1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <crypto/hash.h> 7 #include <linux/kernel.h> 8 #include <linux/bio.h> 9 #include <linux/blk-cgroup.h> 10 #include <linux/file.h> 11 #include <linux/fs.h> 12 #include <linux/pagemap.h> 13 #include <linux/highmem.h> 14 #include <linux/time.h> 15 #include <linux/init.h> 16 #include <linux/string.h> 17 #include <linux/backing-dev.h> 18 #include <linux/writeback.h> 19 #include <linux/compat.h> 20 #include <linux/xattr.h> 21 #include <linux/posix_acl.h> 22 #include <linux/falloc.h> 23 #include <linux/slab.h> 24 #include <linux/ratelimit.h> 25 #include <linux/btrfs.h> 26 #include <linux/blkdev.h> 27 #include <linux/posix_acl_xattr.h> 28 #include <linux/uio.h> 29 #include <linux/magic.h> 30 #include <linux/iversion.h> 31 #include <linux/swap.h> 32 #include <linux/migrate.h> 33 #include <linux/sched/mm.h> 34 #include <linux/iomap.h> 35 #include <asm/unaligned.h> 36 #include <linux/fsverity.h> 37 #include "misc.h" 38 #include "ctree.h" 39 #include "disk-io.h" 40 #include "transaction.h" 41 #include "btrfs_inode.h" 42 #include "print-tree.h" 43 #include "ordered-data.h" 44 #include "xattr.h" 45 #include "tree-log.h" 46 #include "volumes.h" 47 #include "compression.h" 48 #include "locking.h" 49 #include "free-space-cache.h" 50 #include "props.h" 51 #include "qgroup.h" 52 #include "delalloc-space.h" 53 #include "block-group.h" 54 #include "space-info.h" 55 #include "zoned.h" 56 #include "subpage.h" 57 #include "inode-item.h" 58 59 struct btrfs_iget_args { 60 u64 ino; 61 struct btrfs_root *root; 62 }; 63 64 struct btrfs_dio_data { 65 ssize_t submitted; 66 struct extent_changeset *data_reserved; 67 bool data_space_reserved; 68 bool nocow_done; 69 }; 70 71 struct btrfs_dio_private { 72 struct inode *inode; 73 74 /* 75 * Since DIO can use anonymous page, we cannot use page_offset() to 76 * grab the file offset, thus need a dedicated member for file offset. 77 */ 78 u64 file_offset; 79 /* Used for bio::bi_size */ 80 u32 bytes; 81 82 /* 83 * References to this structure. There is one reference per in-flight 84 * bio plus one while we're still setting up. 85 */ 86 refcount_t refs; 87 88 /* Array of checksums */ 89 u8 *csums; 90 91 /* This must be last */ 92 struct bio bio; 93 }; 94 95 static struct bio_set btrfs_dio_bioset; 96 97 struct btrfs_rename_ctx { 98 /* Output field. Stores the index number of the old directory entry. */ 99 u64 index; 100 }; 101 102 static const struct inode_operations btrfs_dir_inode_operations; 103 static const struct inode_operations btrfs_symlink_inode_operations; 104 static const struct inode_operations btrfs_special_inode_operations; 105 static const struct inode_operations btrfs_file_inode_operations; 106 static const struct address_space_operations btrfs_aops; 107 static const struct file_operations btrfs_dir_file_operations; 108 109 static struct kmem_cache *btrfs_inode_cachep; 110 struct kmem_cache *btrfs_trans_handle_cachep; 111 struct kmem_cache *btrfs_path_cachep; 112 struct kmem_cache *btrfs_free_space_cachep; 113 struct kmem_cache *btrfs_free_space_bitmap_cachep; 114 115 static int btrfs_setsize(struct inode *inode, struct iattr *attr); 116 static int btrfs_truncate(struct inode *inode, bool skip_writeback); 117 static noinline int cow_file_range(struct btrfs_inode *inode, 118 struct page *locked_page, 119 u64 start, u64 end, int *page_started, 120 unsigned long *nr_written, int unlock, 121 u64 *done_offset); 122 static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start, 123 u64 len, u64 orig_start, u64 block_start, 124 u64 block_len, u64 orig_block_len, 125 u64 ram_bytes, int compress_type, 126 int type); 127 128 /* 129 * btrfs_inode_lock - lock inode i_rwsem based on arguments passed 130 * 131 * ilock_flags can have the following bit set: 132 * 133 * BTRFS_ILOCK_SHARED - acquire a shared lock on the inode 134 * BTRFS_ILOCK_TRY - try to acquire the lock, if fails on first attempt 135 * return -EAGAIN 136 * BTRFS_ILOCK_MMAP - acquire a write lock on the i_mmap_lock 137 */ 138 int btrfs_inode_lock(struct inode *inode, unsigned int ilock_flags) 139 { 140 if (ilock_flags & BTRFS_ILOCK_SHARED) { 141 if (ilock_flags & BTRFS_ILOCK_TRY) { 142 if (!inode_trylock_shared(inode)) 143 return -EAGAIN; 144 else 145 return 0; 146 } 147 inode_lock_shared(inode); 148 } else { 149 if (ilock_flags & BTRFS_ILOCK_TRY) { 150 if (!inode_trylock(inode)) 151 return -EAGAIN; 152 else 153 return 0; 154 } 155 inode_lock(inode); 156 } 157 if (ilock_flags & BTRFS_ILOCK_MMAP) 158 down_write(&BTRFS_I(inode)->i_mmap_lock); 159 return 0; 160 } 161 162 /* 163 * btrfs_inode_unlock - unock inode i_rwsem 164 * 165 * ilock_flags should contain the same bits set as passed to btrfs_inode_lock() 166 * to decide whether the lock acquired is shared or exclusive. 167 */ 168 void btrfs_inode_unlock(struct inode *inode, unsigned int ilock_flags) 169 { 170 if (ilock_flags & BTRFS_ILOCK_MMAP) 171 up_write(&BTRFS_I(inode)->i_mmap_lock); 172 if (ilock_flags & BTRFS_ILOCK_SHARED) 173 inode_unlock_shared(inode); 174 else 175 inode_unlock(inode); 176 } 177 178 /* 179 * Cleanup all submitted ordered extents in specified range to handle errors 180 * from the btrfs_run_delalloc_range() callback. 181 * 182 * NOTE: caller must ensure that when an error happens, it can not call 183 * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING 184 * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata 185 * to be released, which we want to happen only when finishing the ordered 186 * extent (btrfs_finish_ordered_io()). 187 */ 188 static inline void btrfs_cleanup_ordered_extents(struct btrfs_inode *inode, 189 struct page *locked_page, 190 u64 offset, u64 bytes) 191 { 192 unsigned long index = offset >> PAGE_SHIFT; 193 unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT; 194 u64 page_start, page_end; 195 struct page *page; 196 197 if (locked_page) { 198 page_start = page_offset(locked_page); 199 page_end = page_start + PAGE_SIZE - 1; 200 } 201 202 while (index <= end_index) { 203 /* 204 * For locked page, we will call end_extent_writepage() on it 205 * in run_delalloc_range() for the error handling. That 206 * end_extent_writepage() function will call 207 * btrfs_mark_ordered_io_finished() to clear page Ordered and 208 * run the ordered extent accounting. 209 * 210 * Here we can't just clear the Ordered bit, or 211 * btrfs_mark_ordered_io_finished() would skip the accounting 212 * for the page range, and the ordered extent will never finish. 213 */ 214 if (locked_page && index == (page_start >> PAGE_SHIFT)) { 215 index++; 216 continue; 217 } 218 page = find_get_page(inode->vfs_inode.i_mapping, index); 219 index++; 220 if (!page) 221 continue; 222 223 /* 224 * Here we just clear all Ordered bits for every page in the 225 * range, then btrfs_mark_ordered_io_finished() will handle 226 * the ordered extent accounting for the range. 227 */ 228 btrfs_page_clamp_clear_ordered(inode->root->fs_info, page, 229 offset, bytes); 230 put_page(page); 231 } 232 233 if (locked_page) { 234 /* The locked page covers the full range, nothing needs to be done */ 235 if (bytes + offset <= page_start + PAGE_SIZE) 236 return; 237 /* 238 * In case this page belongs to the delalloc range being 239 * instantiated then skip it, since the first page of a range is 240 * going to be properly cleaned up by the caller of 241 * run_delalloc_range 242 */ 243 if (page_start >= offset && page_end <= (offset + bytes - 1)) { 244 bytes = offset + bytes - page_offset(locked_page) - PAGE_SIZE; 245 offset = page_offset(locked_page) + PAGE_SIZE; 246 } 247 } 248 249 return btrfs_mark_ordered_io_finished(inode, NULL, offset, bytes, false); 250 } 251 252 static int btrfs_dirty_inode(struct inode *inode); 253 254 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans, 255 struct btrfs_new_inode_args *args) 256 { 257 int err; 258 259 if (args->default_acl) { 260 err = __btrfs_set_acl(trans, args->inode, args->default_acl, 261 ACL_TYPE_DEFAULT); 262 if (err) 263 return err; 264 } 265 if (args->acl) { 266 err = __btrfs_set_acl(trans, args->inode, args->acl, ACL_TYPE_ACCESS); 267 if (err) 268 return err; 269 } 270 if (!args->default_acl && !args->acl) 271 cache_no_acl(args->inode); 272 return btrfs_xattr_security_init(trans, args->inode, args->dir, 273 &args->dentry->d_name); 274 } 275 276 /* 277 * this does all the hard work for inserting an inline extent into 278 * the btree. The caller should have done a btrfs_drop_extents so that 279 * no overlapping inline items exist in the btree 280 */ 281 static int insert_inline_extent(struct btrfs_trans_handle *trans, 282 struct btrfs_path *path, 283 struct btrfs_inode *inode, bool extent_inserted, 284 size_t size, size_t compressed_size, 285 int compress_type, 286 struct page **compressed_pages, 287 bool update_i_size) 288 { 289 struct btrfs_root *root = inode->root; 290 struct extent_buffer *leaf; 291 struct page *page = NULL; 292 char *kaddr; 293 unsigned long ptr; 294 struct btrfs_file_extent_item *ei; 295 int ret; 296 size_t cur_size = size; 297 u64 i_size; 298 299 ASSERT((compressed_size > 0 && compressed_pages) || 300 (compressed_size == 0 && !compressed_pages)); 301 302 if (compressed_size && compressed_pages) 303 cur_size = compressed_size; 304 305 if (!extent_inserted) { 306 struct btrfs_key key; 307 size_t datasize; 308 309 key.objectid = btrfs_ino(inode); 310 key.offset = 0; 311 key.type = BTRFS_EXTENT_DATA_KEY; 312 313 datasize = btrfs_file_extent_calc_inline_size(cur_size); 314 ret = btrfs_insert_empty_item(trans, root, path, &key, 315 datasize); 316 if (ret) 317 goto fail; 318 } 319 leaf = path->nodes[0]; 320 ei = btrfs_item_ptr(leaf, path->slots[0], 321 struct btrfs_file_extent_item); 322 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 323 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE); 324 btrfs_set_file_extent_encryption(leaf, ei, 0); 325 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 326 btrfs_set_file_extent_ram_bytes(leaf, ei, size); 327 ptr = btrfs_file_extent_inline_start(ei); 328 329 if (compress_type != BTRFS_COMPRESS_NONE) { 330 struct page *cpage; 331 int i = 0; 332 while (compressed_size > 0) { 333 cpage = compressed_pages[i]; 334 cur_size = min_t(unsigned long, compressed_size, 335 PAGE_SIZE); 336 337 kaddr = kmap_local_page(cpage); 338 write_extent_buffer(leaf, kaddr, ptr, cur_size); 339 kunmap_local(kaddr); 340 341 i++; 342 ptr += cur_size; 343 compressed_size -= cur_size; 344 } 345 btrfs_set_file_extent_compression(leaf, ei, 346 compress_type); 347 } else { 348 page = find_get_page(inode->vfs_inode.i_mapping, 0); 349 btrfs_set_file_extent_compression(leaf, ei, 0); 350 kaddr = kmap_local_page(page); 351 write_extent_buffer(leaf, kaddr, ptr, size); 352 kunmap_local(kaddr); 353 put_page(page); 354 } 355 btrfs_mark_buffer_dirty(leaf); 356 btrfs_release_path(path); 357 358 /* 359 * We align size to sectorsize for inline extents just for simplicity 360 * sake. 361 */ 362 ret = btrfs_inode_set_file_extent_range(inode, 0, 363 ALIGN(size, root->fs_info->sectorsize)); 364 if (ret) 365 goto fail; 366 367 /* 368 * We're an inline extent, so nobody can extend the file past i_size 369 * without locking a page we already have locked. 370 * 371 * We must do any i_size and inode updates before we unlock the pages. 372 * Otherwise we could end up racing with unlink. 373 */ 374 i_size = i_size_read(&inode->vfs_inode); 375 if (update_i_size && size > i_size) { 376 i_size_write(&inode->vfs_inode, size); 377 i_size = size; 378 } 379 inode->disk_i_size = i_size; 380 381 fail: 382 return ret; 383 } 384 385 386 /* 387 * conditionally insert an inline extent into the file. This 388 * does the checks required to make sure the data is small enough 389 * to fit as an inline extent. 390 */ 391 static noinline int cow_file_range_inline(struct btrfs_inode *inode, u64 size, 392 size_t compressed_size, 393 int compress_type, 394 struct page **compressed_pages, 395 bool update_i_size) 396 { 397 struct btrfs_drop_extents_args drop_args = { 0 }; 398 struct btrfs_root *root = inode->root; 399 struct btrfs_fs_info *fs_info = root->fs_info; 400 struct btrfs_trans_handle *trans; 401 u64 data_len = (compressed_size ?: size); 402 int ret; 403 struct btrfs_path *path; 404 405 /* 406 * We can create an inline extent if it ends at or beyond the current 407 * i_size, is no larger than a sector (decompressed), and the (possibly 408 * compressed) data fits in a leaf and the configured maximum inline 409 * size. 410 */ 411 if (size < i_size_read(&inode->vfs_inode) || 412 size > fs_info->sectorsize || 413 data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) || 414 data_len > fs_info->max_inline) 415 return 1; 416 417 path = btrfs_alloc_path(); 418 if (!path) 419 return -ENOMEM; 420 421 trans = btrfs_join_transaction(root); 422 if (IS_ERR(trans)) { 423 btrfs_free_path(path); 424 return PTR_ERR(trans); 425 } 426 trans->block_rsv = &inode->block_rsv; 427 428 drop_args.path = path; 429 drop_args.start = 0; 430 drop_args.end = fs_info->sectorsize; 431 drop_args.drop_cache = true; 432 drop_args.replace_extent = true; 433 drop_args.extent_item_size = btrfs_file_extent_calc_inline_size(data_len); 434 ret = btrfs_drop_extents(trans, root, inode, &drop_args); 435 if (ret) { 436 btrfs_abort_transaction(trans, ret); 437 goto out; 438 } 439 440 ret = insert_inline_extent(trans, path, inode, drop_args.extent_inserted, 441 size, compressed_size, compress_type, 442 compressed_pages, update_i_size); 443 if (ret && ret != -ENOSPC) { 444 btrfs_abort_transaction(trans, ret); 445 goto out; 446 } else if (ret == -ENOSPC) { 447 ret = 1; 448 goto out; 449 } 450 451 btrfs_update_inode_bytes(inode, size, drop_args.bytes_found); 452 ret = btrfs_update_inode(trans, root, inode); 453 if (ret && ret != -ENOSPC) { 454 btrfs_abort_transaction(trans, ret); 455 goto out; 456 } else if (ret == -ENOSPC) { 457 ret = 1; 458 goto out; 459 } 460 461 btrfs_set_inode_full_sync(inode); 462 out: 463 /* 464 * Don't forget to free the reserved space, as for inlined extent 465 * it won't count as data extent, free them directly here. 466 * And at reserve time, it's always aligned to page size, so 467 * just free one page here. 468 */ 469 btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE); 470 btrfs_free_path(path); 471 btrfs_end_transaction(trans); 472 return ret; 473 } 474 475 struct async_extent { 476 u64 start; 477 u64 ram_size; 478 u64 compressed_size; 479 struct page **pages; 480 unsigned long nr_pages; 481 int compress_type; 482 struct list_head list; 483 }; 484 485 struct async_chunk { 486 struct inode *inode; 487 struct page *locked_page; 488 u64 start; 489 u64 end; 490 blk_opf_t write_flags; 491 struct list_head extents; 492 struct cgroup_subsys_state *blkcg_css; 493 struct btrfs_work work; 494 struct async_cow *async_cow; 495 }; 496 497 struct async_cow { 498 atomic_t num_chunks; 499 struct async_chunk chunks[]; 500 }; 501 502 static noinline int add_async_extent(struct async_chunk *cow, 503 u64 start, u64 ram_size, 504 u64 compressed_size, 505 struct page **pages, 506 unsigned long nr_pages, 507 int compress_type) 508 { 509 struct async_extent *async_extent; 510 511 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS); 512 BUG_ON(!async_extent); /* -ENOMEM */ 513 async_extent->start = start; 514 async_extent->ram_size = ram_size; 515 async_extent->compressed_size = compressed_size; 516 async_extent->pages = pages; 517 async_extent->nr_pages = nr_pages; 518 async_extent->compress_type = compress_type; 519 list_add_tail(&async_extent->list, &cow->extents); 520 return 0; 521 } 522 523 /* 524 * Check if the inode needs to be submitted to compression, based on mount 525 * options, defragmentation, properties or heuristics. 526 */ 527 static inline int inode_need_compress(struct btrfs_inode *inode, u64 start, 528 u64 end) 529 { 530 struct btrfs_fs_info *fs_info = inode->root->fs_info; 531 532 if (!btrfs_inode_can_compress(inode)) { 533 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG), 534 KERN_ERR "BTRFS: unexpected compression for ino %llu\n", 535 btrfs_ino(inode)); 536 return 0; 537 } 538 /* 539 * Special check for subpage. 540 * 541 * We lock the full page then run each delalloc range in the page, thus 542 * for the following case, we will hit some subpage specific corner case: 543 * 544 * 0 32K 64K 545 * | |///////| |///////| 546 * \- A \- B 547 * 548 * In above case, both range A and range B will try to unlock the full 549 * page [0, 64K), causing the one finished later will have page 550 * unlocked already, triggering various page lock requirement BUG_ON()s. 551 * 552 * So here we add an artificial limit that subpage compression can only 553 * if the range is fully page aligned. 554 * 555 * In theory we only need to ensure the first page is fully covered, but 556 * the tailing partial page will be locked until the full compression 557 * finishes, delaying the write of other range. 558 * 559 * TODO: Make btrfs_run_delalloc_range() to lock all delalloc range 560 * first to prevent any submitted async extent to unlock the full page. 561 * By this, we can ensure for subpage case that only the last async_cow 562 * will unlock the full page. 563 */ 564 if (fs_info->sectorsize < PAGE_SIZE) { 565 if (!PAGE_ALIGNED(start) || 566 !PAGE_ALIGNED(end + 1)) 567 return 0; 568 } 569 570 /* force compress */ 571 if (btrfs_test_opt(fs_info, FORCE_COMPRESS)) 572 return 1; 573 /* defrag ioctl */ 574 if (inode->defrag_compress) 575 return 1; 576 /* bad compression ratios */ 577 if (inode->flags & BTRFS_INODE_NOCOMPRESS) 578 return 0; 579 if (btrfs_test_opt(fs_info, COMPRESS) || 580 inode->flags & BTRFS_INODE_COMPRESS || 581 inode->prop_compress) 582 return btrfs_compress_heuristic(&inode->vfs_inode, start, end); 583 return 0; 584 } 585 586 static inline void inode_should_defrag(struct btrfs_inode *inode, 587 u64 start, u64 end, u64 num_bytes, u32 small_write) 588 { 589 /* If this is a small write inside eof, kick off a defrag */ 590 if (num_bytes < small_write && 591 (start > 0 || end + 1 < inode->disk_i_size)) 592 btrfs_add_inode_defrag(NULL, inode, small_write); 593 } 594 595 /* 596 * we create compressed extents in two phases. The first 597 * phase compresses a range of pages that have already been 598 * locked (both pages and state bits are locked). 599 * 600 * This is done inside an ordered work queue, and the compression 601 * is spread across many cpus. The actual IO submission is step 602 * two, and the ordered work queue takes care of making sure that 603 * happens in the same order things were put onto the queue by 604 * writepages and friends. 605 * 606 * If this code finds it can't get good compression, it puts an 607 * entry onto the work queue to write the uncompressed bytes. This 608 * makes sure that both compressed inodes and uncompressed inodes 609 * are written in the same order that the flusher thread sent them 610 * down. 611 */ 612 static noinline int compress_file_range(struct async_chunk *async_chunk) 613 { 614 struct inode *inode = async_chunk->inode; 615 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 616 u64 blocksize = fs_info->sectorsize; 617 u64 start = async_chunk->start; 618 u64 end = async_chunk->end; 619 u64 actual_end; 620 u64 i_size; 621 int ret = 0; 622 struct page **pages = NULL; 623 unsigned long nr_pages; 624 unsigned long total_compressed = 0; 625 unsigned long total_in = 0; 626 int i; 627 int will_compress; 628 int compress_type = fs_info->compress_type; 629 int compressed_extents = 0; 630 int redirty = 0; 631 632 inode_should_defrag(BTRFS_I(inode), start, end, end - start + 1, 633 SZ_16K); 634 635 /* 636 * We need to save i_size before now because it could change in between 637 * us evaluating the size and assigning it. This is because we lock and 638 * unlock the page in truncate and fallocate, and then modify the i_size 639 * later on. 640 * 641 * The barriers are to emulate READ_ONCE, remove that once i_size_read 642 * does that for us. 643 */ 644 barrier(); 645 i_size = i_size_read(inode); 646 barrier(); 647 actual_end = min_t(u64, i_size, end + 1); 648 again: 649 will_compress = 0; 650 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1; 651 nr_pages = min_t(unsigned long, nr_pages, 652 BTRFS_MAX_COMPRESSED / PAGE_SIZE); 653 654 /* 655 * we don't want to send crud past the end of i_size through 656 * compression, that's just a waste of CPU time. So, if the 657 * end of the file is before the start of our current 658 * requested range of bytes, we bail out to the uncompressed 659 * cleanup code that can deal with all of this. 660 * 661 * It isn't really the fastest way to fix things, but this is a 662 * very uncommon corner. 663 */ 664 if (actual_end <= start) 665 goto cleanup_and_bail_uncompressed; 666 667 total_compressed = actual_end - start; 668 669 /* 670 * Skip compression for a small file range(<=blocksize) that 671 * isn't an inline extent, since it doesn't save disk space at all. 672 */ 673 if (total_compressed <= blocksize && 674 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size)) 675 goto cleanup_and_bail_uncompressed; 676 677 /* 678 * For subpage case, we require full page alignment for the sector 679 * aligned range. 680 * Thus we must also check against @actual_end, not just @end. 681 */ 682 if (blocksize < PAGE_SIZE) { 683 if (!PAGE_ALIGNED(start) || 684 !PAGE_ALIGNED(round_up(actual_end, blocksize))) 685 goto cleanup_and_bail_uncompressed; 686 } 687 688 total_compressed = min_t(unsigned long, total_compressed, 689 BTRFS_MAX_UNCOMPRESSED); 690 total_in = 0; 691 ret = 0; 692 693 /* 694 * we do compression for mount -o compress and when the 695 * inode has not been flagged as nocompress. This flag can 696 * change at any time if we discover bad compression ratios. 697 */ 698 if (inode_need_compress(BTRFS_I(inode), start, end)) { 699 WARN_ON(pages); 700 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS); 701 if (!pages) { 702 /* just bail out to the uncompressed code */ 703 nr_pages = 0; 704 goto cont; 705 } 706 707 if (BTRFS_I(inode)->defrag_compress) 708 compress_type = BTRFS_I(inode)->defrag_compress; 709 else if (BTRFS_I(inode)->prop_compress) 710 compress_type = BTRFS_I(inode)->prop_compress; 711 712 /* 713 * we need to call clear_page_dirty_for_io on each 714 * page in the range. Otherwise applications with the file 715 * mmap'd can wander in and change the page contents while 716 * we are compressing them. 717 * 718 * If the compression fails for any reason, we set the pages 719 * dirty again later on. 720 * 721 * Note that the remaining part is redirtied, the start pointer 722 * has moved, the end is the original one. 723 */ 724 if (!redirty) { 725 extent_range_clear_dirty_for_io(inode, start, end); 726 redirty = 1; 727 } 728 729 /* Compression level is applied here and only here */ 730 ret = btrfs_compress_pages( 731 compress_type | (fs_info->compress_level << 4), 732 inode->i_mapping, start, 733 pages, 734 &nr_pages, 735 &total_in, 736 &total_compressed); 737 738 if (!ret) { 739 unsigned long offset = offset_in_page(total_compressed); 740 struct page *page = pages[nr_pages - 1]; 741 742 /* zero the tail end of the last page, we might be 743 * sending it down to disk 744 */ 745 if (offset) 746 memzero_page(page, offset, PAGE_SIZE - offset); 747 will_compress = 1; 748 } 749 } 750 cont: 751 /* 752 * Check cow_file_range() for why we don't even try to create inline 753 * extent for subpage case. 754 */ 755 if (start == 0 && fs_info->sectorsize == PAGE_SIZE) { 756 /* lets try to make an inline extent */ 757 if (ret || total_in < actual_end) { 758 /* we didn't compress the entire range, try 759 * to make an uncompressed inline extent. 760 */ 761 ret = cow_file_range_inline(BTRFS_I(inode), actual_end, 762 0, BTRFS_COMPRESS_NONE, 763 NULL, false); 764 } else { 765 /* try making a compressed inline extent */ 766 ret = cow_file_range_inline(BTRFS_I(inode), actual_end, 767 total_compressed, 768 compress_type, pages, 769 false); 770 } 771 if (ret <= 0) { 772 unsigned long clear_flags = EXTENT_DELALLOC | 773 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG | 774 EXTENT_DO_ACCOUNTING; 775 unsigned long page_error_op; 776 777 page_error_op = ret < 0 ? PAGE_SET_ERROR : 0; 778 779 /* 780 * inline extent creation worked or returned error, 781 * we don't need to create any more async work items. 782 * Unlock and free up our temp pages. 783 * 784 * We use DO_ACCOUNTING here because we need the 785 * delalloc_release_metadata to be done _after_ we drop 786 * our outstanding extent for clearing delalloc for this 787 * range. 788 */ 789 extent_clear_unlock_delalloc(BTRFS_I(inode), start, end, 790 NULL, 791 clear_flags, 792 PAGE_UNLOCK | 793 PAGE_START_WRITEBACK | 794 page_error_op | 795 PAGE_END_WRITEBACK); 796 797 /* 798 * Ensure we only free the compressed pages if we have 799 * them allocated, as we can still reach here with 800 * inode_need_compress() == false. 801 */ 802 if (pages) { 803 for (i = 0; i < nr_pages; i++) { 804 WARN_ON(pages[i]->mapping); 805 put_page(pages[i]); 806 } 807 kfree(pages); 808 } 809 return 0; 810 } 811 } 812 813 if (will_compress) { 814 /* 815 * we aren't doing an inline extent round the compressed size 816 * up to a block size boundary so the allocator does sane 817 * things 818 */ 819 total_compressed = ALIGN(total_compressed, blocksize); 820 821 /* 822 * one last check to make sure the compression is really a 823 * win, compare the page count read with the blocks on disk, 824 * compression must free at least one sector size 825 */ 826 total_in = round_up(total_in, fs_info->sectorsize); 827 if (total_compressed + blocksize <= total_in) { 828 compressed_extents++; 829 830 /* 831 * The async work queues will take care of doing actual 832 * allocation on disk for these compressed pages, and 833 * will submit them to the elevator. 834 */ 835 add_async_extent(async_chunk, start, total_in, 836 total_compressed, pages, nr_pages, 837 compress_type); 838 839 if (start + total_in < end) { 840 start += total_in; 841 pages = NULL; 842 cond_resched(); 843 goto again; 844 } 845 return compressed_extents; 846 } 847 } 848 if (pages) { 849 /* 850 * the compression code ran but failed to make things smaller, 851 * free any pages it allocated and our page pointer array 852 */ 853 for (i = 0; i < nr_pages; i++) { 854 WARN_ON(pages[i]->mapping); 855 put_page(pages[i]); 856 } 857 kfree(pages); 858 pages = NULL; 859 total_compressed = 0; 860 nr_pages = 0; 861 862 /* flag the file so we don't compress in the future */ 863 if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) && 864 !(BTRFS_I(inode)->prop_compress)) { 865 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS; 866 } 867 } 868 cleanup_and_bail_uncompressed: 869 /* 870 * No compression, but we still need to write the pages in the file 871 * we've been given so far. redirty the locked page if it corresponds 872 * to our extent and set things up for the async work queue to run 873 * cow_file_range to do the normal delalloc dance. 874 */ 875 if (async_chunk->locked_page && 876 (page_offset(async_chunk->locked_page) >= start && 877 page_offset(async_chunk->locked_page)) <= end) { 878 __set_page_dirty_nobuffers(async_chunk->locked_page); 879 /* unlocked later on in the async handlers */ 880 } 881 882 if (redirty) 883 extent_range_redirty_for_io(inode, start, end); 884 add_async_extent(async_chunk, start, end - start + 1, 0, NULL, 0, 885 BTRFS_COMPRESS_NONE); 886 compressed_extents++; 887 888 return compressed_extents; 889 } 890 891 static void free_async_extent_pages(struct async_extent *async_extent) 892 { 893 int i; 894 895 if (!async_extent->pages) 896 return; 897 898 for (i = 0; i < async_extent->nr_pages; i++) { 899 WARN_ON(async_extent->pages[i]->mapping); 900 put_page(async_extent->pages[i]); 901 } 902 kfree(async_extent->pages); 903 async_extent->nr_pages = 0; 904 async_extent->pages = NULL; 905 } 906 907 static int submit_uncompressed_range(struct btrfs_inode *inode, 908 struct async_extent *async_extent, 909 struct page *locked_page) 910 { 911 u64 start = async_extent->start; 912 u64 end = async_extent->start + async_extent->ram_size - 1; 913 unsigned long nr_written = 0; 914 int page_started = 0; 915 int ret; 916 917 /* 918 * Call cow_file_range() to run the delalloc range directly, since we 919 * won't go to NOCOW or async path again. 920 * 921 * Also we call cow_file_range() with @unlock_page == 0, so that we 922 * can directly submit them without interruption. 923 */ 924 ret = cow_file_range(inode, locked_page, start, end, &page_started, 925 &nr_written, 0, NULL); 926 /* Inline extent inserted, page gets unlocked and everything is done */ 927 if (page_started) { 928 ret = 0; 929 goto out; 930 } 931 if (ret < 0) { 932 btrfs_cleanup_ordered_extents(inode, locked_page, start, end - start + 1); 933 if (locked_page) { 934 const u64 page_start = page_offset(locked_page); 935 const u64 page_end = page_start + PAGE_SIZE - 1; 936 937 btrfs_page_set_error(inode->root->fs_info, locked_page, 938 page_start, PAGE_SIZE); 939 set_page_writeback(locked_page); 940 end_page_writeback(locked_page); 941 end_extent_writepage(locked_page, ret, page_start, page_end); 942 unlock_page(locked_page); 943 } 944 goto out; 945 } 946 947 ret = extent_write_locked_range(&inode->vfs_inode, start, end); 948 /* All pages will be unlocked, including @locked_page */ 949 out: 950 kfree(async_extent); 951 return ret; 952 } 953 954 static int submit_one_async_extent(struct btrfs_inode *inode, 955 struct async_chunk *async_chunk, 956 struct async_extent *async_extent, 957 u64 *alloc_hint) 958 { 959 struct extent_io_tree *io_tree = &inode->io_tree; 960 struct btrfs_root *root = inode->root; 961 struct btrfs_fs_info *fs_info = root->fs_info; 962 struct btrfs_key ins; 963 struct page *locked_page = NULL; 964 struct extent_map *em; 965 int ret = 0; 966 u64 start = async_extent->start; 967 u64 end = async_extent->start + async_extent->ram_size - 1; 968 969 /* 970 * If async_chunk->locked_page is in the async_extent range, we need to 971 * handle it. 972 */ 973 if (async_chunk->locked_page) { 974 u64 locked_page_start = page_offset(async_chunk->locked_page); 975 u64 locked_page_end = locked_page_start + PAGE_SIZE - 1; 976 977 if (!(start >= locked_page_end || end <= locked_page_start)) 978 locked_page = async_chunk->locked_page; 979 } 980 lock_extent(io_tree, start, end); 981 982 /* We have fall back to uncompressed write */ 983 if (!async_extent->pages) 984 return submit_uncompressed_range(inode, async_extent, locked_page); 985 986 ret = btrfs_reserve_extent(root, async_extent->ram_size, 987 async_extent->compressed_size, 988 async_extent->compressed_size, 989 0, *alloc_hint, &ins, 1, 1); 990 if (ret) { 991 free_async_extent_pages(async_extent); 992 /* 993 * Here we used to try again by going back to non-compressed 994 * path for ENOSPC. But we can't reserve space even for 995 * compressed size, how could it work for uncompressed size 996 * which requires larger size? So here we directly go error 997 * path. 998 */ 999 goto out_free; 1000 } 1001 1002 /* Here we're doing allocation and writeback of the compressed pages */ 1003 em = create_io_em(inode, start, 1004 async_extent->ram_size, /* len */ 1005 start, /* orig_start */ 1006 ins.objectid, /* block_start */ 1007 ins.offset, /* block_len */ 1008 ins.offset, /* orig_block_len */ 1009 async_extent->ram_size, /* ram_bytes */ 1010 async_extent->compress_type, 1011 BTRFS_ORDERED_COMPRESSED); 1012 if (IS_ERR(em)) { 1013 ret = PTR_ERR(em); 1014 goto out_free_reserve; 1015 } 1016 free_extent_map(em); 1017 1018 ret = btrfs_add_ordered_extent(inode, start, /* file_offset */ 1019 async_extent->ram_size, /* num_bytes */ 1020 async_extent->ram_size, /* ram_bytes */ 1021 ins.objectid, /* disk_bytenr */ 1022 ins.offset, /* disk_num_bytes */ 1023 0, /* offset */ 1024 1 << BTRFS_ORDERED_COMPRESSED, 1025 async_extent->compress_type); 1026 if (ret) { 1027 btrfs_drop_extent_cache(inode, start, end, 0); 1028 goto out_free_reserve; 1029 } 1030 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1031 1032 /* Clear dirty, set writeback and unlock the pages. */ 1033 extent_clear_unlock_delalloc(inode, start, end, 1034 NULL, EXTENT_LOCKED | EXTENT_DELALLOC, 1035 PAGE_UNLOCK | PAGE_START_WRITEBACK); 1036 if (btrfs_submit_compressed_write(inode, start, /* file_offset */ 1037 async_extent->ram_size, /* num_bytes */ 1038 ins.objectid, /* disk_bytenr */ 1039 ins.offset, /* compressed_len */ 1040 async_extent->pages, /* compressed_pages */ 1041 async_extent->nr_pages, 1042 async_chunk->write_flags, 1043 async_chunk->blkcg_css, true)) { 1044 const u64 start = async_extent->start; 1045 const u64 end = start + async_extent->ram_size - 1; 1046 1047 btrfs_writepage_endio_finish_ordered(inode, NULL, start, end, 0); 1048 1049 extent_clear_unlock_delalloc(inode, start, end, NULL, 0, 1050 PAGE_END_WRITEBACK | PAGE_SET_ERROR); 1051 free_async_extent_pages(async_extent); 1052 } 1053 *alloc_hint = ins.objectid + ins.offset; 1054 kfree(async_extent); 1055 return ret; 1056 1057 out_free_reserve: 1058 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1059 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1); 1060 out_free: 1061 extent_clear_unlock_delalloc(inode, start, end, 1062 NULL, EXTENT_LOCKED | EXTENT_DELALLOC | 1063 EXTENT_DELALLOC_NEW | 1064 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING, 1065 PAGE_UNLOCK | PAGE_START_WRITEBACK | 1066 PAGE_END_WRITEBACK | PAGE_SET_ERROR); 1067 free_async_extent_pages(async_extent); 1068 kfree(async_extent); 1069 return ret; 1070 } 1071 1072 /* 1073 * Phase two of compressed writeback. This is the ordered portion of the code, 1074 * which only gets called in the order the work was queued. We walk all the 1075 * async extents created by compress_file_range and send them down to the disk. 1076 */ 1077 static noinline void submit_compressed_extents(struct async_chunk *async_chunk) 1078 { 1079 struct btrfs_inode *inode = BTRFS_I(async_chunk->inode); 1080 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1081 struct async_extent *async_extent; 1082 u64 alloc_hint = 0; 1083 int ret = 0; 1084 1085 while (!list_empty(&async_chunk->extents)) { 1086 u64 extent_start; 1087 u64 ram_size; 1088 1089 async_extent = list_entry(async_chunk->extents.next, 1090 struct async_extent, list); 1091 list_del(&async_extent->list); 1092 extent_start = async_extent->start; 1093 ram_size = async_extent->ram_size; 1094 1095 ret = submit_one_async_extent(inode, async_chunk, async_extent, 1096 &alloc_hint); 1097 btrfs_debug(fs_info, 1098 "async extent submission failed root=%lld inode=%llu start=%llu len=%llu ret=%d", 1099 inode->root->root_key.objectid, 1100 btrfs_ino(inode), extent_start, ram_size, ret); 1101 } 1102 } 1103 1104 static u64 get_extent_allocation_hint(struct btrfs_inode *inode, u64 start, 1105 u64 num_bytes) 1106 { 1107 struct extent_map_tree *em_tree = &inode->extent_tree; 1108 struct extent_map *em; 1109 u64 alloc_hint = 0; 1110 1111 read_lock(&em_tree->lock); 1112 em = search_extent_mapping(em_tree, start, num_bytes); 1113 if (em) { 1114 /* 1115 * if block start isn't an actual block number then find the 1116 * first block in this inode and use that as a hint. If that 1117 * block is also bogus then just don't worry about it. 1118 */ 1119 if (em->block_start >= EXTENT_MAP_LAST_BYTE) { 1120 free_extent_map(em); 1121 em = search_extent_mapping(em_tree, 0, 0); 1122 if (em && em->block_start < EXTENT_MAP_LAST_BYTE) 1123 alloc_hint = em->block_start; 1124 if (em) 1125 free_extent_map(em); 1126 } else { 1127 alloc_hint = em->block_start; 1128 free_extent_map(em); 1129 } 1130 } 1131 read_unlock(&em_tree->lock); 1132 1133 return alloc_hint; 1134 } 1135 1136 /* 1137 * when extent_io.c finds a delayed allocation range in the file, 1138 * the call backs end up in this code. The basic idea is to 1139 * allocate extents on disk for the range, and create ordered data structs 1140 * in ram to track those extents. 1141 * 1142 * locked_page is the page that writepage had locked already. We use 1143 * it to make sure we don't do extra locks or unlocks. 1144 * 1145 * *page_started is set to one if we unlock locked_page and do everything 1146 * required to start IO on it. It may be clean and already done with 1147 * IO when we return. 1148 * 1149 * When unlock == 1, we unlock the pages in successfully allocated regions. 1150 * When unlock == 0, we leave them locked for writing them out. 1151 * 1152 * However, we unlock all the pages except @locked_page in case of failure. 1153 * 1154 * In summary, page locking state will be as follow: 1155 * 1156 * - page_started == 1 (return value) 1157 * - All the pages are unlocked. IO is started. 1158 * - Note that this can happen only on success 1159 * - unlock == 1 1160 * - All the pages except @locked_page are unlocked in any case 1161 * - unlock == 0 1162 * - On success, all the pages are locked for writing out them 1163 * - On failure, all the pages except @locked_page are unlocked 1164 * 1165 * When a failure happens in the second or later iteration of the 1166 * while-loop, the ordered extents created in previous iterations are kept 1167 * intact. So, the caller must clean them up by calling 1168 * btrfs_cleanup_ordered_extents(). See btrfs_run_delalloc_range() for 1169 * example. 1170 */ 1171 static noinline int cow_file_range(struct btrfs_inode *inode, 1172 struct page *locked_page, 1173 u64 start, u64 end, int *page_started, 1174 unsigned long *nr_written, int unlock, 1175 u64 *done_offset) 1176 { 1177 struct btrfs_root *root = inode->root; 1178 struct btrfs_fs_info *fs_info = root->fs_info; 1179 u64 alloc_hint = 0; 1180 u64 orig_start = start; 1181 u64 num_bytes; 1182 unsigned long ram_size; 1183 u64 cur_alloc_size = 0; 1184 u64 min_alloc_size; 1185 u64 blocksize = fs_info->sectorsize; 1186 struct btrfs_key ins; 1187 struct extent_map *em; 1188 unsigned clear_bits; 1189 unsigned long page_ops; 1190 bool extent_reserved = false; 1191 int ret = 0; 1192 1193 if (btrfs_is_free_space_inode(inode)) { 1194 ret = -EINVAL; 1195 goto out_unlock; 1196 } 1197 1198 num_bytes = ALIGN(end - start + 1, blocksize); 1199 num_bytes = max(blocksize, num_bytes); 1200 ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy)); 1201 1202 inode_should_defrag(inode, start, end, num_bytes, SZ_64K); 1203 1204 /* 1205 * Due to the page size limit, for subpage we can only trigger the 1206 * writeback for the dirty sectors of page, that means data writeback 1207 * is doing more writeback than what we want. 1208 * 1209 * This is especially unexpected for some call sites like fallocate, 1210 * where we only increase i_size after everything is done. 1211 * This means we can trigger inline extent even if we didn't want to. 1212 * So here we skip inline extent creation completely. 1213 */ 1214 if (start == 0 && fs_info->sectorsize == PAGE_SIZE) { 1215 u64 actual_end = min_t(u64, i_size_read(&inode->vfs_inode), 1216 end + 1); 1217 1218 /* lets try to make an inline extent */ 1219 ret = cow_file_range_inline(inode, actual_end, 0, 1220 BTRFS_COMPRESS_NONE, NULL, false); 1221 if (ret == 0) { 1222 /* 1223 * We use DO_ACCOUNTING here because we need the 1224 * delalloc_release_metadata to be run _after_ we drop 1225 * our outstanding extent for clearing delalloc for this 1226 * range. 1227 */ 1228 extent_clear_unlock_delalloc(inode, start, end, 1229 locked_page, 1230 EXTENT_LOCKED | EXTENT_DELALLOC | 1231 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG | 1232 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK | 1233 PAGE_START_WRITEBACK | PAGE_END_WRITEBACK); 1234 *nr_written = *nr_written + 1235 (end - start + PAGE_SIZE) / PAGE_SIZE; 1236 *page_started = 1; 1237 /* 1238 * locked_page is locked by the caller of 1239 * writepage_delalloc(), not locked by 1240 * __process_pages_contig(). 1241 * 1242 * We can't let __process_pages_contig() to unlock it, 1243 * as it doesn't have any subpage::writers recorded. 1244 * 1245 * Here we manually unlock the page, since the caller 1246 * can't use page_started to determine if it's an 1247 * inline extent or a compressed extent. 1248 */ 1249 unlock_page(locked_page); 1250 goto out; 1251 } else if (ret < 0) { 1252 goto out_unlock; 1253 } 1254 } 1255 1256 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes); 1257 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0); 1258 1259 /* 1260 * Relocation relies on the relocated extents to have exactly the same 1261 * size as the original extents. Normally writeback for relocation data 1262 * extents follows a NOCOW path because relocation preallocates the 1263 * extents. However, due to an operation such as scrub turning a block 1264 * group to RO mode, it may fallback to COW mode, so we must make sure 1265 * an extent allocated during COW has exactly the requested size and can 1266 * not be split into smaller extents, otherwise relocation breaks and 1267 * fails during the stage where it updates the bytenr of file extent 1268 * items. 1269 */ 1270 if (btrfs_is_data_reloc_root(root)) 1271 min_alloc_size = num_bytes; 1272 else 1273 min_alloc_size = fs_info->sectorsize; 1274 1275 while (num_bytes > 0) { 1276 cur_alloc_size = num_bytes; 1277 ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size, 1278 min_alloc_size, 0, alloc_hint, 1279 &ins, 1, 1); 1280 if (ret < 0) 1281 goto out_unlock; 1282 cur_alloc_size = ins.offset; 1283 extent_reserved = true; 1284 1285 ram_size = ins.offset; 1286 em = create_io_em(inode, start, ins.offset, /* len */ 1287 start, /* orig_start */ 1288 ins.objectid, /* block_start */ 1289 ins.offset, /* block_len */ 1290 ins.offset, /* orig_block_len */ 1291 ram_size, /* ram_bytes */ 1292 BTRFS_COMPRESS_NONE, /* compress_type */ 1293 BTRFS_ORDERED_REGULAR /* type */); 1294 if (IS_ERR(em)) { 1295 ret = PTR_ERR(em); 1296 goto out_reserve; 1297 } 1298 free_extent_map(em); 1299 1300 ret = btrfs_add_ordered_extent(inode, start, ram_size, ram_size, 1301 ins.objectid, cur_alloc_size, 0, 1302 1 << BTRFS_ORDERED_REGULAR, 1303 BTRFS_COMPRESS_NONE); 1304 if (ret) 1305 goto out_drop_extent_cache; 1306 1307 if (btrfs_is_data_reloc_root(root)) { 1308 ret = btrfs_reloc_clone_csums(inode, start, 1309 cur_alloc_size); 1310 /* 1311 * Only drop cache here, and process as normal. 1312 * 1313 * We must not allow extent_clear_unlock_delalloc() 1314 * at out_unlock label to free meta of this ordered 1315 * extent, as its meta should be freed by 1316 * btrfs_finish_ordered_io(). 1317 * 1318 * So we must continue until @start is increased to 1319 * skip current ordered extent. 1320 */ 1321 if (ret) 1322 btrfs_drop_extent_cache(inode, start, 1323 start + ram_size - 1, 0); 1324 } 1325 1326 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1327 1328 /* 1329 * We're not doing compressed IO, don't unlock the first page 1330 * (which the caller expects to stay locked), don't clear any 1331 * dirty bits and don't set any writeback bits 1332 * 1333 * Do set the Ordered (Private2) bit so we know this page was 1334 * properly setup for writepage. 1335 */ 1336 page_ops = unlock ? PAGE_UNLOCK : 0; 1337 page_ops |= PAGE_SET_ORDERED; 1338 1339 extent_clear_unlock_delalloc(inode, start, start + ram_size - 1, 1340 locked_page, 1341 EXTENT_LOCKED | EXTENT_DELALLOC, 1342 page_ops); 1343 if (num_bytes < cur_alloc_size) 1344 num_bytes = 0; 1345 else 1346 num_bytes -= cur_alloc_size; 1347 alloc_hint = ins.objectid + ins.offset; 1348 start += cur_alloc_size; 1349 extent_reserved = false; 1350 1351 /* 1352 * btrfs_reloc_clone_csums() error, since start is increased 1353 * extent_clear_unlock_delalloc() at out_unlock label won't 1354 * free metadata of current ordered extent, we're OK to exit. 1355 */ 1356 if (ret) 1357 goto out_unlock; 1358 } 1359 out: 1360 return ret; 1361 1362 out_drop_extent_cache: 1363 btrfs_drop_extent_cache(inode, start, start + ram_size - 1, 0); 1364 out_reserve: 1365 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1366 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1); 1367 out_unlock: 1368 /* 1369 * If done_offset is non-NULL and ret == -EAGAIN, we expect the 1370 * caller to write out the successfully allocated region and retry. 1371 */ 1372 if (done_offset && ret == -EAGAIN) { 1373 if (orig_start < start) 1374 *done_offset = start - 1; 1375 else 1376 *done_offset = start; 1377 return ret; 1378 } else if (ret == -EAGAIN) { 1379 /* Convert to -ENOSPC since the caller cannot retry. */ 1380 ret = -ENOSPC; 1381 } 1382 1383 /* 1384 * Now, we have three regions to clean up: 1385 * 1386 * |-------(1)----|---(2)---|-------------(3)----------| 1387 * `- orig_start `- start `- start + cur_alloc_size `- end 1388 * 1389 * We process each region below. 1390 */ 1391 1392 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW | 1393 EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV; 1394 page_ops = PAGE_UNLOCK | PAGE_START_WRITEBACK | PAGE_END_WRITEBACK; 1395 1396 /* 1397 * For the range (1). We have already instantiated the ordered extents 1398 * for this region. They are cleaned up by 1399 * btrfs_cleanup_ordered_extents() in e.g, 1400 * btrfs_run_delalloc_range(). EXTENT_LOCKED | EXTENT_DELALLOC are 1401 * already cleared in the above loop. And, EXTENT_DELALLOC_NEW | 1402 * EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV are handled by the cleanup 1403 * function. 1404 * 1405 * However, in case of unlock == 0, we still need to unlock the pages 1406 * (except @locked_page) to ensure all the pages are unlocked. 