1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <crypto/hash.h> 7 #include <linux/kernel.h> 8 #include <linux/bio.h> 9 #include <linux/blk-cgroup.h> 10 #include <linux/file.h> 11 #include <linux/fs.h> 12 #include <linux/pagemap.h> 13 #include <linux/highmem.h> 14 #include <linux/time.h> 15 #include <linux/init.h> 16 #include <linux/string.h> 17 #include <linux/backing-dev.h> 18 #include <linux/writeback.h> 19 #include <linux/compat.h> 20 #include <linux/xattr.h> 21 #include <linux/posix_acl.h> 22 #include <linux/falloc.h> 23 #include <linux/slab.h> 24 #include <linux/ratelimit.h> 25 #include <linux/btrfs.h> 26 #include <linux/blkdev.h> 27 #include <linux/posix_acl_xattr.h> 28 #include <linux/uio.h> 29 #include <linux/magic.h> 30 #include <linux/iversion.h> 31 #include <linux/swap.h> 32 #include <linux/migrate.h> 33 #include <linux/sched/mm.h> 34 #include <linux/iomap.h> 35 #include <asm/unaligned.h> 36 #include <linux/fsverity.h> 37 #include "misc.h" 38 #include "ctree.h" 39 #include "disk-io.h" 40 #include "transaction.h" 41 #include "btrfs_inode.h" 42 #include "print-tree.h" 43 #include "ordered-data.h" 44 #include "xattr.h" 45 #include "tree-log.h" 46 #include "bio.h" 47 #include "compression.h" 48 #include "locking.h" 49 #include "free-space-cache.h" 50 #include "props.h" 51 #include "qgroup.h" 52 #include "delalloc-space.h" 53 #include "block-group.h" 54 #include "space-info.h" 55 #include "zoned.h" 56 #include "subpage.h" 57 #include "inode-item.h" 58 #include "fs.h" 59 #include "accessors.h" 60 #include "extent-tree.h" 61 #include "root-tree.h" 62 #include "defrag.h" 63 #include "dir-item.h" 64 #include "file-item.h" 65 #include "uuid-tree.h" 66 #include "ioctl.h" 67 #include "file.h" 68 #include "acl.h" 69 #include "relocation.h" 70 #include "verity.h" 71 #include "super.h" 72 #include "orphan.h" 73 #include "backref.h" 74 75 struct btrfs_iget_args { 76 u64 ino; 77 struct btrfs_root *root; 78 }; 79 80 struct btrfs_dio_data { 81 ssize_t submitted; 82 struct extent_changeset *data_reserved; 83 struct btrfs_ordered_extent *ordered; 84 bool data_space_reserved; 85 bool nocow_done; 86 }; 87 88 struct btrfs_dio_private { 89 /* Range of I/O */ 90 u64 file_offset; 91 u32 bytes; 92 93 /* This must be last */ 94 struct btrfs_bio bbio; 95 }; 96 97 static struct bio_set btrfs_dio_bioset; 98 99 struct btrfs_rename_ctx { 100 /* Output field. Stores the index number of the old directory entry. */ 101 u64 index; 102 }; 103 104 /* 105 * Used by data_reloc_print_warning_inode() to pass needed info for filename 106 * resolution and output of error message. 107 */ 108 struct data_reloc_warn { 109 struct btrfs_path path; 110 struct btrfs_fs_info *fs_info; 111 u64 extent_item_size; 112 u64 logical; 113 int mirror_num; 114 }; 115 116 static const struct inode_operations btrfs_dir_inode_operations; 117 static const struct inode_operations btrfs_symlink_inode_operations; 118 static const struct inode_operations btrfs_special_inode_operations; 119 static const struct inode_operations btrfs_file_inode_operations; 120 static const struct address_space_operations btrfs_aops; 121 static const struct file_operations btrfs_dir_file_operations; 122 123 static struct kmem_cache *btrfs_inode_cachep; 124 125 static int btrfs_setsize(struct inode *inode, struct iattr *attr); 126 static int btrfs_truncate(struct btrfs_inode *inode, bool skip_writeback); 127 static noinline int cow_file_range(struct btrfs_inode *inode, 128 struct page *locked_page, 129 u64 start, u64 end, int *page_started, 130 unsigned long *nr_written, int unlock, 131 u64 *done_offset); 132 static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start, 133 u64 len, u64 orig_start, u64 block_start, 134 u64 block_len, u64 orig_block_len, 135 u64 ram_bytes, int compress_type, 136 int type); 137 138 static int data_reloc_print_warning_inode(u64 inum, u64 offset, u64 num_bytes, 139 u64 root, void *warn_ctx) 140 { 141 struct data_reloc_warn *warn = warn_ctx; 142 struct btrfs_fs_info *fs_info = warn->fs_info; 143 struct extent_buffer *eb; 144 struct btrfs_inode_item *inode_item; 145 struct inode_fs_paths *ipath = NULL; 146 struct btrfs_root *local_root; 147 struct btrfs_key key; 148 unsigned int nofs_flag; 149 u32 nlink; 150 int ret; 151 152 local_root = btrfs_get_fs_root(fs_info, root, true); 153 if (IS_ERR(local_root)) { 154 ret = PTR_ERR(local_root); 155 goto err; 156 } 157 158 /* This makes the path point to (inum INODE_ITEM ioff). */ 159 key.objectid = inum; 160 key.type = BTRFS_INODE_ITEM_KEY; 161 key.offset = 0; 162 163 ret = btrfs_search_slot(NULL, local_root, &key, &warn->path, 0, 0); 164 if (ret) { 165 btrfs_put_root(local_root); 166 btrfs_release_path(&warn->path); 167 goto err; 168 } 169 170 eb = warn->path.nodes[0]; 171 inode_item = btrfs_item_ptr(eb, warn->path.slots[0], struct btrfs_inode_item); 172 nlink = btrfs_inode_nlink(eb, inode_item); 173 btrfs_release_path(&warn->path); 174 175 nofs_flag = memalloc_nofs_save(); 176 ipath = init_ipath(4096, local_root, &warn->path); 177 memalloc_nofs_restore(nofs_flag); 178 if (IS_ERR(ipath)) { 179 btrfs_put_root(local_root); 180 ret = PTR_ERR(ipath); 181 ipath = NULL; 182 /* 183 * -ENOMEM, not a critical error, just output an generic error 184 * without filename. 185 */ 186 btrfs_warn(fs_info, 187 "checksum error at logical %llu mirror %u root %llu, inode %llu offset %llu", 188 warn->logical, warn->mirror_num, root, inum, offset); 189 return ret; 190 } 191 ret = paths_from_inode(inum, ipath); 192 if (ret < 0) 193 goto err; 194 195 /* 196 * We deliberately ignore the bit ipath might have been too small to 197 * hold all of the paths here 198 */ 199 for (int i = 0; i < ipath->fspath->elem_cnt; i++) { 200 btrfs_warn(fs_info, 201 "checksum error at logical %llu mirror %u root %llu inode %llu offset %llu length %u links %u (path: %s)", 202 warn->logical, warn->mirror_num, root, inum, offset, 203 fs_info->sectorsize, nlink, 204 (char *)(unsigned long)ipath->fspath->val[i]); 205 } 206 207 btrfs_put_root(local_root); 208 free_ipath(ipath); 209 return 0; 210 211 err: 212 btrfs_warn(fs_info, 213 "checksum error at logical %llu mirror %u root %llu inode %llu offset %llu, path resolving failed with ret=%d", 214 warn->logical, warn->mirror_num, root, inum, offset, ret); 215 216 free_ipath(ipath); 217 return ret; 218 } 219 220 /* 221 * Do extra user-friendly error output (e.g. lookup all the affected files). 222 * 223 * Return true if we succeeded doing the backref lookup. 224 * Return false if such lookup failed, and has to fallback to the old error message. 225 */ 226 static void print_data_reloc_error(const struct btrfs_inode *inode, u64 file_off, 227 const u8 *csum, const u8 *csum_expected, 228 int mirror_num) 229 { 230 struct btrfs_fs_info *fs_info = inode->root->fs_info; 231 struct btrfs_path path = { 0 }; 232 struct btrfs_key found_key = { 0 }; 233 struct extent_buffer *eb; 234 struct btrfs_extent_item *ei; 235 const u32 csum_size = fs_info->csum_size; 236 u64 logical; 237 u64 flags; 238 u32 item_size; 239 int ret; 240 241 mutex_lock(&fs_info->reloc_mutex); 242 logical = btrfs_get_reloc_bg_bytenr(fs_info); 243 mutex_unlock(&fs_info->reloc_mutex); 244 245 if (logical == U64_MAX) { 246 btrfs_warn_rl(fs_info, "has data reloc tree but no running relocation"); 247 btrfs_warn_rl(fs_info, 248 "csum failed root %lld ino %llu off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d", 249 inode->root->root_key.objectid, btrfs_ino(inode), file_off, 250 CSUM_FMT_VALUE(csum_size, csum), 251 CSUM_FMT_VALUE(csum_size, csum_expected), 252 mirror_num); 253 return; 254 } 255 256 logical += file_off; 257 btrfs_warn_rl(fs_info, 258 "csum failed root %lld ino %llu off %llu logical %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d", 259 inode->root->root_key.objectid, 260 btrfs_ino(inode), file_off, logical, 261 CSUM_FMT_VALUE(csum_size, csum), 262 CSUM_FMT_VALUE(csum_size, csum_expected), 263 mirror_num); 264 265 ret = extent_from_logical(fs_info, logical, &path, &found_key, &flags); 266 if (ret < 0) { 267 btrfs_err_rl(fs_info, "failed to lookup extent item for logical %llu: %d", 268 logical, ret); 269 return; 270 } 271 eb = path.nodes[0]; 272 ei = btrfs_item_ptr(eb, path.slots[0], struct btrfs_extent_item); 273 item_size = btrfs_item_size(eb, path.slots[0]); 274 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 275 unsigned long ptr = 0; 276 u64 ref_root; 277 u8 ref_level; 278 279 while (true) { 280 ret = tree_backref_for_extent(&ptr, eb, &found_key, ei, 281 item_size, &ref_root, 282 &ref_level); 283 if (ret < 0) { 284 btrfs_warn_rl(fs_info, 285 "failed to resolve tree backref for logical %llu: %d", 286 logical, ret); 287 break; 288 } 289 if (ret > 0) 290 break; 291 292 btrfs_warn_rl(fs_info, 293 "csum error at logical %llu mirror %u: metadata %s (level %d) in tree %llu", 294 logical, mirror_num, 295 (ref_level ? "node" : "leaf"), 296 ref_level, ref_root); 297 } 298 btrfs_release_path(&path); 299 } else { 300 struct btrfs_backref_walk_ctx ctx = { 0 }; 301 struct data_reloc_warn reloc_warn = { 0 }; 302 303 btrfs_release_path(&path); 304 305 ctx.bytenr = found_key.objectid; 306 ctx.extent_item_pos = logical - found_key.objectid; 307 ctx.fs_info = fs_info; 308 309 reloc_warn.logical = logical; 310 reloc_warn.extent_item_size = found_key.offset; 311 reloc_warn.mirror_num = mirror_num; 312 reloc_warn.fs_info = fs_info; 313 314 iterate_extent_inodes(&ctx, true, 315 data_reloc_print_warning_inode, &reloc_warn); 316 } 317 } 318 319 static void __cold btrfs_print_data_csum_error(struct btrfs_inode *inode, 320 u64 logical_start, u8 *csum, u8 *csum_expected, int mirror_num) 321 { 322 struct btrfs_root *root = inode->root; 323 const u32 csum_size = root->fs_info->csum_size; 324 325 /* For data reloc tree, it's better to do a backref lookup instead. */ 326 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) 327 return print_data_reloc_error(inode, logical_start, csum, 328 csum_expected, mirror_num); 329 330 /* Output without objectid, which is more meaningful */ 331 if (root->root_key.objectid >= BTRFS_LAST_FREE_OBJECTID) { 332 btrfs_warn_rl(root->fs_info, 333 "csum failed root %lld ino %lld off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d", 334 root->root_key.objectid, btrfs_ino(inode), 335 logical_start, 336 CSUM_FMT_VALUE(csum_size, csum), 337 CSUM_FMT_VALUE(csum_size, csum_expected), 338 mirror_num); 339 } else { 340 btrfs_warn_rl(root->fs_info, 341 "csum failed root %llu ino %llu off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d", 342 root->root_key.objectid, btrfs_ino(inode), 343 logical_start, 344 CSUM_FMT_VALUE(csum_size, csum), 345 CSUM_FMT_VALUE(csum_size, csum_expected), 346 mirror_num); 347 } 348 } 349 350 /* 351 * btrfs_inode_lock - lock inode i_rwsem based on arguments passed 352 * 353 * ilock_flags can have the following bit set: 354 * 355 * BTRFS_ILOCK_SHARED - acquire a shared lock on the inode 356 * BTRFS_ILOCK_TRY - try to acquire the lock, if fails on first attempt 357 * return -EAGAIN 358 * BTRFS_ILOCK_MMAP - acquire a write lock on the i_mmap_lock 359 */ 360 int btrfs_inode_lock(struct btrfs_inode *inode, unsigned int ilock_flags) 361 { 362 if (ilock_flags & BTRFS_ILOCK_SHARED) { 363 if (ilock_flags & BTRFS_ILOCK_TRY) { 364 if (!inode_trylock_shared(&inode->vfs_inode)) 365 return -EAGAIN; 366 else 367 return 0; 368 } 369 inode_lock_shared(&inode->vfs_inode); 370 } else { 371 if (ilock_flags & BTRFS_ILOCK_TRY) { 372 if (!inode_trylock(&inode->vfs_inode)) 373 return -EAGAIN; 374 else 375 return 0; 376 } 377 inode_lock(&inode->vfs_inode); 378 } 379 if (ilock_flags & BTRFS_ILOCK_MMAP) 380 down_write(&inode->i_mmap_lock); 381 return 0; 382 } 383 384 /* 385 * btrfs_inode_unlock - unock inode i_rwsem 386 * 387 * ilock_flags should contain the same bits set as passed to btrfs_inode_lock() 388 * to decide whether the lock acquired is shared or exclusive. 389 */ 390 void btrfs_inode_unlock(struct btrfs_inode *inode, unsigned int ilock_flags) 391 { 392 if (ilock_flags & BTRFS_ILOCK_MMAP) 393 up_write(&inode->i_mmap_lock); 394 if (ilock_flags & BTRFS_ILOCK_SHARED) 395 inode_unlock_shared(&inode->vfs_inode); 396 else 397 inode_unlock(&inode->vfs_inode); 398 } 399 400 /* 401 * Cleanup all submitted ordered extents in specified range to handle errors 402 * from the btrfs_run_delalloc_range() callback. 403 * 404 * NOTE: caller must ensure that when an error happens, it can not call 405 * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING 406 * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata 407 * to be released, which we want to happen only when finishing the ordered 408 * extent (btrfs_finish_ordered_io()). 409 */ 410 static inline void btrfs_cleanup_ordered_extents(struct btrfs_inode *inode, 411 struct page *locked_page, 412 u64 offset, u64 bytes) 413 { 414 unsigned long index = offset >> PAGE_SHIFT; 415 unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT; 416 u64 page_start = 0, page_end = 0; 417 struct page *page; 418 419 if (locked_page) { 420 page_start = page_offset(locked_page); 421 page_end = page_start + PAGE_SIZE - 1; 422 } 423 424 while (index <= end_index) { 425 /* 426 * For locked page, we will call end_extent_writepage() on it 427 * in run_delalloc_range() for the error handling. That 428 * end_extent_writepage() function will call 429 * btrfs_mark_ordered_io_finished() to clear page Ordered and 430 * run the ordered extent accounting. 431 * 432 * Here we can't just clear the Ordered bit, or 433 * btrfs_mark_ordered_io_finished() would skip the accounting 434 * for the page range, and the ordered extent will never finish. 435 */ 436 if (locked_page && index == (page_start >> PAGE_SHIFT)) { 437 index++; 438 continue; 439 } 440 page = find_get_page(inode->vfs_inode.i_mapping, index); 441 index++; 442 if (!page) 443 continue; 444 445 /* 446 * Here we just clear all Ordered bits for every page in the 447 * range, then btrfs_mark_ordered_io_finished() will handle 448 * the ordered extent accounting for the range. 449 */ 450 btrfs_page_clamp_clear_ordered(inode->root->fs_info, page, 451 offset, bytes); 452 put_page(page); 453 } 454 455 if (locked_page) { 456 /* The locked page covers the full range, nothing needs to be done */ 457 if (bytes + offset <= page_start + PAGE_SIZE) 458 return; 459 /* 460 * In case this page belongs to the delalloc range being 461 * instantiated then skip it, since the first page of a range is 462 * going to be properly cleaned up by the caller of 463 * run_delalloc_range 464 */ 465 if (page_start >= offset && page_end <= (offset + bytes - 1)) { 466 bytes = offset + bytes - page_offset(locked_page) - PAGE_SIZE; 467 offset = page_offset(locked_page) + PAGE_SIZE; 468 } 469 } 470 471 return btrfs_mark_ordered_io_finished(inode, NULL, offset, bytes, false); 472 } 473 474 static int btrfs_dirty_inode(struct btrfs_inode *inode); 475 476 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans, 477 struct btrfs_new_inode_args *args) 478 { 479 int err; 480 481 if (args->default_acl) { 482 err = __btrfs_set_acl(trans, args->inode, args->default_acl, 483 ACL_TYPE_DEFAULT); 484 if (err) 485 return err; 486 } 487 if (args->acl) { 488 err = __btrfs_set_acl(trans, args->inode, args->acl, ACL_TYPE_ACCESS); 489 if (err) 490 return err; 491 } 492 if (!args->default_acl && !args->acl) 493 cache_no_acl(args->inode); 494 return btrfs_xattr_security_init(trans, args->inode, args->dir, 495 &args->dentry->d_name); 496 } 497 498 /* 499 * this does all the hard work for inserting an inline extent into 500 * the btree. The caller should have done a btrfs_drop_extents so that 501 * no overlapping inline items exist in the btree 502 */ 503 static int insert_inline_extent(struct btrfs_trans_handle *trans, 504 struct btrfs_path *path, 505 struct btrfs_inode *inode, bool extent_inserted, 506 size_t size, size_t compressed_size, 507 int compress_type, 508 struct page **compressed_pages, 509 bool update_i_size) 510 { 511 struct btrfs_root *root = inode->root; 512 struct extent_buffer *leaf; 513 struct page *page = NULL; 514 char *kaddr; 515 unsigned long ptr; 516 struct btrfs_file_extent_item *ei; 517 int ret; 518 size_t cur_size = size; 519 u64 i_size; 520 521 ASSERT((compressed_size > 0 && compressed_pages) || 522 (compressed_size == 0 && !compressed_pages)); 523 524 if (compressed_size && compressed_pages) 525 cur_size = compressed_size; 526 527 if (!extent_inserted) { 528 struct btrfs_key key; 529 size_t datasize; 530 531 key.objectid = btrfs_ino(inode); 532 key.offset = 0; 533 key.type = BTRFS_EXTENT_DATA_KEY; 534 535 datasize = btrfs_file_extent_calc_inline_size(cur_size); 536 ret = btrfs_insert_empty_item(trans, root, path, &key, 537 datasize); 538 if (ret) 539 goto fail; 540 } 541 leaf = path->nodes[0]; 542 ei = btrfs_item_ptr(leaf, path->slots[0], 543 struct btrfs_file_extent_item); 544 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 545 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE); 546 btrfs_set_file_extent_encryption(leaf, ei, 0); 547 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 548 btrfs_set_file_extent_ram_bytes(leaf, ei, size); 549 ptr = btrfs_file_extent_inline_start(ei); 550 551 if (compress_type != BTRFS_COMPRESS_NONE) { 552 struct page *cpage; 553 int i = 0; 554 while (compressed_size > 0) { 555 cpage = compressed_pages[i]; 556 cur_size = min_t(unsigned long, compressed_size, 557 PAGE_SIZE); 558 559 kaddr = kmap_local_page(cpage); 560 write_extent_buffer(leaf, kaddr, ptr, cur_size); 561 kunmap_local(kaddr); 562 563 i++; 564 ptr += cur_size; 565 compressed_size -= cur_size; 566 } 567 btrfs_set_file_extent_compression(leaf, ei, 568 compress_type); 569 } else { 570 page = find_get_page(inode->vfs_inode.i_mapping, 0); 571 btrfs_set_file_extent_compression(leaf, ei, 0); 572 kaddr = kmap_local_page(page); 573 write_extent_buffer(leaf, kaddr, ptr, size); 574 kunmap_local(kaddr); 575 put_page(page); 576 } 577 btrfs_mark_buffer_dirty(leaf); 578 btrfs_release_path(path); 579 580 /* 581 * We align size to sectorsize for inline extents just for simplicity 582 * sake. 583 */ 584 ret = btrfs_inode_set_file_extent_range(inode, 0, 585 ALIGN(size, root->fs_info->sectorsize)); 586 if (ret) 587 goto fail; 588 589 /* 590 * We're an inline extent, so nobody can extend the file past i_size 591 * without locking a page we already have locked. 592 * 593 * We must do any i_size and inode updates before we unlock the pages. 594 * Otherwise we could end up racing with unlink. 595 */ 596 i_size = i_size_read(&inode->vfs_inode); 597 if (update_i_size && size > i_size) { 598 i_size_write(&inode->vfs_inode, size); 599 i_size = size; 600 } 601 inode->disk_i_size = i_size; 602 603 fail: 604 return ret; 605 } 606 607 608 /* 609 * conditionally insert an inline extent into the file. This 610 * does the checks required to make sure the data is small enough 611 * to fit as an inline extent. 612 */ 613 static noinline int cow_file_range_inline(struct btrfs_inode *inode, u64 size, 614 size_t compressed_size, 615 int compress_type, 616 struct page **compressed_pages, 617 bool update_i_size) 618 { 619 struct btrfs_drop_extents_args drop_args = { 0 }; 620 struct btrfs_root *root = inode->root; 621 struct btrfs_fs_info *fs_info = root->fs_info; 622 struct btrfs_trans_handle *trans; 623 u64 data_len = (compressed_size ?: size); 624 int ret; 625 struct btrfs_path *path; 626 627 /* 628 * We can create an inline extent if it ends at or beyond the current 629 * i_size, is no larger than a sector (decompressed), and the (possibly 630 * compressed) data fits in a leaf and the configured maximum inline 631 * size. 632 */ 633 if (size < i_size_read(&inode->vfs_inode) || 634 size > fs_info->sectorsize || 635 data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) || 636 data_len > fs_info->max_inline) 637 return 1; 638 639 path = btrfs_alloc_path(); 640 if (!path) 641 return -ENOMEM; 642 643 trans = btrfs_join_transaction(root); 644 if (IS_ERR(trans)) { 645 btrfs_free_path(path); 646 return PTR_ERR(trans); 647 } 648 trans->block_rsv = &inode->block_rsv; 649 650 drop_args.path = path; 651 drop_args.start = 0; 652 drop_args.end = fs_info->sectorsize; 653 drop_args.drop_cache = true; 654 drop_args.replace_extent = true; 655 drop_args.extent_item_size = btrfs_file_extent_calc_inline_size(data_len); 656 ret = btrfs_drop_extents(trans, root, inode, &drop_args); 657 if (ret) { 658 btrfs_abort_transaction(trans, ret); 659 goto out; 660 } 661 662 ret = insert_inline_extent(trans, path, inode, drop_args.extent_inserted, 663 size, compressed_size, compress_type, 664 compressed_pages, update_i_size); 665 if (ret && ret != -ENOSPC) { 666 btrfs_abort_transaction(trans, ret); 667 goto out; 668 } else if (ret == -ENOSPC) { 669 ret = 1; 670 goto out; 671 } 672 673 btrfs_update_inode_bytes(inode, size, drop_args.bytes_found); 674 ret = btrfs_update_inode(trans, root, inode); 675 if (ret && ret != -ENOSPC) { 676 btrfs_abort_transaction(trans, ret); 677 goto out; 678 } else if (ret == -ENOSPC) { 679 ret = 1; 680 goto out; 681 } 682 683 btrfs_set_inode_full_sync(inode); 684 out: 685 /* 686 * Don't forget to free the reserved space, as for inlined extent 687 * it won't count as data extent, free them directly here. 688 * And at reserve time, it's always aligned to page size, so 689 * just free one page here. 690 */ 691 btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE); 692 btrfs_free_path(path); 693 btrfs_end_transaction(trans); 694 return ret; 695 } 696 697 struct async_extent { 698 u64 start; 699 u64 ram_size; 700 u64 compressed_size; 701 struct page **pages; 702 unsigned long nr_pages; 703 int compress_type; 704 struct list_head list; 705 }; 706 707 struct async_chunk { 708 struct btrfs_inode *inode; 709 struct page *locked_page; 710 u64 start; 711 u64 end; 712 blk_opf_t write_flags; 713 struct list_head extents; 714 struct cgroup_subsys_state *blkcg_css; 715 struct btrfs_work work; 716 struct async_cow *async_cow; 717 }; 718 719 struct async_cow { 720 atomic_t num_chunks; 721 struct async_chunk chunks[]; 722 }; 723 724 static noinline int add_async_extent(struct async_chunk *cow, 725 u64 start, u64 ram_size, 726 u64 compressed_size, 727 struct page **pages, 728 unsigned long nr_pages, 729 int compress_type) 730 { 731 struct async_extent *async_extent; 732 733 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS); 734 BUG_ON(!async_extent); /* -ENOMEM */ 735 async_extent->start = start; 736 async_extent->ram_size = ram_size; 737 async_extent->compressed_size = compressed_size; 738 async_extent->pages = pages; 739 async_extent->nr_pages = nr_pages; 740 async_extent->compress_type = compress_type; 741 list_add_tail(&async_extent->list, &cow->extents); 742 return 0; 743 } 744 745 /* 746 * Check if the inode needs to be submitted to compression, based on mount 747 * options, defragmentation, properties or heuristics. 748 */ 749 static inline int inode_need_compress(struct btrfs_inode *inode, u64 start, 750 u64 end) 751 { 752 struct btrfs_fs_info *fs_info = inode->root->fs_info; 753 754 if (!btrfs_inode_can_compress(inode)) { 755 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG), 756 KERN_ERR "BTRFS: unexpected compression for ino %llu\n", 757 btrfs_ino(inode)); 758 return 0; 759 } 760 /* 761 * Special check for subpage. 762 * 763 * We lock the full page then run each delalloc range in the page, thus 764 * for the following case, we will hit some subpage specific corner case: 765 * 766 * 0 32K 64K 767 * | |///////| |///////| 768 * \- A \- B 769 * 770 * In above case, both range A and range B will try to unlock the full 771 * page [0, 64K), causing the one finished later will have page 772 * unlocked already, triggering various page lock requirement BUG_ON()s. 773 * 774 * So here we add an artificial limit that subpage compression can only 775 * if the range is fully page aligned. 776 * 777 * In theory we only need to ensure the first page is fully covered, but 778 * the tailing partial page will be locked until the full compression 779 * finishes, delaying the write of other range. 780 * 781 * TODO: Make btrfs_run_delalloc_range() to lock all delalloc range 782 * first to prevent any submitted async extent to unlock the full page. 783 * By this, we can ensure for subpage case that only the last async_cow 784 * will unlock the full page. 785 */ 786 if (fs_info->sectorsize < PAGE_SIZE) { 787 if (!PAGE_ALIGNED(start) || 788 !PAGE_ALIGNED(end + 1)) 789 return 0; 790 } 791 792 /* force compress */ 793 if (btrfs_test_opt(fs_info, FORCE_COMPRESS)) 794 return 1; 795 /* defrag ioctl */ 796 if (inode->defrag_compress) 797 return 1; 798 /* bad compression ratios */ 799 if (inode->flags & BTRFS_INODE_NOCOMPRESS) 800 return 0; 801 if (btrfs_test_opt(fs_info, COMPRESS) || 802 inode->flags & BTRFS_INODE_COMPRESS || 803 inode->prop_compress) 804 return btrfs_compress_heuristic(&inode->vfs_inode, start, end); 805 return 0; 806 } 807 808 static inline void inode_should_defrag(struct btrfs_inode *inode, 809 u64 start, u64 end, u64 num_bytes, u32 small_write) 810 { 811 /* If this is a small write inside eof, kick off a defrag */ 812 if (num_bytes < small_write && 813 (start > 0 || end + 1 < inode->disk_i_size)) 814 btrfs_add_inode_defrag(NULL, inode, small_write); 815 } 816 817 /* 818 * we create compressed extents in two phases. The first 819 * phase compresses a range of pages that have already been 820 * locked (both pages and state bits are locked). 821 * 822 * This is done inside an ordered work queue, and the compression 823 * is spread across many cpus. The actual IO submission is step 824 * two, and the ordered work queue takes care of making sure that 825 * happens in the same order things were put onto the queue by 826 * writepages and friends. 827 * 828 * If this code finds it can't get good compression, it puts an 829 * entry onto the work queue to write the uncompressed bytes. This 830 * makes sure that both compressed inodes and uncompressed inodes 831 * are written in the same order that the flusher thread sent them 832 * down. 833 */ 834 static noinline int compress_file_range(struct async_chunk *async_chunk) 835 { 836 struct btrfs_inode *inode = async_chunk->inode; 837 struct btrfs_fs_info *fs_info = inode->root->fs_info; 838 struct address_space *mapping = inode->vfs_inode.i_mapping; 839 u64 blocksize = fs_info->sectorsize; 840 u64 start = async_chunk->start; 841 u64 end = async_chunk->end; 842 u64 actual_end; 843 u64 i_size; 844 int ret = 0; 845 struct page **pages = NULL; 846 unsigned long nr_pages; 847 unsigned long total_compressed = 0; 848 unsigned long total_in = 0; 849 int i; 850 int will_compress; 851 int compress_type = fs_info->compress_type; 852 int compressed_extents = 0; 853 int redirty = 0; 854 855 inode_should_defrag(inode, start, end, end - start + 1, SZ_16K); 856 857 /* 858 * We need to save i_size before now because it could change in between 859 * us evaluating the size and assigning it. This is because we lock and 860 * unlock the page in truncate and fallocate, and then modify the i_size 861 * later on. 862 * 863 * The barriers are to emulate READ_ONCE, remove that once i_size_read 864 * does that for us. 865 */ 866 barrier(); 867 i_size = i_size_read(&inode->vfs_inode); 868 barrier(); 869 actual_end = min_t(u64, i_size, end + 1); 870 again: 871 will_compress = 0; 872 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1; 873 nr_pages = min_t(unsigned long, nr_pages, BTRFS_MAX_COMPRESSED_PAGES); 874 875 /* 876 * we don't want to send crud past the end of i_size through 877 * compression, that's just a waste of CPU time. So, if the 878 * end of the file is before the start of our current 879 * requested range of bytes, we bail out to the uncompressed 880 * cleanup code that can deal with all of this. 881 * 882 * It isn't really the fastest way to fix things, but this is a 883 * very uncommon corner. 884 */ 885 if (actual_end <= start) 886 goto cleanup_and_bail_uncompressed; 887 888 total_compressed = actual_end - start; 889 890 /* 891 * Skip compression for a small file range(<=blocksize) that 892 * isn't an inline extent, since it doesn't save disk space at all. 893 */ 894 if (total_compressed <= blocksize && 895 (start > 0 || end + 1 < inode->disk_i_size)) 896 goto cleanup_and_bail_uncompressed; 897 898 /* 899 * For subpage case, we require full page alignment for the sector 900 * aligned range. 901 * Thus we must also check against @actual_end, not just @end. 902 */ 903 if (blocksize < PAGE_SIZE) { 904 if (!PAGE_ALIGNED(start) || 905 !PAGE_ALIGNED(round_up(actual_end, blocksize))) 906 goto cleanup_and_bail_uncompressed; 907 } 908 909 total_compressed = min_t(unsigned long, total_compressed, 910 BTRFS_MAX_UNCOMPRESSED); 911 total_in = 0; 912 ret = 0; 913 914 /* 915 * we do compression for mount -o compress and when the 916 * inode has not been flagged as nocompress. This flag can 917 * change at any time if we discover bad compression ratios. 918 */ 919 if (inode_need_compress(inode, start, end)) { 920 WARN_ON(pages); 921 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS); 922 if (!pages) { 923 /* just bail out to the uncompressed code */ 924 nr_pages = 0; 925 goto cont; 926 } 927 928 if (inode->defrag_compress) 929 compress_type = inode->defrag_compress; 930 else if (inode->prop_compress) 931 compress_type = inode->prop_compress; 932 933 /* 934 * we need to call clear_page_dirty_for_io on each 935 * page in the range. Otherwise applications with the file 936 * mmap'd can wander in and change the page contents while 937 * we are compressing them. 938 * 939 * If the compression fails for any reason, we set the pages 940 * dirty again later on. 941 * 942 * Note that the remaining part is redirtied, the start pointer 943 * has moved, the end is the original one. 944 */ 945 if (!redirty) { 946 extent_range_clear_dirty_for_io(&inode->vfs_inode, start, end); 947 redirty = 1; 948 } 949 950 /* Compression level is applied here and only here */ 951 ret = btrfs_compress_pages( 952 compress_type | (fs_info->compress_level << 4), 953 mapping, start, 954 pages, 955 &nr_pages, 956 &total_in, 957 &total_compressed); 958 959 if (!ret) { 960 unsigned long offset = offset_in_page(total_compressed); 961 struct page *page = pages[nr_pages - 1]; 962 963 /* zero the tail end of the last page, we might be 964 * sending it down to disk 965 */ 966 if (offset) 967 memzero_page(page, offset, PAGE_SIZE - offset); 968 will_compress = 1; 969 } 970 } 971 cont: 972 /* 973 * Check cow_file_range() for why we don't even try to create inline 974 * extent for subpage case. 975 */ 976 if (start == 0 && fs_info->sectorsize == PAGE_SIZE) { 977 /* lets try to make an inline extent */ 978 if (ret || total_in < actual_end) { 979 /* we didn't compress the entire range, try 980 * to make an uncompressed inline extent. 981 */ 982 ret = cow_file_range_inline(inode, actual_end, 983 0, BTRFS_COMPRESS_NONE, 984 NULL, false); 985 } else { 986 /* try making a compressed inline extent */ 987 ret = cow_file_range_inline(inode, actual_end, 988 total_compressed, 989 compress_type, pages, 990 false); 991 } 992 if (ret <= 0) { 993 unsigned long clear_flags = EXTENT_DELALLOC | 994 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG | 995 EXTENT_DO_ACCOUNTING; 996 997 if (ret < 0) 998 mapping_set_error(mapping, -EIO); 999 1000 /* 1001 * inline extent creation worked or returned error, 1002 * we don't need to create any more async work items. 1003 * Unlock and free up our temp pages. 1004 * 1005 * We use DO_ACCOUNTING here because we need the 1006 * delalloc_release_metadata to be done _after_ we drop 1007 * our outstanding extent for clearing delalloc for this 1008 * range. 1009 */ 1010 extent_clear_unlock_delalloc(inode, start, end, 1011 NULL, 1012 clear_flags, 1013 PAGE_UNLOCK | 1014 PAGE_START_WRITEBACK | 1015 PAGE_END_WRITEBACK); 1016 1017 /* 1018 * Ensure we only free the compressed pages if we have 1019 * them allocated, as we can still reach here with 1020 * inode_need_compress() == false. 1021 */ 1022 if (pages) { 1023 for (i = 0; i < nr_pages; i++) { 1024 WARN_ON(pages[i]->mapping); 1025 put_page(pages[i]); 1026 } 1027 kfree(pages); 1028 } 1029 return 0; 1030 } 1031 } 1032 1033 if (will_compress) { 1034 /* 1035 * we aren't doing an inline extent round the compressed size 1036 * up to a block size boundary so the allocator does sane 1037 * things 1038 */ 1039 total_compressed = ALIGN(total_compressed, blocksize); 1040 1041 /* 1042 * one last check to make sure the compression is really a 1043 * win, compare the page count read with the blocks on disk, 1044 * compression must free at least one sector size 1045 */ 1046 total_in = round_up(total_in, fs_info->sectorsize); 1047 if (total_compressed + blocksize <= total_in) { 1048 compressed_extents++; 1049 1050 /* 1051 * The async work queues will take care of doing actual 1052 * allocation on disk for these compressed pages, and 1053 * will submit them to the elevator. 1054 */ 1055 add_async_extent(async_chunk, start, total_in, 1056 total_compressed, pages, nr_pages, 1057 compress_type); 1058 1059 if (start + total_in < end) { 1060 start += total_in; 1061 pages = NULL; 1062 cond_resched(); 1063 goto again; 1064 } 1065 return compressed_extents; 1066 } 1067 } 1068 if (pages) { 1069 /* 1070 * the compression code ran but failed to make things smaller, 1071 * free any pages it allocated and our page pointer array 1072 */ 1073 for (i = 0; i < nr_pages; i++) { 1074 WARN_ON(pages[i]->mapping); 1075 put_page(pages[i]); 1076 } 1077 kfree(pages); 1078 pages = NULL; 1079 total_compressed = 0; 1080 nr_pages = 0; 1081 1082 /* flag the file so we don't compress in the future */ 1083 if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) && 1084 !(inode->prop_compress)) { 1085 inode->flags |= BTRFS_INODE_NOCOMPRESS; 1086 } 1087 } 1088 cleanup_and_bail_uncompressed: 1089 /* 1090 * No compression, but we still need to write the pages in the file 1091 * we've been given so far. redirty the locked page if it corresponds 1092 * to our extent and set things up for the async work queue to run 1093 * cow_file_range to do the normal delalloc dance. 1094 */ 1095 if (async_chunk->locked_page && 1096 (page_offset(async_chunk->locked_page) >= start && 1097 page_offset(async_chunk->locked_page)) <= end) { 1098 __set_page_dirty_nobuffers(async_chunk->locked_page); 1099 /* unlocked later on in the async handlers */ 1100 } 1101 1102 if (redirty) 1103 extent_range_redirty_for_io(&inode->vfs_inode, start, end); 1104 add_async_extent(async_chunk, start, end - start + 1, 0, NULL, 0, 1105 BTRFS_COMPRESS_NONE); 1106 compressed_extents++; 1107 1108 return compressed_extents; 1109 } 1110 1111 static void free_async_extent_pages(struct async_extent *async_extent) 1112 { 1113 int i; 1114 1115 if (!async_extent->pages) 1116 return; 1117 1118 for (i = 0; i < async_extent->nr_pages; i++) { 1119 WARN_ON(async_extent->pages[i]->mapping); 1120 put_page(async_extent->pages[i]); 1121 } 1122 kfree(async_extent->pages); 1123 async_extent->nr_pages = 0; 1124 async_extent->pages = NULL; 1125 } 1126 1127 static int submit_uncompressed_range(struct btrfs_inode *inode, 1128 struct async_extent *async_extent, 1129 struct page *locked_page) 1130 { 1131 u64 start = async_extent->start; 1132 u64 end = async_extent->start + async_extent->ram_size - 1; 1133 unsigned long nr_written = 0; 1134 int page_started = 0; 1135 int ret; 1136 struct writeback_control wbc = { 1137 .sync_mode = WB_SYNC_ALL, 1138 .range_start = start, 1139 .range_end = end, 1140 .no_cgroup_owner = 1, 1141 }; 1142 1143 /* 1144 * Call cow_file_range() to run the delalloc range directly, since we 1145 * won't go to NOCOW or async path again. 1146 * 1147 * Also we call cow_file_range() with @unlock_page == 0, so that we 1148 * can directly submit them without interruption. 1149 */ 1150 ret = cow_file_range(inode, locked_page, start, end, &page_started, 1151 &nr_written, 0, NULL); 1152 /* Inline extent inserted, page gets unlocked and everything is done */ 1153 if (page_started) 1154 return 0; 1155 1156 if (ret < 0) { 1157 btrfs_cleanup_ordered_extents(inode, locked_page, start, end - start + 1); 1158 if (locked_page) { 1159 const u64 page_start = page_offset(locked_page); 1160 const u64 page_end = page_start + PAGE_SIZE - 1; 1161 1162 set_page_writeback(locked_page); 1163 end_page_writeback(locked_page); 1164 end_extent_writepage(locked_page, ret, page_start, page_end); 1165 unlock_page(locked_page); 1166 } 1167 return ret; 1168 } 1169 1170 /* All pages will be unlocked, including @locked_page */ 1171 wbc_attach_fdatawrite_inode(&wbc, &inode->vfs_inode); 1172 ret = extent_write_locked_range(&inode->vfs_inode, start, end, &wbc); 1173 wbc_detach_inode(&wbc); 1174 return ret; 1175 } 1176 1177 static int submit_one_async_extent(struct btrfs_inode *inode, 1178 struct async_chunk *async_chunk, 1179 struct async_extent *async_extent, 1180 u64 *alloc_hint) 1181 { 1182 struct extent_io_tree *io_tree = &inode->io_tree; 1183 struct btrfs_root *root = inode->root; 1184 struct btrfs_fs_info *fs_info = root->fs_info; 1185 struct btrfs_ordered_extent *ordered; 1186 struct btrfs_key ins; 1187 struct page *locked_page = NULL; 1188 struct extent_map *em; 1189 int ret = 0; 1190 u64 start = async_extent->start; 1191 u64 end = async_extent->start + async_extent->ram_size - 1; 1192 1193 if (async_chunk->blkcg_css) 1194 kthread_associate_blkcg(async_chunk->blkcg_css); 1195 1196 /* 1197 * If async_chunk->locked_page is in the async_extent range, we need to 1198 * handle it. 1199 */ 1200 if (async_chunk->locked_page) { 1201 u64 locked_page_start = page_offset(async_chunk->locked_page); 1202 u64 locked_page_end = locked_page_start + PAGE_SIZE - 1; 1203 1204 if (!(start >= locked_page_end || end <= locked_page_start)) 1205 locked_page = async_chunk->locked_page; 1206 } 1207 lock_extent(io_tree, start, end, NULL); 1208 1209 /* We have fall back to uncompressed write */ 1210 if (!async_extent->pages) { 1211 ret = submit_uncompressed_range(inode, async_extent, locked_page); 1212 goto done; 1213 } 1214 1215 ret = btrfs_reserve_extent(root, async_extent->ram_size, 1216 async_extent->compressed_size, 1217 async_extent->compressed_size, 1218 0, *alloc_hint, &ins, 1, 1); 1219 if (ret) { 1220 free_async_extent_pages(async_extent); 1221 /* 1222 * Here we used to try again by going back to non-compressed 1223 * path for ENOSPC. But we can't reserve space even for 1224 * compressed size, how could it work for uncompressed size 1225 * which requires larger size? So here we directly go error 1226 * path. 1227 */ 1228 goto out_free; 1229 } 1230 1231 /* Here we're doing allocation and writeback of the compressed pages */ 1232 em = create_io_em(inode, start, 1233 async_extent->ram_size, /* len */ 1234 start, /* orig_start */ 1235 ins.objectid, /* block_start */ 1236 ins.offset, /* block_len */ 1237 ins.offset, /* orig_block_len */ 1238 async_extent->ram_size, /* ram_bytes */ 1239 async_extent->compress_type, 1240 BTRFS_ORDERED_COMPRESSED); 1241 if (IS_ERR(em)) { 1242 ret = PTR_ERR(em); 1243 goto out_free_reserve; 1244 } 1245 free_extent_map(em); 1246 1247 ordered = btrfs_alloc_ordered_extent(inode, start, /* file_offset */ 1248 async_extent->ram_size, /* num_bytes */ 1249 async_extent->ram_size, /* ram_bytes */ 1250 ins.objectid, /* disk_bytenr */ 1251 ins.offset, /* disk_num_bytes */ 1252 0, /* offset */ 1253 1 << BTRFS_ORDERED_COMPRESSED, 1254 async_extent->compress_type); 1255 if (IS_ERR(ordered)) { 1256 btrfs_drop_extent_map_range(inode, start, end, false); 1257 ret = PTR_ERR(ordered); 1258 goto out_free_reserve; 1259 } 1260 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1261 1262 /* Clear dirty, set writeback and unlock the pages. */ 1263 extent_clear_unlock_delalloc(inode, start, end, 1264 NULL, EXTENT_LOCKED | EXTENT_DELALLOC, 1265 PAGE_UNLOCK | PAGE_START_WRITEBACK); 1266 btrfs_submit_compressed_write(ordered, 1267 async_extent->pages, /* compressed_pages */ 1268 async_extent->nr_pages, 1269 async_chunk->write_flags, true); 1270 *alloc_hint = ins.objectid + ins.offset; 1271 done: 1272 if (async_chunk->blkcg_css) 1273 kthread_associate_blkcg(NULL); 1274 kfree(async_extent); 1275 return ret; 1276 1277 out_free_reserve: 1278 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1279 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1); 1280 out_free: 1281 mapping_set_error(inode->vfs_inode.i_mapping, -EIO); 1282 extent_clear_unlock_delalloc(inode, start, end, 1283 NULL, EXTENT_LOCKED | EXTENT_DELALLOC | 1284 EXTENT_DELALLOC_NEW | 1285 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING, 1286 PAGE_UNLOCK | PAGE_START_WRITEBACK | 1287 PAGE_END_WRITEBACK); 1288 free_async_extent_pages(async_extent); 1289 goto done; 1290 } 1291 1292 /* 1293 * Phase two of compressed writeback. This is the ordered portion of the code, 1294 * which only gets called in the order the work was queued. We walk all the 1295 * async extents created by compress_file_range and send them down to the disk. 1296 */ 1297 static noinline void submit_compressed_extents(struct async_chunk *async_chunk) 1298 { 1299 struct btrfs_inode *inode = async_chunk->inode; 1300 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1301 struct async_extent *async_extent; 1302 u64 alloc_hint = 0; 1303 int ret = 0; 1304 1305 while (!list_empty(&async_chunk->extents)) { 1306 u64 extent_start; 1307 u64 ram_size; 1308 1309 async_extent = list_entry(async_chunk->extents.next, 1310 struct async_extent, list); 1311 list_del(&async_extent->list); 1312 extent_start = async_extent->start; 1313 ram_size = async_extent->ram_size; 1314 1315 ret = submit_one_async_extent(inode, async_chunk, async_extent, 1316 &alloc_hint); 1317 btrfs_debug(fs_info, 1318 "async extent submission failed root=%lld inode=%llu start=%llu len=%llu ret=%d", 1319 inode->root->root_key.objectid, 1320 btrfs_ino(inode), extent_start, ram_size, ret); 1321 } 1322 } 1323 1324 static u64 get_extent_allocation_hint(struct btrfs_inode *inode, u64 start, 1325 u64 num_bytes) 1326 { 1327 struct extent_map_tree *em_tree = &inode->extent_tree; 1328 struct extent_map *em; 1329 u64 alloc_hint = 0; 1330 1331 read_lock(&em_tree->lock); 1332 em = search_extent_mapping(em_tree, start, num_bytes); 1333 if (em) { 1334 /* 1335 * if block start isn't an actual block number then find the 1336 * first block in this inode and use that as a hint. If that 1337 * block is also bogus then just don't worry about it. 1338 */ 1339 if (em->block_start >= EXTENT_MAP_LAST_BYTE) { 1340 free_extent_map(em); 1341 em = search_extent_mapping(em_tree, 0, 0); 1342 if (em && em->block_start < EXTENT_MAP_LAST_BYTE) 1343 alloc_hint = em->block_start; 1344 if (em) 1345 free_extent_map(em); 1346 } else { 1347 alloc_hint = em->block_start; 1348 free_extent_map(em); 1349 } 1350 } 1351 read_unlock(&em_tree->lock); 1352 1353 return alloc_hint; 1354 } 1355 1356 /* 1357 * when extent_io.c finds a delayed allocation range in the file, 1358 * the call backs end up in this code. The basic idea is to 1359 * allocate extents on disk for the range, and create ordered data structs 1360 * in ram to track those extents. 1361 * 1362 * locked_page is the page that writepage had locked already. We use 1363 * it to make sure we don't do extra locks or unlocks. 1364 * 1365 * *page_started is set to one if we unlock locked_page and do everything 1366 * required to start IO on it. It may be clean and already done with 1367 * IO when we return. 1368 * 1369 * When unlock == 1, we unlock the pages in successfully allocated regions. 1370 * When unlock == 0, we leave them locked for writing them out. 1371 * 1372 * However, we unlock all the pages except @locked_page in case of failure. 1373 * 1374 * In summary, page locking state will be as follow: 1375 * 1376 * - page_started == 1 (return value) 1377 * - All the pages are unlocked. IO is started. 1378 * - Note that this can happen only on success 1379 * - unlock == 1 1380 * - All the pages except @locked_page are unlocked in any case 1381 * - unlock == 0 1382 * - On success, all the pages are locked for writing out them 1383 * - On failure, all the pages except @locked_page are unlocked 1384 * 1385 * When a failure happens in the second or later iteration of the 1386 * while-loop, the ordered extents created in previous iterations are kept 1387 * intact. So, the caller must clean them up by calling 1388 * btrfs_cleanup_ordered_extents(). See btrfs_run_delalloc_range() for 1389 * example. 