1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/kernel.h> 20 #include <linux/bio.h> 21 #include <linux/buffer_head.h> 22 #include <linux/file.h> 23 #include <linux/fs.h> 24 #include <linux/pagemap.h> 25 #include <linux/highmem.h> 26 #include <linux/time.h> 27 #include <linux/init.h> 28 #include <linux/string.h> 29 #include <linux/backing-dev.h> 30 #include <linux/mpage.h> 31 #include <linux/swap.h> 32 #include <linux/writeback.h> 33 #include <linux/statfs.h> 34 #include <linux/compat.h> 35 #include <linux/aio.h> 36 #include <linux/bit_spinlock.h> 37 #include <linux/xattr.h> 38 #include <linux/posix_acl.h> 39 #include <linux/falloc.h> 40 #include <linux/slab.h> 41 #include <linux/ratelimit.h> 42 #include <linux/mount.h> 43 #include <linux/btrfs.h> 44 #include <linux/blkdev.h> 45 #include <linux/posix_acl_xattr.h> 46 #include "ctree.h" 47 #include "disk-io.h" 48 #include "transaction.h" 49 #include "btrfs_inode.h" 50 #include "print-tree.h" 51 #include "ordered-data.h" 52 #include "xattr.h" 53 #include "tree-log.h" 54 #include "volumes.h" 55 #include "compression.h" 56 #include "locking.h" 57 #include "free-space-cache.h" 58 #include "inode-map.h" 59 #include "backref.h" 60 #include "hash.h" 61 62 struct btrfs_iget_args { 63 u64 ino; 64 struct btrfs_root *root; 65 }; 66 67 static const struct inode_operations btrfs_dir_inode_operations; 68 static const struct inode_operations btrfs_symlink_inode_operations; 69 static const struct inode_operations btrfs_dir_ro_inode_operations; 70 static const struct inode_operations btrfs_special_inode_operations; 71 static const struct inode_operations btrfs_file_inode_operations; 72 static const struct address_space_operations btrfs_aops; 73 static const struct address_space_operations btrfs_symlink_aops; 74 static const struct file_operations btrfs_dir_file_operations; 75 static struct extent_io_ops btrfs_extent_io_ops; 76 77 static struct kmem_cache *btrfs_inode_cachep; 78 static struct kmem_cache *btrfs_delalloc_work_cachep; 79 struct kmem_cache *btrfs_trans_handle_cachep; 80 struct kmem_cache *btrfs_transaction_cachep; 81 struct kmem_cache *btrfs_path_cachep; 82 struct kmem_cache *btrfs_free_space_cachep; 83 84 #define S_SHIFT 12 85 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = { 86 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE, 87 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR, 88 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV, 89 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV, 90 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO, 91 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK, 92 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK, 93 }; 94 95 static int btrfs_setsize(struct inode *inode, struct iattr *attr); 96 static int btrfs_truncate(struct inode *inode); 97 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent); 98 static noinline int cow_file_range(struct inode *inode, 99 struct page *locked_page, 100 u64 start, u64 end, int *page_started, 101 unsigned long *nr_written, int unlock); 102 static struct extent_map *create_pinned_em(struct inode *inode, u64 start, 103 u64 len, u64 orig_start, 104 u64 block_start, u64 block_len, 105 u64 orig_block_len, u64 ram_bytes, 106 int type); 107 108 static int btrfs_dirty_inode(struct inode *inode); 109 110 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans, 111 struct inode *inode, struct inode *dir, 112 const struct qstr *qstr) 113 { 114 int err; 115 116 err = btrfs_init_acl(trans, inode, dir); 117 if (!err) 118 err = btrfs_xattr_security_init(trans, inode, dir, qstr); 119 return err; 120 } 121 122 /* 123 * this does all the hard work for inserting an inline extent into 124 * the btree. The caller should have done a btrfs_drop_extents so that 125 * no overlapping inline items exist in the btree 126 */ 127 static noinline int insert_inline_extent(struct btrfs_trans_handle *trans, 128 struct btrfs_root *root, struct inode *inode, 129 u64 start, size_t size, size_t compressed_size, 130 int compress_type, 131 struct page **compressed_pages) 132 { 133 struct btrfs_key key; 134 struct btrfs_path *path; 135 struct extent_buffer *leaf; 136 struct page *page = NULL; 137 char *kaddr; 138 unsigned long ptr; 139 struct btrfs_file_extent_item *ei; 140 int err = 0; 141 int ret; 142 size_t cur_size = size; 143 size_t datasize; 144 unsigned long offset; 145 146 if (compressed_size && compressed_pages) 147 cur_size = compressed_size; 148 149 path = btrfs_alloc_path(); 150 if (!path) 151 return -ENOMEM; 152 153 path->leave_spinning = 1; 154 155 key.objectid = btrfs_ino(inode); 156 key.offset = start; 157 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY); 158 datasize = btrfs_file_extent_calc_inline_size(cur_size); 159 160 inode_add_bytes(inode, size); 161 ret = btrfs_insert_empty_item(trans, root, path, &key, 162 datasize); 163 if (ret) { 164 err = ret; 165 goto fail; 166 } 167 leaf = path->nodes[0]; 168 ei = btrfs_item_ptr(leaf, path->slots[0], 169 struct btrfs_file_extent_item); 170 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 171 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE); 172 btrfs_set_file_extent_encryption(leaf, ei, 0); 173 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 174 btrfs_set_file_extent_ram_bytes(leaf, ei, size); 175 ptr = btrfs_file_extent_inline_start(ei); 176 177 if (compress_type != BTRFS_COMPRESS_NONE) { 178 struct page *cpage; 179 int i = 0; 180 while (compressed_size > 0) { 181 cpage = compressed_pages[i]; 182 cur_size = min_t(unsigned long, compressed_size, 183 PAGE_CACHE_SIZE); 184 185 kaddr = kmap_atomic(cpage); 186 write_extent_buffer(leaf, kaddr, ptr, cur_size); 187 kunmap_atomic(kaddr); 188 189 i++; 190 ptr += cur_size; 191 compressed_size -= cur_size; 192 } 193 btrfs_set_file_extent_compression(leaf, ei, 194 compress_type); 195 } else { 196 page = find_get_page(inode->i_mapping, 197 start >> PAGE_CACHE_SHIFT); 198 btrfs_set_file_extent_compression(leaf, ei, 0); 199 kaddr = kmap_atomic(page); 200 offset = start & (PAGE_CACHE_SIZE - 1); 201 write_extent_buffer(leaf, kaddr + offset, ptr, size); 202 kunmap_atomic(kaddr); 203 page_cache_release(page); 204 } 205 btrfs_mark_buffer_dirty(leaf); 206 btrfs_free_path(path); 207 208 /* 209 * we're an inline extent, so nobody can 210 * extend the file past i_size without locking 211 * a page we already have locked. 212 * 213 * We must do any isize and inode updates 214 * before we unlock the pages. Otherwise we 215 * could end up racing with unlink. 216 */ 217 BTRFS_I(inode)->disk_i_size = inode->i_size; 218 ret = btrfs_update_inode(trans, root, inode); 219 220 return ret; 221 fail: 222 btrfs_free_path(path); 223 return err; 224 } 225 226 227 /* 228 * conditionally insert an inline extent into the file. This 229 * does the checks required to make sure the data is small enough 230 * to fit as an inline extent. 231 */ 232 static noinline int cow_file_range_inline(struct btrfs_root *root, 233 struct inode *inode, u64 start, 234 u64 end, size_t compressed_size, 235 int compress_type, 236 struct page **compressed_pages) 237 { 238 struct btrfs_trans_handle *trans; 239 u64 isize = i_size_read(inode); 240 u64 actual_end = min(end + 1, isize); 241 u64 inline_len = actual_end - start; 242 u64 aligned_end = ALIGN(end, root->sectorsize); 243 u64 data_len = inline_len; 244 int ret; 245 246 if (compressed_size) 247 data_len = compressed_size; 248 249 if (start > 0 || 250 actual_end >= PAGE_CACHE_SIZE || 251 data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) || 252 (!compressed_size && 253 (actual_end & (root->sectorsize - 1)) == 0) || 254 end + 1 < isize || 255 data_len > root->fs_info->max_inline) { 256 return 1; 257 } 258 259 trans = btrfs_join_transaction(root); 260 if (IS_ERR(trans)) 261 return PTR_ERR(trans); 262 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 263 264 ret = btrfs_drop_extents(trans, root, inode, start, aligned_end, 1); 265 if (ret) { 266 btrfs_abort_transaction(trans, root, ret); 267 goto out; 268 } 269 270 if (isize > actual_end) 271 inline_len = min_t(u64, isize, actual_end); 272 ret = insert_inline_extent(trans, root, inode, start, 273 inline_len, compressed_size, 274 compress_type, compressed_pages); 275 if (ret && ret != -ENOSPC) { 276 btrfs_abort_transaction(trans, root, ret); 277 goto out; 278 } else if (ret == -ENOSPC) { 279 ret = 1; 280 goto out; 281 } 282 283 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 284 btrfs_delalloc_release_metadata(inode, end + 1 - start); 285 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0); 286 out: 287 btrfs_end_transaction(trans, root); 288 return ret; 289 } 290 291 struct async_extent { 292 u64 start; 293 u64 ram_size; 294 u64 compressed_size; 295 struct page **pages; 296 unsigned long nr_pages; 297 int compress_type; 298 struct list_head list; 299 }; 300 301 struct async_cow { 302 struct inode *inode; 303 struct btrfs_root *root; 304 struct page *locked_page; 305 u64 start; 306 u64 end; 307 struct list_head extents; 308 struct btrfs_work work; 309 }; 310 311 static noinline int add_async_extent(struct async_cow *cow, 312 u64 start, u64 ram_size, 313 u64 compressed_size, 314 struct page **pages, 315 unsigned long nr_pages, 316 int compress_type) 317 { 318 struct async_extent *async_extent; 319 320 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS); 321 BUG_ON(!async_extent); /* -ENOMEM */ 322 async_extent->start = start; 323 async_extent->ram_size = ram_size; 324 async_extent->compressed_size = compressed_size; 325 async_extent->pages = pages; 326 async_extent->nr_pages = nr_pages; 327 async_extent->compress_type = compress_type; 328 list_add_tail(&async_extent->list, &cow->extents); 329 return 0; 330 } 331 332 /* 333 * we create compressed extents in two phases. The first 334 * phase compresses a range of pages that have already been 335 * locked (both pages and state bits are locked). 336 * 337 * This is done inside an ordered work queue, and the compression 338 * is spread across many cpus. The actual IO submission is step 339 * two, and the ordered work queue takes care of making sure that 340 * happens in the same order things were put onto the queue by 341 * writepages and friends. 342 * 343 * If this code finds it can't get good compression, it puts an 344 * entry onto the work queue to write the uncompressed bytes. This 345 * makes sure that both compressed inodes and uncompressed inodes 346 * are written in the same order that the flusher thread sent them 347 * down. 348 */ 349 static noinline int compress_file_range(struct inode *inode, 350 struct page *locked_page, 351 u64 start, u64 end, 352 struct async_cow *async_cow, 353 int *num_added) 354 { 355 struct btrfs_root *root = BTRFS_I(inode)->root; 356 u64 num_bytes; 357 u64 blocksize = root->sectorsize; 358 u64 actual_end; 359 u64 isize = i_size_read(inode); 360 int ret = 0; 361 struct page **pages = NULL; 362 unsigned long nr_pages; 363 unsigned long nr_pages_ret = 0; 364 unsigned long total_compressed = 0; 365 unsigned long total_in = 0; 366 unsigned long max_compressed = 128 * 1024; 367 unsigned long max_uncompressed = 128 * 1024; 368 int i; 369 int will_compress; 370 int compress_type = root->fs_info->compress_type; 371 int redirty = 0; 372 373 /* if this is a small write inside eof, kick off a defrag */ 374 if ((end - start + 1) < 16 * 1024 && 375 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size)) 376 btrfs_add_inode_defrag(NULL, inode); 377 378 actual_end = min_t(u64, isize, end + 1); 379 again: 380 will_compress = 0; 381 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1; 382 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE); 383 384 /* 385 * we don't want to send crud past the end of i_size through 386 * compression, that's just a waste of CPU time. So, if the 387 * end of the file is before the start of our current 388 * requested range of bytes, we bail out to the uncompressed 389 * cleanup code that can deal with all of this. 390 * 391 * It isn't really the fastest way to fix things, but this is a 392 * very uncommon corner. 393 */ 394 if (actual_end <= start) 395 goto cleanup_and_bail_uncompressed; 396 397 total_compressed = actual_end - start; 398 399 /* we want to make sure that amount of ram required to uncompress 400 * an extent is reasonable, so we limit the total size in ram 401 * of a compressed extent to 128k. This is a crucial number 402 * because it also controls how easily we can spread reads across 403 * cpus for decompression. 404 * 405 * We also want to make sure the amount of IO required to do 406 * a random read is reasonably small, so we limit the size of 407 * a compressed extent to 128k. 408 */ 409 total_compressed = min(total_compressed, max_uncompressed); 410 num_bytes = ALIGN(end - start + 1, blocksize); 411 num_bytes = max(blocksize, num_bytes); 412 total_in = 0; 413 ret = 0; 414 415 /* 416 * we do compression for mount -o compress and when the 417 * inode has not been flagged as nocompress. This flag can 418 * change at any time if we discover bad compression ratios. 419 */ 420 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) && 421 (btrfs_test_opt(root, COMPRESS) || 422 (BTRFS_I(inode)->force_compress) || 423 (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))) { 424 WARN_ON(pages); 425 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS); 426 if (!pages) { 427 /* just bail out to the uncompressed code */ 428 goto cont; 429 } 430 431 if (BTRFS_I(inode)->force_compress) 432 compress_type = BTRFS_I(inode)->force_compress; 433 434 /* 435 * we need to call clear_page_dirty_for_io on each 436 * page in the range. Otherwise applications with the file 437 * mmap'd can wander in and change the page contents while 438 * we are compressing them. 439 * 440 * If the compression fails for any reason, we set the pages 441 * dirty again later on. 442 */ 443 extent_range_clear_dirty_for_io(inode, start, end); 444 redirty = 1; 445 ret = btrfs_compress_pages(compress_type, 446 inode->i_mapping, start, 447 total_compressed, pages, 448 nr_pages, &nr_pages_ret, 449 &total_in, 450 &total_compressed, 451 max_compressed); 452 453 if (!ret) { 454 unsigned long offset = total_compressed & 455 (PAGE_CACHE_SIZE - 1); 456 struct page *page = pages[nr_pages_ret - 1]; 457 char *kaddr; 458 459 /* zero the tail end of the last page, we might be 460 * sending it down to disk 461 */ 462 if (offset) { 463 kaddr = kmap_atomic(page); 464 memset(kaddr + offset, 0, 465 PAGE_CACHE_SIZE - offset); 466 kunmap_atomic(kaddr); 467 } 468 will_compress = 1; 469 } 470 } 471 cont: 472 if (start == 0) { 473 /* lets try to make an inline extent */ 474 if (ret || total_in < (actual_end - start)) { 475 /* we didn't compress the entire range, try 476 * to make an uncompressed inline extent. 477 */ 478 ret = cow_file_range_inline(root, inode, start, end, 479 0, 0, NULL); 480 } else { 481 /* try making a compressed inline extent */ 482 ret = cow_file_range_inline(root, inode, start, end, 483 total_compressed, 484 compress_type, pages); 485 } 486 if (ret <= 0) { 487 unsigned long clear_flags = EXTENT_DELALLOC | 488 EXTENT_DEFRAG; 489 clear_flags |= (ret < 0) ? EXTENT_DO_ACCOUNTING : 0; 490 491 /* 492 * inline extent creation worked or returned error, 493 * we don't need to create any more async work items. 494 * Unlock and free up our temp pages. 495 */ 496 extent_clear_unlock_delalloc(inode, start, end, NULL, 497 clear_flags, PAGE_UNLOCK | 498 PAGE_CLEAR_DIRTY | 499 PAGE_SET_WRITEBACK | 500 PAGE_END_WRITEBACK); 501 goto free_pages_out; 502 } 503 } 504 505 if (will_compress) { 506 /* 507 * we aren't doing an inline extent round the compressed size 508 * up to a block size boundary so the allocator does sane 509 * things 510 */ 511 total_compressed = ALIGN(total_compressed, blocksize); 512 513 /* 514 * one last check to make sure the compression is really a 515 * win, compare the page count read with the blocks on disk 516 */ 517 total_in = ALIGN(total_in, PAGE_CACHE_SIZE); 518 if (total_compressed >= total_in) { 519 will_compress = 0; 520 } else { 521 num_bytes = total_in; 522 } 523 } 524 if (!will_compress && pages) { 525 /* 526 * the compression code ran but failed to make things smaller, 527 * free any pages it allocated and our page pointer array 528 */ 529 for (i = 0; i < nr_pages_ret; i++) { 530 WARN_ON(pages[i]->mapping); 531 page_cache_release(pages[i]); 532 } 533 kfree(pages); 534 pages = NULL; 535 total_compressed = 0; 536 nr_pages_ret = 0; 537 538 /* flag the file so we don't compress in the future */ 539 if (!btrfs_test_opt(root, FORCE_COMPRESS) && 540 !(BTRFS_I(inode)->force_compress)) { 541 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS; 542 } 543 } 544 if (will_compress) { 545 *num_added += 1; 546 547 /* the async work queues will take care of doing actual 548 * allocation on disk for these compressed pages, 549 * and will submit them to the elevator. 550 */ 551 add_async_extent(async_cow, start, num_bytes, 552 total_compressed, pages, nr_pages_ret, 553 compress_type); 554 555 if (start + num_bytes < end) { 556 start += num_bytes; 557 pages = NULL; 558 cond_resched(); 559 goto again; 560 } 561 } else { 562 cleanup_and_bail_uncompressed: 563 /* 564 * No compression, but we still need to write the pages in 565 * the file we've been given so far. redirty the locked 566 * page if it corresponds to our extent and set things up 567 * for the async work queue to run cow_file_range to do 568 * the normal delalloc dance 569 */ 570 if (page_offset(locked_page) >= start && 571 page_offset(locked_page) <= end) { 572 __set_page_dirty_nobuffers(locked_page); 573 /* unlocked later on in the async handlers */ 574 } 575 if (redirty) 576 extent_range_redirty_for_io(inode, start, end); 577 add_async_extent(async_cow, start, end - start + 1, 578 0, NULL, 0, BTRFS_COMPRESS_NONE); 579 *num_added += 1; 580 } 581 582 out: 583 return ret; 584 585 free_pages_out: 586 for (i = 0; i < nr_pages_ret; i++) { 587 WARN_ON(pages[i]->mapping); 588 page_cache_release(pages[i]); 589 } 590 kfree(pages); 591 592 goto out; 593 } 594 595 /* 596 * phase two of compressed writeback. This is the ordered portion 597 * of the code, which only gets called in the order the work was 598 * queued. We walk all the async extents created by compress_file_range 599 * and send them down to the disk. 600 */ 601 static noinline int submit_compressed_extents(struct inode *inode, 602 struct async_cow *async_cow) 603 { 604 struct async_extent *async_extent; 605 u64 alloc_hint = 0; 606 struct btrfs_key ins; 607 struct extent_map *em; 608 struct btrfs_root *root = BTRFS_I(inode)->root; 609 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 610 struct extent_io_tree *io_tree; 611 int ret = 0; 612 613 if (list_empty(&async_cow->extents)) 614 return 0; 615 616 again: 617 while (!list_empty(&async_cow->extents)) { 618 async_extent = list_entry(async_cow->extents.next, 619 struct async_extent, list); 620 list_del(&async_extent->list); 621 622 io_tree = &BTRFS_I(inode)->io_tree; 623 624 retry: 625 /* did the compression code fall back to uncompressed IO? */ 626 if (!async_extent->pages) { 627 int page_started = 0; 628 unsigned long nr_written = 0; 629 630 lock_extent(io_tree, async_extent->start, 631 async_extent->start + 632 async_extent->ram_size - 1); 633 634 /* allocate blocks */ 635 ret = cow_file_range(inode, async_cow->locked_page, 636 async_extent->start, 637 async_extent->start + 638 async_extent->ram_size - 1, 639 &page_started, &nr_written, 0); 640 641 /* JDM XXX */ 642 643 /* 644 * if page_started, cow_file_range inserted an 645 * inline extent and took care of all the unlocking 646 * and IO for us. Otherwise, we need to submit 647 * all those pages down to the drive. 648 */ 649 if (!page_started && !ret) 650 extent_write_locked_range(io_tree, 651 inode, async_extent->start, 652 async_extent->start + 653 async_extent->ram_size - 1, 654 btrfs_get_extent, 655 WB_SYNC_ALL); 656 else if (ret) 657 unlock_page(async_cow->locked_page); 658 kfree(async_extent); 659 cond_resched(); 660 continue; 661 } 662 663 lock_extent(io_tree, async_extent->start, 664 async_extent->start + async_extent->ram_size - 1); 665 666 ret = btrfs_reserve_extent(root, 667 async_extent->compressed_size, 668 async_extent->compressed_size, 669 0, alloc_hint, &ins, 1); 670 if (ret) { 671 int i; 672 673 for (i = 0; i < async_extent->nr_pages; i++) { 674 WARN_ON(async_extent->pages[i]->mapping); 675 page_cache_release(async_extent->pages[i]); 676 } 677 kfree(async_extent->pages); 678 async_extent->nr_pages = 0; 679 async_extent->pages = NULL; 680 681 if (ret == -ENOSPC) { 682 unlock_extent(io_tree, async_extent->start, 683 async_extent->start + 684 async_extent->ram_size - 1); 685 goto retry; 686 } 687 goto out_free; 688 } 689 690 /* 691 * here we're doing allocation and writeback of the 692 * compressed pages 693 */ 694 btrfs_drop_extent_cache(inode, async_extent->start, 695 async_extent->start + 696 async_extent->ram_size - 1, 0); 697 698 em = alloc_extent_map(); 699 if (!em) { 700 ret = -ENOMEM; 701 goto out_free_reserve; 702 } 703 em->start = async_extent->start; 704 em->len = async_extent->ram_size; 705 em->orig_start = em->start; 706 em->mod_start = em->start; 707 em->mod_len = em->len; 708 709 em->block_start = ins.objectid; 710 em->block_len = ins.offset; 711 em->orig_block_len = ins.offset; 712 em->ram_bytes = async_extent->ram_size; 713 em->bdev = root->fs_info->fs_devices->latest_bdev; 714 em->compress_type = async_extent->compress_type; 715 set_bit(EXTENT_FLAG_PINNED, &em->flags); 716 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 717 em->generation = -1; 718 719 while (1) { 720 write_lock(&em_tree->lock); 721 ret = add_extent_mapping(em_tree, em, 1); 722 write_unlock(&em_tree->lock); 723 if (ret != -EEXIST) { 724 free_extent_map(em); 725 break; 726 } 727 btrfs_drop_extent_cache(inode, async_extent->start, 728 async_extent->start + 729 async_extent->ram_size - 1, 0); 730 } 731 732 if (ret) 733 goto out_free_reserve; 734 735 ret = btrfs_add_ordered_extent_compress(inode, 736 async_extent->start, 737 ins.objectid, 738 async_extent->ram_size, 739 ins.offset, 740 BTRFS_ORDERED_COMPRESSED, 741 async_extent->compress_type); 742 if (ret) 743 goto out_free_reserve; 744 745 /* 746 * clear dirty, set writeback and unlock the pages. 747 */ 748 extent_clear_unlock_delalloc(inode, async_extent->start, 749 async_extent->start + 750 async_extent->ram_size - 1, 751 NULL, EXTENT_LOCKED | EXTENT_DELALLOC, 752 PAGE_UNLOCK | PAGE_CLEAR_DIRTY | 753 PAGE_SET_WRITEBACK); 754 ret = btrfs_submit_compressed_write(inode, 755 async_extent->start, 756 async_extent->ram_size, 757 ins.objectid, 758 ins.offset, async_extent->pages, 759 async_extent->nr_pages); 760 alloc_hint = ins.objectid + ins.offset; 761 kfree(async_extent); 762 if (ret) 763 goto out; 764 cond_resched(); 765 } 766 ret = 0; 767 out: 768 return ret; 769 out_free_reserve: 770 btrfs_free_reserved_extent(root, ins.objectid, ins.offset); 771 out_free: 772 extent_clear_unlock_delalloc(inode, async_extent->start, 773 async_extent->start + 774 async_extent->ram_size - 1, 775 NULL, EXTENT_LOCKED | EXTENT_DELALLOC | 776 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING, 777 PAGE_UNLOCK | PAGE_CLEAR_DIRTY | 778 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK); 779 kfree(async_extent); 780 goto again; 781 } 782 783 static u64 get_extent_allocation_hint(struct inode *inode, u64 start, 784 u64 num_bytes) 785 { 786 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 787 struct extent_map *em; 788 u64 alloc_hint = 0; 789 790 read_lock(&em_tree->lock); 791 em = search_extent_mapping(em_tree, start, num_bytes); 792 if (em) { 793 /* 794 * if block start isn't an actual block number then find the 795 * first block in this inode and use that as a hint. If that 796 * block is also bogus then just don't worry about it. 797 */ 798 if (em->block_start >= EXTENT_MAP_LAST_BYTE) { 799 free_extent_map(em); 800 em = search_extent_mapping(em_tree, 0, 0); 801 if (em && em->block_start < EXTENT_MAP_LAST_BYTE) 802 alloc_hint = em->block_start; 803 if (em) 804 free_extent_map(em); 805 } else { 806 alloc_hint = em->block_start; 807 free_extent_map(em); 808 } 809 } 810 read_unlock(&em_tree->lock); 811 812 return alloc_hint; 813 } 814 815 /* 816 * when extent_io.c finds a delayed allocation range in the file, 817 * the call backs end up in this code. The basic idea is to 818 * allocate extents on disk for the range, and create ordered data structs 819 * in ram to track those extents. 820 * 821 * locked_page is the page that writepage had locked already. We use 822 * it to make sure we don't do extra locks or unlocks. 823 * 824 * *page_started is set to one if we unlock locked_page and do everything 825 * required to start IO on it. It may be clean and already done with 826 * IO when we return. 827 */ 828 static noinline int cow_file_range(struct inode *inode, 829 struct page *locked_page, 830 u64 start, u64 end, int *page_started, 831 unsigned long *nr_written, 832 int unlock) 833 { 834 struct btrfs_root *root = BTRFS_I(inode)->root; 835 u64 alloc_hint = 0; 836 u64 num_bytes; 837 unsigned long ram_size; 838 u64 disk_num_bytes; 839 u64 cur_alloc_size; 840 u64 blocksize = root->sectorsize; 841 struct btrfs_key ins; 842 struct extent_map *em; 843 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 844 int ret = 0; 845 846 if (btrfs_is_free_space_inode(inode)) { 847 WARN_ON_ONCE(1); 848 return -EINVAL; 849 } 850 851 num_bytes = ALIGN(end - start + 1, blocksize); 852 num_bytes = max(blocksize, num_bytes); 853 disk_num_bytes = num_bytes; 854 855 /* if this is a small write inside eof, kick off defrag */ 856 if (num_bytes < 64 * 1024 && 857 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size)) 858 btrfs_add_inode_defrag(NULL, inode); 859 860 if (start == 0) { 861 /* lets try to make an inline extent */ 862 ret = cow_file_range_inline(root, inode, start, end, 0, 0, 863 NULL); 864 if (ret == 0) { 865 extent_clear_unlock_delalloc(inode, start, end, NULL, 866 EXTENT_LOCKED | EXTENT_DELALLOC | 867 EXTENT_DEFRAG, PAGE_UNLOCK | 868 PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK | 869 PAGE_END_WRITEBACK); 870 871 *nr_written = *nr_written + 872 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE; 873 *page_started = 1; 874 goto out; 875 } else if (ret < 0) { 876 goto out_unlock; 877 } 878 } 879 880 BUG_ON(disk_num_bytes > 881 btrfs_super_total_bytes(root->fs_info->super_copy)); 882 883 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes); 884 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0); 885 886 while (disk_num_bytes > 0) { 887 unsigned long op; 888 889 cur_alloc_size = disk_num_bytes; 890 ret = btrfs_reserve_extent(root, cur_alloc_size, 891 root->sectorsize, 0, alloc_hint, 892 &ins, 1); 893 if (ret < 0) 894 goto out_unlock; 895 896 em = alloc_extent_map(); 897 if (!em) { 898 ret = -ENOMEM; 899 goto out_reserve; 900 } 901 em->start = start; 902 em->orig_start = em->start; 903 ram_size = ins.offset; 904 em->len = ins.offset; 905 em->mod_start = em->start; 906 em->mod_len = em->len; 907 908 em->block_start = ins.objectid; 909 em->block_len = ins.offset; 910 em->orig_block_len = ins.offset; 911 em->ram_bytes = ram_size; 912 em->bdev = root->fs_info->fs_devices->latest_bdev; 913 set_bit(EXTENT_FLAG_PINNED, &em->flags); 914 em->generation = -1; 915 916 while (1) { 917 write_lock(&em_tree->lock); 918 ret = add_extent_mapping(em_tree, em, 1); 919 write_unlock(&em_tree->lock); 920 if (ret != -EEXIST) { 921 free_extent_map(em); 922 break; 923 } 924 btrfs_drop_extent_cache(inode, start, 925 start + ram_size - 1, 0); 926 } 927 if (ret) 928 goto out_reserve; 929 930 cur_alloc_size = ins.offset; 931 ret = btrfs_add_ordered_extent(inode, start, ins.objectid, 932 ram_size, cur_alloc_size, 0); 933 if (ret) 934 goto out_reserve; 935 936 if (root->root_key.objectid == 937 BTRFS_DATA_RELOC_TREE_OBJECTID) { 938 ret = btrfs_reloc_clone_csums(inode, start, 939 cur_alloc_size); 940 if (ret) 941 goto out_reserve; 942 } 943 944 if (disk_num_bytes < cur_alloc_size) 945 break; 946 947 /* we're not doing compressed IO, don't unlock the first 948 * page (which the caller expects to stay locked), don't 949 * clear any dirty bits and don't set any writeback bits 950 * 951 * Do set the Private2 bit so we know this page was properly 952 * setup for writepage 953 */ 954 op = unlock ? PAGE_UNLOCK : 0; 955 op |= PAGE_SET_PRIVATE2; 956 957 extent_clear_unlock_delalloc(inode, start, 958 start + ram_size - 1, locked_page, 959 EXTENT_LOCKED | EXTENT_DELALLOC, 960 op); 961 disk_num_bytes -= cur_alloc_size; 962 num_bytes -= cur_alloc_size; 963 alloc_hint = ins.objectid + ins.offset; 964 start += cur_alloc_size; 965 } 966 out: 967 return ret; 968 969 out_reserve: 970 btrfs_free_reserved_extent(root, ins.objectid, ins.offset); 971 out_unlock: 972 extent_clear_unlock_delalloc(inode, start, end, locked_page, 973 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING | 974 EXTENT_DELALLOC | EXTENT_DEFRAG, 975 PAGE_UNLOCK | PAGE_CLEAR_DIRTY | 976 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK); 977 goto out; 978 } 979 980 /* 981 * work queue call back to started compression on a file and pages 982 */ 983 static noinline void async_cow_start(struct btrfs_work *work) 984 { 985 struct async_cow *async_cow; 986 int num_added = 0; 987 async_cow = container_of(work, struct async_cow, work); 988 989 compress_file_range(async_cow->inode, async_cow->locked_page, 990 async_cow->start, async_cow->end, async_cow, 991 &num_added); 992 if (num_added == 0) { 993 btrfs_add_delayed_iput(async_cow->inode); 994 async_cow->inode = NULL; 995 } 996 } 997 998 /* 999 * work queue call back to submit previously compressed pages 1000 */ 1001 static noinline void async_cow_submit(struct btrfs_work *work) 1002 { 1003 struct async_cow *async_cow; 1004 struct btrfs_root *root; 1005 unsigned long nr_pages; 1006 1007 async_cow = container_of(work, struct async_cow, work); 1008 1009 root = async_cow->root; 1010 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >> 1011 PAGE_CACHE_SHIFT; 1012 1013 if (atomic_sub_return(nr_pages, &root->fs_info->async_delalloc_pages) < 1014 5 * 1024 * 1024 && 1015 waitqueue_active(&root->fs_info->async_submit_wait)) 1016 wake_up(&root->fs_info->async_submit_wait); 1017 1018 if (async_cow->inode) 1019 submit_compressed_extents(async_cow->inode, async_cow); 1020 } 1021 1022 static noinline void async_cow_free(struct btrfs_work *work) 1023 { 1024 struct async_cow *async_cow; 1025 async_cow = container_of(work, struct async_cow, work); 1026 if (async_cow->inode) 1027 btrfs_add_delayed_iput(async_cow->inode); 1028 kfree(async_cow); 1029 } 1030 1031 static int cow_file_range_async(struct inode *inode, struct page *locked_page, 1032 u64 start, u64 end, int *page_started, 1033 unsigned long *nr_written) 1034 { 1035 struct async_cow *async_cow; 1036 struct btrfs_root *root = BTRFS_I(inode)->root; 1037 unsigned long nr_pages; 1038 u64 cur_end; 1039 int limit = 10 * 1024 * 1024; 1040 1041 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED, 1042 1, 0, NULL, GFP_NOFS); 1043 while (start < end) { 1044 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS); 1045 BUG_ON(!async_cow); /* -ENOMEM */ 1046 async_cow->inode = igrab(inode); 1047 async_cow->root = root; 1048 async_cow->locked_page = locked_page; 1049 async_cow->start = start; 1050 1051 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) 1052 cur_end = end; 1053 else 1054 cur_end = min(end, start + 512 * 1024 - 1); 1055 1056 async_cow->end = cur_end; 1057 INIT_LIST_HEAD(&async_cow->extents); 1058 1059 async_cow->work.func = async_cow_start; 1060 async_cow->work.ordered_func = async_cow_submit; 1061 async_cow->work.ordered_free = async_cow_free; 1062 async_cow->work.flags = 0; 1063 1064 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >> 1065 PAGE_CACHE_SHIFT; 1066 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages); 1067 1068 btrfs_queue_worker(&root->fs_info->delalloc_workers, 1069 &async_cow->work); 1070 1071 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) { 1072 wait_event(root->fs_info->async_submit_wait, 1073 (atomic_read(&root->fs_info->async_delalloc_pages) < 1074 limit)); 1075 } 1076 1077 while (atomic_read(&root->fs_info->async_submit_draining) && 1078 atomic_read(&root->fs_info->async_delalloc_pages)) { 1079 wait_event(root->fs_info->async_submit_wait, 1080 (atomic_read(&root->fs_info->async_delalloc_pages) == 1081 0)); 1082 } 1083 1084 *nr_written += nr_pages; 1085 start = cur_end + 1; 1086 } 1087 *page_started = 1; 1088 return 0; 1089 } 1090 1091 static noinline int csum_exist_in_range(struct btrfs_root *root, 1092 u64 bytenr, u64 num_bytes) 1093 { 1094 int ret; 1095 struct btrfs_ordered_sum *sums; 1096 LIST_HEAD(list); 1097 1098 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr, 1099 bytenr + num_bytes - 1, &list, 0); 1100 if (ret == 0 && list_empty(&list)) 1101 return 0; 1102 1103 while (!list_empty(&list)) { 1104 sums = list_entry(list.next, struct btrfs_ordered_sum, list); 1105 list_del(&sums->list); 1106 kfree(sums); 1107 } 1108 return 1; 1109 } 1110 1111 /* 1112 * when nowcow writeback call back. This checks for snapshots or COW copies 1113 * of the extents that exist in the file, and COWs the file as required. 