1407 */ 1408 if (!unlock && orig_start < start) { 1409 if (!locked_page) 1410 mapping_set_error(inode->vfs_inode.i_mapping, ret); 1411 extent_clear_unlock_delalloc(inode, orig_start, start - 1, 1412 locked_page, 0, page_ops); 1413 } 1414 1415 /* 1416 * For the range (2). If we reserved an extent for our delalloc range 1417 * (or a subrange) and failed to create the respective ordered extent, 1418 * then it means that when we reserved the extent we decremented the 1419 * extent's size from the data space_info's bytes_may_use counter and 1420 * incremented the space_info's bytes_reserved counter by the same 1421 * amount. We must make sure extent_clear_unlock_delalloc() does not try 1422 * to decrement again the data space_info's bytes_may_use counter, 1423 * therefore we do not pass it the flag EXTENT_CLEAR_DATA_RESV. 1424 */ 1425 if (extent_reserved) { 1426 extent_clear_unlock_delalloc(inode, start, 1427 start + cur_alloc_size - 1, 1428 locked_page, 1429 clear_bits, 1430 page_ops); 1431 start += cur_alloc_size; 1432 if (start >= end) 1433 return ret; 1434 } 1435 1436 /* 1437 * For the range (3). We never touched the region. In addition to the 1438 * clear_bits above, we add EXTENT_CLEAR_DATA_RESV to release the data 1439 * space_info's bytes_may_use counter, reserved in 1440 * btrfs_check_data_free_space(). 1441 */ 1442 extent_clear_unlock_delalloc(inode, start, end, locked_page, 1443 clear_bits | EXTENT_CLEAR_DATA_RESV, 1444 page_ops); 1445 return ret; 1446 } 1447 1448 /* 1449 * work queue call back to started compression on a file and pages 1450 */ 1451 static noinline void async_cow_start(struct btrfs_work *work) 1452 { 1453 struct async_chunk *async_chunk; 1454 int compressed_extents; 1455 1456 async_chunk = container_of(work, struct async_chunk, work); 1457 1458 compressed_extents = compress_file_range(async_chunk); 1459 if (compressed_extents == 0) { 1460 btrfs_add_delayed_iput(async_chunk->inode); 1461 async_chunk->inode = NULL; 1462 } 1463 } 1464 1465 /* 1466 * work queue call back to submit previously compressed pages 1467 */ 1468 static noinline void async_cow_submit(struct btrfs_work *work) 1469 { 1470 struct async_chunk *async_chunk = container_of(work, struct async_chunk, 1471 work); 1472 struct btrfs_fs_info *fs_info = btrfs_work_owner(work); 1473 unsigned long nr_pages; 1474 1475 nr_pages = (async_chunk->end - async_chunk->start + PAGE_SIZE) >> 1476 PAGE_SHIFT; 1477 1478 /* 1479 * ->inode could be NULL if async_chunk_start has failed to compress, 1480 * in which case we don't have anything to submit, yet we need to 1481 * always adjust ->async_delalloc_pages as its paired with the init 1482 * happening in cow_file_range_async 1483 */ 1484 if (async_chunk->inode) 1485 submit_compressed_extents(async_chunk); 1486 1487 /* atomic_sub_return implies a barrier */ 1488 if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) < 1489 5 * SZ_1M) 1490 cond_wake_up_nomb(&fs_info->async_submit_wait); 1491 } 1492 1493 static noinline void async_cow_free(struct btrfs_work *work) 1494 { 1495 struct async_chunk *async_chunk; 1496 struct async_cow *async_cow; 1497 1498 async_chunk = container_of(work, struct async_chunk, work); 1499 if (async_chunk->inode) 1500 btrfs_add_delayed_iput(async_chunk->inode); 1501 if (async_chunk->blkcg_css) 1502 css_put(async_chunk->blkcg_css); 1503 1504 async_cow = async_chunk->async_cow; 1505 if (atomic_dec_and_test(&async_cow->num_chunks)) 1506 kvfree(async_cow); 1507 } 1508 1509 static int cow_file_range_async(struct btrfs_inode *inode, 1510 struct writeback_control *wbc, 1511 struct page *locked_page, 1512 u64 start, u64 end, int *page_started, 1513 unsigned long *nr_written) 1514 { 1515 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1516 struct cgroup_subsys_state *blkcg_css = wbc_blkcg_css(wbc); 1517 struct async_cow *ctx; 1518 struct async_chunk *async_chunk; 1519 unsigned long nr_pages; 1520 u64 cur_end; 1521 u64 num_chunks = DIV_ROUND_UP(end - start, SZ_512K); 1522 int i; 1523 bool should_compress; 1524 unsigned nofs_flag; 1525 const blk_opf_t write_flags = wbc_to_write_flags(wbc); 1526 1527 unlock_extent(&inode->io_tree, start, end); 1528 1529 if (inode->flags & BTRFS_INODE_NOCOMPRESS && 1530 !btrfs_test_opt(fs_info, FORCE_COMPRESS)) { 1531 num_chunks = 1; 1532 should_compress = false; 1533 } else { 1534 should_compress = true; 1535 } 1536 1537 nofs_flag = memalloc_nofs_save(); 1538 ctx = kvmalloc(struct_size(ctx, chunks, num_chunks), GFP_KERNEL); 1539 memalloc_nofs_restore(nofs_flag); 1540 1541 if (!ctx) { 1542 unsigned clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | 1543 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG | 1544 EXTENT_DO_ACCOUNTING; 1545 unsigned long page_ops = PAGE_UNLOCK | PAGE_START_WRITEBACK | 1546 PAGE_END_WRITEBACK | PAGE_SET_ERROR; 1547 1548 extent_clear_unlock_delalloc(inode, start, end, locked_page, 1549 clear_bits, page_ops); 1550 return -ENOMEM; 1551 } 1552 1553 async_chunk = ctx->chunks; 1554 atomic_set(&ctx->num_chunks, num_chunks); 1555 1556 for (i = 0; i < num_chunks; i++) { 1557 if (should_compress) 1558 cur_end = min(end, start + SZ_512K - 1); 1559 else 1560 cur_end = end; 1561 1562 /* 1563 * igrab is called higher up in the call chain, take only the 1564 * lightweight reference for the callback lifetime 1565 */ 1566 ihold(&inode->vfs_inode); 1567 async_chunk[i].async_cow = ctx; 1568 async_chunk[i].inode = &inode->vfs_inode; 1569 async_chunk[i].start = start; 1570 async_chunk[i].end = cur_end; 1571 async_chunk[i].write_flags = write_flags; 1572 INIT_LIST_HEAD(&async_chunk[i].extents); 1573 1574 /* 1575 * The locked_page comes all the way from writepage and its 1576 * the original page we were actually given. As we spread 1577 * this large delalloc region across multiple async_chunk 1578 * structs, only the first struct needs a pointer to locked_page 1579 * 1580 * This way we don't need racey decisions about who is supposed 1581 * to unlock it. 1582 */ 1583 if (locked_page) { 1584 /* 1585 * Depending on the compressibility, the pages might or 1586 * might not go through async. We want all of them to 1587 * be accounted against wbc once. Let's do it here 1588 * before the paths diverge. wbc accounting is used 1589 * only for foreign writeback detection and doesn't 1590 * need full accuracy. Just account the whole thing 1591 * against the first page. 1592 */ 1593 wbc_account_cgroup_owner(wbc, locked_page, 1594 cur_end - start); 1595 async_chunk[i].locked_page = locked_page; 1596 locked_page = NULL; 1597 } else { 1598 async_chunk[i].locked_page = NULL; 1599 } 1600 1601 if (blkcg_css != blkcg_root_css) { 1602 css_get(blkcg_css); 1603 async_chunk[i].blkcg_css = blkcg_css; 1604 } else { 1605 async_chunk[i].blkcg_css = NULL; 1606 } 1607 1608 btrfs_init_work(&async_chunk[i].work, async_cow_start, 1609 async_cow_submit, async_cow_free); 1610 1611 nr_pages = DIV_ROUND_UP(cur_end - start, PAGE_SIZE); 1612 atomic_add(nr_pages, &fs_info->async_delalloc_pages); 1613 1614 btrfs_queue_work(fs_info->delalloc_workers, &async_chunk[i].work); 1615 1616 *nr_written += nr_pages; 1617 start = cur_end + 1; 1618 } 1619 *page_started = 1; 1620 return 0; 1621 } 1622 1623 static noinline int run_delalloc_zoned(struct btrfs_inode *inode, 1624 struct page *locked_page, u64 start, 1625 u64 end, int *page_started, 1626 unsigned long *nr_written) 1627 { 1628 u64 done_offset = end; 1629 int ret; 1630 bool locked_page_done = false; 1631 1632 while (start <= end) { 1633 ret = cow_file_range(inode, locked_page, start, end, page_started, 1634 nr_written, 0, &done_offset); 1635 if (ret && ret != -EAGAIN) 1636 return ret; 1637 1638 if (*page_started) { 1639 ASSERT(ret == 0); 1640 return 0; 1641 } 1642 1643 if (ret == 0) 1644 done_offset = end; 1645 1646 if (done_offset == start) { 1647 struct btrfs_fs_info *info = inode->root->fs_info; 1648 1649 wait_var_event(&info->zone_finish_wait, 1650 !test_bit(BTRFS_FS_NEED_ZONE_FINISH, &info->flags)); 1651 continue; 1652 } 1653 1654 if (!locked_page_done) { 1655 __set_page_dirty_nobuffers(locked_page); 1656 account_page_redirty(locked_page); 1657 } 1658 locked_page_done = true; 1659 extent_write_locked_range(&inode->vfs_inode, start, done_offset); 1660 1661 start = done_offset + 1; 1662 } 1663 1664 *page_started = 1; 1665 1666 return 0; 1667 } 1668 1669 static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info, 1670 u64 bytenr, u64 num_bytes) 1671 { 1672 struct btrfs_root *csum_root = btrfs_csum_root(fs_info, bytenr); 1673 struct btrfs_ordered_sum *sums; 1674 int ret; 1675 LIST_HEAD(list); 1676 1677 ret = btrfs_lookup_csums_range(csum_root, bytenr, 1678 bytenr + num_bytes - 1, &list, 0); 1679 if (ret == 0 && list_empty(&list)) 1680 return 0; 1681 1682 while (!list_empty(&list)) { 1683 sums = list_entry(list.next, struct btrfs_ordered_sum, list); 1684 list_del(&sums->list); 1685 kfree(sums); 1686 } 1687 if (ret < 0) 1688 return ret; 1689 return 1; 1690 } 1691 1692 static int fallback_to_cow(struct btrfs_inode *inode, struct page *locked_page, 1693 const u64 start, const u64 end, 1694 int *page_started, unsigned long *nr_written) 1695 { 1696 const bool is_space_ino = btrfs_is_free_space_inode(inode); 1697 const bool is_reloc_ino = btrfs_is_data_reloc_root(inode->root); 1698 const u64 range_bytes = end + 1 - start; 1699 struct extent_io_tree *io_tree = &inode->io_tree; 1700 u64 range_start = start; 1701 u64 count; 1702 1703 /* 1704 * If EXTENT_NORESERVE is set it means that when the buffered write was 1705 * made we had not enough available data space and therefore we did not 1706 * reserve data space for it, since we though we could do NOCOW for the 1707 * respective file range (either there is prealloc extent or the inode 1708 * has the NOCOW bit set). 1709 * 1710 * However when we need to fallback to COW mode (because for example the 1711 * block group for the corresponding extent was turned to RO mode by a 1712 * scrub or relocation) we need to do the following: 1713 * 1714 * 1) We increment the bytes_may_use counter of the data space info. 1715 * If COW succeeds, it allocates a new data extent and after doing 1716 * that it decrements the space info's bytes_may_use counter and 1717 * increments its bytes_reserved counter by the same amount (we do 1718 * this at btrfs_add_reserved_bytes()). So we need to increment the 1719 * bytes_may_use counter to compensate (when space is reserved at 1720 * buffered write time, the bytes_may_use counter is incremented); 1721 * 1722 * 2) We clear the EXTENT_NORESERVE bit from the range. We do this so 1723 * that if the COW path fails for any reason, it decrements (through 1724 * extent_clear_unlock_delalloc()) the bytes_may_use counter of the 1725 * data space info, which we incremented in the step above. 1726 * 1727 * If we need to fallback to cow and the inode corresponds to a free 1728 * space cache inode or an inode of the data relocation tree, we must 1729 * also increment bytes_may_use of the data space_info for the same 1730 * reason. Space caches and relocated data extents always get a prealloc 1731 * extent for them, however scrub or balance may have set the block 1732 * group that contains that extent to RO mode and therefore force COW 1733 * when starting writeback. 1734 */ 1735 count = count_range_bits(io_tree, &range_start, end, range_bytes, 1736 EXTENT_NORESERVE, 0); 1737 if (count > 0 || is_space_ino || is_reloc_ino) { 1738 u64 bytes = count; 1739 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1740 struct btrfs_space_info *sinfo = fs_info->data_sinfo; 1741 1742 if (is_space_ino || is_reloc_ino) 1743 bytes = range_bytes; 1744 1745 spin_lock(&sinfo->lock); 1746 btrfs_space_info_update_bytes_may_use(fs_info, sinfo, bytes); 1747 spin_unlock(&sinfo->lock); 1748 1749 if (count > 0) 1750 clear_extent_bit(io_tree, start, end, EXTENT_NORESERVE, 1751 0, 0, NULL); 1752 } 1753 1754 return cow_file_range(inode, locked_page, start, end, page_started, 1755 nr_written, 1, NULL); 1756 } 1757 1758 struct can_nocow_file_extent_args { 1759 /* Input fields. */ 1760 1761 /* Start file offset of the range we want to NOCOW. */ 1762 u64 start; 1763 /* End file offset (inclusive) of the range we want to NOCOW. */ 1764 u64 end; 1765 bool writeback_path; 1766 bool strict; 1767 /* 1768 * Free the path passed to can_nocow_file_extent() once it's not needed 1769 * anymore. 1770 */ 1771 bool free_path; 1772 1773 /* Output fields. Only set when can_nocow_file_extent() returns 1. */ 1774 1775 u64 disk_bytenr; 1776 u64 disk_num_bytes; 1777 u64 extent_offset; 1778 /* Number of bytes that can be written to in NOCOW mode. */ 1779 u64 num_bytes; 1780 }; 1781 1782 /* 1783 * Check if we can NOCOW the file extent that the path points to. 1784 * This function may return with the path released, so the caller should check 1785 * if path->nodes[0] is NULL or not if it needs to use the path afterwards. 1786 * 1787 * Returns: < 0 on error 1788 * 0 if we can not NOCOW 1789 * 1 if we can NOCOW 1790 */ 1791 static int can_nocow_file_extent(struct btrfs_path *path, 1792 struct btrfs_key *key, 1793 struct btrfs_inode *inode, 1794 struct can_nocow_file_extent_args *args) 1795 { 1796 const bool is_freespace_inode = btrfs_is_free_space_inode(inode); 1797 struct extent_buffer *leaf = path->nodes[0]; 1798 struct btrfs_root *root = inode->root; 1799 struct btrfs_file_extent_item *fi; 1800 u64 extent_end; 1801 u8 extent_type; 1802 int can_nocow = 0; 1803 int ret = 0; 1804 1805 fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); 1806 extent_type = btrfs_file_extent_type(leaf, fi); 1807 1808 if (extent_type == BTRFS_FILE_EXTENT_INLINE) 1809 goto out; 1810 1811 /* Can't access these fields unless we know it's not an inline extent. */ 1812 args->disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1813 args->disk_num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 1814 args->extent_offset = btrfs_file_extent_offset(leaf, fi); 1815 1816 if (!(inode->flags & BTRFS_INODE_NODATACOW) && 1817 extent_type == BTRFS_FILE_EXTENT_REG) 1818 goto out; 1819 1820 /* 1821 * If the extent was created before the generation where the last snapshot 1822 * for its subvolume was created, then this implies the extent is shared, 1823 * hence we must COW. 1824 */ 1825 if (!args->strict && 1826 btrfs_file_extent_generation(leaf, fi) <= 1827 btrfs_root_last_snapshot(&root->root_item)) 1828 goto out; 1829 1830 /* An explicit hole, must COW. */ 1831 if (args->disk_bytenr == 0) 1832 goto out; 1833 1834 /* Compressed/encrypted/encoded extents must be COWed. */ 1835 if (btrfs_file_extent_compression(leaf, fi) || 1836 btrfs_file_extent_encryption(leaf, fi) || 1837 btrfs_file_extent_other_encoding(leaf, fi)) 1838 goto out; 1839 1840 extent_end = btrfs_file_extent_end(path); 1841 1842 /* 1843 * The following checks can be expensive, as they need to take other 1844 * locks and do btree or rbtree searches, so release the path to avoid 1845 * blocking other tasks for too long. 1846 */ 1847 btrfs_release_path(path); 1848 1849 ret = btrfs_cross_ref_exist(root, btrfs_ino(inode), 1850 key->offset - args->extent_offset, 1851 args->disk_bytenr, false, path); 1852 WARN_ON_ONCE(ret > 0 && is_freespace_inode); 1853 if (ret != 0) 1854 goto out; 1855 1856 if (args->free_path) { 1857 /* 1858 * We don't need the path anymore, plus through the 1859 * csum_exist_in_range() call below we will end up allocating 1860 * another path. So free the path to avoid unnecessary extra 1861 * memory usage. 1862 */ 1863 btrfs_free_path(path); 1864 path = NULL; 1865 } 1866 1867 /* If there are pending snapshots for this root, we must COW. */ 1868 if (args->writeback_path && !is_freespace_inode && 1869 atomic_read(&root->snapshot_force_cow)) 1870 goto out; 1871 1872 args->disk_bytenr += args->extent_offset; 1873 args->disk_bytenr += args->start - key->offset; 1874 args->num_bytes = min(args->end + 1, extent_end) - args->start; 1875 1876 /* 1877 * Force COW if csums exist in the range. This ensures that csums for a 1878 * given extent are either valid or do not exist. 1879 */ 1880 ret = csum_exist_in_range(root->fs_info, args->disk_bytenr, args->num_bytes); 1881 WARN_ON_ONCE(ret > 0 && is_freespace_inode); 1882 if (ret != 0) 1883 goto out; 1884 1885 can_nocow = 1; 1886 out: 1887 if (args->free_path && path) 1888 btrfs_free_path(path); 1889 1890 return ret < 0 ? ret : can_nocow; 1891 } 1892 1893 /* 1894 * when nowcow writeback call back. This checks for snapshots or COW copies 1895 * of the extents that exist in the file, and COWs the file as required. 1896 * 1897 * If no cow copies or snapshots exist, we write directly to the existing 1898 * blocks on disk 1899 */ 1900 static noinline int run_delalloc_nocow(struct btrfs_inode *inode, 1901 struct page *locked_page, 1902 const u64 start, const u64 end, 1903 int *page_started, 1904 unsigned long *nr_written) 1905 { 1906 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1907 struct btrfs_root *root = inode->root; 1908 struct btrfs_path *path; 1909 u64 cow_start = (u64)-1; 1910 u64 cur_offset = start; 1911 int ret; 1912 bool check_prev = true; 1913 u64 ino = btrfs_ino(inode); 1914 struct btrfs_block_group *bg; 1915 bool nocow = false; 1916 struct can_nocow_file_extent_args nocow_args = { 0 }; 1917 1918 path = btrfs_alloc_path(); 1919 if (!path) { 1920 extent_clear_unlock_delalloc(inode, start, end, locked_page, 1921 EXTENT_LOCKED | EXTENT_DELALLOC | 1922 EXTENT_DO_ACCOUNTING | 1923 EXTENT_DEFRAG, PAGE_UNLOCK | 1924 PAGE_START_WRITEBACK | 1925 PAGE_END_WRITEBACK); 1926 return -ENOMEM; 1927 } 1928 1929 nocow_args.end = end; 1930 nocow_args.writeback_path = true; 1931 1932 while (1) { 1933 struct btrfs_key found_key; 1934 struct btrfs_file_extent_item *fi; 1935 struct extent_buffer *leaf; 1936 u64 extent_end; 1937 u64 ram_bytes; 1938 u64 nocow_end; 1939 int extent_type; 1940 1941 nocow = false; 1942 1943 ret = btrfs_lookup_file_extent(NULL, root, path, ino, 1944 cur_offset, 0); 1945 if (ret < 0) 1946 goto error; 1947 1948 /* 1949 * If there is no extent for our range when doing the initial 1950 * search, then go back to the previous slot as it will be the 1951 * one containing the search offset 1952 */ 1953 if (ret > 0 && path->slots[0] > 0 && check_prev) { 1954 leaf = path->nodes[0]; 1955 btrfs_item_key_to_cpu(leaf, &found_key, 1956 path->slots[0] - 1); 1957 if (found_key.objectid == ino && 1958 found_key.type == BTRFS_EXTENT_DATA_KEY) 1959 path->slots[0]--; 1960 } 1961 check_prev = false; 1962 next_slot: 1963 /* Go to next leaf if we have exhausted the current one */ 1964 leaf = path->nodes[0]; 1965 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 1966 ret = btrfs_next_leaf(root, path); 1967 if (ret < 0) { 1968 if (cow_start != (u64)-1) 1969 cur_offset = cow_start; 1970 goto error; 1971 } 1972 if (ret > 0) 1973 break; 1974 leaf = path->nodes[0]; 1975 } 1976 1977 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1978 1979 /* Didn't find anything for our INO */ 1980 if (found_key.objectid > ino) 1981 break; 1982 /* 1983 * Keep searching until we find an EXTENT_ITEM or there are no 1984 * more extents for this inode 1985 */ 1986 if (WARN_ON_ONCE(found_key.objectid < ino) || 1987 found_key.type < BTRFS_EXTENT_DATA_KEY) { 1988 path->slots[0]++; 1989 goto next_slot; 1990 } 1991 1992 /* Found key is not EXTENT_DATA_KEY or starts after req range */ 1993 if (found_key.type > BTRFS_EXTENT_DATA_KEY || 1994 found_key.offset > end) 1995 break; 1996 1997 /* 1998 * If the found extent starts after requested offset, then 1999 * adjust extent_end to be right before this extent begins 2000 */ 2001 if (found_key.offset > cur_offset) { 2002 extent_end = found_key.offset; 2003 extent_type = 0; 2004 goto out_check; 2005 } 2006 2007 /* 2008 * Found extent which begins before our range and potentially 2009 * intersect it 2010 */ 2011 fi = btrfs_item_ptr(leaf, path->slots[0], 2012 struct btrfs_file_extent_item); 2013 extent_type = btrfs_file_extent_type(leaf, fi); 2014 /* If this is triggered then we have a memory corruption. */ 2015 ASSERT(extent_type < BTRFS_NR_FILE_EXTENT_TYPES); 2016 if (WARN_ON(extent_type >= BTRFS_NR_FILE_EXTENT_TYPES)) { 2017 ret = -EUCLEAN; 2018 goto error; 2019 } 2020 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 2021 extent_end = btrfs_file_extent_end(path); 2022 2023 /* 2024 * If the extent we got ends before our current offset, skip to 2025 * the next extent. 2026 */ 2027 if (extent_end <= cur_offset) { 2028 path->slots[0]++; 2029 goto next_slot; 2030 } 2031 2032 nocow_args.start = cur_offset; 2033 ret = can_nocow_file_extent(path, &found_key, inode, &nocow_args); 2034 if (ret < 0) { 2035 if (cow_start != (u64)-1) 2036 cur_offset = cow_start; 2037 goto error; 2038 } else if (ret == 0) { 2039 goto out_check; 2040 } 2041 2042 ret = 0; 2043 bg = btrfs_inc_nocow_writers(fs_info, nocow_args.disk_bytenr); 2044 if (bg) 2045 nocow = true; 2046 out_check: 2047 /* 2048 * If nocow is false then record the beginning of the range 2049 * that needs to be COWed 2050 */ 2051 if (!nocow) { 2052 if (cow_start == (u64)-1) 2053 cow_start = cur_offset; 2054 cur_offset = extent_end; 2055 if (cur_offset > end) 2056 break; 2057 if (!path->nodes[0]) 2058 continue; 2059 path->slots[0]++; 2060 goto next_slot; 2061 } 2062 2063 /* 2064 * COW range from cow_start to found_key.offset - 1. As the key 2065 * will contain the beginning of the first extent that can be 2066 * NOCOW, following one which needs to be COW'ed 2067 */ 2068 if (cow_start != (u64)-1) { 2069 ret = fallback_to_cow(inode, locked_page, 2070 cow_start, found_key.offset - 1, 2071 page_started, nr_written); 2072 if (ret) 2073 goto error; 2074 cow_start = (u64)-1; 2075 } 2076 2077 nocow_end = cur_offset + nocow_args.num_bytes - 1; 2078 2079 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 2080 u64 orig_start = found_key.offset - nocow_args.extent_offset; 2081 struct extent_map *em; 2082 2083 em = create_io_em(inode, cur_offset, nocow_args.num_bytes, 2084 orig_start, 2085 nocow_args.disk_bytenr, /* block_start */ 2086 nocow_args.num_bytes, /* block_len */ 2087 nocow_args.disk_num_bytes, /* orig_block_len */ 2088 ram_bytes, BTRFS_COMPRESS_NONE, 2089 BTRFS_ORDERED_PREALLOC); 2090 if (IS_ERR(em)) { 2091 ret = PTR_ERR(em); 2092 goto error; 2093 } 2094 free_extent_map(em); 2095 ret = btrfs_add_ordered_extent(inode, 2096 cur_offset, nocow_args.num_bytes, 2097 nocow_args.num_bytes, 2098 nocow_args.disk_bytenr, 2099 nocow_args.num_bytes, 0, 2100 1 << BTRFS_ORDERED_PREALLOC, 2101 BTRFS_COMPRESS_NONE); 2102 if (ret) { 2103 btrfs_drop_extent_cache(inode, cur_offset, 2104 nocow_end, 0); 2105 goto error; 2106 } 2107 } else { 2108 ret = btrfs_add_ordered_extent(inode, cur_offset, 2109 nocow_args.num_bytes, 2110 nocow_args.num_bytes, 2111 nocow_args.disk_bytenr, 2112 nocow_args.num_bytes, 2113 0, 2114 1 << BTRFS_ORDERED_NOCOW, 2115 BTRFS_COMPRESS_NONE); 2116 if (ret) 2117 goto error; 2118 } 2119 2120 if (nocow) { 2121 btrfs_dec_nocow_writers(bg); 2122 nocow = false; 2123 } 2124 2125 if (btrfs_is_data_reloc_root(root)) 2126 /* 2127 * Error handled later, as we must prevent 2128 * extent_clear_unlock_delalloc() in error handler 2129 * from freeing metadata of created ordered extent. 2130 */ 2131 ret = btrfs_reloc_clone_csums(inode, cur_offset, 2132 nocow_args.num_bytes); 2133 2134 extent_clear_unlock_delalloc(inode, cur_offset, nocow_end, 2135 locked_page, EXTENT_LOCKED | 2136 EXTENT_DELALLOC | 2137 EXTENT_CLEAR_DATA_RESV, 2138 PAGE_UNLOCK | PAGE_SET_ORDERED); 2139 2140 cur_offset = extent_end; 2141 2142 /* 2143 * btrfs_reloc_clone_csums() error, now we're OK to call error 2144 * handler, as metadata for created ordered extent will only 2145 * be freed by btrfs_finish_ordered_io(). 2146 */ 2147 if (ret) 2148 goto error; 2149 if (cur_offset > end) 2150 break; 2151 } 2152 btrfs_release_path(path); 2153 2154 if (cur_offset <= end && cow_start == (u64)-1) 2155 cow_start = cur_offset; 2156 2157 if (cow_start != (u64)-1) { 2158 cur_offset = end; 2159 ret = fallback_to_cow(inode, locked_page, cow_start, end, 2160 page_started, nr_written); 2161 if (ret) 2162 goto error; 2163 } 2164 2165 error: 2166 if (nocow) 2167 btrfs_dec_nocow_writers(bg); 2168 2169 if (ret && cur_offset < end) 2170 extent_clear_unlock_delalloc(inode, cur_offset, end, 2171 locked_page, EXTENT_LOCKED | 2172 EXTENT_DELALLOC | EXTENT_DEFRAG | 2173 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK | 2174 PAGE_START_WRITEBACK | 2175 PAGE_END_WRITEBACK); 2176 btrfs_free_path(path); 2177 return ret; 2178 } 2179 2180 static bool should_nocow(struct btrfs_inode *inode, u64 start, u64 end) 2181 { 2182 if (inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)) { 2183 if (inode->defrag_bytes && 2184 test_range_bit(&inode->io_tree, start, end, EXTENT_DEFRAG, 2185 0, NULL)) 2186 return false; 2187 return true; 2188 } 2189 return false; 2190 } 2191 2192 /* 2193 * Function to process delayed allocation (create CoW) for ranges which are 2194 * being touched for the first time. 2195 */ 2196 int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct page *locked_page, 2197 u64 start, u64 end, int *page_started, unsigned long *nr_written, 2198 struct writeback_control *wbc) 2199 { 2200 int ret; 2201 const bool zoned = btrfs_is_zoned(inode->root->fs_info); 2202 2203 /* 2204 * The range must cover part of the @locked_page, or the returned 2205 * @page_started can confuse the caller. 2206 */ 2207 ASSERT(!(end <= page_offset(locked_page) || 2208 start >= page_offset(locked_page) + PAGE_SIZE)); 2209 2210 if (should_nocow(inode, start, end)) { 2211 /* 2212 * Normally on a zoned device we're only doing COW writes, but 2213 * in case of relocation on a zoned filesystem we have taken 2214 * precaution, that we're only writing sequentially. It's safe 2215 * to use run_delalloc_nocow() here, like for regular 2216 * preallocated inodes. 2217 */ 2218 ASSERT(!zoned || btrfs_is_data_reloc_root(inode->root)); 2219 ret = run_delalloc_nocow(inode, locked_page, start, end, 2220 page_started, nr_written); 2221 } else if (!btrfs_inode_can_compress(inode) || 2222 !inode_need_compress(inode, start, end)) { 2223 if (zoned) 2224 ret = run_delalloc_zoned(inode, locked_page, start, end, 2225 page_started, nr_written); 2226 else 2227 ret = cow_file_range(inode, locked_page, start, end, 2228 page_started, nr_written, 1, NULL); 2229 } else { 2230 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, &inode->runtime_flags); 2231 ret = cow_file_range_async(inode, wbc, locked_page, start, end, 2232 page_started, nr_written); 2233 } 2234 ASSERT(ret <= 0); 2235 if (ret) 2236 btrfs_cleanup_ordered_extents(inode, locked_page, start, 2237 end - start + 1); 2238 return ret; 2239 } 2240 2241 void btrfs_split_delalloc_extent(struct inode *inode, 2242 struct extent_state *orig, u64 split) 2243 { 2244 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2245 u64 size; 2246 2247 /* not delalloc, ignore it */ 2248 if (!(orig->state & EXTENT_DELALLOC)) 2249 return; 2250 2251 size = orig->end - orig->start + 1; 2252 if (size > fs_info->max_extent_size) { 2253 u32 num_extents; 2254 u64 new_size; 2255 2256 /* 2257 * See the explanation in btrfs_merge_delalloc_extent, the same 2258 * applies here, just in reverse. 2259 */ 2260 new_size = orig->end - split + 1; 2261 num_extents = count_max_extents(fs_info, new_size); 2262 new_size = split - orig->start; 2263 num_extents += count_max_extents(fs_info, new_size); 2264 if (count_max_extents(fs_info, size) >= num_extents) 2265 return; 2266 } 2267 2268 spin_lock(&BTRFS_I(inode)->lock); 2269 btrfs_mod_outstanding_extents(BTRFS_I(inode), 1); 2270 spin_unlock(&BTRFS_I(inode)->lock); 2271 } 2272 2273 /* 2274 * Handle merged delayed allocation extents so we can keep track of new extents 2275 * that are just merged onto old extents, such as when we are doing sequential 2276 * writes, so we can properly account for the metadata space we'll need. 2277 */ 2278 void btrfs_merge_delalloc_extent(struct inode *inode, struct extent_state *new, 2279 struct extent_state *other) 2280 { 2281 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2282 u64 new_size, old_size; 2283 u32 num_extents; 2284 2285 /* not delalloc, ignore it */ 2286 if (!(other->state & EXTENT_DELALLOC)) 2287 return; 2288 2289 if (new->start > other->start) 2290 new_size = new->end - other->start + 1; 2291 else 2292 new_size = other->end - new->start + 1; 2293 2294 /* we're not bigger than the max, unreserve the space and go */ 2295 if (new_size <= fs_info->max_extent_size) { 2296 spin_lock(&BTRFS_I(inode)->lock); 2297 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1); 2298 spin_unlock(&BTRFS_I(inode)->lock); 2299 return; 2300 } 2301 2302 /* 2303 * We have to add up either side to figure out how many extents were 2304 * accounted for before we merged into one big extent. If the number of 2305 * extents we accounted for is <= the amount we need for the new range 2306 * then we can return, otherwise drop. Think of it like this 2307 * 2308 * [ 4k][MAX_SIZE] 2309 * 2310 * So we've grown the extent by a MAX_SIZE extent, this would mean we 2311 * need 2 outstanding extents, on one side we have 1 and the other side 2312 * we have 1 so they are == and we can return. But in this case 2313 * 2314 * [MAX_SIZE+4k][MAX_SIZE+4k] 2315 * 2316 * Each range on their own accounts for 2 extents, but merged together 2317 * they are only 3 extents worth of accounting, so we need to drop in 2318 * this case. 2319 */ 2320 old_size = other->end - other->start + 1; 2321 num_extents = count_max_extents(fs_info, old_size); 2322 old_size = new->end - new->start + 1; 2323 num_extents += count_max_extents(fs_info, old_size); 2324 if (count_max_extents(fs_info, new_size) >= num_extents) 2325 return; 2326 2327 spin_lock(&BTRFS_I(inode)->lock); 2328 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1); 2329 spin_unlock(&BTRFS_I(inode)->lock); 2330 } 2331 2332 static void btrfs_add_delalloc_inodes(struct btrfs_root *root, 2333 struct inode *inode) 2334 { 2335 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2336 2337 spin_lock(&root->delalloc_lock); 2338 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) { 2339 list_add_tail(&BTRFS_I(inode)->delalloc_inodes, 2340 &root->delalloc_inodes); 2341 set_bit(BTRFS_INODE_IN_DELALLOC_LIST, 2342 &BTRFS_I(inode)->runtime_flags); 2343 root->nr_delalloc_inodes++; 2344 if (root->nr_delalloc_inodes == 1) { 2345 spin_lock(&fs_info->delalloc_root_lock); 2346 BUG_ON(!list_empty(&root->delalloc_root)); 2347 list_add_tail(&root->delalloc_root, 2348 &fs_info->delalloc_roots); 2349 spin_unlock(&fs_info->delalloc_root_lock); 2350 } 2351 } 2352 spin_unlock(&root->delalloc_lock); 2353 } 2354 2355 2356 void __btrfs_del_delalloc_inode(struct btrfs_root *root, 2357 struct btrfs_inode *inode) 2358 { 2359 struct btrfs_fs_info *fs_info = root->fs_info; 2360 2361 if (!list_empty(&inode->delalloc_inodes)) { 2362 list_del_init(&inode->delalloc_inodes); 2363 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST, 2364 &inode->runtime_flags); 2365 root->nr_delalloc_inodes--; 2366 if (!root->nr_delalloc_inodes) { 2367 ASSERT(list_empty(&root->delalloc_inodes)); 2368 spin_lock(&fs_info->delalloc_root_lock); 2369 BUG_ON(list_empty(&root->delalloc_root)); 2370 list_del_init(&root->delalloc_root); 2371 spin_unlock(&fs_info->delalloc_root_lock); 2372 } 2373 } 2374 } 2375 2376 static void btrfs_del_delalloc_inode(struct btrfs_root *root, 2377 struct btrfs_inode *inode) 2378 { 2379 spin_lock(&root->delalloc_lock); 2380 __btrfs_del_delalloc_inode(root, inode); 2381 spin_unlock(&root->delalloc_lock); 2382 } 2383 2384 /* 2385 * Properly track delayed allocation bytes in the inode and to maintain the 2386 * list of inodes that have pending delalloc work to be done. 2387 */ 2388 void btrfs_set_delalloc_extent(struct inode *inode, struct extent_state *state, 2389 u32 bits) 2390 { 2391 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2392 2393 if ((bits & EXTENT_DEFRAG) && !(bits & EXTENT_DELALLOC)) 2394 WARN_ON(1); 2395 /* 2396 * set_bit and clear bit hooks normally require _irqsave/restore 2397 * but in this case, we are only testing for the DELALLOC 2398 * bit, which is only set or cleared with irqs on 2399 */ 2400 if (!(state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) { 2401 struct btrfs_root *root = BTRFS_I(inode)->root; 2402 u64 len = state->end + 1 - state->start; 2403 u32 num_extents = count_max_extents(fs_info, len); 2404 bool do_list = !btrfs_is_free_space_inode(BTRFS_I(inode)); 2405 2406 spin_lock(&BTRFS_I(inode)->lock); 2407 btrfs_mod_outstanding_extents(BTRFS_I(inode), num_extents); 2408 spin_unlock(&BTRFS_I(inode)->lock); 2409 2410 /* For sanity tests */ 2411 if (btrfs_is_testing(fs_info)) 2412 return; 2413 2414 percpu_counter_add_batch(&fs_info->delalloc_bytes, len, 2415 fs_info->delalloc_batch); 2416 spin_lock(&BTRFS_I(inode)->lock); 2417 BTRFS_I(inode)->delalloc_bytes += len; 2418 if (bits & EXTENT_DEFRAG) 2419 BTRFS_I(inode)->defrag_bytes += len; 2420 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST, 2421 &BTRFS_I(inode)->runtime_flags)) 2422 btrfs_add_delalloc_inodes(root, inode); 2423 spin_unlock(&BTRFS_I(inode)->lock); 2424 } 2425 2426 if (!(state->state & EXTENT_DELALLOC_NEW) && 2427 (bits & EXTENT_DELALLOC_NEW)) { 2428 spin_lock(&BTRFS_I(inode)->lock); 2429 BTRFS_I(inode)->new_delalloc_bytes += state->end + 1 - 2430 state->start; 2431 spin_unlock(&BTRFS_I(inode)->lock); 2432 } 2433 } 2434 2435 /* 2436 * Once a range is no longer delalloc this function ensures that proper 2437 * accounting happens. 2438 */ 2439 void btrfs_clear_delalloc_extent(struct inode *vfs_inode, 2440 struct extent_state *state, u32 bits) 2441 { 2442 struct btrfs_inode *inode = BTRFS_I(vfs_inode); 2443 struct btrfs_fs_info *fs_info = btrfs_sb(vfs_inode->i_sb); 2444 u64 len = state->end + 1 - state->start; 2445 u32 num_extents = count_max_extents(fs_info, len); 2446 2447 if ((state->state & EXTENT_DEFRAG) && (bits & EXTENT_DEFRAG)) { 2448 spin_lock(&inode->lock); 2449 inode->defrag_bytes -= len; 2450 spin_unlock(&inode->lock); 2451 } 2452 2453 /* 2454 * set_bit and clear bit hooks normally require _irqsave/restore 2455 * but in this case, we are only testing for the DELALLOC 2456 * bit, which is only set or cleared with irqs on 2457 */ 2458 if ((state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) { 2459 struct btrfs_root *root = inode->root; 2460 bool do_list = !btrfs_is_free_space_inode(inode); 2461 2462 spin_lock(&inode->lock); 2463 btrfs_mod_outstanding_extents(inode, -num_extents); 2464 spin_unlock(&inode->lock); 2465 2466 /* 2467 * We don't reserve metadata space for space cache inodes so we 2468 * don't need to call delalloc_release_metadata if there is an 2469 * error. 2470 */ 2471 if (bits & EXTENT_CLEAR_META_RESV && 2472 root != fs_info->tree_root) 2473 btrfs_delalloc_release_metadata(inode, len, false); 2474 2475 /* For sanity tests. */ 2476 if (btrfs_is_testing(fs_info)) 2477 return; 2478 2479 if (!btrfs_is_data_reloc_root(root) && 2480 do_list && !(state->state & EXTENT_NORESERVE) && 2481 (bits & EXTENT_CLEAR_DATA_RESV)) 2482 btrfs_free_reserved_data_space_noquota(fs_info, len); 2483 2484 percpu_counter_add_batch(&fs_info->delalloc_bytes, -len, 2485 fs_info->delalloc_batch); 2486 spin_lock(&inode->lock); 2487 inode->delalloc_bytes -= len; 2488 if (do_list && inode->delalloc_bytes == 0 && 2489 test_bit(BTRFS_INODE_IN_DELALLOC_LIST, 2490 &inode->runtime_flags)) 2491 btrfs_del_delalloc_inode(root, inode); 2492 spin_unlock(&inode->lock); 2493 } 2494 2495 if ((state->state & EXTENT_DELALLOC_NEW) && 2496 (bits & EXTENT_DELALLOC_NEW)) { 2497 spin_lock(&inode->lock); 2498 ASSERT(inode->new_delalloc_bytes >= len); 2499 inode->new_delalloc_bytes -= len; 2500 if (bits & EXTENT_ADD_INODE_BYTES) 2501 inode_add_bytes(&inode->vfs_inode, len); 2502 spin_unlock(&inode->lock); 2503 } 2504 } 2505 2506 /* 2507 * in order to insert checksums into the metadata in large chunks, 2508 * we wait until bio submission time. All the pages in the bio are 2509 * checksummed and sums are attached onto the ordered extent record. 2510 * 2511 * At IO completion time the cums attached on the ordered extent record 2512 * are inserted into the btree 2513 */ 2514 static blk_status_t btrfs_submit_bio_start(struct inode *inode, struct bio *bio, 2515 u64 dio_file_offset) 2516 { 2517 return btrfs_csum_one_bio(BTRFS_I(inode), bio, (u64)-1, false); 2518 } 2519 2520 /* 2521 * Split an extent_map at [start, start + len] 2522 * 2523 * This function is intended to be used only for extract_ordered_extent(). 2524 */ 2525 static int split_zoned_em(struct btrfs_inode *inode, u64 start, u64 len, 2526 u64 pre, u64 post) 2527 { 2528 struct extent_map_tree *em_tree = &inode->extent_tree; 2529 struct extent_map *em; 2530 struct extent_map *split_pre = NULL; 2531 struct extent_map *split_mid = NULL; 2532 struct extent_map *split_post = NULL; 2533 int ret = 0; 2534 unsigned long flags; 2535 2536 /* Sanity check */ 2537 if (pre == 0 && post == 0) 2538 return 0; 2539 2540 split_pre = alloc_extent_map(); 2541 if (pre) 2542 split_mid = alloc_extent_map(); 2543 if (post) 2544 split_post = alloc_extent_map(); 2545 if (!split_pre || (pre && !split_mid) || (post && !split_post)) { 2546 ret = -ENOMEM; 2547 goto out; 2548 } 2549 2550 ASSERT(pre + post < len); 2551 2552 lock_extent(&inode->io_tree, start, start + len - 1); 2553 write_lock(&em_tree->lock); 2554 em = lookup_extent_mapping(em_tree, start, len); 2555 if (!em) { 2556 ret = -EIO; 2557 goto out_unlock; 2558 } 2559 2560 ASSERT(em->len == len); 2561 ASSERT(!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)); 2562 ASSERT(em->block_start < EXTENT_MAP_LAST_BYTE); 2563 ASSERT(test_bit(EXTENT_FLAG_PINNED, &em->flags)); 2564 ASSERT(!test_bit(EXTENT_FLAG_LOGGING, &em->flags)); 2565 ASSERT(!list_empty(&em->list)); 2566 2567 flags = em->flags; 2568 clear_bit(EXTENT_FLAG_PINNED, &em->flags); 2569 2570 /* First, replace the em with a new extent_map starting from * em->start */ 2571 split_pre->start = em->start; 2572 split_pre->len = (pre ? pre : em->len - post); 2573 split_pre->orig_start = split_pre->start; 2574 split_pre->block_start = em->block_start; 2575 split_pre->block_len = split_pre->len; 2576 split_pre->orig_block_len = split_pre->block_len; 2577 split_pre->ram_bytes = split_pre->len; 2578 split_pre->flags = flags; 2579 split_pre->compress_type = em->compress_type; 2580 split_pre->generation = em->generation; 2581 2582 replace_extent_mapping(em_tree, em, split_pre, 1); 2583 2584 /* 2585 * Now we only have an extent_map at: 2586 * [em->start, em->start + pre] if pre != 0 2587 * [em->start, em->start + em->len - post] if pre == 0 2588 */ 2589 2590 if (pre) { 2591 /* Insert the middle extent_map */ 2592 split_mid->start = em->start + pre; 2593 split_mid->len = em->len - pre - post; 2594 split_mid->orig_start = split_mid->start; 2595 split_mid->block_start = em->block_start + pre; 2596 split_mid->block_len = split_mid->len; 2597 split_mid->orig_block_len = split_mid->block_len; 2598 split_mid->ram_bytes = split_mid->len; 2599 split_mid->flags = flags; 2600 split_mid->compress_type = em->compress_type; 2601 split_mid->generation = em->generation; 2602 add_extent_mapping(em_tree, split_mid, 1); 2603 } 2604 2605 if (post) { 2606 split_post->start = em->start + em->len - post; 2607 split_post->len = post; 2608 split_post->orig_start = split_post->start; 2609 split_post->block_start = em->block_start + em->len - post; 2610 split_post->block_len = split_post->len; 2611 split_post->orig_block_len = split_post->block_len; 2612 split_post->ram_bytes = split_post->len; 2613 split_post->flags = flags; 2614 split_post->compress_type = em->compress_type; 2615 split_post->generation = em->generation; 2616 add_extent_mapping(em_tree, split_post, 1); 2617 } 2618 2619 /* Once for us */ 2620 free_extent_map(em); 2621 /* Once for the tree */ 2622 free_extent_map(em); 2623 2624 out_unlock: 2625 write_unlock(&em_tree->lock); 2626 unlock_extent(&inode->io_tree, start, start + len - 1); 2627 out: 2628 free_extent_map(split_pre); 2629 free_extent_map(split_mid); 2630 free_extent_map(split_post); 2631 2632 return ret; 2633 } 2634 2635 static blk_status_t extract_ordered_extent(struct btrfs_inode *inode, 2636 struct bio *bio, loff_t file_offset) 2637 { 2638 struct btrfs_ordered_extent *ordered; 2639 u64 start = (u64)bio->bi_iter.bi_sector << SECTOR_SHIFT; 2640 u64 file_len; 2641 u64 len = bio->bi_iter.bi_size; 2642 u64 end = start + len; 2643 u64 ordered_end; 2644 u64 pre, post; 2645 int ret = 0; 2646 2647 ordered = btrfs_lookup_ordered_extent(inode, file_offset); 2648 if (WARN_ON_ONCE(!ordered)) 2649 return BLK_STS_IOERR; 2650 2651 /* No need to split */ 2652 if (ordered->disk_num_bytes == len) 2653 goto out; 2654 2655 /* We cannot split once end_bio'd ordered extent */ 2656 if (WARN_ON_ONCE(ordered->bytes_left != ordered->disk_num_bytes)) { 2657 ret = -EINVAL; 2658 goto out; 2659 } 2660 2661 /* We cannot split a compressed ordered extent */ 2662 if (WARN_ON_ONCE(ordered->disk_num_bytes != ordered->num_bytes)) { 2663 ret = -EINVAL; 2664 goto out; 2665 } 2666 2667 ordered_end = ordered->disk_bytenr + ordered->disk_num_bytes; 2668 /* bio must be in one ordered extent */ 2669 if (WARN_ON_ONCE(start < ordered->disk_bytenr || end > ordered_end)) { 2670 ret = -EINVAL; 2671 goto out; 2672 } 2673 2674 /* Checksum list should be empty */ 2675 if (WARN_ON_ONCE(!list_empty(&ordered->list))) { 2676 ret = -EINVAL; 2677 goto out; 2678 } 2679 2680 file_len = ordered->num_bytes; 2681 pre = start - ordered->disk_bytenr; 2682 post = ordered_end - end; 2683 2684 ret = btrfs_split_ordered_extent(ordered, pre, post); 2685 if (ret) 2686 goto out; 2687 ret = split_zoned_em(inode, file_offset, file_len, pre, post); 2688 2689 out: 2690 btrfs_put_ordered_extent(ordered); 2691 2692 return errno_to_blk_status(ret); 2693 } 2694 2695 void btrfs_submit_data_write_bio(struct inode *inode, struct bio *bio, int mirror_num) 2696 { 2697 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2698 struct btrfs_inode *bi = BTRFS_I(inode); 2699 blk_status_t ret; 2700 2701 if (bio_op(bio) == REQ_OP_ZONE_APPEND) { 2702 ret = extract_ordered_extent(bi, bio, 2703 page_offset(bio_first_bvec_all(bio)->bv_page)); 2704 if (ret) 2705 goto out; 2706 } 2707 2708 /* 2709 * If we need to checksum, and the I/O is not issued by fsync and 2710 * friends, that is ->sync_writers != 0, defer the submission to a 2711 * workqueue to parallelize it. 2712 * 2713 * Csum items for reloc roots have already been cloned at this point, 2714 * so they are handled as part of the no-checksum case. 2715 */ 2716 if (!(bi->flags & BTRFS_INODE_NODATASUM) && 2717 !test_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state) && 2718 !btrfs_is_data_reloc_root(bi->root)) { 2719 if (!atomic_read(&bi->sync_writers) && 2720 btrfs_wq_submit_bio(inode, bio, mirror_num, 0, 2721 btrfs_submit_bio_start)) 2722 return; 2723 2724 ret = btrfs_csum_one_bio(bi, bio, (u64)-1, false); 2725 if (ret) 2726 goto out; 2727 } 2728 btrfs_submit_bio(fs_info, bio, mirror_num); 2729 return; 2730 out: 2731 if (ret) { 2732 bio->bi_status = ret; 2733 bio_endio(bio); 2734 } 2735 } 2736 2737 void btrfs_submit_data_read_bio(struct inode *inode, struct bio *bio, 2738 int mirror_num, enum btrfs_compression_type compress_type) 2739 { 2740 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2741 blk_status_t ret; 2742 2743 if (compress_type != BTRFS_COMPRESS_NONE) { 2744 /* 2745 * btrfs_submit_compressed_read will handle completing the bio 2746 * if there were any errors, so just return here. 2747 */ 2748 btrfs_submit_compressed_read(inode, bio, mirror_num); 2749 return; 2750 } 2751 2752 /* Save the original iter for read repair */ 2753 btrfs_bio(bio)->iter = bio->bi_iter; 2754 2755 /* 2756 * Lookup bio sums does extra checks around whether we need to csum or 2757 * not, which is why we ignore skip_sum here. 2758 */ 2759 ret = btrfs_lookup_bio_sums(inode, bio, NULL); 2760 if (ret) { 2761 bio->bi_status = ret; 2762 bio_endio(bio); 2763 return; 2764 } 2765 2766 btrfs_submit_bio(fs_info, bio, mirror_num); 2767 } 2768 2769 /* 2770 * given a list of ordered sums record them in the inode. This happens 2771 * at IO completion time based on sums calculated at bio submission time. 2772 */ 2773 static int add_pending_csums(struct btrfs_trans_handle *trans, 2774 struct list_head *list) 2775 { 2776 struct btrfs_ordered_sum *sum; 2777 struct btrfs_root *csum_root = NULL; 2778 int ret; 2779 2780 list_for_each_entry(sum, list, list) { 2781 trans->adding_csums = true; 2782 if (!csum_root) 2783 csum_root = btrfs_csum_root(trans->fs_info, 2784 sum->bytenr); 2785 ret = btrfs_csum_file_blocks(trans, csum_root, sum); 2786 trans->adding_csums = false; 2787 if (ret) 2788 return ret; 2789 } 2790 return 0; 2791 } 2792 2793 static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode, 2794 const u64 start, 2795 const u64 len, 2796 struct extent_state **cached_state) 2797 { 2798 u64 search_start = start; 2799 const u64 end = start + len - 1; 2800 2801 while (search_start < end) { 2802 const u64 search_len = end - search_start + 1; 2803 struct extent_map *em; 2804 u64 em_len; 2805 int ret = 0; 2806 2807 em = btrfs_get_extent(inode, NULL, 0, search_start, search_len); 2808 if (IS_ERR(em)) 2809 return PTR_ERR(em); 2810 2811 if (em->block_start != EXTENT_MAP_HOLE) 2812 goto next; 2813 2814 em_len = em->len; 2815 if (em->start < search_start) 2816 em_len -= search_start - em->start; 2817 if (em_len > search_len) 2818 em_len = search_len; 2819 2820 ret = set_extent_bit(&inode->io_tree, search_start, 2821 search_start + em_len - 1, 2822 EXTENT_DELALLOC_NEW, 0, NULL, cached_state, 2823 GFP_NOFS, NULL); 2824 next: 2825 search_start = extent_map_end(em); 2826 free_extent_map(em); 2827 if (ret) 2828 return ret; 2829 } 2830 return 0; 2831 } 2832 2833 int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end, 2834 unsigned int extra_bits, 2835 struct extent_state **cached_state) 2836 { 2837 WARN_ON(PAGE_ALIGNED(end)); 2838 2839 if (start >= i_size_read(&inode->vfs_inode) && 2840 !(inode->flags & BTRFS_INODE_PREALLOC)) { 2841 /* 2842 * There can't be any extents following eof in this case so just 2843 * set the delalloc new bit for the range directly. 