reserved_data_space(BTRFS_I(inode),
7587 							       dio_data->data_reserved,
7588 							       release_offset,
7589 							       release_len);
7590 		}
7591 	} else {
7592 		/*
7593 		 * We need to unlock only the end area that we aren't using.
7594 		 * The rest is going to be unlocked by the endio routine.
7595 		 */
7596 		lockstart = start + len;
7597 		if (lockstart < lockend)
7598 			unlock_extents = true;
7599 	}
7600 
7601 	if (unlock_extents)
7602 		unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7603 			      &cached_state);
7604 	else
7605 		free_extent_state(cached_state);
7606 
7607 	/*
7608 	 * Translate extent map information to iomap.
7609 	 * We trim the extents (and move the addr) even though iomap code does
7610 	 * that, since we have locked only the parts we are performing I/O in.
7611 	 */
7612 	if ((em->block_start == EXTENT_MAP_HOLE) ||
7613 	    (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) && !write)) {
7614 		iomap->addr = IOMAP_NULL_ADDR;
7615 		iomap->type = IOMAP_HOLE;
7616 	} else {
7617 		iomap->addr = em->block_start + (start - em->start);
7618 		iomap->type = IOMAP_MAPPED;
7619 	}
7620 	iomap->offset = start;
7621 	iomap->bdev = fs_info->fs_devices->latest_dev->bdev;
7622 	iomap->length = len;
7623 	free_extent_map(em);
7624 
7625 	return 0;
7626 
7627 unlock_err:
7628 	unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7629 		      &cached_state);
7630 err:
7631 	if (dio_data->data_space_reserved) {
7632 		btrfs_free_reserved_data_space(BTRFS_I(inode),
7633 					       dio_data->data_reserved,
7634 					       start, data_alloc_len);
7635 		extent_changeset_free(dio_data->data_reserved);
7636 	}
7637 
7638 	return ret;
7639 }
7640 
7641 static int btrfs_dio_iomap_end(struct inode *inode, loff_t pos, loff_t length,
7642 		ssize_t written, unsigned int flags, struct iomap *iomap)
7643 {
7644 	struct iomap_iter *iter = container_of(iomap, struct iomap_iter, iomap);
7645 	struct btrfs_dio_data *dio_data = iter->private;
7646 	size_t submitted = dio_data->submitted;
7647 	const bool write = !!(flags & IOMAP_WRITE);
7648 	int ret = 0;
7649 
7650 	if (!write && (iomap->type == IOMAP_HOLE)) {
7651 		/* If reading from a hole, unlock and return */
7652 		unlock_extent(&BTRFS_I(inode)->io_tree, pos, pos + length - 1,
7653 			      NULL);
7654 		return 0;
7655 	}
7656 
7657 	if (submitted < length) {
7658 		pos += submitted;
7659 		length -= submitted;
7660 		if (write)
7661 			btrfs_finish_ordered_extent(dio_data->ordered, NULL,
7662 						    pos, length, false);
7663 		else
7664 			unlock_extent(&BTRFS_I(inode)->io_tree, pos,
7665 				      pos + length - 1, NULL);
7666 		ret = -ENOTBLK;
7667 	}
7668 	if (write) {
7669 		btrfs_put_ordered_extent(dio_data->ordered);
7670 		dio_data->ordered = NULL;
7671 	}
7672 
7673 	if (write)
7674 		extent_changeset_free(dio_data->data_reserved);
7675 	return ret;
7676 }
7677 
7678 static void btrfs_dio_end_io(struct btrfs_bio *bbio)
7679 {
7680 	struct btrfs_dio_private *dip =
7681 		container_of(bbio, struct btrfs_dio_private, bbio);
7682 	struct btrfs_inode *inode = bbio->inode;
7683 	struct bio *bio = &bbio->bio;
7684 
7685 	if (bio->bi_status) {
7686 		btrfs_warn(inode->root->fs_info,
7687 		"direct IO failed ino %llu op 0x%0x offset %#llx len %u err no %d",
7688 			   btrfs_ino(inode), bio->bi_opf,
7689 			   dip->file_offset, dip->bytes, bio->bi_status);
7690 	}
7691 
7692 	if (btrfs_op(bio) == BTRFS_MAP_WRITE) {
7693 		btrfs_finish_ordered_extent(bbio->ordered, NULL,
7694 					    dip->file_offset, dip->bytes,
7695 					    !bio->bi_status);
7696 	} else {
7697 		unlock_extent(&inode->io_tree, dip->file_offset,
7698 			      dip->file_offset + dip->bytes - 1, NULL);
7699 	}
7700 
7701 	bbio->bio.bi_private = bbio->private;
7702 	iomap_dio_bio_end_io(bio);
7703 }
7704 
7705 static void btrfs_dio_submit_io(const struct iomap_iter *iter, struct bio *bio,
7706 				loff_t file_offset)
7707 {
7708 	struct btrfs_bio *bbio = btrfs_bio(bio);
7709 	struct btrfs_dio_private *dip =
7710 		container_of(bbio, struct btrfs_dio_private, bbio);
7711 	struct btrfs_dio_data *dio_data = iter->private;
7712 
7713 	btrfs_bio_init(bbio, BTRFS_I(iter->inode)->root->fs_info,
7714 		       btrfs_dio_end_io, bio->bi_private);
7715 	bbio->inode = BTRFS_I(iter->inode);
7716 	bbio->file_offset = file_offset;
7717 
7718 	dip->file_offset = file_offset;
7719 	dip->bytes = bio->bi_iter.bi_size;
7720 
7721 	dio_data->submitted += bio->bi_iter.bi_size;
7722 
7723 	/*
7724 	 * Check if we are doing a partial write.  If we are, we need to split
7725 	 * the ordered extent to match the submitted bio.  Hang on to the
7726 	 * remaining unfinishable ordered_extent in dio_data so that it can be
7727 	 * cancelled in iomap_end to avoid a deadlock wherein faulting the
7728 	 * remaining pages is blocked on the outstanding ordered extent.
7729 	 */
7730 	if (iter->flags & IOMAP_WRITE) {
7731 		int ret;
7732 
7733 		ret = btrfs_extract_ordered_extent(bbio, dio_data->ordered);
7734 		if (ret) {
7735 			btrfs_finish_ordered_extent(dio_data->ordered, NULL,
7736 						    file_offset, dip->bytes,
7737 						    !ret);
7738 			bio->bi_status = errno_to_blk_status(ret);
7739 			iomap_dio_bio_end_io(bio);
7740 			return;
7741 		}
7742 	}
7743 
7744 	btrfs_submit_bio(bbio, 0);
7745 }
7746 
7747 static const struct iomap_ops btrfs_dio_iomap_ops = {
7748 	.iomap_begin            = btrfs_dio_iomap_begin,
7749 	.iomap_end              = btrfs_dio_iomap_end,
7750 };
7751 
7752 static const struct iomap_dio_ops btrfs_dio_ops = {
7753 	.submit_io		= btrfs_dio_submit_io,
7754 	.bio_set		= &btrfs_dio_bioset,
7755 };
7756 
7757 ssize_t btrfs_dio_read(struct kiocb *iocb, struct iov_iter *iter, size_t done_before)
7758 {
7759 	struct btrfs_dio_data data = { 0 };
7760 
7761 	return iomap_dio_rw(iocb, iter, &btrfs_dio_iomap_ops, &btrfs_dio_ops,
7762 			    IOMAP_DIO_PARTIAL, &data, done_before);
7763 }
7764 
7765 struct iomap_dio *btrfs_dio_write(struct kiocb *iocb, struct iov_iter *iter,
7766 				  size_t done_before)
7767 {
7768 	struct btrfs_dio_data data = { 0 };
7769 
7770 	return __iomap_dio_rw(iocb, iter, &btrfs_dio_iomap_ops, &btrfs_dio_ops,
7771 			    IOMAP_DIO_PARTIAL, &data, done_before);
7772 }
7773 
7774 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
7775 			u64 start, u64 len)
7776 {
7777 	int	ret;
7778 
7779 	ret = fiemap_prep(inode, fieinfo, start, &len, 0);
7780 	if (ret)
7781 		return ret;
7782 
7783 	/*
7784 	 * fiemap_prep() called filemap_write_and_wait() for the whole possible
7785 	 * file range (0 to LLONG_MAX), but that is not enough if we have
7786 	 * compression enabled. The first filemap_fdatawrite_range() only kicks
7787 	 * in the compression of data (in an async thread) and will return
7788 	 * before the compression is done and writeback is started. A second
7789 	 * filemap_fdatawrite_range() is needed to wait for the compression to
7790 	 * complete and writeback to start. We also need to wait for ordered
7791 	 * extents to complete, because our fiemap implementation uses mainly
7792 	 * file extent items to list the extents, searching for extent maps
7793 	 * only for file ranges with holes or prealloc extents to figure out
7794 	 * if we have delalloc in those ranges.
7795 	 */
7796 	if (fieinfo->fi_flags & FIEMAP_FLAG_SYNC) {
7797 		ret = btrfs_wait_ordered_range(inode, 0, LLONG_MAX);
7798 		if (ret)
7799 			return ret;
7800 	}
7801 
7802 	return extent_fiemap(BTRFS_I(inode), fieinfo, start, len);
7803 }
7804 
7805 static int btrfs_writepages(struct address_space *mapping,
7806 			    struct writeback_control *wbc)
7807 {
7808 	return extent_writepages(mapping, wbc);
7809 }
7810 
7811 static void btrfs_readahead(struct readahead_control *rac)
7812 {
7813 	extent_readahead(rac);
7814 }
7815 
7816 /*
7817  * For release_folio() and invalidate_folio() we have a race window where
7818  * folio_end_writeback() is called but the subpage spinlock is not yet released.
7819  * If we continue to release/invalidate the page, we could cause use-after-free
7820  * for subpage spinlock.  So this function is to spin and wait for subpage
7821  * spinlock.
7822  */
7823 static void wait_subpage_spinlock(struct page *page)
7824 {
7825 	struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
7826 	struct btrfs_subpage *subpage;
7827 
7828 	if (!btrfs_is_subpage(fs_info, page))
7829 		return;
7830 
7831 	ASSERT(PagePrivate(page) && page->private);
7832 	subpage = (struct btrfs_subpage *)page->private;
7833 
7834 	/*
7835 	 * This may look insane as we just acquire the spinlock and release it,
7836 	 * without doing anything.  But we just want to make sure no one is
7837 	 * still holding the subpage spinlock.
7838 	 * And since the page is not dirty nor writeback, and we have page
7839 	 * locked, the only possible way to hold a spinlock is from the endio
7840 	 * function to clear page writeback.
7841 	 *
7842 	 * Here we just acquire the spinlock so that all existing callers
7843 	 * should exit and we're safe to release/invalidate the page.
7844 	 */
7845 	spin_lock_irq(&subpage->lock);
7846 	spin_unlock_irq(&subpage->lock);
7847 }
7848 
7849 static bool __btrfs_release_folio(struct folio *folio, gfp_t gfp_flags)
7850 {
7851 	int ret = try_release_extent_mapping(&folio->page, gfp_flags);
7852 
7853 	if (ret == 1) {
7854 		wait_subpage_spinlock(&folio->page);
7855 		clear_page_extent_mapped(&folio->page);
7856 	}
7857 	return ret;
7858 }
7859 
7860 static bool btrfs_release_folio(struct folio *folio, gfp_t gfp_flags)
7861 {
7862 	if (folio_test_writeback(folio) || folio_test_dirty(folio))
7863 		return false;
7864 	return __btrfs_release_folio(folio, gfp_flags);
7865 }
7866 
7867 #ifdef CONFIG_MIGRATION
7868 static int btrfs_migrate_folio(struct address_space *mapping,
7869 			     struct folio *dst, struct folio *src,
7870 			     enum migrate_mode mode)
7871 {
7872 	int ret = filemap_migrate_folio(mapping, dst, src, mode);
7873 
7874 	if (ret != MIGRATEPAGE_SUCCESS)
7875 		return ret;
7876 
7877 	if (folio_test_ordered(src)) {
7878 		folio_clear_ordered(src);
7879 		folio_set_ordered(dst);
7880 	}
7881 
7882 	return MIGRATEPAGE_SUCCESS;
7883 }
7884 #else
7885 #define btrfs_migrate_folio NULL
7886 #endif
7887 
7888 static void btrfs_invalidate_folio(struct folio *folio, size_t offset,
7889 				 size_t length)
7890 {
7891 	struct btrfs_inode *inode = BTRFS_I(folio->mapping->host);
7892 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
7893 	struct extent_io_tree *tree = &inode->io_tree;
7894 	struct extent_state *cached_state = NULL;
7895 	u64 page_start = folio_pos(folio);
7896 	u64 page_end = page_start + folio_size(folio) - 1;
7897 	u64 cur;
7898 	int inode_evicting = inode->vfs_inode.i_state & I_FREEING;
7899 
7900 	/*
7901 	 * We have folio locked so no new ordered extent can be created on this
7902 	 * page, nor bio can be submitted for this folio.
7903 	 *
7904 	 * But already submitted bio can still be finished on this folio.
7905 	 * Furthermore, endio function won't skip folio which has Ordered
7906 	 * (Private2) already cleared, so it's possible for endio and
7907 	 * invalidate_folio to do the same ordered extent accounting twice
7908 	 * on one folio.
7909 	 *
7910 	 * So here we wait for any submitted bios to finish, so that we won't
7911 	 * do double ordered extent accounting on the same folio.
7912 	 */
7913 	folio_wait_writeback(folio);
7914 	wait_subpage_spinlock(&folio->page);
7915 
7916 	/*
7917 	 * For subpage case, we have call sites like
7918 	 * btrfs_punch_hole_lock_range() which passes range not aligned to
7919 	 * sectorsize.
7920 	 * If the range doesn't cover the full folio, we don't need to and
7921 	 * shouldn't clear page extent mapped, as folio->private can still
7922 	 * record subpage dirty bits for other part of the range.
7923 	 *
7924 	 * For cases that invalidate the full folio even the range doesn't
7925 	 * cover the full folio, like invalidating the last folio, we're
7926 	 * still safe to wait for ordered extent to finish.
7927 	 */
7928 	if (!(offset == 0 && length == folio_size(folio))) {
7929 		btrfs_release_folio(folio, GFP_NOFS);
7930 		return;
7931 	}
7932 
7933 	if (!inode_evicting)
7934 		lock_extent(tree, page_start, page_end, &cached_state);
7935 
7936 	cur = page_start;
7937 	while (cur < page_end) {
7938 		struct btrfs_ordered_extent *ordered;
7939 		u64 range_end;
7940 		u32 range_len;
7941 		u32 extra_flags = 0;
7942 
7943 		ordered = btrfs_lookup_first_ordered_range(inode, cur,
7944 							   page_end + 1 - cur);
7945 		if (!ordered) {
7946 			range_end = page_end;
7947 			/*
7948 			 * No ordered extent covering this range, we are safe
7949 			 * to delete all extent states in the range.
7950 			 */
7951 			extra_flags = EXTENT_CLEAR_ALL_BITS;
7952 			goto next;
7953 		}
7954 		if (ordered->file_offset > cur) {
7955 			/*
7956 			 * There is a range between [cur, oe->file_offset) not
7957 			 * covered by any ordered extent.
7958 			 * We are safe to delete all extent states, and handle
7959 			 * the ordered extent in the next iteration.
7960 			 */
7961 			range_end = ordered->file_offset - 1;
7962 			extra_flags = EXTENT_CLEAR_ALL_BITS;
7963 			goto next;
7964 		}
7965 
7966 		range_end = min(ordered->file_offset + ordered->num_bytes - 1,
7967 				page_end);
7968 		ASSERT(range_end + 1 - cur < U32_MAX);
7969 		range_len = range_end + 1 - cur;
7970 		if (!btrfs_page_test_ordered(fs_info, &folio->page, cur, range_len)) {
7971 			/*
7972 			 * If Ordered (Private2) is cleared, it means endio has
7973 			 * already been executed for the range.
7974 			 * We can't delete the extent states as
7975 			 * btrfs_finish_ordered_io() may still use some of them.
7976 			 */
7977 			goto next;
7978 		}
7979 		btrfs_page_clear_ordered(fs_info, &folio->page, cur, range_len);
7980 
7981 		/*
7982 		 * IO on this page will never be started, so we need to account
7983 		 * for any ordered extents now. Don't clear EXTENT_DELALLOC_NEW
7984 		 * here, must leave that up for the ordered extent completion.
7985 		 *
7986 		 * This will also unlock the range for incoming
7987 		 * btrfs_finish_ordered_io().