1390 */ 1391 static noinline int cow_file_range(struct btrfs_inode *inode, 1392 struct page *locked_page, 1393 u64 start, u64 end, int *page_started, 1394 unsigned long *nr_written, int unlock, 1395 u64 *done_offset) 1396 { 1397 struct btrfs_root *root = inode->root; 1398 struct btrfs_fs_info *fs_info = root->fs_info; 1399 u64 alloc_hint = 0; 1400 u64 orig_start = start; 1401 u64 num_bytes; 1402 unsigned long ram_size; 1403 u64 cur_alloc_size = 0; 1404 u64 min_alloc_size; 1405 u64 blocksize = fs_info->sectorsize; 1406 struct btrfs_key ins; 1407 struct extent_map *em; 1408 unsigned clear_bits; 1409 unsigned long page_ops; 1410 bool extent_reserved = false; 1411 int ret = 0; 1412 1413 if (btrfs_is_free_space_inode(inode)) { 1414 ret = -EINVAL; 1415 goto out_unlock; 1416 } 1417 1418 num_bytes = ALIGN(end - start + 1, blocksize); 1419 num_bytes = max(blocksize, num_bytes); 1420 ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy)); 1421 1422 inode_should_defrag(inode, start, end, num_bytes, SZ_64K); 1423 1424 /* 1425 * Due to the page size limit, for subpage we can only trigger the 1426 * writeback for the dirty sectors of page, that means data writeback 1427 * is doing more writeback than what we want. 1428 * 1429 * This is especially unexpected for some call sites like fallocate, 1430 * where we only increase i_size after everything is done. 1431 * This means we can trigger inline extent even if we didn't want to. 1432 * So here we skip inline extent creation completely. 1433 */ 1434 if (start == 0 && fs_info->sectorsize == PAGE_SIZE) { 1435 u64 actual_end = min_t(u64, i_size_read(&inode->vfs_inode), 1436 end + 1); 1437 1438 /* lets try to make an inline extent */ 1439 ret = cow_file_range_inline(inode, actual_end, 0, 1440 BTRFS_COMPRESS_NONE, NULL, false); 1441 if (ret == 0) { 1442 /* 1443 * We use DO_ACCOUNTING here because we need the 1444 * delalloc_release_metadata to be run _after_ we drop 1445 * our outstanding extent for clearing delalloc for this 1446 * range. 1447 */ 1448 extent_clear_unlock_delalloc(inode, start, end, 1449 locked_page, 1450 EXTENT_LOCKED | EXTENT_DELALLOC | 1451 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG | 1452 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK | 1453 PAGE_START_WRITEBACK | PAGE_END_WRITEBACK); 1454 *nr_written = *nr_written + 1455 (end - start + PAGE_SIZE) / PAGE_SIZE; 1456 *page_started = 1; 1457 /* 1458 * locked_page is locked by the caller of 1459 * writepage_delalloc(), not locked by 1460 * __process_pages_contig(). 1461 * 1462 * We can't let __process_pages_contig() to unlock it, 1463 * as it doesn't have any subpage::writers recorded. 1464 * 1465 * Here we manually unlock the page, since the caller 1466 * can't use page_started to determine if it's an 1467 * inline extent or a compressed extent. 1468 */ 1469 unlock_page(locked_page); 1470 goto out; 1471 } else if (ret < 0) { 1472 goto out_unlock; 1473 } 1474 } 1475 1476 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes); 1477 1478 /* 1479 * Relocation relies on the relocated extents to have exactly the same 1480 * size as the original extents. Normally writeback for relocation data 1481 * extents follows a NOCOW path because relocation preallocates the 1482 * extents. However, due to an operation such as scrub turning a block 1483 * group to RO mode, it may fallback to COW mode, so we must make sure 1484 * an extent allocated during COW has exactly the requested size and can 1485 * not be split into smaller extents, otherwise relocation breaks and 1486 * fails during the stage where it updates the bytenr of file extent 1487 * items. 1488 */ 1489 if (btrfs_is_data_reloc_root(root)) 1490 min_alloc_size = num_bytes; 1491 else 1492 min_alloc_size = fs_info->sectorsize; 1493 1494 while (num_bytes > 0) { 1495 struct btrfs_ordered_extent *ordered; 1496 1497 cur_alloc_size = num_bytes; 1498 ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size, 1499 min_alloc_size, 0, alloc_hint, 1500 &ins, 1, 1); 1501 if (ret < 0) 1502 goto out_unlock; 1503 cur_alloc_size = ins.offset; 1504 extent_reserved = true; 1505 1506 ram_size = ins.offset; 1507 em = create_io_em(inode, start, ins.offset, /* len */ 1508 start, /* orig_start */ 1509 ins.objectid, /* block_start */ 1510 ins.offset, /* block_len */ 1511 ins.offset, /* orig_block_len */ 1512 ram_size, /* ram_bytes */ 1513 BTRFS_COMPRESS_NONE, /* compress_type */ 1514 BTRFS_ORDERED_REGULAR /* type */); 1515 if (IS_ERR(em)) { 1516 ret = PTR_ERR(em); 1517 goto out_reserve; 1518 } 1519 free_extent_map(em); 1520 1521 ordered = btrfs_alloc_ordered_extent(inode, start, ram_size, 1522 ram_size, ins.objectid, cur_alloc_size, 1523 0, 1 << BTRFS_ORDERED_REGULAR, 1524 BTRFS_COMPRESS_NONE); 1525 if (IS_ERR(ordered)) { 1526 ret = PTR_ERR(ordered); 1527 goto out_drop_extent_cache; 1528 } 1529 1530 if (btrfs_is_data_reloc_root(root)) { 1531 ret = btrfs_reloc_clone_csums(ordered); 1532 1533 /* 1534 * Only drop cache here, and process as normal. 1535 * 1536 * We must not allow extent_clear_unlock_delalloc() 1537 * at out_unlock label to free meta of this ordered 1538 * extent, as its meta should be freed by 1539 * btrfs_finish_ordered_io(). 1540 * 1541 * So we must continue until @start is increased to 1542 * skip current ordered extent. 1543 */ 1544 if (ret) 1545 btrfs_drop_extent_map_range(inode, start, 1546 start + ram_size - 1, 1547 false); 1548 } 1549 btrfs_put_ordered_extent(ordered); 1550 1551 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1552 1553 /* 1554 * We're not doing compressed IO, don't unlock the first page 1555 * (which the caller expects to stay locked), don't clear any 1556 * dirty bits and don't set any writeback bits 1557 * 1558 * Do set the Ordered (Private2) bit so we know this page was 1559 * properly setup for writepage. 1560 */ 1561 page_ops = unlock ? PAGE_UNLOCK : 0; 1562 page_ops |= PAGE_SET_ORDERED; 1563 1564 extent_clear_unlock_delalloc(inode, start, start + ram_size - 1, 1565 locked_page, 1566 EXTENT_LOCKED | EXTENT_DELALLOC, 1567 page_ops); 1568 if (num_bytes < cur_alloc_size) 1569 num_bytes = 0; 1570 else 1571 num_bytes -= cur_alloc_size; 1572 alloc_hint = ins.objectid + ins.offset; 1573 start += cur_alloc_size; 1574 extent_reserved = false; 1575 1576 /* 1577 * btrfs_reloc_clone_csums() error, since start is increased 1578 * extent_clear_unlock_delalloc() at out_unlock label won't 1579 * free metadata of current ordered extent, we're OK to exit. 1580 */ 1581 if (ret) 1582 goto out_unlock; 1583 } 1584 out: 1585 return ret; 1586 1587 out_drop_extent_cache: 1588 btrfs_drop_extent_map_range(inode, start, start + ram_size - 1, false); 1589 out_reserve: 1590 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1591 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1); 1592 out_unlock: 1593 /* 1594 * If done_offset is non-NULL and ret == -EAGAIN, we expect the 1595 * caller to write out the successfully allocated region and retry. 1596 */ 1597 if (done_offset && ret == -EAGAIN) { 1598 if (orig_start < start) 1599 *done_offset = start - 1; 1600 else 1601 *done_offset = start; 1602 return ret; 1603 } else if (ret == -EAGAIN) { 1604 /* Convert to -ENOSPC since the caller cannot retry. */ 1605 ret = -ENOSPC; 1606 } 1607 1608 /* 1609 * Now, we have three regions to clean up: 1610 * 1611 * |-------(1)----|---(2)---|-------------(3)----------| 1612 * `- orig_start `- start `- start + cur_alloc_size `- end 1613 * 1614 * We process each region below. 1615 */ 1616 1617 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW | 1618 EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV; 1619 page_ops = PAGE_UNLOCK | PAGE_START_WRITEBACK | PAGE_END_WRITEBACK; 1620 1621 /* 1622 * For the range (1). We have already instantiated the ordered extents 1623 * for this region. They are cleaned up by 1624 * btrfs_cleanup_ordered_extents() in e.g, 1625 * btrfs_run_delalloc_range(). EXTENT_LOCKED | EXTENT_DELALLOC are 1626 * already cleared in the above loop. And, EXTENT_DELALLOC_NEW | 1627 * EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV are handled by the cleanup 1628 * function. 1629 * 1630 * However, in case of unlock == 0, we still need to unlock the pages 1631 * (except @locked_page) to ensure all the pages are unlocked. 1632 */ 1633 if (!unlock && orig_start < start) { 1634 if (!locked_page) 1635 mapping_set_error(inode->vfs_inode.i_mapping, ret); 1636 extent_clear_unlock_delalloc(inode, orig_start, start - 1, 1637 locked_page, 0, page_ops); 1638 } 1639 1640 /* 1641 * For the range (2). If we reserved an extent for our delalloc range 1642 * (or a subrange) and failed to create the respective ordered extent, 1643 * then it means that when we reserved the extent we decremented the 1644 * extent's size from the data space_info's bytes_may_use counter and 1645 * incremented the space_info's bytes_reserved counter by the same 1646 * amount. We must make sure extent_clear_unlock_delalloc() does not try 1647 * to decrement again the data space_info's bytes_may_use counter, 1648 * therefore we do not pass it the flag EXTENT_CLEAR_DATA_RESV. 1649 */ 1650 if (extent_reserved) { 1651 extent_clear_unlock_delalloc(inode, start, 1652 start + cur_alloc_size - 1, 1653 locked_page, 1654 clear_bits, 1655 page_ops); 1656 start += cur_alloc_size; 1657 if (start >= end) 1658 return ret; 1659 } 1660 1661 /* 1662 * For the range (3). We never touched the region. In addition to the 1663 * clear_bits above, we add EXTENT_CLEAR_DATA_RESV to release the data 1664 * space_info's bytes_may_use counter, reserved in 1665 * btrfs_check_data_free_space(). 1666 */ 1667 extent_clear_unlock_delalloc(inode, start, end, locked_page, 1668 clear_bits | EXTENT_CLEAR_DATA_RESV, 1669 page_ops); 1670 return ret; 1671 } 1672 1673 /* 1674 * work queue call back to started compression on a file and pages 1675 */ 1676 static noinline void async_cow_start(struct btrfs_work *work) 1677 { 1678 struct async_chunk *async_chunk; 1679 int compressed_extents; 1680 1681 async_chunk = container_of(work, struct async_chunk, work); 1682 1683 compressed_extents = compress_file_range(async_chunk); 1684 if (compressed_extents == 0) { 1685 btrfs_add_delayed_iput(async_chunk->inode); 1686 async_chunk->inode = NULL; 1687 } 1688 } 1689 1690 /* 1691 * work queue call back to submit previously compressed pages 1692 */ 1693 static noinline void async_cow_submit(struct btrfs_work *work) 1694 { 1695 struct async_chunk *async_chunk = container_of(work, struct async_chunk, 1696 work); 1697 struct btrfs_fs_info *fs_info = btrfs_work_owner(work); 1698 unsigned long nr_pages; 1699 1700 nr_pages = (async_chunk->end - async_chunk->start + PAGE_SIZE) >> 1701 PAGE_SHIFT; 1702 1703 /* 1704 * ->inode could be NULL if async_chunk_start has failed to compress, 1705 * in which case we don't have anything to submit, yet we need to 1706 * always adjust ->async_delalloc_pages as its paired with the init 1707 * happening in run_delalloc_compressed 1708 */ 1709 if (async_chunk->inode) 1710 submit_compressed_extents(async_chunk); 1711 1712 /* atomic_sub_return implies a barrier */ 1713 if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) < 1714 5 * SZ_1M) 1715 cond_wake_up_nomb(&fs_info->async_submit_wait); 1716 } 1717 1718 static noinline void async_cow_free(struct btrfs_work *work) 1719 { 1720 struct async_chunk *async_chunk; 1721 struct async_cow *async_cow; 1722 1723 async_chunk = container_of(work, struct async_chunk, work); 1724 if (async_chunk->inode) 1725 btrfs_add_delayed_iput(async_chunk->inode); 1726 if (async_chunk->blkcg_css) 1727 css_put(async_chunk->blkcg_css); 1728 1729 async_cow = async_chunk->async_cow; 1730 if (atomic_dec_and_test(&async_cow->num_chunks)) 1731 kvfree(async_cow); 1732 } 1733 1734 static bool run_delalloc_compressed(struct btrfs_inode *inode, 1735 struct writeback_control *wbc, 1736 struct page *locked_page, 1737 u64 start, u64 end, int *page_started, 1738 unsigned long *nr_written) 1739 { 1740 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1741 struct cgroup_subsys_state *blkcg_css = wbc_blkcg_css(wbc); 1742 struct async_cow *ctx; 1743 struct async_chunk *async_chunk; 1744 unsigned long nr_pages; 1745 u64 num_chunks = DIV_ROUND_UP(end - start, SZ_512K); 1746 int i; 1747 unsigned nofs_flag; 1748 const blk_opf_t write_flags = wbc_to_write_flags(wbc); 1749 1750 nofs_flag = memalloc_nofs_save(); 1751 ctx = kvmalloc(struct_size(ctx, chunks, num_chunks), GFP_KERNEL); 1752 memalloc_nofs_restore(nofs_flag); 1753 if (!ctx) 1754 return false; 1755 1756 unlock_extent(&inode->io_tree, start, end, NULL); 1757 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, &inode->runtime_flags); 1758 1759 async_chunk = ctx->chunks; 1760 atomic_set(&ctx->num_chunks, num_chunks); 1761 1762 for (i = 0; i < num_chunks; i++) { 1763 u64 cur_end = min(end, start + SZ_512K - 1); 1764 1765 /* 1766 * igrab is called higher up in the call chain, take only the 1767 * lightweight reference for the callback lifetime 1768 */ 1769 ihold(&inode->vfs_inode); 1770 async_chunk[i].async_cow = ctx; 1771 async_chunk[i].inode = inode; 1772 async_chunk[i].start = start; 1773 async_chunk[i].end = cur_end; 1774 async_chunk[i].write_flags = write_flags; 1775 INIT_LIST_HEAD(&async_chunk[i].extents); 1776 1777 /* 1778 * The locked_page comes all the way from writepage and its 1779 * the original page we were actually given. As we spread 1780 * this large delalloc region across multiple async_chunk 1781 * structs, only the first struct needs a pointer to locked_page 1782 * 1783 * This way we don't need racey decisions about who is supposed 1784 * to unlock it. 1785 */ 1786 if (locked_page) { 1787 /* 1788 * Depending on the compressibility, the pages might or 1789 * might not go through async. We want all of them to 1790 * be accounted against wbc once. Let's do it here 1791 * before the paths diverge. wbc accounting is used 1792 * only for foreign writeback detection and doesn't 1793 * need full accuracy. Just account the whole thing 1794 * against the first page. 1795 */ 1796 wbc_account_cgroup_owner(wbc, locked_page, 1797 cur_end - start); 1798 async_chunk[i].locked_page = locked_page; 1799 locked_page = NULL; 1800 } else { 1801 async_chunk[i].locked_page = NULL; 1802 } 1803 1804 if (blkcg_css != blkcg_root_css) { 1805 css_get(blkcg_css); 1806 async_chunk[i].blkcg_css = blkcg_css; 1807 async_chunk[i].write_flags |= REQ_BTRFS_CGROUP_PUNT; 1808 } else { 1809 async_chunk[i].blkcg_css = NULL; 1810 } 1811 1812 btrfs_init_work(&async_chunk[i].work, async_cow_start, 1813 async_cow_submit, async_cow_free); 1814 1815 nr_pages = DIV_ROUND_UP(cur_end - start, PAGE_SIZE); 1816 atomic_add(nr_pages, &fs_info->async_delalloc_pages); 1817 1818 btrfs_queue_work(fs_info->delalloc_workers, &async_chunk[i].work); 1819 1820 *nr_written += nr_pages; 1821 start = cur_end + 1; 1822 } 1823 *page_started = 1; 1824 return true; 1825 } 1826 1827 static noinline int run_delalloc_zoned(struct btrfs_inode *inode, 1828 struct page *locked_page, u64 start, 1829 u64 end, int *page_started, 1830 unsigned long *nr_written, 1831 struct writeback_control *wbc) 1832 { 1833 u64 done_offset = end; 1834 int ret; 1835 bool locked_page_done = false; 1836 1837 while (start <= end) { 1838 ret = cow_file_range(inode, locked_page, start, end, page_started, 1839 nr_written, 0, &done_offset); 1840 if (ret && ret != -EAGAIN) 1841 return ret; 1842 1843 if (*page_started) { 1844 ASSERT(ret == 0); 1845 return 0; 1846 } 1847 1848 if (ret == 0) 1849 done_offset = end; 1850 1851 if (done_offset == start) { 1852 wait_on_bit_io(&inode->root->fs_info->flags, 1853 BTRFS_FS_NEED_ZONE_FINISH, 1854 TASK_UNINTERRUPTIBLE); 1855 continue; 1856 } 1857 1858 if (!locked_page_done) { 1859 __set_page_dirty_nobuffers(locked_page); 1860 account_page_redirty(locked_page); 1861 } 1862 locked_page_done = true; 1863 extent_write_locked_range(&inode->vfs_inode, start, done_offset, 1864 wbc); 1865 start = done_offset + 1; 1866 } 1867 1868 *page_started = 1; 1869 1870 return 0; 1871 } 1872 1873 static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info, 1874 u64 bytenr, u64 num_bytes, bool nowait) 1875 { 1876 struct btrfs_root *csum_root = btrfs_csum_root(fs_info, bytenr); 1877 struct btrfs_ordered_sum *sums; 1878 int ret; 1879 LIST_HEAD(list); 1880 1881 ret = btrfs_lookup_csums_list(csum_root, bytenr, bytenr + num_bytes - 1, 1882 &list, 0, nowait); 1883 if (ret == 0 && list_empty(&list)) 1884 return 0; 1885 1886 while (!list_empty(&list)) { 1887 sums = list_entry(list.next, struct btrfs_ordered_sum, list); 1888 list_del(&sums->list); 1889 kfree(sums); 1890 } 1891 if (ret < 0) 1892 return ret; 1893 return 1; 1894 } 1895 1896 static int fallback_to_cow(struct btrfs_inode *inode, struct page *locked_page, 1897 const u64 start, const u64 end, 1898 int *page_started, unsigned long *nr_written) 1899 { 1900 const bool is_space_ino = btrfs_is_free_space_inode(inode); 1901 const bool is_reloc_ino = btrfs_is_data_reloc_root(inode->root); 1902 const u64 range_bytes = end + 1 - start; 1903 struct extent_io_tree *io_tree = &inode->io_tree; 1904 u64 range_start = start; 1905 u64 count; 1906 1907 /* 1908 * If EXTENT_NORESERVE is set it means that when the buffered write was 1909 * made we had not enough available data space and therefore we did not 1910 * reserve data space for it, since we though we could do NOCOW for the 1911 * respective file range (either there is prealloc extent or the inode 1912 * has the NOCOW bit set). 1913 * 1914 * However when we need to fallback to COW mode (because for example the 1915 * block group for the corresponding extent was turned to RO mode by a 1916 * scrub or relocation) we need to do the following: 1917 * 1918 * 1) We increment the bytes_may_use counter of the data space info. 1919 * If COW succeeds, it allocates a new data extent and after doing 1920 * that it decrements the space info's bytes_may_use counter and 1921 * increments its bytes_reserved counter by the same amount (we do 1922 * this at btrfs_add_reserved_bytes()). So we need to increment the 1923 * bytes_may_use counter to compensate (when space is reserved at 1924 * buffered write time, the bytes_may_use counter is incremented); 1925 * 1926 * 2) We clear the EXTENT_NORESERVE bit from the range. We do this so 1927 * that if the COW path fails for any reason, it decrements (through 1928 * extent_clear_unlock_delalloc()) the bytes_may_use counter of the 1929 * data space info, which we incremented in the step above. 1930 * 1931 * If we need to fallback to cow and the inode corresponds to a free 1932 * space cache inode or an inode of the data relocation tree, we must 1933 * also increment bytes_may_use of the data space_info for the same 1934 * reason. Space caches and relocated data extents always get a prealloc 1935 * extent for them, however scrub or balance may have set the block 1936 * group that contains that extent to RO mode and therefore force COW 1937 * when starting writeback. 1938 */ 1939 count = count_range_bits(io_tree, &range_start, end, range_bytes, 1940 EXTENT_NORESERVE, 0, NULL); 1941 if (count > 0 || is_space_ino || is_reloc_ino) { 1942 u64 bytes = count; 1943 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1944 struct btrfs_space_info *sinfo = fs_info->data_sinfo; 1945 1946 if (is_space_ino || is_reloc_ino) 1947 bytes = range_bytes; 1948 1949 spin_lock(&sinfo->lock); 1950 btrfs_space_info_update_bytes_may_use(fs_info, sinfo, bytes); 1951 spin_unlock(&sinfo->lock); 1952 1953 if (count > 0) 1954 clear_extent_bit(io_tree, start, end, EXTENT_NORESERVE, 1955 NULL); 1956 } 1957 1958 return cow_file_range(inode, locked_page, start, end, page_started, 1959 nr_written, 1, NULL); 1960 } 1961 1962 struct can_nocow_file_extent_args { 1963 /* Input fields. */ 1964 1965 /* Start file offset of the range we want to NOCOW. */ 1966 u64 start; 1967 /* End file offset (inclusive) of the range we want to NOCOW. */ 1968 u64 end; 1969 bool writeback_path; 1970 bool strict; 1971 /* 1972 * Free the path passed to can_nocow_file_extent() once it's not needed 1973 * anymore. 1974 */ 1975 bool free_path; 1976 1977 /* Output fields. Only set when can_nocow_file_extent() returns 1. */ 1978 1979 u64 disk_bytenr; 1980 u64 disk_num_bytes; 1981 u64 extent_offset; 1982 /* Number of bytes that can be written to in NOCOW mode. */ 1983 u64 num_bytes; 1984 }; 1985 1986 /* 1987 * Check if we can NOCOW the file extent that the path points to. 1988 * This function may return with the path released, so the caller should check 1989 * if path->nodes[0] is NULL or not if it needs to use the path afterwards. 1990 * 1991 * Returns: < 0 on error 1992 * 0 if we can not NOCOW 1993 * 1 if we can NOCOW 1994 */ 1995 static int can_nocow_file_extent(struct btrfs_path *path, 1996 struct btrfs_key *key, 1997 struct btrfs_inode *inode, 1998 struct can_nocow_file_extent_args *args) 1999 { 2000 const bool is_freespace_inode = btrfs_is_free_space_inode(inode); 2001 struct extent_buffer *leaf = path->nodes[0]; 2002 struct btrfs_root *root = inode->root; 2003 struct btrfs_file_extent_item *fi; 2004 u64 extent_end; 2005 u8 extent_type; 2006 int can_nocow = 0; 2007 int ret = 0; 2008 bool nowait = path->nowait; 2009 2010 fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); 2011 extent_type = btrfs_file_extent_type(leaf, fi); 2012 2013 if (extent_type == BTRFS_FILE_EXTENT_INLINE) 2014 goto out; 2015 2016 /* Can't access these fields unless we know it's not an inline extent. */ 2017 args->disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 2018 args->disk_num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 2019 args->extent_offset = btrfs_file_extent_offset(leaf, fi); 2020 2021 if (!(inode->flags & BTRFS_INODE_NODATACOW) && 2022 extent_type == BTRFS_FILE_EXTENT_REG) 2023 goto out; 2024 2025 /* 2026 * If the extent was created before the generation where the last snapshot 2027 * for its subvolume was created, then this implies the extent is shared, 2028 * hence we must COW. 2029 */ 2030 if (!args->strict && 2031 btrfs_file_extent_generation(leaf, fi) <= 2032 btrfs_root_last_snapshot(&root->root_item)) 2033 goto out; 2034 2035 /* An explicit hole, must COW. */ 2036 if (args->disk_bytenr == 0) 2037 goto out; 2038 2039 /* Compressed/encrypted/encoded extents must be COWed. */ 2040 if (btrfs_file_extent_compression(leaf, fi) || 2041 btrfs_file_extent_encryption(leaf, fi) || 2042 btrfs_file_extent_other_encoding(leaf, fi)) 2043 goto out; 2044 2045 extent_end = btrfs_file_extent_end(path); 2046 2047 /* 2048 * The following checks can be expensive, as they need to take other 2049 * locks and do btree or rbtree searches, so release the path to avoid 2050 * blocking other tasks for too long. 2051 */ 2052 btrfs_release_path(path); 2053 2054 ret = btrfs_cross_ref_exist(root, btrfs_ino(inode), 2055 key->offset - args->extent_offset, 2056 args->disk_bytenr, args->strict, path); 2057 WARN_ON_ONCE(ret > 0 && is_freespace_inode); 2058 if (ret != 0) 2059 goto out; 2060 2061 if (args->free_path) { 2062 /* 2063 * We don't need the path anymore, plus through the 2064 * csum_exist_in_range() call below we will end up allocating 2065 * another path. So free the path to avoid unnecessary extra 2066 * memory usage. 2067 */ 2068 btrfs_free_path(path); 2069 path = NULL; 2070 } 2071 2072 /* If there are pending snapshots for this root, we must COW. */ 2073 if (args->writeback_path && !is_freespace_inode && 2074 atomic_read(&root->snapshot_force_cow)) 2075 goto out; 2076 2077 args->disk_bytenr += args->extent_offset; 2078 args->disk_bytenr += args->start - key->offset; 2079 args->num_bytes = min(args->end + 1, extent_end) - args->start; 2080 2081 /* 2082 * Force COW if csums exist in the range. This ensures that csums for a 2083 * given extent are either valid or do not exist. 2084 */ 2085 ret = csum_exist_in_range(root->fs_info, args->disk_bytenr, args->num_bytes, 2086 nowait); 2087 WARN_ON_ONCE(ret > 0 && is_freespace_inode); 2088 if (ret != 0) 2089 goto out; 2090 2091 can_nocow = 1; 2092 out: 2093 if (args->free_path && path) 2094 btrfs_free_path(path); 2095 2096 return ret < 0 ? ret : can_nocow; 2097 } 2098 2099 /* 2100 * when nowcow writeback call back. This checks for snapshots or COW copies 2101 * of the extents that exist in the file, and COWs the file as required. 2102 * 2103 * If no cow copies or snapshots exist, we write directly to the existing 2104 * blocks on disk 2105 */ 2106 static noinline int run_delalloc_nocow(struct btrfs_inode *inode, 2107 struct page *locked_page, 2108 const u64 start, const u64 end, 2109 int *page_started, 2110 unsigned long *nr_written) 2111 { 2112 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2113 struct btrfs_root *root = inode->root; 2114 struct btrfs_path *path; 2115 u64 cow_start = (u64)-1; 2116 u64 cur_offset = start; 2117 int ret; 2118 bool check_prev = true; 2119 u64 ino = btrfs_ino(inode); 2120 struct btrfs_block_group *bg; 2121 bool nocow = false; 2122 struct can_nocow_file_extent_args nocow_args = { 0 }; 2123 2124 path = btrfs_alloc_path(); 2125 if (!path) { 2126 extent_clear_unlock_delalloc(inode, start, end, locked_page, 2127 EXTENT_LOCKED | EXTENT_DELALLOC | 2128 EXTENT_DO_ACCOUNTING | 2129 EXTENT_DEFRAG, PAGE_UNLOCK | 2130 PAGE_START_WRITEBACK | 2131 PAGE_END_WRITEBACK); 2132 return -ENOMEM; 2133 } 2134 2135 nocow_args.end = end; 2136 nocow_args.writeback_path = true; 2137 2138 while (1) { 2139 struct btrfs_ordered_extent *ordered; 2140 struct btrfs_key found_key; 2141 struct btrfs_file_extent_item *fi; 2142 struct extent_buffer *leaf; 2143 u64 extent_end; 2144 u64 ram_bytes; 2145 u64 nocow_end; 2146 int extent_type; 2147 bool is_prealloc; 2148 2149 nocow = false; 2150 2151 ret = btrfs_lookup_file_extent(NULL, root, path, ino, 2152 cur_offset, 0); 2153 if (ret < 0) 2154 goto error; 2155 2156 /* 2157 * If there is no extent for our range when doing the initial 2158 * search, then go back to the previous slot as it will be the 2159 * one containing the search offset 2160 */ 2161 if (ret > 0 && path->slots[0] > 0 && check_prev) { 2162 leaf = path->nodes[0]; 2163 btrfs_item_key_to_cpu(leaf, &found_key, 2164 path->slots[0] - 1); 2165 if (found_key.objectid == ino && 2166 found_key.type == BTRFS_EXTENT_DATA_KEY) 2167 path->slots[0]--; 2168 } 2169 check_prev = false; 2170 next_slot: 2171 /* Go to next leaf if we have exhausted the current one */ 2172 leaf = path->nodes[0]; 2173 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 2174 ret = btrfs_next_leaf(root, path); 2175 if (ret < 0) { 2176 if (cow_start != (u64)-1) 2177 cur_offset = cow_start; 2178 goto error; 2179 } 2180 if (ret > 0) 2181 break; 2182 leaf = path->nodes[0]; 2183 } 2184 2185 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 2186 2187 /* Didn't find anything for our INO */ 2188 if (found_key.objectid > ino) 2189 break; 2190 /* 2191 * Keep searching until we find an EXTENT_ITEM or there are no 2192 * more extents for this inode 2193 */ 2194 if (WARN_ON_ONCE(found_key.objectid < ino) || 2195 found_key.type < BTRFS_EXTENT_DATA_KEY) { 2196 path->slots[0]++; 2197 goto next_slot; 2198 } 2199 2200 /* Found key is not EXTENT_DATA_KEY or starts after req range */ 2201 if (found_key.type > BTRFS_EXTENT_DATA_KEY || 2202 found_key.offset > end) 2203 break; 2204 2205 /* 2206 * If the found extent starts after requested offset, then 2207 * adjust extent_end to be right before this extent begins 2208 */ 2209 if (found_key.offset > cur_offset) { 2210 extent_end = found_key.offset; 2211 extent_type = 0; 2212 goto out_check; 2213 } 2214 2215 /* 2216 * Found extent which begins before our range and potentially 2217 * intersect it 2218 */ 2219 fi = btrfs_item_ptr(leaf, path->slots[0], 2220 struct btrfs_file_extent_item); 2221 extent_type = btrfs_file_extent_type(leaf, fi); 2222 /* If this is triggered then we have a memory corruption. */ 2223 ASSERT(extent_type < BTRFS_NR_FILE_EXTENT_TYPES); 2224 if (WARN_ON(extent_type >= BTRFS_NR_FILE_EXTENT_TYPES)) { 2225 ret = -EUCLEAN; 2226 goto error; 2227 } 2228 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 2229 extent_end = btrfs_file_extent_end(path); 2230 2231 /* 2232 * If the extent we got ends before our current offset, skip to 2233 * the next extent. 2234 */ 2235 if (extent_end <= cur_offset) { 2236 path->slots[0]++; 2237 goto next_slot; 2238 } 2239 2240 nocow_args.start = cur_offset; 2241 ret = can_nocow_file_extent(path, &found_key, inode, &nocow_args); 2242 if (ret < 0) { 2243 if (cow_start != (u64)-1) 2244 cur_offset = cow_start; 2245 goto error; 2246 } else if (ret == 0) { 2247 goto out_check; 2248 } 2249 2250 ret = 0; 2251 bg = btrfs_inc_nocow_writers(fs_info, nocow_args.disk_bytenr); 2252 if (bg) 2253 nocow = true; 2254 out_check: 2255 /* 2256 * If nocow is false then record the beginning of the range 2257 * that needs to be COWed 2258 */ 2259 if (!nocow) { 2260 if (cow_start == (u64)-1) 2261 cow_start = cur_offset; 2262 cur_offset = extent_end; 2263 if (cur_offset > end) 2264 break; 2265 if (!path->nodes[0]) 2266 continue; 2267 path->slots[0]++; 2268 goto next_slot; 2269 } 2270 2271 /* 2272 * COW range from cow_start to found_key.offset - 1. As the key 2273 * will contain the beginning of the first extent that can be 2274 * NOCOW, following one which needs to be COW'ed 2275 */ 2276 if (cow_start != (u64)-1) { 2277 ret = fallback_to_cow(inode, locked_page, 2278 cow_start, found_key.offset - 1, 2279 page_started, nr_written); 2280 if (ret) 2281 goto error; 2282 cow_start = (u64)-1; 2283 } 2284 2285 nocow_end = cur_offset + nocow_args.num_bytes - 1; 2286 is_prealloc = extent_type == BTRFS_FILE_EXTENT_PREALLOC; 2287 if (is_prealloc) { 2288 u64 orig_start = found_key.offset - nocow_args.extent_offset; 2289 struct extent_map *em; 2290 2291 em = create_io_em(inode, cur_offset, nocow_args.num_bytes, 2292 orig_start, 2293 nocow_args.disk_bytenr, /* block_start */ 2294 nocow_args.num_bytes, /* block_len */ 2295 nocow_args.disk_num_bytes, /* orig_block_len */ 2296 ram_bytes, BTRFS_COMPRESS_NONE, 2297 BTRFS_ORDERED_PREALLOC); 2298 if (IS_ERR(em)) { 2299 ret = PTR_ERR(em); 2300 goto error; 2301 } 2302 free_extent_map(em); 2303 } 2304 2305 ordered = btrfs_alloc_ordered_extent(inode, cur_offset, 2306 nocow_args.num_bytes, nocow_args.num_bytes, 2307 nocow_args.disk_bytenr, nocow_args.num_bytes, 0, 2308 is_prealloc 2309 ? (1 << BTRFS_ORDERED_PREALLOC) 2310 : (1 << BTRFS_ORDERED_NOCOW), 2311 BTRFS_COMPRESS_NONE); 2312 if (IS_ERR(ordered)) { 2313 if (is_prealloc) { 2314 btrfs_drop_extent_map_range(inode, cur_offset, 2315 nocow_end, false); 2316 } 2317 ret = PTR_ERR(ordered); 2318 goto error; 2319 } 2320 2321 if (nocow) { 2322 btrfs_dec_nocow_writers(bg); 2323 nocow = false; 2324 } 2325 2326 if (btrfs_is_data_reloc_root(root)) 2327 /* 2328 * Error handled later, as we must prevent 2329 * extent_clear_unlock_delalloc() in error handler 2330 * from freeing metadata of created ordered extent. 2331 */ 2332 ret = btrfs_reloc_clone_csums(ordered); 2333 btrfs_put_ordered_extent(ordered); 2334 2335 extent_clear_unlock_delalloc(inode, cur_offset, nocow_end, 2336 locked_page, EXTENT_LOCKED | 2337 EXTENT_DELALLOC | 2338 EXTENT_CLEAR_DATA_RESV, 2339 PAGE_UNLOCK | PAGE_SET_ORDERED); 2340 2341 cur_offset = extent_end; 2342 2343 /* 2344 * btrfs_reloc_clone_csums() error, now we're OK to call error 2345 * handler, as metadata for created ordered extent will only 2346 * be freed by btrfs_finish_ordered_io(). 2347 */ 2348 if (ret) 2349 goto error; 2350 if (cur_offset > end) 2351 break; 2352 } 2353 btrfs_release_path(path); 2354 2355 if (cur_offset <= end && cow_start == (u64)-1) 2356 cow_start = cur_offset; 2357 2358 if (cow_start != (u64)-1) { 2359 cur_offset = end; 2360 ret = fallback_to_cow(inode, locked_page, cow_start, end, 2361 page_started, nr_written); 2362 if (ret) 2363 goto error; 2364 } 2365 2366 error: 2367 if (nocow) 2368 btrfs_dec_nocow_writers(bg); 2369 2370 if (ret && cur_offset < end) 2371 extent_clear_unlock_delalloc(inode, cur_offset, end, 2372 locked_page, EXTENT_LOCKED | 2373 EXTENT_DELALLOC | EXTENT_DEFRAG | 2374 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK | 2375 PAGE_START_WRITEBACK | 2376 PAGE_END_WRITEBACK); 2377 btrfs_free_path(path); 2378 return ret; 2379 } 2380 2381 static bool should_nocow(struct btrfs_inode *inode, u64 start, u64 end) 2382 { 2383 if (inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)) { 2384 if (inode->defrag_bytes && 2385 test_range_bit(&inode->io_tree, start, end, EXTENT_DEFRAG, 2386 0, NULL)) 2387 return false; 2388 return true; 2389 } 2390 return false; 2391 } 2392 2393 /* 2394 * Function to process delayed allocation (create CoW) for ranges which are 2395 * being touched for the first time. 2396 */ 2397 int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct page *locked_page, 2398 u64 start, u64 end, int *page_started, unsigned long *nr_written, 2399 struct writeback_control *wbc) 2400 { 2401 int ret = 0; 2402 const bool zoned = btrfs_is_zoned(inode->root->fs_info); 2403 2404 /* 2405 * The range must cover part of the @locked_page, or the returned 2406 * @page_started can confuse the caller. 2407 */ 2408 ASSERT(!(end <= page_offset(locked_page) || 2409 start >= page_offset(locked_page) + PAGE_SIZE)); 2410 2411 if (should_nocow(inode, start, end)) { 2412 /* 2413 * Normally on a zoned device we're only doing COW writes, but 2414 * in case of relocation on a zoned filesystem we have taken 2415 * precaution, that we're only writing sequentially. It's safe 2416 * to use run_delalloc_nocow() here, like for regular 2417 * preallocated inodes. 2418 */ 2419 ASSERT(!zoned || btrfs_is_data_reloc_root(inode->root)); 2420 ret = run_delalloc_nocow(inode, locked_page, start, end, 2421 page_started, nr_written); 2422 goto out; 2423 } 2424 2425 if (btrfs_inode_can_compress(inode) && 2426 inode_need_compress(inode, start, end) && 2427 run_delalloc_compressed(inode, wbc, locked_page, start, 2428 end, page_started, nr_written)) 2429 goto out; 2430 2431 if (zoned) 2432 ret = run_delalloc_zoned(inode, locked_page, start, end, 2433 page_started, nr_written, wbc); 2434 else 2435 ret = cow_file_range(inode, locked_page, start, end, 2436 page_started, nr_written, 1, NULL); 2437 2438 out: 2439 ASSERT(ret <= 0); 2440 if (ret) 2441 btrfs_cleanup_ordered_extents(inode, locked_page, start, 2442 end - start + 1); 2443 return ret; 2444 } 2445 2446 void btrfs_split_delalloc_extent(struct btrfs_inode *inode, 2447 struct extent_state *orig, u64 split) 2448 { 2449 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2450 u64 size; 2451 2452 /* not delalloc, ignore it */ 2453 if (!(orig->state & EXTENT_DELALLOC)) 2454 return; 2455 2456 size = orig->end - orig->start + 1; 2457 if (size > fs_info->max_extent_size) { 2458 u32 num_extents; 2459 u64 new_size; 2460 2461 /* 2462 * See the explanation in btrfs_merge_delalloc_extent, the same 2463 * applies here, just in reverse. 2464 */ 2465 new_size = orig->end - split + 1; 2466 num_extents = count_max_extents(fs_info, new_size); 2467 new_size = split - orig->start; 2468 num_extents += count_max_extents(fs_info, new_size); 2469 if (count_max_extents(fs_info, size) >= num_extents) 2470 return; 2471 } 2472 2473 spin_lock(&inode->lock); 2474 btrfs_mod_outstanding_extents(inode, 1); 2475 spin_unlock(&inode->lock); 2476 } 2477 2478 /* 2479 * Handle merged delayed allocation extents so we can keep track of new extents 2480 * that are just merged onto old extents, such as when we are doing sequential 2481 * writes, so we can properly account for the metadata space we'll need. 2482 */ 2483 void btrfs_merge_delalloc_extent(struct btrfs_inode *inode, struct extent_state *new, 2484 struct extent_state *other) 2485 { 2486 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2487 u64 new_size, old_size; 2488 u32 num_extents; 2489 2490 /* not delalloc, ignore it */ 2491 if (!(other->state & EXTENT_DELALLOC)) 2492 return; 2493 2494 if (new->start > other->start) 2495 new_size = new->end - other->start + 1; 2496 else 2497 new_size = other->end - new->start + 1; 2498 2499 /* we're not bigger than the max, unreserve the space and go */ 2500 if (new_size <= fs_info->max_extent_size) { 2501 spin_lock(&inode->lock); 2502 btrfs_mod_outstanding_extents(inode, -1); 2503 spin_unlock(&inode->lock); 2504 return; 2505 } 2506 2507 /* 2508 * We have to add up either side to figure out how many extents were 2509 * accounted for before we merged into one big extent. If the number of 2510 * extents we accounted for is <= the amount we need for the new range 2511 * then we can return, otherwise drop. Think of it like this 2512 * 2513 * [ 4k][MAX_SIZE] 2514 * 2515 * So we've grown the extent by a MAX_SIZE extent, this would mean we 2516 * need 2 outstanding extents, on one side we have 1 and the other side 2517 * we have 1 so they are == and we can return. But in this case 2518 * 2519 * [MAX_SIZE+4k][MAX_SIZE+4k] 2520 * 2521 * Each range on their own accounts for 2 extents, but merged together 2522 * they are only 3 extents worth of accounting, so we need to drop in 2523 * this case. 2524 */ 2525 old_size = other->end - other->start + 1; 2526 num_extents = count_max_extents(fs_info, old_size); 2527 old_size = new->end - new->start + 1; 2528 num_extents += count_max_extents(fs_info, old_size); 2529 if (count_max_extents(fs_info, new_size) >= num_extents) 2530 return; 2531 2532 spin_lock(&inode->lock); 2533 btrfs_mod_outstanding_extents(inode, -1); 2534 spin_unlock(&inode->lock); 2535 } 2536 2537 static void btrfs_add_delalloc_inodes(struct btrfs_root *root, 2538 struct btrfs_inode *inode) 2539 { 2540 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2541 2542 spin_lock(&root->delalloc_lock); 2543 if (list_empty(&inode->delalloc_inodes)) { 2544 list_add_tail(&inode->delalloc_inodes, &root->delalloc_inodes); 2545 set_bit(BTRFS_INODE_IN_DELALLOC_LIST, &inode->runtime_flags); 2546 root->nr_delalloc_inodes++; 2547 if (root->nr_delalloc_inodes == 1) { 2548 spin_lock(&fs_info->delalloc_root_lock); 2549 BUG_ON(!list_empty(&root->delalloc_root)); 2550 list_add_tail(&root->delalloc_root, 2551 &fs_info->delalloc_roots); 2552 spin_unlock(&fs_info->delalloc_root_lock); 2553 } 2554 } 2555 spin_unlock(&root->delalloc_lock); 2556 } 2557 2558 void __btrfs_del_delalloc_inode(struct btrfs_root *root, 2559 struct btrfs_inode *inode) 2560 { 2561 struct btrfs_fs_info *fs_info = root->fs_info; 2562 2563 if (!list_empty(&inode->delalloc_inodes)) { 2564 list_del_init(&inode->delalloc_inodes); 2565 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST, 2566 &inode->runtime_flags); 2567 root->nr_delalloc_inodes--; 2568 if (!root->nr_delalloc_inodes) { 2569 ASSERT(list_empty(&root->delalloc_inodes)); 2570 spin_lock(&fs_info->delalloc_root_lock); 2571 BUG_ON(list_empty(&root->delalloc_root)); 2572 list_del_init(&root->delalloc_root); 2573 spin_unlock(&fs_info->delalloc_root_lock); 2574 } 2575 } 2576 } 2577 2578 static void btrfs_del_delalloc_inode(struct btrfs_root *root, 2579 struct btrfs_inode *inode) 2580 { 2581 spin_lock(&root->delalloc_lock); 2582 __btrfs_del_delalloc_inode(root, inode); 2583 spin_unlock(&root->delalloc_lock); 2584 } 2585 2586 /* 2587 * Properly track delayed allocation bytes in the inode and to maintain the 2588 * list of inodes that have pending delalloc work to be done. 2589 */ 2590 void btrfs_set_delalloc_extent(struct btrfs_inode *inode, struct extent_state *state, 2591 u32 bits) 2592 { 2593 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2594 2595 if ((bits & EXTENT_DEFRAG) && !(bits & EXTENT_DELALLOC)) 2596 WARN_ON(1); 2597 /* 2598 * set_bit and clear bit hooks normally require _irqsave/restore 2599 * but in this case, we are only testing for the DELALLOC 2600 * bit, which is only set or cleared with irqs on 2601 */ 2602 if (!(state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) { 2603 struct btrfs_root *root = inode->root; 2604 u64 len = state->end + 1 - state->start; 2605 u32 num_extents = count_max_extents(fs_info, len); 2606 bool do_list = !btrfs_is_free_space_inode(inode); 2607 2608 spin_lock(&inode->lock); 2609 btrfs_mod_outstanding_extents(inode, num_extents); 2610 spin_unlock(&inode->lock); 2611 2612 /* For sanity tests */ 2613 if (btrfs_is_testing(fs_info)) 2614 return; 2615 2616 percpu_counter_add_batch(&fs_info->delalloc_bytes, len, 2617 fs_info->delalloc_batch); 2618 spin_lock(&inode->lock); 2619 inode->delalloc_bytes += len; 2620 if (bits & EXTENT_DEFRAG) 2621 inode->defrag_bytes += len; 2622 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST, 2623 &inode->runtime_flags)) 2624 btrfs_add_delalloc_inodes(root, inode); 2625 spin_unlock(&inode->lock); 2626 } 2627 2628 if (!(state->state & EXTENT_DELALLOC_NEW) && 2629 (bits & EXTENT_DELALLOC_NEW)) { 2630 spin_lock(&inode->lock); 2631 inode->new_delalloc_bytes += state->end + 1 - state->start; 2632 spin_unlock(&inode->lock); 2633 } 2634 } 2635 2636 /* 2637 * Once a range is no longer delalloc this function ensures that proper 2638 * accounting happens. 2639 */ 2640 void btrfs_clear_delalloc_extent(struct btrfs_inode *inode, 2641 struct extent_state *state, u32 bits) 2642 { 2643 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2644 u64 len = state->end + 1 - state->start; 2645 u32 num_extents = count_max_extents(fs_info, len); 2646 2647 if ((state->state & EXTENT_DEFRAG) && (bits & EXTENT_DEFRAG)) { 2648 spin_lock(&inode->lock); 2649 inode->defrag_bytes -= len; 2650 spin_unlock(&inode->lock); 2651 } 2652 2653 /* 2654 * set_bit and clear bit hooks normally require _irqsave/restore 2655 * but in this case, we are only testing for the DELALLOC 2656 * bit, which is only set or cleared with irqs on 2657 */ 2658 if ((state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) { 2659 struct btrfs_root *root = inode->root; 2660 bool do_list = !btrfs_is_free_space_inode(inode); 2661 2662 spin_lock(&inode->lock); 2663 btrfs_mod_outstanding_extents(inode, -num_extents); 2664 spin_unlock(&inode->lock); 2665 2666 /* 2667 * We don't reserve metadata space for space cache inodes so we 2668 * don't need to call delalloc_release_metadata if there is an 2669 * error. 2670 */ 2671 if (bits & EXTENT_CLEAR_META_RESV && 2672 root != fs_info->tree_root) 2673 btrfs_delalloc_release_metadata(inode, len, false); 2674 2675 /* For sanity tests. */ 2676 if (btrfs_is_testing(fs_info)) 2677 return; 2678 2679 if (!btrfs_is_data_reloc_root(root) && 2680 do_list && !(state->state & EXTENT_NORESERVE) && 2681 (bits & EXTENT_CLEAR_DATA_RESV)) 2682 btrfs_free_reserved_data_space_noquota(fs_info, len); 2683 2684 percpu_counter_add_batch(&fs_info->delalloc_bytes, -len, 2685 fs_info->delalloc_batch); 2686 spin_lock(&inode->lock); 2687 inode->delalloc_bytes -= len; 2688 if (do_list && inode->delalloc_bytes == 0 && 2689 test_bit(BTRFS_INODE_IN_DELALLOC_LIST, 2690 &inode->runtime_flags)) 2691 btrfs_del_delalloc_inode(root, inode); 2692 spin_unlock(&inode->lock); 2693 } 2694 2695 if ((state->state & EXTENT_DELALLOC_NEW) && 2696 (bits & EXTENT_DELALLOC_NEW)) { 2697 spin_lock(&inode->lock); 2698 ASSERT(inode->new_delalloc_bytes >= len); 2699 inode->new_delalloc_bytes -= len; 2700 if (bits & EXTENT_ADD_INODE_BYTES) 2701 inode_add_bytes(&inode->vfs_inode, len); 2702 spin_unlock(&inode->lock); 2703 } 2704 } 2705 2706 static int btrfs_extract_ordered_extent(struct btrfs_bio *bbio, 2707 struct btrfs_ordered_extent *ordered) 2708 { 2709 u64 start = (u64)bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT; 2710 u64 len = bbio->bio.bi_iter.bi_size; 2711 struct btrfs_ordered_extent *new; 2712 int ret; 2713 2714 /* Must always be called for the beginning of an ordered extent. */ 2715 if (WARN_ON_ONCE(start != ordered->disk_bytenr)) 2716 return -EINVAL; 2717 2718 /* No need to split if the ordered extent covers the entire bio. */ 2719 if (ordered->disk_num_bytes == len) { 2720 refcount_inc(&ordered->refs); 2721 bbio->ordered = ordered; 2722 return 0; 2723 } 2724 2725 /* 2726 * Don't split the extent_map for NOCOW extents, as we're writing into 2727 * a pre-existing one. 2728 */ 2729 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags)) { 2730 ret = split_extent_map(bbio->inode, bbio->file_offset, 2731 ordered->num_bytes, len, 2732 ordered->disk_bytenr); 2733 if (ret) 2734 return ret; 2735 } 2736 2737 new = btrfs_split_ordered_extent(ordered, len); 2738 if (IS_ERR(new)) 2739 return PTR_ERR(new); 2740 bbio->ordered = new; 2741 return 0; 2742 } 2743 2744 /* 2745 * given a list of ordered sums record them in the inode. This happens 2746 * at IO completion time based on sums calculated at bio submission time. 2747 */ 2748 static int add_pending_csums(struct btrfs_trans_handle *trans, 2749 struct list_head *list) 2750 { 2751 struct btrfs_ordered_sum *sum; 2752 struct btrfs_root *csum_root = NULL; 2753 int ret; 2754 2755 list_for_each_entry(sum, list, list) { 2756 trans->adding_csums = true; 2757 if (!csum_root) 2758 csum_root = btrfs_csum_root(trans->fs_info, 2759 sum->logical); 2760 ret = btrfs_csum_file_blocks(trans, csum_root, sum); 2761 trans->adding_csums = false; 2762 if (ret) 2763 return ret; 2764 } 2765 return 0; 2766 } 2767 2768 static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode, 2769 const u64 start, 2770 const u64 len, 2771 struct extent_state **cached_state) 2772 { 2773 u64 search_start = start; 2774 const u64 end = start + len - 1; 2775 2776 while (search_start < end) { 2777 const u64 search_len = end - search_start + 1; 2778 struct extent_map *em; 2779 u64 em_len; 2780 int ret = 0; 2781 2782 em = btrfs_get_extent(inode, NULL, 0, search_start, search_len); 2783 if (IS_ERR(em)) 2784 return PTR_ERR(em); 2785 2786 if (em->block_start != EXTENT_MAP_HOLE) 2787 goto next; 2788 2789 em_len = em->len; 2790 if (em->start < search_start) 2791 em_len -= search_start - em->start; 2792 if (em_len > search_len) 2793 em_len = search_len; 2794 2795 ret = set_extent_bit(&inode->io_tree, search_start, 2796 search_start + em_len - 1, 2797 EXTENT_DELALLOC_NEW, cached_state); 2798 next: 2799 search_start = extent_map_end(em); 2800 free_extent_map(em); 2801 if (ret) 2802 return ret; 2803 } 2804 return 0; 2805 } 2806 2807 int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end, 2808 unsigned int extra_bits, 2809 struct extent_state **cached_state) 2810 { 2811 WARN_ON(PAGE_ALIGNED(end)); 2812 2813 if (start >= i_size_read(&inode->vfs_inode) && 2814 !