2844 */ 2845 extra_bits |= EXTENT_DELALLOC_NEW; 2846 } else { 2847 int ret; 2848 2849 ret = btrfs_find_new_delalloc_bytes(inode, start, 2850 end + 1 - start, 2851 cached_state); 2852 if (ret) 2853 return ret; 2854 } 2855 2856 return set_extent_delalloc(&inode->io_tree, start, end, extra_bits, 2857 cached_state); 2858 } 2859 2860 /* see btrfs_writepage_start_hook for details on why this is required */ 2861 struct btrfs_writepage_fixup { 2862 struct page *page; 2863 struct inode *inode; 2864 struct btrfs_work work; 2865 }; 2866 2867 static void btrfs_writepage_fixup_worker(struct btrfs_work *work) 2868 { 2869 struct btrfs_writepage_fixup *fixup; 2870 struct btrfs_ordered_extent *ordered; 2871 struct extent_state *cached_state = NULL; 2872 struct extent_changeset *data_reserved = NULL; 2873 struct page *page; 2874 struct btrfs_inode *inode; 2875 u64 page_start; 2876 u64 page_end; 2877 int ret = 0; 2878 bool free_delalloc_space = true; 2879 2880 fixup = container_of(work, struct btrfs_writepage_fixup, work); 2881 page = fixup->page; 2882 inode = BTRFS_I(fixup->inode); 2883 page_start = page_offset(page); 2884 page_end = page_offset(page) + PAGE_SIZE - 1; 2885 2886 /* 2887 * This is similar to page_mkwrite, we need to reserve the space before 2888 * we take the page lock. 2889 */ 2890 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start, 2891 PAGE_SIZE); 2892 again: 2893 lock_page(page); 2894 2895 /* 2896 * Before we queued this fixup, we took a reference on the page. 2897 * page->mapping may go NULL, but it shouldn't be moved to a different 2898 * address space. 2899 */ 2900 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) { 2901 /* 2902 * Unfortunately this is a little tricky, either 2903 * 2904 * 1) We got here and our page had already been dealt with and 2905 * we reserved our space, thus ret == 0, so we need to just 2906 * drop our space reservation and bail. This can happen the 2907 * first time we come into the fixup worker, or could happen 2908 * while waiting for the ordered extent. 2909 * 2) Our page was already dealt with, but we happened to get an 2910 * ENOSPC above from the btrfs_delalloc_reserve_space. In 2911 * this case we obviously don't have anything to release, but 2912 * because the page was already dealt with we don't want to 2913 * mark the page with an error, so make sure we're resetting 2914 * ret to 0. This is why we have this check _before_ the ret 2915 * check, because we do not want to have a surprise ENOSPC 2916 * when the page was already properly dealt with. 2917 */ 2918 if (!ret) { 2919 btrfs_delalloc_release_extents(inode, PAGE_SIZE); 2920 btrfs_delalloc_release_space(inode, data_reserved, 2921 page_start, PAGE_SIZE, 2922 true); 2923 } 2924 ret = 0; 2925 goto out_page; 2926 } 2927 2928 /* 2929 * We can't mess with the page state unless it is locked, so now that 2930 * it is locked bail if we failed to make our space reservation. 2931 */ 2932 if (ret) 2933 goto out_page; 2934 2935 lock_extent_bits(&inode->io_tree, page_start, page_end, &cached_state); 2936 2937 /* already ordered? We're done */ 2938 if (PageOrdered(page)) 2939 goto out_reserved; 2940 2941 ordered = btrfs_lookup_ordered_range(inode, page_start, PAGE_SIZE); 2942 if (ordered) { 2943 unlock_extent_cached(&inode->io_tree, page_start, page_end, 2944 &cached_state); 2945 unlock_page(page); 2946 btrfs_start_ordered_extent(ordered, 1); 2947 btrfs_put_ordered_extent(ordered); 2948 goto again; 2949 } 2950 2951 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0, 2952 &cached_state); 2953 if (ret) 2954 goto out_reserved; 2955 2956 /* 2957 * Everything went as planned, we're now the owner of a dirty page with 2958 * delayed allocation bits set and space reserved for our COW 2959 * destination. 2960 * 2961 * The page was dirty when we started, nothing should have cleaned it. 2962 */ 2963 BUG_ON(!PageDirty(page)); 2964 free_delalloc_space = false; 2965 out_reserved: 2966 btrfs_delalloc_release_extents(inode, PAGE_SIZE); 2967 if (free_delalloc_space) 2968 btrfs_delalloc_release_space(inode, data_reserved, page_start, 2969 PAGE_SIZE, true); 2970 unlock_extent_cached(&inode->io_tree, page_start, page_end, 2971 &cached_state); 2972 out_page: 2973 if (ret) { 2974 /* 2975 * We hit ENOSPC or other errors. Update the mapping and page 2976 * to reflect the errors and clean the page. 2977 */ 2978 mapping_set_error(page->mapping, ret); 2979 end_extent_writepage(page, ret, page_start, page_end); 2980 clear_page_dirty_for_io(page); 2981 SetPageError(page); 2982 } 2983 btrfs_page_clear_checked(inode->root->fs_info, page, page_start, PAGE_SIZE); 2984 unlock_page(page); 2985 put_page(page); 2986 kfree(fixup); 2987 extent_changeset_free(data_reserved); 2988 /* 2989 * As a precaution, do a delayed iput in case it would be the last iput 2990 * that could need flushing space. Recursing back to fixup worker would 2991 * deadlock. 2992 */ 2993 btrfs_add_delayed_iput(&inode->vfs_inode); 2994 } 2995 2996 /* 2997 * There are a few paths in the higher layers of the kernel that directly 2998 * set the page dirty bit without asking the filesystem if it is a 2999 * good idea. This causes problems because we want to make sure COW 3000 * properly happens and the data=ordered rules are followed. 3001 * 3002 * In our case any range that doesn't have the ORDERED bit set 3003 * hasn't been properly setup for IO. We kick off an async process 3004 * to fix it up. The async helper will wait for ordered extents, set 3005 * the delalloc bit and make it safe to write the page. 3006 */ 3007 int btrfs_writepage_cow_fixup(struct page *page) 3008 { 3009 struct inode *inode = page->mapping->host; 3010 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3011 struct btrfs_writepage_fixup *fixup; 3012 3013 /* This page has ordered extent covering it already */ 3014 if (PageOrdered(page)) 3015 return 0; 3016 3017 /* 3018 * PageChecked is set below when we create a fixup worker for this page, 3019 * don't try to create another one if we're already PageChecked() 3020 * 3021 * The extent_io writepage code will redirty the page if we send back 3022 * EAGAIN. 3023 */ 3024 if (PageChecked(page)) 3025 return -EAGAIN; 3026 3027 fixup = kzalloc(sizeof(*fixup), GFP_NOFS); 3028 if (!fixup) 3029 return -EAGAIN; 3030 3031 /* 3032 * We are already holding a reference to this inode from 3033 * write_cache_pages. We need to hold it because the space reservation 3034 * takes place outside of the page lock, and we can't trust 3035 * page->mapping outside of the page lock. 3036 */ 3037 ihold(inode); 3038 btrfs_page_set_checked(fs_info, page, page_offset(page), PAGE_SIZE); 3039 get_page(page); 3040 btrfs_init_work(&fixup->work, btrfs_writepage_fixup_worker, NULL, NULL); 3041 fixup->page = page; 3042 fixup->inode = inode; 3043 btrfs_queue_work(fs_info->fixup_workers, &fixup->work); 3044 3045 return -EAGAIN; 3046 } 3047 3048 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans, 3049 struct btrfs_inode *inode, u64 file_pos, 3050 struct btrfs_file_extent_item *stack_fi, 3051 const bool update_inode_bytes, 3052 u64 qgroup_reserved) 3053 { 3054 struct btrfs_root *root = inode->root; 3055 const u64 sectorsize = root->fs_info->sectorsize; 3056 struct btrfs_path *path; 3057 struct extent_buffer *leaf; 3058 struct btrfs_key ins; 3059 u64 disk_num_bytes = btrfs_stack_file_extent_disk_num_bytes(stack_fi); 3060 u64 disk_bytenr = btrfs_stack_file_extent_disk_bytenr(stack_fi); 3061 u64 offset = btrfs_stack_file_extent_offset(stack_fi); 3062 u64 num_bytes = btrfs_stack_file_extent_num_bytes(stack_fi); 3063 u64 ram_bytes = btrfs_stack_file_extent_ram_bytes(stack_fi); 3064 struct btrfs_drop_extents_args drop_args = { 0 }; 3065 int ret; 3066 3067 path = btrfs_alloc_path(); 3068 if (!path) 3069 return -ENOMEM; 3070 3071 /* 3072 * we may be replacing one extent in the tree with another. 3073 * The new extent is pinned in the extent map, and we don't want 3074 * to drop it from the cache until it is completely in the btree. 3075 * 3076 * So, tell btrfs_drop_extents to leave this extent in the cache. 3077 * the caller is expected to unpin it and allow it to be merged 3078 * with the others. 3079 */ 3080 drop_args.path = path; 3081 drop_args.start = file_pos; 3082 drop_args.end = file_pos + num_bytes; 3083 drop_args.replace_extent = true; 3084 drop_args.extent_item_size = sizeof(*stack_fi); 3085 ret = btrfs_drop_extents(trans, root, inode, &drop_args); 3086 if (ret) 3087 goto out; 3088 3089 if (!drop_args.extent_inserted) { 3090 ins.objectid = btrfs_ino(inode); 3091 ins.offset = file_pos; 3092 ins.type = BTRFS_EXTENT_DATA_KEY; 3093 3094 ret = btrfs_insert_empty_item(trans, root, path, &ins, 3095 sizeof(*stack_fi)); 3096 if (ret) 3097 goto out; 3098 } 3099 leaf = path->nodes[0]; 3100 btrfs_set_stack_file_extent_generation(stack_fi, trans->transid); 3101 write_extent_buffer(leaf, stack_fi, 3102 btrfs_item_ptr_offset(leaf, path->slots[0]), 3103 sizeof(struct btrfs_file_extent_item)); 3104 3105 btrfs_mark_buffer_dirty(leaf); 3106 btrfs_release_path(path); 3107 3108 /* 3109 * If we dropped an inline extent here, we know the range where it is 3110 * was not marked with the EXTENT_DELALLOC_NEW bit, so we update the 3111 * number of bytes only for that range containing the inline extent. 3112 * The remaining of the range will be processed when clearning the 3113 * EXTENT_DELALLOC_BIT bit through the ordered extent completion. 3114 */ 3115 if (file_pos == 0 && !IS_ALIGNED(drop_args.bytes_found, sectorsize)) { 3116 u64 inline_size = round_down(drop_args.bytes_found, sectorsize); 3117 3118 inline_size = drop_args.bytes_found - inline_size; 3119 btrfs_update_inode_bytes(inode, sectorsize, inline_size); 3120 drop_args.bytes_found -= inline_size; 3121 num_bytes -= sectorsize; 3122 } 3123 3124 if (update_inode_bytes) 3125 btrfs_update_inode_bytes(inode, num_bytes, drop_args.bytes_found); 3126 3127 ins.objectid = disk_bytenr; 3128 ins.offset = disk_num_bytes; 3129 ins.type = BTRFS_EXTENT_ITEM_KEY; 3130 3131 ret = btrfs_inode_set_file_extent_range(inode, file_pos, ram_bytes); 3132 if (ret) 3133 goto out; 3134 3135 ret = btrfs_alloc_reserved_file_extent(trans, root, btrfs_ino(inode), 3136 file_pos - offset, 3137 qgroup_reserved, &ins); 3138 out: 3139 btrfs_free_path(path); 3140 3141 return ret; 3142 } 3143 3144 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info, 3145 u64 start, u64 len) 3146 { 3147 struct btrfs_block_group *cache; 3148 3149 cache = btrfs_lookup_block_group(fs_info, start); 3150 ASSERT(cache); 3151 3152 spin_lock(&cache->lock); 3153 cache->delalloc_bytes -= len; 3154 spin_unlock(&cache->lock); 3155 3156 btrfs_put_block_group(cache); 3157 } 3158 3159 static int insert_ordered_extent_file_extent(struct btrfs_trans_handle *trans, 3160 struct btrfs_ordered_extent *oe) 3161 { 3162 struct btrfs_file_extent_item stack_fi; 3163 bool update_inode_bytes; 3164 u64 num_bytes = oe->num_bytes; 3165 u64 ram_bytes = oe->ram_bytes; 3166 3167 memset(&stack_fi, 0, sizeof(stack_fi)); 3168 btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_REG); 3169 btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, oe->disk_bytenr); 3170 btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi, 3171 oe->disk_num_bytes); 3172 btrfs_set_stack_file_extent_offset(&stack_fi, oe->offset); 3173 if (test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags)) { 3174 num_bytes = oe->truncated_len; 3175 ram_bytes = num_bytes; 3176 } 3177 btrfs_set_stack_file_extent_num_bytes(&stack_fi, num_bytes); 3178 btrfs_set_stack_file_extent_ram_bytes(&stack_fi, ram_bytes); 3179 btrfs_set_stack_file_extent_compression(&stack_fi, oe->compress_type); 3180 /* Encryption and other encoding is reserved and all 0 */ 3181 3182 /* 3183 * For delalloc, when completing an ordered extent we update the inode's 3184 * bytes when clearing the range in the inode's io tree, so pass false 3185 * as the argument 'update_inode_bytes' to insert_reserved_file_extent(), 3186 * except if the ordered extent was truncated. 3187 */ 3188 update_inode_bytes = test_bit(BTRFS_ORDERED_DIRECT, &oe->flags) || 3189 test_bit(BTRFS_ORDERED_ENCODED, &oe->flags) || 3190 test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags); 3191 3192 return insert_reserved_file_extent(trans, BTRFS_I(oe->inode), 3193 oe->file_offset, &stack_fi, 3194 update_inode_bytes, oe->qgroup_rsv); 3195 } 3196 3197 /* 3198 * As ordered data IO finishes, this gets called so we can finish 3199 * an ordered extent if the range of bytes in the file it covers are 3200 * fully written. 3201 */ 3202 int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent) 3203 { 3204 struct btrfs_inode *inode = BTRFS_I(ordered_extent->inode); 3205 struct btrfs_root *root = inode->root; 3206 struct btrfs_fs_info *fs_info = root->fs_info; 3207 struct btrfs_trans_handle *trans = NULL; 3208 struct extent_io_tree *io_tree = &inode->io_tree; 3209 struct extent_state *cached_state = NULL; 3210 u64 start, end; 3211 int compress_type = 0; 3212 int ret = 0; 3213 u64 logical_len = ordered_extent->num_bytes; 3214 bool freespace_inode; 3215 bool truncated = false; 3216 bool clear_reserved_extent = true; 3217 unsigned int clear_bits = EXTENT_DEFRAG; 3218 3219 start = ordered_extent->file_offset; 3220 end = start + ordered_extent->num_bytes - 1; 3221 3222 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) && 3223 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) && 3224 !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags) && 3225 !test_bit(BTRFS_ORDERED_ENCODED, &ordered_extent->flags)) 3226 clear_bits |= EXTENT_DELALLOC_NEW; 3227 3228 freespace_inode = btrfs_is_free_space_inode(inode); 3229 3230 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) { 3231 ret = -EIO; 3232 goto out; 3233 } 3234 3235 /* A valid bdev implies a write on a sequential zone */ 3236 if (ordered_extent->bdev) { 3237 btrfs_rewrite_logical_zoned(ordered_extent); 3238 btrfs_zone_finish_endio(fs_info, ordered_extent->disk_bytenr, 3239 ordered_extent->disk_num_bytes); 3240 } 3241 3242 btrfs_free_io_failure_record(inode, start, end); 3243 3244 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) { 3245 truncated = true; 3246 logical_len = ordered_extent->truncated_len; 3247 /* Truncated the entire extent, don't bother adding */ 3248 if (!logical_len) 3249 goto out; 3250 } 3251 3252 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) { 3253 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */ 3254 3255 btrfs_inode_safe_disk_i_size_write(inode, 0); 3256 if (freespace_inode) 3257 trans = btrfs_join_transaction_spacecache(root); 3258 else 3259 trans = btrfs_join_transaction(root); 3260 if (IS_ERR(trans)) { 3261 ret = PTR_ERR(trans); 3262 trans = NULL; 3263 goto out; 3264 } 3265 trans->block_rsv = &inode->block_rsv; 3266 ret = btrfs_update_inode_fallback(trans, root, inode); 3267 if (ret) /* -ENOMEM or corruption */ 3268 btrfs_abort_transaction(trans, ret); 3269 goto out; 3270 } 3271 3272 clear_bits |= EXTENT_LOCKED; 3273 lock_extent_bits(io_tree, start, end, &cached_state); 3274 3275 if (freespace_inode) 3276 trans = btrfs_join_transaction_spacecache(root); 3277 else 3278 trans = btrfs_join_transaction(root); 3279 if (IS_ERR(trans)) { 3280 ret = PTR_ERR(trans); 3281 trans = NULL; 3282 goto out; 3283 } 3284 3285 trans->block_rsv = &inode->block_rsv; 3286 3287 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags)) 3288 compress_type = ordered_extent->compress_type; 3289 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 3290 BUG_ON(compress_type); 3291 ret = btrfs_mark_extent_written(trans, inode, 3292 ordered_extent->file_offset, 3293 ordered_extent->file_offset + 3294 logical_len); 3295 btrfs_zoned_release_data_reloc_bg(fs_info, ordered_extent->disk_bytenr, 3296 ordered_extent->disk_num_bytes); 3297 } else { 3298 BUG_ON(root == fs_info->tree_root); 3299 ret = insert_ordered_extent_file_extent(trans, ordered_extent); 3300 if (!ret) { 3301 clear_reserved_extent = false; 3302 btrfs_release_delalloc_bytes(fs_info, 3303 ordered_extent->disk_bytenr, 3304 ordered_extent->disk_num_bytes); 3305 } 3306 } 3307 unpin_extent_cache(&inode->extent_tree, ordered_extent->file_offset, 3308 ordered_extent->num_bytes, trans->transid); 3309 if (ret < 0) { 3310 btrfs_abort_transaction(trans, ret); 3311 goto out; 3312 } 3313 3314 ret = add_pending_csums(trans, &ordered_extent->list); 3315 if (ret) { 3316 btrfs_abort_transaction(trans, ret); 3317 goto out; 3318 } 3319 3320 /* 3321 * If this is a new delalloc range, clear its new delalloc flag to 3322 * update the inode's number of bytes. This needs to be done first 3323 * before updating the inode item. 3324 */ 3325 if ((clear_bits & EXTENT_DELALLOC_NEW) && 3326 !test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) 3327 clear_extent_bit(&inode->io_tree, start, end, 3328 EXTENT_DELALLOC_NEW | EXTENT_ADD_INODE_BYTES, 3329 0, 0, &cached_state); 3330 3331 btrfs_inode_safe_disk_i_size_write(inode, 0); 3332 ret = btrfs_update_inode_fallback(trans, root, inode); 3333 if (ret) { /* -ENOMEM or corruption */ 3334 btrfs_abort_transaction(trans, ret); 3335 goto out; 3336 } 3337 ret = 0; 3338 out: 3339 clear_extent_bit(&inode->io_tree, start, end, clear_bits, 3340 (clear_bits & EXTENT_LOCKED) ? 1 : 0, 0, 3341 &cached_state); 3342 3343 if (trans) 3344 btrfs_end_transaction(trans); 3345 3346 if (ret || truncated) { 3347 u64 unwritten_start = start; 3348 3349 /* 3350 * If we failed to finish this ordered extent for any reason we 3351 * need to make sure BTRFS_ORDERED_IOERR is set on the ordered 3352 * extent, and mark the inode with the error if it wasn't 3353 * already set. Any error during writeback would have already 3354 * set the mapping error, so we need to set it if we're the ones 3355 * marking this ordered extent as failed. 3356 */ 3357 if (ret && !test_and_set_bit(BTRFS_ORDERED_IOERR, 3358 &ordered_extent->flags)) 3359 mapping_set_error(ordered_extent->inode->i_mapping, -EIO); 3360 3361 if (truncated) 3362 unwritten_start += logical_len; 3363 clear_extent_uptodate(io_tree, unwritten_start, end, NULL); 3364 3365 /* Drop the cache for the part of the extent we didn't write. */ 3366 btrfs_drop_extent_cache(inode, unwritten_start, end, 0); 3367 3368 /* 3369 * If the ordered extent had an IOERR or something else went 3370 * wrong we need to return the space for this ordered extent 3371 * back to the allocator. We only free the extent in the 3372 * truncated case if we didn't write out the extent at all. 3373 * 3374 * If we made it past insert_reserved_file_extent before we 3375 * errored out then we don't need to do this as the accounting 3376 * has already been done. 3377 */ 3378 if ((ret || !logical_len) && 3379 clear_reserved_extent && 3380 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) && 3381 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 3382 /* 3383 * Discard the range before returning it back to the 3384 * free space pool 3385 */ 3386 if (ret && btrfs_test_opt(fs_info, DISCARD_SYNC)) 3387 btrfs_discard_extent(fs_info, 3388 ordered_extent->disk_bytenr, 3389 ordered_extent->disk_num_bytes, 3390 NULL); 3391 btrfs_free_reserved_extent(fs_info, 3392 ordered_extent->disk_bytenr, 3393 ordered_extent->disk_num_bytes, 1); 3394 } 3395 } 3396 3397 /* 3398 * This needs to be done to make sure anybody waiting knows we are done 3399 * updating everything for this ordered extent. 3400 */ 3401 btrfs_remove_ordered_extent(inode, ordered_extent); 3402 3403 /* once for us */ 3404 btrfs_put_ordered_extent(ordered_extent); 3405 /* once for the tree */ 3406 btrfs_put_ordered_extent(ordered_extent); 3407 3408 return ret; 3409 } 3410 3411 void btrfs_writepage_endio_finish_ordered(struct btrfs_inode *inode, 3412 struct page *page, u64 start, 3413 u64 end, bool uptodate) 3414 { 3415 trace_btrfs_writepage_end_io_hook(inode, start, end, uptodate); 3416 3417 btrfs_mark_ordered_io_finished(inode, page, start, end + 1 - start, uptodate); 3418 } 3419 3420 /* 3421 * Verify the checksum for a single sector without any extra action that depend 3422 * on the type of I/O. 3423 */ 3424 int btrfs_check_sector_csum(struct btrfs_fs_info *fs_info, struct page *page, 3425 u32 pgoff, u8 *csum, const u8 * const csum_expected) 3426 { 3427 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 3428 char *kaddr; 3429 3430 ASSERT(pgoff + fs_info->sectorsize <= PAGE_SIZE); 3431 3432 shash->tfm = fs_info->csum_shash; 3433 3434 kaddr = kmap_local_page(page) + pgoff; 3435 crypto_shash_digest(shash, kaddr, fs_info->sectorsize, csum); 3436 kunmap_local(kaddr); 3437 3438 if (memcmp(csum, csum_expected, fs_info->csum_size)) 3439 return -EIO; 3440 return 0; 3441 } 3442 3443 /* 3444 * check_data_csum - verify checksum of one sector of uncompressed data 3445 * @inode: inode 3446 * @bbio: btrfs_bio which contains the csum 3447 * @bio_offset: offset to the beginning of the bio (in bytes) 3448 * @page: page where is the data to be verified 3449 * @pgoff: offset inside the page 3450 * 3451 * The length of such check is always one sector size. 3452 * 3453 * When csum mismatch is detected, we will also report the error and fill the 3454 * corrupted range with zero. (Thus it needs the extra parameters) 3455 */ 3456 int btrfs_check_data_csum(struct inode *inode, struct btrfs_bio *bbio, 3457 u32 bio_offset, struct page *page, u32 pgoff) 3458 { 3459 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3460 u32 len = fs_info->sectorsize; 3461 u8 *csum_expected; 3462 u8 csum[BTRFS_CSUM_SIZE]; 3463 3464 ASSERT(pgoff + len <= PAGE_SIZE); 3465 3466 csum_expected = btrfs_csum_ptr(fs_info, bbio->csum, bio_offset); 3467 3468 if (btrfs_check_sector_csum(fs_info, page, pgoff, csum, csum_expected)) 3469 goto zeroit; 3470 return 0; 3471 3472 zeroit: 3473 btrfs_print_data_csum_error(BTRFS_I(inode), 3474 bbio->file_offset + bio_offset, 3475 csum, csum_expected, bbio->mirror_num); 3476 if (bbio->device) 3477 btrfs_dev_stat_inc_and_print(bbio->device, 3478 BTRFS_DEV_STAT_CORRUPTION_ERRS); 3479 memzero_page(page, pgoff, len); 3480 return -EIO; 3481 } 3482 3483 /* 3484 * When reads are done, we need to check csums to verify the data is correct. 3485 * if there's a match, we allow the bio to finish. If not, the code in 3486 * extent_io.c will try to find good copies for us. 3487 * 3488 * @bio_offset: offset to the beginning of the bio (in bytes) 3489 * @start: file offset of the range start 3490 * @end: file offset of the range end (inclusive) 3491 * 3492 * Return a bitmap where bit set means a csum mismatch, and bit not set means 3493 * csum match. 3494 */ 3495 unsigned int btrfs_verify_data_csum(struct btrfs_bio *bbio, 3496 u32 bio_offset, struct page *page, 3497 u64 start, u64 end) 3498 { 3499 struct inode *inode = page->mapping->host; 3500 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3501 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 3502 struct btrfs_root *root = BTRFS_I(inode)->root; 3503 const u32 sectorsize = root->fs_info->sectorsize; 3504 u32 pg_off; 3505 unsigned int result = 0; 3506 3507 /* 3508 * This only happens for NODATASUM or compressed read. 3509 * Normally this should be covered by above check for compressed read 3510 * or the next check for NODATASUM. Just do a quicker exit here. 3511 */ 3512 if (bbio->csum == NULL) 3513 return 0; 3514 3515 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) 3516 return 0; 3517 3518 if (unlikely(test_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state))) 3519 return 0; 3520 3521 ASSERT(page_offset(page) <= start && 3522 end <= page_offset(page) + PAGE_SIZE - 1); 3523 for (pg_off = offset_in_page(start); 3524 pg_off < offset_in_page(end); 3525 pg_off += sectorsize, bio_offset += sectorsize) { 3526 u64 file_offset = pg_off + page_offset(page); 3527 int ret; 3528 3529 if (btrfs_is_data_reloc_root(root) && 3530 test_range_bit(io_tree, file_offset, 3531 file_offset + sectorsize - 1, 3532 EXTENT_NODATASUM, 1, NULL)) { 3533 /* Skip the range without csum for data reloc inode */ 3534 clear_extent_bits(io_tree, file_offset, 3535 file_offset + sectorsize - 1, 3536 EXTENT_NODATASUM); 3537 continue; 3538 } 3539 ret = btrfs_check_data_csum(inode, bbio, bio_offset, page, pg_off); 3540 if (ret < 0) { 3541 const int nr_bit = (pg_off - offset_in_page(start)) >> 3542 root->fs_info->sectorsize_bits; 3543 3544 result |= (1U << nr_bit); 3545 } 3546 } 3547 return result; 3548 } 3549 3550 /* 3551 * btrfs_add_delayed_iput - perform a delayed iput on @inode 3552 * 3553 * @inode: The inode we want to perform iput on 3554 * 3555 * This function uses the generic vfs_inode::i_count to track whether we should 3556 * just decrement it (in case it's > 1) or if this is the last iput then link 3557 * the inode to the delayed iput machinery. Delayed iputs are processed at 3558 * transaction commit time/superblock commit/cleaner kthread. 3559 */ 3560 void btrfs_add_delayed_iput(struct inode *inode) 3561 { 3562 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3563 struct btrfs_inode *binode = BTRFS_I(inode); 3564 3565 if (atomic_add_unless(&inode->i_count, -1, 1)) 3566 return; 3567 3568 atomic_inc(&fs_info->nr_delayed_iputs); 3569 spin_lock(&fs_info->delayed_iput_lock); 3570 ASSERT(list_empty(&binode->delayed_iput)); 3571 list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs); 3572 spin_unlock(&fs_info->delayed_iput_lock); 3573 if (!test_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags)) 3574 wake_up_process(fs_info->cleaner_kthread); 3575 } 3576 3577 static void run_delayed_iput_locked(struct btrfs_fs_info *fs_info, 3578 struct btrfs_inode *inode) 3579 { 3580 list_del_init(&inode->delayed_iput); 3581 spin_unlock(&fs_info->delayed_iput_lock); 3582 iput(&inode->vfs_inode); 3583 if (atomic_dec_and_test(&fs_info->nr_delayed_iputs)) 3584 wake_up(&fs_info->delayed_iputs_wait); 3585 spin_lock(&fs_info->delayed_iput_lock); 3586 } 3587 3588 static void btrfs_run_delayed_iput(struct btrfs_fs_info *fs_info, 3589 struct btrfs_inode *inode) 3590 { 3591 if (!list_empty(&inode->delayed_iput)) { 3592 spin_lock(&fs_info->delayed_iput_lock); 3593 if (!list_empty(&inode->delayed_iput)) 3594 run_delayed_iput_locked(fs_info, inode); 3595 spin_unlock(&fs_info->delayed_iput_lock); 3596 } 3597 } 3598 3599 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info) 3600 { 3601 3602 spin_lock(&fs_info->delayed_iput_lock); 3603 while (!list_empty(&fs_info->delayed_iputs)) { 3604 struct btrfs_inode *inode; 3605 3606 inode = list_first_entry(&fs_info->delayed_iputs, 3607 struct btrfs_inode, delayed_iput); 3608 run_delayed_iput_locked(fs_info, inode); 3609 cond_resched_lock(&fs_info->delayed_iput_lock); 3610 } 3611 spin_unlock(&fs_info->delayed_iput_lock); 3612 } 3613 3614 /** 3615 * Wait for flushing all delayed iputs 3616 * 3617 * @fs_info: the filesystem 3618 * 3619 * This will wait on any delayed iputs that are currently running with KILLABLE 3620 * set. Once they are all done running we will return, unless we are killed in 3621 * which case we return EINTR. This helps in user operations like fallocate etc 3622 * that might get blocked on the iputs. 3623 * 3624 * Return EINTR if we were killed, 0 if nothing's pending 3625 */ 3626 int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info) 3627 { 3628 int ret = wait_event_killable(fs_info->delayed_iputs_wait, 3629 atomic_read(&fs_info->nr_delayed_iputs) == 0); 3630 if (ret) 3631 return -EINTR; 3632 return 0; 3633 } 3634 3635 /* 3636 * This creates an orphan entry for the given inode in case something goes wrong 3637 * in the middle of an unlink. 3638 */ 3639 int btrfs_orphan_add(struct btrfs_trans_handle *trans, 3640 struct btrfs_inode *inode) 3641 { 3642 int ret; 3643 3644 ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode)); 3645 if (ret && ret != -EEXIST) { 3646 btrfs_abort_transaction(trans, ret); 3647 return ret; 3648 } 3649 3650 return 0; 3651 } 3652 3653 /* 3654 * We have done the delete so we can go ahead and remove the orphan item for 3655 * this particular inode. 3656 */ 3657 static int btrfs_orphan_del(struct btrfs_trans_handle *trans, 3658 struct btrfs_inode *inode) 3659 { 3660 return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode)); 3661 } 3662 3663 /* 3664 * this cleans up any orphans that may be left on the list from the last use 3665 * of this root. 3666 */ 3667 int btrfs_orphan_cleanup(struct btrfs_root *root) 3668 { 3669 struct btrfs_fs_info *fs_info = root->fs_info; 3670 struct btrfs_path *path; 3671 struct extent_buffer *leaf; 3672 struct btrfs_key key, found_key; 3673 struct btrfs_trans_handle *trans; 3674 struct inode *inode; 3675 u64 last_objectid = 0; 3676 int ret = 0, nr_unlink = 0; 3677 3678 if (test_and_set_bit(BTRFS_ROOT_ORPHAN_CLEANUP, &root->state)) 3679 return 0; 3680 3681 path = btrfs_alloc_path(); 3682 if (!path) { 3683 ret = -ENOMEM; 3684 goto out; 3685 } 3686 path->reada = READA_BACK; 3687 3688 key.objectid = BTRFS_ORPHAN_OBJECTID; 3689 key.type = BTRFS_ORPHAN_ITEM_KEY; 3690 key.offset = (u64)-1; 3691 3692 while (1) { 3693 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3694 if (ret < 0) 3695 goto out; 3696 3697 /* 3698 * if ret == 0 means we found what we were searching for, which 3699 * is weird, but possible, so only screw with path if we didn't 3700 * find the key and see if we have stuff that matches 3701 */ 3702 if (ret > 0) { 3703 ret = 0; 3704 if (path->slots[0] == 0) 3705 break; 3706 path->slots[0]--; 3707 } 3708 3709 /* pull out the item */ 3710 leaf = path->nodes[0]; 3711 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 3712 3713 /* make sure the item matches what we want */ 3714 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID) 3715 break; 3716 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY) 3717 break; 3718 3719 /* release the path since we're done with it */ 3720 btrfs_release_path(path); 3721 3722 /* 3723 * this is where we are basically btrfs_lookup, without the 3724 * crossing root thing. we store the inode number in the 3725 * offset of the orphan item. 3726 */ 3727 3728 if (found_key.offset == last_objectid) { 3729 btrfs_err(fs_info, 3730 "Error removing orphan entry, stopping orphan cleanup"); 3731 ret = -EINVAL; 3732 goto out; 3733 } 3734 3735 last_objectid = found_key.offset; 3736 3737 found_key.objectid = found_key.offset; 3738 found_key.type = BTRFS_INODE_ITEM_KEY; 3739 found_key.offset = 0; 3740 inode = btrfs_iget(fs_info->sb, last_objectid, root); 3741 ret = PTR_ERR_OR_ZERO(inode); 3742 if (ret && ret != -ENOENT) 3743 goto out; 3744 3745 if (ret == -ENOENT && root == fs_info->tree_root) { 3746 struct btrfs_root *dead_root; 3747 int is_dead_root = 0; 3748 3749 /* 3750 * This is an orphan in the tree root. Currently these 3751 * could come from 2 sources: 3752 * a) a root (snapshot/subvolume) deletion in progress 3753 * b) a free space cache inode 3754 * We need to distinguish those two, as the orphan item 3755 * for a root must not get deleted before the deletion 3756 * of the snapshot/subvolume's tree completes. 3757 * 3758 * btrfs_find_orphan_roots() ran before us, which has 3759 * found all deleted roots and loaded them into 3760 * fs_info->fs_roots_radix. So here we can find if an 3761 * orphan item corresponds to a deleted root by looking 3762 * up the root from that radix tree. 3763 */ 3764 3765 spin_lock(&fs_info->fs_roots_radix_lock); 3766 dead_root = radix_tree_lookup(&fs_info->fs_roots_radix, 3767 (unsigned long)found_key.objectid); 3768 if (dead_root && btrfs_root_refs(&dead_root->root_item) == 0) 3769 is_dead_root = 1; 3770 spin_unlock(&fs_info->fs_roots_radix_lock); 3771 3772 if (is_dead_root) { 3773 /* prevent this orphan from being found again */ 3774 key.offset = found_key.objectid - 1; 3775 continue; 3776 } 3777 3778 } 3779 3780 /* 3781 * If we have an inode with links, there are a couple of 3782 * possibilities: 3783 * 3784 * 1. We were halfway through creating fsverity metadata for the 3785 * file. In that case, the orphan item represents incomplete 3786 * fsverity metadata which must be cleaned up with 3787 * btrfs_drop_verity_items and deleting the orphan item. 3788 3789 * 2. Old kernels (before v3.12) used to create an 3790 * orphan item for truncate indicating that there were possibly 3791 * extent items past i_size that needed to be deleted. In v3.12, 3792 * truncate was changed to update i_size in sync with the extent 3793 * items, but the (useless) orphan item was still created. Since 3794 * v4.18, we don't create the orphan item for truncate at all. 3795 * 3796 * So, this item could mean that we need to do a truncate, but 3797 * only if this filesystem was last used on a pre-v3.12 kernel 3798 * and was not cleanly unmounted. The odds of that are quite 3799 * slim, and it's a pain to do the truncate now, so just delete 3800 * the orphan item. 3801 * 3802 * It's also possible that this orphan item was supposed to be 3803 * deleted but wasn't. The inode number may have been reused, 3804 * but either way, we can delete the orphan item. 3805 */ 3806 if (ret == -ENOENT || inode->i_nlink) { 3807 if (!ret) { 3808 ret = btrfs_drop_verity_items(BTRFS_I(inode)); 3809 iput(inode); 3810 if (ret) 3811 goto out; 3812 } 3813 trans = btrfs_start_transaction(root, 1); 3814 if (IS_ERR(trans)) { 3815 ret = PTR_ERR(trans); 3816 goto out; 3817 } 3818 btrfs_debug(fs_info, "auto deleting %Lu", 3819 found_key.objectid); 3820 ret = btrfs_del_orphan_item(trans, root, 3821 found_key.objectid); 3822 btrfs_end_transaction(trans); 3823 if (ret) 3824 goto out; 3825 continue; 3826 } 3827 3828 nr_unlink++; 3829 3830 /* this will do delete_inode and everything for us */ 3831 iput(inode); 3832 } 3833 /* release the path since we're done with it */ 3834 btrfs_release_path(path); 3835 3836 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) { 3837 trans = btrfs_join_transaction(root); 3838 if (!IS_ERR(trans)) 3839 btrfs_end_transaction(trans); 3840 } 3841 3842 if (nr_unlink) 3843 btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink); 3844 3845 out: 3846 if (ret) 3847 btrfs_err(fs_info, "could not do orphan cleanup %d", ret); 3848 btrfs_free_path(path); 3849 return ret; 3850 } 3851 3852 /* 3853 * very simple check to peek ahead in the leaf looking for xattrs. If we 3854 * don't find any xattrs, we know there can't be any acls. 3855 * 3856 * slot is the slot the inode is in, objectid is the objectid of the inode 3857 */ 3858 static noinline int acls_after_inode_item(struct extent_buffer *leaf, 3859 int slot, u64 objectid, 3860 int *first_xattr_slot) 3861 { 3862 u32 nritems = btrfs_header_nritems(leaf); 3863 struct btrfs_key found_key; 3864 static u64 xattr_access = 0; 3865 static u64 xattr_default = 0; 3866 int scanned = 0; 3867 3868 if (!xattr_access) { 3869 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS, 3870 strlen(XATTR_NAME_POSIX_ACL_ACCESS)); 3871 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT, 3872 strlen(XATTR_NAME_POSIX_ACL_DEFAULT)); 3873 } 3874 3875 slot++; 3876 *first_xattr_slot = -1; 3877 while (slot < nritems) { 3878 btrfs_item_key_to_cpu(leaf, &found_key, slot); 3879 3880 /* we found a different objectid, there must not be acls */ 3881 if (found_key.objectid != objectid) 3882 return 0; 3883 3884 /* we found an xattr, assume we've got an acl */ 3885 if (found_key.type == BTRFS_XATTR_ITEM_KEY) { 3886 if (*first_xattr_slot == -1) 3887 *first_xattr_slot = slot; 3888 if (found_key.offset == xattr_access || 3889 found_key.offset == xattr_default) 3890 return 1; 3891 } 3892 3893 /* 3894 * we found a key greater than an xattr key, there can't 3895 * be any acls later on 3896 */ 3897 if (found_key.type > BTRFS_XATTR_ITEM_KEY) 3898 return 0; 3899 3900 slot++; 3901 scanned++; 3902 3903 /* 3904 * it goes inode, inode backrefs, xattrs, extents, 3905 * so if there are a ton of hard links to an inode there can 3906 * be a lot of backrefs. Don't waste time searching too hard, 3907 * this is just an optimization 3908 */ 3909 if (scanned >= 8) 3910 break; 3911 } 3912 /* we hit the end of the leaf before we found an xattr or 3913 * something larger than an xattr. We have to assume the inode 3914 * has acls 3915 */ 3916 if (*first_xattr_slot == -1) 3917 *first_xattr_slot = slot; 3918 return 1; 3919 } 3920 3921 /* 3922 * read an inode from the btree into the in-memory inode 3923 */ 3924 static int btrfs_read_locked_inode(struct inode *inode, 3925 struct btrfs_path *in_path) 3926 { 3927 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3928 struct btrfs_path *path = in_path; 3929 struct extent_buffer *leaf; 3930 struct btrfs_inode_item *inode_item; 3931 struct btrfs_root *root = BTRFS_I(inode)->root; 3932 struct btrfs_key location; 3933 unsigned long ptr; 3934 int maybe_acls; 3935 u32 rdev; 3936 int ret; 3937 bool filled = false; 3938 int first_xattr_slot; 3939 3940 ret = btrfs_fill_inode(inode, &rdev); 3941 if (!ret) 3942 filled = true; 3943 3944 if (!path) { 3945 path = btrfs_alloc_path(); 3946 if (!path) 3947 return -ENOMEM; 3948 } 3949 3950 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location)); 3951 3952 ret = btrfs_lookup_inode(NULL, root, path, &location, 0); 3953 if (ret) { 3954 if (path != in_path) 3955 btrfs_free_path(path); 3956 return ret; 3957 } 3958 3959 leaf = path->nodes[0]; 3960 3961 if (filled) 3962 goto cache_index; 3963 3964 inode_item = btrfs_item_ptr(leaf, path->slots[0], 3965 struct btrfs_inode_item); 3966 inode->i_mode = btrfs_inode_mode(leaf, inode_item); 3967 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item)); 3968 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item)); 3969 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item)); 3970 btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item)); 3971 btrfs_inode_set_file_extent_range(BTRFS_I(inode), 0, 3972 round_up(i_size_read(inode), fs_info->sectorsize)); 3973 3974 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime); 3975 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime); 3976 3977 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime); 3978 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime); 3979 3980 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime); 3981 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime); 3982 3983 BTRFS_I(inode)->i_otime.tv_sec = 3984 btrfs_timespec_sec(leaf, &inode_item->otime); 3985 BTRFS_I(inode)->i_otime.tv_nsec = 3986 btrfs_timespec_nsec(leaf, &inode_item->otime); 3987 3988 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item)); 3989 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item); 3990 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item); 3991 3992 inode_set_iversion_queried(inode, 3993 btrfs_inode_sequence(leaf, inode_item)); 3994 inode->i_generation = BTRFS_I(inode)->generation; 3995 inode->i_rdev = 0; 3996 rdev = btrfs_inode_rdev(leaf, inode_item); 3997 3998 BTRFS_I(inode)->index_cnt = (u64)-1; 3999 btrfs_inode_split_flags(btrfs_inode_flags(leaf, inode_item), 4000 &BTRFS_I(inode)->flags, &BTRFS_I(inode)->ro_flags); 4001 4002 cache_index: 4003 /* 4004 * If we were modified in the current generation and evicted from memory 4005 * and then re-read we need to do a full sync since we don't have any 4006 * idea about which extents were modified before we were evicted from 4007 * cache. 4008 * 4009 * This is required for both inode re-read from disk and delayed inode 4010 * in delayed_nodes_tree. 4011 */ 4012 if (BTRFS_I(inode)->last_trans == fs_info->generation) 4013 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 4014 &BTRFS_I(inode)->runtime_flags); 4015 4016 /* 4017 * We don't persist the id of the transaction where an unlink operation 4018 * against the inode was last made. So here we assume the inode might 4019 * have been evicted, and therefore the exact value of last_unlink_trans 4020 * lost, and set it to last_trans to avoid metadata inconsistencies 4021 * between the inode and its parent if the inode is fsync'ed and the log 4022 * replayed. For example, in the scenario: 4023 * 4024 * touch mydir/foo 4025 * ln mydir/foo mydir/bar 4026 * sync 4027 * unlink mydir/bar 4028 * echo 2 > /proc/sys/vm/drop_caches # evicts inode 4029 * xfs_io -c fsync mydir/foo 4030 * <power failure> 4031 * mount fs, triggers fsync log replay 4032 * 4033 * We must make sure that when we fsync our inode foo we also log its 4034 * parent inode, otherwise after log replay the parent still has the 4035 * dentry with the "bar" name but our inode foo has a link count of 1 4036 * and doesn't have an inode ref with the name "bar" anymore. 4037 * 4038 * Setting last_unlink_trans to last_trans is a pessimistic approach, 4039 * but it guarantees correctness at the expense of occasional full 4040 * transaction commits on fsync if our inode is a directory, or if our 4041 * inode is not a directory, logging its parent unnecessarily. 4042 */ 4043 BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans; 4044 4045 /* 4046 * Same logic as for last_unlink_trans. We don't persist the generation 4047 * of the last transaction where this inode was used for a reflink 4048 * operation, so after eviction and reloading the inode we must be 4049 * pessimistic and assume the last transaction that modified the inode. 4050 */ 4051 BTRFS_I(inode)->last_reflink_trans = BTRFS_I(inode)->last_trans; 4052 4053 path->slots[0]++; 4054 if (inode->i_nlink != 1 || 4055 path->slots[0] >= btrfs_header_nritems(leaf)) 4056 goto cache_acl; 4057 4058 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]); 4059 if (location.objectid != btrfs_ino(BTRFS_I(inode))) 4060 goto cache_acl; 4061 4062 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 4063 if (location.type == BTRFS_INODE_REF_KEY) { 4064 struct btrfs_inode_ref *ref; 4065 4066 ref = (struct btrfs_inode_ref *)ptr; 4067 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref); 4068 } else if (location.type == BTRFS_INODE_EXTREF_KEY) { 4069 struct btrfs_inode_extref *extref; 4070 4071 extref = (struct btrfs_inode_extref *)ptr; 4072 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf, 4073 extref); 4074 } 4075 cache_acl: 4076 /* 4077 * try to precache a NULL acl entry for files that don't have 4078 * any xattrs or acls 4079 */ 4080 maybe_acls = acls_after_inode_item(leaf, path->slots[0], 4081 btrfs_ino(BTRFS_I(inode)), &first_xattr_slot); 4082 if (first_xattr_slot != -1) { 4083 path->slots[0] = first_xattr_slot; 4084 ret = btrfs_load_inode_props(inode, path); 4085 if (ret) 4086 btrfs_err(fs_info, 4087 "error loading props for ino %llu (root %llu): %d", 4088 btrfs_ino(BTRFS_I(inode)), 4089 root->root_key.objectid, ret); 4090 } 4091 if (path != in_path) 4092 btrfs_free_path(path); 4093 4094 if (!maybe_acls) 4095 cache_no_acl(inode); 4096 4097 switch (inode->i_mode & S_IFMT) { 4098 case S_IFREG: 4099 inode->i_mapping->a_ops = &btrfs_aops; 4100 inode->i_fop = &btrfs_file_operations; 4101 inode->i_op = &btrfs_file_inode_operations; 4102 break; 4103 case S_IFDIR: 4104 inode->i_fop = &btrfs_dir_file_operations; 4105 inode->i_op = &btrfs_dir_inode_operations; 4106 break; 4107 case S_IFLNK: 4108 inode->i_op = &btrfs_symlink_inode_operations; 4109 inode_nohighmem(inode); 4110 inode->i_mapping->a_ops = &btrfs_aops; 4111 break; 4112 default: 4113 inode->i_op = &btrfs_special_inode_operations; 4114 init_special_inode(inode, inode->i_mode, rdev); 4115 break; 4116 } 4117 4118 btrfs_sync_inode_flags_to_i_flags(inode); 4119 return 0; 4120 } 4121 4122 /* 4123 * given a leaf and an inode, copy the inode fields into the leaf 4124 */ 4125 static void fill_inode_item(struct btrfs_trans_handle *trans, 4126 struct extent_buffer *leaf, 4127 struct btrfs_inode_item *item, 4128 struct inode *inode) 4129 { 4130 struct btrfs_map_token token; 4131 u64 flags; 4132 4133 btrfs_init_map_token(&token, leaf); 4134 4135 btrfs_set_token_inode_uid(&token, item, i_uid_read(inode)); 4136 btrfs_set_token_inode_gid(&token, item, i_gid_read(inode)); 4137 btrfs_set_token_inode_size(&token, item, BTRFS_I(inode)->disk_i_size); 4138 btrfs_set_token_inode_mode(&token, item, inode->i_mode); 4139 btrfs_set_token_inode_nlink(&token, item, inode->i_nlink); 4140 4141 btrfs_set_token_timespec_sec(&token, &item->atime, 4142 inode->i_atime.tv_sec); 4143 btrfs_set_token_timespec_nsec(&token, &item->atime, 4144 inode->i_atime.tv_nsec); 4145 4146 btrfs_set_token_timespec_sec(&token, &item->mtime, 4147 inode->i_mtime.tv_sec); 4148 btrfs_set_token_timespec_nsec(&token, &item->mtime, 4149 inode->i_mtime.tv_nsec); 4150 4151 btrfs_set_token_timespec_sec(&token, &item->ctime, 4152 inode->i_ctime.tv_sec); 4153 btrfs_set_token_timespec_nsec(&token, &item->ctime, 4154 inode->i_ctime.tv_nsec); 4155 4156 btrfs_set_token_timespec_sec(&token, &item->otime, 4157 BTRFS_I(inode)->i_otime.tv_sec); 4158 btrfs_set_token_timespec_nsec(&token, &item->otime, 4159 BTRFS_I(inode)->i_otime.tv_nsec); 4160 4161 btrfs_set_token_inode_nbytes(&token, item, inode_get_bytes(inode)); 4162 btrfs_set_token_inode_generation(&token, item, 4163 BTRFS_I(inode)->generation); 4164 btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode)); 4165 btrfs_set_token_inode_transid(&token, item, trans->transid); 4166 btrfs_set_token_inode_rdev(&token, item, inode->i_rdev); 4167 flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags, 4168 BTRFS_I(inode)->ro_flags); 4169 btrfs_set_token_inode_flags(&token, item, flags); 4170 btrfs_set_token_inode_block_group(&token, item, 0); 4171 } 4172 4173 /* 4174 * copy everything in the in-memory inode into the btree. 4175 */ 4176 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans, 4177 struct btrfs_root *root, 4178 struct btrfs_inode *inode) 4179 { 4180 struct btrfs_inode_item *inode_item; 4181 struct btrfs_path *path; 4182 struct extent_buffer *leaf; 4183 int ret; 4184 4185 path = btrfs_alloc_path(); 4186 if (!path) 4187 return -ENOMEM; 4188 4189 ret = btrfs_lookup_inode(trans, root, path, &inode->location, 1); 4190 if (ret) { 4191 if (ret > 0) 4192 ret = -ENOENT; 4193 goto failed; 4194 } 4195 4196 leaf = path->nodes[0]; 4197 inode_item = btrfs_item_ptr(leaf, path->slots[0], 4198 struct btrfs_inode_item); 4199 4200 fill_inode_item(trans, leaf, inode_item, &inode->vfs_inode); 4201 btrfs_mark_buffer_dirty(leaf); 4202 btrfs_set_inode_last_trans(trans, inode); 4203 ret = 0; 4204 failed: 4205 btrfs_free_path(path); 4206 return ret; 4207 } 4208 4209 /* 4210 * copy everything in the in-memory inode into the btree. 