1114 * 1115 * If no cow copies or snapshots exist, we write directly to the existing 1116 * blocks on disk 1117 */ 1118 static noinline int run_delalloc_nocow(struct inode *inode, 1119 struct page *locked_page, 1120 u64 start, u64 end, int *page_started, int force, 1121 unsigned long *nr_written) 1122 { 1123 struct btrfs_root *root = BTRFS_I(inode)->root; 1124 struct btrfs_trans_handle *trans; 1125 struct extent_buffer *leaf; 1126 struct btrfs_path *path; 1127 struct btrfs_file_extent_item *fi; 1128 struct btrfs_key found_key; 1129 u64 cow_start; 1130 u64 cur_offset; 1131 u64 extent_end; 1132 u64 extent_offset; 1133 u64 disk_bytenr; 1134 u64 num_bytes; 1135 u64 disk_num_bytes; 1136 u64 ram_bytes; 1137 int extent_type; 1138 int ret, err; 1139 int type; 1140 int nocow; 1141 int check_prev = 1; 1142 bool nolock; 1143 u64 ino = btrfs_ino(inode); 1144 1145 path = btrfs_alloc_path(); 1146 if (!path) { 1147 extent_clear_unlock_delalloc(inode, start, end, locked_page, 1148 EXTENT_LOCKED | EXTENT_DELALLOC | 1149 EXTENT_DO_ACCOUNTING | 1150 EXTENT_DEFRAG, PAGE_UNLOCK | 1151 PAGE_CLEAR_DIRTY | 1152 PAGE_SET_WRITEBACK | 1153 PAGE_END_WRITEBACK); 1154 return -ENOMEM; 1155 } 1156 1157 nolock = btrfs_is_free_space_inode(inode); 1158 1159 if (nolock) 1160 trans = btrfs_join_transaction_nolock(root); 1161 else 1162 trans = btrfs_join_transaction(root); 1163 1164 if (IS_ERR(trans)) { 1165 extent_clear_unlock_delalloc(inode, start, end, locked_page, 1166 EXTENT_LOCKED | EXTENT_DELALLOC | 1167 EXTENT_DO_ACCOUNTING | 1168 EXTENT_DEFRAG, PAGE_UNLOCK | 1169 PAGE_CLEAR_DIRTY | 1170 PAGE_SET_WRITEBACK | 1171 PAGE_END_WRITEBACK); 1172 btrfs_free_path(path); 1173 return PTR_ERR(trans); 1174 } 1175 1176 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 1177 1178 cow_start = (u64)-1; 1179 cur_offset = start; 1180 while (1) { 1181 ret = btrfs_lookup_file_extent(trans, root, path, ino, 1182 cur_offset, 0); 1183 if (ret < 0) 1184 goto error; 1185 if (ret > 0 && path->slots[0] > 0 && check_prev) { 1186 leaf = path->nodes[0]; 1187 btrfs_item_key_to_cpu(leaf, &found_key, 1188 path->slots[0] - 1); 1189 if (found_key.objectid == ino && 1190 found_key.type == BTRFS_EXTENT_DATA_KEY) 1191 path->slots[0]--; 1192 } 1193 check_prev = 0; 1194 next_slot: 1195 leaf = path->nodes[0]; 1196 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 1197 ret = btrfs_next_leaf(root, path); 1198 if (ret < 0) 1199 goto error; 1200 if (ret > 0) 1201 break; 1202 leaf = path->nodes[0]; 1203 } 1204 1205 nocow = 0; 1206 disk_bytenr = 0; 1207 num_bytes = 0; 1208 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1209 1210 if (found_key.objectid > ino || 1211 found_key.type > BTRFS_EXTENT_DATA_KEY || 1212 found_key.offset > end) 1213 break; 1214 1215 if (found_key.offset > cur_offset) { 1216 extent_end = found_key.offset; 1217 extent_type = 0; 1218 goto out_check; 1219 } 1220 1221 fi = btrfs_item_ptr(leaf, path->slots[0], 1222 struct btrfs_file_extent_item); 1223 extent_type = btrfs_file_extent_type(leaf, fi); 1224 1225 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 1226 if (extent_type == BTRFS_FILE_EXTENT_REG || 1227 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1228 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1229 extent_offset = btrfs_file_extent_offset(leaf, fi); 1230 extent_end = found_key.offset + 1231 btrfs_file_extent_num_bytes(leaf, fi); 1232 disk_num_bytes = 1233 btrfs_file_extent_disk_num_bytes(leaf, fi); 1234 if (extent_end <= start) { 1235 path->slots[0]++; 1236 goto next_slot; 1237 } 1238 if (disk_bytenr == 0) 1239 goto out_check; 1240 if (btrfs_file_extent_compression(leaf, fi) || 1241 btrfs_file_extent_encryption(leaf, fi) || 1242 btrfs_file_extent_other_encoding(leaf, fi)) 1243 goto out_check; 1244 if (extent_type == BTRFS_FILE_EXTENT_REG && !force) 1245 goto out_check; 1246 if (btrfs_extent_readonly(root, disk_bytenr)) 1247 goto out_check; 1248 if (btrfs_cross_ref_exist(trans, root, ino, 1249 found_key.offset - 1250 extent_offset, disk_bytenr)) 1251 goto out_check; 1252 disk_bytenr += extent_offset; 1253 disk_bytenr += cur_offset - found_key.offset; 1254 num_bytes = min(end + 1, extent_end) - cur_offset; 1255 /* 1256 * force cow if csum exists in the range. 1257 * this ensure that csum for a given extent are 1258 * either valid or do not exist. 1259 */ 1260 if (csum_exist_in_range(root, disk_bytenr, num_bytes)) 1261 goto out_check; 1262 nocow = 1; 1263 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 1264 extent_end = found_key.offset + 1265 btrfs_file_extent_inline_len(leaf, fi); 1266 extent_end = ALIGN(extent_end, root->sectorsize); 1267 } else { 1268 BUG_ON(1); 1269 } 1270 out_check: 1271 if (extent_end <= start) { 1272 path->slots[0]++; 1273 goto next_slot; 1274 } 1275 if (!nocow) { 1276 if (cow_start == (u64)-1) 1277 cow_start = cur_offset; 1278 cur_offset = extent_end; 1279 if (cur_offset > end) 1280 break; 1281 path->slots[0]++; 1282 goto next_slot; 1283 } 1284 1285 btrfs_release_path(path); 1286 if (cow_start != (u64)-1) { 1287 ret = cow_file_range(inode, locked_page, 1288 cow_start, found_key.offset - 1, 1289 page_started, nr_written, 1); 1290 if (ret) 1291 goto error; 1292 cow_start = (u64)-1; 1293 } 1294 1295 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1296 struct extent_map *em; 1297 struct extent_map_tree *em_tree; 1298 em_tree = &BTRFS_I(inode)->extent_tree; 1299 em = alloc_extent_map(); 1300 BUG_ON(!em); /* -ENOMEM */ 1301 em->start = cur_offset; 1302 em->orig_start = found_key.offset - extent_offset; 1303 em->len = num_bytes; 1304 em->block_len = num_bytes; 1305 em->block_start = disk_bytenr; 1306 em->orig_block_len = disk_num_bytes; 1307 em->ram_bytes = ram_bytes; 1308 em->bdev = root->fs_info->fs_devices->latest_bdev; 1309 em->mod_start = em->start; 1310 em->mod_len = em->len; 1311 set_bit(EXTENT_FLAG_PINNED, &em->flags); 1312 set_bit(EXTENT_FLAG_FILLING, &em->flags); 1313 em->generation = -1; 1314 while (1) { 1315 write_lock(&em_tree->lock); 1316 ret = add_extent_mapping(em_tree, em, 1); 1317 write_unlock(&em_tree->lock); 1318 if (ret != -EEXIST) { 1319 free_extent_map(em); 1320 break; 1321 } 1322 btrfs_drop_extent_cache(inode, em->start, 1323 em->start + em->len - 1, 0); 1324 } 1325 type = BTRFS_ORDERED_PREALLOC; 1326 } else { 1327 type = BTRFS_ORDERED_NOCOW; 1328 } 1329 1330 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr, 1331 num_bytes, num_bytes, type); 1332 BUG_ON(ret); /* -ENOMEM */ 1333 1334 if (root->root_key.objectid == 1335 BTRFS_DATA_RELOC_TREE_OBJECTID) { 1336 ret = btrfs_reloc_clone_csums(inode, cur_offset, 1337 num_bytes); 1338 if (ret) 1339 goto error; 1340 } 1341 1342 extent_clear_unlock_delalloc(inode, cur_offset, 1343 cur_offset + num_bytes - 1, 1344 locked_page, EXTENT_LOCKED | 1345 EXTENT_DELALLOC, PAGE_UNLOCK | 1346 PAGE_SET_PRIVATE2); 1347 cur_offset = extent_end; 1348 if (cur_offset > end) 1349 break; 1350 } 1351 btrfs_release_path(path); 1352 1353 if (cur_offset <= end && cow_start == (u64)-1) { 1354 cow_start = cur_offset; 1355 cur_offset = end; 1356 } 1357 1358 if (cow_start != (u64)-1) { 1359 ret = cow_file_range(inode, locked_page, cow_start, end, 1360 page_started, nr_written, 1); 1361 if (ret) 1362 goto error; 1363 } 1364 1365 error: 1366 err = btrfs_end_transaction(trans, root); 1367 if (!ret) 1368 ret = err; 1369 1370 if (ret && cur_offset < end) 1371 extent_clear_unlock_delalloc(inode, cur_offset, end, 1372 locked_page, EXTENT_LOCKED | 1373 EXTENT_DELALLOC | EXTENT_DEFRAG | 1374 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK | 1375 PAGE_CLEAR_DIRTY | 1376 PAGE_SET_WRITEBACK | 1377 PAGE_END_WRITEBACK); 1378 btrfs_free_path(path); 1379 return ret; 1380 } 1381 1382 /* 1383 * extent_io.c call back to do delayed allocation processing 1384 */ 1385 static int run_delalloc_range(struct inode *inode, struct page *locked_page, 1386 u64 start, u64 end, int *page_started, 1387 unsigned long *nr_written) 1388 { 1389 int ret; 1390 struct btrfs_root *root = BTRFS_I(inode)->root; 1391 1392 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) { 1393 ret = run_delalloc_nocow(inode, locked_page, start, end, 1394 page_started, 1, nr_written); 1395 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC) { 1396 ret = run_delalloc_nocow(inode, locked_page, start, end, 1397 page_started, 0, nr_written); 1398 } else if (!btrfs_test_opt(root, COMPRESS) && 1399 !(BTRFS_I(inode)->force_compress) && 1400 !(BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS)) { 1401 ret = cow_file_range(inode, locked_page, start, end, 1402 page_started, nr_written, 1); 1403 } else { 1404 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 1405 &BTRFS_I(inode)->runtime_flags); 1406 ret = cow_file_range_async(inode, locked_page, start, end, 1407 page_started, nr_written); 1408 } 1409 return ret; 1410 } 1411 1412 static void btrfs_split_extent_hook(struct inode *inode, 1413 struct extent_state *orig, u64 split) 1414 { 1415 /* not delalloc, ignore it */ 1416 if (!(orig->state & EXTENT_DELALLOC)) 1417 return; 1418 1419 spin_lock(&BTRFS_I(inode)->lock); 1420 BTRFS_I(inode)->outstanding_extents++; 1421 spin_unlock(&BTRFS_I(inode)->lock); 1422 } 1423 1424 /* 1425 * extent_io.c merge_extent_hook, used to track merged delayed allocation 1426 * extents so we can keep track of new extents that are just merged onto old 1427 * extents, such as when we are doing sequential writes, so we can properly 1428 * account for the metadata space we'll need. 1429 */ 1430 static void btrfs_merge_extent_hook(struct inode *inode, 1431 struct extent_state *new, 1432 struct extent_state *other) 1433 { 1434 /* not delalloc, ignore it */ 1435 if (!(other->state & EXTENT_DELALLOC)) 1436 return; 1437 1438 spin_lock(&BTRFS_I(inode)->lock); 1439 BTRFS_I(inode)->outstanding_extents--; 1440 spin_unlock(&BTRFS_I(inode)->lock); 1441 } 1442 1443 static void btrfs_add_delalloc_inodes(struct btrfs_root *root, 1444 struct inode *inode) 1445 { 1446 spin_lock(&root->delalloc_lock); 1447 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) { 1448 list_add_tail(&BTRFS_I(inode)->delalloc_inodes, 1449 &root->delalloc_inodes); 1450 set_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1451 &BTRFS_I(inode)->runtime_flags); 1452 root->nr_delalloc_inodes++; 1453 if (root->nr_delalloc_inodes == 1) { 1454 spin_lock(&root->fs_info->delalloc_root_lock); 1455 BUG_ON(!list_empty(&root->delalloc_root)); 1456 list_add_tail(&root->delalloc_root, 1457 &root->fs_info->delalloc_roots); 1458 spin_unlock(&root->fs_info->delalloc_root_lock); 1459 } 1460 } 1461 spin_unlock(&root->delalloc_lock); 1462 } 1463 1464 static void btrfs_del_delalloc_inode(struct btrfs_root *root, 1465 struct inode *inode) 1466 { 1467 spin_lock(&root->delalloc_lock); 1468 if (!list_empty(&BTRFS_I(inode)->delalloc_inodes)) { 1469 list_del_init(&BTRFS_I(inode)->delalloc_inodes); 1470 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1471 &BTRFS_I(inode)->runtime_flags); 1472 root->nr_delalloc_inodes--; 1473 if (!root->nr_delalloc_inodes) { 1474 spin_lock(&root->fs_info->delalloc_root_lock); 1475 BUG_ON(list_empty(&root->delalloc_root)); 1476 list_del_init(&root->delalloc_root); 1477 spin_unlock(&root->fs_info->delalloc_root_lock); 1478 } 1479 } 1480 spin_unlock(&root->delalloc_lock); 1481 } 1482 1483 /* 1484 * extent_io.c set_bit_hook, used to track delayed allocation 1485 * bytes in this file, and to maintain the list of inodes that 1486 * have pending delalloc work to be done. 1487 */ 1488 static void btrfs_set_bit_hook(struct inode *inode, 1489 struct extent_state *state, unsigned long *bits) 1490 { 1491 1492 /* 1493 * set_bit and clear bit hooks normally require _irqsave/restore 1494 * but in this case, we are only testing for the DELALLOC 1495 * bit, which is only set or cleared with irqs on 1496 */ 1497 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) { 1498 struct btrfs_root *root = BTRFS_I(inode)->root; 1499 u64 len = state->end + 1 - state->start; 1500 bool do_list = !btrfs_is_free_space_inode(inode); 1501 1502 if (*bits & EXTENT_FIRST_DELALLOC) { 1503 *bits &= ~EXTENT_FIRST_DELALLOC; 1504 } else { 1505 spin_lock(&BTRFS_I(inode)->lock); 1506 BTRFS_I(inode)->outstanding_extents++; 1507 spin_unlock(&BTRFS_I(inode)->lock); 1508 } 1509 1510 __percpu_counter_add(&root->fs_info->delalloc_bytes, len, 1511 root->fs_info->delalloc_batch); 1512 spin_lock(&BTRFS_I(inode)->lock); 1513 BTRFS_I(inode)->delalloc_bytes += len; 1514 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1515 &BTRFS_I(inode)->runtime_flags)) 1516 btrfs_add_delalloc_inodes(root, inode); 1517 spin_unlock(&BTRFS_I(inode)->lock); 1518 } 1519 } 1520 1521 /* 1522 * extent_io.c clear_bit_hook, see set_bit_hook for why 1523 */ 1524 static void btrfs_clear_bit_hook(struct inode *inode, 1525 struct extent_state *state, 1526 unsigned long *bits) 1527 { 1528 /* 1529 * set_bit and clear bit hooks normally require _irqsave/restore 1530 * but in this case, we are only testing for the DELALLOC 1531 * bit, which is only set or cleared with irqs on 1532 */ 1533 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) { 1534 struct btrfs_root *root = BTRFS_I(inode)->root; 1535 u64 len = state->end + 1 - state->start; 1536 bool do_list = !btrfs_is_free_space_inode(inode); 1537 1538 if (*bits & EXTENT_FIRST_DELALLOC) { 1539 *bits &= ~EXTENT_FIRST_DELALLOC; 1540 } else if (!(*bits & EXTENT_DO_ACCOUNTING)) { 1541 spin_lock(&BTRFS_I(inode)->lock); 1542 BTRFS_I(inode)->outstanding_extents--; 1543 spin_unlock(&BTRFS_I(inode)->lock); 1544 } 1545 1546 /* 1547 * We don't reserve metadata space for space cache inodes so we 1548 * don't need to call dellalloc_release_metadata if there is an 1549 * error. 1550 */ 1551 if (*bits & EXTENT_DO_ACCOUNTING && 1552 root != root->fs_info->tree_root) 1553 btrfs_delalloc_release_metadata(inode, len); 1554 1555 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID 1556 && do_list && !(state->state & EXTENT_NORESERVE)) 1557 btrfs_free_reserved_data_space(inode, len); 1558 1559 __percpu_counter_add(&root->fs_info->delalloc_bytes, -len, 1560 root->fs_info->delalloc_batch); 1561 spin_lock(&BTRFS_I(inode)->lock); 1562 BTRFS_I(inode)->delalloc_bytes -= len; 1563 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 && 1564 test_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1565 &BTRFS_I(inode)->runtime_flags)) 1566 btrfs_del_delalloc_inode(root, inode); 1567 spin_unlock(&BTRFS_I(inode)->lock); 1568 } 1569 } 1570 1571 /* 1572 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure 1573 * we don't create bios that span stripes or chunks 1574 */ 1575 int btrfs_merge_bio_hook(int rw, struct page *page, unsigned long offset, 1576 size_t size, struct bio *bio, 1577 unsigned long bio_flags) 1578 { 1579 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; 1580 u64 logical = (u64)bio->bi_sector << 9; 1581 u64 length = 0; 1582 u64 map_length; 1583 int ret; 1584 1585 if (bio_flags & EXTENT_BIO_COMPRESSED) 1586 return 0; 1587 1588 length = bio->bi_size; 1589 map_length = length; 1590 ret = btrfs_map_block(root->fs_info, rw, logical, 1591 &map_length, NULL, 0); 1592 /* Will always return 0 with map_multi == NULL */ 1593 BUG_ON(ret < 0); 1594 if (map_length < length + size) 1595 return 1; 1596 return 0; 1597 } 1598 1599 /* 1600 * in order to insert checksums into the metadata in large chunks, 1601 * we wait until bio submission time. All the pages in the bio are 1602 * checksummed and sums are attached onto the ordered extent record. 1603 * 1604 * At IO completion time the cums attached on the ordered extent record 1605 * are inserted into the btree 1606 */ 1607 static int __btrfs_submit_bio_start(struct inode *inode, int rw, 1608 struct bio *bio, int mirror_num, 1609 unsigned long bio_flags, 1610 u64 bio_offset) 1611 { 1612 struct btrfs_root *root = BTRFS_I(inode)->root; 1613 int ret = 0; 1614 1615 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0); 1616 BUG_ON(ret); /* -ENOMEM */ 1617 return 0; 1618 } 1619 1620 /* 1621 * in order to insert checksums into the metadata in large chunks, 1622 * we wait until bio submission time. All the pages in the bio are 1623 * checksummed and sums are attached onto the ordered extent record. 1624 * 1625 * At IO completion time the cums attached on the ordered extent record 1626 * are inserted into the btree 1627 */ 1628 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio, 1629 int mirror_num, unsigned long bio_flags, 1630 u64 bio_offset) 1631 { 1632 struct btrfs_root *root = BTRFS_I(inode)->root; 1633 int ret; 1634 1635 ret = btrfs_map_bio(root, rw, bio, mirror_num, 1); 1636 if (ret) 1637 bio_endio(bio, ret); 1638 return ret; 1639 } 1640 1641 /* 1642 * extent_io.c submission hook. This does the right thing for csum calculation 1643 * on write, or reading the csums from the tree before a read 1644 */ 1645 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio, 1646 int mirror_num, unsigned long bio_flags, 1647 u64 bio_offset) 1648 { 1649 struct btrfs_root *root = BTRFS_I(inode)->root; 1650 int ret = 0; 1651 int skip_sum; 1652 int metadata = 0; 1653 int async = !atomic_read(&BTRFS_I(inode)->sync_writers); 1654 1655 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 1656 1657 if (btrfs_is_free_space_inode(inode)) 1658 metadata = 2; 1659 1660 if (!(rw & REQ_WRITE)) { 1661 ret = btrfs_bio_wq_end_io(root->fs_info, bio, metadata); 1662 if (ret) 1663 goto out; 1664 1665 if (bio_flags & EXTENT_BIO_COMPRESSED) { 1666 ret = btrfs_submit_compressed_read(inode, bio, 1667 mirror_num, 1668 bio_flags); 1669 goto out; 1670 } else if (!skip_sum) { 1671 ret = btrfs_lookup_bio_sums(root, inode, bio, NULL); 1672 if (ret) 1673 goto out; 1674 } 1675 goto mapit; 1676 } else if (async && !skip_sum) { 1677 /* csum items have already been cloned */ 1678 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) 1679 goto mapit; 1680 /* we're doing a write, do the async checksumming */ 1681 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info, 1682 inode, rw, bio, mirror_num, 1683 bio_flags, bio_offset, 1684 __btrfs_submit_bio_start, 1685 __btrfs_submit_bio_done); 1686 goto out; 1687 } else if (!skip_sum) { 1688 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0); 1689 if (ret) 1690 goto out; 1691 } 1692 1693 mapit: 1694 ret = btrfs_map_bio(root, rw, bio, mirror_num, 0); 1695 1696 out: 1697 if (ret < 0) 1698 bio_endio(bio, ret); 1699 return ret; 1700 } 1701 1702 /* 1703 * given a list of ordered sums record them in the inode. This happens 1704 * at IO completion time based on sums calculated at bio submission time. 1705 */ 1706 static noinline int add_pending_csums(struct btrfs_trans_handle *trans, 1707 struct inode *inode, u64 file_offset, 1708 struct list_head *list) 1709 { 1710 struct btrfs_ordered_sum *sum; 1711 1712 list_for_each_entry(sum, list, list) { 1713 trans->adding_csums = 1; 1714 btrfs_csum_file_blocks(trans, 1715 BTRFS_I(inode)->root->fs_info->csum_root, sum); 1716 trans->adding_csums = 0; 1717 } 1718 return 0; 1719 } 1720 1721 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end, 1722 struct extent_state **cached_state) 1723 { 1724 WARN_ON((end & (PAGE_CACHE_SIZE - 1)) == 0); 1725 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end, 1726 cached_state, GFP_NOFS); 1727 } 1728 1729 /* see btrfs_writepage_start_hook for details on why this is required */ 1730 struct btrfs_writepage_fixup { 1731 struct page *page; 1732 struct btrfs_work work; 1733 }; 1734 1735 static void btrfs_writepage_fixup_worker(struct btrfs_work *work) 1736 { 1737 struct btrfs_writepage_fixup *fixup; 1738 struct btrfs_ordered_extent *ordered; 1739 struct extent_state *cached_state = NULL; 1740 struct page *page; 1741 struct inode *inode; 1742 u64 page_start; 1743 u64 page_end; 1744 int ret; 1745 1746 fixup = container_of(work, struct btrfs_writepage_fixup, work); 1747 page = fixup->page; 1748 again: 1749 lock_page(page); 1750 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) { 1751 ClearPageChecked(page); 1752 goto out_page; 1753 } 1754 1755 inode = page->mapping->host; 1756 page_start = page_offset(page); 1757 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1; 1758 1759 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0, 1760 &cached_state); 1761 1762 /* already ordered? We're done */ 1763 if (PagePrivate2(page)) 1764 goto out; 1765 1766 ordered = btrfs_lookup_ordered_extent(inode, page_start); 1767 if (ordered) { 1768 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, 1769 page_end, &cached_state, GFP_NOFS); 1770 unlock_page(page); 1771 btrfs_start_ordered_extent(inode, ordered, 1); 1772 btrfs_put_ordered_extent(ordered); 1773 goto again; 1774 } 1775 1776 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE); 1777 if (ret) { 1778 mapping_set_error(page->mapping, ret); 1779 end_extent_writepage(page, ret, page_start, page_end); 1780 ClearPageChecked(page); 1781 goto out; 1782 } 1783 1784 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state); 1785 ClearPageChecked(page); 1786 set_page_dirty(page); 1787 out: 1788 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end, 1789 &cached_state, GFP_NOFS); 1790 out_page: 1791 unlock_page(page); 1792 page_cache_release(page); 1793 kfree(fixup); 1794 } 1795 1796 /* 1797 * There are a few paths in the higher layers of the kernel that directly 1798 * set the page dirty bit without asking the filesystem if it is a 1799 * good idea. This causes problems because we want to make sure COW 1800 * properly happens and the data=ordered rules are followed. 1801 * 1802 * In our case any range that doesn't have the ORDERED bit set 1803 * hasn't been properly setup for IO. We kick off an async process 1804 * to fix it up. The async helper will wait for ordered extents, set 1805 * the delalloc bit and make it safe to write the page. 1806 */ 1807 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end) 1808 { 1809 struct inode *inode = page->mapping->host; 1810 struct btrfs_writepage_fixup *fixup; 1811 struct btrfs_root *root = BTRFS_I(inode)->root; 1812 1813 /* this page is properly in the ordered list */ 1814 if (TestClearPagePrivate2(page)) 1815 return 0; 1816 1817 if (PageChecked(page)) 1818 return -EAGAIN; 1819 1820 fixup = kzalloc(sizeof(*fixup), GFP_NOFS); 1821 if (!fixup) 1822 return -EAGAIN; 1823 1824 SetPageChecked(page); 1825 page_cache_get(page); 1826 fixup->work.func = btrfs_writepage_fixup_worker; 1827 fixup->page = page; 1828 btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work); 1829 return -EBUSY; 1830 } 1831 1832 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans, 1833 struct inode *inode, u64 file_pos, 1834 u64 disk_bytenr, u64 disk_num_bytes, 1835 u64 num_bytes, u64 ram_bytes, 1836 u8 compression, u8 encryption, 1837 u16 other_encoding, int extent_type) 1838 { 1839 struct btrfs_root *root = BTRFS_I(inode)->root; 1840 struct btrfs_file_extent_item *fi; 1841 struct btrfs_path *path; 1842 struct extent_buffer *leaf; 1843 struct btrfs_key ins; 1844 int ret; 1845 1846 path = btrfs_alloc_path(); 1847 if (!path) 1848 return -ENOMEM; 1849 1850 path->leave_spinning = 1; 1851 1852 /* 1853 * we may be replacing one extent in the tree with another. 1854 * The new extent is pinned in the extent map, and we don't want 1855 * to drop it from the cache until it is completely in the btree. 1856 * 1857 * So, tell btrfs_drop_extents to leave this extent in the cache. 1858 * the caller is expected to unpin it and allow it to be merged 1859 * with the others. 1860 */ 1861 ret = btrfs_drop_extents(trans, root, inode, file_pos, 1862 file_pos + num_bytes, 0); 1863 if (ret) 1864 goto out; 1865 1866 ins.objectid = btrfs_ino(inode); 1867 ins.offset = file_pos; 1868 ins.type = BTRFS_EXTENT_DATA_KEY; 1869 ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi)); 1870 if (ret) 1871 goto out; 1872 leaf = path->nodes[0]; 1873 fi = btrfs_item_ptr(leaf, path->slots[0], 1874 struct btrfs_file_extent_item); 1875 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1876 btrfs_set_file_extent_type(leaf, fi, extent_type); 1877 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr); 1878 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes); 1879 btrfs_set_file_extent_offset(leaf, fi, 0); 1880 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 1881 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes); 1882 btrfs_set_file_extent_compression(leaf, fi, compression); 1883 btrfs_set_file_extent_encryption(leaf, fi, encryption); 1884 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding); 1885 1886 btrfs_mark_buffer_dirty(leaf); 1887 btrfs_release_path(path); 1888 1889 inode_add_bytes(inode, num_bytes); 1890 1891 ins.objectid = disk_bytenr; 1892 ins.offset = disk_num_bytes; 1893 ins.type = BTRFS_EXTENT_ITEM_KEY; 1894 ret = btrfs_alloc_reserved_file_extent(trans, root, 1895 root->root_key.objectid, 1896 btrfs_ino(inode), file_pos, &ins); 1897 out: 1898 btrfs_free_path(path); 1899 1900 return ret; 1901 } 1902 1903 /* snapshot-aware defrag */ 1904 struct sa_defrag_extent_backref { 1905 struct rb_node node; 1906 struct old_sa_defrag_extent *old; 1907 u64 root_id; 1908 u64 inum; 1909 u64 file_pos; 1910 u64 extent_offset; 1911 u64 num_bytes; 1912 u64 generation; 1913 }; 1914 1915 struct old_sa_defrag_extent { 1916 struct list_head list; 1917 struct new_sa_defrag_extent *new; 1918 1919 u64 extent_offset; 1920 u64 bytenr; 1921 u64 offset; 1922 u64 len; 1923 int count; 1924 }; 1925 1926 struct new_sa_defrag_extent { 1927 struct rb_root root; 1928 struct list_head head; 1929 struct btrfs_path *path; 1930 struct inode *inode; 1931 u64 file_pos; 1932 u64 len; 1933 u64 bytenr; 1934 u64 disk_len; 1935 u8 compress_type; 1936 }; 1937 1938 static int backref_comp(struct sa_defrag_extent_backref *b1, 1939 struct sa_defrag_extent_backref *b2) 1940 { 1941 if (b1->root_id < b2->root_id) 1942 return -1; 1943 else if (b1->root_id > b2->root_id) 1944 return 1; 1945 1946 if (b1->inum < b2->inum) 1947 return -1; 1948 else if (b1->inum > b2->inum) 1949 return 1; 1950 1951 if (b1->file_pos < b2->file_pos) 1952 return -1; 1953 else if (b1->file_pos > b2->file_pos) 1954 return 1; 1955 1956 /* 1957 * [------------------------------] ===> (a range of space) 1958 * |<--->| |<---->| =============> (fs/file tree A) 1959 * |<---------------------------->| ===> (fs/file tree B) 1960 * 1961 * A range of space can refer to two file extents in one tree while 1962 * refer to only one file extent in another tree. 1963 * 1964 * So we may process a disk offset more than one time(two extents in A) 1965 * and locate at the same extent(one extent in B), then insert two same 1966 * backrefs(both refer to the extent in B). 1967 */ 1968 return 0; 1969 } 1970 1971 static void backref_insert(struct rb_root *root, 1972 struct sa_defrag_extent_backref *backref) 1973 { 1974 struct rb_node **p = &root->rb_node; 1975 struct rb_node *parent = NULL; 1976 struct sa_defrag_extent_backref *entry; 1977 int ret; 1978 1979 while (*p) { 1980 parent = *p; 1981 entry = rb_entry(parent, struct sa_defrag_extent_backref, node); 1982 1983 ret = backref_comp(backref, entry); 1984 if (ret < 0) 1985 p = &(*p)->rb_left; 1986 else 1987 p = &(*p)->rb_right; 1988 } 1989 1990 rb_link_node(&backref->node, parent, p); 1991 rb_insert_color(&backref->node, root); 1992 } 1993 1994 /* 1995 * Note the backref might has changed, and in this case we just return 0. 1996 */ 1997 static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id, 1998 void *ctx) 1999 { 2000 struct btrfs_file_extent_item *extent; 2001 struct btrfs_fs_info *fs_info; 2002 struct old_sa_defrag_extent *old = ctx; 2003 struct new_sa_defrag_extent *new = old->new; 2004 struct btrfs_path *path = new->path; 2005 struct btrfs_key key; 2006 struct btrfs_root *root; 2007 struct sa_defrag_extent_backref *backref; 2008 struct extent_buffer *leaf; 2009 struct inode *inode = new->inode; 2010 int slot; 2011 int ret; 2012 u64 extent_offset; 2013 u64 num_bytes; 2014 2015 if (BTRFS_I(inode)->root->root_key.objectid == root_id && 2016 inum == btrfs_ino(inode)) 2017 return 0; 2018 2019 key.objectid = root_id; 2020 key.type = BTRFS_ROOT_ITEM_KEY; 2021 key.offset = (u64)-1; 2022 2023 fs_info = BTRFS_I(inode)->root->fs_info; 2024 root = btrfs_read_fs_root_no_name(fs_info, &key); 2025 if (IS_ERR(root)) { 2026 if (PTR_ERR(root) == -ENOENT) 2027 return 0; 2028 WARN_ON(1); 2029 pr_debug("inum=%llu, offset=%llu, root_id=%llu\n", 2030 inum, offset, root_id); 2031 return PTR_ERR(root); 2032 } 2033 2034 key.objectid = inum; 2035 key.type = BTRFS_EXTENT_DATA_KEY; 2036 if (offset > (u64)-1 << 32) 2037 key.offset = 0; 2038 else 2039 key.offset = offset; 2040 2041 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2042 if (WARN_ON(ret < 0)) 2043 return ret; 2044 ret = 0; 2045 2046 while (1) { 2047 cond_resched(); 2048 2049 leaf = path->nodes[0]; 2050 slot = path->slots[0]; 2051 2052 if (slot >= btrfs_header_nritems(leaf)) { 2053 ret = btrfs_next_leaf(root, path); 2054 if (ret < 0) { 2055 goto out; 2056 } else if (ret > 0) { 2057 ret = 0; 2058 goto out; 2059 } 2060 continue; 2061 } 2062 2063 path->slots[0]++; 2064 2065 btrfs_item_key_to_cpu(leaf, &key, slot); 2066 2067 if (key.objectid > inum) 2068 goto out; 2069 2070 if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY) 2071 continue; 2072 2073 extent = btrfs_item_ptr(leaf, slot, 2074 struct btrfs_file_extent_item); 2075 2076 if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr) 2077 continue; 2078 2079 /* 2080 * 'offset' refers to the exact key.offset, 2081 * NOT the 'offset' field in btrfs_extent_data_ref, ie. 2082 * (key.offset - extent_offset). 2083 */ 2084 if (key.offset != offset) 2085 continue; 2086 2087 extent_offset = btrfs_file_extent_offset(leaf, extent); 2088 num_bytes = btrfs_file_extent_num_bytes(leaf, extent); 2089 2090 if (extent_offset >= old->extent_offset + old->offset + 2091 old->len || extent_offset + num_bytes <= 2092 old->extent_offset + old->offset) 2093 continue; 2094 break; 2095 } 2096 2097 backref = kmalloc(sizeof(*backref), GFP_NOFS); 2098 if (!backref) { 2099 ret = -ENOENT; 2100 goto out; 2101 } 2102 2103 backref->root_id = root_id; 2104 backref->inum = inum; 2105 backref->file_pos = offset; 2106 backref->num_bytes = num_bytes; 2107 backref->extent_offset = extent_offset; 2108 backref->generation = btrfs_file_extent_generation(leaf, extent); 2109 backref->old = old; 2110 backref_insert(&new->root, backref); 2111 old->count++; 2112 out: 2113 btrfs_release_path(path); 2114 WARN_ON(ret); 2115 return ret; 2116 } 2117 2118 static noinline bool record_extent_backrefs(struct btrfs_path *path, 2119 struct new_sa_defrag_extent *new) 2120 { 2121 struct btrfs_fs_info *fs_info = BTRFS_I(new->inode)->root->fs_info; 2122 struct old_sa_defrag_extent *old, *tmp; 2123 int ret; 2124 2125 new->path = path; 2126 2127 list_for_each_entry_safe(old, tmp, &new->head, list) { 2128 ret = iterate_inodes_from_logical(old->bytenr + 2129 old->extent_offset, fs_info, 2130 path, record_one_backref, 2131 old); 2132 if (ret < 0 && ret != -ENOENT) 2133 return false; 2134 2135 /* no backref to be processed for this extent */ 2136 if (!old->count) { 2137 list_del(&old->list); 2138 kfree(old); 2139 } 2140 } 2141 2142 if (list_empty(&new->head)) 2143 return false; 2144 2145 return true; 2146 } 2147 2148 static int relink_is_mergable(struct extent_buffer *leaf, 2149 struct btrfs_file_extent_item *fi, 2150 struct new_sa_defrag_extent *new) 2151 { 2152 if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr) 2153 return 0; 2154 2155 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG) 2156 return 0; 2157 2158 if (btrfs_file_extent_compression(leaf, fi) != new->compress_type) 2159 return 0; 2160 2161 if (btrfs_file_extent_encryption(leaf, fi) || 2162 btrfs_file_extent_other_encoding(leaf, fi)) 2163 return 0; 2164 2165 return 1; 2166 } 2167 2168 /* 2169 * Note the backref might has changed, and in this case we just return 0. 