xref: /openbmc/linux/fs/btrfs/inode.c (revision cd4d09ec)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/statfs.h>
34 #include <linux/compat.h>
35 #include <linux/bit_spinlock.h>
36 #include <linux/xattr.h>
37 #include <linux/posix_acl.h>
38 #include <linux/falloc.h>
39 #include <linux/slab.h>
40 #include <linux/ratelimit.h>
41 #include <linux/mount.h>
42 #include <linux/btrfs.h>
43 #include <linux/blkdev.h>
44 #include <linux/posix_acl_xattr.h>
45 #include <linux/uio.h>
46 #include "ctree.h"
47 #include "disk-io.h"
48 #include "transaction.h"
49 #include "btrfs_inode.h"
50 #include "print-tree.h"
51 #include "ordered-data.h"
52 #include "xattr.h"
53 #include "tree-log.h"
54 #include "volumes.h"
55 #include "compression.h"
56 #include "locking.h"
57 #include "free-space-cache.h"
58 #include "inode-map.h"
59 #include "backref.h"
60 #include "hash.h"
61 #include "props.h"
62 #include "qgroup.h"
63 
64 struct btrfs_iget_args {
65 	struct btrfs_key *location;
66 	struct btrfs_root *root;
67 };
68 
69 struct btrfs_dio_data {
70 	u64 outstanding_extents;
71 	u64 reserve;
72 	u64 unsubmitted_oe_range_start;
73 	u64 unsubmitted_oe_range_end;
74 };
75 
76 static const struct inode_operations btrfs_dir_inode_operations;
77 static const struct inode_operations btrfs_symlink_inode_operations;
78 static const struct inode_operations btrfs_dir_ro_inode_operations;
79 static const struct inode_operations btrfs_special_inode_operations;
80 static const struct inode_operations btrfs_file_inode_operations;
81 static const struct address_space_operations btrfs_aops;
82 static const struct address_space_operations btrfs_symlink_aops;
83 static const struct file_operations btrfs_dir_file_operations;
84 static const struct extent_io_ops btrfs_extent_io_ops;
85 
86 static struct kmem_cache *btrfs_inode_cachep;
87 struct kmem_cache *btrfs_trans_handle_cachep;
88 struct kmem_cache *btrfs_transaction_cachep;
89 struct kmem_cache *btrfs_path_cachep;
90 struct kmem_cache *btrfs_free_space_cachep;
91 
92 #define S_SHIFT 12
93 static const unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
94 	[S_IFREG >> S_SHIFT]	= BTRFS_FT_REG_FILE,
95 	[S_IFDIR >> S_SHIFT]	= BTRFS_FT_DIR,
96 	[S_IFCHR >> S_SHIFT]	= BTRFS_FT_CHRDEV,
97 	[S_IFBLK >> S_SHIFT]	= BTRFS_FT_BLKDEV,
98 	[S_IFIFO >> S_SHIFT]	= BTRFS_FT_FIFO,
99 	[S_IFSOCK >> S_SHIFT]	= BTRFS_FT_SOCK,
100 	[S_IFLNK >> S_SHIFT]	= BTRFS_FT_SYMLINK,
101 };
102 
103 static int btrfs_setsize(struct inode *inode, struct iattr *attr);
104 static int btrfs_truncate(struct inode *inode);
105 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
106 static noinline int cow_file_range(struct inode *inode,
107 				   struct page *locked_page,
108 				   u64 start, u64 end, int *page_started,
109 				   unsigned long *nr_written, int unlock);
110 static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
111 					   u64 len, u64 orig_start,
112 					   u64 block_start, u64 block_len,
113 					   u64 orig_block_len, u64 ram_bytes,
114 					   int type);
115 
116 static int btrfs_dirty_inode(struct inode *inode);
117 
118 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
119 void btrfs_test_inode_set_ops(struct inode *inode)
120 {
121 	BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
122 }
123 #endif
124 
125 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
126 				     struct inode *inode,  struct inode *dir,
127 				     const struct qstr *qstr)
128 {
129 	int err;
130 
131 	err = btrfs_init_acl(trans, inode, dir);
132 	if (!err)
133 		err = btrfs_xattr_security_init(trans, inode, dir, qstr);
134 	return err;
135 }
136 
137 /*
138  * this does all the hard work for inserting an inline extent into
139  * the btree.  The caller should have done a btrfs_drop_extents so that
140  * no overlapping inline items exist in the btree
141  */
142 static int insert_inline_extent(struct btrfs_trans_handle *trans,
143 				struct btrfs_path *path, int extent_inserted,
144 				struct btrfs_root *root, struct inode *inode,
145 				u64 start, size_t size, size_t compressed_size,
146 				int compress_type,
147 				struct page **compressed_pages)
148 {
149 	struct extent_buffer *leaf;
150 	struct page *page = NULL;
151 	char *kaddr;
152 	unsigned long ptr;
153 	struct btrfs_file_extent_item *ei;
154 	int err = 0;
155 	int ret;
156 	size_t cur_size = size;
157 	unsigned long offset;
158 
159 	if (compressed_size && compressed_pages)
160 		cur_size = compressed_size;
161 
162 	inode_add_bytes(inode, size);
163 
164 	if (!extent_inserted) {
165 		struct btrfs_key key;
166 		size_t datasize;
167 
168 		key.objectid = btrfs_ino(inode);
169 		key.offset = start;
170 		key.type = BTRFS_EXTENT_DATA_KEY;
171 
172 		datasize = btrfs_file_extent_calc_inline_size(cur_size);
173 		path->leave_spinning = 1;
174 		ret = btrfs_insert_empty_item(trans, root, path, &key,
175 					      datasize);
176 		if (ret) {
177 			err = ret;
178 			goto fail;
179 		}
180 	}
181 	leaf = path->nodes[0];
182 	ei = btrfs_item_ptr(leaf, path->slots[0],
183 			    struct btrfs_file_extent_item);
184 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
185 	btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
186 	btrfs_set_file_extent_encryption(leaf, ei, 0);
187 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
188 	btrfs_set_file_extent_ram_bytes(leaf, ei, size);
189 	ptr = btrfs_file_extent_inline_start(ei);
190 
191 	if (compress_type != BTRFS_COMPRESS_NONE) {
192 		struct page *cpage;
193 		int i = 0;
194 		while (compressed_size > 0) {
195 			cpage = compressed_pages[i];
196 			cur_size = min_t(unsigned long, compressed_size,
197 				       PAGE_CACHE_SIZE);
198 
199 			kaddr = kmap_atomic(cpage);
200 			write_extent_buffer(leaf, kaddr, ptr, cur_size);
201 			kunmap_atomic(kaddr);
202 
203 			i++;
204 			ptr += cur_size;
205 			compressed_size -= cur_size;
206 		}
207 		btrfs_set_file_extent_compression(leaf, ei,
208 						  compress_type);
209 	} else {
210 		page = find_get_page(inode->i_mapping,
211 				     start >> PAGE_CACHE_SHIFT);
212 		btrfs_set_file_extent_compression(leaf, ei, 0);
213 		kaddr = kmap_atomic(page);
214 		offset = start & (PAGE_CACHE_SIZE - 1);
215 		write_extent_buffer(leaf, kaddr + offset, ptr, size);
216 		kunmap_atomic(kaddr);
217 		page_cache_release(page);
218 	}
219 	btrfs_mark_buffer_dirty(leaf);
220 	btrfs_release_path(path);
221 
222 	/*
223 	 * we're an inline extent, so nobody can
224 	 * extend the file past i_size without locking
225 	 * a page we already have locked.
226 	 *
227 	 * We must do any isize and inode updates
228 	 * before we unlock the pages.  Otherwise we
229 	 * could end up racing with unlink.
230 	 */
231 	BTRFS_I(inode)->disk_i_size = inode->i_size;
232 	ret = btrfs_update_inode(trans, root, inode);
233 
234 	return ret;
235 fail:
236 	return err;
237 }
238 
239 
240 /*
241  * conditionally insert an inline extent into the file.  This
242  * does the checks required to make sure the data is small enough
243  * to fit as an inline extent.
244  */
245 static noinline int cow_file_range_inline(struct btrfs_root *root,
246 					  struct inode *inode, u64 start,
247 					  u64 end, size_t compressed_size,
248 					  int compress_type,
249 					  struct page **compressed_pages)
250 {
251 	struct btrfs_trans_handle *trans;
252 	u64 isize = i_size_read(inode);
253 	u64 actual_end = min(end + 1, isize);
254 	u64 inline_len = actual_end - start;
255 	u64 aligned_end = ALIGN(end, root->sectorsize);
256 	u64 data_len = inline_len;
257 	int ret;
258 	struct btrfs_path *path;
259 	int extent_inserted = 0;
260 	u32 extent_item_size;
261 
262 	if (compressed_size)
263 		data_len = compressed_size;
264 
265 	if (start > 0 ||
266 	    actual_end > PAGE_CACHE_SIZE ||
267 	    data_len > BTRFS_MAX_INLINE_DATA_SIZE(root) ||
268 	    (!compressed_size &&
269 	    (actual_end & (root->sectorsize - 1)) == 0) ||
270 	    end + 1 < isize ||
271 	    data_len > root->fs_info->max_inline) {
272 		return 1;
273 	}
274 
275 	path = btrfs_alloc_path();
276 	if (!path)
277 		return -ENOMEM;
278 
279 	trans = btrfs_join_transaction(root);
280 	if (IS_ERR(trans)) {
281 		btrfs_free_path(path);
282 		return PTR_ERR(trans);
283 	}
284 	trans->block_rsv = &root->fs_info->delalloc_block_rsv;
285 
286 	if (compressed_size && compressed_pages)
287 		extent_item_size = btrfs_file_extent_calc_inline_size(
288 		   compressed_size);
289 	else
290 		extent_item_size = btrfs_file_extent_calc_inline_size(
291 		    inline_len);
292 
293 	ret = __btrfs_drop_extents(trans, root, inode, path,
294 				   start, aligned_end, NULL,
295 				   1, 1, extent_item_size, &extent_inserted);
296 	if (ret) {
297 		btrfs_abort_transaction(trans, root, ret);
298 		goto out;
299 	}
300 
301 	if (isize > actual_end)
302 		inline_len = min_t(u64, isize, actual_end);
303 	ret = insert_inline_extent(trans, path, extent_inserted,
304 				   root, inode, start,
305 				   inline_len, compressed_size,
306 				   compress_type, compressed_pages);
307 	if (ret && ret != -ENOSPC) {
308 		btrfs_abort_transaction(trans, root, ret);
309 		goto out;
310 	} else if (ret == -ENOSPC) {
311 		ret = 1;
312 		goto out;
313 	}
314 
315 	set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
316 	btrfs_delalloc_release_metadata(inode, end + 1 - start);
317 	btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
318 out:
319 	/*
320 	 * Don't forget to free the reserved space, as for inlined extent
321 	 * it won't count as data extent, free them directly here.
322 	 * And at reserve time, it's always aligned to page size, so
323 	 * just free one page here.
324 	 */
325 	btrfs_qgroup_free_data(inode, 0, PAGE_CACHE_SIZE);
326 	btrfs_free_path(path);
327 	btrfs_end_transaction(trans, root);
328 	return ret;
329 }
330 
331 struct async_extent {
332 	u64 start;
333 	u64 ram_size;
334 	u64 compressed_size;
335 	struct page **pages;
336 	unsigned long nr_pages;
337 	int compress_type;
338 	struct list_head list;
339 };
340 
341 struct async_cow {
342 	struct inode *inode;
343 	struct btrfs_root *root;
344 	struct page *locked_page;
345 	u64 start;
346 	u64 end;
347 	struct list_head extents;
348 	struct btrfs_work work;
349 };
350 
351 static noinline int add_async_extent(struct async_cow *cow,
352 				     u64 start, u64 ram_size,
353 				     u64 compressed_size,
354 				     struct page **pages,
355 				     unsigned long nr_pages,
356 				     int compress_type)
357 {
358 	struct async_extent *async_extent;
359 
360 	async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
361 	BUG_ON(!async_extent); /* -ENOMEM */
362 	async_extent->start = start;
363 	async_extent->ram_size = ram_size;
364 	async_extent->compressed_size = compressed_size;
365 	async_extent->pages = pages;
366 	async_extent->nr_pages = nr_pages;
367 	async_extent->compress_type = compress_type;
368 	list_add_tail(&async_extent->list, &cow->extents);
369 	return 0;
370 }
371 
372 static inline int inode_need_compress(struct inode *inode)
373 {
374 	struct btrfs_root *root = BTRFS_I(inode)->root;
375 
376 	/* force compress */
377 	if (btrfs_test_opt(root, FORCE_COMPRESS))
378 		return 1;
379 	/* bad compression ratios */
380 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
381 		return 0;
382 	if (btrfs_test_opt(root, COMPRESS) ||
383 	    BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS ||
384 	    BTRFS_I(inode)->force_compress)
385 		return 1;
386 	return 0;
387 }
388 
389 /*
390  * we create compressed extents in two phases.  The first
391  * phase compresses a range of pages that have already been
392  * locked (both pages and state bits are locked).
393  *
394  * This is done inside an ordered work queue, and the compression
395  * is spread across many cpus.  The actual IO submission is step
396  * two, and the ordered work queue takes care of making sure that
397  * happens in the same order things were put onto the queue by
398  * writepages and friends.
399  *
400  * If this code finds it can't get good compression, it puts an
401  * entry onto the work queue to write the uncompressed bytes.  This
402  * makes sure that both compressed inodes and uncompressed inodes
403  * are written in the same order that the flusher thread sent them
404  * down.
405  */
406 static noinline void compress_file_range(struct inode *inode,
407 					struct page *locked_page,
408 					u64 start, u64 end,
409 					struct async_cow *async_cow,
410 					int *num_added)
411 {
412 	struct btrfs_root *root = BTRFS_I(inode)->root;
413 	u64 num_bytes;
414 	u64 blocksize = root->sectorsize;
415 	u64 actual_end;
416 	u64 isize = i_size_read(inode);
417 	int ret = 0;
418 	struct page **pages = NULL;
419 	unsigned long nr_pages;
420 	unsigned long nr_pages_ret = 0;
421 	unsigned long total_compressed = 0;
422 	unsigned long total_in = 0;
423 	unsigned long max_compressed = SZ_128K;
424 	unsigned long max_uncompressed = SZ_128K;
425 	int i;
426 	int will_compress;
427 	int compress_type = root->fs_info->compress_type;
428 	int redirty = 0;
429 
430 	/* if this is a small write inside eof, kick off a defrag */
431 	if ((end - start + 1) < SZ_16K &&
432 	    (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
433 		btrfs_add_inode_defrag(NULL, inode);
434 
435 	actual_end = min_t(u64, isize, end + 1);
436 again:
437 	will_compress = 0;
438 	nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
439 	nr_pages = min_t(unsigned long, nr_pages, SZ_128K / PAGE_CACHE_SIZE);
440 
441 	/*
442 	 * we don't want to send crud past the end of i_size through
443 	 * compression, that's just a waste of CPU time.  So, if the
444 	 * end of the file is before the start of our current
445 	 * requested range of bytes, we bail out to the uncompressed
446 	 * cleanup code that can deal with all of this.
447 	 *
448 	 * It isn't really the fastest way to fix things, but this is a
449 	 * very uncommon corner.
450 	 */
451 	if (actual_end <= start)
452 		goto cleanup_and_bail_uncompressed;
453 
454 	total_compressed = actual_end - start;
455 
456 	/*
457 	 * skip compression for a small file range(<=blocksize) that
458 	 * isn't an inline extent, since it dosen't save disk space at all.
459 	 */
460 	if (total_compressed <= blocksize &&
461 	   (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
462 		goto cleanup_and_bail_uncompressed;
463 
464 	/* we want to make sure that amount of ram required to uncompress
465 	 * an extent is reasonable, so we limit the total size in ram
466 	 * of a compressed extent to 128k.  This is a crucial number
467 	 * because it also controls how easily we can spread reads across
468 	 * cpus for decompression.
469 	 *
470 	 * We also want to make sure the amount of IO required to do
471 	 * a random read is reasonably small, so we limit the size of
472 	 * a compressed extent to 128k.
473 	 */
474 	total_compressed = min(total_compressed, max_uncompressed);
475 	num_bytes = ALIGN(end - start + 1, blocksize);
476 	num_bytes = max(blocksize,  num_bytes);
477 	total_in = 0;
478 	ret = 0;
479 
480 	/*
481 	 * we do compression for mount -o compress and when the
482 	 * inode has not been flagged as nocompress.  This flag can
483 	 * change at any time if we discover bad compression ratios.
484 	 */
485 	if (inode_need_compress(inode)) {
486 		WARN_ON(pages);
487 		pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
488 		if (!pages) {
489 			/* just bail out to the uncompressed code */
490 			goto cont;
491 		}
492 
493 		if (BTRFS_I(inode)->force_compress)
494 			compress_type = BTRFS_I(inode)->force_compress;
495 
496 		/*
497 		 * we need to call clear_page_dirty_for_io on each
498 		 * page in the range.  Otherwise applications with the file
499 		 * mmap'd can wander in and change the page contents while
500 		 * we are compressing them.
501 		 *
502 		 * If the compression fails for any reason, we set the pages
503 		 * dirty again later on.
504 		 */
505 		extent_range_clear_dirty_for_io(inode, start, end);
506 		redirty = 1;
507 		ret = btrfs_compress_pages(compress_type,
508 					   inode->i_mapping, start,
509 					   total_compressed, pages,
510 					   nr_pages, &nr_pages_ret,
511 					   &total_in,
512 					   &total_compressed,
513 					   max_compressed);
514 
515 		if (!ret) {
516 			unsigned long offset = total_compressed &
517 				(PAGE_CACHE_SIZE - 1);
518 			struct page *page = pages[nr_pages_ret - 1];
519 			char *kaddr;
520 
521 			/* zero the tail end of the last page, we might be
522 			 * sending it down to disk
523 			 */
524 			if (offset) {
525 				kaddr = kmap_atomic(page);
526 				memset(kaddr + offset, 0,
527 				       PAGE_CACHE_SIZE - offset);
528 				kunmap_atomic(kaddr);
529 			}
530 			will_compress = 1;
531 		}
532 	}
533 cont:
534 	if (start == 0) {
535 		/* lets try to make an inline extent */
536 		if (ret || total_in < (actual_end - start)) {
537 			/* we didn't compress the entire range, try
538 			 * to make an uncompressed inline extent.
539 			 */
540 			ret = cow_file_range_inline(root, inode, start, end,
541 						    0, 0, NULL);
542 		} else {
543 			/* try making a compressed inline extent */
544 			ret = cow_file_range_inline(root, inode, start, end,
545 						    total_compressed,
546 						    compress_type, pages);
547 		}
548 		if (ret <= 0) {
549 			unsigned long clear_flags = EXTENT_DELALLOC |
550 				EXTENT_DEFRAG;
551 			unsigned long page_error_op;
552 
553 			clear_flags |= (ret < 0) ? EXTENT_DO_ACCOUNTING : 0;
554 			page_error_op = ret < 0 ? PAGE_SET_ERROR : 0;
555 
556 			/*
557 			 * inline extent creation worked or returned error,
558 			 * we don't need to create any more async work items.
559 			 * Unlock and free up our temp pages.
560 			 */
561 			extent_clear_unlock_delalloc(inode, start, end, NULL,
562 						     clear_flags, PAGE_UNLOCK |
563 						     PAGE_CLEAR_DIRTY |
564 						     PAGE_SET_WRITEBACK |
565 						     page_error_op |
566 						     PAGE_END_WRITEBACK);
567 			goto free_pages_out;
568 		}
569 	}
570 
571 	if (will_compress) {
572 		/*
573 		 * we aren't doing an inline extent round the compressed size
574 		 * up to a block size boundary so the allocator does sane
575 		 * things
576 		 */
577 		total_compressed = ALIGN(total_compressed, blocksize);
578 
579 		/*
580 		 * one last check to make sure the compression is really a
581 		 * win, compare the page count read with the blocks on disk
582 		 */
583 		total_in = ALIGN(total_in, PAGE_CACHE_SIZE);
584 		if (total_compressed >= total_in) {
585 			will_compress = 0;
586 		} else {
587 			num_bytes = total_in;
588 		}
589 	}
590 	if (!will_compress && pages) {
591 		/*
592 		 * the compression code ran but failed to make things smaller,
593 		 * free any pages it allocated and our page pointer array
594 		 */
595 		for (i = 0; i < nr_pages_ret; i++) {
596 			WARN_ON(pages[i]->mapping);
597 			page_cache_release(pages[i]);
598 		}
599 		kfree(pages);
600 		pages = NULL;
601 		total_compressed = 0;
602 		nr_pages_ret = 0;
603 
604 		/* flag the file so we don't compress in the future */
605 		if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
606 		    !(BTRFS_I(inode)->force_compress)) {
607 			BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
608 		}
609 	}
610 	if (will_compress) {
611 		*num_added += 1;
612 
613 		/* the async work queues will take care of doing actual
614 		 * allocation on disk for these compressed pages,
615 		 * and will submit them to the elevator.
616 		 */
617 		add_async_extent(async_cow, start, num_bytes,
618 				 total_compressed, pages, nr_pages_ret,
619 				 compress_type);
620 
621 		if (start + num_bytes < end) {
622 			start += num_bytes;
623 			pages = NULL;
624 			cond_resched();
625 			goto again;
626 		}
627 	} else {
628 cleanup_and_bail_uncompressed:
629 		/*
630 		 * No compression, but we still need to write the pages in
631 		 * the file we've been given so far.  redirty the locked
632 		 * page if it corresponds to our extent and set things up
633 		 * for the async work queue to run cow_file_range to do
634 		 * the normal delalloc dance
635 		 */
636 		if (page_offset(locked_page) >= start &&
637 		    page_offset(locked_page) <= end) {
638 			__set_page_dirty_nobuffers(locked_page);
639 			/* unlocked later on in the async handlers */
640 		}
641 		if (redirty)
642 			extent_range_redirty_for_io(inode, start, end);
643 		add_async_extent(async_cow, start, end - start + 1,
644 				 0, NULL, 0, BTRFS_COMPRESS_NONE);
645 		*num_added += 1;
646 	}
647 
648 	return;
649 
650 free_pages_out:
651 	for (i = 0; i < nr_pages_ret; i++) {
652 		WARN_ON(pages[i]->mapping);
653 		page_cache_release(pages[i]);
654 	}
655 	kfree(pages);
656 }
657 
658 static void free_async_extent_pages(struct async_extent *async_extent)
659 {
660 	int i;
661 
662 	if (!async_extent->pages)
663 		return;
664 
665 	for (i = 0; i < async_extent->nr_pages; i++) {
666 		WARN_ON(async_extent->pages[i]->mapping);
667 		page_cache_release(async_extent->pages[i]);
668 	}
669 	kfree(async_extent->pages);
670 	async_extent->nr_pages = 0;
671 	async_extent->pages = NULL;
672 }
673 
674 /*
675  * phase two of compressed writeback.  This is the ordered portion
676  * of the code, which only gets called in the order the work was
677  * queued.  We walk all the async extents created by compress_file_range
678  * and send them down to the disk.
679  */
680 static noinline void submit_compressed_extents(struct inode *inode,
681 					      struct async_cow *async_cow)
682 {
683 	struct async_extent *async_extent;
684 	u64 alloc_hint = 0;
685 	struct btrfs_key ins;
686 	struct extent_map *em;
687 	struct btrfs_root *root = BTRFS_I(inode)->root;
688 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
689 	struct extent_io_tree *io_tree;
690 	int ret = 0;
691 
692 again:
693 	while (!list_empty(&async_cow->extents)) {
694 		async_extent = list_entry(async_cow->extents.next,
695 					  struct async_extent, list);
696 		list_del(&async_extent->list);
697 
698 		io_tree = &BTRFS_I(inode)->io_tree;
699 
700 retry:
701 		/* did the compression code fall back to uncompressed IO? */
702 		if (!async_extent->pages) {
703 			int page_started = 0;
704 			unsigned long nr_written = 0;
705 
706 			lock_extent(io_tree, async_extent->start,
707 					 async_extent->start +
708 					 async_extent->ram_size - 1);
709 
710 			/* allocate blocks */
711 			ret = cow_file_range(inode, async_cow->locked_page,
712 					     async_extent->start,
713 					     async_extent->start +
714 					     async_extent->ram_size - 1,
715 					     &page_started, &nr_written, 0);
716 
717 			/* JDM XXX */
718 
719 			/*
720 			 * if page_started, cow_file_range inserted an
721 			 * inline extent and took care of all the unlocking
722 			 * and IO for us.  Otherwise, we need to submit
723 			 * all those pages down to the drive.
724 			 */
725 			if (!page_started && !ret)
726 				extent_write_locked_range(io_tree,
727 						  inode, async_extent->start,
728 						  async_extent->start +
729 						  async_extent->ram_size - 1,
730 						  btrfs_get_extent,
731 						  WB_SYNC_ALL);
732 			else if (ret)
733 				unlock_page(async_cow->locked_page);
734 			kfree(async_extent);
735 			cond_resched();
736 			continue;
737 		}
738 
739 		lock_extent(io_tree, async_extent->start,
740 			    async_extent->start + async_extent->ram_size - 1);
741 
742 		ret = btrfs_reserve_extent(root,
743 					   async_extent->compressed_size,
744 					   async_extent->compressed_size,
745 					   0, alloc_hint, &ins, 1, 1);
746 		if (ret) {
747 			free_async_extent_pages(async_extent);
748 
749 			if (ret == -ENOSPC) {
750 				unlock_extent(io_tree, async_extent->start,
751 					      async_extent->start +
752 					      async_extent->ram_size - 1);
753 
754 				/*
755 				 * we need to redirty the pages if we decide to
756 				 * fallback to uncompressed IO, otherwise we
757 				 * will not submit these pages down to lower
758 				 * layers.
759 				 */
760 				extent_range_redirty_for_io(inode,
761 						async_extent->start,
762 						async_extent->start +
763 						async_extent->ram_size - 1);
764 
765 				goto retry;
766 			}
767 			goto out_free;
768 		}
769 		/*
770 		 * here we're doing allocation and writeback of the
771 		 * compressed pages
772 		 */
773 		btrfs_drop_extent_cache(inode, async_extent->start,
774 					async_extent->start +
775 					async_extent->ram_size - 1, 0);
776 
777 		em = alloc_extent_map();
778 		if (!em) {
779 			ret = -ENOMEM;
780 			goto out_free_reserve;
781 		}
782 		em->start = async_extent->start;
783 		em->len = async_extent->ram_size;
784 		em->orig_start = em->start;
785 		em->mod_start = em->start;
786 		em->mod_len = em->len;
787 
788 		em->block_start = ins.objectid;
789 		em->block_len = ins.offset;
790 		em->orig_block_len = ins.offset;
791 		em->ram_bytes = async_extent->ram_size;
792 		em->bdev = root->fs_info->fs_devices->latest_bdev;
793 		em->compress_type = async_extent->compress_type;
794 		set_bit(EXTENT_FLAG_PINNED, &em->flags);
795 		set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
796 		em->generation = -1;
797 
798 		while (1) {
799 			write_lock(&em_tree->lock);
800 			ret = add_extent_mapping(em_tree, em, 1);
801 			write_unlock(&em_tree->lock);
802 			if (ret != -EEXIST) {
803 				free_extent_map(em);
804 				break;
805 			}
806 			btrfs_drop_extent_cache(inode, async_extent->start,
807 						async_extent->start +
808 						async_extent->ram_size - 1, 0);
809 		}
810 
811 		if (ret)
812 			goto out_free_reserve;
813 
814 		ret = btrfs_add_ordered_extent_compress(inode,
815 						async_extent->start,
816 						ins.objectid,
817 						async_extent->ram_size,
818 						ins.offset,
819 						BTRFS_ORDERED_COMPRESSED,
820 						async_extent->compress_type);
821 		if (ret) {
822 			btrfs_drop_extent_cache(inode, async_extent->start,
823 						async_extent->start +
824 						async_extent->ram_size - 1, 0);
825 			goto out_free_reserve;
826 		}
827 
828 		/*
829 		 * clear dirty, set writeback and unlock the pages.
830 		 */
831 		extent_clear_unlock_delalloc(inode, async_extent->start,
832 				async_extent->start +
833 				async_extent->ram_size - 1,
834 				NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
835 				PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
836 				PAGE_SET_WRITEBACK);
837 		ret = btrfs_submit_compressed_write(inode,
838 				    async_extent->start,
839 				    async_extent->ram_size,
840 				    ins.objectid,
841 				    ins.offset, async_extent->pages,
842 				    async_extent->nr_pages);
843 		if (ret) {
844 			struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
845 			struct page *p = async_extent->pages[0];
846 			const u64 start = async_extent->start;
847 			const u64 end = start + async_extent->ram_size - 1;
848 
849 			p->mapping = inode->i_mapping;
850 			tree->ops->writepage_end_io_hook(p, start, end,
851 							 NULL, 0);
852 			p->mapping = NULL;
853 			extent_clear_unlock_delalloc(inode, start, end, NULL, 0,
854 						     PAGE_END_WRITEBACK |
855 						     PAGE_SET_ERROR);
856 			free_async_extent_pages(async_extent);
857 		}
858 		alloc_hint = ins.objectid + ins.offset;
859 		kfree(async_extent);
860 		cond_resched();
861 	}
862 	return;
863 out_free_reserve:
864 	btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
865 out_free:
866 	extent_clear_unlock_delalloc(inode, async_extent->start,
867 				     async_extent->start +
868 				     async_extent->ram_size - 1,
869 				     NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
870 				     EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
871 				     PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
872 				     PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
873 				     PAGE_SET_ERROR);
874 	free_async_extent_pages(async_extent);
875 	kfree(async_extent);
876 	goto again;
877 }
878 
879 static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
880 				      u64 num_bytes)
881 {
882 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
883 	struct extent_map *em;
884 	u64 alloc_hint = 0;
885 
886 	read_lock(&em_tree->lock);
887 	em = search_extent_mapping(em_tree, start, num_bytes);
888 	if (em) {
889 		/*
890 		 * if block start isn't an actual block number then find the
891 		 * first block in this inode and use that as a hint.  If that
892 		 * block is also bogus then just don't worry about it.
893 		 */
894 		if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
895 			free_extent_map(em);
896 			em = search_extent_mapping(em_tree, 0, 0);
897 			if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
898 				alloc_hint = em->block_start;
899 			if (em)
900 				free_extent_map(em);
901 		} else {
902 			alloc_hint = em->block_start;
903 			free_extent_map(em);
904 		}
905 	}
906 	read_unlock(&em_tree->lock);
907 
908 	return alloc_hint;
909 }
910 
911 /*
912  * when extent_io.c finds a delayed allocation range in the file,
913  * the call backs end up in this code.  The basic idea is to
914  * allocate extents on disk for the range, and create ordered data structs
915  * in ram to track those extents.
916  *
917  * locked_page is the page that writepage had locked already.  We use
918  * it to make sure we don't do extra locks or unlocks.
919  *
920  * *page_started is set to one if we unlock locked_page and do everything
921  * required to start IO on it.  It may be clean and already done with
922  * IO when we return.
923  */
924 static noinline int cow_file_range(struct inode *inode,
925 				   struct page *locked_page,
926 				   u64 start, u64 end, int *page_started,
927 				   unsigned long *nr_written,
928 				   int unlock)
929 {
930 	struct btrfs_root *root = BTRFS_I(inode)->root;
931 	u64 alloc_hint = 0;
932 	u64 num_bytes;
933 	unsigned long ram_size;
934 	u64 disk_num_bytes;
935 	u64 cur_alloc_size;
936 	u64 blocksize = root->sectorsize;
937 	struct btrfs_key ins;
938 	struct extent_map *em;
939 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
940 	int ret = 0;
941 
942 	if (btrfs_is_free_space_inode(inode)) {
943 		WARN_ON_ONCE(1);
944 		ret = -EINVAL;
945 		goto out_unlock;
946 	}
947 
948 	num_bytes = ALIGN(end - start + 1, blocksize);
949 	num_bytes = max(blocksize,  num_bytes);
950 	disk_num_bytes = num_bytes;
951 
952 	/* if this is a small write inside eof, kick off defrag */
953 	if (num_bytes < SZ_64K &&
954 	    (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
955 		btrfs_add_inode_defrag(NULL, inode);
956 
957 	if (start == 0) {
958 		/* lets try to make an inline extent */
959 		ret = cow_file_range_inline(root, inode, start, end, 0, 0,
960 					    NULL);
961 		if (ret == 0) {
962 			extent_clear_unlock_delalloc(inode, start, end, NULL,
963 				     EXTENT_LOCKED | EXTENT_DELALLOC |
964 				     EXTENT_DEFRAG, PAGE_UNLOCK |
965 				     PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
966 				     PAGE_END_WRITEBACK);
967 
968 			*nr_written = *nr_written +
969 			     (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
970 			*page_started = 1;
971 			goto out;
972 		} else if (ret < 0) {
973 			goto out_unlock;
974 		}
975 	}
976 
977 	BUG_ON(disk_num_bytes >
978 	       btrfs_super_total_bytes(root->fs_info->super_copy));
979 
980 	alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
981 	btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
982 
983 	while (disk_num_bytes > 0) {
984 		unsigned long op;
985 
986 		cur_alloc_size = disk_num_bytes;
987 		ret = btrfs_reserve_extent(root, cur_alloc_size,
988 					   root->sectorsize, 0, alloc_hint,
989 					   &ins, 1, 1);
990 		if (ret < 0)
991 			goto out_unlock;
992 
993 		em = alloc_extent_map();
994 		if (!em) {
995 			ret = -ENOMEM;
996 			goto out_reserve;
997 		}
998 		em->start = start;
999 		em->orig_start = em->start;
1000 		ram_size = ins.offset;
1001 		em->len = ins.offset;
1002 		em->mod_start = em->start;
1003 		em->mod_len = em->len;
1004 
1005 		em->block_start = ins.objectid;
1006 		em->block_len = ins.offset;
1007 		em->orig_block_len = ins.offset;
1008 		em->ram_bytes = ram_size;
1009 		em->bdev = root->fs_info->fs_devices->latest_bdev;
1010 		set_bit(EXTENT_FLAG_PINNED, &em->flags);
1011 		em->generation = -1;
1012 
1013 		while (1) {
1014 			write_lock(&em_tree->lock);
1015 			ret = add_extent_mapping(em_tree, em, 1);
1016 			write_unlock(&em_tree->lock);
1017 			if (ret != -EEXIST) {
1018 				free_extent_map(em);
1019 				break;
1020 			}
1021 			btrfs_drop_extent_cache(inode, start,
1022 						start + ram_size - 1, 0);
1023 		}
1024 		if (ret)
1025 			goto out_reserve;
1026 
1027 		cur_alloc_size = ins.offset;
1028 		ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
1029 					       ram_size, cur_alloc_size, 0);
1030 		if (ret)
1031 			goto out_drop_extent_cache;
1032 
1033 		if (root->root_key.objectid ==
1034 		    BTRFS_DATA_RELOC_TREE_OBJECTID) {
1035 			ret = btrfs_reloc_clone_csums(inode, start,
1036 						      cur_alloc_size);
1037 			if (ret)
1038 				goto out_drop_extent_cache;
1039 		}
1040 
1041 		if (disk_num_bytes < cur_alloc_size)
1042 			break;
1043 
1044 		/* we're not doing compressed IO, don't unlock the first
1045 		 * page (which the caller expects to stay locked), don't
1046 		 * clear any dirty bits and don't set any writeback bits
1047 		 *
1048 		 * Do set the Private2 bit so we know this page was properly
1049 		 * setup for writepage
1050 		 */
1051 		op = unlock ? PAGE_UNLOCK : 0;
1052 		op |= PAGE_SET_PRIVATE2;
1053 
1054 		extent_clear_unlock_delalloc(inode, start,
1055 					     start + ram_size - 1, locked_page,
1056 					     EXTENT_LOCKED | EXTENT_DELALLOC,
1057 					     op);
1058 		disk_num_bytes -= cur_alloc_size;
1059 		num_bytes -= cur_alloc_size;
1060 		alloc_hint = ins.objectid + ins.offset;
1061 		start += cur_alloc_size;
1062 	}
1063 out:
1064 	return ret;
1065 
1066 out_drop_extent_cache:
1067 	btrfs_drop_extent_cache(inode, start, start + ram_size - 1, 0);
1068 out_reserve:
1069 	btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
1070 out_unlock:
1071 	extent_clear_unlock_delalloc(inode, start, end, locked_page,
1072 				     EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
1073 				     EXTENT_DELALLOC | EXTENT_DEFRAG,
1074 				     PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
1075 				     PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK);
1076 	goto out;
1077 }
1078 
1079 /*
1080  * work queue call back to started compression on a file and pages
1081  */
1082 static noinline void async_cow_start(struct btrfs_work *work)
1083 {
1084 	struct async_cow *async_cow;
1085 	int num_added = 0;
1086 	async_cow = container_of(work, struct async_cow, work);
1087 
1088 	compress_file_range(async_cow->inode, async_cow->locked_page,
1089 			    async_cow->start, async_cow->end, async_cow,
1090 			    &num_added);
1091 	if (num_added == 0) {
1092 		btrfs_add_delayed_iput(async_cow->inode);
1093 		async_cow->inode = NULL;
1094 	}
1095 }
1096 
1097 /*
1098  * work queue call back to submit previously compressed pages
1099  */
1100 static noinline void async_cow_submit(struct btrfs_work *work)
1101 {
1102 	struct async_cow *async_cow;
1103 	struct btrfs_root *root;
1104 	unsigned long nr_pages;
1105 
1106 	async_cow = container_of(work, struct async_cow, work);
1107 
1108 	root = async_cow->root;
1109 	nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
1110 		PAGE_CACHE_SHIFT;
1111 
1112 	/*
1113 	 * atomic_sub_return implies a barrier for waitqueue_active
1114 	 */
1115 	if (atomic_sub_return(nr_pages, &root->fs_info->async_delalloc_pages) <
1116 	    5 * SZ_1M &&
1117 	    waitqueue_active(&root->fs_info->async_submit_wait))
1118 		wake_up(&root->fs_info->async_submit_wait);
1119 
1120 	if (async_cow->inode)
1121 		submit_compressed_extents(async_cow->inode, async_cow);
1122 }
1123 
1124 static noinline void async_cow_free(struct btrfs_work *work)
1125 {
1126 	struct async_cow *async_cow;
1127 	async_cow = container_of(work, struct async_cow, work);
1128 	if (async_cow->inode)
1129 		btrfs_add_delayed_iput(async_cow->inode);
1130 	kfree(async_cow);
1131 }
1132 
1133 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1134 				u64 start, u64 end, int *page_started,
1135 				unsigned long *nr_written)
1136 {
1137 	struct async_cow *async_cow;
1138 	struct btrfs_root *root = BTRFS_I(inode)->root;
1139 	unsigned long nr_pages;
1140 	u64 cur_end;
1141 	int limit = 10 * SZ_1M;
1142 
1143 	clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
1144 			 1, 0, NULL, GFP_NOFS);
1145 	while (start < end) {
1146 		async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
1147 		BUG_ON(!async_cow); /* -ENOMEM */
1148 		async_cow->inode = igrab(inode);
1149 		async_cow->root = root;
1150 		async_cow->locked_page = locked_page;
1151 		async_cow->start = start;
1152 
1153 		if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS &&
1154 		    !btrfs_test_opt(root, FORCE_COMPRESS))
1155 			cur_end = end;
1156 		else
1157 			cur_end = min(end, start + SZ_512K - 1);
1158 
1159 		async_cow->end = cur_end;
1160 		INIT_LIST_HEAD(&async_cow->extents);
1161 
1162 		btrfs_init_work(&async_cow->work,
1163 				btrfs_delalloc_helper,
1164 				async_cow_start, async_cow_submit,
1165 				async_cow_free);
1166 
1167 		nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
1168 			PAGE_CACHE_SHIFT;
1169 		atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
1170 
1171 		btrfs_queue_work(root->fs_info->delalloc_workers,
1172 				 &async_cow->work);
1173 
1174 		if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
1175 			wait_event(root->fs_info->async_submit_wait,
1176 			   (atomic_read(&root->fs_info->async_delalloc_pages) <
1177 			    limit));
1178 		}
1179 
1180 		while (atomic_read(&root->fs_info->async_submit_draining) &&
1181 		      atomic_read(&root->fs_info->async_delalloc_pages)) {
1182 			wait_event(root->fs_info->async_submit_wait,
1183 			  (atomic_read(&root->fs_info->async_delalloc_pages) ==
1184 			   0));
1185 		}
1186 
1187 		*nr_written += nr_pages;
1188 		start = cur_end + 1;
1189 	}
1190 	*page_started = 1;
1191 	return 0;
1192 }
1193 
1194 static noinline int csum_exist_in_range(struct btrfs_root *root,
1195 					u64 bytenr, u64 num_bytes)
1196 {
1197 	int ret;
1198 	struct btrfs_ordered_sum *sums;
1199 	LIST_HEAD(list);
1200 
1201 	ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
1202 				       bytenr + num_bytes - 1, &list, 0);
1203 	if (ret == 0 && list_empty(&list))
1204 		return 0;
1205 
1206 	while (!list_empty(&list)) {
1207 		sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1208 		list_del(&sums->list);
1209 		kfree(sums);
1210 	}
1211 	return 1;
1212 }
1213 
1214 /*
1215  * when nowcow writeback call back.  This checks for snapshots or COW copies
1216  * of the extents that exist in the file, and COWs the file as required.
1217  *
1218  * If no cow copies or snapshots exist, we write directly to the existing
1219  * blocks on disk
1220  */
1221 static noinline int run_delalloc_nocow(struct inode *inode,
1222 				       struct page *locked_page,
1223 			      u64 start, u64 end, int *page_started, int force,
1224 			      unsigned long *nr_written)
1225 {
1226 	struct btrfs_root *root = BTRFS_I(inode)->root;
1227 	struct btrfs_trans_handle *trans;
1228 	struct extent_buffer *leaf;
1229 	struct btrfs_path *path;
1230 	struct btrfs_file_extent_item *fi;
1231 	struct btrfs_key found_key;
1232 	u64 cow_start;
1233 	u64 cur_offset;
1234 	u64 extent_end;
1235 	u64 extent_offset;
1236 	u64 disk_bytenr;
1237 	u64 num_bytes;
1238 	u64 disk_num_bytes;
1239 	u64 ram_bytes;
1240 	int extent_type;
1241 	int ret, err;
1242 	int type;
1243 	int nocow;
1244 	int check_prev = 1;
1245 	bool nolock;
1246 	u64 ino = btrfs_ino(inode);
1247 
1248 	path = btrfs_alloc_path();
1249 	if (!path) {
1250 		extent_clear_unlock_delalloc(inode, start, end, locked_page,
1251 					     EXTENT_LOCKED | EXTENT_DELALLOC |
1252 					     EXTENT_DO_ACCOUNTING |
1253 					     EXTENT_DEFRAG, PAGE_UNLOCK |
1254 					     PAGE_CLEAR_DIRTY |
1255 					     PAGE_SET_WRITEBACK |
1256 					     PAGE_END_WRITEBACK);
1257 		return -ENOMEM;
1258 	}
1259 
1260 	nolock = btrfs_is_free_space_inode(inode);
1261 
1262 	if (nolock)
1263 		trans = btrfs_join_transaction_nolock(root);
1264 	else
1265 		trans = btrfs_join_transaction(root);
1266 
1267 	if (IS_ERR(trans)) {
1268 		extent_clear_unlock_delalloc(inode, start, end, locked_page,
1269 					     EXTENT_LOCKED | EXTENT_DELALLOC |
1270 					     EXTENT_DO_ACCOUNTING |
1271 					     EXTENT_DEFRAG, PAGE_UNLOCK |
1272 					     PAGE_CLEAR_DIRTY |
1273 					     PAGE_SET_WRITEBACK |
1274 					     PAGE_END_WRITEBACK);
1275 		btrfs_free_path(path);
1276 		return PTR_ERR(trans);
1277 	}
1278 
1279 	trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1280 
1281 	cow_start = (u64)-1;
1282 	cur_offset = start;
1283 	while (1) {
1284 		ret = btrfs_lookup_file_extent(trans, root, path, ino,
1285 					       cur_offset, 0);
1286 		if (ret < 0)
1287 			goto error;
1288 		if (ret > 0 && path->slots[0] > 0 && check_prev) {
1289 			leaf = path->nodes[0];
1290 			btrfs_item_key_to_cpu(leaf, &found_key,
1291 					      path->slots[0] - 1);
1292 			if (found_key.objectid == ino &&
1293 			    found_key.type == BTRFS_EXTENT_DATA_KEY)
1294 				path->slots[0]--;
1295 		}
1296 		check_prev = 0;
1297 next_slot:
1298 		leaf = path->nodes[0];
1299 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1300 			ret = btrfs_next_leaf(root, path);
1301 			if (ret < 0)
1302 				goto error;
1303 			if (ret > 0)
1304 				break;
1305 			leaf = path->nodes[0];
1306 		}
1307 
1308 		nocow = 0;
1309 		disk_bytenr = 0;
1310 		num_bytes = 0;
1311 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1312 
1313 		if (found_key.objectid > ino)
1314 			break;
1315 		if (WARN_ON_ONCE(found_key.objectid < ino) ||
1316 		    found_key.type < BTRFS_EXTENT_DATA_KEY) {
1317 			path->slots[0]++;
1318 			goto next_slot;
1319 		}
1320 		if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
1321 		    found_key.offset > end)
1322 			break;
1323 
1324 		if (found_key.offset > cur_offset) {
1325 			extent_end = found_key.offset;
1326 			extent_type = 0;
1327 			goto out_check;
1328 		}
1329 
1330 		fi = btrfs_item_ptr(leaf, path->slots[0],
1331 				    struct btrfs_file_extent_item);
1332 		extent_type = btrfs_file_extent_type(leaf, fi);
1333 
1334 		ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1335 		if (extent_type == BTRFS_FILE_EXTENT_REG ||
1336 		    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1337 			disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1338 			extent_offset = btrfs_file_extent_offset(leaf, fi);
1339 			extent_end = found_key.offset +
1340 				btrfs_file_extent_num_bytes(leaf, fi);
1341 			disk_num_bytes =
1342 				btrfs_file_extent_disk_num_bytes(leaf, fi);
1343 			if (extent_end <= start) {
1344 				path->slots[0]++;
1345 				goto next_slot;
1346 			}
1347 			if (disk_bytenr == 0)
1348 				goto out_check;
1349 			if (btrfs_file_extent_compression(leaf, fi) ||
1350 			    btrfs_file_extent_encryption(leaf, fi) ||
1351 			    btrfs_file_extent_other_encoding(leaf, fi))
1352 				goto out_check;
1353 			if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1354 				goto out_check;
1355 			if (btrfs_extent_readonly(root, disk_bytenr))
1356 				goto out_check;
1357 			if (btrfs_cross_ref_exist(trans, root, ino,
1358 						  found_key.offset -
1359 						  extent_offset, disk_bytenr))
1360 				goto out_check;
1361 			disk_bytenr += extent_offset;
1362 			disk_bytenr += cur_offset - found_key.offset;
1363 			num_bytes = min(end + 1, extent_end) - cur_offset;
1364 			/*
1365 			 * if there are pending snapshots for this root,
1366 			 * we fall into common COW way.