4211 */ 4212 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans, 4213 struct btrfs_root *root, 4214 struct btrfs_inode *inode) 4215 { 4216 struct btrfs_fs_info *fs_info = root->fs_info; 4217 int ret; 4218 4219 /* 4220 * If the inode is a free space inode, we can deadlock during commit 4221 * if we put it into the delayed code. 4222 * 4223 * The data relocation inode should also be directly updated 4224 * without delay 4225 */ 4226 if (!btrfs_is_free_space_inode(inode) 4227 && !btrfs_is_data_reloc_root(root) 4228 && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) { 4229 btrfs_update_root_times(trans, root); 4230 4231 ret = btrfs_delayed_update_inode(trans, root, inode); 4232 if (!ret) 4233 btrfs_set_inode_last_trans(trans, inode); 4234 return ret; 4235 } 4236 4237 return btrfs_update_inode_item(trans, root, inode); 4238 } 4239 4240 int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans, 4241 struct btrfs_root *root, struct btrfs_inode *inode) 4242 { 4243 int ret; 4244 4245 ret = btrfs_update_inode(trans, root, inode); 4246 if (ret == -ENOSPC) 4247 return btrfs_update_inode_item(trans, root, inode); 4248 return ret; 4249 } 4250 4251 /* 4252 * unlink helper that gets used here in inode.c and in the tree logging 4253 * recovery code. It remove a link in a directory with a given name, and 4254 * also drops the back refs in the inode to the directory 4255 */ 4256 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans, 4257 struct btrfs_inode *dir, 4258 struct btrfs_inode *inode, 4259 const char *name, int name_len, 4260 struct btrfs_rename_ctx *rename_ctx) 4261 { 4262 struct btrfs_root *root = dir->root; 4263 struct btrfs_fs_info *fs_info = root->fs_info; 4264 struct btrfs_path *path; 4265 int ret = 0; 4266 struct btrfs_dir_item *di; 4267 u64 index; 4268 u64 ino = btrfs_ino(inode); 4269 u64 dir_ino = btrfs_ino(dir); 4270 4271 path = btrfs_alloc_path(); 4272 if (!path) { 4273 ret = -ENOMEM; 4274 goto out; 4275 } 4276 4277 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 4278 name, name_len, -1); 4279 if (IS_ERR_OR_NULL(di)) { 4280 ret = di ? PTR_ERR(di) : -ENOENT; 4281 goto err; 4282 } 4283 ret = btrfs_delete_one_dir_name(trans, root, path, di); 4284 if (ret) 4285 goto err; 4286 btrfs_release_path(path); 4287 4288 /* 4289 * If we don't have dir index, we have to get it by looking up 4290 * the inode ref, since we get the inode ref, remove it directly, 4291 * it is unnecessary to do delayed deletion. 4292 * 4293 * But if we have dir index, needn't search inode ref to get it. 4294 * Since the inode ref is close to the inode item, it is better 4295 * that we delay to delete it, and just do this deletion when 4296 * we update the inode item. 4297 */ 4298 if (inode->dir_index) { 4299 ret = btrfs_delayed_delete_inode_ref(inode); 4300 if (!ret) { 4301 index = inode->dir_index; 4302 goto skip_backref; 4303 } 4304 } 4305 4306 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino, 4307 dir_ino, &index); 4308 if (ret) { 4309 btrfs_info(fs_info, 4310 "failed to delete reference to %.*s, inode %llu parent %llu", 4311 name_len, name, ino, dir_ino); 4312 btrfs_abort_transaction(trans, ret); 4313 goto err; 4314 } 4315 skip_backref: 4316 if (rename_ctx) 4317 rename_ctx->index = index; 4318 4319 ret = btrfs_delete_delayed_dir_index(trans, dir, index); 4320 if (ret) { 4321 btrfs_abort_transaction(trans, ret); 4322 goto err; 4323 } 4324 4325 /* 4326 * If we are in a rename context, we don't need to update anything in the 4327 * log. That will be done later during the rename by btrfs_log_new_name(). 4328 * Besides that, doing it here would only cause extra unnecessary btree 4329 * operations on the log tree, increasing latency for applications. 4330 */ 4331 if (!rename_ctx) { 4332 btrfs_del_inode_ref_in_log(trans, root, name, name_len, inode, 4333 dir_ino); 4334 btrfs_del_dir_entries_in_log(trans, root, name, name_len, dir, 4335 index); 4336 } 4337 4338 /* 4339 * If we have a pending delayed iput we could end up with the final iput 4340 * being run in btrfs-cleaner context. If we have enough of these built 4341 * up we can end up burning a lot of time in btrfs-cleaner without any 4342 * way to throttle the unlinks. Since we're currently holding a ref on 4343 * the inode we can run the delayed iput here without any issues as the 4344 * final iput won't be done until after we drop the ref we're currently 4345 * holding. 4346 */ 4347 btrfs_run_delayed_iput(fs_info, inode); 4348 err: 4349 btrfs_free_path(path); 4350 if (ret) 4351 goto out; 4352 4353 btrfs_i_size_write(dir, dir->vfs_inode.i_size - name_len * 2); 4354 inode_inc_iversion(&inode->vfs_inode); 4355 inode_inc_iversion(&dir->vfs_inode); 4356 inode->vfs_inode.i_ctime = current_time(&inode->vfs_inode); 4357 dir->vfs_inode.i_mtime = inode->vfs_inode.i_ctime; 4358 dir->vfs_inode.i_ctime = inode->vfs_inode.i_ctime; 4359 ret = btrfs_update_inode(trans, root, dir); 4360 out: 4361 return ret; 4362 } 4363 4364 int btrfs_unlink_inode(struct btrfs_trans_handle *trans, 4365 struct btrfs_inode *dir, struct btrfs_inode *inode, 4366 const char *name, int name_len) 4367 { 4368 int ret; 4369 ret = __btrfs_unlink_inode(trans, dir, inode, name, name_len, NULL); 4370 if (!ret) { 4371 drop_nlink(&inode->vfs_inode); 4372 ret = btrfs_update_inode(trans, inode->root, inode); 4373 } 4374 return ret; 4375 } 4376 4377 /* 4378 * helper to start transaction for unlink and rmdir. 4379 * 4380 * unlink and rmdir are special in btrfs, they do not always free space, so 4381 * if we cannot make our reservations the normal way try and see if there is 4382 * plenty of slack room in the global reserve to migrate, otherwise we cannot 4383 * allow the unlink to occur. 4384 */ 4385 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir) 4386 { 4387 struct btrfs_root *root = BTRFS_I(dir)->root; 4388 4389 /* 4390 * 1 for the possible orphan item 4391 * 1 for the dir item 4392 * 1 for the dir index 4393 * 1 for the inode ref 4394 * 1 for the inode 4395 * 1 for the parent inode 4396 */ 4397 return btrfs_start_transaction_fallback_global_rsv(root, 6); 4398 } 4399 4400 static int btrfs_unlink(struct inode *dir, struct dentry *dentry) 4401 { 4402 struct btrfs_trans_handle *trans; 4403 struct inode *inode = d_inode(dentry); 4404 int ret; 4405 4406 trans = __unlink_start_trans(dir); 4407 if (IS_ERR(trans)) 4408 return PTR_ERR(trans); 4409 4410 btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)), 4411 0); 4412 4413 ret = btrfs_unlink_inode(trans, BTRFS_I(dir), 4414 BTRFS_I(d_inode(dentry)), dentry->d_name.name, 4415 dentry->d_name.len); 4416 if (ret) 4417 goto out; 4418 4419 if (inode->i_nlink == 0) { 4420 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 4421 if (ret) 4422 goto out; 4423 } 4424 4425 out: 4426 btrfs_end_transaction(trans); 4427 btrfs_btree_balance_dirty(BTRFS_I(dir)->root->fs_info); 4428 return ret; 4429 } 4430 4431 static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans, 4432 struct inode *dir, struct dentry *dentry) 4433 { 4434 struct btrfs_root *root = BTRFS_I(dir)->root; 4435 struct btrfs_inode *inode = BTRFS_I(d_inode(dentry)); 4436 struct btrfs_path *path; 4437 struct extent_buffer *leaf; 4438 struct btrfs_dir_item *di; 4439 struct btrfs_key key; 4440 const char *name = dentry->d_name.name; 4441 int name_len = dentry->d_name.len; 4442 u64 index; 4443 int ret; 4444 u64 objectid; 4445 u64 dir_ino = btrfs_ino(BTRFS_I(dir)); 4446 4447 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) { 4448 objectid = inode->root->root_key.objectid; 4449 } else if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) { 4450 objectid = inode->location.objectid; 4451 } else { 4452 WARN_ON(1); 4453 return -EINVAL; 4454 } 4455 4456 path = btrfs_alloc_path(); 4457 if (!path) 4458 return -ENOMEM; 4459 4460 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 4461 name, name_len, -1); 4462 if (IS_ERR_OR_NULL(di)) { 4463 ret = di ? PTR_ERR(di) : -ENOENT; 4464 goto out; 4465 } 4466 4467 leaf = path->nodes[0]; 4468 btrfs_dir_item_key_to_cpu(leaf, di, &key); 4469 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid); 4470 ret = btrfs_delete_one_dir_name(trans, root, path, di); 4471 if (ret) { 4472 btrfs_abort_transaction(trans, ret); 4473 goto out; 4474 } 4475 btrfs_release_path(path); 4476 4477 /* 4478 * This is a placeholder inode for a subvolume we didn't have a 4479 * reference to at the time of the snapshot creation. In the meantime 4480 * we could have renamed the real subvol link into our snapshot, so 4481 * depending on btrfs_del_root_ref to return -ENOENT here is incorrect. 4482 * Instead simply lookup the dir_index_item for this entry so we can 4483 * remove it. Otherwise we know we have a ref to the root and we can 4484 * call btrfs_del_root_ref, and it _shouldn't_ fail. 4485 */ 4486 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) { 4487 di = btrfs_search_dir_index_item(root, path, dir_ino, 4488 name, name_len); 4489 if (IS_ERR_OR_NULL(di)) { 4490 if (!di) 4491 ret = -ENOENT; 4492 else 4493 ret = PTR_ERR(di); 4494 btrfs_abort_transaction(trans, ret); 4495 goto out; 4496 } 4497 4498 leaf = path->nodes[0]; 4499 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 4500 index = key.offset; 4501 btrfs_release_path(path); 4502 } else { 4503 ret = btrfs_del_root_ref(trans, objectid, 4504 root->root_key.objectid, dir_ino, 4505 &index, name, name_len); 4506 if (ret) { 4507 btrfs_abort_transaction(trans, ret); 4508 goto out; 4509 } 4510 } 4511 4512 ret = btrfs_delete_delayed_dir_index(trans, BTRFS_I(dir), index); 4513 if (ret) { 4514 btrfs_abort_transaction(trans, ret); 4515 goto out; 4516 } 4517 4518 btrfs_i_size_write(BTRFS_I(dir), dir->i_size - name_len * 2); 4519 inode_inc_iversion(dir); 4520 dir->i_mtime = current_time(dir); 4521 dir->i_ctime = dir->i_mtime; 4522 ret = btrfs_update_inode_fallback(trans, root, BTRFS_I(dir)); 4523 if (ret) 4524 btrfs_abort_transaction(trans, ret); 4525 out: 4526 btrfs_free_path(path); 4527 return ret; 4528 } 4529 4530 /* 4531 * Helper to check if the subvolume references other subvolumes or if it's 4532 * default. 4533 */ 4534 static noinline int may_destroy_subvol(struct btrfs_root *root) 4535 { 4536 struct btrfs_fs_info *fs_info = root->fs_info; 4537 struct btrfs_path *path; 4538 struct btrfs_dir_item *di; 4539 struct btrfs_key key; 4540 u64 dir_id; 4541 int ret; 4542 4543 path = btrfs_alloc_path(); 4544 if (!path) 4545 return -ENOMEM; 4546 4547 /* Make sure this root isn't set as the default subvol */ 4548 dir_id = btrfs_super_root_dir(fs_info->super_copy); 4549 di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path, 4550 dir_id, "default", 7, 0); 4551 if (di && !IS_ERR(di)) { 4552 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key); 4553 if (key.objectid == root->root_key.objectid) { 4554 ret = -EPERM; 4555 btrfs_err(fs_info, 4556 "deleting default subvolume %llu is not allowed", 4557 key.objectid); 4558 goto out; 4559 } 4560 btrfs_release_path(path); 4561 } 4562 4563 key.objectid = root->root_key.objectid; 4564 key.type = BTRFS_ROOT_REF_KEY; 4565 key.offset = (u64)-1; 4566 4567 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 4568 if (ret < 0) 4569 goto out; 4570 BUG_ON(ret == 0); 4571 4572 ret = 0; 4573 if (path->slots[0] > 0) { 4574 path->slots[0]--; 4575 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 4576 if (key.objectid == root->root_key.objectid && 4577 key.type == BTRFS_ROOT_REF_KEY) 4578 ret = -ENOTEMPTY; 4579 } 4580 out: 4581 btrfs_free_path(path); 4582 return ret; 4583 } 4584 4585 /* Delete all dentries for inodes belonging to the root */ 4586 static void btrfs_prune_dentries(struct btrfs_root *root) 4587 { 4588 struct btrfs_fs_info *fs_info = root->fs_info; 4589 struct rb_node *node; 4590 struct rb_node *prev; 4591 struct btrfs_inode *entry; 4592 struct inode *inode; 4593 u64 objectid = 0; 4594 4595 if (!BTRFS_FS_ERROR(fs_info)) 4596 WARN_ON(btrfs_root_refs(&root->root_item) != 0); 4597 4598 spin_lock(&root->inode_lock); 4599 again: 4600 node = root->inode_tree.rb_node; 4601 prev = NULL; 4602 while (node) { 4603 prev = node; 4604 entry = rb_entry(node, struct btrfs_inode, rb_node); 4605 4606 if (objectid < btrfs_ino(entry)) 4607 node = node->rb_left; 4608 else if (objectid > btrfs_ino(entry)) 4609 node = node->rb_right; 4610 else 4611 break; 4612 } 4613 if (!node) { 4614 while (prev) { 4615 entry = rb_entry(prev, struct btrfs_inode, rb_node); 4616 if (objectid <= btrfs_ino(entry)) { 4617 node = prev; 4618 break; 4619 } 4620 prev = rb_next(prev); 4621 } 4622 } 4623 while (node) { 4624 entry = rb_entry(node, struct btrfs_inode, rb_node); 4625 objectid = btrfs_ino(entry) + 1; 4626 inode = igrab(&entry->vfs_inode); 4627 if (inode) { 4628 spin_unlock(&root->inode_lock); 4629 if (atomic_read(&inode->i_count) > 1) 4630 d_prune_aliases(inode); 4631 /* 4632 * btrfs_drop_inode will have it removed from the inode 4633 * cache when its usage count hits zero. 4634 */ 4635 iput(inode); 4636 cond_resched(); 4637 spin_lock(&root->inode_lock); 4638 goto again; 4639 } 4640 4641 if (cond_resched_lock(&root->inode_lock)) 4642 goto again; 4643 4644 node = rb_next(node); 4645 } 4646 spin_unlock(&root->inode_lock); 4647 } 4648 4649 int btrfs_delete_subvolume(struct inode *dir, struct dentry *dentry) 4650 { 4651 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb); 4652 struct btrfs_root *root = BTRFS_I(dir)->root; 4653 struct inode *inode = d_inode(dentry); 4654 struct btrfs_root *dest = BTRFS_I(inode)->root; 4655 struct btrfs_trans_handle *trans; 4656 struct btrfs_block_rsv block_rsv; 4657 u64 root_flags; 4658 int ret; 4659 4660 /* 4661 * Don't allow to delete a subvolume with send in progress. This is 4662 * inside the inode lock so the error handling that has to drop the bit 4663 * again is not run concurrently. 4664 */ 4665 spin_lock(&dest->root_item_lock); 4666 if (dest->send_in_progress) { 4667 spin_unlock(&dest->root_item_lock); 4668 btrfs_warn(fs_info, 4669 "attempt to delete subvolume %llu during send", 4670 dest->root_key.objectid); 4671 return -EPERM; 4672 } 4673 if (atomic_read(&dest->nr_swapfiles)) { 4674 spin_unlock(&dest->root_item_lock); 4675 btrfs_warn(fs_info, 4676 "attempt to delete subvolume %llu with active swapfile", 4677 root->root_key.objectid); 4678 return -EPERM; 4679 } 4680 root_flags = btrfs_root_flags(&dest->root_item); 4681 btrfs_set_root_flags(&dest->root_item, 4682 root_flags | BTRFS_ROOT_SUBVOL_DEAD); 4683 spin_unlock(&dest->root_item_lock); 4684 4685 down_write(&fs_info->subvol_sem); 4686 4687 ret = may_destroy_subvol(dest); 4688 if (ret) 4689 goto out_up_write; 4690 4691 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP); 4692 /* 4693 * One for dir inode, 4694 * two for dir entries, 4695 * two for root ref/backref. 4696 */ 4697 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true); 4698 if (ret) 4699 goto out_up_write; 4700 4701 trans = btrfs_start_transaction(root, 0); 4702 if (IS_ERR(trans)) { 4703 ret = PTR_ERR(trans); 4704 goto out_release; 4705 } 4706 trans->block_rsv = &block_rsv; 4707 trans->bytes_reserved = block_rsv.size; 4708 4709 btrfs_record_snapshot_destroy(trans, BTRFS_I(dir)); 4710 4711 ret = btrfs_unlink_subvol(trans, dir, dentry); 4712 if (ret) { 4713 btrfs_abort_transaction(trans, ret); 4714 goto out_end_trans; 4715 } 4716 4717 ret = btrfs_record_root_in_trans(trans, dest); 4718 if (ret) { 4719 btrfs_abort_transaction(trans, ret); 4720 goto out_end_trans; 4721 } 4722 4723 memset(&dest->root_item.drop_progress, 0, 4724 sizeof(dest->root_item.drop_progress)); 4725 btrfs_set_root_drop_level(&dest->root_item, 0); 4726 btrfs_set_root_refs(&dest->root_item, 0); 4727 4728 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) { 4729 ret = btrfs_insert_orphan_item(trans, 4730 fs_info->tree_root, 4731 dest->root_key.objectid); 4732 if (ret) { 4733 btrfs_abort_transaction(trans, ret); 4734 goto out_end_trans; 4735 } 4736 } 4737 4738 ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid, 4739 BTRFS_UUID_KEY_SUBVOL, 4740 dest->root_key.objectid); 4741 if (ret && ret != -ENOENT) { 4742 btrfs_abort_transaction(trans, ret); 4743 goto out_end_trans; 4744 } 4745 if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) { 4746 ret = btrfs_uuid_tree_remove(trans, 4747 dest->root_item.received_uuid, 4748 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 4749 dest->root_key.objectid); 4750 if (ret && ret != -ENOENT) { 4751 btrfs_abort_transaction(trans, ret); 4752 goto out_end_trans; 4753 } 4754 } 4755 4756 free_anon_bdev(dest->anon_dev); 4757 dest->anon_dev = 0; 4758 out_end_trans: 4759 trans->block_rsv = NULL; 4760 trans->bytes_reserved = 0; 4761 ret = btrfs_end_transaction(trans); 4762 inode->i_flags |= S_DEAD; 4763 out_release: 4764 btrfs_subvolume_release_metadata(root, &block_rsv); 4765 out_up_write: 4766 up_write(&fs_info->subvol_sem); 4767 if (ret) { 4768 spin_lock(&dest->root_item_lock); 4769 root_flags = btrfs_root_flags(&dest->root_item); 4770 btrfs_set_root_flags(&dest->root_item, 4771 root_flags & ~BTRFS_ROOT_SUBVOL_DEAD); 4772 spin_unlock(&dest->root_item_lock); 4773 } else { 4774 d_invalidate(dentry); 4775 btrfs_prune_dentries(dest); 4776 ASSERT(dest->send_in_progress == 0); 4777 } 4778 4779 return ret; 4780 } 4781 4782 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry) 4783 { 4784 struct inode *inode = d_inode(dentry); 4785 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 4786 int err = 0; 4787 struct btrfs_trans_handle *trans; 4788 u64 last_unlink_trans; 4789 4790 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE) 4791 return -ENOTEMPTY; 4792 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID) { 4793 if (unlikely(btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))) { 4794 btrfs_err(fs_info, 4795 "extent tree v2 doesn't support snapshot deletion yet"); 4796 return -EOPNOTSUPP; 4797 } 4798 return btrfs_delete_subvolume(dir, dentry); 4799 } 4800 4801 trans = __unlink_start_trans(dir); 4802 if (IS_ERR(trans)) 4803 return PTR_ERR(trans); 4804 4805 if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 4806 err = btrfs_unlink_subvol(trans, dir, dentry); 4807 goto out; 4808 } 4809 4810 err = btrfs_orphan_add(trans, BTRFS_I(inode)); 4811 if (err) 4812 goto out; 4813 4814 last_unlink_trans = BTRFS_I(inode)->last_unlink_trans; 4815 4816 /* now the directory is empty */ 4817 err = btrfs_unlink_inode(trans, BTRFS_I(dir), 4818 BTRFS_I(d_inode(dentry)), dentry->d_name.name, 4819 dentry->d_name.len); 4820 if (!err) { 4821 btrfs_i_size_write(BTRFS_I(inode), 0); 4822 /* 4823 * Propagate the last_unlink_trans value of the deleted dir to 4824 * its parent directory. This is to prevent an unrecoverable 4825 * log tree in the case we do something like this: 4826 * 1) create dir foo 4827 * 2) create snapshot under dir foo 4828 * 3) delete the snapshot 4829 * 4) rmdir foo 4830 * 5) mkdir foo 4831 * 6) fsync foo or some file inside foo 4832 */ 4833 if (last_unlink_trans >= trans->transid) 4834 BTRFS_I(dir)->last_unlink_trans = last_unlink_trans; 4835 } 4836 out: 4837 btrfs_end_transaction(trans); 4838 btrfs_btree_balance_dirty(fs_info); 4839 4840 return err; 4841 } 4842 4843 /* 4844 * btrfs_truncate_block - read, zero a chunk and write a block 4845 * @inode - inode that we're zeroing 4846 * @from - the offset to start zeroing 4847 * @len - the length to zero, 0 to zero the entire range respective to the 4848 * offset 4849 * @front - zero up to the offset instead of from the offset on 4850 * 4851 * This will find the block for the "from" offset and cow the block and zero the 4852 * part we want to zero. This is used with truncate and hole punching. 4853 */ 4854 int btrfs_truncate_block(struct btrfs_inode *inode, loff_t from, loff_t len, 4855 int front) 4856 { 4857 struct btrfs_fs_info *fs_info = inode->root->fs_info; 4858 struct address_space *mapping = inode->vfs_inode.i_mapping; 4859 struct extent_io_tree *io_tree = &inode->io_tree; 4860 struct btrfs_ordered_extent *ordered; 4861 struct extent_state *cached_state = NULL; 4862 struct extent_changeset *data_reserved = NULL; 4863 bool only_release_metadata = false; 4864 u32 blocksize = fs_info->sectorsize; 4865 pgoff_t index = from >> PAGE_SHIFT; 4866 unsigned offset = from & (blocksize - 1); 4867 struct page *page; 4868 gfp_t mask = btrfs_alloc_write_mask(mapping); 4869 size_t write_bytes = blocksize; 4870 int ret = 0; 4871 u64 block_start; 4872 u64 block_end; 4873 4874 if (IS_ALIGNED(offset, blocksize) && 4875 (!len || IS_ALIGNED(len, blocksize))) 4876 goto out; 4877 4878 block_start = round_down(from, blocksize); 4879 block_end = block_start + blocksize - 1; 4880 4881 ret = btrfs_check_data_free_space(inode, &data_reserved, block_start, 4882 blocksize); 4883 if (ret < 0) { 4884 if (btrfs_check_nocow_lock(inode, block_start, &write_bytes) > 0) { 4885 /* For nocow case, no need to reserve data space */ 4886 only_release_metadata = true; 4887 } else { 4888 goto out; 4889 } 4890 } 4891 ret = btrfs_delalloc_reserve_metadata(inode, blocksize, blocksize, false); 4892 if (ret < 0) { 4893 if (!only_release_metadata) 4894 btrfs_free_reserved_data_space(inode, data_reserved, 4895 block_start, blocksize); 4896 goto out; 4897 } 4898 again: 4899 page = find_or_create_page(mapping, index, mask); 4900 if (!page) { 4901 btrfs_delalloc_release_space(inode, data_reserved, block_start, 4902 blocksize, true); 4903 btrfs_delalloc_release_extents(inode, blocksize); 4904 ret = -ENOMEM; 4905 goto out; 4906 } 4907 ret = set_page_extent_mapped(page); 4908 if (ret < 0) 4909 goto out_unlock; 4910 4911 if (!PageUptodate(page)) { 4912 ret = btrfs_read_folio(NULL, page_folio(page)); 4913 lock_page(page); 4914 if (page->mapping != mapping) { 4915 unlock_page(page); 4916 put_page(page); 4917 goto again; 4918 } 4919 if (!PageUptodate(page)) { 4920 ret = -EIO; 4921 goto out_unlock; 4922 } 4923 } 4924 wait_on_page_writeback(page); 4925 4926 lock_extent_bits(io_tree, block_start, block_end, &cached_state); 4927 4928 ordered = btrfs_lookup_ordered_extent(inode, block_start); 4929 if (ordered) { 4930 unlock_extent_cached(io_tree, block_start, block_end, 4931 &cached_state); 4932 unlock_page(page); 4933 put_page(page); 4934 btrfs_start_ordered_extent(ordered, 1); 4935 btrfs_put_ordered_extent(ordered); 4936 goto again; 4937 } 4938 4939 clear_extent_bit(&inode->io_tree, block_start, block_end, 4940 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 4941 0, 0, &cached_state); 4942 4943 ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0, 4944 &cached_state); 4945 if (ret) { 4946 unlock_extent_cached(io_tree, block_start, block_end, 4947 &cached_state); 4948 goto out_unlock; 4949 } 4950 4951 if (offset != blocksize) { 4952 if (!len) 4953 len = blocksize - offset; 4954 if (front) 4955 memzero_page(page, (block_start - page_offset(page)), 4956 offset); 4957 else 4958 memzero_page(page, (block_start - page_offset(page)) + offset, 4959 len); 4960 } 4961 btrfs_page_clear_checked(fs_info, page, block_start, 4962 block_end + 1 - block_start); 4963 btrfs_page_set_dirty(fs_info, page, block_start, block_end + 1 - block_start); 4964 unlock_extent_cached(io_tree, block_start, block_end, &cached_state); 4965 4966 if (only_release_metadata) 4967 set_extent_bit(&inode->io_tree, block_start, block_end, 4968 EXTENT_NORESERVE, 0, NULL, NULL, GFP_NOFS, NULL); 4969 4970 out_unlock: 4971 if (ret) { 4972 if (only_release_metadata) 4973 btrfs_delalloc_release_metadata(inode, blocksize, true); 4974 else 4975 btrfs_delalloc_release_space(inode, data_reserved, 4976 block_start, blocksize, true); 4977 } 4978 btrfs_delalloc_release_extents(inode, blocksize); 4979 unlock_page(page); 4980 put_page(page); 4981 out: 4982 if (only_release_metadata) 4983 btrfs_check_nocow_unlock(inode); 4984 extent_changeset_free(data_reserved); 4985 return ret; 4986 } 4987 4988 static int maybe_insert_hole(struct btrfs_root *root, struct btrfs_inode *inode, 4989 u64 offset, u64 len) 4990 { 4991 struct btrfs_fs_info *fs_info = root->fs_info; 4992 struct btrfs_trans_handle *trans; 4993 struct btrfs_drop_extents_args drop_args = { 0 }; 4994 int ret; 4995 4996 /* 4997 * If NO_HOLES is enabled, we don't need to do anything. 4998 * Later, up in the call chain, either btrfs_set_inode_last_sub_trans() 4999 * or btrfs_update_inode() will be called, which guarantee that the next 5000 * fsync will know this inode was changed and needs to be logged. 5001 */ 5002 if (btrfs_fs_incompat(fs_info, NO_HOLES)) 5003 return 0; 5004 5005 /* 5006 * 1 - for the one we're dropping 5007 * 1 - for the one we're adding 5008 * 1 - for updating the inode. 5009 */ 5010 trans = btrfs_start_transaction(root, 3); 5011 if (IS_ERR(trans)) 5012 return PTR_ERR(trans); 5013 5014 drop_args.start = offset; 5015 drop_args.end = offset + len; 5016 drop_args.drop_cache = true; 5017 5018 ret = btrfs_drop_extents(trans, root, inode, &drop_args); 5019 if (ret) { 5020 btrfs_abort_transaction(trans, ret); 5021 btrfs_end_transaction(trans); 5022 return ret; 5023 } 5024 5025 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), 5026 offset, 0, 0, len, 0, len, 0, 0, 0); 5027 if (ret) { 5028 btrfs_abort_transaction(trans, ret); 5029 } else { 5030 btrfs_update_inode_bytes(inode, 0, drop_args.bytes_found); 5031 btrfs_update_inode(trans, root, inode); 5032 } 5033 btrfs_end_transaction(trans); 5034 return ret; 5035 } 5036 5037 /* 5038 * This function puts in dummy file extents for the area we're creating a hole 5039 * for. So if we are truncating this file to a larger size we need to insert 5040 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for 5041 * the range between oldsize and size 5042 */ 5043 int btrfs_cont_expand(struct btrfs_inode *inode, loff_t oldsize, loff_t size) 5044 { 5045 struct btrfs_root *root = inode->root; 5046 struct btrfs_fs_info *fs_info = root->fs_info; 5047 struct extent_io_tree *io_tree = &inode->io_tree; 5048 struct extent_map *em = NULL; 5049 struct extent_state *cached_state = NULL; 5050 struct extent_map_tree *em_tree = &inode->extent_tree; 5051 u64 hole_start = ALIGN(oldsize, fs_info->sectorsize); 5052 u64 block_end = ALIGN(size, fs_info->sectorsize); 5053 u64 last_byte; 5054 u64 cur_offset; 5055 u64 hole_size; 5056 int err = 0; 5057 5058 /* 5059 * If our size started in the middle of a block we need to zero out the 5060 * rest of the block before we expand the i_size, otherwise we could 5061 * expose stale data. 5062 */ 5063 err = btrfs_truncate_block(inode, oldsize, 0, 0); 5064 if (err) 5065 return err; 5066 5067 if (size <= hole_start) 5068 return 0; 5069 5070 btrfs_lock_and_flush_ordered_range(inode, hole_start, block_end - 1, 5071 &cached_state); 5072 cur_offset = hole_start; 5073 while (1) { 5074 em = btrfs_get_extent(inode, NULL, 0, cur_offset, 5075 block_end - cur_offset); 5076 if (IS_ERR(em)) { 5077 err = PTR_ERR(em); 5078 em = NULL; 5079 break; 5080 } 5081 last_byte = min(extent_map_end(em), block_end); 5082 last_byte = ALIGN(last_byte, fs_info->sectorsize); 5083 hole_size = last_byte - cur_offset; 5084 5085 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) { 5086 struct extent_map *hole_em; 5087 5088 err = maybe_insert_hole(root, inode, cur_offset, 5089 hole_size); 5090 if (err) 5091 break; 5092 5093 err = btrfs_inode_set_file_extent_range(inode, 5094 cur_offset, hole_size); 5095 if (err) 5096 break; 5097 5098 btrfs_drop_extent_cache(inode, cur_offset, 5099 cur_offset + hole_size - 1, 0); 5100 hole_em = alloc_extent_map(); 5101 if (!hole_em) { 5102 btrfs_set_inode_full_sync(inode); 5103 goto next; 5104 } 5105 hole_em->start = cur_offset; 5106 hole_em->len = hole_size; 5107 hole_em->orig_start = cur_offset; 5108 5109 hole_em->block_start = EXTENT_MAP_HOLE; 5110 hole_em->block_len = 0; 5111 hole_em->orig_block_len = 0; 5112 hole_em->ram_bytes = hole_size; 5113 hole_em->compress_type = BTRFS_COMPRESS_NONE; 5114 hole_em->generation = fs_info->generation; 5115 5116 while (1) { 5117 write_lock(&em_tree->lock); 5118 err = add_extent_mapping(em_tree, hole_em, 1); 5119 write_unlock(&em_tree->lock); 5120 if (err != -EEXIST) 5121 break; 5122 btrfs_drop_extent_cache(inode, cur_offset, 5123 cur_offset + 5124 hole_size - 1, 0); 5125 } 5126 free_extent_map(hole_em); 5127 } else { 5128 err = btrfs_inode_set_file_extent_range(inode, 5129 cur_offset, hole_size); 5130 if (err) 5131 break; 5132 } 5133 next: 5134 free_extent_map(em); 5135 em = NULL; 5136 cur_offset = last_byte; 5137 if (cur_offset >= block_end) 5138 break; 5139 } 5140 free_extent_map(em); 5141 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state); 5142 return err; 5143 } 5144 5145 static int btrfs_setsize(struct inode *inode, struct iattr *attr) 5146 { 5147 struct btrfs_root *root = BTRFS_I(inode)->root; 5148 struct btrfs_trans_handle *trans; 5149 loff_t oldsize = i_size_read(inode); 5150 loff_t newsize = attr->ia_size; 5151 int mask = attr->ia_valid; 5152 int ret; 5153 5154 /* 5155 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a 5156 * special case where we need to update the times despite not having 5157 * these flags set. For all other operations the VFS set these flags 5158 * explicitly if it wants a timestamp update. 5159 */ 5160 if (newsize != oldsize) { 5161 inode_inc_iversion(inode); 5162 if (!(mask & (ATTR_CTIME | ATTR_MTIME))) { 5163 inode->i_mtime = current_time(inode); 5164 inode->i_ctime = inode->i_mtime; 5165 } 5166 } 5167 5168 if (newsize > oldsize) { 5169 /* 5170 * Don't do an expanding truncate while snapshotting is ongoing. 5171 * This is to ensure the snapshot captures a fully consistent 5172 * state of this file - if the snapshot captures this expanding 5173 * truncation, it must capture all writes that happened before 5174 * this truncation. 5175 */ 5176 btrfs_drew_write_lock(&root->snapshot_lock); 5177 ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, newsize); 5178 if (ret) { 5179 btrfs_drew_write_unlock(&root->snapshot_lock); 5180 return ret; 5181 } 5182 5183 trans = btrfs_start_transaction(root, 1); 5184 if (IS_ERR(trans)) { 5185 btrfs_drew_write_unlock(&root->snapshot_lock); 5186 return PTR_ERR(trans); 5187 } 5188 5189 i_size_write(inode, newsize); 5190 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0); 5191 pagecache_isize_extended(inode, oldsize, newsize); 5192 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 5193 btrfs_drew_write_unlock(&root->snapshot_lock); 5194 btrfs_end_transaction(trans); 5195 } else { 5196 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5197 5198 if (btrfs_is_zoned(fs_info)) { 5199 ret = btrfs_wait_ordered_range(inode, 5200 ALIGN(newsize, fs_info->sectorsize), 5201 (u64)-1); 5202 if (ret) 5203 return ret; 5204 } 5205 5206 /* 5207 * We're truncating a file that used to have good data down to 5208 * zero. Make sure any new writes to the file get on disk 5209 * on close. 5210 */ 5211 if (newsize == 0) 5212 set_bit(BTRFS_INODE_FLUSH_ON_CLOSE, 5213 &BTRFS_I(inode)->runtime_flags); 5214 5215 truncate_setsize(inode, newsize); 5216 5217 inode_dio_wait(inode); 5218 5219 ret = btrfs_truncate(inode, newsize == oldsize); 5220 if (ret && inode->i_nlink) { 5221 int err; 5222 5223 /* 5224 * Truncate failed, so fix up the in-memory size. We 5225 * adjusted disk_i_size down as we removed extents, so 5226 * wait for disk_i_size to be stable and then update the 5227 * in-memory size to match. 5228 */ 5229 err = btrfs_wait_ordered_range(inode, 0, (u64)-1); 5230 if (err) 5231 return err; 5232 i_size_write(inode, BTRFS_I(inode)->disk_i_size); 5233 } 5234 } 5235 5236 return ret; 5237 } 5238 5239 static int btrfs_setattr(struct user_namespace *mnt_userns, struct dentry *dentry, 5240 struct iattr *attr) 5241 { 5242 struct inode *inode = d_inode(dentry); 5243 struct btrfs_root *root = BTRFS_I(inode)->root; 5244 int err; 5245 5246 if (btrfs_root_readonly(root)) 5247 return -EROFS; 5248 5249 err = setattr_prepare(mnt_userns, dentry, attr); 5250 if (err) 5251 return err; 5252 5253 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 5254 err = btrfs_setsize(inode, attr); 5255 if (err) 5256 return err; 5257 } 5258 5259 if (attr->ia_valid) { 5260 setattr_copy(mnt_userns, inode, attr); 5261 inode_inc_iversion(inode); 5262 err = btrfs_dirty_inode(inode); 5263 5264 if (!err && attr->ia_valid & ATTR_MODE) 5265 err = posix_acl_chmod(mnt_userns, inode, inode->i_mode); 5266 } 5267 5268 return err; 5269 } 5270 5271 /* 5272 * While truncating the inode pages during eviction, we get the VFS 5273 * calling btrfs_invalidate_folio() against each folio of the inode. This 5274 * is slow because the calls to btrfs_invalidate_folio() result in a 5275 * huge amount of calls to lock_extent_bits() and clear_extent_bit(), 5276 * which keep merging and splitting extent_state structures over and over, 5277 * wasting lots of time. 5278 * 5279 * Therefore if the inode is being evicted, let btrfs_invalidate_folio() 5280 * skip all those expensive operations on a per folio basis and do only 5281 * the ordered io finishing, while we release here the extent_map and 5282 * extent_state structures, without the excessive merging and splitting. 5283 */ 5284 static void evict_inode_truncate_pages(struct inode *inode) 5285 { 5286 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 5287 struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree; 5288 struct rb_node *node; 5289 5290 ASSERT(inode->i_state & I_FREEING); 5291 truncate_inode_pages_final(&inode->i_data); 5292 5293 write_lock(&map_tree->lock); 5294 while (!RB_EMPTY_ROOT(&map_tree->map.rb_root)) { 5295 struct extent_map *em; 5296 5297 node = rb_first_cached(&map_tree->map); 5298 em = rb_entry(node, struct extent_map, rb_node); 5299 clear_bit(EXTENT_FLAG_PINNED, &em->flags); 5300 clear_bit(EXTENT_FLAG_LOGGING, &em->flags); 5301 remove_extent_mapping(map_tree, em); 5302 free_extent_map(em); 5303 if (need_resched()) { 5304 write_unlock(&map_tree->lock); 5305 cond_resched(); 5306 write_lock(&map_tree->lock); 5307 } 5308 } 5309 write_unlock(&map_tree->lock); 5310 5311 /* 5312 * Keep looping until we have no more ranges in the io tree. 5313 * We can have ongoing bios started by readahead that have 5314 * their endio callback (extent_io.c:end_bio_extent_readpage) 5315 * still in progress (unlocked the pages in the bio but did not yet 5316 * unlocked the ranges in the io tree). Therefore this means some 5317 * ranges can still be locked and eviction started because before 5318 * submitting those bios, which are executed by a separate task (work 5319 * queue kthread), inode references (inode->i_count) were not taken 5320 * (which would be dropped in the end io callback of each bio). 5321 * Therefore here we effectively end up waiting for those bios and 5322 * anyone else holding locked ranges without having bumped the inode's 5323 * reference count - if we don't do it, when they access the inode's 5324 * io_tree to unlock a range it may be too late, leading to an 5325 * use-after-free issue. 5326 */ 5327 spin_lock(&io_tree->lock); 5328 while (!RB_EMPTY_ROOT(&io_tree->state)) { 5329 struct extent_state *state; 5330 struct extent_state *cached_state = NULL; 5331 u64 start; 5332 u64 end; 5333 unsigned state_flags; 5334 5335 node = rb_first(&io_tree->state); 5336 state = rb_entry(node, struct extent_state, rb_node); 5337 start = state->start; 5338 end = state->end; 5339 state_flags = state->state; 5340 spin_unlock(&io_tree->lock); 5341 5342 lock_extent_bits(io_tree, start, end, &cached_state); 5343 5344 /* 5345 * If still has DELALLOC flag, the extent didn't reach disk, 5346 * and its reserved space won't be freed by delayed_ref. 5347 * So we need to free its reserved space here. 5348 * (Refer to comment in btrfs_invalidate_folio, case 2) 5349 * 5350 * Note, end is the bytenr of last byte, so we need + 1 here. 5351 */ 5352 if (state_flags & EXTENT_DELALLOC) 5353 btrfs_qgroup_free_data(BTRFS_I(inode), NULL, start, 5354 end - start + 1); 5355 5356 clear_extent_bit(io_tree, start, end, 5357 EXTENT_LOCKED | EXTENT_DELALLOC | 5358 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1, 5359 &cached_state); 5360 5361 cond_resched(); 5362 spin_lock(&io_tree->lock); 5363 } 5364 spin_unlock(&io_tree->lock); 5365 } 5366 5367 static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root, 5368 struct btrfs_block_rsv *rsv) 5369 { 5370 struct btrfs_fs_info *fs_info = root->fs_info; 5371 struct btrfs_trans_handle *trans; 5372 u64 delayed_refs_extra = btrfs_calc_insert_metadata_size(fs_info, 1); 5373 int ret; 5374 5375 /* 5376 * Eviction should be taking place at some place safe because of our 5377 * delayed iputs. However the normal flushing code will run delayed 5378 * iputs, so we cannot use FLUSH_ALL otherwise we'll deadlock. 5379 * 5380 * We reserve the delayed_refs_extra here again because we can't use 5381 * btrfs_start_transaction(root, 0) for the same deadlocky reason as 5382 * above. We reserve our extra bit here because we generate a ton of 5383 * delayed refs activity by truncating. 5384 * 5385 * BTRFS_RESERVE_FLUSH_EVICT will steal from the global_rsv if it can, 5386 * if we fail to make this reservation we can re-try without the 5387 * delayed_refs_extra so we can make some forward progress. 5388 */ 5389 ret = btrfs_block_rsv_refill(fs_info, rsv, rsv->size + delayed_refs_extra, 5390 BTRFS_RESERVE_FLUSH_EVICT); 5391 if (ret) { 5392 ret = btrfs_block_rsv_refill(fs_info, rsv, rsv->size, 5393 BTRFS_RESERVE_FLUSH_EVICT); 5394 if (ret) { 5395 btrfs_warn(fs_info, 5396 "could not allocate space for delete; will truncate on mount"); 5397 return ERR_PTR(-ENOSPC); 5398 } 5399 delayed_refs_extra = 0; 5400 } 5401 5402 trans = btrfs_join_transaction(root); 5403 if (IS_ERR(trans)) 5404 return trans; 5405 5406 if (delayed_refs_extra) { 5407 trans->block_rsv = &fs_info->trans_block_rsv; 5408 trans->bytes_reserved = delayed_refs_extra; 5409 btrfs_block_rsv_migrate(rsv, trans->block_rsv, 5410 delayed_refs_extra, 1); 5411 } 5412 return trans; 5413 } 5414 5415 void btrfs_evict_inode(struct inode *inode) 5416 { 5417 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5418 struct btrfs_trans_handle *trans; 5419 struct btrfs_root *root = BTRFS_I(inode)->root; 5420 struct btrfs_block_rsv *rsv; 5421 int ret; 5422 5423 trace_btrfs_inode_evict(inode); 5424 5425 if (!root) { 5426 fsverity_cleanup_inode(inode); 5427 clear_inode(inode); 5428 return; 5429 } 5430 5431 evict_inode_truncate_pages(inode); 5432 5433 if (inode->i_nlink && 5434 ((btrfs_root_refs(&root->root_item) != 0 && 5435 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) || 5436 btrfs_is_free_space_inode(BTRFS_I(inode)))) 5437 goto no_delete; 5438 5439 if (is_bad_inode(inode)) 5440 goto no_delete; 5441 5442 btrfs_free_io_failure_record(BTRFS_I(inode), 0, (u64)-1); 5443 5444 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) 5445 goto no_delete; 5446 5447 if (inode->i_nlink > 0) { 5448 BUG_ON(btrfs_root_refs(&root->root_item) != 0 && 5449 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID); 5450 goto no_delete; 5451 } 5452 5453 /* 5454 * This makes sure the inode item in tree is uptodate and the space for 5455 * the inode update is released. 5456 */ 5457 ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode)); 5458 if (ret) 5459 goto no_delete; 5460 5461 /* 5462 * This drops any pending insert or delete operations we have for this 5463 * inode. We could have a delayed dir index deletion queued up, but 5464 * we're removing the inode completely so that'll be taken care of in 5465 * the truncate. 5466 */ 5467 btrfs_kill_delayed_inode_items(BTRFS_I(inode)); 5468 5469 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP); 5470 if (!rsv) 5471 goto no_delete; 5472 rsv->size = btrfs_calc_metadata_size(fs_info, 1); 5473 rsv->failfast = true; 5474 5475 btrfs_i_size_write(BTRFS_I(inode), 0); 5476 5477 while (1) { 5478 struct btrfs_truncate_control control = { 5479 .inode = BTRFS_I(inode), 5480 .ino = btrfs_ino(BTRFS_I(inode)), 5481 .new_size = 0, 5482 .min_type = 0, 5483 }; 5484 5485 trans = evict_refill_and_join(root, rsv); 5486 if (IS_ERR(trans)) 5487 goto free_rsv; 5488 5489 trans->block_rsv = rsv; 5490 5491 ret = btrfs_truncate_inode_items(trans, root, &control); 5492 trans->block_rsv = &fs_info->trans_block_rsv; 5493 btrfs_end_transaction(trans); 5494 btrfs_btree_balance_dirty(fs_info); 5495 if (ret && ret != -ENOSPC && ret != -EAGAIN) 5496 goto free_rsv; 5497 else if (!ret) 5498 break; 5499 } 5500 5501 /* 5502 * Errors here aren't a big deal, it just means we leave orphan items in 5503 * the tree. They will be cleaned up on the next mount. If the inode 5504 * number gets reused, cleanup deletes the orphan item without doing 5505 * anything, and unlink reuses the existing orphan item. 5506 * 5507 * If it turns out that we are dropping too many of these, we might want 5508 * to add a mechanism for retrying these after a commit. 5509 */ 5510 trans = evict_refill_and_join(root, rsv); 5511 if (!IS_ERR(trans)) { 5512 trans->block_rsv = rsv; 5513 btrfs_orphan_del(trans, BTRFS_I(inode)); 5514 trans->block_rsv = &fs_info->trans_block_rsv; 5515 btrfs_end_transaction(trans); 5516 } 5517 5518 free_rsv: 5519 btrfs_free_block_rsv(fs_info, rsv); 5520 no_delete: 5521 /* 5522 * If we didn't successfully delete, the orphan item will still be in 5523 * the tree and we'll retry on the next mount. Again, we might also want 5524 * to retry these periodically in the future. 5525 */ 5526 btrfs_remove_delayed_node(BTRFS_I(inode)); 5527 fsverity_cleanup_inode(inode); 5528 clear_inode(inode); 5529 } 5530 5531 /* 5532 * Return the key found in the dir entry in the location pointer, fill @type 5533 * with BTRFS_FT_*, and return 0. 5534 * 5535 * If no dir entries were found, returns -ENOENT. 5536 * If found a corrupted location in dir entry, returns -EUCLEAN. 5537 */ 5538 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry, 5539 struct btrfs_key *location, u8 *type) 5540 { 5541 const char *name = dentry->d_name.name; 5542 int namelen = dentry->d_name.len; 5543 struct btrfs_dir_item *di; 5544 struct btrfs_path *path; 5545 struct btrfs_root *root = BTRFS_I(dir)->root; 5546 int ret = 0; 5547 5548 path = btrfs_alloc_path(); 5549 if (!path) 5550 return -ENOMEM; 5551 5552 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(BTRFS_I(dir)), 5553 name, namelen, 0); 5554 if (IS_ERR_OR_NULL(di)) { 5555 ret = di ? PTR_ERR(di) : -ENOENT; 5556 goto out; 5557 } 5558 5559 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location); 5560 if (location->type != BTRFS_INODE_ITEM_KEY && 5561 location->type != BTRFS_ROOT_ITEM_KEY) { 5562 ret = -EUCLEAN; 5563 btrfs_warn(root->fs_info, 5564 "%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))", 5565 __func__, name, btrfs_ino(BTRFS_I(dir)), 5566 location->objectid, location->type, location->offset); 5567 } 5568 if (!ret) 5569 *type = btrfs_dir_type(path->nodes[0], di); 5570 out: 5571 btrfs_free_path(path); 5572 return ret; 5573 } 5574 5575 /* 5576 * when we hit a tree root in a directory, the btrfs part of the inode 5577 * needs to be changed to reflect the root directory of the tree root. This 5578 * is kind of like crossing a mount point. 5579 */ 5580 static int fixup_tree_root_location(struct btrfs_fs_info *fs_info, 5581 struct inode *dir, 5582 struct dentry *dentry, 5583 struct btrfs_key *location, 5584 struct btrfs_root **sub_root) 5585 { 5586 struct btrfs_path *path; 5587 struct btrfs_root *new_root; 5588 struct btrfs_root_ref *ref; 5589 struct extent_buffer *leaf; 5590 struct btrfs_key key; 5591 int ret; 5592 int err = 0; 5593 5594 path = btrfs_alloc_path(); 5595 if (!path) { 5596 err = -ENOMEM; 5597 goto out; 5598 } 5599 5600 err = -ENOENT; 5601 key.objectid = BTRFS_I(dir)->root->root_key.objectid; 5602 key.type = BTRFS_ROOT_REF_KEY; 5603 key.offset = location->objectid; 5604 5605 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 5606 if (ret) { 5607 if (ret < 0) 5608 err = ret; 5609 goto out; 5610 } 5611 5612 leaf = path->nodes[0]; 5613 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); 5614 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(BTRFS_I(dir)) || 5615 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len) 5616 goto out; 5617 5618 ret = memcmp_extent_buffer(leaf, dentry->d_name.name, 5619 (unsigned long)(ref + 1), 5620 dentry->d_name.len); 5621 if (ret) 5622 goto out; 5623 5624 btrfs_release_path(path); 5625 5626 new_root = btrfs_get_fs_root(fs_info, location->objectid, true); 5627 if (IS_ERR(new_root)) { 5628 err = PTR_ERR(new_root); 5629 goto out; 5630 } 5631 5632 *sub_root = new_root; 5633 location->objectid = btrfs_root_dirid(&new_root->root_item); 5634 location->type = BTRFS_INODE_ITEM_KEY; 5635 location->offset = 0; 5636 err = 0; 5637 out: 5638 btrfs_free_path(path); 5639 return err; 5640 } 5641 5642 static void inode_tree_add(struct inode *inode) 5643 { 5644 struct btrfs_root *root = BTRFS_I(inode)->root; 5645 struct btrfs_inode *entry; 5646 struct rb_node **p; 5647 struct rb_node *parent; 5648 struct rb_node *new = &BTRFS_I(inode)->rb_node; 5649 u64 ino = btrfs_ino(BTRFS_I(inode)); 5650 5651 if (inode_unhashed(inode)) 5652 return; 5653 parent = NULL; 5654 spin_lock(&root->inode_lock); 5655 p = &root->inode_tree.rb_node; 5656 while (*p) { 5657 parent = *p; 5658 entry = rb_entry(parent, struct btrfs_inode, rb_node); 5659 5660 if (ino < btrfs_ino(entry)) 5661 p = &parent->rb_left; 5662 else if (ino > btrfs_ino(entry)) 5663 p = &parent->rb_right; 5664 else { 5665 WARN_ON(!