2170 */ 2171 static noinline int relink_extent_backref(struct btrfs_path *path, 2172 struct sa_defrag_extent_backref *prev, 2173 struct sa_defrag_extent_backref *backref) 2174 { 2175 struct btrfs_file_extent_item *extent; 2176 struct btrfs_file_extent_item *item; 2177 struct btrfs_ordered_extent *ordered; 2178 struct btrfs_trans_handle *trans; 2179 struct btrfs_fs_info *fs_info; 2180 struct btrfs_root *root; 2181 struct btrfs_key key; 2182 struct extent_buffer *leaf; 2183 struct old_sa_defrag_extent *old = backref->old; 2184 struct new_sa_defrag_extent *new = old->new; 2185 struct inode *src_inode = new->inode; 2186 struct inode *inode; 2187 struct extent_state *cached = NULL; 2188 int ret = 0; 2189 u64 start; 2190 u64 len; 2191 u64 lock_start; 2192 u64 lock_end; 2193 bool merge = false; 2194 int index; 2195 2196 if (prev && prev->root_id == backref->root_id && 2197 prev->inum == backref->inum && 2198 prev->file_pos + prev->num_bytes == backref->file_pos) 2199 merge = true; 2200 2201 /* step 1: get root */ 2202 key.objectid = backref->root_id; 2203 key.type = BTRFS_ROOT_ITEM_KEY; 2204 key.offset = (u64)-1; 2205 2206 fs_info = BTRFS_I(src_inode)->root->fs_info; 2207 index = srcu_read_lock(&fs_info->subvol_srcu); 2208 2209 root = btrfs_read_fs_root_no_name(fs_info, &key); 2210 if (IS_ERR(root)) { 2211 srcu_read_unlock(&fs_info->subvol_srcu, index); 2212 if (PTR_ERR(root) == -ENOENT) 2213 return 0; 2214 return PTR_ERR(root); 2215 } 2216 2217 /* step 2: get inode */ 2218 key.objectid = backref->inum; 2219 key.type = BTRFS_INODE_ITEM_KEY; 2220 key.offset = 0; 2221 2222 inode = btrfs_iget(fs_info->sb, &key, root, NULL); 2223 if (IS_ERR(inode)) { 2224 srcu_read_unlock(&fs_info->subvol_srcu, index); 2225 return 0; 2226 } 2227 2228 srcu_read_unlock(&fs_info->subvol_srcu, index); 2229 2230 /* step 3: relink backref */ 2231 lock_start = backref->file_pos; 2232 lock_end = backref->file_pos + backref->num_bytes - 1; 2233 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end, 2234 0, &cached); 2235 2236 ordered = btrfs_lookup_first_ordered_extent(inode, lock_end); 2237 if (ordered) { 2238 btrfs_put_ordered_extent(ordered); 2239 goto out_unlock; 2240 } 2241 2242 trans = btrfs_join_transaction(root); 2243 if (IS_ERR(trans)) { 2244 ret = PTR_ERR(trans); 2245 goto out_unlock; 2246 } 2247 2248 key.objectid = backref->inum; 2249 key.type = BTRFS_EXTENT_DATA_KEY; 2250 key.offset = backref->file_pos; 2251 2252 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2253 if (ret < 0) { 2254 goto out_free_path; 2255 } else if (ret > 0) { 2256 ret = 0; 2257 goto out_free_path; 2258 } 2259 2260 extent = btrfs_item_ptr(path->nodes[0], path->slots[0], 2261 struct btrfs_file_extent_item); 2262 2263 if (btrfs_file_extent_generation(path->nodes[0], extent) != 2264 backref->generation) 2265 goto out_free_path; 2266 2267 btrfs_release_path(path); 2268 2269 start = backref->file_pos; 2270 if (backref->extent_offset < old->extent_offset + old->offset) 2271 start += old->extent_offset + old->offset - 2272 backref->extent_offset; 2273 2274 len = min(backref->extent_offset + backref->num_bytes, 2275 old->extent_offset + old->offset + old->len); 2276 len -= max(backref->extent_offset, old->extent_offset + old->offset); 2277 2278 ret = btrfs_drop_extents(trans, root, inode, start, 2279 start + len, 1); 2280 if (ret) 2281 goto out_free_path; 2282 again: 2283 key.objectid = btrfs_ino(inode); 2284 key.type = BTRFS_EXTENT_DATA_KEY; 2285 key.offset = start; 2286 2287 path->leave_spinning = 1; 2288 if (merge) { 2289 struct btrfs_file_extent_item *fi; 2290 u64 extent_len; 2291 struct btrfs_key found_key; 2292 2293 ret = btrfs_search_slot(trans, root, &key, path, 1, 1); 2294 if (ret < 0) 2295 goto out_free_path; 2296 2297 path->slots[0]--; 2298 leaf = path->nodes[0]; 2299 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 2300 2301 fi = btrfs_item_ptr(leaf, path->slots[0], 2302 struct btrfs_file_extent_item); 2303 extent_len = btrfs_file_extent_num_bytes(leaf, fi); 2304 2305 if (extent_len + found_key.offset == start && 2306 relink_is_mergable(leaf, fi, new)) { 2307 btrfs_set_file_extent_num_bytes(leaf, fi, 2308 extent_len + len); 2309 btrfs_mark_buffer_dirty(leaf); 2310 inode_add_bytes(inode, len); 2311 2312 ret = 1; 2313 goto out_free_path; 2314 } else { 2315 merge = false; 2316 btrfs_release_path(path); 2317 goto again; 2318 } 2319 } 2320 2321 ret = btrfs_insert_empty_item(trans, root, path, &key, 2322 sizeof(*extent)); 2323 if (ret) { 2324 btrfs_abort_transaction(trans, root, ret); 2325 goto out_free_path; 2326 } 2327 2328 leaf = path->nodes[0]; 2329 item = btrfs_item_ptr(leaf, path->slots[0], 2330 struct btrfs_file_extent_item); 2331 btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr); 2332 btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len); 2333 btrfs_set_file_extent_offset(leaf, item, start - new->file_pos); 2334 btrfs_set_file_extent_num_bytes(leaf, item, len); 2335 btrfs_set_file_extent_ram_bytes(leaf, item, new->len); 2336 btrfs_set_file_extent_generation(leaf, item, trans->transid); 2337 btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG); 2338 btrfs_set_file_extent_compression(leaf, item, new->compress_type); 2339 btrfs_set_file_extent_encryption(leaf, item, 0); 2340 btrfs_set_file_extent_other_encoding(leaf, item, 0); 2341 2342 btrfs_mark_buffer_dirty(leaf); 2343 inode_add_bytes(inode, len); 2344 btrfs_release_path(path); 2345 2346 ret = btrfs_inc_extent_ref(trans, root, new->bytenr, 2347 new->disk_len, 0, 2348 backref->root_id, backref->inum, 2349 new->file_pos, 0); /* start - extent_offset */ 2350 if (ret) { 2351 btrfs_abort_transaction(trans, root, ret); 2352 goto out_free_path; 2353 } 2354 2355 ret = 1; 2356 out_free_path: 2357 btrfs_release_path(path); 2358 path->leave_spinning = 0; 2359 btrfs_end_transaction(trans, root); 2360 out_unlock: 2361 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end, 2362 &cached, GFP_NOFS); 2363 iput(inode); 2364 return ret; 2365 } 2366 2367 static void free_sa_defrag_extent(struct new_sa_defrag_extent *new) 2368 { 2369 struct old_sa_defrag_extent *old, *tmp; 2370 2371 if (!new) 2372 return; 2373 2374 list_for_each_entry_safe(old, tmp, &new->head, list) { 2375 list_del(&old->list); 2376 kfree(old); 2377 } 2378 kfree(new); 2379 } 2380 2381 static void relink_file_extents(struct new_sa_defrag_extent *new) 2382 { 2383 struct btrfs_path *path; 2384 struct sa_defrag_extent_backref *backref; 2385 struct sa_defrag_extent_backref *prev = NULL; 2386 struct inode *inode; 2387 struct btrfs_root *root; 2388 struct rb_node *node; 2389 int ret; 2390 2391 inode = new->inode; 2392 root = BTRFS_I(inode)->root; 2393 2394 path = btrfs_alloc_path(); 2395 if (!path) 2396 return; 2397 2398 if (!record_extent_backrefs(path, new)) { 2399 btrfs_free_path(path); 2400 goto out; 2401 } 2402 btrfs_release_path(path); 2403 2404 while (1) { 2405 node = rb_first(&new->root); 2406 if (!node) 2407 break; 2408 rb_erase(node, &new->root); 2409 2410 backref = rb_entry(node, struct sa_defrag_extent_backref, node); 2411 2412 ret = relink_extent_backref(path, prev, backref); 2413 WARN_ON(ret < 0); 2414 2415 kfree(prev); 2416 2417 if (ret == 1) 2418 prev = backref; 2419 else 2420 prev = NULL; 2421 cond_resched(); 2422 } 2423 kfree(prev); 2424 2425 btrfs_free_path(path); 2426 out: 2427 free_sa_defrag_extent(new); 2428 2429 atomic_dec(&root->fs_info->defrag_running); 2430 wake_up(&root->fs_info->transaction_wait); 2431 } 2432 2433 static struct new_sa_defrag_extent * 2434 record_old_file_extents(struct inode *inode, 2435 struct btrfs_ordered_extent *ordered) 2436 { 2437 struct btrfs_root *root = BTRFS_I(inode)->root; 2438 struct btrfs_path *path; 2439 struct btrfs_key key; 2440 struct old_sa_defrag_extent *old; 2441 struct new_sa_defrag_extent *new; 2442 int ret; 2443 2444 new = kmalloc(sizeof(*new), GFP_NOFS); 2445 if (!new) 2446 return NULL; 2447 2448 new->inode = inode; 2449 new->file_pos = ordered->file_offset; 2450 new->len = ordered->len; 2451 new->bytenr = ordered->start; 2452 new->disk_len = ordered->disk_len; 2453 new->compress_type = ordered->compress_type; 2454 new->root = RB_ROOT; 2455 INIT_LIST_HEAD(&new->head); 2456 2457 path = btrfs_alloc_path(); 2458 if (!path) 2459 goto out_kfree; 2460 2461 key.objectid = btrfs_ino(inode); 2462 key.type = BTRFS_EXTENT_DATA_KEY; 2463 key.offset = new->file_pos; 2464 2465 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2466 if (ret < 0) 2467 goto out_free_path; 2468 if (ret > 0 && path->slots[0] > 0) 2469 path->slots[0]--; 2470 2471 /* find out all the old extents for the file range */ 2472 while (1) { 2473 struct btrfs_file_extent_item *extent; 2474 struct extent_buffer *l; 2475 int slot; 2476 u64 num_bytes; 2477 u64 offset; 2478 u64 end; 2479 u64 disk_bytenr; 2480 u64 extent_offset; 2481 2482 l = path->nodes[0]; 2483 slot = path->slots[0]; 2484 2485 if (slot >= btrfs_header_nritems(l)) { 2486 ret = btrfs_next_leaf(root, path); 2487 if (ret < 0) 2488 goto out_free_path; 2489 else if (ret > 0) 2490 break; 2491 continue; 2492 } 2493 2494 btrfs_item_key_to_cpu(l, &key, slot); 2495 2496 if (key.objectid != btrfs_ino(inode)) 2497 break; 2498 if (key.type != BTRFS_EXTENT_DATA_KEY) 2499 break; 2500 if (key.offset >= new->file_pos + new->len) 2501 break; 2502 2503 extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item); 2504 2505 num_bytes = btrfs_file_extent_num_bytes(l, extent); 2506 if (key.offset + num_bytes < new->file_pos) 2507 goto next; 2508 2509 disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent); 2510 if (!disk_bytenr) 2511 goto next; 2512 2513 extent_offset = btrfs_file_extent_offset(l, extent); 2514 2515 old = kmalloc(sizeof(*old), GFP_NOFS); 2516 if (!old) 2517 goto out_free_path; 2518 2519 offset = max(new->file_pos, key.offset); 2520 end = min(new->file_pos + new->len, key.offset + num_bytes); 2521 2522 old->bytenr = disk_bytenr; 2523 old->extent_offset = extent_offset; 2524 old->offset = offset - key.offset; 2525 old->len = end - offset; 2526 old->new = new; 2527 old->count = 0; 2528 list_add_tail(&old->list, &new->head); 2529 next: 2530 path->slots[0]++; 2531 cond_resched(); 2532 } 2533 2534 btrfs_free_path(path); 2535 atomic_inc(&root->fs_info->defrag_running); 2536 2537 return new; 2538 2539 out_free_path: 2540 btrfs_free_path(path); 2541 out_kfree: 2542 free_sa_defrag_extent(new); 2543 return NULL; 2544 } 2545 2546 /* 2547 * helper function for btrfs_finish_ordered_io, this 2548 * just reads in some of the csum leaves to prime them into ram 2549 * before we start the transaction. It limits the amount of btree 2550 * reads required while inside the transaction. 2551 */ 2552 /* as ordered data IO finishes, this gets called so we can finish 2553 * an ordered extent if the range of bytes in the file it covers are 2554 * fully written. 2555 */ 2556 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent) 2557 { 2558 struct inode *inode = ordered_extent->inode; 2559 struct btrfs_root *root = BTRFS_I(inode)->root; 2560 struct btrfs_trans_handle *trans = NULL; 2561 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 2562 struct extent_state *cached_state = NULL; 2563 struct new_sa_defrag_extent *new = NULL; 2564 int compress_type = 0; 2565 int ret = 0; 2566 u64 logical_len = ordered_extent->len; 2567 bool nolock; 2568 bool truncated = false; 2569 2570 nolock = btrfs_is_free_space_inode(inode); 2571 2572 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) { 2573 ret = -EIO; 2574 goto out; 2575 } 2576 2577 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) { 2578 truncated = true; 2579 logical_len = ordered_extent->truncated_len; 2580 /* Truncated the entire extent, don't bother adding */ 2581 if (!logical_len) 2582 goto out; 2583 } 2584 2585 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) { 2586 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */ 2587 btrfs_ordered_update_i_size(inode, 0, ordered_extent); 2588 if (nolock) 2589 trans = btrfs_join_transaction_nolock(root); 2590 else 2591 trans = btrfs_join_transaction(root); 2592 if (IS_ERR(trans)) { 2593 ret = PTR_ERR(trans); 2594 trans = NULL; 2595 goto out; 2596 } 2597 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 2598 ret = btrfs_update_inode_fallback(trans, root, inode); 2599 if (ret) /* -ENOMEM or corruption */ 2600 btrfs_abort_transaction(trans, root, ret); 2601 goto out; 2602 } 2603 2604 lock_extent_bits(io_tree, ordered_extent->file_offset, 2605 ordered_extent->file_offset + ordered_extent->len - 1, 2606 0, &cached_state); 2607 2608 ret = test_range_bit(io_tree, ordered_extent->file_offset, 2609 ordered_extent->file_offset + ordered_extent->len - 1, 2610 EXTENT_DEFRAG, 1, cached_state); 2611 if (ret) { 2612 u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item); 2613 if (last_snapshot >= BTRFS_I(inode)->generation) 2614 /* the inode is shared */ 2615 new = record_old_file_extents(inode, ordered_extent); 2616 2617 clear_extent_bit(io_tree, ordered_extent->file_offset, 2618 ordered_extent->file_offset + ordered_extent->len - 1, 2619 EXTENT_DEFRAG, 0, 0, &cached_state, GFP_NOFS); 2620 } 2621 2622 if (nolock) 2623 trans = btrfs_join_transaction_nolock(root); 2624 else 2625 trans = btrfs_join_transaction(root); 2626 if (IS_ERR(trans)) { 2627 ret = PTR_ERR(trans); 2628 trans = NULL; 2629 goto out_unlock; 2630 } 2631 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 2632 2633 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags)) 2634 compress_type = ordered_extent->compress_type; 2635 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 2636 BUG_ON(compress_type); 2637 ret = btrfs_mark_extent_written(trans, inode, 2638 ordered_extent->file_offset, 2639 ordered_extent->file_offset + 2640 logical_len); 2641 } else { 2642 BUG_ON(root == root->fs_info->tree_root); 2643 ret = insert_reserved_file_extent(trans, inode, 2644 ordered_extent->file_offset, 2645 ordered_extent->start, 2646 ordered_extent->disk_len, 2647 logical_len, logical_len, 2648 compress_type, 0, 0, 2649 BTRFS_FILE_EXTENT_REG); 2650 } 2651 unpin_extent_cache(&BTRFS_I(inode)->extent_tree, 2652 ordered_extent->file_offset, ordered_extent->len, 2653 trans->transid); 2654 if (ret < 0) { 2655 btrfs_abort_transaction(trans, root, ret); 2656 goto out_unlock; 2657 } 2658 2659 add_pending_csums(trans, inode, ordered_extent->file_offset, 2660 &ordered_extent->list); 2661 2662 btrfs_ordered_update_i_size(inode, 0, ordered_extent); 2663 ret = btrfs_update_inode_fallback(trans, root, inode); 2664 if (ret) { /* -ENOMEM or corruption */ 2665 btrfs_abort_transaction(trans, root, ret); 2666 goto out_unlock; 2667 } 2668 ret = 0; 2669 out_unlock: 2670 unlock_extent_cached(io_tree, ordered_extent->file_offset, 2671 ordered_extent->file_offset + 2672 ordered_extent->len - 1, &cached_state, GFP_NOFS); 2673 out: 2674 if (root != root->fs_info->tree_root) 2675 btrfs_delalloc_release_metadata(inode, ordered_extent->len); 2676 if (trans) 2677 btrfs_end_transaction(trans, root); 2678 2679 if (ret || truncated) { 2680 u64 start, end; 2681 2682 if (truncated) 2683 start = ordered_extent->file_offset + logical_len; 2684 else 2685 start = ordered_extent->file_offset; 2686 end = ordered_extent->file_offset + ordered_extent->len - 1; 2687 clear_extent_uptodate(io_tree, start, end, NULL, GFP_NOFS); 2688 2689 /* Drop the cache for the part of the extent we didn't write. */ 2690 btrfs_drop_extent_cache(inode, start, end, 0); 2691 2692 /* 2693 * If the ordered extent had an IOERR or something else went 2694 * wrong we need to return the space for this ordered extent 2695 * back to the allocator. We only free the extent in the 2696 * truncated case if we didn't write out the extent at all. 2697 */ 2698 if ((ret || !logical_len) && 2699 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) && 2700 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) 2701 btrfs_free_reserved_extent(root, ordered_extent->start, 2702 ordered_extent->disk_len); 2703 } 2704 2705 2706 /* 2707 * This needs to be done to make sure anybody waiting knows we are done 2708 * updating everything for this ordered extent. 2709 */ 2710 btrfs_remove_ordered_extent(inode, ordered_extent); 2711 2712 /* for snapshot-aware defrag */ 2713 if (new) { 2714 if (ret) { 2715 free_sa_defrag_extent(new); 2716 atomic_dec(&root->fs_info->defrag_running); 2717 } else { 2718 relink_file_extents(new); 2719 } 2720 } 2721 2722 /* once for us */ 2723 btrfs_put_ordered_extent(ordered_extent); 2724 /* once for the tree */ 2725 btrfs_put_ordered_extent(ordered_extent); 2726 2727 return ret; 2728 } 2729 2730 static void finish_ordered_fn(struct btrfs_work *work) 2731 { 2732 struct btrfs_ordered_extent *ordered_extent; 2733 ordered_extent = container_of(work, struct btrfs_ordered_extent, work); 2734 btrfs_finish_ordered_io(ordered_extent); 2735 } 2736 2737 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end, 2738 struct extent_state *state, int uptodate) 2739 { 2740 struct inode *inode = page->mapping->host; 2741 struct btrfs_root *root = BTRFS_I(inode)->root; 2742 struct btrfs_ordered_extent *ordered_extent = NULL; 2743 struct btrfs_workers *workers; 2744 2745 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate); 2746 2747 ClearPagePrivate2(page); 2748 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start, 2749 end - start + 1, uptodate)) 2750 return 0; 2751 2752 ordered_extent->work.func = finish_ordered_fn; 2753 ordered_extent->work.flags = 0; 2754 2755 if (btrfs_is_free_space_inode(inode)) 2756 workers = &root->fs_info->endio_freespace_worker; 2757 else 2758 workers = &root->fs_info->endio_write_workers; 2759 btrfs_queue_worker(workers, &ordered_extent->work); 2760 2761 return 0; 2762 } 2763 2764 /* 2765 * when reads are done, we need to check csums to verify the data is correct 2766 * if there's a match, we allow the bio to finish. If not, the code in 2767 * extent_io.c will try to find good copies for us. 2768 */ 2769 static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio, 2770 u64 phy_offset, struct page *page, 2771 u64 start, u64 end, int mirror) 2772 { 2773 size_t offset = start - page_offset(page); 2774 struct inode *inode = page->mapping->host; 2775 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 2776 char *kaddr; 2777 struct btrfs_root *root = BTRFS_I(inode)->root; 2778 u32 csum_expected; 2779 u32 csum = ~(u32)0; 2780 static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL, 2781 DEFAULT_RATELIMIT_BURST); 2782 2783 if (PageChecked(page)) { 2784 ClearPageChecked(page); 2785 goto good; 2786 } 2787 2788 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) 2789 goto good; 2790 2791 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID && 2792 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) { 2793 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM, 2794 GFP_NOFS); 2795 return 0; 2796 } 2797 2798 phy_offset >>= inode->i_sb->s_blocksize_bits; 2799 csum_expected = *(((u32 *)io_bio->csum) + phy_offset); 2800 2801 kaddr = kmap_atomic(page); 2802 csum = btrfs_csum_data(kaddr + offset, csum, end - start + 1); 2803 btrfs_csum_final(csum, (char *)&csum); 2804 if (csum != csum_expected) 2805 goto zeroit; 2806 2807 kunmap_atomic(kaddr); 2808 good: 2809 return 0; 2810 2811 zeroit: 2812 if (__ratelimit(&_rs)) 2813 btrfs_info(root->fs_info, "csum failed ino %llu off %llu csum %u expected csum %u", 2814 btrfs_ino(page->mapping->host), start, csum, csum_expected); 2815 memset(kaddr + offset, 1, end - start + 1); 2816 flush_dcache_page(page); 2817 kunmap_atomic(kaddr); 2818 if (csum_expected == 0) 2819 return 0; 2820 return -EIO; 2821 } 2822 2823 struct delayed_iput { 2824 struct list_head list; 2825 struct inode *inode; 2826 }; 2827 2828 /* JDM: If this is fs-wide, why can't we add a pointer to 2829 * btrfs_inode instead and avoid the allocation? */ 2830 void btrfs_add_delayed_iput(struct inode *inode) 2831 { 2832 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 2833 struct delayed_iput *delayed; 2834 2835 if (atomic_add_unless(&inode->i_count, -1, 1)) 2836 return; 2837 2838 delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL); 2839 delayed->inode = inode; 2840 2841 spin_lock(&fs_info->delayed_iput_lock); 2842 list_add_tail(&delayed->list, &fs_info->delayed_iputs); 2843 spin_unlock(&fs_info->delayed_iput_lock); 2844 } 2845 2846 void btrfs_run_delayed_iputs(struct btrfs_root *root) 2847 { 2848 LIST_HEAD(list); 2849 struct btrfs_fs_info *fs_info = root->fs_info; 2850 struct delayed_iput *delayed; 2851 int empty; 2852 2853 spin_lock(&fs_info->delayed_iput_lock); 2854 empty = list_empty(&fs_info->delayed_iputs); 2855 spin_unlock(&fs_info->delayed_iput_lock); 2856 if (empty) 2857 return; 2858 2859 spin_lock(&fs_info->delayed_iput_lock); 2860 list_splice_init(&fs_info->delayed_iputs, &list); 2861 spin_unlock(&fs_info->delayed_iput_lock); 2862 2863 while (!list_empty(&list)) { 2864 delayed = list_entry(list.next, struct delayed_iput, list); 2865 list_del(&delayed->list); 2866 iput(delayed->inode); 2867 kfree(delayed); 2868 } 2869 } 2870 2871 /* 2872 * This is called in transaction commit time. If there are no orphan 2873 * files in the subvolume, it removes orphan item and frees block_rsv 2874 * structure. 2875 */ 2876 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans, 2877 struct btrfs_root *root) 2878 { 2879 struct btrfs_block_rsv *block_rsv; 2880 int ret; 2881 2882 if (atomic_read(&root->orphan_inodes) || 2883 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) 2884 return; 2885 2886 spin_lock(&root->orphan_lock); 2887 if (atomic_read(&root->orphan_inodes)) { 2888 spin_unlock(&root->orphan_lock); 2889 return; 2890 } 2891 2892 if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) { 2893 spin_unlock(&root->orphan_lock); 2894 return; 2895 } 2896 2897 block_rsv = root->orphan_block_rsv; 2898 root->orphan_block_rsv = NULL; 2899 spin_unlock(&root->orphan_lock); 2900 2901 if (root->orphan_item_inserted && 2902 btrfs_root_refs(&root->root_item) > 0) { 2903 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root, 2904 root->root_key.objectid); 2905 if (ret) 2906 btrfs_abort_transaction(trans, root, ret); 2907 else 2908 root->orphan_item_inserted = 0; 2909 } 2910 2911 if (block_rsv) { 2912 WARN_ON(block_rsv->size > 0); 2913 btrfs_free_block_rsv(root, block_rsv); 2914 } 2915 } 2916 2917 /* 2918 * This creates an orphan entry for the given inode in case something goes 2919 * wrong in the middle of an unlink/truncate. 2920 * 2921 * NOTE: caller of this function should reserve 5 units of metadata for 2922 * this function. 2923 */ 2924 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode) 2925 { 2926 struct btrfs_root *root = BTRFS_I(inode)->root; 2927 struct btrfs_block_rsv *block_rsv = NULL; 2928 int reserve = 0; 2929 int insert = 0; 2930 int ret; 2931 2932 if (!root->orphan_block_rsv) { 2933 block_rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP); 2934 if (!block_rsv) 2935 return -ENOMEM; 2936 } 2937 2938 spin_lock(&root->orphan_lock); 2939 if (!root->orphan_block_rsv) { 2940 root->orphan_block_rsv = block_rsv; 2941 } else if (block_rsv) { 2942 btrfs_free_block_rsv(root, block_rsv); 2943 block_rsv = NULL; 2944 } 2945 2946 if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 2947 &BTRFS_I(inode)->runtime_flags)) { 2948 #if 0 2949 /* 2950 * For proper ENOSPC handling, we should do orphan 2951 * cleanup when mounting. But this introduces backward 2952 * compatibility issue. 2953 */ 2954 if (!xchg(&root->orphan_item_inserted, 1)) 2955 insert = 2; 2956 else 2957 insert = 1; 2958 #endif 2959 insert = 1; 2960 atomic_inc(&root->orphan_inodes); 2961 } 2962 2963 if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED, 2964 &BTRFS_I(inode)->runtime_flags)) 2965 reserve = 1; 2966 spin_unlock(&root->orphan_lock); 2967 2968 /* grab metadata reservation from transaction handle */ 2969 if (reserve) { 2970 ret = btrfs_orphan_reserve_metadata(trans, inode); 2971 BUG_ON(ret); /* -ENOSPC in reservation; Logic error? JDM */ 2972 } 2973 2974 /* insert an orphan item to track this unlinked/truncated file */ 2975 if (insert >= 1) { 2976 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode)); 2977 if (ret) { 2978 atomic_dec(&root->orphan_inodes); 2979 if (reserve) { 2980 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED, 2981 &BTRFS_I(inode)->runtime_flags); 2982 btrfs_orphan_release_metadata(inode); 2983 } 2984 if (ret != -EEXIST) { 2985 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 2986 &BTRFS_I(inode)->runtime_flags); 2987 btrfs_abort_transaction(trans, root, ret); 2988 return ret; 2989 } 2990 } 2991 ret = 0; 2992 } 2993 2994 /* insert an orphan item to track subvolume contains orphan files */ 2995 if (insert >= 2) { 2996 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root, 2997 root->root_key.objectid); 2998 if (ret && ret != -EEXIST) { 2999 btrfs_abort_transaction(trans, root, ret); 3000 return ret; 3001 } 3002 } 3003 return 0; 3004 } 3005 3006 /* 3007 * We have done the truncate/delete so we can go ahead and remove the orphan 3008 * item for this particular inode. 3009 */ 3010 static int btrfs_orphan_del(struct btrfs_trans_handle *trans, 3011 struct inode *inode) 3012 { 3013 struct btrfs_root *root = BTRFS_I(inode)->root; 3014 int delete_item = 0; 3015 int release_rsv = 0; 3016 int ret = 0; 3017 3018 spin_lock(&root->orphan_lock); 3019 if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 3020 &BTRFS_I(inode)->runtime_flags)) 3021 delete_item = 1; 3022 3023 if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED, 3024 &BTRFS_I(inode)->runtime_flags)) 3025 release_rsv = 1; 3026 spin_unlock(&root->orphan_lock); 3027 3028 if (delete_item) { 3029 atomic_dec(&root->orphan_inodes); 3030 if (trans) 3031 ret = btrfs_del_orphan_item(trans, root, 3032 btrfs_ino(inode)); 3033 } 3034 3035 if (release_rsv) 3036 btrfs_orphan_release_metadata(inode); 3037 3038 return ret; 3039 } 3040 3041 /* 3042 * this cleans up any orphans that may be left on the list from the last use 3043 * of this root. 3044 */ 3045 int btrfs_orphan_cleanup(struct btrfs_root *root) 3046 { 3047 struct btrfs_path *path; 3048 struct extent_buffer *leaf; 3049 struct btrfs_key key, found_key; 3050 struct btrfs_trans_handle *trans; 3051 struct inode *inode; 3052 u64 last_objectid = 0; 3053 int ret = 0, nr_unlink = 0, nr_truncate = 0; 3054 3055 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED)) 3056 return 0; 3057 3058 path = btrfs_alloc_path(); 3059 if (!path) { 3060 ret = -ENOMEM; 3061 goto out; 3062 } 3063 path->reada = -1; 3064 3065 key.objectid = BTRFS_ORPHAN_OBJECTID; 3066 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY); 3067 key.offset = (u64)-1; 3068 3069 while (1) { 3070 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3071 if (ret < 0) 3072 goto out; 3073 3074 /* 3075 * if ret == 0 means we found what we were searching for, which 3076 * is weird, but possible, so only screw with path if we didn't 3077 * find the key and see if we have stuff that matches 3078 */ 3079 if (ret > 0) { 3080 ret = 0; 3081 if (path->slots[0] == 0) 3082 break; 3083 path->slots[0]--; 3084 } 3085 3086 /* pull out the item */ 3087 leaf = path->nodes[0]; 3088 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 3089 3090 /* make sure the item matches what we want */ 3091 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID) 3092 break; 3093 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY) 3094 break; 3095 3096 /* release the path since we're done with it */ 3097 btrfs_release_path(path); 3098 3099 /* 3100 * this is where we are basically btrfs_lookup, without the 3101 * crossing root thing. we store the inode number in the 3102 * offset of the orphan item. 3103 */ 3104 3105 if (found_key.offset == last_objectid) { 3106 btrfs_err(root->fs_info, 3107 "Error removing orphan entry, stopping orphan cleanup"); 3108 ret = -EINVAL; 3109 goto out; 3110 } 3111 3112 last_objectid = found_key.offset; 3113 3114 found_key.objectid = found_key.offset; 3115 found_key.type = BTRFS_INODE_ITEM_KEY; 3116 found_key.offset = 0; 3117 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL); 3118 ret = PTR_ERR_OR_ZERO(inode); 3119 if (ret && ret != -ESTALE) 3120 goto out; 3121 3122 if (ret == -ESTALE && root == root->fs_info->tree_root) { 3123 struct btrfs_root *dead_root; 3124 struct btrfs_fs_info *fs_info = root->fs_info; 3125 int is_dead_root = 0; 3126 3127 /* 3128 * this is an orphan in the tree root. Currently these 3129 * could come from 2 sources: 3130 * a) a snapshot deletion in progress 3131 * b) a free space cache inode 3132 * We need to distinguish those two, as the snapshot 3133 * orphan must not get deleted. 3134 * find_dead_roots already ran before us, so if this 3135 * is a snapshot deletion, we should find the root 3136 * in the dead_roots list 3137 */ 3138 spin_lock(&fs_info->trans_lock); 3139 list_for_each_entry(dead_root, &fs_info->dead_roots, 3140 root_list) { 3141 if (dead_root->root_key.objectid == 3142 found_key.objectid) { 3143 is_dead_root = 1; 3144 break; 3145 } 3146 } 3147 spin_unlock(&fs_info->trans_lock); 3148 if (is_dead_root) { 3149 /* prevent this orphan from being found again */ 3150 key.offset = found_key.objectid - 1; 3151 continue; 3152 } 3153 } 3154 /* 3155 * Inode is already gone but the orphan item is still there, 3156 * kill the orphan item. 3157 */ 3158 if (ret == -ESTALE) { 3159 trans = btrfs_start_transaction(root, 1); 3160 if (IS_ERR(trans)) { 3161 ret = PTR_ERR(trans); 3162 goto out; 3163 } 3164 btrfs_debug(root->fs_info, "auto deleting %Lu", 3165 found_key.objectid); 3166 ret = btrfs_del_orphan_item(trans, root, 3167 found_key.objectid); 3168 btrfs_end_transaction(trans, root); 3169 if (ret) 3170 goto out; 3171 continue; 3172 } 3173 3174 /* 3175 * add this inode to the orphan list so btrfs_orphan_del does 3176 * the proper thing when we hit it 3177 */ 3178 set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 3179 &BTRFS_I(inode)->runtime_flags); 3180 atomic_inc(&root->orphan_inodes); 3181 3182 /* if we have links, this was a truncate, lets do that */ 3183 if (inode->i_nlink) { 3184 if (WARN_ON(!S_ISREG(inode->i_mode))) { 3185 iput(inode); 3186 continue; 3187 } 3188 nr_truncate++; 3189 3190 /* 1 for the orphan item deletion. */ 3191 trans = btrfs_start_transaction(root, 1); 3192 if (IS_ERR(trans)) { 3193 iput(inode); 3194 ret = PTR_ERR(trans); 3195 goto out; 3196 } 3197 ret = btrfs_orphan_add(trans, inode); 3198 btrfs_end_transaction(trans, root); 3199 if (ret) { 3200 iput(inode); 3201 goto out; 3202 } 3203 3204 ret = btrfs_truncate(inode); 3205 if (ret) 3206 btrfs_orphan_del(NULL, inode); 3207 } else { 3208 nr_unlink++; 3209 } 3210 3211 /* this will do delete_inode and everything for us */ 3212 iput(inode); 3213 if (ret) 3214 goto out; 3215 } 3216 /* release the path since we're done with it */ 3217 btrfs_release_path(path); 3218 3219 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE; 3220 3221 if (root->orphan_block_rsv) 3222 btrfs_block_rsv_release(root, root->orphan_block_rsv, 3223 (u64)-1); 3224 3225 if (root->orphan_block_rsv || root->orphan_item_inserted) { 3226 trans = btrfs_join_transaction(root); 3227 if (!IS_ERR(trans)) 3228 btrfs_end_transaction(trans, root); 3229 } 3230 3231 if (nr_unlink) 3232 btrfs_debug(root->fs_info, "unlinked %d orphans", nr_unlink); 3233 if (nr_truncate) 3234 btrfs_debug(root->fs_info, "truncated %d orphans", nr_truncate); 3235 3236 out: 3237 if (ret) 3238 btrfs_crit(root->fs_info, 3239 "could not do orphan cleanup %d", ret); 3240 btrfs_free_path(path); 3241 return ret; 3242 } 3243 3244 /* 3245 * very simple check to peek ahead in the leaf looking for xattrs. If we 3246 * don't find any xattrs, we know there can't be any acls. 3247 * 3248 * slot is the slot the inode is in, objectid is the objectid of the inode 3249 */ 3250 static noinline int acls_after_inode_item(struct extent_buffer *leaf, 3251 int slot, u64 objectid) 3252 { 3253 u32 nritems = btrfs_header_nritems(leaf); 3254 struct btrfs_key found_key; 3255 static u64 xattr_access = 0; 3256 static u64 xattr_default = 0; 3257 int scanned = 0; 3258 3259 if (!xattr_access) { 3260 xattr_access = btrfs_name_hash(POSIX_ACL_XATTR_ACCESS, 3261 strlen(POSIX_ACL_XATTR_ACCESS)); 3262 xattr_default = btrfs_name_hash(POSIX_ACL_XATTR_DEFAULT, 3263 strlen(POSIX_ACL_XATTR_DEFAULT)); 3264 } 3265 3266 slot++; 3267 while (slot < nritems) { 3268 btrfs_item_key_to_cpu(leaf, &found_key, slot); 3269 3270 /* we found a different objectid, there must not be acls */ 3271 if (found_key.objectid != objectid) 3272 return 0; 3273 3274 /* we found an xattr, assume we've got an acl */ 3275 if (found_key.type == BTRFS_XATTR_ITEM_KEY) { 3276 if (found_key.offset == xattr_access || 3277 found_key.offset == xattr_default) 3278 return 1; 3279 } 3280 3281 /* 3282 * we found a key greater than an xattr key, there can't 3283 * be any acls later on 3284 */ 3285 if (found_key.type > BTRFS_XATTR_ITEM_KEY) 3286 return 0; 3287 3288 slot++; 3289 scanned++; 3290 3291 /* 3292 * it goes inode, inode backrefs, xattrs, extents, 3293 * so if there are a ton of hard links to an inode there can 3294 * be a lot of backrefs. Don't waste time searching too hard, 3295 * this is just an optimization 3296 */ 3297 if (scanned >= 8) 3298 break; 3299 } 3300 /* we hit the end of the leaf before we found an xattr or 3301 * something larger than an xattr. We have to assume the inode 3302 * has acls 3303 */ 3304 return 1; 3305 } 3306 3307 /* 3308 * read an inode from the btree into the in-memory inode 3309 */ 3310 static void btrfs_read_locked_inode(struct inode *inode) 3311 { 3312 struct btrfs_path *path; 3313 struct extent_buffer *leaf; 3314 struct btrfs_inode_item *inode_item; 3315 struct btrfs_timespec *tspec; 3316 struct btrfs_root *root = BTRFS_I(inode)->root; 3317 struct btrfs_key location; 3318 int maybe_acls; 3319 u32 rdev; 3320 int ret; 3321 bool filled = false; 3322 3323 ret = btrfs_fill_inode(inode, &rdev); 3324 if (!ret) 3325 filled = true; 3326 3327 path = btrfs_alloc_path(); 3328 if (!path) 3329 goto make_bad; 3330 3331 path->leave_spinning = 1; 3332 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location)); 3333 3334 ret = btrfs_lookup_inode(NULL, root, path, &location, 0); 3335 if (ret) 3336 goto make_bad; 3337 3338 leaf = path->nodes[0]; 3339 3340 if (filled) 3341 goto cache_acl; 3342 3343 inode_item = btrfs_item_ptr(leaf, path->slots[0], 3344 struct btrfs_inode_item); 3345 inode->i_mode = btrfs_inode_mode(leaf, inode_item); 3346 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item)); 3347 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item)); 3348 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item)); 3349 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item)); 3350 3351 tspec = btrfs_inode_atime(inode_item); 3352 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec); 3353 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec); 3354 3355 tspec = btrfs_inode_mtime(inode_item); 3356 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec); 3357 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec); 3358 3359 tspec = btrfs_inode_ctime(inode_item); 3360 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec); 3361 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec); 3362 3363 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item)); 3364 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item); 3365 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item); 3366 3367 /* 3368 * If we were modified in the current generation and evicted from memory 3369 * and then re-read we need to do a full sync since we don't have any 3370 * idea about which extents were modified before we were evicted from 3371 * cache. 