7988 		 */
7989 		if (!inode_evicting)
7990 			clear_extent_bit(tree, cur, range_end,
7991 					 EXTENT_DELALLOC |
7992 					 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
7993 					 EXTENT_DEFRAG, &cached_state);
7994 
7995 		spin_lock_irq(&inode->ordered_tree.lock);
7996 		set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
7997 		ordered->truncated_len = min(ordered->truncated_len,
7998 					     cur - ordered->file_offset);
7999 		spin_unlock_irq(&inode->ordered_tree.lock);
8000 
8001 		/*
8002 		 * If the ordered extent has finished, we're safe to delete all
8003 		 * the extent states of the range, otherwise
8004 		 * btrfs_finish_ordered_io() will get executed by endio for
8005 		 * other pages, so we can't delete extent states.
8006 		 */
8007 		if (btrfs_dec_test_ordered_pending(inode, &ordered,
8008 						   cur, range_end + 1 - cur)) {
8009 			btrfs_finish_ordered_io(ordered);
8010 			/*
8011 			 * The ordered extent has finished, now we're again
8012 			 * safe to delete all extent states of the range.
8013 			 */
8014 			extra_flags = EXTENT_CLEAR_ALL_BITS;
8015 		}
8016 next:
8017 		if (ordered)
8018 			btrfs_put_ordered_extent(ordered);
8019 		/*
8020 		 * Qgroup reserved space handler
8021 		 * Sector(s) here will be either:
8022 		 *
8023 		 * 1) Already written to disk or bio already finished
8024 		 *    Then its QGROUP_RESERVED bit in io_tree is already cleared.
8025 		 *    Qgroup will be handled by its qgroup_record then.
8026 		 *    btrfs_qgroup_free_data() call will do nothing here.
8027 		 *
8028 		 * 2) Not written to disk yet
8029 		 *    Then btrfs_qgroup_free_data() call will clear the
8030 		 *    QGROUP_RESERVED bit of its io_tree, and free the qgroup
8031 		 *    reserved data space.
8032 		 *    Since the IO will never happen for this page.
8033 		 */
8034 		btrfs_qgroup_free_data(inode, NULL, cur, range_end + 1 - cur);
8035 		if (!inode_evicting) {
8036 			clear_extent_bit(tree, cur, range_end, EXTENT_LOCKED |
8037 				 EXTENT_DELALLOC | EXTENT_UPTODATE |
8038 				 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG |
8039 				 extra_flags, &cached_state);
8040 		}
8041 		cur = range_end + 1;
8042 	}
8043 	/*
8044 	 * We have iterated through all ordered extents of the page, the page
8045 	 * should not have Ordered (Private2) anymore, or the above iteration
8046 	 * did something wrong.
8047 	 */
8048 	ASSERT(!folio_test_ordered(folio));
8049 	btrfs_page_clear_checked(fs_info, &folio->page, folio_pos(folio), folio_size(folio));
8050 	if (!inode_evicting)
8051 		__btrfs_release_folio(folio, GFP_NOFS);
8052 	clear_page_extent_mapped(&folio->page);
8053 }
8054 
8055 /*
8056  * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8057  * called from a page fault handler when a page is first dirtied. Hence we must
8058  * be careful to check for EOF conditions here. We set the page up correctly
8059  * for a written page which means we get ENOSPC checking when writing into
8060  * holes and correct delalloc and unwritten extent mapping on filesystems that
8061  * support these features.
8062  *
8063  * We are not allowed to take the i_mutex here so we have to play games to
8064  * protect against truncate races as the page could now be beyond EOF.  Because
8065  * truncate_setsize() writes the inode size before removing pages, once we have
8066  * the page lock we can determine safely if the page is beyond EOF. If it is not
8067  * beyond EOF, then the page is guaranteed safe against truncation until we
8068  * unlock the page.
8069  */
8070 vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf)
8071 {
8072 	struct page *page = vmf->page;
8073 	struct inode *inode = file_inode(vmf->vma->vm_file);
8074 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8075 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8076 	struct btrfs_ordered_extent *ordered;
8077 	struct extent_state *cached_state = NULL;
8078 	struct extent_changeset *data_reserved = NULL;
8079 	unsigned long zero_start;
8080 	loff_t size;
8081 	vm_fault_t ret;
8082 	int ret2;
8083 	int reserved = 0;
8084 	u64 reserved_space;
8085 	u64 page_start;
8086 	u64 page_end;
8087 	u64 end;
8088 
8089 	reserved_space = PAGE_SIZE;
8090 
8091 	sb_start_pagefault(inode->i_sb);
8092 	page_start = page_offset(page);
8093 	page_end = page_start + PAGE_SIZE - 1;
8094 	end = page_end;
8095 
8096 	/*
8097 	 * Reserving delalloc space after obtaining the page lock can lead to
8098 	 * deadlock. For example, if a dirty page is locked by this function
8099 	 * and the call to btrfs_delalloc_reserve_space() ends up triggering
8100 	 * dirty page write out, then the btrfs_writepages() function could
8101 	 * end up waiting indefinitely to get a lock on the page currently
8102 	 * being processed by btrfs_page_mkwrite() function.
8103 	 */
8104 	ret2 = btrfs_delalloc_reserve_space(BTRFS_I(inode), &data_reserved,
8105 					    page_start, reserved_space);
8106 	if (!ret2) {
8107 		ret2 = file_update_time(vmf->vma->vm_file);
8108 		reserved = 1;
8109 	}
8110 	if (ret2) {
8111 		ret = vmf_error(ret2);
8112 		if (reserved)
8113 			goto out;
8114 		goto out_noreserve;
8115 	}
8116 
8117 	ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
8118 again:
8119 	down_read(&BTRFS_I(inode)->i_mmap_lock);
8120 	lock_page(page);
8121 	size = i_size_read(inode);
8122 
8123 	if ((page->mapping != inode->i_mapping) ||
8124 	    (page_start >= size)) {
8125 		/* page got truncated out from underneath us */
8126 		goto out_unlock;
8127 	}
8128 	wait_on_page_writeback(page);
8129 
8130 	lock_extent(io_tree, page_start, page_end, &cached_state);
8131 	ret2 = set_page_extent_mapped(page);
8132 	if (ret2 < 0) {
8133 		ret = vmf_error(ret2);
8134 		unlock_extent(io_tree, page_start, page_end, &cached_state);
8135 		goto out_unlock;
8136 	}
8137 
8138 	/*
8139 	 * we can't set the delalloc bits if there are pending ordered
8140 	 * extents.  Drop our locks and wait for them to finish
8141 	 */
8142 	ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
8143 			PAGE_SIZE);
8144 	if (ordered) {
8145 		unlock_extent(io_tree, page_start, page_end, &cached_state);
8146 		unlock_page(page);
8147 		up_read(&BTRFS_I(inode)->i_mmap_lock);
8148 		btrfs_start_ordered_extent(ordered);
8149 		btrfs_put_ordered_extent(ordered);
8150 		goto again;
8151 	}
8152 
8153 	if (page->index == ((size - 1) >> PAGE_SHIFT)) {
8154 		reserved_space = round_up(size - page_start,
8155 					  fs_info->sectorsize);
8156 		if (reserved_space < PAGE_SIZE) {
8157 			end = page_start + reserved_space - 1;
8158 			btrfs_delalloc_release_space(BTRFS_I(inode),
8159 					data_reserved, page_start,
8160 					PAGE_SIZE - reserved_space, true);
8161 		}
8162 	}
8163 
8164 	/*
8165 	 * page_mkwrite gets called when the page is firstly dirtied after it's
8166 	 * faulted in, but write(2) could also dirty a page and set delalloc
8167 	 * bits, thus in this case for space account reason, we still need to
8168 	 * clear any delalloc bits within this page range since we have to
8169 	 * reserve data&meta space before lock_page() (see above comments).
8170 	 */
8171 	clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end,
8172 			  EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
8173 			  EXTENT_DEFRAG, &cached_state);
8174 
8175 	ret2 = btrfs_set_extent_delalloc(BTRFS_I(inode), page_start, end, 0,
8176 					&cached_state);
8177 	if (ret2) {
8178 		unlock_extent(io_tree, page_start, page_end, &cached_state);
8179 		ret = VM_FAULT_SIGBUS;
8180 		goto out_unlock;
8181 	}
8182 
8183 	/* page is wholly or partially inside EOF */
8184 	if (page_start + PAGE_SIZE > size)
8185 		zero_start = offset_in_page(size);
8186 	else
8187 		zero_start = PAGE_SIZE;
8188 
8189 	if (zero_start != PAGE_SIZE)
8190 		memzero_page(page, zero_start, PAGE_SIZE - zero_start);
8191 
8192 	btrfs_page_clear_checked(fs_info, page, page_start, PAGE_SIZE);
8193 	btrfs_page_set_dirty(fs_info, page, page_start, end + 1 - page_start);
8194 	btrfs_page_set_uptodate(fs_info, page, page_start, end + 1 - page_start);
8195 
8196 	btrfs_set_inode_last_sub_trans(BTRFS_I(inode));
8197 
8198 	unlock_extent(io_tree, page_start, page_end, &cached_state);
8199 	up_read(&BTRFS_I(inode)->i_mmap_lock);
8200 
8201 	btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
8202 	sb_end_pagefault(inode->i_sb);
8203 	extent_changeset_free(data_reserved);
8204 	return VM_FAULT_LOCKED;
8205 
8206 out_unlock:
8207 	unlock_page(page);
8208 	up_read(&BTRFS_I(inode)->i_mmap_lock);
8209 out:
8210 	btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
8211 	btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved, page_start,
8212 				     reserved_space, (ret != 0));
8213 out_noreserve:
8214 	sb_end_pagefault(inode->i_sb);
8215 	extent_changeset_free(data_reserved);
8216 	return ret;
8217 }
8218 
8219 static int btrfs_truncate(struct btrfs_inode *inode, bool skip_writeback)
8220 {
8221 	struct btrfs_truncate_control control = {
8222 		.inode = inode,
8223 		.ino = btrfs_ino(inode),
8224 		.min_type = BTRFS_EXTENT_DATA_KEY,
8225 		.clear_extent_range = true,
8226 	};
8227 	struct btrfs_root *root = inode->root;
8228 	struct btrfs_fs_info *fs_info = root->fs_info;
8229 	struct btrfs_block_rsv *rsv;
8230 	int ret;
8231 	struct btrfs_trans_handle *trans;
8232 	u64 mask = fs_info->sectorsize - 1;
8233 	const u64 min_size = btrfs_calc_metadata_size(fs_info, 1);
8234 
8235 	if (!skip_writeback) {
8236 		ret = btrfs_wait_ordered_range(&inode->vfs_inode,
8237 					       inode->vfs_inode.i_size & (~mask),
8238 					       (u64)-1);
8239 		if (ret)
8240 			return ret;
8241 	}
8242 
8243 	/*
8244 	 * Yes ladies and gentlemen, this is indeed ugly.  We have a couple of
8245 	 * things going on here:
8246 	 *
8247 	 * 1) We need to reserve space to update our inode.
8248 	 *
8249 	 * 2) We need to have something to cache all the space that is going to
8250 	 * be free'd up by the truncate operation, but also have some slack
8251 	 * space reserved in case it uses space during the truncate (thank you
8252 	 * very much snapshotting).
8253 	 *
8254 	 * And we need these to be separate.  The fact is we can use a lot of
8255 	 * space doing the truncate, and we have no earthly idea how much space
8256 	 * we will use, so we need the truncate reservation to be separate so it
8257 	 * doesn't end up using space reserved for updating the inode.  We also
8258 	 * need to be able to stop the transaction and start a new one, which
8259 	 * means we need to be able to update the inode several times, and we
8260 	 * have no idea of knowing how many times that will be, so we can't just
8261 	 * reserve 1 item for the entirety of the operation, so that has to be
8262 	 * done separately as well.
8263 	 *
8264 	 * So that leaves us with
8265 	 *
8266 	 * 1) rsv - for the truncate reservation, which we will steal from the
8267 	 * transaction reservation.
8268 	 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for
8269 	 * updating the inode.
8270 	 */
8271 	rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
8272 	if (!rsv)
8273 		return -ENOMEM;
8274 	rsv->size = min_size;
8275 	rsv->failfast = true;
8276 
8277 	/*
8278 	 * 1 for the truncate slack space
8279 	 * 1 for updating the inode.
8280 	 */
8281 	trans = btrfs_start_transaction(root, 2);
8282 	if (IS_ERR(trans)) {
8283 		ret = PTR_ERR(trans);
8284 		goto out;
8285 	}
8286 
8287 	/* Migrate the slack space for the truncate to our reserve */
8288 	ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
8289 				      min_size, false);
8290 	/*
8291 	 * We have reserved 2 metadata units when we started the transaction and
8292 	 * min_size matches 1 unit, so this should never fail, but if it does,
8293 	 * it's not critical we just fail truncation.
8294 	 */
8295 	if (WARN_ON(ret)) {
8296 		btrfs_end_transaction(trans);
8297 		goto out;
8298 	}
8299 
8300 	trans->block_rsv = rsv;
8301 
8302 	while (1) {
8303 		struct extent_state *cached_state = NULL;
8304 		const u64 new_size = inode->vfs_inode.i_size;
8305 		const u64 lock_start = ALIGN_DOWN(new_size, fs_info->sectorsize);
8306 
8307 		control.new_size = new_size;
8308 		lock_extent(&inode->io_tree, lock_start, (u64)-1, &cached_state);
8309 		/*
8310 		 * We want to drop from the next block forward in case this new
8311 		 * size is not block aligned since we will be keeping the last
8312 		 * block of the extent just the way it is.
8313 		 */
8314 		btrfs_drop_extent_map_range(inode,
8315 					    ALIGN(new_size, fs_info->sectorsize),
8316 					    (u64)-1, false);
8317 
8318 		ret = btrfs_truncate_inode_items(trans, root, &control);
8319 
8320 		inode_sub_bytes(&inode->vfs_inode, control.sub_bytes);
8321 		btrfs_inode_safe_disk_i_size_write(inode, control.last_size);
8322 
8323 		unlock_extent(&inode->io_tree, lock_start, (u64)-1, &cached_state);
8324 
8325 		trans->block_rsv = &fs_info->trans_block_rsv;
8326 		if (ret != -ENOSPC && ret != -EAGAIN)
8327 			break;
8328 
8329 		ret = btrfs_update_inode(trans, root, inode);
8330 		if (ret)
8331 			break;
8332 
8333 		btrfs_end_transaction(trans);
8334 		btrfs_btree_balance_dirty(fs_info);
8335 
8336 		trans = btrfs_start_transaction(root, 2);
8337 		if (IS_ERR(trans)) {
8338 			ret = PTR_ERR(trans);
8339 			trans = NULL;
8340 			break;
8341 		}
8342 
8343 		btrfs_block_rsv_release(fs_info, rsv, -1, NULL);
8344 		ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
8345 					      rsv, min_size, false);
8346 		/*
8347 		 * We have reserved 2 metadata units when we started the
8348 		 * transaction and min_size matches 1 unit, so this should never
8349 		 * fail, but if it does, it's not critical we just fail truncation.
8350 		 */
8351 		if (WARN_ON(ret))
8352 			break;
8353 
8354 		trans->block_rsv = rsv;
8355 	}
8356 
8357 	/*
8358 	 * We can't call btrfs_truncate_block inside a trans handle as we could
8359 	 * deadlock with freeze, if we got BTRFS_NEED_TRUNCATE_BLOCK then we
8360 	 * know we've truncated everything except the last little bit, and can
8361 	 * do btrfs_truncate_block and then update the disk_i_size.
8362 	 */
8363 	if (ret == BTRFS_NEED_TRUNCATE_BLOCK) {
8364 		btrfs_end_transaction(trans);
8365 		btrfs_btree_balance_dirty(fs_info);
8366 
8367 		ret = btrfs_truncate_block(inode, inode->vfs_inode.i_size, 0, 0);
8368 		if (ret)
8369 			goto out;
8370 		trans = btrfs_start_transaction(root, 1);
8371 		if (IS_ERR(trans)) {
8372 			ret = PTR_ERR(trans);
8373 			goto out;
8374 		}
8375 		btrfs_inode_safe_disk_i_size_write(inode, 0);
8376 	}
8377 
8378 	if (trans) {
8379 		int ret2;
8380 
8381 		trans->block_rsv = &fs_info->trans_block_rsv;
8382 		ret2 = btrfs_update_inode(trans, root, inode);
8383 		if (ret2 && !ret)
8384 			ret = ret2;
8385 
8386 		ret2 = btrfs_end_transaction(trans);
8387 		if (ret2 && !ret)
8388 			ret = ret2;
8389 		btrfs_btree_balance_dirty(fs_info);
8390 	}
8391 out:
8392 	btrfs_free_block_rsv(fs_info, rsv);
8393 	/*
8394 	 * So if we truncate and then write and fsync we normally would just
8395 	 * write the extents that changed, which is a problem if we need to
8396 	 * first truncate that entire inode.  So set this flag so we write out
8397 	 * all of the extents in the inode to the sync log so we're completely
8398 	 * safe.