1367 			 */
1368 			if (!nolock) {
1369 				err = btrfs_start_write_no_snapshoting(root);
1370 				if (!err)
1371 					goto out_check;
1372 			}
1373 			/*
1374 			 * force cow if csum exists in the range.
1375 			 * this ensure that csum for a given extent are
1376 			 * either valid or do not exist.
1377 			 */
1378 			if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1379 				goto out_check;
1380 			nocow = 1;
1381 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1382 			extent_end = found_key.offset +
1383 				btrfs_file_extent_inline_len(leaf,
1384 						     path->slots[0], fi);
1385 			extent_end = ALIGN(extent_end, root->sectorsize);
1386 		} else {
1387 			BUG_ON(1);
1388 		}
1389 out_check:
1390 		if (extent_end <= start) {
1391 			path->slots[0]++;
1392 			if (!nolock && nocow)
1393 				btrfs_end_write_no_snapshoting(root);
1394 			goto next_slot;
1395 		}
1396 		if (!nocow) {
1397 			if (cow_start == (u64)-1)
1398 				cow_start = cur_offset;
1399 			cur_offset = extent_end;
1400 			if (cur_offset > end)
1401 				break;
1402 			path->slots[0]++;
1403 			goto next_slot;
1404 		}
1405 
1406 		btrfs_release_path(path);
1407 		if (cow_start != (u64)-1) {
1408 			ret = cow_file_range(inode, locked_page,
1409 					     cow_start, found_key.offset - 1,
1410 					     page_started, nr_written, 1);
1411 			if (ret) {
1412 				if (!nolock && nocow)
1413 					btrfs_end_write_no_snapshoting(root);
1414 				goto error;
1415 			}
1416 			cow_start = (u64)-1;
1417 		}
1418 
1419 		if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1420 			struct extent_map *em;
1421 			struct extent_map_tree *em_tree;
1422 			em_tree = &BTRFS_I(inode)->extent_tree;
1423 			em = alloc_extent_map();
1424 			BUG_ON(!em); /* -ENOMEM */
1425 			em->start = cur_offset;
1426 			em->orig_start = found_key.offset - extent_offset;
1427 			em->len = num_bytes;
1428 			em->block_len = num_bytes;
1429 			em->block_start = disk_bytenr;
1430 			em->orig_block_len = disk_num_bytes;
1431 			em->ram_bytes = ram_bytes;
1432 			em->bdev = root->fs_info->fs_devices->latest_bdev;
1433 			em->mod_start = em->start;
1434 			em->mod_len = em->len;
1435 			set_bit(EXTENT_FLAG_PINNED, &em->flags);
1436 			set_bit(EXTENT_FLAG_FILLING, &em->flags);
1437 			em->generation = -1;
1438 			while (1) {
1439 				write_lock(&em_tree->lock);
1440 				ret = add_extent_mapping(em_tree, em, 1);
1441 				write_unlock(&em_tree->lock);
1442 				if (ret != -EEXIST) {
1443 					free_extent_map(em);
1444 					break;
1445 				}
1446 				btrfs_drop_extent_cache(inode, em->start,
1447 						em->start + em->len - 1, 0);
1448 			}
1449 			type = BTRFS_ORDERED_PREALLOC;
1450 		} else {
1451 			type = BTRFS_ORDERED_NOCOW;
1452 		}
1453 
1454 		ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1455 					       num_bytes, num_bytes, type);
1456 		BUG_ON(ret); /* -ENOMEM */
1457 
1458 		if (root->root_key.objectid ==
1459 		    BTRFS_DATA_RELOC_TREE_OBJECTID) {
1460 			ret = btrfs_reloc_clone_csums(inode, cur_offset,
1461 						      num_bytes);
1462 			if (ret) {
1463 				if (!nolock && nocow)
1464 					btrfs_end_write_no_snapshoting(root);
1465 				goto error;
1466 			}
1467 		}
1468 
1469 		extent_clear_unlock_delalloc(inode, cur_offset,
1470 					     cur_offset + num_bytes - 1,
1471 					     locked_page, EXTENT_LOCKED |
1472 					     EXTENT_DELALLOC, PAGE_UNLOCK |
1473 					     PAGE_SET_PRIVATE2);
1474 		if (!nolock && nocow)
1475 			btrfs_end_write_no_snapshoting(root);
1476 		cur_offset = extent_end;
1477 		if (cur_offset > end)
1478 			break;
1479 	}
1480 	btrfs_release_path(path);
1481 
1482 	if (cur_offset <= end && cow_start == (u64)-1) {
1483 		cow_start = cur_offset;
1484 		cur_offset = end;
1485 	}
1486 
1487 	if (cow_start != (u64)-1) {
1488 		ret = cow_file_range(inode, locked_page, cow_start, end,
1489 				     page_started, nr_written, 1);
1490 		if (ret)
1491 			goto error;
1492 	}
1493 
1494 error:
1495 	err = btrfs_end_transaction(trans, root);
1496 	if (!ret)
1497 		ret = err;
1498 
1499 	if (ret && cur_offset < end)
1500 		extent_clear_unlock_delalloc(inode, cur_offset, end,
1501 					     locked_page, EXTENT_LOCKED |
1502 					     EXTENT_DELALLOC | EXTENT_DEFRAG |
1503 					     EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1504 					     PAGE_CLEAR_DIRTY |
1505 					     PAGE_SET_WRITEBACK |
1506 					     PAGE_END_WRITEBACK);
1507 	btrfs_free_path(path);
1508 	return ret;
1509 }
1510 
1511 static inline int need_force_cow(struct inode *inode, u64 start, u64 end)
1512 {
1513 
1514 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
1515 	    !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC))
1516 		return 0;
1517 
1518 	/*
1519 	 * @defrag_bytes is a hint value, no spinlock held here,
1520 	 * if is not zero, it means the file is defragging.
1521 	 * Force cow if given extent needs to be defragged.
1522 	 */
1523 	if (BTRFS_I(inode)->defrag_bytes &&
1524 	    test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
1525 			   EXTENT_DEFRAG, 0, NULL))
1526 		return 1;
1527 
1528 	return 0;
1529 }
1530 
1531 /*
1532  * extent_io.c call back to do delayed allocation processing
1533  */
1534 static int run_delalloc_range(struct inode *inode, struct page *locked_page,
1535 			      u64 start, u64 end, int *page_started,
1536 			      unsigned long *nr_written)
1537 {
1538 	int ret;
1539 	int force_cow = need_force_cow(inode, start, end);
1540 
1541 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) {
1542 		ret = run_delalloc_nocow(inode, locked_page, start, end,
1543 					 page_started, 1, nr_written);
1544 	} else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) {
1545 		ret = run_delalloc_nocow(inode, locked_page, start, end,
1546 					 page_started, 0, nr_written);
1547 	} else if (!inode_need_compress(inode)) {
1548 		ret = cow_file_range(inode, locked_page, start, end,
1549 				      page_started, nr_written, 1);
1550 	} else {
1551 		set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1552 			&BTRFS_I(inode)->runtime_flags);
1553 		ret = cow_file_range_async(inode, locked_page, start, end,
1554 					   page_started, nr_written);
1555 	}
1556 	return ret;
1557 }
1558 
1559 static void btrfs_split_extent_hook(struct inode *inode,
1560 				    struct extent_state *orig, u64 split)
1561 {
1562 	u64 size;
1563 
1564 	/* not delalloc, ignore it */
1565 	if (!(orig->state & EXTENT_DELALLOC))
1566 		return;
1567 
1568 	size = orig->end - orig->start + 1;
1569 	if (size > BTRFS_MAX_EXTENT_SIZE) {
1570 		u64 num_extents;
1571 		u64 new_size;
1572 
1573 		/*
1574 		 * See the explanation in btrfs_merge_extent_hook, the same
1575 		 * applies here, just in reverse.
1576 		 */
1577 		new_size = orig->end - split + 1;
1578 		num_extents = div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1,
1579 					BTRFS_MAX_EXTENT_SIZE);
1580 		new_size = split - orig->start;
1581 		num_extents += div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1,
1582 					BTRFS_MAX_EXTENT_SIZE);
1583 		if (div64_u64(size + BTRFS_MAX_EXTENT_SIZE - 1,
1584 			      BTRFS_MAX_EXTENT_SIZE) >= num_extents)
1585 			return;
1586 	}
1587 
1588 	spin_lock(&BTRFS_I(inode)->lock);
1589 	BTRFS_I(inode)->outstanding_extents++;
1590 	spin_unlock(&BTRFS_I(inode)->lock);
1591 }
1592 
1593 /*
1594  * extent_io.c merge_extent_hook, used to track merged delayed allocation
1595  * extents so we can keep track of new extents that are just merged onto old
1596  * extents, such as when we are doing sequential writes, so we can properly
1597  * account for the metadata space we'll need.
1598  */
1599 static void btrfs_merge_extent_hook(struct inode *inode,
1600 				    struct extent_state *new,
1601 				    struct extent_state *other)
1602 {
1603 	u64 new_size, old_size;
1604 	u64 num_extents;
1605 
1606 	/* not delalloc, ignore it */
1607 	if (!(other->state & EXTENT_DELALLOC))
1608 		return;
1609 
1610 	if (new->start > other->start)
1611 		new_size = new->end - other->start + 1;
1612 	else
1613 		new_size = other->end - new->start + 1;
1614 
1615 	/* we're not bigger than the max, unreserve the space and go */
1616 	if (new_size <= BTRFS_MAX_EXTENT_SIZE) {
1617 		spin_lock(&BTRFS_I(inode)->lock);
1618 		BTRFS_I(inode)->outstanding_extents--;
1619 		spin_unlock(&BTRFS_I(inode)->lock);
1620 		return;
1621 	}
1622 
1623 	/*
1624 	 * We have to add up either side to figure out how many extents were
1625 	 * accounted for before we merged into one big extent.  If the number of
1626 	 * extents we accounted for is <= the amount we need for the new range
1627 	 * then we can return, otherwise drop.  Think of it like this
1628 	 *
1629 	 * [ 4k][MAX_SIZE]
1630 	 *
1631 	 * So we've grown the extent by a MAX_SIZE extent, this would mean we
1632 	 * need 2 outstanding extents, on one side we have 1 and the other side
1633 	 * we have 1 so they are == and we can return.  But in this case
1634 	 *
1635 	 * [MAX_SIZE+4k][MAX_SIZE+4k]
1636 	 *
1637 	 * Each range on their own accounts for 2 extents, but merged together
1638 	 * they are only 3 extents worth of accounting, so we need to drop in
1639 	 * this case.
1640 	 */
1641 	old_size = other->end - other->start + 1;
1642 	num_extents = div64_u64(old_size + BTRFS_MAX_EXTENT_SIZE - 1,
1643 				BTRFS_MAX_EXTENT_SIZE);
1644 	old_size = new->end - new->start + 1;
1645 	num_extents += div64_u64(old_size + BTRFS_MAX_EXTENT_SIZE - 1,
1646 				 BTRFS_MAX_EXTENT_SIZE);
1647 
1648 	if (div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1,
1649 		      BTRFS_MAX_EXTENT_SIZE) >= num_extents)
1650 		return;
1651 
1652 	spin_lock(&BTRFS_I(inode)->lock);
1653 	BTRFS_I(inode)->outstanding_extents--;
1654 	spin_unlock(&BTRFS_I(inode)->lock);
1655 }
1656 
1657 static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1658 				      struct inode *inode)
1659 {
1660 	spin_lock(&root->delalloc_lock);
1661 	if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1662 		list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1663 			      &root->delalloc_inodes);
1664 		set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1665 			&BTRFS_I(inode)->runtime_flags);
1666 		root->nr_delalloc_inodes++;
1667 		if (root->nr_delalloc_inodes == 1) {
1668 			spin_lock(&root->fs_info->delalloc_root_lock);
1669 			BUG_ON(!list_empty(&root->delalloc_root));
1670 			list_add_tail(&root->delalloc_root,
1671 				      &root->fs_info->delalloc_roots);
1672 			spin_unlock(&root->fs_info->delalloc_root_lock);
1673 		}
1674 	}
1675 	spin_unlock(&root->delalloc_lock);
1676 }
1677 
1678 static void btrfs_del_delalloc_inode(struct btrfs_root *root,
1679 				     struct inode *inode)
1680 {
1681 	spin_lock(&root->delalloc_lock);
1682 	if (!list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1683 		list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1684 		clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1685 			  &BTRFS_I(inode)->runtime_flags);
1686 		root->nr_delalloc_inodes--;
1687 		if (!root->nr_delalloc_inodes) {
1688 			spin_lock(&root->fs_info->delalloc_root_lock);
1689 			BUG_ON(list_empty(&root->delalloc_root));
1690 			list_del_init(&root->delalloc_root);
1691 			spin_unlock(&root->fs_info->delalloc_root_lock);
1692 		}
1693 	}
1694 	spin_unlock(&root->delalloc_lock);
1695 }
1696 
1697 /*
1698  * extent_io.c set_bit_hook, used to track delayed allocation
1699  * bytes in this file, and to maintain the list of inodes that
1700  * have pending delalloc work to be done.
1701  */
1702 static void btrfs_set_bit_hook(struct inode *inode,
1703 			       struct extent_state *state, unsigned *bits)
1704 {
1705 
1706 	if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC))
1707 		WARN_ON(1);
1708 	/*
1709 	 * set_bit and clear bit hooks normally require _irqsave/restore
1710 	 * but in this case, we are only testing for the DELALLOC
1711 	 * bit, which is only set or cleared with irqs on
1712 	 */
1713 	if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1714 		struct btrfs_root *root = BTRFS_I(inode)->root;
1715 		u64 len = state->end + 1 - state->start;
1716 		bool do_list = !btrfs_is_free_space_inode(inode);
1717 
1718 		if (*bits & EXTENT_FIRST_DELALLOC) {
1719 			*bits &= ~EXTENT_FIRST_DELALLOC;
1720 		} else {
1721 			spin_lock(&BTRFS_I(inode)->lock);
1722 			BTRFS_I(inode)->outstanding_extents++;
1723 			spin_unlock(&BTRFS_I(inode)->lock);
1724 		}
1725 
1726 		/* For sanity tests */
1727 		if (btrfs_test_is_dummy_root(root))
1728 			return;
1729 
1730 		__percpu_counter_add(&root->fs_info->delalloc_bytes, len,
1731 				     root->fs_info->delalloc_batch);
1732 		spin_lock(&BTRFS_I(inode)->lock);
1733 		BTRFS_I(inode)->delalloc_bytes += len;
1734 		if (*bits & EXTENT_DEFRAG)
1735 			BTRFS_I(inode)->defrag_bytes += len;
1736 		if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1737 					 &BTRFS_I(inode)->runtime_flags))
1738 			btrfs_add_delalloc_inodes(root, inode);
1739 		spin_unlock(&BTRFS_I(inode)->lock);
1740 	}
1741 }
1742 
1743 /*
1744  * extent_io.c clear_bit_hook, see set_bit_hook for why
1745  */
1746 static void btrfs_clear_bit_hook(struct inode *inode,
1747 				 struct extent_state *state,
1748 				 unsigned *bits)
1749 {
1750 	u64 len = state->end + 1 - state->start;
1751 	u64 num_extents = div64_u64(len + BTRFS_MAX_EXTENT_SIZE -1,
1752 				    BTRFS_MAX_EXTENT_SIZE);
1753 
1754 	spin_lock(&BTRFS_I(inode)->lock);
1755 	if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG))
1756 		BTRFS_I(inode)->defrag_bytes -= len;
1757 	spin_unlock(&BTRFS_I(inode)->lock);
1758 
1759 	/*
1760 	 * set_bit and clear bit hooks normally require _irqsave/restore
1761 	 * but in this case, we are only testing for the DELALLOC
1762 	 * bit, which is only set or cleared with irqs on
1763 	 */
1764 	if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1765 		struct btrfs_root *root = BTRFS_I(inode)->root;
1766 		bool do_list = !btrfs_is_free_space_inode(inode);
1767 
1768 		if (*bits & EXTENT_FIRST_DELALLOC) {
1769 			*bits &= ~EXTENT_FIRST_DELALLOC;
1770 		} else if (!(*bits & EXTENT_DO_ACCOUNTING)) {
1771 			spin_lock(&BTRFS_I(inode)->lock);
1772 			BTRFS_I(inode)->outstanding_extents -= num_extents;
1773 			spin_unlock(&BTRFS_I(inode)->lock);
1774 		}
1775 
1776 		/*
1777 		 * We don't reserve metadata space for space cache inodes so we
1778 		 * don't need to call dellalloc_release_metadata if there is an
1779 		 * error.
1780 		 */
1781 		if (*bits & EXTENT_DO_ACCOUNTING &&
1782 		    root != root->fs_info->tree_root)
1783 			btrfs_delalloc_release_metadata(inode, len);
1784 
1785 		/* For sanity tests. */
1786 		if (btrfs_test_is_dummy_root(root))
1787 			return;
1788 
1789 		if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
1790 		    && do_list && !(state->state & EXTENT_NORESERVE))
1791 			btrfs_free_reserved_data_space_noquota(inode,
1792 					state->start, len);
1793 
1794 		__percpu_counter_add(&root->fs_info->delalloc_bytes, -len,
1795 				     root->fs_info->delalloc_batch);
1796 		spin_lock(&BTRFS_I(inode)->lock);
1797 		BTRFS_I(inode)->delalloc_bytes -= len;
1798 		if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
1799 		    test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1800 			     &BTRFS_I(inode)->runtime_flags))
1801 			btrfs_del_delalloc_inode(root, inode);
1802 		spin_unlock(&BTRFS_I(inode)->lock);
1803 	}
1804 }
1805 
1806 /*
1807  * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1808  * we don't create bios that span stripes or chunks
1809  */
1810 int btrfs_merge_bio_hook(int rw, struct page *page, unsigned long offset,
1811 			 size_t size, struct bio *bio,
1812 			 unsigned long bio_flags)
1813 {
1814 	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1815 	u64 logical = (u64)bio->bi_iter.bi_sector << 9;
1816 	u64 length = 0;
1817 	u64 map_length;
1818 	int ret;
1819 
1820 	if (bio_flags & EXTENT_BIO_COMPRESSED)
1821 		return 0;
1822 
1823 	length = bio->bi_iter.bi_size;
1824 	map_length = length;
1825 	ret = btrfs_map_block(root->fs_info, rw, logical,
1826 			      &map_length, NULL, 0);
1827 	/* Will always return 0 with map_multi == NULL */
1828 	BUG_ON(ret < 0);
1829 	if (map_length < length + size)
1830 		return 1;
1831 	return 0;
1832 }
1833 
1834 /*
1835  * in order to insert checksums into the metadata in large chunks,
1836  * we wait until bio submission time.   All the pages in the bio are
1837  * checksummed and sums are attached onto the ordered extent record.
1838  *
1839  * At IO completion time the cums attached on the ordered extent record
1840  * are inserted into the btree
1841  */
1842 static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1843 				    struct bio *bio, int mirror_num,
1844 				    unsigned long bio_flags,
1845 				    u64 bio_offset)
1846 {
1847 	struct btrfs_root *root = BTRFS_I(inode)->root;
1848 	int ret = 0;
1849 
1850 	ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1851 	BUG_ON(ret); /* -ENOMEM */
1852 	return 0;
1853 }
1854 
1855 /*
1856  * in order to insert checksums into the metadata in large chunks,
1857  * we wait until bio submission time.   All the pages in the bio are
1858  * checksummed and sums are attached onto the ordered extent record.
1859  *
1860  * At IO completion time the cums attached on the ordered extent record
1861  * are inserted into the btree
1862  */
1863 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
1864 			  int mirror_num, unsigned long bio_flags,
1865 			  u64 bio_offset)
1866 {
1867 	struct btrfs_root *root = BTRFS_I(inode)->root;
1868 	int ret;
1869 
1870 	ret = btrfs_map_bio(root, rw, bio, mirror_num, 1);
1871 	if (ret) {
1872 		bio->bi_error = ret;
1873 		bio_endio(bio);
1874 	}
1875 	return ret;
1876 }
1877 
1878 /*
1879  * extent_io.c submission hook. This does the right thing for csum calculation
1880  * on write, or reading the csums from the tree before a read
1881  */
1882 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
1883 			  int mirror_num, unsigned long bio_flags,
1884 			  u64 bio_offset)
1885 {
1886 	struct btrfs_root *root = BTRFS_I(inode)->root;
1887 	enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA;
1888 	int ret = 0;
1889 	int skip_sum;
1890 	int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
1891 
1892 	skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
1893 
1894 	if (btrfs_is_free_space_inode(inode))
1895 		metadata = BTRFS_WQ_ENDIO_FREE_SPACE;
1896 
1897 	if (!(rw & REQ_WRITE)) {
1898 		ret = btrfs_bio_wq_end_io(root->fs_info, bio, metadata);
1899 		if (ret)
1900 			goto out;
1901 
1902 		if (bio_flags & EXTENT_BIO_COMPRESSED) {
1903 			ret = btrfs_submit_compressed_read(inode, bio,
1904 							   mirror_num,
1905 							   bio_flags);
1906 			goto out;
1907 		} else if (!skip_sum) {
1908 			ret = btrfs_lookup_bio_sums(root, inode, bio, NULL);
1909 			if (ret)
1910 				goto out;
1911 		}
1912 		goto mapit;
1913 	} else if (async && !skip_sum) {
1914 		/* csum items have already been cloned */
1915 		if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1916 			goto mapit;
1917 		/* we're doing a write, do the async checksumming */
1918 		ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1919 				   inode, rw, bio, mirror_num,
1920 				   bio_flags, bio_offset,
1921 				   __btrfs_submit_bio_start,
1922 				   __btrfs_submit_bio_done);
1923 		goto out;
1924 	} else if (!skip_sum) {
1925 		ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1926 		if (ret)
1927 			goto out;
1928 	}
1929 
1930 mapit:
1931 	ret = btrfs_map_bio(root, rw, bio, mirror_num, 0);
1932 
1933 out:
1934 	if (ret < 0) {
1935 		bio->bi_error = ret;
1936 		bio_endio(bio);
1937 	}
1938 	return ret;
1939 }
1940 
1941 /*
1942  * given a list of ordered sums record them in the inode.  This happens
1943  * at IO completion time based on sums calculated at bio submission time.
1944  */
1945 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
1946 			     struct inode *inode, u64 file_offset,
1947 			     struct list_head *list)
1948 {
1949 	struct btrfs_ordered_sum *sum;
1950 
1951 	list_for_each_entry(sum, list, list) {
1952 		trans->adding_csums = 1;
1953 		btrfs_csum_file_blocks(trans,
1954 		       BTRFS_I(inode)->root->fs_info->csum_root, sum);
1955 		trans->adding_csums = 0;
1956 	}
1957 	return 0;
1958 }
1959 
1960 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1961 			      struct extent_state **cached_state)
1962 {
1963 	WARN_ON((end & (PAGE_CACHE_SIZE - 1)) == 0);
1964 	return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
1965 				   cached_state, GFP_NOFS);
1966 }
1967 
1968 /* see btrfs_writepage_start_hook for details on why this is required */
1969 struct btrfs_writepage_fixup {
1970 	struct page *page;
1971 	struct btrfs_work work;
1972 };
1973 
1974 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
1975 {
1976 	struct btrfs_writepage_fixup *fixup;
1977 	struct btrfs_ordered_extent *ordered;
1978 	struct extent_state *cached_state = NULL;
1979 	struct page *page;
1980 	struct inode *inode;
1981 	u64 page_start;
1982 	u64 page_end;
1983 	int ret;
1984 
1985 	fixup = container_of(work, struct btrfs_writepage_fixup, work);
1986 	page = fixup->page;
1987 again:
1988 	lock_page(page);
1989 	if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1990 		ClearPageChecked(page);
1991 		goto out_page;
1992 	}
1993 
1994 	inode = page->mapping->host;
1995 	page_start = page_offset(page);
1996 	page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1997 
1998 	lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end,
1999 			 &cached_state);
2000 
2001 	/* already ordered? We're done */
2002 	if (PagePrivate2(page))
2003 		goto out;
2004 
2005 	ordered = btrfs_lookup_ordered_extent(inode, page_start);
2006 	if (ordered) {
2007 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
2008 				     page_end, &cached_state, GFP_NOFS);
2009 		unlock_page(page);
2010 		btrfs_start_ordered_extent(inode, ordered, 1);
2011 		btrfs_put_ordered_extent(ordered);
2012 		goto again;
2013 	}
2014 
2015 	ret = btrfs_delalloc_reserve_space(inode, page_start,
2016 					   PAGE_CACHE_SIZE);
2017 	if (ret) {
2018 		mapping_set_error(page->mapping, ret);
2019 		end_extent_writepage(page, ret, page_start, page_end);
2020 		ClearPageChecked(page);
2021 		goto out;
2022 	 }
2023 
2024 	btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
2025 	ClearPageChecked(page);
2026 	set_page_dirty(page);
2027 out:
2028 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
2029 			     &cached_state, GFP_NOFS);
2030 out_page:
2031 	unlock_page(page);
2032 	page_cache_release(page);
2033 	kfree(fixup);
2034 }
2035 
2036 /*
2037  * There are a few paths in the higher layers of the kernel that directly
2038  * set the page dirty bit without asking the filesystem if it is a
2039  * good idea.  This causes problems because we want to make sure COW
2040  * properly happens and the data=ordered rules are followed.
2041  *
2042  * In our case any range that doesn't have the ORDERED bit set
2043  * hasn't been properly setup for IO.  We kick off an async process
2044  * to fix it up.  The async helper will wait for ordered extents, set
2045  * the delalloc bit and make it safe to write the page.
2046  */
2047 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
2048 {
2049 	struct inode *inode = page->mapping->host;
2050 	struct btrfs_writepage_fixup *fixup;
2051 	struct btrfs_root *root = BTRFS_I(inode)->root;
2052 
2053 	/* this page is properly in the ordered list */
2054 	if (TestClearPagePrivate2(page))
2055 		return 0;
2056 
2057 	if (PageChecked(page))
2058 		return -EAGAIN;
2059 
2060 	fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2061 	if (!fixup)
2062 		return -EAGAIN;
2063 
2064 	SetPageChecked(page);
2065 	page_cache_get(page);
2066 	btrfs_init_work(&fixup->work, btrfs_fixup_helper,
2067 			btrfs_writepage_fixup_worker, NULL, NULL);
2068 	fixup->page = page;
2069 	btrfs_queue_work(root->fs_info->fixup_workers, &fixup->work);
2070 	return -EBUSY;
2071 }
2072 
2073 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2074 				       struct inode *inode, u64 file_pos,
2075 				       u64 disk_bytenr, u64 disk_num_bytes,
2076 				       u64 num_bytes, u64 ram_bytes,
2077 				       u8 compression, u8 encryption,
2078 				       u16 other_encoding, int extent_type)
2079 {
2080 	struct btrfs_root *root = BTRFS_I(inode)->root;
2081 	struct btrfs_file_extent_item *fi;
2082 	struct btrfs_path *path;
2083 	struct extent_buffer *leaf;
2084 	struct btrfs_key ins;
2085 	int extent_inserted = 0;
2086 	int ret;
2087 
2088 	path = btrfs_alloc_path();
2089 	if (!path)
2090 		return -ENOMEM;
2091 
2092 	/*
2093 	 * we may be replacing one extent in the tree with another.
2094 	 * The new extent is pinned in the extent map, and we don't want
2095 	 * to drop it from the cache until it is completely in the btree.
2096 	 *
2097 	 * So, tell btrfs_drop_extents to leave this extent in the cache.
2098 	 * the caller is expected to unpin it and allow it to be merged
2099 	 * with the others.
2100 	 */
2101 	ret = __btrfs_drop_extents(trans, root, inode, path, file_pos,
2102 				   file_pos + num_bytes, NULL, 0,
2103 				   1, sizeof(*fi), &extent_inserted);
2104 	if (ret)
2105 		goto out;
2106 
2107 	if (!extent_inserted) {
2108 		ins.objectid = btrfs_ino(inode);
2109 		ins.offset = file_pos;
2110 		ins.type = BTRFS_EXTENT_DATA_KEY;
2111 
2112 		path->leave_spinning = 1;
2113 		ret = btrfs_insert_empty_item(trans, root, path, &ins,
2114 					      sizeof(*fi));
2115 		if (ret)
2116 			goto out;
2117 	}
2118 	leaf = path->nodes[0];
2119 	fi = btrfs_item_ptr(leaf, path->slots[0],
2120 			    struct btrfs_file_extent_item);
2121 	btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2122 	btrfs_set_file_extent_type(leaf, fi, extent_type);
2123 	btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
2124 	btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
2125 	btrfs_set_file_extent_offset(leaf, fi, 0);
2126 	btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2127 	btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
2128 	btrfs_set_file_extent_compression(leaf, fi, compression);
2129 	btrfs_set_file_extent_encryption(leaf, fi, encryption);
2130 	btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
2131 
2132 	btrfs_mark_buffer_dirty(leaf);
2133 	btrfs_release_path(path);
2134 
2135 	inode_add_bytes(inode, num_bytes);
2136 
2137 	ins.objectid = disk_bytenr;
2138 	ins.offset = disk_num_bytes;
2139 	ins.type = BTRFS_EXTENT_ITEM_KEY;
2140 	ret = btrfs_alloc_reserved_file_extent(trans, root,
2141 					root->root_key.objectid,
2142 					btrfs_ino(inode), file_pos,
2143 					ram_bytes, &ins);
2144 	/*
2145 	 * Release the reserved range from inode dirty range map, as it is
2146 	 * already moved into delayed_ref_head
2147 	 */
2148 	btrfs_qgroup_release_data(inode, file_pos, ram_bytes);
2149 out:
2150 	btrfs_free_path(path);
2151 
2152 	return ret;
2153 }
2154 
2155 /* snapshot-aware defrag */
2156 struct sa_defrag_extent_backref {
2157 	struct rb_node node;
2158 	struct old_sa_defrag_extent *old;
2159 	u64 root_id;
2160 	u64 inum;
2161 	u64 file_pos;
2162 	u64 extent_offset;
2163 	u64 num_bytes;
2164 	u64 generation;
2165 };
2166 
2167 struct old_sa_defrag_extent {
2168 	struct list_head list;
2169 	struct new_sa_defrag_extent *new;
2170 
2171 	u64 extent_offset;
2172 	u64 bytenr;
2173 	u64 offset;
2174 	u64 len;
2175 	int count;
2176 };
2177 
2178 struct new_sa_defrag_extent {
2179 	struct rb_root root;
2180 	struct list_head head;
2181 	struct btrfs_path *path;
2182 	struct inode *inode;
2183 	u64 file_pos;
2184 	u64 len;
2185 	u64 bytenr;
2186 	u64 disk_len;
2187 	u8 compress_type;
2188 };
2189 
2190 static int backref_comp(struct sa_defrag_extent_backref *b1,
2191 			struct sa_defrag_extent_backref *b2)
2192 {
2193 	if (b1->root_id < b2->root_id)
2194 		return -1;
2195 	else if (b1->root_id > b2->root_id)
2196 		return 1;
2197 
2198 	if (b1->inum < b2->inum)
2199 		return -1;
2200 	else if (b1->inum > b2->inum)
2201 		return 1;
2202 
2203 	if (b1->file_pos < b2->file_pos)
2204 		return -1;
2205 	else if (b1->file_pos > b2->file_pos)
2206 		return 1;
2207 
2208 	/*
2209 	 * [------------------------------] ===> (a range of space)
2210 	 *     |<--->|   |<---->| =============> (fs/file tree A)
2211 	 * |<---------------------------->| ===> (fs/file tree B)
2212 	 *
2213 	 * A range of space can refer to two file extents in one tree while
2214 	 * refer to only one file extent in another tree.
2215 	 *
2216 	 * So we may process a disk offset more than one time(two extents in A)
2217 	 * and locate at the same extent(one extent in B), then insert two same
2218 	 * backrefs(both refer to the extent in B).
2219 	 */
2220 	return 0;
2221 }
2222 
2223 static void backref_insert(struct rb_root *root,
2224 			   struct sa_defrag_extent_backref *backref)
2225 {
2226 	struct rb_node **p = &root->rb_node;
2227 	struct rb_node *parent = NULL;
2228 	struct sa_defrag_extent_backref *entry;
2229 	int ret;
2230 
2231 	while (*p) {
2232 		parent = *p;
2233 		entry = rb_entry(parent, struct sa_defrag_extent_backref, node);
2234 
2235 		ret = backref_comp(backref, entry);
2236 		if (ret < 0)
2237 			p = &(*p)->rb_left;
2238 		else
2239 			p = &(*p)->rb_right;
2240 	}
2241 
2242 	rb_link_node(&backref->node, parent, p);
2243 	rb_insert_color(&backref->node, root);
2244 }
2245 
2246 /*
2247  * Note the backref might has changed, and in this case we just return 0.
2248  */
2249 static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id,
2250 				       void *ctx)
2251 {
2252 	struct btrfs_file_extent_item *extent;
2253 	struct btrfs_fs_info *fs_info;
2254 	struct old_sa_defrag_extent *old = ctx;
2255 	struct new_sa_defrag_extent *new = old->new;
2256 	struct btrfs_path *path = new->path;
2257 	struct btrfs_key key;
2258 	struct btrfs_root *root;
2259 	struct sa_defrag_extent_backref *backref;
2260 	struct extent_buffer *leaf;
2261 	struct inode *inode = new->inode;
2262 	int slot;
2263 	int ret;
2264 	u64 extent_offset;
2265 	u64 num_bytes;
2266 
2267 	if (BTRFS_I(inode)->root->root_key.objectid == root_id &&
2268 	    inum == btrfs_ino(inode))
2269 		return 0;
2270 
2271 	key.objectid = root_id;
2272 	key.type = BTRFS_ROOT_ITEM_KEY;
2273 	key.offset = (u64)-1;
2274 
2275 	fs_info = BTRFS_I(inode)->root->fs_info;
2276 	root = btrfs_read_fs_root_no_name(fs_info, &key);
2277 	if (IS_ERR(root)) {
2278 		if (PTR_ERR(root) == -ENOENT)
2279 			return 0;
2280 		WARN_ON(1);
2281 		pr_debug("inum=%llu, offset=%llu, root_id=%llu\n",
2282 			 inum, offset, root_id);
2283 		return PTR_ERR(root);
2284 	}
2285 
2286 	key.objectid = inum;
2287 	key.type = BTRFS_EXTENT_DATA_KEY;
2288 	if (offset > (u64)-1 << 32)
2289 		key.offset = 0;
2290 	else
2291 		key.offset = offset;
2292 
2293 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2294 	if (WARN_ON(ret < 0))
2295 		return ret;
2296 	ret = 0;
2297 
2298 	while (1) {
2299 		cond_resched();
2300 
2301 		leaf = path->nodes[0];
2302 		slot = path->slots[0];
2303 
2304 		if (slot >= btrfs_header_nritems(leaf)) {
2305 			ret = btrfs_next_leaf(root, path);
2306 			if (ret < 0) {
2307 				goto out;
2308 			} else if (ret > 0) {
2309 				ret = 0;
2310 				goto out;
2311 			}
2312 			continue;
2313 		}
2314 
2315 		path->slots[0]++;
2316 
2317 		btrfs_item_key_to_cpu(leaf, &key, slot);
2318 
2319 		if (key.objectid > inum)
2320 			goto out;
2321 
2322 		if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY)
2323 			continue;
2324 
2325 		extent = btrfs_item_ptr(leaf, slot,
2326 					struct btrfs_file_extent_item);
2327 
2328 		if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr)
2329 			continue;
2330 
2331 		/*
2332 		 * 'offset' refers to the exact key.offset,
2333 		 * NOT the 'offset' field in btrfs_extent_data_ref, ie.
2334 		 * (key.offset - extent_offset).
2335 		 */
2336 		if (key.offset != offset)
2337 			continue;
2338 
2339 		extent_offset = btrfs_file_extent_offset(leaf, extent);
2340 		num_bytes = btrfs_file_extent_num_bytes(leaf, extent);
2341 
2342 		if (extent_offset >= old->extent_offset + old->offset +
2343 		    old->len || extent_offset + num_bytes <=
2344 		    old->extent_offset + old->offset)
2345 			continue;
2346 		break;
2347 	}
2348 
2349 	backref = kmalloc(sizeof(*backref), GFP_NOFS);
2350 	if (!backref) {
2351 		ret = -ENOENT;
2352 		goto out;
2353 	}
2354 
2355 	backref->root_id = root_id;
2356 	backref->inum = inum;
2357 	backref->file_pos = offset;
2358 	backref->num_bytes = num_bytes;
2359 	backref->extent_offset = extent_offset;
2360 	backref->generation = btrfs_file_extent_generation(leaf, extent);
2361 	backref->old = old;
2362 	backref_insert(&new->root, backref);
2363 	old->count++;
2364 out:
2365 	btrfs_release_path(path);
2366 	WARN_ON(ret);
2367 	return ret;
2368 }
2369 
2370 static noinline bool record_extent_backrefs(struct btrfs_path *path,
2371 				   struct new_sa_defrag_extent *new)
2372 {
2373 	struct btrfs_fs_info *fs_info = BTRFS_I(new->inode)->root->fs_info;
2374 	struct old_sa_defrag_extent *old, *tmp;
2375 	int ret;
2376 
2377 	new->path = path;
2378 
2379 	list_for_each_entry_safe(old, tmp, &new->head, list) {
2380 		ret = iterate_inodes_from_logical(old->bytenr +
2381 						  old->extent_offset, fs_info,
2382 						  path, record_one_backref,
2383 						  old);
2384 		if (ret < 0 && ret != -ENOENT)
2385 			return false;
2386 
2387 		/* no backref to be processed for this extent */
2388 		if (!old->count) {
2389 			list_del(&old->list);
2390 			kfree(old);
2391 		}
2392 	}
2393 
2394 	if (list_empty(&new->head))
2395 		return false;
2396 
2397 	return true;
2398 }
2399 
2400 static int relink_is_mergable(struct extent_buffer *leaf,
2401 			      struct btrfs_file_extent_item *fi,
2402 			      struct new_sa_defrag_extent *new)
2403 {
2404 	if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr)
2405 		return 0;
2406 
2407 	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2408 		return 0;
2409 
2410 	if (btrfs_file_extent_compression(leaf, fi) != new->compress_type)
2411 		return 0;
2412 
2413 	if (btrfs_file_extent_encryption(leaf, fi) ||
2414 	    btrfs_file_extent_other_encoding(leaf, fi))
2415 		return 0;
2416 
2417 	return 1;
2418 }
2419 
2420 /*
2421  * Note the backref might has changed, and in this case we just return 0.