3372 */ 3373 if (BTRFS_I(inode)->last_trans == root->fs_info->generation) 3374 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 3375 &BTRFS_I(inode)->runtime_flags); 3376 3377 inode->i_version = btrfs_inode_sequence(leaf, inode_item); 3378 inode->i_generation = BTRFS_I(inode)->generation; 3379 inode->i_rdev = 0; 3380 rdev = btrfs_inode_rdev(leaf, inode_item); 3381 3382 BTRFS_I(inode)->index_cnt = (u64)-1; 3383 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item); 3384 cache_acl: 3385 /* 3386 * try to precache a NULL acl entry for files that don't have 3387 * any xattrs or acls 3388 */ 3389 maybe_acls = acls_after_inode_item(leaf, path->slots[0], 3390 btrfs_ino(inode)); 3391 if (!maybe_acls) 3392 cache_no_acl(inode); 3393 3394 btrfs_free_path(path); 3395 3396 switch (inode->i_mode & S_IFMT) { 3397 case S_IFREG: 3398 inode->i_mapping->a_ops = &btrfs_aops; 3399 inode->i_mapping->backing_dev_info = &root->fs_info->bdi; 3400 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 3401 inode->i_fop = &btrfs_file_operations; 3402 inode->i_op = &btrfs_file_inode_operations; 3403 break; 3404 case S_IFDIR: 3405 inode->i_fop = &btrfs_dir_file_operations; 3406 if (root == root->fs_info->tree_root) 3407 inode->i_op = &btrfs_dir_ro_inode_operations; 3408 else 3409 inode->i_op = &btrfs_dir_inode_operations; 3410 break; 3411 case S_IFLNK: 3412 inode->i_op = &btrfs_symlink_inode_operations; 3413 inode->i_mapping->a_ops = &btrfs_symlink_aops; 3414 inode->i_mapping->backing_dev_info = &root->fs_info->bdi; 3415 break; 3416 default: 3417 inode->i_op = &btrfs_special_inode_operations; 3418 init_special_inode(inode, inode->i_mode, rdev); 3419 break; 3420 } 3421 3422 btrfs_update_iflags(inode); 3423 return; 3424 3425 make_bad: 3426 btrfs_free_path(path); 3427 make_bad_inode(inode); 3428 } 3429 3430 /* 3431 * given a leaf and an inode, copy the inode fields into the leaf 3432 */ 3433 static void fill_inode_item(struct btrfs_trans_handle *trans, 3434 struct extent_buffer *leaf, 3435 struct btrfs_inode_item *item, 3436 struct inode *inode) 3437 { 3438 struct btrfs_map_token token; 3439 3440 btrfs_init_map_token(&token); 3441 3442 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token); 3443 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token); 3444 btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size, 3445 &token); 3446 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token); 3447 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token); 3448 3449 btrfs_set_token_timespec_sec(leaf, btrfs_inode_atime(item), 3450 inode->i_atime.tv_sec, &token); 3451 btrfs_set_token_timespec_nsec(leaf, btrfs_inode_atime(item), 3452 inode->i_atime.tv_nsec, &token); 3453 3454 btrfs_set_token_timespec_sec(leaf, btrfs_inode_mtime(item), 3455 inode->i_mtime.tv_sec, &token); 3456 btrfs_set_token_timespec_nsec(leaf, btrfs_inode_mtime(item), 3457 inode->i_mtime.tv_nsec, &token); 3458 3459 btrfs_set_token_timespec_sec(leaf, btrfs_inode_ctime(item), 3460 inode->i_ctime.tv_sec, &token); 3461 btrfs_set_token_timespec_nsec(leaf, btrfs_inode_ctime(item), 3462 inode->i_ctime.tv_nsec, &token); 3463 3464 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode), 3465 &token); 3466 btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation, 3467 &token); 3468 btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token); 3469 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token); 3470 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token); 3471 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token); 3472 btrfs_set_token_inode_block_group(leaf, item, 0, &token); 3473 } 3474 3475 /* 3476 * copy everything in the in-memory inode into the btree. 3477 */ 3478 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans, 3479 struct btrfs_root *root, struct inode *inode) 3480 { 3481 struct btrfs_inode_item *inode_item; 3482 struct btrfs_path *path; 3483 struct extent_buffer *leaf; 3484 int ret; 3485 3486 path = btrfs_alloc_path(); 3487 if (!path) 3488 return -ENOMEM; 3489 3490 path->leave_spinning = 1; 3491 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location, 3492 1); 3493 if (ret) { 3494 if (ret > 0) 3495 ret = -ENOENT; 3496 goto failed; 3497 } 3498 3499 btrfs_unlock_up_safe(path, 1); 3500 leaf = path->nodes[0]; 3501 inode_item = btrfs_item_ptr(leaf, path->slots[0], 3502 struct btrfs_inode_item); 3503 3504 fill_inode_item(trans, leaf, inode_item, inode); 3505 btrfs_mark_buffer_dirty(leaf); 3506 btrfs_set_inode_last_trans(trans, inode); 3507 ret = 0; 3508 failed: 3509 btrfs_free_path(path); 3510 return ret; 3511 } 3512 3513 /* 3514 * copy everything in the in-memory inode into the btree. 3515 */ 3516 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans, 3517 struct btrfs_root *root, struct inode *inode) 3518 { 3519 int ret; 3520 3521 /* 3522 * If the inode is a free space inode, we can deadlock during commit 3523 * if we put it into the delayed code. 3524 * 3525 * The data relocation inode should also be directly updated 3526 * without delay 3527 */ 3528 if (!btrfs_is_free_space_inode(inode) 3529 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) { 3530 btrfs_update_root_times(trans, root); 3531 3532 ret = btrfs_delayed_update_inode(trans, root, inode); 3533 if (!ret) 3534 btrfs_set_inode_last_trans(trans, inode); 3535 return ret; 3536 } 3537 3538 return btrfs_update_inode_item(trans, root, inode); 3539 } 3540 3541 noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans, 3542 struct btrfs_root *root, 3543 struct inode *inode) 3544 { 3545 int ret; 3546 3547 ret = btrfs_update_inode(trans, root, inode); 3548 if (ret == -ENOSPC) 3549 return btrfs_update_inode_item(trans, root, inode); 3550 return ret; 3551 } 3552 3553 /* 3554 * unlink helper that gets used here in inode.c and in the tree logging 3555 * recovery code. It remove a link in a directory with a given name, and 3556 * also drops the back refs in the inode to the directory 3557 */ 3558 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans, 3559 struct btrfs_root *root, 3560 struct inode *dir, struct inode *inode, 3561 const char *name, int name_len) 3562 { 3563 struct btrfs_path *path; 3564 int ret = 0; 3565 struct extent_buffer *leaf; 3566 struct btrfs_dir_item *di; 3567 struct btrfs_key key; 3568 u64 index; 3569 u64 ino = btrfs_ino(inode); 3570 u64 dir_ino = btrfs_ino(dir); 3571 3572 path = btrfs_alloc_path(); 3573 if (!path) { 3574 ret = -ENOMEM; 3575 goto out; 3576 } 3577 3578 path->leave_spinning = 1; 3579 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 3580 name, name_len, -1); 3581 if (IS_ERR(di)) { 3582 ret = PTR_ERR(di); 3583 goto err; 3584 } 3585 if (!di) { 3586 ret = -ENOENT; 3587 goto err; 3588 } 3589 leaf = path->nodes[0]; 3590 btrfs_dir_item_key_to_cpu(leaf, di, &key); 3591 ret = btrfs_delete_one_dir_name(trans, root, path, di); 3592 if (ret) 3593 goto err; 3594 btrfs_release_path(path); 3595 3596 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino, 3597 dir_ino, &index); 3598 if (ret) { 3599 btrfs_info(root->fs_info, 3600 "failed to delete reference to %.*s, inode %llu parent %llu", 3601 name_len, name, ino, dir_ino); 3602 btrfs_abort_transaction(trans, root, ret); 3603 goto err; 3604 } 3605 3606 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index); 3607 if (ret) { 3608 btrfs_abort_transaction(trans, root, ret); 3609 goto err; 3610 } 3611 3612 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, 3613 inode, dir_ino); 3614 if (ret != 0 && ret != -ENOENT) { 3615 btrfs_abort_transaction(trans, root, ret); 3616 goto err; 3617 } 3618 3619 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, 3620 dir, index); 3621 if (ret == -ENOENT) 3622 ret = 0; 3623 else if (ret) 3624 btrfs_abort_transaction(trans, root, ret); 3625 err: 3626 btrfs_free_path(path); 3627 if (ret) 3628 goto out; 3629 3630 btrfs_i_size_write(dir, dir->i_size - name_len * 2); 3631 inode_inc_iversion(inode); 3632 inode_inc_iversion(dir); 3633 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME; 3634 ret = btrfs_update_inode(trans, root, dir); 3635 out: 3636 return ret; 3637 } 3638 3639 int btrfs_unlink_inode(struct btrfs_trans_handle *trans, 3640 struct btrfs_root *root, 3641 struct inode *dir, struct inode *inode, 3642 const char *name, int name_len) 3643 { 3644 int ret; 3645 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len); 3646 if (!ret) { 3647 drop_nlink(inode); 3648 ret = btrfs_update_inode(trans, root, inode); 3649 } 3650 return ret; 3651 } 3652 3653 /* 3654 * helper to start transaction for unlink and rmdir. 3655 * 3656 * unlink and rmdir are special in btrfs, they do not always free space, so 3657 * if we cannot make our reservations the normal way try and see if there is 3658 * plenty of slack room in the global reserve to migrate, otherwise we cannot 3659 * allow the unlink to occur. 3660 */ 3661 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir) 3662 { 3663 struct btrfs_trans_handle *trans; 3664 struct btrfs_root *root = BTRFS_I(dir)->root; 3665 int ret; 3666 3667 /* 3668 * 1 for the possible orphan item 3669 * 1 for the dir item 3670 * 1 for the dir index 3671 * 1 for the inode ref 3672 * 1 for the inode 3673 */ 3674 trans = btrfs_start_transaction(root, 5); 3675 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC) 3676 return trans; 3677 3678 if (PTR_ERR(trans) == -ENOSPC) { 3679 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 5); 3680 3681 trans = btrfs_start_transaction(root, 0); 3682 if (IS_ERR(trans)) 3683 return trans; 3684 ret = btrfs_cond_migrate_bytes(root->fs_info, 3685 &root->fs_info->trans_block_rsv, 3686 num_bytes, 5); 3687 if (ret) { 3688 btrfs_end_transaction(trans, root); 3689 return ERR_PTR(ret); 3690 } 3691 trans->block_rsv = &root->fs_info->trans_block_rsv; 3692 trans->bytes_reserved = num_bytes; 3693 } 3694 return trans; 3695 } 3696 3697 static int btrfs_unlink(struct inode *dir, struct dentry *dentry) 3698 { 3699 struct btrfs_root *root = BTRFS_I(dir)->root; 3700 struct btrfs_trans_handle *trans; 3701 struct inode *inode = dentry->d_inode; 3702 int ret; 3703 3704 trans = __unlink_start_trans(dir); 3705 if (IS_ERR(trans)) 3706 return PTR_ERR(trans); 3707 3708 btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0); 3709 3710 ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode, 3711 dentry->d_name.name, dentry->d_name.len); 3712 if (ret) 3713 goto out; 3714 3715 if (inode->i_nlink == 0) { 3716 ret = btrfs_orphan_add(trans, inode); 3717 if (ret) 3718 goto out; 3719 } 3720 3721 out: 3722 btrfs_end_transaction(trans, root); 3723 btrfs_btree_balance_dirty(root); 3724 return ret; 3725 } 3726 3727 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans, 3728 struct btrfs_root *root, 3729 struct inode *dir, u64 objectid, 3730 const char *name, int name_len) 3731 { 3732 struct btrfs_path *path; 3733 struct extent_buffer *leaf; 3734 struct btrfs_dir_item *di; 3735 struct btrfs_key key; 3736 u64 index; 3737 int ret; 3738 u64 dir_ino = btrfs_ino(dir); 3739 3740 path = btrfs_alloc_path(); 3741 if (!path) 3742 return -ENOMEM; 3743 3744 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 3745 name, name_len, -1); 3746 if (IS_ERR_OR_NULL(di)) { 3747 if (!di) 3748 ret = -ENOENT; 3749 else 3750 ret = PTR_ERR(di); 3751 goto out; 3752 } 3753 3754 leaf = path->nodes[0]; 3755 btrfs_dir_item_key_to_cpu(leaf, di, &key); 3756 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid); 3757 ret = btrfs_delete_one_dir_name(trans, root, path, di); 3758 if (ret) { 3759 btrfs_abort_transaction(trans, root, ret); 3760 goto out; 3761 } 3762 btrfs_release_path(path); 3763 3764 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root, 3765 objectid, root->root_key.objectid, 3766 dir_ino, &index, name, name_len); 3767 if (ret < 0) { 3768 if (ret != -ENOENT) { 3769 btrfs_abort_transaction(trans, root, ret); 3770 goto out; 3771 } 3772 di = btrfs_search_dir_index_item(root, path, dir_ino, 3773 name, name_len); 3774 if (IS_ERR_OR_NULL(di)) { 3775 if (!di) 3776 ret = -ENOENT; 3777 else 3778 ret = PTR_ERR(di); 3779 btrfs_abort_transaction(trans, root, ret); 3780 goto out; 3781 } 3782 3783 leaf = path->nodes[0]; 3784 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 3785 btrfs_release_path(path); 3786 index = key.offset; 3787 } 3788 btrfs_release_path(path); 3789 3790 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index); 3791 if (ret) { 3792 btrfs_abort_transaction(trans, root, ret); 3793 goto out; 3794 } 3795 3796 btrfs_i_size_write(dir, dir->i_size - name_len * 2); 3797 inode_inc_iversion(dir); 3798 dir->i_mtime = dir->i_ctime = CURRENT_TIME; 3799 ret = btrfs_update_inode_fallback(trans, root, dir); 3800 if (ret) 3801 btrfs_abort_transaction(trans, root, ret); 3802 out: 3803 btrfs_free_path(path); 3804 return ret; 3805 } 3806 3807 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry) 3808 { 3809 struct inode *inode = dentry->d_inode; 3810 int err = 0; 3811 struct btrfs_root *root = BTRFS_I(dir)->root; 3812 struct btrfs_trans_handle *trans; 3813 3814 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE) 3815 return -ENOTEMPTY; 3816 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) 3817 return -EPERM; 3818 3819 trans = __unlink_start_trans(dir); 3820 if (IS_ERR(trans)) 3821 return PTR_ERR(trans); 3822 3823 if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 3824 err = btrfs_unlink_subvol(trans, root, dir, 3825 BTRFS_I(inode)->location.objectid, 3826 dentry->d_name.name, 3827 dentry->d_name.len); 3828 goto out; 3829 } 3830 3831 err = btrfs_orphan_add(trans, inode); 3832 if (err) 3833 goto out; 3834 3835 /* now the directory is empty */ 3836 err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode, 3837 dentry->d_name.name, dentry->d_name.len); 3838 if (!err) 3839 btrfs_i_size_write(inode, 0); 3840 out: 3841 btrfs_end_transaction(trans, root); 3842 btrfs_btree_balance_dirty(root); 3843 3844 return err; 3845 } 3846 3847 /* 3848 * this can truncate away extent items, csum items and directory items. 3849 * It starts at a high offset and removes keys until it can't find 3850 * any higher than new_size 3851 * 3852 * csum items that cross the new i_size are truncated to the new size 3853 * as well. 3854 * 3855 * min_type is the minimum key type to truncate down to. If set to 0, this 3856 * will kill all the items on this inode, including the INODE_ITEM_KEY. 3857 */ 3858 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans, 3859 struct btrfs_root *root, 3860 struct inode *inode, 3861 u64 new_size, u32 min_type) 3862 { 3863 struct btrfs_path *path; 3864 struct extent_buffer *leaf; 3865 struct btrfs_file_extent_item *fi; 3866 struct btrfs_key key; 3867 struct btrfs_key found_key; 3868 u64 extent_start = 0; 3869 u64 extent_num_bytes = 0; 3870 u64 extent_offset = 0; 3871 u64 item_end = 0; 3872 u64 last_size = (u64)-1; 3873 u32 found_type = (u8)-1; 3874 int found_extent; 3875 int del_item; 3876 int pending_del_nr = 0; 3877 int pending_del_slot = 0; 3878 int extent_type = -1; 3879 int ret; 3880 int err = 0; 3881 u64 ino = btrfs_ino(inode); 3882 3883 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY); 3884 3885 path = btrfs_alloc_path(); 3886 if (!path) 3887 return -ENOMEM; 3888 path->reada = -1; 3889 3890 /* 3891 * We want to drop from the next block forward in case this new size is 3892 * not block aligned since we will be keeping the last block of the 3893 * extent just the way it is. 3894 */ 3895 if (root->ref_cows || root == root->fs_info->tree_root) 3896 btrfs_drop_extent_cache(inode, ALIGN(new_size, 3897 root->sectorsize), (u64)-1, 0); 3898 3899 /* 3900 * This function is also used to drop the items in the log tree before 3901 * we relog the inode, so if root != BTRFS_I(inode)->root, it means 3902 * it is used to drop the loged items. So we shouldn't kill the delayed 3903 * items. 3904 */ 3905 if (min_type == 0 && root == BTRFS_I(inode)->root) 3906 btrfs_kill_delayed_inode_items(inode); 3907 3908 key.objectid = ino; 3909 key.offset = (u64)-1; 3910 key.type = (u8)-1; 3911 3912 search_again: 3913 path->leave_spinning = 1; 3914 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 3915 if (ret < 0) { 3916 err = ret; 3917 goto out; 3918 } 3919 3920 if (ret > 0) { 3921 /* there are no items in the tree for us to truncate, we're 3922 * done 3923 */ 3924 if (path->slots[0] == 0) 3925 goto out; 3926 path->slots[0]--; 3927 } 3928 3929 while (1) { 3930 fi = NULL; 3931 leaf = path->nodes[0]; 3932 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 3933 found_type = btrfs_key_type(&found_key); 3934 3935 if (found_key.objectid != ino) 3936 break; 3937 3938 if (found_type < min_type) 3939 break; 3940 3941 item_end = found_key.offset; 3942 if (found_type == BTRFS_EXTENT_DATA_KEY) { 3943 fi = btrfs_item_ptr(leaf, path->slots[0], 3944 struct btrfs_file_extent_item); 3945 extent_type = btrfs_file_extent_type(leaf, fi); 3946 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 3947 item_end += 3948 btrfs_file_extent_num_bytes(leaf, fi); 3949 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 3950 item_end += btrfs_file_extent_inline_len(leaf, 3951 fi); 3952 } 3953 item_end--; 3954 } 3955 if (found_type > min_type) { 3956 del_item = 1; 3957 } else { 3958 if (item_end < new_size) 3959 break; 3960 if (found_key.offset >= new_size) 3961 del_item = 1; 3962 else 3963 del_item = 0; 3964 } 3965 found_extent = 0; 3966 /* FIXME, shrink the extent if the ref count is only 1 */ 3967 if (found_type != BTRFS_EXTENT_DATA_KEY) 3968 goto delete; 3969 3970 if (del_item) 3971 last_size = found_key.offset; 3972 else 3973 last_size = new_size; 3974 3975 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 3976 u64 num_dec; 3977 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi); 3978 if (!del_item) { 3979 u64 orig_num_bytes = 3980 btrfs_file_extent_num_bytes(leaf, fi); 3981 extent_num_bytes = ALIGN(new_size - 3982 found_key.offset, 3983 root->sectorsize); 3984 btrfs_set_file_extent_num_bytes(leaf, fi, 3985 extent_num_bytes); 3986 num_dec = (orig_num_bytes - 3987 extent_num_bytes); 3988 if (root->ref_cows && extent_start != 0) 3989 inode_sub_bytes(inode, num_dec); 3990 btrfs_mark_buffer_dirty(leaf); 3991 } else { 3992 extent_num_bytes = 3993 btrfs_file_extent_disk_num_bytes(leaf, 3994 fi); 3995 extent_offset = found_key.offset - 3996 btrfs_file_extent_offset(leaf, fi); 3997 3998 /* FIXME blocksize != 4096 */ 3999 num_dec = btrfs_file_extent_num_bytes(leaf, fi); 4000 if (extent_start != 0) { 4001 found_extent = 1; 4002 if (root->ref_cows) 4003 inode_sub_bytes(inode, num_dec); 4004 } 4005 } 4006 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 4007 /* 4008 * we can't truncate inline items that have had 4009 * special encodings 4010 */ 4011 if (!del_item && 4012 btrfs_file_extent_compression(leaf, fi) == 0 && 4013 btrfs_file_extent_encryption(leaf, fi) == 0 && 4014 btrfs_file_extent_other_encoding(leaf, fi) == 0) { 4015 u32 size = new_size - found_key.offset; 4016 4017 if (root->ref_cows) { 4018 inode_sub_bytes(inode, item_end + 1 - 4019 new_size); 4020 } 4021 size = 4022 btrfs_file_extent_calc_inline_size(size); 4023 btrfs_truncate_item(root, path, size, 1); 4024 } else if (root->ref_cows) { 4025 inode_sub_bytes(inode, item_end + 1 - 4026 found_key.offset); 4027 } 4028 } 4029 delete: 4030 if (del_item) { 4031 if (!pending_del_nr) { 4032 /* no pending yet, add ourselves */ 4033 pending_del_slot = path->slots[0]; 4034 pending_del_nr = 1; 4035 } else if (pending_del_nr && 4036 path->slots[0] + 1 == pending_del_slot) { 4037 /* hop on the pending chunk */ 4038 pending_del_nr++; 4039 pending_del_slot = path->slots[0]; 4040 } else { 4041 BUG(); 4042 } 4043 } else { 4044 break; 4045 } 4046 if (found_extent && (root->ref_cows || 4047 root == root->fs_info->tree_root)) { 4048 btrfs_set_path_blocking(path); 4049 ret = btrfs_free_extent(trans, root, extent_start, 4050 extent_num_bytes, 0, 4051 btrfs_header_owner(leaf), 4052 ino, extent_offset, 0); 4053 BUG_ON(ret); 4054 } 4055 4056 if (found_type == BTRFS_INODE_ITEM_KEY) 4057 break; 4058 4059 if (path->slots[0] == 0 || 4060 path->slots[0] != pending_del_slot) { 4061 if (pending_del_nr) { 4062 ret = btrfs_del_items(trans, root, path, 4063 pending_del_slot, 4064 pending_del_nr); 4065 if (ret) { 4066 btrfs_abort_transaction(trans, 4067 root, ret); 4068 goto error; 4069 } 4070 pending_del_nr = 0; 4071 } 4072 btrfs_release_path(path); 4073 goto search_again; 4074 } else { 4075 path->slots[0]--; 4076 } 4077 } 4078 out: 4079 if (pending_del_nr) { 4080 ret = btrfs_del_items(trans, root, path, pending_del_slot, 4081 pending_del_nr); 4082 if (ret) 4083 btrfs_abort_transaction(trans, root, ret); 4084 } 4085 error: 4086 if (last_size != (u64)-1) 4087 btrfs_ordered_update_i_size(inode, last_size, NULL); 4088 btrfs_free_path(path); 4089 return err; 4090 } 4091 4092 /* 4093 * btrfs_truncate_page - read, zero a chunk and write a page 4094 * @inode - inode that we're zeroing 4095 * @from - the offset to start zeroing 4096 * @len - the length to zero, 0 to zero the entire range respective to the 4097 * offset 4098 * @front - zero up to the offset instead of from the offset on 4099 * 4100 * This will find the page for the "from" offset and cow the page and zero the 4101 * part we want to zero. This is used with truncate and hole punching. 4102 */ 4103 int btrfs_truncate_page(struct inode *inode, loff_t from, loff_t len, 4104 int front) 4105 { 4106 struct address_space *mapping = inode->i_mapping; 4107 struct btrfs_root *root = BTRFS_I(inode)->root; 4108 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 4109 struct btrfs_ordered_extent *ordered; 4110 struct extent_state *cached_state = NULL; 4111 char *kaddr; 4112 u32 blocksize = root->sectorsize; 4113 pgoff_t index = from >> PAGE_CACHE_SHIFT; 4114 unsigned offset = from & (PAGE_CACHE_SIZE-1); 4115 struct page *page; 4116 gfp_t mask = btrfs_alloc_write_mask(mapping); 4117 int ret = 0; 4118 u64 page_start; 4119 u64 page_end; 4120 4121 if ((offset & (blocksize - 1)) == 0 && 4122 (!len || ((len & (blocksize - 1)) == 0))) 4123 goto out; 4124 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE); 4125 if (ret) 4126 goto out; 4127 4128 again: 4129 page = find_or_create_page(mapping, index, mask); 4130 if (!page) { 4131 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE); 4132 ret = -ENOMEM; 4133 goto out; 4134 } 4135 4136 page_start = page_offset(page); 4137 page_end = page_start + PAGE_CACHE_SIZE - 1; 4138 4139 if (!PageUptodate(page)) { 4140 ret = btrfs_readpage(NULL, page); 4141 lock_page(page); 4142 if (page->mapping != mapping) { 4143 unlock_page(page); 4144 page_cache_release(page); 4145 goto again; 4146 } 4147 if (!PageUptodate(page)) { 4148 ret = -EIO; 4149 goto out_unlock; 4150 } 4151 } 4152 wait_on_page_writeback(page); 4153 4154 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state); 4155 set_page_extent_mapped(page); 4156 4157 ordered = btrfs_lookup_ordered_extent(inode, page_start); 4158 if (ordered) { 4159 unlock_extent_cached(io_tree, page_start, page_end, 4160 &cached_state, GFP_NOFS); 4161 unlock_page(page); 4162 page_cache_release(page); 4163 btrfs_start_ordered_extent(inode, ordered, 1); 4164 btrfs_put_ordered_extent(ordered); 4165 goto again; 4166 } 4167 4168 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end, 4169 EXTENT_DIRTY | EXTENT_DELALLOC | 4170 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 4171 0, 0, &cached_state, GFP_NOFS); 4172 4173 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 4174 &cached_state); 4175 if (ret) { 4176 unlock_extent_cached(io_tree, page_start, page_end, 4177 &cached_state, GFP_NOFS); 4178 goto out_unlock; 4179 } 4180 4181 if (offset != PAGE_CACHE_SIZE) { 4182 if (!len) 4183 len = PAGE_CACHE_SIZE - offset; 4184 kaddr = kmap(page); 4185 if (front) 4186 memset(kaddr, 0, offset); 4187 else 4188 memset(kaddr + offset, 0, len); 4189 flush_dcache_page(page); 4190 kunmap(page); 4191 } 4192 ClearPageChecked(page); 4193 set_page_dirty(page); 4194 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, 4195 GFP_NOFS); 4196 4197 out_unlock: 4198 if (ret) 4199 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE); 4200 unlock_page(page); 4201 page_cache_release(page); 4202 out: 4203 return ret; 4204 } 4205 4206 /* 4207 * This function puts in dummy file extents for the area we're creating a hole 4208 * for. So if we are truncating this file to a larger size we need to insert 4209 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for 4210 * the range between oldsize and size 4211 */ 4212 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size) 4213 { 4214 struct btrfs_trans_handle *trans; 4215 struct btrfs_root *root = BTRFS_I(inode)->root; 4216 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 4217 struct extent_map *em = NULL; 4218 struct extent_state *cached_state = NULL; 4219 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 4220 u64 hole_start = ALIGN(oldsize, root->sectorsize); 4221 u64 block_end = ALIGN(size, root->sectorsize); 4222 u64 last_byte; 4223 u64 cur_offset; 4224 u64 hole_size; 4225 int err = 0; 4226 4227 /* 4228 * If our size started in the middle of a page we need to zero out the 4229 * rest of the page before we expand the i_size, otherwise we could 4230 * expose stale data. 4231 */ 4232 err = btrfs_truncate_page(inode, oldsize, 0, 0); 4233 if (err) 4234 return err; 4235 4236 if (size <= hole_start) 4237 return 0; 4238 4239 while (1) { 4240 struct btrfs_ordered_extent *ordered; 4241 4242 lock_extent_bits(io_tree, hole_start, block_end - 1, 0, 4243 &cached_state); 4244 ordered = btrfs_lookup_ordered_range(inode, hole_start, 4245 block_end - hole_start); 4246 if (!ordered) 4247 break; 4248 unlock_extent_cached(io_tree, hole_start, block_end - 1, 4249 &cached_state, GFP_NOFS); 4250 btrfs_start_ordered_extent(inode, ordered, 1); 4251 btrfs_put_ordered_extent(ordered); 4252 } 4253 4254 cur_offset = hole_start; 4255 while (1) { 4256 em = btrfs_get_extent(inode, NULL, 0, cur_offset, 4257 block_end - cur_offset, 0); 4258 if (IS_ERR(em)) { 4259 err = PTR_ERR(em); 4260 em = NULL; 4261 break; 4262 } 4263 last_byte = min(extent_map_end(em), block_end); 4264 last_byte = ALIGN(last_byte , root->sectorsize); 4265 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) { 4266 struct extent_map *hole_em; 4267 hole_size = last_byte - cur_offset; 4268 4269 trans = btrfs_start_transaction(root, 3); 4270 if (IS_ERR(trans)) { 4271 err = PTR_ERR(trans); 4272 break; 4273 } 4274 4275 err = btrfs_drop_extents(trans, root, inode, 4276 cur_offset, 4277 cur_offset + hole_size, 1); 4278 if (err) { 4279 btrfs_abort_transaction(trans, root, err); 4280 btrfs_end_transaction(trans, root); 4281 break; 4282 } 4283 4284 err = btrfs_insert_file_extent(trans, root, 4285 btrfs_ino(inode), cur_offset, 0, 4286 0, hole_size, 0, hole_size, 4287 0, 0, 0); 4288 if (err) { 4289 btrfs_abort_transaction(trans, root, err); 4290 btrfs_end_transaction(trans, root); 4291 break; 4292 } 4293 4294 btrfs_drop_extent_cache(inode, cur_offset, 4295 cur_offset + hole_size - 1, 0); 4296 hole_em = alloc_extent_map(); 4297 if (!hole_em) { 4298 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 4299 &BTRFS_I(inode)->runtime_flags); 4300 goto next; 4301 } 4302 hole_em->start = cur_offset; 4303 hole_em->len = hole_size; 4304 hole_em->orig_start = cur_offset; 4305 4306 hole_em->block_start = EXTENT_MAP_HOLE; 4307 hole_em->block_len = 0; 4308 hole_em->orig_block_len = 0; 4309 hole_em->ram_bytes = hole_size; 4310 hole_em->bdev = root->fs_info->fs_devices->latest_bdev; 4311 hole_em->compress_type = BTRFS_COMPRESS_NONE; 4312 hole_em->generation = trans->transid; 4313 4314 while (1) { 4315 write_lock(&em_tree->lock); 4316 err = add_extent_mapping(em_tree, hole_em, 1); 4317 write_unlock(&em_tree->lock); 4318 if (err != -EEXIST) 4319 break; 4320 btrfs_drop_extent_cache(inode, cur_offset, 4321 cur_offset + 4322 hole_size - 1, 0); 4323 } 4324 free_extent_map(hole_em); 4325 next: 4326 btrfs_update_inode(trans, root, inode); 4327 btrfs_end_transaction(trans, root); 4328 } 4329 free_extent_map(em); 4330 em = NULL; 4331 cur_offset = last_byte; 4332 if (cur_offset >= block_end) 4333 break; 4334 } 4335 4336 free_extent_map(em); 4337 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state, 4338 GFP_NOFS); 4339 return err; 4340 } 4341 4342 static int btrfs_setsize(struct inode *inode, struct iattr *attr) 4343 { 4344 struct btrfs_root *root = BTRFS_I(inode)->root; 4345 struct btrfs_trans_handle *trans; 4346 loff_t oldsize = i_size_read(inode); 4347 loff_t newsize = attr->ia_size; 4348 int mask = attr->ia_valid; 4349 int ret; 4350 4351 /* 4352 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a 4353 * special case where we need to update the times despite not having 4354 * these flags set. For all other operations the VFS set these flags 4355 * explicitly if it wants a timestamp update. 4356 */ 4357 if (newsize != oldsize && (!