8399 	 *
8400 	 * If no extents were dropped or trimmed we don't need to force the next
8401 	 * fsync to truncate all the inode's items from the log and re-log them
8402 	 * all. This means the truncate operation did not change the file size,
8403 	 * or changed it to a smaller size but there was only an implicit hole
8404 	 * between the old i_size and the new i_size, and there were no prealloc
8405 	 * extents beyond i_size to drop.
8406 	 */
8407 	if (control.extents_found > 0)
8408 		btrfs_set_inode_full_sync(inode);
8409 
8410 	return ret;
8411 }
8412 
8413 struct inode *btrfs_new_subvol_inode(struct mnt_idmap *idmap,
8414 				     struct inode *dir)
8415 {
8416 	struct inode *inode;
8417 
8418 	inode = new_inode(dir->i_sb);
8419 	if (inode) {
8420 		/*
8421 		 * Subvolumes don't inherit the sgid bit or the parent's gid if
8422 		 * the parent's sgid bit is set. This is probably a bug.
8423 		 */
8424 		inode_init_owner(idmap, inode, NULL,
8425 				 S_IFDIR | (~current_umask() & S_IRWXUGO));
8426 		inode->i_op = &btrfs_dir_inode_operations;
8427 		inode->i_fop = &btrfs_dir_file_operations;
8428 	}
8429 	return inode;
8430 }
8431 
8432 struct inode *btrfs_alloc_inode(struct super_block *sb)
8433 {
8434 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
8435 	struct btrfs_inode *ei;
8436 	struct inode *inode;
8437 
8438 	ei = alloc_inode_sb(sb, btrfs_inode_cachep, GFP_KERNEL);
8439 	if (!ei)
8440 		return NULL;
8441 
8442 	ei->root = NULL;
8443 	ei->generation = 0;
8444 	ei->last_trans = 0;
8445 	ei->last_sub_trans = 0;
8446 	ei->logged_trans = 0;
8447 	ei->delalloc_bytes = 0;
8448 	ei->new_delalloc_bytes = 0;
8449 	ei->defrag_bytes = 0;
8450 	ei->disk_i_size = 0;
8451 	ei->flags = 0;
8452 	ei->ro_flags = 0;
8453 	ei->csum_bytes = 0;
8454 	ei->index_cnt = (u64)-1;
8455 	ei->dir_index = 0;
8456 	ei->last_unlink_trans = 0;
8457 	ei->last_reflink_trans = 0;
8458 	ei->last_log_commit = 0;
8459 
8460 	spin_lock_init(&ei->lock);
8461 	ei->outstanding_extents = 0;
8462 	if (sb->s_magic != BTRFS_TEST_MAGIC)
8463 		btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv,
8464 					      BTRFS_BLOCK_RSV_DELALLOC);
8465 	ei->runtime_flags = 0;
8466 	ei->prop_compress = BTRFS_COMPRESS_NONE;
8467 	ei->defrag_compress = BTRFS_COMPRESS_NONE;
8468 
8469 	ei->delayed_node = NULL;
8470 
8471 	ei->i_otime.tv_sec = 0;
8472 	ei->i_otime.tv_nsec = 0;
8473 
8474 	inode = &ei->vfs_inode;
8475 	extent_map_tree_init(&ei->extent_tree);
8476 	extent_io_tree_init(fs_info, &ei->io_tree, IO_TREE_INODE_IO);
8477 	ei->io_tree.inode = ei;
8478 	extent_io_tree_init(fs_info, &ei->file_extent_tree,
8479 			    IO_TREE_INODE_FILE_EXTENT);
8480 	mutex_init(&ei->log_mutex);
8481 	btrfs_ordered_inode_tree_init(&ei->ordered_tree);
8482 	INIT_LIST_HEAD(&ei->delalloc_inodes);
8483 	INIT_LIST_HEAD(&ei->delayed_iput);
8484 	RB_CLEAR_NODE(&ei->rb_node);
8485 	init_rwsem(&ei->i_mmap_lock);
8486 
8487 	return inode;
8488 }
8489 
8490 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
8491 void btrfs_test_destroy_inode(struct inode *inode)
8492 {
8493 	btrfs_drop_extent_map_range(BTRFS_I(inode), 0, (u64)-1, false);
8494 	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8495 }
8496 #endif
8497 
8498 void btrfs_free_inode(struct inode *inode)
8499 {
8500 	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8501 }
8502 
8503 void btrfs_destroy_inode(struct inode *vfs_inode)
8504 {
8505 	struct btrfs_ordered_extent *ordered;
8506 	struct btrfs_inode *inode = BTRFS_I(vfs_inode);
8507 	struct btrfs_root *root = inode->root;
8508 	bool freespace_inode;
8509 
8510 	WARN_ON(!hlist_empty(&vfs_inode->i_dentry));
8511 	WARN_ON(vfs_inode->i_data.nrpages);
8512 	WARN_ON(inode->block_rsv.reserved);
8513 	WARN_ON(inode->block_rsv.size);
8514 	WARN_ON(inode->outstanding_extents);
8515 	if (!S_ISDIR(vfs_inode->i_mode)) {
8516 		WARN_ON(inode->delalloc_bytes);
8517 		WARN_ON(inode->new_delalloc_bytes);
8518 	}
8519 	WARN_ON(inode->csum_bytes);
8520 	WARN_ON(inode->defrag_bytes);
8521 
8522 	/*
8523 	 * This can happen where we create an inode, but somebody else also
8524 	 * created the same inode and we need to destroy the one we already
8525 	 * created.
8526 	 */
8527 	if (!root)
8528 		return;
8529 
8530 	/*
8531 	 * If this is a free space inode do not take the ordered extents lockdep
8532 	 * map.
8533 	 */
8534 	freespace_inode = btrfs_is_free_space_inode(inode);
8535 
8536 	while (1) {
8537 		ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
8538 		if (!ordered)
8539 			break;
8540 		else {
8541 			btrfs_err(root->fs_info,
8542 				  "found ordered extent %llu %llu on inode cleanup",
8543 				  ordered->file_offset, ordered->num_bytes);
8544 
8545 			if (!freespace_inode)
8546 				btrfs_lockdep_acquire(root->fs_info, btrfs_ordered_extent);
8547 
8548 			btrfs_remove_ordered_extent(inode, ordered);
8549 			btrfs_put_ordered_extent(ordered);
8550 			btrfs_put_ordered_extent(ordered);
8551 		}
8552 	}
8553 	btrfs_qgroup_check_reserved_leak(inode);
8554 	inode_tree_del(inode);
8555 	btrfs_drop_extent_map_range(inode, 0, (u64)-1, false);
8556 	btrfs_inode_clear_file_extent_range(inode, 0, (u64)-1);
8557 	btrfs_put_root(inode->root);
8558 }
8559 
8560 int btrfs_drop_inode(struct inode *inode)
8561 {
8562 	struct btrfs_root *root = BTRFS_I(inode)->root;
8563 
8564 	if (root == NULL)
8565 		return 1;
8566 
8567 	/* the snap/subvol tree is on deleting */
8568 	if (btrfs_root_refs(&root->root_item) == 0)
8569 		return 1;
8570 	else
8571 		return generic_drop_inode(inode);
8572 }
8573 
8574 static void init_once(void *foo)
8575 {
8576 	struct btrfs_inode *ei = foo;
8577 
8578 	inode_init_once(&ei->vfs_inode);
8579 }
8580 
8581 void __cold btrfs_destroy_cachep(void)
8582 {
8583 	/*
8584 	 * Make sure all delayed rcu free inodes are flushed before we
8585 	 * destroy cache.
8586 	 */
8587 	rcu_barrier();
8588 	bioset_exit(&btrfs_dio_bioset);
8589 	kmem_cache_destroy(btrfs_inode_cachep);
8590 }
8591 
8592 int __init btrfs_init_cachep(void)
8593 {
8594 	btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
8595 			sizeof(struct btrfs_inode), 0,
8596 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT,
8597 			init_once);
8598 	if (!btrfs_inode_cachep)
8599 		goto fail;
8600 
8601 	if (bioset_init(&btrfs_dio_bioset, BIO_POOL_SIZE,
8602 			offsetof(struct btrfs_dio_private, bbio.bio),
8603 			BIOSET_NEED_BVECS))
8604 		goto fail;
8605 
8606 	return 0;
8607 fail:
8608 	btrfs_destroy_cachep();
8609 	return -ENOMEM;
8610 }
8611 
8612 static int btrfs_getattr(struct mnt_idmap *idmap,
8613 			 const struct path *path, struct kstat *stat,
8614 			 u32 request_mask, unsigned int flags)
8615 {
8616 	u64 delalloc_bytes;
8617 	u64 inode_bytes;
8618 	struct inode *inode = d_inode(path->dentry);
8619 	u32 blocksize = inode->i_sb->s_blocksize;
8620 	u32 bi_flags = BTRFS_I(inode)->flags;
8621 	u32 bi_ro_flags = BTRFS_I(inode)->ro_flags;
8622 
8623 	stat->result_mask |= STATX_BTIME;
8624 	stat->btime.tv_sec = BTRFS_I(inode)->i_otime.tv_sec;
8625 	stat->btime.tv_nsec = BTRFS_I(inode)->i_otime.tv_nsec;
8626 	if (bi_flags & BTRFS_INODE_APPEND)
8627 		stat->attributes |= STATX_ATTR_APPEND;
8628 	if (bi_flags & BTRFS_INODE_COMPRESS)
8629 		stat->attributes |= STATX_ATTR_COMPRESSED;
8630 	if (bi_flags & BTRFS_INODE_IMMUTABLE)
8631 		stat->attributes |= STATX_ATTR_IMMUTABLE;
8632 	if (bi_flags & BTRFS_INODE_NODUMP)
8633 		stat->attributes |= STATX_ATTR_NODUMP;
8634 	if (bi_ro_flags & BTRFS_INODE_RO_VERITY)
8635 		stat->attributes |= STATX_ATTR_VERITY;
8636 
8637 	stat->attributes_mask |= (STATX_ATTR_APPEND |
8638 				  STATX_ATTR_COMPRESSED |
8639 				  STATX_ATTR_IMMUTABLE |
8640 				  STATX_ATTR_NODUMP);
8641 
8642 	generic_fillattr(idmap, request_mask, inode, stat);
8643 	stat->dev = BTRFS_I(inode)->root->anon_dev;
8644 
8645 	spin_lock(&BTRFS_I(inode)->lock);
8646 	delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes;
8647 	inode_bytes = inode_get_bytes(inode);
8648 	spin_unlock(&BTRFS_I(inode)->lock);
8649 	stat->blocks = (ALIGN(inode_bytes, blocksize) +
8650 			ALIGN(delalloc_bytes, blocksize)) >> SECTOR_SHIFT;
8651 	return 0;
8652 }
8653 
8654 static int btrfs_rename_exchange(struct inode *old_dir,
8655 			      struct dentry *old_dentry,
8656 			      struct inode *new_dir,
8657 			      struct dentry *new_dentry)
8658 {
8659 	struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
8660 	struct btrfs_trans_handle *trans;
8661 	unsigned int trans_num_items;
8662 	struct btrfs_root *root = BTRFS_I(old_dir)->root;
8663 	struct btrfs_root *dest = BTRFS_I(new_dir)->root;
8664 	struct inode *new_inode = new_dentry->d_inode;
8665 	struct inode *old_inode = old_dentry->d_inode;
8666 	struct btrfs_rename_ctx old_rename_ctx;
8667 	struct btrfs_rename_ctx new_rename_ctx;
8668 	u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
8669 	u64 new_ino = btrfs_ino(BTRFS_I(new_inode));
8670 	u64 old_idx = 0;
8671 	u64 new_idx = 0;
8672 	int ret;
8673 	int ret2;
8674 	bool need_abort = false;
8675 	struct fscrypt_name old_fname, new_fname;
8676 	struct fscrypt_str *old_name, *new_name;
8677 
8678 	/*
8679 	 * For non-subvolumes allow exchange only within one subvolume, in the
8680 	 * same inode namespace. Two subvolumes (represented as directory) can
8681 	 * be exchanged as they're a logical link and have a fixed inode number.
8682 	 */
8683 	if (root != dest &&
8684 	    (old_ino != BTRFS_FIRST_FREE_OBJECTID ||
8685 	     new_ino != BTRFS_FIRST_FREE_OBJECTID))
8686 		return -EXDEV;
8687 
8688 	ret = fscrypt_setup_filename(old_dir, &old_dentry->d_name, 0, &old_fname);
8689 	if (ret)
8690 		return ret;
8691 
8692 	ret = fscrypt_setup_filename(new_dir, &new_dentry->d_name, 0, &new_fname);
8693 	if (ret) {
8694 		fscrypt_free_filename(&old_fname);
8695 		return ret;
8696 	}
8697 
8698 	old_name = &old_fname.disk_name;
8699 	new_name = &new_fname.disk_name;
8700 
8701 	/* close the race window with snapshot create/destroy ioctl */
8702 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID ||
8703 	    new_ino == BTRFS_FIRST_FREE_OBJECTID)
8704 		down_read(&fs_info->subvol_sem);
8705 
8706 	/*
8707 	 * For each inode:
8708 	 * 1 to remove old dir item
8709 	 * 1 to remove old dir index
8710 	 * 1 to add new dir item
8711 	 * 1 to add new dir index
8712 	 * 1 to update parent inode
8713 	 *
8714 	 * If the parents are the same, we only need to account for one
8715 	 */
8716 	trans_num_items = (old_dir == new_dir ? 9 : 10);
8717 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
8718 		/*
8719 		 * 1 to remove old root ref
8720 		 * 1 to remove old root backref
8721 		 * 1 to add new root ref
8722 		 * 1 to add new root backref
8723 		 */
8724 		trans_num_items += 4;
8725 	} else {
8726 		/*
8727 		 * 1 to update inode item
8728 		 * 1 to remove old inode ref
8729 		 * 1 to add new inode ref
8730 		 */
8731 		trans_num_items += 3;
8732 	}
8733 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
8734 		trans_num_items += 4;
8735 	else
8736 		trans_num_items += 3;
8737 	trans = btrfs_start_transaction(root, trans_num_items);
8738 	if (IS_ERR(trans)) {
8739 		ret = PTR_ERR(trans);
8740 		goto out_notrans;
8741 	}
8742 
8743 	if (dest != root) {
8744 		ret = btrfs_record_root_in_trans(trans, dest);
8745 		if (ret)
8746 			goto out_fail;
8747 	}
8748 
8749 	/*
8750 	 * We need to find a free sequence number both in the source and
8751 	 * in the destination directory for the exchange.
8752 	 */
8753 	ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx);
8754 	if (ret)
8755 		goto out_fail;
8756 	ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx);
8757 	if (ret)
8758 		goto out_fail;
8759 
8760 	BTRFS_I(old_inode)->dir_index = 0ULL;
8761 	BTRFS_I(new_inode)->dir_index = 0ULL;
8762 
8763 	/* Reference for the source. */
8764 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
8765 		/* force full log commit if subvolume involved. */
8766 		btrfs_set_log_full_commit(trans);
8767 	} else {
8768 		ret = btrfs_insert_inode_ref(trans, dest, new_name, old_ino,
8769 					     btrfs_ino(BTRFS_I(new_dir)),
8770 					     old_idx);
8771 		if (ret)
8772 			goto out_fail;
8773 		need_abort = true;
8774 	}
8775 
8776 	/* And now for the dest. */
8777 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
8778 		/* force full log commit if subvolume involved. */
8779 		btrfs_set_log_full_commit(trans);
8780 	} else {
8781 		ret = btrfs_insert_inode_ref(trans, root, old_name, new_ino,
8782 					     btrfs_ino(BTRFS_I(old_dir)),
8783 					     new_idx);
8784 		if (ret) {
8785 			if (need_abort)
8786 				btrfs_abort_transaction(trans, ret);
8787 			goto out_fail;
8788 		}
8789 	}
8790 
8791 	/* Update inode version and ctime/mtime. */
8792 	inode_inc_iversion(old_dir);
8793 	inode_inc_iversion(new_dir);
8794 	inode_inc_iversion(old_inode);
8795 	inode_inc_iversion(new_inode);
8796 	simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
8797 
8798 	if (old_dentry->d_parent != new_dentry->d_parent) {
8799 		btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
8800 					BTRFS_I(old_inode), true);
8801 		btrfs_record_unlink_dir(trans, BTRFS_I(new_dir),
8802 					BTRFS_I(new_inode), true);
8803 	}
8804 
8805 	/* src is a subvolume */
8806 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
8807 		ret = btrfs_unlink_subvol(trans, BTRFS_I(old_dir), old_dentry);
8808 	} else { /* src is an inode */
8809 		ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir),
8810 					   BTRFS_I(old_dentry->d_inode),
8811 					   old_name, &old_rename_ctx);
8812 		if (!ret)
8813 			ret = btrfs_update_inode(trans, root, BTRFS_I(old_inode));
8814 	}
8815 	if (ret) {
8816 		btrfs_abort_transaction(trans, ret);
8817 		goto out_fail;
8818 	}
8819 
8820 	/* dest is a subvolume */
8821 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
8822 		ret = btrfs_unlink_subvol(trans, BTRFS_I(new_dir), new_dentry);
8823 	} else { /* dest is an inode */
8824 		ret = __btrfs_unlink_inode(trans, BTRFS_I(new_dir),
8825 					   BTRFS_I(new_dentry->d_inode),
8826 					   new_name, &new_rename_ctx);
8827 		if (!ret)
8828 			ret = btrfs_update_inode(trans, dest, BTRFS_I(new_inode));
8829 	}
8830 	if (ret) {
8831 		btrfs_abort_transaction(trans, ret);
8832 		goto out_fail;
8833 	}
8834 
8835 	ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
8836 			     new_name, 0, old_idx);
8837 	if (ret) {
8838 		btrfs_abort_transaction(trans, ret);
8839 		goto out_fail;
8840 	}
8841 
8842 	ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode),
8843 			     old_name, 0, new_idx);
8844 	if (ret) {
8845 		btrfs_abort_transaction(trans, ret);
8846 		goto out_fail;
8847 	}
8848 
8849 	if (old_inode->i_nlink == 1)
8850 		BTRFS_I(old_inode)->dir_index = old_idx;
8851 	if (new_inode->i_nlink == 1)
8852 		BTRFS_I(new_inode)->dir_index = new_idx;
8853 
8854 	/*
8855 	 * Now pin the logs of the roots. We do it to ensure that no other task
8856 	 * can sync the logs while we are in progress with the rename, because
8857 	 * that could result in an inconsistency in case any of the inodes that
8858 	 * are part of this rename operation were logged before.