(entry->vfs_inode.i_state & 5666 (I_WILL_FREE | I_FREEING))); 5667 rb_replace_node(parent, new, &root->inode_tree); 5668 RB_CLEAR_NODE(parent); 5669 spin_unlock(&root->inode_lock); 5670 return; 5671 } 5672 } 5673 rb_link_node(new, parent, p); 5674 rb_insert_color(new, &root->inode_tree); 5675 spin_unlock(&root->inode_lock); 5676 } 5677 5678 static void inode_tree_del(struct btrfs_inode *inode) 5679 { 5680 struct btrfs_root *root = inode->root; 5681 int empty = 0; 5682 5683 spin_lock(&root->inode_lock); 5684 if (!RB_EMPTY_NODE(&inode->rb_node)) { 5685 rb_erase(&inode->rb_node, &root->inode_tree); 5686 RB_CLEAR_NODE(&inode->rb_node); 5687 empty = RB_EMPTY_ROOT(&root->inode_tree); 5688 } 5689 spin_unlock(&root->inode_lock); 5690 5691 if (empty && btrfs_root_refs(&root->root_item) == 0) { 5692 spin_lock(&root->inode_lock); 5693 empty = RB_EMPTY_ROOT(&root->inode_tree); 5694 spin_unlock(&root->inode_lock); 5695 if (empty) 5696 btrfs_add_dead_root(root); 5697 } 5698 } 5699 5700 5701 static int btrfs_init_locked_inode(struct inode *inode, void *p) 5702 { 5703 struct btrfs_iget_args *args = p; 5704 5705 inode->i_ino = args->ino; 5706 BTRFS_I(inode)->location.objectid = args->ino; 5707 BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY; 5708 BTRFS_I(inode)->location.offset = 0; 5709 BTRFS_I(inode)->root = btrfs_grab_root(args->root); 5710 BUG_ON(args->root && !BTRFS_I(inode)->root); 5711 return 0; 5712 } 5713 5714 static int btrfs_find_actor(struct inode *inode, void *opaque) 5715 { 5716 struct btrfs_iget_args *args = opaque; 5717 5718 return args->ino == BTRFS_I(inode)->location.objectid && 5719 args->root == BTRFS_I(inode)->root; 5720 } 5721 5722 static struct inode *btrfs_iget_locked(struct super_block *s, u64 ino, 5723 struct btrfs_root *root) 5724 { 5725 struct inode *inode; 5726 struct btrfs_iget_args args; 5727 unsigned long hashval = btrfs_inode_hash(ino, root); 5728 5729 args.ino = ino; 5730 args.root = root; 5731 5732 inode = iget5_locked(s, hashval, btrfs_find_actor, 5733 btrfs_init_locked_inode, 5734 (void *)&args); 5735 return inode; 5736 } 5737 5738 /* 5739 * Get an inode object given its inode number and corresponding root. 5740 * Path can be preallocated to prevent recursing back to iget through 5741 * allocator. NULL is also valid but may require an additional allocation 5742 * later. 5743 */ 5744 struct inode *btrfs_iget_path(struct super_block *s, u64 ino, 5745 struct btrfs_root *root, struct btrfs_path *path) 5746 { 5747 struct inode *inode; 5748 5749 inode = btrfs_iget_locked(s, ino, root); 5750 if (!inode) 5751 return ERR_PTR(-ENOMEM); 5752 5753 if (inode->i_state & I_NEW) { 5754 int ret; 5755 5756 ret = btrfs_read_locked_inode(inode, path); 5757 if (!ret) { 5758 inode_tree_add(inode); 5759 unlock_new_inode(inode); 5760 } else { 5761 iget_failed(inode); 5762 /* 5763 * ret > 0 can come from btrfs_search_slot called by 5764 * btrfs_read_locked_inode, this means the inode item 5765 * was not found. 5766 */ 5767 if (ret > 0) 5768 ret = -ENOENT; 5769 inode = ERR_PTR(ret); 5770 } 5771 } 5772 5773 return inode; 5774 } 5775 5776 struct inode *btrfs_iget(struct super_block *s, u64 ino, struct btrfs_root *root) 5777 { 5778 return btrfs_iget_path(s, ino, root, NULL); 5779 } 5780 5781 static struct inode *new_simple_dir(struct super_block *s, 5782 struct btrfs_key *key, 5783 struct btrfs_root *root) 5784 { 5785 struct inode *inode = new_inode(s); 5786 5787 if (!inode) 5788 return ERR_PTR(-ENOMEM); 5789 5790 BTRFS_I(inode)->root = btrfs_grab_root(root); 5791 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key)); 5792 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags); 5793 5794 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID; 5795 /* 5796 * We only need lookup, the rest is read-only and there's no inode 5797 * associated with the dentry 5798 */ 5799 inode->i_op = &simple_dir_inode_operations; 5800 inode->i_opflags &= ~IOP_XATTR; 5801 inode->i_fop = &simple_dir_operations; 5802 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO; 5803 inode->i_mtime = current_time(inode); 5804 inode->i_atime = inode->i_mtime; 5805 inode->i_ctime = inode->i_mtime; 5806 BTRFS_I(inode)->i_otime = inode->i_mtime; 5807 5808 return inode; 5809 } 5810 5811 static_assert(BTRFS_FT_UNKNOWN == FT_UNKNOWN); 5812 static_assert(BTRFS_FT_REG_FILE == FT_REG_FILE); 5813 static_assert(BTRFS_FT_DIR == FT_DIR); 5814 static_assert(BTRFS_FT_CHRDEV == FT_CHRDEV); 5815 static_assert(BTRFS_FT_BLKDEV == FT_BLKDEV); 5816 static_assert(BTRFS_FT_FIFO == FT_FIFO); 5817 static_assert(BTRFS_FT_SOCK == FT_SOCK); 5818 static_assert(BTRFS_FT_SYMLINK == FT_SYMLINK); 5819 5820 static inline u8 btrfs_inode_type(struct inode *inode) 5821 { 5822 return fs_umode_to_ftype(inode->i_mode); 5823 } 5824 5825 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry) 5826 { 5827 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 5828 struct inode *inode; 5829 struct btrfs_root *root = BTRFS_I(dir)->root; 5830 struct btrfs_root *sub_root = root; 5831 struct btrfs_key location; 5832 u8 di_type = 0; 5833 int ret = 0; 5834 5835 if (dentry->d_name.len > BTRFS_NAME_LEN) 5836 return ERR_PTR(-ENAMETOOLONG); 5837 5838 ret = btrfs_inode_by_name(dir, dentry, &location, &di_type); 5839 if (ret < 0) 5840 return ERR_PTR(ret); 5841 5842 if (location.type == BTRFS_INODE_ITEM_KEY) { 5843 inode = btrfs_iget(dir->i_sb, location.objectid, root); 5844 if (IS_ERR(inode)) 5845 return inode; 5846 5847 /* Do extra check against inode mode with di_type */ 5848 if (btrfs_inode_type(inode) != di_type) { 5849 btrfs_crit(fs_info, 5850 "inode mode mismatch with dir: inode mode=0%o btrfs type=%u dir type=%u", 5851 inode->i_mode, btrfs_inode_type(inode), 5852 di_type); 5853 iput(inode); 5854 return ERR_PTR(-EUCLEAN); 5855 } 5856 return inode; 5857 } 5858 5859 ret = fixup_tree_root_location(fs_info, dir, dentry, 5860 &location, &sub_root); 5861 if (ret < 0) { 5862 if (ret != -ENOENT) 5863 inode = ERR_PTR(ret); 5864 else 5865 inode = new_simple_dir(dir->i_sb, &location, root); 5866 } else { 5867 inode = btrfs_iget(dir->i_sb, location.objectid, sub_root); 5868 btrfs_put_root(sub_root); 5869 5870 if (IS_ERR(inode)) 5871 return inode; 5872 5873 down_read(&fs_info->cleanup_work_sem); 5874 if (!sb_rdonly(inode->i_sb)) 5875 ret = btrfs_orphan_cleanup(sub_root); 5876 up_read(&fs_info->cleanup_work_sem); 5877 if (ret) { 5878 iput(inode); 5879 inode = ERR_PTR(ret); 5880 } 5881 } 5882 5883 return inode; 5884 } 5885 5886 static int btrfs_dentry_delete(const struct dentry *dentry) 5887 { 5888 struct btrfs_root *root; 5889 struct inode *inode = d_inode(dentry); 5890 5891 if (!inode && !IS_ROOT(dentry)) 5892 inode = d_inode(dentry->d_parent); 5893 5894 if (inode) { 5895 root = BTRFS_I(inode)->root; 5896 if (btrfs_root_refs(&root->root_item) == 0) 5897 return 1; 5898 5899 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 5900 return 1; 5901 } 5902 return 0; 5903 } 5904 5905 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry, 5906 unsigned int flags) 5907 { 5908 struct inode *inode = btrfs_lookup_dentry(dir, dentry); 5909 5910 if (inode == ERR_PTR(-ENOENT)) 5911 inode = NULL; 5912 return d_splice_alias(inode, dentry); 5913 } 5914 5915 /* 5916 * All this infrastructure exists because dir_emit can fault, and we are holding 5917 * the tree lock when doing readdir. For now just allocate a buffer and copy 5918 * our information into that, and then dir_emit from the buffer. This is 5919 * similar to what NFS does, only we don't keep the buffer around in pagecache 5920 * because I'm afraid I'll mess that up. Long term we need to make filldir do 5921 * copy_to_user_inatomic so we don't have to worry about page faulting under the 5922 * tree lock. 5923 */ 5924 static int btrfs_opendir(struct inode *inode, struct file *file) 5925 { 5926 struct btrfs_file_private *private; 5927 5928 private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL); 5929 if (!private) 5930 return -ENOMEM; 5931 private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL); 5932 if (!private->filldir_buf) { 5933 kfree(private); 5934 return -ENOMEM; 5935 } 5936 file->private_data = private; 5937 return 0; 5938 } 5939 5940 struct dir_entry { 5941 u64 ino; 5942 u64 offset; 5943 unsigned type; 5944 int name_len; 5945 }; 5946 5947 static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx) 5948 { 5949 while (entries--) { 5950 struct dir_entry *entry = addr; 5951 char *name = (char *)(entry + 1); 5952 5953 ctx->pos = get_unaligned(&entry->offset); 5954 if (!dir_emit(ctx, name, get_unaligned(&entry->name_len), 5955 get_unaligned(&entry->ino), 5956 get_unaligned(&entry->type))) 5957 return 1; 5958 addr += sizeof(struct dir_entry) + 5959 get_unaligned(&entry->name_len); 5960 ctx->pos++; 5961 } 5962 return 0; 5963 } 5964 5965 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx) 5966 { 5967 struct inode *inode = file_inode(file); 5968 struct btrfs_root *root = BTRFS_I(inode)->root; 5969 struct btrfs_file_private *private = file->private_data; 5970 struct btrfs_dir_item *di; 5971 struct btrfs_key key; 5972 struct btrfs_key found_key; 5973 struct btrfs_path *path; 5974 void *addr; 5975 struct list_head ins_list; 5976 struct list_head del_list; 5977 int ret; 5978 char *name_ptr; 5979 int name_len; 5980 int entries = 0; 5981 int total_len = 0; 5982 bool put = false; 5983 struct btrfs_key location; 5984 5985 if (!dir_emit_dots(file, ctx)) 5986 return 0; 5987 5988 path = btrfs_alloc_path(); 5989 if (!path) 5990 return -ENOMEM; 5991 5992 addr = private->filldir_buf; 5993 path->reada = READA_FORWARD; 5994 5995 INIT_LIST_HEAD(&ins_list); 5996 INIT_LIST_HEAD(&del_list); 5997 put = btrfs_readdir_get_delayed_items(inode, &ins_list, &del_list); 5998 5999 again: 6000 key.type = BTRFS_DIR_INDEX_KEY; 6001 key.offset = ctx->pos; 6002 key.objectid = btrfs_ino(BTRFS_I(inode)); 6003 6004 btrfs_for_each_slot(root, &key, &found_key, path, ret) { 6005 struct dir_entry *entry; 6006 struct extent_buffer *leaf = path->nodes[0]; 6007 6008 if (found_key.objectid != key.objectid) 6009 break; 6010 if (found_key.type != BTRFS_DIR_INDEX_KEY) 6011 break; 6012 if (found_key.offset < ctx->pos) 6013 continue; 6014 if (btrfs_should_delete_dir_index(&del_list, found_key.offset)) 6015 continue; 6016 di = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dir_item); 6017 name_len = btrfs_dir_name_len(leaf, di); 6018 if ((total_len + sizeof(struct dir_entry) + name_len) >= 6019 PAGE_SIZE) { 6020 btrfs_release_path(path); 6021 ret = btrfs_filldir(private->filldir_buf, entries, ctx); 6022 if (ret) 6023 goto nopos; 6024 addr = private->filldir_buf; 6025 entries = 0; 6026 total_len = 0; 6027 goto again; 6028 } 6029 6030 entry = addr; 6031 put_unaligned(name_len, &entry->name_len); 6032 name_ptr = (char *)(entry + 1); 6033 read_extent_buffer(leaf, name_ptr, (unsigned long)(di + 1), 6034 name_len); 6035 put_unaligned(fs_ftype_to_dtype(btrfs_dir_type(leaf, di)), 6036 &entry->type); 6037 btrfs_dir_item_key_to_cpu(leaf, di, &location); 6038 put_unaligned(location.objectid, &entry->ino); 6039 put_unaligned(found_key.offset, &entry->offset); 6040 entries++; 6041 addr += sizeof(struct dir_entry) + name_len; 6042 total_len += sizeof(struct dir_entry) + name_len; 6043 } 6044 /* Catch error encountered during iteration */ 6045 if (ret < 0) 6046 goto err; 6047 6048 btrfs_release_path(path); 6049 6050 ret = btrfs_filldir(private->filldir_buf, entries, ctx); 6051 if (ret) 6052 goto nopos; 6053 6054 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list); 6055 if (ret) 6056 goto nopos; 6057 6058 /* 6059 * Stop new entries from being returned after we return the last 6060 * entry. 6061 * 6062 * New directory entries are assigned a strictly increasing 6063 * offset. This means that new entries created during readdir 6064 * are *guaranteed* to be seen in the future by that readdir. 6065 * This has broken buggy programs which operate on names as 6066 * they're returned by readdir. Until we re-use freed offsets 6067 * we have this hack to stop new entries from being returned 6068 * under the assumption that they'll never reach this huge 6069 * offset. 6070 * 6071 * This is being careful not to overflow 32bit loff_t unless the 6072 * last entry requires it because doing so has broken 32bit apps 6073 * in the past. 6074 */ 6075 if (ctx->pos >= INT_MAX) 6076 ctx->pos = LLONG_MAX; 6077 else 6078 ctx->pos = INT_MAX; 6079 nopos: 6080 ret = 0; 6081 err: 6082 if (put) 6083 btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list); 6084 btrfs_free_path(path); 6085 return ret; 6086 } 6087 6088 /* 6089 * This is somewhat expensive, updating the tree every time the 6090 * inode changes. But, it is most likely to find the inode in cache. 6091 * FIXME, needs more benchmarking...there are no reasons other than performance 6092 * to keep or drop this code. 6093 */ 6094 static int btrfs_dirty_inode(struct inode *inode) 6095 { 6096 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 6097 struct btrfs_root *root = BTRFS_I(inode)->root; 6098 struct btrfs_trans_handle *trans; 6099 int ret; 6100 6101 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags)) 6102 return 0; 6103 6104 trans = btrfs_join_transaction(root); 6105 if (IS_ERR(trans)) 6106 return PTR_ERR(trans); 6107 6108 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 6109 if (ret && (ret == -ENOSPC || ret == -EDQUOT)) { 6110 /* whoops, lets try again with the full transaction */ 6111 btrfs_end_transaction(trans); 6112 trans = btrfs_start_transaction(root, 1); 6113 if (IS_ERR(trans)) 6114 return PTR_ERR(trans); 6115 6116 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 6117 } 6118 btrfs_end_transaction(trans); 6119 if (BTRFS_I(inode)->delayed_node) 6120 btrfs_balance_delayed_items(fs_info); 6121 6122 return ret; 6123 } 6124 6125 /* 6126 * This is a copy of file_update_time. We need this so we can return error on 6127 * ENOSPC for updating the inode in the case of file write and mmap writes. 6128 */ 6129 static int btrfs_update_time(struct inode *inode, struct timespec64 *now, 6130 int flags) 6131 { 6132 struct btrfs_root *root = BTRFS_I(inode)->root; 6133 bool dirty = flags & ~S_VERSION; 6134 6135 if (btrfs_root_readonly(root)) 6136 return -EROFS; 6137 6138 if (flags & S_VERSION) 6139 dirty |= inode_maybe_inc_iversion(inode, dirty); 6140 if (flags & S_CTIME) 6141 inode->i_ctime = *now; 6142 if (flags & S_MTIME) 6143 inode->i_mtime = *now; 6144 if (flags & S_ATIME) 6145 inode->i_atime = *now; 6146 return dirty ? btrfs_dirty_inode(inode) : 0; 6147 } 6148 6149 /* 6150 * find the highest existing sequence number in a directory 6151 * and then set the in-memory index_cnt variable to reflect 6152 * free sequence numbers 6153 */ 6154 static int btrfs_set_inode_index_count(struct btrfs_inode *inode) 6155 { 6156 struct btrfs_root *root = inode->root; 6157 struct btrfs_key key, found_key; 6158 struct btrfs_path *path; 6159 struct extent_buffer *leaf; 6160 int ret; 6161 6162 key.objectid = btrfs_ino(inode); 6163 key.type = BTRFS_DIR_INDEX_KEY; 6164 key.offset = (u64)-1; 6165 6166 path = btrfs_alloc_path(); 6167 if (!path) 6168 return -ENOMEM; 6169 6170 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 6171 if (ret < 0) 6172 goto out; 6173 /* FIXME: we should be able to handle this */ 6174 if (ret == 0) 6175 goto out; 6176 ret = 0; 6177 6178 if (path->slots[0] == 0) { 6179 inode->index_cnt = BTRFS_DIR_START_INDEX; 6180 goto out; 6181 } 6182 6183 path->slots[0]--; 6184 6185 leaf = path->nodes[0]; 6186 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6187 6188 if (found_key.objectid != btrfs_ino(inode) || 6189 found_key.type != BTRFS_DIR_INDEX_KEY) { 6190 inode->index_cnt = BTRFS_DIR_START_INDEX; 6191 goto out; 6192 } 6193 6194 inode->index_cnt = found_key.offset + 1; 6195 out: 6196 btrfs_free_path(path); 6197 return ret; 6198 } 6199 6200 /* 6201 * helper to find a free sequence number in a given directory. This current 6202 * code is very simple, later versions will do smarter things in the btree 6203 */ 6204 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index) 6205 { 6206 int ret = 0; 6207 6208 if (dir->index_cnt == (u64)-1) { 6209 ret = btrfs_inode_delayed_dir_index_count(dir); 6210 if (ret) { 6211 ret = btrfs_set_inode_index_count(dir); 6212 if (ret) 6213 return ret; 6214 } 6215 } 6216 6217 *index = dir->index_cnt; 6218 dir->index_cnt++; 6219 6220 return ret; 6221 } 6222 6223 static int btrfs_insert_inode_locked(struct inode *inode) 6224 { 6225 struct btrfs_iget_args args; 6226 6227 args.ino = BTRFS_I(inode)->location.objectid; 6228 args.root = BTRFS_I(inode)->root; 6229 6230 return insert_inode_locked4(inode, 6231 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root), 6232 btrfs_find_actor, &args); 6233 } 6234 6235 int btrfs_new_inode_prepare(struct btrfs_new_inode_args *args, 6236 unsigned int *trans_num_items) 6237 { 6238 struct inode *dir = args->dir; 6239 struct inode *inode = args->inode; 6240 int ret; 6241 6242 ret = posix_acl_create(dir, &inode->i_mode, &args->default_acl, &args->acl); 6243 if (ret) 6244 return ret; 6245 6246 /* 1 to add inode item */ 6247 *trans_num_items = 1; 6248 /* 1 to add compression property */ 6249 if (BTRFS_I(dir)->prop_compress) 6250 (*trans_num_items)++; 6251 /* 1 to add default ACL xattr */ 6252 if (args->default_acl) 6253 (*trans_num_items)++; 6254 /* 1 to add access ACL xattr */ 6255 if (args->acl) 6256 (*trans_num_items)++; 6257 #ifdef CONFIG_SECURITY 6258 /* 1 to add LSM xattr */ 6259 if (dir->i_security) 6260 (*trans_num_items)++; 6261 #endif 6262 if (args->orphan) { 6263 /* 1 to add orphan item */ 6264 (*trans_num_items)++; 6265 } else { 6266 /* 6267 * 1 to add dir item 6268 * 1 to add dir index 6269 * 1 to update parent inode item 6270 * 6271 * No need for 1 unit for the inode ref item because it is 6272 * inserted in a batch together with the inode item at 6273 * btrfs_create_new_inode(). 6274 */ 6275 *trans_num_items += 3; 6276 } 6277 return 0; 6278 } 6279 6280 void btrfs_new_inode_args_destroy(struct btrfs_new_inode_args *args) 6281 { 6282 posix_acl_release(args->acl); 6283 posix_acl_release(args->default_acl); 6284 } 6285 6286 /* 6287 * Inherit flags from the parent inode. 6288 * 6289 * Currently only the compression flags and the cow flags are inherited. 6290 */ 6291 static void btrfs_inherit_iflags(struct inode *inode, struct inode *dir) 6292 { 6293 unsigned int flags; 6294 6295 flags = BTRFS_I(dir)->flags; 6296 6297 if (flags & BTRFS_INODE_NOCOMPRESS) { 6298 BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS; 6299 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS; 6300 } else if (flags & BTRFS_INODE_COMPRESS) { 6301 BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS; 6302 BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS; 6303 } 6304 6305 if (flags & BTRFS_INODE_NODATACOW) { 6306 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW; 6307 if (S_ISREG(inode->i_mode)) 6308 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; 6309 } 6310 6311 btrfs_sync_inode_flags_to_i_flags(inode); 6312 } 6313 6314 int btrfs_create_new_inode(struct btrfs_trans_handle *trans, 6315 struct btrfs_new_inode_args *args) 6316 { 6317 struct inode *dir = args->dir; 6318 struct inode *inode = args->inode; 6319 const char *name = args->orphan ? NULL : args->dentry->d_name.name; 6320 int name_len = args->orphan ? 0 : args->dentry->d_name.len; 6321 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 6322 struct btrfs_root *root; 6323 struct btrfs_inode_item *inode_item; 6324 struct btrfs_key *location; 6325 struct btrfs_path *path; 6326 u64 objectid; 6327 struct btrfs_inode_ref *ref; 6328 struct btrfs_key key[2]; 6329 u32 sizes[2]; 6330 struct btrfs_item_batch batch; 6331 unsigned long ptr; 6332 int ret; 6333 6334 path = btrfs_alloc_path(); 6335 if (!path) 6336 return -ENOMEM; 6337 6338 if (!args->subvol) 6339 BTRFS_I(inode)->root = btrfs_grab_root(BTRFS_I(dir)->root); 6340 root = BTRFS_I(inode)->root; 6341 6342 ret = btrfs_get_free_objectid(root, &objectid); 6343 if (ret) 6344 goto out; 6345 inode->i_ino = objectid; 6346 6347 if (args->orphan) { 6348 /* 6349 * O_TMPFILE, set link count to 0, so that after this point, we 6350 * fill in an inode item with the correct link count. 6351 */ 6352 set_nlink(inode, 0); 6353 } else { 6354 trace_btrfs_inode_request(dir); 6355 6356 ret = btrfs_set_inode_index(BTRFS_I(dir), &BTRFS_I(inode)->dir_index); 6357 if (ret) 6358 goto out; 6359 } 6360 /* index_cnt is ignored for everything but a dir. */ 6361 BTRFS_I(inode)->index_cnt = BTRFS_DIR_START_INDEX; 6362 BTRFS_I(inode)->generation = trans->transid; 6363 inode->i_generation = BTRFS_I(inode)->generation; 6364 6365 /* 6366 * Subvolumes don't inherit flags from their parent directory. 6367 * Originally this was probably by accident, but we probably can't 6368 * change it now without compatibility issues. 6369 */ 6370 if (!args->subvol) 6371 btrfs_inherit_iflags(inode, dir); 6372 6373 if (S_ISREG(inode->i_mode)) { 6374 if (btrfs_test_opt(fs_info, NODATASUM)) 6375 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; 6376 if (btrfs_test_opt(fs_info, NODATACOW)) 6377 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW | 6378 BTRFS_INODE_NODATASUM; 6379 } 6380 6381 location = &BTRFS_I(inode)->location; 6382 location->objectid = objectid; 6383 location->offset = 0; 6384 location->type = BTRFS_INODE_ITEM_KEY; 6385 6386 ret = btrfs_insert_inode_locked(inode); 6387 if (ret < 0) { 6388 if (!args->orphan) 6389 BTRFS_I(dir)->index_cnt--; 6390 goto out; 6391 } 6392 6393 /* 6394 * We could have gotten an inode number from somebody who was fsynced 6395 * and then removed in this same transaction, so let's just set full 6396 * sync since it will be a full sync anyway and this will blow away the 6397 * old info in the log. 6398 */ 6399 btrfs_set_inode_full_sync(BTRFS_I(inode)); 6400 6401 key[0].objectid = objectid; 6402 key[0].type = BTRFS_INODE_ITEM_KEY; 6403 key[0].offset = 0; 6404 6405 sizes[0] = sizeof(struct btrfs_inode_item); 6406 6407 if (!args->orphan) { 6408 /* 6409 * Start new inodes with an inode_ref. This is slightly more 6410 * efficient for small numbers of hard links since they will 6411 * be packed into one item. Extended refs will kick in if we 6412 * add more hard links than can fit in the ref item. 6413 */ 6414 key[1].objectid = objectid; 6415 key[1].type = BTRFS_INODE_REF_KEY; 6416 if (args->subvol) { 6417 key[1].offset = objectid; 6418 sizes[1] = 2 + sizeof(*ref); 6419 } else { 6420 key[1].offset = btrfs_ino(BTRFS_I(dir)); 6421 sizes[1] = name_len + sizeof(*ref); 6422 } 6423 } 6424 6425 batch.keys = &key[0]; 6426 batch.data_sizes = &sizes[0]; 6427 batch.total_data_size = sizes[0] + (args->orphan ? 0 : sizes[1]); 6428 batch.nr = args->orphan ? 1 : 2; 6429 ret = btrfs_insert_empty_items(trans, root, path, &batch); 6430 if (ret != 0) { 6431 btrfs_abort_transaction(trans, ret); 6432 goto discard; 6433 } 6434 6435 inode->i_mtime = current_time(inode); 6436 inode->i_atime = inode->i_mtime; 6437 inode->i_ctime = inode->i_mtime; 6438 BTRFS_I(inode)->i_otime = inode->i_mtime; 6439 6440 /* 6441 * We're going to fill the inode item now, so at this point the inode 6442 * must be fully initialized. 6443 */ 6444 6445 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0], 6446 struct btrfs_inode_item); 6447 memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item, 6448 sizeof(*inode_item)); 6449 fill_inode_item(trans, path->nodes[0], inode_item, inode); 6450 6451 if (!args->orphan) { 6452 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1, 6453 struct btrfs_inode_ref); 6454 ptr = (unsigned long)(ref + 1); 6455 if (args->subvol) { 6456 btrfs_set_inode_ref_name_len(path->nodes[0], ref, 2); 6457 btrfs_set_inode_ref_index(path->nodes[0], ref, 0); 6458 write_extent_buffer(path->nodes[0], "..", ptr, 2); 6459 } else { 6460 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len); 6461 btrfs_set_inode_ref_index(path->nodes[0], ref, 6462 BTRFS_I(inode)->dir_index); 6463 write_extent_buffer(path->nodes[0], name, ptr, name_len); 6464 } 6465 } 6466 6467 btrfs_mark_buffer_dirty(path->nodes[0]); 6468 /* 6469 * We don't need the path anymore, plus inheriting properties, adding 6470 * ACLs, security xattrs, orphan item or adding the link, will result in 6471 * allocating yet another path. So just free our path. 6472 */ 6473 btrfs_free_path(path); 6474 path = NULL; 6475 6476 if (args->subvol) { 6477 struct inode *parent; 6478 6479 /* 6480 * Subvolumes inherit properties from their parent subvolume, 6481 * not the directory they were created in. 6482 */ 6483 parent = btrfs_iget(fs_info->sb, BTRFS_FIRST_FREE_OBJECTID, 6484 BTRFS_I(dir)->root); 6485 if (IS_ERR(parent)) { 6486 ret = PTR_ERR(parent); 6487 } else { 6488 ret = btrfs_inode_inherit_props(trans, inode, parent); 6489 iput(parent); 6490 } 6491 } else { 6492 ret = btrfs_inode_inherit_props(trans, inode, dir); 6493 } 6494 if (ret) { 6495 btrfs_err(fs_info, 6496 "error inheriting props for ino %llu (root %llu): %d", 6497 btrfs_ino(BTRFS_I(inode)), root->root_key.objectid, 6498 ret); 6499 } 6500 6501 /* 6502 * Subvolumes don't inherit ACLs or get passed to the LSM. This is 6503 * probably a bug. 6504 */ 6505 if (!args->subvol) { 6506 ret = btrfs_init_inode_security(trans, args); 6507 if (ret) { 6508 btrfs_abort_transaction(trans, ret); 6509 goto discard; 6510 } 6511 } 6512 6513 inode_tree_add(inode); 6514 6515 trace_btrfs_inode_new(inode); 6516 btrfs_set_inode_last_trans(trans, BTRFS_I(inode)); 6517 6518 btrfs_update_root_times(trans, root); 6519 6520 if (args->orphan) { 6521 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 6522 } else { 6523 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name, 6524 name_len, 0, BTRFS_I(inode)->dir_index); 6525 } 6526 if (ret) { 6527 btrfs_abort_transaction(trans, ret); 6528 goto discard; 6529 } 6530 6531 return 0; 6532 6533 discard: 6534 /* 6535 * discard_new_inode() calls iput(), but the caller owns the reference 6536 * to the inode. 6537 */ 6538 ihold(inode); 6539 discard_new_inode(inode); 6540 out: 6541 btrfs_free_path(path); 6542 return ret; 6543 } 6544 6545 /* 6546 * utility function to add 'inode' into 'parent_inode' with 6547 * a give name and a given sequence number. 6548 * if 'add_backref' is true, also insert a backref from the 6549 * inode to the parent directory. 6550 */ 6551 int btrfs_add_link(struct btrfs_trans_handle *trans, 6552 struct btrfs_inode *parent_inode, struct btrfs_inode *inode, 6553 const char *name, int name_len, int add_backref, u64 index) 6554 { 6555 int ret = 0; 6556 struct btrfs_key key; 6557 struct btrfs_root *root = parent_inode->root; 6558 u64 ino = btrfs_ino(inode); 6559 u64 parent_ino = btrfs_ino(parent_inode); 6560 6561 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6562 memcpy(&key, &inode->root->root_key, sizeof(key)); 6563 } else { 6564 key.objectid = ino; 6565 key.type = BTRFS_INODE_ITEM_KEY; 6566 key.offset = 0; 6567 } 6568 6569 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6570 ret = btrfs_add_root_ref(trans, key.objectid, 6571 root->root_key.objectid, parent_ino, 6572 index, name, name_len); 6573 } else if (add_backref) { 6574 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino, 6575 parent_ino, index); 6576 } 6577 6578 /* Nothing to clean up yet */ 6579 if (ret) 6580 return ret; 6581 6582 ret = btrfs_insert_dir_item(trans, name, name_len, parent_inode, &key, 6583 btrfs_inode_type(&inode->vfs_inode), index); 6584 if (ret == -EEXIST || ret == -EOVERFLOW) 6585 goto fail_dir_item; 6586 else if (ret) { 6587 btrfs_abort_transaction(trans, ret); 6588 return ret; 6589 } 6590 6591 btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size + 6592 name_len * 2); 6593 inode_inc_iversion(&parent_inode->vfs_inode); 6594 /* 6595 * If we are replaying a log tree, we do not want to update the mtime 6596 * and ctime of the parent directory with the current time, since the 6597 * log replay procedure is responsible for setting them to their correct 6598 * values (the ones it had when the fsync was done). 6599 */ 6600 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &root->fs_info->flags)) { 6601 struct timespec64 now = current_time(&parent_inode->vfs_inode); 6602 6603 parent_inode->vfs_inode.i_mtime = now; 6604 parent_inode->vfs_inode.i_ctime = now; 6605 } 6606 ret = btrfs_update_inode(trans, root, parent_inode); 6607 if (ret) 6608 btrfs_abort_transaction(trans, ret); 6609 return ret; 6610 6611 fail_dir_item: 6612 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6613 u64 local_index; 6614 int err; 6615 err = btrfs_del_root_ref(trans, key.objectid, 6616 root->root_key.objectid, parent_ino, 6617 &local_index, name, name_len); 6618 if (err) 6619 btrfs_abort_transaction(trans, err); 6620 } else if (add_backref) { 6621 u64 local_index; 6622 int err; 6623 6624 err = btrfs_del_inode_ref(trans, root, name, name_len, 6625 ino, parent_ino, &local_index); 6626 if (err) 6627 btrfs_abort_transaction(trans, err); 6628 } 6629 6630 /* Return the original error code */ 6631 return ret; 6632 } 6633 6634 static int btrfs_create_common(struct inode *dir, struct dentry *dentry, 6635 struct inode *inode) 6636 { 6637 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 6638 struct btrfs_root *root = BTRFS_I(dir)->root; 6639 struct btrfs_new_inode_args new_inode_args = { 6640 .dir = dir, 6641 .dentry = dentry, 6642 .inode = inode, 6643 }; 6644 unsigned int trans_num_items; 6645 struct btrfs_trans_handle *trans; 6646 int err; 6647 6648 err = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items); 6649 if (err) 6650 goto out_inode; 6651 6652 trans = btrfs_start_transaction(root, trans_num_items); 6653 if (IS_ERR(trans)) { 6654 err = PTR_ERR(trans); 6655 goto out_new_inode_args; 6656 } 6657 6658 err = btrfs_create_new_inode(trans, &new_inode_args); 6659 if (!err) 6660 d_instantiate_new(dentry, inode); 6661 6662 btrfs_end_transaction(trans); 6663 btrfs_btree_balance_dirty(fs_info); 6664 out_new_inode_args: 6665 btrfs_new_inode_args_destroy(&new_inode_args); 6666 out_inode: 6667 if (err) 6668 iput(inode); 6669 return err; 6670 } 6671 6672 static int btrfs_mknod(struct user_namespace *mnt_userns, struct inode *dir, 6673 struct dentry *dentry, umode_t mode, dev_t rdev) 6674 { 6675 struct inode *inode; 6676 6677 inode = new_inode(dir->i_sb); 6678 if (!inode) 6679 return -ENOMEM; 6680 inode_init_owner(mnt_userns, inode, dir, mode); 6681 inode->i_op = &btrfs_special_inode_operations; 6682 init_special_inode(inode, inode->i_mode, rdev); 6683 return btrfs_create_common(dir, dentry, inode); 6684 } 6685 6686 static int btrfs_create(struct user_namespace *mnt_userns, struct inode *dir, 6687 struct dentry *dentry, umode_t mode, bool excl) 6688 { 6689 struct inode *inode; 6690 6691 inode = new_inode(dir->i_sb); 6692 if (!inode) 6693 return -ENOMEM; 6694 inode_init_owner(mnt_userns, inode, dir, mode); 6695 inode->i_fop = &btrfs_file_operations; 6696 inode->i_op = &btrfs_file_inode_operations; 6697 inode->i_mapping->a_ops = &btrfs_aops; 6698 return btrfs_create_common(dir, dentry, inode); 6699 } 6700 6701 static int btrfs_link(struct dentry *old_dentry, struct inode *dir, 6702 struct dentry *dentry) 6703 { 6704 struct btrfs_trans_handle *trans = NULL; 6705 struct btrfs_root *root = BTRFS_I(dir)->root; 6706 struct inode *inode = d_inode(old_dentry); 6707 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 6708 u64 index; 6709 int err; 6710 int drop_inode = 0; 6711 6712 /* do not allow sys_link's with other subvols of the same device */ 6713 if (root->root_key.objectid != BTRFS_I(inode)->root->root_key.objectid) 6714 return -EXDEV; 6715 6716 if (inode->i_nlink >= BTRFS_LINK_MAX) 6717 return -EMLINK; 6718 6719 err = btrfs_set_inode_index(BTRFS_I(dir), &index); 6720 if (err) 6721 goto fail; 6722 6723 /* 6724 * 2 items for inode and inode ref 6725 * 2 items for dir items 6726 * 1 item for parent inode 6727 * 1 item for orphan item deletion if O_TMPFILE 6728 */ 6729 trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6); 6730 if (IS_ERR(trans)) { 6731 err = PTR_ERR(trans); 6732 trans = NULL; 6733 goto fail; 6734 } 6735 6736 /* There are several dir indexes for this inode, clear the cache. */ 6737 BTRFS_I(inode)->dir_index = 0ULL; 6738 inc_nlink(inode); 6739 inode_inc_iversion(inode); 6740 inode->i_ctime = current_time(inode); 6741 ihold(inode); 6742 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags); 6743 6744 err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), 6745 dentry->d_name.name, dentry->d_name.len, 1, index); 6746 6747 if (err) { 6748 drop_inode = 1; 6749 } else { 6750 struct dentry *parent = dentry->d_parent; 6751 6752 err = btrfs_update_inode(trans, root, BTRFS_I(inode)); 6753 if (err) 6754 goto fail; 6755 if (inode->i_nlink == 1) { 6756 /* 6757 * If new hard link count is 1, it's a file created 6758 * with open(2) O_TMPFILE flag. 6759 */ 6760 err = btrfs_orphan_del(trans, BTRFS_I(inode)); 6761 if (err) 6762 goto fail; 6763 } 6764 d_instantiate(dentry, inode); 6765 btrfs_log_new_name(trans, old_dentry, NULL, 0, parent); 6766 } 6767 6768 fail: 6769 if (trans) 6770 btrfs_end_transaction(trans); 6771 if (drop_inode) { 6772 inode_dec_link_count(inode); 6773 iput(inode); 6774 } 6775 btrfs_btree_balance_dirty(fs_info); 6776 return err; 6777 } 6778 6779 static int btrfs_mkdir(struct user_namespace *mnt_userns, struct inode *dir, 6780 struct dentry *dentry, umode_t mode) 6781 { 6782 struct inode *inode; 6783 6784 inode = new_inode(dir->i_sb); 6785 if (!inode) 6786 return -ENOMEM; 6787 inode_init_owner(mnt_userns, inode, dir, S_IFDIR | mode); 6788 inode->i_op = &btrfs_dir_inode_operations; 6789 inode->i_fop = &btrfs_dir_file_operations; 6790 return btrfs_create_common(dir, dentry, inode); 6791 } 6792 6793 static noinline int uncompress_inline(struct btrfs_path *path, 6794 struct page *page, 6795 size_t pg_offset, u64 extent_offset, 6796 struct btrfs_file_extent_item *item) 6797 { 6798 int ret; 6799 struct extent_buffer *leaf = path->nodes[0]; 6800 char *tmp; 6801 size_t max_size; 6802 unsigned long inline_size; 6803 unsigned long ptr; 6804 int compress_type; 6805 6806 WARN_ON(pg_offset != 0); 6807 compress_type = btrfs_file_extent_compression(leaf, item); 6808 max_size = btrfs_file_extent_ram_bytes(leaf, item); 6809 inline_size = btrfs_file_extent_inline_item_len(leaf, path->slots[0]); 6810 tmp = kmalloc(inline_size, GFP_NOFS); 6811 if (!tmp) 6812 return -ENOMEM; 6813 ptr = btrfs_file_extent_inline_start(item); 6814 6815 read_extent_buffer(leaf, tmp, ptr, inline_size); 6816 6817 max_size = min_t(unsigned long, PAGE_SIZE, max_size); 6818 ret = btrfs_decompress(compress_type, tmp, page, 6819 extent_offset, inline_size, max_size); 6820 6821 /* 6822 * decompression code contains a memset to fill in any space between the end 6823 * of the uncompressed data and the end of max_size in case the decompressed 6824 * data ends up shorter than ram_bytes. That doesn't cover the hole between 6825 * the end of an inline extent and the beginning of the next block, so we 6826 * cover that region here. 6827 */ 6828 6829 if (max_size + pg_offset < PAGE_SIZE) 6830 memzero_page(page, pg_offset + max_size, 6831 PAGE_SIZE - max_size - pg_offset); 6832 kfree(tmp); 6833 return ret; 6834 } 6835 6836 /** 6837 * btrfs_get_extent - Lookup the first extent overlapping a range in a file. 6838 * @inode: file to search in 6839 * @page: page to read extent data into if the extent is inline 6840 * @pg_offset: offset into @page to copy to 6841 * @start: file offset 6842 * @len: length of range starting at @start 6843 * 6844 * This returns the first &struct extent_map which overlaps with the given 6845 * range, reading it from the B-tree and caching it if necessary. Note that 6846 * there may be more extents which overlap the given range after the returned 6847 * extent_map. 6848 * 6849 * If @page is not NULL and the extent is inline, this also reads the extent 6850 * data directly into the page and marks the extent up to date in the io_tree. 6851 * 6852 * Return: ERR_PTR on error, non-NULL extent_map on success. 6853 */ 6854 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode, 6855 struct page *page, size_t pg_offset, 6856 u64 start, u64 len) 6857 { 6858 struct btrfs_fs_info *fs_info = inode->root->fs_info; 6859 int ret = 0; 6860 u64 extent_start = 0; 6861 u64 extent_end = 0; 6862 u64 objectid = btrfs_ino(inode); 6863 int extent_type = -1; 6864 struct btrfs_path *path = NULL; 6865 struct btrfs_root *root = inode->root; 6866 struct btrfs_file_extent_item *item; 6867 struct extent_buffer *leaf; 6868 struct btrfs_key found_key; 6869 struct extent_map *em = NULL; 6870 struct extent_map_tree *em_tree = &inode->extent_tree; 6871 struct extent_io_tree *io_tree = &inode->io_tree; 6872 6873 read_lock(&em_tree->lock); 6874 em = lookup_extent_mapping(em_tree, start, len); 6875 read_unlock(&em_tree->lock); 6876 6877 if (em) { 6878 if (em->start > start || em->start + em->len <= start) 6879 free_extent_map(em); 6880 else if (em->block_start == EXTENT_MAP_INLINE && page) 6881 free_extent_map(em); 6882 else 6883 goto out; 6884 } 6885 em = alloc_extent_map(); 6886 if (!em) { 6887 ret = -ENOMEM; 6888 goto out; 6889 } 6890 em->start = EXTENT_MAP_HOLE; 6891 em->orig_start = EXTENT_MAP_HOLE; 6892 em->len = (u64)-1; 6893 em->block_len = (u64)-1; 6894 6895 path = btrfs_alloc_path(); 6896 if (!path) { 6897 ret = -ENOMEM; 6898 goto out; 6899 } 6900 6901 /* Chances are we'll be called again, so go ahead and do readahead */ 6902 path->reada = READA_FORWARD; 6903 6904 /* 6905 * The same explanation in load_free_space_cache applies here as well, 6906 * we only read when we're loading the free space cache, and at that 6907 * point the commit_root has everything we need. 6908 */ 6909 if (btrfs_is_free_space_inode(inode)) { 6910 path->search_commit_root = 1; 6911 path->skip_locking = 1; 6912 } 6913 6914 ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0); 6915 if (ret < 0) { 6916 goto out; 6917 } else if (ret > 0) { 6918 if (path->slots[0] == 0) 6919 goto not_found; 6920 path->slots[0]--; 6921 ret = 0; 6922 } 6923 6924 leaf = path->nodes[0]; 6925 item = btrfs_item_ptr(leaf, path->slots[0], 6926 struct btrfs_file_extent_item); 6927 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6928 if (found_key.objectid != objectid || 6929 found_key.type != BTRFS_EXTENT_DATA_KEY) { 6930 /* 6931 * If we backup past the first extent we want to move forward 6932 * and see if there is an extent in front of us, otherwise we'll 6933 * say there is a hole for our whole search range which can 6934 * cause problems. 6935 */ 6936 extent_end = start; 6937 goto next; 6938 } 6939 6940 extent_type = btrfs_file_extent_type(leaf, item); 6941 extent_start = found_key.offset; 6942 extent_end = btrfs_file_extent_end(path); 6943 if (extent_type == BTRFS_FILE_EXTENT_REG || 6944 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 6945 /* Only regular file could have regular/prealloc extent */ 6946 if (!S_ISREG(inode->vfs_inode.i_mode)) { 6947 ret = -EUCLEAN; 6948 btrfs_crit(fs_info, 6949 "regular/prealloc extent found for non-regular inode %llu", 6950 btrfs_ino(inode)); 6951 goto out; 6952 } 6953 trace_btrfs_get_extent_show_fi_regular(inode, leaf, item, 6954 extent_start); 6955 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 6956 trace_btrfs_get_extent_show_fi_inline(inode, leaf, item, 6957 path->slots[0], 6958 extent_start); 6959 } 6960 next: 6961 if (start >= extent_end) { 6962 path->slots[0]++; 6963 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 6964 ret = btrfs_next_leaf(root, path); 6965 if (ret < 0) 6966 goto out; 6967 else if (ret > 0) 6968 goto not_found; 6969 6970 leaf = path->nodes[0]; 6971 } 6972 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6973 if (found_key.objectid != objectid || 6974 found_key.type != BTRFS_EXTENT_DATA_KEY) 6975 goto not_found; 6976 if (start + len <= found_key.offset) 6977 goto not_found; 6978 if (start > found_key.offset) 6979 goto next; 6980 6981 /* New extent overlaps with existing one */ 6982 em->start = start; 6983 em->orig_start = start; 6984 em->len = found_key.offset - start; 6985 em->block_start = EXTENT_MAP_HOLE; 6986 goto insert; 6987 } 6988 6989 btrfs_extent_item_to_extent_map(inode, path, item, !page, em); 6990 6991 if (extent_type == BTRFS_FILE_EXTENT_REG || 6992 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 6993 goto insert; 6994 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 6995 unsigned long ptr; 6996 char *map; 6997 size_t size; 6998 size_t extent_offset; 6999 size_t copy_size; 7000 7001 if (!page) 7002 goto out; 7003 7004 size = btrfs_file_extent_ram_bytes(leaf, item); 7005 extent_offset = page_offset(page) + pg_offset - extent_start; 7006 copy_size = min_t(u64, PAGE_SIZE - pg_offset, 7007 size - extent_offset); 7008 em->start = extent_start + extent_offset; 7009 em->len = ALIGN(copy_size, fs_info->sectorsize); 7010 em->orig_block_len = em->len; 7011 em->orig_start = em->start; 7012 ptr = btrfs_file_extent_inline_start(item) + extent_offset; 7013 7014 if (!PageUptodate(page)) { 7015 if (btrfs_file_extent_compression(leaf, item) != 7016 BTRFS_COMPRESS_NONE) { 7017 ret = uncompress_inline(path, page, pg_offset, 7018 extent_offset, item); 7019 if (ret) 7020 goto out; 7021 } else { 7022 map = kmap_local_page(page); 7023 read_extent_buffer(leaf, map + pg_offset, ptr, 7024 copy_size); 7025 if (pg_offset + copy_size < PAGE_SIZE) { 7026 memset(map + pg_offset + copy_size, 0, 7027 PAGE_SIZE - pg_offset - 7028 copy_size); 7029 } 7030 kunmap_local(map); 7031 } 7032 flush_dcache_page(page); 7033 } 7034 set_extent_uptodate(io_tree, em->start, 7035 extent_map_end(em) - 1, NULL, GFP_NOFS); 7036 goto insert; 7037 } 7038 not_found: 7039 em->start = start; 7040 em->orig_start = start; 7041 em->len = len; 7042 em->block_start = EXTENT_MAP_HOLE; 7043 insert: 7044 ret = 0; 7045 btrfs_release_path(path); 7046 if (em->start > start || extent_map_end(em) <= start) { 7047 btrfs_err(fs_info, 7048 "bad extent! em: [%llu %llu] passed [%llu %llu]", 7049 em->start, em->len, start, len); 7050 ret = -EIO; 7051 goto out; 7052 } 7053 7054 write_lock(&em_tree->lock); 7055 ret = btrfs_add_extent_mapping(fs_info, em_tree, &em, start, len); 7056 write_unlock(&em_tree->lock); 7057 out: 7058 btrfs_free_path(path); 7059 7060 trace_btrfs_get_extent(root, inode, em); 7061 7062 if (ret) { 7063 free_extent_map(em); 7064 return ERR_PTR(ret); 7065 } 7066 return em; 7067 } 7068 7069 struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode, 7070 u64 start, u64 len) 7071 { 7072 struct extent_map *em; 7073 struct extent_map *hole_em = NULL; 7074 u64 delalloc_start = start; 7075 u64 end; 7076 u64 delalloc_len; 7077 u64 delalloc_end; 7078 int err = 0; 7079 7080 em = btrfs_get_extent(inode, NULL, 0, start, len); 7081 if (IS_ERR(em)) 7082 return em; 7083 /* 7084 * If our em maps to: 7085 * - a hole or 7086 * - a pre-alloc extent, 7087 * there might actually be delalloc bytes behind it. 7088 */ 7089 if (em->block_start != EXTENT_MAP_HOLE && 7090 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 7091 return em; 7092 else 7093 hole_em = em; 7094 7095 /* check to see if we've wrapped (len == -1 or similar) */ 7096 end = start + len; 7097 if (end < start) 7098 end = (u64)-1; 7099 else 7100 end -= 1; 7101 7102 em = NULL; 7103 7104 /* ok, we didn't find anything, lets look for delalloc */ 7105 delalloc_len = count_range_bits(&inode->io_tree, &delalloc_start, 7106 end, len, EXTENT_DELALLOC, 1); 7107 delalloc_end = delalloc_start + delalloc_len; 7108 if (delalloc_end < delalloc_start) 7109 delalloc_end = (u64)-1; 7110 7111 /* 7112 * We didn't find anything useful, return the original results from 7113 * get_extent() 7114 */ 7115 if (delalloc_start > end || delalloc_end <= start) { 7116 em = hole_em; 7117 hole_em = NULL; 7118 goto out; 7119 } 7120 7121 /* 7122 * Adjust the delalloc_start to make sure it doesn't go backwards from 7123 * the start they passed in 7124 */ 7125 delalloc_start = max(start, delalloc_start); 7126 delalloc_len = delalloc_end - delalloc_start; 7127 7128 if (delalloc_len > 0) { 7129 u64 hole_start; 7130 u64 hole_len; 7131 const u64 hole_end = extent_map_end(hole_em); 7132 7133 em = alloc_extent_map(); 7134 if (!em) { 7135 err = -ENOMEM; 7136 goto out; 7137 } 7138 7139 ASSERT(hole_em); 7140 /* 7141 * When btrfs_get_extent can't find anything it returns one 7142 * huge hole 7143 * 7144 * Make sure what it found really fits our range, and adjust to 7145 * make sure it is based on the start from the caller 7146 */ 7147 if (hole_end <= start || hole_em->start > end) { 7148 free_extent_map(hole_em); 7149 hole_em = NULL; 7150 } else { 7151 hole_start = max(hole_em->start, start); 7152 hole_len = hole_end - hole_start; 7153 } 7154 7155 if (hole_em && delalloc_start > hole_start) { 7156 /* 7157 * Our hole starts before our delalloc, so we have to 7158 * return just the parts of the hole that go until the 7159 * delalloc starts 7160 */ 7161 em->len = min(hole_len, delalloc_start - hole_start); 7162 em->start = hole_start; 7163 em->orig_start = hole_start; 7164 /* 7165 * Don't adjust block start at all, it is fixed at 7166 * EXTENT_MAP_HOLE 7167 */ 7168 em->block_start = hole_em->block_start; 7169 em->block_len = hole_len; 7170 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags)) 7171 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 7172 } else { 7173 /* 7174 * Hole is out of passed range or it starts after 7175 * delalloc range 7176 */ 7177 em->start = delalloc_start; 7178 em->len = delalloc_len; 7179 em->orig_start = delalloc_start; 7180 em->block_start = EXTENT_MAP_DELALLOC; 7181 em->block_len = delalloc_len; 7182 } 7183 } else { 7184 return hole_em; 7185 } 7186 out: 7187 7188 free_extent_map(hole_em); 7189 if (err) { 7190 free_extent_map(em); 7191 return ERR_PTR(err); 7192 } 7193 return em; 7194 } 7195 7196 static struct extent_map *btrfs_create_dio_extent(struct btrfs_inode *inode, 7197 const u64 start, 7198 const u64 len, 7199 const u64 orig_start, 7200 const u64 block_start, 7201 const u64 block_len, 7202 const u64 orig_block_len, 7203 const u64 ram_bytes, 7204 const int type) 7205 { 7206 struct extent_map *em = NULL; 7207 int ret; 7208 7209 if (type != BTRFS_ORDERED_NOCOW) { 7210 em = create_io_em(inode, start, len, orig_start, block_start, 7211 block_len, orig_block_len, ram_bytes, 7212 BTRFS_COMPRESS_NONE, /* compress_type */ 7213 type); 7214 if (IS_ERR(em)) 7215 goto out; 7216 } 7217 ret = btrfs_add_ordered_extent(inode, start, len, len, block_start, 7218 block_len, 0, 7219 (1 << type) | 7220 (1 << BTRFS_ORDERED_DIRECT), 7221 BTRFS_COMPRESS_NONE); 7222 if (ret) { 7223 if (em) { 7224 free_extent_map(em); 7225 btrfs_drop_extent_cache(inode, start, start + len - 1, 0); 7226 } 7227 em = ERR_PTR(ret); 7228 } 7229 out: 7230 7231 return em; 7232 } 7233 7234 static struct extent_map *btrfs_new_extent_direct(struct btrfs_inode *inode, 7235 u64 start, u64 len) 7236 { 7237 struct btrfs_root *root = inode->root; 7238 struct btrfs_fs_info *fs_info = root->fs_info; 7239 struct extent_map *em; 7240 struct btrfs_key ins; 7241 u64 alloc_hint; 7242 int ret; 7243 7244 alloc_hint = get_extent_allocation_hint(inode, start, len); 7245 ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize, 7246 0, alloc_hint, &ins, 1, 1); 7247 if (ret) 7248 return ERR_PTR(ret); 7249 7250 em = btrfs_create_dio_extent(inode, start, ins.offset, start, 7251 ins.objectid, ins.offset, ins.offset, 7252 ins.offset, BTRFS_ORDERED_REGULAR); 7253 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 7254 if (IS_ERR(em)) 7255 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 7256 1); 7257 7258 return em; 7259 } 7260 7261 static bool btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr) 7262 { 7263 struct btrfs_block_group *block_group; 7264 bool readonly = false; 7265 7266 block_group = btrfs_lookup_block_group(fs_info, bytenr); 7267 if (!block_group || block_group->ro) 7268 readonly = true; 7269 if (block_group) 7270 btrfs_put_block_group(block_group); 7271 return readonly; 7272 } 7273 7274 /* 7275 * Check if we can do nocow write into the range [@offset, @offset + @len) 7276 * 7277 * @offset: File offset 7278 * @len: The length to write, will be updated to the nocow writeable 7279 * range 7280 * @orig_start: (optional) Return the original file offset of the file extent 7281 * @orig_len: (optional) Return the original on-disk length of the file extent 7282 * @ram_bytes: (optional) Return the ram_bytes of the file extent 7283 * @strict: if true, omit optimizations that might force us into unnecessary 7284 * cow. e.g., don't trust generation number. 