(inode->flags & BTRFS_INODE_PREALLOC)) { 2815 /* 2816 * There can't be any extents following eof in this case so just 2817 * set the delalloc new bit for the range directly. 2818 */ 2819 extra_bits |= EXTENT_DELALLOC_NEW; 2820 } else { 2821 int ret; 2822 2823 ret = btrfs_find_new_delalloc_bytes(inode, start, 2824 end + 1 - start, 2825 cached_state); 2826 if (ret) 2827 return ret; 2828 } 2829 2830 return set_extent_bit(&inode->io_tree, start, end, 2831 EXTENT_DELALLOC | extra_bits, cached_state); 2832 } 2833 2834 /* see btrfs_writepage_start_hook for details on why this is required */ 2835 struct btrfs_writepage_fixup { 2836 struct page *page; 2837 struct btrfs_inode *inode; 2838 struct btrfs_work work; 2839 }; 2840 2841 static void btrfs_writepage_fixup_worker(struct btrfs_work *work) 2842 { 2843 struct btrfs_writepage_fixup *fixup; 2844 struct btrfs_ordered_extent *ordered; 2845 struct extent_state *cached_state = NULL; 2846 struct extent_changeset *data_reserved = NULL; 2847 struct page *page; 2848 struct btrfs_inode *inode; 2849 u64 page_start; 2850 u64 page_end; 2851 int ret = 0; 2852 bool free_delalloc_space = true; 2853 2854 fixup = container_of(work, struct btrfs_writepage_fixup, work); 2855 page = fixup->page; 2856 inode = fixup->inode; 2857 page_start = page_offset(page); 2858 page_end = page_offset(page) + PAGE_SIZE - 1; 2859 2860 /* 2861 * This is similar to page_mkwrite, we need to reserve the space before 2862 * we take the page lock. 2863 */ 2864 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start, 2865 PAGE_SIZE); 2866 again: 2867 lock_page(page); 2868 2869 /* 2870 * Before we queued this fixup, we took a reference on the page. 2871 * page->mapping may go NULL, but it shouldn't be moved to a different 2872 * address space. 2873 */ 2874 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) { 2875 /* 2876 * Unfortunately this is a little tricky, either 2877 * 2878 * 1) We got here and our page had already been dealt with and 2879 * we reserved our space, thus ret == 0, so we need to just 2880 * drop our space reservation and bail. This can happen the 2881 * first time we come into the fixup worker, or could happen 2882 * while waiting for the ordered extent. 2883 * 2) Our page was already dealt with, but we happened to get an 2884 * ENOSPC above from the btrfs_delalloc_reserve_space. In 2885 * this case we obviously don't have anything to release, but 2886 * because the page was already dealt with we don't want to 2887 * mark the page with an error, so make sure we're resetting 2888 * ret to 0. This is why we have this check _before_ the ret 2889 * check, because we do not want to have a surprise ENOSPC 2890 * when the page was already properly dealt with. 2891 */ 2892 if (!ret) { 2893 btrfs_delalloc_release_extents(inode, PAGE_SIZE); 2894 btrfs_delalloc_release_space(inode, data_reserved, 2895 page_start, PAGE_SIZE, 2896 true); 2897 } 2898 ret = 0; 2899 goto out_page; 2900 } 2901 2902 /* 2903 * We can't mess with the page state unless it is locked, so now that 2904 * it is locked bail if we failed to make our space reservation. 2905 */ 2906 if (ret) 2907 goto out_page; 2908 2909 lock_extent(&inode->io_tree, page_start, page_end, &cached_state); 2910 2911 /* already ordered? We're done */ 2912 if (PageOrdered(page)) 2913 goto out_reserved; 2914 2915 ordered = btrfs_lookup_ordered_range(inode, page_start, PAGE_SIZE); 2916 if (ordered) { 2917 unlock_extent(&inode->io_tree, page_start, page_end, 2918 &cached_state); 2919 unlock_page(page); 2920 btrfs_start_ordered_extent(ordered); 2921 btrfs_put_ordered_extent(ordered); 2922 goto again; 2923 } 2924 2925 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0, 2926 &cached_state); 2927 if (ret) 2928 goto out_reserved; 2929 2930 /* 2931 * Everything went as planned, we're now the owner of a dirty page with 2932 * delayed allocation bits set and space reserved for our COW 2933 * destination. 2934 * 2935 * The page was dirty when we started, nothing should have cleaned it. 2936 */ 2937 BUG_ON(!PageDirty(page)); 2938 free_delalloc_space = false; 2939 out_reserved: 2940 btrfs_delalloc_release_extents(inode, PAGE_SIZE); 2941 if (free_delalloc_space) 2942 btrfs_delalloc_release_space(inode, data_reserved, page_start, 2943 PAGE_SIZE, true); 2944 unlock_extent(&inode->io_tree, page_start, page_end, &cached_state); 2945 out_page: 2946 if (ret) { 2947 /* 2948 * We hit ENOSPC or other errors. Update the mapping and page 2949 * to reflect the errors and clean the page. 2950 */ 2951 mapping_set_error(page->mapping, ret); 2952 end_extent_writepage(page, ret, page_start, page_end); 2953 clear_page_dirty_for_io(page); 2954 } 2955 btrfs_page_clear_checked(inode->root->fs_info, page, page_start, PAGE_SIZE); 2956 unlock_page(page); 2957 put_page(page); 2958 kfree(fixup); 2959 extent_changeset_free(data_reserved); 2960 /* 2961 * As a precaution, do a delayed iput in case it would be the last iput 2962 * that could need flushing space. Recursing back to fixup worker would 2963 * deadlock. 2964 */ 2965 btrfs_add_delayed_iput(inode); 2966 } 2967 2968 /* 2969 * There are a few paths in the higher layers of the kernel that directly 2970 * set the page dirty bit without asking the filesystem if it is a 2971 * good idea. This causes problems because we want to make sure COW 2972 * properly happens and the data=ordered rules are followed. 2973 * 2974 * In our case any range that doesn't have the ORDERED bit set 2975 * hasn't been properly setup for IO. We kick off an async process 2976 * to fix it up. The async helper will wait for ordered extents, set 2977 * the delalloc bit and make it safe to write the page. 2978 */ 2979 int btrfs_writepage_cow_fixup(struct page *page) 2980 { 2981 struct inode *inode = page->mapping->host; 2982 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2983 struct btrfs_writepage_fixup *fixup; 2984 2985 /* This page has ordered extent covering it already */ 2986 if (PageOrdered(page)) 2987 return 0; 2988 2989 /* 2990 * PageChecked is set below when we create a fixup worker for this page, 2991 * don't try to create another one if we're already PageChecked() 2992 * 2993 * The extent_io writepage code will redirty the page if we send back 2994 * EAGAIN. 2995 */ 2996 if (PageChecked(page)) 2997 return -EAGAIN; 2998 2999 fixup = kzalloc(sizeof(*fixup), GFP_NOFS); 3000 if (!fixup) 3001 return -EAGAIN; 3002 3003 /* 3004 * We are already holding a reference to this inode from 3005 * write_cache_pages. We need to hold it because the space reservation 3006 * takes place outside of the page lock, and we can't trust 3007 * page->mapping outside of the page lock. 3008 */ 3009 ihold(inode); 3010 btrfs_page_set_checked(fs_info, page, page_offset(page), PAGE_SIZE); 3011 get_page(page); 3012 btrfs_init_work(&fixup->work, btrfs_writepage_fixup_worker, NULL, NULL); 3013 fixup->page = page; 3014 fixup->inode = BTRFS_I(inode); 3015 btrfs_queue_work(fs_info->fixup_workers, &fixup->work); 3016 3017 return -EAGAIN; 3018 } 3019 3020 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans, 3021 struct btrfs_inode *inode, u64 file_pos, 3022 struct btrfs_file_extent_item *stack_fi, 3023 const bool update_inode_bytes, 3024 u64 qgroup_reserved) 3025 { 3026 struct btrfs_root *root = inode->root; 3027 const u64 sectorsize = root->fs_info->sectorsize; 3028 struct btrfs_path *path; 3029 struct extent_buffer *leaf; 3030 struct btrfs_key ins; 3031 u64 disk_num_bytes = btrfs_stack_file_extent_disk_num_bytes(stack_fi); 3032 u64 disk_bytenr = btrfs_stack_file_extent_disk_bytenr(stack_fi); 3033 u64 offset = btrfs_stack_file_extent_offset(stack_fi); 3034 u64 num_bytes = btrfs_stack_file_extent_num_bytes(stack_fi); 3035 u64 ram_bytes = btrfs_stack_file_extent_ram_bytes(stack_fi); 3036 struct btrfs_drop_extents_args drop_args = { 0 }; 3037 int ret; 3038 3039 path = btrfs_alloc_path(); 3040 if (!path) 3041 return -ENOMEM; 3042 3043 /* 3044 * we may be replacing one extent in the tree with another. 3045 * The new extent is pinned in the extent map, and we don't want 3046 * to drop it from the cache until it is completely in the btree. 3047 * 3048 * So, tell btrfs_drop_extents to leave this extent in the cache. 3049 * the caller is expected to unpin it and allow it to be merged 3050 * with the others. 3051 */ 3052 drop_args.path = path; 3053 drop_args.start = file_pos; 3054 drop_args.end = file_pos + num_bytes; 3055 drop_args.replace_extent = true; 3056 drop_args.extent_item_size = sizeof(*stack_fi); 3057 ret = btrfs_drop_extents(trans, root, inode, &drop_args); 3058 if (ret) 3059 goto out; 3060 3061 if (!drop_args.extent_inserted) { 3062 ins.objectid = btrfs_ino(inode); 3063 ins.offset = file_pos; 3064 ins.type = BTRFS_EXTENT_DATA_KEY; 3065 3066 ret = btrfs_insert_empty_item(trans, root, path, &ins, 3067 sizeof(*stack_fi)); 3068 if (ret) 3069 goto out; 3070 } 3071 leaf = path->nodes[0]; 3072 btrfs_set_stack_file_extent_generation(stack_fi, trans->transid); 3073 write_extent_buffer(leaf, stack_fi, 3074 btrfs_item_ptr_offset(leaf, path->slots[0]), 3075 sizeof(struct btrfs_file_extent_item)); 3076 3077 btrfs_mark_buffer_dirty(leaf); 3078 btrfs_release_path(path); 3079 3080 /* 3081 * If we dropped an inline extent here, we know the range where it is 3082 * was not marked with the EXTENT_DELALLOC_NEW bit, so we update the 3083 * number of bytes only for that range containing the inline extent. 3084 * The remaining of the range will be processed when clearning the 3085 * EXTENT_DELALLOC_BIT bit through the ordered extent completion. 3086 */ 3087 if (file_pos == 0 && !IS_ALIGNED(drop_args.bytes_found, sectorsize)) { 3088 u64 inline_size = round_down(drop_args.bytes_found, sectorsize); 3089 3090 inline_size = drop_args.bytes_found - inline_size; 3091 btrfs_update_inode_bytes(inode, sectorsize, inline_size); 3092 drop_args.bytes_found -= inline_size; 3093 num_bytes -= sectorsize; 3094 } 3095 3096 if (update_inode_bytes) 3097 btrfs_update_inode_bytes(inode, num_bytes, drop_args.bytes_found); 3098 3099 ins.objectid = disk_bytenr; 3100 ins.offset = disk_num_bytes; 3101 ins.type = BTRFS_EXTENT_ITEM_KEY; 3102 3103 ret = btrfs_inode_set_file_extent_range(inode, file_pos, ram_bytes); 3104 if (ret) 3105 goto out; 3106 3107 ret = btrfs_alloc_reserved_file_extent(trans, root, btrfs_ino(inode), 3108 file_pos - offset, 3109 qgroup_reserved, &ins); 3110 out: 3111 btrfs_free_path(path); 3112 3113 return ret; 3114 } 3115 3116 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info, 3117 u64 start, u64 len) 3118 { 3119 struct btrfs_block_group *cache; 3120 3121 cache = btrfs_lookup_block_group(fs_info, start); 3122 ASSERT(cache); 3123 3124 spin_lock(&cache->lock); 3125 cache->delalloc_bytes -= len; 3126 spin_unlock(&cache->lock); 3127 3128 btrfs_put_block_group(cache); 3129 } 3130 3131 static int insert_ordered_extent_file_extent(struct btrfs_trans_handle *trans, 3132 struct btrfs_ordered_extent *oe) 3133 { 3134 struct btrfs_file_extent_item stack_fi; 3135 bool update_inode_bytes; 3136 u64 num_bytes = oe->num_bytes; 3137 u64 ram_bytes = oe->ram_bytes; 3138 3139 memset(&stack_fi, 0, sizeof(stack_fi)); 3140 btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_REG); 3141 btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, oe->disk_bytenr); 3142 btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi, 3143 oe->disk_num_bytes); 3144 btrfs_set_stack_file_extent_offset(&stack_fi, oe->offset); 3145 if (test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags)) { 3146 num_bytes = oe->truncated_len; 3147 ram_bytes = num_bytes; 3148 } 3149 btrfs_set_stack_file_extent_num_bytes(&stack_fi, num_bytes); 3150 btrfs_set_stack_file_extent_ram_bytes(&stack_fi, ram_bytes); 3151 btrfs_set_stack_file_extent_compression(&stack_fi, oe->compress_type); 3152 /* Encryption and other encoding is reserved and all 0 */ 3153 3154 /* 3155 * For delalloc, when completing an ordered extent we update the inode's 3156 * bytes when clearing the range in the inode's io tree, so pass false 3157 * as the argument 'update_inode_bytes' to insert_reserved_file_extent(), 3158 * except if the ordered extent was truncated. 3159 */ 3160 update_inode_bytes = test_bit(BTRFS_ORDERED_DIRECT, &oe->flags) || 3161 test_bit(BTRFS_ORDERED_ENCODED, &oe->flags) || 3162 test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags); 3163 3164 return insert_reserved_file_extent(trans, BTRFS_I(oe->inode), 3165 oe->file_offset, &stack_fi, 3166 update_inode_bytes, oe->qgroup_rsv); 3167 } 3168 3169 /* 3170 * As ordered data IO finishes, this gets called so we can finish 3171 * an ordered extent if the range of bytes in the file it covers are 3172 * fully written. 3173 */ 3174 int btrfs_finish_one_ordered(struct btrfs_ordered_extent *ordered_extent) 3175 { 3176 struct btrfs_inode *inode = BTRFS_I(ordered_extent->inode); 3177 struct btrfs_root *root = inode->root; 3178 struct btrfs_fs_info *fs_info = root->fs_info; 3179 struct btrfs_trans_handle *trans = NULL; 3180 struct extent_io_tree *io_tree = &inode->io_tree; 3181 struct extent_state *cached_state = NULL; 3182 u64 start, end; 3183 int compress_type = 0; 3184 int ret = 0; 3185 u64 logical_len = ordered_extent->num_bytes; 3186 bool freespace_inode; 3187 bool truncated = false; 3188 bool clear_reserved_extent = true; 3189 unsigned int clear_bits = EXTENT_DEFRAG; 3190 3191 start = ordered_extent->file_offset; 3192 end = start + ordered_extent->num_bytes - 1; 3193 3194 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) && 3195 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) && 3196 !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags) && 3197 !test_bit(BTRFS_ORDERED_ENCODED, &ordered_extent->flags)) 3198 clear_bits |= EXTENT_DELALLOC_NEW; 3199 3200 freespace_inode = btrfs_is_free_space_inode(inode); 3201 if (!freespace_inode) 3202 btrfs_lockdep_acquire(fs_info, btrfs_ordered_extent); 3203 3204 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) { 3205 ret = -EIO; 3206 goto out; 3207 } 3208 3209 if (btrfs_is_zoned(fs_info)) 3210 btrfs_zone_finish_endio(fs_info, ordered_extent->disk_bytenr, 3211 ordered_extent->disk_num_bytes); 3212 3213 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) { 3214 truncated = true; 3215 logical_len = ordered_extent->truncated_len; 3216 /* Truncated the entire extent, don't bother adding */ 3217 if (!logical_len) 3218 goto out; 3219 } 3220 3221 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) { 3222 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */ 3223 3224 btrfs_inode_safe_disk_i_size_write(inode, 0); 3225 if (freespace_inode) 3226 trans = btrfs_join_transaction_spacecache(root); 3227 else 3228 trans = btrfs_join_transaction(root); 3229 if (IS_ERR(trans)) { 3230 ret = PTR_ERR(trans); 3231 trans = NULL; 3232 goto out; 3233 } 3234 trans->block_rsv = &inode->block_rsv; 3235 ret = btrfs_update_inode_fallback(trans, root, inode); 3236 if (ret) /* -ENOMEM or corruption */ 3237 btrfs_abort_transaction(trans, ret); 3238 goto out; 3239 } 3240 3241 clear_bits |= EXTENT_LOCKED; 3242 lock_extent(io_tree, start, end, &cached_state); 3243 3244 if (freespace_inode) 3245 trans = btrfs_join_transaction_spacecache(root); 3246 else 3247 trans = btrfs_join_transaction(root); 3248 if (IS_ERR(trans)) { 3249 ret = PTR_ERR(trans); 3250 trans = NULL; 3251 goto out; 3252 } 3253 3254 trans->block_rsv = &inode->block_rsv; 3255 3256 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags)) 3257 compress_type = ordered_extent->compress_type; 3258 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 3259 BUG_ON(compress_type); 3260 ret = btrfs_mark_extent_written(trans, inode, 3261 ordered_extent->file_offset, 3262 ordered_extent->file_offset + 3263 logical_len); 3264 btrfs_zoned_release_data_reloc_bg(fs_info, ordered_extent->disk_bytenr, 3265 ordered_extent->disk_num_bytes); 3266 } else { 3267 BUG_ON(root == fs_info->tree_root); 3268 ret = insert_ordered_extent_file_extent(trans, ordered_extent); 3269 if (!ret) { 3270 clear_reserved_extent = false; 3271 btrfs_release_delalloc_bytes(fs_info, 3272 ordered_extent->disk_bytenr, 3273 ordered_extent->disk_num_bytes); 3274 } 3275 } 3276 unpin_extent_cache(&inode->extent_tree, ordered_extent->file_offset, 3277 ordered_extent->num_bytes, trans->transid); 3278 if (ret < 0) { 3279 btrfs_abort_transaction(trans, ret); 3280 goto out; 3281 } 3282 3283 ret = add_pending_csums(trans, &ordered_extent->list); 3284 if (ret) { 3285 btrfs_abort_transaction(trans, ret); 3286 goto out; 3287 } 3288 3289 /* 3290 * If this is a new delalloc range, clear its new delalloc flag to 3291 * update the inode's number of bytes. This needs to be done first 3292 * before updating the inode item. 3293 */ 3294 if ((clear_bits & EXTENT_DELALLOC_NEW) && 3295 !test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) 3296 clear_extent_bit(&inode->io_tree, start, end, 3297 EXTENT_DELALLOC_NEW | EXTENT_ADD_INODE_BYTES, 3298 &cached_state); 3299 3300 btrfs_inode_safe_disk_i_size_write(inode, 0); 3301 ret = btrfs_update_inode_fallback(trans, root, inode); 3302 if (ret) { /* -ENOMEM or corruption */ 3303 btrfs_abort_transaction(trans, ret); 3304 goto out; 3305 } 3306 ret = 0; 3307 out: 3308 clear_extent_bit(&inode->io_tree, start, end, clear_bits, 3309 &cached_state); 3310 3311 if (trans) 3312 btrfs_end_transaction(trans); 3313 3314 if (ret || truncated) { 3315 u64 unwritten_start = start; 3316 3317 /* 3318 * If we failed to finish this ordered extent for any reason we 3319 * need to make sure BTRFS_ORDERED_IOERR is set on the ordered 3320 * extent, and mark the inode with the error if it wasn't 3321 * already set. Any error during writeback would have already 3322 * set the mapping error, so we need to set it if we're the ones 3323 * marking this ordered extent as failed. 3324 */ 3325 if (ret && !test_and_set_bit(BTRFS_ORDERED_IOERR, 3326 &ordered_extent->flags)) 3327 mapping_set_error(ordered_extent->inode->i_mapping, -EIO); 3328 3329 if (truncated) 3330 unwritten_start += logical_len; 3331 clear_extent_uptodate(io_tree, unwritten_start, end, NULL); 3332 3333 /* Drop extent maps for the part of the extent we didn't write. */ 3334 btrfs_drop_extent_map_range(inode, unwritten_start, end, false); 3335 3336 /* 3337 * If the ordered extent had an IOERR or something else went 3338 * wrong we need to return the space for this ordered extent 3339 * back to the allocator. We only free the extent in the 3340 * truncated case if we didn't write out the extent at all. 3341 * 3342 * If we made it past insert_reserved_file_extent before we 3343 * errored out then we don't need to do this as the accounting 3344 * has already been done. 3345 */ 3346 if ((ret || !logical_len) && 3347 clear_reserved_extent && 3348 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) && 3349 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 3350 /* 3351 * Discard the range before returning it back to the 3352 * free space pool 3353 */ 3354 if (ret && btrfs_test_opt(fs_info, DISCARD_SYNC)) 3355 btrfs_discard_extent(fs_info, 3356 ordered_extent->disk_bytenr, 3357 ordered_extent->disk_num_bytes, 3358 NULL); 3359 btrfs_free_reserved_extent(fs_info, 3360 ordered_extent->disk_bytenr, 3361 ordered_extent->disk_num_bytes, 1); 3362 } 3363 } 3364 3365 /* 3366 * This needs to be done to make sure anybody waiting knows we are done 3367 * updating everything for this ordered extent. 3368 */ 3369 btrfs_remove_ordered_extent(inode, ordered_extent); 3370 3371 /* once for us */ 3372 btrfs_put_ordered_extent(ordered_extent); 3373 /* once for the tree */ 3374 btrfs_put_ordered_extent(ordered_extent); 3375 3376 return ret; 3377 } 3378 3379 int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered) 3380 { 3381 if (btrfs_is_zoned(btrfs_sb(ordered->inode->i_sb)) && 3382 !test_bit(BTRFS_ORDERED_IOERR, &ordered->flags)) 3383 btrfs_finish_ordered_zoned(ordered); 3384 return btrfs_finish_one_ordered(ordered); 3385 } 3386 3387 void btrfs_writepage_endio_finish_ordered(struct btrfs_inode *inode, 3388 struct page *page, u64 start, 3389 u64 end, bool uptodate) 3390 { 3391 trace_btrfs_writepage_end_io_hook(inode, start, end, uptodate); 3392 3393 btrfs_mark_ordered_io_finished(inode, page, start, end + 1 - start, uptodate); 3394 } 3395 3396 /* 3397 * Verify the checksum for a single sector without any extra action that depend 3398 * on the type of I/O. 3399 */ 3400 int btrfs_check_sector_csum(struct btrfs_fs_info *fs_info, struct page *page, 3401 u32 pgoff, u8 *csum, const u8 * const csum_expected) 3402 { 3403 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 3404 char *kaddr; 3405 3406 ASSERT(pgoff + fs_info->sectorsize <= PAGE_SIZE); 3407 3408 shash->tfm = fs_info->csum_shash; 3409 3410 kaddr = kmap_local_page(page) + pgoff; 3411 crypto_shash_digest(shash, kaddr, fs_info->sectorsize, csum); 3412 kunmap_local(kaddr); 3413 3414 if (memcmp(csum, csum_expected, fs_info->csum_size)) 3415 return -EIO; 3416 return 0; 3417 } 3418 3419 /* 3420 * Verify the checksum of a single data sector. 3421 * 3422 * @bbio: btrfs_io_bio which contains the csum 3423 * @dev: device the sector is on 3424 * @bio_offset: offset to the beginning of the bio (in bytes) 3425 * @bv: bio_vec to check 3426 * 3427 * Check if the checksum on a data block is valid. When a checksum mismatch is 3428 * detected, report the error and fill the corrupted range with zero. 3429 * 3430 * Return %true if the sector is ok or had no checksum to start with, else %false. 3431 */ 3432 bool btrfs_data_csum_ok(struct btrfs_bio *bbio, struct btrfs_device *dev, 3433 u32 bio_offset, struct bio_vec *bv) 3434 { 3435 struct btrfs_inode *inode = bbio->inode; 3436 struct btrfs_fs_info *fs_info = inode->root->fs_info; 3437 u64 file_offset = bbio->file_offset + bio_offset; 3438 u64 end = file_offset + bv->bv_len - 1; 3439 u8 *csum_expected; 3440 u8 csum[BTRFS_CSUM_SIZE]; 3441 3442 ASSERT(bv->bv_len == fs_info->sectorsize); 3443 3444 if (!bbio->csum) 3445 return true; 3446 3447 if (btrfs_is_data_reloc_root(inode->root) && 3448 test_range_bit(&inode->io_tree, file_offset, end, EXTENT_NODATASUM, 3449 1, NULL)) { 3450 /* Skip the range without csum for data reloc inode */ 3451 clear_extent_bits(&inode->io_tree, file_offset, end, 3452 EXTENT_NODATASUM); 3453 return true; 3454 } 3455 3456 csum_expected = bbio->csum + (bio_offset >> fs_info->sectorsize_bits) * 3457 fs_info->csum_size; 3458 if (btrfs_check_sector_csum(fs_info, bv->bv_page, bv->bv_offset, csum, 3459 csum_expected)) 3460 goto zeroit; 3461 return true; 3462 3463 zeroit: 3464 btrfs_print_data_csum_error(inode, file_offset, csum, csum_expected, 3465 bbio->mirror_num); 3466 if (dev) 3467 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS); 3468 memzero_bvec(bv); 3469 return false; 3470 } 3471 3472 /* 3473 * btrfs_add_delayed_iput - perform a delayed iput on @inode 3474 * 3475 * @inode: The inode we want to perform iput on 3476 * 3477 * This function uses the generic vfs_inode::i_count to track whether we should 3478 * just decrement it (in case it's > 1) or if this is the last iput then link 3479 * the inode to the delayed iput machinery. Delayed iputs are processed at 3480 * transaction commit time/superblock commit/cleaner kthread. 3481 */ 3482 void btrfs_add_delayed_iput(struct btrfs_inode *inode) 3483 { 3484 struct btrfs_fs_info *fs_info = inode->root->fs_info; 3485 3486 if (atomic_add_unless(&inode->vfs_inode.i_count, -1, 1)) 3487 return; 3488 3489 atomic_inc(&fs_info->nr_delayed_iputs); 3490 spin_lock(&fs_info->delayed_iput_lock); 3491 ASSERT(list_empty(&inode->delayed_iput)); 3492 list_add_tail(&inode->delayed_iput, &fs_info->delayed_iputs); 3493 spin_unlock(&fs_info->delayed_iput_lock); 3494 if (!test_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags)) 3495 wake_up_process(fs_info->cleaner_kthread); 3496 } 3497 3498 static void run_delayed_iput_locked(struct btrfs_fs_info *fs_info, 3499 struct btrfs_inode *inode) 3500 { 3501 list_del_init(&inode->delayed_iput); 3502 spin_unlock(&fs_info->delayed_iput_lock); 3503 iput(&inode->vfs_inode); 3504 if (atomic_dec_and_test(&fs_info->nr_delayed_iputs)) 3505 wake_up(&fs_info->delayed_iputs_wait); 3506 spin_lock(&fs_info->delayed_iput_lock); 3507 } 3508 3509 static void btrfs_run_delayed_iput(struct btrfs_fs_info *fs_info, 3510 struct btrfs_inode *inode) 3511 { 3512 if (!list_empty(&inode->delayed_iput)) { 3513 spin_lock(&fs_info->delayed_iput_lock); 3514 if (!list_empty(&inode->delayed_iput)) 3515 run_delayed_iput_locked(fs_info, inode); 3516 spin_unlock(&fs_info->delayed_iput_lock); 3517 } 3518 } 3519 3520 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info) 3521 { 3522 3523 spin_lock(&fs_info->delayed_iput_lock); 3524 while (!list_empty(&fs_info->delayed_iputs)) { 3525 struct btrfs_inode *inode; 3526 3527 inode = list_first_entry(&fs_info->delayed_iputs, 3528 struct btrfs_inode, delayed_iput); 3529 run_delayed_iput_locked(fs_info, inode); 3530 cond_resched_lock(&fs_info->delayed_iput_lock); 3531 } 3532 spin_unlock(&fs_info->delayed_iput_lock); 3533 } 3534 3535 /* 3536 * Wait for flushing all delayed iputs 3537 * 3538 * @fs_info: the filesystem 3539 * 3540 * This will wait on any delayed iputs that are currently running with KILLABLE 3541 * set. Once they are all done running we will return, unless we are killed in 3542 * which case we return EINTR. This helps in user operations like fallocate etc 3543 * that might get blocked on the iputs. 3544 * 3545 * Return EINTR if we were killed, 0 if nothing's pending 3546 */ 3547 int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info) 3548 { 3549 int ret = wait_event_killable(fs_info->delayed_iputs_wait, 3550 atomic_read(&fs_info->nr_delayed_iputs) == 0); 3551 if (ret) 3552 return -EINTR; 3553 return 0; 3554 } 3555 3556 /* 3557 * This creates an orphan entry for the given inode in case something goes wrong 3558 * in the middle of an unlink. 3559 */ 3560 int btrfs_orphan_add(struct btrfs_trans_handle *trans, 3561 struct btrfs_inode *inode) 3562 { 3563 int ret; 3564 3565 ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode)); 3566 if (ret && ret != -EEXIST) { 3567 btrfs_abort_transaction(trans, ret); 3568 return ret; 3569 } 3570 3571 return 0; 3572 } 3573 3574 /* 3575 * We have done the delete so we can go ahead and remove the orphan item for 3576 * this particular inode. 3577 */ 3578 static int btrfs_orphan_del(struct btrfs_trans_handle *trans, 3579 struct btrfs_inode *inode) 3580 { 3581 return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode)); 3582 } 3583 3584 /* 3585 * this cleans up any orphans that may be left on the list from the last use 3586 * of this root. 3587 */ 3588 int btrfs_orphan_cleanup(struct btrfs_root *root) 3589 { 3590 struct btrfs_fs_info *fs_info = root->fs_info; 3591 struct btrfs_path *path; 3592 struct extent_buffer *leaf; 3593 struct btrfs_key key, found_key; 3594 struct btrfs_trans_handle *trans; 3595 struct inode *inode; 3596 u64 last_objectid = 0; 3597 int ret = 0, nr_unlink = 0; 3598 3599 if (test_and_set_bit(BTRFS_ROOT_ORPHAN_CLEANUP, &root->state)) 3600 return 0; 3601 3602 path = btrfs_alloc_path(); 3603 if (!path) { 3604 ret = -ENOMEM; 3605 goto out; 3606 } 3607 path->reada = READA_BACK; 3608 3609 key.objectid = BTRFS_ORPHAN_OBJECTID; 3610 key.type = BTRFS_ORPHAN_ITEM_KEY; 3611 key.offset = (u64)-1; 3612 3613 while (1) { 3614 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3615 if (ret < 0) 3616 goto out; 3617 3618 /* 3619 * if ret == 0 means we found what we were searching for, which 3620 * is weird, but possible, so only screw with path if we didn't 3621 * find the key and see if we have stuff that matches 3622 */ 3623 if (ret > 0) { 3624 ret = 0; 3625 if (path->slots[0] == 0) 3626 break; 3627 path->slots[0]--; 3628 } 3629 3630 /* pull out the item */ 3631 leaf = path->nodes[0]; 3632 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 3633 3634 /* make sure the item matches what we want */ 3635 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID) 3636 break; 3637 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY) 3638 break; 3639 3640 /* release the path since we're done with it */ 3641 btrfs_release_path(path); 3642 3643 /* 3644 * this is where we are basically btrfs_lookup, without the 3645 * crossing root thing. we store the inode number in the 3646 * offset of the orphan item. 3647 */ 3648 3649 if (found_key.offset == last_objectid) { 3650 btrfs_err(fs_info, 3651 "Error removing orphan entry, stopping orphan cleanup"); 3652 ret = -EINVAL; 3653 goto out; 3654 } 3655 3656 last_objectid = found_key.offset; 3657 3658 found_key.objectid = found_key.offset; 3659 found_key.type = BTRFS_INODE_ITEM_KEY; 3660 found_key.offset = 0; 3661 inode = btrfs_iget(fs_info->sb, last_objectid, root); 3662 ret = PTR_ERR_OR_ZERO(inode); 3663 if (ret && ret != -ENOENT) 3664 goto out; 3665 3666 if (ret == -ENOENT && root == fs_info->tree_root) { 3667 struct btrfs_root *dead_root; 3668 int is_dead_root = 0; 3669 3670 /* 3671 * This is an orphan in the tree root. Currently these 3672 * could come from 2 sources: 3673 * a) a root (snapshot/subvolume) deletion in progress 3674 * b) a free space cache inode 3675 * We need to distinguish those two, as the orphan item 3676 * for a root must not get deleted before the deletion 3677 * of the snapshot/subvolume's tree completes. 3678 * 3679 * btrfs_find_orphan_roots() ran before us, which has 3680 * found all deleted roots and loaded them into 3681 * fs_info->fs_roots_radix. So here we can find if an 3682 * orphan item corresponds to a deleted root by looking 3683 * up the root from that radix tree. 3684 */ 3685 3686 spin_lock(&fs_info->fs_roots_radix_lock); 3687 dead_root = radix_tree_lookup(&fs_info->fs_roots_radix, 3688 (unsigned long)found_key.objectid); 3689 if (dead_root && btrfs_root_refs(&dead_root->root_item) == 0) 3690 is_dead_root = 1; 3691 spin_unlock(&fs_info->fs_roots_radix_lock); 3692 3693 if (is_dead_root) { 3694 /* prevent this orphan from being found again */ 3695 key.offset = found_key.objectid - 1; 3696 continue; 3697 } 3698 3699 } 3700 3701 /* 3702 * If we have an inode with links, there are a couple of 3703 * possibilities: 3704 * 3705 * 1. We were halfway through creating fsverity metadata for the 3706 * file. In that case, the orphan item represents incomplete 3707 * fsverity metadata which must be cleaned up with 3708 * btrfs_drop_verity_items and deleting the orphan item. 3709 3710 * 2. Old kernels (before v3.12) used to create an 3711 * orphan item for truncate indicating that there were possibly 3712 * extent items past i_size that needed to be deleted. In v3.12, 3713 * truncate was changed to update i_size in sync with the extent 3714 * items, but the (useless) orphan item was still created. Since 3715 * v4.18, we don't create the orphan item for truncate at all. 3716 * 3717 * So, this item could mean that we need to do a truncate, but 3718 * only if this filesystem was last used on a pre-v3.12 kernel 3719 * and was not cleanly unmounted. The odds of that are quite 3720 * slim, and it's a pain to do the truncate now, so just delete 3721 * the orphan item. 3722 * 3723 * It's also possible that this orphan item was supposed to be 3724 * deleted but wasn't. The inode number may have been reused, 3725 * but either way, we can delete the orphan item. 3726 */ 3727 if (ret == -ENOENT || inode->i_nlink) { 3728 if (!ret) { 3729 ret = btrfs_drop_verity_items(BTRFS_I(inode)); 3730 iput(inode); 3731 if (ret) 3732 goto out; 3733 } 3734 trans = btrfs_start_transaction(root, 1); 3735 if (IS_ERR(trans)) { 3736 ret = PTR_ERR(trans); 3737 iput(inode); 3738 goto out; 3739 } 3740 btrfs_debug(fs_info, "auto deleting %Lu", 3741 found_key.objectid); 3742 ret = btrfs_del_orphan_item(trans, root, 3743 found_key.objectid); 3744 btrfs_end_transaction(trans); 3745 if (ret) { 3746 iput(inode); 3747 goto out; 3748 } 3749 continue; 3750 } 3751 3752 nr_unlink++; 3753 3754 /* this will do delete_inode and everything for us */ 3755 iput(inode); 3756 } 3757 /* release the path since we're done with it */ 3758 btrfs_release_path(path); 3759 3760 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) { 3761 trans = btrfs_join_transaction(root); 3762 if (!IS_ERR(trans)) 3763 btrfs_end_transaction(trans); 3764 } 3765 3766 if (nr_unlink) 3767 btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink); 3768 3769 out: 3770 if (ret) 3771 btrfs_err(fs_info, "could not do orphan cleanup %d", ret); 3772 btrfs_free_path(path); 3773 return ret; 3774 } 3775 3776 /* 3777 * very simple check to peek ahead in the leaf looking for xattrs. If we 3778 * don't find any xattrs, we know there can't be any acls. 3779 * 3780 * slot is the slot the inode is in, objectid is the objectid of the inode 3781 */ 3782 static noinline int acls_after_inode_item(struct extent_buffer *leaf, 3783 int slot, u64 objectid, 3784 int *first_xattr_slot) 3785 { 3786 u32 nritems = btrfs_header_nritems(leaf); 3787 struct btrfs_key found_key; 3788 static u64 xattr_access = 0; 3789 static u64 xattr_default = 0; 3790 int scanned = 0; 3791 3792 if (!xattr_access) { 3793 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS, 3794 strlen(XATTR_NAME_POSIX_ACL_ACCESS)); 3795 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT, 3796 strlen(XATTR_NAME_POSIX_ACL_DEFAULT)); 3797 } 3798 3799 slot++; 3800 *first_xattr_slot = -1; 3801 while (slot < nritems) { 3802 btrfs_item_key_to_cpu(leaf, &found_key, slot); 3803 3804 /* we found a different objectid, there must not be acls */ 3805 if (found_key.objectid != objectid) 3806 return 0; 3807 3808 /* we found an xattr, assume we've got an acl */ 3809 if (found_key.type == BTRFS_XATTR_ITEM_KEY) { 3810 if (*first_xattr_slot == -1) 3811 *first_xattr_slot = slot; 3812 if (found_key.offset == xattr_access || 3813 found_key.offset == xattr_default) 3814 return 1; 3815 } 3816 3817 /* 3818 * we found a key greater than an xattr key, there can't 3819 * be any acls later on 3820 */ 3821 if (found_key.type > BTRFS_XATTR_ITEM_KEY) 3822 return 0; 3823 3824 slot++; 3825 scanned++; 3826 3827 /* 3828 * it goes inode, inode backrefs, xattrs, extents, 3829 * so if there are a ton of hard links to an inode there can 3830 * be a lot of backrefs. Don't waste time searching too hard, 3831 * this is just an optimization 3832 */ 3833 if (scanned >= 8) 3834 break; 3835 } 3836 /* we hit the end of the leaf before we found an xattr or 3837 * something larger than an xattr. We have to assume the inode 3838 * has acls 3839 */ 3840 if (*first_xattr_slot == -1) 3841 *first_xattr_slot = slot; 3842 return 1; 3843 } 3844 3845 /* 3846 * read an inode from the btree into the in-memory inode 3847 */ 3848 static int btrfs_read_locked_inode(struct inode *inode, 3849 struct btrfs_path *in_path) 3850 { 3851 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3852 struct btrfs_path *path = in_path; 3853 struct extent_buffer *leaf; 3854 struct btrfs_inode_item *inode_item; 3855 struct btrfs_root *root = BTRFS_I(inode)->root; 3856 struct btrfs_key location; 3857 unsigned long ptr; 3858 int maybe_acls; 3859 u32 rdev; 3860 int ret; 3861 bool filled = false; 3862 int first_xattr_slot; 3863 3864 ret = btrfs_fill_inode(inode, &rdev); 3865 if (!ret) 3866 filled = true; 3867 3868 if (!path) { 3869 path = btrfs_alloc_path(); 3870 if (!path) 3871 return -ENOMEM; 3872 } 3873 3874 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location)); 3875 3876 ret = btrfs_lookup_inode(NULL, root, path, &location, 0); 3877 if (ret) { 3878 if (path != in_path) 3879 btrfs_free_path(path); 3880 return ret; 3881 } 3882 3883 leaf = path->nodes[0]; 3884 3885 if (filled) 3886 goto cache_index; 3887 3888 inode_item = btrfs_item_ptr(leaf, path->slots[0], 3889 struct btrfs_inode_item); 3890 inode->i_mode = btrfs_inode_mode(leaf, inode_item); 3891 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item)); 3892 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item)); 3893 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item)); 3894 btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item)); 3895 btrfs_inode_set_file_extent_range(BTRFS_I(inode), 0, 3896 round_up(i_size_read(inode), fs_info->sectorsize)); 3897 3898 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime); 3899 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime); 3900 3901 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime); 3902 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime); 3903 3904 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime); 3905 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime); 3906 3907 BTRFS_I(inode)->i_otime.tv_sec = 3908 btrfs_timespec_sec(leaf, &inode_item->otime); 3909 BTRFS_I(inode)->i_otime.tv_nsec = 3910 btrfs_timespec_nsec(leaf, &inode_item->otime); 3911 3912 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item)); 3913 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item); 3914 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item); 3915 3916 inode_set_iversion_queried(inode, 3917 btrfs_inode_sequence(leaf, inode_item)); 3918 inode->i_generation = BTRFS_I(inode)->generation; 3919 inode->i_rdev = 0; 3920 rdev = btrfs_inode_rdev(leaf, inode_item); 3921 3922 BTRFS_I(inode)->index_cnt = (u64)-1; 3923 btrfs_inode_split_flags(btrfs_inode_flags(leaf, inode_item), 3924 &BTRFS_I(inode)->flags, &BTRFS_I(inode)->ro_flags); 3925 3926 cache_index: 3927 /* 3928 * If we were modified in the current generation and evicted from memory 3929 * and then re-read we need to do a full sync since we don't have any 3930 * idea about which extents were modified before we were evicted from 3931 * cache. 3932 * 3933 * This is required for both inode re-read from disk and delayed inode 3934 * in delayed_nodes_tree. 3935 */ 3936 if (BTRFS_I(inode)->last_trans == fs_info->generation) 3937 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 3938 &BTRFS_I(inode)->runtime_flags); 3939 3940 /* 3941 * We don't persist the id of the transaction where an unlink operation 3942 * against the inode was last made. So here we assume the inode might 3943 * have been evicted, and therefore the exact value of last_unlink_trans 3944 * lost, and set it to last_trans to avoid metadata inconsistencies 3945 * between the inode and its parent if the inode is fsync'ed and the log 3946 * replayed. For example, in the scenario: 3947 * 3948 * touch mydir/foo 3949 * ln mydir/foo mydir/bar 3950 * sync 3951 * unlink mydir/bar 3952 * echo 2 > /proc/sys/vm/drop_caches # evicts inode 3953 * xfs_io -c fsync mydir/foo 3954 * <power failure> 3955 * mount fs, triggers fsync log replay 3956 * 3957 * We must make sure that when we fsync our inode foo we also log its 3958 * parent inode, otherwise after log replay the parent still has the 3959 * dentry with the "bar" name but our inode foo has a link count of 1 3960 * and doesn't have an inode ref with the name "bar" anymore. 3961 * 3962 * Setting last_unlink_trans to last_trans is a pessimistic approach, 3963 * but it guarantees correctness at the expense of occasional full 3964 * transaction commits on fsync if our inode is a directory, or if our 3965 * inode is not a directory, logging its parent unnecessarily. 3966 */ 3967 BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans; 3968 3969 /* 3970 * Same logic as for last_unlink_trans. We don't persist the generation 3971 * of the last transaction where this inode was used for a reflink 3972 * operation, so after eviction and reloading the inode we must be 3973 * pessimistic and assume the last transaction that modified the inode. 3974 */ 3975 BTRFS_I(inode)->last_reflink_trans = BTRFS_I(inode)->last_trans; 3976 3977 path->slots[0]++; 3978 if (inode->i_nlink != 1 || 3979 path->slots[0] >= btrfs_header_nritems(leaf)) 3980 goto cache_acl; 3981 3982 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]); 3983 if (location.objectid != btrfs_ino(BTRFS_I(inode))) 3984 goto cache_acl; 3985 3986 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 3987 if (location.type == BTRFS_INODE_REF_KEY) { 3988 struct btrfs_inode_ref *ref; 3989 3990 ref = (struct btrfs_inode_ref *)ptr; 3991 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref); 3992 } else if (location.type == BTRFS_INODE_EXTREF_KEY) { 3993 struct btrfs_inode_extref *extref; 3994 3995 extref = (struct btrfs_inode_extref *)ptr; 3996 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf, 3997 extref); 3998 } 3999 cache_acl: 4000 /* 4001 * try to precache a NULL acl entry for files that don't have 4002 * any xattrs or acls 4003 */ 4004 maybe_acls = acls_after_inode_item(leaf, path->slots[0], 4005 btrfs_ino(BTRFS_I(inode)), &first_xattr_slot); 4006 if (first_xattr_slot != -1) { 4007 path->slots[0] = first_xattr_slot; 4008 ret = btrfs_load_inode_props(inode, path); 4009 if (ret) 4010 btrfs_err(fs_info, 4011 "error loading props for ino %llu (root %llu): %d", 4012 btrfs_ino(BTRFS_I(inode)), 4013 root->root_key.objectid, ret); 4014 } 4015 if (path != in_path) 4016 btrfs_free_path(path); 4017 4018 if (!maybe_acls) 4019 cache_no_acl(inode); 4020 4021 switch (inode->i_mode & S_IFMT) { 4022 case S_IFREG: 4023 inode->i_mapping->a_ops = &btrfs_aops; 4024 inode->i_fop = &btrfs_file_operations; 4025 inode->i_op = &btrfs_file_inode_operations; 4026 break; 4027 case S_IFDIR: 4028 inode->i_fop = &btrfs_dir_file_operations; 4029 inode->i_op = &btrfs_dir_inode_operations; 4030 break; 4031 case S_IFLNK: 4032 inode->i_op = &btrfs_symlink_inode_operations; 4033 inode_nohighmem(inode); 4034 inode->i_mapping->a_ops = &btrfs_aops; 4035 break; 4036 default: 4037 inode->i_op = &btrfs_special_inode_operations; 4038 init_special_inode(inode, inode->i_mode, rdev); 4039 break; 4040 } 4041 4042 btrfs_sync_inode_flags_to_i_flags(inode); 4043 return 0; 4044 } 4045 4046 /* 4047 * given a leaf and an inode, copy the inode fields into the leaf 4048 */ 4049 static void fill_inode_item(struct btrfs_trans_handle *trans, 4050 struct extent_buffer *leaf, 4051 struct btrfs_inode_item *item, 4052 struct inode *inode) 4053 { 4054 struct btrfs_map_token token; 4055 u64 flags; 4056 4057 btrfs_init_map_token(&token, leaf); 4058 4059 btrfs_set_token_inode_uid(&token, item, i_uid_read(inode)); 4060 btrfs_set_token_inode_gid(&token, item, i_gid_read(inode)); 4061 btrfs_set_token_inode_size(&token, item, BTRFS_I(inode)->disk_i_size); 4062 btrfs_set_token_inode_mode(&token, item, inode->i_mode); 4063 btrfs_set_token_inode_nlink(&token, item, inode->i_nlink); 4064 4065 btrfs_set_token_timespec_sec(&token, &item->atime, 4066 inode->i_atime.tv_sec); 4067 btrfs_set_token_timespec_nsec(&token, &item->atime, 4068 inode->i_atime.tv_nsec); 4069 4070 btrfs_set_token_timespec_sec(&token, &item->mtime, 4071 inode->i_mtime.tv_sec); 4072 btrfs_set_token_timespec_nsec(&token, &item->mtime, 4073 inode->i_mtime.tv_nsec); 4074 4075 btrfs_set_token_timespec_sec(&token, &item->ctime, 4076 inode->i_ctime.tv_sec); 4077 btrfs_set_token_timespec_nsec(&token, &item->ctime, 4078 inode->i_ctime.tv_nsec); 4079 4080 btrfs_set_token_timespec_sec(&token, &item->otime, 4081 BTRFS_I(inode)->i_otime.tv_sec); 4082 btrfs_set_token_timespec_nsec(&token, &item->otime, 4083 BTRFS_I(inode)->i_otime.tv_nsec); 4084 4085 btrfs_set_token_inode_nbytes(&token, item, inode_get_bytes(inode)); 4086 btrfs_set_token_inode_generation(&token, item, 4087 BTRFS_I(inode)->generation); 4088 btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode)); 4089 btrfs_set_token_inode_transid(&token, item, trans->transid); 4090 btrfs_set_token_inode_rdev(&token, item, inode->i_rdev); 4091 flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags, 4092 BTRFS_I(inode)->ro_flags); 4093 btrfs_set_token_inode_flags(&token, item, flags); 4094 btrfs_set_token_inode_block_group(&token, item, 0); 4095 } 4096 4097 /* 4098 * copy everything in the in-memory inode into the btree. 