8859 	 */
8860 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
8861 		btrfs_pin_log_trans(root);
8862 	if (new_ino != BTRFS_FIRST_FREE_OBJECTID)
8863 		btrfs_pin_log_trans(dest);
8864 
8865 	/* Do the log updates for all inodes. */
8866 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
8867 		btrfs_log_new_name(trans, old_dentry, BTRFS_I(old_dir),
8868 				   old_rename_ctx.index, new_dentry->d_parent);
8869 	if (new_ino != BTRFS_FIRST_FREE_OBJECTID)
8870 		btrfs_log_new_name(trans, new_dentry, BTRFS_I(new_dir),
8871 				   new_rename_ctx.index, old_dentry->d_parent);
8872 
8873 	/* Now unpin the logs. */
8874 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
8875 		btrfs_end_log_trans(root);
8876 	if (new_ino != BTRFS_FIRST_FREE_OBJECTID)
8877 		btrfs_end_log_trans(dest);
8878 out_fail:
8879 	ret2 = btrfs_end_transaction(trans);
8880 	ret = ret ? ret : ret2;
8881 out_notrans:
8882 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID ||
8883 	    old_ino == BTRFS_FIRST_FREE_OBJECTID)
8884 		up_read(&fs_info->subvol_sem);
8885 
8886 	fscrypt_free_filename(&new_fname);
8887 	fscrypt_free_filename(&old_fname);
8888 	return ret;
8889 }
8890 
8891 static struct inode *new_whiteout_inode(struct mnt_idmap *idmap,
8892 					struct inode *dir)
8893 {
8894 	struct inode *inode;
8895 
8896 	inode = new_inode(dir->i_sb);
8897 	if (inode) {
8898 		inode_init_owner(idmap, inode, dir,
8899 				 S_IFCHR | WHITEOUT_MODE);
8900 		inode->i_op = &btrfs_special_inode_operations;
8901 		init_special_inode(inode, inode->i_mode, WHITEOUT_DEV);
8902 	}
8903 	return inode;
8904 }
8905 
8906 static int btrfs_rename(struct mnt_idmap *idmap,
8907 			struct inode *old_dir, struct dentry *old_dentry,
8908 			struct inode *new_dir, struct dentry *new_dentry,
8909 			unsigned int flags)
8910 {
8911 	struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
8912 	struct btrfs_new_inode_args whiteout_args = {
8913 		.dir = old_dir,
8914 		.dentry = old_dentry,
8915 	};
8916 	struct btrfs_trans_handle *trans;
8917 	unsigned int trans_num_items;
8918 	struct btrfs_root *root = BTRFS_I(old_dir)->root;
8919 	struct btrfs_root *dest = BTRFS_I(new_dir)->root;
8920 	struct inode *new_inode = d_inode(new_dentry);
8921 	struct inode *old_inode = d_inode(old_dentry);
8922 	struct btrfs_rename_ctx rename_ctx;
8923 	u64 index = 0;
8924 	int ret;
8925 	int ret2;
8926 	u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
8927 	struct fscrypt_name old_fname, new_fname;
8928 
8929 	if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
8930 		return -EPERM;
8931 
8932 	/* we only allow rename subvolume link between subvolumes */
8933 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
8934 		return -EXDEV;
8935 
8936 	if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
8937 	    (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID))
8938 		return -ENOTEMPTY;
8939 
8940 	if (S_ISDIR(old_inode->i_mode) && new_inode &&
8941 	    new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
8942 		return -ENOTEMPTY;
8943 
8944 	ret = fscrypt_setup_filename(old_dir, &old_dentry->d_name, 0, &old_fname);
8945 	if (ret)
8946 		return ret;
8947 
8948 	ret = fscrypt_setup_filename(new_dir, &new_dentry->d_name, 0, &new_fname);
8949 	if (ret) {
8950 		fscrypt_free_filename(&old_fname);
8951 		return ret;
8952 	}
8953 
8954 	/* check for collisions, even if the  name isn't there */
8955 	ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino, &new_fname.disk_name);
8956 	if (ret) {
8957 		if (ret == -EEXIST) {
8958 			/* we shouldn't get
8959 			 * eexist without a new_inode */
8960 			if (WARN_ON(!new_inode)) {
8961 				goto out_fscrypt_names;
8962 			}
8963 		} else {
8964 			/* maybe -EOVERFLOW */
8965 			goto out_fscrypt_names;
8966 		}
8967 	}
8968 	ret = 0;
8969 
8970 	/*
8971 	 * we're using rename to replace one file with another.  Start IO on it
8972 	 * now so  we don't add too much work to the end of the transaction
8973 	 */
8974 	if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
8975 		filemap_flush(old_inode->i_mapping);
8976 
8977 	if (flags & RENAME_WHITEOUT) {
8978 		whiteout_args.inode = new_whiteout_inode(idmap, old_dir);
8979 		if (!whiteout_args.inode) {
8980 			ret = -ENOMEM;
8981 			goto out_fscrypt_names;
8982 		}
8983 		ret = btrfs_new_inode_prepare(&whiteout_args, &trans_num_items);
8984 		if (ret)
8985 			goto out_whiteout_inode;
8986 	} else {
8987 		/* 1 to update the old parent inode. */
8988 		trans_num_items = 1;
8989 	}
8990 
8991 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
8992 		/* Close the race window with snapshot create/destroy ioctl */
8993 		down_read(&fs_info->subvol_sem);
8994 		/*
8995 		 * 1 to remove old root ref
8996 		 * 1 to remove old root backref
8997 		 * 1 to add new root ref
8998 		 * 1 to add new root backref
8999 		 */
9000 		trans_num_items += 4;
9001 	} else {
9002 		/*
9003 		 * 1 to update inode
9004 		 * 1 to remove old inode ref
9005 		 * 1 to add new inode ref
9006 		 */
9007 		trans_num_items += 3;
9008 	}
9009 	/*
9010 	 * 1 to remove old dir item
9011 	 * 1 to remove old dir index
9012 	 * 1 to add new dir item
9013 	 * 1 to add new dir index
9014 	 */
9015 	trans_num_items += 4;
9016 	/* 1 to update new parent inode if it's not the same as the old parent */
9017 	if (new_dir != old_dir)
9018 		trans_num_items++;
9019 	if (new_inode) {
9020 		/*
9021 		 * 1 to update inode
9022 		 * 1 to remove inode ref
9023 		 * 1 to remove dir item
9024 		 * 1 to remove dir index
9025 		 * 1 to possibly add orphan item
9026 		 */
9027 		trans_num_items += 5;
9028 	}
9029 	trans = btrfs_start_transaction(root, trans_num_items);
9030 	if (IS_ERR(trans)) {
9031 		ret = PTR_ERR(trans);
9032 		goto out_notrans;
9033 	}
9034 
9035 	if (dest != root) {
9036 		ret = btrfs_record_root_in_trans(trans, dest);
9037 		if (ret)
9038 			goto out_fail;
9039 	}
9040 
9041 	ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index);
9042 	if (ret)
9043 		goto out_fail;
9044 
9045 	BTRFS_I(old_inode)->dir_index = 0ULL;
9046 	if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9047 		/* force full log commit if subvolume involved. */
9048 		btrfs_set_log_full_commit(trans);
9049 	} else {
9050 		ret = btrfs_insert_inode_ref(trans, dest, &new_fname.disk_name,
9051 					     old_ino, btrfs_ino(BTRFS_I(new_dir)),
9052 					     index);
9053 		if (ret)
9054 			goto out_fail;
9055 	}
9056 
9057 	inode_inc_iversion(old_dir);
9058 	inode_inc_iversion(new_dir);
9059 	inode_inc_iversion(old_inode);
9060 	simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
9061 
9062 	if (old_dentry->d_parent != new_dentry->d_parent)
9063 		btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9064 					BTRFS_I(old_inode), true);
9065 
9066 	if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9067 		ret = btrfs_unlink_subvol(trans, BTRFS_I(old_dir), old_dentry);
9068 	} else {
9069 		ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir),
9070 					   BTRFS_I(d_inode(old_dentry)),
9071 					   &old_fname.disk_name, &rename_ctx);
9072 		if (!ret)
9073 			ret = btrfs_update_inode(trans, root, BTRFS_I(old_inode));
9074 	}
9075 	if (ret) {
9076 		btrfs_abort_transaction(trans, ret);
9077 		goto out_fail;
9078 	}
9079 
9080 	if (new_inode) {
9081 		inode_inc_iversion(new_inode);
9082 		if (unlikely(btrfs_ino(BTRFS_I(new_inode)) ==
9083 			     BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
9084 			ret = btrfs_unlink_subvol(trans, BTRFS_I(new_dir), new_dentry);
9085 			BUG_ON(new_inode->i_nlink == 0);
9086 		} else {
9087 			ret = btrfs_unlink_inode(trans, BTRFS_I(new_dir),
9088 						 BTRFS_I(d_inode(new_dentry)),
9089 						 &new_fname.disk_name);
9090 		}
9091 		if (!ret && new_inode->i_nlink == 0)
9092 			ret = btrfs_orphan_add(trans,
9093 					BTRFS_I(d_inode(new_dentry)));
9094 		if (ret) {
9095 			btrfs_abort_transaction(trans, ret);
9096 			goto out_fail;
9097 		}
9098 	}
9099 
9100 	ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
9101 			     &new_fname.disk_name, 0, index);
9102 	if (ret) {
9103 		btrfs_abort_transaction(trans, ret);
9104 		goto out_fail;
9105 	}
9106 
9107 	if (old_inode->i_nlink == 1)
9108 		BTRFS_I(old_inode)->dir_index = index;
9109 
9110 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
9111 		btrfs_log_new_name(trans, old_dentry, BTRFS_I(old_dir),
9112 				   rename_ctx.index, new_dentry->d_parent);
9113 
9114 	if (flags & RENAME_WHITEOUT) {
9115 		ret = btrfs_create_new_inode(trans, &whiteout_args);
9116 		if (ret) {
9117 			btrfs_abort_transaction(trans, ret);
9118 			goto out_fail;
9119 		} else {
9120 			unlock_new_inode(whiteout_args.inode);
9121 			iput(whiteout_args.inode);
9122 			whiteout_args.inode = NULL;
9123 		}
9124 	}
9125 out_fail:
9126 	ret2 = btrfs_end_transaction(trans);
9127 	ret = ret ? ret : ret2;
9128 out_notrans:
9129 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9130 		up_read(&fs_info->subvol_sem);
9131 	if (flags & RENAME_WHITEOUT)
9132 		btrfs_new_inode_args_destroy(&whiteout_args);
9133 out_whiteout_inode:
9134 	if (flags & RENAME_WHITEOUT)
9135 		iput(whiteout_args.inode);
9136 out_fscrypt_names:
9137 	fscrypt_free_filename(&old_fname);
9138 	fscrypt_free_filename(&new_fname);
9139 	return ret;
9140 }
9141 
9142 static int btrfs_rename2(struct mnt_idmap *idmap, struct inode *old_dir,
9143 			 struct dentry *old_dentry, struct inode *new_dir,
9144 			 struct dentry *new_dentry, unsigned int flags)
9145 {
9146 	int ret;
9147 
9148 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
9149 		return -EINVAL;
9150 
9151 	if (flags & RENAME_EXCHANGE)
9152 		ret = btrfs_rename_exchange(old_dir, old_dentry, new_dir,
9153 					    new_dentry);
9154 	else
9155 		ret = btrfs_rename(idmap, old_dir, old_dentry, new_dir,
9156 				   new_dentry, flags);
9157 
9158 	btrfs_btree_balance_dirty(BTRFS_I(new_dir)->root->fs_info);
9159 
9160 	return ret;
9161 }
9162 
9163 struct btrfs_delalloc_work {
9164 	struct inode *inode;
9165 	struct completion completion;
9166 	struct list_head list;
9167 	struct btrfs_work work;
9168 };
9169 
9170 static void btrfs_run_delalloc_work(struct btrfs_work *work)
9171 {
9172 	struct btrfs_delalloc_work *delalloc_work;
9173 	struct inode *inode;
9174 
9175 	delalloc_work = container_of(work, struct btrfs_delalloc_work,
9176 				     work);
9177 	inode = delalloc_work->inode;
9178 	filemap_flush(inode->i_mapping);
9179 	if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
9180 				&BTRFS_I(inode)->runtime_flags))
9181 		filemap_flush(inode->i_mapping);
9182 
9183 	iput(inode);
9184 	complete(&delalloc_work->completion);
9185 }
9186 
9187 static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode)
9188 {
9189 	struct btrfs_delalloc_work *work;
9190 
9191 	work = kmalloc(sizeof(*work), GFP_NOFS);
9192 	if (!work)
9193 		return NULL;
9194 
9195 	init_completion(&work->completion);
9196 	INIT_LIST_HEAD(&work->list);
9197 	work->inode = inode;
9198 	btrfs_init_work(&work->work, btrfs_run_delalloc_work, NULL, NULL);
9199 
9200 	return work;
9201 }
9202 
9203 /*
9204  * some fairly slow code that needs optimization. This walks the list
9205  * of all the inodes with pending delalloc and forces them to disk.
9206  */
9207 static int start_delalloc_inodes(struct btrfs_root *root,
9208 				 struct writeback_control *wbc, bool snapshot,
9209 				 bool in_reclaim_context)
9210 {
9211 	struct btrfs_inode *binode;
9212 	struct inode *inode;
9213 	struct btrfs_delalloc_work *work, *next;
9214 	LIST_HEAD(works);
9215 	LIST_HEAD(splice);
9216 	int ret = 0;
9217 	bool full_flush = wbc->nr_to_write == LONG_MAX;
9218 
9219 	mutex_lock(&root->delalloc_mutex);
9220 	spin_lock(&root->delalloc_lock);
9221 	list_splice_init(&root->delalloc_inodes, &splice);
9222 	while (!list_empty(&splice)) {
9223 		binode = list_entry(splice.next, struct btrfs_inode,
9224 				    delalloc_inodes);
9225 
9226 		list_move_tail(&binode->delalloc_inodes,
9227 			       &root->delalloc_inodes);
9228 
9229 		if (in_reclaim_context &&
9230 		    test_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &binode->runtime_flags))
9231 			continue;
9232 
9233 		inode = igrab(&binode->vfs_inode);
9234 		if (!inode) {
9235 			cond_resched_lock(&root->delalloc_lock);
9236 			continue;
9237 		}
9238 		spin_unlock(&root->delalloc_lock);
9239 
9240 		if (snapshot)
9241 			set_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
9242 				&binode->runtime_flags);
9243 		if (full_flush) {
9244 			work = btrfs_alloc_delalloc_work(inode);
9245 			if (!work) {
9246 				iput(inode);
9247 				ret = -ENOMEM;
9248 				goto out;
9249 			}
9250 			list_add_tail(&work->list, &works);
9251 			btrfs_queue_work(root->fs_info->flush_workers,
9252 					 &work->work);
9253 		} else {
9254 			ret = filemap_fdatawrite_wbc(inode->i_mapping, wbc);
9255 			btrfs_add_delayed_iput(BTRFS_I(inode));
9256 			if (ret || wbc->nr_to_write <= 0)
9257 				goto out;
9258 		}
9259 		cond_resched();
9260 		spin_lock(&root->delalloc_lock);
9261 	}
9262 	spin_unlock(&root->delalloc_lock);
9263 
9264 out:
9265 	list_for_each_entry_safe(work, next, &works, list) {
9266 		list_del_init(&work->list);
9267 		wait_for_completion(&work->completion);
9268 		kfree(work);
9269 	}
9270 
9271 	if (!list_empty(&splice)) {
9272 		spin_lock(&root->delalloc_lock);
9273 		list_splice_tail(&splice, &root->delalloc_inodes);
9274 		spin_unlock(&root->delalloc_lock);
9275 	}
9276 	mutex_unlock(&root->delalloc_mutex);
9277 	return ret;
9278 }
9279 
9280 int btrfs_start_delalloc_snapshot(struct btrfs_root *root, bool in_reclaim_context)
9281 {
9282 	struct writeback_control wbc = {
9283 		.nr_to_write = LONG_MAX,
9284 		.sync_mode = WB_SYNC_NONE,
9285 		.range_start = 0,
9286 		.range_end = LLONG_MAX,
9287 	};
9288 	struct btrfs_fs_info *fs_info = root->fs_info;
9289 
9290 	if (BTRFS_FS_ERROR(fs_info))
9291 		return -EROFS;
9292 
9293 	return start_delalloc_inodes(root, &wbc, true, in_reclaim_context);
9294 }
9295 
9296 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, long nr,
9297 			       bool in_reclaim_context)
9298 {
9299 	struct writeback_control wbc = {
9300 		.nr_to_write = nr,
9301 		.sync_mode = WB_SYNC_NONE,
9302 		.range_start = 0,
9303 		.range_end = LLONG_MAX,
9304 	};
9305 	struct btrfs_root *root;
9306 	LIST_HEAD(splice);
9307 	int ret;
9308 
9309 	if (BTRFS_FS_ERROR(fs_info))
9310 		return -EROFS;
9311 
9312 	mutex_lock(&fs_info->delalloc_root_mutex);
9313 	spin_lock(&fs_info->delalloc_root_lock);
9314 	list_splice_init(&fs_info->delalloc_roots, &splice);
9315 	while (!list_empty(&splice)) {
9316 		/*
9317 		 * Reset nr_to_write here so we know that we're doing a full
9318 		 * flush.