2422  */
2423 static noinline int relink_extent_backref(struct btrfs_path *path,
2424 				 struct sa_defrag_extent_backref *prev,
2425 				 struct sa_defrag_extent_backref *backref)
2426 {
2427 	struct btrfs_file_extent_item *extent;
2428 	struct btrfs_file_extent_item *item;
2429 	struct btrfs_ordered_extent *ordered;
2430 	struct btrfs_trans_handle *trans;
2431 	struct btrfs_fs_info *fs_info;
2432 	struct btrfs_root *root;
2433 	struct btrfs_key key;
2434 	struct extent_buffer *leaf;
2435 	struct old_sa_defrag_extent *old = backref->old;
2436 	struct new_sa_defrag_extent *new = old->new;
2437 	struct inode *src_inode = new->inode;
2438 	struct inode *inode;
2439 	struct extent_state *cached = NULL;
2440 	int ret = 0;
2441 	u64 start;
2442 	u64 len;
2443 	u64 lock_start;
2444 	u64 lock_end;
2445 	bool merge = false;
2446 	int index;
2447 
2448 	if (prev && prev->root_id == backref->root_id &&
2449 	    prev->inum == backref->inum &&
2450 	    prev->file_pos + prev->num_bytes == backref->file_pos)
2451 		merge = true;
2452 
2453 	/* step 1: get root */
2454 	key.objectid = backref->root_id;
2455 	key.type = BTRFS_ROOT_ITEM_KEY;
2456 	key.offset = (u64)-1;
2457 
2458 	fs_info = BTRFS_I(src_inode)->root->fs_info;
2459 	index = srcu_read_lock(&fs_info->subvol_srcu);
2460 
2461 	root = btrfs_read_fs_root_no_name(fs_info, &key);
2462 	if (IS_ERR(root)) {
2463 		srcu_read_unlock(&fs_info->subvol_srcu, index);
2464 		if (PTR_ERR(root) == -ENOENT)
2465 			return 0;
2466 		return PTR_ERR(root);
2467 	}
2468 
2469 	if (btrfs_root_readonly(root)) {
2470 		srcu_read_unlock(&fs_info->subvol_srcu, index);
2471 		return 0;
2472 	}
2473 
2474 	/* step 2: get inode */
2475 	key.objectid = backref->inum;
2476 	key.type = BTRFS_INODE_ITEM_KEY;
2477 	key.offset = 0;
2478 
2479 	inode = btrfs_iget(fs_info->sb, &key, root, NULL);
2480 	if (IS_ERR(inode)) {
2481 		srcu_read_unlock(&fs_info->subvol_srcu, index);
2482 		return 0;
2483 	}
2484 
2485 	srcu_read_unlock(&fs_info->subvol_srcu, index);
2486 
2487 	/* step 3: relink backref */
2488 	lock_start = backref->file_pos;
2489 	lock_end = backref->file_pos + backref->num_bytes - 1;
2490 	lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2491 			 &cached);
2492 
2493 	ordered = btrfs_lookup_first_ordered_extent(inode, lock_end);
2494 	if (ordered) {
2495 		btrfs_put_ordered_extent(ordered);
2496 		goto out_unlock;
2497 	}
2498 
2499 	trans = btrfs_join_transaction(root);
2500 	if (IS_ERR(trans)) {
2501 		ret = PTR_ERR(trans);
2502 		goto out_unlock;
2503 	}
2504 
2505 	key.objectid = backref->inum;
2506 	key.type = BTRFS_EXTENT_DATA_KEY;
2507 	key.offset = backref->file_pos;
2508 
2509 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2510 	if (ret < 0) {
2511 		goto out_free_path;
2512 	} else if (ret > 0) {
2513 		ret = 0;
2514 		goto out_free_path;
2515 	}
2516 
2517 	extent = btrfs_item_ptr(path->nodes[0], path->slots[0],
2518 				struct btrfs_file_extent_item);
2519 
2520 	if (btrfs_file_extent_generation(path->nodes[0], extent) !=
2521 	    backref->generation)
2522 		goto out_free_path;
2523 
2524 	btrfs_release_path(path);
2525 
2526 	start = backref->file_pos;
2527 	if (backref->extent_offset < old->extent_offset + old->offset)
2528 		start += old->extent_offset + old->offset -
2529 			 backref->extent_offset;
2530 
2531 	len = min(backref->extent_offset + backref->num_bytes,
2532 		  old->extent_offset + old->offset + old->len);
2533 	len -= max(backref->extent_offset, old->extent_offset + old->offset);
2534 
2535 	ret = btrfs_drop_extents(trans, root, inode, start,
2536 				 start + len, 1);
2537 	if (ret)
2538 		goto out_free_path;
2539 again:
2540 	key.objectid = btrfs_ino(inode);
2541 	key.type = BTRFS_EXTENT_DATA_KEY;
2542 	key.offset = start;
2543 
2544 	path->leave_spinning = 1;
2545 	if (merge) {
2546 		struct btrfs_file_extent_item *fi;
2547 		u64 extent_len;
2548 		struct btrfs_key found_key;
2549 
2550 		ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2551 		if (ret < 0)
2552 			goto out_free_path;
2553 
2554 		path->slots[0]--;
2555 		leaf = path->nodes[0];
2556 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2557 
2558 		fi = btrfs_item_ptr(leaf, path->slots[0],
2559 				    struct btrfs_file_extent_item);
2560 		extent_len = btrfs_file_extent_num_bytes(leaf, fi);
2561 
2562 		if (extent_len + found_key.offset == start &&
2563 		    relink_is_mergable(leaf, fi, new)) {
2564 			btrfs_set_file_extent_num_bytes(leaf, fi,
2565 							extent_len + len);
2566 			btrfs_mark_buffer_dirty(leaf);
2567 			inode_add_bytes(inode, len);
2568 
2569 			ret = 1;
2570 			goto out_free_path;
2571 		} else {
2572 			merge = false;
2573 			btrfs_release_path(path);
2574 			goto again;
2575 		}
2576 	}
2577 
2578 	ret = btrfs_insert_empty_item(trans, root, path, &key,
2579 					sizeof(*extent));
2580 	if (ret) {
2581 		btrfs_abort_transaction(trans, root, ret);
2582 		goto out_free_path;
2583 	}
2584 
2585 	leaf = path->nodes[0];
2586 	item = btrfs_item_ptr(leaf, path->slots[0],
2587 				struct btrfs_file_extent_item);
2588 	btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr);
2589 	btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len);
2590 	btrfs_set_file_extent_offset(leaf, item, start - new->file_pos);
2591 	btrfs_set_file_extent_num_bytes(leaf, item, len);
2592 	btrfs_set_file_extent_ram_bytes(leaf, item, new->len);
2593 	btrfs_set_file_extent_generation(leaf, item, trans->transid);
2594 	btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
2595 	btrfs_set_file_extent_compression(leaf, item, new->compress_type);
2596 	btrfs_set_file_extent_encryption(leaf, item, 0);
2597 	btrfs_set_file_extent_other_encoding(leaf, item, 0);
2598 
2599 	btrfs_mark_buffer_dirty(leaf);
2600 	inode_add_bytes(inode, len);
2601 	btrfs_release_path(path);
2602 
2603 	ret = btrfs_inc_extent_ref(trans, root, new->bytenr,
2604 			new->disk_len, 0,
2605 			backref->root_id, backref->inum,
2606 			new->file_pos);	/* start - extent_offset */
2607 	if (ret) {
2608 		btrfs_abort_transaction(trans, root, ret);
2609 		goto out_free_path;
2610 	}
2611 
2612 	ret = 1;
2613 out_free_path:
2614 	btrfs_release_path(path);
2615 	path->leave_spinning = 0;
2616 	btrfs_end_transaction(trans, root);
2617 out_unlock:
2618 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2619 			     &cached, GFP_NOFS);
2620 	iput(inode);
2621 	return ret;
2622 }
2623 
2624 static void free_sa_defrag_extent(struct new_sa_defrag_extent *new)
2625 {
2626 	struct old_sa_defrag_extent *old, *tmp;
2627 
2628 	if (!new)
2629 		return;
2630 
2631 	list_for_each_entry_safe(old, tmp, &new->head, list) {
2632 		kfree(old);
2633 	}
2634 	kfree(new);
2635 }
2636 
2637 static void relink_file_extents(struct new_sa_defrag_extent *new)
2638 {
2639 	struct btrfs_path *path;
2640 	struct sa_defrag_extent_backref *backref;
2641 	struct sa_defrag_extent_backref *prev = NULL;
2642 	struct inode *inode;
2643 	struct btrfs_root *root;
2644 	struct rb_node *node;
2645 	int ret;
2646 
2647 	inode = new->inode;
2648 	root = BTRFS_I(inode)->root;
2649 
2650 	path = btrfs_alloc_path();
2651 	if (!path)
2652 		return;
2653 
2654 	if (!record_extent_backrefs(path, new)) {
2655 		btrfs_free_path(path);
2656 		goto out;
2657 	}
2658 	btrfs_release_path(path);
2659 
2660 	while (1) {
2661 		node = rb_first(&new->root);
2662 		if (!node)
2663 			break;
2664 		rb_erase(node, &new->root);
2665 
2666 		backref = rb_entry(node, struct sa_defrag_extent_backref, node);
2667 
2668 		ret = relink_extent_backref(path, prev, backref);
2669 		WARN_ON(ret < 0);
2670 
2671 		kfree(prev);
2672 
2673 		if (ret == 1)
2674 			prev = backref;
2675 		else
2676 			prev = NULL;
2677 		cond_resched();
2678 	}
2679 	kfree(prev);
2680 
2681 	btrfs_free_path(path);
2682 out:
2683 	free_sa_defrag_extent(new);
2684 
2685 	atomic_dec(&root->fs_info->defrag_running);
2686 	wake_up(&root->fs_info->transaction_wait);
2687 }
2688 
2689 static struct new_sa_defrag_extent *
2690 record_old_file_extents(struct inode *inode,
2691 			struct btrfs_ordered_extent *ordered)
2692 {
2693 	struct btrfs_root *root = BTRFS_I(inode)->root;
2694 	struct btrfs_path *path;
2695 	struct btrfs_key key;
2696 	struct old_sa_defrag_extent *old;
2697 	struct new_sa_defrag_extent *new;
2698 	int ret;
2699 
2700 	new = kmalloc(sizeof(*new), GFP_NOFS);
2701 	if (!new)
2702 		return NULL;
2703 
2704 	new->inode = inode;
2705 	new->file_pos = ordered->file_offset;
2706 	new->len = ordered->len;
2707 	new->bytenr = ordered->start;
2708 	new->disk_len = ordered->disk_len;
2709 	new->compress_type = ordered->compress_type;
2710 	new->root = RB_ROOT;
2711 	INIT_LIST_HEAD(&new->head);
2712 
2713 	path = btrfs_alloc_path();
2714 	if (!path)
2715 		goto out_kfree;
2716 
2717 	key.objectid = btrfs_ino(inode);
2718 	key.type = BTRFS_EXTENT_DATA_KEY;
2719 	key.offset = new->file_pos;
2720 
2721 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2722 	if (ret < 0)
2723 		goto out_free_path;
2724 	if (ret > 0 && path->slots[0] > 0)
2725 		path->slots[0]--;
2726 
2727 	/* find out all the old extents for the file range */
2728 	while (1) {
2729 		struct btrfs_file_extent_item *extent;
2730 		struct extent_buffer *l;
2731 		int slot;
2732 		u64 num_bytes;
2733 		u64 offset;
2734 		u64 end;
2735 		u64 disk_bytenr;
2736 		u64 extent_offset;
2737 
2738 		l = path->nodes[0];
2739 		slot = path->slots[0];
2740 
2741 		if (slot >= btrfs_header_nritems(l)) {
2742 			ret = btrfs_next_leaf(root, path);
2743 			if (ret < 0)
2744 				goto out_free_path;
2745 			else if (ret > 0)
2746 				break;
2747 			continue;
2748 		}
2749 
2750 		btrfs_item_key_to_cpu(l, &key, slot);
2751 
2752 		if (key.objectid != btrfs_ino(inode))
2753 			break;
2754 		if (key.type != BTRFS_EXTENT_DATA_KEY)
2755 			break;
2756 		if (key.offset >= new->file_pos + new->len)
2757 			break;
2758 
2759 		extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item);
2760 
2761 		num_bytes = btrfs_file_extent_num_bytes(l, extent);
2762 		if (key.offset + num_bytes < new->file_pos)
2763 			goto next;
2764 
2765 		disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent);
2766 		if (!disk_bytenr)
2767 			goto next;
2768 
2769 		extent_offset = btrfs_file_extent_offset(l, extent);
2770 
2771 		old = kmalloc(sizeof(*old), GFP_NOFS);
2772 		if (!old)
2773 			goto out_free_path;
2774 
2775 		offset = max(new->file_pos, key.offset);
2776 		end = min(new->file_pos + new->len, key.offset + num_bytes);
2777 
2778 		old->bytenr = disk_bytenr;
2779 		old->extent_offset = extent_offset;
2780 		old->offset = offset - key.offset;
2781 		old->len = end - offset;
2782 		old->new = new;
2783 		old->count = 0;
2784 		list_add_tail(&old->list, &new->head);
2785 next:
2786 		path->slots[0]++;
2787 		cond_resched();
2788 	}
2789 
2790 	btrfs_free_path(path);
2791 	atomic_inc(&root->fs_info->defrag_running);
2792 
2793 	return new;
2794 
2795 out_free_path:
2796 	btrfs_free_path(path);
2797 out_kfree:
2798 	free_sa_defrag_extent(new);
2799 	return NULL;
2800 }
2801 
2802 static void btrfs_release_delalloc_bytes(struct btrfs_root *root,
2803 					 u64 start, u64 len)
2804 {
2805 	struct btrfs_block_group_cache *cache;
2806 
2807 	cache = btrfs_lookup_block_group(root->fs_info, start);
2808 	ASSERT(cache);
2809 
2810 	spin_lock(&cache->lock);
2811 	cache->delalloc_bytes -= len;
2812 	spin_unlock(&cache->lock);
2813 
2814 	btrfs_put_block_group(cache);
2815 }
2816 
2817 /* as ordered data IO finishes, this gets called so we can finish
2818  * an ordered extent if the range of bytes in the file it covers are
2819  * fully written.
2820  */
2821 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
2822 {
2823 	struct inode *inode = ordered_extent->inode;
2824 	struct btrfs_root *root = BTRFS_I(inode)->root;
2825 	struct btrfs_trans_handle *trans = NULL;
2826 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2827 	struct extent_state *cached_state = NULL;
2828 	struct new_sa_defrag_extent *new = NULL;
2829 	int compress_type = 0;
2830 	int ret = 0;
2831 	u64 logical_len = ordered_extent->len;
2832 	bool nolock;
2833 	bool truncated = false;
2834 
2835 	nolock = btrfs_is_free_space_inode(inode);
2836 
2837 	if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
2838 		ret = -EIO;
2839 		goto out;
2840 	}
2841 
2842 	btrfs_free_io_failure_record(inode, ordered_extent->file_offset,
2843 				     ordered_extent->file_offset +
2844 				     ordered_extent->len - 1);
2845 
2846 	if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
2847 		truncated = true;
2848 		logical_len = ordered_extent->truncated_len;
2849 		/* Truncated the entire extent, don't bother adding */
2850 		if (!logical_len)
2851 			goto out;
2852 	}
2853 
2854 	if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
2855 		BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
2856 
2857 		/*
2858 		 * For mwrite(mmap + memset to write) case, we still reserve
2859 		 * space for NOCOW range.
2860 		 * As NOCOW won't cause a new delayed ref, just free the space
2861 		 */
2862 		btrfs_qgroup_free_data(inode, ordered_extent->file_offset,
2863 				       ordered_extent->len);
2864 		btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2865 		if (nolock)
2866 			trans = btrfs_join_transaction_nolock(root);
2867 		else
2868 			trans = btrfs_join_transaction(root);
2869 		if (IS_ERR(trans)) {
2870 			ret = PTR_ERR(trans);
2871 			trans = NULL;
2872 			goto out;
2873 		}
2874 		trans->block_rsv = &root->fs_info->delalloc_block_rsv;
2875 		ret = btrfs_update_inode_fallback(trans, root, inode);
2876 		if (ret) /* -ENOMEM or corruption */
2877 			btrfs_abort_transaction(trans, root, ret);
2878 		goto out;
2879 	}
2880 
2881 	lock_extent_bits(io_tree, ordered_extent->file_offset,
2882 			 ordered_extent->file_offset + ordered_extent->len - 1,
2883 			 &cached_state);
2884 
2885 	ret = test_range_bit(io_tree, ordered_extent->file_offset,
2886 			ordered_extent->file_offset + ordered_extent->len - 1,
2887 			EXTENT_DEFRAG, 1, cached_state);
2888 	if (ret) {
2889 		u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
2890 		if (0 && last_snapshot >= BTRFS_I(inode)->generation)
2891 			/* the inode is shared */
2892 			new = record_old_file_extents(inode, ordered_extent);
2893 
2894 		clear_extent_bit(io_tree, ordered_extent->file_offset,
2895 			ordered_extent->file_offset + ordered_extent->len - 1,
2896 			EXTENT_DEFRAG, 0, 0, &cached_state, GFP_NOFS);
2897 	}
2898 
2899 	if (nolock)
2900 		trans = btrfs_join_transaction_nolock(root);
2901 	else
2902 		trans = btrfs_join_transaction(root);
2903 	if (IS_ERR(trans)) {
2904 		ret = PTR_ERR(trans);
2905 		trans = NULL;
2906 		goto out_unlock;
2907 	}
2908 
2909 	trans->block_rsv = &root->fs_info->delalloc_block_rsv;
2910 
2911 	if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
2912 		compress_type = ordered_extent->compress_type;
2913 	if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
2914 		BUG_ON(compress_type);
2915 		ret = btrfs_mark_extent_written(trans, inode,
2916 						ordered_extent->file_offset,
2917 						ordered_extent->file_offset +
2918 						logical_len);
2919 	} else {
2920 		BUG_ON(root == root->fs_info->tree_root);
2921 		ret = insert_reserved_file_extent(trans, inode,
2922 						ordered_extent->file_offset,
2923 						ordered_extent->start,
2924 						ordered_extent->disk_len,
2925 						logical_len, logical_len,
2926 						compress_type, 0, 0,
2927 						BTRFS_FILE_EXTENT_REG);
2928 		if (!ret)
2929 			btrfs_release_delalloc_bytes(root,
2930 						     ordered_extent->start,
2931 						     ordered_extent->disk_len);
2932 	}
2933 	unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
2934 			   ordered_extent->file_offset, ordered_extent->len,
2935 			   trans->transid);
2936 	if (ret < 0) {
2937 		btrfs_abort_transaction(trans, root, ret);
2938 		goto out_unlock;
2939 	}
2940 
2941 	add_pending_csums(trans, inode, ordered_extent->file_offset,
2942 			  &ordered_extent->list);
2943 
2944 	btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2945 	ret = btrfs_update_inode_fallback(trans, root, inode);
2946 	if (ret) { /* -ENOMEM or corruption */
2947 		btrfs_abort_transaction(trans, root, ret);
2948 		goto out_unlock;
2949 	}
2950 	ret = 0;
2951 out_unlock:
2952 	unlock_extent_cached(io_tree, ordered_extent->file_offset,
2953 			     ordered_extent->file_offset +
2954 			     ordered_extent->len - 1, &cached_state, GFP_NOFS);
2955 out:
2956 	if (root != root->fs_info->tree_root)
2957 		btrfs_delalloc_release_metadata(inode, ordered_extent->len);
2958 	if (trans)
2959 		btrfs_end_transaction(trans, root);
2960 
2961 	if (ret || truncated) {
2962 		u64 start, end;
2963 
2964 		if (truncated)
2965 			start = ordered_extent->file_offset + logical_len;
2966 		else
2967 			start = ordered_extent->file_offset;
2968 		end = ordered_extent->file_offset + ordered_extent->len - 1;
2969 		clear_extent_uptodate(io_tree, start, end, NULL, GFP_NOFS);
2970 
2971 		/* Drop the cache for the part of the extent we didn't write. */
2972 		btrfs_drop_extent_cache(inode, start, end, 0);
2973 
2974 		/*
2975 		 * If the ordered extent had an IOERR or something else went
2976 		 * wrong we need to return the space for this ordered extent
2977 		 * back to the allocator.  We only free the extent in the
2978 		 * truncated case if we didn't write out the extent at all.
2979 		 */
2980 		if ((ret || !logical_len) &&
2981 		    !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
2982 		    !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags))
2983 			btrfs_free_reserved_extent(root, ordered_extent->start,
2984 						   ordered_extent->disk_len, 1);
2985 	}
2986 
2987 
2988 	/*
2989 	 * This needs to be done to make sure anybody waiting knows we are done
2990 	 * updating everything for this ordered extent.
2991 	 */
2992 	btrfs_remove_ordered_extent(inode, ordered_extent);
2993 
2994 	/* for snapshot-aware defrag */
2995 	if (new) {
2996 		if (ret) {
2997 			free_sa_defrag_extent(new);
2998 			atomic_dec(&root->fs_info->defrag_running);
2999 		} else {
3000 			relink_file_extents(new);
3001 		}
3002 	}
3003 
3004 	/* once for us */
3005 	btrfs_put_ordered_extent(ordered_extent);
3006 	/* once for the tree */
3007 	btrfs_put_ordered_extent(ordered_extent);
3008 
3009 	return ret;
3010 }
3011 
3012 static void finish_ordered_fn(struct btrfs_work *work)
3013 {
3014 	struct btrfs_ordered_extent *ordered_extent;
3015 	ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
3016 	btrfs_finish_ordered_io(ordered_extent);
3017 }
3018 
3019 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
3020 				struct extent_state *state, int uptodate)
3021 {
3022 	struct inode *inode = page->mapping->host;
3023 	struct btrfs_root *root = BTRFS_I(inode)->root;
3024 	struct btrfs_ordered_extent *ordered_extent = NULL;
3025 	struct btrfs_workqueue *wq;
3026 	btrfs_work_func_t func;
3027 
3028 	trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
3029 
3030 	ClearPagePrivate2(page);
3031 	if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
3032 					    end - start + 1, uptodate))
3033 		return 0;
3034 
3035 	if (btrfs_is_free_space_inode(inode)) {
3036 		wq = root->fs_info->endio_freespace_worker;
3037 		func = btrfs_freespace_write_helper;
3038 	} else {
3039 		wq = root->fs_info->endio_write_workers;
3040 		func = btrfs_endio_write_helper;
3041 	}
3042 
3043 	btrfs_init_work(&ordered_extent->work, func, finish_ordered_fn, NULL,
3044 			NULL);
3045 	btrfs_queue_work(wq, &ordered_extent->work);
3046 
3047 	return 0;
3048 }
3049 
3050 static int __readpage_endio_check(struct inode *inode,
3051 				  struct btrfs_io_bio *io_bio,
3052 				  int icsum, struct page *page,
3053 				  int pgoff, u64 start, size_t len)
3054 {
3055 	char *kaddr;
3056 	u32 csum_expected;
3057 	u32 csum = ~(u32)0;
3058 
3059 	csum_expected = *(((u32 *)io_bio->csum) + icsum);
3060 
3061 	kaddr = kmap_atomic(page);
3062 	csum = btrfs_csum_data(kaddr + pgoff, csum,  len);
3063 	btrfs_csum_final(csum, (char *)&csum);
3064 	if (csum != csum_expected)
3065 		goto zeroit;
3066 
3067 	kunmap_atomic(kaddr);
3068 	return 0;
3069 zeroit:
3070 	btrfs_warn_rl(BTRFS_I(inode)->root->fs_info,
3071 		"csum failed ino %llu off %llu csum %u expected csum %u",
3072 			   btrfs_ino(inode), start, csum, csum_expected);
3073 	memset(kaddr + pgoff, 1, len);
3074 	flush_dcache_page(page);
3075 	kunmap_atomic(kaddr);
3076 	if (csum_expected == 0)
3077 		return 0;
3078 	return -EIO;
3079 }
3080 
3081 /*
3082  * when reads are done, we need to check csums to verify the data is correct
3083  * if there's a match, we allow the bio to finish.  If not, the code in
3084  * extent_io.c will try to find good copies for us.
3085  */
3086 static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
3087 				      u64 phy_offset, struct page *page,
3088 				      u64 start, u64 end, int mirror)
3089 {
3090 	size_t offset = start - page_offset(page);
3091 	struct inode *inode = page->mapping->host;
3092 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3093 	struct btrfs_root *root = BTRFS_I(inode)->root;
3094 
3095 	if (PageChecked(page)) {
3096 		ClearPageChecked(page);
3097 		return 0;
3098 	}
3099 
3100 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
3101 		return 0;
3102 
3103 	if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
3104 	    test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
3105 		clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
3106 				  GFP_NOFS);
3107 		return 0;
3108 	}
3109 
3110 	phy_offset >>= inode->i_sb->s_blocksize_bits;
3111 	return __readpage_endio_check(inode, io_bio, phy_offset, page, offset,
3112 				      start, (size_t)(end - start + 1));
3113 }
3114 
3115 void btrfs_add_delayed_iput(struct inode *inode)
3116 {
3117 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
3118 	struct btrfs_inode *binode = BTRFS_I(inode);
3119 
3120 	if (atomic_add_unless(&inode->i_count, -1, 1))
3121 		return;
3122 
3123 	spin_lock(&fs_info->delayed_iput_lock);
3124 	if (binode->delayed_iput_count == 0) {
3125 		ASSERT(list_empty(&binode->delayed_iput));
3126 		list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs);
3127 	} else {
3128 		binode->delayed_iput_count++;
3129 	}
3130 	spin_unlock(&fs_info->delayed_iput_lock);
3131 }
3132 
3133 void btrfs_run_delayed_iputs(struct btrfs_root *root)
3134 {
3135 	struct btrfs_fs_info *fs_info = root->fs_info;
3136 
3137 	spin_lock(&fs_info->delayed_iput_lock);
3138 	while (!list_empty(&fs_info->delayed_iputs)) {
3139 		struct btrfs_inode *inode;
3140 
3141 		inode = list_first_entry(&fs_info->delayed_iputs,
3142 				struct btrfs_inode, delayed_iput);
3143 		if (inode->delayed_iput_count) {
3144 			inode->delayed_iput_count--;
3145 			list_move_tail(&inode->delayed_iput,
3146 					&fs_info->delayed_iputs);
3147 		} else {
3148 			list_del_init(&inode->delayed_iput);
3149 		}
3150 		spin_unlock(&fs_info->delayed_iput_lock);
3151 		iput(&inode->vfs_inode);
3152 		spin_lock(&fs_info->delayed_iput_lock);
3153 	}
3154 	spin_unlock(&fs_info->delayed_iput_lock);
3155 }
3156 
3157 /*
3158  * This is called in transaction commit time. If there are no orphan
3159  * files in the subvolume, it removes orphan item and frees block_rsv
3160  * structure.
3161  */
3162 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
3163 			      struct btrfs_root *root)
3164 {
3165 	struct btrfs_block_rsv *block_rsv;
3166 	int ret;
3167 
3168 	if (atomic_read(&root->orphan_inodes) ||
3169 	    root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
3170 		return;
3171 
3172 	spin_lock(&root->orphan_lock);
3173 	if (atomic_read(&root->orphan_inodes)) {
3174 		spin_unlock(&root->orphan_lock);
3175 		return;
3176 	}
3177 
3178 	if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) {
3179 		spin_unlock(&root->orphan_lock);
3180 		return;
3181 	}
3182 
3183 	block_rsv = root->orphan_block_rsv;
3184 	root->orphan_block_rsv = NULL;
3185 	spin_unlock(&root->orphan_lock);
3186 
3187 	if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state) &&
3188 	    btrfs_root_refs(&root->root_item) > 0) {
3189 		ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
3190 					    root->root_key.objectid);
3191 		if (ret)
3192 			btrfs_abort_transaction(trans, root, ret);
3193 		else
3194 			clear_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED,
3195 				  &root->state);
3196 	}
3197 
3198 	if (block_rsv) {
3199 		WARN_ON(block_rsv->size > 0);
3200 		btrfs_free_block_rsv(root, block_rsv);
3201 	}
3202 }
3203 
3204 /*
3205  * This creates an orphan entry for the given inode in case something goes
3206  * wrong in the middle of an unlink/truncate.
3207  *
3208  * NOTE: caller of this function should reserve 5 units of metadata for
3209  *	 this function.
3210  */
3211 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
3212 {
3213 	struct btrfs_root *root = BTRFS_I(inode)->root;
3214 	struct btrfs_block_rsv *block_rsv = NULL;
3215 	int reserve = 0;
3216 	int insert = 0;
3217 	int ret;
3218 
3219 	if (!root->orphan_block_rsv) {
3220 		block_rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
3221 		if (!block_rsv)
3222 			return -ENOMEM;
3223 	}
3224 
3225 	spin_lock(&root->orphan_lock);
3226 	if (!root->orphan_block_rsv) {
3227 		root->orphan_block_rsv = block_rsv;
3228 	} else if (block_rsv) {
3229 		btrfs_free_block_rsv(root, block_rsv);
3230 		block_rsv = NULL;
3231 	}
3232 
3233 	if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3234 			      &BTRFS_I(inode)->runtime_flags)) {
3235 #if 0
3236 		/*
3237 		 * For proper ENOSPC handling, we should do orphan
3238 		 * cleanup when mounting. But this introduces backward
3239 		 * compatibility issue.
3240 		 */
3241 		if (!xchg(&root->orphan_item_inserted, 1))
3242 			insert = 2;
3243 		else
3244 			insert = 1;
3245 #endif
3246 		insert = 1;
3247 		atomic_inc(&root->orphan_inodes);
3248 	}
3249 
3250 	if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3251 			      &BTRFS_I(inode)->runtime_flags))
3252 		reserve = 1;
3253 	spin_unlock(&root->orphan_lock);
3254 
3255 	/* grab metadata reservation from transaction handle */
3256 	if (reserve) {
3257 		ret = btrfs_orphan_reserve_metadata(trans, inode);
3258 		BUG_ON(ret); /* -ENOSPC in reservation; Logic error? JDM */
3259 	}
3260 
3261 	/* insert an orphan item to track this unlinked/truncated file */
3262 	if (insert >= 1) {
3263 		ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
3264 		if (ret) {
3265 			atomic_dec(&root->orphan_inodes);
3266 			if (reserve) {
3267 				clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3268 					  &BTRFS_I(inode)->runtime_flags);
3269 				btrfs_orphan_release_metadata(inode);
3270 			}
3271 			if (ret != -EEXIST) {
3272 				clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3273 					  &BTRFS_I(inode)->runtime_flags);
3274 				btrfs_abort_transaction(trans, root, ret);
3275 				return ret;
3276 			}
3277 		}
3278 		ret = 0;
3279 	}
3280 
3281 	/* insert an orphan item to track subvolume contains orphan files */
3282 	if (insert >= 2) {
3283 		ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
3284 					       root->root_key.objectid);
3285 		if (ret && ret != -EEXIST) {
3286 			btrfs_abort_transaction(trans, root, ret);
3287 			return ret;
3288 		}
3289 	}
3290 	return 0;
3291 }
3292 
3293 /*
3294  * We have done the truncate/delete so we can go ahead and remove the orphan
3295  * item for this particular inode.
3296  */
3297 static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3298 			    struct inode *inode)
3299 {
3300 	struct btrfs_root *root = BTRFS_I(inode)->root;
3301 	int delete_item = 0;
3302 	int release_rsv = 0;
3303 	int ret = 0;
3304 
3305 	spin_lock(&root->orphan_lock);
3306 	if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3307 			       &BTRFS_I(inode)->runtime_flags))
3308 		delete_item = 1;
3309 
3310 	if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3311 			       &BTRFS_I(inode)->runtime_flags))
3312 		release_rsv = 1;
3313 	spin_unlock(&root->orphan_lock);
3314 
3315 	if (delete_item) {
3316 		atomic_dec(&root->orphan_inodes);
3317 		if (trans)
3318 			ret = btrfs_del_orphan_item(trans, root,
3319 						    btrfs_ino(inode));
3320 	}
3321 
3322 	if (release_rsv)
3323 		btrfs_orphan_release_metadata(inode);
3324 
3325 	return ret;
3326 }
3327 
3328 /*
3329  * this cleans up any orphans that may be left on the list from the last use
3330  * of this root.
3331  */
3332 int btrfs_orphan_cleanup(struct btrfs_root *root)
3333 {
3334 	struct btrfs_path *path;
3335 	struct extent_buffer *leaf;
3336 	struct btrfs_key key, found_key;
3337 	struct btrfs_trans_handle *trans;
3338 	struct inode *inode;
3339 	u64 last_objectid = 0;
3340 	int ret = 0, nr_unlink = 0, nr_truncate = 0;
3341 
3342 	if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
3343 		return 0;
3344 
3345 	path = btrfs_alloc_path();
3346 	if (!path) {
3347 		ret = -ENOMEM;
3348 		goto out;
3349 	}
3350 	path->reada = READA_BACK;
3351 
3352 	key.objectid = BTRFS_ORPHAN_OBJECTID;
3353 	key.type = BTRFS_ORPHAN_ITEM_KEY;
3354 	key.offset = (u64)-1;
3355 
3356 	while (1) {
3357 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3358 		if (ret < 0)
3359 			goto out;
3360 
3361 		/*
3362 		 * if ret == 0 means we found what we were searching for, which
3363 		 * is weird, but possible, so only screw with path if we didn't
3364 		 * find the key and see if we have stuff that matches
3365 		 */
3366 		if (ret > 0) {
3367 			ret = 0;
3368 			if (path->slots[0] == 0)
3369 				break;
3370 			path->slots[0]--;
3371 		}
3372 
3373 		/* pull out the item */
3374 		leaf = path->nodes[0];
3375 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3376 
3377 		/* make sure the item matches what we want */
3378 		if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3379 			break;
3380 		if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
3381 			break;
3382 
3383 		/* release the path since we're done with it */
3384 		btrfs_release_path(path);
3385 
3386 		/*
3387 		 * this is where we are basically btrfs_lookup, without the
3388 		 * crossing root thing.  we store the inode number in the
3389 		 * offset of the orphan item.
3390 		 */
3391 
3392 		if (found_key.offset == last_objectid) {
3393 			btrfs_err(root->fs_info,
3394 				"Error removing orphan entry, stopping orphan cleanup");
3395 			ret = -EINVAL;
3396 			goto out;
3397 		}
3398 
3399 		last_objectid = found_key.offset;
3400 
3401 		found_key.objectid = found_key.offset;
3402 		found_key.type = BTRFS_INODE_ITEM_KEY;
3403 		found_key.offset = 0;
3404 		inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
3405 		ret = PTR_ERR_OR_ZERO(inode);
3406 		if (ret && ret != -ESTALE)
3407 			goto out;
3408 
3409 		if (ret == -ESTALE && root == root->fs_info->tree_root) {
3410 			struct btrfs_root *dead_root;
3411 			struct btrfs_fs_info *fs_info = root->fs_info;
3412 			int is_dead_root = 0;
3413 
3414 			/*
3415 			 * this is an orphan in the tree root. Currently these
3416 			 * could come from 2 sources:
3417 			 *  a) a snapshot deletion in progress
3418 			 *  b) a free space cache inode
3419 			 * We need to distinguish those two, as the snapshot
3420 			 * orphan must not get deleted.
3421 			 * find_dead_roots already ran before us, so if this
3422 			 * is a snapshot deletion, we should find the root
3423 			 * in the dead_roots list
3424 			 */
3425 			spin_lock(&fs_info->trans_lock);
3426 			list_for_each_entry(dead_root, &fs_info->dead_roots,
3427 					    root_list) {
3428 				if (dead_root->root_key.objectid ==
3429 				    found_key.objectid) {
3430 					is_dead_root = 1;
3431 					break;
3432 				}
3433 			}
3434 			spin_unlock(&fs_info->trans_lock);
3435 			if (is_dead_root) {
3436 				/* prevent this orphan from being found again */
3437 				key.offset = found_key.objectid - 1;
3438 				continue;
3439 			}
3440 		}
3441 		/*
3442 		 * Inode is already gone but the orphan item is still there,
3443 		 * kill the orphan item.
3444 		 */
3445 		if (ret == -ESTALE) {
3446 			trans = btrfs_start_transaction(root, 1);
3447 			if (IS_ERR(trans)) {
3448 				ret = PTR_ERR(trans);
3449 				goto out;
3450 			}
3451 			btrfs_debug(root->fs_info, "auto deleting %Lu",
3452 				found_key.objectid);
3453 			ret = btrfs_del_orphan_item(trans, root,
3454 						    found_key.objectid);
3455 			btrfs_end_transaction(trans, root);
3456 			if (ret)
3457 				goto out;
3458 			continue;
3459 		}
3460 
3461 		/*
3462 		 * add this inode to the orphan list so btrfs_orphan_del does
3463 		 * the proper thing when we hit it
3464 		 */
3465 		set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3466 			&BTRFS_I(inode)->runtime_flags);
3467 		atomic_inc(&root->orphan_inodes);
3468 
3469 		/* if we have links, this was a truncate, lets do that */
3470 		if (inode->i_nlink) {
3471 			if (WARN_ON(!S_ISREG(inode->i_mode))) {
3472 				iput(inode);
3473 				continue;
3474 			}
3475 			nr_truncate++;
3476 
3477 			/* 1 for the orphan item deletion. */
3478 			trans = btrfs_start_transaction(root, 1);
3479 			if (IS_ERR(trans)) {
3480 				iput(inode);
3481 				ret = PTR_ERR(trans);
3482 				goto out;
3483 			}
3484 			ret = btrfs_orphan_add(trans, inode);
3485 			btrfs_end_transaction(trans, root);
3486 			if (ret) {
3487 				iput(inode);
3488 				goto out;
3489 			}
3490 
3491 			ret = btrfs_truncate(inode);
3492 			if (ret)
3493 				btrfs_orphan_del(NULL, inode);
3494 		} else {
3495 			nr_unlink++;
3496 		}
3497 
3498 		/* this will do delete_inode and everything for us */
3499 		iput(inode);
3500 		if (ret)
3501 			goto out;
3502 	}
3503 	/* release the path since we're done with it */
3504 	btrfs_release_path(path);
3505 
3506 	root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3507 
3508 	if (root->orphan_block_rsv)
3509 		btrfs_block_rsv_release(root, root->orphan_block_rsv,
3510 					(u64)-1);
3511 
3512 	if (root->orphan_block_rsv ||
3513 	    test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
3514 		trans = btrfs_join_transaction(root);
3515 		if (!IS_ERR(trans))
3516 			btrfs_end_transaction(trans, root);
3517 	}
3518 
3519 	if (nr_unlink)
3520 		btrfs_debug(root->fs_info, "unlinked %d orphans", nr_unlink);
3521 	if (nr_truncate)
3522 		btrfs_debug(root->fs_info, "truncated %d orphans", nr_truncate);
3523 
3524 out:
3525 	if (ret)
3526 		btrfs_err(root->fs_info,
3527 			"could not do orphan cleanup %d", ret);
3528 	btrfs_free_path(path);
3529 	return ret;
3530 }
3531 
3532 /*
3533  * very simple check to peek ahead in the leaf looking for xattrs.  If we
3534  * don't find any xattrs, we know there can't be any acls.
3535  *
3536  * slot is the slot the inode is in, objectid is the objectid of the inode
3537  */
3538 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
3539 					  int slot, u64 objectid,
3540 					  int *first_xattr_slot)
3541 {
3542 	u32 nritems = btrfs_header_nritems(leaf);
3543 	struct btrfs_key found_key;
3544 	static u64 xattr_access = 0;
3545 	static u64 xattr_default = 0;
3546 	int scanned = 0;
3547 
3548 	if (!xattr_access) {
3549 		xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
3550 					strlen(XATTR_NAME_POSIX_ACL_ACCESS));
3551 		xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
3552 					strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
3553 	}
3554 
3555 	slot++;
3556 	*first_xattr_slot = -1;
3557 	while (slot < nritems) {
3558 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3559 
3560 		/* we found a different objectid, there must not be acls */
3561 		if (found_key.objectid != objectid)
3562 			return 0;
3563 
3564 		/* we found an xattr, assume we've got an acl */
3565 		if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
3566 			if (*first_xattr_slot == -1)
3567 				*first_xattr_slot = slot;
3568 			if (found_key.offset == xattr_access ||
3569 			    found_key.offset == xattr_default)
3570 				return 1;
3571 		}
3572 
3573 		/*
3574 		 * we found a key greater than an xattr key, there can't
3575 		 * be any acls later on
3576 		 */
3577 		if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3578 			return 0;
3579 
3580 		slot++;
3581 		scanned++;
3582 
3583 		/*
3584 		 * it goes inode, inode backrefs, xattrs, extents,
3585 		 * so if there are a ton of hard links to an inode there can
3586 		 * be a lot of backrefs.  Don't waste time searching too hard,
3587 		 * this is just an optimization
3588 		 */
3589 		if (scanned >= 8)
3590 			break;
3591 	}
3592 	/* we hit the end of the leaf before we found an xattr or
3593 	 * something larger than an xattr.  We have to assume the inode
3594 	 * has acls
3595 	 */
3596 	if (*first_xattr_slot == -1)
3597 		*first_xattr_slot = slot;
3598 	return 1;
3599 }
3600 
3601 /*
3602  * read an inode from the btree into the in-memory inode
3603  */
3604 static void btrfs_read_locked_inode(struct inode *inode)
3605 {
3606 	struct btrfs_path *path;
3607 	struct extent_buffer *leaf;
3608 	struct btrfs_inode_item *inode_item;
3609 	struct btrfs_root *root = BTRFS_I(inode)->root;
3610 	struct btrfs_key location;
3611 	unsigned long ptr;
3612 	int maybe_acls;
3613 	u32 rdev;
3614 	int ret;
3615 	bool filled = false;
3616 	int first_xattr_slot;
3617 
3618 	ret = btrfs_fill_inode(inode, &rdev);
3619 	if (!ret)
3620 		filled = true;
3621 
3622 	path = btrfs_alloc_path();
3623 	if (!path)
3624 		goto make_bad;
3625 
3626 	memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
3627 
3628 	ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
3629 	if (ret)
3630 		goto make_bad;
3631 
3632 	leaf = path->nodes[0];
3633 
3634 	if (filled)
3635 		goto cache_index;
3636 
3637 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
3638 				    struct btrfs_inode_item);
3639 	inode->i_mode = btrfs_inode_mode(leaf, inode_item);
3640 	set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
3641 	i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3642 	i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
3643 	btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
3644 
3645 	inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime);
3646 	inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime);
3647 
3648 	inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime);
3649 	inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime);
3650 
3651 	inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime);
3652 	inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime);
3653 
3654 	BTRFS_I(inode)->i_otime.tv_sec =
3655 		btrfs_timespec_sec(leaf, &inode_item->otime);
3656 	BTRFS_I(inode)->i_otime.tv_nsec =
3657 		btrfs_timespec_nsec(leaf, &inode_item->otime);
3658 
3659 	inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
3660 	BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
3661 	BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3662 
3663 	inode->i_version = btrfs_inode_sequence(leaf, inode_item);
3664 	inode->i_generation = BTRFS_I(inode)->generation;
3665 	inode->i_rdev = 0;
3666 	rdev = btrfs_inode_rdev(leaf, inode_item);
3667 
3668 	BTRFS_I(inode)->index_cnt = (u64)-1;
3669 	BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
3670 
3671 cache_index:
3672 	/*
3673 	 * If we were modified in the current generation and evicted from memory
3674 	 * and then re-read we need to do a full sync since we don't have any
3675 	 * idea about which extents were modified before we were evicted from
3676 	 * cache.
3677 	 *
3678 	 * This is required for both inode re-read from disk and delayed inode
3679 	 * in delayed_nodes_tree.
3680 	 */
3681 	if (BTRFS_I(inode)->last_trans == root->fs_info->generation)
3682 		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3683 			&BTRFS_I(inode)->runtime_flags);
3684 
3685 	/*
3686 	 * We don't persist the id of the transaction where an unlink operation
3687 	 * against the inode was last made. So here we assume the inode might
3688 	 * have been evicted, and therefore the exact value of last_unlink_trans
3689 	 * lost, and set it to last_trans to avoid metadata inconsistencies
3690 	 * between the inode and its parent if the inode is fsync'ed and the log
3691 	 * replayed. For example, in the scenario:
3692 	 *
3693 	 * touch mydir/foo
3694 	 * ln mydir/foo mydir/bar
3695 	 * sync
3696 	 * unlink mydir/bar
3697 	 * echo 2 > /proc/sys/vm/drop_caches   # evicts inode
3698 	 * xfs_io -c fsync mydir/foo
3699 	 * <power failure>
3700 	 * mount fs, triggers fsync log replay
3701 	 *
3702 	 * We must make sure that when we fsync our inode foo we also log its
3703 	 * parent inode, otherwise after log replay the parent still has the
3704 	 * dentry with the "bar" name but our inode foo has a link count of 1
3705 	 * and doesn't have an inode ref with the name "bar" anymore.
3706 	 *
3707 	 * Setting last_unlink_trans to last_trans is a pessimistic approach,
3708 	 * but it guarantees correctness at the expense of ocassional full
3709 	 * transaction commits on fsync if our inode is a directory, or if our
3710 	 * inode is not a directory, logging its parent unnecessarily.
3711 	 */
3712 	BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
3713 
3714 	path->slots[0]++;
3715 	if (inode->i_nlink != 1 ||
3716 	    path->slots[0] >= btrfs_header_nritems(leaf))
3717 		goto cache_acl;
3718 
3719 	btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
3720 	if (location.objectid != btrfs_ino(inode))
3721 		goto cache_acl;
3722 
3723 	ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3724 	if (location.type == BTRFS_INODE_REF_KEY) {
3725 		struct btrfs_inode_ref *ref;
3726 
3727 		ref = (struct btrfs_inode_ref *)ptr;
3728 		BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3729 	} else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3730 		struct btrfs_inode_extref *extref;
3731 
3732 		extref = (struct btrfs_inode_extref *)ptr;
3733 		BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3734 								     extref);
3735 	}
3736 cache_acl:
3737 	/*
3738 	 * try to precache a NULL acl entry for files that don't have
3739 	 * any xattrs or acls
3740 	 */
3741 	maybe_acls = acls_after_inode_item(leaf, path->slots[0],
3742 					   btrfs_ino(inode), &first_xattr_slot);
3743 	if (first_xattr_slot != -1) {
3744 		path->slots[0] = first_xattr_slot;
3745 		ret = btrfs_load_inode_props(inode, path);
3746 		if (ret)
3747 			btrfs_err(root->fs_info,
3748 				  "error loading props for ino %llu (root %llu): %d",
3749 				  btrfs_ino(inode),
3750 				  root->root_key.objectid, ret);
3751 	}
3752 	btrfs_free_path(path);
3753 
3754 	if (!maybe_acls)
3755 		cache_no_acl(inode);
3756 
3757 	switch (inode->i_mode & S_IFMT) {
3758 	case S_IFREG:
3759 		inode->i_mapping->a_ops = &btrfs_aops;
3760 		BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
3761 		inode->i_fop = &btrfs_file_operations;
3762 		inode->i_op = &btrfs_file_inode_operations;
3763 		break;
3764 	case S_IFDIR:
3765 		inode->i_fop = &btrfs_dir_file_operations;
3766 		if (root == root->fs_info->tree_root)
3767 			inode->i_op = &btrfs_dir_ro_inode_operations;
3768 		else
3769 			inode->i_op = &btrfs_dir_inode_operations;
3770 		break;
3771 	case S_IFLNK:
3772 		inode->i_op = &btrfs_symlink_inode_operations;
3773 		inode_nohighmem(inode);
3774 		inode->i_mapping->a_ops = &btrfs_symlink_aops;
3775 		break;
3776 	default:
3777 		inode->i_op = &btrfs_special_inode_operations;
3778 		init_special_inode(inode, inode->i_mode, rdev);
3779 		break;
3780 	}
3781 
3782 	btrfs_update_iflags(inode);
3783 	return;
3784 
3785 make_bad:
3786 	btrfs_free_path(path);
3787 	make_bad_inode(inode);
3788 }
3789 
3790 /*
3791  * given a leaf and an inode, copy the inode fields into the leaf
3792  */
3793 static void fill_inode_item(struct btrfs_trans_handle *trans,
3794 			    struct extent_buffer *leaf,
3795 			    struct btrfs_inode_item *item,
3796 			    struct inode *inode)
3797 {
3798 	struct btrfs_map_token token;
3799 
3800 	btrfs_init_map_token(&token);
3801 
3802 	btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3803 	btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3804 	btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size,
3805 				   &token);
3806 	btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3807 	btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3808 
3809 	btrfs_set_token_timespec_sec(leaf, &item->atime,
3810 				     inode->i_atime.tv_sec, &token);
3811 	btrfs_set_token_timespec_nsec(leaf, &item->atime,
3812 				      inode->i_atime.tv_nsec, &token);
3813 
3814 	btrfs_set_token_timespec_sec(leaf, &item->mtime,
3815 				     inode->i_mtime.tv_sec, &token);
3816 	btrfs_set_token_timespec_nsec(leaf, &item->mtime,
3817 				      inode->i_mtime.tv_nsec, &token);
3818 
3819 	btrfs_set_token_timespec_sec(leaf, &item->ctime,
3820 				     inode->i_ctime.tv_sec, &token);
3821 	btrfs_set_token_timespec_nsec(leaf, &item->ctime,
3822 				      inode->i_ctime.tv_nsec, &token);
3823 
3824 	btrfs_set_token_timespec_sec(leaf, &item->otime,
3825 				     BTRFS_I(inode)->i_otime.tv_sec, &token);
3826 	btrfs_set_token_timespec_nsec(leaf, &item->otime,
3827 				      BTRFS_I(inode)->i_otime.tv_nsec, &token);
3828 
3829 	btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3830 				     &token);
3831 	btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation,
3832 					 &token);
3833 	btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
3834 	btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3835 	btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3836 	btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3837 	btrfs_set_token_inode_block_group(leaf, item, 0, &token);
3838 }
3839 
3840 /*
3841  * copy everything in the in-memory inode into the btree.