4099 */ 4100 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans, 4101 struct btrfs_root *root, 4102 struct btrfs_inode *inode) 4103 { 4104 struct btrfs_inode_item *inode_item; 4105 struct btrfs_path *path; 4106 struct extent_buffer *leaf; 4107 int ret; 4108 4109 path = btrfs_alloc_path(); 4110 if (!path) 4111 return -ENOMEM; 4112 4113 ret = btrfs_lookup_inode(trans, root, path, &inode->location, 1); 4114 if (ret) { 4115 if (ret > 0) 4116 ret = -ENOENT; 4117 goto failed; 4118 } 4119 4120 leaf = path->nodes[0]; 4121 inode_item = btrfs_item_ptr(leaf, path->slots[0], 4122 struct btrfs_inode_item); 4123 4124 fill_inode_item(trans, leaf, inode_item, &inode->vfs_inode); 4125 btrfs_mark_buffer_dirty(leaf); 4126 btrfs_set_inode_last_trans(trans, inode); 4127 ret = 0; 4128 failed: 4129 btrfs_free_path(path); 4130 return ret; 4131 } 4132 4133 /* 4134 * copy everything in the in-memory inode into the btree. 4135 */ 4136 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans, 4137 struct btrfs_root *root, 4138 struct btrfs_inode *inode) 4139 { 4140 struct btrfs_fs_info *fs_info = root->fs_info; 4141 int ret; 4142 4143 /* 4144 * If the inode is a free space inode, we can deadlock during commit 4145 * if we put it into the delayed code. 4146 * 4147 * The data relocation inode should also be directly updated 4148 * without delay 4149 */ 4150 if (!btrfs_is_free_space_inode(inode) 4151 && !btrfs_is_data_reloc_root(root) 4152 && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) { 4153 btrfs_update_root_times(trans, root); 4154 4155 ret = btrfs_delayed_update_inode(trans, root, inode); 4156 if (!ret) 4157 btrfs_set_inode_last_trans(trans, inode); 4158 return ret; 4159 } 4160 4161 return btrfs_update_inode_item(trans, root, inode); 4162 } 4163 4164 int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans, 4165 struct btrfs_root *root, struct btrfs_inode *inode) 4166 { 4167 int ret; 4168 4169 ret = btrfs_update_inode(trans, root, inode); 4170 if (ret == -ENOSPC) 4171 return btrfs_update_inode_item(trans, root, inode); 4172 return ret; 4173 } 4174 4175 /* 4176 * unlink helper that gets used here in inode.c and in the tree logging 4177 * recovery code. It remove a link in a directory with a given name, and 4178 * also drops the back refs in the inode to the directory 4179 */ 4180 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans, 4181 struct btrfs_inode *dir, 4182 struct btrfs_inode *inode, 4183 const struct fscrypt_str *name, 4184 struct btrfs_rename_ctx *rename_ctx) 4185 { 4186 struct btrfs_root *root = dir->root; 4187 struct btrfs_fs_info *fs_info = root->fs_info; 4188 struct btrfs_path *path; 4189 int ret = 0; 4190 struct btrfs_dir_item *di; 4191 u64 index; 4192 u64 ino = btrfs_ino(inode); 4193 u64 dir_ino = btrfs_ino(dir); 4194 4195 path = btrfs_alloc_path(); 4196 if (!path) { 4197 ret = -ENOMEM; 4198 goto out; 4199 } 4200 4201 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, name, -1); 4202 if (IS_ERR_OR_NULL(di)) { 4203 ret = di ? PTR_ERR(di) : -ENOENT; 4204 goto err; 4205 } 4206 ret = btrfs_delete_one_dir_name(trans, root, path, di); 4207 if (ret) 4208 goto err; 4209 btrfs_release_path(path); 4210 4211 /* 4212 * If we don't have dir index, we have to get it by looking up 4213 * the inode ref, since we get the inode ref, remove it directly, 4214 * it is unnecessary to do delayed deletion. 4215 * 4216 * But if we have dir index, needn't search inode ref to get it. 4217 * Since the inode ref is close to the inode item, it is better 4218 * that we delay to delete it, and just do this deletion when 4219 * we update the inode item. 4220 */ 4221 if (inode->dir_index) { 4222 ret = btrfs_delayed_delete_inode_ref(inode); 4223 if (!ret) { 4224 index = inode->dir_index; 4225 goto skip_backref; 4226 } 4227 } 4228 4229 ret = btrfs_del_inode_ref(trans, root, name, ino, dir_ino, &index); 4230 if (ret) { 4231 btrfs_info(fs_info, 4232 "failed to delete reference to %.*s, inode %llu parent %llu", 4233 name->len, name->name, ino, dir_ino); 4234 btrfs_abort_transaction(trans, ret); 4235 goto err; 4236 } 4237 skip_backref: 4238 if (rename_ctx) 4239 rename_ctx->index = index; 4240 4241 ret = btrfs_delete_delayed_dir_index(trans, dir, index); 4242 if (ret) { 4243 btrfs_abort_transaction(trans, ret); 4244 goto err; 4245 } 4246 4247 /* 4248 * If we are in a rename context, we don't need to update anything in the 4249 * log. That will be done later during the rename by btrfs_log_new_name(). 4250 * Besides that, doing it here would only cause extra unnecessary btree 4251 * operations on the log tree, increasing latency for applications. 4252 */ 4253 if (!rename_ctx) { 4254 btrfs_del_inode_ref_in_log(trans, root, name, inode, dir_ino); 4255 btrfs_del_dir_entries_in_log(trans, root, name, dir, index); 4256 } 4257 4258 /* 4259 * If we have a pending delayed iput we could end up with the final iput 4260 * being run in btrfs-cleaner context. If we have enough of these built 4261 * up we can end up burning a lot of time in btrfs-cleaner without any 4262 * way to throttle the unlinks. Since we're currently holding a ref on 4263 * the inode we can run the delayed iput here without any issues as the 4264 * final iput won't be done until after we drop the ref we're currently 4265 * holding. 4266 */ 4267 btrfs_run_delayed_iput(fs_info, inode); 4268 err: 4269 btrfs_free_path(path); 4270 if (ret) 4271 goto out; 4272 4273 btrfs_i_size_write(dir, dir->vfs_inode.i_size - name->len * 2); 4274 inode_inc_iversion(&inode->vfs_inode); 4275 inode_inc_iversion(&dir->vfs_inode); 4276 inode->vfs_inode.i_ctime = current_time(&inode->vfs_inode); 4277 dir->vfs_inode.i_mtime = inode->vfs_inode.i_ctime; 4278 dir->vfs_inode.i_ctime = inode->vfs_inode.i_ctime; 4279 ret = btrfs_update_inode(trans, root, dir); 4280 out: 4281 return ret; 4282 } 4283 4284 int btrfs_unlink_inode(struct btrfs_trans_handle *trans, 4285 struct btrfs_inode *dir, struct btrfs_inode *inode, 4286 const struct fscrypt_str *name) 4287 { 4288 int ret; 4289 4290 ret = __btrfs_unlink_inode(trans, dir, inode, name, NULL); 4291 if (!ret) { 4292 drop_nlink(&inode->vfs_inode); 4293 ret = btrfs_update_inode(trans, inode->root, inode); 4294 } 4295 return ret; 4296 } 4297 4298 /* 4299 * helper to start transaction for unlink and rmdir. 4300 * 4301 * unlink and rmdir are special in btrfs, they do not always free space, so 4302 * if we cannot make our reservations the normal way try and see if there is 4303 * plenty of slack room in the global reserve to migrate, otherwise we cannot 4304 * allow the unlink to occur. 4305 */ 4306 static struct btrfs_trans_handle *__unlink_start_trans(struct btrfs_inode *dir) 4307 { 4308 struct btrfs_root *root = dir->root; 4309 4310 return btrfs_start_transaction_fallback_global_rsv(root, 4311 BTRFS_UNLINK_METADATA_UNITS); 4312 } 4313 4314 static int btrfs_unlink(struct inode *dir, struct dentry *dentry) 4315 { 4316 struct btrfs_trans_handle *trans; 4317 struct inode *inode = d_inode(dentry); 4318 int ret; 4319 struct fscrypt_name fname; 4320 4321 ret = fscrypt_setup_filename(dir, &dentry->d_name, 1, &fname); 4322 if (ret) 4323 return ret; 4324 4325 /* This needs to handle no-key deletions later on */ 4326 4327 trans = __unlink_start_trans(BTRFS_I(dir)); 4328 if (IS_ERR(trans)) { 4329 ret = PTR_ERR(trans); 4330 goto fscrypt_free; 4331 } 4332 4333 btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)), 4334 false); 4335 4336 ret = btrfs_unlink_inode(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)), 4337 &fname.disk_name); 4338 if (ret) 4339 goto end_trans; 4340 4341 if (inode->i_nlink == 0) { 4342 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 4343 if (ret) 4344 goto end_trans; 4345 } 4346 4347 end_trans: 4348 btrfs_end_transaction(trans); 4349 btrfs_btree_balance_dirty(BTRFS_I(dir)->root->fs_info); 4350 fscrypt_free: 4351 fscrypt_free_filename(&fname); 4352 return ret; 4353 } 4354 4355 static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans, 4356 struct btrfs_inode *dir, struct dentry *dentry) 4357 { 4358 struct btrfs_root *root = dir->root; 4359 struct btrfs_inode *inode = BTRFS_I(d_inode(dentry)); 4360 struct btrfs_path *path; 4361 struct extent_buffer *leaf; 4362 struct btrfs_dir_item *di; 4363 struct btrfs_key key; 4364 u64 index; 4365 int ret; 4366 u64 objectid; 4367 u64 dir_ino = btrfs_ino(dir); 4368 struct fscrypt_name fname; 4369 4370 ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 1, &fname); 4371 if (ret) 4372 return ret; 4373 4374 /* This needs to handle no-key deletions later on */ 4375 4376 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) { 4377 objectid = inode->root->root_key.objectid; 4378 } else if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) { 4379 objectid = inode->location.objectid; 4380 } else { 4381 WARN_ON(1); 4382 fscrypt_free_filename(&fname); 4383 return -EINVAL; 4384 } 4385 4386 path = btrfs_alloc_path(); 4387 if (!path) { 4388 ret = -ENOMEM; 4389 goto out; 4390 } 4391 4392 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 4393 &fname.disk_name, -1); 4394 if (IS_ERR_OR_NULL(di)) { 4395 ret = di ? PTR_ERR(di) : -ENOENT; 4396 goto out; 4397 } 4398 4399 leaf = path->nodes[0]; 4400 btrfs_dir_item_key_to_cpu(leaf, di, &key); 4401 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid); 4402 ret = btrfs_delete_one_dir_name(trans, root, path, di); 4403 if (ret) { 4404 btrfs_abort_transaction(trans, ret); 4405 goto out; 4406 } 4407 btrfs_release_path(path); 4408 4409 /* 4410 * This is a placeholder inode for a subvolume we didn't have a 4411 * reference to at the time of the snapshot creation. In the meantime 4412 * we could have renamed the real subvol link into our snapshot, so 4413 * depending on btrfs_del_root_ref to return -ENOENT here is incorrect. 4414 * Instead simply lookup the dir_index_item for this entry so we can 4415 * remove it. Otherwise we know we have a ref to the root and we can 4416 * call btrfs_del_root_ref, and it _shouldn't_ fail. 4417 */ 4418 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) { 4419 di = btrfs_search_dir_index_item(root, path, dir_ino, &fname.disk_name); 4420 if (IS_ERR_OR_NULL(di)) { 4421 if (!di) 4422 ret = -ENOENT; 4423 else 4424 ret = PTR_ERR(di); 4425 btrfs_abort_transaction(trans, ret); 4426 goto out; 4427 } 4428 4429 leaf = path->nodes[0]; 4430 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 4431 index = key.offset; 4432 btrfs_release_path(path); 4433 } else { 4434 ret = btrfs_del_root_ref(trans, objectid, 4435 root->root_key.objectid, dir_ino, 4436 &index, &fname.disk_name); 4437 if (ret) { 4438 btrfs_abort_transaction(trans, ret); 4439 goto out; 4440 } 4441 } 4442 4443 ret = btrfs_delete_delayed_dir_index(trans, dir, index); 4444 if (ret) { 4445 btrfs_abort_transaction(trans, ret); 4446 goto out; 4447 } 4448 4449 btrfs_i_size_write(dir, dir->vfs_inode.i_size - fname.disk_name.len * 2); 4450 inode_inc_iversion(&dir->vfs_inode); 4451 dir->vfs_inode.i_mtime = current_time(&dir->vfs_inode); 4452 dir->vfs_inode.i_ctime = dir->vfs_inode.i_mtime; 4453 ret = btrfs_update_inode_fallback(trans, root, dir); 4454 if (ret) 4455 btrfs_abort_transaction(trans, ret); 4456 out: 4457 btrfs_free_path(path); 4458 fscrypt_free_filename(&fname); 4459 return ret; 4460 } 4461 4462 /* 4463 * Helper to check if the subvolume references other subvolumes or if it's 4464 * default. 4465 */ 4466 static noinline int may_destroy_subvol(struct btrfs_root *root) 4467 { 4468 struct btrfs_fs_info *fs_info = root->fs_info; 4469 struct btrfs_path *path; 4470 struct btrfs_dir_item *di; 4471 struct btrfs_key key; 4472 struct fscrypt_str name = FSTR_INIT("default", 7); 4473 u64 dir_id; 4474 int ret; 4475 4476 path = btrfs_alloc_path(); 4477 if (!path) 4478 return -ENOMEM; 4479 4480 /* Make sure this root isn't set as the default subvol */ 4481 dir_id = btrfs_super_root_dir(fs_info->super_copy); 4482 di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path, 4483 dir_id, &name, 0); 4484 if (di && !IS_ERR(di)) { 4485 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key); 4486 if (key.objectid == root->root_key.objectid) { 4487 ret = -EPERM; 4488 btrfs_err(fs_info, 4489 "deleting default subvolume %llu is not allowed", 4490 key.objectid); 4491 goto out; 4492 } 4493 btrfs_release_path(path); 4494 } 4495 4496 key.objectid = root->root_key.objectid; 4497 key.type = BTRFS_ROOT_REF_KEY; 4498 key.offset = (u64)-1; 4499 4500 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 4501 if (ret < 0) 4502 goto out; 4503 BUG_ON(ret == 0); 4504 4505 ret = 0; 4506 if (path->slots[0] > 0) { 4507 path->slots[0]--; 4508 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 4509 if (key.objectid == root->root_key.objectid && 4510 key.type == BTRFS_ROOT_REF_KEY) 4511 ret = -ENOTEMPTY; 4512 } 4513 out: 4514 btrfs_free_path(path); 4515 return ret; 4516 } 4517 4518 /* Delete all dentries for inodes belonging to the root */ 4519 static void btrfs_prune_dentries(struct btrfs_root *root) 4520 { 4521 struct btrfs_fs_info *fs_info = root->fs_info; 4522 struct rb_node *node; 4523 struct rb_node *prev; 4524 struct btrfs_inode *entry; 4525 struct inode *inode; 4526 u64 objectid = 0; 4527 4528 if (!BTRFS_FS_ERROR(fs_info)) 4529 WARN_ON(btrfs_root_refs(&root->root_item) != 0); 4530 4531 spin_lock(&root->inode_lock); 4532 again: 4533 node = root->inode_tree.rb_node; 4534 prev = NULL; 4535 while (node) { 4536 prev = node; 4537 entry = rb_entry(node, struct btrfs_inode, rb_node); 4538 4539 if (objectid < btrfs_ino(entry)) 4540 node = node->rb_left; 4541 else if (objectid > btrfs_ino(entry)) 4542 node = node->rb_right; 4543 else 4544 break; 4545 } 4546 if (!node) { 4547 while (prev) { 4548 entry = rb_entry(prev, struct btrfs_inode, rb_node); 4549 if (objectid <= btrfs_ino(entry)) { 4550 node = prev; 4551 break; 4552 } 4553 prev = rb_next(prev); 4554 } 4555 } 4556 while (node) { 4557 entry = rb_entry(node, struct btrfs_inode, rb_node); 4558 objectid = btrfs_ino(entry) + 1; 4559 inode = igrab(&entry->vfs_inode); 4560 if (inode) { 4561 spin_unlock(&root->inode_lock); 4562 if (atomic_read(&inode->i_count) > 1) 4563 d_prune_aliases(inode); 4564 /* 4565 * btrfs_drop_inode will have it removed from the inode 4566 * cache when its usage count hits zero. 4567 */ 4568 iput(inode); 4569 cond_resched(); 4570 spin_lock(&root->inode_lock); 4571 goto again; 4572 } 4573 4574 if (cond_resched_lock(&root->inode_lock)) 4575 goto again; 4576 4577 node = rb_next(node); 4578 } 4579 spin_unlock(&root->inode_lock); 4580 } 4581 4582 int btrfs_delete_subvolume(struct btrfs_inode *dir, struct dentry *dentry) 4583 { 4584 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb); 4585 struct btrfs_root *root = dir->root; 4586 struct inode *inode = d_inode(dentry); 4587 struct btrfs_root *dest = BTRFS_I(inode)->root; 4588 struct btrfs_trans_handle *trans; 4589 struct btrfs_block_rsv block_rsv; 4590 u64 root_flags; 4591 int ret; 4592 4593 /* 4594 * Don't allow to delete a subvolume with send in progress. This is 4595 * inside the inode lock so the error handling that has to drop the bit 4596 * again is not run concurrently. 4597 */ 4598 spin_lock(&dest->root_item_lock); 4599 if (dest->send_in_progress) { 4600 spin_unlock(&dest->root_item_lock); 4601 btrfs_warn(fs_info, 4602 "attempt to delete subvolume %llu during send", 4603 dest->root_key.objectid); 4604 return -EPERM; 4605 } 4606 if (atomic_read(&dest->nr_swapfiles)) { 4607 spin_unlock(&dest->root_item_lock); 4608 btrfs_warn(fs_info, 4609 "attempt to delete subvolume %llu with active swapfile", 4610 root->root_key.objectid); 4611 return -EPERM; 4612 } 4613 root_flags = btrfs_root_flags(&dest->root_item); 4614 btrfs_set_root_flags(&dest->root_item, 4615 root_flags | BTRFS_ROOT_SUBVOL_DEAD); 4616 spin_unlock(&dest->root_item_lock); 4617 4618 down_write(&fs_info->subvol_sem); 4619 4620 ret = may_destroy_subvol(dest); 4621 if (ret) 4622 goto out_up_write; 4623 4624 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP); 4625 /* 4626 * One for dir inode, 4627 * two for dir entries, 4628 * two for root ref/backref. 4629 */ 4630 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true); 4631 if (ret) 4632 goto out_up_write; 4633 4634 trans = btrfs_start_transaction(root, 0); 4635 if (IS_ERR(trans)) { 4636 ret = PTR_ERR(trans); 4637 goto out_release; 4638 } 4639 trans->block_rsv = &block_rsv; 4640 trans->bytes_reserved = block_rsv.size; 4641 4642 btrfs_record_snapshot_destroy(trans, dir); 4643 4644 ret = btrfs_unlink_subvol(trans, dir, dentry); 4645 if (ret) { 4646 btrfs_abort_transaction(trans, ret); 4647 goto out_end_trans; 4648 } 4649 4650 ret = btrfs_record_root_in_trans(trans, dest); 4651 if (ret) { 4652 btrfs_abort_transaction(trans, ret); 4653 goto out_end_trans; 4654 } 4655 4656 memset(&dest->root_item.drop_progress, 0, 4657 sizeof(dest->root_item.drop_progress)); 4658 btrfs_set_root_drop_level(&dest->root_item, 0); 4659 btrfs_set_root_refs(&dest->root_item, 0); 4660 4661 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) { 4662 ret = btrfs_insert_orphan_item(trans, 4663 fs_info->tree_root, 4664 dest->root_key.objectid); 4665 if (ret) { 4666 btrfs_abort_transaction(trans, ret); 4667 goto out_end_trans; 4668 } 4669 } 4670 4671 ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid, 4672 BTRFS_UUID_KEY_SUBVOL, 4673 dest->root_key.objectid); 4674 if (ret && ret != -ENOENT) { 4675 btrfs_abort_transaction(trans, ret); 4676 goto out_end_trans; 4677 } 4678 if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) { 4679 ret = btrfs_uuid_tree_remove(trans, 4680 dest->root_item.received_uuid, 4681 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 4682 dest->root_key.objectid); 4683 if (ret && ret != -ENOENT) { 4684 btrfs_abort_transaction(trans, ret); 4685 goto out_end_trans; 4686 } 4687 } 4688 4689 free_anon_bdev(dest->anon_dev); 4690 dest->anon_dev = 0; 4691 out_end_trans: 4692 trans->block_rsv = NULL; 4693 trans->bytes_reserved = 0; 4694 ret = btrfs_end_transaction(trans); 4695 inode->i_flags |= S_DEAD; 4696 out_release: 4697 btrfs_subvolume_release_metadata(root, &block_rsv); 4698 out_up_write: 4699 up_write(&fs_info->subvol_sem); 4700 if (ret) { 4701 spin_lock(&dest->root_item_lock); 4702 root_flags = btrfs_root_flags(&dest->root_item); 4703 btrfs_set_root_flags(&dest->root_item, 4704 root_flags & ~BTRFS_ROOT_SUBVOL_DEAD); 4705 spin_unlock(&dest->root_item_lock); 4706 } else { 4707 d_invalidate(dentry); 4708 btrfs_prune_dentries(dest); 4709 ASSERT(dest->send_in_progress == 0); 4710 } 4711 4712 return ret; 4713 } 4714 4715 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry) 4716 { 4717 struct inode *inode = d_inode(dentry); 4718 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 4719 int err = 0; 4720 struct btrfs_trans_handle *trans; 4721 u64 last_unlink_trans; 4722 struct fscrypt_name fname; 4723 4724 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE) 4725 return -ENOTEMPTY; 4726 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID) { 4727 if (unlikely(btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))) { 4728 btrfs_err(fs_info, 4729 "extent tree v2 doesn't support snapshot deletion yet"); 4730 return -EOPNOTSUPP; 4731 } 4732 return btrfs_delete_subvolume(BTRFS_I(dir), dentry); 4733 } 4734 4735 err = fscrypt_setup_filename(dir, &dentry->d_name, 1, &fname); 4736 if (err) 4737 return err; 4738 4739 /* This needs to handle no-key deletions later on */ 4740 4741 trans = __unlink_start_trans(BTRFS_I(dir)); 4742 if (IS_ERR(trans)) { 4743 err = PTR_ERR(trans); 4744 goto out_notrans; 4745 } 4746 4747 if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 4748 err = btrfs_unlink_subvol(trans, BTRFS_I(dir), dentry); 4749 goto out; 4750 } 4751 4752 err = btrfs_orphan_add(trans, BTRFS_I(inode)); 4753 if (err) 4754 goto out; 4755 4756 last_unlink_trans = BTRFS_I(inode)->last_unlink_trans; 4757 4758 /* now the directory is empty */ 4759 err = btrfs_unlink_inode(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)), 4760 &fname.disk_name); 4761 if (!err) { 4762 btrfs_i_size_write(BTRFS_I(inode), 0); 4763 /* 4764 * Propagate the last_unlink_trans value of the deleted dir to 4765 * its parent directory. This is to prevent an unrecoverable 4766 * log tree in the case we do something like this: 4767 * 1) create dir foo 4768 * 2) create snapshot under dir foo 4769 * 3) delete the snapshot 4770 * 4) rmdir foo 4771 * 5) mkdir foo 4772 * 6) fsync foo or some file inside foo 4773 */ 4774 if (last_unlink_trans >= trans->transid) 4775 BTRFS_I(dir)->last_unlink_trans = last_unlink_trans; 4776 } 4777 out: 4778 btrfs_end_transaction(trans); 4779 out_notrans: 4780 btrfs_btree_balance_dirty(fs_info); 4781 fscrypt_free_filename(&fname); 4782 4783 return err; 4784 } 4785 4786 /* 4787 * btrfs_truncate_block - read, zero a chunk and write a block 4788 * @inode - inode that we're zeroing 4789 * @from - the offset to start zeroing 4790 * @len - the length to zero, 0 to zero the entire range respective to the 4791 * offset 4792 * @front - zero up to the offset instead of from the offset on 4793 * 4794 * This will find the block for the "from" offset and cow the block and zero the 4795 * part we want to zero. This is used with truncate and hole punching. 4796 */ 4797 int btrfs_truncate_block(struct btrfs_inode *inode, loff_t from, loff_t len, 4798 int front) 4799 { 4800 struct btrfs_fs_info *fs_info = inode->root->fs_info; 4801 struct address_space *mapping = inode->vfs_inode.i_mapping; 4802 struct extent_io_tree *io_tree = &inode->io_tree; 4803 struct btrfs_ordered_extent *ordered; 4804 struct extent_state *cached_state = NULL; 4805 struct extent_changeset *data_reserved = NULL; 4806 bool only_release_metadata = false; 4807 u32 blocksize = fs_info->sectorsize; 4808 pgoff_t index = from >> PAGE_SHIFT; 4809 unsigned offset = from & (blocksize - 1); 4810 struct page *page; 4811 gfp_t mask = btrfs_alloc_write_mask(mapping); 4812 size_t write_bytes = blocksize; 4813 int ret = 0; 4814 u64 block_start; 4815 u64 block_end; 4816 4817 if (IS_ALIGNED(offset, blocksize) && 4818 (!len || IS_ALIGNED(len, blocksize))) 4819 goto out; 4820 4821 block_start = round_down(from, blocksize); 4822 block_end = block_start + blocksize - 1; 4823 4824 ret = btrfs_check_data_free_space(inode, &data_reserved, block_start, 4825 blocksize, false); 4826 if (ret < 0) { 4827 if (btrfs_check_nocow_lock(inode, block_start, &write_bytes, false) > 0) { 4828 /* For nocow case, no need to reserve data space */ 4829 only_release_metadata = true; 4830 } else { 4831 goto out; 4832 } 4833 } 4834 ret = btrfs_delalloc_reserve_metadata(inode, blocksize, blocksize, false); 4835 if (ret < 0) { 4836 if (!only_release_metadata) 4837 btrfs_free_reserved_data_space(inode, data_reserved, 4838 block_start, blocksize); 4839 goto out; 4840 } 4841 again: 4842 page = find_or_create_page(mapping, index, mask); 4843 if (!page) { 4844 btrfs_delalloc_release_space(inode, data_reserved, block_start, 4845 blocksize, true); 4846 btrfs_delalloc_release_extents(inode, blocksize); 4847 ret = -ENOMEM; 4848 goto out; 4849 } 4850 ret = set_page_extent_mapped(page); 4851 if (ret < 0) 4852 goto out_unlock; 4853 4854 if (!PageUptodate(page)) { 4855 ret = btrfs_read_folio(NULL, page_folio(page)); 4856 lock_page(page); 4857 if (page->mapping != mapping) { 4858 unlock_page(page); 4859 put_page(page); 4860 goto again; 4861 } 4862 if (!PageUptodate(page)) { 4863 ret = -EIO; 4864 goto out_unlock; 4865 } 4866 } 4867 wait_on_page_writeback(page); 4868 4869 lock_extent(io_tree, block_start, block_end, &cached_state); 4870 4871 ordered = btrfs_lookup_ordered_extent(inode, block_start); 4872 if (ordered) { 4873 unlock_extent(io_tree, block_start, block_end, &cached_state); 4874 unlock_page(page); 4875 put_page(page); 4876 btrfs_start_ordered_extent(ordered); 4877 btrfs_put_ordered_extent(ordered); 4878 goto again; 4879 } 4880 4881 clear_extent_bit(&inode->io_tree, block_start, block_end, 4882 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 4883 &cached_state); 4884 4885 ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0, 4886 &cached_state); 4887 if (ret) { 4888 unlock_extent(io_tree, block_start, block_end, &cached_state); 4889 goto out_unlock; 4890 } 4891 4892 if (offset != blocksize) { 4893 if (!len) 4894 len = blocksize - offset; 4895 if (front) 4896 memzero_page(page, (block_start - page_offset(page)), 4897 offset); 4898 else 4899 memzero_page(page, (block_start - page_offset(page)) + offset, 4900 len); 4901 } 4902 btrfs_page_clear_checked(fs_info, page, block_start, 4903 block_end + 1 - block_start); 4904 btrfs_page_set_dirty(fs_info, page, block_start, block_end + 1 - block_start); 4905 unlock_extent(io_tree, block_start, block_end, &cached_state); 4906 4907 if (only_release_metadata) 4908 set_extent_bit(&inode->io_tree, block_start, block_end, 4909 EXTENT_NORESERVE, NULL); 4910 4911 out_unlock: 4912 if (ret) { 4913 if (only_release_metadata) 4914 btrfs_delalloc_release_metadata(inode, blocksize, true); 4915 else 4916 btrfs_delalloc_release_space(inode, data_reserved, 4917 block_start, blocksize, true); 4918 } 4919 btrfs_delalloc_release_extents(inode, blocksize); 4920 unlock_page(page); 4921 put_page(page); 4922 out: 4923 if (only_release_metadata) 4924 btrfs_check_nocow_unlock(inode); 4925 extent_changeset_free(data_reserved); 4926 return ret; 4927 } 4928 4929 static int maybe_insert_hole(struct btrfs_root *root, struct btrfs_inode *inode, 4930 u64 offset, u64 len) 4931 { 4932 struct btrfs_fs_info *fs_info = root->fs_info; 4933 struct btrfs_trans_handle *trans; 4934 struct btrfs_drop_extents_args drop_args = { 0 }; 4935 int ret; 4936 4937 /* 4938 * If NO_HOLES is enabled, we don't need to do anything. 4939 * Later, up in the call chain, either btrfs_set_inode_last_sub_trans() 4940 * or btrfs_update_inode() will be called, which guarantee that the next 4941 * fsync will know this inode was changed and needs to be logged. 4942 */ 4943 if (btrfs_fs_incompat(fs_info, NO_HOLES)) 4944 return 0; 4945 4946 /* 4947 * 1 - for the one we're dropping 4948 * 1 - for the one we're adding 4949 * 1 - for updating the inode. 4950 */ 4951 trans = btrfs_start_transaction(root, 3); 4952 if (IS_ERR(trans)) 4953 return PTR_ERR(trans); 4954 4955 drop_args.start = offset; 4956 drop_args.end = offset + len; 4957 drop_args.drop_cache = true; 4958 4959 ret = btrfs_drop_extents(trans, root, inode, &drop_args); 4960 if (ret) { 4961 btrfs_abort_transaction(trans, ret); 4962 btrfs_end_transaction(trans); 4963 return ret; 4964 } 4965 4966 ret = btrfs_insert_hole_extent(trans, root, btrfs_ino(inode), offset, len); 4967 if (ret) { 4968 btrfs_abort_transaction(trans, ret); 4969 } else { 4970 btrfs_update_inode_bytes(inode, 0, drop_args.bytes_found); 4971 btrfs_update_inode(trans, root, inode); 4972 } 4973 btrfs_end_transaction(trans); 4974 return ret; 4975 } 4976 4977 /* 4978 * This function puts in dummy file extents for the area we're creating a hole 4979 * for. So if we are truncating this file to a larger size we need to insert 4980 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for 4981 * the range between oldsize and size 4982 */ 4983 int btrfs_cont_expand(struct btrfs_inode *inode, loff_t oldsize, loff_t size) 4984 { 4985 struct btrfs_root *root = inode->root; 4986 struct btrfs_fs_info *fs_info = root->fs_info; 4987 struct extent_io_tree *io_tree = &inode->io_tree; 4988 struct extent_map *em = NULL; 4989 struct extent_state *cached_state = NULL; 4990 u64 hole_start = ALIGN(oldsize, fs_info->sectorsize); 4991 u64 block_end = ALIGN(size, fs_info->sectorsize); 4992 u64 last_byte; 4993 u64 cur_offset; 4994 u64 hole_size; 4995 int err = 0; 4996 4997 /* 4998 * If our size started in the middle of a block we need to zero out the 4999 * rest of the block before we expand the i_size, otherwise we could 5000 * expose stale data. 5001 */ 5002 err = btrfs_truncate_block(inode, oldsize, 0, 0); 5003 if (err) 5004 return err; 5005 5006 if (size <= hole_start) 5007 return 0; 5008 5009 btrfs_lock_and_flush_ordered_range(inode, hole_start, block_end - 1, 5010 &cached_state); 5011 cur_offset = hole_start; 5012 while (1) { 5013 em = btrfs_get_extent(inode, NULL, 0, cur_offset, 5014 block_end - cur_offset); 5015 if (IS_ERR(em)) { 5016 err = PTR_ERR(em); 5017 em = NULL; 5018 break; 5019 } 5020 last_byte = min(extent_map_end(em), block_end); 5021 last_byte = ALIGN(last_byte, fs_info->sectorsize); 5022 hole_size = last_byte - cur_offset; 5023 5024 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) { 5025 struct extent_map *hole_em; 5026 5027 err = maybe_insert_hole(root, inode, cur_offset, 5028 hole_size); 5029 if (err) 5030 break; 5031 5032 err = btrfs_inode_set_file_extent_range(inode, 5033 cur_offset, hole_size); 5034 if (err) 5035 break; 5036 5037 hole_em = alloc_extent_map(); 5038 if (!hole_em) { 5039 btrfs_drop_extent_map_range(inode, cur_offset, 5040 cur_offset + hole_size - 1, 5041 false); 5042 btrfs_set_inode_full_sync(inode); 5043 goto next; 5044 } 5045 hole_em->start = cur_offset; 5046 hole_em->len = hole_size; 5047 hole_em->orig_start = cur_offset; 5048 5049 hole_em->block_start = EXTENT_MAP_HOLE; 5050 hole_em->block_len = 0; 5051 hole_em->orig_block_len = 0; 5052 hole_em->ram_bytes = hole_size; 5053 hole_em->compress_type = BTRFS_COMPRESS_NONE; 5054 hole_em->generation = fs_info->generation; 5055 5056 err = btrfs_replace_extent_map_range(inode, hole_em, true); 5057 free_extent_map(hole_em); 5058 } else { 5059 err = btrfs_inode_set_file_extent_range(inode, 5060 cur_offset, hole_size); 5061 if (err) 5062 break; 5063 } 5064 next: 5065 free_extent_map(em); 5066 em = NULL; 5067 cur_offset = last_byte; 5068 if (cur_offset >= block_end) 5069 break; 5070 } 5071 free_extent_map(em); 5072 unlock_extent(io_tree, hole_start, block_end - 1, &cached_state); 5073 return err; 5074 } 5075 5076 static int btrfs_setsize(struct inode *inode, struct iattr *attr) 5077 { 5078 struct btrfs_root *root = BTRFS_I(inode)->root; 5079 struct btrfs_trans_handle *trans; 5080 loff_t oldsize = i_size_read(inode); 5081 loff_t newsize = attr->ia_size; 5082 int mask = attr->ia_valid; 5083 int ret; 5084 5085 /* 5086 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a 5087 * special case where we need to update the times despite not having 5088 * these flags set. For all other operations the VFS set these flags 5089 * explicitly if it wants a timestamp update. 5090 */ 5091 if (newsize != oldsize) { 5092 inode_inc_iversion(inode); 5093 if (!(mask & (ATTR_CTIME | ATTR_MTIME))) { 5094 inode->i_mtime = current_time(inode); 5095 inode->i_ctime = inode->i_mtime; 5096 } 5097 } 5098 5099 if (newsize > oldsize) { 5100 /* 5101 * Don't do an expanding truncate while snapshotting is ongoing. 5102 * This is to ensure the snapshot captures a fully consistent 5103 * state of this file - if the snapshot captures this expanding 5104 * truncation, it must capture all writes that happened before 5105 * this truncation. 5106 */ 5107 btrfs_drew_write_lock(&root->snapshot_lock); 5108 ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, newsize); 5109 if (ret) { 5110 btrfs_drew_write_unlock(&root->snapshot_lock); 5111 return ret; 5112 } 5113 5114 trans = btrfs_start_transaction(root, 1); 5115 if (IS_ERR(trans)) { 5116 btrfs_drew_write_unlock(&root->snapshot_lock); 5117 return PTR_ERR(trans); 5118 } 5119 5120 i_size_write(inode, newsize); 5121 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0); 5122 pagecache_isize_extended(inode, oldsize, newsize); 5123 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 5124 btrfs_drew_write_unlock(&root->snapshot_lock); 5125 btrfs_end_transaction(trans); 5126 } else { 5127 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5128 5129 if (btrfs_is_zoned(fs_info)) { 5130 ret = btrfs_wait_ordered_range(inode, 5131 ALIGN(newsize, fs_info->sectorsize), 5132 (u64)-1); 5133 if (ret) 5134 return ret; 5135 } 5136 5137 /* 5138 * We're truncating a file that used to have good data down to 5139 * zero. Make sure any new writes to the file get on disk 5140 * on close. 5141 */ 5142 if (newsize == 0) 5143 set_bit(BTRFS_INODE_FLUSH_ON_CLOSE, 5144 &BTRFS_I(inode)->runtime_flags); 5145 5146 truncate_setsize(inode, newsize); 5147 5148 inode_dio_wait(inode); 5149 5150 ret = btrfs_truncate(BTRFS_I(inode), newsize == oldsize); 5151 if (ret && inode->i_nlink) { 5152 int err; 5153 5154 /* 5155 * Truncate failed, so fix up the in-memory size. We 5156 * adjusted disk_i_size down as we removed extents, so 5157 * wait for disk_i_size to be stable and then update the 5158 * in-memory size to match. 5159 */ 5160 err = btrfs_wait_ordered_range(inode, 0, (u64)-1); 5161 if (err) 5162 return err; 5163 i_size_write(inode, BTRFS_I(inode)->disk_i_size); 5164 } 5165 } 5166 5167 return ret; 5168 } 5169 5170 static int btrfs_setattr(struct mnt_idmap *idmap, struct dentry *dentry, 5171 struct iattr *attr) 5172 { 5173 struct inode *inode = d_inode(dentry); 5174 struct btrfs_root *root = BTRFS_I(inode)->root; 5175 int err; 5176 5177 if (btrfs_root_readonly(root)) 5178 return -EROFS; 5179 5180 err = setattr_prepare(idmap, dentry, attr); 5181 if (err) 5182 return err; 5183 5184 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 5185 err = btrfs_setsize(inode, attr); 5186 if (err) 5187 return err; 5188 } 5189 5190 if (attr->ia_valid) { 5191 setattr_copy(idmap, inode, attr); 5192 inode_inc_iversion(inode); 5193 err = btrfs_dirty_inode(BTRFS_I(inode)); 5194 5195 if (!err && attr->ia_valid & ATTR_MODE) 5196 err = posix_acl_chmod(idmap, dentry, inode->i_mode); 5197 } 5198 5199 return err; 5200 } 5201 5202 /* 5203 * While truncating the inode pages during eviction, we get the VFS 5204 * calling btrfs_invalidate_folio() against each folio of the inode. This 5205 * is slow because the calls to btrfs_invalidate_folio() result in a 5206 * huge amount of calls to lock_extent() and clear_extent_bit(), 5207 * which keep merging and splitting extent_state structures over and over, 5208 * wasting lots of time. 5209 * 5210 * Therefore if the inode is being evicted, let btrfs_invalidate_folio() 5211 * skip all those expensive operations on a per folio basis and do only 5212 * the ordered io finishing, while we release here the extent_map and 5213 * extent_state structures, without the excessive merging and splitting. 5214 */ 5215 static void evict_inode_truncate_pages(struct inode *inode) 5216 { 5217 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 5218 struct rb_node *node; 5219 5220 ASSERT(inode->i_state & I_FREEING); 5221 truncate_inode_pages_final(&inode->i_data); 5222 5223 btrfs_drop_extent_map_range(BTRFS_I(inode), 0, (u64)-1, false); 5224 5225 /* 5226 * Keep looping until we have no more ranges in the io tree. 5227 * We can have ongoing bios started by readahead that have 5228 * their endio callback (extent_io.c:end_bio_extent_readpage) 5229 * still in progress (unlocked the pages in the bio but did not yet 5230 * unlocked the ranges in the io tree). Therefore this means some 5231 * ranges can still be locked and eviction started because before 5232 * submitting those bios, which are executed by a separate task (work 5233 * queue kthread), inode references (inode->i_count) were not taken 5234 * (which would be dropped in the end io callback of each bio). 5235 * Therefore here we effectively end up waiting for those bios and 5236 * anyone else holding locked ranges without having bumped the inode's 5237 * reference count - if we don't do it, when they access the inode's 5238 * io_tree to unlock a range it may be too late, leading to an 5239 * use-after-free issue. 5240 */ 5241 spin_lock(&io_tree->lock); 5242 while (!RB_EMPTY_ROOT(&io_tree->state)) { 5243 struct extent_state *state; 5244 struct extent_state *cached_state = NULL; 5245 u64 start; 5246 u64 end; 5247 unsigned state_flags; 5248 5249 node = rb_first(&io_tree->state); 5250 state = rb_entry(node, struct extent_state, rb_node); 5251 start = state->start; 5252 end = state->end; 5253 state_flags = state->state; 5254 spin_unlock(&io_tree->lock); 5255 5256 lock_extent(io_tree, start, end, &cached_state); 5257 5258 /* 5259 * If still has DELALLOC flag, the extent didn't reach disk, 5260 * and its reserved space won't be freed by delayed_ref. 5261 * So we need to free its reserved space here. 5262 * (Refer to comment in btrfs_invalidate_folio, case 2) 5263 * 5264 * Note, end is the bytenr of last byte, so we need + 1 here. 5265 */ 5266 if (state_flags & EXTENT_DELALLOC) 5267 btrfs_qgroup_free_data(BTRFS_I(inode), NULL, start, 5268 end - start + 1); 5269 5270 clear_extent_bit(io_tree, start, end, 5271 EXTENT_CLEAR_ALL_BITS | EXTENT_DO_ACCOUNTING, 5272 &cached_state); 5273 5274 cond_resched(); 5275 spin_lock(&io_tree->lock); 5276 } 5277 spin_unlock(&io_tree->lock); 5278 } 5279 5280 static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root, 5281 struct btrfs_block_rsv *rsv) 5282 { 5283 struct btrfs_fs_info *fs_info = root->fs_info; 5284 struct btrfs_trans_handle *trans; 5285 u64 delayed_refs_extra = btrfs_calc_delayed_ref_bytes(fs_info, 1); 5286 int ret; 5287 5288 /* 5289 * Eviction should be taking place at some place safe because of our 5290 * delayed iputs. However the normal flushing code will run delayed 5291 * iputs, so we cannot use FLUSH_ALL otherwise we'll deadlock. 5292 * 5293 * We reserve the delayed_refs_extra here again because we can't use 5294 * btrfs_start_transaction(root, 0) for the same deadlocky reason as 5295 * above. We reserve our extra bit here because we generate a ton of 5296 * delayed refs activity by truncating. 5297 * 5298 * BTRFS_RESERVE_FLUSH_EVICT will steal from the global_rsv if it can, 5299 * if we fail to make this reservation we can re-try without the 5300 * delayed_refs_extra so we can make some forward progress. 5301 */ 5302 ret = btrfs_block_rsv_refill(fs_info, rsv, rsv->size + delayed_refs_extra, 5303 BTRFS_RESERVE_FLUSH_EVICT); 5304 if (ret) { 5305 ret = btrfs_block_rsv_refill(fs_info, rsv, rsv->size, 5306 BTRFS_RESERVE_FLUSH_EVICT); 5307 if (ret) { 5308 btrfs_warn(fs_info, 5309 "could not allocate space for delete; will truncate on mount"); 5310 return ERR_PTR(-ENOSPC); 5311 } 5312 delayed_refs_extra = 0; 5313 } 5314 5315 trans = btrfs_join_transaction(root); 5316 if (IS_ERR(trans)) 5317 return trans; 5318 5319 if (delayed_refs_extra) { 5320 trans->block_rsv = &fs_info->trans_block_rsv; 5321 trans->bytes_reserved = delayed_refs_extra; 5322 btrfs_block_rsv_migrate(rsv, trans->block_rsv, 5323 delayed_refs_extra, true); 5324 } 5325 return trans; 5326 } 5327 5328 void btrfs_evict_inode(struct inode *inode) 5329 { 5330 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5331 struct btrfs_trans_handle *trans; 5332 struct btrfs_root *root = BTRFS_I(inode)->root; 5333 struct btrfs_block_rsv *rsv = NULL; 5334 int ret; 5335 5336 trace_btrfs_inode_evict(inode); 5337 5338 if (!root) { 5339 fsverity_cleanup_inode(inode); 5340 clear_inode(inode); 5341 return; 5342 } 5343 5344 evict_inode_truncate_pages(inode); 5345 5346 if (inode->i_nlink && 5347 ((btrfs_root_refs(&root->root_item) != 0 && 5348 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) || 5349 btrfs_is_free_space_inode(BTRFS_I(inode)))) 5350 goto out; 5351 5352 if (is_bad_inode(inode)) 5353 goto out; 5354 5355 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) 5356 goto out; 5357 5358 if (inode->i_nlink > 0) { 5359 BUG_ON(btrfs_root_refs(&root->root_item) != 0 && 5360 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID); 5361 goto out; 5362 } 5363 5364 /* 5365 * This makes sure the inode item in tree is uptodate and the space for 5366 * the inode update is released. 5367 */ 5368 ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode)); 5369 if (ret) 5370 goto out; 5371 5372 /* 5373 * This drops any pending insert or delete operations we have for this 5374 * inode. We could have a delayed dir index deletion queued up, but 5375 * we're removing the inode completely so that'll be taken care of in 5376 * the truncate. 5377 */ 5378 btrfs_kill_delayed_inode_items(BTRFS_I(inode)); 5379 5380 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP); 5381 if (!rsv) 5382 goto out; 5383 rsv->size = btrfs_calc_metadata_size(fs_info, 1); 5384 rsv->failfast = true; 5385 5386 btrfs_i_size_write(BTRFS_I(inode), 0); 5387 5388 while (1) { 5389 struct btrfs_truncate_control control = { 5390 .inode = BTRFS_I(inode), 5391 .ino = btrfs_ino(BTRFS_I(inode)), 5392 .new_size = 0, 5393 .min_type = 0, 5394 }; 5395 5396 trans = evict_refill_and_join(root, rsv); 5397 if (IS_ERR(trans)) 5398 goto out; 5399 5400 trans->block_rsv = rsv; 5401 5402 ret = btrfs_truncate_inode_items(trans, root, &control); 5403 trans->block_rsv = &fs_info->trans_block_rsv; 5404 btrfs_end_transaction(trans); 5405 /* 5406 * We have not added new delayed items for our inode after we 5407 * have flushed its delayed items, so no need to throttle on 5408 * delayed items. However we have modified extent buffers. 5409 */ 5410 btrfs_btree_balance_dirty_nodelay(fs_info); 5411 if (ret && ret != -ENOSPC && ret != -EAGAIN) 5412 goto out; 5413 else if (!ret) 5414 break; 5415 } 5416 5417 /* 5418 * Errors here aren't a big deal, it just means we leave orphan items in 5419 * the tree. They will be cleaned up on the next mount. If the inode 5420 * number gets reused, cleanup deletes the orphan item without doing 5421 * anything, and unlink reuses the existing orphan item. 5422 * 5423 * If it turns out that we are dropping too many of these, we might want 5424 * to add a mechanism for retrying these after a commit. 5425 */ 5426 trans = evict_refill_and_join(root, rsv); 5427 if (!IS_ERR(trans)) { 5428 trans->block_rsv = rsv; 5429 btrfs_orphan_del(trans, BTRFS_I(inode)); 5430 trans->block_rsv = &fs_info->trans_block_rsv; 5431 btrfs_end_transaction(trans); 5432 } 5433 5434 out: 5435 btrfs_free_block_rsv(fs_info, rsv); 5436 /* 5437 * If we didn't successfully delete, the orphan item will still be in 5438 * the tree and we'll retry on the next mount. Again, we might also want 5439 * to retry these periodically in the future. 5440 */ 5441 btrfs_remove_delayed_node(BTRFS_I(inode)); 5442 fsverity_cleanup_inode(inode); 5443 clear_inode(inode); 5444 } 5445 5446 /* 5447 * Return the key found in the dir entry in the location pointer, fill @type 5448 * with BTRFS_FT_*, and return 0. 5449 * 5450 * If no dir entries were found, returns -ENOENT. 5451 * If found a corrupted location in dir entry, returns -EUCLEAN. 5452 */ 5453 static int btrfs_inode_by_name(struct btrfs_inode *dir, struct dentry *dentry, 5454 struct btrfs_key *location, u8 *type) 5455 { 5456 struct btrfs_dir_item *di; 5457 struct btrfs_path *path; 5458 struct btrfs_root *root = dir->root; 5459 int ret = 0; 5460 struct fscrypt_name fname; 5461 5462 path = btrfs_alloc_path(); 5463 if (!path) 5464 return -ENOMEM; 5465 5466 ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 1, &fname); 5467 if (ret < 0) 5468 goto out; 5469 /* 5470 * fscrypt_setup_filename() should never return a positive value, but 5471 * gcc on sparc/parisc thinks it can, so assert that doesn't happen. 