9319 		 */
9320 		if (nr == LONG_MAX)
9321 			wbc.nr_to_write = LONG_MAX;
9322 
9323 		root = list_first_entry(&splice, struct btrfs_root,
9324 					delalloc_root);
9325 		root = btrfs_grab_root(root);
9326 		BUG_ON(!root);
9327 		list_move_tail(&root->delalloc_root,
9328 			       &fs_info->delalloc_roots);
9329 		spin_unlock(&fs_info->delalloc_root_lock);
9330 
9331 		ret = start_delalloc_inodes(root, &wbc, false, in_reclaim_context);
9332 		btrfs_put_root(root);
9333 		if (ret < 0 || wbc.nr_to_write <= 0)
9334 			goto out;
9335 		spin_lock(&fs_info->delalloc_root_lock);
9336 	}
9337 	spin_unlock(&fs_info->delalloc_root_lock);
9338 
9339 	ret = 0;
9340 out:
9341 	if (!list_empty(&splice)) {
9342 		spin_lock(&fs_info->delalloc_root_lock);
9343 		list_splice_tail(&splice, &fs_info->delalloc_roots);
9344 		spin_unlock(&fs_info->delalloc_root_lock);
9345 	}
9346 	mutex_unlock(&fs_info->delalloc_root_mutex);
9347 	return ret;
9348 }
9349 
9350 static int btrfs_symlink(struct mnt_idmap *idmap, struct inode *dir,
9351 			 struct dentry *dentry, const char *symname)
9352 {
9353 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
9354 	struct btrfs_trans_handle *trans;
9355 	struct btrfs_root *root = BTRFS_I(dir)->root;
9356 	struct btrfs_path *path;
9357 	struct btrfs_key key;
9358 	struct inode *inode;
9359 	struct btrfs_new_inode_args new_inode_args = {
9360 		.dir = dir,
9361 		.dentry = dentry,
9362 	};
9363 	unsigned int trans_num_items;
9364 	int err;
9365 	int name_len;
9366 	int datasize;
9367 	unsigned long ptr;
9368 	struct btrfs_file_extent_item *ei;
9369 	struct extent_buffer *leaf;
9370 
9371 	name_len = strlen(symname);
9372 	if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info))
9373 		return -ENAMETOOLONG;
9374 
9375 	inode = new_inode(dir->i_sb);
9376 	if (!inode)
9377 		return -ENOMEM;
9378 	inode_init_owner(idmap, inode, dir, S_IFLNK | S_IRWXUGO);
9379 	inode->i_op = &btrfs_symlink_inode_operations;
9380 	inode_nohighmem(inode);
9381 	inode->i_mapping->a_ops = &btrfs_aops;
9382 	btrfs_i_size_write(BTRFS_I(inode), name_len);
9383 	inode_set_bytes(inode, name_len);
9384 
9385 	new_inode_args.inode = inode;
9386 	err = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
9387 	if (err)
9388 		goto out_inode;
9389 	/* 1 additional item for the inline extent */
9390 	trans_num_items++;
9391 
9392 	trans = btrfs_start_transaction(root, trans_num_items);
9393 	if (IS_ERR(trans)) {
9394 		err = PTR_ERR(trans);
9395 		goto out_new_inode_args;
9396 	}
9397 
9398 	err = btrfs_create_new_inode(trans, &new_inode_args);
9399 	if (err)
9400 		goto out;
9401 
9402 	path = btrfs_alloc_path();
9403 	if (!path) {
9404 		err = -ENOMEM;
9405 		btrfs_abort_transaction(trans, err);
9406 		discard_new_inode(inode);
9407 		inode = NULL;
9408 		goto out;
9409 	}
9410 	key.objectid = btrfs_ino(BTRFS_I(inode));
9411 	key.offset = 0;
9412 	key.type = BTRFS_EXTENT_DATA_KEY;
9413 	datasize = btrfs_file_extent_calc_inline_size(name_len);
9414 	err = btrfs_insert_empty_item(trans, root, path, &key,
9415 				      datasize);
9416 	if (err) {
9417 		btrfs_abort_transaction(trans, err);
9418 		btrfs_free_path(path);
9419 		discard_new_inode(inode);
9420 		inode = NULL;
9421 		goto out;
9422 	}
9423 	leaf = path->nodes[0];
9424 	ei = btrfs_item_ptr(leaf, path->slots[0],
9425 			    struct btrfs_file_extent_item);
9426 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
9427 	btrfs_set_file_extent_type(leaf, ei,
9428 				   BTRFS_FILE_EXTENT_INLINE);
9429 	btrfs_set_file_extent_encryption(leaf, ei, 0);
9430 	btrfs_set_file_extent_compression(leaf, ei, 0);
9431 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
9432 	btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
9433 
9434 	ptr = btrfs_file_extent_inline_start(ei);
9435 	write_extent_buffer(leaf, symname, ptr, name_len);
9436 	btrfs_mark_buffer_dirty(leaf);
9437 	btrfs_free_path(path);
9438 
9439 	d_instantiate_new(dentry, inode);
9440 	err = 0;
9441 out:
9442 	btrfs_end_transaction(trans);
9443 	btrfs_btree_balance_dirty(fs_info);
9444 out_new_inode_args:
9445 	btrfs_new_inode_args_destroy(&new_inode_args);
9446 out_inode:
9447 	if (err)
9448 		iput(inode);
9449 	return err;
9450 }
9451 
9452 static struct btrfs_trans_handle *insert_prealloc_file_extent(
9453 				       struct btrfs_trans_handle *trans_in,
9454 				       struct btrfs_inode *inode,
9455 				       struct btrfs_key *ins,
9456 				       u64 file_offset)
9457 {
9458 	struct btrfs_file_extent_item stack_fi;
9459 	struct btrfs_replace_extent_info extent_info;
9460 	struct btrfs_trans_handle *trans = trans_in;
9461 	struct btrfs_path *path;
9462 	u64 start = ins->objectid;
9463 	u64 len = ins->offset;
9464 	int qgroup_released;
9465 	int ret;
9466 
9467 	memset(&stack_fi, 0, sizeof(stack_fi));
9468 
9469 	btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_PREALLOC);
9470 	btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, start);
9471 	btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi, len);
9472 	btrfs_set_stack_file_extent_num_bytes(&stack_fi, len);
9473 	btrfs_set_stack_file_extent_ram_bytes(&stack_fi, len);
9474 	btrfs_set_stack_file_extent_compression(&stack_fi, BTRFS_COMPRESS_NONE);
9475 	/* Encryption and other encoding is reserved and all 0 */
9476 
9477 	qgroup_released = btrfs_qgroup_release_data(inode, file_offset, len);
9478 	if (qgroup_released < 0)
9479 		return ERR_PTR(qgroup_released);
9480 
9481 	if (trans) {
9482 		ret = insert_reserved_file_extent(trans, inode,
9483 						  file_offset, &stack_fi,
9484 						  true, qgroup_released);
9485 		if (ret)
9486 			goto free_qgroup;
9487 		return trans;
9488 	}
9489 
9490 	extent_info.disk_offset = start;
9491 	extent_info.disk_len = len;
9492 	extent_info.data_offset = 0;
9493 	extent_info.data_len = len;
9494 	extent_info.file_offset = file_offset;
9495 	extent_info.extent_buf = (char *)&stack_fi;
9496 	extent_info.is_new_extent = true;
9497 	extent_info.update_times = true;
9498 	extent_info.qgroup_reserved = qgroup_released;
9499 	extent_info.insertions = 0;
9500 
9501 	path = btrfs_alloc_path();
9502 	if (!path) {
9503 		ret = -ENOMEM;
9504 		goto free_qgroup;
9505 	}
9506 
9507 	ret = btrfs_replace_file_extents(inode, path, file_offset,
9508 				     file_offset + len - 1, &extent_info,
9509 				     &trans);
9510 	btrfs_free_path(path);
9511 	if (ret)
9512 		goto free_qgroup;
9513 	return trans;
9514 
9515 free_qgroup:
9516 	/*
9517 	 * We have released qgroup data range at the beginning of the function,
9518 	 * and normally qgroup_released bytes will be freed when committing
9519 	 * transaction.
9520 	 * But if we error out early, we have to free what we have released
9521 	 * or we leak qgroup data reservation.
9522 	 */
9523 	btrfs_qgroup_free_refroot(inode->root->fs_info,
9524 			inode->root->root_key.objectid, qgroup_released,
9525 			BTRFS_QGROUP_RSV_DATA);
9526 	return ERR_PTR(ret);
9527 }
9528 
9529 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
9530 				       u64 start, u64 num_bytes, u64 min_size,
9531 				       loff_t actual_len, u64 *alloc_hint,
9532 				       struct btrfs_trans_handle *trans)
9533 {
9534 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9535 	struct extent_map *em;
9536 	struct btrfs_root *root = BTRFS_I(inode)->root;
9537 	struct btrfs_key ins;
9538 	u64 cur_offset = start;
9539 	u64 clear_offset = start;
9540 	u64 i_size;
9541 	u64 cur_bytes;
9542 	u64 last_alloc = (u64)-1;
9543 	int ret = 0;
9544 	bool own_trans = true;
9545 	u64 end = start + num_bytes - 1;
9546 
9547 	if (trans)
9548 		own_trans = false;
9549 	while (num_bytes > 0) {
9550 		cur_bytes = min_t(u64, num_bytes, SZ_256M);
9551 		cur_bytes = max(cur_bytes, min_size);
9552 		/*
9553 		 * If we are severely fragmented we could end up with really
9554 		 * small allocations, so if the allocator is returning small
9555 		 * chunks lets make its job easier by only searching for those
9556 		 * sized chunks.
9557 		 */
9558 		cur_bytes = min(cur_bytes, last_alloc);
9559 		ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes,
9560 				min_size, 0, *alloc_hint, &ins, 1, 0);
9561 		if (ret)
9562 			break;
9563 
9564 		/*
9565 		 * We've reserved this space, and thus converted it from
9566 		 * ->bytes_may_use to ->bytes_reserved.  Any error that happens
9567 		 * from here on out we will only need to clear our reservation
9568 		 * for the remaining unreserved area, so advance our
9569 		 * clear_offset by our extent size.
9570 		 */
9571 		clear_offset += ins.offset;
9572 
9573 		last_alloc = ins.offset;
9574 		trans = insert_prealloc_file_extent(trans, BTRFS_I(inode),
9575 						    &ins, cur_offset);
9576 		/*
9577 		 * Now that we inserted the prealloc extent we can finally
9578 		 * decrement the number of reservations in the block group.
9579 		 * If we did it before, we could race with relocation and have
9580 		 * relocation miss the reserved extent, making it fail later.
9581 		 */
9582 		btrfs_dec_block_group_reservations(fs_info, ins.objectid);
9583 		if (IS_ERR(trans)) {
9584 			ret = PTR_ERR(trans);
9585 			btrfs_free_reserved_extent(fs_info, ins.objectid,
9586 						   ins.offset, 0);
9587 			break;
9588 		}
9589 
9590 		em = alloc_extent_map();
9591 		if (!em) {
9592 			btrfs_drop_extent_map_range(BTRFS_I(inode), cur_offset,
9593 					    cur_offset + ins.offset - 1, false);
9594 			btrfs_set_inode_full_sync(BTRFS_I(inode));
9595 			goto next;
9596 		}
9597 
9598 		em->start = cur_offset;
9599 		em->orig_start = cur_offset;
9600 		em->len = ins.offset;
9601 		em->block_start = ins.objectid;
9602 		em->block_len = ins.offset;
9603 		em->orig_block_len = ins.offset;
9604 		em->ram_bytes = ins.offset;
9605 		set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
9606 		em->generation = trans->transid;
9607 
9608 		ret = btrfs_replace_extent_map_range(BTRFS_I(inode), em, true);
9609 		free_extent_map(em);
9610 next:
9611 		num_bytes -= ins.offset;
9612 		cur_offset += ins.offset;
9613 		*alloc_hint = ins.objectid + ins.offset;
9614 
9615 		inode_inc_iversion(inode);
9616 		inode_set_ctime_current(inode);
9617 		BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
9618 		if (!(mode & FALLOC_FL_KEEP_SIZE) &&
9619 		    (actual_len > inode->i_size) &&
9620 		    (cur_offset > inode->i_size)) {
9621 			if (cur_offset > actual_len)
9622 				i_size = actual_len;
9623 			else
9624 				i_size = cur_offset;
9625 			i_size_write(inode, i_size);
9626 			btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
9627 		}
9628 
9629 		ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
9630 
9631 		if (ret) {
9632 			btrfs_abort_transaction(trans, ret);
9633 			if (own_trans)
9634 				btrfs_end_transaction(trans);
9635 			break;
9636 		}
9637 
9638 		if (own_trans) {
9639 			btrfs_end_transaction(trans);
9640 			trans = NULL;
9641 		}
9642 	}
9643 	if (clear_offset < end)
9644 		btrfs_free_reserved_data_space(BTRFS_I(inode), NULL, clear_offset,
9645 			end - clear_offset + 1);
9646 	return ret;
9647 }
9648 
9649 int btrfs_prealloc_file_range(struct inode *inode, int mode,
9650 			      u64 start, u64 num_bytes, u64 min_size,
9651 			      loff_t actual_len, u64 *alloc_hint)
9652 {
9653 	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9654 					   min_size, actual_len, alloc_hint,
9655 					   NULL);
9656 }
9657 
9658 int btrfs_prealloc_file_range_trans(struct inode *inode,
9659 				    struct btrfs_trans_handle *trans, int mode,
9660 				    u64 start, u64 num_bytes, u64 min_size,
9661 				    loff_t actual_len, u64 *alloc_hint)
9662 {
9663 	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9664 					   min_size, actual_len, alloc_hint, trans);
9665 }
9666 
9667 static int btrfs_permission(struct mnt_idmap *idmap,
9668 			    struct inode *inode, int mask)
9669 {
9670 	struct btrfs_root *root = BTRFS_I(inode)->root;
9671 	umode_t mode = inode->i_mode;
9672 
9673 	if (mask & MAY_WRITE &&
9674 	    (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
9675 		if (btrfs_root_readonly(root))
9676 			return -EROFS;
9677 		if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
9678 			return -EACCES;
9679 	}
9680 	return generic_permission(idmap, inode, mask);
9681 }
9682 
9683 static int btrfs_tmpfile(struct mnt_idmap *idmap, struct inode *dir,
9684 			 struct file *file, umode_t mode)
9685 {
9686 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
9687 	struct btrfs_trans_handle *trans;
9688 	struct btrfs_root *root = BTRFS_I(dir)->root;
9689 	struct inode *inode;
9690 	struct btrfs_new_inode_args new_inode_args = {
9691 		.dir = dir,
9692 		.dentry = file->f_path.dentry,
9693 		.orphan = true,
9694 	};
9695 	unsigned int trans_num_items;
9696 	int ret;
9697 
9698 	inode = new_inode(dir->i_sb);
9699 	if (!inode)
9700 		return -ENOMEM;
9701 	inode_init_owner(idmap, inode, dir, mode);
9702 	inode->i_fop = &btrfs_file_operations;
9703 	inode->i_op = &btrfs_file_inode_operations;
9704 	inode->i_mapping->a_ops = &btrfs_aops;
9705 
9706 	new_inode_args.inode = inode;
9707 	ret = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
9708 	if (ret)
9709 		goto out_inode;
9710 
9711 	trans = btrfs_start_transaction(root, trans_num_items);
9712 	if (IS_ERR(trans)) {
9713 		ret = PTR_ERR(trans);
9714 		goto out_new_inode_args;
9715 	}
9716 
9717 	ret = btrfs_create_new_inode(trans, &new_inode_args);
9718 
9719 	/*
9720 	 * We set number of links to 0 in btrfs_create_new_inode(), and here we
9721 	 * set it to 1 because d_tmpfile() will issue a warning if the count is
9722 	 * 0, through:
9723 	 *
9724 	 *    d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
9725 	 */
9726 	set_nlink(inode, 1);
9727 
9728 	if (!ret) {
9729 		d_tmpfile(file, inode);
9730 		unlock_new_inode(inode);
9731 		mark_inode_dirty(inode);
9732 	}
9733 
9734 	btrfs_end_transaction(trans);
9735 	btrfs_btree_balance_dirty(fs_info);
9736 out_new_inode_args:
9737 	btrfs_new_inode_args_destroy(&new_inode_args);
9738 out_inode:
9739 	if (ret)
9740 		iput(inode);
9741 	return finish_open_simple(file, ret);
9742 }
9743 
9744 void btrfs_set_range_writeback(struct btrfs_inode *inode, u64 start, u64 end)
9745 {
9746 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
9747 	unsigned long index = start >> PAGE_SHIFT;
9748 	unsigned long end_index = end >> PAGE_SHIFT;
9749 	struct page *page;
9750 	u32 len;
9751 
9752 	ASSERT(end + 1 - start <= U32_MAX);
9753 	len = end + 1 - start;
9754 	while (index <= end_index) {
9755 		page = find_get_page(inode->vfs_inode.i_mapping, index);
9756 		ASSERT(page); /* Pages should be in the extent_io_tree */
9757 
9758 		btrfs_page_set_writeback(fs_info, page, start, len);
9759 		put_page(page);
9760 		index++;
9761 	}
9762 }
9763 
9764 int btrfs_encoded_io_compression_from_extent(struct btrfs_fs_info *fs_info,
9765 					     int compress_type)
9766 {
9767 	switch (compress_type) {
9768 	case BTRFS_COMPRESS_NONE:
9769 		return BTRFS_ENCODED_IO_COMPRESSION_NONE;
9770 	case BTRFS_COMPRESS_ZLIB:
9771 		return BTRFS_ENCODED_IO_COMPRESSION_ZLIB;
9772 	case BTRFS_COMPRESS_LZO:
9773 		/*
9774 		 * The LZO format depends on the sector size. 64K is the maximum
9775 		 * sector size that we support.