3842  */
3843 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
3844 				struct btrfs_root *root, struct inode *inode)
3845 {
3846 	struct btrfs_inode_item *inode_item;
3847 	struct btrfs_path *path;
3848 	struct extent_buffer *leaf;
3849 	int ret;
3850 
3851 	path = btrfs_alloc_path();
3852 	if (!path)
3853 		return -ENOMEM;
3854 
3855 	path->leave_spinning = 1;
3856 	ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
3857 				 1);
3858 	if (ret) {
3859 		if (ret > 0)
3860 			ret = -ENOENT;
3861 		goto failed;
3862 	}
3863 
3864 	leaf = path->nodes[0];
3865 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
3866 				    struct btrfs_inode_item);
3867 
3868 	fill_inode_item(trans, leaf, inode_item, inode);
3869 	btrfs_mark_buffer_dirty(leaf);
3870 	btrfs_set_inode_last_trans(trans, inode);
3871 	ret = 0;
3872 failed:
3873 	btrfs_free_path(path);
3874 	return ret;
3875 }
3876 
3877 /*
3878  * copy everything in the in-memory inode into the btree.
3879  */
3880 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
3881 				struct btrfs_root *root, struct inode *inode)
3882 {
3883 	int ret;
3884 
3885 	/*
3886 	 * If the inode is a free space inode, we can deadlock during commit
3887 	 * if we put it into the delayed code.
3888 	 *
3889 	 * The data relocation inode should also be directly updated
3890 	 * without delay
3891 	 */
3892 	if (!btrfs_is_free_space_inode(inode)
3893 	    && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
3894 	    && !root->fs_info->log_root_recovering) {
3895 		btrfs_update_root_times(trans, root);
3896 
3897 		ret = btrfs_delayed_update_inode(trans, root, inode);
3898 		if (!ret)
3899 			btrfs_set_inode_last_trans(trans, inode);
3900 		return ret;
3901 	}
3902 
3903 	return btrfs_update_inode_item(trans, root, inode);
3904 }
3905 
3906 noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3907 					 struct btrfs_root *root,
3908 					 struct inode *inode)
3909 {
3910 	int ret;
3911 
3912 	ret = btrfs_update_inode(trans, root, inode);
3913 	if (ret == -ENOSPC)
3914 		return btrfs_update_inode_item(trans, root, inode);
3915 	return ret;
3916 }
3917 
3918 /*
3919  * unlink helper that gets used here in inode.c and in the tree logging
3920  * recovery code.  It remove a link in a directory with a given name, and
3921  * also drops the back refs in the inode to the directory
3922  */
3923 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3924 				struct btrfs_root *root,
3925 				struct inode *dir, struct inode *inode,
3926 				const char *name, int name_len)
3927 {
3928 	struct btrfs_path *path;
3929 	int ret = 0;
3930 	struct extent_buffer *leaf;
3931 	struct btrfs_dir_item *di;
3932 	struct btrfs_key key;
3933 	u64 index;
3934 	u64 ino = btrfs_ino(inode);
3935 	u64 dir_ino = btrfs_ino(dir);
3936 
3937 	path = btrfs_alloc_path();
3938 	if (!path) {
3939 		ret = -ENOMEM;
3940 		goto out;
3941 	}
3942 
3943 	path->leave_spinning = 1;
3944 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
3945 				    name, name_len, -1);
3946 	if (IS_ERR(di)) {
3947 		ret = PTR_ERR(di);
3948 		goto err;
3949 	}
3950 	if (!di) {
3951 		ret = -ENOENT;
3952 		goto err;
3953 	}
3954 	leaf = path->nodes[0];
3955 	btrfs_dir_item_key_to_cpu(leaf, di, &key);
3956 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
3957 	if (ret)
3958 		goto err;
3959 	btrfs_release_path(path);
3960 
3961 	/*
3962 	 * If we don't have dir index, we have to get it by looking up
3963 	 * the inode ref, since we get the inode ref, remove it directly,
3964 	 * it is unnecessary to do delayed deletion.
3965 	 *
3966 	 * But if we have dir index, needn't search inode ref to get it.
3967 	 * Since the inode ref is close to the inode item, it is better
3968 	 * that we delay to delete it, and just do this deletion when
3969 	 * we update the inode item.
3970 	 */
3971 	if (BTRFS_I(inode)->dir_index) {
3972 		ret = btrfs_delayed_delete_inode_ref(inode);
3973 		if (!ret) {
3974 			index = BTRFS_I(inode)->dir_index;
3975 			goto skip_backref;
3976 		}
3977 	}
3978 
3979 	ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
3980 				  dir_ino, &index);
3981 	if (ret) {
3982 		btrfs_info(root->fs_info,
3983 			"failed to delete reference to %.*s, inode %llu parent %llu",
3984 			name_len, name, ino, dir_ino);
3985 		btrfs_abort_transaction(trans, root, ret);
3986 		goto err;
3987 	}
3988 skip_backref:
3989 	ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
3990 	if (ret) {
3991 		btrfs_abort_transaction(trans, root, ret);
3992 		goto err;
3993 	}
3994 
3995 	ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
3996 					 inode, dir_ino);
3997 	if (ret != 0 && ret != -ENOENT) {
3998 		btrfs_abort_transaction(trans, root, ret);
3999 		goto err;
4000 	}
4001 
4002 	ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
4003 					   dir, index);
4004 	if (ret == -ENOENT)
4005 		ret = 0;
4006 	else if (ret)
4007 		btrfs_abort_transaction(trans, root, ret);
4008 err:
4009 	btrfs_free_path(path);
4010 	if (ret)
4011 		goto out;
4012 
4013 	btrfs_i_size_write(dir, dir->i_size - name_len * 2);
4014 	inode_inc_iversion(inode);
4015 	inode_inc_iversion(dir);
4016 	inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
4017 	ret = btrfs_update_inode(trans, root, dir);
4018 out:
4019 	return ret;
4020 }
4021 
4022 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4023 		       struct btrfs_root *root,
4024 		       struct inode *dir, struct inode *inode,
4025 		       const char *name, int name_len)
4026 {
4027 	int ret;
4028 	ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
4029 	if (!ret) {
4030 		drop_nlink(inode);
4031 		ret = btrfs_update_inode(trans, root, inode);
4032 	}
4033 	return ret;
4034 }
4035 
4036 /*
4037  * helper to start transaction for unlink and rmdir.
4038  *
4039  * unlink and rmdir are special in btrfs, they do not always free space, so
4040  * if we cannot make our reservations the normal way try and see if there is
4041  * plenty of slack room in the global reserve to migrate, otherwise we cannot
4042  * allow the unlink to occur.
4043  */
4044 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
4045 {
4046 	struct btrfs_root *root = BTRFS_I(dir)->root;
4047 
4048 	/*
4049 	 * 1 for the possible orphan item
4050 	 * 1 for the dir item
4051 	 * 1 for the dir index
4052 	 * 1 for the inode ref
4053 	 * 1 for the inode
4054 	 */
4055 	return btrfs_start_transaction_fallback_global_rsv(root, 5, 5);
4056 }
4057 
4058 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4059 {
4060 	struct btrfs_root *root = BTRFS_I(dir)->root;
4061 	struct btrfs_trans_handle *trans;
4062 	struct inode *inode = d_inode(dentry);
4063 	int ret;
4064 
4065 	trans = __unlink_start_trans(dir);
4066 	if (IS_ERR(trans))
4067 		return PTR_ERR(trans);
4068 
4069 	btrfs_record_unlink_dir(trans, dir, d_inode(dentry), 0);
4070 
4071 	ret = btrfs_unlink_inode(trans, root, dir, d_inode(dentry),
4072 				 dentry->d_name.name, dentry->d_name.len);
4073 	if (ret)
4074 		goto out;
4075 
4076 	if (inode->i_nlink == 0) {
4077 		ret = btrfs_orphan_add(trans, inode);
4078 		if (ret)
4079 			goto out;
4080 	}
4081 
4082 out:
4083 	btrfs_end_transaction(trans, root);
4084 	btrfs_btree_balance_dirty(root);
4085 	return ret;
4086 }
4087 
4088 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
4089 			struct btrfs_root *root,
4090 			struct inode *dir, u64 objectid,
4091 			const char *name, int name_len)
4092 {
4093 	struct btrfs_path *path;
4094 	struct extent_buffer *leaf;
4095 	struct btrfs_dir_item *di;
4096 	struct btrfs_key key;
4097 	u64 index;
4098 	int ret;
4099 	u64 dir_ino = btrfs_ino(dir);
4100 
4101 	path = btrfs_alloc_path();
4102 	if (!path)
4103 		return -ENOMEM;
4104 
4105 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4106 				   name, name_len, -1);
4107 	if (IS_ERR_OR_NULL(di)) {
4108 		if (!di)
4109 			ret = -ENOENT;
4110 		else
4111 			ret = PTR_ERR(di);
4112 		goto out;
4113 	}
4114 
4115 	leaf = path->nodes[0];
4116 	btrfs_dir_item_key_to_cpu(leaf, di, &key);
4117 	WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4118 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
4119 	if (ret) {
4120 		btrfs_abort_transaction(trans, root, ret);
4121 		goto out;
4122 	}
4123 	btrfs_release_path(path);
4124 
4125 	ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
4126 				 objectid, root->root_key.objectid,
4127 				 dir_ino, &index, name, name_len);
4128 	if (ret < 0) {
4129 		if (ret != -ENOENT) {
4130 			btrfs_abort_transaction(trans, root, ret);
4131 			goto out;
4132 		}
4133 		di = btrfs_search_dir_index_item(root, path, dir_ino,
4134 						 name, name_len);
4135 		if (IS_ERR_OR_NULL(di)) {
4136 			if (!di)
4137 				ret = -ENOENT;
4138 			else
4139 				ret = PTR_ERR(di);
4140 			btrfs_abort_transaction(trans, root, ret);
4141 			goto out;
4142 		}
4143 
4144 		leaf = path->nodes[0];
4145 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4146 		btrfs_release_path(path);
4147 		index = key.offset;
4148 	}
4149 	btrfs_release_path(path);
4150 
4151 	ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
4152 	if (ret) {
4153 		btrfs_abort_transaction(trans, root, ret);
4154 		goto out;
4155 	}
4156 
4157 	btrfs_i_size_write(dir, dir->i_size - name_len * 2);
4158 	inode_inc_iversion(dir);
4159 	dir->i_mtime = dir->i_ctime = CURRENT_TIME;
4160 	ret = btrfs_update_inode_fallback(trans, root, dir);
4161 	if (ret)
4162 		btrfs_abort_transaction(trans, root, ret);
4163 out:
4164 	btrfs_free_path(path);
4165 	return ret;
4166 }
4167 
4168 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4169 {
4170 	struct inode *inode = d_inode(dentry);
4171 	int err = 0;
4172 	struct btrfs_root *root = BTRFS_I(dir)->root;
4173 	struct btrfs_trans_handle *trans;
4174 
4175 	if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
4176 		return -ENOTEMPTY;
4177 	if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID)
4178 		return -EPERM;
4179 
4180 	trans = __unlink_start_trans(dir);
4181 	if (IS_ERR(trans))
4182 		return PTR_ERR(trans);
4183 
4184 	if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4185 		err = btrfs_unlink_subvol(trans, root, dir,
4186 					  BTRFS_I(inode)->location.objectid,
4187 					  dentry->d_name.name,
4188 					  dentry->d_name.len);
4189 		goto out;
4190 	}
4191 
4192 	err = btrfs_orphan_add(trans, inode);
4193 	if (err)
4194 		goto out;
4195 
4196 	/* now the directory is empty */
4197 	err = btrfs_unlink_inode(trans, root, dir, d_inode(dentry),
4198 				 dentry->d_name.name, dentry->d_name.len);
4199 	if (!err)
4200 		btrfs_i_size_write(inode, 0);
4201 out:
4202 	btrfs_end_transaction(trans, root);
4203 	btrfs_btree_balance_dirty(root);
4204 
4205 	return err;
4206 }
4207 
4208 static int truncate_space_check(struct btrfs_trans_handle *trans,
4209 				struct btrfs_root *root,
4210 				u64 bytes_deleted)
4211 {
4212 	int ret;
4213 
4214 	bytes_deleted = btrfs_csum_bytes_to_leaves(root, bytes_deleted);
4215 	ret = btrfs_block_rsv_add(root, &root->fs_info->trans_block_rsv,
4216 				  bytes_deleted, BTRFS_RESERVE_NO_FLUSH);
4217 	if (!ret)
4218 		trans->bytes_reserved += bytes_deleted;
4219 	return ret;
4220 
4221 }
4222 
4223 static int truncate_inline_extent(struct inode *inode,
4224 				  struct btrfs_path *path,
4225 				  struct btrfs_key *found_key,
4226 				  const u64 item_end,
4227 				  const u64 new_size)
4228 {
4229 	struct extent_buffer *leaf = path->nodes[0];
4230 	int slot = path->slots[0];
4231 	struct btrfs_file_extent_item *fi;
4232 	u32 size = (u32)(new_size - found_key->offset);
4233 	struct btrfs_root *root = BTRFS_I(inode)->root;
4234 
4235 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
4236 
4237 	if (btrfs_file_extent_compression(leaf, fi) != BTRFS_COMPRESS_NONE) {
4238 		loff_t offset = new_size;
4239 		loff_t page_end = ALIGN(offset, PAGE_CACHE_SIZE);
4240 
4241 		/*
4242 		 * Zero out the remaining of the last page of our inline extent,
4243 		 * instead of directly truncating our inline extent here - that
4244 		 * would be much more complex (decompressing all the data, then
4245 		 * compressing the truncated data, which might be bigger than
4246 		 * the size of the inline extent, resize the extent, etc).
4247 		 * We release the path because to get the page we might need to
4248 		 * read the extent item from disk (data not in the page cache).
4249 		 */
4250 		btrfs_release_path(path);
4251 		return btrfs_truncate_page(inode, offset, page_end - offset, 0);
4252 	}
4253 
4254 	btrfs_set_file_extent_ram_bytes(leaf, fi, size);
4255 	size = btrfs_file_extent_calc_inline_size(size);
4256 	btrfs_truncate_item(root, path, size, 1);
4257 
4258 	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4259 		inode_sub_bytes(inode, item_end + 1 - new_size);
4260 
4261 	return 0;
4262 }
4263 
4264 /*
4265  * this can truncate away extent items, csum items and directory items.
4266  * It starts at a high offset and removes keys until it can't find
4267  * any higher than new_size
4268  *
4269  * csum items that cross the new i_size are truncated to the new size
4270  * as well.
4271  *
4272  * min_type is the minimum key type to truncate down to.  If set to 0, this
4273  * will kill all the items on this inode, including the INODE_ITEM_KEY.
4274  */
4275 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
4276 			       struct btrfs_root *root,
4277 			       struct inode *inode,
4278 			       u64 new_size, u32 min_type)
4279 {
4280 	struct btrfs_path *path;
4281 	struct extent_buffer *leaf;
4282 	struct btrfs_file_extent_item *fi;
4283 	struct btrfs_key key;
4284 	struct btrfs_key found_key;
4285 	u64 extent_start = 0;
4286 	u64 extent_num_bytes = 0;
4287 	u64 extent_offset = 0;
4288 	u64 item_end = 0;
4289 	u64 last_size = new_size;
4290 	u32 found_type = (u8)-1;
4291 	int found_extent;
4292 	int del_item;
4293 	int pending_del_nr = 0;
4294 	int pending_del_slot = 0;
4295 	int extent_type = -1;
4296 	int ret;
4297 	int err = 0;
4298 	u64 ino = btrfs_ino(inode);
4299 	u64 bytes_deleted = 0;
4300 	bool be_nice = 0;
4301 	bool should_throttle = 0;
4302 	bool should_end = 0;
4303 
4304 	BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
4305 
4306 	/*
4307 	 * for non-free space inodes and ref cows, we want to back off from
4308 	 * time to time
4309 	 */
4310 	if (!btrfs_is_free_space_inode(inode) &&
4311 	    test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4312 		be_nice = 1;
4313 
4314 	path = btrfs_alloc_path();
4315 	if (!path)
4316 		return -ENOMEM;
4317 	path->reada = READA_BACK;
4318 
4319 	/*
4320 	 * We want to drop from the next block forward in case this new size is
4321 	 * not block aligned since we will be keeping the last block of the
4322 	 * extent just the way it is.
4323 	 */
4324 	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4325 	    root == root->fs_info->tree_root)
4326 		btrfs_drop_extent_cache(inode, ALIGN(new_size,
4327 					root->sectorsize), (u64)-1, 0);
4328 
4329 	/*
4330 	 * This function is also used to drop the items in the log tree before
4331 	 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
4332 	 * it is used to drop the loged items. So we shouldn't kill the delayed
4333 	 * items.
4334 	 */
4335 	if (min_type == 0 && root == BTRFS_I(inode)->root)
4336 		btrfs_kill_delayed_inode_items(inode);
4337 
4338 	key.objectid = ino;
4339 	key.offset = (u64)-1;
4340 	key.type = (u8)-1;
4341 
4342 search_again:
4343 	/*
4344 	 * with a 16K leaf size and 128MB extents, you can actually queue
4345 	 * up a huge file in a single leaf.  Most of the time that
4346 	 * bytes_deleted is > 0, it will be huge by the time we get here
4347 	 */
4348 	if (be_nice && bytes_deleted > SZ_32M) {
4349 		if (btrfs_should_end_transaction(trans, root)) {
4350 			err = -EAGAIN;
4351 			goto error;
4352 		}
4353 	}
4354 
4355 
4356 	path->leave_spinning = 1;
4357 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
4358 	if (ret < 0) {
4359 		err = ret;
4360 		goto out;
4361 	}
4362 
4363 	if (ret > 0) {
4364 		/* there are no items in the tree for us to truncate, we're
4365 		 * done
4366 		 */
4367 		if (path->slots[0] == 0)
4368 			goto out;
4369 		path->slots[0]--;
4370 	}
4371 
4372 	while (1) {
4373 		fi = NULL;
4374 		leaf = path->nodes[0];
4375 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4376 		found_type = found_key.type;
4377 
4378 		if (found_key.objectid != ino)
4379 			break;
4380 
4381 		if (found_type < min_type)
4382 			break;
4383 
4384 		item_end = found_key.offset;
4385 		if (found_type == BTRFS_EXTENT_DATA_KEY) {
4386 			fi = btrfs_item_ptr(leaf, path->slots[0],
4387 					    struct btrfs_file_extent_item);
4388 			extent_type = btrfs_file_extent_type(leaf, fi);
4389 			if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4390 				item_end +=
4391 				    btrfs_file_extent_num_bytes(leaf, fi);
4392 			} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4393 				item_end += btrfs_file_extent_inline_len(leaf,
4394 							 path->slots[0], fi);
4395 			}
4396 			item_end--;
4397 		}
4398 		if (found_type > min_type) {
4399 			del_item = 1;
4400 		} else {
4401 			if (item_end < new_size)
4402 				break;
4403 			if (found_key.offset >= new_size)
4404 				del_item = 1;
4405 			else
4406 				del_item = 0;
4407 		}
4408 		found_extent = 0;
4409 		/* FIXME, shrink the extent if the ref count is only 1 */
4410 		if (found_type != BTRFS_EXTENT_DATA_KEY)
4411 			goto delete;
4412 
4413 		if (del_item)
4414 			last_size = found_key.offset;
4415 		else
4416 			last_size = new_size;
4417 
4418 		if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4419 			u64 num_dec;
4420 			extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
4421 			if (!del_item) {
4422 				u64 orig_num_bytes =
4423 					btrfs_file_extent_num_bytes(leaf, fi);
4424 				extent_num_bytes = ALIGN(new_size -
4425 						found_key.offset,
4426 						root->sectorsize);
4427 				btrfs_set_file_extent_num_bytes(leaf, fi,
4428 							 extent_num_bytes);
4429 				num_dec = (orig_num_bytes -
4430 					   extent_num_bytes);
4431 				if (test_bit(BTRFS_ROOT_REF_COWS,
4432 					     &root->state) &&
4433 				    extent_start != 0)
4434 					inode_sub_bytes(inode, num_dec);
4435 				btrfs_mark_buffer_dirty(leaf);
4436 			} else {
4437 				extent_num_bytes =
4438 					btrfs_file_extent_disk_num_bytes(leaf,
4439 									 fi);
4440 				extent_offset = found_key.offset -
4441 					btrfs_file_extent_offset(leaf, fi);
4442 
4443 				/* FIXME blocksize != 4096 */
4444 				num_dec = btrfs_file_extent_num_bytes(leaf, fi);
4445 				if (extent_start != 0) {
4446 					found_extent = 1;
4447 					if (test_bit(BTRFS_ROOT_REF_COWS,
4448 						     &root->state))
4449 						inode_sub_bytes(inode, num_dec);
4450 				}
4451 			}
4452 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4453 			/*
4454 			 * we can't truncate inline items that have had
4455 			 * special encodings
4456 			 */
4457 			if (!del_item &&
4458 			    btrfs_file_extent_encryption(leaf, fi) == 0 &&
4459 			    btrfs_file_extent_other_encoding(leaf, fi) == 0) {
4460 
4461 				/*
4462 				 * Need to release path in order to truncate a
4463 				 * compressed extent. So delete any accumulated
4464 				 * extent items so far.
4465 				 */
4466 				if (btrfs_file_extent_compression(leaf, fi) !=
4467 				    BTRFS_COMPRESS_NONE && pending_del_nr) {
4468 					err = btrfs_del_items(trans, root, path,
4469 							      pending_del_slot,
4470 							      pending_del_nr);
4471 					if (err) {
4472 						btrfs_abort_transaction(trans,
4473 									root,
4474 									err);
4475 						goto error;
4476 					}
4477 					pending_del_nr = 0;
4478 				}
4479 
4480 				err = truncate_inline_extent(inode, path,
4481 							     &found_key,
4482 							     item_end,
4483 							     new_size);
4484 				if (err) {
4485 					btrfs_abort_transaction(trans,
4486 								root, err);
4487 					goto error;
4488 				}
4489 			} else if (test_bit(BTRFS_ROOT_REF_COWS,
4490 					    &root->state)) {
4491 				inode_sub_bytes(inode, item_end + 1 - new_size);
4492 			}
4493 		}
4494 delete:
4495 		if (del_item) {
4496 			if (!pending_del_nr) {
4497 				/* no pending yet, add ourselves */
4498 				pending_del_slot = path->slots[0];
4499 				pending_del_nr = 1;
4500 			} else if (pending_del_nr &&
4501 				   path->slots[0] + 1 == pending_del_slot) {
4502 				/* hop on the pending chunk */
4503 				pending_del_nr++;
4504 				pending_del_slot = path->slots[0];
4505 			} else {
4506 				BUG();
4507 			}
4508 		} else {
4509 			break;
4510 		}
4511 		should_throttle = 0;
4512 
4513 		if (found_extent &&
4514 		    (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4515 		     root == root->fs_info->tree_root)) {
4516 			btrfs_set_path_blocking(path);
4517 			bytes_deleted += extent_num_bytes;
4518 			ret = btrfs_free_extent(trans, root, extent_start,
4519 						extent_num_bytes, 0,
4520 						btrfs_header_owner(leaf),
4521 						ino, extent_offset);
4522 			BUG_ON(ret);
4523 			if (btrfs_should_throttle_delayed_refs(trans, root))
4524 				btrfs_async_run_delayed_refs(root,
4525 					trans->delayed_ref_updates * 2, 0);
4526 			if (be_nice) {
4527 				if (truncate_space_check(trans, root,
4528 							 extent_num_bytes)) {
4529 					should_end = 1;
4530 				}
4531 				if (btrfs_should_throttle_delayed_refs(trans,
4532 								       root)) {
4533 					should_throttle = 1;
4534 				}
4535 			}
4536 		}
4537 
4538 		if (found_type == BTRFS_INODE_ITEM_KEY)
4539 			break;
4540 
4541 		if (path->slots[0] == 0 ||
4542 		    path->slots[0] != pending_del_slot ||
4543 		    should_throttle || should_end) {
4544 			if (pending_del_nr) {
4545 				ret = btrfs_del_items(trans, root, path,
4546 						pending_del_slot,
4547 						pending_del_nr);
4548 				if (ret) {
4549 					btrfs_abort_transaction(trans,
4550 								root, ret);
4551 					goto error;
4552 				}
4553 				pending_del_nr = 0;
4554 			}
4555 			btrfs_release_path(path);
4556 			if (should_throttle) {
4557 				unsigned long updates = trans->delayed_ref_updates;
4558 				if (updates) {
4559 					trans->delayed_ref_updates = 0;
4560 					ret = btrfs_run_delayed_refs(trans, root, updates * 2);
4561 					if (ret && !err)
4562 						err = ret;
4563 				}
4564 			}
4565 			/*
4566 			 * if we failed to refill our space rsv, bail out
4567 			 * and let the transaction restart
4568 			 */
4569 			if (should_end) {
4570 				err = -EAGAIN;
4571 				goto error;
4572 			}
4573 			goto search_again;
4574 		} else {
4575 			path->slots[0]--;
4576 		}
4577 	}
4578 out:
4579 	if (pending_del_nr) {
4580 		ret = btrfs_del_items(trans, root, path, pending_del_slot,
4581 				      pending_del_nr);
4582 		if (ret)
4583 			btrfs_abort_transaction(trans, root, ret);
4584 	}
4585 error:
4586 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
4587 		btrfs_ordered_update_i_size(inode, last_size, NULL);
4588 
4589 	btrfs_free_path(path);
4590 
4591 	if (be_nice && bytes_deleted > SZ_32M) {
4592 		unsigned long updates = trans->delayed_ref_updates;
4593 		if (updates) {
4594 			trans->delayed_ref_updates = 0;
4595 			ret = btrfs_run_delayed_refs(trans, root, updates * 2);
4596 			if (ret && !err)
4597 				err = ret;
4598 		}
4599 	}
4600 	return err;
4601 }
4602 
4603 /*
4604  * btrfs_truncate_page - read, zero a chunk and write a page
4605  * @inode - inode that we're zeroing
4606  * @from - the offset to start zeroing
4607  * @len - the length to zero, 0 to zero the entire range respective to the
4608  *	offset
4609  * @front - zero up to the offset instead of from the offset on
4610  *
4611  * This will find the page for the "from" offset and cow the page and zero the
4612  * part we want to zero.  This is used with truncate and hole punching.
4613  */
4614 int btrfs_truncate_page(struct inode *inode, loff_t from, loff_t len,
4615 			int front)
4616 {
4617 	struct address_space *mapping = inode->i_mapping;
4618 	struct btrfs_root *root = BTRFS_I(inode)->root;
4619 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4620 	struct btrfs_ordered_extent *ordered;
4621 	struct extent_state *cached_state = NULL;
4622 	char *kaddr;
4623 	u32 blocksize = root->sectorsize;
4624 	pgoff_t index = from >> PAGE_CACHE_SHIFT;
4625 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
4626 	struct page *page;
4627 	gfp_t mask = btrfs_alloc_write_mask(mapping);
4628 	int ret = 0;
4629 	u64 page_start;
4630 	u64 page_end;
4631 
4632 	if ((offset & (blocksize - 1)) == 0 &&
4633 	    (!len || ((len & (blocksize - 1)) == 0)))
4634 		goto out;
4635 	ret = btrfs_delalloc_reserve_space(inode,
4636 			round_down(from, PAGE_CACHE_SIZE), PAGE_CACHE_SIZE);
4637 	if (ret)
4638 		goto out;
4639 
4640 again:
4641 	page = find_or_create_page(mapping, index, mask);
4642 	if (!page) {
4643 		btrfs_delalloc_release_space(inode,
4644 				round_down(from, PAGE_CACHE_SIZE),
4645 				PAGE_CACHE_SIZE);
4646 		ret = -ENOMEM;
4647 		goto out;
4648 	}
4649 
4650 	page_start = page_offset(page);
4651 	page_end = page_start + PAGE_CACHE_SIZE - 1;
4652 
4653 	if (!PageUptodate(page)) {
4654 		ret = btrfs_readpage(NULL, page);
4655 		lock_page(page);
4656 		if (page->mapping != mapping) {
4657 			unlock_page(page);
4658 			page_cache_release(page);
4659 			goto again;
4660 		}
4661 		if (!PageUptodate(page)) {
4662 			ret = -EIO;
4663 			goto out_unlock;
4664 		}
4665 	}
4666 	wait_on_page_writeback(page);
4667 
4668 	lock_extent_bits(io_tree, page_start, page_end, &cached_state);
4669 	set_page_extent_mapped(page);
4670 
4671 	ordered = btrfs_lookup_ordered_extent(inode, page_start);
4672 	if (ordered) {
4673 		unlock_extent_cached(io_tree, page_start, page_end,
4674 				     &cached_state, GFP_NOFS);
4675 		unlock_page(page);
4676 		page_cache_release(page);
4677 		btrfs_start_ordered_extent(inode, ordered, 1);
4678 		btrfs_put_ordered_extent(ordered);
4679 		goto again;
4680 	}
4681 
4682 	clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
4683 			  EXTENT_DIRTY | EXTENT_DELALLOC |
4684 			  EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
4685 			  0, 0, &cached_state, GFP_NOFS);
4686 
4687 	ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
4688 					&cached_state);
4689 	if (ret) {
4690 		unlock_extent_cached(io_tree, page_start, page_end,
4691 				     &cached_state, GFP_NOFS);
4692 		goto out_unlock;
4693 	}
4694 
4695 	if (offset != PAGE_CACHE_SIZE) {
4696 		if (!len)
4697 			len = PAGE_CACHE_SIZE - offset;
4698 		kaddr = kmap(page);
4699 		if (front)
4700 			memset(kaddr, 0, offset);
4701 		else
4702 			memset(kaddr + offset, 0, len);
4703 		flush_dcache_page(page);
4704 		kunmap(page);
4705 	}
4706 	ClearPageChecked(page);
4707 	set_page_dirty(page);
4708 	unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
4709 			     GFP_NOFS);
4710 
4711 out_unlock:
4712 	if (ret)
4713 		btrfs_delalloc_release_space(inode, page_start,
4714 					     PAGE_CACHE_SIZE);
4715 	unlock_page(page);
4716 	page_cache_release(page);
4717 out:
4718 	return ret;
4719 }
4720 
4721 static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode,
4722 			     u64 offset, u64 len)
4723 {
4724 	struct btrfs_trans_handle *trans;
4725 	int ret;
4726 
4727 	/*
4728 	 * Still need to make sure the inode looks like it's been updated so
4729 	 * that any holes get logged if we fsync.
4730 	 */
4731 	if (btrfs_fs_incompat(root->fs_info, NO_HOLES)) {
4732 		BTRFS_I(inode)->last_trans = root->fs_info->generation;
4733 		BTRFS_I(inode)->last_sub_trans = root->log_transid;
4734 		BTRFS_I(inode)->last_log_commit = root->last_log_commit;
4735 		return 0;
4736 	}
4737 
4738 	/*
4739 	 * 1 - for the one we're dropping
4740 	 * 1 - for the one we're adding
4741 	 * 1 - for updating the inode.
4742 	 */
4743 	trans = btrfs_start_transaction(root, 3);
4744 	if (IS_ERR(trans))
4745 		return PTR_ERR(trans);
4746 
4747 	ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1);
4748 	if (ret) {
4749 		btrfs_abort_transaction(trans, root, ret);
4750 		btrfs_end_transaction(trans, root);
4751 		return ret;
4752 	}
4753 
4754 	ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset,
4755 				       0, 0, len, 0, len, 0, 0, 0);
4756 	if (ret)
4757 		btrfs_abort_transaction(trans, root, ret);
4758 	else
4759 		btrfs_update_inode(trans, root, inode);
4760 	btrfs_end_transaction(trans, root);
4761 	return ret;
4762 }
4763 
4764 /*
4765  * This function puts in dummy file extents for the area we're creating a hole
4766  * for.  So if we are truncating this file to a larger size we need to insert
4767  * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4768  * the range between oldsize and size
4769  */
4770 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
4771 {
4772 	struct btrfs_root *root = BTRFS_I(inode)->root;
4773 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4774 	struct extent_map *em = NULL;
4775 	struct extent_state *cached_state = NULL;
4776 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4777 	u64 hole_start = ALIGN(oldsize, root->sectorsize);
4778 	u64 block_end = ALIGN(size, root->sectorsize);
4779 	u64 last_byte;
4780 	u64 cur_offset;
4781 	u64 hole_size;
4782 	int err = 0;
4783 
4784 	/*
4785 	 * If our size started in the middle of a page we need to zero out the
4786 	 * rest of the page before we expand the i_size, otherwise we could
4787 	 * expose stale data.
4788 	 */
4789 	err = btrfs_truncate_page(inode, oldsize, 0, 0);
4790 	if (err)
4791 		return err;
4792 
4793 	if (size <= hole_start)
4794 		return 0;
4795 
4796 	while (1) {
4797 		struct btrfs_ordered_extent *ordered;
4798 
4799 		lock_extent_bits(io_tree, hole_start, block_end - 1,
4800 				 &cached_state);
4801 		ordered = btrfs_lookup_ordered_range(inode, hole_start,
4802 						     block_end - hole_start);
4803 		if (!ordered)
4804 			break;
4805 		unlock_extent_cached(io_tree, hole_start, block_end - 1,
4806 				     &cached_state, GFP_NOFS);
4807 		btrfs_start_ordered_extent(inode, ordered, 1);
4808 		btrfs_put_ordered_extent(ordered);
4809 	}
4810 
4811 	cur_offset = hole_start;
4812 	while (1) {
4813 		em = btrfs_get_extent(inode, NULL, 0, cur_offset,
4814 				block_end - cur_offset, 0);
4815 		if (IS_ERR(em)) {
4816 			err = PTR_ERR(em);
4817 			em = NULL;
4818 			break;
4819 		}
4820 		last_byte = min(extent_map_end(em), block_end);
4821 		last_byte = ALIGN(last_byte , root->sectorsize);
4822 		if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
4823 			struct extent_map *hole_em;
4824 			hole_size = last_byte - cur_offset;
4825 
4826 			err = maybe_insert_hole(root, inode, cur_offset,
4827 						hole_size);
4828 			if (err)
4829 				break;
4830 			btrfs_drop_extent_cache(inode, cur_offset,
4831 						cur_offset + hole_size - 1, 0);
4832 			hole_em = alloc_extent_map();
4833 			if (!hole_em) {
4834 				set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4835 					&BTRFS_I(inode)->runtime_flags);
4836 				goto next;
4837 			}
4838 			hole_em->start = cur_offset;
4839 			hole_em->len = hole_size;
4840 			hole_em->orig_start = cur_offset;
4841 
4842 			hole_em->block_start = EXTENT_MAP_HOLE;
4843 			hole_em->block_len = 0;
4844 			hole_em->orig_block_len = 0;
4845 			hole_em->ram_bytes = hole_size;
4846 			hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
4847 			hole_em->compress_type = BTRFS_COMPRESS_NONE;
4848 			hole_em->generation = root->fs_info->generation;
4849 
4850 			while (1) {
4851 				write_lock(&em_tree->lock);
4852 				err = add_extent_mapping(em_tree, hole_em, 1);
4853 				write_unlock(&em_tree->lock);
4854 				if (err != -EEXIST)
4855 					break;
4856 				btrfs_drop_extent_cache(inode, cur_offset,
4857 							cur_offset +
4858 							hole_size - 1, 0);
4859 			}
4860 			free_extent_map(hole_em);
4861 		}
4862 next:
4863 		free_extent_map(em);
4864 		em = NULL;
4865 		cur_offset = last_byte;
4866 		if (cur_offset >= block_end)
4867 			break;
4868 	}
4869 	free_extent_map(em);
4870 	unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
4871 			     GFP_NOFS);
4872 	return err;
4873 }
4874 
4875 static int btrfs_setsize(struct inode *inode, struct iattr *attr)
4876 {
4877 	struct btrfs_root *root = BTRFS_I(inode)->root;
4878 	struct btrfs_trans_handle *trans;
4879 	loff_t oldsize = i_size_read(inode);
4880 	loff_t newsize = attr->ia_size;
4881 	int mask = attr->ia_valid;
4882 	int ret;
4883 
4884 	/*
4885 	 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
4886 	 * special case where we need to update the times despite not having
4887 	 * these flags set.  For all other operations the VFS set these flags
4888 	 * explicitly if it wants a timestamp update.
4889 	 */
4890 	if (newsize != oldsize) {
4891 		inode_inc_iversion(inode);
4892 		if (!(mask & (ATTR_CTIME | ATTR_MTIME)))
4893 			inode->i_ctime = inode->i_mtime =
4894 				current_fs_time(inode->i_sb);
4895 	}
4896 
4897 	if (newsize > oldsize) {
4898 		truncate_pagecache(inode, newsize);
4899 		/*
4900 		 * Don't do an expanding truncate while snapshoting is ongoing.
4901 		 * This is to ensure the snapshot captures a fully consistent
4902 		 * state of this file - if the snapshot captures this expanding
4903 		 * truncation, it must capture all writes that happened before
4904 		 * this truncation.
4905 		 */
4906 		btrfs_wait_for_snapshot_creation(root);
4907 		ret = btrfs_cont_expand(inode, oldsize, newsize);
4908 		if (ret) {
4909 			btrfs_end_write_no_snapshoting(root);
4910 			return ret;
4911 		}
4912 
4913 		trans = btrfs_start_transaction(root, 1);
4914 		if (IS_ERR(trans)) {
4915 			btrfs_end_write_no_snapshoting(root);
4916 			return PTR_ERR(trans);
4917 		}
4918 
4919 		i_size_write(inode, newsize);
4920 		btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
4921 		ret = btrfs_update_inode(trans, root, inode);
4922 		btrfs_end_write_no_snapshoting(root);
4923 		btrfs_end_transaction(trans, root);
4924 	} else {
4925 
4926 		/*
4927 		 * We're truncating a file that used to have good data down to
4928 		 * zero. Make sure it gets into the ordered flush list so that
4929 		 * any new writes get down to disk quickly.
4930 		 */
4931 		if (newsize == 0)
4932 			set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
4933 				&BTRFS_I(inode)->runtime_flags);
4934 
4935 		/*
4936 		 * 1 for the orphan item we're going to add
4937 		 * 1 for the orphan item deletion.
4938 		 */
4939 		trans = btrfs_start_transaction(root, 2);
4940 		if (IS_ERR(trans))
4941 			return PTR_ERR(trans);
4942 
4943 		/*
4944 		 * We need to do this in case we fail at _any_ point during the
4945 		 * actual truncate.  Once we do the truncate_setsize we could
4946 		 * invalidate pages which forces any outstanding ordered io to
4947 		 * be instantly completed which will give us extents that need
4948 		 * to be truncated.  If we fail to get an orphan inode down we
4949 		 * could have left over extents that were never meant to live,
4950 		 * so we need to garuntee from this point on that everything
4951 		 * will be consistent.
4952 		 */
4953 		ret = btrfs_orphan_add(trans, inode);
4954 		btrfs_end_transaction(trans, root);
4955 		if (ret)
4956 			return ret;
4957 
4958 		/* we don't support swapfiles, so vmtruncate shouldn't fail */
4959 		truncate_setsize(inode, newsize);
4960 
4961 		/* Disable nonlocked read DIO to avoid the end less truncate */
4962 		btrfs_inode_block_unlocked_dio(inode);
4963 		inode_dio_wait(inode);
4964 		btrfs_inode_resume_unlocked_dio(inode);
4965 
4966 		ret = btrfs_truncate(inode);
4967 		if (ret && inode->i_nlink) {
4968 			int err;
4969 
4970 			/*
4971 			 * failed to truncate, disk_i_size is only adjusted down
4972 			 * as we remove extents, so it should represent the true
4973 			 * size of the inode, so reset the in memory size and
4974 			 * delete our orphan entry.
4975 			 */
4976 			trans = btrfs_join_transaction(root);
4977 			if (IS_ERR(trans)) {
4978 				btrfs_orphan_del(NULL, inode);
4979 				return ret;
4980 			}
4981 			i_size_write(inode, BTRFS_I(inode)->disk_i_size);
4982 			err = btrfs_orphan_del(trans, inode);
4983 			if (err)
4984 				btrfs_abort_transaction(trans, root, err);
4985 			btrfs_end_transaction(trans, root);
4986 		}
4987 	}
4988 
4989 	return ret;
4990 }
4991 
4992 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
4993 {
4994 	struct inode *inode = d_inode(dentry);
4995 	struct btrfs_root *root = BTRFS_I(inode)->root;
4996 	int err;
4997 
4998 	if (btrfs_root_readonly(root))
4999 		return -EROFS;
5000 
5001 	err = inode_change_ok(inode, attr);
5002 	if (err)
5003 		return err;
5004 
5005 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
5006 		err = btrfs_setsize(inode, attr);
5007 		if (err)
5008 			return err;
5009 	}
5010 
5011 	if (attr->ia_valid) {
5012 		setattr_copy(inode, attr);
5013 		inode_inc_iversion(inode);
5014 		err = btrfs_dirty_inode(inode);
5015 
5016 		if (!err && attr->ia_valid & ATTR_MODE)
5017 			err = posix_acl_chmod(inode, inode->i_mode);
5018 	}
5019 
5020 	return err;
5021 }
5022 
5023 /*
5024  * While truncating the inode pages during eviction, we get the VFS calling
5025  * btrfs_invalidatepage() against each page of the inode. This is slow because
5026  * the calls to btrfs_invalidatepage() result in a huge amount of calls to
5027  * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
5028  * extent_state structures over and over, wasting lots of time.
5029  *
5030  * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
5031  * those expensive operations on a per page basis and do only the ordered io
5032  * finishing, while we release here the extent_map and extent_state structures,
5033  * without the excessive merging and splitting.
5034  */
5035 static void evict_inode_truncate_pages(struct inode *inode)
5036 {
5037 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5038 	struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
5039 	struct rb_node *node;
5040 
5041 	ASSERT(inode->i_state & I_FREEING);
5042 	truncate_inode_pages_final(&inode->i_data);
5043 
5044 	write_lock(&map_tree->lock);
5045 	while (!RB_EMPTY_ROOT(&map_tree->map)) {
5046 		struct extent_map *em;
5047 
5048 		node = rb_first(&map_tree->map);
5049 		em = rb_entry(node, struct extent_map, rb_node);
5050 		clear_bit(EXTENT_FLAG_PINNED, &em->flags);
5051 		clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
5052 		remove_extent_mapping(map_tree, em);
5053 		free_extent_map(em);
5054 		if (need_resched()) {
5055 			write_unlock(&map_tree->lock);
5056 			cond_resched();
5057 			write_lock(&map_tree->lock);
5058 		}
5059 	}
5060 	write_unlock(&map_tree->lock);
5061 
5062 	/*
5063 	 * Keep looping until we have no more ranges in the io tree.
5064 	 * We can have ongoing bios started by readpages (called from readahead)
5065 	 * that have their endio callback (extent_io.c:end_bio_extent_readpage)
5066 	 * still in progress (unlocked the pages in the bio but did not yet
5067 	 * unlocked the ranges in the io tree). Therefore this means some
5068 	 * ranges can still be locked and eviction started because before
5069 	 * submitting those bios, which are executed by a separate task (work
5070 	 * queue kthread), inode references (inode->i_count) were not taken
5071 	 * (which would be dropped in the end io callback of each bio).
5072 	 * Therefore here we effectively end up waiting for those bios and
5073 	 * anyone else holding locked ranges without having bumped the inode's
5074 	 * reference count - if we don't do it, when they access the inode's
5075 	 * io_tree to unlock a range it may be too late, leading to an
5076 	 * use-after-free issue.