5472 */ 5473 ASSERT(ret == 0); 5474 5475 /* This needs to handle no-key deletions later on */ 5476 5477 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), 5478 &fname.disk_name, 0); 5479 if (IS_ERR_OR_NULL(di)) { 5480 ret = di ? PTR_ERR(di) : -ENOENT; 5481 goto out; 5482 } 5483 5484 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location); 5485 if (location->type != BTRFS_INODE_ITEM_KEY && 5486 location->type != BTRFS_ROOT_ITEM_KEY) { 5487 ret = -EUCLEAN; 5488 btrfs_warn(root->fs_info, 5489 "%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))", 5490 __func__, fname.disk_name.name, btrfs_ino(dir), 5491 location->objectid, location->type, location->offset); 5492 } 5493 if (!ret) 5494 *type = btrfs_dir_ftype(path->nodes[0], di); 5495 out: 5496 fscrypt_free_filename(&fname); 5497 btrfs_free_path(path); 5498 return ret; 5499 } 5500 5501 /* 5502 * when we hit a tree root in a directory, the btrfs part of the inode 5503 * needs to be changed to reflect the root directory of the tree root. This 5504 * is kind of like crossing a mount point. 5505 */ 5506 static int fixup_tree_root_location(struct btrfs_fs_info *fs_info, 5507 struct btrfs_inode *dir, 5508 struct dentry *dentry, 5509 struct btrfs_key *location, 5510 struct btrfs_root **sub_root) 5511 { 5512 struct btrfs_path *path; 5513 struct btrfs_root *new_root; 5514 struct btrfs_root_ref *ref; 5515 struct extent_buffer *leaf; 5516 struct btrfs_key key; 5517 int ret; 5518 int err = 0; 5519 struct fscrypt_name fname; 5520 5521 ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 0, &fname); 5522 if (ret) 5523 return ret; 5524 5525 path = btrfs_alloc_path(); 5526 if (!path) { 5527 err = -ENOMEM; 5528 goto out; 5529 } 5530 5531 err = -ENOENT; 5532 key.objectid = dir->root->root_key.objectid; 5533 key.type = BTRFS_ROOT_REF_KEY; 5534 key.offset = location->objectid; 5535 5536 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 5537 if (ret) { 5538 if (ret < 0) 5539 err = ret; 5540 goto out; 5541 } 5542 5543 leaf = path->nodes[0]; 5544 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); 5545 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) || 5546 btrfs_root_ref_name_len(leaf, ref) != fname.disk_name.len) 5547 goto out; 5548 5549 ret = memcmp_extent_buffer(leaf, fname.disk_name.name, 5550 (unsigned long)(ref + 1), fname.disk_name.len); 5551 if (ret) 5552 goto out; 5553 5554 btrfs_release_path(path); 5555 5556 new_root = btrfs_get_fs_root(fs_info, location->objectid, true); 5557 if (IS_ERR(new_root)) { 5558 err = PTR_ERR(new_root); 5559 goto out; 5560 } 5561 5562 *sub_root = new_root; 5563 location->objectid = btrfs_root_dirid(&new_root->root_item); 5564 location->type = BTRFS_INODE_ITEM_KEY; 5565 location->offset = 0; 5566 err = 0; 5567 out: 5568 btrfs_free_path(path); 5569 fscrypt_free_filename(&fname); 5570 return err; 5571 } 5572 5573 static void inode_tree_add(struct btrfs_inode *inode) 5574 { 5575 struct btrfs_root *root = inode->root; 5576 struct btrfs_inode *entry; 5577 struct rb_node **p; 5578 struct rb_node *parent; 5579 struct rb_node *new = &inode->rb_node; 5580 u64 ino = btrfs_ino(inode); 5581 5582 if (inode_unhashed(&inode->vfs_inode)) 5583 return; 5584 parent = NULL; 5585 spin_lock(&root->inode_lock); 5586 p = &root->inode_tree.rb_node; 5587 while (*p) { 5588 parent = *p; 5589 entry = rb_entry(parent, struct btrfs_inode, rb_node); 5590 5591 if (ino < btrfs_ino(entry)) 5592 p = &parent->rb_left; 5593 else if (ino > btrfs_ino(entry)) 5594 p = &parent->rb_right; 5595 else { 5596 WARN_ON(!(entry->vfs_inode.i_state & 5597 (I_WILL_FREE | I_FREEING))); 5598 rb_replace_node(parent, new, &root->inode_tree); 5599 RB_CLEAR_NODE(parent); 5600 spin_unlock(&root->inode_lock); 5601 return; 5602 } 5603 } 5604 rb_link_node(new, parent, p); 5605 rb_insert_color(new, &root->inode_tree); 5606 spin_unlock(&root->inode_lock); 5607 } 5608 5609 static void inode_tree_del(struct btrfs_inode *inode) 5610 { 5611 struct btrfs_root *root = inode->root; 5612 int empty = 0; 5613 5614 spin_lock(&root->inode_lock); 5615 if (!RB_EMPTY_NODE(&inode->rb_node)) { 5616 rb_erase(&inode->rb_node, &root->inode_tree); 5617 RB_CLEAR_NODE(&inode->rb_node); 5618 empty = RB_EMPTY_ROOT(&root->inode_tree); 5619 } 5620 spin_unlock(&root->inode_lock); 5621 5622 if (empty && btrfs_root_refs(&root->root_item) == 0) { 5623 spin_lock(&root->inode_lock); 5624 empty = RB_EMPTY_ROOT(&root->inode_tree); 5625 spin_unlock(&root->inode_lock); 5626 if (empty) 5627 btrfs_add_dead_root(root); 5628 } 5629 } 5630 5631 5632 static int btrfs_init_locked_inode(struct inode *inode, void *p) 5633 { 5634 struct btrfs_iget_args *args = p; 5635 5636 inode->i_ino = args->ino; 5637 BTRFS_I(inode)->location.objectid = args->ino; 5638 BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY; 5639 BTRFS_I(inode)->location.offset = 0; 5640 BTRFS_I(inode)->root = btrfs_grab_root(args->root); 5641 BUG_ON(args->root && !BTRFS_I(inode)->root); 5642 5643 if (args->root && args->root == args->root->fs_info->tree_root && 5644 args->ino != BTRFS_BTREE_INODE_OBJECTID) 5645 set_bit(BTRFS_INODE_FREE_SPACE_INODE, 5646 &BTRFS_I(inode)->runtime_flags); 5647 return 0; 5648 } 5649 5650 static int btrfs_find_actor(struct inode *inode, void *opaque) 5651 { 5652 struct btrfs_iget_args *args = opaque; 5653 5654 return args->ino == BTRFS_I(inode)->location.objectid && 5655 args->root == BTRFS_I(inode)->root; 5656 } 5657 5658 static struct inode *btrfs_iget_locked(struct super_block *s, u64 ino, 5659 struct btrfs_root *root) 5660 { 5661 struct inode *inode; 5662 struct btrfs_iget_args args; 5663 unsigned long hashval = btrfs_inode_hash(ino, root); 5664 5665 args.ino = ino; 5666 args.root = root; 5667 5668 inode = iget5_locked(s, hashval, btrfs_find_actor, 5669 btrfs_init_locked_inode, 5670 (void *)&args); 5671 return inode; 5672 } 5673 5674 /* 5675 * Get an inode object given its inode number and corresponding root. 5676 * Path can be preallocated to prevent recursing back to iget through 5677 * allocator. NULL is also valid but may require an additional allocation 5678 * later. 5679 */ 5680 struct inode *btrfs_iget_path(struct super_block *s, u64 ino, 5681 struct btrfs_root *root, struct btrfs_path *path) 5682 { 5683 struct inode *inode; 5684 5685 inode = btrfs_iget_locked(s, ino, root); 5686 if (!inode) 5687 return ERR_PTR(-ENOMEM); 5688 5689 if (inode->i_state & I_NEW) { 5690 int ret; 5691 5692 ret = btrfs_read_locked_inode(inode, path); 5693 if (!ret) { 5694 inode_tree_add(BTRFS_I(inode)); 5695 unlock_new_inode(inode); 5696 } else { 5697 iget_failed(inode); 5698 /* 5699 * ret > 0 can come from btrfs_search_slot called by 5700 * btrfs_read_locked_inode, this means the inode item 5701 * was not found. 5702 */ 5703 if (ret > 0) 5704 ret = -ENOENT; 5705 inode = ERR_PTR(ret); 5706 } 5707 } 5708 5709 return inode; 5710 } 5711 5712 struct inode *btrfs_iget(struct super_block *s, u64 ino, struct btrfs_root *root) 5713 { 5714 return btrfs_iget_path(s, ino, root, NULL); 5715 } 5716 5717 static struct inode *new_simple_dir(struct super_block *s, 5718 struct btrfs_key *key, 5719 struct btrfs_root *root) 5720 { 5721 struct inode *inode = new_inode(s); 5722 5723 if (!inode) 5724 return ERR_PTR(-ENOMEM); 5725 5726 BTRFS_I(inode)->root = btrfs_grab_root(root); 5727 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key)); 5728 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags); 5729 5730 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID; 5731 /* 5732 * We only need lookup, the rest is read-only and there's no inode 5733 * associated with the dentry 5734 */ 5735 inode->i_op = &simple_dir_inode_operations; 5736 inode->i_opflags &= ~IOP_XATTR; 5737 inode->i_fop = &simple_dir_operations; 5738 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO; 5739 inode->i_mtime = current_time(inode); 5740 inode->i_atime = inode->i_mtime; 5741 inode->i_ctime = inode->i_mtime; 5742 BTRFS_I(inode)->i_otime = inode->i_mtime; 5743 5744 return inode; 5745 } 5746 5747 static_assert(BTRFS_FT_UNKNOWN == FT_UNKNOWN); 5748 static_assert(BTRFS_FT_REG_FILE == FT_REG_FILE); 5749 static_assert(BTRFS_FT_DIR == FT_DIR); 5750 static_assert(BTRFS_FT_CHRDEV == FT_CHRDEV); 5751 static_assert(BTRFS_FT_BLKDEV == FT_BLKDEV); 5752 static_assert(BTRFS_FT_FIFO == FT_FIFO); 5753 static_assert(BTRFS_FT_SOCK == FT_SOCK); 5754 static_assert(BTRFS_FT_SYMLINK == FT_SYMLINK); 5755 5756 static inline u8 btrfs_inode_type(struct inode *inode) 5757 { 5758 return fs_umode_to_ftype(inode->i_mode); 5759 } 5760 5761 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry) 5762 { 5763 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 5764 struct inode *inode; 5765 struct btrfs_root *root = BTRFS_I(dir)->root; 5766 struct btrfs_root *sub_root = root; 5767 struct btrfs_key location; 5768 u8 di_type = 0; 5769 int ret = 0; 5770 5771 if (dentry->d_name.len > BTRFS_NAME_LEN) 5772 return ERR_PTR(-ENAMETOOLONG); 5773 5774 ret = btrfs_inode_by_name(BTRFS_I(dir), dentry, &location, &di_type); 5775 if (ret < 0) 5776 return ERR_PTR(ret); 5777 5778 if (location.type == BTRFS_INODE_ITEM_KEY) { 5779 inode = btrfs_iget(dir->i_sb, location.objectid, root); 5780 if (IS_ERR(inode)) 5781 return inode; 5782 5783 /* Do extra check against inode mode with di_type */ 5784 if (btrfs_inode_type(inode) != di_type) { 5785 btrfs_crit(fs_info, 5786 "inode mode mismatch with dir: inode mode=0%o btrfs type=%u dir type=%u", 5787 inode->i_mode, btrfs_inode_type(inode), 5788 di_type); 5789 iput(inode); 5790 return ERR_PTR(-EUCLEAN); 5791 } 5792 return inode; 5793 } 5794 5795 ret = fixup_tree_root_location(fs_info, BTRFS_I(dir), dentry, 5796 &location, &sub_root); 5797 if (ret < 0) { 5798 if (ret != -ENOENT) 5799 inode = ERR_PTR(ret); 5800 else 5801 inode = new_simple_dir(dir->i_sb, &location, root); 5802 } else { 5803 inode = btrfs_iget(dir->i_sb, location.objectid, sub_root); 5804 btrfs_put_root(sub_root); 5805 5806 if (IS_ERR(inode)) 5807 return inode; 5808 5809 down_read(&fs_info->cleanup_work_sem); 5810 if (!sb_rdonly(inode->i_sb)) 5811 ret = btrfs_orphan_cleanup(sub_root); 5812 up_read(&fs_info->cleanup_work_sem); 5813 if (ret) { 5814 iput(inode); 5815 inode = ERR_PTR(ret); 5816 } 5817 } 5818 5819 return inode; 5820 } 5821 5822 static int btrfs_dentry_delete(const struct dentry *dentry) 5823 { 5824 struct btrfs_root *root; 5825 struct inode *inode = d_inode(dentry); 5826 5827 if (!inode && !IS_ROOT(dentry)) 5828 inode = d_inode(dentry->d_parent); 5829 5830 if (inode) { 5831 root = BTRFS_I(inode)->root; 5832 if (btrfs_root_refs(&root->root_item) == 0) 5833 return 1; 5834 5835 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 5836 return 1; 5837 } 5838 return 0; 5839 } 5840 5841 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry, 5842 unsigned int flags) 5843 { 5844 struct inode *inode = btrfs_lookup_dentry(dir, dentry); 5845 5846 if (inode == ERR_PTR(-ENOENT)) 5847 inode = NULL; 5848 return d_splice_alias(inode, dentry); 5849 } 5850 5851 /* 5852 * All this infrastructure exists because dir_emit can fault, and we are holding 5853 * the tree lock when doing readdir. For now just allocate a buffer and copy 5854 * our information into that, and then dir_emit from the buffer. This is 5855 * similar to what NFS does, only we don't keep the buffer around in pagecache 5856 * because I'm afraid I'll mess that up. Long term we need to make filldir do 5857 * copy_to_user_inatomic so we don't have to worry about page faulting under the 5858 * tree lock. 5859 */ 5860 static int btrfs_opendir(struct inode *inode, struct file *file) 5861 { 5862 struct btrfs_file_private *private; 5863 5864 private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL); 5865 if (!private) 5866 return -ENOMEM; 5867 private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL); 5868 if (!private->filldir_buf) { 5869 kfree(private); 5870 return -ENOMEM; 5871 } 5872 file->private_data = private; 5873 return 0; 5874 } 5875 5876 struct dir_entry { 5877 u64 ino; 5878 u64 offset; 5879 unsigned type; 5880 int name_len; 5881 }; 5882 5883 static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx) 5884 { 5885 while (entries--) { 5886 struct dir_entry *entry = addr; 5887 char *name = (char *)(entry + 1); 5888 5889 ctx->pos = get_unaligned(&entry->offset); 5890 if (!dir_emit(ctx, name, get_unaligned(&entry->name_len), 5891 get_unaligned(&entry->ino), 5892 get_unaligned(&entry->type))) 5893 return 1; 5894 addr += sizeof(struct dir_entry) + 5895 get_unaligned(&entry->name_len); 5896 ctx->pos++; 5897 } 5898 return 0; 5899 } 5900 5901 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx) 5902 { 5903 struct inode *inode = file_inode(file); 5904 struct btrfs_root *root = BTRFS_I(inode)->root; 5905 struct btrfs_file_private *private = file->private_data; 5906 struct btrfs_dir_item *di; 5907 struct btrfs_key key; 5908 struct btrfs_key found_key; 5909 struct btrfs_path *path; 5910 void *addr; 5911 struct list_head ins_list; 5912 struct list_head del_list; 5913 int ret; 5914 char *name_ptr; 5915 int name_len; 5916 int entries = 0; 5917 int total_len = 0; 5918 bool put = false; 5919 struct btrfs_key location; 5920 5921 if (!dir_emit_dots(file, ctx)) 5922 return 0; 5923 5924 path = btrfs_alloc_path(); 5925 if (!path) 5926 return -ENOMEM; 5927 5928 addr = private->filldir_buf; 5929 path->reada = READA_FORWARD; 5930 5931 INIT_LIST_HEAD(&ins_list); 5932 INIT_LIST_HEAD(&del_list); 5933 put = btrfs_readdir_get_delayed_items(inode, &ins_list, &del_list); 5934 5935 again: 5936 key.type = BTRFS_DIR_INDEX_KEY; 5937 key.offset = ctx->pos; 5938 key.objectid = btrfs_ino(BTRFS_I(inode)); 5939 5940 btrfs_for_each_slot(root, &key, &found_key, path, ret) { 5941 struct dir_entry *entry; 5942 struct extent_buffer *leaf = path->nodes[0]; 5943 u8 ftype; 5944 5945 if (found_key.objectid != key.objectid) 5946 break; 5947 if (found_key.type != BTRFS_DIR_INDEX_KEY) 5948 break; 5949 if (found_key.offset < ctx->pos) 5950 continue; 5951 if (btrfs_should_delete_dir_index(&del_list, found_key.offset)) 5952 continue; 5953 di = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dir_item); 5954 name_len = btrfs_dir_name_len(leaf, di); 5955 if ((total_len + sizeof(struct dir_entry) + name_len) >= 5956 PAGE_SIZE) { 5957 btrfs_release_path(path); 5958 ret = btrfs_filldir(private->filldir_buf, entries, ctx); 5959 if (ret) 5960 goto nopos; 5961 addr = private->filldir_buf; 5962 entries = 0; 5963 total_len = 0; 5964 goto again; 5965 } 5966 5967 ftype = btrfs_dir_flags_to_ftype(btrfs_dir_flags(leaf, di)); 5968 entry = addr; 5969 name_ptr = (char *)(entry + 1); 5970 read_extent_buffer(leaf, name_ptr, 5971 (unsigned long)(di + 1), name_len); 5972 put_unaligned(name_len, &entry->name_len); 5973 put_unaligned(fs_ftype_to_dtype(ftype), &entry->type); 5974 btrfs_dir_item_key_to_cpu(leaf, di, &location); 5975 put_unaligned(location.objectid, &entry->ino); 5976 put_unaligned(found_key.offset, &entry->offset); 5977 entries++; 5978 addr += sizeof(struct dir_entry) + name_len; 5979 total_len += sizeof(struct dir_entry) + name_len; 5980 } 5981 /* Catch error encountered during iteration */ 5982 if (ret < 0) 5983 goto err; 5984 5985 btrfs_release_path(path); 5986 5987 ret = btrfs_filldir(private->filldir_buf, entries, ctx); 5988 if (ret) 5989 goto nopos; 5990 5991 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list); 5992 if (ret) 5993 goto nopos; 5994 5995 /* 5996 * Stop new entries from being returned after we return the last 5997 * entry. 5998 * 5999 * New directory entries are assigned a strictly increasing 6000 * offset. This means that new entries created during readdir 6001 * are *guaranteed* to be seen in the future by that readdir. 6002 * This has broken buggy programs which operate on names as 6003 * they're returned by readdir. Until we re-use freed offsets 6004 * we have this hack to stop new entries from being returned 6005 * under the assumption that they'll never reach this huge 6006 * offset. 6007 * 6008 * This is being careful not to overflow 32bit loff_t unless the 6009 * last entry requires it because doing so has broken 32bit apps 6010 * in the past. 6011 */ 6012 if (ctx->pos >= INT_MAX) 6013 ctx->pos = LLONG_MAX; 6014 else 6015 ctx->pos = INT_MAX; 6016 nopos: 6017 ret = 0; 6018 err: 6019 if (put) 6020 btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list); 6021 btrfs_free_path(path); 6022 return ret; 6023 } 6024 6025 /* 6026 * This is somewhat expensive, updating the tree every time the 6027 * inode changes. But, it is most likely to find the inode in cache. 6028 * FIXME, needs more benchmarking...there are no reasons other than performance 6029 * to keep or drop this code. 6030 */ 6031 static int btrfs_dirty_inode(struct btrfs_inode *inode) 6032 { 6033 struct btrfs_root *root = inode->root; 6034 struct btrfs_fs_info *fs_info = root->fs_info; 6035 struct btrfs_trans_handle *trans; 6036 int ret; 6037 6038 if (test_bit(BTRFS_INODE_DUMMY, &inode->runtime_flags)) 6039 return 0; 6040 6041 trans = btrfs_join_transaction(root); 6042 if (IS_ERR(trans)) 6043 return PTR_ERR(trans); 6044 6045 ret = btrfs_update_inode(trans, root, inode); 6046 if (ret && (ret == -ENOSPC || ret == -EDQUOT)) { 6047 /* whoops, lets try again with the full transaction */ 6048 btrfs_end_transaction(trans); 6049 trans = btrfs_start_transaction(root, 1); 6050 if (IS_ERR(trans)) 6051 return PTR_ERR(trans); 6052 6053 ret = btrfs_update_inode(trans, root, inode); 6054 } 6055 btrfs_end_transaction(trans); 6056 if (inode->delayed_node) 6057 btrfs_balance_delayed_items(fs_info); 6058 6059 return ret; 6060 } 6061 6062 /* 6063 * This is a copy of file_update_time. We need this so we can return error on 6064 * ENOSPC for updating the inode in the case of file write and mmap writes. 6065 */ 6066 static int btrfs_update_time(struct inode *inode, struct timespec64 *now, 6067 int flags) 6068 { 6069 struct btrfs_root *root = BTRFS_I(inode)->root; 6070 bool dirty = flags & ~S_VERSION; 6071 6072 if (btrfs_root_readonly(root)) 6073 return -EROFS; 6074 6075 if (flags & S_VERSION) 6076 dirty |= inode_maybe_inc_iversion(inode, dirty); 6077 if (flags & S_CTIME) 6078 inode->i_ctime = *now; 6079 if (flags & S_MTIME) 6080 inode->i_mtime = *now; 6081 if (flags & S_ATIME) 6082 inode->i_atime = *now; 6083 return dirty ? btrfs_dirty_inode(BTRFS_I(inode)) : 0; 6084 } 6085 6086 /* 6087 * find the highest existing sequence number in a directory 6088 * and then set the in-memory index_cnt variable to reflect 6089 * free sequence numbers 6090 */ 6091 static int btrfs_set_inode_index_count(struct btrfs_inode *inode) 6092 { 6093 struct btrfs_root *root = inode->root; 6094 struct btrfs_key key, found_key; 6095 struct btrfs_path *path; 6096 struct extent_buffer *leaf; 6097 int ret; 6098 6099 key.objectid = btrfs_ino(inode); 6100 key.type = BTRFS_DIR_INDEX_KEY; 6101 key.offset = (u64)-1; 6102 6103 path = btrfs_alloc_path(); 6104 if (!path) 6105 return -ENOMEM; 6106 6107 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 6108 if (ret < 0) 6109 goto out; 6110 /* FIXME: we should be able to handle this */ 6111 if (ret == 0) 6112 goto out; 6113 ret = 0; 6114 6115 if (path->slots[0] == 0) { 6116 inode->index_cnt = BTRFS_DIR_START_INDEX; 6117 goto out; 6118 } 6119 6120 path->slots[0]--; 6121 6122 leaf = path->nodes[0]; 6123 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6124 6125 if (found_key.objectid != btrfs_ino(inode) || 6126 found_key.type != BTRFS_DIR_INDEX_KEY) { 6127 inode->index_cnt = BTRFS_DIR_START_INDEX; 6128 goto out; 6129 } 6130 6131 inode->index_cnt = found_key.offset + 1; 6132 out: 6133 btrfs_free_path(path); 6134 return ret; 6135 } 6136 6137 /* 6138 * helper to find a free sequence number in a given directory. This current 6139 * code is very simple, later versions will do smarter things in the btree 6140 */ 6141 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index) 6142 { 6143 int ret = 0; 6144 6145 if (dir->index_cnt == (u64)-1) { 6146 ret = btrfs_inode_delayed_dir_index_count(dir); 6147 if (ret) { 6148 ret = btrfs_set_inode_index_count(dir); 6149 if (ret) 6150 return ret; 6151 } 6152 } 6153 6154 *index = dir->index_cnt; 6155 dir->index_cnt++; 6156 6157 return ret; 6158 } 6159 6160 static int btrfs_insert_inode_locked(struct inode *inode) 6161 { 6162 struct btrfs_iget_args args; 6163 6164 args.ino = BTRFS_I(inode)->location.objectid; 6165 args.root = BTRFS_I(inode)->root; 6166 6167 return insert_inode_locked4(inode, 6168 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root), 6169 btrfs_find_actor, &args); 6170 } 6171 6172 int btrfs_new_inode_prepare(struct btrfs_new_inode_args *args, 6173 unsigned int *trans_num_items) 6174 { 6175 struct inode *dir = args->dir; 6176 struct inode *inode = args->inode; 6177 int ret; 6178 6179 if (!args->orphan) { 6180 ret = fscrypt_setup_filename(dir, &args->dentry->d_name, 0, 6181 &args->fname); 6182 if (ret) 6183 return ret; 6184 } 6185 6186 ret = posix_acl_create(dir, &inode->i_mode, &args->default_acl, &args->acl); 6187 if (ret) { 6188 fscrypt_free_filename(&args->fname); 6189 return ret; 6190 } 6191 6192 /* 1 to add inode item */ 6193 *trans_num_items = 1; 6194 /* 1 to add compression property */ 6195 if (BTRFS_I(dir)->prop_compress) 6196 (*trans_num_items)++; 6197 /* 1 to add default ACL xattr */ 6198 if (args->default_acl) 6199 (*trans_num_items)++; 6200 /* 1 to add access ACL xattr */ 6201 if (args->acl) 6202 (*trans_num_items)++; 6203 #ifdef CONFIG_SECURITY 6204 /* 1 to add LSM xattr */ 6205 if (dir->i_security) 6206 (*trans_num_items)++; 6207 #endif 6208 if (args->orphan) { 6209 /* 1 to add orphan item */ 6210 (*trans_num_items)++; 6211 } else { 6212 /* 6213 * 1 to add dir item 6214 * 1 to add dir index 6215 * 1 to update parent inode item 6216 * 6217 * No need for 1 unit for the inode ref item because it is 6218 * inserted in a batch together with the inode item at 6219 * btrfs_create_new_inode(). 6220 */ 6221 *trans_num_items += 3; 6222 } 6223 return 0; 6224 } 6225 6226 void btrfs_new_inode_args_destroy(struct btrfs_new_inode_args *args) 6227 { 6228 posix_acl_release(args->acl); 6229 posix_acl_release(args->default_acl); 6230 fscrypt_free_filename(&args->fname); 6231 } 6232 6233 /* 6234 * Inherit flags from the parent inode. 6235 * 6236 * Currently only the compression flags and the cow flags are inherited. 6237 */ 6238 static void btrfs_inherit_iflags(struct btrfs_inode *inode, struct btrfs_inode *dir) 6239 { 6240 unsigned int flags; 6241 6242 flags = dir->flags; 6243 6244 if (flags & BTRFS_INODE_NOCOMPRESS) { 6245 inode->flags &= ~BTRFS_INODE_COMPRESS; 6246 inode->flags |= BTRFS_INODE_NOCOMPRESS; 6247 } else if (flags & BTRFS_INODE_COMPRESS) { 6248 inode->flags &= ~BTRFS_INODE_NOCOMPRESS; 6249 inode->flags |= BTRFS_INODE_COMPRESS; 6250 } 6251 6252 if (flags & BTRFS_INODE_NODATACOW) { 6253 inode->flags |= BTRFS_INODE_NODATACOW; 6254 if (S_ISREG(inode->vfs_inode.i_mode)) 6255 inode->flags |= BTRFS_INODE_NODATASUM; 6256 } 6257 6258 btrfs_sync_inode_flags_to_i_flags(&inode->vfs_inode); 6259 } 6260 6261 int btrfs_create_new_inode(struct btrfs_trans_handle *trans, 6262 struct btrfs_new_inode_args *args) 6263 { 6264 struct inode *dir = args->dir; 6265 struct inode *inode = args->inode; 6266 const struct fscrypt_str *name = args->orphan ? NULL : &args->fname.disk_name; 6267 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 6268 struct btrfs_root *root; 6269 struct btrfs_inode_item *inode_item; 6270 struct btrfs_key *location; 6271 struct btrfs_path *path; 6272 u64 objectid; 6273 struct btrfs_inode_ref *ref; 6274 struct btrfs_key key[2]; 6275 u32 sizes[2]; 6276 struct btrfs_item_batch batch; 6277 unsigned long ptr; 6278 int ret; 6279 6280 path = btrfs_alloc_path(); 6281 if (!path) 6282 return -ENOMEM; 6283 6284 if (!args->subvol) 6285 BTRFS_I(inode)->root = btrfs_grab_root(BTRFS_I(dir)->root); 6286 root = BTRFS_I(inode)->root; 6287 6288 ret = btrfs_get_free_objectid(root, &objectid); 6289 if (ret) 6290 goto out; 6291 inode->i_ino = objectid; 6292 6293 if (args->orphan) { 6294 /* 6295 * O_TMPFILE, set link count to 0, so that after this point, we 6296 * fill in an inode item with the correct link count. 6297 */ 6298 set_nlink(inode, 0); 6299 } else { 6300 trace_btrfs_inode_request(dir); 6301 6302 ret = btrfs_set_inode_index(BTRFS_I(dir), &BTRFS_I(inode)->dir_index); 6303 if (ret) 6304 goto out; 6305 } 6306 /* index_cnt is ignored for everything but a dir. */ 6307 BTRFS_I(inode)->index_cnt = BTRFS_DIR_START_INDEX; 6308 BTRFS_I(inode)->generation = trans->transid; 6309 inode->i_generation = BTRFS_I(inode)->generation; 6310 6311 /* 6312 * Subvolumes don't inherit flags from their parent directory. 6313 * Originally this was probably by accident, but we probably can't 6314 * change it now without compatibility issues. 6315 */ 6316 if (!args->subvol) 6317 btrfs_inherit_iflags(BTRFS_I(inode), BTRFS_I(dir)); 6318 6319 if (S_ISREG(inode->i_mode)) { 6320 if (btrfs_test_opt(fs_info, NODATASUM)) 6321 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; 6322 if (btrfs_test_opt(fs_info, NODATACOW)) 6323 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW | 6324 BTRFS_INODE_NODATASUM; 6325 } 6326 6327 location = &BTRFS_I(inode)->location; 6328 location->objectid = objectid; 6329 location->offset = 0; 6330 location->type = BTRFS_INODE_ITEM_KEY; 6331 6332 ret = btrfs_insert_inode_locked(inode); 6333 if (ret < 0) { 6334 if (!args->orphan) 6335 BTRFS_I(dir)->index_cnt--; 6336 goto out; 6337 } 6338 6339 /* 6340 * We could have gotten an inode number from somebody who was fsynced 6341 * and then removed in this same transaction, so let's just set full 6342 * sync since it will be a full sync anyway and this will blow away the 6343 * old info in the log. 6344 */ 6345 btrfs_set_inode_full_sync(BTRFS_I(inode)); 6346 6347 key[0].objectid = objectid; 6348 key[0].type = BTRFS_INODE_ITEM_KEY; 6349 key[0].offset = 0; 6350 6351 sizes[0] = sizeof(struct btrfs_inode_item); 6352 6353 if (!args->orphan) { 6354 /* 6355 * Start new inodes with an inode_ref. This is slightly more 6356 * efficient for small numbers of hard links since they will 6357 * be packed into one item. Extended refs will kick in if we 6358 * add more hard links than can fit in the ref item. 6359 */ 6360 key[1].objectid = objectid; 6361 key[1].type = BTRFS_INODE_REF_KEY; 6362 if (args->subvol) { 6363 key[1].offset = objectid; 6364 sizes[1] = 2 + sizeof(*ref); 6365 } else { 6366 key[1].offset = btrfs_ino(BTRFS_I(dir)); 6367 sizes[1] = name->len + sizeof(*ref); 6368 } 6369 } 6370 6371 batch.keys = &key[0]; 6372 batch.data_sizes = &sizes[0]; 6373 batch.total_data_size = sizes[0] + (args->orphan ? 0 : sizes[1]); 6374 batch.nr = args->orphan ? 1 : 2; 6375 ret = btrfs_insert_empty_items(trans, root, path, &batch); 6376 if (ret != 0) { 6377 btrfs_abort_transaction(trans, ret); 6378 goto discard; 6379 } 6380 6381 inode->i_mtime = current_time(inode); 6382 inode->i_atime = inode->i_mtime; 6383 inode->i_ctime = inode->i_mtime; 6384 BTRFS_I(inode)->i_otime = inode->i_mtime; 6385 6386 /* 6387 * We're going to fill the inode item now, so at this point the inode 6388 * must be fully initialized. 6389 */ 6390 6391 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0], 6392 struct btrfs_inode_item); 6393 memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item, 6394 sizeof(*inode_item)); 6395 fill_inode_item(trans, path->nodes[0], inode_item, inode); 6396 6397 if (!args->orphan) { 6398 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1, 6399 struct btrfs_inode_ref); 6400 ptr = (unsigned long)(ref + 1); 6401 if (args->subvol) { 6402 btrfs_set_inode_ref_name_len(path->nodes[0], ref, 2); 6403 btrfs_set_inode_ref_index(path->nodes[0], ref, 0); 6404 write_extent_buffer(path->nodes[0], "..", ptr, 2); 6405 } else { 6406 btrfs_set_inode_ref_name_len(path->nodes[0], ref, 6407 name->len); 6408 btrfs_set_inode_ref_index(path->nodes[0], ref, 6409 BTRFS_I(inode)->dir_index); 6410 write_extent_buffer(path->nodes[0], name->name, ptr, 6411 name->len); 6412 } 6413 } 6414 6415 btrfs_mark_buffer_dirty(path->nodes[0]); 6416 /* 6417 * We don't need the path anymore, plus inheriting properties, adding 6418 * ACLs, security xattrs, orphan item or adding the link, will result in 6419 * allocating yet another path. So just free our path. 6420 */ 6421 btrfs_free_path(path); 6422 path = NULL; 6423 6424 if (args->subvol) { 6425 struct inode *parent; 6426 6427 /* 6428 * Subvolumes inherit properties from their parent subvolume, 6429 * not the directory they were created in. 6430 */ 6431 parent = btrfs_iget(fs_info->sb, BTRFS_FIRST_FREE_OBJECTID, 6432 BTRFS_I(dir)->root); 6433 if (IS_ERR(parent)) { 6434 ret = PTR_ERR(parent); 6435 } else { 6436 ret = btrfs_inode_inherit_props(trans, inode, parent); 6437 iput(parent); 6438 } 6439 } else { 6440 ret = btrfs_inode_inherit_props(trans, inode, dir); 6441 } 6442 if (ret) { 6443 btrfs_err(fs_info, 6444 "error inheriting props for ino %llu (root %llu): %d", 6445 btrfs_ino(BTRFS_I(inode)), root->root_key.objectid, 6446 ret); 6447 } 6448 6449 /* 6450 * Subvolumes don't inherit ACLs or get passed to the LSM. This is 6451 * probably a bug. 6452 */ 6453 if (!args->subvol) { 6454 ret = btrfs_init_inode_security(trans, args); 6455 if (ret) { 6456 btrfs_abort_transaction(trans, ret); 6457 goto discard; 6458 } 6459 } 6460 6461 inode_tree_add(BTRFS_I(inode)); 6462 6463 trace_btrfs_inode_new(inode); 6464 btrfs_set_inode_last_trans(trans, BTRFS_I(inode)); 6465 6466 btrfs_update_root_times(trans, root); 6467 6468 if (args->orphan) { 6469 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 6470 } else { 6471 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name, 6472 0, BTRFS_I(inode)->dir_index); 6473 } 6474 if (ret) { 6475 btrfs_abort_transaction(trans, ret); 6476 goto discard; 6477 } 6478 6479 return 0; 6480 6481 discard: 6482 /* 6483 * discard_new_inode() calls iput(), but the caller owns the reference 6484 * to the inode. 6485 */ 6486 ihold(inode); 6487 discard_new_inode(inode); 6488 out: 6489 btrfs_free_path(path); 6490 return ret; 6491 } 6492 6493 /* 6494 * utility function to add 'inode' into 'parent_inode' with 6495 * a give name and a given sequence number. 6496 * if 'add_backref' is true, also insert a backref from the 6497 * inode to the parent directory. 6498 */ 6499 int btrfs_add_link(struct btrfs_trans_handle *trans, 6500 struct btrfs_inode *parent_inode, struct btrfs_inode *inode, 6501 const struct fscrypt_str *name, int add_backref, u64 index) 6502 { 6503 int ret = 0; 6504 struct btrfs_key key; 6505 struct btrfs_root *root = parent_inode->root; 6506 u64 ino = btrfs_ino(inode); 6507 u64 parent_ino = btrfs_ino(parent_inode); 6508 6509 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6510 memcpy(&key, &inode->root->root_key, sizeof(key)); 6511 } else { 6512 key.objectid = ino; 6513 key.type = BTRFS_INODE_ITEM_KEY; 6514 key.offset = 0; 6515 } 6516 6517 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6518 ret = btrfs_add_root_ref(trans, key.objectid, 6519 root->root_key.objectid, parent_ino, 6520 index, name); 6521 } else if (add_backref) { 6522 ret = btrfs_insert_inode_ref(trans, root, name, 6523 ino, parent_ino, index); 6524 } 6525 6526 /* Nothing to clean up yet */ 6527 if (ret) 6528 return ret; 6529 6530 ret = btrfs_insert_dir_item(trans, name, parent_inode, &key, 6531 btrfs_inode_type(&inode->vfs_inode), index); 6532 if (ret == -EEXIST || ret == -EOVERFLOW) 6533 goto fail_dir_item; 6534 else if (ret) { 6535 btrfs_abort_transaction(trans, ret); 6536 return ret; 6537 } 6538 6539 btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size + 6540 name->len * 2); 6541 inode_inc_iversion(&parent_inode->vfs_inode); 6542 /* 6543 * If we are replaying a log tree, we do not want to update the mtime 6544 * and ctime of the parent directory with the current time, since the 6545 * log replay procedure is responsible for setting them to their correct 6546 * values (the ones it had when the fsync was done). 6547 */ 6548 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &root->fs_info->flags)) { 6549 struct timespec64 now = current_time(&parent_inode->vfs_inode); 6550 6551 parent_inode->vfs_inode.i_mtime = now; 6552 parent_inode->vfs_inode.i_ctime = now; 6553 } 6554 ret = btrfs_update_inode(trans, root, parent_inode); 6555 if (ret) 6556 btrfs_abort_transaction(trans, ret); 6557 return ret; 6558 6559 fail_dir_item: 6560 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6561 u64 local_index; 6562 int err; 6563 err = btrfs_del_root_ref(trans, key.objectid, 6564 root->root_key.objectid, parent_ino, 6565 &local_index, name); 6566 if (err) 6567 btrfs_abort_transaction(trans, err); 6568 } else if (add_backref) { 6569 u64 local_index; 6570 int err; 6571 6572 err = btrfs_del_inode_ref(trans, root, name, ino, parent_ino, 6573 &local_index); 6574 if (err) 6575 btrfs_abort_transaction(trans, err); 6576 } 6577 6578 /* Return the original error code */ 6579 return ret; 6580 } 6581 6582 static int btrfs_create_common(struct inode *dir, struct dentry *dentry, 6583 struct inode *inode) 6584 { 6585 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 6586 struct btrfs_root *root = BTRFS_I(dir)->root; 6587 struct btrfs_new_inode_args new_inode_args = { 6588 .dir = dir, 6589 .dentry = dentry, 6590 .inode = inode, 6591 }; 6592 unsigned int trans_num_items; 6593 struct btrfs_trans_handle *trans; 6594 int err; 6595 6596 err = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items); 6597 if (err) 6598 goto out_inode; 6599 6600 trans = btrfs_start_transaction(root, trans_num_items); 6601 if (IS_ERR(trans)) { 6602 err = PTR_ERR(trans); 6603 goto out_new_inode_args; 6604 } 6605 6606 err = btrfs_create_new_inode(trans, &new_inode_args); 6607 if (!err) 6608 d_instantiate_new(dentry, inode); 6609 6610 btrfs_end_transaction(trans); 6611 btrfs_btree_balance_dirty(fs_info); 6612 out_new_inode_args: 6613 btrfs_new_inode_args_destroy(&new_inode_args); 6614 out_inode: 6615 if (err) 6616 iput(inode); 6617 return err; 6618 } 6619 6620 static int btrfs_mknod(struct mnt_idmap *idmap, struct inode *dir, 6621 struct dentry *dentry, umode_t mode, dev_t rdev) 6622 { 6623 struct inode *inode; 6624 6625 inode = new_inode(dir->i_sb); 6626 if (!inode) 6627 return -ENOMEM; 6628 inode_init_owner(idmap, inode, dir, mode); 6629 inode->i_op = &btrfs_special_inode_operations; 6630 init_special_inode(inode, inode->i_mode, rdev); 6631 return btrfs_create_common(dir, dentry, inode); 6632 } 6633 6634 static int btrfs_create(struct mnt_idmap *idmap, struct inode *dir, 6635 struct dentry *dentry, umode_t mode, bool excl) 6636 { 6637 struct inode *inode; 6638 6639 inode = new_inode(dir->i_sb); 6640 if (!inode) 6641 return -ENOMEM; 6642 inode_init_owner(idmap, inode, dir, mode); 6643 inode->i_fop = &btrfs_file_operations; 6644 inode->i_op = &btrfs_file_inode_operations; 6645 inode->i_mapping->a_ops = &btrfs_aops; 6646 return btrfs_create_common(dir, dentry, inode); 6647 } 6648 6649 static int btrfs_link(struct dentry *old_dentry, struct inode *dir, 6650 struct dentry *dentry) 6651 { 6652 struct btrfs_trans_handle *trans = NULL; 6653 struct btrfs_root *root = BTRFS_I(dir)->root; 6654 struct inode *inode = d_inode(old_dentry); 6655 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 6656 struct fscrypt_name fname; 6657 u64 index; 6658 int err; 6659 int drop_inode = 0; 6660 6661 /* do not allow sys_link's with other subvols of the same device */ 6662 if (root->root_key.objectid != BTRFS_I(inode)->root->root_key.objectid) 6663 return -EXDEV; 6664 6665 if (inode->i_nlink >= BTRFS_LINK_MAX) 6666 return -EMLINK; 6667 6668 err = fscrypt_setup_filename(dir, &dentry->d_name, 0, &fname); 6669 if (err) 6670 goto fail; 6671 6672 err = btrfs_set_inode_index(BTRFS_I(dir), &index); 6673 if (err) 6674 goto fail; 6675 6676 /* 6677 * 2 items for inode and inode ref 6678 * 2 items for dir items 6679 * 1 item for parent inode 6680 * 1 item for orphan item deletion if O_TMPFILE 6681 */ 6682 trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6); 6683 if (IS_ERR(trans)) { 6684 err = PTR_ERR(trans); 6685 trans = NULL; 6686 goto fail; 6687 } 6688 6689 /* There are several dir indexes for this inode, clear the cache. */ 6690 BTRFS_I(inode)->dir_index = 0ULL; 6691 inc_nlink(inode); 6692 inode_inc_iversion(inode); 6693 inode->i_ctime = current_time(inode); 6694 ihold(inode); 6695 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags); 6696 6697 err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), 6698 &fname.disk_name, 1, index); 6699 6700 if (err) { 6701 drop_inode = 1; 6702 } else { 6703 struct dentry *parent = dentry->d_parent; 6704 6705 err = btrfs_update_inode(trans, root, BTRFS_I(inode)); 6706 if (err) 6707 goto fail; 6708 if (inode->i_nlink == 1) { 6709 /* 6710 * If new hard link count is 1, it's a file created 6711 * with open(2) O_TMPFILE flag. 6712 */ 6713 err = btrfs_orphan_del(trans, BTRFS_I(inode)); 6714 if (err) 6715 goto fail; 6716 } 6717 d_instantiate(dentry, inode); 6718 btrfs_log_new_name(trans, old_dentry, NULL, 0, parent); 6719 } 6720 6721 fail: 6722 fscrypt_free_filename(&fname); 6723 if (trans) 6724 btrfs_end_transaction(trans); 6725 if (drop_inode) { 6726 inode_dec_link_count(inode); 6727 iput(inode); 6728 } 6729 btrfs_btree_balance_dirty(fs_info); 6730 return err; 6731 } 6732 6733 static int btrfs_mkdir(struct mnt_idmap *idmap, struct inode *dir, 6734 struct dentry *dentry, umode_t mode) 6735 { 6736 struct inode *inode; 6737 6738 inode = new_inode(dir->i_sb); 6739 if (!inode) 6740 return -ENOMEM; 6741 inode_init_owner(idmap, inode, dir, S_IFDIR | mode); 6742 inode->i_op = &btrfs_dir_inode_operations; 6743 inode->i_fop = &btrfs_dir_file_operations; 6744 return btrfs_create_common(dir, dentry, inode); 6745 } 6746 6747 static noinline int uncompress_inline(struct btrfs_path *path, 6748 struct page *page, 6749 struct btrfs_file_extent_item *item) 6750 { 6751 int ret; 6752 struct extent_buffer *leaf = path->nodes[0]; 6753 char *tmp; 6754 size_t max_size; 6755 unsigned long inline_size; 6756 unsigned long ptr; 6757 int compress_type; 6758 6759 compress_type = btrfs_file_extent_compression(leaf, item); 6760 max_size = btrfs_file_extent_ram_bytes(leaf, item); 6761 inline_size = btrfs_file_extent_inline_item_len(leaf, path->slots[0]); 6762 tmp = kmalloc(inline_size, GFP_NOFS); 6763 if (!tmp) 6764 return -ENOMEM; 6765 ptr = btrfs_file_extent_inline_start(item); 6766 6767 read_extent_buffer(leaf, tmp, ptr, inline_size); 6768 6769 max_size = min_t(unsigned long, PAGE_SIZE, max_size); 6770 ret = btrfs_decompress(compress_type, tmp, page, 0, inline_size, max_size); 6771 6772 /* 6773 * decompression code contains a memset to fill in any space between the end 6774 * of the uncompressed data and the end of max_size in case the decompressed 6775 * data ends up shorter than ram_bytes. That doesn't cover the hole between 6776 * the end of an inline extent and the beginning of the next block, so we 6777 * cover that region here. 6778 */ 6779 6780 if (max_size < PAGE_SIZE) 6781 memzero_page(page, max_size, PAGE_SIZE - max_size); 6782 kfree(tmp); 6783 return ret; 6784 } 6785 6786 static int read_inline_extent(struct btrfs_inode *inode, struct btrfs_path *path, 6787 struct page *page) 6788 { 6789 struct btrfs_file_extent_item *fi; 6790 void *kaddr; 6791 size_t copy_size; 6792 6793 if (!page || PageUptodate(page)) 6794 return 0; 6795 6796 ASSERT(page_offset(page) == 0); 6797 6798 fi = btrfs_item_ptr(path->nodes[0], path->slots[0], 6799 struct btrfs_file_extent_item); 6800 if (btrfs_file_extent_compression(path->nodes[0], fi) != BTRFS_COMPRESS_NONE) 6801 return uncompress_inline(path, page, fi); 6802 6803 copy_size = min_t(u64, PAGE_SIZE, 6804 btrfs_file_extent_ram_bytes(path->nodes[0], fi)); 6805 kaddr = kmap_local_page(page); 6806 read_extent_buffer(path->nodes[0], kaddr, 6807 btrfs_file_extent_inline_start(fi), copy_size); 6808 kunmap_local(kaddr); 6809 if (copy_size < PAGE_SIZE) 6810 memzero_page(page, copy_size, PAGE_SIZE - copy_size); 6811 return 0; 6812 } 6813 6814 /* 6815 * Lookup the first extent overlapping a range in a file. 6816 * 6817 * @inode: file to search in 6818 * @page: page to read extent data into if the extent is inline 6819 * @pg_offset: offset into @page to copy to 6820 * @start: file offset 6821 * @len: length of range starting at @start 6822 * 6823 * Return the first &struct extent_map which overlaps the given range, reading 6824 * it from the B-tree and caching it if necessary. Note that there may be more 6825 * extents which overlap the given range after the returned extent_map. 6826 * 6827 * If @page is not NULL and the extent is inline, this also reads the extent 6828 * data directly into the page and marks the extent up to date in the io_tree. 6829 * 6830 * Return: ERR_PTR on error, non-NULL extent_map on success. 6831 */ 6832 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode, 6833 struct page *page, size_t pg_offset, 6834 u64 start, u64 len) 6835 { 6836 struct btrfs_fs_info *fs_info = inode->root->fs_info; 6837 int ret = 0; 6838 u64 extent_start = 0; 6839 u64 extent_end = 0; 6840 u64 objectid = btrfs_ino(inode); 6841 int extent_type = -1; 6842 struct btrfs_path *path = NULL; 6843 struct btrfs_root *root = inode->root; 6844 struct btrfs_file_extent_item *item; 6845 struct extent_buffer *leaf; 6846 struct btrfs_key found_key; 6847 struct extent_map *em = NULL; 6848 struct extent_map_tree *em_tree = &inode->extent_tree; 6849 6850 read_lock(&em_tree->lock); 6851 em = lookup_extent_mapping(em_tree, start, len); 6852 read_unlock(&em_tree->lock); 6853 6854 if (em) { 6855 if (em->start > start || em->start + em->len <= start) 6856 free_extent_map(em); 6857 else if (em->block_start == EXTENT_MAP_INLINE && page) 6858 free_extent_map(em); 6859 else 6860 goto out; 6861 } 6862 em = alloc_extent_map(); 6863 if (!em) { 6864 ret = -ENOMEM; 6865 goto out; 6866 } 6867 em->start = EXTENT_MAP_HOLE; 6868 em->orig_start = EXTENT_MAP_HOLE; 6869 em->len = (u64)-1; 6870 em->block_len = (u64)-1; 6871 6872 path = btrfs_alloc_path(); 6873 if (!path) { 6874 ret = -ENOMEM; 6875 goto out; 6876 } 6877 6878 /* Chances are we'll be called again, so go ahead and do readahead */ 6879 path->reada = READA_FORWARD; 6880 6881 /* 6882 * The same explanation in load_free_space_cache applies here as well, 6883 * we only read when we're loading the free space cache, and at that 6884 * point the commit_root has everything we need. 6885 */ 6886 if (btrfs_is_free_space_inode(inode)) { 6887 path->search_commit_root = 1; 6888 path->skip_locking = 1; 6889 } 6890 6891 ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0); 6892 if (ret < 0) { 6893 goto out; 6894 } else if (ret > 0) { 6895 if (path->slots[0] == 0) 6896 goto not_found; 6897 path->slots[0]--; 6898 ret = 0; 6899 } 6900 6901 leaf = path->nodes[0]; 6902 item = btrfs_item_ptr(leaf, path->slots[0], 6903 struct btrfs_file_extent_item); 6904 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6905 if (found_key.objectid != objectid || 6906 found_key.type != BTRFS_EXTENT_DATA_KEY) { 6907 /* 6908 * If we backup past the first extent we want to move forward 6909 * and see if there is an extent in front of us, otherwise we'll 6910 * say there is a hole for our whole search range which can 6911 * cause problems. 6912 */ 6913 extent_end = start; 6914 goto next; 6915 } 6916 6917 extent_type = btrfs_file_extent_type(leaf, item); 6918 extent_start = found_key.offset; 6919 extent_end = btrfs_file_extent_end(path); 6920 if (extent_type == BTRFS_FILE_EXTENT_REG || 6921 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 6922 /* Only regular file could have regular/prealloc extent */ 6923 if (!S_ISREG(inode->vfs_inode.i_mode)) { 6924 ret = -EUCLEAN; 6925 btrfs_crit(fs_info, 6926 "regular/prealloc extent found for non-regular inode %llu", 6927 btrfs_ino(inode)); 6928 goto out; 6929 } 6930 trace_btrfs_get_extent_show_fi_regular(inode, leaf, item, 6931 extent_start); 6932 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 6933 trace_btrfs_get_extent_show_fi_inline(inode, leaf, item, 6934 path->slots[0], 6935 extent_start); 6936 } 6937 next: 6938 if (start >= extent_end) { 6939 path->slots[0]++; 6940 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 6941 ret = btrfs_next_leaf(root, path); 6942 if (ret < 0) 6943 goto out; 6944 else if (ret > 0) 6945 goto not_found; 6946 6947 leaf = path->nodes[0]; 6948 } 6949 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6950 if (found_key.objectid != objectid || 6951 found_key.type != BTRFS_EXTENT_DATA_KEY) 6952 goto not_found; 6953 if (start + len <= found_key.offset) 6954 goto not_found; 6955 if (start > found_key.offset) 6956 goto next; 6957 6958 /* New extent overlaps with existing one */ 6959 em->start = start; 6960 em->orig_start = start; 6961 em->len = found_key.offset - start; 6962 em->block_start = EXTENT_MAP_HOLE; 6963 goto insert; 6964 } 6965 6966 btrfs_extent_item_to_extent_map(inode, path, item, em); 6967 6968 if (extent_type == BTRFS_FILE_EXTENT_REG || 6969 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 6970 goto insert; 6971 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 6972 /* 6973 * Inline extent can only exist at file offset 0. This is 6974 * ensured by tree-checker and inline extent creation path. 6975 * Thus all members representing file offsets should be zero. 6976 */ 6977 ASSERT(pg_offset == 0); 6978 ASSERT(extent_start == 0); 6979 ASSERT(em->start == 0); 6980 6981 /* 6982 * btrfs_extent_item_to_extent_map() should have properly 6983 * initialized em members already. 