7285 * 7286 * Return: 7287 * >0 and update @len if we can do nocow write 7288 * 0 if we can't do nocow write 7289 * <0 if error happened 7290 * 7291 * NOTE: This only checks the file extents, caller is responsible to wait for 7292 * any ordered extents. 7293 */ 7294 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len, 7295 u64 *orig_start, u64 *orig_block_len, 7296 u64 *ram_bytes, bool strict) 7297 { 7298 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7299 struct can_nocow_file_extent_args nocow_args = { 0 }; 7300 struct btrfs_path *path; 7301 int ret; 7302 struct extent_buffer *leaf; 7303 struct btrfs_root *root = BTRFS_I(inode)->root; 7304 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 7305 struct btrfs_file_extent_item *fi; 7306 struct btrfs_key key; 7307 int found_type; 7308 7309 path = btrfs_alloc_path(); 7310 if (!path) 7311 return -ENOMEM; 7312 7313 ret = btrfs_lookup_file_extent(NULL, root, path, 7314 btrfs_ino(BTRFS_I(inode)), offset, 0); 7315 if (ret < 0) 7316 goto out; 7317 7318 if (ret == 1) { 7319 if (path->slots[0] == 0) { 7320 /* can't find the item, must cow */ 7321 ret = 0; 7322 goto out; 7323 } 7324 path->slots[0]--; 7325 } 7326 ret = 0; 7327 leaf = path->nodes[0]; 7328 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 7329 if (key.objectid != btrfs_ino(BTRFS_I(inode)) || 7330 key.type != BTRFS_EXTENT_DATA_KEY) { 7331 /* not our file or wrong item type, must cow */ 7332 goto out; 7333 } 7334 7335 if (key.offset > offset) { 7336 /* Wrong offset, must cow */ 7337 goto out; 7338 } 7339 7340 if (btrfs_file_extent_end(path) <= offset) 7341 goto out; 7342 7343 fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); 7344 found_type = btrfs_file_extent_type(leaf, fi); 7345 if (ram_bytes) 7346 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 7347 7348 nocow_args.start = offset; 7349 nocow_args.end = offset + *len - 1; 7350 nocow_args.strict = strict; 7351 nocow_args.free_path = true; 7352 7353 ret = can_nocow_file_extent(path, &key, BTRFS_I(inode), &nocow_args); 7354 /* can_nocow_file_extent() has freed the path. */ 7355 path = NULL; 7356 7357 if (ret != 1) { 7358 /* Treat errors as not being able to NOCOW. */ 7359 ret = 0; 7360 goto out; 7361 } 7362 7363 ret = 0; 7364 if (btrfs_extent_readonly(fs_info, nocow_args.disk_bytenr)) 7365 goto out; 7366 7367 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) && 7368 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 7369 u64 range_end; 7370 7371 range_end = round_up(offset + nocow_args.num_bytes, 7372 root->fs_info->sectorsize) - 1; 7373 ret = test_range_bit(io_tree, offset, range_end, 7374 EXTENT_DELALLOC, 0, NULL); 7375 if (ret) { 7376 ret = -EAGAIN; 7377 goto out; 7378 } 7379 } 7380 7381 if (orig_start) 7382 *orig_start = key.offset - nocow_args.extent_offset; 7383 if (orig_block_len) 7384 *orig_block_len = nocow_args.disk_num_bytes; 7385 7386 *len = nocow_args.num_bytes; 7387 ret = 1; 7388 out: 7389 btrfs_free_path(path); 7390 return ret; 7391 } 7392 7393 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend, 7394 struct extent_state **cached_state, 7395 unsigned int iomap_flags) 7396 { 7397 const bool writing = (iomap_flags & IOMAP_WRITE); 7398 const bool nowait = (iomap_flags & IOMAP_NOWAIT); 7399 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 7400 struct btrfs_ordered_extent *ordered; 7401 int ret = 0; 7402 7403 while (1) { 7404 if (nowait) { 7405 if (!try_lock_extent(io_tree, lockstart, lockend)) 7406 return -EAGAIN; 7407 } else { 7408 lock_extent_bits(io_tree, lockstart, lockend, cached_state); 7409 } 7410 /* 7411 * We're concerned with the entire range that we're going to be 7412 * doing DIO to, so we need to make sure there's no ordered 7413 * extents in this range. 7414 */ 7415 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart, 7416 lockend - lockstart + 1); 7417 7418 /* 7419 * We need to make sure there are no buffered pages in this 7420 * range either, we could have raced between the invalidate in 7421 * generic_file_direct_write and locking the extent. The 7422 * invalidate needs to happen so that reads after a write do not 7423 * get stale data. 7424 */ 7425 if (!ordered && 7426 (!writing || !filemap_range_has_page(inode->i_mapping, 7427 lockstart, lockend))) 7428 break; 7429 7430 unlock_extent_cached(io_tree, lockstart, lockend, cached_state); 7431 7432 if (ordered) { 7433 if (nowait) { 7434 btrfs_put_ordered_extent(ordered); 7435 ret = -EAGAIN; 7436 break; 7437 } 7438 /* 7439 * If we are doing a DIO read and the ordered extent we 7440 * found is for a buffered write, we can not wait for it 7441 * to complete and retry, because if we do so we can 7442 * deadlock with concurrent buffered writes on page 7443 * locks. This happens only if our DIO read covers more 7444 * than one extent map, if at this point has already 7445 * created an ordered extent for a previous extent map 7446 * and locked its range in the inode's io tree, and a 7447 * concurrent write against that previous extent map's 7448 * range and this range started (we unlock the ranges 7449 * in the io tree only when the bios complete and 7450 * buffered writes always lock pages before attempting 7451 * to lock range in the io tree). 7452 */ 7453 if (writing || 7454 test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) 7455 btrfs_start_ordered_extent(ordered, 1); 7456 else 7457 ret = nowait ? -EAGAIN : -ENOTBLK; 7458 btrfs_put_ordered_extent(ordered); 7459 } else { 7460 /* 7461 * We could trigger writeback for this range (and wait 7462 * for it to complete) and then invalidate the pages for 7463 * this range (through invalidate_inode_pages2_range()), 7464 * but that can lead us to a deadlock with a concurrent 7465 * call to readahead (a buffered read or a defrag call 7466 * triggered a readahead) on a page lock due to an 7467 * ordered dio extent we created before but did not have 7468 * yet a corresponding bio submitted (whence it can not 7469 * complete), which makes readahead wait for that 7470 * ordered extent to complete while holding a lock on 7471 * that page. 7472 */ 7473 ret = nowait ? -EAGAIN : -ENOTBLK; 7474 } 7475 7476 if (ret) 7477 break; 7478 7479 cond_resched(); 7480 } 7481 7482 return ret; 7483 } 7484 7485 /* The callers of this must take lock_extent() */ 7486 static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start, 7487 u64 len, u64 orig_start, u64 block_start, 7488 u64 block_len, u64 orig_block_len, 7489 u64 ram_bytes, int compress_type, 7490 int type) 7491 { 7492 struct extent_map_tree *em_tree; 7493 struct extent_map *em; 7494 int ret; 7495 7496 ASSERT(type == BTRFS_ORDERED_PREALLOC || 7497 type == BTRFS_ORDERED_COMPRESSED || 7498 type == BTRFS_ORDERED_NOCOW || 7499 type == BTRFS_ORDERED_REGULAR); 7500 7501 em_tree = &inode->extent_tree; 7502 em = alloc_extent_map(); 7503 if (!em) 7504 return ERR_PTR(-ENOMEM); 7505 7506 em->start = start; 7507 em->orig_start = orig_start; 7508 em->len = len; 7509 em->block_len = block_len; 7510 em->block_start = block_start; 7511 em->orig_block_len = orig_block_len; 7512 em->ram_bytes = ram_bytes; 7513 em->generation = -1; 7514 set_bit(EXTENT_FLAG_PINNED, &em->flags); 7515 if (type == BTRFS_ORDERED_PREALLOC) { 7516 set_bit(EXTENT_FLAG_FILLING, &em->flags); 7517 } else if (type == BTRFS_ORDERED_COMPRESSED) { 7518 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 7519 em->compress_type = compress_type; 7520 } 7521 7522 do { 7523 btrfs_drop_extent_cache(inode, em->start, 7524 em->start + em->len - 1, 0); 7525 write_lock(&em_tree->lock); 7526 ret = add_extent_mapping(em_tree, em, 1); 7527 write_unlock(&em_tree->lock); 7528 /* 7529 * The caller has taken lock_extent(), who could race with us 7530 * to add em? 7531 */ 7532 } while (ret == -EEXIST); 7533 7534 if (ret) { 7535 free_extent_map(em); 7536 return ERR_PTR(ret); 7537 } 7538 7539 /* em got 2 refs now, callers needs to do free_extent_map once. */ 7540 return em; 7541 } 7542 7543 7544 static int btrfs_get_blocks_direct_write(struct extent_map **map, 7545 struct inode *inode, 7546 struct btrfs_dio_data *dio_data, 7547 u64 start, u64 len, 7548 unsigned int iomap_flags) 7549 { 7550 const bool nowait = (iomap_flags & IOMAP_NOWAIT); 7551 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7552 struct extent_map *em = *map; 7553 int type; 7554 u64 block_start, orig_start, orig_block_len, ram_bytes; 7555 struct btrfs_block_group *bg; 7556 bool can_nocow = false; 7557 bool space_reserved = false; 7558 u64 prev_len; 7559 int ret = 0; 7560 7561 /* 7562 * We don't allocate a new extent in the following cases 7563 * 7564 * 1) The inode is marked as NODATACOW. In this case we'll just use the 7565 * existing extent. 7566 * 2) The extent is marked as PREALLOC. We're good to go here and can 7567 * just use the extent. 7568 * 7569 */ 7570 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) || 7571 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) && 7572 em->block_start != EXTENT_MAP_HOLE)) { 7573 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 7574 type = BTRFS_ORDERED_PREALLOC; 7575 else 7576 type = BTRFS_ORDERED_NOCOW; 7577 len = min(len, em->len - (start - em->start)); 7578 block_start = em->block_start + (start - em->start); 7579 7580 if (can_nocow_extent(inode, start, &len, &orig_start, 7581 &orig_block_len, &ram_bytes, false) == 1) { 7582 bg = btrfs_inc_nocow_writers(fs_info, block_start); 7583 if (bg) 7584 can_nocow = true; 7585 } 7586 } 7587 7588 prev_len = len; 7589 if (can_nocow) { 7590 struct extent_map *em2; 7591 7592 /* We can NOCOW, so only need to reserve metadata space. */ 7593 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len, len, 7594 nowait); 7595 if (ret < 0) { 7596 /* Our caller expects us to free the input extent map. */ 7597 free_extent_map(em); 7598 *map = NULL; 7599 btrfs_dec_nocow_writers(bg); 7600 if (nowait && (ret == -ENOSPC || ret == -EDQUOT)) 7601 ret = -EAGAIN; 7602 goto out; 7603 } 7604 space_reserved = true; 7605 7606 em2 = btrfs_create_dio_extent(BTRFS_I(inode), start, len, 7607 orig_start, block_start, 7608 len, orig_block_len, 7609 ram_bytes, type); 7610 btrfs_dec_nocow_writers(bg); 7611 if (type == BTRFS_ORDERED_PREALLOC) { 7612 free_extent_map(em); 7613 *map = em2; 7614 em = em2; 7615 } 7616 7617 if (IS_ERR(em2)) { 7618 ret = PTR_ERR(em2); 7619 goto out; 7620 } 7621 7622 dio_data->nocow_done = true; 7623 } else { 7624 /* Our caller expects us to free the input extent map. */ 7625 free_extent_map(em); 7626 *map = NULL; 7627 7628 if (nowait) 7629 return -EAGAIN; 7630 7631 /* 7632 * If we could not allocate data space before locking the file 7633 * range and we can't do a NOCOW write, then we have to fail. 7634 */ 7635 if (!dio_data->data_space_reserved) 7636 return -ENOSPC; 7637 7638 /* 7639 * We have to COW and we have already reserved data space before, 7640 * so now we reserve only metadata. 7641 */ 7642 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len, len, 7643 false); 7644 if (ret < 0) 7645 goto out; 7646 space_reserved = true; 7647 7648 em = btrfs_new_extent_direct(BTRFS_I(inode), start, len); 7649 if (IS_ERR(em)) { 7650 ret = PTR_ERR(em); 7651 goto out; 7652 } 7653 *map = em; 7654 len = min(len, em->len - (start - em->start)); 7655 if (len < prev_len) 7656 btrfs_delalloc_release_metadata(BTRFS_I(inode), 7657 prev_len - len, true); 7658 } 7659 7660 /* 7661 * We have created our ordered extent, so we can now release our reservation 7662 * for an outstanding extent. 7663 */ 7664 btrfs_delalloc_release_extents(BTRFS_I(inode), prev_len); 7665 7666 /* 7667 * Need to update the i_size under the extent lock so buffered 7668 * readers will get the updated i_size when we unlock. 7669 */ 7670 if (start + len > i_size_read(inode)) 7671 i_size_write(inode, start + len); 7672 out: 7673 if (ret && space_reserved) { 7674 btrfs_delalloc_release_extents(BTRFS_I(inode), len); 7675 btrfs_delalloc_release_metadata(BTRFS_I(inode), len, true); 7676 } 7677 return ret; 7678 } 7679 7680 static int btrfs_dio_iomap_begin(struct inode *inode, loff_t start, 7681 loff_t length, unsigned int flags, struct iomap *iomap, 7682 struct iomap *srcmap) 7683 { 7684 struct iomap_iter *iter = container_of(iomap, struct iomap_iter, iomap); 7685 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7686 struct extent_map *em; 7687 struct extent_state *cached_state = NULL; 7688 struct btrfs_dio_data *dio_data = iter->private; 7689 u64 lockstart, lockend; 7690 const bool write = !!(flags & IOMAP_WRITE); 7691 int ret = 0; 7692 u64 len = length; 7693 const u64 data_alloc_len = length; 7694 bool unlock_extents = false; 7695 7696 /* 7697 * Cap the size of reads to that usually seen in buffered I/O as we need 7698 * to allocate a contiguous array for the checksums. 7699 */ 7700 if (!write) 7701 len = min_t(u64, len, fs_info->sectorsize * BTRFS_MAX_BIO_SECTORS); 7702 7703 lockstart = start; 7704 lockend = start + len - 1; 7705 7706 /* 7707 * iomap_dio_rw() only does filemap_write_and_wait_range(), which isn't 7708 * enough if we've written compressed pages to this area, so we need to 7709 * flush the dirty pages again to make absolutely sure that any 7710 * outstanding dirty pages are on disk - the first flush only starts 7711 * compression on the data, while keeping the pages locked, so by the 7712 * time the second flush returns we know bios for the compressed pages 7713 * were submitted and finished, and the pages no longer under writeback. 7714 * 7715 * If we have a NOWAIT request and we have any pages in the range that 7716 * are locked, likely due to compression still in progress, we don't want 7717 * to block on page locks. We also don't want to block on pages marked as 7718 * dirty or under writeback (same as for the non-compression case). 7719 * iomap_dio_rw() did the same check, but after that and before we got 7720 * here, mmap'ed writes may have happened or buffered reads started 7721 * (readpage() and readahead(), which lock pages), as we haven't locked 7722 * the file range yet. 7723 */ 7724 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 7725 &BTRFS_I(inode)->runtime_flags)) { 7726 if (flags & IOMAP_NOWAIT) { 7727 if (filemap_range_needs_writeback(inode->i_mapping, 7728 lockstart, lockend)) 7729 return -EAGAIN; 7730 } else { 7731 ret = filemap_fdatawrite_range(inode->i_mapping, start, 7732 start + length - 1); 7733 if (ret) 7734 return ret; 7735 } 7736 } 7737 7738 memset(dio_data, 0, sizeof(*dio_data)); 7739 7740 /* 7741 * We always try to allocate data space and must do it before locking 7742 * the file range, to avoid deadlocks with concurrent writes to the same 7743 * range if the range has several extents and the writes don't expand the 7744 * current i_size (the inode lock is taken in shared mode). If we fail to 7745 * allocate data space here we continue and later, after locking the 7746 * file range, we fail with ENOSPC only if we figure out we can not do a 7747 * NOCOW write. 7748 */ 7749 if (write && !(flags & IOMAP_NOWAIT)) { 7750 ret = btrfs_check_data_free_space(BTRFS_I(inode), 7751 &dio_data->data_reserved, 7752 start, data_alloc_len); 7753 if (!ret) 7754 dio_data->data_space_reserved = true; 7755 else if (ret && !(BTRFS_I(inode)->flags & 7756 (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC))) 7757 goto err; 7758 } 7759 7760 /* 7761 * If this errors out it's because we couldn't invalidate pagecache for 7762 * this range and we need to fallback to buffered IO, or we are doing a 7763 * NOWAIT read/write and we need to block. 7764 */ 7765 ret = lock_extent_direct(inode, lockstart, lockend, &cached_state, flags); 7766 if (ret < 0) 7767 goto err; 7768 7769 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len); 7770 if (IS_ERR(em)) { 7771 ret = PTR_ERR(em); 7772 goto unlock_err; 7773 } 7774 7775 /* 7776 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered 7777 * io. INLINE is special, and we could probably kludge it in here, but 7778 * it's still buffered so for safety lets just fall back to the generic 7779 * buffered path. 7780 * 7781 * For COMPRESSED we _have_ to read the entire extent in so we can 7782 * decompress it, so there will be buffering required no matter what we 7783 * do, so go ahead and fallback to buffered. 7784 * 7785 * We return -ENOTBLK because that's what makes DIO go ahead and go back 7786 * to buffered IO. Don't blame me, this is the price we pay for using 7787 * the generic code. 7788 */ 7789 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) || 7790 em->block_start == EXTENT_MAP_INLINE) { 7791 free_extent_map(em); 7792 /* 7793 * If we are in a NOWAIT context, return -EAGAIN in order to 7794 * fallback to buffered IO. This is not only because we can 7795 * block with buffered IO (no support for NOWAIT semantics at 7796 * the moment) but also to avoid returning short reads to user 7797 * space - this happens if we were able to read some data from 7798 * previous non-compressed extents and then when we fallback to 7799 * buffered IO, at btrfs_file_read_iter() by calling 7800 * filemap_read(), we fail to fault in pages for the read buffer, 7801 * in which case filemap_read() returns a short read (the number 7802 * of bytes previously read is > 0, so it does not return -EFAULT). 7803 */ 7804 ret = (flags & IOMAP_NOWAIT) ? -EAGAIN : -ENOTBLK; 7805 goto unlock_err; 7806 } 7807 7808 len = min(len, em->len - (start - em->start)); 7809 7810 /* 7811 * If we have a NOWAIT request and the range contains multiple extents 7812 * (or a mix of extents and holes), then we return -EAGAIN to make the 7813 * caller fallback to a context where it can do a blocking (without 7814 * NOWAIT) request. This way we avoid doing partial IO and returning 7815 * success to the caller, which is not optimal for writes and for reads 7816 * it can result in unexpected behaviour for an application. 7817 * 7818 * When doing a read, because we use IOMAP_DIO_PARTIAL when calling 7819 * iomap_dio_rw(), we can end up returning less data then what the caller 7820 * asked for, resulting in an unexpected, and incorrect, short read. 7821 * That is, the caller asked to read N bytes and we return less than that, 7822 * which is wrong unless we are crossing EOF. This happens if we get a 7823 * page fault error when trying to fault in pages for the buffer that is 7824 * associated to the struct iov_iter passed to iomap_dio_rw(), and we 7825 * have previously submitted bios for other extents in the range, in 7826 * which case iomap_dio_rw() may return us EIOCBQUEUED if not all of 7827 * those bios have completed by the time we get the page fault error, 7828 * which we return back to our caller - we should only return EIOCBQUEUED 7829 * after we have submitted bios for all the extents in the range. 7830 */ 7831 if ((flags & IOMAP_NOWAIT) && len < length) { 7832 free_extent_map(em); 7833 ret = -EAGAIN; 7834 goto unlock_err; 7835 } 7836 7837 if (write) { 7838 ret = btrfs_get_blocks_direct_write(&em, inode, dio_data, 7839 start, len, flags); 7840 if (ret < 0) 7841 goto unlock_err; 7842 unlock_extents = true; 7843 /* Recalc len in case the new em is smaller than requested */ 7844 len = min(len, em->len - (start - em->start)); 7845 if (dio_data->data_space_reserved) { 7846 u64 release_offset; 7847 u64 release_len = 0; 7848 7849 if (dio_data->nocow_done) { 7850 release_offset = start; 7851 release_len = data_alloc_len; 7852 } else if (len < data_alloc_len) { 7853 release_offset = start + len; 7854 release_len = data_alloc_len - len; 7855 } 7856 7857 if (release_len > 0) 7858 btrfs_free_reserved_data_space(BTRFS_I(inode), 7859 dio_data->data_reserved, 7860 release_offset, 7861 release_len); 7862 } 7863 } else { 7864 /* 7865 * We need to unlock only the end area that we aren't using. 7866 * The rest is going to be unlocked by the endio routine. 7867 */ 7868 lockstart = start + len; 7869 if (lockstart < lockend) 7870 unlock_extents = true; 7871 } 7872 7873 if (unlock_extents) 7874 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 7875 lockstart, lockend, &cached_state); 7876 else 7877 free_extent_state(cached_state); 7878 7879 /* 7880 * Translate extent map information to iomap. 7881 * We trim the extents (and move the addr) even though iomap code does 7882 * that, since we have locked only the parts we are performing I/O in. 7883 */ 7884 if ((em->block_start == EXTENT_MAP_HOLE) || 7885 (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) && !write)) { 7886 iomap->addr = IOMAP_NULL_ADDR; 7887 iomap->type = IOMAP_HOLE; 7888 } else { 7889 iomap->addr = em->block_start + (start - em->start); 7890 iomap->type = IOMAP_MAPPED; 7891 } 7892 iomap->offset = start; 7893 iomap->bdev = fs_info->fs_devices->latest_dev->bdev; 7894 iomap->length = len; 7895 7896 if (write && btrfs_use_zone_append(BTRFS_I(inode), em->block_start)) 7897 iomap->flags |= IOMAP_F_ZONE_APPEND; 7898 7899 free_extent_map(em); 7900 7901 return 0; 7902 7903 unlock_err: 7904 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7905 &cached_state); 7906 err: 7907 if (dio_data->data_space_reserved) { 7908 btrfs_free_reserved_data_space(BTRFS_I(inode), 7909 dio_data->data_reserved, 7910 start, data_alloc_len); 7911 extent_changeset_free(dio_data->data_reserved); 7912 } 7913 7914 return ret; 7915 } 7916 7917 static int btrfs_dio_iomap_end(struct inode *inode, loff_t pos, loff_t length, 7918 ssize_t written, unsigned int flags, struct iomap *iomap) 7919 { 7920 struct iomap_iter *iter = container_of(iomap, struct iomap_iter, iomap); 7921 struct btrfs_dio_data *dio_data = iter->private; 7922 size_t submitted = dio_data->submitted; 7923 const bool write = !!(flags & IOMAP_WRITE); 7924 int ret = 0; 7925 7926 if (!write && (iomap->type == IOMAP_HOLE)) { 7927 /* If reading from a hole, unlock and return */ 7928 unlock_extent(&BTRFS_I(inode)->io_tree, pos, pos + length - 1); 7929 return 0; 7930 } 7931 7932 if (submitted < length) { 7933 pos += submitted; 7934 length -= submitted; 7935 if (write) 7936 btrfs_mark_ordered_io_finished(BTRFS_I(inode), NULL, 7937 pos, length, false); 7938 else 7939 unlock_extent(&BTRFS_I(inode)->io_tree, pos, 7940 pos + length - 1); 7941 ret = -ENOTBLK; 7942 } 7943 7944 if (write) 7945 extent_changeset_free(dio_data->data_reserved); 7946 return ret; 7947 } 7948 7949 static void btrfs_dio_private_put(struct btrfs_dio_private *dip) 7950 { 7951 /* 7952 * This implies a barrier so that stores to dio_bio->bi_status before 7953 * this and loads of dio_bio->bi_status after this are fully ordered. 7954 */ 7955 if (!refcount_dec_and_test(&dip->refs)) 7956 return; 7957 7958 if (btrfs_op(&dip->bio) == BTRFS_MAP_WRITE) { 7959 btrfs_mark_ordered_io_finished(BTRFS_I(dip->inode), NULL, 7960 dip->file_offset, dip->bytes, 7961 !dip->bio.bi_status); 7962 } else { 7963 unlock_extent(&BTRFS_I(dip->inode)->io_tree, 7964 dip->file_offset, 7965 dip->file_offset + dip->bytes - 1); 7966 } 7967 7968 kfree(dip->csums); 7969 bio_endio(&dip->bio); 7970 } 7971 7972 static void submit_dio_repair_bio(struct inode *inode, struct bio *bio, 7973 int mirror_num, 7974 enum btrfs_compression_type compress_type) 7975 { 7976 struct btrfs_dio_private *dip = bio->bi_private; 7977 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7978 7979 BUG_ON(bio_op(bio) == REQ_OP_WRITE); 7980 7981 refcount_inc(&dip->refs); 7982 btrfs_submit_bio(fs_info, bio, mirror_num); 7983 } 7984 7985 static blk_status_t btrfs_check_read_dio_bio(struct btrfs_dio_private *dip, 7986 struct btrfs_bio *bbio, 7987 const bool uptodate) 7988 { 7989 struct inode *inode = dip->inode; 7990 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 7991 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; 7992 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 7993 const bool csum = !(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM); 7994 blk_status_t err = BLK_STS_OK; 7995 struct bvec_iter iter; 7996 struct bio_vec bv; 7997 u32 offset; 7998 7999 btrfs_bio_for_each_sector(fs_info, bv, bbio, iter, offset) { 8000 u64 start = bbio->file_offset + offset; 8001 8002 if (uptodate && 8003 (!csum || !btrfs_check_data_csum(inode, bbio, offset, bv.bv_page, 8004 bv.bv_offset))) { 8005 clean_io_failure(fs_info, failure_tree, io_tree, start, 8006 bv.bv_page, btrfs_ino(BTRFS_I(inode)), 8007 bv.bv_offset); 8008 } else { 8009 int ret; 8010 8011 ret = btrfs_repair_one_sector(inode, bbio, offset, 8012 bv.bv_page, bv.bv_offset, 8013 submit_dio_repair_bio); 8014 if (ret) 8015 err = errno_to_blk_status(ret); 8016 } 8017 } 8018 8019 return err; 8020 } 8021 8022 static blk_status_t btrfs_submit_bio_start_direct_io(struct inode *inode, 8023 struct bio *bio, 8024 u64 dio_file_offset) 8025 { 8026 return btrfs_csum_one_bio(BTRFS_I(inode), bio, dio_file_offset, false); 8027 } 8028 8029 static void btrfs_end_dio_bio(struct bio *bio) 8030 { 8031 struct btrfs_dio_private *dip = bio->bi_private; 8032 struct btrfs_bio *bbio = btrfs_bio(bio); 8033 blk_status_t err = bio->bi_status; 8034 8035 if (err) 8036 btrfs_warn(BTRFS_I(dip->inode)->root->fs_info, 8037 "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d", 8038 btrfs_ino(BTRFS_I(dip->inode)), bio_op(bio), 8039 bio->bi_opf, bio->bi_iter.bi_sector, 8040 bio->bi_iter.bi_size, err); 8041 8042 if (bio_op(bio) == REQ_OP_READ) 8043 err = btrfs_check_read_dio_bio(dip, bbio, !err); 8044 8045 if (err) 8046 dip->bio.bi_status = err; 8047 8048 btrfs_record_physical_zoned(dip->inode, bbio->file_offset, bio); 8049 8050 bio_put(bio); 8051 btrfs_dio_private_put(dip); 8052 } 8053 8054 static void btrfs_submit_dio_bio(struct bio *bio, struct inode *inode, 8055 u64 file_offset, int async_submit) 8056 { 8057 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8058 struct btrfs_dio_private *dip = bio->bi_private; 8059 blk_status_t ret; 8060 8061 /* Save the original iter for read repair */ 8062 if (btrfs_op(bio) == BTRFS_MAP_READ) 8063 btrfs_bio(bio)->iter = bio->bi_iter; 8064 8065 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) 8066 goto map; 8067 8068 if (btrfs_op(bio) == BTRFS_MAP_WRITE) { 8069 /* Check btrfs_submit_data_write_bio() for async submit rules */ 8070 if (async_submit && !atomic_read(&BTRFS_I(inode)->sync_writers) && 8071 btrfs_wq_submit_bio(inode, bio, 0, file_offset, 8072 btrfs_submit_bio_start_direct_io)) 8073 return; 8074 8075 /* 8076 * If we aren't doing async submit, calculate the csum of the 8077 * bio now. 8078 */ 8079 ret = btrfs_csum_one_bio(BTRFS_I(inode), bio, file_offset, false); 8080 if (ret) { 8081 bio->bi_status = ret; 8082 bio_endio(bio); 8083 return; 8084 } 8085 } else { 8086 btrfs_bio(bio)->csum = btrfs_csum_ptr(fs_info, dip->csums, 8087 file_offset - dip->file_offset); 8088 } 8089 map: 8090 btrfs_submit_bio(fs_info, bio, 0); 8091 } 8092 8093 static void btrfs_submit_direct(const struct iomap_iter *iter, 8094 struct bio *dio_bio, loff_t file_offset) 8095 { 8096 struct btrfs_dio_private *dip = 8097 container_of(dio_bio, struct btrfs_dio_private, bio); 8098 struct inode *inode = iter->inode; 8099 const bool write = (btrfs_op(dio_bio) == BTRFS_MAP_WRITE); 8100 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8101 const bool raid56 = (btrfs_data_alloc_profile(fs_info) & 8102 BTRFS_BLOCK_GROUP_RAID56_MASK); 8103 struct bio *bio; 8104 u64 start_sector; 8105 int async_submit = 0; 8106 u64 submit_len; 8107 u64 clone_offset = 0; 8108 u64 clone_len; 8109 u64 logical; 8110 int ret; 8111 blk_status_t status; 8112 struct btrfs_io_geometry geom; 8113 struct btrfs_dio_data *dio_data = iter->private; 8114 struct extent_map *em = NULL; 8115 8116 dip->inode = inode; 8117 dip->file_offset = file_offset; 8118 dip->bytes = dio_bio->bi_iter.bi_size; 8119 refcount_set(&dip->refs, 1); 8120 dip->csums = NULL; 8121 8122 if (!write && !(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) { 8123 unsigned int nr_sectors = 8124 (dio_bio->bi_iter.bi_size >> fs_info->sectorsize_bits); 8125 8126 /* 8127 * Load the csums up front to reduce csum tree searches and 8128 * contention when submitting bios. 8129 */ 8130 status = BLK_STS_RESOURCE; 8131 dip->csums = kcalloc(nr_sectors, fs_info->csum_size, GFP_NOFS); 8132 if (!dip) 8133 goto out_err; 8134 8135 status = btrfs_lookup_bio_sums(inode, dio_bio, dip->csums); 8136 if (status != BLK_STS_OK) 8137 goto out_err; 8138 } 8139 8140 start_sector = dio_bio->bi_iter.bi_sector; 8141 submit_len = dio_bio->bi_iter.bi_size; 8142 8143 do { 8144 logical = start_sector << 9; 8145 em = btrfs_get_chunk_map(fs_info, logical, submit_len); 8146 if (IS_ERR(em)) { 8147 status = errno_to_blk_status(PTR_ERR(em)); 8148 em = NULL; 8149 goto out_err_em; 8150 } 8151 ret = btrfs_get_io_geometry(fs_info, em, btrfs_op(dio_bio), 8152 logical, &geom); 8153 if (ret) { 8154 status = errno_to_blk_status(ret); 8155 goto out_err_em; 8156 } 8157 8158 clone_len = min(submit_len, geom.len); 8159 ASSERT(clone_len <= UINT_MAX); 8160 8161 /* 8162 * This will never fail as it's passing GPF_NOFS and 8163 * the allocation is backed by btrfs_bioset. 8164 */ 8165 bio = btrfs_bio_clone_partial(dio_bio, clone_offset, clone_len); 8166 bio->bi_private = dip; 8167 bio->bi_end_io = btrfs_end_dio_bio; 8168 btrfs_bio(bio)->file_offset = file_offset; 8169 8170 if (bio_op(bio) == REQ_OP_ZONE_APPEND) { 8171 status = extract_ordered_extent(BTRFS_I(inode), bio, 8172 file_offset); 8173 if (status) { 8174 bio_put(bio); 8175 goto out_err; 8176 } 8177 } 8178 8179 ASSERT(submit_len >= clone_len); 8180 submit_len -= clone_len; 8181 8182 /* 8183 * Increase the count before we submit the bio so we know 8184 * the end IO handler won't happen before we increase the 8185 * count. Otherwise, the dip might get freed before we're 8186 * done setting it up. 8187 * 8188 * We transfer the initial reference to the last bio, so we 8189 * don't need to increment the reference count for the last one. 8190 */ 8191 if (submit_len > 0) { 8192 refcount_inc(&dip->refs); 8193 /* 8194 * If we are submitting more than one bio, submit them 8195 * all asynchronously. The exception is RAID 5 or 6, as 8196 * asynchronous checksums make it difficult to collect 8197 * full stripe writes. 8198 */ 8199 if (!raid56) 8200 async_submit = 1; 8201 } 8202 8203 btrfs_submit_dio_bio(bio, inode, file_offset, async_submit); 8204 8205 dio_data->submitted += clone_len; 8206 clone_offset += clone_len; 8207 start_sector += clone_len >> 9; 8208 file_offset += clone_len; 8209 8210 free_extent_map(em); 8211 } while (submit_len > 0); 8212 return; 8213 8214 out_err_em: 8215 free_extent_map(em); 8216 out_err: 8217 dio_bio->bi_status = status; 8218 btrfs_dio_private_put(dip); 8219 } 8220 8221 static const struct iomap_ops btrfs_dio_iomap_ops = { 8222 .iomap_begin = btrfs_dio_iomap_begin, 8223 .iomap_end = btrfs_dio_iomap_end, 8224 }; 8225 8226 static const struct iomap_dio_ops btrfs_dio_ops = { 8227 .submit_io = btrfs_submit_direct, 8228 .bio_set = &btrfs_dio_bioset, 8229 }; 8230 8231 ssize_t btrfs_dio_rw(struct kiocb *iocb, struct iov_iter *iter, size_t done_before) 8232 { 8233 struct btrfs_dio_data data; 8234 8235 return iomap_dio_rw(iocb, iter, &btrfs_dio_iomap_ops, &btrfs_dio_ops, 8236 IOMAP_DIO_PARTIAL | IOMAP_DIO_NOSYNC, 8237 &data, done_before); 8238 } 8239 8240 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 8241 u64 start, u64 len) 8242 { 8243 int ret; 8244 8245 ret = fiemap_prep(inode, fieinfo, start, &len, 0); 8246 if (ret) 8247 return ret; 8248 8249 return extent_fiemap(BTRFS_I(inode), fieinfo, start, len); 8250 } 8251 8252 static int btrfs_writepages(struct address_space *mapping, 8253 struct writeback_control *wbc) 8254 { 8255 return extent_writepages(mapping, wbc); 8256 } 8257 8258 static void btrfs_readahead(struct readahead_control *rac) 8259 { 8260 extent_readahead(rac); 8261 } 8262 8263 /* 8264 * For release_folio() and invalidate_folio() we have a race window where 8265 * folio_end_writeback() is called but the subpage spinlock is not yet released. 8266 * If we continue to release/invalidate the page, we could cause use-after-free 8267 * for subpage spinlock. So this function is to spin and wait for subpage 8268 * spinlock. 8269 */ 8270 static void wait_subpage_spinlock(struct page *page) 8271 { 8272 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb); 8273 struct btrfs_subpage *subpage; 8274 8275 if (!btrfs_is_subpage(fs_info, page)) 8276 return; 8277 8278 ASSERT(PagePrivate(page) && page->private); 8279 subpage = (struct btrfs_subpage *)page->private; 8280 8281 /* 8282 * This may look insane as we just acquire the spinlock and release it, 8283 * without doing anything. But we just want to make sure no one is 8284 * still holding the subpage spinlock. 8285 * And since the page is not dirty nor writeback, and we have page 8286 * locked, the only possible way to hold a spinlock is from the endio 8287 * function to clear page writeback. 8288 * 8289 * Here we just acquire the spinlock so that all existing callers 8290 * should exit and we're safe to release/invalidate the page. 8291 */ 8292 spin_lock_irq(&subpage->lock); 8293 spin_unlock_irq(&subpage->lock); 8294 } 8295 8296 static bool __btrfs_release_folio(struct folio *folio, gfp_t gfp_flags) 8297 { 8298 int ret = try_release_extent_mapping(&folio->page, gfp_flags); 8299 8300 if (ret == 1) { 8301 wait_subpage_spinlock(&folio->page); 8302 clear_page_extent_mapped(&folio->page); 8303 } 8304 return ret; 8305 } 8306 8307 static bool btrfs_release_folio(struct folio *folio, gfp_t gfp_flags) 8308 { 8309 if (folio_test_writeback(folio) || folio_test_dirty(folio)) 8310 return false; 8311 return __btrfs_release_folio(folio, gfp_flags); 8312 } 8313 8314 #ifdef CONFIG_MIGRATION 8315 static int btrfs_migrate_folio(struct address_space *mapping, 8316 struct folio *dst, struct folio *src, 8317 enum migrate_mode mode) 8318 { 8319 int ret = filemap_migrate_folio(mapping, dst, src, mode); 8320 8321 if (ret != MIGRATEPAGE_SUCCESS) 8322 return ret; 8323 8324 if (folio_test_ordered(src)) { 8325 folio_clear_ordered(src); 8326 folio_set_ordered(dst); 8327 } 8328 8329 return MIGRATEPAGE_SUCCESS; 8330 } 8331 #else 8332 #define btrfs_migrate_folio NULL 8333 #endif 8334 8335 static void btrfs_invalidate_folio(struct folio *folio, size_t offset, 8336 size_t length) 8337 { 8338 struct btrfs_inode *inode = BTRFS_I(folio->mapping->host); 8339 struct btrfs_fs_info *fs_info = inode->root->fs_info; 8340 struct extent_io_tree *tree = &inode->io_tree; 8341 struct extent_state *cached_state = NULL; 8342 u64 page_start = folio_pos(folio); 8343 u64 page_end = page_start + folio_size(folio) - 1; 8344 u64 cur; 8345 int inode_evicting = inode->vfs_inode.i_state & I_FREEING; 8346 8347 /* 8348 * We have folio locked so no new ordered extent can be created on this 8349 * page, nor bio can be submitted for this folio. 8350 * 8351 * But already submitted bio can still be finished on this folio. 8352 * Furthermore, endio function won't skip folio which has Ordered 8353 * (Private2) already cleared, so it's possible for endio and 8354 * invalidate_folio to do the same ordered extent accounting twice 8355 * on one folio. 8356 * 8357 * So here we wait for any submitted bios to finish, so that we won't 8358 * do double ordered extent accounting on the same folio. 8359 */ 8360 folio_wait_writeback(folio); 8361 wait_subpage_spinlock(&folio->page); 8362 8363 /* 8364 * For subpage case, we have call sites like 8365 * btrfs_punch_hole_lock_range() which passes range not aligned to 8366 * sectorsize. 8367 * If the range doesn't cover the full folio, we don't need to and 8368 * shouldn't clear page extent mapped, as folio->private can still 8369 * record subpage dirty bits for other part of the range. 8370 * 8371 * For cases that invalidate the full folio even the range doesn't 8372 * cover the full folio, like invalidating the last folio, we're 8373 * still safe to wait for ordered extent to finish. 8374 */ 8375 if (!(offset == 0 && length == folio_size(folio))) { 8376 btrfs_release_folio(folio, GFP_NOFS); 8377 return; 8378 } 8379 8380 if (!inode_evicting) 8381 lock_extent_bits(tree, page_start, page_end, &cached_state); 8382 8383 cur = page_start; 8384 while (cur < page_end) { 8385 struct btrfs_ordered_extent *ordered; 8386 bool delete_states; 8387 u64 range_end; 8388 u32 range_len; 8389 8390 ordered = btrfs_lookup_first_ordered_range(inode, cur, 8391 page_end + 1 - cur); 8392 if (!ordered) { 8393 range_end = page_end; 8394 /* 8395 * No ordered extent covering this range, we are safe 8396 * to delete all extent states in the range. 8397 */ 8398 delete_states = true; 8399 goto next; 8400 } 8401 if (ordered->file_offset > cur) { 8402 /* 8403 * There is a range between [cur, oe->file_offset) not 8404 * covered by any ordered extent. 8405 * We are safe to delete all extent states, and handle 8406 * the ordered extent in the next iteration. 8407 */ 8408 range_end = ordered->file_offset - 1; 8409 delete_states = true; 8410 goto next; 8411 } 8412 8413 range_end = min(ordered->file_offset + ordered->num_bytes - 1, 8414 page_end); 8415 ASSERT(range_end + 1 - cur < U32_MAX); 8416 range_len = range_end + 1 - cur; 8417 if (!btrfs_page_test_ordered(fs_info, &folio->page, cur, range_len)) { 8418 /* 8419 * If Ordered (Private2) is cleared, it means endio has 8420 * already been executed for the range. 8421 * We can't delete the extent states as 8422 * btrfs_finish_ordered_io() may still use some of them. 8423 */ 8424 delete_states = false; 8425 goto next; 8426 } 8427 btrfs_page_clear_ordered(fs_info, &folio->page, cur, range_len); 8428 8429 /* 8430 * IO on this page will never be started, so we need to account 8431 * for any ordered extents now. Don't clear EXTENT_DELALLOC_NEW 8432 * here, must leave that up for the ordered extent completion. 8433 * 8434 * This will also unlock the range for incoming 8435 * btrfs_finish_ordered_io(). 8436 */ 8437 if (!inode_evicting) 8438 clear_extent_bit(tree, cur, range_end, 8439 EXTENT_DELALLOC | 8440 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING | 8441 EXTENT_DEFRAG, 1, 0, &cached_state); 8442 8443 spin_lock_irq(&inode->ordered_tree.lock); 8444 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags); 8445 ordered->truncated_len = min(ordered->truncated_len, 8446 cur - ordered->file_offset); 8447 spin_unlock_irq(&inode->ordered_tree.lock); 8448 8449 if (btrfs_dec_test_ordered_pending(inode, &ordered, 8450 cur, range_end + 1 - cur)) { 8451 btrfs_finish_ordered_io(ordered); 8452 /* 8453 * The ordered extent has finished, now we're again 8454 * safe to delete all extent states of the range. 8455 */ 8456 delete_states = true; 8457 } else { 8458 /* 8459 * btrfs_finish_ordered_io() will get executed by endio 8460 * of other pages, thus we can't delete extent states 8461 * anymore 8462 */ 8463 delete_states = false; 8464 } 8465 next: 8466 if (ordered) 8467 btrfs_put_ordered_extent(ordered); 8468 /* 8469 * Qgroup reserved space handler 8470 * Sector(s) here will be either: 8471 * 8472 * 1) Already written to disk or bio already finished 8473 * Then its QGROUP_RESERVED bit in io_tree is already cleared. 8474 * Qgroup will be handled by its qgroup_record then. 8475 * btrfs_qgroup_free_data() call will do nothing here. 8476 * 8477 * 2) Not written to disk yet 8478 * Then btrfs_qgroup_free_data() call will clear the 8479 * QGROUP_RESERVED bit of its io_tree, and free the qgroup 8480 * reserved data space. 8481 * Since the IO will never happen for this page. 8482 */ 8483 btrfs_qgroup_free_data(inode, NULL, cur, range_end + 1 - cur); 8484 if (!inode_evicting) { 8485 clear_extent_bit(tree, cur, range_end, EXTENT_LOCKED | 8486 EXTENT_DELALLOC | EXTENT_UPTODATE | 8487 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 8488 delete_states, &cached_state); 8489 } 8490 cur = range_end + 1; 8491 } 8492 /* 8493 * We have iterated through all ordered extents of the page, the page 8494 * should not have Ordered (Private2) anymore, or the above iteration 8495 * did something wrong. 8496 */ 8497 ASSERT(!folio_test_ordered(folio)); 8498 btrfs_page_clear_checked(fs_info, &folio->page, folio_pos(folio), folio_size(folio)); 8499 if (!inode_evicting) 8500 __btrfs_release_folio(folio, GFP_NOFS); 8501 clear_page_extent_mapped(&folio->page); 8502 } 8503 8504 /* 8505 * btrfs_page_mkwrite() is not allowed to change the file size as it gets 8506 * called from a page fault handler when a page is first dirtied. Hence we must 8507 * be careful to check for EOF conditions here. We set the page up correctly 8508 * for a written page which means we get ENOSPC checking when writing into 8509 * holes and correct delalloc and unwritten extent mapping on filesystems that 8510 * support these features. 8511 * 8512 * We are not allowed to take the i_mutex here so we have to play games to 8513 * protect against truncate races as the page could now be beyond EOF. Because 8514 * truncate_setsize() writes the inode size before removing pages, once we have 8515 * the page lock we can determine safely if the page is beyond EOF. If it is not 8516 * beyond EOF, then the page is guaranteed safe against truncation until we 8517 * unlock the page. 8518 */ 8519 vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf) 8520 { 8521 struct page *page = vmf->page; 8522 struct inode *inode = file_inode(vmf->vma->vm_file); 8523 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8524 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 8525 struct btrfs_ordered_extent *ordered; 8526 struct extent_state *cached_state = NULL; 8527 struct extent_changeset *data_reserved = NULL; 8528 unsigned long zero_start; 8529 loff_t size; 8530 vm_fault_t ret; 8531 int ret2; 8532 int reserved = 0; 8533 u64 reserved_space; 8534 u64 page_start; 8535 u64 page_end; 8536 u64 end; 8537 8538 reserved_space = PAGE_SIZE; 8539 8540 sb_start_pagefault(inode->i_sb); 8541 page_start = page_offset(page); 8542 page_end = page_start + PAGE_SIZE - 1; 8543 end = page_end; 8544 8545 /* 8546 * Reserving delalloc space after obtaining the page lock can lead to 8547 * deadlock. For example, if a dirty page is locked by this function 8548 * and the call to btrfs_delalloc_reserve_space() ends up triggering 8549 * dirty page write out, then the btrfs_writepages() function could 8550 * end up waiting indefinitely to get a lock on the page currently 8551 * being processed by btrfs_page_mkwrite() function. 8552 */ 8553 ret2 = btrfs_delalloc_reserve_space(BTRFS_I(inode), &data_reserved, 8554 page_start, reserved_space); 8555 if (!ret2) { 8556 ret2 = file_update_time(vmf->vma->vm_file); 8557 reserved = 1; 8558 } 8559 if (ret2) { 8560 ret = vmf_error(ret2); 8561 if (reserved) 8562 goto out; 8563 goto out_noreserve; 8564 } 8565 8566 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */ 8567 again: 8568 down_read(&BTRFS_I(inode)->i_mmap_lock); 8569 lock_page(page); 8570 size = i_size_read(inode); 8571 8572 if ((page->mapping != inode->i_mapping) || 8573 (page_start >= size)) { 8574 /* page got truncated out from underneath us */ 8575 goto out_unlock; 8576 } 8577 wait_on_page_writeback(page); 8578 8579 lock_extent_bits(io_tree, page_start, page_end, &cached_state); 8580 ret2 = set_page_extent_mapped(page); 8581 if (ret2 < 0) { 8582 ret = vmf_error(ret2); 8583 unlock_extent_cached(io_tree, page_start, page_end, &cached_state); 8584 goto out_unlock; 8585 } 8586 8587 /* 8588 * we can't set the delalloc bits if there are pending ordered 8589 * extents. Drop our locks and wait for them to finish 8590 */ 8591 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start, 8592 PAGE_SIZE); 8593 if (ordered) { 8594 unlock_extent_cached(io_tree, page_start, page_end, 8595 &cached_state); 8596 unlock_page(page); 8597 up_read(&BTRFS_I(inode)->i_mmap_lock); 8598 btrfs_start_ordered_extent(ordered, 1); 8599 btrfs_put_ordered_extent(ordered); 8600 goto again; 8601 } 8602 8603 if (page->index == ((size - 1) >> PAGE_SHIFT)) { 8604 reserved_space = round_up(size - page_start, 8605 fs_info->sectorsize); 8606 if (reserved_space < PAGE_SIZE) { 8607 end = page_start + reserved_space - 1; 8608 btrfs_delalloc_release_space(BTRFS_I(inode), 8609 data_reserved, page_start, 8610 PAGE_SIZE - reserved_space, true); 8611 } 8612 } 8613 8614 /* 8615 * page_mkwrite gets called when the page is firstly dirtied after it's 8616 * faulted in, but write(2) could also dirty a page and set delalloc 8617 * bits, thus in this case for space account reason, we still need to 8618 * clear any delalloc bits within this page range since we have to 8619 * reserve data&meta space before lock_page() (see above comments). 