5077 	 */
5078 	spin_lock(&io_tree->lock);
5079 	while (!RB_EMPTY_ROOT(&io_tree->state)) {
5080 		struct extent_state *state;
5081 		struct extent_state *cached_state = NULL;
5082 		u64 start;
5083 		u64 end;
5084 
5085 		node = rb_first(&io_tree->state);
5086 		state = rb_entry(node, struct extent_state, rb_node);
5087 		start = state->start;
5088 		end = state->end;
5089 		spin_unlock(&io_tree->lock);
5090 
5091 		lock_extent_bits(io_tree, start, end, &cached_state);
5092 
5093 		/*
5094 		 * If still has DELALLOC flag, the extent didn't reach disk,
5095 		 * and its reserved space won't be freed by delayed_ref.
5096 		 * So we need to free its reserved space here.
5097 		 * (Refer to comment in btrfs_invalidatepage, case 2)
5098 		 *
5099 		 * Note, end is the bytenr of last byte, so we need + 1 here.
5100 		 */
5101 		if (state->state & EXTENT_DELALLOC)
5102 			btrfs_qgroup_free_data(inode, start, end - start + 1);
5103 
5104 		clear_extent_bit(io_tree, start, end,
5105 				 EXTENT_LOCKED | EXTENT_DIRTY |
5106 				 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
5107 				 EXTENT_DEFRAG, 1, 1,
5108 				 &cached_state, GFP_NOFS);
5109 
5110 		cond_resched();
5111 		spin_lock(&io_tree->lock);
5112 	}
5113 	spin_unlock(&io_tree->lock);
5114 }
5115 
5116 void btrfs_evict_inode(struct inode *inode)
5117 {
5118 	struct btrfs_trans_handle *trans;
5119 	struct btrfs_root *root = BTRFS_I(inode)->root;
5120 	struct btrfs_block_rsv *rsv, *global_rsv;
5121 	int steal_from_global = 0;
5122 	u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
5123 	int ret;
5124 
5125 	trace_btrfs_inode_evict(inode);
5126 
5127 	evict_inode_truncate_pages(inode);
5128 
5129 	if (inode->i_nlink &&
5130 	    ((btrfs_root_refs(&root->root_item) != 0 &&
5131 	      root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
5132 	     btrfs_is_free_space_inode(inode)))
5133 		goto no_delete;
5134 
5135 	if (is_bad_inode(inode)) {
5136 		btrfs_orphan_del(NULL, inode);
5137 		goto no_delete;
5138 	}
5139 	/* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
5140 	if (!special_file(inode->i_mode))
5141 		btrfs_wait_ordered_range(inode, 0, (u64)-1);
5142 
5143 	btrfs_free_io_failure_record(inode, 0, (u64)-1);
5144 
5145 	if (root->fs_info->log_root_recovering) {
5146 		BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
5147 				 &BTRFS_I(inode)->runtime_flags));
5148 		goto no_delete;
5149 	}
5150 
5151 	if (inode->i_nlink > 0) {
5152 		BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5153 		       root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
5154 		goto no_delete;
5155 	}
5156 
5157 	ret = btrfs_commit_inode_delayed_inode(inode);
5158 	if (ret) {
5159 		btrfs_orphan_del(NULL, inode);
5160 		goto no_delete;
5161 	}
5162 
5163 	rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
5164 	if (!rsv) {
5165 		btrfs_orphan_del(NULL, inode);
5166 		goto no_delete;
5167 	}
5168 	rsv->size = min_size;
5169 	rsv->failfast = 1;
5170 	global_rsv = &root->fs_info->global_block_rsv;
5171 
5172 	btrfs_i_size_write(inode, 0);
5173 
5174 	/*
5175 	 * This is a bit simpler than btrfs_truncate since we've already
5176 	 * reserved our space for our orphan item in the unlink, so we just
5177 	 * need to reserve some slack space in case we add bytes and update
5178 	 * inode item when doing the truncate.
5179 	 */
5180 	while (1) {
5181 		ret = btrfs_block_rsv_refill(root, rsv, min_size,
5182 					     BTRFS_RESERVE_FLUSH_LIMIT);
5183 
5184 		/*
5185 		 * Try and steal from the global reserve since we will
5186 		 * likely not use this space anyway, we want to try as
5187 		 * hard as possible to get this to work.
5188 		 */
5189 		if (ret)
5190 			steal_from_global++;
5191 		else
5192 			steal_from_global = 0;
5193 		ret = 0;
5194 
5195 		/*
5196 		 * steal_from_global == 0: we reserved stuff, hooray!
5197 		 * steal_from_global == 1: we didn't reserve stuff, boo!
5198 		 * steal_from_global == 2: we've committed, still not a lot of
5199 		 * room but maybe we'll have room in the global reserve this
5200 		 * time.
5201 		 * steal_from_global == 3: abandon all hope!
5202 		 */
5203 		if (steal_from_global > 2) {
5204 			btrfs_warn(root->fs_info,
5205 				"Could not get space for a delete, will truncate on mount %d",
5206 				ret);
5207 			btrfs_orphan_del(NULL, inode);
5208 			btrfs_free_block_rsv(root, rsv);
5209 			goto no_delete;
5210 		}
5211 
5212 		trans = btrfs_join_transaction(root);
5213 		if (IS_ERR(trans)) {
5214 			btrfs_orphan_del(NULL, inode);
5215 			btrfs_free_block_rsv(root, rsv);
5216 			goto no_delete;
5217 		}
5218 
5219 		/*
5220 		 * We can't just steal from the global reserve, we need tomake
5221 		 * sure there is room to do it, if not we need to commit and try
5222 		 * again.
5223 		 */
5224 		if (steal_from_global) {
5225 			if (!btrfs_check_space_for_delayed_refs(trans, root))
5226 				ret = btrfs_block_rsv_migrate(global_rsv, rsv,
5227 							      min_size);
5228 			else
5229 				ret = -ENOSPC;
5230 		}
5231 
5232 		/*
5233 		 * Couldn't steal from the global reserve, we have too much
5234 		 * pending stuff built up, commit the transaction and try it
5235 		 * again.
5236 		 */
5237 		if (ret) {
5238 			ret = btrfs_commit_transaction(trans, root);
5239 			if (ret) {
5240 				btrfs_orphan_del(NULL, inode);
5241 				btrfs_free_block_rsv(root, rsv);
5242 				goto no_delete;
5243 			}
5244 			continue;
5245 		} else {
5246 			steal_from_global = 0;
5247 		}
5248 
5249 		trans->block_rsv = rsv;
5250 
5251 		ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
5252 		if (ret != -ENOSPC && ret != -EAGAIN)
5253 			break;
5254 
5255 		trans->block_rsv = &root->fs_info->trans_block_rsv;
5256 		btrfs_end_transaction(trans, root);
5257 		trans = NULL;
5258 		btrfs_btree_balance_dirty(root);
5259 	}
5260 
5261 	btrfs_free_block_rsv(root, rsv);
5262 
5263 	/*
5264 	 * Errors here aren't a big deal, it just means we leave orphan items
5265 	 * in the tree.  They will be cleaned up on the next mount.
5266 	 */
5267 	if (ret == 0) {
5268 		trans->block_rsv = root->orphan_block_rsv;
5269 		btrfs_orphan_del(trans, inode);
5270 	} else {
5271 		btrfs_orphan_del(NULL, inode);
5272 	}
5273 
5274 	trans->block_rsv = &root->fs_info->trans_block_rsv;
5275 	if (!(root == root->fs_info->tree_root ||
5276 	      root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
5277 		btrfs_return_ino(root, btrfs_ino(inode));
5278 
5279 	btrfs_end_transaction(trans, root);
5280 	btrfs_btree_balance_dirty(root);
5281 no_delete:
5282 	btrfs_remove_delayed_node(inode);
5283 	clear_inode(inode);
5284 }
5285 
5286 /*
5287  * this returns the key found in the dir entry in the location pointer.
5288  * If no dir entries were found, location->objectid is 0.
5289  */
5290 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
5291 			       struct btrfs_key *location)
5292 {
5293 	const char *name = dentry->d_name.name;
5294 	int namelen = dentry->d_name.len;
5295 	struct btrfs_dir_item *di;
5296 	struct btrfs_path *path;
5297 	struct btrfs_root *root = BTRFS_I(dir)->root;
5298 	int ret = 0;
5299 
5300 	path = btrfs_alloc_path();
5301 	if (!path)
5302 		return -ENOMEM;
5303 
5304 	di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name,
5305 				    namelen, 0);
5306 	if (IS_ERR(di))
5307 		ret = PTR_ERR(di);
5308 
5309 	if (IS_ERR_OR_NULL(di))
5310 		goto out_err;
5311 
5312 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
5313 out:
5314 	btrfs_free_path(path);
5315 	return ret;
5316 out_err:
5317 	location->objectid = 0;
5318 	goto out;
5319 }
5320 
5321 /*
5322  * when we hit a tree root in a directory, the btrfs part of the inode
5323  * needs to be changed to reflect the root directory of the tree root.  This
5324  * is kind of like crossing a mount point.
5325  */
5326 static int fixup_tree_root_location(struct btrfs_root *root,
5327 				    struct inode *dir,
5328 				    struct dentry *dentry,
5329 				    struct btrfs_key *location,
5330 				    struct btrfs_root **sub_root)
5331 {
5332 	struct btrfs_path *path;
5333 	struct btrfs_root *new_root;
5334 	struct btrfs_root_ref *ref;
5335 	struct extent_buffer *leaf;
5336 	struct btrfs_key key;
5337 	int ret;
5338 	int err = 0;
5339 
5340 	path = btrfs_alloc_path();
5341 	if (!path) {
5342 		err = -ENOMEM;
5343 		goto out;
5344 	}
5345 
5346 	err = -ENOENT;
5347 	key.objectid = BTRFS_I(dir)->root->root_key.objectid;
5348 	key.type = BTRFS_ROOT_REF_KEY;
5349 	key.offset = location->objectid;
5350 
5351 	ret = btrfs_search_slot(NULL, root->fs_info->tree_root, &key, path,
5352 				0, 0);
5353 	if (ret) {
5354 		if (ret < 0)
5355 			err = ret;
5356 		goto out;
5357 	}
5358 
5359 	leaf = path->nodes[0];
5360 	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
5361 	if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
5362 	    btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
5363 		goto out;
5364 
5365 	ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
5366 				   (unsigned long)(ref + 1),
5367 				   dentry->d_name.len);
5368 	if (ret)
5369 		goto out;
5370 
5371 	btrfs_release_path(path);
5372 
5373 	new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
5374 	if (IS_ERR(new_root)) {
5375 		err = PTR_ERR(new_root);
5376 		goto out;
5377 	}
5378 
5379 	*sub_root = new_root;
5380 	location->objectid = btrfs_root_dirid(&new_root->root_item);
5381 	location->type = BTRFS_INODE_ITEM_KEY;
5382 	location->offset = 0;
5383 	err = 0;
5384 out:
5385 	btrfs_free_path(path);
5386 	return err;
5387 }
5388 
5389 static void inode_tree_add(struct inode *inode)
5390 {
5391 	struct btrfs_root *root = BTRFS_I(inode)->root;
5392 	struct btrfs_inode *entry;
5393 	struct rb_node **p;
5394 	struct rb_node *parent;
5395 	struct rb_node *new = &BTRFS_I(inode)->rb_node;
5396 	u64 ino = btrfs_ino(inode);
5397 
5398 	if (inode_unhashed(inode))
5399 		return;
5400 	parent = NULL;
5401 	spin_lock(&root->inode_lock);
5402 	p = &root->inode_tree.rb_node;
5403 	while (*p) {
5404 		parent = *p;
5405 		entry = rb_entry(parent, struct btrfs_inode, rb_node);
5406 
5407 		if (ino < btrfs_ino(&entry->vfs_inode))
5408 			p = &parent->rb_left;
5409 		else if (ino > btrfs_ino(&entry->vfs_inode))
5410 			p = &parent->rb_right;
5411 		else {
5412 			WARN_ON(!(entry->vfs_inode.i_state &
5413 				  (I_WILL_FREE | I_FREEING)));
5414 			rb_replace_node(parent, new, &root->inode_tree);
5415 			RB_CLEAR_NODE(parent);
5416 			spin_unlock(&root->inode_lock);
5417 			return;
5418 		}
5419 	}
5420 	rb_link_node(new, parent, p);
5421 	rb_insert_color(new, &root->inode_tree);
5422 	spin_unlock(&root->inode_lock);
5423 }
5424 
5425 static void inode_tree_del(struct inode *inode)
5426 {
5427 	struct btrfs_root *root = BTRFS_I(inode)->root;
5428 	int empty = 0;
5429 
5430 	spin_lock(&root->inode_lock);
5431 	if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5432 		rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5433 		RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
5434 		empty = RB_EMPTY_ROOT(&root->inode_tree);
5435 	}
5436 	spin_unlock(&root->inode_lock);
5437 
5438 	if (empty && btrfs_root_refs(&root->root_item) == 0) {
5439 		synchronize_srcu(&root->fs_info->subvol_srcu);
5440 		spin_lock(&root->inode_lock);
5441 		empty = RB_EMPTY_ROOT(&root->inode_tree);
5442 		spin_unlock(&root->inode_lock);
5443 		if (empty)
5444 			btrfs_add_dead_root(root);
5445 	}
5446 }
5447 
5448 void btrfs_invalidate_inodes(struct btrfs_root *root)
5449 {
5450 	struct rb_node *node;
5451 	struct rb_node *prev;
5452 	struct btrfs_inode *entry;
5453 	struct inode *inode;
5454 	u64 objectid = 0;
5455 
5456 	if (!test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
5457 		WARN_ON(btrfs_root_refs(&root->root_item) != 0);
5458 
5459 	spin_lock(&root->inode_lock);
5460 again:
5461 	node = root->inode_tree.rb_node;
5462 	prev = NULL;
5463 	while (node) {
5464 		prev = node;
5465 		entry = rb_entry(node, struct btrfs_inode, rb_node);
5466 
5467 		if (objectid < btrfs_ino(&entry->vfs_inode))
5468 			node = node->rb_left;
5469 		else if (objectid > btrfs_ino(&entry->vfs_inode))
5470 			node = node->rb_right;
5471 		else
5472 			break;
5473 	}
5474 	if (!node) {
5475 		while (prev) {
5476 			entry = rb_entry(prev, struct btrfs_inode, rb_node);
5477 			if (objectid <= btrfs_ino(&entry->vfs_inode)) {
5478 				node = prev;
5479 				break;
5480 			}
5481 			prev = rb_next(prev);
5482 		}
5483 	}
5484 	while (node) {
5485 		entry = rb_entry(node, struct btrfs_inode, rb_node);
5486 		objectid = btrfs_ino(&entry->vfs_inode) + 1;
5487 		inode = igrab(&entry->vfs_inode);
5488 		if (inode) {
5489 			spin_unlock(&root->inode_lock);
5490 			if (atomic_read(&inode->i_count) > 1)
5491 				d_prune_aliases(inode);
5492 			/*
5493 			 * btrfs_drop_inode will have it removed from
5494 			 * the inode cache when its usage count
5495 			 * hits zero.
5496 			 */
5497 			iput(inode);
5498 			cond_resched();
5499 			spin_lock(&root->inode_lock);
5500 			goto again;
5501 		}
5502 
5503 		if (cond_resched_lock(&root->inode_lock))
5504 			goto again;
5505 
5506 		node = rb_next(node);
5507 	}
5508 	spin_unlock(&root->inode_lock);
5509 }
5510 
5511 static int btrfs_init_locked_inode(struct inode *inode, void *p)
5512 {
5513 	struct btrfs_iget_args *args = p;
5514 	inode->i_ino = args->location->objectid;
5515 	memcpy(&BTRFS_I(inode)->location, args->location,
5516 	       sizeof(*args->location));
5517 	BTRFS_I(inode)->root = args->root;
5518 	return 0;
5519 }
5520 
5521 static int btrfs_find_actor(struct inode *inode, void *opaque)
5522 {
5523 	struct btrfs_iget_args *args = opaque;
5524 	return args->location->objectid == BTRFS_I(inode)->location.objectid &&
5525 		args->root == BTRFS_I(inode)->root;
5526 }
5527 
5528 static struct inode *btrfs_iget_locked(struct super_block *s,
5529 				       struct btrfs_key *location,
5530 				       struct btrfs_root *root)
5531 {
5532 	struct inode *inode;
5533 	struct btrfs_iget_args args;
5534 	unsigned long hashval = btrfs_inode_hash(location->objectid, root);
5535 
5536 	args.location = location;
5537 	args.root = root;
5538 
5539 	inode = iget5_locked(s, hashval, btrfs_find_actor,
5540 			     btrfs_init_locked_inode,
5541 			     (void *)&args);
5542 	return inode;
5543 }
5544 
5545 /* Get an inode object given its location and corresponding root.
5546  * Returns in *is_new if the inode was read from disk
5547  */
5548 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
5549 			 struct btrfs_root *root, int *new)
5550 {
5551 	struct inode *inode;
5552 
5553 	inode = btrfs_iget_locked(s, location, root);
5554 	if (!inode)
5555 		return ERR_PTR(-ENOMEM);
5556 
5557 	if (inode->i_state & I_NEW) {
5558 		btrfs_read_locked_inode(inode);
5559 		if (!is_bad_inode(inode)) {
5560 			inode_tree_add(inode);
5561 			unlock_new_inode(inode);
5562 			if (new)
5563 				*new = 1;
5564 		} else {
5565 			unlock_new_inode(inode);
5566 			iput(inode);
5567 			inode = ERR_PTR(-ESTALE);
5568 		}
5569 	}
5570 
5571 	return inode;
5572 }
5573 
5574 static struct inode *new_simple_dir(struct super_block *s,
5575 				    struct btrfs_key *key,
5576 				    struct btrfs_root *root)
5577 {
5578 	struct inode *inode = new_inode(s);
5579 
5580 	if (!inode)
5581 		return ERR_PTR(-ENOMEM);
5582 
5583 	BTRFS_I(inode)->root = root;
5584 	memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
5585 	set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
5586 
5587 	inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
5588 	inode->i_op = &btrfs_dir_ro_inode_operations;
5589 	inode->i_fop = &simple_dir_operations;
5590 	inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
5591 	inode->i_mtime = CURRENT_TIME;
5592 	inode->i_atime = inode->i_mtime;
5593 	inode->i_ctime = inode->i_mtime;
5594 	BTRFS_I(inode)->i_otime = inode->i_mtime;
5595 
5596 	return inode;
5597 }
5598 
5599 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
5600 {
5601 	struct inode *inode;
5602 	struct btrfs_root *root = BTRFS_I(dir)->root;
5603 	struct btrfs_root *sub_root = root;
5604 	struct btrfs_key location;
5605 	int index;
5606 	int ret = 0;
5607 
5608 	if (dentry->d_name.len > BTRFS_NAME_LEN)
5609 		return ERR_PTR(-ENAMETOOLONG);
5610 
5611 	ret = btrfs_inode_by_name(dir, dentry, &location);
5612 	if (ret < 0)
5613 		return ERR_PTR(ret);
5614 
5615 	if (location.objectid == 0)
5616 		return ERR_PTR(-ENOENT);
5617 
5618 	if (location.type == BTRFS_INODE_ITEM_KEY) {
5619 		inode = btrfs_iget(dir->i_sb, &location, root, NULL);
5620 		return inode;
5621 	}
5622 
5623 	BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
5624 
5625 	index = srcu_read_lock(&root->fs_info->subvol_srcu);
5626 	ret = fixup_tree_root_location(root, dir, dentry,
5627 				       &location, &sub_root);
5628 	if (ret < 0) {
5629 		if (ret != -ENOENT)
5630 			inode = ERR_PTR(ret);
5631 		else
5632 			inode = new_simple_dir(dir->i_sb, &location, sub_root);
5633 	} else {
5634 		inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
5635 	}
5636 	srcu_read_unlock(&root->fs_info->subvol_srcu, index);
5637 
5638 	if (!IS_ERR(inode) && root != sub_root) {
5639 		down_read(&root->fs_info->cleanup_work_sem);
5640 		if (!(inode->i_sb->s_flags & MS_RDONLY))
5641 			ret = btrfs_orphan_cleanup(sub_root);
5642 		up_read(&root->fs_info->cleanup_work_sem);
5643 		if (ret) {
5644 			iput(inode);
5645 			inode = ERR_PTR(ret);
5646 		}
5647 	}
5648 
5649 	return inode;
5650 }
5651 
5652 static int btrfs_dentry_delete(const struct dentry *dentry)
5653 {
5654 	struct btrfs_root *root;
5655 	struct inode *inode = d_inode(dentry);
5656 
5657 	if (!inode && !IS_ROOT(dentry))
5658 		inode = d_inode(dentry->d_parent);
5659 
5660 	if (inode) {
5661 		root = BTRFS_I(inode)->root;
5662 		if (btrfs_root_refs(&root->root_item) == 0)
5663 			return 1;
5664 
5665 		if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5666 			return 1;
5667 	}
5668 	return 0;
5669 }
5670 
5671 static void btrfs_dentry_release(struct dentry *dentry)
5672 {
5673 	kfree(dentry->d_fsdata);
5674 }
5675 
5676 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
5677 				   unsigned int flags)
5678 {
5679 	struct inode *inode;
5680 
5681 	inode = btrfs_lookup_dentry(dir, dentry);
5682 	if (IS_ERR(inode)) {
5683 		if (PTR_ERR(inode) == -ENOENT)
5684 			inode = NULL;
5685 		else
5686 			return ERR_CAST(inode);
5687 	}
5688 
5689 	return d_splice_alias(inode, dentry);
5690 }
5691 
5692 unsigned char btrfs_filetype_table[] = {
5693 	DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
5694 };
5695 
5696 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
5697 {
5698 	struct inode *inode = file_inode(file);
5699 	struct btrfs_root *root = BTRFS_I(inode)->root;
5700 	struct btrfs_item *item;
5701 	struct btrfs_dir_item *di;
5702 	struct btrfs_key key;
5703 	struct btrfs_key found_key;
5704 	struct btrfs_path *path;
5705 	struct list_head ins_list;
5706 	struct list_head del_list;
5707 	int ret;
5708 	struct extent_buffer *leaf;
5709 	int slot;
5710 	unsigned char d_type;
5711 	int over = 0;
5712 	u32 di_cur;
5713 	u32 di_total;
5714 	u32 di_len;
5715 	int key_type = BTRFS_DIR_INDEX_KEY;
5716 	char tmp_name[32];
5717 	char *name_ptr;
5718 	int name_len;
5719 	int is_curr = 0;	/* ctx->pos points to the current index? */
5720 
5721 	/* FIXME, use a real flag for deciding about the key type */
5722 	if (root->fs_info->tree_root == root)
5723 		key_type = BTRFS_DIR_ITEM_KEY;
5724 
5725 	if (!dir_emit_dots(file, ctx))
5726 		return 0;
5727 
5728 	path = btrfs_alloc_path();
5729 	if (!path)
5730 		return -ENOMEM;
5731 
5732 	path->reada = READA_FORWARD;
5733 
5734 	if (key_type == BTRFS_DIR_INDEX_KEY) {
5735 		INIT_LIST_HEAD(&ins_list);
5736 		INIT_LIST_HEAD(&del_list);
5737 		btrfs_get_delayed_items(inode, &ins_list, &del_list);
5738 	}
5739 
5740 	key.type = key_type;
5741 	key.offset = ctx->pos;
5742 	key.objectid = btrfs_ino(inode);
5743 
5744 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5745 	if (ret < 0)
5746 		goto err;
5747 
5748 	while (1) {
5749 		leaf = path->nodes[0];
5750 		slot = path->slots[0];
5751 		if (slot >= btrfs_header_nritems(leaf)) {
5752 			ret = btrfs_next_leaf(root, path);
5753 			if (ret < 0)
5754 				goto err;
5755 			else if (ret > 0)
5756 				break;
5757 			continue;
5758 		}
5759 
5760 		item = btrfs_item_nr(slot);
5761 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
5762 
5763 		if (found_key.objectid != key.objectid)
5764 			break;
5765 		if (found_key.type != key_type)
5766 			break;
5767 		if (found_key.offset < ctx->pos)
5768 			goto next;
5769 		if (key_type == BTRFS_DIR_INDEX_KEY &&
5770 		    btrfs_should_delete_dir_index(&del_list,
5771 						  found_key.offset))
5772 			goto next;
5773 
5774 		ctx->pos = found_key.offset;
5775 		is_curr = 1;
5776 
5777 		di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
5778 		di_cur = 0;
5779 		di_total = btrfs_item_size(leaf, item);
5780 
5781 		while (di_cur < di_total) {
5782 			struct btrfs_key location;
5783 
5784 			if (verify_dir_item(root, leaf, di))
5785 				break;
5786 
5787 			name_len = btrfs_dir_name_len(leaf, di);
5788 			if (name_len <= sizeof(tmp_name)) {
5789 				name_ptr = tmp_name;
5790 			} else {
5791 				name_ptr = kmalloc(name_len, GFP_NOFS);
5792 				if (!name_ptr) {
5793 					ret = -ENOMEM;
5794 					goto err;
5795 				}
5796 			}
5797 			read_extent_buffer(leaf, name_ptr,
5798 					   (unsigned long)(di + 1), name_len);
5799 
5800 			d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
5801 			btrfs_dir_item_key_to_cpu(leaf, di, &location);
5802 
5803 
5804 			/* is this a reference to our own snapshot? If so
5805 			 * skip it.
5806 			 *
5807 			 * In contrast to old kernels, we insert the snapshot's
5808 			 * dir item and dir index after it has been created, so
5809 			 * we won't find a reference to our own snapshot. We
5810 			 * still keep the following code for backward
5811 			 * compatibility.
5812 			 */
5813 			if (location.type == BTRFS_ROOT_ITEM_KEY &&
5814 			    location.objectid == root->root_key.objectid) {
5815 				over = 0;
5816 				goto skip;
5817 			}
5818 			over = !dir_emit(ctx, name_ptr, name_len,
5819 				       location.objectid, d_type);
5820 
5821 skip:
5822 			if (name_ptr != tmp_name)
5823 				kfree(name_ptr);
5824 
5825 			if (over)
5826 				goto nopos;
5827 			di_len = btrfs_dir_name_len(leaf, di) +
5828 				 btrfs_dir_data_len(leaf, di) + sizeof(*di);
5829 			di_cur += di_len;
5830 			di = (struct btrfs_dir_item *)((char *)di + di_len);
5831 		}
5832 next:
5833 		path->slots[0]++;
5834 	}
5835 
5836 	if (key_type == BTRFS_DIR_INDEX_KEY) {
5837 		if (is_curr)
5838 			ctx->pos++;
5839 		ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
5840 		if (ret)
5841 			goto nopos;
5842 	}
5843 
5844 	/* Reached end of directory/root. Bump pos past the last item. */
5845 	ctx->pos++;
5846 
5847 	/*
5848 	 * Stop new entries from being returned after we return the last
5849 	 * entry.
5850 	 *
5851 	 * New directory entries are assigned a strictly increasing
5852 	 * offset.  This means that new entries created during readdir
5853 	 * are *guaranteed* to be seen in the future by that readdir.
5854 	 * This has broken buggy programs which operate on names as
5855 	 * they're returned by readdir.  Until we re-use freed offsets
5856 	 * we have this hack to stop new entries from being returned
5857 	 * under the assumption that they'll never reach this huge
5858 	 * offset.
5859 	 *
5860 	 * This is being careful not to overflow 32bit loff_t unless the
5861 	 * last entry requires it because doing so has broken 32bit apps
5862 	 * in the past.
5863 	 */
5864 	if (key_type == BTRFS_DIR_INDEX_KEY) {
5865 		if (ctx->pos >= INT_MAX)
5866 			ctx->pos = LLONG_MAX;
5867 		else
5868 			ctx->pos = INT_MAX;
5869 	}
5870 nopos:
5871 	ret = 0;
5872 err:
5873 	if (key_type == BTRFS_DIR_INDEX_KEY)
5874 		btrfs_put_delayed_items(&ins_list, &del_list);
5875 	btrfs_free_path(path);
5876 	return ret;
5877 }
5878 
5879 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
5880 {
5881 	struct btrfs_root *root = BTRFS_I(inode)->root;
5882 	struct btrfs_trans_handle *trans;
5883 	int ret = 0;
5884 	bool nolock = false;
5885 
5886 	if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
5887 		return 0;
5888 
5889 	if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(inode))
5890 		nolock = true;
5891 
5892 	if (wbc->sync_mode == WB_SYNC_ALL) {
5893 		if (nolock)
5894 			trans = btrfs_join_transaction_nolock(root);
5895 		else
5896 			trans = btrfs_join_transaction(root);
5897 		if (IS_ERR(trans))
5898 			return PTR_ERR(trans);
5899 		ret = btrfs_commit_transaction(trans, root);
5900 	}
5901 	return ret;
5902 }
5903 
5904 /*
5905  * This is somewhat expensive, updating the tree every time the
5906  * inode changes.  But, it is most likely to find the inode in cache.
5907  * FIXME, needs more benchmarking...there are no reasons other than performance
5908  * to keep or drop this code.
5909  */
5910 static int btrfs_dirty_inode(struct inode *inode)
5911 {
5912 	struct btrfs_root *root = BTRFS_I(inode)->root;
5913 	struct btrfs_trans_handle *trans;
5914 	int ret;
5915 
5916 	if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
5917 		return 0;
5918 
5919 	trans = btrfs_join_transaction(root);
5920 	if (IS_ERR(trans))
5921 		return PTR_ERR(trans);
5922 
5923 	ret = btrfs_update_inode(trans, root, inode);
5924 	if (ret && ret == -ENOSPC) {
5925 		/* whoops, lets try again with the full transaction */
5926 		btrfs_end_transaction(trans, root);
5927 		trans = btrfs_start_transaction(root, 1);
5928 		if (IS_ERR(trans))
5929 			return PTR_ERR(trans);
5930 
5931 		ret = btrfs_update_inode(trans, root, inode);
5932 	}
5933 	btrfs_end_transaction(trans, root);
5934 	if (BTRFS_I(inode)->delayed_node)
5935 		btrfs_balance_delayed_items(root);
5936 
5937 	return ret;
5938 }
5939 
5940 /*
5941  * This is a copy of file_update_time.  We need this so we can return error on
5942  * ENOSPC for updating the inode in the case of file write and mmap writes.
5943  */
5944 static int btrfs_update_time(struct inode *inode, struct timespec *now,
5945 			     int flags)
5946 {
5947 	struct btrfs_root *root = BTRFS_I(inode)->root;
5948 
5949 	if (btrfs_root_readonly(root))
5950 		return -EROFS;
5951 
5952 	if (flags & S_VERSION)
5953 		inode_inc_iversion(inode);
5954 	if (flags & S_CTIME)
5955 		inode->i_ctime = *now;
5956 	if (flags & S_MTIME)
5957 		inode->i_mtime = *now;
5958 	if (flags & S_ATIME)
5959 		inode->i_atime = *now;
5960 	return btrfs_dirty_inode(inode);
5961 }
5962 
5963 /*
5964  * find the highest existing sequence number in a directory
5965  * and then set the in-memory index_cnt variable to reflect
5966  * free sequence numbers
5967  */
5968 static int btrfs_set_inode_index_count(struct inode *inode)
5969 {
5970 	struct btrfs_root *root = BTRFS_I(inode)->root;
5971 	struct btrfs_key key, found_key;
5972 	struct btrfs_path *path;
5973 	struct extent_buffer *leaf;
5974 	int ret;
5975 
5976 	key.objectid = btrfs_ino(inode);
5977 	key.type = BTRFS_DIR_INDEX_KEY;
5978 	key.offset = (u64)-1;
5979 
5980 	path = btrfs_alloc_path();
5981 	if (!path)
5982 		return -ENOMEM;
5983 
5984 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5985 	if (ret < 0)
5986 		goto out;
5987 	/* FIXME: we should be able to handle this */
5988 	if (ret == 0)
5989 		goto out;
5990 	ret = 0;
5991 
5992 	/*
5993 	 * MAGIC NUMBER EXPLANATION:
5994 	 * since we search a directory based on f_pos we have to start at 2
5995 	 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
5996 	 * else has to start at 2
5997 	 */
5998 	if (path->slots[0] == 0) {
5999 		BTRFS_I(inode)->index_cnt = 2;
6000 		goto out;
6001 	}
6002 
6003 	path->slots[0]--;
6004 
6005 	leaf = path->nodes[0];
6006 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6007 
6008 	if (found_key.objectid != btrfs_ino(inode) ||
6009 	    found_key.type != BTRFS_DIR_INDEX_KEY) {
6010 		BTRFS_I(inode)->index_cnt = 2;
6011 		goto out;
6012 	}
6013 
6014 	BTRFS_I(inode)->index_cnt = found_key.offset + 1;
6015 out:
6016 	btrfs_free_path(path);
6017 	return ret;
6018 }
6019 
6020 /*
6021  * helper to find a free sequence number in a given directory.  This current
6022  * code is very simple, later versions will do smarter things in the btree
6023  */
6024 int btrfs_set_inode_index(struct inode *dir, u64 *index)
6025 {
6026 	int ret = 0;
6027 
6028 	if (BTRFS_I(dir)->index_cnt == (u64)-1) {
6029 		ret = btrfs_inode_delayed_dir_index_count(dir);
6030 		if (ret) {
6031 			ret = btrfs_set_inode_index_count(dir);
6032 			if (ret)
6033 				return ret;
6034 		}
6035 	}
6036 
6037 	*index = BTRFS_I(dir)->index_cnt;
6038 	BTRFS_I(dir)->index_cnt++;
6039 
6040 	return ret;
6041 }
6042 
6043 static int btrfs_insert_inode_locked(struct inode *inode)
6044 {
6045 	struct btrfs_iget_args args;
6046 	args.location = &BTRFS_I(inode)->location;
6047 	args.root = BTRFS_I(inode)->root;
6048 
6049 	return insert_inode_locked4(inode,
6050 		   btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
6051 		   btrfs_find_actor, &args);
6052 }
6053 
6054 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
6055 				     struct btrfs_root *root,
6056 				     struct inode *dir,
6057 				     const char *name, int name_len,
6058 				     u64 ref_objectid, u64 objectid,
6059 				     umode_t mode, u64 *index)
6060 {
6061 	struct inode *inode;
6062 	struct btrfs_inode_item *inode_item;
6063 	struct btrfs_key *location;
6064 	struct btrfs_path *path;
6065 	struct btrfs_inode_ref *ref;
6066 	struct btrfs_key key[2];
6067 	u32 sizes[2];
6068 	int nitems = name ? 2 : 1;
6069 	unsigned long ptr;
6070 	int ret;
6071 
6072 	path = btrfs_alloc_path();
6073 	if (!path)
6074 		return ERR_PTR(-ENOMEM);
6075 
6076 	inode = new_inode(root->fs_info->sb);
6077 	if (!inode) {
6078 		btrfs_free_path(path);
6079 		return ERR_PTR(-ENOMEM);
6080 	}
6081 
6082 	/*
6083 	 * O_TMPFILE, set link count to 0, so that after this point,
6084 	 * we fill in an inode item with the correct link count.
6085 	 */
6086 	if (!name)
6087 		set_nlink(inode, 0);
6088 
6089 	/*
6090 	 * we have to initialize this early, so we can reclaim the inode
6091 	 * number if we fail afterwards in this function.
6092 	 */
6093 	inode->i_ino = objectid;
6094 
6095 	if (dir && name) {
6096 		trace_btrfs_inode_request(dir);
6097 
6098 		ret = btrfs_set_inode_index(dir, index);
6099 		if (ret) {
6100 			btrfs_free_path(path);
6101 			iput(inode);
6102 			return ERR_PTR(ret);
6103 		}
6104 	} else if (dir) {
6105 		*index = 0;
6106 	}
6107 	/*
6108 	 * index_cnt is ignored for everything but a dir,
6109 	 * btrfs_get_inode_index_count has an explanation for the magic
6110 	 * number
6111 	 */
6112 	BTRFS_I(inode)->index_cnt = 2;
6113 	BTRFS_I(inode)->dir_index = *index;
6114 	BTRFS_I(inode)->root = root;
6115 	BTRFS_I(inode)->generation = trans->transid;
6116 	inode->i_generation = BTRFS_I(inode)->generation;
6117 
6118 	/*
6119 	 * We could have gotten an inode number from somebody who was fsynced
6120 	 * and then removed in this same transaction, so let's just set full
6121 	 * sync since it will be a full sync anyway and this will blow away the
6122 	 * old info in the log.
6123 	 */
6124 	set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
6125 
6126 	key[0].objectid = objectid;
6127 	key[0].type = BTRFS_INODE_ITEM_KEY;
6128 	key[0].offset = 0;
6129 
6130 	sizes[0] = sizeof(struct btrfs_inode_item);
6131 
6132 	if (name) {
6133 		/*
6134 		 * Start new inodes with an inode_ref. This is slightly more
6135 		 * efficient for small numbers of hard links since they will
6136 		 * be packed into one item. Extended refs will kick in if we
6137 		 * add more hard links than can fit in the ref item.
6138 		 */
6139 		key[1].objectid = objectid;
6140 		key[1].type = BTRFS_INODE_REF_KEY;
6141 		key[1].offset = ref_objectid;
6142 
6143 		sizes[1] = name_len + sizeof(*ref);
6144 	}
6145 
6146 	location = &BTRFS_I(inode)->location;
6147 	location->objectid = objectid;
6148 	location->offset = 0;
6149 	location->type = BTRFS_INODE_ITEM_KEY;
6150 
6151 	ret = btrfs_insert_inode_locked(inode);
6152 	if (ret < 0)
6153 		goto fail;
6154 
6155 	path->leave_spinning = 1;
6156 	ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems);
6157 	if (ret != 0)
6158 		goto fail_unlock;
6159 
6160 	inode_init_owner(inode, dir, mode);
6161 	inode_set_bytes(inode, 0);
6162 
6163 	inode->i_mtime = CURRENT_TIME;
6164 	inode->i_atime = inode->i_mtime;
6165 	inode->i_ctime = inode->i_mtime;
6166 	BTRFS_I(inode)->i_otime = inode->i_mtime;
6167 
6168 	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6169 				  struct btrfs_inode_item);
6170 	memset_extent_buffer(path->nodes[0], 0, (unsigned long)inode_item,
6171 			     sizeof(*inode_item));
6172 	fill_inode_item(trans, path->nodes[0], inode_item, inode);
6173 
6174 	if (name) {
6175 		ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6176 				     struct btrfs_inode_ref);
6177 		btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
6178 		btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
6179 		ptr = (unsigned long)(ref + 1);
6180 		write_extent_buffer(path->nodes[0], name, ptr, name_len);
6181 	}
6182 
6183 	btrfs_mark_buffer_dirty(path->nodes[0]);
6184 	btrfs_free_path(path);
6185 
6186 	btrfs_inherit_iflags(inode, dir);
6187 
6188 	if (S_ISREG(mode)) {
6189 		if (btrfs_test_opt(root, NODATASUM))
6190 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6191 		if (btrfs_test_opt(root, NODATACOW))
6192 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6193 				BTRFS_INODE_NODATASUM;
6194 	}
6195 
6196 	inode_tree_add(inode);
6197 
6198 	trace_btrfs_inode_new(inode);
6199 	btrfs_set_inode_last_trans(trans, inode);
6200 
6201 	btrfs_update_root_times(trans, root);
6202 
6203 	ret = btrfs_inode_inherit_props(trans, inode, dir);
6204 	if (ret)
6205 		btrfs_err(root->fs_info,
6206 			  "error inheriting props for ino %llu (root %llu): %d",
6207 			  btrfs_ino(inode), root->root_key.objectid, ret);
6208 
6209 	return inode;
6210 
6211 fail_unlock:
6212 	unlock_new_inode(inode);
6213 fail:
6214 	if (dir && name)
6215 		BTRFS_I(dir)->index_cnt--;
6216 	btrfs_free_path(path);
6217 	iput(inode);
6218 	return ERR_PTR(ret);
6219 }
6220 
6221 static inline u8 btrfs_inode_type(struct inode *inode)
6222 {
6223 	return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
6224 }
6225 
6226 /*
6227  * utility function to add 'inode' into 'parent_inode' with
6228  * a give name and a given sequence number.
6229  * if 'add_backref' is true, also insert a backref from the
6230  * inode to the parent directory.
6231  */
6232 int btrfs_add_link(struct btrfs_trans_handle *trans,
6233 		   struct inode *parent_inode, struct inode *inode,
6234 		   const char *name, int name_len, int add_backref, u64 index)
6235 {
6236 	int ret = 0;
6237 	struct btrfs_key key;
6238 	struct btrfs_root *root = BTRFS_I(parent_inode)->root;
6239 	u64 ino = btrfs_ino(inode);
6240 	u64 parent_ino = btrfs_ino(parent_inode);
6241 
6242 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6243 		memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
6244 	} else {
6245 		key.objectid = ino;
6246 		key.type = BTRFS_INODE_ITEM_KEY;
6247 		key.offset = 0;
6248 	}
6249 
6250 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6251 		ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
6252 					 key.objectid, root->root_key.objectid,
6253 					 parent_ino, index, name, name_len);
6254 	} else if (add_backref) {
6255 		ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
6256 					     parent_ino, index);
6257 	}
6258 
6259 	/* Nothing to clean up yet */
6260 	if (ret)
6261 		return ret;
6262 
6263 	ret = btrfs_insert_dir_item(trans, root, name, name_len,
6264 				    parent_inode, &key,
6265 				    btrfs_inode_type(inode), index);
6266 	if (ret == -EEXIST || ret == -EOVERFLOW)
6267 		goto fail_dir_item;
6268 	else if (ret) {
6269 		btrfs_abort_transaction(trans, root, ret);
6270 		return ret;
6271 	}
6272 
6273 	btrfs_i_size_write(parent_inode, parent_inode->i_size +
6274 			   name_len * 2);
6275 	inode_inc_iversion(parent_inode);
6276 	parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
6277 	ret = btrfs_update_inode(trans, root, parent_inode);
6278 	if (ret)
6279 		btrfs_abort_transaction(trans, root, ret);
6280 	return ret;
6281 
6282 fail_dir_item:
6283 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6284 		u64 local_index;
6285 		int err;
6286 		err = btrfs_del_root_ref(trans, root->fs_info->tree_root,
6287 				 key.objectid, root->root_key.objectid,
6288 				 parent_ino, &local_index, name, name_len);
6289 
6290 	} else if (add_backref) {
6291 		u64 local_index;
6292 		int err;
6293 
6294 		err = btrfs_del_inode_ref(trans, root, name, name_len,
6295 					  ino, parent_ino, &local_index);
6296 	}
6297 	return ret;
6298 }
6299 
6300 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
6301 			    struct inode *dir, struct dentry *dentry,
6302 			    struct inode *inode, int backref, u64 index)
6303 {
6304 	int err = btrfs_add_link(trans, dir, inode,
6305 				 dentry->d_name.name, dentry->d_name.len,
6306 				 backref, index);
6307 	if (err > 0)
6308 		err = -EEXIST;
6309 	return err;
6310 }
6311 
6312 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
6313 			umode_t mode, dev_t rdev)
6314 {
6315 	struct btrfs_trans_handle *trans;
6316 	struct btrfs_root *root = BTRFS_I(dir)->root;
6317 	struct inode *inode = NULL;
6318 	int err;
6319 	int drop_inode = 0;
6320 	u64 objectid;
6321 	u64 index = 0;
6322 
6323 	/*
6324 	 * 2 for inode item and ref
6325 	 * 2 for dir items
6326 	 * 1 for xattr if selinux is on
6327 	 */
6328 	trans = btrfs_start_transaction(root, 5);
6329 	if (IS_ERR(trans))
6330 		return PTR_ERR(trans);
6331 
6332 	err = btrfs_find_free_ino(root, &objectid);
6333 	if (err)
6334 		goto out_unlock;
6335 
6336 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6337 				dentry->d_name.len, btrfs_ino(dir), objectid,
6338 				mode, &index);
6339 	if (IS_ERR(inode)) {
6340 		err = PTR_ERR(inode);
6341 		goto out_unlock;
6342 	}
6343 
6344 	/*
6345 	* If the active LSM wants to access the inode during
6346 	* d_instantiate it needs these. Smack checks to see
6347 	* if the filesystem supports xattrs by looking at the
6348 	* ops vector.