9776 		 */
9777 		if (fs_info->sectorsize < SZ_4K || fs_info->sectorsize > SZ_64K)
9778 			return -EINVAL;
9779 		return BTRFS_ENCODED_IO_COMPRESSION_LZO_4K +
9780 		       (fs_info->sectorsize_bits - 12);
9781 	case BTRFS_COMPRESS_ZSTD:
9782 		return BTRFS_ENCODED_IO_COMPRESSION_ZSTD;
9783 	default:
9784 		return -EUCLEAN;
9785 	}
9786 }
9787 
9788 static ssize_t btrfs_encoded_read_inline(
9789 				struct kiocb *iocb,
9790 				struct iov_iter *iter, u64 start,
9791 				u64 lockend,
9792 				struct extent_state **cached_state,
9793 				u64 extent_start, size_t count,
9794 				struct btrfs_ioctl_encoded_io_args *encoded,
9795 				bool *unlocked)
9796 {
9797 	struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
9798 	struct btrfs_root *root = inode->root;
9799 	struct btrfs_fs_info *fs_info = root->fs_info;
9800 	struct extent_io_tree *io_tree = &inode->io_tree;
9801 	struct btrfs_path *path;
9802 	struct extent_buffer *leaf;
9803 	struct btrfs_file_extent_item *item;
9804 	u64 ram_bytes;
9805 	unsigned long ptr;
9806 	void *tmp;
9807 	ssize_t ret;
9808 
9809 	path = btrfs_alloc_path();
9810 	if (!path) {
9811 		ret = -ENOMEM;
9812 		goto out;
9813 	}
9814 	ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode),
9815 				       extent_start, 0);
9816 	if (ret) {
9817 		if (ret > 0) {
9818 			/* The extent item disappeared? */
9819 			ret = -EIO;
9820 		}
9821 		goto out;
9822 	}
9823 	leaf = path->nodes[0];
9824 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
9825 
9826 	ram_bytes = btrfs_file_extent_ram_bytes(leaf, item);
9827 	ptr = btrfs_file_extent_inline_start(item);
9828 
9829 	encoded->len = min_t(u64, extent_start + ram_bytes,
9830 			     inode->vfs_inode.i_size) - iocb->ki_pos;
9831 	ret = btrfs_encoded_io_compression_from_extent(fs_info,
9832 				 btrfs_file_extent_compression(leaf, item));
9833 	if (ret < 0)
9834 		goto out;
9835 	encoded->compression = ret;
9836 	if (encoded->compression) {
9837 		size_t inline_size;
9838 
9839 		inline_size = btrfs_file_extent_inline_item_len(leaf,
9840 								path->slots[0]);
9841 		if (inline_size > count) {
9842 			ret = -ENOBUFS;
9843 			goto out;
9844 		}
9845 		count = inline_size;
9846 		encoded->unencoded_len = ram_bytes;
9847 		encoded->unencoded_offset = iocb->ki_pos - extent_start;
9848 	} else {
9849 		count = min_t(u64, count, encoded->len);
9850 		encoded->len = count;
9851 		encoded->unencoded_len = count;
9852 		ptr += iocb->ki_pos - extent_start;
9853 	}
9854 
9855 	tmp = kmalloc(count, GFP_NOFS);
9856 	if (!tmp) {
9857 		ret = -ENOMEM;
9858 		goto out;
9859 	}
9860 	read_extent_buffer(leaf, tmp, ptr, count);
9861 	btrfs_release_path(path);
9862 	unlock_extent(io_tree, start, lockend, cached_state);
9863 	btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
9864 	*unlocked = true;
9865 
9866 	ret = copy_to_iter(tmp, count, iter);
9867 	if (ret != count)
9868 		ret = -EFAULT;
9869 	kfree(tmp);
9870 out:
9871 	btrfs_free_path(path);
9872 	return ret;
9873 }
9874 
9875 struct btrfs_encoded_read_private {
9876 	wait_queue_head_t wait;
9877 	atomic_t pending;
9878 	blk_status_t status;
9879 };
9880 
9881 static void btrfs_encoded_read_endio(struct btrfs_bio *bbio)
9882 {
9883 	struct btrfs_encoded_read_private *priv = bbio->private;
9884 
9885 	if (bbio->bio.bi_status) {
9886 		/*
9887 		 * The memory barrier implied by the atomic_dec_return() here
9888 		 * pairs with the memory barrier implied by the
9889 		 * atomic_dec_return() or io_wait_event() in
9890 		 * btrfs_encoded_read_regular_fill_pages() to ensure that this
9891 		 * write is observed before the load of status in
9892 		 * btrfs_encoded_read_regular_fill_pages().
9893 		 */
9894 		WRITE_ONCE(priv->status, bbio->bio.bi_status);
9895 	}
9896 	if (!atomic_dec_return(&priv->pending))
9897 		wake_up(&priv->wait);
9898 	bio_put(&bbio->bio);
9899 }
9900 
9901 int btrfs_encoded_read_regular_fill_pages(struct btrfs_inode *inode,
9902 					  u64 file_offset, u64 disk_bytenr,
9903 					  u64 disk_io_size, struct page **pages)
9904 {
9905 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
9906 	struct btrfs_encoded_read_private priv = {
9907 		.pending = ATOMIC_INIT(1),
9908 	};
9909 	unsigned long i = 0;
9910 	struct btrfs_bio *bbio;
9911 
9912 	init_waitqueue_head(&priv.wait);
9913 
9914 	bbio = btrfs_bio_alloc(BIO_MAX_VECS, REQ_OP_READ, fs_info,
9915 			       btrfs_encoded_read_endio, &priv);
9916 	bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT;
9917 	bbio->inode = inode;
9918 
9919 	do {
9920 		size_t bytes = min_t(u64, disk_io_size, PAGE_SIZE);
9921 
9922 		if (bio_add_page(&bbio->bio, pages[i], bytes, 0) < bytes) {
9923 			atomic_inc(&priv.pending);
9924 			btrfs_submit_bio(bbio, 0);
9925 
9926 			bbio = btrfs_bio_alloc(BIO_MAX_VECS, REQ_OP_READ, fs_info,
9927 					       btrfs_encoded_read_endio, &priv);
9928 			bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT;
9929 			bbio->inode = inode;
9930 			continue;
9931 		}
9932 
9933 		i++;
9934 		disk_bytenr += bytes;
9935 		disk_io_size -= bytes;
9936 	} while (disk_io_size);
9937 
9938 	atomic_inc(&priv.pending);
9939 	btrfs_submit_bio(bbio, 0);
9940 
9941 	if (atomic_dec_return(&priv.pending))
9942 		io_wait_event(priv.wait, !atomic_read(&priv.pending));
9943 	/* See btrfs_encoded_read_endio() for ordering. */
9944 	return blk_status_to_errno(READ_ONCE(priv.status));
9945 }
9946 
9947 static ssize_t btrfs_encoded_read_regular(struct kiocb *iocb,
9948 					  struct iov_iter *iter,
9949 					  u64 start, u64 lockend,
9950 					  struct extent_state **cached_state,
9951 					  u64 disk_bytenr, u64 disk_io_size,
9952 					  size_t count, bool compressed,
9953 					  bool *unlocked)
9954 {
9955 	struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
9956 	struct extent_io_tree *io_tree = &inode->io_tree;
9957 	struct page **pages;
9958 	unsigned long nr_pages, i;
9959 	u64 cur;
9960 	size_t page_offset;
9961 	ssize_t ret;
9962 
9963 	nr_pages = DIV_ROUND_UP(disk_io_size, PAGE_SIZE);
9964 	pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
9965 	if (!pages)
9966 		return -ENOMEM;
9967 	ret = btrfs_alloc_page_array(nr_pages, pages);
9968 	if (ret) {
9969 		ret = -ENOMEM;
9970 		goto out;
9971 		}
9972 
9973 	ret = btrfs_encoded_read_regular_fill_pages(inode, start, disk_bytenr,
9974 						    disk_io_size, pages);
9975 	if (ret)
9976 		goto out;
9977 
9978 	unlock_extent(io_tree, start, lockend, cached_state);
9979 	btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
9980 	*unlocked = true;
9981 
9982 	if (compressed) {
9983 		i = 0;
9984 		page_offset = 0;
9985 	} else {
9986 		i = (iocb->ki_pos - start) >> PAGE_SHIFT;
9987 		page_offset = (iocb->ki_pos - start) & (PAGE_SIZE - 1);
9988 	}
9989 	cur = 0;
9990 	while (cur < count) {
9991 		size_t bytes = min_t(size_t, count - cur,
9992 				     PAGE_SIZE - page_offset);
9993 
9994 		if (copy_page_to_iter(pages[i], page_offset, bytes,
9995 				      iter) != bytes) {
9996 			ret = -EFAULT;
9997 			goto out;
9998 		}
9999 		i++;
10000 		cur += bytes;
10001 		page_offset = 0;
10002 	}
10003 	ret = count;
10004 out:
10005 	for (i = 0; i < nr_pages; i++) {
10006 		if (pages[i])
10007 			__free_page(pages[i]);
10008 	}
10009 	kfree(pages);
10010 	return ret;
10011 }
10012 
10013 ssize_t btrfs_encoded_read(struct kiocb *iocb, struct iov_iter *iter,
10014 			   struct btrfs_ioctl_encoded_io_args *encoded)
10015 {
10016 	struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
10017 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
10018 	struct extent_io_tree *io_tree = &inode->io_tree;
10019 	ssize_t ret;
10020 	size_t count = iov_iter_count(iter);
10021 	u64 start, lockend, disk_bytenr, disk_io_size;
10022 	struct extent_state *cached_state = NULL;
10023 	struct extent_map *em;
10024 	bool unlocked = false;
10025 
10026 	file_accessed(iocb->ki_filp);
10027 
10028 	btrfs_inode_lock(inode, BTRFS_ILOCK_SHARED);
10029 
10030 	if (iocb->ki_pos >= inode->vfs_inode.i_size) {
10031 		btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
10032 		return 0;
10033 	}
10034 	start = ALIGN_DOWN(iocb->ki_pos, fs_info->sectorsize);
10035 	/*
10036 	 * We don't know how long the extent containing iocb->ki_pos is, but if
10037 	 * it's compressed we know that it won't be longer than this.
10038 	 */
10039 	lockend = start + BTRFS_MAX_UNCOMPRESSED - 1;
10040 
10041 	for (;;) {
10042 		struct btrfs_ordered_extent *ordered;
10043 
10044 		ret = btrfs_wait_ordered_range(&inode->vfs_inode, start,
10045 					       lockend - start + 1);
10046 		if (ret)
10047 			goto out_unlock_inode;
10048 		lock_extent(io_tree, start, lockend, &cached_state);
10049 		ordered = btrfs_lookup_ordered_range(inode, start,
10050 						     lockend - start + 1);
10051 		if (!ordered)
10052 			break;
10053 		btrfs_put_ordered_extent(ordered);
10054 		unlock_extent(io_tree, start, lockend, &cached_state);
10055 		cond_resched();
10056 	}
10057 
10058 	em = btrfs_get_extent(inode, NULL, 0, start, lockend - start + 1);
10059 	if (IS_ERR(em)) {
10060 		ret = PTR_ERR(em);
10061 		goto out_unlock_extent;
10062 	}
10063 
10064 	if (em->block_start == EXTENT_MAP_INLINE) {
10065 		u64 extent_start = em->start;
10066 
10067 		/*
10068 		 * For inline extents we get everything we need out of the
10069 		 * extent item.
10070 		 */
10071 		free_extent_map(em);
10072 		em = NULL;
10073 		ret = btrfs_encoded_read_inline(iocb, iter, start, lockend,
10074 						&cached_state, extent_start,
10075 						count, encoded, &unlocked);
10076 		goto out;
10077 	}
10078 
10079 	/*
10080 	 * We only want to return up to EOF even if the extent extends beyond
10081 	 * that.
10082 	 */
10083 	encoded->len = min_t(u64, extent_map_end(em),
10084 			     inode->vfs_inode.i_size) - iocb->ki_pos;
10085 	if (em->block_start == EXTENT_MAP_HOLE ||
10086 	    test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
10087 		disk_bytenr = EXTENT_MAP_HOLE;
10088 		count = min_t(u64, count, encoded->len);
10089 		encoded->len = count;
10090 		encoded->unencoded_len = count;
10091 	} else if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
10092 		disk_bytenr = em->block_start;
10093 		/*
10094 		 * Bail if the buffer isn't large enough to return the whole
10095 		 * compressed extent.
10096 		 */
10097 		if (em->block_len > count) {
10098 			ret = -ENOBUFS;
10099 			goto out_em;
10100 		}
10101 		disk_io_size = em->block_len;
10102 		count = em->block_len;
10103 		encoded->unencoded_len = em->ram_bytes;
10104 		encoded->unencoded_offset = iocb->ki_pos - em->orig_start;
10105 		ret = btrfs_encoded_io_compression_from_extent(fs_info,
10106 							     em->compress_type);
10107 		if (ret < 0)
10108 			goto out_em;
10109 		encoded->compression = ret;
10110 	} else {
10111 		disk_bytenr = em->block_start + (start - em->start);
10112 		if (encoded->len > count)
10113 			encoded->len = count;
10114 		/*
10115 		 * Don't read beyond what we locked. This also limits the page
10116 		 * allocations that we'll do.