(mask & (ATTR_CTIME | ATTR_MTIME)))) 4358 inode->i_ctime = inode->i_mtime = current_fs_time(inode->i_sb); 4359 4360 if (newsize > oldsize) { 4361 truncate_pagecache(inode, newsize); 4362 ret = btrfs_cont_expand(inode, oldsize, newsize); 4363 if (ret) 4364 return ret; 4365 4366 trans = btrfs_start_transaction(root, 1); 4367 if (IS_ERR(trans)) 4368 return PTR_ERR(trans); 4369 4370 i_size_write(inode, newsize); 4371 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL); 4372 ret = btrfs_update_inode(trans, root, inode); 4373 btrfs_end_transaction(trans, root); 4374 } else { 4375 4376 /* 4377 * We're truncating a file that used to have good data down to 4378 * zero. Make sure it gets into the ordered flush list so that 4379 * any new writes get down to disk quickly. 4380 */ 4381 if (newsize == 0) 4382 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE, 4383 &BTRFS_I(inode)->runtime_flags); 4384 4385 /* 4386 * 1 for the orphan item we're going to add 4387 * 1 for the orphan item deletion. 4388 */ 4389 trans = btrfs_start_transaction(root, 2); 4390 if (IS_ERR(trans)) 4391 return PTR_ERR(trans); 4392 4393 /* 4394 * We need to do this in case we fail at _any_ point during the 4395 * actual truncate. Once we do the truncate_setsize we could 4396 * invalidate pages which forces any outstanding ordered io to 4397 * be instantly completed which will give us extents that need 4398 * to be truncated. If we fail to get an orphan inode down we 4399 * could have left over extents that were never meant to live, 4400 * so we need to garuntee from this point on that everything 4401 * will be consistent. 4402 */ 4403 ret = btrfs_orphan_add(trans, inode); 4404 btrfs_end_transaction(trans, root); 4405 if (ret) 4406 return ret; 4407 4408 /* we don't support swapfiles, so vmtruncate shouldn't fail */ 4409 truncate_setsize(inode, newsize); 4410 4411 /* Disable nonlocked read DIO to avoid the end less truncate */ 4412 btrfs_inode_block_unlocked_dio(inode); 4413 inode_dio_wait(inode); 4414 btrfs_inode_resume_unlocked_dio(inode); 4415 4416 ret = btrfs_truncate(inode); 4417 if (ret && inode->i_nlink) { 4418 int err; 4419 4420 /* 4421 * failed to truncate, disk_i_size is only adjusted down 4422 * as we remove extents, so it should represent the true 4423 * size of the inode, so reset the in memory size and 4424 * delete our orphan entry. 4425 */ 4426 trans = btrfs_join_transaction(root); 4427 if (IS_ERR(trans)) { 4428 btrfs_orphan_del(NULL, inode); 4429 return ret; 4430 } 4431 i_size_write(inode, BTRFS_I(inode)->disk_i_size); 4432 err = btrfs_orphan_del(trans, inode); 4433 if (err) 4434 btrfs_abort_transaction(trans, root, err); 4435 btrfs_end_transaction(trans, root); 4436 } 4437 } 4438 4439 return ret; 4440 } 4441 4442 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr) 4443 { 4444 struct inode *inode = dentry->d_inode; 4445 struct btrfs_root *root = BTRFS_I(inode)->root; 4446 int err; 4447 4448 if (btrfs_root_readonly(root)) 4449 return -EROFS; 4450 4451 err = inode_change_ok(inode, attr); 4452 if (err) 4453 return err; 4454 4455 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 4456 err = btrfs_setsize(inode, attr); 4457 if (err) 4458 return err; 4459 } 4460 4461 if (attr->ia_valid) { 4462 setattr_copy(inode, attr); 4463 inode_inc_iversion(inode); 4464 err = btrfs_dirty_inode(inode); 4465 4466 if (!err && attr->ia_valid & ATTR_MODE) 4467 err = btrfs_acl_chmod(inode); 4468 } 4469 4470 return err; 4471 } 4472 4473 void btrfs_evict_inode(struct inode *inode) 4474 { 4475 struct btrfs_trans_handle *trans; 4476 struct btrfs_root *root = BTRFS_I(inode)->root; 4477 struct btrfs_block_rsv *rsv, *global_rsv; 4478 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1); 4479 int ret; 4480 4481 trace_btrfs_inode_evict(inode); 4482 4483 truncate_inode_pages(&inode->i_data, 0); 4484 if (inode->i_nlink && 4485 ((btrfs_root_refs(&root->root_item) != 0 && 4486 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) || 4487 btrfs_is_free_space_inode(inode))) 4488 goto no_delete; 4489 4490 if (is_bad_inode(inode)) { 4491 btrfs_orphan_del(NULL, inode); 4492 goto no_delete; 4493 } 4494 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */ 4495 btrfs_wait_ordered_range(inode, 0, (u64)-1); 4496 4497 if (root->fs_info->log_root_recovering) { 4498 BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 4499 &BTRFS_I(inode)->runtime_flags)); 4500 goto no_delete; 4501 } 4502 4503 if (inode->i_nlink > 0) { 4504 BUG_ON(btrfs_root_refs(&root->root_item) != 0 && 4505 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID); 4506 goto no_delete; 4507 } 4508 4509 ret = btrfs_commit_inode_delayed_inode(inode); 4510 if (ret) { 4511 btrfs_orphan_del(NULL, inode); 4512 goto no_delete; 4513 } 4514 4515 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP); 4516 if (!rsv) { 4517 btrfs_orphan_del(NULL, inode); 4518 goto no_delete; 4519 } 4520 rsv->size = min_size; 4521 rsv->failfast = 1; 4522 global_rsv = &root->fs_info->global_block_rsv; 4523 4524 btrfs_i_size_write(inode, 0); 4525 4526 /* 4527 * This is a bit simpler than btrfs_truncate since we've already 4528 * reserved our space for our orphan item in the unlink, so we just 4529 * need to reserve some slack space in case we add bytes and update 4530 * inode item when doing the truncate. 4531 */ 4532 while (1) { 4533 ret = btrfs_block_rsv_refill(root, rsv, min_size, 4534 BTRFS_RESERVE_FLUSH_LIMIT); 4535 4536 /* 4537 * Try and steal from the global reserve since we will 4538 * likely not use this space anyway, we want to try as 4539 * hard as possible to get this to work. 4540 */ 4541 if (ret) 4542 ret = btrfs_block_rsv_migrate(global_rsv, rsv, min_size); 4543 4544 if (ret) { 4545 btrfs_warn(root->fs_info, 4546 "Could not get space for a delete, will truncate on mount %d", 4547 ret); 4548 btrfs_orphan_del(NULL, inode); 4549 btrfs_free_block_rsv(root, rsv); 4550 goto no_delete; 4551 } 4552 4553 trans = btrfs_join_transaction(root); 4554 if (IS_ERR(trans)) { 4555 btrfs_orphan_del(NULL, inode); 4556 btrfs_free_block_rsv(root, rsv); 4557 goto no_delete; 4558 } 4559 4560 trans->block_rsv = rsv; 4561 4562 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0); 4563 if (ret != -ENOSPC) 4564 break; 4565 4566 trans->block_rsv = &root->fs_info->trans_block_rsv; 4567 btrfs_end_transaction(trans, root); 4568 trans = NULL; 4569 btrfs_btree_balance_dirty(root); 4570 } 4571 4572 btrfs_free_block_rsv(root, rsv); 4573 4574 /* 4575 * Errors here aren't a big deal, it just means we leave orphan items 4576 * in the tree. They will be cleaned up on the next mount. 4577 */ 4578 if (ret == 0) { 4579 trans->block_rsv = root->orphan_block_rsv; 4580 btrfs_orphan_del(trans, inode); 4581 } else { 4582 btrfs_orphan_del(NULL, inode); 4583 } 4584 4585 trans->block_rsv = &root->fs_info->trans_block_rsv; 4586 if (!(root == root->fs_info->tree_root || 4587 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)) 4588 btrfs_return_ino(root, btrfs_ino(inode)); 4589 4590 btrfs_end_transaction(trans, root); 4591 btrfs_btree_balance_dirty(root); 4592 no_delete: 4593 btrfs_remove_delayed_node(inode); 4594 clear_inode(inode); 4595 return; 4596 } 4597 4598 /* 4599 * this returns the key found in the dir entry in the location pointer. 4600 * If no dir entries were found, location->objectid is 0. 4601 */ 4602 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry, 4603 struct btrfs_key *location) 4604 { 4605 const char *name = dentry->d_name.name; 4606 int namelen = dentry->d_name.len; 4607 struct btrfs_dir_item *di; 4608 struct btrfs_path *path; 4609 struct btrfs_root *root = BTRFS_I(dir)->root; 4610 int ret = 0; 4611 4612 path = btrfs_alloc_path(); 4613 if (!path) 4614 return -ENOMEM; 4615 4616 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name, 4617 namelen, 0); 4618 if (IS_ERR(di)) 4619 ret = PTR_ERR(di); 4620 4621 if (IS_ERR_OR_NULL(di)) 4622 goto out_err; 4623 4624 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location); 4625 out: 4626 btrfs_free_path(path); 4627 return ret; 4628 out_err: 4629 location->objectid = 0; 4630 goto out; 4631 } 4632 4633 /* 4634 * when we hit a tree root in a directory, the btrfs part of the inode 4635 * needs to be changed to reflect the root directory of the tree root. This 4636 * is kind of like crossing a mount point. 4637 */ 4638 static int fixup_tree_root_location(struct btrfs_root *root, 4639 struct inode *dir, 4640 struct dentry *dentry, 4641 struct btrfs_key *location, 4642 struct btrfs_root **sub_root) 4643 { 4644 struct btrfs_path *path; 4645 struct btrfs_root *new_root; 4646 struct btrfs_root_ref *ref; 4647 struct extent_buffer *leaf; 4648 int ret; 4649 int err = 0; 4650 4651 path = btrfs_alloc_path(); 4652 if (!path) { 4653 err = -ENOMEM; 4654 goto out; 4655 } 4656 4657 err = -ENOENT; 4658 ret = btrfs_find_root_ref(root->fs_info->tree_root, path, 4659 BTRFS_I(dir)->root->root_key.objectid, 4660 location->objectid); 4661 if (ret) { 4662 if (ret < 0) 4663 err = ret; 4664 goto out; 4665 } 4666 4667 leaf = path->nodes[0]; 4668 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); 4669 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) || 4670 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len) 4671 goto out; 4672 4673 ret = memcmp_extent_buffer(leaf, dentry->d_name.name, 4674 (unsigned long)(ref + 1), 4675 dentry->d_name.len); 4676 if (ret) 4677 goto out; 4678 4679 btrfs_release_path(path); 4680 4681 new_root = btrfs_read_fs_root_no_name(root->fs_info, location); 4682 if (IS_ERR(new_root)) { 4683 err = PTR_ERR(new_root); 4684 goto out; 4685 } 4686 4687 *sub_root = new_root; 4688 location->objectid = btrfs_root_dirid(&new_root->root_item); 4689 location->type = BTRFS_INODE_ITEM_KEY; 4690 location->offset = 0; 4691 err = 0; 4692 out: 4693 btrfs_free_path(path); 4694 return err; 4695 } 4696 4697 static void inode_tree_add(struct inode *inode) 4698 { 4699 struct btrfs_root *root = BTRFS_I(inode)->root; 4700 struct btrfs_inode *entry; 4701 struct rb_node **p; 4702 struct rb_node *parent; 4703 struct rb_node *new = &BTRFS_I(inode)->rb_node; 4704 u64 ino = btrfs_ino(inode); 4705 4706 if (inode_unhashed(inode)) 4707 return; 4708 parent = NULL; 4709 spin_lock(&root->inode_lock); 4710 p = &root->inode_tree.rb_node; 4711 while (*p) { 4712 parent = *p; 4713 entry = rb_entry(parent, struct btrfs_inode, rb_node); 4714 4715 if (ino < btrfs_ino(&entry->vfs_inode)) 4716 p = &parent->rb_left; 4717 else if (ino > btrfs_ino(&entry->vfs_inode)) 4718 p = &parent->rb_right; 4719 else { 4720 WARN_ON(!(entry->vfs_inode.i_state & 4721 (I_WILL_FREE | I_FREEING))); 4722 rb_replace_node(parent, new, &root->inode_tree); 4723 RB_CLEAR_NODE(parent); 4724 spin_unlock(&root->inode_lock); 4725 return; 4726 } 4727 } 4728 rb_link_node(new, parent, p); 4729 rb_insert_color(new, &root->inode_tree); 4730 spin_unlock(&root->inode_lock); 4731 } 4732 4733 static void inode_tree_del(struct inode *inode) 4734 { 4735 struct btrfs_root *root = BTRFS_I(inode)->root; 4736 int empty = 0; 4737 4738 spin_lock(&root->inode_lock); 4739 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) { 4740 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree); 4741 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node); 4742 empty = RB_EMPTY_ROOT(&root->inode_tree); 4743 } 4744 spin_unlock(&root->inode_lock); 4745 4746 if (empty && btrfs_root_refs(&root->root_item) == 0) { 4747 synchronize_srcu(&root->fs_info->subvol_srcu); 4748 spin_lock(&root->inode_lock); 4749 empty = RB_EMPTY_ROOT(&root->inode_tree); 4750 spin_unlock(&root->inode_lock); 4751 if (empty) 4752 btrfs_add_dead_root(root); 4753 } 4754 } 4755 4756 void btrfs_invalidate_inodes(struct btrfs_root *root) 4757 { 4758 struct rb_node *node; 4759 struct rb_node *prev; 4760 struct btrfs_inode *entry; 4761 struct inode *inode; 4762 u64 objectid = 0; 4763 4764 WARN_ON(btrfs_root_refs(&root->root_item) != 0); 4765 4766 spin_lock(&root->inode_lock); 4767 again: 4768 node = root->inode_tree.rb_node; 4769 prev = NULL; 4770 while (node) { 4771 prev = node; 4772 entry = rb_entry(node, struct btrfs_inode, rb_node); 4773 4774 if (objectid < btrfs_ino(&entry->vfs_inode)) 4775 node = node->rb_left; 4776 else if (objectid > btrfs_ino(&entry->vfs_inode)) 4777 node = node->rb_right; 4778 else 4779 break; 4780 } 4781 if (!node) { 4782 while (prev) { 4783 entry = rb_entry(prev, struct btrfs_inode, rb_node); 4784 if (objectid <= btrfs_ino(&entry->vfs_inode)) { 4785 node = prev; 4786 break; 4787 } 4788 prev = rb_next(prev); 4789 } 4790 } 4791 while (node) { 4792 entry = rb_entry(node, struct btrfs_inode, rb_node); 4793 objectid = btrfs_ino(&entry->vfs_inode) + 1; 4794 inode = igrab(&entry->vfs_inode); 4795 if (inode) { 4796 spin_unlock(&root->inode_lock); 4797 if (atomic_read(&inode->i_count) > 1) 4798 d_prune_aliases(inode); 4799 /* 4800 * btrfs_drop_inode will have it removed from 4801 * the inode cache when its usage count 4802 * hits zero. 4803 */ 4804 iput(inode); 4805 cond_resched(); 4806 spin_lock(&root->inode_lock); 4807 goto again; 4808 } 4809 4810 if (cond_resched_lock(&root->inode_lock)) 4811 goto again; 4812 4813 node = rb_next(node); 4814 } 4815 spin_unlock(&root->inode_lock); 4816 } 4817 4818 static int btrfs_init_locked_inode(struct inode *inode, void *p) 4819 { 4820 struct btrfs_iget_args *args = p; 4821 inode->i_ino = args->ino; 4822 BTRFS_I(inode)->root = args->root; 4823 return 0; 4824 } 4825 4826 static int btrfs_find_actor(struct inode *inode, void *opaque) 4827 { 4828 struct btrfs_iget_args *args = opaque; 4829 return args->ino == btrfs_ino(inode) && 4830 args->root == BTRFS_I(inode)->root; 4831 } 4832 4833 static struct inode *btrfs_iget_locked(struct super_block *s, 4834 u64 objectid, 4835 struct btrfs_root *root) 4836 { 4837 struct inode *inode; 4838 struct btrfs_iget_args args; 4839 unsigned long hashval = btrfs_inode_hash(objectid, root); 4840 4841 args.ino = objectid; 4842 args.root = root; 4843 4844 inode = iget5_locked(s, hashval, btrfs_find_actor, 4845 btrfs_init_locked_inode, 4846 (void *)&args); 4847 return inode; 4848 } 4849 4850 /* Get an inode object given its location and corresponding root. 4851 * Returns in *is_new if the inode was read from disk 4852 */ 4853 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location, 4854 struct btrfs_root *root, int *new) 4855 { 4856 struct inode *inode; 4857 4858 inode = btrfs_iget_locked(s, location->objectid, root); 4859 if (!inode) 4860 return ERR_PTR(-ENOMEM); 4861 4862 if (inode->i_state & I_NEW) { 4863 BTRFS_I(inode)->root = root; 4864 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location)); 4865 btrfs_read_locked_inode(inode); 4866 if (!is_bad_inode(inode)) { 4867 inode_tree_add(inode); 4868 unlock_new_inode(inode); 4869 if (new) 4870 *new = 1; 4871 } else { 4872 unlock_new_inode(inode); 4873 iput(inode); 4874 inode = ERR_PTR(-ESTALE); 4875 } 4876 } 4877 4878 return inode; 4879 } 4880 4881 static struct inode *new_simple_dir(struct super_block *s, 4882 struct btrfs_key *key, 4883 struct btrfs_root *root) 4884 { 4885 struct inode *inode = new_inode(s); 4886 4887 if (!inode) 4888 return ERR_PTR(-ENOMEM); 4889 4890 BTRFS_I(inode)->root = root; 4891 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key)); 4892 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags); 4893 4894 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID; 4895 inode->i_op = &btrfs_dir_ro_inode_operations; 4896 inode->i_fop = &simple_dir_operations; 4897 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO; 4898 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME; 4899 4900 return inode; 4901 } 4902 4903 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry) 4904 { 4905 struct inode *inode; 4906 struct btrfs_root *root = BTRFS_I(dir)->root; 4907 struct btrfs_root *sub_root = root; 4908 struct btrfs_key location; 4909 int index; 4910 int ret = 0; 4911 4912 if (dentry->d_name.len > BTRFS_NAME_LEN) 4913 return ERR_PTR(-ENAMETOOLONG); 4914 4915 ret = btrfs_inode_by_name(dir, dentry, &location); 4916 if (ret < 0) 4917 return ERR_PTR(ret); 4918 4919 if (location.objectid == 0) 4920 return NULL; 4921 4922 if (location.type == BTRFS_INODE_ITEM_KEY) { 4923 inode = btrfs_iget(dir->i_sb, &location, root, NULL); 4924 return inode; 4925 } 4926 4927 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY); 4928 4929 index = srcu_read_lock(&root->fs_info->subvol_srcu); 4930 ret = fixup_tree_root_location(root, dir, dentry, 4931 &location, &sub_root); 4932 if (ret < 0) { 4933 if (ret != -ENOENT) 4934 inode = ERR_PTR(ret); 4935 else 4936 inode = new_simple_dir(dir->i_sb, &location, sub_root); 4937 } else { 4938 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL); 4939 } 4940 srcu_read_unlock(&root->fs_info->subvol_srcu, index); 4941 4942 if (!IS_ERR(inode) && root != sub_root) { 4943 down_read(&root->fs_info->cleanup_work_sem); 4944 if (!(inode->i_sb->s_flags & MS_RDONLY)) 4945 ret = btrfs_orphan_cleanup(sub_root); 4946 up_read(&root->fs_info->cleanup_work_sem); 4947 if (ret) { 4948 iput(inode); 4949 inode = ERR_PTR(ret); 4950 } 4951 } 4952 4953 return inode; 4954 } 4955 4956 static int btrfs_dentry_delete(const struct dentry *dentry) 4957 { 4958 struct btrfs_root *root; 4959 struct inode *inode = dentry->d_inode; 4960 4961 if (!inode && !IS_ROOT(dentry)) 4962 inode = dentry->d_parent->d_inode; 4963 4964 if (inode) { 4965 root = BTRFS_I(inode)->root; 4966 if (btrfs_root_refs(&root->root_item) == 0) 4967 return 1; 4968 4969 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 4970 return 1; 4971 } 4972 return 0; 4973 } 4974 4975 static void btrfs_dentry_release(struct dentry *dentry) 4976 { 4977 if (dentry->d_fsdata) 4978 kfree(dentry->d_fsdata); 4979 } 4980 4981 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry, 4982 unsigned int flags) 4983 { 4984 struct dentry *ret; 4985 4986 ret = d_splice_alias(btrfs_lookup_dentry(dir, dentry), dentry); 4987 return ret; 4988 } 4989 4990 unsigned char btrfs_filetype_table[] = { 4991 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK 4992 }; 4993 4994 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx) 4995 { 4996 struct inode *inode = file_inode(file); 4997 struct btrfs_root *root = BTRFS_I(inode)->root; 4998 struct btrfs_item *item; 4999 struct btrfs_dir_item *di; 5000 struct btrfs_key key; 5001 struct btrfs_key found_key; 5002 struct btrfs_path *path; 5003 struct list_head ins_list; 5004 struct list_head del_list; 5005 int ret; 5006 struct extent_buffer *leaf; 5007 int slot; 5008 unsigned char d_type; 5009 int over = 0; 5010 u32 di_cur; 5011 u32 di_total; 5012 u32 di_len; 5013 int key_type = BTRFS_DIR_INDEX_KEY; 5014 char tmp_name[32]; 5015 char *name_ptr; 5016 int name_len; 5017 int is_curr = 0; /* ctx->pos points to the current index? */ 5018 5019 /* FIXME, use a real flag for deciding about the key type */ 5020 if (root->fs_info->tree_root == root) 5021 key_type = BTRFS_DIR_ITEM_KEY; 5022 5023 if (!dir_emit_dots(file, ctx)) 5024 return 0; 5025 5026 path = btrfs_alloc_path(); 5027 if (!path) 5028 return -ENOMEM; 5029 5030 path->reada = 1; 5031 5032 if (key_type == BTRFS_DIR_INDEX_KEY) { 5033 INIT_LIST_HEAD(&ins_list); 5034 INIT_LIST_HEAD(&del_list); 5035 btrfs_get_delayed_items(inode, &ins_list, &del_list); 5036 } 5037 5038 btrfs_set_key_type(&key, key_type); 5039 key.offset = ctx->pos; 5040 key.objectid = btrfs_ino(inode); 5041 5042 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5043 if (ret < 0) 5044 goto err; 5045 5046 while (1) { 5047 leaf = path->nodes[0]; 5048 slot = path->slots[0]; 5049 if (slot >= btrfs_header_nritems(leaf)) { 5050 ret = btrfs_next_leaf(root, path); 5051 if (ret < 0) 5052 goto err; 5053 else if (ret > 0) 5054 break; 5055 continue; 5056 } 5057 5058 item = btrfs_item_nr(slot); 5059 btrfs_item_key_to_cpu(leaf, &found_key, slot); 5060 5061 if (found_key.objectid != key.objectid) 5062 break; 5063 if (btrfs_key_type(&found_key) != key_type) 5064 break; 5065 if (found_key.offset < ctx->pos) 5066 goto next; 5067 if (key_type == BTRFS_DIR_INDEX_KEY && 5068 btrfs_should_delete_dir_index(&del_list, 5069 found_key.offset)) 5070 goto next; 5071 5072 ctx->pos = found_key.offset; 5073 is_curr = 1; 5074 5075 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item); 5076 di_cur = 0; 5077 di_total = btrfs_item_size(leaf, item); 5078 5079 while (di_cur < di_total) { 5080 struct btrfs_key location; 5081 5082 if (verify_dir_item(root, leaf, di)) 5083 break; 5084 5085 name_len = btrfs_dir_name_len(leaf, di); 5086 if (name_len <= sizeof(tmp_name)) { 5087 name_ptr = tmp_name; 5088 } else { 5089 name_ptr = kmalloc(name_len, GFP_NOFS); 5090 if (!name_ptr) { 5091 ret = -ENOMEM; 5092 goto err; 5093 } 5094 } 5095 read_extent_buffer(leaf, name_ptr, 5096 (unsigned long)(di + 1), name_len); 5097 5098 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)]; 5099 btrfs_dir_item_key_to_cpu(leaf, di, &location); 5100 5101 5102 /* is this a reference to our own snapshot? If so 5103 * skip it. 5104 * 5105 * In contrast to old kernels, we insert the snapshot's 5106 * dir item and dir index after it has been created, so 5107 * we won't find a reference to our own snapshot. We 5108 * still keep the following code for backward 5109 * compatibility. 5110 */ 5111 if (location.type == BTRFS_ROOT_ITEM_KEY && 5112 location.objectid == root->root_key.objectid) { 5113 over = 0; 5114 goto skip; 5115 } 5116 over = !dir_emit(ctx, name_ptr, name_len, 5117 location.objectid, d_type); 5118 5119 skip: 5120 if (name_ptr != tmp_name) 5121 kfree(name_ptr); 5122 5123 if (over) 5124 goto nopos; 5125 di_len = btrfs_dir_name_len(leaf, di) + 5126 btrfs_dir_data_len(leaf, di) + sizeof(*di); 5127 di_cur += di_len; 5128 di = (struct btrfs_dir_item *)((char *)di + di_len); 5129 } 5130 next: 5131 path->slots[0]++; 5132 } 5133 5134 if (key_type == BTRFS_DIR_INDEX_KEY) { 5135 if (is_curr) 5136 ctx->pos++; 5137 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list); 5138 if (ret) 5139 goto nopos; 5140 } 5141 5142 /* Reached end of directory/root. Bump pos past the last item. */ 5143 ctx->pos++; 5144 5145 /* 5146 * Stop new entries from being returned after we return the last 5147 * entry. 5148 * 5149 * New directory entries are assigned a strictly increasing 5150 * offset. This means that new entries created during readdir 5151 * are *guaranteed* to be seen in the future by that readdir. 5152 * This has broken buggy programs which operate on names as 5153 * they're returned by readdir. Until we re-use freed offsets 5154 * we have this hack to stop new entries from being returned 5155 * under the assumption that they'll never reach this huge 5156 * offset. 5157 * 5158 * This is being careful not to overflow 32bit loff_t unless the 5159 * last entry requires it because doing so has broken 32bit apps 5160 * in the past. 5161 */ 5162 if (key_type == BTRFS_DIR_INDEX_KEY) { 5163 if (ctx->pos >= INT_MAX) 5164 ctx->pos = LLONG_MAX; 5165 else 5166 ctx->pos = INT_MAX; 5167 } 5168 nopos: 5169 ret = 0; 5170 err: 5171 if (key_type == BTRFS_DIR_INDEX_KEY) 5172 btrfs_put_delayed_items(&ins_list, &del_list); 5173 btrfs_free_path(path); 5174 return ret; 5175 } 5176 5177 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc) 5178 { 5179 struct btrfs_root *root = BTRFS_I(inode)->root; 5180 struct btrfs_trans_handle *trans; 5181 int ret = 0; 5182 bool nolock = false; 5183 5184 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags)) 5185 return 0; 5186 5187 if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(inode)) 5188 nolock = true; 5189 5190 if (wbc->sync_mode == WB_SYNC_ALL) { 5191 if (nolock) 5192 trans = btrfs_join_transaction_nolock(root); 5193 else 5194 trans = btrfs_join_transaction(root); 5195 if (IS_ERR(trans)) 5196 return PTR_ERR(trans); 5197 ret = btrfs_commit_transaction(trans, root); 5198 } 5199 return ret; 5200 } 5201 5202 /* 5203 * This is somewhat expensive, updating the tree every time the 5204 * inode changes. But, it is most likely to find the inode in cache. 5205 * FIXME, needs more benchmarking...there are no reasons other than performance 5206 * to keep or drop this code. 5207 */ 5208 static int btrfs_dirty_inode(struct inode *inode) 5209 { 5210 struct btrfs_root *root = BTRFS_I(inode)->root; 5211 struct btrfs_trans_handle *trans; 5212 int ret; 5213 5214 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags)) 5215 return 0; 5216 5217 trans = btrfs_join_transaction(root); 5218 if (IS_ERR(trans)) 5219 return PTR_ERR(trans); 5220 5221 ret = btrfs_update_inode(trans, root, inode); 5222 if (ret && ret == -ENOSPC) { 5223 /* whoops, lets try again with the full transaction */ 5224 btrfs_end_transaction(trans, root); 5225 trans = btrfs_start_transaction(root, 1); 5226 if (IS_ERR(trans)) 5227 return PTR_ERR(trans); 5228 5229 ret = btrfs_update_inode(trans, root, inode); 5230 } 5231 btrfs_end_transaction(trans, root); 5232 if (BTRFS_I(inode)->delayed_node) 5233 btrfs_balance_delayed_items(root); 5234 5235 return ret; 5236 } 5237 5238 /* 5239 * This is a copy of file_update_time. We need this so we can return error on 5240 * ENOSPC for updating the inode in the case of file write and mmap writes. 5241 */ 5242 static int btrfs_update_time(struct inode *inode, struct timespec *now, 5243 int flags) 5244 { 5245 struct btrfs_root *root = BTRFS_I(inode)->root; 5246 5247 if (btrfs_root_readonly(root)) 5248 return -EROFS; 5249 5250 if (flags & S_VERSION) 5251 inode_inc_iversion(inode); 5252 if (flags & S_CTIME) 5253 inode->i_ctime = *now; 5254 if (flags & S_MTIME) 5255 inode->i_mtime = *now; 5256 if (flags & S_ATIME) 5257 inode->i_atime = *now; 5258 return btrfs_dirty_inode(inode); 5259 } 5260 5261 /* 5262 * find the highest existing sequence number in a directory 5263 * and then set the in-memory index_cnt variable to reflect 5264 * free sequence numbers 5265 */ 5266 static int btrfs_set_inode_index_count(struct inode *inode) 5267 { 5268 struct btrfs_root *root = BTRFS_I(inode)->root; 5269 struct btrfs_key key, found_key; 5270 struct btrfs_path *path; 5271 struct extent_buffer *leaf; 5272 int ret; 5273 5274 key.objectid = btrfs_ino(inode); 5275 btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY); 5276 key.offset = (u64)-1; 5277 5278 path = btrfs_alloc_path(); 5279 if (!path) 5280 return -ENOMEM; 5281 5282 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5283 if (ret < 0) 5284 goto out; 5285 /* FIXME: we should be able to handle this */ 5286 if (ret == 0) 5287 goto out; 5288 ret = 0; 5289 5290 /* 5291 * MAGIC NUMBER EXPLANATION: 5292 * since we search a directory based on f_pos we have to start at 2 5293 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody 5294 * else has to start at 2 5295 */ 5296 if (path->slots[0] == 0) { 5297 BTRFS_I(inode)->index_cnt = 2; 5298 goto out; 5299 } 5300 5301 path->slots[0]--; 5302 5303 leaf = path->nodes[0]; 5304 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 5305 5306 if (found_key.objectid != btrfs_ino(inode) || 5307 btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) { 5308 BTRFS_I(inode)->index_cnt = 2; 5309 goto out; 5310 } 5311 5312 BTRFS_I(inode)->index_cnt = found_key.offset + 1; 5313 out: 5314 btrfs_free_path(path); 5315 return ret; 5316 } 5317 5318 /* 5319 * helper to find a free sequence number in a given directory. This current 5320 * code is very simple, later versions will do smarter things in the btree 5321 */ 5322 int btrfs_set_inode_index(struct inode *dir, u64 *index) 5323 { 5324 int ret = 0; 5325 5326 if (BTRFS_I(dir)->index_cnt == (u64)-1) { 5327 ret = btrfs_inode_delayed_dir_index_count(dir); 5328 if (ret) { 5329 ret = btrfs_set_inode_index_count(dir); 5330 if (ret) 5331 return ret; 5332 } 5333 } 5334 5335 *index = BTRFS_I(dir)->index_cnt; 5336 BTRFS_I(dir)->index_cnt++; 5337 5338 return ret; 5339 } 5340 5341 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans, 5342 struct btrfs_root *root, 5343 struct inode *dir, 5344 const char *name, int name_len, 5345 u64 ref_objectid, u64 objectid, 5346 umode_t mode, u64 *index) 5347 { 5348 struct inode *inode; 5349 struct btrfs_inode_item *inode_item; 5350 struct btrfs_key *location; 5351 struct btrfs_path *path; 5352 struct btrfs_inode_ref *ref; 5353 struct btrfs_key key[2]; 5354 u32 sizes[2]; 5355 unsigned long ptr; 5356 int ret; 5357 int owner; 5358 5359 path = btrfs_alloc_path(); 5360 if (!path) 5361 return ERR_PTR(-ENOMEM); 5362 5363 inode = new_inode(root->fs_info->sb); 5364 if (!inode) { 5365 btrfs_free_path(path); 5366 return ERR_PTR(-ENOMEM); 5367 } 5368 5369 /* 5370 * we have to initialize this early, so we can reclaim the inode 5371 * number if we fail afterwards in this function. 5372 */ 5373 inode->i_ino = objectid; 5374 5375 if (dir) { 5376 trace_btrfs_inode_request(dir); 5377 5378 ret = btrfs_set_inode_index(dir, index); 5379 if (ret) { 5380 btrfs_free_path(path); 5381 iput(inode); 5382 return ERR_PTR(ret); 5383 } 5384 } 5385 /* 5386 * index_cnt is ignored for everything but a dir, 5387 * btrfs_get_inode_index_count has an explanation for the magic 5388 * number 5389 */ 5390 BTRFS_I(inode)->index_cnt = 2; 5391 BTRFS_I(inode)->root = root; 5392 BTRFS_I(inode)->generation = trans->transid; 5393 inode->i_generation = BTRFS_I(inode)->generation; 5394 5395 /* 5396 * We could have gotten an inode number from somebody who was fsynced 5397 * and then removed in this same transaction, so let's just set full 5398 * sync since it will be a full sync anyway and this will blow away the 5399 * old info in the log. 5400 */ 5401 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 5402 5403 if (S_ISDIR(mode)) 5404 owner = 0; 5405 else 5406 owner = 1; 5407 5408 key[0].objectid = objectid; 5409 btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY); 5410 key[0].offset = 0; 5411 5412 /* 5413 * Start new inodes with an inode_ref. This is slightly more 5414 * efficient for small numbers of hard links since they will 5415 * be packed into one item. Extended refs will kick in if we 5416 * add more hard links than can fit in the ref item. 5417 */ 5418 key[1].objectid = objectid; 5419 btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY); 5420 key[1].offset = ref_objectid; 5421 5422 sizes[0] = sizeof(struct btrfs_inode_item); 5423 sizes[1] = name_len + sizeof(*ref); 5424 5425 path->leave_spinning = 1; 5426 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2); 5427 if (ret != 0) 5428 goto fail; 5429 5430 inode_init_owner(inode, dir, mode); 5431 inode_set_bytes(inode, 0); 5432 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME; 5433 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0], 5434 struct btrfs_inode_item); 5435 memset_extent_buffer(path->nodes[0], 0, (unsigned long)inode_item, 5436 sizeof(*inode_item)); 5437 fill_inode_item(trans, path->nodes[0], inode_item, inode); 5438 5439 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1, 5440 struct btrfs_inode_ref); 5441 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len); 5442 btrfs_set_inode_ref_index(path->nodes[0], ref, *index); 5443 ptr = (unsigned long)(ref + 1); 5444 write_extent_buffer(path->nodes[0], name, ptr, name_len); 5445 5446 btrfs_mark_buffer_dirty(path->nodes[0]); 5447 btrfs_free_path(path); 5448 5449 location = &BTRFS_I(inode)->location; 5450 location->objectid = objectid; 5451 location->offset = 0; 5452 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY); 5453 5454 btrfs_inherit_iflags(inode, dir); 5455 5456 if (S_ISREG(mode)) { 5457 if (btrfs_test_opt(root, NODATASUM)) 5458 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; 5459 if (btrfs_test_opt(root, NODATACOW)) 5460 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW | 5461 BTRFS_INODE_NODATASUM; 5462 } 5463 5464 btrfs_insert_inode_hash(inode); 5465 inode_tree_add(inode); 5466 5467 trace_btrfs_inode_new(inode); 5468 btrfs_set_inode_last_trans(trans, inode); 5469 5470 btrfs_update_root_times(trans, root); 5471 5472 return inode; 5473 fail: 5474 if (dir) 5475 BTRFS_I(dir)->index_cnt--; 5476 btrfs_free_path(path); 5477 iput(inode); 5478 return ERR_PTR(ret); 5479 } 5480 5481 static inline u8 btrfs_inode_type(struct inode *inode) 5482 { 5483 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT]; 5484 } 5485 5486 /* 5487 * utility function to add 'inode' into 'parent_inode' with 5488 * a give name and a given sequence number. 5489 * if 'add_backref' is true, also insert a backref from the 5490 * inode to the parent directory. 