6349 	*/
6350 	inode->i_op = &btrfs_special_inode_operations;
6351 	init_special_inode(inode, inode->i_mode, rdev);
6352 
6353 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6354 	if (err)
6355 		goto out_unlock_inode;
6356 
6357 	err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
6358 	if (err) {
6359 		goto out_unlock_inode;
6360 	} else {
6361 		btrfs_update_inode(trans, root, inode);
6362 		unlock_new_inode(inode);
6363 		d_instantiate(dentry, inode);
6364 	}
6365 
6366 out_unlock:
6367 	btrfs_end_transaction(trans, root);
6368 	btrfs_balance_delayed_items(root);
6369 	btrfs_btree_balance_dirty(root);
6370 	if (drop_inode) {
6371 		inode_dec_link_count(inode);
6372 		iput(inode);
6373 	}
6374 	return err;
6375 
6376 out_unlock_inode:
6377 	drop_inode = 1;
6378 	unlock_new_inode(inode);
6379 	goto out_unlock;
6380 
6381 }
6382 
6383 static int btrfs_create(struct inode *dir, struct dentry *dentry,
6384 			umode_t mode, bool excl)
6385 {
6386 	struct btrfs_trans_handle *trans;
6387 	struct btrfs_root *root = BTRFS_I(dir)->root;
6388 	struct inode *inode = NULL;
6389 	int drop_inode_on_err = 0;
6390 	int err;
6391 	u64 objectid;
6392 	u64 index = 0;
6393 
6394 	/*
6395 	 * 2 for inode item and ref
6396 	 * 2 for dir items
6397 	 * 1 for xattr if selinux is on
6398 	 */
6399 	trans = btrfs_start_transaction(root, 5);
6400 	if (IS_ERR(trans))
6401 		return PTR_ERR(trans);
6402 
6403 	err = btrfs_find_free_ino(root, &objectid);
6404 	if (err)
6405 		goto out_unlock;
6406 
6407 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6408 				dentry->d_name.len, btrfs_ino(dir), objectid,
6409 				mode, &index);
6410 	if (IS_ERR(inode)) {
6411 		err = PTR_ERR(inode);
6412 		goto out_unlock;
6413 	}
6414 	drop_inode_on_err = 1;
6415 	/*
6416 	* If the active LSM wants to access the inode during
6417 	* d_instantiate it needs these. Smack checks to see
6418 	* if the filesystem supports xattrs by looking at the
6419 	* ops vector.
6420 	*/
6421 	inode->i_fop = &btrfs_file_operations;
6422 	inode->i_op = &btrfs_file_inode_operations;
6423 	inode->i_mapping->a_ops = &btrfs_aops;
6424 
6425 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6426 	if (err)
6427 		goto out_unlock_inode;
6428 
6429 	err = btrfs_update_inode(trans, root, inode);
6430 	if (err)
6431 		goto out_unlock_inode;
6432 
6433 	err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
6434 	if (err)
6435 		goto out_unlock_inode;
6436 
6437 	BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
6438 	unlock_new_inode(inode);
6439 	d_instantiate(dentry, inode);
6440 
6441 out_unlock:
6442 	btrfs_end_transaction(trans, root);
6443 	if (err && drop_inode_on_err) {
6444 		inode_dec_link_count(inode);
6445 		iput(inode);
6446 	}
6447 	btrfs_balance_delayed_items(root);
6448 	btrfs_btree_balance_dirty(root);
6449 	return err;
6450 
6451 out_unlock_inode:
6452 	unlock_new_inode(inode);
6453 	goto out_unlock;
6454 
6455 }
6456 
6457 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6458 		      struct dentry *dentry)
6459 {
6460 	struct btrfs_trans_handle *trans = NULL;
6461 	struct btrfs_root *root = BTRFS_I(dir)->root;
6462 	struct inode *inode = d_inode(old_dentry);
6463 	u64 index;
6464 	int err;
6465 	int drop_inode = 0;
6466 
6467 	/* do not allow sys_link's with other subvols of the same device */
6468 	if (root->objectid != BTRFS_I(inode)->root->objectid)
6469 		return -EXDEV;
6470 
6471 	if (inode->i_nlink >= BTRFS_LINK_MAX)
6472 		return -EMLINK;
6473 
6474 	err = btrfs_set_inode_index(dir, &index);
6475 	if (err)
6476 		goto fail;
6477 
6478 	/*
6479 	 * 2 items for inode and inode ref
6480 	 * 2 items for dir items
6481 	 * 1 item for parent inode
6482 	 */
6483 	trans = btrfs_start_transaction(root, 5);
6484 	if (IS_ERR(trans)) {
6485 		err = PTR_ERR(trans);
6486 		trans = NULL;
6487 		goto fail;
6488 	}
6489 
6490 	/* There are several dir indexes for this inode, clear the cache. */
6491 	BTRFS_I(inode)->dir_index = 0ULL;
6492 	inc_nlink(inode);
6493 	inode_inc_iversion(inode);
6494 	inode->i_ctime = CURRENT_TIME;
6495 	ihold(inode);
6496 	set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
6497 
6498 	err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
6499 
6500 	if (err) {
6501 		drop_inode = 1;
6502 	} else {
6503 		struct dentry *parent = dentry->d_parent;
6504 		err = btrfs_update_inode(trans, root, inode);
6505 		if (err)
6506 			goto fail;
6507 		if (inode->i_nlink == 1) {
6508 			/*
6509 			 * If new hard link count is 1, it's a file created
6510 			 * with open(2) O_TMPFILE flag.
6511 			 */
6512 			err = btrfs_orphan_del(trans, inode);
6513 			if (err)
6514 				goto fail;
6515 		}
6516 		d_instantiate(dentry, inode);
6517 		btrfs_log_new_name(trans, inode, NULL, parent);
6518 	}
6519 
6520 	btrfs_balance_delayed_items(root);
6521 fail:
6522 	if (trans)
6523 		btrfs_end_transaction(trans, root);
6524 	if (drop_inode) {
6525 		inode_dec_link_count(inode);
6526 		iput(inode);
6527 	}
6528 	btrfs_btree_balance_dirty(root);
6529 	return err;
6530 }
6531 
6532 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
6533 {
6534 	struct inode *inode = NULL;
6535 	struct btrfs_trans_handle *trans;
6536 	struct btrfs_root *root = BTRFS_I(dir)->root;
6537 	int err = 0;
6538 	int drop_on_err = 0;
6539 	u64 objectid = 0;
6540 	u64 index = 0;
6541 
6542 	/*
6543 	 * 2 items for inode and ref
6544 	 * 2 items for dir items
6545 	 * 1 for xattr if selinux is on
6546 	 */
6547 	trans = btrfs_start_transaction(root, 5);
6548 	if (IS_ERR(trans))
6549 		return PTR_ERR(trans);
6550 
6551 	err = btrfs_find_free_ino(root, &objectid);
6552 	if (err)
6553 		goto out_fail;
6554 
6555 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6556 				dentry->d_name.len, btrfs_ino(dir), objectid,
6557 				S_IFDIR | mode, &index);
6558 	if (IS_ERR(inode)) {
6559 		err = PTR_ERR(inode);
6560 		goto out_fail;
6561 	}
6562 
6563 	drop_on_err = 1;
6564 	/* these must be set before we unlock the inode */
6565 	inode->i_op = &btrfs_dir_inode_operations;
6566 	inode->i_fop = &btrfs_dir_file_operations;
6567 
6568 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6569 	if (err)
6570 		goto out_fail_inode;
6571 
6572 	btrfs_i_size_write(inode, 0);
6573 	err = btrfs_update_inode(trans, root, inode);
6574 	if (err)
6575 		goto out_fail_inode;
6576 
6577 	err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
6578 			     dentry->d_name.len, 0, index);
6579 	if (err)
6580 		goto out_fail_inode;
6581 
6582 	d_instantiate(dentry, inode);
6583 	/*
6584 	 * mkdir is special.  We're unlocking after we call d_instantiate
6585 	 * to avoid a race with nfsd calling d_instantiate.
6586 	 */
6587 	unlock_new_inode(inode);
6588 	drop_on_err = 0;
6589 
6590 out_fail:
6591 	btrfs_end_transaction(trans, root);
6592 	if (drop_on_err) {
6593 		inode_dec_link_count(inode);
6594 		iput(inode);
6595 	}
6596 	btrfs_balance_delayed_items(root);
6597 	btrfs_btree_balance_dirty(root);
6598 	return err;
6599 
6600 out_fail_inode:
6601 	unlock_new_inode(inode);
6602 	goto out_fail;
6603 }
6604 
6605 /* Find next extent map of a given extent map, caller needs to ensure locks */
6606 static struct extent_map *next_extent_map(struct extent_map *em)
6607 {
6608 	struct rb_node *next;
6609 
6610 	next = rb_next(&em->rb_node);
6611 	if (!next)
6612 		return NULL;
6613 	return container_of(next, struct extent_map, rb_node);
6614 }
6615 
6616 static struct extent_map *prev_extent_map(struct extent_map *em)
6617 {
6618 	struct rb_node *prev;
6619 
6620 	prev = rb_prev(&em->rb_node);
6621 	if (!prev)
6622 		return NULL;
6623 	return container_of(prev, struct extent_map, rb_node);
6624 }
6625 
6626 /* helper for btfs_get_extent.  Given an existing extent in the tree,
6627  * the existing extent is the nearest extent to map_start,
6628  * and an extent that you want to insert, deal with overlap and insert
6629  * the best fitted new extent into the tree.
6630  */
6631 static int merge_extent_mapping(struct extent_map_tree *em_tree,
6632 				struct extent_map *existing,
6633 				struct extent_map *em,
6634 				u64 map_start)
6635 {
6636 	struct extent_map *prev;
6637 	struct extent_map *next;
6638 	u64 start;
6639 	u64 end;
6640 	u64 start_diff;
6641 
6642 	BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
6643 
6644 	if (existing->start > map_start) {
6645 		next = existing;
6646 		prev = prev_extent_map(next);
6647 	} else {
6648 		prev = existing;
6649 		next = next_extent_map(prev);
6650 	}
6651 
6652 	start = prev ? extent_map_end(prev) : em->start;
6653 	start = max_t(u64, start, em->start);
6654 	end = next ? next->start : extent_map_end(em);
6655 	end = min_t(u64, end, extent_map_end(em));
6656 	start_diff = start - em->start;
6657 	em->start = start;
6658 	em->len = end - start;
6659 	if (em->block_start < EXTENT_MAP_LAST_BYTE &&
6660 	    !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
6661 		em->block_start += start_diff;
6662 		em->block_len -= start_diff;
6663 	}
6664 	return add_extent_mapping(em_tree, em, 0);
6665 }
6666 
6667 static noinline int uncompress_inline(struct btrfs_path *path,
6668 				      struct page *page,
6669 				      size_t pg_offset, u64 extent_offset,
6670 				      struct btrfs_file_extent_item *item)
6671 {
6672 	int ret;
6673 	struct extent_buffer *leaf = path->nodes[0];
6674 	char *tmp;
6675 	size_t max_size;
6676 	unsigned long inline_size;
6677 	unsigned long ptr;
6678 	int compress_type;
6679 
6680 	WARN_ON(pg_offset != 0);
6681 	compress_type = btrfs_file_extent_compression(leaf, item);
6682 	max_size = btrfs_file_extent_ram_bytes(leaf, item);
6683 	inline_size = btrfs_file_extent_inline_item_len(leaf,
6684 					btrfs_item_nr(path->slots[0]));
6685 	tmp = kmalloc(inline_size, GFP_NOFS);
6686 	if (!tmp)
6687 		return -ENOMEM;
6688 	ptr = btrfs_file_extent_inline_start(item);
6689 
6690 	read_extent_buffer(leaf, tmp, ptr, inline_size);
6691 
6692 	max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
6693 	ret = btrfs_decompress(compress_type, tmp, page,
6694 			       extent_offset, inline_size, max_size);
6695 	kfree(tmp);
6696 	return ret;
6697 }
6698 
6699 /*
6700  * a bit scary, this does extent mapping from logical file offset to the disk.
6701  * the ugly parts come from merging extents from the disk with the in-ram
6702  * representation.  This gets more complex because of the data=ordered code,
6703  * where the in-ram extents might be locked pending data=ordered completion.
6704  *
6705  * This also copies inline extents directly into the page.
6706  */
6707 
6708 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
6709 				    size_t pg_offset, u64 start, u64 len,
6710 				    int create)
6711 {
6712 	int ret;
6713 	int err = 0;
6714 	u64 extent_start = 0;
6715 	u64 extent_end = 0;
6716 	u64 objectid = btrfs_ino(inode);
6717 	u32 found_type;
6718 	struct btrfs_path *path = NULL;
6719 	struct btrfs_root *root = BTRFS_I(inode)->root;
6720 	struct btrfs_file_extent_item *item;
6721 	struct extent_buffer *leaf;
6722 	struct btrfs_key found_key;
6723 	struct extent_map *em = NULL;
6724 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
6725 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
6726 	struct btrfs_trans_handle *trans = NULL;
6727 	const bool new_inline = !page || create;
6728 
6729 again:
6730 	read_lock(&em_tree->lock);
6731 	em = lookup_extent_mapping(em_tree, start, len);
6732 	if (em)
6733 		em->bdev = root->fs_info->fs_devices->latest_bdev;
6734 	read_unlock(&em_tree->lock);
6735 
6736 	if (em) {
6737 		if (em->start > start || em->start + em->len <= start)
6738 			free_extent_map(em);
6739 		else if (em->block_start == EXTENT_MAP_INLINE && page)
6740 			free_extent_map(em);
6741 		else
6742 			goto out;
6743 	}
6744 	em = alloc_extent_map();
6745 	if (!em) {
6746 		err = -ENOMEM;
6747 		goto out;
6748 	}
6749 	em->bdev = root->fs_info->fs_devices->latest_bdev;
6750 	em->start = EXTENT_MAP_HOLE;
6751 	em->orig_start = EXTENT_MAP_HOLE;
6752 	em->len = (u64)-1;
6753 	em->block_len = (u64)-1;
6754 
6755 	if (!path) {
6756 		path = btrfs_alloc_path();
6757 		if (!path) {
6758 			err = -ENOMEM;
6759 			goto out;
6760 		}
6761 		/*
6762 		 * Chances are we'll be called again, so go ahead and do
6763 		 * readahead
6764 		 */
6765 		path->reada = READA_FORWARD;
6766 	}
6767 
6768 	ret = btrfs_lookup_file_extent(trans, root, path,
6769 				       objectid, start, trans != NULL);
6770 	if (ret < 0) {
6771 		err = ret;
6772 		goto out;
6773 	}
6774 
6775 	if (ret != 0) {
6776 		if (path->slots[0] == 0)
6777 			goto not_found;
6778 		path->slots[0]--;
6779 	}
6780 
6781 	leaf = path->nodes[0];
6782 	item = btrfs_item_ptr(leaf, path->slots[0],
6783 			      struct btrfs_file_extent_item);
6784 	/* are we inside the extent that was found? */
6785 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6786 	found_type = found_key.type;
6787 	if (found_key.objectid != objectid ||
6788 	    found_type != BTRFS_EXTENT_DATA_KEY) {
6789 		/*
6790 		 * If we backup past the first extent we want to move forward
6791 		 * and see if there is an extent in front of us, otherwise we'll
6792 		 * say there is a hole for our whole search range which can
6793 		 * cause problems.
6794 		 */
6795 		extent_end = start;
6796 		goto next;
6797 	}
6798 
6799 	found_type = btrfs_file_extent_type(leaf, item);
6800 	extent_start = found_key.offset;
6801 	if (found_type == BTRFS_FILE_EXTENT_REG ||
6802 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
6803 		extent_end = extent_start +
6804 		       btrfs_file_extent_num_bytes(leaf, item);
6805 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6806 		size_t size;
6807 		size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
6808 		extent_end = ALIGN(extent_start + size, root->sectorsize);
6809 	}
6810 next:
6811 	if (start >= extent_end) {
6812 		path->slots[0]++;
6813 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6814 			ret = btrfs_next_leaf(root, path);
6815 			if (ret < 0) {
6816 				err = ret;
6817 				goto out;
6818 			}
6819 			if (ret > 0)
6820 				goto not_found;
6821 			leaf = path->nodes[0];
6822 		}
6823 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6824 		if (found_key.objectid != objectid ||
6825 		    found_key.type != BTRFS_EXTENT_DATA_KEY)
6826 			goto not_found;
6827 		if (start + len <= found_key.offset)
6828 			goto not_found;
6829 		if (start > found_key.offset)
6830 			goto next;
6831 		em->start = start;
6832 		em->orig_start = start;
6833 		em->len = found_key.offset - start;
6834 		goto not_found_em;
6835 	}
6836 
6837 	btrfs_extent_item_to_extent_map(inode, path, item, new_inline, em);
6838 
6839 	if (found_type == BTRFS_FILE_EXTENT_REG ||
6840 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
6841 		goto insert;
6842 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6843 		unsigned long ptr;
6844 		char *map;
6845 		size_t size;
6846 		size_t extent_offset;
6847 		size_t copy_size;
6848 
6849 		if (new_inline)
6850 			goto out;
6851 
6852 		size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
6853 		extent_offset = page_offset(page) + pg_offset - extent_start;
6854 		copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
6855 				size - extent_offset);
6856 		em->start = extent_start + extent_offset;
6857 		em->len = ALIGN(copy_size, root->sectorsize);
6858 		em->orig_block_len = em->len;
6859 		em->orig_start = em->start;
6860 		ptr = btrfs_file_extent_inline_start(item) + extent_offset;
6861 		if (create == 0 && !PageUptodate(page)) {
6862 			if (btrfs_file_extent_compression(leaf, item) !=
6863 			    BTRFS_COMPRESS_NONE) {
6864 				ret = uncompress_inline(path, page, pg_offset,
6865 							extent_offset, item);
6866 				if (ret) {
6867 					err = ret;
6868 					goto out;
6869 				}
6870 			} else {
6871 				map = kmap(page);
6872 				read_extent_buffer(leaf, map + pg_offset, ptr,
6873 						   copy_size);
6874 				if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
6875 					memset(map + pg_offset + copy_size, 0,
6876 					       PAGE_CACHE_SIZE - pg_offset -
6877 					       copy_size);
6878 				}
6879 				kunmap(page);
6880 			}
6881 			flush_dcache_page(page);
6882 		} else if (create && PageUptodate(page)) {
6883 			BUG();
6884 			if (!trans) {
6885 				kunmap(page);
6886 				free_extent_map(em);
6887 				em = NULL;
6888 
6889 				btrfs_release_path(path);
6890 				trans = btrfs_join_transaction(root);
6891 
6892 				if (IS_ERR(trans))
6893 					return ERR_CAST(trans);
6894 				goto again;
6895 			}
6896 			map = kmap(page);
6897 			write_extent_buffer(leaf, map + pg_offset, ptr,
6898 					    copy_size);
6899 			kunmap(page);
6900 			btrfs_mark_buffer_dirty(leaf);
6901 		}
6902 		set_extent_uptodate(io_tree, em->start,
6903 				    extent_map_end(em) - 1, NULL, GFP_NOFS);
6904 		goto insert;
6905 	}
6906 not_found:
6907 	em->start = start;
6908 	em->orig_start = start;
6909 	em->len = len;
6910 not_found_em:
6911 	em->block_start = EXTENT_MAP_HOLE;
6912 	set_bit(EXTENT_FLAG_VACANCY, &em->flags);
6913 insert:
6914 	btrfs_release_path(path);
6915 	if (em->start > start || extent_map_end(em) <= start) {
6916 		btrfs_err(root->fs_info, "bad extent! em: [%llu %llu] passed [%llu %llu]",
6917 			em->start, em->len, start, len);
6918 		err = -EIO;
6919 		goto out;
6920 	}
6921 
6922 	err = 0;
6923 	write_lock(&em_tree->lock);
6924 	ret = add_extent_mapping(em_tree, em, 0);
6925 	/* it is possible that someone inserted the extent into the tree
6926 	 * while we had the lock dropped.  It is also possible that
6927 	 * an overlapping map exists in the tree
6928 	 */
6929 	if (ret == -EEXIST) {
6930 		struct extent_map *existing;
6931 
6932 		ret = 0;
6933 
6934 		existing = search_extent_mapping(em_tree, start, len);
6935 		/*
6936 		 * existing will always be non-NULL, since there must be
6937 		 * extent causing the -EEXIST.
6938 		 */
6939 		if (start >= extent_map_end(existing) ||
6940 		    start <= existing->start) {
6941 			/*
6942 			 * The existing extent map is the one nearest to
6943 			 * the [start, start + len) range which overlaps
6944 			 */
6945 			err = merge_extent_mapping(em_tree, existing,
6946 						   em, start);
6947 			free_extent_map(existing);
6948 			if (err) {
6949 				free_extent_map(em);
6950 				em = NULL;
6951 			}
6952 		} else {
6953 			free_extent_map(em);
6954 			em = existing;
6955 			err = 0;
6956 		}
6957 	}
6958 	write_unlock(&em_tree->lock);
6959 out:
6960 
6961 	trace_btrfs_get_extent(root, em);
6962 
6963 	btrfs_free_path(path);
6964 	if (trans) {
6965 		ret = btrfs_end_transaction(trans, root);
6966 		if (!err)
6967 			err = ret;
6968 	}
6969 	if (err) {
6970 		free_extent_map(em);
6971 		return ERR_PTR(err);
6972 	}
6973 	BUG_ON(!em); /* Error is always set */
6974 	return em;
6975 }
6976 
6977 struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
6978 					   size_t pg_offset, u64 start, u64 len,
6979 					   int create)
6980 {
6981 	struct extent_map *em;
6982 	struct extent_map *hole_em = NULL;
6983 	u64 range_start = start;
6984 	u64 end;
6985 	u64 found;
6986 	u64 found_end;
6987 	int err = 0;
6988 
6989 	em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
6990 	if (IS_ERR(em))
6991 		return em;
6992 	if (em) {
6993 		/*
6994 		 * if our em maps to
6995 		 * -  a hole or
6996 		 * -  a pre-alloc extent,
6997 		 * there might actually be delalloc bytes behind it.
6998 		 */
6999 		if (em->block_start != EXTENT_MAP_HOLE &&
7000 		    !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7001 			return em;
7002 		else
7003 			hole_em = em;
7004 	}
7005 
7006 	/* check to see if we've wrapped (len == -1 or similar) */
7007 	end = start + len;
7008 	if (end < start)
7009 		end = (u64)-1;
7010 	else
7011 		end -= 1;
7012 
7013 	em = NULL;
7014 
7015 	/* ok, we didn't find anything, lets look for delalloc */
7016 	found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
7017 				 end, len, EXTENT_DELALLOC, 1);
7018 	found_end = range_start + found;
7019 	if (found_end < range_start)
7020 		found_end = (u64)-1;
7021 
7022 	/*
7023 	 * we didn't find anything useful, return
7024 	 * the original results from get_extent()
7025 	 */
7026 	if (range_start > end || found_end <= start) {
7027 		em = hole_em;
7028 		hole_em = NULL;
7029 		goto out;
7030 	}
7031 
7032 	/* adjust the range_start to make sure it doesn't
7033 	 * go backwards from the start they passed in
7034 	 */
7035 	range_start = max(start, range_start);
7036 	found = found_end - range_start;
7037 
7038 	if (found > 0) {
7039 		u64 hole_start = start;
7040 		u64 hole_len = len;
7041 
7042 		em = alloc_extent_map();
7043 		if (!em) {
7044 			err = -ENOMEM;
7045 			goto out;
7046 		}
7047 		/*
7048 		 * when btrfs_get_extent can't find anything it
7049 		 * returns one huge hole
7050 		 *
7051 		 * make sure what it found really fits our range, and
7052 		 * adjust to make sure it is based on the start from
7053 		 * the caller
7054 		 */
7055 		if (hole_em) {
7056 			u64 calc_end = extent_map_end(hole_em);
7057 
7058 			if (calc_end <= start || (hole_em->start > end)) {
7059 				free_extent_map(hole_em);
7060 				hole_em = NULL;
7061 			} else {
7062 				hole_start = max(hole_em->start, start);
7063 				hole_len = calc_end - hole_start;
7064 			}
7065 		}
7066 		em->bdev = NULL;
7067 		if (hole_em && range_start > hole_start) {
7068 			/* our hole starts before our delalloc, so we
7069 			 * have to return just the parts of the hole
7070 			 * that go until  the delalloc starts
7071 			 */
7072 			em->len = min(hole_len,
7073 				      range_start - hole_start);
7074 			em->start = hole_start;
7075 			em->orig_start = hole_start;
7076 			/*
7077 			 * don't adjust block start at all,
7078 			 * it is fixed at EXTENT_MAP_HOLE
7079 			 */
7080 			em->block_start = hole_em->block_start;
7081 			em->block_len = hole_len;
7082 			if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
7083 				set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
7084 		} else {
7085 			em->start = range_start;
7086 			em->len = found;
7087 			em->orig_start = range_start;
7088 			em->block_start = EXTENT_MAP_DELALLOC;
7089 			em->block_len = found;
7090 		}
7091 	} else if (hole_em) {
7092 		return hole_em;
7093 	}
7094 out:
7095 
7096 	free_extent_map(hole_em);
7097 	if (err) {
7098 		free_extent_map(em);
7099 		return ERR_PTR(err);
7100 	}
7101 	return em;
7102 }
7103 
7104 static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
7105 						  u64 start, u64 len)
7106 {
7107 	struct btrfs_root *root = BTRFS_I(inode)->root;
7108 	struct extent_map *em;
7109 	struct btrfs_key ins;
7110 	u64 alloc_hint;
7111 	int ret;
7112 
7113 	alloc_hint = get_extent_allocation_hint(inode, start, len);
7114 	ret = btrfs_reserve_extent(root, len, root->sectorsize, 0,
7115 				   alloc_hint, &ins, 1, 1);
7116 	if (ret)
7117 		return ERR_PTR(ret);
7118 
7119 	em = create_pinned_em(inode, start, ins.offset, start, ins.objectid,
7120 			      ins.offset, ins.offset, ins.offset, 0);
7121 	if (IS_ERR(em)) {
7122 		btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
7123 		return em;
7124 	}
7125 
7126 	ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
7127 					   ins.offset, ins.offset, 0);
7128 	if (ret) {
7129 		btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
7130 		free_extent_map(em);
7131 		return ERR_PTR(ret);
7132 	}
7133 
7134 	return em;
7135 }
7136 
7137 /*
7138  * returns 1 when the nocow is safe, < 1 on error, 0 if the
7139  * block must be cow'd
7140  */
7141 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7142 			      u64 *orig_start, u64 *orig_block_len,
7143 			      u64 *ram_bytes)
7144 {
7145 	struct btrfs_trans_handle *trans;
7146 	struct btrfs_path *path;
7147 	int ret;
7148 	struct extent_buffer *leaf;
7149 	struct btrfs_root *root = BTRFS_I(inode)->root;
7150 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7151 	struct btrfs_file_extent_item *fi;
7152 	struct btrfs_key key;
7153 	u64 disk_bytenr;
7154 	u64 backref_offset;
7155 	u64 extent_end;
7156 	u64 num_bytes;
7157 	int slot;
7158 	int found_type;
7159 	bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
7160 
7161 	path = btrfs_alloc_path();
7162 	if (!path)
7163 		return -ENOMEM;
7164 
7165 	ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode),
7166 				       offset, 0);
7167 	if (ret < 0)
7168 		goto out;
7169 
7170 	slot = path->slots[0];
7171 	if (ret == 1) {
7172 		if (slot == 0) {
7173 			/* can't find the item, must cow */
7174 			ret = 0;
7175 			goto out;
7176 		}
7177 		slot--;
7178 	}
7179 	ret = 0;
7180 	leaf = path->nodes[0];
7181 	btrfs_item_key_to_cpu(leaf, &key, slot);
7182 	if (key.objectid != btrfs_ino(inode) ||
7183 	    key.type != BTRFS_EXTENT_DATA_KEY) {
7184 		/* not our file or wrong item type, must cow */
7185 		goto out;
7186 	}
7187 
7188 	if (key.offset > offset) {
7189 		/* Wrong offset, must cow */
7190 		goto out;
7191 	}
7192 
7193 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
7194 	found_type = btrfs_file_extent_type(leaf, fi);
7195 	if (found_type != BTRFS_FILE_EXTENT_REG &&
7196 	    found_type != BTRFS_FILE_EXTENT_PREALLOC) {
7197 		/* not a regular extent, must cow */
7198 		goto out;
7199 	}
7200 
7201 	if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
7202 		goto out;
7203 
7204 	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
7205 	if (extent_end <= offset)
7206 		goto out;
7207 
7208 	disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
7209 	if (disk_bytenr == 0)
7210 		goto out;
7211 
7212 	if (btrfs_file_extent_compression(leaf, fi) ||
7213 	    btrfs_file_extent_encryption(leaf, fi) ||
7214 	    btrfs_file_extent_other_encoding(leaf, fi))
7215 		goto out;
7216 
7217 	backref_offset = btrfs_file_extent_offset(leaf, fi);
7218 
7219 	if (orig_start) {
7220 		*orig_start = key.offset - backref_offset;
7221 		*orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
7222 		*ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
7223 	}
7224 
7225 	if (btrfs_extent_readonly(root, disk_bytenr))
7226 		goto out;
7227 
7228 	num_bytes = min(offset + *len, extent_end) - offset;
7229 	if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7230 		u64 range_end;
7231 
7232 		range_end = round_up(offset + num_bytes, root->sectorsize) - 1;
7233 		ret = test_range_bit(io_tree, offset, range_end,
7234 				     EXTENT_DELALLOC, 0, NULL);
7235 		if (ret) {
7236 			ret = -EAGAIN;
7237 			goto out;
7238 		}
7239 	}
7240 
7241 	btrfs_release_path(path);
7242 
7243 	/*
7244 	 * look for other files referencing this extent, if we
7245 	 * find any we must cow
7246 	 */
7247 	trans = btrfs_join_transaction(root);
7248 	if (IS_ERR(trans)) {
7249 		ret = 0;
7250 		goto out;
7251 	}
7252 
7253 	ret = btrfs_cross_ref_exist(trans, root, btrfs_ino(inode),
7254 				    key.offset - backref_offset, disk_bytenr);
7255 	btrfs_end_transaction(trans, root);
7256 	if (ret) {
7257 		ret = 0;
7258 		goto out;
7259 	}
7260 
7261 	/*
7262 	 * adjust disk_bytenr and num_bytes to cover just the bytes
7263 	 * in this extent we are about to write.  If there
7264 	 * are any csums in that range we have to cow in order
7265 	 * to keep the csums correct
7266 	 */
7267 	disk_bytenr += backref_offset;
7268 	disk_bytenr += offset - key.offset;
7269 	if (csum_exist_in_range(root, disk_bytenr, num_bytes))
7270 				goto out;
7271 	/*
7272 	 * all of the above have passed, it is safe to overwrite this extent
7273 	 * without cow
7274 	 */
7275 	*len = num_bytes;
7276 	ret = 1;
7277 out:
7278 	btrfs_free_path(path);
7279 	return ret;
7280 }
7281 
7282 bool btrfs_page_exists_in_range(struct inode *inode, loff_t start, loff_t end)
7283 {
7284 	struct radix_tree_root *root = &inode->i_mapping->page_tree;
7285 	int found = false;
7286 	void **pagep = NULL;
7287 	struct page *page = NULL;
7288 	int start_idx;
7289 	int end_idx;
7290 
7291 	start_idx = start >> PAGE_CACHE_SHIFT;
7292 
7293 	/*
7294 	 * end is the last byte in the last page.  end == start is legal
7295 	 */
7296 	end_idx = end >> PAGE_CACHE_SHIFT;
7297 
7298 	rcu_read_lock();
7299 
7300 	/* Most of the code in this while loop is lifted from
7301 	 * find_get_page.  It's been modified to begin searching from a
7302 	 * page and return just the first page found in that range.  If the
7303 	 * found idx is less than or equal to the end idx then we know that
7304 	 * a page exists.  If no pages are found or if those pages are
7305 	 * outside of the range then we're fine (yay!) */
7306 	while (page == NULL &&
7307 	       radix_tree_gang_lookup_slot(root, &pagep, NULL, start_idx, 1)) {
7308 		page = radix_tree_deref_slot(pagep);
7309 		if (unlikely(!page))
7310 			break;
7311 
7312 		if (radix_tree_exception(page)) {
7313 			if (radix_tree_deref_retry(page)) {
7314 				page = NULL;
7315 				continue;
7316 			}
7317 			/*
7318 			 * Otherwise, shmem/tmpfs must be storing a swap entry
7319 			 * here as an exceptional entry: so return it without
7320 			 * attempting to raise page count.
7321 			 */
7322 			page = NULL;
7323 			break; /* TODO: Is this relevant for this use case? */
7324 		}
7325 
7326 		if (!page_cache_get_speculative(page)) {
7327 			page = NULL;
7328 			continue;
7329 		}
7330 
7331 		/*
7332 		 * Has the page moved?
7333 		 * This is part of the lockless pagecache protocol. See
7334 		 * include/linux/pagemap.h for details.
7335 		 */
7336 		if (unlikely(page != *pagep)) {
7337 			page_cache_release(page);
7338 			page = NULL;
7339 		}
7340 	}
7341 
7342 	if (page) {
7343 		if (page->index <= end_idx)
7344 			found = true;
7345 		page_cache_release(page);
7346 	}
7347 
7348 	rcu_read_unlock();
7349 	return found;
7350 }
7351 
7352 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
7353 			      struct extent_state **cached_state, int writing)
7354 {
7355 	struct btrfs_ordered_extent *ordered;
7356 	int ret = 0;
7357 
7358 	while (1) {
7359 		lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7360 				 cached_state);
7361 		/*
7362 		 * We're concerned with the entire range that we're going to be
7363 		 * doing DIO to, so we need to make sure theres no ordered
7364 		 * extents in this range.
7365 		 */
7366 		ordered = btrfs_lookup_ordered_range(inode, lockstart,
7367 						     lockend - lockstart + 1);
7368 
7369 		/*
7370 		 * We need to make sure there are no buffered pages in this
7371 		 * range either, we could have raced between the invalidate in
7372 		 * generic_file_direct_write and locking the extent.  The
7373 		 * invalidate needs to happen so that reads after a write do not
7374 		 * get stale data.
7375 		 */
7376 		if (!ordered &&
7377 		    (!writing ||
7378 		     !btrfs_page_exists_in_range(inode, lockstart, lockend)))
7379 			break;
7380 
7381 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7382 				     cached_state, GFP_NOFS);
7383 
7384 		if (ordered) {
7385 			btrfs_start_ordered_extent(inode, ordered, 1);
7386 			btrfs_put_ordered_extent(ordered);
7387 		} else {
7388 			/*
7389 			 * We could trigger writeback for this range (and wait
7390 			 * for it to complete) and then invalidate the pages for
7391 			 * this range (through invalidate_inode_pages2_range()),
7392 			 * but that can lead us to a deadlock with a concurrent
7393 			 * call to readpages() (a buffered read or a defrag call
7394 			 * triggered a readahead) on a page lock due to an
7395 			 * ordered dio extent we created before but did not have
7396 			 * yet a corresponding bio submitted (whence it can not
7397 			 * complete), which makes readpages() wait for that
7398 			 * ordered extent to complete while holding a lock on
7399 			 * that page.
7400 			 */
7401 			ret = -ENOTBLK;
7402 			break;
7403 		}
7404 
7405 		cond_resched();
7406 	}
7407 
7408 	return ret;
7409 }
7410 
7411 static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
7412 					   u64 len, u64 orig_start,
7413 					   u64 block_start, u64 block_len,
7414 					   u64 orig_block_len, u64 ram_bytes,
7415 					   int type)
7416 {
7417 	struct extent_map_tree *em_tree;
7418 	struct extent_map *em;
7419 	struct btrfs_root *root = BTRFS_I(inode)->root;
7420 	int ret;
7421 
7422 	em_tree = &BTRFS_I(inode)->extent_tree;
7423 	em = alloc_extent_map();
7424 	if (!em)
7425 		return ERR_PTR(-ENOMEM);
7426 
7427 	em->start = start;
7428 	em->orig_start = orig_start;
7429 	em->mod_start = start;
7430 	em->mod_len = len;
7431 	em->len = len;
7432 	em->block_len = block_len;
7433 	em->block_start = block_start;
7434 	em->bdev = root->fs_info->fs_devices->latest_bdev;
7435 	em->orig_block_len = orig_block_len;
7436 	em->ram_bytes = ram_bytes;
7437 	em->generation = -1;
7438 	set_bit(EXTENT_FLAG_PINNED, &em->flags);
7439 	if (type == BTRFS_ORDERED_PREALLOC)
7440 		set_bit(EXTENT_FLAG_FILLING, &em->flags);
7441 
7442 	do {
7443 		btrfs_drop_extent_cache(inode, em->start,
7444 				em->start + em->len - 1, 0);
7445 		write_lock(&em_tree->lock);
7446 		ret = add_extent_mapping(em_tree, em, 1);
7447 		write_unlock(&em_tree->lock);
7448 	} while (ret == -EEXIST);
7449 
7450 	if (ret) {
7451 		free_extent_map(em);
7452 		return ERR_PTR(ret);
7453 	}
7454 
7455 	return em;
7456 }
7457 
7458 static void adjust_dio_outstanding_extents(struct inode *inode,
7459 					   struct btrfs_dio_data *dio_data,
7460 					   const u64 len)
7461 {
7462 	unsigned num_extents;
7463 
7464 	num_extents = (unsigned) div64_u64(len + BTRFS_MAX_EXTENT_SIZE - 1,
7465 					   BTRFS_MAX_EXTENT_SIZE);
7466 	/*
7467 	 * If we have an outstanding_extents count still set then we're
7468 	 * within our reservation, otherwise we need to adjust our inode
7469 	 * counter appropriately.
7470 	 */
7471 	if (dio_data->outstanding_extents) {
7472 		dio_data->outstanding_extents -= num_extents;
7473 	} else {
7474 		spin_lock(&BTRFS_I(inode)->lock);
7475 		BTRFS_I(inode)->outstanding_extents += num_extents;
7476 		spin_unlock(&BTRFS_I(inode)->lock);
7477 	}
7478 }
7479 
7480 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
7481 				   struct buffer_head *bh_result, int create)
7482 {
7483 	struct extent_map *em;
7484 	struct btrfs_root *root = BTRFS_I(inode)->root;
7485 	struct extent_state *cached_state = NULL;
7486 	struct btrfs_dio_data *dio_data = NULL;
7487 	u64 start = iblock << inode->i_blkbits;
7488 	u64 lockstart, lockend;
7489 	u64 len = bh_result->b_size;
7490 	int unlock_bits = EXTENT_LOCKED;
7491 	int ret = 0;
7492 
7493 	if (create)
7494 		unlock_bits |= EXTENT_DIRTY;
7495 	else
7496 		len = min_t(u64, len, root->sectorsize);
7497 
7498 	lockstart = start;
7499 	lockend = start + len - 1;
7500 
7501 	if (current->journal_info) {
7502 		/*
7503 		 * Need to pull our outstanding extents and set journal_info to NULL so
7504 		 * that anything that needs to check if there's a transction doesn't get
7505 		 * confused.
7506 		 */
7507 		dio_data = current->journal_info;
7508 		current->journal_info = NULL;
7509 	}
7510 
7511 	/*
7512 	 * If this errors out it's because we couldn't invalidate pagecache for
7513 	 * this range and we need to fallback to buffered.
7514 	 */
7515 	if (lock_extent_direct(inode, lockstart, lockend, &cached_state,
7516 			       create)) {
7517 		ret = -ENOTBLK;
7518 		goto err;
7519 	}
7520 
7521 	em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
7522 	if (IS_ERR(em)) {
7523 		ret = PTR_ERR(em);
7524 		goto unlock_err;
7525 	}
7526 
7527 	/*
7528 	 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7529 	 * io.  INLINE is special, and we could probably kludge it in here, but
7530 	 * it's still buffered so for safety lets just fall back to the generic
7531 	 * buffered path.
7532 	 *
7533 	 * For COMPRESSED we _have_ to read the entire extent in so we can
7534 	 * decompress it, so there will be buffering required no matter what we
7535 	 * do, so go ahead and fallback to buffered.
7536 	 *
7537 	 * We return -ENOTBLK because thats what makes DIO go ahead and go back
7538 	 * to buffered IO.  Don't blame me, this is the price we pay for using
7539 	 * the generic code.
7540 	 */
7541 	if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7542 	    em->block_start == EXTENT_MAP_INLINE) {
7543 		free_extent_map(em);
7544 		ret = -ENOTBLK;
7545 		goto unlock_err;
7546 	}
7547 
7548 	/* Just a good old fashioned hole, return */
7549 	if (!create && (em->block_start == EXTENT_MAP_HOLE ||
7550 			test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
7551 		free_extent_map(em);
7552 		goto unlock_err;
7553 	}
7554 
7555 	/*
7556 	 * We don't allocate a new extent in the following cases
7557 	 *
7558 	 * 1) The inode is marked as NODATACOW.  In this case we'll just use the
7559 	 * existing extent.
7560 	 * 2) The extent is marked as PREALLOC.  We're good to go here and can
7561 	 * just use the extent.
7562 	 *
7563 	 */
7564 	if (!create) {
7565 		len = min(len, em->len - (start - em->start));
7566 		lockstart = start + len;
7567 		goto unlock;
7568 	}
7569 
7570 	if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7571 	    ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7572 	     em->block_start != EXTENT_MAP_HOLE)) {
7573 		int type;
7574 		u64 block_start, orig_start, orig_block_len, ram_bytes;
7575 
7576 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7577 			type = BTRFS_ORDERED_PREALLOC;
7578 		else
7579 			type = BTRFS_ORDERED_NOCOW;
7580 		len = min(len, em->len - (start - em->start));
7581 		block_start = em->block_start + (start - em->start);
7582 
7583 		if (can_nocow_extent(inode, start, &len, &orig_start,
7584 				     &orig_block_len, &ram_bytes) == 1) {
7585 			if (type == BTRFS_ORDERED_PREALLOC) {
7586 				free_extent_map(em);
7587 				em = create_pinned_em(inode, start, len,
7588 						       orig_start,
7589 						       block_start, len,
7590 						       orig_block_len,
7591 						       ram_bytes, type);
7592 				if (IS_ERR(em)) {
7593 					ret = PTR_ERR(em);
7594 					goto unlock_err;
7595 				}
7596 			}
7597 
7598 			ret = btrfs_add_ordered_extent_dio(inode, start,
7599 					   block_start, len, len, type);
7600 			if (ret) {
7601 				free_extent_map(em);
7602 				goto unlock_err;
7603 			}
7604 			goto unlock;
7605 		}
7606 	}
7607 
7608 	/*
7609 	 * this will cow the extent, reset the len in case we changed
7610 	 * it above
7611 	 */
7612 	len = bh_result->b_size;
7613 	free_extent_map(em);
7614 	em = btrfs_new_extent_direct(inode, start, len);
7615 	if (IS_ERR(em)) {
7616 		ret = PTR_ERR(em);
7617 		goto unlock_err;
7618 	}
7619 	len = min(len, em->len - (start - em->start));
7620 unlock:
7621 	bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7622 		inode->i_blkbits;
7623 	bh_result->b_size = len;
7624 	bh_result->b_bdev = em->bdev;
7625 	set_buffer_mapped(bh_result);
7626 	if (create) {
7627 		if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7628 			set_buffer_new(bh_result);
7629 
7630 		/*
7631 		 * Need to update the i_size under the extent lock so buffered
7632 		 * readers will get the updated i_size when we unlock.
7633 		 */
7634 		if (start + len > i_size_read(inode))
7635 			i_size_write(inode, start + len);
7636 
7637 		adjust_dio_outstanding_extents(inode, dio_data, len);
7638 		btrfs_free_reserved_data_space(inode, start, len);
7639 		WARN_ON(dio_data->reserve < len);
7640 		dio_data->reserve -= len;
7641 		dio_data->unsubmitted_oe_range_end = start + len;
7642 		current->journal_info = dio_data;
7643 	}
7644 
7645 	/*
7646 	 * In the case of write we need to clear and unlock the entire range,
7647 	 * in the case of read we need to unlock only the end area that we
7648 	 * aren't using if there is any left over space.
7649 	 */
7650 	if (lockstart < lockend) {
7651 		clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
7652 				 lockend, unlock_bits, 1, 0,
7653 				 &cached_state, GFP_NOFS);
7654 	} else {
7655 		free_extent_state(cached_state);
7656 	}
7657 
7658 	free_extent_map(em);
7659 
7660 	return 0;
7661 
7662 unlock_err:
7663 	clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7664 			 unlock_bits, 1, 0, &cached_state, GFP_NOFS);
7665 err:
7666 	if (dio_data)
7667 		current->journal_info = dio_data;
7668 	/*
7669 	 * Compensate the delalloc release we do in btrfs_direct_IO() when we
7670 	 * write less data then expected, so that we don't underflow our inode's
7671 	 * outstanding extents counter.