10117 		 */
10118 		disk_io_size = min(lockend + 1, iocb->ki_pos + encoded->len) - start;
10119 		count = start + disk_io_size - iocb->ki_pos;
10120 		encoded->len = count;
10121 		encoded->unencoded_len = count;
10122 		disk_io_size = ALIGN(disk_io_size, fs_info->sectorsize);
10123 	}
10124 	free_extent_map(em);
10125 	em = NULL;
10126 
10127 	if (disk_bytenr == EXTENT_MAP_HOLE) {
10128 		unlock_extent(io_tree, start, lockend, &cached_state);
10129 		btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
10130 		unlocked = true;
10131 		ret = iov_iter_zero(count, iter);
10132 		if (ret != count)
10133 			ret = -EFAULT;
10134 	} else {
10135 		ret = btrfs_encoded_read_regular(iocb, iter, start, lockend,
10136 						 &cached_state, disk_bytenr,
10137 						 disk_io_size, count,
10138 						 encoded->compression,
10139 						 &unlocked);
10140 	}
10141 
10142 out:
10143 	if (ret >= 0)
10144 		iocb->ki_pos += encoded->len;
10145 out_em:
10146 	free_extent_map(em);
10147 out_unlock_extent:
10148 	if (!unlocked)
10149 		unlock_extent(io_tree, start, lockend, &cached_state);
10150 out_unlock_inode:
10151 	if (!unlocked)
10152 		btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
10153 	return ret;
10154 }
10155 
10156 ssize_t btrfs_do_encoded_write(struct kiocb *iocb, struct iov_iter *from,
10157 			       const struct btrfs_ioctl_encoded_io_args *encoded)
10158 {
10159 	struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
10160 	struct btrfs_root *root = inode->root;
10161 	struct btrfs_fs_info *fs_info = root->fs_info;
10162 	struct extent_io_tree *io_tree = &inode->io_tree;
10163 	struct extent_changeset *data_reserved = NULL;
10164 	struct extent_state *cached_state = NULL;
10165 	struct btrfs_ordered_extent *ordered;
10166 	int compression;
10167 	size_t orig_count;
10168 	u64 start, end;
10169 	u64 num_bytes, ram_bytes, disk_num_bytes;
10170 	unsigned long nr_pages, i;
10171 	struct page **pages;
10172 	struct btrfs_key ins;
10173 	bool extent_reserved = false;
10174 	struct extent_map *em;
10175 	ssize_t ret;
10176 
10177 	switch (encoded->compression) {
10178 	case BTRFS_ENCODED_IO_COMPRESSION_ZLIB:
10179 		compression = BTRFS_COMPRESS_ZLIB;
10180 		break;
10181 	case BTRFS_ENCODED_IO_COMPRESSION_ZSTD:
10182 		compression = BTRFS_COMPRESS_ZSTD;
10183 		break;
10184 	case BTRFS_ENCODED_IO_COMPRESSION_LZO_4K:
10185 	case BTRFS_ENCODED_IO_COMPRESSION_LZO_8K:
10186 	case BTRFS_ENCODED_IO_COMPRESSION_LZO_16K:
10187 	case BTRFS_ENCODED_IO_COMPRESSION_LZO_32K:
10188 	case BTRFS_ENCODED_IO_COMPRESSION_LZO_64K:
10189 		/* The sector size must match for LZO. */
10190 		if (encoded->compression -
10191 		    BTRFS_ENCODED_IO_COMPRESSION_LZO_4K + 12 !=
10192 		    fs_info->sectorsize_bits)
10193 			return -EINVAL;
10194 		compression = BTRFS_COMPRESS_LZO;
10195 		break;
10196 	default:
10197 		return -EINVAL;
10198 	}
10199 	if (encoded->encryption != BTRFS_ENCODED_IO_ENCRYPTION_NONE)
10200 		return -EINVAL;
10201 
10202 	orig_count = iov_iter_count(from);
10203 
10204 	/* The extent size must be sane. */
10205 	if (encoded->unencoded_len > BTRFS_MAX_UNCOMPRESSED ||
10206 	    orig_count > BTRFS_MAX_COMPRESSED || orig_count == 0)
10207 		return -EINVAL;
10208 
10209 	/*
10210 	 * The compressed data must be smaller than the decompressed data.
10211 	 *
10212 	 * It's of course possible for data to compress to larger or the same
10213 	 * size, but the buffered I/O path falls back to no compression for such
10214 	 * data, and we don't want to break any assumptions by creating these
10215 	 * extents.
10216 	 *
10217 	 * Note that this is less strict than the current check we have that the
10218 	 * compressed data must be at least one sector smaller than the
10219 	 * decompressed data. We only want to enforce the weaker requirement
10220 	 * from old kernels that it is at least one byte smaller.
10221 	 */
10222 	if (orig_count >= encoded->unencoded_len)
10223 		return -EINVAL;
10224 
10225 	/* The extent must start on a sector boundary. */
10226 	start = iocb->ki_pos;
10227 	if (!IS_ALIGNED(start, fs_info->sectorsize))
10228 		return -EINVAL;
10229 
10230 	/*
10231 	 * The extent must end on a sector boundary. However, we allow a write
10232 	 * which ends at or extends i_size to have an unaligned length; we round
10233 	 * up the extent size and set i_size to the unaligned end.
10234 	 */
10235 	if (start + encoded->len < inode->vfs_inode.i_size &&
10236 	    !IS_ALIGNED(start + encoded->len, fs_info->sectorsize))
10237 		return -EINVAL;
10238 
10239 	/* Finally, the offset in the unencoded data must be sector-aligned. */
10240 	if (!IS_ALIGNED(encoded->unencoded_offset, fs_info->sectorsize))
10241 		return -EINVAL;
10242 
10243 	num_bytes = ALIGN(encoded->len, fs_info->sectorsize);
10244 	ram_bytes = ALIGN(encoded->unencoded_len, fs_info->sectorsize);
10245 	end = start + num_bytes - 1;
10246 
10247 	/*
10248 	 * If the extent cannot be inline, the compressed data on disk must be
10249 	 * sector-aligned. For convenience, we extend it with zeroes if it
10250 	 * isn't.
10251 	 */
10252 	disk_num_bytes = ALIGN(orig_count, fs_info->sectorsize);
10253 	nr_pages = DIV_ROUND_UP(disk_num_bytes, PAGE_SIZE);
10254 	pages = kvcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL_ACCOUNT);
10255 	if (!pages)
10256 		return -ENOMEM;
10257 	for (i = 0; i < nr_pages; i++) {
10258 		size_t bytes = min_t(size_t, PAGE_SIZE, iov_iter_count(from));
10259 		char *kaddr;
10260 
10261 		pages[i] = alloc_page(GFP_KERNEL_ACCOUNT);
10262 		if (!pages[i]) {
10263 			ret = -ENOMEM;
10264 			goto out_pages;
10265 		}
10266 		kaddr = kmap_local_page(pages[i]);
10267 		if (copy_from_iter(kaddr, bytes, from) != bytes) {
10268 			kunmap_local(kaddr);
10269 			ret = -EFAULT;
10270 			goto out_pages;
10271 		}
10272 		if (bytes < PAGE_SIZE)
10273 			memset(kaddr + bytes, 0, PAGE_SIZE - bytes);
10274 		kunmap_local(kaddr);
10275 	}
10276 
10277 	for (;;) {
10278 		struct btrfs_ordered_extent *ordered;
10279 
10280 		ret = btrfs_wait_ordered_range(&inode->vfs_inode, start, num_bytes);
10281 		if (ret)
10282 			goto out_pages;
10283 		ret = invalidate_inode_pages2_range(inode->vfs_inode.i_mapping,
10284 						    start >> PAGE_SHIFT,
10285 						    end >> PAGE_SHIFT);
10286 		if (ret)
10287 			goto out_pages;
10288 		lock_extent(io_tree, start, end, &cached_state);
10289 		ordered = btrfs_lookup_ordered_range(inode, start, num_bytes);
10290 		if (!ordered &&
10291 		    !filemap_range_has_page(inode->vfs_inode.i_mapping, start, end))
10292 			break;
10293 		if (ordered)
10294 			btrfs_put_ordered_extent(ordered);
10295 		unlock_extent(io_tree, start, end, &cached_state);
10296 		cond_resched();
10297 	}
10298 
10299 	/*
10300 	 * We don't use the higher-level delalloc space functions because our
10301 	 * num_bytes and disk_num_bytes are different.
10302 	 */
10303 	ret = btrfs_alloc_data_chunk_ondemand(inode, disk_num_bytes);
10304 	if (ret)
10305 		goto out_unlock;
10306 	ret = btrfs_qgroup_reserve_data(inode, &data_reserved, start, num_bytes);
10307 	if (ret)
10308 		goto out_free_data_space;
10309 	ret = btrfs_delalloc_reserve_metadata(inode, num_bytes, disk_num_bytes,
10310 					      false);
10311 	if (ret)
10312 		goto out_qgroup_free_data;
10313 
10314 	/* Try an inline extent first. */
10315 	if (start == 0 && encoded->unencoded_len == encoded->len &&
10316 	    encoded->unencoded_offset == 0) {
10317 		ret = cow_file_range_inline(inode, encoded->len, orig_count,
10318 					    compression, pages, true);
10319 		if (ret <= 0) {
10320 			if (ret == 0)
10321 				ret = orig_count;
10322 			goto out_delalloc_release;
10323 		}
10324 	}
10325 
10326 	ret = btrfs_reserve_extent(root, disk_num_bytes, disk_num_bytes,
10327 				   disk_num_bytes, 0, 0, &ins, 1, 1);
10328 	if (ret)
10329 		goto out_delalloc_release;
10330 	extent_reserved = true;
10331 
10332 	em = create_io_em(inode, start, num_bytes,
10333 			  start - encoded->unencoded_offset, ins.objectid,
10334 			  ins.offset, ins.offset, ram_bytes, compression,
10335 			  BTRFS_ORDERED_COMPRESSED);
10336 	if (IS_ERR(em)) {
10337 		ret = PTR_ERR(em);
10338 		goto out_free_reserved;
10339 	}
10340 	free_extent_map(em);
10341 
10342 	ordered = btrfs_alloc_ordered_extent(inode, start, num_bytes, ram_bytes,
10343 				       ins.objectid, ins.offset,
10344 				       encoded->unencoded_offset,
10345 				       (1 << BTRFS_ORDERED_ENCODED) |
10346 				       (1 << BTRFS_ORDERED_COMPRESSED),
10347 				       compression);
10348 	if (IS_ERR(ordered)) {
10349 		btrfs_drop_extent_map_range(inode, start, end, false);
10350 		ret = PTR_ERR(ordered);
10351 		goto out_free_reserved;
10352 	}
10353 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
10354 
10355 	if (start + encoded->len > inode->vfs_inode.i_size)
10356 		i_size_write(&inode->vfs_inode, start + encoded->len);
10357 
10358 	unlock_extent(io_tree, start, end, &cached_state);
10359 
10360 	btrfs_delalloc_release_extents(inode, num_bytes);
10361 
10362 	btrfs_submit_compressed_write(ordered, pages, nr_pages, 0, false);
10363 	ret = orig_count;
10364 	goto out;
10365 
10366 out_free_reserved:
10367 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
10368 	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
10369 out_delalloc_release:
10370 	btrfs_delalloc_release_extents(inode, num_bytes);
10371 	btrfs_delalloc_release_metadata(inode, disk_num_bytes, ret < 0);
10372 out_qgroup_free_data:
10373 	if (ret < 0)
10374 		btrfs_qgroup_free_data(inode, data_reserved, start, num_bytes);
10375 out_free_data_space:
10376 	/*
10377 	 * If btrfs_reserve_extent() succeeded, then we already decremented
10378 	 * bytes_may_use.
10379 	 */
10380 	if (!extent_reserved)
10381 		btrfs_free_reserved_data_space_noquota(fs_info, disk_num_bytes);
10382 out_unlock:
10383 	unlock_extent(io_tree, start, end, &cached_state);
10384 out_pages:
10385 	for (i = 0; i < nr_pages; i++) {
10386 		if (pages[i])
10387 			__free_page(pages[i]);
10388 	}
10389 	kvfree(pages);
10390 out:
10391 	if (ret >= 0)
10392 		iocb->ki_pos += encoded->len;
10393 	return ret;
10394 }
10395 
10396 #ifdef CONFIG_SWAP
10397 /*
10398  * Add an entry indicating a block group or device which is pinned by a
10399  * swapfile. Returns 0 on success, 1 if there is already an entry for it, or a
10400  * negative errno on failure.
10401  */
10402 static int btrfs_add_swapfile_pin(struct inode *inode, void *ptr,
10403 				  bool is_block_group)
10404 {
10405 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10406 	struct btrfs_swapfile_pin *sp, *entry;
10407 	struct rb_node **p;
10408 	struct rb_node *parent = NULL;
10409 
10410 	sp = kmalloc(sizeof(*sp), GFP_NOFS);
10411 	if (!sp)
10412 		return -ENOMEM;
10413 	sp->ptr = ptr;
10414 	sp->inode = inode;
10415 	sp->is_block_group = is_block_group;
10416 	sp->bg_extent_count = 1;
10417 
10418 	spin_lock(&fs_info->swapfile_pins_lock);
10419 	p = &fs_info->swapfile_pins.rb_node;
10420 	while (*p) {
10421 		parent = *p;
10422 		entry = rb_entry(parent, struct btrfs_swapfile_pin, node);
10423 		if (sp->ptr < entry->ptr ||
10424 		    (sp->ptr == entry->ptr && sp->inode < entry->inode)) {
10425 			p = &(*p)->rb_left;
10426 		} else if (sp->ptr > entry->ptr ||
10427 			   (sp->ptr == entry->ptr && sp->inode > entry->inode)) {
10428 			p = &(*p)->rb_right;
10429 		} else {
10430 			if (is_block_group)
10431 				entry->bg_extent_count++;
10432 			spin_unlock(&fs_info->swapfile_pins_lock);
10433 			kfree(sp);
10434 			return 1;
10435 		}
10436 	}
10437 	rb_link_node(&sp->node, parent, p);
10438 	rb_insert_color(&sp->node, &fs_info->swapfile_pins);
10439 	spin_unlock(&fs_info->swapfile_pins_lock);
10440 	return 0;
10441 }
10442 
10443 /* Free all of the entries pinned by this swapfile. */
10444 static void btrfs_free_swapfile_pins(struct inode *inode)
10445 {
10446 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10447 	struct btrfs_swapfile_pin *sp;
10448 	struct rb_node *node, *next;
10449 
10450 	spin_lock(&fs_info->swapfile_pins_lock);
10451 	node = rb_first(&fs_info->swapfile_pins);
10452 	while (node) {
10453 		next = rb_next(node);
10454 		sp = rb_entry(node, struct btrfs_swapfile_pin, node);
10455 		if (sp->inode == inode) {
10456 			rb_erase(&sp->node, &fs_info->swapfile_pins);
10457 			if (sp->is_block_group) {
10458 				btrfs_dec_block_group_swap_extents(sp->ptr,
10459 							   sp->bg_extent_count);
10460 				btrfs_put_block_group(sp->ptr);
10461 			}
10462 			kfree(sp);
10463 		}
10464 		node = next;
10465 	}
10466 	spin_unlock(&fs_info->swapfile_pins_lock);
10467 }
10468 
10469 struct btrfs_swap_info {
10470 	u64 start;
10471 	u64 block_start;
10472 	u64 block_len;
10473 	u64 lowest_ppage;
10474 	u64 highest_ppage;
10475 	unsigned long nr_pages;
10476 	int nr_extents;
10477 };
10478 
10479 static int btrfs_add_swap_extent(struct swap_info_struct *sis,
10480 				 struct btrfs_swap_info *bsi)
10481 {
10482 	unsigned long nr_pages;
10483 	unsigned long max_pages;
10484 	u64 first_ppage, first_ppage_reported, next_ppage;
10485 	int ret;
10486 
10487 	/*
10488 	 * Our swapfile may have had its size extended after the swap header was
10489 	 * written. In that case activating the swapfile should not go beyond
10490 	 * the max size set in the swap header.
10491 	 */
10492 	if (bsi->nr_pages >= sis->max)
10493 		return 0;
10494 
10495 	max_pages = sis->max - bsi->nr_pages;
10496 	first_ppage = PAGE_ALIGN(bsi->block_start) >> PAGE_SHIFT;
10497 	next_ppage = PAGE_ALIGN_DOWN(bsi->block_start + bsi->block_len) >> PAGE_SHIFT;
10498 
10499 	if (first_ppage >= next_ppage)
10500 		return 0;
10501 	nr_pages = next_ppage - first_ppage;
10502 	nr_pages = min(nr_pages, max_pages);
10503 
10504 	first_ppage_reported = first_ppage;
10505 	if (bsi->start == 0)
10506 		first_ppage_reported++;
10507 	if (bsi->lowest_ppage > first_ppage_reported)
10508 		bsi->lowest_ppage = first_ppage_reported;
10509 	if (bsi->highest_ppage < (next_ppage - 1))
10510 		bsi->highest_ppage = next_ppage - 1;
10511 
10512 	ret = add_swap_extent(sis, bsi->nr_pages, nr_pages, first_ppage);
10513 	if (ret < 0)
10514 		return ret;
10515 	bsi->nr_extents += ret;
10516 	bsi->nr_pages += nr_pages;
10517 	return 0;
10518 }
10519 
10520 static void btrfs_swap_deactivate(struct file *file)
10521 {
10522 	struct inode *inode = file_inode(file);
10523 
10524 	btrfs_free_swapfile_pins(inode);
10525 	atomic_dec(&BTRFS_I(inode)->root->nr_swapfiles);
10526 }
10527 
10528 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
10529 			       sector_t *span)
10530 {
10531 	struct inode *inode = file_inode(file);
10532 	struct btrfs_root *root = BTRFS_I(inode)->root;
10533 	struct btrfs_fs_info *fs_info = root->fs_info;
10534 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
10535 	struct extent_state *cached_state = NULL;
10536 	struct extent_map *em = NULL;
10537 	struct btrfs_device *device = NULL;
10538 	struct btrfs_swap_info bsi = {
10539 		.lowest_ppage = (sector_t)-1ULL,
10540 	};
10541 	int ret = 0;
10542 	u64 isize;
10543 	u64 start;
10544 
10545 	/*
10546 	 * If the swap file was just created, make sure delalloc is done. If the
10547 	 * file changes again after this, the user is doing something stupid and
10548 	 * we don't really care.