6984 * 6985 * Other members are not utilized for inline extents. 6986 */ 6987 ASSERT(em->block_start == EXTENT_MAP_INLINE); 6988 ASSERT(em->len == fs_info->sectorsize); 6989 6990 ret = read_inline_extent(inode, path, page); 6991 if (ret < 0) 6992 goto out; 6993 goto insert; 6994 } 6995 not_found: 6996 em->start = start; 6997 em->orig_start = start; 6998 em->len = len; 6999 em->block_start = EXTENT_MAP_HOLE; 7000 insert: 7001 ret = 0; 7002 btrfs_release_path(path); 7003 if (em->start > start || extent_map_end(em) <= start) { 7004 btrfs_err(fs_info, 7005 "bad extent! em: [%llu %llu] passed [%llu %llu]", 7006 em->start, em->len, start, len); 7007 ret = -EIO; 7008 goto out; 7009 } 7010 7011 write_lock(&em_tree->lock); 7012 ret = btrfs_add_extent_mapping(fs_info, em_tree, &em, start, len); 7013 write_unlock(&em_tree->lock); 7014 out: 7015 btrfs_free_path(path); 7016 7017 trace_btrfs_get_extent(root, inode, em); 7018 7019 if (ret) { 7020 free_extent_map(em); 7021 return ERR_PTR(ret); 7022 } 7023 return em; 7024 } 7025 7026 static struct extent_map *btrfs_create_dio_extent(struct btrfs_inode *inode, 7027 struct btrfs_dio_data *dio_data, 7028 const u64 start, 7029 const u64 len, 7030 const u64 orig_start, 7031 const u64 block_start, 7032 const u64 block_len, 7033 const u64 orig_block_len, 7034 const u64 ram_bytes, 7035 const int type) 7036 { 7037 struct extent_map *em = NULL; 7038 struct btrfs_ordered_extent *ordered; 7039 7040 if (type != BTRFS_ORDERED_NOCOW) { 7041 em = create_io_em(inode, start, len, orig_start, block_start, 7042 block_len, orig_block_len, ram_bytes, 7043 BTRFS_COMPRESS_NONE, /* compress_type */ 7044 type); 7045 if (IS_ERR(em)) 7046 goto out; 7047 } 7048 ordered = btrfs_alloc_ordered_extent(inode, start, len, len, 7049 block_start, block_len, 0, 7050 (1 << type) | 7051 (1 << BTRFS_ORDERED_DIRECT), 7052 BTRFS_COMPRESS_NONE); 7053 if (IS_ERR(ordered)) { 7054 if (em) { 7055 free_extent_map(em); 7056 btrfs_drop_extent_map_range(inode, start, 7057 start + len - 1, false); 7058 } 7059 em = ERR_CAST(ordered); 7060 } else { 7061 ASSERT(!dio_data->ordered); 7062 dio_data->ordered = ordered; 7063 } 7064 out: 7065 7066 return em; 7067 } 7068 7069 static struct extent_map *btrfs_new_extent_direct(struct btrfs_inode *inode, 7070 struct btrfs_dio_data *dio_data, 7071 u64 start, u64 len) 7072 { 7073 struct btrfs_root *root = inode->root; 7074 struct btrfs_fs_info *fs_info = root->fs_info; 7075 struct extent_map *em; 7076 struct btrfs_key ins; 7077 u64 alloc_hint; 7078 int ret; 7079 7080 alloc_hint = get_extent_allocation_hint(inode, start, len); 7081 ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize, 7082 0, alloc_hint, &ins, 1, 1); 7083 if (ret) 7084 return ERR_PTR(ret); 7085 7086 em = btrfs_create_dio_extent(inode, dio_data, start, ins.offset, start, 7087 ins.objectid, ins.offset, ins.offset, 7088 ins.offset, BTRFS_ORDERED_REGULAR); 7089 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 7090 if (IS_ERR(em)) 7091 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 7092 1); 7093 7094 return em; 7095 } 7096 7097 static bool btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr) 7098 { 7099 struct btrfs_block_group *block_group; 7100 bool readonly = false; 7101 7102 block_group = btrfs_lookup_block_group(fs_info, bytenr); 7103 if (!block_group || block_group->ro) 7104 readonly = true; 7105 if (block_group) 7106 btrfs_put_block_group(block_group); 7107 return readonly; 7108 } 7109 7110 /* 7111 * Check if we can do nocow write into the range [@offset, @offset + @len) 7112 * 7113 * @offset: File offset 7114 * @len: The length to write, will be updated to the nocow writeable 7115 * range 7116 * @orig_start: (optional) Return the original file offset of the file extent 7117 * @orig_len: (optional) Return the original on-disk length of the file extent 7118 * @ram_bytes: (optional) Return the ram_bytes of the file extent 7119 * @strict: if true, omit optimizations that might force us into unnecessary 7120 * cow. e.g., don't trust generation number. 7121 * 7122 * Return: 7123 * >0 and update @len if we can do nocow write 7124 * 0 if we can't do nocow write 7125 * <0 if error happened 7126 * 7127 * NOTE: This only checks the file extents, caller is responsible to wait for 7128 * any ordered extents. 7129 */ 7130 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len, 7131 u64 *orig_start, u64 *orig_block_len, 7132 u64 *ram_bytes, bool nowait, bool strict) 7133 { 7134 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7135 struct can_nocow_file_extent_args nocow_args = { 0 }; 7136 struct btrfs_path *path; 7137 int ret; 7138 struct extent_buffer *leaf; 7139 struct btrfs_root *root = BTRFS_I(inode)->root; 7140 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 7141 struct btrfs_file_extent_item *fi; 7142 struct btrfs_key key; 7143 int found_type; 7144 7145 path = btrfs_alloc_path(); 7146 if (!path) 7147 return -ENOMEM; 7148 path->nowait = nowait; 7149 7150 ret = btrfs_lookup_file_extent(NULL, root, path, 7151 btrfs_ino(BTRFS_I(inode)), offset, 0); 7152 if (ret < 0) 7153 goto out; 7154 7155 if (ret == 1) { 7156 if (path->slots[0] == 0) { 7157 /* can't find the item, must cow */ 7158 ret = 0; 7159 goto out; 7160 } 7161 path->slots[0]--; 7162 } 7163 ret = 0; 7164 leaf = path->nodes[0]; 7165 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 7166 if (key.objectid != btrfs_ino(BTRFS_I(inode)) || 7167 key.type != BTRFS_EXTENT_DATA_KEY) { 7168 /* not our file or wrong item type, must cow */ 7169 goto out; 7170 } 7171 7172 if (key.offset > offset) { 7173 /* Wrong offset, must cow */ 7174 goto out; 7175 } 7176 7177 if (btrfs_file_extent_end(path) <= offset) 7178 goto out; 7179 7180 fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); 7181 found_type = btrfs_file_extent_type(leaf, fi); 7182 if (ram_bytes) 7183 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 7184 7185 nocow_args.start = offset; 7186 nocow_args.end = offset + *len - 1; 7187 nocow_args.strict = strict; 7188 nocow_args.free_path = true; 7189 7190 ret = can_nocow_file_extent(path, &key, BTRFS_I(inode), &nocow_args); 7191 /* can_nocow_file_extent() has freed the path. */ 7192 path = NULL; 7193 7194 if (ret != 1) { 7195 /* Treat errors as not being able to NOCOW. */ 7196 ret = 0; 7197 goto out; 7198 } 7199 7200 ret = 0; 7201 if (btrfs_extent_readonly(fs_info, nocow_args.disk_bytenr)) 7202 goto out; 7203 7204 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) && 7205 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 7206 u64 range_end; 7207 7208 range_end = round_up(offset + nocow_args.num_bytes, 7209 root->fs_info->sectorsize) - 1; 7210 ret = test_range_bit(io_tree, offset, range_end, 7211 EXTENT_DELALLOC, 0, NULL); 7212 if (ret) { 7213 ret = -EAGAIN; 7214 goto out; 7215 } 7216 } 7217 7218 if (orig_start) 7219 *orig_start = key.offset - nocow_args.extent_offset; 7220 if (orig_block_len) 7221 *orig_block_len = nocow_args.disk_num_bytes; 7222 7223 *len = nocow_args.num_bytes; 7224 ret = 1; 7225 out: 7226 btrfs_free_path(path); 7227 return ret; 7228 } 7229 7230 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend, 7231 struct extent_state **cached_state, 7232 unsigned int iomap_flags) 7233 { 7234 const bool writing = (iomap_flags & IOMAP_WRITE); 7235 const bool nowait = (iomap_flags & IOMAP_NOWAIT); 7236 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 7237 struct btrfs_ordered_extent *ordered; 7238 int ret = 0; 7239 7240 while (1) { 7241 if (nowait) { 7242 if (!try_lock_extent(io_tree, lockstart, lockend, 7243 cached_state)) 7244 return -EAGAIN; 7245 } else { 7246 lock_extent(io_tree, lockstart, lockend, cached_state); 7247 } 7248 /* 7249 * We're concerned with the entire range that we're going to be 7250 * doing DIO to, so we need to make sure there's no ordered 7251 * extents in this range. 7252 */ 7253 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart, 7254 lockend - lockstart + 1); 7255 7256 /* 7257 * We need to make sure there are no buffered pages in this 7258 * range either, we could have raced between the invalidate in 7259 * generic_file_direct_write and locking the extent. The 7260 * invalidate needs to happen so that reads after a write do not 7261 * get stale data. 7262 */ 7263 if (!ordered && 7264 (!writing || !filemap_range_has_page(inode->i_mapping, 7265 lockstart, lockend))) 7266 break; 7267 7268 unlock_extent(io_tree, lockstart, lockend, cached_state); 7269 7270 if (ordered) { 7271 if (nowait) { 7272 btrfs_put_ordered_extent(ordered); 7273 ret = -EAGAIN; 7274 break; 7275 } 7276 /* 7277 * If we are doing a DIO read and the ordered extent we 7278 * found is for a buffered write, we can not wait for it 7279 * to complete and retry, because if we do so we can 7280 * deadlock with concurrent buffered writes on page 7281 * locks. This happens only if our DIO read covers more 7282 * than one extent map, if at this point has already 7283 * created an ordered extent for a previous extent map 7284 * and locked its range in the inode's io tree, and a 7285 * concurrent write against that previous extent map's 7286 * range and this range started (we unlock the ranges 7287 * in the io tree only when the bios complete and 7288 * buffered writes always lock pages before attempting 7289 * to lock range in the io tree). 7290 */ 7291 if (writing || 7292 test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) 7293 btrfs_start_ordered_extent(ordered); 7294 else 7295 ret = nowait ? -EAGAIN : -ENOTBLK; 7296 btrfs_put_ordered_extent(ordered); 7297 } else { 7298 /* 7299 * We could trigger writeback for this range (and wait 7300 * for it to complete) and then invalidate the pages for 7301 * this range (through invalidate_inode_pages2_range()), 7302 * but that can lead us to a deadlock with a concurrent 7303 * call to readahead (a buffered read or a defrag call 7304 * triggered a readahead) on a page lock due to an 7305 * ordered dio extent we created before but did not have 7306 * yet a corresponding bio submitted (whence it can not 7307 * complete), which makes readahead wait for that 7308 * ordered extent to complete while holding a lock on 7309 * that page. 7310 */ 7311 ret = nowait ? -EAGAIN : -ENOTBLK; 7312 } 7313 7314 if (ret) 7315 break; 7316 7317 cond_resched(); 7318 } 7319 7320 return ret; 7321 } 7322 7323 /* The callers of this must take lock_extent() */ 7324 static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start, 7325 u64 len, u64 orig_start, u64 block_start, 7326 u64 block_len, u64 orig_block_len, 7327 u64 ram_bytes, int compress_type, 7328 int type) 7329 { 7330 struct extent_map *em; 7331 int ret; 7332 7333 ASSERT(type == BTRFS_ORDERED_PREALLOC || 7334 type == BTRFS_ORDERED_COMPRESSED || 7335 type == BTRFS_ORDERED_NOCOW || 7336 type == BTRFS_ORDERED_REGULAR); 7337 7338 em = alloc_extent_map(); 7339 if (!em) 7340 return ERR_PTR(-ENOMEM); 7341 7342 em->start = start; 7343 em->orig_start = orig_start; 7344 em->len = len; 7345 em->block_len = block_len; 7346 em->block_start = block_start; 7347 em->orig_block_len = orig_block_len; 7348 em->ram_bytes = ram_bytes; 7349 em->generation = -1; 7350 set_bit(EXTENT_FLAG_PINNED, &em->flags); 7351 if (type == BTRFS_ORDERED_PREALLOC) { 7352 set_bit(EXTENT_FLAG_FILLING, &em->flags); 7353 } else if (type == BTRFS_ORDERED_COMPRESSED) { 7354 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 7355 em->compress_type = compress_type; 7356 } 7357 7358 ret = btrfs_replace_extent_map_range(inode, em, true); 7359 if (ret) { 7360 free_extent_map(em); 7361 return ERR_PTR(ret); 7362 } 7363 7364 /* em got 2 refs now, callers needs to do free_extent_map once. */ 7365 return em; 7366 } 7367 7368 7369 static int btrfs_get_blocks_direct_write(struct extent_map **map, 7370 struct inode *inode, 7371 struct btrfs_dio_data *dio_data, 7372 u64 start, u64 *lenp, 7373 unsigned int iomap_flags) 7374 { 7375 const bool nowait = (iomap_flags & IOMAP_NOWAIT); 7376 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7377 struct extent_map *em = *map; 7378 int type; 7379 u64 block_start, orig_start, orig_block_len, ram_bytes; 7380 struct btrfs_block_group *bg; 7381 bool can_nocow = false; 7382 bool space_reserved = false; 7383 u64 len = *lenp; 7384 u64 prev_len; 7385 int ret = 0; 7386 7387 /* 7388 * We don't allocate a new extent in the following cases 7389 * 7390 * 1) The inode is marked as NODATACOW. In this case we'll just use the 7391 * existing extent. 7392 * 2) The extent is marked as PREALLOC. We're good to go here and can 7393 * just use the extent. 7394 * 7395 */ 7396 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) || 7397 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) && 7398 em->block_start != EXTENT_MAP_HOLE)) { 7399 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 7400 type = BTRFS_ORDERED_PREALLOC; 7401 else 7402 type = BTRFS_ORDERED_NOCOW; 7403 len = min(len, em->len - (start - em->start)); 7404 block_start = em->block_start + (start - em->start); 7405 7406 if (can_nocow_extent(inode, start, &len, &orig_start, 7407 &orig_block_len, &ram_bytes, false, false) == 1) { 7408 bg = btrfs_inc_nocow_writers(fs_info, block_start); 7409 if (bg) 7410 can_nocow = true; 7411 } 7412 } 7413 7414 prev_len = len; 7415 if (can_nocow) { 7416 struct extent_map *em2; 7417 7418 /* We can NOCOW, so only need to reserve metadata space. */ 7419 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len, len, 7420 nowait); 7421 if (ret < 0) { 7422 /* Our caller expects us to free the input extent map. */ 7423 free_extent_map(em); 7424 *map = NULL; 7425 btrfs_dec_nocow_writers(bg); 7426 if (nowait && (ret == -ENOSPC || ret == -EDQUOT)) 7427 ret = -EAGAIN; 7428 goto out; 7429 } 7430 space_reserved = true; 7431 7432 em2 = btrfs_create_dio_extent(BTRFS_I(inode), dio_data, start, len, 7433 orig_start, block_start, 7434 len, orig_block_len, 7435 ram_bytes, type); 7436 btrfs_dec_nocow_writers(bg); 7437 if (type == BTRFS_ORDERED_PREALLOC) { 7438 free_extent_map(em); 7439 *map = em2; 7440 em = em2; 7441 } 7442 7443 if (IS_ERR(em2)) { 7444 ret = PTR_ERR(em2); 7445 goto out; 7446 } 7447 7448 dio_data->nocow_done = true; 7449 } else { 7450 /* Our caller expects us to free the input extent map. */ 7451 free_extent_map(em); 7452 *map = NULL; 7453 7454 if (nowait) { 7455 ret = -EAGAIN; 7456 goto out; 7457 } 7458 7459 /* 7460 * If we could not allocate data space before locking the file 7461 * range and we can't do a NOCOW write, then we have to fail. 7462 */ 7463 if (!dio_data->data_space_reserved) { 7464 ret = -ENOSPC; 7465 goto out; 7466 } 7467 7468 /* 7469 * We have to COW and we have already reserved data space before, 7470 * so now we reserve only metadata. 7471 */ 7472 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len, len, 7473 false); 7474 if (ret < 0) 7475 goto out; 7476 space_reserved = true; 7477 7478 em = btrfs_new_extent_direct(BTRFS_I(inode), dio_data, start, len); 7479 if (IS_ERR(em)) { 7480 ret = PTR_ERR(em); 7481 goto out; 7482 } 7483 *map = em; 7484 len = min(len, em->len - (start - em->start)); 7485 if (len < prev_len) 7486 btrfs_delalloc_release_metadata(BTRFS_I(inode), 7487 prev_len - len, true); 7488 } 7489 7490 /* 7491 * We have created our ordered extent, so we can now release our reservation 7492 * for an outstanding extent. 7493 */ 7494 btrfs_delalloc_release_extents(BTRFS_I(inode), prev_len); 7495 7496 /* 7497 * Need to update the i_size under the extent lock so buffered 7498 * readers will get the updated i_size when we unlock. 7499 */ 7500 if (start + len > i_size_read(inode)) 7501 i_size_write(inode, start + len); 7502 out: 7503 if (ret && space_reserved) { 7504 btrfs_delalloc_release_extents(BTRFS_I(inode), len); 7505 btrfs_delalloc_release_metadata(BTRFS_I(inode), len, true); 7506 } 7507 *lenp = len; 7508 return ret; 7509 } 7510 7511 static int btrfs_dio_iomap_begin(struct inode *inode, loff_t start, 7512 loff_t length, unsigned int flags, struct iomap *iomap, 7513 struct iomap *srcmap) 7514 { 7515 struct iomap_iter *iter = container_of(iomap, struct iomap_iter, iomap); 7516 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7517 struct extent_map *em; 7518 struct extent_state *cached_state = NULL; 7519 struct btrfs_dio_data *dio_data = iter->private; 7520 u64 lockstart, lockend; 7521 const bool write = !!(flags & IOMAP_WRITE); 7522 int ret = 0; 7523 u64 len = length; 7524 const u64 data_alloc_len = length; 7525 bool unlock_extents = false; 7526 7527 /* 7528 * We could potentially fault if we have a buffer > PAGE_SIZE, and if 7529 * we're NOWAIT we may submit a bio for a partial range and return 7530 * EIOCBQUEUED, which would result in an errant short read. 7531 * 7532 * The best way to handle this would be to allow for partial completions 7533 * of iocb's, so we could submit the partial bio, return and fault in 7534 * the rest of the pages, and then submit the io for the rest of the 7535 * range. However we don't have that currently, so simply return 7536 * -EAGAIN at this point so that the normal path is used. 7537 */ 7538 if (!write && (flags & IOMAP_NOWAIT) && length > PAGE_SIZE) 7539 return -EAGAIN; 7540 7541 /* 7542 * Cap the size of reads to that usually seen in buffered I/O as we need 7543 * to allocate a contiguous array for the checksums. 7544 */ 7545 if (!write) 7546 len = min_t(u64, len, fs_info->sectorsize * BTRFS_MAX_BIO_SECTORS); 7547 7548 lockstart = start; 7549 lockend = start + len - 1; 7550 7551 /* 7552 * iomap_dio_rw() only does filemap_write_and_wait_range(), which isn't 7553 * enough if we've written compressed pages to this area, so we need to 7554 * flush the dirty pages again to make absolutely sure that any 7555 * outstanding dirty pages are on disk - the first flush only starts 7556 * compression on the data, while keeping the pages locked, so by the 7557 * time the second flush returns we know bios for the compressed pages 7558 * were submitted and finished, and the pages no longer under writeback. 7559 * 7560 * If we have a NOWAIT request and we have any pages in the range that 7561 * are locked, likely due to compression still in progress, we don't want 7562 * to block on page locks. We also don't want to block on pages marked as 7563 * dirty or under writeback (same as for the non-compression case). 7564 * iomap_dio_rw() did the same check, but after that and before we got 7565 * here, mmap'ed writes may have happened or buffered reads started 7566 * (readpage() and readahead(), which lock pages), as we haven't locked 7567 * the file range yet. 7568 */ 7569 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 7570 &BTRFS_I(inode)->runtime_flags)) { 7571 if (flags & IOMAP_NOWAIT) { 7572 if (filemap_range_needs_writeback(inode->i_mapping, 7573 lockstart, lockend)) 7574 return -EAGAIN; 7575 } else { 7576 ret = filemap_fdatawrite_range(inode->i_mapping, start, 7577 start + length - 1); 7578 if (ret) 7579 return ret; 7580 } 7581 } 7582 7583 memset(dio_data, 0, sizeof(*dio_data)); 7584 7585 /* 7586 * We always try to allocate data space and must do it before locking 7587 * the file range, to avoid deadlocks with concurrent writes to the same 7588 * range if the range has several extents and the writes don't expand the 7589 * current i_size (the inode lock is taken in shared mode). If we fail to 7590 * allocate data space here we continue and later, after locking the 7591 * file range, we fail with ENOSPC only if we figure out we can not do a 7592 * NOCOW write. 7593 */ 7594 if (write && !(flags & IOMAP_NOWAIT)) { 7595 ret = btrfs_check_data_free_space(BTRFS_I(inode), 7596 &dio_data->data_reserved, 7597 start, data_alloc_len, false); 7598 if (!ret) 7599 dio_data->data_space_reserved = true; 7600 else if (ret && !(BTRFS_I(inode)->flags & 7601 (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC))) 7602 goto err; 7603 } 7604 7605 /* 7606 * If this errors out it's because we couldn't invalidate pagecache for 7607 * this range and we need to fallback to buffered IO, or we are doing a 7608 * NOWAIT read/write and we need to block. 7609 */ 7610 ret = lock_extent_direct(inode, lockstart, lockend, &cached_state, flags); 7611 if (ret < 0) 7612 goto err; 7613 7614 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len); 7615 if (IS_ERR(em)) { 7616 ret = PTR_ERR(em); 7617 goto unlock_err; 7618 } 7619 7620 /* 7621 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered 7622 * io. INLINE is special, and we could probably kludge it in here, but 7623 * it's still buffered so for safety lets just fall back to the generic 7624 * buffered path. 7625 * 7626 * For COMPRESSED we _have_ to read the entire extent in so we can 7627 * decompress it, so there will be buffering required no matter what we 7628 * do, so go ahead and fallback to buffered. 7629 * 7630 * We return -ENOTBLK because that's what makes DIO go ahead and go back 7631 * to buffered IO. Don't blame me, this is the price we pay for using 7632 * the generic code. 7633 */ 7634 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) || 7635 em->block_start == EXTENT_MAP_INLINE) { 7636 free_extent_map(em); 7637 /* 7638 * If we are in a NOWAIT context, return -EAGAIN in order to 7639 * fallback to buffered IO. This is not only because we can 7640 * block with buffered IO (no support for NOWAIT semantics at 7641 * the moment) but also to avoid returning short reads to user 7642 * space - this happens if we were able to read some data from 7643 * previous non-compressed extents and then when we fallback to 7644 * buffered IO, at btrfs_file_read_iter() by calling 7645 * filemap_read(), we fail to fault in pages for the read buffer, 7646 * in which case filemap_read() returns a short read (the number 7647 * of bytes previously read is > 0, so it does not return -EFAULT). 7648 */ 7649 ret = (flags & IOMAP_NOWAIT) ? -EAGAIN : -ENOTBLK; 7650 goto unlock_err; 7651 } 7652 7653 len = min(len, em->len - (start - em->start)); 7654 7655 /* 7656 * If we have a NOWAIT request and the range contains multiple extents 7657 * (or a mix of extents and holes), then we return -EAGAIN to make the 7658 * caller fallback to a context where it can do a blocking (without 7659 * NOWAIT) request. This way we avoid doing partial IO and returning 7660 * success to the caller, which is not optimal for writes and for reads 7661 * it can result in unexpected behaviour for an application. 7662 * 7663 * When doing a read, because we use IOMAP_DIO_PARTIAL when calling 7664 * iomap_dio_rw(), we can end up returning less data then what the caller 7665 * asked for, resulting in an unexpected, and incorrect, short read. 7666 * That is, the caller asked to read N bytes and we return less than that, 7667 * which is wrong unless we are crossing EOF. This happens if we get a 7668 * page fault error when trying to fault in pages for the buffer that is 7669 * associated to the struct iov_iter passed to iomap_dio_rw(), and we 7670 * have previously submitted bios for other extents in the range, in 7671 * which case iomap_dio_rw() may return us EIOCBQUEUED if not all of 7672 * those bios have completed by the time we get the page fault error, 7673 * which we return back to our caller - we should only return EIOCBQUEUED 7674 * after we have submitted bios for all the extents in the range. 7675 */ 7676 if ((flags & IOMAP_NOWAIT) && len < length) { 7677 free_extent_map(em); 7678 ret = -EAGAIN; 7679 goto unlock_err; 7680 } 7681 7682 if (write) { 7683 ret = btrfs_get_blocks_direct_write(&em, inode, dio_data, 7684 start, &len, flags); 7685 if (ret < 0) 7686 goto unlock_err; 7687 unlock_extents = true; 7688 /* Recalc len in case the new em is smaller than requested */ 7689 len = min(len, em->len - (start - em->start)); 7690 if (dio_data->data_space_reserved) { 7691 u64 release_offset; 7692 u64 release_len = 0; 7693 7694 if (dio_data->nocow_done) { 7695 release_offset = start; 7696 release_len = data_alloc_len; 7697 } else if (len < data_alloc_len) { 7698 release_offset = start + len; 7699 release_len = data_alloc_len - len; 7700 } 7701 7702 if (release_len > 0) 7703 btrfs_free_reserved_data_space(BTRFS_I(inode), 7704 dio_data->data_reserved, 7705 release_offset, 7706 release_len); 7707 } 7708 } else { 7709 /* 7710 * We need to unlock only the end area that we aren't using. 7711 * The rest is going to be unlocked by the endio routine. 7712 */ 7713 lockstart = start + len; 7714 if (lockstart < lockend) 7715 unlock_extents = true; 7716 } 7717 7718 if (unlock_extents) 7719 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7720 &cached_state); 7721 else 7722 free_extent_state(cached_state); 7723 7724 /* 7725 * Translate extent map information to iomap. 7726 * We trim the extents (and move the addr) even though iomap code does 7727 * that, since we have locked only the parts we are performing I/O in. 7728 */ 7729 if ((em->block_start == EXTENT_MAP_HOLE) || 7730 (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) && !write)) { 7731 iomap->addr = IOMAP_NULL_ADDR; 7732 iomap->type = IOMAP_HOLE; 7733 } else { 7734 iomap->addr = em->block_start + (start - em->start); 7735 iomap->type = IOMAP_MAPPED; 7736 } 7737 iomap->offset = start; 7738 iomap->bdev = fs_info->fs_devices->latest_dev->bdev; 7739 iomap->length = len; 7740 free_extent_map(em); 7741 7742 return 0; 7743 7744 unlock_err: 7745 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7746 &cached_state); 7747 err: 7748 if (dio_data->data_space_reserved) { 7749 btrfs_free_reserved_data_space(BTRFS_I(inode), 7750 dio_data->data_reserved, 7751 start, data_alloc_len); 7752 extent_changeset_free(dio_data->data_reserved); 7753 } 7754 7755 return ret; 7756 } 7757 7758 static int btrfs_dio_iomap_end(struct inode *inode, loff_t pos, loff_t length, 7759 ssize_t written, unsigned int flags, struct iomap *iomap) 7760 { 7761 struct iomap_iter *iter = container_of(iomap, struct iomap_iter, iomap); 7762 struct btrfs_dio_data *dio_data = iter->private; 7763 size_t submitted = dio_data->submitted; 7764 const bool write = !!(flags & IOMAP_WRITE); 7765 int ret = 0; 7766 7767 if (!write && (iomap->type == IOMAP_HOLE)) { 7768 /* If reading from a hole, unlock and return */ 7769 unlock_extent(&BTRFS_I(inode)->io_tree, pos, pos + length - 1, 7770 NULL); 7771 return 0; 7772 } 7773 7774 if (submitted < length) { 7775 pos += submitted; 7776 length -= submitted; 7777 if (write) 7778 btrfs_finish_ordered_extent(dio_data->ordered, NULL, 7779 pos, length, false); 7780 else 7781 unlock_extent(&BTRFS_I(inode)->io_tree, pos, 7782 pos + length - 1, NULL); 7783 ret = -ENOTBLK; 7784 } 7785 if (write) { 7786 btrfs_put_ordered_extent(dio_data->ordered); 7787 dio_data->ordered = NULL; 7788 } 7789 7790 if (write) 7791 extent_changeset_free(dio_data->data_reserved); 7792 return ret; 7793 } 7794 7795 static void btrfs_dio_end_io(struct btrfs_bio *bbio) 7796 { 7797 struct btrfs_dio_private *dip = 7798 container_of(bbio, struct btrfs_dio_private, bbio); 7799 struct btrfs_inode *inode = bbio->inode; 7800 struct bio *bio = &bbio->bio; 7801 7802 if (bio->bi_status) { 7803 btrfs_warn(inode->root->fs_info, 7804 "direct IO failed ino %llu op 0x%0x offset %#llx len %u err no %d", 7805 btrfs_ino(inode), bio->bi_opf, 7806 dip->file_offset, dip->bytes, bio->bi_status); 7807 } 7808 7809 if (btrfs_op(bio) == BTRFS_MAP_WRITE) { 7810 btrfs_finish_ordered_extent(bbio->ordered, NULL, 7811 dip->file_offset, dip->bytes, 7812 !bio->bi_status); 7813 } else { 7814 unlock_extent(&inode->io_tree, dip->file_offset, 7815 dip->file_offset + dip->bytes - 1, NULL); 7816 } 7817 7818 bbio->bio.bi_private = bbio->private; 7819 iomap_dio_bio_end_io(bio); 7820 } 7821 7822 static void btrfs_dio_submit_io(const struct iomap_iter *iter, struct bio *bio, 7823 loff_t file_offset) 7824 { 7825 struct btrfs_bio *bbio = btrfs_bio(bio); 7826 struct btrfs_dio_private *dip = 7827 container_of(bbio, struct btrfs_dio_private, bbio); 7828 struct btrfs_dio_data *dio_data = iter->private; 7829 7830 btrfs_bio_init(bbio, BTRFS_I(iter->inode)->root->fs_info, 7831 btrfs_dio_end_io, bio->bi_private); 7832 bbio->inode = BTRFS_I(iter->inode); 7833 bbio->file_offset = file_offset; 7834 7835 dip->file_offset = file_offset; 7836 dip->bytes = bio->bi_iter.bi_size; 7837 7838 dio_data->submitted += bio->bi_iter.bi_size; 7839 7840 /* 7841 * Check if we are doing a partial write. If we are, we need to split 7842 * the ordered extent to match the submitted bio. Hang on to the 7843 * remaining unfinishable ordered_extent in dio_data so that it can be 7844 * cancelled in iomap_end to avoid a deadlock wherein faulting the 7845 * remaining pages is blocked on the outstanding ordered extent. 7846 */ 7847 if (iter->flags & IOMAP_WRITE) { 7848 int ret; 7849 7850 ret = btrfs_extract_ordered_extent(bbio, dio_data->ordered); 7851 if (ret) { 7852 bbio->bio.bi_status = errno_to_blk_status(ret); 7853 btrfs_dio_end_io(bbio); 7854 return; 7855 } 7856 } 7857 7858 btrfs_submit_bio(bbio, 0); 7859 } 7860 7861 static const struct iomap_ops btrfs_dio_iomap_ops = { 7862 .iomap_begin = btrfs_dio_iomap_begin, 7863 .iomap_end = btrfs_dio_iomap_end, 7864 }; 7865 7866 static const struct iomap_dio_ops btrfs_dio_ops = { 7867 .submit_io = btrfs_dio_submit_io, 7868 .bio_set = &btrfs_dio_bioset, 7869 }; 7870 7871 ssize_t btrfs_dio_read(struct kiocb *iocb, struct iov_iter *iter, size_t done_before) 7872 { 7873 struct btrfs_dio_data data = { 0 }; 7874 7875 return iomap_dio_rw(iocb, iter, &btrfs_dio_iomap_ops, &btrfs_dio_ops, 7876 IOMAP_DIO_PARTIAL, &data, done_before); 7877 } 7878 7879 struct iomap_dio *btrfs_dio_write(struct kiocb *iocb, struct iov_iter *iter, 7880 size_t done_before) 7881 { 7882 struct btrfs_dio_data data = { 0 }; 7883 7884 return __iomap_dio_rw(iocb, iter, &btrfs_dio_iomap_ops, &btrfs_dio_ops, 7885 IOMAP_DIO_PARTIAL, &data, done_before); 7886 } 7887 7888 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 7889 u64 start, u64 len) 7890 { 7891 int ret; 7892 7893 ret = fiemap_prep(inode, fieinfo, start, &len, 0); 7894 if (ret) 7895 return ret; 7896 7897 /* 7898 * fiemap_prep() called filemap_write_and_wait() for the whole possible 7899 * file range (0 to LLONG_MAX), but that is not enough if we have 7900 * compression enabled. The first filemap_fdatawrite_range() only kicks 7901 * in the compression of data (in an async thread) and will return 7902 * before the compression is done and writeback is started. A second 7903 * filemap_fdatawrite_range() is needed to wait for the compression to 7904 * complete and writeback to start. We also need to wait for ordered 7905 * extents to complete, because our fiemap implementation uses mainly 7906 * file extent items to list the extents, searching for extent maps 7907 * only for file ranges with holes or prealloc extents to figure out 7908 * if we have delalloc in those ranges. 7909 */ 7910 if (fieinfo->fi_flags & FIEMAP_FLAG_SYNC) { 7911 ret = btrfs_wait_ordered_range(inode, 0, LLONG_MAX); 7912 if (ret) 7913 return ret; 7914 } 7915 7916 return extent_fiemap(BTRFS_I(inode), fieinfo, start, len); 7917 } 7918 7919 static int btrfs_writepages(struct address_space *mapping, 7920 struct writeback_control *wbc) 7921 { 7922 return extent_writepages(mapping, wbc); 7923 } 7924 7925 static void btrfs_readahead(struct readahead_control *rac) 7926 { 7927 extent_readahead(rac); 7928 } 7929 7930 /* 7931 * For release_folio() and invalidate_folio() we have a race window where 7932 * folio_end_writeback() is called but the subpage spinlock is not yet released. 7933 * If we continue to release/invalidate the page, we could cause use-after-free 7934 * for subpage spinlock. So this function is to spin and wait for subpage 7935 * spinlock. 7936 */ 7937 static void wait_subpage_spinlock(struct page *page) 7938 { 7939 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb); 7940 struct btrfs_subpage *subpage; 7941 7942 if (!btrfs_is_subpage(fs_info, page)) 7943 return; 7944 7945 ASSERT(PagePrivate(page) && page->private); 7946 subpage = (struct btrfs_subpage *)page->private; 7947 7948 /* 7949 * This may look insane as we just acquire the spinlock and release it, 7950 * without doing anything. But we just want to make sure no one is 7951 * still holding the subpage spinlock. 7952 * And since the page is not dirty nor writeback, and we have page 7953 * locked, the only possible way to hold a spinlock is from the endio 7954 * function to clear page writeback. 7955 * 7956 * Here we just acquire the spinlock so that all existing callers 7957 * should exit and we're safe to release/invalidate the page. 7958 */ 7959 spin_lock_irq(&subpage->lock); 7960 spin_unlock_irq(&subpage->lock); 7961 } 7962 7963 static bool __btrfs_release_folio(struct folio *folio, gfp_t gfp_flags) 7964 { 7965 int ret = try_release_extent_mapping(&folio->page, gfp_flags); 7966 7967 if (ret == 1) { 7968 wait_subpage_spinlock(&folio->page); 7969 clear_page_extent_mapped(&folio->page); 7970 } 7971 return ret; 7972 } 7973 7974 static bool btrfs_release_folio(struct folio *folio, gfp_t gfp_flags) 7975 { 7976 if (folio_test_writeback(folio) || folio_test_dirty(folio)) 7977 return false; 7978 return __btrfs_release_folio(folio, gfp_flags); 7979 } 7980 7981 #ifdef CONFIG_MIGRATION 7982 static int btrfs_migrate_folio(struct address_space *mapping, 7983 struct folio *dst, struct folio *src, 7984 enum migrate_mode mode) 7985 { 7986 int ret = filemap_migrate_folio(mapping, dst, src, mode); 7987 7988 if (ret != MIGRATEPAGE_SUCCESS) 7989 return ret; 7990 7991 if (folio_test_ordered(src)) { 7992 folio_clear_ordered(src); 7993 folio_set_ordered(dst); 7994 } 7995 7996 return MIGRATEPAGE_SUCCESS; 7997 } 7998 #else 7999 #define btrfs_migrate_folio NULL 8000 #endif 8001 8002 static void btrfs_invalidate_folio(struct folio *folio, size_t offset, 8003 size_t length) 8004 { 8005 struct btrfs_inode *inode = BTRFS_I(folio->mapping->host); 8006 struct btrfs_fs_info *fs_info = inode->root->fs_info; 8007 struct extent_io_tree *tree = &inode->io_tree; 8008 struct extent_state *cached_state = NULL; 8009 u64 page_start = folio_pos(folio); 8010 u64 page_end = page_start + folio_size(folio) - 1; 8011 u64 cur; 8012 int inode_evicting = inode->vfs_inode.i_state & I_FREEING; 8013 8014 /* 8015 * We have folio locked so no new ordered extent can be created on this 8016 * page, nor bio can be submitted for this folio. 8017 * 8018 * But already submitted bio can still be finished on this folio. 8019 * Furthermore, endio function won't skip folio which has Ordered 8020 * (Private2) already cleared, so it's possible for endio and 8021 * invalidate_folio to do the same ordered extent accounting twice 8022 * on one folio. 8023 * 8024 * So here we wait for any submitted bios to finish, so that we won't 8025 * do double ordered extent accounting on the same folio. 8026 */ 8027 folio_wait_writeback(folio); 8028 wait_subpage_spinlock(&folio->page); 8029 8030 /* 8031 * For subpage case, we have call sites like 8032 * btrfs_punch_hole_lock_range() which passes range not aligned to 8033 * sectorsize. 8034 * If the range doesn't cover the full folio, we don't need to and 8035 * shouldn't clear page extent mapped, as folio->private can still 8036 * record subpage dirty bits for other part of the range. 8037 * 8038 * For cases that invalidate the full folio even the range doesn't 8039 * cover the full folio, like invalidating the last folio, we're 8040 * still safe to wait for ordered extent to finish. 8041 */ 8042 if (!(offset == 0 && length == folio_size(folio))) { 8043 btrfs_release_folio(folio, GFP_NOFS); 8044 return; 8045 } 8046 8047 if (!inode_evicting) 8048 lock_extent(tree, page_start, page_end, &cached_state); 8049 8050 cur = page_start; 8051 while (cur < page_end) { 8052 struct btrfs_ordered_extent *ordered; 8053 u64 range_end; 8054 u32 range_len; 8055 u32 extra_flags = 0; 8056 8057 ordered = btrfs_lookup_first_ordered_range(inode, cur, 8058 page_end + 1 - cur); 8059 if (!ordered) { 8060 range_end = page_end; 8061 /* 8062 * No ordered extent covering this range, we are safe 8063 * to delete all extent states in the range. 8064 */ 8065 extra_flags = EXTENT_CLEAR_ALL_BITS; 8066 goto next; 8067 } 8068 if (ordered->file_offset > cur) { 8069 /* 8070 * There is a range between [cur, oe->file_offset) not 8071 * covered by any ordered extent. 8072 * We are safe to delete all extent states, and handle 8073 * the ordered extent in the next iteration. 8074 */ 8075 range_end = ordered->file_offset - 1; 8076 extra_flags = EXTENT_CLEAR_ALL_BITS; 8077 goto next; 8078 } 8079 8080 range_end = min(ordered->file_offset + ordered->num_bytes - 1, 8081 page_end); 8082 ASSERT(range_end + 1 - cur < U32_MAX); 8083 range_len = range_end + 1 - cur; 8084 if (!btrfs_page_test_ordered(fs_info, &folio->page, cur, range_len)) { 8085 /* 8086 * If Ordered (Private2) is cleared, it means endio has 8087 * already been executed for the range. 8088 * We can't delete the extent states as 8089 * btrfs_finish_ordered_io() may still use some of them. 8090 */ 8091 goto next; 8092 } 8093 btrfs_page_clear_ordered(fs_info, &folio->page, cur, range_len); 8094 8095 /* 8096 * IO on this page will never be started, so we need to account 8097 * for any ordered extents now. Don't clear EXTENT_DELALLOC_NEW 8098 * here, must leave that up for the ordered extent completion. 8099 * 8100 * This will also unlock the range for incoming 8101 * btrfs_finish_ordered_io(). 8102 */ 8103 if (!inode_evicting) 8104 clear_extent_bit(tree, cur, range_end, 8105 EXTENT_DELALLOC | 8106 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING | 8107 EXTENT_DEFRAG, &cached_state); 8108 8109 spin_lock_irq(&inode->ordered_tree.lock); 8110 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags); 8111 ordered->truncated_len = min(ordered->truncated_len, 8112 cur - ordered->file_offset); 8113 spin_unlock_irq(&inode->ordered_tree.lock); 8114 8115 /* 8116 * If the ordered extent has finished, we're safe to delete all 8117 * the extent states of the range, otherwise 8118 * btrfs_finish_ordered_io() will get executed by endio for 8119 * other pages, so we can't delete extent states. 8120 */ 8121 if (btrfs_dec_test_ordered_pending(inode, &ordered, 8122 cur, range_end + 1 - cur)) { 8123 btrfs_finish_ordered_io(ordered); 8124 /* 8125 * The ordered extent has finished, now we're again 8126 * safe to delete all extent states of the range. 8127 */ 8128 extra_flags = EXTENT_CLEAR_ALL_BITS; 8129 } 8130 next: 8131 if (ordered) 8132 btrfs_put_ordered_extent(ordered); 8133 /* 8134 * Qgroup reserved space handler 8135 * Sector(s) here will be either: 8136 * 8137 * 1) Already written to disk or bio already finished 8138 * Then its QGROUP_RESERVED bit in io_tree is already cleared. 8139 * Qgroup will be handled by its qgroup_record then. 8140 * btrfs_qgroup_free_data() call will do nothing here. 8141 * 8142 * 2) Not written to disk yet 8143 * Then btrfs_qgroup_free_data() call will clear the 8144 * QGROUP_RESERVED bit of its io_tree, and free the qgroup 8145 * reserved data space. 8146 * Since the IO will never happen for this page. 8147 */ 8148 btrfs_qgroup_free_data(inode, NULL, cur, range_end + 1 - cur); 8149 if (!inode_evicting) { 8150 clear_extent_bit(tree, cur, range_end, EXTENT_LOCKED | 8151 EXTENT_DELALLOC | EXTENT_UPTODATE | 8152 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG | 8153 extra_flags, &cached_state); 8154 } 8155 cur = range_end + 1; 8156 } 8157 /* 8158 * We have iterated through all ordered extents of the page, the page 8159 * should not have Ordered (Private2) anymore, or the above iteration 8160 * did something wrong. 8161 */ 8162 ASSERT(!folio_test_ordered(folio)); 8163 btrfs_page_clear_checked(fs_info, &folio->page, folio_pos(folio), folio_size(folio)); 8164 if (!inode_evicting) 8165 __btrfs_release_folio(folio, GFP_NOFS); 8166 clear_page_extent_mapped(&folio->page); 8167 } 8168 8169 /* 8170 * btrfs_page_mkwrite() is not allowed to change the file size as it gets 8171 * called from a page fault handler when a page is first dirtied. Hence we must 8172 * be careful to check for EOF conditions here. We set the page up correctly 8173 * for a written page which means we get ENOSPC checking when writing into 8174 * holes and correct delalloc and unwritten extent mapping on filesystems that 8175 * support these features. 8176 * 8177 * We are not allowed to take the i_mutex here so we have to play games to 8178 * protect against truncate races as the page could now be beyond EOF. Because 8179 * truncate_setsize() writes the inode size before removing pages, once we have 8180 * the page lock we can determine safely if the page is beyond EOF. If it is not 8181 * beyond EOF, then the page is guaranteed safe against truncation until we 8182 * unlock the page. 8183 */ 8184 vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf) 8185 { 8186 struct page *page = vmf->page; 8187 struct inode *inode = file_inode(vmf->vma->vm_file); 8188 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8189 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 8190 struct btrfs_ordered_extent *ordered; 8191 struct extent_state *cached_state = NULL; 8192 struct extent_changeset *data_reserved = NULL; 8193 unsigned long zero_start; 8194 loff_t size; 8195 vm_fault_t ret; 8196 int ret2; 8197 int reserved = 0; 8198 u64 reserved_space; 8199 u64 page_start; 8200 u64 page_end; 8201 u64 end; 8202 8203 reserved_space = PAGE_SIZE; 8204 8205 sb_start_pagefault(inode->i_sb); 8206 page_start = page_offset(page); 8207 page_end = page_start + PAGE_SIZE - 1; 8208 end = page_end; 8209 8210 /* 8211 * Reserving delalloc space after obtaining the page lock can lead to 8212 * deadlock. For example, if a dirty page is locked by this function 8213 * and the call to btrfs_delalloc_reserve_space() ends up triggering 8214 * dirty page write out, then the btrfs_writepages() function could 8215 * end up waiting indefinitely to get a lock on the page currently 8216 * being processed by btrfs_page_mkwrite() function. 8217 */ 8218 ret2 = btrfs_delalloc_reserve_space(BTRFS_I(inode), &data_reserved, 8219 page_start, reserved_space); 8220 if (!ret2) { 8221 ret2 = file_update_time(vmf->vma->vm_file); 8222 reserved = 1; 8223 } 8224 if (ret2) { 8225 ret = vmf_error(ret2); 8226 if (reserved) 8227 goto out; 8228 goto out_noreserve; 8229 } 8230 8231 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */ 8232 again: 8233 down_read(&BTRFS_I(inode)->i_mmap_lock); 8234 lock_page(page); 8235 size = i_size_read(inode); 8236 8237 if ((page->mapping != inode->i_mapping) || 8238 (page_start >= size)) { 8239 /* page got truncated out from underneath us */ 8240 goto out_unlock; 8241 } 8242 wait_on_page_writeback(page); 8243 8244 lock_extent(io_tree, page_start, page_end, &cached_state); 8245 ret2 = set_page_extent_mapped(page); 8246 if (ret2 < 0) { 8247 ret = vmf_error(ret2); 8248 unlock_extent(io_tree, page_start, page_end, &cached_state); 8249 goto out_unlock; 8250 } 8251 8252 /* 8253 * we can't set the delalloc bits if there are pending ordered 8254 * extents. Drop our locks and wait for them to finish 8255 */ 8256 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start, 8257 PAGE_SIZE); 8258 if (ordered) { 8259 unlock_extent(io_tree, page_start, page_end, &cached_state); 8260 unlock_page(page); 8261 up_read(&BTRFS_I(inode)->i_mmap_lock); 8262 btrfs_start_ordered_extent(ordered); 8263 btrfs_put_ordered_extent(ordered); 8264 goto again; 8265 } 8266 8267 if (page->index == ((size - 1) >> PAGE_SHIFT)) { 8268 reserved_space = round_up(size - page_start, 8269 fs_info->sectorsize); 8270 if (reserved_space < PAGE_SIZE) { 8271 end = page_start + reserved_space - 1; 8272 btrfs_delalloc_release_space(BTRFS_I(inode), 8273 data_reserved, page_start, 8274 PAGE_SIZE - reserved_space, true); 8275 } 8276 } 8277 8278 /* 8279 * page_mkwrite gets called when the page is firstly dirtied after it's 8280 * faulted in, but write(2) could also dirty a page and set delalloc 8281 * bits, thus in this case for space account reason, we still need to 8282 * clear any delalloc bits within this page range since we have to 8283 * reserve data&meta space before lock_page() (see above comments). 