5491 */ 5492 int btrfs_add_link(struct btrfs_trans_handle *trans, 5493 struct inode *parent_inode, struct inode *inode, 5494 const char *name, int name_len, int add_backref, u64 index) 5495 { 5496 int ret = 0; 5497 struct btrfs_key key; 5498 struct btrfs_root *root = BTRFS_I(parent_inode)->root; 5499 u64 ino = btrfs_ino(inode); 5500 u64 parent_ino = btrfs_ino(parent_inode); 5501 5502 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 5503 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key)); 5504 } else { 5505 key.objectid = ino; 5506 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY); 5507 key.offset = 0; 5508 } 5509 5510 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 5511 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root, 5512 key.objectid, root->root_key.objectid, 5513 parent_ino, index, name, name_len); 5514 } else if (add_backref) { 5515 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino, 5516 parent_ino, index); 5517 } 5518 5519 /* Nothing to clean up yet */ 5520 if (ret) 5521 return ret; 5522 5523 ret = btrfs_insert_dir_item(trans, root, name, name_len, 5524 parent_inode, &key, 5525 btrfs_inode_type(inode), index); 5526 if (ret == -EEXIST || ret == -EOVERFLOW) 5527 goto fail_dir_item; 5528 else if (ret) { 5529 btrfs_abort_transaction(trans, root, ret); 5530 return ret; 5531 } 5532 5533 btrfs_i_size_write(parent_inode, parent_inode->i_size + 5534 name_len * 2); 5535 inode_inc_iversion(parent_inode); 5536 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME; 5537 ret = btrfs_update_inode(trans, root, parent_inode); 5538 if (ret) 5539 btrfs_abort_transaction(trans, root, ret); 5540 return ret; 5541 5542 fail_dir_item: 5543 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 5544 u64 local_index; 5545 int err; 5546 err = btrfs_del_root_ref(trans, root->fs_info->tree_root, 5547 key.objectid, root->root_key.objectid, 5548 parent_ino, &local_index, name, name_len); 5549 5550 } else if (add_backref) { 5551 u64 local_index; 5552 int err; 5553 5554 err = btrfs_del_inode_ref(trans, root, name, name_len, 5555 ino, parent_ino, &local_index); 5556 } 5557 return ret; 5558 } 5559 5560 static int btrfs_add_nondir(struct btrfs_trans_handle *trans, 5561 struct inode *dir, struct dentry *dentry, 5562 struct inode *inode, int backref, u64 index) 5563 { 5564 int err = btrfs_add_link(trans, dir, inode, 5565 dentry->d_name.name, dentry->d_name.len, 5566 backref, index); 5567 if (err > 0) 5568 err = -EEXIST; 5569 return err; 5570 } 5571 5572 static int btrfs_mknod(struct inode *dir, struct dentry *dentry, 5573 umode_t mode, dev_t rdev) 5574 { 5575 struct btrfs_trans_handle *trans; 5576 struct btrfs_root *root = BTRFS_I(dir)->root; 5577 struct inode *inode = NULL; 5578 int err; 5579 int drop_inode = 0; 5580 u64 objectid; 5581 u64 index = 0; 5582 5583 if (!new_valid_dev(rdev)) 5584 return -EINVAL; 5585 5586 /* 5587 * 2 for inode item and ref 5588 * 2 for dir items 5589 * 1 for xattr if selinux is on 5590 */ 5591 trans = btrfs_start_transaction(root, 5); 5592 if (IS_ERR(trans)) 5593 return PTR_ERR(trans); 5594 5595 err = btrfs_find_free_ino(root, &objectid); 5596 if (err) 5597 goto out_unlock; 5598 5599 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 5600 dentry->d_name.len, btrfs_ino(dir), objectid, 5601 mode, &index); 5602 if (IS_ERR(inode)) { 5603 err = PTR_ERR(inode); 5604 goto out_unlock; 5605 } 5606 5607 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 5608 if (err) { 5609 drop_inode = 1; 5610 goto out_unlock; 5611 } 5612 5613 /* 5614 * If the active LSM wants to access the inode during 5615 * d_instantiate it needs these. Smack checks to see 5616 * if the filesystem supports xattrs by looking at the 5617 * ops vector. 5618 */ 5619 5620 inode->i_op = &btrfs_special_inode_operations; 5621 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index); 5622 if (err) 5623 drop_inode = 1; 5624 else { 5625 init_special_inode(inode, inode->i_mode, rdev); 5626 btrfs_update_inode(trans, root, inode); 5627 d_instantiate(dentry, inode); 5628 } 5629 out_unlock: 5630 btrfs_end_transaction(trans, root); 5631 btrfs_btree_balance_dirty(root); 5632 if (drop_inode) { 5633 inode_dec_link_count(inode); 5634 iput(inode); 5635 } 5636 return err; 5637 } 5638 5639 static int btrfs_create(struct inode *dir, struct dentry *dentry, 5640 umode_t mode, bool excl) 5641 { 5642 struct btrfs_trans_handle *trans; 5643 struct btrfs_root *root = BTRFS_I(dir)->root; 5644 struct inode *inode = NULL; 5645 int drop_inode_on_err = 0; 5646 int err; 5647 u64 objectid; 5648 u64 index = 0; 5649 5650 /* 5651 * 2 for inode item and ref 5652 * 2 for dir items 5653 * 1 for xattr if selinux is on 5654 */ 5655 trans = btrfs_start_transaction(root, 5); 5656 if (IS_ERR(trans)) 5657 return PTR_ERR(trans); 5658 5659 err = btrfs_find_free_ino(root, &objectid); 5660 if (err) 5661 goto out_unlock; 5662 5663 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 5664 dentry->d_name.len, btrfs_ino(dir), objectid, 5665 mode, &index); 5666 if (IS_ERR(inode)) { 5667 err = PTR_ERR(inode); 5668 goto out_unlock; 5669 } 5670 drop_inode_on_err = 1; 5671 5672 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 5673 if (err) 5674 goto out_unlock; 5675 5676 err = btrfs_update_inode(trans, root, inode); 5677 if (err) 5678 goto out_unlock; 5679 5680 /* 5681 * If the active LSM wants to access the inode during 5682 * d_instantiate it needs these. Smack checks to see 5683 * if the filesystem supports xattrs by looking at the 5684 * ops vector. 5685 */ 5686 inode->i_fop = &btrfs_file_operations; 5687 inode->i_op = &btrfs_file_inode_operations; 5688 5689 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index); 5690 if (err) 5691 goto out_unlock; 5692 5693 inode->i_mapping->a_ops = &btrfs_aops; 5694 inode->i_mapping->backing_dev_info = &root->fs_info->bdi; 5695 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 5696 d_instantiate(dentry, inode); 5697 5698 out_unlock: 5699 btrfs_end_transaction(trans, root); 5700 if (err && drop_inode_on_err) { 5701 inode_dec_link_count(inode); 5702 iput(inode); 5703 } 5704 btrfs_btree_balance_dirty(root); 5705 return err; 5706 } 5707 5708 static int btrfs_link(struct dentry *old_dentry, struct inode *dir, 5709 struct dentry *dentry) 5710 { 5711 struct btrfs_trans_handle *trans; 5712 struct btrfs_root *root = BTRFS_I(dir)->root; 5713 struct inode *inode = old_dentry->d_inode; 5714 u64 index; 5715 int err; 5716 int drop_inode = 0; 5717 5718 /* do not allow sys_link's with other subvols of the same device */ 5719 if (root->objectid != BTRFS_I(inode)->root->objectid) 5720 return -EXDEV; 5721 5722 if (inode->i_nlink >= BTRFS_LINK_MAX) 5723 return -EMLINK; 5724 5725 err = btrfs_set_inode_index(dir, &index); 5726 if (err) 5727 goto fail; 5728 5729 /* 5730 * 2 items for inode and inode ref 5731 * 2 items for dir items 5732 * 1 item for parent inode 5733 */ 5734 trans = btrfs_start_transaction(root, 5); 5735 if (IS_ERR(trans)) { 5736 err = PTR_ERR(trans); 5737 goto fail; 5738 } 5739 5740 inc_nlink(inode); 5741 inode_inc_iversion(inode); 5742 inode->i_ctime = CURRENT_TIME; 5743 ihold(inode); 5744 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags); 5745 5746 err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index); 5747 5748 if (err) { 5749 drop_inode = 1; 5750 } else { 5751 struct dentry *parent = dentry->d_parent; 5752 err = btrfs_update_inode(trans, root, inode); 5753 if (err) 5754 goto fail; 5755 d_instantiate(dentry, inode); 5756 btrfs_log_new_name(trans, inode, NULL, parent); 5757 } 5758 5759 btrfs_end_transaction(trans, root); 5760 fail: 5761 if (drop_inode) { 5762 inode_dec_link_count(inode); 5763 iput(inode); 5764 } 5765 btrfs_btree_balance_dirty(root); 5766 return err; 5767 } 5768 5769 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 5770 { 5771 struct inode *inode = NULL; 5772 struct btrfs_trans_handle *trans; 5773 struct btrfs_root *root = BTRFS_I(dir)->root; 5774 int err = 0; 5775 int drop_on_err = 0; 5776 u64 objectid = 0; 5777 u64 index = 0; 5778 5779 /* 5780 * 2 items for inode and ref 5781 * 2 items for dir items 5782 * 1 for xattr if selinux is on 5783 */ 5784 trans = btrfs_start_transaction(root, 5); 5785 if (IS_ERR(trans)) 5786 return PTR_ERR(trans); 5787 5788 err = btrfs_find_free_ino(root, &objectid); 5789 if (err) 5790 goto out_fail; 5791 5792 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 5793 dentry->d_name.len, btrfs_ino(dir), objectid, 5794 S_IFDIR | mode, &index); 5795 if (IS_ERR(inode)) { 5796 err = PTR_ERR(inode); 5797 goto out_fail; 5798 } 5799 5800 drop_on_err = 1; 5801 5802 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 5803 if (err) 5804 goto out_fail; 5805 5806 inode->i_op = &btrfs_dir_inode_operations; 5807 inode->i_fop = &btrfs_dir_file_operations; 5808 5809 btrfs_i_size_write(inode, 0); 5810 err = btrfs_update_inode(trans, root, inode); 5811 if (err) 5812 goto out_fail; 5813 5814 err = btrfs_add_link(trans, dir, inode, dentry->d_name.name, 5815 dentry->d_name.len, 0, index); 5816 if (err) 5817 goto out_fail; 5818 5819 d_instantiate(dentry, inode); 5820 drop_on_err = 0; 5821 5822 out_fail: 5823 btrfs_end_transaction(trans, root); 5824 if (drop_on_err) 5825 iput(inode); 5826 btrfs_btree_balance_dirty(root); 5827 return err; 5828 } 5829 5830 /* helper for btfs_get_extent. Given an existing extent in the tree, 5831 * and an extent that you want to insert, deal with overlap and insert 5832 * the new extent into the tree. 5833 */ 5834 static int merge_extent_mapping(struct extent_map_tree *em_tree, 5835 struct extent_map *existing, 5836 struct extent_map *em, 5837 u64 map_start, u64 map_len) 5838 { 5839 u64 start_diff; 5840 5841 BUG_ON(map_start < em->start || map_start >= extent_map_end(em)); 5842 start_diff = map_start - em->start; 5843 em->start = map_start; 5844 em->len = map_len; 5845 if (em->block_start < EXTENT_MAP_LAST_BYTE && 5846 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 5847 em->block_start += start_diff; 5848 em->block_len -= start_diff; 5849 } 5850 return add_extent_mapping(em_tree, em, 0); 5851 } 5852 5853 static noinline int uncompress_inline(struct btrfs_path *path, 5854 struct inode *inode, struct page *page, 5855 size_t pg_offset, u64 extent_offset, 5856 struct btrfs_file_extent_item *item) 5857 { 5858 int ret; 5859 struct extent_buffer *leaf = path->nodes[0]; 5860 char *tmp; 5861 size_t max_size; 5862 unsigned long inline_size; 5863 unsigned long ptr; 5864 int compress_type; 5865 5866 WARN_ON(pg_offset != 0); 5867 compress_type = btrfs_file_extent_compression(leaf, item); 5868 max_size = btrfs_file_extent_ram_bytes(leaf, item); 5869 inline_size = btrfs_file_extent_inline_item_len(leaf, 5870 btrfs_item_nr(path->slots[0])); 5871 tmp = kmalloc(inline_size, GFP_NOFS); 5872 if (!tmp) 5873 return -ENOMEM; 5874 ptr = btrfs_file_extent_inline_start(item); 5875 5876 read_extent_buffer(leaf, tmp, ptr, inline_size); 5877 5878 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size); 5879 ret = btrfs_decompress(compress_type, tmp, page, 5880 extent_offset, inline_size, max_size); 5881 if (ret) { 5882 char *kaddr = kmap_atomic(page); 5883 unsigned long copy_size = min_t(u64, 5884 PAGE_CACHE_SIZE - pg_offset, 5885 max_size - extent_offset); 5886 memset(kaddr + pg_offset, 0, copy_size); 5887 kunmap_atomic(kaddr); 5888 } 5889 kfree(tmp); 5890 return 0; 5891 } 5892 5893 /* 5894 * a bit scary, this does extent mapping from logical file offset to the disk. 5895 * the ugly parts come from merging extents from the disk with the in-ram 5896 * representation. This gets more complex because of the data=ordered code, 5897 * where the in-ram extents might be locked pending data=ordered completion. 5898 * 5899 * This also copies inline extents directly into the page. 5900 */ 5901 5902 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page, 5903 size_t pg_offset, u64 start, u64 len, 5904 int create) 5905 { 5906 int ret; 5907 int err = 0; 5908 u64 bytenr; 5909 u64 extent_start = 0; 5910 u64 extent_end = 0; 5911 u64 objectid = btrfs_ino(inode); 5912 u32 found_type; 5913 struct btrfs_path *path = NULL; 5914 struct btrfs_root *root = BTRFS_I(inode)->root; 5915 struct btrfs_file_extent_item *item; 5916 struct extent_buffer *leaf; 5917 struct btrfs_key found_key; 5918 struct extent_map *em = NULL; 5919 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 5920 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 5921 struct btrfs_trans_handle *trans = NULL; 5922 int compress_type; 5923 5924 again: 5925 read_lock(&em_tree->lock); 5926 em = lookup_extent_mapping(em_tree, start, len); 5927 if (em) 5928 em->bdev = root->fs_info->fs_devices->latest_bdev; 5929 read_unlock(&em_tree->lock); 5930 5931 if (em) { 5932 if (em->start > start || em->start + em->len <= start) 5933 free_extent_map(em); 5934 else if (em->block_start == EXTENT_MAP_INLINE && page) 5935 free_extent_map(em); 5936 else 5937 goto out; 5938 } 5939 em = alloc_extent_map(); 5940 if (!em) { 5941 err = -ENOMEM; 5942 goto out; 5943 } 5944 em->bdev = root->fs_info->fs_devices->latest_bdev; 5945 em->start = EXTENT_MAP_HOLE; 5946 em->orig_start = EXTENT_MAP_HOLE; 5947 em->len = (u64)-1; 5948 em->block_len = (u64)-1; 5949 5950 if (!path) { 5951 path = btrfs_alloc_path(); 5952 if (!path) { 5953 err = -ENOMEM; 5954 goto out; 5955 } 5956 /* 5957 * Chances are we'll be called again, so go ahead and do 5958 * readahead 5959 */ 5960 path->reada = 1; 5961 } 5962 5963 ret = btrfs_lookup_file_extent(trans, root, path, 5964 objectid, start, trans != NULL); 5965 if (ret < 0) { 5966 err = ret; 5967 goto out; 5968 } 5969 5970 if (ret != 0) { 5971 if (path->slots[0] == 0) 5972 goto not_found; 5973 path->slots[0]--; 5974 } 5975 5976 leaf = path->nodes[0]; 5977 item = btrfs_item_ptr(leaf, path->slots[0], 5978 struct btrfs_file_extent_item); 5979 /* are we inside the extent that was found? */ 5980 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 5981 found_type = btrfs_key_type(&found_key); 5982 if (found_key.objectid != objectid || 5983 found_type != BTRFS_EXTENT_DATA_KEY) { 5984 /* 5985 * If we backup past the first extent we want to move forward 5986 * and see if there is an extent in front of us, otherwise we'll 5987 * say there is a hole for our whole search range which can 5988 * cause problems. 5989 */ 5990 extent_end = start; 5991 goto next; 5992 } 5993 5994 found_type = btrfs_file_extent_type(leaf, item); 5995 extent_start = found_key.offset; 5996 compress_type = btrfs_file_extent_compression(leaf, item); 5997 if (found_type == BTRFS_FILE_EXTENT_REG || 5998 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 5999 extent_end = extent_start + 6000 btrfs_file_extent_num_bytes(leaf, item); 6001 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 6002 size_t size; 6003 size = btrfs_file_extent_inline_len(leaf, item); 6004 extent_end = ALIGN(extent_start + size, root->sectorsize); 6005 } 6006 next: 6007 if (start >= extent_end) { 6008 path->slots[0]++; 6009 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 6010 ret = btrfs_next_leaf(root, path); 6011 if (ret < 0) { 6012 err = ret; 6013 goto out; 6014 } 6015 if (ret > 0) 6016 goto not_found; 6017 leaf = path->nodes[0]; 6018 } 6019 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6020 if (found_key.objectid != objectid || 6021 found_key.type != BTRFS_EXTENT_DATA_KEY) 6022 goto not_found; 6023 if (start + len <= found_key.offset) 6024 goto not_found; 6025 em->start = start; 6026 em->orig_start = start; 6027 em->len = found_key.offset - start; 6028 goto not_found_em; 6029 } 6030 6031 em->ram_bytes = btrfs_file_extent_ram_bytes(leaf, item); 6032 if (found_type == BTRFS_FILE_EXTENT_REG || 6033 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 6034 em->start = extent_start; 6035 em->len = extent_end - extent_start; 6036 em->orig_start = extent_start - 6037 btrfs_file_extent_offset(leaf, item); 6038 em->orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, 6039 item); 6040 bytenr = btrfs_file_extent_disk_bytenr(leaf, item); 6041 if (bytenr == 0) { 6042 em->block_start = EXTENT_MAP_HOLE; 6043 goto insert; 6044 } 6045 if (compress_type != BTRFS_COMPRESS_NONE) { 6046 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 6047 em->compress_type = compress_type; 6048 em->block_start = bytenr; 6049 em->block_len = em->orig_block_len; 6050 } else { 6051 bytenr += btrfs_file_extent_offset(leaf, item); 6052 em->block_start = bytenr; 6053 em->block_len = em->len; 6054 if (found_type == BTRFS_FILE_EXTENT_PREALLOC) 6055 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 6056 } 6057 goto insert; 6058 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 6059 unsigned long ptr; 6060 char *map; 6061 size_t size; 6062 size_t extent_offset; 6063 size_t copy_size; 6064 6065 em->block_start = EXTENT_MAP_INLINE; 6066 if (!page || create) { 6067 em->start = extent_start; 6068 em->len = extent_end - extent_start; 6069 goto out; 6070 } 6071 6072 size = btrfs_file_extent_inline_len(leaf, item); 6073 extent_offset = page_offset(page) + pg_offset - extent_start; 6074 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset, 6075 size - extent_offset); 6076 em->start = extent_start + extent_offset; 6077 em->len = ALIGN(copy_size, root->sectorsize); 6078 em->orig_block_len = em->len; 6079 em->orig_start = em->start; 6080 if (compress_type) { 6081 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 6082 em->compress_type = compress_type; 6083 } 6084 ptr = btrfs_file_extent_inline_start(item) + extent_offset; 6085 if (create == 0 && !PageUptodate(page)) { 6086 if (btrfs_file_extent_compression(leaf, item) != 6087 BTRFS_COMPRESS_NONE) { 6088 ret = uncompress_inline(path, inode, page, 6089 pg_offset, 6090 extent_offset, item); 6091 BUG_ON(ret); /* -ENOMEM */ 6092 } else { 6093 map = kmap(page); 6094 read_extent_buffer(leaf, map + pg_offset, ptr, 6095 copy_size); 6096 if (pg_offset + copy_size < PAGE_CACHE_SIZE) { 6097 memset(map + pg_offset + copy_size, 0, 6098 PAGE_CACHE_SIZE - pg_offset - 6099 copy_size); 6100 } 6101 kunmap(page); 6102 } 6103 flush_dcache_page(page); 6104 } else if (create && PageUptodate(page)) { 6105 BUG(); 6106 if (!trans) { 6107 kunmap(page); 6108 free_extent_map(em); 6109 em = NULL; 6110 6111 btrfs_release_path(path); 6112 trans = btrfs_join_transaction(root); 6113 6114 if (IS_ERR(trans)) 6115 return ERR_CAST(trans); 6116 goto again; 6117 } 6118 map = kmap(page); 6119 write_extent_buffer(leaf, map + pg_offset, ptr, 6120 copy_size); 6121 kunmap(page); 6122 btrfs_mark_buffer_dirty(leaf); 6123 } 6124 set_extent_uptodate(io_tree, em->start, 6125 extent_map_end(em) - 1, NULL, GFP_NOFS); 6126 goto insert; 6127 } else { 6128 WARN(1, KERN_ERR "btrfs unknown found_type %d\n", found_type); 6129 } 6130 not_found: 6131 em->start = start; 6132 em->orig_start = start; 6133 em->len = len; 6134 not_found_em: 6135 em->block_start = EXTENT_MAP_HOLE; 6136 set_bit(EXTENT_FLAG_VACANCY, &em->flags); 6137 insert: 6138 btrfs_release_path(path); 6139 if (em->start > start || extent_map_end(em) <= start) { 6140 btrfs_err(root->fs_info, "bad extent! em: [%llu %llu] passed [%llu %llu]", 6141 em->start, em->len, start, len); 6142 err = -EIO; 6143 goto out; 6144 } 6145 6146 err = 0; 6147 write_lock(&em_tree->lock); 6148 ret = add_extent_mapping(em_tree, em, 0); 6149 /* it is possible that someone inserted the extent into the tree 6150 * while we had the lock dropped. It is also possible that 6151 * an overlapping map exists in the tree 6152 */ 6153 if (ret == -EEXIST) { 6154 struct extent_map *existing; 6155 6156 ret = 0; 6157 6158 existing = lookup_extent_mapping(em_tree, start, len); 6159 if (existing && (existing->start > start || 6160 existing->start + existing->len <= start)) { 6161 free_extent_map(existing); 6162 existing = NULL; 6163 } 6164 if (!existing) { 6165 existing = lookup_extent_mapping(em_tree, em->start, 6166 em->len); 6167 if (existing) { 6168 err = merge_extent_mapping(em_tree, existing, 6169 em, start, 6170 root->sectorsize); 6171 free_extent_map(existing); 6172 if (err) { 6173 free_extent_map(em); 6174 em = NULL; 6175 } 6176 } else { 6177 err = -EIO; 6178 free_extent_map(em); 6179 em = NULL; 6180 } 6181 } else { 6182 free_extent_map(em); 6183 em = existing; 6184 err = 0; 6185 } 6186 } 6187 write_unlock(&em_tree->lock); 6188 out: 6189 6190 trace_btrfs_get_extent(root, em); 6191 6192 if (path) 6193 btrfs_free_path(path); 6194 if (trans) { 6195 ret = btrfs_end_transaction(trans, root); 6196 if (!err) 6197 err = ret; 6198 } 6199 if (err) { 6200 free_extent_map(em); 6201 return ERR_PTR(err); 6202 } 6203 BUG_ON(!em); /* Error is always set */ 6204 return em; 6205 } 6206 6207 struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page, 6208 size_t pg_offset, u64 start, u64 len, 6209 int create) 6210 { 6211 struct extent_map *em; 6212 struct extent_map *hole_em = NULL; 6213 u64 range_start = start; 6214 u64 end; 6215 u64 found; 6216 u64 found_end; 6217 int err = 0; 6218 6219 em = btrfs_get_extent(inode, page, pg_offset, start, len, create); 6220 if (IS_ERR(em)) 6221 return em; 6222 if (em) { 6223 /* 6224 * if our em maps to 6225 * - a hole or 6226 * - a pre-alloc extent, 6227 * there might actually be delalloc bytes behind it. 6228 */ 6229 if (em->block_start != EXTENT_MAP_HOLE && 6230 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 6231 return em; 6232 else 6233 hole_em = em; 6234 } 6235 6236 /* check to see if we've wrapped (len == -1 or similar) */ 6237 end = start + len; 6238 if (end < start) 6239 end = (u64)-1; 6240 else 6241 end -= 1; 6242 6243 em = NULL; 6244 6245 /* ok, we didn't find anything, lets look for delalloc */ 6246 found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start, 6247 end, len, EXTENT_DELALLOC, 1); 6248 found_end = range_start + found; 6249 if (found_end < range_start) 6250 found_end = (u64)-1; 6251 6252 /* 6253 * we didn't find anything useful, return 6254 * the original results from get_extent() 6255 */ 6256 if (range_start > end || found_end <= start) { 6257 em = hole_em; 6258 hole_em = NULL; 6259 goto out; 6260 } 6261 6262 /* adjust the range_start to make sure it doesn't 6263 * go backwards from the start they passed in 6264 */ 6265 range_start = max(start, range_start); 6266 found = found_end - range_start; 6267 6268 if (found > 0) { 6269 u64 hole_start = start; 6270 u64 hole_len = len; 6271 6272 em = alloc_extent_map(); 6273 if (!em) { 6274 err = -ENOMEM; 6275 goto out; 6276 } 6277 /* 6278 * when btrfs_get_extent can't find anything it 6279 * returns one huge hole 6280 * 6281 * make sure what it found really fits our range, and 6282 * adjust to make sure it is based on the start from 6283 * the caller 6284 */ 6285 if (hole_em) { 6286 u64 calc_end = extent_map_end(hole_em); 6287 6288 if (calc_end <= start || (hole_em->start > end)) { 6289 free_extent_map(hole_em); 6290 hole_em = NULL; 6291 } else { 6292 hole_start = max(hole_em->start, start); 6293 hole_len = calc_end - hole_start; 6294 } 6295 } 6296 em->bdev = NULL; 6297 if (hole_em && range_start > hole_start) { 6298 /* our hole starts before our delalloc, so we 6299 * have to return just the parts of the hole 6300 * that go until the delalloc starts 6301 */ 6302 em->len = min(hole_len, 6303 range_start - hole_start); 6304 em->start = hole_start; 6305 em->orig_start = hole_start; 6306 /* 6307 * don't adjust block start at all, 6308 * it is fixed at EXTENT_MAP_HOLE 6309 */ 6310 em->block_start = hole_em->block_start; 6311 em->block_len = hole_len; 6312 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags)) 6313 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 6314 } else { 6315 em->start = range_start; 6316 em->len = found; 6317 em->orig_start = range_start; 6318 em->block_start = EXTENT_MAP_DELALLOC; 6319 em->block_len = found; 6320 } 6321 } else if (hole_em) { 6322 return hole_em; 6323 } 6324 out: 6325 6326 free_extent_map(hole_em); 6327 if (err) { 6328 free_extent_map(em); 6329 return ERR_PTR(err); 6330 } 6331 return em; 6332 } 6333 6334 static struct extent_map *btrfs_new_extent_direct(struct inode *inode, 6335 u64 start, u64 len) 6336 { 6337 struct btrfs_root *root = BTRFS_I(inode)->root; 6338 struct extent_map *em; 6339 struct btrfs_key ins; 6340 u64 alloc_hint; 6341 int ret; 6342 6343 alloc_hint = get_extent_allocation_hint(inode, start, len); 6344 ret = btrfs_reserve_extent(root, len, root->sectorsize, 0, 6345 alloc_hint, &ins, 1); 6346 if (ret) 6347 return ERR_PTR(ret); 6348 6349 em = create_pinned_em(inode, start, ins.offset, start, ins.objectid, 6350 ins.offset, ins.offset, ins.offset, 0); 6351 if (IS_ERR(em)) { 6352 btrfs_free_reserved_extent(root, ins.objectid, ins.offset); 6353 return em; 6354 } 6355 6356 ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid, 6357 ins.offset, ins.offset, 0); 6358 if (ret) { 6359 btrfs_free_reserved_extent(root, ins.objectid, ins.offset); 6360 free_extent_map(em); 6361 return ERR_PTR(ret); 6362 } 6363 6364 return em; 6365 } 6366 6367 /* 6368 * returns 1 when the nocow is safe, < 1 on error, 0 if the 6369 * block must be cow'd 6370 */ 6371 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len, 6372 u64 *orig_start, u64 *orig_block_len, 6373 u64 *ram_bytes) 6374 { 6375 struct btrfs_trans_handle *trans; 6376 struct btrfs_path *path; 6377 int ret; 6378 struct extent_buffer *leaf; 6379 struct btrfs_root *root = BTRFS_I(inode)->root; 6380 struct btrfs_file_extent_item *fi; 6381 struct btrfs_key key; 6382 u64 disk_bytenr; 6383 u64 backref_offset; 6384 u64 extent_end; 6385 u64 num_bytes; 6386 int slot; 6387 int found_type; 6388 bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW); 6389 path = btrfs_alloc_path(); 6390 if (!path) 6391 return -ENOMEM; 6392 6393 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), 6394 offset, 0); 6395 if (ret < 0) 6396 goto out; 6397 6398 slot = path->slots[0]; 6399 if (ret == 1) { 6400 if (slot == 0) { 6401 /* can't find the item, must cow */ 6402 ret = 0; 6403 goto out; 6404 } 6405 slot--; 6406 } 6407 ret = 0; 6408 leaf = path->nodes[0]; 6409 btrfs_item_key_to_cpu(leaf, &key, slot); 6410 if (key.objectid != btrfs_ino(inode) || 6411 key.type != BTRFS_EXTENT_DATA_KEY) { 6412 /* not our file or wrong item type, must cow */ 6413 goto out; 6414 } 6415 6416 if (key.offset > offset) { 6417 /* Wrong offset, must cow */ 6418 goto out; 6419 } 6420 6421 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 6422 found_type = btrfs_file_extent_type(leaf, fi); 6423 if (found_type != BTRFS_FILE_EXTENT_REG && 6424 found_type != BTRFS_FILE_EXTENT_PREALLOC) { 6425 /* not a regular extent, must cow */ 6426 goto out; 6427 } 6428 6429 if (!nocow && found_type == BTRFS_FILE_EXTENT_REG) 6430 goto out; 6431 6432 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 6433 if (disk_bytenr == 0) 6434 goto out; 6435 6436 if (btrfs_file_extent_compression(leaf, fi) || 6437 btrfs_file_extent_encryption(leaf, fi) || 6438 btrfs_file_extent_other_encoding(leaf, fi)) 6439 goto out; 6440 6441 backref_offset = btrfs_file_extent_offset(leaf, fi); 6442 6443 if (orig_start) { 6444 *orig_start = key.offset - backref_offset; 6445 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi); 6446 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 6447 } 6448 6449 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 6450 6451 if (btrfs_extent_readonly(root, disk_bytenr)) 6452 goto out; 6453 btrfs_release_path(path); 6454 6455 /* 6456 * look for other files referencing this extent, if we 6457 * find any we must cow 6458 */ 6459 trans = btrfs_join_transaction(root); 6460 if (IS_ERR(trans)) { 6461 ret = 0; 6462 goto out; 6463 } 6464 6465 ret = btrfs_cross_ref_exist(trans, root, btrfs_ino(inode), 6466 key.offset - backref_offset, disk_bytenr); 6467 btrfs_end_transaction(trans, root); 6468 if (ret) { 6469 ret = 0; 6470 goto out; 6471 } 6472 6473 /* 6474 * adjust disk_bytenr and num_bytes to cover just the bytes 6475 * in this extent we are about to write. If there 6476 * are any csums in that range we have to cow in order 6477 * to keep the csums correct 6478 */ 6479 disk_bytenr += backref_offset; 6480 disk_bytenr += offset - key.offset; 6481 num_bytes = min(offset + *len, extent_end) - offset; 6482 if (csum_exist_in_range(root, disk_bytenr, num_bytes)) 6483 goto out; 6484 /* 6485 * all of the above have passed, it is safe to overwrite this extent 6486 * without cow 6487 */ 6488 *len = num_bytes; 6489 ret = 1; 6490 out: 6491 btrfs_free_path(path); 6492 return ret; 6493 } 6494 6495 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend, 6496 struct extent_state **cached_state, int writing) 6497 { 6498 struct btrfs_ordered_extent *ordered; 6499 int ret = 0; 6500 6501 while (1) { 6502 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 6503 0, cached_state); 6504 /* 6505 * We're concerned with the entire range that we're going to be 6506 * doing DIO to, so we need to make sure theres no ordered 6507 * extents in this range. 6508 */ 6509 ordered = btrfs_lookup_ordered_range(inode, lockstart, 6510 lockend - lockstart + 1); 6511 6512 /* 6513 * We need to make sure there are no buffered pages in this 6514 * range either, we could have raced between the invalidate in 6515 * generic_file_direct_write and locking the extent. The 6516 * invalidate needs to happen so that reads after a write do not 6517 * get stale data. 6518 */ 6519 if (!ordered && (!writing || 6520 !test_range_bit(&BTRFS_I(inode)->io_tree, 6521 lockstart, lockend, EXTENT_UPTODATE, 0, 6522 *cached_state))) 6523 break; 6524 6525 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, 6526 cached_state, GFP_NOFS); 6527 6528 if (ordered) { 6529 btrfs_start_ordered_extent(inode, ordered, 1); 6530 btrfs_put_ordered_extent(ordered); 6531 } else { 6532 /* Screw you mmap */ 6533 ret = filemap_write_and_wait_range(inode->i_mapping, 6534 lockstart, 6535 lockend); 6536 if (ret) 6537 break; 6538 6539 /* 6540 * If we found a page that couldn't be invalidated just 6541 * fall back to buffered. 6542 */ 6543 ret = invalidate_inode_pages2_range(inode->i_mapping, 6544 lockstart >> PAGE_CACHE_SHIFT, 6545 lockend >> PAGE_CACHE_SHIFT); 6546 if (ret) 6547 break; 6548 } 6549 6550 cond_resched(); 6551 } 6552 6553 return ret; 6554 } 6555 6556 static struct extent_map *create_pinned_em(struct inode *inode, u64 start, 6557 u64 len, u64 orig_start, 6558 u64 block_start, u64 block_len, 6559 u64 orig_block_len, u64 ram_bytes, 6560 int type) 6561 { 6562 struct extent_map_tree *em_tree; 6563 struct extent_map *em; 6564 struct btrfs_root *root = BTRFS_I(inode)->root; 6565 int ret; 6566 6567 em_tree = &BTRFS_I(inode)->extent_tree; 6568 em = alloc_extent_map(); 6569 if (!em) 6570 return ERR_PTR(-ENOMEM); 6571 6572 em->start = start; 6573 em->orig_start = orig_start; 6574 em->mod_start = start; 6575 em->mod_len = len; 6576 em->len = len; 6577 em->block_len = block_len; 6578 em->block_start = block_start; 6579 em->bdev = root->fs_info->fs_devices->latest_bdev; 6580 em->orig_block_len = orig_block_len; 6581 em->ram_bytes = ram_bytes; 6582 em->generation = -1; 6583 set_bit(EXTENT_FLAG_PINNED, &em->flags); 6584 if (type == BTRFS_ORDERED_PREALLOC) 6585 set_bit(EXTENT_FLAG_FILLING, &em->flags); 6586 6587 do { 6588 btrfs_drop_extent_cache(inode, em->start, 6589 em->start + em->len - 1, 0); 6590 write_lock(&em_tree->lock); 6591 ret = add_extent_mapping(em_tree, em, 1); 6592 write_unlock(&em_tree->lock); 6593 } while (ret == -EEXIST); 6594 6595 if (ret) { 6596 free_extent_map(em); 6597 return ERR_PTR(ret); 6598 } 6599 6600 return em; 6601 } 6602 6603 6604 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock, 6605 struct buffer_head *bh_result, int create) 6606 { 6607 struct extent_map *em; 6608 struct btrfs_root *root = BTRFS_I(inode)->root; 6609 struct extent_state *cached_state = NULL; 6610 u64 start = iblock << inode->i_blkbits; 6611 u64 lockstart, lockend; 6612 u64 len = bh_result->b_size; 6613 int unlock_bits = EXTENT_LOCKED; 6614 int ret = 0; 6615 6616 if (create) 6617 unlock_bits |= EXTENT_DELALLOC | EXTENT_DIRTY; 6618 else 6619 len = min_t(u64, len, root->sectorsize); 6620 6621 lockstart = start; 6622 lockend = start + len - 1; 6623 6624 /* 6625 * If this errors out it's because we couldn't invalidate pagecache for 6626 * this range and we need to fallback to buffered. 6627 */ 6628 if (lock_extent_direct(inode, lockstart, lockend, &cached_state, create)) 6629 return -ENOTBLK; 6630 6631 em = btrfs_get_extent(inode, NULL, 0, start, len, 0); 6632 if (IS_ERR(em)) { 6633 ret = PTR_ERR(em); 6634 goto unlock_err; 6635 } 6636 6637 /* 6638 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered 6639 * io. INLINE is special, and we could probably kludge it in here, but 6640 * it's still buffered so for safety lets just fall back to the generic 6641 * buffered path. 6642 * 6643 * For COMPRESSED we _have_ to read the entire extent in so we can 6644 * decompress it, so there will be buffering required no matter what we 6645 * do, so go ahead and fallback to buffered. 