10549 	 */
10550 	ret = btrfs_wait_ordered_range(inode, 0, (u64)-1);
10551 	if (ret)
10552 		return ret;
10553 
10554 	/*
10555 	 * The inode is locked, so these flags won't change after we check them.
10556 	 */
10557 	if (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS) {
10558 		btrfs_warn(fs_info, "swapfile must not be compressed");
10559 		return -EINVAL;
10560 	}
10561 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)) {
10562 		btrfs_warn(fs_info, "swapfile must not be copy-on-write");
10563 		return -EINVAL;
10564 	}
10565 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
10566 		btrfs_warn(fs_info, "swapfile must not be checksummed");
10567 		return -EINVAL;
10568 	}
10569 
10570 	/*
10571 	 * Balance or device remove/replace/resize can move stuff around from
10572 	 * under us. The exclop protection makes sure they aren't running/won't
10573 	 * run concurrently while we are mapping the swap extents, and
10574 	 * fs_info->swapfile_pins prevents them from running while the swap
10575 	 * file is active and moving the extents. Note that this also prevents
10576 	 * a concurrent device add which isn't actually necessary, but it's not
10577 	 * really worth the trouble to allow it.
10578 	 */
10579 	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_SWAP_ACTIVATE)) {
10580 		btrfs_warn(fs_info,
10581 	   "cannot activate swapfile while exclusive operation is running");
10582 		return -EBUSY;
10583 	}
10584 
10585 	/*
10586 	 * Prevent snapshot creation while we are activating the swap file.
10587 	 * We do not want to race with snapshot creation. If snapshot creation
10588 	 * already started before we bumped nr_swapfiles from 0 to 1 and
10589 	 * completes before the first write into the swap file after it is
10590 	 * activated, than that write would fallback to COW.
10591 	 */
10592 	if (!btrfs_drew_try_write_lock(&root->snapshot_lock)) {
10593 		btrfs_exclop_finish(fs_info);
10594 		btrfs_warn(fs_info,
10595 	   "cannot activate swapfile because snapshot creation is in progress");
10596 		return -EINVAL;
10597 	}
10598 	/*
10599 	 * Snapshots can create extents which require COW even if NODATACOW is
10600 	 * set. We use this counter to prevent snapshots. We must increment it
10601 	 * before walking the extents because we don't want a concurrent
10602 	 * snapshot to run after we've already checked the extents.
10603 	 *
10604 	 * It is possible that subvolume is marked for deletion but still not
10605 	 * removed yet. To prevent this race, we check the root status before
10606 	 * activating the swapfile.
10607 	 */
10608 	spin_lock(&root->root_item_lock);
10609 	if (btrfs_root_dead(root)) {
10610 		spin_unlock(&root->root_item_lock);
10611 
10612 		btrfs_exclop_finish(fs_info);
10613 		btrfs_warn(fs_info,
10614 		"cannot activate swapfile because subvolume %llu is being deleted",
10615 			root->root_key.objectid);
10616 		return -EPERM;
10617 	}
10618 	atomic_inc(&root->nr_swapfiles);
10619 	spin_unlock(&root->root_item_lock);
10620 
10621 	isize = ALIGN_DOWN(inode->i_size, fs_info->sectorsize);
10622 
10623 	lock_extent(io_tree, 0, isize - 1, &cached_state);
10624 	start = 0;
10625 	while (start < isize) {
10626 		u64 logical_block_start, physical_block_start;
10627 		struct btrfs_block_group *bg;
10628 		u64 len = isize - start;
10629 
10630 		em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len);
10631 		if (IS_ERR(em)) {
10632 			ret = PTR_ERR(em);
10633 			goto out;
10634 		}
10635 
10636 		if (em->block_start == EXTENT_MAP_HOLE) {
10637 			btrfs_warn(fs_info, "swapfile must not have holes");
10638 			ret = -EINVAL;
10639 			goto out;
10640 		}
10641 		if (em->block_start == EXTENT_MAP_INLINE) {
10642 			/*
10643 			 * It's unlikely we'll ever actually find ourselves
10644 			 * here, as a file small enough to fit inline won't be
10645 			 * big enough to store more than the swap header, but in
10646 			 * case something changes in the future, let's catch it
10647 			 * here rather than later.
10648 			 */
10649 			btrfs_warn(fs_info, "swapfile must not be inline");
10650 			ret = -EINVAL;
10651 			goto out;
10652 		}
10653 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
10654 			btrfs_warn(fs_info, "swapfile must not be compressed");
10655 			ret = -EINVAL;
10656 			goto out;
10657 		}
10658 
10659 		logical_block_start = em->block_start + (start - em->start);
10660 		len = min(len, em->len - (start - em->start));
10661 		free_extent_map(em);
10662 		em = NULL;
10663 
10664 		ret = can_nocow_extent(inode, start, &len, NULL, NULL, NULL, false, true);
10665 		if (ret < 0) {
10666 			goto out;
10667 		} else if (ret) {
10668 			ret = 0;
10669 		} else {
10670 			btrfs_warn(fs_info,
10671 				   "swapfile must not be copy-on-write");
10672 			ret = -EINVAL;
10673 			goto out;
10674 		}
10675 
10676 		em = btrfs_get_chunk_map(fs_info, logical_block_start, len);
10677 		if (IS_ERR(em)) {
10678 			ret = PTR_ERR(em);
10679 			goto out;
10680 		}
10681 
10682 		if (em->map_lookup->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
10683 			btrfs_warn(fs_info,
10684 				   "swapfile must have single data profile");
10685 			ret = -EINVAL;
10686 			goto out;
10687 		}
10688 
10689 		if (device == NULL) {
10690 			device = em->map_lookup->stripes[0].dev;
10691 			ret = btrfs_add_swapfile_pin(inode, device, false);
10692 			if (ret == 1)
10693 				ret = 0;
10694 			else if (ret)
10695 				goto out;
10696 		} else if (device != em->map_lookup->stripes[0].dev) {
10697 			btrfs_warn(fs_info, "swapfile must be on one device");
10698 			ret = -EINVAL;
10699 			goto out;
10700 		}
10701 
10702 		physical_block_start = (em->map_lookup->stripes[0].physical +
10703 					(logical_block_start - em->start));
10704 		len = min(len, em->len - (logical_block_start - em->start));
10705 		free_extent_map(em);
10706 		em = NULL;
10707 
10708 		bg = btrfs_lookup_block_group(fs_info, logical_block_start);
10709 		if (!bg) {
10710 			btrfs_warn(fs_info,
10711 			   "could not find block group containing swapfile");
10712 			ret = -EINVAL;
10713 			goto out;
10714 		}
10715 
10716 		if (!btrfs_inc_block_group_swap_extents(bg)) {
10717 			btrfs_warn(fs_info,
10718 			   "block group for swapfile at %llu is read-only%s",
10719 			   bg->start,
10720 			   atomic_read(&fs_info->scrubs_running) ?
10721 				       " (scrub running)" : "");
10722 			btrfs_put_block_group(bg);
10723 			ret = -EINVAL;
10724 			goto out;
10725 		}
10726 
10727 		ret = btrfs_add_swapfile_pin(inode, bg, true);
10728 		if (ret) {
10729 			btrfs_put_block_group(bg);
10730 			if (ret == 1)
10731 				ret = 0;
10732 			else
10733 				goto out;
10734 		}
10735 
10736 		if (bsi.block_len &&
10737 		    bsi.block_start + bsi.block_len == physical_block_start) {
10738 			bsi.block_len += len;
10739 		} else {
10740 			if (bsi.block_len) {
10741 				ret = btrfs_add_swap_extent(sis, &bsi);
10742 				if (ret)
10743 					goto out;
10744 			}
10745 			bsi.start = start;
10746 			bsi.block_start = physical_block_start;
10747 			bsi.block_len = len;
10748 		}
10749 
10750 		start += len;
10751 	}
10752 
10753 	if (bsi.block_len)
10754 		ret = btrfs_add_swap_extent(sis, &bsi);
10755 
10756 out:
10757 	if (!IS_ERR_OR_NULL(em))
10758 		free_extent_map(em);
10759 
10760 	unlock_extent(io_tree, 0, isize - 1, &cached_state);
10761 
10762 	if (ret)
10763 		btrfs_swap_deactivate(file);
10764 
10765 	btrfs_drew_write_unlock(&root->snapshot_lock);
10766 
10767 	btrfs_exclop_finish(fs_info);
10768 
10769 	if (ret)
10770 		return ret;
10771 
10772 	if (device)
10773 		sis->bdev = device->bdev;
10774 	*span = bsi.highest_ppage - bsi.lowest_ppage + 1;
10775 	sis->max = bsi.nr_pages;
10776 	sis->pages = bsi.nr_pages - 1;
10777 	sis->highest_bit = bsi.nr_pages - 1;
10778 	return bsi.nr_extents;
10779 }
10780 #else
10781 static void btrfs_swap_deactivate(struct file *file)
10782 {
10783 }
10784 
10785 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
10786 			       sector_t *span)
10787 {
10788 	return -EOPNOTSUPP;
10789 }
10790 #endif
10791 
10792 /*
10793  * Update the number of bytes used in the VFS' inode. When we replace extents in
10794  * a range (clone, dedupe, fallocate's zero range), we must update the number of
10795  * bytes used by the inode in an atomic manner, so that concurrent stat(2) calls
10796  * always get a correct value.
10797  */
10798 void btrfs_update_inode_bytes(struct btrfs_inode *inode,
10799 			      const u64 add_bytes,
10800 			      const u64 del_bytes)
10801 {
10802 	if (add_bytes == del_bytes)
10803 		return;
10804 
10805 	spin_lock(&inode->lock);
10806 	if (del_bytes > 0)
10807 		inode_sub_bytes(&inode->vfs_inode, del_bytes);
10808 	if (add_bytes > 0)
10809 		inode_add_bytes(&inode->vfs_inode, add_bytes);
10810 	spin_unlock(&inode->lock);
10811 }
10812 
10813 /*
10814  * Verify that there are no ordered extents for a given file range.
10815  *
10816  * @inode:   The target inode.
10817  * @start:   Start offset of the file range, should be sector size aligned.
10818  * @end:     End offset (inclusive) of the file range, its value +1 should be
10819  *           sector size aligned.
10820  *
10821  * This should typically be used for cases where we locked an inode's VFS lock in
10822  * exclusive mode, we have also locked the inode's i_mmap_lock in exclusive mode,
10823  * we have flushed all delalloc in the range, we have waited for all ordered
10824  * extents in the range to complete and finally we have locked the file range in
10825  * the inode's io_tree.
10826  */
10827 void btrfs_assert_inode_range_clean(struct btrfs_inode *inode, u64 start, u64 end)
10828 {
10829 	struct btrfs_root *root = inode->root;
10830 	struct btrfs_ordered_extent *ordered;
10831 
10832 	if (!IS_ENABLED(CONFIG_BTRFS_ASSERT))
10833 		return;
10834 
10835 	ordered = btrfs_lookup_first_ordered_range(inode, start, end + 1 - start);
10836 	if (ordered) {
10837 		btrfs_err(root->fs_info,
10838 "found unexpected ordered extent in file range [%llu, %llu] for inode %llu root %llu (ordered range [%llu, %llu])",
10839 			  start, end, btrfs_ino(inode), root->root_key.objectid,
10840 			  ordered->file_offset,
10841 			  ordered->file_offset + ordered->num_bytes - 1);
10842 		btrfs_put_ordered_extent(ordered);
10843 	}
10844 
10845 	ASSERT(ordered == NULL);
10846 }
10847 
10848 static const struct inode_operations btrfs_dir_inode_operations = {
10849 	.getattr	= btrfs_getattr,
10850 	.lookup		= btrfs_lookup,
10851 	.create		= btrfs_create,
10852 	.unlink		= btrfs_unlink,
10853 	.link		= btrfs_link,
10854 	.mkdir		= btrfs_mkdir,
10855 	.rmdir		= btrfs_rmdir,
10856 	.rename		= btrfs_rename2,
10857 	.symlink	= btrfs_symlink,
10858 	.setattr	= btrfs_setattr,
10859 	.mknod		= btrfs_mknod,
10860 	.listxattr	= btrfs_listxattr,
10861 	.permission	= btrfs_permission,
10862 	.get_inode_acl	= btrfs_get_acl,
10863 	.set_acl	= btrfs_set_acl,
10864 	.update_time	= btrfs_update_time,
10865 	.tmpfile        = btrfs_tmpfile,
10866 	.fileattr_get	= btrfs_fileattr_get,
10867 	.fileattr_set	= btrfs_fileattr_set,
10868 };
10869 
10870 static const struct file_operations btrfs_dir_file_operations = {
10871 	.llseek		= generic_file_llseek,
10872 	.read		= generic_read_dir,
10873 	.iterate_shared	= btrfs_real_readdir,
10874 	.open		= btrfs_opendir,
10875 	.unlocked_ioctl	= btrfs_ioctl,
10876 #ifdef CONFIG_COMPAT
10877 	.compat_ioctl	= btrfs_compat_ioctl,
10878 #endif
10879 	.release        = btrfs_release_file,
10880 	.fsync		= btrfs_sync_file,
10881 };
10882 
10883 /*
10884  * btrfs doesn't support the bmap operation because swapfiles
10885  * use bmap to make a mapping of extents in the file.  They assume
10886  * these extents won't change over the life of the file and they
10887  * use the bmap result to do IO directly to the drive.
10888  *
10889  * the btrfs bmap call would return logical addresses that aren't
10890  * suitable for IO and they also will change frequently as COW
10891  * operations happen.  So, swapfile + btrfs == corruption.
10892  *
10893  * For now we're avoiding this by dropping bmap.
10894  */
10895 static const struct address_space_operations btrfs_aops = {
10896 	.read_folio	= btrfs_read_folio,
10897 	.writepages	= btrfs_writepages,
10898 	.readahead	= btrfs_readahead,
10899 	.invalidate_folio = btrfs_invalidate_folio,
10900 	.release_folio	= btrfs_release_folio,
10901 	.migrate_folio	= btrfs_migrate_folio,
10902 	.dirty_folio	= filemap_dirty_folio,
10903 	.error_remove_page = generic_error_remove_page,
10904 	.swap_activate	= btrfs_swap_activate,
10905 	.swap_deactivate = btrfs_swap_deactivate,
10906 };
10907 
10908 static const struct inode_operations btrfs_file_inode_operations = {
10909 	.getattr	= btrfs_getattr,
10910 	.setattr	= btrfs_setattr,
10911 	.listxattr      = btrfs_listxattr,
10912 	.permission	= btrfs_permission,
10913 	.fiemap		= btrfs_fiemap,
10914 	.get_inode_acl	= btrfs_get_acl,
10915 	.set_acl	= btrfs_set_acl,
10916 	.update_time	= btrfs_update_time,
10917 	.fileattr_get	= btrfs_fileattr_get,
10918 	.fileattr_set	= btrfs_fileattr_set,
10919 };
10920 static const struct inode_operations btrfs_special_inode_operations = {
10921 	.getattr	= btrfs_getattr,
10922 	.setattr	= btrfs_setattr,
10923 	.permission	= btrfs_permission,
10924 	.listxattr	= btrfs_listxattr,
10925 	.get_inode_acl	= btrfs_get_acl,
10926 	.set_acl	= btrfs_set_acl,
10927 	.update_time	= btrfs_update_time,
10928 };
10929 static const struct inode_operations btrfs_symlink_inode_operations = {
10930 	.get_link	= page_get_link,
10931 	.getattr	= btrfs_getattr,
10932 	.setattr	= btrfs_setattr,
10933 	.permission	= btrfs_permission,
10934 	.listxattr	= btrfs_listxattr,
10935 	.update_time	= btrfs_update_time,
10936 };
10937 
10938 const struct dentry_operations btrfs_dentry_operations = {
10939 	.d_delete	= btrfs_dentry_delete,
10940 };
10941