8284 */ 8285 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end, 8286 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | 8287 EXTENT_DEFRAG, &cached_state); 8288 8289 ret2 = btrfs_set_extent_delalloc(BTRFS_I(inode), page_start, end, 0, 8290 &cached_state); 8291 if (ret2) { 8292 unlock_extent(io_tree, page_start, page_end, &cached_state); 8293 ret = VM_FAULT_SIGBUS; 8294 goto out_unlock; 8295 } 8296 8297 /* page is wholly or partially inside EOF */ 8298 if (page_start + PAGE_SIZE > size) 8299 zero_start = offset_in_page(size); 8300 else 8301 zero_start = PAGE_SIZE; 8302 8303 if (zero_start != PAGE_SIZE) 8304 memzero_page(page, zero_start, PAGE_SIZE - zero_start); 8305 8306 btrfs_page_clear_checked(fs_info, page, page_start, PAGE_SIZE); 8307 btrfs_page_set_dirty(fs_info, page, page_start, end + 1 - page_start); 8308 btrfs_page_set_uptodate(fs_info, page, page_start, end + 1 - page_start); 8309 8310 btrfs_set_inode_last_sub_trans(BTRFS_I(inode)); 8311 8312 unlock_extent(io_tree, page_start, page_end, &cached_state); 8313 up_read(&BTRFS_I(inode)->i_mmap_lock); 8314 8315 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE); 8316 sb_end_pagefault(inode->i_sb); 8317 extent_changeset_free(data_reserved); 8318 return VM_FAULT_LOCKED; 8319 8320 out_unlock: 8321 unlock_page(page); 8322 up_read(&BTRFS_I(inode)->i_mmap_lock); 8323 out: 8324 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE); 8325 btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved, page_start, 8326 reserved_space, (ret != 0)); 8327 out_noreserve: 8328 sb_end_pagefault(inode->i_sb); 8329 extent_changeset_free(data_reserved); 8330 return ret; 8331 } 8332 8333 static int btrfs_truncate(struct btrfs_inode *inode, bool skip_writeback) 8334 { 8335 struct btrfs_truncate_control control = { 8336 .inode = inode, 8337 .ino = btrfs_ino(inode), 8338 .min_type = BTRFS_EXTENT_DATA_KEY, 8339 .clear_extent_range = true, 8340 }; 8341 struct btrfs_root *root = inode->root; 8342 struct btrfs_fs_info *fs_info = root->fs_info; 8343 struct btrfs_block_rsv *rsv; 8344 int ret; 8345 struct btrfs_trans_handle *trans; 8346 u64 mask = fs_info->sectorsize - 1; 8347 const u64 min_size = btrfs_calc_metadata_size(fs_info, 1); 8348 8349 if (!skip_writeback) { 8350 ret = btrfs_wait_ordered_range(&inode->vfs_inode, 8351 inode->vfs_inode.i_size & (~mask), 8352 (u64)-1); 8353 if (ret) 8354 return ret; 8355 } 8356 8357 /* 8358 * Yes ladies and gentlemen, this is indeed ugly. We have a couple of 8359 * things going on here: 8360 * 8361 * 1) We need to reserve space to update our inode. 8362 * 8363 * 2) We need to have something to cache all the space that is going to 8364 * be free'd up by the truncate operation, but also have some slack 8365 * space reserved in case it uses space during the truncate (thank you 8366 * very much snapshotting). 8367 * 8368 * And we need these to be separate. The fact is we can use a lot of 8369 * space doing the truncate, and we have no earthly idea how much space 8370 * we will use, so we need the truncate reservation to be separate so it 8371 * doesn't end up using space reserved for updating the inode. We also 8372 * need to be able to stop the transaction and start a new one, which 8373 * means we need to be able to update the inode several times, and we 8374 * have no idea of knowing how many times that will be, so we can't just 8375 * reserve 1 item for the entirety of the operation, so that has to be 8376 * done separately as well. 8377 * 8378 * So that leaves us with 8379 * 8380 * 1) rsv - for the truncate reservation, which we will steal from the 8381 * transaction reservation. 8382 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for 8383 * updating the inode. 8384 */ 8385 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP); 8386 if (!rsv) 8387 return -ENOMEM; 8388 rsv->size = min_size; 8389 rsv->failfast = true; 8390 8391 /* 8392 * 1 for the truncate slack space 8393 * 1 for updating the inode. 8394 */ 8395 trans = btrfs_start_transaction(root, 2); 8396 if (IS_ERR(trans)) { 8397 ret = PTR_ERR(trans); 8398 goto out; 8399 } 8400 8401 /* Migrate the slack space for the truncate to our reserve */ 8402 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv, 8403 min_size, false); 8404 /* 8405 * We have reserved 2 metadata units when we started the transaction and 8406 * min_size matches 1 unit, so this should never fail, but if it does, 8407 * it's not critical we just fail truncation. 8408 */ 8409 if (WARN_ON(ret)) { 8410 btrfs_end_transaction(trans); 8411 goto out; 8412 } 8413 8414 trans->block_rsv = rsv; 8415 8416 while (1) { 8417 struct extent_state *cached_state = NULL; 8418 const u64 new_size = inode->vfs_inode.i_size; 8419 const u64 lock_start = ALIGN_DOWN(new_size, fs_info->sectorsize); 8420 8421 control.new_size = new_size; 8422 lock_extent(&inode->io_tree, lock_start, (u64)-1, &cached_state); 8423 /* 8424 * We want to drop from the next block forward in case this new 8425 * size is not block aligned since we will be keeping the last 8426 * block of the extent just the way it is. 8427 */ 8428 btrfs_drop_extent_map_range(inode, 8429 ALIGN(new_size, fs_info->sectorsize), 8430 (u64)-1, false); 8431 8432 ret = btrfs_truncate_inode_items(trans, root, &control); 8433 8434 inode_sub_bytes(&inode->vfs_inode, control.sub_bytes); 8435 btrfs_inode_safe_disk_i_size_write(inode, control.last_size); 8436 8437 unlock_extent(&inode->io_tree, lock_start, (u64)-1, &cached_state); 8438 8439 trans->block_rsv = &fs_info->trans_block_rsv; 8440 if (ret != -ENOSPC && ret != -EAGAIN) 8441 break; 8442 8443 ret = btrfs_update_inode(trans, root, inode); 8444 if (ret) 8445 break; 8446 8447 btrfs_end_transaction(trans); 8448 btrfs_btree_balance_dirty(fs_info); 8449 8450 trans = btrfs_start_transaction(root, 2); 8451 if (IS_ERR(trans)) { 8452 ret = PTR_ERR(trans); 8453 trans = NULL; 8454 break; 8455 } 8456 8457 btrfs_block_rsv_release(fs_info, rsv, -1, NULL); 8458 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, 8459 rsv, min_size, false); 8460 /* 8461 * We have reserved 2 metadata units when we started the 8462 * transaction and min_size matches 1 unit, so this should never 8463 * fail, but if it does, it's not critical we just fail truncation. 8464 */ 8465 if (WARN_ON(ret)) 8466 break; 8467 8468 trans->block_rsv = rsv; 8469 } 8470 8471 /* 8472 * We can't call btrfs_truncate_block inside a trans handle as we could 8473 * deadlock with freeze, if we got BTRFS_NEED_TRUNCATE_BLOCK then we 8474 * know we've truncated everything except the last little bit, and can 8475 * do btrfs_truncate_block and then update the disk_i_size. 8476 */ 8477 if (ret == BTRFS_NEED_TRUNCATE_BLOCK) { 8478 btrfs_end_transaction(trans); 8479 btrfs_btree_balance_dirty(fs_info); 8480 8481 ret = btrfs_truncate_block(inode, inode->vfs_inode.i_size, 0, 0); 8482 if (ret) 8483 goto out; 8484 trans = btrfs_start_transaction(root, 1); 8485 if (IS_ERR(trans)) { 8486 ret = PTR_ERR(trans); 8487 goto out; 8488 } 8489 btrfs_inode_safe_disk_i_size_write(inode, 0); 8490 } 8491 8492 if (trans) { 8493 int ret2; 8494 8495 trans->block_rsv = &fs_info->trans_block_rsv; 8496 ret2 = btrfs_update_inode(trans, root, inode); 8497 if (ret2 && !ret) 8498 ret = ret2; 8499 8500 ret2 = btrfs_end_transaction(trans); 8501 if (ret2 && !ret) 8502 ret = ret2; 8503 btrfs_btree_balance_dirty(fs_info); 8504 } 8505 out: 8506 btrfs_free_block_rsv(fs_info, rsv); 8507 /* 8508 * So if we truncate and then write and fsync we normally would just 8509 * write the extents that changed, which is a problem if we need to 8510 * first truncate that entire inode. So set this flag so we write out 8511 * all of the extents in the inode to the sync log so we're completely 8512 * safe. 8513 * 8514 * If no extents were dropped or trimmed we don't need to force the next 8515 * fsync to truncate all the inode's items from the log and re-log them 8516 * all. This means the truncate operation did not change the file size, 8517 * or changed it to a smaller size but there was only an implicit hole 8518 * between the old i_size and the new i_size, and there were no prealloc 8519 * extents beyond i_size to drop. 8520 */ 8521 if (control.extents_found > 0) 8522 btrfs_set_inode_full_sync(inode); 8523 8524 return ret; 8525 } 8526 8527 struct inode *btrfs_new_subvol_inode(struct mnt_idmap *idmap, 8528 struct inode *dir) 8529 { 8530 struct inode *inode; 8531 8532 inode = new_inode(dir->i_sb); 8533 if (inode) { 8534 /* 8535 * Subvolumes don't inherit the sgid bit or the parent's gid if 8536 * the parent's sgid bit is set. This is probably a bug. 8537 */ 8538 inode_init_owner(idmap, inode, NULL, 8539 S_IFDIR | (~current_umask() & S_IRWXUGO)); 8540 inode->i_op = &btrfs_dir_inode_operations; 8541 inode->i_fop = &btrfs_dir_file_operations; 8542 } 8543 return inode; 8544 } 8545 8546 struct inode *btrfs_alloc_inode(struct super_block *sb) 8547 { 8548 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 8549 struct btrfs_inode *ei; 8550 struct inode *inode; 8551 8552 ei = alloc_inode_sb(sb, btrfs_inode_cachep, GFP_KERNEL); 8553 if (!ei) 8554 return NULL; 8555 8556 ei->root = NULL; 8557 ei->generation = 0; 8558 ei->last_trans = 0; 8559 ei->last_sub_trans = 0; 8560 ei->logged_trans = 0; 8561 ei->delalloc_bytes = 0; 8562 ei->new_delalloc_bytes = 0; 8563 ei->defrag_bytes = 0; 8564 ei->disk_i_size = 0; 8565 ei->flags = 0; 8566 ei->ro_flags = 0; 8567 ei->csum_bytes = 0; 8568 ei->index_cnt = (u64)-1; 8569 ei->dir_index = 0; 8570 ei->last_unlink_trans = 0; 8571 ei->last_reflink_trans = 0; 8572 ei->last_log_commit = 0; 8573 8574 spin_lock_init(&ei->lock); 8575 ei->outstanding_extents = 0; 8576 if (sb->s_magic != BTRFS_TEST_MAGIC) 8577 btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv, 8578 BTRFS_BLOCK_RSV_DELALLOC); 8579 ei->runtime_flags = 0; 8580 ei->prop_compress = BTRFS_COMPRESS_NONE; 8581 ei->defrag_compress = BTRFS_COMPRESS_NONE; 8582 8583 ei->delayed_node = NULL; 8584 8585 ei->i_otime.tv_sec = 0; 8586 ei->i_otime.tv_nsec = 0; 8587 8588 inode = &ei->vfs_inode; 8589 extent_map_tree_init(&ei->extent_tree); 8590 extent_io_tree_init(fs_info, &ei->io_tree, IO_TREE_INODE_IO); 8591 ei->io_tree.inode = ei; 8592 extent_io_tree_init(fs_info, &ei->file_extent_tree, 8593 IO_TREE_INODE_FILE_EXTENT); 8594 mutex_init(&ei->log_mutex); 8595 btrfs_ordered_inode_tree_init(&ei->ordered_tree); 8596 INIT_LIST_HEAD(&ei->delalloc_inodes); 8597 INIT_LIST_HEAD(&ei->delayed_iput); 8598 RB_CLEAR_NODE(&ei->rb_node); 8599 init_rwsem(&ei->i_mmap_lock); 8600 8601 return inode; 8602 } 8603 8604 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 8605 void btrfs_test_destroy_inode(struct inode *inode) 8606 { 8607 btrfs_drop_extent_map_range(BTRFS_I(inode), 0, (u64)-1, false); 8608 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 8609 } 8610 #endif 8611 8612 void btrfs_free_inode(struct inode *inode) 8613 { 8614 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 8615 } 8616 8617 void btrfs_destroy_inode(struct inode *vfs_inode) 8618 { 8619 struct btrfs_ordered_extent *ordered; 8620 struct btrfs_inode *inode = BTRFS_I(vfs_inode); 8621 struct btrfs_root *root = inode->root; 8622 bool freespace_inode; 8623 8624 WARN_ON(!hlist_empty(&vfs_inode->i_dentry)); 8625 WARN_ON(vfs_inode->i_data.nrpages); 8626 WARN_ON(inode->block_rsv.reserved); 8627 WARN_ON(inode->block_rsv.size); 8628 WARN_ON(inode->outstanding_extents); 8629 if (!S_ISDIR(vfs_inode->i_mode)) { 8630 WARN_ON(inode->delalloc_bytes); 8631 WARN_ON(inode->new_delalloc_bytes); 8632 } 8633 WARN_ON(inode->csum_bytes); 8634 WARN_ON(inode->defrag_bytes); 8635 8636 /* 8637 * This can happen where we create an inode, but somebody else also 8638 * created the same inode and we need to destroy the one we already 8639 * created. 8640 */ 8641 if (!root) 8642 return; 8643 8644 /* 8645 * If this is a free space inode do not take the ordered extents lockdep 8646 * map. 8647 */ 8648 freespace_inode = btrfs_is_free_space_inode(inode); 8649 8650 while (1) { 8651 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1); 8652 if (!ordered) 8653 break; 8654 else { 8655 btrfs_err(root->fs_info, 8656 "found ordered extent %llu %llu on inode cleanup", 8657 ordered->file_offset, ordered->num_bytes); 8658 8659 if (!freespace_inode) 8660 btrfs_lockdep_acquire(root->fs_info, btrfs_ordered_extent); 8661 8662 btrfs_remove_ordered_extent(inode, ordered); 8663 btrfs_put_ordered_extent(ordered); 8664 btrfs_put_ordered_extent(ordered); 8665 } 8666 } 8667 btrfs_qgroup_check_reserved_leak(inode); 8668 inode_tree_del(inode); 8669 btrfs_drop_extent_map_range(inode, 0, (u64)-1, false); 8670 btrfs_inode_clear_file_extent_range(inode, 0, (u64)-1); 8671 btrfs_put_root(inode->root); 8672 } 8673 8674 int btrfs_drop_inode(struct inode *inode) 8675 { 8676 struct btrfs_root *root = BTRFS_I(inode)->root; 8677 8678 if (root == NULL) 8679 return 1; 8680 8681 /* the snap/subvol tree is on deleting */ 8682 if (btrfs_root_refs(&root->root_item) == 0) 8683 return 1; 8684 else 8685 return generic_drop_inode(inode); 8686 } 8687 8688 static void init_once(void *foo) 8689 { 8690 struct btrfs_inode *ei = foo; 8691 8692 inode_init_once(&ei->vfs_inode); 8693 } 8694 8695 void __cold btrfs_destroy_cachep(void) 8696 { 8697 /* 8698 * Make sure all delayed rcu free inodes are flushed before we 8699 * destroy cache. 8700 */ 8701 rcu_barrier(); 8702 bioset_exit(&btrfs_dio_bioset); 8703 kmem_cache_destroy(btrfs_inode_cachep); 8704 } 8705 8706 int __init btrfs_init_cachep(void) 8707 { 8708 btrfs_inode_cachep = kmem_cache_create("btrfs_inode", 8709 sizeof(struct btrfs_inode), 0, 8710 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT, 8711 init_once); 8712 if (!btrfs_inode_cachep) 8713 goto fail; 8714 8715 if (bioset_init(&btrfs_dio_bioset, BIO_POOL_SIZE, 8716 offsetof(struct btrfs_dio_private, bbio.bio), 8717 BIOSET_NEED_BVECS)) 8718 goto fail; 8719 8720 return 0; 8721 fail: 8722 btrfs_destroy_cachep(); 8723 return -ENOMEM; 8724 } 8725 8726 static int btrfs_getattr(struct mnt_idmap *idmap, 8727 const struct path *path, struct kstat *stat, 8728 u32 request_mask, unsigned int flags) 8729 { 8730 u64 delalloc_bytes; 8731 u64 inode_bytes; 8732 struct inode *inode = d_inode(path->dentry); 8733 u32 blocksize = inode->i_sb->s_blocksize; 8734 u32 bi_flags = BTRFS_I(inode)->flags; 8735 u32 bi_ro_flags = BTRFS_I(inode)->ro_flags; 8736 8737 stat->result_mask |= STATX_BTIME; 8738 stat->btime.tv_sec = BTRFS_I(inode)->i_otime.tv_sec; 8739 stat->btime.tv_nsec = BTRFS_I(inode)->i_otime.tv_nsec; 8740 if (bi_flags & BTRFS_INODE_APPEND) 8741 stat->attributes |= STATX_ATTR_APPEND; 8742 if (bi_flags & BTRFS_INODE_COMPRESS) 8743 stat->attributes |= STATX_ATTR_COMPRESSED; 8744 if (bi_flags & BTRFS_INODE_IMMUTABLE) 8745 stat->attributes |= STATX_ATTR_IMMUTABLE; 8746 if (bi_flags & BTRFS_INODE_NODUMP) 8747 stat->attributes |= STATX_ATTR_NODUMP; 8748 if (bi_ro_flags & BTRFS_INODE_RO_VERITY) 8749 stat->attributes |= STATX_ATTR_VERITY; 8750 8751 stat->attributes_mask |= (STATX_ATTR_APPEND | 8752 STATX_ATTR_COMPRESSED | 8753 STATX_ATTR_IMMUTABLE | 8754 STATX_ATTR_NODUMP); 8755 8756 generic_fillattr(idmap, inode, stat); 8757 stat->dev = BTRFS_I(inode)->root->anon_dev; 8758 8759 spin_lock(&BTRFS_I(inode)->lock); 8760 delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes; 8761 inode_bytes = inode_get_bytes(inode); 8762 spin_unlock(&BTRFS_I(inode)->lock); 8763 stat->blocks = (ALIGN(inode_bytes, blocksize) + 8764 ALIGN(delalloc_bytes, blocksize)) >> SECTOR_SHIFT; 8765 return 0; 8766 } 8767 8768 static int btrfs_rename_exchange(struct inode *old_dir, 8769 struct dentry *old_dentry, 8770 struct inode *new_dir, 8771 struct dentry *new_dentry) 8772 { 8773 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb); 8774 struct btrfs_trans_handle *trans; 8775 unsigned int trans_num_items; 8776 struct btrfs_root *root = BTRFS_I(old_dir)->root; 8777 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 8778 struct inode *new_inode = new_dentry->d_inode; 8779 struct inode *old_inode = old_dentry->d_inode; 8780 struct timespec64 ctime = current_time(old_inode); 8781 struct btrfs_rename_ctx old_rename_ctx; 8782 struct btrfs_rename_ctx new_rename_ctx; 8783 u64 old_ino = btrfs_ino(BTRFS_I(old_inode)); 8784 u64 new_ino = btrfs_ino(BTRFS_I(new_inode)); 8785 u64 old_idx = 0; 8786 u64 new_idx = 0; 8787 int ret; 8788 int ret2; 8789 bool need_abort = false; 8790 struct fscrypt_name old_fname, new_fname; 8791 struct fscrypt_str *old_name, *new_name; 8792 8793 /* 8794 * For non-subvolumes allow exchange only within one subvolume, in the 8795 * same inode namespace. Two subvolumes (represented as directory) can 8796 * be exchanged as they're a logical link and have a fixed inode number. 8797 */ 8798 if (root != dest && 8799 (old_ino != BTRFS_FIRST_FREE_OBJECTID || 8800 new_ino != BTRFS_FIRST_FREE_OBJECTID)) 8801 return -EXDEV; 8802 8803 ret = fscrypt_setup_filename(old_dir, &old_dentry->d_name, 0, &old_fname); 8804 if (ret) 8805 return ret; 8806 8807 ret = fscrypt_setup_filename(new_dir, &new_dentry->d_name, 0, &new_fname); 8808 if (ret) { 8809 fscrypt_free_filename(&old_fname); 8810 return ret; 8811 } 8812 8813 old_name = &old_fname.disk_name; 8814 new_name = &new_fname.disk_name; 8815 8816 /* close the race window with snapshot create/destroy ioctl */ 8817 if (old_ino == BTRFS_FIRST_FREE_OBJECTID || 8818 new_ino == BTRFS_FIRST_FREE_OBJECTID) 8819 down_read(&fs_info->subvol_sem); 8820 8821 /* 8822 * For each inode: 8823 * 1 to remove old dir item 8824 * 1 to remove old dir index 8825 * 1 to add new dir item 8826 * 1 to add new dir index 8827 * 1 to update parent inode 8828 * 8829 * If the parents are the same, we only need to account for one 8830 */ 8831 trans_num_items = (old_dir == new_dir ? 9 : 10); 8832 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 8833 /* 8834 * 1 to remove old root ref 8835 * 1 to remove old root backref 8836 * 1 to add new root ref 8837 * 1 to add new root backref 8838 */ 8839 trans_num_items += 4; 8840 } else { 8841 /* 8842 * 1 to update inode item 8843 * 1 to remove old inode ref 8844 * 1 to add new inode ref 8845 */ 8846 trans_num_items += 3; 8847 } 8848 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) 8849 trans_num_items += 4; 8850 else 8851 trans_num_items += 3; 8852 trans = btrfs_start_transaction(root, trans_num_items); 8853 if (IS_ERR(trans)) { 8854 ret = PTR_ERR(trans); 8855 goto out_notrans; 8856 } 8857 8858 if (dest != root) { 8859 ret = btrfs_record_root_in_trans(trans, dest); 8860 if (ret) 8861 goto out_fail; 8862 } 8863 8864 /* 8865 * We need to find a free sequence number both in the source and 8866 * in the destination directory for the exchange. 8867 */ 8868 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx); 8869 if (ret) 8870 goto out_fail; 8871 ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx); 8872 if (ret) 8873 goto out_fail; 8874 8875 BTRFS_I(old_inode)->dir_index = 0ULL; 8876 BTRFS_I(new_inode)->dir_index = 0ULL; 8877 8878 /* Reference for the source. */ 8879 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 8880 /* force full log commit if subvolume involved. */ 8881 btrfs_set_log_full_commit(trans); 8882 } else { 8883 ret = btrfs_insert_inode_ref(trans, dest, new_name, old_ino, 8884 btrfs_ino(BTRFS_I(new_dir)), 8885 old_idx); 8886 if (ret) 8887 goto out_fail; 8888 need_abort = true; 8889 } 8890 8891 /* And now for the dest. */ 8892 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) { 8893 /* force full log commit if subvolume involved. */ 8894 btrfs_set_log_full_commit(trans); 8895 } else { 8896 ret = btrfs_insert_inode_ref(trans, root, old_name, new_ino, 8897 btrfs_ino(BTRFS_I(old_dir)), 8898 new_idx); 8899 if (ret) { 8900 if (need_abort) 8901 btrfs_abort_transaction(trans, ret); 8902 goto out_fail; 8903 } 8904 } 8905 8906 /* Update inode version and ctime/mtime. */ 8907 inode_inc_iversion(old_dir); 8908 inode_inc_iversion(new_dir); 8909 inode_inc_iversion(old_inode); 8910 inode_inc_iversion(new_inode); 8911 old_dir->i_mtime = ctime; 8912 old_dir->i_ctime = ctime; 8913 new_dir->i_mtime = ctime; 8914 new_dir->i_ctime = ctime; 8915 old_inode->i_ctime = ctime; 8916 new_inode->i_ctime = ctime; 8917 8918 if (old_dentry->d_parent != new_dentry->d_parent) { 8919 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir), 8920 BTRFS_I(old_inode), true); 8921 btrfs_record_unlink_dir(trans, BTRFS_I(new_dir), 8922 BTRFS_I(new_inode), true); 8923 } 8924 8925 /* src is a subvolume */ 8926 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 8927 ret = btrfs_unlink_subvol(trans, BTRFS_I(old_dir), old_dentry); 8928 } else { /* src is an inode */ 8929 ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir), 8930 BTRFS_I(old_dentry->d_inode), 8931 old_name, &old_rename_ctx); 8932 if (!ret) 8933 ret = btrfs_update_inode(trans, root, BTRFS_I(old_inode)); 8934 } 8935 if (ret) { 8936 btrfs_abort_transaction(trans, ret); 8937 goto out_fail; 8938 } 8939 8940 /* dest is a subvolume */ 8941 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) { 8942 ret = btrfs_unlink_subvol(trans, BTRFS_I(new_dir), new_dentry); 8943 } else { /* dest is an inode */ 8944 ret = __btrfs_unlink_inode(trans, BTRFS_I(new_dir), 8945 BTRFS_I(new_dentry->d_inode), 8946 new_name, &new_rename_ctx); 8947 if (!ret) 8948 ret = btrfs_update_inode(trans, dest, BTRFS_I(new_inode)); 8949 } 8950 if (ret) { 8951 btrfs_abort_transaction(trans, ret); 8952 goto out_fail; 8953 } 8954 8955 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode), 8956 new_name, 0, old_idx); 8957 if (ret) { 8958 btrfs_abort_transaction(trans, ret); 8959 goto out_fail; 8960 } 8961 8962 ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode), 8963 old_name, 0, new_idx); 8964 if (ret) { 8965 btrfs_abort_transaction(trans, ret); 8966 goto out_fail; 8967 } 8968 8969 if (old_inode->i_nlink == 1) 8970 BTRFS_I(old_inode)->dir_index = old_idx; 8971 if (new_inode->i_nlink == 1) 8972 BTRFS_I(new_inode)->dir_index = new_idx; 8973 8974 /* 8975 * Now pin the logs of the roots. We do it to ensure that no other task 8976 * can sync the logs while we are in progress with the rename, because 8977 * that could result in an inconsistency in case any of the inodes that 8978 * are part of this rename operation were logged before. 8979 */ 8980 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) 8981 btrfs_pin_log_trans(root); 8982 if (new_ino != BTRFS_FIRST_FREE_OBJECTID) 8983 btrfs_pin_log_trans(dest); 8984 8985 /* Do the log updates for all inodes. */ 8986 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) 8987 btrfs_log_new_name(trans, old_dentry, BTRFS_I(old_dir), 8988 old_rename_ctx.index, new_dentry->d_parent); 8989 if (new_ino != BTRFS_FIRST_FREE_OBJECTID) 8990 btrfs_log_new_name(trans, new_dentry, BTRFS_I(new_dir), 8991 new_rename_ctx.index, old_dentry->d_parent); 8992 8993 /* Now unpin the logs. */ 8994 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) 8995 btrfs_end_log_trans(root); 8996 if (new_ino != BTRFS_FIRST_FREE_OBJECTID) 8997 btrfs_end_log_trans(dest); 8998 out_fail: 8999 ret2 = btrfs_end_transaction(trans); 9000 ret = ret ? ret : ret2; 9001 out_notrans: 9002 if (new_ino == BTRFS_FIRST_FREE_OBJECTID || 9003 old_ino == BTRFS_FIRST_FREE_OBJECTID) 9004 up_read(&fs_info->subvol_sem); 9005 9006 fscrypt_free_filename(&new_fname); 9007 fscrypt_free_filename(&old_fname); 9008 return ret; 9009 } 9010 9011 static struct inode *new_whiteout_inode(struct mnt_idmap *idmap, 9012 struct inode *dir) 9013 { 9014 struct inode *inode; 9015 9016 inode = new_inode(dir->i_sb); 9017 if (inode) { 9018 inode_init_owner(idmap, inode, dir, 9019 S_IFCHR | WHITEOUT_MODE); 9020 inode->i_op = &btrfs_special_inode_operations; 9021 init_special_inode(inode, inode->i_mode, WHITEOUT_DEV); 9022 } 9023 return inode; 9024 } 9025 9026 static int btrfs_rename(struct mnt_idmap *idmap, 9027 struct inode *old_dir, struct dentry *old_dentry, 9028 struct inode *new_dir, struct dentry *new_dentry, 9029 unsigned int flags) 9030 { 9031 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb); 9032 struct btrfs_new_inode_args whiteout_args = { 9033 .dir = old_dir, 9034 .dentry = old_dentry, 9035 }; 9036 struct btrfs_trans_handle *trans; 9037 unsigned int trans_num_items; 9038 struct btrfs_root *root = BTRFS_I(old_dir)->root; 9039 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 9040 struct inode *new_inode = d_inode(new_dentry); 9041 struct inode *old_inode = d_inode(old_dentry); 9042 struct btrfs_rename_ctx rename_ctx; 9043 u64 index = 0; 9044 int ret; 9045 int ret2; 9046 u64 old_ino = btrfs_ino(BTRFS_I(old_inode)); 9047 struct fscrypt_name old_fname, new_fname; 9048 9049 if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 9050 return -EPERM; 9051 9052 /* we only allow rename subvolume link between subvolumes */ 9053 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest) 9054 return -EXDEV; 9055 9056 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID || 9057 (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID)) 9058 return -ENOTEMPTY; 9059 9060 if (S_ISDIR(old_inode->i_mode) && new_inode && 9061 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) 9062 return -ENOTEMPTY; 9063 9064 ret = fscrypt_setup_filename(old_dir, &old_dentry->d_name, 0, &old_fname); 9065 if (ret) 9066 return ret; 9067 9068 ret = fscrypt_setup_filename(new_dir, &new_dentry->d_name, 0, &new_fname); 9069 if (ret) { 9070 fscrypt_free_filename(&old_fname); 9071 return ret; 9072 } 9073 9074 /* check for collisions, even if the name isn't there */ 9075 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino, &new_fname.disk_name); 9076 if (ret) { 9077 if (ret == -EEXIST) { 9078 /* we shouldn't get 9079 * eexist without a new_inode */ 9080 if (WARN_ON(!new_inode)) { 9081 goto out_fscrypt_names; 9082 } 9083 } else { 9084 /* maybe -EOVERFLOW */ 9085 goto out_fscrypt_names; 9086 } 9087 } 9088 ret = 0; 9089 9090 /* 9091 * we're using rename to replace one file with another. Start IO on it 9092 * now so we don't add too much work to the end of the transaction 9093 */ 9094 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size) 9095 filemap_flush(old_inode->i_mapping); 9096 9097 if (flags & RENAME_WHITEOUT) { 9098 whiteout_args.inode = new_whiteout_inode(idmap, old_dir); 9099 if (!whiteout_args.inode) { 9100 ret = -ENOMEM; 9101 goto out_fscrypt_names; 9102 } 9103 ret = btrfs_new_inode_prepare(&whiteout_args, &trans_num_items); 9104 if (ret) 9105 goto out_whiteout_inode; 9106 } else { 9107 /* 1 to update the old parent inode. */ 9108 trans_num_items = 1; 9109 } 9110 9111 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 9112 /* Close the race window with snapshot create/destroy ioctl */ 9113 down_read(&fs_info->subvol_sem); 9114 /* 9115 * 1 to remove old root ref 9116 * 1 to remove old root backref 9117 * 1 to add new root ref 9118 * 1 to add new root backref 9119 */ 9120 trans_num_items += 4; 9121 } else { 9122 /* 9123 * 1 to update inode 9124 * 1 to remove old inode ref 9125 * 1 to add new inode ref 9126 */ 9127 trans_num_items += 3; 9128 } 9129 /* 9130 * 1 to remove old dir item 9131 * 1 to remove old dir index 9132 * 1 to add new dir item 9133 * 1 to add new dir index 9134 */ 9135 trans_num_items += 4; 9136 /* 1 to update new parent inode if it's not the same as the old parent */ 9137 if (new_dir != old_dir) 9138 trans_num_items++; 9139 if (new_inode) { 9140 /* 9141 * 1 to update inode 9142 * 1 to remove inode ref 9143 * 1 to remove dir item 9144 * 1 to remove dir index 9145 * 1 to possibly add orphan item 9146 */ 9147 trans_num_items += 5; 9148 } 9149 trans = btrfs_start_transaction(root, trans_num_items); 9150 if (IS_ERR(trans)) { 9151 ret = PTR_ERR(trans); 9152 goto out_notrans; 9153 } 9154 9155 if (dest != root) { 9156 ret = btrfs_record_root_in_trans(trans, dest); 9157 if (ret) 9158 goto out_fail; 9159 } 9160 9161 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index); 9162 if (ret) 9163 goto out_fail; 9164 9165 BTRFS_I(old_inode)->dir_index = 0ULL; 9166 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 9167 /* force full log commit if subvolume involved. */ 9168 btrfs_set_log_full_commit(trans); 9169 } else { 9170 ret = btrfs_insert_inode_ref(trans, dest, &new_fname.disk_name, 9171 old_ino, btrfs_ino(BTRFS_I(new_dir)), 9172 index); 9173 if (ret) 9174 goto out_fail; 9175 } 9176 9177 inode_inc_iversion(old_dir); 9178 inode_inc_iversion(new_dir); 9179 inode_inc_iversion(old_inode); 9180 old_dir->i_mtime = current_time(old_dir); 9181 old_dir->i_ctime = old_dir->i_mtime; 9182 new_dir->i_mtime = old_dir->i_mtime; 9183 new_dir->i_ctime = old_dir->i_mtime; 9184 old_inode->i_ctime = old_dir->i_mtime; 9185 9186 if (old_dentry->d_parent != new_dentry->d_parent) 9187 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir), 9188 BTRFS_I(old_inode), true); 9189 9190 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 9191 ret = btrfs_unlink_subvol(trans, BTRFS_I(old_dir), old_dentry); 9192 } else { 9193 ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir), 9194 BTRFS_I(d_inode(old_dentry)), 9195 &old_fname.disk_name, &rename_ctx); 9196 if (!ret) 9197 ret = btrfs_update_inode(trans, root, BTRFS_I(old_inode)); 9198 } 9199 if (ret) { 9200 btrfs_abort_transaction(trans, ret); 9201 goto out_fail; 9202 } 9203 9204 if (new_inode) { 9205 inode_inc_iversion(new_inode); 9206 new_inode->i_ctime = current_time(new_inode); 9207 if (unlikely(btrfs_ino(BTRFS_I(new_inode)) == 9208 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 9209 ret = btrfs_unlink_subvol(trans, BTRFS_I(new_dir), new_dentry); 9210 BUG_ON(new_inode->i_nlink == 0); 9211 } else { 9212 ret = btrfs_unlink_inode(trans, BTRFS_I(new_dir), 9213 BTRFS_I(d_inode(new_dentry)), 9214 &new_fname.disk_name); 9215 } 9216 if (!ret && new_inode->i_nlink == 0) 9217 ret = btrfs_orphan_add(trans, 9218 BTRFS_I(d_inode(new_dentry))); 9219 if (ret) { 9220 btrfs_abort_transaction(trans, ret); 9221 goto out_fail; 9222 } 9223 } 9224 9225 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode), 9226 &new_fname.disk_name, 0, index); 9227 if (ret) { 9228 btrfs_abort_transaction(trans, ret); 9229 goto out_fail; 9230 } 9231 9232 if (old_inode->i_nlink == 1) 9233 BTRFS_I(old_inode)->dir_index = index; 9234 9235 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) 9236 btrfs_log_new_name(trans, old_dentry, BTRFS_I(old_dir), 9237 rename_ctx.index, new_dentry->d_parent); 9238 9239 if (flags & RENAME_WHITEOUT) { 9240 ret = btrfs_create_new_inode(trans, &whiteout_args); 9241 if (ret) { 9242 btrfs_abort_transaction(trans, ret); 9243 goto out_fail; 9244 } else { 9245 unlock_new_inode(whiteout_args.inode); 9246 iput(whiteout_args.inode); 9247 whiteout_args.inode = NULL; 9248 } 9249 } 9250 out_fail: 9251 ret2 = btrfs_end_transaction(trans); 9252 ret = ret ? ret : ret2; 9253 out_notrans: 9254 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 9255 up_read(&fs_info->subvol_sem); 9256 if (flags & RENAME_WHITEOUT) 9257 btrfs_new_inode_args_destroy(&whiteout_args); 9258 out_whiteout_inode: 9259 if (flags & RENAME_WHITEOUT) 9260 iput(whiteout_args.inode); 9261 out_fscrypt_names: 9262 fscrypt_free_filename(&old_fname); 9263 fscrypt_free_filename(&new_fname); 9264 return ret; 9265 } 9266 9267 static int btrfs_rename2(struct mnt_idmap *idmap, struct inode *old_dir, 9268 struct dentry *old_dentry, struct inode *new_dir, 9269 struct dentry *new_dentry, unsigned int flags) 9270 { 9271 int ret; 9272 9273 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 9274 return -EINVAL; 9275 9276 if (flags & RENAME_EXCHANGE) 9277 ret = btrfs_rename_exchange(old_dir, old_dentry, new_dir, 9278 new_dentry); 9279 else 9280 ret = btrfs_rename(idmap, old_dir, old_dentry, new_dir, 9281 new_dentry, flags); 9282 9283 btrfs_btree_balance_dirty(BTRFS_I(new_dir)->root->fs_info); 9284 9285 return ret; 9286 } 9287 9288 struct btrfs_delalloc_work { 9289 struct inode *inode; 9290 struct completion completion; 9291 struct list_head list; 9292 struct btrfs_work work; 9293 }; 9294 9295 static void btrfs_run_delalloc_work(struct btrfs_work *work) 9296 { 9297 struct btrfs_delalloc_work *delalloc_work; 9298 struct inode *inode; 9299 9300 delalloc_work = container_of(work, struct btrfs_delalloc_work, 9301 work); 9302 inode = delalloc_work->inode; 9303 filemap_flush(inode->i_mapping); 9304 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 9305 &BTRFS_I(inode)->runtime_flags)) 9306 filemap_flush(inode->i_mapping); 9307 9308 iput(inode); 9309 complete(&delalloc_work->completion); 9310 } 9311 9312 static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode) 9313 { 9314 struct btrfs_delalloc_work *work; 9315 9316 work = kmalloc(sizeof(*work), GFP_NOFS); 9317 if (!work) 9318 return NULL; 9319 9320 init_completion(&work->completion); 9321 INIT_LIST_HEAD(&work->list); 9322 work->inode = inode; 9323 btrfs_init_work(&work->work, btrfs_run_delalloc_work, NULL, NULL); 9324 9325 return work; 9326 } 9327 9328 /* 9329 * some fairly slow code that needs optimization. This walks the list 9330 * of all the inodes with pending delalloc and forces them to disk. 9331 */ 9332 static int start_delalloc_inodes(struct btrfs_root *root, 9333 struct writeback_control *wbc, bool snapshot, 9334 bool in_reclaim_context) 9335 { 9336 struct btrfs_inode *binode; 9337 struct inode *inode; 9338 struct btrfs_delalloc_work *work, *next; 9339 struct list_head works; 9340 struct list_head splice; 9341 int ret = 0; 9342 bool full_flush = wbc->nr_to_write == LONG_MAX; 9343 9344 INIT_LIST_HEAD(&works); 9345 INIT_LIST_HEAD(&splice); 9346 9347 mutex_lock(&root->delalloc_mutex); 9348 spin_lock(&root->delalloc_lock); 9349 list_splice_init(&root->delalloc_inodes, &splice); 9350 while (!list_empty(&splice)) { 9351 binode = list_entry(splice.next, struct btrfs_inode, 9352 delalloc_inodes); 9353 9354 list_move_tail(&binode->delalloc_inodes, 9355 &root->delalloc_inodes); 9356 9357 if (in_reclaim_context && 9358 test_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &binode->runtime_flags)) 9359 continue; 9360 9361 inode = igrab(&binode->vfs_inode); 9362 if (!inode) { 9363 cond_resched_lock(&root->delalloc_lock); 9364 continue; 9365 } 9366 spin_unlock(&root->delalloc_lock); 9367 9368 if (snapshot) 9369 set_bit(BTRFS_INODE_SNAPSHOT_FLUSH, 9370 &binode->runtime_flags); 9371 if (full_flush) { 9372 work = btrfs_alloc_delalloc_work(inode); 9373 if (!work) { 9374 iput(inode); 9375 ret = -ENOMEM; 9376 goto out; 9377 } 9378 list_add_tail(&work->list, &works); 9379 btrfs_queue_work(root->fs_info->flush_workers, 9380 &work->work); 9381 } else { 9382 ret = filemap_fdatawrite_wbc(inode->i_mapping, wbc); 9383 btrfs_add_delayed_iput(BTRFS_I(inode)); 9384 if (ret || wbc->nr_to_write <= 0) 9385 goto out; 9386 } 9387 cond_resched(); 9388 spin_lock(&root->delalloc_lock); 9389 } 9390 spin_unlock(&root->delalloc_lock); 9391 9392 out: 9393 list_for_each_entry_safe(work, next, &works, list) { 9394 list_del_init(&work->list); 9395 wait_for_completion(&work->completion); 9396 kfree(work); 9397 } 9398 9399 if (!list_empty(&splice)) { 9400 spin_lock(&root->delalloc_lock); 9401 list_splice_tail(&splice, &root->delalloc_inodes); 9402 spin_unlock(&root->delalloc_lock); 9403 } 9404 mutex_unlock(&root->delalloc_mutex); 9405 return ret; 9406 } 9407 9408 int btrfs_start_delalloc_snapshot(struct btrfs_root *root, bool in_reclaim_context) 9409 { 9410 struct writeback_control wbc = { 9411 .nr_to_write = LONG_MAX, 9412 .sync_mode = WB_SYNC_NONE, 9413 .range_start = 0, 9414 .range_end = LLONG_MAX, 9415 }; 9416 struct btrfs_fs_info *fs_info = root->fs_info; 9417 9418 if (BTRFS_FS_ERROR(fs_info)) 9419 return -EROFS; 9420 9421 return start_delalloc_inodes(root, &wbc, true, in_reclaim_context); 9422 } 9423 9424 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, long nr, 9425 bool in_reclaim_context) 9426 { 9427 struct writeback_control wbc = { 9428 .nr_to_write = nr, 9429 .sync_mode = WB_SYNC_NONE, 9430 .range_start = 0, 9431 .range_end = LLONG_MAX, 9432 }; 9433 struct btrfs_root *root; 9434 struct list_head splice; 9435 int ret; 9436 9437 if (BTRFS_FS_ERROR(fs_info)) 9438 return -EROFS; 9439 9440 INIT_LIST_HEAD(&splice); 9441 9442 mutex_lock(&fs_info->delalloc_root_mutex); 9443 spin_lock(&fs_info->delalloc_root_lock); 9444 list_splice_init(&fs_info->delalloc_roots, &splice); 9445 while (!list_empty(&splice)) { 9446 /* 9447 * Reset nr_to_write here so we know that we're doing a full 9448 * flush. 9449 */ 9450 if (nr == LONG_MAX) 9451 wbc.nr_to_write = LONG_MAX; 9452 9453 root = list_first_entry(&splice, struct btrfs_root, 9454 delalloc_root); 9455 root = btrfs_grab_root(root); 9456 BUG_ON(!root); 9457 list_move_tail(&root->delalloc_root, 9458 &fs_info->delalloc_roots); 9459 spin_unlock(&fs_info->delalloc_root_lock); 9460 9461 ret = start_delalloc_inodes(root, &wbc, false, in_reclaim_context); 9462 btrfs_put_root(root); 9463 if (ret < 0 || wbc.nr_to_write <= 0) 9464 goto out; 9465 spin_lock(&fs_info->delalloc_root_lock); 9466 } 9467 spin_unlock(&fs_info->delalloc_root_lock); 9468 9469 ret = 0; 9470 out: 9471 if (!list_empty(&splice)) { 9472 spin_lock(&fs_info->delalloc_root_lock); 9473 list_splice_tail(&splice, &fs_info->delalloc_roots); 9474 spin_unlock(&fs_info->delalloc_root_lock); 9475 } 9476 mutex_unlock(&fs_info->delalloc_root_mutex); 9477 return ret; 9478 } 9479 9480 static int btrfs_symlink(struct mnt_idmap *idmap, struct inode *dir, 9481 struct dentry *dentry, const char *symname) 9482 { 9483 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 9484 struct btrfs_trans_handle *trans; 9485 struct btrfs_root *root = BTRFS_I(dir)->root; 9486 struct btrfs_path *path; 9487 struct btrfs_key key; 9488 struct inode *inode; 9489 struct btrfs_new_inode_args new_inode_args = { 9490 .dir = dir, 9491 .dentry = dentry, 9492 }; 9493 unsigned int trans_num_items; 9494 int err; 9495 int name_len; 9496 int datasize; 9497 unsigned long ptr; 9498 struct btrfs_file_extent_item *ei; 9499 struct extent_buffer *leaf; 9500 9501 name_len = strlen(symname); 9502 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info)) 9503 return -ENAMETOOLONG; 9504 9505 inode = new_inode(dir->i_sb); 9506 if (!inode) 9507 return -ENOMEM; 9508 inode_init_owner(idmap, inode, dir, S_IFLNK | S_IRWXUGO); 9509 inode->i_op = &btrfs_symlink_inode_operations; 9510 inode_nohighmem(inode); 9511 inode->i_mapping->a_ops = &btrfs_aops; 9512 btrfs_i_size_write(BTRFS_I(inode), name_len); 9513 inode_set_bytes(inode, name_len); 9514 9515 new_inode_args.inode = inode; 9516 err = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items); 9517 if (err) 9518 goto out_inode; 9519 /* 1 additional item for the inline extent */ 9520 trans_num_items++; 9521 9522 trans = btrfs_start_transaction(root, trans_num_items); 9523 if (IS_ERR(trans)) { 9524 err = PTR_ERR(trans); 9525 goto out_new_inode_args; 9526 } 9527 9528 err = btrfs_create_new_inode(trans, &new_inode_args); 9529 if (err) 9530 goto out; 9531 9532 path = btrfs_alloc_path(); 9533 if (!path) { 9534 err = -ENOMEM; 9535 btrfs_abort_transaction(trans, err); 9536 discard_new_inode(inode); 9537 inode = NULL; 9538 goto out; 9539 } 9540 key.objectid = btrfs_ino(BTRFS_I(inode)); 9541 key.offset = 0; 9542 key.type = BTRFS_EXTENT_DATA_KEY; 9543 datasize = btrfs_file_extent_calc_inline_size(name_len); 9544 err = btrfs_insert_empty_item(trans, root, path, &key, 9545 datasize); 9546 if (err) { 9547 btrfs_abort_transaction(trans, err); 9548 btrfs_free_path(path); 9549 discard_new_inode(inode); 9550 inode = NULL; 9551 goto out; 9552 } 9553 leaf = path->nodes[0]; 9554 ei = btrfs_item_ptr(leaf, path->slots[0], 9555 struct btrfs_file_extent_item); 9556 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 9557 btrfs_set_file_extent_type(leaf, ei, 9558 BTRFS_FILE_EXTENT_INLINE); 9559 btrfs_set_file_extent_encryption(leaf, ei, 0); 9560 btrfs_set_file_extent_compression(leaf, ei, 0); 9561 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 9562 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len); 9563 9564 ptr = btrfs_file_extent_inline_start(ei); 9565 write_extent_buffer(leaf, symname, ptr, name_len); 9566 btrfs_mark_buffer_dirty(leaf); 9567 btrfs_free_path(path); 9568 9569 d_instantiate_new(dentry, inode); 9570 err = 0; 9571 out: 9572 btrfs_end_transaction(trans); 9573 btrfs_btree_balance_dirty(fs_info); 9574 out_new_inode_args: 9575 btrfs_new_inode_args_destroy(&new_inode_args); 9576 out_inode: 9577 if (err) 9578 iput(inode); 9579 return err; 9580 } 9581 9582 static struct btrfs_trans_handle *insert_prealloc_file_extent( 9583 struct btrfs_trans_handle *trans_in, 9584 struct btrfs_inode *inode, 9585 struct btrfs_key *ins, 9586 u64 file_offset) 9587 { 9588 struct btrfs_file_extent_item stack_fi; 9589 struct btrfs_replace_extent_info extent_info; 9590 struct btrfs_trans_handle *trans = trans_in; 9591 struct btrfs_path *path; 9592 u64 start = ins->objectid; 9593 u64 len = ins->offset; 9594 int qgroup_released; 9595 int ret; 9596 9597 memset(&stack_fi, 0, sizeof(stack_fi)); 9598 9599 btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_PREALLOC); 9600 btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, start); 9601 btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi, len); 9602 btrfs_set_stack_file_extent_num_bytes(&stack_fi, len); 9603 btrfs_set_stack_file_extent_ram_bytes(&stack_fi, len); 9604 btrfs_set_stack_file_extent_compression(&stack_fi, BTRFS_COMPRESS_NONE); 9605 /* Encryption and other encoding is reserved and all 0 */ 9606 9607 qgroup_released = btrfs_qgroup_release_data(inode, file_offset, len); 9608 if (qgroup_released < 0) 9609 return ERR_PTR(qgroup_released); 9610 9611 if (trans) { 9612 ret = insert_reserved_file_extent(trans, inode, 9613 file_offset, &stack_fi, 9614 true, qgroup_released); 9615 if (ret) 9616 goto free_qgroup; 9617 return trans; 9618 } 9619 9620 extent_info.disk_offset = start; 9621 extent_info.disk_len = len; 9622 extent_info.data_offset = 0; 9623 extent_info.data_len = len; 9624 extent_info.file_offset = file_offset; 9625 extent_info.extent_buf = (char *)&stack_fi; 9626 extent_info.is_new_extent = true; 9627 extent_info.update_times = true; 9628 extent_info.qgroup_reserved = qgroup_released; 9629 extent_info.insertions = 0; 9630 9631 path = btrfs_alloc_path(); 9632 if (!path) { 9633 ret = -ENOMEM; 9634 goto free_qgroup; 9635 } 9636 9637 ret = btrfs_replace_file_extents(inode, path, file_offset, 9638 file_offset + len - 1, &extent_info, 9639 &trans); 9640 btrfs_free_path(path); 9641 if (ret) 9642 goto free_qgroup; 9643 return trans; 9644 9645 free_qgroup: 9646 /* 9647 * We have released qgroup data range at the beginning of the function, 9648 * and normally qgroup_released bytes will be freed when committing 9649 * transaction. 9650 * But if we error out early, we have to free what we have released 9651 * or we leak qgroup data reservation. 9652 */ 9653 btrfs_qgroup_free_refroot(inode->root->fs_info, 9654 inode->root->root_key.objectid, qgroup_released, 9655 BTRFS_QGROUP_RSV_DATA); 9656 return ERR_PTR(ret); 9657 } 9658 9659 static int __btrfs_prealloc_file_range(struct inode *inode, int mode, 9660 u64 start, u64 num_bytes, u64 min_size, 9661 loff_t actual_len, u64 *alloc_hint, 9662 struct btrfs_trans_handle *trans) 9663 { 9664 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 9665 struct extent_map *em; 9666 struct btrfs_root *root = BTRFS_I(inode)->root; 9667 struct btrfs_key ins; 9668 u64 cur_offset = start; 9669 u64 clear_offset = start; 9670 u64 i_size; 9671 u64 cur_bytes; 9672 u64 last_alloc = (u64)-1; 9673 int ret = 0; 9674 bool own_trans = true; 9675 u64 end = start + num_bytes - 1; 9676 9677 if (trans) 9678 own_trans = false; 9679 while (num_bytes > 0) { 9680 cur_bytes = min_t(u64, num_bytes, SZ_256M); 9681 cur_bytes = max(cur_bytes, min_size); 9682 /* 9683 * If we are severely fragmented we could end up with really 9684 * small allocations, so if the allocator is returning small 9685 * chunks lets make its job easier by only searching for those 9686 * sized chunks. 