6646 * 6647 * We return -ENOTBLK because thats what makes DIO go ahead and go back 6648 * to buffered IO. Don't blame me, this is the price we pay for using 6649 * the generic code. 6650 */ 6651 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) || 6652 em->block_start == EXTENT_MAP_INLINE) { 6653 free_extent_map(em); 6654 ret = -ENOTBLK; 6655 goto unlock_err; 6656 } 6657 6658 /* Just a good old fashioned hole, return */ 6659 if (!create && (em->block_start == EXTENT_MAP_HOLE || 6660 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) { 6661 free_extent_map(em); 6662 goto unlock_err; 6663 } 6664 6665 /* 6666 * We don't allocate a new extent in the following cases 6667 * 6668 * 1) The inode is marked as NODATACOW. In this case we'll just use the 6669 * existing extent. 6670 * 2) The extent is marked as PREALLOC. We're good to go here and can 6671 * just use the extent. 6672 * 6673 */ 6674 if (!create) { 6675 len = min(len, em->len - (start - em->start)); 6676 lockstart = start + len; 6677 goto unlock; 6678 } 6679 6680 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) || 6681 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) && 6682 em->block_start != EXTENT_MAP_HOLE)) { 6683 int type; 6684 int ret; 6685 u64 block_start, orig_start, orig_block_len, ram_bytes; 6686 6687 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 6688 type = BTRFS_ORDERED_PREALLOC; 6689 else 6690 type = BTRFS_ORDERED_NOCOW; 6691 len = min(len, em->len - (start - em->start)); 6692 block_start = em->block_start + (start - em->start); 6693 6694 if (can_nocow_extent(inode, start, &len, &orig_start, 6695 &orig_block_len, &ram_bytes) == 1) { 6696 if (type == BTRFS_ORDERED_PREALLOC) { 6697 free_extent_map(em); 6698 em = create_pinned_em(inode, start, len, 6699 orig_start, 6700 block_start, len, 6701 orig_block_len, 6702 ram_bytes, type); 6703 if (IS_ERR(em)) 6704 goto unlock_err; 6705 } 6706 6707 ret = btrfs_add_ordered_extent_dio(inode, start, 6708 block_start, len, len, type); 6709 if (ret) { 6710 free_extent_map(em); 6711 goto unlock_err; 6712 } 6713 goto unlock; 6714 } 6715 } 6716 6717 /* 6718 * this will cow the extent, reset the len in case we changed 6719 * it above 6720 */ 6721 len = bh_result->b_size; 6722 free_extent_map(em); 6723 em = btrfs_new_extent_direct(inode, start, len); 6724 if (IS_ERR(em)) { 6725 ret = PTR_ERR(em); 6726 goto unlock_err; 6727 } 6728 len = min(len, em->len - (start - em->start)); 6729 unlock: 6730 bh_result->b_blocknr = (em->block_start + (start - em->start)) >> 6731 inode->i_blkbits; 6732 bh_result->b_size = len; 6733 bh_result->b_bdev = em->bdev; 6734 set_buffer_mapped(bh_result); 6735 if (create) { 6736 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 6737 set_buffer_new(bh_result); 6738 6739 /* 6740 * Need to update the i_size under the extent lock so buffered 6741 * readers will get the updated i_size when we unlock. 6742 */ 6743 if (start + len > i_size_read(inode)) 6744 i_size_write(inode, start + len); 6745 6746 spin_lock(&BTRFS_I(inode)->lock); 6747 BTRFS_I(inode)->outstanding_extents++; 6748 spin_unlock(&BTRFS_I(inode)->lock); 6749 6750 ret = set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, 6751 lockstart + len - 1, EXTENT_DELALLOC, NULL, 6752 &cached_state, GFP_NOFS); 6753 BUG_ON(ret); 6754 } 6755 6756 /* 6757 * In the case of write we need to clear and unlock the entire range, 6758 * in the case of read we need to unlock only the end area that we 6759 * aren't using if there is any left over space. 6760 */ 6761 if (lockstart < lockend) { 6762 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, 6763 lockend, unlock_bits, 1, 0, 6764 &cached_state, GFP_NOFS); 6765 } else { 6766 free_extent_state(cached_state); 6767 } 6768 6769 free_extent_map(em); 6770 6771 return 0; 6772 6773 unlock_err: 6774 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend, 6775 unlock_bits, 1, 0, &cached_state, GFP_NOFS); 6776 return ret; 6777 } 6778 6779 static void btrfs_endio_direct_read(struct bio *bio, int err) 6780 { 6781 struct btrfs_dio_private *dip = bio->bi_private; 6782 struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1; 6783 struct bio_vec *bvec = bio->bi_io_vec; 6784 struct inode *inode = dip->inode; 6785 struct btrfs_root *root = BTRFS_I(inode)->root; 6786 struct bio *dio_bio; 6787 u32 *csums = (u32 *)dip->csum; 6788 int index = 0; 6789 u64 start; 6790 6791 start = dip->logical_offset; 6792 do { 6793 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) { 6794 struct page *page = bvec->bv_page; 6795 char *kaddr; 6796 u32 csum = ~(u32)0; 6797 unsigned long flags; 6798 6799 local_irq_save(flags); 6800 kaddr = kmap_atomic(page); 6801 csum = btrfs_csum_data(kaddr + bvec->bv_offset, 6802 csum, bvec->bv_len); 6803 btrfs_csum_final(csum, (char *)&csum); 6804 kunmap_atomic(kaddr); 6805 local_irq_restore(flags); 6806 6807 flush_dcache_page(bvec->bv_page); 6808 if (csum != csums[index]) { 6809 btrfs_err(root->fs_info, "csum failed ino %llu off %llu csum %u expected csum %u", 6810 btrfs_ino(inode), start, csum, 6811 csums[index]); 6812 err = -EIO; 6813 } 6814 } 6815 6816 start += bvec->bv_len; 6817 bvec++; 6818 index++; 6819 } while (bvec <= bvec_end); 6820 6821 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset, 6822 dip->logical_offset + dip->bytes - 1); 6823 dio_bio = dip->dio_bio; 6824 6825 kfree(dip); 6826 6827 /* If we had a csum failure make sure to clear the uptodate flag */ 6828 if (err) 6829 clear_bit(BIO_UPTODATE, &dio_bio->bi_flags); 6830 dio_end_io(dio_bio, err); 6831 bio_put(bio); 6832 } 6833 6834 static void btrfs_endio_direct_write(struct bio *bio, int err) 6835 { 6836 struct btrfs_dio_private *dip = bio->bi_private; 6837 struct inode *inode = dip->inode; 6838 struct btrfs_root *root = BTRFS_I(inode)->root; 6839 struct btrfs_ordered_extent *ordered = NULL; 6840 u64 ordered_offset = dip->logical_offset; 6841 u64 ordered_bytes = dip->bytes; 6842 struct bio *dio_bio; 6843 int ret; 6844 6845 if (err) 6846 goto out_done; 6847 again: 6848 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered, 6849 &ordered_offset, 6850 ordered_bytes, !err); 6851 if (!ret) 6852 goto out_test; 6853 6854 ordered->work.func = finish_ordered_fn; 6855 ordered->work.flags = 0; 6856 btrfs_queue_worker(&root->fs_info->endio_write_workers, 6857 &ordered->work); 6858 out_test: 6859 /* 6860 * our bio might span multiple ordered extents. If we haven't 6861 * completed the accounting for the whole dio, go back and try again 6862 */ 6863 if (ordered_offset < dip->logical_offset + dip->bytes) { 6864 ordered_bytes = dip->logical_offset + dip->bytes - 6865 ordered_offset; 6866 ordered = NULL; 6867 goto again; 6868 } 6869 out_done: 6870 dio_bio = dip->dio_bio; 6871 6872 kfree(dip); 6873 6874 /* If we had an error make sure to clear the uptodate flag */ 6875 if (err) 6876 clear_bit(BIO_UPTODATE, &dio_bio->bi_flags); 6877 dio_end_io(dio_bio, err); 6878 bio_put(bio); 6879 } 6880 6881 static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw, 6882 struct bio *bio, int mirror_num, 6883 unsigned long bio_flags, u64 offset) 6884 { 6885 int ret; 6886 struct btrfs_root *root = BTRFS_I(inode)->root; 6887 ret = btrfs_csum_one_bio(root, inode, bio, offset, 1); 6888 BUG_ON(ret); /* -ENOMEM */ 6889 return 0; 6890 } 6891 6892 static void btrfs_end_dio_bio(struct bio *bio, int err) 6893 { 6894 struct btrfs_dio_private *dip = bio->bi_private; 6895 6896 if (err) { 6897 printk(KERN_ERR "btrfs direct IO failed ino %llu rw %lu " 6898 "sector %#Lx len %u err no %d\n", 6899 btrfs_ino(dip->inode), bio->bi_rw, 6900 (unsigned long long)bio->bi_sector, bio->bi_size, err); 6901 dip->errors = 1; 6902 6903 /* 6904 * before atomic variable goto zero, we must make sure 6905 * dip->errors is perceived to be set. 6906 */ 6907 smp_mb__before_atomic_dec(); 6908 } 6909 6910 /* if there are more bios still pending for this dio, just exit */ 6911 if (!atomic_dec_and_test(&dip->pending_bios)) 6912 goto out; 6913 6914 if (dip->errors) { 6915 bio_io_error(dip->orig_bio); 6916 } else { 6917 set_bit(BIO_UPTODATE, &dip->dio_bio->bi_flags); 6918 bio_endio(dip->orig_bio, 0); 6919 } 6920 out: 6921 bio_put(bio); 6922 } 6923 6924 static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev, 6925 u64 first_sector, gfp_t gfp_flags) 6926 { 6927 int nr_vecs = bio_get_nr_vecs(bdev); 6928 return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags); 6929 } 6930 6931 static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode, 6932 int rw, u64 file_offset, int skip_sum, 6933 int async_submit) 6934 { 6935 struct btrfs_dio_private *dip = bio->bi_private; 6936 int write = rw & REQ_WRITE; 6937 struct btrfs_root *root = BTRFS_I(inode)->root; 6938 int ret; 6939 6940 if (async_submit) 6941 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers); 6942 6943 bio_get(bio); 6944 6945 if (!write) { 6946 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0); 6947 if (ret) 6948 goto err; 6949 } 6950 6951 if (skip_sum) 6952 goto map; 6953 6954 if (write && async_submit) { 6955 ret = btrfs_wq_submit_bio(root->fs_info, 6956 inode, rw, bio, 0, 0, 6957 file_offset, 6958 __btrfs_submit_bio_start_direct_io, 6959 __btrfs_submit_bio_done); 6960 goto err; 6961 } else if (write) { 6962 /* 6963 * If we aren't doing async submit, calculate the csum of the 6964 * bio now. 6965 */ 6966 ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1); 6967 if (ret) 6968 goto err; 6969 } else if (!skip_sum) { 6970 ret = btrfs_lookup_bio_sums_dio(root, inode, dip, bio, 6971 file_offset); 6972 if (ret) 6973 goto err; 6974 } 6975 6976 map: 6977 ret = btrfs_map_bio(root, rw, bio, 0, async_submit); 6978 err: 6979 bio_put(bio); 6980 return ret; 6981 } 6982 6983 static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip, 6984 int skip_sum) 6985 { 6986 struct inode *inode = dip->inode; 6987 struct btrfs_root *root = BTRFS_I(inode)->root; 6988 struct bio *bio; 6989 struct bio *orig_bio = dip->orig_bio; 6990 struct bio_vec *bvec = orig_bio->bi_io_vec; 6991 u64 start_sector = orig_bio->bi_sector; 6992 u64 file_offset = dip->logical_offset; 6993 u64 submit_len = 0; 6994 u64 map_length; 6995 int nr_pages = 0; 6996 int ret = 0; 6997 int async_submit = 0; 6998 6999 map_length = orig_bio->bi_size; 7000 ret = btrfs_map_block(root->fs_info, rw, start_sector << 9, 7001 &map_length, NULL, 0); 7002 if (ret) { 7003 bio_put(orig_bio); 7004 return -EIO; 7005 } 7006 7007 if (map_length >= orig_bio->bi_size) { 7008 bio = orig_bio; 7009 goto submit; 7010 } 7011 7012 /* async crcs make it difficult to collect full stripe writes. */ 7013 if (btrfs_get_alloc_profile(root, 1) & 7014 (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6)) 7015 async_submit = 0; 7016 else 7017 async_submit = 1; 7018 7019 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS); 7020 if (!bio) 7021 return -ENOMEM; 7022 bio->bi_private = dip; 7023 bio->bi_end_io = btrfs_end_dio_bio; 7024 atomic_inc(&dip->pending_bios); 7025 7026 while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) { 7027 if (unlikely(map_length < submit_len + bvec->bv_len || 7028 bio_add_page(bio, bvec->bv_page, bvec->bv_len, 7029 bvec->bv_offset) < bvec->bv_len)) { 7030 /* 7031 * inc the count before we submit the bio so 7032 * we know the end IO handler won't happen before 7033 * we inc the count. Otherwise, the dip might get freed 7034 * before we're done setting it up 7035 */ 7036 atomic_inc(&dip->pending_bios); 7037 ret = __btrfs_submit_dio_bio(bio, inode, rw, 7038 file_offset, skip_sum, 7039 async_submit); 7040 if (ret) { 7041 bio_put(bio); 7042 atomic_dec(&dip->pending_bios); 7043 goto out_err; 7044 } 7045 7046 start_sector += submit_len >> 9; 7047 file_offset += submit_len; 7048 7049 submit_len = 0; 7050 nr_pages = 0; 7051 7052 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, 7053 start_sector, GFP_NOFS); 7054 if (!bio) 7055 goto out_err; 7056 bio->bi_private = dip; 7057 bio->bi_end_io = btrfs_end_dio_bio; 7058 7059 map_length = orig_bio->bi_size; 7060 ret = btrfs_map_block(root->fs_info, rw, 7061 start_sector << 9, 7062 &map_length, NULL, 0); 7063 if (ret) { 7064 bio_put(bio); 7065 goto out_err; 7066 } 7067 } else { 7068 submit_len += bvec->bv_len; 7069 nr_pages++; 7070 bvec++; 7071 } 7072 } 7073 7074 submit: 7075 ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum, 7076 async_submit); 7077 if (!ret) 7078 return 0; 7079 7080 bio_put(bio); 7081 out_err: 7082 dip->errors = 1; 7083 /* 7084 * before atomic variable goto zero, we must 7085 * make sure dip->errors is perceived to be set. 7086 */ 7087 smp_mb__before_atomic_dec(); 7088 if (atomic_dec_and_test(&dip->pending_bios)) 7089 bio_io_error(dip->orig_bio); 7090 7091 /* bio_end_io() will handle error, so we needn't return it */ 7092 return 0; 7093 } 7094 7095 static void btrfs_submit_direct(int rw, struct bio *dio_bio, 7096 struct inode *inode, loff_t file_offset) 7097 { 7098 struct btrfs_root *root = BTRFS_I(inode)->root; 7099 struct btrfs_dio_private *dip; 7100 struct bio *io_bio; 7101 int skip_sum; 7102 int sum_len; 7103 int write = rw & REQ_WRITE; 7104 int ret = 0; 7105 u16 csum_size; 7106 7107 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 7108 7109 io_bio = btrfs_bio_clone(dio_bio, GFP_NOFS); 7110 if (!io_bio) { 7111 ret = -ENOMEM; 7112 goto free_ordered; 7113 } 7114 7115 if (!skip_sum && !write) { 7116 csum_size = btrfs_super_csum_size(root->fs_info->super_copy); 7117 sum_len = dio_bio->bi_size >> inode->i_sb->s_blocksize_bits; 7118 sum_len *= csum_size; 7119 } else { 7120 sum_len = 0; 7121 } 7122 7123 dip = kmalloc(sizeof(*dip) + sum_len, GFP_NOFS); 7124 if (!dip) { 7125 ret = -ENOMEM; 7126 goto free_io_bio; 7127 } 7128 7129 dip->private = dio_bio->bi_private; 7130 dip->inode = inode; 7131 dip->logical_offset = file_offset; 7132 dip->bytes = dio_bio->bi_size; 7133 dip->disk_bytenr = (u64)dio_bio->bi_sector << 9; 7134 io_bio->bi_private = dip; 7135 dip->errors = 0; 7136 dip->orig_bio = io_bio; 7137 dip->dio_bio = dio_bio; 7138 atomic_set(&dip->pending_bios, 0); 7139 7140 if (write) 7141 io_bio->bi_end_io = btrfs_endio_direct_write; 7142 else 7143 io_bio->bi_end_io = btrfs_endio_direct_read; 7144 7145 ret = btrfs_submit_direct_hook(rw, dip, skip_sum); 7146 if (!ret) 7147 return; 7148 7149 free_io_bio: 7150 bio_put(io_bio); 7151 7152 free_ordered: 7153 /* 7154 * If this is a write, we need to clean up the reserved space and kill 7155 * the ordered extent. 7156 */ 7157 if (write) { 7158 struct btrfs_ordered_extent *ordered; 7159 ordered = btrfs_lookup_ordered_extent(inode, file_offset); 7160 if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) && 7161 !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags)) 7162 btrfs_free_reserved_extent(root, ordered->start, 7163 ordered->disk_len); 7164 btrfs_put_ordered_extent(ordered); 7165 btrfs_put_ordered_extent(ordered); 7166 } 7167 bio_endio(dio_bio, ret); 7168 } 7169 7170 static ssize_t check_direct_IO(struct btrfs_root *root, int rw, struct kiocb *iocb, 7171 const struct iovec *iov, loff_t offset, 7172 unsigned long nr_segs) 7173 { 7174 int seg; 7175 int i; 7176 size_t size; 7177 unsigned long addr; 7178 unsigned blocksize_mask = root->sectorsize - 1; 7179 ssize_t retval = -EINVAL; 7180 loff_t end = offset; 7181 7182 if (offset & blocksize_mask) 7183 goto out; 7184 7185 /* Check the memory alignment. Blocks cannot straddle pages */ 7186 for (seg = 0; seg < nr_segs; seg++) { 7187 addr = (unsigned long)iov[seg].iov_base; 7188 size = iov[seg].iov_len; 7189 end += size; 7190 if ((addr & blocksize_mask) || (size & blocksize_mask)) 7191 goto out; 7192 7193 /* If this is a write we don't need to check anymore */ 7194 if (rw & WRITE) 7195 continue; 7196 7197 /* 7198 * Check to make sure we don't have duplicate iov_base's in this 7199 * iovec, if so return EINVAL, otherwise we'll get csum errors 7200 * when reading back. 7201 */ 7202 for (i = seg + 1; i < nr_segs; i++) { 7203 if (iov[seg].iov_base == iov[i].iov_base) 7204 goto out; 7205 } 7206 } 7207 retval = 0; 7208 out: 7209 return retval; 7210 } 7211 7212 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb, 7213 const struct iovec *iov, loff_t offset, 7214 unsigned long nr_segs) 7215 { 7216 struct file *file = iocb->ki_filp; 7217 struct inode *inode = file->f_mapping->host; 7218 size_t count = 0; 7219 int flags = 0; 7220 bool wakeup = true; 7221 bool relock = false; 7222 ssize_t ret; 7223 7224 if (check_direct_IO(BTRFS_I(inode)->root, rw, iocb, iov, 7225 offset, nr_segs)) 7226 return 0; 7227 7228 atomic_inc(&inode->i_dio_count); 7229 smp_mb__after_atomic_inc(); 7230 7231 /* 7232 * The generic stuff only does filemap_write_and_wait_range, which isn't 7233 * enough if we've written compressed pages to this area, so we need to 7234 * call btrfs_wait_ordered_range to make absolutely sure that any 7235 * outstanding dirty pages are on disk. 7236 */ 7237 count = iov_length(iov, nr_segs); 7238 ret = btrfs_wait_ordered_range(inode, offset, count); 7239 if (ret) 7240 return ret; 7241 7242 if (rw & WRITE) { 7243 /* 7244 * If the write DIO is beyond the EOF, we need update 7245 * the isize, but it is protected by i_mutex. So we can 7246 * not unlock the i_mutex at this case. 7247 */ 7248 if (offset + count <= inode->i_size) { 7249 mutex_unlock(&inode->i_mutex); 7250 relock = true; 7251 } 7252 ret = btrfs_delalloc_reserve_space(inode, count); 7253 if (ret) 7254 goto out; 7255 } else if (unlikely(test_bit(BTRFS_INODE_READDIO_NEED_LOCK, 7256 &BTRFS_I(inode)->runtime_flags))) { 7257 inode_dio_done(inode); 7258 flags = DIO_LOCKING | DIO_SKIP_HOLES; 7259 wakeup = false; 7260 } 7261 7262 ret = __blockdev_direct_IO(rw, iocb, inode, 7263 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev, 7264 iov, offset, nr_segs, btrfs_get_blocks_direct, NULL, 7265 btrfs_submit_direct, flags); 7266 if (rw & WRITE) { 7267 if (ret < 0 && ret != -EIOCBQUEUED) 7268 btrfs_delalloc_release_space(inode, count); 7269 else if (ret >= 0 && (size_t)ret < count) 7270 btrfs_delalloc_release_space(inode, 7271 count - (size_t)ret); 7272 else 7273 btrfs_delalloc_release_metadata(inode, 0); 7274 } 7275 out: 7276 if (wakeup) 7277 inode_dio_done(inode); 7278 if (relock) 7279 mutex_lock(&inode->i_mutex); 7280 7281 return ret; 7282 } 7283 7284 #define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC) 7285 7286 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 7287 __u64 start, __u64 len) 7288 { 7289 int ret; 7290 7291 ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS); 7292 if (ret) 7293 return ret; 7294 7295 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap); 7296 } 7297 7298 int btrfs_readpage(struct file *file, struct page *page) 7299 { 7300 struct extent_io_tree *tree; 7301 tree = &BTRFS_I(page->mapping->host)->io_tree; 7302 return extent_read_full_page(tree, page, btrfs_get_extent, 0); 7303 } 7304 7305 static int btrfs_writepage(struct page *page, struct writeback_control *wbc) 7306 { 7307 struct extent_io_tree *tree; 7308 7309 7310 if (current->flags & PF_MEMALLOC) { 7311 redirty_page_for_writepage(wbc, page); 7312 unlock_page(page); 7313 return 0; 7314 } 7315 tree = &BTRFS_I(page->mapping->host)->io_tree; 7316 return extent_write_full_page(tree, page, btrfs_get_extent, wbc); 7317 } 7318 7319 static int btrfs_writepages(struct address_space *mapping, 7320 struct writeback_control *wbc) 7321 { 7322 struct extent_io_tree *tree; 7323 7324 tree = &BTRFS_I(mapping->host)->io_tree; 7325 return extent_writepages(tree, mapping, btrfs_get_extent, wbc); 7326 } 7327 7328 static int 7329 btrfs_readpages(struct file *file, struct address_space *mapping, 7330 struct list_head *pages, unsigned nr_pages) 7331 { 7332 struct extent_io_tree *tree; 7333 tree = &BTRFS_I(mapping->host)->io_tree; 7334 return extent_readpages(tree, mapping, pages, nr_pages, 7335 btrfs_get_extent); 7336 } 7337 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags) 7338 { 7339 struct extent_io_tree *tree; 7340 struct extent_map_tree *map; 7341 int ret; 7342 7343 tree = &BTRFS_I(page->mapping->host)->io_tree; 7344 map = &BTRFS_I(page->mapping->host)->extent_tree; 7345 ret = try_release_extent_mapping(map, tree, page, gfp_flags); 7346 if (ret == 1) { 7347 ClearPagePrivate(page); 7348 set_page_private(page, 0); 7349 page_cache_release(page); 7350 } 7351 return ret; 7352 } 7353 7354 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags) 7355 { 7356 if (PageWriteback(page) || PageDirty(page)) 7357 return 0; 7358 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS); 7359 } 7360 7361 static void btrfs_invalidatepage(struct page *page, unsigned int offset, 7362 unsigned int length) 7363 { 7364 struct inode *inode = page->mapping->host; 7365 struct extent_io_tree *tree; 7366 struct btrfs_ordered_extent *ordered; 7367 struct extent_state *cached_state = NULL; 7368 u64 page_start = page_offset(page); 7369 u64 page_end = page_start + PAGE_CACHE_SIZE - 1; 7370 7371 /* 7372 * we have the page locked, so new writeback can't start, 7373 * and the dirty bit won't be cleared while we are here. 7374 * 7375 * Wait for IO on this page so that we can safely clear 7376 * the PagePrivate2 bit and do ordered accounting 7377 */ 7378 wait_on_page_writeback(page); 7379 7380 tree = &BTRFS_I(inode)->io_tree; 7381 if (offset) { 7382 btrfs_releasepage(page, GFP_NOFS); 7383 return; 7384 } 7385 lock_extent_bits(tree, page_start, page_end, 0, &cached_state); 7386 ordered = btrfs_lookup_ordered_extent(inode, page_offset(page)); 7387 if (ordered) { 7388 /* 7389 * IO on this page will never be started, so we need 7390 * to account for any ordered extents now 7391 */ 7392 clear_extent_bit(tree, page_start, page_end, 7393 EXTENT_DIRTY | EXTENT_DELALLOC | 7394 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING | 7395 EXTENT_DEFRAG, 1, 0, &cached_state, GFP_NOFS); 7396 /* 7397 * whoever cleared the private bit is responsible 7398 * for the finish_ordered_io 7399 */ 7400 if (TestClearPagePrivate2(page)) { 7401 struct btrfs_ordered_inode_tree *tree; 7402 u64 new_len; 7403 7404 tree = &BTRFS_I(inode)->ordered_tree; 7405 7406 spin_lock_irq(&tree->lock); 7407 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags); 7408 new_len = page_start - ordered->file_offset; 7409 if (new_len < ordered->truncated_len) 7410 ordered->truncated_len = new_len; 7411 spin_unlock_irq(&tree->lock); 7412 7413 if (btrfs_dec_test_ordered_pending(inode, &ordered, 7414 page_start, 7415 PAGE_CACHE_SIZE, 1)) 7416 btrfs_finish_ordered_io(ordered); 7417 } 7418 btrfs_put_ordered_extent(ordered); 7419 cached_state = NULL; 7420 lock_extent_bits(tree, page_start, page_end, 0, &cached_state); 7421 } 7422 clear_extent_bit(tree, page_start, page_end, 7423 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC | 7424 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1, 7425 &cached_state, GFP_NOFS); 7426 __btrfs_releasepage(page, GFP_NOFS); 7427 7428 ClearPageChecked(page); 7429 if (PagePrivate(page)) { 7430 ClearPagePrivate(page); 7431 set_page_private(page, 0); 7432 page_cache_release(page); 7433 } 7434 } 7435 7436 /* 7437 * btrfs_page_mkwrite() is not allowed to change the file size as it gets 7438 * called from a page fault handler when a page is first dirtied. Hence we must 7439 * be careful to check for EOF conditions here. We set the page up correctly 7440 * for a written page which means we get ENOSPC checking when writing into 7441 * holes and correct delalloc and unwritten extent mapping on filesystems that 7442 * support these features. 7443 * 7444 * We are not allowed to take the i_mutex here so we have to play games to 7445 * protect against truncate races as the page could now be beyond EOF. Because 7446 * vmtruncate() writes the inode size before removing pages, once we have the 7447 * page lock we can determine safely if the page is beyond EOF. If it is not 7448 * beyond EOF, then the page is guaranteed safe against truncation until we 7449 * unlock the page. 7450 */ 7451 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf) 7452 { 7453 struct page *page = vmf->page; 7454 struct inode *inode = file_inode(vma->vm_file); 7455 struct btrfs_root *root = BTRFS_I(inode)->root; 7456 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 7457 struct btrfs_ordered_extent *ordered; 7458 struct extent_state *cached_state = NULL; 7459 char *kaddr; 7460 unsigned long zero_start; 7461 loff_t size; 7462 int ret; 7463 int reserved = 0; 7464 u64 page_start; 7465 u64 page_end; 7466 7467 sb_start_pagefault(inode->i_sb); 7468 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE); 7469 if (!ret) { 7470 ret = file_update_time(vma->vm_file); 7471 reserved = 1; 7472 } 7473 if (ret) { 7474 if (ret == -ENOMEM) 7475 ret = VM_FAULT_OOM; 7476 else /* -ENOSPC, -EIO, etc */ 7477 ret = VM_FAULT_SIGBUS; 7478 if (reserved) 7479 goto out; 7480 goto out_noreserve; 7481 } 7482 7483 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */ 7484 again: 7485 lock_page(page); 7486 size = i_size_read(inode); 7487 page_start = page_offset(page); 7488 page_end = page_start + PAGE_CACHE_SIZE - 1; 7489 7490 if ((page->mapping != inode->i_mapping) || 7491 (page_start >= size)) { 7492 /* page got truncated out from underneath us */ 7493 goto out_unlock; 7494 } 7495 wait_on_page_writeback(page); 7496 7497 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state); 7498 set_page_extent_mapped(page); 7499 7500 /* 7501 * we can't set the delalloc bits if there are pending ordered 7502 * extents. Drop our locks and wait for them to finish 7503 */ 7504 ordered = btrfs_lookup_ordered_extent(inode, page_start); 7505 if (ordered) { 7506 unlock_extent_cached(io_tree, page_start, page_end, 7507 &cached_state, GFP_NOFS); 7508 unlock_page(page); 7509 btrfs_start_ordered_extent(inode, ordered, 1); 7510 btrfs_put_ordered_extent(ordered); 7511 goto again; 7512 } 7513 7514 /* 7515 * XXX - page_mkwrite gets called every time the page is dirtied, even 7516 * if it was already dirty, so for space accounting reasons we need to 7517 * clear any delalloc bits for the range we are fixing to save. There 7518 * is probably a better way to do this, but for now keep consistent with 7519 * prepare_pages in the normal write path. 7520 */ 7521 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end, 7522 EXTENT_DIRTY | EXTENT_DELALLOC | 7523 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 7524 0, 0, &cached_state, GFP_NOFS); 7525 7526 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 7527 &cached_state); 7528 if (ret) { 7529 unlock_extent_cached(io_tree, page_start, page_end, 7530 &cached_state, GFP_NOFS); 7531 ret = VM_FAULT_SIGBUS; 7532 goto out_unlock; 7533 } 7534 ret = 0; 7535 7536 /* page is wholly or partially inside EOF */ 7537 if (page_start + PAGE_CACHE_SIZE > size) 7538 zero_start = size & ~PAGE_CACHE_MASK; 7539 else 7540 zero_start = PAGE_CACHE_SIZE; 7541 7542 if (zero_start != PAGE_CACHE_SIZE) { 7543 kaddr = kmap(page); 7544 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start); 7545 flush_dcache_page(page); 7546 kunmap(page); 7547 } 7548 ClearPageChecked(page); 7549 set_page_dirty(page); 7550 SetPageUptodate(page); 7551 7552 BTRFS_I(inode)->last_trans = root->fs_info->generation; 7553 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid; 7554 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit; 7555 7556 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS); 7557 7558 out_unlock: 7559 if (!ret) { 7560 sb_end_pagefault(inode->i_sb); 7561 return VM_FAULT_LOCKED; 7562 } 7563 unlock_page(page); 7564 out: 7565 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE); 7566 out_noreserve: 7567 sb_end_pagefault(inode->i_sb); 7568 return ret; 7569 } 7570 7571 static int btrfs_truncate(struct inode *inode) 7572 { 7573 struct btrfs_root *root = BTRFS_I(inode)->root; 7574 struct btrfs_block_rsv *rsv; 7575 int ret = 0; 7576 int err = 0; 7577 struct btrfs_trans_handle *trans; 7578 u64 mask = root->sectorsize - 1; 7579 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1); 7580 7581 ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask), 7582 (u64)-1); 7583 if (ret) 7584 return ret; 7585 7586 /* 7587 * Yes ladies and gentelment, this is indeed ugly. The fact is we have 7588 * 3 things going on here 7589 * 7590 * 1) We need to reserve space for our orphan item and the space to 7591 * delete our orphan item. Lord knows we don't want to have a dangling 7592 * orphan item because we didn't reserve space to remove it. 7593 * 7594 * 2) We need to reserve space to update our inode. 7595 * 7596 * 3) We need to have something to cache all the space that is going to 7597 * be free'd up by the truncate operation, but also have some slack 7598 * space reserved in case it uses space during the truncate (thank you 7599 * very much snapshotting). 7600 * 7601 * And we need these to all be seperate. The fact is we can use alot of 7602 * space doing the truncate, and we have no earthly idea how much space 7603 * we will use, so we need the truncate reservation to be seperate so it 7604 * doesn't end up using space reserved for updating the inode or 7605 * removing the orphan item. We also need to be able to stop the 7606 * transaction and start a new one, which means we need to be able to 7607 * update the inode several times, and we have no idea of knowing how 7608 * many times that will be, so we can't just reserve 1 item for the 7609 * entirety of the opration, so that has to be done seperately as well. 7610 * Then there is the orphan item, which does indeed need to be held on 7611 * to for the whole operation, and we need nobody to touch this reserved 7612 * space except the orphan code. 7613 * 7614 * So that leaves us with 7615 * 7616 * 1) root->orphan_block_rsv - for the orphan deletion. 7617 * 2) rsv - for the truncate reservation, which we will steal from the 7618 * transaction reservation. 7619 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for 7620 * updating the inode. 7621 */ 7622 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP); 7623 if (!rsv) 7624 return -ENOMEM; 7625 rsv->size = min_size; 7626 rsv->failfast = 1; 7627 7628 /* 7629 * 1 for the truncate slack space 7630 * 1 for updating the inode. 7631 */ 7632 trans = btrfs_start_transaction(root, 2); 7633 if (IS_ERR(trans)) { 7634 err = PTR_ERR(trans); 7635 goto out; 7636 } 7637 7638 /* Migrate the slack space for the truncate to our reserve */ 7639 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv, 7640 min_size); 7641 BUG_ON(ret); 7642 7643 /* 7644 * setattr is responsible for setting the ordered_data_close flag, 7645 * but that is only tested during the last file release. That 7646 * could happen well after the next commit, leaving a great big 7647 * window where new writes may get lost if someone chooses to write 7648 * to this file after truncating to zero 7649 * 7650 * The inode doesn't have any dirty data here, and so if we commit 7651 * this is a noop. If someone immediately starts writing to the inode 7652 * it is very likely we'll catch some of their writes in this 7653 * transaction, and the commit will find this file on the ordered 7654 * data list with good things to send down. 7655 * 7656 * This is a best effort solution, there is still a window where 7657 * using truncate to replace the contents of the file will 7658 * end up with a zero length file after a crash. 7659 */ 7660 if (inode->i_size == 0 && test_bit(BTRFS_INODE_ORDERED_DATA_CLOSE, 7661 &BTRFS_I(inode)->runtime_flags)) 7662 btrfs_add_ordered_operation(trans, root, inode); 7663 7664 /* 7665 * So if we truncate and then write and fsync we normally would just 7666 * write the extents that changed, which is a problem if we need to 7667 * first truncate that entire inode. So set this flag so we write out 7668 * all of the extents in the inode to the sync log so we're completely 7669 * safe. 7670 */ 7671 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 7672 trans->block_rsv = rsv; 7673 7674 while (1) { 7675 ret = btrfs_truncate_inode_items(trans, root, inode, 7676 inode->i_size, 7677 BTRFS_EXTENT_DATA_KEY); 7678 if (ret != -ENOSPC) { 7679 err = ret; 7680 break; 7681 } 7682 7683 trans->block_rsv = &root->fs_info->trans_block_rsv; 7684 ret = btrfs_update_inode(trans, root, inode); 7685 if (ret) { 7686 err = ret; 7687 break; 7688 } 7689 7690 btrfs_end_transaction(trans, root); 7691 btrfs_btree_balance_dirty(root); 7692 7693 trans = btrfs_start_transaction(root, 2); 7694 if (IS_ERR(trans)) { 7695 ret = err = PTR_ERR(trans); 7696 trans = NULL; 7697 break; 7698 } 7699 7700 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, 7701 rsv, min_size); 7702 BUG_ON(ret); /* shouldn't happen */ 7703 trans->block_rsv = rsv; 7704 } 7705 7706 if (ret == 0 && inode->i_nlink > 0) { 7707 trans->block_rsv = root->orphan_block_rsv; 7708 ret = btrfs_orphan_del(trans, inode); 7709 if (ret) 7710 err = ret; 7711 } 7712 7713 if (trans) { 7714 trans->block_rsv = &root->fs_info->trans_block_rsv; 7715 ret = btrfs_update_inode(trans, root, inode); 7716 if (ret && !err) 7717 err = ret; 7718 7719 ret = btrfs_end_transaction(trans, root); 7720 btrfs_btree_balance_dirty(root); 7721 } 7722 7723 out: 7724 btrfs_free_block_rsv(root, rsv); 7725 7726 if (ret && !err) 7727 err = ret; 7728 7729 return err; 7730 } 7731 7732 /* 7733 * create a new subvolume directory/inode (helper for the ioctl). 