7672 	 */
7673 	if (create && dio_data)
7674 		adjust_dio_outstanding_extents(inode, dio_data, len);
7675 
7676 	return ret;
7677 }
7678 
7679 static inline int submit_dio_repair_bio(struct inode *inode, struct bio *bio,
7680 					int rw, int mirror_num)
7681 {
7682 	struct btrfs_root *root = BTRFS_I(inode)->root;
7683 	int ret;
7684 
7685 	BUG_ON(rw & REQ_WRITE);
7686 
7687 	bio_get(bio);
7688 
7689 	ret = btrfs_bio_wq_end_io(root->fs_info, bio,
7690 				  BTRFS_WQ_ENDIO_DIO_REPAIR);
7691 	if (ret)
7692 		goto err;
7693 
7694 	ret = btrfs_map_bio(root, rw, bio, mirror_num, 0);
7695 err:
7696 	bio_put(bio);
7697 	return ret;
7698 }
7699 
7700 static int btrfs_check_dio_repairable(struct inode *inode,
7701 				      struct bio *failed_bio,
7702 				      struct io_failure_record *failrec,
7703 				      int failed_mirror)
7704 {
7705 	int num_copies;
7706 
7707 	num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info,
7708 				      failrec->logical, failrec->len);
7709 	if (num_copies == 1) {
7710 		/*
7711 		 * we only have a single copy of the data, so don't bother with
7712 		 * all the retry and error correction code that follows. no
7713 		 * matter what the error is, it is very likely to persist.
7714 		 */
7715 		pr_debug("Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n",
7716 			 num_copies, failrec->this_mirror, failed_mirror);
7717 		return 0;
7718 	}
7719 
7720 	failrec->failed_mirror = failed_mirror;
7721 	failrec->this_mirror++;
7722 	if (failrec->this_mirror == failed_mirror)
7723 		failrec->this_mirror++;
7724 
7725 	if (failrec->this_mirror > num_copies) {
7726 		pr_debug("Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n",
7727 			 num_copies, failrec->this_mirror, failed_mirror);
7728 		return 0;
7729 	}
7730 
7731 	return 1;
7732 }
7733 
7734 static int dio_read_error(struct inode *inode, struct bio *failed_bio,
7735 			  struct page *page, u64 start, u64 end,
7736 			  int failed_mirror, bio_end_io_t *repair_endio,
7737 			  void *repair_arg)
7738 {
7739 	struct io_failure_record *failrec;
7740 	struct bio *bio;
7741 	int isector;
7742 	int read_mode;
7743 	int ret;
7744 
7745 	BUG_ON(failed_bio->bi_rw & REQ_WRITE);
7746 
7747 	ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
7748 	if (ret)
7749 		return ret;
7750 
7751 	ret = btrfs_check_dio_repairable(inode, failed_bio, failrec,
7752 					 failed_mirror);
7753 	if (!ret) {
7754 		free_io_failure(inode, failrec);
7755 		return -EIO;
7756 	}
7757 
7758 	if (failed_bio->bi_vcnt > 1)
7759 		read_mode = READ_SYNC | REQ_FAILFAST_DEV;
7760 	else
7761 		read_mode = READ_SYNC;
7762 
7763 	isector = start - btrfs_io_bio(failed_bio)->logical;
7764 	isector >>= inode->i_sb->s_blocksize_bits;
7765 	bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
7766 				      0, isector, repair_endio, repair_arg);
7767 	if (!bio) {
7768 		free_io_failure(inode, failrec);
7769 		return -EIO;
7770 	}
7771 
7772 	btrfs_debug(BTRFS_I(inode)->root->fs_info,
7773 		    "Repair DIO Read Error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d\n",
7774 		    read_mode, failrec->this_mirror, failrec->in_validation);
7775 
7776 	ret = submit_dio_repair_bio(inode, bio, read_mode,
7777 				    failrec->this_mirror);
7778 	if (ret) {
7779 		free_io_failure(inode, failrec);
7780 		bio_put(bio);
7781 	}
7782 
7783 	return ret;
7784 }
7785 
7786 struct btrfs_retry_complete {
7787 	struct completion done;
7788 	struct inode *inode;
7789 	u64 start;
7790 	int uptodate;
7791 };
7792 
7793 static void btrfs_retry_endio_nocsum(struct bio *bio)
7794 {
7795 	struct btrfs_retry_complete *done = bio->bi_private;
7796 	struct bio_vec *bvec;
7797 	int i;
7798 
7799 	if (bio->bi_error)
7800 		goto end;
7801 
7802 	done->uptodate = 1;
7803 	bio_for_each_segment_all(bvec, bio, i)
7804 		clean_io_failure(done->inode, done->start, bvec->bv_page, 0);
7805 end:
7806 	complete(&done->done);
7807 	bio_put(bio);
7808 }
7809 
7810 static int __btrfs_correct_data_nocsum(struct inode *inode,
7811 				       struct btrfs_io_bio *io_bio)
7812 {
7813 	struct bio_vec *bvec;
7814 	struct btrfs_retry_complete done;
7815 	u64 start;
7816 	int i;
7817 	int ret;
7818 
7819 	start = io_bio->logical;
7820 	done.inode = inode;
7821 
7822 	bio_for_each_segment_all(bvec, &io_bio->bio, i) {
7823 try_again:
7824 		done.uptodate = 0;
7825 		done.start = start;
7826 		init_completion(&done.done);
7827 
7828 		ret = dio_read_error(inode, &io_bio->bio, bvec->bv_page, start,
7829 				     start + bvec->bv_len - 1,
7830 				     io_bio->mirror_num,
7831 				     btrfs_retry_endio_nocsum, &done);
7832 		if (ret)
7833 			return ret;
7834 
7835 		wait_for_completion(&done.done);
7836 
7837 		if (!done.uptodate) {
7838 			/* We might have another mirror, so try again */
7839 			goto try_again;
7840 		}
7841 
7842 		start += bvec->bv_len;
7843 	}
7844 
7845 	return 0;
7846 }
7847 
7848 static void btrfs_retry_endio(struct bio *bio)
7849 {
7850 	struct btrfs_retry_complete *done = bio->bi_private;
7851 	struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
7852 	struct bio_vec *bvec;
7853 	int uptodate;
7854 	int ret;
7855 	int i;
7856 
7857 	if (bio->bi_error)
7858 		goto end;
7859 
7860 	uptodate = 1;
7861 	bio_for_each_segment_all(bvec, bio, i) {
7862 		ret = __readpage_endio_check(done->inode, io_bio, i,
7863 					     bvec->bv_page, 0,
7864 					     done->start, bvec->bv_len);
7865 		if (!ret)
7866 			clean_io_failure(done->inode, done->start,
7867 					 bvec->bv_page, 0);
7868 		else
7869 			uptodate = 0;
7870 	}
7871 
7872 	done->uptodate = uptodate;
7873 end:
7874 	complete(&done->done);
7875 	bio_put(bio);
7876 }
7877 
7878 static int __btrfs_subio_endio_read(struct inode *inode,
7879 				    struct btrfs_io_bio *io_bio, int err)
7880 {
7881 	struct bio_vec *bvec;
7882 	struct btrfs_retry_complete done;
7883 	u64 start;
7884 	u64 offset = 0;
7885 	int i;
7886 	int ret;
7887 
7888 	err = 0;
7889 	start = io_bio->logical;
7890 	done.inode = inode;
7891 
7892 	bio_for_each_segment_all(bvec, &io_bio->bio, i) {
7893 		ret = __readpage_endio_check(inode, io_bio, i, bvec->bv_page,
7894 					     0, start, bvec->bv_len);
7895 		if (likely(!ret))
7896 			goto next;
7897 try_again:
7898 		done.uptodate = 0;
7899 		done.start = start;
7900 		init_completion(&done.done);
7901 
7902 		ret = dio_read_error(inode, &io_bio->bio, bvec->bv_page, start,
7903 				     start + bvec->bv_len - 1,
7904 				     io_bio->mirror_num,
7905 				     btrfs_retry_endio, &done);
7906 		if (ret) {
7907 			err = ret;
7908 			goto next;
7909 		}
7910 
7911 		wait_for_completion(&done.done);
7912 
7913 		if (!done.uptodate) {
7914 			/* We might have another mirror, so try again */
7915 			goto try_again;
7916 		}
7917 next:
7918 		offset += bvec->bv_len;
7919 		start += bvec->bv_len;
7920 	}
7921 
7922 	return err;
7923 }
7924 
7925 static int btrfs_subio_endio_read(struct inode *inode,
7926 				  struct btrfs_io_bio *io_bio, int err)
7927 {
7928 	bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
7929 
7930 	if (skip_csum) {
7931 		if (unlikely(err))
7932 			return __btrfs_correct_data_nocsum(inode, io_bio);
7933 		else
7934 			return 0;
7935 	} else {
7936 		return __btrfs_subio_endio_read(inode, io_bio, err);
7937 	}
7938 }
7939 
7940 static void btrfs_endio_direct_read(struct bio *bio)
7941 {
7942 	struct btrfs_dio_private *dip = bio->bi_private;
7943 	struct inode *inode = dip->inode;
7944 	struct bio *dio_bio;
7945 	struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
7946 	int err = bio->bi_error;
7947 
7948 	if (dip->flags & BTRFS_DIO_ORIG_BIO_SUBMITTED)
7949 		err = btrfs_subio_endio_read(inode, io_bio, err);
7950 
7951 	unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
7952 		      dip->logical_offset + dip->bytes - 1);
7953 	dio_bio = dip->dio_bio;
7954 
7955 	kfree(dip);
7956 
7957 	dio_end_io(dio_bio, bio->bi_error);
7958 
7959 	if (io_bio->end_io)
7960 		io_bio->end_io(io_bio, err);
7961 	bio_put(bio);
7962 }
7963 
7964 static void btrfs_endio_direct_write_update_ordered(struct inode *inode,
7965 						    const u64 offset,
7966 						    const u64 bytes,
7967 						    const int uptodate)
7968 {
7969 	struct btrfs_root *root = BTRFS_I(inode)->root;
7970 	struct btrfs_ordered_extent *ordered = NULL;
7971 	u64 ordered_offset = offset;
7972 	u64 ordered_bytes = bytes;
7973 	int ret;
7974 
7975 again:
7976 	ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
7977 						   &ordered_offset,
7978 						   ordered_bytes,
7979 						   uptodate);
7980 	if (!ret)
7981 		goto out_test;
7982 
7983 	btrfs_init_work(&ordered->work, btrfs_endio_write_helper,
7984 			finish_ordered_fn, NULL, NULL);
7985 	btrfs_queue_work(root->fs_info->endio_write_workers,
7986 			 &ordered->work);
7987 out_test:
7988 	/*
7989 	 * our bio might span multiple ordered extents.  If we haven't
7990 	 * completed the accounting for the whole dio, go back and try again
7991 	 */
7992 	if (ordered_offset < offset + bytes) {
7993 		ordered_bytes = offset + bytes - ordered_offset;
7994 		ordered = NULL;
7995 		goto again;
7996 	}
7997 }
7998 
7999 static void btrfs_endio_direct_write(struct bio *bio)
8000 {
8001 	struct btrfs_dio_private *dip = bio->bi_private;
8002 	struct bio *dio_bio = dip->dio_bio;
8003 
8004 	btrfs_endio_direct_write_update_ordered(dip->inode,
8005 						dip->logical_offset,
8006 						dip->bytes,
8007 						!bio->bi_error);
8008 
8009 	kfree(dip);
8010 
8011 	dio_end_io(dio_bio, bio->bi_error);
8012 	bio_put(bio);
8013 }
8014 
8015 static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
8016 				    struct bio *bio, int mirror_num,
8017 				    unsigned long bio_flags, u64 offset)
8018 {
8019 	int ret;
8020 	struct btrfs_root *root = BTRFS_I(inode)->root;
8021 	ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
8022 	BUG_ON(ret); /* -ENOMEM */
8023 	return 0;
8024 }
8025 
8026 static void btrfs_end_dio_bio(struct bio *bio)
8027 {
8028 	struct btrfs_dio_private *dip = bio->bi_private;
8029 	int err = bio->bi_error;
8030 
8031 	if (err)
8032 		btrfs_warn(BTRFS_I(dip->inode)->root->fs_info,
8033 			   "direct IO failed ino %llu rw %lu sector %#Lx len %u err no %d",
8034 			   btrfs_ino(dip->inode), bio->bi_rw,
8035 			   (unsigned long long)bio->bi_iter.bi_sector,
8036 			   bio->bi_iter.bi_size, err);
8037 
8038 	if (dip->subio_endio)
8039 		err = dip->subio_endio(dip->inode, btrfs_io_bio(bio), err);
8040 
8041 	if (err) {
8042 		dip->errors = 1;
8043 
8044 		/*
8045 		 * before atomic variable goto zero, we must make sure
8046 		 * dip->errors is perceived to be set.
8047 		 */
8048 		smp_mb__before_atomic();
8049 	}
8050 
8051 	/* if there are more bios still pending for this dio, just exit */
8052 	if (!atomic_dec_and_test(&dip->pending_bios))
8053 		goto out;
8054 
8055 	if (dip->errors) {
8056 		bio_io_error(dip->orig_bio);
8057 	} else {
8058 		dip->dio_bio->bi_error = 0;
8059 		bio_endio(dip->orig_bio);
8060 	}
8061 out:
8062 	bio_put(bio);
8063 }
8064 
8065 static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
8066 				       u64 first_sector, gfp_t gfp_flags)
8067 {
8068 	struct bio *bio;
8069 	bio = btrfs_bio_alloc(bdev, first_sector, BIO_MAX_PAGES, gfp_flags);
8070 	if (bio)
8071 		bio_associate_current(bio);
8072 	return bio;
8073 }
8074 
8075 static inline int btrfs_lookup_and_bind_dio_csum(struct btrfs_root *root,
8076 						 struct inode *inode,
8077 						 struct btrfs_dio_private *dip,
8078 						 struct bio *bio,
8079 						 u64 file_offset)
8080 {
8081 	struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8082 	struct btrfs_io_bio *orig_io_bio = btrfs_io_bio(dip->orig_bio);
8083 	int ret;
8084 
8085 	/*
8086 	 * We load all the csum data we need when we submit
8087 	 * the first bio to reduce the csum tree search and
8088 	 * contention.
8089 	 */
8090 	if (dip->logical_offset == file_offset) {
8091 		ret = btrfs_lookup_bio_sums_dio(root, inode, dip->orig_bio,
8092 						file_offset);
8093 		if (ret)
8094 			return ret;
8095 	}
8096 
8097 	if (bio == dip->orig_bio)
8098 		return 0;
8099 
8100 	file_offset -= dip->logical_offset;
8101 	file_offset >>= inode->i_sb->s_blocksize_bits;
8102 	io_bio->csum = (u8 *)(((u32 *)orig_io_bio->csum) + file_offset);
8103 
8104 	return 0;
8105 }
8106 
8107 static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
8108 					 int rw, u64 file_offset, int skip_sum,
8109 					 int async_submit)
8110 {
8111 	struct btrfs_dio_private *dip = bio->bi_private;
8112 	int write = rw & REQ_WRITE;
8113 	struct btrfs_root *root = BTRFS_I(inode)->root;
8114 	int ret;
8115 
8116 	if (async_submit)
8117 		async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
8118 
8119 	bio_get(bio);
8120 
8121 	if (!write) {
8122 		ret = btrfs_bio_wq_end_io(root->fs_info, bio,
8123 				BTRFS_WQ_ENDIO_DATA);
8124 		if (ret)
8125 			goto err;
8126 	}
8127 
8128 	if (skip_sum)
8129 		goto map;
8130 
8131 	if (write && async_submit) {
8132 		ret = btrfs_wq_submit_bio(root->fs_info,
8133 				   inode, rw, bio, 0, 0,
8134 				   file_offset,
8135 				   __btrfs_submit_bio_start_direct_io,
8136 				   __btrfs_submit_bio_done);
8137 		goto err;
8138 	} else if (write) {
8139 		/*
8140 		 * If we aren't doing async submit, calculate the csum of the
8141 		 * bio now.
8142 		 */
8143 		ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1);
8144 		if (ret)
8145 			goto err;
8146 	} else {
8147 		ret = btrfs_lookup_and_bind_dio_csum(root, inode, dip, bio,
8148 						     file_offset);
8149 		if (ret)
8150 			goto err;
8151 	}
8152 map:
8153 	ret = btrfs_map_bio(root, rw, bio, 0, async_submit);
8154 err:
8155 	bio_put(bio);
8156 	return ret;
8157 }
8158 
8159 static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
8160 				    int skip_sum)
8161 {
8162 	struct inode *inode = dip->inode;
8163 	struct btrfs_root *root = BTRFS_I(inode)->root;
8164 	struct bio *bio;
8165 	struct bio *orig_bio = dip->orig_bio;
8166 	struct bio_vec *bvec = orig_bio->bi_io_vec;
8167 	u64 start_sector = orig_bio->bi_iter.bi_sector;
8168 	u64 file_offset = dip->logical_offset;
8169 	u64 submit_len = 0;
8170 	u64 map_length;
8171 	int nr_pages = 0;
8172 	int ret;
8173 	int async_submit = 0;
8174 
8175 	map_length = orig_bio->bi_iter.bi_size;
8176 	ret = btrfs_map_block(root->fs_info, rw, start_sector << 9,
8177 			      &map_length, NULL, 0);
8178 	if (ret)
8179 		return -EIO;
8180 
8181 	if (map_length >= orig_bio->bi_iter.bi_size) {
8182 		bio = orig_bio;
8183 		dip->flags |= BTRFS_DIO_ORIG_BIO_SUBMITTED;
8184 		goto submit;
8185 	}
8186 
8187 	/* async crcs make it difficult to collect full stripe writes. */
8188 	if (btrfs_get_alloc_profile(root, 1) & BTRFS_BLOCK_GROUP_RAID56_MASK)
8189 		async_submit = 0;
8190 	else
8191 		async_submit = 1;
8192 
8193 	bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
8194 	if (!bio)
8195 		return -ENOMEM;
8196 
8197 	bio->bi_private = dip;
8198 	bio->bi_end_io = btrfs_end_dio_bio;
8199 	btrfs_io_bio(bio)->logical = file_offset;
8200 	atomic_inc(&dip->pending_bios);
8201 
8202 	while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
8203 		if (map_length < submit_len + bvec->bv_len ||
8204 		    bio_add_page(bio, bvec->bv_page, bvec->bv_len,
8205 				 bvec->bv_offset) < bvec->bv_len) {
8206 			/*
8207 			 * inc the count before we submit the bio so
8208 			 * we know the end IO handler won't happen before
8209 			 * we inc the count. Otherwise, the dip might get freed
8210 			 * before we're done setting it up
8211 			 */
8212 			atomic_inc(&dip->pending_bios);
8213 			ret = __btrfs_submit_dio_bio(bio, inode, rw,
8214 						     file_offset, skip_sum,
8215 						     async_submit);
8216 			if (ret) {
8217 				bio_put(bio);
8218 				atomic_dec(&dip->pending_bios);
8219 				goto out_err;
8220 			}
8221 
8222 			start_sector += submit_len >> 9;
8223 			file_offset += submit_len;
8224 
8225 			submit_len = 0;
8226 			nr_pages = 0;
8227 
8228 			bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
8229 						  start_sector, GFP_NOFS);
8230 			if (!bio)
8231 				goto out_err;
8232 			bio->bi_private = dip;
8233 			bio->bi_end_io = btrfs_end_dio_bio;
8234 			btrfs_io_bio(bio)->logical = file_offset;
8235 
8236 			map_length = orig_bio->bi_iter.bi_size;
8237 			ret = btrfs_map_block(root->fs_info, rw,
8238 					      start_sector << 9,
8239 					      &map_length, NULL, 0);
8240 			if (ret) {
8241 				bio_put(bio);
8242 				goto out_err;
8243 			}
8244 		} else {
8245 			submit_len += bvec->bv_len;
8246 			nr_pages++;
8247 			bvec++;
8248 		}
8249 	}
8250 
8251 submit:
8252 	ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
8253 				     async_submit);
8254 	if (!ret)
8255 		return 0;
8256 
8257 	bio_put(bio);
8258 out_err:
8259 	dip->errors = 1;
8260 	/*
8261 	 * before atomic variable goto zero, we must
8262 	 * make sure dip->errors is perceived to be set.
8263 	 */
8264 	smp_mb__before_atomic();
8265 	if (atomic_dec_and_test(&dip->pending_bios))
8266 		bio_io_error(dip->orig_bio);
8267 
8268 	/* bio_end_io() will handle error, so we needn't return it */
8269 	return 0;
8270 }
8271 
8272 static void btrfs_submit_direct(int rw, struct bio *dio_bio,
8273 				struct inode *inode, loff_t file_offset)
8274 {
8275 	struct btrfs_dio_private *dip = NULL;
8276 	struct bio *io_bio = NULL;
8277 	struct btrfs_io_bio *btrfs_bio;
8278 	int skip_sum;
8279 	int write = rw & REQ_WRITE;
8280 	int ret = 0;
8281 
8282 	skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
8283 
8284 	io_bio = btrfs_bio_clone(dio_bio, GFP_NOFS);
8285 	if (!io_bio) {
8286 		ret = -ENOMEM;
8287 		goto free_ordered;
8288 	}
8289 
8290 	dip = kzalloc(sizeof(*dip), GFP_NOFS);
8291 	if (!dip) {
8292 		ret = -ENOMEM;
8293 		goto free_ordered;
8294 	}
8295 
8296 	dip->private = dio_bio->bi_private;
8297 	dip->inode = inode;
8298 	dip->logical_offset = file_offset;
8299 	dip->bytes = dio_bio->bi_iter.bi_size;
8300 	dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9;
8301 	io_bio->bi_private = dip;
8302 	dip->orig_bio = io_bio;
8303 	dip->dio_bio = dio_bio;
8304 	atomic_set(&dip->pending_bios, 0);
8305 	btrfs_bio = btrfs_io_bio(io_bio);
8306 	btrfs_bio->logical = file_offset;
8307 
8308 	if (write) {
8309 		io_bio->bi_end_io = btrfs_endio_direct_write;
8310 	} else {
8311 		io_bio->bi_end_io = btrfs_endio_direct_read;
8312 		dip->subio_endio = btrfs_subio_endio_read;
8313 	}
8314 
8315 	/*
8316 	 * Reset the range for unsubmitted ordered extents (to a 0 length range)
8317 	 * even if we fail to submit a bio, because in such case we do the
8318 	 * corresponding error handling below and it must not be done a second
8319 	 * time by btrfs_direct_IO().
8320 	 */
8321 	if (write) {
8322 		struct btrfs_dio_data *dio_data = current->journal_info;
8323 
8324 		dio_data->unsubmitted_oe_range_end = dip->logical_offset +
8325 			dip->bytes;
8326 		dio_data->unsubmitted_oe_range_start =
8327 			dio_data->unsubmitted_oe_range_end;
8328 	}
8329 
8330 	ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
8331 	if (!ret)
8332 		return;
8333 
8334 	if (btrfs_bio->end_io)
8335 		btrfs_bio->end_io(btrfs_bio, ret);
8336 
8337 free_ordered:
8338 	/*
8339 	 * If we arrived here it means either we failed to submit the dip
8340 	 * or we either failed to clone the dio_bio or failed to allocate the
8341 	 * dip. If we cloned the dio_bio and allocated the dip, we can just
8342 	 * call bio_endio against our io_bio so that we get proper resource
8343 	 * cleanup if we fail to submit the dip, otherwise, we must do the
8344 	 * same as btrfs_endio_direct_[write|read] because we can't call these
8345 	 * callbacks - they require an allocated dip and a clone of dio_bio.
8346 	 */
8347 	if (io_bio && dip) {
8348 		io_bio->bi_error = -EIO;
8349 		bio_endio(io_bio);
8350 		/*
8351 		 * The end io callbacks free our dip, do the final put on io_bio
8352 		 * and all the cleanup and final put for dio_bio (through
8353 		 * dio_end_io()).
8354 		 */
8355 		dip = NULL;
8356 		io_bio = NULL;
8357 	} else {
8358 		if (write)
8359 			btrfs_endio_direct_write_update_ordered(inode,
8360 						file_offset,
8361 						dio_bio->bi_iter.bi_size,
8362 						0);
8363 		else
8364 			unlock_extent(&BTRFS_I(inode)->io_tree, file_offset,
8365 			      file_offset + dio_bio->bi_iter.bi_size - 1);
8366 
8367 		dio_bio->bi_error = -EIO;
8368 		/*
8369 		 * Releases and cleans up our dio_bio, no need to bio_put()
8370 		 * nor bio_endio()/bio_io_error() against dio_bio.
8371 		 */
8372 		dio_end_io(dio_bio, ret);
8373 	}
8374 	if (io_bio)
8375 		bio_put(io_bio);
8376 	kfree(dip);
8377 }
8378 
8379 static ssize_t check_direct_IO(struct btrfs_root *root, struct kiocb *iocb,
8380 			const struct iov_iter *iter, loff_t offset)
8381 {
8382 	int seg;
8383 	int i;
8384 	unsigned blocksize_mask = root->sectorsize - 1;
8385 	ssize_t retval = -EINVAL;
8386 
8387 	if (offset & blocksize_mask)
8388 		goto out;
8389 
8390 	if (iov_iter_alignment(iter) & blocksize_mask)
8391 		goto out;
8392 
8393 	/* If this is a write we don't need to check anymore */
8394 	if (iov_iter_rw(iter) == WRITE)
8395 		return 0;
8396 	/*
8397 	 * Check to make sure we don't have duplicate iov_base's in this
8398 	 * iovec, if so return EINVAL, otherwise we'll get csum errors
8399 	 * when reading back.
8400 	 */
8401 	for (seg = 0; seg < iter->nr_segs; seg++) {
8402 		for (i = seg + 1; i < iter->nr_segs; i++) {
8403 			if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
8404 				goto out;
8405 		}
8406 	}
8407 	retval = 0;
8408 out:
8409 	return retval;
8410 }
8411 
8412 static ssize_t btrfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
8413 			       loff_t offset)
8414 {
8415 	struct file *file = iocb->ki_filp;
8416 	struct inode *inode = file->f_mapping->host;
8417 	struct btrfs_root *root = BTRFS_I(inode)->root;
8418 	struct btrfs_dio_data dio_data = { 0 };
8419 	size_t count = 0;
8420 	int flags = 0;
8421 	bool wakeup = true;
8422 	bool relock = false;
8423 	ssize_t ret;
8424 
8425 	if (check_direct_IO(BTRFS_I(inode)->root, iocb, iter, offset))
8426 		return 0;
8427 
8428 	inode_dio_begin(inode);
8429 	smp_mb__after_atomic();
8430 
8431 	/*
8432 	 * The generic stuff only does filemap_write_and_wait_range, which
8433 	 * isn't enough if we've written compressed pages to this area, so
8434 	 * we need to flush the dirty pages again to make absolutely sure
8435 	 * that any outstanding dirty pages are on disk.
8436 	 */
8437 	count = iov_iter_count(iter);
8438 	if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
8439 		     &BTRFS_I(inode)->runtime_flags))
8440 		filemap_fdatawrite_range(inode->i_mapping, offset,
8441 					 offset + count - 1);
8442 
8443 	if (iov_iter_rw(iter) == WRITE) {
8444 		/*
8445 		 * If the write DIO is beyond the EOF, we need update
8446 		 * the isize, but it is protected by i_mutex. So we can
8447 		 * not unlock the i_mutex at this case.
8448 		 */
8449 		if (offset + count <= inode->i_size) {
8450 			inode_unlock(inode);
8451 			relock = true;
8452 		}
8453 		ret = btrfs_delalloc_reserve_space(inode, offset, count);
8454 		if (ret)
8455 			goto out;
8456 		dio_data.outstanding_extents = div64_u64(count +
8457 						BTRFS_MAX_EXTENT_SIZE - 1,
8458 						BTRFS_MAX_EXTENT_SIZE);
8459 
8460 		/*
8461 		 * We need to know how many extents we reserved so that we can
8462 		 * do the accounting properly if we go over the number we
8463 		 * originally calculated.  Abuse current->journal_info for this.
8464 		 */
8465 		dio_data.reserve = round_up(count, root->sectorsize);
8466 		dio_data.unsubmitted_oe_range_start = (u64)offset;
8467 		dio_data.unsubmitted_oe_range_end = (u64)offset;
8468 		current->journal_info = &dio_data;
8469 	} else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK,
8470 				     &BTRFS_I(inode)->runtime_flags)) {
8471 		inode_dio_end(inode);
8472 		flags = DIO_LOCKING | DIO_SKIP_HOLES;
8473 		wakeup = false;
8474 	}
8475 
8476 	ret = __blockdev_direct_IO(iocb, inode,
8477 				   BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
8478 				   iter, offset, btrfs_get_blocks_direct, NULL,
8479 				   btrfs_submit_direct, flags);
8480 	if (iov_iter_rw(iter) == WRITE) {
8481 		current->journal_info = NULL;
8482 		if (ret < 0 && ret != -EIOCBQUEUED) {
8483 			if (dio_data.reserve)
8484 				btrfs_delalloc_release_space(inode, offset,
8485 							     dio_data.reserve);
8486 			/*
8487 			 * On error we might have left some ordered extents
8488 			 * without submitting corresponding bios for them, so
8489 			 * cleanup them up to avoid other tasks getting them
8490 			 * and waiting for them to complete forever.
8491 			 */
8492 			if (dio_data.unsubmitted_oe_range_start <
8493 			    dio_data.unsubmitted_oe_range_end)
8494 				btrfs_endio_direct_write_update_ordered(inode,
8495 					dio_data.unsubmitted_oe_range_start,
8496 					dio_data.unsubmitted_oe_range_end -
8497 					dio_data.unsubmitted_oe_range_start,
8498 					0);
8499 		} else if (ret >= 0 && (size_t)ret < count)
8500 			btrfs_delalloc_release_space(inode, offset,
8501 						     count - (size_t)ret);
8502 	}
8503 out:
8504 	if (wakeup)
8505 		inode_dio_end(inode);
8506 	if (relock)
8507 		inode_lock(inode);
8508 
8509 	return ret;
8510 }
8511 
8512 #define BTRFS_FIEMAP_FLAGS	(FIEMAP_FLAG_SYNC)
8513 
8514 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
8515 		__u64 start, __u64 len)
8516 {
8517 	int	ret;
8518 
8519 	ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS);
8520 	if (ret)
8521 		return ret;
8522 
8523 	return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
8524 }
8525 
8526 int btrfs_readpage(struct file *file, struct page *page)
8527 {
8528 	struct extent_io_tree *tree;
8529 	tree = &BTRFS_I(page->mapping->host)->io_tree;
8530 	return extent_read_full_page(tree, page, btrfs_get_extent, 0);
8531 }
8532 
8533 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
8534 {
8535 	struct extent_io_tree *tree;
8536 	struct inode *inode = page->mapping->host;
8537 	int ret;
8538 
8539 	if (current->flags & PF_MEMALLOC) {
8540 		redirty_page_for_writepage(wbc, page);
8541 		unlock_page(page);
8542 		return 0;
8543 	}
8544 
8545 	/*
8546 	 * If we are under memory pressure we will call this directly from the
8547 	 * VM, we need to make sure we have the inode referenced for the ordered
8548 	 * extent.  If not just return like we didn't do anything.
8549 	 */
8550 	if (!igrab(inode)) {
8551 		redirty_page_for_writepage(wbc, page);
8552 		return AOP_WRITEPAGE_ACTIVATE;
8553 	}
8554 	tree = &BTRFS_I(page->mapping->host)->io_tree;
8555 	ret = extent_write_full_page(tree, page, btrfs_get_extent, wbc);
8556 	btrfs_add_delayed_iput(inode);
8557 	return ret;
8558 }
8559 
8560 static int btrfs_writepages(struct address_space *mapping,
8561 			    struct writeback_control *wbc)
8562 {
8563 	struct extent_io_tree *tree;
8564 
8565 	tree = &BTRFS_I(mapping->host)->io_tree;
8566 	return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
8567 }
8568 
8569 static int
8570 btrfs_readpages(struct file *file, struct address_space *mapping,
8571 		struct list_head *pages, unsigned nr_pages)
8572 {
8573 	struct extent_io_tree *tree;
8574 	tree = &BTRFS_I(mapping->host)->io_tree;
8575 	return extent_readpages(tree, mapping, pages, nr_pages,
8576 				btrfs_get_extent);
8577 }
8578 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8579 {
8580 	struct extent_io_tree *tree;
8581 	struct extent_map_tree *map;
8582 	int ret;
8583 
8584 	tree = &BTRFS_I(page->mapping->host)->io_tree;
8585 	map = &BTRFS_I(page->mapping->host)->extent_tree;
8586 	ret = try_release_extent_mapping(map, tree, page, gfp_flags);
8587 	if (ret == 1) {
8588 		ClearPagePrivate(page);
8589 		set_page_private(page, 0);
8590 		page_cache_release(page);
8591 	}
8592 	return ret;
8593 }
8594 
8595 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8596 {
8597 	if (PageWriteback(page) || PageDirty(page))
8598 		return 0;
8599 	return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
8600 }
8601 
8602 static void btrfs_invalidatepage(struct page *page, unsigned int offset,
8603 				 unsigned int length)
8604 {
8605 	struct inode *inode = page->mapping->host;
8606 	struct extent_io_tree *tree;
8607 	struct btrfs_ordered_extent *ordered;
8608 	struct extent_state *cached_state = NULL;
8609 	u64 page_start = page_offset(page);
8610 	u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
8611 	int inode_evicting = inode->i_state & I_FREEING;
8612 
8613 	/*
8614 	 * we have the page locked, so new writeback can't start,
8615 	 * and the dirty bit won't be cleared while we are here.
8616 	 *
8617 	 * Wait for IO on this page so that we can safely clear
8618 	 * the PagePrivate2 bit and do ordered accounting
8619 	 */
8620 	wait_on_page_writeback(page);
8621 
8622 	tree = &BTRFS_I(inode)->io_tree;
8623 	if (offset) {
8624 		btrfs_releasepage(page, GFP_NOFS);
8625 		return;
8626 	}
8627 
8628 	if (!inode_evicting)
8629 		lock_extent_bits(tree, page_start, page_end, &cached_state);
8630 	ordered = btrfs_lookup_ordered_extent(inode, page_start);
8631 	if (ordered) {
8632 		/*
8633 		 * IO on this page will never be started, so we need
8634 		 * to account for any ordered extents now
8635 		 */
8636 		if (!inode_evicting)
8637 			clear_extent_bit(tree, page_start, page_end,
8638 					 EXTENT_DIRTY | EXTENT_DELALLOC |
8639 					 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
8640 					 EXTENT_DEFRAG, 1, 0, &cached_state,
8641 					 GFP_NOFS);
8642 		/*
8643 		 * whoever cleared the private bit is responsible
8644 		 * for the finish_ordered_io
8645 		 */
8646 		if (TestClearPagePrivate2(page)) {
8647 			struct btrfs_ordered_inode_tree *tree;
8648 			u64 new_len;
8649 
8650 			tree = &BTRFS_I(inode)->ordered_tree;
8651 
8652 			spin_lock_irq(&tree->lock);
8653 			set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
8654 			new_len = page_start - ordered->file_offset;
8655 			if (new_len < ordered->truncated_len)
8656 				ordered->truncated_len = new_len;
8657 			spin_unlock_irq(&tree->lock);
8658 
8659 			if (btrfs_dec_test_ordered_pending(inode, &ordered,
8660 							   page_start,
8661 							   PAGE_CACHE_SIZE, 1))
8662 				btrfs_finish_ordered_io(ordered);
8663 		}
8664 		btrfs_put_ordered_extent(ordered);
8665 		if (!inode_evicting) {
8666 			cached_state = NULL;
8667 			lock_extent_bits(tree, page_start, page_end,
8668 					 &cached_state);
8669 		}
8670 	}
8671 
8672 	/*
8673 	 * Qgroup reserved space handler
8674 	 * Page here will be either
8675 	 * 1) Already written to disk
8676 	 *    In this case, its reserved space is released from data rsv map
8677 	 *    and will be freed by delayed_ref handler finally.
8678 	 *    So even we call qgroup_free_data(), it won't decrease reserved
8679 	 *    space.
8680 	 * 2) Not written to disk
8681 	 *    This means the reserved space should be freed here.
8682 	 */
8683 	btrfs_qgroup_free_data(inode, page_start, PAGE_CACHE_SIZE);
8684 	if (!inode_evicting) {
8685 		clear_extent_bit(tree, page_start, page_end,
8686 				 EXTENT_LOCKED | EXTENT_DIRTY |
8687 				 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
8688 				 EXTENT_DEFRAG, 1, 1,
8689 				 &cached_state, GFP_NOFS);
8690 
8691 		__btrfs_releasepage(page, GFP_NOFS);
8692 	}
8693 
8694 	ClearPageChecked(page);
8695 	if (PagePrivate(page)) {
8696 		ClearPagePrivate(page);
8697 		set_page_private(page, 0);
8698 		page_cache_release(page);
8699 	}
8700 }
8701 
8702 /*
8703  * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8704  * called from a page fault handler when a page is first dirtied. Hence we must
8705  * be careful to check for EOF conditions here. We set the page up correctly
8706  * for a written page which means we get ENOSPC checking when writing into
8707  * holes and correct delalloc and unwritten extent mapping on filesystems that
8708  * support these features.
8709  *
8710  * We are not allowed to take the i_mutex here so we have to play games to
8711  * protect against truncate races as the page could now be beyond EOF.  Because
8712  * vmtruncate() writes the inode size before removing pages, once we have the
8713  * page lock we can determine safely if the page is beyond EOF. If it is not
8714  * beyond EOF, then the page is guaranteed safe against truncation until we
8715  * unlock the page.
8716  */
8717 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
8718 {
8719 	struct page *page = vmf->page;
8720 	struct inode *inode = file_inode(vma->vm_file);
8721 	struct btrfs_root *root = BTRFS_I(inode)->root;
8722 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8723 	struct btrfs_ordered_extent *ordered;
8724 	struct extent_state *cached_state = NULL;
8725 	char *kaddr;
8726 	unsigned long zero_start;
8727 	loff_t size;
8728 	int ret;
8729 	int reserved = 0;
8730 	u64 page_start;
8731 	u64 page_end;
8732 
8733 	sb_start_pagefault(inode->i_sb);
8734 	page_start = page_offset(page);
8735 	page_end = page_start + PAGE_CACHE_SIZE - 1;
8736 
8737 	ret = btrfs_delalloc_reserve_space(inode, page_start,
8738 					   PAGE_CACHE_SIZE);
8739 	if (!ret) {
8740 		ret = file_update_time(vma->vm_file);
8741 		reserved = 1;
8742 	}
8743 	if (ret) {
8744 		if (ret == -ENOMEM)
8745 			ret = VM_FAULT_OOM;
8746 		else /* -ENOSPC, -EIO, etc */
8747 			ret = VM_FAULT_SIGBUS;
8748 		if (reserved)
8749 			goto out;
8750 		goto out_noreserve;
8751 	}
8752 
8753 	ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
8754 again:
8755 	lock_page(page);
8756 	size = i_size_read(inode);
8757 
8758 	if ((page->mapping != inode->i_mapping) ||
8759 	    (page_start >= size)) {
8760 		/* page got truncated out from underneath us */
8761 		goto out_unlock;
8762 	}
8763 	wait_on_page_writeback(page);
8764 
8765 	lock_extent_bits(io_tree, page_start, page_end, &cached_state);
8766 	set_page_extent_mapped(page);
8767 
8768 	/*
8769 	 * we can't set the delalloc bits if there are pending ordered
8770 	 * extents.  Drop our locks and wait for them to finish
8771 	 */
8772 	ordered = btrfs_lookup_ordered_extent(inode, page_start);
8773 	if (ordered) {
8774 		unlock_extent_cached(io_tree, page_start, page_end,
8775 				     &cached_state, GFP_NOFS);
8776 		unlock_page(page);
8777 		btrfs_start_ordered_extent(inode, ordered, 1);
8778 		btrfs_put_ordered_extent(ordered);
8779 		goto again;
8780 	}
8781 
8782 	/*
8783 	 * XXX - page_mkwrite gets called every time the page is dirtied, even
8784 	 * if it was already dirty, so for space accounting reasons we need to
8785 	 * clear any delalloc bits for the range we are fixing to save.  There
8786 	 * is probably a better way to do this, but for now keep consistent with
8787 	 * prepare_pages in the normal write path.
8788 	 */
8789 	clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
8790 			  EXTENT_DIRTY | EXTENT_DELALLOC |
8791 			  EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
8792 			  0, 0, &cached_state, GFP_NOFS);
8793 
8794 	ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
8795 					&cached_state);
8796 	if (ret) {
8797 		unlock_extent_cached(io_tree, page_start, page_end,
8798 				     &cached_state, GFP_NOFS);
8799 		ret = VM_FAULT_SIGBUS;
8800 		goto out_unlock;
8801 	}
8802 	ret = 0;
8803 
8804 	/* page is wholly or partially inside EOF */
8805 	if (page_start + PAGE_CACHE_SIZE > size)
8806 		zero_start = size & ~PAGE_CACHE_MASK;
8807 	else
8808 		zero_start = PAGE_CACHE_SIZE;
8809 
8810 	if (zero_start != PAGE_CACHE_SIZE) {
8811 		kaddr = kmap(page);
8812 		memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
8813 		flush_dcache_page(page);
8814 		kunmap(page);
8815 	}
8816 	ClearPageChecked(page);
8817 	set_page_dirty(page);
8818 	SetPageUptodate(page);
8819 
8820 	BTRFS_I(inode)->last_trans = root->fs_info->generation;
8821 	BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
8822 	BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
8823 
8824 	unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
8825 
8826 out_unlock:
8827 	if (!ret) {
8828 		sb_end_pagefault(inode->i_sb);
8829 		return VM_FAULT_LOCKED;
8830 	}
8831 	unlock_page(page);
8832 out:
8833 	btrfs_delalloc_release_space(inode, page_start, PAGE_CACHE_SIZE);
8834 out_noreserve:
8835 	sb_end_pagefault(inode->i_sb);
8836 	return ret;
8837 }
8838 
8839 static int btrfs_truncate(struct inode *inode)
8840 {
8841 	struct btrfs_root *root = BTRFS_I(inode)->root;
8842 	struct btrfs_block_rsv *rsv;
8843 	int ret = 0;
8844 	int err = 0;
8845 	struct btrfs_trans_handle *trans;
8846 	u64 mask = root->sectorsize - 1;
8847 	u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
8848 
8849 	ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
8850 				       (u64)-1);
8851 	if (ret)
8852 		return ret;
8853 
8854 	/*
8855 	 * Yes ladies and gentelment, this is indeed ugly.  The fact is we have
8856 	 * 3 things going on here
8857 	 *
8858 	 * 1) We need to reserve space for our orphan item and the space to
8859 	 * delete our orphan item.  Lord knows we don't want to have a dangling
8860 	 * orphan item because we didn't reserve space to remove it.
8861 	 *
8862 	 * 2) We need to reserve space to update our inode.
8863 	 *
8864 	 * 3) We need to have something to cache all the space that is going to
8865 	 * be free'd up by the truncate operation, but also have some slack
8866 	 * space reserved in case it uses space during the truncate (thank you
8867 	 * very much snapshotting).
8868 	 *
8869 	 * And we need these to all be seperate.  The fact is we can use alot of
8870 	 * space doing the truncate, and we have no earthly idea how much space
8871 	 * we will use, so we need the truncate reservation to be seperate so it
8872 	 * doesn't end up using space reserved for updating the inode or
8873 	 * removing the orphan item.  We also need to be able to stop the
8874 	 * transaction and start a new one, which means we need to be able to
8875 	 * update the inode several times, and we have no idea of knowing how
8876 	 * many times that will be, so we can't just reserve 1 item for the
8877 	 * entirety of the opration, so that has to be done seperately as well.
8878 	 * Then there is the orphan item, which does indeed need to be held on
8879 	 * to for the whole operation, and we need nobody to touch this reserved
8880 	 * space except the orphan code.
8881 	 *
8882 	 * So that leaves us with
8883 	 *
8884 	 * 1) root->orphan_block_rsv - for the orphan deletion.
8885 	 * 2) rsv - for the truncate reservation, which we will steal from the
8886 	 * transaction reservation.
8887 	 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
8888 	 * updating the inode.
8889 	 */
8890 	rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
8891 	if (!rsv)
8892 		return -ENOMEM;
8893 	rsv->size = min_size;
8894 	rsv->failfast = 1;
8895 
8896 	/*
8897 	 * 1 for the truncate slack space
8898 	 * 1 for updating the inode.
8899 	 */
8900 	trans = btrfs_start_transaction(root, 2);
8901 	if (IS_ERR(trans)) {
8902 		err = PTR_ERR(trans);
8903 		goto out;
8904 	}
8905 
8906 	/* Migrate the slack space for the truncate to our reserve */
8907 	ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
8908 				      min_size);
8909 	BUG_ON(ret);
8910 
8911 	/*
8912 	 * So if we truncate and then write and fsync we normally would just
8913 	 * write the extents that changed, which is a problem if we need to
8914 	 * first truncate that entire inode.  So set this flag so we write out
8915 	 * all of the extents in the inode to the sync log so we're completely
8916 	 * safe.