8620 */ 8621 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end, 8622 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | 8623 EXTENT_DEFRAG, 0, 0, &cached_state); 8624 8625 ret2 = btrfs_set_extent_delalloc(BTRFS_I(inode), page_start, end, 0, 8626 &cached_state); 8627 if (ret2) { 8628 unlock_extent_cached(io_tree, page_start, page_end, 8629 &cached_state); 8630 ret = VM_FAULT_SIGBUS; 8631 goto out_unlock; 8632 } 8633 8634 /* page is wholly or partially inside EOF */ 8635 if (page_start + PAGE_SIZE > size) 8636 zero_start = offset_in_page(size); 8637 else 8638 zero_start = PAGE_SIZE; 8639 8640 if (zero_start != PAGE_SIZE) 8641 memzero_page(page, zero_start, PAGE_SIZE - zero_start); 8642 8643 btrfs_page_clear_checked(fs_info, page, page_start, PAGE_SIZE); 8644 btrfs_page_set_dirty(fs_info, page, page_start, end + 1 - page_start); 8645 btrfs_page_set_uptodate(fs_info, page, page_start, end + 1 - page_start); 8646 8647 btrfs_set_inode_last_sub_trans(BTRFS_I(inode)); 8648 8649 unlock_extent_cached(io_tree, page_start, page_end, &cached_state); 8650 up_read(&BTRFS_I(inode)->i_mmap_lock); 8651 8652 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE); 8653 sb_end_pagefault(inode->i_sb); 8654 extent_changeset_free(data_reserved); 8655 return VM_FAULT_LOCKED; 8656 8657 out_unlock: 8658 unlock_page(page); 8659 up_read(&BTRFS_I(inode)->i_mmap_lock); 8660 out: 8661 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE); 8662 btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved, page_start, 8663 reserved_space, (ret != 0)); 8664 out_noreserve: 8665 sb_end_pagefault(inode->i_sb); 8666 extent_changeset_free(data_reserved); 8667 return ret; 8668 } 8669 8670 static int btrfs_truncate(struct inode *inode, bool skip_writeback) 8671 { 8672 struct btrfs_truncate_control control = { 8673 .inode = BTRFS_I(inode), 8674 .ino = btrfs_ino(BTRFS_I(inode)), 8675 .min_type = BTRFS_EXTENT_DATA_KEY, 8676 .clear_extent_range = true, 8677 }; 8678 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8679 struct btrfs_root *root = BTRFS_I(inode)->root; 8680 struct btrfs_block_rsv *rsv; 8681 int ret; 8682 struct btrfs_trans_handle *trans; 8683 u64 mask = fs_info->sectorsize - 1; 8684 u64 min_size = btrfs_calc_metadata_size(fs_info, 1); 8685 8686 if (!skip_writeback) { 8687 ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask), 8688 (u64)-1); 8689 if (ret) 8690 return ret; 8691 } 8692 8693 /* 8694 * Yes ladies and gentlemen, this is indeed ugly. We have a couple of 8695 * things going on here: 8696 * 8697 * 1) We need to reserve space to update our inode. 8698 * 8699 * 2) We need to have something to cache all the space that is going to 8700 * be free'd up by the truncate operation, but also have some slack 8701 * space reserved in case it uses space during the truncate (thank you 8702 * very much snapshotting). 8703 * 8704 * And we need these to be separate. The fact is we can use a lot of 8705 * space doing the truncate, and we have no earthly idea how much space 8706 * we will use, so we need the truncate reservation to be separate so it 8707 * doesn't end up using space reserved for updating the inode. We also 8708 * need to be able to stop the transaction and start a new one, which 8709 * means we need to be able to update the inode several times, and we 8710 * have no idea of knowing how many times that will be, so we can't just 8711 * reserve 1 item for the entirety of the operation, so that has to be 8712 * done separately as well. 8713 * 8714 * So that leaves us with 8715 * 8716 * 1) rsv - for the truncate reservation, which we will steal from the 8717 * transaction reservation. 8718 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for 8719 * updating the inode. 8720 */ 8721 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP); 8722 if (!rsv) 8723 return -ENOMEM; 8724 rsv->size = min_size; 8725 rsv->failfast = true; 8726 8727 /* 8728 * 1 for the truncate slack space 8729 * 1 for updating the inode. 8730 */ 8731 trans = btrfs_start_transaction(root, 2); 8732 if (IS_ERR(trans)) { 8733 ret = PTR_ERR(trans); 8734 goto out; 8735 } 8736 8737 /* Migrate the slack space for the truncate to our reserve */ 8738 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv, 8739 min_size, false); 8740 BUG_ON(ret); 8741 8742 trans->block_rsv = rsv; 8743 8744 while (1) { 8745 struct extent_state *cached_state = NULL; 8746 const u64 new_size = inode->i_size; 8747 const u64 lock_start = ALIGN_DOWN(new_size, fs_info->sectorsize); 8748 8749 control.new_size = new_size; 8750 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, (u64)-1, 8751 &cached_state); 8752 /* 8753 * We want to drop from the next block forward in case this new 8754 * size is not block aligned since we will be keeping the last 8755 * block of the extent just the way it is. 8756 */ 8757 btrfs_drop_extent_cache(BTRFS_I(inode), 8758 ALIGN(new_size, fs_info->sectorsize), 8759 (u64)-1, 0); 8760 8761 ret = btrfs_truncate_inode_items(trans, root, &control); 8762 8763 inode_sub_bytes(inode, control.sub_bytes); 8764 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), control.last_size); 8765 8766 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, 8767 (u64)-1, &cached_state); 8768 8769 trans->block_rsv = &fs_info->trans_block_rsv; 8770 if (ret != -ENOSPC && ret != -EAGAIN) 8771 break; 8772 8773 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 8774 if (ret) 8775 break; 8776 8777 btrfs_end_transaction(trans); 8778 btrfs_btree_balance_dirty(fs_info); 8779 8780 trans = btrfs_start_transaction(root, 2); 8781 if (IS_ERR(trans)) { 8782 ret = PTR_ERR(trans); 8783 trans = NULL; 8784 break; 8785 } 8786 8787 btrfs_block_rsv_release(fs_info, rsv, -1, NULL); 8788 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, 8789 rsv, min_size, false); 8790 BUG_ON(ret); /* shouldn't happen */ 8791 trans->block_rsv = rsv; 8792 } 8793 8794 /* 8795 * We can't call btrfs_truncate_block inside a trans handle as we could 8796 * deadlock with freeze, if we got BTRFS_NEED_TRUNCATE_BLOCK then we 8797 * know we've truncated everything except the last little bit, and can 8798 * do btrfs_truncate_block and then update the disk_i_size. 8799 */ 8800 if (ret == BTRFS_NEED_TRUNCATE_BLOCK) { 8801 btrfs_end_transaction(trans); 8802 btrfs_btree_balance_dirty(fs_info); 8803 8804 ret = btrfs_truncate_block(BTRFS_I(inode), inode->i_size, 0, 0); 8805 if (ret) 8806 goto out; 8807 trans = btrfs_start_transaction(root, 1); 8808 if (IS_ERR(trans)) { 8809 ret = PTR_ERR(trans); 8810 goto out; 8811 } 8812 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0); 8813 } 8814 8815 if (trans) { 8816 int ret2; 8817 8818 trans->block_rsv = &fs_info->trans_block_rsv; 8819 ret2 = btrfs_update_inode(trans, root, BTRFS_I(inode)); 8820 if (ret2 && !ret) 8821 ret = ret2; 8822 8823 ret2 = btrfs_end_transaction(trans); 8824 if (ret2 && !ret) 8825 ret = ret2; 8826 btrfs_btree_balance_dirty(fs_info); 8827 } 8828 out: 8829 btrfs_free_block_rsv(fs_info, rsv); 8830 /* 8831 * So if we truncate and then write and fsync we normally would just 8832 * write the extents that changed, which is a problem if we need to 8833 * first truncate that entire inode. So set this flag so we write out 8834 * all of the extents in the inode to the sync log so we're completely 8835 * safe. 8836 * 8837 * If no extents were dropped or trimmed we don't need to force the next 8838 * fsync to truncate all the inode's items from the log and re-log them 8839 * all. This means the truncate operation did not change the file size, 8840 * or changed it to a smaller size but there was only an implicit hole 8841 * between the old i_size and the new i_size, and there were no prealloc 8842 * extents beyond i_size to drop. 8843 */ 8844 if (control.extents_found > 0) 8845 btrfs_set_inode_full_sync(BTRFS_I(inode)); 8846 8847 return ret; 8848 } 8849 8850 struct inode *btrfs_new_subvol_inode(struct user_namespace *mnt_userns, 8851 struct inode *dir) 8852 { 8853 struct inode *inode; 8854 8855 inode = new_inode(dir->i_sb); 8856 if (inode) { 8857 /* 8858 * Subvolumes don't inherit the sgid bit or the parent's gid if 8859 * the parent's sgid bit is set. This is probably a bug. 8860 */ 8861 inode_init_owner(mnt_userns, inode, NULL, 8862 S_IFDIR | (~current_umask() & S_IRWXUGO)); 8863 inode->i_op = &btrfs_dir_inode_operations; 8864 inode->i_fop = &btrfs_dir_file_operations; 8865 } 8866 return inode; 8867 } 8868 8869 struct inode *btrfs_alloc_inode(struct super_block *sb) 8870 { 8871 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 8872 struct btrfs_inode *ei; 8873 struct inode *inode; 8874 8875 ei = alloc_inode_sb(sb, btrfs_inode_cachep, GFP_KERNEL); 8876 if (!ei) 8877 return NULL; 8878 8879 ei->root = NULL; 8880 ei->generation = 0; 8881 ei->last_trans = 0; 8882 ei->last_sub_trans = 0; 8883 ei->logged_trans = 0; 8884 ei->delalloc_bytes = 0; 8885 ei->new_delalloc_bytes = 0; 8886 ei->defrag_bytes = 0; 8887 ei->disk_i_size = 0; 8888 ei->flags = 0; 8889 ei->ro_flags = 0; 8890 ei->csum_bytes = 0; 8891 ei->index_cnt = (u64)-1; 8892 ei->dir_index = 0; 8893 ei->last_unlink_trans = 0; 8894 ei->last_reflink_trans = 0; 8895 ei->last_log_commit = 0; 8896 8897 spin_lock_init(&ei->lock); 8898 ei->outstanding_extents = 0; 8899 if (sb->s_magic != BTRFS_TEST_MAGIC) 8900 btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv, 8901 BTRFS_BLOCK_RSV_DELALLOC); 8902 ei->runtime_flags = 0; 8903 ei->prop_compress = BTRFS_COMPRESS_NONE; 8904 ei->defrag_compress = BTRFS_COMPRESS_NONE; 8905 8906 ei->delayed_node = NULL; 8907 8908 ei->i_otime.tv_sec = 0; 8909 ei->i_otime.tv_nsec = 0; 8910 8911 inode = &ei->vfs_inode; 8912 extent_map_tree_init(&ei->extent_tree); 8913 extent_io_tree_init(fs_info, &ei->io_tree, IO_TREE_INODE_IO, inode); 8914 extent_io_tree_init(fs_info, &ei->io_failure_tree, 8915 IO_TREE_INODE_IO_FAILURE, inode); 8916 extent_io_tree_init(fs_info, &ei->file_extent_tree, 8917 IO_TREE_INODE_FILE_EXTENT, inode); 8918 ei->io_tree.track_uptodate = true; 8919 ei->io_failure_tree.track_uptodate = true; 8920 atomic_set(&ei->sync_writers, 0); 8921 mutex_init(&ei->log_mutex); 8922 btrfs_ordered_inode_tree_init(&ei->ordered_tree); 8923 INIT_LIST_HEAD(&ei->delalloc_inodes); 8924 INIT_LIST_HEAD(&ei->delayed_iput); 8925 RB_CLEAR_NODE(&ei->rb_node); 8926 init_rwsem(&ei->i_mmap_lock); 8927 8928 return inode; 8929 } 8930 8931 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 8932 void btrfs_test_destroy_inode(struct inode *inode) 8933 { 8934 btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0); 8935 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 8936 } 8937 #endif 8938 8939 void btrfs_free_inode(struct inode *inode) 8940 { 8941 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 8942 } 8943 8944 void btrfs_destroy_inode(struct inode *vfs_inode) 8945 { 8946 struct btrfs_ordered_extent *ordered; 8947 struct btrfs_inode *inode = BTRFS_I(vfs_inode); 8948 struct btrfs_root *root = inode->root; 8949 8950 WARN_ON(!hlist_empty(&vfs_inode->i_dentry)); 8951 WARN_ON(vfs_inode->i_data.nrpages); 8952 WARN_ON(inode->block_rsv.reserved); 8953 WARN_ON(inode->block_rsv.size); 8954 WARN_ON(inode->outstanding_extents); 8955 if (!S_ISDIR(vfs_inode->i_mode)) { 8956 WARN_ON(inode->delalloc_bytes); 8957 WARN_ON(inode->new_delalloc_bytes); 8958 } 8959 WARN_ON(inode->csum_bytes); 8960 WARN_ON(inode->defrag_bytes); 8961 8962 /* 8963 * This can happen where we create an inode, but somebody else also 8964 * created the same inode and we need to destroy the one we already 8965 * created. 8966 */ 8967 if (!root) 8968 return; 8969 8970 while (1) { 8971 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1); 8972 if (!ordered) 8973 break; 8974 else { 8975 btrfs_err(root->fs_info, 8976 "found ordered extent %llu %llu on inode cleanup", 8977 ordered->file_offset, ordered->num_bytes); 8978 btrfs_remove_ordered_extent(inode, ordered); 8979 btrfs_put_ordered_extent(ordered); 8980 btrfs_put_ordered_extent(ordered); 8981 } 8982 } 8983 btrfs_qgroup_check_reserved_leak(inode); 8984 inode_tree_del(inode); 8985 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0); 8986 btrfs_inode_clear_file_extent_range(inode, 0, (u64)-1); 8987 btrfs_put_root(inode->root); 8988 } 8989 8990 int btrfs_drop_inode(struct inode *inode) 8991 { 8992 struct btrfs_root *root = BTRFS_I(inode)->root; 8993 8994 if (root == NULL) 8995 return 1; 8996 8997 /* the snap/subvol tree is on deleting */ 8998 if (btrfs_root_refs(&root->root_item) == 0) 8999 return 1; 9000 else 9001 return generic_drop_inode(inode); 9002 } 9003 9004 static void init_once(void *foo) 9005 { 9006 struct btrfs_inode *ei = foo; 9007 9008 inode_init_once(&ei->vfs_inode); 9009 } 9010 9011 void __cold btrfs_destroy_cachep(void) 9012 { 9013 /* 9014 * Make sure all delayed rcu free inodes are flushed before we 9015 * destroy cache. 9016 */ 9017 rcu_barrier(); 9018 bioset_exit(&btrfs_dio_bioset); 9019 kmem_cache_destroy(btrfs_inode_cachep); 9020 kmem_cache_destroy(btrfs_trans_handle_cachep); 9021 kmem_cache_destroy(btrfs_path_cachep); 9022 kmem_cache_destroy(btrfs_free_space_cachep); 9023 kmem_cache_destroy(btrfs_free_space_bitmap_cachep); 9024 } 9025 9026 int __init btrfs_init_cachep(void) 9027 { 9028 btrfs_inode_cachep = kmem_cache_create("btrfs_inode", 9029 sizeof(struct btrfs_inode), 0, 9030 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT, 9031 init_once); 9032 if (!btrfs_inode_cachep) 9033 goto fail; 9034 9035 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle", 9036 sizeof(struct btrfs_trans_handle), 0, 9037 SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL); 9038 if (!btrfs_trans_handle_cachep) 9039 goto fail; 9040 9041 btrfs_path_cachep = kmem_cache_create("btrfs_path", 9042 sizeof(struct btrfs_path), 0, 9043 SLAB_MEM_SPREAD, NULL); 9044 if (!btrfs_path_cachep) 9045 goto fail; 9046 9047 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space", 9048 sizeof(struct btrfs_free_space), 0, 9049 SLAB_MEM_SPREAD, NULL); 9050 if (!btrfs_free_space_cachep) 9051 goto fail; 9052 9053 btrfs_free_space_bitmap_cachep = kmem_cache_create("btrfs_free_space_bitmap", 9054 PAGE_SIZE, PAGE_SIZE, 9055 SLAB_MEM_SPREAD, NULL); 9056 if (!btrfs_free_space_bitmap_cachep) 9057 goto fail; 9058 9059 if (bioset_init(&btrfs_dio_bioset, BIO_POOL_SIZE, 9060 offsetof(struct btrfs_dio_private, bio), 9061 BIOSET_NEED_BVECS)) 9062 goto fail; 9063 9064 return 0; 9065 fail: 9066 btrfs_destroy_cachep(); 9067 return -ENOMEM; 9068 } 9069 9070 static int btrfs_getattr(struct user_namespace *mnt_userns, 9071 const struct path *path, struct kstat *stat, 9072 u32 request_mask, unsigned int flags) 9073 { 9074 u64 delalloc_bytes; 9075 u64 inode_bytes; 9076 struct inode *inode = d_inode(path->dentry); 9077 u32 blocksize = inode->i_sb->s_blocksize; 9078 u32 bi_flags = BTRFS_I(inode)->flags; 9079 u32 bi_ro_flags = BTRFS_I(inode)->ro_flags; 9080 9081 stat->result_mask |= STATX_BTIME; 9082 stat->btime.tv_sec = BTRFS_I(inode)->i_otime.tv_sec; 9083 stat->btime.tv_nsec = BTRFS_I(inode)->i_otime.tv_nsec; 9084 if (bi_flags & BTRFS_INODE_APPEND) 9085 stat->attributes |= STATX_ATTR_APPEND; 9086 if (bi_flags & BTRFS_INODE_COMPRESS) 9087 stat->attributes |= STATX_ATTR_COMPRESSED; 9088 if (bi_flags & BTRFS_INODE_IMMUTABLE) 9089 stat->attributes |= STATX_ATTR_IMMUTABLE; 9090 if (bi_flags & BTRFS_INODE_NODUMP) 9091 stat->attributes |= STATX_ATTR_NODUMP; 9092 if (bi_ro_flags & BTRFS_INODE_RO_VERITY) 9093 stat->attributes |= STATX_ATTR_VERITY; 9094 9095 stat->attributes_mask |= (STATX_ATTR_APPEND | 9096 STATX_ATTR_COMPRESSED | 9097 STATX_ATTR_IMMUTABLE | 9098 STATX_ATTR_NODUMP); 9099 9100 generic_fillattr(mnt_userns, inode, stat); 9101 stat->dev = BTRFS_I(inode)->root->anon_dev; 9102 9103 spin_lock(&BTRFS_I(inode)->lock); 9104 delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes; 9105 inode_bytes = inode_get_bytes(inode); 9106 spin_unlock(&BTRFS_I(inode)->lock); 9107 stat->blocks = (ALIGN(inode_bytes, blocksize) + 9108 ALIGN(delalloc_bytes, blocksize)) >> 9; 9109 return 0; 9110 } 9111 9112 static int btrfs_rename_exchange(struct inode *old_dir, 9113 struct dentry *old_dentry, 9114 struct inode *new_dir, 9115 struct dentry *new_dentry) 9116 { 9117 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb); 9118 struct btrfs_trans_handle *trans; 9119 unsigned int trans_num_items; 9120 struct btrfs_root *root = BTRFS_I(old_dir)->root; 9121 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 9122 struct inode *new_inode = new_dentry->d_inode; 9123 struct inode *old_inode = old_dentry->d_inode; 9124 struct timespec64 ctime = current_time(old_inode); 9125 struct btrfs_rename_ctx old_rename_ctx; 9126 struct btrfs_rename_ctx new_rename_ctx; 9127 u64 old_ino = btrfs_ino(BTRFS_I(old_inode)); 9128 u64 new_ino = btrfs_ino(BTRFS_I(new_inode)); 9129 u64 old_idx = 0; 9130 u64 new_idx = 0; 9131 int ret; 9132 int ret2; 9133 bool need_abort = false; 9134 9135 /* 9136 * For non-subvolumes allow exchange only within one subvolume, in the 9137 * same inode namespace. Two subvolumes (represented as directory) can 9138 * be exchanged as they're a logical link and have a fixed inode number. 9139 */ 9140 if (root != dest && 9141 (old_ino != BTRFS_FIRST_FREE_OBJECTID || 9142 new_ino != BTRFS_FIRST_FREE_OBJECTID)) 9143 return -EXDEV; 9144 9145 /* close the race window with snapshot create/destroy ioctl */ 9146 if (old_ino == BTRFS_FIRST_FREE_OBJECTID || 9147 new_ino == BTRFS_FIRST_FREE_OBJECTID) 9148 down_read(&fs_info->subvol_sem); 9149 9150 /* 9151 * For each inode: 9152 * 1 to remove old dir item 9153 * 1 to remove old dir index 9154 * 1 to add new dir item 9155 * 1 to add new dir index 9156 * 1 to update parent inode 9157 * 9158 * If the parents are the same, we only need to account for one 9159 */ 9160 trans_num_items = (old_dir == new_dir ? 9 : 10); 9161 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 9162 /* 9163 * 1 to remove old root ref 9164 * 1 to remove old root backref 9165 * 1 to add new root ref 9166 * 1 to add new root backref 9167 */ 9168 trans_num_items += 4; 9169 } else { 9170 /* 9171 * 1 to update inode item 9172 * 1 to remove old inode ref 9173 * 1 to add new inode ref 9174 */ 9175 trans_num_items += 3; 9176 } 9177 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) 9178 trans_num_items += 4; 9179 else 9180 trans_num_items += 3; 9181 trans = btrfs_start_transaction(root, trans_num_items); 9182 if (IS_ERR(trans)) { 9183 ret = PTR_ERR(trans); 9184 goto out_notrans; 9185 } 9186 9187 if (dest != root) { 9188 ret = btrfs_record_root_in_trans(trans, dest); 9189 if (ret) 9190 goto out_fail; 9191 } 9192 9193 /* 9194 * We need to find a free sequence number both in the source and 9195 * in the destination directory for the exchange. 9196 */ 9197 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx); 9198 if (ret) 9199 goto out_fail; 9200 ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx); 9201 if (ret) 9202 goto out_fail; 9203 9204 BTRFS_I(old_inode)->dir_index = 0ULL; 9205 BTRFS_I(new_inode)->dir_index = 0ULL; 9206 9207 /* Reference for the source. */ 9208 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 9209 /* force full log commit if subvolume involved. */ 9210 btrfs_set_log_full_commit(trans); 9211 } else { 9212 ret = btrfs_insert_inode_ref(trans, dest, 9213 new_dentry->d_name.name, 9214 new_dentry->d_name.len, 9215 old_ino, 9216 btrfs_ino(BTRFS_I(new_dir)), 9217 old_idx); 9218 if (ret) 9219 goto out_fail; 9220 need_abort = true; 9221 } 9222 9223 /* And now for the dest. */ 9224 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) { 9225 /* force full log commit if subvolume involved. */ 9226 btrfs_set_log_full_commit(trans); 9227 } else { 9228 ret = btrfs_insert_inode_ref(trans, root, 9229 old_dentry->d_name.name, 9230 old_dentry->d_name.len, 9231 new_ino, 9232 btrfs_ino(BTRFS_I(old_dir)), 9233 new_idx); 9234 if (ret) { 9235 if (need_abort) 9236 btrfs_abort_transaction(trans, ret); 9237 goto out_fail; 9238 } 9239 } 9240 9241 /* Update inode version and ctime/mtime. */ 9242 inode_inc_iversion(old_dir); 9243 inode_inc_iversion(new_dir); 9244 inode_inc_iversion(old_inode); 9245 inode_inc_iversion(new_inode); 9246 old_dir->i_mtime = ctime; 9247 old_dir->i_ctime = ctime; 9248 new_dir->i_mtime = ctime; 9249 new_dir->i_ctime = ctime; 9250 old_inode->i_ctime = ctime; 9251 new_inode->i_ctime = ctime; 9252 9253 if (old_dentry->d_parent != new_dentry->d_parent) { 9254 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir), 9255 BTRFS_I(old_inode), 1); 9256 btrfs_record_unlink_dir(trans, BTRFS_I(new_dir), 9257 BTRFS_I(new_inode), 1); 9258 } 9259 9260 /* src is a subvolume */ 9261 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 9262 ret = btrfs_unlink_subvol(trans, old_dir, old_dentry); 9263 } else { /* src is an inode */ 9264 ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir), 9265 BTRFS_I(old_dentry->d_inode), 9266 old_dentry->d_name.name, 9267 old_dentry->d_name.len, 9268 &old_rename_ctx); 9269 if (!ret) 9270 ret = btrfs_update_inode(trans, root, BTRFS_I(old_inode)); 9271 } 9272 if (ret) { 9273 btrfs_abort_transaction(trans, ret); 9274 goto out_fail; 9275 } 9276 9277 /* dest is a subvolume */ 9278 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) { 9279 ret = btrfs_unlink_subvol(trans, new_dir, new_dentry); 9280 } else { /* dest is an inode */ 9281 ret = __btrfs_unlink_inode(trans, BTRFS_I(new_dir), 9282 BTRFS_I(new_dentry->d_inode), 9283 new_dentry->d_name.name, 9284 new_dentry->d_name.len, 9285 &new_rename_ctx); 9286 if (!ret) 9287 ret = btrfs_update_inode(trans, dest, BTRFS_I(new_inode)); 9288 } 9289 if (ret) { 9290 btrfs_abort_transaction(trans, ret); 9291 goto out_fail; 9292 } 9293 9294 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode), 9295 new_dentry->d_name.name, 9296 new_dentry->d_name.len, 0, old_idx); 9297 if (ret) { 9298 btrfs_abort_transaction(trans, ret); 9299 goto out_fail; 9300 } 9301 9302 ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode), 9303 old_dentry->d_name.name, 9304 old_dentry->d_name.len, 0, new_idx); 9305 if (ret) { 9306 btrfs_abort_transaction(trans, ret); 9307 goto out_fail; 9308 } 9309 9310 if (old_inode->i_nlink == 1) 9311 BTRFS_I(old_inode)->dir_index = old_idx; 9312 if (new_inode->i_nlink == 1) 9313 BTRFS_I(new_inode)->dir_index = new_idx; 9314 9315 /* 9316 * Now pin the logs of the roots. We do it to ensure that no other task 9317 * can sync the logs while we are in progress with the rename, because 9318 * that could result in an inconsistency in case any of the inodes that 9319 * are part of this rename operation were logged before. 9320 */ 9321 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) 9322 btrfs_pin_log_trans(root); 9323 if (new_ino != BTRFS_FIRST_FREE_OBJECTID) 9324 btrfs_pin_log_trans(dest); 9325 9326 /* Do the log updates for all inodes. */ 9327 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) 9328 btrfs_log_new_name(trans, old_dentry, BTRFS_I(old_dir), 9329 old_rename_ctx.index, new_dentry->d_parent); 9330 if (new_ino != BTRFS_FIRST_FREE_OBJECTID) 9331 btrfs_log_new_name(trans, new_dentry, BTRFS_I(new_dir), 9332 new_rename_ctx.index, old_dentry->d_parent); 9333 9334 /* Now unpin the logs. */ 9335 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) 9336 btrfs_end_log_trans(root); 9337 if (new_ino != BTRFS_FIRST_FREE_OBJECTID) 9338 btrfs_end_log_trans(dest); 9339 out_fail: 9340 ret2 = btrfs_end_transaction(trans); 9341 ret = ret ? ret : ret2; 9342 out_notrans: 9343 if (new_ino == BTRFS_FIRST_FREE_OBJECTID || 9344 old_ino == BTRFS_FIRST_FREE_OBJECTID) 9345 up_read(&fs_info->subvol_sem); 9346 9347 return ret; 9348 } 9349 9350 static struct inode *new_whiteout_inode(struct user_namespace *mnt_userns, 9351 struct inode *dir) 9352 { 9353 struct inode *inode; 9354 9355 inode = new_inode(dir->i_sb); 9356 if (inode) { 9357 inode_init_owner(mnt_userns, inode, dir, 9358 S_IFCHR | WHITEOUT_MODE); 9359 inode->i_op = &btrfs_special_inode_operations; 9360 init_special_inode(inode, inode->i_mode, WHITEOUT_DEV); 9361 } 9362 return inode; 9363 } 9364 9365 static int btrfs_rename(struct user_namespace *mnt_userns, 9366 struct inode *old_dir, struct dentry *old_dentry, 9367 struct inode *new_dir, struct dentry *new_dentry, 9368 unsigned int flags) 9369 { 9370 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb); 9371 struct btrfs_new_inode_args whiteout_args = { 9372 .dir = old_dir, 9373 .dentry = old_dentry, 9374 }; 9375 struct btrfs_trans_handle *trans; 9376 unsigned int trans_num_items; 9377 struct btrfs_root *root = BTRFS_I(old_dir)->root; 9378 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 9379 struct inode *new_inode = d_inode(new_dentry); 9380 struct inode *old_inode = d_inode(old_dentry); 9381 struct btrfs_rename_ctx rename_ctx; 9382 u64 index = 0; 9383 int ret; 9384 int ret2; 9385 u64 old_ino = btrfs_ino(BTRFS_I(old_inode)); 9386 9387 if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 9388 return -EPERM; 9389 9390 /* we only allow rename subvolume link between subvolumes */ 9391 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest) 9392 return -EXDEV; 9393 9394 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID || 9395 (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID)) 9396 return -ENOTEMPTY; 9397 9398 if (S_ISDIR(old_inode->i_mode) && new_inode && 9399 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) 9400 return -ENOTEMPTY; 9401 9402 9403 /* check for collisions, even if the name isn't there */ 9404 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino, 9405 new_dentry->d_name.name, 9406 new_dentry->d_name.len); 9407 9408 if (ret) { 9409 if (ret == -EEXIST) { 9410 /* we shouldn't get 9411 * eexist without a new_inode */ 9412 if (WARN_ON(!new_inode)) { 9413 return ret; 9414 } 9415 } else { 9416 /* maybe -EOVERFLOW */ 9417 return ret; 9418 } 9419 } 9420 ret = 0; 9421 9422 /* 9423 * we're using rename to replace one file with another. Start IO on it 9424 * now so we don't add too much work to the end of the transaction 9425 */ 9426 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size) 9427 filemap_flush(old_inode->i_mapping); 9428 9429 if (flags & RENAME_WHITEOUT) { 9430 whiteout_args.inode = new_whiteout_inode(mnt_userns, old_dir); 9431 if (!whiteout_args.inode) 9432 return -ENOMEM; 9433 ret = btrfs_new_inode_prepare(&whiteout_args, &trans_num_items); 9434 if (ret) 9435 goto out_whiteout_inode; 9436 } else { 9437 /* 1 to update the old parent inode. */ 9438 trans_num_items = 1; 9439 } 9440 9441 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 9442 /* Close the race window with snapshot create/destroy ioctl */ 9443 down_read(&fs_info->subvol_sem); 9444 /* 9445 * 1 to remove old root ref 9446 * 1 to remove old root backref 9447 * 1 to add new root ref 9448 * 1 to add new root backref 9449 */ 9450 trans_num_items += 4; 9451 } else { 9452 /* 9453 * 1 to update inode 9454 * 1 to remove old inode ref 9455 * 1 to add new inode ref 9456 */ 9457 trans_num_items += 3; 9458 } 9459 /* 9460 * 1 to remove old dir item 9461 * 1 to remove old dir index 9462 * 1 to add new dir item 9463 * 1 to add new dir index 9464 */ 9465 trans_num_items += 4; 9466 /* 1 to update new parent inode if it's not the same as the old parent */ 9467 if (new_dir != old_dir) 9468 trans_num_items++; 9469 if (new_inode) { 9470 /* 9471 * 1 to update inode 9472 * 1 to remove inode ref 9473 * 1 to remove dir item 9474 * 1 to remove dir index 9475 * 1 to possibly add orphan item 9476 */ 9477 trans_num_items += 5; 9478 } 9479 trans = btrfs_start_transaction(root, trans_num_items); 9480 if (IS_ERR(trans)) { 9481 ret = PTR_ERR(trans); 9482 goto out_notrans; 9483 } 9484 9485 if (dest != root) { 9486 ret = btrfs_record_root_in_trans(trans, dest); 9487 if (ret) 9488 goto out_fail; 9489 } 9490 9491 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index); 9492 if (ret) 9493 goto out_fail; 9494 9495 BTRFS_I(old_inode)->dir_index = 0ULL; 9496 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 9497 /* force full log commit if subvolume involved. */ 9498 btrfs_set_log_full_commit(trans); 9499 } else { 9500 ret = btrfs_insert_inode_ref(trans, dest, 9501 new_dentry->d_name.name, 9502 new_dentry->d_name.len, 9503 old_ino, 9504 btrfs_ino(BTRFS_I(new_dir)), index); 9505 if (ret) 9506 goto out_fail; 9507 } 9508 9509 inode_inc_iversion(old_dir); 9510 inode_inc_iversion(new_dir); 9511 inode_inc_iversion(old_inode); 9512 old_dir->i_mtime = current_time(old_dir); 9513 old_dir->i_ctime = old_dir->i_mtime; 9514 new_dir->i_mtime = old_dir->i_mtime; 9515 new_dir->i_ctime = old_dir->i_mtime; 9516 old_inode->i_ctime = old_dir->i_mtime; 9517 9518 if (old_dentry->d_parent != new_dentry->d_parent) 9519 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir), 9520 BTRFS_I(old_inode), 1); 9521 9522 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 9523 ret = btrfs_unlink_subvol(trans, old_dir, old_dentry); 9524 } else { 9525 ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir), 9526 BTRFS_I(d_inode(old_dentry)), 9527 old_dentry->d_name.name, 9528 old_dentry->d_name.len, 9529 &rename_ctx); 9530 if (!ret) 9531 ret = btrfs_update_inode(trans, root, BTRFS_I(old_inode)); 9532 } 9533 if (ret) { 9534 btrfs_abort_transaction(trans, ret); 9535 goto out_fail; 9536 } 9537 9538 if (new_inode) { 9539 inode_inc_iversion(new_inode); 9540 new_inode->i_ctime = current_time(new_inode); 9541 if (unlikely(btrfs_ino(BTRFS_I(new_inode)) == 9542 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 9543 ret = btrfs_unlink_subvol(trans, new_dir, new_dentry); 9544 BUG_ON(new_inode->i_nlink == 0); 9545 } else { 9546 ret = btrfs_unlink_inode(trans, BTRFS_I(new_dir), 9547 BTRFS_I(d_inode(new_dentry)), 9548 new_dentry->d_name.name, 9549 new_dentry->d_name.len); 9550 } 9551 if (!ret && new_inode->i_nlink == 0) 9552 ret = btrfs_orphan_add(trans, 9553 BTRFS_I(d_inode(new_dentry))); 9554 if (ret) { 9555 btrfs_abort_transaction(trans, ret); 9556 goto out_fail; 9557 } 9558 } 9559 9560 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode), 9561 new_dentry->d_name.name, 9562 new_dentry->d_name.len, 0, index); 9563 if (ret) { 9564 btrfs_abort_transaction(trans, ret); 9565 goto out_fail; 9566 } 9567 9568 if (old_inode->i_nlink == 1) 9569 BTRFS_I(old_inode)->dir_index = index; 9570 9571 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) 9572 btrfs_log_new_name(trans, old_dentry, BTRFS_I(old_dir), 9573 rename_ctx.index, new_dentry->d_parent); 9574 9575 if (flags & RENAME_WHITEOUT) { 9576 ret = btrfs_create_new_inode(trans, &whiteout_args); 9577 if (ret) { 9578 btrfs_abort_transaction(trans, ret); 9579 goto out_fail; 9580 } else { 9581 unlock_new_inode(whiteout_args.inode); 9582 iput(whiteout_args.inode); 9583 whiteout_args.inode = NULL; 9584 } 9585 } 9586 out_fail: 9587 ret2 = btrfs_end_transaction(trans); 9588 ret = ret ? ret : ret2; 9589 out_notrans: 9590 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 9591 up_read(&fs_info->subvol_sem); 9592 if (flags & RENAME_WHITEOUT) 9593 btrfs_new_inode_args_destroy(&whiteout_args); 9594 out_whiteout_inode: 9595 if (flags & RENAME_WHITEOUT) 9596 iput(whiteout_args.inode); 9597 return ret; 9598 } 9599 9600 static int btrfs_rename2(struct user_namespace *mnt_userns, struct inode *old_dir, 9601 struct dentry *old_dentry, struct inode *new_dir, 9602 struct dentry *new_dentry, unsigned int flags) 9603 { 9604 int ret; 9605 9606 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 9607 return -EINVAL; 9608 9609 if (flags & RENAME_EXCHANGE) 9610 ret = btrfs_rename_exchange(old_dir, old_dentry, new_dir, 9611 new_dentry); 9612 else 9613 ret = btrfs_rename(mnt_userns, old_dir, old_dentry, new_dir, 9614 new_dentry, flags); 9615 9616 btrfs_btree_balance_dirty(BTRFS_I(new_dir)->root->fs_info); 9617 9618 return ret; 9619 } 9620 9621 struct btrfs_delalloc_work { 9622 struct inode *inode; 9623 struct completion completion; 9624 struct list_head list; 9625 struct btrfs_work work; 9626 }; 9627 9628 static void btrfs_run_delalloc_work(struct btrfs_work *work) 9629 { 9630 struct btrfs_delalloc_work *delalloc_work; 9631 struct inode *inode; 9632 9633 delalloc_work = container_of(work, struct btrfs_delalloc_work, 9634 work); 9635 inode = delalloc_work->inode; 9636 filemap_flush(inode->i_mapping); 9637 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 9638 &BTRFS_I(inode)->runtime_flags)) 9639 filemap_flush(inode->i_mapping); 9640 9641 iput(inode); 9642 complete(&delalloc_work->completion); 9643 } 9644 9645 static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode) 9646 { 9647 struct btrfs_delalloc_work *work; 9648 9649 work = kmalloc(sizeof(*work), GFP_NOFS); 9650 if (!work) 9651 return NULL; 9652 9653 init_completion(&work->completion); 9654 INIT_LIST_HEAD(&work->list); 9655 work->inode = inode; 9656 btrfs_init_work(&work->work, btrfs_run_delalloc_work, NULL, NULL); 9657 9658 return work; 9659 } 9660 9661 /* 9662 * some fairly slow code that needs optimization. This walks the list 9663 * of all the inodes with pending delalloc and forces them to disk. 9664 */ 9665 static int start_delalloc_inodes(struct btrfs_root *root, 9666 struct writeback_control *wbc, bool snapshot, 9667 bool in_reclaim_context) 9668 { 9669 struct btrfs_inode *binode; 9670 struct inode *inode; 9671 struct btrfs_delalloc_work *work, *next; 9672 struct list_head works; 9673 struct list_head splice; 9674 int ret = 0; 9675 bool full_flush = wbc->nr_to_write == LONG_MAX; 9676 9677 INIT_LIST_HEAD(&works); 9678 INIT_LIST_HEAD(&splice); 9679 9680 mutex_lock(&root->delalloc_mutex); 9681 spin_lock(&root->delalloc_lock); 9682 list_splice_init(&root->delalloc_inodes, &splice); 9683 while (!list_empty(&splice)) { 9684 binode = list_entry(splice.next, struct btrfs_inode, 9685 delalloc_inodes); 9686 9687 list_move_tail(&binode->delalloc_inodes, 9688 &root->delalloc_inodes); 9689 9690 if (in_reclaim_context && 9691 test_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &binode->runtime_flags)) 9692 continue; 9693 9694 inode = igrab(&binode->vfs_inode); 9695 if (!inode) { 9696 cond_resched_lock(&root->delalloc_lock); 9697 continue; 9698 } 9699 spin_unlock(&root->delalloc_lock); 9700 9701 if (snapshot) 9702 set_bit(BTRFS_INODE_SNAPSHOT_FLUSH, 9703 &binode->runtime_flags); 9704 if (full_flush) { 9705 work = btrfs_alloc_delalloc_work(inode); 9706 if (!work) { 9707 iput(inode); 9708 ret = -ENOMEM; 9709 goto out; 9710 } 9711 list_add_tail(&work->list, &works); 9712 btrfs_queue_work(root->fs_info->flush_workers, 9713 &work->work); 9714 } else { 9715 ret = filemap_fdatawrite_wbc(inode->i_mapping, wbc); 9716 btrfs_add_delayed_iput(inode); 9717 if (ret || wbc->nr_to_write <= 0) 9718 goto out; 9719 } 9720 cond_resched(); 9721 spin_lock(&root->delalloc_lock); 9722 } 9723 spin_unlock(&root->delalloc_lock); 9724 9725 out: 9726 list_for_each_entry_safe(work, next, &works, list) { 9727 list_del_init(&work->list); 9728 wait_for_completion(&work->completion); 9729 kfree(work); 9730 } 9731 9732 if (!list_empty(&splice)) { 9733 spin_lock(&root->delalloc_lock); 9734 list_splice_tail(&splice, &root->delalloc_inodes); 9735 spin_unlock(&root->delalloc_lock); 9736 } 9737 mutex_unlock(&root->delalloc_mutex); 9738 return ret; 9739 } 9740 9741 int btrfs_start_delalloc_snapshot(struct btrfs_root *root, bool in_reclaim_context) 9742 { 9743 struct writeback_control wbc = { 9744 .nr_to_write = LONG_MAX, 9745 .sync_mode = WB_SYNC_NONE, 9746 .range_start = 0, 9747 .range_end = LLONG_MAX, 9748 }; 9749 struct btrfs_fs_info *fs_info = root->fs_info; 9750 9751 if (BTRFS_FS_ERROR(fs_info)) 9752 return -EROFS; 9753 9754 return start_delalloc_inodes(root, &wbc, true, in_reclaim_context); 9755 } 9756 9757 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, long nr, 9758 bool in_reclaim_context) 9759 { 9760 struct writeback_control wbc = { 9761 .nr_to_write = nr, 9762 .sync_mode = WB_SYNC_NONE, 9763 .range_start = 0, 9764 .range_end = LLONG_MAX, 9765 }; 9766 struct btrfs_root *root; 9767 struct list_head splice; 9768 int ret; 9769 9770 if (BTRFS_FS_ERROR(fs_info)) 9771 return -EROFS; 9772 9773 INIT_LIST_HEAD(&splice); 9774 9775 mutex_lock(&fs_info->delalloc_root_mutex); 9776 spin_lock(&fs_info->delalloc_root_lock); 9777 list_splice_init(&fs_info->delalloc_roots, &splice); 9778 while (!list_empty(&splice)) { 9779 /* 9780 * Reset nr_to_write here so we know that we're doing a full 9781 * flush. 9782 */ 9783 if (nr == LONG_MAX) 9784 wbc.nr_to_write = LONG_MAX; 9785 9786 root = list_first_entry(&splice, struct btrfs_root, 9787 delalloc_root); 9788 root = btrfs_grab_root(root); 9789 BUG_ON(!root); 9790 list_move_tail(&root->delalloc_root, 9791 &fs_info->delalloc_roots); 9792 spin_unlock(&fs_info->delalloc_root_lock); 9793 9794 ret = start_delalloc_inodes(root, &wbc, false, in_reclaim_context); 9795 btrfs_put_root(root); 9796 if (ret < 0 || wbc.nr_to_write <= 0) 9797 goto out; 9798 spin_lock(&fs_info->delalloc_root_lock); 9799 } 9800 spin_unlock(&fs_info->delalloc_root_lock); 9801 9802 ret = 0; 9803 out: 9804 if (!list_empty(&splice)) { 9805 spin_lock(&fs_info->delalloc_root_lock); 9806 list_splice_tail(&splice, &fs_info->delalloc_roots); 9807 spin_unlock(&fs_info->delalloc_root_lock); 9808 } 9809 mutex_unlock(&fs_info->delalloc_root_mutex); 9810 return ret; 9811 } 9812 9813 static int btrfs_symlink(struct user_namespace *mnt_userns, struct inode *dir, 9814 struct dentry *dentry, const char *symname) 9815 { 9816 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 9817 struct btrfs_trans_handle *trans; 9818 struct btrfs_root *root = BTRFS_I(dir)->root; 9819 struct btrfs_path *path; 9820 struct btrfs_key key; 9821 struct inode *inode; 9822 struct btrfs_new_inode_args new_inode_args = { 9823 .dir = dir, 9824 .dentry = dentry, 9825 }; 9826 unsigned int trans_num_items; 9827 int err; 9828 int name_len; 9829 int datasize; 9830 unsigned long ptr; 9831 struct btrfs_file_extent_item *ei; 9832 struct extent_buffer *leaf; 9833 9834 name_len = strlen(symname); 9835 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info)) 9836 return -ENAMETOOLONG; 9837 9838 inode = new_inode(dir->i_sb); 9839 if (!inode) 9840 return -ENOMEM; 9841 inode_init_owner(mnt_userns, inode, dir, S_IFLNK | S_IRWXUGO); 9842 inode->i_op = &btrfs_symlink_inode_operations; 9843 inode_nohighmem(inode); 9844 inode->i_mapping->a_ops = &btrfs_aops; 9845 btrfs_i_size_write(BTRFS_I(inode), name_len); 9846 inode_set_bytes(inode, name_len); 9847 9848 new_inode_args.inode = inode; 9849 err = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items); 9850 if (err) 9851 goto out_inode; 9852 /* 1 additional item for the inline extent */ 9853 trans_num_items++; 9854 9855 trans = btrfs_start_transaction(root, trans_num_items); 9856 if (IS_ERR(trans)) { 9857 err = PTR_ERR(trans); 9858 goto out_new_inode_args; 9859 } 9860 9861 err = btrfs_create_new_inode(trans, &new_inode_args); 9862 if (err) 9863 goto out; 9864 9865 path = btrfs_alloc_path(); 9866 if (!path) { 9867 err = -ENOMEM; 9868 btrfs_abort_transaction(trans, err); 9869 discard_new_inode(inode); 9870 inode = NULL; 9871 goto out; 9872 } 9873 key.objectid = btrfs_ino(BTRFS_I(inode)); 9874 key.offset = 0; 9875 key.type = BTRFS_EXTENT_DATA_KEY; 9876 datasize = btrfs_file_extent_calc_inline_size(name_len); 9877 err = btrfs_insert_empty_item(trans, root, path, &key, 9878 datasize); 9879 if (err) { 9880 btrfs_abort_transaction(trans, err); 9881 btrfs_free_path(path); 9882 discard_new_inode(inode); 9883 inode = NULL; 9884 goto out; 9885 } 9886 leaf = path->nodes[0]; 9887 ei = btrfs_item_ptr(leaf, path->slots[0], 9888 struct btrfs_file_extent_item); 9889 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 9890 btrfs_set_file_extent_type(leaf, ei, 9891 BTRFS_FILE_EXTENT_INLINE); 9892 btrfs_set_file_extent_encryption(leaf, ei, 0); 9893 btrfs_set_file_extent_compression(leaf, ei, 0); 9894 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 9895 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len); 9896 9897 ptr = btrfs_file_extent_inline_start(ei); 9898 write_extent_buffer(leaf, symname, ptr, name_len); 9899 btrfs_mark_buffer_dirty(leaf); 9900 btrfs_free_path(path); 9901 9902 d_instantiate_new(dentry, inode); 9903 err = 0; 9904 out: 9905 btrfs_end_transaction(trans); 9906 btrfs_btree_balance_dirty(fs_info); 9907 out_new_inode_args: 9908 btrfs_new_inode_args_destroy(&new_inode_args); 9909 out_inode: 9910 if (err) 9911 iput(inode); 9912 return err; 9913 } 9914 9915 static struct btrfs_trans_handle *insert_prealloc_file_extent( 9916 struct btrfs_trans_handle *trans_in, 9917 struct btrfs_inode *inode, 9918 struct btrfs_key *ins, 9919 u64 file_offset) 9920 { 9921 struct btrfs_file_extent_item stack_fi; 9922 struct btrfs_replace_extent_info extent_info; 9923 struct btrfs_trans_handle *trans = trans_in; 9924 struct btrfs_path *path; 9925 u64 start = ins->objectid; 9926 u64 len = ins->offset; 9927 int qgroup_released; 9928 int ret; 9929 9930 memset(&stack_fi, 0, sizeof(stack_fi)); 9931 9932 btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_PREALLOC); 9933 btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, start); 9934 btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi, len); 9935 btrfs_set_stack_file_extent_num_bytes(&stack_fi, len); 9936 btrfs_set_stack_file_extent_ram_bytes(&stack_fi, len); 9937 btrfs_set_stack_file_extent_compression(&stack_fi, BTRFS_COMPRESS_NONE); 9938 /* Encryption and other encoding is reserved and all 0 */ 9939 9940 qgroup_released = btrfs_qgroup_release_data(inode, file_offset, len); 9941 if (qgroup_released < 0) 9942 return ERR_PTR(qgroup_released); 9943 9944 if (trans) { 9945 ret = insert_reserved_file_extent(trans, inode, 9946 file_offset, &stack_fi, 9947 true, qgroup_released); 9948 if (ret) 9949 goto free_qgroup; 9950 return trans; 9951 } 9952 9953 extent_info.disk_offset = start; 9954 extent_info.disk_len = len; 9955 extent_info.data_offset = 0; 9956 extent_info.data_len = len; 9957 extent_info.file_offset = file_offset; 9958 extent_info.extent_buf = (char *)&stack_fi; 9959 extent_info.is_new_extent = true; 9960 extent_info.update_times = true; 9961 extent_info.qgroup_reserved = qgroup_released; 9962 extent_info.insertions = 0; 9963 9964 path = btrfs_alloc_path(); 9965 if (!path) { 9966 ret = -ENOMEM; 9967 goto free_qgroup; 9968 } 9969 9970 ret = btrfs_replace_file_extents(inode, path, file_offset, 9971 file_offset + len - 1, &extent_info, 9972 &trans); 9973 btrfs_free_path(path); 9974 if (ret) 9975 goto free_qgroup; 9976 return trans; 9977 9978 free_qgroup: 9979 /* 9980 * We have released qgroup data range at the beginning of the function, 9981 * and normally qgroup_released bytes will be freed when committing 9982 * transaction. 9983 * But if we error out early, we have to free what we have released 9984 * or we leak qgroup data reservation. 9985 */ 9986 btrfs_qgroup_free_refroot(inode->root->fs_info, 9987 inode->root->root_key.objectid, qgroup_released, 9988 BTRFS_QGROUP_RSV_DATA); 9989 return ERR_PTR(ret); 9990 } 9991 9992 static int __btrfs_prealloc_file_range(struct inode *inode, int mode, 9993 u64 start, u64 num_bytes, u64 min_size, 9994 loff_t actual_len, u64 *alloc_hint, 9995 struct btrfs_trans_handle *trans) 9996 { 9997 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 9998 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 9999 struct extent_map *em; 10000 struct btrfs_root *root = BTRFS_I(inode)->root; 10001 struct btrfs_key ins; 10002 u64 cur_offset = start; 10003 u64 clear_offset = start; 10004 u64 i_size; 10005 u64 cur_bytes; 10006 u64 last_alloc = (u64)-1; 10007 int ret = 0; 10008 bool own_trans = true; 10009 u64 end = start + num_bytes - 1; 10010 10011 if (trans) 10012 own_trans = false; 10013 while (num_bytes > 0) { 10014 cur_bytes = min_t(u64, num_bytes, SZ_256M); 10015 cur_bytes = max(cur_bytes, min_size); 10016 /* 10017 * If we are severely fragmented we could end up with really 10018 * small allocations, so if the allocator is returning small 10019 * chunks lets make its job easier by only searching for those 10020 * sized chunks. 10021 */ 10022 cur_bytes = min(cur_bytes, last_alloc); 10023 ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes, 10024 min_size, 0, *alloc_hint, &ins, 1, 0); 10025 if (ret) 10026 break; 10027 10028 /* 10029 * We've reserved this space, and thus converted it from 10030 * ->bytes_may_use to ->bytes_reserved. Any error that happens 10031 * from here on out we will only need to clear our reservation 10032 * for the remaining unreserved area, so advance our 10033 * clear_offset by our extent size. 10034 */ 10035 clear_offset += ins.offset; 10036 10037 last_alloc = ins.offset; 10038 trans = insert_prealloc_file_extent(trans, BTRFS_I(inode), 10039 &ins, cur_offset); 10040 /* 10041 * Now that we inserted the prealloc extent we can finally 10042 * decrement the number of reservations in the block group. 10043 * If we did it before, we could race with relocation and have 10044 * relocation miss the reserved extent, making it fail later. 10045 */ 10046 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 10047 if (IS_ERR(trans)) { 10048 ret = PTR_ERR(trans); 10049 btrfs_free_reserved_extent(fs_info, ins.objectid, 10050 ins.offset, 0); 10051 break; 10052 } 10053 10054 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset, 10055 cur_offset + ins.offset -1, 0); 10056 10057 em = alloc_extent_map(); 10058 if (!em) { 10059 btrfs_set_inode_full_sync(BTRFS_I(inode)); 10060 goto next; 10061 } 10062 10063 em->start = cur_offset; 10064 em->orig_start = cur_offset; 10065 em->len = ins.offset; 10066 em->block_start = ins.objectid; 10067 em->block_len = ins.offset; 10068 em->orig_block_len = ins.offset; 10069 em->ram_bytes = ins.offset; 10070 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 10071 em->generation = trans->transid; 10072 10073 while (1) { 10074 write_lock(&em_tree->lock); 10075 ret = add_extent_mapping(em_tree, em, 1); 10076 write_unlock(&em_tree->lock); 10077 if (ret != -EEXIST) 10078 break; 10079 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset, 10080 cur_offset + ins.offset - 1, 10081 0); 10082 } 10083 free_extent_map(em); 10084 next: 10085 num_bytes -= ins.offset; 10086 cur_offset += ins.offset; 10087 *alloc_hint = ins.objectid + ins.offset; 10088 10089 inode_inc_iversion(inode); 10090 inode->i_ctime = current_time(inode); 10091 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC; 10092 if (!