7734 */ 7735 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans, 7736 struct btrfs_root *new_root, u64 new_dirid) 7737 { 7738 struct inode *inode; 7739 int err; 7740 u64 index = 0; 7741 7742 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, 7743 new_dirid, new_dirid, 7744 S_IFDIR | (~current_umask() & S_IRWXUGO), 7745 &index); 7746 if (IS_ERR(inode)) 7747 return PTR_ERR(inode); 7748 inode->i_op = &btrfs_dir_inode_operations; 7749 inode->i_fop = &btrfs_dir_file_operations; 7750 7751 set_nlink(inode, 1); 7752 btrfs_i_size_write(inode, 0); 7753 7754 err = btrfs_update_inode(trans, new_root, inode); 7755 7756 iput(inode); 7757 return err; 7758 } 7759 7760 struct inode *btrfs_alloc_inode(struct super_block *sb) 7761 { 7762 struct btrfs_inode *ei; 7763 struct inode *inode; 7764 7765 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS); 7766 if (!ei) 7767 return NULL; 7768 7769 ei->root = NULL; 7770 ei->generation = 0; 7771 ei->last_trans = 0; 7772 ei->last_sub_trans = 0; 7773 ei->logged_trans = 0; 7774 ei->delalloc_bytes = 0; 7775 ei->disk_i_size = 0; 7776 ei->flags = 0; 7777 ei->csum_bytes = 0; 7778 ei->index_cnt = (u64)-1; 7779 ei->last_unlink_trans = 0; 7780 ei->last_log_commit = 0; 7781 7782 spin_lock_init(&ei->lock); 7783 ei->outstanding_extents = 0; 7784 ei->reserved_extents = 0; 7785 7786 ei->runtime_flags = 0; 7787 ei->force_compress = BTRFS_COMPRESS_NONE; 7788 7789 ei->delayed_node = NULL; 7790 7791 inode = &ei->vfs_inode; 7792 extent_map_tree_init(&ei->extent_tree); 7793 extent_io_tree_init(&ei->io_tree, &inode->i_data); 7794 extent_io_tree_init(&ei->io_failure_tree, &inode->i_data); 7795 ei->io_tree.track_uptodate = 1; 7796 ei->io_failure_tree.track_uptodate = 1; 7797 atomic_set(&ei->sync_writers, 0); 7798 mutex_init(&ei->log_mutex); 7799 mutex_init(&ei->delalloc_mutex); 7800 btrfs_ordered_inode_tree_init(&ei->ordered_tree); 7801 INIT_LIST_HEAD(&ei->delalloc_inodes); 7802 INIT_LIST_HEAD(&ei->ordered_operations); 7803 RB_CLEAR_NODE(&ei->rb_node); 7804 7805 return inode; 7806 } 7807 7808 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 7809 void btrfs_test_destroy_inode(struct inode *inode) 7810 { 7811 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0); 7812 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 7813 } 7814 #endif 7815 7816 static void btrfs_i_callback(struct rcu_head *head) 7817 { 7818 struct inode *inode = container_of(head, struct inode, i_rcu); 7819 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 7820 } 7821 7822 void btrfs_destroy_inode(struct inode *inode) 7823 { 7824 struct btrfs_ordered_extent *ordered; 7825 struct btrfs_root *root = BTRFS_I(inode)->root; 7826 7827 WARN_ON(!hlist_empty(&inode->i_dentry)); 7828 WARN_ON(inode->i_data.nrpages); 7829 WARN_ON(BTRFS_I(inode)->outstanding_extents); 7830 WARN_ON(BTRFS_I(inode)->reserved_extents); 7831 WARN_ON(BTRFS_I(inode)->delalloc_bytes); 7832 WARN_ON(BTRFS_I(inode)->csum_bytes); 7833 7834 /* 7835 * This can happen where we create an inode, but somebody else also 7836 * created the same inode and we need to destroy the one we already 7837 * created. 7838 */ 7839 if (!root) 7840 goto free; 7841 7842 /* 7843 * Make sure we're properly removed from the ordered operation 7844 * lists. 7845 */ 7846 smp_mb(); 7847 if (!list_empty(&BTRFS_I(inode)->ordered_operations)) { 7848 spin_lock(&root->fs_info->ordered_root_lock); 7849 list_del_init(&BTRFS_I(inode)->ordered_operations); 7850 spin_unlock(&root->fs_info->ordered_root_lock); 7851 } 7852 7853 if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 7854 &BTRFS_I(inode)->runtime_flags)) { 7855 btrfs_info(root->fs_info, "inode %llu still on the orphan list", 7856 btrfs_ino(inode)); 7857 atomic_dec(&root->orphan_inodes); 7858 } 7859 7860 while (1) { 7861 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1); 7862 if (!ordered) 7863 break; 7864 else { 7865 btrfs_err(root->fs_info, "found ordered extent %llu %llu on inode cleanup", 7866 ordered->file_offset, ordered->len); 7867 btrfs_remove_ordered_extent(inode, ordered); 7868 btrfs_put_ordered_extent(ordered); 7869 btrfs_put_ordered_extent(ordered); 7870 } 7871 } 7872 inode_tree_del(inode); 7873 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0); 7874 free: 7875 call_rcu(&inode->i_rcu, btrfs_i_callback); 7876 } 7877 7878 int btrfs_drop_inode(struct inode *inode) 7879 { 7880 struct btrfs_root *root = BTRFS_I(inode)->root; 7881 7882 if (root == NULL) 7883 return 1; 7884 7885 /* the snap/subvol tree is on deleting */ 7886 if (btrfs_root_refs(&root->root_item) == 0) 7887 return 1; 7888 else 7889 return generic_drop_inode(inode); 7890 } 7891 7892 static void init_once(void *foo) 7893 { 7894 struct btrfs_inode *ei = (struct btrfs_inode *) foo; 7895 7896 inode_init_once(&ei->vfs_inode); 7897 } 7898 7899 void btrfs_destroy_cachep(void) 7900 { 7901 /* 7902 * Make sure all delayed rcu free inodes are flushed before we 7903 * destroy cache. 7904 */ 7905 rcu_barrier(); 7906 if (btrfs_inode_cachep) 7907 kmem_cache_destroy(btrfs_inode_cachep); 7908 if (btrfs_trans_handle_cachep) 7909 kmem_cache_destroy(btrfs_trans_handle_cachep); 7910 if (btrfs_transaction_cachep) 7911 kmem_cache_destroy(btrfs_transaction_cachep); 7912 if (btrfs_path_cachep) 7913 kmem_cache_destroy(btrfs_path_cachep); 7914 if (btrfs_free_space_cachep) 7915 kmem_cache_destroy(btrfs_free_space_cachep); 7916 if (btrfs_delalloc_work_cachep) 7917 kmem_cache_destroy(btrfs_delalloc_work_cachep); 7918 } 7919 7920 int btrfs_init_cachep(void) 7921 { 7922 btrfs_inode_cachep = kmem_cache_create("btrfs_inode", 7923 sizeof(struct btrfs_inode), 0, 7924 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once); 7925 if (!btrfs_inode_cachep) 7926 goto fail; 7927 7928 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle", 7929 sizeof(struct btrfs_trans_handle), 0, 7930 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 7931 if (!btrfs_trans_handle_cachep) 7932 goto fail; 7933 7934 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction", 7935 sizeof(struct btrfs_transaction), 0, 7936 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 7937 if (!btrfs_transaction_cachep) 7938 goto fail; 7939 7940 btrfs_path_cachep = kmem_cache_create("btrfs_path", 7941 sizeof(struct btrfs_path), 0, 7942 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 7943 if (!btrfs_path_cachep) 7944 goto fail; 7945 7946 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space", 7947 sizeof(struct btrfs_free_space), 0, 7948 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 7949 if (!btrfs_free_space_cachep) 7950 goto fail; 7951 7952 btrfs_delalloc_work_cachep = kmem_cache_create("btrfs_delalloc_work", 7953 sizeof(struct btrfs_delalloc_work), 0, 7954 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, 7955 NULL); 7956 if (!btrfs_delalloc_work_cachep) 7957 goto fail; 7958 7959 return 0; 7960 fail: 7961 btrfs_destroy_cachep(); 7962 return -ENOMEM; 7963 } 7964 7965 static int btrfs_getattr(struct vfsmount *mnt, 7966 struct dentry *dentry, struct kstat *stat) 7967 { 7968 u64 delalloc_bytes; 7969 struct inode *inode = dentry->d_inode; 7970 u32 blocksize = inode->i_sb->s_blocksize; 7971 7972 generic_fillattr(inode, stat); 7973 stat->dev = BTRFS_I(inode)->root->anon_dev; 7974 stat->blksize = PAGE_CACHE_SIZE; 7975 7976 spin_lock(&BTRFS_I(inode)->lock); 7977 delalloc_bytes = BTRFS_I(inode)->delalloc_bytes; 7978 spin_unlock(&BTRFS_I(inode)->lock); 7979 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) + 7980 ALIGN(delalloc_bytes, blocksize)) >> 9; 7981 return 0; 7982 } 7983 7984 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry, 7985 struct inode *new_dir, struct dentry *new_dentry) 7986 { 7987 struct btrfs_trans_handle *trans; 7988 struct btrfs_root *root = BTRFS_I(old_dir)->root; 7989 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 7990 struct inode *new_inode = new_dentry->d_inode; 7991 struct inode *old_inode = old_dentry->d_inode; 7992 struct timespec ctime = CURRENT_TIME; 7993 u64 index = 0; 7994 u64 root_objectid; 7995 int ret; 7996 u64 old_ino = btrfs_ino(old_inode); 7997 7998 if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 7999 return -EPERM; 8000 8001 /* we only allow rename subvolume link between subvolumes */ 8002 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest) 8003 return -EXDEV; 8004 8005 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID || 8006 (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID)) 8007 return -ENOTEMPTY; 8008 8009 if (S_ISDIR(old_inode->i_mode) && new_inode && 8010 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) 8011 return -ENOTEMPTY; 8012 8013 8014 /* check for collisions, even if the name isn't there */ 8015 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino, 8016 new_dentry->d_name.name, 8017 new_dentry->d_name.len); 8018 8019 if (ret) { 8020 if (ret == -EEXIST) { 8021 /* we shouldn't get 8022 * eexist without a new_inode */ 8023 if (WARN_ON(!new_inode)) { 8024 return ret; 8025 } 8026 } else { 8027 /* maybe -EOVERFLOW */ 8028 return ret; 8029 } 8030 } 8031 ret = 0; 8032 8033 /* 8034 * we're using rename to replace one file with another. 8035 * and the replacement file is large. Start IO on it now so 8036 * we don't add too much work to the end of the transaction 8037 */ 8038 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size && 8039 old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT) 8040 filemap_flush(old_inode->i_mapping); 8041 8042 /* close the racy window with snapshot create/destroy ioctl */ 8043 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 8044 down_read(&root->fs_info->subvol_sem); 8045 /* 8046 * We want to reserve the absolute worst case amount of items. So if 8047 * both inodes are subvols and we need to unlink them then that would 8048 * require 4 item modifications, but if they are both normal inodes it 8049 * would require 5 item modifications, so we'll assume their normal 8050 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items 8051 * should cover the worst case number of items we'll modify. 8052 */ 8053 trans = btrfs_start_transaction(root, 11); 8054 if (IS_ERR(trans)) { 8055 ret = PTR_ERR(trans); 8056 goto out_notrans; 8057 } 8058 8059 if (dest != root) 8060 btrfs_record_root_in_trans(trans, dest); 8061 8062 ret = btrfs_set_inode_index(new_dir, &index); 8063 if (ret) 8064 goto out_fail; 8065 8066 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 8067 /* force full log commit if subvolume involved. */ 8068 root->fs_info->last_trans_log_full_commit = trans->transid; 8069 } else { 8070 ret = btrfs_insert_inode_ref(trans, dest, 8071 new_dentry->d_name.name, 8072 new_dentry->d_name.len, 8073 old_ino, 8074 btrfs_ino(new_dir), index); 8075 if (ret) 8076 goto out_fail; 8077 /* 8078 * this is an ugly little race, but the rename is required 8079 * to make sure that if we crash, the inode is either at the 8080 * old name or the new one. pinning the log transaction lets 8081 * us make sure we don't allow a log commit to come in after 8082 * we unlink the name but before we add the new name back in. 8083 */ 8084 btrfs_pin_log_trans(root); 8085 } 8086 /* 8087 * make sure the inode gets flushed if it is replacing 8088 * something. 8089 */ 8090 if (new_inode && new_inode->i_size && S_ISREG(old_inode->i_mode)) 8091 btrfs_add_ordered_operation(trans, root, old_inode); 8092 8093 inode_inc_iversion(old_dir); 8094 inode_inc_iversion(new_dir); 8095 inode_inc_iversion(old_inode); 8096 old_dir->i_ctime = old_dir->i_mtime = ctime; 8097 new_dir->i_ctime = new_dir->i_mtime = ctime; 8098 old_inode->i_ctime = ctime; 8099 8100 if (old_dentry->d_parent != new_dentry->d_parent) 8101 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1); 8102 8103 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 8104 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid; 8105 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid, 8106 old_dentry->d_name.name, 8107 old_dentry->d_name.len); 8108 } else { 8109 ret = __btrfs_unlink_inode(trans, root, old_dir, 8110 old_dentry->d_inode, 8111 old_dentry->d_name.name, 8112 old_dentry->d_name.len); 8113 if (!ret) 8114 ret = btrfs_update_inode(trans, root, old_inode); 8115 } 8116 if (ret) { 8117 btrfs_abort_transaction(trans, root, ret); 8118 goto out_fail; 8119 } 8120 8121 if (new_inode) { 8122 inode_inc_iversion(new_inode); 8123 new_inode->i_ctime = CURRENT_TIME; 8124 if (unlikely(btrfs_ino(new_inode) == 8125 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 8126 root_objectid = BTRFS_I(new_inode)->location.objectid; 8127 ret = btrfs_unlink_subvol(trans, dest, new_dir, 8128 root_objectid, 8129 new_dentry->d_name.name, 8130 new_dentry->d_name.len); 8131 BUG_ON(new_inode->i_nlink == 0); 8132 } else { 8133 ret = btrfs_unlink_inode(trans, dest, new_dir, 8134 new_dentry->d_inode, 8135 new_dentry->d_name.name, 8136 new_dentry->d_name.len); 8137 } 8138 if (!ret && new_inode->i_nlink == 0) 8139 ret = btrfs_orphan_add(trans, new_dentry->d_inode); 8140 if (ret) { 8141 btrfs_abort_transaction(trans, root, ret); 8142 goto out_fail; 8143 } 8144 } 8145 8146 ret = btrfs_add_link(trans, new_dir, old_inode, 8147 new_dentry->d_name.name, 8148 new_dentry->d_name.len, 0, index); 8149 if (ret) { 8150 btrfs_abort_transaction(trans, root, ret); 8151 goto out_fail; 8152 } 8153 8154 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) { 8155 struct dentry *parent = new_dentry->d_parent; 8156 btrfs_log_new_name(trans, old_inode, old_dir, parent); 8157 btrfs_end_log_trans(root); 8158 } 8159 out_fail: 8160 btrfs_end_transaction(trans, root); 8161 out_notrans: 8162 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 8163 up_read(&root->fs_info->subvol_sem); 8164 8165 return ret; 8166 } 8167 8168 static void btrfs_run_delalloc_work(struct btrfs_work *work) 8169 { 8170 struct btrfs_delalloc_work *delalloc_work; 8171 struct inode *inode; 8172 8173 delalloc_work = container_of(work, struct btrfs_delalloc_work, 8174 work); 8175 inode = delalloc_work->inode; 8176 if (delalloc_work->wait) { 8177 btrfs_wait_ordered_range(inode, 0, (u64)-1); 8178 } else { 8179 filemap_flush(inode->i_mapping); 8180 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 8181 &BTRFS_I(inode)->runtime_flags)) 8182 filemap_flush(inode->i_mapping); 8183 } 8184 8185 if (delalloc_work->delay_iput) 8186 btrfs_add_delayed_iput(inode); 8187 else 8188 iput(inode); 8189 complete(&delalloc_work->completion); 8190 } 8191 8192 struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode, 8193 int wait, int delay_iput) 8194 { 8195 struct btrfs_delalloc_work *work; 8196 8197 work = kmem_cache_zalloc(btrfs_delalloc_work_cachep, GFP_NOFS); 8198 if (!work) 8199 return NULL; 8200 8201 init_completion(&work->completion); 8202 INIT_LIST_HEAD(&work->list); 8203 work->inode = inode; 8204 work->wait = wait; 8205 work->delay_iput = delay_iput; 8206 work->work.func = btrfs_run_delalloc_work; 8207 8208 return work; 8209 } 8210 8211 void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work) 8212 { 8213 wait_for_completion(&work->completion); 8214 kmem_cache_free(btrfs_delalloc_work_cachep, work); 8215 } 8216 8217 /* 8218 * some fairly slow code that needs optimization. This walks the list 8219 * of all the inodes with pending delalloc and forces them to disk. 8220 */ 8221 static int __start_delalloc_inodes(struct btrfs_root *root, int delay_iput) 8222 { 8223 struct btrfs_inode *binode; 8224 struct inode *inode; 8225 struct btrfs_delalloc_work *work, *next; 8226 struct list_head works; 8227 struct list_head splice; 8228 int ret = 0; 8229 8230 INIT_LIST_HEAD(&works); 8231 INIT_LIST_HEAD(&splice); 8232 8233 spin_lock(&root->delalloc_lock); 8234 list_splice_init(&root->delalloc_inodes, &splice); 8235 while (!list_empty(&splice)) { 8236 binode = list_entry(splice.next, struct btrfs_inode, 8237 delalloc_inodes); 8238 8239 list_move_tail(&binode->delalloc_inodes, 8240 &root->delalloc_inodes); 8241 inode = igrab(&binode->vfs_inode); 8242 if (!inode) { 8243 cond_resched_lock(&root->delalloc_lock); 8244 continue; 8245 } 8246 spin_unlock(&root->delalloc_lock); 8247 8248 work = btrfs_alloc_delalloc_work(inode, 0, delay_iput); 8249 if (unlikely(!work)) { 8250 if (delay_iput) 8251 btrfs_add_delayed_iput(inode); 8252 else 8253 iput(inode); 8254 ret = -ENOMEM; 8255 goto out; 8256 } 8257 list_add_tail(&work->list, &works); 8258 btrfs_queue_worker(&root->fs_info->flush_workers, 8259 &work->work); 8260 8261 cond_resched(); 8262 spin_lock(&root->delalloc_lock); 8263 } 8264 spin_unlock(&root->delalloc_lock); 8265 8266 list_for_each_entry_safe(work, next, &works, list) { 8267 list_del_init(&work->list); 8268 btrfs_wait_and_free_delalloc_work(work); 8269 } 8270 return 0; 8271 out: 8272 list_for_each_entry_safe(work, next, &works, list) { 8273 list_del_init(&work->list); 8274 btrfs_wait_and_free_delalloc_work(work); 8275 } 8276 8277 if (!list_empty_careful(&splice)) { 8278 spin_lock(&root->delalloc_lock); 8279 list_splice_tail(&splice, &root->delalloc_inodes); 8280 spin_unlock(&root->delalloc_lock); 8281 } 8282 return ret; 8283 } 8284 8285 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput) 8286 { 8287 int ret; 8288 8289 if (root->fs_info->sb->s_flags & MS_RDONLY) 8290 return -EROFS; 8291 8292 ret = __start_delalloc_inodes(root, delay_iput); 8293 /* 8294 * the filemap_flush will queue IO into the worker threads, but 8295 * we have to make sure the IO is actually started and that 8296 * ordered extents get created before we return 8297 */ 8298 atomic_inc(&root->fs_info->async_submit_draining); 8299 while (atomic_read(&root->fs_info->nr_async_submits) || 8300 atomic_read(&root->fs_info->async_delalloc_pages)) { 8301 wait_event(root->fs_info->async_submit_wait, 8302 (atomic_read(&root->fs_info->nr_async_submits) == 0 && 8303 atomic_read(&root->fs_info->async_delalloc_pages) == 0)); 8304 } 8305 atomic_dec(&root->fs_info->async_submit_draining); 8306 return ret; 8307 } 8308 8309 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int delay_iput) 8310 { 8311 struct btrfs_root *root; 8312 struct list_head splice; 8313 int ret; 8314 8315 if (fs_info->sb->s_flags & MS_RDONLY) 8316 return -EROFS; 8317 8318 INIT_LIST_HEAD(&splice); 8319 8320 spin_lock(&fs_info->delalloc_root_lock); 8321 list_splice_init(&fs_info->delalloc_roots, &splice); 8322 while (!list_empty(&splice)) { 8323 root = list_first_entry(&splice, struct btrfs_root, 8324 delalloc_root); 8325 root = btrfs_grab_fs_root(root); 8326 BUG_ON(!root); 8327 list_move_tail(&root->delalloc_root, 8328 &fs_info->delalloc_roots); 8329 spin_unlock(&fs_info->delalloc_root_lock); 8330 8331 ret = __start_delalloc_inodes(root, delay_iput); 8332 btrfs_put_fs_root(root); 8333 if (ret) 8334 goto out; 8335 8336 spin_lock(&fs_info->delalloc_root_lock); 8337 } 8338 spin_unlock(&fs_info->delalloc_root_lock); 8339 8340 atomic_inc(&fs_info->async_submit_draining); 8341 while (atomic_read(&fs_info->nr_async_submits) || 8342 atomic_read(&fs_info->async_delalloc_pages)) { 8343 wait_event(fs_info->async_submit_wait, 8344 (atomic_read(&fs_info->nr_async_submits) == 0 && 8345 atomic_read(&fs_info->async_delalloc_pages) == 0)); 8346 } 8347 atomic_dec(&fs_info->async_submit_draining); 8348 return 0; 8349 out: 8350 if (!list_empty_careful(&splice)) { 8351 spin_lock(&fs_info->delalloc_root_lock); 8352 list_splice_tail(&splice, &fs_info->delalloc_roots); 8353 spin_unlock(&fs_info->delalloc_root_lock); 8354 } 8355 return ret; 8356 } 8357 8358 static int btrfs_symlink(struct inode *dir, struct dentry *dentry, 8359 const char *symname) 8360 { 8361 struct btrfs_trans_handle *trans; 8362 struct btrfs_root *root = BTRFS_I(dir)->root; 8363 struct btrfs_path *path; 8364 struct btrfs_key key; 8365 struct inode *inode = NULL; 8366 int err; 8367 int drop_inode = 0; 8368 u64 objectid; 8369 u64 index = 0; 8370 int name_len; 8371 int datasize; 8372 unsigned long ptr; 8373 struct btrfs_file_extent_item *ei; 8374 struct extent_buffer *leaf; 8375 8376 name_len = strlen(symname); 8377 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root)) 8378 return -ENAMETOOLONG; 8379 8380 /* 8381 * 2 items for inode item and ref 8382 * 2 items for dir items 8383 * 1 item for xattr if selinux is on 8384 */ 8385 trans = btrfs_start_transaction(root, 5); 8386 if (IS_ERR(trans)) 8387 return PTR_ERR(trans); 8388 8389 err = btrfs_find_free_ino(root, &objectid); 8390 if (err) 8391 goto out_unlock; 8392 8393 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 8394 dentry->d_name.len, btrfs_ino(dir), objectid, 8395 S_IFLNK|S_IRWXUGO, &index); 8396 if (IS_ERR(inode)) { 8397 err = PTR_ERR(inode); 8398 goto out_unlock; 8399 } 8400 8401 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 8402 if (err) { 8403 drop_inode = 1; 8404 goto out_unlock; 8405 } 8406 8407 /* 8408 * If the active LSM wants to access the inode during 8409 * d_instantiate it needs these. Smack checks to see 8410 * if the filesystem supports xattrs by looking at the 8411 * ops vector. 8412 */ 8413 inode->i_fop = &btrfs_file_operations; 8414 inode->i_op = &btrfs_file_inode_operations; 8415 8416 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index); 8417 if (err) 8418 drop_inode = 1; 8419 else { 8420 inode->i_mapping->a_ops = &btrfs_aops; 8421 inode->i_mapping->backing_dev_info = &root->fs_info->bdi; 8422 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 8423 } 8424 if (drop_inode) 8425 goto out_unlock; 8426 8427 path = btrfs_alloc_path(); 8428 if (!path) { 8429 err = -ENOMEM; 8430 drop_inode = 1; 8431 goto out_unlock; 8432 } 8433 key.objectid = btrfs_ino(inode); 8434 key.offset = 0; 8435 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY); 8436 datasize = btrfs_file_extent_calc_inline_size(name_len); 8437 err = btrfs_insert_empty_item(trans, root, path, &key, 8438 datasize); 8439 if (err) { 8440 drop_inode = 1; 8441 btrfs_free_path(path); 8442 goto out_unlock; 8443 } 8444 leaf = path->nodes[0]; 8445 ei = btrfs_item_ptr(leaf, path->slots[0], 8446 struct btrfs_file_extent_item); 8447 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 8448 btrfs_set_file_extent_type(leaf, ei, 8449 BTRFS_FILE_EXTENT_INLINE); 8450 btrfs_set_file_extent_encryption(leaf, ei, 0); 8451 btrfs_set_file_extent_compression(leaf, ei, 0); 8452 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 8453 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len); 8454 8455 ptr = btrfs_file_extent_inline_start(ei); 8456 write_extent_buffer(leaf, symname, ptr, name_len); 8457 btrfs_mark_buffer_dirty(leaf); 8458 btrfs_free_path(path); 8459 8460 inode->i_op = &btrfs_symlink_inode_operations; 8461 inode->i_mapping->a_ops = &btrfs_symlink_aops; 8462 inode->i_mapping->backing_dev_info = &root->fs_info->bdi; 8463 inode_set_bytes(inode, name_len); 8464 btrfs_i_size_write(inode, name_len); 8465 err = btrfs_update_inode(trans, root, inode); 8466 if (err) 8467 drop_inode = 1; 8468 8469 out_unlock: 8470 if (!err) 8471 d_instantiate(dentry, inode); 8472 btrfs_end_transaction(trans, root); 8473 if (drop_inode) { 8474 inode_dec_link_count(inode); 8475 iput(inode); 8476 } 8477 btrfs_btree_balance_dirty(root); 8478 return err; 8479 } 8480 8481 static int __btrfs_prealloc_file_range(struct inode *inode, int mode, 8482 u64 start, u64 num_bytes, u64 min_size, 8483 loff_t actual_len, u64 *alloc_hint, 8484 struct btrfs_trans_handle *trans) 8485 { 8486 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 8487 struct extent_map *em; 8488 struct btrfs_root *root = BTRFS_I(inode)->root; 8489 struct btrfs_key ins; 8490 u64 cur_offset = start; 8491 u64 i_size; 8492 u64 cur_bytes; 8493 int ret = 0; 8494 bool own_trans = true; 8495 8496 if (trans) 8497 own_trans = false; 8498 while (num_bytes > 0) { 8499 if (own_trans) { 8500 trans = btrfs_start_transaction(root, 3); 8501 if (IS_ERR(trans)) { 8502 ret = PTR_ERR(trans); 8503 break; 8504 } 8505 } 8506 8507 cur_bytes = min(num_bytes, 256ULL * 1024 * 1024); 8508 cur_bytes = max(cur_bytes, min_size); 8509 ret = btrfs_reserve_extent(root, cur_bytes, min_size, 0, 8510 *alloc_hint, &ins, 1); 8511 if (ret) { 8512 if (own_trans) 8513 btrfs_end_transaction(trans, root); 8514 break; 8515 } 8516 8517 ret = insert_reserved_file_extent(trans, inode, 8518 cur_offset, ins.objectid, 8519 ins.offset, ins.offset, 8520 ins.offset, 0, 0, 0, 8521 BTRFS_FILE_EXTENT_PREALLOC); 8522 if (ret) { 8523 btrfs_free_reserved_extent(root, ins.objectid, 8524 ins.offset); 8525 btrfs_abort_transaction(trans, root, ret); 8526 if (own_trans) 8527 btrfs_end_transaction(trans, root); 8528 break; 8529 } 8530 btrfs_drop_extent_cache(inode, cur_offset, 8531 cur_offset + ins.offset -1, 0); 8532 8533 em = alloc_extent_map(); 8534 if (!em) { 8535 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 8536 &BTRFS_I(inode)->runtime_flags); 8537 goto next; 8538 } 8539 8540 em->start = cur_offset; 8541 em->orig_start = cur_offset; 8542 em->len = ins.offset; 8543 em->block_start = ins.objectid; 8544 em->block_len = ins.offset; 8545 em->orig_block_len = ins.offset; 8546 em->ram_bytes = ins.offset; 8547 em->bdev = root->fs_info->fs_devices->latest_bdev; 8548 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 8549 em->generation = trans->transid; 8550 8551 while (1) { 8552 write_lock(&em_tree->lock); 8553 ret = add_extent_mapping(em_tree, em, 1); 8554 write_unlock(&em_tree->lock); 8555 if (ret != -EEXIST) 8556 break; 8557 btrfs_drop_extent_cache(inode, cur_offset, 8558 cur_offset + ins.offset - 1, 8559 0); 8560 } 8561 free_extent_map(em); 8562 next: 8563 num_bytes -= ins.offset; 8564 cur_offset += ins.offset; 8565 *alloc_hint = ins.objectid + ins.offset; 8566 8567 inode_inc_iversion(inode); 8568 inode->i_ctime = CURRENT_TIME; 8569 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC; 8570 if (!(mode & FALLOC_FL_KEEP_SIZE) && 8571 (actual_len > inode->i_size) && 8572 (cur_offset > inode->i_size)) { 8573 if (cur_offset > actual_len) 8574 i_size = actual_len; 8575 else 8576 i_size = cur_offset; 8577 i_size_write(inode, i_size); 8578 btrfs_ordered_update_i_size(inode, i_size, NULL); 8579 } 8580 8581 ret = btrfs_update_inode(trans, root, inode); 8582 8583 if (ret) { 8584 btrfs_abort_transaction(trans, root, ret); 8585 if (own_trans) 8586 btrfs_end_transaction(trans, root); 8587 break; 8588 } 8589 8590 if (own_trans) 8591 btrfs_end_transaction(trans, root); 8592 } 8593 return ret; 8594 } 8595 8596 int btrfs_prealloc_file_range(struct inode *inode, int mode, 8597 u64 start, u64 num_bytes, u64 min_size, 8598 loff_t actual_len, u64 *alloc_hint) 8599 { 8600 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 8601 min_size, actual_len, alloc_hint, 8602 NULL); 8603 } 8604 8605 int btrfs_prealloc_file_range_trans(struct inode *inode, 8606 struct btrfs_trans_handle *trans, int mode, 8607 u64 start, u64 num_bytes, u64 min_size, 8608 loff_t actual_len, u64 *alloc_hint) 8609 { 8610 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 8611 min_size, actual_len, alloc_hint, trans); 8612 } 8613 8614 static int btrfs_set_page_dirty(struct page *page) 8615 { 8616 return __set_page_dirty_nobuffers(page); 8617 } 8618 8619 static int btrfs_permission(struct inode *inode, int mask) 8620 { 8621 struct btrfs_root *root = BTRFS_I(inode)->root; 8622 umode_t mode = inode->i_mode; 8623 8624 if (mask & MAY_WRITE && 8625 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) { 8626 if (btrfs_root_readonly(root)) 8627 return -EROFS; 8628 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) 8629 return -EACCES; 8630 } 8631 return generic_permission(inode, mask); 8632 } 8633 8634 static const struct inode_operations btrfs_dir_inode_operations = { 8635 .getattr = btrfs_getattr, 8636 .lookup = btrfs_lookup, 8637 .create = btrfs_create, 8638 .unlink = btrfs_unlink, 8639 .link = btrfs_link, 8640 .mkdir = btrfs_mkdir, 8641 .rmdir = btrfs_rmdir, 8642 .rename = btrfs_rename, 8643 .symlink = btrfs_symlink, 8644 .setattr = btrfs_setattr, 8645 .mknod = btrfs_mknod, 8646 .setxattr = btrfs_setxattr, 8647 .getxattr = btrfs_getxattr, 8648 .listxattr = btrfs_listxattr, 8649 .removexattr = btrfs_removexattr, 8650 .permission = btrfs_permission, 8651 .get_acl = btrfs_get_acl, 8652 .update_time = btrfs_update_time, 8653 }; 8654 static const struct inode_operations btrfs_dir_ro_inode_operations = { 8655 .lookup = btrfs_lookup, 8656 .permission = btrfs_permission, 8657 .get_acl = btrfs_get_acl, 8658 .update_time = btrfs_update_time, 8659 }; 8660 8661 static const struct file_operations btrfs_dir_file_operations = { 8662 .llseek = generic_file_llseek, 8663 .read = generic_read_dir, 8664 .iterate = btrfs_real_readdir, 8665 .unlocked_ioctl = btrfs_ioctl, 8666 #ifdef CONFIG_COMPAT 8667 .compat_ioctl = btrfs_ioctl, 8668 #endif 8669 .release = btrfs_release_file, 8670 .fsync = btrfs_sync_file, 8671 }; 8672 8673 static struct extent_io_ops btrfs_extent_io_ops = { 8674 .fill_delalloc = run_delalloc_range, 8675 .submit_bio_hook = btrfs_submit_bio_hook, 8676 .merge_bio_hook = btrfs_merge_bio_hook, 8677 .readpage_end_io_hook = btrfs_readpage_end_io_hook, 8678 .writepage_end_io_hook = btrfs_writepage_end_io_hook, 8679 .writepage_start_hook = btrfs_writepage_start_hook, 8680 .set_bit_hook = btrfs_set_bit_hook, 8681 .clear_bit_hook = btrfs_clear_bit_hook, 8682 .merge_extent_hook = btrfs_merge_extent_hook, 8683 .split_extent_hook = btrfs_split_extent_hook, 8684 }; 8685 8686 /* 8687 * btrfs doesn't support the bmap operation because swapfiles 8688 * use bmap to make a mapping of extents in the file. They assume 8689 * these extents won't change over the life of the file and they 8690 * use the bmap result to do IO directly to the drive. 8691 * 8692 * the btrfs bmap call would return logical addresses that aren't 8693 * suitable for IO and they also will change frequently as COW 8694 * operations happen. So, swapfile + btrfs == corruption. 8695 * 8696 * For now we're avoiding this by dropping bmap. 8697 */ 8698 static const struct address_space_operations btrfs_aops = { 8699 .readpage = btrfs_readpage, 8700 .writepage = btrfs_writepage, 8701 .writepages = btrfs_writepages, 8702 .readpages = btrfs_readpages, 8703 .direct_IO = btrfs_direct_IO, 8704 .invalidatepage = btrfs_invalidatepage, 8705 .releasepage = btrfs_releasepage, 8706 .set_page_dirty = btrfs_set_page_dirty, 8707 .error_remove_page = generic_error_remove_page, 8708 }; 8709 8710 static const struct address_space_operations btrfs_symlink_aops = { 8711 .readpage = btrfs_readpage, 8712 .writepage = btrfs_writepage, 8713 .invalidatepage = btrfs_invalidatepage, 8714 .releasepage = btrfs_releasepage, 8715 }; 8716 8717 static const struct inode_operations btrfs_file_inode_operations = { 8718 .getattr = btrfs_getattr, 8719 .setattr = btrfs_setattr, 8720 .setxattr = btrfs_setxattr, 8721 .getxattr = btrfs_getxattr, 8722 .listxattr = btrfs_listxattr, 8723 .removexattr = btrfs_removexattr, 8724 .permission = btrfs_permission, 8725 .fiemap = btrfs_fiemap, 8726 .get_acl = btrfs_get_acl, 8727 .update_time = btrfs_update_time, 8728 }; 8729 static const struct inode_operations btrfs_special_inode_operations = { 8730 .getattr = btrfs_getattr, 8731 .setattr = btrfs_setattr, 8732 .permission = btrfs_permission, 8733 .setxattr = btrfs_setxattr, 8734 .getxattr = btrfs_getxattr, 8735 .listxattr = btrfs_listxattr, 8736 .removexattr = btrfs_removexattr, 8737 .get_acl = btrfs_get_acl, 8738 .update_time = btrfs_update_time, 8739 }; 8740 static const struct inode_operations btrfs_symlink_inode_operations = { 8741 .readlink = generic_readlink, 8742 .follow_link = page_follow_link_light, 8743 .put_link = page_put_link, 8744 .getattr = btrfs_getattr, 8745 .setattr = btrfs_setattr, 8746 .permission = btrfs_permission, 8747 .setxattr = btrfs_setxattr, 8748 .getxattr = btrfs_getxattr, 8749 .listxattr = btrfs_listxattr, 8750 .removexattr = btrfs_removexattr, 8751 .get_acl = btrfs_get_acl, 8752 .update_time = btrfs_update_time, 8753 }; 8754 8755 const struct dentry_operations btrfs_dentry_operations = { 8756 .d_delete = btrfs_dentry_delete, 8757 .d_release = btrfs_dentry_release, 8758 }; 8759