9687 */ 9688 cur_bytes = min(cur_bytes, last_alloc); 9689 ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes, 9690 min_size, 0, *alloc_hint, &ins, 1, 0); 9691 if (ret) 9692 break; 9693 9694 /* 9695 * We've reserved this space, and thus converted it from 9696 * ->bytes_may_use to ->bytes_reserved. Any error that happens 9697 * from here on out we will only need to clear our reservation 9698 * for the remaining unreserved area, so advance our 9699 * clear_offset by our extent size. 9700 */ 9701 clear_offset += ins.offset; 9702 9703 last_alloc = ins.offset; 9704 trans = insert_prealloc_file_extent(trans, BTRFS_I(inode), 9705 &ins, cur_offset); 9706 /* 9707 * Now that we inserted the prealloc extent we can finally 9708 * decrement the number of reservations in the block group. 9709 * If we did it before, we could race with relocation and have 9710 * relocation miss the reserved extent, making it fail later. 9711 */ 9712 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 9713 if (IS_ERR(trans)) { 9714 ret = PTR_ERR(trans); 9715 btrfs_free_reserved_extent(fs_info, ins.objectid, 9716 ins.offset, 0); 9717 break; 9718 } 9719 9720 em = alloc_extent_map(); 9721 if (!em) { 9722 btrfs_drop_extent_map_range(BTRFS_I(inode), cur_offset, 9723 cur_offset + ins.offset - 1, false); 9724 btrfs_set_inode_full_sync(BTRFS_I(inode)); 9725 goto next; 9726 } 9727 9728 em->start = cur_offset; 9729 em->orig_start = cur_offset; 9730 em->len = ins.offset; 9731 em->block_start = ins.objectid; 9732 em->block_len = ins.offset; 9733 em->orig_block_len = ins.offset; 9734 em->ram_bytes = ins.offset; 9735 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 9736 em->generation = trans->transid; 9737 9738 ret = btrfs_replace_extent_map_range(BTRFS_I(inode), em, true); 9739 free_extent_map(em); 9740 next: 9741 num_bytes -= ins.offset; 9742 cur_offset += ins.offset; 9743 *alloc_hint = ins.objectid + ins.offset; 9744 9745 inode_inc_iversion(inode); 9746 inode->i_ctime = current_time(inode); 9747 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC; 9748 if (!(mode & FALLOC_FL_KEEP_SIZE) && 9749 (actual_len > inode->i_size) && 9750 (cur_offset > inode->i_size)) { 9751 if (cur_offset > actual_len) 9752 i_size = actual_len; 9753 else 9754 i_size = cur_offset; 9755 i_size_write(inode, i_size); 9756 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0); 9757 } 9758 9759 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 9760 9761 if (ret) { 9762 btrfs_abort_transaction(trans, ret); 9763 if (own_trans) 9764 btrfs_end_transaction(trans); 9765 break; 9766 } 9767 9768 if (own_trans) { 9769 btrfs_end_transaction(trans); 9770 trans = NULL; 9771 } 9772 } 9773 if (clear_offset < end) 9774 btrfs_free_reserved_data_space(BTRFS_I(inode), NULL, clear_offset, 9775 end - clear_offset + 1); 9776 return ret; 9777 } 9778 9779 int btrfs_prealloc_file_range(struct inode *inode, int mode, 9780 u64 start, u64 num_bytes, u64 min_size, 9781 loff_t actual_len, u64 *alloc_hint) 9782 { 9783 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 9784 min_size, actual_len, alloc_hint, 9785 NULL); 9786 } 9787 9788 int btrfs_prealloc_file_range_trans(struct inode *inode, 9789 struct btrfs_trans_handle *trans, int mode, 9790 u64 start, u64 num_bytes, u64 min_size, 9791 loff_t actual_len, u64 *alloc_hint) 9792 { 9793 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 9794 min_size, actual_len, alloc_hint, trans); 9795 } 9796 9797 static int btrfs_permission(struct mnt_idmap *idmap, 9798 struct inode *inode, int mask) 9799 { 9800 struct btrfs_root *root = BTRFS_I(inode)->root; 9801 umode_t mode = inode->i_mode; 9802 9803 if (mask & MAY_WRITE && 9804 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) { 9805 if (btrfs_root_readonly(root)) 9806 return -EROFS; 9807 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) 9808 return -EACCES; 9809 } 9810 return generic_permission(idmap, inode, mask); 9811 } 9812 9813 static int btrfs_tmpfile(struct mnt_idmap *idmap, struct inode *dir, 9814 struct file *file, umode_t mode) 9815 { 9816 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 9817 struct btrfs_trans_handle *trans; 9818 struct btrfs_root *root = BTRFS_I(dir)->root; 9819 struct inode *inode; 9820 struct btrfs_new_inode_args new_inode_args = { 9821 .dir = dir, 9822 .dentry = file->f_path.dentry, 9823 .orphan = true, 9824 }; 9825 unsigned int trans_num_items; 9826 int ret; 9827 9828 inode = new_inode(dir->i_sb); 9829 if (!inode) 9830 return -ENOMEM; 9831 inode_init_owner(idmap, inode, dir, mode); 9832 inode->i_fop = &btrfs_file_operations; 9833 inode->i_op = &btrfs_file_inode_operations; 9834 inode->i_mapping->a_ops = &btrfs_aops; 9835 9836 new_inode_args.inode = inode; 9837 ret = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items); 9838 if (ret) 9839 goto out_inode; 9840 9841 trans = btrfs_start_transaction(root, trans_num_items); 9842 if (IS_ERR(trans)) { 9843 ret = PTR_ERR(trans); 9844 goto out_new_inode_args; 9845 } 9846 9847 ret = btrfs_create_new_inode(trans, &new_inode_args); 9848 9849 /* 9850 * We set number of links to 0 in btrfs_create_new_inode(), and here we 9851 * set it to 1 because d_tmpfile() will issue a warning if the count is 9852 * 0, through: 9853 * 9854 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink() 9855 */ 9856 set_nlink(inode, 1); 9857 9858 if (!ret) { 9859 d_tmpfile(file, inode); 9860 unlock_new_inode(inode); 9861 mark_inode_dirty(inode); 9862 } 9863 9864 btrfs_end_transaction(trans); 9865 btrfs_btree_balance_dirty(fs_info); 9866 out_new_inode_args: 9867 btrfs_new_inode_args_destroy(&new_inode_args); 9868 out_inode: 9869 if (ret) 9870 iput(inode); 9871 return finish_open_simple(file, ret); 9872 } 9873 9874 void btrfs_set_range_writeback(struct btrfs_inode *inode, u64 start, u64 end) 9875 { 9876 struct btrfs_fs_info *fs_info = inode->root->fs_info; 9877 unsigned long index = start >> PAGE_SHIFT; 9878 unsigned long end_index = end >> PAGE_SHIFT; 9879 struct page *page; 9880 u32 len; 9881 9882 ASSERT(end + 1 - start <= U32_MAX); 9883 len = end + 1 - start; 9884 while (index <= end_index) { 9885 page = find_get_page(inode->vfs_inode.i_mapping, index); 9886 ASSERT(page); /* Pages should be in the extent_io_tree */ 9887 9888 btrfs_page_set_writeback(fs_info, page, start, len); 9889 put_page(page); 9890 index++; 9891 } 9892 } 9893 9894 int btrfs_encoded_io_compression_from_extent(struct btrfs_fs_info *fs_info, 9895 int compress_type) 9896 { 9897 switch (compress_type) { 9898 case BTRFS_COMPRESS_NONE: 9899 return BTRFS_ENCODED_IO_COMPRESSION_NONE; 9900 case BTRFS_COMPRESS_ZLIB: 9901 return BTRFS_ENCODED_IO_COMPRESSION_ZLIB; 9902 case BTRFS_COMPRESS_LZO: 9903 /* 9904 * The LZO format depends on the sector size. 64K is the maximum 9905 * sector size that we support. 9906 */ 9907 if (fs_info->sectorsize < SZ_4K || fs_info->sectorsize > SZ_64K) 9908 return -EINVAL; 9909 return BTRFS_ENCODED_IO_COMPRESSION_LZO_4K + 9910 (fs_info->sectorsize_bits - 12); 9911 case BTRFS_COMPRESS_ZSTD: 9912 return BTRFS_ENCODED_IO_COMPRESSION_ZSTD; 9913 default: 9914 return -EUCLEAN; 9915 } 9916 } 9917 9918 static ssize_t btrfs_encoded_read_inline( 9919 struct kiocb *iocb, 9920 struct iov_iter *iter, u64 start, 9921 u64 lockend, 9922 struct extent_state **cached_state, 9923 u64 extent_start, size_t count, 9924 struct btrfs_ioctl_encoded_io_args *encoded, 9925 bool *unlocked) 9926 { 9927 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp)); 9928 struct btrfs_root *root = inode->root; 9929 struct btrfs_fs_info *fs_info = root->fs_info; 9930 struct extent_io_tree *io_tree = &inode->io_tree; 9931 struct btrfs_path *path; 9932 struct extent_buffer *leaf; 9933 struct btrfs_file_extent_item *item; 9934 u64 ram_bytes; 9935 unsigned long ptr; 9936 void *tmp; 9937 ssize_t ret; 9938 9939 path = btrfs_alloc_path(); 9940 if (!path) { 9941 ret = -ENOMEM; 9942 goto out; 9943 } 9944 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), 9945 extent_start, 0); 9946 if (ret) { 9947 if (ret > 0) { 9948 /* The extent item disappeared? */ 9949 ret = -EIO; 9950 } 9951 goto out; 9952 } 9953 leaf = path->nodes[0]; 9954 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); 9955 9956 ram_bytes = btrfs_file_extent_ram_bytes(leaf, item); 9957 ptr = btrfs_file_extent_inline_start(item); 9958 9959 encoded->len = min_t(u64, extent_start + ram_bytes, 9960 inode->vfs_inode.i_size) - iocb->ki_pos; 9961 ret = btrfs_encoded_io_compression_from_extent(fs_info, 9962 btrfs_file_extent_compression(leaf, item)); 9963 if (ret < 0) 9964 goto out; 9965 encoded->compression = ret; 9966 if (encoded->compression) { 9967 size_t inline_size; 9968 9969 inline_size = btrfs_file_extent_inline_item_len(leaf, 9970 path->slots[0]); 9971 if (inline_size > count) { 9972 ret = -ENOBUFS; 9973 goto out; 9974 } 9975 count = inline_size; 9976 encoded->unencoded_len = ram_bytes; 9977 encoded->unencoded_offset = iocb->ki_pos - extent_start; 9978 } else { 9979 count = min_t(u64, count, encoded->len); 9980 encoded->len = count; 9981 encoded->unencoded_len = count; 9982 ptr += iocb->ki_pos - extent_start; 9983 } 9984 9985 tmp = kmalloc(count, GFP_NOFS); 9986 if (!tmp) { 9987 ret = -ENOMEM; 9988 goto out; 9989 } 9990 read_extent_buffer(leaf, tmp, ptr, count); 9991 btrfs_release_path(path); 9992 unlock_extent(io_tree, start, lockend, cached_state); 9993 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 9994 *unlocked = true; 9995 9996 ret = copy_to_iter(tmp, count, iter); 9997 if (ret != count) 9998 ret = -EFAULT; 9999 kfree(tmp); 10000 out: 10001 btrfs_free_path(path); 10002 return ret; 10003 } 10004 10005 struct btrfs_encoded_read_private { 10006 wait_queue_head_t wait; 10007 atomic_t pending; 10008 blk_status_t status; 10009 }; 10010 10011 static void btrfs_encoded_read_endio(struct btrfs_bio *bbio) 10012 { 10013 struct btrfs_encoded_read_private *priv = bbio->private; 10014 10015 if (bbio->bio.bi_status) { 10016 /* 10017 * The memory barrier implied by the atomic_dec_return() here 10018 * pairs with the memory barrier implied by the 10019 * atomic_dec_return() or io_wait_event() in 10020 * btrfs_encoded_read_regular_fill_pages() to ensure that this 10021 * write is observed before the load of status in 10022 * btrfs_encoded_read_regular_fill_pages(). 10023 */ 10024 WRITE_ONCE(priv->status, bbio->bio.bi_status); 10025 } 10026 if (!atomic_dec_return(&priv->pending)) 10027 wake_up(&priv->wait); 10028 bio_put(&bbio->bio); 10029 } 10030 10031 int btrfs_encoded_read_regular_fill_pages(struct btrfs_inode *inode, 10032 u64 file_offset, u64 disk_bytenr, 10033 u64 disk_io_size, struct page **pages) 10034 { 10035 struct btrfs_fs_info *fs_info = inode->root->fs_info; 10036 struct btrfs_encoded_read_private priv = { 10037 .pending = ATOMIC_INIT(1), 10038 }; 10039 unsigned long i = 0; 10040 struct btrfs_bio *bbio; 10041 10042 init_waitqueue_head(&priv.wait); 10043 10044 bbio = btrfs_bio_alloc(BIO_MAX_VECS, REQ_OP_READ, fs_info, 10045 btrfs_encoded_read_endio, &priv); 10046 bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT; 10047 bbio->inode = inode; 10048 10049 do { 10050 size_t bytes = min_t(u64, disk_io_size, PAGE_SIZE); 10051 10052 if (bio_add_page(&bbio->bio, pages[i], bytes, 0) < bytes) { 10053 atomic_inc(&priv.pending); 10054 btrfs_submit_bio(bbio, 0); 10055 10056 bbio = btrfs_bio_alloc(BIO_MAX_VECS, REQ_OP_READ, fs_info, 10057 btrfs_encoded_read_endio, &priv); 10058 bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT; 10059 bbio->inode = inode; 10060 continue; 10061 } 10062 10063 i++; 10064 disk_bytenr += bytes; 10065 disk_io_size -= bytes; 10066 } while (disk_io_size); 10067 10068 atomic_inc(&priv.pending); 10069 btrfs_submit_bio(bbio, 0); 10070 10071 if (atomic_dec_return(&priv.pending)) 10072 io_wait_event(priv.wait, !atomic_read(&priv.pending)); 10073 /* See btrfs_encoded_read_endio() for ordering. */ 10074 return blk_status_to_errno(READ_ONCE(priv.status)); 10075 } 10076 10077 static ssize_t btrfs_encoded_read_regular(struct kiocb *iocb, 10078 struct iov_iter *iter, 10079 u64 start, u64 lockend, 10080 struct extent_state **cached_state, 10081 u64 disk_bytenr, u64 disk_io_size, 10082 size_t count, bool compressed, 10083 bool *unlocked) 10084 { 10085 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp)); 10086 struct extent_io_tree *io_tree = &inode->io_tree; 10087 struct page **pages; 10088 unsigned long nr_pages, i; 10089 u64 cur; 10090 size_t page_offset; 10091 ssize_t ret; 10092 10093 nr_pages = DIV_ROUND_UP(disk_io_size, PAGE_SIZE); 10094 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS); 10095 if (!pages) 10096 return -ENOMEM; 10097 ret = btrfs_alloc_page_array(nr_pages, pages); 10098 if (ret) { 10099 ret = -ENOMEM; 10100 goto out; 10101 } 10102 10103 ret = btrfs_encoded_read_regular_fill_pages(inode, start, disk_bytenr, 10104 disk_io_size, pages); 10105 if (ret) 10106 goto out; 10107 10108 unlock_extent(io_tree, start, lockend, cached_state); 10109 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 10110 *unlocked = true; 10111 10112 if (compressed) { 10113 i = 0; 10114 page_offset = 0; 10115 } else { 10116 i = (iocb->ki_pos - start) >> PAGE_SHIFT; 10117 page_offset = (iocb->ki_pos - start) & (PAGE_SIZE - 1); 10118 } 10119 cur = 0; 10120 while (cur < count) { 10121 size_t bytes = min_t(size_t, count - cur, 10122 PAGE_SIZE - page_offset); 10123 10124 if (copy_page_to_iter(pages[i], page_offset, bytes, 10125 iter) != bytes) { 10126 ret = -EFAULT; 10127 goto out; 10128 } 10129 i++; 10130 cur += bytes; 10131 page_offset = 0; 10132 } 10133 ret = count; 10134 out: 10135 for (i = 0; i < nr_pages; i++) { 10136 if (pages[i]) 10137 __free_page(pages[i]); 10138 } 10139 kfree(pages); 10140 return ret; 10141 } 10142 10143 ssize_t btrfs_encoded_read(struct kiocb *iocb, struct iov_iter *iter, 10144 struct btrfs_ioctl_encoded_io_args *encoded) 10145 { 10146 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp)); 10147 struct btrfs_fs_info *fs_info = inode->root->fs_info; 10148 struct extent_io_tree *io_tree = &inode->io_tree; 10149 ssize_t ret; 10150 size_t count = iov_iter_count(iter); 10151 u64 start, lockend, disk_bytenr, disk_io_size; 10152 struct extent_state *cached_state = NULL; 10153 struct extent_map *em; 10154 bool unlocked = false; 10155 10156 file_accessed(iocb->ki_filp); 10157 10158 btrfs_inode_lock(inode, BTRFS_ILOCK_SHARED); 10159 10160 if (iocb->ki_pos >= inode->vfs_inode.i_size) { 10161 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 10162 return 0; 10163 } 10164 start = ALIGN_DOWN(iocb->ki_pos, fs_info->sectorsize); 10165 /* 10166 * We don't know how long the extent containing iocb->ki_pos is, but if 10167 * it's compressed we know that it won't be longer than this. 10168 */ 10169 lockend = start + BTRFS_MAX_UNCOMPRESSED - 1; 10170 10171 for (;;) { 10172 struct btrfs_ordered_extent *ordered; 10173 10174 ret = btrfs_wait_ordered_range(&inode->vfs_inode, start, 10175 lockend - start + 1); 10176 if (ret) 10177 goto out_unlock_inode; 10178 lock_extent(io_tree, start, lockend, &cached_state); 10179 ordered = btrfs_lookup_ordered_range(inode, start, 10180 lockend - start + 1); 10181 if (!ordered) 10182 break; 10183 btrfs_put_ordered_extent(ordered); 10184 unlock_extent(io_tree, start, lockend, &cached_state); 10185 cond_resched(); 10186 } 10187 10188 em = btrfs_get_extent(inode, NULL, 0, start, lockend - start + 1); 10189 if (IS_ERR(em)) { 10190 ret = PTR_ERR(em); 10191 goto out_unlock_extent; 10192 } 10193 10194 if (em->block_start == EXTENT_MAP_INLINE) { 10195 u64 extent_start = em->start; 10196 10197 /* 10198 * For inline extents we get everything we need out of the 10199 * extent item. 10200 */ 10201 free_extent_map(em); 10202 em = NULL; 10203 ret = btrfs_encoded_read_inline(iocb, iter, start, lockend, 10204 &cached_state, extent_start, 10205 count, encoded, &unlocked); 10206 goto out; 10207 } 10208 10209 /* 10210 * We only want to return up to EOF even if the extent extends beyond 10211 * that. 10212 */ 10213 encoded->len = min_t(u64, extent_map_end(em), 10214 inode->vfs_inode.i_size) - iocb->ki_pos; 10215 if (em->block_start == EXTENT_MAP_HOLE || 10216 test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) { 10217 disk_bytenr = EXTENT_MAP_HOLE; 10218 count = min_t(u64, count, encoded->len); 10219 encoded->len = count; 10220 encoded->unencoded_len = count; 10221 } else if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 10222 disk_bytenr = em->block_start; 10223 /* 10224 * Bail if the buffer isn't large enough to return the whole 10225 * compressed extent. 10226 */ 10227 if (em->block_len > count) { 10228 ret = -ENOBUFS; 10229 goto out_em; 10230 } 10231 disk_io_size = em->block_len; 10232 count = em->block_len; 10233 encoded->unencoded_len = em->ram_bytes; 10234 encoded->unencoded_offset = iocb->ki_pos - em->orig_start; 10235 ret = btrfs_encoded_io_compression_from_extent(fs_info, 10236 em->compress_type); 10237 if (ret < 0) 10238 goto out_em; 10239 encoded->compression = ret; 10240 } else { 10241 disk_bytenr = em->block_start + (start - em->start); 10242 if (encoded->len > count) 10243 encoded->len = count; 10244 /* 10245 * Don't read beyond what we locked. This also limits the page 10246 * allocations that we'll do. 10247 */ 10248 disk_io_size = min(lockend + 1, iocb->ki_pos + encoded->len) - start; 10249 count = start + disk_io_size - iocb->ki_pos; 10250 encoded->len = count; 10251 encoded->unencoded_len = count; 10252 disk_io_size = ALIGN(disk_io_size, fs_info->sectorsize); 10253 } 10254 free_extent_map(em); 10255 em = NULL; 10256 10257 if (disk_bytenr == EXTENT_MAP_HOLE) { 10258 unlock_extent(io_tree, start, lockend, &cached_state); 10259 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 10260 unlocked = true; 10261 ret = iov_iter_zero(count, iter); 10262 if (ret != count) 10263 ret = -EFAULT; 10264 } else { 10265 ret = btrfs_encoded_read_regular(iocb, iter, start, lockend, 10266 &cached_state, disk_bytenr, 10267 disk_io_size, count, 10268 encoded->compression, 10269 &unlocked); 10270 } 10271 10272 out: 10273 if (ret >= 0) 10274 iocb->ki_pos += encoded->len; 10275 out_em: 10276 free_extent_map(em); 10277 out_unlock_extent: 10278 if (!unlocked) 10279 unlock_extent(io_tree, start, lockend, &cached_state); 10280 out_unlock_inode: 10281 if (!unlocked) 10282 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 10283 return ret; 10284 } 10285 10286 ssize_t btrfs_do_encoded_write(struct kiocb *iocb, struct iov_iter *from, 10287 const struct btrfs_ioctl_encoded_io_args *encoded) 10288 { 10289 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp)); 10290 struct btrfs_root *root = inode->root; 10291 struct btrfs_fs_info *fs_info = root->fs_info; 10292 struct extent_io_tree *io_tree = &inode->io_tree; 10293 struct extent_changeset *data_reserved = NULL; 10294 struct extent_state *cached_state = NULL; 10295 struct btrfs_ordered_extent *ordered; 10296 int compression; 10297 size_t orig_count; 10298 u64 start, end; 10299 u64 num_bytes, ram_bytes, disk_num_bytes; 10300 unsigned long nr_pages, i; 10301 struct page **pages; 10302 struct btrfs_key ins; 10303 bool extent_reserved = false; 10304 struct extent_map *em; 10305 ssize_t ret; 10306 10307 switch (encoded->compression) { 10308 case BTRFS_ENCODED_IO_COMPRESSION_ZLIB: 10309 compression = BTRFS_COMPRESS_ZLIB; 10310 break; 10311 case BTRFS_ENCODED_IO_COMPRESSION_ZSTD: 10312 compression = BTRFS_COMPRESS_ZSTD; 10313 break; 10314 case BTRFS_ENCODED_IO_COMPRESSION_LZO_4K: 10315 case BTRFS_ENCODED_IO_COMPRESSION_LZO_8K: 10316 case BTRFS_ENCODED_IO_COMPRESSION_LZO_16K: 10317 case BTRFS_ENCODED_IO_COMPRESSION_LZO_32K: 10318 case BTRFS_ENCODED_IO_COMPRESSION_LZO_64K: 10319 /* The sector size must match for LZO. */ 10320 if (encoded->compression - 10321 BTRFS_ENCODED_IO_COMPRESSION_LZO_4K + 12 != 10322 fs_info->sectorsize_bits) 10323 return -EINVAL; 10324 compression = BTRFS_COMPRESS_LZO; 10325 break; 10326 default: 10327 return -EINVAL; 10328 } 10329 if (encoded->encryption != BTRFS_ENCODED_IO_ENCRYPTION_NONE) 10330 return -EINVAL; 10331 10332 orig_count = iov_iter_count(from); 10333 10334 /* The extent size must be sane. */ 10335 if (encoded->unencoded_len > BTRFS_MAX_UNCOMPRESSED || 10336 orig_count > BTRFS_MAX_COMPRESSED || orig_count == 0) 10337 return -EINVAL; 10338 10339 /* 10340 * The compressed data must be smaller than the decompressed data. 10341 * 10342 * It's of course possible for data to compress to larger or the same 10343 * size, but the buffered I/O path falls back to no compression for such 10344 * data, and we don't want to break any assumptions by creating these 10345 * extents. 10346 * 10347 * Note that this is less strict than the current check we have that the 10348 * compressed data must be at least one sector smaller than the 10349 * decompressed data. We only want to enforce the weaker requirement 10350 * from old kernels that it is at least one byte smaller. 10351 */ 10352 if (orig_count >= encoded->unencoded_len) 10353 return -EINVAL; 10354 10355 /* The extent must start on a sector boundary. */ 10356 start = iocb->ki_pos; 10357 if (!IS_ALIGNED(start, fs_info->sectorsize)) 10358 return -EINVAL; 10359 10360 /* 10361 * The extent must end on a sector boundary. However, we allow a write 10362 * which ends at or extends i_size to have an unaligned length; we round 10363 * up the extent size and set i_size to the unaligned end. 10364 */ 10365 if (start + encoded->len < inode->vfs_inode.i_size && 10366 !IS_ALIGNED(start + encoded->len, fs_info->sectorsize)) 10367 return -EINVAL; 10368 10369 /* Finally, the offset in the unencoded data must be sector-aligned. */ 10370 if (!IS_ALIGNED(encoded->unencoded_offset, fs_info->sectorsize)) 10371 return -EINVAL; 10372 10373 num_bytes = ALIGN(encoded->len, fs_info->sectorsize); 10374 ram_bytes = ALIGN(encoded->unencoded_len, fs_info->sectorsize); 10375 end = start + num_bytes - 1; 10376 10377 /* 10378 * If the extent cannot be inline, the compressed data on disk must be 10379 * sector-aligned. For convenience, we extend it with zeroes if it 10380 * isn't. 10381 */ 10382 disk_num_bytes = ALIGN(orig_count, fs_info->sectorsize); 10383 nr_pages = DIV_ROUND_UP(disk_num_bytes, PAGE_SIZE); 10384 pages = kvcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL_ACCOUNT); 10385 if (!pages) 10386 return -ENOMEM; 10387 for (i = 0; i < nr_pages; i++) { 10388 size_t bytes = min_t(size_t, PAGE_SIZE, iov_iter_count(from)); 10389 char *kaddr; 10390 10391 pages[i] = alloc_page(GFP_KERNEL_ACCOUNT); 10392 if (!pages[i]) { 10393 ret = -ENOMEM; 10394 goto out_pages; 10395 } 10396 kaddr = kmap_local_page(pages[i]); 10397 if (copy_from_iter(kaddr, bytes, from) != bytes) { 10398 kunmap_local(kaddr); 10399 ret = -EFAULT; 10400 goto out_pages; 10401 } 10402 if (bytes < PAGE_SIZE) 10403 memset(kaddr + bytes, 0, PAGE_SIZE - bytes); 10404 kunmap_local(kaddr); 10405 } 10406 10407 for (;;) { 10408 struct btrfs_ordered_extent *ordered; 10409 10410 ret = btrfs_wait_ordered_range(&inode->vfs_inode, start, num_bytes); 10411 if (ret) 10412 goto out_pages; 10413 ret = invalidate_inode_pages2_range(inode->vfs_inode.i_mapping, 10414 start >> PAGE_SHIFT, 10415 end >> PAGE_SHIFT); 10416 if (ret) 10417 goto out_pages; 10418 lock_extent(io_tree, start, end, &cached_state); 10419 ordered = btrfs_lookup_ordered_range(inode, start, num_bytes); 10420 if (!ordered && 10421 !filemap_range_has_page(inode->vfs_inode.i_mapping, start, end)) 10422 break; 10423 if (ordered) 10424 btrfs_put_ordered_extent(ordered); 10425 unlock_extent(io_tree, start, end, &cached_state); 10426 cond_resched(); 10427 } 10428 10429 /* 10430 * We don't use the higher-level delalloc space functions because our 10431 * num_bytes and disk_num_bytes are different. 10432 */ 10433 ret = btrfs_alloc_data_chunk_ondemand(inode, disk_num_bytes); 10434 if (ret) 10435 goto out_unlock; 10436 ret = btrfs_qgroup_reserve_data(inode, &data_reserved, start, num_bytes); 10437 if (ret) 10438 goto out_free_data_space; 10439 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes, disk_num_bytes, 10440 false); 10441 if (ret) 10442 goto out_qgroup_free_data; 10443 10444 /* Try an inline extent first. */ 10445 if (start == 0 && encoded->unencoded_len == encoded->len && 10446 encoded->unencoded_offset == 0) { 10447 ret = cow_file_range_inline(inode, encoded->len, orig_count, 10448 compression, pages, true); 10449 if (ret <= 0) { 10450 if (ret == 0) 10451 ret = orig_count; 10452 goto out_delalloc_release; 10453 } 10454 } 10455 10456 ret = btrfs_reserve_extent(root, disk_num_bytes, disk_num_bytes, 10457 disk_num_bytes, 0, 0, &ins, 1, 1); 10458 if (ret) 10459 goto out_delalloc_release; 10460 extent_reserved = true; 10461 10462 em = create_io_em(inode, start, num_bytes, 10463 start - encoded->unencoded_offset, ins.objectid, 10464 ins.offset, ins.offset, ram_bytes, compression, 10465 BTRFS_ORDERED_COMPRESSED); 10466 if (IS_ERR(em)) { 10467 ret = PTR_ERR(em); 10468 goto out_free_reserved; 10469 } 10470 free_extent_map(em); 10471 10472 ordered = btrfs_alloc_ordered_extent(inode, start, num_bytes, ram_bytes, 10473 ins.objectid, ins.offset, 10474 encoded->unencoded_offset, 10475 (1 << BTRFS_ORDERED_ENCODED) | 10476 (1 << BTRFS_ORDERED_COMPRESSED), 10477 compression); 10478 if (IS_ERR(ordered)) { 10479 btrfs_drop_extent_map_range(inode, start, end, false); 10480 ret = PTR_ERR(ordered); 10481 goto out_free_reserved; 10482 } 10483 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 10484 10485 if (start + encoded->len > inode->vfs_inode.i_size) 10486 i_size_write(&inode->vfs_inode, start + encoded->len); 10487 10488 unlock_extent(io_tree, start, end, &cached_state); 10489 10490 btrfs_delalloc_release_extents(inode, num_bytes); 10491 10492 btrfs_submit_compressed_write(ordered, pages, nr_pages, 0, false); 10493 ret = orig_count; 10494 goto out; 10495 10496 out_free_reserved: 10497 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 10498 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1); 10499 out_delalloc_release: 10500 btrfs_delalloc_release_extents(inode, num_bytes); 10501 btrfs_delalloc_release_metadata(inode, disk_num_bytes, ret < 0); 10502 out_qgroup_free_data: 10503 if (ret < 0) 10504 btrfs_qgroup_free_data(inode, data_reserved, start, num_bytes); 10505 out_free_data_space: 10506 /* 10507 * If btrfs_reserve_extent() succeeded, then we already decremented 10508 * bytes_may_use. 10509 */ 10510 if (!extent_reserved) 10511 btrfs_free_reserved_data_space_noquota(fs_info, disk_num_bytes); 10512 out_unlock: 10513 unlock_extent(io_tree, start, end, &cached_state); 10514 out_pages: 10515 for (i = 0; i < nr_pages; i++) { 10516 if (pages[i]) 10517 __free_page(pages[i]); 10518 } 10519 kvfree(pages); 10520 out: 10521 if (ret >= 0) 10522 iocb->ki_pos += encoded->len; 10523 return ret; 10524 } 10525 10526 #ifdef CONFIG_SWAP 10527 /* 10528 * Add an entry indicating a block group or device which is pinned by a 10529 * swapfile. Returns 0 on success, 1 if there is already an entry for it, or a 10530 * negative errno on failure. 10531 */ 10532 static int btrfs_add_swapfile_pin(struct inode *inode, void *ptr, 10533 bool is_block_group) 10534 { 10535 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 10536 struct btrfs_swapfile_pin *sp, *entry; 10537 struct rb_node **p; 10538 struct rb_node *parent = NULL; 10539 10540 sp = kmalloc(sizeof(*sp), GFP_NOFS); 10541 if (!sp) 10542 return -ENOMEM; 10543 sp->ptr = ptr; 10544 sp->inode = inode; 10545 sp->is_block_group = is_block_group; 10546 sp->bg_extent_count = 1; 10547 10548 spin_lock(&fs_info->swapfile_pins_lock); 10549 p = &fs_info->swapfile_pins.rb_node; 10550 while (*p) { 10551 parent = *p; 10552 entry = rb_entry(parent, struct btrfs_swapfile_pin, node); 10553 if (sp->ptr < entry->ptr || 10554 (sp->ptr == entry->ptr && sp->inode < entry->inode)) { 10555 p = &(*p)->rb_left; 10556 } else if (sp->ptr > entry->ptr || 10557 (sp->ptr == entry->ptr && sp->inode > entry->inode)) { 10558 p = &(*p)->rb_right; 10559 } else { 10560 if (is_block_group) 10561 entry->bg_extent_count++; 10562 spin_unlock(&fs_info->swapfile_pins_lock); 10563 kfree(sp); 10564 return 1; 10565 } 10566 } 10567 rb_link_node(&sp->node, parent, p); 10568 rb_insert_color(&sp->node, &fs_info->swapfile_pins); 10569 spin_unlock(&fs_info->swapfile_pins_lock); 10570 return 0; 10571 } 10572 10573 /* Free all of the entries pinned by this swapfile. */ 10574 static void btrfs_free_swapfile_pins(struct inode *inode) 10575 { 10576 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 10577 struct btrfs_swapfile_pin *sp; 10578 struct rb_node *node, *next; 10579 10580 spin_lock(&fs_info->swapfile_pins_lock); 10581 node = rb_first(&fs_info->swapfile_pins); 10582 while (node) { 10583 next = rb_next(node); 10584 sp = rb_entry(node, struct btrfs_swapfile_pin, node); 10585 if (sp->inode == inode) { 10586 rb_erase(&sp->node, &fs_info->swapfile_pins); 10587 if (sp->is_block_group) { 10588 btrfs_dec_block_group_swap_extents(sp->ptr, 10589 sp->bg_extent_count); 10590 btrfs_put_block_group(sp->ptr); 10591 } 10592 kfree(sp); 10593 } 10594 node = next; 10595 } 10596 spin_unlock(&fs_info->swapfile_pins_lock); 10597 } 10598 10599 struct btrfs_swap_info { 10600 u64 start; 10601 u64 block_start; 10602 u64 block_len; 10603 u64 lowest_ppage; 10604 u64 highest_ppage; 10605 unsigned long nr_pages; 10606 int nr_extents; 10607 }; 10608 10609 static int btrfs_add_swap_extent(struct swap_info_struct *sis, 10610 struct btrfs_swap_info *bsi) 10611 { 10612 unsigned long nr_pages; 10613 unsigned long max_pages; 10614 u64 first_ppage, first_ppage_reported, next_ppage; 10615 int ret; 10616 10617 /* 10618 * Our swapfile may have had its size extended after the swap header was 10619 * written. In that case activating the swapfile should not go beyond 10620 * the max size set in the swap header. 10621 */ 10622 if (bsi->nr_pages >= sis->max) 10623 return 0; 10624 10625 max_pages = sis->max - bsi->nr_pages; 10626 first_ppage = PAGE_ALIGN(bsi->block_start) >> PAGE_SHIFT; 10627 next_ppage = PAGE_ALIGN_DOWN(bsi->block_start + bsi->block_len) >> PAGE_SHIFT; 10628 10629 if (first_ppage >= next_ppage) 10630 return 0; 10631 nr_pages = next_ppage - first_ppage; 10632 nr_pages = min(nr_pages, max_pages); 10633 10634 first_ppage_reported = first_ppage; 10635 if (bsi->start == 0) 10636 first_ppage_reported++; 10637 if (bsi->lowest_ppage > first_ppage_reported) 10638 bsi->lowest_ppage = first_ppage_reported; 10639 if (bsi->highest_ppage < (next_ppage - 1)) 10640 bsi->highest_ppage = next_ppage - 1; 10641 10642 ret = add_swap_extent(sis, bsi->nr_pages, nr_pages, first_ppage); 10643 if (ret < 0) 10644 return ret; 10645 bsi->nr_extents += ret; 10646 bsi->nr_pages += nr_pages; 10647 return 0; 10648 } 10649 10650 static void btrfs_swap_deactivate(struct file *file) 10651 { 10652 struct inode *inode = file_inode(file); 10653 10654 btrfs_free_swapfile_pins(inode); 10655 atomic_dec(&BTRFS_I(inode)->root->nr_swapfiles); 10656 } 10657 10658 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file, 10659 sector_t *span) 10660 { 10661 struct inode *inode = file_inode(file); 10662 struct btrfs_root *root = BTRFS_I(inode)->root; 10663 struct btrfs_fs_info *fs_info = root->fs_info; 10664 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 10665 struct extent_state *cached_state = NULL; 10666 struct extent_map *em = NULL; 10667 struct btrfs_device *device = NULL; 10668 struct btrfs_swap_info bsi = { 10669 .lowest_ppage = (sector_t)-1ULL, 10670 }; 10671 int ret = 0; 10672 u64 isize; 10673 u64 start; 10674 10675 /* 10676 * If the swap file was just created, make sure delalloc is done. If the 10677 * file changes again after this, the user is doing something stupid and 10678 * we don't really care. 10679 */ 10680 ret = btrfs_wait_ordered_range(inode, 0, (u64)-1); 10681 if (ret) 10682 return ret; 10683 10684 /* 10685 * The inode is locked, so these flags won't change after we check them. 10686 */ 10687 if (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS) { 10688 btrfs_warn(fs_info, "swapfile must not be compressed"); 10689 return -EINVAL; 10690 } 10691 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)) { 10692 btrfs_warn(fs_info, "swapfile must not be copy-on-write"); 10693 return -EINVAL; 10694 } 10695 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) { 10696 btrfs_warn(fs_info, "swapfile must not be checksummed"); 10697 return -EINVAL; 10698 } 10699 10700 /* 10701 * Balance or device remove/replace/resize can move stuff around from 10702 * under us. The exclop protection makes sure they aren't running/won't 10703 * run concurrently while we are mapping the swap extents, and 10704 * fs_info->swapfile_pins prevents them from running while the swap 10705 * file is active and moving the extents. Note that this also prevents 10706 * a concurrent device add which isn't actually necessary, but it's not 10707 * really worth the trouble to allow it. 10708 */ 10709 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_SWAP_ACTIVATE)) { 10710 btrfs_warn(fs_info, 10711 "cannot activate swapfile while exclusive operation is running"); 10712 return -EBUSY; 10713 } 10714 10715 /* 10716 * Prevent snapshot creation while we are activating the swap file. 10717 * We do not want to race with snapshot creation. If snapshot creation 10718 * already started before we bumped nr_swapfiles from 0 to 1 and 10719 * completes before the first write into the swap file after it is 10720 * activated, than that write would fallback to COW. 10721 */ 10722 if (!btrfs_drew_try_write_lock(&root->snapshot_lock)) { 10723 btrfs_exclop_finish(fs_info); 10724 btrfs_warn(fs_info, 10725 "cannot activate swapfile because snapshot creation is in progress"); 10726 return -EINVAL; 10727 } 10728 /* 10729 * Snapshots can create extents which require COW even if NODATACOW is 10730 * set. We use this counter to prevent snapshots. We must increment it 10731 * before walking the extents because we don't want a concurrent 10732 * snapshot to run after we've already checked the extents. 10733 * 10734 * It is possible that subvolume is marked for deletion but still not 10735 * removed yet. To prevent this race, we check the root status before 10736 * activating the swapfile. 10737 */ 10738 spin_lock(&root->root_item_lock); 10739 if (btrfs_root_dead(root)) { 10740 spin_unlock(&root->root_item_lock); 10741 10742 btrfs_exclop_finish(fs_info); 10743 btrfs_warn(fs_info, 10744 "cannot activate swapfile because subvolume %llu is being deleted", 10745 root->root_key.objectid); 10746 return -EPERM; 10747 } 10748 atomic_inc(&root->nr_swapfiles); 10749 spin_unlock(&root->root_item_lock); 10750 10751 isize = ALIGN_DOWN(inode->i_size, fs_info->sectorsize); 10752 10753 lock_extent(io_tree, 0, isize - 1, &cached_state); 10754 start = 0; 10755 while (start < isize) { 10756 u64 logical_block_start, physical_block_start; 10757 struct btrfs_block_group *bg; 10758 u64 len = isize - start; 10759 10760 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len); 10761 if (IS_ERR(em)) { 10762 ret = PTR_ERR(em); 10763 goto out; 10764 } 10765 10766 if (em->block_start == EXTENT_MAP_HOLE) { 10767 btrfs_warn(fs_info, "swapfile must not have holes"); 10768 ret = -EINVAL; 10769 goto out; 10770 } 10771 if (em->block_start == EXTENT_MAP_INLINE) { 10772 /* 10773 * It's unlikely we'll ever actually find ourselves 10774 * here, as a file small enough to fit inline won't be 10775 * big enough to store more than the swap header, but in 10776 * case something changes in the future, let's catch it 10777 * here rather than later. 10778 */ 10779 btrfs_warn(fs_info, "swapfile must not be inline"); 10780 ret = -EINVAL; 10781 goto out; 10782 } 10783 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 10784 btrfs_warn(fs_info, "swapfile must not be compressed"); 10785 ret = -EINVAL; 10786 goto out; 10787 } 10788 10789 logical_block_start = em->block_start + (start - em->start); 10790 len = min(len, em->len - (start - em->start)); 10791 free_extent_map(em); 10792 em = NULL; 10793 10794 ret = can_nocow_extent(inode, start, &len, NULL, NULL, NULL, false, true); 10795 if (ret < 0) { 10796 goto out; 10797 } else if (ret) { 10798 ret = 0; 10799 } else { 10800 btrfs_warn(fs_info, 10801 "swapfile must not be copy-on-write"); 10802 ret = -EINVAL; 10803 goto out; 10804 } 10805 10806 em = btrfs_get_chunk_map(fs_info, logical_block_start, len); 10807 if (IS_ERR(em)) { 10808 ret = PTR_ERR(em); 10809 goto out; 10810 } 10811 10812 if (em->map_lookup->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) { 10813 btrfs_warn(fs_info, 10814 "swapfile must have single data profile"); 10815 ret = -EINVAL; 10816 goto out; 10817 } 10818 10819 if (device == NULL) { 10820 device = em->map_lookup->stripes[0].dev; 10821 ret = btrfs_add_swapfile_pin(inode, device, false); 10822 if (ret == 1) 10823 ret = 0; 10824 else if (ret) 10825 goto out; 10826 } else if (device != em->map_lookup->stripes[0].dev) { 10827 btrfs_warn(fs_info, "swapfile must be on one device"); 10828 ret = -EINVAL; 10829 goto out; 10830 } 10831 10832 physical_block_start = (em->map_lookup->stripes[0].physical + 10833 (logical_block_start - em->start)); 10834 len = min(len, em->len - (logical_block_start - em->start)); 10835 free_extent_map(em); 10836 em = NULL; 10837 10838 bg = btrfs_lookup_block_group(fs_info, logical_block_start); 10839 if (!bg) { 10840 btrfs_warn(fs_info, 10841 "could not find block group containing swapfile"); 10842 ret = -EINVAL; 10843 goto out; 10844 } 10845 10846 if (!btrfs_inc_block_group_swap_extents(bg)) { 10847 btrfs_warn(fs_info, 10848 "block group for swapfile at %llu is read-only%s", 10849 bg->start, 10850 atomic_read(&fs_info->scrubs_running) ? 10851 " (scrub running)" : ""); 10852 btrfs_put_block_group(bg); 10853 ret = -EINVAL; 10854 goto out; 10855 } 10856 10857 ret = btrfs_add_swapfile_pin(inode, bg, true); 10858 if (ret) { 10859 btrfs_put_block_group(bg); 10860 if (ret == 1) 10861 ret = 0; 10862 else 10863 goto out; 10864 } 10865 10866 if (bsi.block_len && 10867 bsi.block_start + bsi.block_len == physical_block_start) { 10868 bsi.block_len += len; 10869 } else { 10870 if (bsi.block_len) { 10871 ret = btrfs_add_swap_extent(sis, &bsi); 10872 if (ret) 10873 goto out; 10874 } 10875 bsi.start = start; 10876 bsi.block_start = physical_block_start; 10877 bsi.block_len = len; 10878 } 10879 10880 start += len; 10881 } 10882 10883 if (bsi.block_len) 10884 ret = btrfs_add_swap_extent(sis, &bsi); 10885 10886 out: 10887 if (!IS_ERR_OR_NULL(em)) 10888 free_extent_map(em); 10889 10890 unlock_extent(io_tree, 0, isize - 1, &cached_state); 10891 10892 if (ret) 10893 btrfs_swap_deactivate(file); 10894 10895 btrfs_drew_write_unlock(&root->snapshot_lock); 10896 10897 btrfs_exclop_finish(fs_info); 10898 10899 if (ret) 10900 return ret; 10901 10902 if (device) 10903 sis->bdev = device->bdev; 10904 *span = bsi.highest_ppage - bsi.lowest_ppage + 1; 10905 sis->max = bsi.nr_pages; 10906 sis->pages = bsi.nr_pages - 1; 10907 sis->highest_bit = bsi.nr_pages - 1; 10908 return bsi.nr_extents; 10909 } 10910 #else 10911 static void btrfs_swap_deactivate(struct file *file) 10912 { 10913 } 10914 10915 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file, 10916 sector_t *span) 10917 { 10918 return -EOPNOTSUPP; 10919 } 10920 #endif 10921 10922 /* 10923 * Update the number of bytes used in the VFS' inode. When we replace extents in 10924 * a range (clone, dedupe, fallocate's zero range), we must update the number of 10925 * bytes used by the inode in an atomic manner, so that concurrent stat(2) calls 10926 * always get a correct value. 10927 */ 10928 void btrfs_update_inode_bytes(struct btrfs_inode *inode, 10929 const u64 add_bytes, 10930 const u64 del_bytes) 10931 { 10932 if (add_bytes == del_bytes) 10933 return; 10934 10935 spin_lock(&inode->lock); 10936 if (del_bytes > 0) 10937 inode_sub_bytes(&inode->vfs_inode, del_bytes); 10938 if (add_bytes > 0) 10939 inode_add_bytes(&inode->vfs_inode, add_bytes); 10940 spin_unlock(&inode->lock); 10941 } 10942 10943 /* 10944 * Verify that there are no ordered extents for a given file range. 10945 * 10946 * @inode: The target inode. 10947 * @start: Start offset of the file range, should be sector size aligned. 10948 * @end: End offset (inclusive) of the file range, its value +1 should be 10949 * sector size aligned. 10950 * 10951 * This should typically be used for cases where we locked an inode's VFS lock in 10952 * exclusive mode, we have also locked the inode's i_mmap_lock in exclusive mode, 10953 * we have flushed all delalloc in the range, we have waited for all ordered 10954 * extents in the range to complete and finally we have locked the file range in 10955 * the inode's io_tree. 10956 */ 10957 void btrfs_assert_inode_range_clean(struct btrfs_inode *inode, u64 start, u64 end) 10958 { 10959 struct btrfs_root *root = inode->root; 10960 struct btrfs_ordered_extent *ordered; 10961 10962 if (!IS_ENABLED(CONFIG_BTRFS_ASSERT)) 10963 return; 10964 10965 ordered = btrfs_lookup_first_ordered_range(inode, start, end + 1 - start); 10966 if (ordered) { 10967 btrfs_err(root->fs_info, 10968 "found unexpected ordered extent in file range [%llu, %llu] for inode %llu root %llu (ordered range [%llu, %llu])", 10969 start, end, btrfs_ino(inode), root->root_key.objectid, 10970 ordered->file_offset, 10971 ordered->file_offset + ordered->num_bytes - 1); 10972 btrfs_put_ordered_extent(ordered); 10973 } 10974 10975 ASSERT(ordered == NULL); 10976 } 10977 10978 static const struct inode_operations btrfs_dir_inode_operations = { 10979 .getattr = btrfs_getattr, 10980 .lookup = btrfs_lookup, 10981 .create = btrfs_create, 10982 .unlink = btrfs_unlink, 10983 .link = btrfs_link, 10984 .mkdir = btrfs_mkdir, 10985 .rmdir = btrfs_rmdir, 10986 .rename = btrfs_rename2, 10987 .symlink = btrfs_symlink, 10988 .setattr = btrfs_setattr, 10989 .mknod = btrfs_mknod, 10990 .listxattr = btrfs_listxattr, 10991 .permission = btrfs_permission, 10992 .get_inode_acl = btrfs_get_acl, 10993 .set_acl = btrfs_set_acl, 10994 .update_time = btrfs_update_time, 10995 .tmpfile = btrfs_tmpfile, 10996 .fileattr_get = btrfs_fileattr_get, 10997 .fileattr_set = btrfs_fileattr_set, 10998 }; 10999 11000 static const struct file_operations btrfs_dir_file_operations = { 11001 .llseek = generic_file_llseek, 11002 .read = generic_read_dir, 11003 .iterate_shared = btrfs_real_readdir, 11004 .open = btrfs_opendir, 11005 .unlocked_ioctl = btrfs_ioctl, 11006 #ifdef CONFIG_COMPAT 11007 .compat_ioctl = btrfs_compat_ioctl, 11008 #endif 11009 .release = btrfs_release_file, 11010 .fsync = btrfs_sync_file, 11011 }; 11012 11013 /* 11014 * btrfs doesn't support the bmap operation because swapfiles 11015 * use bmap to make a mapping of extents in the file. They assume 11016 * these extents won't change over the life of the file and they 11017 * use the bmap result to do IO directly to the drive. 11018 * 11019 * the btrfs bmap call would return logical addresses that aren't 11020 * suitable for IO and they also will change frequently as COW 11021 * operations happen. So, swapfile + btrfs == corruption. 11022 * 11023 * For now we're avoiding this by dropping bmap. 11024 */ 11025 static const struct address_space_operations btrfs_aops = { 11026 .read_folio = btrfs_read_folio, 11027 .writepages = btrfs_writepages, 11028 .readahead = btrfs_readahead, 11029 .invalidate_folio = btrfs_invalidate_folio, 11030 .release_folio = btrfs_release_folio, 11031 .migrate_folio = btrfs_migrate_folio, 11032 .dirty_folio = filemap_dirty_folio, 11033 .error_remove_page = generic_error_remove_page, 11034 .swap_activate = btrfs_swap_activate, 11035 .swap_deactivate = btrfs_swap_deactivate, 11036 }; 11037 11038 static const struct inode_operations btrfs_file_inode_operations = { 11039 .getattr = btrfs_getattr, 11040 .setattr = btrfs_setattr, 11041 .listxattr = btrfs_listxattr, 11042 .permission = btrfs_permission, 11043 .fiemap = btrfs_fiemap, 11044 .get_inode_acl = btrfs_get_acl, 11045 .set_acl = btrfs_set_acl, 11046 .update_time = btrfs_update_time, 11047 .fileattr_get = btrfs_fileattr_get, 11048 .fileattr_set = btrfs_fileattr_set, 11049 }; 11050 static const struct inode_operations btrfs_special_inode_operations = { 11051 .getattr = btrfs_getattr, 11052 .setattr = btrfs_setattr, 11053 .permission = btrfs_permission, 11054 .listxattr = btrfs_listxattr, 11055 .get_inode_acl = btrfs_get_acl, 11056 .set_acl = btrfs_set_acl, 11057 .update_time = btrfs_update_time, 11058 }; 11059 static const struct inode_operations btrfs_symlink_inode_operations = { 11060 .get_link = page_get_link, 11061 .getattr = btrfs_getattr, 11062 .setattr = btrfs_setattr, 11063 .permission = btrfs_permission, 11064 .listxattr = btrfs_listxattr, 11065 .update_time = btrfs_update_time, 11066 }; 11067 11068 const struct dentry_operations btrfs_dentry_operations = { 11069 .d_delete = btrfs_dentry_delete, 11070 }; 11071