8917 	 */
8918 	set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
8919 	trans->block_rsv = rsv;
8920 
8921 	while (1) {
8922 		ret = btrfs_truncate_inode_items(trans, root, inode,
8923 						 inode->i_size,
8924 						 BTRFS_EXTENT_DATA_KEY);
8925 		if (ret != -ENOSPC && ret != -EAGAIN) {
8926 			err = ret;
8927 			break;
8928 		}
8929 
8930 		trans->block_rsv = &root->fs_info->trans_block_rsv;
8931 		ret = btrfs_update_inode(trans, root, inode);
8932 		if (ret) {
8933 			err = ret;
8934 			break;
8935 		}
8936 
8937 		btrfs_end_transaction(trans, root);
8938 		btrfs_btree_balance_dirty(root);
8939 
8940 		trans = btrfs_start_transaction(root, 2);
8941 		if (IS_ERR(trans)) {
8942 			ret = err = PTR_ERR(trans);
8943 			trans = NULL;
8944 			break;
8945 		}
8946 
8947 		ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
8948 					      rsv, min_size);
8949 		BUG_ON(ret);	/* shouldn't happen */
8950 		trans->block_rsv = rsv;
8951 	}
8952 
8953 	if (ret == 0 && inode->i_nlink > 0) {
8954 		trans->block_rsv = root->orphan_block_rsv;
8955 		ret = btrfs_orphan_del(trans, inode);
8956 		if (ret)
8957 			err = ret;
8958 	}
8959 
8960 	if (trans) {
8961 		trans->block_rsv = &root->fs_info->trans_block_rsv;
8962 		ret = btrfs_update_inode(trans, root, inode);
8963 		if (ret && !err)
8964 			err = ret;
8965 
8966 		ret = btrfs_end_transaction(trans, root);
8967 		btrfs_btree_balance_dirty(root);
8968 	}
8969 
8970 out:
8971 	btrfs_free_block_rsv(root, rsv);
8972 
8973 	if (ret && !err)
8974 		err = ret;
8975 
8976 	return err;
8977 }
8978 
8979 /*
8980  * create a new subvolume directory/inode (helper for the ioctl).
8981  */
8982 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
8983 			     struct btrfs_root *new_root,
8984 			     struct btrfs_root *parent_root,
8985 			     u64 new_dirid)
8986 {
8987 	struct inode *inode;
8988 	int err;
8989 	u64 index = 0;
8990 
8991 	inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
8992 				new_dirid, new_dirid,
8993 				S_IFDIR | (~current_umask() & S_IRWXUGO),
8994 				&index);
8995 	if (IS_ERR(inode))
8996 		return PTR_ERR(inode);
8997 	inode->i_op = &btrfs_dir_inode_operations;
8998 	inode->i_fop = &btrfs_dir_file_operations;
8999 
9000 	set_nlink(inode, 1);
9001 	btrfs_i_size_write(inode, 0);
9002 	unlock_new_inode(inode);
9003 
9004 	err = btrfs_subvol_inherit_props(trans, new_root, parent_root);
9005 	if (err)
9006 		btrfs_err(new_root->fs_info,
9007 			  "error inheriting subvolume %llu properties: %d",
9008 			  new_root->root_key.objectid, err);
9009 
9010 	err = btrfs_update_inode(trans, new_root, inode);
9011 
9012 	iput(inode);
9013 	return err;
9014 }
9015 
9016 struct inode *btrfs_alloc_inode(struct super_block *sb)
9017 {
9018 	struct btrfs_inode *ei;
9019 	struct inode *inode;
9020 
9021 	ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
9022 	if (!ei)
9023 		return NULL;
9024 
9025 	ei->root = NULL;
9026 	ei->generation = 0;
9027 	ei->last_trans = 0;
9028 	ei->last_sub_trans = 0;
9029 	ei->logged_trans = 0;
9030 	ei->delalloc_bytes = 0;
9031 	ei->defrag_bytes = 0;
9032 	ei->disk_i_size = 0;
9033 	ei->flags = 0;
9034 	ei->csum_bytes = 0;
9035 	ei->index_cnt = (u64)-1;
9036 	ei->dir_index = 0;
9037 	ei->last_unlink_trans = 0;
9038 	ei->last_log_commit = 0;
9039 	ei->delayed_iput_count = 0;
9040 
9041 	spin_lock_init(&ei->lock);
9042 	ei->outstanding_extents = 0;
9043 	ei->reserved_extents = 0;
9044 
9045 	ei->runtime_flags = 0;
9046 	ei->force_compress = BTRFS_COMPRESS_NONE;
9047 
9048 	ei->delayed_node = NULL;
9049 
9050 	ei->i_otime.tv_sec = 0;
9051 	ei->i_otime.tv_nsec = 0;
9052 
9053 	inode = &ei->vfs_inode;
9054 	extent_map_tree_init(&ei->extent_tree);
9055 	extent_io_tree_init(&ei->io_tree, &inode->i_data);
9056 	extent_io_tree_init(&ei->io_failure_tree, &inode->i_data);
9057 	ei->io_tree.track_uptodate = 1;
9058 	ei->io_failure_tree.track_uptodate = 1;
9059 	atomic_set(&ei->sync_writers, 0);
9060 	mutex_init(&ei->log_mutex);
9061 	mutex_init(&ei->delalloc_mutex);
9062 	btrfs_ordered_inode_tree_init(&ei->ordered_tree);
9063 	INIT_LIST_HEAD(&ei->delalloc_inodes);
9064 	INIT_LIST_HEAD(&ei->delayed_iput);
9065 	RB_CLEAR_NODE(&ei->rb_node);
9066 
9067 	return inode;
9068 }
9069 
9070 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
9071 void btrfs_test_destroy_inode(struct inode *inode)
9072 {
9073 	btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
9074 	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9075 }
9076 #endif
9077 
9078 static void btrfs_i_callback(struct rcu_head *head)
9079 {
9080 	struct inode *inode = container_of(head, struct inode, i_rcu);
9081 	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9082 }
9083 
9084 void btrfs_destroy_inode(struct inode *inode)
9085 {
9086 	struct btrfs_ordered_extent *ordered;
9087 	struct btrfs_root *root = BTRFS_I(inode)->root;
9088 
9089 	WARN_ON(!hlist_empty(&inode->i_dentry));
9090 	WARN_ON(inode->i_data.nrpages);
9091 	WARN_ON(BTRFS_I(inode)->outstanding_extents);
9092 	WARN_ON(BTRFS_I(inode)->reserved_extents);
9093 	WARN_ON(BTRFS_I(inode)->delalloc_bytes);
9094 	WARN_ON(BTRFS_I(inode)->csum_bytes);
9095 	WARN_ON(BTRFS_I(inode)->defrag_bytes);
9096 
9097 	/*
9098 	 * This can happen where we create an inode, but somebody else also
9099 	 * created the same inode and we need to destroy the one we already
9100 	 * created.
9101 	 */
9102 	if (!root)
9103 		goto free;
9104 
9105 	if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
9106 		     &BTRFS_I(inode)->runtime_flags)) {
9107 		btrfs_info(root->fs_info, "inode %llu still on the orphan list",
9108 			btrfs_ino(inode));
9109 		atomic_dec(&root->orphan_inodes);
9110 	}
9111 
9112 	while (1) {
9113 		ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
9114 		if (!ordered)
9115 			break;
9116 		else {
9117 			btrfs_err(root->fs_info, "found ordered extent %llu %llu on inode cleanup",
9118 				ordered->file_offset, ordered->len);
9119 			btrfs_remove_ordered_extent(inode, ordered);
9120 			btrfs_put_ordered_extent(ordered);
9121 			btrfs_put_ordered_extent(ordered);
9122 		}
9123 	}
9124 	btrfs_qgroup_check_reserved_leak(inode);
9125 	inode_tree_del(inode);
9126 	btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
9127 free:
9128 	call_rcu(&inode->i_rcu, btrfs_i_callback);
9129 }
9130 
9131 int btrfs_drop_inode(struct inode *inode)
9132 {
9133 	struct btrfs_root *root = BTRFS_I(inode)->root;
9134 
9135 	if (root == NULL)
9136 		return 1;
9137 
9138 	/* the snap/subvol tree is on deleting */
9139 	if (btrfs_root_refs(&root->root_item) == 0)
9140 		return 1;
9141 	else
9142 		return generic_drop_inode(inode);
9143 }
9144 
9145 static void init_once(void *foo)
9146 {
9147 	struct btrfs_inode *ei = (struct btrfs_inode *) foo;
9148 
9149 	inode_init_once(&ei->vfs_inode);
9150 }
9151 
9152 void btrfs_destroy_cachep(void)
9153 {
9154 	/*
9155 	 * Make sure all delayed rcu free inodes are flushed before we
9156 	 * destroy cache.
9157 	 */
9158 	rcu_barrier();
9159 	if (btrfs_inode_cachep)
9160 		kmem_cache_destroy(btrfs_inode_cachep);
9161 	if (btrfs_trans_handle_cachep)
9162 		kmem_cache_destroy(btrfs_trans_handle_cachep);
9163 	if (btrfs_transaction_cachep)
9164 		kmem_cache_destroy(btrfs_transaction_cachep);
9165 	if (btrfs_path_cachep)
9166 		kmem_cache_destroy(btrfs_path_cachep);
9167 	if (btrfs_free_space_cachep)
9168 		kmem_cache_destroy(btrfs_free_space_cachep);
9169 }
9170 
9171 int btrfs_init_cachep(void)
9172 {
9173 	btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
9174 			sizeof(struct btrfs_inode), 0,
9175 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT,
9176 			init_once);
9177 	if (!btrfs_inode_cachep)
9178 		goto fail;
9179 
9180 	btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
9181 			sizeof(struct btrfs_trans_handle), 0,
9182 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
9183 	if (!btrfs_trans_handle_cachep)
9184 		goto fail;
9185 
9186 	btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction",
9187 			sizeof(struct btrfs_transaction), 0,
9188 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
9189 	if (!btrfs_transaction_cachep)
9190 		goto fail;
9191 
9192 	btrfs_path_cachep = kmem_cache_create("btrfs_path",
9193 			sizeof(struct btrfs_path), 0,
9194 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
9195 	if (!btrfs_path_cachep)
9196 		goto fail;
9197 
9198 	btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
9199 			sizeof(struct btrfs_free_space), 0,
9200 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
9201 	if (!btrfs_free_space_cachep)
9202 		goto fail;
9203 
9204 	return 0;
9205 fail:
9206 	btrfs_destroy_cachep();
9207 	return -ENOMEM;
9208 }
9209 
9210 static int btrfs_getattr(struct vfsmount *mnt,
9211 			 struct dentry *dentry, struct kstat *stat)
9212 {
9213 	u64 delalloc_bytes;
9214 	struct inode *inode = d_inode(dentry);
9215 	u32 blocksize = inode->i_sb->s_blocksize;
9216 
9217 	generic_fillattr(inode, stat);
9218 	stat->dev = BTRFS_I(inode)->root->anon_dev;
9219 	stat->blksize = PAGE_CACHE_SIZE;
9220 
9221 	spin_lock(&BTRFS_I(inode)->lock);
9222 	delalloc_bytes = BTRFS_I(inode)->delalloc_bytes;
9223 	spin_unlock(&BTRFS_I(inode)->lock);
9224 	stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
9225 			ALIGN(delalloc_bytes, blocksize)) >> 9;
9226 	return 0;
9227 }
9228 
9229 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
9230 			   struct inode *new_dir, struct dentry *new_dentry)
9231 {
9232 	struct btrfs_trans_handle *trans;
9233 	struct btrfs_root *root = BTRFS_I(old_dir)->root;
9234 	struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9235 	struct inode *new_inode = d_inode(new_dentry);
9236 	struct inode *old_inode = d_inode(old_dentry);
9237 	struct timespec ctime = CURRENT_TIME;
9238 	u64 index = 0;
9239 	u64 root_objectid;
9240 	int ret;
9241 	u64 old_ino = btrfs_ino(old_inode);
9242 
9243 	if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
9244 		return -EPERM;
9245 
9246 	/* we only allow rename subvolume link between subvolumes */
9247 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9248 		return -EXDEV;
9249 
9250 	if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
9251 	    (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID))
9252 		return -ENOTEMPTY;
9253 
9254 	if (S_ISDIR(old_inode->i_mode) && new_inode &&
9255 	    new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
9256 		return -ENOTEMPTY;
9257 
9258 
9259 	/* check for collisions, even if the  name isn't there */
9260 	ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
9261 			     new_dentry->d_name.name,
9262 			     new_dentry->d_name.len);
9263 
9264 	if (ret) {
9265 		if (ret == -EEXIST) {
9266 			/* we shouldn't get
9267 			 * eexist without a new_inode */
9268 			if (WARN_ON(!new_inode)) {
9269 				return ret;
9270 			}
9271 		} else {
9272 			/* maybe -EOVERFLOW */
9273 			return ret;
9274 		}
9275 	}
9276 	ret = 0;
9277 
9278 	/*
9279 	 * we're using rename to replace one file with another.  Start IO on it
9280 	 * now so  we don't add too much work to the end of the transaction
9281 	 */
9282 	if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
9283 		filemap_flush(old_inode->i_mapping);
9284 
9285 	/* close the racy window with snapshot create/destroy ioctl */
9286 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9287 		down_read(&root->fs_info->subvol_sem);
9288 	/*
9289 	 * We want to reserve the absolute worst case amount of items.  So if
9290 	 * both inodes are subvols and we need to unlink them then that would
9291 	 * require 4 item modifications, but if they are both normal inodes it
9292 	 * would require 5 item modifications, so we'll assume their normal
9293 	 * inodes.  So 5 * 2 is 10, plus 1 for the new link, so 11 total items
9294 	 * should cover the worst case number of items we'll modify.
9295 	 */
9296 	trans = btrfs_start_transaction(root, 11);
9297 	if (IS_ERR(trans)) {
9298                 ret = PTR_ERR(trans);
9299                 goto out_notrans;
9300         }
9301 
9302 	if (dest != root)
9303 		btrfs_record_root_in_trans(trans, dest);
9304 
9305 	ret = btrfs_set_inode_index(new_dir, &index);
9306 	if (ret)
9307 		goto out_fail;
9308 
9309 	BTRFS_I(old_inode)->dir_index = 0ULL;
9310 	if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9311 		/* force full log commit if subvolume involved. */
9312 		btrfs_set_log_full_commit(root->fs_info, trans);
9313 	} else {
9314 		ret = btrfs_insert_inode_ref(trans, dest,
9315 					     new_dentry->d_name.name,
9316 					     new_dentry->d_name.len,
9317 					     old_ino,
9318 					     btrfs_ino(new_dir), index);
9319 		if (ret)
9320 			goto out_fail;
9321 		/*
9322 		 * this is an ugly little race, but the rename is required
9323 		 * to make sure that if we crash, the inode is either at the
9324 		 * old name or the new one.  pinning the log transaction lets
9325 		 * us make sure we don't allow a log commit to come in after
9326 		 * we unlink the name but before we add the new name back in.
9327 		 */
9328 		btrfs_pin_log_trans(root);
9329 	}
9330 
9331 	inode_inc_iversion(old_dir);
9332 	inode_inc_iversion(new_dir);
9333 	inode_inc_iversion(old_inode);
9334 	old_dir->i_ctime = old_dir->i_mtime = ctime;
9335 	new_dir->i_ctime = new_dir->i_mtime = ctime;
9336 	old_inode->i_ctime = ctime;
9337 
9338 	if (old_dentry->d_parent != new_dentry->d_parent)
9339 		btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
9340 
9341 	if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9342 		root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
9343 		ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
9344 					old_dentry->d_name.name,
9345 					old_dentry->d_name.len);
9346 	} else {
9347 		ret = __btrfs_unlink_inode(trans, root, old_dir,
9348 					d_inode(old_dentry),
9349 					old_dentry->d_name.name,
9350 					old_dentry->d_name.len);
9351 		if (!ret)
9352 			ret = btrfs_update_inode(trans, root, old_inode);
9353 	}
9354 	if (ret) {
9355 		btrfs_abort_transaction(trans, root, ret);
9356 		goto out_fail;
9357 	}
9358 
9359 	if (new_inode) {
9360 		inode_inc_iversion(new_inode);
9361 		new_inode->i_ctime = CURRENT_TIME;
9362 		if (unlikely(btrfs_ino(new_inode) ==
9363 			     BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
9364 			root_objectid = BTRFS_I(new_inode)->location.objectid;
9365 			ret = btrfs_unlink_subvol(trans, dest, new_dir,
9366 						root_objectid,
9367 						new_dentry->d_name.name,
9368 						new_dentry->d_name.len);
9369 			BUG_ON(new_inode->i_nlink == 0);
9370 		} else {
9371 			ret = btrfs_unlink_inode(trans, dest, new_dir,
9372 						 d_inode(new_dentry),
9373 						 new_dentry->d_name.name,
9374 						 new_dentry->d_name.len);
9375 		}
9376 		if (!ret && new_inode->i_nlink == 0)
9377 			ret = btrfs_orphan_add(trans, d_inode(new_dentry));
9378 		if (ret) {
9379 			btrfs_abort_transaction(trans, root, ret);
9380 			goto out_fail;
9381 		}
9382 	}
9383 
9384 	ret = btrfs_add_link(trans, new_dir, old_inode,
9385 			     new_dentry->d_name.name,
9386 			     new_dentry->d_name.len, 0, index);
9387 	if (ret) {
9388 		btrfs_abort_transaction(trans, root, ret);
9389 		goto out_fail;
9390 	}
9391 
9392 	if (old_inode->i_nlink == 1)
9393 		BTRFS_I(old_inode)->dir_index = index;
9394 
9395 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID) {
9396 		struct dentry *parent = new_dentry->d_parent;
9397 		btrfs_log_new_name(trans, old_inode, old_dir, parent);
9398 		btrfs_end_log_trans(root);
9399 	}
9400 out_fail:
9401 	btrfs_end_transaction(trans, root);
9402 out_notrans:
9403 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9404 		up_read(&root->fs_info->subvol_sem);
9405 
9406 	return ret;
9407 }
9408 
9409 static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry,
9410 			 struct inode *new_dir, struct dentry *new_dentry,
9411 			 unsigned int flags)
9412 {
9413 	if (flags & ~RENAME_NOREPLACE)
9414 		return -EINVAL;
9415 
9416 	return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry);
9417 }
9418 
9419 static void btrfs_run_delalloc_work(struct btrfs_work *work)
9420 {
9421 	struct btrfs_delalloc_work *delalloc_work;
9422 	struct inode *inode;
9423 
9424 	delalloc_work = container_of(work, struct btrfs_delalloc_work,
9425 				     work);
9426 	inode = delalloc_work->inode;
9427 	filemap_flush(inode->i_mapping);
9428 	if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
9429 				&BTRFS_I(inode)->runtime_flags))
9430 		filemap_flush(inode->i_mapping);
9431 
9432 	if (delalloc_work->delay_iput)
9433 		btrfs_add_delayed_iput(inode);
9434 	else
9435 		iput(inode);
9436 	complete(&delalloc_work->completion);
9437 }
9438 
9439 struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode,
9440 						    int delay_iput)
9441 {
9442 	struct btrfs_delalloc_work *work;
9443 
9444 	work = kmalloc(sizeof(*work), GFP_NOFS);
9445 	if (!work)
9446 		return NULL;
9447 
9448 	init_completion(&work->completion);
9449 	INIT_LIST_HEAD(&work->list);
9450 	work->inode = inode;
9451 	work->delay_iput = delay_iput;
9452 	WARN_ON_ONCE(!inode);
9453 	btrfs_init_work(&work->work, btrfs_flush_delalloc_helper,
9454 			btrfs_run_delalloc_work, NULL, NULL);
9455 
9456 	return work;
9457 }
9458 
9459 void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work)
9460 {
9461 	wait_for_completion(&work->completion);
9462 	kfree(work);
9463 }
9464 
9465 /*
9466  * some fairly slow code that needs optimization. This walks the list
9467  * of all the inodes with pending delalloc and forces them to disk.
9468  */
9469 static int __start_delalloc_inodes(struct btrfs_root *root, int delay_iput,
9470 				   int nr)
9471 {
9472 	struct btrfs_inode *binode;
9473 	struct inode *inode;
9474 	struct btrfs_delalloc_work *work, *next;
9475 	struct list_head works;
9476 	struct list_head splice;
9477 	int ret = 0;
9478 
9479 	INIT_LIST_HEAD(&works);
9480 	INIT_LIST_HEAD(&splice);
9481 
9482 	mutex_lock(&root->delalloc_mutex);
9483 	spin_lock(&root->delalloc_lock);
9484 	list_splice_init(&root->delalloc_inodes, &splice);
9485 	while (!list_empty(&splice)) {
9486 		binode = list_entry(splice.next, struct btrfs_inode,
9487 				    delalloc_inodes);
9488 
9489 		list_move_tail(&binode->delalloc_inodes,
9490 			       &root->delalloc_inodes);
9491 		inode = igrab(&binode->vfs_inode);
9492 		if (!inode) {
9493 			cond_resched_lock(&root->delalloc_lock);
9494 			continue;
9495 		}
9496 		spin_unlock(&root->delalloc_lock);
9497 
9498 		work = btrfs_alloc_delalloc_work(inode, delay_iput);
9499 		if (!work) {
9500 			if (delay_iput)
9501 				btrfs_add_delayed_iput(inode);
9502 			else
9503 				iput(inode);
9504 			ret = -ENOMEM;
9505 			goto out;
9506 		}
9507 		list_add_tail(&work->list, &works);
9508 		btrfs_queue_work(root->fs_info->flush_workers,
9509 				 &work->work);
9510 		ret++;
9511 		if (nr != -1 && ret >= nr)
9512 			goto out;
9513 		cond_resched();
9514 		spin_lock(&root->delalloc_lock);
9515 	}
9516 	spin_unlock(&root->delalloc_lock);
9517 
9518 out:
9519 	list_for_each_entry_safe(work, next, &works, list) {
9520 		list_del_init(&work->list);
9521 		btrfs_wait_and_free_delalloc_work(work);
9522 	}
9523 
9524 	if (!list_empty_careful(&splice)) {
9525 		spin_lock(&root->delalloc_lock);
9526 		list_splice_tail(&splice, &root->delalloc_inodes);
9527 		spin_unlock(&root->delalloc_lock);
9528 	}
9529 	mutex_unlock(&root->delalloc_mutex);
9530 	return ret;
9531 }
9532 
9533 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
9534 {
9535 	int ret;
9536 
9537 	if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
9538 		return -EROFS;
9539 
9540 	ret = __start_delalloc_inodes(root, delay_iput, -1);
9541 	if (ret > 0)
9542 		ret = 0;
9543 	/*
9544 	 * the filemap_flush will queue IO into the worker threads, but
9545 	 * we have to make sure the IO is actually started and that
9546 	 * ordered extents get created before we return
9547 	 */
9548 	atomic_inc(&root->fs_info->async_submit_draining);
9549 	while (atomic_read(&root->fs_info->nr_async_submits) ||
9550 	      atomic_read(&root->fs_info->async_delalloc_pages)) {
9551 		wait_event(root->fs_info->async_submit_wait,
9552 		   (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
9553 		    atomic_read(&root->fs_info->async_delalloc_pages) == 0));
9554 	}
9555 	atomic_dec(&root->fs_info->async_submit_draining);
9556 	return ret;
9557 }
9558 
9559 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int delay_iput,
9560 			       int nr)
9561 {
9562 	struct btrfs_root *root;
9563 	struct list_head splice;
9564 	int ret;
9565 
9566 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
9567 		return -EROFS;
9568 
9569 	INIT_LIST_HEAD(&splice);
9570 
9571 	mutex_lock(&fs_info->delalloc_root_mutex);
9572 	spin_lock(&fs_info->delalloc_root_lock);
9573 	list_splice_init(&fs_info->delalloc_roots, &splice);
9574 	while (!list_empty(&splice) && nr) {
9575 		root = list_first_entry(&splice, struct btrfs_root,
9576 					delalloc_root);
9577 		root = btrfs_grab_fs_root(root);
9578 		BUG_ON(!root);
9579 		list_move_tail(&root->delalloc_root,
9580 			       &fs_info->delalloc_roots);
9581 		spin_unlock(&fs_info->delalloc_root_lock);
9582 
9583 		ret = __start_delalloc_inodes(root, delay_iput, nr);
9584 		btrfs_put_fs_root(root);
9585 		if (ret < 0)
9586 			goto out;
9587 
9588 		if (nr != -1) {
9589 			nr -= ret;
9590 			WARN_ON(nr < 0);
9591 		}
9592 		spin_lock(&fs_info->delalloc_root_lock);
9593 	}
9594 	spin_unlock(&fs_info->delalloc_root_lock);
9595 
9596 	ret = 0;
9597 	atomic_inc(&fs_info->async_submit_draining);
9598 	while (atomic_read(&fs_info->nr_async_submits) ||
9599 	      atomic_read(&fs_info->async_delalloc_pages)) {
9600 		wait_event(fs_info->async_submit_wait,
9601 		   (atomic_read(&fs_info->nr_async_submits) == 0 &&
9602 		    atomic_read(&fs_info->async_delalloc_pages) == 0));
9603 	}
9604 	atomic_dec(&fs_info->async_submit_draining);
9605 out:
9606 	if (!list_empty_careful(&splice)) {
9607 		spin_lock(&fs_info->delalloc_root_lock);
9608 		list_splice_tail(&splice, &fs_info->delalloc_roots);
9609 		spin_unlock(&fs_info->delalloc_root_lock);
9610 	}
9611 	mutex_unlock(&fs_info->delalloc_root_mutex);
9612 	return ret;
9613 }
9614 
9615 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
9616 			 const char *symname)
9617 {
9618 	struct btrfs_trans_handle *trans;
9619 	struct btrfs_root *root = BTRFS_I(dir)->root;
9620 	struct btrfs_path *path;
9621 	struct btrfs_key key;
9622 	struct inode *inode = NULL;
9623 	int err;
9624 	int drop_inode = 0;
9625 	u64 objectid;
9626 	u64 index = 0;
9627 	int name_len;
9628 	int datasize;
9629 	unsigned long ptr;
9630 	struct btrfs_file_extent_item *ei;
9631 	struct extent_buffer *leaf;
9632 
9633 	name_len = strlen(symname);
9634 	if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
9635 		return -ENAMETOOLONG;
9636 
9637 	/*
9638 	 * 2 items for inode item and ref
9639 	 * 2 items for dir items
9640 	 * 1 item for updating parent inode item
9641 	 * 1 item for the inline extent item
9642 	 * 1 item for xattr if selinux is on
9643 	 */
9644 	trans = btrfs_start_transaction(root, 7);
9645 	if (IS_ERR(trans))
9646 		return PTR_ERR(trans);
9647 
9648 	err = btrfs_find_free_ino(root, &objectid);
9649 	if (err)
9650 		goto out_unlock;
9651 
9652 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
9653 				dentry->d_name.len, btrfs_ino(dir), objectid,
9654 				S_IFLNK|S_IRWXUGO, &index);
9655 	if (IS_ERR(inode)) {
9656 		err = PTR_ERR(inode);
9657 		goto out_unlock;
9658 	}
9659 
9660 	/*
9661 	* If the active LSM wants to access the inode during
9662 	* d_instantiate it needs these. Smack checks to see
9663 	* if the filesystem supports xattrs by looking at the
9664 	* ops vector.
9665 	*/
9666 	inode->i_fop = &btrfs_file_operations;
9667 	inode->i_op = &btrfs_file_inode_operations;
9668 	inode->i_mapping->a_ops = &btrfs_aops;
9669 	BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
9670 
9671 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
9672 	if (err)
9673 		goto out_unlock_inode;
9674 
9675 	path = btrfs_alloc_path();
9676 	if (!path) {
9677 		err = -ENOMEM;
9678 		goto out_unlock_inode;
9679 	}
9680 	key.objectid = btrfs_ino(inode);
9681 	key.offset = 0;
9682 	key.type = BTRFS_EXTENT_DATA_KEY;
9683 	datasize = btrfs_file_extent_calc_inline_size(name_len);
9684 	err = btrfs_insert_empty_item(trans, root, path, &key,
9685 				      datasize);
9686 	if (err) {
9687 		btrfs_free_path(path);
9688 		goto out_unlock_inode;
9689 	}
9690 	leaf = path->nodes[0];
9691 	ei = btrfs_item_ptr(leaf, path->slots[0],
9692 			    struct btrfs_file_extent_item);
9693 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
9694 	btrfs_set_file_extent_type(leaf, ei,
9695 				   BTRFS_FILE_EXTENT_INLINE);
9696 	btrfs_set_file_extent_encryption(leaf, ei, 0);
9697 	btrfs_set_file_extent_compression(leaf, ei, 0);
9698 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
9699 	btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
9700 
9701 	ptr = btrfs_file_extent_inline_start(ei);
9702 	write_extent_buffer(leaf, symname, ptr, name_len);
9703 	btrfs_mark_buffer_dirty(leaf);
9704 	btrfs_free_path(path);
9705 
9706 	inode->i_op = &btrfs_symlink_inode_operations;
9707 	inode_nohighmem(inode);
9708 	inode->i_mapping->a_ops = &btrfs_symlink_aops;
9709 	inode_set_bytes(inode, name_len);
9710 	btrfs_i_size_write(inode, name_len);
9711 	err = btrfs_update_inode(trans, root, inode);
9712 	/*
9713 	 * Last step, add directory indexes for our symlink inode. This is the
9714 	 * last step to avoid extra cleanup of these indexes if an error happens
9715 	 * elsewhere above.
9716 	 */
9717 	if (!err)
9718 		err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
9719 	if (err) {
9720 		drop_inode = 1;
9721 		goto out_unlock_inode;
9722 	}
9723 
9724 	unlock_new_inode(inode);
9725 	d_instantiate(dentry, inode);
9726 
9727 out_unlock:
9728 	btrfs_end_transaction(trans, root);
9729 	if (drop_inode) {
9730 		inode_dec_link_count(inode);
9731 		iput(inode);
9732 	}
9733 	btrfs_btree_balance_dirty(root);
9734 	return err;
9735 
9736 out_unlock_inode:
9737 	drop_inode = 1;
9738 	unlock_new_inode(inode);
9739 	goto out_unlock;
9740 }
9741 
9742 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
9743 				       u64 start, u64 num_bytes, u64 min_size,
9744 				       loff_t actual_len, u64 *alloc_hint,
9745 				       struct btrfs_trans_handle *trans)
9746 {
9747 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
9748 	struct extent_map *em;
9749 	struct btrfs_root *root = BTRFS_I(inode)->root;
9750 	struct btrfs_key ins;
9751 	u64 cur_offset = start;
9752 	u64 i_size;
9753 	u64 cur_bytes;
9754 	u64 last_alloc = (u64)-1;
9755 	int ret = 0;
9756 	bool own_trans = true;
9757 
9758 	if (trans)
9759 		own_trans = false;
9760 	while (num_bytes > 0) {
9761 		if (own_trans) {
9762 			trans = btrfs_start_transaction(root, 3);
9763 			if (IS_ERR(trans)) {
9764 				ret = PTR_ERR(trans);
9765 				break;
9766 			}
9767 		}
9768 
9769 		cur_bytes = min_t(u64, num_bytes, SZ_256M);
9770 		cur_bytes = max(cur_bytes, min_size);
9771 		/*
9772 		 * If we are severely fragmented we could end up with really
9773 		 * small allocations, so if the allocator is returning small
9774 		 * chunks lets make its job easier by only searching for those
9775 		 * sized chunks.
9776 		 */
9777 		cur_bytes = min(cur_bytes, last_alloc);
9778 		ret = btrfs_reserve_extent(root, cur_bytes, min_size, 0,
9779 					   *alloc_hint, &ins, 1, 0);
9780 		if (ret) {
9781 			if (own_trans)
9782 				btrfs_end_transaction(trans, root);
9783 			break;
9784 		}
9785 
9786 		last_alloc = ins.offset;
9787 		ret = insert_reserved_file_extent(trans, inode,
9788 						  cur_offset, ins.objectid,
9789 						  ins.offset, ins.offset,
9790 						  ins.offset, 0, 0, 0,
9791 						  BTRFS_FILE_EXTENT_PREALLOC);
9792 		if (ret) {
9793 			btrfs_free_reserved_extent(root, ins.objectid,
9794 						   ins.offset, 0);
9795 			btrfs_abort_transaction(trans, root, ret);
9796 			if (own_trans)
9797 				btrfs_end_transaction(trans, root);
9798 			break;
9799 		}
9800 
9801 		btrfs_drop_extent_cache(inode, cur_offset,
9802 					cur_offset + ins.offset -1, 0);
9803 
9804 		em = alloc_extent_map();
9805 		if (!em) {
9806 			set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
9807 				&BTRFS_I(inode)->runtime_flags);
9808 			goto next;
9809 		}
9810 
9811 		em->start = cur_offset;
9812 		em->orig_start = cur_offset;
9813 		em->len = ins.offset;
9814 		em->block_start = ins.objectid;
9815 		em->block_len = ins.offset;
9816 		em->orig_block_len = ins.offset;
9817 		em->ram_bytes = ins.offset;
9818 		em->bdev = root->fs_info->fs_devices->latest_bdev;
9819 		set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
9820 		em->generation = trans->transid;
9821 
9822 		while (1) {
9823 			write_lock(&em_tree->lock);
9824 			ret = add_extent_mapping(em_tree, em, 1);
9825 			write_unlock(&em_tree->lock);
9826 			if (ret != -EEXIST)
9827 				break;
9828 			btrfs_drop_extent_cache(inode, cur_offset,
9829 						cur_offset + ins.offset - 1,
9830 						0);
9831 		}
9832 		free_extent_map(em);
9833 next:
9834 		num_bytes -= ins.offset;
9835 		cur_offset += ins.offset;
9836 		*alloc_hint = ins.objectid + ins.offset;
9837 
9838 		inode_inc_iversion(inode);
9839 		inode->i_ctime = CURRENT_TIME;
9840 		BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
9841 		if (!(mode & FALLOC_FL_KEEP_SIZE) &&
9842 		    (actual_len > inode->i_size) &&
9843 		    (cur_offset > inode->i_size)) {
9844 			if (cur_offset > actual_len)
9845 				i_size = actual_len;
9846 			else
9847 				i_size = cur_offset;
9848 			i_size_write(inode, i_size);
9849 			btrfs_ordered_update_i_size(inode, i_size, NULL);
9850 		}
9851 
9852 		ret = btrfs_update_inode(trans, root, inode);
9853 
9854 		if (ret) {
9855 			btrfs_abort_transaction(trans, root, ret);
9856 			if (own_trans)
9857 				btrfs_end_transaction(trans, root);
9858 			break;
9859 		}
9860 
9861 		if (own_trans)
9862 			btrfs_end_transaction(trans, root);
9863 	}
9864 	return ret;
9865 }
9866 
9867 int btrfs_prealloc_file_range(struct inode *inode, int mode,
9868 			      u64 start, u64 num_bytes, u64 min_size,
9869 			      loff_t actual_len, u64 *alloc_hint)
9870 {
9871 	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9872 					   min_size, actual_len, alloc_hint,
9873 					   NULL);
9874 }
9875 
9876 int btrfs_prealloc_file_range_trans(struct inode *inode,
9877 				    struct btrfs_trans_handle *trans, int mode,
9878 				    u64 start, u64 num_bytes, u64 min_size,
9879 				    loff_t actual_len, u64 *alloc_hint)
9880 {
9881 	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9882 					   min_size, actual_len, alloc_hint, trans);
9883 }
9884 
9885 static int btrfs_set_page_dirty(struct page *page)
9886 {
9887 	return __set_page_dirty_nobuffers(page);
9888 }
9889 
9890 static int btrfs_permission(struct inode *inode, int mask)
9891 {
9892 	struct btrfs_root *root = BTRFS_I(inode)->root;
9893 	umode_t mode = inode->i_mode;
9894 
9895 	if (mask & MAY_WRITE &&
9896 	    (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
9897 		if (btrfs_root_readonly(root))
9898 			return -EROFS;
9899 		if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
9900 			return -EACCES;
9901 	}
9902 	return generic_permission(inode, mask);
9903 }
9904 
9905 static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
9906 {
9907 	struct btrfs_trans_handle *trans;
9908 	struct btrfs_root *root = BTRFS_I(dir)->root;
9909 	struct inode *inode = NULL;
9910 	u64 objectid;
9911 	u64 index;
9912 	int ret = 0;
9913 
9914 	/*
9915 	 * 5 units required for adding orphan entry
9916 	 */
9917 	trans = btrfs_start_transaction(root, 5);
9918 	if (IS_ERR(trans))
9919 		return PTR_ERR(trans);
9920 
9921 	ret = btrfs_find_free_ino(root, &objectid);
9922 	if (ret)
9923 		goto out;
9924 
9925 	inode = btrfs_new_inode(trans, root, dir, NULL, 0,
9926 				btrfs_ino(dir), objectid, mode, &index);
9927 	if (IS_ERR(inode)) {
9928 		ret = PTR_ERR(inode);
9929 		inode = NULL;
9930 		goto out;
9931 	}
9932 
9933 	inode->i_fop = &btrfs_file_operations;
9934 	inode->i_op = &btrfs_file_inode_operations;
9935 
9936 	inode->i_mapping->a_ops = &btrfs_aops;
9937 	BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
9938 
9939 	ret = btrfs_init_inode_security(trans, inode, dir, NULL);
9940 	if (ret)
9941 		goto out_inode;
9942 
9943 	ret = btrfs_update_inode(trans, root, inode);
9944 	if (ret)
9945 		goto out_inode;
9946 	ret = btrfs_orphan_add(trans, inode);
9947 	if (ret)
9948 		goto out_inode;
9949 
9950 	/*
9951 	 * We set number of links to 0 in btrfs_new_inode(), and here we set
9952 	 * it to 1 because d_tmpfile() will issue a warning if the count is 0,
9953 	 * through:
9954 	 *
9955 	 *    d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
9956 	 */
9957 	set_nlink(inode, 1);
9958 	unlock_new_inode(inode);
9959 	d_tmpfile(dentry, inode);
9960 	mark_inode_dirty(inode);
9961 
9962 out:
9963 	btrfs_end_transaction(trans, root);
9964 	if (ret)
9965 		iput(inode);
9966 	btrfs_balance_delayed_items(root);
9967 	btrfs_btree_balance_dirty(root);
9968 	return ret;
9969 
9970 out_inode:
9971 	unlock_new_inode(inode);
9972 	goto out;
9973 
9974 }
9975 
9976 /* Inspired by filemap_check_errors() */
9977 int btrfs_inode_check_errors(struct inode *inode)
9978 {
9979 	int ret = 0;
9980 
9981 	if (test_bit(AS_ENOSPC, &inode->i_mapping->flags) &&
9982 	    test_and_clear_bit(AS_ENOSPC, &inode->i_mapping->flags))
9983 		ret = -ENOSPC;
9984 	if (test_bit(AS_EIO, &inode->i_mapping->flags) &&
9985 	    test_and_clear_bit(AS_EIO, &inode->i_mapping->flags))
9986 		ret = -EIO;
9987 
9988 	return ret;
9989 }
9990 
9991 static const struct inode_operations btrfs_dir_inode_operations = {
9992 	.getattr	= btrfs_getattr,
9993 	.lookup		= btrfs_lookup,
9994 	.create		= btrfs_create,
9995 	.unlink		= btrfs_unlink,
9996 	.link		= btrfs_link,
9997 	.mkdir		= btrfs_mkdir,
9998 	.rmdir		= btrfs_rmdir,
9999 	.rename2	= btrfs_rename2,
10000 	.symlink	= btrfs_symlink,
10001 	.setattr	= btrfs_setattr,
10002 	.mknod		= btrfs_mknod,
10003 	.setxattr	= btrfs_setxattr,
10004 	.getxattr	= generic_getxattr,
10005 	.listxattr	= btrfs_listxattr,
10006 	.removexattr	= btrfs_removexattr,
10007 	.permission	= btrfs_permission,
10008 	.get_acl	= btrfs_get_acl,
10009 	.set_acl	= btrfs_set_acl,
10010 	.update_time	= btrfs_update_time,
10011 	.tmpfile        = btrfs_tmpfile,
10012 };
10013 static const struct inode_operations btrfs_dir_ro_inode_operations = {
10014 	.lookup		= btrfs_lookup,
10015 	.permission	= btrfs_permission,
10016 	.get_acl	= btrfs_get_acl,
10017 	.set_acl	= btrfs_set_acl,
10018 	.update_time	= btrfs_update_time,
10019 };
10020 
10021 static const struct file_operations btrfs_dir_file_operations = {
10022 	.llseek		= generic_file_llseek,
10023 	.read		= generic_read_dir,
10024 	.iterate	= btrfs_real_readdir,
10025 	.unlocked_ioctl	= btrfs_ioctl,
10026 #ifdef CONFIG_COMPAT
10027 	.compat_ioctl	= btrfs_ioctl,
10028 #endif
10029 	.release        = btrfs_release_file,
10030 	.fsync		= btrfs_sync_file,
10031 };
10032 
10033 static const struct extent_io_ops btrfs_extent_io_ops = {
10034 	.fill_delalloc = run_delalloc_range,
10035 	.submit_bio_hook = btrfs_submit_bio_hook,
10036 	.merge_bio_hook = btrfs_merge_bio_hook,
10037 	.readpage_end_io_hook = btrfs_readpage_end_io_hook,
10038 	.writepage_end_io_hook = btrfs_writepage_end_io_hook,
10039 	.writepage_start_hook = btrfs_writepage_start_hook,
10040 	.set_bit_hook = btrfs_set_bit_hook,
10041 	.clear_bit_hook = btrfs_clear_bit_hook,
10042 	.merge_extent_hook = btrfs_merge_extent_hook,
10043 	.split_extent_hook = btrfs_split_extent_hook,
10044 };
10045 
10046 /*
10047  * btrfs doesn't support the bmap operation because swapfiles
10048  * use bmap to make a mapping of extents in the file.  They assume
10049  * these extents won't change over the life of the file and they
10050  * use the bmap result to do IO directly to the drive.
10051  *
10052  * the btrfs bmap call would return logical addresses that aren't
10053  * suitable for IO and they also will change frequently as COW
10054  * operations happen.  So, swapfile + btrfs == corruption.
10055  *
10056  * For now we're avoiding this by dropping bmap.
10057  */
10058 static const struct address_space_operations btrfs_aops = {
10059 	.readpage	= btrfs_readpage,
10060 	.writepage	= btrfs_writepage,
10061 	.writepages	= btrfs_writepages,
10062 	.readpages	= btrfs_readpages,
10063 	.direct_IO	= btrfs_direct_IO,
10064 	.invalidatepage = btrfs_invalidatepage,
10065 	.releasepage	= btrfs_releasepage,
10066 	.set_page_dirty	= btrfs_set_page_dirty,
10067 	.error_remove_page = generic_error_remove_page,
10068 };
10069 
10070 static const struct address_space_operations btrfs_symlink_aops = {
10071 	.readpage	= btrfs_readpage,
10072 	.writepage	= btrfs_writepage,
10073 	.invalidatepage = btrfs_invalidatepage,
10074 	.releasepage	= btrfs_releasepage,
10075 };
10076 
10077 static const struct inode_operations btrfs_file_inode_operations = {
10078 	.getattr	= btrfs_getattr,
10079 	.setattr	= btrfs_setattr,
10080 	.setxattr	= btrfs_setxattr,
10081 	.getxattr	= generic_getxattr,
10082 	.listxattr      = btrfs_listxattr,
10083 	.removexattr	= btrfs_removexattr,
10084 	.permission	= btrfs_permission,
10085 	.fiemap		= btrfs_fiemap,
10086 	.get_acl	= btrfs_get_acl,
10087 	.set_acl	= btrfs_set_acl,
10088 	.update_time	= btrfs_update_time,
10089 };
10090 static const struct inode_operations btrfs_special_inode_operations = {
10091 	.getattr	= btrfs_getattr,
10092 	.setattr	= btrfs_setattr,
10093 	.permission	= btrfs_permission,
10094 	.setxattr	= btrfs_setxattr,
10095 	.getxattr	= generic_getxattr,
10096 	.listxattr	= btrfs_listxattr,
10097 	.removexattr	= btrfs_removexattr,
10098 	.get_acl	= btrfs_get_acl,
10099 	.set_acl	= btrfs_set_acl,
10100 	.update_time	= btrfs_update_time,
10101 };
10102 static const struct inode_operations btrfs_symlink_inode_operations = {
10103 	.readlink	= generic_readlink,
10104 	.get_link	= page_get_link,
10105 	.getattr	= btrfs_getattr,
10106 	.setattr	= btrfs_setattr,
10107 	.permission	= btrfs_permission,
10108 	.setxattr	= btrfs_setxattr,
10109 	.getxattr	= generic_getxattr,
10110 	.listxattr	= btrfs_listxattr,
10111 	.removexattr	= btrfs_removexattr,
10112 	.update_time	= btrfs_update_time,
10113 };
10114 
10115 const struct dentry_operations btrfs_dentry_operations = {
10116 	.d_delete	= btrfs_dentry_delete,
10117 	.d_release	= btrfs_dentry_release,
10118 };
10119