(mode & FALLOC_FL_KEEP_SIZE) && 10093 (actual_len > inode->i_size) && 10094 (cur_offset > inode->i_size)) { 10095 if (cur_offset > actual_len) 10096 i_size = actual_len; 10097 else 10098 i_size = cur_offset; 10099 i_size_write(inode, i_size); 10100 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0); 10101 } 10102 10103 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 10104 10105 if (ret) { 10106 btrfs_abort_transaction(trans, ret); 10107 if (own_trans) 10108 btrfs_end_transaction(trans); 10109 break; 10110 } 10111 10112 if (own_trans) { 10113 btrfs_end_transaction(trans); 10114 trans = NULL; 10115 } 10116 } 10117 if (clear_offset < end) 10118 btrfs_free_reserved_data_space(BTRFS_I(inode), NULL, clear_offset, 10119 end - clear_offset + 1); 10120 return ret; 10121 } 10122 10123 int btrfs_prealloc_file_range(struct inode *inode, int mode, 10124 u64 start, u64 num_bytes, u64 min_size, 10125 loff_t actual_len, u64 *alloc_hint) 10126 { 10127 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 10128 min_size, actual_len, alloc_hint, 10129 NULL); 10130 } 10131 10132 int btrfs_prealloc_file_range_trans(struct inode *inode, 10133 struct btrfs_trans_handle *trans, int mode, 10134 u64 start, u64 num_bytes, u64 min_size, 10135 loff_t actual_len, u64 *alloc_hint) 10136 { 10137 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 10138 min_size, actual_len, alloc_hint, trans); 10139 } 10140 10141 static int btrfs_permission(struct user_namespace *mnt_userns, 10142 struct inode *inode, int mask) 10143 { 10144 struct btrfs_root *root = BTRFS_I(inode)->root; 10145 umode_t mode = inode->i_mode; 10146 10147 if (mask & MAY_WRITE && 10148 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) { 10149 if (btrfs_root_readonly(root)) 10150 return -EROFS; 10151 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) 10152 return -EACCES; 10153 } 10154 return generic_permission(mnt_userns, inode, mask); 10155 } 10156 10157 static int btrfs_tmpfile(struct user_namespace *mnt_userns, struct inode *dir, 10158 struct dentry *dentry, umode_t mode) 10159 { 10160 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 10161 struct btrfs_trans_handle *trans; 10162 struct btrfs_root *root = BTRFS_I(dir)->root; 10163 struct inode *inode; 10164 struct btrfs_new_inode_args new_inode_args = { 10165 .dir = dir, 10166 .dentry = dentry, 10167 .orphan = true, 10168 }; 10169 unsigned int trans_num_items; 10170 int ret; 10171 10172 inode = new_inode(dir->i_sb); 10173 if (!inode) 10174 return -ENOMEM; 10175 inode_init_owner(mnt_userns, inode, dir, mode); 10176 inode->i_fop = &btrfs_file_operations; 10177 inode->i_op = &btrfs_file_inode_operations; 10178 inode->i_mapping->a_ops = &btrfs_aops; 10179 10180 new_inode_args.inode = inode; 10181 ret = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items); 10182 if (ret) 10183 goto out_inode; 10184 10185 trans = btrfs_start_transaction(root, trans_num_items); 10186 if (IS_ERR(trans)) { 10187 ret = PTR_ERR(trans); 10188 goto out_new_inode_args; 10189 } 10190 10191 ret = btrfs_create_new_inode(trans, &new_inode_args); 10192 10193 /* 10194 * We set number of links to 0 in btrfs_create_new_inode(), and here we 10195 * set it to 1 because d_tmpfile() will issue a warning if the count is 10196 * 0, through: 10197 * 10198 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink() 10199 */ 10200 set_nlink(inode, 1); 10201 10202 if (!ret) { 10203 d_tmpfile(dentry, inode); 10204 unlock_new_inode(inode); 10205 mark_inode_dirty(inode); 10206 } 10207 10208 btrfs_end_transaction(trans); 10209 btrfs_btree_balance_dirty(fs_info); 10210 out_new_inode_args: 10211 btrfs_new_inode_args_destroy(&new_inode_args); 10212 out_inode: 10213 if (ret) 10214 iput(inode); 10215 return ret; 10216 } 10217 10218 void btrfs_set_range_writeback(struct btrfs_inode *inode, u64 start, u64 end) 10219 { 10220 struct btrfs_fs_info *fs_info = inode->root->fs_info; 10221 unsigned long index = start >> PAGE_SHIFT; 10222 unsigned long end_index = end >> PAGE_SHIFT; 10223 struct page *page; 10224 u32 len; 10225 10226 ASSERT(end + 1 - start <= U32_MAX); 10227 len = end + 1 - start; 10228 while (index <= end_index) { 10229 page = find_get_page(inode->vfs_inode.i_mapping, index); 10230 ASSERT(page); /* Pages should be in the extent_io_tree */ 10231 10232 btrfs_page_set_writeback(fs_info, page, start, len); 10233 put_page(page); 10234 index++; 10235 } 10236 } 10237 10238 int btrfs_encoded_io_compression_from_extent(struct btrfs_fs_info *fs_info, 10239 int compress_type) 10240 { 10241 switch (compress_type) { 10242 case BTRFS_COMPRESS_NONE: 10243 return BTRFS_ENCODED_IO_COMPRESSION_NONE; 10244 case BTRFS_COMPRESS_ZLIB: 10245 return BTRFS_ENCODED_IO_COMPRESSION_ZLIB; 10246 case BTRFS_COMPRESS_LZO: 10247 /* 10248 * The LZO format depends on the sector size. 64K is the maximum 10249 * sector size that we support. 10250 */ 10251 if (fs_info->sectorsize < SZ_4K || fs_info->sectorsize > SZ_64K) 10252 return -EINVAL; 10253 return BTRFS_ENCODED_IO_COMPRESSION_LZO_4K + 10254 (fs_info->sectorsize_bits - 12); 10255 case BTRFS_COMPRESS_ZSTD: 10256 return BTRFS_ENCODED_IO_COMPRESSION_ZSTD; 10257 default: 10258 return -EUCLEAN; 10259 } 10260 } 10261 10262 static ssize_t btrfs_encoded_read_inline( 10263 struct kiocb *iocb, 10264 struct iov_iter *iter, u64 start, 10265 u64 lockend, 10266 struct extent_state **cached_state, 10267 u64 extent_start, size_t count, 10268 struct btrfs_ioctl_encoded_io_args *encoded, 10269 bool *unlocked) 10270 { 10271 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp)); 10272 struct btrfs_root *root = inode->root; 10273 struct btrfs_fs_info *fs_info = root->fs_info; 10274 struct extent_io_tree *io_tree = &inode->io_tree; 10275 struct btrfs_path *path; 10276 struct extent_buffer *leaf; 10277 struct btrfs_file_extent_item *item; 10278 u64 ram_bytes; 10279 unsigned long ptr; 10280 void *tmp; 10281 ssize_t ret; 10282 10283 path = btrfs_alloc_path(); 10284 if (!path) { 10285 ret = -ENOMEM; 10286 goto out; 10287 } 10288 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), 10289 extent_start, 0); 10290 if (ret) { 10291 if (ret > 0) { 10292 /* The extent item disappeared? */ 10293 ret = -EIO; 10294 } 10295 goto out; 10296 } 10297 leaf = path->nodes[0]; 10298 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); 10299 10300 ram_bytes = btrfs_file_extent_ram_bytes(leaf, item); 10301 ptr = btrfs_file_extent_inline_start(item); 10302 10303 encoded->len = min_t(u64, extent_start + ram_bytes, 10304 inode->vfs_inode.i_size) - iocb->ki_pos; 10305 ret = btrfs_encoded_io_compression_from_extent(fs_info, 10306 btrfs_file_extent_compression(leaf, item)); 10307 if (ret < 0) 10308 goto out; 10309 encoded->compression = ret; 10310 if (encoded->compression) { 10311 size_t inline_size; 10312 10313 inline_size = btrfs_file_extent_inline_item_len(leaf, 10314 path->slots[0]); 10315 if (inline_size > count) { 10316 ret = -ENOBUFS; 10317 goto out; 10318 } 10319 count = inline_size; 10320 encoded->unencoded_len = ram_bytes; 10321 encoded->unencoded_offset = iocb->ki_pos - extent_start; 10322 } else { 10323 count = min_t(u64, count, encoded->len); 10324 encoded->len = count; 10325 encoded->unencoded_len = count; 10326 ptr += iocb->ki_pos - extent_start; 10327 } 10328 10329 tmp = kmalloc(count, GFP_NOFS); 10330 if (!tmp) { 10331 ret = -ENOMEM; 10332 goto out; 10333 } 10334 read_extent_buffer(leaf, tmp, ptr, count); 10335 btrfs_release_path(path); 10336 unlock_extent_cached(io_tree, start, lockend, cached_state); 10337 btrfs_inode_unlock(&inode->vfs_inode, BTRFS_ILOCK_SHARED); 10338 *unlocked = true; 10339 10340 ret = copy_to_iter(tmp, count, iter); 10341 if (ret != count) 10342 ret = -EFAULT; 10343 kfree(tmp); 10344 out: 10345 btrfs_free_path(path); 10346 return ret; 10347 } 10348 10349 struct btrfs_encoded_read_private { 10350 struct btrfs_inode *inode; 10351 u64 file_offset; 10352 wait_queue_head_t wait; 10353 atomic_t pending; 10354 blk_status_t status; 10355 bool skip_csum; 10356 }; 10357 10358 static blk_status_t submit_encoded_read_bio(struct btrfs_inode *inode, 10359 struct bio *bio, int mirror_num) 10360 { 10361 struct btrfs_encoded_read_private *priv = bio->bi_private; 10362 struct btrfs_fs_info *fs_info = inode->root->fs_info; 10363 blk_status_t ret; 10364 10365 if (!priv->skip_csum) { 10366 ret = btrfs_lookup_bio_sums(&inode->vfs_inode, bio, NULL); 10367 if (ret) 10368 return ret; 10369 } 10370 10371 atomic_inc(&priv->pending); 10372 btrfs_submit_bio(fs_info, bio, mirror_num); 10373 return BLK_STS_OK; 10374 } 10375 10376 static blk_status_t btrfs_encoded_read_verify_csum(struct btrfs_bio *bbio) 10377 { 10378 const bool uptodate = (bbio->bio.bi_status == BLK_STS_OK); 10379 struct btrfs_encoded_read_private *priv = bbio->bio.bi_private; 10380 struct btrfs_inode *inode = priv->inode; 10381 struct btrfs_fs_info *fs_info = inode->root->fs_info; 10382 u32 sectorsize = fs_info->sectorsize; 10383 struct bio_vec *bvec; 10384 struct bvec_iter_all iter_all; 10385 u32 bio_offset = 0; 10386 10387 if (priv->skip_csum || !uptodate) 10388 return bbio->bio.bi_status; 10389 10390 bio_for_each_segment_all(bvec, &bbio->bio, iter_all) { 10391 unsigned int i, nr_sectors, pgoff; 10392 10393 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec->bv_len); 10394 pgoff = bvec->bv_offset; 10395 for (i = 0; i < nr_sectors; i++) { 10396 ASSERT(pgoff < PAGE_SIZE); 10397 if (btrfs_check_data_csum(&inode->vfs_inode, bbio, bio_offset, 10398 bvec->bv_page, pgoff)) 10399 return BLK_STS_IOERR; 10400 bio_offset += sectorsize; 10401 pgoff += sectorsize; 10402 } 10403 } 10404 return BLK_STS_OK; 10405 } 10406 10407 static void btrfs_encoded_read_endio(struct bio *bio) 10408 { 10409 struct btrfs_encoded_read_private *priv = bio->bi_private; 10410 struct btrfs_bio *bbio = btrfs_bio(bio); 10411 blk_status_t status; 10412 10413 status = btrfs_encoded_read_verify_csum(bbio); 10414 if (status) { 10415 /* 10416 * The memory barrier implied by the atomic_dec_return() here 10417 * pairs with the memory barrier implied by the 10418 * atomic_dec_return() or io_wait_event() in 10419 * btrfs_encoded_read_regular_fill_pages() to ensure that this 10420 * write is observed before the load of status in 10421 * btrfs_encoded_read_regular_fill_pages(). 10422 */ 10423 WRITE_ONCE(priv->status, status); 10424 } 10425 if (!atomic_dec_return(&priv->pending)) 10426 wake_up(&priv->wait); 10427 btrfs_bio_free_csum(bbio); 10428 bio_put(bio); 10429 } 10430 10431 int btrfs_encoded_read_regular_fill_pages(struct btrfs_inode *inode, 10432 u64 file_offset, u64 disk_bytenr, 10433 u64 disk_io_size, struct page **pages) 10434 { 10435 struct btrfs_fs_info *fs_info = inode->root->fs_info; 10436 struct btrfs_encoded_read_private priv = { 10437 .inode = inode, 10438 .file_offset = file_offset, 10439 .pending = ATOMIC_INIT(1), 10440 .skip_csum = (inode->flags & BTRFS_INODE_NODATASUM), 10441 }; 10442 unsigned long i = 0; 10443 u64 cur = 0; 10444 int ret; 10445 10446 init_waitqueue_head(&priv.wait); 10447 /* 10448 * Submit bios for the extent, splitting due to bio or stripe limits as 10449 * necessary. 10450 */ 10451 while (cur < disk_io_size) { 10452 struct extent_map *em; 10453 struct btrfs_io_geometry geom; 10454 struct bio *bio = NULL; 10455 u64 remaining; 10456 10457 em = btrfs_get_chunk_map(fs_info, disk_bytenr + cur, 10458 disk_io_size - cur); 10459 if (IS_ERR(em)) { 10460 ret = PTR_ERR(em); 10461 } else { 10462 ret = btrfs_get_io_geometry(fs_info, em, BTRFS_MAP_READ, 10463 disk_bytenr + cur, &geom); 10464 free_extent_map(em); 10465 } 10466 if (ret) { 10467 WRITE_ONCE(priv.status, errno_to_blk_status(ret)); 10468 break; 10469 } 10470 remaining = min(geom.len, disk_io_size - cur); 10471 while (bio || remaining) { 10472 size_t bytes = min_t(u64, remaining, PAGE_SIZE); 10473 10474 if (!bio) { 10475 bio = btrfs_bio_alloc(BIO_MAX_VECS); 10476 bio->bi_iter.bi_sector = 10477 (disk_bytenr + cur) >> SECTOR_SHIFT; 10478 bio->bi_end_io = btrfs_encoded_read_endio; 10479 bio->bi_private = &priv; 10480 bio->bi_opf = REQ_OP_READ; 10481 } 10482 10483 if (!bytes || 10484 bio_add_page(bio, pages[i], bytes, 0) < bytes) { 10485 blk_status_t status; 10486 10487 status = submit_encoded_read_bio(inode, bio, 0); 10488 if (status) { 10489 WRITE_ONCE(priv.status, status); 10490 bio_put(bio); 10491 goto out; 10492 } 10493 bio = NULL; 10494 continue; 10495 } 10496 10497 i++; 10498 cur += bytes; 10499 remaining -= bytes; 10500 } 10501 } 10502 10503 out: 10504 if (atomic_dec_return(&priv.pending)) 10505 io_wait_event(priv.wait, !atomic_read(&priv.pending)); 10506 /* See btrfs_encoded_read_endio() for ordering. */ 10507 return blk_status_to_errno(READ_ONCE(priv.status)); 10508 } 10509 10510 static ssize_t btrfs_encoded_read_regular(struct kiocb *iocb, 10511 struct iov_iter *iter, 10512 u64 start, u64 lockend, 10513 struct extent_state **cached_state, 10514 u64 disk_bytenr, u64 disk_io_size, 10515 size_t count, bool compressed, 10516 bool *unlocked) 10517 { 10518 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp)); 10519 struct extent_io_tree *io_tree = &inode->io_tree; 10520 struct page **pages; 10521 unsigned long nr_pages, i; 10522 u64 cur; 10523 size_t page_offset; 10524 ssize_t ret; 10525 10526 nr_pages = DIV_ROUND_UP(disk_io_size, PAGE_SIZE); 10527 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS); 10528 if (!pages) 10529 return -ENOMEM; 10530 ret = btrfs_alloc_page_array(nr_pages, pages); 10531 if (ret) { 10532 ret = -ENOMEM; 10533 goto out; 10534 } 10535 10536 ret = btrfs_encoded_read_regular_fill_pages(inode, start, disk_bytenr, 10537 disk_io_size, pages); 10538 if (ret) 10539 goto out; 10540 10541 unlock_extent_cached(io_tree, start, lockend, cached_state); 10542 btrfs_inode_unlock(&inode->vfs_inode, BTRFS_ILOCK_SHARED); 10543 *unlocked = true; 10544 10545 if (compressed) { 10546 i = 0; 10547 page_offset = 0; 10548 } else { 10549 i = (iocb->ki_pos - start) >> PAGE_SHIFT; 10550 page_offset = (iocb->ki_pos - start) & (PAGE_SIZE - 1); 10551 } 10552 cur = 0; 10553 while (cur < count) { 10554 size_t bytes = min_t(size_t, count - cur, 10555 PAGE_SIZE - page_offset); 10556 10557 if (copy_page_to_iter(pages[i], page_offset, bytes, 10558 iter) != bytes) { 10559 ret = -EFAULT; 10560 goto out; 10561 } 10562 i++; 10563 cur += bytes; 10564 page_offset = 0; 10565 } 10566 ret = count; 10567 out: 10568 for (i = 0; i < nr_pages; i++) { 10569 if (pages[i]) 10570 __free_page(pages[i]); 10571 } 10572 kfree(pages); 10573 return ret; 10574 } 10575 10576 ssize_t btrfs_encoded_read(struct kiocb *iocb, struct iov_iter *iter, 10577 struct btrfs_ioctl_encoded_io_args *encoded) 10578 { 10579 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp)); 10580 struct btrfs_fs_info *fs_info = inode->root->fs_info; 10581 struct extent_io_tree *io_tree = &inode->io_tree; 10582 ssize_t ret; 10583 size_t count = iov_iter_count(iter); 10584 u64 start, lockend, disk_bytenr, disk_io_size; 10585 struct extent_state *cached_state = NULL; 10586 struct extent_map *em; 10587 bool unlocked = false; 10588 10589 file_accessed(iocb->ki_filp); 10590 10591 btrfs_inode_lock(&inode->vfs_inode, BTRFS_ILOCK_SHARED); 10592 10593 if (iocb->ki_pos >= inode->vfs_inode.i_size) { 10594 btrfs_inode_unlock(&inode->vfs_inode, BTRFS_ILOCK_SHARED); 10595 return 0; 10596 } 10597 start = ALIGN_DOWN(iocb->ki_pos, fs_info->sectorsize); 10598 /* 10599 * We don't know how long the extent containing iocb->ki_pos is, but if 10600 * it's compressed we know that it won't be longer than this. 10601 */ 10602 lockend = start + BTRFS_MAX_UNCOMPRESSED - 1; 10603 10604 for (;;) { 10605 struct btrfs_ordered_extent *ordered; 10606 10607 ret = btrfs_wait_ordered_range(&inode->vfs_inode, start, 10608 lockend - start + 1); 10609 if (ret) 10610 goto out_unlock_inode; 10611 lock_extent_bits(io_tree, start, lockend, &cached_state); 10612 ordered = btrfs_lookup_ordered_range(inode, start, 10613 lockend - start + 1); 10614 if (!ordered) 10615 break; 10616 btrfs_put_ordered_extent(ordered); 10617 unlock_extent_cached(io_tree, start, lockend, &cached_state); 10618 cond_resched(); 10619 } 10620 10621 em = btrfs_get_extent(inode, NULL, 0, start, lockend - start + 1); 10622 if (IS_ERR(em)) { 10623 ret = PTR_ERR(em); 10624 goto out_unlock_extent; 10625 } 10626 10627 if (em->block_start == EXTENT_MAP_INLINE) { 10628 u64 extent_start = em->start; 10629 10630 /* 10631 * For inline extents we get everything we need out of the 10632 * extent item. 10633 */ 10634 free_extent_map(em); 10635 em = NULL; 10636 ret = btrfs_encoded_read_inline(iocb, iter, start, lockend, 10637 &cached_state, extent_start, 10638 count, encoded, &unlocked); 10639 goto out; 10640 } 10641 10642 /* 10643 * We only want to return up to EOF even if the extent extends beyond 10644 * that. 10645 */ 10646 encoded->len = min_t(u64, extent_map_end(em), 10647 inode->vfs_inode.i_size) - iocb->ki_pos; 10648 if (em->block_start == EXTENT_MAP_HOLE || 10649 test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) { 10650 disk_bytenr = EXTENT_MAP_HOLE; 10651 count = min_t(u64, count, encoded->len); 10652 encoded->len = count; 10653 encoded->unencoded_len = count; 10654 } else if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 10655 disk_bytenr = em->block_start; 10656 /* 10657 * Bail if the buffer isn't large enough to return the whole 10658 * compressed extent. 10659 */ 10660 if (em->block_len > count) { 10661 ret = -ENOBUFS; 10662 goto out_em; 10663 } 10664 disk_io_size = em->block_len; 10665 count = em->block_len; 10666 encoded->unencoded_len = em->ram_bytes; 10667 encoded->unencoded_offset = iocb->ki_pos - em->orig_start; 10668 ret = btrfs_encoded_io_compression_from_extent(fs_info, 10669 em->compress_type); 10670 if (ret < 0) 10671 goto out_em; 10672 encoded->compression = ret; 10673 } else { 10674 disk_bytenr = em->block_start + (start - em->start); 10675 if (encoded->len > count) 10676 encoded->len = count; 10677 /* 10678 * Don't read beyond what we locked. This also limits the page 10679 * allocations that we'll do. 10680 */ 10681 disk_io_size = min(lockend + 1, iocb->ki_pos + encoded->len) - start; 10682 count = start + disk_io_size - iocb->ki_pos; 10683 encoded->len = count; 10684 encoded->unencoded_len = count; 10685 disk_io_size = ALIGN(disk_io_size, fs_info->sectorsize); 10686 } 10687 free_extent_map(em); 10688 em = NULL; 10689 10690 if (disk_bytenr == EXTENT_MAP_HOLE) { 10691 unlock_extent_cached(io_tree, start, lockend, &cached_state); 10692 btrfs_inode_unlock(&inode->vfs_inode, BTRFS_ILOCK_SHARED); 10693 unlocked = true; 10694 ret = iov_iter_zero(count, iter); 10695 if (ret != count) 10696 ret = -EFAULT; 10697 } else { 10698 ret = btrfs_encoded_read_regular(iocb, iter, start, lockend, 10699 &cached_state, disk_bytenr, 10700 disk_io_size, count, 10701 encoded->compression, 10702 &unlocked); 10703 } 10704 10705 out: 10706 if (ret >= 0) 10707 iocb->ki_pos += encoded->len; 10708 out_em: 10709 free_extent_map(em); 10710 out_unlock_extent: 10711 if (!unlocked) 10712 unlock_extent_cached(io_tree, start, lockend, &cached_state); 10713 out_unlock_inode: 10714 if (!unlocked) 10715 btrfs_inode_unlock(&inode->vfs_inode, BTRFS_ILOCK_SHARED); 10716 return ret; 10717 } 10718 10719 ssize_t btrfs_do_encoded_write(struct kiocb *iocb, struct iov_iter *from, 10720 const struct btrfs_ioctl_encoded_io_args *encoded) 10721 { 10722 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp)); 10723 struct btrfs_root *root = inode->root; 10724 struct btrfs_fs_info *fs_info = root->fs_info; 10725 struct extent_io_tree *io_tree = &inode->io_tree; 10726 struct extent_changeset *data_reserved = NULL; 10727 struct extent_state *cached_state = NULL; 10728 int compression; 10729 size_t orig_count; 10730 u64 start, end; 10731 u64 num_bytes, ram_bytes, disk_num_bytes; 10732 unsigned long nr_pages, i; 10733 struct page **pages; 10734 struct btrfs_key ins; 10735 bool extent_reserved = false; 10736 struct extent_map *em; 10737 ssize_t ret; 10738 10739 switch (encoded->compression) { 10740 case BTRFS_ENCODED_IO_COMPRESSION_ZLIB: 10741 compression = BTRFS_COMPRESS_ZLIB; 10742 break; 10743 case BTRFS_ENCODED_IO_COMPRESSION_ZSTD: 10744 compression = BTRFS_COMPRESS_ZSTD; 10745 break; 10746 case BTRFS_ENCODED_IO_COMPRESSION_LZO_4K: 10747 case BTRFS_ENCODED_IO_COMPRESSION_LZO_8K: 10748 case BTRFS_ENCODED_IO_COMPRESSION_LZO_16K: 10749 case BTRFS_ENCODED_IO_COMPRESSION_LZO_32K: 10750 case BTRFS_ENCODED_IO_COMPRESSION_LZO_64K: 10751 /* The sector size must match for LZO. */ 10752 if (encoded->compression - 10753 BTRFS_ENCODED_IO_COMPRESSION_LZO_4K + 12 != 10754 fs_info->sectorsize_bits) 10755 return -EINVAL; 10756 compression = BTRFS_COMPRESS_LZO; 10757 break; 10758 default: 10759 return -EINVAL; 10760 } 10761 if (encoded->encryption != BTRFS_ENCODED_IO_ENCRYPTION_NONE) 10762 return -EINVAL; 10763 10764 orig_count = iov_iter_count(from); 10765 10766 /* The extent size must be sane. */ 10767 if (encoded->unencoded_len > BTRFS_MAX_UNCOMPRESSED || 10768 orig_count > BTRFS_MAX_COMPRESSED || orig_count == 0) 10769 return -EINVAL; 10770 10771 /* 10772 * The compressed data must be smaller than the decompressed data. 10773 * 10774 * It's of course possible for data to compress to larger or the same 10775 * size, but the buffered I/O path falls back to no compression for such 10776 * data, and we don't want to break any assumptions by creating these 10777 * extents. 10778 * 10779 * Note that this is less strict than the current check we have that the 10780 * compressed data must be at least one sector smaller than the 10781 * decompressed data. We only want to enforce the weaker requirement 10782 * from old kernels that it is at least one byte smaller. 10783 */ 10784 if (orig_count >= encoded->unencoded_len) 10785 return -EINVAL; 10786 10787 /* The extent must start on a sector boundary. */ 10788 start = iocb->ki_pos; 10789 if (!IS_ALIGNED(start, fs_info->sectorsize)) 10790 return -EINVAL; 10791 10792 /* 10793 * The extent must end on a sector boundary. However, we allow a write 10794 * which ends at or extends i_size to have an unaligned length; we round 10795 * up the extent size and set i_size to the unaligned end. 10796 */ 10797 if (start + encoded->len < inode->vfs_inode.i_size && 10798 !IS_ALIGNED(start + encoded->len, fs_info->sectorsize)) 10799 return -EINVAL; 10800 10801 /* Finally, the offset in the unencoded data must be sector-aligned. */ 10802 if (!IS_ALIGNED(encoded->unencoded_offset, fs_info->sectorsize)) 10803 return -EINVAL; 10804 10805 num_bytes = ALIGN(encoded->len, fs_info->sectorsize); 10806 ram_bytes = ALIGN(encoded->unencoded_len, fs_info->sectorsize); 10807 end = start + num_bytes - 1; 10808 10809 /* 10810 * If the extent cannot be inline, the compressed data on disk must be 10811 * sector-aligned. For convenience, we extend it with zeroes if it 10812 * isn't. 10813 */ 10814 disk_num_bytes = ALIGN(orig_count, fs_info->sectorsize); 10815 nr_pages = DIV_ROUND_UP(disk_num_bytes, PAGE_SIZE); 10816 pages = kvcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL_ACCOUNT); 10817 if (!pages) 10818 return -ENOMEM; 10819 for (i = 0; i < nr_pages; i++) { 10820 size_t bytes = min_t(size_t, PAGE_SIZE, iov_iter_count(from)); 10821 char *kaddr; 10822 10823 pages[i] = alloc_page(GFP_KERNEL_ACCOUNT); 10824 if (!pages[i]) { 10825 ret = -ENOMEM; 10826 goto out_pages; 10827 } 10828 kaddr = kmap_local_page(pages[i]); 10829 if (copy_from_iter(kaddr, bytes, from) != bytes) { 10830 kunmap_local(kaddr); 10831 ret = -EFAULT; 10832 goto out_pages; 10833 } 10834 if (bytes < PAGE_SIZE) 10835 memset(kaddr + bytes, 0, PAGE_SIZE - bytes); 10836 kunmap_local(kaddr); 10837 } 10838 10839 for (;;) { 10840 struct btrfs_ordered_extent *ordered; 10841 10842 ret = btrfs_wait_ordered_range(&inode->vfs_inode, start, num_bytes); 10843 if (ret) 10844 goto out_pages; 10845 ret = invalidate_inode_pages2_range(inode->vfs_inode.i_mapping, 10846 start >> PAGE_SHIFT, 10847 end >> PAGE_SHIFT); 10848 if (ret) 10849 goto out_pages; 10850 lock_extent_bits(io_tree, start, end, &cached_state); 10851 ordered = btrfs_lookup_ordered_range(inode, start, num_bytes); 10852 if (!ordered && 10853 !filemap_range_has_page(inode->vfs_inode.i_mapping, start, end)) 10854 break; 10855 if (ordered) 10856 btrfs_put_ordered_extent(ordered); 10857 unlock_extent_cached(io_tree, start, end, &cached_state); 10858 cond_resched(); 10859 } 10860 10861 /* 10862 * We don't use the higher-level delalloc space functions because our 10863 * num_bytes and disk_num_bytes are different. 10864 */ 10865 ret = btrfs_alloc_data_chunk_ondemand(inode, disk_num_bytes); 10866 if (ret) 10867 goto out_unlock; 10868 ret = btrfs_qgroup_reserve_data(inode, &data_reserved, start, num_bytes); 10869 if (ret) 10870 goto out_free_data_space; 10871 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes, disk_num_bytes, 10872 false); 10873 if (ret) 10874 goto out_qgroup_free_data; 10875 10876 /* Try an inline extent first. */ 10877 if (start == 0 && encoded->unencoded_len == encoded->len && 10878 encoded->unencoded_offset == 0) { 10879 ret = cow_file_range_inline(inode, encoded->len, orig_count, 10880 compression, pages, true); 10881 if (ret <= 0) { 10882 if (ret == 0) 10883 ret = orig_count; 10884 goto out_delalloc_release; 10885 } 10886 } 10887 10888 ret = btrfs_reserve_extent(root, disk_num_bytes, disk_num_bytes, 10889 disk_num_bytes, 0, 0, &ins, 1, 1); 10890 if (ret) 10891 goto out_delalloc_release; 10892 extent_reserved = true; 10893 10894 em = create_io_em(inode, start, num_bytes, 10895 start - encoded->unencoded_offset, ins.objectid, 10896 ins.offset, ins.offset, ram_bytes, compression, 10897 BTRFS_ORDERED_COMPRESSED); 10898 if (IS_ERR(em)) { 10899 ret = PTR_ERR(em); 10900 goto out_free_reserved; 10901 } 10902 free_extent_map(em); 10903 10904 ret = btrfs_add_ordered_extent(inode, start, num_bytes, ram_bytes, 10905 ins.objectid, ins.offset, 10906 encoded->unencoded_offset, 10907 (1 << BTRFS_ORDERED_ENCODED) | 10908 (1 << BTRFS_ORDERED_COMPRESSED), 10909 compression); 10910 if (ret) { 10911 btrfs_drop_extent_cache(inode, start, end, 0); 10912 goto out_free_reserved; 10913 } 10914 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 10915 10916 if (start + encoded->len > inode->vfs_inode.i_size) 10917 i_size_write(&inode->vfs_inode, start + encoded->len); 10918 10919 unlock_extent_cached(io_tree, start, end, &cached_state); 10920 10921 btrfs_delalloc_release_extents(inode, num_bytes); 10922 10923 if (btrfs_submit_compressed_write(inode, start, num_bytes, ins.objectid, 10924 ins.offset, pages, nr_pages, 0, NULL, 10925 false)) { 10926 btrfs_writepage_endio_finish_ordered(inode, pages[0], start, end, 0); 10927 ret = -EIO; 10928 goto out_pages; 10929 } 10930 ret = orig_count; 10931 goto out; 10932 10933 out_free_reserved: 10934 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 10935 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1); 10936 out_delalloc_release: 10937 btrfs_delalloc_release_extents(inode, num_bytes); 10938 btrfs_delalloc_release_metadata(inode, disk_num_bytes, ret < 0); 10939 out_qgroup_free_data: 10940 if (ret < 0) 10941 btrfs_qgroup_free_data(inode, data_reserved, start, num_bytes); 10942 out_free_data_space: 10943 /* 10944 * If btrfs_reserve_extent() succeeded, then we already decremented 10945 * bytes_may_use. 10946 */ 10947 if (!extent_reserved) 10948 btrfs_free_reserved_data_space_noquota(fs_info, disk_num_bytes); 10949 out_unlock: 10950 unlock_extent_cached(io_tree, start, end, &cached_state); 10951 out_pages: 10952 for (i = 0; i < nr_pages; i++) { 10953 if (pages[i]) 10954 __free_page(pages[i]); 10955 } 10956 kvfree(pages); 10957 out: 10958 if (ret >= 0) 10959 iocb->ki_pos += encoded->len; 10960 return ret; 10961 } 10962 10963 #ifdef CONFIG_SWAP 10964 /* 10965 * Add an entry indicating a block group or device which is pinned by a 10966 * swapfile. Returns 0 on success, 1 if there is already an entry for it, or a 10967 * negative errno on failure. 10968 */ 10969 static int btrfs_add_swapfile_pin(struct inode *inode, void *ptr, 10970 bool is_block_group) 10971 { 10972 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 10973 struct btrfs_swapfile_pin *sp, *entry; 10974 struct rb_node **p; 10975 struct rb_node *parent = NULL; 10976 10977 sp = kmalloc(sizeof(*sp), GFP_NOFS); 10978 if (!sp) 10979 return -ENOMEM; 10980 sp->ptr = ptr; 10981 sp->inode = inode; 10982 sp->is_block_group = is_block_group; 10983 sp->bg_extent_count = 1; 10984 10985 spin_lock(&fs_info->swapfile_pins_lock); 10986 p = &fs_info->swapfile_pins.rb_node; 10987 while (*p) { 10988 parent = *p; 10989 entry = rb_entry(parent, struct btrfs_swapfile_pin, node); 10990 if (sp->ptr < entry->ptr || 10991 (sp->ptr == entry->ptr && sp->inode < entry->inode)) { 10992 p = &(*p)->rb_left; 10993 } else if (sp->ptr > entry->ptr || 10994 (sp->ptr == entry->ptr && sp->inode > entry->inode)) { 10995 p = &(*p)->rb_right; 10996 } else { 10997 if (is_block_group) 10998 entry->bg_extent_count++; 10999 spin_unlock(&fs_info->swapfile_pins_lock); 11000 kfree(sp); 11001 return 1; 11002 } 11003 } 11004 rb_link_node(&sp->node, parent, p); 11005 rb_insert_color(&sp->node, &fs_info->swapfile_pins); 11006 spin_unlock(&fs_info->swapfile_pins_lock); 11007 return 0; 11008 } 11009 11010 /* Free all of the entries pinned by this swapfile. */ 11011 static void btrfs_free_swapfile_pins(struct inode *inode) 11012 { 11013 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 11014 struct btrfs_swapfile_pin *sp; 11015 struct rb_node *node, *next; 11016 11017 spin_lock(&fs_info->swapfile_pins_lock); 11018 node = rb_first(&fs_info->swapfile_pins); 11019 while (node) { 11020 next = rb_next(node); 11021 sp = rb_entry(node, struct btrfs_swapfile_pin, node); 11022 if (sp->inode == inode) { 11023 rb_erase(&sp->node, &fs_info->swapfile_pins); 11024 if (sp->is_block_group) { 11025 btrfs_dec_block_group_swap_extents(sp->ptr, 11026 sp->bg_extent_count); 11027 btrfs_put_block_group(sp->ptr); 11028 } 11029 kfree(sp); 11030 } 11031 node = next; 11032 } 11033 spin_unlock(&fs_info->swapfile_pins_lock); 11034 } 11035 11036 struct btrfs_swap_info { 11037 u64 start; 11038 u64 block_start; 11039 u64 block_len; 11040 u64 lowest_ppage; 11041 u64 highest_ppage; 11042 unsigned long nr_pages; 11043 int nr_extents; 11044 }; 11045 11046 static int btrfs_add_swap_extent(struct swap_info_struct *sis, 11047 struct btrfs_swap_info *bsi) 11048 { 11049 unsigned long nr_pages; 11050 unsigned long max_pages; 11051 u64 first_ppage, first_ppage_reported, next_ppage; 11052 int ret; 11053 11054 /* 11055 * Our swapfile may have had its size extended after the swap header was 11056 * written. In that case activating the swapfile should not go beyond 11057 * the max size set in the swap header. 11058 */ 11059 if (bsi->nr_pages >= sis->max) 11060 return 0; 11061 11062 max_pages = sis->max - bsi->nr_pages; 11063 first_ppage = ALIGN(bsi->block_start, PAGE_SIZE) >> PAGE_SHIFT; 11064 next_ppage = ALIGN_DOWN(bsi->block_start + bsi->block_len, 11065 PAGE_SIZE) >> PAGE_SHIFT; 11066 11067 if (first_ppage >= next_ppage) 11068 return 0; 11069 nr_pages = next_ppage - first_ppage; 11070 nr_pages = min(nr_pages, max_pages); 11071 11072 first_ppage_reported = first_ppage; 11073 if (bsi->start == 0) 11074 first_ppage_reported++; 11075 if (bsi->lowest_ppage > first_ppage_reported) 11076 bsi->lowest_ppage = first_ppage_reported; 11077 if (bsi->highest_ppage < (next_ppage - 1)) 11078 bsi->highest_ppage = next_ppage - 1; 11079 11080 ret = add_swap_extent(sis, bsi->nr_pages, nr_pages, first_ppage); 11081 if (ret < 0) 11082 return ret; 11083 bsi->nr_extents += ret; 11084 bsi->nr_pages += nr_pages; 11085 return 0; 11086 } 11087 11088 static void btrfs_swap_deactivate(struct file *file) 11089 { 11090 struct inode *inode = file_inode(file); 11091 11092 btrfs_free_swapfile_pins(inode); 11093 atomic_dec(&BTRFS_I(inode)->root->nr_swapfiles); 11094 } 11095 11096 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file, 11097 sector_t *span) 11098 { 11099 struct inode *inode = file_inode(file); 11100 struct btrfs_root *root = BTRFS_I(inode)->root; 11101 struct btrfs_fs_info *fs_info = root->fs_info; 11102 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 11103 struct extent_state *cached_state = NULL; 11104 struct extent_map *em = NULL; 11105 struct btrfs_device *device = NULL; 11106 struct btrfs_swap_info bsi = { 11107 .lowest_ppage = (sector_t)-1ULL, 11108 }; 11109 int ret = 0; 11110 u64 isize; 11111 u64 start; 11112 11113 /* 11114 * If the swap file was just created, make sure delalloc is done. If the 11115 * file changes again after this, the user is doing something stupid and 11116 * we don't really care. 11117 */ 11118 ret = btrfs_wait_ordered_range(inode, 0, (u64)-1); 11119 if (ret) 11120 return ret; 11121 11122 /* 11123 * The inode is locked, so these flags won't change after we check them. 11124 */ 11125 if (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS) { 11126 btrfs_warn(fs_info, "swapfile must not be compressed"); 11127 return -EINVAL; 11128 } 11129 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)) { 11130 btrfs_warn(fs_info, "swapfile must not be copy-on-write"); 11131 return -EINVAL; 11132 } 11133 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) { 11134 btrfs_warn(fs_info, "swapfile must not be checksummed"); 11135 return -EINVAL; 11136 } 11137 11138 /* 11139 * Balance or device remove/replace/resize can move stuff around from 11140 * under us. The exclop protection makes sure they aren't running/won't 11141 * run concurrently while we are mapping the swap extents, and 11142 * fs_info->swapfile_pins prevents them from running while the swap 11143 * file is active and moving the extents. Note that this also prevents 11144 * a concurrent device add which isn't actually necessary, but it's not 11145 * really worth the trouble to allow it. 11146 */ 11147 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_SWAP_ACTIVATE)) { 11148 btrfs_warn(fs_info, 11149 "cannot activate swapfile while exclusive operation is running"); 11150 return -EBUSY; 11151 } 11152 11153 /* 11154 * Prevent snapshot creation while we are activating the swap file. 11155 * We do not want to race with snapshot creation. If snapshot creation 11156 * already started before we bumped nr_swapfiles from 0 to 1 and 11157 * completes before the first write into the swap file after it is 11158 * activated, than that write would fallback to COW. 11159 */ 11160 if (!btrfs_drew_try_write_lock(&root->snapshot_lock)) { 11161 btrfs_exclop_finish(fs_info); 11162 btrfs_warn(fs_info, 11163 "cannot activate swapfile because snapshot creation is in progress"); 11164 return -EINVAL; 11165 } 11166 /* 11167 * Snapshots can create extents which require COW even if NODATACOW is 11168 * set. We use this counter to prevent snapshots. We must increment it 11169 * before walking the extents because we don't want a concurrent 11170 * snapshot to run after we've already checked the extents. 11171 * 11172 * It is possible that subvolume is marked for deletion but still not 11173 * removed yet. To prevent this race, we check the root status before 11174 * activating the swapfile. 11175 */ 11176 spin_lock(&root->root_item_lock); 11177 if (btrfs_root_dead(root)) { 11178 spin_unlock(&root->root_item_lock); 11179 11180 btrfs_exclop_finish(fs_info); 11181 btrfs_warn(fs_info, 11182 "cannot activate swapfile because subvolume %llu is being deleted", 11183 root->root_key.objectid); 11184 return -EPERM; 11185 } 11186 atomic_inc(&root->nr_swapfiles); 11187 spin_unlock(&root->root_item_lock); 11188 11189 isize = ALIGN_DOWN(inode->i_size, fs_info->sectorsize); 11190 11191 lock_extent_bits(io_tree, 0, isize - 1, &cached_state); 11192 start = 0; 11193 while (start < isize) { 11194 u64 logical_block_start, physical_block_start; 11195 struct btrfs_block_group *bg; 11196 u64 len = isize - start; 11197 11198 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len); 11199 if (IS_ERR(em)) { 11200 ret = PTR_ERR(em); 11201 goto out; 11202 } 11203 11204 if (em->block_start == EXTENT_MAP_HOLE) { 11205 btrfs_warn(fs_info, "swapfile must not have holes"); 11206 ret = -EINVAL; 11207 goto out; 11208 } 11209 if (em->block_start == EXTENT_MAP_INLINE) { 11210 /* 11211 * It's unlikely we'll ever actually find ourselves 11212 * here, as a file small enough to fit inline won't be 11213 * big enough to store more than the swap header, but in 11214 * case something changes in the future, let's catch it 11215 * here rather than later. 11216 */ 11217 btrfs_warn(fs_info, "swapfile must not be inline"); 11218 ret = -EINVAL; 11219 goto out; 11220 } 11221 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 11222 btrfs_warn(fs_info, "swapfile must not be compressed"); 11223 ret = -EINVAL; 11224 goto out; 11225 } 11226 11227 logical_block_start = em->block_start + (start - em->start); 11228 len = min(len, em->len - (start - em->start)); 11229 free_extent_map(em); 11230 em = NULL; 11231 11232 ret = can_nocow_extent(inode, start, &len, NULL, NULL, NULL, true); 11233 if (ret < 0) { 11234 goto out; 11235 } else if (ret) { 11236 ret = 0; 11237 } else { 11238 btrfs_warn(fs_info, 11239 "swapfile must not be copy-on-write"); 11240 ret = -EINVAL; 11241 goto out; 11242 } 11243 11244 em = btrfs_get_chunk_map(fs_info, logical_block_start, len); 11245 if (IS_ERR(em)) { 11246 ret = PTR_ERR(em); 11247 goto out; 11248 } 11249 11250 if (em->map_lookup->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) { 11251 btrfs_warn(fs_info, 11252 "swapfile must have single data profile"); 11253 ret = -EINVAL; 11254 goto out; 11255 } 11256 11257 if (device == NULL) { 11258 device = em->map_lookup->stripes[0].dev; 11259 ret = btrfs_add_swapfile_pin(inode, device, false); 11260 if (ret == 1) 11261 ret = 0; 11262 else if (ret) 11263 goto out; 11264 } else if (device != em->map_lookup->stripes[0].dev) { 11265 btrfs_warn(fs_info, "swapfile must be on one device"); 11266 ret = -EINVAL; 11267 goto out; 11268 } 11269 11270 physical_block_start = (em->map_lookup->stripes[0].physical + 11271 (logical_block_start - em->start)); 11272 len = min(len, em->len - (logical_block_start - em->start)); 11273 free_extent_map(em); 11274 em = NULL; 11275 11276 bg = btrfs_lookup_block_group(fs_info, logical_block_start); 11277 if (!bg) { 11278 btrfs_warn(fs_info, 11279 "could not find block group containing swapfile"); 11280 ret = -EINVAL; 11281 goto out; 11282 } 11283 11284 if (!btrfs_inc_block_group_swap_extents(bg)) { 11285 btrfs_warn(fs_info, 11286 "block group for swapfile at %llu is read-only%s", 11287 bg->start, 11288 atomic_read(&fs_info->scrubs_running) ? 11289 " (scrub running)" : ""); 11290 btrfs_put_block_group(bg); 11291 ret = -EINVAL; 11292 goto out; 11293 } 11294 11295 ret = btrfs_add_swapfile_pin(inode, bg, true); 11296 if (ret) { 11297 btrfs_put_block_group(bg); 11298 if (ret == 1) 11299 ret = 0; 11300 else 11301 goto out; 11302 } 11303 11304 if (bsi.block_len && 11305 bsi.block_start + bsi.block_len == physical_block_start) { 11306 bsi.block_len += len; 11307 } else { 11308 if (bsi.block_len) { 11309 ret = btrfs_add_swap_extent(sis, &bsi); 11310 if (ret) 11311 goto out; 11312 } 11313 bsi.start = start; 11314 bsi.block_start = physical_block_start; 11315 bsi.block_len = len; 11316 } 11317 11318 start += len; 11319 } 11320 11321 if (bsi.block_len) 11322 ret = btrfs_add_swap_extent(sis, &bsi); 11323 11324 out: 11325 if (!IS_ERR_OR_NULL(em)) 11326 free_extent_map(em); 11327 11328 unlock_extent_cached(io_tree, 0, isize - 1, &cached_state); 11329 11330 if (ret) 11331 btrfs_swap_deactivate(file); 11332 11333 btrfs_drew_write_unlock(&root->snapshot_lock); 11334 11335 btrfs_exclop_finish(fs_info); 11336 11337 if (ret) 11338 return ret; 11339 11340 if (device) 11341 sis->bdev = device->bdev; 11342 *span = bsi.highest_ppage - bsi.lowest_ppage + 1; 11343 sis->max = bsi.nr_pages; 11344 sis->pages = bsi.nr_pages - 1; 11345 sis->highest_bit = bsi.nr_pages - 1; 11346 return bsi.nr_extents; 11347 } 11348 #else 11349 static void btrfs_swap_deactivate(struct file *file) 11350 { 11351 } 11352 11353 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file, 11354 sector_t *span) 11355 { 11356 return -EOPNOTSUPP; 11357 } 11358 #endif 11359 11360 /* 11361 * Update the number of bytes used in the VFS' inode. When we replace extents in 11362 * a range (clone, dedupe, fallocate's zero range), we must update the number of 11363 * bytes used by the inode in an atomic manner, so that concurrent stat(2) calls 11364 * always get a correct value. 11365 */ 11366 void btrfs_update_inode_bytes(struct btrfs_inode *inode, 11367 const u64 add_bytes, 11368 const u64 del_bytes) 11369 { 11370 if (add_bytes == del_bytes) 11371 return; 11372 11373 spin_lock(&inode->lock); 11374 if (del_bytes > 0) 11375 inode_sub_bytes(&inode->vfs_inode, del_bytes); 11376 if (add_bytes > 0) 11377 inode_add_bytes(&inode->vfs_inode, add_bytes); 11378 spin_unlock(&inode->lock); 11379 } 11380 11381 /** 11382 * Verify that there are no ordered extents for a given file range. 11383 * 11384 * @inode: The target inode. 11385 * @start: Start offset of the file range, should be sector size aligned. 11386 * @end: End offset (inclusive) of the file range, its value +1 should be 11387 * sector size aligned. 11388 * 11389 * This should typically be used for cases where we locked an inode's VFS lock in 11390 * exclusive mode, we have also locked the inode's i_mmap_lock in exclusive mode, 11391 * we have flushed all delalloc in the range, we have waited for all ordered 11392 * extents in the range to complete and finally we have locked the file range in 11393 * the inode's io_tree. 11394 */ 11395 void btrfs_assert_inode_range_clean(struct btrfs_inode *inode, u64 start, u64 end) 11396 { 11397 struct btrfs_root *root = inode->root; 11398 struct btrfs_ordered_extent *ordered; 11399 11400 if (!IS_ENABLED(CONFIG_BTRFS_ASSERT)) 11401 return; 11402 11403 ordered = btrfs_lookup_first_ordered_range(inode, start, end + 1 - start); 11404 if (ordered) { 11405 btrfs_err(root->fs_info, 11406 "found unexpected ordered extent in file range [%llu, %llu] for inode %llu root %llu (ordered range [%llu, %llu])", 11407 start, end, btrfs_ino(inode), root->root_key.objectid, 11408 ordered->file_offset, 11409 ordered->file_offset + ordered->num_bytes - 1); 11410 btrfs_put_ordered_extent(ordered); 11411 } 11412 11413 ASSERT(ordered == NULL); 11414 } 11415 11416 static const struct inode_operations btrfs_dir_inode_operations = { 11417 .getattr = btrfs_getattr, 11418 .lookup = btrfs_lookup, 11419 .create = btrfs_create, 11420 .unlink = btrfs_unlink, 11421 .link = btrfs_link, 11422 .mkdir = btrfs_mkdir, 11423 .rmdir = btrfs_rmdir, 11424 .rename = btrfs_rename2, 11425 .symlink = btrfs_symlink, 11426 .setattr = btrfs_setattr, 11427 .mknod = btrfs_mknod, 11428 .listxattr = btrfs_listxattr, 11429 .permission = btrfs_permission, 11430 .get_acl = btrfs_get_acl, 11431 .set_acl = btrfs_set_acl, 11432 .update_time = btrfs_update_time, 11433 .tmpfile = btrfs_tmpfile, 11434 .fileattr_get = btrfs_fileattr_get, 11435 .fileattr_set = btrfs_fileattr_set, 11436 }; 11437 11438 static const struct file_operations btrfs_dir_file_operations = { 11439 .llseek = generic_file_llseek, 11440 .read = generic_read_dir, 11441 .iterate_shared = btrfs_real_readdir, 11442 .open = btrfs_opendir, 11443 .unlocked_ioctl = btrfs_ioctl, 11444 #ifdef CONFIG_COMPAT 11445 .compat_ioctl = btrfs_compat_ioctl, 11446 #endif 11447 .release = btrfs_release_file, 11448 .fsync = btrfs_sync_file, 11449 }; 11450 11451 /* 11452 * btrfs doesn't support the bmap operation because swapfiles 11453 * use bmap to make a mapping of extents in the file. They assume 11454 * these extents won't change over the life of the file and they 11455 * use the bmap result to do IO directly to the drive. 11456 * 11457 * the btrfs bmap call would return logical addresses that aren't 11458 * suitable for IO and they also will change frequently as COW 11459 * operations happen. So, swapfile + btrfs == corruption. 11460 * 11461 * For now we're avoiding this by dropping bmap. 11462 */ 11463 static const struct address_space_operations btrfs_aops = { 11464 .read_folio = btrfs_read_folio, 11465 .writepages = btrfs_writepages, 11466 .readahead = btrfs_readahead, 11467 .direct_IO = noop_direct_IO, 11468 .invalidate_folio = btrfs_invalidate_folio, 11469 .release_folio = btrfs_release_folio, 11470 .migrate_folio = btrfs_migrate_folio, 11471 .dirty_folio = filemap_dirty_folio, 11472 .error_remove_page = generic_error_remove_page, 11473 .swap_activate = btrfs_swap_activate, 11474 .swap_deactivate = btrfs_swap_deactivate, 11475 }; 11476 11477 static const struct inode_operations btrfs_file_inode_operations = { 11478 .getattr = btrfs_getattr, 11479 .setattr = btrfs_setattr, 11480 .listxattr = btrfs_listxattr, 11481 .permission = btrfs_permission, 11482 .fiemap = btrfs_fiemap, 11483 .get_acl = btrfs_get_acl, 11484 .set_acl = btrfs_set_acl, 11485 .update_time = btrfs_update_time, 11486 .fileattr_get = btrfs_fileattr_get, 11487 .fileattr_set = btrfs_fileattr_set, 11488 }; 11489 static const struct inode_operations btrfs_special_inode_operations = { 11490 .getattr = btrfs_getattr, 11491 .setattr = btrfs_setattr, 11492 .permission = btrfs_permission, 11493 .listxattr = btrfs_listxattr, 11494 .get_acl = btrfs_get_acl, 11495 .set_acl = btrfs_set_acl, 11496 .update_time = btrfs_update_time, 11497 }; 11498 static const struct inode_operations btrfs_symlink_inode_operations = { 11499 .get_link = page_get_link, 11500 .getattr = btrfs_getattr, 11501 .setattr = btrfs_setattr, 11502 .permission = btrfs_permission, 11503 .listxattr = btrfs_listxattr, 11504 .update_time = btrfs_update_time, 11505 }; 11506 11507 const struct dentry_operations btrfs_dentry_operations = { 11508 .d_delete = btrfs_dentry_delete, 11509 }; 11510